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Chapter 1 

Fractional Statistics in Quantum Mechanics 

Daniel P. Arovas 

1. INTRODUCTION 

One usually does not think of quantum statistics in terms of a con­
tinuous parameter, such as a coupling constant. We are accustomed to the 
notion that many-particle wave functions are either symmetric or antisym­
metric: 

'1'( ... j ... i· .. ) = e i8 '1'(' .. i· .. j ... ), (1) 

where (J = 2n1T for bosons and (J = (2n + 1)1T for fermions. Interpolating 
in e, e.g., e = 1T/2, seems to make no sense because iterating Eq. (1) twice 
gives 

'1'( ... j ... i· .. ) = e2i8'1'(' .. j ... i· .. ) (2) 

DANIEL P. AROVAS • Department of Physics, University of California at San Diego, 
La Jolla, California 92093. 

Quantum Mechanics of Fundamental Systems 3, edited by Claudio Teitelboim and Jorge Zanelli. 
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2 Daniel P. Arovas 

and the single-valuedness of 'I' demands that e2i8 = 1, so one concludes 
that Bose and Fermi statistics exhaust all the allowed values of o. 

What happens, though, if we relax the single-valuedness constraint and 
consider the wave function '1'( q) to be a multivalued function of its argu­
ment? One example of a multivalued function is the complex function 
J(z) = zV, which changes by a factor e 27riv when z moves counterclockwise 
around a circle enclosing the origin. A path which winds around the origin 
n times accumulates a phase factor of e27rinv. If v is not an integer, then 
J(z) does not return to its original value. Although it may seem strange to 
consider multivalued wave functions, nothing prevents us from doing so! 
The Schrodinger equation is a differential equation and thus requires only 
that 'I' be locally well defined. In addition, physical quantities, such as 
probability densities, always depend on 1'1'12 and are appropriately single­
valued. (The multivaluedness we are considering always occurs in the phase 
of the wave function.) 

In the example J(z) = zV, z takes its values in the complex plane. In 
the case of many-particle quantum mechanics, the argument q of '1'( q) 
exists in a more complicated space, called configuration space. It is the space 
of all N-tuples of coordinates q = {fJ' ... ,fN} together with the equivalence 
relation q ~ O"q, where 0" is any element of the permutation group Y N , and 
O"q = {fu(I) , ... , fu(N)}. The equivalence of q and O"q means that the particles 
are indistinguishable. For technical purposes, it is necessary to impose the 
restriction that no two particles ever occupy the same position-this condi­
tion is necessary for the multivaluedness to be meaningful. This is analogous 
to the situation in our simple exampleJ(z) = zV, above, in which paths that 
intersect the orgin cannot be assigned a definite winding number. Physically, 
the restriction that no two particles occupy the same position can be 
accomplished by imposing an infinitely repulsive hard-core potential of 
vanishingly small range; this restriction has no effect on any physical 
properties. 

We now ask what sorts of multivalued functions can be defined on this 
configuration space.* Recall that in the case of the simple exampleJ(z) = ZV 

paths could be classified by an integer winding number n; paths that have 
the same winding number are equivalent in the sense that they can be 
smoothly deformed into one another without crossing the origin. Associated 
to each path of winding number n is a phase e27rinv. If we append one path 
of winding number n' to a path of winding number n, the resultant path 
has winding number n + n'. Thus, we can think of the space of paths as a 
mathematical group, and in this simple case, group addition of two paths 

* It should be remarked that conventional wave functions satisfying Fermi statistics are 
multivalued in configuration space, for the sign changes depending on the parity of the 
permutation associated with a given path. 
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of winding numbers nand n' produces a third path of winding number 
n + n'. Mathematically, this result is succinctly stated as 

(3) 

which means that the group of paths (under the operation of path addition) 
on the punctured plane (the plane minus the origin) is isomorphic to the 
group of integers (under the operation of addition). Mathematicians refer 
to the group of paths 7T)(M) as the "fundamental group" or "first homotopy 
group" of the manifold M. The fundamental group of the punctured plane 
is isomorphic to the integers. 

The manifold associated with the N-particle configuration space is 
more complicated than the punctured plane. The difference is that rather 
than classifying paths by how they wind around the origin, we classify paths 
by how the particles wind around other particles. If the particles themselves 
exist in Euclidean space Rd, then the configuration space is of dimension 
dN. Consider a closed path in this configuration space from a point q to 
an equivalent point uq. If d is three or larger, it is easy to see that any two 
paths from q to uq are deformable into one another. Just as loops in R3 
cannot be classified by a winding number (each can be shrunk to a point 
without ever crossing the origin), any two configuration-space paths q to 
uq are "homotopically equivalent"-they can be deformed into one another. 
The paths are then classified by u alone. Mathematicians would say that 

7T)(N-particle configuration space) == ::tN if d > 2. (4) 

The phases associated with the paths form a unitary one-dimensional 
representation of 7T) (configuration space), and so for d > 2 we are left 
with unitary one-dimensional representations of ::tN, of which there are 
only two: the symmetric or Bose representation e iO" = +1, and the antisym­
metric or Fermi representation eiO" = sgn u. 

In two spatial dimensions, the notion of the relative winding of particles 
becomes well defined. As a consequence, the space of loops in the configur­
ation space becomes more complicated. Indeed, a path in which a particle 
winds completely around another particle can no longer be deformed to a 
point without crossing that particle. The fundamental group of the configur­
ation space is no longer ::tN, but rather is an infinite non-Abelian group 
known as the N-string braid group.) As its name suggests, the algebra of 
this group is associated with the weaving of "braids, which are world lines 
for our particles.* The phases associated with the paths in configuration 
space now form a unitary one-dimensional representation of the braid 

* Here we are assuming that the particles exist in the plane R2. One could also consider the 
N-string braid group for particles on another two-dimensional surface, such as the torus or 
the sphere. Additional structure in the algebra of the braid group arises if the base space is 
compact or mUltiply connected. 
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group: to each pairwise exchange of particles one associates a factor e iO• If 
we let Zj = Xj + iYj be the complex coordinate for particle j, the wave function 
takes the form 

'I'(rl' ... ,rN) = n (Zi - Zj )8/ 7T <I>(rl, ... ,rN), 
i < j 

(5) 

where <I>(q) is a totally symmetric function. Note that (J = 7T leads to a 
function which satisfies Fermi statistics. 

Fractional statistics was first clearly discussed in 1977 by Leinaas and 
Myrheim.2 (For a pedagogical review, see MacKenzie and Wilczek.3 ) The 
above configuration-space analysis is due to Laidlaw and DeWitt,4 who 
were mostly concerned with d = 3, and to WU,I.5 who discussed the case 
d = 2. 

Paths in configuration space are central to the Feynman path integral 
description of the propagator, 

K(ql> tIl q2, t2) 

=N1, L f ~q(t)exp[~f'2 dt(L(q,q,t)+liiL . cPij)J. (6) 
• <r E 9'N q('I) = ql " 'I 7T I < J 

q('2) = Q2 

Here, CPij = tan-I[(Yi - Yj )/(xi - xj )] is the relative angle between particles 
i and j. The cPij term in the Lagrangian keeps track of the relative winding 
of particles, associating a phase factor e i8 to each interchange Acpij = 7T. 

Thus, to shift the statistics by (J one must alter the many-particle Lagrangian 

(J 
L~ L+ Ii- L ¢;ij' 

7T i<j 
(7) 

Since the additional term is a total time derivative, the angle (J does not 
appear in the equations of motion. However, the quantity ¢;ij dt cannot be 
regarded as an exact differential because it is not the differential of a 
single-valued function of the coordinates {rj }. Thus, the "statistical" part 
of the action leads to additional phase interference between paths of differing 
winding number. This is the essence of fractional statistics. 

2. CHARGE-FLUX COMPOSITES 

A particularly simple realization of fractional statistics was proposed 
by Wilczek,6.7 who pointed out that a composite object consisting of a 
particle of charge e and a flux tube of strength 4> = (Jlic/ e would possess 
fractional statistics. Recall that when a quantum-mechanical particle of 
charge q encircles a fixed solenoid of flux 4>, its wavefunction accumulates 
a phase eiqq, / hc; this is the celebrated Aharonov-Bohm effect. The same 
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phase would result from a quantum-mechanical solenoid orbiting around 
a fixed charge. Now consider two of Wilczek's charge-flux composites and 
compute the phase they generate upon interchange (half a complete revo­
lution). There are two contributions to the accumulated phase. A factor 
eieq,/2hc = e ilJ / 2 is generated from the charge of particle 1 moving in the field 
of the flux of particle 2, and an identical factor arises from the flux of 
particle 1 moving in the field of the charge of particle 2. The net accrued 
phase is thus e ilJ• 

A generic Lagrangian L = !mtj2 - V(q), altered to account for frac­
tional statistics as in Eq. (7), results in the many-body Hamiltonian 

1 ( 0 Z x (fi - fj )) 2 
H=L- Pi-h-L. 1 _ 12 + V(fh··.,fN)· 

1 2m 7T J("oI) fi fj 

The O-dependent term resembles a "statistical vector potential" 

o hc 
= - - L 'Vi'Pij, 

7T e j("oi) 

(8) 

(9) 

where % = hc/ e is the Dirac flux quantum. The form of the statistical 
vector potential is the same as the vector potential of a flux tube of strength 
0/ = 20hc/ e, which is twice the flux of Wilczek's composite. The reason for 
this is that the statistical vector potential accounts for both the charge-flux 
and the flux-charge interactions.8 Note that 

( e state )) (. 0 "') (. 0 '" ) Pi -~Ai fi = exp +, 7T7 'Pij Pi exp -';7 'Pij , (10) 

indicating that the statistical vector potential is a pure gauge, although a 
topologically nontrivial one, because the gauge factor is not single-valued. 
Application of this singular gauge transformation to a symmetric wave 
function yields a multivalued wave function of the kind in Eq. (5). 

There are thus two equivalent ways to formulate the problem of frac­
tional statistics. We can work with single-valued wave functions and include 
a statistical vector potential in our many-body Hamiltonian. This leads to 
long-ranged two-body and (from the A2 term) three-body interactions. 
Equivalently, we can employ a singular gauge transformation to "gauge 
away" the statistical vector potential at the cost of requiring multivalued 
wave functions, as in Eq. (5). 

Wilczek named particles obeying fractional statistics anyons, presum­
ably because they can have any statistics. 
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3. DILUTE ANYON GASES 

The behavior of the anyon gas largely remains an open problem. Even 
for otherwise noninteracting anyons (e.g., V = 0), the statistical vector 
potential induces long-range interactions leading to divergences in Feynman 
diagrams, thus necessitating diagrammatic resummation techniques if per­
turbation theory is to be applied. Much progress has recently been made 
in this area; there is now, for example, good reason to believe that, for 
certain values of (J, the free anyon gas is a superconductor! We will review 
these developments later on. 

Many-body effects are important in the study of dense gases. First, let 
us ask how a dilute anyon gas behaves. This issue was first discussed by 
Arovas, Schrieffer, Wilczek, and Zee in 1985.9 •10 At high temperatures or 
low densities n, when the mean particle spacing n- I / 2 is much larger than 
the thermal wavelength AT = ,J21rtI2/ mkBT, deviations from the ideal gas 
law can be expanded in a series in nA ~: 

(11) 

The virial coefficients Bj ( (J, T) are calculable from the j-body cluster integrals. 
Computation of B2 is rendered simple by elimination of the center-of-mass 
degree of freedom, leaving only a one-body (relative coordinate) problem 
to solve. The second virial coefficient for the two-dimensional ideal Fermi 
gas is B2 = +1A~; Pauli exclusion introduces an additional positive contri­
bution to the pressure. For the Bose gas, one finds B2 = - ~A ~; the negative 
sign of B2 reflects the tendency of bosons to condense. What is Bi (J, T) 
for anyons? 

Let us complicate the problem slightly by introducing an external 
magnetic field of strength B. This will allow us to calculate the orbital 
ferromagnetic moment of the dilute anyon gas. 11 The two-body Hamiltonian 
is decomposed into center-of-mass and relative-coordinate contributions, i.e., 
H2 = HCM + H re1 , with 

1 ( 1 A )2 
HCM =2M P - "2MWeZ X R 

1 ( I A Z x r)2 H re1 = - p - "2JLWeZ X r - ah-2- , 
2JL r 

(12) 

where M = 2m is the total mass, JL =!m is the reduced mass, We = eB/mc 
is the cyclotron frequency, and a = (J / 1T' (conforming with the notation of 
Ref. 12). The second virial coefficient is computed from the general 
expression 

. (1 Z2) B2 = hm A - - -2 , 
A->oo 2 ZI 

(13) 
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which can be expressed in terms of the unknown relative-coordinate parti­
tion function Zrel, due to the relation 

-2 !f3hwc 
ZCM = 2Z1 = 2AAT . h 1 

sm zf3hwc 
(14) 

The relative-coordinate partition function, from Eq. (6), is expressed as an 
integral over the imaginary time propagator 

Zrel =! f d 2r [K(r, r; -if3h) + K(r, -r; -if3h)]. (15) 

We now need the relative coordinate propagator-the propagator for a 
charged particle in the presence of both a uniform magnetic field and a 
flux tube. Heroic efforts described in Refs. 13-15 and reviewed in Ref. 12 
yield the result 

K(r', r"; -if3h) = JLWc cschGf3hwc) 
41Th 

x exp [ - :hwc ctnhGf3hwc)( r,2 + r,,2)] e -!f3hwc" 

x ~ e-!f3hwcn ein('P'-'P") J, [JLWc r'r" csch(lf3hw )] 
n~oo In+al 2h 2 c, 

(16) 

where IT(z) is the modified Bessel function of the first kind. Now Zrel 

diverges as A, so that in evaluating B2 one is presented with the delicate 
task of extracting a finite difference of two divergent expressions, namely 
!A and 2AZreil ZI' Let us employ a regularization procedure, substituting 

d 2r ~ exp ( -e JL;~r2 csch !f3hWc ) d 2r (17) 

for the integration measure, with e ~ 0 at the end of the day. For a = 2n + v, 
with I vi :::; 1, one obtains 12,16 

B2 = _--.2 tanh a + --.2 (1 - e-2Vd ) - v , 
A2 A2 [ e2dsgnv] 

4a 2a sinh2a 
(18) 

with a = !f3hwc. Note that the time reversal operation reverses both B 
and e, 

H*( -B, -e) = h(B, e). (19) 

The thermodynamic potentials, being real functions, are therefore invariant 
under simultaneous reversal of both B and e. 
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Even in zero field, the statistical vector potential breaks time reversal 
invariance (unless 0 = k7r), and one should expect a nonzero orbital fer­
romagnetic moment, M = - (ani aBh=o, where n is the grand potential. 
In the high temperature-low density limit, the leading order contribution 
to the magnetic moment per particle is directly obtainable from the function 
B2 , 

MI N = -tJLBnA;"v(lvl-1)(lvl- 2), (20) 

where JLB = ehl2mc is the Bohr magneton. This result was first obtained 
by Johnson and Canright. ll 

M is neatly interpreted as a diamagnetic response to an effective field. 
The textbook weak-field moment per particle is MIN = - tJL ~B I kB T, and 
comparing with Eq. (20), this suggests an effective field of strength 

Bell = ncPo' 2v(lvl- 1)(lvl- 2). (21) 

As proposed by Arovas et ai.,9 it is quite natural to think of each anyon as 
a particle moving in a net "statistical magnetic field" of magnitude B = 

(0 I 'IT) ncpo. This is because an anyon moving along a path enclosing an area 
A will on average encircle nA other anyons and thus accrue a phase angle 
BA. Indeed, from Eq. (9) we find that 

o 
V X A~tat(r) = - CPo L 8(r - rj ), 

'IT j(>'i) 

(22) 

and hence (V X A~tat(r» = B in the thermodynamic limit. (Since whole flux 
tubes are "invisible", the physics of the anyon gas is invariant under 
o ~ 0 + 2'IT. Integer multiples of CPo can be gauged away, and the true mean 
field B is obtained by translating 0 to the region [ -'IT, 'IT].) This mean field 
theory (MFT) is the springboard to more sophisticated treatments of the 
anyon gas, which we shall soon discuss. For the moment, notice that for 
small 0, Eq. (21) gives Bell = 4B, which is correct in both its sign and its 
density dependence, but is larger than the true mean statistical field by a 
factor of 4. Johnson and Canrighe 1 have also discussed the extent to which 
low-density anyon physics can be interpreted in terms of conventional 
particles in an effective field. 

4. FRACTIONAL STATISTICS IN THE QUANTIZED HALL EFFECT 

While the fundamental particles of nature are all, to our present 
knowledge, either bosons or fermions, it is quite possible that localized 
quasiparticle excitations in two-dimensional condensed-matter systems 
might obey pecular statistics. How can we tell if this is the case? In what 
follows, we shall assume that quasiparticle dynamics takes place on time 
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scales long compared with the characteristic time scales associated with the 
constituent particles. That is, we will treat the quasiparticle degrees of 
freedom in the adiabatic approximation. 

Let the quasiparticles be described by their positions ~i. We would like 
to know if there are long-range gauge interactions of the type in Eq. (6) in 
the effective quasiparticle Lagrangian. If an external field is present, we can 
also identify the quasiparticle charge e* by examining how the quasiparticle 
current couples to the external vector potential. Both these issues can be 
assessed by deriving an effective quasiparticle propagator, 

(23) 

We evaluate the effective Aharonov-Bohm phase by adiabatically dragging 
a quasiparticle around a loop of area A. In the presence of an external 
magnetic field, the action accumulates a phase 

e* f e* cP 'Y = - A . dl = 27T- -
lie ext e cPo' 

(24) 

where cP = BA is the magnetic flux enclosed by the loop. Berry)7 showed 
that the adiabatic phase accumulated over such a closed path includes a 
geometric quantity which is independent of how slowly the path is traversed. 
Let {HA } be a family of Hamiltonians depending on a set of parameters 
A = {AI> A2 , ••• }. If one varies the parameter A sufficiently slowly, then 
according to the adiabatic theorem the solution to the full time-dependent 
Schrodinger equation, 

(25) 

will differ by only a phase from the solution to the time-independent 
equation 

(26) 

i.e., 

111>(1)) "" exp(i'Y(t» exp ( -~ r dt' E(A(t'») It/I(A(t))). (27) 
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The phase factor involving the integrated adiabatic energy depends linearly 
on the time for traversing the path. In the effective quasiparticle Lagrangian, 
this term corresponds to a potential energy. 

The Berry phase y( t) is easily seen to satisfy the equation 

d~~t) = i(I/I(A(t))1 :r 1I/I(A(t»). (28) 

If A (t) is a closed path, then the phase difference, 

Yc = if dA • (I/I(A)IV AII/I(A)), (29) 

has a beautiful geometric interpretation, as noted by SimonIs and by Wilczek 
and Zee. 19 

Let us now concentrate on a concrete example, that of the fractional 
quantized Hall effect (FQHE). Recall that Laughlin's20 picture of the frac­
tional quantized Hall effect is based on a discrete set of Jastrow-type trial 
wave functions of the form 

N N 

'II m(zt. ... , ZN) = oN IT (Zj - Zk)m IT (30) 
j < k s=1 

where M is an odd integer, Zj = Xj + iYi is the complex coordinate of particle 
j, oN is a normalization constant, and I = .J he/ eB is the magnetic length. 
'II m describes an incompressible fluid state at filling fraction II = 1/ m (pro­
vided m :5 70). The associated quasielectron and quasihole wave functions, 
respectively, are given by 

(31) 
N N N 

q, m[~] = oN(~) IT e-zszs/412 IT (Zi - g) IT (Zj - Zk)m. 
s =1 i=1 j < k 

The charge of these excitations was also discussed by Laughlin, who 
employed an argument analogous to that used in deducing the fractional 
charge of solitons in one-dimensional conductors. He concluded that for 
II = 1/ m, the quasielectron and quasihole have charges =Fe* = =Fe/ m. These 
excitations are localized within a microscopic region whose size is dictated 
by the magnetic length and the filling fraction. The excitations described 
by Eq. (31) are centered at r = '" (quasielectron) and r = ~ (quasihole), 
respectively. Roughly speaking, a quasihole in the incompressible fluid 
resembles a "bubble" of such a size that 1/ m of an electron is absent. Here, 
I reproduce the calculations of Arovas, Schrieffer, and Wilczek/I which 
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yield the quasiparticle charge and statistics from Berry's phase arguments. 
(In the following, I set the magnetic length 1 to unity.) 

According to Eq. (31), 

d - [d N d J_ 
-d 'I' m[~] = -d In .N"[~(t)] +I -d In[z; - ~(t)] 'I' m[~]' 

t t 1~1 t 
(32) 

so that 

d d A d N _ 

-d "Y(t) = i-d In .N"(~) + i('I' m[~]I-d I In(z; - ~)I'I' m[~])' (33) 
t t t ;~1 

Using the single-particle density in the presence of the quasihole, 
_ N _ 

n~(r) = ('I' m[~]1 I 8(r - rJI'I' m[~])' (34) 
i=l 

we obtain 

(35) 

Since the normalization constant .N"(~) is a single-valued function of its 
argument, it will not contribute to the integral expression Eq. (29) for "Ye' 
We now write n,,(r) = n + 8n,,(r), where n = v/27T' is the density in the 
Laughlin ground state 'I'm and 8n,,(r) is concentrated about the point r = ~.* 
Concerning the n term, if ~ is integrated in a clockwise sense around a 
circle of radius R, one finds that 

1 dtdd In[z - ~(t)] = 1 d~_l_ 
~<I~R t ~<I~R ~ - Z 

= 27T'iO(R - Izi), (36) 

where O(x) is a step function. Substituting this result into Eq. (35), we find 
that 

"Ye = i f R d 2r 27T'in = -27T'(N)R = -27T'v<p/ <Po, (37) 

where (N)R denotes the mean number of electrons inside a circle of radius 
R. As Haldane22 has argued, corrections to this result arising from the 8n,,(r) 
term vanish due to the rotational symmetry of the quasihole. 

A similar analysis shows that the charge of the quasielectron is e* = 
-ve, although one must exercise some caution in dealing with the partial 

* The uniform density n = II/2'T1' of the trial ground state and the localized nature of the 
excitations are easily deduced from the plasma analogy of Laughlin. 
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derivative operators in Eq. (31). The adiabatic phase accumulated by a 
quasielectron is 

d d d N _ 

-d y(t) = i-d In X(-q) + i-d I ('I'm [ .... ]1 
t t t ;=1 

The above matrix element is a many-particle generalization of the 
Bargmann-Fock space inner product, 

(39) 

It is easy to show23 that if the operator fy is normal ordered such that all 
partial derivatives a/ az appear to the left of all complex coordinates z, then 
the formal replacement 2a/ az ~ z is allowed, i.e., 

(40) 

Making this substitution in Eq. (38), one recovers the result of Eq. (35), 
with z ~ z and g ~ ij. The charge of the quasielectron follows immediately. 
To determine the statistics of the excitations, we consider the state with 
quasiholes at ~ and ~', 

N 

W m[~' ~'] = X(~, ~') IT [(z; - g)(z; - 0]'1' m' (41) 
i=l 

As above, we adiabatically carry g around a closed loop of radius R. If f 
lies outside the circle Igl = R by a distance d » ao, the above analysis is 
unchanged, i.e. Ye = -2'TT"v1>/1>0. If, however, f lies inside this loop, and 
R -If I « ao, there is a deficit in (N)R of -v, and the phase accrued is 
y~ = Ye + 2'TT"v. Therefore, when a quasihole adiabatically encircles another 
quasihole, an extra "statistical phase" 

.:lYe = 2'TT"v (42) 

is accumulated. Again, an analogous result holds for a quasi electron. For 
the case of the filled Landau level, v = 1, .:lYe = 2'TT", and the phase obtained 
upon interchanging quasiholes is .:lYe/2 = 'TT", corresponding to Fermi statis­
tics. We identify the quantity .:lYe/2 with the statistical angle 8; for non­
integer v, the excitations obey fractional statistics, in agreement with the 
conclusion of Halperin.24 Clearly, when e2 ;o ,e 1, the change of phase .:lYe 
accumulated when a third particle is in the vicinity will depend on the 
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adiabatic path taken by the excitations as they are interchanged, a con­
sequence of their fractional statistics. It should also be noted that the 
statistics of the quasiparticles is "long-distance physics" and becomes ill­
defined in a dense quasiparticle gas. 

4.1. Selection Rules for Anyon Production 

The above calculations show that, for quasiparticle states of the form 
of Eq. (31), excitations with charge e* = /Ie have statistical angle () = 7T/I = 

7Te* / e. When the condensate structure is more complicated, this relationship 
between the quasiparticle's charge and statistics is no longer valid. 22.25 

Let us consider a process in which p parent particles of charge e decay 
into q charge e* = (p / q) e quasiparticles with statistical angle (}7Tp / q. 
Exchanging two groups of p parent particles produces a phase of (±I)P2. 
On the other hand, viewed as an exchange of daughter quasiparticles, the 
statistical phase is e i8q2 = e i7TpQ • These phases must be equal, so we arrive 
at the selection rule 

(43) 

When p is even, this relation is always valid, independent of q. For p odd 
and q odd, one concludes that the parents must be fermions, whereas for 
p odd and q even, the parents are bosons. Ta026 has argued for the FQHE 
odd-denominator rule based on these ideas. The recently discovered even­
denominator FQHE states involve more complicated condensates in which 
both p and q may be even and in which spin plays a role. 

4.2. Order Parameter and Landau-Ginzburg Theory of the FQHE 

It was first suggested by Girvin and by Girvin and MacDonald27 that 
Laughlin's wave function of Eq. (30) could be understood as a condensate 
of composite objects consisting of both charge and flux. Specifically, Girvin 
and MacDonald showed that if one were to adiabatically pierce each 
electron in the /I = 1/ m state with a flux tube of strength m</>o, the resulting 
off-diagonal density matrix, 

p(r, r') 

= f .IT d2riW*(r, r2, ... , rN) exp (~ Jr' Astat • dl) W(r', r2, ... , rN), 
1~2 lic r 

(44) 

decays only algebraically, as Ir - r'l~m/2. The vector potential Astat in Eq. (44) 
is of the form ofEq. (9), with () = m7T. A Landau~Ginzburg theory including 
such a statistical gauge field was also suggested. The gauge field is non­
dynamical, and instead satisfies the constraint of Eq. (22). 
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More recently, Read has constructed such a Landau-Ginzburg theory 
(see also the work of Zhang, Hansson, and Kivelson28 ) based on the 
composite order parameter 

(45) 

Here, 1// is an electron creation operator, and U is Laughlin's quasihole 
operator, which takes the form 

N 

U(r) = IT (z - z;) (46) 
i=l 

when acting on N-particle states. (I prefer to think of U as an "adiabatic 
4>0 flux addition operator.") What makes Read's order parameter so lovely 
is that it is truly a boson and can condense. Let us calculate the statistical 
angle E> which results when we interchange two of these composites. There 
are four contributions: 

= (m + 1)7T mod 27T. (47) 

The first of these contributions arises from exchange of the fermions created 
by the'" t operators. Next, a phase is accrued due to the fermions moving 
in the field of the added flux tubes. A single electron encircling m flux tubes 
accumulates a phase angle of 27Tm, so an exchange gives us half of this, 
m7T. However, there are two composites, so, as discussed in section 2, there 
is an additional factor of 2 arising from the charge of composite 1 moving 
in the field of the flux of composite 2 and vice versa. Finally, there is the 
statistical angle due to the quasiparticles themselves (which are created by 
U). Each composite consists of m2 quasi particles, and therefore this con­
tribution is m 2 (J = m7T, since (J = 7T / m. The net statistical phase is thus 
E> = (m + 1)7T, which is bosonic when m is odd. 

The long-wavelength Landau-Ginzburg action is27- 29 

S = f d 3x [ 4> * iDo4> - !KIDj4>12 - V(I4>i) - 4:m eILVAalLaVaAJ, (48) 

where K is a "stiffness constant," an explicit expression for which is given 
by Read.29 The object DIL is the covariant derivative, 

(49) 

where aIL is a statistical gauge field, A~xt is an external gauge field satisfying 
V x Aext = Bi, and aIL = (at, -V) with metric (+, -, -, -). The "potential" 
energy density is 

(50) 
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where Po is the bulk density, although Zhang, Hansson, and Kivelson28 and 
Haldane22 have remarked that a more realistic action would include a term 

where v(r - r') is the Coulomb potential. The eILV"alLaVa" part of the 
Lagrangian is known as the Chern-Simons (CS) term and is responsible 
for effecting the constraint of Eq. (22). Let us see how this works. 

We evaluate the action 5 in the stationary phase approximation. Varying 
with respect to the field ao, one finds 

55 e2 0·· 2 - = 0 = --- e 'Ja ia · - el4>1 , 
5ao 27Tm 1 

(52) 

which (in Ii = c = 1 units) is just Eq. (22) for the statistical field: b = 

eijaiaj = 27Tml4>12/e. Varying with respect to ai, 

55 I . e2 . 
-=O=-eK(4)*D.4>+4>D'4>*)---e'lLva a (53) 5a i 2, 27Tm IL V' 

Finally, 

The optimal static solution to the equations of motion yields 

l4>f = Po 

ao = Ao = 0 

(54) 

(55) 

Thus, the statistical field b exactly cancels the applied field B (b + B = 0). 
A solution of the equations therefore exists only if the filling factor is 
/J = 1/ m. 

In the microscopic theory of the FQHE/o deviations from /J = 1/ m 
are described by the localized quasiparticle defects of Eq. (31). In the 
Ginzburg-Landau theory, these quasiparticles correspond to vortex solu­
tions of the equations of motion, analogous to vortices in other condensates 
such as superconductors and superfiuids. Following Zhang, Hansson, and 
Kivelson/8 consider a static (ao = 0) vortex solution in a uniform external 
field. As r ~ 00, the fields 4> and a behave as 

4>(r, 4» = ~ e±i<l> 
(56) 

a (r, 4» = ± cP / er, 
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and from Eq. (52) the charge on the vortex is 

q = e f d 2xlef>1 2 

=~l a.dl=±e/m, 
21Tm r..~oo 

(57) 

which was predicted by Laughlin20 using his "plasma analogy" and deduced 
in section 4 from a Berry phase calculation. * Because it is the covariant 
derivative D/L which appears in the action, the vortex of Eq. (56) does not 
have an infrared-divergent energy, as do vortices in, e.g., the 0(2) model. 

As we shall see later on, the coefficient e2/ 41Tm == e2/ 4it alters the 
statistics of the field ef>. The vortices in the ef> condensate have statistical 
angle 8, where 

(58) 

and can likewise be described by a similar Chern-Simons theory with CS 
coefficient e2/48. This "duality" has been discussed by Wen and Zee,31 and 
is central to some beautiful recent work by Lee and Fisher32 and Lee and 
Kane.33 

The collective mode spectrum as calculated within the Ginzburg­
Landau theory predicts a k = 0 gap/8,29 in conformity with the microscopic 
magnetophonon-magnetoroton theory of Girvin, MacDonald, and Platz­
man.27,34 This is the Anderson-Higgs mechanism-the amplitude fluctu­
ations of ef> are massive, but the phase fluctuations are "eaten" by the 
statistical vector field aIL" 

Finally, although Read's order parameter leads to perfect off-diagonal 
long-range order (ODLRO) in the Laughlin state IL), 

(LIef> t(r)ef>(r')IL) - constant, (59) 

one expects, based on the Landau-Ginzburg theory, that the generic form 
for the ef>-ef> correlation function is 

(LIef> t(r)ef>(r')IL) -Ir - r'r m / 2 , (60) 

with a universal power law exponent it/21T. In this sense, the Laughlin state 
is somewhat nongeneric.35.36 

5. MANY-BODY THEORY OF THE ANYON GAS 

Much of the recent (> 1986) efforts in anyon theory were inspired by 
the work of Laughlin and collaborators on anyon superconductivity.37,38 

* We should really make a distinction between the local charge deduced from, e.g., Laughlin's 
plasma analogy and the "topological" charge deduced from Berry phase arguments. Usually, 
these are one and the same.30 
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The possible relevance of such exotic physics to high-temperature supercon­
ductivity in copper oxide layers is an interesting chapter in the theory of 
anyons,39 but one which is quite speculative and somewhat beyond the 
scope of these lectures. Let us confine our discussion to ideal anyon gases, 
which themselves are highly nontrivial. 

The analysis of section 3 suggests that "quasibosons" (anyons whose 
statistical angle () = 2mr + 8 deviates only slightly from the Bose value) 
can be viewed as ordinary bosons interacting through a weak repulsive 
force. Conversely, "quasifermions" with () = (2n + 1)1T + 8 should behave 
as weakly attractive conventional fermions. In hindsight, it is natural to 
suggest that such a system might be a superfluid and, if charged, a supercon­
ductor. 

Recall how the mean field treatment of the anyon gas treats anyons 
with () = k1T + 8 as conventional particles with () = k1T in an average "statis­
tical" field of strength b = (\ 81/ 1T) pcf>o, where p is the bulk number density. 
For various reasons,40 it is convenient to consider the quasifermion gas with 
() = 1T(1-1/n), i.e., 8 = -1T/n. The statistical field is then b = -bz, with 

b = pcf>o/ n. (61) 

Thus, at the mean field level, we have noninteracting fermions in a uniform 
magnetic field. The single-particle energy levels are simply Landau levels, 
where cyclotron energy hwc and magnetic length I are p-dependent, viz., 

The filling fraction is 

heb 1 21Th2 
hwc =-=----p 

me n m 
(62) 

(63) 

and for integer n the mean field ground state is a Slater determinant of 
lowest n Landau levels, with energy 

n-l 

E = NL L (k+!)hwc 
k~O 

(64) 

where A is the area of the system and NL = bA/ cf>o is the Landau level 
degeneracy. 

At this point, several remarks are in order. The mean field theory smears 
statistical flux into an effective magnetic field. Does this idea, "to boldly 
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put flux where no flux has gone before,"* make any sense? After all, we 
know that the statistical angle () does not enter into the classical equations 
of motion, which in the absence of interactions are purely ballistic. However, 
at the mean field level, particles are moving in cyclotron orbits, not straight 
lines. What is happening is this: when we calculate the stationary phase 
equations 8S/8q(t) = 0, which yield the classical equations of motion, we 
compute continuous variations with respect to a path q(t). Now the winding 
number (1/ 'IT) Li<j t:.CPij is a "piecewise constant functional" of q( t) (assum­
ing 8q(t2) = 8q(tl) = 0), changing by discrete multiples of 'IT when q(t) 
changes winding number sectors. Thus, while the action-extremizing 
equations within each winding number sector yield ballistic classical trajec­
tories, we must sum over all winding number sectors to obtain the semi­
classical propagator. This issue also crops up in the study of a single charged 
particle in a lattice of flux tubes.41 When the flux per tube is small (n ~ 00 

for the anyon gas), the winding number itself can effectively be considered 
a continuous variable, since the phase change associated with a unit increase 
of winding number is correspondingly small. This suggests a mean field 
approximation, so one expects to find dispersionless (quasi-) Landau levels 
in one's band structure, which is exactly what one sees. Put another way,40 
the average number of particles in an area of size 2'ITf is n. When n is large, 
fluctuations are relatively small, and one puts one's faith in mean field theory. 

If you believe in the mean field theory at this point, then I should try 
to sell you the Brooklyn Bridge as well, because there is one glaringly 
obvious problem. The only excited states one can construct all involve 
excitations to higher Landau levels, and thus MFT predicts a gap in the 
excitation spectrum. This is rather worrisome because on physical grounds 
one expects some finite compressibility. What has happened? The finite 
energy inter-Landau level excitations are particle-hole pairs. It is good that 
such excitations possess a gap, for this is just what happens in a superconduc­
tor. What is missing in the spectrum is a collective density mode responsible 
for the compressibility. Such a mode would involve a slow variation in the 
density p and hence also in the local field b. Indeed, from Eq. (64) we 
obtain a ground-state energy per particle of e = 'lT1i 2 / mv (v = 1/ p is the 
specific volume), identical to the ground-state energy of a free Fermi gas 
of the same density. This leads to a finite bulk modulus 2lJ and velocity c 
of first (thermodynamic) sound: 

2lJ = v [le = 2 'IT Ii 2 p2 
av2 m 

Ii 
c = ../ 2lJ / mp = - ../2'ITp. 

m 

* I paraphrase Star Trek without correcting the split infinitive. 

(65) 
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These quantities are independent of n and identical to the corresponding 
free Fermi gas values. The compressional sound wave appears in a more 
sophisticated random phase approximation (RPA) treatment of the anyon 
gas, as first shown by Fetter, Hanna, and Laughlin?8 

Now suppose that an external field B is also present. A simple calcula­
tion, due to Chen, Wilczek, Witten, and Halperin,40 suggests that the 
(J = 1T(1 - 1/ n) anyon gas, despite breaking time-reversal symmetry, none­
theless desires to expel flux. Consider the anyon gas in the presence of an 
external magnetic field of strength B. Appealing again to mean field theory, 
let us calculate the ground-state energy when Band b are aligned so that 
the effective field strength is b + B. As we increase B from zero, the 
degeneracy NL of the Landau levels increases. Since the particle number 
remains constant, a fraction x of the nth Landau level will be empty; number 
conservation gives (n - x)(b + B) = nb, which determines x. The energy of 
the ground state is easily found to be40 

1T1i2 [ B ( 1) B2] E=A-p 1+-- 1-- -. 
m nb n b2 

(66) 

When Band bare anti aligned, the effective field strength is b - B, the 
Landau level degeneracy is smaller, a fraction y of the (n + l)th Landau 
level is occupied with (n + y)(b - B) = nb, and the energy is 

1T1i2 [ B ( 1) B2] E=A-p 1+-- 1+- - . 
m nb n b2 

(67) 

Thus, application of a field in either direction results in an increase of 
energy. Is this surprising? After all, imposition of a field increases the energy 
of an ideal Fermi or Bose gas just as well. What is special about the (J '" k1T 
anyon gas, though, is that it explicitly breaks time-reversal symmetry. A 
priori one might then expect that a field oriented in one direction (e.g., z) 
would increase the energy of the anyon gas, while a field oriented in the 
opposite direction would decrease its energy. For (J = 1T(1- l/n), the mean 
field ground-state energy increases in an external field independent of the 
field's orientation. This is indeed surprising. 

To demonstrate a Meissner effect, one must perform substantially more 
refined calculations. The linear response of a many-body system to an 
external electromagnetic field is embodied in the current-current correlation 
functions: 42 

41TJ",(k) = -K",v(k)AV(k) 

41Tpe2 
K",v(k) = 41TR",v(k) + -- a",v(1 - avo), 

m 

(68) 

where k = (ko, k), and the (retarded) real-time current-current correlation 
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function is given by 

R/Lv(k, t) = -i(U/L(k, t),jv( -k, 0)])0(t). (69) 

The Meissner effect follows from 

Kij(k) = K 1(k)( 8ij - ~~j) + K 2(k)ikoeOij, (70) 

whenever K 1(q ~ 0) > O. Note that K2 must vanish in a time-reversal 
invariant system, but need not vanish for the anyon gas. The RPA calcula­
tions first performed by Fetter, Hanna, and Laughlin38 and subsequently 
by Chen, Wilczek, Witten, and Halperin40 yield K 1(0) = 47Tpe2/m, predict­
ing a Meissner effect in a three-dimensional sample, with a London penetra­
tion depth of AL = Jmd/47Tpe 2, where d is the interplane distance. The 
RPA calculations also yield a pole in the density-density response function 
at ko = elkl with e = (h/ m )-./27TP. This is the sound wave predicted in 
Eq. (65) above! A more detailed account of the electrodynamics of anyon 
superconductors is given by Fradkin.43 

In sum, the excitation spectrum of the () = 7T( 1 - 1/ n) anyon gas is 
qualitatively different from the spectrum of, e.g., a Fermi liquid. While a 
Fermi liquid exhibits various gapless sound modes, it also possesses a 
particle-hole excitation continuum which extends to zero energy. These 
gapless particle-hole excitations are responsible for various dissipative 
processes. In the anyon gas, the particle-hole continuum starts at a finite 
energy hwc = 27Th 2 p/ nm (which properly tends to zero in the fermion limit 
n ~ (0), and the only gapless excitation is the density wave. In field-theoretic 
language, this density wave is a Goldstone mode, which in an ordinary 
uncharged superconductor would correspond to phase fluctuation of the 
order parameter. When minimally coupled to electromagnetism, this mode 
is "eaten" via the Anderson-Higgs mechanism, and the photon becomes 
massive (the Meissner effect). 

6. CHERN-SIMONS FIELD THEORY AND FRACTIONAL STATISTICS 

We have seen how fractional statistics arises in quantum mechanics 
when particles move in a fictitious statistical gauge field whose curl is itself 
proportional to the particle density [cf. Eq. (22)]. Here, we shall discuss 
fractional statistics in the setting of quantum field theory. 

Given a field theory with a conserved current j/L' one can impart 
fractional statistics to the matter field by coupling this current to a U(l) 
gauge field and adding a Chern-Simons term44 to the action, 

Smatter~ Smatter + e f d 3xj/La/L - :; f d 3xe/LVAa/La V aA. (7l) 
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Although the bare all- field is present in the Chern-Simons term, it remains 
gauge-invariant because:! II- = ell-vAaVaA is a conserved current. Applications 
of Chern-Simons field theories to fractional statistics were first discussed 
in Refs. 9 and 45-47. 

If, for example, the matter fields are those of ordinary nonrelativistic 
particles, we have 

(72) 

where T is proper time. As another example, consider the (2 + 1)­
dimensional 0(3) nonlinear sigma model. The action is 

(73) 

where nana = 1. The conserved topological (skyrmion) current is 

.11- __ 1_ II-vAr>aa r>ba r>C 
] - eabce ~£ v~£ A~£· 

81T 
(74) 

Since the action of Eq. (71) is quadratic in the all- field, this field can 
be integrated out directly by solving the equations of motion 

{jS e2 

{jail- = 0 = ejll- - 28 ell-vAavaA , (75) 

which says that the flux IvA is confined to the particle world lines: 

(76) 

in h = c = 1 units. Note the correspondence with Eq. (52). One can now 
integrate out the all- field in, e.g., the all-all- gauge and obtain an action 

(77) 

where N link is the linking number of the particle trajectories. For a complete 
revolution of one particle around another, N 1ink = 1, and thus we associate 
8 with the statistical angle for interchange. 
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An explicit calculation is instructive. Define the formal nonlocal 
operator 

(78) 

which satisfies dvKV(x - x') = cS 3(x - x'). Gauge freedom allows us to take 

KO= 0 

(79) 

k i( ') 1 Xl - x" x-x =-
21T Ix - xii 

The quantity k i (x - x') is recognized as the vector potential of a unit strength 
flux tube. Now let us wind one particle (Y) around another which stays 
fixed at the origin. The particle currents are 

jO(x) = cS(x) + cS(x - Y) 

/(x).= cS(x _ Y) yi. 

The peculiar expression in Eq. (77) thus reduces to 

f d 3x d 3x ' y(x)e/LvAKV(x - XI)jA(X') = 2 f dTEijk i ( -Y) yj 

(80) 

= -2 f eij y~~yj, (81) 

which is -2Nlink • 

Another way to see it: The flux enclosed by Y as it winds around the 
origin is 

l f 28f·o 4> = j a • dl = 112 dS = --; ] dS = 28q, (82) 

where q is the charge in units of e. The Aharonov-Bohm phase is e iq", = 

e2iOq2, which is just what we expect. 
The field theory of the many-anyon problem is then described by the 

Lagrangian density4o,43.48 

(£) _ -(' ) 1 I 12 e2 /L vA 1 /LV 
eL - '" ,Do - J.L '" - - Dk", - - e a/LdvaA - 4F/LvF , 

2m 48 
(83) 

where D/L = d/L - ie(a/L + A/L)' A/L is the vector potential of the physical 
electromagnetic field and J.L is the chemical potential for the fermions. 
Several authors have used Eq. (83) as a point of departure for studying the 
anyon gas. Assuming that the physical fields are small and average out to 
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zero, one separates the statistical vector field aIL = aIL + BaIL into a mean 
field contribution satisfying Eq. (22), cijBA = 20p(h = c = 1), and a fluc­
tuating part Baw One can then integrate out the fermion fields '" and Jj, 
generating an effective action in terms of AIL and Baw Finally, one can 
attempt to integrate out the BaIL field, leaving an effective action in terms 
of the physical AIL field alone, from which one can study the electrodynamics 
of anyon gases. These developments are clearly discussed in the article of 
Fradkin,43 to which the interested reader is referred. 
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APPENDIX: MANY ANYONS IN A MAGNETIC FIELD 

The notation of single-particle eigenstates is of dubious utility in the 
anyon problem: many-anyon states are not simple determinants or per­
manents of one-body wavefunctions. Wu5 has derived some explicit 3-
particle eigenfunctions (i.e., not a complete set) for anyons in an external 
harmonic potential, but to date (1990) there has been little progress in 
exhibiting exact many-anyon eigenstates for reasonable Hamiltonians.* 
(A welcome exception is the work of Ref. 49.) 

Anyons in a magnetic field can exhibit a quantized Hall effect, and 
once can write down explicit N-particle wave functions in some cases. The 
general form of a many-anyon wave function is given in Eq. (5). One such 
wave function is the Laughlin state,20 

* We exclude blatantly stupid Hamiltonians of the Iket)(bral variety. 
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with p an integer. This wave function, first discussed by Halperin/4 is an 
eigenstate for noninteracting charge +e anyons in a uniform magnetic field 
B = Bz of strength B = (2p + 1 + a )pcf>o, where p is the number density of 
anyons. (Here and henceforth I take the anyon charge to be e and measure 
distances in units of the magnetic length 1= .Jlic/ eB.) The wave function 
'I' of Eq. (Al) is indeed a many-anyon eigenfunction because the prefactor 
of the Gaussian term is analytic in the {zJ and is hence annihilated by the 
cyclotron lowering operators a j = .J2(a j + zJ 4). Since the guiding center 
operators bj = .J2(V j + zJ 4) are cyclic in the free particle Hamiltonian 

(A2) 

short-range two-body interactions of the type discussed by Haldane50 can 
render 'I' an exact nondegenerate ground state of a nontrivial many-anyon 
Hamiltonian. 

Consider a system of charged anyons at fixed density n in the presence 
ofa magnetic field of fixed strength B = (2p + l)pcf>o. What is the character 
of the ground state of the system as a function of the statistical parameter 
a? I wish to remark how the fractional quantum Hall effect (FQHE) wave 
functions of MacDonald, Aers, and Dharma-wardana,51 which describe 
Haldane's hierarchical condensates 50 may be used to construct many-anyon 
wavefunctions which should have favorable energies if the anyons also 
interact via short-range repulsive potentials. The basic mathematical prob­
lem is this: We are looking for wave functions of the form of Eq. (5), 

'I'(rl' ... , rN) = II (Zj - Zj)" P(Zt. ... , ZN) exp(-~ I IZkI2), (A3) 
l<} k 

which have analytic and homogeneous polynomial factors P[z]. Since the 
density p = V/27Tf is related to the homogeneous degree of the polynomial 
P through51 

-I 2 deg P 
v = a +---=--

N(N -1)' 
(A4) 

and remains fixed, only certain polynomials P need apply for the job. It is 
clear, for example, that when a = 2k is an integer mUltiple of 2, one possible 
solution is P = p~(p-k)+I, where Pv = nj<j (Zj - Zj) is the Vandermonde 
determinant. 52 That this solution should somehow be favored has been 
argued by Laughlin and by Halperin; by placing all the zeros of the particle 
positions, the wave function does its darnedest to keep the particles away 
from each other, thereby muting the short-range repulsion. 

Let us briefly recall the basic recipe of Ref. 51 for making hierarchical 
wavefunctions. Starting from a principal (Laughlin) state, one obtains a 
hierarchy of homogeneous polynomials P j through repeated application of 
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either of the two basic steps 

pjh) = Pf-IP~' 
Pjp) = Py{Pf-l/ Py}t p~i, 
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(A5a) 

(A5b) 

where Pi is an integer, pc denotes the particle-hole conjugate of P as 
described by Girvin,53 and pt is the adjoint of P, obtained by sending 
Z ~ 2a z •23 The degree of Pi is obtained as follows.* First, note that deg Pi-I = 
4N2/ Vi-I, which gives the degree of the conjugate polynomial deg Pf-I = 
4N2/(l- Vi-I)' From deg Py = 4N2 , one finds that 

-I 2 
v· = -deg P 

I N 2 I 

1 
= 2Pi + 1 ± -I , 

Vi-I - 1 
(A6) 

as derived by MacDonald, Aers, and Dharma-wardana.51 The fractions 
obtained are identical to those proposed by Haldane50 and by Halperin24: 

1 
Vi = -------------

(Ti-I 
2Pi + 1 + -------'----'-----

(Ti-2 
2 Pi -I + ------'---"----

(A7) 

where (Ti = ± 1 determines whether one descends down the hole (+ 1) or the 
particle (-1) branch at level i of the hierarchy. 

We now see from Eq. (A4) that whenever the statistical parameter a 
satisfies the relation 

-I -I 
a = Vo - Vi , (A8) 

with Vi a member of the FQHE hierarchy of filling fractions and Vo a 
principal FQHE fraction, a legitimate multivalued, fixed density, many­
anyon wave function can be constructed according to Eqs. (A3), (A5a), 
and (A5b). Call the associated polynomial Pi[z]. Note that the wave func­
tion, Pi[z] exp( -~z t z), is precisely the hierarchical FQHE wavefunction 
one would construct in a field B = (2po + 1 - a )pcf>oz, which results from 

* We are interested in the thermodynamic limit, in which N(N - 1) can be approximated 
by N 2• 
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subtracting from the physical magnetic field strength the fictitious "statistical 
magnetic field" obtained by smearing the effective anyon flux over the plane. 
As Zj - Zj ~ 0, 'l'v,[z] vanishes as (Zj - Zj)\ with . 

1 
= 2po + 1 =F ---:-1 -­

Vj_1 - 1 
(A9) 

Knowledge of the short-distance behavior of Pj[z] may be useful in esti­
mating the trial-state energy. Additional properties of the anyon gas in a 
magnetic field, such as cyclotron resonance, have been investigated by 
Johnson and Canright. 16 
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Chapter 2 

Microscopic and Macroscopic Loops 
in N onperturbative Two-Dimensional Gravity 

Tom Banks, Michael R. Douglas, Nathan Seiberg, 
and Stephen H. Shenker 

Two-dimensional quantum gravity is relevant both for string theory and as 
a toy model of higher-dimensional quantum gravity. The definition of pure 
20 quantum gravity and quantum gravity coupled to matter in terms of 
matrix models! is very explicit and rigorous. Matrix realizations of pure 
gravity and gravity coupled to certain minimal conformal field theories (and 
their massive deformations) can be solved by the application of large-N 
techniques. Recently, an exact expression for the specific heat of some of 
these models was found in the continuum limit. 2- 6 In this chapter, we will 
show that the correlation functions of operators in these models can also 
be easily computed. We distinguish between two kinds of operators, 
microscopic and macroscopic loops. By microscopic loops we mean 
expressions like Tr MP in the matrix models with p finite. They contain all 
the information about integrals over the surface of local operators. 

TOM BANKS, MICHAEL R. DOUGLAS, NATHAN SElBERG, and STEPHEN H. 
SHENKER. Department of Physics and Astronomy, Rutgers University, Piscataway, New 
Jersey 08855-0849. 

Quantum Mechanics of Fundamental Systems 3, edited by Claudio Teitelboim and Jorge Zanelli. 
Plenum Press, New York, 1992. 

29 



30 Tom Banks. Michael R. Douglas. Nathan Seiberg. and Stephen H. Shenker 

Macroscopic loops are also given by Tr MP, but P is taken to infinity in the 
continuum limit in such a way that they correspond to extended boundaries 
on the surface. 

We start by deriving a free fermion representation for the correlation 
functions of arbitrary loops in theories of two-dimensional geometry based 
on a single large-N matrix integral. The methods we present generalize 
immediately to arbitrary one-dimensional chains of matrices of the type 
studied in Ref. 7. In the limit, when the matrix chain becomes infinite and 
continuous, our method reduces to the fermionic description of large-N 
matrix quantum mechanics discovered by Brezin, Itzykson, Parisi and 
Zuber. s We will indicate the form of this generalization only briefly here, 
reserving the details for a lengthier publication.9 We will study correlation 
functions in the matrix model of the form 

J [dM] e-Tr v(M)(Tr MP1 ••• Tr MPn ) 

HdM] e Trv(M) 
(1) 

Geometrically these represent sums over random surfaces of arbitrary genus 
with boundaries of lengths PI ... Pn. 

Introducing the decomposition of the Hermitian matrices Minto 
unitary and diagonal matrices 

M = UtAU, 

this integral can be written 

J d N A6.2(A) e-I v(A,l L Afl ... L Afn 

J d N A6.2(A) e-I v(A.l 
(2) 

where 6.(A) = I1i<j (Ai - Aj) is a Vandermonde determinant. This expression 
may be viewed as the expectation value of a product of one-body operators 
in a Slater determinant lO constructed from the first N members of the 
complete orthonormal set of one-body wave functions 

o/n = Pn(A) e-~v(A) (3) 

f o/no/m dA = 8nm · (4) 

These functions are determined completely by Eq. (4) and by the 
requirement that Pn be a polynomial of order n. A set of recurrence relations 
determining them explicitly was given by Bessis, Itzykson, and Zuber. 11 

For large N we are dealing with a many-fermion system, and it is 
convenient to introduce second quantized notation. We define the fermion 
field 

00 

'I'(A) = L ano/n(A), (5) 
n=O 
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where the an are annihilation operators. The correlation function, Eq. (1), 
can then be written 

(6) 

where IF) is the filled Fermi sea for N fermions and J is the one-body 
operator of multiplication by A. In order to take the continuum limit of this 
equation, it is best to work in the orthonormal polynomial basis, II where 
J is an infinite matrix given by 

(7) 

It is now easy to write down formulas for the correlation functions in 
terms of one-body operators by considering how the creation and 
annihilation operators act on the Fermi sea. For example, the connected 
one- and two-point functions are 

N-I 

(FI'I'tP'I'IF) = Tr YP = L (P)nn (8) 
n=O 

(9) 

where Y is the projection operatoeO on the subspace of one-body wave 
functions with n :s N - 1. Below we will show how to take the continuum 
limits of these formulas. 

To facilitate computation of higher-order connected Green's functions, 
we can use Wick's theorem. In order to do this it is necessary to write our 
correlation functions in terms of time-ordered products. This is done by 
inventing a one-body Hamiltonian whose eigenstates are !/In and whose 
eigenvalues are monotonic functions of n. The details of the Hamiltonian 
are irrelevant because all of the correlation functions of interest are of 
operators at almost equal times. With respect to any such one-body 
Hamiltonian, our Slater determinant is the normalized N -fermion ground 
state. The expectation value of ordinary operator products that we want to 
compute may be written as time-ordered products by assigning the kth 
operator from the left a time k8. At the end of the calculation, 8 is taken 
to zero. We can now use Wick's theorem with the fermion propagator for 
s = t: 

(FIT'I'(A, t)'I't(A', s)IF) = L !/In(A)[S(s - t)(1 - Y) - S(t - s)Y]nm!/l!.(A') 
nm 

(10) 

where S(t) is an ordinary step function with support on the interval from 
zero to infinity. Note that we did not have to know anything about the 
spectrum of the fictitious fermion Hamiltonian because all times are taken 
to zero at the end of the calculation. We must, however, be cautious about 
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one point: The fermions inside each bilinear operator are in ordinary rather 
than time-ordered products. This difficulty is easily remedied by writing 

for anyone-body operator 0. The connected Green's functions of the 
time-ordered operators [the commutator part of Eq. (11)] are given by the 
usual ringlike Feynman diagrams for free-fermion bilinears, with the 
propagator given above. However, the time-ordered and ordinary products 
of two fermion operators differ by a c number. This subtraction thus affects 
only the connected one-point function. Thus higher point connected Green's 
functions of the operators that interest us are given correctly by applying 
Wick's theorem and ignoring the subtraction. 

We now want to note an important property of the expressions we 
have derived for correlation functions. Consider the connected two-point 
function of Eq. (9) when the length of the loops is a small number of lattice 
spacings. As can be seen from Eq. (7), the operator J is "local" in fermion 
level space. It is a finite difference operator that connects only the n ± 1 
levels. Low powers of it have short range in fermion level space. Note that 
in the two-point function f and Jk are sandwiched between orthogonal 
projectors that project out the states above or below the Fermi surface. 
Only states in the neighborhood of the Fermi surface contribute. For 
example, 

(Tr M2 Tr M2)c = RN+1RN + RNRN- 1 (12) 

(Tr M2 Tr M2 Tr M2)c = RN+IRN(RN+2 + R N+1 - RN - R N- 1) 

+RNRN-l(RN+l + RN - R N- 1 - R N- 2). (13) 

This is important since the universal physics is located in the immediate 
neighborhoods of the Fermi surface. We see that the continuum theory is 
sensitive only to the states right near the Fermi surface. The space of levels 
near the Fermi surface becomes continuous, and operators like J, which 
are local in Fermi level space, become finite-order differential operators. 

We have shown that general correlation functions in string models 
based on single large-N matrix integrals can be written as expectations 
values of products of fermion bilinears in a free fermion lattice field theory. 
These considerations are easily extended to matrix chain models.? The new 
element there is a transfer matrix along the chain. The correlations in these 
models can be written as expectation values of products of fermion bilinears 
and transfer matrices in the state IF) described above. Since this is not an 
eigenstate of the transfer matrix, an overlap integral must be computed. 
However, for infinitely long chains, the divergent part of the free energy is 
independent of the overlap and depends only on the ground state of the 
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transfer matrix. This is a discrete version of the large-N quantum mechanics 
of Ref. 8, and our fermion formalism converges nicely to theirs in this limit. 
We note, however, that the matrix chain contains variables that cannot be 
described in terms of fermions. These are the unitary parts, or angular 
variables, of the matrices. They disappear from certain correlation functions 
because of a global U(N) symmetry under which both the transfer matrix 
and the state IF) are invariant.!O Other correlators involve the angular 
variables in an essential way, and are more difficult to study. We will give 
a detailed description of our results for matrix chain models in Ref. 9. 

We now discuss the continuum limit of the correlation functions, using 
the scaling limit introduced in Refs. 2-4. For simplicity we present the 
formulas for c = 0, m = 2. We follow the notation of Ref. 3. We introduce 
a lattice spacing a, a renormalized cosmological constant IL = (lLo - lLel a2 ), 

a renormalized string coupling A = a-5/ 2 e( e = II N), finite in the continuum 
limit, and a variable z that describes the universal infinitesimal region near 
the Fermi surface (x = nl N - 1), e- a2JLx = 1 - a2 z. The constants Rn are 
replaced by a function r(x) whose universal part is P(z), defined by 
r - p = aP(z), where p is a nonuniversal constant. As shown in Refs. 2-4, 
P( z) satisfies the Painleve equation of the first kind. 

We now consider macroscopic loops. These are operators of the form 
Tr MP with p ~ 00 in the continuum limit so that 1 = pa, the physical length 
of the loop, is held fixed. It is convenient to write the Jacobi operator as 

J = [p + aP(z)]1/2 e,ax + e-Eax[p + aP(z)]1/2. (14) 

Introducing the above quantities and expanding to first order in a, we find 
that 

(15) 

and 

(16) 

The first factor is a nonuniversal boundary energy which we absorb by a 
multiplicative renormalization. The remainder is universal. We see that the 
loop of length 1 is described by the heat kernel e- Hl of the Schrodinger 
operator* 

V(z) = -!P(z), (17) 

where we have scaled p to one and P(z) obeys the c = 0, m = 2 string 
equation 

p2 + tA 2 P" = z. (18) 

* This Schrodinger operator was derived independently by Gross and Migdal,4 who showed 
that the multicritical string equations can be determined from its Seeley coefficients, and by 
Douglas and Shenker,I2 who showed that its heat kernel describes the macroscopic loop. 
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It is often useful to measure lengths in units of JL -I. After rescaling z and 
P to accomplish this, Eqs. (17) and (18) remain unchanged except that A 
is replaced by the dimensionless handle-counting parameter K = 11./ JL 5/ 4• 

The changes in scaling necessary to account for the negative-dimension 
operator to which the "cosmological constant" very probably couples in 
the general multi critical model are discussed in Ref. 5. The general string 
equation is discussed in Refs. 2-4. 

Using the fermion formalism and the heat kernel H, we can now write 
the master formula for the expectation value of k macroscopic loops with 
lengths II> 12 , • •• , Ik 

(Wi, Wi2 ... Wik)c = (DI ('lit e-1,HW) ) c· (19) 

As an example, we calculate the expectation for one loop 

(Wi) = Loooo dzS(z)(zle-H1Iz) (20) 

and for two loops 

(Wi, Wi)c = L: dzdw S(Z)(zje-Hl'lw)(1- S(w»(wle-HI2 Iz). (21) 

The step functions S(z) represent the existence of the Fermi sea, as explained 
above, and have support for z > JL. 

We now tum to a discussion of microscopic loops. The natural operators 
to examine are the scaling operators l2 Ok that couple to sources Tk in the 
tree level equation2* for the specific heat as 

JL = C2 T2f2 + C3 Td3 + C4 T4f4 + ... + Ck T Jk + ... , (22) 

where Cj are normalization constants. Such a potential describes the general 
massive model interpolating between the multi critical fixed points.13 

One way of isolating such scaling operators is to observe that as we 
take the lattice spacing to zero, lattice correlators like Eqs. (8) and (9) have 
expansions in powers of the lattice spacing whose coefficients are matrix 
elements of continuum scaling operators. In particular, these scaling 
operators can be found by examining the behavior of correlators for boun­
daries only a few lattice spacings long. The locality of small powers of J 
implies that the matrix elements of the scaling operators are given by 
polynomials of the Painleve function and its derivatives. For example, at 
the scaling limit Eqs. (12) and (13) become 

(Tr M2 Tr M2)c = 2p2 + 4paP(JL) + O(a2) (23) 

(24) 

* Gross and Migdal4 give a general formula for the correlation functions of scaling operators 
at tree level. 
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The additive constant 2p2 in Eq. (23) is not universal. It is not present in 
higher-n point functions such as Eq. (24). Such a constant exists also in 
the one-point function. It appears there because the expectation value 
depends on the entire Fermi sea and not just on its universal surface. A 
similar nonuniversal additive constant could appear in the calculation of 
the one-point function Eq. (20) where we integrate over the entire Fermi 
sea. However, as is clear from Eq. (16), because of the limit p = 1/ a ~ 00, 
the additive nonuniversal constant exponentiates and turns into a multiplica­
tive constant. The contribution of the bottom of the Fermi sea (z ~ 00) is 
exponentially suppressed in Eq. (20) and therefore does not shift the answer. 

In interpreting the correlation functions one should be careful not to 
forget the additive constants. These can uSGally be removed by differentiat­
ing a large enough number of times with respect to the cosmological constant 
~. This has the effect of removing all the analytic dependence on ~. An 
equivalent way to understand this phenomenon is to study the theory at 
large (relative to the cutoff) fixed area A. Then the correlation functions 
on the sphere have the form A r for some constant r. For r :::; -1, the integral 
over A diverges for small A. This is the origin of the additive constant. For 
r < -1 and not an integer, the universal term is proportional to ~ ~r~ I. For 
r an integer smaller than or equal to -1, the situation is more complicated. 
In this case, differentiating the answer - r - 1 times with respect to ~, we 
expect to find log ~ in the answer. For example, for the one-point function 
of the energy operator in the Ising model, r = -3. Differentiating twice with 
respect to the cosmological constant, we expect r = -1, and the universal 
term is proportional to log ~. Since the exact result of the lattice calculation 
is a constant independent of ~, we conclude that the one-point function of 
the energy operator in the Ising model vanishes.* We would like to note, 
however, that such constants may very well have universal physical meaning. 

A more elegant approach to constructing the correlation functions is 
to use the singular potentials introduced by Gross and Migdal4 to pick out 
the pure scaling operators. They show that the matrix potential correspond­
ing to a variation of the field Tk is Tr(2 - M)k+1 / 2, which in the continuum 
limit is Hk+1/2. In the fermion formalism it is represented by the one-body 
operator 'l't H k+ 1/2'1'. Thus we can write a general formula for the n-point 
correlation function of scaling operators (up to a normalization): 

1, dl l 1, dIn (k +3/2) 
(Ok I O k2 ' •• Ok) = j 27Ti ... j 27Ti I~ I ••• 

* This is in contrast to the statement in Ref. 5. 
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For example, the one-point function of the operator conjugate to Tk is given 
(formally), up to a normalization, by 

(Ok) = too dz (zIHk+1/2Iz). (26) 

For higher-point functions care must be taken with the distributions implicit 
in Eq. (25). 

Equation (26) has important consequences. In order to explain them 
we temporarily shift notation to conform to Ref. 14, whose results we use 
extensively in what follows. Replace z by x, set A 2 = 2, and let u = V. The 
Schrodinger operator becomes H = -a~ + u(x). Introduce the diagonal of 
the resolvent to define fractional powers of H, 

I -II 00 R,[u(x)] 
(x (H +?) x) = L 1+1/2' 

/=0 , 
(27) 

The coefficients R/[ u] are polynomials in u and its derivatives and are the 
generalized KdV potentials. Gross and Migdal4 showed that the multi critical 
string equations are determined by these quantities. The diagonal of H k + 1/2 

is determined up to a normalization by R k + l • The string equation for the 
general massive model interpolating between multi critical points3,4 is 

00 

x = L (k + !)TkRk[u] (28) 
k=O 

(where we have now fixed the normalizations) or, using the identity 
(8/8u)Rk + 1 = -(k + !)Rko 

(29) 

We list the first few R/: 

Ro =! 
RI = -*u 
R2 = i1;(3u 2 - u") 

(30) 

R3 = -i4(10u3 - 10uu" - 5(u'? + u""). 

Noting that the specific heat u - a~F and that (Ok) = (a/aTk)F where F 
is the free energy, we see that Eq. (26) for U(TIo T2 ••• ; x) can be written, 
after differentiating twice, 

(31) 
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for every k. These are just the (generalized) KdV equations.* We see that 
the specific heat u as a function of the scaling fields and x is just a solution 
of the KdV hierarchy. This observation raises an important question: if we 
start at a given multi critical model, and then flow up to a higher one using 
Eq. (31), which special solution of the higher string equation (if any) do 
we come to?t 

We can express Eq. (31) more compactly by introducing the vector 
fields which generate the KdV flows: 

g1 = I R(i+l) _8_ 
i~O 1 8u(i)' 

(32) 

where the superscript refers to differentiation with respect to x and the U(i) 

are considered independent. Integrability of the KdV hierarchy depends 
crucially on the fact that these vector fields commute: 

We can then write Eq. (31) as 

a 
-u = gk+!' u. 
aTk 

(33) 

(34) 

Correlation functions of the general massive multi critical model are then 
given by the simple formula 

(35) 

The ordering is unimportant because of Eq. (33). This expression is a 
polynomial in u and its derivatives, as the matrix expressions imply. It is 
straightforward to show, using identities that follow from Eq. (33), that the 
differential equation for the correlation function4 derived from varying 
Eq. (28) with respect to Tk is satisfied by Eqs. (33) and (34). 

We now discuss some of the physics of Eqs. (20) and (21). Since we 
are dealing with a free fermion theory, all the correlators can be written 
simply in terms of the heat kernel of H. Let us examine the properties of 
H. Figure 1 is a rough sketch of V for m = 2, when the string equation is 
Painleve. Recall that the detailed shape depends on the nonperturbative 
free parameter. There is an infinite sequence of double poles as Z ~ -00 

that asymptotically become periodic. We will call the location of the pth 
double pole zp. Since the potential approaches +00 at these points as 
(z - Zp)-2, the wave function must vanish there faster than Z - zp. With 

* The connection to the free fermion formalism discussed above is quite likely to be made 
through the Grassmannian and its associated T function. [5 

t Issues related to this have been considered by Witten16 in his topological field-theory 
derivation of low-genus correlation functions. 
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V(Z) 

Z 

Figure 1. Approximation of V when the string equation is Painleve (m = 2). 

such a behavior, the region between each pair of poles is disconnected from 
the others; i.e., the Hamiltonian H is self-adjoint once restricted to a single 
region. The region that joins onto perturbation theory is z! < z < 00. 

In the perturbative region z ~ 00, the potential V ~ ..;z, and the wave 
function must decay. So there is a well-posed eigenvalue problem with 
discrete spectrum in this region. Referring to Eq. (20), we see that loops 
decay with an infinite number of distinct exponentials of their length due 
to this discrete spectrum. This is a dramatic and nonperturbative 
phenomenon in 2D quantum gravity. Note that the discreteness of the 
spectrum is a consequence of the first double pole, even if it is not visible 
in the free energy for "physical" f..t > O. This suggests a physical role for 
these singularities.* We might wonder what happens if the free parameter 
is adjusted so that the Fermi level f..t is in between two poles. We then 
couple to the part of the spectrum supported entirely between them. Perhaps 
this is a new strong-coupling phase of 2D quantum gravity? The spectrum 
of H would be gapped in each new "phase." 

In the weak-coupling regime we might expect that geometrical intuition 
about sums over surfaces of different topologies would give a qualitatively 
correct picture of the physics of two-dimensional quantum gravity. At tree 
level David!7 has argued that the behavior of < Wt) is qualitatively similar 
to that of a large loop spanned by a surface of constant negative curvature 

* That the double poles might have physical consequences was suggested by Brezin and 
Kazakov.2 
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- JIJ,. The expectation value of the area 

{ f 
aIL log( Wt) - l/JIJ" 

for lJlJ,« 1; 

for lJlJ, » 1. 
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(36) 

So at large 1 the area is large, and for small enough K2 we might expect to 
approximate the sum over surfaces by a dilute gas of handles. This approxi­
mation is the basis of wormhole physics. 

In fact, at asymptotically large I, for any finite K, the behavior of 
expectation values in two-dimensional gravity does not coincide with the 
dilute wormhole picture. The spectrum of the Hamiltonian is discrete, and 
at asymptotically large I, Eq. (20) is dominated by the ground-state energy. 
We find that 

Wt = LXl dz<p~(z) e- Eo1 • (37) 

This looks more like what might be expected from a simple renormalization 
of the cosmological constant: the web of higher-genus surfaces seems to 
behave at large 1 like a genus-zero surface with an effective cosmological 
constant. Note that the value of this effective constant is not zero. 

It should come as no surprise that the dilute wormhole gas is not a 
valid approximation for large-volume universes. There is no cluster 
expansion for wormholes as there is for ordinary instantons. The contribu­
tion of wormhole interactions (nonquadratic terms in the action for fluctuat­
ing couplings) to the logarithm of the partition function contains cubic and 
higher powers of the volume, while the dilute gas contribution is quadratic. 
Even if there is a small parameter (K in the present context) controlling the 
wormhole density, the interaction terms dominate at large volumes. Our 
exact solution of the two-dimensional problem allows us to see the correct 
asymptotic behavior. 

The above discussion was valid for asymptotically large volumes. As 
we let 1 become smaller, we see the possibility of a regime in which 
wormholes give a correct picture of the physics. The gap in the Schrodinger 
spectrum is of order K, so if lJlJ,K « 1, we can no longer approximate the 
macroscopic loop by the contribution of the ground state alone. Thus for 
small K and 1 « lJlJ,« 1/ K, we can expect to approximate the Schrodinger 
spectrum by a continuum and the result for the loop in this regime can be 
written as an integral over fluctuating values of the cosmological constant 
of the tree level result. 18 

This is a rather weak probe of the validity of wormhole ideas. To be 
more precise we can investigate the behavior of the loop expansion order 
by order. The diagonal matrix element of the heat kernel that appears in 
Wt can be written as a path integral with action 

(38) 
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It can be expanded in powers of K by writing x(t) = Z + K.::l(t). This 
generates, in each order in K, an action which is polynomial in .::l. The path 
integral can then be written in terms of Feynman graphs whose I-dependence 
is determined by simple dimensional analysis. 

When this analysis is performed in order K2 (genus one), we find a 
result consistent with wormhole ideas: a term proportional to I and a term 
proportional to f. The average area is again proportional to I, so the first 
of these resembles a renormalization of the cosmological constant while 
the second can be interpreted as a single wormhole contribution. However, 
at genus two and higher there appear to be contributions which do not fit 
into a wormhole picture, even when wormhole interactions are included. 
In particular, at genus g the leading large-I behavior appears to be 13g- 1 

rather than the f g one would expect from wormholes. This may be an 
indication that even in this perturbation regime, the contribution of "fat" 
surfaces to the path integral at large I dominates over that of wormhole 
configurations. Indeed, the arguments (such as they are) that have been 
adduced to justify restricting attention to wormhole configurations in the 
path integral over four-geometries are not obviously applicable in the present 
context. 19 We caution, however, that our understanding of this issue is not 
complete, and that a wormhole picture of the sum over two-geometries is 
not completely ruled out in the perturbative regime. What is clear is that, 
for asymptotically large I, all such arguments fail, and the behavior of the 
loop is controlled by aspects of the problem that are invisible in the genus 
expansion. We do not at present have an intuitive geometrical picture of 
the origin of these nonperturbative effects. 
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Chapter 3 

Supersymmetry and Gauge Invariance in 
Stochastic Quantization 

Laurent Baulieu 

1. INTRODUCTION 

Stochastic quantization is an alternative to the Feynman path integral 
for quantizing a theory. In Ref. 1, Parisi and Wu have suggested applying 
stochastic quantization to gauge theories. Numerous works have followed? 
One of the motivations of Parisi and Wu was that no gauge fixing is necessary 
to compute gauge-invariant quantities in stochastic quantization, since the 
stochastic evolution can be consistently defined from a drift force equal to 
minus the gradient of the classical action with respect to the gauge field, 
with no reference to the ghosts that occur in the ordinary path integral 
formalism. However, it has been realized that it is useful to introduce a 
kind of gauge fixing in stochastic quantization: a drift force can be defined 
along gauge orbits.3 This permits a consistent renormalizability of the 
stochastically quantized gauge theory. Moreover, with a particular choice 
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of this drift force, it seems that the gauge field is confined within the first 
Gribov horizon, and so one naturally escapes the Gribov problem.3,4 The 
freedom in the Langevin equation of a gauge theory, which permits the 
introduction of the gauge-dependent drift force, follows in fact from the 
simple geometrical principle that stochastic evolution be compatible with 
the gauge symmetry.5 

There is a supersymmetry that is inherent to any stochastically quantized 
theory, whether or not it has a gauge invariance.2 This is a very general 
result, linked to the possibility of interpreting the Langevin equation as a 
constraint between the noises and the fields: this constraint can be exponenti­
ated in the Boltzman weight involving the noise, provided a relevant 
Jacobian multiplies the measure; in turn, this Jacobian can be exponentiated, 
and one ends up with a supersymmetric action. It has been observed that 
this supersymmetry has a deep relationship with the notion of a topological 
gauge symmetry.6,7 The stochastic supersymmetry is technically useful, since 
it implies Ward identities for correlation functions. The latter permit one 
to control and consistently renormalize the divergences which generally 
occur in stochastic quantization.8,9 

If one considers a theory with a gauge invariance, the stochastic 
supersymmetry must be supplemented by some other symmetry acting as a 
reminder of the original gauge invariance. Previous attempts to express the 
gauge invariance in stochastic quantization to control the divergences of 
a stochastically quantized Yang-Mills theory can be found in Ref. 8. In 
Ref. 9, two separate Ward identities were written, one for the stochastic 
supersymmetry and one for the gauge symmetry. A basic tool in Ref. 10 is 
the definition of the ghost through its own Langevin equation, first intro­
duced in Ref. 5. 

Here we shall show that there is in fact a single symmetry that combines 
both stochastic supersymmetry and gauge invariance. We will work out in 
detail the case of theories with a Yang-Mills invariance and briefly sketch 
the case of the invariance under changes of coordinates, for which interesting 
phenomena seem to occur in two dimensions. We will find that the underly­
ing invariance is of the topological type and has thus a geometrical meaning. 

We shall mainly consider the case where the supersymmetric path 
integral representation is based on the parabolic differential operator 
a/at - A. 

The other case where the representation of the supersymmetric path 
integral is based on elliptic or hyperbolic operators a2/ at2 ± A necessitates 
another interpretation of the drift force along gauge orbits. This case has 
interesting applications for quantizating first-order systems. We will briefly 
display the method in the case of the 2D Chern-Simons action JM2 Tr F4J, 
and show how it provides a theory in three dimensions (the third dimension 
is stochastic time) related to the topological action for the second Chern 
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class S M4 Tr FF. (The quantization of the three-dimensional Chern-Simon 
theory is presented elsewhere.)10 

2. LANGEVIN EQUATIONS FOR THEORIES WITH A 
YANG-MILLS SYMMETRY 

Following earlier results,s we first construct the Langevin equations for 
the quantum theory by postulating that the ordinary Yang-Mills BRST 
transformations (which include as a subset the ordinary infinitesimal gauge 
transformations) must commute with the evolution along stochastic time. 
We start from the expression of the generator s of the ordinary Yang-Mills 
BRST symmetry: s is a graded differential operator, defined by its action 
on the G-valued Yang-Mills field 1-form A = Aidxi, with 1 ~ i ~ nand n 
the dimension of the physical space of the theory, and on the G-valued 
anticommuting O-form ghost c: 

sA = -Dc sc = -![c, c]. (la) 

Also, d is the ordinary exterior derivative d = dx i ai and D = d + [A, ) 
is the covariant derivative. We define the covariant BRST differential 
operator S = s + [c, ). By definition, sand d anticommute. One has S2 = 0, 
S2 = 0, and SD + DS = O. The BRST equations (la) can be rewritten as 

(d + s)(A + c) + ![A + c, A + c) = dA + [A, A). (lb) 

In what follows, ao = a/ at denotes the derivative with respect to the 
stochastic time g, and all fields are assumed to depend on Xi and t. Our 
postulate is that sand ao commute: 

(2) 

One has also sai = ais. Applying ao to both sides of (Ib) and using (2), we 
obtain 

(D + S)(ao(A + c)) = D(aoA). 

This equation, once expanded in ghost number, gives: 

S(aoc) = 0 

S(aoA) + D(aoc) = O. 

(3) 

(4a) 

(4b) 

Equations (4) can be easily solved, simply by using power counting (the 
dimensions and ghost numbers of A and c are as usual) and the properties 
S2 = 0 and SD + DS = O. One obtains 

aoc = Sv - 'Y = sv + [c, v) - 'Y 

8Ic/[A) 
aoA· = Dv +---+ b 

I I 8Ai " 

(5a) 

(5b) 
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where 'Y and bi, which can be identified as noises for C and Ai, respectively, 
are submitted to the BRST constraints 

S'Y = 0 (6) 

Ic/ can be any given functional of the Ai, provided it is s-invariant, so 
that the equation of motion is s-covariant, S8Icl [A]/8Ai = O. This means 
that Ic/ is a gauge-invariant classical action. 

v is an arbitrary G-valued function, left undetermined when solving 
Eq. (3). The freedom in the choice of v, and thus in part of the drift force 
in the Langevin Eqs. (5), can be understood as the manifestation of gauge 
invariance. 

Translating the Langevin equation, Eq. (5b) into a Fokker-Planck 
equation, it is possible to prove, in the limit t ~ 00, the independence of 
the choice of v of correlation functions of gauge-independent functionals 
of the A, computed from the Langevin equation, Eq. (5b). 

In the next section we shall take v as a functional of the Ai' v = v[A;]. 
In this case, Eq. (5b) is the modified Langevin equation introduced in Ref. 
[3] to induce a drift force along the gauge orbits without affecting the values 
of gauge-invariant quantities (a natural choice is v = d;Ai). The stochastic 
ghost equation, Eq. (5a), means that now doC = (8v/8Ai)DiC + [c, v] - 'Y. 
The convergence toward the usual Faddeev distribution of the Fokker­
Planck equation associated to the Langevin equation, Eq. (5b), has been 
demonstrated in Ref. 11, by using a certain functional v[A]. 

If we compare Eqs. (5a) and (5b), we see that the evolution of A is 
not correlated to that of c, while that of c is correlated to that of A (After 
introducing antighosts, one could imagine a more general situation where 
v is ghost- and antighost-dependent, implying a spurious ghost dependence 
in the evolution of A) 

The Langevin equation, Eq. (5b), for the ghost has been introduced in 
Ref. 5. It can be generalized for any given gauge theory. It was rederived 
by other means in Ref. 9, with 'Y = 0 and the choice v = d;Ai, and used to 
investigate the Ward identities and the renormalization of the stochastically 
quantized Yang-Mills theory. (Choosing 'Y = 0 and thus sb j = -[ c, bj ] repro­
duces the usual convention that the noise of the gauge field transforms 
covariantly and not as a gauge field.) Here, we will consider the general 
situation 'Y ,e 0 in order to construct a symmetry operator which unifies the 
stochastic supersymmetry and the ordinary gauge symmetry. 

3. THE PARTITION FUNCTION 

Up to the obvious requirement that the stochastic process induced by 
the Langevin equation, Eq. (5b), is meaningful, the correlation functions 
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of gauge-independent functionals of the Ai do not depend on the choice 
of v. Let Ji(x, t) be the sources of the Ais. The stochastic partition function 
is 

Z[J] = f [Db;] exp f dt dx Tr( -~b~ + Ji(x, t)Ai(x, t», (7) 

where the b(x, t) are submitted to the constraints of Eq. (5b). 
We wish to construct a supersymmetric functional representation of 

the Langevin equation that involves the G-valued Faddeev-Popov ghost c. 
We insert in the generating functional Z[J] the identity 1 = 

j[dc][dy]exp-Jdtdxcy (c and yare G-valued anticommuting fields). 
In this way, we have 

Z[J] = f [Db;][dc][dy]exp f dtdxTr(-~b7-cy+Ji(x,t)Ai(x,t». (8) 

It is convenient to define FOi = iloAi - Div and Do = ilo + [v, ]. 
Assuming that the super-Jacobian of the transformation (Ai, c) ~ 
(FOi - Mcd 8Ai, DoC - 8v/8AiD ic) is not singular, we can insert in Eq. (8) 
the formal identity 

The integration over bi and y is trivial. We get 

f 8(bi' y) f ( 1 ( 8Icl ) 
2 

Z[J]= [DA;][Dc][Dc]det ( . )exp dtdxTr -- FOi --. 
8 A" c 2 8A, 

(10) 

To exponentiate the superdeterminant in Eq. (10), we introduce G-valued 
anticommuting ghosts 'l'i and \ji i and G-valued commuting ghosts for ghosts 
<I> and <I>. One has 

8( bi' y) f - - f - -det ( . )= [D'I'i][D'I';][D<I>][D<I>]exp dtdxTr('I';,<I» 
8 A" c 

(11) 
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We can therefore express the partition function as follows: 

Z[J] = f [DAJ[D'I'J[D~J[DbJ[DcJ[DcJ[DcI>][Del>J 

x exp( IOF + f dt dx Tr JjA j) , 

with 

[We have reintroduced Lagrange multiplier fields b in Eq. (12).] A nontrivial 
feature of our action, Eq. (12), is the trilinearity of the last term in the 
ghosts c, '1', el>. 

We can verify that IOF is invariant under the action of the graded 
differential operator Stop defined as follows: 

Stop~; = b; 

Stopel> = c 

(13a) 

(13b) 

(All gradings are summarized by attributing ghost numbers to all fields: 0 
for A and b;; 1 for c and '1';; -1 for c and ~i; 2 for cI>; and -2 for el>. 
Moreover, the gradings of all forms and operators are defined as the sum 
modulo 2 of the ghost numbers and form degrees.) 

One has s~op = o. The stop-invariance of the action is obvious, since 
one can write IOF as an Stop-exact term: 

IOF = f dtdXStop(~;(Foi- :~;+!b;) -el>(DoC- :~i D;C)). (14) 

The last equation shows that Fo; - 8Icd 8A; and Doc - D;c8v/8A; can 
be interpreted as gauge functions: functional integration is concentrated 
around the domains where these functions vanish. 
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If one eliminates the fields bi by their algebraic equation of motion, 
the action of Stop on 'Ii, Stop 'Ii i = bi, is changed into Stop'li i = FOi - Blet! BAi. 
If one further Legendre-transforms IGF into a Hamiltonian, one gets a 
supersymmetric Hamiltonian HGF = M Q, 0], where Q is the charge associ­
ated with Stop, with Q2 = 0, and 0 is the adjoint of Q. 

One can identify Stop with the topological BRST Yang-Mills operator 
constructed in Ref. 12: if one performs the change of field-variables qri ~ 
qri + Die, <I> ~ <I> - Me, e], one gets, indeed, 

StopAi = qri + Die 

Stope = <I> - Me, e] 

Stopqri = Di<l> - [e, '1';] 

Stop<l> = -[ e, <1>]. 

(15) 

Under the form of Eq. (15), one sees that the stochastic supersymmetry 
is combined with the ordinary BRST symmetry. This phenomenon is made 
possible by the existence of the ghost of ghost <1>, a O-form with ghost 
number 2. The geometrical interpretation follows from the possibility of 
expressing Eq. (15) as a generalization of Eq. (1b):12 

(d + s)(A + e) + ![A + e, A + e] = F + qri dx i + <1>. (16) 

If we consider the ordinary Yang-Mills action, lei = J dxFt, the case 
of interest is v = aiAi (Zwanziger gauge). The action becomes 

- 'lii«ao - DjIY)qri - 2[Fij , qrj] + Di[Aj, qrJ 
- <I>«ao + IY a)<I> - [qri, aie]). (17) 

We see that the theory is based on a parabolic differential operator of the 
type a/at - (a/axi)2. For a space dimension smaller than or equal to four, 
one has renormalizability by power counting, and the stability of the theory 
is due to the symmetry of Eq. (17), stoplGF = 0, with 

StopAi = qri 

Stope = <I> 

StOPqri = 0 

Stop<l> = 0 

StOP'lii = aOAi - DjaiAi - [Fij, Aj] 

(18a) 

(18b) 
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4. THE CASE OF DIFFEOMORPHISM INVARIANCE 

The approach followed to obtain the Langevin equations, Eqs. (5), can 
be applied to other gauge invariances.5 If one considers, for instance, 
diffeomorphism invariance, Eqs. (15) are replaced by the following ones: 

Stopgij = 'I'ij + gikdjgk + gjkdlk + gk dkgij 

Stopt = <I>i + edjgi 
(19) 

Stop'll ij = gikd/pk + gjkdi<I>k + <I>k dkgij + 'I'ikdjgk + 'I'jkdigk + gk dk 'I' ij 

Stop<I> = <I>jdjt - edj<I>i. 

In this case the drift force v is a vector field Vi. Again, there is an interpreta­
tion in terms of a topological gauge symmetry. If we consider the case of 
20 gravity, one should take as conformally invariant variables the Beltrami 
differentials, so that gij dx i dxi = exp( 4> )( dz + JL ~ d:Z)( d:Z + JL; dz). The 
stochastic equations are separated into holomorphic and antiholomorphic 
sectors. The holomorphic sector is 

(20) 
Stop'l'~ = dz<I>z + <I>zdzJL~ - JL~dz<I>z + cZdz'l'~ - 'I'~dzcz 

Stop<I>z = <I>z dzC z - CZ dz <I> z. 

It is convenient to rename the analog of v as JL~. The Langevin equations, 
Eqs. (5), become 

(21) 

where T is the energy momentum tensor. A most interesting possibility is 
that of expressing all relevant equations for the stochastic quantization of 
a worldsheet as follows: 

We have defined 

(d + Stop)A + ![A, A] = B 

(d + Stop)B + [A, B] = o. 

d = dt do + dz dz + d:z dz 

A = (dz + d:Z JL~ + dt JL~ + CZ)dz 

B = (dt d:Z( T ZZ + b~z) + d:Z 'I'~ + dt 'I'~ + <I>Z)d z • 

(22) 

(23) 
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The analogy between Eqs. (15) and (20-23) is quite striking and will 
be used in a separate publication, where the link between 20 gravity and 
3D Chern-Simons theory for the groups SU(2) x SU(2), ISO(3), or 
SL(2, C), depending on whether the worldsheet genus is 0, 1, or greater 
than 1, is examined. 

5. THE CASE OF FIRST-ORDER SYSTEMS 

First-order actions, i.e., actions only linear in the velocities, have 
vanishing Hamiltonians. Their quadratic approximations are not definitely 
positive, and therefore their quantization through ordinary Feynman path 
integral formalism is conceptually difficult to understand. In Ref. 10, in the 
case of the three-dimensional pure Chern-Simons action, stochastic quantiz­
ation has been shown to get around this difficulty by giving a four­
dimensional supersymmetric action whose bosonic part is of the ordinary 
Yang-Mills type, and thus second-order. 

To show the generality of this transmutation of a first-order action into 
a second-order one, we present here another case, that of the two­
dimensional Chern-Simon action 

lei = f Tr (F4». 
M2 

(24) 

This action has a physical interest since, for particular choices of the gauge 
group, there are arguments for its relation to 20 gravity. F = dA + AA is 
the curvature of a connection A = A z dz + A z dz. 4> is a scalar field, valued 
in the same fundamental representation as A. 

lei is first order, and the Hamiltonian vanishes modulo the classical 
constraint on A. The equations of motion are 

81el 
8A- = Di4> = 0 

I 

(25) 
81cl i" - = E~F" = 0 where 
84> Y' 

i, j refer to the indices in M2 • The Langevin equations which describe 
stochastic quantization for the action [Eq. (24)] are therefore 

FOi = Di4> + bi 

Do4> = EijFij + b. 
(26) 

As in the previous sections, the index numbers zero refer to stochastic time, 
and we have defined FOi = aOAi - aiAO + [Ao, AJ and Do = ao + [Ao, ]. 
(We have renamed the arbitrary function v as Ao). Since gauge-invariant 
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quantities do not depend on the choice of v = A o, we can functionally 
integrate over all possible choices of A o, provided we define a stochastic 
evolution for A o, for instance 

(27) 

where bo is a Gaussian noise for Ao. 
If we write the stochastic partition f [db] exp - fM3 d 2z dt(1b7 + 1b~) by 

expressing the noises in functions of the fields as in the previous sections 
(see Ref. 10 for the details in the case of the three-dimensional Chern-Simon 
action), we end up with a supersymmetric functional integral representation 
of the Langevin equations, Eqs. (26-27), defined from the following action: 

-f 2 2 ij 2 2 IGF - d zdt«Foi-Di<P) +(Do<p-e Fij) +(aOAo-aiAi) 
M3 

+ supersymmetric terms) 

= f d 2z dt«F~{3 + (D",<p)2 - 2e",{3YF",{3Dy<p + (a",A"'? 
M3 

+ supersymmetric terms). (28) 

The greek indices a, {3, 'Y, ••. stand for three-dimensional indices for M2 x S, 
where S is the one-dimensional manifold in which the stochastic time runs. 
(The term e",{3YF"'{3Dy<p is a pure derivative and can be omitted.) 

The right-hand side of Eq. (28) shows that the field Ao can be truly 
interpreted as a gauge-field component along the stochastic direction. This 
interpretation of Ao was already quite clear from Eq. (25).* 

Equation (28) shows also that stochastic quantization provides us with 
an action that is second order: its quadratic field approximation is based 
on the elliptic operator L.~~1 (al axi? The method which has yielded the 
second-order action [Eq. (28)] is quite general. Presumably, it can be used 
for any theory with a classical first-order action. Notice that gauge invariance 
(under a BRST form) has been maintained for the supersymmetric stochastic 
action by summing over all possibilities on the freedom of the Langevin 
equation. 

As far as the specific example above is concerned, it is interesting to 
observe that the action [Eq. (28)] is the same as the one constructed in Ref. 
15 for defining a quantum field theory from the magnetic monopole topologi­
cal charge f M3 Tr FD</>. Moreover, by a trivial dimensional reduction, the 
latter is itself linked to the quantum field theory associated with the four­
dimensional topological invariant fM. Tr FF (the scalar field </> can be seen 

* The idea of interpreting v as an additional gauge-field component first appeared in the work 
of Chan and Halpern,14 in a different context. 
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as the fourth component of a connection over M4)' We have thus an example 
of a bidimensional quantum theory that has a deep relationship with a 
theory in four dimensions. What achieves stochastic quantization is a jump 
of one dimension, which could be called a generalization of Stokes' theorem 
at the quantum level. 
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Chapter 4 

Covariant Superstrings 

Lars Brink 

1. INTRODUCTION 

Theoreticians have long striven to realize supersymmetry covariantly. 
They usually do so by introducing the concept of a superspace, a space 
with both bosonic and fermionic coordinates. The concept of a superspace 
led fairly quickly to new insights into supersymmetric field theories, such 
as proofs of nonrenormalization theorems.' There are, however, limits to 
what can be done. For theories with higher supersymmetry, or equivalently 
for theories in dimensions higher than six, no useful superspace formulation 
could be found-useful in the sense that it could be used for the quantum 
theory. One way out here was to relax the covariance by going to a light-cone 
frame gauge. This method proved very useful in proving the perturbative 
finiteness of the N = 4 Yang-Mills theory.2 The method is, however, some­
what limited in that the Poincare invariance is nonlinearly realized and the 
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theories treated are in a specific gauge. The program of covariant supersym­
metry in point-particle field theory is still unfinished. 

It was also realized very early on in string theory that the introduction 
of a superspace is useful. In the early days we concentrated on the supersym­
metry in the world sheet on which the Ramond-Neveu-Schwarz model was 
based.3 The super-world sheet4 proved to be a useful concept, which led to 
superconformal theories, supermoduli spaces, and the like. We might, 
however, also wonder if the space-time supersymmetry that the superstring 
carries can be realized covariantly. This has turned out to be a more 
complicated problem, the problem I will address in this talk. 

Before going into the details, let me pause and ask whether or not this 
problem is important. Honestly, I do not know! We might argue that the 
real physics in string theory resides in the world sheet and the interpretation 
of certain fields over the world sheet as coordinates of a (super-) space-time 
should be dynamic. However, progress in physics often comes by investiga­
ting different routes. For the free superstring there is a covariantly super­
symmetric action. The problem with it has been to quantize it covariantly. 
The hope here is that a solution of the problem will lead to new insight. 

2. THE MINIMAL COVARIANT ACTION 

To describe a string theory with space-time supersymmetry, the natural 
coordinates are xJL( CT, T) and (Jot (CT, T), where xJL and (Jot are vectors and 
spinors, respectively, under SO(1, d - 1), with d being the dimension of 
space-time, which we take to be ten. The momentum density 

(a = (T, CT)) (2.1) 

is the natural supersymmetrically invariant extension of the momentum 
density used for bosonic strings. To construct an action, the natural thing 
is to insert 7T~ instead of aotX JL in the action for the bosonic string. This is, 
however, not enough. To obtain a local fermionic symmetry that can 
eliminate unphysical fermionic degrees of freedom, Green and Schwarz 
added an extra (invariant) term, a Wess-Zumino-Novikov-Witten term in 
the language of CT-models and suggested the actionS 

S = -! f dTdCT[..J=ggot f3 7Tot • 7Tf3 - 2ieotf3aotxJLoYJLaf3fJ]. (2.2) 

To understand the problems of this action it is easier and equally informative 
to study the point-particle limit6 

Sp = -! f dTe- l 7T JL7TJL , (2.3) 
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where 

(2.4) 

and e is the Einbein - Jg;;. 
In a Hamiltonian formalism one gets the following primary constraints: 

Pe = 0 

X = fie + iifp = 0, 

where 

The secondary constraint is 

(2.5) 

(2.6) 

(2.7) 

In order to check whether the constraints correspond to gauge symmetries 
of the action, we must check whether the constraint algebra, obtained by 
using the canonical Poisson brackets, closes. The critical bracket in the 
algebra turns out to be 

(2.8) 

where the RHS clearly is not a constraint. The rank of this 16 x 16 matrix 
is 8 because of the constraint, Eq. (2.7), and this fact shows that eight of 
the 16 constraints X are not gauge constraints, i.e., they are second class 
constraints, in Dirac's terminology, and should be eliminated.7 However, 
there is no covariant way of dividing X into two eight-component spinors. 
It is true that PX is effectively an eight-component spinor because of Eq. 
(2.7), but there is no other vector satisfying, Eq. (2.7) in the theory that can 
be used to project out the other eight-component spinor. This is the root 
of the problem. If we allow ourselves to break covariance, there is no 
problem, and we can easily quantize the system in the light-cone gauge 
where only SO(8) covariance is maintained, since 16 = 8s + 8c under the 
decomposition SO(1.9) ~ SO(8). (The representations 8s and 8c are the 
two eight-dimensional spinor representations of SO(8).) 

Various methods have been developed to treat systems with second­
class constraints in the BRST treatment. In the case above one can start by 
constructing a BRST charge Q8 including all 16 constraints, hence introduc­
ing 16 ghost coordinates of bosonic type. This is an overcounting and must 
be compensated for by a new set of 16 ghosts for ghosts, which in turn 
must be compensated for by 16 ghosts for ghosts for ghosts, and this 
procedure goes on ad infinitum. There is, in fact, a problem even with the 
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set of constraints p2 = 0 and PX = 0, since they are not independent of each 
other. A proper BRST formulation needs an infinity of ghosts. This fact 
shows up in a Lagrangian formulation by the effect that the gauge symmetry 
related to constraint Eq. (2.6) (the K-symmetry) does not close off-shell. 
Here one can also show that this fact leads to an infinity of ghosts.8 

We could, in fact, have been suspicious from the beginning. From 
supersymmetry we conclude that pO is a positive operator in the quantum 
case, i.e., there are no negative energy states. However, a superstring clearly 
contains spinning states that for covariant descriptions need negative energy 
states. To rigorously deduce the statement that pO > 0 requires a proper 
time-gauge quantization in a positive definite Hilbert space, and this has 
not been done. However, we can certainly trust the result above and use 
the above reasoning as a reference for attempts to quantize covariantly.9 It 
should be mentioned that the above obstructions do not apply in the 
light-cone gauge, since all states have positive energy in light-cone variables. 

Perhaps most important here is the theorem of Jordan and Mukunda,lo 
which states that no covariant commuting position operators for spinning 
particles can be defined on a Hilbert space spanned only by positive energy 
states. In quantizations of systems with only first-class constraints, the 
position operators certainly commute and the theorem above signals second­
class constraints. In fact, by quantizing (2.3) in the light-cone gauge using 
the Dirac procedure, we arrive at 

[x"', XV] = ~:~ iiy",vP(J. (2.9) 

Since covariance is already broken, we can define a new position operator6 

u u ipv - uv+ 
q~ = x~ + - (Jy~ (J 

2p+ , (2.10) 

which does commute with itself and is canonically conjugate to p"'. If we 
are to use fields which are functions of positions, we certainly need commut­
ing position operators, and the reasoning above must be kept in mind. 

Various methods have been devised to overcome the problems described 
above. In one attempt another set of constraints, all first class, is suggested. I I 
The problem here is that the constraints are not independent of each other 
and will need an infinite set of ghosts in a BRST approach. In other 
attempts,12 new coordinates are introduced, making it possible to eliminate 
the second-class constraints. The problem here is that these methods, 
although covariant, are in a one-to-one correspondence with the light-cone 
gauge approach. I will not describe these methods here but instead turn to 
a rather different approach, which I recently devised, to the covariant 
quantization of the superstring. 
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3. COVARIANT SUPERSTRINGS FROM THE LIGHT-CONE GAUGE 

In this talk I will address the problem in a somewhat novel way. I will 
start from the light-cone gauge, which we know works, and work backwards 
to a covariant conformal gauge. This approach 13 has been triggered by some 
real progress achieved recently when a remarkable new formulation of the 
quantum action (bilinear in coordinates and ghosts) for a covariant super­
string in a conformal gauge was derived.8 The method uses a generalized 
BRST formulation of Batalin and Vilkovisky,14 and the problems described 
in section 2 are seemingly avoided. The reason for this is unclear for the 
moment, and it is advantageous to reach this result from some other method. 
This is the main purpose of my approach. The procedure here hinges to a 
great extent on the results of Ref. 8 but has the virtue of showing fairly 
simply some of the miracles which have been found in the formalism used 
so far. 

To formulate my method we start with the functional integral describing 
the free bosonic string 

Z = f Dgaf3«(J")Dx!-'«(J") exp[2~ f d 2 (J" J=ggaf3aax!-'af3x!-, J. (3.1) 

We work in an Euclidean space to better define the integral but will use 
Minkowski notation in the world sheet. (We here follow the conventions 
of Ref. 15.) We also put the tension T = 1/7T for convenience. 

Equation (3.1) can be regarded as the vacuum-to-vacuum amplitude. 
As such it is a pure number. An alternative meaning of Eq. (3.1) occurs if 
we put boundary conditions on the integral. Then Eq. (3.1) can be thought 
of as the propagator or the wave functional. However, introducing boundary 
conditions will break the gauge invariance and, for our arguments it will 
be necessary to consider Eq. (3.1) as the vacuum-to-vacuum amplitude. 

It is now standard to perform a gauge fixing gaf3 = TJaf3e<P and the 
ensuing Faddeev-Popov procedure of Eq. (3.1) to arrive at the expression 

Z = f D</>( (J" ) Dx!-' ( (J" )Db( (J" )Dc( (J" )Db( (J" )Dc( (J") 

x exp[2~ f d 2 (J"( TJ af3 aa x !-'af3 x!-, - 2ca+b - 2ca_b) ] . (3.2) 

This expression is conformally invariant in d = 26, which means that 
we can drop the integration over </>. The resulting expression is the vacuum­
to-vacuum functional in the conformal gauge. 

The introduction of the ghost coordinates is just a way to represent 
the det(a+a_) arising in the Faddeev-Popov procedure. The same deter­
minant raised to the power -1 will arise if we perform an integration over 
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two x-coordinates. This means that we can compensate the integral over 
the ghost coordinates by integrating out two x-coordinates. Such a procedure 
would in general lead to a remaining action which is not Lorentz invariant, 
and hence it will not be possible to use in order to introduce sources. 
However, there is one exception. If we integrate out XO and x d -\ or 
equivalently x+ and x- in light-cone gauge terminology, we arrive at an 
action which in fact is still Lorentz invariant if we interpret the evolution 
parameter on the world sheet T to be T = X + / P +. 

Hence we have found that the vacuum-to-vacuum functional 

(3.3) 

with T = x + / P +, which has been obtained from the one in the conformal 
gauge by integrating out two bosonic and two fermionic coordinates, is as 
good a starting point as the one in the conformal gauge. This result has, in 
fact, been proven in the general case with sources and arbitrary topology 
by D'Hoker and Giddings. 16 

This argument, which can be seen as a proof of the light-cone gauge 
expression, can also be turned around. Suppose we are given the light-cone 
gauge functional; then we can try to covariantize it by introducing more 
functional integrals, which amounts to multiplication by the factor 1. The 
resulting expression should then be Lorentz invariant. Furthermore, we 
must demand that it be conformally invariant. If it is, one can undo the 
gauge fixing and return to a geometric action. 

Before applying this technique to the superstring, let us consider the 
spinning string. In the light-cone gauge the vacuum-to-vacuum functional is 

with 

Zs = f DXi(U)DA~(u) exp[ -5], 

5 1 f d 2 [ af3a ia i + ·Aia Ai + ·Aia Ai] = -- u TJ aX f3X I 1 + 1 I 2 - 2 • 
21T 

(3.4) 

(3.5) 

We know how to covariantize the bosonic part from the example with 
the bosonic string. Similarly, we can covariantize the fermionic parts and 
compensate the new functional integrals with functional integrals over 
bosonic ghosts. We then end up with the following expression 

Zs = f Dxl-'(u)DA';.(u)Db(u)Dc(u)Db(u)Dc(u) 

x D{3(u)D'Y(u)Di3(u)Dy(u) exp[ -5], (3.6) 
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with 

S = __ 1_ f d 2(T[ TJ",{3d",X Tl d{3X/L + iArd+A1/L + iA/{d_A 2/L - 2Cd+b 
27T 

- 2Cd_ii - 2Yd+{3 - 2Yd+.Bl 
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(3.7) 

The final step now is to show that the action is conformally invariant. To 
check, we need only to see that the c-number is zero. Since we know the 
c-numbers from x, A, and (b, c), we need 

i2(10 + 5 - 26 + c{3l') = 0 

c{3l' = 11. (3.8) 

For a pair like ({3, y), the c-number is 

c{3l' = -1 + 3(2J - 1)2, (3.9) 

where J is the conformal weight of either of the ghosts. (The expression is 
symmetric in J and 1 - 1.) Combining Eqs. (3.8) and (3.9) we find that 

J = 3/2, or -1/2, (3.10) 

which, of course, is the result from covariant methods. 
If the covariant geometric methods were not known, one could have 

used the result on the conformal weights to argue for what kind of local 
symmetry the geometric action should have. The c and y ghosts correspond 
to local symmetries with parameters with conformal weight -1 and -1/2, 
respectively. It would be natural to guess at a reparametrization and a 
supersymmetry invariance. 

These two examples are quite straightforward and not very illuminating. 
If, however, we turn to superstrings, the problem is more complex. Again 
we start with the light-cone gauge functional (for type lIb): 

Zss = f DXi«(T)DS~«(T) 
x exp[2~ f d 2 (T(TJ",{3d",X id{3X i + iSfd+Sf + iS~d_SD J, (3.11) 

where the index a = 1, ... , 8 and denotes an SO(8) spinor. As in the other 
cases, we want to multiply this integral by another integral which equals 
one, but which adds terms to the action such that the new action is Lorentz 
and conformally invariant. 

The covariantization of the bosonic part is managed as in the previous 
examples by introducing the reparametrization ghosts. For the fermionic 
part new ideas are, however, necessary. There is no way that we can add 
another eight-component spin or to SI to make a Lorentz scalar bilinear 
expression in a 16-component spinor. This is because of the Weyl property 
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of fJ. In fact, the only scalar expression bilinear in spinors we can write is 
of the form 

(3.12) 

where we also have had to introduce a spinor 7T conjugate to fJ. 
Hence we find that in this case we cannot just covariantize by adding 

terms. Instead, we have to change variables in the functional integral. This, 
however, is simplified by the fact that we can compute the integrals over 
the fermionic coordinates. In fact, 

I DSf(u) exp[2~ I d 2u Sfd+Sf] = (det d+)4. (3.13) 

We must now look for a functional integral over a covariant action 
which leads to this result. If we use a term of the form above, we obtain 

I D7T(U)DfJ(u) exp [ -; I d 2U7Td+fJ] = (det d+)±16, (3.14) 

with the plus sign if 7T, fJ are fermionic and the minus sign if they are bosonic. 
It is clear that a finite number of such integrals can give the determinant 

only to the power of a multiple of 16. The only way out is to use an infinite 
number. By organizing an infinite sum of fermionic and bosonic integrals 
such that the exponent of the determinant becomes 

16(1-2+3-4+···)=-lim I 16~(-q)"=~.16=4, (3.15) 
q~1 n=1 dq 

we can find an expression in terms of a covariant action which equals the 
integral in Eq. (3.13). Accepting the regularization in Eq. (3.15), we have 
found that 

I DSa(u) exp[2~ I d2US~d+Sf] 
= InDo llo D7Tni(U)DfJni(U) exp[; I d 2u n~o t 7Tnid+fJni J. (3.16) 

where the Grassmann property is alternating in the sum over n. We have 
then ended up with a covariant action 

Zss = I DXI"(u)Db(u)Dc(u)Db(u)Dc(u) nDo ifl D7TAni(U)DfJAni (U) 

X exp[2~ I d 2u{ Tf"{3d,,Xl"d{3XI" - 2Cd+b - 2Cd_b 

+ 2i n~o it (7Tlni d+fJ lni + 7T2nid_fJ2nJ}] . (3.17) 
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It remains to show that the conformal weights of the new spinorial 
coordinates can be chosen so that the action in Eq. (3.17) is indeed confor­
mally invariant. From our point of view this choice must be guesswork. The 
weights of the 800 , which should be the 8-coordinate of the Green-Schwarz 
action, and 811 , which should be the ghost related to the K-symmetry of 
that action, are known. The remaining ones we simply choose such that the 
c-number Ce adds to the c-numbers from the bosonic part such that the 
sum is zero: 

-b:(10 - 26 + ce) = 0, 

Ce = 16. 
(3.18) 

If we choose the conformal weight for 8ni to be -i, we can use Eq. (3.9) 
for the c-number from a bilinear expression iTa+8. Then 

00 0 

Ce = lim 16 I I (_l)n+l q"2[6i2 - 6i + 1] 
q....,.l n=O i=-n 

00 

= lim I (-1)"+132(2n 3 + 6n 2 + 5n + l)q" 
q-l n=O 

. [-12 12 1 ] = hm 32 + - = 16. 
q->1 (1 + q)4 (1 + q)3 (1 + qf (3.19) 

We have hence found that the action [Eq. (3.17)] is indeed conformally 
invariant given the choice of conformal weights above. Admittedly, the 
choice would be difficult to make if the results of Ref. 8 had not been 
known, but not impossible. We must also keep in mind that there could be 
other choices which also solve Eq. (3.18). 

The arguments above have been given for a trivial world-sheet topology. 
It is not clear from the arguments that one can reach a similar simplicity 
for nontrivial topologies. 

The functional in Eq. (3.17) is the one derived in Ref. 8. We have now 
shown that, given that we accept the various regularizations performed and 
given that we have extended the concept of functional integrals to those 
with an infinity of functional integrations, the light-cone functional gives 
the same result as the covariant functional of Ref. 8. This is a useful result. 
In the covariant approaches one is not explicitly eliminating the second-class 
constraints. This should lead to a resulting spectrum with negative-norm 
states. However, the light-cone theory is explicitly built from just positive­
norm states, so the results from the covariant method must somehow solve 
the problem with second-class constraints yet indeed contain only positive­
norm states. It remains, though, to understand this problem by covariant 
methods. In the procedure above we have concentrated on covariantizing 
the Poincare symmetry. We have not argued at all about the supersymmetry. 
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In fact, we have to accept whatever we get here. In Ref. 17 it has been 
shown that the concept of Poincare invariance is indeed generalized to an 
OSp(9, 1/4) symmetry, since we have an infinity of coordinates. This fact, 
which could lead to a deeper insight, is not very transparent in our approach. 
Note that there is a difference between the procedure for the spinning string 
and the superstring. In the former case new terms are just added to the 
action and the symmetries are not changed while in the latter case a change 
of variables is performed, possibly changing the symmetries. Let us also 
note here that our formalism bears resemblance to Siegel and Zwiebach's 
construction of covariant expressions in the Hamiltonian form, where they 
also add new coordinates to covariantize the light-cone expressions for the 
generators of the Poincare group.18 

The results in this paper show rather clearly the possibility of acquiring 
a covariant action. One should, of course, look for other solutions within 
the given framework. 

We should, finally, address the question of why we are searching for 
covariant quantization methods. One reason is that it can be advantageous 
to have an alternative to the Ramond-Neveu-Schwarz formalism, which is 
covariantly supersymmetric. It could help, for example, in computing multi­
loop amplitudes. Possibly deeper is the question of how to find coordinates 
that can be used, for example, in the description of the very early universe. 
We know that the concept of space-time breaks down at Planck energies 
and also that there is a possible phase transition there. A proper understand­
ing of the problem above can shed light on this fascinating problem. 
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Chapter 5 

Constraints on the Baryogenesis Scale from 
Neutrino Masses 

W. Fischler, G. F. Giudice, R. G. Leigh, and S. Paban 

1. INTRODUCTION 

Over the past few years it has been realized I that at temperatures above 
- mw/ O'w, transitions that violate baryon (B) and lepton (L) number occur 
rapidly since, due to the electroweak anomaly, these quantum numbers are 
not conserved. Indeed, 

2 
d .L_~ Fa FI-'v 

I-'l I-' - 327T2 nJ I-'V a 

dl-'j!-L = O. 

One can understand how the baryon number and lepton number can be 
changed at high temperature by looking at the structure of the weak gauge 
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V(A) 

n =-2 n =-1 n=O n = 1 n=2 

Figure 1. The vacua of the weak gauge group. 

group vacuum (Fig. 1). There are an infinite number of vacua for SUL (2) 
labelled by an integer n: 

Ai = g-;;laign , 

where gn = ein7CTxf(r),f(O) = 0 andf(oo) = 1, and 

n = f d 3x Ko = f d 3x eijk(Af Fjk + YabcAf AJ A~). 
The presence of fermion doublets lifts the degeneracy of these vacua 

(Fig. 2). As the temperature is raised above the W mass, field configurations 
responsible for transitions among the various vacua are generated in thermal 
equilibrium. The bias in the potential due to the presence of fermions 
guarantees that all over the universe the change in baryon and lepton 
numbers has the same sign. These transitions are potentially important 
because they may erase any cosmic B-asymmetry, which, according to 
conventional ideas, is generated at some GUT energy scale. Within the 
standard model there is one linear combination, B - L, which is non­
anomalous, and thus in order that a pre-existing B-asymmetry survive, a 
B - L excess must have existed at very ec:rly times. It is in fact not difficult 
to generate such an excess in most GUTs. However, in this type of scenario, 
it is crucial that the B - L asymmetry not be eliminated through some other 
mechanism, which might act in concert with the anomalous electroweak 
processes. Effectively, we require that no such interaction come into equili­
brium after the B - L asymmetry is produced. 

V(A) 

n =-2 n =-1 n=O n=l n=2 

Figure 2. Vacua in Fig. 1 altered by fermion doublets. 
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The lowest-dimension operator that violates B or L in the standard 
model is the following t..L = 2 dimension-five operator2 : 

mv 2 
-2 (hH). 
v 

(1) 

Below the electroweak symmetry-breaking scale, v = 246 GeV == .J2(H); 
this operator generates a neutrino Majorana mass mv. The interaction seen 
in Eq. (1) also mediates such scattering processes as hh ~ H* H*, TJL· ~ 
HH, and lLH ~ TLH*, all of which violate L. 

Recently, two groups, Harvey and Turner and Barr and Nelson,3 have 
made the interesting observation that the B - L violation due to these 
scattering processes, together with the electroweak B-violating interactions, 
would have the effect of erasing any B and/ or L pre-existing asymmetries* 
should they come into equilibrium. In particular, they find that the presently 
observed B-asymmetry imposes a bound on the neutrino mass: 

(2) 

where TB - L is the temperature at which the B - L asymmetry is generated. 
In this chapter we would like to elaborate further on the argument of 

Ref. 3. We consider explicit realizations of B - L violation in various 
extensions of the standard model and derive the conditions under which a 
B-asymmetry generated at the GUT scale can survive today. In particular, 
in any given model, there are interactions involving heavy particles; below 
their mass scale, the operator in Eq. (1) is produced. At energies above 
their mass scale, one should consider interactions involving these particles, 
such as decays, which may lead to stronger bounds. Any experimental 
evidence for B - L violation above the limits presented here should be 
regarded as a strong indication for some new mechanism of baryogenesis 
at low temperatures (see Refs. 5,6, 7, and 8 for specific examples). 

2. HEAVY NEUTRINO DECAYS 

The most familiar way to generate the interaction in Eq. (1) is to 
introduce a gauge-singlet right-handed neutrino N with a Majorana mass 
M and a Yukawa interaction 

(3) 

* Fukugita and Yanagida4 have previously made a similar observation, but considered only 
the case of B-violating interactions just below the electroweak phase transition. 
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where ,\ is the coupling constant. This yields a neutrino mass 

v2 
m = ,\2-. (4) 

v 2M 

Let us assume that M < TB - L , the scale where the B - L asymmetry 
is generated. Because of its Majorana nature, the particle N can decay into 
a lepton and a Higgs boson, thus violating the L-number and potentially 
erasing the pre-existing B - L asymmetry. The relevant quantity is of course 
the ratio of the decay rate to the Hubble expansion at temperature T, 

fD (,\2MMp) M 
H = 16'7Tg!,12 T2(M2 + T2)1 /2· (5) 

Here, g* counts the effective number of degrees of freedom (g* = 100). In 
order that B - L not be washed out, the right-handed N should start 
decaying at temperatures below their mass (where the back-reaction is 
suppressed and equilibrium cannot be established) or, equivalently, that 
f D « H for all T> M. Combining this with Eq. (4), we find a bound on 
the neutrino mass that is a function of only the Newton and Fermi constants: 

0 1/2 
m < 8 gl/2 N - 10-3 eV - m 

v - '7T * ..f2oF - = *. (6) 

As noticed in Ref. [3], the bound in Eq. (6) holds as long as there is mixing 
among generations. Thus there is a simple loophole to the limit: if some 
global U(l) is exactly conserved up to an electroweak anomaly, then there 
are two linearly independent conserved nonanomalous currents which pro­
tect the baryon number as long as there is an excess of at least one linear 
combination of charges. A simple example is the situation in which one of 
the lepton numbers is separately conserved. 

The condition on the decay rate in Eq. (5) in fact automatically implies 
that the scattering processes TJL ~ HH, etc., are out of equilibrium. The 
scattering rate in units of the Hubble constant is 

fs 4,\2 ( ,\2M p ) TM3 
H = -;;'2 16'7Tg!j2M (T2 + M2)2· (7) 

Using Eq. (5), we obtain f sl H« 1, assuming a perturbative coupling 
constant '\. Therefore the bound on the neutrino mass from the decay 
process Eq. (6), is more stringent than the analog derived from the scattering 
rate Eq. (2). 

Now, if a neutrino mass of mv;:::: m* were discovered, we would 
conclude that the particle N was in thermal equilibrium when it became 
nonrelativistic. A cosmic asymmetry could not be produced by the N decay, 
and the conclusion that mv ;:::: m* erases B - L is still valid. Our conclusion 
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in this event, then, is that the present baryon asymmetry cannot be explained 
in terms of physics at some scale larger than M. That is, 

(8) 

We can write M in terms of other parameters: 

2 2 A2 ( ) mD 2 v m* 17 M=-=A -=- - 10 GeV. 
my 2m y 2 my 

(9) 

The bound in Eq. (2) obtained in Ref. 3 can be rewritten in the form 

(10) 

and thus the new bound, TB - L :s M, is stronger for (A 2 /2)(mv! m*) :s 1. The 
important point here is that for reasonable values of the coupling constant, 
the B - L generation must take place at scales significantly below the GUT 
scale. For example, if we take a Dirac mass for the neutrino of mD = 

Av/.J2 - mcharm and a neutrino mass of 1 eV, we find TB-L:S 109 GeV. As 
a second example, consider a Dirac mass for the neutrino mD - me; then 
TB_L:s 300 GeV. If baryogenesis at the GUT scale is ruled out, then we 
must rely on some other mechanism, perhaps through the (first order) phase 
transition at the weak scale.5 

3. CONCLUSIONS 

In conclusion, any violation of B - L through processes below the 
GUT scale is potentially a powerful constraint for the mechanism of baryo­
genesis. Observation of B - L violation, most notably of a neutrino mass, 
would provide a strong indication that baryogenesis occurred at some low 
scale. 
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1. INTRODUCTION 

Chapter 6 

The Antifield-BRST Formalism 
for Gauge Theories 

Marc Henrteaux 

It has been recognized for some time now that the BRST method 
provides one of the most powerful tools for quantizing theories endowed 
with a local gauge freedom. This method is extremely useful not only in 
the path-integral approach, but also in the operator formalism. 

A striking development in the last few years has been the emergence 
of many gauge-theoretical models for which the BRST method appears to 
be the only satisfactory (covariant) method of quantization. These models 
are characterized by the fact that the gauge transformations close only 
on-shell: if one computes the commutator of two infinitesimal gauge trans­
formations, denoted by 8e 4> i and 8,,4> i, one finds a transformation of the 
same type, denoted by 8[e,,,]4>i, but modulo the equations of motion 

[8., 8,,]4>i = 8[e,,,]4>i + field equations. 
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Models with "open gauge algebras" include supergravity theories,l the 
Green-Schwarz superstring/ and the superparticle/ among others. 

If one determines the gauge-fixed action in covariant gauges by means 
of the standard Faddeev-Popov method,4 designed for true gauge groups, 
one gets an incorrect (nonunitary and non-gauge independent) answer in 
the open algebra case. Hence, it is not enough to add to the gauge-invariant 
action the standard gauge-fixing and Faddeev-Popov determinant terms. 

To determine the correct path integral, two approaches can be used, 
and both are characterized by the fact that they strongly rely on the BRST 
symmetry. The first is based on the Hamiltonian formalism. 5 The second 
starts from the Lagrangian formulation. 6-8 This second approach is slightly 
less general and appears to be formally less precise in what concerns the 
local measure in the path integral.* However, it has the definite advantage 
of preserving manifest covariance throughout and on this ground deserves 
to be studied. 

The Hamiltonian construction of the BRST symmetry has been 
reviewed elsewhere.9 We will therefore analyze here only the Lagrangian 
antifield formalism of Batalin and Vilkovisky.6 

The main goals of these lectures are, first, to derive the correct gauge­
fixed Lagrangians containing all the necessary ghost vertices and, second, 
to show explicitly how the derivation incorporates gauge invariance 
throughout. (We will in particular indicate why BRST invariance can be 
used as a substitute for gauge invariance.) Both purposes lead to interesting 
algebraic and geometric features, which we believe provide the key to the 
rationale behind the antifield formalism. 

The gauge-fixed Lagrangians obtained by BRST methods generate the 
correct set of Feynman diagrams. As such, they provide the appropriate 
starting point for studying the perturbative quantum properties of the theory 
(renormalization, anomalies). There also, the BRST symmetry proves to be 
a crucial tool in the analysis. These issues, however, will not be addressed 
in the lectures. 

2. STRUCTURE OF THE GAUGE SYMMETRIES 

The structure of the gauge symmetries may appear to be somewhat 
puzzling in the "open algebra" case, as it may wrongly be felt that the group 
structure is completely lost. Our first task, therefore, is to clarify the structure 
of the gauge symmetries in the general case. 

* It is not inconceivable that this shortcoming could be overcome some day by pure Lagrangian 
means, without having to resort to the Hamiltonian. Also, note that the validity of the 
Lagrangian path integral appears to restrict the form of the Lagrangian (see comments in 
section 8.6). 
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2.1. The Action Principle and the Equations of Motion 

Our starting point is the action SO[4>i], which we assume to be a local 
functional of the fields: 

SO[4>i] = f d Dx20(4)i, al'-4>i, al'-ll'-24>i, ... , aIL1 1'-2 ... l'-k4> i). (1) 

As will be seen, the subsequent structure is completely encoded in the action 
and is not an independent input. 

The field equations are 

8So 820 
84>i(x) == 84>i (x) = 0, (2a) 

where the "variational derivatives" 820184>i of the Lagrangian density 20 
are defined by 

820 a20 a20 a20 k a20 
84>i == a4>i - al'- a(aIL 4> i) + aIL av a(al'-v4> i) - ... + (-1) a(al'-l ... ILk4>i)" (2b) 

The derivatives 8S01 84> i (x) are referred to as the "functional derivatives" 
of So. 

For notational simplicity, we take the fields to be commuting. Our 
considerations can be extended straightforwardly to theories with fermions 
provided the appropriate phases are included. 

2.2. Gauge Transformations 

A gauge transformation is a transformation that can be prescribed 
independently at each space-time point and that leaves the action invariant 
up to a surface term. Thus gauge transformations are parametrized by 
arbitrary space-time functions (as opposed to rigid symmetry transforma­
tions) and typically take the form 

(3) 

Here, the coefficients R\ Ril'-, ... , kl'-l···IL, depend on the 4> i and their 
derivatives up to a finite order, and e"(x) are arbitrary gauge parameters. 
Invariance of the action under Eq. (3) means that for any choice of e"(x), 
one has 

8£20 = aILK~ (4) 

for some local functions K~(4)i, av4>i, aV, ... v,4>i, e", ... , aVl ... Vmea). 

2.3. Noether Identities 

It is at this point convenient to adopt De Witt's condensed notation, 
where the indices i, a also include x (i.e., i - (i, x), a - (a, x» and a 
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summation over i, a implies an integration over X.IO In this notation, Eq. 
(3) becomes 

8.q>i = R~e'" [~ 8£4>i(X) = f dDyR~(x, y)e"'(y) J. (5a) 

with 

R~(x,y) = R~(x)8(x - y) + R;:(x)8,IL(x - y) +.... (5b) 

The Noether identities on the field equations are derived by starting 
from the invariance of the action: 

8S 8So 8 i 8So R i '" 
0= 8q/ £4> = 84>i ",e = O. (6a) 

Since Eq. (6a) holds for any function e"'(y), one gets the local identities 

8So i f 8So i D 
84>i R", = 0 ~ 84>i(X) R",(x, y) d x = 0 

( 8.20 -. (8.20 -. ) ) 
~ 84>i R~ - 84>i R': ,IL +... (y) = O. (6b) 

[Strictly speaking, there could be a surface term in Eq. (6a). This term 
vanishes if the gauge parameters are zero outside some finite domain, as 
one can assume. The local identities at y inferred from Eq. (6a) are thus 
certainly valid under this assumption. However, as these identities are local, 
they do not depend on the behavior of e'" away from y (actually, in this 
case, they do not depend on e'" at all), so they are clearly valid without 
the restriction that e'" should vanish outside some finite domain. This is a 
useful line of reasoning that is frequently followed in deriving local iden­
tities.] 

One consequence of the Noether identities [Eq. (6b)] is that the field 
equations are not independent. This is of course all right, as the existence 
of a gauge symmetry implies the presence of arbitrary functions in the 
general solution of the equations of motion which must then underdetermine 
4>i(X). 

2.4. Gauge Group 

For a given action functional, there are a certain number of gauge 
transformations. What is the structure of the set containing all the gauge 
transformations? 

One thing that can be said without having to make any calculations is 
that the infinitesimal gauge transformations form a Lie algebra.* There is 

* Accordingly, the finite gauge transformations formally form a Lie group (formally because 
the gauge Lie algebras are infinite-dimensional continuous). 
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no escape from that result because (invertible) transformations leaving 
something (here the action) invariant always obey the group axioms. The 
group of all gauge transformations is denoted by <§ in the sequel. 

The unconvinced reader may easily check that if 8Tf</> i such that 

8Tf</>i = 5~1JA 

is another gauge transformation (8"150 = 0), then both A8.</>i + IL8Tf</>i (A, 
IL E R) and [8., 8Tf ]</>i = 8,(8Tf </>i) - 8"1 (8.</>i) obey Eq. (6a). Furthermore, 
[A8o 8"1] = A[8., 8"1]' A E R. So one clearly has a Lie algebra. 

What is then meant by "open gauge algebras"? In order to answer this 
question precisely, it is necessary to introduce some new concepts. The 
guiding principle of the following developments is to determine the 
minimum number of independent Noether identities. 

2.5. Trivial Gauge Transformations 

Consider the transformations 

. ..850 
81L </> I = IL'} 8</>j 

where IL ij is an arbitrary antisymmetric function 

IL ij = - ILji 

Exercise. Write explicitly Eqs. (7a) and (7b) for 

ILij(X, y) = kY(x)8(x, y) + kYIL(x)8,IL(x, y) + ... 
+ k~ILI···ILH(X)8'1L1 ... ILH(X, y) . 

(7a) 

(7b) 

The arbitrary functions kJ , ... , ks may involve the fields and their derivatives 
up to some finite order. 

It is easy to see that Eq. (7) leaves the action 50 invariant: 

850 850 .. 

850 = 8</>j 8</> i IL I) = O. (8) 

This is because the product (850/ 8</>i)(850/ 8</>j) is symmetric in i,j while 
IL ij is antisymmetric. Thus Eq. (7) defines a gauge transformation. * 

The commutator of any gauge transformation of the type of Eq. (7a) 
with an arbitrary gauge transformation is a transformation of the type of 
Eq. (7a). Indeed, if 850 = 0 for 8,</>i = t i with 

850 i 

8</>it =0, 

* Let us insist that one does not need to use the equations of motion to prove Eq. (8). 

(9) 
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then one finds, using Eq. (9), 

6 6 i = (l)ti kj _ 6tj ki _ tk 6/A- ij) 6So 
[ I-' , I] cjJ 6cjJ k /A- 6cjJ k /A- 6cjJ k 6cjJj , (10) 

which is of the form of Eq. (7). 
We can thus conclude that the set of all gauge transformations shown 

in Eq. (7) form a normal (i.e., invariant) subgroup .N' of the full gauge 
group eg. 

How significant are the transformations of Eq. (7)? Are they really new 
symmetry transformations? It is easy to convince oneself that these transfor­
mations are of no physical significance because 

1. They exist independently of what the action is; in other words, they 
do not restrict at all the form of the Lagrangian and, indeed, no 
nontrivial Noether identities are associated with them. 

2. They thus imply no degeneracy of the action, and in the Hamiltonian 
formalism there is no corresponding constraint. Actually, the con­
served charges associated with Eq. (7), when rewritten as phase 
space functions by using the equations of motion, if necessary, 
vanish identically. 

3. The transformations in Eq. (7) vanish on-shell, i.e., do not map 
solutions of the equations of motion onto new, different solutions. 

4. There is accordingly no need for a "gauge-fixing" of Eq. (7). This 
is fortunate, as it is impossible to gauge-fix Eq. (7), which exists for 
any action! 

On these grounds, it is legitimate to disregard the transformations of 
Eq. (7). The relevant invariance group of the action is thus given by the 
factor group Cf} == eg / .N' of all gauge transformations modulo the transforma­
tions of Eq. (7), a concept that is mathematically well defined as the 
transformations of Eq. (7) form a normal subgroup. 

For this reason, the transformations of Eq. (7) are usually not even 
mentioned in standard textbooks on mechanics or field theory. These trans­
formations have never been a source of concern for theories without gauge 
invariance, even though they are already present there. 

Before closing this section, we mention the following useful theorem: 

Theorem. Under suitable regularity assumptions on the functions 
6So/ 6cjJi, to be made precise below, any gauge transformation that vanishes 
on-shell can be written as in Eq. (7); 

(11) 
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The theorem will be proved below (p. 95). 

Exercises. 1. Consider the action So[A/L] = J d 3x e/Lve F/LvAe for pure 
Chern-Simons (Abelian) Yang-Mills theory in three dimensions.ll This 
action is invariant under ordinary gauge transformations 8A/L = a/LA and 
diffeomorphisms, 8A/L = e apA/L + aILe Ap. Show that the diffeomorphisms 
differ from the ordinary gauge transformations by a trivial gauge transfor­
mation. 

2. Consider the action S[ q, p] = J (pq - H) dt. Show that it is invariant 
under 8q = e(q - aHlap), 8p = e(p + aHlaq). Check that the algebra of 
these trivial gauge transformations is isomorphic with the algebra of 
diffeomorphisms in one dimension. Observe that when H = 0, these trans­
formations actually reduce to standard diffeomorphisms along the world 
line. 

2.6. Factorization of .N 

If the gauge group C§ is the semidirect product of X by '{j, C§ = XXu '{j, 
i.e., if the quotient group '{j == C§IX can be realized as a subgroup of C§ 
complementary to X, then it is easy to disregard the transformations of '{j. 
One simply works with the gauge transformations of '{j (viewed as a subgroup 
of C§) and forgets about X. This is permissible, as the commutator of two 
gauge transformations of '{j is again in '{j and does not generate a trivial 
transformation. 

However, it may turn out that C§ '" XXu '{j. In other words, the gauge 
algebra may symbolically read 

[trivial, trivial] = trivial 

[trivial, nontrivial] = trivial 

[nontrivial, nontrivial] = nontrivial + trivial, 

(12a) 

(12b) 

(12c) 

where the trivial part in Eq. (12c) does not identically vanish and cannot 
be removed by redefinition of the nontrivial transformations (compatible 
with locality, covariance etc .... ). 

In that case, one cannot forget about the trivial transformations as they 
are generated through the commutators [Eq. (12c)]. One must work with 
all the gauge transformations and build the formalism so that the addition 
of trivial transformations to any transformation is ultimately irrelevant. 

2.7. Independent Noether Identities 

The factorization of the trivial gauge transformations was motivated 
by the fact that they imply no Noether identity and hence lead by themselves 
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to no independent degeneracy of the equations of motion and do not need 
any gauge-fixing condition. 

This is not the end of the story, however. Indeed, the remaining gauge 
transformations do not all lead to independent Noether identities. This can 
be seen as follows: 

Let 5,cf>i be gauge transformations 

(13a) 

leading to the Noether identities 

5So Ri = o. 
5cf> I a 

(13b) 

Consider next the transformations 

(14a) 

where M~ is some matrix allowed to depend on the fields, M~(cf>i). These 
transformations also leave the action invariant. From the point of view of 
Lie algebra theory, the transformation 5"1cf>i are linearly independent of the 
transformation R~ as one cannot write 5"1cf>i as a combination of R~ with 
coefficients that belong to the ground field, i.e., that are real (or complex) 
numbers. 

However, the Noether identities that follow from 5"1So = 0, 

5So Ri M{3 = 0 (14b) 
5cf> I (3 A 

are clearly not independent of the Noether identities in Eq. (13b), as Eq. 
(14b) is a consequence of Eq. (13b). Hence, there is no new information 
in 5"1cf> i. 

To take the example of electromagnetism, the gauge transformations 

5AIL = aILA, (15) 

with A(x, Av) a functional of A v, are independent from the Lie-algebraic 
point of view of the transformations 5AIL = alLA with A = A(x). However, 
if one completely freezes the gauge freedom associated with the second set 
of transformations (e.g., V . A = 0, Ao = 0), one automatically freezes the 
gauge freedom associated with the first set. So, there is nothing new in 
Eq. (15). 

2.8. Generating Sets 

This leads one to the concept of generating set. A set G of gauge 
transformations 

(16a) 
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is a generating set if it contains all the information about the Noether 
identities. More precisely, G is a generating set if any gauge transformation 
can be written in terms of the elements of G as 

.8So .. 8So 
{j.A..'_. = ° ~ {j.A..' = A"'R' + M'l-. 

'/' {jcf> I '/' '" {jcf>l ' 
M(ij)=O, (16b) 

with coefficients A'" and Mij that may involve the fields. Given a generating 
set, the Lie algebra of all the gauge transformations is spanned by Eq. (16b). 
Note that a generating set is in general not a basis in the Lie-algebraic sense. 

As the bracket of two elements of the generating set is a gauge transfor­
mation, it must be expressible as in Eq. (16b). So one has 

j {jR~ _ j {jR~ _ C y ( ) i Mij ( ) {jSo 
R", {jcf>j R f3 {jcf>j - "'f3 cf> R y + "'f3 cf> {jcf>j" (17) 

From the physical point of view, it is enough to consider only generating 
sets. This is because generating sets contain all the information about the 
Noether identities, about the degeneracy of the action principle, and about 
the number of required gauge conditions. 

The situation is analogous to the following finite-dimensional 
geometrical setting: Consider a manifold A in Rn. The vector fields tangent 
to A form an infinite-dimensional Lie algebra. However, for describing 
functions that are constant along A, the number of relevant vector fields is 
really finite and equal to the dimension na of A. If Xa (a = 1, ... , na) 
provides at each point of A a basis of tangent vectors (Y tangent ~ Y = 
ya(x)Xa), then the na equations XJ = 0 imply the infinite number of 
equations Yf = ° for all vectors tangent to A. 

The vector fields Xa obey 

(18) 

and may not form a Lie subalgebra. 
To select a point on A, it is enough to impose n a coordinate conditions. 

One does not need an infinite number of them. 

2.9. Open Algebras 

It is now clear what the terminology "open algebra" means. It really 
applies to the generating sets and not to the gauge groups C§ or 0. 

Thus one says that a given generating set is open if M~f3(cf» in Eq. 
(17) is different from zero. It is closed if M~f3( cf» = o. It defines a Lie algebra 
if, in addition, C~y does not depend on the fields. 

This last case includes the usual gauge theories (Yang-Mills, gravity), 
but not all the interesting ones. Gauge theories with a generating set G that 
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forms a Lie algebra are very special in that one can think of the transforma­
tions of G "abstractly," i.e., independently of what the dynamics or the 
field content are. Furthermore, the BRST construction is then much simpler. 
However, this is a very lucky instance, which misses some of the important 
ingredients of the general case. 

2.10. Reducible Generating Sets 

Although generating sets should be complete, they can contain some 
redundancy. This occurs when there are some relations among the gen­
erators, i.e., when there exist some nontrivial A" such that the following 
identities hold: 

A "Ri = Nij 8So 
" &p) 

(19) 

The coefficients Nij are antisymmetric because the right-hand side of Eq. 
(19) should be a gauge transformation. One says that such a generating set 
is reducible. A generating set is irreducible otherwise.* 

The consideration of reducible generating sets is permissible within 
the formalism. However, the ghost spectrum associated with a reducible set 
is more complicated: besides the usual ghosts, one needs ghosts for ghosts. 

An example of a reducible theory is given by p-form gauge fields. For 
a 2-form AJLv with field strength FJLvp = a[JLAvp ], the gauge transformations 
read 

8AJLv = aJLA v - avAJL 

~ R~ - R~v(x, y) = -8~8,v(x - y) + 8~8'JL(x - y). 

Then one finds that 

A"R~ = 0, 

with 

2.11. Relation between Different Generating Sets 

(20a) 

(20b) 

(20c) 

(20d) 

Although the gauge groups 0, .N' and C§ are entirely determined by the 
action So itself, there is clearly an enormous freedom in the choice of the 

* Thus an irreducible theory is such that the only solution ofEq. (19) reads A a = M a'(8S0/8cp'), 
i.e., vanishes on· shell. [One then finds AaR~ = Maj(8S0/8cpj)R~ = (MajR~ - Ma'R~) x 
(8S01 8cpj) since R~( 8S01 8cpj) = O. Accordingly, A a R~ indeed defines a trivial gauge transfor· 
mation.] In the irreducible·group case, one says that the group has a "free action." 
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generating sets. Two generating sets R~ and R~ (a = 1, ... , m; A = 
1, ... , M 2': m) are related as 

. A' .. 8So R' = t R' +MI}-. 
a a A a 8</>1' M~ = -M~ (21a) 

M~=-M~, (21b) 

where t~ and t~ are of maximum rank m. 
The requirement of covariance and locality in spacetime does, however, 

narrow down the choice of available generating sets. (One could otherwise 
always find one that is Abelian 12,13 -but usually not covariant, not local in 
spacetime, or not globally defined. A geometrical proof of Abelianization 
is given in the appendix.) 

It turns out that the BRST methods incorporate not only gauge invari­
ance, but also formal independence of the choice of generating set. On this 
ground, all the generating sets-which, of course, describe the same gauge 
symmetry-are equivalent. 

2.12. Generating Sets and Gauge Orbits 

On the stationary surface where the equations of motion 8So1 8</> i = 0 
hold, the transformations generated by the elements of any generating set 
are integrable, i.e., obey Frobenius integrability condition (the Lie bracket 
[Xi, Xj ] is proportional to X k ). Therefore, these transformations generate 
well-defined surfaces, the "gauge orbits." The gauge orbits do not depend 
on the choice of generating set, on account of Eq. (21). 

The number of elements in an irreducible generating set is equal to the 
dimension of the gauge orbits on the stationary surface. This gives a 
geometrical explanation of why generating sets are so relevant. By contrast, 
the dimension of the Lie algebra i§ containing all the gauge transformations 
is much greater: i§ is far from having a free action on the gauge orbits. 

The above observation yields a criterion more practical than Eq. (16b) 
for deciding whether a set of gauge transformations is complete, i.e., generat­
ing. The set 8,</>i = R~Ea is complete if and only if it accounts for all the 
degeneracies in the general solution of the equations of motion. More 
precisely, any two solutions </> i and ~i fulfilling the same initial conditions 
must be related by iteration of 8,4>i = R~E". 

This will be the case if all the null eigenvectors ofthe matrix 82 Sol 84> i8</>j 
are spanned on-shell by R~, i.e., 

82 So . .. 
--- /:1 = 0 => /:1 = A"Rla • 
8</>j84>i ~ ~ 

(22) 
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Here, = means "equal modulo field equations." Indeed, if 8cf/ is a gauge 
transformation, one finds by differentiation of (880/ 8cf>i)8cf>i = 0 and upon 
use of Eq. (22) that 8cf>i is equal to A aR~ on the stationary surface. Hence, 
8cf> i_A a R~ is a gauge transformation that vanishes on-shell, and thus it is 
a trivial gauge transformation by the theorem of section 2.5. 

A constructive method for getting a complete set of gauge transforma­
tions from any given action 80 is given in Ref. 14. This method is based on 
the Hamiltonian formalism of Dirac. IS 

2.13. Why Ghosts Are Ghosts Fields 

While the dimension of the Lie algebra of the gauge transformations 
is huge [it is given by the number of functionals A a (cf» and Mij (cf» in Eq. 
(16b)], the number of elements in a standard generating set is smaller and 
parametrized by spacetime fields: the index a in Eq. (16a) ranges over both 
R n (it contains x) and a discrete set. 

This is very important because, as we shall see, the number of ghosts 
in the BRST formalism is determined by the number of elements in the 
chosen generating set. So the ghosts are ghost fields, and one can apply the 
usual methods of local field theory for analyzing the gauge-fixed action. It 
is therefore of crucial importance that the BRST construction is based on 
generating sets and not on the full group <'§ containing all the gauge 
transformations. 

From now on, therefore, we will deal exclusively with generating sets. 
These may have to be open and reducible in order to define transformations 
that are local in spacetime or covariant. The group structure of the set <'§ 
of all the gauge transformations is only of marginal interest in the BRST 
context. 

3. GAUGE INVARIANCE AND BRST INVARIANCE­
BASIC REQUIREMENTS 

The derivation of the gauge-fixed Lagrangian is performed in two steps. 
First one replaces the original local gauge invariance by an equivalent global 
symmetry, the BRST symmetry. The replacement is carried out in such a 
manner that BRST invariance can be used as a substitute for gauge invari­
ance. This first step is completely intrinsic and does not require any gauge­
fixing condition. Second, one chooses appropriate gauge-fixing conditions 
and works out the corresponding gauge-fixed action in a way that incorpor­
ates BRST invariance. 

The key requirements for constructing the BRST symmetry are the 
following: 
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1. The BRST symmetry acts as a graded odd derivation on the original 
fields 4> j and on some extra fields to be determined, i.e., for any A, 
B with B of definite Grassmann parity eB, one finds* 

s(AB) = A(sB) + (- )EB(sA)B (Leibnitz rule) 

and 

(nilpotency). 

The grading of s is called the ghost number, and one has 

gh(sA) = gh(A) + 1 

e(sA) = eA + 1 (mod 2) 

(23a) 

(23b) 

(23c) 

(23d) 

2. The zeroth cohomological group HO(s) == (Ker slIm s)O is isomor­
phic with the set of gauge-invariant functions ("observables") 

HO(s) = {gauge-invariant functions}. (24) 

In other words, if one identifies two BRST-invariant functions that 
differ by a BRST-exact one, 

sA = 0, sA' = 0, A - A' ¢:> A - A' = sB (25) 

one just finds, at ghost number zero, the gauge-invariant functions. 
3. The BRST symmetry is a canonical transformation in an appropriate 

bracket structure ( ) to be defined below. Hence 

sA = (A, S), (26) 

where S is the canonical generator of s. 

These three requirements completely determine S up to a canonical 
transformation, at least in the so-called "minimal sector" (see beloW). 
Accordingly, they completely capture the BRST symmetry. 

4. RELATIVISTIC DESCRIPTION OF GAUGE-INVARIANT FUNCTIONS 

In order to construct a nilpotent symmetry obeying Eq. (24), it is 
necessary to recall first how gauge-invariant functions ("observables") are 
described. As we want to develop a manifestly covariant formalism, we 
need a manifestly relativistic description. 

* We choose an action from the right for s. Also, when we say "fields <p'," we really mean 
"field histories <p'(x)" (condensed notation and terminology). 
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4.1. Covariant Phase Space in the Absence of Gauge Invariance 

Let us first assume for a moment that there is no gauge invariance. The 
observables are then usually realized as the phase-space functions F( q, p). 
This is, however, not fully satisfactory, as a phase-space point refers to the 
state of the system at a given instant of time. 

As (q, p) at t = to completely determines (q(t), p(t)) through the Hamil­
tonian equations, one can alternatively view phase space as the space of 
all solutions of the equations of motion. One can then drop reference to 
the momenta and consider the solutions q(t) of the equations of motion 
for q obtained by eliminating p from the Hamiltonian equations. These 
equations for q usually take a manifestly covariant form. 

The space of all solutions of the equations of motion is known as the 
covariant phase space. Its consideration goes back to the work of Peierls, 
who showed how to determine the Poisson bracket structure directly in the 
covariant phase space. 16,l0 More recent work includes Refs. 17-19. The 
same idea applies, of course, to field theory, where observables can be 
viewed as functions* f(cpi) of the solutions cpi of the equations of motion 
8So/ 8cp i = O. 

As the explicit description of the solutions of the equations of motion 
may be involved, it is convenient to push the reformulation of the concept 
of observables one step further. This is done as follows: 

Denote by I the (infinite-dimensional functional) space of all possible 
field histories. Therefore a point of I is an arbitrary entire history that may 
not solve 8So/ 8cp i = O. In I, the equations of motion 8So/ 8cp i = 0 determine 
a submanifold ~, which we call the stationary surface. This submanifold is 
just the covariant phase space (in the absence of gauge invariance). 

The observables are the functions defined on ~, i.e., the elements of 
Coo (~) ("smooth" functions on ~). Now, any function f on ~ can be 
extended off ~ to a function F( cp i) defined on I, i.e., to an element of Coo(I) 
("smooth" functions on I). Two different extensions F and F' differ by a 
function that vanishes on ~. These functions form an ideal.N as FO vanishes 
on ~ whenever F (or 0) does. The algebra COO(~) of the smooth functions 
on ~ is thus the quotient algebra Coo(I)/.N of the smooth functions on I 
by the functions that vanish on ~. 

It should be stressed that our considerations based on the use of the 
equations of motion can be extended to cover quantum mechanics. This is 
because the observables can still be identified with the (operator-valued) 
functions of q and p at a given instant of time. These functions are again 
in bijective correspondence with, and hence can be realized as, the functions 

* The words functions and functionals are used interchangeably in the sequel. The suggestive 
terminology and notations of finite-dimensional manifold theory will also be adopted without 
any analysis of the (complicated) functional aspects. 
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on the space of solutions q(t), p(t) of the equations of motion. The absence 
of conflict with the principles of quantum mechanics is particularly obvious 
in the manifestly covariant Heisenberg picture, where the field operators 
obey the appropriately ordered equations of motion BSo/ Bcf> i = o. 

4.2. Boundary Conditions 

In order to contain all the solutions of the equations of motion and 
not just the one corresponding to a definite set of initial data, the space I 
of histories should not be restricted by boundary conditions at the initial 
and final times ti and tf. The stationary surface ~ contains, then, all the 
possible dynamical states of the system. 

For this reason, the space I is not the space Ii->f over which one 
integrates in the path-integral representation of a definite quantum­
mechanical amplitude between given in and out states (I is too large). The 
space I is actually the union over all possible pairs of in and out states of 
the spaces Ii->f. 

Furthermore, as one does not vary the boundary data at tl and t2 in 
the action principle, the functional derivatives BSo/ Bcf>i in the field equations 
BSo/ Bcf> i = 0 do not refer to the derivatives of So with respect to the boundary 
data. More precisely, if we write 

cf>i(X, t) = ;p(x, t) + fi[al, a2](x, t), 

where, first, fi[al> a2](x, t) is, for given ai, a2, a fixed history such that 
fi[al> a2](x, t l ) = a;(x),/[al> a2](x, t2) = a;(x); and, second, cP(x, t l ) = 
~i(X, t2 ) = o. Then the field equations are BSo/ B;j/ = O. This will always be 
implicitly understood in the sequel, even though the above decomposition 
will never be used. 

4.3. Covariant Phase Space in the Presence of a Gauge Freedom 

If there is a gauge freedom, the observables should, in addition, be 
gauge invariant. 

We have pointed out that the gauge transformations Becf/ = R~8a are 
integrable when the equations of motion hold. Accordingly, they generate 
well-defined orbits on ~, the dimension of which is equal to the number of 
independent R~. The gauge invariant functions are constant along the gauge 
orbits and hence induce definite functions on the quotient space ~/ G of 
the stationary surface by the gauge orbits. Formally, one can thus write the 
space of observables as COO(~/ G), i.e., as the space of smooth functions 
on ~/ G. (In general, ~/ G is not a smooth manifold, but we will nevertheless 
use this suggestive notation.) The gauge orbits are obtained by integrating 
Becf>i = R~8a on ~, as shown in Fig. 1. 
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Figure 1. Integration of i5E q, i on l:, giving rise to gauge orbits. 

The gauge-invariant observables are thus reached in two steps. First, 
one goes from I to l:; then, from l: to l:/ G. To solve Eq. (24), one must 
find a nilpotent operator s that implements these two steps through its 
cohomology: 

(27) 

It is not surprising that the searched-for nilpotent s actually contains 
two nilpotent operators. Each of these two differentials implements one of 
the steps. 

The first differential 5 provides what is known as a "Koszul-Tate 
resolution" of C OO(l:), i.e., is such that Ho(5) == (Ker 5/Im 5)0 = C OO(l:). It 
implements the first step, from I to l:. The second differential d is the 
vertical exterior derivative along the gauge orbits and implements the second 
step, from l: to l:/ G; HO(d) = COO(l:/ G). The BRST derivative s is formally 
the sum of 5 and d. 

4.4. Regularity Conditions and a Useful Theorem 

In order to develop the formalism, it is necessary to make some 
regularity assumptions on the derivatives 5So/ 5cf> i. One assumes that one 
can split on l: the derivatives 5So/ 5cf> i into independent functions ya and 
dependent ones z", (5So/5cf>i) = (ya, z"), in such a way that the equations 
5So/ 5cf> i = 0 are completely equivalent to ya = 0, i.e., z" = 0 is a con­
sequence of ya = 0; and the exterior form /j. dya does not vanish on l:. This 

a 
means that zero is a regular value of the map defined by ya and that one 
can locally take the ya as first coordinates of a new regular coordinate 
system on I, (cf>i) _ (ya, T"). 

To illustrate these conditions in the simpler, finite-dimensional situ­
ation, let us consider a two-dimensional space with coordinates (u, v) instead 
of 1. If the action So is !(u - v?, one finds aSo/au = (u - v), aSo/av = 
-(u - v). One can take the first equation as independent; the second is 
clearly a consequence of the first. Hence, y == a So/ au, Z == a So/ av, and 
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y = ° ~ z = 0. The gradient dy = d (u - v) does not vanish on ~. The 
regularity conditions are fulfilled, and y == u - v can be taken as first 
coordinate of a new regular coordinate system (y, T), e.g., with T = v. 

If So were to be replaced by So == *( u - V)3, the regularity conditions 
would not be fulfilled because both d (aso/ au) = u - v and d (aso/ av) = 

v - u vanish on ~. The function y == aso/au = !(u - v? = aso/av cannot 
be taken as first coordinate of a new regular coordinate system in the vicinity 
of~, as the inverse transformation u - v = .J2y is not smooth on ~. 

When the regularity conditions hold, the following theorem is 
immediate: 

Theorem. Any smooth function F( 4> i) vanishing on ~ can be written as 

. . 8So 
F(4)') = A'(4)) 84>i (28) 

with smooth coefficients Ai (4)). 

Proof. The proof is standard. In the (y, T) coordinate system, one finds 
that 

. f1 dF 
F(4)') = F(y, T) = F(y = 0, T) + 0 dJL dJL (JLY, T) 

a f 1 d a F ( ) i ( ) 8So 
= Y 0 JL aya JLY, T = A 4> 84>i 

as F(y = 0, T) vanishes by assumption and as ya are some of the field 
equations. 

This proof is local in field space because the coordinates (y, T) are 
usually defined only locally. However, it is easy to see, using for instance 
partitions of unity, that it can be extended to cover the whole of I. 

In algebraic terms, the theorem expresses that the ideal .N of the 
functions that vanish on ~ is the same as the ideal .N' of the functions that 
are combinations Ai ( 4> ) ( 8So 184> i) of the field equations. 

We have been a bit cavalier with the functional aspects of the theorem 
and have proceeded as if the space I of all histories were finite-dimensional. 
So our discussion is rather formal. However, things are not as bad as one 
may think at first sight, because space-time locality comes as a help. Indeed, 
only local functionals occur below in the construction of the solution of 
the master equation and of the gauge-fixed action, i.e., functionals that take 
the form 

(29) 
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where k involves a finite number of derivatives. One can then reformulate 
the question in terms of k (~i, ~ ~/L' ••• , ~ ~/LI ... /LJ as a finite-dimensional 
problem. This enables one to prove as a bonus that Ai in Eq. (29) is also 
local in space-time.20 But it should be added immediately that in spite of 
the space-time locality of the gauge-fixed action and of the generator of the 
BRST transformation, gauge-invariant functionals that are not local in 
space-time can be of great interest. So nonlocal functionals should also be 
considered. For these, the above formal derivations must be supplemented 
by appropriate functional-analysis arguments which will not be given here. 

The regularity conditions are usually fulfilled by all models of physical 
interest. The only exception that I know of is given by the Siegel model for 
chiral bosons21 where, as pointed out in Ref. 22, some of the relevant field 
equations vanish only quadratically on the stationary surface. This seems 
to prevent a consistent, physically meaningful Lagrangian BRST formula­
tion of the model, already at the classical level. This difficulty does not 
appear to have been fully appreciated in the literature. (By contrast, the 
Hamiltonian formulation is straightforward. For more information, see 
Ref. 23 and works cited therein.) 

5. THE KOSZUL-TATE RESOLUTION 

5.1. The Problem 

The first step in the BRST construction is to implement the restriction 
from I to ~. Therefore one needs to define a differential 8 that acts as a 
(nilpotent) graded derivative on polynomials in some generators (to be 
specified) with coefficients that are functions on I Uust as d in the standard 
exterior calculus acts on polynomials in dx, dy, dz, ... with coefficients that 
are functions on the manifold); and that computes COO(~) through its 
homology. 

The grading of 8 is called the antighost number. As 8 decreases the 
antighost number by one unit, it behaves like a boundary operator. The 
requirement that 8 compute COO(~) through its homology reads 

Ho(8) == (Ker 8) = COO(~) = coo(I). 
1m 8 0 .JV 

(30) 

We will actually ask more: namely, that Eq. (30) contain all the homology 
of 8. In other words, we require 

k ;of o. (31) 

This requirement turns out to be essential not only for guaranteeing that 
the BRST cohomology at ghost number zero is given by the gauge-invariant 
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functions, but also for being able to prove the existence, in general, of the 
BRST symmetry itself. 

A differential complex with the properties shown in Eqs. (30) and (31) 
is said to provide a resolution of the quotient algebra C'x'(I)/.K. In the 
present context, the relevant resolution is due to Koszul/4 Bore1/5 and 
Tate.26 

One can describe 8 in an intrinsic manner, without having to work 
with a specific representation of the surface :l. However, our ultimate goal 
is to derive the gauge-fixed action with a definite set of fields. For this 
reason, we will not strive for intrinsicality. 

5.2. Actions without Gauge Invariance 

In the absence of gauge invariance, the construction of 8 is very simple. 
Because (Ker 811m 8)0 should be equal to Coo(I)/.K, we simply define 8 
so that 

(Ker 8)0 = Coo(I) (32a) 

and 

(1m 8)0 = .K. (32b) 

Consequently, we set 

84/ = o. (33a) 

Using the Leibnitz rule, this implies that 8F(</Ji) = 0 for any functions on 
I and hence, (Ker 8)0 = Coo(I). 

To implement {1m 8)0 =.K, we observe that due to our regularity 
assumptions, the elements of .K are given by the combinations of the field 
equations, 

Therefore, we introduce as many new generators </Jt as there are field 
equations and simply set 

8A.'!' = _ 8So• 
'1'1 8</J I (33b) 

The minus sign is inserted for later convenience. This implies that G = 
8(-A i</Jt> and (1m 8)0 =.K. With this definition, our first goal is achieved: 
Eq. (30) holds. 
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The generators c{Jr are known as the antifields associated with the 
original fields c{J i. They are equal in number to the c{J i, since the number of 
field equations is equal to the number of fields (the field equations set the 
gradient of So equal to zero). 

To preserve the grading properties of 8, one must impose 

(34a) 

(as we assume the fields to be bosonic) and 

antigh c{J r = 1 (34b) 

(of course, antigh c{Ji = 0). The action of 8 on a general polynomial in c{J\ 
c{Jr is obtained by using the Leibnitz rule, and one easily checks nilpotency, 
82 = O. 

To see whether 8 provides a resolution of Coo(I)/.N, it remains to 
compute Hk(8). It is here that the assumed absence of gauge invariance 
plays a key role. Indeed, the equations of motion are then independent, so 
that the number of new objects c{Ji in degree one is exactly equal to the 
number of independent equations of motion. Using this property, one easily 
proves,24,25,9 that 

k ,= O. (35) 

5.3. Actions with a Gauge Freedom 

5.3.1. Irreducible Case 

The above definition (33), (34) of 8 can still be used if there is a gauge 
freedom, and one still finds Ho(8) = COO(~). However, it is no longer true 
that H k (8) ,= O. Because of the Noether identity, 

8So i 

8c{Ji Rex = 0, (36) 

one actually finds nontrivial 8-closed polynomials in degree one. These are 
given by 

(37a) 

Indeed, one checks that the R~c{Ji are 8-closed 

. . 8So 
8(R' -1.*) = -R' -. = 0 ex'+', a S</> I 

(37b) 
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and exhausts all nontrivial S-closed polynomials of degree one: 

S(>..i4>1) = 0 => >..i4>1 = /-L(XR~4>1 + S(!sij 4>14>j). (37c) 

Furthermore, the Ri4>1 are nonexact. So, HI(S) ¥- O. 
To understand how this problem can be remedied, let us first assume 

that the gauge transformations are independent, so that all the nontrivial 
cycles in Eq. (37a) are independent. 

One can then recover HI(S) = 0 and at the same time Hk(S) = 0 for 
all k ¥- 0 in an extremely elegant way devised by Tate.26 One simply adds 
one new generator 4>! for each cycle in Eq. (37a) and defines 

S4>! = R~4>1. (38a) 

Because S(R~4>n = 0, one has S24>! = O. Furthermore, by taking 

antigh(4)!) = 2, s(4)!) = 0 (38b) 

(recall that d4>1) = 1) and extending S as a graded derivation to any 
polynomial in 4> i, 4>1, and 4>! one maintains S2 = O. 

With the introduction of the antifields 4>!, the cycles R~4>1 that were 
nonexact become exact. Thus HI(S) is now zero. Furthermore, using the 
assumed irreducibility of the gauge transformations, one easily shows that 
Hk(S) = 0 for all k> 0. 22,26,27 

5.3.2. Reducible Case 

The construction of S in the reducible case proceeds along the same 
lines as in the irreducible one. First, one observes that with Eqs. (33) and 
(38), the homology group HiS) is nonzero even though HI(S) = O. This 
is because the polynomials 

(39) 

are closed but not exact. Here, the Z terms form a complete set of reducibility 
functions; i.e., they are such that 

(40a) 

One has for the Z terms 

c~ = -C~, (40b) 

and this property guarantees that the polynomials in Eq. (39) are closed. 
These polynomials are not exact, because the Z~ cannot all vanish on ~ 
when the gauge transformations are truly reducible. 
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One therefore introduces new generators (antifields) 4>1 at antighost 
number three and sets 

antigh 4>1 = 3, e(4)~) = 1. 

(41a) 

(41b) 

This kills the homology at degree two; i.e., H2(8) is now zero. The minus 
signs in Eq. (41a) are again inserted for later convenience. 

If the reducibility equations, Eq. (40b), are all independent, this is the 
end of the story. Not only are H I (8) and H 2(8) zero, but also all the higher 
homology groups H k (8), k = 3,4, .... 22,26,27 

But if the reducibility equations [Eq. (40b)] are not independent, the 
analysis is not finished and one has to keep going. This is because Hi8) 
is then non-zero when 8 is defined by Eqs. (33), (38), (41). For each 
nontrivial relation 

A za Caj 850 
Z(i) A = (i) 84>j (42) 

on the reducibility functions, one must therefore introduce one anti field at 
antighost number four. This kills H3(8). 

One can, if desired, introduce more antifields; i.e., one can consider 
an overcomplete set of reducibility relations [Eq. (42)]. But one must then 
compensate at the next order by adding antifields of antighost number five 
that take into account the relations on the Z~). The general idea of passing 
from order k to order k + 1 is always the same. 

We refer the reader to Ref. 27, where the construction of 8 is more 
explicitly analyzed and the complete proofs of its properties are given. 
These proofs are explicitly worked out within the Hamiltonian formalism. 
But, as briefly indicated below, the algebraic features of that approach to 
the BRST symmetry are identical. For this reason, we list here only the 
salient facts: 

1. 8 can be constructed recursively, antighost level by antighost level, 
and the spectrum of antifields can be chosen at each step so that 82 = 0, 
H k (8) = 0, k> 0 [and of course, Ho(8) = COO(~)]. 

2. The explicit expression for 8 becomes awkward when the coefficients 
C~ in Eq. (40b), eN) in Eq. (42), etc. are nonzero (on-shell reducibility), 
but this affects neither 82 = 0 nor H k (8) = 0, k > 0 (it complicates the proofs 
only technically). 

3. The requirement of acyclicity of 8 at antighost number k> 0 turns 
out to be equivalent to the "proper solution" requirement of Batalin and 
Vilkovisky,6 as both demands lead to the same spectrum of fields and 
antifields. 
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4. Let A i be a gauge transformation that vanishes on-shell, 

.5So 
A'-.=O 

54>' , 

95 

A priori, Aij may not be anti symmetric in (i,j). However, A ij is not uniquely 
defined by Ai, as one can replace Aij by Aij + J-L ijk5So/54>k with J-L ijk = _J-L ikj. 
One can use this freedom to set A ij = _Aji. Indeed, one has 5(A i4>n = 0, 
and hence Ai4>1 = 5(A"4>: + /lij4>14>j) with /lij = _vii. Since Ai"", 0, the 
A" must be such that A" R~ "'" 0, i.e., A" = Z~ t A + U"i 5So/ 54> i. This implies 
that A "4>: = Z~tA4>: + u"i4>:5So/54>i = 5(tA4>'! + u"i4>:4>n + eij4>14>j 
for some e ij = _eji. Accordingly, Ai4>1 = 5[(/lij + eij)4>14>j]; i.e., Ai = 
Aij(5So/54>j) with Aij = _Aji(=/lij + eij), as required. 

5. For definiteness, we will explicitly develop the subsequent formalism 
in the case of reducible gauge theories of the first order, i.e., of gauge 
theories with reducibility functions Z~ that are independent. The antifield 
spectrum is then given by 4>1, 4>:, and 4>'!. The general case is treated 
along the lines of these lectures in Refs. 22 and 27. 

6. THE EXTERIOR DERIVATIVE ALONG THE GAUGE ORBITS 

6.1. Definition 

As the orbits generated by the gauge transformations 5,4>i = R~e" are 
integrable on the stationary surface l:, one can define, on l:, an exterior 
derivative operator d that takes anti symmetrized derivatives along the gauge 
orbits. This operator acts on p-forms along the gauge orbits. 

Borrowing the terminology of fiber bundle theory where the fibers 
(here, the orbits) are drawn vertically, one can call a vector tangent to the 
orbits a "vertical vector." A p-form along the gauge orbits is then named 
a "vertical p-form" and d is the "vertical exterior derivative." 

So, if F is a function on l:, dF is the vertical I-form defined by 

dF(X) = axF (43a) 

for all vertical vectors X. dF vanishes iff F is invariant along the orbits. 
The exterior derivative of a vertical I-form a is given by 

(da)(X, Y) = -.2ya(X) + .2xa( Y) + a([X, YJ), (43b) 

where X and Yare vertical vector fields. The Lie bracket [X, Y] of X and 
Y in Eq. (43b) is also a vertical vector field as the gauge transformations 
are integrable. Similar formulas hold for higher-rank p-forms, and one finds 
d 2 = ° (on the stationary surface l:, where d is defined). We follow the 
exterior calculus conventions of Ref. 27. 
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Because d only takes derivatives along the gauge orbits, it is clear that 
HO(d) == (Ker djIm d)O is isomorphic with the algebra of gauge-invariant 
functions. Note that the higher-order cohomology groups Hk(d), k> 0, 
may be nontrivial. 

6.2. Representation 

6.2.1. Irreducible Case 

In the irreducible case, the dimension of the gauge orbits is equal to 
the number of gauge transformations /jE~i = R~ea. A basis at each point 
Xa of vertical vectors is thus given by 

/jF . 
XaF == /j~i R~, (44a) 

and one has 

(on l;). (44b) 

If {C a } stands for the basis dual to {Xa }, one can represent the vertical 
exterior derivative along the gauge orbits as 

dF = (XaF)Ca (45a) 

dC a = !C~yC/3CY. (45b) 

The dual one-forms C a are anticommuting and will be interpreted as the 
ghosts below. The form degree will therefore already now be called the 
"pure ghost number." The operator a increases the pure ghost number by 
one unit. 

6.2.2. Reducible Case 

In the reducible case, the vertical vectors Xa associated with the gauge 
transformations no longer form a basis. Rather, they form an overcomplete 
set, subject to the following reducibility equations: 

Z~Xa = 0. (46a) 

Accordingly, the components aat ... ap == a(Xat , ... , Xa) ofa verticalp-form 
in the overcomplete set {Xa} are also subject to the same conditions 

(46b) 

We will assume for simplicity that there is no relation on the Z~s; i.e., that 
these functions are all independent. 

Although there is no dual basis to {Xa }, one can introduce formal 
objects ca. By saturating the indices of the components aat ... ap with 
cat ... cap, one can identify vertical p-forms with polynomials of order p 
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in C'" whose coefficients obey the algebraic condition in Eq. (46b). One 
can then compute d using the same formulas [Eq. (45)] as in the irreducible 
case. 

It is, however, more convenient to relax the algebraic condition, Eq. 
(46b), as follows: Introduce as many additional objects C A as there are 
conditions on X", and modify dC'" as 

dC'" = !C~'YC!3C'Y + Z~CA. (47) 

The new term in the right-hand side of Eq. (47) does not affect the vertical 
derivative of a vertical p-form, because of Eq. (46b). To preserve the grading 
properties of d, the generators C A should be even and of pure ghost number 
two. These generators will be identified later with the ghosts of ghosts. 

It is possible to define dC A so that d 2 = 0 on arbitrary polynomials in 
C"', C A (on ~). The proof will not be given here (see Ref. 27). The 
mathematical structure defined by d, 4>i, C"', and CA is known as a free 
differential algebra. 

What is the effect of the new term added to dC"'? Its effect is to enforce 
the algebraic condition [Eq. (46b)] through the closedness relation. So, for 
instance, a one-form a ;; a",C'" is closed iff 

(48) 

This implies both the algebraic equation a",Z~ = 0 and the requirement 
d01da = O. 

Thus, one can represent the vertical exterior derivative d in the space 
of arbitrary polynomials in C'" and CA. The algebraic condition [Eq. (46b)] 
is automatically enforced when passing to the cohomology. This is made 
possible through the introduction of the ghosts of ghosts. 

We refer again the reader to Ref. 27 for the details. This reference also 
analyzes the case when the reducibility equations are not independent, 
which requires further ghosts of ghosts of ghosts. 

7. BRST SYMMETRY-MASTER EQUATION 

7.1. The Problem 

With the Koszul-Tate operator and the vertical exterior derivative at 
hand, all the building blocks of the BRST symmetry have been constructed. 
What is required now is to put these ingredients together in a manner that 
preserves the crucial nilpotency. 

To that end, we tentatively first define 

s4> i J, d4> i, 

s4>t J, 84>t, 

sca J, dca, 

s4>! J, 84>!, 

SCA J, dCA, 

s4>~ J, 84>~, 

(49a) 

(49b) 
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where d is extended off l: by using the same formulas, Eqs. (45a) and (45b) 
or (47), as before. This makes sense because the gauge transformations and 
the reducibility functions are well defined for all histories, not just for 
histories that obey the equations of motion. So, in Eq. (49), the BRST 
transformation s reduces to d in the sector containing the fields ~ i and the 
ghosts cOt (and the ghosts of ghosts C A if any). It reduces to 8 in the 
anti field sector. 

The grading of s is called the ghost number and is given by the difference 
between the pure ghost number and the antighost number: s increases the 
ghost number by one unit. 

The problem with the simple definition in Eq. (49) is that it does not 
yield a nilpotent operator. This is because 8d + d8 ¥ 0 off l:, except when 
the gauge transformations form an Abelian group, and because d 2 ¥ 0 off 
l: in the open-algebra case. The gauge transformations 8e~i = R~eOt are 
then nonintegrable off l:. 

In order to remedy this situation, one needs to improve s by terms of 
a higher antighost number, 

s = 8 + d + more. (50a) 

More precisely, the appropriate definitions read 

S~i = d~i + Si (50b) 

scOt = dC Ot + sa (50c) 

SCA = dC A+ SA (50d) 

s~1 = 8~1 + 1"; (50e) 

s~: = 8~: + TOt (500 

s~"J.. = 8~"J.. + TA, (50g) 

with 

antigh(Si) ~ antigh(d~i) + 1 = 1 (50h) 

antigh(SOt) ~ antigh(dC Ot ) + 1 = 1 (50i) 

antigh(SA) ~ antigh(dCA) + 1 = 1 (50j) 

antigh(1";) ~ antigh(8~n + 1 = 1 (50k) 

antigh(TOt) ~ antigh(8~:) + 1 = 2 (50l) 

antigh(TA) ~ antigh(8~"J..) + 1 = 3. (50m) 

The improvement terms are determined by requiring that S2 = o. [Note: the 
extra terms in Eq. (50) are in general not of definite antighost numbers. 
The inequalities in Eqs. (50h-m) should therefore be understood as 
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inequalities on the components of sj, sa, SA, T j , Ta, and TA of minimum 
antighost number]. 

7.2. Homological Perturbation Theory 

It turns out that it is always possible to find sj, sa, SA, T j , Ta, and TA 
with the above properties such that S2 = O. This is a general theorem of 
"homological perturbation theory,,,28 a branch of algebraic topology. 

Furthermore, the cohomology of s is given by the cohomology of d 
on };. As anticipated, the role of the antifields is to enforce SSo/ Sci> j = 0 
when one passes to the cohomology. The operator s then reduces to d, and 
one finds HO(s) = HO(d) = {gauge invariant functions}. More generally, 
one gets 

g<O 

g2:0 

(51a) 
(51b) 

Here, the cohomologies of sand d can be either the local cohomologies, 
or the cohomologies in the space of all local and nonlocal functionals. In 
this latter case, the arguments leading to Eq. (51) are more formal. Note 
that the local cohomology may be nontrivial for g > 0 even if the correspond­
ing cohomology in the space of all functionals is trivial. 

The proof of Eq. (51), which is immediate in the Abelian case for 
which Eq. (49) is correct, is given in Refs. 20, 27, 29, and 30 and will not 
be reproduced here. Rather, we will prove only the existence of s. 

Because of Eq. (51), one can conclude that the BRST symmetry com­
pletely incorporates gauge in variance at ghost number zero. This is a general 
feature valid even if the elements R~ of the generating set under consider­
ation do not form a group. The group structure is actually never used, and 
one can thus say that the properties of the BRST symmetry rely on a more 
primitive structure. It is the author's opinion that works on the BRST 
symmetry that overemphasize the group structure are sometimes misleading. 

The same primitive structure is also encountered in the Hamiltonian 
formalism, where again the description of the gauge-invariant observables 
involves two steps: first, the restriction to the "constraint" surface; second, 
the passage to the quotient of the constraint surface by the gauge orbits. 
These same ingredients lead to the same algebraic construction of the BRST 
symmetry; see Refs. 9, 27, and 30. * The techniques of homological perturba­
tion theory were actually first rediscovered by physicists in the Hamiltonian 
context. 

* The major difference between the Lagrangian and Hamiltonian constructions lies in the 
bracket structure that is naturally defined. While the Lagrangian bracket ("antibracket") to 
be defined below does not appear to be realized quantum-mechanically, the Hamiltonian 
bracket ("Poisson bracket") becomes the physical, graded commutator (times (ili)-I) in the 
quantum theory. 
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In order to prove the existence of the extra higher-order terms Si, sa, 
SA, T;, Ta, and TA needed to secure nilpotency, we will take advantage of 
one extra property of the BRST symmetry. This extra property is that the 
BRST transformation preserves a natural bracket structure in the space of 
fields, ghosts, and antifields. Accordingly, rather than trying to work out 
Si, Sa, SA, T i , Ta, and TA individually, it is more economical to construct 
directly the BRST generator for the BRST symmetry, which is a single 
function(al). 

7.3. Antibracket 

What is the natural bracket structure in the Lagrangian formalism? 
It is well known that the Hamiltonian Poisson bracket does not induce 

a Poisson bracket in the Lagrangian space I of all field histories: a physically 
meaningful symplectic structure is defined only on the stationary surface 
~,modulo G. 

However, because the stationary surface has the property of being 
obtained by equating the gradient 8So/ 8rf> i of a single function So to zero, 
it turns out that one can nevertheless define a (rather odd) bracket structure 
among the variables of the Lagrangian BRST complex. This bracket structure 
possesses strange features and is named the antibracket. It is very useful 
when developing the formalism but disappears when one fixes the gauge 
and does not seem to have a direct quantum-mechanical analog. 

The definition of the anti bracket suggests itself once it is realized that 
there is a remarkable symmetry between the fields and the ghosts on the 
one hand and the antifields on the other hand. This symmetry, in turn, is 
a consequence of the fact that it is the same functional So which determines 
both the ghost spectrum (through the gauge symmetries) and the antifield 
spectrum (through the Noether identities). 

Taking again, for definiteness, a reducible gauge theory without a 
reducibility equation on the coefficients Z~, one finds that 

-3 -2 -1 0 1 2 
I I I I I I (52) 

rf>~ rf>: rf>t rf>i C a C A ghost number 

So it is natural to declare that the pairs rf>i, rf>t; C a , rf>:; and C A , rf>~, are 
conjugate: 

(rf>i, rf>j) = 8; 
(C a , rf>~) = 8~ 

(C A , rf>~) = 8~. 

(53a) 

(53b) 

(53c) 

[Recall that the indices i, a, A stand for both a discrete index and a 
continuous one. Explicitly, (rf>i(X), rf>J(y)) = 8;8 D (x - y), etc. The 
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expressions in Eq. (53) are manifestly covariant in spacetime.] The 
Lagrangian anti bracket ( , ) is extended to arbitrary functionals A, B 
of the fields, the ghosts, and the antifields as follows: 

8 rA 81B 8 rA 81B 
(A, B) = 8cf>i 8cf>T - 8cf>T 8cf>i 

8 rA 8 1B 8rA 8 1B 
+---------

8C" 8cf>~ 8cf>~ 8C" 

8 rA 81B 8 rA 8 lB 
+---------

8C A 8cf>":.. 8cf>":.. 8C A • 
(53d) 

The striking features of the antibracket are the following: 

(i) the antibracket carries ghost number + 1, i.e., 

gh«A, B)) = ghA + ghB + 1; (54a) 

(ii) it is odd, i.e., 

E«A, B)) = EA + EB + 1; (54b) 

and 

(iii) it obeys symmetry properties that are opposite to the usual ones, 

(54c) 

So, in particular, 

(Boson), Boson2) = (Boson2, Boson)) (54d) 

(Fermion, Boston) = -(Boson, Fermion) (54e) 

(Fermion), Fermion2) = -(Fermion2, Fermion)). (540 

A further important property of the antibracket, an immediate con­
sequence of its definition, is the Jacobi identity 

(55) 

Also, the antibracket acts as a derivation 

(AB, C) = A(B, C) + (_l)EB(EC+J)(A, C)B (56a) 

(A, BC) = (A, B)C + (-l)EB(EA+J)B(A, C). (56b) 

Because of Eq. (54d), it is in general not true that an arbitrary bosonic 
functional A has a vanishing antibracket with itself. If EA = 0, one may 
have (A, A) =i' O. However, by the Jacobi identity, «A, A), A) = O. 
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The antibracket is easily defined along exactly the same lines for more 
general reducible theories requiring ghosts of ghosts of ghosts. We leave 
this problem as an exercise to the reader. One finds the same features as 
in the case investigated explicitly here. In particular, the conjugate to a 
variable A of parity eA and ghost number gA has itself parity eA + 1 and 
ghost number - gA - 1. 

7.4. The Master Equation 

As we mentioned above, the BRST symmetry is a canonical transforma­
tion in the antibracket. So the BRST variation sA of an arbitrary functional 
A is given by 

sA = (A, S). (57a) 

On account of the parity and ghost number properties of the antibracket, 
the BRST generator S should be even and have ghost number zero 

e(S) = ° gh(S) = 0. (57b) 

Furthermore, the nil potency of s is equivalent to 

(S, S) = 0, (57c) 

as it follows from the Jacobi identity and the fact that there is no c-number 
of ghost number one. 

The first few terms in S should generate l> and d. This means that, in 
the expansion of S according to antighost number, 

one should have 

(i) 

(m) 

S= L S 
rn~O 

(m) 

antigh S = m, 

(0) 

S = So, 

so that (cfJf, S) = l>cfJf + more; 
(ii) 

(I) 

S = cfJfR~ca, 

(58a) 

(58b) 

(58c) 

(58d) 
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so that (4):, S) = 54>: + more, and (4)\ S) = d4>i + more = R~C'" + more; 
and 

(iii) 

(2) 

S = 4>:Z'AC A + terms not containing 4>:C A , (58e) 

so that the first terms in 54>'i and de'" are appropriately reproduced. 

The problem of finding the BRST symmetry s-i.e., of finding the extra 
terms Si, S"', SA, Ti, T"" TA in Eq. (50)-can thus be reformulated as the 
problem of finding the solution S ofEq. (57c), with the boundary conditions 
in Eq. (58). It is remarkable that the first piece in the BRST generator S is 
just the gauge-invariant action So. 

Equation (57 c) is named the master equation. The boundary conditions 
in Eq. (58) define what is known as a proper soiution.6 These boundary 
conditions follow in our presentation from the form of 5 (and d). The 
structure of the Koszul-Tate differential 5 was in turn determined by the 
requirement Hk ( 5) = 0 for k> 0 (acyclicity of 5). 

7.S. Solution of the Master Equation 

(0) 

The solution of the master equation is derived as follows. As Sand 
(I) 

S are completely fixed by the boundary condition, the first question is to 
(2) 

find S, given only incompletely by Eq. (58c). One has 

(2) 

S = 4>:(Z'AC A + k~yC13CY) + 4>r4>j(f~CA + f~13C"'C13), (59) 

where k~y, f~ and f~13 are unknown. 
The condition (S, S) = 0 leads, at antighost number one, to the equation 

(2) (2) 

25 S + D = 0, (60a) 

(2) 

where D is given by 

(2) (I) (I) 

D=(S,S) 

= -4>1[R"" R13 ]iC"'C 13 

= --I..'fCY Ri C"'C13 - -1..* Mij 5So C"'C13 (60b) 
'f'1 ",13 y 'f'1 "'13 54>j . 

(0) (I) 

We have used here Eq. (17) and (S, S) = O. 
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To prove the existence of a solution of Eq. (60a), one must check that 
(2) (2) 

D is 8-closed, 8D = O. This is easy to do and is left to the reader. The 
(2) 

acyclicity of 8 (i.e., H k (8) = 0 for k > 0) implies then that D is also 8-exact, 
(2) 

D = -28S(2). This equation defines S(2) only up to a 8-exact term. One can 
use part of this ambiguity to set the coefficient of </>!C A in S(2) equal to 
Z~. With this adjustment, S(2) = S(2), and S(2) indeed exists. Actually, the 
solution S(2) reads explicitly, in terms of its components k~y, f~, and f~/3' 

k~y = !C~y 
f~ = !C~ 

f~/3 = -*M~/3' 
where the structure functions C~ are those that appear in Eq. (40b). 

(60c) 

(60d) 

(60e) 

The terms from Eqs. (60d) and (60c) complete 8cf>~ and dca, i.e., are 
such that (cf> ~, S) = 8</> ~ + "higher order" and (C a, S) = dC a + "higher 
order." This is as it should be, and we could have included Eqs. (60c, d) 
as part of the boundary condition, Eq. (58e). What our analysis shows is 
that this is not necessary as Eqs. (60c, d) are in fact forced by (S, S) = 0 
(which contains 82 = 0, d 2 = 0). 

(2) 

Once S is constructed, the analysis of the remaining terms in the 
master equation proceeds recursively along similar lines. Assume that S has 
been constructed up to order n - 1 (n ~ 3), and let 

(n-I) (i) 

R = L S. (61) 
i~n-l 

It is easy to check that for any A of antighost number ka, the component 
of antighost number ka - 1 in (A, R(n-I) reads 

(n-I) 

(A, R ) = 8A + higher orders (n ~ 3) (62a) 

antigh A = ka (62b) 

antigh (higher orders) > ka - 1. (62c) 
(n-I) 

This is because only the pieces at most linear in the ghosts in R contribute 
(n-I) 

to the antighost number ka - 1 component of (A, R ). This property selects 
(0) (I) (2) (k) 

S, Sand S because S for k ~ 3 is at least quadratic in the ghosts. One 
(0) (I) (2) 

verifies that S, S and the linear piece of S indeed yields 8A. 
The equation (S, S) = 0 then reads, at antighost number n - 1, 

(n) (n-I) 

28S + D = O. (63) 
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(n-I) (n-I) (n-I) 

Here D is the component of antighost number n - 1 of ( R , R ) and 
(k) 

depends only on the functions S, k ~ n - 1.* 
(n) (k) 

Now, for Eq. (63) to possess a solution S given S with k ~ n - 1, it 
is necessary (by the nil potency of 8) and sufficient (by the acyclicity of 8) 

(n-I) 

that 8 D = O. But this simply follows from the Jacobi identity 0 = 
(n-I) (n-I) (n-I) (n-I) « R, R), R), which implies 8 D = 0 at antighost number n - 2. 

We can thus conclude that the solution S of the master equation exists. 
The solution is not unique because, at each stage, one can add a 8-exact 

(n) 

term to S. However, because of Eq. (62), this only modifies S by a canonical 
transformation (in the antibracket). Hence the solution of the master 
equation with the boundary conditions of Eq. (58) exists and is unique up 
to canonical transformations. 12 As a result, the BRST symmetry sA = (A, S) 
also exists. 

It is an easy exercise to check that canonical transformations also 
enable one to pass from one generating set R~ to any other generating set 
R~ of the same dimension. The enlargement of the generating sets by adding 
trivial gauge transformations and increasing the ghost spectrum requires a 
further concept, that of a "nonminimal solution," and will be discussed 
below (section 7.8). (3) (4) 

It should be pointed out that, in general, the components S, S, ... 
are different from zero, so that S contains multighost vertices. In the 

(0) (I) (2) 

irreducible group case, only S, S, and S are different from zero, but this 
is an accident not representative of the general situation. It should also be 
stressed that nowhere was it necessary to fix the gauge so far, and that the 
existence of S is global in field space, because the acyclicity of 8 is a global 
statement. Global obstructions may be relevant when discussing gauge-fixing 
conditions (Gribov problem) but do not amict the gauge-independent BRST 
symmetry in the space of the fields, the ghosts, and the antifields. 

7.6. Space-time Locality of S 

In order to apply the usual methods of quantum field theory, it is 
necessary that S be a local functional in spacetime, 

S = f .2d D x (64a) 

(n-I) (n-I) (n-1) 

* One has ( R , R ) = D + higher orders. The lower antighost number components of 
(n-1) (n-I) (0) (n-I) 

( R , R ) vanish as the functions 8, ... , 8 obey (8,8) = 0 up to order n - 2. 
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where 5£ is a function of the fields, the ghosts, the antifields, and their 
derivatives up to some finite order ("local function"). This is equivalent to 

(n) f (n) 
S = 5£d Dx, (64b) 

(n) 

where the 5£ are also local functions. 
Is it guaranteed that Eqs. (64a, b) hold? To investigate this question, 

(k) 

let us assume again that the S have been constructed up to order n - 1 
(0) (I) 

and are local functionals. [ S is clearly a local functional, as well as Sand 
(2) 

the given piece of S if the gauge transformations and the reducibility 
equations are local]. Eq. (63) reads, in terms of the searched-for local 

(n) 

function 5£, 

(n) (n-1) (n-1)JL 

285£ + d = aJL k , (65a) 

(n-1) (n-1) 

where D = J d dDx and where k JL is some local current, which yields 
(n-1) 

a surface term when one integrates both sides of Eq. (65). As R is a local 
(n-1) (n-1) (n-1) (n-1) 

functional, D = ( R, R) is also a local functional, so that d in 
(n-l) (n-1) (n-l) 

D = J d dDx is indeed a local function. Furthermore, because 8 D = 
(n-1) 

0, d is subject to 
(n-1) 

8 d = aJLr (65b) 

(n-1) 

The known function in Eq. (65a) is d, which is really determined from 
(n-1) 

D only up to a local divergence a JL f3 JL, but we assume that some definite 
(n) (n-1) 

choice has been made. The unknown functions are 5£ and k". Once 
(i) 

these are found, S obeys (S, S) = J aJLkJL, with k JL = I k. The boundary 
conditions must be such that the surface term is zero. 

So, the question of space-time locality of S can be reformulated as the 
problem of the local homology of 8: given a local function / such that 
8/ = a JLr with r local, is it guaranteed that / = 8g + a JLkJL where both g 
and k JL are local? The function / is also known to be of strictly positive 

(n-1) 

pure ghost number ( D involves the ghosts). 
It turns out that the answer to this question is positive, provided the 

gauge transformations 8e 4>i = R~ea obey the following local completeness 
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condition: any local identity on the field equations 5So/ 5cp j can be derived 
from the Noether identity (5So/5cpj)R~ = 0 by local means, i.e., by 
differentiation and algebraic manipulations (but no integration). This 
assumption is very mild as it appears to be always fulfilled by appropriate 
redefinitions of the gauge transformations if necessary. 

To give an example of gauge transformations that do not obey the local 
completeness condition, consider electromagnetism, invariant under 

(66a) 

With appropriate boundary conditions at spatial infinity, this parametriz­
ation of the gauge transformations is equivalent to the standard one, 5AJL = 
aJLA, A = as, s = a -\ A. The Noetheridentities that follow from Eq. (66) are 

5So aa -=0. 
JL5AJL 

(66b) 

The identities aJL(5So/5AJL) = 0 cannot be derived from Eq. (66b) by local 
means, as one needs to invert the Laplacian. So Eq. (66a) does not obey 
the local completeness condition. However, the change of gauge parameters 
as = A yields a form of the gauge transformations that obey the local 
completeness assumption. 

One can then prove the following: 

Theorem. If the local function / of antighost number k > 0 obeys 
5/ = aJLr (with r local) and is of strictly positive pure ghost number, then 

/ = 5g + aJLkJL, 

where g and k JL are local functions. In other words, the local homology of 
5 modulo the space-time exterior differential d is trivial. 

The proof of this theorem is given in Ref. 20. Let us simply indicate 
that the restriction on the pure ghost number is important. Consider for 
example the free particle, So = ! J dt q2. One has one antifie1d q* with 5q* = ij 
and no ghost. The function / == q* obeys 5/ = (d/ dt)(q) but cannot be 
written as 5g + dk/ dt with local and regular g, k. This does not contradict 
the theorem because the pure ghost number of / is zero. 

If the gauge transformations are reducible, a similar local completeness 
assumption must be made on the reducibility functions. 

The theorem guarantees the space-time locality of the solution S of 
the master equation-at least if the rank of the theory, i.e., the highest n 

(n) 

for which S is nonvanishing, is finite. 
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7.7. Antibracket and Equivalence Classes of BRST-invariant Observables 

Given two BRST-invariant functionals A and B, the antibracket (A, B) 
depends only on the cohomological classes of A and B: if A' = A + (K, S), 
B' = B + (L, S), then (A, B) and (A', B') are in the same cohomological 
class. So there is a well-defined antibracket structure in the space of cohomo­
logical classes of BRST-invariant functions. 

Because the antibracket (A, B) of two BRST-invariant functions of 
ghost number zero possesses ghost number one, it is clear that the induced 
antibracket has no direct connection with the Poisson bracket that can be 
defined among gauge-invariant observables. 16- 19 Furthermore, although we 
have no complete proof of this property, there is some evidence that (A, B) 
is actually cohomologically trivial, i.e., (A, B) is BRST-exact, (A, B) = 
(K, S). The induced structure appears thus to be completely trivial. 

These are the first indications that the antibracket has no obvious 
physical meaning in spite of its usefulness in the construction of S. 

7.S. Nonminimal Solutions 

The requirement HO(s) = {gauge-invariant functions} does not com­
pletely fix s. Indeed, it is always possible to add to a given solution further 
variables that are cohomologically trivial and hence do not modify Hk(s). 
The uniqueness theorem given above was derived with the specific set of 
fields cfJ i, C a , C A and antifields cfJf, cfJ:, cfJ'f,. and would not apply if this 
set had been enlarged. 

Cohomologically trivial variables can be assumed, with appropriate 
redefinitions, to fulfill 

sc = 7T, S7T = 0, gh(c) = gh( 7T) - 1. (67a) 

The condition sF = ° eliminates C. The further passage to the quotient by 
BRST-exact functions eliminates 7T. So C and 7T do not contribute to Hk(s). 

If one requires a canonical action for the BRST symmetry, one must 
introduce antifields C* and 7T*, respectively, conjugate to C and 7T, 

(C,C*)=I, (7T,7T*) = 1 (67b) 

ghC* = -ghC - I, gh7T* = -gh7T - 1 (67c) 

The term that generates Eq. (67a) through the antibracket reads 

(67d) 

One has S7T* = C*, sC* = 0, so the pair 7T*, C* is also cohomologically 
trivial. 

The general solution of the master equation is given by 

S( 4> i, C a , c A , 4>1, 4>:, 4>;'; 7T, C, 7T*, C*) = S( 4> i, ca , c A , 4>1, 4>:, 4>;') 
+ ~C*7T, (68) 
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where S is the minimal solution described above, depending on the minimal 
set of fields cfJ\ C", C A , cfJr, cfJ~, cfJ,!, and where 7T, C, 7T*, C* stand for 
all the trivial variables that are added. The solution S containing extra 
variables is known as a nonminimai solution. Nonminimal solutions are 
unique modulo canonical transformations and addition of cohomologically 
trivial pairs. 

Whether or not extra pairs are required depends on the type of gauge­
fixing condition desired. This point will be illustrated in the examples below. 
Let us simply mention now that the usual antighosts are part of the non­
minimal sector. 

The relation between the reducible and irreducible descriptions of the 
same gauge symmetry also becomes clear: the corresponding S are related 
by a canonical transformation and by the addition of cohomologically trivial 
pairs. 

7.9. Abelian Form of S 

As we indicated in section 2.11, it is always possible to Abelianize the 
gauge transformations. Furthermore, one can redefine the field variables 
cfJ i -i> Xi = Xi( cfJj ), Xi = (Xii, Xci), in such a way that the first variables Xii 
are gauge-invariant and the gauge transformations are just shifts in the last 
variables Xci. This change of variables is generically nonlocal and full of 
functional subtleties, which we will not address here. 

The action So depends only on Xa as it is gauge invariant. Together 
with the boundary conditions, the equations 8So/8X a = 0 completely deter­
mine Xii. The gauge components Xci are completely arbitrary. 

The fields Xii may not be all propagating (the equations 8So/8xii = 0 
may imply X a = 0 for some ii), so that the number of true degrees of freedom 
is in general smaller than the number of Xii. 

A complete set of gauge transformations is given by 

8X ii = 0, (69a) 

The remaining (reducible) gauge transformations can be taken to be 

(69b) 

(a = (a, A)). So one has R~ = 0 and the reducibility equations read 
Z~R~ = 0, with Z~ = 8~. 

The solution of the master equation is given by 

(70) 

where C,! are the antifields of ghost number 2 conjugate to the ordinary 
ghosts associated with the ineffective gauge transformations in Eq. (69b)­
and not the antifields conjugate to the ghosts of ghosts CA. The noticeable 
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feature of S is that it differs from the gauge-invariant action SO(Xa) by 
manifestly cohomologically trivial terms that possess exactly the same 
structure as the nonminimal terms in Eq. (68). 

8. PATH INTEGRAL 

8.1. Gauge Invariance of the Master Equation 

We now turn to the problem of writing down the path integral. If we 
were working within the Hamiltonian formalism, there would not be much 
to say because all the work has been done once the BRST symmetry in 
Hamiltonian form is constructed. The path integral is simply J D (Hamil­
tonian variables) exp i J [Hamiltonian kinetic term - H] dt, where 

1. all the variables of the Hamiltonian formalism occur in the path 
integral; 

2. the Hamiltonian kinetic term is the one that yields the Hamiltonian 
Poisson bracket among the canonical variables (momenta times time 
derivative of coordinates in canonical coordinates); and 

3. the Hamiltonian H is one representative in the BRST cohomological 
class associated with the original, gauge-invariant Hamiltonian Ho. 

Different choices of representatives amount to different choices of 
gauge.5,9 The path integral is well defined because the action that appears 
in the integrand is not degenerate: the Hamiltonian equations of motion 
that follow from it are in normal form and hence possess a unique solution 
for given initial data. 

The same approach cannot be applied to the Lagrangian case, and the 
straightforward attempt 

Path integral = J D(fields) D(antifields) D(ghosts) exp ~ S, (71) 

where S is the solution of the master equation, does not work. This is 
because S is gauge-invariant and thus Eq. (71) as it stands is meaningless. 

The gauge invariance of the solution S of the master equation is easy 
to work out. Let us denote collectively the original fields q/, the ghosts C a , 

and all the necessary ghosts of ghosts by cpA (A = 1, ... , N). These also 
include the antighosts and the auxiliary fields of the nonminimal sector, if 
any. We will refer to cpA as the "fields". All the remaining variables will 
be denoted by cp ~: i.e., the antifields cp 1, CP:, ... , C*, 1T*, etc. * Finally, let 

* So 4>1 stands from now on for all the antifields and not just for the antifields of antighost 
number three associated with the reducibility equations. 
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us set 

a = 1, ... , 2N (72a) 

and 

e(za) = ea. (72b) 

The antibracket can then be written as 

S'A SiB 
(A, B) = Sza Cb SZb' (73a) 

where the (inverse of the) "symplectic form" ?ab reads 

ab = (0 S~) 
? -S~ 0 ' 

(73b) 

In these notations, the master equation becomes 

S'S SiS 
(S, S) = Sza ?ab SZb = 0, (74a) 

from which one easily derives, upon differentiation with respect to z<, that 

S'S r!Jla = 0 (74b) 
Sza C • 

Here, we have set 

(74c) 

These equations, which express the fact that S2 zc is zero, indicate that the 
functional S is gauge-invariant under 

Sza = r!Jl~ec (~ Sza(x) = f r!Jl~(x, y)eC(y) dY ), (75) 

where eC(y) are arbitrary space-time functions. 
How many gauge invariances does S possess? Superficially, 2N, which 

is the total number of fields and antifields. It actually turns out that the 
action S has fewer independent gauge invariances, because the matrix r!Jl~ 
defining the gauge transformations is nilpotent on-shell, 

r!Jl~r!Jl~ = 0 (when equations of motion :z~ = 0 hOld). (76) 

This can be seen by a further differentiation of Eq. (74b). The gauge 
transformations [Eq. (75)] are thus not all independent; there is "on-shell 
reducibility. " 

Because r!Jl2 = 0, the number of independent gauge transformations in 
Eq. (75) is at most equal to N. It is actually precisely equal to N because 
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the general solution of i¥lv = 0 is given by v = i¥lt, so that the nilpotent 
matrix i¥l contains only (rank one) two-dimensional Jordan blocks (g ~), 
making its total rank equal to 2N /2 = N 

Furthermore, one can also show that Eq. (75) exhausts all the gauge 
symmetries of S. So the solution of the master equation possesses exactly 
N independent gauge transformations. 

The proofs of these statements are most conveniently derived by making 
the canonical change of variables za ~ i a such that S(za) takes the simple 
form [Eq. (70)]. This is permissible, as the matrix i¥l ~ transforms on-shell 
as a (:) tensor under canonical transformations, so its rank properties are 
unchanged in za ~ fa. One can easily check that the gauge transformations 
of S(ia) are just the arbitrary shifts in the N variables (say z:) that do not 
occur in S(za) == S(z~), and that these transformations can be written as 
in Eq. (75) because the matrix 82 S/ 8z~8zf is invertible. 

It is remarkable that the solution S of the master equation contains all 
its gauge symmetries in the sense that these are just obtained by differenti­
ation of S. Furthermore, for each field-antifield pair, there is one gauge 
symmetry. This property was the motivation of Ref. 6. 

8.2. BRST Invariance as the Guiding Principle for Deriving the 
Gauge-fixed Action 

Because the solution of the master equation is still gauge invariant, 
with a gauge-algebraic structure that presents no obvious simplification over 
the original one, it might be felt that nothing has been gained in the 
construction and that one is exactly back to the original difficulty of writing 
the correct gauge-fixed action, without new insight. Something has been 
gained, however, and this is that we now have the BRST symmetry at our 
disposal. Because BRST invariance can be used as a substitute for gauge 
invariance, one can completely forget about the gauge symmetries and 
simply focus on the BRST symmetry. If one can write down a gauge-fixed 
action that incorporates BRST invariance, then one has also automatically 
incorporated into the path integral the gauge symmetry of the original action. 

This is the point of view developed in the sequel. This means that no 
attempt will be made to devise an appropriate gauge fixing of the gauge 
symmetries of S along conventional lines. These gauge symmetries will 
cease to be of any concern from now on, and were mentioned only to point 
out that S is not a propagating action. By a "propagating action," we mean 
one without gauge invariance. Our only concern will be to extract a propagat­
ing action Stfr from S in a manner that incorporates all the properties of 
the BRST formalism. Because the BRST symmetry is a global invariance 
rather than a local gauge symmetry, one can find BRST-invariant actions 
that are nondegenerate. 
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8.3. Gauge-fixed Action 

One possibility for getting a nondegenerate (=gauge-fixed) action is 
simply to eliminate N of the 2N fields/ antifields za by means of N equations 
nA(za) = 0 (N "gauge conditions" for the N independent gauge invariances 
of S). 

It turns out that the properties of the BRST formalism are preserved 
if one takes the functions nA to be in involution, i.e., 

(76a) 

One motivation for Eq. (76a) is that these conditions are invariant under 
canonical transformations. This is important, as canonical transformations 
account for the ambiguity in S, which should be ultimately irrelevant. 
Another motivation is that the equations nA = 0 describing the gauge fixing 
actually involve, with Eq. (76a), a single arbitrary function, as in the 
Hamiltonian formalism. 5,9 This fact will be crucial in proving the indepen­
dence of physical amplitudes on the choice of nA. 

To see that the nA involve a single function, let us solve nA = 0 for 
the antifields. (We assume that this can be done.) Then, the equations 
¢'f,. - WA(¢) = 0 are in involution iff 

* _ 8I/J 
¢A - 8¢A (76b) 

for some function I/J( ¢ A) of ghost number -1 and Grassmann parity 1, 

ghI/J = -1, e(I/J) = 1. (76c) 

The functional I/J(¢A) must be local in space-time, I/J = J P dDx, so that the 
antifields ¢'f,. are local functions of the fields and their derivatives. 

If one inserts Eq. (76b) inside the solution S(¢, ¢*) of the master 
equation, one gets the gauge-fixed action S",: 

(77) 

The remaining part of these lectures will be devoted to showing that the 
action S", correctly governs the path integral. In particular, the path integral 
will be proved not to depend on I/J. 

Before carrying on the analysis, it is necessary to make some comments 
on Eq. (77): 

1. Different choices of I/J effectively correspond not only to different 
choices of gauge conditions but also to different ways to enforce them in 
the path integral (delta functions, Gaussian average). This will be illustrated 
below in the case of electromagnetism. 
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2. The function(al) 1/1 ( cp) is required to be such that S'" is propagating. 
That is, S'" should have no gauge invariance. [This excludes 1/1 = 0 in the 
case of Eq. (76), where it is the antifields that are eliminated, since then S'" 
reduces to SO(cpi). In the path integral, the integration over the gauge 
directions would yield infinity, while the integration over the ghosts would 
yield zero. This appears to be a generic feature of bad choices of 1/1. The 
resulting path integral is intrinsically ill-defined-rather than giving a well­
defined but incorrect answer.] 

3. If one makes the canonical "phase" transformation 

the "gauge conditions" in Eq. (76b) can be written as ~'i = o. The functional 
form of S is not invariant under the canonical transformation if 1/1 defines 
a propagating action. 

4. It will be seen that in the path integral, one does not sum over the 
antifields as these no longer appear in S"'. The integration variables cpA 
obey (cpA, cpB) = 0, so reference to the antibracket are completely lost. 

5. One could in principle eliminate some of the fields in favor of the 
corresponding antifields, i.e., solve OA = 0 for some of the fields. This will 
be illustrated below. The integration variables that are left over in that more 
general case are obtained by picking out, from each conjugate pair, either 
the field or the antifield. These integration variables have, again, vanishing 
brackets. Reference to the antibracket is thus again lost. The symmetry 
between fields and antifields is not complete, however, as the requirement 
that S'" is propagating forces one to keep the gauge invariant fields among 
the integration variables. 

(n) 

6. If some S, n ~ 3 are different from zero, S'" will contain quartic, 
sixtic, ... ghost interactions. These ghost interactions are crucial and follow 
from BRST invariance. They would be missed by a naive application of the 
Faddeev-Popov determinant method. 

8.4. Gauge-fixed BRST Symmetry-Gauge-fixed BRST cohomology 

The gauge-fixed form s of the BRST symmetry is defined by 

ScpA = (ScpA) ( cp, cp* = ::) == 8:1~A ( cp, cp* = ::). (78) 

If scp A depends on the antifields, i.e., if S is more than linear in the antifields, 
the gauge-fixed BRST symmetry (in Lagrangian form) depends on the gauge­
fixing fermion 1/1. 

We leave it to the reader to check the following straightforward asser­
tions: 
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1. The gauge-fixed action is BRST invariant under Eq. (78): 

sS", = o. 
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(79) 

Hence, one can define a conserved Noether charge 0", that depends in 
general on 1/1. 

2. The BRST variation scf> ~ of the antifields viewed as functions of the 
fields differs from (scf>~)(cf>, cf>* = (81/1/8cf») by equation-of-motion terms: 

Hence 

8 rB 81S 
sB = sB + -- --"'. 

8cf>~ 8cf>A 

(80a) 

(80b) 

3. Because of this, the gauge-fixed BRST symmetry (in Lagrangian 
form) is in general only on-shell nilpotent, 

s2cf>A = field equations, (81) 

where the field equations in Eq. (81) are those of the gauge-fixed action. 
The right-hand side of Eq. (81) identically vanishes if and only if 
82S/8cf> A8cf>B is zero. For open algebras, 82S/8cf> A8cf>B '" 0 and S2", O. 

4. Because of the invariance of the action S"', the surface 8S",/8cf>A = 0 
is left invariant under Eq. (78). One can thus define the gauge-fixed BRST 
cohomology as the space of equivalence classes of weakly BRST invariant 
functions A( cf» modulo the weakly BRST exact ones, 

-A A 8S", s =,\ --
8cf>A 

A 8S", 
A - B iff A = B + sC + II. --. ,.. 8cf>A 

Here, "weakly" means "on the surface 8S",/8cf>A = 0." 

(82a) 

(82b) 

5. One can define a Koszul resolution 8 for the surface 8S",/8cf>A = O. 
The antifields ~~ == cf>~ - 81/1/8cf>A can be viewed as the generators of this 
resolution. No further generator is needed as the equations 8S",/8cf>A = 0 
are independent. The relationship between (8, s) and (8, s) is algebraically 
identical to the relationship between (8, d) and (8, s). The same algebraic 
techniques imply, therefore, Hk(S) = Hk(S), where s is understood to act 
on 8S",/ 8cf>A = O. Hence, the gauge-fixed BRST cohomology at ghost number 
zero is again given by the gauge-invariant functions. 

Given an element A( cf>, cf>*) in Hk(S), the corresponding element in 
Hk(S), can be taken to be 

A",(cf» = A( cf>, cf>* = :~). (83a) 
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Indeed, the equation (A, S) = sA = 0 and Eq. (80) imply 

(83b) 

Conversely, given a solution A(<I» of sA = (5S",15<1>A)AA, one can recur­
sively construct a solution A(<I>,<I>*)=A(<I»-(<I>'f..-51/115<1>A)AA+ 
O( (<I>'f.. - (51/11 5<1>A)?) of (A, S) = 0 using the acyclicity of 8 and the Jacobi 
identity for the antibracket. 

6. When the solution of the master equation is linear in the antifields, 
the gauge-fixed action S", can be written as S", = So + sI/I. One recovers the 
familiar formulas of Ref. 31, applicable to closed algebras. 

7. As we have just seen, the action S", is not linear in the gauge-fixing 
fermion 1/1 when the solution of the master equation is not linear in the 
antifields. Furthermore, the BRST variation s<l>A of the fields involves the 
antifields. Let s<l>A be the <I>*-independent component of s<l>A [i.e., s<l>A = 

s<l>A( <1>, <1>* = 0)], and let S", = So + sl/l. One finds that S", is not invariant 
under S. However, sS", = O( 1/1), and the nonvanishing terms in sS", are 
proportional to the functional derivatives of So, sS", - 5So1 5<1> i. Thus, by 
modifying s<l>\ one can remove these terms. Following Noether lines, one 
then constructs recursively both s = s + O( 1/1) and S", = S'" + O( 1/1 2 ) so that 
sS", = O. These sand S", just coincide with the ones obtained by the above 
methods. The Noether approach was followed in the original work.7,8 As 
our remark indicates, this approach has close connections with the methods 
of homological perturbation theory. 

8.5. Hamiltonian Formulation 

The gauge-fixed action S", is a local functional and possesses no gauge 
invariance. Hence, it can be rewritten in Hamiltonian form without difficulty. 
If there were problems in going to the Hamiltonian formalism, this would 
mean, by definition, that the gauge-fixing procedure has not been correctly 
performed, and we assume that this is not so.* 

We will also assume that the original gauge-invariant Lagrangian is 
nonpathological. By this we mean that the Lagrangian does not provide a 
counterexample to the Dirac conjecture,14,15 i.e., that it exhibits all the 
relevant gauge symmetries. Under these conditions, the Lagrangian and 
Hamiltonian gauge transformations are equivalent. For more information, 
see Ref. 14. The usual Lagrangian of physical interest fall into this class. 

* The Hamiltonian formalism can be developed even if the Lagrangian contains higher-order 
time derivatives. One simply needs more conjugate pairs. Also, there could be some second­
class constraints in the Hamiltonian formalism. But these can be eliminated by means of the 
Dirac bracket method, and we assume that this has been done. The Hamiltonian formulation 
is then free of constraints, and all the equations of motion are dynamical. 
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For such Lagrangians, the Lagrangian and Hamiltonian concepts of gauge­
invariant functions are equivalent, and there is a single bracket structure 
defined among them. The dynamics of the gauge-invariant functions is, of 
course, also the same in either description. 

Now, to any local-in-time functional A of the fields and their time 
derivatives up to some finite order, one can associate, by using the equations 
of motion if necessary, a well-defined phase-space function. In particular, 
if one expresses the Noether charge 0", in terms of the canonical variables, 
one gets a phase-space function with the following features: (a) 0", is 
off-shell nilpotent because the (Dirac) bracket [0""0,,,], which should be 
zero on-shell, does not contain the time derivatives, i.e., cannot involve the 
equations of motion. Thus, it must identically vanish, [0""0,,,] = O. (b) The 
canonical transformation generated by 0", starts like a gauge transformation 
because 54/ = R~ca + "more." 

The properties (a) and (b) are just the defining properties of the 
Hamiltonian BRST charge. From the general theorems on the existence and 
uniqueness of the BRST charge in the Hamiltonian formalism, one can thus 
infer that 0", differs from the gauge-independent BRST charge ° constructed 
along Hamiltonian lines9 at most by a canonical change of variables (in the 
Dirac bracket) and the possible addition of cohomologically trivial pairs. 
The canonical transformation relating 0", to ° may have a complicated, 
l/I-dependent structure, but it is nevertheless canonical. 

Similarly, in each cohomological class of the gauge-fixed BRST 
cohomology, one can find one function A",(t) that involves only the fields 
and their independent time derivatives at time t (initial data at t). This is 
because one can add equation-of-motion terms in Eq. (82b). If one rewrites 
A",(t) in terms of the canonical variables, one gets a phase-space function 
such that [A"" 0",] = O. This implies that the Hamiltonian BRST 
cohomology and the gauge-fixed cohomology are also isomorphic. There­
fore, the Hamiltonian BRST cohomology at ghost number zero is given by 
the gauge invariant observables, a result derived differently, along purely 
Hamiltonian lines, in Refs. 9,27,29. 

We can thus conclude that the Lagrangian and Hamiltonian BRST 
formalisms are equivalent for standard Lagrangians. The equivalence is 
revealed upon making the Legendre transformation on S",-if that action 
is not already in first-order form. Further discussion on the comparison 
between the Lagrangian and Hamiltonian formulations of the BRST sym­
metry may be found in Refs. 32-34. 

We can, at this point, develop the path integral formalism along two 
different lines. 

1. One possibility is to base the whole discussion on the Hamiltonian 
formalism. The path integral is then clearly related to definite expectation 
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values of operators and yields manifestly unitary answers. The Hilbert-space 
apparatus can be used to define what is meant by the path-integral 
expressions. This approach has the advantage of being self-contain ed-at 
least formally, i.e., if the operator formalism indeed exists. Furthermore, 
with the introduction of the conjugate momenta, which are quantum­
mechanically realized as operators, off-shell nilpotency is achieved even in 
the open-algebra case. This greatly simplifies the discussion and is a key 
element of the operator formulation of the quantum theory. 

2. Another possibility is to write down directly the Lagrangian path 
integral in such a manner that it fulfills the following important requirement: 
in the Abelian representation, it should reduce to a path integral over the 
gauge-invariant degrees offreedom only. The gauge and ghost modes should 
decouple and drop out of the theory, which becomes manifestly equivalent 
to the theory in which only the gauge-invariant degrees of freedom are 
present. This non-Hamiltonian approach possesses a high degree of inner 
consistency, but is less precise than the Hamiltonian approach. For instance, 
as we shall see, it fails to yield the complete expression for the integration 
measure. This is because the measure for the gauge-invariant degrees of 
freedom is not determined by the above requirement. The ambiguity, 
however, affects only terms that are of formal higher order in Ii ("quantum 
corrections"), but which nevertheless may play an important role. It is not 
inconceivable that this shortcoming could be overcome some day by non­
Hamiltonian means. 

We will follow the Lagrangian lines here. The Hamiltonian results are 
mentioned only for the purpose of providing some insight into the 
Lagrangian derivation. 

8.6. The Integration Measure: the Problem 

The gauge-fixed action enables one to compute transition amplitudes 
as Lagrangian path integrals, 

Z'" = f [DJL] e(i/h)S",. (84a) 

Here, [DJL] is the integration measure 

[DJL] = [Dcf>A]JL (84b) 

(84c) 

If desired, one can incorporate the measure into the action by exponentiating 
it: 

(84d) 
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A correct way to determine the integration measure is to start from the 
Hamiltonian path integral, for which the measure is known to be the product 
over time of the Liouville measure d4J Ad7TA. Here, the 7TA are the momenta 
canonically conjugate to 4JA. SO one has 

Z'" = f [D4J AD7TAl e(i/h)S~, (85a) 

with 

(85b) 

If it is permissible to evaluate the integral over the momenta by the stationary 
phase method-and we assume this to be the case, for otherwise it would 
not seem that the path integral can be expressed in Lagrangian form with 
a local measure-one gets Eq. (84) with a definite expression for the 
integration measure. This measure is local in time because of the structure 
of the Hamiltonian action [Eq. (85b)]. Accordingly, the measure terms in 
Eq. (84d) are generically singular and formally contain 8(0). 

Similarly, the quantum average of phase space observables 

(A) = f [D4J AD7TAl e(i/h)S~A(4J, 7T) (86a) 

can be rewritten in Lagrangian form as 

(A) = f [D/-Ll e(i/h)S"'(A + hal + h 2a2 + ... ). (86b) 

The corrections a 10 a2, . .. to the value A( 4J) = A( 4J, 7T = 7T( 4J )) of A at 
the extremum for 7T are just the higher-order terms in the stationary phase 
method and take again a definite form. For operators that are local in time, 
these corrections are singular (-8(0)). 

Contrary to the Hamiltonian expressions, Eqs. (85a) or (86a), the 
Lagrangian measure and the Lagrangian corrections to A are not universal 
and depend on the dynamics. These corrections arise because the integration 
over the conjugate momenta 7TA may not simply amount to replacing the 
momenta by their classical value in the Hamiltonian path integral. Neverthe­
less, something can be said about [D/-Ll and aI, a2, ... on general grounds, 
without using the Hamiltonian formalism. 

8.7. Dimensional Regularization 

The simplest approach consists in using a regularization method which 
sets to zero the singular terms proportional to 8(0) in the local measure 
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[DJL]. Such a method exists, based on dimensional regularization. The local 
measure is then irrelevant,35 and Eq. (84a) becomes 

Z", = f [Dq,A] e(i/h)S",. (87) 

Similarly, the simplest regularization of the singular terms at, a2, ... 
proportional to 5(0) in Eq. (86b) is again to set them equal to zero. Thus, 
one replaces Eq. (86b) by 

(A) = f [Dq,A] e(i/h)S",A. (88) 

Equation (88) is usually singular since one has dropped a singular term 
from (A). This singularity appears because A contains products of operators 
evaluated at coincident times. One regularizes these terms by splitting the 
times (e.g., ti 2(t) ~ ti(t + e )ti(t» and taking the limit as the times coincide.36 
This regularization is, as a rule, compatible with setting at = a2 = ... = 0 
in Eq. (86b). 

With these drastic regularization prescriptions, the Lagrangian path 
integrals in Eqs. (87) or (88) are completely determined. The Lagrangian 
methods are entirely self-contained. 

It is then easy to check that Eq. (87) is the correct path integral. First 
of all, the measure is BRST-invariant because its variation is proportional 
to 8(0), 

Second, the change of variables 

q,A ~ 8A - (Sq,A)JL, (89a) 

where JL is not a constant parameter but a functional of the fields given by 

(89b) 

shows that 

Z",=Z"". (89c) 

The transformation of the measure is proportional to 5JL/5q, and accounts 
for the change '" ~ "" in the gauge-fixed action. 

Third, the gauge-fixed BRST cohomology is also seen to be incorporated 
in the path integral. Indeed, one finds that the quantum average of any 
BRST invariant operator does not depend on "': 

(90a) 
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Here, we have defined 

(A",)s", = f [D<{>A] e(i1h)S"'A( <{>, <{>* = ::). (90b) 

Furthermore, 

/ A A 8S~ + SB) = O. 
\ 8<{> s'" 

(90c) 

In Eq. (90), A and A A are assumed to be local functions. The path integral 
associates therefore a well-defined quantum average to any cohomological 
class of BRST-invariant operators, i.e., to any gauge-invariant operator. 

An important tool in the proof of Eq. (90) is the Schwinger-Dyson 
equation 

(F::!) = -~(:~~)(-ltF. (91) 

This equation is obtained by making a shift of integration variables in the 
path integral, <{>A ~ <{>A + 8 A (see Ref. 36). An alternative, very interesting, 
derivation of the Schwinger-Dyson equation based on the BRST symmetry 
has recently been given in Ref. 37. 

From Eq. (91), it follows that 

/1..A 8S",) = 0 
\ 8<{>A 

if A A is a local function, since then 81.. A / 8<{> A is singular ( - 8 (0» and, hence, 
regularized to zero. Similarly, the use of Eqs. (91) and (83b) and 
8A/ 8<{>A8<{>~ - 8(0) = 0, combined with the change of variables in Eq. (89), 
leads to Eq. (90a). Finally, the change of variables 

<{>A ~ <{>A + (S<{>A)8, E = const. 

in 

yields 

S.S. More Careful Incorporation of the Measure 

Although dimensional regularization provides a consistent and self­
contained formalism, it is not always justified: 8(0) is not always equal to 
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zero and the local measure may be important. So one needs a formalism 
that handles more carefully the singular terms without ascribing any definite 
value to them. 

Such a formalism exists. Because of lack of space, we will not explain 
it here, but will only report the results. We refer to Refs. 6 and 13 for the 
proofs of the main statements. The proofs of the properties not given in 
Refs. 6 and 13 are left as exercises. 

The requirement of invariance of the formalism under antibracket 
canonical transformations enables one to describe the Lagrangian measure 
and the Ii-corrections to BRST-invariant operators in terms of the anti­
bracket structure. One finds that the path integral is given by 

(A\b)s~ = f [D«/>A]a ( «/>, «/>* = ~;) exp * w( «/>, «/>* = ~;), (92a) 

where 

W(<</>, «/>*) = S(<</>, «/>*) + IiM1(<</>, «/>*) + 1i2M 2(<</>, «/>*) + . .. (92b) 

a(<</>, «/>*) = A(<</>, «/>*) + lial(<</>, «/>*) + 1i2a2(<</>, «/>*) + . . . (92c) 

obey the equations 

Here, 6. is defined by 

and one has 

!( W, W) = iii 6. W 

(a, W) = ili6.a. 

e(6.) = 1, 

6.(a, f3) = (a, 6.f3) - (- )£11 (6.a, f3); 

6.(af3) = a6.f3 + (-t ll (6.a)f3 + (-til (a, f3). 

(92d) 

(92e) 

(92f) 

(92g) 

To zeroth order in Ii, the Eqs. (92d-e) reduce to (S, S) = 0 and (A, S) = o. 
The terms M l , M 2 , ••• describe the Lagrangian integration measure, while 
the terms ai, a2, ... describe the "quantum corrections" to A. 

Equation (92e) can rewritten in terms of a nilpotent operator u: 

ua == (a, W) - ili6.a, (92e) ¢::> ua = 0 

which coincides with s at zeroth order in Ii, 

u = s + O(Ii). 

(93a) 

(93b) 

(93c) 
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This operator can be thought of as a quantum deformation of s that takes 
into account the quantum fluctuations in the integration over the momenta. 
The deformation preserves nilpotency, but not the Leibnitz rule: in general, 
u does not act as a derivation: 

u( af3) "" a( uf3) + (-1)'" (ua)f3 (93d) 

[see Eq. (92g)]. The fact that u does not act as a derivation is not surprising, 
as the integration over the momenta does not preserve the product structure: 
the expectation value of a product is, in general, different from the product 
of the expectation values. 

Provided HI(d) = 0, as we will assume, one can easily show that the 
cohomology of u at ghost number zero is isomorphic with the set of 
Ii-dependent elements in HO(s). Hence, HO(u) is also isomorphic with the 
set of Ii-dependent, gauge-invariant functions. However, the correspon­
dence between HO(u) and HO(s) is not universal and depends on the 
dynamics. Given A obeying (A, S) = 0, there is no natural element in HO(u) 
associated with it. Equation (92e) alone, which just expresses "quantum 
BRST invariance," allows for the possibility of adding an independent 
gauge-invariant operator at each order in Ii. 

Similarly, given S, the Eq. (92d) for W leaves the same freedom of 
adding a new, independent, gauge-invariant term at each order in Ii. The 
principle of ERST symmetry alone determines the Lagrangian integration 
measure only up to ERST invariant terms. This appears to be the best one 
can do if one does not want to analyze the detailed structure of S", and A",. 

By making the same change of variables as in the previous section and 
using the Schwinger-Dyson equation, one can formally prove that 

(94a) 

and 

(uf3) = o. (94b) 

In particular, for A = 1, one gets again 

(94c) 

This time, however, it is not necessary to eliminate singular terms by hand 
to reach Eq. (94). So the Lagrangian path integral incorporates the quantum 
BRST cohomology and does not depend on the choice of gauge-fixing 
fermion. 

Finally, it should be stressed that the full Lagrangian integration 
measure is in general not invariant under the original BRST symmetry s 
(or s), even though the action S", and the Hamiltonian integration measure 
are. The effect of the integration over the momenta amounts in general to 
more than just replacing the momenta by their on-shell value. There are 
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quantum fluctuations, which force one to replace, in the Lagrangian path 
integral, s by 0": 

S</JA ..... O"</JA = (</JA, W) 

= s</J A + 0(1i). (95) 

It should be kept in mind, however, that the considerations of this 
section are very formal since the correction terms are, as a rule, divergent. 

It should also be observed that the possibility of adding equation-of­
motion terms to the classical observables, 

(A) 

is replaced, in the quantum theory, by the possibility of adding Schwinger­
Dyson-equation terms 

8S Ii 8A A 

ex (</J) ..... ex (</J) + A A( </J) ---4 + - ------:4. 
8</J i 8</J 

(B) 

While the first freedom does not modify the classical expectation values, 
the second freedom does not modify the quantum ones. 

That (A) and (B) are indeed incorporated in the formalism is par­
ticularly clear in the case of systems without gauge freedom, for which one 
finds that 

while 

8So Ii 8F 
O"(F(</J)</JT) = F(</J) 8</Jj +j 8</Jj, 

so that (O"(F</Jt» = 0 is just the Schwinger-Dyson equation. 
Because the last term in the right-hand side of (B) contains Ii, one can 

formally think of it as a quantum correction to (A). The freedom (A, B) 
has been implicitly fixed in the previous discussion by assuming that the 
observables A( </J ) were local in time and depended only on the independent 
initial data (and not on their time derivatives). Once this is done, the only 
unknown in ex, given A, is related to the integration over the momenta as 
analyzed in section 8.6. 

8.9. Invariance under Canonical Transformation in the Antibracket 

The canonical covariance of the formalism is straightforward and 
follows from the fact that the gauge conditions OA = 0 used to eliminate 
the antifields are in involution, (OA, OB) = o. This is a statement invariant 
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under canonical transformations. So the conditions 4>'f... = BI/I/ B4>A in one 
canonical coordinate system are equivalent to the conditions ~'f... = B(ii/ B~A 
in any other canonical coordinate system, with, in general, a different (ii. 

If one rewrites the path integral in terms of the bare variables, one 
finds the same expression, with the only exceptions being that 

(i) 1/1 is replaced by (ii, but the physical amplitudes do not depend on 1/1. 
(ii) there are some Jacobian factors that modify the integration 

measure. 

If the canonical transformation is local in space-time, the Jacobian 
factors differ from unity by terms proportional to B (0). Within the framework 
of dimensional regularization, these terms vanish. Therefore, the physical 
amplitudes take exactly the same form [Eqs. (87) and (88)] in any canonical 
basis. This shows in particular that all the representations of the gauge 
symmetry that are local in space-time and that can be obtained from one 
another by local transformations are equivalent. 12 In space-time local bases, 
the gauge-fixed action is local, the measure is set equal to one by dimensional 
regularization, and one can use the usual methods of quantum field theory. 

Nontrivial measure factors appear when one makes nonlocal changes 
of variables. To handle these, one needs to use the more careful formalism 
of section 8.8. The effect of the Jacobian is to modify the functional W 
One can show that Eq. (92d, e), with the new W, are form-invariant under 
canonical transformations. 13 From this property, it easily follows that the 
quantum averages are also invariant under canonical transformations. The 
same conclusions are thus reached as in the case of local transformations. 

An interesting application of the invariance of the path integral under 
canonical transformations is obtained by going to the Abelian representation 
[Eq. (70)]. It is easy to check that the solution [Eq. (70)] of the master 
equation obeys flS = O. Accordingly, W can be taken to differ from S by 
a function of the gauge-invariant variables Xii only. Similarly, a can also 
be assumed to depend on Xii only and then obeys (a, W) = 0, fla = O. 

To evaluate Eq. (92a) in the representation [Eq. (70)], one takes a 
gauge-fixing fermion that does not depend on the gauge-invariant variables 
Xii. With that choice, the gauge-fixed action takes the form 

So/! = SO(Xii) + So/!, (96a) 

where So/! involves only the gauge degrees of freedom and the ghosts. There 
is complete decoupling between the gauge-invariant sector and the gauge­
ghost sector. The integration over these latter variables yields a factor 
independent of Xii, and so the path integral takes the manifestly gauge­
invariant and correct form 

(A) = f [DXii]JL(xii)a(x ii ) exp i- SO(Xii) (96b) 
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for some measure ~(Xa). This gives a justification of the formalism which 
is not based on the comparison with the Hamiltonian. [The integration over 
the gauge and ghost modes may be more tricky than our discussion indicates, 
but we assume here that there is no subtlety.] Similar arguments show that 
cohomologically trivial pairs decouple with appropriate choices of '" and 
hence do not modify the path integral. 

8.10. Zinn-Justin Equation 

The antifield formalism and the master equation find their roots in 
developments due to Zinn-Justin38 in the context of the renormalization of 
Yang-Mills fields. 

Let us introduce sources jA and KA for the fields and their BRST 
variations, and let us define 

Z[jA, KA] = f [Dc/JA] expi [s( c/J, K + ::) + jAc/JA] 

= f [Dc/JA] exp-k[s.p(c/J) + KA(Sc/J A) + O(K2) + jAc/JA]. 

(97) 

The sourcesjA occur linearly, but the dependence on KA is more complicated 
unless the gauge algebra is closed. If one constructs the effective action 
f[(c/J), K] as the Legendre transform of (hi;) In Z with respect to the 
sources jA, one finds that 

(f,f)=O (98) 

as a result of the master equation (with «c/JA), K B ) = 8~). This form of the 
Ward identity was written for the first time by Zinn-Justin in the case of 
the Yang-Mills theory.38 It is useful in the analysis of the renormalization 
of the theory, where the antibracket turns out to play again an important 
role.39 

8.11. Conclusions 

We have shown that the path integral incorporates the BRST 
cohomology, and hence gauge invariance, in a satisfactory manner. This 
result (i) holds even in the open-algebra case, where the gauge-fixed BRST 
symmetry s is only nilpotent modulo the field equations of the gauge-fixed 
action and (ii) indicates that the operator BRST cohomology at ghost 
number zero is isomorphic with the set of "transverse," i.e., gauge-invariant, 
operators. 
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Our conclusions should, of course, be taken with a grain of salt. Formal 
path-integral manipulations may miss important aspects of the operator 
formalism (operator ordering) which have not been addressed at all here. 
A more careful analysis of these subtleties may reveal departures from the 
above straightforward derivations. 

Lastly, we emphasize that only infinitesimal transformations are 
covered by the BRST formalism developed here. So, in the case of a group, 
BRST invariance is equivalent to invariance under the gauge transformations 
in the connected component of the identity, but does not imply invariance 
under "large" gauge transformations. In spite of this, it should be stressed, 
as some confusion has arisen, that the BRST transformation is globally 
defined, i.e., it is well defined everywhere in 1. This is because the vector 
fields R~ representing the infinitesimal gauge transformations are also well 
defined everywhere. 

9. EXAMPLES 

9.1. Electromagnetism 

The action So is 

and is invariant under 

B.AIL = aILe. 

The gauge transformations are irreducible. 
The minimal solution of the master equation reads 

S=-!fF FILVdDx+fA*lLa CdDx 4 J1..V J.L. 

(99a) 

(99b) 

(100) 

To implement the covariant Lorentz gauge, one needs to add to Eq. (100) 
the nonminimal term 

f dDx C*b, (101) 

where C is the antighost of ghost number minus one, b is the Takanishi­
Lautrup auxiliary field, and C*, b* are the corresponding antifields. 

If one takes as the gauge fermion 

(102a) 
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and eliminates all the antifields, the path integral becomes 

(102b) 

It involves a ii-function of the gauge condition. 
If, on the other hand, one adopts 

(103a) 

one finds, after integration over b, the "Gaussian average" representation 

(103b) 

Finally, the temporal gauge is reached by sticking to the minimal 
solution and eliminating C* and A o by means of '" = 0, which is here 
permissible. One gets 

(104) 

where F!-'v, A o is set equal to zero. The antifield A *0 plays the role of the 
usual antighost. Note that'" = 0 is permissible precisely because one keeps 
the antifield A*o. If one had eliminated all the antifields in favor of the 
fields, one would have obtained S", = So, which leads to an ill-defined path 
integral. 

9.2. Abelian 2-form Gauge Field 

The action So is 

S - 1 f F F!-'VP d D 0--12 !-,vp X, 

with 

(l05a) 

(105b) 
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It is invariant under 

(lOSc) 

The gauge transformations are now reducible: if Av is equal to ave, 
Eq. (lOSc) reduces to <5AlLv = o. One needs the following minimal spectrum 
of fields and antifields: 

-3 -2 -1 o 

The minimal solution reads 

1 2 
I 

C 
(l06a) 

To mimic the electromagnetic case, one first tentatively introduces 
antighosts C;IL (for the gauge fixing of AILJ and C; (for the gauge fixing of 
CIL' CIL -+ CIL + aILe), and considers the nonminimal solution 

(l07a) 

Here, blL and b are auxiliary fields. The gauge fixing fermion 

(l07b) 

leads to 

(l07c) 

This cannot be the final answer, however, because 

(i) the integration over blL yields <5(aV A vlL ) in the path integral. This 
product of delta functions contains <5(0) because the arguments 
aV AVIL are not independent, alLav A lLv == O. 

(ii) the action [Eq. (l07c)] is gauge-invariant under C;IL -+ C;IL + aIL A. 
This formally yields a "compensating" zero in the path integral. 
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To remedy these problems, one extends the nonminimal sector by 
adding the term 

with gh( 11*) = -1, gh7T = 1, gh7T* = -2, and gh11 = O. The ghost-antighost 
spectrum is given by 

while the auxiliary field spectrum reads 

b 
/ J.L" 

b 7T 

An appropriate gauge-fixing fermion is given by 

(108a) 

The gauge-fixed action is then 

Sop = f [-bFJ.LvpFJ.LVP + !(aJ.Lc V - aVcJ.L)(aJ.LCV - aVcJ.L) 

The gauge freedom of the antighost CJ.L is now fixed. Furthermore, the 
integration over bJ.L yields S(aVAvJ.L +aJ.L11), which is sensible [aJ.L(aVAvJ.L + 
aJ.L11) = D11 no longer vanishes identically. The delta functions enforce 
D11 = 0, i.e., 11 = 0, and hence also aV AvJ.L = O. The arguments of the delta 
functions become independent with the introduction of 11 ]. Equation (1 08b) 
has been derived by various authors along various lines. 6,40 

To reach a Gaussian average representation, one adds to Eq. (t08a) 
the term 

(109) 

which is linear in the auxiliary fields. 
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9.3. Remark on the Gribov Ambiguity 

As the previous examples indicate, the path integral contains a delta 
function of the gauge conditions when the gauge-fixing fermion", does not 
depend on the auxiliary fields b. The gauge conditions are just the coefficients 
of the anti ghosts in "'. 

The class of available'" is much larger, however. For more complicated 
"', the path integral does not reduce to an integral in a definite gauge. For 
instance, gauge-fixing fermions that are linear in the auxiliary fields lead 
to a Gaussian average over different gauges.* One virtue of the BRST 
formalism is that it incorporates these more general '" from the very 
beginning since there is no a priori restriction on the choice of '" except 
that '" should define an action without gauge invariance through S", = 

S (4), 4> * = 8",/ 84> ). 
The important cohomological and invariance features of the BRST 

formalism do not depend on the existence of global sections transverse to 
the gauge orbits. We believe that this is a definite advantage for theories 
afflicted by the Gribov ambiguity, for which no such section exists. As the 
BRST construction nevertheless goes through in that case, the actions S", 
appear to be still the correct objects to be path-integrated. The only require­
ment on '" is that S", be propagating. This may force some nontrivial 
dependence of'" on the auxiliary fields. It would be of interest to completely 
settle this issue. 

The global significance of the BRST symmetry for systems with Gribov 
horizons has also been pointed out along different lines in Ref. 41. That 
the Gribov ambiguity does not signal a true physical pathology is well 
known and has been observed earlier. Attempts to overcome the Gribov 
problem in the path integrals may be found in Ref. 42. These attempts are 
consistent with the BRST approach. 
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APPENDIX: ABELIANIZATION OF THE GAUGE TRANSFORMATIONS 

We will prove the Abelianization theorem in the finite-dimensional 
case where functional difficulties are absent. Let S(qi) be a function of 

* In spite of this, we still call '" the gauge-fixing fermion, as its purpose is to yield a propagating 
action without gauge invariance. 
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qi ERn. Assume that the equations as/aqi = 0 are degenerate. Then 
as/ aqi = 0 defines a manifold l: of dimension m, with 0 < m :5 n. The gauge 
transformations are 

er = 1, ... , m, (A.t) 

where the matrix R~(q) is of rank m. 
Without loss of generality, we can assume that the coordinates qi = 

(qa, q") are locally such that R~ is invertible. In that case, q" = q" are 
good gauge conditions and the equations as / aq" = 0 are consequences of 
the equations as/aqa = 0, 

as a as 
-", = l"'-a' 
aq aq 

(A.2) 

By the regularity condition put on the action S, the functions as/ aqa 
can be used as first coordinates in the vicinity of as / aqi = O. This means 
that the matrix Tia == a/aqi(as/aqa) at the stationary point is of rank n - m: 

7;af.La = 0 => f.La = O. 

But this condition implies in tum that Tab is invertible, because T",a can be 
expressed in terms of Tab by means of Eq. (A.2) at as/aqi = O. 

If one fixes the gauge variables q"', the stationary problem as/ aqa = 0 
determines qa uniquely as a function of q"', qa = Qa(q"'). By the above 
remark, the critical point Qa(q"') is furthermore nondegenerate. Thus, using 
Morse's lemma, one can make a q'" -dependent, invertible, smooth change 
of coordinates 

such that S takes the canonical form 

'T/ab = diag(±1) 

in the vicinity of the critical point x a = o. 
The change of variables qa ~ x a can be extended to qi ~ x a, q"'. In 

the new coordinates, S does not depend on q"'. It is thus invariant under 
the Abelian shifts q'" ~ q'" + e"'. This exhausts the gauge freedom, as 
as/ aqi = 0 completely determines xa. The Abelianization theorem is thereby 
proven. 

The theorem is easily extended to the case of an action S(qi, erA) that 
depends not only on the dynamical variables qi, but also on unvaried extra 
variables erA. 
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An alternative proof of the Abelianization theorem is given in Refs. 
12 and 13. 
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Chapter 7 

Combinatorics of Mapping Class Groups 
and Matrix Integration 

C. Itzykson and 1. B. Zuber 

1. INTRODUCTION 

In the mid-seventies 't Hooft introduced a clever device to keep track 
of SU(N)-group theoretic factors in the perturbative expansion of gauge 
field models. I The goal was to find an approximation in the large N (planar) 
limit. A similar approximation for vector-valued fields singles out one-loop 
graphs, easily handled, and provides an interesting model in a number of 
problems-for instance, critical phenomena. Alas, in the case of gauge 
theories apart from phenomenological applications, the scheme was not 
very successful, since the leading terms still involve the computation of 
infinitely many perturbative terms. The story is recorded in a 1979 report 
by S. Coleman2 entitled "1/ N." 

C. ITZYKSON AND 1. B. ZUBER. Service de Physique Theorique de Saclay, Laboratoire de 
I'Institut de Recherche Fondamentale du Commissariat a l'Energie Atomique, F·91191 Gif-sur­
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Plenum Press, New York, 1992. 
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What 't Hooft had shown was that after insertion of an appropriate 
factor of N in front of a path-integral action, vertices carry a factor N, 
propagators a factor 1/ N. To follow matrix indices (of gauge fields) he 
found it convenient to represent propagators as oppositely oriented double 
lines, indicating the flow of indices and connected at vertices to cyclically 
ordered hooks (representing traces of powers of the field), in such a way 
that they close on F-index loops, each one responsible for a factor N by 
summation over a dummy index. For a vacuum-connected graph with V 
vertices, L propagators (or links), and F index loops, the total power of N 
is therefore 

On the other hand, we can think of this collection of V vertices, L links, 
and F loops with obvious incidence relations as a two-dimensional complex 
that inherits a consistent orientation from the one on loops and is connected 
by definition. This leads to an identification of the combination V - L + F 
with the Euler characteristic X of an orientable compact surface of genus 
g such that X = 2 - 2g. Because X takes its maximal value 2 for the spherical 
topology (or the planar, with an added point at infinity), the leading term 
was called the "planar" approximation, meaning that the corresponding 
"fat graphs" can be drawn on a sheet of paper without crossings. 

Koplik, Neveu, and Nussinov3 than suggested a drastic reduction to a 
zero-dimensional toy model (simple integrals) in order to understand the 
purely combinatorial aspects, using techniques from graph theory. By 1978, 
in a collaboration which included first E. Brezin and G. Parisi then D. 
Bessis5 we investigated the zero- and one-dimensional problems at leading 
order, using saddle-point methods, then the various subleading corrections 
with the help of orthogonal polynomials as suggested by Bessis. One must 
admit that at the time the physical motivation was slim, except that we 
found the leading approximation quite accurate in simple quantum­
mechanical problems where it relates to the semiclassical approximation. 

Interest was revived in these questions in the mid-eighties when it was 
realized by David, Kazakov, and Frohlich,6 among others, that the above 
techniques are very effective in studying two-dimensional field (or statistical) 
models coupled to a random geometry in the context of a discretized 
regularized version, then looking at fixed points where a continuous 
geometry is restored. This is then called "quantum gravity" and generalizes 
to coupled analogues. At first the study was performed at fixed genus; then 
it was recently extended to a resummation over all genera with surprising 
and exciting new results by Brezin and Kazakov,7 Gross and Migdal,8 and 
Douglas and Shenker.9 This resummation has relied up to now on the use 
of orthogonal polynomial methods and a nontrivial scaling limit. This 
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subject, now widely studied by various groups, will not be pursued here. 
It is noticeable that in a different mathematical context PennerIO used matrix 
integration to illuminate a computation performed by Harer and Zagierll 
pertaining to the topological properties of the mapping class group of 
Riemann surfaces. 

Here we would like to survey some of the combinatorics involved in 
these calculations (they are dual to each other in a sense that will be made 
precise as we proceed) and point out a number of connections with the 
representation theory oflinear and permutation groups. These might suggest 
further developments. 

We should not give the reader the false impression that we are conver­
sant with algebraic topology. For these aspects we rely on the original 
articles of Harer and Zagier,l1 Penner,t° and Ivanov12 quoted in the 
references. 

Briefly stated, the mapping class group is an infinite discrete group 
describing the classes of (continuous or differentiable) one-to-one maps of 
a manifold onto itself up to equivalence under those homotopic (con­
tinuously deformable) to the identity. A familiar example is the modular 
group for two-dimensional genus-one tori. These groups are essential in 
defining fundamental domains of integration over moduli spaces (of com­
plex structures) in perturbative string theories. Their explicit form is still 
poorly understood in general so that even the topology of these fundamental 
domains is not easy to describe. This justifies an interest in the most global 
aspects, an example being the virtual Euler characteristic. The reason for 
the terminology will be commented on below. 

Returning to matrix integration, it will be shown that one can keep 
track of perturbative diagrams by coding them using pairs of permutations 
up to overall conjugacy. This idea may have antecedents in the literature 
on graphs. We learnt it from J. M. Drouffe, who presented it in an appendix 
in our joint paper with D. Bessis (which can be consulted for general 
background).5 This technique enables one to exhibit in a neat way the 
Poincare duality. On the other hand the (Frobenius) duality between the 
linear and the permutation groups is at the heart of the evaluation of some 
integrals. It would certainly be interesting to develop q-analogs of the 
integration scheme. We mention some work of Andrews and Onofri in this 
direction. 13 

Hermitian matrices, with which we deal exclusively, can be considered 
as spanning the Lie algebra of the unitary group. With some adaptation, 
the calculations presented below could be extended to any Lie algebra of 
a compact Lie group. For orthogonal and symplectic groups, one can 
presumably develop a topological interpretation (involving possibly non­
orientable surfaces). 
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2. MATRIX INTEGRATION REVISITED 

We will deal with N x N Hermitian matrices denoted generically M 
and depending therefore on N 2 real parameters. We set 

dM = IT dMii IT d Re Mij d 1m Mij 
i i<j 

for the Lebesgue measure on the (linear) manifold of these matrices and 
define the normalized Gaussian measure 

dM exp - !Tr M2 
DM = -:---......!...----'':----= J dM exp - !Tr M 2 ' 

Both measures are invariant under the adjoint action of the unitary group, 
M ~ UMU-t, UU+ = n. As a result we are mostly interested in averages 
over functions of M invariant under this action, i.e., which are symmetric 
functions of the eigenvalues of M. 

For l! a finite sequence V h V2, ••• ,of nonnegative integers, we define 

The sequence l! can be identified with a partition of the integer L kvk, the 
overall degree of homogeneity in M of t!,(M). Let us first compute the 
Gaussian average 

(2.1) 

This vanishes unless L kVk is an even integer denoted by 2n. Using Wick's 
theorem, or generating function, 

f D(M) e TRJM = e!TrJ2, 

with J an N x N Hermitian matrix, we can compute Eq. (2.1) as a sum of 
contributions pertaining to Feynman graphs with double propagators and 
vertices, as in Fig. 1. Each factor Tr Mk corresponds to a valence k vertex. 

I 
j 

I 
k 

Figure l. Double-line representation of a propagator and of a vertex Tr M3. 
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Propagators arise from the contraction 
r------1 

MM == (MijMkl > = [)i/[)jk' 

Each graph factors into connected components, labelled by an index a. The 
V = I Va = I "k vertices and L = I La = 1 I kvk = n links thus correspond 
to a set of orientable surfaces with F = I Fa faces (or index loops) and 
yield a term N F = ITa NFa in the computation of (t1'>' Each component has 
genus ga given by 2 - 2ga = Va - La + Fa. To sum all these contributions, 
we code the graphs as follows: Cut the n propagators in 2n hooks attached 
to the vertices. Label them arbitrarily from 1 to 2n. Define two permutations 
u and l' on 2n letters as follows: Take the hook labelled j. One of its double 
lines directed to a vertex re-emerges in the hook labelled u(j). This defines 
a permutation u whose conjugacy class codes the vertices and is 
1 v'2 v2 ... k Vk • •• ,hence independent of the arbitrary labelling of the vertices. 
We identify the conjugacy class [u] with the partition !!, where brackets 
around a permutation denote its class. Thus if Sp is the permutation group 
on p letters, [Sp] its set of conjugacy classes, we have 

[u] = !!. 

On the other hand the contractions joining two hooks (attached to distinct 
or identical vertices) define a second permutation T. Clearly 1'2 = 1, and l' 

belongs to the class 2" (n cycles of length two). The number of cycles in 
UT is the number of index loops or faces, by the very definition of u and 
T. We write 

Thus if u is a fixed representative of the class !!, we find 

(t1'> = I In NLlLk 
ILE[S2nl TE[2 1 
- [UTl=1cL 

where in the first expression the sum over l' represents the set of all 
contractions and is split into contributions according to the corresponding 
power of N. In other words it simply states the Feynman rules in an abstract 
but efficient way. As an example, consider the average of Tr M4 which is 
coded as " = {!!k = [)4.k}' This is 

(Tr M4> = Tr MilMM' + Tr 'MMM M' + Tr 'MMM'M = N 3 + N 3 + N. 
, ! 

On the other hand, we take u as the cyclic permutation on four letters. We 
find three possible permutations of the type 1', as shown in the schematic, 
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and from the above formula we get the expected result 2N3 + N. 

'l!l. 
. ,_. 

·'JZl m T J: •. •••• 

XX '% )% a 
I~ \ \ . \ .. •••• . . ~ . 

[In] (l?(2) (1)2(2) (4) 

N 3 N 3 N 

We can now make use of the characters of the permutation group S2n 
indexed by Young tableaux (denoted Y) also in correspondence with 
partitions (of 2n). Let I[ u]1 be the number of elements in the class [u], 
which we also identify with II, then 

We write X Y ([ u]) for the value of the (real, integral) character pertaining 
to the representation Y evaluated on the class [u]. The orthogonality and 
completeness relations on characters read 

Y Y' YY' xY([u]) 
I X ([T])X ([UT]) = (2n)!8' Y([ 2n]) 

TES2n X 1 

Y y, (2n)! t X ([ u])x ([ u ]) = I[ u ]1 8[CTl.[CT'l, 

where X Y ([ 12n]) is the dimension of the representation Y. Thus, using the 
second of these relations twice, 

We can now perform the free sum over T, and obtain 

(t!!) = I (t!!)J.' , (2.2a) 
/L E [S2nl -

(tv)/L = 1[2n ]1 I X Y ([2 n])x Y (J-L)X Y (!') 
BLJ.'kl~1 (2n)!y xY([en]) 

(2.2b) 

Thus (tv) can be obtained as a sum of contributions over classes f..L, NLJ.'k 
may be- interpreted as t/L(])' and 1[2n ]l/ (2n)! is 1/2nn!. Equation (2.2b) 
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exhibits a symmetry in the interchange J.t ~ p reflecting the (Poincare) 
duality between vertices and faces of the cell decompositions of surfaces. 
Note that L J.tk (number of faces) somehow plays the role of area, and In N 
plays the role of its conjugate variable. As a check of Eq. (2.2) setting 
p = [en], we get the obvious result 

«(Tr M?n) = N n(2n - 1)!!, 

obtained from all possible pairings ofvalence-1 vertices. On the other hand, 
the highest possible power N 2n only occurs, with coefficient unity, in 
«(Tr M2)") corresponding to the contractions of the various M' under each 
trace. Apart from these two extreme cases, the above sum remains difficult 
to write in closed form, although perhaps one could develop a generating 
function. As a final remark we observe that in spite of the appearance of 
denominators (t,,) I'- is, from its very definition an integer for each N; thus 
the coefficient of NII'-k is an integer (a positive one). A fortiori (t,,) is an 
integer (for each integer N). 

Let now the characters of the linear group GL(N) associated with the 
same set of Young tableaux (with 2n boxes) be denoted ch y. As they are 
polynomials in the matrix elements, they can be naturally extended to any 
matrix M, so that it makes sense to consider chy(M). We have then the 
beautiful Frobenius reciprocity relation 

t,,(M) = L chy(M)X y (p). (2.3a) 
y 

Or, by inverting this relation, 

(2.3b) 

Thus with the help of (2.2) we can obtain the average of a character trough 

Summing over p and using the orthogonality of characters of S2", this is 

(chy) = /[2"]/ X}[22"Y L XY(J.t)NIl'-k/J.t/ 
X ([1 ]) I'E[S2nl (2n)! 

(2.4) 

Since, as was noted above, t,,(]) = NII'-\ the last sum is identified from Eq. 
(2.3b) as chy(]), the dimension of the Y-representation of the linear group. 
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Using 1[2n ]1 = (2n -1)!!, we conclude that 

( h) ( )" Y([ n]) ch y(]) 
cy=2n-l··x 2 ·xY([enD' (2.5a) 

which admits the easy generalization 

(chy(MA)M = (2n -1)!!X y ([2n D XC:(~~~~)' (2.5b) 

Each factor on the right-hand side of Eq. (2.5a) is clearly identified: 
(2n - 1)!! is the number of contractions in a homogeneous polynomial in 
M of degree I YI = 2n; next, X y ([2 n D appears as the signature of Gaussian 
averages; finally the last term is the ratio of the dimensions of the representa­
tions of the linear and permutation groups corresponding to Y. As far as 
we can tell, Eq. (2.5) is new. It should admit generalizations for other 
compact Lie groups. Table I gives (chy(M» for 2n = 2 and 4. 

The reader will note that for positive integral N these values are always 
integers (sometimes negative). This is true in general, and we digress to 
give an argument communicated by G. Segal. I4 

The set of characters chy(M) attached to Young tableaux with a given 
number I YI = 2n of boxes forms a basis of symmetric functions of degree 
2n of the eigenvalues AI> A2, ... , AN' Another basis, attached to partition 
!! = 1 v22v2 ... 2n V2n of 2n, is provided by 

m_v = ~ Al Al ... Al A2 ... A2 ... 
t... 11 '2 IV 1 11 lV2 ~ 

1~il<i2<"'<ivl$N 

lSi!<h<:"<jv2$N 

Table I. Values of (chy(M» for 2n = 2 and 4 

2n y (chy) 

(2) 
N(N + 1) 

2 
2 

W) N(N -1) 

2 

(4) 
N(N + I)(N + 2)(N + 3) 

8 
4 

(3)(1) 
-N(N2 -1)(N + 2) 

8 

(2)2 
N 2(N2 -1) 

4 

(2)(1)2 
-N(N2 -1)(N - 2) 

8 

(1)4 
N(N - I)(N - 2)(N - 3) 

8 
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It is known that the matrix that connect these two bases and its inverse 
both have integer entries. The integrality of the (chy) is thus equivalent to 
the integrality of the (m!'). 

A generating function for the m!'(A) (for Ipi bounded by some r) is 
provided by 

r N 

det L tkMk = II (1 + tlAi + t2 Ai + ... + ttA~) 
o i~1 

where t!' = r~lt~2 .... Using Hermite monic orthogonal polynomials (see 
section 3), it is easy to see that 

in terms of the N x N principal minor of the (infinite) Jacobi matrix. 

m 

This is a polynomial in t' with integer coefficients, and the result follows. 
Some topological application of matrix integration, to be discussed 

below, requires the computation of 

(t[2n]) == Tr M2n) = f DM Tr M2n. 

In terms of a graphical expansion, this average involves only (connected) 
graphs with a single vertex which we call marguerite graphs. According to 
the previous analysis these have 1 vertex, n links, and a variable number 
of faces appearing in the power N F = Nl. lL ,. Correspondingly, the surface 
will have genus g given by 2 - 2g = 1 + F - n. Thus we can regard the 
factor N F to be N n+I- 2g, with g:::; nj2, since the power of N is at least 1. 
Let Eg(n) be the number of these graphs for given g, so that 

(t[2n]) = L Nn+I-2gEg(n) = Lx Y ([2n])(ch y ). 
2gsn Y 

According to Eq. (2.5a), this is 

_ _" x Y ([2n])x Y ([2n]) 
(t[2n])-(2n l) .. ~ XY([en]) ch y (]). 

A drastic simplification occurs here, since for X y ([2n]) to be nonzero, the 
corresponding Young tableau, which we denote Yp,q, must belong to a 
subclass with at most one row of length larger than one, equal to 1 + q ~ 1; 
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thus Y == (1 + q)(1)P, with 1 + q + p = 2n. Furthermore, 

X Yp,q([2n]) = (-I)P 

{
p even 

X Yp,q([2n ]) = 

podd 

(_1)(p/2 l (n -1) 
p/2 

(-1)(P+I)/2( n-l ) 
(p -1)/2 

p + q + 1 = 2n. 

The constraint p + 1 :::; N is automatically taken into account by the vanish­
ing of the combinatorial factor. Thus, splitting the sum over p into even 
and odd parts, 

(1[2n]> = nIl (_1)p(n - 1) 
(2n -1)!! p=o p 

X [( N + 2~: 2p - 1) + ( N - 2n2: 2p - 2) ] 
= nIl (-I)P(n -1) 

p=o p 
xl dx [(1 + x)N+2n-2p-I + (1 + x)N+2n-2P-2] 

j 2i7T XN- 2p XN 2p I 

= l~ (1 + x)N+2n-I[1 +_x_] nt (_x_)2P(_I)p(n -1) 
j 2i7T XN 1 + X p=o 1 + X p 

=l dx 1+2X(1+X)N+2n-I[I_ X2 ]n-I 
j2i7T l+x XN (1+X)2 

= l dx (1 + 2x)"(1 + X)N 
j 2i7T XN 

=~f 2~~ yL2G~;)N, 
where in the last step we changed variable, setting y = 1/(1 + 2x). One 
concludes therefore that 

(1[2n]> = L N n+i-2g eg (n) 
1~g~n/2 

= (2n _1)!!.!.l ~y ~(1 + y)N. 
2 j 2m yn 2 1 - Y 

(2.6) 

The right-hand side, which is !(2n - 1)!! times the coefficient of yn+1 in the 
expansion of (1 + y)/(1 - y)N at the origin is a polynomial in N of degree 
n - 1 with integral coefficients, where N can now be considered as an 
arbitrary parameter. 
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3. HARMONIC OSCILLATOR AND FERMIONS 

Let us give an alternative derivation of Eq. (2.6). Consider the generat­
ing function 

T(x) = 1 + 2 I x n + 1 (t[2n]) . 
n~O (2n -1)!! 

Setting 1/ (2n - 1)!! = 2nn!/ (2n)!, we use Euler's representation of n! to 
write for x positive, 

T(x) = 1 +2foo ydye-y2/2X I y2n(t[2n]) 
o n~O (2n)! 

= 1 +2 too ydye-(-y2/2X)(TreyM ), 

where in the last step we noticed that odd powers of M have zero average. 
The Gaussian average of a class function, i.e., such thatf(M) = f( UMU- I ) 

for U unitary, can be expressed as an average over the eigenvalues 
Ao,"" AN-I of M arranged in a diagonal matrix A, in the form 

I NIT dAk e-~'\~a2(A)f(A) 
(f(M) = k-:_I ' I Do dAk e-~'\~a2(A) 

(3.1) 

where 

is a Vandermonde determinant. This brings us to a second theme, free 
fermions, and, in the present case, the harmonic oscillator eigenfunctions. 
Indeed, let P/(A) stand for a monic polynomial of degree I, P/(A) = A/ + .... 
Then 

a(A) = det P/(Ak)lo,,;k./,,;N-I' 

Choose the p/ orthogonal with respect to the measure dA e-,\2/2 , i.e., 

I dA e-A2/ 2 p/(A)Pk(A) = 0 if I .,t:. k. 

Then, by expanding determinants, 

(Tr eYM ) = X-I I )I dAk e-,\i!2Po(Ao) ... PN-I(AN-I)(:~~ eY,\,) 

x I (-1)~Po(A~o)'" PN-I(A~N_)' 
~ESN 
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where the normalization factor is 

For each term in the sum L:~l eY\ the orthogonality property forces the 
permutation (J} to be the identity, and therefore 

yM _ N-l J dA e-A2/2+YA P;(A) 

(Tr e ) - s~o J dA e-A2/ 2 P;(A) 

The reader will recognize a standard expression for the average of a ]-body 
operator in the theory of an N-fermion system. Should one wish to do so, 
one could generalize the following discussion to various many-body 
operators, therefore obtaining generating functions for other averages (tj!). 
We shall refrain from doing so here. 

Returning to T(x), we see that the calculation is reduced to a single 
harmonic oscillator, 

T(x)=1+2 too ydye-y2/ 2X X: (sleyAls), 

where we have used the bra-ket notation of quantum mechanics 

e-A2/ 2 PAA) 
(Als) = [J dA e-A2/2 p~(A)]1/2· 

We also introduce creation and annihilation operators 

A a 
a=-+-

2 aA 
t A a 

a =---
2 aA 

The vacuum state Is = 0) is such that alO) = 0 and 

(at)' 
Is) =-10). 

v'S1 

Let us once more compute a generating function for an arbitrary complex v 

00 (vv)' 
G(y, v) = L -,-(sleYAls) 

S~O s. 

Setting z = eillv, this is 

G(y, v) = r'" :; (Ole za ey(a+at ) ezatIO), 
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and from the commutation rules 

G(y, v) = r 21T dO ey2/2Hz+y(zH) 
Jo 27T 

= ey2/2+VV L -y-- --(veill + ve-ill?n 00 2n 121T dO 

n~O (2n)! 0 27T 

Y2/2+VV; 2n (vv)" =e ~ y --
n~O n!2 

We therefore have 

~ (vV)'2 roo ydy -y2/2X(s!e"Y!s) 
S~O s! Jo 

~ ~(vv)n(~)n eVV = ~ evv(I+X)/(I-X) 
n~O n! 1 - x 1 - x 

= ~ ~ (VV)'(1 + x)s. 
l-xs~o s! I-x 

We conclude that 

100 2 2x (1 + x)S 2 y dy e-Y /2x(s!e"Y!s) = -- --
o I-x I-x 

and 

T(x) = 1 + 2 L x n+1 (l[2n]> 
n~O (2n - I)!! 

= 1 + Nt ~ ( 1 + x) S = (1 + x) N, 

S~O 1 - x 1 - x 1 - x 

which agrees with our previous result, Eq. (2.6). 

4. THE VIRTUAL EULER CHARACTERISTIC OF THE 
MAPPING CLASS GROUP 

147 

(3.2) 

Given a closed orientable connected surface of genus g, one considers 
the smooth (i.e., continuous-possibly with continuous derivatives; this is 
not what matters here) one-to-one orientation-preserving maps. These form 
a group which possesses an invariant subgroup of these maps homotopic 
to the identity, with the discrete mapping class group as the factor group. 
The one-to-one maps act on the homologies, in particular on the group H l , 
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the only nontrivial one. Given a set of generators of HI, the mapping class 
group transforms them linearly preserving the intersection matrix, i.e., as 
Sp(2g, Z) transformations, and it is asserted that this homomorphism is 
surjective. In the case g = 1, with Sp(2, Z) - SL(2, Z) this homomorphism 
is an isomorphism so that the mapping class group is a double covering of 
the standard modular group PSL(2, Z). The modular group acts on the ratio 
7 of two independent periods of elliptic curves, considered as a complex 
variable with positive imaginary part. The quotient of the upper half plane 
by PSL(2, Z) is depicted by a fundamental region which is a quadrangle 
1m 7 > 0, 171 2: 1, IRe 7 :::; 1 with the identification of sides through 7 ~ 7 + 1 
and 7 ~ _7-1• This identification leads to an orbifold, topologically a sphere 
with a point (at infinity) deleted and Euler characteristic 1 (an oriented 
surface obtained from the sphere by gluing g handles and deleting s disks 
or s points has Euler characteristic 2 - 2g - s). 

Although one can introduce the modular invariant function j ( 7) map­
ping the upper half 7-plane mod PSL(2, Z) one-to-one on the complex 
plane to depict the situation, the smooth differentiable structure in the 
j-plane is not equivalent to the one in the 7-plane at the preimages of 
j = 1728 and j = 0 (7 = J=T, v=T mod PSL(2, Z), respectively). This is 
due to modular transformations with fixed points (7' = -7-\ 7' = 
-( 7 + 1)-1). However there exist subgroups of finite index acting without 
fixed points in the upper half plane. Such is the case of the modular subgroup 
of level 2, with index 6. If the elliptic curve is represented as y2 = P4(X), 
where the right-hand side is a polynomial of degree four in x, this modular 
subgroup leaves invariant the cross ratio of the four roots of this polynomial. 
This cross ratio is defined only up to permutation of the roots under which 
it assumes six values distinct from 0, 1, and 00 (which would correspond 
to a coincidence of two roots and hence depict degeneracies of the topologi­
cal torus). At these exceptional values, j is infinite. Thus we have a sixfold 
smooth covering of the modular space as a sphere with three punctures. 
This suggests that we define the virtual (or orbifold) Euler characteristic of 
the modular group of genus 1 as ~X(S2 - {O, 1, oo}) = -~. However, this is 
not quite what is required, since PSL(2, Z) is only a factor group of SL(2, Z), 
being covered twice. This is responsible for an extra division by a factor 2, 
so with X the virtual Euler characteristic, one has 

X(SL(2, Z» = --6. (4.1) 

This slightly paradoxical result is what is generalizable to arbitrary genus 
and arbitrary number of punctures. One looks for a contractible space where 
a subgroup of finite index of the corresponding mapping class group acts 
without fixed points, computes the ordinary Euler characteristics of the 
corresponding factor space, and divides by the index of the subgroup. One 
shows that the construction is independent of the various arbitrary choices. 
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However, before proceeding to the general case, we would like, pedes­
trian physicists as some of us are, to rederive the -~ for PSL(2, Z) in another, 
more direct (but equivalent) way, exposing perhaps some "naivete" on our 
part. As is well known, the upper half T-plane can be endowed naturally 
with an SL(2, IR) invariant metric of constant negative curvature, say -1. 
A geodesic triangle (meaning a triangle with arcs of geodesics as sides) has 
area ( Tr - a - {3 - y) if a, {3, y denote the (interior) angles at the vertices. 
The modular fundamental domain consists of two such triangles, each one 
with angles 0, Tr /2, and Tr /3. On the other hand, for curvature -1 the 
Gauss-Bonnet formula reads 

1 x=- L (a+{3+y-Tr) 
2 Tr triangles 

for a decomposition into geodesic triangles (the formula as it stands also 
holds for the sphere of curvature + 1, where it correctly yields X = 2). In 
the present case, a blind application yields 

1 ( Tr Tr ) 1 X(PSL(2 Z))=2·- O+-+--Tr =--. 
, 2Tr 2 3 6 

Of course the use of the formula does not yield the true Euler characteristic 
(+ 1), but instead the virtual one because of the orbifold conical points 
where the differential structure is not smooth. Should one, however, similarly 
dissect the sixfold covering discussed above into twelve similar triangles, 
one would get the correct integral result -1. So we see on this "trivial" 
example why and how it is much easier to compute virtual characteristics. 
As emphasized by Penner10 and as implicitly recognized by Harer and 
Zagierll this is naturally done in the context of matrix integration. 

In the sequel, one denotes r ~ the mapping class group for genus g and 
1 puncture (r~ for s punctures, r g == r~). It acts on the space of conformal 
equivalence classes of such surfaces but also on cellular complexes defined 
by arc decompositions of such a surface. A clever choice and some topologi­
cal analysis lead Harer and Zagierll to a specific construction, where the 
number of (6g - 3 - n)-dimensional cells weighted by the inverse of the 
order of their isotropy group is Ag(n)/2n and the virtual characteristic is 
obtained as the finite sum 

x(n) = L (_1)n+l Ag(n). 
2g",n"'6g-3 2n 

(4.2) 

To define Ag(n), a combinatorial factor, one proceeds by intermediate 
steps as follows: Consider a 2n-gon, label the sides, and identify them pair­
wise to get an orientable surface of genus g. The number of distinct ways 
to do so is called Eg(n). Note that after such an identification one gets a 
connected graph of a matrix theory with V vertices (of varying valence), n 
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links (or propagators), and 1 face (or index loop) such that V - n + 1 = 

2 - 2g; hence n + 1 - 2g > O. So 8 g (n) is the number of such graphs. Each 
of these graphs may contain an arbitrary number of vertices of valence 1 
(or "tadpoles"). Let JLg(n) the number of graphs defined as before but 
without tadpoles. Since tadpoles may be attached to any of the two "lips" 
of a propagator, one clearly has 

8 g(n) = ~ (~)JLg(n - m). (4.3) 

Furthermore graphs without tadpoles may still contain vertices of valence 
2 of "self-energy" type. Let Ag(n) denote the number of graphs with 
n-propagators of genus g and without valence 1 or 2 vertices. One has 

JLg(n) ~ (;)Ag(n - m). (4.4) 

In Ag(n) we count only graphs with vertices of valence k larger than or 
equal to 3. For a given graph, let Vk denote their number. We have 

V = L Vk = n + 1 - 2g 
k",,3 

Therefore 2n - 3 V is a nonnegative integer, showing that Ag(n) is non­
vanishing only if n satisfies the inequalities 

2g :s n :s 6g - 3 

as claimed in Eq. (4.2). 
When g is equal to 1, the base point is irrelevant; f: - fl. In the 

computation of AI(n), n can take only the values 2 and 3, and one readily 
finds a unique graph in each case: AI(2) = 1, AI(3) = 1. Therefore, again, 

X(SL(2, Z)) = X(f l ) = -! + ~ = --b. 
As g increases, the simple enumeration needed to apply (4.2) becomes 

an impossible task and one requires more effective tools. Two techniques 
have been developed. In the first one computes 8 g (n) and then uses Eqs. 
(4.3) and (4.4) to get Ag (n) and then x. This is the method followed by 
Harer and Zagier, II which we shall reproduce in this section. The second 
procedure, due to Penner,1O leads at once to X(f;). It will be explained in 
the following section. 

To obtain 8 g (n), one observes that instead of enumerating the graphs 
obtained by the above gluing procedure, one can exchange the roles of 
faces and vertices using duality. For this purpose one chooses a point inside 
the 2n-gon and draws a (flat) 2n-vertex with 2n hooks. The latter, extended 
to the sides of the polygon, generate for each pairwise identification of 
these sides a marguerite graph as exemplified in Fig. 2. 
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Figure 2. (a) Pairwise identification of a 2n-gon, (b) associated marguerite graph, (c) initial 
graph obtained by gluing the sides. Graphs (b) and (c) are dual. 

The marguerite graph has a 1 vertex, n links, and a number of faces 
F = n + 1 - 2g. Moreover, each such graph arises from the Gaussian 
average of Tr MZn. Using Eq. (2.6), we have for fixed n 

Thus 

(t[Zn]> = L N n+ 1- Zgsg(n) 
2g~n 

= (2n -1)!! 1. ~y !+ (1 + y)N. 
2 j 2m y 2 1 - y 

(t[2]> = N 2 

(t[4]> = 2N3 + N 

(t[6]> = 5N4 + 10N2 

(t[8]> = 14N5 + 70N3 + 21N 

(t[10]> = 42N6 + 420N4 + 483N2 .... 

As a side remark we note the interpretation of (t[2n]> as (2n - 1)!! times the 
sum of the dimensions of the irreducible representations of the linear groups 
in N variables with Young tableaux of n + 1 boxes and at most one line 
of length larger than one, so that 

N= 1 

N=2 

N=3 

(t[2n]> = (2n - 1)!! 

(t[2n]> = (2n -1)!!2(n + 1) 

(t[2n]> = (2n -1)!!(2n2+4n + 3)···. 

One can, moreover, obtain sg(n) as follows: In the above integral 
expression for (t[2n]>, one sets 

t 
Y = tanh-

2 
1 + Y t --=e 
l-y , 
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and integrates by parts with the result 

'\' () n-Zg _ (2n)! f dt e Nt 

J:. Sg n N - n+l n+l 
O'""g,""n/Z (n + 1)!2 2i7T (tanh t/2) 

(2n)! I dt ( t/2 )n+l Nt 

= (n + 1)! j 2i7Ttn+1 tanh t/2 e 

Upon expanding e Nt up to order tn, one finds, for the right-hand side: 

(2n)! -r. Nn-p I dt ( t/2 )n+l 
(n + 1)! p=O (n - p)! j 2i7Tt P+1 tanh t/2 

Noticing that (t/2)/tanh t/2 is even in t, this yields 

(2n)! I dt ( t/2 )n+l 
Sg(n) = (n + 1)!(n - 2g)! j 2i7TtZg+1 tanh t/2 (4.5) 

The Bernouilli numbers are defined through 

(4.6a) 

The odd ones all vanish except BJ, and 

Bo = 1, B4 = --10 ... , 
(4.6b) 

Therefore 

( t/2) 00 t Zn 

tanh t/2 = n~o BZn (2n)!' 
(4.7) 

and 

_ (2n)! . Zg. ( t/2 )n+l 
sg(n) - ( ) ( ) coefficIent of t III / . 

n + 1 ! n - 2g ! tanh t 2 
(4.8) 

In order to contrast it with the direct method of Penner,1O we now copy the 
remaining calculation of Harer and Zagier.ll Define the three generating 
functions in n with reference to Eqs. (4.3) and (4.4): 

Eg(x) = L sg(n)xn 
n;;"O 

Mg(x) = L JLg(n)x n (4.9) 
n~O 

Lg(x) = L Ag(n)xn. 
n;;"O 
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One is in fact interested in Lg(x), which is a polynomial in x. We find 
successively, for Ixl small enough, 

~ () m f du (1 + u)2m 
L.. JLg m x - 2 

m"'O 2i1T U - x(1 + U) 

= 1 M (1 -2x - J1=4x) "'1 - 4x g 2x 

Similarly, 

M (x) =_1 L (_x ). 
g 1-x g 1-x 

So, altogether, 

L x = E 1 (X(1 + x») 
g () (1 + x)( 1 + 2x) g (1 + 2x? . 

(4.10) 

Instead of Eg(x), it is more convenient to define an equivalent generating 
function which codes the quantities f:g(n). For that purpose notice that in 
Eq. (4.8) the coefficient of t2g in [(t/2)/(tanh t/2)]"+1 is a polynomial in 
n of degree g, which vanishes when n = -1, while the prefactor, which can 
be rewritten 

(2n)! ( 2n ) (n -1)! 
(n + 1}!(n - 2g)! = n + 1 (n - 2g)!' 

involves the ratio (n - 1)!/ (n - 2g)!, which is also a polynomial in n of 
degree 2g - 1, so altogether we find as a factor of U;\) a polynomial in n 
of degree d = 3g - 1, with n + 1 as a factor. We can expand it not in powers 
of n but equivalently as (n + 1) times a combination of the d (= 3g - 1) 
quantities 

1, n - 1, (n - 1)(n - 2), ... , (n - 1)(n - 2) ... (n - d + 1), 

which all vanish except for the first when n = 1, and are of the form 

(n-1)! (n-1)! (n-1)! 

(n -1)!' (n - 2)!'···' (n - d)!· 

So, altogether, inserting a factor r!/(2r)! for convenience 

e (n) = (2n)! I ~ k(r) 
g n! r=1 (2r)! (n - r)! 
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for some coefficients k(r) which depend on g. This leads one to introduce 
the polynomial 

d 

Kg(x) = L k(r)xr, (4.11) 
r = 1 

in terms of which 

Eg(x) = L eg(n)x" = L x" (2n)! f ~ k(r) 
" ;;,,0 " ",0 n! r=1 (2r)! (n - r)! 

d , "(2 )' = L k(r)_r.- L x n. 
r=1 (2r)!" ;;" r(n-r)!n! 

L k(r)_r·_ xr - L x" n d '( d)r (2 ) 
r=1 (2r)! dx ";;,,0 n 

L k(r)_r·_ xr -d '(d)r 1 
r=1 (2r)! dx .J1-4x 

1 d (x)r = L k(r) -- . 
.Jl - 4x r=1 1 - 4x 

Consequently, 

Eg(x) = hxKgC _x4J, ( 4.12) 

and from Eq. (4.10) the two polynomials Lg(x) and Kg(x) are related 
through 

( ) _ Kg(x(1 + x)) 
Lg x - ( ). 

l+x 
(4.13) 

Since K is a polynomial of degree d = 3g - 1 without constant term, the 
right-hand side of this expression is indeed a polynomial in x of degree 
6g - 3. From the definitions in Eqs. (4.2) and (4.9), it follows that 

1 II dx x(r l )=-- -L(-x) 
g 2 0 x g 

1 II dx = -- K (-x(1- x)) 
2 ox(1-x) g 

d r'(r - 1)' = L (-ly- l k(r) . . 
r=1 (2r)! . 
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One recalls that 

( 2n ) d r' (n - 1) , 
Eg(n) = + 1 (n + 1) L k(r)(2 ')' ( _ ); n r~l r. n r. 

= ( 2n )(n - 1)(n - 2) ... (n - 2g + 1) 
n+1 

( t/2 )n+1 
X coeff. of t 2g in h / 

tan t 2 
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Comparing with the above, we see that X(n) is obtained by setting n = 0 
in the factor multiplying (n2.::\) on the right-hand side of these expressions. 
Hence 

( I) __ ( _)' f 2g· t/2 X f g - 2g 1. x coeff. 0 t 10 h /2 
tan t 

One concludes that 

B2g 
= -(2g -1)!--. 

(2g)! 

1 B2 x(f ) = --g = ((1 - 2g) 
g 2g g ~ 1, (4.14) 

an elegant result in terms of Riemann's (-function at odd negative integers, 
where one recalls the functional equation (for integer g) 

(-1)g (2g)! 
((1 - 2g) = (27T)2g -g-((2g ). 

It can be shown that the virtual characteristic of moduli space without any 
puncture is given by 

g> 1, ( 4.15) 

while for genus 1 one has X(f l ) = x(fD. This is recorded in the Table II 
together with the true Euler characteristics e(n) and e(f g), also obtained 
by Harer and Zagier.1J Although the trend cannot yet be seen in this table, 
these authors also prove that in both cases of f g and n the ratio e/ X tends 
to 1 as g ~ 00. 
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Table II. Virtual (X) and True (e) Euler Characteristics for 1 :s g:s 10 

g X(n) e(r~) x(rg ) e(g) 

1 
--

12 12 
1 

2 2 
120 240 

1 
3 6 3 

252 1008 
1 

4 - 2 2 
240 1440 

1 1 
5 -- 6 - 3 

132 1056 
691 691 

6 8 --- 4 
32760 327600 

1 
7 8 -

12 144 
3617 3617 

8 - 34 --- -6 
8160 114240 

43867 43867 
9 164 45 

14364 229824 
174611 174611 

10 - 350 --- - 86 
6600 118800 

5. DIRECT METHOD 

Interchanging the roles of the marguerite graphs and their duals 
obtained by gluing the sides of a 2n-gon amounts to using the Poincare 
duality discussed in section 2. According to Eq. (2.2), we can write 

(5.1) 

To obtain Ag(n), defined in the previous section, all that is required is to 
modify the summation on the right-hand side by insisting that ILl = IL2 = 0, 
since these give the numbers of vertices of valence 1 and 2, respectively. 
Therefore the virtual characteristic is 

(5.2) 
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This may now interpreted, as noted by Penner, \0 as the perturbative contribu­
tion of order N to the logarithm of a partition function with interaction 
Lagrangian 

X k - 2 

L --TrMk 
k;;,,3 k 

if we extract the coefficient of 

Thus finally (as an asymptotic expansion in x ~ +0), 

L x4g-2X(r~) = coeffic. of N in In Z(x, N) 
g 

f 1 MkXk 
dM exp -2 L Tr--

Z(x N) = x h2 k , f dM exp -!Tr M2 

(5.3a) 

(5.3b) 

In fact, taking the logarithm, to restrict oneself to connected graphs, does 
not affect the coefficient linear in N, since the graphs having only one index 
loop are necessarily connected. 

There is only one little problem. As it stands, Z(x, N) is meaningless 
(except in a term-by-term perturbative expansion), since the integrand in 
the numerator 

det(~ - XM)I/X2 exp(~ Tr M) 
is undefined unless ~ - xM > 0, and moreover divergent (the inequality 
stands for each eigenvalue of M, or equivalently for the corresponding 
sesquilinear form). Henceforth we assume x > 0. The above uneasiness is 
familiar to anyone who has tried to derive Sterling's asymptotic formula 
for Euler's r-function. 

Recall that 

f(s + 1) = IXl du exp(-u + s In u). 

Assuming s real, positive, and large, the integrand has a maximum for 
u = s, so that changing variable from u to m through 

u = s - mvs, 
we find 

( s)S fJs [00 1 (m)k] 
sf(s) = -;; vs -00 dm exp -s k~2 k vs 
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or writing 

x> 0, 

1 fl/x 1 00 mkxk 
(ex 2)2 () dm exp -2 I k 
--==x=-f -.!.. = -00 X k~2 
J21TX 2 x2 f+oo m2 

dm exp--
-00 2 

(5.4) 

The analogy with the previous matrix integral is clear, as is the method for 
obtaining Stirling's formula. Asymptotically in the perturbative expansion 
in powers of x, we can drop exponentially small terms by extending the 
range of integration to -00 < m < +00. This shows, by the way, that the 
expansion, although asymptotic, is necessarily divergent. On the other hand, 
it yields immediately the cure to a sensible Z(x, N) without affecting its 
asymptotic expansion at the origin. All that is needed is the insertion in the 
integrand of the numerator a factor 8(] - xM) with 8(y) being the step 
function, equal to zero for y < 0, to 1 for y > 0. 

To complete the calculation is now straightforward. We factor the 
integral over M in terms of an integral over the eigenvalues Ao, AI, ..• , AN-I, 

times an integral over the (diagonalizing) unitary matrices, as in section 3, 
introducing as a Jacobian the square of a Vandermonde determinant Ll(A)2 = 

nk"l (Ak - AI). 

The amended Z(x, N) takes, therefore, the form 

Z(x, N) = 1 N f Ll2 (A) IT dAk 8(1 - xAk) 
(21T)NI2ITp! OosbN-I 

I 

(5.5) 

Writing Ll(A) as a determinant, using the symmetry of the integral under 
permutations of the arguments Ak, and finally changing the variables of 
integration from Ak to Yk = (1- xAd/X2, one obtains, from Eq. (5.4), 

[ 
1 ]N 

(ex
2)2 N 2 

( ) I 
Z(x, N) = ~ N~I det f -; + r + s + 1 . (5.6) 

21T IT' X OOSr.sosN-I p. 

From 
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it follows that 

[ 
1 ]N ( ex2 ) 

2" (1) _N2 r+s 
Z(x, N) = ~ r 2" :-1 det IT (1 + px2 )lo,sr,s ,s N_I' (5.7) 

21T x IT p=o p! 

The last determinant is evaluated as 

r+s N-I N-I 

det IT (1 + px2 )lo,s r,s,sN-1 = XN(N-t) IT p! IT (1 + pX2 )N-P, 

p=O A p=1 

so that 

[ 
1 ]N 

(ex2)2" (1) N 1 

Z(x, N) = ~ r x 2 P~I (1 + pX2)N-P. (5.8) 

To extract the required quantities, one uses the asymptotic (divergent) 
expansion 

[
(ex2

)-\ ] 

In ~ r(:2) x~o "~I 2n(::"-0 X 4
"-2, 

(5.9) 

as well as the Bernoulli polynomials defined by [compare with Eq. (4.6)] 

te 'X 00 t" 
-,- = L B"(x)-
e - 1 " = 0 n! 

(5.10a) 

(5.10b) 

such that for k ~ 1 

N;I k _ Bk+I(N) - Bk+1 

£..P- k+1 
p=1 

(5.lOc) 

Therefore, as x ~ +0, 

In Z(x, N) 

00 B 00 X 2k 

-N L 2" X 4"-2+ L (-Ok-I-
"=1 2n(2n - 0 k=1 k 

[ 1 k+1 (k + 1) 1 k+2 (k + 2) ] x -k-- L N r+ 1 Bk + l - r - -k-- L N r -- Bk + 2 - r • 
+ 1 r=1 r + 2 r=1 r 

(5.10 
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The coefficient linear in N is the asymptotic series 

00 B 00 X 2k 

L 2g X 4g - 2 + L (-1)k-Bk+ l • 
g=1 2g(2g - 1) k=1 k 

For k ~ 1, Bk+1 vanishes unless k + 1 is even; therefore, 

(5.12) 

Thus we recover the previous result, valid for g > 0: 

1 B2 X(f ) = --g = ~(1- 2g). 
g 2g (5.13) 

In general, the coefficient of NS(s ~ 1) in In Z(x, N), involving connected 
diagrams with s faces, is for g > 0 

L 4g-4+2s B2g (2g + s - 2) 
2g>sup(O,2-s) x 2g(2g + s - 2) s . 

(5.14) 

According to Penner,IO the coefficient of x4g-4+2s is the virtual Euler charac­
teristic X(f~) of the mapping class group of surfaces of genus g with s 
punctures (allowing permutations of the punctures) so that, for s> 0 and 
2g - 2 + s > 0, one has 

X(f S ) = (_1)S-1 ~(1- 2g) (2g + s - 2). 
g 2g + s - 2 s 

(5.15) 

We see that Penner's method is in fact very effective. 

6. CONCLUDING REMARKS 

Various extensions and generalizations of the above calculations look 
natural and worth investigating. The first observation, looking at Eq. (5.8), 
is that Z(x, N) as a function of x for fixed (large) N has poles of order p 
at each value x 2 = -1/ p, for every positive p (responsible for the essential 
singularity at x = 0). It would perhaps be interesting to interpret the data 
pertaining to these singularities in topological terms or perhaps to relate 
them to some recent results in 2D quantum gravity. Also, one could try to 
compute some mean values of observables in this theory and find a suitable 
interpretation. 

Matrix integration is not limited to Hermitian matrices. One could 
think of using real symmetric or antisymmetric matrices, quatemionic 
matrices, or matrices involving Grassmannian variables to describe moduli 
spaces of nonorientable or supersymmetric surfaces. 
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Also, instead of integrating over noncom pact vector spaces, one could 
consider integrals over compact groups with various weights, the more so 
since we saw in section 2 how matrix integration is intimately related to 
group theory. Work by Andrews and Onofri13 using the heat kernel over 
the Cartan torus of unitary groups, seems very suggestive in this direction 
of relations with "quantum groups." Moreover, further extensions are 
possible to integrals over coupled matrices or even matrix quantum 
mechanics. Finally, one can wonder about the status of matrix integration 
in relation to the topological properties of moduli spaces. Is this a simple 
combinatorial trick, or is there a deeper, natural explanation for its occur­
rence? 
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Chapter 8 

Field-theoretical Description of High- Tc 
Superconductors: Topological Excitations, 

Generalized Statistics, and Doping 

E. C. Marino 

1. INTRODUCTION 

In the last few years, an intense theoretical activity has been employed 
in the study of quantum field theories (QFT) formulated in three­
dimensional space-time. The interest in this kind of theory was, to a large 
degree, generated by the recent discovery of substances which become 
superconductors at a temperature quite a bit higher than the old BCS-type 
materials. I The reason for this unexpected connection between areas of 
physics which at first sight are completely unrelated begins to be understood 
with the observation that a common feature in all high- Tc superconductors 
is the occurrence of a layered structure consisting of CU02 planes in which 
eu + + ions are assembled on the nodes and 0- - ions on the links of a 
square lattice. There is experimental evidence that the superconducting 
properties are highly anisotropic and the planar nature of the system, it has 
been argued, plays a key role in the mechanism of superconductivity. 
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22452 Rio de Janeiro RJ, Brazil. 
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The standard model for the new superconductors is a two-dimensional 
theory describing the interaction of the active electron of the Cu + + ions on 
the 2D square lattice. In the continuum limit, the dynamics of the system 
is described by a (2 + 1)D quantum field theory, and the abovementioned 
connection is therefore established. 

A lot of extremely interesting ideas arose, using the peculiarities 
of (2 + I)D QFT in the effort to explain the new mechanism of super­
conductivity. 

In this work, we describe (in section 2) how the continuum field­
theoretic description of the new superconductors is obtained, starting from 
the standard theory for the original condensed-matter system. 

In section 3, we describe a method for the quantization of the topologi­
cal excitations (skyrmions) which occur in the continuum model supposed 
to describe the new superconductors: the Cpl/nonlinear a-model in 2 + 1 
dimensions. A general expression for the skyrmion correlation functions is 
obtained, and it is shown that when the topological angle is equal to zero, 
the skyrmions condense. 

In section 4, we study the basic properties of spin statistics in two 
spatial dimensions and their connection with topology. We comment on 
the nontrivial spin statistics of skyrmions and finally point out the interesting 
consequences these peculiar properties of the (2 + 1)D system may have in 
the theoretical description of the new kind of superconductivity. 

In section 5, we try to describe a possible way to include the dopants 
in the continuum QFT description. 

2. THE CONTINUUM MODEL FOR HIGH- Tc SUPERCONDUCTORS 

We show here how one arrives at the Cpl/nonlinear a-model in 
(2 + l)D, starting from the discrete version of the standard model for the 
high- Tc superconductors. 

Let us take the typical compound La2Cu04, which becomes a supercon­
ductor upon doping, say with barium: La2-sBasCu04' There is evidence 
that superconductivity occurs in the CU02 planes, which contain C+ + and 
0- - atoms in the configurations 3d 9 and 2p 6, respectively. Cu + + has spin 
S = 1/2 and one active electron and orbital. 0- - has a perfect gas configur­
ation, having therefore S = 0 and no active electron. The Cu + + are on the 
nodes and the 0- - on the links of a square lattice. The standard model for 
the system is the two-dimensional Hubbard model, described by 

H = -t I (I/!-:;"I/!j(T + H.C.) + UI (I/!~I/!ii)(1/!41/!i~)' (2.1) (ij),(T i 

In this expression I/! -:;,. is the creation operator for the active electron 
of Cu++, with spin ex = ±1/2. Of course, there is one electron per site, 
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corresponding to a half-filled band. U is positive, corresponding to in-site 
repulsion. 

We may rewrite Eq. (2.1) in the form 

H=-t L (!/J:'/!;,r+H.C.)+U[!LSj'Sj+LSj'(!/J:U'af3!/Jjf3)], (2.2) 
(ij),O" j j 

where Sj is an auxiliary vector field . One can see that Eqs. (2.1) and (2.2) 
are equivalent by integrating over Sj and using the properties of the Pauli 
matrices U' af3' The equation of motion of Sj is 

(2.3) 

which shows that Sj is the spin operator of the active electron of the Cu + + 
ions. 

Integrating over the fermions, one obtains, in the limit U » t, 

H = ] L Sj' Sj' 
(ij ) 

(2.4) 

with] = 4t 2/ U. Since U> 0 and] > 0, [Eq. (2.4)] corresponds to the 
antiferromagnetic Heisenberg model. 

The continuum limit of the model described by Eq. (2.4) has been 
studied in terms of the plaquette staggered spin 

S - Sa - Bb + Be - Sd 
PL - 4v'S(S + 1) , (2.5) 

where a, b, c, d are the vertices of a given lattice plaquette. In the continuum 
limit SPL ~ o(x, t), with 1012 = 1. It may be shown, then, that the continuum 
limit of Eq. (2.4) gives a field theory in 2 + 1 dimensions whose action is2 

(2.6) 

that is, the nonlinear u-model. 
We see that the nonlinear u-field can be thought of as the continuum 

limit of the staggered spin of the Cu + + atoms of the superconducting (upon 
doping) material La2Cu04' 

The nonlinear u-model is well known to be equivalent to the cpt 
model. 3 To get the cpt representation, we write the 0 field as 0 = Z+ U' Z, 
where Z = (~:) is a doublet of complex scalar fields, such that Z+ Z = 
IZtl2 + Izl = 1 and U' are the Pauli matrices. In terms of Z, the Euclidean 
action corresponding to Eq. (2.6) may be written as3 

S = f d 3x[ID!-,ZtI2 + ID!-,Z212]; (2.7) 
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The (2 + l)D nonlinear O"-model possesses the identically conserved 
(topological) current 

] 1-' __ 1_ I-'Dif3 aa ba c - e eabcn Din f3n, 
87T 

(2.8) 

whose topological charge Q = J d 2xJ° measures the class of the mappings 
between x E 1R2 - S2 and na E S2, induced by a static configuration na(x, 0). 
The nontriviality of this mapping makes possible the existence of solitons 
in the theory. We will study the quantization of these excitations in the next 
section. 

There is also a nontrivial topology in the mappings between S3 and 
S2, discovered by Hopf. The inverse image of a point in S2 is a closed curve 
in S3. The Hopfinvariant, which measures the class of the mappings between 
S3 and S2, expresses the number of times the curves belonging to S3 link 
one another. It is therefore called the linking number. It may be written in 
terms of ]1-' in the following way: Defining WI-' such that 

(2.9) 

the Hopf invariant or linking number is given by 

SH = f d 3x]I-' W I-' = f d3XeI-'Dif3wl-'aDiWf3. (2.10) 

SH is also known as the Chern-Simons action. 
It is an amazing discovery,4 the fact that, due to the nontrivial topology 

measured by SH, the particles of the theory may change their statistics or 
suffer a so-called statistics transmutation. We will explain this phenomenon 
in section 4. 

Taking into account the Hopf term, the nonlinear O"-model action may 
be generalized to 

(2.11) 

where SNLuM is given by Eq. (2.6) and SH by (2.10). () is the topological angle. 
In cpt language, the topological current r, Eq. (2.8), is given by 

]1-' = el-'Dif3 aDiAf3. We see that in this description, WI-' == AI-' and the Hopf 
extension of the cpt action is 

(2.12) 

where Scpt is given by Eq. (2.7) and Scs is the Chern-Simons action for AI-'" 
Later on we will comment on the surprising consequences the existence 

of a nontrivial topology in the mapping S3 ~ S2 may have on the original 
condensed-matter system we started with. 
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3. QUANTIZATION OF TOPOLOGICAL EXCITATIONS IN THE 
CONTINUUM MODELS FOR THE NEW SUPERCONDUCTORS 
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As we saw in the last section, the existence of a nontrivial topology in 
the mapping S2 ~ S2 allows the existence of solitons. We will expose here 
a method for the full description of the quantum field theory of these solitons. 

The nonlinear a-model possesses static soliton solutions with Q = 

J JO d 2x = 1, as was shown by Belavin and Polyakov.5 The solution is given 
by 

DS(X, t) = (sinf(r)x, cosf(r)); x = rx. 
In the Cpl version, the solution reads 

(

COS f( r) e -(i/2) arg(XJ 

Zs = . f(~) 
sm -- e(i/2)arg(x) 

2 

Af(x, t) = ~ cosf(r)Oi arg (x); Ag = 0. 

For () = 0, an exact solution may be found for f(r), namely, 

A 
f(r) = 2 arctan-; 

r 
f(r) ~ {: 

r ~ 00 

r~ 00. 

For () .,t. 0, f(r) has the same asymptotic behavior as above. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Making a gauge transformation Zi ~ e- iA Zi; AI-' ~ AI-' + 0l-'A, with A = 
-~ arg(x), we may write 

Zs = (:~:jg e-iarg(x)); Af = ![cosf(r) + 1]Oi arg(x); Ag = o. 

(3.5) 

We see that in the Cpl version the soliton is vortex-like. These solitons 
were called skyrmions, in connection with the ones appearing in the Skyrme 
model.6 

Let us now apply the dual method of soliton quantization to the 
skyrmions of the Cpl/nonlinear a-model.? 

In the order-disorder duality quantization scheme, the topological 
excitation creation operator is defined through the so-called dual algebra 
in which the asymptotic behavior of the classical topological solution is 
applied to the Lagrangian fields by commutation with the soliton 
operator. 8- lO In 2 + 1 dimensions, the dual algebra involving the local 
Lagrangian fields Z and AI-' require a nonlocal soliton operator J.L(x, t; c) 
defined on a closed curve C. This was first observed in the case of vortices 
in the Abelian Higgs model9 and also in globally symmetric theories in 
2 + 1 dimensions. 11 
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In the case of skyrmions, the appropriate dual algebra which takes the 
above asymptotic behavior into account is 

( ')A ( ) _ {[Ai(Y' t) + (1/2)ai arg(y - X)]IL(x, t; c) 
IL x, t, c i y, t - () «) [A y, t - (1/2)a i arg Y - X)]IL x, t; c 

. _ {e-i/2arg(y-x)Z,(y, t)IL(X, t; c) 
IL(X, t, c)Z,(y, t) - Z ( ) ( ) 

, y, t IL x, t; c 

{ZiY, t)IL(X, t; c) 
IL(X, t; c )Ziy, t) = i/2arg(y-x)z ( t) ( t. ) e 2 y, IL x, ,c 

y ~ TAc) 

y E TAc) 

y ~ TAc) 

y E TxCc) 

Y ~ TxCc) 
y E Tx(c) 

(3.6a) 

(3.6b) 

(3.6c) 

In the above expressions, C is a closed plane curve contained in the 
t = constant plane and Tx(c) is the minimal surface bounded by it. 

We are going to determine the operator IL(X; c) satisfying the above 
algebra. In order to do that, we must first determine the basic commutators 
among the Lagrangian variables Zi and AIL" The system contains the follow­
ing set of second-class constraints: 

({!4 = P2 + (8/ 1T2)A, = O. 

In the above equations, 1Ti = aI£/aZj = (DoZ,)* and 

The first-class (gauge) constraints are implemented a la Gupta-Bleuler. 
Using the method of Dirac, we obtain the following nonzero commutators: 

j 
[Z* 1T'] = - Z* Z* 82(x - y) 

I, ) 2 I ) 

(3.7) 



Field-theoretical Description of High- Tc Superconductors 169 

Using these commutation rules, we find the expression for /-L(x; c) 
satisfying the dual algebra in Eq. (3.6): 

/-L(x, t; c) = exp { - (1/2) f 2 d 2x' arg(x' - x)[Zt(x', t)7Tf(x', t) 
JIR -Tx 

- 7T1(X', t)ZI(X', t)] + (1/2) f d 2x' arg(x' - x) 
Tx 

X [Zf(x', t)7Tf(x', t) - 7TAx', t)ZAx', t)] - (iO/ 7T2 ) 

x [ f 2 - f ] d 2x' arg(x' - x)eOija;Aj(x', t)} 
JIR -Tx Tx 

(3.8) 

We may write the skyrmion operator /-L in the compact form 

/-L(x, t; c) = exp {i f d3Z[j~) A(I)", + j~) A(2)", - (40/ 7T )JIL(A~) + A~»)] } 
(3.9) 

by using the currents j;:) = i[Z~(D",Za) - (D",Zat Za], a = 1,2, the topo­
logical current JIL, and defining the external fields 

A;:)(z, x; TAc)) = (_l)a+I(1/2) arg(z - x) f d 2g",83(g - z), 
fla 

a = 1,2, 

(3.10) 

where 0 1 = 1R2 - Tx , O2 = Tx , z = (z, zo), x = (x, t), d 2 {", = 8",od 2 {, and 
gO = t. 

Observe that in the dual algebra in Eq. (3.6) as well as in our construc­
tion of /-L, Eqs. (3.8)-(3.10), only the asymptotic behavior of the classical 
configuration was used. This classical configuration, however, contains in 
addition the smeared-out Heaviside functions cosfl2, sinf/2, and cosf. 
Since we want to work with unsmeared fields, in the spirit of local field 
theory, we exchanged these smooth functions in Eqs. (3.8)-(3.10) by the 
corresponding true Heaviside functions centered on C. This immediately 
allows us to interprete R, the radius of C, as a measure of the skyrmion 
size. The classical analog of R would then be R o such that f(Ro) = 7T/2. 

Let us consider now the correlation function (/-L(x, xO; c1)/-L *(y, yO; C2). 
This is most conveniently expressed in the functional integral framework. 
Of course we expect the occurrence of divergences associated with the 
time-localized infinite surfaces in Eqs. (3.9)-(3.10). These divergences also 
appear in the case of vortices and kinks and, as in those cases, they may 
be eliminated by the introduction of counterterms whose explicit form the 
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requirement of the surface invariance of (JLJL*) determines.8- 11 Inserting 
(3.9) into the Euclidean functional integral 

(JLJL*) = Z-I f }}I DZaDZ!DA/L e-[S[Za. A ,J+Scoun,lJLJL*5[IZI2 -1], (3.11) 

and introducing the appropriate counterterms, we obtain7 

(JL(X; c)JL*(Y; c» 

= Z-I f DA/LDZaDZ! exp { - f d 3 z[l[a/L + i(A/L + A~»]ZI12 
-( ) 2f} + I[a/L + i(A/L + AJ )]Z212i- J/LAIJ-

1T 

+ i~f} r[A~) + A~»] + i~f} [hi) + jtn)]AIJ- J} 5[IZ1 2 - 1]. (3.12) 

In this expression A(a) = A(a)(z' x) - A(a)(z' y). a = 1 2 
'J.L J.L' J.L" ,. 

One may easily see that surface invariance is a consequence of gauge 
invariance. The f} terms are surface invariant except for a term 

10 = - f d 3 Z [i ~ O~) + j~»(A(I)1J- + A(2)1J-) J. (3.13) 

It happens that 

{o 
1 -o - if} , (3.14) 

depending on the surface chosen. This ambiguity is similar to the ones 
found previously in various systems. As we saw, it must reflect the commuta­
tion rule for the JL. Indeed, taking the operator JL(x; c) and using the basic 
commutators [Eq. (3.7)], we find (equal times) 

JL(x; c)JL(Y; c) = eiOJL(Y; c)JL(x; c). (3.15) 

For f} ¥- 0, 1T, the skyrmions obey generalized statistics in agreement 
with the semiclassical analysis of Wilczek and Zee.4 

Using the relation na = Z+ u a Z, we may evaluate the commutation 
rules of the skyrmion field JL with the nonlinear u-field: 

JL(x; c)n±(y) = e±iarg(y-x)n±(Y)JL(x; c) 
(3.16) 

where n± = n l ± in2. We see that JL is dual to n±. 
Let us show now an interesting property the skyrmions have at f} = 0. 

For this value of f}, let us make the shift AIJ- ~ A~ = AIJ- + A~) in the 
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functional integral [Eq. (3.12)]. The effect of this (at (J = 0) is that A~) 
decouples from Zl and the new external field coupled to Z2 becomes 
A~) - A~). It happens that A~) - A~) is a pure gauge: 

A(2) - A(I) = a A 
I-' I-' I-' 

A = ![arg(z - X)(J(Z3 - x3) - arg(z - y)(J(Z3 _ y3)]; (3.17) 

we may therefore completely eliminate the external field from Eq. (3.12) 
through a gauge transformation, obtaining the result 

(j,Lj,L*)1-'=0 = 1. (3.18) 

The above argument, of course, may be extended to show that for an 
arbitrary correlation function of the j,L, we have 

(j,L ••• j,L * ... ) 0 =0 = 1. (3.19) 

The skyrmions condense at (J = O. This fact, combined with the observa­
tion that the skyrmion is dual to the transversal components of n, [Eq. 
(3.16)] leads us conclude that (n±)o=o = o. This is still compatible with 
ordering in the 3-direction. 

4. GENERALIZED STATISTICS AND SUPERCONDUCTIVITY 

A very interesting peculiar feature of systems of two (space) dimensions 
is the fact that the spin (or statistics) is not necessarily an integer or 
semi-integer as in three spatial dimensions. 

Let us consider a one-particle system described by a wave function 
I/J,(x, t), transforming under some irreducible representation of the rotation 
group. 

Then, under a rotation of (J along a direction 6, we have 

./, () ( -(i/h)O.J) ./, (R ) 'l'i X, t ~ e ij'l'j x, t , (4.1) 

where J is the angular momentum operator. 
If 9 = 21T6, then Rx = x and the representation of the rotation group 

is diagonal: 

./, (t) ) -i27TS ./, ( ) 'l'i x, R(27TO) e 'l'i x, t . (4.2) 

The number s is the spin of the system. 
In an analogous way we may define the statistics in the following way: 

Let I/J(xt. X2, t) be a wave function of two identical particles. Under a 
permutation, this wave function may differ from the original one by at most 
a phase (since the particles are identical): 

I/J(xt. X2, t) ~ I/J(X2, Xl, t) = e- i27Te I/J(Xh X2, t). (4.3) 
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The number e is the statistics. There is a remarkable theorem which states 
that s = e, called the spin-statistics theorem. 12 

In three spatial dimensions, the rotation group is non-Abelian [SU(2)] 
and the algebra of angular momentum restricts the values of s to integers 
or semi-integers. In two spatial dimensions, on the other hand, the rotation 
group is Abelian [U(1)] and the spin can be any real number. The same 
fact may be viewed from the point of view of statistics. In three spatial 
dimensions, two permutations are equivalent to the identity p2 = 1 ~ P = 
±1, which implies, by Eq. (4.3), that 

-i27Te {integer e =±I::::>e= 
semi-integer 

(bosons) 

(fermions) 
(4.4) 

In three spatial dimensions, the wave functions for identical articles 
have definite parity under permutations and the Hilbert space yields a 
representation of the permutation group. In two spatial dimensions, it is 
no longer true that p2 = 1. Imagine that the particles being exchanged are 
linked by elastic strings. One immediately recognizes that 

·2 

D=2 

In three spatial dimensions, however, we may undo the nontrivial braid 

::x: 
1· ·2 1 . ·2 

X 
- 2· ·1 -

X\ X / 1\ 
·2 1·------_ ·21 1· ·2 1· 

.............. _ .... 1 

D=3 

In two spatial dimensions, the Hilbert space yields a representation of 
the braid group. 
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If p2 ~ 1, e may be any real integer. For s = e ~ integer or semi-integer, 
the spin-statistics is generalized, neither Fermi nor Bose. The particles are 
then called anyons. The wave function for anyons, of course, must be 
multivalued. The number of sheets is determined by s = e. It may be seen 13 
that for a rational spin-statistics s = e = 1/ N, the wave function contains 
N sheets, and for s = e = irrational, it contains an infinite number of sheets. 
Representing by ",(n)(XI> X2, t) the nth sheet of "', we have, under permuta­
tions,13 

",(I)(XI, X2) ~ ",(I)(x2 , XI) ~ ",(2)(XI , X2) 

_ .,,(2)(X x) _ ... ·,,(I)(X x) (4.5) 
p 'I' 2, I P 'I' I> 2' 

A first example of a wave function possessing generalized statistics in 
two-dimensional space was given in Ref. 13, in the form 

(4.6a) 

where EINT is the classical interaction energy of a system of two particles 
placed in XI and X2 and each possessing a charge a and a magnetic flux b. 
The expression of "'(XI, X2) is l3 

( ) -1 1-(a2+b2 )/27r {. ab [( ) ( )]} '" XI, X2 - XI - X2 exp I 21T arg XI - X2 + arg X2 - XI . 

(4.6b) 

Since arg( -r) = arg(r) + 1T, we see that, under a permutation, "'(XI, X2) 
acquires a factor eiab and therefore s = ab/21T. 

Given an arbitrary one-particle lagrangian L(t), it is in general possible 
to change the statistics of this particle by the introduction of an additional 
interaction with a point magnetic flux on the particle. A point magnetic 
flux is associated with a magnetic field Bs = <I>/21T 82(x). The vector potential 
associated to B is As = (<I>/21T) V[arg(x)]. The interaction of the particle 
with A is given by the Lagrangian 

q<l> d 
Ls = qx· As = 21T d/arg(x)]. (4.7) 

Observe that the charge q as well as the vector potential As are fictitious. 
Since 

(4.8a) 

with 

G(X, Xo; t, to) = f Dx eiJ:oLWd<, 
X(l)~X 

(4.8b) 

x(ro)~xo 
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it follows from Eq. (4.7) that for Lef == L + L., 

Hence from Eq. (4.8a), we see that 

,f, (x) ~ e- i27r (q40/27r),f, (x) 
'l'ef R(27r) 'l'ef\ • 

E. C. Marino 

(4.9) 

(4.10) 

We see that, in the presence of Ls the spin-statistics of the particle suffers 
a transmutation. The new value of the spin is s = qcfJ/27T. 

The fact that particles with generalized spin-statistics could be described 
in terms of charges and magnetic fluxes was first observed in!3 and later on 
generalized in.!4 The lagrangian L., Eq. (4.7) is called the "statistical 
interaction," for obvious reasons. 

We may also introduce a statistical interaction in the framework of 
quantum field theory. Consider a general QFT in (2 + 1)D, described by a 
Lagrangian X possessing a conserved current ft. Let us introduce an 
additional Lagrangian Xs given by 

(4.11) 

where Ap. is an arbitrary vector field. The field equation associated to Xs is 

J.p. = ~ep."/3 F 
2fJ ,,/3, (4.12) 

where P"/3 is the field-intensity tensor of AI£" Observe that Ap. does not have 
independent dynamics, being completely determined by jp." For a r corres­
ponding to a static point particle, 

r = e:: ~2(X) ~ pij = fJeij82(x) ~ B(x, t) = fJ82(x). (4.13) 

We see that Xs induces the coupling of each particle of the theory with a 
statistical field B identical to the one found in the one-particle example. 
We conclude that in the presence of X., the particles associated with r 
suffer a transmutation in statistics determined by the value of fJ, the topologi­
cal angle. 

The second term of Eq. (4.11) is the Chern-Simons Lagrangian whose 
action, as we saw, is the Hopfterm, which measures the nontrivial topologi­
cal classes of the mapping S3 ~ S2. In this way, we clearly see the relation 
between topology and the transmutation in statistics in (2 + 1) dimensional 
quantum field theories. 

In view of the above analysis, we immediately conclude that in the 
presence of the Chern-Simons term, the Z particles of the Cp! model 
change their statistics, since their current jp. = iZ+a p.Z is coupled to the 
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Chern-Simons field AI'" This fact was first noticed in Ref. 4. We may also 
see that the topological excitations (skyrmions) of the Cpl model will 
change their statistics in the presence of the Chern-Simons term, since in 
terms of the topological current ]1"' = e",a{30aA{3, we have 

SChern-Simons =! f d 3x I'" A", +! f d 3x e",a{3 A",oaA {3, (4.14) 

which displays a coupling between the skyrmion current I", and the Chern­
Simons field. 

The fact that skyrmions change their statistics in the presence of a 
Chern-Simons term was first observed by Wilczek and Zee.4 We can see 
clearly that this is indeed true in our operator formulation for the skyrmion. 
Taking Eq. (3.8), using the equal time commutation relations [Eq. (3.7)] 
and the identity eijoiOj arg(x) = 27TS 2(X), which is a consequence of the 
Cauchy-Riemann equation for the function In x, we find [B(x, t), B(y, t)] = 
(ifJ/7T) [arg(x - y) - arg(y - x)]. Using the Baker-Hausdorff formula and 
the factthat arg(x) - arg( -x) = 7T, we immediately see that ~(x, t; Cl)~(Y' t; 
c2 ) = ~(y, t; C2)~(X, t; cl)e i8• It is clear that for fJ = 0 the skyrmion is a 
boson, whereas for fJ = 7T it is a fermion. For other values of fJ it obeys a 
generalized statistics (0 :5 fJ < 2 7T ). 

Let us explore now the possible physical consequences that the occur­
rence of generalized statistics may have on the description of the new type 
of superconductivity. 

It was pointed out by Laughlinl5 that anyons are natural candidates 
for the formation of Cooper pairs leading to superconductivity. It is well 
known l6 that bosons (fermions) may be described as classical particles plus 
an attractive (repulsive) potential. Anyons, on the other hand, may be 
described as classical particles plus a repulsive potential weaker than that 
of fermions. l7 But this is equivalent to saying that anyons are fermions plus 
an attractive potential. As was shown by Cooperl8 a long time ago, fermions 
in the presence of an arbitrary attractive potential always form bound states, 
at least at zero temperature. Anyons, therefore, are very likely to form bound 
states and condense, leading to superconductivity if they are charged. The 
statistical interaction would provide the attractive interaction responsible 
for this new kind of superconductivity (see Ref. 19 for a review). 

There is an experimental way to detect this kind of anyon superconduc­
tivity. Observe that the Lagrangian L., (4.7), leading to a transmutation in 
statistics violates Per = (x,y) ~ (x, -y» and T(t ~ -t), since (d/dt) x 
(arg(x» is odd under P and T separately. An anyonic superconducting 
state would display this violation, an effect that in principle could be 
measured. 
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Another interesting feature of the anyonic superconducting state is the 
fact that, since anyons bear a magnetic flux, a condensate of anyons would 
contain this magnetic fluxes on it. As a consequence of the Bohm-Aharonov 
effect, two translations Tl and T2 would no longer commute (T1 T2 ,c. T2 T1), 

since they differ by a closed loop around the magnetic fluxes. This spon­
taneous breakdown of commutativity of translations is known as the spon­
taneous generation of quantum holonomy and leads us into the branch of 
mathematics called noncommutative geometry. 

Several authors have shown that when taking the continuum limit 
starting from the undoped system-that is, the antiferromagnetic Heisenberg 
model at half filling-one arrives at the nonlinear u-model with topological 
angle (} = O. Upon doping, however, (} is no longer zero, in spite of the fact 
that its dependence on the doping parameter 8 is still unknown. We see 
that, assuming that the field-theoretic description of the superconducting 
system is correct, the process of doping changes the statistics of the particles 
in the continuum associate model! This fact, combined with the potentiality 
of anyons for superconductivity and the experimental fact that super­
conductivity is introduced upon doping the original system, makes obvious 
the reason for the great interest in the study of (2 + l)D QFT and its peculiar 
properties in statistics and topology, in connection with high- Tc supercon­
ductors. 

We are currently investigating the field-theoretical description of the 
doped system: the introduction of dopants, their interation with topological 
excitations, and so on. 

5. INTRODUCTION OF DOPANTS: A POSSIBLE MECHANISM 
OF SUPERCONDUCTIVITY 

Let us describe in this section how the charge carriers (holes) introduced 
through doping could be included in a QFT description. 

As we saw, the pure system is described by the Cpl/nonlinear u-model 
with (} = o. It was stressed2 that in the presence of doping-i.e., starting 
from the Hubbard model out of the half-filling regime-one arrives at a 
continuum QFT with a topological angle () that is no longer zero but an 
unknown function of the doping parameter 8. One could expect, therefore, 
that the dynamics of the original spin system would be described, in the 
presence of doping, by 

S;; = SCpl + ()(8)Scs, (5.1) 

where SCpl is the Cpl action and Scs is the Chern-Simons term. 
Let us describe the charge carriers, which are experimentally known 

to be located on the CU02 planes, by an independent fermionic field '" in 
the (2 + 1}-dimensional space-time we have been considering. 
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It was firmly established20 that in a (1 + l)D QFT description, the 
dopant field 1/1 would interact with the spins through a minimal coupling 
with the cpt field Aw We will assume the same holds true here and, as a 
working hypothesis, take 

S = f d 3x [lD"ZtI2 + ID"Z212 + 8(8)£"01/3 A"oOlA/3 + i«fr~I/I + e«fry"I/IA,,] 

(5.2) 

as the action for the complete system including doping.2t 
Integrating over the fermion field,22 one obtains 

Sef = f d 3x [ID"ZtI2 + ID"Z212 + [8(8) + ;~ ] £,,01/3 A"oOlA/3 ] + O[(A,,)4]. 

(5.3) 

Since A" = iZ+o"Z, the higher-order terms in A" contain higher derivatives 
and can be neglected in the continuum limit description of the lattice system. 
We see that we arrive at a cpt model with an effective topological angle 
8ef = 8(8) + (e 2/87T) depending on the doping parameter. 

The statistics of topological excitations depends now on the doping 
parameter 8. As we showed, in the absence of a topological term, the 
skyrmions condense. We could expect that for a certain critical value 
8 = 8e , 8eJ8e ] = 0, implying the condensation of skyrmions at this amount 
of doping. 

We strongly suspecet that the skyrmions become charged upon doping, 
as the topological excitations of the associated discrete model do?3 In this 
case, skyrmion condensation at 8ef = 0 (8 = 8e ) would provide a mechanism 
of superconductivity. We are presently investigating this possibility. 
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Chapter 9 

Random Dynamics, 
Three Generations, and Skewness 

Holger Bech Nielsen 

1. RANDOM DYNAMICS 

The two talks I shall present here will in a way be almost the same 
one, the second time given in reverse order. In the first one-called random 
dynamics-I shall present a project which I and others have worked on for 
several years. 1•2 We seek to derive the already known laws of nature as a 
result of almost any very complicated fundamental model. In the second 
talk we look at the Standard Model-especially the structure of the gauge 
group-and, inspired by that, seek to get information on the fundamental 
laws of nature at a deeper level. I, of course, want to be able to say that 
nature points in the direction of a random rather chaotic fundamental 
model, and thus the second talk becomes number one in reverse order. A 
major prediction3•4-which I want to stress we made before the LEP experi­
ments confirmed it-is that there should be only three generations of quarks 
and leptons! 

HOLGER BECH NIELSEN • Niels Bohr Institute, University of Copenhagen, DK-2IOO Copen­
hagen 0, Denmark. 

Quantum Mechanics of Fundamental Systems 3, edited by Claudio Teitelboim and Jorge Zanelli. 
Plenum Press, New York, 1992. 
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The idea of random dynamics may be presented in a mild and in a 
strong form. 

In the mild jorm, random dynamics reduces to a warning against a 
certain bad way of drawing conclusions from empirical observations. The 
bad way of concluding, which random dynamics in the mild form warns 
against, consists in extrapolating an empirical law in one regime of experi­
ment to an underlying regime without first investigating whether it could 
be more generally derived. It could be that the validity of the observed law 
of regularity could be understood under much more general assumptions 
than the simple possibility that it should also be valid at the "deeper" level. 

An example of such a bad way way of concluding is the following 
hypothetical one; Suppose we look at Hook's law of elasticity as an empirical 
fact, from which we want to get inspiration for making a theory in solid-state 
physics. Imagine we did not know much about the structure of matter, but 
wanted to speculate theoretically about it. Taking it very seriously, we might 
conclude-actually, with some right on our side-that the fundamental 
potential V(x, y) between the constituents of the material (atoms) must be 
of a quadratic form in the relative position of the atoms which interact. In 
other words, the force between atoms must be harmonic. The potential 
would have to be of the form V(x - y) = (x - y + a)2 x constant. (Actually, 
the constant three-vector a should be 0 in order to have rotational invariance, 
and if so the-of course wrong-"theory" would have a collapse problem: 
why does matter not collapse to zero volume?) But of course we now know, 
as I suppose most sensible physicists have known all the time, that this is 
not a trustworthy way of arguing and that the conclusion is wrong, too. 
The truth is that forces between atoms are only very approximately harmonic 
near the equilibrium situation. Indeed, there would be very long-range 
interactions of a very strong type between pieces of matter if atoms really 
interacted with quadratic potentials. 

In fact, I would like to say that a little bit of thinking should be enough 
to avoid the wrong conclusion in this case of deriving harmonic forces. One 
can easily see that Hook's law could be derived by a very general Taylor 
expansion method like the following: Consider, e.g., a piece of rubber under 
the pull of a force F. Denote the length of the rubber piece by I, or assume 
that in equilibrium it is a function just of the force F, I(F). In physics we 
usually assume in practice that all relevant functions are analytical so as 
to have a Taylor expansion. Let us do so for I(F). I.e., we assume that 
I(F) = 1(0) + F x dll dFIF=O + (1/2!) X F2 x d 211 dflF=o + . ... Now the 
extension of the length of the rubber is al(f)~f/(f) - 1(0) = 
F x dll dFIF=O + .... Restricting our attention to small forces F, we may 
ignore all but the linear term dll dFIF=O x F in F in the Taylor expansion, 
and in this way we could "derive" Hook's law under very general assump­
tions. Indeed, this "derivation" contains a lot of truth, since we know that 
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after all Hook's law is no longer valid for strong forces F. In fact they can 
even lead to the breaking of the material: a situation which must signify 
that Hook's law fails. So there is really no reason to believe that the 
higher-order terms in the Taylor expansion should not be there even though 
Hook's law does not need them. It would rather be a very strange accident 
if they were not present! Just thinking this way should be sufficient to make 
it obvious that it would be unjustified to accept harmonic forces between 
atoms from the validity of Hook's law. One should rather say that, to a 
large extent, one can ignore Hook's law as a major source of inspiration 
in building up a theory of solids at a more fundamental level. Rather, one 
should learn only some general idea from it since there is some equilibrium 
of the material and some smoothness of the forces. It really cannot tell us 
much since it can be derived so easily! 

A historically true example is the theory of Heisenberg,s which is an 
attempt to create a unified theory of physics. It is now known to be a 
violation of the warning, which I call the mild version of random dynamics. 
The Heisenberg theory is a field theory in which isospin symmetry is used 
as one of the guiding principles.5 Now we know that isospin symmetry is 
not fundamental, but that it can relatively easily be understood-as 
explained by Steven Weinberg6-as a consequence of the QeD model for 
strong interactions together with the assumption that u and d quarks are 
light. It is indeed true that both the up quark and the down quark are very 
light compared to the scale of QeD, the AQCD scale. Roughly, we have 
AQCD = 210 MeV, mu = 4 MeV, and md = 7 MeV, so mu.d/ AQCD = o. Notice 
that it is now supposed that the ratio of the up quark's mass to that of the 
down quark is on the order of 4/7 = 1/1.8 and thus deviates from unity 
much more than the one or a few percent by which the isospin symmetry 
is broken phenomenologically! Weinberg's point is that on the scale of 
hadrons-which is given by AQCD-both the up- and the down-quark masses 
are so small that to a very good approximation we can consider them o. 
Then it does not matter that their ratio is far from unity. According to the 
warning of "mild random dynamics," Heisenberg should have investigated 
whether there would possibly exist some way of deriving the isospin sym­
metry, but of course they were very well excused by the fact that no one 
had dreamt about QeD yet at that time. 

A third example of the type of argument we warn against would be to 
take the fact that the kinetic energy of a nonrelativistic particle, is quadratic 
in the momentum as a deep fundamental principle. The principle one might 
like to conclude to be valid from this fact might be that the kinetic energy 
has to be quadratic in the conjugate momentum. In fact we know that this 
is just because a nonrelativistic particle is one with small momentum and 
that thus a Taylor expansion-this time in the square of the momentum 
because of rotational invariance-can be chopped off: the energy E (p2) of 
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the particle is expanded E(p2) = E(O) + p2 x E'(O) + ... , ignoring the 
potential energy part. Then normalizing the energy for the zero momentum 
situation to zero by defining the (genuine) kinetic energy to be T(p2) = 

E(p2) - E(O), we find T(p2) = p2 x E'(O) + terms chopped off for small p, 
so we can define 112m = E'(O) and obtain the usual nonrelativistic formula 
for the kinetic energy T(p2) = p2/2m. So the kinetic energy formula is really 
just a consequence of a Taylor expansion and can not tell us much about 
what is really behind it. Without help from other principles it would not 
have been easy to find the formula behind it from just starting at the 
nonrelativistic T(p2) = p2/2m. From special relativity, we now believe that 
T(p2) = Jp2 + m2 - m2 is the truth behind it. Certainly a straightaway 
postulation of the nonrelativistic formula being the fundamental truth-in 
spite of its relative simplicity-would have been a mistake from what we 
now know (after Einstein)! 

One can rather easily find more examples like this and the warning 
(= the mild form of random dynamics) is well motivated. It might even 
seem a useful idea to speculate whether a strong version of random dynamics 
could be true, although that of course is much less convincing: could it be 
that all the empirical laws which scientists have found could find some 
explanation without any severe assumptions, only using mild assumptions 
like the existence of Taylor expansions which are chopped off so that the 
argument would work almost whatever the basic theory might be? If we 
indeed could find such explanations in all cases, we could understand all 
the empirical knowledge without assuming what the fundamental law behind 
it was. We would not really need any fundamental law, or we could take 
a random one. It would not matter. This is the strong version of random 
dynamics: some day we might derive all the empirically found laws of 
physics and thus it does not matter or almost does not matter what physics 
will tum out to be at the fundamental level (at very short distances, say the 
at the Planck scale). We could explain the accessible phenomena anyway. 

If it happened to be so, the best theory of everything (TOE) would be 
to imagine that a random theory was used as the world mechanism. In other 
words, the true TOE would be randomly chosen from a large class of mostly 
very complicated models. 

Because the basic idea that the fundamental physics does not matter 
could be realized by calculating with a randomly chosen fundamental 
dynamics (= TOE model), we call this idea or project "random dynamics." 

We may distinguish two possibilities that might each represent a success 
of the random dynamics idea, but would be impossible to distinguish for 
a very long time to come: 

1. The true theory is really a chaotic one at the bottom. 
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2. Some possibility for the fundamental true theory exists, other than 
a chaotic one, but it does not matter because all our known physics 
is derivable rather independently of the precise true model anyway. 

In order to argue for the likelihood of such a scenario I would like to 
remind you of the quantum staircase, i.e., that physics falls into a series of 
sub sciences that to a large extent study phenomena concerned with shorter 
and shorter distances, smaller and smaller objects. 

The idea of reductionism is that one can reduce the science at one 
level of the quantum staircase to the science field one level above on this 
staircase. For instance one may hope to understand and reproduce chemistry 
from atomic physics. In a dream of reduction-which can hardly be realized 
in practice-chemistry should all be understood in terms of atomic physics. 
We express this sort of relationship in the quantum staircase by letting the 
step "chemistry" be the one just below "atomic physics." At least for the 
part of the quantum staircase involved with branches of microphysics and 
chemistry, it is so that the higher one goes on the staircase the higher the 
energy of the elementary particles used in studying the field. This means 
that the distances relevant for the science get smaller the higher one walks 
up the staircase. 

Typically the laws valid in one field are to a large extent taken over 
from the ones a level above. So, for instance, the law of the conservation 
of energy is valid at all the known steps of the quantum staircase, while, 
for instance, the abovementioned nonrelativistic form T(p2) = p2/2m of the 
kinetic energy for a particle is not valid in high-energy physics where 
particles have relativistic velocities, but is (approximately) valid in atomic 
physics where velocities of the relevant particles are small compared to that 
of light. The regularity of approximately stable chemical bonds is also valid 
only at the rather moderate collision energies used in chemistry and atomic 
physics but becomes completely unreliable for high-energy collisions. 

To obtain an idea about how often it happens that new laws appear 
on a rather general ground as one proceeds down the quantum staircase, 
one compares the number of symmetries that are input into the Standard 
Model with the number of those that appear just as a consequence of this 
model. The symmetry principles clearly assumed in the Standard Model are 

1. Poincare invariance, which really consists of translational invariance 
and Lorentz invariance, which again represents the principle of 
relativity and rotational invariance. 

2. Gauge invariance under the gauge Lie algebra U(l) x SU(2) x 
SU(3) (personally I like to talk about the gauge group, S( U(2) x 
U(3»; see below). 
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You may say that this is six symmetries: three under (1) and three 
under (2), but you may also say that it is only two or three. However, the 
number of symmetries appearing as a result of the structure of the Standard 
Model and/ or some limit taken, ignoring the weak interactions for instance 
is quite large: 

A. There are a series of symmetries following from the fact that some 
of the quarks have small masses compared to the QCD scale AQCD : 

Chiral symmetry U(3) x U(3), say, and, as a subgroup, isospin 
symmetry. Actually the axial U (1) symmetry contained in this chiral 
group is broken by an anomaly, but there is still some sign of it. 

B. Without any assumption of small masses for quarks, there are some 
conservation laws result from neglecting weak interactions. These 
are the conservation laws for quantum numbers such as strangeness, 
charm, bottom, top, the third component of isospin, and baryon 
number, which is conserved to even better accuracy. 

C. Still ignoring weak interactions, one finds in the Standard Model 
parity P, charge conjugation C, and time reversal symmetry T. 

D. Even with weak interactions, you find conservation of the various 
lepton numbers: electron lepton number, muon lepton number, and 
'T lepton number. 

So even more symmetries seem to come out than one puts into the Standard 
Model. But we may stress that the resulting symmetries are only approxi­
mate, while the symmetries put in are presumably, but not necessarily, 
exact, although you do not know for sure. Some similar phenomena are 
likely to occur for any effective theory at any level of the quantum staircase, 
and so we do indeed expect that as one proceeds down the quantum staircase, 
new symmetries will appear as result of looking only at the relatively low 
energies at that level. This means that only some of the symmetries are 
simply inherited from the level above, while others have appeared as a 
result of taking the limit of low energy (or some similar limit). If we now 
imagine a very long quantum staircase with many steps to be found by 
future research, it seems likely that the percentage of the symmetries that 
are simply inherited from the fundamental theory at the top, reaching down 
to some of the at-present accessible levels is very low. As we go down the 
staircase, we will in fact expect that the relative number of simply inherited 
symmetries will go down exponentially: at each level we expect a certain 
fraction of the symmetries to appear due to some limit of low energy, say. 
What we here suspect for symmetries is presumably also true for other laws 
of nature, such as we have already suggested for the formula for the kinetic 
energy of a nonrelativistic particle. 
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The hypothesis of random dynamics in the strong form is the guess 
that the laws and symmetries appearing due to taking the limits of low 
energy, et cetera, make up 100% of the laws and symmetries. If this is so, 
there is no need for any fundamental level at all, since no known law or 
symmetry has survived from there anyway. More correctly: there might or 
there might not be any highest and most fundamental level on the staircase. 
We could hardly know anyway, since no regularity would survive from that 
level to tell us anything about it. We could imagine living at that level with 
its chaotic "laws" (or, better, chaotic dynamics, laws should not be chaotic 
by definition, one might say). Anyway, the point would be that it does not 
matter. 

In order to justify such a hypothesis-that fundamental physics does 
not matter-we should be able to derive rather generally all the known 
laws. We have indeed made attempts at almost all of them, but I must admit 
that most of these attempts are not very convincing. 

All the physics known today except for gravity is summarized in the 
Standard Model if we include into this such general, empirically justified 
principles as the theory of relativity and the idea that it is a quantum field 
theory and thus includes the principles of quantum mechanics. 

In Table I, we list the nine assumptions or features which can be 
considered the input needed to construct the Standard Model in this quite 
complete sense. The number of asterisks is supposed to symbolize the degree 
of success with which we want to claim that we can deduce the feature in 
question from so general arguments that there is hope of saying that it can 
be explained by random dynamics. There are no three-star items, and that 
symbolizes that there is really no feature, we must admit, which can be 

Table I. Features of the Standard Model "Derived" from Random Dynamics 

* 1 
(why not *) 2 

** 3 
** 4 
(**) 5 

(why not *) 6 

(why not *) 7 

* 8 

Quantum features of Standard Model 
Field theory 
Gauge symmetry 
With Lie algebra U(1) x SU(2) x SU(3) 
and left-handed fermions in representations 

3(y = 1, 1, 1), 
3(y = 1/2, ~, 1), 
3(y = 1/6, ~, J), 
3(y = 2/3, 1, J), 
3(y = -1/3, 1, J) 
(simplest system without anomalies) 

Breaking by the Higgs field (or whatever) of (y = -1/2, ~, 

ll-representation (hierarchy problem) 
Translational and Lorentz invariance = gauge symmetry for gen­

eral relativity 
In (3 + I)-dimensional space-time 
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perfectly derived from a random model without any extra input. The only 
two features to which we have given two stars without doubt are gauge 
symmetry and the claim that the gauge group is U(1) x SU(2) x SU(3) or, 
we should rather say, S( U(2) x U(3)). As we shall see below, these two 
features can be speculatively calculated from an amorphous space-time 
quantum field theory called a "field theory glass." 

For some of the items in the table we have written by the asterisk "why 
not" in order to say that there is presumably no real need for explaining 
that feature, but that it could almost be an accident once the other principles 
have been either derived or assumed. To say that we can explain Poincare 
invariance or, better, general relativity diffeomorphism symmetry may be a 
bit exaggerated, because we basically just argue that diffeomorphism sym­
metry (Le., reparametrization invariance) is very analogous to the gauge 
symmetry of Yang-Mills field theories, and then we refer to the fact that 
we can argue that such gauge symmetries can appear in a quantum field 
theory (on a lattice, say) without being put in exactly, i.e., without fine 
tuning of any parameters. So we may say that by analogy there is also hope 
that diffeomorphism symmetry can appear without fine tuning, and thus at 
least with less good luck needed than one at first might have thought. 
Actually M. Lehto, M. Ninomiya, and I wrote some articles seeking to 
support this hope.? 

The star for Quantum at item (1) was given for the understanding of 
the linearity of, say, the Schrodinger equation as derived from a chopped-off 
Taylor expansion. This is the way one should usually derive any linearity law. 

The resulting Schrodinger equation may then be thought of as an 
equation for the time development of a wave functional of a quantum field 
theory. Then what is needed for the derivation is smallness of the wave 
functional and analyticity of the time derivative as a function of the func­
tional. 

The star for 3 + I space-time dimensions refers to the remark that the 
Weyl equation in 3 + I dimensions has special stability in a model in which 
Lorentz invariance is not assumed a priori, compared to equations for other 
dimensions.! In fact, a Taylor expansion of a very general non-Lorentz 
invariant operator for a linearized equation of motion for a fermion field 
around a point in energy-momentum space at which two states are degener­
ate leads to a (3 + I)-dimensional Weyl equation. 

In this review, let me also mention that D. Bennett, I. Picek, and C,4 
claim that using a fit to a model inspired by random dynamics predicted 
that there should be only three generations, and not for instance four as 
could easily have been allowed experimentally at that time. It is as much 
as to say that there should, for instance, be only the three already known 
types of neutrinos: Veo vI-" and V r • This model, inspired by random dynamics, 
was based on the following basic assumptions: 
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1. An "anti-grand-unification scheme," which reminds one of grand 
unification GUT, but does not quite look like the usual GUT. The 
latter makes use of a simple group or one in which you have at least 
some discrete symmetry between the couplings if there are several 
groups, while our model does not even use a semisimple one. A 
very general group-a random one-say, is of the form 

U(1) x U(1) x ... x U(1) x SU(2) x SU(2) x ... x SU(2) 

x SU(3) x ... x SU(3) x SO(5) x ... x SO(5) x .. '. 

It then breaks partly down to a group that is a cross product of as 
many copies of the Standard Model group as there are generations, 
so that each of these copies can have its own generation. There may 
still be some other, but basically irrelevant crossproduct factors at 
this level: 

SMG x SMG x ... x SMG(Ngen ; factors) x ? .. ?, (1) 

where 

SMG = S( U(2) x U(3)) or U(1) x SU(2) x SU(3) (2) 

is the Standard Model group, or Lie algebra. Successively this group 
breaks down again to its diagonal subgroup, which then is the 
Standard Model group found empirically. The diagonal subgroup 
of this group means 

SMGdiag = {(h, h, ... , h) I h E SMG}. (3) 

2. The gauge groups in the intermediate step-the Ngen SMG-have 
coupling constants just strong enough that it is barely avoided that 
there would already be confinement at the Planck scale of energy. 
This is taken to mean that at the Planck scale, where the breakings 
are all supposed to take place, these groups have just critical coup­
lings in the approximation called the mean field approximation. It 
is an approximation that can be made in a lattice formulation of a 
gauge theory. 

The point was that we fitted the number of generations Ngen to the fine 
structure constants, i.e., to the electromagnetic fine structure constant, the 
Weinberg angle, and AQCD in our model. That was how we got the number 
3 out. 

2. FIELD THEORY GLASS 

It should not really matter very much exactly how one implemented 
the idea of random dynamics, if indeed it did work. In fact, the hypothesis 
was that almost any model would be good enough. This should especially 
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be true if one considers various classes of models from which a random 
one is chosen. And so it should not matter so much exactly which class of 
model and which measure on it is chosen in order to realize in some way 
the idea of a random model. In order to give a reasonable example of how 
one might implement the idea of a random theory, let us define what we 
may call a field theory glass8 (or perhaps better a fluid, if we let the structure 
of the system of the space-time points be functionally integrated over it). 
First, imagine some pre geometric random discrete point structure, much 
like what one would construct by seeking to implement quantum gravity­
general relativity theory with quantum mechanics-as a "lattice" theory, in 
the sense that there is supposed to exist only some discrete points in 
space-time. Second, assume that for each little neighborhood of this "lattice" 
gravity there is a random quantum field theory in the following sense: for 
each site of the irregular "lattice" structure, there is a random system of 
degrees of freedom and a random local contribution to the action. This is 
a way to implement the idea of a random "fundamental" theory or dynamics: 
for each site-which really means each point in space-time-you assume 
an a priori different model field theory, and you imagine that you can take 
these "theories" or "dynamics" to be chosen-by God-so that we can at 
least effectively calculate as if they were randomly chosen. 

In principle we might think of realizing our theory by means of a 
Monte Carlo computer program. First the program should by means of 
random numbers set up a random manifold for each site in the dynamical 
"lattice." This random manifold should be the manifold on which the field 
defined on that site should take its values. For another site the manifold 
would be another random manifold. In this way there would really be a 
huge number of models from which the actually realized one is thought to 
be chosen randomly. 

The idea is that not only the target space (=value space) is chosen 
randomly, but also the local action. That is to say, the functional form of 
each local action contribution is also supposed to be chosen randomly 
among all the possible functional forms for such a bit of action. 

Now one may try to estimate what such an essentially random model 
would show up like at the long-wave length limit. 

Assume that we made the model so much a discretized quantum gravity 
that it has got diffeomorphism symmetry and effectively also Poincare 
invariance. Then there will be particles with masses, but these are a priori 
expected to be of the order of magnitude of the "fundamental" mass scale 
of the random model. Supposing that the input scale is the Planck scale, 
these masses would be a priori of the order of the Planck mass. So at first 
you would expect that the resulting masses would be too high for any of 
the particles accessible with the experimental technique of today. If this 
were true, random dynamics would predict that there would be no particles 
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as light as electrons, hadrons, or anything known today. Luckily enough 
for the hope that random dynamics may have a chance, the argument that 
all masses would be of the order of the assumed fundamental scale has an 
important exception! The two-star origin of gauge symmetry (item 3 in 
Table I) represents this exception. The exception is that symmetries can 
appear "accidentally" without fine tuning and cause some particles to be 
light or exactly massless! The mechanism that can produce massless particles 
due to gauge symmetries obtained without fine tuning is a rather remarkable 
effect that can be illustrated by a model study exemplified by a lattice gauge 
theory with an explicit breaking of the gauge symmetry introduced into the 
action. 

To be concrete, you might consider an ordinary U(1)-lattice gauge (on 
a regular lattice, or on an irregular one; it does not matter), but-and this 
is important-with an explicit gauge symmetry-breaking term added to the 
action. For instance, one might add a latticed mass term for the photon. 
That could be the sum over all the links of the lattice of the real part of 
the link variable 

a I Re( U( -», (4) 

with some coefficient a proportional to the naive (bare) photon mass. The 
full action becomes thus (of the form) 

S=/3IRe(U(M)U( I)U( )U(I »+aIRe(U(-», (5) 
o 

where the term proportional to /3 is the "latticised" -1/4g2 J F~p d 4 x. 
Now one might a priori think that adding such a term would give the 

photon a mass roughly proportional to the coefficient of this gauge-breaking 
term. The surprise, however, is that a has to reach a finite value before any 
photon mass really appears! It may seem unexpected at first, but it is 
practically beyond doubt that there is a whole phase in this model in which 
there is a photon particle with zero mass. It will seem, however, less 
surprising if one considers the following change of variables: 

Replace the original link variables U( -) by the somewhat larger set 
of variables consisting not only of an analogous set of link variables Uh (-), 

but also of a set of site-defined variables H ( '). The relation is defined to be 

U(x - x + 81') = H(x)Uh(x - x + 8/L)H(x + 81')-1. (6) 

Since we got superfluously many new (or "human") variables, both Uh ( - ) 

and H(·), it is not surprising that there is the possibility of making transfor­
mations on these "human" variables without changing the original variables 
U( -) at all. In fact, we can transform 

Uh(x - x + 81') ~ A(x) Uh(x - x + 8/L)A(x + 81')-1 
H( . ) ~ H( . )A( . )-1 (7) 

and it will leave the original variables U( -) invariant. So any action formed 
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from the original variables will of course be left invariant under this 
transformation. 

In this way we see that it is quite easy to introduce a completely formal 
gauge symmetry, just by choosing an appropriate notation with too many 
degrees of freedom. 

Using a block spin method to introduce yet more new variables (some 
that are averages over the fields within small blocks), it is not difficult to 
see that the model achieved is actually a latticed Higgs model! Indeed the 
Uh ( -) field now transforms as a gauge field on the lattice and the field 
H( .) may act as the Higgs field. Now, however, the crucial point is that 
there is a possibility that the model is not really in the Higgs phase, but 
that rather the effective mass of the would-be Higgs field has become an 
ordinary bradyonic mass (i.e., real mass, m 2 positive) rather than a tachyonic 
one as is needed to get the Higgs phenomenon. So the Higgs mechanism 
does not work for a whole region in the space of parameters a and {3. Here 
{3 is the coefficient of the usual gauge-invariant lattice action, i.e., {3 = 2/ g2, 
where g is the gauge coupling constant. In this range it was thus possible 
for God to make an exactly zero mass photon without having to fine tune 
anything. It was needed only to have these parameters in the right phase 
to get no Higgs mechanism and just a massless photon and an ordinary 
scalar charged particle! 

The range with the zero-mass gauge particle, a bit dependent upon 
how one would measure it, may really be rather small although of order 
unity, but the most remarkable is that it is not a set of measure zero [for 
U(l) at least]. 

For this mechanism of getting a massless particle without fine tuning 
to work it was not really important whether the discretized space-time model 
was a regular lattice or a more amorphous structure or even a discretized 
structure set up to make a "latticification" of quantum gravity. We have 
not proven this generality rigorously, but the mechanism has a general 
nature. In any case, we would expect that if somehow the model gets close 
enough to a discretized gauge theory, so that it has an approximate gauge 
invariance and a sufficiently weak coupling, then it will turn out to be in a 
gauge theory phase and show an exactly massless photon, if it is Abelian. 
If it approximates instead a non-Abelian gauge theory, it can be argued 
that although you normally will not see truly and exactly massless gauge 
particles because of confinement, there can without any exact fine tuning 
easily be several orders of magnitude of energy scales over which one 
effectively will see massless gauge particles as approximately asymptotically 
free. However, after all, at some low energies, particles get confined or 
spoiled somehow by the complicated vacuum. 

What we finally want to conclude is that a random and chaotic field 
theory glass or a quantum-gravity discretized model with a lot of degrees 
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of freedom taken as random can very easily-by accident-develop some 
effective gauge theories on it. We imagine as a natural assumption that the 
fundamental mass scale in a model of this type valid in nature is on the 
order of magnitude of the Planck mass. Then a priori one would expect 
that resulting effective particles as far as they have masses at all will have 
masses on the order of the Planck mass. However, as just stressed, there is 
the exception that a gauge symmetry can be constructed artificially and the 
theory comes into a phase in which this symmetry causes some particles to 
be massless. If this is the only exception to the intuitive expectation of all 
particles getting masses on the order of the Planck mass, then we would 
expect to observe at presently accessible energy scales only particles that 
should be massless due to gauge symmetry. In fact that is what we see in 
nature. All the particles of the Standard Model would be massless because 
of gauge invariance if it were not for the mysterious Weinberg-Salam-Higgs 
field or whatever the mechanism might be, e.g., Technicolor.9 We may 
consider this fact an agreement of phenomenology with random dynamics. 
Of course it tells us only that the Standard Model is a low-energy limit of 
some other theory and that it carries signals of being that. But it is promising 
for the success of random dynamics that the Standard Model contains just 
the types of particles that can appear as massless without fine tuning, gauge 
particles and chiral fermions (except for the never-seen Higgs particle(s». 
In this way it is a sign of agreement with random dynamics that the 
empirically supported model is a gauge theory, but of course competing 
theories such as superstring theory would also produce gauge theories. 

However, random dynamics has a prediction or at least suggestions 
for the gauge group expected at the low-energy limit, where we find the 
Standard Model. In fact it suggests that we shall find each cross-product 
factor such as the U(l), the SU(2), and the SU(3) in the Standard Model 
Lie algebra U(1) x SU(2) x SU(3) only once. Probably we shall find more 
simple groups in the cross-product (but again, each only once!), as we go 
up in energy. In fact, a major idea coming out of random dynamics is what 
we call the "confusion mechanism." Roughly the idea is that in the amor­
phous type of vacuum speculated in random dynamics, there is a difficulty 
in keeping track of which cross-product factor is which if the gauge group 
has several isomorphic cross-product factors. Indeed, it would need some 
convention to tell in each little region of space-time which degrees of 
freedom locally correspond to the first of a couple of isomorphic factors 
(call it Peter) and which corresponds to the second one (call it Paul). Well, 
you might attempt to start with an arbitrary convention for which fields 
should be called Paul and which Peter in one little region and then extend 
the convention to a neighboring region, and so on. This extension of the 
convention in small steps would mostly be determined by the condition 
that it is the Peter field in one region that interacts with the Peter field in 
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the next region, while the Paul field interacts with the Paul field. Now, 
however, will that extension of convention turn out successful if it is 
extended along some series of small regions lying on a closed curve in 
space-time? Presumably such an extension in a random (amorphous, say) 
model will turn out to be inconsistent in many cases. That is to say that in 
the glassy model in most cases there will be no satisfactory way of giving 
names to the gauge fields, so that neighboring small regions have interaction 
only between fields of the same name. What shall we see in the long-wave­
length limit in such a confused model, where no consistent naming can be 
performed? N. Brene and 110 have estimated that one will only see one set 
of gauge particles for each type of simple group, even if it appeared a priori 
as a factor many times! 

The other gauge particles (i.e., the ones corresponding to antisymmetric 
linear combinations of the original gauge particles) acquire nonzero masses. 
So they do not show up in the low-energy limit. There will occur a back­
driving force if one attempts to have nonzero potential A~nti = A~eter - A~aul. 
This signals a mass term m2(A~nti)2. 

We talk about the confusion mechanism being active when a gauge 
Lie algebra in some gauge model breaks down effectively to a subalgebra, 
because there are problems in setting up an appropriate distinction, between, 
for instance, various invariant subalgebras. It should be stressed that the 
permutation symmetry of a couple of isomorphic invariant sub algebras is 
not the only possibility for confusion. It could also happen in an amorphous 
model after going around a series of small regions along a closed curve in 
space-time, that one would be forced to identify the fields in a gauge field 
theory with their images under some other isomorphism of the gauge Lie 
algebra. If this isomorphism is only an inner one, i.e., if it is of the form 

h ~ aha-t, 

it can be shown that an inconsistency after going around a closed curve 
will just represent some gauge fields present in the vacuum, and thus it can 
be removed by setting up a compensating field. But if it is outer, it cannot 
be compensated away, and we expect only massless gauge particles for that 
subgroup which is left invariant under the automorphism. 

We see that random dynamics assumes that the gauge group varies a 
priori from place to place, but that the a priori gauge group breaks down 
and is effectively replaced by a subgroup. The tendency in this breakdown 
is to break it each time there is an (outer) automorphism, and the breaking 
goes into the subgroup invariant under the automorphism in question. 
Especially a gauge group that is a crossproduct of isomorphic groups tends 
to break down to the diagonal subgroup so that there is only one factor of 
each type at the end. This is indeed very close to the Standard Model Lie 
algebra, which happens to consist of the three lowest-dimensional (reduc-
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tive) simple Lie algebras, each used only once! Strictly speaking, even the 
Standard Model group-even taken to be the group S( U(2) x U(3», as the 
electric-charge quantization rule suggests, as we shall see in the next lec­
ture-has an outer automorphism and thus, strictly speaking, should break 
down under the conditions of an amorphous gauge theory. However, this 
is very little compared to other groups, and we can claim that random 
dynamics makes an approximately correct prediction for the gauge group. 
Also this single outer automorphism corresponds to charge conjugation and 
is strongly broken by the many chiral (Weyl) matter fields. 

One may imagine that the Weyl fermions could somehow playa role 
in keeping order in the gauge fields by preventing confusion in some cases. 
One may indeed think that it could be avoided that there is confusion on 
return along some closed curve between a gauge group and its image under 
a charge-conjugation symmetry by an effect of the Weyl particles. Charge 
conjugation corresponds to an automorphism shifting the sign of the hyper­
charge (Abelian) gauge field and complex conjugation for SU(3). The idea 
should be that the Weyl particle fields could be used all along the closed 
curve to mark which sign is to be used for the hypercharge gauge field and 
thus to keep track of the gauge fields so that the convention needed could 
be based on the Weyl fields rather than on just extending the definition 
from one place to the next. I.e., the convention could be, e.g., specifying 
the hypercharge sign by telling the sign of the lefthanded Weyl particle. 

Assume now that indeed the Weyl particles do help in preventing 
confusion. 

Then we expect all the accidental occurrences of gauge groups at 
different places in the field theory glass to produce confusion related to 
their complex conjugation symmetry (if they have complex conjugation) 
unless they have some charge conjugation-breaking Weyl fermions associ­
ated with the group in question. We take this to mean that groups having 
complex conjugation [or for that matter other (outer) automorphisms] not 
broken by their fermion matter fields or in other ways will suffer a breakdown 
by "confusion." We then take this approximately into account by speculating 
that only those SU(3) and U(1) cross-product factors which have a "gener­
ation" (family) of Weyl particles associated with them survive confusion. 
Mter the breaking, we would have only those SU(3) and U(1) groups 
which have (at least) one generation attached. We have at first no similar 
argument for the idea that all SU(2) groups but one per generation 
should break by confusion, but one could perhaps imagine that, for instance, 
a U(l) and an SU(2) group could have occurred rather as one U(2) group 
and thus the complex conjugation of the latter could make us hope for a 
similar effect. The problem with SU(2) is that its complex conjugation 
automorphism is an inner one. Speculating that the SU(2) somehow falls 
in line, we would have an intermediate scale region in which we have just 
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Ngen cross-product factors isomorphic to U(l), Ngen factors isomorphic to 
SU(2), and Ngen factors isomorphic to SU(3). From the Lie algebra point 
of view, this speculation means that we have really at this intermediate 
stage the (Ngen)th cross-product power of the Standard Model group 
SMG = S( U(2) x U(3» == U(l) x SU(2) x SU(3): 

SMG x SMG x ... x SMG(Ngen factors). (8) 

Successively this intermediate group or algebra will then by confusion break 
down to its diagonal subgroup SMG, and that is the part of it we see 
experimentally. 

The important point is that we here guess that we can relate the number 
of, say, SU(3)-groups which have been confused to break down to the 
QCD-SU(3), gauge group to the number of generations of fermions and 
leptons. The SU(3) found in QCD as the phenomenological model is thus 
the descendent of Ngen parent groups. 

Now we remember that in the random dynamics model the gauge 
theories came about by accident because a gauge symmetry that was acciden­
tally found with sufficient accuracy in the field theory glass would show up 
as a theory with truly massless gauge particles. This phenomenon-this 
phase-happens in a whole region of parameters, so that fine tuning is 
avoided, but all over this region the couplings must be so that there is no 
MFA-confinement (at the lattice scale). Since, supposedly, a non-Abelian 
gauge theory without too many types of matter fields will be in the confining 
phase, strictly speaking we cannot get the phenomenon of appearance of 
a gauge theory without fine tuning for the non-Abelian case. In an approxi­
mate sense there is, however, no problem in having this mechanism also 
working for non-Abelian Yang-Mills fields. It is needed only that the 
coupling be small enough that there is no "confinement at the lattice scale." 
That must, however, be avoided even without use of the no-fine tuning 
mechanism. So we have to have in random dynamics, as well as in almost 
any model, that the running coupling at the Planck scale-which is here 
taken to be the smallest distance scale at which physics make sense-must 
be weak enough not to cause immediate confinement at that scale. 

In our calculations, we take the avoidance of confinement at the Planck 
scale to mean that the running coupling g(/LPlanek) at that scale is weaker 
than the critical coupling gerit MFA calculated in the mean field approxima­
tion. Calculated in this approximation, it is this critical coupling which 
separates the Coulomb phase with a gauge particle massless without fine 
tuning from the confining phase in which there is no massless gauge boson. 

Now the mean field approximation is used for gauge theories which 
are described as lattice gauge theories. In principle one can therefore obtain 
a MFA phase for each plaquette action one may choose. This means that 
one has, strictly speaking, infinitely many parameters corresponding to the 
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gauge coupling constants. In fact, one can use as a plaquette action any 
superposition of the characters (traces) of the various representations of 
the gauge group, so there is an infinite ambiguity in the plaquette action 
SLATrICE. However in practice one is accustomed to the fact that one may 
almost guess the form of the plaquette action just from smoothness. It would 
not contain many more parameters than the number of continuum theory 
couplings. In the continuum gauge theory, there is one gauge coupling 
constant for each minimal invariant subgroup, i.e., for the Standard Model 
there are three gauge coupling constants, corresponding to the three sub­
groups U(1), SU(2), and SU(3). Usually, information contained in these 
coupling constants is presented in the fine structure constant a, the Weinberg 
angle Ow, and the QCD scale parameter A MS , say. Our main point concern­
ing coupling constant predictions is to require that in the mean field 
approximation we shall have for the actual values the Coulomb phase, so 
that in first approximation there are massless gauge particles. Now, however, 
remember that in random dynamics there was at first only approximate 
gauge invariance. In order to get the Coulomb phase, it is then required 
both that the would-be gauge coupling is sufficiently weak and that the 
breaking is small enough. If there are large fluctuations in the would-be 
physical directions, one may expect the gauge noninvariant terms to be 
easier to be averaged out. Large fluctuations-say in the Euclideanized 
lattice-seems to be the most likely. This is taken to mean large entropy. 
So random dynamics suggests that the actual couplings at the Planck scale 
are so as to correspond to a maximal entropy in the gauge field degrees of 
freedom under the important requirement that in MFA there be Coulomb­
phase physics at the Planck scale (i.e., if the lattice constant is taken to be 
the Planck length).l1 

This maximal entropy will be found-we think-in a corner of the 
region of coupling parameter space corresponding to the Coulomb phase. 
This corner is-we think-squeezed in between phases in which part of the 
standard model gauge group is confining, while another part is in the 
Coulomb phase. For instance one can have a phase in the mean field 
approximation in which, say, U(2) [i.e. U(1) and SU(2)] is in the Coulomb 
phase, while the SU(3)-degrees of freedom confine even in the mean field 
approximation (and not only at very long distances as usual). Where various 
phases of this type meet with each other and the fully confining and the 
fully Coulomb phase (all made in the mean field approximation, where all 
these phases exist) there will be corners. So random dynamics implies that 
the corner with the largest entropy of this type to be the truth, i.e., to 
correspond to the actual coupling constants. They must then be corrected 
for the dependence of the coupling constants on the renormalization point 
f.L. That is to say, one must take into account the variation of the coupling 
constant due to the renormalization group in order to calculate the values 
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measured experimentally in terms of those at the Planck scale assumed to 
be the ones in the critical corner corrected by a factor 1/.j Ngen • 

If we just extrapolated the critical corner couplings down to the experi­
mental scales we would not get good agreement; we would predict couplings 
that are too strong. However, it goes much better if we include the following 
correction: We say that the gauge couplings which at the Planck scale take 
on the "corner" -critical values in the mean field approximation are not the 
same as the observed ones. Rather the observed gauge group is the diagonal 
subgroup SMG = S( U(2) x U(3)) of a cross product of three with this 
Standard Model Group isomorphic groups, one per generation. In other 
words: at the Planck scale, our model has the gauge group SMGdiag , which 
contains the experimentally found degrees of freedom appearing as the 
diagonal subgroup of the cross product SMG x SMG x SMG. This cross­
product group may then be embedded in a larger, more general group. This 
hypothesis of an intermediate group that is a cross product of one Standard 
Model Group for each generation is quite natural in the scheme of random 
dynamics, as was explained above. The importance of this intermediate 
cross-product hypothesis is that under the breakdown of a group of the 
form G x G x G (call the groups G pete" Gpaul> G Maria), the inverse squares 
of the coupling constants are additive in the cross-product factors: 

1 1 1 1 
-2-=-2--+-2-+-2--' 
g i, diag g ~ Peter g i, Paul g i, Maria 

(9) 

For all the couplings of the Peter, Paul, and Maria groups being in the 
same corner in the phase diagram, this assumption of the observed group 
being the diagonal one leads to a correct factor of three, making the Planck 
scale prediction for the couplings weaker in g2. In the coupling it means 
that we predict this way a factor v'3 weaker couplings at the Planck energy 
scale. This turns out to make the agreement with experiment rather good, 
We have not yet calculated the smaller details of the prediction for the 
gauge couplings from the corner-critical couplings interpreted this way, but 
it is very close to the older calculations3 in which we had a parameter (x) 
to fit, and we can at least say that the corner couplings corrected with the 
factor v'3 and extrapolated down will not be far away from agreeing with 
experiment, II 

3. SKEWNESS: THE GOLDEN PRINCIPLE 

Let us now, as announced, roughly present the first lecture again in 
reverse order in the sense that we look at the physical laws known today-the 
Standard Model-and seek to find signs in the model which indicate some 
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special property that can serve as a guiding principle in constructing models 
behind the Standard Model. Or, perhaps, the same golden principles them­
selves governing the laws of physics can be found simply by looking for a 
characteristic property of the Standard Model. What we want to claim is 
that one of the most characteristic features of the Standard Model is its 
lack of symmetry!12 We can say the Standard Model is very skew. In fact 
many of the questions of the type, "Why should it just be like that?" are 
answered by: "This makes the Standard Model most skew." 

The inspiration for the idea that the Standard Model should be 
especially poor in symmetries could appear from noticing that the gauge 
Lie algebra is the direct sum of the three lowest-dimensional invariant 
sub algebras that could be used: the Abelian algebra U(l), the algebra SU(2) 
of weak isospin, and finally the QCD algebra SU(3). These three algebras 
have dimensions, respectively, of 1,3, and 8. There are no lower-dimensional 
simple or abelian Lie algebras, only some nonreductive Lie algebras that 
would not be useful for the construction of Yang-Mills theories. By counting 
Lie algebras composed from simple and Abelian ones with dimension of 
the same order of magnitude as the Standard Model, Niels Brene and 113 

found that the remarkable feature is not so much that the invariant subalge­
bras have low dimension, but that none of them are used more than once! 
In other words, the remarkable fact is that we do not find several U(l) or 
several SU(2) etc. One can naturally state that fact by saying that the 
Standard Model lacks some symmetries. A typical Lie algebra such as 
U(l) x U(l) x ... U(l) x U(l) x SU(2) x SU(2) would have symmetries 
corresponding to permutations of the various isomorphic direct product 
factors . They are lacking in the Standard Model, because there are no 
algebras to permute, since each of them occurs only once. For a cross 
product of, for example, two factors 0 x 0 = {( a, b) I a, b E O}, the trans­
formation corresponding to the permutation of these two factors is the 
mapping (a, b) ~ (b, a). 

We clearly cannot say that nature does not like the gauge symmetries, 
but we want to claim that it does attempt to avoid the symmetries involving 
transformations shifting the gauge fields around without being gauge trans­
formations themselves. This means the "outer automorphisms" of the gauge 
group (or algebra). It seems that nature likes the symmetries not touching 
the gauge fields, since it might have avoided such symmetries by choosing 
fewer generations. It seems that indeed nature attempts to avoid, for 
example, scalings of the hypercharge (field) and charge conjugation, say 
of the QCD SU(3) Lie algebra. It tends to avoid the outer automorphisms. 
What nature attempts to do with symmetries which do not transform the 
gauge fields is less clear. Superficially, at least it seems that nature is not 
afraid of piling one generation on top of the other, thereby opening the 
way for lots of flavor mixing symmetries. 
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Many features of the Standard Model are explained by this horror of 
the outer automorphisms, or-equivalently-by the preference for 
skewness: 

1. Why are there just three colors in QeD, i.e., why Nc = 3? Our 
answer is: Nc = 3 is the smallest number of colors that would not 
bring nature into the problem of having to keep track of two 
isomorphic gauge groups, namely an SU(2)weak and an SU(2)strong, 
say. (In fact the only sensible number of colors leading to any gluons 
at all lower than Nc = 3 is the possibility Nc = 2, and that would 
produce the confusion with the weak gauge group.) 

2. Why should quarks have the 1/3-charges they are known to have? 
This produces an electric charge quantization rule 

t 
Q = --(mod 1) 

3 
(10) 

linking charge conjugation for the SU(3) to that for electric charge. 
If, e.g., quarks had zero charge, there would exist two separate 
charge conjugation symmetries C1 and C2 for the model. Here C1 

transforms the electrically charged particles into (anti) particles with 
the opposite electric charge, but it leaves the SU(3) representation 
the same: 

SU(3) invariant, (11) 

and the other charge conjugation C2 leaves the electric charge, but 
lets the SU(3) representation go into the one of the conjugate: 

C2 ; Q ~ Q, SU(3) is complex conjugated. (12) 

Even the charge quantization rule is not invariant under these two 
operations separately. In nontrivial cases, the representations obey­
ing the rule will be even less invariant. We may say that nature 
made a rule linking the two charge conjugations C1 and C2 in order 
to stress as strongly as possible that they are not separately good 
symmetries. Nature really attempted to make the Standard Model 
as skew as possible. 

3. Why should there be parity P and charge conjugation C violations? 
The reason is to have the charge conjugation violation to break the 
symmetry corresponding to the combined symmetry C = C2 0 C1 

that corresponds to an outer automorphism of the Gauge group 
S( U(2) X U(3)) and is in fact charge conjugation symmetry. 

4. Why should there be so relatively many generations as three? Well, 
we could even claim that nature is not satisfied with breaking this 
charge conjugation C once, but wants to break it several times! 
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(Why just three times by the three generations we do not know, but 
we connect it with the smallness of the fine-structure constants.) 

5. C. Jarlskog14 suggested that we have just three generations because 
we thereby get CP violation, whereas further generations would 
bring nothing new. If this is the reason, it might also look as if 
nature were keen to get one more symmetry broken. Again it is 
fighting to get asymmetry, skewness. (This point is less clear.) 

We made our claim about nature choosing the most skew among many 
possibilities relatively precise by saying how it selects the most skew of all 
nonsemisimple groups SMG = S( U(2) X U(3» of dimension up to 18, i.e., 
with up to 18 species of gauge particles (see Table II). Here it is important 
to have in mind that-following Michel and O'Rafeartaigh15-one can 
assign a meaning to the gauge group and not only to the gauge Lie algebra. 
Various groups with the same Lie algebra allow only some of the representa­
tions of this Lie algebra. One may therefore look at the matter fields and 
how they transform under gauge transformations in order to see if they 
should all happen to be such that they would be allowed as representations 
for some special group with the Lie algebra R x SU(2) x SU(3) correspond­
ing to the gauge fields found in nature. Indeed it turns out that the restriction 
on the matter field representations imposed by the requirement that the 
electric charge be quantized in the well-known way-colorless particles 
have integer charge and quarks have charges of -1/3 + integer-can be 
interpreted as the requirement that the matter fields are representations of 
the group S( U(2) x U(3». This group has the same Lie algebra as U(1) x 
SU(2) x SU(3) and is defined as the group of 5 x 5 matrices which are 2-3 
block-diagonal, unitary, and of determinant 1: 

S( U(2) x U(3» 

000 o 0 0) } 
U

3 

U2 E U(2) " U3 E U(3) " det = 1 

Table II. Numbers of Nonsemisimple Groups up to and Including 
Dimension 12, with Various Properties Meaning Successively Greater 
and Greater Degree of Skewness. 

194 nonsemisimple groups up to d = 12 
13 only the unavoidable outer automorphism 

6 no OJ Z2 "" 0 
1 neither OJ Z3 "" 0 
1 neither OJ Z4 "" 0 
o neither OJ Z5 "" 0 
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Here det stands for the determinant of the whole 5 x 5 matrix; i.e., it 
is really the product of the determinants of U2 and U3 • We can obtain the 
group S( U(2) x U(3» as the factor group (=quotient group) derived from 
the "covering group" R x SU(2) x SU(3) by identifying the elements gener­
ated by the element (27T, _I2x2, exp(i27T/3)I3X3 ) with the identity 

S( U(2) x U(3» = (R x SU(2) 

x SU(3»/ {(27T, - 12x2, exp(i27T/3)I3x3)" I n E Z}. 

The representations of the Lie algebra are the same as those of the covering 
group of that Lie algebra. The condition to be imposed on a representation 
of the gauge Lie algebra of the Standard Model, in order for it to be a 
representation of S( U(2) x U(3», is that it represent the elements generated 
by (27T, - 12x2, exp( i27T /3)I3X3 ) trivially, i.e., by the identity operation. This 
condition is easily seen15 to be equivalent to the restriction 

y + d/2 + t/3 = 0 (mod 1) (13) 

on the weak hypercharge y. This is the same as the condition of electric 
charge (Q) quantization the usual way: 

Q = -t/3 (mod 1). (14) 

Here d denotes the "duality" of the SU(2) component in the representation 
(Le., d = 0 when the weak isospin is integer and d = 1 when it is half 
integer), and t is the "triality" of the color representation (Le., for example, 
t = 1 for quarks and t = -1 = 2 (mod 3) for antiquarks, while the gluons 
and the leptons have triality t = 0, all counted modulo 3). 

The remarkable empirical fact that all the matter fields, all the (Weyl) 
fermion fields, belong to representations of the gauge Lie algebra obeying 
the usual electric charge quantization rule means that there is an empirical 
suggestion for "the gauge group" to be S( U(2) x U(3» rather than, say, 
just its covering group. 

Our main result is formulated by considering the groups which could 
be used as gauge groups. But, and this is to some extent a problem for our 
work, we ignore the semisimple groups, i.e., those that do not have a center 
of at least dimension one. I.e., we ignore those with no U(1), so to speak. 
The ones that cannot be used are the ones with a radical that is not the 
center. If they really were chosen as the gauge group there would be some 
components of the gauge field for which no kinetic term in the action could 
be found. We shall restrict ourselves to the groups with the radical being 
the center. They are called reductive groups. 

Just to give some numbers, let me say that the number of reductive 
nonsemisimple groups of dimension less than or equal to 12 is 194. Twelve 
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is the dimension of the Standard Model itself. In Table II we show these 
groups up to dimension 4. It can easily be shown that the groups of this 
type must always have at least one nontrivial outer automorphism, in fact 
a kind of "charge conjugation." It has the property of inverting the sign of 
the center part of the Lie algebra: inverting the hypercharge, we may say. 
It also complex conjugates under the other parts of the Lie algebra. Thirteen 
of the 194 groups have only this outer automorphism. They are therefore 
the 13 most skew among the 194 groups. As we also want to make some 
separation between groups that are more skew than others among these 13 
groups, we shall take into account some outer automorphisms of the Lie 
algebra which are, however, only in an approximate way outer automorph­
isms of the group structure. We may call such automorphisms generalized 
or approximate (outer) automorphisms, and we define them to be isomorph­
isms between (different) factor groups of the group in question. We consider 
the factor groups the more important the smaller the invariant subgroups 
(of the center) which are divided out. Since a group can be considered a 
factor group of itself with the invariant subgroup consisting of the unit 
element alone, any automorphism is also an isomorphism between factor 
groups and thereby a generalized automorphism. Mter this most important 
type, the next most important generalized automorphisms should be the 
ones we got as isomorphisms of the group itself with a factor group obtained 
by dividing out an invariant subgroup isomorphic to the two-element group 
Z2' Out of the 13 groups having only the one nontrivial outer automorphism, 
there are seven which have such a generalized automorphism. That is to 
say that there are seven nonsemisimple groups up to dimension 12 which 
have an isomorphism so that 

(15) 

Here G denotes the group considered. For seven out of 13 groups with 
only the unavoidable outer automorphism, there is indeed such an isomorph­
ism between the group itself and a factor group obtained by dividing an 
invariant subgroup with only two elements. These seven are thus the least 
skew among the 13. Out of the remaining 6 = 13 - 7 groups, there are five 
which have an isomorphism corresponding to 

(16) 

i.e., there are 5 that are isomorphic to one of their own factor groups 
obtained by dividing out an invariant subgroup with three elements, Z3' In 
order to find an isomorphic factor group for the last one (=6 - 5) group it 
is not enough to divide out a four-element group; no, you need to divide 
out one with five elements, Z5' This group is thus not only the most skew 
among the 194 nonsemisimple reductive groups of up to 12 dimensions; it 
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even seems to stand somewhat clearly ahead with respect to skewness.* 
Needless to say, this exceptionally skew group is precisely S( U(2) x U(3», 
the group selected by nature! 

As one goes up in dimension, one finds more and more groups increas­
ing exponentially, and we can rigorously12 show that at dimension 19 you 
first find a group that is as skew as the Standard Model group S( U(2) x 
U(3». This competing group has a structure similar to that of the Standard 
Model, but with SU(2) replaced by the covering group of SO(5), Spin(5). 
At dimension 36 you find a group that is even more skew than the Standard 
Model group, but it is essentially the Standard Model group extended by 
the addition of an SU(5) factor. If you imagined that nature had chosen 
that group, there would presumably be confinement of the SU(5) at some 
energy scale above present experimentally accessible energies. The variation 
of the coupling constant with scale would for similarly many fermions be 
faster for SU(5) than for, say, SU(3). 

The result to be seen at present would then be just the Standard Model 
group anyway! So it would not make much difference. Nature has-so it 
seems-chosen the group of the Standard Model among several hundred 
nonsemisimple reductive groups, at least 194, as the most skew. 

This is as remarkable as making a prediction of a number to an accuracy 
on the order of !% from some principle, so we have indeed some evidence 
for the truth of the idea that nature has selected the Standard Model because 
it is utterly skew! 

As we mentioned above under point (3) about parity violation, you 
may interpret the relatively high number of generations as an attempt by 
nature to break the only nontrivial outer automorphism of the Standard 
Model group SMG. This is evidence for skewness in the Standard Model 
not counted into the selection of SMG among the at least 194 groups. So 
the evidence for skewness is even a bit greater. 

The piling up of several generations with the same representations 
repeated again and again would make the symmetries under scaling of the 
weak hypercharge even more solidly broken, but would of course make 
some symmetry between the generations appear. It seems that nature cares 
mostly to avoid those potential symmetries that transform the gauge fields 
in a nontrivial way. However, it does not seem to mind so much the 
symmetries among flavors not transforming the gauge fields. 

But why is nature so keen to avoid those symmetries, those automorph­
isms? This is a question which we are now encouraged to speculate about. 
We may expect that finding-guessing-the correct answer to this question 
could be very helpful in finding the correct theory behind the standard 

* It is easy to think through that there are no groups that can be equally skew before dimension 
19 simply by using the classification of Lie groupsP 
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model. Which models would favor giving a very skew, model in the low 
energy limit? A most natural explanation for why we empirically see an 
extremely skew (asymmetric) group could be the following: 

1. At some (more) fundamental level-small distances, Planck level 
of energy and length scale, say-nature tries a bigger, not necessarily 
very skew group, but one more like what most groups are like: 

Goature = (U(l) x U(1) x ... x U(l) x SU(2) x SU(2) x ... 

x SU(2) x SU(3) x SU(3) x ... 

x SU(3) x Spin(5) x ... )/ H. 

Here H is some discrete subgroup of the center that is being divided 
out of the covering group. (All reductive connected Lie groups must 
be of this form.) 

2. Then successively nature somehow cannot keep track of the various 
possibilities for transforming this group around by outer automorph­
isms and breaks it down to a subgroup invariant under the (outer) 
automorphisms. The idea is that if the original group G has an 
(outer) automorphism/: G ~ G, then there is some mechanism that 
causes a breakdown of the group G into the subgroup {g E G I/(g) = 

g}, which is left invariant under the automorphism. If such a break­
down mechanism is applied to several (or all) outer automorphisms, 
it would be highly expected that the resulting surviving subgroup 
would have very few outer automorphisms left, since the procedure 
would simply remove them successively. Such a mechanism could 
be an explanation for the very high degree of skewness of the gauge 
group found in nature to have survived. 

A model of this character of cleaning away the nontrivial outer automorph­
isms by making them trivial after a breakdown of the group is rather 
reasonable as a proposal to explain such a negative property as skewness. 
The property skewness is negative in the sense that it is the lack of something: 
the outer automorphisms. To explain such a lack of something a mechanism 
which makes it disappear successively is very reasonable. Clearly a nontrivial 
outer automorphism represents the possibility of confusing the gauge fields 
with one another or themselves. In fact, the group structure can at least not 
make any distinction between the gauge fields A~(x) and their images under 
the automorphism f, i.e., /(A~). How can such a possibility for mixing up 
a field with its image now be imagined to cause a breakdown of the original 
group? Well, if they got locked in so that the field A~(x) and its image 
/(A~) had to take on the same value unless the energy of the field were 
appreciably increased, then it would cost energy to perform those field 
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vibrations which correspond to gauge fields not left invariant by the 
automorphism f This cost in energy can be shown to correspond to that at 
which masses appear for other gauge field vibrations than the invariant ones. 

A locking in so that the field A~(x) has to be equal to f(A~(x» could 
be imagined in several ways: 

1. Above we mentioned the field theory glass leading to a gauge glass 
which is so chaotic a model that one gets into contradictions if one 
seeks to keep track of the gauge fields so as to distinguish a gauge 
field from its image under the automorphism f This meant that the 
interaction of the degrees of freedom describing the gauge fields 
were such as to make A~(x) and f(A~(x» indistinguishable in a 
well-defined manner, and thus they really get locked together, since 
they should then take the same values. 

2. You may also think of an ordinary continuum field theory formula­
tion in a general relativity space-time forming a lot of space-time 
foam due to quantum fluctuations. Provided the space-time foam 
is not simply connected, it is possible to modify the laws of physics 
in a way that represents a true change only in the global, but not 
locally. This is done by introducing what we call confusion surfaces. 
The latter means a surface in space-time (of co-dimension one, i.e., 
of dimension 1 less than that of space-time itself) across which the 
notation changes as under an automorphism f of the gauge group. 
Thus one has at the confusion surface instead of the usual continuity 
property of the fields a discontinuity rule: 

limfrom side d(A~(x» = limfrom side 2A~(x). 

This rule tells us that on passage of the confusion surface the fields 
go into their images under the automorphism. If in a simply con­
nected space you introduce such confusion surfaces it just means 
that you use different notation in different regions of space-time, 
i.e., on the different sides of the confusion surface. That must of 
course be without any physical content. If space-time is, however, 
not simply connected, you can introduce surfaces with discontinuity 
rules just as if they were just surfaces of change of notation, but 
now in the global case there could indeed be a true physical change 
in the laws of nature postulated in the model. It is in fact possible 
to find in this case surfaces which do not divide space-time, but 
with the sides 1 and 2 in fact continuously connected. This fact may 
be revealed on return around some handle in the space-time foam. 

If we made the assumption that physical laws are of an entirely 
local nature one could argue that a modification of the physical 
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field theory which could only be detected globally, but not inside 
any sufficiently small neighborhood, could not be prevented. There 
should therefore under this assumption be no possibility of prevent­
ing the existence of the proposed "confusion surfaces" and thus for 
having the confusion mechanism work unless the symmetry corres­
ponding to the automorphism is at least in some way broken (for 
example, by the fermion fields not being invariant under it). So with 
space-time foam a confusion type of mechanism is indeed very likely 
to come into play if any automorphisms are not broken. 

This relatively great ease with which a mechanism attacking symmetries 
could come about together with the strong phenomenological evidence for 
skewness of the Standard Model Gauge group suggests rather strongly that 
this skewness is not accidental, but that there is indeed some mechanism 
that has caused this skewness! 

If we want to take seriously point (4) telling that the presence of 
relatively many generations is a skewness sign we must imagine that whatever 
the mechanism-confusion, say-that breaks the group to make the resulting 
one more skew, it is at least to some extent influenced by the existence of 
fermion fields breaking the symmetry. That is to say we must expect that 
the mechanism breaking the group down to the subgroup {h I hE G and 
f( h) = h} is prevented by the existence of fermions to which the automorph­
ism f cannot be extended as a good symmetry. If the mechanism that 
produces skewness preferentially attacks symmetries that are also sym­
metries for the matter fields (the fermions, say) then this mechanism would 
presumably first remove all factors in the gauge group that have no chiral 
matter fields associated with them but nevertheless have the charge conjuga­
tion automorphism-complex conjugation-as an outer automorphism. 
Successively isomorphic cross-product factors of the gauge group resulting 
from the first step would break down to their diagonal subgroup because 
of the attack from the "mechanism ensuring skewness," but this would 
happen only if the matter fields associated with these isomorphic factors 
can be considered in correspondence. If the different isomorphic cross 
product factors do not have the same representations of matter fields, the 
symmetries permuting the groups Peter, Paul, etc. would not be good 
symmetries of these matter fields and the attack from the "mechanism 
ensuring skewness" would not work. Only when the matter fields are in the 
same representations will the breakdown to the diagonal subgroup take 
place without any suppression, we must expect. If we at any stage of the 
breakdown of the group(s) avoid gauge anomalies and mixed anomalies, 
it is hard to see how matter fields for groups that are the standard model 
group or cross-product powers of it could avoid coming in full generations. 
We may define a generation as a set of chiral fermion fields having the 
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anomalies adding up to zero, but without any subrepresentation with this 
property. 

If the Standard Model gauge group as we find it experimentally­
phenomenologically-originates as the diagonal of the cross product of say 
n isomorphic factors, each of these factors must have the same number of 
generations. Since the diagonal subgroup couples to a generation for one 
of the groups Peter, Paul, etc., in the same way as the one of these to which 
it belonged, the number of generations for the diagonal subgroup becomes 
the sum of the number of generations for the groups Peter, etc., and since 
each of them should have equally many generations, we get 

N gen = n x N gen• Peter, (I8) 

where Ngen• Peter is the number of generation associated with the group 
SMGpeter or one of the other groups from which the experimentally access­
ible SMG descends. Clearly, then, the number of isomorphic factors n from 
which the observed group descends must be a factor in the experimentally 
observed number of generations Ngen , which is now known to be 3. Since 
the number 3 is a prime there are only the possibilities n = 3 or n = 1, the 
latter meaning that there was no diagonal subgroup breakdown in the last 
step at all. The possibility n = 3 is the one corresponding to the "anti-grand 
unification" model which we have used to predict that the number of 
generations should be 3. 

A scheme in which the standard model group results as the diagonal 
subgroup by a breakdown from the cross product of as many factors 
isomorphic to the standard model group as there are generations Ngen has 
the advantage that horizontal quantum numbers separating the different 
flavors now have a rather natural way to correspond to gauge symmetries 
at a higher energy level. The various Peter, Paul, etc., gauge charges will 
act as horizontal charges partially suppressing quark and lepton masses­
once the Weinberg-Salam-Higgs field is added to the picture. 

Taking the skewness of the Standard Model as a guiding principle, we 
are indeed led very much in the direction of the anti-grand unification 
scheme which we also said was an effective ingredient as an intermediate 
step in the random dynamics model. 

The good agreement of expectations for the relation between the 
fine-structure constants and the number of generations derived from the 
random dynamics model means that if we extrapolate the experimentally 
observed couplings up to the Planck energy scale and assume that here the 
standard model group is found as the diagonal subgroup of a cross product 
of Ngen with the Standard Model group isomorphic groups, then the coup­
lings for the latter are just on the borderline of confinement in the lattice 
approximation that is called the "mean field approximation." If the gauge 
couplings in such a scheme were stronger than they are experimentally, we 
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would have the strange situation that there should have been confinement 
already at the Planck scale. This would hardly be believable. E.g., the QeD 
coupling must be so weak at the Planck scale that the Peter, Paul, and 
Maria SU(3) couplings avoid confinement at the Planck scale. We may 
claim mainly from ideas based on extrapolating the skewness idea to have 
argued that also, for instance, the fine-structure constant a had better not 
be stronger than it happens to be experimentally. So we have from the 
skewness-inspired scheme turned the usual mystery, "Why is the fine­
structure constant so weak?" into the almost opposite one, "What is the 
reason that the fine-structure contants have just their strongest allowed 
values?" This remarkable saturation of the upper bound for the gauge 
couplings in our scheme has an explanation in the random dynamics model: 
Small gauge-symmetry breakings are more easily hidden and unimportant 
if the gauge couplings are strong, because the larger quantum fluctuations 
wash them out. 

Although this saturation may be taken as evidence for random 
dynamics, this is relatively weak. The conclusion of the part of my talk 
concerned with the skewness principle should rather be the following: 

The part of the random dynamics scheme that is relevant for the 
predictions can essentially be argued for by extracting a principle of low 
symmetry (skewness) of the Standard Model group and imagining a mechan­
ism leading to the survival of a skew group only. Apart from an assumption 
of saturation-the gauge couplings are as strong as allowed-and minor 
"helping assumptions" not derived in random dynamics either, there is no 
need for random dynamics to derive the scheme of ours giving the gauge 
coupling constants related to the number of generations. So the experimental 
agreement which I claim that we have should be taken rather as an agreement 
of the scheme of anti-grand unification, and skewness as the golden prin­
ciple, than as evidence for the random dynamics idea, which however, first 
brought us to these ideas. 
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Chapter 10 

Gauge Anomalies in Two Dimensions 

R. Rajaraman 

1. INTRODUCTION 

In these lectures, I will try to explain how two-dimensional field theories 
in which gauge invariance is anomalously broken may be treated consistently 
and to outline the resultant interesting and unfamiliar features of such 
theories. As is well known, such anomalies are not special to two dimensions; 
they can occur in any number of dimensions where chiral fermions exist, 
and it was believed until a few years ago that in all such cases the gauge 
anomaly dealt a fatal blow to the theory. The anomaly was believed, 
variously, to lead to the failure of renormalizability, unitarity, Lorentz 
invariance, and even canonical consistency. This last was believed to fail 
because of the apparent conflict between the current-anomaly equation 
D"r = R(AIL ), where R(A,J is the anomalous divergence, and the gauge 
field equation DILFIL" = r, which implies D"l" = O. 

R. RAJARAMAN • Centre for Theoretical Studies, Indian Institute of Science, Bangalore 
560012, India. 

Quantum Mechanics of Fundamental Systems 3, edited by Claudio Teitelboim and Jorge Zanelli. 
Plenum Press, New York, 1992. 

209 



210 R. Rajaraman 

While such anomalous gauge theories and their alleged problems could 
exist in any (even) number of dimensions, we choose to discuss them here 
in the two-dimensional context for the following reason. Except for the 
nonrenormalizability problem, which is diminished in two dimensions, 
concern about the other problems such as loss of Lorentz invariance, 
unitarity, or canonical consistency has been expressed as much here as in 
higher dimensions, and these problems need to be investigated critically. 
At the same time, two dimensionality offers simplifications, not only at the 
technical and algebraic level, but also through the availability of bosoniz­
ation, which, as we will see, is a great asset in investigating anomalous 
theories. Taking advantage of all this, one can show that anomalous gauge 
theories in two dimensions are in fact free of the suspected pathologies. 
They turn out to be constrained but not gauge-invariant theories, i.e., they 
carry second-class constraints, as was first pointed out by Faddeev.! When 
treated according to standard constraint theory, they yield perfectly con­
sistent structures. In fact, the Abelian case (the Chiral Schwinger Model) 
is exactly soluble, and the absence of the alleged pathologies can be explicitly 
verified.2 The spectrum is relativistic and the theory unitary. 

The non-Abelian generalization (chiral 2D QCD) cannot be solved 
exactly, but short of solving it explicitly one can show, using bosonization, 
that it has all the desirable healthy features of a quantum field theory, and 
its independent degrees of freedom can be identified.3 With appropriate 
generalization, Chiral (QCD)2 shares some of the properties of the Abelian 
case.4 

2. THE CHIRAL SCHWINGER MODEL: THE EFFECTIVE ACTION 

The possibility that some anomalous gauge theories may be quite 
sensible if treated properly can be very explicitly realized in the chiral 
Schwinger model (CSM). This is a two-dimensional model of a massless 
fermion '" coupled to a vector meson AIL" It is very similar to the famous 
Schwinger model, with the sole difference that AJL couples not to the vector 
current but just to the right (or just to the left) chiral current. This is the 
simplest anomalous gauge theory and, as we will show below, it can be 
solved exactly in the charge-zero sector. When the theory is appropriately 
regularized, it yields a relativistic spectrum of particles with real masses, 
and it is unitary. The theory contains many new and interesting features 
which we will discuss. But first, let us derive the solution of the model. 

The model is described by the action 

(2.1) 
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We are using the following representation and notation: 

These satisfy 

o 
,),=0"1, 
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(2.2) 

(2.3) 

The action (2.1) is gauge-invariant at its classical level under the Abelian 
chiral gauge transformations 

I/IR == !(1 - ')'5)1/1 ~ e-ieA(x) I/IR, 

I/IL == !(1 + ')'5)1/1 ~ I/IL, 

and 

(2.4) 

Associated with this invariance, the chiral current is classically conserved: 

(2.5) 

However, when the model is quantized, the chiral anomaly caused by 
fermionic fluctuations destroys both the current conservation and the gauge 
invariance. Let us first show these features. 

The quantum theory is described by the functional integral 

Z[I~] = f DA~DI/ID,fr exp [iSp( I/I,frAIL ) + i f d 2x A~r ], (2.6) 

where I~ is the source of the gauge field Aw Derivatives of 
Z[I~] with respect to I~(x) yield, through familiar methods, all n-point 
functions of Aw We will be interested for our purposes in only the charge­
zero sector; hence source terms for the Fermi field 1/1 have not been included. 

One can rewrite Z[I] in the form 

Z[I~] = f DA~ exp {iSelf(A~) + i f d 2x A~ I~ }, (2.7) 

where the "effective action" Self [A] of the vector field is given by 

Self[A~] = W[A~] - f ~F~vF~v d 2x, (2.8) 

with 
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On differentiating both sides with respect to A,..(x), we get 

aw = e-iwf DI/IDliieiJd2X'(ljii"",-j"-A,) (-'I-'(x)) 
aAI-'(x) J 

= -(r(x», (2.10) 

where ( . ) denotes expectation value in the fermionic vacuum in the presence 
of its chiral coupling to an external field AI-'" 

Our strategy for solving this theory in the AI-' sector is to first obtain 
W[AI-'J. This, in tum, we will do by evaluating (r) and integrating Eq. 
(2.10) over AI-'" Note that the bilinear expression for r(x) given in Eq. 
(2.5) becomes formally divergent in the quantum theory. It has to be 
regularized. We write 

e -
r(x) ="2 I/Ii(X)( yl-' - yI-'Y5)ijl/lix) 

= lim -2e {liii(Yhij e-ie"J~A~d€~ I/Ij(x) 
x~y 

Yo>Xo 

where a and f3 are arbitrary real constants. 
Classically, as sl-' == xl-' - yl-' ~ 0, the elaborate expression in Eq. (211) 

reduces to just (e/2)Iii(xhI-'Ysl/l(x), and the exponentials involving AI-' have 
no effect. In the quantum theory, however, I/I(x)lii(y) diverges as 1/ s, and 
the linear term in these exponentials leaves a residual contribution. It 
can be checked, incidentally, that Eq. (2.11) represents the most general 
regularization of jl-' in this theory. 

Now the Feynman propagator S(x - y) in the presence of AI-' is 

(2.12) 

and obeys 

[ a e ] 2 iyl-'- - - yl-'(1- Y5)AI-'(X) S(x - y) = 8 (x - y). 
ax I-' 2 

(2.13) 

In terms of S, the vacuum expectation value of jl-' given in Eq. (2.11) can 
be written as 

(r(x) = ~i~ (-;e) {(1 + iea(x - y)°"Au + ... ) Tr[yl-'S(x - y)] 

- (1 + ief3(x - y)U Au + ... ) Tr[yI-'Y5S(X - y)]}. (2.14) 
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Our task reduces to calculating the propagator Sex - y), which obeys Eq. 
(2.13). To do this, recall that in two dimensions, one can write any vector 
field A#£(x) in the form 

A#£(x) = (g#£V + e#£V)ava(x) + (g#£V - eJ.'V)avb(x), (2.15) 

where a and b are two scalar fields. 
Using Eqs. (2.15) and (2.3), we can write Eq. (2.13) as 

[ iy#£_a_ - ey#£(1- ys)a#£b(X)] Sex - y) = 8 2(x - y). 
ax#£ 

This is solved by 

where 

sex - y) = e-ie(l-y,)b(x) So(X _ y) e ie(1+y,)b(y), 

.S ( ) 1 y#£(x - y)#£ 
lox-y =-. 2 . 

2m (x - y) - Ie 

is the free propagator satisfying 

Inserting Eqs. (2.17)-(2.18) into Eq. (2.14) and using 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The first term is divergent and A#£-independent. We subtract it out as part 
of our regularization procedure. This amounts to normal-ordering the free 
current. The remaining second term is finite, if we take the limit s ~ 0 
symmetrically (lims->o(s'" sv/ S2) = !g~). The result is 

<Y)reg = ~:2 [ erA#£ + {3e#£v Av _ (g#£V + e#£V) a~p (gPO- - epo-)A". ], (2.21) 
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where we have used 

b = _1_ (g"'V _ e"'V)a A 
20 '" v, (2.22) 

which can be obtained by inverting Eq. (2.15). 
Equation (2.21) gives us the vacuum expectation value of the most 

general point-split current operator [Eq. (2.11)], in terms of two parameters 
a and {3. But the requirement of Eq. (2.10) forces {3 = 0, since the piece 
10 "'v Av in Eq. (2.21) is not integrable. However, a remains an arbitrary 
parameter. Inserting Eq. (2.21) into Eq. (2.10) and integrating over the field 
A",(x), we have 

W[A",] = - f D[A",(x)](Y(x) 

= :: f d 2x [ aA",A'" - A", . (g"'V + e"'V) a~p (gPU - ePU)AuJ . 

(2.23) 

In a corresponding analysis of the Schwinger model, the value of a is 
uniquely fixed by the requirement of gauge invariance. In the present chiral 
model, however, gauge invariance is necessarily lost because of the anomaly. 
Note that W[A",] is not invariant under A", ~ A", + a",A for any value of 
a. The anomaly, obtained from Eq. (2.21), is (with {3 = 0) 

e2 

iJ}L(y) = - [(1- a)iJ",A'" - e",viJ",Avl (2.24) 
4'7T 

This anomaly, too, cannot be made to vanish identically for any value 
of a. At this stage of our analysis, there are no preferred values of a, 
and we will study the entire family of theories characterized by the real 
parameter a. 

3. SOLUTIONS OF THE CSM 

Since W[A",] in Eq. (2.23) is quadratic, so is the full effective action 
Seff(A",) given in Eq. (2.8), which can be written in the form 

Seff(A",) =! f d 2xA"'M",Av, (3.1) 

where M",v is a nonlocal differential operator. It is also a 2 x 2 matrix in 
the Lorentz indices }L, II. The field equations obtained from Seff(A",) are 
nonlocal, but linear. The system is therefore exactly soluble and will consist 
of some free fields. The solutions can be obtained in a variety of ways. 
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First, the exact propagator for A", can be obtained by inverting the 
M",v defined in Eq. (3.1). The expression for M",v can be read off from Eqs. 
(2.8) and (2.23), and it is straightforward to invert it in momentum space 
to yield the propagator G",v(k). The answer is 

-iG",v(k) = (M-1)",v 

=(e~m2)[-g",V+ a~1 
(3.2) 

where 

(3.3) 

This propagator has poles at k 2 = m2 and k 2 = 0. The residues at these 
poles will be 2 x 2 matrices that can be diagonalized. The resulting physical 
content depends on the value of a. 

1. a > 1. Then m2 > 0, and it can also be checked that the residues of 
the poles at e = m2 and at e = ° are all positive. Thus, for a > 1, 
the theory is unitary and has two species of relativistic free particles, 
of masses m and 0, respectively. 

2. a < 1. Here m2 < 0, and further the residue at m2 is not positive. 
The theory contains tachyons and is nonunitary. 

3. a = 1. This is a special value of the regularization parameter a. If 
we approach a ~ 1 from above, we see m2 ~ 00 and can expect the 
massive particle to decouple, leaving behind only the massless 
excitations in the spectrum. An ab initio Hamiltonian analysis of 
the system with a = 1 confirms this (see below). 

In summary, the exact propagator for A", tells us that the theory is 
unitary for a ;;:: 1, with a spectrum of free relativistic particles. For a < 1, 
the theory is indeed nonsensical. 

To get a fuller understanding of the content of this model, let us do a 
canonical Hamiltonian analysis. We cannot work directly with the effective 
action Seff(A",) since, thanks to W[A",], it is nonlocal. However, it can be 
rendered local by introducing an auxiliary scalar field cfJ(x). It is easy to 
verify that 

f DI/ID.pDA", exp{iSp(I/I,.p, A",)} = fDA", exp{iSeff(A",)} 

= f DA",D", exp{iSB(cfJ, A",)}, (3.4) 
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where 

SB(f/J,A,J = f d 2xL(f/J,A,J 

= f d 2x [ -!P,..pP"'P + !a,..f/Ja"'f/J 

e ae2 
] + -- (g"'P - c",P)a f/JA + - A A'" J41i ,.. P 87T'" . (3.5) 

Upon performing the Gaussian integral of exp(iSB(f/J, A,..» over f/J(x), one 
recovers Seff(A,..) as given in Eqs. (2.8) and (2.23). We have essentially 
derived just the "bosonized" action for the chiral Schwinger model, with 
a representing the sole regularization ambiguity in this bosonization. 

A canonical Hamiltonian analysis starting from the bosonized action 
[Eq. (3.5)] reveals the altered constraint structure brought about by the 
anomaly. Note that the bosonized action (3.5), which is equivalent to 
the gauge field action Seff[A,..] obtained by integrating over the fermionic 
fluctuations, already contains the anomaly. Thus, a classical Hamiltonian 
analysis of the bosonized system already incorporates anomalous effects. 
Once this is done, quantization can be carried out by replacing classical 
(Dirac) brackets by quantum commutators. 

Let us denote by 7To, E, and 7T the canonial momenta conjugate to Ao, 

AI, and f/J, respectively. Early steps in the canonical analysis proceed as in 
anomaly-free gauge theories. 

We have 

and 

7To = 0, as a constraint. (3.6) 

The Hamiltonian is 

H = f dx(EAI + 7T~ - L + 7Tovo) 

(3.7) 
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The last term proportional to the constraint 1To(x) is added on, as 
required in Dirac's theory of constraints, where vo(x) is an as yet undeter­
mined velocity. Then the consistency requirement 

o = {1To(x), H}P.B. 

e e2 

= alE + fA""=:" (1T + al<P) + - (AI + (a -1)A o) 
y41T 41T 

= G(x) (3.8) 

yields a second constraint, which is the analogue here of Gauss's law. 
However, as distinct from an anomaly-free gauge theory, the constraints 
here are of the second class for all a ¥- 1. (We will return to a = 1 later.) 

e2 

{1To(x), G(y)} = - (1 - a )8(x - y). (3.9) 
41T 

There are are no first-class constraints and there is no gauge freedom. The 
velocity field vo(x) in the Hamiltonian [Eq. (3.7)] is uniquely fixed by 
the consistency of the Gauss's Law constraint, i.e., by {G(x), H} = o. This 
leads to 

1 
vo = alAI + ( ) E. I-a 

Inserting this vo into Eq. (3.7), we can see that 

1 
aoAo = {Ao, H} = alAI + ( ) E. 

I-a 
(3.10) 

In other words, the anomaly [Eq. (2.24)] vanishes dynamically. Next we 
just follow Dirac's procedure for treating second-class constraints. Dirac 
brackets are constructed to replace Poisson brackets. This makes both 
constraints Eqs. (3.6) and (3.8) hold "strongly"; 1To and Ao can be elimi­
nated using these constraints. The Hamiltonian [Eq. (3.7)] becomes 

H =! f dx [ ( 1T + ~ AI) 2 + (al <P + ~ AI) 2 + E2 

e2 
2 2 ] + - (a - I)(Ao + AI) . 

41T 
(3.11) 

Clearly, this is real, unique, and positive for a > 1. It is quadratic and 
easily diagonalized to yield the spectrum mentioned earlier. Upon replacing 
Dirac brackets by commutators, quantization is effected with no further 
complications, yielding a Hermitian, bounded-from-below Hamiltonian. 
The quantum theory is unitary and self-consistent. Its Lorentz invariance, 
although not manifest in the Hamiltonian formalism, was proved by Mitra 
and myselCS 
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Analysis of the a = 1 case involves a few more steps, since now 
{170, G} = 0 forces two more constraints, E = 0 and (Ao - AI) = O. Collec­
tively, the four constraints are all of the second class. Upon using Dirac 
brackets, all gauge-field variables Ao, At. 17o, and E can be eliminated. It 
can be checked that the remaining variables </> and 17 (the matter field) are 
governed by a free, massless Hamiltonian: 

H"~I =! f dx[ 172 + (al </> )2]. (3.12) 

Notice that, unlike the gauge-invariant Schwinger model, where again the 
gauge field can be eliminated, here the matter field remains massless. 

lessons from CSM about Anomalous Theories in General 

The chiral Schwinger model has offered a valuable prototype example 
for demonstrating the fact that anomalous gauge theories (AGT) need not 
be inconsistent, violate unitarity and Lorentz invariance, or in any other 
way be nonsensical. Being exactly soluble, it allows us to see explicitly how 
the different alleged problems of anomalous theories get resolved, except 
for the question of renormalizability, which is absent as a serious problem 
in this two-dimensional model. 

From the study of the CSM, one can abstract some lessons which may 
be expected to hold in more complicated AGT as well, even though the 
latter are not exactly soluable. Let us list a few such lessons: 

1. The pair of equations DMFMv = rand Dvr = anomaly == R(AM) 
are not necessarily mutually inconsistent, as was once believed. Of course 
these equations together imply that the anomaly R(AM ) obeys 

R(AM) = Dvj v = DMDVFMV = o. 
This means only that the anomaly must vanish dynamically, by virtue of the 
operator field equations, and not identically for arbitrary AM(x, t). Any 
solution of any given AGT requires, for its consistency, that it satisfy 
R(AM) = 0 for the Heisenberg field operator AM(x, t). In CSM we saw that 
the anomaly (e 2/417)[(1- a)aMAM - eMv(FMV /2)] does vanish by virtue of 
Hamilton's equation [Eq. (3.10)]. 

2. Despite the fact that they must satisfy the vanishing of the anomaly, 
the space of solutions of an AGT can be nontrivial. In CSM with a> 1, 
we saw that any initial data for AI(x) and </>(x) leads to a solution. The 
spectrum consisted of one massive and one massless particle, whereas the 
anomaly-free Schwinger model contained only one massive particle. In 
general, other AGTs, if consistent, can be expected to have a larger space 
of solutions (more degrees offreedom) than the corresponding anomaly-free 
gauge theory. 
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3. Lorentz invariance need not be violated in an AGT. In the CSM, 
we explicitly found a relativistic spectrum corresponding to one massive 
and one massless species of particles. The Poincare algebra has also been 
established for this model. One reason why some authors may have obtained 
non-Lorentz invariant results could be their use of the "Weyl" (Ao = 0) 
gauge. In an AGT, gauge invariance is broken by the anomaly. Con­
sequently, one does not have the freedom to fix any gauge condition. To 
impose an Ao = 0 condition in the face of this is to explicitly break Lorentz 
invariance by hand. For instance in CSM, the field Ao is fully determined 
by the constraint of Eq. (3.8). It does not vanish identically. The resulting 
Lorentz-invariant content of the theory would be destroyed if one required 
Ao = O. Of course, if one starts with some alternate gauge-invariant reformu­
lation of an AGT (with some other action), then various gauges may be 
fixed, without violating Lorentz invariance. 

4. NON-ABELIAN CHIRAL GAUGE THEORY 

Next, consider the non-Abelian generalization of the two-dimensional 
model in Eq. (2.1), i.e., N massless Dirac fermions whose right chiral current 
is coupled to a U(N) gauge field 

(AIL)ij = AijA:, 

where A a are U(N) group generators satisfying Tr A a A b = 8 ab and 

[A a, A b] = Jabc A c. 

The action is 

The bosonized action associated with this is3 •6 

S[ u, AIL] 

= 4~ f d2x Tr[!aILuaILU-1 - ie(gILV + eILV)U-lavUAIL + a;2 AILAIL ] 

- ~ f d 2x Tr[FILvFILV] 

+ _1_ f d 3y Tr[eijkU-1a·UU-1a.UU-1a U]. (4.2) 
127T v I J k I 

Here, U is a U(N) group-valued field, AIL is the matrix-valued gauge field, 
and the last term is the famous Wess-Zumino term, defined on a 3-surface 
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V whose boundary is compactified space-time. The right current, coupled 
to the gauge field, is 

i 
j~ = - (g/L V + e/LV ) U-Iavu. 

471" 
(4.3) 

The term (ae 2 /871") Tr A/LA/L comes from regularizing, just as in the Abelian 
case. What is done next is a canonically constrained Hamiltonian analysis 
of the bosonized system of Eq. (4.2) in the same spirit as described earlier 
for the Abelian case. But technically, the problem is more complicated 
because one of the fields lies on a non-Abelian group manifold, and because 
of the presence of the WZ term. We will omit details of derivation. The 
Poisson brackets and the Hamiltonian can be obtained by using the canoni­
cal symplectic 2-form associated with the action [Eq. (4.2)]. Alternatively, 
one can work in terms of group coordinates cP a. The results are most 
conveniently expressed in terms of matter-charge densities p~ and p'k of 
the left and right chiralities. The Hamiltonian is 

with Poisson brackets 

{P~.R(X), Pt,R(Y)} = -rbCpLR(X)8(x - y) 4= 8ab • 2~ 8'(x - y) 

{A~(x), 71"g(y)} = {A~(x), Eb(y)} = 8ab8(x - y), 

and all other brackets vanishing. 
As before, 

(4.3) 

(4.4) 

(4.5) 

is a constraint and va(x) is the associated (at this stage undetermined) 
velocity. A second family of (Gauss's law) constraints comes from 

2 

= (DIEt + ~ ((a -l)A~ + A~) - ep'k 
471" 

(4.6) 

These constraints in Eqs. (4.5) and (4.6) are again all of the second class, 
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with brackets 

e2 

{1T~(X), Gb(y)} = -(1- a)SabS(x - y) 
41T 
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{Ga(x), Gb(y)} = erbc( GC(x) + :~ (AI + (1- a)AotJ S(x - y). (4.7) 

The requirement that { G a , H} = 0 can be satisfied when a ,t:. 1 by adjusting 
the function va (x). Dirac brackets can again be set up to render these 
constraints strong. The Hamiltonian reduces to 

H = f dx [ 1T(P~ - ~;r + 1Tp1p1 + !EaE a 

+ ~ (a -l)(A~A~ + A~AnJ. 
81T 

(4.8) 

Clearly, for a > 1, the Hamiltonian is real and positive. When the Dirac 
brackets are turned into commutators, the resultant quantum theory is 
consistent and unitary. The equations of motion given by this Hamiltonian, 
along with the constraint equation [Eq. (4.6)], can be checked as being the 
same as the Lorentz covariant field equations obtained from the action [Eq. 
(4.2)]. Of course, the spectrum cannot be obtained here, unlike the situation 
in the Abelian case, since the system is nonlinear and not exactly soluble 
by present-day techniques. But unitarity and Lorentz invariance have been 
formally established.s 

The a = 1 regularization is again a special case. Here the Poisson 
bracket between 1Tg and G a vanishes [see Eq. (4.7)]. The requirement 
aoGa = {Ga, H} = 0 can no longer be met by adjusting the velocity va (x), 
and that requirement leads, as in the Abelian case, to further constraints. 
John Lott and I found 4 that there are altogether 3 dime G] + Rank[ G] 
constraints in phase space (at each x) on the gauge field. Since there are 4 
dime G] gauge field variables in phase space to start with (1T~, A~, E a, A~), 

there are left behind dime G] - Rank[ G] dynamical fields, in addition to 
matter fields, in phase space. Note that this number is always even for any 
compact [G]. Hence the number of dynamical fields in coordinate space 
is still an integer, but it is not proportional to dime G]. Recall that in a 
gauge-invariant theory in two dimensions there are no dynamical gauge-field 
degrees of freedom left. The Hamiltonian of the a = 1 case is again positive, 
and the theory unitary. 
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Chapter 11 

Some Topics in Topological Quantum 
Field Theories 

Fidel A. Schaposnik 

1. INTRODUCTION 

I will describe in this talk some work on topological quantum field 
theories (TQFTs) that I have done in collaboration with Leticia Cugliandolo, 
Gustavo Lozano, Hugo Montani, and George Thompson. In the first part 
of the talk I will review some relevant features of topological field theory 
quantization. Then, in section 2, I will discuss the connection among various 
approaches to quantization by using a stochastic process description. In 
section 3 I will present some interesting two-dimensional TQFTs, while in 
section 4 I discuss topological invariants. 

Antecedents of TQFTs can be found in the works of A. Schwartz\ S. 
Oeser, R. Jackiw, and S. Templeton2 ; and C. R. Hagen.3 Interest in these 
theories has been triggered by recent works of E. Witten on Yang-Mills,4 
sigma model,5 Chern-Simons,6 and gravitation7 field theories. 

FIDEL A. SCHAPOSNIK • Departamento de Fisica, Universidad Nacional de La Plata, 1900 
La Plata, Argentina. 

Quantum Mechanics of Fundamental Systems 3, edited by Claudio Teitelboim and Jorge Zanelli. 
Plenum Press, New York, 1992. 
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Apart from their mathematical relevance-TQFTs provide a way of 
evaluating topological invariants for low-dimensional manifolds-these 
theories are of interest from the point of view of physics: they have a rich 
structure related to instantons, monopoles, vortices; they are connected to 
Nicolai maps in supersymmetric theories; in the case of three-dimensional 
Chern-Simons theory there is a relation with two-dimensional conformal 
field theories.6,8-9 

In TQFTs the role of symmetries is in some sense more important than 
the role of Lagrangians. This is the reason meaningful TQFTs can be 
constructed starting from "trivial" actions (such as S = 0 modulo topologi­
cal invariants). 

Once one has chosen the fields that will describe the system, one looks 
for the largest local symmetry possible for these fields and then considers 
a classical action which is invariant under this topological large symmetry. 
All interesting features of topological field theories must arise upon quantiz­
ation. The favorite quantization approach to deal with the large symmetry 
referred above is the BRST method. 

Let us first describe how L. Baulieu and I. M. Singer10 derived the 
TQFT proposed by Witten for Yang-Mills fields4 by BRST quantization of 
a classical action, the Chern-Pontryagin invariant in four dimensions. 

Consider the quantity 

ST = c f Tr F""v* F,..,v dY, 
M4 

(1) 

which measures the first Pontryagin class of the vector bundle on which A,.., 
is the connection, F,..,v the curvature and 

(2) 

The integral in Eq. (1) extends over some compact four-dimensional mani­
fold M4 , and c is a constant chosen so that ST = neZ. Of course, ST is 
invariant under ordinary gauge transformations: 

8F,..,v = [e, F,..,v] (3) 

D,.., = a,.., + e[A,.." ] 

8ST = 0, (4) 

with e = e(x) = eata, taking values in the Lie algebra of some group G 
with generators tao 
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Since ST is a topological invariant, it has a symmetry larger than that 
of Eq. (3). Indeed, ST is in essence invariant under arbitrary variations of 
the gauge field: 

(5) 

where the one-form e~(X) takes values in the Lie algebra of G. To see this, 
note that F~v changes under such a variation like a gauge field under 
ordinary gauge transformations: 

and 5ST can be written in the form 

5ST = -4c f e~Dv * F~v dV, 

which vanishes due to the Bianchi identity. 

(6) 

(7) 

Of course, at the classical level, the action in Eq. (1) leads to no 
dynamics, since the Pontryagin density can be written as a total derivative: 

ST = f d~K~ dV (8) 

K~ = Ce~v,,{3 Tr(Avd"A{3 + ~AA"A(3). 

Since ST is a topological invariant, it does not depend on the metric. This 
is a characteristic of an action taken as the starting point for a topological 
theory. The point is now to see if this property resists quantization. 

In view of the large symmetry of a topological action such as ST, one 
should proceed carefully when quantizing the model. One can use the BRST 
approach to fix the symmetry, and this may in principle introduce a metric 
dependence into the quantum action. We shall see, however, that the 
corresponding generating functional is still metric-independent. 

Let us write the BRST variation of some functional F of the fields in 
the form 

5BRSTF = ie{ Q, F}, (9) 

where e is the anticommuting global BRST parameter and {Q, } is just a 
notation for the linear transformation 5BRST • (In a Hamiltonian approach 
{ , } would represent a graded commutator, and then Q would correspond 
to the BRST nilpotent charge.) 

After the usual BRST procedure, one ends with the generating func­
tional 

ZTop = f D fields exp[ -SQ], (10) 
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with 

SQ = ST + f {Q, F} dV. (11) 

The second term in Eq. (11) represents the gauge fixing and the ghosts 
terms which can be written as the BRST variation of some functional F of 
original fields, ghost fields, and auxiliary fields. Of course this term intro­
duces a metric dependence. However, it is easy to see that the generating 
functional does not depend on the metric g/Lv. Indeed, 

1 5Z 1 f 1 { 5F} Z 5g /L V = - Z exp[ -SQ] x Jg Q, 5g /L V dV D fields, (12) 

or 

1 5Z I{ 1 5F} ) 
Z 5g /L V = \ Q, Jg 5g /L V dV = 0, (13) 

since the vacuum expectation value of any BRST variation is zero. (In a 
Hamiltonian approach this results from the definition of physical states 
Iphys) such that Qlphys) = O. In the present approach, Eq. (13) follows 
from BRST invariance of the path-integral measure and of SQ.) 

We have then arrived at a very important point: in a TQFf, the 
energy-momentum tensor T/Lv, which is nothing but the variation of SQ 
under a change of the metric, is the BRST variation of some functional, 
and hence its vacuum expectation value is zero. We can use this property 
to give a definition of a TQFf in a broad sense: 

A topological quantum field theory is a quantum field theory with a 
metric-independent partition function. That is, Z depends on the smooth 
structure of the manifold but not on the metric. 

In many cases (as for example in the Yang-Mills case we have taken 
as our example) not only is the variation of SQ with respect to the metric 
a BRST variation, but SQ can already be written in the form 

SQ = {Q, V}. (14) 

In view of these features, one should naively conclude that all observ­
abIes in TQFfs are trivial. Although this is true locally, local properties 
cannot be simply extended into global ones, and hence global invariants 
are not trivial. l1 

There are other TQFfs, like that of Chern-Simons, for which SQ cannot 
be written in the form of Eq. (14). However, Z is still metric-independent 
due to the arguments leading to Eq. (13). 

Baulieu and Singer10 explicitly constructed the quantum action SQ [Eq. 
(11)] associated with the classical action of Eq. (1). They showed that an 
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appropriate gauge fixing ofthe large symmetry [Eq. (5)], with the instanton 
defining equation 

(15) 

as one of the gauge conditions, leads to the TQFT proposed by Witten in 
Ref. 4. In their approach, the fermions introduced by Witten are ghost fields 
that arise in the BRST procedure. There are also ghosts of ghosts due to 
the existence of a second-generation gauge invariance, which we shall 
discuss below. 

An alternative approach to TQFT was proposed by Labastida and 
Pernici 12 and also developed by Birmingham, Rakowski, and 
Thompson. 13- 14 In this approach, instead of starting from a topological 
classical action like Eq. (1), one starts from a different kind of "trivial" 
action: a Gaussian action So where, apart from the original fields (A#£ fields 
for the Yang-Mills case), auxiliary fields G#£v are introduced: 

So = f [G#£v - g#£v[Av]]2 dV. (16) 

Here g#£v[A#£] is an adequately chosen self-dual functional. Again, the 
topological generating functional is 

Z = f D fields exp [ - So+ f {Q, F} dV ] , (17) 

where D fields includes measures of gauge fields, ghost fields, and auxiliary 
fields. The BRST term {Q, F} arises after gauge fixing of the Gaussian 
action, which has the following large local symmetry: 

(18a) 

(18b) 

where the G#£v variation is chosen so as to make the action invariant under 
the largest local symmetry. 

It is obvious that the action in Eq. (16) becomes trivial if one makes 
the shift G#£v ~ G#£v + g#£v. All interesting effects should arise, again, after 
quantization. 

In order to obtain Witten's TQFT for the Yang-Mills case, one has to 
choose 

g#£v = !(F#£v + * F#£v) = + F#£v. (19) 

We shall rewrite the transformation laws [Eq. (18)] in the form 

8A#£ = E#£ - D#£E (20a) 
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In Eq. (20a) we have distinguished from the general family of transforma­
tions [Eq. (18a)] those that correspond to ordinary gauge transformations. 
With this, the field strength changes in the form 

(21) 

Written in this form, not all four components of el-' are effective regarding 
gauge invariance. Namely, if we choose el-' = DI-'A and e = A, one has 

l)A AI-' = 0, l)A FI-'v = O. (22) 

There is, however, a change for GI-'v: 

l)AGl-'v = [A, + FI-'v - GI-'v]. (23) 

Now, if one uses the equations of motion arising from the action of Eq. (16), 

(24) 

the variation in Eq. (23) vanishes: 

(25) 

Equations (2) and (25) mean that there is a second-generation gauge 
invariance, and then the naive Faddeev-Popov method cannot be applied. 
One can instead use Batalin-Vilkovisky approach 15 specialized to the case 
of a "first-stage reducible theory" (which corresponds in their classification 
to the presence of this observed second-generation invariance). I will not 
describe in detail the calculations (see Refs. 12-13). The resulting quantum 
action is 

SQ = Tr f dVW+ FI-'v+ FI-'v - Gl-'vGI-'V) + iD"t/lf3x,,{3 - i'TlD"t/I" 
M4 

+ !ADI-'DI-'cp + !GI-'vdl-'V - !iA{t/lI-" t/l1-'} 

- !icp{Xl-'v, Xl-'V} + dal-'AI-' - ibal-'V + bal-'DI-'c]. (26) 

Apart from the fields AI-' and GI-'V' which are Grassmann even, Batalin­
Vilkovisky construction makes appear a first generation of ghosts c and t/l1-' 
(with ghost number 1, Grassmann odd) related to symmetries with param­
eters e and el-" respectively; a second generation ghost cp (ghost number 
2, Grassmann even) associated with the second-generation gauge invariance; 
anti ghosts fields X,,{3, b, and A which are, respectively, self-dual Grassmann 
odd, odd, and even and have ghost numbers (-1, -1, -2). Fields dl-'v, d, 
and 'Tl (even, even, and odd), with ghost numbers (0,0, -1), respectively, 
are Lagrange multipliers. 

The gauge conditions that fix invariance [Eqs. (20)-(25)] are 

(27) 
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Once these conditions are used and the Lagrange multipliers eliminated, 
the action of Eq. (26) coincides with the one proposed by Witten. l1 

Moreover, using the BRST transformations for the fields, one can show 
that Eq. (26) can be rewritten in the form 

SQ = f {Q, F} dV, (28) 

with 

F = Tr[hJ£"(+ FJ£" + GJ£,,) - !ADA,J£], 

which trivially shows that 

(29) 

(30) 

We have been able to construct a Yang-Mills TQFf by starting from 
a Gaussian action in which the instanton equation plays a central role. An 
analogous construction can be envisaged by starting from the Prasad­
Sommerfield monopole equations (Bogomol'nyi equations)16-17 in three 
dimensions, obtaining a TQFf associated to SO(3) monopoles. Also, two­
dimensional TQFfs can be built starting from the Bogomol'nyi equations 
for Abelian and non-Abelian vortices. 18-19 

In the Baulieu-Singer approach lO to these theories, an alternative 
procedure is followed: one starts from topological actions which are the 
monopole magnetic charge or the vortex flux in three and two dimensions, 
respectively, and then one fixes the topological symmetry a la BRST, using 
Bogomol'nyi equations as gauge conditions. 

To see the central role played by instanton defining (Bogomol'nyi) 
equations in the resulting TQFf, let us note that one can easily show that 
the generating functional is not only independent under a change in the 
metric, but also under a change of the coupling constant. For example, in 
the Yang-Mills case, if one redefines fields so as to factor out the squared 
coupling constant from SQ, one has 

Z = f exp [ - :2 SQJ D fields 

8Z 4 - = e- {Q F} = 0 8e2 , • 

(31) 

One can then evaluate Z by taking the limit of the very small coupling 
constant where the action is dominated by classical minima. Now, the gauge 
field terms in SQ are such that classical minima correspond to the equation 

FJ£" = -* FJ£,,' 

Then evaluation of Z depends on expansion around instantons! The same 
is true for monopoles and vortices. 
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2. TQFTs AND STOCHASTIC PROCESSES 

I discuss in this section the relation between Baulieu-SingerlO and 
Labastida-Pemici12 approaches by deriving a connection between a 
Langevin equation (in real time) for a certain stochastic process and the 
Bogomol'nyi equation used in the construction of a TQFT. 

Schematically, Bogomol'nyi equations can be obtained whenever the 
action defining a model can be written in the form 

S = ! f L [a i ± ai]2 dV =F f L aiai dV, (32) 
Mi Mi 

with a i and ai two functionals of the fields describing the system on some 
manifold M and the second term in Eq. (32) related to some topological 
invariant QT: 

with a a normalization constant. 
From Eq. (31) one has 

s ~ =F QT, 

and the bound is saturated when Bogomol'nyi equations hold: 

gi = a i ± ai = o. 

(33) 

(34) 

(35) 

As a first example, consider the Yang-Mills theory in four dimensions. For 
a l == F",v/2 and al == * F",J2, QT is the Chem-Pontryagin invariant and 
Eq. (35) becomes the instanton equation [Eq. (15)]. For a U(1) gauge field 
A and a complex scalar cP, in two dimensions, if one takes a l == F/J2 (F, 
the curvature), a2 == EabDcPa/J2 (D, the covariant derivative and a, b = 1,2) 
Eq. (35) becomes the vortex Bogomol'nyi equations, 17 provided one chooses 
al == *(cP 2 - TJ 2 )e/J2 and a2 == *DcPa. (Here * is the Hodge star operator, 
TJ the Higgs field vacuum expectation value and e the gauge-coupling 
constant.) The same can be done for non-Abelian vortices/o Prasad­
Sommerfield monopoles, and cpn instantons. 

In Refs. 13-14, a connection between the Gaussian action [Eq. (16)] 
and a Langevin equation with the auxiliary field G acting as a random field 
was pointed out. I shall now discuss this connection, trying to clarify its 
origin and relating it with the Baulieu-SingerlO approach to TQFTs. I shall 
closely follow Ref. 21. 

Consider the Langevin equation for some generic field <1>: 

a<l> aW 
---=G 
at 5<1> ' 

(36) 
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with t the real time, G a random field, and W the potential providing a 
drift to the stochastic process described by Eq. (36). Now, the point is that 
one can make a choice of W such that this Langevin equation becomes a 
Bogomol'nyi equation. Moreover, this identification allows one to establish 
a connection between the two different approaches to the construction of 
TQFfs. 

Let us again take as example the case of Yang-Mills fields in four 
dimensions. We have seen that the topological charge [Eq. (33)] can be 
written in the form of Eq. (8), namely: 

QT = f ajLKjL dV, (37) 

with KjL given by Eq. (8). Now, one can easily prove that in the Ao = 0 
gauge, QT can be written in the form 

QT = lim W(t), (38) 
1-+00 

with 

W(t) = ± f Ko d 3x. (39) 

(We have chosen initial conditions Ai( -(0) = 0 so that W( -(0) = 0.) Now, 
if one chooses W(t) as the potential W in the Langevin equation [Eq. (36)] 
for a Yang-Mills field Ai = <1>, 

aAi_ 8W(t) _ G. = 0 (40) 
at 8Ai o. , 

one discovers that this equation is nothing but the instanton-defining 
equation, in the presence of a noise, (in the Ao = 0 gauge). 

In view of the behavior in Eq. (38), one can conclude that the stochastic 
process described by Eq. (40) evolves toward an equilibrium state governed 
byexp(-QT)' 

We are now ready to see the connection between Baulieu-SingerlO and 
Labastida-Pernici12 TQFf construction. Indeed, it has been known since 
the work of Parisi and Sourlas22 that one can arrive at SUSY QFfs by 
starting from a real-time Langevin equation of the type of Eq. (40) for the 
bosonic sector. The corresponding stochastic generating functional Zstoch 

(defined as a path integral over bosonic and random fields with an action 
which is the squared Langevin equation) has a large symmetry to be fixed: 
an arbitrary change in the bosonic fields can always be compensated for 
by an appropriate change in the random fields. In the gauge-fixing pro­
cedure, ghosts come into play and the resulting quantum theory is supersym­
metric. For the Yang-Mills example we are discussing, the Parisi-Sourlas 
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approach corresponds to taking the square of the Langevin equation [Eq. 
(40)] as starting (Gaussian) action and then proceed to a BRST quantization. 
Zstoch then reads 

f [ f ( aAi aW)2 ] 
Zstoch = D fields exp - GOi - at - aA

i 
dV + BRST terms . 

(41) 

Now, in view of what we have said, this is nothing but the generating 
functional [Eq. (17)] in the Ao = 0 gauge, used in the Labastida-Pernici 
approach.!2 From the stochastic point of view, one can interpret Eq. (41) 
as arising from a stochastic process evolving toward an equilibrium governed 
by W( t = (0) = QT' But precisely QT was the starting action considered by 
Baulieu and Singer in their approach to TQFTs. 10 This is the announced 
connection between the two approaches. 

3. TWO-DIMENSIONAL MODELS 

The link described above can be established for other theories admitting 
instanton-like solutions. 

Indeed, apart from the monopole case referred to above, two­
dimensional vortices can be used to generate interesting TQFTs. Consider 
first a U(l) gauge field A", and a charged scalar e/>a (a = 1, 2) in two 
space-time dimensions. A topological invariant (which can be interpreted 
as a magnetic vortex flux) can be defined in different ways. A useful one is 

QT= f d2X[~F"'v(112-e/>2)-D",e/>aDve/>beab]eILv, (42) 

with a = !7T112. Again, 

(43) 

with 

a 2 a b] 
KIL = 2" [el1 AIL + eabe/> DA> . (44) 

Taking Wet) in the form 

W(t)=±f Kodx, (45) 

one has 

lim Wet) = QT' (46) 
/-+<XJ 
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The corresponding Langevin equations read: 

E a == a(V _ eab(D1fjJ)b = G~ 
at 

aA1 e 2 2 
E == - - - (71 - fjJ ) = G. at 2 
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(47) 

(48) 

In the Ao = 0 gauge, these are the Bogomol'nyi equations for Nielsen-Olesen 
vortices,J7 valid when the following relation between coupling constants 
holds: 

(49) 

In Ref. 18 we have constructed the TQFT associated with two­
dimensional vortices, thus providing the first example of a topological field 
theory with (explicit) symmetry breaking. (In the monopole case studied 
in Refs. 23-25, the symmetry breaking was realized a fa Prasad­
Sommerfield,16 which corresponds to the A = 0 limit.) 

Working in the Landau gauge, one starts from the generating functional 

(50) 

with 

(51) 

The Gaussian action Sa has the following large symmetry: 

{jAjL = ejL - ajLE 

fiG = ejLVajLeV - 2A afjJa 

fifjJa = Aa - ie~efjJb 
(52) 

fiG~ = ![DjLA a + e~e~DvA b] - ~ [e~ejLfjJb + <evfjJa] - ie~G~, 

where e(x) is the parameter associated with ordinary gauge transformations 
and EjL(X) and AQ(x) the parameters associated with the large topological 
symmetry. All those parameters are not effective: there is again a second­
generation invariance which becomes apparent by writing 

e=A 

ejL = DjLA (53) 

A Q = ie~AfjJb. 
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All variations [Eq. (52)] vanish for the particular choice [Eq. (53)] except 
that for G:, which reduces to 

SAG: = -ie~A[G~ - !(D,,4J b + <e~Dv4Jb)]. (54) 

Now, the variation in Eq. (54) vanishes when equations of motion are taken 
into account: 

(55) 

Following Batalin-Vilkovisky procedure15 we assign a ghost field to each 
of the symmetries associated with Eq. (52): 

e~C 

(56) 

A ~ TJ, 

so that the minimal set of fields is (A", 4J a, G, G:, 1/1", c, pa, TJ) with ghost 
numbers (0, 0, 0, 0, 1, 1, 1, 2). We choose as gauge conditions 

(57) 

The final form of the TQFT Lagrangian is 

L = [!e"VP"v + (1 - 4J )2]0 + !D,,4Jad~ + d~d: + 202 + b( -a2c + a"I/1,,) 

+ W(e"va"l/Iv - 2pa4Ja) + X~D"pa - iX~e~I/I,,4Jb + Aa2 TJ + da"A" 

The BRST variations are 

Sc = eTJ, Sw = eO, SA" = e(a"c - 1/1,,), 

S4Ja = -e( pa - iCe~4Jb), STJ = Su = Sc = Sd = SO = 0, 

SA = eU, 

Sb = ed, "d a . a db o ,,= Ie b c ". 

Using Eq. (59), the Lagrangian of Eq. (58) can be written in the form 

L = {Q, V} 

with 

(58) 

(59) 

(60) 

V = [W(!e"VP"v + 1 - 4J2 + 20) + ba"A" + Aa"l/I" + X~(d: + D,,4J )]. 

(61) 
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Due to peculiarities of two-dimensional space-time, one can manage 
to rewrite the Lagrangian (58) using the fermion-boson connection, as a 
supersymmetric Lagrangian. In terms of new fermionic fields !/I, Iii, x, and 
X and scalars A and B adequately defined in terms of the original fields, 
the Lagrangian in Eq. (58) reads 

L = Laaussian + X~X + Iii~!/I +..fi e(x!/lcp - + liixcp +) 

+ 2..fi ieX(A + "5B)X + e21cp12(A2 + B2) + !Aa2 A + !Ba2 B, (62) 

which has a striking resemblance to the Lagrangian for a U(1) SUSY 
Abelian Higgs model introduced by Salam and Strathdee.26 It is interesting 
to note that these authors, as well as Fayee7 also found the restriction 
A = e2 in order to have a parity-conserved theory, with all fields having the 
same mass. The only difference (apart from the fact we are here dealing 
with a two-dimensional theory) is that we have N = 2 SUSY rather than 
the N = lone. 

An analogous treatment of non-Abelian vortices can be envisaged, 
starting from the corresponding Bogomol'nyi equations.20 For example, in 
the SU(2) case, where one needs two Higgs fields in order to have complete 
symmetry breaking, one has the following Bogomol'nyi equations: 

E == !e,...vF'LV - !/I Tr( cp2 - cp~) = 0 

(63) 

where the gauge field A,... takes values in the Lie algebra of SU(2), cp and 
!/I are in the adjoint representation, D,... is the covariant derivative, and 

(64) 

The topological charge associated with the Z2 vortex flux is given, modulo 
2, by the expression: 

Q - _1 f /LV d 2 
T - Tr !/Ie /LV x. 

2'7T 
(65) 

Starting from the Gaussian action 

where G, G,..., and H/L are random fields taking values in the Lie algebra of 
SU(2) (with G/L and H/L self-dual fields, Le., G/L = ie/LvGv, and the same 
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for FJL) and gauge fixing the large topological invariance under variations 

8AJL = eJL(x) - DJLw(x) 

8</J = A(x) - [</J, w] 

8I/J = 11(X) - [I/J, w], 

(67) 

(with infinitesimal local parameters eJL , W, A, and 11), supplemented with 
the appropriate transformation laws for G, GJL , and HI" one can construct 
a TQFT by using the BRST procedure. 

Again there is an on-shell second-generation gauge invariance which 
can be discovered through the following relations between parameters: 

eJL = DJLA 

w=A 

A = -[A, </J] 

11 = -[A, I/J]. 

(68) 

After introducing ghosts fields associated with each one of the parameters 
in Eq. (67): 

(69) 

A~u, 

one ends with a topological action which again can be written in the form 

S={Q,V}, (70) 

with V in the form: 

V = f d2xHxd - ~eJLvFJLV - I/J Tr(</J2 - </J~) + ~XJL(dJL - D:</J 

+ i[I/J, D:</J]) + TJL(~eJL - D:I/J) - caJLAJL - aDJLI/JJL}, (71) 

where C, X, XI" TJL , iT are antighosts with ghost number (-1, -1, -1, -1, -2), 
and d, dJL , and eJL are Lagrange multipliers. Also in this case 8Z/8e2 = 0, 
and hence one can evaluate Z by taking the e2 ~ 0 limit where the path 
integral is dominated by the classical limit, which in this case corresponds 
to the solution to the Bogomol'nyi equations, Eq. (63). Since these solutions 
are known to exist,28 one can hope to have a complete understanding of 
the quantum theory by performing an instanton expansion. A topological 
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quantum field theory for vortices has also been studied by Grossman and 
Chapline29 starting from a topological invariant action and quantizing it a 
la Baulieu-Singer. \0 In this way a link between conformal field theory and 
Donaldson theory of 4-manifolds was set up. 

4. TOPOLOGICAL INVARIANTS 

Witten has shown4 that one can compute relevant topological invariants 
using TQFTs by evaluating vacuum expectation values of operators 0, 
adequately chosen: 

(0)= ~ f dfieldsexp(-S)Q. (72) 

The conditions that these operators should satisfy are 

1 - {Q, O} = 0 modulo those of the form 0 = {Q, V} (73) 

50 
-/LV = {Q, V} (eventually V = 0). (74) 
5g 

These conditions guarantee that 

5(0) = o. 
5g I-' v 

(75) 

I will explain how one finds these invariants using the two-dimensional 
models discussed in the previous section. 

By inspection of the BRST transformations [Eq. (59)] for the Abelian 
model, a candidate satisfying conditions of Eqs. (1)-(2) is the TJ ghost of 
a ghost. Let us call it Wo[P], where P denotes a point in two-dimensional 
space. One can easily show that (Wo[ P]) is independent of P. Indeed, 

awo 
-a - = al-'TJ = {Q, !/IlL}, 

xI-' 

(76a) 

and then 

(Wo[P]) - (Wo[P']) = (f:' :~o dXI-') = ({ Q, f:' !/II-' dxl-' }) = O. (76b) 

From Eq. (76), recursively, other topological invariants can be constructed. 
Writing Eq. (76) in the form 

(77) 

with {Q, Wo } = 0 and 

(78) 
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one finds that 

(79) 

with 

(80) 

and 

dW2 = o. (81) 

From W2 , one constructs the obvious topological invariant for the two­
dimensional Abelian TQFf: 

QT = f F. (82) 

One can find interesting operators from the intermediate W; (in this case, 
W1). Define 

(83) 

where C is a closed curve. Then, 

I[C]=f dw1=f {Q,W2} 

SC Sc 

(84) 

(Sc is some surface with border C) is a generalization of Eq. (76b) satisfying 
the condition {Q, I[ Cn = 0, since 

{Q,I} = L {Q, W1} = L dWo = o. (85) 

From products of integrals of the type of Eq. (83), one can obtain relevant 
topological invariants (for example, in the Yang-Mills TQFf 4). 

Concerning the non-Abelian example we discussed in section 3, an 
analogous sequence can be constructed: 

dWo = {Q, W1}, 

dW1 = {Q, W2}, 

dW2 = O. 

W2 = TruF 
(86) 

As in the Abelian case, W2 is associated with the Z2 topological charge of 
vortex configurations. In fact, note that W2 has an expression analogous to 
Eq. (65), except that in the former the ghost of ghost u replaces the Higgs 
field appearing in the topological charge definition. 

The description of many interesting models and properties of TQFfs 
have been omitted in this talk. They can be found in Refs. 30-40. 
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