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Preface 

This monograph is written within the framework of the quantum mechanical 
paradigm. It is modest in scope in that it is restricted to some obser
vations and solved illustrative problems not readily available in any of 
the many standard (and several excellent) texts or books with solved 
problems that have been written on this subject. Additionally a few more 
or less standard problems are included for continuity and purposes of 
comparison. 

The hope is that the points made and problems solved will give the 
student some additional insights and a better grasp of this fascinating 
but mathematically somewhat involved branch of physics. 

The hundred and fourteen problems discussed have intentionally been 
chosen to involve a minimum of technical complexity while still illus
trating the consequences of the quantum-mechanical formalism. 

Concerning notation, useful expressions are displayed in rectangular 
boxes while calculational details which one may wish to skip are included 
in square brackets. 

Beirut 
June, 1985 

HARRY A. MAVROMATIS 



Schematic illustration of 
various approaches to 

calculating Energy Levels 
of 

Quantum Mechanical Systems 

Generally useful 
approaches: 

1) Schrodinger Equation 
in Momentum Space 
(Chapter 3) 

2) Schrodinger Equation 
in Coordinate Space 
(Chapters 8, 9, 12) 

3) Poles of Scattering 
Amplitude 
(Chapter 6) 

4) Perturbation Theory 
(Chapter 11) 

5) Dalgarno-Lewis 
Technique 
(Chapter 14) 

{ 

1) 

2) 

High lying 
States: 

Wilson-Sommerfeld 
Quantization Condition 
(Chapter 1) 

Ground State: 

Uncertainty Principle 
(Chapter 5) 

Variational Approach 
(Chapter 10) 



CHAPTER 1 

Wilson-Sommerfeld Quantization Condition 

The hydrogen atom, when treated using Bohr's admixture of classical and 
quantum concepts involves an electron circulating about a proton (sub-

ject to the attractive Coulomb force - (e 2/4TI£ r 2 )r) in orbits which 
satisfy the condition: 0 

2TIr = n A De Broglie' 
n = 1, 2, ... 

Since ADe Broglie = hip this reduces to p2TIr nh, which may be 

generalized to the Wilson-Sommerfeld quantization condition 

tP dq = nh n = 1, 2 ... (1.1) 

where f implies a complete cycle, and p and q are conjugate variables. 

Equation (1.1) gives the correct quantized energies for the hydroqen 
atom 'by construction'. But it also gives the correct energy spectrum 
for a particle in a box with infinite walls 

V(x) o o < x < a 

x < 0, x > a. 

EXAMPLE 1.1. Find the energy levels for a particle in a box with 
infinite walls: 

V(x) x < 0, x > a, 

V(x) o o < x < a. 

2 
In the region 0 < x < a, E = P 12m. 

Hence Equation (1.1) in this case becomes 

f .; 2mE dx = nh 
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L-____________ ~ ____________ ~~ 

o a 

Figure 1.1. Potential in Example 1.1. 

where a cycle involves x varying from 0 ~ a and from a ~ O. 
Integrating one obtains 

2al 2mE nh or E n = 1, 2, .... (1. 2) 

By contrast the quantum-mechanical treatment of this problem involves 
solving the Schrodinger equation: 

[ tl2 d2 ] - - - + Vex) 1jJ(x) 
2m dx2 

E1jJ(x) ... ( 1. 3) 

for 0 < x < a with boundary conditions 1jJ(0), 1jJ(a) = 0, 1jJ(x) being zero 
for x < 0, x > a. 

The properly normalized eigenfunctions of Equation (1.3) whlch 
satisfy these boundary conditions are 

1jJ(x) 
= I~ sin kx with ka where tl2k2 

E. n1T, 2m 

Thus 

1jJ(0) /1 sin 0 0 

and 

1jJ(a) fi sin ka 0 if ka n1T, n 1, 2, ... , 

while 
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a 

f 2 
11jJ(x) I dx 1 

0 

by construction. 
Since 

E 
fl2k2 

2m 

this implies 

E = 
h 2n21T2 h2n2 

1, 2, 
2ma2 

--2 n = ... , 
8ma 

exactly the result (1.2). 
One can gain a little more insight as to the range of applicabil

ity of the Wilson-Sommerfeld quantization condition by studying slightly 
more complicated systems. 

EXAMPLE 1.2. Find the energy levels for a particle in the potential: 

V(x) o o < x < a, 

Vo a < x < a + b 

x < 0, x > a + b. 

(Assuming E > Vo which is the interesting case.) 

/ /1 
I 
1 
1 
I 

/ 

'X a 8+b 

Figure 1.2. Potential in Example 1.2. 
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The Wilson-Sommerfeld quantization condition can be immediately 
applied to this case: 

a a+b 

o a 

where 

i.e. 

k1 a + k2b = nlT, n = 1, 2, ... . (1. 4) 

On the other hand solving the Schrodinger equation in the regions 
o < x < a and a < x < a + b (~(x) being zero for x ~ 0, x ~ a + b) 
yields: 

~(x) o < x < a 

~(x) B sin k2 (x a b) a < x < a + b, 

since ~(o) and ~(a+b) must be zero. 
The continuity of ~(x), d~(x)/dx at x = a then implies 

(1. 5) 

One notes that conditions (1.4) and (1.5) are different. Only 
if k2 ~ k1 i.e. E > > Vo that is the total energy is large compared to 

the potential energy does Equation (1.5) reduce to Equation (1.4) since 
then tan k1a ~ - tan k2b which is satisfied if 

n = 1, 2, ... 

Though the Wilson-Sommerfeld quantization condition was superseded by 
Quantum Mechanics (with the Schrodinger and Heisenberg formulations in 
the early twenties) as a calculational aid it has the advantage over 
the Schrodinger equation for instance that it is easier to work with 
since it involves an integral rather than a differential equation. 
However, it generally gives results which are reasonably accurate (i.e. 
in agreement with Quantum Mechanics) only when the energy is large com
pared to the potential under consideration. 

If V(x) = Aixi P one can obtain the form of the energy sequence 
according to the Wilson-Sommerfeld quantization condition (1.1) as 
follows: 
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can be written (for En > 0) as 

d(EAn)l/P 
12mEn f /l-luI P u = nh. 

Hence 

( I 2mJ .! / 1 - I u I p 
A1/ p J 

du nh 

or generally: 

IE I 
2p/(p+2) 

n ( 
11/P J 2p/ (p+2) 

IA h _ 
n - 1, 2, ( 1.6) 

n 12m I(p) (p > -2) 

where 

I(p) f! 1 - lul P du if E > 0 
n 

and 

I(p) = f ! lul P-1 du if E < o. 
n 

As P ~ 00, E in Equation (1.6) becomes cr n2, the result (1.2) for a 
n 

particle in a box with infinite walls. [In detail 1(00) = 4, E = n2Aoh2/32m 

n2h2/32m. This corresponds to a = 2 in Equation (1.2), Le.oov=O Ix! < 1, 
V = oolxl > 1.] 

In several cases I(p) can be easily evaluated. 

EXAMPLE 1.3. Find the energy levels for a particle in the well 

V(x) Ax2 , _00 < x < 00 using the Wilson-Sommerfeld quantization condition. 
If p = 2 Equation (1.6) reduces to 

where 

Le. 

1(2) 

1 

2 J~ du = TT 

-1 

En nfi ~ n = 1, 2, .... (1. 7) 
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As opposed to the familiar Schr6dinger equation result, 

En = (n - i) h ~, n = 1, 2, .... 

EXAMPLE 1.4. Find the energy levels for a particle in the well 

2 V(x) = Ax, x > 0, V(x) = 00, x < o. 

This problem goes through just as in Example 1.3 except 

and hence 

I (2) 

E 
n 

2 
- u du = .:!!. 

2 

2nh ~ n = 1, 2, ... . 

As opposed to the Schr6dinger equation result: 

En = (2n-i) 1'1 ~ , n = 1, 2, ... . 

EXAMPLE 1.5. Find the energy levels for a particle in the well 

(1.8 ) 

( 1.9) 

(1.10 ) 

V(x) = Alxl all x (A > 0). Here p = 1 and Equation (1.6) reduces to: 

where 

i.e. 

E 
n 

1(1) 

1 

4 J .; I-x dx 

o 

8 
3 

(1.11) 

as compared to the solution of the Schr6dinger equation (see Equation 
(3.31» for this problem in the limit of large E namely: 

n 

E 
n 

2/3 (A2h 2 )1/3 (31T )2/3 (n-!) -- --
m 412 

n = 1, 2, .... 

EXAMPLE 1.6. Find the energy levels for a particle in the well 

V(x) = Ax x > 0 (A > 0). 

(3.31) 
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This problem goes through as in Example 1.5 except 

1 

and hence 

I{l) 

E 
n 

2 J I 1 - x'dx 

o 

4/3 

7 

(L 12) 

as compared to the solution of the Schrodinger equation {see Equation 
(3.18») for this problem in the limit of large E namely: 

n 

E 
n 

1 2/3 (A2n2 )1/3 (3'IT )2/3 (n--) -- --
4 m 2/2" 

EXAMPLE 1.7. Find the energy levels for a particle in the well 
V(x) = - IAI/lxl all x. Here p = -1 and E < O. Thus 

IE I 
-2 (IAI- 1h J2 n n nm I{-l) 

where 1 

I{-l) 4 I I~ - l' du 2'IT, 

0 

i.e. 

E 1 2mlAI2 
n n2 n2 

(3.18) 

(L 13) 

Which is identical to the energy levels obtained for this problem using 
the Schrodinger equation {see Equation (3.32». 

EXAMPLE 1.8. Find the energy levels for a particle in the well 

V{x) = - I~I , x > 0 V{x) 

One proceeds as in Example 1.7 except 

1 

and hence 

I (-1) 

E 
n 

2 f I~ - l' du = 'IT 

o 

n = 1, 2, ... 

"", x < o. 

(L 14) 
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which is identical to the energy levels obtained for this problem using 
the Schrodinger equation (see Equation (3.23)). 

EXAMPLE 1.9. Find the energy levels for a particle in the well 

Here 

Thus 

where 

i.e. 

I 1
1/2 V(x) = A x all x. 

p 

E 
n 

rO) 

E 
n 

1 
"2 and E > O. 

~ 

u 2 du 
32 
15 

... n 1, 2 

EXAMPLE 1.10. Find the energy levels for a particle in the well 

~ 

V(x) = Ax 2 X > 0, V(x) = 00 x < o. 

One proceeds as in Example 1.9 except 

i.e. 

rO) 

E 
n 

1 

2 I ! 1 - u~ du 

o 

16 
15 

n2/ 5 (A2h15 )2/5 n = 1, 2, .... 
~ 16 

Using this technique one may also obtain analytic expressions 

( 1.15) 

(1. 16) 

for En if V(x) = Axi etc. As p ~ 0 the levels go as nP i.e. become very 
close together or one approaches a continuum situation. 

EXAMPLE 1.11. Find the energy levels for a particle in the well 

-~ 
V(x) -IAllxl 2 all x. 

Here p - ~ and E < O. Thus 
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where 

-2/3 (IAI- 2 h )-2/3 
IE I = n 

n ,12m l( _ ~) 

E 
n 

1 

4 J ~-! - 1 du = n 

o 

_n- 2/ 3 (1~-2h )-2/3 

I2mn 

n = 1, 2, ... 

EXAMPLE 1.12. Find the energy levels for a particle in the well 

-± 
V(x) = -IAlx 2, X > 0, V(x) 00, x < 0, E < O. 

One proceeds as in Example 1.11 except 
1 

1 J ~-! -1 .! I (- 2") 2 du 
2 

0 

Le. 

E n- 2/ 3 (IAI- 2 2h)-2/3 
n nm n 

The results of Examples 1.3 - 1.12 are summarized in Table 1.1. 

9 

(1.17) 

( 1. 18) 

For two-dimensional systems (or three-dimensional systems where 
a particle moves in a plane chosen for convenience to be the x-y 
plane), and the potential only depends on p, 

E 

Hence 

which implies 

and 

Le. 

2 2 
pp pp 
-- + 
2m 2mp 

f p<jld<jl 

n h 
p 

2 
+ V( p) . 

n<jlh 

n 
p 

ncp 1, 2 ... 

1, 2, ... 

(1. 19) 

(1. 20) 

(1. 21) 
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TABLE 1.1 
Energy levels for various potentials V(x) 

P Range Wilson-Sommerfeld Schrodinger result 
quantization condition 

2/3 (A:h2 )1/3C~: )2/3 
(for large E) 

1 x ? 0 E = n 
En = (n ~f/3(A:2)1/3~~; f/3 n 

E = n2/ 3 (A:h2)1/3(4~)2/3 (for large E) 
1 -oo<x<oo n 

En = (n ;)2/3tA2!~Y/Y:i y/3 

~--------

2 0 E 
(A 11/2 h E = (2n_~)(:m)1/2 ~ x ? = 2nl2m) -

n 1T n 

2 -oo<x<oo E n = (lLl1/2 
n 2m) 

h E = (n _~)(:m)1/2 ~ -
1T n 

-1 x ? 0 E = -~ Same 
n n22t/ 

-1 -oo<x<oo E = -
2mlAI2 Same 

n n2h2 

1 
0 E 

n2/5(A2h15 )2/5 - x ? = 2 n nm 16 

1 E = n2/5(A2h15 y/5 
I - -oo<x<oo 

2 n nm 32 L 
1 

0 E 
_n- 2/ 3(IAI- 22h)-2/3 I - - x ? = I 2 n nm 1T 

1 E 
_n-2/3(IAI-2h )-2/3 - -oo<x<oo = 2 n nm 1T 
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(n",h)2 
'¥ - 2mV( p) -p-2- dp = n h 

p 

np = 1, 2, 

11 

( 1.22) 

The integral in Equation (1.22) can be evaluated analytically for certain 
problems. 

EXAMPLE 1.11. Find the energy levels for the potential V(p) 
From Equation (1.22) one has 

n h 
p 

. 1) 
One can either evaluate integral ( 1. 23) using complex 

tl0n or by elementary methods. 

Thus defining 2 B 2mE, 2 2 2 A - - (n<ph ) , - C - -m w u = p 

f I A + Bu + Cu2 du = 2n h 
u p 

2~rU/A+B:Cu2 
u u ) max max 2 

+ ~ J du 1 J d(A+Bu"'Cu) -
IA+Bu+Cu2 + 2 IA+Su+Cu2 -

Umin ~in 

122 .mw p . 

(1. 23) 

integra-

2(A 1 . -1 Bu+2A 
- Sln 

J:A uh2-4AC 

-1(-2CU-B) Ii 2lum)ax sin + A+Bu+Cu = 2nch 

h 2-4AC 
~in 

where u and u. are determined by requiring that the integrand max mln 

h+BU+Cu2 
,,-=c.=::...;..:=- vanish i. e. u 

u max 
min 

Le. E ~ n<ph w. 

This yields: 

E1T + -
w 

or 

n h 
p 

-8+~ and 8 2 
2C > 4AC 
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E 

where 

:P } 1, 2, ... 
P 

as opposed to the standard Schrodinger result for this system (see 
chapters 8 and 12) 

E = (2n + m - 2)~w : } = 1, 2 ... 

(1.24) 

(8.14) 

Besides its shortcoming that it gives quantitized energies which 
are as a rule only approximately correct for energies large compared 
to the potentials involved, the Wilson-Sommerfeld procedure says 
nothing about the evaluation of probability distributions, transi
tion rates etc. for which there are standard techniques in quantum 
mechanics. 

On a more positive note the quantization condition Equation (1.1) 
is also a consequence of applying the W.K.B. approximation to the 
Schrodinger equation2) with the modification that nh must be replaced 

1 
by (n + 2)h to get the W.K.B. approximation result. 

References 

1. H. Goldstein, Classical Mechanics, Addison Wesley (1950), p. 300. 
2. E. Merzbacher, Quantum Mechanics, Wiley (1970), p. 123. 



CHAPTER 2 

The Delta Function, Completeness and Closure 

The delta function is defined to have the following properties (in one 
dimension) 

o(x-x') = 0 x f x' 

f 0 (x-x') dx = 1 

These have as a consequence tpat 
+00 

f f(x)o(x-x') dx f (x' ) . 

(2.1) 

(2.2) 

One way to get some insight into this useful function and expres
sions for it in terms of standard functions is to use 'the principle 
of completeness'. The principle of completeness allows one to expand 
an arbitrary function in terms of any complete orthonormal set. Thus 
if $(x) is an arbitrary function 

$(x) = I an$n(x), (2.3) 
n 

if the complete set .n(x) chosen is a discrete set, or 

.(x) = fa(k) .k(x) dk (2.4) 

if the complete set .k(x) involves continuous functions, where 

an J.~(X)$(X) ax, a(k) = f.k(X)$(X) dx. (2.5) 

Expanding the delta function o(x-x') in terms of a complete set of 
discrete functions implies: 



14 

where 

i.e. 

6 (x-x' ) 

a 
n 

I~~(X)6(X-X') dx ~*(x' ) 
n 

00 

6 (x-x') = L 
n=O 

~*(x')~ (x), 
n n 

CHAPTER 2 

(2.6) 

and similarly expanding the delta function in terms of a complete set of 
continuous functions implies 

+00 

6(x-x') = J ~k(x' )~k(x) dk. (2.7) 

-00 

EXAMPLE 2.1. Suppose one uses as a complete discrete set the eigen
functions of a particle in an infinite square well potential (a box with 
inf inite walls) 

V(x) 0- .!!<x<.!! 
2 2 

V(x) = 00 - .!! > x x > .!! 
. 2 ' 2 ' 

for the expansion (2.6) with the choice x' = O. The normalized even 
subset of the above eigenfunctions (the rest, i.e. the odd subset is zero 
at x = 0 and does not contribute to the integral (2.5) for an' and hence 
to the sum (2.6» is 

na
2 ! a cos 

(2n+1) 1TX 
a 

a a 
n = 0, 1 ... - 2 < x < 2' 

a 
x > 2" 

Hence a possible representation of the delta function is 

6 (x) 2 
L 

(2n+ 1) 1TX .!! .!! cos < x < 
a 

n=O a 2 2 

0 .!! a 
x < - x > 

2 2 . 

(2.8) 

(2.9) 

EXAMPLE 2.2. Show Equation (2.9) is consistent with Equation (2.1). One 
notes, interchanging integration and summation that 
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a/2 

H L 
2n+1 

dx 
2 ; f cos(2n:1)~X dx cos --~x 

n=O 
a a 

'n=0_a/2 

4 
L l.:..Un = 1, 

~ n=O 2n+1 

consistent with the integral in expression (2.1). 
Considering the first two terms in expansion (2.9) as a crude 

approximation one gets the approximate representation 

[ ~x 6(x) ::: - cos- + 
a a 

3~X) 4 ~x cos -- = - cos - C03 
a a a 

plotted in Figure 2.1. 

/ 

/ 

2~x 

a 

____________ ~_+---+---+--~--_f~------------~x 
a 

Figure 2.1. Plot of 6(x) :: 
4 1TX 21TX 

cos cos 
a a a 

15 

(2.10) 
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Considering the first four terms in expansion (2.9) one gets a 
somewhat better approximate representation of the delta function 

2( 'TTX o(x) - cos -
a a 

8 
a 

'TTX cos -cos 
a 

2'TTX 
a 

This is plotted in Figure 2.2. 

cos 

7 

6 

z 

4'TTX 

a 

-------7T~~-r-r-~~~_b-------~2L a 

8 'TTX 2'TTX 4'TTX 
Figure 2.2. Plot of o(x)::: cos cos cos 

a a a a 

(2.11) 

One notes that the central maximum (about x = 0) gets progressively 
sharper and the secondary maxima less important as the number of terms 
increases. 
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Expression (2.9) resembles a Fourier expansion with the constraint 
the expansion is zero at x = ± a/2 and only valid for - a/2 < x < a/2. 

EXAMPLE 2.3. Consider instead for the complete, discrete set in the 
expansion of the delta function, the eigenfunctions of a particle in 
a harmonic oscillator potential: 

11 x2 
V(x) = 2m 4· 

b 

The eigenfunctions of this potential which are non zero at x o are 

(2.12) 

Hence an alternative representation of the 0 function is 

o (x) 

00 

L 
n=O 

(2.13) 

where one need not specify the sum is only over even n since Hn(O) is 
zero for odd n 

1 
The mathematica'. identity (known as Mehler's formula ) 

222 
1 (4Xyt-(X +y )(l+t )) exp 

/1-t2 2(1-t2 ) 

n 
(.

2+ 2) a H (x)H (y)t 
exp- x Y L n n 

2 n=O 2nn! 

(2.14) 

with the substitution y 0, x ~ x/b becomes 

Substituting this expression in Equation (2.13) yields 

o(x) 

or in other words provided one makes the substitution £ = b2(1_t2 ), 

2 
x 

o(x) 1 l' 1 1m - exp 
I:; £~O /-;. £ 

(2.15) 
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o (x.) 
p 

-4 4 

Fig. 2.3. Plot of o(~) 

2 2 
3 -x /2b ( 2 2) 

bo(x)= 2 ~ 1-3 x2 . 
ITI b 

Expression (2.15) is a standard representation of the delta function 
in terms of a limit. 

In Figures 2.3 and 2.4 are plotted two approximate expressions for 
the delta function using Equation (2.13). The first involves including 
the first two non-zero terms and the second the first three non-zero 
terms of this expression, 

o (x) = 
-x2/2b2 

3..:.e ___ _ 

2 ;; b 

o (x) 

( 1 _ l x2) 
32' 

b 

(2.16) 
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-5 S 

= 15_x e-x2/2b2(1 _ 4 x2 4 4) Figure 2.4. Plot of bo(x) 3 b2 + 15 xb4 . 
Shr 

respectively. The general features and trends are sinlilar to.those of 
Figure 2.1 and 2.2. 

19 

EXAMPLE 2.4. Show Equation (2.13) is consistent with Equation (2.2). 
One notes, interchanging integration and summation that since HO(;) = 1 

+00 

J 
-00 

2/ 2 
dxe-x 2b o(x) I~ b J 

-00 

00 

I: _1_ H (~)H (0) dx = 
n=O 2nn! n b n 
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1 1 
H(O)a 0';; 

n n 
1, 

.;; n=O 

consistent with the integral in expression (2.2). 

EXAMPLE 2.5. Use as a continuous representation of the delta function 
the set of free p&rticle wavefunctions (V(x) = 0, all x) 

Aeikx . 

This implies using Equation (2.4), (2.5) 
k=oo 

A2 f ikx A2 
ikx -ikx 

a (x) dk lim e -e 
e ix k=-oo k--

One can obtain using the property of Equation (2.1) 
that 

+00 

2 sin kx = 2A lim ==..:-= 
k-

+00 f a (x) 
_cc 

x 

dx = 1, 

1 2A2 lim f 
k-- -00 

sin kx dx 
x 

2A2n (a result independent of k). 

Hence 

a (x) 
1 sin kx lim 

x 
(2.17) 

is a second expression for the delta function in terms of a limit. Using 
the above value of A the set of free particle wave functions with 'delta 
function' normalization becomes 

while 

tPk(x) 
1 ikx = -- e ( 

I2n 

a (x) can also be written 
+00 

1 f ikx dk. a (x) e 
2n 

-00 
-+ 

The three dimensional delta function a(r 
-+ 
r') in spherical 

coordinates can be written as follows 

a(r-r' ) 
a(r-r') = 2 a(cos 8-cos 8')a(tP-tP') 

r 

l: R 0 ( r) R 0 (r' ) y* ~ ( 8, tP) y~ ( 8 ' tP' ) . 
nN nN m m' 

n, ~,m 

(2.18) 

(2.19) 

(2.20) 
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If one multiples both sides of this equation by yq(6, 
p <P)y;q(6'. <P ' ) 

and integrates over dndn' one obtains 

o{r-r'~ 
= L R (r)R (r'), 

r2 n nq nq 

and for three dimensional systems quite generally one can thus write 
for the delta function (for any choice of orbital quantum number ~): 

00 

o(r-r') L u~~ (r' )un~ (r) 
n=O 

(2.21a) 

where un~(r) is the solution, subject to the condition un~(O~ 0 of 

the radial Schrodinger equation: 

{_ -fl2 L + V(r) + i12q~+1) _ E} un~(r) 
2m dr2 2mr 

o (r~O), 

i.e. un~(r) = rRn~(r). 
The choice of central potential V(r) determines the detailed form 

of un~(r). The corresponding one dimensional expression is Equation (2.6) 
where x extends over all space, and ~ (x) is the solution of the one 

n 
dimensional Schrodinger equation: 

0, (-00 < x < 00), 

where similarly the choice of V(x) determines the detailed form of ~ (x). 
For continuous states Equation (2.21) is replaced by: n 

(2.21b) 

analogous to the one dimensional Equation (2.7). 
Equation (2.6), (2.7), (2.21a), and (2.21b) are illustrations of 

the 'closure' property of quantum mechanical wavefunctions. 

EXAMPLE 2.6. Obtain an expression for o(r-r'), !r-r'! > 0 if V(r) is 
the three dimensional simple harmonic oscillator potential 

V(r) r > 0 

o r < O. 

Inserting the detailed solutions un~(r) for this potential "(cf.) 
Equation 8.13) in expression (2.21) one obtains: 
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6(r-r' ) ~ f(n+~+3/2) F (_ .~+l. r 2) 
n! 1 1 n, 2' b2 ' 

n=O 

independent of the value of b, ~ where r, r' > O. 
If ~ = 0 for example 

(2.22) 

6 (r-r' ) 
8e-(r2+r,2)/2b2(rr' )/b2 

b1T 
~ 

n=Q 

/ ( l. r 2, f(n + 3 2) F _ . I 
n! 1 1 n, 2' 2)' 

b 

substituting Equation (2.12) the solutions of the one dimensional 
harmonic oscillator in Equation (2.6) one has analogously 

6 (x-x' ) 

But 

222 -(x +x' )/2b 
e 

/;b 
L 

n=O 

(2.23) 

(2.24) 

Substituting this expression into Equation (2.23) and using Legendre's 
duplication formula 2 ) 

(2n+l) !/; n!f(n+3/2) = - -
22n+1 

Equation (2.23) can be written in a form similar to Equation 2.24, 
namely 

6 (r-r' ) 

H (E)H (~) 
n b n b 

n! 2n 

Equation (2.25) involves a sum only over odd n terms for which Hn(~) 

(2.25) 

is zero if ~ = 0, since r or r' cannot be zero_ Thus 6(r-r') in Equation 
(2.25) vanishes if either r or r' is zero. Also the additional factor 2 
is there in Equation (2.25) because x, x' extend from _00 to +00 whereas 
r, r' extend from 0 ~ 00. Using the Hille-Hardy formula 3 ) 
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(xy)0./2 
-(x+y)/2 

e 
E 

n=O 

-0./2 1 +t ... 
_t __ e -!(x+Y)1-t I (2(XYt)2) 
I-t a. 1-t ' 

one can sum Equation (2.22). Here 

Thus, 

I (x) = i-o.J (ix) 
a. a. 

o(r-r') 

1 

_2.l..:( r::,.;:r;...'-L)_' lim -- -
t-+1 b2 

23 

(2.26) 

(r, r' > 0), (2.27) 

which can be written in terms of spherical Bessel functions: 

r 2+r,2 1+t ... 
2b2 1-t j (i2rr't2) 

R. b2(1-t) 
o(r-r') 

2 If one makes the substitution E = (1-t)b , 
r2+r,2 

lim 4rr' e e: . (i2rr') o(r-r') 
E-+O iR.;.;;-

J R. E 

or r 2+r,2 ... 
o(r-r') lim 

2 {rr' ) 2 e E I err') 
E 3/2 R.+! E 

E-+O E 

For R. 0, since 
_, 

(!~~) "2 sinh ~,~) 

o(r-r') = lim _2_ e 
E-+O .;;~ 

r 2+r,2 

sinh 2rr' 
E 

(r, r' > 0). (2.28) 

(r, r' > 0) (2.29) 

(r, r' > 0). (2.30) 

(2.31) 

But as E -+ 0 sinh 2rr' -+ !e2rr '/E and Equation (2.31) reduces to 
E 
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2 +r,2 2rr' r 

o(r-r') 1 lim ..1.... 
E 

E e e 
2 I; E-+O l~. 

an obvious generalization of Equation (2.15). 

1 lim 1 
I; E-+O I~ 

e 

CHAPTER 2 

(r-r,)2 
E 

(2.32) 

EXAMPLE 2.7. Verify Equation (2.25) is consistent with Equation (2.2). 
According to Equation (2.2) 

Jo(r-r' )Hm(;) 

Multiplying Equation (2.25) by Hm(;) 
both sides over r one obtains 

, ,2/2b2 
=H(E-)e- r . 

m b 

_r2/2b2 
e (modd) and integrating 

(2.33) 

where integration and summation have been interchanged. But the integrand 
in Equation (2.33) is always eveD. Hence the rhs of Equation 2.33 can 
be written 

which is identical with the lhs of this equation. 
Since completeness enables one to expand any arbitrary function 

in terms of a complete set it can also be used to describe what happens 
if the potential of a system suddenly changes without the wavefunction 
undergoing any modification: 

EXAMPLE 2.8. Suppose a ~article is in the ground state of the potential 

fl2x 2 
V (x) = --
o 2mb4 

o 
Suddenly the potential changes to 

2 
h 2 

4 (x-xl) . 
2mb1 
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One wishes to find the probability the particle will be in any (say 
the ground) state of this new potential. What is involved in this case 
is a possible displacement to (Xl) and a change of frequency (from 

Wo to wI) of the potential, as illustrated in Figure 2.5. 

Figure 2.5. Change in potential in Example 2.8. 

The wavefunction of the system is 

The potential changes freque~cy 

and is displaced so the complete set of states which now describes the 
system is ¢n(x-xI , b l ). To find the probability one merely uses 

Equation (2.3). 
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where 
+00 +00 -x 2 

I J 2b2 -e 0 
Ibob 111 -00 

Thus if xi = 0 laol2 = 0.8 if bl = O.SbO or 2bo etc. 

This procedure applies equally well if one changes the form of 
the potential. 

EXAMPLE 2.9. Consider a rarticle wavefunction 

1jI(x) ~ fos (a2_x2) Ixl < a 
a 

0 Ixl > a. 

This involves the potential V(x) =L 5x2_a2 
Ixl 

4ma2 2 2 < a 
x -a 

00 Ixl > a 
(c.f. Example 8.1. ) 

The potential is suddenly changed to V(x) = 0 Ixl < a, 

(2.34) 

V(x) = 00 Ixl > a. What is the probability the particle is in the ground 
state of this potential? The normalized ground state of this new potential 
is just 

~ cos kx = ~ cos ;: ' 

where 

ka 
11 
2 (cf Eq. 2.8), E 

Hence 
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[ 
3 3 2 ] 4: _ 8: (; _ 4) 

Le. 

8/15 = 12 3 0.9993 thus lao = 0.9986 = 1 
11 

as it should be since the wave function forms are very similar (cf. 
Example 8.1, Figure 8.1), as too their energies 

1125/2 vs 
2ma2 

EXAMPLE 2.10. Consider a particle bound by the potential - IVoI6(x). 

The potential suddenly changes to V = 0 Ixl < a, V = oolx[ > a. Find 
the probability the particle will be in one of the even parity states of 
this new potential. 
Here 

and one wishes to evaluate the overlap 

a = fa )volm 
n n2 

-a 

Evaluating this integral one obtains: 

a 
n 

(2n+1)1Ix dx 
2a 

1IX 
cos 2a dx. 
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As a ~ 00 a ~ o. 
n 

There is no probability the particle will be in one of the odd parity 
states of this potential, namely: 

cjJ = !l sin m1TX 
m / a a 

EXAMPLE 2.11. A particle is originally in the ground state of the well 

v 00 x < 0, x > a, 

o o < x < a. 

Suddenly the wall at x = a is shifted to x = 2a. Find the probability 
the particle will be in the ground state of the new potential which 
results from this shift. 

The wavefunction is originally: 

{If . 1TX 
cjJ = - s~n--o a a 

o < x < a, 

o x < 0, x > a 

and one is interested in the overlap: 

a 

I;f sin 1TX If sin 1TX dx aO a 2a 
0 

= 4 12 I ( 31T) . 

2 2 
Thus laol = 32/(91T ). 

The original energy is E = fi21T2/2ma2 . 2 2 2 
The energy of the new ground state is fi 1T 18ma while that of the new 

first excited state is fi21T2/2ma2 , which is just the original energy. 

There is therefore a 32/91T2 probability the energy will be less than 
before. 

The probability the energy will be unchanged is related to the overlap: 

a 

I If . 1TX A . 1TX dx 1 - s~n -- - s~n -- = --- • 
a a a a r;;-

o vL 

Thus the probability the energy is unchanged is i. The probability the 
new energy is more than the original energy is 
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Expression (4.22) of Chapter 4 lists some other representations 
of the delta function. 
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CHAPTER 3 

Momentum Space 

Working in momentum space involves taking the Fourier transform of the 
eigenfunction W(x, t) of the Schrodinger equation. Thus if 

it follows 

that 

CP(p, t) - 1 

1211 

+00 -ipx 
h W(x, t)dx 

from the delta function property of Equation 

+00 iy(x-x' ) 
1 J h Qy a (x-x' ) , e 

211 11 

+00 ipx 
1 J 11 

W(x, t) e CP(p, t) dp. 
1211h 

(3.1) 

(2.19): 

(3.2) 

The function CP(p, t) is called the wave function "in momentum space". 
Assuming wand cP are normalizable (i.e. vanish at ± 00 so one can integrate 
by parts and drop surface terms), it can readily be shown that 

and for any operator A(p) 

!!. ~ dx; 
i ax 

+00 -ipx 

-ipx 

- ~ ~ cP = _1_ J e h xWdx, 
l ax 1211 

A(p)CP(p, t) = _1_ J e h A(~ ;x) W(x, t) dx; 
~ -00 
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+00 

A(-~ ~) 
l ap 

1 f 
/2'lT -00 

e A(x)1jJ(x, t) dx <P(p, t) 

while similarly 
+00 ipx 

Also 

Thus 

A(x)1jJ(x, t) 

ap(p, t) 
at 

1 1 J e h A(- ~ aap ) <P(p, t) dPi 
/2'lT h -00 

- ipx 
11 

B (p ) <p (p, t) dp . 

a 
ax 1jJ>(x, t) dx . 

[r.=. + V(-~~) + ~~] <P(p, t) 2m l ap l at 

-ipx 
n [ 112 a2 11 a] 

- 2m ax2 + V(x) + i at 1jJ(x, t) dx. 

31 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

But since the integrand on the R.H.S. of Equation (3.6) vanishes, 1jJ(x, t) 
being a solution of the Schrodinger equation, the momentum space function 
<P(p, t) satisfies an analogous equation: 

[r.=. + l-~ ~) + ~ 1-] <P(p, t) 
2m l l ap l at 

0, (3.7) 

the Schrodinger equation "in momentum space". 
Similarly expectation values can be equivalently evaluated in 

momentum space since 

x=oo p'=oo 
f1jJ*(X, t)~(x)1jJ(x, t) dx 

121'lTh L-oo l, =-00 
<P(p', t) e 

-~ 
h 

dp'~(x)1jJ(x, t) dx 



32 CHAPTER 3 

p'=oo 

J J ¢(p', t)e 

x=-oo p'=-oo 

-ip'x 
11 dp' 

p=oo ipx 

J e n n(-~ ;p)¢(P, t) dp dx 

p=-oo 

p'=oo i(p-p')~ 

~ J dp dp'¢*(p', t)n(-I a~ }(p, t) 2\ J e 11 ~x = J¢*(P, t)n 
p'=-oo 

One also notes that if ~(x, t) is normalized so is ¢(p, t) since 
using Equation (3.8) with n = 1: 

+00 

J ~*(x, t)~(x, t) dx J¢*(P, t)¢(p, t) ~ 
-00 

The above formalism generalizes to three dimensions by replacing 

n 
by i 'V etc. 

Six simple problems follow which illustrate the usefulness of 
the momentum representation and the fact that for certain potentials 
it is easier to work in momentum rather than coordinate space. 

EXAMPLE 3.1. Consider the case of a free particle (V(x) = 0). 
In momentum space the Schrodinger equation, (Equation (3.7)) for this 
system is 

2 

{~ - E} ¢(p) = 0 (E "> 0) 

i.e. 

¢(p) = 6(~ _ l~mE) 

Since generally +00 

~(x) = 1 J 
12'11 

~ 
n 

¢(p)e 

if one suppresses the time variable in Equation (3.2), in this case 

~(x) 
1 

.l2mE x 
e l - 11-

as it should be. 

(3.8) 

(3.9) 
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EXAMPLE 3.2. Consider a particle in the momentum dependent potential 
V(x) = ap. In momentum space the Schrodinger equation for this potential 
(Equation (3.7» is 

{~ + ap - E}~(P) = 0 

i.e. 

~(p) 

and as above 

1/I(x) 
A --e 

& 
B + -- e 

1211 

P1 = -rna + /m2a2 + 2mE 

P ; -rna - ~2a2 + 2mE 
2 

EXAMPLE 3.3. Obtain the exact solution of the problem V(x) = Ax 

(3.10) 

x > 0 (A > 0), V(x) =« X ( 0, (Drawn in Figure 3.1) with the help 
of the momentum representation. 

FIgure 3.1. Potential in Example 3.3. 

In momentum space the Schrodinger equation for this potential 
(Equation (3.7» is: 

i.e. 

{ 2 fl d } E..... - A -:- - - E ~(p) 
2m 1 dp 

0, 

{~ - E}~(P) = A ~ ~ ~(p). 
Integrating this expression yields: 

(E > 0) (3.11) 
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i {~ E} = lI.n{<P(p)/C}, 
Ahem- P 

Le. 

. {3 } .l:... L - Ep 
An em 

<P(p) = Ce A, E > O. 

C can be obtained by normalization i.e. requiring 

+00 . (E 
f <PE(P)<PE'(P)~ = o(E-E') = IcI 2 f e 1 

AIl 

-00 

. 12 :.Ic 2TIA = 1, where one has used Equatjon (2.19). 
phase Thus within a 

<P(p) 

Generally 

1j;(x) 

1 L . { 3 } 
= _1_ eAh em -Ep . 

12TIA 

+00 ipx 

= __ 1 __ f ~(p)e h 

~ -00 

and in this case p=oo i {~ 
1 f 

Ah em -
1j;(x) = -- e 

2TIIA p=-oo 

EP} + 
ipx 
h 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

For this problem the wave function 1j;(x) satisfies the boundary condition 
w(O) = 0, since V(O) 00. Hence for this example 

IjJ(O) 1 f !Cp) dp 1 f e!{~ - EP} d(*) = O. 
n/2TI 21TJA 

+00 

1 [f cos(p3/em - Ep)/Ah dp + i f sin(p3/6m - Ep)/Ah dP]' 

2TIIAh -00 

This implies the even integral, 



MOMENTUM SPACE 

f cos(p3/6m - Ep)/Ah dp 0 

o 

since the integrand of the integral 

+00 

J sin(p3/6m - Ep)/Ah dp 

is odd making the lattir integral automatically zero. 
Defining u = p/(2mAh)1 3 the integral in Equation (3.16) becomes 

OOJ 3 2 2 1/3 - ({ 2 2}1/3) cos(u /3 - E(2m/A h) u) du = lu ~l-E 2m/A h , 

o 

{ }
1/3 

where ~(-E 2m/A2h 2 ) is the Airy function. 
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(3.16) 

The energy eigenvalues E in this problem thus satisfy the condition that 

( { 2 2}1/3 ) 
~ -En 2m/A h = o. (3.17) 

For reasonably large negative arguments 

<P(x) -+ 1 sin (-32 Ix1 3/ 2 + -4u) . 
Ix1 1/ 4 

Hence in this limit 

2 E3/ 2 {~}1/2 u 
+ - n'lr - 4 3 n A~h2 

n = 1, 2 ... 

Le. 

1 2/3 (A2h 2 )1/3 ( 31T )2/3 E = (n--) -- --
n 4 '- m 2/2 

n = 1, 2 ... (3.18) 

which can be compared with 

the Wilson-Sommerfeld result (Equation (1.12». 
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EXAMPLE 3.4. Obtain the exact solution for a p~rticle in the potential 

V(x) A/x x > 0 (A < 0), 

V(x) 00 x < 0, 

using the momentum representation. This potential is illustrated in 
Figure 3.2. 

/ 

Figure 3.2. Potential 'in Example 3.4. 

ln momentum space the Schrodinger equation for this potential is: 

2 A 
E} <jl(p) {E- + 0, (E < 0) ... 2m -!! ~ 

(3.19) 

i dp 

i.e. 

(~A - ;1 2 

lEI) + {~+ iA 

~=-
- dp 

2 dp 
h 

<jl(p) 2 2 
E - E..::. E-+ lEI E-+ lEI 2m 2m 2m 

Integrating this expression yields: 
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{ 2}' IAI ;i 1 £n <P(p)( lEI + P /2m)/c = - T I~I tan- ---'P"---

hmlEI 

i.e. 

<P(p) _--.::C:...-.__ e 

lEI + p2/2m 

ill.l nm tan -1 ~ 
n / lEI hmlEI. 

1<p(p)1 2 vanishes at ± 00 and is square normalizable. 
Thus C can be determined by normalization i.e. 

+00 

f I 12 E . 2 f dJ;:/h 
<P ( p ) dh = 1 = I C I -,-( "I E"'Tj.J...;+'-'--p""2 /-;-2-m ) 2 

-00 

1. 

Thus to within a phase: 

<P(p) 

Generally 

w(x) 

In this case W(O) = 0, since V(O) 

Hence +00 

o = 1f~)1/4 J 
1Tl2mh2 

1 (cos ill ~ tan -1 ---,P,,--_ 

I E I +p 2/ 2m h I I E I hm I E I 

. . ill~m -1 P ) d -lSln h TEl tan p. 
Ie hmlEI 
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(3.20) 

(3.21) 
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The integral 

f 1 
2 

IEI+p 12m 

CHAPTER 3 

sin (I I~m -1 p ) 
A TEl tan ~ dp 

/ .. m/EI 
is automatically zero since the integrand is odd. Thus the even integral 

(ill nrr;- -1 
p ) 

J 
cos ~ j TEI:an 

/2iiliJ dp 
lEI + P /2m 

must be zero in order for ~(O) to be zero. 
Integrating this expression one obtains 

Hence 

~ . ~ill TAT Sln j TEl ~ 8 

.l1ili!. ~-sin 2~ j TEl - O. 

TT/2 

11 

TAT sin 

o 

~ 
j"fE1 

.l1ili!. 
h2 (3.22) 

The energy eigenvalues IE I of this problem thus satisfy the equation 
n 

or 

~ !iiiC:.-
2h j TEJ - nTT 

E 
n 

n = 1, 2 ... 

(3.23) 

With IAI = ahc this reduces to the usual Bohr result for the states uno 
(r) (as well as for the states uno (r) since the energies in the hydrogen 
atom are independent of £', an effect known as an "accidental" degeneracy). 

Substituting expression (3.23) into expression (3 .. 21) one obtains a 
general expression for the wavefunction in the momentum representation: 

(3.24) 

n = 1, 2 .... 
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Using this expression one readily obtains: 

2 <p > 

2 
< L > = ,- E • 

2m n 

These two equations imply 

o 

Similarly one can easily obtain: 

<r> 

2 fl4 
(5n2+1) 

2 n <r > 
2 m2 1AI2 

These results imply: 

nh2 
I:1r = !<r2> 2 - <r> 

2mlAI 

m = 0, 1 ... , 

(n2+2)1/2. 

Combining Equations (3.26) and (3.29) one obtains: 

n r-:;:- 11 
I:1rl:1p = 2 I n~+2 > 2 ... 

consistent with the uncertainty relation (cf. Chapter 4). 
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(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

EXAMPLE 3.5. Solve exactly the problem of a particle in the potential 
V(x) = Alxl -00 < x < 00 

EXAMPLE 3.6. Solve exactly the problem of a particle in the potential 
A 

V(x) = ~ -00 < x < 00. 

The potentials of Examples 3.5 and 3.6 are symmetric potentials i.e. if one 
plots V(x) vs x the potential for x s 0 is the mirror reflection (about 
the V(x) axis) of the wells for x > 0 in Examples 3.3 and 3.4 (Figures 
3.1 and 3.2). One can proceed here using methods similar to those used 
in Example 3.3 and 3.4. However, instead if one compares (cf. Equations 
(1.8) and (1.10) the solutions of the problem of the standard harmonic 
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oscillator potential restricted to x > 0 i.e. V(x) = Ax2 
x $ 0, to the oscillator extending over all space V(x) = 

the former potential's allowed energies are 

o < 
Ax2, 

x < 00 , 

_00 < x < 00, 

En (2n - !)h~ n = 1, 2 ... 

and correspond to odd parity solutions (see Chapter 10) while the latter's 
allowed energies are 

En = (n - !)h ~ n = 1, 2 

and both odd and even parity solutions are allowed. One can thus obtain 
the solutions in the latter case from the solutions in the former by 
letting n ~ n/2. Similarly if one considers the infinite well V(x) 
x < 0, x > a, V(x) 0 0 < x < a its solutions are the odd parity 
wavefunctions ~(x) 12/a sink x (where ka = nn) i.e. 

whereas if 
V(x) = 0, 

and ~(x) 
i.e. 

E n = 1, 2 ... 

one considers the infinite well V(x) = 00 x < -a, x < a, 
-a < x < a, its solutions are ~(x) = 11/a sinkx (odd parity) 

II/a coskx (even parity) where ka = nn or (n-!)n n = 1, 2 ... 

E = tJ.2 (!!)2 n2 
2m 2 2 

a 
n = 1, 2 ... 

Again the solutions for the latter case can be obtained from the former 
by letting n ~ n/2. A third example which illustrates the fact that this 
procedure may be applied generally is the well V(x) = -VO cosh- 2ax1 ) 

x > 0, V(x) = 00 x < O. The (odd parity) solutions for this case are: 

~(x) = (1_~2)(s-2n+1)/2 2F1(1-2n, 2s-2n+2; s-2n+2, (1-~)/2) 

with corresponding energies 

112 2 [ E = ___ a_ -(4n-1) 
n 8m 

+ I 8mVo ]2 
1 +-- , 

a2h 2 

while the symmetric potential V(x) -VO cosh 

where 

E 
n 

n = 1, 2 

-2 ax (all x) has solutions 

n = L 2 ... 
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(with the symbols s, and ~ defined as 

s = ! (-1 + ~1 + 8~V~), ~ 
ah 

tanh ax). 

Thus in this case also one obtains the solutions for the symmetric well 
by letting n ~ n/2 in the solutions for the well which extends only from 
o < x < 00. 

The solutions for Example 3.3 are 

E 
n 

2/3 rA2h2)1/3 ( 3TI )2/3 
(n-!) -- --

... m 2/2 

2/3(A2n2)1/3 ( 3TI)2/3 = (2n-!) -- --
m 4/2" 

n = 1, 2 .... 

These correspond only to the odd parity solutions of Example 3.5. By 
analogy with the above three problems one thus expects that the odd and 
even parity solutions for Example 3.5 have energies: 

n = 1, 2 .... (3.31) 

which for large n agrees with the Wilson-Sommerfeld result (Equation (1.11». 
Similarly the solution for Example 3.4 is 

E 
n 

and one expects that the energy in Example 3.6 is just 

E 
n 

21AI 2m 
n 2tJ2 

(3.32) 

and that this includes both even and odd parity solutions. This result 
agrees precisely with the Wilson-Sommerfeld result (Equation (1.13». 

REFERENCE 

1. L. Landau et T. Lifchitz, Mechanique Quantique (Eds Mir) Moscow 1966, 
p. 94. 
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Wavepackets and the uncertainty principle 

The properly normalized free particle wavefunction is 

1 
1/J (x, t) = -

P 121T 

<~ _ Et) 
e h h (cf. Equation (2.18) (4.1) 

One problem with this function is that it has no spatial localization 
i.e. though the momentum is precisely known (in other words ~p = 0), 
~x = 00, where ~A implies uncertainty in A. 

The shortcoming may be easily removed by constructing a wavepacket 

p'=oo 

'¥(x, t) ~ f 
p'=-oo 

A(p') 1/J ,(x, t) dE' 
P h 

p'=oo i 

1 f A(p') 
121T p'=-oo 

h (p 'x-E (p' ) t ) 
e ~ 

where A(p') is a function concentrated about p' 

A(p') = 6(~) 

this reduces to expression (4.1). The function 

iE(p' )t 

A(p') e n 

11 

p. Thus if 

is in fact the wavefunction in ·momentum space (cf. Equation (3.2». 

(4.2) 
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~ detailed functional form A(p') gives the same genera] properties 
to ~(x, t) namely localizes the particle, (6x f 00). 

EXAMPLE 4.1. Suppose 

A(p') = fl e -l p '-pI/6 (4.3) 

a normalized function peaked about p' = p and illustrated in Figure 4.1. 
As first sight it appears this gives an uncertainty in momentum 

6p - 26. 

--r---~~--+-~~-+--4-~~------~p' 

Figure 4.1. The momentum distribution in Example 4.1. 

The gain however is that ~(x, t) is now localized. Thus 

~(x, 0) 

p'=oo 

ffif 
p'=_oo 

in'x -I p I -p I 16 + :..:...= 
e h 

or 

& 
ipx 

~(x, 0') 
h 1 

63 'TT 

e 
112 2 

x + 
62 

[ The normalization of ~(x, 0) can be confirmed by noting 

+00 

f 

(4.4) 

The amplitude of the function of Equation (4.4) (ignoring the phase) 
is drawn in Figure 4.2. There is a spread about x = 0 given approximately 
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Figure 4.2. Amplitude of ~(x, 0) in Example 4.1. 

by 6x = 2h/o. Thus 6x6p - 2~/0 20 = 4h. 
A more accurate estimate of 6x6p is possjble since 

2 2 2 (60) = <0 > - <0> where <0> = f ~*O~d~/f~*~d~ 
= fA*(p)OA(p)dp/fA*(p)A(p)dp. 

Using the function of Equation (4.4), <x> 0, while 

Similarly 

while 

and 

x=oo 

2 2 2h3 I (6x) = <x > = --3-

o 11 x=-oo 

<p> 

2 <p > 

p'=oo 

= ~ I 
p'=-oo 

2 02 
P + -- Le. 6p 

2 

11 0 n 

0//2 

~--= = 0.71n, 
u /2 /2 

p, 

CHAPTER 4 

(4.5) 

in this case. Thus the uncertainty in the position multiplied by the 
uncertainty in the momentum of a localized wavepacket is of the order of 
h. Other A(p)'s yield similar results. 
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EXAMPLE 4.2. Consider the case 

Ip'_p 1 < 0, A(p') = 0 Ipl -p 1 > 0, 

a normalized function peaked at p' = p. This A(?') is illustrated in 
Figure 4.3. 

~~;: A(p) 

r-----+-----~----~------------~p' 
p-~ p. 

Figure 4.3. The momentum distribution in Example 4.2. 

A first sight it appears this gives an uncertainty 6p-O. A more 
accurate estimate of 6p can be carrjed out by evaluating 

p+O 

= 3h f 2 
<p> ( 0 -I p I -p I) p' d~ = P 

28 3 
p-o fl 

p+o 
2 3h f 2 2 

( 0 -I p' -p I) p' d~ 

Thus 

<p >= -
20 3 

o 6p = -
no 

p-o 

In this case 

'¥(x, 

p+o 

0) = _1 l:Th f 
/21T / 20 3 

p-o 

Evaluating this integral one obtains: 

h 

02 2 = p + -
10 

45 

(4.6) 
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ipx 

~(X, 0) = % ~ e n 

. 2 ox 
SIn 2h 

(~~y 

CHAPTER 4 

(4.7) 

The normalization of this expression may easily be verified using 
the result 

00 

J . 4 
du SI~ U 

U o 

1T 
3 

The amplitude of the function of Equation (4.7) (ignoring the phase) 
is drawn in Figure 4.4. 

There appears to be a spread about x of approximately 2n1T/o giving 
an approxiD1at~ t::.xt::.p - 2h1T/O 0 = h. 

Figure 4.4. Amplitude of the wavefunction ~(x, 0) in 
Example 4.2. 

For a more accurate t::.x one evaluates 

+00 

4 Ox 

ll~J sin 2ft <x> 
(oxl4 

x dx 0 , 
4 1T n 

-00 

2h) 

x=oo +00 J . 4 ox 
6h2 J 4 

<-:<:2>= 
1 3 0 SIn 2h 

x2dx 
sin u 

du 
"4 :;;- hx=_oo (oxl4 1To2 -00 

2 u 
2ft) 
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Hence, 

f:;.x 

+00 

[ J Si:~U du 
-00 

1 
4 

J Si:~2U dU] 

and /311 I) /I.. 
/:;.x/:;'p = -1)- liD = / 10 n = 0.55ft 
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in this case, a somewhat smaller result than that obtained in Example 4.1. 

00 

J [ The inteqra! 
0 

above result. 

. 2 
s~n u 

2 u 

du :!!. is 
2 needed to obtain the ] 

Obviously 1jI(x, t) of Equation (4.2) also satisfies the free particle 
Schrodinger equation just as Equation (4.1) does namely: 

h 2 i ~ a 
2m - '¥ (x, t) = - -:- - '¥ (x, t) f 

ax2 ~ at 

independent of the detailed form of A(p') since 

+00 

~ J A(p') (~~2 - E(P'») 

if 
2 
~ = E(p). 

e 

i -(p'x - E(p' )t) n 
~ = 0, 

n. 

Further, independent of the form of A(p), since it is the wave
function in momentum spac~ one can write: 

~ 
A(p') = __ 1 __ J '¥(x', 0) e- ~ 

n:; dx' . 

(4.8) 

(4.9) 

substituting Equation (4.9) into Equation (4.2), and dropping the 
prime for the p's one obtains: 

'¥(x, t) = J'¥(X', 0)2! J e i [(X~x' )p - E(~)t] ~ d x' (4.10) 
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Defining 

G(x, x', t) 
_ ...l I e i[(X~X')p - E(~)t] §E 

2~ h 

_ iE(p)t 

= I4lp(X' )4lp (X) e fI dpfY! 

where 4l (x) are the properly normalized free particle wavefunctions 
p 

(cf. Equation (2.18», one can write Equation (4.10) as follows: 

(4.11a) 

(4.11b) 

'¥(x, t) = I'¥(X'. 0) G(x, x', t) dx'. (4.12) 

The function G(x, x', t) of Equation (4.11) known as the free 
particle Green's function can be evaluated explicitly by integrating 
expression (4.11): 

1/2 2 
( m) (m(x-x') ) G(x, x', t) = 2~iht exp - 2ibt . (4.13) 

This function also satisfies the Schrodinger equation Equation (4.8) 
and for t -+ 0 

G(x, x', 0) = o(x-x'), 

(Equation (4.13) having in this case the 0 function form of Equation 
(2.15» as it must since ,¥(x, 0) = f'¥(x', O)G(x, x', 0) dx', in this case. 

A formula useful in calculating reflection and transmission times for 
wavepackets, which is a result independent of the d9tails of A(p') (but 
assuming it is peaked about p' = p) involves expanding E(p') about 
p' = p in expression (2) 

E(p' ) ~ 2m 

2 
E- + dE(p') 
2m dp' (p'-p)+ 

p'=p 

Keeping only linear terms (i.e. assuming only values about p' p 
are important) yields: 

p'=oo i 2 dE(p' ) I dE{E' ~ I tP')df -(p'x-E- t + tp -
'¥(x, t) 1 I A(p' ) 1'l 2m dp' dp' 

e 
& p'=-oo 

p'=p p'=p 

~2 dE{E' ~ p'=oo ~ p'(x - d~{r)1 t) _1 E- t _ I tp) 1 1i. 2m dp' p'=p I A(p' ) P p'=p d~ e e 
& p'=-oo 1i. 
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Thus 

'I'(x, t) e iCP 'I'(x _ dE(p') 
dp' t, 0) (4.14) 

p'=p 

Equation (4.14), which is a gooq approximation if A(p') is peaked 
about p' = p, and is independent of the detaiJs of A(p'), implies the 
wavepacket 'I'(x, t) moves with a speed 

Since 

dE(p') I 
dp' 

p'=p 

~ E(p') = 2m dE(p') = ~ = v . 
dp' rn g 

This ib known as the group velocity of the wavepacket and is just 
the classical speed of a free particle. 

EXAMPLE 4.3. Given 

A(p') = -~fl 
21T0 

find 'I' (x, 0). 

sin2 (p'-p)/0 
2 «(p'-p)/o) 

(4.15 ) 

One can proceed as in the previous examples or note that since, 
according to Equation (4.2) (where we use k rather than p to make the 
equations look a little more symmetric) 

if 

'I'(x, 0) = __ 1 __ JA(k')eik'X dk', 

~ 

'I'(x, 0) = eikx CP(x) 

~ __ 1 __ IA(k' )ei(k'-k)xdk , 
CP(x) 

,.!2;" 

where according to Equation (4.9) 

(flk p) 

(4.16) 

A(k') = 1 J'I'(X', 0) e-ik'x' dx' 

h1T 

__ 1 __ J CP(x') e- ix ' (k'-k)dx'. 

I2n 

Hence 

A(k'+k) 1 J CP(x') 
h1T 

-ix'k' 1 J.( ') ix'k' e dx' =-- '!' X e 
h1T 

dx' 

if cP (x) =cP ( -x) . 
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or 

A(k'+k) = 1 <p(x'-x) e dx'. f i(x' -x)k' 

1211 

Comparing Eauations (4.16) and (4.17) one notes that if one 
identifies A(k') with a particular (even) function <p(x'-x) one can 
identifv <p(x) with the corresponding A(k + k'). 
In Example 4.2 

1 fio sin. ox/2n <p(x) = - - 2 
2 rrh l~~) 

Hence if one identifies A(k') with 

1/36 
2jrr'fl 

. 2 
Sln 

(k'-k)0/2h 
( (k'-k)c/2fl)2 

one obtains the corresponding 

<p(x) = ~[o - Ixlh] 
/20 3 

directly from A(k'+k). 

Letting Q ~ 2h2/0 

A(k') = ~ 
/ 2TIO 

and 

1jJ(x, 0) = e 

sin2 (p'-p)/0 
2 

( (p' -p) /0) 

EXAMPLE 4.4. Consider the case 

A(p') = }~3h 1 
2 2 (p' -p) +6 

For this distribution of momenta 

+00 
20 3h :e' 

and A(k+k') 

~= f p <p > 
11 ( (p'_p)2+62)2 1'1 

(4.l7) 

then 

(4.18) 

(4.19) 
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2 
<p > 

~ _ 2 ~2 
h - P +" i.e. 

On the other hand the wavefunction at time t 0 i.e. 

+00 

ip'x/h d ' e .9£..:.. _ 
( ' )2 ~2 h -p -p +" 

'¥(f{, 0) 

-00 

+00 

M eipx/ h ~ f i(p'-p)x/11 
....;e:::.....-___ d(p'-p)/11 

(p'_p)2+02 
-00 

ipx 00 

2~ h (cos(p'-p)x/11 
-lIh-2 e J (~)2 + (~)2 

d(p'-p)/1J 

o ~ 11 1'1 

Hence 
00 

'¥(x, 0) = ~ ~ e ipx/ 11 

For this wavefunction 

i.e. 

<x> o. 

2 20 
<x >= t;'"" f -20x/11 2d e x x 

o 

II ipx/fl jt,. e e 

llxllp h 
= -

/2 

51 

(4.20) 

The forms of these distributions is given jn Figures 4.1 and 4.2 
with the appropriate identifications. The symmetry bebTeen the A(p') and 
W(x, 0) in this example and the W(x, 0) and A(p') in Example 4.1 can be 
understood in the light of the remarks in Example 4.3. 

What is of some interest in this example is that a representation 
of the delta function is 

o(x) = ~ lim ~ (u)~ 
£""*0 - +1 

£ 

(4.21) 
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Thus if one defines 

A' (p') :: fo A.(p') 
'IT 

as 

0-+0 A' (p) -+ o(~). 

1 
2 ') 

(p'-p) +o~ 

When ~(x, 0) is evaluated using A'(p) rather than 

A(p), ~(x, 0) = __ 1 __ eipx/~ e-olxl/~ 
;2"; 

CHAPTER 4 

and as 0 -+ 0 this becomes just a plane wave __ 1_ eipx/fi as it should since 
12 'IT 

if a delta function is substituted for A(p') in Equation (4.2) it reverts 
to a plane wave expression. 

By a similar analysis one can extract several other delta function 
representations from the A's used in this Chapter's examples. Some of 
these are listed in Equation (4.22). 

(i) 
1 10 1 -lul/E (Ex. 4.1) o(u) = - 1111 - e 2 E-+O E 

(ii) o(u) lim 1-lu1LE lui < E (Ex. 4.2) 
E-+O E 

2 
( iii) 15 (u) 

1 lim £ 
sin EU (Ex. 4.3) 

'IT 2 E-loOO (EU) 

4 o 3 
( iv) o (u) lim E Sln EU (Ex. 4.5) 

3 'IT 3 
<-+00 (EU) 

o 4 
(4.22) 

(v) 6 (ul 3 l.i.m Sln EU 
2 'IT 

E 4 E-+oo (EU) 

2 <ill (vi) o(u) 1 lim 1 (3- u2) 0 < 1 
8 E+O E E 

£ (Ex. 4.5) 
2 ill l lim K3- ill) 1 < < 3E 

16 E+O £ E E 

2 
(vii) o(u) 3 

lim 1(1- ill) lui < E 
2 E+O E E 
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(viii) 

(ix) 

o (u) = 2 lim 1 
1T E-+O E 

1 

o (u) 1 llOm 1 (1+ ~) e-lul/E 
4 E-+O E E 
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(Ex. 4.6) 

(Ex. 4.6) 

Comparing Equation (2.17) with Equation (4.22) (iii) suggests higher powers 
of (E sin Eu)/u are also 0 functions in appropriate ljmits. 

-~ _z" _iL 0 .h. gi, 
0- 0- r 0- f 

Figure 4.5. Plot of ,¥(x, 0) of Example 

'¥(x, 0) ~ ipx/h 
88h e [3 

o 

EXAMPLE 4.5. Consider 

A(p ') /2Oh 
Illio 

sin3 {p'-p)/o 
3 ( (p'-plio) 

~ 
D 

4.5. 

_ o2x2] 

n2 

obtain '¥(x, 0). By straightforward methods one obtains 

o < 

11 - < o 

Ixl 

?< 

Ixl 
n 

< -
0 

Ixl 
311 <-o 

3fJ. 
> -o 

(4.23) 
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+00 

'I'(x, 0) 1F J 
sin3(p'-p)/o 

.;'2; 111ro (yy 

~ ipx/h [~3 _ llh e 4 o:~2)] 

~ ipx/h 
lUi e [~3 - ~f] 

= 0 

Expression (4.24) is plotted in Figure 4.5. 

ip'x 
fI dp'x e 

h 

if o < ill < 
11 

if 
1 ill 6" < fI 

Ixl 

CHAPTER 4 

1 
<S 

3 
< -

0 

3 
> -o 

(4.24) 

Besides localizing 'I'(x, t) the A of expression (4.23) is proportional 
to another representation of the delta function. In particular 

o (x) 
4 

3'11 

o 3 
lim E S1n EU 

3 U-+<X> (EU) 
(4.25) 

and similarly one may obtain representatioDs of the delta function which 
involve higher powers of 

sin EU 
EU 

3 10 (sin EU)4 e.g. 2'11 1m E EU 
E-+'><> 

Also the 'I'(x, 0) of Example 4.5 is related to a delta function 

o (x) 

o 

1 
o < Ixl < 6" 

3 
x > 6" 

(4.26) 

Higher powers of other delta function expressions for instance of 

lim 1-lul!£ 
E 

(lui < E) 

can also be expressed as delta functions. Thus: 
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EXAMPLE 4.6. Consider 

hrFV+1) [(pl;r)2 + 1]-V-~ 
£1I2r(2v+~) £ 

A(p ') 

(v > - ~) 

a normalized function peaked at p' = p. 
Find the corresponding ~(x, 0). 

From standard tables 1 ) one obtains 

which itself is proportional to a delta function if £ ~ 00. 

If v = ~ this reduces to Example 4.4. If v = 3/2, 

A(p') 

and 

~(x, 0) ~ ~ {~ 1} -£Ixl/n ipx/h j5jh fJ. + e e . 

ipx/l'l e , 

F· 11 . f 1 § b 2fJ. . . (29 ) lna y lone rep aces j 511£ Y 11£ In Equatlon 4. I 

~(x, 0) -£Ixl/h ipx/fJ. e e, 

and as £ ~ 0 

( 0) ~ I-I e ipx/ h 
~ x, j 211 I 
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(4.27) 

(4.28) 

(4.29) 

(4.30) 

implying Equation (4.22) (viii) is a delta function representation. Similar 
arguments starting from Equation (4.30) lead to the corresponding delta 
function Equation (4.22) (ix). 

EXAMPLE 4.7. Find 

~(x, t) if A(p') =~ e-Ip'-pl/o 

and assuming the linear approximation: 

E (p ') = E (p) + d~~ ¥ I ) I (p I -p ) . 

p'=p 

(4.31) 
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Using Equation (4.2) 
p'=oo 

~(x, t) = ~ 2~0 J 
_p'=-oo 

Defining u = p'-p 

i dE(p') 
h dp' 

CHAPTER 4 

I (p'-p)t. 

p'=p 

~(x, t) 

i 00 ;I: 1 h{PX-E(p)t}[ I 
21TOh e 

du e-uH-~ +kVgttjdu 
{ 1' iV t} 

e-U 8+~X -T J 
o 

i 00 u fik ~{px-E(p)t} I -8 
e cos~(x - V t) du 1Toh e h g 

o 

e 

i 
h(pX-E(P)t) 

o 

(4.32) 

If t = 0 this reduces to the result (4.4) of Example 4.1. Expres
sion (4.32) shows that to the extent the linear approximation (4.31) is 
valid the wavepacket moves forward at a speed Vg , but its form does not 
change, i.e. there is no spreading. To get spreading one must keep at 
least quadratic terms in the expansion for E(p'). 

EXAMPLE 4.8. Show that 

llif + ~ ~ {G* aG _ aG* G} = 0 
at ax 2mi ax ax ' (4.33) 

where G(x, x', t) is the Green's function for a particular system (i. e. 
relates ~(x, 0) to ~(x, t) according to Equation (4.12». 

Since G(x, x', t) satisfies the time-dependent Schrodinger equation 
(possibly with a potential V, assumed real), 

[_h 2a2
2 ] + Vex) G 

2max 

and 

Premultiplying the first of these equations by G~ and the second by 
G one obtains, after subtracting that 
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Hence 

ax 2mi 
{ a a} a 2 G* -- G - G -- G* + -- /G/ = O. 

ax ax at 
a fl -- ---

An equation identical to Equation (4.33) is obviously satisfied when G 
is replaced by W, and G* by W*. This is known as the Continuity equation 
for the current density 

J = ~ {w* 1... W - W 1... w*} 2ml ax ax ' 

2 and the probability density p = Iwi , namely 

a a 
ax J + at p = o. 

EXAMPLE 4.9. Show that 
+00 

J G*(x, x', t) G(x, x", t) dx 
-00 

where 
00 

n=O 
(jl*(x') (jl (x) 

n n 
G(x, x', t) = ~ 

(cf. Equation (7.3b». 
Hence show 

+00 

J 0 (x-x' )0 (x-x")dx O(X'_X"). 

e 

o (x' - x"). 

-iE t/h 
n 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

Substituting Equation (4.36) in the integral on the left-hand-side of 
Equation (4.35) and rearranging the order of summation and integration 
one obtains: 

~ 

n, n' 

~ 

n, n' 

e 

+00 

iE t/t! 
n ... * (x") 'f'n' 

e-iEn,t/fl J 
-00 

iE t/fl -iE ,t/fl 

$* (x) $ ,(x)dx n n 

(jl (x') e n $ * , (x") e n 0 
n n nn' ~ $ * (x" ) $ (x') 

n n 
n 

o(x'-x"), 
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where one has assumed that the $'S satisfy the standard orthonormality 
and closure conditions, (cf. Equation (2.6». 

Equation (4.37) can be obtained by considering the case t goes to 
zero in Equation (4.35) since then G(x, x', t) and G*(x, x', t) go to 
O(X_X'), while G(x, x", t) goes to o(x-x"). 
The same result, Equation (4.35) also follows if 

+00 

G(x, x', t) = f $k(x ' ) $k(x) e-iE(k)t/h dk, (4.38) 

-00 

(cf. Equation (7.3a), since then Equation (4.35) becomes 

+00 +00 +00 

f f iE(k)t/h f dk ' " () .. * ( ") -iE(k I )t/h dx dk $'k(x) $k(x ' ) e 'f'k' x 'f'k' x e 

-00 

+00 

-00 

+00 

f 
since 

+00 

f 
-00 

while 
+00 

f 
-00 

+00 

iE(k)t/h 
e f dk ' $k'(x") e-iE(k')t/h 

-00 

dk $ (x') $*(x") k k 
o(x'-x"), 

dx $k I (x) $k(x) o(k-k'), 

dk $k(x ' ) $k (x) o(x-x ' ) , 

(cf. Equation (2.7». 
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+00 
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TABLE 4.1. 
The A(p') and corresponding ~(x, 0) discussed in Chapter IV. The A's 

and W'x are normalized according to: 

+00 00 

A(p') : ( J A(p') 2 .9E.:. = 1) ~(x, 0) : (fl~(x, 0)1 2 dX=1) 
fJ. 

-00 -00 

ipx . 2 ox p[ 1-'P~ -pi] IE-e'l l~ n Sln 2h 
0 !> 1 2 1In e 

G~Y 
(Ex. 2) 

o otherwise 

~3~ sin2{E'-ElLO 
iEx 

1 j¥ e fI [2-bili.] Ixl !> 
2h 

2110 (E...:.:El12 4 11. 1i. 0 
o ) 

0 otherwise (Ex. 3) 

fi e-Ip'-pl/o ft~ - 20 11 1 (Ex. 1) 
fl1T a 

02x2 
1+--

h2 

ftj~ -§J.rl 

ft.l 
fI (Ex. 4) 

110 (' _ )2 ~ e 

1 + E..:..=.E. 
0 

iEx 

(~3_X:~2)) ~h h 

~~~, 'i(:;~~)~)/' 
Ufl e o < Ixl < 6" 

ipx 

/100 fI (~3 -bili.r) ~ < Ixl 
3h 

< -llh e 8 fI 0 0 

o otherwise (Ex. 5) 
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[(~)::lrV-! 
iEx 

(~rKJ¥) M{2v+ll 2f{2v+llo ~ 
1 ! 2 e 

011 2 r( 2v+!) 1I 2 f(2v+!)flr (v+t) 

v>-t (Ex. 6) 

~;~~ [(~)2 +- 1]-2 

iEx 

[¥ + 1] 
-olxl/i'! ~fl 5h e e 

3 
(Ex. 6. v = 2") 



CHAPTER 5 

Uncertainty Principle and Ground State Energies of Quantum Mechanical Systems 

Consider a particle moving subject to a potential V(x) 
Classically the particle's energy is: 

Alxl n , -co<x<co. 

(5.1) 

11 
But ~ x ~p - 11 (cf. Chapter 4) i.e. ~p - ~x and one expects 

2 2 2 2 P > (~p) ~ h /(~x) since generally p is expected to be at least of the 
order of ~p. 

Hence 
2 

E ~ + Alxln ? 2m 
h 2 

~'----2 + Alxln. 
2m(lIx) 

Requiring that lIx is of the order of 2x one obtains 

E 

where ~x is assumed greater than zero. 
The choice of ~x which minimizes E is such that 

ClE 
Cl~x = 0 

For this choice of ~x 

E :: 

i.e. 0 = _ 112 + n lL(~x)n-l 
m(~x)3 2n 

2 n 
implying (~x)n+2 = ~ 

nmA 



UNCERTAINTY PRINCIPLE AND GROUND STATE ENERGIES 

E ~ 
n+2 
3n+2 

2 n+2 

EXAMPLE 5.1. Consider the case n = 2 

E .!.. (1'l2A)~ = ...L (h2A)~ . 
i 2m /2 m 

(5.2 ) 

-00 < x < 00 

The exact ground state energy of this system is also 

...L (fl2A)~ . 
12 m ' 

EXAMPLE 5.2. Consider the case n = 1 -00 < x < 00 

E 
3 {h2A2}1/3. {1l2mA2}1/3 

25/ 3 -m- = 0.94 

61 

This can be compared to the ground state energy of this system (for large 
arguments of the relevant Airy function (cf. Fquation (3.31}) 

2 2 1/3 . namely 0.89 {h A /m} . Meanwhlle a variational calculation (Example 
10.3) yields 

Eg 5 0.81 {fl:A2}1/3 . 

Example 5.3. Consider the case n = -1 

E 
2 {h2A- 2}-1 = _ 2mA2 

-m h2 

This agrees exactly with the ground state energy of the svstem (cf. 
Equation (3.32}). 

2 n If E = P /2m + Ax only for x > 0 the above derivation must be 
modified in that 6 x - x and 

E (5.3 ) 
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EXAMPLE 5.4. If n = 2 x ~ 0 

compared to the exact ground state energy in this case (cf. Example 8.1) 

EXAMPLE 5. 5 . If n =-1 x ~ 0, 

1 {n2A2}1/3 
E = 2 m ' 

which can be compared to the variational caljUlation for this problem 
(cf. Example 10.2 ) Eground < 1. 86 [A2n2 1m] 1 3 and the lowest energy of 
this system fOl large arguments of the relevant Airy function, namely 
1.84 (A2h 2/m)1 3 (cf. Equation (3.18». 

EXAMPLE 5.6. 

E 

If n =-1, 

1. {h2A-2}-1 
2 -m 

x ~ 0, 

which agrees exactly with the ground state energy of the system (cf. 
Equation (3.23». 

One should emphasize that expressions (5.2) and (5.3) are very rough 
estimates of the ground state energy of quantum mechanical systems, but 
are nonetheless convenient if one is interested in a result which is of 
the right order of magnitude. 

EXAMPLE 5.7. Consider a particle moving in the attractive potential 

V(x) 

V(x) ______________ ~-~E~~-E~----------~ X 

TIE 
Figure 5.1. Potential in Example 5.7. 

Using the arguments at the beginning of this chapter 
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E 

and 

aE = 
ax 

2 
2m(lIx) 

h 2 

m(lIx) 

IVolElIX 
+ ((lIxy 2y 3 

2TI "2 +E 

The choice of lIx which minimizes E is thus 

2 
(lIx)2 = 4aE where 

4-a 

Therefore 

As E tends to 00, 

E. -+[-~+h ~]. 
mln TIE ~~ 

This is consistent with Example 5.1 since then 
2 Ivai Ivai 

V(x) - C + Ax where C = - TIE and A 3 
TIE 
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CHAPTER 6 

Free Particles Incident on Potentials, Time Delay, Phase Shifts and 
the Born Approximation 

When quantum mechanical particles are incident on a potential one is in 
the first instance interested in the fraction transmitted throuqh the 
potential and the fraction reflected by it. One therefore calculates the 
probability of reflection and the probability of transmission. 

In detail if one writes for a particle of energy 

2 h2k2 
E::E....=--

2m 2m 

that the wavefunction on the left side of a one dimensional potential is: 

ikx -ikx 
WL(x) = Ae + Be , (6.1) 

and that the wavefunction on the right side is 

(6.2) 

this choice implies the particle is incident on the potential from the 
left. Additionally 

R :: B/A is the reflection amplitude, with IRI2 
the reflection probability and T = F/A is the 
transmission amplitude, with ITI2 the transmission 
probability. 

(6.3) 

The poles of the transmission amplitude correspond to the allowed 
bound states for that particular potential, and continuity considerations 
require 

(6.4) 

In addition an incident wavepacket can be written (cf. Chapter 4) as 
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'I'in(x, t) = 1 JA(k') ei(k'x-E(k')t/h) dk', 
1211 

and based on this the reflected and transmitted wavepackets are 

and 

'I' (x, t) = _1_ JR(k' )A(k') e-i(k'x+E(k' )t/h) dk' 
ref 1211 

x t = _1_ JT(k')A(k') ei(k'x-E(k' )t/h dk' 
Wtrans (,) I-

v 211 

respectively. 
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(6.5) 

(6.6) 

(6.7) 

Using standard procedures (cf. Equation (4.14» one can then obtain 
from expressions (6.5), (6.6), and (6.7) the time required for reflection 
off (the so called time delay) and transmission through a particular potential. 

EXAMPLE 6.1. Discuss the problem of particles incident on a potential 
V(x) = Vao(x). If 

(6.8) 

continuity of the wave function at x a implies: 

A + B = F. (6.9) 

;1:] V('X) 

;!Vo(O I 
Figure 6.1. Potentials in Example 6.1 if Va < a or Va > a. 
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This potential is discontinuous at x O. Thus, using the Schrodinger 
equation 

112 d 2 
- - - 1jJ(x) + VOo(x) 1jJ(x) E1jJ(x), 

2m dx2 

and integrating across x 0 

-e: -e: 

In the limit as e: + 0 this becomes 

lim {~ ~L, } 
2mV 
---:f 1jJ(0) e:+0 dx 
fl 

x=e: 

i.e. 

ik(F-A+B) 
2mVO 
-2- F . 
i'l 

1jJ(x) dx. 

-e: 

Solving Equations (6.9) and (6.11) simultaneously yields: 

1 
R 

k1i.2 
i --1 

mvO 

T 

In this case 

1 

iO e r 

° h k2TJ.4 r 
1+ --

2V2 
m 0 

kfl2 i(o +1T/2) 
-e r 

-1 kli.2 
tan 

mVo 

mvO -1 kTJ.2 __ 
, 0t = - cot ° +~. mV() r 2 

(6.10) 

(6.11) 

(6.12) 

(6.13) 
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(6.14 ) 

and as expected R2 + T2 = 1, consistent with Equation (6.5). 
The poles of the transmission amplitude satisfy (ikn2 )/(mvo) 1, 

Le. 

E •••• (6.15) 

There is only one pole here and this is physically meaningful when Vo < o. 
To get reflection and transmission times one must construct wavepackets 

'1'" (x, t) 
~nc 

"(k,1'lk,2 t ) 
~ x---

__ 1 __ Idk'A(k') e 2m 
/2""; 

= i<P e '1'" ( x- v t, 0) 
~n 9 

'I' f(x, t) re 
e 

1'lk2 
-i(k 'x+--t-o ) 

2m r " 
=e~l1'1' (x+v t

ref 9 

dOt 
dk' ,0) 

k'=k 

(6.16) 

k'h2 hk,2t 

I A(k') mvo i(k'x - 2m (\) i6 dOtl 
'¥ (x, t)=.:.L dk' e 
trans /211 h 2 4 

where 

Vg=h~' I 
k'=k 

_k'h 1+ 
2v2 

m 0 

and <P, 11 and e are phases. If at t 
in the reflected wavepacket 

x = 0 at t = 1 dOrl 
Vg dk' 

k'=k 

=e 'I't (x-v t+ dk , ,0) rans 9 

k'=k 

0, x o for the incident wavepacket. 
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while in the transmitted wavepacket 

x = o at t 
1... dOt 
v dk' g 

k'=k 

Thus h 2 

t 1 mVO 
ref v k2114 g 1 + --22 

m Vo 

tt '" rans (6.17) 

as k ~ 00 t t ~ 0, the classical result. ref' trans 

EXAMPLE 6.2. Discuss the problem of particles incident on the potential: 

V(x) Voo(x+a) x < 0 

00 x > O. 

If 

A ik(x+a) B -ik(x+a) 1/IL e + e x < -a, 

Csin kx -a < x < 0 (consistent with 1/1(0) 0), 

V(-x) 

Figure 6.2. Potential in Example 6.2. 
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continuity of the wave function implies 

A + B = - C sin ka. (6.18) 

The discontinuity of the derivative of W at x 
implies 

-a (see Equation (6.10» 

kC cos ka - ik(A-B) 

R 

cS 
r 

B 
A 

-2mvo 
- k cot ka - ik 

112 

2mVo 
---- + k cot ka - ik 

112 

(MB) • (6.19) 

icS -e r, 

(6.20) 

One notes IRI2 = 1. In fact B/A in this case is both the reflection 
amplitude and the transmission amplitude since there is no transmission 
beyond x = o. 

The allowed negative energies satisfy the equation: 

Defining 

2mvo 
-- + kcot ka 
112 

ik. 

iK k j~mE2 -- 1· j:m
2 1 E I 11 11 ' Equation (6.21) becomes 

2mVo 
---2- + K coth Ka + K = 0, 
n 

for the allowed bound states. Also the particle is reflected from 
x = -a at 

k'=k 

as k becomes very large 

2a {csc2 ka } 
'ref ~ 2 

Vg l+cot ka 

2a 
v 11 k a [

csc2ka + 2:V~ J 
g 2mVO 2 

1 + (cot ka + -- ) 

2a 
v 

g 

h2k k'=k 

the classical value. 

(6.21) 
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In three dimensional systems where particles of mass m are incident 
on potentials V(r) of finite range a, the radial wavefunction for r > a 
can be written: 

(6.22) 

where jt' nt are the usual spherical Bessel and Neumann functions and 

0t(k) is the "phase shift" for a particular "wave" or angular momentum t 

at incident energy E = h2k2/2m. 
In terms of these phase shifts a standard derivation shows the scattering 
amplitude, the three dimensional analogue of the transmission amplitude 
of Equation (6.3) is: 

(6.23) 

while the (scattering) cross section o(k) Jlfk (9) ,2dn 

00 

4 'IT 
~ (2~+1) 

. 2 
o~(k). 

k2 
Sln 

~=O 

(6.24) 

As in the one-dimensional case the poles in the scattering 
amplitude for a particular potential give its allowed negative energies. 

The phase shifts o~(k) may be obtained exactly, by requiring that the 
wavefunction (and its derivative if V has no infinite discontinuities) 
in the region where there is a potential, match smoothly onto the external 
wavefunction Equation (6.22) (and its derivative) at r = a. 

Alternatively at high incident particle energies or for weak 
potentials one may have recourse to the partial wave Born approximation: 

2mk J .2 2 tan 0 (k) = - - ] ~ (kr) V (r) r dr, 
~ n2 

o 
or the (first) Born approximation which for central (~ independent) 
potentials reduces to 

f (k') = 
B 

00 

2m f sin k' r ' 2 =:;.:-,-.:..:..,-=- V(r' )r' dr'. 
- i'i2 k'r' 

o 
(with k' = 2 k sin 6/2), where the differential cross section is: 

do 
dn 

while the cross section 0 is 

(6.25) 

(6.26) 

(6.27) 
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(6.28) 

EXAMPLE 6.3. Consider a particle scattered off the three-dimensional 
potential V(r) = Voo(r-a) 

o < r < a 

For angular momentum ~ = 0 if one matches the two pieces of the 
wave function at r = a 

BO sin ka 
cos 00 

while the discontinuity of the derivative of uO(r) at r 
Equation (6.10)) requires: 

2mVo 
-2- BO sin ka. 

11 

a (see 

The ratio of expression (6.30) to expression (6.29) is: 

cot(ka+o o ) - cot ka 

i.e. 

cot 00 
n2k 2 -(cot ka + csc ka) 
2mVO 

V(r) 

a 

Figure 6.3. Potential in Example 6.3. 

(6.29) 

(6.30) 
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or 

-1 

csc ka 1i+2A cot ka + A2 csc2 ka 

where 

h 2k A =--
2mVO 

The £, o contribution to the scattering amplitude is 

1 iOO(k) 
k e sin 0o(k), 

which has poles when 

Le. when 

which is in agreement with the result of Equation (6.21) as it must be. 
For higher £"s different (additional) bound states result. The 

£, = 0 contribution to the scattering cross section is: 

41T 

If a ~ 0 the 00(k) goes to zero and with it f and o. 

One notes that 0£,=0 depends on the sign of Vo' 

As concerns the phase shift for £, = 0 if k is large, 

{where A = (h2k)/(2mVo ) ), 

. -1 
Sln 00~ esc ka A esc ka = 

Le. A is large 

(6.31) 

while the partial wave Born approximation £'=0 phase shift may be easily 
evaluated: 

in agreement with Equation (6.31) as it should be. 
The first Born approximation for this potential (Equation (6.26)), 

can also be evaluated: 
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_ 2m JSin k'r' 2 f = r' VOo(r'-a) dr' 
B 2 k'r' 

1'1 

2mVoa 
sin k'a, 

h 2k' 

yielding a differential cross section (Equation (6.27», 

do 
dn 

2V2 2 m Oa 
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EXAMPLE 6.4. 
potential 

Consider a particle scattered off the three dimensional 

for ~ = 0 
For 

For 

V(r) o < r < a 

V(r) o r > a, 

(S wave) scattering. 

uO(r) 
AO 

sin(kr + °0)· r > a = 
°0 cos 

o < r < a uo(r) is the solution of the 

{ _ fi2 d2 + 2fl22 _ E} uo(r) = O. 
2m dr2 2mr 

equation 

(6.32) 

The solution of Equation (6.32) which does not diverge at the 
origin is BO r jl (kr). Hence one can easily find the ~ = 0 phase shift 

for this system by requiring continuity of the wavefunction and its 
derivative at r = a: 

a r 

Figure 6.4. Potential in Example 6.4. 
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BO aj1(ka) 
AO 

sin(ka + (0) = ---
cos 00 

BO 
d 

(rj 1 (kr)) lr=a 

AOk 
(ka+o O)· dr cos 00 

cos 

Thus 
aj1(ka) 

where 

i.e. 

~ 
2 

P 

cot dp ~n PJ 1 (p)) -ka. -1 d (. I 
p=ka 

Evaluating this one obtains an explicit expression for 00(k, a) 

1 2 
ka {tan ka + cot ka - (~) tan ka} 

tan 00(k, a) = - tan ka + cot kaa _ 1/ka 

As k ~ 00 tan 00 ~ - ka, the infinite barrier result since for an 

infinitely repulsive barrier of radius a, 

o = sin(ka + (0)' i.e. 00 = - ka. (6.33) 

If a is very short range (or k is small) such that ka is small, 

2 3 
( 1 ka"l _ (~J (ka + i§l:J 

:: _ ka{ka+ ka" - 3) _kal _ 3 1 } = _ ka 
1 ka 1 2 . 

ka + - - - - -
ka 3 ka 

tan 00 

In the Born approximation the total differential cross section for 
this potential may be obtained by first evaluating the scattering 
amplitude: 

a 

2m 112 J fB(k') = -
tJ2 m 

o 

As a ~ 00 this becomes 

'IT 'IT 

sin k'r' dr'. 
k'r' 

k' 2k sin 8/2 . 
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The cross section in this case (a ~ ~) for scattering between 9 91 
and 9 = 92 is 

92 
92 

2 2 

f 2 sin 9L2 9/2 2 d 9L2 11 f sin 9 d9 11 cos 
211 

sin29/2 4k2 
211 . 2 

4k2 Sln 9/2 
91 91 

EXAMPLE 6.5. Consider a particle scattered off the potential 

V(r) a < r < a 

a r > a 

which is purely attractive or partly attractive and partly repulsive 
depending on the values of Va' wand a. (See Figure 6.S.} 

a 

Figure 6.5. Potential in Example 6.5. 
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Consider in particular the special case 

At this energy 

+ 1. flw 
2 

2 
( ) = Nre-mwr /2h Uo r o < r < a. 

Matching the internal and external wavefunctions at r 

N -mwa2/2f1 
a e 

2 2 
N -mwa /2ft _ N a mw 

e -h-

Hence 

i.e. 

-mwa2 /2h e ' 

ka 
2 

1- a rnw 
h 

a 
2 

1- a mw 
h 

a yields 

2 
ka + mwa tan ka - tan ka 

h 

2ma2 
ka+--(E+lv I )tan ka-tan ka 

3h2 0 

1 - mw a 2 + ka tan ka 
TI 

2ma2 
1 - (E+lvol )+ka tanka 

3h2 

(6.34) 

If w is large the potential looks like an infinitely repulsive barrier 
of radius r = a and the scattering takes place at high energy since 
E = -ivol + 3/2 TIw. 

In this case tan Co = - tan ka i.e. Co = - ka, exactly the infinite 

repulsive barrier result Equation (6.33). 
If W is small this problem reduces to scattering at low energy 

off a square well of depth IVol (since small w implies small E). 
For square well scattering 

tan Co 

k K tan Ka - tan ka 

1+ ~ tan Ka tan ka 
K 

where 

and the potential V = -ivol has a range 0 ~ r ~ a. 
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At low energy 

k k f 11<",,\3 } kK2a 3 ka32m { } K tan ka = K lKa + ~ = ka + ---3--- = ka + 3~2 E + IVol ' 

hence for a square well scattering at low energy 

3 
ka + 2ka m {E + Iv I} - ka 

3h2 0 0 
tan °0 2 4 

~~ {E + Iv I} 
3h2 0 0 

Equation (6.34) agrees with Equation (6.35) in this limit. 
The total scattering amplitude for this potential in the Born 

approximation is easily obtained: 

a 

f (k') = - 2m f 
h2 

o 

sin k'r' 
k'r' 

k'a 

(6.35) 

k'r' sin k'r' d(k'r') -
2 2 f 3 ~ (k'r') sink'r'd(k'r') 

k,5h2 
o o 

2m I v 0 I r l 2 2 f } ~sin k'a-k'a cos k'a -~ (3(k'a)Z6) sin k'a+k'a(6-(k'a)2)cosk'a . 
h 2k,3 l f k,\2 

EXAMPLE 6.6. Evaluate the differential and total scattering cross 
-r2/2a2 . . . section for the potential V(r) = Va e In the Born approxlmatlon. 

Figure 6.6. Potential in Example 6.6. 
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2mVo 

J 
2 2 sin k'r' -r' /2a r,2dr , 

fB(k') e k'r' 
h 2 

0 

r'=oo 
mvO 

f sin k'r' 
2:112k' r'=-oo 

+00 

-00 

Defini~g u = r'-ik'a2 , r' = u+ik'a2 , dr' 
With this substitution 

i.e. 

e 
2h2k' 

mvoa 2;; 

h 2 

-~ 
/2 ae 2 

_r,2/2a2 d ,2 
e r 

d dy",2 u, _ 

CHAPTER 6 

The differential scattering cross section in this approximation is 

and the 

do 
dQ 

total 

o = 

cross section 

4 2 2v2 6 9=1T 
1T m Oa 

f d cos 9 
n4 

9=0 

4 2 2v2 6 
9=1T 

1T m Oa -2k2a2 J e 
114 

9=0 

_4a2k2 2 
sin 9/2 

e 

2a2k2 
d cos 9 

cos 9 
e 
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a = 

a result independent of the sign of VO' This problem may also be solved 
using Cartesian coordinates. 

PROBLEM 6.7. Find the reflection time for a particle incident with 
energy E on a step barrier V = 0 x < 0, V = Va x > 0 (VO > 0), E < VO' 

where 

For x < 0 ¢ ~ Ae ikx + Be- ikx 

k = /2mE 
2 ' 

1'1 
f](k) . 

Matching boundary conditions at x o one obtains 

B A 

1 - l!J. 
k 

1 + l!J. 
k 

Constructing wavepackets: 

where 

'¥. (x,t) = I A(k') ei(k'x - E(k' )t/h) dk' 
ln 

IB(k') -i(k'x+E(k')t/n) dk' 
'¥ref(x,t) = e 

E(k) 

r 
JA(k' ) 

k'-if](k') e-i(k'x+E(k' )t/n) dk' 
k'+if](k') 

IA(k' )e- i (k'x+E(k')t/n+6(k'» dk' 

2 tan- 1 !J..ilU 
k 

Using stationary phase arguments (cf. Equations (4.14» one obtains 
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If at t 

since 

i<P '¥. (x, t) = e '¥. (x- v t, 0) ln ln g 

'¥ref(x,t) e i9 ,¥ f(x+v t + d6(k') 
re g dk' 

k'=k 

o the particle reaches x = 0, it leaves 

x = 0 at '[ 

v = 11k 
g m 

-1 d6~ I 
V dk' 

g k'=k 

2m 
hk11 

CHAPTER 6 

, 0). 

If 11 ~ 00 i.e. Vo ~ 00 '[ ~ O. In this limit E = -A. '[ is a mlnlmum if 

k = 11 =/(mVo/h2 ). Moreover 6 is discontinuous at k 1(2mVo/h2) and its 

derivative is discontinuous at k = O. 

PROBLEM 6.8. Consider a particle scattered off two identical delta 
function potentials namely 

V(x) 

-a a 
v (x) ------~----+-----~--------~ x 

Figure 6.7. Potential in Example 6.8. 
Find the scattering amplitude and its poles. 

For convenience one may choose 

Aeik(x+a) + Be-ik(x+a) 
-00 < x < -a 

'¥(x) Ceik(x+a) + De -ik(x+a) -a < x < a 

Feik(x-a) x > a 

The wavefunction is continuous at x = ± a and its derivative satisfies 
equations analogous to Eq'.lation (6.10), namely: 

d'¥ I 
dx 

Ix=±a-6 

} = - '¥(x=±a) . 

x=±a+c 
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Hence, defining 
mlva l 

E ;: n2k 

one obtains that: 

A+B = C+D 

A(1+2iE) + B(-1+2iE) C - D 

Ce2ika + De-2ika F 

Ce2ika De-2ika F(1-2iE) 

which imply 

A 

C 

D 

(1-iE) C - iE D 

e-2ika (1_iE) F 

. 2ika F 
~E e . 

Solving for F/A one obtains 

* = {(1-iE)2 e-2ika + E2 e2ika}-1 

= {(1-i2E) cos 2ka + i(2E2 - 1 + 2iE) 

The scattering amplitude is thus 

-1 
sin 2ka} 

-ika Fe 

Ae ika 
F -2ika -2ika A e e [cos 2ka - 2E sin 2ka + 

2 -1 
+ i((2E -1)sin 2ka - 2E cos 2ka)] 

e- i (2ka+o) 
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(6.36) 

/ 2 2 2' (cos 2ka - 2E sin 2ka) + ((2E -1) sin2ka-2E cos 2ka) 

with 

o = tan- 1{(2E2-1) tan 2ka - 2E}{1 - 2E tan 2 ka}-1 

If a ~ a Equation (6.36) reduces to Equation (6.13) as it must (but with 
Va replaced by 2Va ), namely T = 1/(1-i2E), 0 = -tan-12E. 

The poles of Equation (6.36) occur when 

. l-i2E - ~ tan 2ka = ---"-....;;;.;;;=-

2E2-1+2iE 
(6.37) 
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This equation is satisfied if E < 0 since then 

k 

- -i€:. 

Equation (6.37) then reduces to the equation for the allowed bound states 

2C-1 tanh 2Ka = ---
1-2E+2€2 

which is satisfied when either 

or 

tanh Ka = 2 € - 1 

-1 tanh Ka = (2 €-1 ) 

(6.38a) 

(6.38b) 

Equation (6.38a) corresponds to even parity bound states while (6.38b) 
to odd parity bound states. 

If a ~ 0 Equation (6.38b) has no solution while Equation (6.38a) 
has only one solution namely 

2€ - 1 = 0 i.e. 
1 

e= 2' that is 

which is just Equation (6.15) with Vo replaced by 2VO' while if a ~ 00 

both Equation (6.38a) and Equation (6.38b) reduce to € = 1 which is just 
EquatioD (6.15). These results are as expected since in the former case 
the delta function potentials coalesce while the latter they essentially 
uncouple. 

If k becomes large £ tends to zero and 0 to -2ka. This means if the inci-
dent wavepacket is~. (x+a-v t, 0) i.e. x = -a at t = 0, ~t is lnc g rans 
'!'t (x+a-v t, 0) i. e. x = a at t = 2a/v which as expected is the classical rans g g 
transit time for crossing these two potentials. 
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Heisenberg Representation 

starting with the expression for the expectation value of an operator 
Os in the Schrodinger representation (at some time t) 

<O>t = f~*(X' t) Os ~(x, t) dx 

and the fact that generally (Equation (4.12» 

~(x, t) = fG(X, x', t)~(x'. 0) dx' 

where for a free particle 

(7.1 ) 

(7.2) 

f 1 -ip'x'/n 
G(x, x', t) = -== e 

1 eip'x/n e -iE(p' )t/n d~ (7.3a) 

1211 1211 n 

and by analogy for a particle in a (time independent) potential 

G(x, x', t) = ~ 

n=O 

one can go from the Schrodinger to the Heisenberg representation. 
The procedure involves first noting that Equation (7.3a) can be 

written 

(7.3b) 

G(x, x', t) f--1-- e-ip'x'/n e-iH(x)t/n 1- eip'x/n dp'/n 

1211 1211 

__ e-iH(x)t/n f 1 e-ip'x'/n 1 eip'x/h dc-In'_ ~ -iH(x)t/n 6( ') 
1211 1211 n - e x-x 

(cf. Equation (2.19». 
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Similarly Equation (7.3b) can be written 

G(x, X'~ t) = L ~~{X') e-iH(x)t/n ~ (x) 
n n 

-iH(x)t/n ~( ') e u x-x , 
n 

(cf. Equation (2.6», i.e. generally 

G(x, x', t) = e-iH(x)t/n O(X_X'). 

Substituting the result (7.4) back into expression (7.2) yields: 

'¥(x, t) e-iH(x)t/n '¥(x, 0) (7.5) 

Thus Equation (7.1) can be rewritten 

Le. 

where 

- J\JI*( 0) iH(x)t/n ° -iH(x)t/n \tI{ 0) dx <O>t - y x, e Se y x, , 

<0> 
t 

J'¥*(X 1 0) 0H '¥(x, 0) dx 

iH{x)t/n ° -iH(x)t/n 
e S e (7.8) 

(7.4) 

(7.6) 

(7.7) 

and the subscripts Sand H stand for the operator in the Schrodinger and 
Heisenberg representations respectively. 

In Equation (7.7) one thus has simpler wavefunctions than in Equa
tion (7.1) i.e. only '¥(x, 0), independent of the time, but more 
complicated operators 0H rather than OS. 

The operator 0H can be seen to satisfy the differential equation: 

(7.9) 
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since 

and where 

dOH i iHt/Ii. -iHt/h iHt/Ii. ClOS -iHt/Ii. 
dt fi e (HOS-OSH) e t- e at e 

aOH _ iHt/Ii. ClOs 
at = e at 

-iHt/Ii. 
e 
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. . - iHt/Ii. iHt/Ii. To obtain Equatlon (7.9) one also must lnsert e e = 1 between 
H and Os' One assumes here that H t H(t) in which case 

If 0 

then 

iHS(x)t/Ii. -iHS(x)t/Ii. 
HH = e HSe = HS' 

x or p and 

dXH 
dt 

dPH 
tit 

H = p2/2m + V(x), 

and combining Equation (7.10) and (7.11) one obtains 
2 

d xH aVH 

m dt2 --a;- ~ FH 

(7.10) 

(7.11) 

(7.12) 

The standard Heisenberg representation results (7.10) - (7.12) look 
exactly like the corresponding classical expressions for velocity and 
force. In fact Equation (7.12) looks just like Newton's 2nd law. This 
analogy has formal merit. 

A word of caution is however in order here. PH and xH are q'.lantum 

mechanical operators and are more complicated than their classical 
analogues. Thus 

EXAMPLE 7.1. Show 

d(02)H 

dt 

that generally 

d(OH)2 dOH 

dt t 20H dt 

h 
i 

(7.13) 

(7.14) 
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but rather that 

d(02)H d(OH)2 

dt dt 

From Equation (7.9) 

d(OH)2 _ i r 
dt - n LHH' (OH )2 J if (°8)2 

does not depend on t explicitly, 
where 

CHAPTER 7 

e iHt/n 02 e- iHt / n __ iHt/n -iHtjn iHt!n ° -iHtjn 
S e 0Se e Se 

and 

Hence 

i.e. 

d(OH)2 d(02)H 
---

dt dt 

EXAMPLE 7.2. Show 

2 
d(x )H d(xH) 

dt dt 

From Equation (7.15), 

2 
d(x )H 

dt 

But from Equation (7.10) 

2 

dOH [dOH ] 
20H dt + dt I °H . (7.15) 

dXH n 
2xH dt +-, 

IDl 
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thus 

h 
+ mi ' (7.16) 

where one has also used the result (7.13). 
One notes in passing that one readily gets Ehrenfest's expressions from 
the preceding since 

d<O> 

f 
dOH dOH t '1'* (x, 0) 'I'(x, 0) dx -"""dt = <- > 
dt dt 

i 
[HH' °H1 

aOH 
(7.17) fi< > + < > 

at 

122 EXAMPLE 7.3. EvaJuate d/dt < 2 mw xH > for a particle in the ground 

f . 1 h . ·11 . 1 () 1 2 2 state 0 a slmp e armon1C OSC1 ator potent1a V x = 2 mw x . 

From Equation (7.16) 

therefore 

But 

2 
dXH dXH n 
dt 2xH dt + mi ' 

2 dXH 
< -- > 

dt 

- £1" f ¢*o(x) x mwx ¢ (x) dx = - ~ f¢*(X) n 0 1W 0 

where one has used the fact that ¢o(x) = Ne-mwx2/2n . 
Hence 

< 
n n 

> = - im + im = 0, 

2 2 mw x 
2 

n 
¢C(x)dx=-2i 

and the expectation value of the kinetic energy of the ground (and by 
a similar calculation of any) state of a simple harmonic oscillator 
is independent of t. 
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EXAMPLE 7.4. Generalize the result of Example 7.3 for any state of the 
simple harmonic oscillator. 

Defining 

± _ 1 { , 1 
aH = -== PH ± lmwxHJ ' 

12m 

quickly + 
a~] one can show, using Equation (7.13) that [aH, - nw , and 

that 

Thus 

= _1_ 
xHPH 2wi 

< 

1 
2wi 

dX2 
H 

- > 
dt 

{(~)2 - 2 - (aH ) + 
+ [aH, - 1 

aH]J 

{ + 2 (aH) - - 2 (aH ) - flW} 

= ~ J ~* (x) xHP ~ (x) dx + mnl' 
ITt n H n 

1 J {+ 2 - 2 = -, - ~*(x) (a) -(a ) 
lmw n H H 

n n --+-=0 
mi mi ' 

n + -mi 

since (aH±)2 operating on ~ (x) produce states orthogonal to ~ (x). For 
n d 122 n 

non-diagonal matrix elements (i.e. n ~ m) dt < nlzmw xHlm> ~ O. 

EXAMPLE 7.5. Show 

PHFH 
m 

1 
+ -2m 

(7.18) 

where TH is the kinetic energy operator in the Heisenberg representation. 

From Equation (7.15) 

2 
d(p )H 

dt 

dPH 
But from Equation (7.11) dt 
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2 
dPH 

:. dt 

or 

dTH PHFH 1 
dt = ~ + 2m [FH, PH]' 

1 2 2 
~hus for example if VB = 2 mw xH 

and 

dTH 

dt 

89 
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Two and Three Versus One-Dimensional Problems 

The one-dimensional Schrodinger equation for a particle in a potential 
V1(x) is 

where 

{_ n2 d2 + 1 
V1 (x) rWn(x) 

2m dx2 

+00 

(8.1) 

The radial eq~ation for a particle in a three dimensional radial potential 
V3 (r) is 

(8.2) 

where 

0,1,2, ... , 

and 

If £ = 0 and V1(x) = V3 (x) Equations (8.1) and (8.2) are identical. 

However, Wn(x) in Equation (8.1) extends from - 00 $ x $ 00 while un£(r) 

must be zero at r = 0 in order that un£(r)/r be finite at the origin. 

In addition un£(r) extends only from r = 0 to r = 00. A consequence of 

the above is that some solutions acceptable for Equation (8.1) are not 
acceptable for Equation (8.2). Radial solutions of Equation (8.2) with 
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potential V3(r) are identical with solutions of the one dimensional 
problem (8.1) if: 

00 x < 0 

91 

x > o. (8.3) 

If 
2 

V () V3(x) + n ~P,;l) 
1 x = 

2mr 

and moreover V1(x) = V1(-x) then the odd parity solutions (i.e. those 

solutions which vanish at x = 0) of W (x) are identical to u rn(x)/12 
n n ~ 

EXAMPLE 8.1. Consider the potential V1(x) = (n2 /2mb4 )x2 . For this 

potential the solutions of Equation (8.1) for the energy E are 
2 2 2 2 n 

En = (n+!) n /mb . The lowest energy is n /2mb and the ground-state 
_ 1 2/ 2 

wavefunction (1/I~b)2 e-x 2b = WO(x). 

Consider now the potential V3(r) = n2/2mb4 r2 and the case ~ 
The minimum energy for a particle in this potential is 3n2/2mb2 . 
Examine why this is so. 

o. 

uOO(r) cannot be WO(r) since WO(x) does not vanish at x = o. The 

second energy eigenvalue for the one-dimensional problem is 

E1 = 3n2/ 2mb2 , with eigenfunction 

... 2 2 w1(x) - ( __ 2 __ 12 (~l e-x /2b • 
- b;;) lb) 

This is acceptable as the lowest eigenfunction of Equation (8.2) since W1 (0)=0. 

The normalization must be modified however since 

+00 

f 2 
W1 (x) dx 1 

while 00 

f 2 
uOO(r) dr 1-

0 

Thus 
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Similarly all odd solutians W3 (x), WS(x) are acceptable (see Example 

10.3) solutions since for these solutions W(O) = O. Thus 

i.e. 

En- 1 
2 ,0 

E 
p, 0 

V(r) 

u20(r) = 12 Ws(r) etc. and 

fi2 
= (n+~) n = 1, 3, S 

mb 2 

p = 0, 1, 2 ... 

~----a-.-----'r.b----~r --+------a.------rb~----~~ 

'--------' -IVol -IVol 
Figure 8.1. Diagram in Example 8.2. 

EXAMPLE 8.2. 
V3 (r) = 0 0 

Consider a particle in the three-dimensional well 
< r < a; V3(r) = - IVol, a < r < b, V3 (r) = 0 r > b. 

Compare this and the analogous one-dimensional system 

- IVol, a < x < b V1 (x) = 0 x < a, x > b. 

The allowed ~ = 0 energy levels are easy to obtain. In detail the 
solutions of Equation (8.2) which satisfy the boundary conditions at 
the origin (unO(O) = 0) are 

K / 
a < r < b 

b < r 

A sinh kr k 

B sin (Kr+6) 

-kr 
unO(r) = Ce 

/ 2m 1EI 
2 ' n 

Matching the wavefunctions and their derivatives at a and b yields 

tanh ka 
k 

tan(Ka+6) 
K 
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i.e. 

and 

i.e. 

tan(Ka+6) ~ tanh ka 

tan(Kb+6) 1 
K k 

K tan(Kb+6 \ = - -. .. k 

One can rewrite Equation (S:5) as 
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(S.4) 

(S.5) 

K 
tan (Ka+6+K(b-a»= - k 

tan(Ka+6)+tan K(b-a) 
1-tan(Ka+6)tan K(b-a) 

K!k tanh ka+tan K(b-a) 
K 

l-~tanhkatanK(b-a) 

Thus the energy levels for this system are obtained by solving the 
transcendental equation 

K 
k 

K!k tanh ka+tan K(b-a) 

l-~tanhka tan K(b-a) 

If a = 0 Equation (S.6) reduces to - K!k = tan K b. 
If a ~ 00, c = b-a Equation (S.6) reduces to 

b ~ 00 

K K!k + tan Kc 
k 1-K!k tan Kc 

(S.6) 

These results can be compared with the energy levels for a particle in 
the one dimensional well given in this example. The solutions of 
Equation (S.l) for this potential are 

I/I(x) x < a 

I/I(x) B sin (Kx+6) a < x <b 

I/I(x) 
-kx 

Ce x > b. 

Matching boundary conditions one obtains 

1 
k 

tan(Ka+6) 
K 

tan(Kb+6) 
K 

1 
k· 

One can rewrite Equation (S.S) as 

(S.7) 

(S.S) 
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tan«Ka+o)+K(b-a» 
K tan(Ka+o)+tan K(b-a) 
k I-tan(Ka+o)tan K(b-a) 

K!k + tan K(b-a) 

1 - ~ tan K(b-a) 
k 

Thus the energy levels for this system are obtained by solving the 
transcendental equation 

K K/k + tan K(b-a) 
k l-K/k tan K(b-a) 

This is not equal to Equation (8.6) except in the limit 

a -+ 00 b - a == c where c is 
b -+ 00 

(8.9) 

a constant, in which case the different boundary condition at the origin 
is unimportant. 

The two-dimensional Schrodinger equation for a particle in a 
potential V2 (p) can be written: 

{
_ 1i.2 

2m 

where 

m 0, ±1, ±2 ... 

and 

f 2 ( p) dp l. w nm 
0 

Here wnm(p) must be zero at 

wnm (p) 

p = 0 so , 
p' 

will be finite at the origin. 2 
Comparing Equations (8.2) and (8.10) and noting that m - i = 

(8.10) 

(m - ~)(m - ~ + 1) indicates that if one has a solution un£(r) of 
Equation (8.2), then w (p) is u ,(pl. One notes both u(O) and w(O) nm nm-, 
must be zero as too U(oo), and w(oo), i.e. u(r) and w(p) have identical 
boundary conditions. 

EXAMPLE 8.3. Suppose one has a particle of mass M in a two-dimensional 
Coulomb potential 
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Find the corresponding energies and wavefunctions. Since, as standard texts 
2 

report, for the three dimensional potential V3(r) = -~ 

and 

e-Kr(2Kr)~+1 

(2Hl) ! 

Z2a 2Mc 2 
En~ = - 2n2 ,K 

1TEOr 

! 
[n(~~~~~~ :] IF 1 (-nH+l; 2~+2; 2Kr), 

(8.11) 

ZMca 
fin 

2 
e 

a = 41T E fic 
o 

n = 1, 2 ... 

~ 0, 1, ... n-l 

one can immediately write 

Thus 

E 
nm 

1. m+' 
e -Kp (2Kp) "2 

(2m) ! 
[K(n+m-!) !]' 
n(n-m-!)! IFl(-n+m+!; 2m+1; 2Kp). 

(8.12) 

1 3 
n = 2 ' 2 

1 
0, 1, 2, ... n - 2 m 

EXAMPLE 8.4. Suppose one has a particle of mass M in a two-dimensional 
oscillator potential V 2(p) = 1/2Mw2p2. Find the corresponding energies 
and wavefunctions. 

Since as standard texts report for the three dimensional potential 
122 

V3 (r) = 2 Mw r , 
3 1. 

_ {2r(nH+2)}' 
u 2.(r) - 3 

n b n! 

one can immediately write 
! 

w (p) = {2(n+m) !} 
nm b2n! 

2 2 
~+1 -r /2b r e 

b = In , I Mt;; 

m+1. _p2/2b2 
P , e 

Enm = (2n + m + l)fiw , b = IE /MW 

n 
~ 

0, 1, 2 ... 
0, 1 •.. 

2 

( -n. m+1· £....) , , 2 
b 

n = 0, 1 
m 0, 1 

(8.14) 

EXAMPLE 8.5. Suppose one has a particle of mass M in a two-dimensional 
potential V = 0 0 < P < a, = 00 p > a. Solve this problem. 

To find the eigenvalues and eigenfunctions of this system one notes 
that for the analogous three dimensional case the standard result involves 
spherical Bessel and spherical harmonic functions: 
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Wn~m(r, e, ~) = A~j~(kr) y~(e, ~) 
= 0 

o < r < a 
r > a. k 

with allowed energies corresponding to values of k such that j~(ka) O. 
For the two-dimensional case therefore 

with allowed energies when k is such that j~_!(ka) 

j~(z) = ~~ J~+~(z) . 

O. One notes that 

Hence these results may be written Wnm(p, ~) = C J (kp)e±im~ with 
n n 

allowed energies when the cylindrical Bessel function J (ka) = O. 
n 

EXAMPLE 8.6. Treat the finite square well system in two dimensions by 
analogy with the standard three dimensional results: 

o < r < a, 

K 

By analogy: 

~ 3±im~ 
Wnm ( p, ~) oep2 jn_~(KP) o < p < a, 

into 

Wnm ( p, ~) oco~h(1) 
, n-! (ikp) e=im p a < p < 00 

ext. 

But 

j £.-~ ( z ) ft J~(z), 
h (1) 

£.-! 
(z) Hz HP)(Z). 

Therefore. 

Wrun ( p, ~) 0 J (Kp) e±im~ o < p < a, 
n n 

into 
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Wnm (p, <P) 

ext. 

a < p < 00 

Matching the wavefunctions and derivatives at p 
appropriate quantization condition for the energy. 
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a gives one the 
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'Kramer' Type Expressions, The Virial Theorem and Generalizations 

Consider a particle moving in a central potential Vir) = ArP . The (radial) 
differential equation for u o(r) = r R o(r), (where the complete wave-

n", n.<. 

function ~(r, 9, $) = R o(r) Y£(9, ~)) is 
n", m 

with boundary conditions that un£(O) = 0, and un£(r) ~ 0 . 
r-,-oo 

(9.1 ) 

Assuming un£(r) is a real function one can readily show, integrating 

by parts that given a constant k 

fdr 
dun£(r) k 

un£(r) dr r 

(provided k 
u £(r) ~ 0) while r 

n r~ 0 
r~ 00 

fdr 
dun£(r) k dun£(r) 

dr 
r 

dr 

(provided 
2 

k dun£(r) k-1 
r ~ 0 kr 

dr 
, 

r~ 0 
r~ 00 

k k-l 2" < r >, 

(9.2) 

k(k-1) 
2 

2 
k-2 r k d 

< r > -Idrun£(r)r ---::"Ud 2 n£(r) 

_2_ fdr dun£ (r) 
k+1 dr 

. r 
2 

k+1 d un£(r) 
r 

dr2 

k+1 
2 rdUn£(r),2 

0, 
r 

0, un£(r) ~ --~ 

\ dr ) k+1 
, 

0 0 r~ r~ 

r~ 00 r~ 00 

and the integrals do not diverge), i.e. 
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k(k-l) < 
2 

k-2 
r > 

99 

(9.3) 

Substituting Equation (9.1) into Equation (9.3) and using Equation 
(9.2) one obtains after regrouping terms: 

I 2 
k{k -I-4\'-( £+1)} 

2(k+l) 
k-2 

< r > -
2m (2k+p+2' k 4mE k '<Vr>+-<r>=O 
n2 l k+l ) n2 

(provided additionally 

k+l 
£(£+1) k-l 2 ( ) r 2 
k+1 r un£ r 'k+1 un£(r) and 

rk-'-p+1 
~ un£(r) 

(9.4) 

go to zero as r ~ 0 and r ~ 00). If one studies in detail the restrictions 
under which Equation (9.4) is valid it is obvious it is not valid if 
the constant k = -1. The constant k need not however be an integer. 

If k 0 Equation (9.4) reduces to: 

E E.21. <V>. 
2 

(9.5) 

But E <H> = <T> + <V>. Thus for any quantum mechanical state in£> of H, 

(9.6) 

which is just the quantum mechanical analogue of the classical Virial 
Theorem 1 ): 

If k 1, 

i.e. 

T E-
2 V. 

-1 <r >- 2m(p+4) <rV> + 4mE <r> 
2n2 n2 

p+4 <rV> + n~(~+l) < 1 > 
E = ~4 ___________ 4~m~ ____ ~r~ __ 

< r > 

Equating expressions (9.5) and (9.7) one obtains 

<rV> 2(p+2) n2£(£+I) 1 <r> <V> - < - >. 
p+4 m(p+4) r 

0, 

(9.7) 

(9.8) 
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If 

and 

etc. 

k 2, 

p+6 
6 

E 

2 f/ 
<r v> + 12m (4~(~+1) - 3) 

2 <r > 

~ 2 n2(4~(~+1) - 3) <r > <V-> -
p+6 2m(p+6) 

CHAPTER 9 

(9.9) 

(9.10) 

Equations (9.7) and (9.9) are natural generalizations of Equation 
(9.5), while Equation (9.8) and Equation (9.10) can be written as sum 
rules. Thus, 

2 
<n~IVlnl~I><n'~1 Ir In~> 

~ 2 
= <nIIVln~><n~lr In~> 

p+6 
n2(4q~+1) - 3) 

2m(p+6) 

with similar expressions for higher moments. 

(9.11) 

The above equations apply equally well to one-dimensional problems. 
For such problems un~(r) becomes WN(x), the complete eigenfunction for 

the problem in question, while ~ must be set equal to zero. That WN(x) 

has different boundary conditons, namely WN(x) ~ 0 merely implies the 
x~ ±oo 

limits in the various integrals are x from - ~ to 00 in the one-dimensional 
case rather than r from 0 to 00 and that the conditions are for instance 

Thus: 

k 2 
x WN(x) ~ 0 etc. 

x ~ ±oo 

k(k-l) 
2 

k-2 <x > 
2m(2k+p+2) 

n2 (k+1) 
o. 

EXAMPLE 9.1. Consider the one-dimensional harmonic oscillator: 

( 9 . 12 ) 

Vex) = t mw2x2 (i.e. p 2) where E = (N + t) nw. Obtain expectation 

values of various powers of x. With these subsU tu+-.ions in Equation (9.12) 
one obtain.:;: 
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k(k2-1) k-2 2 2 k+2 + 4mw (N+1.) k <x >- m w (2k+4) <x "> <x > o. (9.13 ) 2 h2 (k+1) Ii. 2 

Substituting k 0, 2, 4 in this equation yields: 

<Nlx2 IN> 
Ii. (N + 1.) 

mw 2 

2 4 = BL-(4(N+1.)2 <Nix IN> 
8m2i 2 

+ 1) 

<Nlx6 IN> 
5Ii.3 

(N+~) {6(N+1.)2 + 7.S} (9.14) 
12m3w3 2 

etc. 

EXAMPLES 9.2, 9.3. For two important three dimensional problems: 

/ 1 2 2 1 2, 1 
V(r) - a.Ii.c r, E = - 2 a. mc 2" (where:x. = e I ( 41TEonc) :: 137 ) and 

122 n 
V(r) 2 mw r , En~ = 12n + ~ + 3/2) Ii.w , obtain recursion relations. 

Substituting into Equation (9.4) one gets for V(r) = a.Ii.c/r 
Kramer's well known formula: 

k(k2_(2~+1)2) k-2 ~ !2k+1t k-1 222 k m c a. 
<.r "> + < r > <r > 

4(k+1) Ii. l..k+1 ) n2Ii.2 

and for V(r) = ~w2r2 
2 

2 2 

0, 

(9.15) 

k{k2_Ph1}2} 2mw( 3 k k-2 ~ (k+2t k+2 
4(k+1) 

<r > + 
Ii.2 l..k+l) 

<r > r T l..2nH+2)<r > = o. 
(9.16) 

EXAMPLE 9.4. Show that if V(x) = Ax4, x > 0; V(x) 00 x < 0 

<nlxvln"> = 1.5<nlvln> <nlxln>. 

In this case 0 < x < 00 in the integrals of Equation (9.12) though 
this is a one-dimensional problem. 
Using Equation (9.12) with k = 1, 

p+4 < 2 xV > = 2E <x>. 
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But from Equation (9.5) E 
three dimensional); 
therefore 

(p~2)/2 <V> (whether the system is one or 

If p 4 

<xV> 2(p+2) <V> <x>. 
p+4 

<xV> = 1.5 <V><x>. 

EXAMPLE 9.5. 4 For Vex) = ax show 

2 2 3n2 
<nix Vln> = 1.8 <nix In > <nIVln> + 20m 

substituting directly into Equation (9.10) with p 4, 2. o 

The same 

2 2 3",2 
<r V> = 1.8<r > <V> + __ 11_ 

20m 

result applies to the one-dimensional case with r ~ x. 
4 ax for all x, the integrals extend over all x. 

(9.17) 

(9.18) 

If Vex) 

If Vex) 4 ax x > 0, Vex) = 00 x < 0 the integrals extend over x > o. 

EXAMPLE 9.6. Given Vex) = ax x > 0, Vex) = 00 x < 0, 
show 

2 
(nix in) 

3 9 2 3112 
(nix In) = 7(nlx In) (nlxln) + 14ma· 

substituting in Equation (9.17) p = 1 

6 <xax> = 5 <ax> <x>, 

which yields Equation (9.19), while substituting in Equation (9.10) 
p = 1, ~ ~ 0 r ~ x 

2 9 2 3n2 
<x ax> = 7 <x > <ax> + 2m7 ' 

which yields Equation (9.20). 

EXAMPLE 9.7. If Vex) = alxl show 
00 00 00 

J 3 18 J 2 $ x $ dx = -- $ x $ n n 7 n n 
o 0 

dxJ 
o 

Substituting in Equation (9.10) p 1, 2. 

$ x$ dx n n 
3n2 

+ ---a28m 

o and taking into account 

(9.19) 

(9.20) 

(9.21) 
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that ~2(x) = ~2(_x) since ~n(x) has a definite parity (because V(x) 
n n 

V(-x», one immediately gets Equation (9.21). 

EXAMPLE 9.S. Obtain expressions for x = .I<Nlx2 IN> , if P 
2 rms 

1, 2, 

i.e. V = A1X or V = A2X • 

If P = 1, from Equation (9.17), <Nlx2 IN> 6/5A~ <NIA1xIN>2 
2 

~ (~El 
5A2 l3 ) 

1 

:. xrms fo!l' 
If P 2 from Equation (9.14), 

2 1 
<Nix IN> = n/mw (N+2) 

EXAMPLE 9.9. Show if p = 2, 
2 -4 

(4£,(£,+1) - 3)11 <n£.lr In£.> 
4m -2 

<n£.lr In£.> 

E 

l mw21 l 2 ) 
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(9.22) 

(9.23) 

(9.24) 

Subst1tuting k = -2 into Equation (9.4) immediately yields Equation (9.24). 
Note this result is independent of A, the constant of V(r), Since E > 0 
4£,(2+1) > 3 i.e. £. ~ 1 for the integrals in Equation (9.24) to be 
convergent. 

EXAMPLES 9.10, 9.11. Show 

~) 3n2 <n£.lr-7/ 2 In£.> 
En£. = (4£,(£,+1) - 4 Sm -3/2 

<n£.lr In£.> 
if P 1, and 

if p = -1. 

3 112 <n£.(r- 5/ 2 (n£.> 
-(4£.(£.+1) + -) - - ........ ~~-

4 Sm "I -1/2 1 " <n" r n .. > 

Substituting k = -3/2 into Equation (9.26) yields result (9.25) 
and k = - 1/2 into Equation (9.4) yields result (9.26). Both these 
results are independent of A. 

REFERENCE 

H. Goldstein, Classical Mechanics, Addison-Wesley, (1950), p. 69. 

(9.25) 

(9.26) 



CHAPTER 10 

Upper Bounds and Parity Considerations 

Consider a system with a Hamiltonian H such that 

H'I' = E 'I' . 
n n n (10.1) 

If ~t(~' B) is a normalized 'trial' wavefunction with ?arameters 
~, ~, ... , one can define the integral 

E(~, ~) = f~t H~t dx. (10.2) 

Since the 'I'n constitute a complete set one can expand ~t(~' ~ ... ) in terms 

of the 'I'n's in Equation (10.1) which are assumed normalized in what 
follows. Thus 

00 

~t(~' ~) = I cn'n' 
n=O 

where the fact that ~t and 'n are normalized implies 

1. 

Substituting Equation (10.3) into expression (10.2) yields 

E(~, ~) fI c* '1'* H l: c , dx 
n n m m n m 

00 

l: Ic 12E ~ EO l: Ic 12 EO' 
n=O n n n=O n 

using Equation (10.4) . 

(10.3) 

(10.4) 
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Hence 

E ( a. (3) ;:: EO . (10.5) I 

This result enables one to use any trial wavefunction and in addition 
optimize, i.e. choose parameters a, f3 etc. which minimize E(a, (3) for 
that particular trial wavefunction by requiring aE(a, (3)/aa = 0 etc. 
In this way one gets upper bounds to the ground state of any quantum 
mechanical system. 
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The only restriction on wt(a, (3) is that it obeys the ~ boundary 
conditions as the eigenfunctions of H. Otherwise the assumption (10.3) 
is not valid. One also 0f course assumes the quantities one works with 
are well enough behaved that one can interchange summations and integra
tions in the expression for E(a, (3). 

EXAMPLE 10.1. Consider the system H T + V where 

x > 0, V x < o. (10.6) 

The exact ground state wavefunction for this system and corresponding 
ground state energy are in fact known: 

'jIo 
12.25 

------------~----------------~~ 

Figure 10.1. Potential in Example 10.1. 

Consider the trial wavefunction 

(2a)2n+1 
Wt (2n)! 

n -ax x e 

( 10.7 ) 
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where n and a are parameters, n > o. 
Performing the integral (10.2) one obtains 

E(a., n) 

oE = 0 implies 
oa. 

4 a. 
2 (4n -l)(n+l) 

2b4 

while oE/on = 0 implies 4a.4b4 = (4n+3)(2n-l)2 

i.e. 

E(n) (2n+l)(n+l) ti2 
2(2n-l) mb 2 

, 

with optimal n (1 + /6)/2 

Ifn = 1 E(l) 13 ti2 /mb2 . Ifn 1. 5 or 2, E ( 1. 5 ) = E(2) 

and if one chooses the optimal n (1 + 16)/2 one obtains 

CHAPTER 10 

(10.8) 

12.5 ti2/mb2 , 

E((l +/6)/2) = 12.47 ti2/mb2 , which is quite close but slightly larger 
than the exact result Equation (lO.7) (as it must be). 

EXAMPLE 10.2. Consider the system H T + V where 

V = Ax x > 0, v = 00 x < 0, A > o. 

V('t..) 

------------~--------------~~ 

Figure 10.2. Potential in Example 10.2. 

If one uses the trial wave function 

ljJ(l) 
t 

where b is a free parameter, 
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E(b) 3112 2Ab +-
4rnb2 ;; 

The requirement aE/ab = a implies 

This yields 

Consider the trial wavefunction 

(2a)2n+1 
(2n) ! 

n -ax x e 

where n and a are arbitrary parameters. 

[A2m112] 1/3 
1.86 

This function, when substituted in expr~ssion (10.2) yields 

E(a, n) 
112a 2 + (2n+1)A 

(2n-1)2m 2a 

aE 3 2 
- = a implies a (4n -l)Am 
aa 2112 

aE = 3 
2 

a implies Ampn-1) 
an a 

112 

Substituting in E(a, n) yields 

E(n) ( 27(2n+1)2}1/3(n2A2}1/3 
32(2n-1) m with optimal n 1.5. 

If 

n = 1, E(l) 

If 

( 225 )1/3 (n2A2}1/3 
n = 2, E(2) = - --32 m 

O .(112A2}1/3 
::: 1 ..... 2 . 

m 

Finally if one chooses the optimal n 1.5 

107 

(10.9) 
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(27)1/3(~2A2)1/3 E(l.S) = ~ -;-- = 

It is interestiny to note that even with the best two parameter trial 
wavefunct~on $~2 one does not do as well as with the one parameter trial 

wave function $~1). In other words increasing the parameters in one's 

wavefunction does not necessarily result in lower energies i.e. 
results. () (2 11/2 _ 2/2b2 

Consider the trial wavefunction $ 3 1--=) e x 

as a free parameter. 

r/ E(b) = -- + 
4mb2 

aE 
ab = 0 

t '-b-I1T 

, l' b3 lmp les 

substituting this value of b into E(b) implies 

better 

with b 

( 2 2 11/ 3 
This is much less than 1.86l A n /m) , the best value obtained with 

the other two trialwavefunctions! But this wave function does not satisfy the 
boundary conditions and hence is unacceptable. In particular it is not 
zero at x = O. Hence this particular result is wrong! 
The lowest energy for large arguments of the relevant Airy function is 

b = 1.84(A2n2/m)1/3 (see Equation (3.18». 

EXAMPLE 10.3. Consider the system H = T + V where V = Alxl (A > 0) 
for all x. 

If P, the so called 'parity' operator is such that when operating 
on any function f(x) 

P f (x) = f ( -x) , 

Then PH(x)$(x) = H(-x)$(-x) H(-x)P$(x) 

--------------~--------------_7X 

H(x)P$(x) for this case since 

Figure 10.3. Potential in Example 10.3. 
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for the V of this example V(x) = V(-x) while quite generally T(x) = T(-x). 
Hence in this case H(x) = H(-x). Thus for this problem (indeed whenever 
V(x) = V( -x» 

[PH(x) - H(x)P]~(x) = 0 i.e. [P, H] = o. 

But this has consequences on the eigenvalues and eigenfunctions 
of H. Assuming [H, P] = 0 consider the Schrodinger equation (10.1) 

H~ (x) = E ~ (x). Premultiplying by P 
n n n 

Assuming the system is non-degenerate (see Chapter 12), if ~n is an 

eigenfunction of H and at the same time P~ is an eigenfunction of H 
n 

with the same eigenvalue E , this implies 
n 

P~ ( x ) = A ~ ( x) . 
n n 

( 10.10) 

i.e. ~n(x) is proportional to ~n(x). 

But Equation (10.10) is just the eigenvalue equation for P. The 
eigenfunctions of the Hamiltonian are also eigenfunctions of P! Consider 
now the eigenvalue problem for P. If PO are the eigenvalues of P, 

Pf(x) 

Hence Po = ± l. 

POf(x) 

f(-x) 

2 
POf(x) f (x) . 

Thus in Equation (10.10) A 

(10.11) 

±1 and 'i'n(-x) 'i'n(x) or 

Thus whenever, as is the case in this problem V(x) = V(-x) and the 
system is nondegenerate, the eigenfunctions of H have either even parity 
or odd parity. 

Going through the derivation for upper bounds (1) - (5) one sees 
that in this case Equation (10.5) applies independently to the odd and 
even parity solutions since Equation (10.3) will be an expansion either 
in terms of the even or the odd eigenfunctions ~ . Hence working with 

n 
odd parity trial wavefunctions one gets an upper bound to the lowest 
odd parity state energy and similarly for even parity trial wavefunctions 
an upper bound to the lowest even parity state energy. 

A simple (though inadequate) even parity trial wave function for 
Example 10.3 is: 



llO 

Wt(b) /;5 (b-Ixl) Ixl < b 

= 0 Ixl > b 

with free parameter b, yielding, 

+ 
E (b) " 1" b 3 = 12112 o lmp les Am 

(where one uses the representation of the delta function 

2o(x». 

For optimal 

+ < + _ ~ (A2112 )1/3.: 
b, E - E (b t) - 2/3 - 0.86 g g op 12 m 

A better ~ parity trial wavefunction one can use is 

W+(b) = ~ e-x2/2b2 

t j b/:; 

with free parameter b, yielding 

+ 
E (b) 

For optimal 

An odd parity trial wave function one can use is 

with free parameter b, yielding 

311 2 2Ab 
E (b) = -- + 

4mb2 1:;;-
If 

3E 3 at = 0, b 

and for optimal b: 

CHAPTER 10 
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_ _ (h2A2 )1/3 
E !'> E (b t . 1) = 1. 86 --g op lma m 

One thus has roughly determined two energy levels with the help of 
parity considerations in this case. One notes 

E (opt) 
1.86 :: 2 29 9 

+ (opt) 
0.81 . 

E g 
as opposed to 

E (exact) 
1.84 9 :: 2.07 

+ (exact) 0.89 E g 

(cf. Equation (3.18), (3.31». 

EXAMPLE 10.4. Consider the system: 

2 
H E... - V o(x) 

2m 0 

V(?C.) 

Figure 10.4. Potential in Example 10.4. 

Estimate the energy of this system using as trial wavefunction 

e 

2 mwx 
211 

(the groundstate wavefunction of the one-dimensional harmonic oscillator), 
with free parameter w. One obtains directly 
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Requiring 

i.e. 

nw 
E(w} = "'4 

~-o aw -
n 

implies 4 

Hence for this trial wavefunction, 

Eoptimal 

o 

m~ 
- -2-' 

n 11 
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vs the exact ground (and only) state and only energy of this system (cf. 
2 2 

Equation (13.I1}) = - mVo/2n . 

One again notes 
,,2 

mvO 
E = - 0.318 
optimal n2 

as required by Equation (10.S). 

> Eg 

2 EXAMPLE 10.5. Consider the system H = P /2m + V where 
1 2 2 2 V = zmw x + a/x x ~ 0, V = 00 x < 0, (a positive or negative). 

Estimate the ground-state energy of this system using as trial 
wavefunction: mW'x2 

3/4 ---
w(l} _ (mw'l ~ 2n 

t - ~ n ) 1/4 e 
11 

2 (This is the lowest eigenfunction of H' = P /2m + V' where 

V' = ~w,2x2 x ~ 0, V' = 00 x < 0, with eigenvalue ~ nw'.) 

Using this trial wavefunction, 

(This result can easily be obtained by rewriting 

2 
H = E- + 1 ,2 2 

2m zmw x 
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and noting that 

o 

~ 1/1(1) dx 
2 t x 

2mw'a 
n 
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J ,,, ( 1 ) * 1 ,2 2,,, (1) dx 
'l't znw x 'l't 

o 
l(lnw,l (cf Equation (9.5») 
212 ) . 

Hence 

From the constraint(aE~l)(W' »/aw' 

w' optimal 
w 

j 8ma 
1 + 

3n2 

E(I)(W'=W ) 
t optimal 

o one obtains 

2mwa 
+ ----=;==:...-! 8ma 

11 1 + 
3n2 

If a = n2/m the Hamiltonian above admits of an exact solution since 

h2/mr2 = 2h2/2mr2 is then just the centripetal term in the three 

dimensional simple harmonic oscillator (V = %rnw2r2) Hamiltonian, if ~ 1. 

The exact energies in this case are (2n + 1 + ~)nw n = 0, I, 2 ... 
S 

i.e. the lowest solution is EO = 2nw 

In this case 

E(I)( ) 
t Woptimal 

as expected. 
One may use instead: 

as trial wavefunction. 
In this case 

133 nw - 2.873 nw > 2.5 nw 
2 

n2 {nn+4} ~2 + mw2 (2n+2)(2n+l) 
2m(2n-l) 8~2 

For optimal 
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(mw,1/2 ((2n-1)n(2n+1)(2n+2),1/4 
2n) ~ n+4 ) 

E(2)(Q n,' 
t '"'optimal' nw 

(2n+1)( n+l) (n+4) 
2n(2n-1) 

CHAPTER 10 

which has values 2.556 nwand 2.535 nw for n = 3 and 4 respectively, 
while for optimal n - 3.74, E(~ ,n t) - 2.533 nw > 2.5 nw . Again 

opt op 
as expected one gets an energy greater than the exact energy but W~2) 
gives a better upper bound than W~l). 

If CL = 3n2/m again one knows the exact solution which one can 
compare with the upper bound results that arise in this case etc. Thus 

for CL = ~2/ 7 ~ h'l (1) - 5 h 5 ~ 311 m, EO = 2 11W, W l e Et (Woptimal) - 4. W > 3. 11W. 

If 
2 

2 -mw'x /2n x e 

is used as trial wavefunction, 

With 

If 

If 

E(3)(W I ) 

t . . 

2 
(:1- + 2CLm \,w I + 5 n ~ 
~12 3n2) 4 w' 

w' 
optimal 

CL = 

W 

/ 2.... + 
15 

h 
m ' 

nw 1175 + 8 CLm 
+5 1517 

4 

5/2hw Eexact' 

3n2 (3) 1 fi¥55 7 CL = -- , E (w I ) = - -- nw = 3.59 hw > - nw = E . 
m t opt 2 3 2 exact 

EXAMPLE 10.6. Consider the system H = p2/2m + V where V = - CLnc/x 

x < 0, with grounds tate eigenvalue of -0.5mc 2CL 2 . x ~ 0, = 00 

Estimate this ground state energy using as trial wavefunction: 
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Performing the integral in Equation (10.2) one obtains: 

Hence 

E(1) 3n2 2nca 
(b) 4mb2 hi:; 

aE(1) = 0 
ab implies b opt 

E( 1) (b ) 
optimal 

4 2 2 2 2 - -- mc a - (-0.424 mc a ) 
311 

> E as it must be. 
ground 
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This result is quite close to the exact ground-state energy. Other 
trial wavefunctions do not do as well. 

Thus if instead one uses: 

one obtains 

Hence 

1... E(2) (b) 
ab o implies b 

opt 

E(2)(b ) 
optimal 

= 7nv':; 
Bmca 

If one uses: 

$(3) = /2b)5 
t 4! 

2 -bx x e 

E(3)(b) = n2b2 _ ancb 
6m 2 

o . 1· b 3amc lmp les = --opt 2n 



116 

Hence 

E(3)(b ) 
optimal 

322 8" mc a 

CHAPTER 10 

Though both E(2)(b t) 
op 

and E(3)(b ) are above E neither 
opt ground' 

is as close to it as E(l)(b t). 
op 

A fourth trial wavefunction: 

1/1(4) /2 3/2 _x2/2b2 
- x e t b2 

yields: 

E(4) (b) 5112 al1cy<;;-

8mb2 2b 

and 

E(4) (b ) 'IT 2 2 
10 mc a opt 

b 511 
opt 2mac/"-;;-

- -0.31 2 2 mc a 



CHAPTER 11 

Perturbation Theory 

Consider a system whose Hamiltonian H contains a 'perturbation' V such 
that 

H = HO + V. (11.1 ) 

If one knows the eigenfunctions and eigenvalues of HO' i.e. 

HOcf>n = £ncf>n' (11. 2) 

and wishes to find the eigenvalues and eigenfunctions of H i.e. En' Wn in 

(11.3) 

One can formally expand each eigenfunction W in terms of the complete 
set cf>n: 

00 

W l: amcf>m 
m=O 

where the cf>'s are assumed orthonormal i.e. 

One can then rewrite Equation 

l: (H-E) amcf>m = 0 , 
m=O 

( 11. 3) 

(11. 4) 

!cf>;cf>q d1: Opq' 

as 

( 11. 5) 

where for notational simplicity the subscript n has been omitted from 
the W's and E's. 

Premultiplying expression (11.5) by cf>* and integrating over the 
p 

relevant variables one obtains: 

00 

l: 
m=O 

(H - Eo )a pm pm m 0, p 0, 1, ( 11. 6) 
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where 

H E 0 + V , pm m pm pm 

and 

V = J~* V ~ d. = (~ IVI~ ). pm P m P m 

written in matrix form one has: 

O. (11. 7) 

The eigenvalues E of Equation (11.7) are the exact energies of the system 
(11.3) and the corresponding coefficients a. give, when substituted into 

1 

Equation (11.4) the corresponding eigenfunctions. 
Consider for simplicity the special case when expression (lI.7) 

is a 2 x 2 matrix. The determinant of this matrix must be zero i.e. 

2 
E - E(HOO + H11 ) - V01V10 = 0, ( 11.8) 

hence 
(HOO-HIli( 1 + 

4V01V10 11/2 
(HOO+ Hll ) ± 2 ) (HOO -H11 ) 

E 2 ( 11.9a) 

(HOO+ H11) ± (HOO -H11 { 1 + 
2V01v10 1 

2) (HOO -H11 ) 
:: 

2 
(11. 9b) 

This gives two energies: 

V01V10 V01V10 V01V10 
EO = HOO + £0" VOO + E+V + V V HOO -H11 EO+VOO-E1-V11 o 00 ( _ /1 00- 111 

EO E1 l + - ) EO E1 

E1 H11 + 
V1OV01 

E1+ V 11 + 
V1OV01 V01V10 

- H11-HOO E1+V11-EO-VOO = E1+Vn + (V11-Voo 1 
(E1-EO)ll+ ) 

E1-EO 

(11.10) 
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Upon expanding the denominators in these expressions one obtains: 

+ .•. 

+ •.• 

From the 2 x 2 matrix one can also obtain expressions for W by 
solving for the eigenvectors aO and a 1 , 

and 
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(11.11) 

(11.12a) 

( 11.12b) 

if in addition one requires (~olwo) = (~1Iw1) = 1 i.e. that the W's are 

'cross normalized' functions. 
Substituting EO and E1 of Equation (11.11) into Equation (11.12a) and 

Equation (11.12b) respectively yields: 

E 
n 

Wo ~O + 
~IVI0 ~IV11VI0 ~IVI0VOO 

(11.13) --+ + ... e:O-e:1 2 2 
(e:O-e: l ) (e:O-e:]) 

~OVOI ~OVOOVOI ~o V 01 V 11 + ... 
WI ~1 + --+ 

e: 1-e:O 2 2 (e: 1-e: O) (e: 1-e:0 ) 

One can generalize the results in Equation (11.11) as follows: 

v V V V V 
nm mn + {~ nm mp pn e: tV + I:: L. -

n nn m~n e: -e: ~ (e: -e: )(e: -e: ) 
r n m m,Prn n m n p 

V V 
nm mn } V I:: 2 ,(11.14) 

nn mfn (e:n -e:m) 

which is the standard Rayleigh-Schrodinger expansion for the exact energy 
to third order in V. The first term in Equation (11.14) is called zeroth
order. Terms in Equation (11.14) involving V once (the second term) are 
called first order. Terms involving V twice (the third term) are called 
second order, and terms involving V thrice (the fourth and fifth terms) 
are called third order. 
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One can generalize the results in Equation (11.13) as follows: 

cp + 
n 

- V I: 
nn m~n 

I: 
m, prn 

cp V V m mp pn 
(e: -e: )(e: -e: ) n m n p 

+ .•• (11.15) 

which is the standard Rayleigh-Schrodinger expression for the exact wave
function to second-order in perturbation theory when one has cross
normalized functions $ i.e. (cp 1$ ) = O. Fourth and higher-order terms n n n 
and third and higher-order terms in Equation (11.11) and (11.13) 
respectively may be obtained by keeping more terms in going from 
Equation (11.9a), to Equation (11.9b). The usefulness of expression (11.14) 
and (11.15) in turn depends among other things on whether the expansions 
converge. 

EXAMPLE 11.1. Consider a particle subject to the Hamiltonian 

122 
H = T + 2 mw x Ixl < a, 

122 
H = T + 2 mw a Ixl > a. 

Potential Energ~ V('X) 

------------------~~----.-------------~x 

Figure 11.1. Potential Energy in Example 11.1. 

One can rewrite this Hamiltonian as 

H = HO + V where 
122 

HO = T + 2 mw x 

V o [xl < a 

1 222 - 2 mw (x -a) Ixl > a. 
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To first order in V one then has 

E E + V 
n n nn 

00 

1 2 
2J 

222 
dx E - "2 mw (x -a )Q>n (x) 

n 
a 

where E , In> are the standard eigenvalues and eigenfunctions of the 
one-dim~nsional infinite harmonic oscillator. 
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This problem illustrates one important limitation of perturbation 
theory. It predicts here an infinite, discrete set of energies E . 

n 
'f 1 L L th t' l' 1 b d b t th ' However, 1 E > "2 mw a e par 1C e 1S no onger oun u ra er 1S 

free i.e. it can have any energy! 

f 1 'f 1 2 2 d t t bl In act on y 1 E«"2 mw a oes one expect 0 ge reasona y 

accurate results 
Classically 

is for x greater 

using perturbation theory. 
for this system it makes no difference what the potential 
than x where x = 12E/mw2 . 

max max 
The quantum mechanical treatment of this problem however, shows 

that the potential for x < xmax affects the particle. If a ~ 00 the exact 
energies of the system go to En' For the actual potential however, the 
exact energies En are less than En since Vnn < O. Roughly speaking this 

is because there is more likelyhood the particle will be in the classic

ally forbidden region if V = ~ mw2a 2 for x > a than if it is more 

repulsive i.e. ~ mw2x2 in this region, and the more the particle spreads 

the bigger its wavelength A and smaller its energy since k - l/A while 

E - k 2 . 

EXAMPLE 11.2. Consider a particle in the potential 

V(x) = Ax x > 0 (A > 0), V(x) = 00 x < o. 

Suppose one wishes to know the ground state energy of a particle in this 
potential. 

The Hamiltonian of the system is H = T + Ax, x > O. But one can 
rewrite H as 

where 
li.2 2 

HO = T + ---- x (x > 0), 
2mb4 

and b is a parameter. 
One can then treat Ax - li.2/2mb4 x2 (x > 0) as the perturbation V. 

For this choice of HO' 
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10 ) , 

and 

The first order energy is 

2 2 2 f$*(Ax - ~ \ $ dx = 2Ab -~ 
o 2mb4) 0 /; 4mb2 

CHAPTER 11 

One possible choice for b is such that the first-order energy contribu
tion is zero i.e. 

2 -
b3 = 3n h 

8Am 

-----------J----------~x 

Figure 11.2. Potential in Example 11.2. 

with this choice of 

(24\1/3(n2A2\1/3 
b, EO = l 'IT) l m) -

to first order. 
The second-order term is 

fl2 2 
<OIAx - ___ x_ In><nIAx 

2mb4 

n=l, 2 ... 

since 

3 n2 
£ (2n + -) -

n 2 mb2 

(11.16) 
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One can evaluate this expression using 

etc. 
Considering just the n = 1 term in expression (11.16) one has 

with the above choice of b. Thus Equation (11.16) becomes 

(11.17) 

All additional second-order terms are also negative hence add to 
the magnitude of the second-order result, but should be small compared 
to Equation (11.17). Indeed the next term in second order (n = 2) is: 

1 - bA _ 0 12 
ho'll 

which is considerably smaller than Equation (11.17). 
Hence to second order 

which can be compared with the variational approach result for this 
problem, (Example 10.2) 

( A2n2}1/3 
EO ::; 1. 86 -;;;-

The third-order term is 
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, (11. 18 ) l: 
n, PfO 

(-2n ~2)(-2P ~2) 
since the choice of b earlier in this problem makes the second third
order term zero (see Equation (11.14». 

Taking only the term In> = 1m> = 11> in Equation (11.18) one obtains 
an approximate third order result: 

11 2x2 11 2x2 
i<OIAx - 11>12<1IAx 11> b2A2 2 

2mb4 2mb4 -- -
(3bA _ 7112 I 'IT 3 

4114 4114 ~/:;;- 4mb2) 

m2b4 m2b4 

which is smaller than the second-order correction. / 
Thus to this approximation EO - 1. 89(A2112/m) 13. 

If one uses instead b3 = (3/~ 112)/4mA which minimizes the /energy to first 
order (see Example 10.2), one obtains EO = 1.86 (112A2/m)1 3 in first 

order and no contribution in second and third order from the state n = 1. 
The exact result (valid for larae arguments of the relevant Airy 

functiqn (cf. Expression (3.18» is: 

E 

With the first choice of 

which makes VOO = o} , 
to second order in perturbation theory the exact ground state wave
function becomes: 

if one includes only one excited state in expression (11.15). 

(11.19) 
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-~--~-----=~?\ 
b 

Figure 11.3. ~O(b) in Example 11.2 vs x. 

2.03b 

Figure 11.4. ~l(b) in Example 11.2 vs x. 

With the second choice of 

{ 
_ (3112/iT,1/3 

b, b2 - \ 4Am ) , 

which minimizes the energy to first order, i.e. makes aHoo/ab 

125 

the matrix element VOl is zero so there is no contribution to the exact 

ground-state wavefunction from ~1 for this choice of b: 

$0 = ~0(b2) to second order in V, (11.20) 

Expressions (11.19) and (11.20) are less dissimilar than they look 
since they involve different b'S with b1 - 0.794b2 . Thus though ~0(b1) 

of Equation (11.19) is more compressed than ~0(b2) of Equation (11.20), 

this is compensated for by the small admixture in the former expression 
of ~1(b1) as can be seen by considering Figures 11.3 and 11.4. 

EXAMPLE 11.3. 

H 

Consider 
122 

T + "2 mw p 

T P > a. 

o < p ~ a where p ( 11. 21) 
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To find the ground state energy of this system using perturbation 
theory one can write 

where 

122 
H = T + 2 mw p + V(p) 

V(p) = 0 p < a, 122 
V(p) = - 2 mw p p > .a. 

The ground state wavefunction for HO is (see Equation (8.14)) 

with b 

1::0 = nw . 

Potentia I Ene .... gl1 

8 jJ 

Figure 11.5. Potential in Example 11.3. 

To first order in V one then has 

nw -

00 

- 2/b2 (1 2 2' pe p - mw p Idp \2 ) 

2 2 2 00 

nw L -p /b (1 + L"\ I } 
2 l e \ b2) 

a 
mwa2 
n 

2 2 
be accurate if nw « mw a . 

(11.22) 

which is expected to 
To second order 

w10 (p) at energy 3nw 
the first state which contributes to the energy is 
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(JCO

a 
1 2 2 \2 

_ w10{p){- 2 mw p ) woo{p) dp J 
-2Ii.w 

(_ t nw{e- p2/b2(1 + ~ + ~)1:})2 
-2Ii.w 

2 
mwa 2 

Ii.w( - -Ii.- (1 mwa 
=-8~e + -Ii.- + 

2 2 4)}2 "-mwa =_~ 

Ii. 2 8 

Hence approximately 
2 

2 _mwa 
mwa) Ii. -Ii.- e 

127 

2 
_2mwa 2 2 2 4 2 

Ii. (1 mwa m w a ~ 
e ~ +-Ii.- + Ii.2 ). 

2 
mwa 
T"" + 

2 2 4..2 
m w a_l 

112 ) • 

(11.23) 

122 Obviously this analysis is incorrect if E > 2 mw a for reasons 

similar to those mentioned in Example 11.1. 

EXAMPLE 11.4. Consider 

H T + AlxlP (all x). ( 11.24) 

This may be written 

Ii. 2 2 { n2 2} Ii. 2 2 H = T + -- x + A I x I p - -- x and A I x I p - -- x 
2mb 4 2mb 4 2mb 4 

can be treated as a perturbation. The ground state energy of this system 
can be immediately calculated using first-order perturbation theory 

and 

If P is odd one has: 

The choice 

4mA(E.:l " ~ 2 )" 

( 1 ,1/2 
cp (x) = - I 
o ~bv;;) 

makes the first-order energy zero and yields 
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£E. 2 
2+p P -

:: _2_ ((E.:l\ f!_~ .. Jp+2 
EO _1_ ~~ 2 j. mP/ 2j 

11 p+2 

If P is even one has 

.. p 1 2 2 AbP (p-1)!! n2 
<Ol~ - 7m2 w x 10> 

2P/2 4mb2 

The choice 

h 22P/ 2- 2 

mA(p-1)!! 

makes the first-order energy zero and yields: 
2 

E :: 1 (( _ \ I nPA ,p+2 
o 2p-2 U,P 1)". p/2j 

m 
2 P+2 

These results may be combined: 2 

1 (r(~) nP~p+2 
EO = p-2 ~ 11 1/ 2 mP/ 2j for 

2P+2 

arbitrary p. 

CHAPTER 11 

(11.25) 

(11.26) 

(11.27) 

These may be compared with a qualitatively similar result namely 
Equation (5.2). If instead one chooses b so the ground state energy will 
be a minimum to first order (cf. Ch. 10) i.e. 

is a minimum, for odd P this implies 

while for even P 

For P odd in this case 
p(E.:l\ / 

1 
p+2 

11 

while for p even 

p+2 (An \ 2 ).,2 (p+2) 

2p+2 ~ p/2 p/2j 
2 p+2 m p 
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p )2/(P+2}. E = p+2 (An (p-1)!! 
o 3p+2 \ p/2 p/2 

2 m p 
2 p+ 

These results may be combined yielding 

AfIP r (P:!l.1 2/(p+2) 
_ p+2 ( l 2 ) ) 

EO - 2p+2 p/2 p/2 1/2 
2 m p 11 

2 p+ 

for arbitrary p. For p = 2 Equations (11.27) and (11.28) both yield 
nW/2 which as expected is the right result (where A = mw2/2). 

EXAMPLE 11. 5 . 
where 

while 

Consider H = HO + V (x, y) 

2 2 
Px Py 1 2 2 2 
~-- + 2m + 2 mw (x +y ) 

2 V(x, y} = Amw xy. 

Suppose one wishes to find the ground state energy (non-degenerate) 
of this system. 

(11.28) 

The unperturbed energy of this system is nw with corresponding wave
function $O(x) $O(Y) (cf. Expression (12.4». 

The first-order correction to this energy is zero since 

Amw2ff $8(x) $8(Y) xY$o(x) $o(Y) dx dy = o. 

The only term which contributes in second order because of the nature 
of this particular V is $l(x) $l(Y) at energy 3nw. 

Hence the second order contribution to the energy is 

2 2 2 
(Amw ) 1 < $ 0 (x) $ 0 (y) xY$l (x) $1 (y) > 1 

-2nw 
2 2 2 2 

_ A 4 1<$ I~I$ >12 = _ A nw 
2nw 0 2 0 8 

in agreement with the exact result (see Example (12.9», 

(11.29) 

The exact normalized wavefunction for this state (Example (12.9» is 
Wo = $O(X, w = w1)$O(Y' w = w2 ), where 
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while 

i.e. 

or 

x = .l.. (x - y) and wI = w/~ 
12 

y = .l.. (x + y) 
12 

- 2 
1/2 _ mw/l-A X 

," ( ) (~l (1_,2)1/8 2fi 
~O x, y = lh~) A e 

CHAPTER 11 

e 

2 mwx-- mw2--
- ~/I-A + 11+A)/2 - 2fi Y (II-A + 11+A)/2 

e e x 

mwxy - -- {/l+A - II-A} 2fi 
e (11.30) 

If A « 1 one can write Equation (11.30) as 

2 ~ ),2( 2+ 2) _ mwxYA 
( A) 2M x Y - 2n 

1/Io(x, y) = 1 - "8 cjlO(x, w)cjlo(y, w) e e 

Perturbation theory on the other hand yields, to second order, for the 
wavefunction: 

(11.32) 

since 
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(CP2(X)CP2(Y) IVICP1 (x)CP1 (y» = Anw 

and where N = 1 if one assumes $0 is a cross normalized function i.e. 
2 -1/2 . 

(CPo(x)CPo(y)l$o(x, V»~ = ~, while it equals - (1 + A /16 + ... ) ~f 

one assumes (as in the case of Equation (11.30» that 
($O(X' y)lwo(x, V»~ = 1. 

Expressions (11.31) and (11.32) are identical to order A2 if one 

substitutes N - 1 - A2/32 in Equation (11.32), since 

and 

1 ( 2mw 2) cP (x) = -- - 1 + ~ x CPo(x). 
2 12 11 

EXAMPLE 11.6. Consider 

2 
H = E- + V o(x) -a < x < a , 

2m 0 

whereas if Ixl > a, V = ~. 

131 

To obtain the exact result one writes the Schrodinger equation as 
follows: 

(HO - E)$(x) = -VOo(x)$(x), 

2 
where HO = ~ , V = Voo(x) and x sial. 

Thus 

$(X) 
Voo(x) 

$(x) . 
2 

E- - E 
2m 

VCx) 

Vo>O 

'X 
a 

Vo<o 

Figure 11.6. Potential Energy in Example 11.6. 

(11.33) 
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Using closure (cf. Equation (2.6)) one may insert the set In> of 
eigenfunctions of the potential V = 0 Ixl < a, V = oolxl>a between 

1/(~ - E) and VOO(x) in Equation (11.33) {the odd eigenfunctions do 

not contribute to (nIVoo(x)lw(x))}. One then obtains: 

w(x) :E 
n=l, 3 ... 

In)(nIVoo(x)lw(x)) 

n2h 2 
- E 

32ma2 

cp (x)CP*(O) n n 

Substituting the value x o in expression (11.34) one obtains 

Le. 

since 

i.e. 

where 

w(O) :E 
CP~(O)CPn(O)VOw(O) 

n=l, 3 ... 

1 
Vo 

:E a n=l, 

1 
cP (x) = - cos 

n ra 

3 ... 

n1Tx 
2a 

n2h2 

32ma 2 

1 

n2h2 

32ma 2 

e: 
n 

n2h 2 

32ma 
2 ' n=l, 3, 5 ... 

1 
2 

~-n 

- E 

- E 

(11.34) 

(11.35) 

If one plots the two sides of this equation one obtains Figure 11.7, 
where the intersections correspond to acceptable values of E. ' 
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L ~----~----~~----------~-----------4~------32~ma 

Figure 11.7. Exact energies in Example 11.6, graphical 
solution of Equation (11.35) 

If ~ q2 + 6 

Le. 

or 

h 2 1 
=-3 =-=2v7"a-m-a - 6 ' 6 :: 

2 
~ :: q 

E = ~ + Va = £ + Va 
32ma2 a q a 

A more accurate calculation yields: 

1 1 1 
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'6 + l: 1 :: 1. + 
2 2 6 ni'q q -n +6 

l: 
ni'q 

(odd) 

2 2 - 6 l: 
q -n n;;'q ( 2 2)2 ' q -n 

Le. 

implying 

where 

l: 
n;;,q 

(odd) 

(odd) 

1 

( 2 2)2' q -n 

(odd) 
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Since 

E 

Vo 
E e: q a 

I: 
niq 

(odd) 

1 
2 2 

q -n 

I: vola }-1 
E -e: 

n~q q n 
(odd) 

h2 2 
(q + 0), 

32ma2 

v2 
1 v3 

.. -2. I: -2. I: --+ 
2 

n~q 
E -E 3 a q n a ~}~q odd 

I: 
n~q 

(odd) 

1 
(e: -E ) q n 

2 
_( v....;;o,-I_a )_,{ 1- I: 

(e: _e:)2 n~q 
q n (odd) 

1 v3 
0 I: 

-3 
VOla} 
e: -e: 

q n 

1 
(e: -e: ) q m 3' n~q 

a odd (E -e: ) q n 
2' 

odd (11.36) 

which is just the perturbation result for E (q = odd) to third q 
since if r, s are odd (<PrIVI<Ps) = vola for this particular V and 

eigenfunctions of HO· Ifq = even there is no correction 

unperturbed energy e: from this particular perturbation. 
q 

to the 

As concerns the exact wavefunction, from Equation (11.34): 

Vo1jJ(O) <P (x) Vo1P(O) 
1jJ(x) q 

+ 
.fa E-~ .fa 

2 32ma 

But if (<Pq l1jJ(x) ) 1, this implies 

1. 

With this constraint 

1jJ(x) = <P (x) 
q 

"2 2 
+ (E -~) I: 

32ma2 n~q 
(odd) 

I: 
n~q 
odd E-

<Pn(x) 

n2h2 
E---

32ma2 

<Pn(X) 

n2h2 

32ma 

Substituting Equation (11.36) into Equation (11.37), 

2 

order 

set of 

(11.37) 
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1 
1/I(x) 

Vo 
cP (x) + 

q a 
L 

mfq 
odd 

E -E 
q m 

+ ..• } L 
nfq 
odd 

J VOl 1 
( E -E ) 1+ ---+ 

i.e. 

1/I(x) 
Vo 

cP (x) + 
q a 

L 
nfq 
odd 

q n 1 a E -E ••• J 
q n 

CPn(x) V 2 cP 

(E -E )(E -E ) -(aO) L (E _~ )2+"" 
q m q n nfq q n 

odd 

( 11. 38) 
which is just the perturbation result for 1/Iq to second order in V. 

If q is even 

1/1 (x) = cP (x) (where cP (x) = Jl sin gnx, q = 2,4, ... ), 
q q q j a 2a 

i.e. the perturbation affects neither the unperturbed energy nor the 
unperturbed wavefunctions of the system in this case. The reason for 
this is because cP (0) = 0, i.e. the system does not feel the presence 

q 
of V when in these states. 

Explicitly the wavefunction described by Equation (11.38) is to 
first order: 

1/I(x) 1 cos gnx + Vo 
2a a 

1 - cos 
ra 

nnx 
2a 

L 
nfq (2 2) h2 

q -n 
32ma2 

q, n odd. (11.39) 

For this particular Hamiltonian one can also obtain the exact eigen
functions of this system in a form which unlike Equation (11.37) does 
not involve infinite sums. This can be done by writing 

1/I(x) 

1/I(x) 

A sin k(a x) 

B sin k(a + x) 

o < x < a, 

-a < x < O. 

This combination of eigenfunctions of HO satisfies the requirement that 
w(a) = w(-a) = o. 

___ L-____ ~-----~--~~ 

Figure 11.8. Two possible even eigenfunctions of Example 11.6. 
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Figure 11.9. Plat of transcendental Equation (11.40). 

Additionally continuity of ~(x) at x = 0 implies A sinka = B sinka i.e. 
A = B. However, the derivative of ~ has a discontinuity at x = O. 

2mV 

~ Ix=£ - ~ Ix=-t: = fl2 
0 ~(O) (cf. Equation (6.10)). 

This implies 

or 

- A k coska - A k cos ka 

fl 2k tanka = - -mvo 

2mvo 
-- A sin ka, 

fl2 

Thus the even parity solutlons ~(x) are given by 

~(x) = A sin k (a - Ixl) -a < x < a, 

where k is given by Equation (11.40). 

Normalization of ~(x) additionally requires 

or 

a 

IAI2 f sin2 k(a-Ixl) dx 1, 

-a 

~(x) 
sin k (a-Ixl) 

a(l_s;~:ka} 

which is illustrated in Figure 11.8. 

( 11.40) 

(11.41) 
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Plotting tan ka h2ka of Equation (11.40) and - -- vs 
mvOa 

ka (see Figure 

11.9) shows ka =9.:!!. + o where o is small (q = odd). mV 2 
_ n2k or tan 0 - 0 = _0 Thus tan ka = - cot 0 = 

mvO n2k 

and 

ka 9.:!!. 
mvOa 

9.:!!. 
2mVOa 

:: + -- :: + 2 
h 2ka 

2 2 n q1T 

Hence one can expand the exact wavefunctions Equation (11.41) in a Taylor 
series about kO = q1T/2a where k - kO = (2mVo)/n2q1T) and q is odd. 

Thus 

1jJ(x) :: sin 9.:!!. 81 cos q1TX + 
2 - 2a 

a 

v ~ q1TX 1 q1TX ) -..Q. (l_~)ql1_ sin. ----= cos 2a 
a a 4/a 2a 41a J 
~ 
32ma2 

(11.42) 

as opposed to Equation (11.39) (to within an unimportant overall phase). 
Hence, by comparing the terms in Vola of Equations (11.39) and (11.42) 

one obtains: 

or 

( 1 _ x)9.:!!. . q1TX 
~ 4 Sln 2a 

1 cos q1TX 
4 2a 

1 
sin qu - 4 cos qu l: 

nfq 

where u = 1TX 
2a 

EXAMPLE 11. 7 . Consider the Hamiltonian: 
2 

H 

where HO 

2 122 
~ + 2 mw x + Vo e 

HO + V 

122 
T + 2 mw x and V 

x 
e: 

2 
-x /e: 

Vo e . 

n1Tx cos --
2a 

( n)2 1- q 

cos nu 

( n)2 1 - q 
(11. 43) 
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v 

Va if Vo<O 

Figure 11.10. Perturbation V in Example 11.7. 

To first order 

E = 
0 

where b 

i.e. 

the ground state energy of this 

nw 
2 

nw 
2 

nw 

+ 

- + 
2 

+00 
Vo J bh -00 

e 
_x2/b2 

+ lH 
EJ 

2 -x /E e dx 

+00 

f 

system is: 

since $0 

CHAPTER 11 

( 1_)~e-x2/2b2, 
b/1T 

(11. 44) 

One notes this reduces to the correct.ion to the unperturbed energy 

introduced by a delta function potential if Vo ~ ~ and E ~ 0 since one 

representation of the delta function is 

6(x) = JL lim II e-x2 / E 

;; E+O jE 

EXAMPLE 11.8. Consider the Hamiltonian 

2 1 2 2 
H = E- + - mw x 

2m 2 

(see Equation (2.15)). 

x ;:: O. 



PERTURBATION THEORY 139 

Treating 

v anw 

as a perturbation, study the energy of the ground state of this system. 
The ground state energy of the unperturbed Hamiltonian is 3/2 nw. 

The first-order energy E61 ) = VOO is 

a2nw 

where 

(~w )1/4 1 -u2/2 
11 1/4 e 2u 

11 
and u = ~ x . 

The second order energy E(2) 
0 

!<0!VI1>1 2 

-2nw 

4 2 { - 3" a nw 1 

L 
VOmVmO 

is -
mfO 

e: -e: o m 

!<0/vJ2>1 2 1<0[v\3>1 2 
+ -4nw + -6nw 

2 8 
+ - + - + 5 35 ... } 

This is a slowly converging series. 
Here 

C~W)1/4 2 2 -u /2 2 
<P1 =--r-- e u(2u - 3), 

1611" 

(~11/4 2 1 e-u /2 u(4u4 2 
q,2 h) =-r - 20u + 15) 

13011" 

+ 

(f/4 1 
2 

-u /2 (8 6 4 2 
<P3 ~w /126011* 

- 84u + 210u - 105). e u u 
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Degeneracy 

One dimensional systems 

The Schrodinger eigenvalue Equation (12.1) for the energy of a system 
in the simplest possible case 

{ 
h2 d2 l 

- - - + V(x) 1/'(x) 
2M dx2 J E1/' (x) , (12.1) 

namely that of a one dimensional system, involves a second-order differ
ential equation.-Hence there should in general be two solutions Y1' 1/'2 

for each energy E. Such two-fold 'degeneracy' as it is called does not 
usually arise however. It is removed by the boundary conditions. 

Consider for instance a particle in the well: 

v 00 x < 0, o < x < a, v o x > a, 

illustrated in Figure 12.1, where E < o. 
In the region 0 < x < a one has two solutions 

1/'(x) = A sin Kx or B cos Kx, K 

while in the region a < x < 00 

-kx 
~(x) = Ce or D kx 

e , k 

However, the wave function in this case satisfies the boundary condition 
that it vanishes at x = 0 where the potential is infinitely repulsive, 
and at infinity since the ~article is localized in the well. 

Hence B cos Kx and De x must be discarded. One thus has only ~ 
acceptable solution which together with its derivative must be made 
continuous for all x >0, in particular at x = a. This in turn imposes 
a quantization condition on the energy namely 
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K 
tan Ka = - k 

In two or three dimensional systems the Schrodinger eigenvalue 
equation may involve degeneracies. 

Two dimensional systems 

Consider the case where V = V(p). The Schrodinger eigenvalue equation 
is then (see Equation (8.10)). 

V( 'X') 

____________ ~~o------ar_----------_7X 

JVo.l-+1 _------' 

141 

Figure 12.1. Potential producing non-degenerate eigenfunctions. 

(12.2) 

and the total wave function of the system is: 

Independent of the details of w (p) there are here at least two 
nm 

normalized solutions for each energy eigenvalue, unless m = 0 namely 

where 

1/2 -
P 121T 

f W~m(P) dp 1), 

o 
2 because Equation (12.2) depends on m rather than m. One way this m 

(12.3) 
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degeneracy can be removed is by inserting a term in the interaction which 
depends on the variable ~ for instance the term aL~ which adds the linear 
term an m to the operator in square brackets in Equation (12.2) and 
distinguishes and differentiates between the +m and -m cases. Additional 
degeneracies may arise depending on the details of the potential V(p) 
provided more than one n, m combination corresponds to a given energy. 

EXAMPLE 12.1. Consider the two-dimensional oscillator potential V = ~w2p2. 
Solving the problem in cylindrical coordinates yields Enm = (2n+lml+1)nw 
(see Equation (8.14». A simple tabulation shows the degeneracy increases 
as the energy increases, in fact is N, where Nnw is the energy of the 
system. These results are tabulated in Table 12.1. 

It is of interest to compare these with the degeneracies which result 
if one solves the same problem1in Cartesian coordinates. This particular 
potential can also be written ZMw2(x2 + y2) and has solutions: 

Wn n (x, y) ~n (x)~n (y), 
x y x Y 

E (n + n + l)nw = E + E Nnw, 
n n x y n n x y x y 

where 
1/2 2 

~ (x) 1 1 {I) 
(- :b2) Hn(~) (12.4) 

n 2n/2 (n!)1/2 hi; 
exp 

E (n + 1) nw, n = 0, 1. .. b = ft. n 2 

Table 12.2, which is similar to Table 12.1 shows that the number 
of degeneracies for a given energy are, as they must be basis independent. 

In the case there is no degeneracy (the ground state) the wave 
functions are identical. Thus if E = nw 

However in the cases there is degeneracy the wavefunctions are not 
identical. Thus the E = 2 nw states are 

±i~ 2 2 
w01 (p)e (1)1/2 -p /2b ±i~ 

XO±l(P, ~) = p1/2 12; =; ~ e e 



DEGENERACY 143 

Table 12.1. Energy levels in Example 12.1, using cyclindrical coordinates 

E n m 
Degeneracy 

nm 
Partial Total 

1hw 0 0 1 1 

2l1w 0 ±1 2 2 

3nw 1 0 1 
3 

0 ±2 2 

4nw 1 ±1 2 
4 

0 ±3 2 

Table 12.2. Energy levels in Example 12.1 using Cartesian coordinates 

E N n n Degeneracy 
nxny x y 

1nw 1 0 0 1 

2nw 1 0 
2 2 

0 1 

3nw 2 0 

3 
1 1 

3 
0 2 

3 0 

4nw 4 2 1 
4 

1 2 

0 3 



144 

in cylindrical coordinates while in Cartesian coordinates: 

1)i01 (x, y) ( 1 )1/2 (2 2) 1 ( 1 ,,1/2 (2 2N --= exp -x /2b -- --=1 exp -y /2b 
bin /2"\.bln) b 

(
2\1/2 _ 2/2b2 
-I .LeP 
'IT) b2 

and 

which are obviously not identical with XO±l(P, ~). 

Despite this one can quickly confirm that 

XO±l(P, ~) 

Generally 

(x, y) 

CHAPTER 12 

(12.5) 

where the sum is over all degenerate states at the same (in this case 
n + n 2n+lml) energy as X (p,~) and reciprocally: x y nm 

X01 (p, ~) + XO- 1(p, ~) 
1jJlQ(x, y) 

/2 

1)i01 (x, y) 

X01 (p, ~) - XO- 1 (p, ~) 

i/2 
Le. 

(12.6) 

with analogous restrictions on n, m in this sum. 

EXAMPLE 12.2. Discuss the degeneracies for a particle in a two-dimensional 
Coulomb potential (cf. Equation (8.12)). 
The energy for this system is 

E 
nm 

The degeneracy is 

, n 
1 3 
2' 2 
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n-! 
2n 1 + L 2 

m=l 
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since, aside from m = 0 all other terms are two-fold degenerate, while 
m varies from 0 to n - !. 

Three-dimensional systems 

Consider the case V = VCr). The Schr6dinger eigenvalue equation is then 
(see Equation (8.2» 

{_ n2 d2 + rVer) + b2~(~+1)1} u (r) 
2M dr2 , 2Mr2) n~ 

where (12.7) 

un~(r) y~ 
1Pn~m(r, 8, <Il) = r m (8, <Il) • 

This equation has at least a (2~+1) fold degeneracy because 
Equation (12.7) is independent of the integer m which can take all values 
from -~ to ~. There are additional degeneracies which depend on the details 
of VCr), i.e. how many different n, ~ combinations yield the same energy 
En~· 

EXAMPLE 12.3. Discuss the degeneracies of the three-dimensional simple 
harmonic oscillator. 

For the three-dimensi.onal simple harmonic oscillator the energies are 
given by En~ = (2n + ~ + 3/2 )hw (see Equation (8.13», in spherical 
coordinates and En n n = (n + n + n + 3/2 )hw in Cartesian coordinates ~ 

xyz x y z 
One can easily verify that if E = (N+3/2)hw the degeneracy is 

(N+l)(N+2)/2 fold 

N 
L (n+1) 

~=1 

odd 

N 
L 

~=O 

even 

(2~+1) if N is even or 

if N is odd where N = n + n + n = 2n + ~ 
x y z 

EXAMPLE 12.4. Discuss the degeneracies of the three-dimensional Coulomb 
potential. For the three-dimensional Coulomb problem E = - 1/2 Mc 2a 21/n2 

(see Equation (8.11» and the degeneracy is L~:~ (2~+1)n= n2 . This 

considerable degeneracy in the three-dimensional Coulomb system is due 
to the fact that 'accidentally' the energy in this case does not depend 
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on ~. This system has a so called 'accidental degeneracy' in addition to 
the degeneracy due to the fact that the energy does not depend on m. In 
fact the Nth energy level of the Coulomb system with a degeneracy N2 has 
approximately twice the degeneracy of the thre~imensional simple harmonic 
oscillator's (- N2/2 for large N) Nth energy level. This is exactly true 
about the degeneracy of the Nth energy level of the two dimensional 
Coulomb potential = 2N as compared to that of the two-dimensional harmonic 
oscillator potential = N. The two-dimensional Coulomb potential also has an 
'accidental degeneracy' in that the energy is completely independent of m. 

In the three dimensional problem one may remove the (2~+1) degeneracy 
of each state for example by adding a term of the form aLz to the Hamiltonian, 
and hence a term anm to the operator in brackets in Equation (12.7). 

If one has two or more particle systems the degeneracies are generally 
quite numerous. 

EXAMPLE 12.5. Consider the system 

H(1, 2) = L2 (1) + L2 (2) 

n2[~1(~1+1) + ~2(~2+1)] 

W~1~2 (1, 2) = JL (y~1 (1) 
m1m2 12 \ m1 

1 ~1~2 
(where the is inserted in W (1, 2) for normalization purposes). 

12 m1m2 
For a given ~1' ~2 there are here generally (2£1+1)(2~2+1) syrnmetric 

wavefunctions and the same number of antisymmetric wavefunctions where 
for symmetric functions W(1, 2) = W(2, 1) while for anti symmetric wave
functions W(I, 2) = - W(2, 1). In the special case ~1 = ~2 there are only 

(2~ + 1)2 wavefunctions at the energy 2n2~(~+I) of which 2~(2~+1) are 
symmetric and (2~+1) antisymmetric. These results can be easily illustrated 
by listing the wavefunctions for ~1 = 1, ~2 = 1; ~1 = 1, ~2 = 2. 

(a) ~1 = 1, ~2 = 1 E = 4n2 , 
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i.e. a ninefold degeneracy. (This particular choice corresponds to the 

set of eigenfunctions ljJR. of the total angular momentum operator 
-+ -+ -+ m 
L = L(l) + L(2) where R. 2, 1, and 0) 

ljJ(l, 2) 

1 2 } Y±1(2)Y±1(1) ; 

1 ( ) 2 ) 1 ...L{y1 (1) y2 ( 2 ) Y+l 2 Y±l(l J; /2 ±1 0 ± 

i.e. a 30 fold degeneracy, 

The fact one can write these eigenfunctions as either symmetric or 
antisymmetric combinations is due to the fact that if P12 is an exchange 

operator where P12~(1, 2) = ~(2, 1) the Hamiltonian in this problem 

commutes with P12 i.e. [P12 , H12 J O. But the eigenvalues A 

of P12 are ±1 since if P12~(1, 2) A~(l, 2) = ~(2, 1), then 
2 2 ,2 

P12~(1, 2) = AP12~(1, 2) = A ~(1, 2) = P12~(2, 1) = ~(1, 2) i.e. A = 1, 

A = ±1. Since P12 and H(l, 2) commute this means the eigenfunctions of H 

can also be written as eigenfunctions of P12 i.e. combinations which have 

eigenvalues +1 or -1 under particle interchange. 
One can remove the degeneracy of this system for instance by adding 

the term a 1Lz (1) + a2Lz (2) to the Hamiltonian. With this term the 

Hamiltonian no longer commutes with the exchange operator (unless a 1=a2 ) 

and in addition different projections have different energies so there 
is no degeneracy. If a 1 = a 2 there is still 'exchange' degeneracy, though 

states with different projections are no longer degenerate. Inc the case 
above where ~1 = ~2 = lone then has one state with energy 4n2 + 2an two 

states with energy 4h2 + ah , three states with energy 4h2, two states 

with energy 4~2-ah and one state with energy 4h2-2ah. 
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122 122 EXAMPLE 12.6. Consider H(I, 2) = Tl + T2 + 2Mw r 1 + ZMw r 2 
Discuss the degeneracies of this two particle system, 

3 3 
E = (2n1 + ~1 + 2 + 2n2 + ~2 + 2)nw 

CHAPTER 12 

The degeneracies of the lowest three energy levels are shown in Table 12.3. 
One notes the degeneracies are quite numerous and that symmetric and anti
symmetric combinations of the resulting wavefunctions can easily be 
formed. 
Thus for E = 4nw: 

etc, 

where ± stand for symmetric and antisymmetric wavefunctions respectively 
and the 1/12 is inserted to ensure wavefunction normalization. 

EXAMPLE 12.7. Consider a particle subject to the Hamiltonian 

H = ~n(l + ~ (L2 + L2». p2 x y 

Discuss the energy levels of this system and their degeneracies. 

L2 + L2 = L2 _ L2 
x Y z 

is a useful identity here. 2 2 
Writing: HW ~n(l + n/n2 (L -.L »W = EW one obtains z . 

E 2 
~n(l+n(~(~+I)-m », ~ Y!(8, $), -~ ~ m S ~ 

i 0, 1, 2 ... 

m integer 

The first few levels and their degeneracies are illustrated in Table 
12.4. 

One notes that one can write for E, E = in(l+nn), n = 0, 1, 2, ... 
with different degeneracies for different values of n. 
Finally for small n E - n(~(~+I) - m2 ). 
Adding a term proportional to Lz will remove some or all the degeneracy 
depending on the coefficient in front of this additional term. 

When one has an energy state n which is say j fold degenerate 
(n1 , n2 , ... , n.) it may not be possible to use the perturbation expansion 
(11.14) directl~. In particular if the perturbation V connects 
any of the j degenerate states say n = n1 and m = ni 1 < i s j i.e. 

Vn1ni = <nllvlni> ~ 0, there will be terms in this expansion with a zero 

energy denominator E 
n 1 

- E n. 
l 

and non-zero numerator V 
n 1ni 
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1 Tab e 12.3. Degeneracles 0 f '1 1 Hamltonlan ln Exam....2c e 12.6. 

Ener~egeneracy n1 n2 £.1 £.2 ~(1, 2) m1 m2 

3li.w None 0 0 0 0 ROO(1)ROO(2)YOO(1)YOO(2) 0 0 

4Ii.w 3+3 = 0 0 1 0 R01 (1)ROO (2)Y1m1 (1)YOO (2) O,±1 0 

six fold 0 0 0 1 Roo(1)R01(2)Yoo(1)Y1m2(2) 0 O,±1 

9+5+5+1+1= 0 0 1 1 R01(1)R01(2)Y1m1 (1)Y1m2 (2) O,±1 O,±l 

0 0 0 2 Roo(1)R02(2)Yoo(1)Y2m2(2) 0 ±2 O,±1,+ 

5li.w twenty-one 0 0 2 0 R02(1)Roo(2)Y2m1(1)Yoo(2) O,±1,±21 0 
fold 

0 1 0 0 ROO(1)R10(2)YOO(1)Yoo(2) c 0 

1 0 0 0 R10(1)ROO(2)YOO(1)YOO(2) 0 0 

Tabl 12 4 D e egeneracles 0 f H 'It aml onlan ln E 1 12 7. xam£ e 

E £. m Degeneracy 

0 0 0 1 

£.n(1+CL) 1 ±1 2 

£.n( 1+2CL) 1 0 

~} 3 
2 ±2 

£.n(1+3CL) 3 ±3 2 

£.n(1+4CL) 4 ±4 2 

£.n(1+5CL) 2 ±1 

~} 4 
5 ±5 

£.n(1+6CL) 2 0 

~} 3 
6 ±6 

~n(1+7CL) 7 ±7 2 

In this case expansion (11.14) will consequently be divergent. 
The way out of this difficulty is to use the fact (see Equation (12.5) 
and (12.6» that one can take different combinations of the j degenerate 
functions, in particular a combination for which all Vn . n ., i f i', where 

1 1 

i, i'<j are zero. To do this one diagonalizes V in each subapace of degenerate 
states. The resulting eigenfunctions will have only diagonal matrix 
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elements of V. If one therefore uses this basis in expansion (11.14) 
it will not diverge since terms with zero denominator also have zero 
numerator. Moreover the eigenvalues of these diagonalizations are 
just the first-order energies of each state n since E = En + Vnn to first 
order and only the diagonal elements contribute to Vnn in this new basis. 

In the simple case of two degenerate states n1 and nZ connected by 

V, the normalized combination one must choose (which uncouples if ~ = 0) 
is 

Ini> = In1> cos ~ + In2> sin ~ 

In? =-ln1> sin ~ + In2> cos ~ , (12.8) 

with a cj) which makes <n'IVln'> = 0 1 2 namely: 

2V12 
tan 2~ = where V12 V11-V22 

(12.9) 

(provided V12 = V21 ). 

If one has three degenerate states n1 , n2 , and n3 connected by V, 

a normalized combination (which uncouples when a, ~ = 0) which one may 
choose is: 

Ini> cos e- cos cj)1n1> + cos a sin ~rn2> + 

In2> - sin cj)ln1> + cos ~ln2> 

In3> = sin e cos cj)ln1> + sin e sin cj) In2> 

where <ni!v!n2>, <ni!V!n3> and <n2!v!n3> are zero, 

(Provided V12 = V21 ' V13 V31 ' V23 = V32 ) 

Le. 

tan2~ 

2V12 
V11-V22 

2 (-V 13 cos ~ + V23 sin cj) 
tan 2e 

sin eln3> 

- cos e!n3> 

V11 cos 2 
~ + V22 sin2 ~ + V12 sin2~ - V33 

EXAMPLE 12.8. Consider a two dimensional oscillator 

2 2 
1 2 2 2 Px py znw (x +y ) + 2m + 2m 

( 12.10) 

(12.11 ) 
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where one wishes to find the energy of the second excited state 
(E = (N+1)nw, N = 2 if Vo = 0). 

1 Z 
;:; LPo, (o)lfnq(o) 

n"n~ (nHnj+l)tW"_E 

Vo<D -...L 
Vo 

E 
5hW 

Vo>o ...L. 
Yo 
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Figure 12.2. Graphical solution for energy levels in Example 12.8. 

Clearly the Cartesian basis is convenient here where the basis states 
for N = 2 are 121 ) = cj> 2 (x) cj> 0 (y), 122 ) = cj> 1 (x) cj> 1 (y), 123 ) cj> 0 (x) cj> 2 (y) , 

(see expression (12.4)). 
Using Equation (12.11), tan 2cj> 2V12/(Vl1-V22) o i.e. cj> 0 since 

cj>1(0) = 0, 

tan 29 00 

cj>~(0) cj>~(0) - cj>~(0) cj>~(O) 
i.e. 29 'ff/2, 9 'ff/4. 

12 ' ) 
1 

{cj>2(X)cj>0(y) + cj>0(X)cj>2(Y)} = -
1 /2 

122) <P1 (x) cj>1 (y) (12.12) 

and the energy to first order is 



152 CHAPTER 

3liw + <2iI VI2 i> 3liw + 2VOQl~(0) Ql~(O) 
VOmw 

=3hw+--
'TTfl 

E 3Iiw + <221V 122 > 3flw 

Two of the three basis states thus remain degenerate states to first 
order in perturbation theory. 

12 

( 12.13) 

This problem can also be solved exactly by graphical techniques. Thus 
the Schrodinger Equation for this system can be written 

Hence 

1 1jJ (x, y) = - Vo 0 (x) 0 (y) 1jJ (x, y). 
HO-E 

Using closure one may insert a complete set of states which are 
eigenfunctions of HO (namely L Ql (x) Ql (y» between the operator 

n n 
nx,ny x y 

l/(HO-E) and o(x)o(y) obtaining: 

1jJ(x, y) 

-Vo L (n +n +l)liw-E IQl n (x)Qln (y» $n (O)$n (O)w(O, 0). 
l1x ' ny x y x y x y 

1 

Inserting the values x, y 0 into this expression yields; 

1 
~ (n +n ;l)liw-E Ql~ (O)Ql~ (0), Vo nx,ny x y x Y 

i. e. , 
Ql~(O) 2Ql~(0)Ql;(0) (2Ql~(0)Ql:(0) + Ql~(O» 

.1...= --+ + + ... 
Vo liw-E 3liw-E 5liw - E 

This expression is illustrated graphically in Figure 12.2. Consider the 
energy level close to 3liw , E = 3 hw + £. Approximately for this level 

2Ql~(0) Ql;(O) 2 2 
- :0 = - £ i.e. £ = 2VOQl O(0) Ql2(0), 

2 2 and E = 3liw + 2VO QlO(0)Ql2(0), in agreement with the degenerate perturba-

tion theory result of Equation (12.13). 
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EXAMPLE 12.9. Consider the two dimensional oscillator 
2 2 

H 
1 2 2 2 Px Py 
2 mw (x +y ) + 2m + 2m 

2 V = Amw xy 

where one wishes to find the energy of the first excited state (If 
A = 0, E = (N+1)hw where N = 1). 

Clearly the Cartesian basis is convenient here where the basis 
states are 

Ill) ~l(x) ~O(y) (see expression (12.4)). 

Using the results given by Equation (12.9) 
2V12 

tan 2~ = since V11 = V22 = 0 whereas 

V12 f- 0 

i.e. 
11/4 

Thus 

Vll - V22 

Amw2 < ~l(x) ~o(y)lxYI~o(x)~l(Y» 

Amw2 <~1(x)lxl~o(X»2 

and the energy to first order is 

122 
2nw+2A<~0(x)l~w x I~o(x» = 2hw+Ahw/2. 

E 2 2 
2nw-Amw <~l(x)lxl~o(x» 

= 2nw - Ahw /2. 

This problem can also be solved exactly since 

153 

(12.14) 

(12.15) 



154 CHAPTER 12 

1 '2'2 1 2 2 2 
H+V = zm(X +y )+zmw (x +2>"xy+y ) 1 '2'2 1 2 2 1 2 2 

zm(X +Y )+zmW (l->")X +zmw (l+>")Y 

where 

1 
X=--=(x-y), Y 

12 

1 

./2 
(x+y) and E, ~ 

dt 

Written in terms of X, Y the Hamiltonian decouples and is seen to have 
eigenvalues: 

To order >.. one thus has 

>..nw 
E10 = 2nw - 2 

etc. in agreement with the degenerate perturbation theory results of 
Equation (12.15) above. 

(12.16) 

Likewise the exact wavefunctions corresponding to these energies are: 

where 

$~ = $l(X, w=w1)$O(Y' w=w2 ) and $~ = $O(X, w=w1 )$1(Y' w=w2 ), 
(12.17 ) 

i.e. 

w = w ./l-A , 
1 

1/2 
$2 = JL (row) (1_A2)1/8 

1 ./2 n1T 

e 

e 

mw Il-T x2 
2n 

= ($l(x)$O(y) + $O(x)$1(y))!l2 + 0(>..) 

consistent with Equation (12.14) to within an unimportant overall phase. 
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EXAMPLE 12.10. 

(Here 

Consider the Hamiltonian H 

21T 

1, f f($)o($-$o) d$ = f($o) ). 

o 

Treating -n2/21 d2/d$2 as HO' there are two possible pairs of 

degenerate eigenfunctions: either W = ~ cos n $ and 
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r.;-, - in$ 1T . $ 
v1/1Tsin n$ or W = 1/121T e and 1//2; e-~n , each pair having eigen-

values E = (n2n2 )/2I, where n must be an integer so that W($+21T)=W($) n 
i.e. is single valued. Additionally n 1 0 otherwise EO = 0 which violates 
the uncertainty principle (also for n=O the wavefunct~ons are not well 
behaved being zero or constants). 

Choice 1: 

Thus 

and 

n1 Ii7iTcos n$, n2 = h/1T sin n$. For this choice, 

Vll 
= Vo 2 

n$O; V12 
= Vo sin 2n$0; V22 

Vo .2$ and cos s~n n 0' 

tan2$ 

fni) 

Ini) 

E n 

1T 

1T 
2 cos 

21T 

Vo 2 ... . ... n'l'O -;- s~n n'l'O 

= 7i cos n$ cos n$O + sin 

1T 

tan 2n$0 i.e. $ 

n$ sin n$o) 
1 - cos 

/IT 

= ~-cos net> sin n$o + sin net> cos net>o) =..L sin 
/IT 

21T 
Vo Vo f cos2 n($-$o)O(et>-$o) d$ E + - E + , 

n 1T n 1T 
0 

21T 
Vo f . 2 n($-$o)O(et>-$o) det> = En ' E + - s~n 

n 1T 
0 

n($-$O) 

n($-et>O) 

or 

a result independent of $0 i.e. of the choice of original axis orientation. 
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Choice 2: 

For this choice, 
Vo 

V 11 = 21T 

1.. -incjl e . 

Vo -i2ncjlo 
- e 
21T 

Hence we cannot use expression (12.9) which assumes V12 = V21 . 

Instead one may have recourse directly to the expression (cf. 
Equation (12.8)): 

E 
n 

= E n 

Additionally substitution into <nilvln2> = 0 yields: (V11-V22 ) sin2cjl 

(V12 -V21 ) + (V12+V21 ) cos 2cjl, from which one obtains 

tan2cjl = [(Vll-V22)(V12+V21) ± (V12-V21)~Vll-V22)2+4V12V21]! 
[(V11-V22 )2 - (V -V )2] _ sin2p -

12 21 - cos2cjl -

Hence: 

E n (12.18) 

Expression (12.18) is quite general. In fact it involves the solutions 
of the eigenvalue equations which result from diagonalizing the 
Hamiltonian H in the space of two degenerate states n1 , n2 i.e. 

o. 
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for 
substituting in expression 

choice 2 one obtains: 
(12.18) the values of V11 ' V22 and V12 

Vo 
E = E +

n n 1T E n = E 
n 

which as expected are identical with the energies resulting from choice 1 
for the degenerate basis. 

EXAMPLE U.11. For the Hamiltonian in Example 12.10 calculate the second-
order energy contribution. 

Using the choice 1 for the 
Vo 

<mlV 0($-$ )In'> = -o 0 1 1T 

degenerate 

cos m $0' 

states 

Vo . 
- Sln 1T m $0' 

depending on whether m is 1/1; cos m$ or 1/; sin m$. Also 

Thus 

L 
mfn 

fO 

E -E n m 

v~ 2 V~. 2 
cos m$ Sln m~O 1T2 0 2 'f' 

{ . + .:.:....--1T _ } 
E -E E -E 

n m n m 
L 
mfn 

fO 

1 
E -E 

n m 

a result, like in 
orientation. Thus 

first order independent of $0 i.e. of the choice of axis 

2IV2 
__ 0_ __1_ 

2 2 L 22 
fi 1T mfn n-m 

fO 

which can easily be summed for a particular n. Thus if n = 1, 

E(2) 
IV2 P + 1 _ (1 + 1 + 1 + 1 + ... )} 3IV2 
_0_ 1 0 etc. 

m fi21T2 3 4 + "5 + ... 2 3 4 2fi21T2 

EXAMPLE 12.12. The 2s , and 2p, states of the hydrogen atom are separated by 
"2"2 l1E 9 

an energy 6E known as the Lamb shift (where ~ = 10 Hz). Consider these 

two states in the p~esence of an electric dipole field V = A~~ z. 

Neglecting the other energy levels of hydrogen calculate exactly the two 
new eigenstates of the system and the corresponding eigenvalues. Compare 
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these results with the eigenvalues and energies obtained using non
degenerate and deqenerate perturbation theory. (N.B. Consider carefully 
the parity of the integrals involved.) 
Defining: 

<1>1 - 2s, =1 1 ), £1 - £2s, , 
"2 

"2 

<1>2 - 2p, -
"2 

12) , £2 - £2p~' 
2 

mc 
V = fiz, 

one obtains 

+ A(llvl1)-E 

\(2Ivll) 

in agreement with Equation (11.7). 
But (lIVll) (2IVI2) = 0 from parity considerations. 
Therefore 

± 

Also 

a 1 = E1-£1 

aO A( 11 v12) 

and 

1/1 1 

If 

and 

(_ £1-£2 + 

\ 2 

+ ... 

+ •.. 

2 
(£1-£2) 
-----'''-4,.......:;:- + 

A(1IvI2) 

[:: 1 0, 
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Also 

etc., in agreement with non-degenerate perturbation theory for E and ~. 

If A(11v12) » (£1-£2)/2, £1 ~. £2 i.e. the Lamb shift is much smaller than 

the effect of the electric dipole field, 

in agreement with the degenerate result (see Equation (12.9)) for the case 
tan 2¢ = <X> 

i.e. 

and 

1T 

4 
1 

in which case 11') = - ( 11) + 12)) 
/2 

E1 = (1' I H II' ) 
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The Inverse Problem 

Usually in quantum mechanics one is given the potential of a system and 
one wishes to find the energy levels and eigenfunctions if the particle 
is bound, or the wavefunctions and hence the amount of scattering off this 
potential if the particle is free. Sometimes however, one knows the wave~ 
function (or phase shifts) and wishes to find the potential which produces 
this wave function (or these phase shifts). In the literature this is 
known as the 'inverse' problem. 

Consider the one-dimensional eigenvalue equation 

{ fJ.2 d2 l 
- - - + V(x) 1/I(x) 

2m dx2 J 

Solving for V(x) yields 

V(x) 

EXAMPLE 13.1. Find 

V(x) for 1/I(x) 

One evaluates 

2 
2 2 x -a 

o 

E1/I(x) . 

- 00 < x < 00 

Ixl > a . 

Ixl < a. 

From Equation (13.1) this implies 

(13.1) 

(13.2) 
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V(x) = E + 
( 2 2, 

m x -a ) 

161 

Ixl < a. (13.3) 

To find V(x) and E individually one must impose an additional condi-
tion. 

Suppose one is also given the information that <V> = o. 
This implies 

a 

dx 
m J E 

-a 

and 

V(x) 2 2 - 2 
m(x -a ) 4ma 

(13.4) 

Ixl > a. 

Figure 13.1 is a plot of the wavefunction in this example (and Figure 13.2 
of the resulting ~ential) and of the very similar function (in this 
region), $(x) = Ilia cos TIx/2a. 

I 

I 
! 

! 

/ 

/ 
/ 

" / 

~L----------------r----------------~~ 

Figure 13.1. Wavefunction in Example 13.1 (full line) and the 

similar wavefunction $(x) = 11/a cos TIx/2a (dotted 
line) . 

Other conditions, for example that V(O) 
energy reference. 

0, or E o merely shift the 

Thus if 

V(O) 0, E 

while if 

and V(x) 
fJ2 x2 

--- ---
222 rna x-a 

Ixl < a, 
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veX) 

__ ~-~d ____ ~?-______ +-____ ~~ ______ a~~.~ 

Figure 13.2. Potential in Example 13.1 if <V> o. 

E 0, V(x) 
}/ 

Ixl 2 2 
< a. 

m(x -a ) 

EXAMPLE 13.2. Suppose 

1jJ(x) Q -alxl = 20. xe 

and one wishes to find the potential which 
One must evaluate 1/1jJ(x) d21jJ(x)/dx2 . 

2 
6(x) =.1 ~ 

2 dx2 

for the delta function one obtains 

Hence 

i.e. 

1 
1jJ(x) 

V(x) 

V(x) 

2 
-2a6(x) + a 

E 

(13.5) 

results in this wavefunction. 
Using the representation 

(13.6) 
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The potential here is a sum of a Coulomb potential and a delta function 
potential (at the origin). As W(x) is odd the delta function does not 
affect this wavefunction's energy which is just that due to the Coulomb 
potential (see Equation (3.32) with n = 2). This example is illustrated 
in Figure 13.3. 

Three dimensional inverse problems follow along the same lines. 

EXAMPLE 13.3. Suppose the wave function describing a spinless particle of 
mass m in a short-range central potential is: 

-ar -!3r 
W(r, 8, q,) =A e - e (13.7) 

r 

where A, a, 13 are constants and a < 13. 

Figure 13.3. Wave function and potential of Example 13.2. 

From this data find the angular momentum of this particle, the 
energy of this state and the potential which results in this wavefunction. 
Firstly 

and 

2 2 L (8, q,)w(r, 8, q,) = 0 = n ~(~+l)w(r, 8, q,) 

L (q,)w(r, 8, q,) = 0 = nm w(r, 8, q,). z 

Thus ~, m are zero. Indeed this particular wave function has no 8, q, i.e. 
no angular dependence. 
Also 
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Since the Schrodinger equation for unO(r) is like that for a one
dimensional problem one can use Equation (13.1) and 

V(r) 
E + n2(a2e-ar - @2e-~r) 

2m(e-ar _ e-~r) 

For large r, V(r) goes to zero, i.e. 

o = E 2m 

n2a 2 
(since ~ > a), or E = - 2m 

Thus generally 

V(r) = n2 [{a2_@2)e-~r] . 
2m e -ar _ e-~r 

For small r, 

n2 -~r 

V(r) (a-8)(a+8)e 
:: 2m (~-a)r 

2 -~r n (a+@)e 
2mr 

(13.8) 

(13.9) 

Equation (13.9) is a 'shielded' Coulomb potential i.e. a potential which 
looks like a Coulomb potential for small r but which goes to zero much 
faster than the Coulomb potential for large r. 
If ~ i 0 one easily generalizes Equation (13.1) 

V(r) 

EXAMPLE 13.4. Suppose 

ljJ(x) = 10. e-a1xl 

find V(x), E. 
Evaluating 

1 
ljJ(x) 

d21j!{x) 

dx2 

(see also Example 13.2). 
Thus 

a2 - 2a6(x) 

A suitable choice here is 

(13.10) 

r ~ 0 

(13.11) 
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V(?() 

Figure 13.4. Potential and wavefunction in Example 13.4. 

2 
V(x) = - n n o(x). 

m 

This problem is illustrated in Figure 13.4. 

EXAMPLE 13. 5 . 

w(x) 

find V(x), E. 

Evaluating 

Suppose 

_1_ d2w(x) 

W(x) dx2 

V(x) 

The identification 

is acceptable. 

6 2 
16 !L- - 12 !L-a 4 

a a 

E 0, 

This problem is illustrated in Fiqure 13.5. 

165 

(13.12) 

(13.13) 

(13 .14) 
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'V(x) 

/ z;r~) 
.80 

.60 

.40 

.W 

~~=-~~--~~~===.~5==~--t-====~==~~:-----~1.~5=-==~2~--~~ 
Gl 

Figure 13.5. Potential and wavefunction in Example 13.5. 



CHAPTER 14 

The Dalgarno-Lewis Technique 

In treating quantum mechanical systems which do not admit to exact 
solutions for their energy levels and corresponding wavefunctions one has 
at one's disposal as mentioned in a previous chapter the variational 
approach (Chapter 10). This however, is restricted to the ground and 
possibly first excited state (if the Hamiltonian commutes with the parity 
operator). For other states (and even for the ground state if one re~~ires 
greater accuracy or additional information against which to juxtapose the 
variational results) one must fall back on the straightforward applica
tion of perturbation theory (Chapter 11) which is generally tedious and 
at best only approximate. This is because, for other than the first-order 
results, using perturbation theory one has to evaluate infinite sums in 
each order (cf. expressions (11.14), (11.15) which one generally approxi
mates by selecting only a few terms which arise to that order. 

In this context there does however exist a technique, first pointed 
out by Dalgarno and Lewisl) which in some cases allows one to do away 
with tedious summations and gives exact answers to a given order. 

The basic equation which defines the operator involved, F (x), is: 
n 

(14.1) 

where the Hamiltonian H of a given system is broken up into HO + hand 

the eigenfunctions of HO are ~ . Moreover E(l) is just the first-order 
n n 

energy term for such a decomposition of the Hamiltonian namely 

E~l) = (~nh~n)' The matrix elements obtained from expression (14.1) 

namely (~nl[Fn' Ho]l~n) are consistent for the diagonal case since 

(~ I [F , HO] I ~ ) = 0 = (~ I h - E (1) I ~ ), n n n n n n 

and for non-diagonal matrix elements 

£ - £ 
(m ;o! n). 

n m 
(14.2) 



168 CHAPTER 14 

Evaluation of the commutator in Equation (14.1) for a one-dimensional 
Hamiltonian whose potential energy term does not involve the momentum 
yields: 

dF 
+ 2 n 

dx 

d4> n 
dx 

and with a little manipulation this leads to the closed form expression: 

I 
( 14.3)1 

I 

One notes F is clearly state dependent. In expression 14.3, a is a 
n 

conveniently chosen constant (usually 0 or 00). Moreover as can be seen 
from Equation (14.1) or Equation (14.3) Fn is determined only to within 

an arbitrary constant. 
The usefulness of Fn(x) is obvious if one considers for instance ~he 

second-order energy term: 

E(2) 
V V (~nlhl4>m)(4>mlhl4>n) 

:E 
nm mn 

:E n mfn E -E mfn E -E n m n m 

and using closure: 

(14.4) 

a result which involves only two, as opposed to an infinite number of 
matrix elements. 

Similarly the wavefunction to first-order is: 

where N 
i.e. 

(- 4>v) I }' W = N ¢ +:E ~ = NL1+F -(4) IF 14> ) 4> , (14.5) 
n n mtn En-Em n n n n n 

1 if one requires only that Wn is a cross-normalized function 
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(where 

if one 

_, 
N = (1 + t:.F ) "2 

n 

t:.F = (~ IF21~ ) _ (~ IF I~ )2) n ~n n ~n ~n n ~n 
requires ($ 1$ ) = 1. 

n n 
The third-order energy is: 

V V V 
E(3) = :E run mp pn 

n m,prn ( En-Em) (En-Ep) 

V V 
E(I):E run mn 

n ? 
mrn (E -E )

n m 

. Using closure here also, one obtains: 

($ IF hF 1$ ) - 2E(2)($ IF 1$ ) n n n n n n n n 

169 

a result which needs only two additional integrals for its evaluation. 
Some examples which illustrate the efficacy of this technique are 

given below. 

EXAMPLE 14.1. Consider 
2 

H=E-+V 
2m 

where 

a.nc 1 2 2 V = - - + - mw x 
x 2 

x ~ 0 , V = <XI x < 0 

(and a. = e 2/(41lEonC) is 1 
the dimensionless fine structure constant a. = 137 

p2 n 
for the Hydrogen atom). Treating 2m - a.x c as the unperturbed Hamiltonian 

obtain the Dalgarno-Lewis function FO. Use this to obtain the energy of 

the ground state to third order, the wavefunction to first order, and two 
upper bounds to the energy of this system. 

For the partition 



170 CHAPTER 14 

2 anc 1 2 2 H = E-_ h 
0 2m x "2 mw x 

- - 3 arncx 
E(O) 1 2 2 

<Po 4 (arnc) - "]1 
0 - EO - :;- mc a , 

\. n ) 
x e 

"-

and 

i.e. to first order in perturbation theory 

E(O) + E(l) = _ 1 2 2 II _ 3(~)2}-o 0 2 mc a 1 2 2 . 
mc a 

(14.7) 

One notes this series involv~s the ratio of the energy level 
parameter ( nw) for the Hamiltonian H' = p2/2m + h to the energy level 

parameter for HO' (mc2a 2 ), and as expected the bigger w the more TInportant 

the repulsive first-order correction to the energy of this system. 
Substituting in Eauation (14.3) with the convenient choice a = 00 one 

obtains: 
2 mw 3 

FO(X) = - 6nca x 
w2 2 - 22 x , 

2c a 

which one can easily verify satisfies Equation (14.1). 
One readily obtains: 

li(~12 
(QlOIFOIQlo) = - 4 2 2) 

mc a 

and 

Hence substituting in Equation (14.4), 

E(2) _ 129 2 2 (~,4 
o 16 mc a 2 2) , 

mc a 

2 2 mc a . 

a result again directly proportional to (in this case the fourth power 
of) w. 

To obtain the exact energy to third order one must evaluate ,the two 
additional integrals: 

4095 (~ ,6 
16 2 2) mc a 

2 2 mc a , 

and 
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Substituting into Equation (14.6) one obtains 

E(3) : 5451 (~)6 2 2 
o 32. 2 2 me a . 

me a 

Thus: 
2 

1 2 2 f 1 _ 3 tnw 1 - 2 me a 1 2 2J 
c a 

+ 129 tnw }4 _ 5451 J~l6 } 
8 2 2 16 1 2 2 J c a ~c a 

(14.8) 

The wavefunction to first order is: 

If one uses as trial wavefunction in Equaton (10.2) the wavefunc~ion 
$0' ground state eigenfunc.tion HO in the decomposition H = HO + hone 

obtains: 

E S ground 
E (O) + E(I) 
o o· (14.9) 

exact 

If one instead uses for trial wavefunction in Equation (10.2), 
Equation (14.5) i.e. the wavefunction correct to first order (with 

_l. 
N = (1 + ~Fo) 2) one obtains 

E =E s o ground 
exact 

(2)+ (3) 
E(O)+E(I)+EO EO 

o 0 1+~F~ 

(14.10) 
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All the terms needed to evaluate Equation (14.10) are known in this 
case, yielding 

E ground 
exact 

t nw 14(129 _ 5451 tnw }2) 2 2 
2 2f 16 32 2 2 mc a. 

co. co. 
1 + 319 f~ 12 

16 I 2 2 J 
'mc a. 

Both Equations (14.7) and (14.11 ) are upper bounds to the exact 

EXAMPLE 14.2. Consider the system 

2 
H E..... + V 2m 

V 
1 2 2 a. x ~ 0 V = 00 x < 0 "2 mw x + 2 x 

( 14.11) 

E ground' 

Obtain the energy of this system to second order in perturbation theory 
using the Dalgarno-Lewis technique. 

Then 

It is reasonable to partition H into 

$o(x) 

E(O) 
0 

2 122 
~ + "2 mw x and h 

ex 
2 

x 

(~W)3/4 2x 2 

1/4 
e-mwx /2h 

1T 

E (1) = 3 hw, 2mwo. and 2 0 n 

n E(l) 

h a. 0 
2 2 x 2mwx 

(If a. = n2 E(O) + E(l) 
mOO 

7 "2 nw, as opposed to the exact answer in this 
5 case (see Example (10.5), namely ."2nw). 

x 
Y 2 

1 f W(z)z2 e-mwz /n dzdy 
-mwy2/h y2 e a 

J 
where 

W(z) = 2m (h - EO(l)'j' 
n2 \. 

With the convenient choice a = 0 and using 2 ) 
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u 00 2ku2k+1 

f 
2 2 

L: -u du -u (2k+1)! ! e e k=O 
0 

2 k 
2E(1) 00 

2k-2 (m~x ) E(l) 
0 0 

FO nw L: 
k=l 

2E(1) 
o 

nw L: 
k=O 

k(2k+1)!! 
+ --

2nw 

(2k+3)!! (k+1) 

2 
9..n mwx 

E(l) 
o 

2nw 

n 

2 
9..n mwx 

Ii 
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which satisfies Equation (14.1) as one can easily verify. Substituting 
into Equation (14.4) yields: 

9..n u du - 2 

00 2 

f 2-u u e 9..n u dU} 
o 

2 

{E~l)) 
nW1l~ { 

, [EO( 1) Y ./:; } ()'+29..n2)-T = nw 

(where )' 0.5772157 ) 

If 

Substituting into Equation (14.6) one additionally obtains 

EXAMPLE 14.3. Consider H HO + h where 

2 1 2 2 
Anw fi E(2) 

HO L+ h x (all x). Evaluate FO' 2m "2 mw x 0 

etc. 
Since 

(~w )1/4 
2 

(05 nw E(l) 
C/lO(x) 

1 -mwx /2n and 0 
1/4 

e EO 2 0 
11 
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as can easily be shown from parity considerations, 

and 

0, ~ = N {1 - AX ~ } ~O 

one can evaluate the exact energy in this case hw _ hw A 2 since 
2 2 

EXAMPLE 14.4. Given H = HO + h where 

2 2 122 
HO = ~ + 2 mw x, h Anw mwx (all x). n 

F " d E(2) t In FO' 0 e c. 

From Example 14.3 ~O and E(O) are known o 
2 2 

Anw (~Omw2x ~ II O)nw 
Anw 1 nw 1-

4 nw 

2 
x . E (2) = _ A 2 nw 

o 4 

Anw 
-2-· 

The exact energy in this case can easily be shown to be 

~ nw /( 1+2A) ~ nw {1 + A _ ;2 + ... } 

EXAMPLE 14.5. Given H = HO + h where 

~ 1 2 2 
Ha = 2m + 2 mw x 

( 2 ) 
obtain Fa ' and EO· 

h = Anw (~w) 
3/2 

3 x (all x), 

Using the expressions in Example 14.3 one easily sees E(1)= 0 from parity a 
considerations, while, 
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FbI) = _ A (;3 {~wr/2 + x {~w}1/2} 

and E(2) 
o 

EXAMPLE 14.6. 

111'lwA2 
8 

Given H = HO + h where 

2 122 
~ + 2 mw x and h ~ Ahw j f: x 

obtain F1(x) , E~2)etc. 

3/2 
<PI (x) = (~w) ../2 x 

1/4 
'IT 

2 -mwx /21i. 
e 

One obtains E(l) 
1 

o from parity considerations. 

(all x) 

1 li.w 
2 

E ( 2) = (<p FhQ> ) 
111 

which turns out to be the only non-zero correction to E(O) for this 
1 system (cf. Exarople 14.3). 

EXAMPLE 14.7. Obtain F1(X) and Ei2 ) if 

Here 

<PI (x) 

In this case 

2 1 2 2 ( 2) L and h = Ali.w ~nw x 2m + 2 mw x 

(~W)3/4 l2 x 

11 'ITI/4 

2 
e-mwx /2n and E(I) 

1 

(all x). 

A3li.w 
2 
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(The same result as for FO(X) of Example 14.4), an expression which can 

easily be shown to satisfy Equation (14.1). Using F1 (X) one obtains 

E(2) = _ 3li.w A2 which agrees with the A2 term 
1 4' 

exact energy ~ li.w (1 + 2A)1/2 in powers of A. 

in the expansion of the 

(~he F (x)'s for this 
n 

system if n >1 are more complicated than F1(X) = FO(X». 

A useful property of the F function is that it is additive. Thus if 
for a given HO' h1, and h2 individually result in first-order energies 
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E1(1) 2 ( I \ and lead to Fl and F2 respectively, for the E . case n ' n n n 
h = hI + h2 , the defining equation ( 1 ) is satisfied b Fl + F2 since Y n n 
E(I) Elll ) t E2(1). One can thus use results from simpler problems in n n !1 

more complex situations. 

EXAMPLE 14.8. Given HO ~ 1 2 2 
2m + 2" mw x and 

h Alli.w ft x ... A2li.w (/~w x f (all x). 

Find Fa, FI etc. 

Combining the results of Examples 14.3 and 14.4. 

and from Examples 14.6 and 14.7. 

i.e. 

+ ... } 

2 2 

E = 32li.w {I + (AI + A2 1 } 
1st existed A2 - \3 2) + ... 

in agreement wlth the exact energy results: 

Eexact ground 
2 

1 li.wAI 
-2 li.w II + 2A -

2 2(1+2).2) 

Eexact first excited state 

lli.w ~-
2 ,; 2 

2 
li.wAI 

2(1+2A2) , 

expanded to order A2. 
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EXAMPLE 14.9. Consider the Hamiltonian 

H ~ a.hc + U 
2m x 2mx2 

a . 

Treating h = n2~/2mx2 as a perturbation, study the energy of the 
ground state of this system. The unperturbed ground-state wavefunction is 

~a = ;. (~c)3 xe - ~cx 

and the unperturbed ground-state energy is 

E(a) __ 1 2 2 a - 2 mc a. . 

One immediately evaluates the first-order energy contribution 

The exact energy if ~ = 2 is 1 2 2 which (E(a) + E(1) being an - sa. mc , a a 
bound) is less than 1 2)a.2mc 2 3 2 2 

(- - + = 2" a. mc 2 
Using Equation (14.3) one obtains Fa in this case: (with a 

mca.@ 2a.mcx 
F = x + ~~n ann 

Hence evaluating Equation (14.4) in this case yields: 

522 2 - 2" ~ a. mc , 

where one uses the fact 
00 

f e-u ~n u du 

a 
- y etc. 

Using Equation (14.6) one can also evaluate Eb3 ), 

00) 

upper 
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