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Preface

This monograph is written within the framework of the quantum mechanical
paradigm. It is modest in scope in that it is restricted to some obser-
vations and solved illustrative problems not readily available in any of
the many standard (and several excellent) texts or books with solved
problems that have been written on this subject. Additionally a few more
or less standard problems are included for continuity and purposes of
comparison.

The hope is that the points made and problems solved will give the
student some additional insights and a better grasp of this fascinating
but mathematically somewhat involved branch of physics.

The hundred and fourteen problems discussed have intentionally been
chosen to involve a minimum of technical complexity while still illus-
trating the consequences of the quantum-mechanical formalism.

Concerning notation, useful expressions are displayed in rectangular
boxes while calculational details which one may wish to skip are included
in square brackets.

Beirut HARRY A. MAVROMATIS
June, 1985



Schematic illustration of
various approaches to
calculating Energy Levels

of

Quantum Mechanical Systems

Generally useful
approaches:

1) Schrdédinger Equation
in Momentum Space
(Chapter 3)

2) Schrédinger Equation
in Coordinate Space
(Chapters 8, 9, 12)

3) Poles of Scattering
Amplitude
(Chapter 6)

4) Perturbation Theory
(Chapter 11)

5) Dalgarno-Lewis
Technique
(Chapter 14)

{

High lying
States:

1) Wilson-Sommerfeld

Quantization Condition
(Chapter 1)

Ground State:

1) Uncertainty Principle
(Chapter 5)

2) variational Approach
(Chapter 10)



CHAPTER 1

Wilson-Sommerfeld Quantization Condition

The hydrogen atom, when treated using Bohr's admixture of classical and
quantum concepts involves an electron circulating about a proton (sub-

ject to the attractive Coulomb force - (e2/4wsor2)f) in orbits which
satisfy the condition:

2mr = mn ADe Broglie’

Since A = h/p this reduces to p2mr = nh, which may be

De Broglie
generalized to the Wilson-Sommerfeld quantization condition

ép dg = nh n=1, 2... (1.1)

where implies a complete cycle, and p and q are conjugate variables.

Equation (1.1) gives the correct quantized energies for the hydrogen
atom 'by construction'. But it also gives the correct energy spectrum
for a particle in a box with infinite walls

V(x)

0 0 <x < a
= o x <0, X > a.

EXAMPLE 1.1. Find the energy levels for a particle in a box with
infinite walls:

V(x)

[t}
8

x < 0, X > a,

V(%) 0 0 < x < a.

In the region 0 < x < a, E = p2/2m.
Hence Equation (1.1) in this case becomes

§ v 2mE dx = nh
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Figure 1.1. Potential in Example 1.1.

where a cycle involves x varying from O - a and from a - 0.
Integrating one obtains

2.2
2a/ 2mE = nh or E =2 h2 , n=1,2, .... (1.2)
8ma

By contrast the quantum-mechanical treatment of this problem involves
solving the Schrddinger equation:

2 2
[_ h d_2 + v(x)] P(x) = EP(x)... (1.3)
2m ax

for 0 < x < a with boundary conditions Y(0), Y(a) = 0, Y(x) being zero
for x < 0, x > a.

The properly normalized eigenfunctions of Equation (1.3) which
satisfy these boundary conditions are
2,2

2m

i

I
e]

P(x) V//é sin kx with ka = nm, where

Y(a) = J//g- sinka=0 if ka=nm, n=1, 2, ...,

Thus

sin 0 = 0

TN

¥(0)

and

while
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a
J |¢(x)]2 dx =1
0

by construction.

Since
o - hok
2m
this implies
h2n2“2 h2n2
E = 5 = 5 nh = 1, 2, ’
2ma 8ma

exactly the result (1.2).

One can gain a little more insight as to the range of applicabil-
ity of the Wilson-Sommerfeld quantization condition by studying slightly
more complicated systems.

EXAMPLE 1.2. Find the energy levels for a particle in the potential:

V(x) =0 0 <x<a,
= V0 a<x<a+hb
= o0 Xx <0, x>a+b.
(Assuming E > Vo which is the interesting case.)
V(’x))* %
y /
/
/
LS By e e e e
/ P ;
/ :
g f |
[}
% 5 "
a 8+b i’

Figure 1.2. Potential in Example 1.2.
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The Wilson-Sommerfeld quantization condition can be immediately
applied to this case:

a a+b
2Jpldx+sz2 dx = nh
0 a
where
= = = = -
p, = hk; v 2nE , p, = hk, v 2m(E Vo)
l.e.

2h(k1a + kzb) = nh

kla + k2

On the other hand solving the Schrddinger equation in the regions
0<x<aanda<zx<a+b (y(x) being zero for x < 0, x 2 a + b)
yields:

<
X
Il

A sin klx 0 <x<a

€
X
I

= B sin k2(x - a->b) a<x<at+thb,

since P(0) and Y(a+b) must be zero.
The continuity of ¥(x), dy(x)/dx at x = a then implies

tan k1 a = - (kl/kZ) tan k2 b ... (1.5)

One notes that conditions (1.4) and (1.5) are different. Only
if k., = k1 i.e. E > > VO that is the total energy is large compared to

2
the potential energy does Equation (1.5) reduce to Equation (1.4) since
then tan kla ~ - tan k2b which is satisfied if
kla + k2b = nm, n=1, 2,

Though the Wilson-Sommerfeld quantization condition was superseded by
Quantum Mechanics (with the Schrédinger and Heisenberg formulations in
the early twenties) as a calculational aid it has the advantage over
the Schrddinger equation for instance that it is easier to work with
since it involves an integral rather than a differential equation.
However, it generally gives results which are reasonably accurate (i.e.
in agreement with Quantum Mechanics) only when the energy is large com-
pared to the potential under consideration.

If V(x) = A|x|P one can obtain the form of the energy sequence
according to the Wilson-Sommerfeld quantization condition (1.1) as
follows:

b=nmv, n=1, 2, ... . (1.4)
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§ v 2m -A[xlp dx = nh

can be written (for En > 0) as

. E \1/p
v 2mE § v o1-|ul® d(}?) u = nh.

Hence
pt2
5 2P (K_Z_rn) f /1 - [ulP du = mn
n 1/p
A
or generally:
NEZN 2p/(p+2)
g | = n2P/(p+2) J—_I— n=1,2, ... (1.6)
n v2m I(p) (p > -2)
where
v P i
I(p) = § 1 - |ul du if En >0
and
I(p) = § v |u|p-l du if E <O.

As p »> =, Erl in Equation (1.6) becomes « nz, the result (1.2) for a
particle in a box with infinite walls. [In detail I(x) = 4, E = %§%3/32m =

2 .
n h2/32m. This corresponds to a = 2 in Equation (1.2), i.e. V=0 [x[ < 1,
V = o|x| > 1.]

In several cases I(p) can be easily evaluated.

EXAMPLE 1.3. Find the energy levels for a particle in the well

V(x) = Ax2, -©» < x < o using the Wilson-Sommerfeld quantization condition.
If p = 2 Equation (1.6) reduces to

E = _A_l/z__h__
n_ ™ 2m 1(2)

where 1

-1
E =nh / 2 n=1, 2, ... . (1.7)
n m
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As opposed to the familiar Schrddinger equation result,

E =(m-Hhn /R, n-1,2 ... (1.8)
n m
EXAMPLE 1.4. Find the energy levels for a particle in the well

V(X) = AXZ, x >0, V(X) = o, x < 0.

This problem goes through just as in Example 1.3 except

O—
-
[}
o
N
Q
o
|
INIE]

I(2) =2
and hence

E =2nh /2B n=1,2, ... . (1.9)
n m

As opposed to the Schrddinger equation result:

21
= -1 == =
En (2n-3) h / m ¢ D 1, 2, .. . (1.10)

EXAMPLE 1.5. Find the energy levels for a particle in the well
V(x) = Alxl all x (A > 0). Here p = 1 and Equation (1.6) reduces to:

E
n

v2m I(1)

where 1
— 8
I(1) = 4 J vV 1-x dx = 3
0
l.e.
2,241/3 2/3
E_ = n?/3 (ILI:‘—) (——3%_) n=1,2, ... (1.11)
42

as compared to the solution of the Schréddinger equation (see Equation
(3.31)) for this problem in the limit of large En namely:

2,2.1/3 2/3
E = (n-1)?/3 (A—h—) (3%) n=1,2, .... (3.31)
n n 4/2

EXAMPLE 1.6. Find the energy levels for a particle in the well

V(x) =Ax x>0 (A >0).
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This problem goes through as in Example 1.5 except
1

I(l)=2j\/l-xdx=4/3
0

and hence

2,2.1/3 2/3
E =n2/3 (A—i‘—) (&_) (1.12)
n " 2/2

as compared to the solution of the Schrddinger equation (see Equation
(3.18)) for this problem in the limit of large En namely:

2,2.1/3 2/3
5 - (n_%)2/3 (Am ) (3%) (3.18)
2/2
EXAMPLE 1.7. Find the energy levels for a particle in the well
V(x) = - |A|/[x]| all x. Here p = -1 and E < 0. Thus
-1 -2
IE l - n‘2 (lA[ h )
n V2m I(-1)
where

=l

1
I(-1) = 4 f / -1 du = 2w,
0

2
E =—i2 2—’“%]— (1.13)
n n A

Which is identical to the energy levels obtained for this problem using
the Schrédinger equation (see Equation (3.32)).

EXAMPLE 1.8. Find the energy levels for a particle in the well
V(x) = _lﬁl , X >0 V(x) =, x <O0.

One proceeds as in Example 1.7 except

1
1
I(—l)=2j/;—ldu=n
0
and hence

2
g - -mnal n=1, 2, ... (1.14)
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which is identical to the energy levels obtained for this problem using

the Schrddinger equation (see Equation (3.23)).

EXAMPLE 1.9. Find the energy levels for a particle in the well

V(x) = A(xll/z all x.

Here
p+=-4% and E > 0.
Thus
2 2/5
(o ()
Vom I(%)
where 1
1
I(i) = 4 J J1-ufaqu-=32
15
0
i.e.
2 2/5
En = nz/s(A____'h 15 ) n-= 1/
v2m 32

EXAMPLE 1.10. Find the energy levels for a particle in the well

1
V(x) = Ax? x > 0, V(x) =« x <O0.

One proceeds as in Example 1.9 except

1
i
I(%) =2 J v 1 -u®du-= %%
0

2 2/5
E_ - n2/5 (A h15 ) n=1, 2,
vZm 16

Using this technique one may also obtain analytic expressions

1

(1.15)

(1.16)

for E. if V(x) = Ax® etc. As p » O the levels go as n® i.e. become very

close together or one approaches a continuum situation.

EXAMPLE 1.11. Find the energy levels for a particle in the well

_1
V(x) = -|A[|x| * all x.

Here p = - 3 and E < 0. Thus
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2:N

|23 (LA_I'_Z_h_)‘Z/3 D1

Y2m 1(-1)

where

1
/-1
I(-%1) =4 j u’?-1ldu=nm
0

-2 -2/3
g = -n /3 (E_l—h) . (1.17)
V2m m
EXAMPLE 1.12. Find the energy levels for a particle in the well
-1

2

V(x) = -|Alx 2, x>0, V(x) =«, x<0, E<O0.

One proceeds as in Example 1.11 except

1
1 -
I(-3) =2 f AT -1 qu =
0

N

-2 -2/3
B = - n-2/3 (lA 2h) ) (1.18)
Vom w

The results of Examples 1.3 - 1.12 are summarized in Table 1.1.

For two-dimensional systems (or three-dimensional systems where
a particle moves in a plane chosen for convenience to be the x-y
plane), and the potential only depends on p,

P2 P2
__p 9
E = S + — ¢+ V(p). (1.19)
2mp
Hence
d =n,h n =1, 2... 1.20
§%¢ o ¢ (1.20)
which implies
=n,h
Py = Mo
and
d =nh n =1, 2,... 1.21
§ppo P o { )
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TABLE 1.1
Energy levels for various potentials V(x) = A[x|p
P Range Wilson-Sommerfeld Schrédinger result
quantization condition
2,2.1/3 2/3 (for large E)
1 x:20 | B =023 (’-*L) (—31-) /3, 22\ V3
n m — 1 A 3
22 E =[n-z (——) [2-—:)
n m v2
B = rl2/3 (1\2’1'12 )1/3( 3 )2/3 (for large E)
—o0< <o - / 2/3
1 <x< n m o . =(n,l)2/3(A2¥12_)1/3( 31'r) /
n 2 m 4/5
(A\l/zh 1\( A /2y
2 x 20 En = ZnK%) T En = (2n-5)(2m) -
, . Y% oo (a2 a2 n
SRS n_ " 2m ) 11 n 2 )\ 2m 1r
m A|2
-1 x20 E =-S5 3 Same
n n 2h
2m A[2
-1 —00< ¥ <00 E = - Same
n 2.2
n~h
1 . _ .2/5 A2h15 2/5
5 x 20 En =n _—
v2m 16
1 _ . 2/5 A2h15 2/5
> —00<g< En =n —_—
v2m 32
-2 -2/3
RE En:_nz/3(JAL_2_h)
v2m w
-2 -2/3
) % cocxen | B = _n-2/3(JAJ_L)

2m ™
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11

2mV(p) dp

)2
§ /éﬁE - £2$5l_ -
P

n h
P

(1.22)

The integral in Equation (1.22)
problems.

EXAMPLE 1.11.
From Equation (1.22) one has

§ /ZmEp2 - (n¢h)2 - m2w2p4 %?

n h
o}

can be evaluated analytically for certain

22

Find the energy levels for the potential V(p) = imw p”.

(1.23)

One can either evaluate integral (1.23) using complex integra-

L1
tion”) or by elementary methods.

where u and u_.,
max min

u

i.e.

—

This yie

or

\/A+Bu+Cu2

vanish i.e. u =
max
min
E 2 n how.
¢
lds:
Em
-n,h)m + =— = n h
(¢) ° 0

2C

and B

Thus defining A = - (n¢h)2, B = 2mE, C = -m2w2 u = 2
§ v A + Bu + Cu2 du = 2n h
u P
Umax Ymax Ymax 2
2 J’ du BJ du lJ’ d(A+Bu+Cu”)
= 2(a —_— —_— | —Y—/—/—/——— ) =
2 2 / 2
/. 2 VA+Bu+Cu2 A+Bu+Cu
Upjpuv/A+ButCu Unin Ynin
u
1 -1 Bu+2A B 1 -1(-2Cu-B /. 2 o
Z(A — sin T —————+ 3 = sin (— ) + vA+Bu+Cu ) = 2nch
V-h w/B%-4aC V-c /B%-anc u
min

are determined by requiring that the integrand

_ -B®/B2-4AC

2 > 4AC
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E = (2 + hw .
( np n¢) (1.24)
where
n
p } 1, 2,
n
P

as opposed to the standard Schrddinger result for this system (see
chapters 8 and 12)

E = (2n +m - 2)hw “}=1, 2... (8.14)

Besides its shortcoming that it gives quantitized energies which
are as a rule only approximately correct for energies large compared
to the potentials involved, the Wilson-Sommerfeld procedure says
nothing about the evaluation of probability distributions, transi-
tion rates etc. for which there are standard techniques in quantum
mechanics.

On a more positive note the quantization condition Equation (1.1)
is also a consequence of applying the W.K.B. approximation to the
Schrédinger equationz)with the modification that nh must be replaced

by (n + %)h to get the W.K.B. approximation result.

References

1. H. Goldstein, Classical Mechanics, Addison Wesley (1950), p. 300.
2. E. Merzbacher, Quantum Mechanics, Wiley (1970), p. 123.




CHAPTER 2

The Delta Function, Completeness and Closure

The delta function is defined to have the following properties (in one
dimension)

§(x-x') =0 xX # x'

(2.1)
J&(x-x') dx =1
These have as a consequence that
+00
J f(x)8(x-x') dx = f(x'). (2.2)

-

One way to get some insight into this useful function and expres-
sions for it in terms of standard functions is to use 'the principle
of completeness'. The principle of completeness allows one to expand
an arbitrary function in terms of any complete orthonormal set. Thus
if Y(x) is an arbitrary function

Voo = T ae (), (2.3)

if the complete set ¢n(x) chosen is a discrete set, or

o(x) = Ja(k) ¢, (x) dk (2.4)

if the complete set ¢k(x) involves continuous functions, where

_ *
a = J¢;(x)w(x) dx, a(k) = J¢k(X)w(x) dx. (2.5)

Expanding the delta function §(x-x') in terms of a complete set of
discrete functions 1implies:
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§(x-x') = ian¢n(x)
where

a, = [eneosxx) ax = or(x')

oo

§(x-x"') = I ¢ (x')o (%), (2.6)
n=0

and similarly expanding the delta function in terms of a complete set of
continuous functions implies

+o0

stext) = [ oR(x10 () ak. (2.7)

~00

EXAMPLE 2.1. Suppose one uses as a complete discrete set the eigen-
functions of a particle in an infinite square well potential (a box with
infinite walls)

V(x) =0 - - <x <=2
V(X)=:°°-';'>XIX>%I

for the expansion (2.6) with the choice x' = 0. The normalized even
subset of the above eigenfunctions (the rest, i.e. the odd subset is zero
at x = 0 and does not contribute to the integral (2.5) for an, and hence
to the sum (2.6)) is

0 (x) = /2 cos £ 1 n=0, 1., -2 <x< g
n a a 2 2
(2.8)
a a
¢n(x) =0 X < > X > 5
Hence a possible representation of the delta function is
G(X)'—"Z' ZCOSM _§.<X<.a. (2.9)
a a 2 2
n=0
=0 x<-—§- x>%

EXAMPLE 2.2. Show Equation (2.9) is consistent with Equation (2.1). One
notes, interchanging integration and summation that
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15
a/2
+
J'% 5 cos 2Rl ax = 2 3 J cog{2nt1)mX 5o
a o a a. o X
n n _a/2
L n
4 (-1)
= = T ,
T __~ 2n+l
consistent with the integral in expression (2.1).
Considering the first two terms in expansion (2.9) as a crude
approximation one gets the approximate representation
§(x) = 2(cos££ + cos §£§) -4 cos Iz cos 2mx , (2.10)
al a a a a a

plotted in Figure 2.1.

as(x)=5(%)

® R

AWE ANEANEAN

AN

Figure 2.1. Plot of §(x) = § cos Ix cos 21X .
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Considering the first four terms in expansion (2.9) one gets a
somewhat better approximate representation of the delta function

8(x) z(cos TX |, cos 3T L os 3TX L oo m) -
a a a a
8 cos 1§cos 21 cos 4mx . (2.11)
a a a a

This is plotted in Figure 2.2.

ar(=¥(%)

Iy

]
—
™~

.

< 2TX 4mx
cCOos — COs —— cos —
a a

o oo

Figure 2.2. Plot of &§(x) =

One notes that the central maximum (about x = 0) gets progressively

sharper and the secondary maxima less important as the number of terms

increases.
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Expression (2.9) resembles a Fourier expansion with the constraint
the expansion is zero at x = + a/2 and only valid for - a/2 < x < a/2.

EXAMPLE 2.3. Consider instead for the complete, discrete set in the
expansion of the delta function, the eigenfunctions of a particle in
a harmonic oscillator potential:

The eigenfunctions of this potential which are non zero at x = 0 are

1
2

H 2,52
¢ (x) = "ﬁ%ﬁ (&,) (—13) e X /2p Hn(%) (n even). (2.12)
5 !

n mb
Hence an alternative representation of the § function is

2 2 ®
§(x) = Lo X /2b r ——H (E

H (0). 2.13
Vb n=0 2™ T ¥ (0) ( )

where one need not specify the sum is only over even n since Hn(O) is
zero for odd n 1
The mathematica’ identity (known as Mehler's formula™)

n
1 exp (4xyt-(x2+y2)(1+t2)) - exp - (x2+ YZJ ; H (x)H (y)t

J/1-t2 2(1-t2) 2 Jp=p  2%m
(2.14)
with the substitution y = 0, x » x/b becomes
X n
1 x2 l+t2 . [-x2 Hn(b)Hn(O)t
rm e (sas,) T )t T
1-t 2b“°(1-t*%) 2b“/p=0 2%n!

Substituting this expression in Equation (2.13) yields

2 2

§(x) = L lim L exp —x (14t )
~ — 2 2

/1 t>1 b/1-t 2b°(1-t%)

or in other words provided one makes the substitution e = b2(1—t2),

1 1 2

§(x) = = lim = exp - >—. (2.15)
= = .
J1 es0 Ve
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g
P
o [»

y -x%/20°
Fig. 2.3. Plot of G(B) = bd(x)=

N jw
<
e
~
N
wln
o IN
N [\S)
()

Expression (2.15) is a standard representation of the delta function
in terms of a limit.

In Figures 2.3 and 2.4 are plotted two approximate expressions for
the delta function using Equation (2.13). The first involves including
the first two non-zero terms and the second the first three non-zero
terms of this expression,

2,502
3e x“/2b 5 X2
Sy =y ——— " 32)
Y1 b b
2,52 2 4
15 -x%/2b
s(x) = 2 X/ (1 - 3’—‘3 + 14—5"—2), (2.16)
8v/1 b
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wf(%hbsoo

_2 2 2 4
Figure 2.4. Plot of bd(x) = _l_5_xe x%/2b (1 - % + )

8V

o’ Ibc
[\S]
Gl
o IN
S

respectively. The general features and trends are similar to,those of
Figure 2.1 and 2.2.

EXAMPLE 2.4. Show Equation (2.13) is consistent with Equation (2.2).
One notes, interchanging integration and summation that since HO(E) =1

+o0 +o0

-x2/2p2 -x%/p? T 2
[ oy [ L 0
VT b n=0 2 n!

-0 -0

+oo

o 2502
-x2/b

Loy Ly (O)J X /D%y Eny%) ax -

V1 b n=0 2%n: " n

-0
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L s L u(o)s R
/; n=0 Znn! n

consistent with the integral in expression (2.2).

EXAMPLE 2.5. Use as a continuous representation of the delta function
the set of free particle wavefunctions (V(x) = 0, all x)

_ ikx

¢k(x) = Ae .

This implies using Equation (2.4), (2.5)

k=00
. ikx -ikx .
§(x) = a° j e ak = % 1im &2 - pp?yy SIL KX
k=-o ko kv
+00
One can obtain using the property of Equation (2.1) §(x) dx = 1,
that -oc
+00
2 . sin kx 2 .
1 = 22" lim — dx = 2A"1 (a result independent of k).
koo T
Hence
§(x) = l lim M (2.17)
i X
Kk->o0

is a second expression for the delta function in terms of a limit. Using
the above value of A the set of free particle wavefunctions with 'delta
function' normalization becomes

9, (x) = L elkx, (2.18)
k J—
2m
while §(x) can also be written

§(x) = -LJ oK% gk (2.19)

> >
The three dimensional delta function 8§(r - r') in spherical
coordinates can be written as follows

> > ,
§(r-r') = §L£:§_l §(cos O6-cos 0')8(¢-¢') =
r
= 3 R_(r)R_(r')Y*(8,6) YI(8', o) (2.20)
ng ng m ! m ’ ' :
n,%,m
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If one multiples both sides of this equation by Yg(e, ¢)Y;q(8', ')

and integrates over dQdQ' one obtains

—_at
$(r=r') _ 5 R (r)R (r'),
r2 n nqg nq

and for three dimensional systems quite generally one can thus write
for the delta function (for any choice of orbital quantum number £):

§(r-r') =
n

. ugl(r')unl(r) (2.21a)

Il ™M 8

where ung(r) is the solution, subject to the condition unZ(O) = 0 of

the radial Schrédinger equation:

2 2 2
-'-h—i—+V(r)+1’”““l - Epu  (r) =0 (r=z0),
2m 2 nt
dr 2mr
i.e. unz(r) = arZ(r).

The choice of central potential V(r) determines the detailed form
of unQ(r). The corresponding one dimensional expression is Equation (2.6)
where x extends over all space, and @n(x) is the solution of the one

dimensional Schrddinger equation:

2 2
4”4 - —o0 ©
{- ‘2‘1'1‘1 —2 + V(K) - E}¢l’l(x) 0, ( <x < ),

dx
where similarly the choice of V(x) determines the detailed form of ¢n(x).

For continuous states Equation (2.21) is replaced by:

S(r-r') = J uﬁg(r') ukl(r) dak, (2.21b)

analogous to the one dimensional Equation (2.7).
Equation (2.6), (2.7), (2.21a), and (2.21b) are illustrations of
the 'closure' property of quantum mechanical wavefunctions.

EXAMPLE 2.6. Obtain an expression for §(r-r'), |r-r'| > 0 if V(r) is
the three dimensional simple harmonic oscillator potential

2 2

V(r) = E-EZ r >0
2mb

=0 r <0

Inserting the detailed solutions u_, (r) for this potential ‘(cf.)
Equation 8.13) in expression (2.21) one obtains:
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2,2, .2 .
L pen(ETarty /2T 0 I(n+2+3/2) 3
§(r-r') = 29+3.2 2 n! lFl _n;2’+5; Yk
be 24 (2+43/2) n=0 : b
2
lFl(—n;l+%; Ezr), (2.22)
b

independent of the value of b, & where r, r' > 0.
If & = 0 for example

2. ,2 2
8e (x+r'")/2b (rr')[b2 I'(n + 3/2) 3 r2
z Fl-n; 50 =5
n! 11 2

§(r-r') =

bm n=0 b2
2
3. r'
1 55 ), (2.23)
b
Substituting Equation (2.12) the solutions of the one dimensional
harmonic oscillator in Equation (2.6) one has analogously
e—(x2+x‘2)/2b2 > 1 X x'
§(x-x') = — E = Hn(g)ﬂn(irj. (2.24)
/1 b n=0 2 'n!
But
n
2 (1) e 3. g2yt
H, ,,(8) = “r— (20+1)126,F  (-n; 5 5 €7) -

Substituting this expression into Equation (2.23) and using Legendre's
duplication formulaz)

2n+1) W
1 =

n!T(n+3/2) TV ,

2

Equation (2.23) can be written in a form similar to Equation 2.24,

namely

2 .2 2 r r'
~(ePeefyw® p B
s 1y = 28 EE—— (2.25)
(r-r') = nodd , on
/1 b 1,3... m2

Equation (2.25) involves a sum only over odd n terms for which H_ (&)

is zero if £ = 0, since r or r' cannot be zero. Thus §(r-r') in Equation
(2.25) vanishes if either r or r' is zero. Also the additional factor 2
is there in Equation (2.25) because x, x' extend from -« to +» whereas
r, r' extend from 0 > «. Using the Hille-Hardy formula®)
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-(x+y)/2 ®
(XY)a/2 g——TT——-—- T LLBﬁ%illlﬁ‘l(—n;a+l;x)lFl(-n;a+1; y)tnz

r(a+l) n=0
- 1
2 e 200}
e I (HE) (2.26)

-a . _/_2x .

IOL (x) = 1 Ja(lx) = 201 ]a-% (ix)
mi
1
Thus, 3 _&%& _LEEiELE) 1+t 1
1 - 1

§(r-r') = lim zgzr ) tl-t e 2b2 1-t 2+L(2;r t )

t»1 b 2\b7(1-t)

(r, r' > 0), (2.27)

which can be written in terms of spherical Bessel functions:

2,2
-2/2 -r tr li& 1
, . 4rr' t 2b2 1-t . (i2rr't?
§(r-r') = lim 3 = 372 e IS
t>1 ibV1 (1-t) \p?(1-t)
(r, r' > 0). (2.28)
If one makes the substitution € = (1-t)b2,
_ r2+r| 2
§(r-r') = lim drr’ o © j (&EEE—) (r, r' > 0) (2.29)
L L €
e>0 iVm
or r2+r'2

i
2

' . 1
§(r-r') = lim 2(rz ) e 3j2 Ig+l(2§r ) (r, r' > 0). (2.30)
€~>0 € B

For & = 0, since

-1
I%(E) = (4mg) * sinh g,*)

r2+r'2

1
e € sinh 255— ) (2.31)

§(r-r') = lim

2
€>0 /;/E

2rr' %ler'/s

But as € = 0 sinh and Equation (2.31) reduces to
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2,2 2rr' iy 2
1 2 'r;r e © 1 1 -
§(r-r') = — lim — e > =-—1lim — e &
/1 e>0 Ve /1 €0 Ve

(2.32)
an obvious generalization of Equation (2.15).

EXAMPLE 2.7. Verify Equation (2.25) is consistent with Equation (2.2).
According to Equation (2.2)

_2 2 ] _12 2
Ja(r"r')Hm(E) igs /2b” dr _ Hm(ﬁ;) o F /2b".
r2/2b2
Multiplying Equation (2.25) by Hm( ) e (modd) and integrating
both sides over r one obtains

2 2 r' ®
- - 2, 2
g (E)er'?/20% 2 2e £/ g ) (g S Ee T Pad)
m b )€ - = n nt20 n'b’ 'm'b b
m

odd 0 (2.33)

where integration and summation have been interchanged. But the integrand
in Equation (2.33) is always even. Hence the rhs of Equation 2.33 can
be written

1t +oo

12,512 r
-r'?/2p H (F 2/132d1£ )
/r fodd

o -0
2,2
-r'%/2b H ( 2 2
5 s mi2™r = /2 yE,
Z Noad n'zn

which is identical with the lhs of this equation.

Since completeness enables one to expand any arbitrary function
in terms of a complete set it can also be used to describe what happens
if the potential of a system suddenly changes without the wavefunction
undergoing any modification:

EXAMPLE 2.8. Suppose a particle is in the ground state of the potential

ﬁ2x2

4
2mbo

VO(X) =

Suddenly the potential changes to

2

2
V,(x) = (x-x.)
1 2mb4 1

1
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One wishes to find the probability the particle will be in any (say
the ground) state of this new potential. What is involved in this case
is a possible displacement to (Xl) and a change of frequency (from

wg to ml) of the potential, as illustrated in Figure 2.5.

72 2.
] Vet o
K T

Figure 2.5. Change in potential in' Example 2.8.

The wavefunction of the system is

(1) xP/2n]
, b)) = 0.
LG WV

The potential changes frequency
-2
mb2

and is displaced so the complete set of states which now describes the
system is ¢n(x—xl, bl)' To find the probability one merely uses

Equation (2.3).
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¢y(x, by) = E a, 9p(x-x,, b))

n=0 5
where +oo +o0 _XZ (x—xl)
_ - = —1 20§ 22
ag = | plxey, By) oG, b )ax mj &0 1 ax
-0 X% 071 -
_ /P TTm2em2)
= /2 2¢ 01
bythy
2
1
2 PP (b2 (2.34)
|a0| =< 5,e 01
bythy
) _ i 2 _ . -
Thus if x, =0 [ao[ = 0.8 1if b1 = O.5b0 or 2b0 etc.

This procedure applies equally well if one changes the form of
the potential.

EXAMPLE 2.9. Consider a particle wavefunction

1 15 2 2
vx) =7 /= (a -X ), x| < a
a
=0 |x| > a.
h2 5x2-a2
This involves the potential V(x) = —= “>—5 || < a
2 2 2
4ma X -a
= oo 'x[>a

(c.f. Example 8.1.)

The potential is suddenly changed to V(x) = 0 |[x]| < a,
V(x) = » |x| > a. What is the probability the particle is in the ground
state of this potential? The normalized ground state of this new potential

is just
//i cos kx = J/i cos X ,
a a 2a
where
2.2 2 2
ka = L (cf Bq.2.8), B =K - BT/d
2 2m
2ma

Hence



THE DELTA FUNCTION; COMPLETENESS AND CLOSURE 27

|2 = 0.9986 = 1

a, = =3 = 0.9993 thus [aO

as it should be since the wavefunction forms are very similar (cf.
Example 8.1, Figure 8.1), as too their energies

h2n2/4 ve n2s/2
2 2
2ma 2ma

EXAMPLE 2.10. Consider a particle bound by the potential - ]VOIG(X).

The potential suddenly changes to V = 0 |x| < a, V = »[x[ > a. Find

the probability the particle will be in one of the even parity states of
this new potential. |V Imlxl

Here Y

h2

and one wishes to evaluate the overlap

a _M‘xl
IVOIm h? 1 (2n+1)mx
a = J — € = cos dx
n h2 a 2a
-a
. - Vg [mx
[V0|m * 12 =
=2 J e cos —— dx.
(hza ) 2a
0

Evaluating this integral one obtains:

|V0|ma

; [V |m , ne)w 12
([Volm ) 1L2 2a
a = 2| ——

2.2 2
hZa [Vo|“m L (@nr)T
h4 2a
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As a > » an -> 0.

There is no probability the particle will be in one of the odd parity
states of this potential, namely:

EXAMPLE 2.11. A particle is originally in the ground state of the well
V=wo x<0, X > a,
=0 0 < x < a.
Suddenly the wall at x = a is shifted to x = 2a. Find the probability
the particle will be in the ground state of the new potential which

results from this shift.
The wavefunction is originally:

0. = {/ 2 sin =X 0<x<a,
0 a a
0

x < 0, X > a

and one is interested in the overlap:

a

J 2 sin & i sin X gx
0 a a a 2a

0

4 V2 /(31).

V]
[}

Thus Iaoiz = 32/(9ﬂ2).

The original energy is E = h2w2/2ma2. 2 5
The energy of the new ground state is h v /8ma” while that of the new

2

first excited state is h2n2/2ma , which is just the original energy.

There is therefore a 32/9112 probability the energy will be less than
before.
The probability the energy will be unchanged is related to the overlap:

a
f /2 . TX J/T . TX 1
= sin — = sin —dx = .
a a a a ou
G

~
<

1

Thus the probability the energy is unchanged is 3. The probability the
new energy is more than the original energy is

- (4 3)
92 2
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Expression (4.22) of Chapter 4 lists some other representations

of the delta function.
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Momentum Space

Working in momentum space involves taking the Fourier transform of the
eigenfunction ¥ (x, t) of the Schrddinger equation. Thus if

+o —ipx
—é: e B V(x, t)dx (3.1)
V2w

1Y

o(p, t)

-00

it follows from the delta function property of Equation (2.19):

o jy(x-x")
that
teo ipx
1 h
b(x, t) = — j e ¢(p, t) dp. (3.2)
v21h

The function ¢(p, t) is called the wavefunction "in momentum space".
Assuming Y and ¢ are normalizable (i.e. vanish at * «» so one can integrate
by parts and drop surface terms), it can readily be shown that

zipx -ipx
P¢=‘/2Tl;e h ?%dx; -%i¢=%_feh xpdx,
and for any operator A(p)
+o zipx
A(P)o(p, t) =Jéf e M A& vk v ax;
27

-0
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te_ipx
h 39 - 1 h
A(_I '5;) ¢(p, t) = /_ﬂJ’ e A(x)¥(x, t) dx (3.3)
while similarly +o  ipx
memt)=%:%feh {-?%)Mmt)@;
vor Ul P
+  ipx
%%f—ﬁbgt)=—£—Je " B(p)e(p, t) dp . (3.4)
X Vamh T
Also
-ipx
3 ,tzLJe h 2 px, t) dx . (3.5)
at Nors ax
Thus

2
P -he ) ,he -

-ipx 2
1 [ B [- % 3—2 +V(x) + ? %]w(x, t) dx. (3.6)
Vor X

But since the integrand on the R.H.S. of Equation (3.6) vanishes, y(x, t)
being a solution of the Schrddinger equation, the momentum space function
¢(p, t) satisfies an analogous equation:

the Schrédinger equation "in momentum space".
Similarly expectation values can be equivalently evaluated in
momentum space since

00

e
[pre, aove 6 ax - = |
v2rth %=

—-00

dp'Q(x)Y(x, t) dx =
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K=00 P|=°° 'iE'X p=* 1pX
h h 3

_12_ J d(p', t)e h dp' J e Q(-; §)¢(P, t) dp dx =
27h X=-c0 Pp'=-w p=-

' —00 x
1 # h o3 1 i(p-P")y
= 1 * ' 4+ - —_—
L[ aaprere, oo -E 2o, 0 £ [ e Y PR

p'=-®

-h 8 dp
( T ap)sb(p, 0f (3.8

One also notes that if ¥(x, t) is normalized so is ¢(p, t) since
using Equation (3.8) with @ = 1:

+o00

Jw*<x, £)w(x, t) dx = J'¢*(p, to(p, t) R

The above formalism generalizes to three dimensions by replacing

T

5 h
P by 1 V etc.

Six simple problems follow which illustrate the usefulness of
the momentum representation and the fact that for certain potentials
it is easier to work in momentum rather than coordinate space.

EXAMPLE 3.1. Consider the case of a free particle (V(x) = 0).
In momentum space the Schrddinger equation, (Equation (3.7)) for this

system is
2

{%‘n B, E} o(p) =0  (E > 0) (3.9)
ie.

o(p) = 6(% - %T—E) :
Since generally oo iox

1 h R
Y(x) = — ¢(pe d( )
V2 Iw n

if one suppresses the time variable in Equation (3.2), in this case

1 .V 2mE <

175
Y(x) = — e , as it should be.

J2m
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EXAMPLE 3.2. Consider a particle in the momentum dependent potential
V(x) = op. In momentum space the Schrddinger equation for this potential
(Equation (3.7)) is

2
{E— + ap - E}¢(P)

=0 3.10
o ( )
i.e.
p1 P2 P1 = -mo + szaz + 2mE
o) = ma(B - 3]+ me(B - 32), e -
P2 = -mo - Ym o~ + 2mE
and as above iplx lpzx
T e L
vam V2w

EXAMPLE 3.3. Obtain the exact solution of the problem V(x) = Ax

x>0 (A>0), V(x) =« x <0, (Drawn in Figure 3.1) with the help
of the momentum representation.

V(x)

SONN\N

SNONNNNN

Figure 3.1. Potential in Example 3.3.

In momentum space the Schrddinger equation for this potential
(Equation (3.7)) is:

2
{P— a4 E}¢(P) =0, (E>0) (3.11)
2m idp
l.e.
2
p_ _ _,hd

Integrating this expression yields:
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3

I . = c},
L {6m Ep} nfo(0)/

i.e.
e
_— - Ep}
o(p) = CeAh {6m A, E > 0. (3.12)
C can be obtained by normalization i.e. requiring
+o .[E E'
d 2 l(ﬁ ) E)p dp
ap _ - -
[ 95(p)og . (P)T- = S(E-E') = [c| J e h

-00

;1C|22nA = 1, where one has used Equation (2.19).
Thus within a phase

(.3
LB
1 Ah{Gm EP}'

¢(p) = — e (3.13)
vyam
Generally +oo ipx
V(x) = /—l;J s(pre " a® (3.14)
21 "o
. . 3
and in this case —o i fpl ipx
1 anlem  Pp Y h )
v(x) = j e d( ) (3.15)
2w/A B

p=-

For this problem the wavefunction y(x) satisfies the boundary condition
Y(0) = 0, since V(0) = «». Hence for this example

+00 +oo _1_{2:1 _ Ep}
Ah |6
v(0) =‘—l:: J ¢(p) dp = ! j e " d(%) = 0.
wor 2wa
+00 +00
- 1 “ cos(p3/6m - Ep)/Ah dp + i j sin(p3/6m - Ep)/hAh dp].
Zﬂ‘/l—\h -0 -00

This implies the even integral,
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Lo

J cos(p>/6m - Ep)/Bh dp = 0 (3.16)
0

since the integrand of the integral

+o00

j sin(p3/6m - Ep)/Ah dp

-00

is odd making the latt7r integral automatically zero.
Defining u = p/(2mAh)1 3 the integral in Equation (3.16) becomes

oo

_ 1/3
J cos(u3/3 - E(2m/A2h2)1/3u) du = Vv ¢(—E{2m/A2h2} ) ,
0

2,2 1/3
where ¢(—E{2m/A h } ) is the Airy function.

The energy eigenvalues E in this problem thus satisfy the condition that

o2, fonn2 7 ) <o (317

For reasonably large negative arguments

, 1
d({x) » ];1372

Hence in this limit

2 3/2 {om M2+ - n=1, 2
5 En —;—E 4
A%h
l.e.
5 = (nh)2/3 (A2h2)1/3 ( 3m )2/3 n=1,2... (3.18)
n 4 . m 22

which can be compared with
2/3(A2h2]1/3 ( 37 )2/3
En =n e E— ’
2v2

the Wilson-Sommerfeld result (Equation (1.12)).
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EXAMPLE 3.4. Obtain the exact solution for a particle in the potential

V(x) = A/x x>0 (A < 0),

V(X) © X <0,

using the momentum representation. This potential is illustrated in
Figure 3.2.

A V()

AONOUNNNINNNNNNNNNNY

Figure 3.2. Potential-in Example 3.4.

Tn momentum space the Schrddinger equation for this potential is:

2
p°, A _ -
{2m e E} é(p) = O, (E < 0)... (3.19)
i dp
l.e.
(i_A _E] N
A d(L E) in 4
i _do(p) _ _ Aom =l P
22 7 o(p) 2
E-on el 5 lEl

Integrating this expression yields:
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zn{wp)(lEl + P2/2m)/C} = - i—IhAL /]—I-Eg tan”! —B—

v2m EI

i.e. . [
- 11A /-lzfml tan_l—-‘p——

op) s ——s—e P /an[E], (3.20)
|[E| + p“/2m

|¢(D)|2 vanishes at + « and is square normalizable.
Thus C can be determined by normalization i.e.

400

2 dp/h
j lo(e)[* @@= 1= [c[? Imﬁmg

-0

L lel? /o
“Th 3 =1
2|E|

Thus to within a phase:

2 3\1/4
(gﬁ—lgl ) i A] /2m -1 P
2 % mtan y (3.21)
= — ¢ 2m El .

Generally
v == [ ewe™ oB).

In this case y(0) = 0, since V(0) = =,

Hence +oo

0= %(Jiﬁ)lﬂj 1 (cos Ia| fm . -1 _p

2mh? |E[+p%/2m b/ IEl 2n[E

-0

—iﬂnﬂﬂ 2m tmfk—iL—Jdp.

h E| /2mIE|
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The integral

400

1 . (| / 2m -1 _p )
sin A| tan dp
J |E|+p2/2m Tl Vam|E|

-0

is automatically zero since the integrand is odd. Thus the even integral

[E[ + p2/2m

must be zero in order for Y(0) to be zero.
Integrating this expression one obtains

m/2

h . Jam |A| _h . 2m  |A|w

TXT sin TE' Y 2] = TET sin TEI ho ° (3.22)
0

sin 12%1 /%%| = 0.

The energy eigenvalues |En| of this problem thus satisfy the equation

ﬂlA] 2m nm
= n=1, 2...
2h  / IEn !

Hence

or
2
E = - lﬁ%—% ) (3.23)
2h"n
With |A| = ahc this reduces to the usual Bohr result for the states u,,

(r) (as well as for the states u,, (r) since the energies in the hydrogen

atom are independent of &, an effect known as an "accidental" degeneracy).
Substituting expression (3.23) into expression (3.21) one obtains a

general expression for the wavefunction in the momentum representation:

/2 . -1
(gg 8 ) o-2in tan "B p
m n

¢ (p) = » B = ETXT_ (3.24)

1+ (B )
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Using this expression one readily obtains:

<s1>n(p)pzm+l ¢n(p)> =0 m=20, 1... ,

2 2
2 2 A
<p”> = <o (p)p"0 _(p)> = % : (3.25)
n"h
2
<Bs - .
2m n

These two equations imply

Ap =V <p2> - <p>2 = mlél . (3.26)

nh
Similarly one can easily obtain:
2.2
_ _ 3h™n
<r> = <¢ (p)ro (p)> = _ZmlAl oo (3.27)
4 2
<ar®s =B (5p2e1) =0 (3.28)
2 2 2
LY

These results imply:

2
Ar = ¢<r2> - <r>2 = %%TXT— (n2+2)l/2. (3.29)

Combining Equations (3.26) and (3.29) one obtains:

arap = 2/ n?42 >§ (3.30)

2

consistent with the uncertainty relation (cf. Chapter 4).

EXAMPLE 3.5. Solve exactly the problem of a particle in the potential
V(x) = Alx| == < x < o,

EXAMPLE 3.6. Solve exactly the problem of a particle in the potential

V(x) = TgT -® < ¥ < o,

The potentials of Examples 3.5 and 3.6 are symmetric potentials i.e. if one
plots V(x) vs x the potential for x < 0 is the mirror reflection (about
the V(x) axis) of the wells for x > 0 in Examples 3.3 and 3.4 (Figures
3.1 and 3.2). One can proceed here using methods similar to those used
in Example 3.3 and 3.4. However, instead if one compares (cf. Equations
(1.8) and (1.10) the solutions of the problem of the standard harmonic
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oscillator potential restricted to x > 0 i.e. V(x) = Ax2 0 <X <o, =o
X < 0, to the oscillator extending over all space V(x) = Ax2, -0 < X < ®,
the former potential's allowed energies are

23

= - 1 — =
En (2n 3)h - n 1, 2

and correspond to odd parity solutions (see Chapter 10) while the latter's
allowed energies are
27

E = (n-Hr [ n=1, 2

and both odd and even parity solutions are allowed. One can thus obtain
the solutions in the latter case from the solutions in the former by
letting n » n/2. Similarly if one considers the infinite well V(X) = o«
X <0, x>a, V(x) =0_0 < x < a its solutions are the odd parity
wavefunctions Y(x) = /575 sink x (where ka = nm) i.e.

h2k2 _ h2n2n2

E= 2m 2ma
whereas if one considers the infinite well V(x) = ® x < -a, X < a,
V(x) = 0, -a < x < a, its solutions are ¥(x) = v¥1/a sinkx (odd parity)

and Y(x) = v1/a coskx (even parity) where ka = nm or (n-3)m n =1, 2

i.e.
2 2 2
h n s _
E_Zm[2) 2 n=1,2

Again the solutions for the latter case can be obtained from the former
by letting n + n/2. A third example which illustrates the fact that this

procedure may be applied generally is the well V(x) = —Vo cosh™2axl)

x > 0, V(x) = ® x < 0. The (odd parity) solutions for this case are:

2)(s—2n+1)/2

Y(x) = (1-E JFp(1-2n, 2s-2n+2; s-2n+2, (1-£)/2)

with corresponding energies

2.2 2
g -2 [-(4n-1)+ l+8mvo] , n=1, 2

n 8m
a2h2

while the symmetric potential V(x) = -Vj cosh_2 ax (all x) has solutions

b= (-e2HED2 5 (1n, 2sene2; senv2; (1-6)/2)
where 5
h2a2 8mV
E = - —— |-(2n-1) + 0 ' n=1 2...
n 8m 1+ 5.2
a“h
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(with the symbols s, and § defined as

N 8mVQ
s =4+]-1+ 1+ > £ = tanh ax).
a™h

Thus in this case also one obtains the solutions for the symmetric well
by letting n » n/2 in the solutions for the well which extends only from
0 < x < o,

The solutions for Example 3.3 are

ey (A2h2)1/3 ( an )2/3
N 22

[e]
|

2.2.1/3 2/3

= (2n-%)2/3(éj?—) (—1%) n=1,2
4v2

These correspond only to the odd parity solutions of Example 3.5. By

analogy with the above three problems one thus expects that the odd and
even parity solutions for Example 3.5 have energies:

2.21/3 2/3
E_ = (n—%)2/3(§4n—) (—EQJ n=1,2 ... . (3.31)
n n 4/2

which for large n agrees with the Wilson-Sommerfeld result (Equation (1.11)).
Similarly the solution for Example 3.4 is

o - 1aln_ 20al%n

n 2n%n2 (2n)°n®

and one expects that the energy in Example 3.6 is just

2
_ 2[A[ m
En = >3 (3.32)
n h
and that this includes both even and odd parity solutions. This result
agrees precisely with the Wilson-Sommerfeld result (Equation (1.13)).

REFERENCE

1. L. Landau et I. Lifchitz, Mechanique Quantique (Eds Mir) Moscow 1966,
p. 94.



CHAPTER 4

Wavepackets and the uncertainty principle

The properly normalized free particle wavefunction is

.( X Et
1 i bx _ Bt
wp(x, t) = — e

J/2n

h Tl) (cf. Equation (2.18) (4.1)

One problem with this function is that it has no spatial localization
i.e. though the momentum is precisely known (in other words Ap = 0),
Ax = =, where AA implies uncertainty in A.

The shortcoming may be easily removed by constructing a wavepacket

p‘:oo
Y(x, t) = j A(p') ¥_,(x, t) dp'

. P h

P =-—00

=00 i

Lt Z(p'x-E(p')t)

=:J A(p') e é;ll'_ (4.2)
V2 p'=-c

where A(p') is a function concentrated about p' = p. Thus if

N s ]
A(p)—d(hj

this reduces to expression (4.1). The function

iE(p')t
h

A(p') e

is in fact the wavefunction in momentum space (cf. Equation (3.2)).
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Any detailed functional form A(p') gives the same general properties
to ¥(x, t) namely localizes the particle, (4x # =).

EXAMPLE 4.1. Suppose

A(p') =/;§ lerEl/e, (4.3)

a normalized function peaked about p' = p and illustrated in Figure 4.1.
As first sight it appears this gives an uncertainty in momentum
Ap ~ 26.

A(p)- \J:;_Te-lr'_r\/x

{3

F—éx p-3 p ﬁa pe2s

Figure 4.1. The momentum distribution in Example 4.1.

The gain however is that ¥(x, t) is now localized. Thus

=00

P -
- p'x

/h J’ P pl/8+5 = apr
2md h

p'=-»

¥Y(x, 0)

or .
ipx
h 1

-1 RN _—

3
m

N
w

It

¥(x, C) (4.4)

O
X
[
+
e =
NN

[ The normalization of ¥(x, 0) can be confirmed by noting

+o00

f _gx_=z]
(x2+1)2 2

-00

The amplitude of the function of Equation (4.4) (ignoring the phase)
is drawn in Figure 4.2. There is a spread about x = 0 given approximately
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\'p(X.OB— 55\1 ;‘1‘
A
e
e W
Zﬁg
b -h n 26
5 s 5 3

Figure 4.2. Amplitude of ¥(x, 0) in Example 4.1.

by Ax = 2h/8. Thus AxAp ~ 2h/8 28 =
A more accurate estimate of AxAp is possible since

(AO) = <0%> - <0>2 where <0> = [ ¥xov¥dt/[¥*¥dr

= [A*(p)0A(p)dp/[A*(p)A(p)dp.
Using the function of Equatlon (4.4), <x> = 0, while

X=00

2 2 2h3 xzdx _hz
(bx)" = <x™> = = T .22 L2t
§7m ( 2  h ) 8
x=-= |X + =3
§
Similarly
p':oo
- L.
<p> = h J p' e e pl/8 dp' =p
§ B
p':-co
while
2
<p”> = p2 + %r i.e §/V2 ,
and
h § h
bxbp = ¥ — = — % 0.71 A, (4.5)
V2 V2

in this case. Thus the uncertainty in the position multiplied by the
uncertainty in the momentum of a localized wavepacket is of the order of
h. Other A(p)'s yield similar results.
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EXAMPLE 4.2. Consider the case

A(p') = 3—h3 [6 - |p'—p|}, (4.6)
28
p'-p| <8, A =0 [p'-p| >,
a normalized function peaked at p' = p. This A(p') is illustrated in
Figure 4.3.
AlA(F{)
) |
%?’ A(p)_O ]P—P]>5
5 :\'%5 (5—];:’.;:]) lP'_PkS
—f + ¥ >p'
p-5 P P

Figure 4.3. The momentum distribution in Example 4.2.

A first sight it appears this gives an uncertainty Ap~§. A more
accurate estimate of Ap can be carried out by evaluating

p+d
2
<p> = B j (6-|p'-p[)p' dp' =p
283 A
p-98
p+é 5
2,2 2 8
<p2>: 335 f (6—[p‘-p|) p'" dp! =p° + 0 -
268 p-5 h
Thus
bp = -
J/10

In this case
p+é

N
¥(x, 0) = = /2 J (s-1p'-p|) ¥/ P apr .
Vor /28 p-6 h

Evaluating this integral one obtains:
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ipx 2 8%
wix, 0y =L B8 B ZD om T
x, 0) = 5 ™ © AV (4.7)
2h

The normalization of this expression may easily be verified using
the result

(o]
sin4u i
fdu‘;r=§
0

The amplitude of the function of Equation (4.7) (ignoring the phase)
is drawn in Figure 4.4.

There appears to be a spread about x of approximately 2hmw/8§ giving
an approximate AxAp ~ 2hw/$ § = h.

A sifEx
Jz_ﬁ \?P(x,o):z_l\l%f' n

Th LAY
(8)
/\I ' S X
-2hT 2h
3 3

Figure 4.4. Amplitude of the wavefunction ¥(x, 0) in
Example 4.2.

For a more accurate AxX one evaluates

+00
sin4 Sx
IR il S
<X>—4T['h_°° G_X\‘l XdX—Op
2h )
=00 +oo
X 4 §x
2. 1338 oo 6h2JSi“u
<x>= = = = X dx = — du
4 m hX=—°° 6_X\4 1‘»62 -00 u2
2h )
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oo ® 2 2
6h2 sinzu 1 sin"2u _ 3h
= 2= J > du - Z - 5 du| = o
82 o U e U 8
Hence,
Ax = fiﬁ , and AxAp = {E;ﬁ S = ii'h = 0.55h

in this case, a somewhat smaller result than that obtained in Example 4.1.

2
sin“u du i

The integral J - 5, T35 is needed to obtain the
0

u
above result.

Obviously ¥(x, t) of Equation (4.2) also satisfies the free particle
Schrddinger equation just as Equation (4.1) does namely:

2 2
o8 L
2m .2 ¥(x, t) i 3¢ (&t (4.8)

independent of the detailed form of A(p') since

+00

i
12 ~(p'x - E(p')t)
L [ aen [55; - E(p')) " dp' =0,
Vor 7 h
if
o2
>m - E(®).

Further, independent of the form of A(p), since it is the wave-
function in momentum space, one can write:
_ip'x’
_1[ +
A(p') = — | ¥(x', 0) e dx'. (4.9)
vexs

Substituting Equation (4.9) into Equation (4.2), and dropping the
prime for the p's one obtains:

i[(x-x')p - E(p)t]
Y(x, t) = JW(X', 0)5% I e B h %F dx' (4.10)
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Defining Tx-x" _E(p)t
G(x, x', t) = 2—3{ el[ n P h ] %E (4.11a)
_iE(p)t
= f¢;<x-)¢p(x> e U apm (4.11b)

where ¢p(x) are the properly normalized free particle wavefunctions

(cf. Equation (2.18)), one can write Equation (4.10) as follows:
Y(x, t) = j?(x', 0) G(x, x', t) dx'. (4.12)
The function G(x, x', t) of Equation (4.11) known as the free

particle Green's function can be evaluated explicitly by integrating
expression (4.11):

1/2 2
G(x, X', t) = (Zﬂ‘;ht) exp(— %} (4.13)

This function also satisfies the Schrddinger equation Equation (4.8)
and for t > 0

G(x, x', 0) = §(x-x"),

(Equation (4.13) having in this case the § function form of Equation

(2.15)) as it must since ¥(x, 0) = fW(x', 0)G(x, x', 0) dx', in this case.
A formula useful in calculating reflection and transmission times for

wavepackets, which is a result independent of the details of A(p') (but

assuming it is peaked about p' = p) involves expanding E(p') about
p' = p in expression (2)
p? P, Een |
1 = = -
E(p') m - 2m T ap (P'-P)+ ...
p'=p
Keering only linear terms (i.e. assuming only values about p' = p
are important) yields:
2
! —oo : ' 1
L ° Ferabes ey - R gy
¥Y(x, t) = — J A(p') e y
vam - p'= p'=p
i(p° ' =o0 i dE(p')
1 _%(%'t"dg' l te) gpl(x_ dp' ©)
- L mm el [ e p'=p dp'
v2m pl=—w h
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Thus

dE(p'
dp'

Y(x, t) = ei¢ ¥(x - t, 0) (4.14)

p'=p
Equation (4.14), which is a good approximation if A(p') is peaked
about p' = p, and is independent of the details of A(p'), implies the
wavepacket ¥(x, t) moves with a speed

dE(p')
dp'
p'=p
Since
Bp') - B, (Y _p' _
2m ’  dp' m g’

This is known as the group velocity of the wavepacket and is just
the classical speed of a free particle.

EXAMPLE 4.3. Given

L2,
A(p') = _2?2 = g (4.15)
((p'-p)/8)
find ¥(x, 0).

One can proceed as in the previous examples or note that since,
according to Ecquation (4.2) (where we use k rather than p to make the
equations look a little more symmetric)

3 1
1 JA(k')elk ¥4
vam

¥(x, 0) k', (hk = p)

if
¥(x, 0) = e 4(x)

i(k'-k)x

o(x) = —— [A(k")e ak’ (4.16)

vam

where according to Equation (4.9)

A(k') _ _l—- J“I’(x', 0) e-ik'x' dx' = _!__I ¢(X|) e-iX'(k'_k)dx|'
VT Y2n
Hence
-1 1 1 . 3 lkl .
N s G - e LG L
/5; vam

if ¢(x)=¢(-x).
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or

Akt = == [ o(x'-x) S v (4.17)
vers

Comparing Eaquations (4.16) and (4.17) one notes that if one
identifies A(k') with a particular (even) function ¢(x'-x) one can then
identifv ¢(x) with the corresponding A(k + k').

In Example 4.2

-1 /38 sin 8x/2h o= /3R e e
o(x) =35 /= ——ﬁé_ and A(k+k') = e [8-|k'[n].

G
Hence if one identifies A(k') with

1 /38 . 2 (k'-k)&/2n

2/ma SN (k'-x)8/2n)2

one obtains the corresponding

o(x) = /3 [s - |x|n]
263

directly from A(k'+k).
Letting § ~» 2h2/6

L2,
A(k') = 3h  sin"(p'-p)/$

2716 2
" ((p'-p)/8)
and ipx
_ b1 AR, Ixls
Y(x, 0) = e 7 T [2 Y ] . (4.18)
EXAMPLF 4.4. Consider the case
58%n 1
A(p') = . (4.19)

T (prop)Pes?

For this distribution of momenta
+o00
25°h J’ p' &' _
2 .2.2 h
" ((p'-p)“+67)

<p > =

-00
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[eN]
\S)
\S)
N

<p>=

h
w ((P'-P) 246 )
On the other hand the wavefunction at time t = 0 i.e
+00
ip'x/h
d !
¥(x, 0) = 1 63h —e 3 _
T (p'- )2+62 h
‘o (P'-P
T i(p'-p)x/h
i e
h L[ 2 appy/n -
T (P'-P)7HS
ipx

3, '
(e ;°?£P)2P>X€;)2 4(2'-p)
2V, (b

Th 0 n h
Hence
® Glxl
2 53 ipx/h cos ux du § ipx/h _ h
¥(x, 0) = = = e = Jr e e .
m h3 u2+(6/h)2 h
0 (4.20)

For this wavefunction

<x> = 0.
5 28 [ -28%/h 2 72
<XT>= — J e x'dx = ——
h 052
0
l.e.
2wl 2 2 & h
(8x)" = == (8%)"(8p)" = S+ bxbp = — .
268 /2

The forms of these distributions is given in Figures 4.1 and 4.2
with the appropriate identifications. The symmetry between the A(p') and
¥(x, 0) in this example and the y(x, 0) and A(p') in Example 4.1 can be
understood in the light of the remarks in Example 4.3.

What is of some interest in this example is that a representation
of the delta function is

8(x) = = lim < ——(ulz . (4.21)
>0 —) +1
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Thus if one defines
A'(p') = /37 A(p') =

as

§ >0 A'(p) = G[E;I—-E).

When ¥(x, 0) is evaluated using A'(p) rather than

A(p), ¥(x, 0) = —— oP¥/B 8lxl/m

v2m
_%: elpx/h
vam
if a delta function is substituted for A(p') in Equation (4.2) it reverts
to a plane wave expression.

By a similar analysis one can extract several other delta function
representations from the A's used in this Chapter's examples. Some of
these are listed in Equation (4.22).

and as § » 0 this becomes just a plane wave as it should since

(1) s(u) = £ 1im L o7 lul/E (me 41y
2 €
e~>0
(ii) s(u) = lim e y| < ¢ (Ex. 4.2)
>0 &
(iii) S(u) = L 1im ¢ SIDEY  po43)
™ 2
£ (eu)
(iv) S(u) = = 1im ESIMEY gy 4 5
3m
£->00 (eu)
. (4.22)
. 3 . sin eu
(v) S(uy = =— lim €
2m 4
g£->0 (eu)
1 1 u2 I [
(vi) §(u) = = lim = (3— ——) 0 < <1
8 +0 € €2
€ ' (Ex. 4.5)
2
=Llim;(3_J_u_L) Lo dul o5
16 € €
>0
3 1 Iu 2
(vii) §(u) = 3 lim —(1- . J [u| < €
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2 1 1
(viii) §(u) = = lim = ———— (Ex. 4.6)
m €0 € (u2/52+1)2
(ix) §(u) = % lim (1+ l%l) e_lul/E (Ex. 4.6)
e>0

53

Comparing Equation (2.17) with Equation (4.22) (iii) suggests higher powers

of (e sin eu)/u are also § functions in appropriate limits.

3
\‘V('X/O)
—1
}53
88h
- + > X
_3h _2h _h o h 2h 3h
'3 [ r [y 5 ¥y
Figure 4.5. Plot of ¥(x, 0) of Example 4.5.
2.2
/ 58 ipx/h §7x h
¥Y(x, 0) = %ep/ [3-—2—] O<|X|<§
h
_ /58 _ipx 1[, §&|x| h 3h
= ash © [3 ‘h] E<lx|<5
x| > 3
=0 8
EXAMPLE 4.5. Consider
A(p') = 20h sin3 (p'-p)/$ (4.23)
P 1178 .

((p'-p)/8)>

obtain ¥(x, 0). By straightforward methods one obtains
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¥Y(x, 0) =

(4.24)

= ———lpx/h[ —J-—J-)] if %<X<%

h
= 0 x| >3

Expression (4.24) is plotted in Figure 4.5.
Besides localizing ¥(x, t) the A of expression (4.23) is proportional
to another representation of the delta function. In particular

.3
§(x) = == 1ip E-Sin €W (4.25)
31 u>» (eu)

and similarly one may obtain representations of the delta function which
involve higher powers of

sin eu o 3 lim e sin eu 4
! 9+ on €u :

€u

Also the ¥(x, 0) of Example 4.5 is related to a delta function

8(x) = % lin 53[(—%—x2)] o< [x| <3
§e0 §
o1 $3[13 1 3
e )] e
=0 x>—§-

Higher powers of other delta function expressions for instance of

liimi—L1 < and §(u) = lim l:i&l[i (lu] <€)

§(u) = = 1lim = 5
e>0 € 1+(§) )

can also be expressed as delta functions. Thus:

E]
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EXAMPLE 4.6. Consider

2 -v-3
/AT (2v+1 ' - ¢
i v+ ) [(P 2P) + l] = A(pl)
eM2T(2v+3) €

a normalized function peaked at p' = p.
Find the corresponding ¥(x, 0).

From standard tablesl) one obtains

[x|e

(v > - 1)

¥(x, 0) = //[;Zr(2v+1)€ 2 (
12T (2v+3)hT (v+3)

which itself is proportional to a delta function if € »> o,
= 3/2,

If v = 1 this reduces to Example 4.4. If v

)2 -2
A(p') = /ih FIL_EL_+ 1] )

S5te

and

¥(x, 0) = //% //% {l%li + l} e-€|x[/h eipx/h.

Finally if one replaces /%%% by %% in Equation (4.29),

¥(x, 0) ==>‘//‘-:E {l§l§ + 1} e-e|x|/h eipx/h
! 2w h !

and as € > 0

1 _ipx/h
Y(x, 0) ~> J/g; e ,

2h

)v Kv(gézl) eipx/h’

55

(4.27)

(4.28)

(4.29)

(4.30)

implying Equation (4.22) (viii) is a delta function representation. Similar
arguments starting from Equation (4.30) lead to the corresponding delta

function Equation (4.22) (ix).

EXAMPLE 4.7. Find

¥(x, t) if A(p') =J/§ e'|P'-p|/6

and assuming the linear approximation:

Ny = dE(p')
E(p') = B(p) + <55

p'=p

(p'-p).

(4.31)
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Using Equation (4.2)

p'=w , i, iE(p)t i dE(p' .
T -|p'-p|/8+p %~ - = (P'-p)t.
¥(x, t) = 2_“_6_ g_%L' o i h h dp' e
p'=-w
Defining u = p'-p
. iv t
i 0 1 _ix l ix
1 g{px-E(p)t} 'u{5 } { ) }
¥(x, t) = 7noh © [ j du e Jdu e
0
© u
> —{px-E(p)t} 5w g
= /=5 e j e cosh(x - Vgt) u
0
Zha 1(px ~E(p)t)
= [/ . 4.32)
( T 2 w2 (
(x-V t) + >
8

If t = 0 this reduces to the result (4.4) of Example 4.1. Expres-
sion (4.32) shows that to the extent the linear approximation (4.31) is
valid the wavepacket moves forward at a speed Vg, but its form does not
change, i.e. there is no spreading. To get spreading one must keep at
least quadratic terms in the expansion for E(p').

EXAMPLE 4.8. Show that

2
3lc|® 3 n [, 86  acr | _
3t ' Bx 2mi {G Ix  9x G} =0 (4.33)

where G(x, x', t) is the Green's function for a particular system (i.e.
relates ¥(x, 0) to V¥(x, t) according to Equation (4.12)).

Since G(x, x', t) satisfies the time-dependent Schrddinger equation
(possibly with a potential V, assumed real),

and

Premultiplying the first of these equations by G* and the second by
G one obtains, after subtracting that
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2 2 2
S (P IR I G f Bl o BB 2
{G 5G-G—G } i{G 3G * G3¢C [ iat|G|.
9x 9x

Hence

I (Y P SN R [ SO I
3x 2mi {G ax ¢ %% C } et ls|” = o.

An equation identical to Equation (4.33) is obviously satisfied when G

is replaced by ¥, and G* by ¥*. This is known as the Continuity equation

for the current density

= 11— *i - i *
T = omi {W ax © T Yax ¥ } ’

and the probability density p = |W|2, namely

3 3
== J + 300 = 0. (4.34)

EXAMPLE 4.9. Show that

+00
j G*(x, x', t) G(x, x", t) dx = §(x' - x"), (4.35)
where
® -iE t/h
G(x, x', t) = T ¢*(x') ¢ (x) e , (4.36)
n=0 n n
(cf. Equation (7.3b)).
Hence show
+00
I §(x-x"')8(x-x")dx = §(x'-x"). (4.37)

-00

Substituting Equation (4.36) in the integral on the left-hand-side of
Equation (4.35) and rearranging the order of summation and integration
one obtains:

iE t/h B t/h e
Do xhe M gtxme f 82 (x) o, (x)dx =
n, n' -0
iEnt/h -iEn,t/h .
Ioe (x) e Op(x") e 8 o = I Ol(xM)e (x') =
n, n' n

é(xl_xll)’
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where one has assumed that the ¢'s satisfy the standard orthonormality
and closure conditions, (cf. Equation (2.6)).

Equation (4.37) can be obtained by considering the case t goes to
zero in Equation (4.35) since then G(x, x', t) and G*(x, x', t) go to
§(x-x'), while G(x, x", t) goes to §(x-x").

The same result, Equation (4.35) also follows if
+o00

-E(R)t/h g

G(x, x', t) = J or(x") o .(x) e (4.38)

—-00

(cf. Equation (7.3a), since then Equation (4.35) becomes

+o0 +oo +oo

[ o[ acope o SB[ a0 (0 05, () e

00

-iE(k')t/h _

—00 -0
+c0 +o0 +oo

r i . " -iE(k'")t/h
[y SEOOT [ axopey oTEE J axo,, (x)0%(x) =

[ ko opeeny = sxtxn),
since
[ axope0 a0 = s0ekn,

while

I dk ox(x") ¢, (x) = §(x-x'),

-00

(cf. Equation (2.7)).

REFERENCE

1. Tables of Integral Transforms, Erdélyi et al., McGraw-Hill (1954),
v. 1, p. 11.
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TABLE 4.1.
The A(p') aund corresponding ¥(x, 0) discussed in Chapter IV. The A's
and y'x are normalized according to:

+00

ap: [ aen® % - 1) | e 0 (flves o) axc 1)

-00

ipx . 2 8x
3n[. _[p'-pl] Ilp-p'l 1 /38 _h 2
/25[1 5 s <t |2 /m ° &y (- 2)
2n

0 otherwise

5 ipx
3h sin“(p'-p)/$ 1 /38 n _Ix[s 2h
216 (E’—E))z s /a2l xl s
§
0 otherwise (Ex. 3)
ipx
h -|p'- § - 28 1
/%elp pl/ ‘/%a’lgl 53 (Ex. 1)
§™x
1+ 2
h
_ ipx -8|x|
2h § h h
J/;E ————L———E e e (Ex. 4)
l+(23:2)

ipx

2.2
1048 e h 1 3._X § 0 < |XI < T_l-
4 h2 §

-
S

20h_ sinS(p'-p)/s

1178 (R'-2)3
s 108 (_( 1_1_) ) b x| < __
1lh
0 otherwise (Ex. 5)

o) -v=-3 &R{. v
hT§2v+1) [(E"E)ll] : zE(2v+1)6 o B (|§h5) X (a%x|)
STAT(2v+3) § NEF(2V+%)hF2(v+%) v

v>-1 (Ex. 6)
leh ' - 26 h |§8]x -§|x|/h
e =) ] et [




CHAPTER 5

Uncertainty Principle and Ground State Energies of Quantum Mechanical Systems

Consider a particle moving subject to a potential V(x) = A‘xln, ~00<x <o,
Classically the particle's energy is:

E = p°/2m + Alx|" (5.1)

But A x Ap ~ h (cf. Chapter 4) i.e. Ap ~ %; and one expects

p2 > (Ap)2 = hz/(Ax)2 since generally p is expected to be at least of the

order of Ap.
Hence
2

2
2 B gy - B— s ax|"
2m(Ax)
Requiring that Ax is of the order of 2x one obtains
2 n
SRALGE
2m(Ax)

where Ax is assumed greater than zero.
The choice of Ax which minimizes E is such that

2
—g—ix =0 i.e.0=- —h—-a- T S
m(Ax) 2
2.n
. . n+2 _h72
implying (Ax) = T -
For this choice of Ax
2 2
E = - 2 {%E * £% (Ax)n+2} - gmn n+22
(%) 2 (%)
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n
n+2 thZ/n n+2 (5.2)
3n+2 nm -

2 n+2
EXAMPLE 5.1. Consider the case n = 2 -® < x < o,
1 1
_ 4 NG 1 n%a\?
E=2{m) " =Un
2 V2

The exact ground state energy of this system is also

2,3
£ (2

EXAMPLE 5.2. Consider the case n =1 -0 < X < oo,
3 h2A2 1/3 | h2A2 1/3
E=—F77¢((— = 0.94 {(—/—
25/3 m m

This can be compared to the ground state energy of this system (for large
arguments of the relevant Airy function (cf. Fquation (3.31))

namely 0.89 {thz/m}l/3
10.3) yields

2.2,1/3
E_ £ 0.81 {3—5—}
g

. Meanwhile a variational calculation (Example

m
Example 5.3. Consider the case n = -1
n’a 27! 2ma*
E=2 -m s 2
h

This agrees exactly with the ground state energy of the svstem (cf.
Equation (3.32)).

If E = p2/2m + Ax" only for x > 0 the above derivation must be
modified in that A x ~ x and

n

2 2/nyn+2
_nt2 |h™A
E = = {——;E——} (5.3)
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EXAMPLE 5.4. If n =2 X

1 1
_a )t | s [nla)’
2 |2m m !

compared to the exact ground state energy in this case (cf. Example 8.1)

L\
o

2
-/a.5 {3—5}
m
EXAMPLE 5.5. If n =- x 20,
3 {h A }1/3
E =2 ,
2 m

which can be compared to the varlatlonal cal7u1ation for this problem
(cf. Example 10.2) Eground < 1.86 [A h /m] and the lowest energy of
this system fo; large arguments of the relevant Airy function, namely
1.84 (A 2n /m) (cf. Equation (3.18)).

EXAMPLE 5.6. If n =-1, X 2 0,

’

1 {th—z}-l . a2
2 -m 2h2
which agrees exactly with the ground state energy of the system (cf.
Equation (3.23)).

One should emphasize that expressions (5.2) and (5. 3) are very rough
estimates of the ground state energy of quantum mechanical systems, but

are nonetheless convenient if one is interested in a result which is of
the right order of magnitude.

EXAMPLE 5.7. Consider a particle moving in the attractive potential

V(x)

Figure 5.1. Potential in Example 5.7.

Using the arguments at the beginning of this chapter
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o h2 ) IVOIE
2m(Ax)2 ﬂ((%?)z + 52)
and
oE 12 [V, leax

= +
ox m(Ax)3 2n((%§)2+£2)2

The choice of Ax which minimizes E is thus

(Ax)2 = 2223 where a = / thz
4-q leO €
Therefore
[ |vo| Yo h?
Emin 1T e *h 3 2
- 2mme 8me

As € tends to o,

A v
B . o+ |- —2>+p /9 ]
min me 3

- 2mme

This is consistent with Example 5.1 since then
AN
0

V(x) ~ C + Ax2 where C = -

and A

63



CHAPTER 6

Free Particles Incident on Potentials, Time Delay, Phase Shifts and
the Born Approximation

When quantum mechanical particles are incident on a potential one is in
the first instance interested in the fraction transmitted through the
potential and the fraction reflected by it. One therefore calculates the
probability of reflection and the probability of transmission.

In detail if one writes for a particle of energy

S
2m 2m

that the wavefunction on the left side of a one dimensional potential is:

Vo (x) = pelKX | ge iR, (6.1)

and that the wavefunction on the right side is

Vp(x) = re k¥, (6.2)

this choice implies the particle is incident on the potential from the
left. Additionally

R = B/A is the reflection amplitude, with |R|2
the reflection probability and T = F/A is the
transmission amplitude, with |T|2 the transmission
probability.

(6.3)

The poles of the transmission amplitude correspond to the allowed
bound states for that particular potential, and continuity considerations
require

18]2 + |F|% = [a]® i.e. [R]?+ |T|% = 1. (6.4)

In addition an incident wavepacket can be written (cf. Chapter 4) as
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Win(X’ t) = _%: AGk') ei(kvx-E(k')t/h)

V2m

ak', (6.5)

and based on this the reflected and transmitted wavepackets are

¥ (x, t) = = JR(k')A(k') o HIR'XE(RDE/A) g (6.6)
ref /o
2m
and
_ 1 \ . i(k'x-E(k')t/h ,
Y pans (X0 8) = ;:: JT(k JA(k') e dk (6.7)
27
respectively.

Using standard procedures (cf. Equation (4.14)) one can then obtain
from expressions (6.5), (6.6), and (6.7) the time required for reflection
off (the so called time delay) and transmission through a particular potential.

EXAMPLE 6.1. Discuss the problem of particles incident on a potential
V(x) = VOG(X). If

wL = pelkx + Be—lkx

ik
123 Fe (6.8)

continuity of the wavefunction at x = 0 implies:

A+ B =F. (6.9)

Figure 6.1. Potentials in Example 6.1 if V0 < 0 or VO > 0.
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This potential is discontinuous at x = 0. Thus, using the Schrédinger
equation

02 g
- S T W(x) V(X)) W(x) = Ey(x),

2m dx2

and integrating across x = 0

€ € €

2

h dp = dx.

- o j d(dx) + J VOG(x)w(x) dx = E Is P(x) dx
- -€ -

In the limit as € » 0 this becomes

2mV
i 0
L {%};— - } = —2 w0 , (6.10)
h
X=€ X=-€
l.e.
2mv
ik(F-A+B) = _-E_ F. (6.11)
H

Solving Equations (6.9) and (6.11) simultaneously yields:

6 2
e r -
R = 12 = - ,ar=tanl% (6.12)
. kh [/ k?nt ™o
i 2 1+ =
mV0 m2V2
0
ikh2 kB2 i(s +7/2)
mvV mV € r 2
o= o ___0 6. = - cot LERL _ 5 ,T (6.13)
12 t mV r 2
ikh 2.4 0
-1 Lkon
™o 2,2
0

In this case
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(6.14)

and as expected R2 + T2 = 1, consistent with Equation (6.5).
The poles of the transmission amplitude satisfy (ikhz)/(mvo) =1,
i.e.

=E ... . (6.15)

There is only one pole here and this is physically meaningful when V. < O.
To get reflection and transmission times one must construct wavepackéts

2

. hk'"t
i(k'x- >m ) i6
voo(x, t) = = Idk'Mk‘) e e’ ¥, (x-v_t, 0)
inc — in g
27
2
Sk e tg a
1 Ak 2m r in
- —— ' = + -
Wref(x’ t) = - — J dk e e 'Y ef(x Vgt x ,0)
vam ,2, 4
1+ k'™h
mev? k'=k
0
(6.16)
2 2
k'n . hk'"t
-1 (g Ak mvg- i(k'x - T &) i6, (v t+dé—t 0)
trans ¥’ V)= J € ¢ Ttrans T Vg ak| ¢
27 12,4
k'™ Vo
1+ k'=
2V2
™Y
where
hk' ‘
v o= —
g m
k'=k

and ¢, n and 6 are phases. If at t = 0, x = 0 for the incident wavepacket.
in the reflected wavepacket
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while in the transmitted wavepacket

as
- - L _t
x=0at t= v 3@
g9
k'=k
Thus h2
mv
t _ 1 0 =
ref =3 2.4 ttrans"' (6.17)
g k™h
1+
m2V2
0
el
mvgvo k2h4
1+ =3
mV

o

as k > > t - 0, the classical result.

ref’ ttrans

EXAMPLE 6.2. Discuss the problem of particles incident on the potential:

V(x) = V 8(x+a) x <0
= o x > 0.
If
“’L - Aeik(x+a) . Be-ik(x+a) % < -a,
wR = Csin kx -a < x < 0 (consistent with (0) = 0),
/ V(x)
if Vo0 v
v
D,
. 5x
k——»a -
if Ve<O B 0
v
%

Figure 6.2. Potential in Example 6.2.
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continuity of the wavefunction implies

A + B = - C sin ka. (6.18)
The discontinuity of the derivative of y at x = -a (see Equation (6.10))
implies
2mV0
kC cos ka - ik(A-B) = — (A+B) . (6.19)
h
—2mVO
5 - k cot ka - ik
R=12 - A RIS
2mv !
> + k cot ka - ik
h
2mvV
§ =2 cot 1(cot ka + 0} . (6.20)
r w2 J

One notes |R|2 = 1. In fact B/A in this case is both the reflection
amplitude and the transmission amplitude since there is no transmission
beyond x = 0.

The allowed negative energies satisfy the equation:

2mvV
—— + kcot ka = ik. (6.21)
2
h
Defining
ik = k = 2mE =1i 2m , Equation (6.21) becomes
2 2
h h
2mv
—— + kK coth xka + k = 0,
h2

for the allowed bound states. Also the particle is reflected from
x = -a at

. 2mv
1 d<§r(k ) 2a csczka t =
T = —— - ==
ref v dk' v h'k"a
g g 2mV0 2
1+ (cot ka + )
k'=k %k ’k'=k

as k becomes very large

2a csc2 ka
et T v .. 2. )"
re g ‘l+cot” ka g

<o
I

, the classical value.
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In three dimensional systems where particles of mass m are incident
on potentials V(r) of finite range a, the radial wavefunction for r > a

can be written:

u, (r)

7 = Ry(r) = A (3, (kr) - tan & (k) n,(kr)) (6.22)

where jz, n_are the usual spherical Bessel and Neumann functions and

2
Gz(k) is the "phase shift" for a particular "wave" or angular momentum £

at incident energy E = h2k2/2m.
In terms of these phase shifts a standard derivation shows the scattering
amplitude, the three dimensional analogue of the transmission amplitude

of Equation (6.3) is:

Li8e(X)

)
=0

. sin Gl(k)Pg(cos 0), (6.23)

while the (scattering) cross section o(k) = I(fk(e)[zdﬂ

= é% 5 (28+1) sin® 8, (k). (6.24)

k™ 2=0

As in the one-dimensional case the poles in the scattering
amplitude for a particular potential give its allowed negative energies.
The phase shifts § (k) may be obtained exactly, by requiring that the
wavefunction (and its derivative if V has no infinite discontinuities)
in the region where there is a potential, match smoothly onto the external
wavefunction Equation (6.22) (and its derivative) at r = a.
Alternatively at high incident particle energies or for weak
potentials one may have recourse to the partial wave Born approximation:

2mk .2 2
tan 6, (k) = - 2 [ 5000)v(r):” ar, (6.25)
0

or the (first) Born approximation which for central (% independent)
potentials reduces to

in lb!'y!
£.(k) = - 22 Ei%TETE_ vroe? art, (6.26)
B ﬁz r
0
(with k' = 2 k sin 6/2), where the differential cross section is:
do _ T
iR (6.27)

while the cross section o is



FREE PARTICLES INCIDENT ON POTENTIALS 71

o = Jlf(k)|2dn z [[fB(k')[de. (6.28)

EXAMPLE 6.3. Consider a particle scattered off the three-dimensional
potential V(r) = Voé(r-a)

ug(r) = Bg rkjl (kr) 0<r<a

= AQ rk (jg (kr) - tan 52 (k) ny (kr)) a < r < o,

For angular momentum £ = 0 if one matches the two pieces of the
wavefunction at r = a
A

. _ 0 .
BO sin ka = Eag—g; 51n(ka+60), (6.29)

while the discontinuity of the derivative of uo(r) at r = a (see
Equation (6.10)) requires:

kA 2mvV

0 .
cos(ka+60) - BOk cos ka = > Bo sin ka. (6.30)

cos 60 n

The ratio of expression (6.30) to expression (6.29) is:

2mVO
cot(ka+§ ) - cot ka = ,
0 2
kh
i.e.
2
h'k
cot 60 = -(cot ka + 2mvo cscka)
1 V(r)
le—a —>
>r

Figure 6.3. Potential in Example 6.3.
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or
-1
sin § , = !
0 2 2
csc ka /€+2A cot ka + A" csc” ka
where
_n’k
2mVO

The 2 = 0 contribution to the scattering amplitude is

1 i8 (k)
% e sin Go(k),
which has poles when

2 2 2
1+ Z(kh ) cot ka + (kh ) csc2 ka =0

2mvV 2mV

0 0
i.e. when
2 2 2 N2
kh Yo (khT )
(l + 2mvo cot kaJ = (2mVO)

which is in agreement with the result of Equation (6.21) as it must be.
For higher &'s different (additional) bound states result. The
2 = 0 contribution to the scattering cross section is:

a7

2 2 \2 :
k2csc2 ka; 1+5§— cot ka + kh csc2 ka
mV0 2mV0

If a > 0 the So(k) goes to zero and with it f and o.
One notes that 62=0 depends on the sign of Vo.
As concerns the phase shift for ¢ = 0 if k is large, i.e. A is large
(where A = (h°k)/(2nv) ),
. 2
-1 2mV0 sin  ka

sin 50: csc ka A csc ka = h2k ! (6.31)

while the partial wave Born approximation 2=0 phase shift may be easily
evaluated: 2
- 2mk 5 2mVOsin ka
tand (k) = ——5 3%(ka)V = . ——
2 3 a)v_a ’
0 h 0 0 th

in agreement with Equation (6.31) as it should be.

The first Born approximation for this potential (Equation (6.26)),

can also be evaluated:
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2mvV_a
1 1 1
f = - 2m JEi%T%TE_ r'zvoé(r'-a) dr' = - 20 sin k'a,

yielding a differential cross section (Equation (6.27)),

2.2 2
do m Voa 2
-d—Q=—Z—2—2———Sin (2a k sin 8/2).
h k™ sin” 6/2

EXAMPLE 6.4. Consider a particle scattered off the three dimensional
potential

V(r) hz/mr2 0<rc<a

V(r) =0 r > a,

for ¢ = 0 (S wave) scattering.
For
A

r > a uo(r) = sin(kr + 60).

cos 60

For 0 < r < a uo(r) is the solution of the equation

2 2 2
Shd L 2h gl ey = o. (6.32)
2m 2 2 0
dr 2mr

The solution of Equation (6.32) which does not diverge at the

origin is BO r jl (kr). Hence one can easily find the & = 0 phase shift

for this system by requiring continuity of the wavefunction and its
derivative at r = a:

V(r)

Figure 6.4. Potential in Example 6.4.
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A0
BO ajl(ka = Zos 60 sin(ka + 60)
a A k
BO I (r]l(kr)) = Zos 60 cos (ka+do).
r=a
Thus
aj, (ka)
1 tan(ka+§ ) = 1
k 0 .
3t (kr))
r=a
where
jl(p) _ sig p _ cos
p
P
i.e.

-ka.

1]

cot™ <= en(pi, (p))

éo(k) P

p=ka

Evaluating this one obtains an explicit expression for Go(k, a)

tan ka + cot ka - (ﬁ;)z tan ka}

tan 6O(k' a) = - ka { tan ka + cot ka - 1/ka

As k > » tan 60 -+ - ka, the infinite barrier result since for an

infinitely repulsive barrier of radius a,

0 = sin(ka + 50), i.e. 60 = - ka. (6.33)

If a is very short range (or k is small) such that ka is small,

2 3
ol 5] - (&) 287
tan §, = - ka ka 2 ka 2 < - ka
0~ o . L _ka 1 2
. ka 3 ka

In the Born approximation the total differential cross section for
this potential may be obtained by first evaluating the scattering
amplitude:

a
2m h l'lk 1
fB(k‘)z-—i_I;l—J’ || dr'.
0

As a » «» this becomes

L |
k! 2k sin 6/2
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The cross section in this case (a » =) for scattering between 6
and 6 = 6, is

2
B
9, 5
- ) J 51n 6 do _m I 2_sin 8/2 cos 6/2 2 4 8/2
T _ on =T _ ©
k> sin8/2 k2 5, 8/2
o

3 sin 6. /2
_ 211 _ 2T 2
=== (ln sin 6 /2 en sin @ /2) = ;E_ Ln (;EH_§—7EJ .

k 1

EXAMPLE 6.5. Consider a particle scattered off the potential

+ L mw2r2 0 <r<a

v(r) ol *3

-!V
=0 r > a

which is purely attractive or partly attractive and partly repulsive
depending on the values of VO' w and a. (See Figure 6.5.)

TVG\

Vel

V(r)

A\ 4

A

Figure 6.5. Potential in Example 6.5.
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Consider in particular the special case

2.2
_ 3 _h'k
E = [Voi + > hw Ty
At this energy
2
uo(r) = Nre ™F /2h 0 <r<a.

Matching the internal and external wavefunctions at r = a yields

2
Na e—mwa /2h 1 a
= = tan(ka+d§ ) =
2 2 2 k 0 2
-mwa“ /2h a’mw -mwa“/2h a mw
N e - N—Fe¢e 1- h
Hence
tan(ka+d ) = ——355—— ,
. atw
ol
i.e. 2 2ma2
Ka + mwa tan ka - tan ka ka+ > (E+|V0|)tan ka-tan ka
ko 3h
tan 8. (k, a) = =
0 1 - oo a2 + ka tan ka 2ma2
h 1- (E+|V.|)+ka tanka
3‘];12 0

(6.34)

If w is large the potential looks like an infinitely repulsive barrier
of radius r = a and the scattering takes place at high energy since
E = -|v0| + 3/2 hw.

In this case tan 60 = - tan ka i.e. 50 = - ka, exactly the infinite
repulsive barrier result Equation (6.33).

If w is small this problem reduces to scattering at low energy
off a square well of depth |VO[ (since small w implies small E).
For square well scattering

k tan Ka - tan ka

tan § . =
0 1+ % tan Ka tan ka

where

2m
= SE + |V |
22 o'f

bl
|

and the potential V = -|V0| has a range 0 < r < a.
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At low energy

3 2 3 3
ktanka:z{Ka+s@_)_}=ka+lﬂ<_a=ka+@__2ﬂ{E+ v [},
K K 3 3 2 0

3h
hence for a square well scattering at low energy
3
ka + 2K&W g [V |¢ - ka
3h2 0 0 2ka3m
tan § = ~ E+ [V.[p. (6.35)
0 2.2 2k2a4m 2 0
l+k7a™ + =5 {EO + IVOI}
3h

Equation (6.34) agrees with Equatié)n (6.35) in this limit.
The total scattering amplitude for this potential in the Born
approximation is easily obtained:

a
2m [ sin k'r' 1 2.,2)\..,2.,
f(k') = -5 | Sop (-[Vol + Smw’r )r dr
h 0
k'a
2m|V | 202 3
-———J k'r' sin k'r' d(k'r') - 5 2J (k'r') sink'r' dk'r")
‘h k' k'"h
0
2m|v_ | 2,2
= ——5—% !31n k'a-k'acos k'a 1 L {(3(k‘a)2-6) sin k'a+k'a(6—(k'a)2)cosk'a}
okt U I 5h :
EXAMPLE 6.6. Evaluate the differentialzandztotal scattering cross
section for the potential V(r) = Vo e T /2a in the Born approximation.
V(r)
v, Voo

Figure 6.6. Potential in Example 6.6.
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o

2mv j sin k'r' -r‘2/2a2 ,2
= e r

= e — 1
£o(k') = 3 e dr
0
r'=c0
mv 02,2
= - g J sin k'r' r'"/2a dr'2
2h7k' e
+00
mvy ik'r'—r'2/2a2 2
= - > Im j e dr'
2h7k! o
— _ k'2a2 too - —lz(r'—ik'az)z
= - g e 2 Im j e 2a dr'z.
2h7k! —c0

Defining u = r'-ik'az, r' = u+ik'a2, dr' = du, dr'2 = 2(u+ik'a2)du.
With this substitution

i \' k'2 2 e __u2
m - 2
fB(k') = - g e 2 J e 22 2k'a2du =
2n°Kk! Y
migals ke
- /2 ae 2
h
i.e. 2 2
VY21 mv a3 e_kl a”/2

£o(k') == 2

The differential scattering cross section in this approximation is

2ﬂm2V§a6 _ 2 2

a . ,
daQ h4

and the total cross section

2226 0=1

41 mV_a 4.2,2 . 2
G = — 0 J d cos B o 4@ K sin 8/2 _
h4
6=0

8=

2
_ _ 4nmVpa -2k252 I d cos 6 e2a2k2 cos 8
4
h =0
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2'n2m2V2a4 2 2 2n2m2V2a4
0 -4k~ a 0
2.4 L-e i 2.4’
k™h ko k™h

a result independent of the sign of V
using Cartesian coordinates.

0" This problem may also be solved

PROBLEM 6.7. Find the reflection time for a particle incident with
energy E on a step barrier V=0 x < 0, V = V0 X >0 (VO >0), E«< VO'

Aelkx + Be—lkx ;

For x <0 ¢

Ce_nx ,

for x >0 ¥

2m(V_-E) 2mv
2mE 0 0 2
k=/)% 0 07 ot [tk =k
h h h

Matching boundary conditions at x = 0 one obtains

where

L - in
1+ K

Constructing wavepackets:

¥, (xt) = f k') et(K'¥ - BRDT/A) g,

_ vy ~i(k'x+E(k')t/R) o ,
¥ (x,0) = fB<k ) e ax
- jA(k') kodn(e) oi(R'X+E(k)E/R) 4,
in(k")
- fA(k-)e-i(k'x+E(k')t/ﬁ+5<k'>) ak'
where
2.2

E(k) = 22X §(k) = tan t 20K 51 k)
2m 1_2_{12(k) k
K

Using stationary phase arguments (cf. Equations (4.14)) ore obtains
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v, (x,t) = e v (x-v t, 0)
in in g

_ ise as(k')
Wref(x,t) = e Wref(x+vgt + ax’

k'=k

If at t = 0 the particle reaches x = 0, it leaves

1 ds(k' 2m
x=0atc=- gt Sl o Bkn
since
v =Bk
g m
If n»>»i.e. VO > o, T > 0. In this limit B = -A. 1 is a minimum if

k=n =V%mV0/h2). Moreover § is discontinuous at k = /(2mVO/h2) and its

derivative is discontinuous at k = 0.

PROBLEM 6.8. Consider a particle scattered off two identical delta
function potentials namely
V(x)
-a T a

Figure 6.7. Potential in Example 6.8.

Find the scattering amplitude and its poles.
For convenience one may choose

V(x) = —[VOI{G(x-a) + 5(x+a)}

Ae1k(x+a) + Be-lk(x+a) o < R < -8
¥(x) = Celk(X+a) + De_lk(X+a) -a <x<a
Felk(x—a) X > a

The wavefunction is continuous at x = +* a and its derivative satisfies
equations analogous to Equation (6.10), namely:

: 2m|v_ |
lim {g% - g% ’ } = - —S ¥Y(x=ta).
§->0 ) h

x=*a+§ lx=ta—6
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Hence, defining
. mIVO[
B2k

one cbtains that:

A+B = C+D

A(1+2ie) + B(-142ie) = C - D
ce2ika + De—2ika - F

ce?tka _ pem2ika _ gy sy

which imply

A = (1-ie) C - ie D
C = e_Zlka(l—is) F
D = ie e2lka F.

Solving for F/A one obtains

. RS |
% - {(l-is)2 o-2ika | 2 e21ka}

' -1
= {(l—iZs) cos 2ka + i(2€2 - 1 + 2ie) sin 2ka} .

The scattering amplitude is thus
Fe-lka

ika
Ae

-2ika -2ika
= e

= % e [cos 2ka - 2e sin 2ka +

+ j((2€2—l)sin 2ka - 2g cos 2ka)]_l (6.36)

o~1(2ka+s)

’

/(cos 2ka - 2¢ sin 2ka)> + ((2e°-1) sin 2ka -2¢ cos 2ka)>

with
-1 2 -1
§ = tan {(25 -1) tan 2ka - 28}{1 - 2¢ tan 2 ka}

If a » 0 Equation (6.36) reduces to Equation (6.13) as it must (but with

Vo replaced by ZVO), namely T = 1/(1-i2e), § = -tan~l2e.

The poles of Equation (6.36) occur when
-i tan 2ka = ——=i28 (6.37)
2e7-1+2ie
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This equation is satisfied if E < O since then

k = /——-EI;E=i 2L = ik
h h

€ = mIVOI = -ie
hZiK

Equation (6.37) then reduces to the equation for the allowed bound states

€_
tanh 2|<a=—2— 1 o
1-2€+z¢€

which is satisfied when either

tanh ka 2e - 1 (6.38a)

or

1

(2e-1)" (6.38b)

tanh ka

Equation (6.38a) corresponds to even parity bound states while (6.38b)
to odd parity bound states.
If a » 0 Equation (6.38b) has no solution while Equation (6.38a)
has only one solution namely
2
m(2[V,|)

2h?

2 -1=0 i.e. ¢ %, that is |E| =

which is just Equation (6.15) with V0 replaced by 2VO, while if a » «

both Equation (6.38a) and Equation (6.38b) reduce to € = 1 which is just
Equation (6.15). These results are as expected since in the former case
the delta function potentials coalesce while the latter they essentially
uncouple.

If k becomes large € tends to zero and § to -2ka. This means if the inci-

dent wavepacket is ¥, (x+a-v_t, 0) i.e. x =-aat t =20, V¥ is
inc g trans

v (x+a-v_t, 0) i.e. x = a at t = 2a/v_ which as expected is the classical
trans g g

transit time for crossing these two potentials.
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Heisenberg Representation

Starting with the expression for the expectation value of an operator
OS in the Schrddinger representation (at some time t)

<0>, = J‘Y*(x, t) o4 ¥(x, t) & (7.1)

and the fact that generally (Equation (4.12))

Y(x, t) = JG(X, X', t)¥(x', 0) dx' (7.2)
where for a free particle

i ts! in! -1 "t
Gix, x', t) = [ o7ip'x! /B L JIR'R/R IE(RN/R g0 (g 3,
vam vam R

and by analogy for a particle in a (time independent) potential

)

G(x, x', t) = I ¢;‘1(X') ¢n(X) e
n=0

-iE t/h (7.3b)

one can go from the Schrédinger to the Heisenberg representation.
The procedure involves first noting that Equation (7.3a) can be
written

s 1 3 1 3 1 h
G(x, x', t) = _%: o 1P x'/h e iH(x)t/h L o 1P x/ dp'/h
van v2m

_ -iH(x)t/R (L _-ip'x'/R 1 _ip'x/h ., _.
= e = e 7=; éﬁ_ - e iH(x)t/h §(x-x")

(cf. Equation (2.19)).
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Similarly Equation

CHAPTER 7

(7.3b) can be written

Glx, x'. €)= T or(xt) o HOWR G (o) e /R 4y yry,
n
(cf. Equation (2.6)), i.e. generally
G(x, x', t) = e_lH(x)t/Fl §(x-x"). (7.4)
Substituting the result (7.4) back into expression (7.2) yields:
¥(x, t) = e HHEO/B g g (7.5)
Thus Equation (7.1) can be rewritten
<>, = J‘l’*(x, 0y elH(XIt/R ose'lﬂ‘x)t/rl ¥(x, 0) dx, (7.6)
i.e.
<>, = J‘P*(x, 0) Oy ¥(x, 0) dx (7.7)
where
OH _ e1H(x)t/h Os e-lH(x)t/h (7.8)

and the subscripts S and H stand for the operator in the Schrddinger and
Heisenberg representations respectively.

In Equation (7.7) one thus has simpler wavefunctions than in Equa-
tion (7.1) i.e. only ¥(x, 0), independent of the time, but more

complicated operators OH rather than O

The operator OH

s

can be seen to satisfy the differential equation:

(7.9)
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since
do A . . 30 .
_H _ i iHt/h _ -iHt/h iHt/h s -iHt/h
& "R e (HOS OSH) e t e 3t e
and where
u _ ame/m 5 -int/m
ot~ ot
To obtain Equation (7.9) one also must insert e-lHt/h elHt/h = 1 between
H and OS. One assumes here that H # H(t) in which case
iH_(x)t/h -iH (x)t/h
H. =e S H_e s = H
H S S’
If 0 = xor pand H = p2/2m + V(x),
then
dx . P
H _ 1 .
ET [HH' xH] = (7.10)
dp . oV
H_ 1 - . H _
at ~ g Uy Pyl = - 5 = Fy . (7.11)
and combining Equaticn (7.10) and (7.11) one obtains
d2xH BVH
m—=-——=F_. (7.12)
dt2 ax H

The standard Heisenberg representation results (7.10) - (7.12) look
exactly like the corresponding classical expressions for velocity and
force. In fact Equation (7.12) looks just like Newton's 2nd law. This
analogy has formal merit.

A word of caution is however in order here. Py and Ry are quantum

mechanical operators and are more complicated than their classical
analogues. Thus

h
3 (7.13)

X Py # PXy, but since [XH, pH] = -

X Py (7.14)

EXAMPLE 7.1. Show that generally
2 2
d(o )H B d(OH) dOH

T - a7 % &




86

but rather that

at - a2 &

2 2
4(o )H d(oH) doH [doH ]
+ 0
H
From Equation (7.9)

2
d(OH)
dt

_ i 2. . 2
A LHH, (OH) ] if (OS)

does not depend on t explicitly,

CHAPTER 7

where
. s . . Iy s
(Oz)H _ elHt/fl o; o iHt/R _ e1Ht/h oge iHt/h elHt,fl 0.e iHt/h
_ 2
- (OH) ’
and
2
[HHI (OH) ] - [HHI OH] OH + OH[HH’ OH].
Hence
a0’ . .
A = [H,, 0,]0. + O = [H., 0.]
dt h “"H"” "HH HRh-H "H
dt H H dt H dt dat ’ "H
i.e.
ao )% ao?) do.  do
i H_ 5o —H, [ZH (7.15)
dt dt H dt dt * "H|’ '
EXAMPLE 7.2. Show
2 2
Wy A P,
dt dt H dt mi °
From Equation (7.15),
2 2
at at H dt at * *m

But from Equation (7.10)
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thus
ax> ax a
- 2x 4 M X .| = 2X —fﬂ + L
at Hat m |PH *H Hat @ omi’ (7.16)

where cne has also used the result (7.13).
One notes in passing that one readily gets Ehrenfest's expressions from

the preceding since
d<0> do do

t_ * _H R
Franl I ¥*(x, 0) 3t ¥Y(x, 0) dx < 3t >
i 30y
= 2 < [Hy, 0] >+ < 5= > . (7.17)
EXAMPLE 7.3. Evaluate d/dt < % mwzxi > for a particle in the ground
1 2 2

state of a simple harmonic oscillator potential V(x) = 5 mwX .

From Equation (7.16)

d_}i_=2X ii_}.{.ﬂ.g.i
dt H dt mi ’
therefore
dxfl 2 h
— - £ * —
<2 > = 2 [ a5 xpy og0) ax v o
But
o*(x) x.p. b (%) dx = | ¢*¥ (X) x 5 A2 ¢, (x) dx =
0 H"H'O 0 i ox 70
R 2 mwzx2 h
mwx = A
-3 f 03 (x) x == op(x) ax = - 7= J¢6(X) > ¢, (x) dx = -57
-mwx2/2h
where one has used the fact that ¢o(x) = Ne .
Hence
2
dx
< >=—.L+—.h—=o,
t im im

and the expectation value of the kinetic energy of the ground (and by
a similar calculation of any) state of a simple harmonic oscillator

is independent of t.
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EXAMPLE 7.4. Generalize the result of Example 7.3 for any state of the
simple harmonic oscillator.

Defining
+ 1 . 1
a, = — + imwx, ¢ ,
one can quickly show, using Equation (7.13) that [a , a ] - hw , and
that

1

=L Jan? - eyl A
XPy = o3 {(aH) (ag )" + [ay, aH]I

I S U N =2
= 201 (%) (ay ) h‘*’}'
Thus
2
dx
h
< Etﬁ > =§J¢;\(X)XHPH¢(X)‘3X+HI

mi

1 i +2_, =2 1 il
& [onoofan®-a,)% -t Jo 00 ax +

since (a 2 operating on ¢ (x) produce states orthogonal to ¢ (x). For
1

non-diagonal matrix elements (i.e. n # m) a{ <n S x |m> # 0.

EXAMPLE 7.5. Show

_H _ + 2 0F (7.18)

at m 2m g Pyl

where TH is the kinetic energy operator in the Heisenberg representation.

From Equation (7.15)

2 2
d(p,,) d(p™) dp dp
H _ H_, _H —H
at at Py at at * Puf-
de BVH
But from Equation (7.11) —/— = - — = F_.
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dpf;
gt = %Py * [Fyr Pyl
or
Ty w1
at m 2m “u Pyi-
. _1 22
Thus for example if VH = 5 mw Xy
i S B
at ox  H ™ ¥y
and
dTH th

89



CHAPTER 8

Two and Three Versus One-Dimensional Problems

The one-dimensional Schrddinger equation for a particle in a potential
V. (x) is
1

2 2
h
FE S evemem-su e, (8.1)
dx
where oo

2 -—
J lv_ ()] ax = 1.

The radial equation for a particle in a three dimensional radial potential
V3(r) is
2

|0 W (W hoe(e+1) ) - .

1 >m drz + kJ3\r) + 2mr2 | ung(r) = Enlunl(‘)’ (8.2)
where

u (r)
nf 2
= = { -

£=20,1,2, ..., wnzm(r, 8, ¢) - Ym‘e. $)-2<m<®,

and

If 2 = 0 and Vl(x) = V3(x) Equations (8.1) and (8.2) are identical.
However, wn(x) in Equation (8.1) extends from - = < x < « while ung(r)
must be zero at r = 0 in order that ung(r)/r be finite at the origin.

In addition unQ(r) extends only from r = 0 to r = ». A consequence of

the above is that some solutions acceptable for Equation (8.1) are not
acceptable for Equation (8.2). Radial solutions of Equation (8.2) with
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potential V3(r) are identical with solutions of the one dimensional
problem (8.1) if:

Vl(x) = oo x <0

2
V() = V(%) + he(erl) o5, (8.3)

2mx

If

2
V.(x) = V.(x) + A7 (o+1
1 3 2
2mr

and moreover Vl(x) = Vl(—x) then the odd parity solutions (i.e. those

solutions which vanish at x = 0) of wn(x) are identical to un,l(x)//f

EXAMPLE 8.1. Consider the potential V (x) =(h2/2mb4)x2. For this
potential the solutlons of Equation (8 1) for the energy E are

= (n+3) h /mb The lowest energy is h /2mb and the ground-state
wavefunctlon (1//nb o™X /2b7, v, (x).

Consider now the potential V (r) = h /2mb 2 and the case £ = 0.

The minimum energy for a partlcle in this potential is 3h /2mb
Examine why this is so.
uoo(r) cannot be ¢O(r) since wo(x) does not vanish at x = 0. The

second energy eigenvalue for the one-dimensional problem is

El = 3h2/ 2mb2, with eigenfunction

1
oo (2 () %P/l
SR W=/ BV B
b/
This is acceptable as the lowest eigenfunction of Equation (8.2) since ¢1(0)=O.

The normalization must be modified however since

+00

J wi(x) dx

1}
—

while

-]

J uéo(r) dr

[y

Thus
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2 2
227 /%P

\p) ~

uoo(r) =

o=

(bVT)

Similarly all odd solutions w3(x), ¢5(x) are acceptable (see Example
10.3) solutions since for these solutions Y(0) = 0. Thus

uyo(r) = V2 ¥5(r), u,(r) = V2 Vg (r) etc. and

:
E _ =(n+}) — n=1, 3,5 ...
nl o, mbo?
2
l.e.
2, .2

E,, o = (2p * 3/2)R7/mb",  p=0,1, 2...
FV(r) ‘V('x)

P b >r 3 b ->X

JVQI '4»“

Figure 8.1. Diagram in Example 8.2.

EXAMPLE 8.2. Consider a particle in the three-dimensional well
V3(r) =0 0<rc< a; V30j = - |VO|, a<rc<b, V3(r) =0r > b.

Compare this and the analogous one-dimensional system

V(%) = - [v a<x<b Vi(x) = 0 x<a, x>b.

ol

The allowed % = 0 energy levels are easy to obtain. In detail the
solutions of Equation (8.2) which satisfy the boundary conditions at
the origin (unO(O) = 0) are

0O <r<a u (r) =A sinh kr k = 2m|E ,
n0 h2

an( [V, [-[E])

K=/ —
h
a<r«<bD uno(r) = B sin (Kr+§)
_ -kr

b<r uno(r) = Ce .

Matching the wavefunctions and their derivatives at a and b yields

tanh ka _ tan(Ka+§)

k K
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i.e.
K
tan(Ka+d) = X tanh ka (8.4)
and
tan(Kb+d) _ _ 1
K k
i.e.
K
tan(Kb+8) = - K (8.5)
One can rewrite Equation (8.5) as
tan(Ka+$)+tan K(b-a) K/k tanh ka+tan K(b-a)

K
tan (Ka+§+K(b-a))= - = = =
k 1-tan(Ka+d§)tan K(b-a) _K _
1 ktanhkatanK(b a)

Thus the energy levels for this system are obtained by solving the
transcendental equation

K _ K/k tanh ka+tanK(b-a)
i ) (8.6)
1—EtanhkatahK(b—a)
If a = 0 Equation (8.6) reduces to - K/k = tan K b.
If a > », ¢ = b-a Equation (8.6) reduces to
b—)oo

_ K _ K/k + tan Kc
k

" 1-K/k tan Kc °

These results can be compared with the energy levels for a particle in
the one dimensional well given in this example. The solutions of
Equation (8.1) for this potential are

P(x) = Aeklxl X < a
Y(x) = B sin (Kx+§) a < x <b
b(x) = ce ¥ x> .

Matching boundary conditions one obtains

1 _ tan(Ka+§)
1 _ (8.7)
k K
tan(Kb+8) _ 1
K =" % (8.8)

One can rewrite Equation (8.8) as
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K _ tan(Ka+d8)+tan K(b-a) K/k + tan K(b-a)
tan((Ka+d8)+K(b-a)) = - T = =
k 1-tan(Ka+é)tan K(b-a) _K _
1 K tan K(b-a)

Thus the energy levels for this system are obtained by solving the
transcendental equation

_ K _ K/k + tan K(b-a)
k ~ 1-K/k tan K(b-a) (8.9)

This is not equal to Equation (8.6) except in the limit

a->» b-azc where c is
b > «

a constant, in which case the different boundary condition at the origin

is unimportant.
The two-dimensional Schrddinger equation for a particle in a
potential Vz(p) can be written:

2 42 2, 2
_hT 4 h"(m™-3) B
{ m 2" (Vz(") ¥ 2 )} wo(p) = E_w (p) (8.10)
dp 2Mp
where
w_ o (p) +im¢
v (p, ¢) = nT & — , m=0, 1, 2
o p? vam
and o
2 p—
I W (P) dp = 1.

0

Here w__(p) must be zero at
nm

Wi (P)

p =0 so p%

will be finite at the origin. 2
Comparing Equations (8.2) and (8.10) and noting that m™ - % =

(m - 3)(m - £ + 1) indicates that if one has a solution ung(r) of

Equation (8.2), then wnm(p) is unm_%(p). One notes both u(0) and w(0)

must be zero as too U(»), and w(«), i.e. u(r) and w(p) have identical
boundary conditions.

EXAMPLE 8.3. Suppose one has a particle of mass M in a two-dimensional

Coulomb potential

Ze2

dme p

Vz(o) = - .
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Find the corresponding energies and wavefunctions. Since, as standard texts
Ze

4me r

report, for the three dimensional potential Va(r) = -
0

[

-Kr L+1
_ e (2Kr) K(n+g)! - . .
Ung (¥) (28+1)1 [n(n-l-l)!}lFl( Ly 20425 2Kr),
(8.11)
and

E = - Zzach2 R = ZMca o = e2 n=1 2 ’

ne 2 ’ hn ' 4me he L =0, 1, n-1

2n o

one can immediately write

m+3 i
-Kp (2Kp) 2 [K(n+m-§)! 2 N
w__(p) = e , ——==| LF.(-n+m+i; 2m+l; 2Kp).
nm (2m)! n(n-m-3)!| 171 (8.12)
g oozl 13
nm 2n2 ! 2727 1
m=20, 1, 2, . n - 5
Thus
2.2 2
E - - ZZZachz, _ 2727 o Mc ,
nm 9

EXAMPLE 8.4. Suppose one has a particle of mass M in a two-dimensional
oscillator potential'Vz(p) = l/2Mw2p2. Find the corresponding energies
and wavefunctions.

Since as standard texts report for the three dimensional potential

Vo (r) = i Mw2r2,
3 2 3, 3 2,2
2T (n+2+3), % _+1 -r“/2b
2 r e 3 2,2
unﬂ(r)={ 3 } 3 3 lF (‘n, 9'+57r/b )r
b™n! b™ T(g + 3) (8.13)

_ 3 _ /A n=20,1, 2...
EnZ = (2n + 2 + 2)hw , b= Mo =0, 1 ...

one can immediately write

i 2 2
: mt+i -p“/2b 2
w_(p) = qHomtl o e F. [-n; m+1; &) .  (8.14)
nm 2 m 171 2
b"n! b m! b
_ _ h n=20,1
Enm = (2n + m + 1)hw , b = Mo m=0, 1

EXAMPLE 8.5. Suppose one has a particle of mass M in a two-dimensional
potential V=0 0 <p <a, == p > a. Solve this problem.

To find the eigenvalues and eigenfunctions of this system one notes
that for the analogous three dimensional case the standard result involves
spherical Bessel and spherical harmonic functions:
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wnlm r>a
=0 ‘

(r, 8, 6) = A (kr) YS(8, ¢) O<r<a - /—
h

with allowed energies corresponding to values of k such that j (ka)
For the two-dimensional case therefore

i . +im¢
2
an(p, ¢)=p Jn_%(kp) e

with allowed energies when k is such that jl_%(ka) = 0. One notes that

i (2) - /T
Jp(2) = J/;Z Jo+3(2)

Hence these results may be written wnm(p, o) = Can(kp)etlm¢

with

allowed energies when the cylindrical Bessel function Jn(ka) =

EXAMPLE 8.6. Treat the finite square well system in two dimensions by
analogy with the standard three dimensional results:

- . L
lnt(r, ’ ¢) = Azjg(xr) Ym(er ¢)r 0 <r < a,

(1)

_ . L
‘Pext(rr el ¢) - Bzhl (lKr)Ym(er ¢) r > a,
2 |
K=/§—”24(|Vo| - [ED . k= MZE
h h
By analogy:
b (e, ) =t 3 (kp) Y™ 0 < <a
nm pr p Jn__% p = P ’
int.
1 . *im
wnm (Dr ¢) x0 h( 2 (lkp) e b < p < e
ext.
But
- ./ (1) _
Jeey (2) = J5p J(2), hgly(2) = Jmo)
2z %
Therefore,
_ +im¢
Yo (Pr ¢) =D J (Kp) e 0 <p<a,

int.
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1),. +i
o (o, ) = FE D (ko) T a < p <,

ext.

Matching the wavefunctions and derivatives at p = a gives one the
appropriate quantization condition for the energy.
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‘Kramer’ Type Expressions, The Virial Theorem and Generalizations

Consider a particle moving in a central potential V(r) = Ar®. The (radial)
differential equation for unl(r) =r an(r), (where the complete wave-

function ¥(r, 8, $) = R_,(r) YI%](O, 0)) is

2

R I B R T 1€ 51 PR (9.1)
2 nt 1,2 2 | "ne
dr h r
with boundary conditions that unZ(O) = 0, and ung(r) >0
Y—©

Assuming ung(r) is a real function one can readily show, integrating

by parts that given a constant k

d

u_,(r)
ng K __k k-1 . _k_ k-1
Jdr —ar % unl(r) =-3 jdr unl(r)r unl(r) =-5<r >,
(9.2)
. k .
(provided r unl(r)rz 8) while
r>
du_ (r) du__(r) 2
ng k ng _ k(k-1) k-2 _( k d
jdr ar r ar = =5 <r > ’dr'ung(r)r ;;5un2(r)
2
2 dunz(r) K+l d ung(r)
= - —=— |dr dr r P
(provided 5
K dunz(r) k-1 2 (dung(r)\z rk+l
r ——?ﬂr——-+ 0, kr ung(r) »> 0, \ ar ) ey »> 0, ,
r> 0 r> 0 r> 0
r> © r> © r> ©

and the integrals do not diverge), i.e.
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k(k 1) 2 dunz
3 > = Jdr (r)r Tkl ar

2

(r)
K1l

J dr2

d ung(r)

99

(9.3)

Substituting Equation (9.1) into Equation (9.3) and using Equation

(9.2) one obtains after regrouping terms:

k{k2—1-42(£+1)} < rk-2 , . 2m (2k+p+2

\ < Vr >+4mE <rk>=0

2(k+1) 52 l\ k+1 ) 72
(provided additionally
k+1 k+p+1
2(8+1) k-1 2 r 2 r
ki1 5 Ung (Tl aT Une () and kel Ung(F)

go to zero as r > 0 and r > «).

the constant k = -1.

(9.4)

If one studies in detail the restrictions
under which Equation (9.4) is valid it is obvious it is not valid if
The constant k need not however be an integer.

(9.5)

If k = 0 Equation (9.4) reduces to:
E = B2 (s,
2
But E = <H> = <T> + <V>. Thus for any quantum mechanical state |ng> of H,
<ng|T|ne> = & <ne|vine>,

which is just the quantum mechanical analcgue of
Theorem?):

= _p=z
2V
If k =1,
-2(2+1) <r iy - 2 2+4 <rv> + é%@ <r>
2h h
i.e.
pH4 oo, h(erl) 1
4 4m r
E =
<r >

Equating expressions (9.5) and (9.7) one obtains

2
s = 2P*2) ooy, J B2 1
ptd m(p+4) r

(9.6)

the classical Virial

(9.7)

(9.8)
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If
k=2,
+6 2 h2
% <rV> 4 T (42(241) - 3)
E = (9.9)
<r >
and
2
20, _ 3(p+2) _ 2 _ RT(4n(8+1) - 3)
<r°vV> = p+6 <r > <V~ 2m(p+6) (9.10)
etc.

Equations (9.7) and (9.9) are natural generalizations of Equation
(9.5), while Equation (9.8) and Equation (9.10) can be written as sum
rules. Thus,

z <n2|V|n'2‘><n'2'|r2|n2> =
n'e'#ng

B2 (42(2+1) - 3)
2m(p+6) !

= 2B ng|v|ne><nt|r?|ne> - (9.11)

pt+6
with similar expressions for higher moments.
The above equations apply equally well to one-dimensional problems.
For such problems ung(r) becomes WN(X), the complete eigenfunction for

the problem in question, while & must be set equal to zero. That wN(x)

has different boundary conditons, namely wN(x) -+ 0 merely implies the

X> *oo
limits in the various integrals are x from - « to =« in the one-dimensional
case rather than r from 0 to « and that the conditions are for instance

kag(x) >0 etc.
X > too
Thus: |
k }2{_1 72> o amlZkipr2) §k+ *2) ofys —4I;E <> = 0. (9.12)
R (k+1) R

EXAMPLE 9.1. Consider the one-dimensional harmonic oscillator:
V(x) = % mwzx2 (i.e. p = 2) where E = (N + %) hw. Obtain expectation
values of various powers of x. With these substitu*ions in Equation (9.12)

one obtains:
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2 2 2
- -
kgk2 1) <Xk 2> _m ; (2k+4) <xk+2> + 42w (N+;) <Xk> - 0. (9.13)
h™(k+1)

Substituting k = 0, 2, 4 in this equation yields:

2 __h 1
<N|x"|N> = o (N +3)
4 352 1.2
<N|x ™ |N> = =S5 (4(N+5)7 + 1)
22 2
8m w
6 5h3 1 1.2
<N|x |N> = —/= (N+3) {6(N+3)" + 7.5} (9.14)
33 2 2
12mw

etc.

EXAMPLES 9.2, 9.3. For two important three dimensional problems:

_ __ 1 2 2 1 _ 2y _ 1
V(r) = - ahc/r, E = 5 ame” = (where o = e”/(4meghc) = 37 ) and
V(r) = % mw2r2, Enl = (2n + £ + 3/2) hw , obtain recursion relations.

Substituting into Equation (9.4) one gets for V(r) = ahc/r
Kramer's well known formula:

2 2 222
k(k“-(22+1)7) k-2 mca (2k+1) k-1, _mc’a ko o_
4(k+1) TR et )T 7T 22 T 9
(9.15)
and for V(r) = 5 w2r2

2 2 22
k(k“-(20+1)7) _ k-2 m w” (k+2) _ k+2 2mw | 3y.k
2(k+1) <r > + hz kk+1) <r > F h k2n+Q,+2)<r >=0.
(9.16)

EXAMPLE 9.4. Show that if V(x) = Ax~, x > 0; V(x) =@ x <0

<n|xV|[n> = 1.5<n|V|n> <n|x|n>.

In this case 0 < x < » in the integrals of Equation (9.12) though
this is a one-dimensional problem.
Using Equation (9.12) with k =1,

E%i < xV > = 2E <x>.
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But from Equation (9.5) E = (p+2)/2 <V> (whether the system is one or
three dimensional);
therefore

<xVU> = 2(p+2 <V> <x>. (9.17)
p+d

If p=4
<xV> = 1.5 <V><x>.

EXAMPLE 9.5. For V(x) = ax4 show
2

<n|x2v|n> = 1.8 <n|x2|n > <n|V|n> + b (9.18)
20m
Substituting directly into Equation (9.10) with p =4, ¢ =0
2 352

2
< > = > <VU> + —
rv 1.8<r \Y >om

The same result applies to the one-dimensional case with r - x.

ax4 for all x, the integrals extend over all x.

If V(x) =
If vV(x) = ax4 x > 0, V(x) = o x < 0 the integrals extend over x > 0.
EXAMPLE 9.6. Given V(xX) = ax X > 0, V(x) =« x <0,
show
2 6 2 ,
(n[x%fn) = 3 (n{x|n) {3.19)
3 9 2 3ﬁ2
(n|x”|n) = 7(n{x [n) (n|x|n) + Tama (9.20)

Substituting in Equation (9.17) p =1
<XOX> = -g <ax> <x>,

which yields Equation (9.19), while substituting in Equation (9.10)
p=1, ¢=0r > x

<x2ax> = % <x2> <ax> + 5?;,

which yields Equation (9.20).

EXAMPLE 9.7. If V(x) = a|x| show
T 3 18 0 2 0 3p°
0 0 0

Substituting in Equation (9.10) p = 1, & = 0 and taking into account
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that ¢i(x) = ¢i(-x) since ¢n(x) has a definite parity (because V(x) =
V(-x)), one immediately gets Equation (9.21).

EXAMPLE 9.8. Obtain expressions for x = ¢<N|x2|N> , if p =1, 2,

i.e. V=AxXxor V = A2x2.
If p = 1, from Equation (9.17), <N|x2|N> = 6/5Ai <N[A1x|N>2
2
L(E .8 E
22 (3 ) 15 2
1 Al

8 E
ers"v/gg AL (9.22)

If p = 2 from Equation (9.14),

2 1 2 h 1 E
<N[x"[N> = B/mw (N+3) = =5 —2‘2 (N+3) = e

_ 1 /& _ JE
s //f; 1 2 /2an_ " (9.23)
Emw 2

EXAMPLE 9.9. Show if p = 2,

_(ae(e+1) - 3)R% <ngfr ¥ nes
ng 4m

E (9.24)

<nQIr_2|n£>

Substituting k = -2 into Equation (9.4) immediately yields Equation (9.24),
Note this result is independent of A, the constant of V(r). Since E > 0
42(2+1) > 3 i.e. & 2 1 for the integrals in Equation (9.24) to be
convergent.

EXAMPLES 9.10, 9.11. Show

-7/2
E, = (42(2+1) - 2 éi 39&12:57513&3 (9.25)
<n&|r [ng>

if p =1, and
3 ﬁz <n£[r_5/2[n2>

E . = -(42(2+1) + = —_—— (9.26)
nt 2 &m <ntr 1/2|M>
if p = -1.
Substituting k = -3/2 into Equation (9.26) yields result (9.25)
and k = - 1/2 into Equation (9.4) vields result (9.26). Both these

results are independent of A.

REFERENCE

H. Goldstein, Classical Mechanics, Addison-Wesley, (1950), p. 69.
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Upper Bounds and Parity Considerations

Consider a system with a Hamiltonian H such that

HY = En‘Y . (10.1)

If ¥ (o, B) is a normalized 'trial' wavefunction with parameters
a, B, ..., one can define the integral

E(a, B) = JW€ Hy, dx. (10.2)

Since the Wn constitute a complete set one can expand wtun B...) in terms

of the ¥,'s in Equation (10.1) which are assumed normalized in what
follows. Thus

wt(a, By = & c ¥, (10.3)
n=0

where the fact that wt and Wn are normalized implies
T | |7 = 1. (10.4)
Substituting Equation (10.3) into expression (10.2) yields

- * P =
E(a, B) = JZ cr Wn H i cn Wm dx

® 2
z e, |

n=0 n

using Equation (10.4).
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Hence

E(a, B) 2 E_ . (10.5)

This result enables one to use any trial wavefunction and in addition
optimize, i.e. choose parameters a, B etc. which minimize E(a, B) for
that particular trial wavefunction by requiring 8E(a, B)/da = 0 etc.

In this way one gets upper bounds to the ground state of any quantum

mechanical system.

The only restriction on ¥, (a, B) is that it obeys the same boundary
conditions as the eigenfunctions of H. Otherwise the assumption (10.3)
is not valid. One also of course assumes the quantities one works with
are well enough behaved that one can interchange summations and integra-
tions in the expression for E(a, B).

EXAMPLE 10.1. Consider the system H = T + V where

2
h 2 x2 X >0,V = X < 0. (10.6)

2mb

v =

The exact ground state wavefunction for this system and corresponding
ground state energy are in fact known:

3 2,2 — §?
(1Y 2x -x"/2b E. =+v2.25 —. (10.7)
y =l—1! = ¢ ; 0 2
0 kb‘/gj b mb
V(x)

I T Y U N N T O |

S

Figure 10.1. Potential in Example 10.1.

Consider the trial wavefunction

¢,=S_2ﬁﬂin-ax
t X

(2n)! e ’
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where n and a are parameters, n > 0.
Performing the integral (10.2) one obtains

A%’ (2n+1)(n+1)R°

E(a, n) = =
(20-Dy2m 12,4
2
oE . . 4 (4n"-1)(n+1)
3 0 implies o = 2
2b
X . . 4 4 2
while 9E/3n = 0 implies 4a'b = (4n+3)(2n-1)
i.e.
E(n) = /2nrlintl) B (10.8)
2(2n-1) )

with optimal n = (1 + v6)/2
If n=1 E(1) =3 B2/mb2. If n = 1.5 or 2, E(1.5) = E(2) = v2.5 h%/mb>,

and if one chooses the optimal n = (1 + /g)/2 one obtains

E«l-r/ng) = v2.47 hz/mbz, which is quite close but slightly larger
than the exact result Equation (!0.7) (as it must be).

EXAMPLE 10.2. Consider the system H = T + V where

V = Ax X > 0, V = o x <0, A > 0.

V(x)

I T T N T B |

X

Figure 10.2. Potential in Example 10.2.

If one uses the trial wavefunction

1
2

o o (L) 2 /2,
LI Ve

where b is a free parameter,
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2
B(b) = 20— + 22
4mb v
The requirement 3E/3b = 0 implies
b3 - 3/7R°
4mA
This yields
e (e 1/3 r424271/3 e 225211/3
optimal 4m m ) m :

Consider the trial wavefunction

2n+1
(2) _ (20) 7 . n -ox
Ve T (2m)r X ¢

where n and o are arbitrary parameters.
This function, when substituted in expression (10.2) yields

E(a, n) = B0 , {2n+DH)A
! (2n-1)2m 2a
2

2 g - 2
3E _ 0 implies a” = 4n -1)Am
da 2ﬁ2

- 2
dE _ . . 3 _ Am(2n-1
— = 0 implies a =
an ﬁ2

Substituting in E(a, n) yields

241/3,,2,2
E(n) = (27(2n+1) ) (h A

1/3
32(2n-1) m ) with optimal n = 1.5.

If

o}
0]

1/3 2.2.1/3
1, E(1) = (1.5)5/3(355—) = 1.97(355—) .
if
1/3 2 2.1/3 2.2 1/3
n =2, E(2) = (25235‘) (U‘—) z 1.92'[5—1") .

m m

Finally if one chooses the optimal n = 1.5

107

(10.9)
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It is interesting to note that even with the best two parameter trial
wavefunction wéZ one does not do as well as with the one parameter trial

wavefunction ¢£1)- In other words increasing the parameters in one's

wavefunction does not necessarily result in lower energies i.e. better
ts.
results 3) _ (2 \1/2 e_x2/2b2

Consider the trial wavefunction wi ) with b
bvm
as a free parameter.
2 2 1
E(b) = 52 + é% . %% = 0 implies b3 = %ﬂﬁf’
4mb e
Substituting this value of b into E(b) implies
B (b SR RANET AN SR
optimal (167) (m J (m )

This is much less than 1'86kA h /mJ , the best value obtained with

the other two trial wavefunctions! But this wavefunction does not satisfy the
boundary conditions and hence is unacceptable. In particular it is not
zero at x = 0. Hence this particular result is wrong!

The lowest energy for large arguments of the relevant Airy function is

b = 1.84(A252/m)1/3 (see Equation (3.18)).

EXAMPLE 10.3. Consider the system H = T + V where V = A|x| (A > 0)

for all x.
If P, the so called 'parity' operator is such that when operating

on any function f(x)
P f(x) = f(-x),
Then PH(x)¥(x) = H(-x)¥(-x) = H(-x)P¥P(x) = H(X)PP(x) for this case since

V(x)

X

Figure 10.3. Potential in Example 10.3.
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for the V of this example V(x) = V(-x) while quite generally T(x) = T(-Xx).
Hence in this case H(x) = H(-x). Thus for this problem (indeed whenever
V(x) = V(-x))

[PH(x) - H(x)PJy(x) =0 i.e. [P, H] = 0.

But this has consequences on the eigenvalues and eigenfunctions
of H. Assuming [H, P] = 0 consider the Schrddinger equation (10.1)

HWn(X) = En Wn(x). Premultiplying by P
PH(x)Wn(x) = H(x)PWn(x) = EnPWn(x).
Assuming the system is non-degenerate (see Chapter 12), if Wn is an

eigenfunction of H and at the same time PWn is an eigenfunction of H

with the same eigenvalue En’ this implies
PWn(x) = AWn(X). (10.10)

i.e. Wn(x) is proportional to Wn(x).

But Equation (10.10) is just the eigenvalue equation for P. The
eigenfunctions of the Hamiltonian are also eigenfunctions of P! Consider
now the eigenvalue problem for P. If p, are the eigenvalues of P,

Pf(x) = pof(x) (10.11)
= f(-x)
p2f(x) = péf(x) - f(x).

Hence po =+ 1.

Thus in Equation (10.10) A = *1 and Wn(-x) = Wn(x) or
Wn(-x) = -Wn(x).

Thus whenever, as is the case in this problem V(x) = V(-x) and the
system is nondegenerate, the eigenfunctions of H have either even parity
or odd parity.

Going through the derivation for upper bounds (1) - (5) one sees
that in this case Equation (10.5) applies independently to the odd and
even parity solutions since Equation (10.3) will be an expansion either
in terms of the even or the odd eigenfunctions Wn. Hence working with

odd parity trial wavefunctions one gets an upper bound to the lowest
odd parity state energy and similarly for even parity trial wavefunctions
an upper bound to the lowest even parity state energy.

A simple (though inadequate) even parity trial wavefunction for
Example 10.3 is:
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3
/= (b-|x]) |x] < b
2b

0 [x] > b

¥, (b)

with free parameter b, yielding,

2 + 2
3h Ab d0E . . 3 _ 12h
2 + 2 = 0 implies b~ = “Am

+
E'(b) = P S
2mb

(where one uses the representation of the delta function
— |x| = 28(x)).
For optimal

b+ a5 (a%2Y3 a%h?
b,E. SE (b )= Z0.86 | =——].
g g “opt 122/3 U m m

A better even parity trial wavefunction one can use is

2 2
o) = [ X/
bv'm

with free parameter b, yielding

+ n’ b oE" 3 nrt
E (b) = 5 + A — ; if ?ﬁ; =0, b” = mA
4mb vr
For optimal
. E+ . E+(b - (21_\1/3(A252 \1/35 o 81(A2h2 \1/3
iBg S Eglhope) = (Ten) Um J ~ 080w ) -

An odd parity trial wavefunction one can use is

_ (.2 \1/2 X -x2/2b2
Ve (-] b°
bv'm
with free parameter b, yielding
2 - 2.1/2
ET(p) = - 2 g BB 3 I
4mb v

and for optimal b:
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2.2 \1/3
- - _ h™A
Eg < E (boptimal) = 1.86(—17— )

One thus has roughly determined two energy levels with the help of
parity considerations in this case. One notes

E, (oPY) 1 oo

= z 2.29
E+ (opt) 0.81
i g
as opposed to
Eg (exact) _1.84 ) o7
0.89 ~ °°

E+ (exact)
9
(cf. Equation (3.18), (3.31)).
EXAMPLE 10.4. Consider the system:

2

.
H=13--vé(x) Vv, >o0.

V(x)

Y

Figure 10.4. Potential in Example 10.4.

Estimate the energy of this system using as trial wavefunction

(the groundstate wavefunction of the one-dimensional harmonic oscillator),
with free parameter w. One obtains directly
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1/2
_ ho _ _ (mw)
E(w) = 4 Volar)
Requiring
1/2
E(w) _ A Jofm) -
" 0 1mp11es 2 A1) 1/2 0
i.e. o 4mvg
ﬂh3
Hence for this trial wavefunction,
2
T e e
optimal = .2 o\ AT ) kvhaj B2

vs the exact ground (and only) state and only energy of this system (cf.
Equation (13.11)) = - mVS/ZﬁZ.

One again notes 2 2
mvo mV0

E . = -0.318 — > Eg = - 0.5 —
optimal h2 h

as required by Equation (10.5).

EXAMPLE 10.5. Consider the system H = p2/2m + V where

vV = %mwzx2 + a/x2 x 20, V=o x <0, (apositive or negative).
Estimate the ground-state energy of this system using as trial
wavefunction: 1 o2
3/4 _Mw'x

(1) _ (mw') 2x o 2h

t Lh ) 1/4
(This is the lowest eigenfunction of H' = p2/2m + V' where
V' = %mw 2x2 x 20, V' =oo x <0, with eigenvalue % hw'.)

Using this trial wavefunction,

(1), ,, _3 , , 2mw'a (w \g
Eg (@) = 5 het + 5 " 1jgh

(This result can easily be obtained by rewriting

2.2

12 PR F S
1)§mw X

2
_p- .1 - (v
H + Emw x 2 \

2m ,
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and noting that

(1) a (1) _ 2mw'a | (H*1 .22 (1) _
f”’t 2 Ve & =Ty ’J’wt et N
0 X 0

= %{%ﬁw')(cf. Equation (9.5))

From the constraint(BEél)(m‘))/aw' = 0 one obtains

W
' =
@ optimal 1+ 8ma
352
Hence
[1,4 ma]
(1), _3. 1M3 A7 2mu
B (0=t imal) = 2 ho *
P /& , Sma % 8ma
2 1+—
3h 3h

If o = hz/m the Hamiltonian above admits of an exact solution since

’nz/mr2 = 2h2/2mr2 is then just the centripetal term in the three
dimensional simple harmonic oscillator (V = %mwzrz) Hamiltonian, if 2 = 1.

The exact energies in this case are (2n + 1 + %)hw n=20,1, 2...
i.e. the lowest solution is EO = %hw .

In this case

(1) _¥33 ..
Et (woptimal) == hw ~ 2.873 hw > 2.5 hw
as expected.
One may use instead:
o2 [ n -px
t (2n)!
as trial wavefunction.
In this case
(2) hz n+4 2 mw2(2n+2)(2n+1)
E (B, n) =5——S—=+— B +
t 2m(2n-1) n 8B2

For optimal
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g = (m_m\l/z ((20-1)n(2n+1) (2n+2))*/4
2fl} K n+4 )

(2) . (2n+1) (n+1) (n+4)

Et (Boptimal' n) = hwv// 2n(2n-1)

which has values 2.556 hw and 2.535 hw for n = 3 and 4 respectively,

while for optimal n ~ 3.74, E(B ,n ) ~ 2.533 hw > 2.5 hw . Again
opt’ opt (2)
as expected one gets an energy greater than the exact energy but wt
(1)

gives a better upper bound than wt .
If o = 3ﬁ2/m again one knows the exact solution which one can
compare with the upper bound results that arise in this case etc. Thus

2 7 . (1)
for a = 3h°/m , E_. = 0 hw , while E = 4.5 hw > 3.5 hw.

0 ¢ (@
If

optimal)

(3) _ (8 )2 me)?* 2 -marx?/on
R = A G A

is used as trial wavefunction,

2
(3, yiy o (1, 20m ), 5 w
Eofe) =gz * T et g B
3h
With
w' . = =
optimal //l_ v
15 15]’,12
hw L, 8o
(3) _(71_ ., 20m) _ hw 5 Y/ 15 " 15 p2
By (uipe) = (13 * -2 3 :
P 3k 7, 8am
15 15h2
If ]
_h_ (3), _ o
a o Et (wopt) = 5/2hw = Eexact'
If
= éﬁf E(a)(m' ) = 1 /155 hw = 3.59 hw > z hw = E
@ m Tt opt 2 3 : 2 exact’
EXAMPLE 10.6. Consider the system H = p2/2m + V where V = - ahc/x
x 20, = o x < 0, with groundstate eigenvalue of -O.Smczaz.

Estimate this ground state energy using as trial wavefunction:
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/2 2,2
(1) _ 2 -x“/2b
Ve T T e :

(1 «
kb/ﬂ)

Performing the integral in Equation (10.2) one obtains:

2
E(1) _ 38" _ 2hca

®) 4mp?  wm
E(l) = 0 implies b = éﬁlﬁ;
ab 13 opt 4mca
Hence
(1) _ 4 22 22
boptimal) = 37 mc o (-0.424 mc a )
> E as it must be.
ground

This result is quite close to the exact ground-state energy.

trial wavefunctions do not do as well.
Thus if instead one uses:

(2) _ 2 2 Xze-x2/2b2
t 2

¥ =
b 3bv'm

one obtains
2

%) (b) = 78%/(12m0%) - 4Rca/(3bVT).
AL (2) = 1 3 - 7ﬁ\/;T.
b E (b) 0 implies bopt Bmca
Hence
(2) _ 16 22 . 2 2
B Bptinal) = 7 217 M @ 0.243 mc2a’.
If one uses:
b3 /{2b2 2 -bx
E(3)(b) _ R2p° _ ahcb
6m 2
BE(3) = 0 implies b - 3omc
ob P opt - 2h

115

Other
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Hence

(3) __3 2.2 _ _ 2 2
E ( optimal) = g mc o = 0.375 mc a".

(2) (3)(

Though both E (bopt) and E bopt) are above E

is as close to it as E(l)(b ).
opt

A fourth trial wavefunction:

(4) _ Y2 3/2 -x°/2p°

Y = X

t b2
yields:

2 -
E(4)(b) _ 5h - - a?g/n . b, - 5h —
8mb P 2macy' T

and

E(4)(b ) = - I mc2a2 ~ -0.31 mczaz.

opt

groun

CHAPTER 10

a neither
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Perturbation Theory

Consider a system whose Hamiltonian H contains a 'perturbation' V such
that

H=H_ +V. (11.1)

If one knows the eigenfunctions and eigenvalues of HO’ i.e.

Ho¢n = gn¢n, (11.2)

and wishes to find the eigenvalues and eigenfunctions of H i.e. En’wn in
= 113

Hy =EvV., (11.3)

One can formally expand each eigenfunction ¢ in terms of the complete
set ¢ _:
n

Yy = I am¢m (11.4)
m=0
where the ¢'s are assumed orthonormal i.e. J¢§¢q dt = qu’

One can then rewrite Equation (11.3) as

o

$ (H-E) a_¢_ =20, (11.5)
m=0 mm

where for notational simplicity the subscript n has been omitted from
the ¢y's and E's.

Premultiplying expression (11.5) by ¢; and integrating over the
relevant variables one obtains:

L]

mzo (B - B8 Da =0, p=0,1, .. (11.6)
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where

pm m Gpm pm

and

\'
pm

written in matrix form one has:

Jop v oy ax = (o lvIay).

— - - -
HOO—E Vo1 VO2 e a,
V10 Hll-E V12 N al = 0. (11.7)
V20 V21 H22—E oo La2

The eigenvalues E of Equation (11.7) are the exact energies of the system
(11.3) and the corresponding coefficients a; give, when substituted into

Equation (11.4) the corresponding eigenfunctions.
Consider for simplicity the special case when expression (11.7)
is a 2 x 2 matrix. The determinant of this matrix must be zero i.e.

2 _
E - E(Hy, + H =0, (11.8)

110 = Vo110

hence oo T e . 4V5.V0 \1/2
(Hog* Hyq) = (HggoHyp)(d 2 )
(Hop7Hyp)
E = (11.9a)
2
2V v
_ ( 0110 )
(HogtHyp) = (HpgHyp)(d + 2)
(Hyp=H1y)
- . (11.9b)
2
This gives two energies:
e im s Vor1'10 C oy e Vo1v10 e s Vo110
Z o1lo oiie —
o~ Foo * B H, - 0" Yoo T e me v T foto0 " T Vao-Tin)
0 177 e, -€
0 €1
. V10'01 V10Y01 Vo1Y10
E iy m sttt e v a1t (- V11-Y00)
11700 1*V117%07V00 (e.-e )l 1+
1S (M ——
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Upon expanding the denominators in these expressions one obtains:

, Yo1"10 | Y01"11"10 Y0110
E, = € +V + -V —_— + ...
0™ %000 T TegTe; T o2 Yoo o )2
01 01
(11.11)
7
O (oS WS T Yokl s WS To M}
O R E s S E U
170 F17%

From the 2 x 2 matrix one can also obtain expressions for ¢ by

solving for the eigenvectors a, and aj,
E-H E-H
00 00 . |
vy = a {¢ + ¢ } {¢ + ¢
0 ol'o " Vg, 1 0 Vo, 1l (11.12a)
and
E-H E-H
11 [Z 11
v, = {‘———— 9, * ¢ } + o, t ¢,}
1 1Lv, "o 1 LV, 0 b [ (11.12b)

if in addition one requires (¢0|w0) = (¢1|wl) =1 i.e. that the y's are

'cross normalized' functions.
Substituting E0 and El of Equation (11.11) into Equation (11.123) and

Equation (11.12b) respectively yields:

$.V .V, .V .V, V
L, 110 717113710 _ 71710700

Vo= o (11.13)
0 0 € -¢ 2 2
0 "1 (eo sl) (so-s])
V.= ¢ + ¢OV01 + ¢OVOOVOl _ ¢OVOlvll + ...
P s (e me)? (e me)?
£17%0 €17%0
One can generalize the results in Equation (11.11) as follows:
Vnmvmn Vnmvm v n vnmvmn
E =g +yv +35 —=m, g —wfpPpd g, 5 OO0 1 97 14)
n n €_-€ (e_-€_)(e_-€_) nn 2
m#fn n m m,p#fn ' n m’'' n p m#n (en—em)

which is the standard Rayleigh-Schrddinger expansion for the exact energy
to third order in V. The first term in Equation (11.14) is called zeroth-
order. Terms in Equation (11.14) involving V once (the second term) are
called first order. Terms involving V twice (the third term) are called
second order, and terms involving V thrice (the fourth and fifth terms)
are called third order.
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One can generalize the results in Equation (11.13) as follows:

¢mvmn ¢me Von

- nn_ _mmppn

wn =0y I € _-€ * 2 (e_-€_)(e_-€_)
mFn n om m, p#n n m’'‘'n p

¢mvmn
vy /=W— 4, (11.15)

nn m#n (€_-€ )2
n m

which is the standard Rayleigh-Schrddinger expression for the exact wave-
function to second-order in perturbation theory when one has cross-
normalized functions wn i.e. (¢n|wn) = 0. Fourth and higher-order terms

and third and higher-order terms in Equation (11.11) and (11.13)
respectively may be obtained by keeping more terms in going from

Equation (11.9a), to Equation (11.9b). The usefulness of expression (11.14)
and (11.15) in turn depends among other things on whether the expansions
converge.

EXAMPLE 11.1. Consider a particle subject to the Hamiltonian

m2x2 x| < a, H=T+ L mw

2a2
2

H=T+ 1 m

> x| > a.

Potential F_r\er% V(%)

) ‘Lal
.z_muu

Figure 11.1. Potential Energy in Example 11.1.

One can rewrite this Hamiltonian as

1
H = HO + V where HO =T + 5
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To first order in V one then has

E =¢ +V
n n nn

]

2 2..2
e - Lp? zj (x°-a%)¢%(x) dx
n 2 n
a

where €_, |n> are the standard eigenvalues and eigenfunctions of the
one-dimensional infinite harmonic oscillator.

This problem illustrates one important limitation of perturbation
theory. It predicts here an infinite, discrete set of energies En'

However, if E > < nwa® the particle is no longer bound but rather is

free i.e. it can"have any energy!
In fact only if E << % mwz a2 does one expect to get reasonably

accurate results using perturbation theory.
Classically for this system it makes no difference what the potential
is for x greater than Xmax where xmax = /2E/mw2.

The quantum mechanical treatment of this problem however, shows
that the potential for x < xygyx affects the particle. If a » = the exact
energies of the system go to E,. For the actual potential however, the

exact energies E  are less than €,, since Vnn < 0. Roughly speaking this

is because there is more likelyhood the particle will be in the classic-

ally forbidden region if V = L mwza2 for x > a than if it is more

2
repulsive i.e. % mwzx2 in this region, and the more the particle spreads

the bigger its wavelength A and smaller its energy since k ~ 1/A while
E~ k°.
EXAMPLE 11.2. Consider a particle in the potential

V(x) =Ax x>0 (A >0), V(x)=o x<0.

Suppose one wishes to know the ground state energy of a particle in this
potential.

The Hamiltonian of the system is H =T + Ax, x > 0. But one can
rewrite H as

B2 2
H=Hy + (Ax - %)
2mb
where 5 ,
HO =T + 7 X (x > 0),
2mb

and b is a parameter. 2 4 2
One can then treat Ax - A"/2mb° %X~ (x > 0) as the perturbation V.

For this choice of HO’
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_2x(_1 \1/2 -x°/2b°
¢0 = % __) e = |O)I
bV
and
3h
€0 © (¢ |H |¢0) =T 5
2mb
The first order energy is
2.2 2
h 28b  3h
f¢3(Ax - -—53) 9, dx = = - T
2mb v 4mb

One possible choice for b is such that the first-order energy contribu-
tion is zero i.e.

3 3%E

LI

X

Figure 11.2. Potential in Example 11.2.

with this choice of

1/3,.2 21/3 1/3
e, ARt A A
“Ar) Um ) (m )
to first order.
The second-order term is
2.2 2.2
<0|Ax - hx |n><n|Ax - ﬁ—zz |0>
T 2mb > 2mb , (11.16)
n=1, 2 h
- ——5 2n
mb
since
52
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One can evaluate this expression using

IR G U L ) S GV R
¢, = 1> = //; ka;) e k2 3 - 3bj

etc.
Considering just the n = 1 term in expression (11.16) one has

2.2 2
<O!Ax_ax4|l>=/§zx_b__ gh__zz_A_b_ 2
2mb Jr 2mb Ve

with the above choice of b. Thus Equation (11.16) becomes

2.2 2
b"A" =— 1/3,,2 2.1/3 2 .241/3

: 3 - - é (.3__\ (fi) = - O.OG(T}—A\ . (11.17)
R \8m) m m )
mb2

AL

All additional second-order terms are also negative hence add to
the magnitude of the second-order result, but should be small compared

to Equation (11.17). Indeed the next term in second order (n = 2) is:

2.2

‘<0|AX - b X4 |2>|2 | - B -0 12 4 2
2mb _ Y/30m _ _b'ma® _
_4n’ _ 4’ 120k°
mb2 2
1 Jl.l/B A2h2 1/3 - - o.001s A2ﬁ2 1/3
320 \8nw m ' m !

which is considerably smaller than Equation (11.17).
Hence to second order

2.2.1/3
E. = 1.91(3—5—)
0 m

which can be compared with the variational approach result for this
problem, (Example 10.2)
2,2.1/3
E.L < 1.86 (é—é—) .
0 m

The third-order term is
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I’12X2 h2x2 rl2X2
<0|Ax - [n><nfAx - =7 |p><p|Ax - — |0>
3 2mb > 2mb > 2 , (11.18)
n, of0 (20 )0 )
mb” mb°

since the choice of b earlier in this problem makes the second third-
order term zero (see Equation (11.14)).

Taking only the term [n> = |m> = |1> in Equation (11.18) one obtains
an approximate third order result:

2.2
|<o|Ax-FIX |1>(%<1|ax - DX p’a? 2 ,

_ _m__3(3bA _ 77
an? ad Ur )
m2b4 m2b4

5 3 1/3 A215‘2 1/3 A2F12 1/3
= - = 1|= E— = - 0.02({—
8 \m m m
2
which is smaller than the second-order correctlon
Thus to this approximation EO ~ 1.89(A h /m)l/3
If one uses instead b = (3/ﬂ h )/4mA which mlnlmlzes the energy to first
order (see Example 10.2), one obtains E. = 1.86 (h A /m) 1/3 in first

0
order and no contribution in second and third order from the state n = 1.
The exact result (valid for larae arguments of the relevant Airy
function (cf. Expression (3.18)) is:

. (%)2/3(32?3)1/3(§3§)2/3 _ (235)2/3(é%?3)1/35 1.84(52?3)1/%

With the first choice of

1/3
_ (3h / . _
b,{bl = ( BAm J which makes VOo = O} ,

to second order in perturbation theory the exact ground state wave-
function becomes:

_ 1 /3 5 /3 -
Vo = 9(by) + 5 //; ¢,(by) + )7 //g 0;(by) ™ Oylhy) #

+ (0.153+0.048)¢ (b,) = ¢,(0;) + 0.2016, (b)) (11.19)

if one includes only one excited state in expression (11.15).
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£ (b)

b x
Figure 11.3. ¢O(b) in Example 11.2 vs Xx.

1.22b 2.0%b

Figure 11.4. ¢1(b) in Example 11.2 vs X.

With the second choice of

_ (3n3m/3
b, {bz ~ ( 4Am ’

which minimizes the energy to first order, i.e. makes BHOO/Sb = 0},

the matrix element VOl is zero so there is no contribution to the exact

ground-state wavefunction from ¢1 for this choice of b:
wo = ¢O(b2) to second order in V, (11.20)
Expressions (11.19) and (11.20) are less dissimilar than they look
since they involve different b's with bl ~ O.794b2. Thus though ¢0(bl)
of Equation (11.19) is more compressed than ¢0(b2) of Equation (11.20),

this is compensated for by the small admixture in the former expression
of ¢l(b1) as can be seen by considering Figures 11.3 and 11.4.

EXAMPLE 11.3. Consider

H=T*+ % mmzp2 0 < p < a where p = x2 + y2 (11.21)

=T p > a.
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To find the ground state energy of this system using perturbation
theory one can write
2 2

H=T+ % mw p + V(p)

Hy + V(p),

where

1 2 2
V(p) =0 p<a, V(p) =- S mwp” p > .a.

The ground state wavefunction for HO is (see Equation (8.14))

1/2 2,..2
- (2) 3 -p"/2b : . /B
woo(p) \sz pe e , with b = o
€y = hw .

ﬁHuﬁmlquaa

a P

Figure 11.5. Potential in Example 11.3.

To first order in V one then has

o0

2,2
B 2 -p%/p% (1 2 2)
Eo—ﬁw—b—sze Lmedep

a

2,2 2
T S

}

2 | )|
mwa?
hw mwa2 " h
= hw - -5'(1 + _E__} e , (11.22)

which is expected to be accurate if hw << mwza .
To second order the first state which contributes to the energy is

wlo(p) at energy 3hw



PERTURBATION THEORY 127
2
Ld 1 2 2
{2 @102 3 %) wgo(e) ap)
- -2hw B
2,2 2 4742
(35 S
_ b b “'a
-2hw
mwa2 2mma2
__he( " R mea’ | mew’a )Y ho = R [ mwa’ m2w2a4\2
===le 1+ =-=c I+ +—1.
8 h 2 8 Uh 2 )
h h
Hence approximately
mwa 2mwa
£ =hm_h_w(1+mwa e B _ huw, h 1+mwa2+m2u)2a 2
0 2" h 8 f 2 )
(11.23)
Obviously this analysis is incorrect if E > % rnu)za2 for reasons
similar to those mentioned in Example 11.1,
EXAMPLE 11.4. Consider
H=1+Aalx|® (all x). (11.24)

This may be written
h2
2mb*

+

x2 + {A[xl

can be treated as a perturbation.
can be immediately calculated usi

2
€, = and ¢.(x) =
0 2mb2 0
If p is odd one has:
2
<o|a|x(P - B " x2]0> =
mb
The choice
p+2 _ hz/;
oo amal R21),
{2)

makes the first-order energy zero

I,12

2mb?

2

P X

2
h 7 xz} and A|x|p-

The ground state energy of this system
ng first-order perturbation theory

(V2 %/

v/

P 2
Ab- (p-1), _ A"
i V2 ) 2
and yields
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27p 5
e 2 22 ((p-1), 48R o2 (11.25)
o T L Wz ) pz) '
mp+2
If p is even one has
P, _ 2
colm® - Lnti?|o> - Bl BT
2P 4mb
The choice
o2 _ n2P/2?
mA(p-1)!!

makes the first-order energy zero and yields:

2
P, \P*2
Bz —t (1) BA) (11.26)
0o 7 T2p=2 ("7 p/2)
p+2
2
These results may be combined:
r(BtLy pPa pez
E. = L 2 for arbitrary p (11.27)
o p2 \ 1/2 p/2) ' '
2P*2

These may be compared with a qualitatively similar result namely
Equation (5.2). If instead one chooses b so the ground state energy will
be a minimum to first order (cf. ch. 10) i.e.

<0|H0+v|0> = <0|T + A|x|p[0> = <O|H|O>

is a minimum, for odd p this implies

p+2 ‘h2\/_1;
S—=y
2mApk > )!
while for even p
B
2,2
QP2 _ B2
mAp(p-1)!! °

For p odd in this case

E_ 2 pt2 (
0 1  2p+2 kmp/Z pp/2j
ﬂp+2 2 pt2

while for p even
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E ) (Aﬁp(p 1)11 2/(p+2)
+2 p/2 p/2 :

2 p+2

These results may be combined yielding

p  (p*l)
g = Rf2 (Ah T )2/(p+2)
0 2p+2 mp/2 p/2nl/2

2 p*2 P

(11.28)

for arbitrary p. For p = 2 Equations (11.27) and (11.28)_both yield
hw/2 which as expected is the right result (where A = mw2/2).

EXAMPLE 11.5. Consider H = H, + V (X%, Y)

0
where 2 2

while
2
V(x, y) = Amw Xy.

Suppose one wishes to find the ground state energy (non-degenerate)
of this system. .

The unperturbed energy of this system is hw with corresponding wave-
function ¢O(x) ¢O(y) (cf. Expression (12.4)).

The first-order correction to this energy is zero since
2
* =
[ [ 050 05(v) o (x) 0, (v) ax ay

The only term which contributes in second order because of the nature
of this particular V is ¢ (x) ¢.(y) at energy 3hw.
Hence the second order con%ribution to the energy is

()2 <90 (x)0g (1)x38, (x)0y (1]

-2hw

2 mwzx Azhw

A
0] = - &

" 2hw | ¢O|

in agreement with the exact result (see Example (12.9)),

2
Eo=%hw{m+ﬁ+—)\}=hw—)‘8hw+... . (11.29)

The exact normalized wavefunction for this state (Example (12.9)) is
wo = ¢0(X, w = ml)¢o(Y, w = m2), where
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V2
1 —
Y=-= ®+y) w, = w1+ A
V2
while Ve - mwE >
65, w) = (M) 2
o'sr (ar) ¢
i.e. 1/2 _ mo/ 1-A x2 _ muw/ THA Y2
_ (mw) 22,1/8 2h 2h
\bo(xt Y) kfl‘ﬂ') (1 A ) e e ’

or 2
- BELTR ¢ VT /2 - BT+ VT /2
e X

(%, ¥) = (gf)l/z(l—xz)l/s .

- mg%x {(VI*r - VI-x}
(11.30)

If A << 1 one can write Equation (11.30) as
5 EEL—AZ(x2+y2) _ MWXyYA )
v, v) = (1 -2 Y (%, we (v, w) e2N8 2h
0 ’ 8 0 ’ O ’

2 2 2
- CAdmwxy  AT[ 0 omw 20 2 miw 2 2 )
= ¢0(X)¢0(Y) (l "8 { 1+ T (x“+y“)+ 52 x“y +__.).(ll.31)

Perturbation theory on the other hand yields, to second order, for the
wavefunction:

2 2

A A A
b ”N(¢ ()0,(y) = T . (%), (Y) + == ¢, (x)9,(Y) + —— ¢,(x)9,(y) +
0 0 0 471 1 a/3 2 0 e/7 O 2

A2
* 16 ¢2(X)¢2(y)) , (11.32)

since

(8, (x)0(¥) [V[¢,(x)0, (¥) = O

(6,30, (V) [V] 9, (x)0 (¥) = 52

(0, (x)0,(¥) [V]o,(x)0, (V) = ;:’ )
2
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(¢2(X}¢2(Y)|V|¢l(x)¢l(Y)) = Ahw
and where N = 1 if one assumes Yo is a cross normalized function i.e.
(8(x)0(¥) [¥y(x, y)) = 1, while it equals ~ (1 + A/t )2 g

one assumes (as in the cése of Equation (11.30)) that
(bo(x, V) [¥y(x, ¥)) = 1.

Expressions (11.31) and (11.32) are identical to order Az if one
substitutes N ~ 1 - A2/32 in Equation (11.32), since

0,00 = /Ex o (x)

1 2 2

9,(x) = == [ 1+ S8 ) NES)
V2

EXAMPLE 11.6. Consider

and

2
H = gﬁ + VOG(x) -a<x<a,
whereas if |x| > a, V = .

To obtain the exact result one writes the Schrddinger equation as
follows:

(Hy = E)b(x) = -V 8(x)¥(x),

2
where H = g; » V= Vy8(x) and x < la].
Thus
Voé(x)
Y(x) = - - W(x) . (11.33)
P _
2m E
P V(x) P
A -
g
A VopO |-
A L~
-~ e
X
-8/ La
M e
g V<0 :
A =
r/

Figure 11.6. Potential Energy in Example 11.6.
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Using closure (cf. Equation (2.6)) one may insert the set [n> of

eigenfunctions of the potential V = 0 |[x| < a, V = =|x|>a between

2 .
1/(55 - E) and VOG(X) in Equation (11.33) {the odd eigenfunctions do

not contribute to (n[VOG(x)lw(x))}. One then obtains:

v(x) = - =
=1, 3 n2h2
5" E
32ma
¢ _(x)9*(0)
= Vou(0) = 3
n=1, 3... n"h
E-"3
32ma
Substituting the value x = 0 in expression (11.34) one obtains
$*(0)¢_(0)V,¥(0)
n n a
¥(0) = - = > :
n=1, 3... n"h
5" E
32ma
i.e.
\Y
1=- ?? = 212
n=1, 3 h
> E
32ma
since
1 nmx
¢ (x) = — cos 5~ ,
n /; 2a
2
e = nh -1, 3,5
32ma
i.e.
n’ 1
32V, ma
0 Noad B-n
where
32ma E
B ———
h

[n) (n]V,8(x) [¥(x))

(11.34)

(11.35)

If one plots the two sides of this equation one obtains Figure 11.7,

where the intersections correspond to acceptable values of E.
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Zdw | \

25

|
| =
(Y

\

Figure 11.7. Exact energies in Example 11.6, graphical

\

solution of Equation (11.35)

If B =q° +§
h2 L1 5 - 32V0ma
32V0ma § h2
i.e.
2 32V0ma
B"q+ 2 ’
h
or
2 2 \' \'4
E=h_q_2+_0_=€ + 9
32ma a d a

A more accurate calculation yields:

2
h 1 1 1 1
= =%+ § ——=z3 + %
32V0ma § n#q q2—n2+d 8 n#q qz_n
(odd) (odd)
i.e.
2 -
cl 87 + 026 -1=0
implying
o1 S
a — o —
c2 c3
2
where
_ 1
c1 = I ,

"\2

32V, ma

b

32V,ma

133

Ve 70

V6 <0
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c hz - I L
2 32V0ma néq q?-n
(odd)
Thus 2 -3
32V _ma V./a ,-1 32V ma (V. /a) V./a
B 0 0 0 0 0
§ = — {1-2 } - z {1-2 E_E}
h nfg 9 n h nfq  (847€,) nfg 9 n
(0dd) (o0dd) (odd)
Since
2
E = —0 (q2 +4),
32ma
2 3 3
\ v \'
E=¢ -2+ 2 3 2.2 5 1 1 los 1
q a 2 € -€ 3 (e ~e_ ) (e_-€_ ) 3 n#q 27
a” nfg 9 n a n n g m a (e -€_)
odd nt? g odd ‘“q n
odd (11.36)

which is just the perturbation result for Eq (g = odd) to third order
since if r, s are odd (¢r|V|¢s) = Vo/a for this particular V and set of

eigenfunctions of H,. If q = even there is no correction to the

0
unperturbed energy Eq from this particular perturbation.

As concerns the exact wavefunction, from Equation (11.34):

(%) = Vv (0) ¢q(X) . V¥ (0) 9, (x)
O & S O
- E-
2 odd 2
32ma 32ma

But if (¢q|w(x)) = 1, this implies

Vob(0)
> 2 = 1.
va oo g’
32ma2
With this constraint i
2,2 o, (%)
P(x) = ¢ _(x) +(E -3———2-) 1 —— . (11.37)
K 32ma““/ n#q g- b h
(odd) 32ma2

Substituting Equation (11.36) into Equation (11.37),
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' v ¢ (x)
P(x) = ¢ (x) + 9 {1 + - z L + % n
q a a \
m#q q m n#q (e _-€ )Jl 0 _1 + L
odd odd “q n’|" ae_-e, J
i.e. 5
v o (%) V {2 9 (x) \ 9
0 n 0 n n
b(x) = ¢_(x) + — - (—)z - — ()Z—Q_ ...,
4 nfq “q °n n#q (eq n)(5q7Cn) 2 n#q(sq %)
odd odd odd
(11.38)

which is just the perturbation result for wq to second order in V.

If q is even

bo(%) = 0(x) (uhere ¢ (x) = Zsin L%, g=-2,4, ...,

i.e. the perturbation affects neither the unperturbed energy nor the
unperturbed wavefunctions of the system in this case. The reason for
this is because ¢q(0) = 0, i.e. the system does not feel the presence

of V when in these states.
Explicitly the wavefunction described by Equation (11.38) is to
first order:

L cos ATX
\ 2a
¥(x) = = cos = . ;0 z @——2— g, n odd. (11.39)
vYa n#gq , 2 2
(g”-n") >
32ma

For this particular Hamiltonian one can also obtain the exact eigen-
functions of this system in a form which unlike Equation (11.37) does
not involve infinite sums. This can be done by writing

¥(x)

A sin k(a - x) 0 <x<a,

B sin k(a + x) -a < x < 0.

¥(x)

This combination of eigenfunctions of H. satisfies the requirement that

v(a) = ¥(-a) = oO. 0

W(x)

Vo< O

Vo0

-38 a3

Figure 11.8. Two possible even eigenfunctions of Example 11.6.



136 CHAPTER 11

\, <0

ka

[N

Vo»O

Figure 11.9. Plat of transcendental Equation (11.40).

Additionally continuity of y(x) at x = 0 implies A sinka = B sinka i.e.
A = B. However, the derivative of y has a discontinuity at x = 0.

2mvV

dx dx i 2 ¥(0) (cf. Equation (6.10)).
X=€ X=-€
This implies
2mv
- A k coska - Ak cos ka = —Z_A sin ka,
h
or
2
tanka = - :Tk ) (11.40)
Q

Thus the even parity solutions y(x) are given by
P(x) = A sin k (a - |x|) -a < x < a,

where k is given by Equation (11.40).
Normalization of Y(x) additionally requires

a
|A|2 J sin’ k(a-|x|) dx = 1,
-a
or

V(x) = sin k (a-[x][) (11.41)
1_sin2ka
a 2ka

which is illustrated in Figure 11.8.
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2
Plotting tan ka and - :Vk: of Equation (11.40) vs ka (see Figure
¢}
11.9) shows ka = %} + § where § %; small (q = odd). v
0
Thus tan ka = - cot § = - hvk or tan § ~ § = -
g A%k
and
mVOa 2mV0a
ka = %} + = %} +

hzka hzqn

Hence one can expand the exact wavefunctions Equation (11.41) in a Taylor
series about ko = gm/2a where k - k0 = (2mVO)/h2qﬂ) and q is odd.

Thus

<

0(1 x.gn_ gind™X__1_ cosgﬂ—xj

—i(1-2)== 2a p 2a
P(x) = sin %1 %:cos %ﬁ? + 2 a 4/a 4a

2H2
2

. (11.42)

as opposed to Equation (11.39) (to within an unimportant overall phase).
Hence, by comparing the terms in Vo/a of Equations (11.39) and (11.42)

one obtains: -
r nmTx
X\gmr . gmx 1 gqmx °°8 2a
(1 B ;)4 sin S T3S 3 T 2 (n)z !
nFq 1-{ =
or
%(g - u) sin qu - % cos qu = I —29§—£Hg- (11.43)
n#q 1 - (-)
q
where u = ==
2a

EXAMPLE 11.7. Consider the Hamiltonian:

2
2 _ X
_p_, 1 22 ; €
H m + > mw X + \0 e
=Hy +V ,
where H, = T + mmzx2 and V =V e_'x /e .

0 2
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\Y%

Yo i‘FVo >O
< X

Vo if \,<0

Figure 11.10. Perturbation V in Example 11.7.

To first order the ground state energy of this system is:

+00
v 2,2 2 12,2
E =@+_0Jex/bex/sdx since ¢0=(—1—_)ex/2b,
0 2 b"/';_m bv'T
where b = —fl-
mw 1 1
260= + =
- +oo -x{bz e} 1
E =_F1_(1)+_—O___1_J e dx{LaLl} ,
= N p> ¢
L2 & =
b
i.e.
\")
E, =F17w + 02 ; (11.44)
{1+lo_l
e J

One notes this reduces to the correction to the unperturbed energy

introduced by a delta function potential if V0 > / 111_9 and € > 0 since one

representation of the delta function is

1 1 -x2/
§(x) = = lim /E' e € (see Equation (2.15)).

J1 €>0

EXAMPLE 11.8. Consider the Hamiltonian

2
H=L+l‘.mw2X2+—-ahu' 2 x 2 0.

R
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Treating

139

as a perturbation, study the energy of the ground state of this system.
The ground state energy of the unperturbed Hamiltonian is 3/2 huw.

. B (1) _ .
The first-order energy EO = Vg 18
ahw [V} S ¢. dx = a2hw
0 270
mx)
h
where
¢, = v He 1 e u2/2 2u and u = /™4
0 h 1/4 h ’
v. V
The second order energy E(z) = I —Om m0 is
0 €. -€
m#F0 0 m
[<o[v[1>*  [<ofv[2>|®  (<ofv[3>|®
~2ho YT iR ~6hw

-4 2 2,8
= 3 o hw {1 + B + 35 + ..

This is a slowly converging series.

Here
1/4 2
o= (B) H el
ver
1/4 2
0, = (3) =3 /% - 200 4 1)
v3orm*®
1/4 2
oy - (r%w) —L /2 y(8u® - sau® + 2100° - 105).
/12607
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Degeneracy

One dimensional systems

The Schrodinger eigenvalue Equation (12.1) for the energy of a system
in the simplest possible case

2 2
R™ d
“ow ot V(x)lw(x) = Ey(x), (12.1)
2M . 2 J
dx
namely that of a one dimensional system, involves a second-order differ-

ential equation. Hence there should in general be two solutions wl, wz

for each energy E. Such two-fold 'degeneracy' as it is called does not
usually arise however. It is removed by the boundary conditions.
Consider for instance a particle in the well:

V=w x<0, vV = -|VO| 0 <x < a, V=0 X > a,

illustrated in Figure 12.1, where E < 0.
In the region 0 < X < a one has two solutions

oMLV - TE[}
Y(x) = A sin Kx or B cos Kx, K = —_— ,

Fl2

while in the region a < x < =

Y(x) = Ce—kX or Dekx, k = //Zﬂlgl

h2
However, the wavefunction in this case satisfies the boundary condition
that it vanishes at x = 0 where the potential is infinitely repulsive,
and at infinity since the particle is localized in the well.

Hence B cos Kx and De® must be discarded. One thus has only one
acceptable solution which together with its derivative must be made
continuous for all x >0, in particular at x = a. This in turn imposes
a quantization condition on the energy namely
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K

tan Ka = - K °

In two or three dimensional systems the Schrddinger eigenvalue
equation may involve degeneracies.

Two dimensional systems

Consider the case where V = V(p). The Schrddinger eigenvalue equation
is then (see Equation (8.10)).

V(x)

AN AN

\

el

AV

Figure 12.1. Potential producing non-degenerate eigenfunctions.

hz(mz-l)

2 2
h™ d 4 _ .
{_ w2 Ve 2 } WonP) T Epwon(e), (12.2)
dp 2Mp

and the total wavefunction of the system is:

w_(p) _*im¢
nm e
Xntm(p' ¢) = pl/z

v2m
Independent of the details of wnm(p) there are here at least two
normalized solutions for each energy eigenvalue, unless m = 0 namely
w (p) ™ W (p) -img
nm nm e

p1/2 N p1/2

— (12.3)
Vam

where

oo

[ wiate) a0 = 1),
0

because Equation (12.2) depends on m2 rather than m. One way this m
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degeneracy can be removed is by inserting a term in the interaction which
depends on the variable ¢ for instance the term oL, which adds the linear
term ah m to the operator in square brackets in Equation (12.2) and
distinguishes and differentiates between the +m and -m cases. Additional
degeneracies may arise depending on the details of the potential V(p)
provided more than one n, m combination corresponds to a given energy.
EXAMPLE 12.1. Consider the two-dimensional oscillator potentﬁﬂ.v=:%Mw2p2.
Solving the problem in cylindrical coordinates yields Epy, = (2n+|m|+1)hw
(see Equation (8.14)). A simple tabulation shows the degeneracy increases
as the energy increases, in fact is N, where Nhw is the energy of the
system. These results are tabulated in Table 12.1.

It is of interest to compare these with the degeneracies which result
if one solves the same problem in Cartesian coordinates. This particular
potential can also be written Esz(x2 + y2) and has solutions:

Y n (X ¥) =0, (X0, (),

Xy X y
E =(n_+n_ + l)hw = E + E = Nhuw,
n n X vy n n
Xy X Y
where 1/2
1 1 1 x2 X (12.4)
¢ (%) = — —:) exp (- ——-) H (—) .
n 2n/2 (n!)l/Z oy/T 2b2 n{ b
En = (n + %) hw, n =0, 1... b = é% .

Table 12.2, which is similar to Table 12.1 shows that the number
of degeneracies for a given energy are, as they must be basis independent.
In the case there is no degeneracy (the ground state) the wave
functions are identical. Thus if E = hw

X n(p, ¢) = M)_ = (_2_)1/2 e’92/2b2 1
00 o p1/2 b2 Vo

( 1 )1/2 e—x2/2b2 ( 1 )1/2 e—y2/2b2 _ ( 1 ) e—p2/2b2
bv'Tr bV v/
However in the cases there is degeneracy the wavefunctions are not
identical. Thus the E = 2 hw states are
*i¢ 2 2
w..(p)e 1/2 -p“/2b .
01l 1 *
(p,¢)=———=(-) Lze o0
vam b

X0+1 J1/2 T
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Table 12.1. Energy levels in Example 12.1, using cyclindrical coordinates

E n m Degeneracy
nm
Partial Total
1hw 0 0 1 1
2hw 0 +1 2 2
3hw 1 0 1
3
0 +2 2
4hw 1 +1 2
4
0 +3 2

Table 12.2. Energy levels in Example 12.1 using Cartesian coordinates

E N n n Degenerac
nxny % v g Y
1hw 1 0 0 1
2hw 1
2 2
0 1
3hw 2 0
1
3 L 3
0 2
3 0
4hw 4 2 1
4
1
3
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in cylindrical coordinates while in Cartesian coordinates:

Yo (%, ¥) = (—l—)l/zexp(-xz/sz) L(L\l/zexp(—yz/zbz)%ox =

b7 V2\ova/
(2 V2, e-p2/2b2
m b2

and
Vio(x, y) = |2 V2 5 -o%/2’
10% ¥ ™ 2 ©
b
which are obviously not identical with XO+l(p' ).

Despite this one can quickly confirm that

wlo(x, y)tinI(x, y)

Xq, (P, 9) =
0+1 ¢ /2
Generally
Xom(Pr ®) = . D) R aan w“x“ (%, Y) (12.5)
xl y Y Y
where the sum is over all degenerate states at the same (in this case
n, * nY = 2n+|m|) energy as Xnm(p’ ¢) and reciprocally:
) Xgp(Pr @) xo_l(p, %)
wlo(xl Y) - — ’
V2
Xo1(Pr 8) = Xg_1(0s @)
boq (X, ¥) = —
iv2
i.e.
b, (Xy) =2 b Xnm(Pr 9 (12.6)
X'y n, m

with analogous restrictions on n, m in this sum.

EXAMPLE 12.2. Discuss the degeneracies for a particle in a two-dimensional
Coulomb potential (cf. Equation (8.12)).
The energy for this system is

22 2
Z o Mc
E = - ———— , n =
nm 2
2n

N
N jw

The degeneracy is
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n-}
2n =1+ I 2

m=1

since, aside from m = 0 all other terms are two-fold degenerate, while
m varies from 0 to n - 3.

Three-dimensional systems

Consider the case V = V(r). The Schrddinger eigenvalue equation is then
(see Equation (8.2))

_ﬁ_d_ ( M\ -
{ w2 A e? }} Ung () = Epgung (¥)
Mr
where (12.7)
u (r)
_ _nf L
\Pngm(r, e! ¢) - r Ym (el ¢) .

This equation has at least a (2¢+1) fold degeneracy because
Equation (12.7) is independent of the integer m which can take all values
from -2 to 2. There are additional degeneracies which depend on the details

of V(r), i.e. how many different n, 2 combinations yield the same energy
Enl'

EXAMPLE 12.3. Discuss the degeneracies of the three-dimensional simple
harmonic oscillator.

For the three-dimensional simple harmonic oscillator the energies are
given by Eg = (2n + & + 3/2)hw (see Equation (8.13)), in spherical
coordinates and E =(n_+n_+n_+3/2)hw in Cartesian coordinates.

nxn nz X y V4
One can easily verify that if E = (N+3/2)hw the degeneracy is

N

(N+1)(N+2)/2 fold = = (22+1) if N is even or
=0
even

N

T (20+1)

=1

odd

if N is odd where N=n_+n_+n_ = 2n + &
X y z

EXAMPLE 12.4. Discuss the degeneracies of the three-dimensional Coulomb2

potential. For the three-dimensional Coulomb problem E =-1/2 Mczazl/n
n

(see Equation (8.11)) and the degeneracy is Z (22+1 = n2. This

considerable degeneracy in the three—dlmen51onal Coulomb system is due

to the fact that 'accidentally' the energy in this case does not depend
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on %. This system has a so called 'accidental degeneracy' in addition to
the degeneracy due to the fact that the energy does not depend on m. In
fact the Nth energy level of the Coulomb system with a degeneracy N2 has
approximately tw1ce the degeneracy of the three-dimensional simple harmonic
oscillator's (~ N /2 for large N) Nth energy level. This is exactly true
about the degeneracy of the Nth energy level of the two dimensional
Coulomb potential = 2N as compared to that of the two-dimensional harmonic
oscillator potential = N. The two-dimensional Coulomb potential also has an
'accidental degeneracy' in that the energy is completely independent of m.

In the three dimensional problem one may remove the (2%2+1) degeneracy
of each state for example by adding a term of the form aL, to the Hamiltonian,
and hence a term aohm to the operator in brackets in Equation (12.7).

If one has two or more particle systems the degeneracies are generally
quite numerous.

EXAMPLE 12.5. Consider the system

H(1, 2) = L2(1) + 12(2)

_ L2
Eg o = B4R+ 1)+ 4,(2,+1) ]
172
L. ') 2 ') A
npmlmz (1, 2) = %(le (1) sz (2) + le(z) sz(l))
12 2 1 2 1 2
1 1%
(where the —— is inserted in ¥ (1, 2) for normalization purposes).
V2 Ty
For a given Zl’ 22 there are here generally (221+1)(2£2+1) symmetric

wavefunctions and the same number of antisymmetric wavefunctions where
for symmetric functions y(1, 2) = ¥(2, 1) while for antisymmetric wave-

functions ¥(1, 2) = - ¥(2, 1). In the special case 11 = 12 there are only

(2% + 1)2 wavefunctions at the energy 2h2£(£+1) of which 22(22+1) are
symmetric and (2%+1) antisymmetric. These results can be easily illustrated
by listing the wavefunctions for Zl =1, 8. =1; 2. =1, 8. = 2.

5 2 "1 "2
(a) &, =1, &, =1 E = 4h",

1 2

S U RS G B | 1 1 )
b1, 2) = V(DY @) Y (DY) () Y(D];

1 1 1 1,..,1 1,01 .
= [2Y(0Y(2) + ¥ (GR) Y]

11,1 1,01 1 .
= (DY) - YL (DY (2)¥[(2)¥L (1)];

L il 2) - @Y (s
/2
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1

—_[Y (l)Y (2)+ Y (2)Y(1)] Y (l)Y 1(2),

V2
i.e. a ninefold degeneracy. (This particular choice corresponds to the
Eet gf eigegfunctions w£ of the total angular momentum operator
L = L(1) + L(2) where £ = 2, 1, and 0)

- = - 2
(b)2, =1, ¢, =2, E=8h

1,1 ¥2 1 2 ]
¥(1, 2) =—:{Y (LY, (2)+Y (2)Y (1)} {Y (1)Y (2)tY0(2)Yt2(1)};

vzl V2
1 1 2 1 2 1 1 2 1 2
;:{Yil(l)YtZ(z) + Y¢1(2)Y¢2(1)}; _:{Yil(l)Ytl(z) + Ytl(z)Ytl(l)};
2 V2
11 2 1 2 1 1l
/E{YH(l)Yﬂ(z) Y, @YD) g Jz{ <1)Y (2) + Y [(2)Y (1)}
1

1 2 1 2 1/.1 2 1 w2
;g{Yo(l)Ytl(Z) * YO(2)Y11(1)}; ;g{YO<1)YO(2) * YO(Z)IO(I)},

i.e. a 30 fold degeneracy,

The fact one can write these eigenfunctions as either symmetric or
antisymmetric combinations is due to the fact that if P12 is an exchange
operator where Plzn(l, 2) = n(2, 1) the Hamiltonian in this problem
commutes with P12 i.e. [Plz, le] = 0. But the eigenvalues A
of P are *1 since if P._n(1, 2) An(l, 2) = n(2, 1), then

5 12 12 5 5
Plzn(l, 2) = APlzn(l, 2) = A'n(1, 2) = Plzn(Z, 1) = n(1, 2) i.e. A7 =1,
A = *1. Since P12 and H(1l, 2) commute this means the eigenfunctions of H

can also be written as eigenfunctions of P12 i.e. combinations which have

eigenvalues +1 or -1 under particle interchange. -
One can remove the degeneracy of this system for instance by adding

the term ale(l) + a2L2(2) to the Hamiltonian. With this term the

Hamiltonian no longer commutes with the exchange operator (unless a

[}

17%2)
and in addition different projections have different energies so there

is no degeneracy. If a, = a, there is still 'exchange' degeneracy, though

states with different projections are no longer degenerate. In the case

above where Ql = 22 = 1 one then has one state with energy 4% + 20R two

. 2
states with energy 4h” + ah , three states with energy 4h™, two states

with energy 4h2-ah and one state with energy 4h2-2ah.
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. _ 1.22 1. 22
EXAMPLE 12.6. Consider H(1l, 2) = T1 + T2 + zMw r, + 2Mw r,
Discuss the degeneracies of this two particle system,

E=(2n, + 2  + 3 + 2n_ + &_ + é)F\w
1 1 2 2 2 2 '

The degeneracies of the lowest three energy levels are shown in Table 12.3.
One notes the degeneracies are quite numerous and that symmetric and anti-
symmetric combinations of the resulting wavefunctions can easily be
formed.
Thus for E = 4hw:

v,(1, 2) = /1—_ {ROl(1)R00<2)Y1m<1>voo(2) + R00<1)R01<2)Y00<1)Ylm<2)}
- 2
etc,

where * stand for symmetric and antisymmetric wavefunctions respectively
and the l//E is inserted to ensure wavefunction normalization.

EXAMPLE 12.7. Consider a particle subject to the Hamiltonian

Ho=gn(i+ % @ +12)).
h2 X y

Discuss the energy levels of this system and their degeneracies.
L2 + L2 = L2 - L2
b4 y z

is a useful identity here.

Writing: Hy = &n(1l + a/h2 (L2

- Li))w = Ey one obtains

E = en(l+a(L(2+1)-m?)), ¥ = Yi(e, 6), -2 sm<
2 =0, 1, 2...

m integer

The first few levels and their degeneracies are illustrated in Table
12.4.

One notes that one can write for E, E = ¢n(l+na), n =0, 1, 2,...
with different degeneracies for different values of n.
Finally for small o« E ~ a(f(2+1) - m2).
Adding a term proportional to L, will remove some or all the degeneracy
depending on the coefficient in front of this additional term.

When one has an energy state n which is say j fold degenerate
(n,, n,, ..., n.) it may not be possible to use the perturbation expansion

(11.14) directly. In particular if the perturbation V connects
any of the j degenerate states say n = n, and m = n 1<ig<ji.e.

anni = <n1[V|ni> # 0, there will be terms in this expansion with a zero

energy denominator € - € and non-zero numerator V .
n, n, nng
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Table 12.3. Degeneracies of Hamiltonian in Example 12.6.
Energy/ Degeneracy nl n2 21 22 Y(1l, 2) ml m2
3hw None 0 0 0 0 Roo(l)ROO(Z)YOO(l)YOO(Z) 0 0
4hw 3+3 = 0|0 |1 |0 R (LRy (2)Y) (1)Y00\) 0,+1 0
six fold 0 0 0 1 ROO( ) 2)Y (l (2) 0 0,+1
M
9+5+5+1+1= 0 0 1 1 ROl(l)ROl(Z)Ylml(l)Ylmz(Z) 0,+1 0,1
ojlo 0|2 ROO(1)R02(2)Y00(1)Y2m2(2) 0 [0,%1,£2
5huw twenty-one |0 | 0 | 2 | O R02(l)ROO(Z)YZml(l)YOO(Z) 0,1, 0
fold
0 1 0 0 Roo(l)Rlo(Z)YOO(l)YOO(Z) C 0
1 0 0 0 Rlo(l)ROO(Z)YOO(l)YOO(Z) 0 0
Table 12.4. Degeneracies of Hamiltonian in Example 12.7.
E A m Degeneracy
0 0 0 1
en(l+a) | 1 +1 2
n(1l+2a)| 1 0 1}
3
2 +2 2
n(1+3a)| 3 +3 2
n(l+4a)| 4 +4 2
en(1+5a)| 2 +1 2}4
5 +5 2
n(l+6a)| 2 0 1}
3
6 +6 2
en(1+7a)| 7 +7 2

In this case expansion (11.14) will consequently be divergent.
The way out of this difficulty is to use the fact (see Equation (12.5)

and (12.6)) that one can take different combinations of the j degenerate
functions, in particular a combination for which all Vnini' i # i', where

i, i'<j are zero. To do this one diagonalizes V in each subapace of degenerate

states.

The resulting eigenfunctions will have only diagonal matrix
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elements of V. If one therefore uses this basis in expansion (11.14)

it will not diverge since terms with zero denominator also have zero

numerator. Moreover the eigenvalues of these diagonalizations are

just the first-order energies of each state n since E = g  + V, , to first

order and only the diagonal elements contribute to V . in this new basis.
In the simple case of two degenerate states n, and n, connected by

V, the normalized combination one must choose (which uncouples if ¢ = 0)
is :

tni> = |nl> cos ¢ + |n2> sin ¢

|né> =—|n1> sin ¢ + [n2> cos ¢ , (12.8)

with a ¢ which makes <ni|V|né> = 0 namely:

tan 2¢ = ———— where V., = <nl|V|n2> etc, (12.9)

(provided V12 = V21).

If one has three degenerate states n., n_, and n3 connected by V,

1 2
a normalized combination (which uncouples when 8, ¢ = 0) which one may
choose is:

|ni> = cos 0 cos ¢|n1> + cos 6 sin ¢[n2> + sin 9|n3>
lné> = - sin ¢|n1> + cos ¢In2> (12.10)
]né> = sin 6 cos ¢|n1> + sin 6 sin ¢ |n2> - cos 6|n3>

where <ni|V|né>, <ni|V[né> and <né|V|né> are zero,

(Provided V12 = V21, V13 = V3l, V23 = V32)

i.e.
2V

tan2¢ = — 12

V11722 ‘

(12.11)
2(V13 cos ¢ + V23 sin ¢)

tan 26 = > 3 .

V11 cos ¢ + V22 sin” ¢ + V12 sin2¢ - V33

EXAMPLE 12.8. Consider a two dimensional oscillator

92 P2
12,2 .2 x 2y -
Hy = omw (C IR 2D IR wel A el v VOG(X)ﬁ(Y),
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where one wishes to find the energy of the second excited state
(E = (N+1)hw, N = 2 if VO = 0).

S 0o
MY (any e E

\/a
/// E

Figure 12.2. Graphical solution for energy levels in Example 12.8.

Clearly the Cartesian basis is convenient here where the basis states
for N = 2 are [27) = 0,(x)0,(¥), [2,) = 0, (x)0,(¥), [25) = ¢,(x)0,(¥),

(see expression (12.4)).
Using Equation (12.11), tan 2¢ = 2V12/(V1

¢,(0) = 0,

l-V22) =0 i.e. ¢ = 0 since

2 2
vy 205(0) 94(0)

117733 92(0) 62(0) - 6Z(0) 62(0)

i.e. 26 = /2, 6 = 1/4.

tan 26

n

[}

o= L |
[2]) = 5 1$2X)8(0) + (210,

[25) = 6,(x) ¢,(v) (12.12)
o< L] - L
123) = 5 1921%) oY) - ag(x) ey(y)

and the energy to first order is
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vV mw

2 2
3hw + <2i[v|2i> = 3hw + 2VO¢O(0) ¢2(0) = 3hw+

+ 1 ! = 2
3hw + <2, |V[2)> = 3w (12.13)

3hw  + <2§_|V|23:> = 3hw.

Two of the three basis states thus remain degenerate states to first

order in perturbation theory.
This problem can also be solved exactly by graphical techniques. Thus
the Schrédinger Equation for this system can be written

(Hy=E)V(%, v) = -V 8(x)8(y)¥(x, ¥).
Hence
Wk, ¥) = =V Eﬁfg 8(x)8(¥)¥(x, ¥).

Using closure one may insert a complete set of states which are
eigenfunctions of HO (namely ) ¢n (x) ¢n (y)) between the operator

ngon, X Y
1/(H0—E) and §(x)8(y) obtaining:
VR, Y) = V) = (o (006 (¥)><0 (106 (D)8(x)8(V)V(x, ¥)>
,n X Yy X y
Xy
_ . i
= Vql z (n_+n +1)hu-E |¢n (X)¢n (y)> ¢n (0)¢n (0)w(o, 0).
%Ny XY ple y X y

Inserting the values x, y = 0 into this expression yields;

1 1 2 2
v = (n_+n_+1)hw-E ¢, (0)o  (0),
0 n_,n X vy X Y
Xy
1€y 4 2, .2 2, .2 4
1 9,(0)  20,(0)9,(0) (20,(0)9,(0) + ¢,(0))
- ﬁg = hw-E 3hw-E * Shw - E T

This expression is illustrated graphically in Figure 12.2. Consider the
energy level close to 3hw , E = 3 hw + e£. Approximately for this level

2 2
L 205(0) 45(0) s
- V; =2 — il.e. e= 2V0¢0(0) ¢2(0),
and E = 3hw + 2V0 ¢g(0)¢§(0), in agreement with the degenerate perturba-
tion theory result of Equation (12.13).
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EXAMPLE 12.9. Consider the two dimensional oscillator

p2  p?
12,22 x y
H=gme(x+y ) + o=+ o

vV = Amwzxy

where one wishes to find the energy of the first excited state (If
A =0, E= (N+1)hw where N = 1).

Clearly the Cartesian basis is convenient here where the basis
states are

¢1(x) ¢O(y) (see expression (12.4)).

[1,) = ¢5(x)0,(y)

Using the results given by Equation (12.9)

215 .
tan 2¢ = vz;—:—v;; = o since Vll = V22 = 0 whereas
Vo, 0 = A’ < 60 (x) 0y (¥) |xy[0y(x)0, (¥)> =
= amu® <o (x) [x[04(x)>7
l.e. ¢ - 11/4
Thus
1> = fg [(0,(x)0,(¥) + 05(x)0,(¥))> {(12.14)
115> = - ;15 [(6,(1)0,(¥) = 6,(x) 6, (¥))>

and the energy to first order is

2hu + <11V[1]> = 2wrhmu’<o, (x) %[0 (x)>% = 2humo’ <o, (%) [*° [0 (x)>

2hw+2A<¢0(x)|%mw2x2|¢o(x)> = 2hw+Ahe/2. (12.15)

E =
2 2
2hw + <1|V[15> = 2he-Amw” <o, (x) %[0, (x)>

2hw - Ahw /2.

This problem can also be solved exactly since
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H+V = l;m(>'<2+3}2)+%mm2(x2+2xxy+yz) = %m()k2+?2)+%mm2(1—x)x2+%mm2(1+A)Y2
where
1 1 . _ 4
X =L (xy), Y= (ey) and £= 5.
V2 /2

Written in terms of X, Y the Hamiltonian decouples and is seen to have
eigenvalues:

E = (NX+%)hw~/1—)\ N (Ny+%)hm Jix . (12.16)
XY

To order A one thus has

_ Ahw
EOl = 2hw + T

_ Ahw
E10 = 2hw >

etc. in agreement with the degenerate perturbation theory results of
Equation (12.15) above.
Likewise the exact wavefunctions corresponding to these energies are:

Wi = ¢1(X, m=m1)¢0(Y, m=w2) and wi = ¢O(X, w=m1)¢l(Y, w=m2),
where (12.17)
W= W v1-\ , w, = NETSY
l.e.
1/2 mw v1-A X2 1/2 _ omw V1+A Y2
1_ 1 (mw ,2,1/8 2h (mw) _,\1/4 2R
V) = 5 (hn) (1-17) e 2th J (1-X) e
= (0,(x)8,(¥) = 8(x)0,(y)/¥2 + O(A)  and
2 mw VI X2 12 mw /10 Y2
“’i - % (%) (l_)\2)1/8 o 2h 2Y(r%) (l+)‘)1/4 o 2h
2

= (9,(X)80(¥) + 0(x) 6, (¥N/V2 + O(A)

consistent with Equation (12.14) to within an unimportant overall phase.
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2 2

d

21

+ Vy8(9-9,)
e 0 0

EXAMPLE 12.10. Consider the Hamiltonian H = h

(Here o 2
[ 8t0-00) @0 = 1, [ £@)6(0-00) a8 = £(a5) ).
0 0

Treating -h2/21 d2/d¢2 as HO'

there are two possible pairs of

degenerate eigenfunctions: either ¢ = / ; cosn ¢ and
. — in -i
V1/m'sin n¢ or ¢ = 1/V21 e ® and 1/V/21 e 1n¢' each pair having eigen-

values €, = (hznz)/2I, where n must be an integer so that Y(¢+2m)=y(9)

i.e. is single valued. Additionally n # 0 otherwise €. =

0 which violates

the uncertainty principle (also for n=0 the wavefunctions are not well

behaved being zero or constants).

= /37;_cos ne, n2 =

Choice 1: n

1
V0 2 \
Vll = ry cos n¢0; V12 = o sin 2n¢0;
2V
— sin 2n¢
tan2¢ = 21 9 = tan
\ \
2 cos2 n¢ . sin2n¢
m o 0
Thus
|ni) = j:( cos n¢ cos n¢, + sin n¢ sin
i
' 1 . .
|n2) = -cos né sin n¢, + sin n¢ cos
i
and
2w
VO 2
ep + = | cos” n(o-0)6(e-0))
n Ut
0
En - 27
VO 2
g+ — sin” n(¢-¢,)8(¢-0,)
n m 0 0
0

a result independent of ¢0 i.e. of the choice of

v1/m sin n¢. For this choice,

\
V22 = 7? sin2n¢o, and
2n¢O i.e. ¢ = n¢0
n -+ oo (6-0.)
% = s n(¢-9,
n ] =L sin n(¢-¢,)
%) = 0
v
d¢ = en + 7?, or
d¢ = €n v

original axis orientation.
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Choice 2:
n, = L eine, n, = L ine,
Jr vam
For this choice,
A \% A
__0 . _ 0. _ 0 -i2n¢g , . * =
Viin Sz Voa T m i Vp T g e podeen V3 =V,

Hence we cannot use expression (12.9) which assumes V12 = V21.

Instead one may have recourse directly to the expression (cf.
Equation (12.8)):

_ 1 1. 2 .2 sin2
E =€ ¥ <n1|V|n1>— e, * Vy, cos” ¢ + V,, sin” ¢ + (V#5175
V.. +V v,.-V V, .tV
_ 11 22 11 22 12 21 .
= en + > + > cos 2¢ + — sin 2¢.
Additionally substitution into <ni|V|né> =0 yields:(vll-vzz) sin 2¢ =
(V12-V21) + (V12+V21) cos 2¢, from which one obtains
tan2¢ = [(V,,-V__)(V . +V__ ) + (V. _-V )/Qv vy 2eav__v__ 1/
11 22 12 217 ~ 12 21 11 22 12°21
- 2 _ - 2, _ sin2¢ _
[V 17Y50)7 = (VY507 ] = Sos2e
2 2 2.
_ /(v -V__)“+av TV 17V 50) T+ (VY )7
[(Vll-sz)(V12 VZl)i(V12+V21) 11 22 12 21 2 12 21
2 2
- - - - v + (V )
[V 5=V5 eV sz)qull sz) Vip¥pyd/ TV ) (Vy5%Vpp)"]
Hence:
2
(v, ) & /v, v, )2 -4 )]
E - 4 117722 Va2 1172271221 _ (12.18)

n n 2
Expression (12.18) is quite general. In fact it involves the solutions

of the eigenvalue equations which result from diagonalizing the
Hamiltonian H in the space of two degenerate states n,, n, i.e.

-E
H117Ep V12

21 22 'n
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Substituting in expression (12.18) the values of V__, V and V
- - 11 22 12
for choice 2 one obtains:
\'
E =¢_ + 2 , E =¢€
n n m n n

which as expected are identical with the energies resulting from choice 1
for the degenerate basis.

EXAMPLE 12.11. For the Hamiltonian in Example 12.10 calculate the second-
order energy contribution.
Using the choice 1 for the degenerate states
VO VO
- Iy = = - :
<m|V06(¢ ¢0)|nl> o cosmo,, = sinm LY

depending on whether m is l/J; cos m¢ or V7 sin m¢. Also

<m|V06(¢—¢0)|né> = 0.

Thus
] - - [}
(2)_ <[V 8(9-6,) [m> <m|V 8(d-6,)[n}> )
E = = =
m € -€
m#n n m
#0
V2 V2
9 coszm¢ 2 sin2m¢ 2
>
s 72 o 2 0 vy 1
= =2 X
#0 0 % €n 70 mfn n m
#0

a result, like in first order independent of ¢0 i.e. of the choice of axis
orientation. Thus

2 2
2y 21V L 21V ) L
b T 22 % 37 27753 % lmn mon
7" m#n n"-m 2ph“1”  m#n
#0 #0
which can easily be summed for a particular n. Thus if n = 1,
2 2
v . 31V
(2 __0 J1 1 1 - 1 ,.1.1 -9
Em =55 33t atg5* - 1+ St3tgt e 2 2 etc.
how 2R%T

EXAMPLE 12.12. The 2s, and 2p, states of the hydrogen atom are separated by
H H

an energy AE known as the Lamb shift (where %? = 109 Hz). Consider these
two states in the presence of an electric dipole field V = A%E

Neglecting the other energy levels of hydrogen calculate exactly the two
new eigenstates of the system and the corresponding eigenvalues. Compare
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these results with the eigenvalues and energies obtained using non-
degenerate and degenerate perturbation theory. (N.B. Consider carefully

the parity of the integrals involved.)
Defining:

0 = 28y =[1), 8y 2 Epg v
2
0, =2p, % [2), e, = g5,
vy
ﬁ ’

one obtains

g, * A(1|V|D-E

A(21V[1)

in agreement with Equation (11.7).

A(1|V][2)

52+A(2|v|2)-

E a

But (1|V]|1) = (2|v|2) = 0 from parity considerations.

Therefore

€. +¢€ (e, -€ )2
1 "2 1 27

1,” "2 4

+ A

1
I
I+

Also

2 2
(1|v]2)",

2
€, -€ (e,-€,)
1 "2 V/// 1 2 2 2
al El—el (- 2 + 7 + A (1‘V|2) J

(1]v]2)

/(el—sz)z
+ —
4

N >\2(1|v(2)2)

a, A(1|v]2) A
and e -
. (_12
i} 21 _ 2
vy ao(% "3, ¢)) ao(¢o
If
AL|V[2) << (e -e,)/2,
2
(1{v[2)
E1 P~ El + X2 (l Y 2) +
€17%2
and
2

E:E_Azw)—.f

27 %2 (e,7€,)

A(1|Vv[2)

¢1) etc.
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Also

a = A(1|v]|2) a
1 el-sz 0

R

) A(1]v]2)
V1= 3 {"o T e e, "1}

etc., in agreement with non-degenerate perturbation theory for E and ¢.

If A(1|v|2) >> (51—52)/2, € z €5 i.e. the Lamb shift is much smaller than

the effect of the electric dipole field,

2
€ +€2 (el—ez)
+ A(1]v]2) 1+ ————— = g + A(1]|V]|2)

4A2(1|vf2)2 1

E =
1

and al/aO %1

’

in agreement with the degenerate result (see Equation (12.9)) for the case

tan 2¢ = «
i.e.
T [ 1
¢ = - in which case |1') = —(]|1) + |2))
¢ 2
and
E, = (I'[H[1') = e, + A(1[n[2).
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The Inverse Problem

Usually in quantum mechanics one is given the potential of a system and
one wishes to find the energy levels and eigenfunctions if the particle
is bound, or the wavefunctions and hence the amount of scattering off this
potential if the particle is free. Sometimes however, one knows the wave-
function (or phase shifts) and wishes to find the potential which produces
this wavefunction (or these phase shifts). In the literature this is
known as the 'inverse' problem.

Consider the one-dimensional eigenvalue equation

2m 2

{ B g°
dx

=S T + V(x)}w(X) = Ey(x).

Solving for V(x) yields

2 2
V(X) = E + h_ l d__q)_(.}_(.).
2m P(x) dXZ (13.1)

EXAMPLE 13.1. Find

V(x) for W(x) = 1 /5 (a”-x") |x| < a
a
=0 |X| > a., (13.2)
One evaluates
2
1 dy 2 |
— —=L = x| < a.
v(x) dx2 x2—a

From Equation (13.1) this implies
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2
V(x) = E + —0— x| < a. (13.3)

2 .2,
m(x -a)

To find V(x) and E individually one must impose an additional condi-
tion.

Suppose one is also given the information that <v> = 0.

This implies

a

N Gt @xty? s
- m 5 2 2 2

16a -a X -a 4ma

and
2 2 2 2 2
V(x) = 5h . h __h 5x"-a x| < a
2 2 2 2
4ma m(x -a") 4ma X -a

(13.4)
= |x| > a.
Figure 13.1 is a plot of the wavefunction in this example (and Figure 13.2

of the resulting potential) and of the very similar function (in this
region), ¢(x) = vV1/a cos mx/2a.

V0= LB (52)

Figure 13.1. Wavefunction in Example 13.1 (full line) and the

similar wavefunction ¢(x) = v1/a cos mx/2a (dotted
line).

Other conditions, for example that V(0)
energy reference.
Thus if

0, or E = 0 merely shift the

h2
V(0) = 0, E = — and V(x) x| < a,

2
ma ma X -a

while if
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3|3
B I
N

—

\\\\\\\\\\\x\>\\\\3\3\\\\
0
////$
3
O

NN RPN AR R RN

Figure 13.2. Potential in Example 13.1 if <V> = 0.

1,12
E =0, V(X) = —— x| < a.
2 2
m(x -a" )
EXAMPLE 13.2. Suppose
b(x) = V203 xe %l (13.5)
and one wishes to find the potential which results in this wavefunction.
One must evaluate 1/y(x) dzw(x)/dx . Using the representation
2
6(x) =;|‘.d_|£j.
2 2
dx

for the delta function one obtains

2

1 U L gy 4 o - 22
Ve 2 %]
Hence
2 2 2
S R
Vix) = E + 2m m [|x[ * é(x)]
i.e.

v(x) =—§—°‘[ﬁ+s<x)], E=- L% (13.6)
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The potential here is a sum of a Coulomb potential and a delta function
potential (at the origin). As Y(x) is odd the delta function does not
affect this wavefunction's energy which is just that due to the Coulomb
potential (see Equation (3.32) with n = 2). This example is illustrated
in Figure 13.3.

Three dimensional inverse problems follow along the same lines.

EXAMPLE 13.3. Suppose the wavefunction describing a spinless particle of
mass m in a short-range central potential is:
-ar _ -Br
V(r, 8, ¢) =AS—"— (13.7)

where A, a, B are constants and a < B.

V(x>

N\\V&3

Figure 13.3. Wavefunction and potential of Example 13.2.

From this data find the angular momentum of this particle, the
energy of this state and the potential which results in this wavefunction.
Firstly

128, ¢)b(r, 8, ¢) = 0 = K2L(L+1)Y(r, 8, ¢)

and
Lz(¢)w(r, 6, ¢) = 0 = hm yY(r, 6, 9).

Thus %, m are zero. Indeed this particular wavefunction has no 6, ¢ i.e.
no angular dependence.

Also

-Rr

B ).

_ -ar _
uno(r) = arO(r) = A(e e
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Since the Schrédinger equation for Upo(r) is like that for a one-

dimensional problem one can use Equation (13.1) and

2
) h2 1 d uno(r) h2(a2e-—ar _ BZe—Br)
V(r) =E+o0 3 (r) 2 =B -ar -Br
no dr Z2m(e - e B )
For large r, V(r) goes to zero, i.e.
22
_ h™a
c=E+
h2a2
(since g > a), or E = - >m
Thus generally
V(r) = 5_2 [.(_L)_az‘ ’ e'Br}
2m o O e-Br
For small r,
viey = B (a8)(er8)e ™ p(asp)eP
~ 2m (B-a)r 2mr :

(13.8)

(13.9)

Equation (13.9) is a 'shielded' Coulomb potential i.e. a potential which
looks like a Coulomb potential for small r but which goes to zero much

faster than the Coulomb potential for large r.
If ¢ # 0 one easily generalizes Equation (13.1)

2
V) = B - A2e(e+1) B2 1 ¢ Une(®)
2mr2 2m unz(r) dr2
r 20

(13.10)

EXAMPLE 13.4. Suppose

b(x) = Ja e oIl
find V(x), E.
Evaluating
2
1 d
E?;T __ﬂéﬁl = o - 208(x)
dx
(see also Example 13.2).
Thus
22 2
- ha _ha
V(x) = E + >m - §(x)

A suitable choice here is

(13.11)
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W(x)

Figure 13.4.
E=- —E a2
2m

Potential and wavefunction in Example 13.4.

2

;s V(X)) = - QEE §{x).

This problem is illustrated in Figure 13.4.

EXAMPLE 13.5. Suppose

find V(x), E.

Evaluating

V(x) = E +

The identification

V(x) =
ma

is acceptable.

This problem is illustrated in Figure 13.5.

2h%

2

2 (x) (4(§\4 - 3)

2@ Ma) "

&) () -5

E

165

(13.12)

(13.13)

(13.14)
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SYES

Figure 13.5. Potential and wavefunction in Example 13.5.



CHAPTER 14

The Dalgarno-Lewis Technique

In treating quantum mechanical systems which do not admit to exact
solutions for their energy levels and corresponding wavefunctions one has
at one's disposal as mentioned in a previous chapter the variational
approach (Chapter 10). This however, is restricted to the ground and
possibly first excited state (if the Hamiltonian commutes with the parity
operator). For other states (and even for the ground state if one requires
greater accuracy or additional information against which to juxtapose the
variational results) one must fall back on the straightforward applica-
tion of perturbation theory (Chapter 11) which is generally tedious and
at best only approximate. This is because, for other than the first-order
results, using perturbation theory one has to evaluate infinite sums in
each order (cf. expressions (11.14), (11.15) which one generally approxi-
mates by selecting only a few terms which arise to that order.

In this context there does however exist a technique, first pointed
out by Dalgarno and Lewis!) which in some cases allows one to do away
with tedious summations and gives exact answers to a given order.

The basic equation which defines the operator involved, Fn(x), is:

[F_, Hyl 6= (h - Efll)mn, (14.1)

where the Hamiltonian H of a given system is broken up into Ho + h and
the eigenfunctions of HO are ¢n. Moreover Eél)

energy term for such a decomposition of the Hamiltonian namely

is just the first-order

Eél) = (¢nh¢n). The matrix elements obtained from expression (14.1)

namely (¢n|[Fn, Ho][¢n) are consistent for the diagonal case since

=0 = _e(1)
(¢n|[Fn, H0]|¢n) =0 = (¢n|h En f¢n),
and for non-diagonal matrix elements
(¢_[h(o )
' 'm n
(o [F 16) = ———-— (m#n). (14.2)

n m
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Evaluation of the commutator in Equation (14.1) for a one-dimensional
Hamiltonian whose potential energy term does not involve the momentum
yields: 5

otn L, T B =Li(¢2dF_n)
n dx2 dx dx I;12 n n ¢n dx n dx

and with a little manipulation this leads to the closed form expression:

X Y
1 2
P = { [n (00026 aef ay. (14.3
a

W (E) = 2—124(h _ E(l))
h

One notes Frl is clearly state dependent. In expression 14.3, a is a

conveniently chosen constant (usually 0 or «). Moreover as can be seen
from Equation (14.1) or Equation (14.3) Fn is determined only to within

an arbitrary constant.
The usefulness of Fn(x) is obvious if one considers for instance the

second-order energy term:

vV (¢ _|hio )(o_[hfe )
E(2)=E nmmn=z n m m n=2(¢h¢)(¢F¢)
n € -€ € -€ n'm ‘'mnn
m#n n m m#n n m m#n
and using closure:
(2) _ _ (D
B, = (o [hF_[6.) - E " (8, [F [6.), (14.4)

a result which involves only two, as opposed to an infinite number of
matrix elements.
Similarly the wavefunction to first-order is:

6V
= m mnj)_ _
\bn - N(¢n+ j—;n gn-Em)_ N{l*Fn (¢annl¢n)}¢nl (14.5)

where N = 1 if one requires only that wn is a cross-normalized function

i.e.
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(¢n|¢n) =1, and

Nl

N = (1 + AF )

2 2
(where AF = (¢n|Fn|¢n) - (¢ann|¢n) )
if one requires (¢n|¢n) = 1.

The third-order energy is:

(3) _ Vnmvmgvgn (1) Vnmvmn
EE'=3X - E > =
(e _-€ ) (e - ) n 2
m,pFn ' n m’‘n p m#n (En-sm)

=m?;%n (¢niFn|¢m)(¢m|hl¢P)(¢P'Fnl¢n) )

(1)
-E T X (o |F (o) (e [F [o)
m#n

Using closure here also, one obtains:

(3)_ ) : oe(1) 2
E.'= (¢ |F hF _[o )-2(6_|F (¢ (¢ [F hle )+2E ~'(o [F [0 )
(1) 2
—En (¢n|Fn|¢n) (14.6)

-~ |

2 ; 1 2
= (ol nE o) - 26870 (7 [0 ) - 2l (o (¥ le ),

a result which needs only two additional integrals for its evaluation.
Some examples which illustrate the efficacy of this technique are
given below.

EXAMPLE 14.1. Consider

2
H=E+vy
2m
where
vV =- ehe + L mwzx2 Xx20, V=o x<20
X 2
(and o = e2/(4nsohc) is the dimensionless fine structure constant a = 37
for the Hydrogen atom). Treating ga - ggg as the unperturbed Hamiltonian

obtain the Dalgarno-Lewis function F.. Use this to obtain the energy of

0
the ground state to third order, the wavefunction to first order, and two
upper bounds to the energy of this system.

For the partition



170 CHAPTER 14

- B_ _ ahc -1 2.2
Hy = om = x ¢ B Egmexy
_ amcx
(0) o . __1_.22 - ( ame ) R
EO = EO 3 mc o , ¢0 4 Uh j X e
and
2
(1) _ 1 22 _ 3 hw 2_2
B = (915 mo™x |¢0) =3 ( 5 5 ome,
mca
i.e. to first order in perturbation theory
(0) (1) 122 o V2
Eo + EO =-jmca {l - 3( > 2) }. (14.7)
mca

One notes this series involves the ratio of the energy level
parameter ( hw) for the Hamiltonian H' = p“/2m + h to the energy level

parameter for H (mczaz), and as expected the bigger w the more important

ol
the repulsive first-order correction to the energy of this system.
Substituting in Eaquation (14.3) with the convenient choice a = « one
obtains:
mw 3 w2 2
6hca = T - 22%
2c a

FO(X) = -

which one can easily verify satisfies Equation (14.1).
One readily obtains:

. 2
oo U hw )
(0glFglog) = - 3 ( 22)
mc Q
and
195 (hw V' 22
(0 hFg[0g)= = T ( 22) M-
mc a

Hence substituting in Equation (14.4),

22 _ 120 22 (R '
0 16 2) '

a result again directly proportional to (in this case the fourth powef
of) w.

To obtain the exact energy to third order one must evaluate the two
additional integrals:

mc a

4095

_ 4095 (K
(¢0IFtho|¢o) To16 (

w \6 nc2a2
22) !
mc a
and
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2 s5( hw \*
(0,[F5[0,) =
0!%0!% 2 .2,2)

Substituting into Equation (14.6) one obtains

(3) _ 5451 ( hw )6 2 2

0 32 (7 22) M-
mc a
Thus:
E(O) + E(l) + E(z) + E(3) = = L mcza2 [l -3 hw 12
0 0 0 0 2 1 Czazf

4 16
, 129 [hw |° 5451 [ he | } (14.8)

8 |..2,2J 16 |22/
The wavefunction to first order is:

b= Ni1 o+ 11 (_hw 2 _ w2 X2 _ mw2 X3 o
0 4 2 2 2 2 6hca 0’
mc o 2ca

319 re VA7E
N =1 or {1 Ty (__E_E) } .
mc a

If one uses as trial wavefunction in Equaton (10.2) the wavefunction

¢0, ground state eigenfunction HO in the decomposition H = HO + h one

obtains:

= (1)
EO Eground * EO :

exact

(0)
Eq (14.9)

If one instead uses for trial wavefunction in Equation (10.2),
Equation (14.5) i.e. the wavefunction correct to first order (with

-1
N=(1+ AFO) %) one obtains

(2),.(3) (2) .(3)
E +E E +E
0 1 0 0 0 1 0 0
E =E < E( )+E( )+————=E( )+E( )+-—-
0 “ground 0 0 v,V 0 0 2
On n0 1+AF
exact 1+y ————— 0

n#0 (eo-en)2

(14.10)
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All the terms needed to evaluate Equation (14.10) are known in this
case, yielding

{mhw 14(129_ 5451 {mnw }ZJmczaz
2 2[ {16 32 2 2
¢ gl0),g(1) | mca c’a

Egrouna = Fo 0 14319 [ he 2 (14.11)
exact 16 2.2
c”a
Both Equations (14.7) and (14.11) are upper bounds to the exact Eground'

EXAMPLE 14.2. Consider the system

vV = % mw x + j% X220, V=wo x<0.

Obtain the energy of this system to second order in perturbation theory

using the Dalgarno-Lewis technique.
It is reasonable to partition H into

gi 1 2 a
HO = o + 3 mw x  and h = )
X
Then
o (x) = mw 3/4 2% -mwx /2h
o'*) T n 1/4 ’
n
(1)
h E
(0) _ 3 (1) _ 2mwo =& _ 0
EO =3 hw, Eo =75 and h 5 = >
b4 2mwx
2
(If o =%r , Eéo) + Eél) = % hw, as opposed to the exact answer in this

case (see Example (10.5), namely ghw).

X y 5

fo - | ——2 [wme? ™ Py
Y2 oWy /h

where

2m [ (1)
W(z) == h - E
hz\ 0

With the convenient choice a = 0 and using?)

).
)
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u _uz _uz é? 2ku2k+l
j e du = e k=0 (2k+1)!t
0
2.k
k-2 (mwx
D W 2 [h ) gl 2
Fo= 0 = + 0 en mwx
0 hw B k(2k+1)!! 2hw h
k=1
(1) k-l(mwxz )k+1 (1)
2E o 2 —_ E
-2 = h -0, mex®
hw k=0 (2k+3) 11 (k+1) 2hw h

which satisfies Equation (14.1) as one can easily verify. Substituting
into Equation (14.4) yields:

2 0
1) ®
2(!E( ] 2 2
gl2) _ 0 { e gnudu-2 j we™ tn u du}

ol
O Y

0 ham 0
) 2
Z!Eél)! { ~ j ’ j E(l) 2
= v A ™| [ 0 )
hww% i (y+24n2) + P (Y+2§Ln2)-2 }- " .
(where y = 0.5772157)
If 2
_h" (2) _ _ (0), (1) (2)_ 3 Caboe 4
a = o EO = 4hw , and EO +EO +EO = 25w+2hw 4hw 2ﬁm.
Substituting into Equation (14.6) one additionally obtains
(3) Eél)3
EO = 2hw ( o ) .
EXAMPLE 14.3. Consider H = HO + h where
p2 1 22 w / (2)
HO = > + 5 X, h = \hw J/%; X (all x). Evaluate FO' EO
etc
Since
1/4 2 }
_ (mw 1 -mwx" /2h (0) _ hw (1) _
¢o(x) (h ) ;172 e , EO > and EO 0
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as can easily be shown from parity considerations,

- mw
Fo(x) = - A {x //%: } ,

and
(2) Azhw (3) mw
“:— = = - -
E, 5+ Eg 0, ¥ N{l AX ﬁ}%
one can evaluate the exact energy in this case = %? - %? AZ since
2 2
- b, he( /mw _ hw,2
H mt ( A A) > AT
EXAMPLE 14.4. Given H = HO + h where
EE 1 2.2 mwx
HO = om + 5 mwx, h = Ahw - (all x).
Find Fo, Eéz) etc.
From Example 14.3 ¢0 and Eéo) are known
2.2
(1) _ mw” x 2 _ 1. 2 _ Abw
Eq " = M (‘1’0 2 ‘1’0)55 = Abw o he g2 2
A fmw] 2 (2) A2
F0 =E{T}X EO =-Tﬁw'

The exact energy in this case can easily be shown to be

Lia /T = nefiea -4 o]
EXAMPLE 14.5. Given H = Ho + h where
HO = g; + % mwzx2 , h = \hw (%?)3/2 X3 (all x),
obtain FO , and Eé?)
Using the expressions in Example 14.3 one easily sees Eél)= 0 from parity

considerations, while,
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F(()l) o (2_3 {%9}3/2 - {I;_w}l/z)

2
(2) _ _ 1lhwA
and EO = 3 .

EXAMPLE 14.6. Given H = H_ + h where

0
EE 1 22 mw

HO = om + 5 mw X and h = Ahw T X (all x)

obtain Fl(x) , Egz)etc.
3/2 r= 2
_ [mw V2 X -mwx~ /2h (0) _ 3

¢, (%) (n) 174 © r Byt =g R

One obtains Egl) = 0 from parity considerations.
- 1 /& (2) A% h
Fl(x)="A(TX'§ EZ))'El = (0;Fhe;) = -3

which turns out to be the only non-zero correction to Ego) for this
system (cf. Example 1i4.3).

EXAMPLE 14.7. Obtain Fl(x) and E§2) if

2
_ B 1 22 _ mw 2
HO om + 5 MW X and h Ahw T X (all x).
Here
3/4 ~— 2
_ (mw V2 x -mwx_ /2h (1) _ A3hw
¢1(X) = ?r) ;172 e and E; =
In this case
)\mmx2
F10) = - TR

(The same result as for Fo(x) of Example 14.4), an expression which can
easily be shown to satisfy Equation (14.1). Using Fl(x) one obtains

E§2) = - 2?9 Az, which agrees with the Az term in the expansion of the

exact energy % hw (1 + 2)\)1/2 in powers of A. (The Fn(x)'s for this
system if n >1 are more complicated than Fl(x) = FO(X)).
A useful property of the F function is that it is additive. Thus if

for a given HO, hl’ and h2 individually result in first-order energies
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2 )
glth) g0l
n n

h = h1 + hz, the defining equation (1) is satisfied by Fi + Fi since

E(1) - E](l) . E2(1)
n n n
more complex situations.

and lead to Fi and Fi respectively, for the case

. One can thus use results from simpler problems in

2

EXAMPLE 14.3. Given H_ = By L mm2x2 and
0 2m 2

— 2
= mw mw
h = Alhm h X + A2hw ( x) (all x).

Find FO’ F1 etc.

Combining the results of Examples 14.3 and 14.4.

Ve BV

and from Examples 14.6 and 14.7.

0
2 2 2 2
A A A 32
(2) _ _ 1.2 (2) _ _ _1 _2
EO hw (2 + 2 ) El hw (2 + 7 )
i.e. 2
_ hw (2, 22)
Eo‘2{1+)‘2 EI N I }
2 2
A A
@ 3hw 1 2
P1st existed = > {1 + AZ - (j;‘ + 75') + ... }

in agreement with the exact energy results:

Eexact ground

2
1 hwkl
=3z fwvl+ 2, - 2(1+22,)

Eexact first excited state
hwA

f 1
hw l+2A2 - 2(1+2)\2) y

expanded to order Az.

N W
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EXAMPLE 14.9. Consider the Hamiltonian

2 2
y-p _ohc BB .,
2m X 2
2mx

Treating h = hZB/me2 as a perturbation, study the energy of the
ground state of this system. The unperturbed ground-state wavefunction is

3 _ omcx
o, = 4 e xe h
0 h

and the unperturbed ground-state energy is

(0) _ _ 1 2 2
Eo = 2 mc o .

One immediately evaluates the first-order energy contribution

2
gD = (0912 [ o) = sanc’

0 2mx

The exact energy if B = 2 is - %uzmcz, which (Eéo) + Eél) being an upper
bound) is less than (- % + Z)azmc2 = % azmcz.
Using Equation (14.3) one obtains Fo in this case: (with a = «)

_ mcof 2omex
Fo =75 X + R&n ——E—— .

Hence evaluating Equation (14.4) in this case yields:

(2) _ _ 5,22 2
EO > B a mc,
where one uses the fact
o
J e onudu= - Yy etc.

0

Using Equation (14.6) one can also evaluate Eés),

Eé3) = 7B3mc2a2.
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