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Preface 

Quantum mechanics is no longer a revolutionary theory. In the more 

than 35 years since its inception it has become an established branch of 
physics. 

Students of quantum mechanics are saved trouble if they are not led 

through all the historical pitfalls, and instead acquainted from the very 

beginning with concepts, such as spin, that cannot be grasped except by 

quantum mechanical means. 

The first aim of this work has thus been to break away from the 

traditional presentation of the subject matter, by casting aside as much 

as possible reliance on arguments based on the correspondence with 

classical physics. 

With this in mind, certain terminological usages, such as calling a 

(//-function a “wave function” or referring to the particle occupation 

number representation as “second quantization,” have been eliminated 

deliberately, because teaching experience has shown that such terms are 

the source of misunderstanding or of misleading thinking habits that are 

difficult to eradicate once they are established. 

The second aim has been to emphasize topics of contemporary interest 

to physicists engaged in experimental research. 

There are excellent texts, for example the classics by Schiff or by 

Landau and Lifshitz, which treat standard problems, such as the energy 

levels of the hydrogenic electron or the eigenstates of the angular 

momentum operators, and no need was felt to compete with these 

treatments. Accordingly, standard problems have been included only if 

they were needed for illustration of basic concepts. 

On the other hand, topics such as time reversal invariance, or super¬ 

selection rules, or the interaction picture, are in most texts treated as 

highbrow and couched in group theoretical or field mechanical language 

inaccessible to many experimental physicists, although in fact these 

topics are elementary and should be treated as such. 

In this sense the present work is an attempt to present advanced 

quantum mechanics from an elementary point of view. 

V 



VI Preface 

This need not disqualify it to serve as an introductory text. The content 

of this work has actually been given, in the author’s opinion successfully, 

together with assigned problems and numerous references as an intro¬ 

ductory two-year course for graduate students at The University of 

British Columbia. 

Habits die hard, however, and the author realizes that in fact this work 

may find its most common use as a supplementary text to the more 

standard treatments. 

Vancouver, Canada F. A. Kaempffer 



fable of Contents 

Preface, containing a statement of aims, precedes this 

Table of Contents, designed as a coherent abstract in an attempt to 

provide the prospective reader with the orientation in which 

he will have to traverse the subject matter. This is followed 

by a 

P re I u d e, in which are set forth briefly those aspects of physical reality 

that cannot be accommodated within classical mechanics, 

leading to the motivation for describing in 

Section I Pu re States in terms of state vectors allowing a probability 

interpretation which constitutes one of the basic postulates 

of quantum mechanics. Using the dichotomic spin variable as 

example, one is led naturally to introduce in 

Section 2 Observables as operators in the abstract space spanned by 

the state vectors, illustrated by construction of the Pauli 

matrices representing the three cartesian components of spin. 

In 

Section 3 Transformations in State Vector Space That Leave the Phy¬ 

sical Content of Quantum Mechanics Invariant are found, 

namely unitary and anti-unitary transformations, which are 

recognized as suitable for representing symmetry operations, 

with the operation of rotation in spin space singled out as 

preliminary example. As an alternative to the state vector 

description in 

Section 4 The Density Matrix is considered, and constructed for the 

case of spin 1/2 in terms of the polarization vector. It is 

stressed that the density matrix can grasp states which do not 

possess a state vector description, and the statistical ensemble 

is briefly discussed as a model for such a situation. The con¬ 

cepts developed up to this point should enable one to enter in 

^Section 5 The Theory of Selective Measurements, which contains 

the full formal development of quantum mechanics based 

♦Sections preceded by an asterisk may be omitted on first reading. 
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solely on analysis of experimental situations realized by 

selective measurements, with compound spin orientation 

experiments serving as illustration. One is led in this context 

to consider in 

^Section 6 The Representation of Nonselective Measurements, 39 

requiring introduction of the concept of randomly distributed 

phases of measurement symbols. Once again idealized spin 

orientation measurements are used for illustration. 

Section 7 The Fundamental Dynamical Postulate governing the evo- 43 

lution of an object in time is stated in terms of the temporal 

development of expectation values, and from this formula¬ 

tion are derived state picture (or Schroedinger picture), 

operator picture (or Heisenberg picture), and interaction 

picture, together with the unitary transformations that inter¬ 

connect them. The resulting dynamical equations are stated 

in both state vector and density matrix language, and solved 

by various methods for simple examples, the spin magnetic 

resonance problem being treated in detail. To enlarge the 

applicability of the concepts developed thus far, in 

Section 8 The Representation of Observables with Nondenumerably 55 

and Denumerably Infinite Ranges of Possible Values is sketched 

and the concept of the 0-function of a state introduced, with 

emphasis on its geometrical interpretation as transformation 

function in Hilbert space. With this preparation one can now 

grasp in 

Section 9 Displacements of the Observer, leading in particular to an 59 

explicit representation of the Galileo transformation. By 

exploiting the correspondence of the resulting transformation 

formulae with the classical formulae, the momentum of an 

object is recognized as generator of the displacement opera¬ 

tion, enabling one to derive the equation governing the 

0-function of an object in coordinate representation. The 

commutation relations between coordinate and momentum 

operators are found and used to introduce in 

^Section 10 Uncertainties and the Relations between Them. 65 

Heisenberg’s relation is derived, the concept of optimum 

state explained, and expressions for such states are cal¬ 

culated. The results of Section 9 enable one further to indulge 

by making in 
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^Section I I A Digression on Superfluidity, in which the concept of 71 

quasi particles is introduced phenomenologically, with an eye 

on a more rigorous derivation from particle theory given later 

in Section 30. The main thread of argument is then picked up 

again by considering in 

Section 12 Rotations of the Observer, leading, in analogy to the 77 

displacement operation, to recognition of the component 

operators of angular momentum as generators of rotations 

around corresponding axes. The problem of spin magnetic 

resonance is taken up once more and solved again, this time 

by transforming the dynamical equation to and from suitably 

chosen rotating coordinate frames. The fundamental theorem 

governing eigenstates of angular momentum is stated and its 

proof relegated to Appendix 1. By exhibiting in 

Section 13 The Connection between Invariance Properties of the 83 

Hamiltonian and Conservation Laws the ground is prepared 

for explaining in 

Section 14 The Invariance under Inversion of Coordinates and the 87 

Law of Conservation of Parity. The expectation value of any 

observable odd under inversion is shown to vanish in states of 

definite parity, and some physical consequences of this 

theorem are examined. The evidence gained from experiments 

involving the ^8-decay of nuclei is discussed in terms of non¬ 

conservation of parity, and the necessity of considering 

“combined inversion” as a symmetry operation is pointed 

out. By contrast, as shown in 

Section 15 Invariance under Reversal of Motion does not lead to a 99 

conserved quantum number analogous to parity, because of 

the anti-unitary nature of this so-called time reversal trans¬ 

formation. States can, however, be labeled by a dichotomic 

quantum number according to their behavior under re¬ 

peated time reversal. The twofold degeneracy of all states 

that change sign under repeated time reversal is established, 

and the concept of the superselection rule is introduced. 

Eigenstates of angular momentum are used as illustration for 

both Sections 14 and 15. 

Section 16 The Particle Concept in Quantum Mechanics is explained I 15 

as an abstraction far removed from the naive particle concept 

of classical physics, enabling one to grasp by introduction of 
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the quasi-particle concept properties of macroscopic objects 

with the same formalism originally designed for description 

of so-called elementary particles. The division into fermions 

and bosons is defined. The exclusion principle is stated and 

used to describe in 

Section 17 Fermion States in terms of a dichotomic occupation 

number of quantum states, leading naturally to introduction 

of creation and annihilation operators and their representa¬ 

tion. Neutrino and antineutrino states are used as simplest 

possible examples, and the possibility of understanding 

conservation of lepton numbers as superselection rules is 

pointed out. By an analogous development in 

Section 18 Boson States are introduced and illustrated by a deriva¬ 

tion of the equations governing transverse photon states. 

Particular attention is given to the description of photon 

polarization, and by a formal generalization one is led to 

consider scalar and longitudinal photons. With this prepara¬ 

tion in 

Section 19 Electrons and Positrons are treated as simplest examples 

of fermions which do not have firm parallel or antiparallel 

alignment of spin with momentum because of their non¬ 

vanishing mass. The charge conjugation symmetry of the 

theory is exploited to circumvent introduction of negative 

energy states, and after positron states have been recognized 

as spatially inverted electron states the conservation of lepton 

number is once again viewed as a possible superselection rule. 

A procedure reducing four-component (/(-functions to a two- 

component form is explained. 

Section 20 The Lack of Sufficient Reason for Actually Existing Inter¬ 

actions is exhibited by recording the ambiguities inherent in 

attempts to account for the peculiar form of the electro¬ 

magnetic interaction by making the phase of ^-functions non- 

integrable. The requirement of invariance under phase trans¬ 

formations leads one to consider in 

^Section 21 The Idea of the Compensating Field, whose adoption re¬ 

quires recourse to vector mesons as the only primary agents 

of interaction between fermions. Attempts at removing 

inconsistencies encountered with interactions of short range 

are mentioned. Because of its long range one is tempted to 

view, as is done in 
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^Section 22 Gravitation as a Compensating Field. This is possible, in 187 

analogy to the gauge theory of electromagnetism, provided 

one takes into account the one basic difference between 

gravitation and electromagnetism, namely that inertial 

frames in presence of gravitation are, in general, accelerated 

with respect to each other if they are some finite distance 

apart. 

Section 23 The Starting Point of Quantum Electrodynamics servesas 193 

an opportunity to introduce the idea of the Feynman graph, 

and the concept of the scattering operator for which an im¬ 

plicit expression is found by introduction of the time ordering 

operator. Evaluation of this expression is attempted by 

developing in 

Section 24 Perturbation Theory and the Propagator Concept, 203 

which has as its central theme a theorem by Wick, and is 

accompanied by further elaboration of the Feynman graph 

concept, and its manipulation in momentum space. 

*Section 25 The Hierarchy of Propagators in presence of interaction 217 

all but forces one to view the world subspecie aeternitatis as 

an infinite concatenation of propagators, whose analytic 

penetration presents formidable difficulties which have as yet 

not been overcome. In absence of any internally consistent 

dynamical theory of interactions, one can fall back as in 

Section 26 On Selection Rules Due to Symmetry under Inversions 233 

and Rotations of Coordinates. The system of two photons is 

treated as an example of how to determine the intrinsic 

parity of objects, such as positronium, for which this concept 

can be defined without ambiguity. The two-photon state is 

also particularly suited to illustrate, as is done in 

Section 27 Permutation Symmetry of Multiple Particle States. 241 

Part of this section is devoted to construction of explicit 

representations for the operator of transposition of particle 

labels in angular momentum representation and in particle 

occupation number representation. 

Section 28 Some Consequences of Symmetry under Particle Con- 251 

jugation and Time Reversal are derived by exploiting con¬ 

sistently the anti-unitary nature of the corresponding sym¬ 

metry operators. The conditions are specified under which one 

can introduce the concept of conjugality and consider it a good 
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quantum number. The principle of reciprocity is proved and 

various conditions are examined under which this leads to 

validity of the principle of detailed balance. 

Section 29 Attributes Characteristic of Objects Engaging in Strong 

Interactions, such as isospin, baryon number, strangeness or 

hypercharge, require re-examination of the symmetry opera¬ 

tions introduced in Sections 26, 27, 28, and lead to selection 

rules different from the ones encountered in the preceding 

sections. The section closes with an examination of all possible 

attributes conserved through superselection rules generated 

by anti-unitary symmetry operations. 

*Section 30 The Quasi Particle Concept emerges as a powerful tool 

when one wishes to grasp the intrusion of quantum mechanical 

principles into the domain of macroscopic phenomena, such as 

superfluidity and superconductivity, encountered in sub¬ 

stances at low temperatures. Some aspects of the quantum 

mechanical A-body problem, using the nonperturbative 

methods of Bogoliubov, Cooper, and Beliaev, are reviewed 

with the aim to exhibit the crucial part played by the 

principle of superposition of probability amplitudes in the 

minimization of energy through formation of quasi particles 

in presence of interactions between ordinary particles. 

Appendix I The Eigenstates of Angular Momentum are needed so 

often in the course of this work that their representation in 

both angular momentum space and coordinate space have 

been reviewed and collected in this appendix for ready 

reference. A similar need is accommodated by summarizing in 

Appendix 2 The Addition of Two Angular Momenta, containing 

tables for the Clebsch-Gordan coefficients for addition of an 

angular momentum j2= 1/2 and an angular momentum 

j2— 1, respectively, to an arbitrary angular momentum jv 

Appendix 3 Vector Spherical Harmonics are defined and used for 

classification of photon states, giving rise to additional 

information on the subjects treated in Sections 18 and 27. 

Appendix 4 The Invariance of Dirac’s Equation under Lorentz Trans- 

for mat ions is treated mainly for the purpose of deriving a well- 

known formula, governing the structure constants of this 

transformation, which is needed in Section 22. 
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Appendix 5 The Most General Canonical Transformation of a Pair of 

Fermion Operators is derived explicitly, following a develop¬ 

ment of Koppe and Miihlschlegel which deserves the widest 

possible attention, with particular reference to Sections 27 

and 30. 

Appendix 6 The Delta Function and Its Application to Phase Space 

Considerations has been included as possible aid to the under¬ 

standing of Sections 23 and 24. 

Appendix 7 If Galileo Had Known Quantum Mechanics he would 

presumably have understood the strict conservation of mass 

in nonrelativistic mechanics as consequence of a curious 

superselection rule, following from invariance under Galileo 

transformations, which was, in fact, first discovered by 

Bargmann. 

Author Index 
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CONCEPTS IN QUANTUM MECHANICS 





Prelude 

Quantum mechanics purports to be a description of physical reality 

which deliberately eliminates from theory all features not demanded by 

experiment. That there should be any need at all for special efforts to 

accomplish this obviously sensible aim is partly due to a peculiar feature 

of human language. 

Language has been largely fashioned after macroscopic models. For 

example, if the word “particle” is used as a subject to which various 

physical properties are attributed, one notices the subversive effect of 

language when one tries to completely avoid the surreptitious use of 

some mental image of a “particle” between measurements. However, to 

refrain from using inappropriate mental models is just the kind of 

intellectual asceticism demanded by quantum mechanics. 

Development of quantum mechanics was forced bjr the recognition of 

two distinct experimental aspects of physical reality which cannot be 

accommodated within the framework of classical mechanics. 

(1) Beginning with the turn of this century it transpired that some 

dynamical quantities, which in classical mechanics are always accorded 

a continuous range of values, may in fact assume only certain discrete 

values. Any physical quantity A which assumes only discrete values 

ax, ..., an, ... is said to be “ quantized.” Examples are the energy values 

of an electron bound to an atomic nucleus, and the intrinsic angular 

momentum or “spin” of an elementary “particle.” 

Although temporary amends were made by imposition of more or less 

mysterious “quantum rules” on classical mechanics, these artifices 

became untenable when one finally had to face in atomic physics yet 

another fundamental aspect of reality, namely 

(2) the impossibility of simultaneous exact determination of the 

totality of physical attributes of an object. Observation of atomic 

phenomena and their logical analysis, in particular, led to the discovery 

that 

(a) the interaction between the object of a measurement and the 

measuring apparatus cannot be indefinitely weakened, and 

l 
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(b) the disturbance produced by the interaction object-apparatus 

is only statistically predictable and cannot, therefore, be compensated. 

Thus measurement of one attribute of an object can produce un¬ 

controllable changes in the value previously assigned to another attribute 

of the same object. It is therefore meaningless to simultaneously assign 

numerical values to all attributes of an object. 

These facts governing the atomic domain are inconsistent with the 

classical theory of measurement which is based on the belief that the 

interaction object-apparatus, if it cannot be made negligibly small, can 

at least be taken into account precisely and can thus, in principle, be 

compensated. 

Two physical attributes A(1) and A(2) will be called “compatible” if 

measurement of one does not affect the value assigned to the other by a 

preceding measurement. Examples of compatible attributes are: The 

absolute value J and one component, J3 say, of the angular momentum 

of an object. The three components of the momentum of an object. The 

energy and any one other conserved quantity in a closed system. 

Two physical attributes A and B which are not compatible are called 

“incompatible.” Examples of incompatible attributes are: any two 

components of angular momentum of an object; momentum and parity 

of an object, provided the momentum does not have the value zero; 

strangeness and conjugality of an elementary particle, provided the 

strangeness is not zero. 

Every physical system will now be assumed to possess a complete set 

of compatible physical attributes A(l) ...A(k\ so that any two of these 

attributes are compatible and that no other attributes exist which are 

compatible with every member of the set. This assumption is not trivial, 

because at present there exists no experimental criterion which would 

allow one to determine whether a compatible set is complete. For 

example, it was thought for a long time that the complete set of attributes 

of an electron consisted of momentum p, mass m, charge e, spin s, s3. 

Recently yet another attribute of the electron has emerged, the lepton 

number L, which is compatible with all members of the set p, m, e, s, s3. 

It should be stressed again that the number of physical attributes in 

one complete set A is, in general, much smaller than the number of all 

possible physical attributes of an object. One can usually find other 

complete sets B,C, ... which are mutually incompatible. In the example 

above s3 can be replaced by a component of spin other than s3, resulting 

in a different complete set. 

A “complete measurement” on an object means a set of observations 

enabling one to ascribe definite values a\k) to a maximum number of 
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compatible attributes A(k\ Since any experiment designed to find the 

value b of another attribute B will now affect one or more of the previously 

established values a[k) in an uncontrollable way, any complete measure¬ 

ment realizes the optimum state of knowledge about a given object. 

If the set of compatible attributes A(k) of an object is known to have 

the values a\k\ the object is said to be in a “pure quantum state” or 

simply “state” characterized by the quantum numbers a\k). One is thus 

led to search for a description of the state of an object, containing all the 

information represented by the set of numbers a[k\ and containing only 

that information. 



, 



.SECTION 1 

Pure States 

The basic mathematical concepts needed for the description of the 

state of an object are most simply developed for idealized physical 

systems in which any physical attribute A can assume only a finite 

number of discrete values or quantum numbers oq, ..., an. 

In reality many physical attributes are, of course, even in atomic 

physics, capable of assuming a continuous range of values. To grasp such 

continuous sets of quantum numbers requires some mathematical sophis¬ 

tication, however, which might tend to obscure the basic simplicity of 

the quantum mechanical formalism, and for this reason they will be ex¬ 

cluded from consideration temporarily, to be taken up later in Section 8. 

A very simple state is the one depending on a dichotomic attribute, i.e. 

an attribute which can have two values only. Examples of dichotomic 

attributes are: the electron spin component in direction of an applied 

magnetic field; the electric charge that may be carried by a nucleon; the 

parity of a set of pions in the center of mass frame; the number of fermions 

in a given quantum state. 

As a starting point consider an experimental situation in which a spin 

\ associated with a magnetic moment is known to be aligned in a given 

direction, which may be sufficiently characterized by two polar angles 

ft, cp. Such a spin state can always be prepared by performing a Stern- 

Gerlach type of experiment with the external field in direction ft, <v and 

letting only the appropriate component of the split beam emerge from 

the apparatus. This state will be represented by a two-dimensional 

complex unit vector or “state vector” denoted 

d.i) k> = (;;) 
where the two complex numbers oq and are functions of the direction 

ft, cp of the spin. The label “a1” shall represent the quantum number 

“spin up in direction ft, cp.” The requirement that Icq) be a unit vector, 

meaning that the scalar product of | eq> with its hermitean conjugate, 

denoted 

(1.2) <Ai| = a* /3* 

5 



6 Concepts in Quantum Mechanics 

be unity, namely 

(1.3) <0,10.) = »Tlf = |«i|2+|W2 = 1 

qualifies the quantities |cxx|2 and for a probability interpretation 

which will be arranged to suit the following experimental fact. 

If on an atomic beam with electronic spins ^ aligned in direction $, 9 

and represented by the state vector |af) another Stern-Gerlach experi¬ 

ment is performed with external field in parallel with the z-axis, this 

observation of the z component of spin interferes with the state \af) 

such that some spins are aligned parallel to the z-axis and some anti- 

parallel to it. The outcome of this experiment is, in principle, only statis¬ 

tically predictable. Thus, there are required two numbers, adding up to 

unity, one of which is the probability for finding the spin aligned parallel 

to the z-axis and the other the probability for finding the spin aligned 

antiparallel to the z-axis. This suggests arranging the dependence of <x1 

and jSi on # and 9 such that |cc!|2 and |y8x|2 can be identified as these 

probabilities, respectively. With this convention the states |a+> = (J) and 

| aJ) = (°) represent situations in which the spin in z direction has with 

certainty the values + 1 and — 1, respectively. [In the following, com¬ 

ponents of a state vector | a{) will generally be denoted (ai)k. With this 

convention oq = (ax)! and = (eq)2.] 

In generalization of this probability interpretation it will now be 

assumed that the projection of a state 

/(«)i\ /(&)i\ 
|a) — ((^M on another state |6) = l(&)2| 

represents the amplitude for finding upon measurement the quantum 

number b if the object is known to be in the state |a>, where the projection 
is defined as 

(1-4) <(b\aj — (b)* (a)j + (b)* (a)2 +... = (a\by*. 

Thus, |<b|a)|2 shall be interpreted as the probability for observing the 

quantum number b, if the object is known to be in a state characterized by the 

quantum number a. For example, if |a+> = (f) is the state in which the 

spin is with certainty parallel to the z-axis, and |aq> = (gj) is the state in 
which the spin is parallel to the direction #, 9, then 

(a+\af) = l.oq + O./?! = oq, 

and | a! |2 is the probability for finding the spin + 1 in z direction if the 
object is in the spin state Icq). 
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This basic postulate of quantum mechanics enables one to infer from 

the dichotomic nature of electronic spin existence of another unit vector 

(L5) ! i-r-iw*-1 
representing the state of spin antiparallel to the direction ft, <p, which is 
orthogonal to the vector \a-^), 

(1.6) <a2 |oi> = 0, 

because if the object is known to be in the spin state loq), the probability 

for finding the spin in opposite direction is zero. The two possible spin 

states that can be found upon observation of spin in a given direction 

ft, cp are thus represented by a system of two orthogonal complex vectors, 

(1.7) <<q| ak} = Sik (i,Jc = 1,2). 

Since observation of the spin in a given direction ft, cp is a complete 

measurement and realizes the optimum knowledge attainable about 

electronic spin, the system of basis vectors |ax), |a2> should be complete, 

i.e. satisfy the closure relation 

(1.8) 
% 

the identity symbol I being defined by (b\I\ay = <'b\a> for any vectors 

|by, |a). Indeed, if one considers measurement of spin in some other 

direction ft', cp', symbolized by two orthonormal vectors |£>x)>, |b2}, the 

basic interpretation postulate of quantum mechanics requires that these 

vectors can be written as linear superpositions 

(1.9) |6fc> = |«i> clk+ |a2> c2k = K><ai|&i> + |a2><a2|&*>- 

From this follows by projection and after use of (1.7) 

(1.10) <6,-|bk> = 2 <fy|«<><<#*> 
i 

which is consistent only if relation (1.8) holds. 
The probability interpretation, the orthonormality condition, and the 

closure relation are not affected if any state vector is multiplied by a 

number of modulus unity. Thus, the same physical state |a> is described 

by all vectors eia|a), where a is any real number. 

The concepts developed here for the special case of the spin J are easily 

adapted to any state depending on a dichotomic variable. Thus the state 

vector 

!«> = (“); M2+I(sr=i (1.11) 
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will describe the charge state of a nucleon, if |oc[2 is interpreted as the 

probability for finding the nucleon as a proton, \fi\2 as the probability 

for finding it as a neutron. Similarly, the same symbol can describe the 

occupation state of a fermion quantum state, if |a|2 and |/3|2 are inter¬ 

preted as the probabilities for finding that state empty or full, respec¬ 

tively. 
Extension of these notions to states depending on attributes that may 

have more than two values proceeds without difficulty. A simple example 

is the charge state of a pion, which requires for its description a state 

vector having three components 

(1.12) M2+I£l2+M2 = i> 

because according to experiment a pion may have positive, zero, or 

negative electric charge. In expression (1.12) a, /3, y are taken as the 

probability amplitudes for finding the pion positive, neutral, negative, 

respectively. 

Additional compatible attributes of an object can always be accom¬ 

modated by extending the dimensionality of the state vector space. 

Formally, this is done by forming the direct product of any two state 

vectors, namely 

IW]i\ /[42)] 
(i.i3) KM2)> = I4:)> x |42)> = x I [42)j2 

/K(1)]i[42)]i\ 
/ [o^i [42)]2 

[41}]2[42)]i 

[41)]2[42)]2 

where |a)1}) is the state in which the attribute A(1) has the value a[x), and 

|42)> ^e state in which A(2) has the value af\ For example, a nucleon 

possesses two dichotomic attributes, spin and charge. The combined 

spin and charge space is spanned by four unit vectors, which in a self- 

explanatory notation may be written |pf>; |pl>; |n4> and 
represented by the set of direct products 
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(1.14) 

NOTES 

Gerlach and Stern [1] were first to observe the splitting into two 

components of an atomic beam in an inhomogeneous magnetic field. 

This was later interpreted as being caused solely by the magnetic moment 

associated with the spin ^ of the remaining valence electron. 

Fermi [2] gives a lucid account of the use of vectors depending on a 

dichotomic variable, and uses them for the description of the charge 

state of systems of nucleons in particular. 

Dirac [3] invented the bracket notation used throughout this work. 

REFERENCES 

[1] W. Gerlach and O. Stern, Z. Physik. 8, 110 (1922). 

[2] E. Fermi, Lectures on pions and nucleons, Nuovo Cimento Suppl. 2, 18 (1955). 
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SECTION 2 

Observables 

The measurement of an attribute A on an object in a state |&) will, in 

general, interfere with the state |6) such that after observation of A the 

object will be found in one of the states |aty which affix the value of A 

to the object. Which of the states |a2), ... will result from the 

measurement, i.e. which of the possible values alt a2, ... will actually 

be observed in an individual measurement of A, can be predicted 
only statistically. 

Although it is thus not, in general, possible to associate a specific value 

of A with a given state |6>, an average value A of A will emerge if the 

observation of A is carried out on an ensemble of objects all in the same 
pure state |6>. 

For example, consider again the spin state |ax) — (^;), describing a 

spin o = 2s(|s| =|) having with cei’tainty the value + 1 in direction#, cp, 

and suppose an observation of the spin component in z direction, <j3, 

is carried out. The result of observation, performed by means of a Stern- 

Gerlach experiment with the magnetic field in z direction, will be the 

establishment of either state |a+> = (J) or state |a_> — (x), i.e. cr3 will be 

found to have either the value + 1 or the value — 1, with probabilities 

|oc112 and |/3i|2, respectively. However, if the average value of the spin 

transforms under rotations of the coordinate system as a vector, one 

should expect <j3 to be simply the projection of the unit vector in (#, cp) 

direction on the 2-axis, namely 

(2.1) <7 3 = cos#. 

Similarly, the average values of o1 and cr2 in the spin state |ax) should 

come out to be 

(2.2) cy = sin#cos cp 

(2.3) ct2 = sin#sincp. 

The formalism which reflects the interference of observation with 

states and at the same time provides a means for computing the average 

value of an observable A in any given state |#> consists of representing 

an observable by a hermitean linear operator such that the eigenvectors 

11 
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of this operator are the states \ai), in which A has definite values a{, 

and such that the corresponding eigenvalues are the numbers ai them¬ 

selves, 

(2.4) A\a{) = a^Oi). 

Such a representation is possible because the eigenvalues of a hermitean 

linear operator form an orthogonal system that can be normalized. This 

representation of the observable A as a linear operator satisfying (2.4) 

is also convenient, because A will transform a given state |6), in general, 

into another state |c> 

(2.5) |c> = A\b> 

such that the projection of |c> on |6) is the average value of A in the state 

|6>, 

(2.6) A = <6|c> = (b\A\b)>. 

To see this, expand the state |6> in terms of the basis vectors |af) 

(2.7) |6> = |a1><a1|6> + |a2><a2|6> + ... 

where (a^C) is the probability amplitude for finding the value ai of A 

in state |6). As a consequence of (2.4) one has 

(2.8) A\b> = a1|a1><a1|6> + a2|a2><a2|6> + ... 

and thus 

(2.9) <&|A|6> = «i|<ai|&>|2 + a2|<a2|6>|2-|-... 

which is, by definition, the average value of A, because each value oq 

contributes to A with the corresponding probability |<ai|6)|2. 

Equation (2.5) can be written explicitly in matrix and vector notation 

(2.10) 

The requirement that the average value of a physical observable be 

a real number restricts the representation of observables by operators 
to hermitean operators, i.e. A must satisfy the condition 

(2.111 A+ = A 

where the hermitean adjoint A+ is defined by the equation 

(2.12) <A+c|6> = (c\A\h'y. 

Applying the matrix notation (2.10) to this definition, one verifies the 
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operation of hermitean adjunction to be equivalent to transposing the 

matrix A and taking the complex conjugate of its elements, 

(2.13) A+k = A*. 

The reality of A for hermitean operators follows from 

(2.14) A = <6|^1|&> = <J[+6|6> = <6|^+|6>* - <b\A\by* = A*. 

It is sometimes useful to keep in mind that, although any observable 

must be represented by a hermitean operator, the converse need not be 

true, i.e. a hermitean operator need not necessarily represent an observ¬ 

able. 

From the foregoing, it follows that the observable spin in direction 

#, 9 must be represented by a hermitean operator, which may be written 

as a 2 x 2 matrix 

(2.15) ■A-u, -A 22 rea,l; 

so that |«i) = (j§|) and | a2> = ($’) are the two eigenstates of o#tV with 

eigenvalues + 1 and — 1, respectively, 

a&, cp|a2) — — |a2/> 

An OC2 + A12P2 — ~ <*2 

A-12 «2 + A 22 ^2 = ~@2 

The necessary and sufficient conditions that these equations for oq, 

have solutions are that the coefficients have vanishing determinants, 

namely 

A-nA22~ |^-i2|“+ 1 — -An — A22 — 0; 

^11^22 — |^i2|" + 1 + ^11 + ^22 = 0 

These equations are equivalent to the restrictions 

(2.19) ^11 + ^22 — 0; A.11A22—\A-i2\2 +1 — 0 

so that can be represented in the form 

(2.20) o#t9 = (yl*, -A^’’ ^11 + l^isl2 = + 1; ^4 n real. 

(2.16) — +|«i>; 

or, in components, 

A-ll OC1 + A12/3i = <Xi 

A-i2<r-i+A22^i = Pi 
(2.17) 

To obtain the dependence of oq, ft and A1X, A12 on the polar angles ft, 9, 
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consider as a starting point the z component of spin cr3. The corresponding 

operator must be a special case of (2.20), obtained by putting # = 0, and 

will be written 

(2-2I) '•-(% Jj; 
The matrix elements Zlt, Zli 

Z\i + | -Z-12i2 ~~ lj Zn real, 

must be chosen such that the two states 

(2.22) 

are the eigenstates of cr3 with eigenvalues + 1 and — 1, respectively, 

(2.23) or3|a+)> = +1 a+>; cr3|a_)> = — 

or, in components, 

(2.24) Zn = 1, Z*2 - 0; Z12 = 0, —Zn = — 1. 

Thus a3 is found to be represented by the matrix 

(2.25) 

If one demands now in accordance with (2.1) that the average value of 

cr3 in the state \a{) = (p\) be cos$, one obtains for oc1 and the condition 

(2.26) ct3 = <(cti|o-31<Xi)> — a* j3* ^ j = |ai|“~ |^i|“ — cos^ 

which together with the normalization condition 

(2.27) |ai|2+ |^i|2 - 1 

yields the solution 

(2.28) ax = e1^ cos ($/2); /3X = el(x+^ sin ($/2) 

with arbitrary phases ip and y. The phase of /3X has been written (y + </») 

because any state vector is determined only up to a common phase of 

all its components in any case, and by convention the phase ip will now 

be put equal to zero, so that |a+> becomes the special case of |ax) for 

$ = 0. Thus 

(2.29) 
cos(#/2) 

elx sin (#/2) )• 

The remaining unknown phase y will now be determined by utilizing 
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conditions (2.2) and (2.3). Denoting the operators representing oq and 

ct2 by 

(2.30) CT' /In Xi*\ 

' Ufa -xj > 

(Yn Xji + |V12|2 = 1; Ill real 

Ufa - yJ ’ yfi+ |r12|2 = 1; Y11 real 

(2.31) 

02 

equations (2.2) and (2.3) read explicitly, if the average is taken for the 

state !«!> as given in (2.29), using some elementary trigonometry, 

<7] = ^a1|CT1|a1> 

= Xn cos$+ ^(X12el* + X*2e-lx) sin# = sin#cos cp 

r2 = <(hi|c72|cq)> 

= F11cos# + |(yi2el^+ F*2e_^)sin# = sin#sincp. 

Since sin# and cos# are linearly independent these equations require 

(2.32) Xxl = F1;L = 0 

so that according to (2.30) X12 and F12 must have modulus unity, 

(2.33) X12 = e*t; Y12 = e*\ 

Substitution into (2.31) gives the equations 

irei(.x+0 + e_,l(x+£>] = cos cp 
(2.34) /L j r 

4-e_*<x+1?)] = gin cp. 

From the first of these equations follows 

(2.35) X + £ - cp 

which, substituted into the second equation (2.34) gives 

(2.36) + e-i(<p-Hrf)] = sin 9. 

This can be true only if 

(2.37) 77-£=-77/2. 

Thus one of the phases y, 77, £ remains undetermined, one chooses by 

convention 

(2.38) £ = 0 

so that 

(2.39) 77 - -77/2; y - cp 

and therefore 

(2.40) Xli=l; Y12 = X12 — 1; — t. 
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Applying the same line of reasoning to the state |a2>, one thus finally 

obtains the following representations in terms of the polar angles $, cp 

(2.41) 
/cos(#/2) \ 

1 1? \sin(^/2) ci(P/ 

(2.42) 
_ / —sin(tf/2)e-n 

1 \cos(#/2) / 

/0 
(2.43) CTl = l ^ --c > -e -“} 

The so-called Pauli matrices (2.43) are special cases of the general spin 

operator which, with help of (2.42) and (2.43), is found from Eqs. (2.17) 

and (2.20) 

(2.44) 
/cos ft sin#e_Kp\ 

a&,<? \sin#el<f) — cos$ / 

It is interesting to note that the operator and its “cartesian com¬ 

ponents” ct1; cr2, ct3 satisfy the same relation that holds between an 

ordinary vector pointing in direction #, cp and its cartesian components, 

(2.45) a#)(p = UiSin^cos cp+ a2sin$sin cp + a3 cos #. 

The Pauli matrices (2.34) have the algebraic properties 

(2.46) oiak + ok(ji = 2SikI; a1o.2-o2a1 = 2ia3 (cyclically). 

Introducing s{ = \ai one finds the commutation relations (C.R.s) 

(2.47) s1s2 — s2sx = is3 (cyclically). 

Such C.R.s will be recognized in Section 12 as a general property of any 

three operators that represent an angular momentum in quantum 

mechanics. 

The optimum information obtainable about an object is, in general, 

contained in any state vector that is a linear superposition of the 

simultaneous eigenstates |a)1)a^.2).. .)> of the set of compatible observables 

A(1), A(2),_The requirement that |a^ajjfC ..) form a complete set can 

be met only if the operators representing compatible observables A(1)... A(n) 

commute, 

(2.48) AwA(m)-A(m)A(n) = 0. 

To see this, suppose | ^1)c42)> is a simultaneous eigenstate of Am and 
A(2) with eigenvalues a^ and a(k \ respectively, so that 

(2.49) [AM-AMAM] |aix)42)> - {a^af-afa^) |ad>af> = 0. 
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If now \a[l) a^y are required to form a complete set, then any state |&> 
can be expanded 

(2.50) |6> = v v ca K'of >; c« = <a0>*f|6> 
i k 

so that because of (2.49) 

(2.51) A™ - A™ A^by = 0 

for all vectors |6), which can be true only if 

(2.52) 4ft)4®_4®ia) = o. 

The general case (2.48) follows from this by induction. 

One may, of course, count two or more compatible observables as a 

single observable which upon observation yields two or more numbers. 

This freedom is reflected in the possibility of representing, in the space 

spanned by the direct products, |ad}> x |c42)> the operator 

A™ A™ = AW 
by the direct product 

(2.53) A=Aa)xA(2) 

which is a diagonal matrix if AM and AM are diagonal. This follows by 

straightforward computation from the following definitions. 

The direct product of two matrices A and B 

(2.54) C = AxB 

is meant to have the matrix elements 

(2.55) n" 
yyijJ nm 

A 7? 
in -^jm* 

The labeling of the rows in C is done in the sequence ij — 11, 12, ..., 1 n, 

21, 22, ..., 2?i, ..., similarly for the columns. Thus the direct product of 

the matrices 

(2.56) 
- ■ C“ 

^12\ 

-4 22/ - - (£ 

Bio\ 

Bj 

is 

Mil-Bii -<4 n B12 -^412 -Bn A\2 B 

(2.57) 
p 1 ^11^21 

" U21B11 

A11 B2% 

A21B12 

-^412 -B21 

^22-Bn 

A12B 

A22B 

\^21 -B21 A2l -^22 -*4 22 -B21 A22B 

22 
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The following statements are easily verified. 

(I) If A and B are square matrices, then C is also square. 

(II) If AA' = A" and BB' = B" and if A x B = C and A' x B' = C' 
then also CC' = A" x B" or (AxB)(A'x B') = A A' x BB'. 

(III) The direct product of two diagonal matrices is again a diagonal 

matrix. 

(IV) The direct product of two unit matrices is again a unit matrix. 

NOTES 

Pauli [1] invented the description of dichotomic spin in terms of the 

three operators oq, cr2, cr3. 

The definition of the direct product used in this work is identical with 

the one given by Wigner [2]. 
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---SECTION 3 

Transformations in State Vector Space That Leave the 

Physical Content of Quantum Mechanics Invariant 

Summing up the results of the two preceding sections one may say 

there are two quantities which represent the physical content of quantum 

mechanical states. 

(I) The absolute value of the projection of one state vector |a) on 

another state vector |6), |<6|a)|. It is identified with the probability 

amplitude for finding the value b of the observable B if the observable A 

is known to have the value a. 

(II) The average value of an observable A in a state |6>, A = (6|^4|6). 

The observable A is represented by a linear hermitean operator A+ — A, 

whose eigenvectors |oq), defined by A\a^) — form an orthonormal 

basis, (cti\aky = 8ik, £ |aq> </q| = /, spanning the state vector space. 
i 

Obviously, these two experimentally accessible quantities are not 

affected by any transformation 

(3.1) \a) -> |a'>; \b>^\b'>; A -> A' 

such that 

(3.2) |<&V>I = l<%>l 

and 

(3.3) A' = A. 

One possibility of effecting such a transformation consists of a change 

in the basis vectors which corresponds, geometrically speaking, to a 

rotation of the coordinate frame in state vector space. This linear 

operation U and its inverse U~x are defined by 

(3.4) 
|«> = [7|a'>; U 1|a> = |a'>; U(<x\a} +/3|6» = <xU\a) +pU\b} 

with the understanding that (3.3) should hold, and that (3.2) be satisfied 

through the stronger condition 

(3.5) <&'| a') = (b\a) 
19 
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which requires U to be a unitary operator, 

(3.6) UU+ = U+U = I or C7"1 - U+. 

Condition (3.3) entails that A' be obtained from A by the similarity 

transformation 

(3.7) A' = U+ATJ. 

The transformed operator A' retains the hermitean property of A. 
Another possibility of effecting a transformation (3.1) which satisfies 

(3.2) consists of performing the nonlinear operation © defined by 

(3.8) @(oc\a} + j8|&» = a* ©|a> +/S* ©\b} 

such that 

(3.9) <6>a|@6> = <a|6>* = <6|a). 

Operators of this kind are called antiunitary operators. 
The importance of this invariance property of quantum mechanical 

description of reality resides in the possibility of representing symmetry 

operations in physical space by suitably chosen unitary or antiunitary 

operations in the abstract space spanned by the state vectors. The 

operation of inversion of spatial coordinates, for example, can be repre¬ 

sented by a unitary operator, whereas the operation of reversal of 

motion, formally equivalent to a reversal of the time axis, requires 

representation by an antiunitary operator, as will be shown later in 

Sections 14 and 15. 

Of immediate usefulness is the possibility, opened by the invariance 

under unitary transformations, of choosing as basis a set of vectors such 

that the matrices representing observables appear in the simplest 

possible form. In particular, it is always possible to diagonalize a hermi¬ 

tean matrix A by a unitary transformation. The diagonal elements of 

the thus transformed A are then the eigenvalues of A, and the columns 

of the transformation matrix U are made up out of the untransformed 

eigenvectors of the matrix A. 

To prove this, write A\a>> = a^aQ in components 

(3-10) 2 Amn(a^n = ai(ai)m. 
n 

Having then introduced the transformation U by 

(3.11) K> = !7|a'(>; C7+K> = |<> 

one deduces immediately from 

(3.12) 

%K> = a, U+\a>? = U+A\ai) = TJ+ AUU+\ai') = A'\a'Q 
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that the eigenvalues of A' are the same as those of A, namely the 

eigenfunctions being now |«•> = U+\ai). By taking 

(3.13) Unm = (am)n i.e. 

/(al)l (a2.)l • • A 

tf=l(«i)2 («2)2 ; u+ = 

l(al)l (al)f 

Ik)* k)* 

the eigenvectors reduce to the simple form 

(3.14) K> - tf+h> - 

i.e. etc. 

The demonstration that A' is diagonalized by (3.13), with a{ as diagonal 

elements, is now straightforward. One has 

(3.15) (AU)mi TJni S ®i(®i)ra 
n n 

and therefore, because of the orthogonality of eigenvectors belonging to 

different eigenvalues, 

(3.16) {U+AU)ki = 2 (ak)*ai{ai)m = a^ik 

It is often useful to write a unitary operator in the form 

(3.17) U = eiS 

where the generator of the transformation, S, is a hermitean operator, 

(3.18) S+ = S 

and the symbol eiS stands for the expansion 

(3.19) e*3 = I + iS + (i2j2\)S2 +... 
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(3.20) U 
(co 

sii 

v+ = (oos.( 
\ — SII 

y 
As an example, consider the unitary matrix whose columns are the 

eigenvectors (2.41), (2.42) of the general spin matrix (2.44), 

fcos(ft/2) - sin (§12) e~^ 

[sin {ft/2) ei<p cos(^/2) 

I (0/2) sin {ft/2) e~i<p\ 

■sin (#/2)cos (#/2) / 

By straightforward computation one verifies unitarity 

(3.21) C7C7+ = C7+C7 = / = ^ 

and the ensuing diagonalization of the general spin operator (2.44) 

(3.22) = U+aU = (* 

with diagonal elements +1, — 1, as expected. 

From the interpretation of ft, 9 as polar angles in physical space, it 

follows that the unitary operator (3.20) represents in abstract spin space 

a rotation of coordinates in physical space such that the z'-axis points 

in a direction described by the angles ft, 9 in the untransformed coordi¬ 

nate system. 

The representation of spatial rotations in spin space is seen to be 

double valued, i.e. rotation through an angle ft = 277 does not regenerate 

the original states Icq) and |a2>, one finds — Icq) and — |a2> instead, and 

it requires a rotation through ft = 477 to recover |oq> and |a2>. This does 

not lead to any inconsistencies with observation, however, because |cq> 

and — |cq> represent the same physical state. 

It will be shown in Section 12 that the rotation by angle cf> around an 

axis with direction cosines a, /}, y is represented by 

(3.23) U — exi>i(/>(ocs1+/3s2 + ys2) where Sj = cq/2. 

This may be written, using the expansion (3.19) and the C.R.s of the sit 

(3.24) U = cos (</>/2) + 2i(a.s1 + /3s2 + yss) sin {(f>/2). 

It must be kept in mind that 

exp [i(/>(as1 + fls2 + ys2)] ^ exp (i^as^exp (fi/>/3s2)exp (i<f>ys2). 

NOTES 

Unitary operators have been widely employed ever since their signi¬ 

ficance in quantum mechanics was completely elucidated by Dirac [1] 
and Jordan [2]. 
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Antiunitary operators, on the other hand, although their importance 

for quantum mechanics was pointed out a long time ago by Wigner [3], 

did not acquire equal status with unitary operators until recently, when 

time-reversal symmetry has come to the forefront of experimental 

research in particle physics. 
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SECTION 4 

The Density Matrix 

An alternative way of apprehending the state of an object, free from 

the arbitrariness of phase which afflicts the representation of states by 

state vectors, consists of describing the state by a hermitean matrix 

M(b), whose elements are in terms of the components (6)f of the corre¬ 

sponding state vector 16) 

(4.1) M^b) = (b\(b)t or M = |6><6|. 

The normalization condition <6|6) = 1 is then equivalent to the condition 

(4.2) trace M — 1 

the trace being the sum of the diagonal elements of M. Computation of 

the average value A of an observable A in the state characterized by 

M(b) is then accomplished by evaluation of 

(4.3) A — trace (MA) = trace {AM). 

Indeed, in the state |6), 

(4.4) 

A = SS(6)^^«»(6)« 
n m 

= 2 Z Mnm(b)Anm = £ [M(b)A]nn - trace (MA). 
n m 

From the representation (4.1), it follows that this so-called density 

matrix representing a pure state |6) is idempotent, 

(4.5) M2 - M 

because one has, in components, for orthonormal state vectors 

(4.6) 
(M\k = 2 Mi5Mik = 2 {bUb)tmh)t = mb)t = Mik. 

3 3 

A hermitean matrix can obviously satisfy (4.5) only if all its eigen¬ 

values satisfy the same condition, i.e. its eigenvalues must be either 0 

or +1. From (4.2), it follows then that only one eigenvalue is + 1 and all 

25 
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others are 0, because M can be brought on diagonal form by a unitary 

transformation, which leaves the trace invariant, 

trace (U+ MU) - trace (MUU+) = trace if. 

Geometrically speaking, M(b) is thus a projection operator, which 

applied to an arbitrary vector |a) projects it in direction of the eigen¬ 

vector 16) belonging to the eigenvalue + 1 of if. 
Since \br) is the eigenvector of M(br) with eigenvalue + 1, whereas all 

other vectors \bs} with s ^ r belong to the eigenvalue 0, 

(4.7) M(br)\bs} 2 (br)i(br)t(b.)k drifts}, 

the expansion 

(4.8) |a> = 2|&,)<6» 

yields immediately the result 

(4.9) M{br)\a> = \bry <6r|a>. 

The projection operator M(br) can thus quite literally be taken as a 

measurement symbol representing a selective measurement that accepts 

only those objects which possess value bT of the attribute B and rejects 

all others. 

The average value of the density matrix M(b) in a state |a} is now 

equal to the probability for finding the value b of B if A is known to 

have the value a, 

(4.10) M(b) = (a\M(b)\dy = <a|6)<6|a) ?= |<a|6)|2. 

Since the reasoning of equation (4.4) is applicable to the hermitean 

operator M(b) in the state |a>, which in turn can be represented by a 

density matrix ilf (a), one has the interesting result 

(4.11) |<a|6)|2 — trace [M(a) M(b)]. 

The entire physical content of the quantum mechanics of pure states has 

thus been reduced to statements involving density matrices only. 

The state 

\a \ — M = /cos ($/2) \ 
1 [pj \sin (#/2) e^j 

describing a spin which has with certainty the value + 1 in direction 

cp will again serve as an example. The corresponding density matrix is 
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(4.12) 

|ai|2 aiPi \ _ /cos2 (0/2) sin (#/2) cos (#/2) e_l? 

]8ia* |ySx |2 / \sin (#/2) cos (#/2) etcP sin2(#/2) 

which obviously satisfies trace if = 1 and is idempotent, if2 = M. A 

particularly instructive representation for M is obtained if one utilizes 

the possibility of writing any 2x2 matrix as superposition of the four 

linearly independent matrices 

f? '), (° 
(To = 1 . 

V O' V 
If M is required to be hermitean and have trace unity, it must be of the 

form 

(4.13) ilf = i(f + Po) 

where P — (Pl,P2,Ps) is a vector whose three real components charac¬ 
terize the state. The idempotence of M can be satisfied only if P is subject 

to the condition 

(4.14) P2 = 1 

which leaves for the description of the state two parameters, as expected. 

Indeed, from (4.13) and (4.14) follows, utilizing (2.46), 

M2 = i(/ + Pa)(/ + Pa) 

(4.15) = \[I+ 2Vo + JJP\a\+ £ PjPlc(ojak + okaj)] 
i j, k 

(cycl.) 

= i(f + 2Pa + P2f) = \{I + Pa) = M. 

In terms of the components a1; j8x the vector P is found by equating the 

elements of (4.12) and (4.13), yielding 

P1 — 2Re(i81af) = sin#cos 9 

(4.16) P2 — 2Im(j81af) = sin#sin<p 

^3 = |«l|2— |^l|2 = COS#. 

The unit vector P points thus in direction #, 9 and may be called the 

polarization vector of the state. The unit length of P, derived from the 

idempotence of M, reflects the total polarization of the object in a pure 

spin state. 
So far nothing has been said that cannot be expressed in terms of state 

vectors and their components. However, the quantum mechanical des¬ 

cription of states in terms of density matrices derives its particular 
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profundity from the possibility of giving M a meaning even if the object 

is not in a pure state, so that the decomposition of the matrix elements 

of M after the fashion (4.1) is, in principle, not possible. The density 

matrix description can grasp states which do not possess a state vector 

description. 

A model of such a situation is obtained if one imagines the object of 

measurement to consist of a statistical ensemble composed of N sub¬ 

systems, which may be in different quantum states. Suppose the N 

subsystems are in a number of possible quantum states described each by 

Mn — M(bn). The average values An of the observable A must then be 

averaged once more over the ensemble before one arrives at an expression 

for the maximum information about A obtainable in this case, namely 

(4.17) A = ^pnAn 
n 

with 

(4.18) ~ZPn = 1; Pn > 0 
n 

where pn is the probability for finding the value An in the ensemble. 

The formalism enabling one to compute the average value of an attri¬ 

bute in a pure state using the density matrix can be extended to this 

general case by introduction of the generalized density matrix 

(4-19) M=^pnMn 
n 

which satisfies, because of (4.18), the condition 

(4.20) trace M — 1 

and yields the desired result 

(4.21) A = trace (MA) = £ pn trace (Mn A) = 2 pnAn. 
n n 

This generalized density matrix is no longer idempotent, however, unless 

all Mn are equal to M. Idempotence of the density matrix is thus a criterion 

for the presence of a pure state. To prove this, consider a mixture of two 

systems, described by density matrices Mx and M2 so that 

(4.22) 

M = p1M1+p2M2 (0 < Px < 1) (0 < p2 < 1) {px+p2 = 1). 

The square of this matrix 

(4.23) M2 = p21M2+p2M2+plp2(MiM2 + M2M1) 
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can, because of the identities 

(4.24) M1M2 + M2M1 = M'l + Ml-iM^Mz)2 

and 

(4.25) PI+P1P2 = Pi(Pi+Pn) = VP, pl+PiPz = 

be written in the form 

(4.26) M2 = plM\ + p2Ml-plp2(M1-M2)2. 

Since M1 and M2 are idempotent, one has 

(4.27) M-M2 = PxP2{Mx~M2)\ 

On the right-hand side of this equation stands a positive matrix which 

can vanish and thus lead to idempotence of M only if (M1 — M2)2 — 0. 

The square of a hermitean matrix can vanish only if all its elements 

vanish, and therefore Mx = M2 is the necessary condition for idempotence 

of M. The general case follows now by induction. 

It may be worth noting here that in quantum statistical mechanics 

E — — (logdf) = — trace(MlogM) is the entropy of the statistical en¬ 

semble represented by M. It vanishes for any pure state and only for a 

pure state. It is rather remarkable that one can bypass in this fashion 

the entire notion of “phase space,” familiar from classical statistical 

mechanics, which is not a meaningful concept in quantum mechanics, 

because momenta and coordinates are, in general, incompatible attri¬ 

butes. 
It should be stressed that the ensemble picture of a state which is not 

pure becomes a fictitious model when the experimental situation is such 

that optimum information about subsystems of the entire object is, in 

principle, not available. For example, consider as object a partially 

polarized beam of electrons, so that, in the ensemble model, one would 

introduce a density matrix 

(4.28) M = 'EPnMn = 2 PnW + VnO) = £(/ + P<j) 
n n 

where the average polarization 

(4.29) P = 
n 

is no longer a unit vector, M not being idempotent. The absolute value 

|P| represents the degree of polarization of the beam, |P| — 0 means the 

beam is unpolarized, and |P| = 1 designates the limiting case of full 

polarization. If P is the only observable parameter of the object, the 
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decomposition (4.29) becomes fictitious, because the entire experimental 

information available resides in 

(4.30) M = \{I + Pa) 

making the mental image of a set of electrons each having definite orien¬ 

tation of spin, represented by the unit vectors Pn, fictitious and, from an 

operational point of view, undesirable. 

Note in this connection the general result 

(4.31) 

cq = trace (cqdf) 

b trace ai + ^ trace Pi + trace 2 Pk°i 

(k^i,j^=k,i=Aj) 

= 1 trace Pi = P*. 

NOTES 

The possibility of apprehending the state of a system by the density 

matrix was apparently first noticed by Landau [1]. Shortly afterwards, 

a pair of papers was published by von Neumann [2] employing the 

density matrix for a very complete analysis of the probability interpre¬ 

tation of quantum mechanics, and of the thermodynamics of quantum 

mechanical ensembles. See also Dirac [3] and Pauli [4]. 

A comprehensive review of applications of the density matrix has 
been given by Fano [5], 

Williams [6] uses in Chapter VIII the same formalism for a particu¬ 

larly lucid analysis of polarization effects in scattering processes. 
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♦SECTION 5 

The Theory of Selective Measurements 

The density matrix description of physical objects can be considered 

as the special case of an even more general development based upon the 

analysis of experimental situations realized by selective measurements. 

To start, introduce a symbol M{a{) representing a single selective 

measurement with an apparatus that accepts objects possessing the 

value a{ of the attribute A and rejects all others. If A is understood to 

represent a complete set of compatible observables, A — Aw x A(2) x ..., 

then M(ai) describes a complete selective measurement, such that the 

object chosen possesses definite values, symbolized by a{, for a maximum 

number of attributes. The selective measurements M(at) and M(ak), 

performed in either order, must in the second step result in either the 

acceptance of all objects, namely when i = k, or the rejection of all 

objects, namely when i ^ k. Symbolizing with I and 0 the measurements 

that respectively accept and reject all objects, the sequence of measure¬ 

ments can be represented by the multiplication of the corresponding 

symbols, satisfying 

(5.1) M(ai)M(ak) = M(ak)M{ai) = 8aM(at) 

where 

(5.2) Si ik 
I for i = k 

O for i + k. 

If one further defines the addition of such symbols M{ai), M(ak) to mean 

a less specific selective measurement, admitting all objects with any of 

the values a*, ak in the summation, then the completeness of the observ¬ 

able A is contained in the statement 

(5.3) Z Miai) = 
I 

To accommodate the disturbance of the object by the measurement 

and the existence of incompatible sets of observables, one must consider 

the most general selective measurement performed with an apparatus 

that rejects all objects entering except those in the state and permits 

only objects in the state ak to leave. Symbolizing this measurement 

31 
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process by M{ak,bi), one should stress that the envisaged process implies 

complete ignorance about what goes on between input and output stage. 

Thus M(ak,bi) is not meant to be identical with M{ak)M(bi), in particular 

the symbol M(ak, afj is not equivalent to the symbol 0, for k ^ j. However, 

the symbol M{ai) may be taken as the special case in which no change in 

state occurs, 

(5.4) Jf(eq) = M(ah a{). 

It is often convenient to represent a measurement symbol, such as 

M(ak,bi) by a graph consisting of a “black box” symbolizing the region 

of ignorance between input and output stage, which latter are symbolized 

by a directed line entering and leaving the black box, with labels indi¬ 

cating the quantum numbers of input and output states, as drawn in 

Fig. 5.1. 

-« 
bi 

Fig. 5.1. Black box diagram representing the measurement symbol M(ak,bi). 

To be specific, let ±s1, ±s2> ±s3 denote the possible values of spin of 

an object in directions x, y, z, respectively, so that, for example, — sk 

means “spin — \ in direction x.” The measurement M(+s3, — SjJ, for 

example, can be realized by an experimental arrangement which is 

rendered graphically in Fig. 5.2, with the corresponding black box 

diagram drawn underneath. Everything has been drawn in one plane, 

omitting unimportant beam deflections, the magnets labeled according to 

the alignment of their magnetic fields along the respective axes. Each in¬ 

put and output stage corresponds to a selective Stern-Gerlach experiment, 

and the region of ignorance in-between represents the fate of the beam 

between experiments. 

The compound measurement M(am,bj)M(ck,di) admits objects in the 

state dt and permits them to enter into the state am, and is therefore a 

selective measurement of the type M(am,di). If C and B are incompatible, 

only a certain statistically predictable fraction of the objects leaving the 

stage Mt^c^di) will be admitted into the stage M(am,bj) of the apparatus. 
Hence one has the multiplication rule 

(5.5) M{am,bj)M{ck,di) = Qbj\cky M{am,di) 

where (bj\ck)> is a number which serves to express the statistical relation¬ 

ship between the states bj and ck. It should be stressed that the notation 
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+ s. -S} 

Fig. 5.2. Experimental arrangement corresponding to the black box diagram represent¬ 

ing the measurement symbol M( + S3, — «i). 

for this number is purely conventional and does not, at this stage, imply 

anything about a possible interpretation in terms of geometry in an 

abstract space. 

The value of (bfcf) can be ascertained immediately for the special case 

of compatible observables, because then one must have 

(5.6) M{am,bf)M{bk,ci) = hjkM{an,cf). 

Indeed, if bj 7^ bk, then the second stage of the compound apparatus will 

accept none of the objects emerging from the first stage, while, if bj = bk, 

all such objects are admitted into the second stage, thus 

(5.7) (bfbf) = 8jk. 

Further special examples of (5.5) are 

(5.8) M{aj)M{bk,ci) = (afbf) M{aj,ci) 

(5.9) M{aj,bk)M{ci) = (b^y M{aj,ci). 

If the sequence of the stages in (5.5) is reversed, one has 

(5.10) M(ck, di)M(am, bf) = <^|aw> M{ck,bf) 

which is, in general, different from (5.5). The multiplication of measure¬ 

ment symbols is, in general, noncommutative. From the completeness 

relation (5.3) and from (5.8) and (5.9) follows 

(5.11) 2 M(af) M (bk, ct) = M(bk,ct) = 2 (afbf) 
i 
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(5.12) £ M(ap bk)M(Ci) = M(ap bk) = 2 <hk\c^ M{apCi). 
i * 

Thus measurement symbols of one type can be expressed as linear 

combinations of another type. By repetition of this expansion one has 

generally 

(5.13) 

M{ck,di) = IS MiaJMlc^dJMibj) = S S <am\ck>(di\bj'} M(am,bj). 
mj mi 

Because of its ability to sponsor such connections, the set of numbers 

<eq.|6{> is called the “transformation function relating the A- and 

B-description.” 

Fig. 5.3. Black box diagram representing the measurement M(+s3)M{ — S2, —«i). 

Fig. 5.4. Black box diagram representing the measurement M( — «2, —s\)M( +S3). 

As an example involving compound selective Stern-Gerlach experi¬ 

ments, consider the measurement M( + s3) M( — s.2, — Sj), rendered 

graphically in Fig. 5.3. Equation (5.8) reads for this case 

(5.8a) M( +s3) M( — s2, — $i) = •(+s3| —s2) Af(+S3, — Si) 

and says that this measurement corresponds but to one channel which 

contributes with amplitude < + s31 — s2) to the measurement M(+ss, — s1) 

which has already been rendered graphically in Fig. 5.2. 

Carrying out the compound selective measurements of Fig. 5.3. in 

opposite order, one has a quite different situation, namely the measure¬ 

ment M( — s2, — 5X)M( + s3), rendered in Fig. 5.4. Equation (5.9) is now 
appropriate, 

(5.9a) M(—s2, — sQ M(+ s$) = ^ — 5j| +s2y M( — s2, + s3) 

and gives < — s11 + s3> as the amplitude with which the particular channel 
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contributes to the measurement M( — s2, -fs3), which is different from 
the one depicted in Fig. 5.2. 

Transformation functions have the composition property 

(5-14) Z <<#*><&&|Ci> = <«j|Ci>- 
k 

This follows from 

(5.15) v <aj|^*> <fyfc|ci> M(ap c{) = v M{aj) M{bk) = M^M^) 
k k 

= <,aj\cd Miaj, ci)- 

Any linear combination of measurement symbols will be called an 

“operator,” and denoted by capital letters X, Y, .... Writing 

(5.16) X = 2 2 <ak\X\bi) M{ak,bi) 
i k 

the expansion coefficients (ak\X\bf) can be arranged in an N x N matrix 

scheme, and will thus be called the “matrix elements” of X. Operators 

are accordingly elements of a linear algebra of dimensionality N2, 

where N is the number of different values ai attributable to a complete 

set of observables A. In this algebra the number (a^bf) can be regarded 

as a linear numerical function of the operator which will be 

called, in anticipation of an obvious matrix representation, the “trace” 

of M(bk,ai), 

(5.17) Oi|&*> = trace M (6*,^). 

This definition is consistent, because the linear relation (5.13) leads to 

(5.18) traceM(ck, df) = 2 2 <a»K> (d^bf) trace M(am, b6) 
m j 

= S S (Am | ^ky | bf) | a7fy 
m j 

= 2 (di\bj'>(bj\cky = <dt\cky. 
j 

As special cases one obtains 

(5.19) trace M(ak,ai) = 8ik 

(5.20) trace M(ai) = I. 

The trace of a product of two measurement symbols is 

(5.21) trace [M(am, bj)M(ck, df)] = (bj\cky traceM{am,di) 

— (bj\cky (di\amy 
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and one has also 

(5.22) trace \M(ck, di)M(am, bj)\ = <<Zi|am> trace M(ck, bj) 

= <<zx><6ilc*>- 
Hence the trace of a product of two operators is independent of the order 

of multiplication, 

(5.23) trace (17) = trace (YX) 

even though the operators themselves do not commute. A special case 

of (5.21) is 

(5.24) trace [M (aj M{bk)] = <«*!&*>• 

The general multiplication law (5.5) of measurement symbols and the 

definition (5.17) of the trace are obviously invariant under the trans¬ 

formations 

(5.25) M(ak,bi) ^y-1(a*)if(a/t,6i)y(6i) 

<a*l hd ->y(a*X«*|6i)y H^i) 
where the numbers y(ak) and y(bi) can have arbitrary nonzero values. 

The quantities M{ai) and <(ai\ak> = 8ik are seen to be invariant, too. 

Contact with the statistical interpretation of quantum mechanics 

developed in the preceding sections can now be established most naturally 

by considei'ing the sequence of measurements M{bi)M{ak)M(bi) which 

differs from Af(hJ because of the disturbance produced by the measure¬ 

ment of A in the step M(ak). Only a fraction of the objects admitted in 

the first stage lf(6J is transmitted through the last stage M(b{) of the 
apparatus. In the equation 

M(bi)M{ak)M{bi) = p(ak, bt) M(bt) (5.26) 

the number 

(5.27) viflM = <a* I &i> <&!«*> 
is, in contrast to invariant under the transformation (5.25) and 
has the additive property 

(5.28) M(bi) [M(ak) + Jf (a,)] M(bt) = [p(ak, bt) +p(aJt &,)] M{bt) 

so that from 

(5.29) Mib^M^Mib,) = M(b,) 

follows 

(5.30) 2 !>(«*,&<) = 1. 
k 
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Thus p{ak,bi) is qualified to serve as the probability for observation of 

ak if the object is known to be in the state 6,:. Since a probability must 

be a real non-negative number, the numbers {ak\bf) will be subjected to 
the admissible restriction 

(5-3i) <&i| «*> = <flk\bi)* 

because then 

(5-32) P^kA) = |<o*|6|>|2 > 0. 

The condition (5.31) imposes on the numbers y{ak), y(b{) in (5.25) the 
restriction 

(5.33) y*{ak) = y_1(%); 

they must therefore be of the form 

(5.34) y(a>k) = 

with arbitrary real phases <f>(ak). 

From the definitions (5.16) and (5.17) of operator and trace follows an 
expression for the matrix elements of an operator, 

(5.35) <a*|X|6«> = trace \XM{bi} ak)]. 

Indeed, 

(5.36) trace [XM(bit ak)~\ = £ 2 iaJ[X\bf)^a^[M[am,bf)M{bitak)\ 
j m 

= SI O™ | X | bf) (b51 bf) trace M(am, ak) 
j m 

Z <®m|X|bt) (ak|amy — (a^X^f). 
m 

The expression for the average value of an operator X in the state 6i 

follows from (5.35) by specialization, 

(5.37) X = <6^X1^) = trac e[XJf(6i)]. 

The measurement symbol Mfbf) is thus recognized as being identical 

with the density matrix M(bi) introduced in the preceding section. The 

justification for denoting (5.37) as an average stems from the probability 

definition 

(5.38) Piak> = trace [M(ak) M(&<)] 

which allows one to write the average value of the observable A, namely 

(5.39) Abl = 2 akp{ak,bi) 
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in the form 

(5.40) Abl = 2 trace [akM(ak) M^)] = trace [AMfii)} 
k 

provided 

(5.41) 4 = 2atJf(flj). 
k 

In summary, the accompanying tabulation gives the alternative 

description of physically accessible quantities in the state vector and in 

the measurement symbol picture. 

State vector picture Measurement symbol picture 

{OrCi)* or I&*><«<! Mr,{bk,at) or M(bk, a<) 

(h)r(bk)t Mrs(bk) 
<ak\bty trace M{bit ak) 

<«*!«<> = 8 a trace M(auak) = Sik 

|<a*l&i>|2 = P(akAi) trace \M(b() M(ak)] = p(ak,bi) 

C^k\N\b^y trace [XM(bt, a*)] 

<bt |X|64> = X trace = X 

NOTE 

Sections 5 and 6 follow closely a development by Schwinger [1]. 
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•SECTION 6 

The Representation of Nonselective Measurements 

The measurement symbols M(ai) = M(ai,ai) considered in the preced¬ 

ing section involved an apparatus which, in addition to separating the 

ensemble of objects into subensembles belonging to various states ax, 

a2, ..selected one subensemble and rejected all others. 

It is, of course, possible to have an apparatus which performs a non¬ 

selective measurement by performing only the separation into sub¬ 

ensembles without the selecting stage. If the separation takes place with 

respect to the observable B, the corresponding measurement symbol will 

be denoted Mb and rendered graphically as in Fig. 6.1. To obtain a 

«■ 

<■ 
i>, 

b2 

<r 

<■ 

Fig. 6.1. Black box diagram representing the nonselective measurement symbol Mb. 

representation of Mb in terms of selective measurement symbols M(bk), 
consider an object and then subject it, in succession, first to a selective 

measurement M(bk,ci) and then to a selective measurement M(aj,bk) as 

<- 
aJ 

Fig. 6.2. Black box diagram representing the measurement M(aj,bk)M(bk,ci). 

rendered in Fig. 6.2. The probability that the object will exhibit the 

value bk of B and then the value aj of A is 

(6.1) p(aj} bh, fy) = p(aj,6*)p(6*,ci) = !<%!&*> <^h>|2 

= |<ai|if(6,)|c,)|2 
39 



40 Concepts in Quantum Mechanics 

where use has been made of (5.35) and (5.9), giving 

(6.2) <0,^(6*)|c<> = trace [Jlffa.o,) M(6*)] = <%|6*> trace M(ct, hk) 

= <aj|6*><6*|Ci>. 

Now suppose the intermediate measurement of B were not made at all, 

so that the intermediate measurement symbol in the matrix element 

(6.2) can be replaced by the identity operation I = 2M(bk), correspond- 
k 

<r 
Ci 

< 

Fig. 6.3. Black box diagram representing the measurement M(aj,ci). 

ing to the process rendered graphically in Fig. 6.3, then the correspond¬ 

ing probability is 

(6.3) p(aj,I,ci) = K^-IOI2 = |S <aj|i/(6A.)|ci>|2. 
k 

One has in this case of “coherent” B subensembles an addition of 

probability amplitudes, giving rise to “interference” effects, the terms 

“coherent” and “interference” being coined because of the profound 

analogy of (6.3) with the description of interfering coherent light rays 

for which there is an addition of amplitudes. 

On the other hand, if, in the intermediate stage, the ^-separation 

apparatus is turned on, but without the selecting stage, as rendered 

Fig. 6.4. Black box diagram representing measurement with intermediate B-separation 

apparatus turned on. 

graphically in Fig. 6.4, then the probability for finding ajf if ci is the 
initial state, is given by 

(6.4) p(aj, b, c^ = £ p(ai, bh, c{) - £ |<aj|lf(6fc)|ci>|2. 
k k 
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Thus, in this mixture of incoherent B subensembles one has an addition 

of probabilities themselves, the difference from (6.3) being the absence 

of interference terms between the different states bk, corresponding to 
the addition of intensities in the optical analog. 

The symbol associated with the nonselective B measurement may 
therefore be taken to be 

(6.5) Mb = v ei<Hh) M{bk) 

with randomly distributed phases bk), which express the uncontrollable 

nature of the disturbance produced by the nonselective measurement. 
The probability (6.4) accordingly takes a form similar to (6.1), 

(6.6) p(®j, b, cf) = |<ai|df6|ci>|2. 

Since the nonselective measurement does not reject objects, one must 
have 

(6.7) X p(Oj, b, ct) = X <C;\Mt |%><%\Mb\cf) = <c€|Jf£if6|c<> = 1 
i j 

which means that the operators Mb are unitary, 

(6.8) MtMb = MbMt = /. 

It should be noted that the selective measurement symbol M(bk) can be 

obtained from the nonselective symbol Mb according to (6.5) if all but 

one of the phases are replaced by positive infinite imaginary numbers, 

corresponding to an absorption of all but one of the subensembles 

produced by Mb. 

As an example, identify the states ci9 bk, and aj as follows. 

| cf) — (state with spin + 1 in direction z) = 

\bf) — (state with spin + 1 in direction #, cp) 

(6.9) 

cos ('&/2) 

^sin ($/2) ei(P 

, . , . . n. . n x /-sin(0/2) 
J bf) = (state with spin — 1 in direction §, cp) = I 

cos (#/2) 

I af) — (state with spin + 1 in direction x) 
7lC) 

so that the density matrices corresponding to the measurements of bk 

and b 2 are 
/cos2($/2) sin (#/2) cos (hi 2) e_icp) 

1 \sii 

(6-10) 

sin ($/2)cos (#/2)ei<p sin2(#/2) 

Mth \ - /sin2W2) — sin ($/2) cos (#/2) e~icp 
( 2) \ — sin ($/2) cos ($/2) eilf cos2(#/2) 
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satisfying obviously 

(6.11) Mib,) + M(i2) = Q “) = /. 

The matrix elements relevant to the probability (6.1) are then 

(6.12) <aj|Jf(61)|ci> = ^t|1_l(sin(^2)cos(#/2)e^) 

= (1/V2) cos (#/2) [cos (#/2) + sin (#/2) el,P] 

(6.13) <aj|Tf(62)|ci> = -^=1_i(-sin (0/2) cos (0/2)6*) 

= (l/\/2) sin (#/2) [sin(#/2) —cos(#/2)el!P]. 

Thus, if no measurement of spin in direction ft, 9 is made between the 

selective measurements of spin + 1 in direction z and in direction x, the 

probability is 

(6.14) p{aj,I,ci) = |<oJ|c4>|2 = | 2 Qij\M{hk)\c^Y‘ = 
* 

whereas turning on the separating magnetic field in direction ft, 9 

without selection in the intermediate stage results in 

(6.15) 

p{aj, b, cj = 2 |<aj|if(6i)|ci>|2 
k 

— ^cos2 {ft 12) (1 + sin ft cos 9) + |sin2 (ft/2) (1 — sin# cos 9) 

= |(1+sin#cos#cos 9). 

NOTE 

The reader’s attention is drawn to a most interesting paper by 

Albertson [1] in which a careful analysis of the measurement process 

itself is given, by consistently including the measuring instrument into 

the quantum mechanical description without assuming knowledge of the 
premeasurement state of the instrument. 

REFERENCE 
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SECTION 7 

The Fundamental Dynamical Postulate 

The aim of any dynamics is to predict the outcome of experiments. 

The dynamical equations describing any physical object should enable 

one to compute the outcome of a complete measurement at time t, if the 

outcome of this measurement at time t0 is known, and provided no other 

observations of the object are made in between the times t and t0 which 

may alter the initial state established by observation at time t0. 

All physical objects which can be grasped with the language of 

quantum mechanics to date seem to satisfy the following fundamental 
postulate. 

For any physical object there exists a hermitean operator H = H+ so 

that the expectation value of any observable A satisfies the equation 

(7.1) A = i(HA-AH) + (BAjdi) 

= i(b\HA~AH\by + (b\dA/dt\by 

= i trace [{HA — AH) M~\ + trace [{dA/dt) M]. 

This formulation is clearly invariant under unitary transformations. 

The operator H is called the Hamiltonian of the object, because in many 

cases it happens to be identical with the corresponding Hamiltonian in 

the classical description of the object, provided the canonical variables 

on which H depends are replaced by suitable operators. In fact, it was 

this correspondence with classical mechanics which first led to the 

discovery that postulate (7.1) constitutes a quantum mechanical 

description of the dynamics of some objects. 

It must be borne in mind, however, that there are many physical 

objects for which there exists no classical analog, and the construction 

of a suitable Hamiltonian is often the most difficult problem encountered 

when description of an actual physical object is attempted. The lack of 

an unambiguous recipe for finding the Hamiltonian of an object is one 

of the major shortcomings of contemporary quantum mechanics. 

The rate of change with time of the expectation value A of an observ¬ 

able A may be written, depending on whether A is given in the form 

A = (Jb\A\by or in the form A — trace {AM), either as 

(7.2) A = (b\A\by + <Jb\A\by + (Jb\A\by 
43 
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or as 

(7.3) A = trace (AM) + trace (AM). 

Now there are several ways in which one may picture the evolution of 

a physical object described by Eq. (7.1). The following three points of 

view or pictures which may be attached to the representation (7.2) are 

particularly useful. 

(I) The State Picture. Equation (7.1) is satisfied by assuming 

(7.4) As = BAJdt 

so that the evolution of the state is governed by the equation 

(7.5) i\b>s = H\b}s. 

This means in this state picture the state of the object at time t is defined 

by the outcome of a complete measurement on the object at that time. 

All observables are represented by the same operators for all times. 

Equation (7.5) is widely known under the name of Schroedinger’s 

equation. The state picture is accordingly often called the Schroedinger 

picture. It should be noted that with respect to time this equation con¬ 

tains the first derivative only. Depending on the precise form of H it 

resembles in some cases a diffusion equation with imaginary diffusion 

constant. 

(II) The Operator Picture. Equation (7.1) is satisfied by assuming 

(7.6) |6>0 = 0 

so that the evolution of the object is governed by the operator equation 

(7.7) iA0 = A0H-HA0 + i(dA0ldt). 

This means in this operator picture the state of the object is fixed as a 

vector defined by the outcome of all possible complete measurements on 

the object throughout its history. It is the representation of observables 

which now varies with time according to Eq. (7.7). This picture is widely 
known as the Heisenberg picture. 

One should be careful about the symbols used to denote differentiation 

with respect to time. It is always understood that A = d(A)jdt\ 
|6> = d\by/dt. Equation (7.7), governing the operator picture, should, 

strictly speaking, be written i(DA0IDt) = A0H - HA0 + i(dA0/dt) where 

DA0jDt stands for an operator which has the expectation value 

(DA0/Dt) = d(A)ldt. For the Hamiltonian itself one has thus quite 

generally DH\Dt = dH/dt. Use of the symbol d/dt for differentiation with 

respect to time may lead to misunderstandings, because |6> depends in 
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general on other variables, e.g. the position q of the object, which may 

also be a function of time, and in (7.5) and (7.6) the differentiation 1 

does not include differentiation with respect to the implicit time depen¬ 
dence of | b} via the dependence on q(t), say. 

(Ill) The Interaction Picture. If the Hamiltonian of the object can be 

meaningfully split into a “free” Hamiltonian H°, which is time inde¬ 

pendent, and an “interaction” Hamiltonian H', which may depend on 
time, 

(7.8) H = H° + H' 

then it is sometimes convenient to satisfy Eq. (7.1) by assuming 

(7.9) iAj = AIH°-H°AI + i{dAIldt) 

so that 

(7.10) i\b>j = H’lbh. 

This means in this interaction picture the evolution of the state is 

determined by the interaction Hamiltonian alone, provided the operators 

representing observables are made to change with time according to 

Eq. (7.9) which is governed entirely by the free Hamiltonian. 

The choice of picture employed in the solution of any problem is 

dictated solely by convenience. The invariance of the fundamental 

dynamical postulate under changes in picture must correspond to the 

invariance of (7.1) under certain unitary transformations which connect 

the state vectors |6)s, |&>0, |&>/ and the operators As, A0, Ar of the 

various pictures which describe the same physical situation. 

As a first example consider the unitary transformation connecting the 

state picture with the operator picture, 

(7.11) |5>s = C7|&>0; As = UA0U+] UU+=U+U = I. 

Since |6)0 is, according to Eq. (7.6), constant in time, it follows that 

(7.12) \b)s = ZJ\b-)0. 

On the other hand, Eq. (7.5) yields 

(7.13) \b}s = -iH\b)s = -iHU\b)0 

and one obtains for the transformation operator U the equation 

(7.14) W = HU 

and by a similar argument applied to the inverse transformation 

U~l = U+ 
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(7.15) -i(J+ = U+ H. 

If H is given and does not contain the time explicitly, then Eq. (7.14) can 

be solved formally immediately, to yield 

(7.16) U(t) = e-imU( 0). 

If one adopts the initial condition U(0) = I, so that |6(0))g = |6)0, one 

may write the first Eq. (7.11) 

(7.17) |6(<)>. = e^m\b{0)\ 

meaning the Hamiltonian is the generator of a unitary transformation 

which develops, in the state picture, the state vector in time. This is the 

quantum mechanical analog of the well-known result of classical 

mechanics, where the Hamiltonian is the generator of a canonical 

transformation which develops the system motion in phase space. The 

second equation (7.11) may now be written, because of the initial 

condition H0(0) = As for the case of operators which do not contain the 

time t explicitly, 

(7.18) A0(t) = eiH(Ho(0)e~iffi 

and the Hamiltonian is thus also recognized as the generator of a unitary 

transformation which develops, in the operator picture, the operators in 

time. One can thus, in the Schroedinger picture, jegard the state vectors 

as rotating and the operators with their eigenvectors as standing still, 

and, in the Heisenberg picture, regard the state vectors as standing still 

and the operators with their eigenvectors as rotating, the sense of 

rotation in the abstract space being opposite in the two cases. 

If |6(0)>, is an eigenfunction of H with eigenvalue o», then 

|fe(0>. = e-** I&(<>)>.• 

Knowledge of the solution of the eigenvalue problem 

(7.19) H\b) = co|6> 

is therefore, in principle, of importance. Unfortunately, the number of 

cases for which the eigenstates and eigenvalues of the Hamiltonian are 

known are very limited. The process of finding these solutions has often 

the character of a mathematical stunt. 

The central mathematical problem remains the solution of the system 

of Eqs. (7.14). The main concern will be with 

(a) those cases that can be solved easily for given H, 
(b) the ramifications of those cases that cannot be solved in closed 

form for given H, and 

(c) attempts at guessing solutions in cases for which at most some 
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general symmetry properties of an otherwise unknown Hamiltonian are 
known. 

As a very simple example consider the dynamics of a spin s, connected 

with the magnetic moment p. = (e/m) s of the electron, in a constant 

external field B. The Hamiltonian giving the correct quantum mechanical 

description of this object is simply the interaction energy 

(7.20) H = — (p.B) = — (e/2m)(aB) 

written in terms of the spin operator a introduced in Section 2, the 

components of B being treated as given parameters. 

Working in a coordinate system in which B has a z component only, 

and taking as basic state vectors the eigenvectors of cr3, the fundamental 

equation in the state picture (7.5) reads explicitly 

(7.21) 

= -(e/2m)53CT3^ = - (e/2m)J33^ ; 

and has the solution 

(7.22) a (t) = a( 0(f) = 0(0) 

with the characteristic frequency 

(7.23) o>x = (e£3/2m) 

so that in terms of the polar angles in accordance with (2.41) 

(7.24) (0/a) = [0(O)/a(O)]e~2iaJi‘ = tan [#(0)/2] exp i[cp(0) - 2coxf]. 

This means the expectation value of the spin which at time t = 0 points 

in direction #(0), cp(0) precesses around the direction of the external field 

with frequency 2a>L. 
In the operator picture the same situation is described by the funda¬ 

mental equation (7.7) which reads in this example for each component 

of the spin, using (2.46), 

idi - olH — Hol = —a^(oq cr3 — cr3oq) = 2icojJoz 

(7.25) ia2 = g2H — Ho2 = — a>L(a2os — osa2) = —2itoLo1 

ia-s = gsH-Ho3 = 0 

being a special case of the general equation 

(7.26) a = 2(coLxa) 

which again means the expectation value of the observable a precesses 

around the direction of the external field B with angular velocity 

2ujl - (elm) B. This can be verified, by explicit solution, as follows. 

a = cos ($/2) 

0 = sin (0/2) ei(P 
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The special case (7.25) has, according to (7.18), the solution 

<jx(t) = e-ia,*a>t(T1(0)e+ia)La’t 

a2(t) = e-i“)I-a°to2{0)e+iWLO>t 

G,A(t) = e-i(UL°^a3{ 0)e+i“£ff*t = ct3(0). 

(7.27) 

(7.28) 

(7.29) 

Equation (7.29) allows one to replace in the exponents of (7.27) and (7.28) 

the operator a3 by the constant operator cr3(0), and one has the expan¬ 

sions, with the notation [AB] = AB — BA, 

(7.27') oq(£) = CTi(O) - (itaL t)lU[a3 oq]^ + (itoL 02/2![(t3[ct3 

- 03/3![ct3[ct3[ct3 cr1]]l=0 + • • • 

(7.28') o2(t) = o2(0)-(icoLt)/U[(j3o2]t=0 + {iajLt)2l2'.[os[o3o2]\t=0 

- (^i^)3/3![o-3[o-3[CT3cr2]]]i=0 + .... 

The C.R.s yield 

(7.30) 

[ctscti] = 2ia2; [cr3[cr3 cri]] = -(2 i)2 ax; [cr3[a3[a3 oq]]] = 

= — (2i)3 o2 

(7.31) 

[or3a2] = -2 iox\ [o-3[cr3 cr2]] = -(2i)2cr2; [o-3[o-3[ct3ct2]]] 

so that finally 

(7.27") 

oi(t) = u1(0){l - [(2coLt)2/2l] + . . .} + a2(0){(2ca£0 - [(2coxi)3/3!] +...} 

= oq(0) cos (20^) + ct2(0) sin (2a>£ £) 

(7.28") 

a2(t) = a2(0){l — [(2cu£i)2/2!] + . ..} — a1(0){(2cai t) — [(2ojl t)3/3\] + . ..} 

= cr2(0) cos (2ol)L t) — oq(0) sin {2a>L t). 

The unitary operator connecting state picture and operator picture is 

(7.32) U(t) = exp [ito{La-n)t]I; n = B/|B| 

which by expansion and utilization of the C.R.s can be written 

(7.33) U(t) = cos(<jjLt) + i(a-n)sin(a>Lt) 

and represents a rotation by angle 2a>Lt around n, in accordance with the 

remark made at the end of Section 3. This will be taken up in a more 
general context in Section 12. 
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It is instructive to write the development of an object in time in 

terms of the density matrix representation (7.3). From this and the 

fundamental dynamical postulate (7.1) follows the identity 

(7.34) 

trace {AM) + trace (AM) = i trace [{HA -AH) M] + trace [(dA/dt) M]. 

In the state picture the condition (7.4) leads immediately to 

(7.35) 

trace (^4S Ms) = itrace [(HAS — AsH) Ms] = i trace [AS(MSH -HMS)] 

which is satisfied provided 

(7.36) Ms = i(MsH-HMs). 

It must be stressed that Ms is a substitute for the state vector and does, 

therefore, depend explicitly on time, as does |6)s, in the state picture. 

The symbol denoting differentiation with respect to time of the density 

matrix means, as in case of the same symbol for the corresponding state 

vector, the partial derivative 

(7.37) Ms = dMJdt 

and one can thus write (7.36) in formal analogy to the concept of total 

differentiation 

(7.38) DMJDt = i{HMs-MsH) + {dMs/dt) = 0 

which is the quantum mechanical analog of Liouville’s theorem in 

classical mechanics. This equation can be verified explicitly for a pure 

state by using the Schroedinger equation. If the decomposition 

(7.39) (M)ik = (6)i( b)t 

is adopted, one obtains by partial differentiation with respect to time, 

using (7.5) 

(7.40) (M)ik = mb)t + (b)M = -i ? {#</(&)#)* - {b)i(b)f Hjk} 

= —i(HM — MH)ik 

which is identical with (7.36) in components. 
The transition to the operator picture is effected by satisfying (7.34) 

with (7.7), requiring 

(7.41) = 0. 

This can be verified directly by applying to (7.39) the unitary trans¬ 

formation connecting Ms{t) with Ms(0). From (7.17) follows 

(7.42) Ms(t) = \b{t)}s(b{t)\s = e-im\b(0)}s(b{0)\seim = e~imMs{0) eim. 
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Now, Ms{0) can be identified with the constant density matrix in the 

operator picture, Ms(0) = M0, because if an operator As is transformed 

into A0 by 

(7.43) AS=UA0U+ 

then the invariance of 

(7.44) A = trace (ASMS) = trace {UA0 U+Ms) 

- trace (A0 U+Ms U) = trace {A^Mq) 

requires M to transform accordingly, 

(7.45) M0 = U+MSU 

which is Eq. (7.42) with U(t) = e~lHtl. 
It is interesting to note that if the eigenvectors of H, 

(7.46) #K> - ^ilO (say) 

form a complete set and can thus be used as a basis, then the matrix 

elements of (7.42) take the form 

(7.47) <a*|Jf(<)|ofc> = Mik(t) = Mik(0) ei{o}t~Wi)t 

so that only energy differences, but no unobservable absolute energies, 

appear. 

Writing for the special example of the spin magnetic moment in a 

fixed external field the density matrix as in (4.30) 

(7.48) Mt = *[/ + ( Pa)], 

where now P(<) is the time dependent polarization vector characterizing 

the spin, then the fundamental equation (7.38) reads, with 

H = — (e/2m) (aB), 

(7.49) — (ie/2m) [(aB) (Pa) — (Pa) (aB)] + (dVjdt)-a = 0. 

Now, by virtue of the C.R.s of the matrices ai one has 

(7.50) (aB) (Pa) - (Pa) (aB) = 2i[a • (B x P)] 

so that (7.49) can be written 

(7.51) ' [(dP/dt) + (e/m) (B x P)] ■ a = 0 

which requires as necessary condition the classical equation 

(7.52) (df/dt) = — (e/m) (B x P) 

describing again the precession of the polarization vector around the 

applied field with frequency 2toL — (e/m)B. 
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The visualization of a spin by means of a precessing polarization 

vector is thus by all means permissible and does not lead to contradic¬ 

tions with the probability aspect of the Stern-Gerlach experiment. 

As an example to which the interaction picture may, be applied, 

consider a spin magnetic moment (Jt = ys subject to the external field 

(7.53) B = Bq + B! = i?0k + i?1[icos(coG— jsin(a>£)] 

corresponding to a fixed field B0 in z direction and a field Bx rotating 

clockwise with angular velocity 

(7.54) u> = — cok 

in the (x,y) plane. The Hamiltonian can be written 

(7.55) H = —y(sB) = —y(sB0) — y^B^ = + 

In the interaction picture, the equations governing the operators are 

therefore identical with (7.27), (7.28), and (7.29) and one has for the spin 

operators the representations 

Gl(t) = CT1(0)cos(aj00 + CT2(0)sin(a»0G 

(7.56) o2(t) = -cr1(0)sin(co0G + cr2(0)cos(Ct>oO 

0-3(0 = ct3(°) 

and the state vector in this picture is governed by the equation 

i\b}T = H'\b>j = -(y/2)(aB1)|6>/ 

= — (a^/2) [px{t) cos (cot) — a2(0 sin (co0]|&>/ 

^?'57^ = — (c*ji./2) {ct1(0)cos[(oj0-w)0 

+ ct2(0) sin [(ai0 - oj) f]}|&>/; 

a»x = yB 1; 

which reads in components 

(0 —% 

(Or = 2a) j yB 0 

16); 1,1 = (i o); a2 = (i 0) 

(7.57') 
fd = {ioj 2) ft 

Ij8 = (iaj1l2)e-H(w°-oj)toc. 

By differentiation of the first of these equations, and substitution of $ 

from the second, one eliminates /? and obtains 

(7.58) — oc — i(co0 — to) a — (a^/2)2 a - 0 

which may be solved by 

(7.59) oc(t) = a(0 ) e«Q'2)t 

provided 

(7.60) Q2 + 2(ixj0-u>)Q-u>\ = 0 
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giving rise to two solutions 

(7.61) Qx = -(co0-co) + VioJo-co^ + ojl; 

f22 = — (a>o — to) — (cu0 — a>)2 + (of 

so that the general solution of (7.58) reads 

(7.62) a (t) = ai(0)e^'/2)t + a2(0)ei(^/2)< 

from which one obtains then 

(7.63) 

fi(t) = (2lico1)ei(w°~cu)t d = oc1{0)(Q1/aj1)e-i(-Qj2‘)t + <x2(0)(Q2laji)e~l('i2ll2)t- 

Now suppose at time t = 0 the spin has with certainty the value + 1 

in 2 direction, i.e. |6(0)> = |6+) = (J), then 

(7.64) 

a(0) = a1(0) + a2(0) = 1; j8(0) = ai(0) (fli/aij) + a2(0) (X22/aq) = 0 

giving the initial values 

(7.65) ai(0) = QzKQZ-Qi); a2(0) - 2). 

One can now calculate the probability for “spin flip,” i.e. the probability 

for finding at time t the state |6_) = (J) in which the spin has the value 

— 1 in z direction, namely, 

(7.66) Pmp = |<MW>|2 = Cd(is)l2 = IW)|2' 

By substitution of (7.65) into (7.63) one obtains thus, using QXQ2 

and — Q2 = 2 V(o>0 ~ a))2 + wi> 

(7.67) 

— CO 
2 
1 

The amplitude of the spin flip probability shows thus a resonance at 

co = co0, which can be exploited to measure o>0 and thus y. 

By an argument similar to that leading from (7.34) to (7.36), the 

density matrix in the interaction picture is found to satisfy the equation 

(7.68) iff, = i(Mj H' — H’ MT) 

from which one obtains by straightforward computation after sub¬ 
stitution of Mz — \\I + (Pcq)] 
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Py — —COq P2 CO y P$ S\\\ (cot} 

(7.69) Pi — +co0Py — coyPscos(cot) 

P3 = — oqPiSin (o/£)+o»1P2COS (cat). 

These equations are, of course, identical with (7.52) if B is given by (7.53). 

Their solution proceeds without difficulty. Differentiating P3 twice with 

respect to t and using the expressions for Py and P2 one obtains 

(7.70) P3 = —w2P3 with w = V{co0 —co)2 + co'f 

and thus the solution 

(7.71) Ps(t) = Aeiwt + Be~iwt + C 

in which the integration constants A, B, C are to be determined from the 

initial conditions, which in the example treated above are 

(7.72) P8(0)=1; Px(0) = P2(0) = 0 

leading immediately to 

(7.73) A = B — o>f/2w2; C = (co0-co)2lw2 

and the solution (7.71) reads in this case 

(7.74) P3(f) -- (l/w2) [co2 COS (cot)+ (co0-co)2]. 

To obtain Pflip by this method, one need not calculate Py(t) and P2(t). 

The density matrix is generally 

(7.75) M(t)=+(op*]=rj: 
and the probability for finding the spin in any given direction cp is 

P& = trace \M(ft, cp)M(t)\. For spin - 1 in z direction one has 

M(&,cp) = M (6_) = (8?), 

and therefore 

(7-76) Pflip \ trace r/° 0\ / 1 +P3 Py-iP 

AO 1 / \P y+iP2 1-P. 
1-(1 -P.) 

= (coyIw2) sin2 (wt12) 

in agreement with (7.67). 
The connection among interaction picture, state picture, and operator 

picture is established by unitary operators defined by 

|»>. = y\b>, |6>/ = w\by„ 

<7'77) VV+ = V+V = I; WW+=W+W = I 

so that 
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(7.78) |b>s = VW\b)0 i.e. |6>g = U\b}0 with U = VW. 

Since one has 

(7.79) |6>s - F|6>/ = (V-iVH')|&>7; \b>z = W\b>0 

and also 

(7.80) 

\b}s = -iH\b\ = -iHV\b>j-, |6>j = -iH'\b)j = -iH'W\b>0 

it follows that V and W must satisfy the operator equations 

(7.81) V = i{VH’-HV); W=-iH'W. 

This is consistent with (7.78) because 

(7.82) 

V = VW+VW = i(VH' — HV) W — iVH' W - —iHVW = -iHU 

is identical with Eq. (7.14). 

Explicit solutions can be found for V and W, for the case of spin 

magnetic resonance treated above, without difficulty. 

NOTES 

The state picture and the operator picture of quantum mechanical 

dynamics emerged in famous papers by Schroedinger, beginning with a 

short note [1] and collected in book form [2], and by Heisenberg [3], 

followed by papers in collaboration with Born and Jordan, whose 

book [4] is entirely devoted to development of the state picture. The 

unitary transformation connecting the two pictures was first given by 

Schroedinger [5], 

The interaction picture, although it is implicit in many earlier works, 

did come into its own right through development by Tomonaga [6], 

Rabi [7] first gave the exact solution of the magnetic resonance 

problem for the case of a spin 
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-SECTION 8 

The Representation of Observables with Nondenumerably 

and Denumerably Infinite Ranges of Possible Values 

To grasp attributes capable of a nondenumerably infinite or con¬ 

tinuous range of possible values it is desirable to have a description which 

is formally identical with the one developed for discrete quantum 

numbers in Sections 1 and 2. Thus a state depending on a continuous 

attribute q will be denoted | q} and will be represented by a complex unit 

vector in an abstract space (“Hilbert space”) of nondenumerably 

infinite dimensions. Formally, one may thus expect |q} to be an eigen¬ 

vector of a suitably defined operator Q with eigenvalue q in analogy to 

the vector |cq> in a finite dimensional space, which is an eigenvector to 

the operator A with eigenvalue The correspondence 

(8.1) A\af) = ai|cq> <-+<2|?> = q\q> 

can be extended to all operations defined for the vector | af) in Sections 

1 and 2, provided one can formally introduce in the Hilbert space the 

notion of orthogonality by the correspondence 

(8.2) <«iK> = kk^WYi"') = %'-?") 

and the notion of closure by the correspondence 

(8.3) 2 k><«i| = *<-> f \q}dq<q\ = I 
i J 

where 8(q) is the well-known delta function (see Appendix 6) and / the 

identity operation. 
In particular, one can expand the eigenvector | p) of another con¬ 

tinuous attribute P in terms of |g> by the correspondence 

(8.4a) |&*> = 2 K><k|bk>^\P> = J W>dq"(q"\p> 

and similarly 

(8.4b) (Cj| = 2 <c,-|0 <X| ^<r\ = f <j\q'ydq\q'\. 
i •’ 

The transformation functions (q'\p} are frequently called “wave 

functions” or simply “ f functions” and denoted 
55 
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(8-5) P{q') = W\p>- 

Referring to the representation spanned by the eigenvectors of Q as the 

q representation, one can say ipp{q') is the component of the vector \p)> in 

“direction” q' in the q representation. Knowing all these components 

ifjp(q') is thus tantamount to knowing the vector \p~}, the components 

ijjp(q') represent |p} in the q representation. 

The scalar product of two vectors |p> and |r> can now be evaluated 

in q representation in terms of their ip functions as follows: 

<r|j>> = |J <r\q'ydq\q'\q‘)dq\q"\Py 

= Jj <r\q'>dq'S(q'-q")dq\q'\p) 

(8.6) = j (r\g')dq\q’\py = j <{,?(q')if,r(q')dq’ 

so that, in particular, the orthogonality of two states reads 

(8.7) <j>V> = J «-(«') Mi'W = 8(P'-P’). 

In q representation, the operator Q can be thought of as an infinite- 

dimensional diagonal matrix, because its matrix elements are definable 

by the correspondence 

(8.8) 

<ak\A\ai> = <q"\QW> = = q'&iq'-q")- 

The effect of any operator f(Q) on an arbitrary state, |p> say, with 

components ipp{q') in q representation is accordingly given by 

(8.9) /(<2)b> = j fmi">dq\q"\p} = J \q’)dq-f(q')fr(q-) 

so that 

(8.10) <r|/(«)b> = J W)f(i')Ul")dq’- 

In particular, the operator P = —i(d/dQ) has in q representation the 
matrix elements 

(8.11) W\P\q'> = -*(3/3s')8(?'-<n 

so that in terms of ^-functions 

(8.12) <r|P|p> = f ^(qll-id^(q")/dq"]dq"- 

It is, on first sight, rather suprising that one can pass from a represen¬ 

tation spanned by the eigenvectors of a continuous operator, | q) say, 
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to a representation spanned by the denumerably infinite set of eigen¬ 
vectors of a discrete operator, | Ef) say, where 

(8.13) H\Ef) = ai = 1, 2,..., ad infinitum 

so that 

(8.14) |i®,> = J 

and 

(8.16) l«'> = 2 |®(> <«(!?'> 
i 

which requires the f functions to be subject to the unitarity conditions 

(8.16) 

<W> = J = J = iu 

(8.17) 

<?'!?') = 2 O'lEi)<«,|3'> = 2fc,(s")«,(3') = S(«"-S'). 
I l 

The possibility of the transition from the E representation to the q 

representation and vice versa is thus dependent on the existence of f 

functions satisfying (8.16) and (8.17). Such existence problems can 

always be settled if one succeeds in actually constructing such f func¬ 

tions. This will be done for some special cases in the next section. 

The measurement symbol M(p,r) corresponding to the graph 

V r 

can also be expressed in terms of the f functions according to (8.4) as 

(8.18) M{p,r) = |p> (r\ = JJ* \q"ydq"ifjp{q")f?(q')dq\q'\ 

and its matrix elements in q representation are found to be 

(8.19) 

(q'"\M(p,r)\qy = JJ %'-?') 

= Ml"') Mi)- 
The density matrix for a state |p>, in particular has the form 

(8.20) <q'\^(p)k> = iW)iA*(?) 

and is seen to have trace unity if the f functions are normalized. 
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NOTE 

Readers plagued by mathematical scruples regarding the concept of 

Hilbert space will find solace and comfort in Chapter II of the monu¬ 

mental work by von Neumann [1], 

REFERENCE 

[1] J. von Neumann, “Mathematical Foundations of Quantum Mechanics.” 

Princeton Univ. Press, Princeton, New Jersey, 1955. 



SECTION 9 

Displacements of the Observer 

Any actual observation of a physical object is always made in a certain 

coordinate system. To be precise when describing the state of the object 

one should thus, in principle, always include information about the 

position of the observer. Any state 16) must therefore contain, in addition 

to all the variables attributable to the object, such as spin s, momentum p, 

etc., the coordinates of the observer, xi say, and can be considered in fact 
a function |s,p,.. 

When describing a single object it will now be assumed tentatively 

that one can meaningfully define an operator Q which represents the 

location of the object such that one can represent the state vector in 

terms of the eigenvectors of Q, denoted |q>, satisfying Q|q> = q| q). 

Postponing questions of how to actually determine experimentally 

the components of the state in this “coordinate representation,” occa¬ 

sioned by the continuous range of possible values q of the location Q, 

making |q,...) necessarily an infinite-dimensional vector, the position 

variables q will now, by convention, be chosen to originate at the position 

of the observer, so that |q,...) describes the state of the object as seen 

by an observer (0) located at q = 0. It must be stressed, however, that 

the possibility of ascribing a fixed position to the observer should be 

considered as a tentative hypothesis, pending investigation of whether 

this hypothesis is compatible with the various tasks of measurement 

assigned to the observer. 
Disregarding then, for the time being, these profound questions regard¬ 

ing actual position measurements, it will now be attempted to describe 

the same object in terms of the state used by an observer (1) who is 

displaced with respect to (0). If, in particular, the origin of (1) is displaced 

from the origin of (0) by a vector a pointing from (1) to (0), as indicated 

in Fig. 9.1, then (1) will describe the object in terms of a state 

(9.1) |q>T = |q + a>. 

From the requirement that the physical attributes of the object be 

invariant under displacements of the observer, one can infer the 

existence of a unitary operator Ta of displacement, defined by 

(9.2) |q + a> = Pa|q>. 
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(X) 0l,ject 

Fig. 9.1. Description of the position of an object (X) as seen by an observer (1) dis¬ 

placed by a with respect to an observer (0). 

In this coordinate representation one can apply to each component the 

expansion 

(9.3) |q + a) = [7 + (a. 3/3Q) + (*!) (a. 3/5Q)2 + .. .]|q>. 

Introducing an operator 

(9.4) P = —i(d/d Q) 

one can write formally 

(9.5) Ta - [I + f(aP) + (i2/2!) (aP)2 +...] = ei(aP). 

The inverse transformation is similarly given by 

(9.6) Ta1 = e_i(aP). 

The unitarity of 7'a, T~l = Ta requires then that P be a hermitean 

o jierator. 

To elucidate the physical meaning of the operator P consider the 

special case in which the displacement vector a is a linear function of 

time, 

(9.7) a = \t. 

One envisages the observers (0) and (1) moving relative to each other 

with constant velocity V. The transformation operator Ta is now a 

function of time, and represents the Galileo transformation. 

Whenever in the equation 

(9.8) | by = T\b> 

the operator T depends on time one must distinguish carefully between 

(i) (dldt)(\byT) which tells how observer (1) finds his state description 

of the object varies with time, and 
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(ii) (d\b}/dt)T which tells how observer (1) finds observer (0)’s state 
description of the same object varies with time. 

Since |6) satisfies, in the state picture, the equation 

(9.9) id\by/dt = H\b> 

one obtains by application of T from the left 

(9.10) i{d\byjdt)T = HT\b>T with HT = THT~\ 

On the other hand, differentiating (9.8) with respect to time and using 
(9.9) one finds 

(9.11) 

i(d/dt)(\byT) = iT(d\byidt)+if\by = (HT+iTT~1)\byT. 

This means the effective Hamiltonian of observer (1), namely the Hamil¬ 

tonian which determines the development of observer (l)’s state |6)T in 

time, according to the fundamental dynamical postulate, is given by 

(9.12) HeS = HT + iTT~\ 

For the special case of the Galileo transformation (9.7) one obtains 
from (9.5) 

(9.13) HeS = iF-(VP). 

Now in classical mechanics the Hamiltonian of a free particle of 

momentum p and mass m is 

(9.14) H = (^ra)p2 

and the effective Hamiltonian after a Galileo transformation is 

(9.15) Heff = (im)p2-(Vp) 

giving rise to the correct addition of velocities. 

This correspondence suggests the identification of the operator P with 

the operator representing the momentum of the object. From this identi¬ 

fication, it follows immediately that the position and momentum of an 

object are incompatible observables, because for each component Pj, Qk 

one finds 

(9.16) PjQ.-Q.Pj = -ilhjk. 

It is instructive to work out the transformation formula for the position 

operator as a consequence of this commutation relation. By expansion 

one has, for each component, 

(9.17) 

QT = TgQT-1 = e™pQe-™p = Q + ia[PQ] + (i2l2\)a2[P[PQ]] + ... 

= Q + a — Q + Vt 
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as expected. Differentiation of (9.17) with respect to time gives 

(9.18) 

dQT/dt = Ta(dQ/dt)Ta 1 +Ta QT~l +Ta QT~l = (dQ/dtf + iV(PQT-QTP) 

= (dQ/dt)T+V 

as expected, because (dQ/dt)T tells how the observer (1) would find 

observer (0)’s position of the object vary with time, and Eq. (9.18) is just 

the “addition theorem of velocities” in accordance with the invariance 

under Galileo transformations. 

Considering now, as an example, the Hamiltonian (9.14) of a “free” 

object which possesses momentum as an attribute, the state of the object 

satisfies, in the state picture and in coordinate representation, the equa¬ 
tion 

(9.19) t(d/dO|q(<)> = (|m) P2|q(*)> = - (\m) (5/aQ)2|q(t)>. 

The state vector |q(#)> is thus obviously not an eigenstate of H. Denoting 

the eigenstate of H with eigenvalue u>i by \Ei), satisfying 

(9.20) H\EQ = c0,1^) 

and writing in accordance with (7.17) 

(9.21) |q(0> = e“ii?<|q(0)> 

one can, upon expansion of \Ei} in terms of |q(0)>, introducing the 
time-independent ift function i/»£.(q) = <q(0)|J2ri> by 

(8-22) |«(> = / |q'(0))iqVK(q'), 

cast the eigenvalue problem (9.20), upon application of (8.9), in the form 

(9.23) H\E,} = J |q'(0)>iq'(-im)(a2fe(/3q'2) 

= “if |q'(0)><Jq'fe,(q'). 

The linear independence of the components |q'(0)> requires then that 

the ip function characterizing the state \EQ in q representation satisfy 
the eigenvalue equation 

(9-24) (-|m)d2</r£.(q)/aq2 = co<^4( q). 

It is often convenient to expand |q(*)> directly, with the help of a 
time-dependent ip function y7 

(9.25) 

|q«)> = 2 |^><^|q(0> = 2 I«,>n<q.<) = «■"' 2 mn,(q) 
1 i i 

= 2 \Ep) e~io>it tpEifa) 
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so that the time-dependent f function and time-independent f function 
are related by 

(9.26) WE.{ q,«) = eiu)it ifjE.{ef). 

Equation (9.24) has obviously the solution 

(9.27) f/»£,(q) = const e_l<kiq) 

provided lq and a>i are connected by the relation 

(9.28) t= (k2i/2m). 

In this description there is thus associated with an object of energy E 

and momentum p a characteristic frequency a> and a characteristic 
length |k|_1 

(9.29) a) = E; k = p 

which determine the probability amplitude for finding the object at 

time t at position q, if it is known to have energy E and momentum p 

(energy E and momentum p being compatible, because HV — PH = 0 in 

this case), namely 

(9.30) (q(t)\E} — WE(({,t) = const et[cof_(k<l)] 

where the constant has to be determined by the normalization of the 

probability. 

In the operator picture, the development of the object described by 

the Hamiltonian (9.14) is given by the operator equations, using (9.16), 

\Pk = i(HP k—P kH) = 0 
(9.31) 

[Qj = i{HQj-QjH) = (i/2m) (P2Qj-QjP2) = Pj/m 

so that the expectation values of the momentum and coordinates of a 

free object satisfy the classical relationships 

(9.32) P = 0; P = mQ 

This correspondence to classical mechanics is ultimately the justification 

for considering the Hamiltonian (9.14) as the “correct” Hamiltonian 

to be inserted in the fundamental dynamical postulate of quantum 

mechanics for a free object. 

NOTES 

The historical event which marks the advent of quantum mechanics 

was publication of a paper by de Broglie [1], who first noticed that by 
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association of a frequency o» and a length |&|_1 with energy and momen¬ 

tum of a particle, one can describe its propagation in a language devised 

originally to describe the propagation of a signal 

+ 00 _ 

f(q,t) = J exp [i(a»t — kq)]f(k)dk\ a> = Vni^ + Ic2, 
— CO 

made up out of superposition of ifj functions. 

Since the phase velocity of the ifj function, V (phase) = cojk, is obviously 

larger than the speed of light, as long as m 4= 0, one cannot identify 

propagation of the ifj function with the motion of some observable 

material, and the probability interpretation of ifj is, indeed, widely 

accepted today. 

However, a temptation presents itself: The ijj functions making up 

the signal f{q,t) are by analogy with interference patterns observed, for 

example, on the surface of liquids suggestive of some underlying medium 

or “ether.” Such is the human urge to hang on to the familiar that a 

number of distinguished physicists, de Broglie among them, have 

plunged into elaborate, often desperate, efforts to reconstruct from the 

observable features of matter the hydrodynamics, as it were, of that 

hypothetical, not directly observable, ether which is envisaged as the 

stage below the so-called elementary particles in the hierarchy of nature. 

From a strictly operational point of view all such attempts have thus 

far proven to be sterile, because they have not led to a single experiment 

which could be used as a crucial test. A comprehensive list of references 

to this approach is contained in the work of Takabayasi [2]. 

The proof that expectation values of momentum and coordinate of 

single objects satisfy the classical relationships was given by Ehrenfest 
[3]. 
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♦SECTION 10 

Uncertainties and the Relations between Them 

A concept basic for any theory of measurement is the uncertainty A A 
in the experimentally realizable knowledge of an observable A if the 

object is in a given state |6>. Define A A as the root of the mean square 

deviation from the expectation value 

(10.1) (AA)2 = {A-A)2 = A*-(A)2. 

Introducing the notation “norm of |5>” 

(10.2) ll&ll = VW> 
one may write, using the hermitean property of A, 

(10.3) (AA)2 = [A-<6|A|&>]* = (b\[A - <6|A|6>]2|&> 

= <[^-<6M|6>](,|[4-<6|4|6>]6> 

= ||M-<6|^|6>]6||2. 

The following fundamental theorem holds. 

If the operators P and Q representing two observables satisfy the 

relation 

(10.4) PQ-QP = -il 

then 

(10.5) APAQ > i 

The inequality (10.5) is called an uncertainty relation. 

To prove it introduce the abbreviations 

(10.6) P = P-P = P —<&|P|6>; Q = Q-Q = Q-<b\Q\b}, 

notice that again 

(10.7) PQ-QP = -il 

and because of (10.3) 

(10.8) APAQ = H^&ll -||^||. 
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Now apply to the right-hand side of (10.8) the well-known inequality 

(10.9) IMNH > |<>|v>|, 

in which the equality sign holds only if |u) and \v) differ at most by a 

constant complex factor, and which is the generalization of the simple 

geometrical fact that the projection of two vectors on each other is never 

larger than the product of their lengths. One obtains 

(10.10) APAQ ^ \(Pb\Qb}\ 

and therefore also 

(10.11) APAQ ^ Im (Pb\Qby. 

By employing the identity Im (a + f/3) = — (i/2) [(a + i/3) — (a — i/3)], using 

(u\v)* — (v\u), and supposing |6) to be normalized, one finds 

(10.12) 

APAQ > — (i/2) ((Pb\Qb) — (JQb\Pb')) = - (i/2) ((QPb\b> - <PQb\b» 

= ±(i(PQ-QP)b\by 

= m2 = * 

which completes the proof. It follows further from this derivation that 

the product of the two uncertainties will be a minimum if the state | &> 

satisfies the condition 

(10.13) P\b} = iyQ\by', y real and > 0. 

Such states are called optimum states. 

One finds, sometimes, statements to the effect that all pairs of 

canonical variables in classical mechanics are represented in quantum 

mechanics by operators satisfying (10.4) and are therefore subject to 

uncertainty relations (10.5). Such statements must be approached with 

caution, because the uncertainty relation (10.5) refers to simultaneous 

measurement of two observables, the object being in a single state |6). 

They may, therefore, possibly apply to the momentum and position of 

a single object. Now in a certain formal sense one may treat the time 

variable and the energy of an object in classical mechanics as canonical 

variables. It would, however, be quite wrong to infer from this that one 

cannot determine the energy of an object exactly at a given instant of 

time. A detailed study of the nature of energy measurement shows that 

the law of conservation of energy can be verified by two successive 

energy measurements a>1 and a>2 at times t1 and t2 only to an accuracy 

|a>i — o»2| (f2 — tx) > 1, but this refers to measurements in which the object 

is in different states, namely |6(fx)) and 15(f2))> so that the proof given 
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above is not applicable, and this “uncertainty relation for energy” has 

a different origin. For details the reader is referred to a particularly 

thorough discussion in the work by Messiah quoted at the end of this 
section. 

Now, identifying P and Q again with the momentum and position 

operator of a single object, Eq. (10.13) governing the optimum states 
reads, in q representation, 

(10.14) [-i(d/dQ)-P]\by = iy(Q-Q)\b> 

so that the corresponding ifj function ipb(q) = <q\U) satisfies the first order 
differential equation 

(10-15) [-i(d/dq)-P]Mq) = iy{q-Q)M<i) 
yielding by integration 

(10.16) 

a 

ipb(q) = exp J (-yq + yQ + iP)dq = (7exp [- (y/2)q2+ yQq + iPq] 

or 

(1.0.17) ,pb(q) = C'exv[-(yl2)(q-Q)2 + iPq] 

with some constant C', to be determined by the normalization 

+ 00 

(10.18) <6|6> = J \Ui)Vdq = 1 
— 00 

which gives 

+ 00 

(10.19) \C'\2 J exp [-y{q-Q)2]dq = \C'\2 V^/y) = 1 
— 00 

so that finally 

(10.20) Mq) - (y/77)1/4exp [— (y/2) (q — Q)2 + iPq], 

The optimum state vector describes thus a Gaussian probability dis¬ 

tribution around the expectation value Q as center. It is now easy to 

compute P, AP, AQ for the optimum state (10.20). 

An instructive exercise consists of transforming |6) in the q representa¬ 

tion into 16) in thep representation. Quite generally these representations 

are defined by the eigenvalue problems 

(10.21) P|p> = p\py; <%> = q\q}, 

respectively, and there should exist a unitary operator U so that 

(10.22) | p) = U\q>; \q) = U+\p>, 
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in components 

(10.23) |j)'> = / <p'\U\q’)dq'\q’>; \q'> = j <q'\U+\p'ydp'\p"> 

which transforms any operator A(q) in q representation into the corres¬ 

ponding operator A(p) in p representation, according to 

(10.24) A(P) = UA(q-)U+\ A(q) — U+A(p) U, 

in components 

(10.26) = JJ (p"\U\q"y dq"(q"\A\q')dq\q'\U+\p'~). 

From the definitions (10.23), which may alternatively be written as 

expansions into ifj functions 

(10.26) |p'} = J |q"ydq"ifjp\q")\ \q"> = J \p'}dp' </#(?"), 

it follows that the matrix elements of U are identical with the i(j functions 

(10.27) 

<i>'|E%'> = Cs'Ip') = Mi'Y. <q"\u+\p"> = W) = «.(«")■ 

By applying the representation P— —i(d/dQ) to the first equation 

(10.21), one finds that *p*-(q") satisfies the differential equation 

(10.28) -W<?WI = *'«<?') 

having the solution 

(10.29) >P*,(q") = const eip'q’ = (q"\U+\p’y. 

The constant of integration can be determined from the unitarity of U, 

(10.30) <p"| UU+\p'} = (p"\ U\q'ydq\q'\ U+\p"> 

= |const|2 J exp [i(p" —p')q']dq’ 

= 277|const|2S(p'-p") = 8(p'—p") 

so that finally 

(10.31) <P'\U\q"> = (1 lV^r)e~iPA\ 

The components of | p} and |g> are thus connected by the Fourier 
transformation 

(10.32) 

IP'> = (1/a/2tt) J q"ydq"- |g"> = J e+^'|p'}dp’. 
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In particular, one obtains the ip function of \b~) inp representation from 
(10.20) by the integration 

+ 00 

(10.33) ipb(p) = (l/v/27r)(y/77)1/4 J exp[-(y/2)(q-Q)2 + i(P-p)q]dq. 
— 00 

NOTES 

The classic source for discussion of the uncertainty relations is the 

work by Heisenberg [1]. 

Messiah [2] should be consulted, with particular reference to Chapters 

IV and VIII, on the time-energy uncertainty relation. 

Landau and Peierls [3] have given a provocative discussion of some 

implications of the time-energy uncertainty relation, and have pointed 

out, in particular, its consequences for the measurement of particle 

momentum in the relativistic case, the measurement of electromagnetic 

fields, and the measurement of position of particles that do not or do 

have mass. 
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♦SECTION 11 

A Digression on Superfluidity 

The general transformation formula (9.13) is, of course, applicable to 

any object possessing energy and momentum and is not confined to the 

special case of a classical '‘particle” whose energy, as a function of its 

momentum k, is of the form a> = k2/2m. In particular, the object may 

be a collective excitation or “quasi particle” which is considered the 

carrier of excitation energy and momentum in a fluid. The energy of 

such a quasi particle, a>(k) as a function of its linear momentum may, for 

example, have the form indicated in Fig. 11.1. If this is the case, then the 

fluid in its ground state, when traveling through a capillary, cannot lose 

energy to the walls of the capillary and thus experience friction, unless 

the velocity exceeds a certain critical value Vc = tana, where tana is 

the slope of the straight line drawn from the origin which just touches 

the curve u> (k). Historically, it was the existence of superfluid helium II 

exhibiting just such a critical velocity which led Landau to conjecture 

the existence of quasi particles in helium II with an energy spectrum of 

the type indicated in Fig. 11.1. 

To understand the origin of this superfluid behavior in the presence 

of such a quasi particle energy spectrum, consider a fluid moving with 
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velocity V0 through a capillary, and label all quantities in this coordinate 

system S with no suffixes on them (Fig. 11.2). Alternatively, the same 

-v0 
- ( ■ ' ~H- 

I-»v0 

- —<-1- 
-V0 

System S: Wall stationary, System So : Wall moving with 

fluid moving with velocity Vo. velocity — Vo, fluid stationary. 

Fig. 11.2. Coordinate transformation to observer moving with the fluid in a capillary. 

experimental situation can be described by an observer whose coordinate 

system S0 is tied to the fluid, so that in this case the walls move with 

velocity — V0. In frame S0 all quantities will be labeled with a subscript 

“zero” as suffix. 

Now suppose the fluid is at a temperature of absolute zero, i.e. it is in 

its ground state and there are no quasi particles present.* The initial 

kinetic energy of the fluid is 

in$: in$0: 

(11.1) ^(initial) = \MV l .^(initial) = 0 

where M is the mass of the entire fluid. When viscosity is present the 

fluid should start to move in S0 and thus start to lose energy to the walls 

in S. In the excitation theory, fluid motion in S0 can appear only if 

internal motions of the fluid are gradually excited, i.e. if quasi particles 

begin to appear, owing to interaction with the wall. 

Suppose then that one quasi particle of momentum k0 and energy 

d>0(k0) has somehow appeared by interaction with the wall in system S0 
so that the energy of the fluid in S0 is now 

(11.2) E0 = a>0(k0) (in S0). 

To find the energy of that single quasi particle in system S one can now 

use the general transformation formula (9.13). Thus, if S moves with 

* The absence of quasi particles in the ground state is a hypothesis which is strictly 

tenable in absence of interaction between the molecules of the fluid only. See the more 

detailed examination of this point in Section 30. The argument in the present section can, 

however, be modified to accommodate possible presence of a pool of quasi particles which 

do not disappear even at a temperature of absolute zero. 



11. A Digression on Superfluidity 73 

respect to S0 with velocity V0, then the effective Hamiltonian HeB of an 
object of momentum P0 is, in system S, given by 

(n-3) Hen = HT0 + (V0Y o) 

whereHTQ — UH0U 1, with U — exp(?,P0V0£). For “free” quasi particles, 

Ho is coordinate independent and thus H% = H0 and the change in 

effective energy is entirely due to the kinetic effect of relative motion. 

One finds thus for the energy of the quasi particle in S 

(H-4) d>(Jc0) = <£0(&0) + (k0 V0) 

and therefore the total energy of the fluid in S becomes now 

(11.5) E = fflo(*o) + (k0Vo) + i^F§ (in S). 

Now in order that viscosity be observed, the change in energy in S must 
be negative, which according to (11.1) and (11.5) is 

(11.6) E — ^(initial) = c50(&0) + (k0 V0) < 0. 

For a given value of kQ, this quantity has its minimum when the vectors 

k0 and V0 are antiparallel, corresponding to a quasi particle having 

-v0 
<r 

-V0 
4 

Fig. 11.3. Quasi particle of momentum ko antiparallel to Vo, described in So- 

momentum parallel to the motion of the wall in S0 as indicated in Fig. 

11.3. One must, therefore, have certainly 

(1.17) d)0(k0) — ^0 V 0 <0 or V0 > d)0(k0)lk0. 

This inequality, which is necessary for the existence of viscosity, must 

be satisfied for at least some value k0 of a possible quasi particle. Now, 

dj0(k0)lk0 is the slope of the straight line connecting origin and the point 

a>0(k0) on the excitation curve. Its minimum value corresponds just to 

tana as indicated in Fig. 11.1. If tana ^ 0, then, for velocities 

V0 < Vc = tanoc, quasi particles cannot appear in the fluid and the fluid 

will be superfluid and not slow down by friction. The condition tana ^ 0 

is obviously equivalent to the requirement that u>(k) does not have 

vanishing slope at the origin. Therefore, in particular, whenever the 

lowest quasiparticles are phonons, for which 6j(k) — c0k(c0 is the velocity 
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of sound), superfluidity will occur. To prove that a fluid becomes super¬ 

fluid at low temperatures one has thus to prove that only phonons can be 

excited at sufficiently low temperatures. This will be done for some 

special cases in Section 30. 

As was first shown by Landau, phonons account for part of the inertia 

of a fluid in which they are present. If phonons were the only excitations 

available, then one can, in principle, obtain the transition temperature 

separating superfluid from normal fluid behavior by computing the 

temperature at which the inertia of the phonons is equal to that of the 

entire fluid. In liquid helium II the contribution from the “roton” part 

of the excitation spectrum, corresponding to excitations lying near the 

Fig. 11.4. Possible actual excitation spectrum in liquid helium II. 

minimum of the curve in Fig. 11.1, dominates at temperatures above 

0.6°K, and the transition to normal behavior can be accounted for by 

thermal excitation of rotons with an energy di = A ~ 9°K. This value of zl 

leads unfortunately to a value of a, if computed after the fashion of 

Fig. 11.1, which gives critical velocities far above the observed critical 
velocities. 

This difficulty may possibly be resolved, if the mechanism of onset of 

viscosity at the critical velocity is due to an actual excitation spectrum 

of a form drawn in Fig. 11.4, corresponding to possible existence of a 

number of quasistable excitations of the roton type, but of higher effec¬ 

tive mass (i.e. narrower excitation line) and higher excitation energy 

A v > d, so that although they may not be excited thermally in any num¬ 

bers at superfluid temperatures, they may be excited mechanically, 

owing to the lower value of a as compared to the value of a in Fig. 11.1. 
Such quasi particles might be identical with the “long ” rotons or vortex 

lines of a type first conjectured by Onsager and Feynman in connection 

with the problem posed by the critical velocity in helium II. Although 
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existence of what is labeled in Fig. 11.4 “thermal rotons” can be proven, 

and will be proven in Section 30, from first principles for special systems, 

a strict quantum mechanical xeistence proof for “ long ” rotons or vortex 

lines belongs to the large class of as yet unsolved problems. 

The excitation of long vortex lines by friction can be looked upon as a 

mechanical “pumping” giving rise to occupation of energy levels Av 

above the levels A which remain practically empty at temperatures below 

0.6°K, and, thus, to a situation analogous to the states of negative tem¬ 

perature familiar from similar situations used in the construction of 

masers. This raises the interesting question of whether one cannot induce 

transitions AV->A mechanically by feeding into liquid helium II, moving 

through a capillary at velocities above the critical velocity, oscillations 

of a frequency in resonance with the energy level difference Av —A, 

leading to the possible amplification of such oscillations by stimulated 

emission. This amplification should be absent as long as the liquid moves 

through the capillary at velocities below the critical velocity. In this 

connection, it might be worth noting that the excitation spectrum 

envisaged in Fig. 11.4 may be much too simple, and there may exist not 

just one but many types of vortex lines with levels Av, all higher than A, 

and transitions may be inducible corresponding to transformation of one 

type of vortex line into another similar type, involving an energy change 

much smaller than the one corresponding to the entire breakup of a 

vortex line into thermal rotons. 

NOTES 

Landau [1] first proposed the existence of a quasi-particle spectrum, 

as in Fig. 11.1, to explain the superfluidity of liquid helium II. 
Onsager [2] pointed out the possible existence of quasi-stable excita¬ 

tions other than thermal rotons envisaged by Landau, and Feynman [3] 

used the concept of quantized vortex lines of the type suggested by 

Onsager to give a quantitative account of the critical velocity in liquid 

helium II. 
For a review of experimental work on vortex lines in liquid helium II 

see Vinen [4], 
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SECTION 12 

Rotations of the Observer 

In analogy to the development of Section 9, consider next the rotation 

of an observer (1) with respect to an observer (0) by angle </> around a 

given axis n. It is claimed that the respective descriptions of an object 

in terms of states |6)r and |6) are connected by the unitary transfor¬ 

mation 

(12.1) I*)3, = 2’n,#|&>; 2V# = «*■■*'’ 

where J is a hermitean operator Jx, J2, Js representing the angular 

momentum of the object. 
To verify this consider first a single object without spin, whose angular 

momentum is purely orbital and shall be represented, in correspondence 

with the expressions known from classical mechanics, by the three 

operators 

Jl = Q2Ps-QsP2 = -i[Q,(dldQ3)-Qa(dldQ2)] 

(12.2) J2 = Q3P1-Q1P3 = -iiQsidldQJ-QiidldQg)] 

J, = Q1P2-Q2P1 = -iiQiidldQJ-QzidldQJ] 

with the understanding that the eigenstates of Q, namely |q>, form a 

complete set and may be used as a basis for the description of the object. 

One verifies that these operators satisfy the C.R.s 

(12.3) 

J\J2-J^J\ = (cyclically) or [J x J] = iJ 

which are formally identical with the C.R.s (2.47) found for the spin 

angular momentum operators s{. 
Now let the axis of rotation be the g3-axis, so that the coordinates of 

the object as seen by the two observers are connected by the transfor¬ 

mation 

(12.4) 

Q\ = Q1coscf) + Q2sm.(f>; Qx = cos <£ - sin <£; dQ^dcfr = -Q2 

QT = —Q1sin<j) + Q2cos(t>; Q2 = Q\ sin (f> + Q\ c°s (/>; dQ2ldcf> — Qx 

Ql = Qs; Q3 = - 0- 

77 
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The expansion of the transformed .state, 

(12.5) 

|q>T = WUUT2> = |q>+^|q>WV-o + (^/2!)(<*2|q>W!V-o + --- 

may now be written, using 

(12.6) 

(<%>WV-„ = E 0|q>/3<3() (SQJty) 
i 

= [0i(3/d02)-Q2(d/d<9i)]|q> = ^3|q> 

in the form 

CO 

(12.7) |q>T = 2 (rin\)(iJs)n|q> - e^»|q> 

which verifies (12.1) for this special case. 

If the object is a spin pointing in direction §, cp on the unit sphere so 

that 

Q2 81 16v /c°s (W \ 
( ' ’ ' > \sin (#/2) ei<p/ 

one expects the transformation operator for rotation around the g3-axis 

to be given in terms of s3 = cr3/2 by 

(12.9) = e(i/2)<K 

The simple form of <j3 allows summation of the infinite series repre¬ 

sented by T^. Using 

^ = (o -“) and = G !) = 7> 

one finds 

(12.10) 

T+ = [1 + (1/2!) (i<£/2)2 +...]/ + [(i(f>/2) + (1/3!) (i<f>/2)z + ...] cr3 

/ei^/2 A \ 

= cos(<^/2)/ + isin(^/2)a3 - | Q g_^/2j 

so that 

(12.11) I by = e^/2/cos W2) \ 
\sin (#/2) ei(lP-^)/ 

which differs, apart from a physically unobservable common phase 

factor, from |6) by the change in azimuth angle cpT = cp — <j>. This verifies 
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again the suitability of the unitary transformation (12.1) for this special 
case. 

Of particular interest is rotation with uniform angular velocity co so 
that 

(12.12) n <f> = cot 

and the transformation operator becomes a function of time 

(12.13) = ei(toJ)<. 

The effective Hamiltonian for the rotating observer will then be given, in 

analogy to the form encountered in case of uniform linear motion, by 

(12.14) Heff = HT + iTT~1 = HT-( io-J). 

It is understood that to is the vector of angular velocity of observer (1) 

as described by observer (0). The angular velocity of observer (0) with 

respect to observer (1) is then obviously — co. 

In the following, the transformation formulae for the components of 

angular momentum are needed. They are, supposing the rotation is 

characterized by angular velocity to = — o»k, 

J\ = e~lujJ,>tJ1elwJ»t = Jx cos (cut) +J2sin (cut) 

(12.15) J\ = e-uoJ3tj^eia>j3t _ _ J1 sin [cut) +J2cos (a>t) 

J3 = e~UjsJ>t J 3- J3 

and follow by straightforward computation from the C.R.s (12.3). For 

example, with the usual abbreviation [JnJm\ = JnJm—JmJn> 

(12.16) 

_ jl + {iwt) [J-ie/3] + {ia>t)2l2\[[J1 «/3]J8] + ... 

= Jl[l - (cot)212! + ...)] +J2[oot - (cot)sl3\ + ...)] 

= Jx cos (cot) +J2 sin (out). 

For any three operators Jx, J2> J3 satisfying the C.R.s (12.3) one can 

prove the following theorem: 

There exist simultaneous eigenstates of one of the three operators, J3 

say, and of J2 = J\ +Jf +J‘j, which are characterized by two quantum 

numbers j and m so that 

(12.17) 

J2\j,ni) = j(j+l)\j,m) and J3|j,m> = m|j,m> 

where j has the possible values j = 0, j, 1, f, ..., and where for given j 

the quantum number m may assume the (2j +1) possible values — j, 

—j+ 1, ..., j — 1, j. The proof of this theorem is given in Appendix 1. 
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As an application of the concepts developed for rotating observers, 

consider again the case of a spin magnetic moment in an external field 

(12.18) 

B = B0k + i?i[i cos (cot) — j sin {cot)']; gj = — tok 

giving rise to spin magnetic resonance as explained in Section 7. The 

dynamical equation governing the magnetic moment fj. = ys in the 

laboratory system reads in the state picture 

(12.19) i\b} = -y(sB)|6>. 

As a first step towards solving (12.19), which has a time dependent 

Hamiltonian H = — y(sB), transform to a system (1) rotating around the 

laboratory system with angular velocity to. The transformed state 

(12.20) |6>' - ei(cos)«(£> 

satisfies then the equation 

(12.21) id\by/dt = H'eS\by 

with 

(12.22) H'eB = H' — (cos) = -ye^ws)<(sB)e-i(OJS)t-(tos). 

This can be evaluated using formulae (12.15) as follows, 

(12.23) 

gi(ios)«(sB)e-i(ws)< = e-wos3«[S3 B0-\-B1(Sl COs cut — s2 sin cot)] e“°Ss 

— s3 ^0 + S1 B-l 

so that the effective Hamiltonian may be written 

(12.24) H'en = — y(sBgfl) 

where the effective field is now 

(12.25) B;ff = [-S0 — (o»/y)] k + B1 i. 

Equation (12.21) contains thus a Hamiltonian which no longer depends 

on the time t. The solution of this equation can be expedited by perform¬ 

ing a second transformation to a system (2) rotating around the direction 
of Bgff with angular velocity w 

(12.26) w = -yB;fl 

having according to (12.25) the numerical value 

(12.27) a/ a>i + (ojq — to)2 
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where the characteristic frequencies o>0 and oq are defined, as in Section 7, 

by 
(12.28) oj0 = yB0; oq = yB1. 

With this choice, the twice transformed state 

(12.29) |6>" = e*ws)t|&>' 

satisfies the equation 

(12.30) id\by/dt = 0 

because the effective Hamiltonian governing the spin in system (2) is 

(12.31) Hltt = ^ff-(ws) = -y(sB;ff)+y(sB;fl) = 0 

the effective field B'ff being the same in both systems (1) and (2), so that 

H'eS is invariant under the transformation (12.29). The solution of 

equation (12.19) is thus obtained immediately from the observation that 

(12.32) |6(f)>" = |6(0)>' = |6(0)>' = |6(0)> 

and 

(12.33) |6(*)> = e^(ws)te-i(ws)i|6(0>" 

so that 

(12.34) |6(<)> = e^(tos)te-i(ws)‘|&(0)>. 

For the explicit evaluation of the two transformations it is useful to 

introduce the angle 0 between the effective field B'fl and B0, 

(12.35) cos® = [B0- (a>ly)]IB'en — {a>0-to)/w; sin® == oq/w. 

One has then 

(12.36) (ws) = —ojs3 and (ws) = - w(s1 sin 0 + s3 cos ®). 

To establish contact with observation consider a spin \ and suppose 

at time t = 0 the spin is parallel to B0, i.e. |6(0)> = |6+) = (J). The 

probability for spin flip is then [see (7.66)] with |6_) = (?) 

(12.37) Pmp = |<6_|6(£)>|2 - |<6_|e-^ ws) 1 e_i(ws)1 bf)|2. 

To evaluate this expression observe that both |6+) and |6_) are eigen¬ 

states of —i(ios)t = (wl2)a3t with eigenvalues -Moj£/2 and — icaf/2, 

respectively. One may thus write 

(12.38) 
<6_|e“i(ws)te-i(ws)tj+> = <y(ws)<6_|g-i(ws)<&+^ _ e-Corf/2^_|e-i(ws)*5+^ 
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and therefore 

(12.39) Pnip = |<6_|exp [i(w/2) t(at sin © + a3cos 0)]&+)|2. 

Expansion of the exponential operator, using o\n = 1 and ofn+1 = op 

gives 

(12.40) 

exp [i(w/2) t(oL sin © + ct3cos ©)] = I cos (wt/2) + i(o1 sin 0 + a3 cos 6) 

x sin (wt/2). 

Pflip contains thus only matrix elements of the form 

(12.41) <&>,&+>= <6-M+> = 0; 

<6_|76+> = 0, 

so that finally 

(12.42) 

Pflip = sin2® sin2 (wt/2) = ^-r^sin2 
o>f + (a»0 — at) 

which is identical with the resonance formula (7.67) obtained earlier by 

a completely different method using the interaction picture. 

NOTE 

Rabi et al. [1] promulgated the use of rotating coordinates in the 

treatment of magnetic resonance problems. 
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.SECTION 13 

The Connection between Invariance Properties of the 

Hamiltonian and Conservation Laws 

Whenever the state describing a physical object is subjected to the 

unitary transformation 

(13.1) T = eiTS; T~l = T+ = e-irS: 

where S is a hermitean operator, and r a parameter characterizing the 

transformation, then the Hamiltonian of the system is transformed 

according to 

M3 21 HT = e*sHe~*rS. 

The actual calculation of HT involves in general an expansion 

(13.3) 

Ht = {I + vrS + ...)H(I-vrS + ...) = H+ iT[SH] + {iT)2l2\[S[SH]] +... 

One observes that if the Hamiltonian H commutes with the generator S 

of the unitary transformation T, then the Hamiltonian is invariant under 

the transformation. 
The converse cannot be inferred, i.e. one cannot conclude H = a 

means [SH] = 0, except in case of an infinitesimal unitary transformation 

(13.4) T = I + irS; T~x = I — irS 

where r is now an infinitesimal parameter. The condition 

H3 51 HT = H + ir[SH\ - H 

is then indeed equivalent to 

(13.6) D®#] = °* 

Now, it had been established earlier that the rate of change of the 

expectation value of any observable is determined by the commutator 

of the corresponding operator with the Hamiltonian. If the commutator 

vanishes, the expectation value of the observable will be constant m 

time. 
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One concludes: The operators representing constants of the motion of 

any physical system generate those infinitesimal unitary transformations 

which leave the Hamiltonian invariant. This corresponds to the well- 

known fact of classical mechanics in which the constants of the motion 

generate those infinitesimal canonical transformations which leave the 

Hamiltonian invariant. 

In particular, the results of Sections 9 and 12 may be applied to yield 

the conclusion that the law of conservation of momentum is a con¬ 

sequence of the invariance of the Hamiltonian under infinitesimal 

translations, and the law of conservation of angular momentum is a 

consequence of the invariance of the Hamiltonian under infinitesimal 

rotations. 

The Hamiltonian itself may be looked upon as the generator of an 

infinitesimal unitary transformation representing displacement in time. 

Equation (7.5) may be written for an infinitesimal time interval 

(13.7) \Ht + T)X-\Ht)>s = _iH\b{t)yg 
T 

which is identical with 

(' 3-8) !*>? = H + t)>, = (/ + irS) |6(f)>, 

provided 

(13.9) S = -H 

[see also the statements following Eq. (7.16)]. 

The law of conservation of energy is thus a consequence of the in¬ 

variance of the Hamiltonian under infinitesimal displacements in time, 

if H is used to represent the energy of the system. This invariance will 

hold whenever H does not contain the time t explicitly. 

These connections between conservation laws and invariance proper¬ 

ties of the Hamiltonian are of considerable help in selecting Hamiltonians 

suitable for the description of physical systems which are subjected to 

conservation laws. The invariance requirements act as a severe restric¬ 
tion on possible choices of a Hamiltonian. 

As an example, consider an object having momentum P, spin S, and 

orbital angular momentum L, and try to find the most general Hamil¬ 

tonian having, apart from the familiar kinetic energy P2/2m, terms not 

higher than linear in each of P, S, and L. The requirement of invariance 

under rotations restricts the choice to the expressions 

(13.10) ; (13.11); (13.12) (P-L); (P-S); (S-L) 

(13.13); (13.14); (13.15) (P-[SxL]); (S-[PxL]); (L-[PxS]) 
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because these terms are scalars which commute with the generator L + S 

of the rotations, as can be easily verified. If one adds the further require¬ 

ment that the Hamiltonian should be invariant under reversal of all 

motions, then the only remaining terms are (P-L), (P-S), (S-L), because 

reversal of motion changes the sign of each P, S, L, so that the terms 

(13.13)-(13.15) also change sign under this transformation and thus do 

not satisfy the invariance requirement. By adding the final requirement 

that the Hamiltonian be invariant under inversion of the coordinate 

system one finds that only the term (S-L) satisfies this invariance, 

because, under inversion of coordinates, P changes sign, but S and L do 

not, so that (13.10) and (13.11) change sign, whereas (13.12) is the only 

true scalar in this case. The Hamiltonian 

(13.16) H = j8(S-L); /3 a number, 

represents the energy of the so-called spin-orbit coupling which plays an 

important part in the establishment of energy levels in atoms and nuclei. 

The transformations of reversal of motion and inversion of coordinates, 

which have just been introduced in a rather casual fashion, warrant a 

more extensive treatment, to be given in Sections 14 and 15. They differ 

from the displacements and rotations in that they cannot be thought of 

as evolving continuously from the identity transformation, and therefore 

the corresponding infinitesimal transformations do not exist. However, 

invariance of the Hamiltonian under the unitary inversion operation 

leads in quantum mechanics to a peculiar conservation law which has no 

classical analog. The consequences of invariance under reversal of motion 

turn out to be somewhat more subtle, because reversal of motion must 

be represented by an antiunitary operator, and lequires a special 

treatment beyond the one given in the present section. It will be found 

that existence of anti-unitary symmetry operators may lead to the 

existence of so-called superselection rules which in effect again guarantee 

the conservation of certain quantum numbers. 
It has been known for a long time that most processes which lend 

themselves to description in terms of classical physics are invariant under 

inversion of coordinates and/or under reversal of motion. The conse¬ 

quences of such invariances are often inconspicuous in classical physics 

and therefore had received little attention until some processes were 

discovered which, at first sight, appeared to violate inversion symmetry 

and the corresponding quantum mechanical conservation law, leading 

to a general re-examination of the symmetry properties of both quantum 

mechanical and classical descriptions of physical objects and processes. 
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NOTES 

Born et al. [1] first recognized the vanishing commutator between an 

observable and the Hamiltonian as the condition for the conservation 

of that observable. 

Weyl [2] stressed the connection with symmetry properties of the 

Hamiltonian. 

Goldstein [3, especially Chapter 8] can be consulted for a review of the 

connection between invariance of the Hamiltonian under canonical 

transformations and conservation laws in classical mechanics. 
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SECTION 14 

The Invariance under Inversion oi Coordinates and the 

Law of Conservation of Parity 

Any physical process or property involving an actual object is said to 

have parity if the mirror image of this process or property is again a 

possible physical process or property involving the same actual object. 

As an example consider a heavy top, spinning around an axis a, 

subject to a torque around an axis b perpendicular to a, which precesses 

around an axis c perpendicular to both a and b. 
The experiment may be done using a bicycle wheel mounted on one 

end of a short axle, with a flexible chain supporting the other end of the 

axle, as indicated in Fig. 14.1. The torque is realized by the weight W 

Fig. 14.1. The precession of a heavy top and the mirror image of this process. 

of the wheel. Actual performance of the experiment shows that a, b, c, 

in that order, form a right-hand system if the usual conventions about 

right and left are adopted. 
If this experiment is viewed through a mirror parallel to the plane 

formed by a and c, one sees the spin of the wheel reversed, a' = - a, the 

direction of precession reversed, c' = -c, but the direction of the weig it 

W and thus the direction of the torque is unchanged, b = b. 
87 
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The process has parity, because the process seen in the mirror can be 

performed in actual fact by reversing the spin of the actual wheel, 

causing the actual precession produced by the same torque to also 

reverse its direction. The vectors a', b', c', in this order, still form a 

right-hand system. 
As a second example consider the magnetic field produced by an 

electric current in a straight conductor. If a magnetic needle is placed 

above the current carrying conductor, it is found to be deflected so that 

the N pole of the magnet points in a right-hand sense around the current 

I, if the usual conventions about right and left are adopted. 

Fig. 14.2. Deflection of a magnetic dipole by a current and mirror image of this process 

(assuming charge to be a scalar). 

On first sight one might think this effect does not have parity, because 

seen through a mirror parallel to the plane formed by conductor and 

undeflected needle the magnet is deflected in the opposite direction 

while the current direction remains unchanged. If one keeps in mind, 

however, that any magnet can be replaced by a suitable ring current, 

it is seen, as indicated in Fig. 14.2, that the mirror image of a magnet is 

a magnet with the signs of its poles reversed, provided the mirror image 

of a charge is again a charge of the same sign. 

One can conclude the effect has parity, because the deflection seen in 

the mirror can be obtained with an actual current and an actual magnet. 

It is important to note that purely electromagnetic phenomena have 

parity even if electric charge is pseudoscalar, i.e. if the mirror image of a 

positive charge is a negative charge and vice versa. As a result, the straight 

current I' would be reversed, as indicated in Fig. 14.3, but now the 

mirror image of the magnet would be a magnet with the signs of the 

poles unchanged. The mirror image of the deflection would thus again 
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correspond to an effect obtainable with actual current and an actual 

magnet. 

Experiments involving electromagnetic effects only cannot be used 

to decide whether an electric charge is scalar or pseudoscalar. The 

mirror image of any purely electromagnetic process can either be realized 

within the actual world using charges of the same sign, or it can be 

realized within an “antiworld” in which the signs of all charges are 

reversed. In this sense the electromagnetic field has a high degree of 

symmetry. 

Fig. 14.3. Deflection of a magnetic dipole by a current and mirror image of this process 

(assuming charge to be a pseudoscalar). 

Processes involving the weak interactions which cause, among other 

things, the decay of nuclei, have less symmetry than purely electro¬ 

magnetic processes. The mirror image of a /3 decay cannot be realized 

within the actual world containing positively charged nuclei only, but 

it can presumably be realized in an antiworld in which all particles 

involved in the decay are replaced by their antiparticles and in which 

the signs of all electric charges are reversed. Thus /3 decay does not have 

parity, unless one admits experiments in the antiworld among the physically 

possible experiments. 
As a specific example, consider the /3 decay of a cobalt-60 nucleus 

which, under the emission of an electron and an antineutrino, goes into 

a nickel-60 nucleus. It has been found that the electron emitted goes off 

preferentially in a direction opposite to the magnetically aligned spin 

of the Co60 nucleus. Viewed through a mirror perpendicular to the 

direction of nuclear spin one sees the electron emitted parallel to the 

direction of spin, as indicated in Fig. 14.4, a process which does not 

happen in the actual world. The mirror image of the decay does, however, 

represent correctly the corresponding decay in the antiworld in which 
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Fig. 14.4. The j3 decay of Co60 and its mirror image (charge scalar). 

the signs of all charges are reversed, as indicated in Fig. 14.5, and in 

which anti-Co60 goes, under emission of an antielectron (or positron) and 
a neutrino, into an anti-Ni60. 
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Fig. 14.5. The decay of Co60 and its mirror image (charge pseudoscalar). 

If one wishes to maintain reflection symmetry as a universal principle, 

one is thus forced to assign an electric charge the transformation charac¬ 

ter of a pseudoscalar. From now on this ivill be done. Thus, if one wishes to 

describe the mirror image of objects which do have electric charge as an 

intrinsic property, one must augment the operation of coordinate 

inversion (labeled FI) by an operation of “charge conjugation” (labeled 

-0, resulting in what is called in the literature the operation of “ combined 

inversion ” (labeled F = nr). As will be shown in Section 19, one cannot, 

in general, represent r (and thus E) by a unitary operator, and the sym¬ 

metry under combined inversion does not lead to a simple “law of 
conservation of combined parity”. 

It should be stressed once more, however, that no inconsistency results 

if charge is treated as a scalar as long as purely electromagnetic processes 

are considered. Thus, coordinate inversion without particle conjugation 

is a valid symmetry operation as long as weak interactions are excluded 
from consideration. 
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As a first quantum mechanical example consider a single object having 

no internal properties such as spin, charge, etc., and which may therefore 

be described completely by a state vector |6> depending only on the 

coordinates of the object, labeled q, so that there exists a one-component 

0 function fb(q) defined by 

(14.1) |6> = J |q>dq<q|6> = J |q>06(q)dq- 

To investigate how one should describe the same object if it is viewed 

through a mirror, it is sufficient to consider only the inversion q -> — q 
of the coordinates, because any reflection can be decomposed into an 

inversion and a proper rotation. Inversion of coordinates requires descrip¬ 

tion of the same object in terms of a transformed state 

(14.2) |&>T = J |q>0&( —q)dq. 

An attempt will now be made to connect | byT with the untransformed 

state by a linear unitary operator II defined as 

(14.3) | by = n\by 
so that II represents the operation q -> — q carried out on the f function 

in (14.1). To ensure that the parity of an object is embodied in the quan¬ 

tum mechanical description, it suffices to require the Hamiltonian of the 

object to be invariant under the transformation, 

(14.4) h = nun-1, 
because then the transformed state satisfies the same dynamical equation 

as the untransformed state, i.e. in the state picture from 

(14.5) 

H\by = i\by follows niin-1 n\by = in\hy or H\byT = i\byT 

so that if |6> is a possible state, then |6>T is also a possible state of the 

same object. 
Equation (14.4) contains the “law of conservation of parity,” because 

it may be written 

(14.6) 7777-77/7 = 0 

which means the expectation value of 77 is constant in time. This law is 

borne out by all experiments which do not involve weak interactions. 

On the other hand, since the Hamiltonian describing weak interaction 

processes such as the Co60 decay is apparently not invariant under pure 

coordinate inversion, one may refer to the peculiar correlations of the 

decay products as indicated in Fig. 14.4 as being caused by “non con¬ 

servation of parity” in that case. 
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Of particular interest are the eigenstates of the operator 77, defined by 

(14.7) 77|w> — P\u)\ P a number. 

The eigenvalues can be determined immediately if \u) is required to be a 

unique function of the coordinates, because in that case application of 

77 twice on | u} must be the identity operation (up to an arbitrary phase 
factor which by convention is chosen to be + 1) 

(14.8) 77» = P2\u} = | u). 

Hence there are two eigenvalues of 77, namely the roots of 

(14.9) P2 = 1 i.e. P\ — + J and P2 = —1. 

Eigenstates of 77 with eigenvalue + 1 are called states of even parity 

denoted |w+>, and eigenstates with eigenvalue —1 are called states of 
odd parity denoted \uJ), 

(14.10) n\u+) = +|w+> and 77|w_) = — | uJ). 

It is seen that the parity of a single object, describable by a unique state 

vector, is a dichotomic variable, and, in accordance with the concepts 

developed in Section 1, one may therefore use the representation 

A state vector |6> need not be an eigenstate of 77, but it can always be 
decomposed 

(14.12) |6> = \u+y (u+\b) + \u_y (u_\by = *M + )^+iA&(-)(^ 

so that 

(14.13) |&V = 77|6> = ^( + )Q-W-)Q. 

It is understood that ipb( + ) and ipb( — ) are ifj functions only with respect 

to the two-dimensional parity space; with respect to all other attributes 

they are still state vectors, with n/2 components if n is the number of 

components of |6). One should, therefore, if one wishes to adhere to quite 

impeccable notation, write the direct product \ipb( + )) x (J), etc. 

A state with both </'*( + ) ^ 0 and — called a state of mixed 

parity. One can always choose two linear combinations which span 

the same space as the vectors |6> and \b')T, and which have definite 
parity, namely 

« + )(„) = i(|6> + |V) 
(14.14) V 

m-)Q = m>-m. 
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Eigenstates of the Hamiltonian H belonging to nondegenerate eigen¬ 

values a> are always eigenstates of II, i.e. have definite parity. Indeed, it 

(14.15) H\u> = o»|m> 

then also 

(14.16) nHTI~x II\u) = (dII\u) or HII\u) = co77|m). 

For nondegenerate o> this can be true only if 

(14.17) n\u) = P\u)\ P a number, 

which by definition (14.7) shows that |u) is an eigenstate of 77. 

The eigenstates of orbital angular momentum |Z,ra> of an object also 

have definite parity. In polar coordinates these states read (see Appendix 

1) 

(14.18) 11,m} = J \ft, 9> dQ Ylm(ft, 9) 

where the f function 

(14.19) Ylm(ft, cp) oc smmft{cosl~mft + acosl-m-2ft + .. .)emtp. 

Now the inversion q -> — q corresponds in polar coordinates to the trans¬ 

formation r, ft, 9 -> r, 77 — ft, n + 9 so that 

(14.20) 

IIYlm(ft, 9) sinm(7r-ft) [cosl-m(n-ft)+acos*—2(v-#) + .. ,]eim(n+T. 

Since for 

; ( + COS* mft 
DOS'—(*-») = (_cosi-„# 

if m even 
leven: if m odd 

7 (— cos1-"1 ft if m even 
Zodd: COS1 mfn — ft) — { 1-m n 

v ( +cosf mft if m odd 

and since further 

( + sinOT ft eim(? if m even 
(14.22) sinm (n — ft) eim 77+9 = (_sinm#eim9 if m odd 

one has 

(14.23) nYlm{ft, 9) = (-1/^,9). 

This means a state of odd l has odd parity and a state of even l has even 

parity, regardless of what the value of m may be. 
One can classify generally all observables as even or odd depending on 

whether their operators do not or do change sign under inversion of 
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coordinates. Any even operator A( +) is thus defined as 

(14.24) IJA{ + )n-1 = A{ + ) 

and any odd operator B( — ) is defined as 

(14.25) nB(-)n~1 = -B(-) 

independent of the transformation properties of A ( + ) or B( — ) under 

rotations or translations of coordinates. It is easily verified that A( + ) 

and B( — ) may be represented in the representation (14.11) by 

(14.26) A( + ) = ®) 

(1«7) = ‘) 

where now A and B contain the operations on all other variables of the 

object, and the 2x2 matrices operate on the parity variable alone. In 

any general state (14.12), one finds, thus, for the expectation values of 
A{ + ) and B(-) the expressions 

(14.28) AJT) = <6|^( + )|6> = <W + )|.4|^( + )> + <(M —)MhM-)> 

(14.29) SF) = <6|B(-)|6> = <^( + )|B|i4s(-)> + <i4t(-)Ws( + )>. 

From (14.29) one reads immediately the fundamental theorem: 

The expectation value of any odd observable vanishes in any state of 
definite parity, i.e. in a state for which either fb( + ) — 0 or fb{ — ) — 0. 

Example of an odd observable is the linear momentum of an object, 

examples of even observables are angular momentum and energy of an 
object. 

From the foregoing argument, one concludes that an object in a state 

of definite parity may possess even observables, such as angular momen¬ 

tum and/or energy, but that it cannot possess odd observables, such as 

linear momentum. In a state of mixed parity, however, an object may 
possess odd observables. 

Prior to the discovery of the correlation between the magnetic moment 

of the Co60 nucleus and the direction of electron emission in its ft decay 

(see Fig. 14.4), electric charge had conventionally been assumed to 

transform under inversion as a scalar (see Fig. 14.2). With this assump¬ 

tion, Maxwell’s equations lead one to consider as odd observables, 

magnetic pole, electric dipole, magnetic quadrupole, etc., and to consider 

as even observables, magnetic dipole, electric quadrupole, etc. Accord- 

the absence of any elementary magnetic poles and of any electric 
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dipole moment in the ground state of any object (usually considered a 

nondegenerate eigenstate of H and thus having definite parity) was taken 

as sufficiently explained by inversion invariance, which does not permit 

existence of odd observables, such as magnetic pole and electric dipole, 

in states of definite parity. 
However, since the advent of the Co60 experiment, there is now reason 

to assign to electric charge the transformation property of a pseudoscalar, 

in accord with the explanations given in Figs. 14.3 and 14.5, and the 

classification of multipole moments given above is reversed. This raises 

the following questions: 

(i) If indeed electric charge, magnetic dipole, etc., are, respectively, 

pseudoscalar, vector, etc., i.e. odd observables, how is it possible that 

many so-called elementary particles and other simple objects possess 

these observables in their ground state? 
(ii) If magnetic pole, electric dipole, etc., are even observables, why 

are they never observed in the ground state of any “ elementary ” object? 

This question has its root in the generally valid observation that nature 

usually realizes any possibility open to her on general principle, an obser¬ 

vation which is sometimes stated aphoristically as, “Anything that is not 

forbidden is compulsory.” 

A consistent, though not necessarily correct, set of possible answers to 

these two questions is the following: 

(i) The very fact that there are ground states of objects with non¬ 

vanishing electric charge means such ground states cannot be states of 

definite parity. This is possible provided the ground state is degenerate 

with respect to the energy of the object. Such a situation may arise quite 

generally if to every ground state of energy o>0 describing an object with 

given charge there exists another such state of the same energy o»0 

describing the same kind of object, but with opposite charge. If this point 

of view is accepted, then the only “elementary” particles that may 

possess definite parity are the neutral photon, the neutral pion, and the 

neutral kaons. Should any of these particles indeed have definite parity, 

then it cannot possess odd observables such as magnetic dipole moment, 

etc. The conditions under which the concept of the intrinsic parity of 

elementary particles is meaningful will be examined in more detail in 

Section 26. 
(ii) The nonexistence of magnetic dipole, electric dipole, etc., in 

“elementary” systems may be due to some other invariance require¬ 

ments, such as invariance under reversal of motion, which will be taken 

up in the following Section 15, and/or invariance under particle conjuga¬ 

tion, to be taken up in Section 28. 
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The division of states into states of even and odd parity, corresponding 

to eigenvalues + 1 and — 1 of the operator 77, was based on the require¬ 

ment that the state vector of an object having no intrinsic spatial 

properties, except position, be a unique function of the coordinates. 

This means 772 can differ from the unit operation only by a phase factor 

(a constant of modulus 1) which had been chosen such that 772 = 7. If 

one tries to assign parity to objects having spin j = one encounters an 

additional ambiguity stemming from the double-valuedness of spin 

states as a function of the coordinates. Depending on whether one con¬ 

siders application of 77 twice as amounting to a rotation of angle n2-rr 

with n even, or amounting to that rotation with n odd, one obtains 

(14.30) 

n,2\u') = p,2\u'y = | u') or rr2\u"y = p,,2\u"y = -\uny 

each case corresponding to a possible representation in which 

(14.31) Pi = +1; P'2 = -1 or P\ = + *; P\ = -i. 

Accordingly one may represent the operator 77 by either 

if the parity states are represented as usual by \u+y = \u+y = (J) and 

\u'Jy = |u'Py = (j). Since a phase factor is always at one’s disposal in any 

unitary operator, however, no physical restriction is obtained if the 

representation 77' is used, but it should be kept in mind that this is a 
convention. 

As will be shown in Section 26, the only experimental information 

available about the parity of two interacting objects is whether they have 

the same parity or whether they have opposite parity. It is apparently 

impossible to devise an experiment which would allow determination of 

the absolute parity of an object. One must therefore make the further 

convention of assigning to some object a certain parity and then deter¬ 

mining the parity of all other objects relative to that reference object. 

The standard convention is to assign even parity to the vacuum state. 

NOTES 

Wigner [1] gave the first clear formulation of the quantum mechanical 

law of conservation of parity as derived from inversion symmetry, 

pointing out that it has no analog in classical mechanics and that it is 

the origin of selection rules discovered in atomic spectra by Laporte [2]. 
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(Incidentally, Wigner did not use the term “parity” in his original 

paper, and Pauli in his famous encyclopedia article calls this quantity 

the “signature.” The present author has been unable to ascertain who 

invented the term “parity” for the eigenvalue of the inversion operator 

n.) 
Weyl [3] gives an account of the somewhat inconspicuous role played 

by inversion symmetry in classical physics. 

Wu et al. [4] discovered the nonconservation of parity in /3-decay of 

Co60 by performing an experiment suggested by Lee and Yang [5]. The 

possibility of re-establishing reflection symmetry in case of parity non¬ 

conservation through admission of combined inversion as a symmetry 

operation had already been suggested by Yang [6] in his report to the 

International Conference in Theoretical Physics, Seattle, 1956. See also 

Landau [7] and footnote 9 in the paper by Wick et al. [8], 
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SECTION 15 

Invariance under Reversal of Motion 

Another symmetry property with which all objects and processes 

occurring in nature seem to be endowed is “reversality.” Any physical 

process or property involving an actual object is said to have reversality 

if after reversal of all motions one obtains again a possible physical 

process or property involving the same object. 

If reversality were not a universal property of physical reality, there 

should exist stationary situations which are invariant with respect to 

all symmetry operations except reversal of motion. For example, if one 

were to observe in a /3-decay process a state in which the spin of the 

nucleus s, the velocity of the emitted electron ve, and the velocity of the 

emitted y-ray vy are correlated as indicated in Fig. 15.1, so that vy, \e, 

Fig. 15.1. Example of a state which does not have reversality. 

and s, in this order, form a right-hand system, one would have to infer 

that this state does not have reversality, unless there exists an, as yet 

undiscovered, other form of matter, metamatter (say), distinct from 

antimatter, which is in every respect the motion-reversed image of 

ordinary matter. Indeed, if one reverses in Fig. 15.1 all motions, one 

obtains a state indicated in Fig. 15.2, which is essentially different from 

Fig. 15.1 because the reversed motions vy, ve, and s, in this order, form a 

left-hand system contrary to the hypothetical experimental situation of 

Fig. 15.1. It should be noted that the state pictured in Fig. 15.1 has 

parity, because its mirror image, as indicated in Fig. 15.3, is again a state 

in which the reflected motions vy, v'e, s', in this order, form a right-hand 

system. 
99 
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To date all experiments designed to detect states of the kind indicated 

in Fig. 15.1 have had negative results. In particular, the /3 decay of 

Co60 as described in Fig. 14.4 has reversality, because the reversed state, 

in which the direction of both nuclear spin and electron velocity are 

Fig. 15.2. The state obtained by reversal of motion in the state described by Fig. 15.1. 

reversed, is again a possible state with the electron moving in the direc¬ 

tion opposite to the direction of nuclear spin. 

The operation of reversal of motion for a nonstationary process can 

be visualized by imagining a moving picture taken of the object under 

consideration, and then having the film reeled off backwards. Since this 

operation is formally equivalent to changing, in all expressions depending 

Fig. 15.3. The state described by Fig. 15.1 and its mirror image. 

on time, the sign of the time variable, the operation may be referred to as 

“time reversal.” Thus reversal of motion means not only the reversing 

of all motions in a given state, but also the reversing of the sequence of 
states. 

In collision processes the reversality of both initial and final state may 

lead to a very general relation between the process and its “inverse” 
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process, in which only the sequence of final and initial state is inter¬ 

changed. This relation is known as the “principle of detailed balance” 
and will be taken up in Section 28. 

One must not confuse reversality of a process with the thermodynamic 

notion of reversibility of a process. A process will have reversality as 

long as the process with all motions reversed is in principle a possible 

process, however improbable it may be. The mechanical mixing of a 

deck of cards has reversality although thermodynamically it would have 

to be classified as an irreversible process. It is an interesting and open 

question whether the breakdown of invariance under reversal of motion, 

and thus of the principle of detailed balance, if ever observed, would 

have any thermodynamical consequences at all, and if so, how far 

reaching these would be. 

Observables can quite generally be classified as time-even or time-odd 

depending on whether they do not or do change sign under time reversal. 

By definition of time reversal all even derivatives of the coordinate Q 

of an object, Q, Q, etc., are time-even, and all odd derivatives, Q, Q, etc., 

are time-odd. If the usual assignment of time-evenness to the mass of 

an object is taken for granted, one can infer from this that linear 

momentum P and angular momentum J are time-odd, whereas the 

energy H is a time-even observable. 

Regarding the transformation properties of electromagnetic observ¬ 

ables under time reversal, Maxwell’s equations contain only the informa¬ 

tion that electric charge and magnetic pole must transform oppositely 

under time reversal, so that if one of them is time-even the other one 

must be time-odd. In absence of any experimental information of other 

than electromagnetic origin which could decide whether electric charge 

is time-even or time-odd, charge can be considered as time-odd, in 

accordance with a suggestion by Feynman who has proposed looking 

upon positrons as electrons “running backward in time,” but it should 

be stressed that at this stage this is purely conventional. (In fact, evidence 

will be presented later indicating that electronic charge should be 

considered as time-even, because the lepton number characterizing 

electrons and positrons, as well as neutrinos and antineutrinos, is time- 

even.) Accordingly, electric field E and electric dipole moment p may 

tentatively be considered as time-odd observables, and magnetic field B 

and magnetic dipole moment p. as time-even observables. 

Although the definition of time-even and time-odd hermitean opera¬ 

tors, representing time-even and time-odd observables in quantum 

mechanics, makes sense, the division of states into states of even and odd 

“reversality,” in analogy to the division of states into states of even and 

odd parity, is obscure for the following reasons. 
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It is clear that the transformed state under time reversal 0, 

(15.1) | by = 0|6> 

cannot be connected with |6) by a linear unitary operator, because if 

one demands that time-even energy H, and time-odd linear momentum 

P and angular momentum J, transforms according to 

(15.2) &H&-1 = H; 0P0-1 - -P; 0J0"1 = -J, 

then the fundamental dynamical equation 

(15.3) H\b> = id\b)/dt 

and the canonical C.R.s 

(15.4) [PQ] = i; [J x J] = ii 

are not invariant under the corresponding unitary transformation, since 

only one side of each equation changes sign. 

One can, however, satisfy the invariance requirements demanded by 

the reversality of physical reality with an antiunitary operator 

(15.5) 0 = TK 

where T is a unitary operator representing the transformation t ->• —t, 

and K is the antilinear operator of complex conjugation, applied to all 

numbers in the state vectors, so that in terms of the ip function charac¬ 

terizing the state |6) 

(15.6) 

0|b> = 0 J \q}dqi/jb(q,t) = J \q)dqT^{q,t) = J |q>dqip$(q, -t). 

The notion of eigenstates of the reversal operator 0, in analogy to the 

eigenstates of the linear inversion operator 77, is thus obviously not a 

sensible concept in general. The fundamental dynamical equation 

satisfied by \b~)T follows now from (15.3) by application of (15.5), 

(15.7) 0770_10|6> = &id\b}ldt = -i@d\b)ldt = i(d/dt) (0|6» 

which for 0770_1 = 77 can be written 

(15.8) H\b}T = id\b}Tldt 

and is seen to be identical with Eq. (15.3) satisfied by |6). The canonical 

C.R.s (15.4) are also invariant under (15.5), because the operator K 

changes the sign of the imaginary unit which appears on the right-hand 

side of each Eq. (15.4), so that application of 0 in accordance with the 

transformation properties (15.2) of P and J leads to no change in these 
equations. 
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Although a quantum number associated with 0, analogous to parity, 

does not make sense in general, one can characterize a state vector |6) 

by the eigenvalue of the operator 02, which is a linear unitary operator. 

The physical requirement that the operation of time reversal 0 carried 

out twice should resxdt in the same state, 

(15.9) 02|6> = e|6>; |e| - 1, 

means that all states must be eigenstates of 02. Since the operation of 

complex conjugation carried out twice is equivalent to the identity 

operation, K2 — I, one can write 

(15.10) 02 = TKTK = TT*K2 = TT* = el. 

From the unitarity of T follows further that 

(15.11) e2 = 1 

because for a unitary operator one has T~x = T+ = T*, so that the last 

equation (15.10) can be written 

(15.12) T* = ef* 

and by transposing this equation once again one obtains 

(15.13) T* = eT* = e2f* 

which can be true only if (15.11) holds. The possible eigenvalues of 02 

are therefore e = +1 and e = — 1. Multiplication of 0 with a phase eia 

does not affect 02, of course, because ela ©em 0 = elae~l0c 02 = 02. 

It can be shown quite generally that states describing an object having 

integer total angular momentum j and no other internal attributes 

belong to the eigenvalue e = + 1 of 02, and that states describing an 

object having half-odd integer total angular momentum j and no other 

internal attributes belong to the eigenvalue e = - 1 of 02. (For the 

purpose of the present work it actually suffices to verify this statement 

only for the values^' = 0, 1.) To do so, use will be made of a construction 

of the operator 0 in the representation in which the component operators 

of angular momentum Jx, J3 have real matrix elements, and the com¬ 

ponent operator J2 has pure imaginary matrix elements, as explained 

in Appendix 1. 
The transformation equation (15.2) for J, in components, 

(15.14) GJi +Ji 0 = 0; ©J 2+J 2 0 — 0; 0J3+J30 = O 

requires the unitary operator T defined by (15.5) to satisfy the relations 

(15.15) TJX+JXT = 0; TJ2-J2T = 0] TJS+JST = 0 
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which are solved by a rotation of amount u around the 2-axis, as is 

intuitively obvious, 

(15.16) T = ei7rJ'; T+ = 

Indeed, by expansion and use of the C.R.s for the after the fashion of 

(12.16) one finds 

TJ 1T~1 — el7rJ,tTxe~l7Tjt = Jr1cos7r+Jr3sin77- = — J1 

(15.17) TJ2T~l = einJ'J2e~i7Tj' = J2 

TJ 2T~l = el7rJ*J 3e~l7rJi = t/gcos^—J^sin^ = — J3. 

In this representation the operator ©2 takes now the form 

(15.18) 

@2 = TT* = e~i7Tj'' = e2i7rJ° = I + 2i-nJ 2 + [(2i77-)2/2!] Jf +... 

Now consider an object in an eigenstate of the total angular momen¬ 

tum J2 characterized by the quantum number j so that J2 —j(j + 1)1. 
It is always possible to perform a unitary operation which leaves ©2 
invariant, but makes J2 a diagonal matrix, so that it can be replaced by 

its eigenvalues which differ from the value j of the total angular momen¬ 

tum only by integers. Thus, since exp [27rt(integer)J = 1, ©2 is identical 

with exp \2ttij] which is equal to + 1 for integer j and — 1 for half-odd 
integer^’.* 

It is perhaps instructive to verify this general result for the special 
cases j = 0, j = \,j = 1. For J — 0 one has trivially 

(15.19) ©\j = 0) = I. 

For j = i one has J2 = ±(°i „*) and thus J\ = \2I, so that 

(15-20) ©2(j =:i)=i I cos tt + 2iJ2 sin tt = — I. 

For j — 1 one has 

Jo = 
a/2 

Jl = 4 
10-1) 

0 2 0 

-1 o 1; 

J\ = J2, 

so that 

(15.21) ©2(j = 1) = I + iJ2 sin (277) — J|[l — cos (2-77-)] = I 

and so on. 

* The author is indebted to Mr. David Pink and to Mr. Patrick Whelan for this simple 
line of reasoning. 
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The cases e = + 1 and e — — 1 require now separate treatment. 

(i) e = +1. The object can be described in terms of an orthogonal set 

| b+~) of eigenstates of a complete observable B, for example in terms of 

the eigenstates 11, mi) of J2 and J3, which are simultaneously eigenstates 
of the operator ©2, 

(15.22) 6>2| b+} = |6+>. 

It follows that |5+)T = ®|6+) is also an eigenstate of <92 with eigenvalue 

+ 1. So is 

(15.23) |weven> = c(|&+> + ®|6+»; c real, if @|&+>/-|5+>; 

unless it vanishes, and one has thus 

(15.24) ®|weven> = Kven> 

which explains the label “even”. If it should happen that for a specific 

state, |b'+y say, ©\b'+y = — |6+>, one chooses 

(16.23') |«„„>= ♦!»;>; if ®|6i> = -|*+>; 

and Eq. (15.24) is again valid. Similarly, one can construct from the set 

|6+> a set |«odd> by 

(15.25) |wodd> = c(|&+>-6>|&+»; c real, if ©\b+) ^ |6+> 

(15.25') |wodd> = i\b'+>; if &\b'+> = |&;> 

which satisfies 

(15.26) &\uodd> = - |%odd>. 

This possibility of finding even and odd states is, contrary to the situation 

under the inversion operation 77, not equivalent to the possibility of labeling 

the states by a physically meaningful quantum number characteristic of ©, 

such as parity in case of 77, because one can transform an even state into 

an odd state under © and vice versa simply by multiplication of |u> with a 

physically unobservable phase factor i. The quantum number e charac¬ 

teristic of ®2, however, is not affected by such a change in phase and 

should therefore be a physically meaningful label of a state. 

Although the states \u) are not eigenstates of © in the usual sense, they 

may be referred to as “invariant states” of ©, and one has the general 

theorem: In a state invariant under © the expectation value of any time-odd 

operator vanishes. 
Indeed, if ©A<9-1 — — A, then in an invariant state |u), so that 

©\u) =eia\u) with arbitrary a, 

(15.27) A = <u\A\u> = -<u\©A©~x\u> = - (u\e~ia A eia\u) = -A 
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requiring ^4=0, independent of the phase a. This statement is thus 

invariant under unitary transformations, even though any particular 

state \u), say |weven>, allows only real orthogonal transformations 

|u) ->R\u> with R = R_1 if © = I is to remain valid. Under a unitary 

transformation U+ = U~l the operator & transforms into 

& = U0U-1 = UT{U~l)*K = UiJJ-^T'K 

with 

T' = U+TU (or <9' = UUT'K). 

If Feynman’s assignment of time-oddness to electric charge and electric 

dipole moment were correct, one could, for example, conclude from this 

theorem that an elementary particle which has integer spin, and no 

other intrinsic attributes which might invalidate the labeling with the 

quantum number e = + 1, must be electrically neutral and cannot possess 

any electric dipole moment either. 

If it should happen for a specific state 16+) that = |6+>, then 

also @| 6+) = | b+y, and the two invariant states 

Kv,n> = c(|6'+>+«|iO) = <#;>+|&:» 

Kv„> = c(|&:>+<9|!0) - c(|&;> + K» 

are accidentally identical. This apparent incompleteness can always be 

removed by choosing i\b'+y and |£q> as basis, because then the invariant 

states 

(15 28') = c(*l&+> + ®*K» = ‘C(l,4>-!*'» 

Kv„> = c(|k>+©i*4>) = <#;>+K» 
are properly orthogonal. 

It is perhaps instructive to have the foregoing statements illustrated 

for the case j — 1 in which one has explicitly 

(15.29) T(j — 1) = el7rJa — 7 + sin 77—J|(l — cos7r) 

= 7-271 = 

Taking as basis the eigenstates of Js, namely 

(15.28) 

(15.30) 1, +1) = |i,o> 

one finds 

(15.31) 

6>|1,+1> = 11, — 1>; ©|1,0> = — 11,0>; ©|1,-1> = |1,+1> 
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and the accidental cases (15.23') and (15.28) are realized. One chooses 

therefore as basis instead, the set with the phases 

(15.30') 11, +1) 1»-1> 

which yield the three orthogonal invariant states 

N + 1)> = (1/V2)(|1, +1>+0|1, +1» 

= (l/V2)(|l,+l>-i|l,-l» = 

/? 
(15.32) |it(0)> = |1,0> = [i 

\0 

K-1)> = (1/V2)(|1, —1> + 0|1, -1» 

= (l/V2)(|l,-l>-i|l,+l» = 

The fact that the matrix T is symmetrical for j — 1, as given in Eq. 

(15.29), is a special case of the general fact that T is symmetrical whenever 

€= +1. This follows from ©2 = TT* = I by multiplication with the 

transposed operator T = T+* yielding 

(15.33) TT*T+* = T and T = T for e= +1 

by the unitary of T. Similarly, for the case e = — 1, which will be taken 

up now, one obtains 

(15.34) T = -T for e = -1 

which means in this case T must be a skew-symmetrical matrix. 

(ii) e = —1. The object can be described in terms of an orthogonal set 

|6_) of eigenstates of a complete observable B, for example in terms of 

the eigenstates \ j, m> of J2 andJ3, which are simultaneous eigenstates of 

©2, 
(15.35) @2\bJ) = -|6_>. 

It follows again, as in the case e = + 1, that \b-)T =©\6_> is also eigen¬ 

state of ©2 with eigenvalue - 1. However, |6_>T is always orthogonal to 

|6_), because 

(15.36) 

<&_|<%_> = <02&_|©6_> = (and therefore = 0) 
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where the first equality sign follows from (a\by = <®6|®a> and the 

second from (15.35). 

Denoting the two orthogonal complements of any state |6_) by \b'A) 

and | biy and defining them with a convention of phase so that 

(15.37) 16") = i&\b'J) and |61> = i* ©\bf} — — i©\bf) 

one can thus say the eigenvectors of ®2 are twofold degenerate, and the 

transition from the set \b'J) to the set |bf) cannot be effected by a unitary 

transformation. To accommodate the reversality of an object one requires 

therefore, in the case e = — l,for its complete description an additional two 

dimensions in the abstract state vector space. One can satisfy Eqs. (15.37) 

by the 2w-dimensional representation 

(15.37') |61> = |»>xQ; |6-> = li/xQ; |6>T = TK\b> 

where n is the dimension of the space spanned by the eigenvectors |6> of 

B, provided in reversality space, spanned by the vectors (J) and (?), the 

operator © acquires an additional 2x2 matrix and is thus altogether of 

the form 

(15.38) © = T_K) T_ = Tx 

where T represents the operation t —t applied to the components of 
|by only. Indeed, 

;®K> = _J)(J) = i|6v(“)= 1*0 

(15.37) 

-i®|61>= “')(_")= -|6>(;) = |K>. 

Operators that are even or odd under reversal of motion also acquire in 

reversality space an additional 2x2 matrix, which for hermitean opera¬ 
tors must be taken as the unit matrix, 

(15.39) ^(even) = ^x|J ; £(odd) = £ x P 

because then 

(15.40) 

©J.(even) — ^4(even) © = ( ^ 
\©A — A© 

= 0 provided 0^1 —^4© = 0 

(0,4 -v4©)\ 

0 / 
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and 
/ 0 ©B + B&\ 

(15.41) ©.B(odd) + j5(odd) © = 0 ) 

= 0 provided ©B + B© — 0. 

For the purpose of illustration consider the case j = \ in which one has 

(15.42) 

T(j — l) = einJ2 - /cos(77-/2) + 2i/2sin(77'/2) = 2iJ» - 

Taking as basis the eigenstates of J 3, namely 

(15.43) |bx) — ||, + J) — ; |&2> — 12» 2) — 

one has the representations 

Transition to a different set of basis vectors |o_>, say, can be carried out by writing the 

vectors | o)_> as linear combinations 

(15.45) |a)-> = S Vjk\bk_') + 'L Wjk\bk_y 
k k 

so that the set |a'_>, if it is to satisfy (15.37), is accordingly expanded in the fashion 

(15.46) |a*_> = = — 2 Wfk\bkJy+'L V*k\bkz}. 

Hence, in reversality space the transformation matrix S connecting the set 

with the set 
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has obviously the form 

IV 1F\ 
(15.47) S — I v*\’ 7 and W n-dimensional matrices. 

In order that |a>, |dyT be orthonormal if |6>, |6>7 are orthonormal, S must be unitary, 

(15.48) SS+ = I or 

V w \ (F+ - W*+\ / VV++WW+ -VW+WV \ _ l 
w* V*) \!F + V*+ ) ~ [-w*v+ + v*w+ y* y*+J ~ 1 

requiring 

(15.49) VV++ WW+ = I and VW = WV. 

It is a well-known fact of algebra that if (15.49) is satisfied, (S' becomes a “symplectic” 

matrix, which means it leaves T = (J -J) invariant, in the sense STS = T. In other words, 

any other set |a>, \a)r can be obtained from the basis |6>, \b')T by a unitary symplectic 

transformation. 

Finally, since any even hermitean operator A = A+, 0A0~X = A satis¬ 

fies generally, because of 02 = -I = - 0~l0 and <a|6) = <0b\0a), 

(15.50) (b'_\Ab'A> = (0AbL\0b'A) - (0A0~l 0b'_\0b'A) 

- <.A0bL\0bL\> - <^46"|6"> - <bl\Ab'C) 

and an odd hermitean operator B = B+, 0B0~X = - B satisfies, by the 
same argument, 

(15.51) <b-\Bb'-) - -<bl\Bbl} 

it follows that in a state 

(15.52) |6even_> = c(|61> + |6'» = c(|61> + i®|61» 

the expectation value of any odd operator vanishes, and in a state 

(15-53) |6odd_> = c(|61> — |6>") 

the expectation value of any even operator vanishes. 

The fact that, in the case where 02 = - I, a state and its time-reversed 

analog are always orthogonal—and that all hermitean operators, be 

they even or odd, are necessarily represented by diagonal matrices in 

reversality space according to (15.39)—can be summarized by saying a 

“ super selection rule” holds: There are no observables which have matrix 
elements connecting the orthogonal states |61> and |6">. 

Despite the impossibility of introducing the concept of “reversality” 

of a state in analogy to the concept of parity, it is, in principle, possible 

to introduce the concept of “relative reversality” of a state and its 

time-reversed analog, provided one can have composite physical objects 

made up out of an object and its time-reversed analog, so that the state 
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of the composite object is a direct product |c> = |6) x |b}T. Such a state 

can be an eigenstate of © in the sense that if ©\c) = r|c>, where r is a 

number, then the definition of r is not affected by multiplication of |6) 

with a phase factor em because, in that case, \b)>T has to be multiplied 

with e~la. Unless one can take serious certain speculations, touched upon 

in Section 17, which make the muon-neutrino the time-reversed analog 

of the ordinary neutrino, no such states |c> seem to be realized in nature. 

However, a similar situation arises with respect to the antiunitary 

operation of particle conjugation, making it possible, for example, to 

consider the positronium state as a direct product of a particle state and 

its particle conjugate state, giving rise to the concept of the “relative 

conjugality” of electron and positron, exhibited as “conjugality” of 

positronium, as will be explained in Section 28. 

It is interesting to speculate whether there is any physical attribute 

which removes the basic degeneracy of the states |7_> with respect to all 

other attributes B. Such an attribute might be the fermion number F, 

which has the value + 1 for any fermion and the value — 1 for any anti¬ 

fermion, is additive, and is, by experimental evidence, strictly conserved 

in all known interactions. Thus if ]£/_> represents a fermion state satis¬ 

fying 

(15.54) F\b'J) = + 161) 

then | bl} would represent an antifermion state, satisfying 

(15.55) = — |6">. 

The operator F would act in the space spanned by the vectors |6> as 

identity and thus have in reversality space the representation 

(15.56) _j) 

which guarantees that Eqs. (15.54) and (15.55) hold, and makes F an 

operator odd under time reversal, 

(15.57) FT~+T-F = Ix 

- 7x 

1 °\/° 1° ~l\(l °V 
0 -1/\1 0/ + \l oj\0 -1/ 

u >(::)]-•■ 
Thus, if | b'B) represents an electron characterized by the quantum num¬ 

bers (k, j — \,m — +|), the time reversed state |b'B) describes a positron 

having the quantum numbers (- k,j = \,m= -A). This is precisely the 

suggestion made by Feynman, who proposed to describe positrons as 
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electrons “running backwards in time.” If this point of view is adopted, 

then the strict conservation of F becomes a consequence of the super¬ 

selection ride which does not permit the transformation of a fermion state 

into an antifermion state and vice versa. 

Unfortunately, this point of view, though very attractive, is not more 

than a tentative hypothesis based on rather tenuous ground, because it 

is not at all certain that the degeneracy of states belonging to the 

quantum number @2 — — 1 is always the origin of the superselection 

rule leading to conservation of fermion number. In fact, there is yet 

another symmetry operation of apparent universal validity, namely 
the combined inversion 

(15.58) e = nr 

made up out of the unitary operation of coordinate inversion FI and the 

operator F which represents the conversion of particles into antiparticles 

and vice versa. In the case of fermions, E is antiunitary, as will be shown 

in Section 19, and therefore gives rise to yet another dichotomic quantum 

number, namely the eigenvalue of E2 which may be + 1 or — 1, as in the 

case of the operation ®2. Thus, if a fermion belongs to the quantum 

number E2 = - 1, yet another superselection rule would separate the 

halfspaces |6) and E\b~), and could be made responsible for the strict 

conservation of yet another attribute which removes the degeneracy 

between the state and its combined inverted state. Altogether it should 

be possible to classify elementary particles into “types” which are 

labeled according to the values of e@ = ®2 and e2 = E2 as \beE €Q>, and 

of which there must then exist four types, namely |&++>, |6+_>, |6_h), 

I6—>• 
Experimentally, there is strong evidence that fermion number is 

separately conserved for baryons and for two kinds of leptons. One may 

speak of a law of conservation of baryon number B, of a law of con¬ 

servation of lepton number L, and of a law of conservation of muon 
number L„. 

There are some reasons to believe that the conservation of the lepton 

number L, associated with the ordinary neutrinos (L = +1) and anti¬ 

neutrinos (L= - 1) emitted in various /3 decays of nuclei, is a conse¬ 

quence of the superselection rule arising from the quantum number 

€E — — 1 attributed to neutrino and antineutrino (as well as to electron 

and positron), because the antineutrino state |r> can be obtained from 

the neutrino state |v> by combined inversion, |r> = E\v}, and similarly 

the positron state |e+> should be considered as obtained from the 

electron state \e~) by combined inversion, as will be shown in Sections 

17 and 19. Muon number L^ and baryon number B, on the other hand, 
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can be consistently associated with the superselection rule flowing from 

time-reversal symmetry, as will be shown in Sections 17 and 29. 

In order that an attempt at classification of elementary particles into 

“types” can be made in proper detail, it is found convenient to develop 

first a formalism which allows the description of states with a variable 

number of particles present. 

NOTES 

Kramers [1] first noticed a peculiar twofold degeneracy of states 

describing an odd number of electrons in absence of external magnetic 

fields, which was recognized by Wigner [2], as a consequence of time- 

reversal symmetry in case of systems of half-odd integer angular 

momentum. This paper also marks the advent of anti-unitary symmetry 

operations in quantum mechanics. 

Zocher and Torok [3] have given a review of the on first sight in¬ 

conspicuous consequences of time-reversal symmetry in classical 

physics. 

Wigner [4] has developed the formalism of anti-unitary operators in 

full generality, and has also adduced [5] experimental criteria which 

permit to decide, in principle, whether a symmetry operation must be 

represented by a unitary or an anti-unitary operator in quantum 

mechanics. 
Feynman [6] has promulgated the view to look upon positrons as 

electrons “running backward in time.” 
Wick et al. [7] have coined the term “superselection rule” for situa¬ 

tions in which there are neither spontaneous transitions between states 

belonging to two subspaces, nor measurable quantities with finite 

matrix elements between these states. 
Wigner [8] has pointed out that one might be able to salvage, should 

the need arise, symmetry with respect to reversal of motion by introduc¬ 

tion of the concept of metamatter, distinct from antimatter. 
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SECTION 16 

The Particle Concept in Quantum Mechanics 

The formalism of quantum mechanics lends itself naturally to an 

adaptation toward the description of “particles,” which are thought of 

as carriers of various observable attributes, to be elaborated in the 

following Sections 17 and 18. 

It should be understood that the particle concept in quantum mechan¬ 

ics is an abstraction rather far removed from the naive particle concept 

of classical physics, in which a particle may be visualized, with impunity, 

as a kind of small ball, capable of travelling as a sort of coherent body 

along a specifiable path in space and time. The very incompatibility of 

observable position and momentum has led in quantum mechanics to 

an erosion of such naive pictures, and the word “particle” stands for a 

quantum mechanical state characterized by a set of quantum numbers 

which are associated, in principle, with an identifiable event such as the 

momentum transfer in a “collision,” or with a sequence of events such 

as the vapor trail in a cloud chamber. 
This gain in abstraction, purchased with the loss of a naively satisfying 

picture, has brought under the domain of the quantum mechanical 

particle concept phenomena which earlier were thought of as belonging 

to the classical field concept. Thus, large sections of the field dynamics 

of gases, fluids, and solids have been grasped quantum mechanically 

through introduction of the concept of the exciton, the phonon, the 

roton, etc., and it has become possible to describe many properties of 

macroscopic bodies with the same formalism that was introduced 

originally for the purpose of describing the so-called elementary particles, 

the fermions and the bosons. 
A remnant of the classical distinction between “actual” particles such 

as electrons, and “actual” fields such as the velocity field in a fluid, is 

the quantum mechanical distinction between particles and quasi 

particles. There is, at present, still a conceptual division between the 

“vacuum” from which the various elementary particles are thought to 

arise, and the “quasi vacuum” from which the various quasi particles 

or excitons of solid, liquid, or gas state may arise. 
By generally accepted usage, the elementary particle vacuum is 
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imagined as a completely empty state. The quasi vacuum, in contrast, 

is always thought of as some kind of full state, either as the ground state 

of a lattice made up out of actually present atoms, or as the electronic 

Fermi sea without holes or gaps, etc. However, the formalism, to be 

developed later on, does not reflect this distinction between vacuum and 

quasi vacuum, particles and quasi particles. Both vacuum and quasi 

vacuum can always be represented by a state vector denoted |0)>, 

indicating a state completely empty of particles and quasi particles, 

respectively. 
In this connection it seems worth recalling the curious historical fact 

that, at a certain stage in the development of the theory of elementary 

particles, Dirac found it convenient to introduce as the vacuum state 

for the electron-positron particle system a far from empty state, namely 

the state in which all negative energy levels were filled without holes or 

gaps, and which thus resembled what today would be called a quasi¬ 

vacuum state. That Dirac could do so without getting involved in serious 

inconsistencies is rather remarkable, and the formal reasons for Dirac’s 

alternative will be taken up in some detail in Section 17. 

In any case, the distinction between particles and quasi particles in 

recent years has shown a tendency to become blurred, and as a result 

there has been a vigorous cross-fertilization of elementary particle theory 

and theories of the solid, liquid, and gas states of matter. 

It is, of course, not intended here to deny by these remarks the useful¬ 

ness of the description of macroscopic bodies in terms of atoms making 

up, say, a solid lattice. After all, lattice atoms are rather manifest in 

experiments involving relatively high energies, such as in X-ray diffrac¬ 

tion patterns produced by solids, so that in this experimental sense one 
may say lattice atoms do, in fact, exist. 

Nevertheless, it seems by no means established that one cannot, in 

principle, account for all observations made on macroscopic bodies in 

terms of quasi particles. Should such a program turn out to be realizable, 

one can logically conceive a situation in which it might become feasible 

and even profitable to abandon the concept of atoms entirely and describe 

matter entirely in terms of what are now called quasi particles. 

In this vein, one can speculate about the possibility of developing a 

theory of elementary particles in terms of an underlying substratum or 

Urmaterie, which might play for the elementary particle vacuum the 

same role as that played by the atoms of macroscopic bodies for the 

quasi vacuum, which is a substratum from which the quasi particles arise. 

Dirac’s original notion regarding the electron-positron vacuum may 
conceivably have been abandoned too rashly. 

Returning now to the established knowledge about particles and quasi 
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particles, there is a categorical statement one can make about the 

occupation number of fermion or boson states which cannot be made, in 

the same categorical fashion, about quasi particles, as follows. 

Suppose one knows what constitutes a complete set of quantum 

numbers t for a physical object, so that specific values of r characterize 

the object completely. For example, in case of an elementary particle 

describable in terms of momentum k, spin s, and lepton number L, r may 

stand for the six quantum numbers (k,j,m,L). Since the notion of 

particle implies the existence of objects which can, in principle, be 

counted, one may infer the existence of occupation states |0T>, |1T>, 

|2_>, ... which are eigenstates of a suitably chosen operator representing 

the observable number of particles having property r, so that these 

states describe situations in which, respectively, 0, 1, 2, ... particles of 

property r are present. 

For reasons only partly understood to date, all particles with half-odd 

integer spin, called fermions, satisfy the 

Exclusion Principle: The number of fermions Nr in a given, complete, 

quantum state r is restricted to either 0 or 1. 

The number nr of particles with integer spin, called bosons, in a given 

quantum state r is apparently unrestricted, except that nT must be ^ 0. 

No categorical statement of this kind can be made for quasi particles. 

Restrictions on the occupation number of quasi-particle states, if any, 

will have to be stated separately for each case. 

NOTES 

Pauli [1] discovered the exclusion principle. Readers interested in the 

history of the profound contributions to quantum mechanics made by 

Pauli will find abundant food for thought in Fierz and Weisskopf [2], 

The connection between validity of the exclusion principle and spin, 

which is difficult to understand, has been the subject of work by Pauli [3] 

and Liiders and Zumino [4], 
Dirac [5] first conceived of the vacuum as a state which need not be 

empty. 
A more recent attempt to fashion a description of elementary particles 

after a quasi-particle model is contained in the work by Nambu and 

Jona-Lasinio [6], An earlier, more naive, attempt by Kaempffer [7] 

turned out to be abortive. 
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.SECTION 17 

Fermion States 

The exclusion principle implies that the number of fermions NT in a 

given complete quantum state t is a dichotomic variable. The only 

existing occupation states are |0T> and |lT>, which may be represented 

in a two-dimensional abstract space as 

(17.1) 

These state vectors form an orthonormal set. A suitable operator 

representing the observable fermion number N(t) is obviously, in this 

space, 

(17.2) N(r) = 

since it has the required property 

(17.3) N(r) |0T> = 0T|0T>; A(t)|1t> = 1T|1T>. 

A particularly useful concept is that of the annihilation operator a(r) 

and the creation operator a+(r) which connect the states |0T> and 11T) 

according to 

(17.4) a(r)|lT> = cT|0T>; a+(r)|0T> = c*T\ 1T> 

where cT is some complex number. Consistency with the exclusion 

principle requires further the relations 

(17.5) «(t)|0t> = 0; a+(r)|lT> = 0. 

A suitable set of such operators is 

(17.6) a+(r) 

which justifies the notation adopted in (17.4) making a+(r) the hermitean 

conjugate of a(r). The requirement that successive application of one 

creation operator and one annihilation operator in either order should 

restore the original state subjects the factor cT to the condition 
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(17.7) |cT|2 = 1 

so that indeed 

(17.8) 

a+(r)a(r)|lT> - cTa+{r)|0T> - |cT|2|lT> = |1T>; etc. 

With this choice of cT one finds the operators a(r) and a+(t) connected 

with N(t) by the equations 

(17.9) 

a+(T)a(T) = IctI2(q °tj = A'M'• 

a(T)a+(T) = |ct|2(q ®) = /(T)-Jff(r) 

where 7(r) stands for the identity operator 

(17.1°) Ur) - (J 

The two equations (17.9) added yield the anticommutation relation 

(17.11) a(r) a+(r) + a+(r) a(r) = I(r). 

The description can now be extended to envelop all quantum states 

r1; r2, ..., rm, ... accessible to the fermions under consideration. The 

occupation state of a fermion system is defined in the product space 

spanned by the occupation states for the various quantum states as 

(17.12) 

K„iv T2> •> = i^>xk>x...xk>x 

For .convenience it will now be agreed to write the occupation numbers 

in a certain order, corresponding to a certain sequence of labeling the 

quantum states rm. Thus rOT will always be written to the left of r„ if 

m <n. Any physically observable effect must, of course, be unaffected 
by any change in convention. 

An important special occupation state is the vacuum state defined by 

(17.13) |0> = |0Ti,0Ta,...,0Tm,...> 

which describes, thus, a completely empty state. To this state there 

exists, at least for fermions, an interesting counterpart, namely the full 
state defined by 

(17.14) I1) = |lTl. 1T:.4.. •••>■ 

It should now be possible to construct creation operators a+{Tm) which 

raise fermions from vacuum into the various quantum states rTO, 
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(17.15) 

and annihilation operators a(rTO) which remove fermions from the full 

state of the various quantum numbers rm, 

(17.16) a(rm)|...lr,...> = cTJ...OT....>. 

In this fashion any occupation state (17.12) can either be raised from 

vacuum by successive application of the various creation operators or be 

obtained from the full state by successive application of the appropriate 

annihilation operators. 

By suitable choice of the factors cTm one can represent, in the product 

space (17.12), the operators a+(rm) and a(rTO) by matrices satisfying the 

anti-C.R.s 

(17.17) 

{u(tot) = {(1 iTm) O' (Tm')} 0, \ci{rm) a (tto')) l{Tm)^mm' 

where {ab} = ab + ba, and which contain relation (17.11) as a special case. 

This is accomplished by putting 

TO —1 
(17-18) = n (l-2Ar„) 

n=1 

so that condition (17.7) is again satisfied, cTm being + 1 or — 1 depending 

on whether the number of occupied states NTm — 1 with n < m is even or 

odd, because the occupied states each contribute the factor — 1 to 

(17.18) whereas the empty states each contribute the factor +1. By 

noting the identity 

(17.19) I(rn)-2N{rn) = (J = h(rn) (say) 

one can write down immediately the matrix representation for a(rm) 

and a+(rm), 

(17.20) 

«(tto) 

(17.21) 

°) 
^' T’m+i 

X . . . 

® (Tm) 

TO—1 
n I‘s(Tn)x 
n=1 

00 

x n 
n=m +1 

I{Tn) 

the understanding being that a matrix labeled rn operates solely on the 

subspace belonging to the quantum state rn in the general product space 

(17.12). 
The representation used here has the interesting property of being 

invariant under a unitary transformation 
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(17.22) 

U u+ = o 1 
1 o 

X . . . X 
0 1 

1 0 
x... - f] 7iK) (say) 

n=1 

which, in effect, interchanges the roles played by occupied quantum 

states and empty quantum states or “holes.” Indeed, for any n, 

(17.23) 

DC X D 
so that 

(17.24) C7|0>=|1>; C7|l> = |0> 

and 

1 0 

0 0 
= I(t)-N(t) 

(17.25) 

a'(Tm) = Ua(rm)U+ = (-1 )m_1a+(rm); 

Equations (17.25) can be written explicitly 

(17.26) 

a (Tm) — crm ( i q| > iTm) 
\ I T m 

with 

a+'(T„) = (-l)”-'a(T„). 

(17.27) 
VYl — 1 no — i 

n = n (2^.-D = 
n=l 

m — 1 

n 
71 = 1 

It is this peculiar symmetry between occupied states raised from vacuum 

and corresponding holes in the full state which enabled Dirac to consider 

positrons as holes in a filled “sea” of negative energy electrons. 

For application to the theory of quasi particles it is often convenient 

to perform a unitary transformation U(rm) in which, for some of the 

quantum states only, namely those belonging to rn with n < m, the roles 

of occupied and empty states are interchanged. The corresponding 
operator is then 

(17.28) 

U(rJ = U+( rj X . . . X 

As a first, example, consider a fermion in a simultaneous eigenstate of 

momentum k and spin quantum number «= +1 or s= -1, denoted 

|k,s>, which is obtained from vacuum by application of the creation 

operator «+(k,5), so that, including the two-dimensional occupation 
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space, the total state vector of such a single fermion state reads explicitly 

(”•29) |1M> = ®+(M)|0> = |M>xQ. 

The simplest particles that can be described completely by their momen¬ 

tum k and spin s are the neutrino and the antineutrino, which possess 

no mass so that energy Q and momentum k satisfy 

(17.30) I22-k2 - 0 

or, if one requires energy to be a positive number, 

(17.31) Q = |k|. 

The neutrinos and antineutrinos arising in the /3 decay of nuclei differ 

experimentally in that the spin of the neutrino is always aligned parallel 

with a direction opposite to its momentum (spin and momentum are 

“antiparallel”): the neutrino is left-handed, 

(17.32) (s-k) = —k— — |k|, for neutrino, 

whereas the antineutrino is right-handed, in the sense 

(17.33) (s-k) = +|k|, for antineutrino. 

Equation (17.31) can therefore be written 

f — (s • k) for neutrino 
(17.34) Q = \ 

[ + (s • k) for antineutrino 

Accordingly, suitable Hamiltonians for the description of v and v should 

be 

(17.35) Hv = — (a-P); H-v = +(a-P), 

with the understanding that, upon resolution into components in spin 

space, 

(17.36) 

H |k,s> = +(a-P)|k,5> = |k||k,s> means 

_/ Ps Pi-iP2\/|k,5>i\ . ./Ik.s)^ 
+ ^P1 + fP2 -P3 / \ jk, <s>2/ \|fe»«>2/ 

In coordinate representation, the eigenstate |k,s) can be character¬ 

ized by two-component f functions [see Eq. (9.30)] 

(17.37) <q(f)|k,*> = Pk>s(qA) = e+iOt0kff(q) 

so that 
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(17.38) |k,s> = J |q(f)> ^(q^dq. 

By the same reasoning as the one employed in the derivation of (9.30) 

from (9.20), these ifi functions must satisfy, if one uses P = —i(d/dQ) 

and H = +i(d/dt) and denotes the ifj functions for neutrino and anti¬ 

neutrino by cf> and n, respectively, 

(17.39) 

q) = +i[a(d/dq)]^(q) 

(d/dq3) (d/dq1)-i{dldq2)\/(f>1\ = _ik|/^i 

{d/dq^ + iidldqz) ~(dldqs) )\<f> J \<f>2 

(17.40) 

H-Vu{q) - -i[o{d/dq)]w(q) 

(d/dq3) {dldq1)-i(dldq2)\/7T1\ _ /ttO 

{dldq1)+i{d/dq2) -{d/dqz) J\tt J 1 1 \ttJ' 

The solutions of (17.39) can be obtained by writing 

(17.41) <f>n(q) = Ane~ik* 

with amplitudes to be determined from the linear equations 

+ k3 A i + (Aq — ik2) A2 = —\k\A-i 
(17.42) 

+ (k1 + ik2) A1 — k3A2 — —| A:|^42 

and the normalization condition 

(17.43) J «/>*(q)«/>(q)dq = (\A1\2+ \A2\*) V = 1. 
v 

The necessary and sufficient condition for existence of a nontrivial 

solution of (17.42) is the vanishing of the coefficient determinant 

(17.44) 

+ k3 + |&| 

4- (&i + ik2) 

+ {k1-ik2) 

— ks + | &| 
= k2 — k\ — k\ — k3 — 0 

which is identically true and affirms that the solutions </>(qJ are indeed 

of the form (17.41). One obtains thus, with suitable phase convention, 

(17.45) 

^4i = (kx-ik2) . A = 4_{\k\ + fc3) 

VW2\k\(\k\+k3)’ 2 VVV^klilkl+h) 
These amplitudes show dramatically the correlation between directions 
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of spin and momentum of the neutrino if they are written in terms of the 

polar angles #,9 describing the direction of k, kx — |&| sin#cos 9, 

k2 = |&| sin# sin 9, ks — |&| cos#, so that 

(17.46) 

Ai 
sin#e i(? 

Vf V2(l + cos#) 

1 

vf 
sin(#/2)e_i<P; 

A2 
1 

Vf 
cos(#/2) 

because now the function 

(17.47) <Mq) = 
1 

vf 
-sin(#/2)e-n 

cos (#/2) / 

contains the spin state (2.42) describing a spin - 1 in direction #, 9 of the 

momentum. 
The solutions of (17.40) are obtained by writing in the same fashion 

(17.48) 7Tn(q) = Bn e_ikq 

yielding, with suitable convention of phase, 

(17.49) 

£1 
(\k\ + fc3) _ 

VvV2\k\(\k\ +ks) ’ 
_(fcj +ik2)_ 

2 _ VvV2\k\(\k\+k3) 

so that in polar coordinates 

(17.50) 7r(q) = 
1 ( cos (#/2) \ ikq 

y/j/Vsin (#/2) ei(fJ 

the antineutrino function 7r contains the spin state (2.41) describing the 

spin + 1 in direction #, 9 of the momentum, as expected. 
Neutrinos and antineutrinos have an attribute, called the lepton 

number L, which is strictly conserved in all transitions involving creation 

or annihilation of these and other particles classified as leptons. By 

convention, one attributes the value L = + 1 to neutrino v, electron e~, 

and muon /x-, and the value L = - 1 to antineutrino v, antielectron 

(or positron) e+, and antimuon V■ Since no exception to this apparent 

conservation law is known, one is tempted to interpiet it as consecpience 

of some superselection rule associated with the existence of some anti¬ 

unitary symmetry operator whose square is -I. 
One such symmetry operator is the operator of time reversal © which 

according to the development of Section 15 has indeed the property 
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@2 = — 7 for leptons of spin \ provided they possess no intrinsic attri¬ 

butes other than spin which might invalidate this property. However, 

this operator is not a possible candidate for generation of the desired 

superselection rule preventing any neutrino state going over into an 

antineutrino state and vice versa, because the operation of time reversal, 

changing the sign of both spin and momentum, does not change the 

handedness. The very existence of neutrinos and antineutrinos with 

definite but oj)posite handedness forces one, then, to draw a far-reaching 

conclusion regarding Feynman’s suggestion to consider antiparticles 

as particles “running backwards in time”: This suggestion cannot be 

adopted to distinguish formally the neutrinos and antineutrinos emitted 
in various j8 decays. 

Fortunately, there is an operator which changes the handedness of a 

particle, namely the operator of coordinate inversion 77, changing the 

sign of momentum only and allowing it therefore to be represented in 
spin space by the identity, so that altogether 

(17.51) n=ixnD 

where IID operates on the dynamical variables such as P, 77 and repre¬ 

sents the operation q—^ — q in any ip function. In accord with a remark 

made at the end of Section 14, 77D is by convention assumed to be real, 
so that 77f> = 7. 

As it stands, 77 does not represent a symmetry operation on either 

neutrino or antineutrino states, because of the definite handedness of 

these particles, so that applied to a neutrino state, for example, 77 pro¬ 

duces a state not realized in nature. One can, however, repair this defect 

by introducing an operator of “particle conjugation” 71 which, applied 

to any neutrino state, converts it into the corresponding antineutrino 

state without affecting the dynamical attributes, so that the operator of 

“combined inversion” (in the older literature often labeled PC) 

(17.52) z = nr 

is now a symmetry operator of the neutrino-antineutrino system. 
Moreover, if r is assumed to be antiunitary with 

(17.53) T2 = -7 

then one can treat both neutrino and antineutrino so that, for these particles, 

conservation of lepton number L becomes the consequence of a superselection 

rule separating the two halves of the inversion space spanned by the states 
|r> and |v> = A|r>. 

A i epi esentation of F may be obtained by considering the merger of 

the two two-dimensional spaces spanned by the eigenfunctions of 
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— (oP) and (ctP), so that a neutrino-antineutrino system can be described 

by a four-component ip function 

(17.54) 

In this space, P can be represented by 

(17.55) r=[_\ ‘)/f 

and 11 by the identity, together giving for the operator of inversion the 

representation 

(17.56) ■£=(_“ l)nnK' 

One has then indeed 

(17.57) P2 - -I. 

The lepton number L takes in this space the form 

T /I 0 
(‘7.58) L = (0 

and one can write the expressions (17.35) as a single Hamiltonian 

(17.59) H= -i(aP)=(-(0C'P) (op)) 

satisfying 

(17.60) Hi/j{ q) = - |k| 0(q). 

These considerations do not prove that the operation of particle 

conjugation P must be antiunitary for neutrinos. Such a proof will be 

given later in Section 19 for electrons and positrons. All that has been 

shown thus far is the consistency of this assumption with the point of 

view from which the antineutrino is revealed as a neutrino “seen 

through a mirror.” Furthermore, these considerations do not prove that 

a particle corresponding to a time-reversed left-handed neutrino cannot 

exist in nature. All one can say is that such a particle, if it exists, cannot 

be identified with the right-handed antineutrino emitted in the /3 decay 

of nuclei. 
There is mounting experimental evidence for the existence of another 

kind of neutrino, the so-called muon-neutrino v^ and its antiparticle v^, 

having the same handedness as v and v respectively, and being emitted 

in reactions involving muons, for example, 

tt+ -» p,+ + ; -n~ -> ; 
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Apparently, there is a second lepton number L (the “muon number”), 

which is additive and conserved independently of L, accounting for the 

absence of processes such as 

/x~+->e_ + y; fjT+p+^n + e~. 

If the assignments of lepton numbers laid down in Table 17.1 are 

adopted, then the transition /j,~^-e~ + vfX + v, for example, will be 

allowed because the lepton numbers on both sides of the reaction are 
L= +1 = +1 + 1-1 and L.=-\= +1-1-1. 

r 

TABLE 17.1 

Assignment of Lepton Numbers to the Various Existing Leptons 

n+ e+ e~ V V vn *v 

L -l + i -i + i -1 + 1 -1 + 1 

+ i -l -i +i -i + 1 + 1 -1 

It is this muon-neutrino v which can be accommodated by Feynman’s 

suggestion, if one adjoins the reversality space, so that, for example, 

after the fashion of (15.37) the muon-neutrino state is obtained by time 

reversal from the neutrino state, and the antimuon-neutrino state by 
time reversal from the antineutrino state, 

(1.7.61) |vM> = i© |v>; |v> = —i© |v^> 

making the muon-neutrino a left-handed particle in accordance with 
observations carried out on the decay + v . 

The state 1^) will again result from application of the operation of 

combined inversion E to the state 1^), and conservation of L among 

the muon-neutrinos will be guaranteed again because of E2 = —I. The 

conservation of Lon the other hand, will follow from the superselection 

rule owing to the property 02 = - / of the antiunitary time reversal 
operation ©. 

This discussion raises a number of seemingly perplexing questions 

regarding the transformation properties of electron, muon, and nucleon 

states under time reversal © and under combined inversion E. If the 

assignment of lepton numbers L and proposed above is adopted, 

consistency would require one to consider positrons as spatial inverses 

of electrons, contrary to Feynman’s original intention, and only muons 

could possibly be identified with time-reversed electrons. The already 

baffling mass difference between muon and electron would, in this case, 
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acquire an additional degree of mystery through the necessary trans¬ 

formation m^ — &me &~x. The existence of only one baryon number 

assignable to nucleons and antinucleons, on the other hand, would 

suggest that for nucleons only one antiunitary symmetry operation has 

the property that its square is equal to —I. This turns out to be possible 

because of intrinsic attributes other than spin shared by baryons. In 

Section 29 reasons will be given for the suggestion that the conservation 

of baryon number B is indeed a superselection rule following from 

invariance under time reversal. 

NOTES 

Jordan and Wigner [1] invented the representation of creation and 

annihilation operators for fermions. 
Dirac [2] has pointed out the possibility of interchanging the concepts 

of “occupied” and “unoccupied” fermion states. 

Weyl [3] invented the two-component equation which was employed 

to describe the neutrino by Lee and Yang [4]. This equation had been 

rejected, prior to the discovery of nonconservation of parity in weak 

interactions, by Pauli [5], on the grounds that it violated the reflection 

symmetry of nature. The neutrino had first been proposed as a hypo¬ 

thetical particle by Pauli [6], The name “neutrino” is apparently due 

to Fermi. 
Konopinski and Mahmoud [7] first suggested the existence of a law 

of conservation of leptons. (See also Lee and Yang [4].) 

For assignment of the second lepton number L^ see, for example, 

Horn [8]. 
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Boson States 

SECTION 18 

Since the occupation number of a boson state characterized by the 

set of complete quantum numbers r is unlimited, the eigenstates of the 

boson number n(r) will span a denumerably infinite-dimensional space 

and may be taken to be represented by the orthonormal set 

(18.1) 

K> = 

'0N 

1 

0 

nT — 1 components 0 

In this space the operator representing the observable boson number 

n(r) is then diagonal and reads 

/0 0 0 .. 

0 1 0 
0 0 2 

(18.2) n(r) = 

A suitable set of operators representing, respectively, annihilation and 

creation of a boson in quantum state r is 

0 V1 0 0 

0 V2 0 0 \ 
0 0 

(18.3) &(r) = 0 0 

0 a/ 3 

0 0 

7 
131 

T 
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b+(r) = 

/ 0 0 0 0 

/VI o oo 
0 V2 0 0 

0 0 V3 0 

\ 

7 
having the property 

(18.4) 6(t) \nry = VnT\nT- 1>; b+{r) \nT)> = VwT + 1 \nT + 1>. 

The normalization implied by (18.4) insures that any state with nT < 0 

is identically zero, and that the operator n(r) is connected with b(r) and 

b+(t) by relations analogous to (17.9), namely 

(18.5) b+(r) b(r) = w(t); 6(t)6+(t) = I{r) +n(r) 

which may be subtracted to yield the C.R. 

(18.6) b(r) b+(r) — b+(r) b(r) — I(t) 

The treatment can now be extended to envelop all quantum states 

tx, r2, ..., rm, ... accessible to the bosons under consideration. The 

occupation state of a boson system is defined in the product space 

spanned by the occupation states for the various quantum states as 

(18.7) | nTi,nTi,...,nTm,...y = |toTi> x |wTa> x ... x |wTm> X ... 

It is easy to construct creation operators b+(rm) which raise, from any 

state, another boson into the quantum state rm, thus 

(18.8) b+(rm)\...nTm...y = VwTm+l |...nTm+l...> 

and similarly annihilation operators b(rm) having the property 

(18.9) b{Tm) ,nT ...y = VnT |...w_ — 1.. .>. 
Tm / Tm | Tm / 

They are simply represented by 

'0 Vi 

TO —1 
(18.10) b(rm) = I{rn) x 

n=1 

V 2 \ 
n ^(t«) 

n=m +1 

X 
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\ 
V 2 

00 

(18.11) b*(r„) = n /(r„) X x n 
71=1 w=m + l 

which satisfy the C.R.s, as is easily verified, 

(18.12) 

[&(rm)&(iv)] = [&+(0&+(t,»')] = 0; [&(tm)6+(tto0] = 

where [a&] = ab — ba. Equations (18.12) contain (18.6) as a special case. 

A very simple kind of boson is the photon, which, like the neutrino 

and antineutrino, has no mass and no internal dynamical attributes 

except momentum x and an abstract dichotomic polarization variable S3 

which will be labeled Ss = + 1 for right-handed and Ss = — 1 for left- 

handed circular polarization in the direction of x. The photon differs 

fundamentally from those fermions, however, because it belongs to the 

eigenstates | j,m) of angular momentum with integer j. There is no 

meaningful distinction between a photon and its antiparticle; photons 

are observed in all linear combinations of right-handed and left-handed 

polarization. 
Experimentally, momentum x and polarization S3 of a photon are 

compatible observables, and there should thus exist a representation in 

which a right-hand circular polarized photon is raised from vacuum by 

application of an operator b+(x.,R) 

(18.13) 

and in which a left-hand circular polarized photon is raised from vacuum 

by application of 6+(x, L), 

(18.14) 

where |x,R> and |x,L} are the simultaneous eigenstates of momentum 

P and polarization S3, so that they may be decomposed into 

(18.15) |x, Ry — |x, + 1> x |-R>; |x, L} = |x, -1> x \L} 
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where | R) and | L> are the two-dimensional eigenstates of the dichotomic 

polarization S3, which, according to the general development of Sections 

1 and 2, may be written 

(18.16) |«> = Q ; \L> = Q ; 

and where |>t, ± 1) are the eigenstates of momentum P satisfying 

(18.17) P|x, ± 1) = x|x, ± 1>. 

Since the photon has no mass, the energy oj is, as in the case of the mass¬ 

less fermions, 

(18.18) ca = | x | 

and since its spin j = 1 is aligned parallel to x for Ss = + 1 and anti¬ 

parallel to x for S3 = — 1, the vectors |x, ± 1) must be eigenstates of the 

Hamiltonians 

(18.19) 

H+ = +(JP) for $3 = +1 i.e. (JP) |x, +1> = |x| |x, + 1> 

(18.20) 

H- = — (JP) for S3 — — 1 i.e. — (JP) |x, — 1) = |x| |x, — 1), 

respectively, where J are the component operators of angular momentum 
for j — 1, namely (see Appendix 1) 

(18.21) J1 
1 

V2 

/° 1 °\ 
J, - 1 1 (° — i °\ 

1 0 1 ; 0 -i 

\0 1 01 
V2 \ o
 

i o) 

J 3 

/1 0 
0 0 

\0 0 

In the space spanned by the eigenvectors of S3 (18.16) one can thus 
write the Hamiltonian 

(18.22) // = (<JoP> _«p))=Ssx(JP). 

Applied to a general photon state of momentum x, which is a linear 
combination 

(18.23) 

M> = a(S)|x,J*>+0(fl)|x,£>; |a|2+|i8|2 = 1, 
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the Hamiltonian then always has the eigenvalue (18.18), 

(18.24) H|x,£> = to | x,<S>. 

It is firmly understood that the energy a> is never anything but a positive 
number. 

An eigenstate of momentum P can, according to an insight gained in 

Section 14, never be a state of definite parity. It is intuitively clear that 

the operation of inversion of coordinates 77 will make a photon of 

momentum x and polarization S3 appear to look like a photon of momen¬ 

tum — x and polarization —S3, the mirror image of a right-handed screw 

being a left-handed screw, and vice versa. Inthe space (18.16)the operator 

of inversion is accordingly of the form 

(18.25) ns = (« ‘) 

so that | R) and | IS) are converted into each other and Sz is odd under 

inversions, 

(18.26) 

na\K> = | A); ns\Ly = |i?>; nss3+s3ns = o. 

In the total space (18.15) one has then the representation 

(18.27) n = nD x ns = 

where PID operates on the dynamical variables according to 

(18.28) nD JiTh1 = J; nDvn^ = -P, 

leaving thus the Hamiltonian (18.22) invariant, 

(18.29) 

YIH-HTl = 
0 

\nD(jP) + (JP) nD\ 

~[nD(jp)+(jp)nD\ 
o = 0, 

as is required by the inversion symmetry of the photon. 

The operation of reversal of motion, on the other hand, will make a 

photon of momentum x and polarization S3 appear to look like a photon 

of momentum — x and polarization S3, because the handedness remains 

unchanged if both P and J transform under @D as 

(18.30) = -J; = -P. 

In polarization space the operator © can accordingly be represented by 

(18.31) 
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so that altogether 

(18.32) 6 = &DxGs = ; @d=TK; 

where T has in the spin space spanned by J, if they are represented by 

(18.21), according to (15.29) the form 

(18.33) 

0 

- 1 

0 

The Hamiltonian (18.22) is evidently invariant under &, and the 

symmetry of the photon under reversal of motion is thus guaranteed. The 

question of the transformation properties of photon states under 

particle-antiparticle conjugation cannot be answered except in conjunc¬ 

tion with the transformation properties of fermions that are coupled to 

the electromagnetic field. This will be taken up in Section 28. For the 

purpose of the present section, it suffices to record that the operator of 

particle conjugation carried out twice, F2, applied to a photon state is 

equivalent to the identity, F2 = I. Since also ®2 = +/ for photons, the 

photon is of “ type ’ ’ 16++), in the sense explained at the end of Section 15, 

and no superselection rules are involved in the creation and annihilation 

of photons. 
The solution of Eq. (18.24) is most conveniently carried out in momen¬ 

tum representation. Writing the six-component state vector in the 

combined spin-polarization space as 

(18.34) 
<x(S) X*(x)\ 

mxLw> 
the two three-component vectors 

will be subject to the normalization conditions 

(18.35) 

XR* XR — 1J XL* XL — 1 so that <x,$|x,S> = |a|2+|/3|2 = 1. 

Since xR and xL are eigenstates of F3 with different eigenvalues, they will 

satisfy the orthogonality relation 

(18.36) 

<x,F|x,F> - XR*XL = XL*XR = <>t,F|x,F> = 0. 
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Equation (18.24) reads now, in components, with the representations 

(18.21) and (18.22), and P = x, 

(18.37) 

*3xf + ( 1/a/2) (kx — ixo) X2 = 

(1/V2) {Ki + iK2)xi +(1/a/2)(k1-»k2)x8 = WX2 

(1/V2) (/<! + iK2) X2 ~ KaXs = 

and a similar set for x\, X2> X3 in which the signs of all terms on the 
left-hand side are reversed. In order that there exist nontrivial solutions 

the coefficient determinant must vanish, 

(18.38) 

+ /c3 — CO ± (1/V2) (K1-iK2) 0 

± (1/V2) (k1 + ix2) —o> ±(l/V2)((c1-j/f2) 

0 + (l/x/2) (ki -hi/cz) + Ks w 

- Co(/<f + k\ + k\ — co2) — 0 

which is obviously satisfied for any co ^ 0 because of (18.18). One finds 

without difficulty the solutions 

(18.39R) 

7? . {k1-ik2) [a> + K 3 

Xi = 2co X / co —k3 

7? . (ACi + tKTa) /o>-k3 

X3 = <
 3 

S
i 

1 

/ co + /c3 

and 

(18.39L) 

T. ■ (*1-^2) /co-k3 

X1 = 2co A / CO -f- /c3 

7. • (Ki +^2) /(O + /c3 

X 3 — 2co A / co —/c3 

In terms of polar coordinates #, 9 characterizing the direction of 

propagation x, so that kx = cosin$cos 9, *2 = o>sin#sin 9, ks = cocos#, one 

finds, as expected, that xR represents a spin state 

/(I +cos#)e-t<p\ 

I V2sin# I 

\ (1 — cos#)eltp / 
(18.40) 
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describing the spin j = l aligned parallel to x, and xL represents a spin 

state 

. / —(1 —cos#)e_l,p\ 

(18.41) = | a/2 sin# 

\ — (1 -fcos#) elcP ) 

describing the spin j — 1 aligned antiparallel to x, because these states 

are eigenstates of 

(18.42) J#,<p — sin#cos <p +J2sin'&sin cp +J3 cos# 

1 

V2 

/a/2 cos# 

I sin#el<p 

\ o 

sin # e~l(? 

0 
sin # 

0 \ sin # e~l<f 1 

— V2 cos#/ 

with eigenvalues + 1 and — 1, respectively, as seen by straightforward 

computation. The operator J# has another normalized eigenstate, 

namely 

/ — sin#e_i<P\ 

(18.43) X° — —7=1 V^cos# J 

^ ^ \ sin#el<f> / 

belonging to eigenvalue 0. Although this state cannot represent the spin 

state of an actual photon, since this would require existence of longi¬ 

tudinal polarization states |x,0> (say), it can be used to express the 

transversality of actual photons in the compact form 

(18.44) 

X°*XR = 0; X°*XL = 0 so that <x, 0|x,£> = 0. 

Changing the polarization S of a photon state of given momentum x 

means changing the amplitudes oc{S) and fi(S) introduced in (18.23). One 

can abstractly describe such changes in polarization as rotations in the 

polarization space spanned by the eigenvectors of S3. The generators of 
such rotations are, for given x, the operators 

S1 = b+(R)b(L) + b+(L)b(R) 

S2= -ib+{R)b{L) + ib+tL)b(R) 
(18.45) 

S3 = b+(R)b(R)-b+{L)b{L) = n(R) — n(L) 

S0 = b+(R)b(R) + b+(L)b(L) = n(R) + n(L) 

which satisfy, as a consequence of the C.R.s (18.12) for the b+ and b the 
C.R.s 
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[SiS2] = 2iS3; 
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and also 

(18.47) 

[S2S3] = 2iS1] [S.S,] = 2 iS2] [SkS0] = 0 

(k = 1,2,3) 

SI + SI + SI = S0(S0 + 2). 

They are thus, according to (2.46), isomorphic to the Pauli matrices 

(2.43) and may be represented in polarization space by 

(18.48) 

Si 
0 1 

1 0 
s„ S n = 

1 0 

0 1 

This explains, after the event, the notation S3 for the polarization 

operator. 

Generalization to include states containing nx S photons, each of 

momentum x and polarization S, proceeds without difficulty. The most 

general photon state |.. .nx S...) will have to be a simultaneous eigen¬ 

state of the Hamiltonian 

(18.49) = H(x,S)b+{x,S)b{x,S) 
x S 

and the polarization operator 

(18.50) 

S3 = 2£3(k) = 2 [b+(x,B)b(K,It)-b+(x,L)b(>i,L)] 
K K 

having the eigenvalues 

(18.51) TF = 22 omxs 
X s 

and 

(18.52) ^3 = 2Kji-\i)- 

Because of the isomorphism of the polarization operators (18.48) with 

the operators representing an angular momentum j = the construction 

of many-photon states from single-photon states in polarization space 

has to be carried out under the observance of the rules governing the 

addition of angular momenta, as given in Appendix 2. Specific examples 

will be treated in Sections 27 and 28. 
Instead of using the quantum numbers x, S3 to describe single photons, 

as has been done here, one can alternatively use a representation in 
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terms of the quantum numbers to, j, m, P (energy, angular momentum, 

parity). The ensuing formalism, although widely employed, is less 

transparent, and has therefore been relegated to Appendix 3. 
At this juncture the correspondence of the quantum-mechanical 

description of photons with the classical description of the same pheno¬ 

menon in terms of transverse electromagnetic fields E, B derivable from 

a vector potential A by differentiations, 

(18.53) E = -(3A Idt); B = VxA 

can be established in a rather straightforward manner, if one stipulates 

that the energy W should correspond to the value of the integral 

(18.54) W = \ | (E2 + B2)dq 

in the sense that the expectation value of H in a given state should be 

numerically equal to the value of W computed with the classical fields 

describing the same physical situation. 
This correspondence was traced by the originators of quantum electro¬ 

dynamics in opposite direction, when they were groping for suitable 

expressions which might serve as operators representing the classical 

fields of electrodynamics. As it turns out, the fields E and B, which prove 

so useful in macroscopic situations involving averages over many 

photons, are singularly unsuited for grasping elementary processes 

involving single photons. The purpose of the following considerations is 

thus not aimed at drawing comfort from establishing contact with 

classical electrodynamics. The theory of photons, laid out in this section, 

can stand on its own phenomenological feet. The aim is rather to exhibit 

the profound differences between classical fields and the quantum 

mechanical operators that must serve in their place. 

The polarization of transverse fields propagating in direction x can be 

conveniently specified by introduction of two real orthogonal unit 

vectors e(l) and e(2) which point in the direction of the intersections of 

the horizon of x with the equatorial (x,y) plane and the (z,x) plane, 

respectively, as indicated in Fig. 18.1. Since the horizon for any zenith 

intersects the equator at the east-west line,* their components are 

(18.55) <q(l) = sincp; c2(l) = — coscp; e3(l) = 0 

(18.56) 

ej(2) = cos#cos cp; e2(2) = cos#sincp; e3(2) = —sin# 

* The author is indebted to Dr. Luis de Sobrino, former Lieutenant in the Spanish 

Navy, for illumination on this point. 
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where # and 9 are the polar angles describing the direction of the pro¬ 

pagation vector according to 

(18.57) 

n1 = (/<i/a>) = sin # cos 9; n2 = {k2/oj) = sin# sin 9; 

n3 — {“si00) = cos#. 

Fig. 18.1. The polarization vectors e(l) and e(2) characterizing transverse fields pro¬ 

pagating in direction x. 

For the purpose of specifying circular polarization, one may introduce 

alternatively the complex orthogonal unit vectors 

(18.58) e(B) = (l/V2)[e(l)+te(2)] 

(18.59) e(L) = (l/V2)[e(l)-ie(2)] = e*(R) 

satisfying the orthonormality relations 

(18.60) e*{R)e{R) = e*{L)e{L) = 1 

and 

(18.61) e*(fi)e(L) = e*(L)e(R) = 0 

as well as the transversality conditions 

(18.62) ne(.R) = 0; ne(L) = 0. 
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Equations (18.60)-(18.62) are formally reminiscent of the ortho¬ 

normality relations (18.35), (18.36), and the transversality condition 

(18.44). This suggests strongly that one identify the components of the 

complex state vectors xR> X7h and X° with appropriately chosen linear 
combinations of the vectors e(R), e(L), and n, respectively. By the substi¬ 

tution of (18.55), (18.56), and (18.57) for the components in (18.40), 

(18.41), and (18.43) one finds without difficulty 

(18.63) 

— e\(R) + ie2(R)\ 

V2e3(R) I; 

efR) + ie2(R) J 

— ei(L) + ie2(L)\ 
V2e3(L) ; 

€i{L)+i€2(L) ) 

. — ni + in2\ 

r 0 = — V2n* 
V 2 nl + m2 

With some hindsight, this correspondence between spin states and 

polarization vectors can be made more obvious, if one performs in spin 

space the unitary transformation 

(18.64) 

U 

0 

0 

V 2 

-1 i 

0 0 

1 i 

leading, for the spin operators, instead of to (18.21), to the representation 

(18.65) 

/° 
0 °\ / 0 

0 

Sj = UJ1U+ = 0 0 -i\ ; s2 = UJ2U+ = o 0 
0 

\0 i o) ' \-i 0 0/ 

/ 0 -i 0\ 

s9 = UJ3U+ = li 0 0 

\o 0 o) 

and to a rearrangement of the components of the spin states, so that 

/ei(-^)\ 
(18.66) r\R - UxR = U2(i?) = e{R); r\L = UxL = e(L); 

\e3 {R)J 
Ux° = n 

and the orthonormality relations 
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(18.67) Y)*V = W = 1; V*V = V*V = 0; 

Y)°* T[R = Y)°* = 0 

are now identical with the relations (18.60), (18.61), and (18.62). 

The eigenstates of ss, namely 

(18.68) r1 
i 

V2 
i 

0, 

can be looked upon as a system of three orthonormal vectors which can 

be used to decompose any arbitrary vector f. This is particularly useful 

when one wishes to use the angular momentum representation, leading 

to a description of photon states in terms of so-called vector spherical 
harmonics, which are given in Appendix 3. 

The description of the state vector (18.34) in coordinate representation 
requires a six-component \fj function 

(18.69) 4>{x) 
/cc(S)ijjn{x)\ 

\m ’ 
x = (q,0, 

where i/jr(x) and 0i(z) are three-component 0 functions satisfying 

Schroedinger equations which follow from (18.19) and (18.20) upon 

substitution of the representations P = — iV and H = i(d/dt), and which, 

in the representation (18.65) of the spin matrices, read 

(18.70) -is-Vifi* = i{dldt)ijjR; +is-VifjL = itf/dt)^. 

By writing ijjR and ipL as vectors 4*^ and 4>£, each having the components 

0i, 02> 03> these equations can be written in vector notation, because of 
the representations (18.65), 

(18.71) V x = i(di\>R/dt); -Vx^ = i(di\>L/dt) 

and can be solved under observance of the transversality conditions 

(18.72) V-4>* = V-i|>£ = 0. 

The formal resemblance of these equations to Maxwell’s vacuum 

equations for the complex field vectors E + iB and E — iB suggests the 

introduction of the hennitean operators 

(18.73) E(a;) = ~^= ^ 2 J^le{s)b(K,S)e-iKX-e*(S)b+(yi,S)e+iKX] 

(18.74) 

VxB(cc) = ~~ J~[e(S)b(yi,S)e lKX + €*($) b+(y.,S) e+iKX] 
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where kx = cut- xq and V is a normalization volume, which can be 

derived by differentiations according to the prescription (18.53) from 

the vector potential operator 

(18.75) \(x) = -b 2 2 yfS [£<S) HX'S) C_i“ + £*<S) 6+<K’S) 6 
X S 

One has then the decompositions 

(18 •76> V 22 = d|L 
x S 

— iE + 
V - V 

(V x B) 

(18.77) 

yf 22 V«>.s«**€*(S)&+<x,S) = ^ iE- 
V-v: 

(VxB) 

where —. .= is an operator defined by 
V-v2 

(18.78) 
V-v2 

e±iXq 

X 

e±txq 

OJ 

Multiplication of (18.76) with (18.77) from the left and integration 

over dq gives, upon utilization of the normalization conditions on the 

left-hand side, 

(18.79) j:^ojb+(K,S)b{yi,S) = \ f {E2+ B2 + (i/V — V2) [E(V x B) 
x S J 

— (V x B)E]}dq. 

If one could ignore the operator nature of E and B, the term containing 

E(V x B) - (V x B)E would obviously vanish and the desired corres¬ 

pondence to classical fields is established. In quantum mechanics, the 

presence of these terms is indispensable, however, because without them 

the expectation value of the integral on the right-hand side of (18.79) 

would become infinite for any photon state, including the vacuum state. 

This peculiarity stems from the operator nature of E and B which contain 

both creation and annihilation operators, so that the field intensity 

operators E2 and B2 each include terms of the form b(x.,S)b+(v.,S) whose 

vacuum expectation values do not vanish, leading to the infinite result 

(18.80) <0| 1 f (E2 + B2)dq|0> = i 5>- 
J X 

The presence of the term J (i/2 V — V2) [E(V x B) — (V x B)E]dq is needed 

to precisely compensate this so-called zero-point energy, as a simple 
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calculation will show. This matter will not be pursued here beyond noting 

that the concept of zero-point energy does not enter the theory of photons 

if one adheres to the description which has led to the adoption of 

2 a>6+6 as energy operator, because the vacuum expectation value of 

this operator is obviously zero, and remains finite for any state containing 
a finite number of photons. 

The conceptual differences between quantum mechanical and classical 

descriptions of electromagnetic polarization phenomena are equally 

radical. Taking the most general case of elliptical polarization as an 

example, one infers, in classical electrodynamics, the possibility of 

determining simultaneously the values of three parameters fixing the 

polarization, for example, the parameters e1; e2, y, so that at any instant 

of time the electric field vector in the [e( 1), e(2)] plane has the components 

(18.81) E1 = e1cos(cut); E2 = e2cos (cot+ y), 

the endpoint of E tracing the polarization ellipse in that plane. 

In quantum mechanics no such statement can meaningfully be made 

about the expectation values of the operators (18.73) representing these 

field components, because the operators b and b+ have vanishing diagonal 

elements only, and therefore the expectation values of the field operators 

themselves will vanish in any state of definite photon number. From an 

operational point of view, this circumstance is a very satisfactory feature 

of the quantum mechanical formalism, because one cannot talk meaning¬ 

fully about the measurement of electromagnetic fields without invoking, 

in principle, an apparatus interacting with the field so that emission and 

absorption acts take place making the photon number variable. One can, 

however, conceive measurements of field intensities, i.e. quadratic 

functions of the fields, in stationary situations in which the total number 

of photons present does not change. The parameters e1} e2, y, should 

therefore be set in correspondence with operators containing the creation 

and annihilation operators at least bilinearly. The operators Slf S2, S3 

introduced earlier in (18.45) satisfy just that requirement, and their 

expectation values can be used to describe the state of polarization even 

in case of partially polarized light beams. 

Since the polarization of the photon is a dichotomic variable, giving 

rise to the isomorphism of the abstract polarization operators (18.45) 

with the Pauli matrices, the development of Section 4 can be applied 

and the polarization of a photon beam described in terms if the density 

matrix 

(18.82) M = i(/ + PS) 

where |P| represents the degree of polai’ization of the photon beam. 
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In particular, the entire information about the polarization of the 

single photon state (18.23), which is a state of definite polarization so 

that | P | = 1, resides in the density matrix 

(18.83) 
/«(S)«*(S) *(S)P*(S)\ 

mp*m 
where the numbers a(S) and fi(S) are subject to the normalization 

constraint |a|2 + |y3|2 = traceflf($) = 1 and are determined up to a 

common arbitrary phase factor. Using for Slt S2, S3, S0 their representa¬ 

tions (18.60) in polarization space, one obtains for their expectation 

values 

Si — trace [S1M(S)] = a* j8 +a/3* 

S 2 = —i(oc*l3 —a|8*) 
(18.84) 

Sa = aa*-j8j8* 

S0 = ococ* + Pfi*. 

These quantities can now meaningfully be set equal to the classical 
Stokes’ parameters 

(18.85) = £exe2cosy; S2 = ^exe2sin y; S3 = \{e\-e\) 

which are quadratic functions of the field amplitudes ex, e2, establishing 

thus the correspondence between the parameters ex, e2, y and the ifj 
functions a, ft in polarization space. 

Thus far, the discussion has been restricted to transverse photons 

which can be described in terms of a three-component vector potential 

A(q). This treatment has the aesthetic shortcoming of not being mani¬ 

festly covariant under Lorentz transformations. A little thought shows, 

however, that this is no serious defect, because the electromagnetic 

potentials have the property of “gauge invariance,” permitting reduc¬ 
tion of the formally relativistic expression 

(18.86) 

1 2 1 
A>) = ^22 ^ M'S) 6(x, S) e-^ + e*(S) 6+(x, S) e-H-] 

(p = 1,2, 3, 4) 

to the form (18.75) by a gauge transformation 

(18.87) A^x) + A^x) = ApW + OAIdZp) 

where A is a scalar function, which, for given fourth component of 
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^{S), is constructed so that Eq. (18.87) is equivalent to the replacement 

(18.88) v(S) = ^(S)-[€4(S)HV 

so that 

(18.89) 

e'(iS') - 0 and = - e' x = 0 = for S = 1,2. 

The vanishing rest mass of the photon, i.e. k2 = k^k = o»2-x2 = 0 is 

obviously the root of this particular invariance of the transversality 
condition (18.89). 

In presence of sources of the electromagnetic field, the description 

(18.75) acquires another shortcoming far more serious than the aesthetic 

flaw just mentioned, namely it becomes incomplete: transverse photons 

are not sufficient to grasp, for example, the Coulomb field surrounding 

an electric charge. One requires an additional two polarizations, corres¬ 

ponding to ‘‘longitudinal’’ and “time-like” photons, to accommodate 

the entire range of electromagnetic phenomena. 

The last word has almost certainly not been said about this matter. 

The purpose of these paragraphs is to summarize briefly the formalism 

invented, and widely accepted, for the description of these exotic 
photons, which do not exist as free particles. 

One can easily enough extend the definition of the operator (18.86) 

in a relativistically covariant manner to the case of four independent 
polarizations by simply writing 

(18.90) 

Ayfx) = (1/VT) 2 i (1 lV^o)[ell(S)b(K,S)e-iKX + e*(S)b+(K,S)e^\ 
x >S=1 

where now e (S) are a set of four orthogonal unit vectors satisfying 

(18.91) c,>(S)e*(S') = V. 

A possible and popular choice of the polarization vectors e ($) con¬ 

taining for $ = 1,2 the transverse polarizations as before is 

e(l)x = 0, e4(l) = 0; e(2)x = 0, e4(2) = 0; 
(18.92) 

e(3) = x/ai, e4(3) = 0; e(4) = 0, e4(4) = 1; 

allowing one to refer meaningfully to e^(3) as the longitudinal and to 

6^(4) as the time-like polarization vector. With this choice the polariza¬ 

tion vectors satisfy the formally covariant relation 

s e (S)e*(S) = 8 
s=1 

(18.93) 



148 Concepts in Quantum Mechanics 

However, the choice (18.92) is neither necessary, nor is it necessarily 

the most convenient. On grounds of relativistic covariance alone it is 

sufficient to require instead of (18.93) 

(18.94) 2 ^{S)e*{8) = V + VkJ(/<2) 
s=i 

with arbitrary /(k2). In fact, the various choices of e (S), belonging to 

different /(/c2), are equivalent to different gauges adopted for the elec¬ 

tromagnetic potentials, and keeping the function /(k2) open in all 

calculations is a convenient way of making the gauge invariance of the 

description manifest. 
To see this, consider a gauge transformation (18.87) where A(x) is now 

the most general scalar function linear in the A^(x), 

(18.95) A(x) = -F(-[J) (dAJdxv). 

Here F is an arbitrary function of the scalar operator Q = d2ldxfjL dx , 

and the signs have been chosen purely for convenience. With A (x) 

given by (18.90), one finds explicitly 

(18.96) A(x) = (1/VF) 2 2 [F(K2)lV2co][Kv€v(S)b^,S)e-iKX 
X S 

-Kv€*(^)6+(H,^)e^] 

so that 

(18.97) A'^x) = (1/VF) 2 2 (llV2co) {[^(S) 
X S 

+F(k2) kv ev(*S)] b(a, S) e~lKX + c.c.}. 

The gauge transformation generated by (18.96) is thus equivalent to 
replacing the polarization vectors by 

(18.98) e^S) -> e'^S) = £fl(S) +F(k2) 

giving 

(18.99) 2 ^(S)e*(S) = ^v + k^kv\:2F{k2) + k2F2{k2)1 
s=1 

which is identical with (18.94) if one drops the primes on the left and sets 

(18.100) /(k2) = 2 F{k2) + k2F2(k2). 

For many applications it is more convenient to introduce a scalar 
function d^K2) by 

(18.101) f(K2) = K-1)/k2 
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which splits (18.94) into two terms, namely 

(18.102) j>„(S)e;(S) = (a 

The first term can be called the “transverse part” in a four dimensional 
sense, because it satisfies 

(18.103) v(s, = 0- 

The arbitrariness in the gauge of the vector potentials lodges now in the 

arbitrariness of choice for the factor d;(/c2). If one can show that observ¬ 

able effects do not depend on dh one has a “ manifestly gauge-invariant ” 
theory. 

The conventions (18.92) leading to (18.93) are obviously equivalent to 

putting dl= 1. An alternative choice, which is at least as convenient, is 

dt = 0. For many applications it is advisable, however, to carry the 

unspecified factor dl in all calculations, thus retaining and exhibiting 

freedom of gauge, and to settle for a particular value of dt only when this 

results in an overwhelming computational advantage. 

NOTES 

Jordan and Klein [1] introduced the concept of creation and annihi¬ 

lation operators for bosons. See also Dirac [2]. 

Jauch and Rohrlich [3] treat transverse photon polarization and give 

complete references to earlier work on this subject. 

Archibald [4] noticed that one can write Maxwell’s vacuum equations 

as Schroedinger equations for two 3-component ijj functions. See also 

Akhiezer and Berestetskii [5J. 
Landau and Peierls [6] gave the decomposition of photon annihila¬ 

tion and creation operators in terms of electromagnetic field operators. 

Rose [7] gives the unitary transformation (18.64). 

For a discussion of some of the perplexities introduced through 

longitudinal and time-like photons see Kallen [8]. 

Bogoliubov and Shirkov [9] use consistently a gauge convention in 

which the function dt is left arbitrary. 
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SECTION 19 

Electrons and Positrons 

Particles having a rest mass m, so that the relation between energy Q 

and momentum k is 

(19.1) Q'2 = k 2 + m2 

need not have their spin aligned either parallel or antiparallel to the 

direction of k. Even if in a given coordinate frame spin and momentum 

happen to be aligned, this alignment will be destroyed by a Lorentz 

transformation if the particle travels at a speed less than the speed of 

light, because spin, being a skew tensor, and momentum, being a vector, 

transform differently under such transformations. 

Electrons and positrons, in particular, are particles belonging to spin 

j = \ which differ from neutrinos and antineutrinos in that their spin 

does not exhibit the firm correlation with direction of momentum k, 

which makes the i(j function of massless particles obey either an equation 

of the form [H - (a-J*)]u = 0 if they are right-handed, or [H + (crP)]t> = 0 

if they are left-handed, as was explained in detail in Section 17. One 

cannot include the effect of a rest mass by simply adding a term mu or mv 

to the equations for u and v respectively, because if m is a scalar the 

resulting equations would not be invariant under inversions 77. A way 

of accommodating the mass without violating any invariance require¬ 

ments, including invariance under Lorentz transformations, was 

invented by Dirac, who showed one can describe electrons by four- 

component ip functions obtained by coupling the two two-component 

ip functions u and v through the mass term, 

(H-a P) u = mv 
(19.2) , tt 

(H + oJ*)v — mu. 

In the limit m^O they describe uncoupled right- and left-handed mass¬ 

less particles of spin j = but for m ^ 0 these first order equations are 

equivalent, by iteration, to the second order two-component equations 

(77 + aP) (77 - aP) u = m2u 

(H - aP) (H + aP) v - m2v. 

151 

(19.3) 
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For free particles these equations are equivalent, because of the C.R.s of 

the a, to 

(19.4) (H2 — P2 — m2)u = 0; 

Introducing the 4x4 matrices 

'0 — a | 

0j 
and the four-component ip function 

(H2—P2 — m2)v = 0. 

(19.5) Y = 74 = 

0 1 

1 0 

(19.6) 

one can, because of 

(19.7) y 

M: 

u — av 

au 74 

write Eqs. (19.2) in the compact form 

(19.8) (yiH — yP)</< = mifj 

This equation, due to Dirac, can alternatively be written 

(19.9) (aP + /3 m)ip — Hip 

with 

(19.10) a = 74 y; fi = y4. 

The matrices (y,y4) = y introduced here are identical with the ones 

used by Feynman. They differ from the y’s used in most conventional 

texts by a unitary transformation. They satisfy the anti-C.R.s 

(iQ.H) y^ y„ + y„ 7^ = 2 8^ with 8^ = 

A very important matrix in this abstract four-dimensional space is 

(19.12) y5 = 71727374 = 

which satisfies 

(1.9.13) y| = -1 and y5y^ 4-y^y5 = 0 

The operators 

(19.14) 
~ + ^75) = 

0 0 

0 1 
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and 

(19-15) CR = 

obviously project the components u and v out of ip, respectively, 

(19.16) CRf = = 4>r\ CL<p = Q = fa. 

Accordingly, the operator 

(19.17) C = -iy5 = _°) 

can be called the “chirality” or “handedness” operator, because ipR 

and ipL are eigenstates of C with eigenvalues + 1 and - 1, respectively, 

(19.18) CtpR = + ipR\ Cif>L = -if>L 

In terms of the y matrices, the spin operators can be represented as 

(19.19) ax = ° J = iyzYs (cyclicahy). 

Since a and (y4#-yP) do not commute, the solutions of the Dirac 

equation (19.8) are not, in general, eigenstates of a for arbitrary direction 

of the spin. Only if the particle is at rest, namely when Pip = 0 so that 

(19.20) y4-^*Arest = rest 

which requires 

(19.21) u = v i.e. 

can ip be an eigenstate of a. By convention, the representation 

(19.22) asipiest = ±<Arest 

will always be chosen. 
To be quite explicit, the state vectors (J)0; (?)c spanning the chirality 

space defined by the eigenvalues + 1 of C, and the statevectors (0)s, (i)s 

spanning the spin space defined by the eigenvalues ± 1 of asin the rest 

frame of the particle can be introduced. A general electron state can then 

be characterized by the quantum numbers k, S, G, where C stands for 

the dichotomic label R, L of chirality (right-handedness, left-handedness), 

and S stands for the dichotomic label t, 1, of spin in z direction (spin up, 

i.e. 
II v = mu 

Hu = mv 

- (l) 
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spin down, in the rest frame), and such a state is generated from vacuum 

10) by the appropriate creation operator, 

(19.23) 

\k,S, C} = a+(k,S, (7)10) 

where 

|k,s,cy = |M,iOxQc+M,£>x^ 

(19.24) -|k.t,«>xQ x(J) +|k,,,fl>x(;) x(J) 

+ Ik, f ,L) x 
0 

+ Ik, i ,L} x 
0 

In the coordinate representation 

(19.26) M,C> = J |q>rfq^k,s.c(q) 

the f functions characterizing Ik,^,^); Ik,^,^); |k, |k,|,i?>; 
|k, f ,L}-, |k, | ,L>; are u\ v; ux\u^\vx\ t>2; respectively. 

In the combined spin-chirality space (which has four dimensions), the 

operator of inversion of coordinates can be represented by (0 and 1 
stand for 2x2 matrices in spin space) 

(19.26) fl = = y4 

because chirality C = —iy5 must be odd under inversions, whereas the 

spin oj = iykyi (cyclically) must be even, and this is guaranteed by (19.26) 

because of the anti-C.R.s (19.11) and (19.13). One expects, therefore, 

the operator of coordinate inversion to be entirely represented by 

(19.27) n = W4J7„ = nf)m 

where TJD acts on the dynamical variables such as H and P and represents 

the transformation q -> — q in the if) functions, and r/jj is a phase factor, 

which in accordance with the conventions adopted in Section 14 will be 
chosen so that rjzn = + 1. 

The operator of time reversal, on the other hand, should leave the 

chirality unchanged and must therefore be diagonal in chirality space. 
This is accomplished by putting 

T 0 
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where T is in spin space according to (15.42) of the form 

(19.29) 

and K is the operator of complex conjugation, thus guaranteeing the 

correct transformation properties of the spin operator 6, namely 

= — ct. In terms of the matrices y the operator T may be written 

(19.30) l) 

so that altogether the operator of time reversal can be represented by 

(19.31) 0 = rley1yaxTDK 

where TD acts on the dynamical variables and represents the transfor¬ 

mation t -> — t in any time-dependent if; function, and 17® is an as yet 

undetermined phase factor, subject only to the condition yQrj% — 1. 

Eigensolutions of (19.8) will now be sought which satisfy 

(19.32) 

Hifj - Ehp and P^ - k0 with Q = +Vk2 + m2. 

It is understood that the energy Q is never a negative number. Using 

P = — i(3/9Q) one has in coordinate representation 

(19.33) (y4I3 + tY[d/dq])</> = mip. 

By writing 

(19.34) <Pt,s,cW = ^(k,S,CV« eikq 

one obtains four linear homogeneous equations for the -4n(k,...), namely 

(19.35) (y4I3-yk )A = mA 

which read explicitly, with representation (19.5), 

(13 -\- k%) A 3 + (Aq — ik^)A^ = mA 4 

(13 — ^3) A4 + (k\ A ik%) A3 = mA% 

(13 — ^3) Ai — (ki — ik^ -d-2 ~ mA$ 

-\-k§) A% — (k4 4- ik%d A1 = mA 4 

The necessary and sufficient condition for existence of a nontrivial 

solution is the vanishing of the coefficient determinant 
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(19.37) 

— m 

0 

(Q — k3) 

— (ki + ik-f) 

0 (Q + ^3) 
— m (kx + ik2) 

— ik-i—iko) —m 
(Q + h) 0 

(k1 —iko) 

&-*») 
0 

— m 

= (Q2 — k2 — m2)2 = 0 

which is obviously true because of (19.1). 

For given energy Q = +Vk2 + m2 > 0, Eq. (19.34) has two linearly 

independent solutions, namely 

(19.38) 

.4(1) = 
V2VQ 

m 

V& — k3 

0 

VqmC, 

— (k\ + ikf) 

and A (2) 

\ V&-k3 J 

which have been normalized so that 

(19.39) 4*(1M(1) = A*(2)A(2) = 1 jV i.e. f </r*0dq = 1 
v 

and which satisfy the orthogonality relation 

(19.40) A*(1)A(2) = A*(2)A(1) = 0. 

The phase conventions have been arranged so that in the rest frame 
(k = 0) the states 

(19.41) 

4(l;k - 0) = and .4(2; k = 0) 
1 

vw 

result, which are eigenstates of $3 with eigenvalues +1 and — 1, 
respectively. 

Formally, Eqs. (19.36) have another pair of solutions if the energy E 

is taken to be E — —Q= — \/k2 +m2 < 0, so that there are altogether 

four linearly independent solutions, labeled A Jr) with r = 1, 2, 3, 4, 

which are summarized in Table 19.1. They are normalized so that 

(19.42) 

A*a(r)Aa(r') = (1 /V)8rr, (sum over Greek subscripts appearing twice) 
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In analogy to the development of the theory of photons in Section 18, 

resulting in the possibility of representing all observables as operators 

bilinear in creation and annihilation operators, it is often convenient to 

TABLE 19.1 

The Form Lineahly Independent Solutions oe Eq. (19.36) 

(£2 = + V k2 + m2) 

\ r 
a \ 

i 2 3 4 

i 
m ki — ik% 

— V £2 — k3 0 
V Q — ks V £2 —k3 

0 V Q-k3 
ki + ikz — m 

2 
V £2 -ks V £2 —k3 

V ii — k3 0 
m k\ — ikz 

3 
V £2 —ks V £2 — k3 

— (ki+ik2) m 
0 V £2 — k3 4 

V Q — kz V £2 —k3 

1 

VWq 

work with space and time dependent Dirac field operators, which may 

be constructed in terms of the Aa(r) as 

(19.43) ip{x) = £ ei(kq-^0 2 A{r, k) a(r, k) + ei<kq+^) 2 A(r, k) a(r, k) 
k L r—\ r=3 

where a(r, k) = a(k,r) is the annihilation operator of an electron with 

positive energy if r = 1, 2, and of an electron with negative energy if 

r = 3, 4. In terms of this operator and its adjoint tfi(x) = the 

energy operator for any many electron state takes the form 

(19.44) H = J Jf(x)dq = J $( - iyV +m) ifjdq 

= a+{r,k)a{r,k)- 2 a+(r,k)o(r,k) 
k Lr=l r=3 

Not surprisingly, this expression is not positive definite, because 

solutions of negative energy have been admitted into the theory. This 

difficulty of interpretation is compounded when one considers the 

operator of electric current density 

(19.45) jpix) = e</bvA 
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which owes its definition to the observation that it satisfies a conserva¬ 

tion law 

(19.46) [dj^/dx^] = 0 

as a consequence of the Dirac equation and its adjoint, 

(19.47) -iid/dx^y^ift + mifj = 0; iidldx^fy^ + miji = 0. 

If one writes down the electric charge operator 

, * 

(19.48) Q = e ji(x)dq = e £ 2 a+(r, k) a{r, k) 
J k r= 1 

one has now an expression which is positive definite as it stands. 

Wanted, of course, is just the opposite, namely a positive definite 

energy density and an electric charge which may have negative as well 

as positive expectation values. 

One famous way out of this dilemma is the hole theory of positrons by 

Dirac, who essentially availed himself of the possibility of performing a 

unitary transformation interchanging full states and holes as far as 

states of negative energy are concerned, in accordance with the procedure 

explained in Section 17. With the sign conventions implied by Eq. 

(17.25), this transformation amounts to the introduction of new operators 

(19 49) a-(2> ~k) = -a+(3,k) replacing a(3,k) 

al(l, — k) = a+(4,k) replacing a(4, k) 

so that, with the notation 

a+(r, k) = a(r, k) for r = 1,2 

(19 50) 4+(r,k) = 4(r,k) for r = 1,2 

A-(2, -k) ee -4(3,k) 

A-( 1, -k) = 4(4,k) 

the operator (19.43) may be written 

(19.51) 

00*0 = S S [et(kq-^o^+(r, k) a+(r, k) -fei<kq+^<)4_(r, -k)a+(r, -k)l 
k r=1 

= 22 [ei(kq-^o ^+(r, k) a+(r, k) + 4_(r, k) at(r, k)l. 
k r=1 

The subscripts ( +) and (— ) have been affixed to the operators a and the 

amplitudes A in anticipation of an interpretation associating the sub¬ 

script (+) with lepton number L = + 1 and the subscript (—) with 
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lepton number L = — 1. The amplitudes AL(r, k) according to (19.50) 

are collected in Table 19.2. For AL(r,k) = ^*(r,k)y4 one has the corres¬ 

ponding Table 19.3. 

TABLE 19.2 

The Amplitudes AL(r,k) 

(£2 = + V k2 + m2) 

\ r i 2 1 2 

a \ 

i 
m fci — 

0 .£2 -f- &3 
V Q — kz V £2 — k3 

0 V Q — k3 
— m 

2 
‘x/ .Q -b A)3 + /C3 

0 
— {ki — ikz) — m 

3 v Q — kz 
‘s/ £2 + &3 ■x/ ^2 -f- ^3 

— (&i + ifc2) m 
i2 + &3 0 4 

Vl2-k3 V £2 — k3 

1 L = + 1 L = -i 

TABLE 19.3 

The Amplitudes AL(r,k) = A*(r,k)y4 

(£) = +V k2 + m2) 

1 

vWB 

\ r 
1 2 1 2 

a \ 

0 
— (ki + ik2) — m 

i V12 —k3 V12 +k3 i2 + &3 

<N 1 i—1 

T
 m 

V £2+ k2 0 2 V £2 —k3 V £2 — k3 

m (ki + ik2) 
0 V'iJ + fcs 3 V £2 —k3 V 12 — kz 

0 
— m (ki — ik2) 

4 v 12 — k3 V £2 +k3 V £2 +k3 

L = + 1 1 L = -1 

From these tables one can construct immediately the 

later, 

l 
x /— 

V2 V£2 

matrices, needed 
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(19.52) 2 [A+(k, r)]a [A+(k, r)]p = 
r 

and 

(19.53) 

m 0 £2 -f- k3 k1 — ik2 

0 m k\ + ik2 £2 k3 
Jcq -(k 1- ■ik2) m 0 

— (&i + He 2) £2 + , k3 0 m 

2 [^-(k, r)]a [A_(k, 
r 

r)\ 

— m 0 £2- k3 — (Ay + ik2) 
0 -m - (Ay - -ik2) £2 4- Ay 

£2 + k3 k4 + Hcq — m 0 
k1 — ik2 £2 — ks 0 — m ; 

x (1/2 VQ) 

x (1/2 FI2) 

which in terms of y matrices may be expressed as 

(19.52) 2 [A+(k>r)]a[A+(k,r)^ = (1/2VQ) [ViQ-ky+ ml]af} 

or 

2 A^k, r)A+{k, r) = (1/2VQ) (Jc + m) 
r 

(19.53) 2 [A4k,r)]p[A4k,r)]a = (1 /2 VQ) [yiQ-ky-mI]aB 
r r 

or 

2 A_(k,r)Z_(k,r) = (l/2FQ)(jfe-m) 
r 

where Jc = kvyv = y4^-ky. 

With this relabeling, the energy operator takes the form 

(19.54) H = 2 2 ^[iV+(k,r) + iV_(k,r)-2] 
k r=l 

where 

(*9.55) iV±(k,r) = a±(k, r)a±(k, r) 

are now interpreted as the number operators of electrons and positrons, 

respectively. The expression (19.54) is obviously invariant under inter¬ 

changes k<—► — k and/or r — 1, 2<->r = 2,1. The conventions inherent in 

the notations (19.50) are such, however, that any positron state labeled 

(k, r) differs mechanically from the corresponding electron state labeled 
(k,r) only by its handedness. 

In this hole theory of positrons, the infinite vacuum energy — 2y£lkQ 
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is disregarded since it is the same for all states and thus, in principle, not 

observable. A modified definition of the electric current density which 

eliminates from the outset any non vanishing vacuum charge, without 

invalidating the conservation law (19.46), is 

(19.66) i„(x) = 

giving in particular for the total electric charge 

(19.57) Q = e v £ [A+(k, r) - A_(k, r)] 
k r=1 

which is consistent with the interpretation of N+ and as number 

operators for electrons and positrons, respectively.* 

It is instructive and useful for later applications to write out the 

operator (19.56) for the current density in terms of the operators 

a/t(k,r) and a±(k,r); using the anti-C.R.s of these operators one finds 

(19.56) 

(e/2) [$,7^] = e £ £ 2 £ {exp ( - i[(k' - k) q - (Q' -12) t]) 
k k' r r' 

X A+{k', r') A+{k, r) aftk', r') o+(k, r) 

- exp (i[(k' - k) q - (Q1 - Q) t]) A_(k', r')Ylx 

x A_(k, r) a+(k, r) a_(k', r') 

+ exp ( - »[(k' + k) q - + Q) t]) A+(k\ r') Yft 

x A-(k, r) a+(k', r') al(k, r) 

- exp (i[(k' + k) q - {Q' +12) t]) A_(k', r') 

x A+{k, r) a+(k, r) a_(k', /)} 

-cEE [A+(k,r)y/xA+(k,r)-2_(k,r)yMA_(k,r)]. 
k r 

The last term, not containing any operators a or a+, vanishes for all /x, 

as can be seen by straightforward computation from Table 19.3, and 

(19.57) follows as a special case for p. = 4. 
The ingenious hole theory, necessitated by the admittance of negative 

energy solutions into the theory, can be avoided altogether from the 

outset, if one exploits a peculiar symmetry property of the Dirac 

equation which is known in the literature as charge-conjugation sym¬ 

metry. By this is meant that if one interchanges the number operators 

N+ and 

(19.58) N++±N_ 

* If one uses instead of (19.42) a relativistically covariant normalization to Q/m 

particles per unit volume, then, in the definition (19.51), a factor VmjQ is required. 
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then all mechanical operators, such as P^, are not affected, whereas the 

operator^, with the understanding that e is a numerically fixed parameter, 

changes sign. This property is already manifestly incorporated in 

expressions (19.54) and (19.56). 
By a curious and rather remarkable property of the Dirac equation 

and its solutions, not shared, for example, by the equation governing 
A. 

the neutrino, the effect of (19.58) can be represented by an operator r 

which affects only the spin-chirality space, so that one may write 

instead of (19.58) 

(19.58') ifi -> ifj' = — V-*■ 4>' — yr r 1 *A = yf'ipr 
where f does not affect the creation and annihilation operators, and 

where rjp is an as yet undetermined phase factor subject only to the 
A, 

condition ypyf = 1. A representation of r in terms of the matrices yM 

may be obtained by requiring ift' to satisfy the Dirac equation 

(19.59) [-iy^dldx^ + m] ip' = 0 

provided ip and $ satisfy the same equation, i.e. (19.47), respectively. It 

turns out that this condition is sufficient to ensure the invariance of P^ 

and the change in sign in j . Substituting in (19.59) for ip' one finds 

(19.60) f[-if-1yfjLf{d$ldxfl)+m>j,] = 0. 

This is a consequence of the second equation (19.47) provided 

(19.61) 

r-1y/ir= -yM, in components = - [yM]^a. 

With the representation (19.5) one has 

(19.62) [y /^]a|3 
+ bvli3a for y — 2,4: 

-[yjJjSa for /* = 1, 3. 

One can thus satisfy (19.61) by choosing 

(19.63) f = iyzy± = i^ 

so that 

(19.64) r= -r, i.e. ff-1 
A 

and r becomes unitary, 

(19.65) f-1 = -f*, 

1 0 

0 0 

0 0 

0 1 

= -I 

i.e. 
A A 

rr+ = i 
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The proof that j changes sign under the operation ip -+ip' is now straight¬ 

forward. Using (19.64) and (19.61) one finds 

u = (e/2) [(5 = (e/2) ./£-</£ ft] 

(19 66) = ~ (e/2)l ‘ t,( ■,,)/!ol'/v 'fc - 'fc ■/'-1 

= (e/2)[r-1]y„[r),4[r]f8[1580),-^^] 

= -(e/2)[y(1]8y[if8i/'r-‘/i),08] = -4 

It should be stressed that if one wishes to replace the arrow in Eq. 

(19.58), i.e. if one wants to formally define an operator U connecting ip' 
with 1fj by 

(19.67) t/f = rip - ripTip - r]r^'>P*yi ~ vrryiK>P 

then this operator must be antiunitary, 

(19.68) r — ypTy^K = ypiy2K. 

Since y2 is pure imaginary and y2y2 = — I, and because yrvf' = 1, one has 

(19.69) r2 = iy2Kiy2K = —y2y2 = +1 

and no superselection rule is generated in the electron-positron system by 

pure charge-conjugation symmetry. However, if one considers now the 

operation of combined inversion, using (19.27), 

(19.70) Z = TIT = r]nr]ryinDiy2K 

one notices that Z too is antiunitary, and has the additional property* 

(19.71) Z2 = iyiy2Kiyiy2K = -y±y2y±y2 = ylyf = —I. 

Thus the spaces spanned by the state vector |... NL(k,r)...) and its spatial 

inverse Z\.. .NL(k,r)...) are separated by a superselection rule, which in 

view of the fact that r interchanges L^± -L may be interpreted as the reason 

for the conservation of lepton number L as far as electrons and positrons are 

concerned. 
One may thus from the outset circumvent the introduction of negative 

energy states entirely, by considering only positive energy solutions of 

the Dirac equation and defining positron solutions as obtained by the 

operation of combined inversion Z from corresponding electron solu¬ 

tions. The consistency of this procedure is borne out if one computes with 

* Note that this would be true even if one had chosen the convention -rpn = — 1, because 

77/7 enters 2J2 only in the combination 77/777)7. 
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the representation (19.70) the effect of 2J on the first two columns of 

Table 19.2, namely 

(19.72) 2JA+1(k,r) = lnr]rA_l(-\L,r). 

The effect of combined inversion is thus a change in sign of the momen¬ 

tum k and the replacement of lepton number L — + 1 by lepton number 

L — — 1. The operator (19.51), in particular, may be written 

(19.73) ifj(x) = £2 (/ + 2)ei<kt>-^U+1(k,r)a+1(k,r) 
k r= 1 

with the understanding that the operator of combined inversion applied 

to an annihilation operator has the effect 

(19.74) 2a+1(k,r) 27_1 - ywvr^-i(-k,r). 

These considerations strengthen the point of view, already expressed 

on the occasion of the corresponding development for neutrino and anti¬ 

neutrino, that an antilepton should be considered as the spatial inverse 

of the lepton, and not as its time reverse as had been suggested by 

Feynman. 

The operation of time reversal, when applied to electrons, is also an 

antiunitary operation, satisfying, since yj and y3 are real and satisfy 

y\ = yl = -i, 

(19.75) ®2 = yly3Ky1ysK = ymy^ = -yfyf = — 1 

so that time-reversed states of electron states are also separated from 

electron states by a superselection rule. One is tempted to speculatively 

identify such states with the corresponding muon states, so that conser¬ 

vation of muon number L , already mentioned in Section 17, flows from 

that particular superselection rule. Such speculation intensifies the riddle 

posed by the muon’s mass which, except for the number L• , seems to be 

the only attribute by which a muon can be distinguished dynamically 

from an electron. Since at present there exists no satisfactory dynamical 

theory of the masses of elementary particles, one cannot dismiss the 

possibility that in the actual physical world the masses of electron and 

muon are connected by the transformation property raM = &me(9_1. 

Dirac’s equation in four-component form (19.8) looks deceptively 

simple. The wealth of information contained in it is brought out more 

transparently when one attempts to write the equation in two-component 

form. To this end, consider again Eq. (19.2) and remember that, according 

to (19.21), the two two-component functions u and v are equal in the 

rest frame, i.e. whenever the eigenvalue of P vanishes. Knowledge of the 
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two-component 0 function u is thus sufficient in the rest frame, and it 

ought to be possible to find a two-component w, say, from which all 

information contained in the four-component 0 can be extracted. 

To be precise, one wants to find a two-component 0 function w, 

taking the place of the four-component function 0, and 2x2 matrices 

representing any operator F, taking the place of any given 4x4 matrix 

representing an operator F, so that the expectation value of F in the 
state w and of F in the state 0 are equal, 

(19.76) <0|i^|0> = <w\F\w> 

provided the normalizations 

(19.77) <0|0> = 1 

and 

(19.78) <w\wy = 1 

are adopted. Strict adherence to the condition (19.78) is decisive for the 
consistency of the procedure. 

To actually carry out the transition from a four-component to a two- 

component description, remember that finite momentum P means v and 

u are not equal and write 

(19.79) v = {I +W)u 

where W is a 2 x 2 operator that can, in principle, be derived from Eq. 

(19.2), as will be shown by successive approximations below. The desired 

two-component function w likewise must be obtainable by some opera¬ 

tion G, say, applied to u, 

(19.80) w = Gw, u — G~1w. 

The connection between G and W is culled immediately from the nor¬ 

malization conditions (19.77) and (19.78), which read 

(19.81) <0|0) = <u\u) + (y\v) = (u\I + (/+ W+) (/+ W)\u) = I 

and 

(19.82) (w\w') = (u\G+ G\u) = 1. 

This can be true only if, up to some phase, 

(19.83) G+G = / + (/ + W+) (I + W). 
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Now the most general 4x4 operator is of the form 

(19.84) 
(F u F 12\ 
\ F 21 F 22/ 

(Fjk are 2x2 matrices) 

so that its expectation value can be written in terms of two-component 

functions 

(19.85) 

<0|P|0> = (u\F11\u} + (u\F12\v') + (v\F2l\u} + (v\F22\v) 

= <^|Pn +J'12(/ +W) + (I+ W+)F21 + (/ + W+)F22(I + W)\u> 

= +F12(I +W) + (I + w+)F2l 

+ (I+W+)F22(I+W)]G-1\w}. 

The condition (19.76) is therefore satisfied provided one uses as 2 x 2 
operator F the expression 

(19.86) 

F = (G+)-\F11+F12(I+W) + (I+W+)F21 + (I+W+)F22(I+W)]G-1. 

The remaining task is to find expressions for G and W from Eq. (19.2). 

By substitution of (19.79) one finds the operator equations 

// — ctP = (I+W)m 
(19.87) 

(H + aV){I+W) = ml 

so that one has simply 

(19.88) 1+ W = 1+ W+ = (l/m)(P-aP) 

and therefore by (19.83) 

(19.89) G+G = [I-i(I +W)][I + i(I +W)]. 

Thus, up to some arbitrary phase, 

(19.90) G = I + i(I + W) = V2eiM^[I + (llV2)eiM4:)W] 

(19.91) G+ = I-i(I+W) = a/2e~i(7T/4) [/ + (l/\/2) e~i<-7rli)W\. 

The expressions for G~1 and (<2+)_1 needed in (19.86) can now be 

obtained as a series in powers of IT. Keeping terms up to order P3/m3 one 
has the approximations 

(19.92) H = ■sjml +P2 = m + (P2/2m) +... 

(19.93) W — (1/m) (H — ctP — m) — — (aP/m) + (P2/2m2) +... 



19. Electrons and Positrons 167 

(19.94) W2 = (P2/m2)-(P2oP/m3) +... 

(19.95) W3 = -(P2oP/m3) + ... 

and from these follow 

(19.96) 

G-1 = [(1 — i)/2]/ — (1/2) W + [(1 +i)/4] W2-(i^) W3 + ... 

= [(1 — i)/'2] I + (aP/2m) + i(P2/4m2) — (P2aP/4m3) + ... 

(19.97) 

((?+)-! = [(l+i)/2]/ + (aP/2m)-i(P2/4m2)-(P2aP/4m3) + ... 

Collecting terms one finds for (19.86) 

(19.98) 

P = (1/2) (Pn +P12+P21+P22) 

+ (l/4m) {[(PX1 —P22) oP + cjP(Pn —P22)] 

+ ^[(P 11+P 22) — °P(Pii + P 22)] 

+ [(P21— P12) ~ aP(P21 —P12)] 

+ ^[(P 21 +P12) oP — oP(P 21 + P12)]} 

+ (l/8m2) {— [(Pix +P22)P" +P2(P 11 +P22)] 

+ ®[(P 11 —P 22) P2 — P2(Pn P22)] 

[ (P21 +P12 )P2 +P“(P 21 +P12)] 

+ i[(P21 P12)P~ PP (P21 P12)] 

+ 2[oP(Plx +P22) °P — ioP(P21 —P12) CTP]} 

+ (l/8m3){— [(Pn — E22)P“ aP +P“ crP(P 11 — P22)] 

-i[(Pn +P22)P2 aP -P2 aP(Pu +P22)] 

+ [(P2i-P2i)P2aP-P2aP(Pi2-P2i)] 

—'l'[(Pl2+P2l)P“aI>—P“°P(P 12+P 21)] 

-[aP(P12-P21)P2-P2(P12-P2i)aP] 

+ t[oP(P„ +P22)P2 -P2(Pn +P22) aP]} 

+ terms of order (P4/m4) and higher. 

This formula ought to be sufficient for any practical purposes. It is valid, 

incidentally, even if P is the operator of momentum of a Dirac particle 

in a fixed external field, to be explained in Section 20. 

As a simple example the matrices y are given in two-component form 

in Table 19.4 for the field free case and under expansion up to and in¬ 

cluding the power P2/m2. 
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TABLE 19.4 

Representation of the Matrices y in Two-Component Form, up to Terms of 

Order P2/ra2 Inclusive 

(It will be noticed that the operators a can be interpreted as representing the vector 

of kinematic velocity. This completes the emancipation of the momentum from the 

velocity, which goes like a red thread through the development of classical mechanics 

in the 19th century.) 

A 

F Fii F22 F12 F21 F 

Y 0 0 — a a (l/2m)[a(aP) — (aP) a] = — (i/2m)(a x P) 

y 4 
0 0 1 1 [1 — (P2/2m2)] I 

a = y4 Y a — a 0 0 (l/2m)[(aP)a + a(oP)J = (P/m)I 

ys i -1 0 0 (oP)/m 

NOTES 

Dirac [1] found the equation which bears his name. 

The conventions used regarding Dirac’s equation agree with the ones 

given by Feynman [2], 

Dirac [3] proposed the hole theory of positively charged electrons to 

circumvent difficulties arising from the states of negative energy, which 

had been examined earlier by Oppenheimer [4]. 

Charge conjugation as a symmetry operation was apparently first 
proposed by Kramers [5], 

Becker [6] gave the first correct reduction of Dirac’s equation to two- 

component form. See also Chraplyvy [7], 

Earlier work by various authors following a procedure by Darwin [8] 

is incorrect, because the two-component ip functions used by Darwin 

are not properly normalized, giving rise to nonhermitean terms in the 
two-component Hamiltonian. 
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SECTION 20 

The Lack of Sufficient Reason for Actually Existing 

Interactions 

The apparent capriciousness of nature which provides just four sup¬ 

posedly basic interactions of widely disparate strengths is matched per¬ 

haps only by the equally enigmatic apparent arbitrariness exhibited in 

the mass spectrum of the so-called elementary particles. 

The various classical responses to the baffling mystery of interaction 

have resulted in tenable edifices, such as Einstein’s theory of gravitation, 

and in failures, such as Einstein’s unified field theory. This type of 

approach to the problem of interaction has now generally been aban¬ 

doned, partly because gravitation and electromagnetism turned out to 

comprise only a fraction of observable interaction phenomena. 

The experimental exploration of the so-called strong and weak inter¬ 

actions, which appear empirically to be as disconnected as are gravi¬ 

tation and electromagnetism, has gathered evidence on a vast scale since 

the advent of quantum mechanics, lending urgency to all those attempts 

which cast among the tenets of quantum mechanics for a vehicle to which 

a theory of interactions might be attached. 
The arbitrariness in the phase of a state vector, in particular, has been 

a favorite starting point for efforts aimed at deriving the specific form of 

actually existing interactions from invariance arguments. A typical line 

of reasoning runs as follows. 
Consider a single particle state 11) = a+|0> characterized by a set of ip 

functions <f>r(q) so that 

(20.1) WT = J cf>*{q)cf>T{q)dq = 1 

and 

(20.2) RTT-eiv™' = J <f>*-(q) </>T(q) dq = complex number 

so that 

(20.3) PtY = R\r> = Probability for finding the values r'of the observ¬ 

ables if the particle is known to be in the state 

characterized by the values r. 
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In terms of the eigenstates of momentum k, for example, and their 

i/j functions 0k(q), any such state can be obtained by a linear superposition 

(20.4) <f>T{q) = S ck(r) i/rk(q) 
k 

and one can write in terms of the expansion coefficients 

(20.5) WT = 2 |ck(r)|2; RTT'eiyTT' = Z ck(T')ck(T). 
k k 

Now the following question arises: If one writes 

(20.6) fT(q) = AT(q)eioeT(q); Ar(q) and aT(q) real functions, 

to what extent is the phase aT(q) determined by the two quantities which 

have an observable meaning, namely WT and RrrA 

Clearly, WT is independent of aT(q), and the phase remains undeter¬ 

mined by WT. The only requirement imposed by given i?TT> is that the 

integral (20.2) must have a definite modulus. Consequently, the inte¬ 

grand, although it need not have a definite phase at each point, must have 

a definite phase difference between any two points in space, whether 

neighboring or not. This follows, by generalization, from the simple rules 

governing the addition of complex numbers. Suppose one wants to have, 

in the sum i?(cosy + isiny) = R1(cosy1 + isinyx) -t-i?2(cosy2 + fcsiny2), 

only R determined, but to allow y to remain arbitrary. Using the elemen¬ 

tary formula R2 = R2 + R2 + 2R1R2cos(y1 — y2) one sees that, for given 
R, only the phase difference y1 — y2 is determined. 

Thus, the change in phase of </>* {q)<f>T(q) along a closed curve must 

vanish. This requires then that the change in phase of </>T(q) along a 

closed curve shall be opposite and equal to that in q) and hence the 
same in all <pT(q). Result: 

The change in phase of a ip function along a closed curve must be the same 
for all f functions, independent of r. 

In other words, the change in phase along a closed curve must be 

something determined by the dynamical system itself, independent of 

the particular state considered. This suggests exploiting the nonintegra- 

bility of phase to accommodate features of the environment, such as 

provided by some external field in which the particle moves. 

To investigate this possibility write, generalizing to dependence in 
space and time, 

(20.7) <Pt(x) = (p°T(x) e^(x) 

where &®(x) *s an “ordinary” f function, i.e. one with a definite phase at 

each point x = (q,t) in space-time, and the indeterminacy in the phase 

is put into the factor el^x). It will be noted from the foregoing that fi(z) 



20. Lack of Sufficient Reason for Actually Existing Interactions 171 

is not required to be a function of x having definite values at each point, 

but fi(x) must have definite derivatives, 

(20.8) kv = dfildxv 

at each point, which do not, in general, satisfy the integrability condition 

3kvIdx^ = dK^/dxv. Now the change in phase, around a closed curve, 

should be observable because RTT depends on it. In four dimensions 

this change in phase is, by Stokes’ theorem, 

(20.9) £ KpdXp = JJ [{dxjdx^) - {dx^dx^dS^ 

where dS^v is the skew tensor element of the surface bounded by the curve. 

It is now very tempting to identify the derivatives of the phase /3 with 

the electromagnetic potentials, so that 

(20.10) k„ = — eAv 

and 

(20.11) (die y/dzJ-idKp/dxJ = -eF^ 

can be identified with the electromagnetic field tensor, if e stands for the 

numerical value of the electric charge of the particle under consideration. 

The homogeneous Maxwell equations 

(20.12) eKXflv(dFJdxA) - 0 

are then automatically satisfied, and are equivalent to requiring that the 

right-hand side of (20.9) must not depend on which surface bounded by 

the curve given on the left-hand side is taken. Indeed, if one has two such 

surfaces, then the difference in the integral jF^dS^ over them will be 

given, by Gauss’ theorem, as 

(20.13) A | F^dS^ = J eKXt,v(dFJdxx)dix 

where the integral on the right is taken over the volume between the two 

surfaces, and (20.12) is necessary to guarantee the vanishing of this 

expression. 
The identification (20.10) gives rise to some observable effects whose 

importance for the quantum mechanical concept of interaction was first 

realized by Aharonov and Bohm, and which are bound to startle anyone 

who has been brought up with classical electrodynamics. For example, 

if a coherent beam of electrons is taken around both sides of a solenoid, 

an interference pattern is observed which will shift continuously with 

continuously varied flux F through the solenoid. This is predicted by the 

identification (20.10), because if one considers the part of the f function 
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at the point of interference which is a linear superposition of two ip 

functions corresponding to path 1 taken around one side and path 2 

taken around the other side of the solenoid, 

(20.14) 

<p = <f)leiP'Jr<f)2eiP'] = -e J Adq; /S2=-eJ Adq 
1 2 

then the interference between the two beams will depend on 

(20.15) fig — = e ji Adq = eF 

where the integral follows the closed path formed by paths 1 and 2 

around the solenoid, and F is consequently the entire flux through the 

solenoid. 

Since this effect will occur even though the electron beam may never 

enter any region in which the electromagnetic field is unequal to zero, 

Bohm and Aharonov have argued that in quantum mechanics potentials 

acquire the status of observables which they do not have in classical 

electrodynamics, pointing out that this conclusion is unavoidable if one 

wishes to adhere to the concept of local interactions as a basic require¬ 
ment. 

One can, however, formulate quantum electrodynamics without the 

use of potentials, if one admits the kind of nonlocality inherent in the 

very notion of a path-dependent phase, as has been shown by Mandel¬ 

stam. It would appear, then, more reasonable to accept the Bohm- 

Aharonov experiment as an indication of a profoundly nonlocal feature 

acquired by ip functions in an electromagnetic field. This feature can be 

extracted from the ip function (20.7) in yet another fashion. By dif¬ 
ferentiation one obtains 

(20.16) (d0T/dxv) = e^[(9/3av) + tK„]<P® = e^Kd/dxfi-ieAv]&°T. 

It follows that if 0T satisfies any equation involving the operator of 

momentum-energy P^ = ifildxfi), then 0? will satisfy the corresponding 

equation in which P^ has been replaced by P^ + eA^. On the basis of the 

identification (20.10), one would then have to conclude that the ip function 

0 always satisfies the same equation, whether there is a field or not, and the 

whole effect of the field is in making the phase nonintegrable. This is equiv¬ 

alent to having the “ordinary” part 0° of the ip function, namely the 

part having a definite phase, satisfy the equation with P replaced by 

Pp + eAp. In particular, the Dirac equation for an electron in an electro¬ 
magnetic field now reads 

(20.17) = nup 
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where f is now meant to have a definite phase at each point in space and 

time. 
It will be noticed that this equation is invariant under phase trans¬ 

formations involving single-valued functions X(x) 

(20.18) f -+feieMx) 

provided transformation (20.18) is accompanied among the vector 

potentials by a gauge transformation 

(20.19) Av —> Av + (dX/dxv). 

This invariance property can be made manifest if one introduces the 

explicit path dependence of 0 

X 

(20.20) 0{x,P) = 0°(x) exp[ — ih J Affi^)d^\ 
— OO 

and the gauge-invariant derivative 

(20.21) d„0(x,P) = lim {[0(x + dx P')-&{x,P)]ldx } 
dXn~*() 

where the path P' is obtained from P by giving it an extension dx^ in x^ 

direction, i.e. P' passes through the end point x of the path P. The Dirac 

equation can then be written 

(20.22) iy^n0 = m<&- 

It should be kept in mind that the operators d^, dv do not commute if a 

field is present, 

(20.23) (dhLdv-dvdfX)0 = -^F^. 

As a calculational aid, the electromagnetic potentials are, of course, 

always extremely convenient when one seeks to actually solve Eq. 

(20.22). 
The rule of replacing P^ by P^ + eA^ in presence of an electromagnetic 

field has been known for a long time, and its success in giving right 

answers in empirical situations where the representation of the electro¬ 

magnetic field by a classical potential is meaningful, is well known. The 

comparison of the energy levels in a Coulomb field resulting from (20.17) 

with observation can be found in practically all texts on quantum 

mechanics. The good approximations to reality provided by this 

empirical rule are the more astonishing in view of the number of arbitrary 

features characterizing this “derivation” of that rule by the line of 

reasoning employed above. 
Perhaps the most serious shortcoming of the argument leading to the 



174 Concepts in Quantum Mechanics 

identification (20.10) is the complete arbitrariness of the value of the 

parameter e, identified as the electric charge of the particle considered, 

which could be set equal to zero, for example, thus making the entire 

discussion up to this point an empty exercise. In other words, no suf¬ 

ficient reason for the existence of either charged or uncharged particles 

has thus far been advanced. It is, in particular, not at all clear why one 

could not have, in analogy to electrons satisfying (20.17), neutrinos 

coupled to the electromagnetic field satisfying the correspondingly 

modified neutrino equation o^PfJL +eA^ifj — 0. 
In this connection, it seems worth recalling a curious argument by 

Dirac based on the fundamental indeterminacy modulo n2v (n an 

integer) in the phase of any complex number. Considering the single¬ 

valued part 0° of any ip function, Dirac argues that the change in phase 

around a small closed curve must be small and cannot therefore be a 

nonvanishing multiple of 2n, because in the limit of an infinitesimal 

circuit this would conflict with the continuity of 0. There is an excep¬ 

tional case, however, when 0° vanishes, since then its phase does not 

have a meaning. Since 0° is complex its vanishing will require two 

conditions, so that in general the points at which &(x) vanishes will lie 

along a “nodal line.” From continuity, one can now only infer that the 

change in phase along a circuit around a nodal line must go over into 

n2v in the limit. This integer n will thus be a characteristic of the nodal 

line, and its sign can be associated with the direction of the circuit, which 

in turn may be associated with a direction along the nodal line. If one 

considers now a large circuit in space with a number of nodal lines 

passing through it, then the total change in phase along the curve is 

(20.24) Jj8 = 2ffS«i + e JJ B dS. 

Applied to a closed surface, (20.24) must vanish, 

(20.25) Yjni— —(el2u) j f B-dS (c.s. means closed surface) 
C.8. ^ J 

If D ni ^ 0, some nodal lines must have end points inside the closed 
C.S. 

surface. Thus the endpoints of nodal lines, if they exist, must be the same 

for all </i functions, and represent sources of magnetic flux 477/ = (27m/e), 

where / is the strength of the magnetic monopole at the end point, 

(20.26) f = (n/2e). 

These considerations do not, of course, show that such nodal lines with 

or without end points must exist in nature. As in case of electric charge e, 

the argument leading to the prediction of / does not contain sufficient 
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reason for the existence or nonexistence of any finite value of n. All 

experimental evidence available to date indicates that magnetic mono¬ 

poles do not exist in nature. 
Equation (20.26) is, incidentally, invariant under inversion of co¬ 

ordinates and under reversal of motion only if the nodal characteristic n 

changes sign under either transformation, independent of whether e does 

or does not change sign under either transformation, because of the 

opposite transformation character of electric and magnetic fields. 

NOTES 

Probably the first attempt to find the reason for the electromagnetic 

interaction in the invariance of the Schroedinger equation under phase 

transformations is due to London [1], 
Dirac [2] used the indeterminacy modulo 2v in the phase of any single¬ 

valued 0 function to speculate on the possible existence of magnetic 

monopoles. 
Aharonov and Bohm [3] drew attention to experiments which demon¬ 

strate directly the nonintegrability of phase in presence of electromag¬ 

netic fields. The experiment of Aharonov and Bohm with magnetic flux 

enclosed by a split electron beam was actually performed by Chambers 

[4]. 
Mandelstam [5] has given a formulation of electrodynamics without 

potentials, and shown in which sense the path dependence of phase 

implies a basic nonlocality of the f function in presence of electromag¬ 

netic fields. 
Readers who wish to review at this point the comparison with experi¬ 

ment of the solutions of Eq. (20.17) as applied to atomic hydrogen may 

find the slim booklet by Series [6] particularly concise and comprehensive. 
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♦SECTION 21 

The Idea of the Compensating Field 

Since the requirement of invariance under phase transformations 

(20.18) necessitates the presence of some field which compensates by a 

gauge transformation (20.19) the effect of (20.18) on the equation 

governing the ip function, some authors have attempted to elevate a 

generalized form of gauge invariance to a fundamental principle, and 

have sought to find in the idea of the “compensating field” the raison 

d’etre for actually occurring interactions. The formulation of this 

approach is greatly aided if one uses as starting point a so-called action 

principle 

(21.1) J L[>p, (dipl'dx^d11 x = Extremum 

from which flow the equations governing the ip functions as Euler- 

Lagrange equations of this variational principle, 

(21.2) (8L/8ip) = {dLldiP)-(dldxv)[dLld(diP/dxv)] = 0. 

For example, the “Lagrangian” L giving rise to the Dirac equation and 

its adjoint by the recipe (21.2) is 

(21.3) Ld = iipy^dipldx^-mipip. 

It should be understood that introduction of (21.1) is a purely formal 

device, and the step leading from (21.3) by (21.2) to the Dirac equation 

can in no sense be considered as a “derivation” of this equation. 

Suppose now one wants to insist on the invariance of L under unitary 

transformations of the type 

(21.4) U = exp[i€a(z)£J 

where Sa (a = 1,2,.. .,n) are n hermitean operators and ea(x) n real 

functions of space and time. The idea is to associate the operators Sa with 

internal properties of elementary particles, such as electric charge, 

isospin, etc. For example, one may visualize two spatially separate 

observers with different conventions about the labeling of nucleons as 

neutrons and protons looking at the same event involving strong inter¬ 

actions which are invariant under changes in these conventions, i.e. 
177 
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invariant under rotations in the abstract isospin space. The generators 

of space time transformations associated with dynamical rather than 

internal properties of elementary particles are expressly excluded from 

consideration at this point. The coordinates x refer to a flat space-time 

continuum in which displacements, in particular, are integrable. If one 

makes the parameters characterizing space-time transformations, such 

as translations, rotations and Lorentz transformations, coordinate 

dependent, then the generators Sa will, in general, not commute with the 

parameters ea(x), and one is forced to consider nonintegrable, curved 

spaces. This question will be taken up in some detail in Section 22. 

The transformation (20.18) is the special case with n = 1, S = el and 

e(a;)= X(x). The Lagrangian (21.3) is then not invariant as it stands, 

because 

(21.5) U-'id/dx^U = (dldxtl) + U~1{dUldxfL). 

This deficiency of LD can be repaired, however, if one introduces a 

compensating field B which transforms as 

(21.6) = U-'B^U + mU-HBUIdxJ 

so that, if 0 transforms as 

(21.7) f = = Uf 

then 

(21.8) 

Ld = ^y^idldx^-igB^f-mff = if y^dldx^-igB'^f-mf f 

is now invariant under the transformation (21.4). In the special case 

mentioned above, the still arbitrary coupling parameter g will then have 

to be identified with the numerical value of the electronic charge e, and 

B^ with the vector potentials A of electrodynamics. 

It is evident that one cannot introduce scalar fields through this 

requirement of gauge invariance. Any compensating field must, by 

necessity, be a vector field. Therefore, if compensating fields are accepted 

as the primary agents of interaction between fermions, the pion field, 

which for a long time was thought to be the “glue” which holds the nuc¬ 

leons together, will have to be demoted from the ranks of fields whose 

quanta are considered as elementary particles. Any gauge theory of 

strong interaction requires, in principle, vector mesons as agents of 

interaction, and in such a theory one must seek to obtain pions as 

composite particles, for example as bound states made up out of nucleons 

and antinucleons as had originally been surmised by Fermi and Yang. 

The transformation formulae (21.5) and (21.6) are, in general, rather 
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complicated, since they depend on the C.R.s between the operators Sa. 

One has the expansions 

(21.9) 

ll-'WldxJ = i(d'Jdxl,)S„-(i*l2<)eJS<flldxl.m,Sl}) 

+ (is/3!) e. e0«,,/&„) [«., [S„, Sy]]-+... 

(21.10) 

U-1 B„ V = B„ - u0„ BJ + (*s/2!) e„ <0., [S„, B„]] - +... 

If one were to regard local gauge invariance as embodied in the trans¬ 

formations (21.4) for any operators Sa as compulsory, one would in fact 

be faced with an embarrassment of riches regarding possible compensating 

fields. Some physical reasons are needed to restrict the large variety of 

possible formal choices for compensating fields. With an eye on such 

reasons, to be given in the form of some examples later, one can attain a 

substantial reduction in complexity if one restricts consideration to 

operators Sa which satisfy C.R.s of the type 

(21.11) [&*,Sp\ = CahSy. 

The “structure constants ” Caj8y of the set of transformations Sa are then 

independent of the representations used for the Sa, and satisfy the rela- 

tions 

(21.12) Bafty T Bfiocy 

and 

(21.13) Bape Cey § + Cpye Cea g + 0. 

where (21.12) is a consequence of definition (21.11), and (21.13) follows 

from the Jacobi identity satisfied by triple commutators. Transforma¬ 

tions that are isomorphic to the Euclidean rotations in three dimensions 

and four dimensions, and Lorentz transformations are special cases of 

(21.11). 
Introducing without restriction of generality new field variables Ba^ )JL. 

which commute with all Sa, by 

(21.14) BM = SaBa^ 

one can consolidate the two expressions (21.9) and (21.10) into 

(21.15) U-fBU/dx^) = Sa[i{deJdxhL)-{i2l2\)e^deyldxlx)Cpyoc 

+ (^3/3!) ep ey{d€8ldxlx) Cy8e Cjgea -+...] 

U 1B^ U = tia[Ba< fJL — iep By p Cpya 
+ {i2l2\) ep€yB8tljLCy8eCp€lx-h...]. 

(21.16) 
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Therefore, (21.6) is satisfied for infinitesimal gauge transformations if 

the Ba p transform according to 

(21.17) 

8BafJL = = ^^y>lxCpya + {llg){dealdxlx). 

This formula gives a clue to the construction of the gauge-invariant 

Lagrangian LB for the field Ba^ which will give the field equations satis¬ 

fied by the compensating field, and which should in the special case of the 

electromagnetic field coincide with the well known Lagrangian 

(21.18) La = -IF^F^ 

containing only the gauge-invariant fields 

(21.19) F^ = (dAJdx^-idAJdxJ. 

Denoting this unknown Lagrangian with 

(21.20) 

FB = FB(Bcc^,Ba^v)) Fa^v = (dBa^ldxv) 

one requires as a consequence of the invariance under transformations 

(21.17) 

(21.21) 

8Lb = (dLBldBahL)8B0C^ + {dLBldBa^v)8B0C^v = 0. 

Substituting (21.17) and (note that 8 and dldxv commute) 

(21.22) 

= iepBy^lvCpya + i(defidxv)BytlJLCf}ya + (llg)(d2€jdxvdxlx) 

and collecting coefficients of ea, 9ea/da;^ and d2ealdxvdxfl one obtains 

(21.23) CapY[Bp'fidLBldByfJ) + Bp^v(dLBldByfJL]v)] = 0 

(21.24) (dLBldBatfJL) + igC^yB^v{dLBldBytV^) = 0 

(21.25) {dLBldBa^lv) + {dLBldBa<vlfX) = 0 

Equation (21.25) can be satisfied only if the derivatives of B enter LB in 

the combination Ba[fl\v] = BatV\ — Ba ^v, and, from (21.24), it follows 

further that enters LB only in the combination 

(21.26) 

Ba., [jlv = Ba^\v]-{igl2)C^yaL{B^^BytV-B^vBytJt) = —G^ v/x. 

Equation (21.23) is not sufficient to determine LB uniquely. However, 
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if one wishes to obtain a general expression which contains (21.18) as 

special case, one must introduce the “field strengths” 

(21.27) 

Qpv = {dBJdxll)-(dBltldxv)-ig{BltBv-BvBIJI) = BaGa^v 

and write 

(21.28) 

Bb ~ Jtrace G^v G^v 4^a, ju.v^/3, 

±Goi, [XV Gfit C ayft C ftyp. 

The proof that LB does indeed satisfy (21.23) is cumbersome and will be 

omitted here. 
The entire Lagrangian describing the mutually interacting f fields and 

5-fields is now 

(21.29) L = Ld + Lb 

where the derivatives of f occur in the combination [(d/5rj - igSaBaix\iJj 
so that 

(21.30) [dLD/d{diJjldxfJ,)]S0,ip = {ilg)[dLD/dBa^]. 

Incidentally, the arbitrary coupling parameter g can alternatively be 

introduced as a factor with which LB may be multiplied without changing 

the conclusions of this section. Formally, this is equivalent to introducing, 

instead of B1 , the fields B^ = gB^ as variables, so that 

d[x4> = [(S/dx^) -iSaBfll]ifi and LB = g-lLB{B'). 

Now, the invariance of L under an infinitesimal gauge transformation, 

transforming Ba ^ according to (21.17) and if according to 

(21.31) 8i/j = ieaSaif 

(21.32) S<A = -ieaSaf 

(21.33) 8 (dip/dx^) = ifajdxp) Sa if + ieaSa{difldx^) 

leads to a conservation law of “current” 

(21.34) ^Ja,[x!^x[x) = °> 

which can be derived as follows. 

Since LB had already been chosen so that SLB = 0 under that trans¬ 

formation, one need write down only 

(21.35) 
8LD — (dLDldif)8if + (dLDldif)8if + [dLDld(difldxfJL)]8(difldx) 

+ (dLDldBa>fl)8Ba^ = 0. 
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Use has been made here of the fact that LD contains neither (dtfj/dx^) nor 

BatfJL|„. The first term vanishes because of the field equation 

(21.36) (8L/8$) = {dLD!d]>) = 0 

and the remainder reads upon substitution of (21.17), (21.31), and (21.33): 

(21.37) 

^{(^Dldifj)S(Xi/j+[dLDld(dipldxIM)]Sa(di/jldxljL) + CapyB^tJi{dLDldBytlM)} 

+ (dealdxti){[dLDld(dipldxtl)\Sai/j-{i/g)(dLDldBailJi)} = 0. 

The second bracket vanishes on account of (21.30) and for the first 

bracket one can exploit the held equations 

(21.38) 

(8L/Sip) = {dL^ld^-idldx^ldLoldidipIdx^)] = 0 

and 

(21.39) 

(SL/SB^) = OLDldBr^) + (dLsieByfl,)-(dldx,)(dLI,ldBy:lll,) = 0 

to yield 

(21.40) 

(d/&>) {[dLMtyldx^S.+ Caf}y[- BPtfi(dLBldBy>M) 

+Bf},n(dlfav)(dLBldBy>fl\v)] = 0 

Atthis point, Eq. (21.33) allows one to substitute for Capy Bp fl(dLB/dBy 
and write (21.40) 

(21.41) 

{dldxJ{[dLDld{diPldxIM)]S<xif, + Caf}yBfitV(dLBldBy'V\IM)} = 0 

which is of the form (21.34) with the current density 

(21.42) 

= ldI'Dld(d'Pldxfl)]Sailj + CapyBptV(dLBldBpiVllJ') = ja>IM(iJj) +ja>fJL(B). 

Equations (21.39), governing the field B, can be cast in the form 

(21.43) (dLBldBytfl)-(dldxv)(dLBldBytfxlv) = 

These equations are, except in case OajSy = 0 which corresponds to a type 

of interaction resembling electromagnetism, essentially nonlinear, be¬ 

cause the compensating field B acts as its own source in a manner indi¬ 

cated by the presence of the second term on the right-hand side of the 

current (21.42). The vector particles which in a full quantum theory 
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must appear as the carriers of interaction are, therefore, except in case 

Capy = 0, expected to share with the primary source particles the sym¬ 

metry property which gives rise to their existence. Thus any vector 

mesons which mediate the interaction caused by the isospin symmetry 

of nucleons must themselves carry isospin. Particles associated with a 

one parameter symmetry are exceptional in that they do not possess the 

relevant source property. Thus photons do not carry an electric charge. 

If one specializes to invariance under rotations in isospace, so that 

(21.44) 

= Ta (a = 1,2,3); Caj3y = ie^y; traceSaSp = 2Saj8; 

one obtains the equations characterizing a vector field first introduced 

by Yang and Mills in an attempt to account for some of the facts of 

strong interactions in terms of vector mesons coupled to the isospin of 

baryons, 

(21-45) ^a,/xv = = B[,u|v] +9r(B/x X Bv) 

(21.46) 

= [(3/9a>)-i0(T-BM)]^; (d^ dv-dv = -ig( Gflv-T)<fi 

(21.47) LB= 

(21.48) 

= tfYpTifi + HGpyXBfl = %T^ + i(BWv]xBv) 

(21.49) {8LB/8 B^) = (3G pjdxj-igip. 

The compensating field has the generally attractive feature of inde¬ 

pendence from the particular form taken by the operators Sa which 

generate the symmetry property attached to the f field. It depends only 

on the structure constants <7aj8y which are the same for all representations 

of the operators Sa. Physically, this means the compensating field B is 

the same for all f fields that possess the particular kind of symmetry 

represented in terms of the operators Sa. Thus there is only one universal 

electromagnetic field which compensates by gauge transformation the 

effects of the one parameter phase transformation generated by the 

operator of electric charge. 
A number of schemes have been proposed linking the empirical sym¬ 

metries of the strong interactions which reveal themselves through con¬ 

servation of various attributes such as baryonic charge, hypercharge, 

and isospin (see Section 29), with the existence of various types of vector 

meson fields, each field being generated in the manner described above 

as a compensating field B from the requirement of gauge invariance, so 
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that the mentioned conservation laws are identified with equations of the 

type of (21.41). Notably, a scheme by Sakurai postulates the existence of 

three types of vector mesons which, respectively, are the dynamical 

agents attached by the idea of the compensating field to the two one- 

parameter attributes of baryonic charge and hypercharge, and the one 

three-parameter attribute of isospin. 

Similarly, there exist a number of proposals to account for the weak 

interactions by the intermediary of some vector meson generated as a 

compensating field by the particular gauge symmetries characteristic 

of the particles engaging in these interactions. 

However, all attempts to identify actually observed vector mesons 

with any of the possible compensating fields B that may mediate other 

than electromagnetic interactions encounter a disappointing feature of 

this theory. The formalism developed above cannot accommodate com¬ 

pensating fields B which contain in the Lagrangian terms of the type 

(21.50) - (fxl/2) Ba^Ba fl (/jlq a constant) 

without destroying the general pauge invariance which has been the very 

motivation for this approach. On the other hand, such terms are needed 

if one wishes to describe any of the actually observed vector mesons 

other than the photon, because only by inclusion of terms (21.50) will 
the field equations be of the form 

(21.51) W^ldxJ-rfBr = igjM 

needed if the interaction is to give rise to short-range forces and, therefore, 

to mesons with finite rest masses in accordance with observation. 

Now, some authors have used the fact that the derivation of the expres¬ 
sion (21.42) for the current and the conservation law (21.41) are not 

affected by the addition of a term (21.50) to LB as an excuse to consider 

“partially gauge-invariant” theories in which a field B, not longer 

deserving the name of “compensating field,” is coupled to a conserved 

current after the fashion of (21.51). Such an approach loses its aspect of 

complete meaninglessness if one keeps in mind the hybrid nature of the 

theory developed above. The field B up to this point has been conceived 

as a classical field. In a consistent quantum theory both the fields ip and 

B should always appear in conjunction with the creation and annihi¬ 

lation operators which give rise, in particular, to so-called vacuum 

polarization effects. One can then argue with Schwinger that, in case of 

sufficiently strong coupling, the vector mesons may acquire, even in a 

strictly gauge invariant theory, the propagation characteristics of 
particles with finite rest mass. 

From an intuitive point of view this can be made plausible by the 
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following line of reasoning. In actual electrodynamics the comparative 

weakness of the coupling constant (e2 = 1/137) guarantees the stability 

of the photon against possible disintegration into two or more atoms of 

positronium, because the binding energy of positronium is of order 

— e2m as compared to the restmasses m of its constituents. Similarly, any 

external charge Q brought into the electrodynamic vacuum will cause a 

polarization into virtual positroniums only in its vicinity, and will (apart 

from a possible renormalization of its numerical value) retain an un¬ 

compensated amount which acts as a source of a long range coulomb 

field. If the strength of the coupling were now allowed to increase (and it 

should be possible to do this analytically without destroying the gauge 

invariance, which is a structural property of the theory independent of 

the parameter e2), at a certain critical value of order e2 a; 1 an entirely 

different situation would arise. The vector meson would become unstable 

against disintegration into various bound states of the source field and 

acquire propagation characteristics usually associated with massive 

vector mesons that are unstable against decay into two or more pions, 

which in turn may be considered as bound states of nucleons and anti¬ 

nucleons. Any external “charge” introduced into this kind of vacuum 

would induce a chain of polarization events which would effectively 

transport the original charge to spatial infinity, leading to complete com¬ 

pensation of the original charge in any finite volume. Consequently, no 

long range field of the “charge” could be maintained, and this amounts 

again to the absence of vector mesons with vanishing rest mass in this 

case. 
The analytic penetration of this attractive idea, which has been 

promulgated and shown to be feasible in some simplified models by 

Schwinger, has not been completed at the time of writing. Therefore, all 

gauge theories of strong and weak interactions remain stalled in a state 

of animated suspension until this crucial point, of whether massive 

vector mesons can be consistently accommodated in a strictly gauge- 

invariant theory, has been settled. 

NOTES 

Yang and Mills [1] first attempted a theory of strong interactions in 

terms of a vector meson field which is a compensating field needed to 

guarantee coordinate dependent invariance under rotations in isospace. 

The idea to consider pions as bound nucleon-antinucleon states is due 

to Fermi and Yang [2]. 
Sakurai [3] has attempted a theory of strong interactions by invoking 

three types of compensating fields, corresponding to three types of vector 
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mesons, one generated by a three-parameter group of transformations 

and the other two each generated by a one-parameter transformation 

group. See also Schwinger [4] and Lee and Yang [5], 

Roman [6] has proposed a scheme of compensating fields which 

incorporates the weak interactions. See also Salam and Ward [7]. 

Glashow and Gell-Mann [8] have considered some consequences of 

so-called “partially gauge-invariant” theories of interaction. 

Schwinger [9] has given a formal, but somewhat unrealistic, example 

demonstrating the consistency of compensating fields having finite rest- 

mass with strict gauge-invariance in case of sufficiently strong coupling. 
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Gravitation as a Compensating Field 

♦SECTION 22 

The only other interaction besides electromagnetism which does not 

require field equations corresponding to particles of finite rest mass, and 

is, therefore, already on the level of classical field theory free from any 

obvious inconsistency with a gauge-invariance principle, is gravitation. 

There is, of course, one fundamental difference between electro¬ 

magnetism and gravitation. Whereas electromagnetic theory can be 

formulated so that it becomes globally invariant under Lorentz trans¬ 

formations, in the presence of gravitation one can, in principle, only 

require local Lorentz invariance, for the simple reason that, in the 

presence of gravitation, inertial frames of reference are, in general, 

accelerated with respect to each other if they are some finite distance 

apart. The description of an event in space-time requires, therefore, two 
labels, namely the distance x of the event from the origin of the inertial 

frame in which the event is described, and the label u which tells where 

the origin of that inertial frame is located in an underlying curvilinear 

coordinate system. 

For the purpose of illustration consider two observers (0) and (0) 

located at the origins of two inertial frames, respectively. The observer 

(0) is placed at the center of the earth, and the other observer (0) is 

oscillating in a tunnel drilled through the center of the earth, as drawn 

in Fig. 22.1. In the underlying curvilinear continuum the two observers 

will describe worldlines which may be rendered graphically as indicated 

I 

(0) 

Fig. 22.1. Example of two inertial frames accelerated with respect to each other. 
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(6) (0) 

Fig. 22.2. The world lines of observers (0) and (0) described in an underlying curvilinear 

continuum. 

in Fig. 22.2. It is intuitively clear that the two frames carried along by 

the two observers cannot be connected by a Lorentz transformation, 

except locally whenever the worldlines intersect, because only at the 

instant when the two origins coincide are the two frames in unaccelerated 

motion with respect to each other. In fact, the displacement operation 

becomes nonintegrable under these conditions, because the two inertial 

coordinate frames x and x carried along without rotation by each observer 

will be rotated with respect to each other between successive meetings 
at u1 and u2 (say), as indicated in Fig. 22.2. 

These considerations can be made formally precise through the 

introduction of a set of 16 functions hk(u) which allow, at each con¬ 

tinuum point u^, the transformation to a local inertial coordinate frame 

xk by 

(22.1) (dxkldu?) = hk{u) and (du^/dxk) = h%(u) 

so that h*hvk = 8*. 

(By convention, Latin indices refer to components in local inertial frames, 

Greek indices to components in the underlying continuum.) Since the hk 
are not required to satisfy any integrability condition, i.e. 

(22.2) A*|v = dhk/duv, 

they may be considered as a set of 16 independent given functions 

representing the properties of the given gravitational field in which 
observers tied to inertial frames may find themselves. 

The purpose of this section is then to show how the requirement of 

local Lorentz invariance induces dynamical restrictions on the hk in the 
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form of field equations which the hk must satisfy, in analogy to the 

restrictions imposed on the vector potentials of electrodynamics by the 

requirement of gauge invariance leading to Maxwell’s field equations as 
a possible set of such equations. 

Contact with the standard formalism in the theory of gravitation can 

be made by noting that if the metric of any inertial frame x is taken to be 

(22.3) gik — 8ik so that ds2 = 8ikdxidxk, 

then the metric g^v of the continuum u, defined by 

(22.4) ds2 = g^vdu^duv = (dx1/du>i)(dxk/duv)8ikdutlduv 

can be expressed in terms of the functions hk as 

(22-5) g^v = hp hi 8ik — hkj± hk 

and therefore all other quantities characterizing the geometry of the 

continuum u, such as the affinities r* and the curvature tensor Rx. 

are expressible in terms of the field variables h k 

The question is now whether the functions hk representing gravitation 

can be related to a compensating field B whose existence will become 

necessary when one requires invariance under local Lorentz transforma¬ 

tions which connect any local inertial frame xk with another local frame 

xk by 

(22.6) xk = xk + ef (u) xl; ekl(u) — —elk(u) 

affecting the functions hk themselves according to 

(22.7) 8hk = ek(u)h1^ 

and transforming any ifj function according to 

(22.8) SeA = y*(u)Ma+. 

Here the generators Mkl representing the Lorentz transformation satisfy 

the C.R.s (see Appendix 4) 

(22.9) [Ma, Mmn] = \Ckitmn Mab; Mab = -Mba 

where 

(22.10) CfimnCfiy = 4(S„^-8w8ii). 

Indeed, any action integral 

(22.11) / = J (difjldxk)]d4x 
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governing the dynamics of the ip function in an inertial frame reads in 

curvilinear coordinates 

(22.12) 

/ = J L[tp(u),h%(u) (dip/du'x)]hd4u s J (d<p/duP), hk]d4 u] 

h = det|A*|; =£? = hL\ 

and is not invariant, as it stands, under the transformation (22.6). In 

analogy to the development leading to (21.8) this deficiency can be 

repaired, however, if one postulates the existence of a compensating 
field 

(22.13) B®(u) = — Blk(u) 

transforming according to 

(22.14) 

SB® = \C®t i5 eah(u) B% + (d^/dur) = 4 Bf + elm Bf + (d^/du*) 

and replaces by 

(22.15) & = 

where ip stands for 

(22.16) 

The relationship between the compensating field B and the gravita¬ 

tional field h is now obtained when one notices the identity of the “gauge- 

invariant derivative” (22.16) with what is commonly known as the 

“covariant derivative ” of ip. To see this write down (22.16) for the special 

case of a tensor field ip with components tpij in the local Lorentz frame, 

(22.17) 4 ipv = (dtp^/du^-B^ipl-B^ipl 

and go over to the components ipP° of ip in the curvilinear frame by 

(22.18) $P° = hPihJipv-, = ttph’ipP*. 

After multiplication of (22.17) with h^hf and utilization of ^ = 8uip* as 
well as h%hkv = 8^, one finds 

(22.19) hPhpd^ = (dipp'id^ + rp^+r*^ 

with 

(22.2°) 7*. s 



where 

(22.21) 
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Bpr,,x = hPjKk B% 

If one can now show that the symbols rPintroduced in (22.20) are 

identical with the affinities 

(22.22) ^ ($<jT\fX 9(Ao\t 9fjLT\<j) 

then one has established the identity of (22.19) as the covariant deriva¬ 

tive. To this end write down Eq. (22.19) for the metric tensor itself, 

(22.23) Mi^S#) - W + r^TCT + /VPT- 

Since, by definition (22.17) and the antisymmetry of the fields Bin the 

indices i and k, one has 

(22.24) d^) = = 0 

the right-hand side of (22.23) must vanish. One can solve then uniquely 

for the r, provided one assumes them to satisfy 

(22.25) rpv = rpvfX 

and obtains then Eq. (22.22). Therefore, Eq. (22.23) is nothing but the 

covariant derivative, denoted , which vanishes, and (22.19) is 

recognized as the covariant derivative, 

(22.26) HMW* = «A?£- 

Equations (22.20) and (22.21) contain, therefore, the desired relationship 

between the compensating field Bfi and the gravitational field h*. 

As in the corresponding case treated in Section 21, the Lagrangian for 

the field B, which must be added to to give the entire Lagrangian 

(22.27) Se = & + £?b 

from which the field equations for the gravitational field h are obtained 

by variation 

(22.28) (SJSf/SAJ.) = 0 

is not uniquely determined by the requirement of gauge invariance. All 

one can say is that JFB must be of the form 

(22.29) SeB = £?B(h*,FMv) 

where F® is defined in terms of the compensating field by 

(22.30) = 

One can easily show by straightforward computation, using relations 
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(22.20) and (22.21), that F®v is related to the well known curvature 

tensor 

(22.31) r^v = {drKjduv) - (drKjdu^)+r«v - r% 

by 

(22.32) F% = hl*hkR^v. 

The gravitational field equations proposed by Einstein, in particular, are 

obtained if one chooses 

(22.33) SeB = K~xhE 

with 

(22.34) R = g^R^ = h^F^; R^ = R£VK; 

where the coupling parameter k, as the electric charge in the corres¬ 

ponding case, remains completely undetermined by the theory at this 
stage. 

For further details the reader is referred to the work of Utiyama. 

NOTES 

Utiyama [1] first developed fully the general formalism of compensat¬ 

ing fields and applied it, in particular, to the case of the gravitational 

interaction. See also the review article by Adamskii [2]. 
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.SECTION 23 

The Starting Point of Quantum Electrodynamics 

The considerations of Sections 20 and 21 suggest, though do not prove, 

that in a complete quantum theory of fermions interacting through the 

medium of the electromagnetic field, the Hamiltonian of uncoupled 

fermions and photons, reading in the notation of (19.54) and (18.79), 

under omission of any zero-point energies, 

(23.1) H° = H^ + H°a 

(23.2) m = nW^) + ^-(k,f)]i & = +VF+^T2 
k r 

(23.3) H°a = 2 2 um(x,S); co = |x| 
X S 

should be augmented by an interaction Hamiltonian 

(23.4) H' = -f A^dq 

where now both A (x) and j^x) are given, as in (18.86) and (19.56), in 

terms of creation and annihilation operators b+, b and a+, a, respectively. 

This interaction Hamiltonian is a function of time, containing eight basic 

terms, each linear in the photon operators b+ and b, and bilinear in the 

electron-positron operators and/or aL. The integration over q in (23.4) 

yields for each of these terms a 8 function in the momenta of the involved 

particles, incorporating the conservation of momentum in all transitions 

between states caused by the interaction. With the notation (see Appen¬ 

dix 6) 

(23.5) 8(k) = [1/(2t7)3] J e*kqdq 

one finds 

(23.6) H\t) = - [e(27T)*lVV] 2 2 2 2 H S U/VM 
x k' k S r‘ r 

x [e^{S) A+(k', r') A+(k, r) 6(x, 8) a\{k', r') a+(k, r) 

x e«Q'-a-a»t 8(k' - k - x) 4- e*(S) A+( k', /) y#t A+( k, r) 

x &+(x, S) a+(k', r') a+(k, r) ei(Q'~Q+w)t S(k' - k + x) 

193 
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- e^S) A-(k', r') yfl A-(k, r) b(x, S) a+(k, r) a_(k', r') 

x 8(k' - k + x) - e*(£) Z_(k', r') 7/4 Z_(k, r) 

x 6+(x, #) al(k, r) a_(k', r') S(k' — k — x) 

+ eM(/S) Z+(k', r') Z_(k, r) 6(x, £) <4(k', r') a+(k, r) 

x S(k' + k - x) + e*(S) Z+(k', r') Z_(k, r) 

x 6+(x, /S') a+(k', r') (k, r) +ii+w'>t §(k' + k 4- x) 

- e^S) Z_(k', r') Z+(k, r) 6(x, S) a+(k, r) a_(k', r') 

X e-i(^'+^+co)«S(k' + k + x) - e*(*S) Z_(k', r') 7/1H+(k, r) 

x 6+(x,/S') a+(k, r) a_(k', r') S(k' + k — x)]. 

This expression for the interaction Hamiltonian of quantum electro¬ 

dynamics has been written out in all detail to impress upon the reader 

the formidable computational task faced whenever one tries to extract 

from it information about the outcome of possible experiments. 

Since the inception of quantum electrodynamics two avenues of 

attack on the mathematical problem of how to disentangle the ramifi¬ 

cations of the specific form (23.6) for H' have yielded results, leading in 

many instances to quite fabulous numerical agreement between predic¬ 

tion and observation, namely: 

(i) the development of computational techniques making the appli¬ 

cation of so-called perturbation theory to H' tractable, and 

(ii) the exploitation of symmetry properties of H', giving rise to a 

number of so-called selection rules and other general consequences aiding 

the computation of experimentally accessible quantities such as cross 
sections and lifetimes. 

If the separation of the Hamiltonian H = H° + H' into an uncoupled 

and an interaction term is at all meaningful, the results inferred from 

symmetry considerations ought to be independent of the numerical 

value of the coupling parameter e. The same cannot be said for pertur¬ 

bation theory whose validity appears to be dependent on the assumption 

of “weak coupling,” meaning e2 < 1, and is even in this case beset by a 

number of perplexities which required development of rather daring 

mathematical techniques known as “renormalization” procedures. The 

case of strong coupling, meaning e2 > 1, has thus far resisted all attempts 

aimed at its mathematical penetration, despite massive efforts that have 

been brought to bear on this problem. The task of developing a strong¬ 

coupling quantum electrodynamics has become more urgent since the 

advent of novel points of view, touched upon in Section 21, which make 
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it appear probable that all fundamental interactions are, in fact, media¬ 

ted by vector mesons, for which the photon may serve as a model. 

Because of the peculiar combinations in which the creation and anni¬ 

hilation operators appear in the various terms in IP, each term will have 

nonvanishing matrix elements only between states which differ from 

each other appropriately in the occupation numbers. Thus a term 

(23.7) 6(x)a+(k')a+(k) 

will give a contribution unequal zero only to the matrix element 

(23.8) <w(x) - 1, l+(k'), 0+(k)|tf >(x), 0+(k'), l+(k)>. 

The classification of such contributions is greatly aided by a graphical 

technique due to Feynman, which consists of the following conventions. 

Each term in H' is represented by a vertex from which emerge or into 

which enter lines, one line emerging for each photon creation, electron 

creation, and positron annihilation operator, and one line entering for 

each photon annihilation, electron annihilation, and positron creation 

operator. Lines representing photons are drawn dotted, and lines repre¬ 

senting electrons or positrons are drawn solid, with the further conven¬ 

tion that all lines representing electrons are directed upwards and lines 

representing positrons are directed downwards. 

Thus the eight terms of H' are represented by the following “Feynman 

Graphs ” (letting now k stand for the labels k, r and x for x,$): 

(I) 6(x)a + (k')a + (k) (II) 6 + (x) af(k') a + (k) 

(IV) 6 + (x)a±(k)a_(k') (V) 6(x)af(k')a±(k) 

(III) 6(x)af(k)a_(k') 

(VI) 6 + (x)af(k')at(k) 

(VII) 6(x)a + (k)a_(k') (VIII) & + (x)a + (k)«_(k') 
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One envisages the possibility of dissecting any actual interaction process 

into such elementary vertices representing virtual elementary acts of the 

following eight types: 

(I) Absorption of a photon under scattering of an electron 

(II) Emission of a photon under scattering of an electron 

(III) Absorption of a photon under scattering of a positron 

(IV) Emission of a photon under scattering of a positron 

(V) Absorption of a photon under creation of an electron-positron pair 

(VI) Emission of a photon under creation of an electron-positron pair 

(VII) Absorption of a photon under annihilation of an electron-positron 

pair 
(VIII) Emission of a photon under annihilation of an electron-positron 

pair 

In accordance with the fundamental dynamical postulate developed 

in Section 7, any state vector |u(t)} = |&(£)>7 describing a system of elec- 

tromagnetically interacting fermions in the interaction picture, which is 

appropriate here, will satisfy (7.10) 

(23.9) i{djdt)\u(t)y = H'j(t)\u(t)y. 

Comparison of the consequences of this equation with experiment is 

facilitated if one performs a formal integration leading to introduction 

of the concept of the scattering matrix. 

For a first orientation, this concept can be adumbrated by the following 

line of reasoning which might be useful as a mnemonic device, pending a 

more detailed treatment to be given later. In an infinitesimal time 

interval At one has 

(23.10) |u(t + At)y = exp[ — iH'(t) At) \u(t)y 

so that, by iteration 

(23.11) 

\u(t + 2At)y - exp[ — iH'(t + At) At] exp[ — iH'(t) At] \u(t)y, etc. 

Now, since in general H'(t + At) and H'(t) do not commute, one must take 
into account 

(23.12) eAeB ^ eA+B if AB / BA 

preventing one from writing down immediately 

j exp [ — iH'(t + nAt) At] = exp 
n=0 

— i j H'(t) dt 

to 
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However, one can arrive at a closed formula by introduction of a time¬ 

ordering operator P, so that 

(23.13) \u(t + 2At)f = P[exY>( — i{H'(t +At) + H'(t)} At)]\u(t)) 

where 

(23.14) WiW] = {ZiZi 

and generally 

if t2 > 11 

if t2 < t1 

(23.15) 

P[P(*i) H{t2)... H(tn)] = H{ti) H(tj)... H{tk) with f f > ... > tk. 

One can thus write down, formally, the solution 

(23.16) NO) exp H'{t)dt\ No>)>, 

in which P[ ] can be looked upon as a unitary operator connecting the 

state vector at time t0 with the state vector at time t. Incidentally, time 

ordering after the prescription (23.15) is a relativistically invariant 

concept, provided P is applied to operators which commute for space¬ 

like points. 
When applying this solution to experimentally realizable situations 

one is normally interested in a comparison of the “final” state of 

the system |u(t = +oo))> with the “initial state in the remote past 

|u(t = — oo)>. With these limits one has then 

(23.17) \u(t = +co)> = S\u{t = -co)> 

where the unitary scattering operator S is defined by 

(23.18) S = P exp 

(+ CO 

-I 
— 00 

H\t)dt\ Pjexp^ — i J Jlf'(x) (PxjJ 

with 

(23.19) 30” (x) = — Alfx)jlx{x) 

in the case of quantum electrodynamics. 
The matrix elements between some initial state, labeled by a complete 

set t of quantum numbers as |r) = \u(t = — co)>, and some final state, 

labeled similarly |r> = | u(t = + «)>, turn out to be generally of the form 

(23.20) <y |$|t> = St,t + <t'|P|t>3(F-P)5(Po-Po) 

where <t'|P|t> (the “reaction matrix”) is some regular function of the 
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momenta p and the energies p0 of the particles involved in the transition. 

P and P0 stand for the total momentum and the total energy of the 

system in state t, and the 8 functions express the conservation of these 

dynamical quantities. 
When computing transition probabilities between states r t, so 

that ST< T = 0, one has to keep in mind when squaring (23.20) 

(23.21) [S(P'-P)8(P'0-P0)]2 = [1/(2tt)4]8(P' — P)8(P'0 — P0) f d4x 

(see Appendix 6), so that one can meaningfully define only the transition 

probability per unit volume and unit time, 

(23.22) 

«vT = = [i/(2W)‘]|<T'|B|r>p8(P'-P)5(p;-p„). 

/*« 
By standard procedures one can introduce at this point the idea of the 

“cross section” for scattering into a given final state, essentially by 

dividing (23.22) by the number of incoming particles per unit time and 

unit area. Some authors have spent considerable effort on defining cross 

sections in a relativistically covariant manner. Although such definitions 

can be useful, especially if one wishes to make calculations in the bary- 

centric system, they are rather cumbersome and require complicated 

notations when more than two particles in the initial or final state are 

considered. Since in practice one deals usually with a laboratory frame 

of reference with one of the particles in the initial state at rest, and rarely 

considers situations with more than three particles in the final state, 

it is usually most convenient to make the so-called phase space con¬ 

siderations as one goes along in the description of a particular experi¬ 

mental situation. The standard example for phase space considerations 

in quantum electrodynamics is the well known Compton effect, which is 

treated for the purpose of illustrating the use of the 8 function in Appen¬ 

dix 6. Readers interested in other examples are referred to the work by 

Fermi quoted at the end of this section. 

Since the scattering matrix is the concept which most closely expresses 

the quantum mechanical view taken of processes involving transitions 

from an initial to a final state, it warrants a somewhat more detailed 

treatment than the derivation of expression (21.18) given above. 

Consider quite generally a physical object for which, by assumption, 
it makes sense to write the Hamiltonian 

(23.23) H = H° + H' 

where H' represents the interaction energy of the system. Assume 
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further that H', if written in the state picture, does not contain the time 

t explicitly. 

Following the development of Section 7, one has various possibilities 

of describing the object. 

(i) In the state picture the state of the system at time t can be defined 

through observation at time t and satisfies, if it is denoted by |&(£)>„, 

the Schroedinger equation 

(23.24) i{d\hysjdt) = H\b}s. 

Solutions of the Schroedinger equation in absence of H' will be denoted 

|c(£))s so that in the state picture 

(23.25) i{d\cyjdt) = H°\c}s. 

(ii) In the operator picture the state is a fixed vector in time and may 

be taken as identical with the initial value of |6(£)>g in the state picture, 

|6)0 = |6(0)>t. The transformation between state and operator picture 

is mediated by the unitary operations [see Eq. (7.17)] 

(23.26) \b{t)}s = e~im\by0-, |c(f)>, = exp{-iH°t)\cy0. 

(iii) In the interaction picture the concept of state has again a different 

meaning. One speaks of a “state at time t” in the interaction picture, 

denoted |&(£))/ = | u(t)y, and means a description obtained from observa¬ 

tions at time t and then mentally reduced, so to speak, by interaction free 

motion to time t = 0. The connection of any state vector \u(t)} in the 

interaction picture with the corresponding state vector |6)0 in the 

operator picture is thus 

(23.27) |6(«)>7 = \u{t)} = exp (iH°t) e~iHt |6>0 

i.e. the development of the state in time is determined essentially by H'. 

Introducing the notation 

(23.27') U(t) = eiHt exp (— iH° t); U+(t) = exp (iH°t) e^1 

one can write Eq. (23.27) 

(23.28) \u(t)> = U+(t) 16>0 

and has thus 

(23.29) Iu{t2)) = U+(t2) U(h) \u(h)y = U{t2,tx)\u{t1)y 

with 

(23.30) U(t2,t i) = U+{t2)U{h). 
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This transformation operator U(t2, tx) satisfies the equation 

(23.31) i[dU(t2, ti)/dt2\ = [H (t2)]j U(t2,ti) 

where 

(23.32) [#'(£)]/ = exp (iH° t) H' exp ( — iH° t) 

is the interaction Hamiltonian in the interaction picture (the “effective ” 

interaction) containing the time dependence as in the example (23.6) 

given above. To prove Eq. (23.31), note that, according to (23.27) and 

(23.26), the “state at time t ” in the interaction picture is the “state” in 

the state picture reduced by interaction free motion to time t = 0, 

(23.33) \u(t)} = ex-p(iH°t)\b(t)}s 

and use Eq. (23.24) so that by differentiation one obtains 

(23.34) 

i[d\u(t)y I dt] = —H°exp(iH°t)\b(t))s + iexip(iH0t)[d\b(t)yildt] 

= exp (iH° t) H'\b(t)ys = exp (iH°t) H' exp (— iH° t) \u(t)y. 

Equation (23.31) can be integrated formally, using the boundary 

condition U(t,t) — 1, to give 
t2 

123.35) U{t2,tx) = 1-iJ [H'(t)]j U{t,tx)dt. 
^1 

Writing 

(23.36) u(t, o = in°\t, o + m\t, o + u^\t, 0+... 
one obtains by iteration, starting with £b0)(£,H)> 

(23.37) 
t-2 1*2 »• 

U(t2,h) = 1-iJ [H'it^dt + i-i)* I [B'(t)],dtJ [.H'(t')]Idt' +.. 

which can be summed to the time ordered product 

(23.38) C7(l2,^) = P exp 

From this the scattering operator S, connecting initial state 

|T> = \u{t= -oo)> with final state |r'> = |u(t = +oo)>, is obtained as 
the limit 

(23.39) S = U( + oo,-00). 

Although the interaction picture is particularly adapted to description 

of scattering processes, such processes can also be grasped in the state 
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picture as well as in the operator picture through introduction of the 

concepts of “final and initial configuration” and “outgoing and ingoing 

states.” 

Consider, for simplicity’s sake, a system which possesses no bound 

states, and in it are found only so-called single channel scattering 

processes, which means to each solution |6(£)>g of the Schroedinger 

equation (23.24) there should correspond uniquely a solution |c+(£)>g of 

(23.25) through the requirement 

(23.40) lim |6(0>g = lim |c+(0>, 
<—► + 00 t—> + 00 

and another solution |c_(£)>g of (23.25) through the requirement 

(23.41) lim |6(f)>g = lim |c_(£)>g. 
t—> — co t—> — 00 

These definitions of the “result of scattering” |c+) and the “cause of 

scattering” |c_> imply the notion of an interaction which is absent for 

large time t > 0 and for large time t < 0 and which is “turned on” only 

during the scattering process proper in between these times. 

One can now introduce the concept of “ final and initial configuration,” 

denoted |c+(0)> and |c_(0)>, which are obtained, respectively, by 

calculating the result of scattering |c+(f)> for large t > 0 backward to 

t — 0, and the cause of scattering |c_(£)> for large t < 0 forward to t = 0, 

assuming interaction free motion in accordance with the second equation 

(23.26) . Having done this, one is now in a position to relate the actual 

state |6(0)> at time t = 0 to the final configuration |c+(0)> by 

(23.42) |6(0)> = ^+|c+(0)> 

where 

(23.43) 42+ = lim elHt exp ( — iH° t) 
t—>+ 00 

and to the initial configuration |c_(0)> by 

(23.44) |6(0)> - G_|c_(0)> 

where 

(23.45) 42_ = lim etH‘exp (— iH°t). 
t-+— 00 

In the operator picture one can thus characterize any scattering state 

|6)0 either by its initial or by its final configuration. Conversely, a state 

with final configuration |c+(0) ;r>, where r stands for the set of quantum 

numbers characterizing that state, can be denoted |6T(out)>0 and called 

the “outgoing state,” and a state with initial configuration |c_(0);r> 

can be denoted |6T(in)>0 and called the “ingoing state.” 
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An alternative scattering operator can now be defined in the operator 

picture, after a precedent by Yang and Feldman, as the projection 

operator which projects the outgoing states on the ingoing states, 

(23.46) |&T(in)> = $F|6T(out)> for all r, 

so that the probability amplitude for finding the outgoing state 

|6T-(out)>, if the ingoing state is known to be |6T(in)>, is 

(23.47) <M°ut) |&T(in)> = <Mout) |flF|6T(out)>. 

The scattering operator SY may be expressed in terms of the operators 

Q±, because one may write (23.46) 

(23.48) i2_|c_(0); t> = £Ff2+|c+(0); t> 

and since |c_(0);t> = |c+(0);t), one has 

(23.49) SY = Q-QX 

where use has been made of the unitarity 

(23.50) = I. 

NOTES 

Feynman’s book [1] contains, inter alia, reprints of Feynman’s early 

papers in which the graph technique is developed. Fermi’s book [2] 

contains a number of examples in which the most ingenious use is made 

of phase space considerations. The scattering operator was invented by 

Wheeler [3]. The alternative definition of SY is due to Yang and Feldman 

[4]- 
Readers interested in how to overcome difficulties encountered 

through presence of bound states, and in the case of multichannel 

scattering, are referred to the works by Ekstein [5] and Jauch [6], See 

also the review article by Brenig and Haag [7], 
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Perturbation Theory and the Propagator Concept 

SECTION 24 

Experimentally the coupling parameter e of quantum electrodynamics 

is found to have the value e2 ~ 1/137, and, on the strength of this weakness 

in the coupling between charged fermions and photons, a so-called 

perturbation treatment of the interaction has been developed, consisting 

essentially of the hope that an expansion of the scattering operator S in 

the form 

(24.1) S = I+X f ... f ^>n{x1,...,xn)dix1...dixn = 1+ £ Sn 
n>l " n> 1 

is meaningful even though some of its terms turn out to result in diverging 

matrix elements. 
By comparison with (23.18), each of the terms in expansion (24.1) is 

obtained by the substitution 

(24.2) 

and the matrix elements to be computed are 

(24.3) 

<t'|£„|t> = (-ie/2)»(l/w!) J... J <r'| 
$(xn), y^n Hxn)] A,xn{xn)} \r')dix1...di xn. 

The reduction of this—on first sight—overwhelmingly complicated 

expression to a form more tractable for actual computation can be done 

in a sequence of steps, which are the fruits of laborious efforts carried 

out by a number of workers in the late 1940’s and early 1950’s. 

(i) Instead of using the “time ordered” product 

P[A(xx) A(x2) . ..A(xn)] = A(xi)A{xi). ..A{xk) with ti>tj> ...>tk 

of a set of n boson or fermion operators as defined in (23.15), it is more 

convenient to work with the “chronological product” denoted 

T\A{xx)A{xz). ..A{xn)] which differs from P by a sign factor -q 

(24.4) T[A{xx) A{x2)... A(xn)\ = vA{xi)A{xj)...A{xk) 

with ti > tj > ... > tk 

203 



204 Concepts in Quantum Mechanics 

where rj = + 1 if the conversion of the sequence A(x1)A(x2).. .A(xn) into 

A(xi)A(Xj).. .A(pck) requires an even number of transpositions of fermion 

operators, and 77 = — 1 if this conversion involves an odd number of such 

transpositions. Since Sn contains all fermion operators in pairs, any 
change in sequence ifi(xi)ip(xi)ijj(xj)ilj(xj)->ijj(xj)ift(xj)i}j(xi)ift(xi) involves an 

even number of transpositions of fermion operators, and one has there¬ 

fore simply 

(24.5) P[-?T (aq) • • • ^'K)] = T[JT(xx)... JT(xn)\ 

(ii) All operators A^x), 1Jj(x) and <Jj(x) are separated into their 

“negative frequency part” and their “positive frequency part”: 

A^x) = A(-\x) + A£\x) 

(24.6) ip(x) = ifj(-\x)+ift(+\x) 

iJ)(x) = ijj<'~\x)+iJiw(x) 

being essentially a separation into annihilation and creation operators, 

since ip functions with phase eikx = ei(kq-0,e) have always been associated 

with annihilation operators and phases e~lkx = e_!(kq_a,f) with creation 

operators. Thus, according to definitions (18.86) and (19.51) 

A(~]{x) = (1IVV) S 2 [e^lV^e^b^S) 
X S 

A^{x) = (1 lVV) 2 2 [e*(S)lV2^]e^*b+(*,S) 
X AS' 

ifj{-\x) = 2 2 A+(k, r) eikx a+(k, r) 
k r 

(24.7) 
ifj(+){x) = 2 2r)e lkxat{k, r) 

k r 

ifi(~\x) — 2 2 A_(k, r) elfcxa_(k, r) 
k r 

i/<(+)(x) = 2 2 -4+(k,r)e_tteai(k, r). 
k r 

(iii) One aims at reordering the operators making up Sn so that all 

creation operators stand to the left of all annihilation operators, and with 

this aim in mind one defines the “normal product ” denoted N[...] of two 

boson operators A^aq) and A2(x2) as 

(24.8) 

NlA^xQ A2(xz)\ = A[+\x1)A{2+\x2)+A[+)(x1)A^-)(x2) 

+ A(2+)(aq) A(-p\x1) + A^aq) A(2~\x2) 

and of two fermion operators t/q(aq) and ifj2(x2) as 
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(24.9) 

-Wl(&l) 02(*2)] = 4>l+)(Xl) </4+)(Z2) + <Ai+)(^l) - </4+)(^2) 0i_>(*l) 

+0(r)(*i)i/4-)(x2). 

The definition of the normal product of any number of boson and/or 

fermion operators follows from these basic definitions by induction. The 

minus sign in front of the third term on the right-hand side of (24.9) has 

been introduced to accommodate the anti-C.R.s between fermion 

operators consistently. 

Introduction of the normal product is advantageous for three reasons: 

(a) The vacuum expectation value of any normal product vanishes, 

(24.10) <0|iV[...]|0> = 0. 

(b) Since 

(24.11) NlA^xJ A2(x2)] = N[A2(x2) A^xJ] 

and 

(24.12) ^[<Ai(^i) 02(*2)] = -^[<A2(«2)iAi(^i)] 

one can treat any normal product N[...] as if all boson operators inside 

the bracket [...] always commute and as if all Fermion operators inside 

[...] always anticommute. 
(c) The operators in the interaction Hamiltonian JP'(x) are already 

in ordered normal form, as is immediately obvious from (23.6) when one 

remembers that Boson operators and Fermion operators commute. One 

can thus write 

(24.13) JT(x) = — e N[ifj(x) A^x) ifi(x)]. 

This is, of course, a consequence of the particular definition of the 

current density, which was arranged such that the vacuum expectation 

value of the current vanished. 
(iv) The conversion of a chronological product into a sum of normal 

products is possible, because the chronological product of two operators 

differs as a consequence of C.R.s or anti-C.R.s from the normal product 

of these two operators only by a number, which is called the “chrono¬ 

logical pairing.” Denoting this “chronological pairing” number asso- 
I I 

ciated with two boson operators H1(x1) and A2(x2) by A1(x1)A2(x2), one 

has by definition 

(24.14) 

T[H1(.r1)H2(x2)] = N[A1(x1)A2(x2)]+A1(x1)A2(x2), 
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and denoting similarly the “chronological pairing” number associated 

with two Fermion operators ffxf) and fz(xf) by ffxf)fzQcf) one has 

(24.15) 
I-1 

T[ip1(x1)ip2(x2)] = iV[i/fl(x1)^2(a;2)] + i/<1(a;1)(/r2(x2). 

Equation (24.10) allows one to compute any chronological pairing as a 

vacuum expectation value: 

(24.16) AfxJA^xf) = (f)\T[Afxx) A^x^oy 

(24.17) !fjfxl )</!2(z2) = <O|n0i(*i)02(*2)]|O>. 

By successive use of prescriptions (24.14) and (24.15), one can now 

express any chronological product as a sum of terms containing only 

normal products and chronological pairings. More precisely, by induction 

one arrives at a theorem first proven by Wick: Any chronological product 

is equal to the sum of all possible normal products that can be formed with all 

possible pairings. The meaning of this statement is perhaps best communi¬ 

cated by writing out its application to the cases of two, three, and four 

operators: 

(24.18) 

T[AB] = N[AB] + N[AB] 

T[ABC] = N[ABC] + N[ABC] + N[ABC] + N[ABC] 

T[ABCD] = N[ABCD] + N[ABCD] + N[ABCD] + N[ABCD] 

+ N[ABCD] + N[ABCD] + N[ABCD] + N[ABCD] 

(771 H=n 
+ N[ABCD] + N[ABCD], 

The notation 

(24.19) 

N[ABCD] = r,CDN[AB]; N[ABCD] = yADBC- etc. 

has been used, where y is again the sign factor equal to + 1 or — 1 depend¬ 

ing on whether an even or odd number of interchanges in fermion opera¬ 

tors are needed to convert the sequence of operators ABCD into the 
sequences CDAB, ADBC, etc., respectively. 
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The ground is now prepared for the conversion of the term Sn of the 

scattering operator (24.1) into a sum of terms which contain only normal 

products and chronological pairings. For n ^ 3 this is still a rather for¬ 

midable task, but for n = 2 one obtains, upon observation of (24.5), 

(24.13), and Wick's theorem, and keeping in mind that chronological 
n n 

pairings between a boson and a fermion operator, as well as ifjtp and ipijj, 

vanish, a decomposition of 

(24.20) 

S2 = -(e2/2)JJ T{N[^{x1)yIXiA^{x1)rp{x1)]N[lfi(x2)ylJitAlJL2{x2) 

x ifj(x2)]}dix1dix2 

into eight terms 

VIII 

(24.21) S2 = £ SP 
C—I 

which will now be written down: 

(24.22) 

= — (e2/2) JJ N[${x1)yhLiAfli{x1)ifj{x1)iP{x2)y^A^(x2)iP(x2)]dix1dix2 

SF> = — (e2/2) [J N[$(x1)yhLiAfXi(x1)i[>{x1)${x2)yfX2AhL2{x2)ilj{x2)]dix1dix2 

S£U) = — (e2/2) JJ N[<P(x1)yn1AfXi{x1)iJj{x1)$(x2)yhL2A^(x2)i(j(x2)]dix1dix2 

4IV) = — (e2/2) JJ N[${x1)yIJLiAfli(x1)ilj{x1)$(x2)yIX2AfJLi(x2)ilj(x2)]dix1dix2 

rr - I I-1 I 
SW = — (e2/2) JJ N[ip{x1)yfliA^{x1)ifj{x1)t(x2)yf,2AIX2{x2)ifj{x2)]dix1dix2 

rr I I I 1 
4VI) = — (e2/2) J J NWixJy^ A^i{x1)^(x1)^{xi)yl^AlJx2)ffi(xi)]dix1d x2 

rr [ I-L I 
£<VII> = — (e2/2) J j N[ifj(x1)yIXiAfli(x1)ip{x1)>ji{x2)yll2Atli{x2)i/j{x2)]dix1dix2 

£<VIII> = - (e2/2) J J NtfixJ y^ A^xJ ^xJ^y^A^xJ ^(x2)]dix1dix2 
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The conventions, explained in Section 23, leading to the Feynman 

graphs representing the various terms in the interaction Hamiltonian, 

allow a picturesque classification and extraordinarily suggestive inter¬ 

pretation of every term in the scattering matrix, after it has been ordered 

into normal products, if these conventions are extended to envelop 

chronological pairings, which are not operators, as follows. 

(a) Draw a vertex labeled xi for each integration variable x0 Since 

every such variable appears in conjunction with one and only one 

factor y , this convention is equivalent to drawing a vertex labeled xi 
for each factor yR. 

(b) Draw a solid line entering the vertex x{ for each unpaired operator 

a solid line leaving xt for each unpaired ^{xf), a dotted line without 

direction connected to xi for each unpaired A(x{). These conventions are 

consistent with the ones adopted in Section 23, but are less detailed 

because they do not yet distinguish between ingoing electrons and out¬ 

going positrons, between outgoing electrons and ingoing positrons, and 

between ingoing and outgoing photons. 

(c) Since chronological pairings occur only as connections of one 

symbol f and one symbol f and never between two symbols ift or two 

symbols iJj, and only between symbols if and $ belonging to different 
vertices xi and xk, the following conventions are sufficient and consistent. 

Di’aw a solid line connecting the vertices xi and xk in direction from 
I-1 

xk to xt for each pairing f(xi)ifj(xk), a solid line directed from x{ to xk for 
r-1 

each pairing i}j(xi)ip(xk), and a dotted line without direction between 
I-1 

xi and xk for each pairing A(xi) A{xk). 
With these conventions all remaining operators </», ip, A in Sn contri- 

n n_ r~i 
bute only “external lines” and all pairings ifn/j, ififi, A A contribute 

only “internal lines,” such that all fermion lines can be drawn by 

following arrows of direction from end to end without hiatus. For 

example, the eight terms (24.22) will correspond to the following eight 

graphs: 
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With the exception of all graphs representing the various terms in 

S2 have one or more internal lines. After some contemplation of 

these drawings one is inevitably tempted to adopt, with Feynman, a 

picturesque manner of speaking about them which conjures up for every 

internal line the image of a particle propagating in a state of virtual 

existence between the vertices of that line. Accordingly, the factors 

and 

#(*<) *A (**) 

I I 

will from now on be referred to as “fermion propagator” and “photon 

propagator,” respectively. 
One has to go back in the history of physics to Faraday’s concept of 

the field line if one wants to find a mnemonic device which matches 

Feynman’s graph in propagandists persuasiveness. This historical 

analogy may serve here as timely warning against all too literal ac¬ 

ceptance of mental images based mainly on a fabric of conventions, 

however consistent that fabric may appear. Thus, Maxwell was led 

by all too literal acceptance of Faraday’s field concept to an ether theory 

of vacuum which ultimately turned out to be abortive. Similar tempta¬ 

tions are lurking behind Feynman’s graphs, especially the ones of the 

type 4vm)- 
Evaluation of matrix elements requires separation of all remaining 

operators into negative and positive frequency parts. Accordingly, one 

has a decomposition of Sinto 26 = 64 terms, of $2in)> anc^ ^2IV) 
each into 24 = 16 terms, of S(^\ S^l), and S£'n) each into 22 = 4 terms, 

and £^VI1I) requires no further decomposition. In the language of Feyn¬ 

man’s graph this amounts to sorting the external lines into electron lines, 

positron lines, ingoing photon lines, and outgoing photon lines. If one 

adopts again, as in Section 23,/or external lines the convention of drawing 

electron lines pointing upward and positron lines pointing downward, 
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as well as drawing all external photon lines pointing upward, one arrives 

at a unique decomposition of each basic graph ) into a sum of directed 

graphs.” One has thus, for example, 

(24.22) 
16 

SiU) = s Sin>d) 
d= 1 

i.e. 

t * 

- fTK rr\vr~v 
V W \ i W / 

t A A t X X 

\ i X \i * \/ 
A t \ t A \ 

4 * / / 

and a completely analogous decomposition of $|m). 

It is at this stage of the development that there emerges quite trans¬ 

parently the consistency of a manner of speaking about fermion lines, 

which refers to positrons as “electrons running backward in time,” by 

associating the upward direction in each directed graph with the direc¬ 

tion of time. This convention may be extended to fermion propagators, 
r-1 

so that occurrence of a factor >Jj(xk)ifj(xi) is represented graphically as a 

virtual electron propagating from xk to xi provided tk < ti and as a virtual 

positron propagating from xk to xi provided tk > t{. 

Thus one may think about a graph 
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which represents a contribution to the Compton effect on positrons as 

consisting of two virtual events occurring at xx and x2 that are, for t2 > tx, 

two virtual scattering processes with photon absorption at x2 and photon 
emission at a^, 

t,»t, 

and, for t2 < tx, virtual annihilation of an electron-positron pair at xx 

and virtual creation of a pair at x2, 

However, since an integration over xx and x2 is performed in the compu¬ 

tation of the corresponding term of*S^n), the propagator will automatically 

take care of these possibilities, and one need not adhere to any up-down 

conventions as far as internal lines are concerned. 

The conventional nature of the phrase “positrons are electrons running 

backward in time” should be abundantly clear by now, and the reader 

will not be misled into concluding positron states are necessarily obtained 

by the operation of time reversal from electron states. 

From the expansion (24.22) for S(2J) and an identical expression for 

one can immediately read which terms in S2 will contribute, for 

example, to the Compton effect on electrons. The only graphs containing 

one ingoing electron, one ingoing photon, one outgoing electron, and one 

outgoing photon are 
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(24.23) 

or, in analytical language, 

(24.24) 

S1C.M = _e! JJ i) 
+ ^(^l) Atf{X2)] di X1 d4 X2‘ 

Similarly, one can read, for example, from the expansion for *S^IV), 

16 

(24.25) £<,IV> = 2 S<,™> 
d= 1 

i.e. 

A--A-K- f-A-V“-A 

the term which contributes to electron-electron scattering, namely the 

one represented by the sixth graph on the right-hand side of (24.25): 
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(24.26) 

£CE.e.s.) = (e2/2) JJ ft+)(x1)yhLift+\x2)ip(-)(x1)yfl2ilj(-){x2) 

x A^{xx) A^(x2) d4 x1 d4 x2. 

One final task remains to be done before computation of matrix 

elements can be performed, namely evaluation of the propagators. 

According to (24.17) the fermion propagator is defined as 

(24.27) 

#*h) fej) = <0|^[*A(a;i)*A(x2)]|0> 
UO\ifj(xx) $[x2)\0} for t1 > t2 

j — <0|^(a:2) 0(a;1)|O> for tx < t2 

Upon decomposition of the operators tfi(xx) and tjj(x2) into positive and 

negative frequency parts, nonvanishing contributions to this vacuum 

expectation value are made by one term only in each case, namely 

(24.28) 

<P(xi )^{x2) = 
<0|i/r( >(a:1)^(+)(a52)|0> for tx > t2 

-<0|«A<-)(^2) »A(+)(^i)|°> for tx < t2 

By substitution of the expansions (24.7) one obtains 

(24.29) 

f s 2 A+(k,r)A+(k,r)exp[ik(xx-x2)] for tx > t2 
I L k r 

ibtx-i) dj(x2) = • _ 
— S S ^4-(k,r)^4_(k,r)exp \-ik{xx-x2y\ for tx < t2 

k r 

and summation over spins gives according to (19.52) and (19.53) 

I I 
(24.30) i/j(xx)jj(x2) 

2 

-2 

(k + m) 

2VQ 

(k — m) 

2VQ 

exp \ik(xx — x2)] 

2 2VQ+'~ exp t ^ ~ 

exp [ — ik(xx — z2)] 

- ^ ^ 74-2 VQ+m^eXP ^_ ik^qi ~ q^ “ ~1 

where Q is always meant to be equal to + Vk2 + ra2, and where in the 
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second equation a change in summation label k —> k has been per 

formed. 
This formula can be consolidated by utilizing the integral 

(24.31) 
Cf(k 4)e 

-J **- 

ikx 

dki 
m \ 

\ g-ikq g+ikA 
__die 
[ki~Q){ki + Q) 

where k2 = kj-k2, and J stands for integration along “Feynman’s 
F 

k4- plane 

/Ov f N 

II 1 k4=+n 

Fig. 24.1. Feynman’s contour. 

contour” in the complex &4 plane, as indicated in Fig. 24.1. One has 

then to distinguish two cases. 

(a) t > 0. The contour can be completed in the upper half plane, so that 

(24.32a) 

I = 2ni Res (&4 = +Q) = 27ri[f(Q)l2Q]e-i^e+iQt (t > 0). 

(b) t < 0. The contour can be completed in the lowrer half plane, so that 

(24.32b) 

I = -2ni Res (fc4 = -Q) = -27Ti[f(-Q)l-2Q]e-i^e-i£2t (t < 0). 

Thus the propagator (24.30) can be written, under conversion of the sum 

2*(.. ./F) into the integral [1/(2-77-)3] J.. .dk 

(24.33) 
I | j r _|_ Yfi I I 

ipixjfixz) = J rj^—^exp[ik{x1-x2)]dik = -$(z2)#*d). 
F 

The computation of the photon propagator proceeds in complete 

analogy to the one of the fermion propagator. By substituting into 

(24.34) 

<0|^(*i)^v(*2)|0> = <0| A(~\xx)A(^'>(x2) |0> 

for tx > t2 

<0| Av{x2)A^{x1) |0> = 

for tx < t2 

A^x^A^xJ = < 
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the expansions (24.7) one obtains 

(24.35) 

i i 
AAxx)Av{xCi = 

2 2 exp -*2)] 
X 5 

'ST €u €v 
= 2,2-, PVa> 6XP t ~ {K^qi _ q^ + ic°^ 

22 
x 5 

x S 

ev(S) e*(S) 
—2y^ ~ exp [ik{x2-xj] 

-2 2 -2Vwexp *- ~^qi ~qa^ ~io)(<ti ~ ^ 

The summation over the polarizations can be carried out in the gauge- 

invariant manner explained in Section 18 leading to (18.102), and 

formula (24.35) can be consolidated once again by exploiting the integral 

formula 

(24.36) 

I 
F 

„ikx 

k‘ 
-dki. = e _ ,,-ikq 

„ik,t 

(&4 — a>) (ki + aj) 
dki = 

- ZttI -e-im-iojt (£ < 0) 
- 2o» 

yielding for the photon propagator finally 

(24.37) 

I-1 
AJX! )A„(x2) fit ■ V < 

) *2l _V k2 _ 
KuKv\ 

+ dx —2—} exp [iK(x1 — x2)] d k. 

Since integration over any xt gives a S function, and since the computa¬ 

tion of matrix elements always involves integration over all vertex 

coordinates x{, one can formulate from the outset the rules for evaluation 

of Feynman’s graphs in momentum space, as summarized in Table 24.1. 

NOTES 

Since the advent of the work by Wick [1], the treatment of the 

scattering matrix by perturbation expansion has become rather stan¬ 

dardized and can be found in many texts with only small variations. 

Readers desiring to see this formalism applied to computation of cross 

sections are referred to Mandl [2], Kallen [3], Bogoliubov and Shirkov 

[4], Jauch and Rohrlich [5], and Feynman [6], 
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TABLE 24.1 

Feynman’s Rules for Evaluating Directed Graphs 

Sum over all indices appearing twice; integrate over the momenta of all internal lines 

along Feynman’s contour; sum over polarizations in internal lines. 

Graph Particle Direction Factor in matrix element 

* A 
Electron Entering [1/(2tt)3/* 1 2] A +(k,r) 

Electron Leaving [1/(2tt)3/2] A +(k, r) 

Positron Entering [l/(2-77-)3/2] A_(k,r) 

Positron Leaving [11 (2tt)3/2] A_(k, r) 

• 

A 
Photon Entering [l/(277)3/2][e,J(<S)/V2^] (S = 1,2 only) 

A 
• 

Photon Leaving [l/(2ff)»/*][eJ(S)/V2^] (S = 1,2 only) 

K, 

Vertex part iey^n)4 5 6 d(kz —k]_ — k) = r^.(ki,ki + k, — k) 

t ^ t Fermion propagating [l/i(27r)4][fc + wi-]/[fc2 — m2] = G°(k) 
1 2 

Photon propagating [l/t(27r)4 k2] -+ * g "j = 
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The Hierarchy of Propagators 

♦SECTION 25 

The division of particles into “free” and “virtual” particles, corres¬ 

ponding to a separation of contributions to any Feynman graph into 

“external” and “internal” lines, is rather artificial and, from an 

operational point of view, in fact untenable. Since one cannot, in prin¬ 

ciple, “turn off” the interaction, it would appear more appropriate to 

view the world sub specie aeternitatis as an infinite concatenation of 

propagators, representable graphically as an infinite network of internal 

lines only. 
Consider, for example, an experimental situation in which one can 

meaningfully introduce an initial and a final state containing just one 

fermion. In the language of Feynman graphs one would represent this 

by an external fermion line entering into and emerging from a region of 

internal lines, as drawn in Fig. 25.1. However, before one can label an 

external line by some quantum numbers, the corresponding state must 

be prepared somehow, i.e. a measurement of the quantum numbers 

must be performed. Now any such measurement requires interaction of 

some kind, and in a pure quantum electrodynamics one is forced to infer 

the existence of two vertices, involving emission or absorption of photons, 

which are the terminals of the supposedly “external” lines, so that one 

/ \ 

Region of internal 
lines 

/ \ 

Fig. 25.1. Hypothetical propagation of single fermion initial state into single fermion 

final state. 

should draw Fig. 25.1 more realistically as in Fig. 25.2, with the usual 

convention that t2 > tx describes the propagation of an electron and 

t2 < tx the propagation of a positron from xx to x2. Since any single 

fermion state can be considered as being raised from the vacuum state 

217 



218 Concepts in Quantum Mechanics 

L 
Internal lines 

IT 
Fig. 25.2. More realistic graph representing single fermion propagation. 

by the application of the appropriate creation operator, allowing one to 

write any matrix element of S between an initial state “fermion at xf’ 

denoted \x^) = fixf) |0)> and a final state “fermion at Xj” denoted 

(Xj\ = <0|;fj(Xj) as a vacuum expectation value 

(25.1) <a#K> = <0| i/j(Xj)Sijj(xi) |0>, 

one is led to introduce the concept of the “ true fermion propagator ” 

being the amplitude for fermion propagation between vertices xx and 

x2, denoted G(x2,x1) and defined by 

(25.2) G{x2,x i) = <O|T[0(a;2)^(ir1)]|O> 

as a chronologically ordered amplitude of the scattering matrix. The 

ordinary fermion propagator (24.27), now denoted G°(x2,x1), is then 

obtained by omitting in the expansion of S all but the zero-order term, 

which is the identity, so that 

(25.3) G°(x2,x i) = <0| T[f(x2) fix^] |0>. 

In momentum space the true propagator G(Jc) will be represented 

graphically as in Fig. 25.3, with a “region of ignorance,” hatched by 

Fig. 25.3. Graph representing the true fermion propagator (region of ignorance hatched 

from SW to NE). 

convention from SW to NE for fermion propagation, which symbolizes 

all possible networks of internal lines which will contribute to G(x2,x1) 

and its momentum representation G(k) in accordance with the expansion 

of S in (25.2). The term “region of ignorance” for the region of internal 
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lines has been adopted, because no measurements beyond establishment 

of the value k at the terminal vertices are envisaged, and it should 

therefore be possible to find a measurement symbol, denoted M(k;k) 

after the precedent of Section 5, so that 

(25.4) G(k) = trac eM(k\k) 

and 

(25.4') G°(k) = [l/i(2-7r)4] [(& + m)/(&2 —m2)]. 

Similarly, the “true photon propagator” can be introduced as the 

chronologically ordered amplitude of the scattering matrix between 

single photon states, which may be represented in analogy to (25.2) as 

a vacuum expectation value, 

(25.5) D^x^x i) = (_0\T[Afl{x2)SAv{xl)]\0y 

containing the ordinary propagator (24.42) as first term in the expansion 

of S, 

(25.5') D^x2,*i) = <0| T^A^xf) Av(xf) |0>. 

In momentum space the true photon propagator may be rendered 

graphically as in Fig. 25.4, the region of ignorance in this case being 

t 

i 
i 
i * 

i 

Fig. 25.4. Graph representing the true photon propagator (region of ignorance hatched 

from SE to NW). 

hatched by convention from SE to NW. One anticipates existence of a 

measurement symbol M^k^k) associated with the momentum rep¬ 

resentation D^k) of D^v(x2,Xi) so that 

(25.6) D^k) = trace M^v(k; k) 

and 

(25.6') 
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Of particular interest for later development is further the “ true vertex 

part” ; rendered graphically in Fig. 25.5, with conventional crosshatching 

T 
i x 
l 

Fig. 25.5. Graph representing the true vertex part (region of ignorance crosshatched). 

of the region of ignorance in this case. Denoting its momentum represen¬ 

tation by r^(ki,kz,K), there should exist a measurement symbol 

Mfl(k1 ;k2;i<) so that 

(25.7) r^kx,k2,K) = trace M^{lc^k^, k) 

and in lowest order 

(25.7') r^k^K) = teyM(2 nYh{kx-kz-K). 

Finally, it is instructive to give special consideration to the true 

vacuum propagator, being the vacuum expectation value of the scatter¬ 

ing operator, rendered graphically in Fig. 25.6, as a pure region of 

Fig. 25.6. Graph representing the true vacuum propagator (region of ignorance 

hatched horizontally). 

ignorance, hatched horizontally by convention. The corresponding 

measurement symbol will be denoted J/(0;0), and the vacuum propa¬ 
gator C(0) should be obtainable from it by 

(25.8) (7(0) = trace M(0; 0). 

The actual construction of any measurement symbol can be carried 

out by noting that any matrix element of S can be written 

(25.9) = trace ($|r> <V|). 

Thus the measurement symbol associated with the true vacuum propa¬ 
gator is simply 

(25.10) iif(0;0) = $|0> <0|. 
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Perturbation theory can now be viewed as an attempt to illuminate 

the spheres of ignorance associated with each true propagator by a series 

of successive approximations. Thus, up to and including the third order 

in the expansion of S, the true propagators could be rendered graphically 

as follows: 

(25.11) + ••• 

(25.12) 

Inspection reveals that each graph always appears in conjunction 

with the same series of vacuum graphs. Assuming that these expansions 

make sense, one usually disregards all terms containing any disconnected 
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vacuum graphs on the grounds that doing so amounts simply to multi¬ 

plying all state vectors by an unobservable constant phase factor. Indeed, 

the eigenvalue C(0) of S in the vacuum state, 

(25.15) £|0> = (7(0) |0> 

must have the modulus unity because of the unitarity of S, 

(25.16) \C\Z =1 or C = eia (areal) 

and in a series expansion C is numerically equal to the sum of all con¬ 

tributions to S with no unpaired operators. But this factor is the same 

for all matrix elements of S, because disconnectedness of the vacuum 

graphs is analytically equal to writing, for example 

(25.17) > 

so that omitting all vacuum graphs is equivalent to replacing S by 

(25.18) S ^ S' = C-'S = e~iaS. 

At this point in the development one cannot avoid any longer facing 

up to a most perplexing difficulty which infects all perturbation theory: 

The second terms on the right in expansions (25.11)—(25.14) represent 

infinite contributions to the true propagators. Evaluation of these 

contributions with the rules laid down in Table 24.1 leads to a quad- 

ratically divergent integral for the second order vacuum graph, and to 

logarithmically divergent integrals for the second order fermion and 

photon propagator, and the third order vertex part. 

That these divergences appearing in the perturbation expansions of 

the scattering operator have not discredited this approach entirely and 

have not led to abolition of perturbation theory altogether is due to a 

number of facts among which the following looms most important. 

Employing the perturbation expansion and treating all infinite contri¬ 

butions as if they were finite (which formally can always be arranged by 

some invariant cutoff procedure), one can derive by an iteration pro¬ 

cedure a number of simultaneous equations satisfied by the thus evalu¬ 

ated true propagators, for which there is reasonable hope of being correct 

even though the expansion evaluation of the propagators turns out to be 
meaningless. 

The existence of integral equations linking in hierarchical fashion the 



25. The Hierarchy of Propagators 223 

various spheres of ignorance in the presence of an interaction can be 

made plausible by the following elementary consideration. The basic 

interpretational postulate of quantum mechanics, as stated in Section 1, 

can be rewritten for the purpose of this section as follows: 

If Pab is the probability that if measurement of A gave the result a then 

measurement of B will give the result b, Pbc the probability for finding 

the value c of C if B is known to have the value b, and Pac the probability 

for finding the value c of C if A is known to have the value a, then there 

exist complex numbers 

<a|6>, <6|c>, <a|c> so that Pab = |<a|&>|2, Pbc = |<&|c>|2, 

Pac = |<a|C>|2 

and 

(25.19) <a|c> = 2<a|&><6|c> 
b 

if no attempt is made to measure B between measurements of A and G. 

The sum in (25.19) goes overall possible “channels,” that is all possible 

values of B through which the object may reach value c of C starting 

from value a of A. 
In the language of measurement symbols one can write this famous 

“addition of probability amplitudes” according to (6.2) and (6.3) 

(25.20) 
trace \M{c, a)] 2 (a\M(b)\c) = S trace [71^(0, «x) 

b b 

2 trace [M(b, a)] trace [M(c,b)]. 

In the language of regions of ignorance this decomposition corresponds 

to a dissection of the original region of ignorance associated with M(c, a) 

into a network of other regions of ignorance, namely the ones associated 

with M(b,a) and M(c,b), thus 

(25.21) 
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This equation is, of course, not sufficient to determine M(c,a), because 

all regions of ignorance associated with M(bn,a) and M(c,bn) can be 

dissected after the fashion of Eq. (25.21), and so on and so forth, corre¬ 

sponding to decomposing in (25.19) each probability amplitude in turn 

after the same recipe, thus <6|c> = YJd(b\d'y (d\c), etc. 
Equation (25.19) and its graphical representation (25.21) encompasses, 

by iteration, an in principle infinite hierarchy of spheres of ignorance. By 

“hierarchy” is meant a simultaneous system of integral equations. 

Now, a remarkable feature of quantum electrodynamics is the possi¬ 

bility of writing down hierarchical equations for the regions of ignorance 

associated with the true propagators for fermions and photons in closed 

form, involving only these propagators themselves and the true vertex 

part. This possibility can be traced to the peculiar form of the interaction 

Hamiltonian, which amounts to the possibility of dissecting any inter¬ 

action process into elementary acts, represented graphically by vertices, 

in which single photons are either emitted or absorbed under observation 

of conservation of momentum and of lepton number. 

For the true fermion propagator one arrives by iteration at the hier¬ 

archical equation 

which may be rendered analytically in momentum space as 

(25.22') 

G(k) = G°(Jc) + i e(2-77)4 G(k) J rfik,k — K,K~)G{k — k) DtJLV{K)yvdi i<G0(k). 

Similarly, for the true photon propagator one arrives at the hierarchical 
equation 
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which may be rendered analytically in momentum space as 

(25.23') 

D^i*) = 2)°v(K) + ie(2704i^CT(/<) trace [J ra{K-lc,k, k)G{Jc)G{k-]c) 

xyTdik^ D°tv(k). 

Before one can attempt a solution of this set of equations, one requires 

a similar expression for the true vertex part. The sphere of ignorance 

associated with the true vertex part, however, has thus far eluded all efforts 

designed to write down a hierarchical equation in closed form. One must 

therefore state in all honesty 

The question mark in Eq. (25.24) constitutes one of the important mathe¬ 

matical challenges posed by the existence of the electromagnetic inter¬ 

action. 
Some authors, in particular Landau and his co-workers, have ques¬ 

tioned the internal consistency of quantum electrodynamics on the basis 
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of an approximation procedure, in which one substitutes for the question 

mark in (25.24) the expression 

I 
I X 
I 

corresponding to adoption of an integral equation 

(25.25') 

ro(k,k- k,k) = r%(k, k-K, k) + J r^(k,k — k', k') D^k') G(k — k') 

X ra(k — K ,k — k' — K, K)G(k — K — k) 

X rv(k — K — K,k— K, /c')d4/c'. 

The conclusions of these authors are open to doubt, because Eq. (25.25) 

cannot be a complete description of the true vertex part. It does not 

contain, for example, contributions to the true vertex part graph from 

decompositions of the type drawn in Fig. 25.7. 

Fig. 25.7. Type of graphs omitted from the expansion (25.25). 

In absence of any certain knowledge regarding the true propagators of 

quantum electrodynamics a concept known as “renormalization” has 

gained wide acceptance and been the object of a large body of learned 

literature. As to the meaning of renormalization, one finds in this liter¬ 

ature two quite different schools of thought. 
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(i) An examination of the perturbation expansions (25.12)-(25.14) 

reveals that the infinities in the true propagators appear only as factors 

Z1; Z2, Z3, and as an addition to the fermion mass, 8m, so that we may 

write 
0 = Z2GTeg 

(25.26) r^zfr™* 

D»v = 

with the understanding that GTeg, Pfs, and Dff are regular functions, 

containing the fermion mass, if at all, in the combination 

(25.27) raexp = m + 8m. 

The fermion propagator, in particular, can be shown to have in pertur¬ 

bation theory the form 

(25.28) G = Z2l(Jc-mexv) 

which suggests the identification mexp with the actually observed mass of 

the fermion. This procedure of making m + 8m finite by decree is called 

“mass renormalization” and amounts to replacing the “bare” mass m 

by the “dressed ” mass mexp which contains through 8m all contributions 

to raexp from the presence of interaction. 
Furthermore, since any factor e2 in the perturbation expansion will 

always appear multiplied with the constants Z1; Z2, and Z3 in the 

combination e2Z3Zp2Zf, one identifies 

(25.29) eexP — eZ\12 Z^1 Z2 

with the experimentally determined charge of the fermion, a procedure 

called “charge renormalization” in this approach. 

Once the infinities of perturbation theory have been “ taken care of ” by 

this formal renormalization procedure, all contributions to the scattering 

matrix will be finite, and the calculation can be carried out, in principle, 

to any desired order in e2xp. Renormalization does not, of course, guaran¬ 

tee that the remaining perturbation expansion in powers of e2xp converges. 

Investigations into the convergence properties of the renormalized 

perturbation theory are impeded by the always remaining laboriousness 

of perturbation calculations beyond the second order which is already 

quite cumbersome. In the few cases where such calculations have been 

carried out to the third and fourth order, and where comparison with obser¬ 

vation has been possible, the theoretical predictions have been confirmed 

with astonishing accuracy. 
The empirical success of this recipe for performing perturbation calcu¬ 

lations is remarkable because of the obvious meaninglessness of the 



228 Concepts in Quantum Mechanics 

divergent constants Zx, Z2, Z3, and 8m, which appear as power series in 

the unrenormalized charge e2 with divergent coefficients. By adhering to 

perturbation theory one abandons, in fact, all hope of obtaining true 

propagators free from infinities, and the renormalization procedure, in 

this form, must be recognized as a recipe which works for as yet unknown 

reasons. 
(ii) A completely different point of view regarding the meaning of 

“renormalization” has been advanced by a number of authors who 

suggest that the true propagators may not be uniquely determined by the 

hierarchical equations (25.22)-(25.24). The proponents of this approach 

assume, in fact, the existence of a set of true propagators G', r^, and D'^v 

free from infinities and containing the coupling parameter e', and propose 

that transition to a second set of true propagators G", T", and free 

from infinities and containing the coupling parameter e", will not result 

in any observable consequences, provided the two sets are related through 

the equations 

G" = z2 G' 

(25.30) 
r" 
D" 

- Z 1 p' 
1 V 

= z*D' 

— e “z 

fiv 

'2 1 -2 
ZTZ 

-2 
2 

where zx, z2, z3 are arbitrary finite numbers. It must be stressed that the 

existence of such a “multiplicative renormalization group of trans¬ 

formations” cannot be proved by perturbation theory, because per¬ 

turbation theory excludes, from the outset, the existence of true pro¬ 

pagators free from infinities. The existence of relations (25.30) is at most 

suggested by perturbation theory, for if one replaces in (25.26) G by z2G, 

by zr1^, and Dby z3D^v, then this leads to a change in the effective 

value of the charge, meaning replacement of ef xp by e|xp z 3 zp2 z|. Therefore, 

if one simultaneously performs a compensating renormalization of charge 

e2 -^e2zp1z2zp2, then as a result of all these operations no change in efxp 
is obtained. 

The very generality of this approach is its weakness. The invariance 

requirement expressed in Eqs. (25.30) is far too weak as a condition 

imposed on the unknown true propagators, and thus insufficient to lead 
to their unambiguous construction. 

Before one can extract information regarding the analytic properties of 

the true propagators from (25.30), one has to make some assumptions 

about the dependence of the propagators on their arguments. It is, for 

example, customary to assume that the true photon propagator should 
be representable in the form 
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(25.31) 

with unknown regular functions d(K2) and^(k2). Such a form is suggested 

by the free photon propagator D®v, corresponding to d(x:2) = 1. It should 

be kept in mind, however, that a specific form such as (25.31) contains 

drastic assumptions regarding the analytic properties of D v(k2), as 

exemplified by the existence of a pole at k 2 = 0. Similarly, the true fermion 
propagator is customarily assumed to have the form 

(25.32) G{k) 
a(k2) k — b(k2) m 

k2 + m2 

with unknown functions a(k2) and b(k2), showing once again the per¬ 

suasiveness of perturbation theory, which contains the free fermion 
propagator as the lowest approximation in the form 

G°(k) = 
k — m 

k2 + m2. 

Once specific forms such as (25.31) and (25.32) have been adopted, 

Eqs. (25.30) become functional equations for the unknown functions d, 

a, and b, giving opportunity for the employment of elegant mathematical 

techniques. This approach will not be pursued further here, because one 

may seriously doubt the existence of any analytical resemblance between 

true and free propagators. There just does not exist at present any 

detailed certain information about true propagators that does not have 

its roots in perturbation theory. Even the functional equations for d, 

a, and b have never been solved without relapse into perturbation- 

theoretical arguments, which are always invoked when particular values 

of the true propagators are needed to specify, for example, the limiting 
behavior of d for a small coupling parameter e2. 

In recent years ingenious attempts have been made to break out of this 

circle of frustration circumscribed by perturbation theory by imposing 

very general analytical features on true propagators, allowing one to infer 

general relationships between the real and imaginary parts of the true 

propagator, which have become known as “dispersion relations.” For 

example, it has been conjectured that the true photon propagator may 

be decomposed into contributions from propagators for free particles 

with different masses. Thus d(K2) is written 

d(K2) 

K 
2 

1 fP(M2)dM 

<2 + J k2 + M2 
o 

(25.33) 
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with unknown spectral function p(M2), allowing one to infer the disper¬ 

sion relation 

0 i r" du'^du'2 
(25.34) Im[d(/c2)] = - Re ,2_ 2- • 

77 J K K 
— oo 

The specific spectral representation (25.33) contains the tacit assumption 

that the true propagator will always have a pole at k2 = 0, corresponding 

to the pole exhibited by the free photon propagator, independent of the 

value of the coupling parameter. Some recent work by Schwinger (see end 

of Section 21) has thrown doubt, however, on the validity of this assump¬ 

tion, which seems so harmless and reasonable at first sight. 

In a theory aimed at abandoning any reliance on perturbation theory, 

one cannot rely on starting with the assumed convergence of the iteration 

procedure, which in perturbation theory enables one to decompose any 

true propagators into three basic constituents, namely the fermion 

propagator G, the photon propagator D , and the vertex part 7^. 

Accordingly, the main effort in the theory of dispersion relations has been 

directed at guessing immediately analytic properties of more complicated 

true propagators, for example, the propagator associated with the four- 

fermion vertex as drawn in Fig. 25.8, representing all fermion-fermion 

Fig. 25.8. Graph representing the four-fermion vertex. 

scattering processes, with a region of ignorance encompassing all possible 

channels which may contribute to the amplitude of this particular 

process. Without trying to disparage these heroic efforts, one should 

admit that all so-called dispersion relations put forward to date have the 

character of ingenious guesswork regarding the analytic properties of 

true propagators. 

The very existence of fermions and bosons with baffling numerical 

ratios of their masses would seem to indicate a much more intricate 

structure of even the simplest propagators than is commonly surmised. 

It should not surprise anyone if the enigma of the mass spectrum is in fact 

a self-consistency problem involving the entire hierarchy of propagators. 
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From this point of view any imminent breakthrough towards the solution 

of this problem seems improbable, and further arduous work should be 
anticipated. 

NOTES 

Integral equations connecting true propagators were first derived 
formally by Schwinger [1], 

The concept of the true propagator is already contained in the work 

by Dyson [2] who initiated the current versions of renormalization theory. 

A comprehensive treatment is given in the book by Bogoliubov and 

Shirkov [3], Examples of the point of view (i) regarding the meaning of 

renormalization are the papers by Kallen [4] and Lehmann [5], The 

point of view (ii) invoking the existence of a multiplicative renormali¬ 

zation group of transformations has been promulgated by Stueckelberg 
and Petermann [6], and Gell-Mann and Low [7], 

The internal consistency of quantum electrodynamics has been ques¬ 

tioned in a series of papers by Landau et al. [8], See also Landau et al. 
[9] and Landau [10], 

Readers interested in dispersion relations are referred to the article by 
Mandelstam [11], 
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-SECTION 26 

On Selection Rules Due to Symmetry under Inversions 

and Rotations of Coordinates 

Despite the perplexities besetting the internal consistency of quan¬ 

tum electrodynamics, it is, judged by the criterion of being able to make 

quantitative predictions, a satisfactory theory. The strong and weak 

interactions other than electromagnetism have not yet been grasped 

with a tool of similar usefulness. The absence of any profound dynamical 

insights contrasts sharply with the firm knowledge already gained about 

some symmetry properties of these otherwise ununderstood interactions. 

The purpose of this and the following three sections is to exhibit in a few 

examples, chosen for their simplicity, how elementary symmetry con¬ 

siderations can have the power of leading to detailed predictions. Since 

here, more than in any other section, any attempt at completeness 

would explode the resolve to keep this work within bounds, all effort will 

be directed towards the modest didactic aim of whetting the reader’s 

appetite for more, thus providing him with a motivation for learning 

group theory, which is the language fitted to and almost indispensable 

for the systematic disentanglement of symmetry properties. 

The consequences of symmetry can be conveniently categorized 

according to the different types of transformation operations associated 

with the various symmetries. 

(I) Symmetries that can be formulated as transformation properties 

of state vectors under unitary operations in coordinate space. In this 

category belong conservation laws and selection rules generated by 

invariance under inversions and rotations of coordinates, which are the 

subject of this section. 
(II) Symmetry under permutation of identical objects, which can be 

represented by a unitary transformation in occupation number space. 

This symmetry will be the subject of Section 27. 

(Ill) Symmetries that must be formulated as transformation pro¬ 

perties of state vectors under antiunitary operations. In this category 

belong 
(a) Superselection rules, of which examples have already been 

mentioned in Sections 17 and 19. 
233 
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(b) More subtle consequences of time-reversal invariance such as 

the principle of reciprocity and the principle of detailed balance. 

(c) Consequences of invariance under particle-antiparticle con¬ 

jugation. Details of iterms (b) and (c) are the subject of section 28. 

(IV) Symmetries in state vector spaces representing abstract intrinsic 

properties such as isospin. These will be treated in Section 29. 

A simple physical object which exhibits symmetries of categories 

(I) and (II) in a nontrivial fashion is the system of two photons. In parti¬ 

cular, one of the simplest systems whose parity can be observed is the 

two-photon system in a state of total momentum zero. 

As had been shown generally in Section 14, the operation of coordinate 

inversion can be rejDresented by a unitary operator 77, and whenever the 

Hamiltonian of a physical system is invariant under 77, conservation of 

parity ensues. The conservation of parity in strong and electromagnetic 

interactions can often be used to monitor intrinsic properties of unstable 
objects by observation of the parity of their decay products. 

A single photon state |x,£>, defined as in (18.23), can never be a state 

of definite parity, because of the transformation properties 

(26.1) 77|x, K) = | —*,£>; 77|x,L> = |-x,J2> 

in the combined momentum-polarization space. More generally, any 

single photon state (18.13) or (18.14) should transform according to 

(26.2) n\K:L> = 

where rj is an as yet undetermined phase factor subject only to the 
condition 

(26.3) v2 = 1 

imposed by the requirement that the operation IT2 be equivalent to the 

identity. Consequently, the creation and annihilation operators should 
transform as 

(26.4) /76>’i?)77_1 = ^+(-K,A); 776+(x, L) 77“1 = vb+(-x,R) 

nb(v.,R)n~l = rjb(—yt, L); nb(y.,L)n~l = ^(-x,#) 

This phase factor r) is sometimes given the unfortunate name the 

intrinsic parity of the single photon state. Its value depends on the 

transformation properties assigned to the operator (18.75) of the vector 

potential. With the usual convention of giving the magnetic field operator 

the transformation character of an axial vector, the vector potential 
must change sign under coordinate inversion, 

(26-5) 77A(q,077-1 = — A( — q, t). 
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The physical meaning of the factor y is obscure. It would be quite wrong 

to think of a photon “carrying” this “intrinsic parity” as it travels 

with momentum x, because the concept of a rest frame for a massless 

particle is meaningless, and only in such a frame can an object have 

definite parity. Fortunately, the transformation properties of any two 

photon state do not depend on y, since such a state is raised from vacuum 

by application of two creation operators, and therefore the operation 77 

will always generate only the factor y2 — 1. 

If the momentum x of one photon is given, one can construct four 

different two-photon states of momentum zero, namely 

|7272> = &+(x,72)&+(-x,72)|0> 

\LL> = 6+(x,L)&+( —*,£)|0> 

\RL> = b*(y.,R)b+(-y.,L)\oy 

17/72) = 6+(x, L) b+( — x, 72) |0) 

< c • C t < c • {-» 
\RR) \LL> 

< c •—< ( •—£-»• 
|RL) |LR) 

Fig. 26.1. The four two-photon states of total monaentum zero. 

which are rendered graphically in Fig. 26.1 and which transform under 

inversion of coordinates according to (26.4) as 

(26.7) 

n\RR) = \LL>; n\LL> = |7?72>; n\RL} = \RL}- n\LR} = \LR). 
i 

The eigenstates of 77 are therefore 

(26.8a) 17272) - \LL) with eigenvalue P = — 1 

and 

(26.8b) 

17272) + \LLy, |727>); \LR} with eigenvalue P= +1. 
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The states \RR} — \ LL) and \RR} + | LU) can be distinguished experi¬ 

mentally because the planes of polarization of the photons show distinc¬ 

tive correlations in each case. To see this, decompose in accord with the 

precedent given in (18.69), circular polarizations into linear polarizations 

by writing 

6+(k,B) = (1/V2) [6+(k, l)+tf+(x,2)] 
(26.9) 

6+(k,L) = (l/V2)[6+(x,l)-i6+(x,2)] 

yielding 

(26.8a') 

\RR} — \LLy = [b+{y.,R)b+{—y.,R) — b+{y.,L)h+{—Y.,L)']\0)> 

= -i\b+(y.,2)b+(-y., l) + 6+(x, 1) b+{-x, 2)]|0> 

and 

(26.8b') 

\RR} + \LL) = [6+(x, l)6+(—x, l) + 6+(x, 2)6+( — x, 2)]|0>. 

This means the state — | LU) is created whenever the emission of a 

photon polarized along one axis is accompanied by the emission of a 

photon polarized along the orthogonal axis, i.e. the planes of polarization 

in this state are always perpendicular to each other. State \RR} + |LU), 

on the other hand, differs from the vacuum state by creation of two 

photons whose planes of polarization are always parallel. The states | RL) 

and \LR~y show no such correlations, because one has, for example, 

(26.8b") 

\RL) = $[&+(x,l)&+(-x, 1) +6+(x,2)6+(-x,2) + i6+(x,l)6+(-x,2) 

— ib+{y., 2)6+( — x, 1)]|0> 

so that the probability for finding the planes of polarization parallel or 
perpendicular to each other is exactly \ in each case. 

When an object of total angular momentum zero decays into two 

photons, then observation of the correlation between the planes of 

polarization will reveal the intrinsic parity of that object, provided the 

decay is mediated by an interaction invariant under inversion of co¬ 

ordinates so that parity is conserved. Examples of such objects are the 

neutral pion 77° and positronium in the singlet ground state [see Eq. 

(27.22) below]. In both cases, observation has shown a correlation 

indicative of the state \RR}-\LL}, revealing both the 770 and the 

positronium in the singlet ground state as pseudoscalar particles, i.e. 
having intrinsic parity P — — 1. 
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The two-photon states of definite parity have interesting transfor¬ 

mation properties under rotations. Consider first a single photon state 

|x,$)> and perform a rotation, denoted U L, of angle tt around an axis 

perpendicular to x. It is intuitively clear that in the thus rotated co¬ 

ordinate frame the photon will appear to be travelling in direction — x, 

but with the same handedness. Thus single photon states transform 
under U± according to 

(26.10) U±\x,R} = | —x,R}; U±\k,L> = |-x,£>. 

Accordingly, the two-photon states (26.6) will transform as 

(26 n) u±\mty = |bk>\ u±\ll> = |ll) 

U±\RL) = | LB}; U ±\LR> = \ RL). 

The simultaneous eigenstates of 77 and Ux are therefore 

(26.12a) 

(26.12b) 

(26.12c) 

(26.12d) 

\RRy-\LLy' 

| RR} + | LL'y > 

\RL) + \LR}_ 

\RLy-\LR> 

with eigenvalue U ± = + 1 

with eigenvalue U ± = — 1. 

The linear combinations (26.12c) and (26.12d) are no longer eigenstates 

of the operator of rotation UN around an axis parallel to x, which is not 

surprising because they are linear superpositions of states with different 

values of the component of angular momentum in direction x. 

From these transformation properties one can deduce a selection rule: 

A particle of spin 1 and of definite parity cannot decay into two photons. 

To prove this, one observes first of all that the spin of the particle can 

have, in the direction of x, only the values m = + 1,0, — 1. Since the 

values of angular momentum in direction x available in two-photon 

states (26.6) are m — — 2,0, +2, it follows, by conservation of angular 

momentum, that only the state m = 0 can decay into two photons. This 

leaves as possible final states \RRy~ \LD) and \RR~) + |LL}. However, 

the state with m = 0 of the particle transforms as the spherical harmonic 

T1 0 = cos{)' ($ is the angle with respect to x, see Appendix 1), 

(26.13) U L\m = 0) = — |m = 0) 

exhibiting the eigenvalue U L = — 1, and thus removing the two remain¬ 

ing states (26.12a) and (26.12b) from the possible list of final states, 

because they belong to the eigenvalue f7j_ = +1. 

Contrary to the case of massless particles, it should be possible to define 

the concept of intrinsic parity for single particles with mass unequal zero, 
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because such particles can be found in states of definite parity provided 

they are at rest. Of particular interest are the fermions of spin \ whose 

x\> functions satisfy Dirac’s equation. As had been shown in Section 19, 

the operation of coordinate inversion can be represented for these 

particles by 

(26.14) n = VpyinD 
where rjP is a phase factor which may have one of the four possible values 

+ 1 or ±i depending on whether the operation 772 of coordinate inversion 

applied twice has the value + 1 or — 1. In accordance with the discussion 

of Section 14 in connection with the double-valuedness of iJj functions 

for particles of spin the convention IT1 = + 1 is adopted here and only 

the case r/P = + 1 will be considered. 
For a single electron or positron state at rest and in an eigenstate of 

11D with eigenvalue PD, denoted | eTy = |k = 0 ,r,P D, L — ± l)whereris 

the spin label and L the lepton number, one can define the intrinsic 

parity P< by 

(26.15) n\eTy = PiPD\e*>. 

If the electron or positron is characterized by the orbital angular momen¬ 

tum quantum number l one will have, in general, PD = ( — l)z as had been 

shown in Section 14. Now from the representation of |e~> in spin-chirality 

space by the if> functions (see Table 19.2) 

(26.16) 

A+(k = 0, r = 1) = const A+( k = 0,r — 2) — const 

it follows that, with the representation (19.5) for y4, 

(26.17) 77|e-> = 

Thus, the phase factor r]P can be identified as the intrinsic parity of the 

electron, 

(26.18) Pi(e-) = VP. 

On the other hand, a positron state |e+> is represented in spin-chirality 

space by 

(26.19) 

A_(k = 0, r = 2) = const A_(k = 0, r = 1) = const 

0 

0 
i 
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so that 

(26.20) /7|e+> = -VpPd |e+> 

and one must conclude the intrinsic parity of the positron is 

(26.21) P4(e+) - -yP. 

In other words: A Ithough the intrinsic parity of a fermion satisfying Dirac's 

equation is not uniquely determined, particle and antiparticle have always 

opposite intrinsic parity in this case. 

Consequently, positronium which can be described by a product state 

|e-> x |e+) has intrinsic parity Pi— — 1. The total parity of positronium 

in a state of definite parity is therefore 

(26.22) P(positronium) = — P D. 

One has thus the selection rule: Positronium in a state with even 

l(PD = + 1) cannot decay into an n-photon state with even parity, and 

positronium in a state with odd l(PD = — 1) cannot decay into an 94- 

photon state with odd parity. 
The optical transitions between different levels of positronium are not 

affected by the intrinsic parity, because only changes inP^, are observed 

in that case, and the selection rules following from conservation of parity 

and angular momentum are the same as in the corresponding hydrogen 

spectrum. 
The possibility of establishing unambiguously the relative parity of 

electron and positron P(e~e+) is intimately linked to the separation of 

electron and positron states by a superselection rule, which can in this 

case be associated with the conservation of lepton number, and which 

allows one [see Eqs. (15.52) and (15.53)] to speak meaningfully about the 

relative parity of the two states. It is not possible, on the other hand, to 

measure the relative parity of fermion states belonging to different 

particles in a given charge multiplet, such as neutron and proton states, 

because these are not separated by a superselection rule but rather by a 

conservation law such as the conservation of charge (which must be kept 

separate from conservation of lepton number or baryon number) 

following, presumably (see Section 20), from some kind of phase invari¬ 

ance, making the relative phases of the states belonging to a multiplet 

arbitrary. The relative parity P{pn) must therefore be fixed by conven¬ 

tion, and it is customary to assume that fermions belonging to the same 

multiplet have the same intrinsic parity, so that in particular one 

assumes P(pn) = + 1. Similarly, the intrinsic parity of strange fermions, 

such as A, P, and S, remains undetermined unless one fixes by con¬ 

vention the relative parity between nucleon N and one of them, P(NA) 
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say. The customary assumption is P(NA) = + 1. Once these two assump¬ 

tions have been made, the intrinsic parities of massive bosons, such as 

77 and K, and of the baryons N, A, E, and S can, in principle, be deter¬ 

mined. 
At the time of writing, the knowledge of intrinsic parities of so-called 

elementary particles is incomplete. It is interesting to note, however, 

that all massive bosons, including the “resonances” 77, a>, p, etc., have 

odd intrinsic parity. All baryons, on the other hand, whose intrinsic 

parity is known at all, have even intrinsic parity. Whether this curious 

fact represents a general rule is unknown. 

NOTES 

Yang [1] first analyzed completely the symmetries of the two-photon 

state. The question of how one can observe in principle the correlation 

between the planes of polarization of the two photons emitted in the 

decay of the 770 meson was also answered by Yang [2], 

For a detailed discussion of how to obtain, in principle, information 

about the relative intrinsic parity of baryons and massive bosons see 

the article by Sakurai [3], 
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_SECTION 27 

Permutation Symmetry of Multiple Particle States 

The two-photon states defined as in (26.6) have the flaw of not 

exhibiting the permutation symmetry characteristic of multiple particle 

states. Consider generally a two-particle boson state 

(27.1) |lTl,lTi> = ^(t^^IO) 

where r is a complete set of quantum numbers which can be used to 

characterize otherwise indistinguishable particles. “Indistinguish- 

ability” of particles means that it should not be possible to affix any 

other label to a particle beyond the set r. Expression (27.1), however, 

does not yet take care of this requirement, because the order in which 

the operators b+ have been written implies an additional labeling of the 

bosons, since the boson having quantum numbers tx may, by a conven¬ 

tion which counts the order of operators from left to right, be called the 

“first” boson and the one belonging to the set r2 the “second” boson. 

Physically, the state (27.1) should be indistinguishable from the state 

(27.2) |lTi, lTi> - b+{T2)b+(T1) |0> 

in which, by the labeling convention employed above, the “first” boson 

has quantum numbers t2 and the “second” has quantum numbers tv 

From this requirement of indistinguishability one can infer the existence 

of a unitary operator T12 of transposition connecting the states so that 

(27.3) |lTs, lTl> = T12|1Ti,1T2> = Tx2b+{r1)b+{r2)T^Tl2\0') 

and thus 

(27.4) T12b+{rl)b+{r2)T ^ = 6+(t2)6+(t!) 

by the usual convention that the vacuum state is invariant, T X2\0) = 10)>. 

By an analogous argument, Eq. (27.3) will be found to exist for two 

fermion states as well, so that (27.4) will hold also if the operators b+ are 

replaced by the corresponding fermion creation operators a+. 

Application of T12 twice must, up to a phase factor which is set equal 

to unity by convention, restore the initial state, 

(27.5) T212\lTi,lTi} = |lTl,lTl>. 
241 
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The possible eigenvalues of Tlz must therefore be +1 and —1. The 

corresponding eigenstates will be called “symmetric” and “anti¬ 

symmetric” with respect to transposition and labeled |lTj, lTjX and 

| lTl» 4.>«> respectively, so that 

(27.6) T12|lTl,lTi>, - +|lTl>lr,X 

(27.7) T12|1Ti,1T2>0 = -|lTl,lTl)fl. 

From the C.R.s of the boson creation operators b+ and the anti-C.R.s of 

the fermion creation operators a+ it follows immediately that two- 

particle boson states are symmetric and two-particle fermion states are 

antisymmetric under transposition. Indeed, for bosons Eq. (27.3) can be 

worked out to give with the help of the C.R.s (18.12) 

(27.8) 

= 6+(T2)6+(Tl)|0> = +6+(t!)(>+(t2)|0> = +|lTl, lri>£ 

and for fermions the anti-C.R.s (17.17) yield 

(27.9) 

Tiz\lTl, 1T2>^ = a+fraJa+frOlO) = -a+Or)a+(r2) |0> = — |lTl, 1t,>jp- 

In terms of single particle states this transformation property can be 

made manifest by writing the symmetric two-boson state 

(27.10) |lTl> lTl>, = (l/V2)[|lTi>1|lTi>2 + |lTi>1|lTi>2] 

where now the transposition T X2 operates on the subscript particle 

labels (a = 1,2) as in | )a. Similarly, the two-fermion state can be 

written as an antisymmetrized combination of single particle states, 

(27.11) |1T„1T2>0 = (1/a/2) [| lTl>i | lTa>2— | lTj>i | lTl>2]. 

Invariance of the Hamiltonian under transposition of particle labels 

means 

(27.12) T12HTl2 = H or T12H-HT12 = 0. 

It follows in this case that the eigenvalues of Tl2 must be constants of 

the system in time. If, thus, at any given instant the state vector of a 

system is either symmetric or antisymmetric under transposition of 

particle labels, it will remain so for all times, unless an interaction 

energy is introduced which is not invariant under this transposition, 

i.e. which introduces a feature allowing the particles to be distinguished. 

Such apparent “nonconservation of permutation symmetry” can, 

however, always be interpreted to mean that the set of quantum numbers 

considered is incomplete. Thus, if one transposes only the momentum 
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label, but not the spin label, of two fermions described completely by 

momentum and spin, one may find the state to be either symmetric or 

antisymmetric under transposition of momentum labels alone, but 

transposition of both momentum and spin labels must in this case lead to 

antisymmetry of the state vector. 
By straightforward generalization of the argument for two-particle 

states one finds any many-boson state \nTi,nTi,...) to be symmetric 

under any permutation SP of the particle labels, 

(27.13) &\nri,nTt,...) = \nTi, nTi,...) 

and any many-fermion state \NTt,NTt,...) to be antisymmetric under 

that permutation, 

(27.14) 

where 

(27.15) 

NTl,NT.> = .> 

' & 

+ 1 for even SP 

— 1 for odd SP. 

Anyone familiar with the learned language of group theory will thus 

recognize boson and fermion states as belonging to the only two existing 

one-dimensional representations of the permutation group, namely the 

completely symmetrical and completely antisymmetrical representation, 

respectively. This is a direct consequence of the empirical facts embodied 

in the C.R.s and anti-C.R.s, namely that the occupation number of 

boson quantum states is unlimited and that the occupation number of 

fermion quantum states satisfies the exclusion principle. 
Although there exist higher dimensional representations of the 

permutation group corresponding to different restrictions on the possible 

occupation numbers of quantum states, none of these appear to be 

realized in nature. The reasons for this peculiar empirical fact are not 

completely understood at present. 
As an example illustrating in a nontrivial fashion the concepts 

developed in this section consider once again the two-photon state, but 

use instead of the quantum numbers x, S (momentum, polarization) the 

quantum numbers o>, j, m, P (energy, angular momentum, parity) (see 

Appendices 2 and 3) to characterize each single photon state contributing 

to the two-photon state. Any two-photon state is then a linear combina¬ 

tion of products \l,mi) |s,ms>, where \l,mL> represents a possible orbital 

state of two photons and \s,ms) a possible spin state of the two photons. 

These linear combinations for given total angular momentum state 

|j,m> have to be chosen in accordance with the rules governing the 

addition of angular momenta, given in Appendix 2, where it is also shown 
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that for |s, |, |s2| = 1 there are nine spin states \s,mf) which transform 

under transposition of particle labels as 

(27.16a) T12\s,msy — +| s,mf) for s = 0,2 

(27.16b) Tl2\s,ms') — — \s,mf) for 5=1. 

The orbital state, on the other hand, transforms as 

(27.17) = (-1)*| l,mi). 

This follows from the possibility of characterizing the orbital state 

completely by a 0 function i/jlm[(yc1 — y<.2) = */iimj(x) depending only on the 

relative momentum x1-x2 = xof the two photons, because in momen¬ 

tum space the Hamiltonian for the two photons can be written 

(27.18) 

H= ± (SiXj + SgXa) = ±[|(si±s2)(>ti + X2) + l(SiTs2)()t1-K2)] 

which reduces to ± ^(sx + s2)x in the center of mass frame. The operation 

of transposition of particle labels has thus the effect 

(27.19) = <M-x) 

and is therefore, as far as the orbital motion is concerned, equivalent to 

the effect of the inversion of coordinates, 

(27.20) Tuhjrf = nhjr). 

Since the parity of any state of orbital angular momentum l is (-l)z 
(see Section 14), Eq. (27.17) follows, which may be written 

(27.21) T 12\l, mt) \s, ms) = (- 1)*\l, mf) T12\s, ms>. 

Since the complete state is required to be symmetric, 

(27.22) T12\j, m> = + \j, m> 

and the parity of the state is determined solely by its orbital part, one 

must conclude that to a two-photon state of even parity (i.e. 1 even) only 

symmetric spin states (i.e.s = 0ors = 2) can contribute, whereas to a state 

of odd parity (i.e. 1 odd) only antisymmetric spin states (i.e. s = 1) can 
contribute. 

There is an interesting alternative classification of the polarization 

states of two photons. In Section 18 the polarization space of the photon, 

spanned by the eigenstates oiSz, namely |R) and \L}, had been shown 

to be isomorphic to the space spanned by the eigenstates ||, +1) and 

\h — i> °f the angular momentum operator ss belonging to spin s = ^ 
[see Eqs. (18.57)-( 18.60)]. Consequently, the rules governing addition of 
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angular momenta j = ^ are applicable to the addition of photon polariza¬ 

tions. To bring out this analogy, the polarization states will be labeled 

with the quantum numbers \S0 and ^Ss for each particle, so that one 

writes, in general, 

(27.23) \S} = \$S0,±S3> 

and, in particular, for single photons, 

(27.24) |i2>=|i+*>; |£>=|i-*>. 

The polarization states for two photons follow now from the rules of 

addition, laid down in Eq. (A2.9) of Appendix 2, giving rise to four 

polarization states, consisting of an antisymmetric singlet and a sym¬ 

metric triplet in polarization space, namely 

(27.25) = 0: 

(27.26) ±S0 = 1: 

|0>0> — (1/V2) |A>2 — |P)i |^)2] 

|l,l> = |jR>1|jR>2 

■ 11,0) = (I/V2) [|P)j |A)2+ |A>i |iP>2] 

Jl,-1> = \L\\L\ 

Since the Hamiltonian for free photons commutes with the operator S 

of polarization, \S0 and \S3 are “good” quantum numbers to describe 

any system of noninteracting photons. It is an intriguing and open 

question to what extent one can use rotational symmetry in polarization 

space, i.e. a “law of conservation of polarization,” to restrict possible 

choices of interaction Hamiltonians containing only photon creation and 

annihilation operators designed to account phenomenologically for 

possible photon-photon interactions. The question of whether emission 

or absorption of photons by other objects “conserves polarization” 

cannot be answered until one has defined the meaning of the polarization 

operator for these other objects. 
The operator of transposition P12, which had been introduced sym¬ 

bolically in (27.3), can actually be constructed in many cases if one 

specifies the variable on whose particle label Tl2 should operate. One 

can, for example, represent the transposition of spin labels for j = \ by 

the operator 

(27.27) Tl2 = 1[/ + ct(1)-ct(2)] 

where ct(1) and o(2) are the Pauli spin matrices operating on the spin 

state vectors |^, + of particle 1 and particle 2, respectively. Because 

of the relations 

°i °j IOl. (27.28) ^ = /; (cyclically), 
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the operator ct(1)-ct(2) satisfies the quadratic equation 

(27.29) [ct( 1) • a(2)]2 + 2[ct(1) • ct(2)] — 3 = 0 

and therefore the eigenvalues of the operator a(l)-a(2), £ (say), since 

they must also satisfy 

(27.30) £2 + 2£ — 3 = 0, 

are 

(27.31) £+ = +1 and t= -3. 

The corresponding eigenvalues of T12, rj (say), are thus 

tl+ = i(l+^+) = + 1 
(27.32) 

,- = i(i+n=-i 
and T12 satisfies condition (27.5), 

(27.33) T\2 = \{I + 2[a(l) • ct(2)] + [a(l) • a(2)]2} = I. 

Relations (27.28) are also employed when one wishes to verify that 

T12a{l)Txi = ct( 2) (27.34) 12 v y 12 v 

Tno(2)T£ = a(l). 

One finds, for example, 

(27.35) 

^’l2crl(l) — i[CTl(l) + CTl(2) — az{%) + ^O-o(l) ct3(2)] 

cti(2)T12 = •|[ct1(2)+ ct1(1)+ ia2(l) ct3(2) — ict3(1) ct2(2)] 

so that 

(27.36) T12ax(l) ^ ax(2)TV2 or T12 CTi(l) T12 — cri(2) 

which verifies the first of the six relations (27.34). The eigenstates of T x2 

are the antisymmetric singlet and the symmetric triplet (A2.9), 

(27.37) 
Ti2|0,0> = — |0,0> . 

T^\ !,»»,> = +|l,ms>; ms = +1,0,-1; 

as can again be seen by straightforward computation. For example, with 

the usual representations for a and ||, ± ^>, one finds 

(27.38) 

7\2|0,0> 

+ x 
V 2 M, 2. 
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7\2|0,0> 
1 

V2 
o,o>. 

Expressions analogous to (27.27) can be found for the operator of 

transposition of spin labels for values j > If one denotes the operators 

of angular momentum for particles 1 and 2 by J( 1) and J(2), respectively, 

one requires, in general, for the representation of T12 a polynomial in 

of order 2j. This is so because the operator J(I)-J(2) satisfies, 

in general, an algebraic equation of order 2? +1. For j = 1, for example, 

one has the relations, readily obtained from representations (18.65) 

J\ = J<; = 0; Ji+Jl+Ji = 2; 

J'iJj = U,J, ; J(J,Jt - til -•/;), J,J) = iJtJj (tjioyol.) 

so that 

(27.40) [J(l) • J(2)]3 + 2[J(1) • J(2)]2 — [J(l) • J(2)] — 2 = 0. 

The eigenvalues of J(l) • J(2) satisfy thus the cubic equation 

(27.41) £3 + 2f2 —£ —2 = 0 

which has the three solutions 

(27.42) £i=+i; |2=-i; ^3 = -2. 

The operator 

(27.43) T12 = [J(1)-J(2)]2 + [J(1)-J(2)]-1 

has then the eigenvalues 

rf = + 1 corresponding to and 

(27.44) - _ _ i corresponding to 

and satisfies the condition 

(27.45) T2l2 = 1. 

The eigenstates of T1Z in this case are the multiplets (A2.10), 

T1210,0> = +|0,0> 

(27.46) T12\l,ms} = - |l,ms> m, = +1,0,-1 

T12\2,ms} = + 12, ms> ms = + 2, + 1,0, - 1, - 2. 

It is interesting to note that the operator J(l)-J(2) removes the 

degeneracy with respect to Tl2 of the symmetric states 10,0> and 12, ms>, 
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they belong to the eigenvalues £3 and £1( respectively, as follows from a 

simple computation: 

(27.47) J(l)' J(2)|0, 0> = -2|0,0> = £8|0,0> 

(27.48) J(l)' J(2)|2, mg> = + |2, mg> = £x|2, ra*>. 

A representation can also be found for the operator of transposition 

of particle labels applied to a complete set of attributes. Such an operator 

would be required to have the property, for fermions, 

(27.49) T+2 = 2^2 ; T12a(l)TTi = a(2) 

so that also 

T12a+(l)Ty2 = ®+(2) and T12 a(2) T^2 = o(l) etc. 

Here a+(l) refers to the creation operator of a fermion, a+(l) = a+(r1), 

which is characterized by a complete set of quantum numbers iq. The 

construction of the operator T12 in terms of creation and annihilation 

operators for fermions is relatively easy, because there is only a finite 

number of bilinear combinations containing the operators a(l), a+(l), 

a(2), and a+(2) from which one can construct the most general unitary 

operator involving a(l), a+(l), a(2), and a+(2) (see Appendix 5), of which 

T12, if it exists at all, must be a special case. One finds 

(27 50) T12 ~~  -^12 *Si2 • Ru 

with 

(27.51) R12 = [a+(l)o(2) + a+(2)a(l)] 

(27.52) S12 = [1 — a+(l) a(l) — a+(2) a(2)] 

will do the job required by (27.49). Indeed, since 

(27.53) [-812,0(1)] = o(l); [-812,o(2)] = a(2) 

one has 

eiW)sI2 a(i)e-iW2)sia = a(1) + i^i 2) [£12; a(i)] + (*(77/2))21/2! 

(27.54) x[/812,[/812,o( 1)]] + ... 

= a(l) el(7r/2) = ia( 1), 

and similarly 

(27.55) eiW)Sl2 a(2) e-MTTl2)Slt = ia(2) 

so that, because 

(27.56) [i?12,a(l)J = -a(2); [i?12,a(2)j = -a(l) 
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one has finally 

(27.57) 

T12a(l)T7i = ieiMZ)a{l)e-*"1**R» = t{a(l) + (1(77/2)) [R12, a(l)] + ...} 

= ■i{a(l)cos (77/2)— ia(2)sin (77/2)} = a(2) 

and similarly 

(27.58) T12a(2)Ty2 — i{a(2) cos (77/2) — ia{\) sin (77/2)} = a(l). 

The representation (27.50) for the transposition operator turns out to 

be equally valid for bosons, because the bilinear nature of the operators 

R12 and S12 leads to the same C.R.s (27.53) and (27.56) if the fermion 

operators are replaced everywhere by the corresponding boson operators, 

r12 and s12 (say). The decisive difference between the two cases is that 

T12 has with fermion operators only the eigenvalue — 1 and with boson 

operators it has only the eigenvalue + 1. 

For fermion operators S12 and R12 satisfy the relations 

(27.59) 

Sf2tR12 — i; -^12^12 — 0; Rf2 — Bit; $12 = $i2 

so that one can write 

ei(n/2)s12 = i+is12 sin (77/2) +/Sf2 [cos (77/2) -1] = 1 +iSl2-Sf2 

i21-60) en„i2)Ru = l+iR12-R22 

and thus, for fermions, the operator of transposition can be put in the 

somewhat more transparent form 

(27.61) 

T12 = S12 + R12 = l-a+{l)a{l)-a+(2)a{2) + a+(l)a{2)+a+{2)a(l). 

The factor ± i in (27.50) is now justified after the event, because 

(27.62) = S\2 + R\2 = 1 

requires this convention of phase. 
No such simplified representation seems to exist for bosons. 

NOTES 

The importance of permutation symmetry in the quantum mechani¬ 

cal description of multiple particle states was apparently first appreciated 

by Heisenberg [1]. A comprehensive treatment of the application of 
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permutation symmetry to the classification of multiple photon states is 

given in the book by Akhiezer and V. B. Berestetskii [2], 
The explicit representation of the operator of transposition of spin 

labels for j = \ is due to Dirac [3]. 
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SECTION 28 

Some Consequences of Symmetry under Particle Conju¬ 

gation and Time Reversal 

Whenever a particle differs from its antiparticle by an attribute, such 

as the fermion number F, a state describing such a single particle or anti¬ 

particle, i.e. a state with definite F, can never be an eigenstate of the 

operator of particle conjugation r, because by definition of the particle 

conjugation operation the operators r and F anticommute, 

(28.1) rF+FT = 0 

which is another way of saying that F changes sign under the operation 

r. For fermions of spin ^ satisfying Dirac’s equation there is an addi¬ 

tional complication arising from the antiunitary nature of F, which had 

been established in Section 19. It is therefore not meaningful to introduce, 

in analogy to pai’ity, the concept of “conjugality” meaning the eigen¬ 

value of r, as long as only single particle states are considered. 

However, in the special case of a many-fermion system whose total 

fermion number vanishes, i.e. in a system consisting of an equal number 

of fermions and antifermions, the state vector can become an eigenstate 

of r, [see the remark following Eq. (15.53)], 

(28.2) r\F = 0> = C\F = 0> 

and such states will be called “states of specific conjugality C.” The value 

of C depends in a rather intriguing way on the orbital angular momentum 

quantum number l and the spin quantum number s of the state, through 

the intervention of permutation symmetry. 
To bring this out consider as an example a positronium atom in the 

center of mass frame, so that its state vector can be described by 

(28.3) |positronium) = |k = kx — k2, sx,sz,Lx = +l,L2 = —1) 

where k,, s*, refer to momentum, spin quantum number, and lepton 

number of the respective particle. Now the operation of particle conju¬ 

gation amounts in this case, by definition, to the transposition operation 

as far as the particle labels on L are concerned, 

(28.4) r = T12(L). 
251 
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Transposition of particle labels on sif on the other hand, has the eigen¬ 

value + 1 for the triplet states sx +s2 =s = 1 and the eigenvalue - 1 for 

the singlet state S1. + S2 = s — 0 (see Appendix 2, Eqs. (A2.9)]. 

(28.5) T12(8) = (-1)*+1. 

Finally, transposition of particle labels on kj is equivalent to the operation 

of coordinate inversion IID and has in the center of mass frame the value 

(28.6) T12( k) = (-1/. 

If the attributes k, s, and L form a complete set, then the operation of 

total transposition of particle labels TV2 is the product 

(28.7) Tlt = T12(k)Ti2(s)T12(L) = (-l)'+*+1r. 

Since fermions of spin \ satisfy the exclusion principle, T12 must have the 

value — 1, and one can conclude 

(28.8) C'(positronium) = ( —1)*+*. 

. This conclusion is not affected by introduction of a second lepton 

number L^, as had been done in Section 17, because electron and positron 

have the same lepton number L^ and therefore Tx% (L^) = + 1, so that 

(28.8) remains valid in this case. 

If one assumes that the electromagnetic interaction (23.4) is invariant 

under the operation of particle conjugation, so that 

(28.9) rAp3pr~X = A(ijp> 

one arrives at a number of selection rules which can be used to test this 

assumption experimentally. Although the concept of particle conjuga¬ 

tion was originally only defined for objects with distinct particles and 

antiparticles by insisting, in accordance with (19.66), that the electric 
current density operator change sign, 

(28.10) rj^r~\= -jM, 

the invariance requirement (28.9) imposes a definite transformation 

property on photon states under particle conjugation, because the 
operator A must now also transform as 

(28.11) fid/"1 - -A^. 

Now a single photon state | ly> is obtained, up to some factor, from the 

photon vacuum state |0y> by application of the operator A^, which by 

(18.90) contains photon creation and annihilation operators linearly, 

<28'12) IV = w 
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so that 

(28.13) r|iy> = rA„\0y> = rAp r-1 r|oy> = -Ayr\%-). 

With the convention, implicit already in the treatment of positronium 

above, that the vacuum state is a state of even conjugality, one con¬ 

cludes a single photon state has odd conjugality, 

(28.13a) .Tjly> — U|ly> with C(1 photon) = —1. 

By induction one has then immediately the result for the w-photon state 

K>> 

(28.14) C(n photons) = ( — l)w. 

Upon comparison with (28.8) one arrives at the selection rule: 

Positronium in a triplet state (5=1) with odd l or in a singlet state 

(s = 0) with even l cannot decay into an odd number of photons, and 

positronium in a triplet state with even l or in a singlet state with odd l 

cannot decay into an even number of photons. 

It is suprisingly difficult to devise a crucial experiment which would 

test the conservation of C alone in positronium decay, because if in the 

decay parity and angular momentum are conserved one has additional 

selection rules which follow from (27.22) and the classification of photon 

states. For decay into two photons, for example, one can read from Table 

28.1, which has been constructed with the classification of two-photon 

TABLE 28.1 

Selection Rules fob Decay of Positbonittm into Two Photons 

Decay into two photons 

by conservation of: 

Positronium 

state J P = (—1)!+1 G = (— l)!+s G P,J,J% 

bS0 0 -1 

3Po 0 + 1 

hpl 1 + 1 

*SU 3-Di 1 -1 

3Pi 1 + 1 

!D2 2 -1 

3P2, 3P2 2 + 1 

3D2 2 -1 

+ 1 Allowed Allowed 

+ 1 Allowed Allowed 

-1 Forbidden Forbidden 

-1 Forbidden Forbidden 

+ 1 Allowed Forbidden 

+ 1 Allowed Allowed 

+ 1 Allowed Allowed 

-1 Forbidden Allowed 
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states as given in Section 27 and Appendix 3, that the 3D2 state of posi- 

tronium is the lowest state from which one has, by observation of the 

absence or presence of two-photon decay, a crucial test of conservation 

or nonconservation of C in the interaction responsible for this decay. 

Relations (28.8) and (28.14) lead also to a selection rule in optical 

transitions between various positronium states under emission or absorp¬ 

tion of single photons. Denoting the spin and orbital quantum numbers 

of positronium in initial and final states by s, l and s', V, one must have 

(28.15) (-l/+s = -(-l)r+s< 

if C is to be conserved in the transition. This means, in particular, that 

quadrupole transitions (l' — l= ±2,s' — s = 0) are forbidden in posit¬ 

ronium, although they exist in the corresponding spectrum of hydrogen. 

Again, experimental verification of this prediction is difficult to obtain, 

because the electrical dipole transitions (V — l — ± l,s' — s = 0) between 

the corresponding energy levels are allowed. In this connection, it might 

be worth noting that these forbidden lines are not excluded if posit¬ 

ronium is placed into a given fixed external electric field, because then 

the interaction ceases to be symmetric in the two particles of opposite 

charge, so that the expectation value of T is no longer conserved, or, to 

use a typical phrase, “C ceases to be a good quantum number.” 

The behavior of baryons and massive bosons under particle conjuga¬ 

tion is complicated by the existence of yet another attribute, the isospin, 

which will be treated in Section 29, and consequences of symmetry under 

particle conjugation for these objects will be taken up there. 

Turning now to the consequences of invariance under time reversal ©, 

one might expect on first sight selection rules similar to the ones generated 

by invariance under particle conjugation on account of the antiunitary 

nature of © which had been established in Section 16. As in the case of 

particle conjugation symmetry, it is not meaningful to introduce, in 

analogy to parity, the concept of “ reversality ” meaning the eigenvalue 

of ©, as long as single particle states are considered. The analog to the 

states of specific conjugality C (28.2), i.e. “states of specific reversality 

T” (say), can exist only if there were an additive quantum number, 

L (say), which is odd under time reversal, 

(28.16) OL^ + L^G = 0 

and if one could realize product states describing an equal number of 

particles with the attribute = + 1 and particles with the attribute 

L^= — 1, so that such states could have indeed the property 

(28.17) &\L^ = 0> = T\L^ = 0>. 
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Unless the speculations mentioned at the end of Section 17, where the 

second lepton number L^ was assumed to have the property (28.16) 

making for example a state consisting of one ordinary neutrino v and 

one muon neutrino v^ a candidate for having specific reversality accord¬ 

ing to (28.17), turn out to account faithfully for reality, no such situations 

seem to be realized in nature. 

Despite the absence of selection rules analogous to the ones following 

from conservation of C and P, invariance under time reversal has some 

far-reaching and experimentally accessible consequences whenever 

transitions are observed which require a definite sequence of states in 

time. 
Of immediate interest are situations, treated in Section 23, in which 

the amplitude for transition between a final state |r') from an initial 

state | r> is given by the matrix element 

(28.18) <V |$|t> 

of the scattering operator S defined as the limit 

(28.19) S = U{ + co, -oo) 

of a unitary operator Uit^tf) which satisfies 

(28.20) 

idU(h,h) = HlnMU(t2}tl) with U{tM = 1 for t2 = h 

where Hint{t2) is the interaction Hamiltonian in the interaction picture. 

The solution of (28.20) can always be put in the symbolical form [see 

Eq. (23.16)] 

(28.21) U{t2, tf) — P exp 

where P is the time-ordering operator. 
A general consequence of the invariance of Eq. (28.20) under time 

reversal is the principle of reciprocity: 
The amplitude of transition from an initial state |r> to a final state 

|r'> is, up to a phase factor ± 1, equal to the amplitude for the “reverse ” 

process, in which the sequence of initial and final states is reveised and 

each state |r> is replaced by its time reversed state |rT>, 

(28.22) <t'|£|t> = ±<rr|/S|Ty>. 

One must not confuse the “ reverse” process | t fy > | with the inverse 

process |t'> -> |r> in which only the sequence of states is interchanged. 
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For example, if r stands for the set of quantum numbers kA, kB, .. 

s4, sB, ... of momenta and spins of particles A, B, ... in the initial state, 

and t stands for the set of quantum numbers kc, k^, sc, s^, ... of 

particles C, D, ... (which are in general different from particles A, B, ...) 

in the final state, one has, since both k and s change sign under time 

reversal, 

the process |k^, k£,..., s^, sB,...) -> |kc, k^,..., sc, sD,...), 

the inverse process |kc, k^,..., sc, sD,...) -> 

|k4,kB,...,s^,sB,...), and 

the reverse process | — kc, — h.D,..., —sc, — sD, ...)-> 

| — k4, — k£,..., — s^, — sB,.. .y. 

The proof of the principle of reciprocity (28.22) is expedited if one 

exploits the possibility of representing the antiunitary property of time 

reversal & by the operation of transposition in occupation number space. 

Thus, if with a convention of phase the vacuum state is assumed to 

transform as 

(28.23) @|0> = <0| 

then any occupation state, which is raised from vacuum by application 

of the appropriate number of creation operators 

(28.24) |t> = a+(TX)...o+(TB)|0> 

will transform as 

(28.25) @|t> — e.„<(0| a[(TM)T]... a[(r1)r] — en(jT 

where en is a phase factor + 1 which can be chosen arbitrarily forgiven 

number n of particles without violating the time reversal invariance of 

the C.R.s or anti-C.R.s valid between the operators a(r) and «+(t). [The 

operators a, a+ in Eqs. (28.25) and (28.26) may be taken to represent 

fermions and/or bosons.] The effect of 0 on all dynamical variables is 

taken care of by the substitution of the time reversed quantum numbers 

tt for the original quantum numbers r. Similarly one has 

(28.26) <V| 0-1 <O|a(T^)...a(r[)0 1 - ema+[(T()r].. .a+[(r]re)T] |0> 

With this understanding about the representation of 0 one can rewrite 
the transition amplitude (28.18) 

(28.27) <T'| %> = <t'| 0-1050-10|t> = emen(rT\ST\r'Ty 
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where ST is the time reversed scattering operator 

(28.28) ST = ©s©-1. 
To prove reciprocity one lias therefore to prove that 

(28.29) Srp — S 

follows from the invariance of Eq. (28.20) under time reversal. 

To this end remember the unitary nature of U{tz,tf) = U+(t1,t2), write 

down the adjoint of Eq. (28.20) and interchange the labels t1 and t2: 

(28.20+) 

Addition of Eqs. (28.20) and (28.20+) gives, for the special values t2 = t 
and t1= —t 

(28.30) 2idU{t’~t) = Hint(t) U(t,-t)+U(t, 

Time reversal invariance requires that if (28.30) is true, then 

(28.30t) 2 i—"= UT(t,—t)[Hint(t)]T+[Hint( — t)]TUT(t,—t) 

must also be true, where UT — ©U@~l, etc. The antiunitary nature of 

time reversal has been used consistently, requiring, for example, that 

upon application of © to the right hand side of (28.30) the order of the 

factors U and H, both of which contain creation and annihilation 

operators, be reversed. By the definition of time reversal 

(28.31) [Hint(t)]T = Hint( — t) 

and (28.30t) may be written as an equation for UT(t, —t) 

(28.32) 2ia^~') = HU*) UT(t, -t)+ UT(t, ~*) ~*) 

which is seen to be identical with Eq. (28.30) for U(t, —t). Therefore, 

(28.33) UT(t, -1) = U(t, -1) 

and the observation that A is by (28.19) a special case of U(t, -1) completes 

the proof of Eq. (28.29) and thus of the principle of reciprocity. 

Under special circumstances the principle of reciprocity implies a 

simple relationship between the process and its inverse process, known 

as the principle of detailed balance: 

|<r'|S|r>|2 = |<t|S|t')|2. (28.34) 
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The validity of such a principle aids greatly the statistical analysis of 

states in thermal equilibrium and the approach to equilibrium, because 

it means transitions from a state r to a state T can be balanced directly 

by the inverse transitions from the state t' to state r without having to 

invoke any intermediate states through which such a balancing might be 

effected. It must be stressed, however, that the principle of detailed balance 

is not generally true. Even in classical mechanics it is not true. For 

example, if the transition refers to a collision between two particles inter¬ 

acting by a force which manifests itself as a nonspherical “shape” of the 

particles, detailed balancing is not valid, as was already pointed out by 

Boltzmann. 
Some of the special circumstances under which detailed balance does 

hold in quantum mechanics will now be recorded in a number of theorems. 

Theorem I. If the interaction mediating transitions is weak and if a 

perturbation expansion of S after the recipe (24.1) is meaningful, so that 

all observable effects can be accounted for by the first approximation 

(28.35) <t'|&|t> = <t'|£i|t> 

then the principle of detailed balance is valid. 

This follows immediately from the representation of as the time 

integral over 77int and from the hermitean property of 77int, 

(28.36) <y|#int|r>* = <V|#int|T'> 

so that 

(28.37) |<t'|Si|t>|2 = |<t|S1|t'>|*. 

Theorem 11. If the process is invariant under inversion of coordinates 77, 

and if one measures only quantum numbers which change sign under 

both time reversal 0 and coordinate inversion 77, then the principle of 

detailed balance is applicable. 

For example, consider a process between states characterized com¬ 

pletely by momenta k and spins s. The principle of reciprocity requires 

then 

(28.38) 

<kc,sc,... |£|k^,s^,...> = ±< —k^, -s4,...|S|-kc, -sc,..Q. 

Invariance under inversion of coordinates means 

(28.39) 

<-k^, -sA,...\S\-k'c, -so,...> - <K, —s^,... \S\k'c, -sc,...} 
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so that 

(28.40) <kc, sc,... |$|kA, Sj,...) = ± <Xi, — s^,... |$|k^, — s^,...). 

If the spins are not measured in either transition, one has 

spins spins 

which is the principle of detailed balance applied to initial and final 

states in which only the momenta are known. 

A famous application of Theorem II is the determination of the spin of 

the v+ meson, which is obtained by comparing the cross sections for the 

reaction p + p -^d + n+ and its inverse tt+ + d ->p +p which are measured 

for given momenta without observation of spins. The ratio of the two 

cross sections depends then essentially only on factors in phase space, 

which contain as only unknown the spin degeneracy (25^+1) of pion 

states. 
Another pair of reactions for which the principle of detailed balance, 

as required by time reversal invariance and Theorem II, has been checked 

is the photodisintegration of He3, y + He3-^H2+p and the radiative 

capture of protons by deuterium, p + H2 -^He 3 + 7- 

Theorem III. If in a reaction involving two particles in the initial state 

and in the final state the spins of the particles lie in the reaction plane, 

then detailed balance holds, provided the interaction is invariant under 

rotations in space. This is true even if parity is not conserved in the 

reaction. 

The validity of this theorem is most easily established by the following 

geometrical reasoning. Draw a graph of the process, as indicated in Fig. 

28.1, with the understanding that none of the spins s^, sB, sc, sD have any 

components perpendicular to the plane formed by the momentum vectors 

k4 and kg. By conservation of momentum this plane must be identical 

with the plane formed by kc and k^. Now draw the reverse process, as 

indicated in Fig. 28.2. If the process is invariant under rotations in space, 

Fig. 28.1. The process. 
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A 

Fig. 28.2. The reverse process. 

c 

B 

Fig. 28.3. The inverse process. 

then the amplitude for the reverse process is equal to the amplitude for 

the process which is obtained by rotating all vectors in the reverse process 

around an axis perpendicular to the plane of reaction by an angle tt, as 

indicated in Fig. 28.3, and comparison with Fig. 28.1 shows that the result 

is the inverse process. This means the amplitudes for the process and its 

inverse are equal, and therefore the principle of detailed balance holds in 

this case. Since the invariance under inversions of coordinates has not 

been invoked, Theorem III will be true even if parity is not conserved in 

the reaction. 

Theorem IV. If in a reaction initial and final state are characterized only 

by the total angular momentum quantum numbers j, m and sets of other 

scalar quantum numbers ta, tb, ... and tc, td, ... which do not change 

sign under time reversal, then the principle of detailed balance holds 

provided the reaction is invariant under rotations in space. 

This follows from the observation that under the stated conditions 

only the quantum number m changes sign under time reversal, so that 

one has, on account of the principle of reciprocity, 

(28.42) <rc, td, . .., j, m\S\rA, rB, . . .,j, m) 

= ±<JA,TB, ...,j, —m\S\rc,TD,.. ,,j, - my 

and, therefore, if S is invariant under rotations, the matrix element on 
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the right-hand side is equal to the one obtained by a rotation of co¬ 

ordinates which transforms m into — m but leaves the scalars t, j in¬ 
variant, 

(28.43) (tc, td, . . .,j, m\S\rA, rB, . . .,j, m) 

= ± .. .,j,m\S\rc,TD,...,j,m>. 

Since Eq. (28.43) connects the amplitude of the process with the ampli¬ 

tude of the inverse process, the principle of detailed balance holds in this 
case. 

It is rather unsettling to x'ealize how stringent the conditions are under 

which detailed balance is a valid principle, in view of the great burden 

this principle has to carry in all proofs for the existence of stationary 

states in statistical physics. It seems almost impossible to realize 

experimentally systems devoid of any magnetic interaction properties, 

and since any magnetic interaction will in general remove the degeneracy 

of energy levels due to spins, the labeling of energy levels by some spin 

quantum number s becomes practically unavoidable. But under such 

circumstances the principle of detailed balance cannot be valid, and 

therefore all proofs which invoke detailed balance for existence of 

stationary states are suspect because their applicability to reality is in 
doubt. 

Nevertheless, in the absence of detailed balance, some kind of overall 

balance for transitions seems to be required if stationary states are to 

exist at all. The question of under which conditions overall balance 

generally follows from the principle of reciprocity for physically realiz¬ 

able systems poses one of the unsolved problems of statistical physics. 

NOTES 

Early treatments of the selection rules for positronium following from 

symmetry under particle conjugation are contained in papers by Wolfen- 

stein and Ravenhall [1], and Michel [2], The conjugality property of the 

photon is already implicit in the work of Furry [3]. Explicitly it seems to 

have been stated first by Gell-Mann and Pais [4], 

A lucid discussion of the principle of reciprocity and of conditions under 

which detailed balance holds is contained in the book by Williams [5]. 

Implications of time-reversal symmetry for strong interactions have been 

studied in detail by Henley and Jacobsohn [6], 

The proof for the principle of reciprocity given here follows closely that 

of Mandl [7]. 
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SECTION 29 

Attributes Characteristic of Objects Engaging in Strong 

Interactions 

All baryons (N, A, E, E, ...) and massive mesons (77, K, ...) partaking 

in the strong interactions possess a number of intrinsic attributes not 

shared, for example, by the leptons which engage only in weak and 

electromagnetic interactions. Most prominent among these attributes 

ranks the “isospin” T which derives its name and its status as a full- 

fledged dynamical variable from a curious symmetry property of strongly 

interacting objects in an abstract “isospace,” resembling formally the 

symmetry under rotations in three-dimensional coordinate space, and 

leading through this isomorphism with ordinary rotations to conser¬ 

vation of two new quantum numbers T and Ts in processes mediated by 

strong interactions, in analogy to the conservation of two angular 

momentum quantum numbers s and s3 (or j and m) in processes mediated 

by interactions invariant under rotations in ordinary space. 

The “isospace” was originally conceived by Heisenberg as a con¬ 

venient device to distinguish the neutron state and the proton state of 

the nucleon by a dichotomic attribute r3 (say) attached to the nucleon, 

which is given the value t3 = +1 if it is found to be a proton and the 

value r3= — 1 if the nucleon is found to be a neutron. Once this abstrac¬ 

tion of considering proton and neutron as but two, and the only two 

possible, states of a generic entity called “nucleon” is accepted, the 

mathematical machinery set up in Sections 1 and 2 for the purpose of 

grasping the dichotomic attribute of fermion spin can be adapted to this 

new situation by changing nothing but the interpretation of symbols. 

Thus the state of a nucleon can be written in isospace as 

|x> = a\p> + b\n> (29.1) 

where |p> and | ri) are pure proton and neutron states defined as the 

eigenstates 

263 

(29.2) 
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of an “isospin” operator 

(29.3) - c -?) 
with eigenvalues + 1 and — 1, respectively, so that a and & in (29.1) can 

be looked upon as </< functions in the isospace spanned by the vectors 

(29.2) with the interpretation that 

\a\2 is the probability for finding the nucleon as a proton and 

|6|2 is the probability for finding the nucleon as a neutron. 

In this space the electric charge Q (in units of the electronic charge — e) 

carried by the nucleon can be represented by the operator 

(29.4) Q — i(r3 + -0; i = 
1 o 

o 1 

which has |p> and |n) as eigenstates with eigenvalues + 1 and 0, respec¬ 

tively. The analogs of the operators o+ and ct_ (see Appendix 1) con¬ 

structed from the spin matrices ol and a2 may therefore be called the 

“charge creation and annihilation” operators, 

T+ = |(ti-Ht2) = T- = £(ti—tV2) 

(29.5) 

<0 1 

^0 0 

They are constructed from the isospin matrices 

(0 -i 

it 0 

0 0 

1 0 

(29.6) Ti — 
l); T2 = 1 

b>; r-\n> 

0; T-\P> 

and have the properties 

r+|n> 
(29.7) 

T+b> 

Also useful are the “projection” operators 

(29.8) 

T' = W + r3) = (J ®); T. = ®) 

which project out of the general state |x) the proton and neutron compo¬ 
nents respectively, 

(29.9) >lx> = «#>; Tn\x> = b\n>■ 
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In the terminology developed here, the state vector needed for the 

complete description of a single nucleon will then consist of a direct 

product of two vectors | cp> and |y), 

(29.10) |nucleon) = |cp)x|y) 

where 1cp) accounts for all dynamical attributes of the nucleon such as 

momentum and spin, and |y) is specified by whatever quantum numbers 

are needed to completely label the nucleon in isospace. In view of the 

isomorphism of the isospin operators, rx, r2, and r3 with the Pauli spin 

operators cr1} a2, and o3 one can hardly avoid trying at this stage to 

label the nucleon state in isospace by two quantum numbers T = \ 

and T3 = + -| in analogy to the two quantum numbers s — \ and s3 — ± \ 

needed to completely specify an ordinary fermion spin. Instead of saying 

“there are only two nucleons” it will be said from now on “the nucleon 

has isospin T = with two possible orientations T 3 = + \ and T3 = — \ 

in isospace.” Thus the states (29.2) will be labeled 

(29.11) 

b> = \T = h;T,= +i>; |»> = \T = i;T3 = -i>, 
with the implication that addition of isospin quantum numbers for several 

nucleons shall be effected by applying the rules governing the addition of 

ordinary angular momenta, as given in Appendix 2. 

In particular, for an atomic nucleus containing A nucleons the total 

isospin will be represented by the operator T = (T1,f2,Ta) with 

(29.12) = U rfN) 
N= 1 

so that 

(29.13) T2 = T\ + Tl + f'i 

and the total charge of the nucleus will be the eigenvalue of the operator 

(29.14) 

Z = 

A 

z 
N=1 

Q(N) = S r3(N)+ S I 
.N—l N=1 J 

= T3 + (AI2)I. 

Since T satisfies the C.R.s governing the components of angular momen¬ 

tum, the conclusions of Appendix 1 are applicable, and one concludes 

there must exist in isospace a state vector |T,Tf) satisfying 

(29.15) 

T2\T,Tf) = T(T + l)\T,Ts}-, f3\T,T3> = T3\T,T3} 
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so that any many-nucleon system can be characterized by two isospin 

quantum numbers T,TS if the single nucleon can be so classified. 

However, as soon as one, in this fashion, admits isospin as a legitimate 

attribute of nucleons, without which any set of attributes would be incomplete, 

most profound consequences ensue for the classification of many-nucleon 

states because of the intervention of the exclusion principle. 

To illustrate this consider a two-nucleon state which will, in general, be 

the direct product 

(29.16) |t(1)t'(2)> = |«(1)*'(2)> x |T(1)T'(2)> 

of a state vector characterized completely by the spatial quantum 

numbers s and s' (such as momentum, spin, etc.) of nucleon 1 and 

nucleon 2, and a state vector in isospace characterized by the isospin 

quantum numbers T and T' of the two nucleons. The exclusion principle 

requires that the operation of transposition of particle labels T12 applied 

to the particle labels 1 and 2 of the complete set of quantum numbers r and 

r' result in a change of sign of the state vector, 

(29.17) Tlt |t(1)t'(2)> = -|t(1)t'(2)> 

and therefore a given isospin state |T(1)T'(2)> by its transformation 

property under T12 in isospace will impose severe restrictions on the 

possible quantum numbers s and s' of the two nucleons if (29.17) should 

be valid. 

More specifically, a two nucleon system may, in accordance with the 

rules governing the addition of two spins \ [see Appendix 2, Eqs. (A2.9)], 

belong in isospace either to the antisymmetric singlet of total isospin 

T = 0, 

(29.18) | T = 0 ,TS = 0> = (llV2)(\py\n>-\n>\p» 

or to the symmetric triplet of total isospin T — 1, 

T = 1,TS = +1) = \p)\p> 

(29.19) | T = 1 ,T3 = 0> = (llV~2)(\py\n') + \n)\p» 

IT = 1 ,T3 = - 1> = \n)\n) 

By working in the center of mass frame, denoting the coordinate state of 
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two nucleons symmetric under transposition of particle labels as |even> 

and the antisymmetric coordinate state as |odd>, and remembering that 

the possible ordinary spin states of a system of two nucleons are either 

the antisymmetric singlet denoted 11) or the symmetric triplet denoted 

13), one can write down immediately the possible totally antisymmetric 

states for a system of two nucleons, namely 

|even> x 11) x \T — 1) 

|odd>x |3>x \T = 1> 

|even) x |3> x \T = 0) 

|odd> x 11> x \T = 0) 

(29.20a) 

(29.20b) 

(29.20c) 

(29.20d) 

because the symmetric isospin triplet \T = 1) must be combined with a 

state antisymmetric in the combined coordinate-spin space, and the 

antisymmetric isospin singlet \T = 0) must be combined with a state 

symmetric in coordinate-spin space to insure the validity of (29.17). 

The terminology of calling symmetrical coordinate states |even) and 

the antisymmetric ones |odd> stems from the observation, used already 

in preceding sections, that in the case of two particles the operation T12 

of transposition of particle labels is identical with the operation of co¬ 

ordinate inversion 77 in the center of mass frame. If the relative intrinsic 

parity of the particles is taken to be even, then the coordinate state has 

the parity (— 1)) l being the orbital angular momentum of the relative 

motion. It follows that the antisymmetric states must be states of odd l 

and the symmetric states must be states of even l. 

As a consequence of the particular combinations (29.20) of coordinate- 

spin-isospin quantum numbers demanded by the exclusion principle, 

both the diproton and the dineutron, which by (29.19) necessarily belong 

to the isospin triplet, cannot exist in |even)|3> or |odd)|l> states with 

respect to spatial and spin variables. The deuteron, on the other hand, 

can exist in all four combinations of spatial and spin states. 
Experimentally, dineutron and diproton, which belong to T = 1, are 

not found to exist in stable states, whereas the deuteron is found to be 

stable, but only if it is in an |even)|3) state, namely the 3$-state which 

belongs to T = 0. The lowest |even)| 1) state of the deuteron, namely the 

hS-state belonging to T = 1, is not stable. These facts indicate that the 

specific nuclear interactions, giving rise to stable states among nuclei, 

depend only on the absolute value of the isospin and do not distinguish 

between the 2T + 1 multiplets. Moreover, a classification of the lowest 

energy levels of nuclei (be they stable states or resonant states of positive 

energy) suggests that the lowest possible isospin T results in the strongest 

bond, as indicated in Table 29.1. 
Accordingly, in all theories of nuclear interactions which start from 
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the concept of an interaction Hamiltonian, the invariance of Hint under 

rotations in isospace is assumed, being equivalent to assuming that in 

nuclear interactions isospin is conserved. Since changing the orientation 

in isospace means changing Ts, which in turn means changing the total 

electric charge value of the nucleus, assuming the invariance under rota¬ 

tions in isospace amounts to assuming the charge independence of nuclear 

forces. It is now generally believed that the actual splitting observed 

between the energy levels belonging to a given isospin multiplet can, in 

principle, be accounted for by the remaining electromagnetic interaction 

between nucleons, which is by definition charge dependent, so that the 

electromagnetic interaction Hamiltonian depends on T3 and is thus not 

invariant under rotations in isospace. This is the classic example of a 

symmetry, valid for a strong interaction, which is “broken” by a weaker 

interaction. In other words, conservation of isospin is not an absolute 

conservation law, it is valid only in reactions mediated by strong inter¬ 

actions, but is “violated” if electromagnetic interactions are taken into 

account. 

In recent years it has become experimentally possible to substitute in 

nuclei a A particle for a neutron, and the observation of thus obtained 

“hypernuclei” has turned up another piece of evidence supporting the 

view that strong interactions, to which belongs the A — N interaction, 

conserve isospin, allowing the resulting energy levels to depend only on 

the total isospin T, which is a scalar in isospace. Since the A particle has 

isospin T = 0 (it comes only as an electrically neutral particle), its sub¬ 

stitution for a neutron will result in the formation of a nucleus with 

isospin T lowered by Since the isotopic number A of the nucleus is 

not changed by the substitution, one should expect a multiplet structure 

of energy levels in hypernuclei similar to that of the nuclei, but shifted 

one up in the A scale, as indicated in Table 29.2. 

This table has been confirmed by observation of the hypernuclei 

^H3, /(He4, ^He5, and ^Li7 in multiplets as predicted. One should not 

expect numerical agreement with the binding energies of the corres¬ 

ponding nuclear levels, because the total number of particles A partaking 

in the interaction is different, and besides the A particle differs from the 

neutron by another intrinsic attribute, the “strangeness” to be taken 

up later in this section, which may have dynamical significance. Never¬ 

theless, it is interesting to note that the observed binding energy of 

about 2.6 Mev for the hypernucleus jH3 is very close to the binding 

energy of about 2.2 Mev for the deuteron H2, which correspond to each 

other in the two level schemes of Tables 29.1 and 29.2. 
It is perhaps instructive to set down here the most general interaction 

Hamiltonian for two nucleons which satisfies the requirement of charge 
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independence of nuclear forces, i.e. invariance under rotations in iso¬ 

space. Prior to imposing this symmetry, one would have as most general 

interaction Hamiltonian an expression of the form 

(29.21) Hint = HhlOlil+Hlt 0(P1>0 + #!,_! 0i_i +H0>0&{ 0,0> 

where ET Ts are the interaction operators acting on the spatial and spin 

variables of the two nucleons if they are in the isospin state jT,T3), and 

0TiTs stands for the projection operators which project out of the general 

isospin state of two nucleons, 

(29.22) |x> = a|l, 1>+ 6| 1, 0>+ c| 1, -l> + d|0,0> 

the components belonging to quantum numbers T, T3, respectively. 

These operators are explicitly 

0i,i = [* + *8(1)] [* + *.(2)] 

so that <^i,i|y) = a|l,1) 

0i,o = i + T1(l)P1(2)+P2(l)P2(2)-T3(l)P3(2) 

(29.23) so that ^i,o|x) = &| 1,0> 

01,-! = [*-*8(1)] [*-*3(2)] 
so that x) = c|l, —1) 

0o,o = i —*1(1)*1(2)—*2(1)* 2(2) — T3(l)T 3(2) 

so that 0o,o|x> - d|0,0>. 

The hypothesis of rotational symmetry in isospace means to put 

(29.24) O
 

II i“H
 

and 

(29.25) H0.o 

— — Ha 

'= Hs (say) 

(say) 

where Ha and Hs are, in general, different. In fact, one knows from 

experiment that the Ha having as lowest eigenstate the virtual 

| even) 11) state of the deuteron must give rise to a potential energy 

which is about \ the potential energy due to Hs which has as its ground 

state the stable |even>|3> state of the deuteron. By substitution of 

(29.23)-(29.25) into (29.21) one finds as general isospin-conserving inter¬ 

action Hamiltonian for two nucleons 

(29.26) Hm = //„{| + [T(l)T(2)]} + ffs{i-[t(l)T(2)]} 

= [(3tf„ + H,)l4] + (E. - H,)[T(l) T(2)] 

which is obviously a scalar in isospace. 
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It is interesting to see in detail how the ‘ law of conservation of 

isospin” is “violated” if the electromagnetic interactions are added to 

the interaction Hamiltonian. Taking, as an example, the Coulomb inter¬ 

action which acts only between two protons, i.e. between two nucleons 

which are by (29.19) necessarily in the |T = \,T3 = 1) state, one has to 

add to (29.26) the term 

(29.27) //Coui = (e2/r) 01,1 = {e^/r) {% + %[f 3(1)+T3(2)] + T3(l)T3(2)} 

which is no longer invariant under rotations in isospace. Indeed, 

(29.28) Hq0U\Ti Ti Hqou\ ^ 0 and Hq0Vi\T3 — T2 -^Coul ^ 0 

so that T is no longer conserved. However, T3 is still conserved, because 

(29.29) HCoalT3-f3HCoxil = 0. 

This relation guarantees conservation of electric charge by virtue of the 

general definition (29.14), which reads here 

(29.30) t3 = Z-1 

where Z is the charge number of the two-nucleon system. 

In the 1940’s there were lingering doubts in the minds of many 

physicists regarding the necessity of introducing the isospin as a genuine 

attribute. After all, one may conceivably arrive at a theory of nuclear 

forces by considering from the very beginning neutron and proton as 

different particles (namely differing in electric charge) and try to obtain 

the structure of the Hamiltonian (29.26) by assuming a peculiar co¬ 

ordinate and spin dependence of the specifically charge-independent 

nuclear interaction. This is logically possible if one postulates that the 

interaction between two nucleons in |even)|l) and |odd)|3^> states is 

different from the interaction in |even)|3) and |odd)|l)> states, but is 

otherwise charge independent. 

These doubts were largely dispelled, however, when in the early 1950’s 

extension of the isospin formalism to pions and their interactions began 

to account elegantly for many features of the pion-nucleon interaction 

which would have been hard to explain in any other way. More influential 

than any other single piece of evidence in turning the tide in favor of 

isospin as an acceptable legitimate attribute probably was Brueckner’s 

explanation of a general feature governing the scatterings of pions by 

protons in 1952. Experimentally there had been established at that time 

a ratio o(tt+) : o(tt~) = 3:1 for the respective total scattering cross section 

of positive and negative pions on protons up to 300 Mev incident pion 

energy in the laboratory frame of reference. Brueckner showed how this 

empirical relation can be understood simply as a consequence of the rules 
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governing addition of isospins, if one assumes conservation of isospin to 

hold in pion-nucleon interactions. The line of reasoning runs as follows. 

Since there are three pions, tt+, n0, and rr~, one requires in isospace a 

vector with three components to describe the charge state of a pion, 

being .a linear combination of the three basis vectors 

denoted alternatively 

| T = 1 ,T3 = +1); | T = 1 ,TS = 0>; | T = 1 ,TS = -1>; 

and chosen with a convention of phase, which are the eigenstates of the 
operator 

1 0 0\ 

0 0 0 

0 0 - 1 / 

(29.32) P 3 

with eigenvalues +1,0, and — 1, respectively. Thus p3 may be taken as 

the operator representing the charge Q of the pion. By analogy with the 

operators of angular momentum belonging to j = 1, the pion may be said 

to have isospin p = 1, the remaining two components of the isospin 

operator p given by 

0 1 0\ 

10 1; 
0 1 0/ 

There are also, in analogy to (29.5), 

operators 

(29.33) Pl = 
V 2 

P 2 

— i 

0 

i 

the charge creation and annihilation 

(29.34) 

P+ = i(Pi + V+) P- Upi-ipz) 
1 1° ° 

—= 1 0 

\0 1 

having the properties 

(29.35) 

p+|77+> = 0; p+\n°y = (1/V2) |77+>; p+|0 = (- 1/V2) |t7-0> 

p-\rr+} = (1/a/2) |t7-0> ; P-\tt0} = { - l/V2) \tt~) ; p-|t7~> = 0. 

In this notation the total isospin operator T of a system of A nucleons 

and B pions will be represented by 

(29-36) T = i 2 T(i) + S P(^) 
i=1 *=1 
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and the operator of the electric charge of this system is 

(29.37) Q = T3 + (A/2) = \ 2 r8(t)+ 2 p3(^) + M/2) 

It must then be possible, as in the case of a pure nucleon system, to 

characterize a system of A nucleons and B pions by two quantum 

numbers T, T3 which fix the isospin state as in (29.15). Demanding 

“conservation of isospin” in strong interactions is then equivalent to 

requiring that the dynamical properties of a system consisting of pions 

and nucleons are dependent on the value of T only and do not depend on 

T 3. 
Consider as a simple example a system consisting of one pion and one 

nucleon. By the rules of addition of angular momenta (see Table A2.1) 
one has as possible states in isospace a quartet belonging to total isospin 

T = | and a doublet belonging to T = \, 

(29.38) 

’ \t = %,t3 = f> = |t,t>|M> = b>K> 
lit) = (V!)|ii>|i,o> + (Vl)|i-i>|i,i> 

= (Vi)b>k0>+(Vi)|n>|77+> 

|i-t> = (VI) \h -11,o> + (Vi) \bi> 11. -1> 
= (V|) |w> K°) + (V|) |p> 10 

It, -f> = It,-i> 11,-1) = l»>|0 
‘ |il> = (VI)|t,t>|i,o>-(Vf)|t, -t>|i,i> 

= (VI) \v> |w°> - (V|) \n) |t7+> 
(29.39) 

|t,-t> - (V|)|t,.t>|i, —1>—(V%) |t, - t)|i,o> 
= (V|)|p> |0-(Vl)|w>|77°> 

For comparison with the experimental evidence cited above the isospin 

properties of proton-pion states will now be examined. Inspection of the 

combinations (29.38) and (29.39) reveals that a |p> |t7+> state is always 

a pure isospin state belonging to T = f, whereas the states |p> |t7°> and 

|p> |-7T—) are always isospin mixtures, 

b>K> = li!> 

|j)>K°> = (Vi)|i,i>+(VI)|ii> 

b>|0 = (Vf)U.-i> + (V?)|i-i> 

(29.40) 
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If one now supposes that isospin is conserved in the pion-nucleon 

interaction, then there must exist, for given total energy and angular 

momentum, two probability amplitudes a\\) and a(f), depending on T 

only, which govern, respectively, the scattering of an initial pion-nucleon 

state \T = ■£> into a final pion-nucleon state |T = \ j and the scattering 

from an initial state \T = f> into a final state \T == f>. In particular, a 

|pj |^+) initial state, which by (29.40) is necessarily a |T = f) state, can 
be scattered only into a final state \T = f> with amplitude a(f), 

(29.41) I p}\n+y = li !)->«(!) |if> = «(l) b>K> 

whereas a \pj\TT~j initial state, which is a mixture of \T = and 

|T = §> states, will be scattered into a final state to which contribute the 

original | T = component with amplitude a(\) and the | T = f) com¬ 
ponent with amplitude a(§), 

(29.42) 

Ip>Io = (Vf)ii,-i>+(Vi)ii-i> 
-> (VI) o(i) li, - i> + (■Vi) aft) II, - i> 
= ft) V2[a(l) -o(i)] \n) |^»> + ft) [aft) + 2a®] | p> |„->- 

The content of Eq. (29.42) is summarized in Table 29.3. 

TABLE 29.3 

Amplitudes fob. Pion-Proton Scattering Processes 

Process Amplitude 

|p>k+> b>k+> «(!) 

|p>l7r~> -*• b>k~> (■§■) a(f’) + (f ) °( 2") 

IP>\”~> -*■ |W>|7T°> (|)V2a(f)-(|)V2a(l) 

Suppose now the pion-nucleon interaction favors, for as yet unknown 

reasons, the state T = f in the region below 300 Mev incident energy, so 

that a(|) > a(^). Then, since the cross section for a process is propor¬ 

tional to the square of the corresponding amplitude, one has the relation¬ 

ship 

(29.43) 

a(p7T+ -+ptt+):o(ptt- -^p7T-):o{p7T- mr°) = [«(f)|2: (f) I«(f)|2: 

(f)Mf)|2 

= 9:1:2 
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which, if one lumps the processes (p-n ->p-n ) and (pu ->mr°) into the 

total 77 scattering cross section <7(77“), implies the ratio 

(29.44) o(7T+): o(n~) = 3:1 

in accordance with observation. If, on the other hand, the pion-nucleon 

interaction had the property a{\) = a{§), then this would have been 

exhibited as a ratio 1:1:0 instead of the observed 9:1:2 and a{\) > a(f) 

would have resulted in a ratio 0:2:1, which is again excluded by experi¬ 

ment. 
The experimental evidence favors, thus, the notion that the pion- 

nucleon interaction conserves isospin and in the energy region below 

300 Mev takes place predominantly in the state |T = f>. Clearly, the 

analysis does not explain why the \T = f) state is favored in this way. 

From the angular distribution of the scattered pions one can also infer a 

spin dependence of the interaction, favoring the .P3/2 state of the pion- 

nucleon system, again for as yet unknown reasons. The cross sections 

also show a pronounced maximum near 200 Mev incident energy. One 

lumps these curious experimental facts into the phrase “there is a 

(T = |,-P3/2) resonance in the pion-nucleon system at about 200 Mev.” 

Other evidence suggests that if T = § then in the P state the interaction 

is attractive, whereas in the S state the interaction is repulsive (this last 

fact is summarized in the phrase “the interaction has a hard core”), for 

reasons which also remain obscure. In short, one badly needs a theory 

which explains the features of the strong interaction between pions and 

nucleons, which, one would hope, encompasses the nucleon-nucleon 

interaction through the pions as the “glue” mediating that interaction. 

Despite ingenious patch- and guesswork by many workers, no such 

theory seems to be within sight at the time of writing. 

In absence of a dynamical theory, exploitation of the symmetries in 

isospace exhibited by the strong interaction remains the most reliable 

tool for making predictions and giving “explanations” for observed 

“branching ratios.” Further examples of such ratios are obtained by 

comparing the reactions \ri) \ p} ->]77°> \d} and |p) |p)-^ |t7+) |d) which 

require T = 1 by isospin conservation, so that 

(29.45) o[np -> 770d):a(pp ->77+ d) = 1:2 

and the reactions | p) |c£) —> 177 +>|H3> and |p)|d>->| 77°)> | He3) resulting 

in 

(29.46) o(pd -> 77+H3)\<j(pd -» 77°He3) = 2:1. 

Conservation of isospin may also result in strict selection rules. For 

example, the reaction 

(29.47) |d> \ay ->■ |„°> |He‘> 
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is strictly forbidden by conservation of T. If one ever were to observe 

this reaction one would have to conclude it is mediated by an interaction 

which does not conserve isospin, such as the electromagnetic interaction. 

For further details the reader is referred to the extensive literature on 
this subject. 

The relationship (29.37), among the operators of electric charge Q, 

the third component of isospin T3, and the nucleon number A summarizes 

the curious fact that there is no negatively charged nucleon, making 

Q = \ the center of charge, so to speak, for the nucleon, whereas the pion 

can exist in three charge states around Q = 0 as center of charge. This 

relation can be extended to include antinucleons, if one introduces the 

baryon number B which is given the value + 1 for the nucleon, — 1 for the 

antinucleon, and 0 for the boson, because existence of two and only two 

antinucleons, the antineutron n(Q = 0) and the antiproton p(Q = — 1), 

can be summarized by writing 

(29.48) Q — T3 — (B/2) — 0. 

This equation implies an assignment of isospin quantum numbers T,T3 

to antinucleons, following the conventions employed for nucleons and 

pions, by associating a declining sequence of numbers T3 with the declin¬ 

ing sequence of charge values Q. Thus the isospin states of antineutron 

and antiproton are labeled \n)=\T = \,T3 = + |> and |p> = |T =\, 

In 1953 Gell-Mann and Nishijima showed how one can accommodate 

the curious displacements of the center of charge found empirically 

among the so-called “strange” hyperons and kaons by introduction of 

yet another attribute, the “strangeness” S, defined as 

(29.49) S = 2[Q-T3-(B/2)] 

resulting in the now famous classification scheme of baryons and massive 

bosons laid out in Table 29.4. In this scheme the assignment of baryon 

number + 1 to baryons, — 1 to antibaryons, and 0 to bosons is assumed. 

An alternative, but equivalent, scheme which has gained some popu¬ 

larity in recent years is obtained by introducing instead of the strangeness 

S the “hypercharge” Y defined as 

(29.50) 7 = ^ + 5 

resulting in a possible classification of particles according to isospin T, 
hypercharge Y, and baryon number B. For the discussion of conservation 

laws it is, however, most convenient to adhere to the strangeness concept 

as defined in Eq. (29.49). 
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Since there is quite overwhelming evidence for the separate conserva¬ 

tion of electric charge Q and baryon number B in all interactions, con¬ 

servation of isospin in strong interactions will result in conservation of 

strangeness. For reasons as yet completely unknown, experiments reveal 

conservation of strangeness (and thus of T3) in all processes mediated by 

strong interactions, and nonconservation of strangeness in weak inter¬ 

actions. Further, there is some experimental evidence indicating, again 

for unknown reasons, charge independence (meaning conservation of 

both T and Ts) in all strong interactions involving baryons and massive 

TABLE 29.4. 

The Scheme of Gell-Mann and Nishijima 

T '\S 
t3 \ 

-2 -1 0 +1 +2 

0 0 A0 A° 

i 
i 

3° K° p 

3~ K~ n 

n K+ 3+ 

p KO S° 

1 

1 0 

-1 

3+ 7T+ Z+ 

3° 77° 3° 

3- TT~ 3- 

bosons. In addition, there is some evidence for existence of two selection 

rules, namely \AT3\ = 1 and \AT\ = governing the isospin-noncon- 

serving weak interactions, whose origin is also obscure. 
Even supposing one can understand conservation of charge Q as a 

consequence of a gauge-invariance principle, as indicated in Sections 20 

and 21, there remains for discussion the empirically very well-established 

conservation of baryon number B, and raises once again the question of 

whether this conservation law is not in fact a superselection rule, 

generated by invariance under an antiunitary symmetry operation, such 

as combined inversion E or time reversal 0, which have already been 

recognized in Section 17 as possible origins for the analogous conser¬ 

vation of lepton numbers. 
To settle this question, an examination of the transformation proper¬ 

ties of isospin T and baryon number B under the operations of coordinate 

inversion 77, time reversal 0 and, in particular, under particle conjugation 
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r is required, because once isospin and baryon number have been ad¬ 

mitted as legitimate quantum numbers, the complete representation of 

each operator will consist of a direct product of the representations in the 

various subspaces needed to accommodate the complete set of quantum 

numbers. For example, the operator of particle conjugation for a baryon 
state will consist of the direct product 

(29.51) -^baryons — ED X Esc X FJiS X TB 

where rD and rsc refer, respectively, to the representations in momentum 

space and in spin-chirality space already given in Section 19, and rIS 
and rB refer to the representations in isospace and baryon number space 
which will now be established. 

To carry as far as possible the analogy with the corresponding treat¬ 

ment for leptons given in Section 28, both nucleon and antinucleon states 

will be represented as four-component vectors in the product space 

spanned by the simultaneous eigenstates of Ts and B. Thus, if one 

introduces with a convention of phase as basis the four states 

(29.52) 

one has for isospin, baryon number, and electric charge in this combined 

isospin-baryon-number space the representations 

(29.53) 

(29.54) 

T x \T1 X I 

(0 1 0 0\ 

1 0 0 0 \ 

o o o i r 
0 0 10/ 

TZ = 2t3 X /; T2 = £/ X / 

T, — 2t2 X I i 

B = lx 

(1 0 0 0\ 
0 1 0 0 \ 

0 0-1 0 

0 0 0 -1/ 

(10 0 o\ 

0 0 0 0 \ 
0 0 0 0 I 

0 0 0 -1/ 

(29.55) Q — T3 + {Bj 2) 
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It is readily seen that T, B, and Q all commute, as required if T3, T2, B, 

and Q are to be diagonal simultaneously. 
Now the operator of particle conjugation r should have, by definition, 

the properties 

(29.56) 

r\p> = \p); r\n) = |ny, r\n) = \n); r\p> = Ip} 

implying the space spanned by (29.52) the representation 

(29.57) r = 

(000 

0 0 1 

0 1 0 

-10 0 

risx rB. 

As in the corresponding case of a system composed of leptons and anti¬ 

leptons, it is not possible for a system composed of nucleons and anti¬ 

nucleons with eigenvalues B / 0 and/or Q ^ 0 to be in a state of specific 

conjugality, because r anticommutes with both B and Q, 

(29.58) rB+Br = o; rQ+Qr = 0. 

If, on the other hand, B — 0 and Q = 0, for example in an object com¬ 

posed of a proton and antiproton, the system may be in an eigenstate of 

r. This is true even though T may not be representable as a unitary 

operator, for the general reasons stated in Section 15 following Eq. 

(15.53). However, the conjugality properties of baryons are set apart 

from the conjugality properties of leptons by a complication arising from 

the existence of isospin as an attribute needed to characterize baryons. 

At this point in the development it becomes essential to distinguish 

between the possibilities of representing r either as a unitary or as an 

antiunitary operator. 

On the assumption that r can be represented by a unitary operator, Lee 

and Yang in 1956 first analyzed the particle-antiparticle symmetry of 

objects possessing isospin by a line of reasoning which will now be re¬ 

traced here. The conclusions reached by these authors should, however, 

be approached with caution, until the consequences of the alternative 

representation of r by an antiunitary operator have been scrutinized, as 

will be done later in this section. If the unitary representation of r in 

isospin-baryon-number space is denoted rv, then the C.R.s follow from 

the representations (29.57) and (29.53) (assuming rv not to contain 

an operation of complex conjugation as would be necessary if T were to be 

antiunitary): 

(29.59) 

rvT1+Tiru — 0; r urT2 — T2ru — 0; ruTs + TsTu — 0. 
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Therefore, a system composed of baryons and antibaryons can never be 

in a simultaneous eigenstate of rv and T, Ts. For example, the eigen¬ 

states of T, Ts for a nucleon-antinucleon pair are (note the phase con¬ 

vention implied by (29.52)) 

(29.60) 

(29.61) 

T = 1: 

T 

|i, 1> = \pj\nj 

11,0) = (l/V2)(|2>>|p>-|»>|ra» 

1. -!> = \ri>\V> 
0: 10,0) = {llV2){\p)\py + \ny\ny. 

The two possible eigenstates of r0, namely |p>|p> and \ri)\nj, are 

therefore necessarily mixtures of states belonging to T — 0 and T — 1, 

(29.62) 

b>|p> = (1/V2)(|0,0> + |1,0»; \nj\nf = (1/V2) (|0, 0> - 11, 0». 

Despite this impossibility of using eigenvalues of rv to characterize the 

conjugality properties of a state with given quantum numbers T,TZ, Lee 

and Yang pointed out that there is an operator involving r which can 

be used for this purpose, namely 

(29.63) 

G — r exp (inT o) = rD x rsc x rn exp [inT 2) = rDxrscxGu 

consisting of a rotation by angle n around the 2-axis in isospace combined 

with the operation of particle conjugation. G has the commutation 

properties 

(29.64) GT-TG = 0, 

(29.65) GB + BG = 0, 

can therefore be diagonalized simultaneously with T,T3, and a state with 

B — 0 can be an eigenstate of G, called a state of specific G conjugality. 

To obtain an explicit representation in the space (29.52), one utilizes 

the relations, valid for T — 

(29.66) j|»+i _ 1 nT2 and T\n = \nI 

which follow from (29.53), yielding 

(29.67) 

Qxj = rv [cos (77/2) I + 2i sin (77-/2) T2] 

0 0 0 -1\ / 0 1 

001 0-1 0 

0 10 0 II 0 0 

- 1 0 0 0/\ 0 0 
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(0 0 1 0\ 
0 0 0 1 \ 

-1 o o o r 
0-100/ 

Single particle states transform thus under G as 

(29.68) 

£n|p> = -|n)\ Gn\n> = |p}\ Gv\n) = \pj\ Gv\p) = - \ri). 

Gv is by definition unitary and satisfies 

(29.69) G% = -1 for B = ± 1. 

Since in a system containing many particles and antiparticles T and B are 

additive, whereas G is multiplicative, one has generally 

(29.70) 

GT-TG = 0; GB + BG = 0; G2 = C2G% = {-l)B 

provided C2 = +1, where C denotes the eigenvalue of rDx rsc, and is 

identical with the ordinary conjugality introduced in Section 28. 

Consequently, states with B = 0 can be assigned specific G conjugality. 

Components of the same isospin multiplet T have always the same con¬ 

jugality Gv. For example, one reads immediately from (29.68) the Gv 
conjugality of the nucleon-antinucleon states (29.60) and (29.61), as 

summarized in Table 29.5. Since for the ordinary conjugality C the same 

analysis applies as in the case of positronium (see Table 28.1), the total 

G conjugality of a nucleon-antinucleon pair is given by 

(29.71) G = CG {/ = (-l)z+s(-l)r. 

From the invariance of strong interactions under particle conjugation 

and under rotations in isospace, the conservation of G in all processes 

mediated by strong interactions now follows. As the concept of G conjugality 

can be extended to pions and strange particles, a number of interesting 

selection rules are engendered by this conservation law. To obtain some 

of these consider next the conjugality properties of pions. 

Since the tt° decays into two photons, and since the interaction respon¬ 

sible for this decay is assumed to leave the conjugality C invariant, it 

follows from (28.14) that the state |77°) must be a state of even conjugal¬ 

ity, 

(29.72) r|77°> - + |7r°>. 

There is no need to distinguish between r and rv here, because pions 

have spin 0 and one can represent r in coordinate space by the identity 
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TABLE 29.5 

The Op Conjugality of Nucleon-Antinucleon Pairs 

T t3 State Oc 

1 + 1 |p>|n> -1 

0 (l/\/2)(|p>|p>—|n>|n>) -1 

-1 |n>|p> -1 

0 0 (l/V2)(|p>|p>+|n>|n» + 1 

operation. The charged pions, on the other hand, may be considered as 

each other’s particle conjugate, so that jT satisfies 
I 

(29.73) -H77'1") = I77-) and -H77-) = I77"1")- 

This implies, in the isospace spanned by the vectors (29.31), the repre¬ 

sentation 

I 0 0 -IX 

(29.74) r = 0 1 0 
\-l 0 0/ 

and the C.R.s of T with the operators of isospin (29.32) and (29.33) are, 

as in the case of the nucleon-antinucleon system, 

(29.75) 

rf1+T1r = o 

rf2-f2r = o 

rf3+Tzr = 0 i.e. rQ + QT = 0 forpions, 

giving rise once again to the construction of an operator G defined as in 

(29.63), which will still satisfy (29.70), and which can be represented, 

because of the relations (valid for T = 1) 

(29.76) 

f2n+i _ for n ^ 0; f\n = T\ for n > 1 
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in the isospace of the pions (29.31) as 

(29.77) 

G — rexp (inf 2) = r{I + isin {7t)T2 + [cos (tt)— l]Tf} 

= r 
(11 0 °\ 

0 
1 

0 
l\0 0 1/ 

0 0 -1 

0 1 0 

-1 0 0 

I 1 0 0 2 

\-i o 

0 0 

0 -1 

1 0 

This means all pion states are eigenstates of G; the pion has odd G con¬ 

jugality. 

If now G is conserved, a number of selection rules can be inferred 

immediately by consulting Eq. (29.71), for example: 

(I) The system \pj\nj which belongs necessarily to isospin T — 1 

cannot decay through strong interactions into an (e0vded) number of pions 

from a state with l + s (eoded) such as the 

r$<» v0, ...\ 
K, ...) 

state. 

(II) An even number of pions cannot by strong interactions go into 
an odd number of pions, and vice versa. 

Since Eq. (29.49) is invariant under particle conjugation, strangeness 

anticommutes with the operator rv, and extension of the foregoing 

consideration to strange particles requires incorporation of the additional 
C.R. 

(29.78) GS+SG = 0 

leading to 

(29.79) G2 = (-1)b+s 

and the conclusion that only systems with both B = 0 and 8 = 0 can be 

states of specific Q conjugality. Further details can be found in the 

comprehensive work of Goldhaber, Lee, and Yang, quoted in the 
references at the end of this section. 

The treatment of the conjugality properties of particles possessing 

isospin, given above, has the defect of not taking into account the anti¬ 

unitary nature, already recognized in Section 19, of the particle- 

conjugation operator r applied to fermion states governed dynamically 
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by the Dirac equation. The consequences of this complication have never 

been fully analyzed, because the transformation properties of isospin T 
under particle conjugation are not known with certainty, and one can 

infer from the invariance of (29.49) only that Ts must change sign under 

r. Suppose, for example, all isospin components anticommute with the 

correct antiunitary operator of particle conjugation, denoted rA, 

(29.80) rAT+irA = o. 

By analogy with the corresponding property (15.14) of the antiunitary 

operator of time reversal &—with respect to ordinary spin J—TA can be 

represented in isospace by the operator 

(29.81) (rA)IS = [exp (irrT2)] K. 

Whether invariance under rA engenders a superselection rule or not 

depends on whether Tf = —I or Tf = +/. Now the operator rA for 

baryons is the direct product 

(29.82) rA = rD x rsc x rIS 

of the representations in coordinate space, spin-chirality space, and 

isospace. Since in the combined coordinate-spin-chirality space, 

according to Eq. (19.69), 

(29.83) (rDxrsc)2 = +1 

and since it follows from (29.81), as in the analogous case governing the 

representation of time reversal, that 

if rp _ 1 3 
11 J. — 2’ 2? * ' * 

if T = 0,1,... 

one concludes 

(29.84) [(rA)ISV 
-i 

+/ 

(29.85) (r4)2 
— / for nucleons and 3 hyperons 

+ / for A and E hyperons. 

This means invariance under particle conjugation engenders a super¬ 

selection rule only for nucleons and 3 hyperons. Moreover, since in¬ 

variance under 7 does not hold in weak interactions, the attribute 

associated with this superselection rule will be conserved only in strong 

interactions. An attribute which fits this description is the hypercharge 

7 defined in (29.50), because 7 is unequal zero only for nucleons and 

3 hyperons and is conserved in strong interactions only. It is thus not 

unreasonable to conjecture that conservation of hypercharge is, in fact, 
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due to a superselection rule generated by invariance under particle 

conjugation. 
The invariance under combined inversion ZA — YIFA, on the other 

hand, since by Eq. (19.71) for fermions 

(29.86) (ZDx Esc)2 — —I, 

will yield a superselection rule only for A and Z hyperons, because 

ZA = ZD x Zsc x ZIS satisfies (assuming 772 = +1 in isospace) 

for T = \, |5... 

for T = 0,1,... i.e.for/tandZ'hyperons. 

One is thus led to conclude that A and Z hyperons possess an attribute 

not shared by the other baryons, which is conserved through a super¬ 

selection rule in all interactions invariant under combined inversion, 

thus including, presumably, the weak interactions. The nature of this 

attribute, if it exists, is obscure.* 

In any case, the conservation ofbaryon number (an attribute shared by 

all baryons) valid in all interactions, cannot be understood as a super¬ 

selection rule engendered by particle-conjugation symmetry. 

This leaves as the only symmetry which may be made responsible for 

the conservation of baryon number through a superselection rule the 

invariance under time reversal © as had been suggested at the end of 

Section 15. 

Fortunately, the conclusions reached earlier regarding selection rules 

following from conservation of G conjugality in strongly interacting 

systems with B = 0 and S = 0 are not invalidated, if the two-dimensional 

baryon-number space is identified with the two-dimensional reversality 

space spanned by the baryon states |jB) and their time reversed analog 

©\Bj. In particular, the representation (29.57) for the operator of 

particle conjugation can be looked upon as the direct product 

(29.87) 

(29.88) 
B 

made up out of the representation in isospace and in reversality space 
in analogy to the representation (15.44). 

* There is one more symmetry operation (valid only for strong interactions), the “weak 

reflection,” 770, which is antiunitary and whose square is yiy\y3Kyiy3y3K = — 1 for 

all fermions. The nature of the corresponding attribute, which ought to be conserved in 

strong interactions by a superselection rule, is equally obscure. 
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The conclusions reached in this work regarding possible superselection 

rules engendered by antiunitary symmetry operations and their possible 

interpretation are summarized in Table 29.6. 

TABLE 29.6 

List of Possible Attributes Conserved through a Superselection Rule 

Symmetry operation gene¬ 

rating superselection rule Applicable to: 

Conserved 

attribute Validity 

Time reversal 0 Leptons Muon number LM All interactions 

Baryons Baryon number B All interactions 

Combined inversion H = ITT Leptons Lepton number L All interactions 

A and S ? All interactions 

hyperons 

Particle conjugation r Nucleons and Hypercharge Strong interactions 

S hyperons Y = B+S 

Weak reflection 77 0 Fermions Strong interactions 

NOTES 

Brueckner [1] turned the tide in favor of isospin as a legitimate 

attribute. 
Fermi’s article [2] contains a complete treatment of the isospin 

formalism and its application to problems involving nucleons and pions, 

as well as references to earlier work on this subject. An analysis of the 

energy levels of hypernuclei in terms of isospin labels was given by 

Morrison [3]. 
For details on branching ratios and selection rules following from 

isospin conservation see the lecture notes by Sakurai [4], The concept of 

strangeness as a quantum number is due to Gell-Mann [5]. See also 

Nishijima [6], The significance of hypercharge as a quantum number 

was pointed out by d’Espagnat and Prentki [7], The concept of G 

conjugality, although already used by Michel [8], was introduced 

generally by Lee and Yang [9]. A comprehensive treatment of selection 

rules following from particle conjugation symmetry for systems of 

vanishing baryon number B is contained in the paper by Goldhaber 

et al. [10]. 
Robertson [11] has analyzed some consequences of the assumption 
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that the anti-unitary operator of particle conjugation anticommutes 

with the isospin operator, and that isospin is invariant under reversal 

of motion. 
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The Quasi Particle Concept 

♦SECTION 30 

Some of the most startling manifestations of the quantum mechanical 

principles which apparently govern the actual physical world are 

macroscopic phenomena encountered in liquids and solids at low tempera¬ 

tures, known as “superfluidity” and “superconductivity.” They can be 

understood by application of the principle of superposition of probability 

amplitudes in conjunction with the permutation symmetry characteristic 

of many-particle states. Although a theory of supertransfer phenomena 

could have been developed immediately after the inception of quantum 

mechanics, and although Einstein provided, through discovery of the 

“Einstein condensation” of bosons, an important clue to the under¬ 

standing of superfluidity even before the meaning of the superposition 

principle had been fully appreciated, it took more than twenty years 

before the now generally accepted ideas needed to explain these pheno¬ 

mena assumed shape. This is rather surprising, after the event, and may 

perhaps partly stem from a tendency of physicists, raised on a diet of 

classical notions regarding the particle concept, to relegate applicability 

of quantum mechanics to a strictly microscopic domain. 

A substantial intrusion of quantum mechanical concepts into the 

macroscopic domain should be expected, for objects in a state of low 

temperature containing many particles, as a result of quite elementary 

considerations. Take, as an example, a liquid made up out of n bosons 

enclosed in a volume V. To account for the low compressibility of fluids, 

in general, assume for simplicity’s sake as the only interaction between 

any two bosons a “hard core” potential as indicated in Fig. 30.1. In the 

liquid state each boson will be hemmed in by its neighbors so that it 

occupies a volume of order (V/n) ~ rjj. Consequently, each boson will 

have in the state of lowest energy a rather high “zero-point energy” of 

order 

(30.1) e0 ~ (&ol2m) ~ (l/2mr§) £ (l/2m) {n/V)m 

and the spacing between the ground state and the first excited state of a 

single boson will be of the same order of magnitude. Therefore, if the 

temperature T of the liquid is less than a finite critical temperature, 

289 
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identical with Einstein’s “condensation temperature” (natural units 

with Boltzmann’s constant k = 1 are used) 

(30.2) T < T0 ~ (l/2m)(n/F)2/3 

practically no single-particle excited states will exist in the liquid. By 

putting the known density and atomic mass for liquid helium into 

(30.2) one finds for T0 a value of about 3°K. 

On first sight one might conclude from this that there is no mechanism 

by which the fluid can take up energy below T0, resulting in a practically 

vanishing specific heat at temperatures below T0. Upon second thoughts 

A\ 

ro 

Fig. 30.1. The “hard core” potential. 

it will be realized, however, that there is a mechanism for imparting 

energy to the fluid by excitation of collective modes, such as sound waves, 

which may be described quantum mechanically by admitting single 

particle states which are linear superpositions of ground and excited states, 

the amplitude of the ground state being dominant and the excited states 

represented by small admixtures only. The spacing of energy levels 

characteristic of these collective modes will then be determined by the 

size of the entire volume V, and one anticipates an almost continuous 

spectrum of “phonons” in analogy with the practically continuous 

spectrum of photons representing black body radiation enclosed in a 

volume V. By this analogy the specific heat of the liquid should be 

expected to depend on temperature T and the velocity of sound c0 
according to 

(30.3) (dE/dT) ~ (T3/cg). 

This result is borne out by observation in liquid helium below 0.6°K, 
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with an accuracy astonishing in view of the simplifying assumption 

made above about the intermolecular forces. 

The critical temperature T0 (30.2) has another significance which leads 

one to expect drastic consequences of the restrictions imposed by 

permutation symmetry on state vectors describing n indistinguishable 

particles at temperatures T < T0. The measurement of the number of 

particles n, in the classical sense of counting spatially separate objects, and 

the measurement of the temperature T, are incompatible at temperatures 

T < T0, for the following reason. If one wishes to “count,” in the classical 

sense of spatial separation from its neighbors, a particle in a volume V 

occupied by n particles, one must confine it to a region of volume less 

than {Vjn). This corresponds to a localization of coordinate 

(30.4) Aq < (V/n)1/3, 

and an uncertainty in the knowledge of the particle momentum 

(30.5) Ap > (1 \Aq) > (n/V)lls 

is engendered by the uncertainty relations (10.5). Thus, there will be an 

uncertainty in the knowledge of the energy of each particle 

(30.6) Ae ~ [(Ap)2/2m] > (l/2m) (n/V)m 

corresponding to an uncertainty in the knowledge of the temperature 

(30.7) AT ~ Ae > T0. 

One may look upon this intrusion of specifically quantum mechanical 

features into the behavior of physical objects at temperatures T <T0 

from yet another point of view which might be instructive. Suppose one 

is in possession of that supremely intelligent agent known as “Maxwell’s 

demon,” and instructs it to separate, by judicious opening and closing 

of a door of diameter d between two compartments of V, the fast and the 

slow particles in a gas consisting of n particles (see Fig. 30.2). The 

Fig. 30.2. The door operated by Maxwell’s demon. 
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particles are assumed to have the usual velocity distribution of average 

velocity v and width ~ (T/m)112. If the little fellow is instructed to 

separate particles with v > v from particles with v < v, then his un¬ 

certainty in the knowledge of the velocity of each particle must be less 

than the natural width of the velocity distribution, 

(30.8) {T/m)112 > Av. 

The uncertainty relations impose a lower limit on Av, however. During 

time t the door of area d2 will be bombarded by approximately (n/ V)d2vr 

particles. If the demon wants to let a particle pass, he must not let the 

door be open longer than the average time At between successive arrivals 

of particles, 

(30.9) At ~ (V/nd2v) 

engendering thus an uncertainty in the knowledge of the kinetic energy 

of the particle of order 

(30.10) Ae > (1/At) ~ (nd2v/V) 

corresponding to an uncertainty in the knowledge of the particle velocity 

(30.11) Av ~ (Ae/mv) > (nd2/mV). 

The door itself produces an uncertainty because of the localization of the 
particle to diameter d during passage, 

(30.12) (Av)d > (1 /md). 

In order that (Av)d will not be larger than (30.11), the opening d should 
have at least the size 

(30.13) d > (1 \mAv). 

By substitution into (30.11) one obtains the inequality 

(30.14) Av > (1/m) (n/V)113 

and therefore from (30.8) 

(30.15) T > (l/m)(w/F)2/3 ~ T0. 

This means: Maxwell’s demon can begin to do his job only if the tem¬ 

perature of the gas is at least equal to the characteristic temperature 

T0. Below T0 his intelligence will be completely frustrated by the uncer¬ 
tainty relations. 

The foregoing considerations will not be qualitatively affected if one 

replaces the crude hard core potential by a more realistic interaction 

including an attractive potential well, as indicated in Fig. 30.3. In one 
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Fig. 30.3. Realistic interaction potential between two bosons. 

respect, however, an attraction in addition to the repulsive core between 

two bosons should lead to an important new feature. The state represent¬ 

ing a physical situation in which all single particles are in their ground 

state need no longer be the state of lowest energy for the entire system. 

Presence of a few phonons can minimize the average potential energy 

between particles such that the increase in average kinetic energy 

Fig. 30.4. Distribution of bosons in momentum space at absolute zero of temperature 

in the presence of an interaction of the type of that shown in Fig. 30.3. 

occasioned by these collective modes is more than compensated. Thus 

even at the absolute zero of temperature the “Einstein condensation” 

into the ground state, represented by a 8 function in momentum space 

in case of the ideal gas, will be modified by the actual interaction into a 

distribution sjiread out somewhat as indicated in Fig. 30.4. The expec¬ 

tation that in the absence of attractive interaction the ground state of 
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the entire system would be the state in which all particles are ‘ ‘ condensed” 

into the state k = 0 (apart from a zero-point energy which will from now 

on be taken as the origin of the energy scale), whereas “switching on” 

the weak attractive interaction results in a ground state for the entire 

system in which the single particle states acquire admixtures of excited 

states with k ^ 0, is borne out by the following more rigorous argument 

due to Bogoliubov. 
A system of weakly interacting bosons, subject to the usual conser¬ 

vation laws and the condition that the total number of bosons is a given 

constant and that all interactions can be accounted for entirely by specific 

two-body central forces, can be described by the Hamiltonian 

(30.16) H = 2 aj(&)6+(k)&(k) 
k 

+ 2 2 2 2^(k'"-k^Sk--.+k.ik<+k6+(k''06+(k'')6(k')6(k)^ 
k"' k" k' k 

The bosons are assumed to have no intrinsic properties and to be charac¬ 

terized completely by the momentum quantum numbers k. 

It is perhaps worth elaborating a bit, parenthetically, on how the various conditions 

imposed phenomenologically on the actual system enforce the specific form (30.16). 

Considering first a set of bosons without interactions, one could begin in a more systematic 

vein by considering the most general bilinear expression 

(30.17) H0 = 2 £ w(k',k)6+(k')6(k) 
k' k 

which will guarantee conservation of particle number because it contains for each anni¬ 

hilation operator exactly one creation operator, and has no matrix elements between 

states of a different total number of particles. In the language of Feynman graphs, each 

term of H0 can be represented as indicated in Fig. 30.5. Imposing now one by one the 

Ak' 

Fig. 30.5. Graph for (30.17). 

various invariance requirements on Ho, one arrives at successive restrictions imposed on 

the function w(k',k), namely 

(i) Invariance under reversal of motion requires «>(k',k) = w*( — k', — k) 
(ii) Invariance under inversion of coordinates requires w(k',k) = w( — k', — k) 

(iii) Invariance under displacement in time requires w does not contain t explicitly 

(iv) Invariance under displacement in space requires w^k',k) = oj(k',k)8ij' k 
(v) Invariance under rotations in space requires cu(k',k) =cu[(k'-k)] 



30. The Quasi Particle Concept 295 

and one obtains the usual form for the Hamiltonian of a system of noninteracting bosons 

(30.18) H0 = 2 2 oj[(k'-k)]Sk- k6+(k')&(k) = 2 w(k)b+(k)b(k); w real. 
k' k ’ k 

The analogous expression for noninteracting fermions is similarly obtained. 

If all Hamiltonians which are not of the form (30.18) are called “interaction Hamil¬ 

tonians,” then all possible interaction Hamiltonians can be divided into 

(A) particle conserving Hamiltonians, containing in each term as many creation 

operators as there are annihilation operators, and 

(B) particle nonconserving Hamiltonians which do not satisfy the condition stated 

under (A). 

A simple interaction Hamiltonian of type (B), conserving the number of fermions but 

not the number of bosons and reminiscent of the expression (23.6) employed in quantum 

electrodynamics, is 

(30.19) f/[nt =222 G(k",k',k)[a+(k")a(k')&+(k)+hermitean conjugate] 
k" k' k 

Fig. 30.6 (left and Fig. 30.7 right). Graphs representing (30.19). 

corresponding to the graph given in Fig. 30.6 and the reversed graph given in Fig. 30.7. 

Invariance requirements again impose restrictions on O, demanding that it be of the form 

(30.20) Gr(k", k', k) = f7[(k'-k)2; k2] V'+lnk'- 

One of the basic ideas employed in the theory of interactions is to replace all direct 

particle interactions by intermediate boson interactions, so that all graphs are viewed as 

made up out of graphs containing only three-particle vertices such as the ones rendered 

graphically in Figs. 30.6 and 30.7. The perplexities caused by the infinite hierarchy of basic 

interaction vertices have been exhibited in Section 25. For the purpose of the present 

section, phenomena will be accounted for by introduction of a boson conserving interaction 

Hamiltonian 

(30.21) Hint = 2222 TF(k'",k",k',k)6+(k"')^+(k,,)&(k')&(k) 
kk" k' k 

corresponding to the graph given in Fig. 30.8. No attempt will be made to justify this 

expression by deriving it through perturbation theory or some other formal device from 

Fig. 30.8. Graph representing (30.21). 
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some other supposedly more basic interaction such as (30.19). In fact, the conditions 

under which an expression such as (30.21) will follow from a basic interaction such as 

(30.19) are, in general, unknown, and it is even an open question whether such conditions 

exist at all. 

A possible dissection of the graph in Fig. 30.8 in terms of the graphs in Figs. 30.6 and 

30.7 is given in Fig. 30.9. It is transparent that such a decomposition of, say, the empirical 

Fig. 30.9. Possible dissection of the graph Fig. 30.8 in terms of the graphs rendered in 

Fig. 30.6 and 30.7. 

interaction between two helium atoms is quite unrealistic, because if this interaction is 

essentially electromagnetic in origin, one has to solve, in principle, a six-body problem on 

account of the two nuclei and the four electrons involved in this interatomic interaction. 

Casting aside then all doubts regarding a possible deeper origin of the interaction (30.21), 

one concludes from the invariance requirements imposed by symmetry under translations 

and rotations that W be of the form 

(30.22) W(k'", k", k', k) = F[(k-k'); (k-k"); (k'-k")] V'+k'.k'+k- 

Instead of the three scalars (k-k'), (k-k"), (k'-k"), one can use equivalently as scalar 

parameters characterizing the function F the barycentric energy (k + k')2 and the two 

momentum transfers (k-k")2 and (k'-k")2. If one demands further that F represent a 

central force between any two bosons, expression (30.16) for the total Hamiltonian 

results. 

Suppose now, in accordance with the qualitative considerations stated 

earlier, there is an average number n0 of particles in their ground states 

k = 0, so that the actual number of particles belonging to k = 0 is 

no = no + n', where n' may have positive or negative values so that 

Vl' = 0 but any case \n'\ h0. The number of excited particles with 

k + 0 is then nx = n-n0 — n'. One expects the lowest states |r(w)> of the 

system of n interacting bosons to be a linear superposition of states 
K,0i> 

(30.23) |t(n)) = ScT(w1)|n0,01> = E cT(n-no-n')\h0 + n',01) 

where cT(nx) is a properly normalized amplitude involving operators 
6+(k) which create nx particles from the state |...,0X> and where 

(30-24) 6+(0) 6(0)|w0, 0i> = w0|n0, 0j>. 
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The sum 2n' in (30.23) goes over positive and negative values of n'. The 

label r corresponds to some order of the lowest states, r = 0 denoting 

the ground state (say) of the entire system, t = 1 the first excited state, 

etc. One has further, from the representations for the boson creation 

and annihilation operators (18.4), 

(30.25) 6(0)|r(w)> = 2 Vn0cT{n1)\n0-\,01'> 
n' 

(30.26) 6+(0)|t(w)> = 2 -\Ai0+lcT(%)K+1>0i> 
n' 

(30.27) 6+(0)6(0)|t(w)> = 2 ™0ctK)K>Oi> 
n' 

= 2 {ho + n^c^nQlho + n^OQ. 
n' 

Thus far no approximations have been made. Since one will have 

\n'\ < n0 for all appreciable amplitudes cJnQ = cT{n-n0-n') one may 

write instead of (30.27) the approximation 

(30.27') &+(0)6(0)|t(w)> = w0|t(to)>. 

By the same reasoning, and assuming c^nQ does not depend sensitively 

on the precise value of the total number of particles n, one may write 

further the approximations 

(30.25') 

6(0)|t(w)> = Vn0 2 cT{n-h0-n')\h0 + n' -1,0Q 
n' 

= Vn0 2 cT[(w— 1) — (n0 + n' — 1)] |n0 + n' — TO^ 
n' 

= Vh0\r{n- 1)> 

and 

(30.26') &+(0)|r(n)> = Vw0|t(to + 1)>. 

Since one wants to apply the Hamiltonian (30.16) to such lowest states 

(or superpositions of them if n is not fixed), it is useful to separate in 

H ui the terms with k = 0 from those with k ^ 0 so that the appioxi- 

mations (30.25'), (30.26'), and (30.27') can be applied. One finds, first of 

all, the exact expression (2k means sum over all k ^ 0) 
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(30.28) 

#int = 6+(0)6+(0)6(0)6(0)E(0) 

+ 26+(0) 6(0) F(0) 2' 6+(k) 6(k) + 2' E(k) 6+(k) 6(k) 
k k 

+ &(0)6(0)2'E(k)6+(k)6+(-k) + 6+(0)6+(0)2'E(k)6(k)6(-k) 
k k 

+ 6(0) 2' 2' [E(k) +i^(k' — k)]6+(k)6+(k' — k) 6(k') 
kVk 

+ b+(0) 2' 2' [E(k)+E(k')]6+(k' + k)6(k')6(k) 
k' k 
k'#k 

+ 2' 2' 2' 2'^(k'"-k)S 
k'" k" k' k 

k'Vk' + k 

k'"+k", k'+k 6+(kw) 6+(k") 6(k') 6(k). 

Since this interaction Hamiltonian will be applied to low-lying states 

|r(w)> only, the entire Hamiltonian will now be approximated in accord¬ 
ance with Eqs. (30.25'), (30.26'), and (30.27') by putting 

6+(0) 6(0) = 6+(0)6+(0) = 6(0) 6(0) = n0 

and neglecting terms of lower order in 6(0) and 6+(0), terms linear in 

6(0) and 6+(0) being of order Vh0, and terms containing no operators 

6(0) and 6+(0) being of order 1 compared to the terms with h0 in them 
One obtains, thus, 

(30.29) 

H = w0w(0) + 2' oj(fc)6+(k)6(k)+w§i,(0) +2710^(0) 2' 6+(k)6(k) 
k 

+ 2w0 2' F(k) 6+(k) 6(k) + h0 2' F(k) [6+(k) 6+( - k) + 6(k) 6( - k)] 

This Hamiltonian will be applicable even if the total number n of particles 

is not fixed, so that any low-lying state |r> can be written as a linear 

superposition of states with various n, |r> = Znd(n)\T(n)>. However if 

only state vectors describing a definite number n of particles are con¬ 
sidered, one may replace n0 by using 

(30.30) » = 6+(0) 6(0) + 2' 6+(k) b(k) = »„ + 2' 6+(k) 6(k) 
k k 

and obtain, in the same approximation, 

(30.31) B = »a,(0) + »^(0) + 2' [»W-»(0) + 2rf(k)]6+(k)6(k) 

+ n 2' F(k) [6+(k) 6+( - k) + 6(k) 6( - k)]. 
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This Hamiltonian does not conserve the number of excited particles, 

which is not surprising because the entire approximation is just aimed at 

considering the single particle state with k = 0 as an effectively unlimited 

reservoir from which particles may be lifted by the interaction into excited 

states with k + 0. 
To diagonalize this Hamiltonian, Bogoliubov introduced new operators 

5(k) = u(k)b(k)-v{k)b+(- k) 

b+( k) = u(k)b+{k)-v{k)b{-k) 
(30.32) 

where w(k) and v(k) are real numbers satisfying the relations 

(30.33) tt(-k) = w(k); v(-k) = v(k); w2(k)-v2(k) = 1. 

The minus sign in front of v in (30.32) is purely conventional, v need not 

be positive. With these conditions the transformation (30.32) is canonical 

i.e. b, b+ satisfy the C.ft.s as do the b, b+. Indeed, 

(30.34) 

[5(k)5+(k')] = w(k)w(k')[6(k)6+(k')] + -y(k)?;(k')[6+(-k)6(-k')] 

- M(k) w(k') [6(k) b( - k')] - w(k') v(k) [&+( - k) 6+(k')] 

[b(k)b(k')\ = -w(k)v(k')[6(k)r(-k')]-^(k')W(k)[6+(-k)6(k')] 

= {-tt(k)v(k')+w(k'Mk)}Sk;-k' 

for k = — k' 

for k ± — k' 

-w(k)v(-k)+w(-k)v(k) 

0 

[5+(A;) 5+(A:')] = {-w(k')u(k)+u(k)u(k')}Ski_k. 

f-w(-k)v(k) + w(k)t;(-k) for k = -k' 

~ 1 o for k + k' 

which gives the usual C.R.s for boson operators if (30.33) is satisfied. 

The operators 6(k) and b+(k) will now be referred to as the annihilation 

and creation operators of quasi particles of momentum k. The Hamil¬ 

tonian H can be expressed entirely in terms of quasi-particle operators, 

because (30.32) can be solved for the b,b+ to give 

b{ k) = %(k)5(k) + v(k)5+(-k) 

6+(k) = u{k)b+(k) + v{k)b{-k) (30.35) 



300 Concepts in Quantum Mechanics 

so that 

(30.36) 6+(k)6(k) = v2(k)+%2(k)5+(k)6(k) + v2(k)5+(-k)6(-k) 

+ u{k) v(k) [6+(k) b+( - k) + 5(k) b( - k)] 

6+(k)6+(-k) = w(k)?;(k)+w(k)?;(k)[5+(k)5(k) + 6+(-k)6(-k)] 

+ u2(k) 6+(k) b+{ - k) + v2(k) 6(k) 5( - k) 

6(k)6(-k) = M(k)«(k) + M(k)t;(k) [5+(k) 5(k)+ £+(-k) 5(-k)] 

+ u2(k) &(k) b( - k) + v2{k) 5+(k) b+( - k). 

One obtains then, using the symmetry properties o,(-k) = o,(k) and 
i’(-k)=JP(k) 

(30.37) H = H0 + H1 + H2 

with 

(30.37a) H0 = nco(0) + n2F(0) + V' {[^(k) - a>{0) 
k 

+ 2nF{k)] v2(k) + 2nF( k) w(k) n(k)} 

(30.37b) H1 = S' {[^(k) — o,(0) + 2nF{k)} [w2(k) + v2(k)] 

+ 4nF(k) u(k) v(k)} 5+(k) 5(k) 

(30.37c) H.z = S' (Mk) - oj(0) + 2nF(k)] w(k) v(k) + nF(k) [%2(k) 

+ ^2(k)]} [5+(k) 5+( - k) + 5(k) 5( - k)]. 

This Hamiltonian is obviously diagonal provided w(k) and «(k) are 
arranged such that H2 = 0. If this is done, then 

(30.38) H = H0 + v' co(k) 5+(k) 5(k) 
k 

where now 

(30.39) &{lc) = [^(k)-oJ(0) + 2»T,(k)][w2(k)+?;2(k)] + 4wT,(k)w(k)v(k) 

can be looked upon as the energy of a free quasi particle of momentum k. 

The condition for the vanishing of H2 is 

(30.40) [o,(k) - co(0) + 2nF(k)] u(k) v(k) + wJ^k) [w2(k) + *,2(k)] = 0 

which has to be solved in conjunction with (30.33). The solution can be 
obtained as follows. To satisfy (30.33) identically let 

(30-41) «(k) = cosh (x); -y(k) = sinh (x) 
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so that [using sinh (x) cosh (a:) = ^ sinh (2x); sinh2 (a:) + cosh2 (a;) = cosh(2a;)] 

(30.42) w(k)w(k) = \ sinh (2x); w2(k) + u2(k) = cosh (2a:). 

Equation (30.40) then reads 

2nF(k) 
(30.43) tanh (2x) = 

[o>(k) — co(0) + 2nF(k)] 

from which follows 

{using sinh (x) = tanh (x) [1 — tanh2 (x)]~112; cosh (x) = [1 — tanh2 (a;)]~1/2} 

nF( k) 
(30.44) w(k)v(k) = — 

(30.45) w2(k) + v2(k) = 

V [o»(k) - o>(0) + 2nF(k)]2 - 4w2E2(k) 

oflk) — tu(0) + 2nF{k) 

V[o>(k) - co(0) + 2wE(k)]2 - 4=n2F2(k) 

By substitution into (30.39), this leads immediately to 

(30.46) w(k) = VMk) - o(0) + 2nF{k)f - 4:n2F2(k) 

- V[a>(k) - w(0)]2 + 4wE(k) [co(k) — oj(0)] 

Depending on the details of the interaction function F(k), the quasi¬ 

particle energy a) can thus depend, in principle, on the momentum in 

the manner anticipated in Fig. 11.1, leading to the appearance of super¬ 

fluid behavior as had been explained in Section 11. 
The state of lowest energy of the system can now be described, in 

accordance with (30.38), as the “quasi-particle vacuum state” |t = 0>, 

having the energy 

(30.47) H0 = nuj{0)+n2F(0) + % £' [w(k)-oj(k) + o>(0)-2wE(k)] 
k 

which is obtained by substitution of 

(30.48) v2(k) = ^[cosh (2x) - 1] = 
to(k) - co(0) + 2nF(k) - oi(k) 

2<5(k) 

2n2F2{k) 

= ti(Ic) M&) - <o(0) + 2nF(k) + c5(k)] 

This result confirms the expectation that the quasi-particle vacuum 

is not identical with the state in which all ordinary particles occupy their 

ground state. In fact, v2(k) is identical with the average number of 

ordinary particles in the momentum state k, because, from the first 

Eq. (30.36), it follows that 

(30.49) <t = 0|6+(k)6(k) |t = 0) = n(k) = v2(k) 
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which will, in general, be of a form anticipated in Fig. 30.4. 

An analogous treatment is possible for a system consisting of N 

fermions, with similar results, the quasi-particle vacuum being in this 

case a state which, depending on the kind of interaction present between 

individual particles, may involve a spreading out of particle-occupation 

states near the Fermi surface. Consider, first of all, a system of non¬ 

interacting fermions, described by the Hamiltonian 

(30.50) H0 = £ f2(k) a+(k) a(k), 
k 

A, 

which conserves the particle number N = <|iV|> = <|2ka+(k)a(k)|>. In 

the state of lowest energy, all levels up to a certain kj? (the “Fermi 

surface”) will be filled, and all levels above it will be empty. If one is 

interested only in small deviations from this ground state, one is led to 

consider instead a description of the system in terms of the Hamiltonian 

(30.51) H0 = H0 — QfN — 2 [&(&)-.0F]a+(k)a(k) 
k 

where QF = f2(kF) is the Fermi energy associated with kp, to be deter¬ 
mined from the requirement 

(30.52) <|A|> = N. 

To find the eigenvalues of H0 introduce new operators 

(30.53) a(k) = 
a(k) 

a+{ ~ k) 

for Q(k) > &F 

for Q(k) < Qf 

(k may stand here for both momentum and spin labels of fermions), which 

satisfy, as had been shown in Section 17, the same anti-C.R.s as the a(k) 
themselves. One has then 

(30.54) 

0+(k)a(k) = J5+(kHk) for > &F 

\a(-k)a+(-k) = 1 -o+(-k)a(-k) for D(k) < QF 

so that one may write, using Q( — k) = f2(k), 

(30.55) H0= S [Q(k) — Qp\ [1 — a+( — k) a( — k)] 

Q{k) < Qp 

+ 2 (\Q(&) — a+(k) a(k) 
k 

fi(k) > Qf 

- eF + S I2(k) a+(k) a(k) 
k 
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with 

(30.56) £>(k) = \Q(k)-GF\; eF = 2 [Q{k)-QF]. 
k 

One has, thus, a description in terms of quasi particles whose annihilation 

and creation operators are a(k) and a+(k). For Q(k) > QF a quasi particle 

of momentum k corresponds to an ordinary particle of momentum k, 

but for Q(k) < QF the quasi particle of momentum k corresponds to an 

ordinary hole of momentum — k. The vacuum state |0> of ordinary 

particles is defined by 

(30.57) a(k) |0> = 0 

whereas the quasi-particle vacuum state 10) is defined by 

(30.58) a(k)|0> = 0 

which in the absence of interactions is physically identical with the 

ground state of the system of N ordinary fermions. Since 

(30.59) #o|0> = e,|0> 

and 

(30.60) #0a+(k)|0> = [ei? + ^(k)]a+(k) |0> 

one is justified in calling £>(k) the energy of a quasi particle of momentum 

k. In the quasi-particle vacuum |0)> the number of ordinary particles, 

represented by 

(30.61) 

N = 2 «+(k) a(k) = 2 [1-o+(k)a(k)]+ 2 a+(k)a(k) 
k k k 

Q(k)<QF 0(k)>0F 

has, of course, the expectation value 

(30.62) <0|iV|0> - 2 l = N, 

Q(k)< &f 

whereas the number of quasi particles, 

A 

(30.63) N = 2 «+(k)a(k) 

has the expectation value 
A 

<0|^|0> = 0. (30.64) 
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As in the case of noninteracting fermions, the Hamiltonian describing 

a system of weakly interacting fermions is most conveniently written so 

that its eigenvalues give the energy in terms of the deviation from the 

energy of the state in which all particle levels up to energy QF are filled, 

(30.65) 

H = 2 £ [£?(&) — Qp] a+(k, s) a(k, s) 
k s 

+ 2 2 2 2 2 2 <k",k"|F|k' k> 8k»/+k»k-+k a+(kw, s) 
k!" k" k' k s' s 

x a+(k", s') a(k', s') a{k, s). 

The spin labels have been written out explicitly, but the interaction is 

taken to be spin independent. 

It was first noticed by Cooper that the interaction, if attractive, can 

bring about correlations between pairs of fermions giving rise to a ground 

state in which the Fermi surface is smeared out, and that this result 

cannot in principle be obtained by perturbation theory. 

Cooper’s qualitative considerations can be made more precise by 

introducing, following Bogoliubov, quasi-particle operators 

,OA «(k, 1) = w(k)a(k, 1)—v(k)a+( —k, 2) = s(k) 
(30.66) 

a(k, 2) = «(k)a( —k, 2) + v(k) a+(k, 1) = /?(k). 

This transformation is canonical (see Appendix 5), i.e. the a and a+ 
satisfy the usual fermion anti-C.R.s 

(30.67) {a(k,s)a+(k',s')} = Sk-iks; all other { } = 0, 

provided w(k) and v(k) are real numbers subject to the conditions 

(30.68) w(k) = u( — k); v(k) = v( — k); w2(k)+ t>2(k) = 1. 

If, in particular, 

(30.69) 
[ 0 for £>(Jc) > Qf 

{ 1 for Q(k) < 

one obtains essentially the transformation (30.53) for the case of non¬ 
interacting fermions, namely 

(30.70) 

a(k, 1) = a(k, 1); a(k, 2) = a{-k, 2) for Q(lc) > QF 

a(k, 1) = — a+(-k,2); a(k, 2) = a+(k, 1) for Q{k) < QF. 
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One may thus, in this case, look upon 

a{k, 1) as the annihilation operator of a 
/particle (k, 1) outside 

\ hole ( — k, 2) inside 

the Fermisphere 

d(k, 2) as the annihilation operator of a 
/particle ( — k, 2) outside \ 

\ hole (k, 1) inside / 

the Fermisphere. 

In the general case (30.66), application of an operator a engenders 

superposition of a particle and a hole. 
Equations (30.66) can be solved for a(k, 1) and a( -k,2) to give 

(30.71) 

a(k, 1) = w(k)a(k, l)+v(k)a+(k,2) = u{k)a(k) + i>(k)£+(k) 

a( — k, 2) = w(k) a(k, 2) — v(k) a+(k, 1) = u{k)/3(k) - v(k) <5+(k). 

One can now substitute these expressions into the Hamiltonian (30.65), 

making use of the symmetry properties of the matrix element 

(30.72) <k"'k"|F|k'k> = <k"k'"|F|kk'> = <-k' -k\F\ -k"'-k">, 

where the last equality follows from time reversal invariance, and 

diagonalize the resulting transformed Hamiltonian by suitable choice 

of 'it(k) and v(k) in a manner analogous to the one employed in the 

corresponding problem for interacting bosons. The calculations are 

rather lengthy, and the reader is referred to the work of Beliaev, quoted 

at the end of this section, for details. 
The principal result is a confirmation of Cooper s moie qualitative 

theory mentioned earlier, and a description of the system in terms of a 

quasi-particle excitation spectrum which, as in the case of interacting 

bosons, satisfies the criterion for the existence of supertransfer pheno¬ 

mena established in Section 11. 
It is instructive to express the ground state and the lowest excited 

states of the entire system in terms of the vacuum state and ordinary 

particle creation operators. The true vacuum state is defined by 

(30.73) a(k,s) |0> = 0 i.e. a(k, 1) |0> = a(k) |0> = 0; 

a( — k,2)|0> = j8(k)|0> = 0 

while the ground state (the “quasi-particle vacuum”) |0> is defined by 

(30.74) a(k, 1) |0> = fi(k) |0> = 0; o(k, 2) |0> = /3(k) |0> = 0. 
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Equation (30.74) must follow from (30.73) upon application of the 

unitary operator [see Eq. (A5.32)] 

(30.75) UB = 1 — ct0[1 — w(k)] — io2 t>(k) 

where 

(30.76) cr0 = 1 -<x+<x-p+p-2<x+otp+p; a2 = i(a+£+-/Sa) 

so that 

(30.77) 5 = UBaU+B; /3 = UBpU%; |0> = UB\0). 

Now application of o0 and a2 to the vacuum state gives 

(30.78) ct0|0> - |0>; ct2|0> - *a+/S+|0> 

so that 

(30.79) |0> = UB\0} = [w(k) + v(k) oc+j8+] |0> 

or, generally 

(30.80) j0> = [«(k) + v(k)a+(k, l)a+(-k, 2)] |0>. 
k 

This expression was, in fact, the starting point of the famous BCS theory 

of superconductivity, in which the ground state is envisaged as con¬ 

taining correlated pairs of electrons in accordance with Cooper’s idea. 

State vectors describing the presence of various numbers of quasi 

particles are constructed by using the same procedure as above: Apply 

UB to the corresponding ordinary particle occupation state. For example, 
for specific k, one has 

(30.81) |l-(k)> = V(k)|0> = (7s«+(k)|0> = Us| la(b)> 

with 

(30.82) UB = f] {1 - cro(k') [1 - w(k')] - ia2(k') v(k')}. 
k' 

It is well to keep in mind, however, that the particular deformation of 

the Fermi surface envisaged in the BCS theory is by no means the most 

general such deformation which may lead to a lower energy of the entire 

system as compared to a state with undeformed Fermi surface. In 

accordance with the most general transformation given in Appendix 5 

one can, for example, consider nonstationary deformations which may 

conceivably lead to an even more effective minimization of the total 

energy of the system. In fact, such more sophisticated quasi-particle 

excitations have been considered by Landau in connection with the 
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theory of liquid helium-3, which seems to admit the presence of ripples 

on the Fermi surface, known as “zero sound.” In any case, the mathe¬ 

matical penetration of the problem posed by interacting bosons or 

fermions is far from complete and remains one of the most promising 

fields for the application of quantum-mechanical concepts. 

NOTES 

Einstein [1] discovered the condensation phenomenon now bearing 

his name. The possible connection between permutation symmetry and 

macroscopic properties of liquid helium II was stressed by London [2], 

The significance of Einstein’s characteristic temperature in terms of 

countability of particles and the limitation encountered by Maxwell s 

demon at low temperatures was pointed out by Kaempffer [3]. 
The treatment of the weakly interacting bosons is due to Bogoliubov 

[4]. See also the review article by Beliaev [5], The treatment of the 

weakly interacting fermions is due to Bogoliubov et al. [6]. See also 

Bogoliubov [7] and Valatin [8]. 
The crucial observation that the correlation between pairs near the 

Fermi surface cannot in principle be obtained by perturbation theory 

follows from the work of Cooper [9], leading to the BSC theory of 

superconductivity [10]. 
The theory of Fermi liquids has been developed by Landau [11]. See 

also the review article by Abrikosov and Khalatnikov [12]. 
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APPENDIX 1 

The Eigenstates of Angular Momentum 

The component operators of angular momentum, denoted Jl5 J2, J3, 

satisfy the C.Rs 

(Al.l) J iJ o—J x = iJ3 (cyclically) 

and are, therefore, mutually incompatible observables. Since 

J2 — J\ + J| +J3 commutes with all operators Jk, for example, 

(A1.2) 

J2J3-J3J2 = J2Js+JlJ3-J,Jl-J3Jl 

= J i(J 3t/1~ iJ2) + Jz{J3J 2 + 1) 

— {J \J Z+iJ {j 2,J Z—iJ l)J 2 — 0) 

there should exist simultaneous eigenstates of J2 and of one of the 

components Jk. By convention, a representation will be sought in which 

both J2 and J3 are diagonal matrices. 

It is convenient to introduce the operators 

(A1.3) J 0 — J i+^2) Jo = J\ iJ 2.- 

They have the properties 

(A 1.4) J0J0 — 

(Al.5) Jo Jo = J“ — Jz~~J\ 

(Al.6) J$Jz~J*Jt = Jo 

(Al.7) J oJ 3— J3J0 = ~J 0 

as is easily verified by computation with (A 1.3) and (Al.l). 

Now denote the eigenstate of J3 with eigenvalue m by | , m> the empty 

space in front of the label m being left open for the quantum number 

characterizing the value of J2 in that state, so that 
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If one multiplies this equation from the left by Jft, 

(Al.9) JqJ?\ ,m) - mJ^\ ,m) 

and utilizes the C.R. (A 1.6), one obtains the equation 

(Al.10) J3J^| ,m> = (m-1)«7+| ,m> 

which says that if | ,m> is an eigenstate of J3 with eigenvalue m, then 

Jo | ,m> is also eigenstate of J3, but with eigenvalue (m— 1). In other 

words, the state J(f| ,m) is, up to an as yet undetermined normalization 

constant c, identical with the state | , m — 1), 

(Al.ll) J+| ,m> = c| ,m-l>. 

Similarly, upon multiplication of (A 1.8) from the left with J0 and utili¬ 

zation of the C.R. (Al.7) one obtains the equation 

(A1.12) J3«/0| ,ra> = (ra+1)J0| ,ra> 

which allows one to identify, up to a normalization constant d, the state 

J0| ,m> as an eigenstate of J3 with eigenvalue (m + 1), 

(Al.13) J0\ ,m> = d\ ,m+ 1>. 

The operator J0 generates thus an ascending sequence of eigenstates 

| ,m>, | ,m+l>, ..., whereas the operator generates a descending 
sequence | ,ra>, | ,ra— 1),_ 

Each sequence comes to an end, however, for the following reason. If 

| ,m) is a simultaneous eigenstate of J3 and J2 then, as a consequence of 
(Al.4) and (Al.5), one has 

(A 1.14) J0^| = (J2 + m-m2)| ,ra> 

and 

(A1.15) JoJo\ >w) = (J2 — m — m2)\ ,m) 

where J2 can be treated as a number. Since 

(Al.16) 

(,m\J0J+\ ,m> - (J+( ,m)> - |c|2< ,m-l| ,m-l> ^ 0 

and - 0 only if , ra> = c| , m- 1> = 0 

and 

(A1.17) 

< ,m\J£J0\ ,m) = (J 0( ,m)\J , m)> = |d| 2<( , m + 1| , m + 1> ^ 0 

and = 0 only if J0| ,m> = d|,ra+l> = 0, 
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Eqs. (Al.14) and (Al.15) mean that 

(Al.18) J2 + m — m2 > 0 

(Al.19) J2 — m — m2 ^ 0. 

For given J2 this is consistent only if the descending sequence comes to 

an end for a certain ramin for which 

(Al.20) 

J2 + Wimin W^min = 0 i-e- mmin = + | ~ VJ2 + \ and | ,m^-V) = 0 

and if the ascending sequence comes to an end for a certain mmax for which 

(A1.21) 

J“ w-max wimax 0 i.e. mmax 2 T 'S/J T 4 and | ,rnm&x-\-1)> 0. 

Since m changes by integers, the difference between mmax and mmin must 

also be an integer ^ 0. One may write this 

(Al.22) wmax-mmin+ 1 = 2VJ2 + l = 2j+l 

where j can have only the following values 

(Al.23) j = 0,i l,f,.... 

Thus the possible values of J2 are of the form 

(Al.24) J*=j(j+1) 

and for given j the number m can assume the (2j + 1) values between 

(Al.25) ®max = T j> ^hnin j• 

The simultaneous eigenstates of J2 and J3 will accordingly be labeled 

\j,m), satisfying 

J2\j,m} = j(j + j = 0,|, l,f,... 

Jz\j,rri) = m = -j, - j + 1,..., +j. 

If all states \j,m) are normalized, then the constants c and d are obtained 

by squaring Eqs. (Al.ll) and (Al.13), 

(A1.27) 

\c\2<j,m-\\j,m-V) = |c|2 = (J0 (j, m) \JJ (j, m)> = J2 + m-m2 

- j(j + 1) — m(m— 1) 

(A1.28) 

\d\2(j,m+l\j,m+iy = \d\2 = (J0{j, m)\J0(j,m)} = J2-m-m2 

= j(j + 1) — m(ra + 1) 

(A1.26) 
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so that one may write, up to an arbitrary phase factor Eqs. (A 1.11) and 

(Al.13) explicitly 

(A1.29) 

(A1.30) 

Jo\ j,™> = Vj{j+ l)-m(m-l)\j,m- 1> 

Jq\ j,™> = Vj(j+l)-m{m+ l)\j,m + iy. 

If one represents the states | j, m) for given j by unit vectors with 2j + 1 
components, so that with a conventional choice of phase one can write 

(A1.31) 

1\ /O' 

I j, ™ = j> = \j,m = j- 1> = 
0 

etc.; 

then by (Al.29) and (Al.30) the only nonvanishing matrix elements of 
</o and J0 for given j are 

(A1.32) 

(Jo)m-i,m - Vj(j+l)-m(m-l); = Vj(j+l)-m(m+l) 

In particular, one obtains for j = | the representations 

(A1.33) 

li,i> = I*. -*> = « ■ G ft Jo — 

1 /0 

J 9. = X 
1 /I 
210 -lP J2 = !(o °1 

and for j = 1 the representations 

(A1.34) 11,1) = (0); i,o> 

\0 

J0 — 

Jo. = 

J2 = 2 0 

0 1 

0 0 

A = Wt +Jo) = \ (® ‘) ; J, = (i/2) (Jt-J0) = \ (® *) 
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The representation (Al.33) is identical with the one obtained in Sections 

1 and 2 for the spin states and operators, because one has the identities 

|ii> = \a+> and |i~£> = |a_>. 
If one considers the special case of the orbital angular momentum L of 

an object, whose position and momentum are denoted by Q and P, 

respectively, then J = L can be decomposed according to (12.2) in the 

form 

(A1.35) L = (QxP) 

Working in coordinate representation one can derive (Al.26) again, but 

with the restriction that j = 1 be an integer only. Thus any angular momen¬ 

tum with half-odd integer value of j must at least partly be due to an 

intrinsic or spin angular momentum that does not permit a decomposi¬ 

tion of the form (A 1.35). 
This derivation is most conveniently carried out in coordinate repre¬ 

sentation by the introduction of spherical coordinates r,&, cp, such that 

(A1.36) 

Qx = rsin#coscp; Q2 = rsin#sin 9; Q3 = r cos#; 

and 

(A1.37) 

(d/dQx) = sin $ cos cp(d/dr) + cos# cos 9(1/7-) (d/3#)-sin cp(l/rsin#) (3/39) 

(d/dQo) = sin $ sin cp(d/dr) + costfsin 9(1/7-) {d/dh) + cos cp(l/rsin#) (5/dcp) 

(djdQf) = cos#(d/dr) -sin#(l/r) (d/dft) 

so that the angular momentum component operators are represented by 

Ls = -i{d/d cp) 

L+ = Ll — iL2 = -e_i?[(5/d#)-fccotan#(d/3cp)] 

L0 = Lx + iL2 = e^[(d/3#)-Mcotan#(5/dcp)] 

Lz = -(1/sin#) (d/d#)[sin#(3/3#)]-(1/sin2#) (d2/dcp2) 

which do not contain r explicitly. It is therefore reasonable to introduce 

for given orbital angular momentum j = laf function, namely <#, cp 11,mi), 

where |#, cp> is the state in which the angular momentum of amount l is 

with certainty aligned in direction ■&, cp, and denote it 

(A1.39) cp) = <#, cp|Z,ra> 

so that 

(A1.40) I#, cp> = 2 \l, m} (l, m\§, cp) = 2 |J,m> F*w(#, 9) 
l,m 

(A1.38) 
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and 

(A1.41) 
tt 2n 

11,m") = J |$, cp)dQ(i}, cp|Z,m> = JJ |$, 9> smtidtidy 9), 
0 0 

which subject the functions Yi m($, 9) to the normalization condition 

(A1.42) 
TT 27T 

<r,m'\l,m> = JJ 9) ^Sinftdftdcp = 8n8m-m. 
0 0 

Equations (Al.26) can now be written as eigenvalue equations for the 

i/j functions Y^m(d, 9), by applying the operators (Al.38) to (Al.41) after 

the fashion of (8.9). One obtains 

(A1.43) -i(d/d9) YUm($, 9) = rnYl>m($, 9) 

and 

(A1.44) 

{— (1/sin#) (5/d#) [sin#(fi/a#)] — (1/sin2#) (d2/d92)} Yl m('d‘, 9) 

— 1(1+1) Yitm(ft, ?) 

From Eq. (Al.43) one deduces immediately that 

(A 1-45) Y^fi, 9) = Fl<m(§)e^ 

where now the as yet undetermined function must, according to 
(Al.44), satisfy 

(A1.46) 

(l/sin^)(a/d^)[sin#(a^iTO/0^)] + [Z(Z+l)-(m2/sin2#)]Ei„l = 0 

with l ^ m ^ — l. 

If one requires of the solutions i^>m($) that for all 0 ^ ft tt they should 

be unique, finite, and differentiable, and also subject to normalization 
after (A 1.42) 

n 2rr tt 

(A1.47) J J \Ylitn\2sm'hd'&dcp = 2tt J |Ej>m($)|2sin#d# = 1, 
#=0 <p=0 V=0 



The Eigenstates of Angular Momentum 315 

then the general solutions are 

(A1.48) 

?) 
J_ 1(21 +1) (l — m)\ f l_A(_L j-(gin2^) 
2ll\*y 4,7r(l + m)\ smm'&\sm{ld'& \ sin$d$v 

V.-----y ' 

l—m differentiations 

(21+ 1) (l — m) 

iv(l + m)\ 
-P™(cos#)e*OT<p 

oc sin™ #( cosz-m 0 + a cosl-m~2 0 +...) eim(p 

where I must be a non-negative integer. Non-integer values of l cannot 

lead to solutions satisfying all the requirements. 

For l = 0, l = 1, l = 2 these solutions read explicitly 

(Al.49) 

Y0,oW> 9) 

YmV, 9) 

1 

a/ 477 

877 
sin#ei<p; Fx 

Fi, -1 

2,2 
7* 

9 —9 

/^-sin#e t(f>; 
V 077 

- r*.- 

1 /15 

2-V 277 
sin#cos$elcp 

A» = Jl{lcos2§-l) 
Another phase convention used frequently in the literature consists of 

multiplying each Y^m by (— l)m to yield 

(A1.50) rp(0,9) = (-irr,|W(^,9). 

NOTES 

The content of this appendix can be found in practically all texts on 

quantum mechanics. Monographs on the subject have been written by 

Edmonds [1] and Rose [2], 
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The Addition of Two Angular Momenta 

APPENDIX 2 

Suppose two angular momentum operators J\ and J2 are given, each 

satisfying Ja x Ja = iJa (a = 1,2), so that there exist eigenstates \jx,ma) 

of and Ja3 with eigenvalues 

(A2.1) 

'Joc\ja’'^a/> jaija T 1) \ja> > ja 0, 1>; 1, 2> • • • 

Jocs\jcc^ia> = ™a|ja,ma>; j« > > ~j*\ dma integer. 

Now consider an object whose total angular momentum J can be 

represented as the vector sum of the angular momentum operators 

and J2 of the two constituents making up the object, 

(A2.2) J — J1 + J2 

so that J still satisfies the C.R.s 

(A2.3) J x J = iJ. 

There must then exist eigenstates | j,mj of J2 andJ^ having the property 

= j(j+l)\j,m}; j = 0, 1,f,... 

J3|j,m> = m\j, mj; j ^ m ^ -j; drainteger. 

One tries now to represent the state | j,my as linear combination of the 

direct products \j^m2) in the form 

(A2.5) | j,m) = S S C{jj1j2;m,m1,m2)\j1,m1')\j2,m2j. 
m1=+j i TO2=+3a 

The coefficients C of this unitary transformation are called the “Clebsch- 

Gordan coefficients” or, sometimes, the “ Wigner coefficients.” This way 

of writing | j,m) is suggested by degeneracies of the states | j,m) and 
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\ji,ml)\j2,m2') with respect to the quantum numbers m and m1; ra2, 

respectively, i.e. the dimensionality of the space spanned by \j,m} is the 

same as the dimensionality of the product space spanned by 

|j2,™2>- 
To see this, label by convention the constituents so that jx ^ j2. The 

total angular momentum will assume any of the values j for which 

j = ji +h,h +j2-1, • •ji-n+1,h-H-For each such valueithere is 
a degeneracy 2j + 1, so that the sum of all degeneracies, i.e. the degeneracy 

of | j,m) with respect to m, is 

(A2.6) [2(j1 +j2) + 1] + \2(j1 +j2- 1) + 1] + ... + [2(ji-h+ 1) + 1] 

+ [2(ji-j2) + l] 

= (2ji + 1) (number of brackets [ ]) = (2jx+ 1) {2j2+ 1) 

which is equal to the degeneracy of the product state \ji,m1)\jz,m2) 

with respect to m1, ra2. 
If the normalizations and phases of | ja,ma) are given, then up to an 

arbitrary phase factor the coefficients C are completely determined by 

(A2.4) and the normalization of | j,m). It turns out that j1 and j2 add to 

Fig. A2.1. The vector addition of two angular momenta Jx and J2. 

j vectorially (see Fig. A2.1), whereas mx andm2 add to m algebraically, so 

that 

(A2.7) m1 = m — m2 
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and one may simplify (A2.5) by writing 

3i 

(A2.8) | j,m) = v 
?»i= +ji 

For the purpose of this work it is sufficient to tabulate the Clebsch- 

Gordan coefficients for addition of an angular momentum j2 = \ to an 

arbitrary j1 (Table A2.1) and of an angular momentum j2 = 1 added to 

an arbitrary j1 (Table A2.2). 
As an example, consider an object “ 1 ” and an object “ 2 ” both having 

spin According to (A2.6) the degeneracy with respect to m is fourfold, 

TABLE A2.1 

The Four Nonvanishing Coefficients 

mi = m — \ 

mi = \ 

mi = m+ £ 

m2 = — i 

(ji+m + iy'2 Iji — m + i\1/2 
j = ji + i \ 2ji+l ) l 2ji + 1 / 

(ji-m + iy'2 lji + m + £\1/2 

II 
<■
0

 

Kb
- 

\ 2ji+1 / \ 2?i+l / 

and one reads from (A2.8) and Table A2.1 the four spin states of the 

object composed of objects “ 1 ” and “ 2 ”: 

(A2.9) 

j — 0: 10, 0) — (1/V2) (|2)11 b ~ D2 — \ b — i)i |i> 1)2) 

| i,i> = 

* 11,0)> = (I/a/2) (|^, ^>1|-|, — + |i> — Ifj i)>2) 

| lj ~ 1) — |i> — i/A |i> ~ 
Whenever the values jx and j2 are equal it is important to maintain the 

labeling of the product states made up out of the objects “ 1 ” and “2”, 

as has been done here by the subscripts as in | and | )>2, because the 

transposition operator T12, defined in Section 27, operates on these labels. 

One recognizes by inspection the singlet state belonging to j — 0 as an 

antisymmetric eigenstate of T12 and the triplet of states belonging to 

j = 1 as symmetric eigenstates of T12. 
As a second example, the states resulting from the addition of two 



320 Concepts in Quantum Mechanics 

+ l 
8 II 
II | 

g 

+ + 
. rH 

+ 

+ 
S 
+ 

+ 

<N 
c<i 
< 
W 

< 
H 

O 
CO H 
£ W 

t- 
w 
o 
o 
o 
£ 

> 
£ O 
£ 
w 
a 

w 
a 
H 

•H <N 

g g 

<N 

+ 
g 
+ + 

— 

+ + 

g 
I—1 

1 

ca 

' 
i—( „—v 
+ 
8 + 

+ S* 
"—•* 
'“H 

g + 
+ CNJ 

, 

+ 
r-» 

II 
*^S 



The Addition of Two Angular Momenta 321 

angular momenta jx — 1 and j2 = 1 will be recorded here. In this case, 

Table A2.2 becomes applicable to (A2.8), and one has 

(A2.10) 

j = 0: |0,0> = (1/V3)(|1,1>! |1, - 1>2 — 11,0>! 11,0>2 

+ |1, -l)i |1,1>2) 

j = 1: 

j = 2: 

11,1) = (1/a/2) (| 1, l>i 11, 0>2 — 11, 0>! 11,1>2) 

< 11,0) = (1/a/2) (| 1, 1>! | 1, — 1>2 — I 1, — 1)3. |1,1>2) 

Jl, -1> = (1/V2) (| 1, 0>! 11, — 1>2— 11, — 1>! 11,0>2) 

12, 2> = |1,1>1|1,1>2 

|2,1> = (1/V2) (| 1, 1>! 11, 0>2 + 11,0>! 11, 1>2) 

12, 0> = (1/V6)(|1,1>1|1,-1>2 + 2|1,0>1|1,0>2 

+ 11) — l>i 11* 1>2) 

12, — 1> = (l/\/2)(|l,0>1|l, -1>2+|1, — l)a |1, 0>2) 

12, — 2> = |1, - 1>! |1, - 1>2 

Once again, inspection reveals the transformation properties of these 

spin states under transposition T12 of particle labels: The triplet of states 

belonging to j — 1 are antisymmetric, and the singlet state belonging to 

j = 0, as well as the quintet of states belonging to j = 2, are symmetric. 

NOTE 

The classic source for Clebsch-Gordan coefficients is the work of 

Condon and Shortley [1]. 
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Vector Spherical Harmonics 

APPENDIX 3 

By taking in (A2.5) j1 — l and j2 = 8=1, one obtains for each j three 

different angular momentum states, 

-i -i 

(A3.1) \j,m\l,s = 1> = 2 2 G(j,l,l;m,ml,ms)\l,ml')\l,ms'} 
mi—+l ms= +1 

where m = ml + ms, corresponding to the three possibilities j = 1+1,l,l—l 

orl=j+l,j,j—l. The spin states belonging to s = 1 can be represented 

by i{j functions which transform as vectors, for example, the eigenstates 

of s3 [see Section 18, Eq. (18.68)], namely l*1, whereas the orbital 

states can be represented by spherical harmonics which depend on n, 

the direction of momentum, so that the total ip function of an object of 

spin 1 and energy w must be a linear combination of three “vector 

spherical harmonics” 

(A3.2) 

Yjlm(n) = 2 2 C(j, l,l\m, mh ms) Yl>mi(n) )£>m>; mx = m-ms\ 
mi=+l ras= + l 

corresponding to the three possible values of l, namely j +1, j, j -1, and 

may therefore be written 
3 — 1 

(A3.3) foyjn) = 2 n). 
1=3 +1 

For photons, the expansion coefficients at(a>) are restricted by the 

condition of transversality (18.72), which reads here 

(A3.4) n-fcoim(n) = 0. 

The vector n can be represented by its components n^ defined by 

-l 

(A3.5) n = 2 
H— +1 

With the representations (18.68) one finds for n^ in terms of the cartesian 

components = sin$cos cp, n2 = sin$sin cp, n3 = cos$, 

n+1 = -(l/A/2)(n1-m2) = - (1/V2) sin$e_i<P 

n° = n3 = cos# 

n~l = (1 /V^Mwi + tWa) = (1/V2)sin#eich 
323 

(A3.6) 
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Now from the three vectors Yj7m(n) one can construct three linearly 

independent combinations, labeled Yfm (A = +1,0,— 1), of which the 

first two are transverse, i.e. satisfy 

(A3.7) n • Yjm — 0 for A = +1,0, 

and the last one is longitudinal, i.e. satisfies 

(A3.8) n x Yj£ = 0. 

These linear combinations are, with proper normalization, 

(A3.9) 

(A3.10) 

Yt1 jrn 2j+l Xi. j+i,»»T 
3 + 1 y 
2j+l 

Y<? jm m 

(A3.11) Y-1 jm 
2'3 + 

_ v 1 «-i,» 
i +1 Y 

and one has, by solving these equations for Yj l<m, the following decom¬ 

positions of the vector spherical harmonics (A3.2) into longitudinal and 

transverse parts, 

(A3.12) VJ+1 Yji) 

(A3.13) = YJ„ 

(A3.14) = -+=(V/TlYS + Vj¥Si). 

The ifi function of a transverse photon with definite angular momentum 

and energy will therefore be, in general, a linear superposition 

(A3.15) ijm = a.YC+a.Y^ 

with coefficients ax and a0 subject only to the normalization condition 

|aj|2+ M2 = and depending only on u>, a\ = a\{w). 
The arbitrariness in the choice of the parameter A is removed if one 

requires that a photon state have a definite parity. From the transfor¬ 

mation property of the spherical harmonics T^TO;(n) under inversion of 
coordinates, 

(A3.16) n) = (-1/F, .„,(») = ¥,,,„,(-n) 

and the vector nature of £ in n space, 

(A3.17) n\ = 

follows that 
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(A3-18) n\jim{n) = (— l)m Yjlm(n) 

and the transverse and longitudinal parts transform as 

(A3.19) n\jm = 

Transverse photon states belonging to A= +1 are called “electric 

multipole” states and have parity (—1)J, whereas transverse photon 

states belonging to A = 0 are called “magnetic multipole” states and 

have parity ( — 1)J+1. States belonging to j = 1, 2, 3, etc., are called 

dipole, quadrupole, octopole, etc., states. This terminology derives from 

the asymptotic behavior of the corresponding ip functions in coordinate 

space which resembles that of the classical fields emitted by the respec¬ 

tive multipoles. For details the reader is referred to the references at the 

end of this Appendix. 

It will be noticed that for j = 0 there exists only one vector spherical 

harmonic, namely Y0 1>0 = — Y^J, which is necessarily longitudinal. 

This means there exists no single transverse photon state of total angular 

momentum j — 0. 

As has been shown in Section 27, two-photon states of odd parity are 

associated with the antisymmetric spin states (A2.10) |s— 1 ;ms> and 

states of even parity belong to the symmetric spin states |s — 0,2 ;ms>. 

The transversality condition requires for each photon that 

(I) if the spin states |s = 1 ;ms> are represented by a vector spherical 

harmonic, then this must be the longitudinal Y-1, and 

(II) states of even parity must be represented by linear super¬ 

positions of spin states |s = 0;0> and |s = 2;ms>. 

Because of the three-component nature of spin vectors, the i/> function 

associated with a two-photon state can be represented by a tensor in 

spin space, denoted [/(x )]*,«„ where oc1 and a2 are spin labels of the 

individual photons, and x refers to the relative momentum of the two 

photons, which is the only remaining variable after the center of mass 

momentum has been separated. In this notation, the transversality 

condition for each photon may be written 

(A3.20) (*)«,[/(*) ka, = [/(*)]*,«,(*)«, = 0. 

Now, for two-photon states of odd parity, the spin states are anti¬ 

symmetric, which means /ai(X2 is a skew tensor in three dimensions, and 

therefore representable in the form 

/ 0 A3 -a2\ 
(A3.21) f£l=\-A, 0 A, , 

\ A2 -A, 0 / 
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with an axial vector A, allowing one to write the transversality condition 

(A3.22) n x A = 0. 

This means the vector A representing the antisymmetric spin state of 

two photons must be longitudinal, and therefore, for given j and m, 

according to (A3.11) 

(A3.23) A = Yjm = J2j+ \ m~ J2j + l 

This function has odd parity only when j is even. Therefore, there exist 

no two-photon states of odd parity if j is odd. In the language of selection 

rules, one can thus say that a particle of odd integer angular momentum 

and odd parity cannot decay into two photons under conservation of 

these quantities. 
For two-photon states of even parity the spin states are symmetric, 

which means fefff is a symmetric tensor in three dimensions, having six 

linearly independent components, corresponding to the six different 

values of l possible for given j and ra, namely l—j,j± 1, j ± 2 for 5 = 2 

and l = j for 5 = 0. Since the parity (— 1 )l is specified to be even, however, 

for even j ^ 2 only four components can be unequal to zero, namely 

l=j,j± 2 for 5 = 2 and l = j for 5 = 0, whereas for odd j ^ 3 only two 

components can be nonvanishing, namely l—j± 1 for 5 = 2. Special 

cases are j = 0, when there exist only two components, corresponding to 

l = 2 for 5 = 2 and l = 0 for 5 = 0, and j — 1, when there is only one 

component, corresponding to l = 2 for 5 = 2. Among these, the trans¬ 

versality condition causes further restrictions. For even j ^ 2 there are 

only two transverse states and for odd j ^ 3 there is only one transverse 

state. In the special case j = 0 there is only one transverse state, and for 

j — 1 there is no transverse state. 

Further details may be obtained from the references listed below. 
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APPENDIX 4 

The Invariance of Dirac’s Equation under Lorentz 

T ransformations 

Dirac’s equation, in momentum and energy representation 

(A4.1) (y4co-Yk)A = mA 

can be written, with the conventions 

(A4.2) ApBp = A^Bi-AB; 

in the form 

(A4.3) (yvkv-m) A(Jcv) = 0. 

Requiring that the matrices y are the same in all coordinate frames, 

covariance of Dirac’s equation means that if (A4.3) holds, then 

(A4.4) (y\ k\ — m) A'(Jc\) = 0 

should also hold, where the connection between A'(k\) and A(kv) is 

established by a unitary operator U in spin-chirality space, 

(A4.5) A'(k\) = UA(kv); A(kv) = U^A\k\) 

to be determined from the Lorentz transformation 

(A4.6) k\ — L\v kv, kv Lv^k\ 

which leaves 

(A4.7) k\ = kvkv = m2 

invariant. This means that 

(A4.8) L^\LV\ — 8^v', kj^\L\v — 8^v. 

Note the convention 

(A4.9) 

8 fiv 

' -1 

• +1 

0 

for /x = v = 1, 2, 3 

for p. — v = 4 

otherwise 

so that A^S^ = Av. 
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Now write Eq. (A4.3) with the help of (A4.4) and (A4.6) as 

(A4.10) 

(yvL-v\Jc\ U-1-mU-l)A'(k\) = 0 i.e. (L\v Uyv U~1 Jc\ — m) A'(lc\)= 0. 

This is identical with (A4.4) provided 

(A4.ll) LxvUyvU~l = yA or U -l 
yx U = L \vy v 

This equation is true for all Lorentz transformations, including the 

improper ones. The main interest here lies, however, in the proper 

Lorentz transformations, i.e. those whose determinant is + 1 and for 

which Lii > 0, so that they may be thought of as evolving continuously 

from the identity transformation, and do not contain transformations 

reversing the sign of the energy. 

Now consider the case of the infinitesimal transformation, 

(A4.12) k\ = kx + exvK with eAv = - evA 

which guarantees (A4.8). Thus 

(A4.13) 

Lxv = SA„ + €A„ and La„Aa^ = SAv SA/X + SAv cA/i + SAft eAv 

^VfX "h eVfJ. 4* €/J,V ^Vfx- 

A solution of Eq. (A4.11) will now be sought by putting 

(A4.14) 

U = 1 + (</2) , M, 
fjLV ^ /XV with = -Mvy_ 

where the M^v are 4x4 matrices numbered by the pair of indices (i.e. 

M^v is not a matrix element). There are thus six independent matrices 
M^v. Alternatively one may write 

(A4.15) 

with 

(A4.16) 

U — / + i^a, S„ 

e-i — e 23 e2 — e31 e3 — e12 e4 — e14 e5 — e24 :34 

14 SR M 24 S* = M 34 
Si = M2S S2 = MZ1 S 3 = M12 S, = M 

Substituting this into Eq. (A4.ll), keeping only terms linear in e^v, one 
obtains 

(A4.17) 

W2) = €Xvyv = ie/tI,(8/4Ay>,-8vAyM). 
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It is seen that, up to terms which commute with all y\, M^v must satisfy 

(A4.18) i{y\M^v- M^vyx) = SpXYy-Sriyp. 

This is obviously solved by 

(A4.I9) 

f -(i/2)yjU,yv for fx + v 
Mpy - -(i/4)(y,j.yv-yvy^) = \ 

[ 0 for jx = v. 

Indeed, 

(A4.20) 

Uyxy^Yv-Y^y^Yx) = ¥yxYplYv+y,xYxYv-2KxYp) = ^xyv-KxYp- 

The C.R.s between the M^v can now be established by straightforward 

computation: 

(A4.21) 

[MkX,M^] = i(8KflMXv + 8XvMKlM-8XllMKV-8KVM^). 

Writing 

(A4.22) \3IK\, M^v\ = K\ ^V pa Mpa 

(the factor \ is needed because the summation over p and o counts each 

term twice) one has for the structure constants CK\t IMV> po 

(A4.23) 

CK\ ,ixv,pa = i(&Kfx&pX&ov + &Xv&PK&olj. — &XnSpK<Xav — <XKv$pX&oia) 

so that 

(A4.24) 

trace{M^My8) - C0,pttlVtpaCpa,p.v,yh = 4(8ay 
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APPENDIX 5 

The Most General Canonical Transformation of a Pair 

of Fermion Operators 

Any unitary operator U is of the form 

(A5.1) U = eiS; S = S+ 

so that any operator A transforms as 

(A5.2) A = eiSAe~iS = A+i[SA] +(i2l2\)[S[SA]] +... 

Consider now two fermion operators a and /3, which together with their 

hermitean adjoints satisfy the anti-C.R.s 

(A5.3) {oc+a} = I; {/3+/3} = /; all other { } = 0. 

For fermions which are completely specified by a momentum label k and 

a spin label s, the operators a and may, for example, be identified with 

annihilation operators alki,^) and a(k2,s2) provided the two sets of 

labels (k^Sx) and (k2,s2) are not identical. The anticommutation pro¬ 

perties of a and |8 allow one to form not more than eight linearly inde¬ 

pendent products of even order in the operators a,a+,^,/3+, namely 

(A5.4) 

/; H+ = a+/S+; p, = jSa; v+ = ot+p; v = ,8+a; na = a+a; 

np = /3+|S; p = a+ /3+ afi = -nanp = - pA p. = v+v-np. 

These operators commute with any other such set made up out of 

operators a', belonging to a different set of fermion labels (k',«')• 

Therefore, the most general hermitean operator S which will guarantee 

that the various operators U, U' belonging to different sets (k,s), (k',s') 
commute, will be of the form 

(A5.5) 

S = 00 + 0!^ + c2p, + csv+ + civ + c5na + cfinp + c7p 

where the coefficients c{ must still satisfy certain reality conditions so that 

S+ = S as required by (A5.1). 
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This representation can be simplified if new linear combinations are 

introduced, a simplification to which one is led by the following theorem 

of Koppe and Muhlschlegel: 

Let A be an operator such that 

(A5.6) A2 = 0 and AA+ A = A 

then the operators 

(A5.7) 

Zx = A+ + A; Z2 = i(A+-A); N3 = AA+-A+A; N0 = A+A+AA+ 

satisfy the relations 

(A5.8) 

= iUk (i,j, k cycl.); 0 = = 2^; Z'q = Z0. 

The operators (A5.7) are thus isomorphic to the Pauli matrices and the 

unit matrix. Note, however, that 270 need not be identical with the unit 
operator I. 

The premises of this theorem are satisfied for A = y and A = v. There¬ 

fore the following sets of operators satisfy separately the relations (A5.8): 

(A5.9) a i — y+ + y, 

a2 = i(u+ — y); 

a3 = yy+-y+y = I-na-np; 

CTo = y+y + yy+ = I - na — np + 2na np 

(A5.10) t ! = v+ + v; 

t2 = i(v+-v); 

r3 = w+ —v+v = np-na; 

t0 = v+v + w+ = na + np — 2nanp. 

One has, in addition, the relations 

(A5.ll) CTo + To = I> CToTo — Tocro — 0 

so that, because of (A5.8) all products between operators a and operators r 
vanish. 

The most general unitary operator can therefore be written 

(A5.12) U = (ft° T„eitT gis0 a0 giso 

where (£0,t,s0,s) are eight real coefficients. 

The C.R.s between the operators o, r, and the various product operators 
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made up out of a, ft, a+, ft+ allow one to sum the series (AS.2), representing 

the various transformations, in closed form. By expending some labor 

one finds, for example, the following general transformation formulae: 

(A5.13) 

<5 = As At(D + 2iCnf) a — AsBt(D + 2iCna)ft 

- Bs At(D* - 2iCnf) ft+ - Bs Bt(D* - 2iCnf) oA 

(A5.14) 

ft = AsB*{D + 2iCnf)a + AgA*(D + 2iCn0)ft 

- £sB*(D* - 2iCna) ft+ + Bs A*(D* - 2iCnf) a+ 

where 

(AS.15) = cos |s| +(is3/|s|)sin |s| = A*s 

(A5.16) Bs = [t(«i + ts2)/M]sin|s| = -B-t 

(A5.17) C = C(s0 —10) = sin (t0-s0) = -C(t0-s0) 

(A5.18) D = D(s0 — t0) = ei(s°-^ = D*(t0-s0). 

The transformation of Bogoliubov [Section 30, Eqs. (30.66)] is con¬ 

tained in (A5.13) and (A5.14) as a special case. By putting t = 0, t0 = 0, 

<s0 = 0, Si = s3 = 0 and letting only s2 ¥= 0 one has As = cos(s2), At = 1, 

Bs — — sin(s2), Bt = 0, C = 0, D = 1, so that 

(A5.19) a = cos (s2) a + sin (s2)/3+ 

(A5.20) ft — cos (s2)/3 — sin (s2) a+ 

This transformation coincides with Bogoliubov’s transformation if one 

makes the identifications 

(A5.21) 

a = a(k, 1); ft = a(—k, 2); w(k) = cos(s2); v(k) = — sin(s2) 

with the understanding that s2 depends on |k| only so that the relations 

(30.68) are satisfied. 

Another special case contained in the transformations (A5.13) and 

(A5.14) is the operator (27.49) representing the transposition of particle 

labels. The conditions reducing these transformations to 

(A5.22) a. = ft and ft = a 

are obviously 

(AS.23) 

<7 = 0, D = 1, Bs = 0, At = 0, -AsBt = ASB* = 1, 

or As = Bt — i. 
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They can be satisfied by putting, 

(A5.24) 

so — = 77 > si = s2 = 0, S3 = 77/2, ti — 77/2, t<i — t3 = 0. 

Then [using (A5.9)-(A5.11)] 

(A5.25) 

JJ = ei7rTa ei(7rl2) Tl einc° ei(-nl2) 03 — ei7T^T°+a°^ e^77/2)7"* ei( 77/2)0-3 

= — texp [4(77/2) (<x+ ft + /3+ a)] exp [1(77/2) (/ —wa-«jg)] 

coincides with the operator T12 (27.50) if one makes the identifications 

(A5.26) a(l) = a and a(2) = /3. 

It is often convenient to have an explicit expression for the operator U, 
which can be evaluated by using 

(A5.27) 

(so)2 = s2ct0; ct0o = o; ct§ = a0; (tx)2 = t'2r0] r0x = x; rg = r0. 

One has 

(A5.28) 

eis" = 1 + (i2/2!) s2 ct0 + (i4/4!) s4 ct0 + ... + t(so) + (i3/3!) s2(so) + ... 

= 1 — cr0(l — cos |s|) + i[(so)/|s|] sin |s| 

and 

(A5.29) 

eiS'O0 = l+is0o0 + (i2/2\)s%o0 + ... = 1 — a0(l — eis°) 

and completely analogous expressions for eitz and eito To, so that 

(A5.30) 

^ = 0 — To(l — el,°)} {1 ~t-0(1 — cos 11|) + i[(tx)/|t|]sin |t|} 

x {1 — CTo(l — 6,s°)} {1 — cr0(l — cos |s|) + i[(so)/|s|]sin |s|}. 

Bogoliubov’s transformation is obtained from this as the special case 

(A5.31) — sin (s2) = v(k); cos(s2) = u(k) 

with all other s, t vanishing: 

(A5.32) UB = 1 — cr0[l — u(k)\ — icr2v(k). 
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The Delta Function and its Application to Phase Space 

Considerations 

For a scalar variable a the delta function 8(a) is defined as the integral 

(A6.1) 

4- oo J eioddt. 

— 00 

sin (aT) 

na 

Fig. A6.1. The function [sin 2(aT)]/ira for large T. 

For the purpose of visualization (see Fig. A6.1), this may be thought of 

as the limit 

+ T 

(A6.2) 8(a) = lim 
T—>oo a 

-T 

iatdt - lim 
T—>co 

sin (aT) 

7T0C 

It has the properties 

+ CO 

(A6.3) g(oc) = J g(oc')S(<x-oc')doc' and J S(oc)da = 1. 

+ CO 

335 
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Alternatively, one may think of 8(a) as the limit (see Fig. A6.2) 

T /Bin («7’/2)\* 
2w\ [at[2) I 

(A6.4) 3(a) = lim 
T—>■ oo ‘^TTl 

+ T/2 

f 
- T/2 

dt 
2 T /sin(aF/2)\2 

= lim — I - 1 

T-+ oo 2tt\ (ccT/2) 

Comparing (A6.4) with (A6.2) one finds the relation 

+ 00 

dt. (A6.5) [3(a)]2 = — 8(a) j 
— 00 

For a four-vector P one defines similarly 

(A6.6) 3(P) = (-^-4 J = 3(P)S(P0) 

and has 

(A6.7) [S(/>)]« = ^4S(P) J d‘*. 

Of great usefulness for applications of the 8 function is the following 

general formula governing the 8 function having a function /(a) as its 
argument: 

(A6.8) «[/(«)] 

2 [§(<*-«,)] 

\df/doc\ 

where ar are the simple roots off (a) = 0 in the region under consideration. 

To prove this divide the region of integration into small intervals so 

that in each interval there is only one root of /(a) = 0. For the root ar, 
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in particular, let this interval be ar-er<a<ar + er. One has then in this 

interval the expansion [using f(ocr) = 0 by definition, and/'(ar) ^ 0 if ar 
is a simple root] 

(A6.9) /(a) =/(ar + e) =/'(ar) e + (l/2!)/"(ar) e2 + . . . 

and thus 

ar + c 

(A6.10) J g(«)8[f(*)]d* 
ar — €r 

+//(ar)€r + • • . 

/ 
-/'(“r)«r + . • 

8(f) df 

dfjdcx. 

9r(ar) 

f'(«r) 
for f'(ar) > 0 

-9(*r) 

[ f'M 
for f'(*r) < 0 

g( or) 

/'(«,)! 

from which the formula (A6.8) follows by summation. Equation (A6.10) 

is based on the understanding that er is chosen such that the signs of the 

integration limits are determined by the term linear in er. 

If one takes, for example, /(a) = a2 — c2 so that there are two roots 

a — ±c, one has the special case 

(A6.ll) S(oc2-C2) 
2|cj 

[S(a —c) +S(a + c)]. 

As an application consider the Compton effect and describe it in a 

laboratory frame of reference in which, initially, the electron is at rest, 

k = 0, Q — m, and one photon of energy a> = |x| is present. With a 

normalization of states to one particle in a volume V, wT- T V is the 

transition probability per scattering center and unit time, where wT- T is 

defined byEq. (23.22). The incident intensity I in photons per unit area 

and time is equal to the number of incident photons per unit volume 

(namely, 1/ V with the normalization adopted above) times the velocity 

of light (namely 1 in natural units), giving I = l/V. Thus the scattering 

cross section per scattering center into a fixed final state t is 

(wt't y/I) = Wr'rV2. 

In any actual experiment one rarely discriminates a specific final state 

t', but rather a set of final states with final momenta of electron and 

photon ranging between k' and k' +dk', and x' and x' +dyt', respectively. 
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The number of such states, for definite spin and definite polarization, is* 

(A6.12) dN = [F2/(27r)6]dk'dx'. 

The cross section per scattering center and unit time into this set of final 

states is therefore 

(A6.13) do = wT'T V2dN. 

If the detection apparatus responds only to photons scattered into a 

solid angle dS oriented in direction #, cp, one has to integrate over dk' 

and do/, keeping h and cp constant. Since dx' — u>'~da>'dS one obtains 

for the cross section per scattering center encountered by photons 

scattered into dS 

(A6.14) odS = [VidSI(27r)6] JJ wT-Tdk'oj'2dw'. 

Since wT- T contains a 3 function 8(P' - P) = 8(k' + x' - x), the integration 

over dk' can be carried out immediately, resulting in replacement of k' 

everywhere by 

(A6.15) k' = x-x' 

in accordance with conservation of momentum. As a consequence of this, 

the energies Q, 13', to, a/, appearing in the remaining 8 function 

8(Po-P0) = 3(13'+ (o'-Q-ai) 

become interdependent, and this has to be kept in mind when the integra¬ 

tion over da>' is carried out. Writing 

(A6.16) (13' + co' — Q — to) = f(co') 

and using Eq. (A6.8), one may write (A6.14) as 

(A6.17) 
VidS r |<T'|P|T>|2ca'28(a)'-ca;)da;' 

°d6 - (277)10 J |[d/(a/)/da/]| 

F4dAS/|<T'|P|T>|2a>,2\ 

(277)10\ I [d/(aj')/da>,]| / w'=Wr- 

The “resonance value” ofr of o»' follows from 

(A6.18) 

[/(co')]£0'=CUr' = [13 + o>r — Q — w] — [y/m“ + k " + ojr — m — to] 

= \y/ m2 + to2 + — 2cooj'r cos h + (u'r — m — co] = 0, 

* If V is a cube whose sides are of length L, then possible values of k are k{ = n4(27r/£) 

with n,- integer. The number of integers whose corresponding vectors k lie between k and 

k + dk is equal to (LI2n)3dkidk2dk3 = [F/(27j-)3]dk. Thus any sum (1 /V) 2k-•• can, in 

the limit V —co, be replaced by an integral [1/(2tt)3] J .. .dk. 
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where # is the angle of scattering between x and x', so that k'2 — (x — x')2 

= k2 + k'2 — 2kk' cos# = or + a)'2 — 2o)6o' cos#. The result is 

(A6.19) 

and one has also 

(A6.20) 

ma> 

m + a>( 1 —cos#) 

Ct/ — 6i> cos# 

\/m2 + w2 + w'2- 2a»a>' cos# 

mw 

where 12' is the energy of the scattered electron at resonance, 

(A6.21) 12' = [V«i2 + fc'2]t0'=a>r' — Vm2 + w2 + Wr2_ 2a>co'cos#. 

The expression for the differential cross section (A6.17) can therefore be 

cast in the form 

(A6.22) adS = [F4^/(277)10]|<T,|i?|T>|2K3^;/moJ] 

with the understanding that the matrix element has to be evaluated with 

the resonance value (A6.19) and (A6.21) for the energies in the final state 

and under observation of conservation of momentum (A6.15). 

Finally, if the target and the incident photon beam are unpolarized, 

and if one does not observe the polarizations of either scattered electrons 

or scattered photons, the differential cross section must be averaged over 

initial spins and polarizations, and summed over final spins and polariza¬ 

tions, giving (since only transverse photons are involved) 

l 2 2 2 2 

(A6.23) (adS}av = v 2 S S 2 adS. 
4 r=1 5=i r'—l S'=l 

NOTES 

The S function was introduced into physics by Dirac [1], For a more 

detailed description of the 8 function see Iwanenko and Sokolow [2], 

A complete treatment of the Compton effect is contained, for example, 

in Mandl [3]. 
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If Galileo Had Known Quantum Mechanics 

APPENDIX 7 

Galileo would presumably have been keenly interested in the trans¬ 

formation properties of the time-dependent tfj function lT(q,t) of a free 

particle of mass m, satisfying 

(A7.1) i(5¥//aO-(l/2m)V2¥/ =0; V = (3/dq), 

under the general transformation bearing his name, 

(A7.2) q -> q' = -Rq + Vf + a; t-+t' = t + b, 

where A is a constant orthogonal matrix representing a spatial rotation, 

V a constant vector representing a pure Galileo transformation, a a 

constant vector representing a displacement in space, and b a constant 

representing a displacement in time. 
Denoting the set of numbers (A,V,a,6) by 0, the transformation 

(A7.2) should be representable by a unitary operator U(G) so that, up 

to some phase factor, |q(«)>' = U(G)\q(t)> = |q'(*')> is the transformed 
state. Accordingly, the state can be characterized in the transformed 

frame by a ifj function ¥'(q,t) which differs from the untransformed </> 

function taken at the transformed point at most by a phase factor, 

(A7.3) ¥'(q ,0 = ei/(q',OW,0. 

Invariance under Galileo transformations means W and W must satisfy 

the same Schroedinger equation. Thus 

(A7.4) ;(a¥"/d«)-(l/2m)V2¥" - 0. 

This equation imposes conditions on the phase function /. Using the 

relations, following from (A7.2) and the orthogonality of R, 

(A7.5) 

(d/dt) = (3/an+V-V'; V = RV so that V2 = V'2 

one can write (A7.4) upon substitution of (A7.3) 

(A7.6) [ - (df/dt') - V • V'/+ (l/2m) (V'/)2 - (t/2m) V'2/] e®' ¥ 

+ i[V-(llm)V'f]eifXT¥ 

+ [i{d¥ldt,)-{ll2m)V'2¥]eif = 0. 
341 
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The last term vanishes on account of the Schroedinger equation (A7.1) 

(which must hold for any q and t), and since W and V' W are linearly 

independent, one has the two conditions 

(A7.7) V'f = mV 

(A7.8) (df/dt') = — V • V'/+ (l/2m) (V'/)2— (i/2m) V'2/. 

Substituting (A7.7) into (A7.8) and keeping in mind that V is a constant 

vector, one finds 

(A7.9) (df/dt') = -±mF2. 

Equations (A7.7) and (A7.9) can be integrated immediately, yielding 

(A7.10) 

/(q',£') = mV■ q' — \mV“t' + C (C a constant). 

The remarkable conclusion to be drawn from this result is that the phase 

factor f cannot, in general, be eliminated by judicious choice of the integration 

constant C. This has a profound consequence, first noticed by Bargmann, 
namely: 

It is impossible to have in nonrelativistic quantum mechanics states which 

are linear superpositions of states describing particles of different masses. 

This means one cannot grasp in nonrelativistic quantum mechanics states 

with a mass spectrum, or states describing unstable elementary particles. 
To see this, consider a linear superposition 

(A7.ll) V = W1 + W2 

where W1 and W2 transform according to (the constant phase C has been 
put equal to zero for simplicity’s sake) 

(A7.12) 

K(q,0 = {exp [ma(V-q' — -|F2£')]} lFa(q', tj; (a = 1,2). 

Now perform the following sequence of transformations, amounting to 
the identity, 

(A7.13) 

Gi = GiGiG2Gl = (I, -V, 0,0) (7,0, - a, 0) (/, V, 0, 0) (/, 0, a, 0) 

= (A 0,0,0) 

corresponding to a sequence of coordinates and velocities 

(A7.14) 

= q; q3 = q + V£; q2 = q + v^ + a; qx = q + a 
G = C, ts = t; t2 = t; tx — t 

V4 = -V; V3 = 0; V2 = V; V, = 0 
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giving rise, for each ma, to a sum of phases 

(A7.15) 

2 = ™a[V-(q2-q4)-F2*] = m*V-a 
3=i 

so that the transformed tp function becomes 

(A7.16) 

WT = U(Gj) W = [exp (imx V • a)] XP1 + [exp (im2 V • a)] ¥/2. 

This means, a transformation amounting to the identity can affect the 

norm of the superposition (A7.ll). In other words, the relative phase of 

two f functions describing particles of different mass is completely 

arbitrary if one demands Galileo invariance. To avoid inconsistency one 

must conclude that a superposition of the type (A7.11) is without mean¬ 

ing, and that there can exist no operators which sponsor transitions 

between states characterized by different masses and m2. This amounts 

to existence of a superselection rule which guarantees the strict conservation 

of mass in nonrelativistic quantum mechanics. 

It should be noted that this conclusion is not valid in relativistic quantum mechanics. 

Consider, for example, the equation governing the ip function of a spinless particle 

(A7.17) □ 2 <A — to2 i/< = 0 

which is invariant under the inhomogeneous Lorentz transformations 

(A7.18) x -*x' = Lx + u 

where A is a constant Lorentz matrix and u a constant four vector. Demanding that 

(A7.19) K(x) = eWx,) </'(*') 

satisfy the same equation 

(A7.20) = 0 

leads, because of 

(A7.21) □ = £□' so that D2 = d'2. 

to the equation 

(A7.22) gw g]ei^ + 2iU' gW 0e*' + [n'V-m*£lc<' = °- 

The last term vanishes on account of (A7.17), and the remaining conditions are 

(A7.23) □'? = 0; □,0fD'0r = °» 

which require 

(A7 24) Q = constant. 

It is perhaps instructive to set down here the alternative treatment of 
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the Galileo transformation in momentum-energy representation, in 

which a free particle of momentum k and energy to is characterized by the 
ifj function 

(A7.25) 0{k,u>) = j e»M-k q] xJ/(q,t)dqdt 

satisfying the Schroedinger equation 

(A7.26) [to-(P/2m)]0(k,to) = 0. 

The transformed function is then given by 

(A7.27) 0'(k,co) = j e^-11 tl]'F'(q,t)dqdt. 

Using 

(A7.28) q = —Vf' + Vfe —a); t = t'-b, 

and the transformation formulae (A7.3) and (A7.10), the integrand can 
be expressed in terms of the transformed coordinates q',t', 

(A7.29) 

0'(k,co) = J exp{i-[a>(r-6)-k-i?-1(q'-Vr + V6-a) 

+ mV-q' -\mV2t' + C]} ^(q', t')dq' dt'. 

Extracting the terms not containing q',t’ from under the integral, 

dropping the primes on the integration variables, and using the ortho¬ 
gonality of R by writing ki?_1a = i?k a, etc., one obtains 

(A7.30) 

&'(k,aj) = exp[i(-oj& + i?k-a-W2k-V + C')] J exp[i(a/f-k'-q)] 

^(q, t)dq dt 
with 

(A7.31) M = co + X ■ Rk + \mV2 \ k' = Rk + mX. 

The quantities to' and k' can be called the transformed energy and 
momentum, because they satisfy 

(A7.32) to'2-(U2/2m) = to2 —(P/2m). 

Expressing to and k in terms of to' and k', 

(A7.33) to = to' —V-k' + \mV2\ k = i?_1(k'-mV), 

one can write the transformation formula (A7.30) 

(A7.34) 

0'(k,to) = exp{i[(6/2)mF2-mV-a + G]}exp[i(-6to' + a-k')]0(k',to'). 
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As in case of the coordinate representation, the phase factors cannot be 

eliminated entirely by judicious choice of the constant C. The sequence 

of transformations (A7.13), corresponding to 

(A7.35) 

k4 = k; k3 = k + mV; k2 = k + raV; k4 = k 

a4 — Oj a3 = —a; a 2 = 0 ] a4 — a 

64 = 0; bs = 0; b2 = 0; bx = 0 

give once again, for each ma, rise to a change in phase 

(A7.36) 2 aj‘kj — a1-k1 + a3*k3 = -maa-V 
j 

leading again to Bargmann’s superselection rule. 

A representation for the generator u of the pure Galileo transformation 

characterized by the parameter V, so that in momentum-energy 

representation 

(A7.37) |k,aj>T = |k',o/> = U(V)|k,ca> - eiV'u|k,ca>, 

can be obtained by demanding, in accordance with (A7.31), 

(A7.38) 

k' = <k', o/|P|k', a»') = <k, o>|P|k, a>) + mV — k + mV 

and 

(A7.39) 

co' = <(k', u)'\H\K, o/> - <k, o>|#|k, o») + <k, co|V-P|k, o>> + |mF2 

= o> + V-k + ±mF2. 

Using the expansions 

g—iV u p giV u = P_i(V-[U)P] + ... 

(A7.40) 

g—iv u Hgiv u = —i(V- [u) H] + (i2/2!) (V- [u) (V- [u) H]\ —f... 

one has then the requirements 

(A7.41) — i(V-[u)P] = mV 

(A7.42) 

-i(\-[u)H] = VP; —(i/2) (V-[u) (V-P)] - \mV\ 

The second equation (A7.42) is identically satisfied if (A7.41) holds, and 

for the unknown operator u there remain the C.R.s 

(A7.43) [UjPk\ = imSjk] [u H] = iV, 
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which can be solved by putting 

(A7.44) u = im(d/dF) +iP(djdH). 

The general Galileo transformation is thus associated with the 10 

operators 

j = l+s = (QxP)+s = -i(Px a/ap)+s, of total angular momen¬ 

tum, generating the rotations R, 

u = im(d/dP) +iP(d/BH), which can be identified as coordinate operator 

Q = mu, generating the pure Galileo transformations V, 

P, of linear momentum, generating the displacements in space a, and 

H, of energy, generating the displacements in time b. 

They satisfy the C.R.s 

(A7.45) 

[J1J2\ = hJ3 (cycl.); [JiUz\ = iu8 (cycl.); 

[Uj Uk] = 0; 

[JiP2] = iP* (cycl.); WkH] = 0 

[UjPk\ = im8jk; [ukH] = iPk 

[PjPk] = 0; [PkH] = 0 

[HH] = 0 

It is interesting to note that the algebra engendered by the Galileo 

transformation admits the two invariants 

(A7.46) 

P2-2mH = 2 mE and [mJ-(uxP)]2 = m‘2S2 = m2s(s+ 1), 

where E and S can be interpreted as the intrinsic energy and intrinsic 

angular momentum of the particle under consideration. At this point 

there becomes apparent the feasibility of a nonrelativistic quantum 

mechanics of particles of mass m = 0, which are characterized by two 

invariants, P2 and (u x P)2, with u = iV(djdH). Further details of this 

intriguing aspect of invariance under Galileo transformations can be 
found in the references listed below. 
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263 
Spin, 

-chirality space, 154, 162, 238 
dependent interaction, 272 
dichotomic nature of, 7 
dynamics of, 47 
flip, 52, 81 
magnetic moment, 80 
matrix, 22 
neutrino, 123 
nonrelativistic, 346 
operator, 14, 51 
-polarization space, 136 
state, 5-7, 11, 26, 125 
visualization of, 50 

Stability of photon, 185 
State, 

antisymmetric, 242, 266 
boson, 117, 131-149 
complete, 244 
coordinate, 267 
fermion, 8, 111, 117, 119-129 
final, 197, 255 
full, 120 
ground, 95 
ingoing, 201 
initial, 197, 255 
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State—continued 
interference of observation with, 11 
invariant, 105 
multiple particle, 241 
nucleon, 263 
occupation, 8, 117, 120, 132, 306 
optimum, 3, 66 
orbital, 244 
outgoing, 201 
picture, 44, 47, 199 
polarization, 244 
projection of a, 6, 12, 19 
pure, 3, 5-9, 25, 26, 49 
scattering, 201 
specific conjugality, 251 
spin, 5-7, 11, 26, 125 
stationary, 261 
symmetric, 242, 266 
time-reversed, 255 
two-photon, 234, 235, 243, 325 
vacuum, 116, 120, 133, 154, 252 
vector picture, 38 
vector space, 8, 19-23 

Stationary state, 261 
Statistical interpretation, 36 
Stern-Gerlach experiment, 5, 6, 11, 

32, 34, 51 
Stokes’, 

parameters, 146 
theorem, 171 

Strangeness, 269, 277-279 
Strong, 

coupling, 194 
interactions, 169,177,178,263,274 

Structure constants, 179, 329 
Subensembles, 39-41 
Substratum, 116 
Subsystems, 28 
Superconductivity, 289, 306 
Superfluidity, 71-75, 289 
Superposition of state vectors, 7 
Superselection rule, 85, 110, 112, 125, 

126, 129, 163, 233, 278, 285-287, 

343 
Symmetric state, 242, 266 
Symmetry (see also Invariance), 

broken, 269 
consequences of, 

inversion, 233-240 
particle conjugation, 251-254, 

286 

Symmetry—continued 
consequences of—continued 

permutation, 241-249 
rotation, 233-240 
time reversal, 254-250 

Symplectic transformation, 110 

T 

Temperature, 
absolute zero of, 72 
critical, 289 

Time, 
-even observables, 101 
-like photons, 147 
-odd observables, 101 

operator, 105 
-ordered product, 203 
-ordering operator, 197, 200 
-reversal, 100, 125, 128, 154, 164, 

254-260, 278, 287, 305 (see also 
Reversal of motion) 

Trace of measurement symbol, 35 
Transformation, 

canonical, 299 
Fourier, 68 
Galileo, 60, 341-346 
gauge, 146, 148, 173, 180 
infinitesimal, 83 
Lorentz, 146, 151, 179, 188, 327- 

329 
phase, 173, 177, 239 
state vector space, 19-23 
symplectic, 110 
unitary, 26 

Transition, 
amplitude, 255 
optical, 239, 254 
probability, 198 

Translation, infinitesimal, 84 
Transposition operator, 241, 245- 

249, 252 
Transversality condition, 141, 143, 

147, 323, 326 

U 

Uncertainty relations, 65-67, 291 
Unitarity, 202 
Unitary, 

operator, 20 
transformation, 26 
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Unit vectors, 7, 8 
Urmaterie, 116 

V 

Vacuum, 
energy, infinite, 160 
ether theory of, 209 
expectation value, 205, 218 
graph, 221 
parity of, 96 
polarization, 185 
propagator, 220 
quasi, 115, 116 
quasi particle, 301 
state, 116, 120, 133, 154, 252 

Variables, canonical, 43, 66 
Variational principle, 177 
Vector, 

direct product of, 8 
displacement, 60 
eigen, 12 
field, 178 
mesons, 183, 184, 195 
notation, 12 
particles, 182 
potential, operator of, 144, 234, 252 
spherical harmonic, 143, 323-326 
state, 5 

Velocities, addition of, 61 

Velocity, 
critical, 71-75 
operator of kinematic, 168 

Vertex part, 220, 225, 230 
Virtual, 

annihilation and creation, 211 
elementary acts, 196 
particles, 217 
propagation, 210 
state, 271 

Viscosity, 72 
Visualization of spin, 51 
Vortex line, 74, 75 

W 
Weak, 

coupling, 194 
interaction, 90, 169, 263, 286 
reflection, 286, 287 

Wick’s theorem, 206 
Wigner coefficients (see Clebsch-Gor- 

dan coefficients) 
World lines, 188 

Z 
Zero, 

absolute, of temperature, 72 
point energy, 144, 289 
sound, 307 






