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Preface

Twenty years ago Michael Berry (Berry 1984) demonstrated that the standard descrip-
tion of adiabatic processes in quantum mechanics is incomplete. Berry noticed that if
the Hamiltonian of the system depends on a number of parameters which vary adiabat-
ically during the evolution, then a cyclic variation of the parameters is accompanied
by a change of wave function by an additional phase factor, which hitherto had been
completely ignored. This additional factor, known today as the Berry phase, possesses
a remarkable geometrical property — it depends only upon the geometric structure of
the space of parameters and does not depend on the duration of the evolution.

Almost simultaneously, a similar phenomenon was observed by J. Hannay (Hannay
1985) within the framework of classical mechanics.! The classical counterpart of the
phase of the wave function is the phase of quasi-periodic motion — the so-called an-
gle variable in the action-angle representation of integrable systems. These classical
geometric phases are called Hannay’s angles.

It was soon realized that Berry’s remarkable observation finds a surprisingly broad
spectrum of applications. An analog of Berry’s geometric phase is manifested in many
apparently unrelated phenomena like, for example, the Foucault pendulum, the passage
of photons through optical fibres, the spectra of molecules, the quantum Hall effect,
and anomalies in quantum field theory. Why is this so? It turns out that they have a
universal mathematical description. B. Simon (Simon 1983)? was the first who ob-
served that Berry’s phase may be interpreted as a purely geometric object, namely as a

lInterestingly, many important discoveries connected with the notion of geometric phase were made in
Bristol. For the Bristol Anholonomy Calendar see Berry 1991, and the review Berry 1990b.
2Actually, due to the referee’s delay Simon’s paper appeared in 1983 and Berry’s in 1984.
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holonomy in a certain fibre bundle. This way an elegant and fairly sophisticateq mathe-
matical theory of bundles and connections enters elementary quantum mechanics. The
bundle constructed by Simon, called by physicists the spectral bundle, is uniquely de-
termined by the spectral properties of the system’s Hamiltonian. Simon showed that
the adiabatic evolution considered by Berry defines the so-called parallel transport of
a vector from the system’s Hilbert space along a curve in the parameter space. Now, a
vector transported along a closed curve does not in general return to its original form
but acquires a phase factor predicted by Berry. This geometrical phenomenon is well
known in classical geometry: a vector parallel transported along a closed curve on a
two-dimensional sphere does in general change its orientation by an angle of rotation
equal to the solid angle subtended by the curve. As we shall see, this 19th century
observation finds new, interesting applications in various branches of physics.

Actually, the theory of fibre bundles was successfully applied in the seventies (of the
last century) in the mathematical formulation of gauge theories — electrodynamics and
its generalization known as Yang-Mills theory. Therefore, it is not surprising that there
are many analogies between gauge theories and geometric phases. For example, such
classical topics as magnetic poles and instantons find new and fresh illustration when
dealing with geometric phases.

There are several reviews that focus on various aspects of geometric phases. Berry’s
articles Quantum Adiabatic Holonomy (Berry 1989a) and The quantum phase, five
years after (Berry 1989b) constitute a beautiful overview and summarize the first, most
exciting period in the development of the subject. The articles Topological phases in
quantum mechanics and polarization optics (Vinitskii et al. 1990) and Polarization of
light and topological phases (Bhandari 1997) presents the application of geometric
phases in optics. Phases in molecular physics are reviewed in The geometric phase
in molecular systems (Mead 1992) and The Geometric Phase in Quantym Mechan-
ics (Bohm 1993b). Actually, the third edition of Bohm’s Quantum Mechanics (Bohm
1993a) contains an introduction to the subject together with examples from molecular
physics. Moreover, there are two collections of papers: Topological Phases in Quan-
tum Theory, edited by Markowski and Vinitskii, and Geometric Phases in Physics with

excellent commentaries by Shapere and Wilczek. Finally, there are the reviews Berry

S

phase (Zwanzinger et al. 1990) and Geometric phases in physics (Anandan et al. 1997),
which provide very useful guides to the literature on geometric phases. Although in-
terest in the geometric phase dates to the mid 1980s, the beginnings of this problem
came much earlier. Exciting historical reviews may be found in Anticipations of the
geometric phase (Berry 1990b) and the appendix of Topological phases in quantum
mechanics and polarization optics (Vinitskii et al. 1990). Actually, when this book
was completed there appeared a monograph, The Geometric Phase in Quantum Sys-
tems by Bohm et al. (Springer 2003), with a thorough introduction and applications
from molecular and condensed matter physics.

Why write yet another book on geometric phases? What distinguishes this book
from other texts is that it covers both quantal and classical geometric phases from a
unified, geometric point of view and at a rather sophisticated level. Moreover, it pro-
vides insights into the relationships between quantal and classical phases which have
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not been emphasized previously at the textbook level. This book is addressed to grad-
uate students in mathematical and theoretical physics, as well as theoretical physicists
and applied mathematicians. We hope that it helps the reader to enter the exciting world
of geometric phases in classical and quantum mechanics and to feel their elegant, co-
herent mathematical description. It can certainly be used as a supplementary textbook
in a course on differential geometry for physicists, as well.

To achieve our goal we start with the mathematical background in Chapter | and
plunge the reader into the arena of differential geometry. This introductory chapter
also includes basic facts from Lie groups and algebras and concentrates on fibre bun-
dles and connections, which serve as the main tool to study geometric phases. The
reader will find a detailed exposition of the celebrated Hopf fibrations and several
physical illustrations as magnetic poles and instantons in Yang-Mills theory. Having
at hand the mathematical tools, we start in Chapter 2 to investigate the physics of ge-
ometric phases. The reader learns about adiabatic theorem in quantum mechanics, the
quantal adiabatic phases of Berry, and their non-abelian generalization due to Wilczek
and Zee. The presentation of the physical side of the problem is simple and requires
only basic notions from quantum mechanics; it should be accessible for mathemati-
cians interested in theoretical physics. The mathematical side uses the previously in-
troduced notions of fibre bundles and connections, and stresses the geometric aspects
of adiabatic evolution.

Chapter 3 deals with adiabatic geometric phases in classical mechanics. Here we in-
troduce basic facts from symplectic geometry, Hamiltonian mechanics and integrable
systems. It is shown how the classical adiabatic theorem leads to classical geometric
phases — Hannay’s angles. This chapter also includes many examples of classical sys-
tems displaying geometric phases. In Chapter 4 we present the geometric approach to
classical phases using the mathematical language of bundles and connections. It in-
troduces elegant geometric constructions: momentum maps, the celebrated Marsden—
Weinstein reduction procedure and finally the Hannay—Berry connection. This chapter
is illustrated by the dynamics of the rigid body — a system where the analog of the
geometric phase was already observed in the 19th century.

___Chapter 5 describes the natural geometric structure of quantum evolution. The stan- -

dard approach to nonrelativistic quantum mechanics is based on a complex Hilbert
space. However, as is well known, the Hilbert space is not an appropriate phase space
for the quantum system. Any two unit vectors differing by a phase factor define the
same physical state and hence they are physically equivalent. Therefore, the true quan-
tum space of states is a projective Hilbert space — the space of equivalence classes
(or the space of rays). A projective Hilbert space is endowed with two geometric struc-
tures — a Riemannian metric and a symplectic form. Hence, the geometric structure
of quantum evolution is much richer than its classical counterpart. We show that sym-
plectic structure is responsible for the so-called Aharonov-Anandan geometric phase
whereas metric structure is closely related to the beautiful notion of the Pancharat-
nam phase. Finally, we present the geometric framework for the quantum evolution of
mixed states and the corresponding nonabelian Uhlmann geometric phase. The recent
proposal of interferometric measurement of the geometric phase for mixed states is
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also included. The geometric framework applied to quantum mechanics enables one
to get more insight into the structure of the quantum space of states and deserves to be
more widely known. We stress that this topic has not been so extensively discussed in
the literature on geometric phases. Recently, it received considerable attention due to
the rapid development in the field of quantum information theory.

Finally, Chapter 6 shows the geometric phases “in action.” It includes several stan-
dard examples such as the appearance of geometric phases in optics and molecu-
lar physics. We present coherent derivations of the Aharonov—Bohm and Aharonov—
Casher effects using the underlying symmetries of nonrelativistic quantum mechanics.
We show how the geometry of fibre bundles enters the highly nontrivial physics of
quantum Hall effects and show how topology explains the quantization of Hall conduc-
tance. Moreover, we review Berry and Robbins’ (Berry and Robbins 1997) approach
to the spin-statistics theorem. We close this chapter with a discussion of the recent sur-
prising application of geometric phases to quantum computation — geometric phases
are used to model quantum gates in a quantum computer. This example shows that the
subject of geometric phases is still alive and perhaps one can see just another manifes-
tation of geometric phases in the near future.
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1
Mathematical Background

The mathematical background required for the study of geometric phases in classi-
cal and quantum mechanics is rather extensive. The aim of this introductory chap-
ter is to provide a background of some basic notions of classical differential geom-
etry and topology. Classical differential geometry is now a well established tool in
modern theoretical physics. Many classical theories like mechanics, electrodynamics,
Einstein’s General Relativity or Yang-Mills gauge theories are well known examples
where the geometrical methods enter in the natural and very effective way. As we
shall see throughout this book, also quantum physics shows its intricate beauty when
one applies an appropriate geometric framework. All this proves Wigner’s celebrated
statement about the “unreasonable effectiveness” of mathematics in natural sciences.

1.1 Manifolds, forms and all that

1.1.1 Basic notions

The concept of a manifold generalizes the concept of a smooth surface or a curve in
R3. Manifolds occur in all areas of physics. Whenever one speaks about spaces, like
a space of states, configuration space, parameter space or a physical space-time, one
usually deals with manifolds.

A topological space M is called an n-dimensional topological manifold if it looks
locally like a Euclidean space R”, or, more precisely if there exists a family of open
subsets (U;, i € I) of M such that

L. itcovers M, ie, | J;.; Ui = M,

iel



2 1. Mathematical Background

2. foreachi € I there is a homeomorphism (continuous, invertible map)
@i Ui — o) C R".

A pair (Uj, ¢;) is called a chart or more often a local coordinate system. Since ¢; :
U; — R”, we may represent ¢; as follows:

1 2
Yi = (x(,'),x(,'), ,x?,')) ,

where xz.) Ui — R, fork =1,2,..., n. The maps (x(li), x(zl.), . ,xz.)) are called
local coordinates on the patch U;. Moreover, any two charts on M have to be compat-
ible, that is, the overlap map

9ji = 9jo0 1 giUiNU)) —> ¢;(U;NU;) (1.1)

defines a homomorphism for any i, j € I, cf. Fig. 1.1. An overlap map ¢;; describes
how the different charts are glued together. One calls a collection of compatible charts
covering M an atlas. If the maps ¢ i are cN diffeomorphisms, i.e., they are N times
differentiable, then M is called a CV manifold. In particular, C! and C® manifolds
are called differentiable and smooth manifolds, respectively. Throughout this book all
manifolds are assumed to be smooth.

The most trivial example of a differentiable manifold is an open subset U of R”. An
atlas consists just of one chart (U, idy), where idy stands for the identity map on U.
However, usually one needs more than one chart to cover M. An important example is
provided by

Exallnple 1.1.1 (n-dimensional sphere S") S" is defined as the following subset in
R+

n+1

Z(xi)zzl},
i=1

. ’xn-{-l) € Rn+1

\J
Y

Figure 1.1: Overlapping charts on a manifold.

1.1. Manifolds, forms and all that 3

Define two patches Uy and Ug covering S":

Uy = {(xl,... ,x"th e sn

X —1} = §" —{(0,0,...,0, -1},
and

Us = [(xl,... e s

x"+1<1} = §"~{(0,0,...,0,1)} .

In analogy with R? we may call the points {(0,0,...,0,—1)} and {(0,0, ... ,0, 1)}
the south and north poles of S", respectively. Now, let us define two maps: gy :
Unv — R" and g5 : Us —> R” by stereographic projections on the equatorial
plane x"*! = 0 from the south and north poles, respectively. That is,

‘PN(XI,'-- ,xn'H) = m(xl,... ,x"),
and
1
SDS(XI’--- rxn+1) = W(XI"” ,x”) ’

One easily finds that the overlap map ¢y, given by

" -1
ons(x! .., x") = (Z(x")z) (CAIE Y
i=1

defines a smooth map on R" — {0}. This proves that the two charts (Uy, ¢n) and
(Us, ps) provide an atlas on S”. <o

An atlas on a manifold M enables us to develop a differential calculus. A function
fonM,ie,amap f: M —> R, is differentiable if

foorl i @i(Ui) — R” (1.2)

is differentiable for each chart (U;, ;). We shall denote the space of smooth functions
on M by € (M) Consider now achart (U; o= (x1; 7. ; ™)) on M and et x € U:
Define a differential operator V; at x by

Va(f) = Z vi 2 (13)

g el '
for any differentiable function f on U. This construction shows that V; is uniquely
determined by n numbers (VX1 , ..., V) and hence that differential operators at x span
an n-dimensional linear space called the zangent space Ty M at the point x. Elements
from T, M are called tangent vectors (attached) at the point x. Thus, there is a one-to-
one correspondence between differential operators and tangent vectors. Clearly, the set
of differentials

a
B

0
T 9xn

} (1.4)



4 1. Mathematical Background

defines a basis in T, M — the so-called coordinate basis. The n numbers (V! ... , V)
are components of a tangent vector V, with respect to a coordinate basis. From its
definition it is clear that Vy (f) is the directional derivative of a function f at a point x
in the direction of a vector V. An assignment

M>3x — V, e T,M, (1.5)

is called a vector field on M. We shall denote the space of vector fields on M by X(M).

Denote by 7, M the algebraic dual of 7, M, called a cotangent space at x. Physicists
often call elements from 7, M covectors (dual vectors). Having a coordinate basis (1.4)
in Tx M let us introduce the corresponding dual basis in T} M:

{dxl,...,dx"}, (1.6)

such that,

i 2 i

The above constructions of tangent and cotangent spaces enable one to introduce an
arbitrary tensor field on M. We shall call a smooth map

k 1

Msx — Tx) e T¢'M =T,M®..QTIMRIT)M®...Q T*M
(1.8)

a tensor field of type (k, [). Clearly, a vector field is a tensor field of type (1, 0). Any
tensor field is uniquely defined by its components. In particular, using a coordinate
basis in 7, M and T,* M we have

.9 ) ,
— ...k - N Ji
T =T;75 v ®...80 it Rdx''®@...Qdx", (1.9)
where we use the Einstein summation convention. .

Let us consider two manifolds M and N together with a smooth map
¢ : M — N.

The derivative T, ¢ (one calls it also a tangent map) of ¢ at a point x € M is a linear
map

Icgp : TeM — Ty)N ,
such that

[Txp)I(f) = vxl@o f), (1.10)

1.1. Manifolds, forms and all that 5

forany f € C°°(N)and v, € Tx M. Representing ¢ in local coordinates (x!, . . . , x™Y):
¢ =0'Gx',....x™, i=1,...,n=dimN,

the tangent map T ¢ is represented by the n x m matrix
3y

[T, ‘P]ij = Py

x), i=1,...,n, j=1,...,m.

Using amap ¢ : M —> N one may transport tensor fields between M and N. Let w
be a tensor field of type (0, k) on N. A pull-back ¢*w of w is a (0, k)-tensor field on
M defined by

(@ @)x(V1, ..., W) = W) (Tx@@1), ..., Trp(vr)) , (1.11)
forany x € M and vy, ... , v € Tx M. Conversely, a tensor field U of type (/, 0) may
be pushed forward from M to N, giving rise to an (I, 0)-tensor field ¢, U:

@Dpxy(er, .. ap) = Uplprar, ..., pron), (1.12)
where ¢y, ..., € T‘;"(X)N . It is easy to show that if ¢ : M —— N is a diffeomor-
phism, then

oe=(07D". (1.13)

Example 1.1.2 Let V be a (1, 0)-tensor on M, that is, a vector field V = V/ 8/0x7.
Then the pushed-forward vector field ¢, V is given by

;0
(p*V = ((P*V)l i’
dy

where {3/3y/} denotes the coordinate basis on N and

; YU o
(@ V) (p(x)) = g"’jm Vi),

Similarly, if « is a (0, 1)-tensor on N, i.e., a covector field ¢ = «; d yi , then the pulled-
back covector field ¢*« on M is given by

¢*a = (¢*a);jdx’ ,
with
oo on 09 ,
(P ) j(x) = m(x) a;i (p(x)) .

This way, one recovers the well-known transformation rules for vectors and covectors.
<&
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1.1.2 Differential forms

Now we are going to introduce an important class of tensor fields on a differential
manifold that play a prominent role in physical applications.

Definition 1.1.1 A skew-symmetric tensor of type (0, k) is called a differential form of
order k (or simply a k-form).

Denote by A%(M) the space of k-forms on M. Evidently, A¥(M) = {#} for k > n.
Therefore, the space of differential forms on M, denoted by A(M), splits into the
following direct sum:

AM) =P Ak,
k=0

with A%(M) = C®(M). The space A(M) is equipped with two basic operations:
wedge product and exterior derivative.

Definition 1.1.2 A wedge product A (called also the exterior or Grassmann product):

A AR x ANy — AR (1.14)
is defined by
k+0)!
aAB = (1:;!) A@®B), (1.15)

where A is an alternation operator which selects the skew-symmetric part of the (0, k+
D)-tensor a @ B.

For example, if & and B are one-forms, then
(@A B)(v1, v2) = a(v)B(v2) — a(v2)B(v1),

for any vectors v; and vy. In terms of local coordinates ..., x") any k-form « has
the following component representation:

(1.16)

& = —ej pdxt A oadxte o

= (1.17)

One easily shows that
(C( N ,B)il..,ikH = a[il...ikﬂik+1...ik+l] , ‘ (118)

where the square bracket stands for anti-symmetrization.
Example 1.1.3 If o = o; dx’ and 8 = Bj dx/, then

. 1 . .
anB=afjdx’ ANdx] = E(Ol,'ﬂj —a;B)dx’ Adx),
and hence

(@A Bij=a;iBj —a;fi,

in agreement with formula (1.18). &>
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The properties of the wedge product are summarized in the following
Proposition 1.1.1 The wedge product satisfies
L@Apyry=an(BAry),
2. anB=(=D"BAra, wherea € AK(M) and B € AL (M).

Since there is a natural pairing between vectors and forms it is convenient to introduce
the so-called interior product, which is a contraction of a vector field v € X(M)and a
k-form a:

iy © AK(M) — Ay,
that is,

(1.19)

(iv a)i].“ik_l = v]ajilu.ik_] .
Moreover, we declare that i, f = 0 for f € A%(M).
The next operation we are going to introduce enables one to differentiate k-forms.

Definition 1.1.3 The exterior derivative
d : AN — AR
is defined as follows:

o = iaai’—t""‘dxj AdXTUA LA dx
k! 9xJ

Jor any k-form « represented by the formula (1.1 7).

(1.20)

Example 1.1.4 Consider a function f on a differential manifold M. Since a function
is a zero-form one defines its exterior derivative df to be the following one-form:

af . .
7 B df = W dx’ .
Note that
3 f , .
= J i_
d(df) = PRy E dx) Andxt =0,

because the partial derivatives 8; 9 ; J are symmetric in (ij) whereas dx/ Adx! is anti-
symmetric. In particular, if M = R" and (x, ..., x") are cartesian coordinates, then
df reproduces the components of grad f. o

Example 1.1.5 (Differential forms in R3) Let us choose cartesian coordinates
(x1, x2, x3) in R3 and consider a one-form « and a two-form 8. Clearly,

3 .
o = E a; dx’ .
i=1

1S : ,
ﬁ=§ Z ﬂ,-jdx’/\dxf .

i,j=1

1.2n
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Now, since B;; = —Bji, one has §;; = Zz_l €ijkBr, where €;ji is the Levi—Civita | Consider two manifolds M and N andlet ¢ : M —> N be a smooth map. A pull-back
tensor in R3, and hence B i operation induces a map
Ly ' n ik S 1 el i o L AN) — AGM).
B=z €ijkBidx! Adx* = B1dx? Adx® + Brdx® Adx' + B3dx’ Adx” .
2 i jd=l Proposition 1.1.3 The pull-back operation commutes with wedge product and exterior
(1.22) derivative. That is,
We therefore find that pra@np) =¢p*aneg*B, (1.26)
da = Y1dx® Adx3 + Yo dx® Adx' + y3dx' Adx?, (1.23) and
with ¢*(da) =d(p*e) , (1.27)
v = daz  daa vy = da;  da3 _ Oay  Boy (1.24) ) Sor any differential forms o and B on N. In the last equation we use the same letter ‘d’
SR TR P 2T 9 axl’ Toaxt ax2’ ) to denote the exterior derivative on N and M.
and hence the cartesian components of da represent the curl of a vector field @ =
(a1, a2, a3): ; 1.1.3 Integration of forms
do <« ¢ =curle. Differential forms occur implicitly in all branches of physics because they are natural
: objects appearing as integrands of line, surface, and volume integrals as well as their
The exterior derivative of 8 gives ; n-dimensional generalizations. Consider R” with cartesian coordinates (x!, ..., x").
3 : Having a function f : R® — R, one defines an n-dimensional “volume” integral
i , 1 2 3
dp = —dx" ANdx° ANdx® (1.25
P Z;Bx’ ) f — fde:/.../f(xl,...,x")dxl...dx".

and hence, it represents the divergence of the vector field B = (81, B2, B3): Clearly, the value of the integral can not depend upon the particular coordinates chosen

. to parametrize R". In particular, changing coordinates from ..., x" to

b divp . (X',...,%") one finds [ fdV, with
This way one recovers standard vector analysis in R3. Note that d(de) = 0, which &
e dv =Jdv,
reproduces the well-known identity

where J stands for the Jacobian of the transformation, ie., .

s 3 n
aivauria =vU.

~i
Clearly, d(dB) = 0 since d(dB) as a four-form vanishes identically in R3. Moreover, J = det (7) .
if f is a smooth function, then the identity

What is the origin of J? Note that on R” we have a natural n-form dx! A ... A dx™.

curlgrad f =0 One immediately sees that

follows from d(df) = 0 (see the previous Example). > AV A . AT = Jdx' A .. Adx" (1.28)
These simple observations in R? may be immediately deduced from the following

‘ which shows that the convenient notation dV = dx!...dx" actually denotes an n-
Proposition 1.1.2 The exterior derivative satisfies ‘ form, and hence, it should rather be written as follows

1. d2a=d(da)=0, forany ¢ € A(M), dV =dx' A ... Adx".

2. d@AB)=danB+(—DfandB, forae AX(M). ‘ Hence, it is clear that to perform n-dimensional integration one needs n-forms.
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Definition 1.1.4 An n-dimensional manifold M is orientable iff there exists a nowhere-
vanishing n-form t on it.

One shows that a manifold M is orientable if we can cover it by coordinate patches
(Ui, ¢;) having positive Jacobians in each overlap, i.e., det(¢;; (x)) > O for any x €
U; N U;. It should be clear that if M is orientable, then there are exactly two different
ways to orient it. Of course, if M can be covered by a single chart then it is orientable.
For example, any open subset of R” is an n-dimensional orientable manifold.

Example 1.1.6 (Riemannian manifold) A Riemannian manifold (M, g) is a smooth
manifold M together with a smooth tensor g of type (0, 2), called a metric tensor, such
that

1. g is symmetric,
2. for each x € M, the bilinear form g, : TyM x T, M —> R is nondegenerate.
A Riemannian manifold is called proper if
gx(v,v) >0 forallve M, v#0.

Otherwise a manifold is called pseudo-Riemannian. For example, Euclidean space R”
is proper Riemannian, whereas the Minkowski space R1+ is pseudo-Riemannian. Note
that on a Riemannian orientable manifold one may define a canonical volume form.
In the space of differential forms on M one introduces so called Hodge operation (or
Hodge star),

* 0 AKM) — AR (1.29)
by the following formula:
1 L
(*a)il...i,,_k = F |g| Eilu.i,,_.kjl...jkahm]k s (130)
with g := det(g;;) and
@tk = @I e e (131)

Here €;, _;, stands for the Levi-Civita tensor in R”, and g/ denotes the inverse of g;;.
The form *« is usually called the Hodge dual of «. A Hodge star induces a natural
volume form

T:i=x1, (1.32)
where ‘1’ is a constant function on M, i.e., 1(x) = 1 for any x € M. Evidently
r=lgldx! A ... Adx". (1.33)
If M is compact then
Vol(M) := / T (1.34)
M

is called the volume of M (with respect to 7). <&

1.1. Manifolds, forms and all that 11

Consider now an n-dimensional manifold M and let K be a k-dimensional orientable
submanifold of M.! Denote by j : K <> M a canonical embedding. If « is a k-form
on M, then j*u is a k-form on K, and hence one may define an integral of j*« over
K:

(K,a) —> /j*a.
K

Let (y!, ..., y*) denote local coordinates on K, and let the embedding j be described
by
x! = xl(yl,...,yk)
o= 2O 0h
J — .
o= x"(, ... ,yk).

Then if ¢ = El—!ailw,-kdxi‘ A ... A dx%*, the above integral may be rewritten in a more
familiar form:

. 1 dxi dxik
/KJ*a =5 /.../a,-l,“,‘km... oyF dy' A...Adyr, (1.35)

which is a generalization of the line and surface integrals in R3.

To formulate one of the most important results in the theory of integration of
differential forms we need a notion of a manifold with boundary. Let R} = {1, ...,
x") € R" | x! > 0}. Then the boundary, oR", of R”_is defined by R} = {1, ...,
x") | x! = 0}. An n-dimensional manifold, M, has the structure of a manifold with a
boundary when there exists an open covering (U;, ¢;) such that ¢; (U;) defines an open
subset of R’} . The boundary, M, of M is defined by

M =\ Jo @RY) .

i
One sees that the boundary, M, of M is an (n — 1)-dimensional differential manifold.
Example 1.1.7 Let B" be a unit ball in R”:

B" = [(xl,... , XM eR”

Zn:(x"f < 1} .
i=1

1K c M is a k-dimensional submanifold iff for any point x € K there exists a chart (U, ¢) on M, such
that

¢lung : UNK —>(x1,...,xk,0,...,0).
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Then the boundary of B” is an (n — 1)-dimensional sphere,
aBﬂ — Sn—l
which agrees with our intuition of a boundary. O

Note that the notion of a boundary satisfies
’M = 3(OM) = {8}, (1.36)

for any manifold M, that is, a boundary does not have a boundary. In particular, the
boundary of an n-dimensional sphere 95" = a2pntl = {@}. A manifold without a
boundary is called closed.

Theorem 1.1.4 (Stokes theorem) Ler M be an n-dimensional manifold with bound-
ary, and let € A"~ (M). Then

/dw=f w, (1.37)
M oM

where 0 M denotes the boundary of M.

Example 1.1.8 The Stokes theorem generalizes well-known theorems from vector
analysis in R3:

1. If T is a two-dimensional surface in R and A a vector field, then
/curlA-dS: A-dl,
) C=3%

where dS denotes a surface element on X, and dl stands for a line element along
the closed curve C = 9 X.

2. If V is a three-dimensional region in R? and A a vector field, then

/divAdV =?§ A-dS,
14 v

where dV denotes the volume element in R3. This formula is usually called a
Gauss theorem. <&

1.1.4 De Rham cohomology

Recall from the vector analysis in R3 that div (curl A) = 0 for any (smooth enough)
vector field A. However, the converse statement is in general not true, that is, the van-
ishing of div B does not imply the existence of A such that B = curl A. In the case of
differential forms, the nilpotency of the exterior derivative, that is, d> = 0, leads to the
important notion of cohomology. We shall call a form o

i RS
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e aclosed form if dao = 0,
o an exact form if @ = dp for some form B.

Clearly, any exact form is also closed but the converse statement is in general not true.

Example 1.1.9 Consider the following one-form on RZ:

xdy — ydx
=————. 1.38
b= "0ty (1.38)

A simple calculation shows that d8 = 0. Is 8 also exact? Note first, that 8 is not
defined in all R? — certainly we must omit the origin. Thus the manifold in question
is M = R? — {0}. Introducing polar coordinates (r, ¢) in R? we easily find that

B=dy, (1.39)
which seems to prove that 8 is exact. But this is not so. Integrating 8 over a closed

curve C := {x% + y? = 1}, we obtain

2
yg B = dy =21, (1.40)
c 0

which shows that 8 is not exact, since, due to the Stokes theorem, the integral of an
exact form over a closed manifold vanishes. Is there any contradiction? Certainly not.
Note that the zero-form ¢ does not define a function on M since it is not single-valued,
e, o+ 21 =g <&

Let M be a differentiable manifold and denote by Z* (M) and B* (M) the sets of closed
and exact k-forms on M, respectively:

Z5M) = {aeAk(M) ’da:O],

and
| B = [w e afn [3p e A1) a=dp).
Define the following relation in AKX (M):

a ~ oy < ABe A M), a1 —ar=dB.
Clearly,

o] ~ oy = d6¥1=d(¥2.

Evidently it is an equivalence relation, and hence we may define the space of equiva-
lence classes

H*(M) = Z¥(M)/B*(M) (1.41)
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i.e., H¥(M) is the set of closed k-forms which differ only by an exact k-form. It is
called the kth de Rham cohomology group of M (H*(M) is an abelian group, where
the group operation is the addition of k-forms). The equivalence class containing w
will be denoted by [w] and called a cohomology class of w. For [w;] € H¥(M) and
[2] € H'(M) we have

[w1 A w2l = [@1] A [w2] € H (M) . (1.42)

It turns out that on R” all closed forms are exact, that is, all H* (R") are trivial for
k > 0. Moreover,

Proposition 1.1.5 (Poincaré Lemma) Any closed form on a differentiable manifold
M is locally exact, that is, if da = 0, then for any x € M there is a neighborhood U
containing x such thato = dB on U.

Hence, only global properties of M decide whether or not de Rham cohomology
groups are trivial. Now, if ¢ is a smooth map

¢ . M — N,
then it induces a linear transformation
¢ L HY(N) — H*),
defined by
P ([w]) = [p*w] . (1.43)

It turns out that when ¢ is a homeomorphism, i.e., M and N are topologically equiv-
alent, the induced map ¢" is an isomorphism. That is, topologically equivalent mani-
folds have isomorphic cohomology groups. In particular

bi(M) = bi(N) ,
where
b(M) :=dimH*(M), k=0,1,...,n, (1.44)

are the so-called Betti numbers. One may construct the following basic topological
invariant called the Euler characteristic of M-

X(M) =) (~Dfbe(M) . (1.45)
k=0

Clearly, topologically equivalent manifolds have the same Euler characteristic. To see
how the topology enters the game let us consider three topologically different two-
dimensional spaces: the plane R2, the sphere S2 and the torus T2,
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1. M = R2. Clearly H'(R?) = H2(R?) = 0. Closed zero-forms are nothing but
constant functions and therefore H%(R?) = R which leads to x(R?) =1.

2. M = 5% Now HY(S?) = H?(S?) = R and all other cohomology groups are
trivial. One has x (§2) = 2. Actually, it is easy to show that

2 if n iseven
ny _ )
X(S)—{o, if n is odd

3. M = T2, Let 61 and 6, be coordinates on each of the two circles making the
torus 72 = $' x S!. The differential forms d; are obviously closed but not
exact, since the 6’s are defined only modulo 27 and do not define global coordi-
nates. Therefore, b; = 2 (the df’s form a two-dimensional basis) and, as in the
case of 2, HO(T%) = H?(T?) = R which results in x(T'2) = 0.

Summarizing,

0, forM=T2
x(M)y =11, for M =R?2
2, for M = §?

Proposition 1.1.6 A contractible manifold M, i.e., a manifold that may be continu-
ously contracted to a single point, has trivial de Rham cohomology groups H*(M) for
allk > 1.

Let us note that the manifold M = R? — {0} from Example 1.1.9 is not contractible.
One easily finds that

H'R>-—{0h =R,

ie., its first cohomology group is not trivial. We close this section with the beautiful
notion of Poincaré duality.

Proposition 1.1.7 Let M be a compact, connected, orientable n-dimensional mani-
fold. Then

HY(M) = H" * (M),
foranyk =0,1,... n.

Note that Poincaré duality applies to S? and 72 but not to R? — both $2 and T2 are
compact, connected, orientable two-dimensional manifolds and, therefore, H 0cs 2) =
H?(5?), and the same holds for a torus T2. However HOR?) # H?(R?).

1.1.5 Lie derivative

Consider a vector field X on a manifold M. The flow of X is the collection of maps
Fy : M — M satisfying

d
7 Fi(x) = X(F(x)), (1.46)
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for each x € X and ¢ € R. Fixing a point x € M one obtains a map
Rt — Fi{x)e M.

Clearly, this map defines a curve in M called an integral curve of X passing through a
point x. Note, that a flow F; satisfies the following property:

FtOFs=FsOFt=Ft+s- (1.47)

Example 1.1.10 Consider a vector field in R” defined by the linear operator A :
R"* — R™:

R" 5 x — Ax e kR'=R".
The corresponding flow, F;, satisfies
d n
—FX)=AF®X,
dt

and hence
Fx) =ef'x.
The flow property (1.47) immediately follows. <&
Definition 1.1.5 Let X € X(M) and T be a tensor field on M. The Lie derivative of
T with respect to the vector field X is defined by
(LxT)(x) = % (FFT)(x) i (1.48)

where F; is the flow of X.

By the very definition of a pull-back, if 7 is a (k, [)-tensor, then so is £ x7.If fisa
function on M, then Ly f, given by

d opwnl _d o0
Lxf= 3 FD|_=7 o _ =X, (1.49)

is the directional derivative of f along X. Consider now the action of Ly on vector
fields. If Y € X(M), then

LxY =[X,Y], (1.50)
where the Lie bracket (often called a commutator)
[T X(M) xX(M) — X(M),
is defined by
[X,YT) = XFy! — Yko x'. (1.51)
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Finally, let us turn to differential forms. One may show that if w € A(M), then
Lxw = d(ixw)+iydw, (1.52)

where ix stands for an interior product (contraction with X ) —see (1.19). In particular,
we have for any one-form «:

da(u,v) = Ly(a@))— Li(a®) —a(L,v)
v(a)) — u(e()) — a([u, v]) . (1.53)

This equation may be generalized to the celebrated Cartan formula, as follows:

k
do(vg, vy, ..., 0) = Z(—l)i vi [w(vo, Vi, eno s Dy ,vk)]
[ =0

+ Z o([vi,vil,vo, ..., 0, ...

O<i<j<k

J Vg u), (154)

where ¥; denotes the omission of v;. The formula (1.54) may be regarded as a coordi-
nate-free definition of an exterior derivative d.

1.2 Groups, Lie algebras and actions

1.2.1 Basic definitions

A Lie group G is a group that is also a differentiable manifold such that the dif-
ferentiable structure is compatible with the group structure, i.e., the group operation
G x G —> G, defined by (g, h) —> g - h, and the inversion g —> g1 are smooth
maps.

Example 1.2.1 The simplest examples of Lie groups are linear spaces. If V is a linear
space, then the following operations

VXV>5wv) —ut+veV, and Vox — —x eV,

endow V with the structure of an abelian Lie group. Hence R” defines an n-dimensional
Lie group. <&

The most important examples of Lie groups are classical matrix groups.
Example 1.2.2 (General linear group) Denote by M (n, R) the space of n X n real
matrices. Then the general linear group is defined by
GL(n,R) := [X e M(n,R) ] detX # 0 } .
One may show that GL(n, R) is an n?-dimensional differential manifold. The group

operation is a composition of matrices:

GL(n,R) > A,B — A-B e GL(n,R),
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and the inversion map is defined by A —> A~!. Both maps are smooth and so
GL(n, R) is a Lie group. For other matrix Lie groups see Appendix A. <o

Example 1.2.3 Let M be a differentiable manifold. Then a set of diffeomorphisms
o M — M,

defines an infinite-dimensional Lie group denoted by Diff(M). Clearly, the group op-
eration is composition of differeomphisms. &

Recall now that a Lie algebra L is a vector space endowed with a bilinear operation,
[,]1]:LxL — L,
called a Lie bracket,? which satisfies the following two conditions:
L [x,y] ==y, x],
2. [Ix, y1, z1 + [[z. x], y1 + [[y, zl, x] = 0 (Jacobi identity) ,
forany x,y,z € L. If (e1, ... , ep) is abasis in L, then commutation relations

[ei, ej] = f’,?jek, (1.55)

uniquely determine the structure of the Lie algebra. The constants f ’: ; are called the
structure constants of L.

Example 1.2.4 (Matrix Lie algebra) Evidently, a set of real n x n matrices together
with

[A,B]:=A-B—B-A,

defines an n2-dimensional Lie algebra, which we denote gl (n, R). For other matrix Lie

—algebrassee Appendix A. : : : %

Example 1.2.5 If M is a differentiable manifold, then a set of vector fields X(M)
endowed with a Lie bracket as defined in (1.51), gives rise to an infinite-dimensional
Lie algebra. <&

Definition 1.2.1 Consider two Lie algebras (L1, [, 11) and (L2, [, 12)- A linear map
¢ : L1 — L, is a Lie algebra homomorphism or anti-homomorphism iff, respec-
tively,

[¢(x), p(M]2 = ¢(x, yI1) or [¢(x),¢(N]2 = —d(lx,y]1)

forany x,y € L.

2Physicists often call it a commutator.
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It turns out that every Lie group G has a Lie algebra g associated with it, called the
Lie algebra of G, which may be constructed as follows. Any element g € G gives rise
to the following natural mappings:

Ly, Rg : G — G
defined by
Lg(h) :=gh and Rg(h):=hg, (1.56)

for any 1 € G. They are called left (Lg) and right (R) translations. A vector field
X € X(G) is called left-invariant if

(L)X =X, 1.57)

for any g € G, ie., [(Lg)«X](h) = X(gh). One defines right-invariant vector fields
analogously. Denote by X1 (G) the space of left-invariant vector fields on G. Now,
take X, Y € X.(G) and compute [X, Y] as a Lie bracket in X(G) (XL(G) C X(G)).
It turns out that [X, Y] € X1 (G), forany X, Y € X1(G). A pair (X1(G), [, 1) defines
a Lie algebra called the Lie algebra of G. This algebra may be equivalently described
as follows: any left-invariant vector field on G is uniquely determined by its value in
the identity element e € G:

XL(G) > X «— X(e) € T.G.

Take X,Y € X.(G), and let § = X (e) and n = Y(e). Define the Lie bracket in 7,.G
by

&, nl:=1X,Yl(e) . (1.58)
One usually denotes 7,G = g and calls it the Lie algebra of G.
Example 1.2.6 The matrix algebra gl(n, R) is the Lie algebra of GL(n, R). <&
Example 1.2.7 If M is a differential manifold, then the set of vector fields X(M) is
the Lie algebra of Diff(M). <&

1.2.2 Actions of Lie groups
Let M be a smooth manifold and G be a Lie group.

Definition 1.2.2 A left action of G on M is a smooth map ® : G x M —> M such
that

1. ®.(x)=x,forallx e M,
2. @g 0Dy, =Dy, , forallg,, g2 € G,

where e denotes the identity element in G and ®4(x) := P (g, x).
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Sometimes one uses a simplified notation g - x := ®g(x). A right action of Gon M is
defined in the same way with an obvious replacement: instead of the second condi'tion
one has g, 0 ®y, = Py, . In the following section we shall consider only left actions
but everything may be easily expressed in terms of right actions. Clearly, a left (right)
action of a Lie group on a manifold defines a homomorphism (anti-homomorphism)
from G to the group of diffeomorphisms of M:

G > g — ®, ¢ Diff(M). (1.59)

Example 1.2.8 A particular type of group action is defined by a group representation.
This is a left action of G on a vector space V such that ®, is a linear operator in V.
Whenever the dimension of V is finite, say n, each element g € G may be represented
by an n X n matrix from GL(n, R). <

Having defined an action ® of G on M one introduces an orbit passing through a point
x eM:

O ={ 0,0 |ge6} c m, (1.60)
and the isotropy subgroup of ® at x by
Gx={geG]c1>g(x)=x}cG. (1.61)
It is evident that Oy = G/G,. We may define a natural relation between points of M:
x~y = dgeG, y=>(x),
that is, x and y belong to the same orbit. An action is said to be

1. Transitive if there is only one orbit, i.e., for every two points x, y € M there is
an element g € G such that y = ®,(x);

2. Effective (or faithful) if &y = idy implies g = e, i.e., the map g —> &, is
one-to-one;

3. Free if it has no fixed points, that is, ®,(x) = x implies g = e. Note that the
action is free iff Gy = e for all x € M. Evidently, every free action is effective.

Let us observe that each element & € g defines a one-parameter subgroup of G. Indeed,
let X¢ € X.(G) be a unique left-invariant field corresponding to £, i.e. X¢(e) = &.
The flow property (1.47) implies that the integral curve g¢ (¢) of X¢, passing atz = 0
through a point e € G, satisfies

ge(t)ge () = ge(t1 + 12) (1.62)
and hence g (1) defines a one-parameter subgroup of G. A map
g 2§ — exp() :=ge(1),

is called an exponential map.
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Definition 1.2.3 Suppose that the map ® : G x M —> M is a left action of a group
G on a manifold M. For any & € g define

d
Xe(x) == o D (g (1), x) o (1.63)

X¢ is a vector field on M called the infinitesimal generator of the action ® correspond-
ingtoék.

Example 1.2.9 When G = GL(n, R) acts by linear operations on R”, one has
exp(tX) =1, +1X + %(zx)2 +..., (1.64)
for any X € gl(n, R). The flow property follows now from
exp(t1 X) - exp(X) = exp((t1 + )X) .
Note that

d
Xx = — exp(tX)| =X, (1.65)

that is, the infinitesimal generator Xx corresponding to X is X itself. <o

Let us observe that the tangent space to an orbit O,, passing through a point x € M,
is spanned by the corresponding infinitesimal generators:

1,0; = { X () g e g} (1.66)

for any point y € O,. Moreover, the following subspace of g:

& :={569‘X5(x) =,,,,0,, ] - (1.67)

defines a Lie algebra of the isotropy group G,.
Proposition 1.2.1 Let ® be a left action of G on M. Then the map

g3& — X e X(M) (1.68)
is a Lie algebra anti-homomorphism:
[Xg, X,,] = _X{E,'I] . (1.69)

It is clear that left and right translations (L, R,) define left and right actions, respec-
tively, of the group on itself. The following composition:

Iyz=LgoR,1 : G — G, (1.70)
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is called an inner automorphism of G. Note that I,(e) = geg™! = e and, therefore,
the tangent map

T.l; : .G — T,G 1.71)
defines a linear operator on 7.G, i.e., on the Lie algebra g of G. The map
G > g — T.I; = Ad; € Aut(g) (1.72)

is called the adjoint representation of G.

Example 1.2.10 For the matrix groups one finds the following well-known formula:

d
Ada(X) = — (A - exp(tX) - A—‘)| J=AX-AT (1.73)

where A € GL(n,R), and X € gl(n,R) . <&

Example 1.2.11 Consider the standard (left) action of the rotation group SO(3) on
R3 defined by

&4 (x) := AX, (1.74)

forany x € R3and A € SO(3). Clearly, the rotation group SO(3) is a Lie subgroup
of GL(3,R) and the corresponding Lie algebra so(3) consists of three-dimensional
antisymmetric matrices, and hence is isomorphic to R3. Define the following basis in
so(3):

0O 0 0 0 0 1 0 1 0
s1i=1 0 0 1 , 8= 0 0 0 , s3=( -1 0 O
0 -1 0 -1 0 0 0 00

(1.75)

Each s; generates the rotation about the corresponding kth axis. One easily recovers
the standard commutation relations of so(3):

3
[si, 51 =) €ijicsk . (1.76)
k=1

The isomorphism between so(3) and R3 may be established as follows:

w

R >x= (x1,x3,Xx3) <—> X:= Z xisi € so(3). .77

i=1
It is easy to prove that

Adpg:=A-8-A =137, (1.78)
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with z = Ax, and hence the following diagram commutes:

A

R — R3
Ad,

so(3) ————  s0(3).

1.2.3 Homogeneous spaces

Definition 1.2.4 A manifold M on which a Lie group G acts transitively is called a
homogeneous space of G.

If M is a homogeneous space of G, then all isotropy groups G, are isomorphic. Denote
by H the common isotropy group. One may introduce the following relation between
elements of G:

81~ 8 = IheH, gr=hg .

Clearly, it is an equivalence relation, and hence one may define a space of equivalence
classes G/ H, that is, the space of left cosets gH of H in G. Now, if M is a homoge-
neous space of G, then

M= G/H . (1.79)

Example 1.2.12 Clearly, G is a homogeneous space of G, i.e., the left action L, :
G —> G is transitive. In particular, R" is a homogeneous space (since R” is an
abelian group, cf. Example 1.2.1). <&

Example 1.2.13 (Spheres) Consider a unit sphere " in R”*!. The orthogonal group -
O(n + 1) acts transitively on §": if A € O(n + 1), then for any x € R*HL | Ax] = Ix].
To find the common isotropy subgroup H, let us look for the isotropy group of e; :=
(1,0,...,0). It consists of all elements of the form

110
A= (515)
where B represents an arbitrary O (n)-rotation. Thus H = O(n) and, hence,

o O+ 1)
St = ——_O(n) . (1.80)

The group SO (n + 1) also acts transitively on S”, with H = SO (n). Therefore, we
may identify S” with the quotient SO(n + 1)/S0(n).
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One may apply the same procedure in the complex and quaternionic cases. In the
complex case one has a transitive action of U (n + 1) on the unit sphere 2+l cntl
Wwith an isotropy subgroup H = U (n). Therefore,

52n+l ; U(n + 1)

o (1.81)

’

or using SU (n), one gets §2H = SU( + 1)/SU@n).

In the quaternionic case (cf. Appendix B) the symplectic group Sp(n + 1) acts tran-
sitively on the unit sphere §4+3 in H"+!, with an isotropy subgroup H = Sp(n),
which gives the following representation for sin+3;

S4n+3 >~ &)(n_—}—l) (1.82)

Sp(n)
The above representations of spheres will play an essential role in what follows. <

Example 1.2.14 (Projective spaces) Let IF be a field (R, C or H). An F-projective
space FP" is a space of F-lines in F"t1, that is, FP" is a set of equivalence classes
with respect to the following equivalence relation: if x, y € F**!, then

X~y < 3IreF, y=xr-x.

Let us consider the complex case, which is the most important in physical applications.
Let us restrict the above relation to the unit sphere in C**1:

sl {ze«:"+1 ‘ 12| =1}.
Now, if z; and z; are two points from §2n+1 then
21 ~ 7 < 3JaeR, z,=¢%.

The set of equivalence classes $2*+1/ ~ is the complex projective space CP". Note

that we have a natural action of a Lie group U (1) on §#**1;

U(l) X S2n+1 — SZn+1
defined by
€%, 20 — €%z,

for any z € §2"*1. Clearly, the complex projective space CP" coincides with the space
of orbits of the above U (1)-action, i.e.,

cp" = st uq). (1.83)
Recalling (1.81), we have another representation:

ne U+
CpP" = _—_U(n) <UD (1.84)
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Let us note that there is a natural action of U (n+ 1) on CP". Letz € C"*! and denote
by [z] the corresponding equivalence class (i.e., complex projective line) in CP". For
any U € U(n + 1) define

Ulz] :=[U1z].

Clearly, this action is transitive and has H = U(n) x U(1) as a common isotropy
subgroup.

The above arguments may be easily repeated in the real and quaternionic cases. In
the real case one has a transitive action of O (n + 1) on RP” with an isotropy subgroup
0 (n) x O(1) and, therefore,

omn+1)
RPPZ —————— | 1.85
o) x 0(1) ( )
or equivalently, using (1.80),
RP" = §"/0(1) = S"/Z,, (1.86)

since O(1) = Zp = {1, —1}. In the quaternionic case

Spin+1)

HP" = 500 < 570 (1.87)

or, using (1.82),
HP" = $"*l/sp1) = $*H1/sU2), (1.88)
since Sp(1) = SU(2). <

1.2.4 Lie algebras and differential forms

Having learned about differential forms and Lie algebras let us combine these two

notions and consider the space A(M) ® L, i.e., a set of L-valued differential forms on
a manifold M, with (L, [, ]) being a Lie algebra. If o € A¥(M) ® L, then

ay(vy,...,m)eL, (1.89)

for any vy, ..., v € TyM. Let (ey, ... ,e,) be a basis in L. Any L-valued form o
may be written as

a=cd Qe , (1.90)

with &' € A(M). Thus «!, ... , o are ‘ordinary’ forms on M. Now, a Lie bracket in

L may be extended to the following operation in A(M) ® L:

[,]: AfeL) x AlmyeL)y — A eL, (1.91)
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defined by
r . r . .
[0, B]:= Y @ AB) ®leiejl= --Zl e np) e, (1.92)
i,j=1 i,j=

forany @ € A¥(M)® Land B € A'(M)® L.
Proposition 1.2.2 The bracket operation (1.92) satisfies the following properties:

1. [a, Bl = (=D¥*[B,al,

2. (=D e, B1, ¥1+ (=)™ [ly. @), B+ (=DM[(B. ¥],.21 =0,

3. dla, Bl = [da, B1 + (—1)¥[e, dB],

for any L-valued k-form a, I-form B and m-form y on M.

If L is a matrix algebra L = gl(n, R), then a wedge product operation may be extended
from the space of forms A (M) into L-valued forms:

A (MM ® L) x (A(M)® L) — AL, (1.93)
using
n2 .
anBi=Yy. @ABH®Gi 1)), (1.94)
ij=1
where (A1, ..., A,2) is a basis in gl(n, R), and A; - Aj denotes a matrix multiplication.

Note, that there is a direct relation between ‘[, 1 defined in (1.92) and ‘A’ defined in
(1.94):

[a,ﬁ]:a/\ﬂ—(—l)”ﬁ Aa, (1.95)

for any k-form o and I-form B. : e :

Cor?sider now a Lie group G together with the space of dlfferentla'l form; A(G).
In analogy to left- (right-) invariant vector fields let us deﬁne left- (right-) invariant
differential forms on G. A form « € A(G) is left-invariant if

Lia=a, (1.96)

for any g € G. Denote the set of left-invariant forms by A L(G). .Let. us observe tha.t,
due to the basic properties of a wedge product and exterior derivative (cf. Proposi-

tions 1.1.1 and 1.1.2), we have
a € AL(G) => da € AL(G),

and

a,B € AL(G) = aAPB e AL(G).

1.2. Groups, Lie algebras and actions 27

Evidently, any left-invariant form on G is uniquely determined by its value in e € G.

Therefore, there is a one-to-one correspondence between left-invariant one-forms and
cotangent space T,*G:

AL(G) > a@ <~ a(e) € T*G .

Let {e1, ..., es} be a basis in g = 7,G. The structure of g is entirely encoded in the
set of commutation relations

lei, ej1= f}jex . (1.97)
Let{61,..., 6"} be the dual basis in T}G. Denote by 0’15 the unique left-invariant one-

form such that OI’f(e) = gk, Using the Cartan formula (1.54) it is easy to show that
formula (1.97) implies the following equation for the dual forms 6y ’s:

dok = —L sk gi p o) 1.98

L =50 N6 (1.98)

The above formula is known under the name the Maurer—Cartan equation.

Definition 1.2.5 The Maurer—Cartan or the canonical form on a Lie group G is a
left-invariant one-form wo, taking values in the Lie algebra g, defined by

[w0(X)1(8) := [(Lg-1)+X]1(e) € g, (1.99)
forany g € G and X € X(G).

Let us observe that the action of wg on a vector X € T, G consists in pushing X
forward from a point g to a point e. Since the formula (1.99) for the Maurer—Cartan

form is rather complicated it is desirable to have a coordinate representation of wy.
One can prove that

=0k, (1.100)

which shows that wy is manifestly left-invariant. The fundamental properties of the
Maurer—Cartan form are summarized in the following

Proposition 1.2.3 The Maurer-Cartan form satisfies
1
dwg = —E[wo,wo]- (1.101)
Moreover, under a right action of G it transforms according to

Rjwo = Adg-10 , (1.102)

forany g € G.
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Example 1.2.15 Let us examine the above abstract formulae in the case of a matrix
algebra gl(n, R). Note that the Maurer—Cartan form may be written as

wo =g dg (1.103)

with g € GL(n, R). The left-invariance follows from

Lywo = (hg) 'd(hg) = g™'h 'hdg = g 'dg = wo . (1.104)
Similarly,
Riwo = (gh) 'd(gh) = h™'g Y (dg)h = h™ ' woh = Adj, 10, (1.105)
in agreement with (1.102). Moreover, since dg_1 = - g—1 (dg)g™', we have
dwg = d(g7'dg)=dg™' Adg=—g 'dgngldg
= —woAwy= —%[wo, wo] , (1.106)
due to (1.95). &

Example 1.2.16 Consider the abelian group U(1). Any element g € U(1) may be
represented by g = ¢*, with A € R. Now,

wo =g 'dg =idx € u(l), (1.107)

where we used the identification (1) = i{R. The group U (1) and its corresponding
Maurer-Cartan form (1.107) will play an important role in what follows. <&

Example 1.2.17 Another important group in this book is SU(2). Any element g €
SU(2) may be written in the following form:

a B \

&= { = ; : 1.108
\ -8 @) (1109

with &, B € C such that |a|? + |8 [2 = 1, and @ denoting complex conjugation of o.

The reader may easily show that:

@do + BdB  @dp — Bda
g ldg=| _ _ B , (1.109)
Bda —adB ado + BdB
and, hence,

Tr(g"'dg) =0, and (g7'dg)* =g ldg, (1.110)

which shows that g ~1dg does belong to the Lie algebra su(2). &
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1.3 Bundles and connections

1.3.1 Fibre bundle

Fibre bundles frequently appear in differential geometry. It turns out that many impor-
tant concepts in modern physics may be interpreted in terms of the geometry of fibre
bundles. Maxwell’s theory of electromagnetism and Yang—Mills gauge theories are es-
sentially theories of connections in the appropriate fibre bundles over the space-time
manifold. General Relativity may be interpreted in terms of the geometry of so-called
frame bundles. As we shall see, the geometric phase also finds its natural description
in terms of certain fibre bundles.

Roughly speaking, a fibre bundle is a manifold that looks locally like a Cartesian
product of two spaces but may have nontrivial global geometry. To define a fibre bundle
one needs five elements:

e Manifolds: E — the bundle (or total) space; M — the base space; and F — the
standard (or typical) fibre.

e A structure Lie group G which acts effectively on F, i.e., there exists a map
b : GxF — F,
such that if ®,(f) = f,then g =e.
e A bundle projection:
n:E — M,

such that each space F; := 7~ 1(x), called a fibre at x € M, is homeomorphic
to F.

These elements are not independent and we demand that

1. The bundte is Tocally trivial, i.e., it is Tocalty homeomorphic to a cartesiam prod-
uct of two spaces. More precisely, for any covering of M by a family of open
sets {U;} there exists a set of homeomorphisms

gj : N U;)) — U; xF (1.111)
of the form

@j(p) = (n(p), ¢j(P)) (1.112)

where
¢; T NU) — F,

such that the following diagram commutes:
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7L 2l — U;x F

\ Mnical projection .

Uj

The set {(Uj, ¢;)} is called a family of local trivializations. This way (Y] i)
— a “portion” of the bundle over U; — may be identified with the cartesian
product U; x F:

» W U) = U;xF.

2. The restriction of the map ¢; to the fibre over x € U; defines the diffeomor-
phism

jx =0¢jlF, : Fx — F . (1.113)

Now, for x € U; N Uy, the induced diffeomorphism

$xodrs  F — F, (1.114)
corresponds to an element of the structure group G, i.e., there exists yxj(x) € G
such that

D(yj(x), ) =r,x 0 q)]_}c .
The maps

UiNUy 3 x — pjx) € G,

are called transition functions (cf. Fig. 1.2).

— Instead of listing att efements (£; . 7, G, F) one often speaks abouta G-bundle over

M, or G-bundle E — M, or simply a bundle = : E —> M. If the structure group
G is not specified then one takes the entire group of all diffeomorphisms of a typical
fibre, i.e. G = Diff(F). Transition functions encode the entire information about how
the local pieces U; x F are glued together.

Proposition 1.3.1 Transition functions satisfy the following conditions:
1 yiix)=e, xeU;,
2 7@ =N, xelUinu;,
3 Vi@ (x) = yu(x), xeU;NUNU ( cocycle condition).

A fibre bundle is (up to an isomorphism) completely determined by the set of transition
functions satisfying the above conditions.
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Figure 1.2: Transition functions

Definition 1.3.1 A fibre bundle is trivial if
E=MxF,
that is, there is a diffeomorphism h : M x F —> E such that
nh(x, ) =x,
foranyx € Mand f € F.

It turns out that any fibre bundle over a contractible base space is trivial. Therefore, all
fibre bundles over a base which is topologically equivalent to a ball in R” are trivial.
Nontrivial bundles can only be constructed when the global topology of the base is
nontrivial (for example, over a sphere S").

Example 1.3:1(Mobius strip) -The-classical example-of -a nontrivial-fibre-bundte is
provided by the Mébius strip. It may be constructed as follows: take as a base man-
ifold the unit circle S! parametrized by the angle 6 € [0, 2r). We cover S! by two
coordinate patches:

Uy ={0|—€e<OB<m+e}, U_. ={0|n—€ <0 <€},
with a “small” € > 0. Let the typical fibre be an interval of the real line
F:=[-1,11CR,

parameterized by ¢ € [—1, 1]. To construct a bundle over S' with a typical fibre
[—1, 1], we have to glue together two pieces, namely,

Us x F, parametrized by (6, 14),
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Sl

¢

:

Sl

Figure 1.3: Mobius strip a) is a nontrivial (twisted) bundle over S!, whereas a cylinder b)
defines a trivial (nontwisted) bundle

and
U_ x F, parametrized by (0,¢_) .

Take as a structure group G = Zj, i.e., the two element group {e, —e}. We know
that the information about gluing is encoded into the transition function y,_ (x) with
x € Uy NU-. Note that

UNU_=AUB,
where
A={0] —e<0<e}, B={0|m—e<b<m+e}.

We define the transition function as follows:

e, for xe A
—(x):=
Vi-(%) {—e, for x € B
That is, it describes a twist 7, = —z_ in the region B, giving rise to the nontrivial

topology of the M&bius strip, as shown in Fig. 1.3. Gluing without twisting, i.e., taking
Y4 =Ax)-=-¢ for-any x; we-simply-obtaina-cylinder-51 xf=1,1}; whiclrexemplifies a
trivial bundle over S!. <

Definition 1.3.2 A local section of the bundle n : E —> M is a mapping
f:U— E,
withU C M, such that w o f = idy.

A section is called global if it is defined over the entire base manifold M. It turns out
that the existence of global sections depends on the global geometry of the bundle E.
In physical applications the most important are vector bundles and principal bundles:

e avector bundle is a fibre bundle with a typical fibre being a k-dimensional vector
space, i.e.,, F = R¥ (or C¥ in the case of a complex bundle), and with the
structure group G being a subgroup of GL(k, R) (or GL(k, C));
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e a principal bundle is a fibre bundle whose typical fibre F coincides with the
structure group G, which acts on itself by the left translation L,.

As we shall see, principle fibre bundles lie in the heart of the theory, since any other
bundle may be constructed from some principle fibre bundle.

Proposition 1.3.2 For any principal bundle (P, M, 7t, G) there is a natural smooth,
free right action of G on the total space P,

R:GxP — P,
with the property that the corresponding orbits coincide with the fibres, that is, if p €
P, then the G-orbit passing through p defines a fibre over x = m(p), i.e., Fy = O)p.
Moreover, one may prove the following

Proposition 1.3.3 Every principal bundle is obtained from the free right action of a
Lie group G on some manifold P.

The structure of the fibre bundle with base space M, structure group G and a typical
fibre F is determined essentially by the transition functions

ya : Uk NU; — G,

satisfying conditions from Proposition 1.3.1. Therefore, having an action of G on a
manifold F’, we may construct another fibre bundle simply changing F to F’. Such
bundle is said to be associated with the original one. It is therefore evident that every
fibre bundle can be obtained as a fibre bundle associated with some principal fibre
bundle. In particular, the problem of the classification of fibre bundles reduces to the
classification of principal fibre bundles. There is also a simple criterion for triviality of
principal fibre bundles.

Theorem 1.3.4 A principal fibre bundle (P, M, 7, G) is trivial if and only if it admits
a global section.

Proof. If the bundle is trivial then according to Definition 1.3.1 there is a diffeomor-
phism A:
h
MxG — P.
Therefore, we may take as a global section f : M —> P:
fx):=h(x,e),

with e being the unit element in G. Conversely, if there is global section f : M —> P,
then we may define a diffeomorphism 4 as follows:

h(x, g) == R f(x) .

Since the right action ﬁg is free and effective, h indeed defines a diffeomorphism. 0O



34 1. Mathematical Background

1.3.2 Examples of fibre bundles

Let us list the most important examples of fibre bundles.

Example 1.3.2 (Tangent and cotangent bundles) Let M be an n-dimensional mani-
fold and T M denote the tangent space at x. Define a fibre bundle with a base space
M and a total space

™ := | J M. (1.115)
xeM

Clearly, a typical fibre F = R” and a fibre over x € M is 7 l(x) = T M = R*. The
structure group G = GL(n, R) acts on the typical fibre by matrix multiplication:

v —g-v, (1.116)

for any g € GL(n, R) and v € R". To show that this construction does indeed define
a fibre bundle we proceed as follows: Let (U, ¥) be a family of local charts on M.
To define a bundle we have to specify the set of transition functions

yvu : UyNU — GL(n,R),

satisfying the conditions of Proposition 1.3.1. We define these functions as derivatives
of the corresponding overlap maps:

yi(x) := Ty Yut (1.117)
with Yy = Y o 1//,‘1. To see that this really does the job, let ¢; = (x(li), N x("i)) be

a local coordinate system in a patch (U;, ¢;), and let x € U; N U;. For x € U; any
tangent vector v € T, M may be represented as follows:

n
ad
k
v= E Xﬁ‘)ng* R (1.118)

Now, define ¢; » : Ty M —> R” by
Gix (V) == (Xfyr oo X0 (1.119)

Thus, the corresponding transition function,

vij(x) =¢ix0¢;, € GL(n,R), (1.120)
is defined by
axk
;@] = =2, (1.121)
3%y
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i.e., as a derivative of the corresponding overlap map in M. The above formula repro-
duces the well-known transformation law

k - Bxé‘i) I
Xg, = 121: PN X{jy - (1.122)

In the same way, one defines a cotangent bundle of M as a union of cotangent spaces:

T*M:=|JT}M. (1.123)
xeM

The construction of the corresponding transition function we leave as an exercise to
the reader. <

Example 1.3.3 (Frame bundle) et M be an n-dimensional differential manifold and
denote by Fy M the set of all n-frames’ in T,M = R". Let (e1,e2,...,e,) be a
standard frame in R”. Therefore, any frame (vi, v2, ... , v,) may be written

n
v=) Ake, (1.124)
k=1

with A € GL(n, R). Hence, a typical fibre F may be identified with the general linear
group:

F=ZGLn,R)=G. (1.125)
This way one obtains a principal bundle

FM:= | | FM, (1.126)
xeM

with the structure group GL(n, R). It is called a frame bundle over M.

Let us construct a local trivialization of F' M. As in the previous example let (U;, 1r;)
be a family of local coordinate systems on M, with ¥y = (x(li), e xz.)). Take any
point x € U; and define

¢ix 1 Fx — G 1.127)
by
[$ix 1, ..., v)I* ) = dxfy (1) (1.128)
where (vy, ... , vp) is a frame at the point x € M. Now, in the region U; N U; we have
k koo 1
x(,-)=x(i)(x(j),...,xf'j)), k=1,...,n.

3 An n-frame is a basis in Ty M, i.e., a collection of n independent tangent vectors.
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Therefore

k & axé) m
dx(i)(vz) = Z:l a—xfnj_) dx(j) (v, (1.129)
m=

and hence y;;(x) is given by (1.121). Finally, let us look for the canonical right action
of GL(n,R) on FM. Let
p=(xé....&) e n7l(w) (1.130)

be a frame at x € M. Then for any g € GL(n, R) we have

Rep=p-g=x8&,....5), (1.131)
with
Go=) lel'i - (1.132)
i=1

Thus the action of GL(n, R) on FM consists of transforming each frame & attached
atx e Mbyt — g-&. <>

Remark 1.3.1 Taking as a structure group G = SO(n) instead of GL(n, R), we ob-
tain a principal fibre bundle of orthonormal frames over M that plays a crucial role in
General Relativity. <>

It turns out that there is a general scheme to construct principal fibre bundles.

Theorem 1.3.5 Let H be a closed subgroup of G. Then (G, G /H, m, H) with a canon-
ical projection

n:G—-> G/H
defines a principal bundle, with H as the structure group.

Example 1.3.4 (Classical bundles over spheres) Example 1.2.13 gives rise to the fol-
lowing natural principal bundles over spheres:

1. O(n)-bundle

o O+ 1)
2. U(n)-bundle
il ~ Uln+1)
Un+1) — S = T (1.134)
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3. Sp(n)-bundle

Sp(n +1
Sp(n+ 1) —> §i+3 = %. (1.135)

Thus spheres serve as base spaces for principal fibre bundles. <&

The next example shows that spheres may also serve as total spaces of fibre bundles.

Example 1.3.5 (Hopf fibrations) Using the results of Example 1.2.14 it is easy to
construct the following principal bundles over projective spaces:

1. 0(1) = Z,-bundle

" — RP" = $"/Z,, (1.136)

2. U(1) = SO(2)-bundle
s+l cpr o= sy, 1.137)

3. Sp(1) = SU(2)-bundle
S HP" = $¥Lsp(l) . (1.138)

The above bundles are usually called Hopf bundles or Hopf fibrations. For n = 1 we
obtain the celebrated Hopf bundles:

U (1)-bundle: $? — cplx=s?
and
SU (2)-bundle: ST — HP!=st,

These two bundles, also called monopole and-instanton bundles by physicists, respec-
tively, will play a fundamental role throughout this book. <o

1.3.3 Connections — general theory

In this section we introduce a geometric object which allows one to compare different
fibres of the bundle and to transport elements from one fibre to another. This object,
called a connection, plays crucial role in the theory of geometric phases.

Consider an arbitrary fibre bundle (E, M, 7, G, F). To begin with we shall disregard
the structure group, which means that G = Diff(F). A fibre bundle equipped with a
connection may be intuitively represented as follows: One has a family of fibres F,
whose union gives the total space

E=|JF:.

xeM
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Now, consider a curve
0,113t — y(t) e M.

A connection provides us with a rule of parallel transporting the fibre F along the path
y from one end to the other, i.e., it defines a map

Ty, : Fry — Fy, x=y0), 1=yQ), (1.139)
satisfying the following conditions:
1. T, depends continuously on the path y ,
2. Tyuyy, =Ty 0Ty, ,
3. Ty-1 = (T))7!,

where the operation of multiplying curves y; * y, is defined as follows: If y; and y»
are two paths such that y; (1) = y,(0), i.e., the end of y; is the beginning of y,, then
¥1 * y2 is a new curve defined by

y1(21) for 0<t=<1/2,

(1 *xy2)(t) = { }22t—1) for 1/2<1<1. (1.140)

Moreover, the inversion y ! of the curve y is defined by

y )=y -0, (1.141)

i.e., ¥~ goes “backwards in time.”

Equivalently, the connection may be defined as follows: Take any vector v from
T, E. We shall call it a vertical vector if v € T, Fy, with x = w(p), i.e., v is vertical
at p if it is tangent to the fibre passing through p. Denote by V,, the space of vertical
vectors at p. One obviously has

Vpi={ve TE| Tn) = o}, (1.142)

and calls V), a vertical subspace. Let X, (E) denote the space of vertical vector fields

- onkE:

VU E Xyer(E) & v(p) € Vp, (1.143)
for any point p € E.

Definition 1.3.3 A connection of a general type,* or, simply, a connection, is a smooth
assignment

E>p — H, CT,E,
such that H p is transverse to V,, and

T,E =V, ®dH,. (1.144)
p p p

4Mathematicians often call it the Ehresmann connection.
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Figure 1.4: Decomposition of 7, E into the horizontal subspace H p and the vertical subspace
Vp

H), is called a horizontal subspace and a vector v € H), is called a horizontal vector,
see Fig. 1.4. Due to the decomposition (1.144) any vector v € T, P may be uniquely
decomposed as follows:

v=horv + verv, (1.145)

where horv € H) is called the horizontal part of v, and verv € V), the vertical part of
v.

Definition 1.3.4 A curve
[0,1] 3t — c(t) € E
is said to be horizontal if its velocity vector dc/dt is horizontal.
Let y(t)-be-a-curve-in- M- We call-a-curve ¥ alift of y-if-
TFO) =y@).

Moreover, ¥ is called a horizontal lift if ¥ is a horizontal curve.

Equipped with this abstract definition let us see how one can define the notion of
parallel transport shown in formula (1.139). Let y () be a curve in M such that ¥ (0) =
xo and y (1) = x;. Define the map T, as follows: Let pg € Fy, and denote by ¥ (¢) a
horizontal lift of y such that (0) = pg. Then

T, (po):=¥(1) € Fy, . (1.146)

It is evident that T, fulfills all the natural requirements of parallel transport. T, is
usually called a map (or an operator) of parallel transport determined by the connec-
tion. Clearly, an assignment y —> T, is equivalent to endowing a bundle with a
connection.
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Note that there is an equivalent way to introduce a connection into a bundle
(E, M, n, F). Instead of describing a connection in terms of vectors from TE we
may equivalently use a dual description and define it in the language of forms. The

mapping
T,E 5 u — veru €Vp
allows us to introduce a one-form .4 on E with values in a vertical subspace. That is,
Ap(u) :=veru € V, (1.147)

for any u € TpE. It is evident that the horizontal subspace H, may be defined as
follows:

H,:= [u € T,E l Ap () :0} . (1.148)

We call A a connection form.
Consider the space of V—valued differential forms on E.

Definition 1.3.5 The covariant exterior derivative
D: AfEY®V — AHEYoV
is defined by
Da(uy, ... ,uxq1) :=da(horuy, ... ,horugsy), (1.149)
foranyo € A¥(E)and u,, ..., up+1 € X(E).

Using Cartan’s formula (1.54) we may rewrite Do as follows:

k+1

Da(uy, ..., ugsy) i= Z(—l)'ver[horu,-, athoruy, ..., u;, ... ,horugs1)](1.150)
i=1

+ Z (—1)i+joz([horui,horuj],horul, N TR TR 1 S /TaR )

- lsi<jsk+l -
where #; denotes that u; is omitted.
Definition 1.3.6 The two-form F € A%(E) ® V defined by
F:=DA (1.151)
is called the curvature form of the connection A.

Now, since .4 vanishes on horizontal vectors the formula (1.150) implies that, for any
u,v e X(E),

F(u,v) = —A([horu, horv]) . (1.152)
Hence, using defining equation (1.147), we obtain

F(u, v) = —ver ([horu, horv]) . (1.153)

s
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Theorem 1.3.6 (Bianchi identity) The curvature two-form F satisfies the following
Bianchi identity:
DF=0. (1.154)
Proof. Formula (1.150) implies

DF(uy, uz, u3)

3
= - Z €ijk (ver [horui,}'(horuj,horuk)]+.7-'([horu,-,horuj],horuk))
i,j k=1
3
Z €ijk Ver ([horu,-, ver [hor u j, hor uz]] + [hor [hor u;, horu; ], horuk]) ,
i jik

i,j,k=1

where we have used (1.153). Now, by the very definition of verticality, we have
ver [horu j, horuy] = [hor u, hor ux] — hor [hor uj, horug], (1.155)

and hence we are left with

DF(ui,uz,u3) = €;jx ver [horu;, [horu;, horui]1 =0, (1.156)

3
ij k=1

due to the Jacobi identity. a

1.3.4 Connection in a principal bundle

Now, we are going to apply the general theory of connections to the case of principal
fibre bundles. Any principal bundle is endowed with a canonical right action of the
structure group G on the total bundle space P (cf. Proposition 1.3.2): R; : P — P.
“We shail require that the assignment of horizontal subspaces Hj, is compatible with
that action.

Definition 1.3.7 A connection on a principle bundle (P, M, 7, G) is a smooth assign-
ment of linear subspaces Hp, of T, P

P>p— H, CTyP, (1.157)
such that the following conditions hold:
1. The linear map
Ty : Hy — TripyM (1.158)

is an isomorphism for any p € P.
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2. The mapping (1.157) is invariant under the right action of G, i.e.,
TpRy(Hp) = Hp.g (1.159)

foranyp e P,and g € G.

Let us turn to the connection form A. In a general case A takes its value in the
vertical space. However, in the case of a principal bundle there exists a canonical iso-
morphism between the vertical subspace V), and the Lie algebra g of G. That V,, and
g are isomorphic is evident; any fibre F, = G, and hence the vertical space V), being
a tangent space to a fibre, is isomorphic to g. This isomorphism is defined as follows:
Take any element § € g and let X; denote the infinitesimal generator of the canonical
right action of G on P corresponding to & (cf. Definition 1.2.3). Since R, acts along
the fibres, each infinitesimal generator has to be tangent to the corresponding fibre, and
hence

Xe(p) € Vp,
for any p € P. Thus
g32¢ — Xe(p) € Vp, (1.160)

defines an isomorphism between g and V,. This isomorphism may be used to define a
connection form. The vector field

P>3p— Xe(p) eV,

is usually called a fundamental vector field. For any v € V), let U be a unique element
in g such that

X5(p)=v. (1.161)

.. Definition 1.3.8 A connection form A on-a principal fibre bundle (P, M, 7, G) is-a

g-valued one-form on P defined by
A(u) := veru, (1.162)

forany u € X(P).

Let us recall that each fibre Fy = 7 ~!(x) & G and hence the restriction of A to
Fy = G defines a g-valued one-form on the Lie group G. Moreover, the restricted
form A|¢ satisfies the following property:

Algv) =7, (1.163)

which is the defining property of the canonical Maurer—Cartan form on G (see Sec-
tion 1.2.4), that is, .A|g = wo. This observation implies the following
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Proposition 1.3.7 The canonical right action of G on P induces the Sollowing trans-
Sformation law for the connection form A:

RiA=Ad, 1A, (1.164)

forany g € G.

If G is a matrix group, then
RA=g"14A¢. (1.165)
Note, that formulae (1.159) and (1.164) are dual to each other. They both state that the
connection is compatible with the right action R,. Now, following Definition 1.3.6 we
define the curvature of the connection .4,
F:=DA, (1.166)
to be a g-valued two-form on P. In analogy with Proposition 1.3.7, we have
R:F =AdF, (1.167)
or in the case of a matrix group,
RRF=g1.7.4. (1.168)
Using Cartan’s formula (1.54) one may prove the following

Proposition 1.3.8 The curvature two-form F = DA satisfies the following Cartan
structural equation:

F=dA+ % [A, A], (1.169)

where [, | denotes a Lie bracket-in g-If G -is-a matrix group,-then the above formula
is equivalent to

F=dA+ AN A. (1.170)
Note that the Bianchi identity DF = 0 follows easily from (1.169). Indeed, one has
DF = dF+[AFl=d (dA 504 A]) + [A, dA+ 34, A]]
= ddA)+ %[dA, Al - %[A, dA]+ [A, dA] + %[A, LA, ATl
= A4 A1=0, (1.171)

due to Proposition 1.2.2.
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Let P —> M be a principal G-bundle. Suppose that the bundle is endowed with a
connection form .A. Recall that if y isacurvein M, e.g.,
0,113t — y® eM, yO=x, y()=x,
then one defines a parallel transport from a1 (xo) to w~H(xp) along y as follows:
77 (x0) 3 po —> Ty(po) =7 (1) € 7 (x1), (1.172)

where ¥ is the unique horizontal lift of y such that y(0) = po. It is easy to see that a
parallel transport commutes with a right action of G on P:

RgoT, =T, 0R,, (1.173)
that is,
po=po-8 = T,(pp) =T,(po)-g, (1.174)

forany g € G.If y is a closed curve beginning and ending at xo € M, then a parallel
transport along y leads back to the fibre 7 ! (xp). Consequently, it uniquely determines
an element ®[y] from G,

T, (po) =: po - ®[¥1, (1.175)

which is called the holonomy of a curve ¥, with respect to 4. Note that a horizontal
lift of a closed curve y needs not be closed. Hence, in general, 7 is open (¥ is closed
iff ®[¥] = e). As y varies over all closed paths based at x € M, the corresponding
®[Y71’s form a subgroup of G,

Hol(po) := { @171 | ¥ —closed, (@ = y(1) =x0, 7O = po | ,

which is called the holonomy group of the connection .A with reference point pg. Now,
let pj = po - g, and let 7" be a horizontal lift of a closed curve y such that (0) = Py-
On the one hand, one has

Ty (pp) = py- @17} = po-g - 171 (1.176)
On the other hand, using (1.174) one finds
T, (py) = Ty(po) - g = po- ®[¥]- ¢ . (1.177)
Hence
oy1=¢"" @71 ¢ (1.178)

This implies the following relation between the corresponding holonomy groups
Hol(pg) and Hol(po - g):

Hol(po - g) = g~ - Hol(po) - g , (1.179)

that is, Hol(po - g) is the subgroup of G conjugate to Hol(po) and, hence, Hol(pg - g)
and Hol(py) are isomorphic.
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1.3.5 Gauge transformations — paving the way to physics

Consider a principal G-bundle P —> M endowed with a connection form A. Recall
that .4 and the corresponding curvature F are g-valued forms on the bundle space P.
Now we are going to introduce the local connection A and the local curvature F to
be g-valued forms living on the base space M. Usually, in physical applications, M
serves as a model for a physical space-time or a space of states for some physical
system. Therefore, it is of great importance to show how the geometric objects defined
on the total space P may be projected down to the base manifold M. Note that there is
an obvious recipe for such a projection: If f is a local section of a bundle,

f:U — P,

with U C M, then any g-valued form & on P may be projected to M by performing a
pull-back via f, as follows:

AP)Rgd3a — ffae AM®g.

Evidently the projected form f*« depends upon a chosen section f. Let us define local
sections

f,‘iU,'—-—)P,

which are canonically associated with a family of local trivializations (U;, @;). For any
x € U; define

fix) :=¢; (), (1.180)

where e denotes a unit element in G. We call
Ay = ffA (1.181)
the connection form in the local trivialization ;> Suppose that we have another trivi-
alization (U}, ¢;), which gives rise to another local connection form A(jy- What is the

relation between A(;) and A in the intersection U; N U;? The answer to this question
is given by the following

Theorem 1.3.9 For any point x € U; N U; the local connections forms A and A(j)
are related by

A () = Ad(y;; N AG () + (Vwo)(x) | (1.182)

where yl.’]‘. wq denotes the pull-back of the canonical Maurer—Cartan form on G.

SThe index “(i)” should remind the reader that it does nor denote the ith component of A but points to
the ith trivialization ¢; used to define A;).
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If G is a matrix group, then the formula (1.182) may be rewritten in a more “friendly”
form, as follows:

A =y @) AG @@ v + vy () - dyp@@) . (1183)

for any v € T, M. The same procedure may be applied for the curvature form F. One
defines

F(,‘) = ft*}— s (1.184)

and calls F;y the curvature form in the local trivialization ¢;. In analogy to Theo-
rem 1.3.9 one may prove that

Foy(x) = Ad(y;; ' (0)) Fijy (x) (1.185)
or, if G is matrix group, that
Fiy(x)(u, v) = Vﬁl(X) “Fjy(x)(u, v) - y5i(x) (1.186)
forany u, v € T, M.
In physical applications one usually uses slightly different terminology. Instead of

a change of trivializations one speaks about gauge transformations. By a local gauge
transformation we mean a map:

g:U — G, (1.187)
with U C M. Any local section
f: U —P, (1.188)

is called a local gauge. It is evident that any two local gauges f, ' : U —> P differ
by a gauge transformation, i.e.,

f@) =g f(x), xeU, (1.189)
for some g. Each local gauge gives rise to a local connection form
A= f*A, (1.190)
and local curvature
F:= f*F. (1.191)

A local gauge transformation induces the following transformations of local connec-
tions:

A=g' A g+gl.dg, (1.192)
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and curvatures:
F'=g'. F.g, (1.193)

where A’ and F’ are the corresponding objects in a local gauge f’. Physicists usually
call A — gauge potential (in a local gauge f), and F — gauge field (in a local gauge
f). Two connections (gauge potentials) A and A’ are said to be gauge equivalent in a
region U C M, if there exists a gauge transformation g : U —> G such that (1.192)
holds.

Now, let ¥ be a closed curve contained in a patch U such that ¥ (0) = y(1). Choos-
ing a local gauge f : U —> P, we may lift y to a curve f(y). Clearly, the lifted
curve is also closed: f(¥(0)) = f(y(1)) = po € P. Recall, that we have defined the
holonomy of the horizontal lift 7 to be an element ®[}] such that

F() = po- o[71,

with (0) = pg. One can show that

®[7] = P exp (/f(y) A) =P exp (fy A) = O s[y], (1.194)

where ‘P’ denotes a path ordering, and A = f*A is the local connection form in the
gauge f. Hence, any closed curve y gives rise to a holonomy ® fly]. Clearly, this
definition is gauge-dependent. If we perform a local gauge transformation (1.187) and
choose a local section f’(x) = g(x) f(x), then we obtain

Dplyl=gxo)! - ®slyl- gxo), (1.195)

in perfect agreement with the formula (1.178). Note, however, that the trace of ® fly]
is gauge invariant:

Troslyl=Troplyl. - (1.196)

Physicists call ®¢[y] a Wilson loop in the local gauge f. Let us illustrate the above
discussion with the following important physical examples.

Example 1.3.6 (Electrodynamics) Let M denote a physical space-time. It is usually
modelled as a four-dimensional pseudo-Riemannian manifold (e. g., Minkowski space-
time). Consider an open region U € M and let A n denote the electromagnetic four-
potential on U. Denote by F,, the corresponding electromagnetic field tensor,

Fuy = 8,4, — 0,4, . (1.197)

Let us observe that this scheme corresponds to a U (1)-principal bundle over M. The
electromagnetic potential gives rise to a u(1)-valued one-form

A=iAudx" .
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A local gauge transformation
g : U — G=UQ)

may be written as

iA(x)

gx)=e xelU,

with A : U — R, and hence formula (1.192) implies
A= A+idx, (1.198)
which reproduces the well-known rule
A;L =A,+0,A. (1.199)
Now, since the structure group U (1) is abelian, the general formula for the gauge field

F (the curvature of the connection) simplifies to

1
F=DA=dA+§[A,A]=dA,

that is,

i
F = EFm,dx"/\dx”.

Clearly, a field tensor is gauge invariant:
F'=F.

Moreover, the identity dF = d2A = 0 may be written as the following equation for
F:

a;LFvA‘l‘avFA;L‘i‘a)\F;w =O, (1200)

and it corresponds to the Bianchi identity DF = 0. For a detailed exposition of elec-
trodynamics in terms of differential forms see, e.g., Ingarden and Jamiolkowski 1985.
<

Example 1.3.7 (Yang-Mills theory) Now, instead of an abelian group U(1) take a
non-abelian group SU(N) — the corresponding theory is called a Yang—Mills theory.
LetL,..., L y2_ form a basis in the Lie algebra su(N). Denote by f%. the corre-
sponding structure constants, i.e., [Lq, Lp) = f5 L. Clearly, the generators L, may

be represented as anti-hermitian N x N matrices.® The local components of A and F
are given by

1
A=A,dx" and F = 3 Fuvdx* Adx* (1.201)

—_—

Physicists prefer to work with hermitian quantities and, hence, instead of L’s one often uses hermitian

matrices A; = —iLg. In terms of A’s, one finds [Aa: Apl = if Sy

i i
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where
A, = A,‘i L, and F,, = F:v L,. (1.202)

Clearly, the gauge potentials A{, and gauge fields F, Ly are real quantities and A,, and
F,,, are represented by anti-hermitian matrices. The definition of F R

1
F:dA+E[A,A], (1.203)
implies the following relations between the corresponding components:
Fuy=0,A, —0,A, +[A,, A)], (1.204)
and
Fj, =8, A% — 3,A% + £ AL AC . (1.205)
The gauge potentials Aj,, one for each generator of SU(N), are analogs of the elec-
tromagnetic potential A,. In the quantized theory they correspond to spin-1 massless
particles (so-called gauge bosons). Note that the Bianchi identity DF = 0 may be
written as the following equation:
DMFvA"‘DvFAp,"'DAF/Lv =0, (1206)
where we introduce the covariant derivative

Dy:=1-3,—A,. (1.207)

The Yang-Mills theory may be derived from a variational principle based on the fol-
lowing Yang-Mills action:

SymIA] = / Tr(F A *F) =/ Lymlgld*x . (1.208)
M M
In the case of SU(N) it is possible to choose L’s such that
1
Tr(L, - Lp) = —3 8ab - (1.209)

With such a choice one finds for the Yang-Mills Lagrangian

2
] N2t
Lym=—7 D> Fi,F™, (1.210)
a=1
which generalizes the well-known Maxwell Lagrangian Ly = —% FyuyFHY, &
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1.3.6 Characteristic classes

In this section we shall briefly discuss the problem of the classification of principal
fibre bundles. Let G be a Lie group and g its Lie algebra. A symmetric, k-linear map-

ping

k
figxgx...xg — R
is called G-invariant (or simply invariant) if, forany g € G and any &;,... ,& € g,
we have
S(Adgéy, ..., Adgér) = f (&1, ..., &) (1.211)
If G is a matrix group, then G-invariance means
fle--g7 g B8 =fG... . 8. (1.212)

Any G-invariant, symmetric k-linear function f gives rise to an invariant polynomial
of order k, defined by

k@) == fE,....8).

Denote by I (G) the space of such polynomials and let

1(G) := @Ik(G) )
k

(1.213)

Consider now a principal fibre bundle (P, M, 7, G) together with a connection .4 and
curvature 7 = D.A. Recall that any local section s : U —> P, with U being an open
patch in M, gives rise to a local curvature F = s*F, which is a two-form on U. Now,
let us take a symmetric function f and define §;(F) € A (U) by

fi(F) = f(F,. = fleay, .., ) F¥ AL A F, (1.214)
Where F = F* ® ey, with {e1 €, ...,e} belng a basm in g. Equivalently, fx(F)
may be defined as follows:

1
WP 020 = s 30 D7 (Poc @)

(1.215)
forany vy, ..., v € T, P. We sum over all permutations o of the set {1, 2, ..., 2k}
and, as usual,

e _ ) +1, o iseven
=1 _{—1, o is odd

One then may prove the following

» F(vg k-1, Ua(2k))) ,
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Theorem 1.3.10 The 2k-form §i(F) enjoys the following properties:

1. It may be globally defined on M, i.e., various locally defined 2k-forms §(F) fit
together to produce a well-defined form on M.

2. It is closed and hence defines a cohomology class [§;,(F)] € H**(M).

3. The cohomology class [fx(F)] does not depend on the particular choice of the
connection form A, that is, if A’ is another connection one-formand F' = DA/,
the corresponding curvature, then [fx(F)] = [f (F")].

The above theorem implies the existence of a map

w : I(G) — H*(M) :=@H’<(M),
k

defined by

I(G) 3 fk — [fk(F)]l e H*M). (1.216)

The elements from the image w(/(G)) C H*(M) are called characteristic classes of
the G-bundle P — M.

Suppose now that we have two bundles over M with the same structure group G,
namely, (Py, w1, M, G) and (P2, 13, M, G). We call them equivalent iff there exists a
map ¢ : P — P, preserving the bundle structures, i.e., it sends a fibre over x in one
bundle into a fibre over x in the other:

p(rt ) =25 (),

for all x € M. Any invariant polynomial f € I(G) gives rise to two characteristic
classes, [f(F1)] and [f(F2)], where F; and F, are local curvatures in Py — M and
P, — M bundles, respectively.

Proposition 1.3.11 If the bundles P; and P, are equivalent, then

(F(FO] = [F(F)]T,
for any invariant polynomial {.
This means that equivalent bundles have the same characteristic classes.

Example 1.3.8 (Chern classes) Consider a bundle with the structure group G =
GL(n, C) (or one of its subgroups). We define the invariant polynomials cx € I;(G)
by

1.217)

det (11 + — F) ch(p)
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One calls cx(F) a kth Chern form. The kth Chern class C¢(P) of the bundle P is
defined by

Ci(P) := [cr(F)] . (1.218)
It is easy to show that
F _ (_l)k J1eJk Fil A /\Fik 1219
(F) = Qi) g Tjp N Jk (1.219)
where
Jiedk . oh Jk
€5, =9 liy ..,Sl.k] . (1.220)
One easily finds that
Co(P) = 1,
Ci(P) = TrF,
2
1/i)?
Cr(P) = 2 \% [TrFATtF —Te (F A F)], (1.221)

C,(P) = (QL) det F .

T
For example, U (1)-bundles are characterized by the first Chern class C;(P):
Ci(P)= —TrF=-_"F. (1.222)
2 2

Note that in this case the local curvature F is actually globally defined. For an SU (2)-
bundle the curvature F is given by:
F=FlLy=F'2t, (1.223)
i
where o, are the Pauli matrices:

{0 1 (0 —i (1 0
01—(1 O)’ 02_(1' 0), 03—<0 _1). (1.224)

One finds that C;(P) = 0, and, since Tr (040p) = 84p, that
1
Cy(P)=———=F?AF, .
2(P) =~ F' A Fy (1.225)
defines a real four-form on the base manifold M.

Let P — M be a principal G-bundle and suppose that the base M is an oriented
compact manifold of dimension 2n. Then the value of the integral

/C,,(P):/ cn(F) (1.226)
M M

is called the Chern number of the bundle. As we shall see in due course, this abstract
mathematical concept plays an important role in physics. <>

1.4. Topology, bundles and physics 53
1.4 Topology, bundles and physics

1.4.1 Elements from homotopy theory
Consider two topological spaces X and Y together with two maps
o, 1 X — Y.
One says that f| and f> are homotopic if there exists a continuous family of maps
F:Xx[0,1] —VY,
such that
F(x,0) = fo(x) and F(x,1) = fi(x),

for x € X. A map F is called a homotopy between fy and fi. Intuitively, it means
that fo and fi can be continuously deformed one into another. It is evident that o
be homotopic defines an equivalence relation in the space of maps from X to ¥. One
denotes by [ f] a class of maps which are homotopic to f and calls [ f1a homotopy
class of f. Consider now the following space:

(X, xo) = { space of loops in X with a base point xg } ,
thatis, y € Q(X, xg), iff
y 101 — X, yO=y1)=x.

Recall that ©2(X, x0), endowed with an operation of multiplication (1.140) and an in-
verse (1.141), defines a group called a loop group at xo € X. Two loops yi, y» €
2(x9, X) are said to be (based) homotopic if there exists a homotopy F between y;
and y, such that F(0,7) = F(1,t) = xg, i.e., we may deform y; into y, keeping a
base point x¢ fixed. A loop is called null-homotopic if it is homotopic to a trivial loop
y (t) = xo. Moreover, one easily shows that

Vi ~y2 and & ~ O = ikl o~ yaxl, (1.227)
and
y*y 1 ~ y~ sy ~ trivial loop at xg . (1.228)

Hence, both operations are well defined on homotopy classes in §2(X, xg). Therefore,
we may define a quotient space

(X, x0) = Q(X, x0)/ ~ (1.229)

called a fundamental group (or a first homotopy group) of X at a point xg. Our con-
struction of 71(X, xo) depends on the base point xo. Assume now, that a topological
space X is path-connected, that is, for any two points x, y € X there is path « in X
joining x and y.
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Proposition 1.4.1 If X is path-connected then the fundamental groups my (X, xo) and
m1(X, x1) are isomorphic for any xo, x1 € X.

Actually, it is easy to construct the above isomorphism. Let y € Q(X, x1) and take
any path o starting at x¢ and ending at x;. Clearly,

c\z>|<y>t<ot_I e Q(X, xp) ,

and hence the path « gives rise to a map 2(X, x1) — (X, x9). One may show that
this map induces an isomorphism between the corresponding fundamental groups (see,
e.g., Schwarz 1996, Morandi 1992). Therefore, one usually does not indicate a base
point but simply writes 71 (X). A topological space with a trivial fundamental group is
called simply connected.

Example 1.4.1 It is evident that
(@R =0,

i.e., that any loop in R? may be continuously shrunk to a point, or, equivalently, any
loop is null-homotopic. It is no longer true if we remove one point from R2. One easily
shows, for example, that

MR- (0D =2Z.

Hence, each class of loops in R? — {0} is characterized by an integer n € Z which
says how many times any loop in this class winds around ‘0’. Obviously, we obtain the
same result by removing a single line from R3:

7 (R? — Line) = Z .
Note, however, that
m(@®R—{0h =0,

“and hence punctured R? is simply connected. The same is true for R” — {0}, with
n>3. <&

A loop in X may be regarded as a map from a circle S! to X. Indeed, if we parametrize
a circle by an angle ¢ € {0, 27r], then a map

y : [0,27] — X

can be seen as a map from S' to X provided y (0) = y (27). Replacing S' by S* one
may introduce higher homotopy groups. Consider a map

f:S"—)X,

taking one fixed point on S¥, say the south pole s, into the fixed point xo of X. We
call such a map k-loop (some authors, e.g., Schwarz (1996), call it a k-dimensional
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spheroid). To define a multiplication of k-loops let us observe that we may equivalently
represent any k-loop as a map from a k-dimensional unit cube 7% := [0, 1]¥ into X,
such that the boundary 87* is mapped to xo, i.e.,

f:I* — X, and f@I%)=x.

For k = 1 this construction reproduces a unit interval 1! = [0, 1]. A loop is a map
y : I' — X, such that y(0) = y(1) = xg, that is, y(all) = x0. We call k-loops fy
and f; (based) homotopic if there is a homotopy F : I*¥ x I —> X between Jfo and
f1 such that

F(ti,....ti,t) =x9 if (r1,...,4) €dl*,

where (11, ... , 1) are coordinates in I¥. Denote by mx (X, xo) the space of homotopy
classes of k-loops based on xg. Note that any two k-loops f and g may be multiplied:

] f@u, 0, .. 0, for 0<t <1/2
(f* &) ti) o= { g2n~-1,6,...,%), for 1/2<n<1; (1.230)
and that for any k-loop f we may define an inverse:
fFlnn, o) = fA—n,n, ..., 1) . (1.231)

It is easy to show that both the multiplication (1.230) and the inverse (1.231) are well
defined on 7 (X, xo), and, therefore, they endow 7y (X, xo) with a group structure.
One may show that m (X, xg) is abelian for k > 1. For a path-connected X the k-
dimensional homotopy groups 7x (X, xo) and 7 (X, x1) are isomorphic for any points
x0, X1 € X. Hence, one usually writes ;. (X).

Example 1.4.2 Recall that the punctured R3 is simply connected. However,

m@®R - {0) =2,

and
TR —{0) =0, forn>3.
Analogously,
T R™ —(0) =2,
and

Tm(R" —{0D =0, forn>m+1.

<

It turns out that homotopy groups are topological invariants. If X and Y are path-
connected, topologically equivalent spaces, then the corresponding homotopy groups
7, (X) and 7 (Y) are isomorphic.
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Example 1.4.3 (Brouwer degree) Suppose X and Y are two compact, connected, ori-
entable n-dimensional manifolds, and f : X —> Y is a smooth map. Let w € A"(Y)
be a volume form on Y. The Brouwer degree of f, denoted by deg(f), is defined by

/f*w =: deg(f)fw. (1.232)
X Y

It turns out that deg( f) € Z, and that it does not depend upon the choice of @. Roughly
speaking, it measures how many times the image of X wraps around Y. Now, it turns
out that if f and g are homotopic, then

deg(f) = deg(g),

that is, the degree of a map is a homotopic invariant. In particular, the degree of a map
f : ¥ — Sk is called the winding number of f. To illustrate a concept of a winding
number, choose any positive integer n and consider two maps f, g : ' —> S! defined
by f(z) = 2" and g(z) = 7", where we identify S! with the set of complex numbers
z € C with |z| = 1. Then it is easy to show that

deg(f) =n and deg(g) =-n,
and hence f and g are not homotopic. %
Example 1.4.4 (Homotopy groups of spheres) The previous example shows that
mSH=2.
Actually, one can show that
(8" =7,

that is, maps from $” to S” may be classified according to their winding numbers.
What about maps between spheres with different dimensions f : §* —> §"?1Itis
quite easy to show that

(8™ =0, forn<m.

However, the opposite case, i.e., » > m, is much more subtle. It turns out that, for
example,

n,,(Sl)=0, for n>1,

but this is not true for S2. Actually, studying maps f : S> —> S2, Hopf discovered
celebrated Hopf fibration: S —> §2. One shows that

m(SH =7,

that is, a homotopy class [ f] is characterized by an integer number. It turns out, that
the integer [ f] is equal to the Chern number of the Hopf bundle § 3 82, <&
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Example 1.4.5 (Classification of bundles) It turns out that homotopy theory plays a
significant role in the classification of fibre bundles. Let us consider a principal fibre
bundles over S” (such bundles will play an important role in our book). One can prove
the following

Theorem 1.4.2 (Classification theorem) If the structure group G is path connected,
then G-bundles over S™ are classified (up to equivalence) by elements of the homotopy
group m,_1(G).

Thus for U (1)-bundles over S” one has

Z, forn =2

-1 (U(1)) = ”n—l(sl) = { 0 forn > 2

This means that U (1)-bundles over S are necessarily trivial if n > 2. Forn = 2 we
recover Hopf U(1)-bundles f : $3 — S2, which are classified by the homotopy
classes [ f]. The same is true for another important Hopf SU (2)-bundle: S7 —> S,
ie.,

Ta(SUQR) = ma(SHZZ.

As we shall see, these integers have clear physical interpretation. <

1.4.2 Monopole bundle

Let us first briefly recall Dirac’s famous idea of a magnetic pole (Dirac 1931, 1948).
Suppose that a magnetic charge ‘g’ is placed at the origin of R3. It produces a Coulomb-
like magnetic field

BM® =g, (1.233)

r
withr = (x,y,2z) € R? and r = |r|. Obviously, the origin r = 0 has to be excluded
and, therefore, we are dealing with the punctured manifold M := R3 — {0}. Evidently
V -B = 0 on M. However, as is well known, B does not admit a globally defined

smooth vector potential A, such that B = V x A. Let us note that B admits singular
potentials, however. Take, for example,

1
Av 3, =S ——(—y.x,0); (1234)
rz+r
one easily finds that
VxAr=g—. (1.235)
r
Using spherical coordinates one has

AL=A%=0, AY=g——. (1.236)
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The above formulae show that Ay is singular along the line (x = 0,y = 0,z < 0)
or, equivalently for § = m. Such a singular line is called a Dirac string. Thus, any
attempt to define a global vector potential leads to the appearance of a fictitious string
singularity ending on a pole. If we take another potential A .:

A =% (—y,x,0) (1.237)
rz—r
or, in spherical coordinates,
1 )
AT = A =0, AY =g TS0 (1.238)
rsiné

we obtain a Dirac string along (x = 0, y = 0, z > 0) or, equivalently for 8 = 0.
Let us translate the problem into the language of differential forms. Observe that the
following one-forms:

1 1
Ay =2 (—ydx +xdy) , A=8 " (xday—ydx), (1239
rz+4r rz—r
have the property that
_ g
dA, =dA_ =B = —3(xdy Adz + ydz Adx + zdx A dy) : (1.240)
r

The reader can easily check that B is closed. Is B exact? Using standard spherical
coordinates in R3 we find

B =g sinfdf A dy, (1.241)

which means that B is proportional to the standard volume form on a unit sphere.
Hence,

- o f B =dng . (1.242)
SZ

which shows that B is not exact (otherwise the Stokes theorem implies the vanishing
of fs2 B). Note that rewriting covectors A in spherical coordinates gives

Ay =gl —cosO)dy , (1.243)
and

A_=—g( +cosO)de . (1.244)
They are related by the following gauge transformation:

Ay =A_+df, (1.245)
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where f : R? — S! = U(1) depends only upon ¢ and is defined by

flo)=2g¢.
Periodicity of f,i.e., that
fQ@n)= f(), mod 2nn, (1.246)
implies that
g=g, nez, (1.247)

which is the famous Dirac quantization condition;’ The integer n is called a magnetic
number. We refer the interested reader to the review article by Goddard and Olive
(1978) for a detailed discussion of the Dirac magnetic monopole and its generaliza-
tions.

The above construction of the magnetic pole gives rise to a principal U (1)-bundle
over §? called by physicists a monopole bundle. Let us note that the quantities B and
Ay depend only upon the angles 6 and ¢. The radial coordinate is irrelevant and,
therefore, we may reduce the problem from R3 to the unit sphere S2. Observe, now,
that A, is singular at the south pole of S? only, whereas A_ has its sole singularity
at the north pole. Following Wu and Yang (1975) we divide S? into two coordinate
patches and define the corresponding fields on each patch separately. This way we
avoid the use of a singular vector potential. Let Uy and Us be open subsets in S2 such
that (cf. Example 1.1.1)

1. Uy (Us) contains the north (south) pole,
2. UyUUs = 5%, and Uy N Us # 0.
Now, a U (1)-bundle over S? is uniquely determined by a transition function
yns - Un 0 lUs — Ugl).
Let us take
yns®, @) =" . (1.248)
Clearly, the local connection forms are related by

As = Ay + yysdyns = Ay +indgp (1.249)

"Dirac showed that the quantum mechanics of a magnetic pole g implies the following quantization
condition

_nh
8=2%¢’

where e denotes the elementary electric charge.
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and
Fy =Fs. (1.250)

Let us compute the corresponding Chern number of the magnetic bundle:

Chern number = / Ci1(P).
S2

To do this, let us define up, Si, and down, $2 , hemispheres, as follows:
$2 = fulatxhes ‘x3 >0},
2= fulxtxhes? | <o),

Evidently, S}L U SJZr = §? and SEL N 82 = S!, where S! is an “equatorial” circle that
we provide with the orientation it inherits from S_2|_. One has

Fy=dAy on §2cCUy,
Fs=dAs on S2cCUs,

and, since Tr F = F, the Stokes theorem (pay attention to the orientations) implies

that
/ Fn =f dAN =/ AN, (1.251)
s3 52 st

/ Fs=/ dAS=—/ Ag . (1.252)
s? 52 N

Thus we obtain the following formula for the Chern number:

and

[ i i
/C1(P) = — F=— Fy + — Fg
$2 2 2 2 S-24- 2w s2
(_

= L/ (AN—As)='—/ indg)=n. (1253)
2w Jst 2 Jst

Note, that the Chern number does not depend on a particular choice of A but only on
the transition function yygs, which uniquely defines the monopole bundle. Any two
bundles with the same

magnetic number = Chern number = n

are equivalent. In particular, we may take

AN = —1—2’1 (1 —cosb)dy
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on Uy, and
in
Ag = > (14 cosB)dy
on Ug. One then obtains
in .
Fy =Fg = - sinfdf ANdg ,

i.e., quantities corresponding to the field of a magnetic pole with a quantized strength
g = n/2. For that reason, the above U (1)-bundle is called a monopole bundle.

1.4.3 Instanton bundle

Following our example of a monopole bundle — U (1)-bundle over $Z — we are going
to construct a principal SU (2)-bundle over $*. Let us cover S* with two patches Uy
and Us. To define the bundle we show how to construct the transition function yys.
Let

yns : UnNUs — SUQ), (1.254)
be a smooth function such that on the equatorial three-sphere

§$:=stnst c UNNUs,

it is defined by
yns(x) =U(x) € SUQ), (1.255)
where
0_ ;.3 2 _ 4.l
e xX=ix® —x"—ix
Ulx) =x ra—(xzkixl £0 4 iy ) (1.256)

In the above formula
=10, and 7 =ioxy, k=1,2,3,

and x = (x9, x1, x2, x3) € R*. Clearly, we have two su(2)-valued local connection
forms Ay and Ag related by

As=yys - An-yns+vys - dyns (1.257)
and two local curvatures,

Fy =dAy +Av A Ay and Fs=dAs+ As A Ag. (1.258)
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Let us calculate the corresponding Chern number,

/ Cz(P)=f [e2(F)],
§4 54

1
c(F) = WTI(F/\F).

where

Note that on Uy N Us, we have
Fs=vyys Fn-yns, (1.259)
yet
Tr(Fs A Fs) =Tr (Fy A Fy) .

Now, the four-form Tr (F A F) is exact, and can be written

2
T(FAF) = d{Tr(dA/\A+§A/\A/\A)}

d{Tr(F/\A—%A/\A/\A)]. (1.260)

Thus using the Stokes theorem (pay attention to the orientation), one obtains

/;4 Tr (Fy A Fn)

+

2
/ d {Tr (dANAAN+§ANAAN/\AN)}
st

2
= f Tr (dAN/\AN+§AN/\AN/\AN) , (1.261)
$3

2
f Tr (Fs A F) f d {Tr '(JAS NAs+ =AsA As/\As)}
s s 3

2
——/ Tr (dAS/\AS‘l"gAS A As /\As) , (1.262)
$3

which implies that

1 1
fC2(P)=—/ Tr(FNAFN)+——/ Tr (Fs A Fy)
54 8m2 Sj_ 872 s4

1 2 2
= —-— Tr (dAN ANAN + AN AANAAN —dAsANAs— - As AAs AN Ag ) .
871'2 $3 3 3

This fairly complicated integral should not depend on a particular choice of Ay and
Ag (related according to (1.257)), but may only depend upon the transition function
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yns, which entirely defines the bundle. Indeed, for any Ay and Ay related by (1.257)
one finds that

2 2
dAN/\AN+§AN/\AN/\AN—dAs/\As—-gAs/\Asl\AS

1 . - -—

A purely algebraic proof we leave as an exercise to the reader. Now, on the equatorial
three-sphere yns(x) = U(x), and hence

_ 1 -1 -1 -1
/S4C2(P)_ o /;3Tr(U LAUAUT AU AUT AU L (1268)

This integral is computed in several books — see, e.g., Rajaramaran 1982. Actually,
it represents a Euclidean action of SU(2) Yang-Mills theory in R* corresponding to
a special solution of this theory called an instanton. For that reason the above SU (2)-
bundle over % is usually called an instanton bundle. One finds that

/4 C(P)=-1. (1.265)
S

Physicists call the value of f, g4 C2(P) an instanton number, in analogy to the monopole
number f 52 C1(P) of the U (1)-bundle over S2. Thus, for the instanton bundle,

instanton number = Chern number = —1 .
The reader can easily show that if we modify the transition function as follows:
yws=U — yns=U*,
then
instanton number = Chern number = —k .
As we shall see, the instanton bundle, which has already been applied in Yang-Mills

theory, finds new application in nonrelativistic quantum mechanics.

1.4.4 Hopf fibration S — §?

Interestingly, almost at the same time as Dirac discovered magnetic poles, Heinz Hopf
investigated the properties of maps from S3 into $? (Hopf 1931, see also Hopf 1964).
Define a map 7 : C2 — R3 by:

w(z1,22) = (Elzz + 2122, i @122 — 2122), 12117 — Izzlz) . (1.266)

Note that any point on the unit three-sphere

s ={@ el |lul+iul =1}
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Figure 1.5: Stereographic projection

is mapped via 7 to a unit two-sphere in R?, that is, 7(S3) C 52. One calls the restric-
tion of 7 to S a Hopf map. The crucial property of 7 is U (1)-invariance:

n(ez1, é*z0) = (21, 22) . (1.267)

This enables us to construct a principal U (1)-bundle §3 —> $? with 7 as a projec-
tion. One calls (S3, S2, , U(1)) a Hopf bundle or a Hopf fibration. Introducing real
coordinates

Z1=x1+ixy and 70 = x3 +ix4, (1.268)
we have
m(z1,22) = (61, 62, 83) , (1.269)
~with
& = 2(x1x3+ x2x4) ,
& = 2(xx3—x1x4), (1.270)
£ = xf+xF—x3—x;.

The sphere S? may alternatively be parametrized by the coordinates on the equatorial
plane via the stereographic projection (see Fig. 1.5). Introducing the planar coordinates
Z = x + iy, one finds that

_&Ei+isH xtixa

= — = —. (1.271)
1-4&3 x3+ixa 22

It is evident that (z1, z2) and (e/*z1, e*z3) give rise to the same point ‘z’ on the equa-
torial plane. Introducing three angle variables (8, ¢, ¥) on S3, as follows:

R
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0
21 = cosiexp(iw_z'_qs) s (1.272)
e _
2 = sinzexp (z‘—”z—¢) , (1.273)
one obtains
& = sinfcos¢,
& = sinfsing , (1.274)
& = cosé,

which defines the standard parametrization of S2.

Having described the bundle projection m, let us describe in more detail the structure
of the Hopf bundle S —> $2. Covering the base manifold S? with two coordinate
patches Uy and Ug (cf. section 1.4.2), we define

on 1w (UN) — U,
and

¢s 1 7 (Us) — U,
by

oN(z1,22) = L , Ps(21,22) = L2 (1.275)
[z1] [z2]

The corresponding transition function yy g is therefore given by

2 2l i (1.276)

s = ods’ = lz1l z2

where we have used the angle parametrization (1.272)—(1.273). - -
Our next step is to define a connection. Let ( , ) : C> —> C be the standard
hermitian inner product in C:

{(z1,22), (w1, w2) ) :=Z1wy + 22wy . 1.277)

Let p € S° and take any vector v € T,S. Using the canonical embedding § 3 2,
both p and v may be identified with points in C2. If p € $3 corresponds to (z1, z2) €
C2, then the vertical space V), reads

Vp = {(az1,az22) | € C}. (1.278)
As the horizontal space we take

Hy, = { (w1, w2) € C?|((z1, 22), (w1, w2)) = 0}, (1.279)
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that is, Hp consists of all vectors tangent to §3 at p which are orthogonal to p viewed
as vectors in C?. We shall call a connection defined this way a naturgzl or canontcaé
connection. It is therefore evident that the connection one-form Aon §° is defined by

A = 2g@idz1 +72d22)
2g Re(z1dz1 + Z2dz2) + 2ig Im(z1dz1 + 72d22) (1.280)

However, since (21, 22) € S3, we have
2Re(@1dzy + Z2dz2) = d(lz1)* + |z2P) =0, (1.281)
and, hence,
A =2iglm(zidz1 + 72dz22) . (1.282)
Finally, taking into account (1.268) one finds
A = 2g(x1dxz — xpdx1 + x3dx4 — x4dx3) , (1.283)
or, in terms of angle variables (6, ¢, V),
A=ig(dy +cosfdg). (1.284)
The corresponding curvature F reads
F =—igsinbdo Ado . (1.285)

The canonical local sections (cf. paragraph 1.3.5) are defined as follows:

NG, ¢) =0,V =—9) (1.286)
and
fs6,0)=6,¢6. ¥ =9¢). (1.287)
Hence the pulled back forms Ay and Ag are givenby
Ay = fiA=—ig(1 —cosb)d¢, (1.288)
and
As = fiA=ig (1 +cosf)de . (1.289)

Interestingly, the construction of the Hopf bundle reproduces the Dirac quantization
condition. Indeed, the transformation law

As = AN + vys - dYNs (1.290)

8 A connection one-form is defined only up to a numerical factor. To have a direct correspondence to the
physical formulae we put this factor equal to 2g.

A
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with yys = €'®, implies that

g=>5- (1.291)

This proves that the Hopf bundle corresponds to the magnetic bundle with magnetic
charge, or, equivalently, Chern number, n = 1. This example nicely illustrates how the
beautiful mathematical construction fits the deep physical idea.

Finally, we shall present the formula for the connection one-form in terms of lo-
cal coordinates defined by the stereographic projection (1.271). Taking into account
(1.291) one finds

A=2i Im(fzdm(l 1z + IzleZdz) , (1292)

with z = z1/z». Taking zp = reiX one easily finds

1 zdz — zdz
A=idy + - ———, 1.293
XT3 |z|2 ( )
and, therefore,
1 zdz — zdz zZdz
=——— =ilm| —— 1.294
2 1+|z2 (LHﬁ> (1299
for the local connection form, and
d7Z ANdz
F=dA= —— 1.295
1+ [z]?)? ( )

for the corresponding curvature two-form. Later on, we shall meet these formulae fre-
quently.

1.4.5 Hopf fibration 57 — §*

The Hopf SU (2)-fibration'S” —> §*is defined in perfect analogy to the §* —> §2
case by replacing complex numbers, C, by quaternionic ones, H (see Appendix B for
the brief introduction to quaternions). Let us define a unit sphere in H?:

7 = {@. 9 e B |l + 10212 =1} .
For any (g1, q2) € S7 define

g9 =q4,",

and identify g with a point on $* via a generalized stereographic projection: $* «—
R* = H, cf. Example 1.1.1. In this way we have constructed a map §7 —> $*:

stereographic projection ¢

"3 (q,q2) —— g =qiq; ' e H=R*



68 1. Mathematical Background

Now, observe that if (g1, q2) € S7. then the same is true of (qiu, gou), where u €
H is a unit quaternion. However, the set of unit quaternions is isomorphic with the
unitary group SU (2). Hence, the above map is SU (2)-invariant and defines a canonical
projection in the Hopf principal fibre bundle s7T — §4

By analogy with the Hopf bundle $3 — 52, we endow this bundle with the natural
connection defined by the following connection one-form (cf. formula (1.282)):

A =1Im7,dq1 + 3,dq2) . (1.296)

Let g2 = qu, with u € H being a unit quaternion. Inserting g> into (1.296), one obtains

qd
A=Im (1,4—1du-i-u_1 I 3_51'2 u) R (1.297)

which is the quaternionic analog of formula (1.293). The corresponding curvature two-
form F reads

_1 dgndg
F=Im (u lmu) ) (1.298)

It is evident from (1.297) and (1.298) that the corresponding local forms A and F on a
base manifold S* are given by

qdq
A=1 1.299)
m(l + |q|2) (
and
_ ﬂA_qu_z, (1.300)
A +1q1®

respectively. It turns out that the above formulae are well-known in SU(2) Yang-
Mills theory. Actually, they correspond to the instanton configuration discussed in

_.section 1.4.3. Here again we witness. the elegant interrelation between mathematics

and physics; the Hopf bundle S7 —> $* is equivalent to the instanton bundle with
an instanton number, or, equivalently, Chern number, k = —1. We shall discuss this
bundle in more detail in section 6.6.

Further reading

Section 1.1. There are several standard references devoted to classical differential ge-
ometry and topology and their applications in physics, see for example the following:
classic mathematics books: Kobayashi and Nomizu 1969; Spivak 1999; Dubrovin,
Fomenko and Novikov 1984; and those addressed to the physics-oriented audience:
Choquet-Bruhat and DeWitt-Morette 1982; Abraham, Marsden and Ratiu 1983;
Flanders 1963; Felsager 1998; Trautman 1984; Nash and Sen 1983; Nakahara 1990;
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Gockeler and Schiicker 1997; Schwarz 1996; and Isham 1999. See also the review
article by Eguchi, Gilkey and Hanson (1980).

Section 1.2. The reader may consult Wigner 1959; Wybourne 1974; Gilmore 1974;
Helgason 1978; Abraham and Marsden 1978; Marsden and Ratiu 1999; and Barut and
Raczka 1980.

Section 1.3. The reader interested in a more detailed presentation is referred to the
classic mathematics books by Steenrod (1999) and Husemoller (1966). We recommend
also the following books written for physicists: Hermann 1970; Trautman 1984; Nash
and Sen 1983; Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick 1982; Gockeler
and Schiicker 1999; Isham 1999. See also the useful reviews by Eguchi, Gilkey and
Hanson (1980) and Thomas (1980). Characteristic classes are treated in Chern 1967
and Milnor and Stasheff 1974. For a popular introduction to the theory of bundles and
connections we refer the reader to the article by Bernstein and Phillips (1981).

For the geometric approach to gauge theory see, e.g., Lubkin 1963; Trautman 1970;

1979; Drechsler and Mayer 1977; Mayer 1977; Daniel and Viallet 1980; Marathe and
Martucci 1989; Naber 1997, 2000; and Felsager 1998.
Section 1.4. To see how topology enters modern theoretical physics see, e.g., Schwarz
1996 and Morandi 1992. The monopole bundle is discussed in many books see, e.g.,
Balachandran et al. 1983, 1991; Trautman 1984; and Naber 2000. For a detailed dis-
cussion of applications of the Hopf map to monopole theory see also Ryder 1980;
Minami 1979, 1980; and Aitchison 1987. We recommend also Urbantke 1991 for in-
structive figures. The reader interested in instanton solutions in gauge theory is referred
to Coleman 1977 and Rajamaran 1982.

Problems
1.1. Verify the formula for an overlap map ¢xys from Example 1.1.1.
1.2. Show thatifp : M — N andy : N —> P, then
(Y o@)e = Y00y,
and
Wop) =g oy™.

n

1.3. Prove that the dimension of A*(R") equals to ( k

) by showing that a basis in
A*(R™) is defined by

{eilA...Aei"},

where {e1, ..., e,} is abasisin R", and {e!, ..., "} is its dual basis.
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1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.16:

1.12.

1. Mathematical Background

Prove that the wedge product satisfies
anB=(=D"BAa,
where o and B are k- and /-forms, respectively.
Check the following property of the exterior derivative:
d@AB)=da B+ (—D*ardB,
where « is a k-form and 8 is of arbitrary order.

Consider R* with a standard euclidean metric g(e;, ej) = &;;. Find *(el A el),
the Hodge dual of ' A e/, fori, j =1,2,3,4.

Show that there is one and only one map d : A(M) —> A(M) satisfying the
following properties:

(1) d is linear,

) d(a*() c AFL(M),

(3) if f € A%(M), thendf = ;’Tf dxi,

(4) Leibnitz rule: d(e A B) =da A B+ (—1)*a AdB, fora € AF(M),
(5) d*> =0.

Show that for [w;] € H¥(M) and [w;] € H' (M) one has
[w1 A @] =[w1] A (2] € H ().
Show that for any v € X(M), « € AK(M) and B € AL (M):
iv(@ A B)=(iva) A B+ (=D A (v B).
Derive the flow property

FioFy=F;0F = Fiys .

. Prove the following properties of the Lie derivative:

M) Lx(M+D)=LxT1+LxT,
Q) Lx(M®D)=LxTNINn+T1QLxT,

for any tensor fields 77 and T>.
Show that if ¢ is a smooth map ¢ : M —> N, then a Lie bracket [, ] satisfies
el X, Y] = [0a X, 0 Y],

forany X,Y € X(M).

1.14.

1.15.

1.19.

1.20.

1.21.

1.22.
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. Prove that the set of vector fields on a differential manifold M endowed with the

Lie bracket introduced in (1.51), defines a Lie algebra.

Let ® be aright action of a Lie group G on a differential manifold M. Show that
instead of (1.69) one obtains

Xe, X)) = Xie (1.301)
i.e., the map (1.68) is a Lie algebra homomorphism.

Using a coordinate representation of the Maurer—Cartan form (1.100) show that

1
dwg = —E[wo,wo] .

. Construct transition functions in the cotangent bundle 7*M.

. Following the examples of TM and T*M given in the text, construct a vector

bundle 75! (M) of (k, I)-tensors over a manifold M.

. Let (E, M, =, F) be an arbitrary fibre bundle. Show that if v € X, (E), then

fv,ul € Xyer(E),
for any u € X(E).

Show that the curvature two-form JF of a general (Ehresmann) connection in the
bundle E —> M satisfies

F(u, v) = hor[u, v] — [horu, horv],
for any vector fields u, v € X(E).
Derive Cartan’s structural equation, i.e.,

F=dA+ %— [A Al (1.302)

Show that a parallel transport operator T,, commutes with a canonical right ac-
tion of the structure group, i.e.,

ReoT,=T,0R,, geG.

Let D, denote the covariant derivative (cf. formula (1.207)) and F,, be com-
ponents of local curvature (Yang-Mills field strength). Verify the following for-
mulae:

1) [Du, D,] = F/L\h

(2) D[J,FU)\. = a;LFuA + [Ay.a F,,].
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1.23. Derive the Yang—Mills equations from the variational principle, i.e., show that

8Sym

=0 = D,F"*=0.
8A,

1.24. Verify the following formula for the 3rd Chern class:

N
C3(P)=% (L) [2Tr(F/\F/\F)—3Tr(F/\F)/\TrF—+—TrF/\TrF/\TrF].

27

1.25. Show that a two-form B representing the magnetic field of a magnetic pole is
closed on R3 — {0}.

1.26. Show that

2
T(FAF) = d[Tr(dAAA+§AAA/\A>}

1
d{Tr(F/\A—gA/\A/\A)} ,

where F = dA + A A A is a local curvature two-form. Note, that for an abelian
group, e.g., U(1), this identity is trivially satisfied.

Il

1.27. Consider the two-dimensional Hilbert space H = C2. Any normalized vector
¥ € C? may be represented by

¥ =z1l4+) +z221—),

where |+ ) are eigenvectors of 03, i.e. 03|+£) = *|£), and lz12 + |22 = 1.
Prove that the Hopf map introduced in (1.270) may be defined as follows:

& = (Yloxly), k=123,

where oy are Pauli matrices. This shows a direct relation between the Hopf map
and quantum physics.

1.28. Using formulae (1.295) and (1.300) for the local curvature two-forms, compute
the Chern numbers of

(1) the Hopf U(1)-bundle S*> — §2,
(2) the Hopf SU(2)-bundle S7 — $*.

2

Adiabatic Phases in Quantum Mechanics

2.1 Adiabatic evolution in quantum mechanics

2.1.1 Adiabatic approach of Born and Fock

The notion of adiabaticity has played important role in the history of physics. Roughly
speaking, it lies on the border of statics and dynamics, taking into account dynamical
effects but in the limit of infinitely slow changes. That is, the system is no longer static
but its evolution is “infinitely slow.” A typical situation where one applies adiabatic
ideas is when a physical system may be divided into two subsystems with completely
different time scales: a so-called slow subsystem and fast subsystem.

The adiabatic theorem in nonrelativistic quantum mechanics describes the long time
behavior of solutions of the Schridinger equation with the Hamiltonian slowly evolv-
ing in time. Even though the theorem itself is rather old (it goes back to M. Born and
V. Fock (1928)), its proper formulation was found years later by T. Kato (1958) in the
context of perturbation theory of linear operators.

Consider a time-dependent self-adjoint Hamiltonian H = H(z). To simplify our
discussion let us assume that the spectrum of H is discrete and nondegenerate for all
t. We then write

H®)In@)) = Eo(D)|n@)) , 2.1)
and we choose the time-dependent eigenvectors |n(f) ) such that

(n(®)m()) = dum - 2:2)
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Clearly, the eigenvectors |n(¢) ) are not uniquely defined. We may perform the follow-
ing time-dependent phase transformations:

n(@)) — In'@)) =), (2.3)

with arbitrary functions A, : R —> R. For an obvious reason (cf. section 1.3.5) one
calls (2.49) a gauge transformation. It is clear that physics should be gauge invariant,
i.e., physics does not depend upon the particular choice of the eigenvectors |n(t) ).
Suppose that the initial state of the system is an eigenvector of H(0), i.e., ¥(0) =
[n(0)) for some n. Then the adiabatic theorem states that if the Hamiltonian H (¢)
changes in time “slowly enough” then to a “good approximation” (1) = €'*®|n(1) ),
that is, during the adiabatic evolution v (¢) stays in the nth eigenspace of H (¢). In order
to have a rigorous mathematical theory we show in the next section how to define “slow
enough” changes and what a “good approximation” means.
The state of the system at time ¢ may be expanded in the orthonormal base |n(f) ):
i

t
Y =Y cm(t) exp (“E /0 Em<r>dr) m(®)) 24)

where we have separated out a standard dynamical phase factor exp(—i fot E,(v)dt/h).

The Schrodinger equation implies the following equations for the coefficients ¢ (1)
() 0 (m] Z|m o)
= — m(t)|—|m
em Cm T

- Y a (m(t)l%ik(t))exp [_lﬁ /0 (B - E,,,(r))dr] . 2.5)

k#£m
Let us observe that by differentiating the formula (2.1) with respect to time, i.e.,
Hik) + HIk) = Exlk) + Exlk) (2.6)

and then multiplying by (m|, we obtain

(mlk) = —— (m|H|k) , for m #k. 2.7

Er - E,,

where, for simplicity, the explicit time dependence of H and the corresponding eigen-

vectors has been suppressed. Now, it is time for the adiabatic approximation: The evo-
lution generated by H (z) is considered adiabatic if

|Ex — Em|

H|k
[(miH k)| < AT

, 2.8)
where ATy, is the characteristic time of transition between states k and m. It means
that the changes of H are slow compared to the natural time scale of our system, as
defined by the transition between energy eigenstates. Clearly, in the adiabatic limit
ATim — 00, the changes of H are infinitely slow

(m|H|k)] — O, 2.9)

RPN
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and hence
(mlky — 0, form #k. (2.10)
Therefore, in the adiabatic limit the system of equations (2.5) simplifies to

ém = —Cm{mliir) Q.11)

together with an initial condition ¢y, (0) = 8,». Now the adiabatic theorem immedi-
ately follows: ¢, (f) = O for m # n and the formula (2.4) implies

;opt
Y (2) = cn(t) exp (J%[O En(r)df) In(®)) . (2.12)

i.e., during the adiabatic evolution v (¢) remains in the nth eigenspace of H(t). The
final step is to calculate ¢, (¢). It is clear from (2.11) that ¢, (¢) is a pure phase factor

cn(t) = o0 (2.13)
where the phase ¢, (?) satisfies
ép=i(nln). (2.14)
For almost 50 years this additional phase ¢, (t) was completely ignored. The argument
was the following: Using the gauge freedom (2.3) in choosing |n(¢) ), we may take
another eigenvector |7(t) ) defined by:

i) = e®On()) . (2.15)

The transformed eigenstate satisfies
~ d 2 '
(n} = ln) =0. (2.16)

The eigenvector |7i(¢) ) satisfying the above equation is said to be in the Born—Fock
gauge. Using |7 ) instead of |n) the formula (2.12) for ¥ (f) may be rewritten as fol-
lows:

. t
V(1) = exp (—’E fo En(r)dr) i) | 2.17)

i.e., without an additional phase. This way the additional phase is completely removed.
However, as we shall see in Section 2.2, there are important physical situations where
the procedure of removing the additional phase ¢y () fails. In such cases the additional
phase can not be ignored and it acquires an actual physical meaning.
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2.1.2 Adiabatic theorem

In the previous section we considered a special situation where the time-dependent
Hamiltonian H (t) possesses a discrete and nondegenerate spectrum Ej, (t). However,
the adiabatic theorem works in much more general situations. Traditionally, this theo-
rem is stated for Hamiltonians which fuifill the so-called gap condition, i.e., they have
a part of the spectrum (a band) separated by an energy gap from the other parts. The
gap condition has clear physical implications. To speak about slow changes in time
one needs an intrinsic time scale to determine what slow and fast mean. In quantum
mechanics the intrinsic time scale is usually determined by the energy gaps in the
spectrum. If the spectrum is nondegenerate then the gap condition is automatically
satisfied.

To formulate our discussion of the adiabatic theorem more precisely it is convenient
to replace the physical time ¢ by the scaled time s = ¢/T, where T is the time scale
associated with the gap. In the rescaled variables, the Schrodinger equation takes the
following form:

ihd;yr(s) = TH()Yr(s) . (2.18)

The adiabatic limit, or the limit of “infinitely slow” changes of the Hamiltonian, corre-
sponds to the limit T — oo. Let P(s) denote the finite rank projector onto one part of
the spectrum of H (s), separated from the rest by a gap. If we start the time evolution
with a state within this part of the spectrum, i.e., ¥7(0) € Range P(0), the adiabatic
theorem tells us that the state ¥ (¢), at a later time ¢ of order T, is still within this part
of the spectrum, up to a small error term, which is controlled by the time scale 7" and
the width of the gap.

Let us construct the unitary evolution operator U p for the adiabatic evolution. From
its definition, Uap would have to map Range P (0) onto Range P(s), i.e.,

P(s) = Uap(s) P(O)URp(s) - (2.19)
Following Kato (1958) we introduce the so-called Kato Hamiltonian
Hgao(s, P) 1= z}fz [3s P(s), P(s)]. (2.20)
Consider now the following Schrodinger equation known as the Kato equation:
Yap(s) = [3; P(s), P()]¥aD(s) . (221
together with the initial condition ¥ap(0) € Range P (0).

Proposition 2.1.1 The adiabatic evolution operator Up determined by the Kato equa-
tion

ihd;Uap(s) = T Hgawo(s, P)Uap(S) , (2.22)
satisfies the intertwining condition (2.19):

P(s)Uap(s) = Uap(s)P(0) . (2.23)
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Proof: Following Kato (1958) (see also Avron, Seiler and Yaffe 1989) we show that
both sides of (2.23) solve the same initial value problem. Since Uap(0) = 1, equation
(2.23) is an identity for s = 0. Now, for the r.h.s. of (2.23) one has

ds(Uap(s)P(0)) =[0s P(s), P(s)HUap(s) P(0)) , (2.24)
while, for the Lh.s.,

% (P()Ua(5)) = 3 P©)Uap(S) + P()[3; P(5). P()UaD(5)
= [8P©) + POGPE)PE) — P3P [Uans) . 229)

Now, since P? = P, one finds
ds P(s) = P(s)ds P(s) + (35 P(s)) P(s) . (2.26)
Therefore, multiplying from the right by P (s), one gets
@s P(s))P(s) = P(s)(3s P(s))P(s) + (95 P(s)) P(s) , 2.27)
and, hence,
P(s)(0sP(s)P(s)=0. (2.28)

Therefore, formula (2.25) reduces to
3,(P(Uad() = [8P(s) = P(5)3 P(5) | Usp(s) - (2.29)
Now, using equation (2.26) once more, the above formula finally gives

ds(P(s)Uap(s)) = [8s P (s), P()I(P(s)Uan(s)) , (2.30)

which together with (2.24) proves (2.23). O
For the real evolution the intertwining condition no longer holds. The adiabatic theo-
rem tells us how much this condition is violated.

Theorem 2.1.2 (Adiabatic theorem) Ler H(s) be a smooth one-parameter family of
Hamiltonians and let Ut (s) be the physical evolution parametrized in the rescaled
times =t/ T, ie. Ur(s) is a solution of

iRUT(s) = TH(s)Ur(s) .

Let P(s) be a family of finite rank projectors onto the band of the spectrum separated
by the gap. Then

Ur(s)PO)UF (s) = P(s) + O(T™1). (2.31)

The size of the error term depends on the size of the gap and the time scale T .

Clearly, in the adiabatic 7 — oo limit, Ur —> Uap.
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2.1.3 Adiabaticity and geometry

In physical applications the time-dependence usually enters into the physical Hamilto-
nian via time-dependence of some external parameters (potentials, forces, electromag-
netic fields, etc.). Suppose that these external parameters parametrize some manifold
M, i.e., we have a family of systems parametrized by points of M:

M > x — Hx).

Let P(x) denote a finite rank projector onto part of the spectrum of H(x) (as before,
we assume that this part is separated by a gap). We define the following vector bundle.
Denote by H the Hilbert space of the system in question. Take a trivial bundle H x M
and project out the sub-bundle Hp whose fibres are the vector subspaces Range P (x)
for x € M, i.e., the fibre at x is defined by

Fy := Range P(x) C'H. (2.32)
A fibre bundle
Hp = U Fy (2.33)
xeM

is called a spectral bundle. Let us observe that the adiabatic evolution generated by

the Kato Hamiltonian has a nice geometric interpretation. Indeed, the formula (2.28)
implies that

(3 P)P PL@,P)P, (2.34)

P3P = P@P)P", (2.35)

where PL = 1 — P, and for simplicity we omit the argument of P. Hence, the Kato
equation for ¢ may be transformed as follows:

sy = ((BsP)P— PosP)Y
(PL@,P)P — P@;PYP)Y . (2.36)

Therefore, if initially ¥ belongs to the range of P, then according to the adiabatic
theorem it stays in the range of P for later times, or, equivalently, PLy = 0. Hence

3¢ = P8 P)PY = PL(3:; P)V , (2.37)

since Py = 1. This means that d;% € Range P+, or, equivalently, P3;y = 0. This
condition may be rewritten as

Pdy =0, (2.38)
where d denotes exterior differentiation on M, i.e.,

n 31/, k
dyr = amw:émdx ,
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where (xl, ..., x™) are local coordinates on M. The operator
V:=Pd (2.39)

defines the covariant derivative in the vector bundle  p. It is evident that V is C-linear,
ie.,

V(A1 + Avn) = MV + AV, (2.40)

for any A1, A2 € C, and it fulfills the Leibnitz rule,

VfY)=dHy + fvy, (241)
for any f € C*°(M). Indeed, one has

V(f¥) = Pd(fy)=PUf-¥)+ P(fd¥)
= )Py + fPdy =df)Y + fVYy, (2.42)

Since Py = . Therefore, the adiabatic evolution V¢ = 0 (cf. equation (2.38))
defines a parallel transport of the vector v (s) in the bundle Hp along a curve in the
base manifold M. This parallel transport is realized via the adiabatic time evolution
operator U4 p(s).

2.2 Berry’s phase

2.2.1 Phase in quantum mechanics

In the standard approach to quantum mechanics, pure quantum states are represented
by vectors in a complex Hilbert space H. Each vector ¢ € H describes a state by the
collection of expectation values

A — M N (2.43)
(V1)
where A is a self-adjoint operator in H representing some physical quantity. For this
reason, two vectors ¥ and ¢ describe the same physical state if and only if they are
linearly dependent, i.e., ¥ = Ag, with A € C. If we normalize the state vector, e.g.,
choose (¥ ) = 1, there is still a freedom to choose an overall phase factor e/%. Two
normalized state vectors ¥ and ¢ are physically equivalent:

v~ = Y =e%.

Hence, one usually says that the above phase factor, ¢’“, has no physical meaning. For
this reason we may equivalently represent (pure) quantum states as one-dimensional
projectors in H:

¥ — Py={y (¥l
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clearly,
Y~ & Py=PF,.

However, we know that it is the phase that controls the key effect of quantum mechan-
ics — quantum interference. This effect is governed by the relative phase. If we have
two (normalized) state vectors ¥ and ¢ such that ¢ = e'*@, then one calls & a rela-
tive phase between v and ¢. The relative phase, or, equivalently, the phase difference,
does have physical meaning, and hence may be measured. Superposition of two states
W ~ @ differing in phase by « leads to the following interference formula:

I « |14 €%* =21 +cosa) = 4cos®(a/2) , (2.44)

which enables one to measure . We stress the crucial difference between overall and
relative phases. In the interference experiment the overall phases of ¥ and ¢ are still
unknown and are not important. It is evident that e*y and e'*¢ will produce the same
interference as ¥ and ¢. Only the relative phase counts.

2.2.2 Standard derivation

Consider a curve C on a manifold of external parameters M:
t — x;, € M,

and the adiabatic evolution of the quantum system described by the parameter depen-
dent Hamiltonian H = H(x) along the curve C. Then the Hamiltonian depends on
time solely via the time-dependence of the external parameters: H (1) = H(x;). Sup-
pose that for any x € M the Hamiltonian H (x) has a purely discrete spectrum, i.e.,

H(x)In(x)) = Ex(x)|n(x) ), (2.45)
with
{(n(x)imtx)) = 8pm - (2.46)

Moreover, let us assume that the eigenvectors |n(x) ) are single-valued (as functions of
X € M), that is, we assume the existence of the map

M>x — |jnx)) € H, 2.47)

with H being the system’s Hilbert space. Obviously, this map need not be defined
globally on M. Therefore, we assume its existence only locally. To find the adiabatic
evolution we may apply the “adiabatic machinery” of the previous section. Let us
assume that the nth eigenvalue E, (x) is nondegenerate and let Py, (x) := |n(x) }{ n(x)|
be the corresponding one-dimensional projector onto the nth eigenspace H, (x), which
we write

H,(x) := Range P,(x) = {a|n(x)) |a € C}. (2.48)
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The eigenvectors |n(x) ) are not uniquely defined by (2.45) and (2.46); one may arbi-
trarily change the phase of |n(x) ):

In(x)) — |7/ (x)) = e Pln(x)) , (2.49)

where «, : M —> R. Obviously, the phase transformation (2.49) does not change
P, (x). Suppose that ¢ (0) = |n(xp) ). Due to the adiabatic theorem, () stays in nth
eigenspace of H(x;) during the adiabatic evolution, i.e.,

V(1) € Ho(xr) . (2.50)

Therefore, if the evolution is cyclic, i.e., a curve C is closed (xg = x7 for some T > 0),

then v (0) and v (T') both belong to H, (xo) and hence they may differ only by a phase
factor:

W(T) =€ ¥(0). 2.51)

The obvious guess for the phase y would be

1 T
y = ——/ E,(t)dt , 2.52)
B Jo

but, as was shown by Berry (Berry 1984), it is wrong! There is an additional component
that has a purely geometric origin. It depends upon the geometry of the manifold M
and the circuit C itself. To find it let us note that, due to (2.12) and (2.13), ¥ (¢) and
In(x,) ) differ by a time-dependent phase factor:

- .
V(1) = exp (‘lﬁ f En(r)dr) e On(x)) (2.53)
0
where the Schrodinger equation implies the following equation for the function ¢,:
$n = i(nlit), (2.54)

(for simplicity we have omitted the argument of |n)). The last formula defines the
following one-form on M:

A® = i(n|dn), (2.55)
or, in local coordinates (x!, ..., x"), A® = A,((")dxk, with

AP = i(n|dn) .

Note that since {n|dn) is purely imaginary, the formula (2.55) may be rewritten as
follows:!

A™ = —Im(nldn) . (2.56)

10ur definition of A agrees with that of Berry (1984). There is another convention in which A is not
real but purely imaginary, i.e., A € u(1) = iR. However, most authors define A as a real quantity.
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One solves (2.54) by simple integration:

() =i f0t<n(r)|ﬁ(r) ydtr = /CA(") , (2.57)
where one integrates the one-form A™ along the curve C between x¢ and x;. This

shows that the formula (2.52) has to be supplemented by the following geometric quan-
tity:

¥n(C) i= ¢u(T) =y€ A, (2.58)
c
i.e., the total phase shift y splits into two parts:
1 T
y = ——/ E,(tv)ydt + Yu(C) . (2.59)
h 0 S —
T tric ph
dynamical phase geomelnic phase

This geometric quantity y,(C) defines the celebrated Berry phase, corresponding to
the cyclic adiabatic evolution along C. Using the Stokes theorem one may rewrite
Berry’s phase as

m© = [ F®, 2.60)
b
where ¥ is an arbitrary two-dimensional submanifold in M such that 3¥ = C, and
F® =dA®™ = —Im (dn| A |dn) . (2.61)
In local coordinates (x!, ..., x") on M one finds that
1 . .
m _ _ g 40 J
F%W = 3 F, Y dx' ndx/
with

Fy’ = ~Im ((3i"|3f"> - (aj"|3i”)) . (2.62)

Note that in performing a phase transformation (2.49), the quantity A™ transforms
according to

AW s A =A™ _gq, (2.63)
or, using component notation,

AP = AP — Ban, (2.64)
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i.e., in the same way as a vector potential in classical electrodynamics. For this reason it
is usually called the Berry vector potential (or rather Berry’s potential one-form). Now,
since d%a, = 0, the two-form F™ is perfectly gauge invariant, and due to (2.60), so
is the Berry phase y,(C). The quantity F plays a role of a magnetic field for the
potential A®, and equation (2.60) shows that the Berry phase y,(C) is an analog of
the magnetic flux in the electromagnetic theory:

Berry’s phase y,(3Z) = flux of F™ through X .

Finally, let us express F™ in terms of the energy eigenvalues E. Inserting into (2.61)
the complete basis system

]l:Z|m)(m|, (2.65)

one obtains

F® = —Im ) (dn|m) A (m]dn)

= —Im ) (dnjm) A (m|dn) (2.66)
m#n
= —Im Y (midin) A (mldn) .
m#n
The term with m = n drops out from (2.66) since (n|drn ) is purely imaginary. Now,
the eigenvalue equation (2.45) implies that for m # n,

(m|dH|n)
dn) = ————, 2.67
(mldin) =~ 2.67)
which, together with (2.66), gives
dH
PO — iy (HHIm) A (midHin) 2.68)

msn (Em - En )2

The above formula shows that F is singular at all points x* € M where the spectrum
of H(x*) has accidental degeneracies, i.e., E,(x*) = E,+1(x*). This observation will
play an important role in what follows.

Proposition 2.2.1 The two-form F™ satisfies the following property:

Z F® =9, (2.69)
n
Proof. Using formula (2.66) one finds that
FP = —ImY_ ((dnlm)(m|d;n) — G = j))
m#n

= —%Imgl((amlmﬂmlajn)+(3jmln)(n|3im)—(i =) .
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since
(Oin|lm) = —(n|gim) .
It is clear, therefore, that
> FM=o, 2.70)
n
since the formula ), Fi(j") is both symmetric and antisymmetric in i and j. O

2.2.3 How to measure the Berry phase

If the quantum evolution is cyclic, then one can measure the relative phase between
¥ (0) and ¥ (T). Suppose that the system in question, prepared in the state |n), is
split at = O into two subsystems. One of them is adiabatically cycled and the other
is not. During the evolution both subsystems will acquire dynamical phases ¢; and
@2, respectively. However, the cycled system, in addition, will gain a geometric Berry
phase y,,(C) depending on the cycle, C, followed in the parameter space M. Now, if
the subsystems are recombined at t = T (the period of the cycle) then the intensity of
their superposition is given by

2
I o |explitr + ya(©)] + explipn)|

1
= 4cos’ (E[% —¢2+ yn(C)]) . 2.71)

Therefore, by knowing the dynamical phases ¢; and ¢, we may detect the geometric
phase y,,(C) as a shift in the interference pattern.

This kind of interferometric experiment involves the same (initial) state and two
Hamiltonians (one for each subsystem). A second class of experiments involves two
(or more) states and the same Hamiltonian. Suppose that at ¢ = 0 the initial state is a
superposition

Vv (0) = axln) +aplm} , (2.72)

where |n) and |m ) are eigenvectors of H(0). Now, if H changes adiabatically and
H(T) = H(0), then, using an obvious notation, one obtains

Y (T) = am expli(gm + ym(C)] M) + an expli(@n + ya(CN1In) . (2.73)
Now, let A be a self-adjoint observable which does not commute with H (0). Then one
easily finds that

(Y(DIAY(T)) = lam|*(m|Alm) + |a,|*(n|Aln)
+ 2Re (anay (nAlm) expli(p — om +ya(C) = ym(©N]) . (2.74)

Clearly, if A commutes with H (0), then {(n|Alm) ~ 8, and hence the interference
term vanishes for m 3 n. In this type of experiment we may detect the difference of
geometric phases, y,(C) — v, (C), provided we know the corresponding dynamical
phases ¢, and ¢,,.

2.2. Berry’s phase 85

2.2.4 Berry-Simon connection

Just after M. Berry derived his celebrated formula, B. Simon (Simon 1983) observed
that the quanta] adiabatic Berry phase has an elegant mathematical interpretation as
the holonomy? of a certain connection in the appropriate fibre bundle. It is a special
case of a general situation described in section 2.1.3, where we observed that adiabatic
evolution may be given a purely geometric interpretation.

Let us construct the nth spectral bundle: the base space is a manifold of external
parameters M and the fibre at x € M is a complex line H,(x), i.e., the nth eigenspace
of H(x). We assume that the nth eigenvalue of the Hamiltonian is nondegenerate. The
case of degeneracy will be analyzed in section 2.3. Restricting ourselves to normalized
vectors in H,,, we may equivalently consider a fibre at x defined by

Fy = [ én(x)) [ o ]R} =~ uq). 2.75)

This construction gives rise to the principal U (1)-bundle (P, M, U(1)) with the total

space
P=|JF.
xeM

Having defined a bundle one then needs a connection. It turns out that there exists a
mathematically natural connection on (P, M, U(1)). Note that it is ratural to call a
vector |h) a horizontal one if it is orthogonal (in the sense of the scalar product in H)
to the corresponding fibre F, i.e., if

(n@)|h)=0. (2.76)

A connection defined in this way is usually called a Berry—Simon connection. Let us
see what is the physical meaning of this connection. Consider a curve C in M and let
t —> V¥ (¢) be a horizontal lift of C with respect to the Berry—Simon connection, i.e.,

(nlyr)=0. Q.77)

The above formula is a special case of (2.38). Indeed, it may be rewritten as

(nldy) =0, (2.78)
which is equivalent to

Pdy =0, (2.79)
w1th P, = |n)(n|. In particular, let us note that if |n) is in the Born—Fock gauge,

. {n|n) = 0, then the curve 1 — |n(x,;)) defines a horizontal lift of the original

2Unfortunately, there is a discrepancy between the terminologies used by mathematicians and physicists.
The mathematical object called holonomy usually appears in physical literature as anholonomy. Throughout
this book we shall use the mathematical terminology.
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curve C in the parameter space M. Equivalently, a family |n(x) ) is in the Born—Fock
gauge if, for any curve 1 —> x; in M, the corresponding eigenvector |n(x;) ) defines
a parallel transport of [n ).

In this way, we establish a striking correspondence between the physical notion
of adiabatic evolution and the purely mathematical concept of parallel transport with
respect to the natural Berry—Simon connection:

adiabatic evolution <— parallel transport .

Now, let us turn to a u(1)-valued connection form. If
M > x — |[n(x)) € Hp(x)

is a local section of the nth spectral bundle, then a local connection form (in a gauge
In(x))) is given by a u(1)-valued one-form

iA™ = —(nldn),

that is, a Berry-Simon connection one-form is (up to a factor of i) equal to a Berry
potential one-form. Hence, the Berry phase factor corresponding to the closed curve C
corresponds to an element from the holonomy group of the Berry—Simon connection:

Berry’s phase factor e?” © = holonomy of C .

One obviously has

£Mm©) — exp (lf A(n)) = exp (lf F(n)) , (2.80)
C z

where ¥ is any two-dimensional region such that 9% = C.

2.2.5 Examples

Now, it is time to illustrate the appearance of Berry’s phase in physical systems. We
shall present the spinning quantum particle interacting with a slowly-varying magnetic
field, and the parameter-dependent harmonic oscillator.

Example 2.2.1 (Spin-half in a magnetic field) Consider an adiabatic evolution of the
spin-half particle in a slowly-varying magnetic field B. It turns out that this system nat-
urally leads to the celebrated monopole bundle (see Section 1.4.2) or, equivalently, to
the Hopf fibration $> —»> $2. To show this, let us note that the corresponding Hamil-
tonian is given by

H(B)=%;w‘-B, (2.81)

where & = (01, 02, 03) is a three-vector of Pauli matrices. The magnetic field B € R3
plays the role of the external parameter. To find the eigenvalues and eigenvectors of

g R KA

s O SN
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the instantaneous Hamiltonian let us write the magnetic field in spherical coordinates,
as

B = B(sinf cos ¢, sin0 sin ¢, cos 9) .

Clearly, if B = Bes, then the corresponding eigenvalue problem is solved by

H(Bey)| & () = Ex(B)| £ (es)) 282
with
Ei(B) = :I:%[LB , (2.83)
and
+e=]o).  I-en=|1) 284

Now, if an arbitrary B is parametrized by spherical angles (8, ¢), then it may be ob-
tained from e3 by the following SO (3) rotation:

R(0, ¢) = R3(p) - R2(0) - R3(—9) , (2.85)

where Ry (a) denotes the rotation about the k-axis by an angle o> The corresponding
unitary operator acting in C? is given by

U@, 9) =Us(p) - U200) - Us(—¢) , (2.86)

where
Up(a) = e | (2.87)

and J; = %Uk are the so(3) = su(2) generators. Let | + (B)) = | & (8, ¢) ) denote
eigenvectors of the original Hamiltonian. Using a spherical parametrization,

|£B)=|£©,0))=U@®,9)| £(e3)) . (2.88)
Clearly,
HB)| £ (6,9)) =E+(B)| £ (0,9)), (2.839)
3They are given by
cosg —sing O cos@ O sinf
Ra(p) = ( sin @ cos @ 0 s Ry(0) = 0 1 0 ) .
0 0 1 —siné 0O cosé

Actually, the rotation R3(—¢) acts trivially on e3. However, we included it in the definition of R(8, ¢) in
order to have R(0, p)ez = e3.
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with E4(B) given by (2.83). Now, using the well-known formula

€% — cosa +in-osine (2.90)

with n being a unit vector in R3, one easily finds that

_an @
I+ 0.9) = sin g ) 2.91)

ip [4
e'¥ cos 3

0

€Os 5 I~ ® _
; . 6 B !(p))_
e""smi >

Note that the eigenvectors |+ ) do not depend on |B|, and, therefore, it is natural to take
as the parameter space a two-dimensional sphere M = 52. Obviously, the parametriza-
tion of |+ ) defined in (2.91) is not global. For 6 = 0 one finds

[+(0,0) =1+ (e3)),
whereas
| —(0,9)) =€ —(e3)),

which shows that at the north pole, (0, 0 B), the eigenvector | — (e3) ) evaluates via
U (8, @) to the whole family of vectors ¢'¥| — (e3) ). Similarly, at 8 = =,

|—@r,0)=|—(e3)),
while
I+ (7, 9)) =€ —(e3)),

which shows that | + (i, ) ) is ill-defined at the south pole, (0, 0, —B). Hence we
have two well-defined maps:

l+) : $2—{(0,0,—B)} — S$*c C?, (2.92)
and
|—) : §2-1{(0,0,B)} — S>3 cC2. (2.93)

Note that the point B = 0 corresponds to a degeneracy of the spectrum, i.e., E4(0) =
E_(0) = 0, but it does not belong to our parameter space M = S2.

Now, inserting formulae (2.91) for | & (8, ¢) ) into (2.55) one obtains the following
formulas for the Berry—Simon connection:

A = (46, 9)ld+ 0, )
{40, 9)|0] + B, 9))d0 + i (+(0, )13,] + (6, ¢) Ydo

1
= —E(l —cos@)de , (2.94)
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a) b)

B O]

Figure 2.1: a) Solid angle Q(C); b) a circuit around degeneracy B = 0

and
AC) =y —0,0)ldl — @, 9)) = %(1 +cosB)dy . (2.95)

Obviously, A" and A correspond to the potential one-forms of the magnetic mono-
pole of strength g = F1/2 placed at the origin B = 0, cf. formulae (1.243) and (1.244).
The corresponding Berry curvature reads:

@ Ly

FY7 = —3 sin@df Ady (2.96)

and
1

FO = 5 sin0do ndy, (2.97)

on the appropriate patches of M. Clearly
FP 4+ FO =0, (2.98)

in agreement with (2.69). Finally, one obtains the following formula for the Berry
phase for a spin-half particle:

ys(C) = f F® = 329(0), (2.99)
b

where Q(C) is the solid angle subtended by C on the sphere S> — see Fig. 2.1. In

particular, for § = %, i.e., if the circuit C stays in the xy-plane and encloses the

degeneracy point B = 0 (see Fig. 2.1), we have
y£(C) = Fm , (2.100)
and, therefore,

7= _ (2.101)
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ie.. the wave function of a spin-half particle changes sign after coming back to the

initial point of the parameter manifold. . .
In tkrl)is way we have constructed two monopole bundles characterized by magnetic

number or, equivalently, Chern number:*

51_ / F® =31, 2.102)
T Js2

The same result follows directly from the formula (2.68):

-1
B = — Hi— —|dH |+
FO = gy Im (HIdH =) A (—ldH )
= _B_l Z Im [(+lak|—)(—|01l+)—(k:‘l)]dBk/\dBl, (2.103)
k=1 -

where for simplicity we have omitted the argument of |+ ), and used
3
® Z k
dH = E‘ Ok dB" .

Let us compute the above expression at the point B = (0, 0, B) = Bes. Taking into
account the following:

im ((+eloz] — (e3) ) —(elosl + e5))) =0,

Im ((+(elos] = (€)) (—(@lon] + (€5))) =0,

1m ((+(enlor] - () —~(eloal + () =1,
one easily finds that

1 & _ o
FS = ~557 FP=F3 =0. (2.104)

Hence, for an arbitrary point B one has

*_ =
ki 2|Bl3

€umB™ | (2.105)

which reproduces the field of a magnetic pole with g = — 1/2. <&

Example 2.2.2 (Arbitrary spin J) Let us study the generalizatif)n of the' previous ex-
ample to a particle having an arbitrary spin J. The Hamiltonian is then given by

H®B)=uJ-B, (2.106)

4Note that F is a real quantity and hence, contrary to (1.222), there is no ‘i’ in this formula.
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where J = (Ji, J2, J3) defines a representation of su(2) in C*/*!; for J = 1/2, one
has Ji = oy /2 and one arrives at (2.81). To evaluate the matrix elements in (2.68) let us
temporarily rotate the axes in R? so that the 3rd axis points along B,i.e., B = (0,0, B).
The standard theory of angular momentum (cf., e.g., Schiff 1968) implies

B, m)y=m|J,m), (2.107)

withm =—J,—J +1,...,J —1, J. In the rotated frame H = uBJ3 and, therefore,
the corresponding eigenvalues E,,, such that

Hl],m):Em|J,m), (2.108)
are given by
E, =muB. (2.109)

Moreover, the only nonvanishing matrix elements of J; and J; in the basis |J, m ) read

1
(J,milIJlll,m)=§\/J(J+1)—m(m:t1), (2.110)
(J,m:l:llleJ,m)=:F%\/J(J+1)—m(m:tl). (2.111)

Now, formula (2.68) leads to

Fm = —ilm(u,muku,m—1)(J,m—1|J,|J,m)
“ IBJ2
+ (J,m{JkIJ,m+1)(J,m+1|JllJ,m)—(k::l)). (2.112)
Clearly, this implies that
FP=F%=o0, (2.113)

since (J, m|J3|J, m £ 1) = 0. The only nonvanishing component of F reads

m_ _m
Fiy =~ (2.114)

Reverting now to the unrotated axes one obtains

m m .
FP = ~1BP ewiB', (2.115)

i.e., the field of a magnetic pole ‘—m’ placed at B = 0. Note that

J J
YR =-FP Y m=o0, 2.116)

m=—J m=—J
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in agreement with (2.69). The geometric Berry phase is given therefore by
Ym(C) = —mQ(C) , (2.117)

where €(C) is the solid angle that the circuit C subtends at B = 0. Note, that ,, (C)
depends only on the eigenvalue, m, of the spin component along B and not of the spin,
J of the particle, so that the geometric phase is insensitive to the strength 2J + 1
of the degeneracy at B = 0. Again, each eigenvalue of J3 defines a monopole bundle
characterized by the magnetic number (= Chern number)

1
o = _f Fm ¢ 7. (2.118)
2 Js2

withm=—-J,—-J+1,...,J. o
Example 2.2.3 (Harmonic oscillator) Consider the quantum system defined by the
following Hamiltonian:

AR) = E[X P+ Y@h+ )+ 725, (2.119)

usually called a generalized harmonic oscillator. The Hamiltonian depends on the set
of external parameters R := (X, ¥, Z) € R3. For fixed values of the parameters R, the

eigenvalue equation

AR)Y,(R) = E;R)¥n(R) , (2.120)
takes the following form:
Zh? d*yy, dyin Xq? Y
—— —inY — —ih— =E . 2.121
) qu inrq dq + ) L 3 Yn n ¥n ( )
The normalized solution of the above equation reads
1/4 )
w w —iYq
‘R) = — n — , 2.122
¥n(q: R) (Zh) X (q Zh)@m( 27h ) (2.122)
where the parameter-dependent frequency
w:=(XZ-YH'?, (2.123)

and the so-called nth Hermite function y, is defined as follows:
xn(x) = (0127 V2 2 Hy (x) (2.124)
where H, denotes nth Hermite polynomial satisfying the following equation:

d?H,(x)

-3 +@2n+1—x)HHy(x)=0. (2.125)

RS
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Note that formula (2.123) implies

2
XZ >Y". (2.126)

HT{1311:S means that the corresponding parameter manifold M is the following subset of

M:={(X,Y,Z)eR*| XZ > Y?}.
The oscillator energy eigenvalues are given by the usual oscillator formula:

. 1
E, :=ho (n + 5) . (2.127)

Inserting the wave function (2.122) into the formula (2.61) defining the two-form F®
one finds’ ’

FO = —imde [ da g R dupnia R (2.128)

1 w [* Y
~ 5 {w/ﬁf_wd‘”"z (q‘/% ) g2 (E)} .
w
ti=q /o (2.129)

and using the following property of the Hermite functions (see, e.g., Schiff 1968):

Il

Introducing

[o¢]

1

dEEP X3 E) =n+
Lm XsE)=n+ 2 (2.130)

one obtains the following formula for F®:
+1 z Y
FOHR) = R i - 1

R) 5 dr| | Adr AR (2.131)

A straightforward calculation leads to the result

1
FO (R — n+s5 XdRY NAdRZ+YdRZANdR X + Zdr X AdRY

®R) = R (2.132
2 HXZ Y232 ’ 132)

and the Berry phase for the adiabatic cyclic evolution reads
W(C) = / F®, (2.133)

=

where X is an arbitrary two-dimensional surface in M with C as its boundary. <&

5 A .
To distinguish between dq and, e.g., d X, we denote by dg the exterior derivative in the parameter space.
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2.2.6 Quantum geometric tensor

. . 2
As we have seen, the adiabatic evolution gives rise to a two-form F ™ ¢ A%2(M) on
the manifold of external parameters M. It is defined by

F = —Im ((ain|a,n> - (ajn|8,-n)) . (2.134)

This antisymmetric tensor is invariant under the gauge transformation (2.49) and de-
fines the Berry curvature of the corresponding nth spectral bundle. Berry shows (Berry
1989a, 1989b) that there is another natural gauge-invariant tensor on M, the so-called
quantum geometric tensor, defined by

Ti§") = (&n|(L— Py|3;n), (2.135)
with P, = |n ){n|. It is easy to see that 7}5.") is gauge-invariant and hermitian, ie.,
Ti§")* = Tj(?) , (2.136)

and it is clear that the imaginary part of T® reproduces F®:

1
Im7" = -3 el (2.137)
Let us define
@)
gl ==ReT;" . (2.138)

. (n)
One can easily show that gl.(J'-') defines a symmetric tensor on M. It turns out that g;;

enables one to measure distances along paths in the parameter space. .For that reason
it is called the quantum metric tensor. To see why this is so let us cons.lder two nearby
states, [n(x) ) and |n(x +dx) ). Define a distance A(x, dx) between point x and x +dx
in M by

A¥(x, x +dx) =1—|{n(x)|n(x +dx))?. (2.139)

Having a distance function lets us define the corresponding metric tensor Gij(x) ac-
cording to:

A%(x, x +dx) =: Gij (x)dxidxj . (2.140)

To show that G;; = gi(]'.'), consider the Taylor expansion of |n(x + dx) ):

. 1 i ,
|n(x +dx)) = |n(x)) + |9in(x) Ydx' + 5 18;0;n(x) ) dx dx! + .... (2.141)
It follows that

R 1 i .
(n@)In(x +dx)) = 1+ (n(x)|3in(x) )dx" + 3 (n(x)|8;9;n(x) )dx'dx’) + ... .
(2.142)
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and hence, up to second order terms,
Hnx)ln(x + dx) )|
- 1+ %Re ((nG)13:2;n(0) + (B0 (0)InE) N (I3 00)) dxidx
Using
Re (n|9;0jn) = —Re(9;n|djn), (2.143)

we finally obtain
= . N — (5 . N ()]
Gij = Re((aznlaln) (a,nln)(nlajn)) =g - (2.144)

Actually, gt.(;') is only a positive semidefinite, and hence, strictly speaking, does not
define a metric tensor on M. The length of any curve C on M joining x(0) and x(T')
is given by

. . T L
LCngth(C)=‘/;(gl(]”)dxldxj)1/2=‘/0 (gl(;!)xlxj)l/Zdt > 0. (2145)

To illustrate the concept of the quantum metric tensor let us consider once more a
spin-half in a magnetic field (cf. Example 2.2.1).

Example 2.2.4 The Hamiltonian of the system is given by (2.81) and the parameter
space is

M=R’—(0},

where we have removed the degeneracy point B = 0. The corresponding eigenvectors
|¥*(B) ) are defined in (2.91):

[ —sin?
vt ®) = e,-f,?;;%}, W B) = | s > (2.146)
One can easily compute that:
W IUt) = iy Ity = isin? 2,
6
(WTI¥™) = (3T I3¥7) =icos’ 7,
(WHloewt) = (YT1pYT) =0,
(B tlagy®) = (B9 1099~ ) = — 7 sind,

1
(Y F1py™) = (By7186¥ ™) = 1
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and, clearly, all derivatives with respect to the radial parameter B vanish. Hence, the
’ . + .
corresponding components of the quantum metric tensors g§j ) are given by

([0 0 O
g =eP=-101 0 : (2.147)
3
P 4\ o o sin’e

where i, j = B, 6, ¢. Note that 81(;;3) = 0, which means that the distance A(A, B) =0
for any two points A and B lying on the same straight line passing through B = 0. <

Remark 2.2.1 The tensor g;; was studied in another context by Provost and Vallee
(1980). They considered a family of quantum states parametrized by points from a
parameter manifold M. This manifold is often called a manifold of collective states.
Consider, for example, a manifold of coherent states for a harmonic oscillator. Each
coherent state is uniquely defined by a complex number « € C, as follows:

1 >, a”
|a>=exp(—5|a|2) 3 55"”’

n=0

where |n ) denote the eigenvectors of the harmonic oscillator Hamiltonian. It is easy to
check that formula (2.138) implies, in this case, that the quantum metric tensor is the
euclidean metric on R? = C. For more examples of interesting quantum metrics see
Provost and Vallee 1980. <&

2.2.7 Quantal phase and geometry — a simple illustration

In this section we present a simple illustration of the geometric origin of the quantal
Berry phase. Consider a two-dimensional sphere S? together with its tangent bundle
T S2. Suppose that we are going to perform a parallel transport of a vector ey € T 52
along a curve C in S? from x to y, that is, we look for an operation

Tc : TuS?> — T,5°.
Let C be described by
0,115t —r(@) € §2 Cc R?,

with r(0) = x and r(1) = y. Denote by e(¢) the vector ey after parallel transport to the
point r(z). How to determine e(¢)? Clearly, e(r) remains tangent to $2 and hence

e(r) -r(z) =0. (2.148)

Moreover, we would like as much as possible to imitate an ordinary parallel transport
on a plane. In this case parallel transport is simply a rigid translation without any
rotation. We demand that during a parallel transport, e(f) does not rotate on §? —
that is, it does not rotate about its instantaneous position r(¢), and its length remains
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constant. These properties uniquely determine the law of transport: we have é - e = 0,
and therefore

e=Qxe, (2.149)

for some vector Q = Q(z). Now, since (r, I, r x ¥) defines an orthogonal basis in R3,
the general form of 2 reads

Q=ar+br+crxr. (2.150)

The definition of parallel transport implies that a = 0 (i.e., e does not rotate around r).
Moreover, e, being tangent to S2, remains orthogonal to r. Hence

d . .
0 = E(e»r):e-r-lre-r
= Qxe)-rte-r=(-Qxr)-et+e-r
= b(fxr)-e—cr-ete-r. 2.151)

This implies that > = 0 and ¢ = 1, and hence

Q=rxr, (2.152)

which shows that the law of parallel transport reads
é=—(e-Pr. (2.153)

Thus, the unique solution of (2.153) with e(0) = eq defines a parallel transport of eg
along a curve r(¢) € S2.

Clearly, we may use the above law to perform a parallel transport of an orthonormal
frame (eq, e2) attached at r(0). Note that if (er, e3) is an orthonormal frame on s2,
then a parallel transport implies

e -¢; =0, Lj=12.. (2.154)

In this way we define a connection in a frame bundle FS2. This is an S O (2)-principal
fibre bundle over S2, cf. Example 1.3.3. Equivalently, since SO(2) = U(1), itis a
natural connection in the Hopf bundle $3 — $2. To see the relation to the Hopf
U (1)-bundle more clearly, let us take an arbitrary orthonormal frame (e;, ;) attached
at a point ro € 2, and define a unit complex vector

e;+ie
V2

Now, if e; and e; are parallel transported along a curve r = r(t), then, using (2.153),
one finds

¢ =

(2.155)

Im (¢* - ¢) =0. (2.156)
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The above equation is an analog of the Born—Fock gauge condition (2.16), which is
the defining equation of the Berry—Simon connection.

Now, consider a parallel transport of a frame (e;, e;) (or equivalently, of a complex
vector ¢) along a closed curve C on S2. In general, a parallel transport lead§ to an
orthonormal frame (e’l, ef,_) which is rotated with respect to the initial one. This rota-
tion (an element of SO(2)) is actually the holonomy of the closed curve C. Thus a
basis (e1(?), e2(z)) is not single-valued along C. To obtain a single-valued basis let us
perform a gauge transformation

(e1,€2) — (€1,€2),

(El) _ ( cos sina) (el) ’ 2.157)
€ —sina  cosa e

where @ = «(?) is the t-dependent angle of the SO (2) rotation. Clearly, it is always
possible to choose «(¢) such that

(€1(0), €2(0)) = (@€ (1),€2(1)) .

defined by

Let (€1, €2) be a single-valued frame along C and define

_atie 2.158)
V2
One immediately finds that
o) = “Dnr@)) . (2.159)
Equation (2.156) implies that
Im [id (0* - n) + n* -fx] =0, (2.160)

and, since n* - n = 1, the term n* - n must be purely imaginary, which leads to
a@=—Im (n* -n) . (2.161)
This construction enables us to introduce a one-form on 52,
A := —Im(n*-dn), (2.162)

which is an analog of the Berry connection form. Finally, the S O(2) rotation — the
holonomy A(C) of C — is given by

1
AC) :=a(l) = —Im/ n* - ndt =7§ A. (2.163)
0 C
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Due to the Stokes theorem one has
A(C) =/ F, (2.164)
)

where F' = dA, and ¥ is any two-dimensional region in $? with boundary C = 4%.
The reader can easily show that if (€], €}) is another single-valued frame along C, i.e.,
there exists A(¢) such that

n' (1) = e*Dn(r) (2.165)
then
A=A—d. and F' =F. (2.166)

The final step is to calculate A(C). To do this we have to specify a single-valued frame
(€1(r), € (r)). Let €3 be a fixed unit vector along the z-axis in R3. Define

lr::3| and &) = X8O 2.167)
3 r

E] (l‘) =

with r = |r|. The above formulae give rise to a field of frames in R? if and only if r is
not parallel to e3. In particular, if r = 1 they define a field of frames on $2, minus the
north and south poles. A simple calculation leads to

Z
A=—="(ydx — xdy), 2.168
F21y2) (ydx — xdy) ( )

where (x, y, z) are cartesian coordinates in R3. Finally, one finds the following expres-
sion for F:

1
F = = (xdy Adz + zdx Ady + ydz Adx) (2.169)
r
or, using a vector notation,
r
F = (Fy;, Fpx, Fry) = 50 (2.170)

which reproduces the field of a magnetic pole. In this way we have shown that a parallel
transport of orthonormal frames in F'S? is equivalent to a parallel transport with respect
to a natural connection in a monopole bundle. Therefore, the holonomy A(C) reads

A(C) =/ F=Q(C), (2.171)
3T=C

where Q(C) denotes the solid angle subtended by the closed curve C.
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2.3 Non-abelian Wilczek—Zee phase

2.3.1 Standard derivation

A non-abelian Wilczek—Zee phase factor (Wilczek and Zee 1984) is a natural gener}—l
alization of the Berry phase for systems with degenerate spectra. Suppose that the nt
eigenvalue of the Hamiltonian is N-times degenerate, i.e.,

H®)Yna(x) = Ex@)¥max), a=12,....N, (2.172)

cae(C} s

has dimension N. We may always choose the eigenvectors ¥4 (x) such that

(wna(x)hhnb(x)) =ab - (2.173)

Obviously, this choice is not unique; one may perform a unitary, x-dependent transfor-
mation

i.e., the nth eigenspace,

N
Ha(x) = l > ca¥nax)
a=1

N
Yna(X) — Upa®) = D Uap()¥mp(x) . 2.174)
b=1

to another orthonormal basis ¥, (x) in H, (x). Consider an adiabatic evolution of' the
state vector (1), corresponding to an adiabatic change of the external parameters:

[0, T]1 2t — x; € M.

i i lution is cyclic, i.e., xo = xr, then
Suppose that ¥ (0) € H,(xo). If the adlaba.tlc evo _
thep?rl)diabatic theorem (Theorem 2.1.2) implies t'hat Y (T) € Hn(x1) = Ha(xo), which
means that ¥ (0) and ¥ (7') are unitary related, i.e.,

Y(T)y=Vy(Q), (2.175)

for some unitary operator V € U(N). To find the unitary matrix V note that (c)luri—ng an
adiabatic evolution, the state vector ¥ (¢) stays in Hp(x;). Suppos?, t'hat ¥ (0) = 1//,.,(,
for some 1 < a < N. Therefore, for r > 0, a solution to the Schrodinger equation in

the adiabatic approximation has the following form:

. t N n
V@) = exp (‘lﬁ fo En(r)dt> AT 2.176)

where U™ is an N x N unitary matrix. As usual, we have separated.out a dynam{cal
phase factor. Inserting (2.176) into the Schrédinger equation, one obtains the following
equation for the time dependent matrix U ®™:

WD)y = —~(Ynaltimp ) - 2.177)
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Defining the following one-form, called the Wilczek—Zee potential:

AL = (Yupld[Yna ) 2.178)
one finds the following formula for V:

V' = Viyn - Vgeo (2.179)

where the dynamical factor reads

;T
Viyn = exp (—%/0 E,,(T)dt) 1y, (2.180)

and the geometric Wilczek-Zee factor is given by the following path-ordered integral:
Veeo = U™(T) = P exp (,j{ A(")) . (2.181)
c

Note that A™ is hermitian, i.e., A®* = A™ Obviously, when there is no degeneracy,

i.e.,, N = 1, the non-abelian Wilczek—Zee factor (2.181) reproduces an abelian Berry’s
phase factor (2.58).

2.3.2 Fibre bundle approach

It is evident that the Wilczek~Zee factor may be reformulated as a holonomy element
in an appropriate fibre bundle. Each point of a parameter space, x € M, gives rise to an

N-dimensional spectral space H,,(x), and hence we may define the following spectral
bundle:

E™ = | Hax) (2.182)
xeM
over M, with a typical fibre F = CV . Note that by fixing N unit vectors ¢, ... , gy €

H, (x) and defining a fibre as follows:
F® .= { 3" Uases . U e UWN) } Uy, (2.183)
b

one may equivalently consider a U (N)-principle bundle over M:

PO = | P
xeM

Clearly, the nth spectral bundle E™ is an associated vector bundle to the U/ (N)-
principal bundle P®. Consider now a curve t —> C(t) in M, and let

t — {o1(®), ... ,on(D)},
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be a lift of C to E ), We call ¢,(t) a horizontal lift with respect to a Wilczek—Zee
connection if

(Ynplga) =0, (2.184)
forany a,b = 1,... , N. This formula may be equivalently written as
(Ynpldea) =0, (2.185)

which is an analog of (2.78). Let P, be a projection on ‘H,,. Then the above formula
may be rewritten as follows:

P,do, =0, a=1,...,N, (2.186)

where d stands for exterior differentiation on M, that is, the last system of equations
define another example of our basic geometric formula (2.3?). Clearly, we may gener-
alize the Born—Fock gauge condition (2.16) to the non-abelian case. One says that the
family Yy, is in the Born—Fock gauge, iff

(UnalUnp) =0, fora,b=12,...,N. (2.187)

As in the abelian case, to be in the Born-Fock gauge is equivalent to being parallel
transported with respect to the natural Wilczek—Zee connect‘lon. ‘

T opﬁnd the geometric meaning of the Wilczek—Zee potential .let us perform a umta.'ry
transformation (2.174) and calculate Wilczek—Zee potential using a transformed basis,
¥, .- One easily finds that

N
A = (W d ¥ na) =1 Y Ura(Uacl Yl + Ve Yrald 1))

(_‘,d=1

N P
= Z (UacAg;)Ubd+i(dUac)5chbd)
c,d=1

=WU-A-U*+i@U) -U"ap . (2.188)

Clearly, A®™ transforms exactly as a gauge potential in the non-abelian gauge theory.
Hence, a degenerate spectrum leads in a natural way to a non-abelian U (N) gauge
theory, with N being the degree of degeneracy. We may, therefore, define the corre-
sponding gauge field,

F® = dA® —jaA® A A® | (2.189)

Let us observe that i F® is a u(N)-valued two-form on a parameter manifold M.
Using local coordinates (x1,...,x™) on M, one obtains

. n)
(F)ap = 0 (A Yab — (AT ap — 1AL, A Lab (2.190)
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with
(A )ab = 1 Ynb |8kl Yna ) - (2.191)

Clearly, the non-abelian Wilczek—Zee factor Vgeo is a holonomy of the Wilczek—Zee
connection.

Example 2.3.1 To illustrate the structure of the non-abelian geometric phase let us
consider the following generalization of the model Hamiltonian (2.81) corresponding

to the spin-half particle in a magnetic field. The generalization (Biswas 1989, see also

Arodz and Babiuch 1989) consists in replacing Pauli matrices oy by the Dirac matrices
Yk

Yk =01 Q o = ( <2c %k ) s (2.192)

that is, instead of (2.81) we take
1
H®B) = EMB-y. (2.193)
The above Hamiltonian has two doubly-degenerate eigenvalues:

1
Er=2-uB.
+ FH

The reader can easily check that the corresponding eigenvectors,

HB) Yty = E+ Y44, a=12,
are given by
1 0
1 0 1 1
Va1 = V2| cosé v Ym= V2 | singe® |-
sin fe'® —cosf
and
cos 6 sin@e =¥
1 sin fe'? 1 —cos 6
_] = — y _y = —— R
14 7z 1 V-2 73 0
0 1

where as usual § and ¢ are the standard spherical angles in R3. Now let us compute
the Wilczek~Zee gauge potential corresponding to the £, energy level, i.e.,

A = i(VbldlVia) -
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One easily finds that
A= A =0, @A = ¥,
and
(Ag“))u =—(AP)n = —% sin? @, (Af;’))lz = —;—sine cosfe™? .

Therefore, the non-abelian one-form potential A" reads

AD = AP do+ AP do
with

AgPY = % ( _Sigo e—ow ) , (2.194)
and

sin @ —sin® cosfe i® ) . (2.195)

+ 27 :
Ay = 2 (cos@e”” sin@

Having found the gauge potential A™) one easily finds the corresponding gauge field
F®)_ The only nonvanishing component of F ™) reads

Fy) = 0pA0" — 0,457 —ifagh, AGD]. (2.196)
Inserting the formulae for A§)+) and Aff), one gets
o) = —%B% sin@dé Adg (2.197)
or, using cartesian coordinate,
F® = —%%} €ijx BldB/ ndBF. (2.198)

Note that F still has a form of the field strength of a magnetic po_le, where now the
magnetic charge g is replaced by a matrix gB-o'/ B. The corresponding spectral bundle
over M = §? is trivial, and hence its Chern number vanishes:

1 TrFH =0.
271' SZ

Nevertheless, the geometric phase factor (or, equivalently, the holonomy group) is n01<1;
trivial.
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2.3.3 Non-abelian phase in quadrupole resonance

An elegant example of a physical system displaying the non-abelian Wilczek—Zee ge-
ometric phase is the nuclear quadrupole resonance (Tycko 1987, Zee 1988). Consider
the spin quadrupole Hamiltonian describing the interaction of the nuclear quadrupole
with a magnetic field B, i.e.,

H=pu{J B)?, (2.199)

where u plays a role of the coupling constant. More precisely, a quadrupole system is
described by

3
H(Q) =) Quh. (2.200)
k=1

where Qj; are the components of a real 3 x 3, symmetric and traceless matrix — a
quadrupole matrix. Our Hamiltonian (2.199) is related to H((Q) as follows

1
H=H(Q)+ g}Llez , (2.201)

with
1 2
Ou=u Bsz—gB S ), (2.202)

that is, H differs from H(Q) by a term of the form ‘const. - J2,” which is a constant
of motion, since [H, J2] = 0.° The Hamiltonian (2.199) is reminiscent of the spin
dipole Hamiltonian ‘uJ-B’ considered in Example 2.2.2. The quadrupole Hamiltonian
possesses an additional symmetry J —> —J which implies that the energy eigenvalues
are doubly degenerate. Indeed, if | J, m ) are eigenvectors of J3, i.e.,

B, m)y=m|J,m), m=-J,—-J+1,...,J-1,7J,
then the corresponding energy eigenvalues E,,, defined by
H|J, tm) = Eu,|J,tm) ,

are given by E,, = u(mB)?. Note that for J = % one has J; = ox/2 and hence the
Hamiltonian is trivial: H = (uB?/2)1,. Therefore, to obtain a nontrivial quadrupole
system one needs J > 1. In the experiment performed by Tycko, a spin J = 3/2
Cl atom in an NaCl crystal was used. The case J = % gives rise to two doublets
corresponding to m = :}:% and m = :t%.

SFor a more detailed discussion of quadrupole systems we refer the reader to section 6.3.2.
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Let us assume that the magnetic-field varies slowly in time, such that B = [B| =
const. Hence, the parameter space is M = S2. Parametrizing S2 by the standard spher-
ical angles # and @, we shall denote the corresponding eigenvectors of (2.199) by
Im(@@, ¢)), withm = +1, £3 Clearly,

Im@6, ¢)) =U@, p)im(e3)), (2.203)

where U (6, ¢) is the unitary operation defined in (2.86), and |m(e3) ) := |2, m ).
The non-abelian Wilczek—Zee connection A™ on the parameter manifold M = S2
reads

A™ @, ¢) = AT 6, 9)d0 + A0, ¢) dp , (2.204)
where the 2 x 2 matrices Ag") and AY™ are given by

(Aém))ba = i{a@, ¢)|%lb(9, 0)) = (ate]iU @, 9) - %U(e, <p)|b(e3)) :
(2.205)

and

(49), = iface. ¢),%‘b(9, o) =(ae|iv @, 0)- %U(e, o)pe),

(2.206)
with a, b = +£|m|. Using the well-known Baker—Campbell-Hausdorff formula
_ 1 1
eB -A-e B =A + [Ba A] + E[Bi [B’ A]] + 5[3» [Bv [Ba A]]] + cee s (2207)
one easily finds that
U20)-J3-U5@) = Jzcos@ + Jysind,
Us(p) - J1 - Ui (p) = Jicosg+ Jsing, (2.208)
Us(p) - J2-Uj(p) = Jrcosg — Jysing.
Hence
s TrR 2 *
M CNIE %U(G. ) = Us(p) - -Uj(p)
= Jycosp — Jysing, (2.209)
and
. 9
iu*, ¢) - %U(ﬁ’, @) =Us(p) - Uy (0) - J3- U2(8) - Ui () — J3
= —(Ji1cosg + Jrsing) sinf + J3(cosf — 1) . (2.210)

.
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This leads to the following formulae for A™:
(Ag,m)ba = (a(e3)| ) cos ¢ — Jy sing|b(es)) , 2.211)
and
(A;m>)ba = (a(e3)| — (J1cos @ + Jsin ) sind + J3(cos6 — 1)|be3)) . (2.212)

Taking into account (2.110) and (2.111), one finds that

Bl =) =

3 3,133 3 3,133
2 2n2 =32 = o,
<2 2|22 2) (2 2171272
and (a(es)|J3|b(e3) ) = adap. Thus, for m = 3 we obtain’
€]
A = 0, (2.213)
€3 3
Aj = 5(1—0059)03, (2.214)
and,form:%,
» _ 1 o _ 1 0 i
Ag = 4( Cos 9oy — Singor) = il licie o ,  (2.215)
¢)) 1 1 .
Ay = 5[(1—cos0)03+551n0(—cos¢01+s1n<p02)]
1/ (1—cosf) —1singe®
- . . 2216
2(—%sin9e"“’ —(1 - cos8) (2216

Hence for m = % one obtains a truly non-abelian structure. We shall meet a similar

structure in studying a diatomic particle in section 6.3.4.
Further reading
Section 2.1. A detailed discussion of the adiabatic approximation may be found, e.g.,

in Messiah 1961. Kato’s results were extended in Nenciu 1980 and Avron et al. 1987.
See also the review articles by Avron et al. (1988) and Richter and Seiler (2000).

TWe use the following convention to enumerate the matrix elements of 2 x 2 matrices:

x
X“b=<u i,)’

With x 2= X jm|,—~ml> ¥ 1= X—jmlim|» ¥ = Xim|,~pmls V= Xim],jm-
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Section 2.2. Quantal Berry’s phase is discussed in standard quantum mechanics courses
(see, e.g., the monograph by Bohm (1993a)). We also recommend useful reviews by
Berry (1988a), (1989a), (1989b); Zwanziger et al. (1990); Bohm et al. (1991), and
Bohm (1993b).

Other examples of Berry’s phase may be found in: Bouchiat 1987, 1989; Chaturvedi,
Sriram and V. Srinivasan 1987; Cervero and Lejarreta 1989; and Cheng and Fung 1989.
Garrison and Wright (1988) generalized the geometric Berry’s phase factor to dissi-
pative evolution equations phenomenologically described by nonhermitian Hamiltoni-
ans. In this case, (real) Berry’s phase is replaced by complex geometrical multipliers.
De Polaviejaa and Sjoqvist (1998) extended the quantal adiabatic phase to noncyclic
motions — see also Pati 1998; Mostafazadeh 1999; and Zhu, Wang, and Zhang 2000.

For the classification of bundles arising in quantum mechanical problems we refer
the reader to Kiritsis 1987; Bohm et al. 1993; Mostafazadeh and Bohm 1993; and
Mostafazadeh 1996.

Problems

2.1. Show that |7 ), defined in (2.15), satisfies
(i) =0.

2.2. Find the Kato Hamiltonian corresponding to the one-dimensional projector
Pu(s) = In(s))(n(s)|, where H(s)In(s)) = E(s)|n(s)). Show that Hiaro
is gauge invariant and that ¥ (s) = c(s)|n(s)) solves the Kato equation with

¥(0) = [n(0)).

2.3. Show that Berry’s phase is gauge invariant, i.e.,

f{mdn) = %(n'ldn’).

2.4. Find the formulae for the matrix elements of (+6, p)lox] — (6, ¢)), where
| &+ (8, p) ) are defined in (2.88), and compute F using formula (2.103).

2.5. Show that the quantum geometric tensor 7}5'") is hermitian and gauge invariant.

(n

2.6. Prove that the quantum metric tensor g j) defined in (2.138) is symmetric.

2.7. Show that the quantity A(x, dx) introduced in (2.139) does satisfy all require-
ments of the distance function.

2.8. Let P, be the N-dimensional projector onto the nth eigenspace H,,. Find the
corresponding Kato Hamiltonian and show that under the gauge transformation

N
Yna(¥) —> YnX) = D Uap(0)¥Ymp(x)

b=1

RN

s

2.9.
2.10.

2.11.

2.12.
2.13.
2.14.

2.15.

2.16.

2.17.

2.18.
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the Kato Hamiltonian transforms according to

Hygato — U - Hgaro - U™ .

Try to generalize Proposition 2.2.1 to the degenerate case.

Prove that the Wilczek—Zee curvature F™ transforms under the gauge transfor-
mation (2.174) in a tensorial way, that is,

F®™ s Fo_y.p® . py*.

Following Example 2.3.1, compute A and F(—). Show that

FH L —9,

Verify formula (2.168) for the connection form A.
Show that d A, with A given by (2.168), reproduces the field of a magnetic pole.

Find the adiabatic Wilczek—Zee connection for the systems governed by (Arodz
and Babiuch 1989)

W) Hm) =Y}, epn‘o’ @ o,
(2 Hm) = Y;_, nfo* ® o,
@) HPm =Y n(heo +to @),

where o are Pauli matrices and n = (n', n%, n3) € 5 are the adiabatic param-
eters.

Consider the spin quadrupole system discussed in section 2.3.3. Define

Im@,9)Y =U'(®, @)imes)) ,

where U'(0, ¢) = U0, ¢) - Us(p) = Us(p) - U(8). Find the corresponding
non-abelian connection form A ™. Derive the gauge transformation relating
A and A’

Compute the Wilczek—Zee curvature for the spin quadrupole system H = u(J -
B)Z.

Use the results of section 2.3.3 to derive the solid angle formula y,,(C) =
—m$2(C) for the Berry phase of the spin system.

Using the Baker—Campbell-Hausdorff formula (2.207), prove (2.208).
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Adiabatic Phases in Classical Mechanics

3.1 Hamiltonian systems

3.1.1 What we mean by a phase in classical mechanics

What could be a classical analog of the quantum geometric phase? An obvious candi-
date, which is even called a phase, is the phase of harmonic motion:

x(t) = Acos(wt + ¢p) .
One may define the phase difference between two positions x(¢t = 0) and x (¢t = T) by
Ap =T .

Clearly, if w depends on time, then Ag is replaced by

T
A‘»"dyn =/ w(t)dt ,
0

and, in analogy to quantum mechanics, it may be called a dynamical phase (or a dy-
namical angle). However, if the oscillator is coupled to a time-dependent environment,
then one may expect that if the state of the environment is slowly (adiabatically) cy-
cled, then, as in the quantum case, there is an additional phase (angle) which depends
on a closed trajectory C in the environment phase space, i.e.,

Aprotal = A@dyn + Ap(C) .

This additional angle Ag(C) is a classical analog of the quantum geometric phase and
for this reason is called the classical geometric phase.
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NG

Figure 3.1: Foucault pendulum

Example 3.1.1 (Foucault pendulum) The precession of a Foucault pepdulum is per-
haps the most transparent illustration of the appearance of the classical geomet_nc
phase. The standard treatment describes the pendulum motion with respect to a nonin-
ertial frame rotating with the surface of the Earth (see any book on classical r.nechamcs,
e.g., Goldstein 1950, Landau and Lifshitz 1976), with the following equation of mo-
tion:

mqg=F-—-mR2Qxq+2 x Q@ xq)], (3.1)

where  stands for the constant angular velocity of the Earth. In the above formula, F
is simply the gravitational force and the next two terms on the r.h.s. are the Cpﬁo}is and
centrifugal forces, in that order. Let  denote the frequency of the small oscillations of
the pendulum. It is evident that

o> Q=|RQ. (3.2)

Take the coordinate axes ey, ey, e, of the noninertial frame such that e, and e, are
tangent to the surface of the Earth, and e, = e, X ey, i.e., e; points along the Earth’s
radius (see Fig. 3.1).

In the regime of small oscillations one has z ~ 0. Moreover, one may neglect the
centrifugal force, which behaves like ©22. Therefore, in such an approximation, the
dynamics of the pendulum is described by the following set of equations:

. 2 .
).C' = —a)zx + 2yQZ s (33)
y = —w°y— ZXQZ ,

with @, = Qcos6, and 0 is a constant latitude measured relative to the north pole
— see Fig. 3.1. Defining a complex variable w := x + iy, one may rewrite the above
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system of equations as follows:
W+ 2iQb +w’w=0. (3.4)

Looking for a solution of the form w(r) = ¢'*, one easily finds

A=—QZ:I:‘/Q§+w2%—QZ:i:w, (3.5)

where, once again, we have used (3.2). Hence, the approximate solution to equation
(3.4) reads

w(t) = e 1%t (c1 et + cze_i“’t) . (3.6)

Note that the role of the Coriolis force is to rotate the invariant plane of oscillation of
the pendulum with angular velocity . Therefore, after one revolution of the Earth,
i.e., after T = 27/ Q2 = 24h, the net rotation of the plane of oscillation will be

Ap = QT =2mcosh . (3.7

A remarkable feature of this result is that it is independent of Q (provided formula
(3.2) holds), i.e., the net rotation does not depend on the rate at which the closed
curve C = {6 = const.} is traversed by the pendulum. This is a typical feature of the
geometric phase. Note that modulo 277, Ag equals to the solid angle enclosed by C:

Ag = Q2(C) modulo 27 . (3.8)

This shows that the net rotation Ag of the invariant plane of the Foucault pendulum is
a purely geometric effect. <&

It is clear that the simple picture above holds only for periodic systems. However,
there is an important class of classical hamiltonian systems that share this property
— they are periodic (or multiply periodic) in the classical phase space P. The crucial
feature of these systems, which are called integrable systems, is that the evolution takes
place on an n-dimensional torus 7" (with n being the number of degrees of freedom),
in which case one has n frequencies (w;, ..., w,) and n classical phases (angles)
A, ..., Ap,.

This fact was first observed by John Hannay at the university of Bristol in 1985 and,
hence, the additional geometric phases (angles) Ag; (C) are called Hannay's angles.
The present chapter derives the formula for these angles together with a necessary
introduction to integrable systems and the adiabatic theorem in classical mechanics.

3.1.2 Symplectic geometry and Hamiltonian dynamics

Any dynamical system contains two ingredients: a phase space P, i.e., a space of
physical states, and a vector field X on P that defines the dynamics. Then the evolution
of the state, 1 — x(z), satisfies the following dynamical equation on P:

X)) =Xx(@), x0)=xp. 3.9
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Hamiltonian systems define a particular class of dynamical systems. A hamiltonian
system is usually defined by a set of the Hamilton equations:

. dH dH
'l=“—, )i = —— 3.10
q ap; Di 3g ( )
where (q!, ..., g") are generalized coordinates and (p1, ... , p,) are the correspond-

ing conjugate momenta. It turns out that the above canonical equations follow from a
beautiful geometric structure encoded into the space of states P.

Definition 3.1.1 A symplectic manifold is a pair (P, Q2) where P is a manifold and Q
is a closed, nondegenerate two-form on P, that is,

e dQ2 =0, and
o if Q2,(u, v) =0 for any vector u € TP, then v = 0.
One calls Q2 a symplectic form.
The nondegeneracy of €2 implies that P is of even dimension, say 2n, and

n times
—
QA...AQ
defines a volume element on P. Let (x!, ... , x2") be a local coordinate system on P.

The condition d2 = 0 is equivalent to the following set of equations for the compo-
nents £2;;:

0;Qjx + 0 ij +0;Q =0, (3.11)
where as usual
Q=2 3 Qi dx' Adx’
_Ei,,2=21 ijdx’ Adxt .

Let us consider some examples of symplectic manifolds.

Example 3.1.2 (Symplectic vector space) Let P = R?" and define 2 as follows:

0 1
9:(_11" 0 ) (3.12)

Since 2 is constant it is evidently closed. <
Our next example plays a prominent role in classical mechanics.

Example 3.1.3 (Cotangent bundle) Let Q be an n-dimensional manifold and P =
T*Q be the corresponding cotangent bundle (cf. Example 1.3.2). Introducing the canon-
ical bundle projection

g : T*Q — 0,
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one defines the following one-form on P:

®,(v) = p(Tro(v)) , (3.13)
where p € P, v € T,P and

Tng : TP — TQ,

is a tangent map of . Now, the point p € P defines a one-form on Q and the r.h.s.
of (3.13) denotes the evaluation of p on a vector T (v) tangent to Q. One defines

Q=-do, (3.14)

from which it follows that Q is a symplectic form on T* Q. Choosing a local coordinate
systemon 7*Q: (x') = (ql, ...,q", p1,..., pp)itis easy to see that

n
®=> pdq,
i=1
and hence one obtains the following well-known formula for Q:

Q=) dq' Adp;, (3.15)

n
i=1

which proves that (7*Q, ) is a symplectic manifold. <o

Most of the hamiltonian systems from classical textbooks have cotangent bundles as
their phase spaces. The manifold Q is called a configuration space and the fibre 7,7 Q
contains all possible momenta. Note that €2 is constant in local coordinates (¢°, p;) and
has the same form as (3.12). This is not a coincidence; due to the Darboux theorem
any symplectic form is locally constant, i.e., it is given by the formula (3.15), which
is called the canonical form of Q. The corresponding coordinates (g*, p;) are called
canonical coordinates. Clearly, the symplectic vector space R?* = TR” also defines a
cotangent bundle, and cartesian coordinates on R?” are canonical ones. However, there
are also important symplectic manifolds which are not cotangent bundles.

Example 3.1.4 (Sphere S%) A unit two-dimensional sphere S is a symplectic mani-
fold with the symplectic form being proportional to the standard area element:

Q=asinfdd Adyp, acR. (3.16)

Note, that the spherical angles 8 and ¢ are not canonical. Introducing a new variable
I = —acos 8, one finds

Q=dI ndy,

which shows that (g, I) in fact defines a canonical pair. <&
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Consider now a smooth function f on P; one calls f a classical observable.

Definition 3.1.2 The vector field X y on P defined by:
ix,Q=QXy, -)=df, 3.17)

is called the hamiltonian vector field corresponding to f.

In local coordinates (x') on P, the components of X s with respect to the coordinate
basis 9/0x", are given by

2n
Xp)i=Y Ql'a;f, (3.18)
j=1

where Q¥ is the inverse of €; j (its existence is guaranteed by the nondegeneracy of
Q),ie.,

2n )
> uQm =67 (3.19)
i=1

The above construction enables one to introduce the Poisson bracket in the space of
classical observables, as follows:

{L}: CPMP)xC®P) — C(P),
defined by

oF 0G
F,G} = Q(XF, Xg) = Qv — , 3.2
{F.G} = Q(Xr, Xo) = ”Z] Py (3.20)

where X and X are hamiltonian vector fields corresponding to F and G, respec-
tively. In local canonical coordinates (g°, p;), one recovers the standard formula

& oF 0G 3G OF
(r.6)=3 (Gorge ~ 3 ) -
i=1

dq' dp;  3q’' dp;

Now we are ready to present the general definition of a hamiltonian system: it is a
triple (P, 2, H), with (P, Q) being a symplectic manifold, and H a smooth function
on P. The Hamiltonian dynamics on (P, Q) is defined by

X =Xpgkx), 3.21)

V\{here Xy is the hamiltonian vector field corresponding to H. In local canonical coor-
dinates (g', p;) formula (3.21) reduces to the standard canonical equations (3.10):

oH . IH

q' = =1{q'. H}, pi=—37

™ ={pi. H}, (3.22)
Pi

S
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fori=1,...,n.
Let us consider two symplectic manifolds, (P;, 1) and (P2, €22). A mapping

p: P — P
is called symplectic or canonical if
Q0 = Q. (3.23)

In particular, if P; = P, = P one speaks of canonical (or symplectic) transformations
of P. These are transformations preserving the symplectic form € on P. Obviously
they form a group that is a subgroup of Diff(P).

Example 3.1.5 Consider that symplectic vector space R?* from Example 3.1.2. Linear
canonical transformations of R?” form a group called a symplectic group:

Sp(n) ={AeGL2n,R)|A-Q-AT =Q}, (3.24)

with © given by (3.12). <

3.1.3 Integrable systems

Let (P, 2, H) be a hamiltonian system. Recall that a function F : P — R is a first
integral, or a constant of the motion of the hamiltonian system, if

{F,H}=0. (3.25)

The existence of first integrals plays a crucial role in solving the corresponding evo-
lution equation, since it enables one to reduce the number of degrees of freedom. A
hamiltonian system always has at least one constant of motion — a Hamiltonian. A
system with n degrees of freedom has maximally 2» independent constants of motion.
If we know them then the trajectory is completely determined. However, it turns out
that frequently one needs only # first integrals to solve the system completely.

Definition 3.1.3 A hamiltonian system is said to be integrable iff there exists n =
(dim P) /2 constants of motion F;, such that

o {F,F;j}=0, i,j=12,...,n;

e the functions F; are independent on a level set of F = (Fy, ..., F,) at a point

f=(f1,..., fu) € R". That is, on
F'h:=(xeP|Fx)=fi:i=1,...,n},
we have

dFl/\sz/\.../\an%O.
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Most books on classical mechanics emphasize the treatment of integrable systems,
which form an exceptional class of hamiltonian systems, in that they are soluble. If a
system is integrable then the n functions F; can be used as new coordinates.

Theorem 3.1.1 (Liouville) For any integrable system there exist n functions ¢; on P,
such that

{pi,pj} =0 and {g;, Fj}=34;j .
The functions ¢; are determined up to the following transformation:
$i — it
with an arbitrary function K : R" — R.

Theorem 3.1.2 (Arnold) Suppose that a level set F~1(f) is compact and connected.
Then it is diffeomorphic to an n-dimensional torus:

F'(Hh =T" ={(¢1,...,9,) mod 27 }.

Moreover, the hamiltonian flow on ¥~ (f) is quasi-periodic, i.e.,

do;

The quantities @ = (wy, ... , @,) are called the frequencies of the quasi-periodic mo-
tion. They are independent if

kioi +...+kyw, =0, withk; € Z , (3.27)
implies k; = ... = k, = 0. If the above condition does not hold, the frequency vector

Q is called resonant. One can show that for independent frequencies the trajectory
is dense on T", whereas in the resonant case the motion is strictly periodic, i.e., the
trajectory is closed.

Let y; be a basic one-dimensional cycle of F~1(f) = T", i.e.,

f do; =2md;5, (3.28)
Vi
fori,j = 1,...,n. Two cycles y; and y, for a two-dimensional torus T2 are shown
in Fig. 3.2. Define the following quantities:

1 - ;

Ik(t):=—fzp,-dq', k=1,....,n. (3.29)

2x Jy, =
They are called the standard action variables. If Det(d 1 /3f;) # 0, then the f’s can be
expressed locally in terms of /’s. The canonical set (I, ..., I, ¢1, ... , ¢n) isknown

as the (set of) action-angle variables. There exists a canonical transformation,

1

Qq.....q" p1,...,pn) — (I,.... In,01,..., @n) ,
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N—=—~

Figure 3.2: Cycles of T2

with a generating function S = S(q, I), such that
n n
> pidg' + ) eidl; =dS(q. 1) . (3.30)
i=1 i=1

The function S(q, I) may be constructed as follows: Note that the symplectic form 2
vanishes on the level set F~1(f) = T". Therefore, the function S : F-1(f) — R
defined by

S = /x Y pidq',

0 =1

where x¢ is some point in F~1(f), does not depend on the path connecting xp and x.
Hence, the function S is multi-valued on 7". In particular, for a basic cycle y;, one
obtains the following periods:

AS; = f dS=2xI; .
v

Now, let us assume that in a vicinity of xo one may choose n coordinates (ql, e g™
such that the level set T” is defined by

pi=pi(q, ), i=1,...,n.

Hence, in a simply-connected neighborhood of qp = q(xp) C R” one may define a
single-valued function S : R* x R* — R, given by

q.n .
S(@.D= [ > piqDdg, (331)
9 ;=1
which is a generating function of the canonical transformation (g, p) —> (¢, I), that
is,

_as as

= 3—q’ , $i = 3_11 ) (3.32)

pi
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fori =1,2,...,n. The Hamilton equations have, in action-angle variables, the espe-
cially simple form

dl; de; .
E:O, d(f =w;, i=1...,n, (3.33)
with an obvious solution:
1) =10), o) =¢0)+owt. (3.34)

The term “angle variables” makes sense in that ¢; changes by 2 if the jth cycle of
T" is circled. Note the striking similarity of angle variables and quantum phases.

Example 3.1.6 Consider a harmonic oscillator with one degree of freedom. Introduc-
ing cartesian coordinates ¢ := x! and p := x? in P = RZ, one has Q = dp A dg and
the Hamiltonian of the oscillator reads

2 2.2
4 mw-q
H(q, p) = —
G.p)=7—+—
Defining a new canonical set
Q0 = Jmwq , P = P s
Jmw

one finds that
1)
H(Q,P)=—(P*+ 0%,
and the solution of the Hamilton’s equations reads

Q@) = Acosop(t), P(t) = Asing(?), (3.35)

where ¢(f) = wf + ¢p. In'the above formulae, the amplitude A = ,/ Q(z) + P02 , where
(Qo, Pp) stands for an initial state. Integral curves of the hamiltonian flow define cir-
cles in R?: Q2 + P? = AZ. Each circle is nothing but a one-dimensional torus from
the Arnold theorem.

Let us construct the action-angle variables. Note that in polar coordinates (r, ¢) on
R?, the symplectic form reads:

1
Q:dP/\dQ:rdr/\d(pzd(Erz) Adg , (3.36)

that is, (r2/2, @) define the canonical coordinates. Also note that the Hamiltonian is

[3%]

,
H=w—, 3.37
©> (337)
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and r2/2 defines the standard action:

1, 1 _, 1

= = — = — dr nd
2r 27‘[7” 2 Q2+p2§r2r ’ ¢
1 1
= — dPANdQ = — PdQ =:1, (3.38)
27 Joryp2<s2 2 Jorypr=y2

where we have used the Stokes theorem on R2. Hence, the standard action has the
following simple physical interpretation:

1 Ener
I=-(PP4+0) =2 (3.39)
2 w
and the Hamiltonian
H(l, ) =0l,
gives
=0, p=w.

Hence the oscillator frequency w coincides with the frequency of the trajectory on the
Arnold torus. <&

3.2 Adiabatic phase of Hannay

3.2.1 Averaging principle

Consider an integrable hamiltonian system defined on a 2r-dimensional phase space
‘P. Introducing local action-angle variables (I, @), the dynamics of the system is de-
scribed by the following set of equations:

. . dHy
I=0, =0 =—, 3.40
p=0=— (3.40)

where Hy denotes the Hamiltonian. The solution to (3.40) defines a quasi-periodic
motion on an n-dimensional torus, i.e.,

o) =@y tot.

Consider now a “slightly” perturbed system, in which

¢ = o+efd @),
I = eglg), (3.41)
where f = (f1,..., fy) and g = (g1, ..., gn). In the unperturbed system the action

variables I are constants of motion. This is no longer true in the perturbed system.
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However, if the perturbation is “small” (i.e., € < 1) one expects that I will evolve
“slowly” in time, i.e., much slower than, e.g., the angle variables ¢. Let us replace the
real system described by (3.41) by the averaged one:

J=e(2)D, (3.42)

where we denote by J the averaged form of I, and where (g ) denotes the torus average
of g

1 2 2n
(g):= / / gle1,...on)dor...do, . (3.43)
@2yt Jo 0

Perceived wisdom says that the averaged system (3.42) defines a good approximation
to the real one. It should be stressed that this is not a mathematical theorem but rather
a statement based on physical intuition. Moreover, in general this statement is not true!
However, for a system with one degree of freedom, the averaging principle becomes a
theorem.

Theorem 3.2.1 Consider the following system on R2:

o(l)+e f, @),
egl, ),

¢
i

where both f and g are periodic, i.e., f(I, ) = f(I, ¢ +2m) and the same holds for
8. Moreover, one assumes some regularity conditions upon the functions o, f and g
(see Arnold 1989 for details). If w # O, then the difference between the real, I (t), and
averaged, J (t), motions satisfies

[1(t) - J(®)] < Ce, (3.44)

forall0 <t < 1/¢, where the constant C does not depend on e.

To illustrate the above theorem, called also the averaging principle, in accordance with
the discussion above, consider the following

Example 3.2.1 Define a perturbed system on R? by:

¢=w, [=c(@a+hbcosy),
ie., g(I, ¢) = a + bcos ¢. One easily finds the following solution:

i t
[0) = I + car + e b2 T 90) (3.45)
w

where (Iy, go) denotes the initial condition. The corresponding averaged system is
given by

J=¢€a,
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I(?) J@)

\j
~

Figure 3.3: Real and averaged motions

and its solution reads
J@t)=Ihy+e€at.
Hence, the difference between the real and averaged motions,

J@) - 1(t) = ebsi(wif—%) ,

(3.46)

is a “small” oscillatory term (see Fig. 3.3). &

3.2.2 Adiabatic invariants

To formulate the adiabatic limit of classical Hamiltonian dynamics it is convenient to
replace physical time 7 by a rescaled time 7 := ez.! Using 7, the Hamilton equations
take the following form:
10H 1 0H
't)=-—, pP)=--—, 3.47
q(r) cop P (r) < g (3.47)
where ' = dq/dt. The classical adiabatic limit, or the limit of “infinitely slow”
changes of the Hamiltonian, corresponds to the limit € — 0.

Definition 3.2.1 A quantity F(q(t), p(t); €t) is called an adiabatic invariant of the
system (3.47), if for any k > O there exists €9 > 0 such that, for any ¢ < €y and
0 <t < 1/e, the following inequality holds:

[F(q(), p(2); €2) — F(q(0), p(0); 0)] <« . (3.48)

In Chapter 3 we used ¢/7T. However, most authors prefer to use €z when dealing with the classical
adiabatic theorem.
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L 9%p

v

Figure 3.4: Multivaluedness of the map g —> ¢

Consider a time-dependent hamiltonian system with one degree of freedom, and sup-
pose that the time dependence of the Hamiltonian H = H (¢) enters via the time de-
pendence of some external parameters. Let M be the parameter manifold and consider

H:PxM — R, (3.49)

where P denotes the system’s phase space. We shall write H = H(g, p; x) with
x € M. For a fixed x our system is completely integrable (as a system with one degree
of freedom). Therefore it admits local action-angle variables with a standard action

1
I(g, p;x) = > fpdq , (3.50)

where the integral is performed along a closed integral curve (Arnold one-dimensional
torus) in P.

Theorem 3.2.2 (Classical adiabatic theorem) If the frequency of the quasi-periodic
motion w(l;x) = 0H(I;x)/3] does not vanish, the standard action 1(q, p, x)
defines an adiabatic invariant.

Proof. For any x € M we may perform a canonical transformation to action-angle
variables:

(q.p) — (L, 9). (3.51)

Let § = S(g, I; x) be the x-dependent generating function of this transformation. This
function is multi-valued since on a torus 7!, defined by the action variable /(x), the
corresponding angle variable ¢ is a multi-valued function of ¢ (see Fig. 3.4). To label
different branches of S we shall write $(*). From the very definition of the generating
function one has

p@dg + ¢@dl =ds(q, I;x), (3.52)
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which implies that

p@ = %(:) . 9@ = %(Ia) . (3.53)
The new, transformed Hamiltonian X (I, ¢; x) reads
K(I,¢;x) = Ho(I; x) + % S@(q, ¢;x),I; x) , (3.54)
where
Ho(I;x) = H(q(1, ¢; x), p(I, ¢; x); x) (3.55)

is just the original Hamiltonian expressed in terms of the action variable I. To make K
single-valued we have to make the S single-valued by specifying the values of ¢ to
which g in $® refers. Note that &, defined by

Sp, I; x) =899, I;x),I;x), 0<¢<2r, (3.56)

is single-valued; indeed, x, ¢ and / uniquely define g and p. Now take a local co-
ordinate system (x',...,x") on M and let x' = x! (t) describe the evolution of the
external parameters. To compute 3,5, note that

as@ & as@
= — X .

ot P oxt

Moreover, using the definition of & we have:

36 3s@ 9s@ ad 3s@
= 29 — = p(a) -i + —

— = - , 3.57
dx? dq dx’ + ax! dax? ox! ( )
and hence
as@ L[5 g .,
= — — p@ L i 3.58
TS l:ax’ P g } * 3.58)

Note, however, that p® is uniquely defined by (x, ¢, I), and hence we may omit the
index o. Finally, we obtain the following formula for the new Hamiltonian K :

2. [36 aq
(9. I; x) = Ho( x)+;[3x, pax,]x (3.59)
where position ¢ and momentum p are uniquely defined by
p=p,o;x), q=q ¢;x). (3.60)
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Therefore, the Hamilton equations have the following form:

oK 3 [06 3q ] .;
y = K o+ |88 %) 3.61 '
¢ o1 ~ oD a7 ; [ax' pax']x 361
n
_ _9K _ 3 \~[36 _ 8_(1]5‘,», (3.62)
¢ dp = Lox ax!

with w(I; x) := 9Hy/3I. Note that using the rescaled time T = ¢t, the Hamilton
equations (3.61) and (3.62) become:

9 = ollix)+efl,9;x), (3.63)
I = egll,p;x), 3.64)
with
sy i a @69
and
n i
g = —% > [gg. - :;1,] ‘% . (3.66)
Consider now an averaged system, with
J=¢€(g). (3.67)
Clearly, due to (3.66), we have
(8)=0,
and hence J defines a constant of motion, i.e.,
J@y=J0)=1(0). N
Applying the averaging principle, that is Theorem 3.2.1, one obtains
[I(t) — I0)| = |I(t) — J(@®)| < Ce (3.68)
for all 0 < ¢ < 1/e. Therefore, the action variable is an adiabatic invariant. O

Example 3.2.2 Consider once more the harmonic oscillator from Example 3.1.6. Clear-
ly, if the oscillator frequency w depends on time, then the energy of the oscillator is not
conserved. However, if @ varies in time sufficiently slowly then the adiabatic theorem
says that there is another quantity, the action,

__ Energy(t)
T @)
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which is conserved. Hence, in the adiabatic limit the above combination of two time-
dependent quantities (energy and frequency) is time independent. Geometrically, this
means that the area of “the phase space” ellipse defined by

p? | mot()g’

— 4 — 1 —E@®,
2m+ > )

is an adiabatic invariant. <&

Example 3.2.3 Consider a charged (nonrelativistic) particle interacting with a homo-
geneous magnetic field B pointing in the z-direction, i.e., B(t) = B(t)e;. The system
is defined by the following Lagrangian function:
2
\%
L(x,v) = -"-’2— + gv ‘A, (3.69)

where A is a vector potential, and e, m, ¢ denote the electric charge and mass and the
velocity of light, respectively. The momentum P canonically conjugate to the particle
position x reads

oL
P="—p+fA, (3.70)
v c

where p = mv denotes the standard kinetic momentum. The particle motion is de-
scribed by the Lorentz equation, i.e.,

dp
dt
It is well known (see, e.g., Jackson 1999) that in the case of a static magnetic field, the

projection of the particle motion onto the plane perpendicular to B is circular, with a
frequency

- Sv xB. GB.71)

eB
mc

wp = (3.72)
Now, for a uniform field B the vector potential is (up to a gauge transformation) given
by A = %x x B and, therefore, using polar coordinates (r, ¢) in the xy-plane, one
easily finds from (3.70) that

e e
Py =mr’p + —Br’ = ——Br?, 3.73
b =mre 2c r 2c ( )
where we have used ¢ = —wp. Hence, the J,, action variable reads
1 e 5 e
= — P,dp = ——r“B=——op, 3.74
" o f v a¢ 2cr 2ne B ( )

where ®p denotes the magnetic flux through the circle of radius r. Therefore, the mag-
netic flux ®p defines an adiabatic invariant. This means that if the external magnetic
field changes sufficiently slowly, then ® g is constant. <&
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3.2.3 Hannay’s angles

Consider, now, the time evolution of the angle variable ¢ described by (3.61). Simple
integration leads to the following formula for ¢(7):

f 9 t n .
(p(t)—(p():/ w(l;x)dt’+§f > (86— paglitdr . (3.75)
0 0 =1

The first term in (3.75) is the total “dynamical angle.” For an integrable time-independent
system it would read

() —gpo=wl)-1.

There is, however, an additional shift defined by
d 1 ;
Moo= f 3 166 — pasglidr. (3.76)
0 =1

We have already shown, in the previous section, that this extra shift comes from per-
forming the canonical transformation (g, p) —> (I, ¢) in the correct manner, i.e.,
taking into account the fact that the generating function S depends explicitly on time
through the time dependence of the external parameters x' = x’(¢), so that we have
to add its derivative 8 S to Hy in formula (3.54) to get the correctly transformed
Hamiltonian K.

Let us study the formula for Ag more carefully. Note that the integrand in (3.76)
depends on time implicitly through the phase space variables g and p, and explicitly
through the external parameters x‘. As we are interested in the adiabatic limit, the more
natural quantity is the averaged one, so we consider letting

36 — pdiq — (%6 — pdiq) . (3.77)

Let dy; denote the external derivative on M, i.e.,
n .
dwf =) dfdx',
i=1

for any function f € C°°(M). In this way, we may define the following one-form on
M:
n

(du® — pduq) =) (%6 — pdiq)dx’ . (3.78)
i=1

Now, as in the quantum case, let us consider an adiabatic, cyclic change of the external
parameters, i.e., let —> x, be a closed curve C in M. Equation (3.76) implies that

d 0
Ag(I; C) = WmeMG—deq) = bpava). B9
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since the integral along a closed curve of the exact one-form ( dy & ) vanishes. There-
fore, we may rewrite the above equation in the more transparent form

9
Mgl O) =~ fc AW, (3.80)
with
A() = (pdmq) . (3.81)

The quantity A ¢(I; C) is called the Hannay angle (Hannay 1985) corresponding to
a closed curve C in the parameter space M. Therefore, the total change of the angle
variable during the cyclic adiabatic evolution splits into two parts, as follows:

T
Ap(T) = f o(l;x)dt+ Ae(;C) (3.82)
O ‘/_._-/

" geometric angle
dynamical angle

in perfect analogy with formula (2.59). By applying the Stokes theorem to (3.80) we
can transform it into a surface integral over a two-dimensional region X such that
X =C,ie.,

Ap; 0) = -2 / Wy, (3.83)
ol Js
with
W) = d AU = (dmp A dvgq) . (3.84)

Note that on each one-dimensional torus (parametrized by the values of the external
parameters), the action-angle variables (/, ¢) are not uniquely defined; one may always
perform a parameter-dependent angle transformation:

¢ — ¢+Al). (3.85)
Proposition 3.2.3 Under the angle transformation the quantity A(I) transforms in
the following way:

a a
é—IA(I) — 5;.4(1) + du A, (3.86)

and, therefore 3y W(I) = dm(81.A(I)) is, in this sense, invariant.

Note, that (3.86) describes the well-known formula for the transformation of a gauge
potential in an abelian gauge theory. It is an analog of the phase transformation (2.49)
in quantum theory. Moreover, we have a striking correspondence between classical
and quantum adiabatic objects, namely, the one-forms A® and A(I):

A™ = —Im (nldvyn) «— AI)=(pduq),
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and their curvature two-forms F® and W(I):
F™ = —Im(amn| A |dyn) «<— W) = (dup A duq) .

What about systems with many degrees of freedom? Physicists usually say that the
generalization to such systems is straightforward. Note, however, that this is not so.
As we have already stressed, the averaging principle is in general not true for such
systems, and so neither is Hannay’s formula (3.80). Nevertheless, in many important
physical examples the above procedure works perfectly well, and the “straightforward”
generalization is

n
A =) (pidug'), (3.87)
with the jth Hannay angle defined by
a 0
Api(l;C) = —— H=—— 1] WU, 3.88
9i; C) aljﬁ'A() Blj,/x ) (3.88)

where W(I) = dm A().

3.2.4 Berry’s phase versus Hannay’s angle

At this stage it is interesting to study the connection between the quantal Berry phase
¥»(C) and the classical Hannay angle A¢(7; C). In particular we want to answer the
following two questions:

1. If the classical system develops a Hannay angle, will it also possesses a Berry
phase when quantized?

2. If the quantum system has a Berry phase, will its classical version have a Hannay
angle?

To answer these questions let us expand the two-form F® in powers of /. Recall that

F™ = _Im[dy (n(x)ldun(x))]
= -Im [dM f qul/f,T(q;x)dMllfn(q:X)] , (3.89)

where N denotes the number of degrees of freedom, and the wave function ¥, (g; x)
corresponds to the state vector |n(x) ) in the position representation, i.e.,

Ynl(g; x) = (qin(x)) .

Let us first expand the wave function in powers of # keeping only the leading order
term. It turns out (see, e.g., Berry 1983) that in the semiclassical approximation the
wave function ¥, may be expressed in the following form:

Yn(g; x) = Za(a)(q, I; x) exp I:;lS(a)(q’ I; x)] , (3.90)
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where

1 9
(a@ g, I: 1)) := F det|: ;’;} ] : (3.91)

i,j=1,..., N.Inserting the wave formulae (3.90) and (3.91) into (3.89), and noting
that the terms corresponding to different o’s are strongly oscillating, one obtains the
following formula for F™:

w1 dq 01 4 g
FO =—2dui | G55 > det ag | M@ L+ om . (3.92)
o

where O (%) denotes terms at least of order /. To calculate the integral over g’s let us
make the change of variables g —> ¢. Using (3.57), one has

1 davy
F®  — _EdM[ an ;pN (dMG Zpdeq )]

1 g 1
= 5 2 (dwp Adugt) =2 WD), (3.93)
k=1

Now, let C be a closed curve in the parameter manifold M. One defines the quantal
Berry phase (cf. (2.60)) by

¥ (C) = / F®, (3.94)
b
and the classical Hannay angles (cf. (3.88)) by
d y . '
A(pj(I;C):——/W(I), j=12,...,N, (3.95)
al; Jx

where ¥ is any two-dimensional region with boundary C. It follows from (3.93), and
the formulae for y,(C) and A ¢;(I; C), that

n(C)
a1,

=—%(Agaj(1;C)+0(h)) , J=1,2,...,N. (3.96)

Recall, now, that in the semiclassical approximation the classical action variables /;
are quantized according to the celebrated Bohr~-Sommerfeld rule, i.e.,
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where w ; are purely topological quantities called Maslov indices, and n; € 7.2 Using
the Bohr—-Sommerfeld rule, one obtains, to leading order in #,

IVn .
’; © _ —Ag;(I;CY+O(), j=12,...,N. (3.98)
nj

Clearly, in the above formula the quantum numbers n; are treated as real parameters.
Now we are ready to answer the two questions posed at the beginning of this section.
The answer to the first question is in the affirmative; formula (3.98) implies that y, (C)
will differ from O by a term of order 7 whenever Ag;(I; C) # 0. Note, however,
that it is possible to have a nonzero Berry phase yet vanishing Hannay angles for the
corresponding classical system, since the higher order terms in the expansion defined
by (3.98) may be different from zero. The only systems for which the second question
also has an affirmative answer are quadratic ones. For such system all higher order
terms necessarily vanish.

3.3 Classical geometric phases — examples

3.3.1 “Classical spin”

Let us consider a “classical spin,” i.e., a magnetic moment S precessing about the direc-
tion of a magnetic field B (see Berry 1986). This system is described by the following
equation:

d
—S=B . 3.99
o S xS (3.99)

It follows from the above formula that |S| is constant in time, and hence the vector S
moves on the surface of a two-dimensional sphere. This sphere, S2, defines the phase
space of our system. Let b be a unit vector in the direction of B, i.e., B = Bb, and
let (e;, e2) be an orthonormal basis in the plane orthogonal to b. Clearly, the triple
(b, e1, €») defines an orthonormal basis in R3. Note that the basis (ef, e2) is defined
only up to an arbitrary SO(2) rotation around the vector b. Let us observe that the
following quantities:

I=S-b, (3.100)

2Asan example of Maslov indices consider the harmonic oscillator. The energy spectrum is given by

1
E,,=ha)<n+ E) .

Now, for the oscillator the action I is simply the ratio (cf. Example 3.1.6)

E,
I=—n=h(n+l),
@ 2

and, therefore, the Maslov index is u = 2.
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Figure 3.5: Canonical variables for spin: a) variables (p, I), b) variables (g, p)
and
@ := azimuthal angle in the plane (e;, e;) (3.101)
define canonical action-angle variables on P = $2 (see Fig. 3.5). Indeed, one has
dI Adp = Sdcosd Adgp = —Ssinfdo Ady , (3.102)

which is proportional to the area element on S2, and, therefore, defines a symplectic
form on P (cf. Example 3.1.4). Now, since the energy of a magnetic moment S interact-
ing with a magnetic field B equals S - B, the Hamiltonian, rewritten in the action-angle
variables, has the following form:

H(;B) = BI . (3.103)

The magnetic field B plays the role of the external parameter. Suppose now, that B is
slowly cycled. At the end of the cycle C the magnetic moment S is back on its circle
(one-dimensional torus in §2), its position shifted by

T
o(T) — 90) =/0 B(t)dt + Ae(l;C), (3.104)

where A ¢(1; C) stands for the corresponding Hannay angle. However, it seems that
the specification of Ag(7; C) by (3.104) is incomplete, because the basis (e, e;),
relative to which the angle ¢ is defined, has not been specified (one has still a freedom
to perform any S O (2) rotation in the (e;, e2)—plane). The remarkable fact is that such a
specification is not necessary. To find A ¢(I; C) let us compute W(I) = (dgpAdpgq ),
or, more explicitly,

1 27
W(I):E/O dodg p(p,I; By Adgq(p,I;B), (3.105)

where for an obvious reason we have changed dy — dg. Let us assume, as in the
quantum case (see Example 2.2.1), that B evolves on a two-sphere |B| = const, i.e.,



134 3. Adiabatic Phases in Classical Mechanics

the parameter space M = S2. Therefore, to compute W(I) one needs to define a
B-dependent canonical pair (g, p) on the phase space P = $2. To do so, take any
cartesian coordinate system (x, y, z) in R3 and define

p = S,
(3.106)
q := arctan[S,/S;] = azimuthal angle in the xy-plane.

It is easy to show that dp A dg is proportional to the area element on 52, and hence

that the pair (g, p) defines a canonical coordinate system. Using these coordinates one

easily finds

dp S; A (Sxdp Sy — Sydm Sx)
52 + 82 '

dspAdpq = (3.107)

The spin vector S, expressed in terms of g and p, takes the following form:

Sy = /82— p2cosq,
Sy = 4/8?—p?sing, (3.108)

S = p-

Now, we shall compute our basic quantity W(I), defined in (3.105). To compute the
exterior dg-derivatives (dg Sx, dB Sy, dB S;) let us represent S in the basis (b, e1, €2):

S=Ib++VS2—I2cospe; ++v 82— I2singe; . (3.109)

Clearly, the basis (b, e1, ez) does depend on B. To simplify the calculation let us
choose the following instantaneous axes X, y, Z along (e1, €2, b):

e =(1,0,0), e=(0,1,00, b=e; xe;=(0,0,1).

It is easy to compute the corresponding differentials, i.e., dgei, dpe; and dgb. Note
that dge; L e, and hence, in an obvious notation,

dpe; = (0, dge1y, dpeiz) -
Similarly,
dpe; = (dgexx, 0, dpez,) ,
and finally,
dgb = (dpe)) x e + €; x dpey = (—dpei1;z, —dpez;, 0) .
Therefore, formula (3.109) implies that
dg Sy = —ldpey; ++v/ 52— I?sinpdpen,
dg Sy —ldg ey, + V' S2 —I?cospdpery , (3.110)
dp Sx m (cospdp ey, +sinpdpey;) .
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By inserting these formulae into (3.107) and averaging over ¢, one obtains
W)= (dspAdsq)=—Idgei; Adpes, . (3.111)
For a general set of axes, this becomes

3
W) =—-1 dsenwAdpex =—Idpe;-Adpey, (3.112)
k=1

and since W(J) is linear in the action variable 7, we have
)
~37 W()=dpe, -Adpe; =dg (e;-dpep) . (3.113)

To compute the r.h.s. of the above formula one needs to know the explicit B-dependence
of the e’s . One possible choice is the following:

bx1Z b x e;
er: —

=—_—, €2 = N
b x 2| 2 b x eq] G114

whe're 2 is a unit vector along the z-axis. With this choice, one easily obtains the fol-
lowing explicit formulae for e; and e;:

(B)N _Bxao)
€1 2 g2
(B; + By)
o - (BxB;, ByB,, —B? — BY)

B(BZ + Bg)l/ 2 ’
and a direct calculation gives

1

3
BP > €umB*dB' AdB™ =sin6d6 ndy, (3.115)

ad

—— W) =
al

k,l,m:l

which is the familiar formula for the field of a unit magnetic pole placed at B = 0. The
Hannay angle is therefore given by a solid angle formula:

Ap(l;C) = Q(0), (3.116)

where, as usual, ©2(C) is the solid angle subtended by the closed curve C on the pa-
rameter manifold B = const.

Finally, let us investigate the relation between the Berry phase for a quantum spin
(2.117) and the corresponding Hannay angle for a classical spin (3.116). We have a
simple relation:

_a(©)
an

which is in perfect agreement with the general formula (3.98).

Ap(l; C) = , (3.117)
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3.3.2 Classical oscillator

Consider a classical generalized harmonic oscillator defined by the following Hamil-
tonian (see Example 2.2.3):

1
H=§(Xq2+2qu+Zp2). (3.118)

The Hamiltonian depends on the set of external parameters R := (X, Y, Z) € R3.
Hamilton’s equations of motion are given by

d(q\_ Y Z q
dt(P)_(—X —Y)(P)’ G119

and they lead to the following 2nd order equation for g:
Gg=—(XZ-Y%q. (3.120)

Equation (3.120) implies that the integral curves of our system are concentric, oblique
ellipses for XZ > Y2, or hyperbolae for XZ < Y2. Since we are interested in closed
contours, we shall consider the case

XZ>Y?. (3.121)
Then the corresponding parameter manifold M is the following subset of R3:
M:={(XY,2)eR|XZ>Y?},

i.e., the parameter space is the same as in the quantum case (see Example 2.2.3). Note,
that due to (3.120), the quantity

w:=(XZ-Y»? (3.122)

defines the frequency of the oscillatory motion, and reproduces formula (2.123) in the
quantum case. Let us recall that for the harmonic oscillator the action variable [ is
defined by the ratio

E E

T e Xz-yyie’

with E being the energy (for fixed parameters the energy is constant along the integral
curves). We shall find the corresponding Hannay angle using the formula

(3.123)

Ap(;C) = —i w), (3.124)
a1 Joz=c
with W(I) = (drp A drq ). To find the two-form W(I) one needs explicit formulae
for g = g(R) and p = p(R). This R-dependence comes via the canonical trans-
formation between (g, p) and (I, ¢), which is itself R-dependent. Solving oscillator
equation (3.120), one obtains

q(t) = Acose(1), (3.125)
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where ¢(¢) is an angle variable evolving according to

M) =90+t wt. (3.126)
Therefore, using (3.119), one gets the following formula for p(R):

A w . Y
=—-Af{—=si — .
p an¢+Zcosgo (3.127)
To find the amplitude A of the oscillation one inserts the above formulae for g and p
into (3.118) and finds the oscillator energy £ = %Azw2 /Z. Hence, due to (3.123) the
amplitude A is given by

21Z\'?
A= (—) . (3.128)
w
Now, using the following formulae for ¢ and p:
27Z1\'/?
q,¢p;R) = (—w ) cos ¢, (3.129)
2ZINY? (Y
rd,p;R) = — (——) (— cos g + 2 sin <p) , (3.130)
w VA VA

we are ready to compute W([I), as follows:

1 2
W(I)=(dr p /\dRq)=§/ deodr p(I,9,R) Adrq(l,¢,R)
0
1 [ Y [z [z [Z /
——/ dqo{coszgadR( —)/\dR — +singcos @ dry/ — A dr 8]
T Jo ZV w w w Z

1 z Y
5 dr (5) AdR (E) . (3.131)

A straightforward catculation teads to

XdRYANARZ+YdR ZAARX +ZdR X ANdrY
4XZ —Y?)32 ’

Il

Wiy =-1

(3.132)

so the Hannay angle is given by

A(p(I;C):—; s CW(I), (3.133)

and, actually, does not depend on 1.
Finally, let us compare formula for the quantum Berry phase (3.131) with the for-
mula for the classical Hannay angle (2.131). One gets the following relation:

n—}—%
I

FW = _ w) , (3.134)



138 3. Adiabatic Phases in Classical Mechanics
which implies
1
(C) = —(n+§)A¢(1;C), (3.135)

for any closed curve in the parameter space. Evidently

_ 3yn(C)

3.136
Fran (3.136)

Ap(I;C) =
which means that the formula (3.98) holds in this case. It is clear since we are dealing

with a quadratic system.

3.3.3 Rotated rotator (Hannay’s hoop)

Consider a particle of mass m that slides without friction around a planar hoop (Hannay
1985).3 As the bead is sliding, the hoop is slowly rotated in the xy-plane, say, through
an angle @ = 6(¢) with angular velocity @ = 9% about a center O. One calls this
system a rotated rotator or Hannay’s hoop. Let s denote the arc length along the hoop
measured from some reference point (on the hoop), and let ¢ = q(s) be the vector
pointing from the origin O to the corresponding point on the hoop. The derivative

d
t(s) 1= q'(s) = A (s) (3.137)
ds
defines the unit vector tangent to the hoop at q(s) (see Fig. 3.6). Let Ry denote the ro-
tation, about the center O in the xy-plane, through an angle 6, such that the position of
the particle relative to an inertial (nonrotating) frame is given by Q(¢) := Ronq(s(1)).
The configuration space is a fixed closed curve (i.e., the hoop) and the corresponding
Lagrangian is simply the kinetic energy of the particle:
L(s,$,1) = %|Q|2 . (3.138)

One finds for the velocity vector,
Q) = o [Rooas®)] = Row [te0)i + 00 x a6 3.139)
since
RoR;'q=R;'Req=w x q. (3.140)
Therefore, one obtains for the Lagrangian

L(s,§,1) = %tt& +oxq?, (3.141)

31n this section we follow the elegant exposition in Marsden and Ratiu 1994.
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Ro

v
=

Figure 3.6: A bead sliding in the a rotating hoop

since Ry represents an orthogonal matrix. Now, the Euler—Lagrange equation

4oL oL
dr 35 ds (3.142)
implies
d . .
E[t-(ts+¢oxq)]—(ts+wxq)-(t’s'+th)=0. (3.143)
Taking into account that t - t' = 0, one has
§=—t-[wxq+ox@xq)]. (3.144)
Moreover,
t- (@ x q) =fgsina, (3.145)

with o being the angle between q and t (see Fig. 3.6), ¢ = |q|, and
wx@xQq) =@ Q- (@ o)q=—06q, (3.146)
since w - q = 0. Therefore, equation (3.144) may be rewritten as follows:
§=6%q -t—égsina . (3.147)

A solution to the above equation is given by the following formula:

1
s(t) = so + Sot + /0 t—1) [é(t)zq(s(r)) t(s(1)) — 6(r)q(s(T)) sina(s(t))] dr ,
(3.148)
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where 5o and $o denote the initial position and velocity of the bead, respectiYely. Now,
since the hoop rotates slowly, i.e., we assume that both 6 and 6 are ;mall Yv1th respect
to particle velocity and acceleration, the particle makes many circuits while the hoop
rotates a little. Therefore, the s-dependent quantities in the square brackets may bfa re-
placed by their averages around the hoop, giving the following formula for the position
of the particle after the (long) time 7', in which the hoop turns once:

s(T) =50 + SoT

T . 1 rft .. 1 £ .
+f (T — 1) [9(1)2—/ q(s) - t(s)ds —e(r)—/ q(s)sina(s)ds dt ,

where £ denotes the length of the hoop. Note that the first integral over s vanishes,
sinceq-t= %]qlz. The second integral

L L
/ q(s)sina(s)ds = / lq(s) x t(s)|lds =2A, (3.149)
0 0
with A being the area enclosed by the hoop. Hence,
' 24 7 j 3.150
s(T) =s0+ 50T + A (T — )0(r)dr . (3.150)
0

Integrating by parts and assuming, for simplicity, that 6(0) = 0, finally gives

4 A
s(T) =50+ 5T =~ - (3.151)
The term so + So7 is the standard formula for the arc length when the particle_ moves
with constant velocity so. However, there is another term, which is fully determined by
the geometry of the hoop. Let us parameterize the position of the particle by an angle
¢ measured from the point sp, that is, we perform the following change of variables:

s — 8o

L

Therefore, the additional geometric factor in formula (3.151) may rewritten as

. (3.152)

o(s) :=2nm

82 A
Ag = - (3.153)
Writing this angle in the form
4 A
Ap = =27 + 27 (1 -7 ) , (3.154)

we see that the first term gives the expected phase shift resulting from the fact th-at tk}e
point sy has made a complete rotation. The nontrivial geometric aspect is embodied in
the second term. The hoop returns to its original position but the particle does not. The
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additional phase shift in Ay is an example of the classical geometric phase. Note that
this term vanishes for a circular hoop.

Now we show that the non trivial phase shift in the Hannay hoop may be interpreted
as an adiabatic Hannay angle. The particle motion in the xy-plane can be described by
the following Hamiltonian:

2
H(q,p; X) = p—+V(q; X), (3.155)
2m
where V' is a confining potential which is zero in a narrow strip centered on the hoop
and very large elsewhere, and X is a parameter along the hoop.

For fixed X the particle moves with constant velocity v relative to the hoop. Denot-
ing by p = t- p = muv the particle momentum, the action is given by

= 1 pds = LpE. (3.156)
27 Jhoop 2n
The corresponding angle variable is then given by (3.152). Of course, our problem
has two degrees of freedom; however, the second one corresponds to transverse vibra-
tions of the particle, and, therefore, does not play any role, due to the strong confining
potential V. Let us compute the corresponding Hannay angle:

3
Agp(l;hoop) = —yg —{pdxq)
hoop 91

1 o

2 2 5
= ——— dx do p,¢; X)—q(, ¢: X) . (3.157
27 o1 J, /0 pepl, e )an( 9, X) . ( )

Now,

dg aq 27l dq
99 _ .09zl 9q 3.158
Pox =PV ox = 2 Vax 3.158)

and, therefore,

2n [ L aq
Ap(I; h =—— [7D.¢ dst-—, 3.159
@(I; hoop) Y /O /(; st-o% ( )

where we have changed variables from ¢ to s according to (3.152). Observe that d xq =
dxqd X corresponds to an infinitesimal rotation of the hoop by an angle dX about the
center O. Therefore,

dq

t-ﬁdX=t-(qxi)dX=2-(txq)dX=qsinadX, (3.160)

and, finally, using formula (3.149) one obtains

B 82 A

Ag(1; hoop) = 7

(3.161)
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in a perfect agreement with formula (3.153). _
The quantized system corresponds to a quantum rotator parametrized by X — the
orientation of the hoop. The Hamiltonian eigenfunctions for fixed X are given by

(Berry 1985a)

. s(q; X)
¥n(q; X) = a(q; X) exp [ing(q; X)] = a(g; X) exp [2mn—7—] , (3.162)

where the amplitude a(q; X) which confines the particle to the hoop, can be expressed
in terms of a “coordinate perpendicular to the hoop,” n = n(q; X), as follows:

a? = 8(m) ) (3.163)
C

Now, the adiabatic Berry phase y, (hoop) reads
¥Yn(hoop) = —Im f f dq Y (q; X)dx ¥, (g X) . (3.164)
hoop

Inserting formula (3.162) and changing variables in the xy-plane from (x, y) to (s, 1),
one obtains

2nn (27 L 3s ] 165
Using equation (3.160), one has

9 _ 4.9 _ L sina, (3.166)
ax ax

and, therefore,

2

8r°A
¥y (hoop) = n 722 = —nAg({; hoop) . (3.167)

It then follows that

"’L"(a‘ﬂl — —Ag(I; hoop) , (3.168)
n

in agreement with formula (3.98).

3.3.4 Motion in non-inertial frames

The Foucault pendulum considered in Example 3.1.1is a 'special case of a more gen'eral
situation displaying a geometric phase. Consider a particle constrained to move in a
two-dimensional plane, which due the presence of some external forcc_:s, moves on
another (curved) two-dimensional manifold M C R3,eg.,a sphe?re, as in the case of
the Foucault pendulum. Suppose that the plane moves along a given curve ConM,

Y T T
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S

B

Figure 3.7: A moving orthogonal frame: S - tangent to the curve, N, B - normal and binormal,
respectively.

such that it remains tangent to M at the same fixed point. Clearly, its orientation is

uniquely determined by the unit vector S = S(¢) normal to M along C. Therefore, a
curve C on M gives rise to a new curve

t — S@) € R

The elementary geometry of curves in R> associates to any curve an orthogonal time-
dependent triad (S, N, B) such that

NiIS, and B=SxN.

The time dependence of this triad is characterized by the Serret-Frenet formulae (cf.
Fig 3.7):

ds

= N,

dt o

N

‘Z—t = -«S+1B, (3.169)
dB

— = —1IN.

dt t

The parameters « and 7 denote the curvature and torsion of the curve S(¢), respectively.
Clearly, the plane on which the particle moves is spanned by B and N. Parametrize this
plane by a vector r such that r = 0 denotes the tangency point of the plane with the
manifold M. Moreover, let us introduce cartesian coordinates (xg, yo) as follows:

r =xoN + yoB . (3.170)



144 3. Adiabatic Phases in Classical Mechanics

Now, suppose that our particle moves under the influence of a potential V = V (r).
One finds the following equations of motion (in the plane:

.. 1% 2 2 . .
mip = —g-ﬁ-m[(/c +r)xo+27:yo+ryo], (3.171)
0
v
mjy = -—5-+m[ﬁyo—2rny—tx@, (3.172)
Yo

where m denotes the particle’s mass. The above equations of motion are written in a
co-moving noninertial frame. Note the presence of terms proportional to the velocity
r = (Xp, yo) that are analogs of the Coriolis force. Now we are going to rewrite the
equations of motion in a locally inertial frame. As in General Relativity, by a local
inertial frame on M, we mean a frame spanned by two orthonormal vectors U; and U,
that undergo parallel transport along the curve C on M. Note, that since U; - U; = §;;,
one has that
ﬂ .U j + Ui . ﬂji =
dt dt

The law of parallel transport imposes a stronger condition, however. Following our pre-
vious discussion of parallel transport on a two-dimensional sphere (cf. section 2.2.7),
one can show that, in analogy with (2.154), one in fact has

0, ihj=12. (3.173)

dU;
;- —L =0, i, i=1,2. 3.174
7 L] ( )
Clearly, the basis (N, B) does not satisfy this condition; instead one finds
dN dB
— =1, d =T, 3.175
o T and N P T ( )
Let us construct a parallel transported frame by performing a time-dependent SO (2)
rotation, as follows:
Uy} _ [cosf —sinf N
(Uz ) - ( sin cos B B/~ (3.176)
One easily shows that
dU; .
w~77=r—ﬂ, 3.177)
and hence, the condition for parallel transport is that
B=1. (3.178)

This means that (U, U») rotates with respect to an instantaneous (N, B) frame with an
angular velocity proportional to the torsion 7. Using the Serret-Frenet formulae one
can easily show that if (U;, Uy) is parallel transported then
dU;
dr
dU,
dr

= —kcosBS, (3.179)

= —ksinfS. (3.180)
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Let us introduce cartesian coordinates (x, y) in a locally inertial frame (Uq, Us), as
follows:

r=xU;+yU,.

The reader can easily derive the corresponding equations of motion:

. v

mi = —— +mK2[xcos2ﬂ+ySinﬂCOSﬁ] ) (3.181)
. ov . .

my = o +mK2[y sin® B +xsmﬂcosf3] . (3.182)

Comparing these with the equations in the non-inertial frame (3.171)—(3.172), we see
that the velocity-dependent terms are no longer present. The terms proportional to «2
correspond to the centrifugal force caused by the instantaneous rotation of the plane.

Now, let us assume that the plane changes its position adiabatically. Then |x| < 1,
and all terms proportional to k2 may be neglected in the adiabatic approximation.
Hence

. v
mx = —-—— (3.183)

ax

.. A%
my = ——. (3.184)

dy

The above equations of motion have the same form as on the stationary plane. The only
effect of rotation is encoded into the time dependence of the frame (Uj, Us). Note that
if the curve C were closed on M, then the parallel transport of (U;, Uy) along C would
lead to an S O (2) rotation with respect to the (N, B) frame, with a total angle of rotation

T
M:/rmm, (3.185)
0

where T is the period of C.
Example 3.3.1 Let us see how this works in the case of the Foucault pendulum. Now
M is a two-dimensional sphere — the surface of the Earth. Using standard spherical
coordinates in R, one has for the normal, S,
S = ( sin @ cos ¢(¢), sin 6 sin ¢(¢), cos 9) ,
where 6 is a constant latitude. Note that N||$ and to satisfy N - § = 0 one requires
N@) = ( — sin (), cos p(t), O) .

Hence,

B() =S(@¢) x N(t) = (—— cosf cos(t), —cos 8 sin (1), sinG) .
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The Serret—Frenet formulae give

k=Qsinf, and 1t =Rcosh, (3.186)
where
do(t)
Q=IQ2| = R
2] it

denotes the angular velocity of Earth’s rotation. Hence, the total angle of rotation after
one turn of the Earth is, according to (3.185), given by

T
AB = f T(t)dt = 2m cos@ , (3.187)
0

in perfect agreement with (3.7).4 &

3.3.5 Guiding center motion

Our next example concerns the motion of charged particles in strong magnetic fields
(Littlejohn 1988). The corresponding (nonrelativistic) equations of motion are given
by (cf. Example 3.2.3)

mi=2vxB, (3.188)
Cc

where g now denotes a particle’s charge and ¢ denotes the velocity of light. As is
well known, in a constant magnetic field, say B = BgZ, a charged particle will move
in a circular helix whose axis is parallel to the magnetic field direction. Let x be the
position of the particle. The projection of the motion onto the plane perpendicular to
B, i.e., the xy-plane, is circular, with girofrequency Q@ = g Bo/mc. The projection of
x onto the field line about which the particle spirals is denoted by X and is called the
guiding center (see Fig. 3.8). In a sense, X corresponds to the average of x over a
rapid oscillation with large girofrequency 2. Of course, the guiding center X moves
along the field line with constant velocity v,. Now, the vector running from X to x,
i, r:= x — X, is called the giroradius vector. Note that its magnitude equals r =
v1/S2, where v; = /vZ+v2 is the magnitude of the component of the particle’s
velocity perpendicular to B. Finally, let us define the girophase 0 as the angle in the
perpendicular xy-plane between some reference direction, denoted by e in Fig. 3.8, and
the giroradius vector r. For the case of a uniform field B, the vector e may conveniently
be taken to be any constant unit vector in the xy-plane.

Now, let us turn to the case of a nonuniform (but time-independent) magnetic field.
This case is important in plasma physics, and also has many applications in astro-
physics. The fundamental question is then how the circular motion is perturbed by,

4Simple experiments demonstrating the appearance of geometric phases in noninertial frames were pro-
posed by Kugler (1989) and Kugler and Shtrikman (1988).
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a) b)

Figure 3.8: a) Particle motion in a uniform magnetic field; b) circular motion on a plane per-
pendicular to B

e.g., inhomogeneities of the magnetic field. Now the guiding center position X(¢) no
longer follows a field line. It turns out that if the inhomogeneity is “small,” then X
slowly drifts away from the field line and

Qx) ~ w

(3.189)
If the magnetic field is strong and sufficiently homogeneous (i.e., if it does not vary
significantly over the radius of a cyclotron orbit), then to a first approximation the
motion is still cyclotronic about the fields lines and the dominant contribution to the
time evolution of the girophase is given by

t
o(r) =/ QX(r))dr, (3.190)
0

where, for simplicity, we take 6(0) = 0, and 2 = |Q|. Note that in equation (3.190)
we have evaluated the girofrequency at the guiding center position X rather than at
the particle position x. Note, however, that to uniquely define the gyrophase one needs
to choose the reference direction e. Unlike the case of uniform fields, it is no longer
possible to choose a constant reference direction in the perpendicular plane; for non-
uniform B(x) the reference direction is a function of position, i.e., e = e(x). To see this
more clearly, let us introduce an orthonormal triad (a dreibein) of vectors (eq, ez, b),
where b = B/B, and e; and e; are unit vectors spanning the plane perpendicular
(to B). We stress that all three vectors of the triad are space-dependent, i.e., they are
functions of x. Now, using these x-dependent triads, we might, for example, define the
gyrophase to be an angle between e; and the gyroradius r — cf. Fig. 3.8. However,
the vectors e; and e, are not uniquely defined; one can perform a rotation about b by
an arbitrary angle. Therefore, the gyrophase defined by formula (3.190) cannot be the
only contribution to the gyrophase, because the definition of the gyrophase depends
upon the choice of (e, e2), and the formula (3.190) does not depend on any such
particular choice.
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Does there exist any privileged choice of vectors (ey, e)? Often one chooses (e, €2)
to be the principal normal and binormal vectors of the field line, i.e.,

_(b-V)b
I(b-V)b|’

But this is only one particular choice out of many. Moreover, it has obvious disadvan-

tages, e.g., it leaves (e, e2) undefined for straight field lines. Instead of concentrating

on a particular choice of vectors (e, e3) let us consider the whole family of possible
e’s:

e ec=bxe;. (3.191)

e, = ecosy+exsiny,

e, = —ersiny +eycosy, (.192)

where ¥ is an arbitrary x-dependent function. One calls formula (3.192) the gyrogauge
transformation. It is evident that all physical quantities should be gyrogauge invariant,
1.e, invariant under gyrogauge transformations (3.192).

Obviously, the gyrophase is not gyrogauge invariant. One has, rather,

0'(x) =0 +¢yx), (3.193)

where 6’ is defined relative to €}. Now, since 6 is not gyrogauge invariant, neither is 6.
However, 6, defined in equation (3.190) is manifestly gyrogauge invariant. Therefore,
there must be an additional term on the r.h.s. of formula (3.190) such that the cor-
rected 6 transforms according to (3.193). It turns out that the so-called guiding center
expansion leads to the following formula (Littlejohn 1988):

6=QX)+R-X+ gyrogauge invariant terms , (3.194)

where
R:=Ve| e, (3.195)
that is, R; = (9;e1) -e;. Performing the gyrogauge transformation, one easily finds that
R =Ve|-&,=R+Vy, (3.196)

i.e., we recover the analog of the gauge transformation for the vector potential. There-
fore, due to (3.194), the gyrophase € transforms according to (3.193):

0 =6+Vy-X. (3.197)

Therefore, the term R - X in eq. (3.194) is necessary in order for both sides of the equa-
tion to have the same transformation properties under the gyrogauge transformations.
It is clear that R is an analog of the connection and, therefore, that the analog of the
curvature is nothing but the gyrogauge-invariant quantity V x R. If the guiding center
trajectory C is closed, i.e., X(0) = X(T'), then

AO:%R-dX: (VxR).-dS, (3.198)
c aT=C
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is a gyrogauge-invariant, purely geometric object. Therefore, it may be treated as a
classical analog of the geometric phase. In such a case the total gyrophase is given by

T
o(T) = / QX)(t)dt + A8, (3.199)
0

that is, 6(7) is a sum of the dynamical phase [ Q2dr and the geometric phase Af.

3.3.6 Rigid bodies and the geometric phase

Consider the motion of a free rigid body in R3, governed by the Euler equations:
My =M, x @, . (3.200)

Here M}, and @;, denote the angular momentum and the angular velocity, respectively,
in the body frame (cf. section 4.3.2 for more details of rigid body dynamics). Instead
of solving the Euler equation, let us try to understand the problem from the geometric
point of view. The angular momentum of the body, viewed from the inertial frame, Mj,
is constant in time, and that viewed from the body-fixed frame, My, is periodic in time
(for typical initial conditions). Therefore, after one period, say T, the body, as viewed
from the inertial frame, must rotate about the direction of its angular momentum M;
by some angle Af. As was shown by Montgomery (1991), this angle is given by the
following formula:’

2ET
Af = 5 - Qp, (3.201)

where E is the kinetic energy, J is the length of the angular momentum, i.e., J =
[Mp| = |M;], and €2, is the solid angle swept out by the vector M on the two-
dimensional sphere

2 = { My | My =7 }.
Following the beautiful exposition of Montgomery (1991), we can prove this formula
(3.201) using simple properties of the rotation group S0 (3).® The motion of the body
is described by a trajectory on the rotation group,
t — R(@) € SO(3),

such that for any ¢ one has

M; = R()Mp (1) , (3.202)

5For an interesting history of formula (3.201) see Marsden and Ratiu 1994.
SFor another proof, see section 4.3.2.
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where we represent elements R € SO (3) by 3x 3 orthogonal matrices. Since M (T) =
M, (0), one obtains

R(T)™'M; = R(0)"'M; . (3.203)
However, M is a constant vector, say J, and hence
R(T)-RO)'I=1T, (3.204)
which means that
Rag := R(T)™' - R(0) (3.205)

is a rotation about the J axis by the angle A6 given explicitly by the formula (3.201),
as we now shall prove.

Suppose that for t = 0, R(0) = 1, which means that My(0) = J. The phase
space trajectory is represented by the curve z(¢) := (R(t),Mp(t)) € T*SO3) =
SO3) xR3, starting at z(0) = (1, J). Consider the following two curves in 7*SO (3),
both beginning at z(0): the first one, C1, is simply the trajectory of the body, i.e.,

Cit)=1z(@) for 0<t <T,
and the second one,
C2(0) = (Rp, J) for 0 <6 < AG,

denotes a counterclockwise spatial rotation of the body about the J axis by an angle 6.
Note that

Ci(T) = C2(A9) = (Ras, ), (3.206)
and, therefore, the curve
C.=Ci—(C,

is closed on T*SO(3).

To prove formula (3.201) we shall compute the line integral along the closed curve
C from the canonical one-form “pdq” on T*S O (3) (cf. Example 3.1.3). The canonical
one-form reads

@zpquZPk-ka,
3

where the sum runs over all points of the body. Now, by the very definition of rotation,
dxy is defined by

dx;, = da X Xi ,
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where da = @ da represents rotation about the axis @ (with [@] = 1) by an angle do.
Hence

O =M; da (3.207)

where

Ms=ZXk><Pk,
P

denotes the angular momentum in the inertial frame. Now, along the curve Cy,
da =wdt
where @ is the angular velocity of the body with respect to the inertial frame (that is,

M; = L;w, where I denotes the body’s inertia tensor with respect to an inertial frame).
Hence, along C one has

® =M, wdt = (w)dt =2Ed: . (3.208)
Along the second curve, we instead have
da =adbf = ! dé ,
J
and, therefore,
@:My%d@:]d@, (3.209)

since My = J. At this point we apply the Stokes theorem:
/ doe = % ®.
dx=C c
Using the definition of C = € — C; and the formulae (3.208) and (3.209), one obtains
f dG):f ® — ©=2ET —JAG. (3.210)
aT=C (o} G
The last step of our calculation is to show that
/ de =JQ . (3.211)
dT=C

To prove (3.211) let us parametrize S O(3) by Euler angles (¢, ¢, ¥), as follows:

R(p, 9, ¥) = R3(¢) - R2(¥) - Ra(¥) , (3.212)
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where Ri(a) denotes the counterclockwise rotation about the kth axis by an angle
a (see formulae in footnote 3 in section 2.2.5). We choose the (inertial) coordinate
system so that

J=Jes.

Now, any rotation R € SO (3) relates the coordinates x in the inertial frame to the body
coordinates X by x = RX. Viewed from the body frame, X is constant and, therefore,

dx =(dR)X.
Moreover using, dx = da x X, so that
(dR)X = da xx,
or, equivalently,
(dR)- R 'x =da x x. (3.213)
Let us differentiate formula (3.212):

dR(p, 0, ¥) = [dR3(p)] - R2(9) - R3(¥)
+ R3(p) [dR2(D)]- R3(¥) + R3(¢) - R2(¥) - [dR3(¥)] . (3.214)

Multiplying dR by R~! from the right one obtains

@dR)-R™' = [dR3()]- R3(0) "' + Ra(g) - [dR2(9)] - Ra(®) ™" - R3(p) ™!
+ Ri()- Ra®) - [dR3(¥)]- R3(¥) ™ - R ™' - Ra(p) ™! . (3.215)

Therefore, using equation (3.213), one gets
dR)-R'x = dyez x X+ dV¥ Ri(¢) [ez X R3(<p)_lx]
+ Y Rs(@) - Re(®) {e3 x [Rs(9) - Re()] ' x} . (3216)
Taking into account the following obvious property of rotations:
R(v x w) = Rv X Rw,

one obtains

(dR) - R™'x = [dy e3 + d® R3(p)es + dy R3(p) - R2(0)e3] x x.. (3.217)
Comparing the above formula with equation (3.213), one concludes that

da = dpe; +dv R3(p)exr +dy Ri(p) - Ra(0)es . (3.218)

3.3. Classical geometric phases — examples 153

Therefore, the formula for the canonical one-form © reads
O=M -da=Jes-da=J{dp+[es-Ra(¥)es3]ldy}, (3.219)
and observing that
Ro(%)ez = cos? ez +sind e,
one ends up with
®=J[dp+costdy] . (3.220)
Hence,
dO = —Jsinddd Ady = —JdQ2; . (3.221)

To finish the proof of equation (3.211), and hence that of equation (3.201), we have
to relate the solid angle element d€2; on the two-sphere of the space frame angular
momentum |Mg| = J to the solid angle element d€2; on the two-sphere of the body
frame angular momentum |Mj| = J. Let us show that, in fact,

dQ = —d<, . (3.222)

Indeed, since M; = RM,, and My = J = Je3, we have, on the one hand,

M, = R'I=JR¥)™ R Rs(p) 'es=JR3(¥) ™ - Ro() L3
— JR;) '[cos?e; —sind e;] = J [coszs e3 — sin ® R3(1/I)_1e1]
= J[cos?e3+sindsinyre; —sind cosyrer] . (3.223)

On the other hand, by the very definition of the spherical angles (¥, ¥) in the M
space, we have

M, = J [cos By e3 + sin Dy sin ¢ €2 + sinvp cos Pp €] , (3.224)

and, therefore, ¥ = —, and ¥ = —1p, which implies formula (3.222), finally proves
equation (3.211), and, hence, equation (3.201).

Further reading

Section 3.1. A detailed exposition of geometric approaches to classical mechanics may
be found in Abraham and Marsden 1978; Arnold 1989; Marsden and Ratiu 1999; and
Thirring 1978.

Section 3.2. The adiabatic theorem in classical mechanics is treated in Arnold 1989
(see also Landau and Lifshitz 1976 for an interesting exposition). For the derivation of
Hannay angles see Hannay 1985; Berry 1985a; and Berry and Hannay 1988b.
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For details of the semiclassical approach in quantum mechanics the reader may con-
sult Berry 1983, and Maslov and Fedoruk 1981. The classical limit of a quantum adi-
abatic phase is discussed in Berry 1885a, and Gozzi and Thacker 1987a,b. Several
authors use the method of coherent states to show a direct correspondence between
quantum and classical geometric phases. We refer the reader to papers of Maamache,
Provost and Vallee (1990 and 1991) (see also Benedict and Schleich 1993; Aravind
1999). For the non-adiabatic approach to classical phases see Berry and Hannay 1988b.
The geometric phase was generalized to classical chaotic systems in Robbins and Berry
1992.

Section 3.3. Simple experiments demonstrating the appearance of geometric phases in
noninertial frames were proposed by Kugler (1989) and Kugler and Shtrikman (1988).
For other aspects of the classical geometric phase see also Hannay 1998a.

Problems

3.1. Show that a symplectic manifold has to be even dimensional.
3.2. Prove the following properties of the Poisson bracket: the Jacobi identity
{{F.G}L, H} +{{H, F},G} + {{G, H}, F} = 0;
and the Leibnitz rule
{FG,H}={F,H}G+ F{G, H},
forany F, G, H € C*(P).
3.3. Prove the following, for any functions F, G € C*(P):

[Xr, X6l = —X(F,G) -

3.4. Let (P, 2) be a symplectic manifold. Show that a set of canonical transforma-
tions ¢ : P — P form a group. ' '

3.5. Find the standard action variables for elliptic motion in the Kepler problem in
R3.

3.6. Show that the definition of the standard action does not depend on the particular
choice of basic cycles of T7.

3.7. Show that the coordinates g and p, defined by formula (3.106), are canonical on
52,

3.8. Derive the formula (3.107) for dg p A dpg.
3.9. Show that s(¢), defined by the formula (3.148), does solve the equation

§=0°q-t—6fgsina .
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3.10. Using the Serret—Frenet formulae derive

N = —&S—&?>+1t)N+1B,
B = —iN+«1S—17’B.

3.11. Show thatif (U, Uy) is parallel transported along a curve on a two-dimensional

manifold M, then
U, = (ktsinf —kcosB)S —«k%cos N,
U, = —(ktcosB+ksinB)S—«?sinBN.
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Geometric Approach to Classical Phases

4.1 Hamiltonian systems with symmetries

4.1.1 Hamiltonian actions and momentum maps

Suppose that (P, Q) is a symplectic manifold and let G be a Lie group acting from the
left on P by canonical transformations. That is, there is a mapping

®:GxP — P,
such that for any g € G,
P, P — P,
defined by ®, = ®(g, -), is a canonical transformation:
CD;Q =Q.

Denote by g the corresponding Lie algebra of G. For any £ € g, let X¢ denote an
infinitesimal generator of the above action (cf. Definition 1.2.3):

d
=—o . 4.1
X: (x) 7 Dexpd). x) | 4.1
Definition 4.1.1 Suppose there is a linear map J : g —> C°°(P), such that for all
feg

X6 =Xe, 4.2)
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where X j() is a hamiltonian vector field for J(§) € C®°(P). Themap J : P —> g%,
defined by

(J), &) == J(E)x), 4.3)

forall ¢ € gand x € P, is called a momentum map of the action .

This means that each infinitesimal generator X¢ admits its own hamiltonian function

XJ@)-
Consider now a hamiltonian system living on (P, ) and let H € C*(P) be the
corresponding Hamiltonian. We call a Lie group G a symmetry group of our system iff

(D;H =H, 4.4)

for any g € G, that is, each transformation &, leaves the Hamiltonian H invariant.
Suppose that the action of G on P admits a momentum map J. Then one proves the
classical

Theorem 4.1.1 (Noether theorem) If J is a momentum map of the action of a Lie
group G on a symplectic manifold (P, Q2), then

{J(¢),H} =0, 4.5)
ie, forall & € g, the function J(§) € C®(P) defines a conserved quantity.

The name momentum map comes from the fact that it recovers the standard definitions
of linear and angular momenta.

Example 4.1.1 (Linear momentum) Consider a system of N particles in R3. Then

~

the configuration space Q@ = R3¥ and the corresponding phase space P = T*Q =
RO Define the action of G = R? on P as follows: For any x € R3,

ox@' ... q" PP =@ XY XL pY) . (46)
that is, it translates the position of each particle by x. Clearly, R? is an abelian group:
Py 0 Oy = Py 0 Oy = Dyyy .

One can easily prove that this is a hamiltonian action with respect to the standard
Poisson bracket in RO ie.,

N
dF 980G 090G OF
{F,G}:Z( ————) 4.7
i=1 i
Let& € g = R>. The infinitesimal generator X¢ at a point

«@,....q".p1.....pn) € RN
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is defined by differentiating formula (4.6) with respect to x, in the direction &, i.e.,

Xs(q',....qV.p1,....poN) =, ... E,0,...,0). (4.8)

Now, the hamiltonian vector field X ;) defined with respect to (4.7) is given by

aJ (&) aJE) I aJ (&)
X Lod.p.. ) = = e — .
J& (g q,p1 PN) ( opr py 2q' oq"
4.9)
Therefore, the defining condition X 7y = X¢ implies that
aJ aJ
ﬁ:&‘, ——ﬁ:O, i=1,...,N. (4.10)
opi aq’
It is evident that the linear map J : g — C*°(P) is given by
N
JEGQ....q",p1,....py) = (Zm) £, @.11)
i=1
and, hence,
N
Ja',....q".p1,....p») =) pi =P, (4.12)
i=1
with P being the total linear momentum of the N particle system. <&

Example 4.1.2 (Angular momentum) Consider a single particle with a configuration
space Q = R> and the corresponding phase space P = T*Q = RS. Define the action
of SO(3) on P by

D4(q, p) = (Aq, Ap), (4.13)

forany A € SO@3) and (q,p) € RS. Now, the Lie algebra so(3) consists of 3 x 3
antisymmetric matrices and it is isomorphic to R? (cf. Example 1.2.11). Take any
£ e R3 and leté be the corresponding element from so(3). The infinitesimal generator
Xé is defined by

X¢(a,p) = €q.€p) = ¢ x q.& xp), (4.14)

where we have used the canonical isomorphism between R3 and so(3). To find the
momentum map one solves the Hamilton equations:

3E) 2JE)
e =fa S =dp *.15)
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J
P — > g
- | .
J
P — > g

Figure 4.1: Equivariance of the momentum map

A solution J (£), which is linear in &, is given by

J®)@m=E-p=Exq -p=@xp £, (4.16)

so that
Ja.p)=axp, @.17)
which is the standard formula for the angular momentum of a single particle. <&

It turns out that in physical applications one usually considers momentum maps satis-
fying the following additional property:

J(&, 0D = {J &), J(m}, (4.18)

for any &, n € g. A momentum map satisfying (4.18) is called equivariant. Hence, an
equivariant momentum map defines a homomorphism between a Lie algebra g and a
Lie algebra of classical observables (C*°(P), {, }).

Proposition 4.1.2 A momentum map J : P —> g* is equivariant iff
Ad;,1 oJ=Jo &g, 4.19)
or, equivalently,
J(Adg&) (P, (x)) = F(E)(x) (4.20)
forx € P, g € Gand§ € g, i.e., the diagram in Fig. 4.1 commutes.

Equipped with the notion of an equivariant momentum map we end this section with
the following

Definition 4.1.2 An action of a Lie group G on a symplectic manifold (P, 2) admit-
ting an equivariant momentum map is called hamiltonian.

4.1.2 Reduced phase space

Let (P, 2) be a symplectic manifold and suppose that there is a hamiltonian action of
a Lie group G on P. Denote by J the corresponding (equivariant) momentum map

J: P —g*.

it
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Let us take 1 € g* and consider the level set J~! (1) C P, i.e.,
J'w ={xeP|Jx)=pu}.

In general, J ~1(w) does not define a differentiable manifold. It does so, however, when,
for example, 1 is a regular value! of J. Let us therefore suppose that  is a regular value
of J, and let G, be an isotropy subgroup of the coadjoint action of G on g*, i.e.,

Gu:={g€G|Ad;u:,u,}. (4.21)

Note that, due to the equivariance property of the momentum map, G, leaves J “Tw)
invariant, i.e., forany g € G, and x € J~ () one has Py (x) € JHw). Suppose that
the action of the isotropy subgroup G, restricted to J~! (i), is free, i.e., it has no fixed
points (see section 1.2.1). This construction gives rise to the following G ,,-bundle:

I ') — P,
with the base space
P =31 (w/G, . (4.22)

P, is called a reduced phase space. 1t is the space of orbits of the action of G, on
J~'(1). Now, we are going to equip P, with the canonical two-form ,,. This form
is defined as follows: Let us take an arbitrary point a € P,, and two arbitrary vectors
v,w € T,P,. A point a € P, corresponds to an orbit O, of G, contained in J Y w
see Fig. 4.2. Let x € O, and take two arbitrary vectors ¥, W € T, J ! (1), such that

Iimy@) =v, and Tym(w)=w, 4.23)
where 7, : J ) — G . denotes the canonical bundle projection. Finally, define
Qua)(v, w) = (i;Q)(x)(ﬁ, w), 4.24)
where iy, : J -1 (;4) > P denq}es trhercgqpnircal embedding as follows:
I
T

P Pu

It is easy to see that the above definition is correct, i.e., it does not depend upon the
choice of x € O, or the vectors v, W, provided that the condition (4.23) holds. One
can then prove the celebrated

ILet f: X — Y. Apoint y € Y is a regular value of f iff
(Txf)(TxX) = TyY ’
forallx € f~1(») c X.
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Figure 4.2: Reduced phase space.

Theorem 4.1.3 (Marsden-Weinsten) A pair (P, 2,) defines a symplectic mani-
fold.
By its construction, €2, is a unique two-form on P, such that

KOy
,Q=m,Q,

Q Q[L

Example 4.1.3 Consider the following action of § O (2) on R?" parametrized by (x, y) =
Gl Yy
* — cosaxf+ sinkyk ,

y¢ —  —sinAx¥+cosiayk.

This action is canonical with respect to the following symplectic form on R2":
n
Q=dx-Ady =) dx* ndy*. (4.25)
k=1

The corresponding momentum map J : R?”" — s50(2)* = R reads
1
J&xy) =S +y7), (4.26)

that is, it defines the Hamiltonian of the harmonic oscillator. Note that J~'(u) =
§21-1 Moreover, the isotropy subgroup G, = SO(2) for any u € so(2)*. There-
fore, the corresponding reduced space reads

Py = S5""1/50(2). 4.27)
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Using complex coordinates

z:=x+1y, (4.28)
one easily finds that the following U (1) = SO(2) action on C* == R?"-

z—> é*z, 4.29)

leaves the symplectic form
1
Q= 3 Im (dZ - Adz) (4.30)

invariant. Clearly, J(z) = %lz|2. The reduced phase space
P = $"Yu) = cprt (4.31)

defines a complex projective space (cf. Example 1.2.14). Therefore, due to the Marsden—
Weinstein theorem, CP"~! is a symplectic manifold. <&

4.2 Geometric approach to adiabatic phases

4.2.1 Families of hamiltonian actions

Consider a hamiltonian system defined on a symplectic manifold (P, Q). Suppose
that the hamiltonian of the system depends upon some external parameters, which
parametrize a manifold M, that is,

H:PxM — R. “4.32)

Clearly, the total space E := P x M defines a trivial fibre over M. Let us denote by
7im and mp the following canonical projections:

M @ PxM — M,
np . PxM — P.

Definition 4.2.1 Let G be a Lie group. A family of hamiltonian G-actions on E is a
smooth (left) action of G on E, such that

e each fibre nﬁl (x) = P is invariant under the action,
e the action restricted to the fibre nﬁl (x) is symplectic,
e it admits a smooth family of momentum maps
J:PxM — g*, (4.33)

i.e, foranyx € M, themap J( -, x) : P —> g* defines a momentum map in the
usual sense.
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Figure 4.3: Fibrewise hamiltonian vector field on P x M

To clarify the last property let us note that the pull-back 732 of the symplectic form
Q on P defines a two-form on P x M. We shall use the suggestive notation of Mont-
gomery 1988 and write

TR = Q@0. (4.34)

It is evident that the restriction of 77 €2 to any fibre nﬁl (x) gives a symplectic form on
this fibre. Take any function f € C®(P x M), and define the fibrewise hamiltonian
vector field X ¢ corresponding to f by

ix, (mp Q) = dpof, (4.35)

where dp denotes an exterior derivative in the “P-direction,” that is, the total exterior
derivative d on P x M splits into dy and dp, as follows:

df =dpf +amf .,

meaning that, if (yl, y2") are local coordinates on P and (x!, ..., x™) are local

coordinates on M, then
S o
dpf = ; ay ; e
Note that X ¢ is tangent to each fibre 71};11 (x) and hence defines a hamiltonian vector
field on nh}l (x), in the usual sense — see Fig. 4.3. Let
J:g— C®PxM),
be the map associated with a family of momentum maps J : P x M — g*, such that

(I(p,x), &) =JE)(p,x),
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for any (p,x) € P x M and § € g. To define this map we proceed as follows: Let
£ € g and denote by X¢ the corresponding infinitesimal generator of G-action on

= P x M. We define J(£) such that the fibrewise hamiltonian vector field X )
satisfies

X: =Xy, (4.36)
onP x M.

Example 4.2.1 (A family of completely integrable systems) Suppose that for each
x € M, the Hamiltonian H( - , x) defines a completely integrable system on P. We
then call (4.32) a family of completely integrable systems. Due to the Liouville theorem
(cf. Section 3.1.3) there exists a set of local x-dependent action variables

(3 x), .00 (-3 x),

with 2n = dim P. If this system is globally defined on P x M, then one can define the
family of momentum maps

=,.... 1) : PxM — R", 4.37)

corresponding to the family of G-actions, where G is an abelian n-torus T", and R"
its (dual) Lie algebra. &

4.2.2 Hannay’s angles and the Hannay-Berry connection

A trivial bundle E = P x M is equipped with a natural connection, and hence it gives
rise to the following horizontal lift:

ho(Z)=0@ Z, (4.38)
where 0 @ Z denotes the following vector field on P x M:
PxM> (px) —(0,2) € T,PxTM. (4.39)

Let us assume that a Lie group G is compact and connected. If ¥ is an arbitrary tensor
field on P x M, then its average is a G-invariant tensor field (%) defined by

1 *
(T) = ﬁ/ ®;Tdg (4.40)

where dg is an invariant volume form on G, and |G| denotes the total volume of G,
e, |G| = |  dg. Now, averaging the natural connection on P x M, we are led to the

Definition 4.2.2 A Hannay-Berry connection in a trivial bundle P x M is a connec-
tion defined by the following horizontal lift:

h(Z) = (ho(2)) =(0® Z) . (4.41)
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For the proof that the above formula does indeed define a connection see Marsden,
Montgomery and Ratiu 1990. The Hannay-Berry connection is a connection of a gen-
eral type (or Ehresmann connection), as defined in section 1.3.3. We stress that, in
general, E =P x M — M is neither a principal nor a vector bundle.

Introducing local canonical coordinates (q‘, e g™, P1,... pn) on P and
!, ..., x™) on M, we may describe the family of hamiltonian G-actions as follows:
b, : PxM — PxM, (4.42)

with (in the obvious notation)
(g, p:x) =(Q(q, p. & x), P(q, p. g x); X) , (4.43)

forany g € G. Let

1 0
X=Zxa8x“’

a=1

be a vector field on the m-dimensional parameter space M. Then the horizontal lift
h(X) with respect to the Hannay—Berry connection is given by

h(X) = (0 X)

ua " 130i\ 9 [P\ B
‘;X [8x°‘+z<8x°‘>8qi+z<8x"‘>6pi:|‘ (4.44)

i=1 i=1

[

Consider a family of completely integrable system, as introduced in Example 4.2.1. Fix
an arbitrary point in the parameter space, x € M, and take any regular value u € R”
of the momentum map

J(-,x) : P — R*.
The following subset of P:
EF = Jlwnay' o, (4.45)

defines the Arnold n-torus 7". In a neighborhood of any such torus there exist
local angle variables (¢, ... , ¢,), and hence we may construct parameter-dependent
action-angle variables on P, as follows:

I =Ii(q,p;x) and ¢ =¢i(qg,p;x), i=1,...,n. (4.46)

The set (I;, ¢;, x*) defines local coordinates on the bundle space P x M. Using these
coordinates, the x-dependent hamiltonian vector field has the following form:

n
a
XH=EI wi(l;x)g;;, (447)
i=

(AR
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where the x-dependent frequencies are defined by

o0H(I;
wi(l;x)=—%

It is clear that the formula (4.44) for the horizontal lift with respect to the Hannay—
Berry connection may be rewritten in the action-angle variables as follows:
h(X) = (0@X)

n 3 LB ) A " [ g\ @
Z x| 2 i\ 9 i\ 9
I:Bx“ +Z<8x°’>3ll~ +Z<3x°‘>3¢i - (449)

a=1 i=l1 i=1

(4.48)

However, as we showed in section 3.2.2, the standard actions I; define adiabatic in-
variants, and hence

al;
—)=0, .
< 3x"‘> (4.50)
or, equivalently,
(dml;) =0, i=1,...,n 4.51)

Therefore, formula (4.49) reduces to

_yxe |ty [ 2e) 9
h(X)_;X [aan“;(axa)a_@}’ (4.52)

for any vector field X on a parameter manifold M. Hence, if C is a curve in M, and x
is a corresponding velocity vector along C, then the above formula implies

. SN “ 3 9
h(x)—a;x [Wea;((dw,-).ax_a) } (4.53)

e

Now we shall construct a principal torus bundle over M. Let . € R be a regular value
of the momentum map, and define a subset E¥ C P x M by

EF = {(p,x) ePxM 'J(p,x):u]. (4.54)
It is easy to see that the projection

Ty = 7TM

Er
defines a principal bundle

m,  EY — M,
with a typical fibre F = T". Clearly, a fibre at x € M reads
ml(x) = EX, (4.55)

where E¥ is the Arnold torus introduced in (4.45).
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Corollary 4.2.1 A bundle r,, : E* — M is a principal-torus bundle and the restric-
tion of the Hannay—Berry connection to E* defines a connection on a principal fibre
bundle.

Note that if C is a closed curve in M, then formula (4.53) implies that the correspond-
ing holonomy element from T is given by

Ay (C) = —fc(dMgoi(x)) , i=1,...,n. (4.56)

This formula reproduces the formula for the Hannay angles (3.88); one has

. a n
— > (pidug') = — Y (Lidugi) = (dve;) , (4.57)
3Ij = an =

and formula (4.56) follows. Hence, we may summarize that

Hannay’s angles = holonomy of the Hannay—Berry connection .

4.3 Reduction, reconstruction and phases

4.3.1 Reconstruction of dynamics

Consider now a hamiltonian system defined on a symplectic manifold (P, €2), together
with a Hamiltonian function H € C*°(P). Let a Lie group G act on P (on the left) by
canonical transformations, and let

J: P — g* (4.58)

be the corresponding momentum map. The Marsden—Weinstein reduction theorem 4.1.3
implies that for a regular value & € g*, the reduced phase

Py =J"1w/G, (4.59)

defines a symplectic manifold with a symplectic form €2,, given by (4.24). If 7, de-
notes the canonical projection

e I — Py, (4.60)
then the reduced Hamiltonian function H,, on P, satisfies
n;Hu =H,on,=H. 4.61)

Suppose, now, that we found a solution of the reduced dynamics. It means that we
know a solution, say

t —> cu(t) € Py,

e
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of the Hamilton equations on P, such that

d
7 - ) =Xu,(cu) - (4.62)

The reconstruction problem is as follows: Knowing c,,(¢), find the trajectory of the
original system in P, i.e., the solution

t — c(t) e P

to the Hamilton equations, such that

d
I c(t)y=Xnu(c). (4.63)

Recall from section 4.1.2 that a map 7, given by (4.60), defines a principal G-
bundle. Therefore, a curve c(¢) is nothing but a lift of the reduced trajectory c, (¢) in
the bundle J—! () — Py, and hence

wu(c(®)) = cu(t) .

Let A denote an arbitrary connection one-form on J~!(u):
Ae AW ®gu -
Take a point pg € J~ (1) C P, and let
t — d@)

be a horizontal lift of ¢, (¢) passing through a point py. Finally, let

t — &) € gy
be a curve in the Lie algebra g, , defined by

E@) = AXy(d@)) . (4.64)

With this notation, one has

Theorem 4.3.1 (Reconstruction theorem) An integral curve c(t) of the hamiltonian
system on P passing through a point pg is given by

c(t) ==g®)d(), (4.65)
where g(t) € G, satisfies the following equation:

gy =g)EW® , (4.66)
with £(t) defined in (4.64).
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Figure 4.4: Reconstruction of the closed curve in Py, and its holonomy.

For the proof, see Marsden, Montgomery and Ratiu 1990. If the reduced curve ¢ (¢)
is closed, i.e,

c,u(T) = Cu(()) , €4.67)
for some T' > 0, then
d(T) = ggeo - d(0) , (4.68)

and ggeo € G defines the holonomy of the loop ¢, (t) with respect to the connection
A (cf. Fig. 4.4). Note that

e(T) = heotar - ¢(0) , (4.69)
with
heotal = &(T) - ggeo - £(0) 7. (4.70)

Remark 4.3.1 It is clear that the horizontal lift d = d(¢) does depend on a particular
connection A in the bundle J~1(x) —> Pu. Hence, the geometric phase factor, or
holonomy, ggeo also depends on the chosen connection. However, neither the recon-
structed trajectory ¢ = c(t), nor the fotal phase factor hioa depend on A. Therefore,
to reconstruct ¢ () from ¢, (¢) one may choose an arbitrary connection. <&

Example 4.3.1 Let Q be the configuration space of some mechanical system and let
P = T*Q be the corresponding phase space. Suppose there is a (left) action of a Lie
group G on Q, i.e.,

¢ :0 — 0,
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with g € G. An action of G on Q may, in a natural way, be lifted to an action on P, as
follows:

®f (g ) = (02(@), (T,99) ) , @.71)

for any oy € T7 Q. The reader can easily show that ®% acts on P by canonical trans-
formations, and gives rise to the momentum map

J: P — g,
defined by

(Iag), §) = (ixg ©) (@) = g (XE @) = (. XE@)) . “.72)

where © is a canonical one-form on 7*Q (cf. Example 3.1.3), and XEQ and Xg stand

for the infinitesimal generators of ®< and ®F, respectively, corresponding to & € g.
That is, X£ € X(Q) and X} € X(P).

Suppose that G, is one-dimensional and let { = u/|u| denote the generator of
gu (| stands for the length of 1 € g* = 9).2 We may identify g,,, which is one-
dimensional, with R via

R>a — at €g,.
Let ®, and 2, be the reduced canonical forms on P,,, such that
e = 71;@” , Q= n;Q“ , @4.73)
and Q© = —d® is a symplectic form in 7*Q.
Proposition 4.3.2 The following objects, defined on P,,:

1

A= -0.81, 4.74)
and

F=|—71|QM®§, 4.75)

define a local connection and curvature in a principal G ,-bundle J -l — Py .

2A Lie algebra is equipped with the canonical metric form — the so-called Cartan tensor — defined by
gk gl
hij = fifje -
For example, for so(3) one has
k I
hij = €€ jp =265,

that is, one reproduces the standard euclidean metric in R3.
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Note that the holonomy of the closed curve ¢, (¢) is defined by

8geo = eXP(AggeoC) s

where

—1 1
A8 =——¢. ® =——/ Q. , 4.76)
Ol S, T el Je

with ¥ being any two-dimensional region in P, such that X = cy,. <

Example 4.3.2 (Mechanical connection) Let the configuration space Q be a Rie-
mannian manifold. Suppose there is a (left) action of a Lie group G on Q:

¢ 0 — 0,
and let X¢ denote an infinitesimal generator corresponding to § € g. Forany g € Q
and u € g*, let us define
L(q) : g — gz @77
by
(Tu(@)€),n) = g4 Xe, Xp) (4.78)

with &, n € g,. In the above formula g, stands for the riemannian metric at the point
g € Q. Moreover, let

J: P — ¢
denote a momentum map of the lifted action ®% on P (cf. previous example). Now
we are ready to define a connection in a principal G-bundle,
Q — Qu:=0/Gyu,
that is, we define a one-form on Q taking values in g, . Take any v, € T, Q, and denote
by v; an element from 7 Q defined by

vZ(u) = gq(u,vg),

for any vector u € T; Q. One defines a so-called mechanical connection by

Amech(vg) = (@) ' A@)) . 4.79)

Note that, due to the definition of I;,(q), Amech(v4) does belong to g,,. The reader can
easily show that the above formula indeed defines a connection form in a principal
bundie. <

Remark 4.3.2 Note that if G = SO (3), then the above construction shows that angu-
lar momentum (i.€., the momentum map for the action of SO (3)) defines a connection.
This observation was made by several authors. This connection is closely related to
the so-called Cat’s problem (see, e.g., Montgomery 1990). For example, Shapere and
Wilczek (1989a,b) used this connection to describe the dynamics of deformable bod-
ies. It was also investigated by Iwai (1987a, 1987b, 1988). Guichardet (1984) applied
this connection to molecular systems. <&
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4.3.2 Rigid bodies

Using the general scheme of the previous section, we now show how to reconstruct the
dynamics of the free rigid body in R3. Recall that a configuration space for a free rigid
body with one fixed point in R? is the group of rotations in R3, i.e., G = SO(3). Each
element of SO (3) uniquely describes the orientation of the body in space. The motion
of the body is therefore described by the trajectory t —> g(#) € G, and the velocity g
is a vector tangent to G at g, i.e., g € T, G. This tangent vector may be mapped to the
Lie algebra g by left and right translations, as follows:

W, = Tng—lg €g, (4.80)
w; = TgRg_lg €g. (4.81)

These two vectors correspond to the angular velocity in the body frame and in the
space frame, respectively. In this way we define two natural isomorphisms:

(Body) G xg L TG LN G xg (Space), (4.82)

and g serves as the space of angular velocities. Now, the dual space g* is the space of
angular momenta. The analog of the above diagram reads

(Body) G x g* <~ T*G 2> G x g* (Space), (4.83)
that is, for any M € Tg*G, one has

M,
M;

(TeL)*(M) € g”, (4.84)
(TeR)* M) € g*, (4.85)

and M,, and M denote the angular momenta in the body frame and in the space frame,
respectively. In the above formulae, (T Lg)* ((T. R;)*) denotes the operator adjoint to
T.Lg (T.Ry), that is,

LLg : g — TG,
and the adjoint operator
(T.Ly)* - T;G — g*
is defined by
((TeL)*(MD), &) == (M, (T.Lg)(®))

forany M € Tg*G and £ € g. In the above formula ( , ) is a natural pairing between
g* and g.

The properties of the rigid body are encoded into the inertia tensor (a symmetric,
positively defined operator)

A

I1:9g — g*, (4.86)
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which defines the correspondence between angular velocities and angular momenta,
according to

M, =lw,. (4.87)
Now, the kinetic energy of the body is defined by
1 .
T(wp) := §<Iwbswb) . (4.88)

Note that I defines a scalar product (, )ing:forany é,n € g
& m:=(1g,n). (4.89)

Using left translations one may define the corresponding scalar product on each tan-
gent space T, G, and, therefore, one obtains a left-invariant riemannian metric on G. It
is well known that the motion of the free rigid body is described by the geodesics of
this metric on G = SO(3).

This well-known picture may be generalized in the obvious way: Instead of SO (3),
take an arbitrary Lie group G as a configuration space of the dynamical system, and let
its motion be described by the left-invariant riemannian metric on G. One calls such a

system a generalized rigid body. The corresponding equation reads
M, =0, (4.90)

i.e., the angular momentum in the space is conserved in time (for a free rigid body).
Now, to find the equation for the angular momentum in the body frame let us define
the following operation in the Lie algebra g of G: For § € g, let

ads : g — 9
be defined by
adg n :=1[§,7n].

The assignment § — adg is called the adjoint representation of g. Now, let adg denote
the adjoint operation, i.e., adg : g* —> g* such that

(adfa,n) == (a,adg 7), neg aeg.

It turns out that the analog of the standard Euler equation in R? is given by
M, = ad}, M, . 4.91)
with @p = I71M,,.
Consider now the standard rigid body in R? with a configuration space Q = SO (3).

The corresponding phase space is, therefore, a cotangent bundle P = T*S0O(3). The
standard left action of SO (3) on itself, i.e.,

503) > g — <I>gQ(h) =Lh=g-h, 4.92)
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may be lifted to the action ®¥ on T*S0(3):

®f (h, o) = (gh, (TeL)*(@n) (4.93)
for any ay, € T,;SO(3). The corresponding momentum map
J: T*SOB) — s0(3)*
is given by
J(otg) = (T.Lg)* (o) - (4.94)
The cotangent bundle 7*SO(3) may be canonically identified with
T*SO(3) = SOB3) x so(3)*.

Moreover, the Lie algebra so(3) and its dual, are canonically isomorphic, and, as we
have already observed in Example 1.2.11, so(3) may be identified with R3 via

R>x — % € 503), (4.95)
such that, for any y € R3,

Xy :=xxy.

Using formula (4.84), the lifted action % on § 0(3) x so(3)* may be rewritten as
follows:

OF (h,u) = (gh, Ad_p) = (gh, g™ - ) , (4.96)

forany g, h € SO(3), and p € s0(3)* = R>. It is easy to see that the corresponding
momentum map reads

Jh,w)=p. 4.97)

Clearly, for any p € R3,

J7 ') = 5003). (4.98)

Moreover, the isotropy subgroup G, C SO (3) consists of all SO(2) rotations around
an axis defined by u € R3. Therefore, the reduced phase space

Pu=3"'w)/G, = S2 (4.99)
may be identified with a two-dimensional sphere S2, of radius u = |u|, equipped with
a symplectic form
ds,
Q,=-——Fr,
. I

(4.100)
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with dS,, being the standard volume two-form on a sphere of radius .

Consider a closed trajectory of the reduced system on Sﬁ corresponding to a periodic
motion of the body, i.e., we have a closed curve in the space of body frame angular
momenta:

t —> cu(t) =Mp(t) € S2, (4.101)

with Mp(T) = M, (0). This is our reduced trajectory from the previous section; more
precisely,

cu (1) = (fixed orientation in the body frame, My (?)) .

The corresponding reconstructed trajectory t —> c¢(t) € P = T*SO(3) has the
following form:

c(@)=(R(t),Mp()) € SO@3) x R3, (4.102)

with

R(tMp(t) = M, , (4.103)

where M; is the (constant) value of the angular momentum in the space frame, and
R(t) defines a curve in SO (3), i.e., a one-parameter subgroup of rotations. Now, after
a period T the body angular momentum M}, coincides with its initial value M, (0), but
in general the body has performed a nontrivial rotation, i.e.,

R(T) # R(0) .
Denote by

Rpp := R(T) - R(0)™! (4.104)

the net rotation corresponding to the change in orientation of the body between r = 0
and t = T (cf. section 3.3.6). Clearly, Rap defines an element from G, i.e.,

Rag = exp(AOT), (4.105)

with £ = u/p being a generator in g,,. Take a connection of the sort defined in (4.74)
and let 1 —> d(t) € J~1(u) be a horizontal lift of ¢y Since the connection (4.74)
corresponds to the natural connection in a monopole bundle (cf. section 1.4.4), the
corresponding holonomy element ggeo, such that d(T) = ggeo - d(0), is, due to (4.76),
given by

8geo = CXp [Aggeof] ) (4.106)

with

1
Abgeo = m f Q= Q) (4.107)
§

P
%
&
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where €(c,,) denotes the solid angle subtended by the closed curve ¢, on S,ZL.
Now, the horizontal lift d(¢), such that d(0) = (1, M), is given by

d(t) = (u(t),Mp(1)) € SOB) xR3. (4.108)

with some u(t) € SO(3). Actually, to find the reconstructed trajectory c(¢) we do not
need the explicit form of u(¢); the interested reader can find the construction of u(¢) in
section 6.1.1. Clearly, u(T) = ggeo. To use our reconstruction algorithm, let us define

E(r) = .A(XH(d(t))> e R3. (4.109)

Using the definition of connection (4.74), we then obtain

1< . 3 3
AXp) = AXg)=-3 pidg’ Z(k__k_) ®
H H, ui:l q l:kZI p qu q Bpk ;

> i 2E,
dopprer=""twot, (4.110)
i=1 H

V-

with E,, standing for the energy for a free rigid body of the unit mass. The recon-
structed trajectory is defined by

c(t) = (g@u@), Mp(1)) , (4.111)
with g(¢) satisfying
) =g@) &) = 2%g(r) -z (4.112)
The solution to (4.112) reads
g(t) =exp [Zi"tt] . (4.113)

which corresponds to rotation about the p-axis with angular velocity 2E,, /. Finally,
the total rotation is, due to (4.70), defined by

hiotat := g(T) - ggeo - 8(0) ,
and it corresponds to a rotation about the p-axis by a total angle

AO = Abgyn + Abyeo , (4.114)

where the geometric phase A6y, is given by (4.107), and the dynamical phase Afgy,
reads as follows:

2E,T

Abgyn = —E— . (4.115)
n

The above formula agrees with (3.201), which was derived without the use of the
reconstruction theorem.
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Further reading

Section 4.1. A detailed exposition of the geometric approach to classical Hamiltonian
mechanics may be found in Abraham and Marsden 1978; Arnold 1989; Marsden and
Ratiu 1999; and Guillemin and Sternberg 1984.

Section 4.2. For more information about the geometric properties of Hannay—Berry
connections the reader is referred to Montgomery 1988; Golin, Knauf and Marmi
1989; and Marsden, Montgomery and Ratiu 1990 (see also Golin 1989; Golin and
Marmi 1990; and Koiler 1989).

Section 4.3. For a more detailed discussion of the reconstruction of Hamiltonian dy-
namics in classical dynamics we refer the reader to Marsden, Montgomery and Ratiu
1990.

Problems

4.1. Let J be a momentum map corresponding to a hamiltonian action of a Lie group
G on P. Show that, for any &, 5 € g,

Xrqgm = Xu©, m) -

4.2. Prove Proposition 4.1.2.

4.3. Show that linear and angular momenta, defined in examples 4.1.1 and 4.1.2,
respectively, are equivariant momentum maps.

4.4. Show that the definition of the reduced symplectic form 2, (see (4.24)) does
not depend on the particular choice of vectors # and v provided the condition

(4.23) holds.

4.5. Check that the geometric phase factor ggeo in the reconstruction theorem does
not depend on a particular connection 4.

4.6. Show that the lifted action defined in (4.71) is hamiltonian.

4.7. Check that a mechanical connection, defined in (4.79), does define a connection
form in a principal bundle.

Geometry of Quantum Evolution

5.1 Geometrical formulation of quantum mechanics

Usually one uses completely different mathematical descriptions to formulate classi-
cal and quantum mechanics. Classical theory may be nicely formulated in terms of
symplectic geometry, and the quantum one in terms of algebraic objects related to a
complex Hilbert space. However, it turns out that standard, nonrelativistic quantum
mechanics possesses natural geometric structure that is even richer than that found in
classical mechanics. This section reveals the beauty of the geometric approach to quan-
tum theory and stands as a basis for the elegant geometrical ideas of Pancharatnam and,
later on, of Aharonov and Anandan.

5.1.1 Hilbert space as a Kihler manifold

Let us begin with the standard Hilbert space formulation of nonrelativistic quantum
mechanics. Denote by  a complex Hilbert space and decompose the hermitian scalar
product in H,

-1y : HxH — H,
into real and imaginary parts, as follows:

(Vlp) =G, o) +iQY, §) . (5.1
One easily finds that G satisfies

G, ¢) =G, ¥) (5.2)
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and, therefore, defines a positive, real scalar product, whereas 2 defines a symplectic
two-form, i.e.,

Q,¢) =R, ¥). (5.3)
Moreover, they satisfy the following relation:
QW,9) =G, i9), (54)

for any ¥, ¢ € H. Formula (5.4) is a defining relation of the so-called Kdhler space. In
order to introduce a precise definition of a Kihler space we shall proceed as follows:
Let us consider a real, m-dimensional vector space V. A linear map

J:V — V,

such that JZ = —1,,,, is called a complex structure on V. Note, that the real dimension
of V is necessarily even: det(J2) = (det J)> = (—1)™, and hence we have m = 2n.
A real vector space V endowed with a complex structure J becomes a complex vector
space of complex dimension n = % Indeed, forany « = a +ib € C witha, b € R,
and v € V, we define

av:=av+bJv.

Conversely, if W is an n-dimensional complex vector space, then W is a 2n-dimensional
real vector space endowed with a complex structure defined by

Jw:=iw,

forany w € W.
Example 5.1.1 Consider C* = {(z},...,z") |ZF e C}. Introducing real coordinates

zkzxk+iyk, xk,ykeR, k=1,...,n,

we may identify C" with the 2n-dimensional real vector space R?”. Now, R?” is en-
dowed with a canonical complex structure Jo defined as follows: For v = L.
yho.. 9" e R,
. 1 n 1 n
Jov == (v, ..y =, =X,

that is, in the standard basis in R?", Jy is given by the following matrix:

Joz( S ) . (5.5)

Clearly, JZ = —1,. <
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Now let us turn to manifolds. A real, 2n-dimensional manifold M is called a complex
manifold if it admits an atlas (U;, ¢;) such that all transition functions

(pgj:=(pj0¢i—l :UinU; — C7,

are holomorphic (complex analytic). The number # is called the complex dimension
of M. Note that every complex manifold admits a field of endomorphisms

Jy :TyM — T, M,

such that J? = —1,, called a complex structure on M.! Clearly, in the case of a
complex vector space C” this field x —> J is constant, i.e., J, reproduces Jo from
Example 5.1.1.

Let M be a complex manifold. A hermitian metric h on M is a smooth assignment
of a hermitian scalar product on each tangent space. That is,

h: TMxTM — C,
such that
hx(u,v) :=(u,v)y, (5.6)

with (u, v ), being a hermitian scalar product on Ty M, for any u, v € T, M. A complex
manifold endowed with a hermitian metric is called a hermitian manifold. Introducing
local complex coordinates (7!, ... , z*) on M, any hermitian metric can be written as:

h=2g;dz ®dz/ , 6.7

with g, being a hermitian matrix, i.e., 87 = &;i» where a bar denotes complex con-
Jugation. In what follows we shall use the standard complex notation: A complexified
tangent space is spanned by 2n vectors:

8/dz',...,0/087",9/9z',...,8/07" ,
whereas the corresponding cotangent space is spanned by 2n covectors:
dz',...,dz" dzZ', ... 47" .

One often writes 3 for 8/3dz% and 9y for 8/9zZ%. Having any tensor field on M the
components corresponding to the holomorphic quantities 3 and dz* are denoted by a
simple index k, whereas those corresponding to the anti-holomorphic objects 3 and
d7* are denoted by k.

11t should be stressed that the existence of a field x — Jx is only a necessary condition for a manifold
to be complex. For example, among even-dimensional spheres, s2n, only §2 defines a complex manifold.
However, also $% admits x — J, with J2 = 1.
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Note that any hermitian metric 4 is invariant under the action of the complex struc-
ture J, i.e.,

h(Ju, Jv) =h(u,v) . (5.8)

Actually, this condition may be used as an equivalent definition of . Any hermitian
metric on M gives rise to the tensor field

K :XM) xXM) — C,
defined by
K@u,v):=h(u, Jv). (5.9
Proposition 5.1.1 K satisfies the following properties:
o K(u,v)=—K(®,u), ie, K € A2(M),
o K(u,v) =Ku,v), ie, K is real,
o K(Ju,Jv) = K(u,v), ie, K is J-invariant.
In local complex coordinates one can then write:
K =ig5dd nd7 . (5.10)
Definition 5.1.1 If K is closed, then one calls K a Kdahler form, h a Kihler metric,
and the corresponding hermitian manifold M a Kdhler manifold.

Corollary 5.1.1 Recall that a two-dimensional complex manifold is called a Riemann
surface. Now, on a two-dimensional manifold any two-form K is necessarily closed
(since dK, being a three-form, has to vanish) and hence any hermitian metric is also
Kihler . This implies that each Riemann surface is a Kdhler manifold.

Now, it is easy to show that a hermitian form K is nondegenerate and hence a Kihler
two-form, being nondegenerate, and closed, defines a symplectic structure on M. In
this way, any Kihler manifold is endowed with a (K#hler) metric-# and a symplectic
form K, which are related by the defining formula (5.9). This observation may be
used as another equivalent definition of a Kihler manifold. Actually, one can prove the
following

Proposition 5.1.2 Let M be a real manifold endowed with a complex structure J and
a riemannian J -invariant metric g. Define the symplectic form w as follows:

wu,v) =g, Jv) . (5.11)

Then M is a Kahler manifold if and only if VJ = 0 (or equivalently, Vo = 0), where
V denotes the covariant derivative with respect to the riemannian connection.”

2Recall, that for the (1, 1)-tensor field t on M the covariant derivative is defined as follows:

io._ i il m i
V](tj = aktj—i—rkltj —ijtm,
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Example 5.1.2 Consider the simplest complex manifold, i.e., let M be the complex
plane C. Taking z = x + iy, one has

g=dx®dx+dy®dy = (dx+idy)® (dx —idy) =dz ®dz, (5.12)
and, therefore, the Kihler form

i

K =
2

_ i
dz AN dZ = E(dx +idy) A (dx —idy)=dx A dy, (5.13)

where we have used g,7 = 1/2. Note that K is obviously closed, and defines the

standard symplectic form in R?. This example may be immediately generalized to C".
One easily finds that

n n
§= (dxg ®dxg +dye ®dya) = Y dza ® dZa (5.14)

a=1 a=1

for the hermitian metric, and

i n n
K = EZ dza A dZy =Z dxg Adyy (5.15)
a=1 a=1

for the symplectic form. <o

Example 5.1.3 Let M = $2. First of all, it is well known that S? defines a complex
manifold — the celebrated Riemann sphere, and hence, due to Corollary 5.1.1, it is
a Kihler manifold. Consider S? as a real manifold and parametrize it locally by the
spherical angles (6, ). One then has for the metric,’

ds? = d6? 4 sin® 6 dg? |,
and for the symplectic structure,
Q =sinfdd A dyp.

Defining a complex structure J on 2 by

0 —siné
I = ( (sing)~! 0 ) ’ (5.16)

where the connection coefficients 1",’;1, so-called Christoffel symbols, are defined by

. 1.
T 7= 38" @mk.t + 8mik = 8ki.m) -

The generalization to arbitrary tensor fields is straightforward, see e.g., Kobayashi and Nomizu 1969;
Choquet-Bruhat and DeWitt—Morette 1982; and Nash and Sen 1983.

3From now on we shall use the convention preferred by physicists: dx2 := dx ®dx, and the line element
ds? := 8apdx® ® dxP.



184 5. Geometry of Quantum Evolution
one immediately finds that formula (5.11) holds. Now, to show that J is covariantly
constant let us note that the Christoffel symbols have the following form:
¢ _ 0 _ _ i
Fwe =cotf, F«xp = —cosfsind ,
and the remaining components vanish. The reader will easily show that

V,'Jl}z(),

for any i, j, k = 0, ¢, which proves that S 2 is a Kihler manifold. &

5.1.2 The quantum phase space

In the previous section, we have shown that a Hilbert space H corresponding to any
quantum system carries a structure of a Kéhler manifold. Note, however, that the
Hilbert space H is not the quantum analog of a classical phase space. Indeed, any
two vectors ¥, ¢ € H, such that

Yr=cp, ceC,

are physically equivalent (¥ ~ ¢), that is, they define the same physical state. There-
fore, the proper phase space of a quantum system is the space of rays in H:

P(H) :== H/~, (5.17)
called a projective Hilbert space. Define a canonical projection
n:H — PMH), (5.18)

and denote [y] := TI(¥), so that [y] corresponds to a ray in H passing through .
Note that the above construction defines a vector bundle over P(H) with a typical fibre
F = C, and a structure group G = GL(1, C) = C* := C — {0}. Clearly, the fibres

oy = complex line (ray) passing through v

are one-dimensional, and one calls the above bundle a complex line bundle. Now define
a unit sphere in H:

S(H):={weH[(¢|w)=1] cH.

Any two points ¥, ¢ € S(H) are physically equivalent (¢ ~ ¢), if they differ by a
phase factor, i.e., ¥ = e'*¢. Therefore, one has, equivalently,

PH)=S(H)/ ~ .

Clearly, if € S(H), then the corresponding equivalence class [¥] may be identified
with the one-dimensional projector

Py =y (¥l .
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Hence,

P(H) = space of one-dimensional projectors in .
Note that this construction defines a principal U (1)-bundle

7 :8H) — PH),

over P(H). Indeed, for any vector ¥ € H the corresponding fibre
eiA w
(¥ly)
may be identified with the Lie group U (1).

) = [ c S(H)} ,

Theorem 5.1.3 A quantum phase space — projective Hilbert space P(H) — is a
Kdéhler manifold.

Proof. In order to prove this theorem we shall construct a hermitian scalar product on
each tangent space T, P(H), i.e.,

(I)p : TpP(H)XTpP(H) — C.

Any tangent vector § € T,P(H) may be represented as a projection of some vector
X € TyH, as follows:

E=Ty1(X), (5.19)

with ¥ € I171(p). A tangent space TyH, being a linear space, may be identified
with H itself, thatis T, = H. Evidently, there are infinitely many vectors X € H
projecting to a given vector § € T,P(H); note that X + ayr, with o € C, has the same

projection as X. Let us observe that any vector X € H may be uniquely represented
by

X =z + X+, (5.20)
where
Xt e (CY)y i={peH|(yip)=0}. (5.21)
It is clear from (5.20) that A = (¥|X )/{ ¢ | ). Therefore,
£ =Ty I(X) = T, II(XY), (5.22)

where X and X are arbitrary vectors from Ty, H projecting to £, and &, respectively.
Let 1, & € Tp,P(H) and take any element o € S(H) belonging to a fibre [T~ (p).
We define

(E11&2)p = (X{IXy)
= (X11X2) — (X11¥0) (ol X2) . (5.23)
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It is clear that the above definition does not depend on ¥ € T1~!(p) provided v is of
unit norm.

Now let ¥ € H be an arbitrary element from IT1~! (p), i.e. ¥ = ¢y for some ¢ € C.
Using the definition of the tangent map, i.e.,

d
LX) = —| 1 +1X),

t=0

and recalling that Ty, IT is a linear map, we have

d d _
Tl(X) = = Tleyo+iX)=2| 0 (c(wo +tc 1X))
t=0 t=0

= Ty Tl 1X) = 71Ty, TI(X)

where we have used the basic property of IT:
M(ce) = (o) . (5.24)
Therefore,
(X71X5)

1
(Ty (X)) | Ty TI(X2) ) p = ﬁ( Ty TH(X1) | Ty T1(X2) ) p = ey (5.25)

and hence, using (5.23), we obtain the following formula for the hermitian scalar prod-
uct in T, P(H):

_ (XX ) (yly) — (Xaly (¥ [X2)

= , (5.26)
(§1162)p ATy
where X1, X» are arbitrary vectors in H, provided
& =Tyll(X1), & =Tyll(X?2). (5.27)

Now it is clear how to define the metric g and symplectic form w on P(H): We write

gy1(61, 62) :==Re (&1162)p , (5.28)
and

wpy1(§1, §2) :=1m (&1162)p - (5.29)
Evidently,

w161, 2) = gry161, i82) (5.30)
for any &1, & € X(P(H)), which proves that P(H) is a Kihler space. O

A riemannian metric g as defined in (5.28), is called a Fubini—Study metric on
P(H) (Fubini 1903, Study 1905). The above formulae for g and w are compatible
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with the Marsden—Weinstein reduction procedure presented in section 4.1.2. Denote
by j a canonical embedding

Ji:S(H) = H.
Then there exists a unique symplectic form w on P(H), such that
*w = j*Q,
that is,
wp (61, §2) = Q(X1, X2), (5.31)

where X, X, are arbitrary vectors in Ty S(H) and v is an arbitrary element from
n'l(p), provided & = Tym(Xy). Clearly, the formula (5.29) reduces to (5.31) on
S(H), since any vector X € Ty S(H) is orthogonal to ¥, i.e.,

Ty S(H) = (Cy)+,
and hence X+ = X, implying that
wp(§1, £2) =1Im (X1]X2) = Q(Xy, X2) . (532
Analogously, one has 7*g = j*G, and hence
gp61, &) = G(X1, X2), (5.33)
where X, X, are arbitrary vectors from (Cyr)+ projecting to &1 and &, respectively,

and Y € n_l(p).

5.1.3 Example: geometry of CP"

Consider (n + 1)-dimensional Hilbert space H = C"*!. The corresponding quantum
phase space P(H) is a complex projective space ’

CP" =S u@y, (5.34)

where $2**1 is a unit sphere in C"*! = R?"*2, This space is the most important
example of a Kihler manifold. Recall that the map

S2n+l — (CPn

defines a celebrated Hopf fibration (see Example 1.3.5). The complex projective space
CP™ may be parametrized as follows: Choose complex coordinates (z°, z!, ... , z")
in C"*1. For z° # 0, we may parametrize C P" using n complex variables

w'=—, k=12,...,n. (5.35)
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Define a sphere $27+! of radius r in RZ**2 by
PP+ 12 P+ .+ 1 =12,
The above equations imply the following formula for 79

0 rei®

S Trman 620

where g is an arbitrary phase. (Note that we assume summation over k from 1 to n.) In
this way we established the following sets of coordinates:

T, @, Wi, Wk PEEEN 2n + 2 coordinates in R2"t2 &~ Cn+l
©, Wk, Wk > 2n + 1 coordinates in $2*+1,
Wi, Wk «— 2n coordinates in CP" .

In the above coordinates the principal U (1)-bundle 7 : §?*t!1 — CP”" is defined
locally by

(p, w, w) = (w, W), (537

i.e., the fibres are parametrized by ¢ € [0, 27), and therefore the vertical vectors
X ~ 9.

Now, let us look for the Fubini-Study metric on CP".* First of all let us observe
that the standard euclidean metric in C"*1,

ds*(C"*1) 1= Sapdz® d7P |
witha, B = 1, ..., n+1, induces the following metric ds?($2**1) on a sphere $2*t1:
ds*(CYy = dr? + r2ds?(s2y | (5.38)

We define the metric on CP” such that the projection 7z : $2"*!1 — CP" is a rieman-
nian submersion, i.e., it is an isometry when restricted to the orthogonal complement
of the kernel of T . Now, the kernel of T consists of all vertical vector fields. There-
fore, the metric on $2"*! has the following structure:

ds?(§7+1) = (dg — ©)? + ds?(CP"), (5.39)

where the first term, dp — ©, is degenerate, that is, it vanishes along the 2n-dimensional
subspaces orthogonal to the fibres of the bundle s+l __, cpn. Using (5.35), (5.36)
and (5.38) it is easy to show that

i Wrdw* — wkdwy

5 T (5.40)

4We follow Page 1987.
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and

1+ wkwk)Sij —w;
(1 + wrwk)?

ds®(CP") = Y aw' dwi . (5.41)

Therefore, the (holomorphic—antiholomorphic) components of the Fubini-Study met-
ric on CP”" read

1 (1 +wkwk)8,'j —ww;
2 (1 + wrwk)?

87 = (5.42)

The reader can show that the formula for 8;7 agrees with (5.28). Let us note that

32K
7 swiow G4

where

K :=mhv1+wwk, (5.44)

is a function called a Kihler potential. Actually, one can prove that any Kihler metric
admits a Kahler potential. Finally, the Kihler two-form reads as follows:

i(1 +Wkwk)3,»j — W;wj i .
_ - TV
2 4 + b2 dw' A dw/ . (5.45)
Note that
1
K = _EdG) , (5.46)

with © defined in (5.40). It should be stressed that the above formula holds only locally
(© is a locally defined object) and hence it does not imply that K is an exact form.

Example 5.1.4 Consider the simplest case, namely the complex projective line
CP! = $2. The hermitian metric g is given by

_ dwdw s47
8= Urow? G-47)
whereas the symplectic form w = K reads
i dwAdw
(5.48)

0=z ——.
2 (1 +ww)?
Introducing a real parametrization

w=x+iy, w=x-—iy,
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one obtains

_dxP+dy* dr?4rdg? (5.49)
T A+x2+y)2 T A4 '

and
dx ANdy rdr Ad¢
= = , 5.50
I+x24+yH2 (A +r2)? 630

where (r, ¢) are standard polar coordinates in the xy-plane. In particular, the surface
area of S, computed with respect to o,

o0 rdr
=2 = 5.51
/52 o= ./0 A+r22 =" G->D

is 4 times smaller than the standard one. &

5.1.4 Symplectic structure and quantum dynamics

The standard Hilbert space approach to nonrelativistic quantum mechanics is based on
the Schrodinger equation for a state vector :

Ld
iy =Hy (5.52)

where H denotes the quantum Hamiltonian, which is a self-adjoint operator on H. Let
us recall that in classical mechanics the phase space P is equipped with a symplectic
structure w and the dynamics is governed by the hamiltonian vector field X g, defined

by
dH(Y) =w(Xu,Y), (5.53)

for any vector field Y € X(P). In the quantum case the Hilbert space of the system,
being a Kiihler space, is also equipped with a symplectic form Q2. Does the Schrodinger
dynamics (5.52) on H correspond to Hamittonian dynamics defined by €2? It turns
out that the answer to the above question is in the affirmative. To see this, define the
following vector field on H:

Xa) = ——Hy . (5.54)

Since H is a linear space, each tangent space Ty,H may be identified with H itself.
Therefore, the action of the vector field can be regarded as the following assignment:

Hay — XpW)eH.

Clearly, X ;; () is the vector field generating the Schrodinger dynamics. Now, to any
self-adjoint operator A we may associate a function A on H:

A— A e C®MH)
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defined by
AW = (YIAY) = Gy, Ay) . (5.55)

Let us call a function A corresponding to a self-adjoint operator A an evaluation func-
tion. Recall, that the expectation value function ( A) corresponding to A is defined
by

. (VIAy)
A ="
(A)y ) (5.56)

If ¥ is normalized, then
AW) = (A)y

Now, since H is equipped with a symplectic structure €2, we may compute the hamil-
tonian vector field X 5 corresponding to a function H.

Theorem 5.1.4 The Schridinger vector field X f; s hamiltonian, and
2rX h= Xy,
that is, the Schrodinger equation defines a classical hamiltonian system on H.

Proof. Fix an element y € H, and let Y € T, H = H. Performing a standard compu-
tation, one finds

dHW)(Y) = %H(w +in)| = % (VAW )|
= (Y|AY)+ (Y|AY) =26, Hy) =24 Q(Y, ;;Hlﬁ)
= 2hQXg4 VW), (5.57)
which shows that 2 X ;; is Hamiltonian with respect to . O

Example 5.1.5 Let H = C" and denote by (ey, ... , e,) the orthonormal base in C”,
i.e., such that:

(ea|eﬂ> = ‘Szxﬂ .

For any z € C” one has

n
= ZZQEa ,
a=1

and the Schrodinger equation implies the following equations for the complex coeffi-
cients z4:

n
ihiq =)  Hapzp , (5.58)
A=l
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with Hypg = (ea|ﬁ leg ). The corresponding evaluation function H on C" reads
n n
H(z) = (zlHlz) = ) HupZazp -
a,B=1

Hence,

1 9H({) . —13H()
_ - , 5.59
SCERET AT R L= 0za (5:39)

which shows that the Schrodinger equation defines a hamiltonian system on C" with
respect to the symplectic structure

n

ihY dzg ANdzy =2RQ2,

a=1

where € stands for the canonical symplectic form on C" (cf. (5.15)). Clearly,

1
te = — {2a, H , 5.60
Za = 5 (2o, HR)}o (5.60)
where { , }q denotes the Poisson bracket corresponding to 2. One can easily show
that
2 <\ (3A 3B 0B 94 )
A, Blg=— — 0 - (5.61)
{ o i ; (320, 0Zq 0%y 074
forany A, B € C®(H). <&

Let us note that there is a close relation between the Poisson bracket { , }q defined by
2 on a Hilbert space H and the commutator of quantum observables (self-adjoint oper-
ators on ). Let A and B be two quantum observables and A and B the corresponding
evaluation functions on H, i.e., such that

AB — A,B € C*H).
The hamiltonian vector field corresponding to A reads

Xa(¥) = 28X ;(¥) = —2iAy . (5.62)

Therefore, using the definition of €2, one obtains

1
{A,Bla(¥y) = Qu(Xa, Xp)= oA (( Xa(WIXp(W)) — (X)) Xa(¥) ))

2 aa oAa 2 P
= ;{¥lAB - BAly) = -(¥IlA, BllY) (5.63)

R
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for any ¢ € H. This means that the commutator of two quantum observables corre-
sponds to the Poisson bracket of their evaluation functions. Hence, for ¥ € S(H) we
have

2 o~ o
{A, Bla(¥) = 7([A4 Bl)y .

Consider now the dynamics on the projective Hilbert space P (H). Note that each
point in P(H) corresponds to a one-dimensional projector operator in H, as follows:

SH) > ¥ — Wl=Py =¥y ¢¥| € P(H).

One also calls Py the density operator (or density matrix) corresponding to the pure
state ¥. If ¢ satisfies the Schrédinger equation (5.52), then Py satisfies the von Neu-
mann equation:

d .
ih— Py =[H, Py]. (5.64)

The solution of the von Neumann equation defines a curve in a quantum phase space
P(H). Now, each quantum observable A in H gives rise to a function a € C®°(P(H)),
defined according to

P(H) > Py —> a(Py) :=Tr(APy); (5.65)
equivalently,
a(Py) = (A)y . (5.66)

Recall that the projective Hilbert space P(H), being a Kahler manifold, is equipped
with a symplectic structure w. Clearly, the Hamiltonian dynamics on H, given by
the Schroédinger equation, projects to the Hamiltonian dynamics on (P(H), ) with
a hamiltonian h € C®°(P(H)) defined by

h(Py) = HY) = (H)y .
Hence, the von Neumann equation (5.64) may be rewritten as follows:

d 1
— Py =—1{h, P, 5.67
7 TRGRAZCE (5.67)

where {, }, denotes the Poisson bracket corresponding to . Hence, the von Neumann
equation defines a hamiltonian system with respect to 2Aw.

5.1.5 Metric structure and uncertainty relation

Let us turn to the metric structure of H encoded in G. In general, the classical phase
space is not equipped with a riemannian metric; therefore, the information encoded in
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G does not have a classical analog. Actually, as we shall see, the metric structure of H
is closely related to the Heisenberg uncertainty principle. Recall that the uncertainty of
the observable A in the state corresponding to a normalized state vector ¥ is given by

(AAY = (A%)y —(A)] . (5.68)
Consider two quantum observables A and B, and let
Ay =A-1-4, (5.69)

where A is the evaluation function of A, and similarly for B. Clearly, (AA)lzﬂ =
(Ai )v» and hence

(AR (ABY, = (A% )y (B3 )y = (VIAL 1Y W(w|BLIv).
Now, using the Schwartz inequality
(WIAL 1Y ) (WIBT W) = (WIALBLIY)P
and
A P 1 . .
AiB) = E[A,La B ]+ E[A_L, Bily,

A

where [)A(, I7]+ = XY + X , one obtains
1 2
B} aBY = (WAL Bl )y + (AL By P) -

Finally, noting that [A |, B, ] = [A, B], and that
NIAL Bily )y P = ([AL. BLD) I([A, Bl)y|* = —(I4, B1)}, ,
one finds
A, ABY, = - (< (AL, Bi1o)} - (1A, BD}) | (5.70)

which i is the standard form of the uncertainty relation for two quantum observables
A and B in the Hilbert space formulation. Let us rewrite the above formula using the
canonical geometric structures of H, i.e., the symplectic structure € and the metric
structure G. By analogy with formula (5.63) one obtains

Gy(Xa,Xp)

1
5 (XA X)) + (X5 W)IXa)))

= 2(y|AB + BAly ) = 2(¥|[A, Bl+l¥) , (5.71)
where we have used the formula (5.62) for X 4 and X 5. Moreover, the fact that

[AL, Bily = [A, Bl +2(AB1 — AB — BA)
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leads to

A oA 1
([AL, B1l+)y = EGw(XA» XB) — 2(AB)(Y) .

Therefore, we may rewrite the Heisenberg uncertainty relation (5.70), without refer-
ence to a particular state vector, as follows:

2 2
(AA*(AB)? > GQ(XA,XB)) +GG(XA,XB)—AB) , (5.72)

where (A A)? is a function on H defined by (AA)2(y) := (AA)2

Finally, let us see how the Heisenberg relation is encoded on the level of the quantum
phase space P(H). Let A and B be two quantum observables, and denote by a and b
the corresponding functions on P(H), i.e.,

aom =(A)=Alsap, borm = (B)=Blszy,

where 7 denotes the canonical projection S(H) —> P(H). Denote by g and w the
corresponding metric tensor and symplectic form on P(H), respectively. By analogy
with the Poisson bracket

{a,blw == 0(Xa, Xp) , (5.73)
let us define the so-called Riemann bracket
(a,b)g = g(Xa, Xp) . (5.74)
Using local coordinates on P(H), one finds that
{a, b}y = 0™ 3uadph ,
and
(@, b)g = 8ap(Xa)*(Xp)P = gap™ 3,0 P35 = g dya dgb .
Now, recall (see section 5.1.2) that if £, n € T,P(H), then
8p(E, M =Gy (X, ¥,
and
wp§, 1) = Qy X+, YY),

where v is any vector from H projecting to p € P(H), X and Y are arbitrary vectors
in ‘H, and

(¥1X)
(¥l

Xt=Xx-x=x— v,
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and similarly for Y. In particular, one has
gp(Xa, Xp) = Gy (X5, X3) @p(Xa, Xp) = Qy (X1, X3) ,
and can establish the following relations:
Qy (X4, X5) = Qy (X4, X5) , (5.75)
and
Gy(X%, X3) =Gy (Xa, Xg) + 4AB)(Y) . (5.76)

Therefore, the Heisenberg relation (5.72) may be rewritten as the following inequality
between objects defined on P(H):

(Aa)?(Ab)?

v

1
1 (e, X)? + g(Xa, X))
1
= (@b +@ni), .77
where (Aa)?(Py) := (AA)?(¥). In particular,
1
(Aa)2 = Z(a, a)g .

This leads to a nice geometrical interpretation of quantum mechanical uncertainty. For
example, the uncertainty of the energy,

1
(AR)? = 2 8(Xn, X) . (5.78)
is (up to a constant 1/4) equal to the length of the hamiltonian vector field X ». Thus the

energy uncertainty measures the speed at which the quantum system travels through
the quantum state space P(H) (Anandan and Aharonov 1990).

5.2 Aharonov-Anandan phase

5.2.1 Standard derivation

The solution of the Schrédinger equation

d N
ihE v=Hy, ¥(0) =0, (5.79)
defines a trajectory

t — Yy@) e H,
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in the Hilbert space . If the initial state vector Yo € S(H), then the solution v (¢)
remains in S(H) for any ¢t € R. Such a trajectory on S () projects onto a trajectory in
the quantum phase space:

t — P@) € P(H),

that is,

P@):=n(@), (5.80)

where 7 : S(H) — P(H). This defines a solution to the von Neumann equation,
ie.,:

d N
ih— P =[H,P], P(@0)=Py:=[¥o)(Vol. (5.81)

Suppose that a trajectory P = P(z) is closed, i.e., P(T) = P(0) for some T > 0. We
call such an evolution cyclic. We stress that we do not make any assumption about the
Hamiltonian H of our system. It is not even important whether or not it depends on
time. Since y(T) and v (0) define the same physical state they may differ by a phase
factor only, i.e.,

Y(T) =€ ¢(0), (5.82)

for some ¢ € [0, 27). Our task in this section is to find the phase shift ¢ knowing the
system Hamiltonian A and a closed trajectory P(z) in P(H).

First of all, let us note that we may make certain changes to H without affecting
P(1). It is evident from the commutator structure of the von Neumann equation that
the following transformation:

A = H+1a@), (5.83)
where 1 is an identity in 7 and a() is any real function of time, leaves the solution

P(¢) invariant. The corresponding solution to the Schrédinger equation changes as
follows:

t
(1) = exp (.i f a(r)dr) v, (5.84)
lh 0
and hence
¥(T) =€ y(0), (5.85)
with
1 T
o =p—-= f a(rydr . (5.86)
h Jo
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PH)

Figure 5.1: Three lifts of the closed curve P in P(H): ¢ — solution of the original Schrédinger
equation; ¥’ — solution of the Schridinger equation corresponding to the transformed Hamil-
tonian H'; and ¢ — an arbitrary closed curve.

Therefore, by performing a trivial change of the Hamiltonian (5.83) we may change
the corresponding phase ¢ completely arbitrarily. However, as was shown by Aharonov
and Anandan (Aharonov and Anandan 1987), the total phase ¢ may be naturally di-
vided into two parts, as follows:

© = @dyn + Pgeo » (5.87)

such that the geometric phase @geo is invariant under the transformation (5.83) and
depends only on the closed curve P(¢) in the quantum phase space. To see this let us
take a function a = a(r) in (5.83) such that ¢’ = 0, which means that the curve ¥’ ()
is closed, i.e., ¥/ (T) = ¢'(0) (see Fig. 5.1). Note that a(¢) then satisfies

1 T
—/ atydt = ¢, (5.88)
h Jo
where @ is defined in (5.82). The new function ¥'(¢) solves the Schrédinger equation
d 3 ’
ih— ') = 5.89
in ') = (B +1a0)v'() (5.89)

and hence, taking a scalar product with ¥'(¢) and integrating over time from O to T,
one obtains

T

fT(w’m}iiw/(t))dm1[T<w’<t)|ﬁ|w’(r>>dr+1/ a)dr . (5.90)
0 dt h 0 h 0

i A
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Therefore, using (5.88), we find the following formula for the phase shift ¢:

T , d , 1 T R
¢ = / (volisvw)a - / (WOIRW ). (591
0 dt h 0
In this way the total phase shift ¢ is divided into the following two parts:
e the dynamical phase
1T - 1T -
Payn =~ fo (V' OIH|Y (1)) dr = ~% /0 (YOIH|Y@))dt , (592)
which manifestly depends upon the system hamiltonian H, and

o the geometric phase

T ) d
oo = [ (Wl Sy @)ar, (593)
0 dt
which, as we shall see, depends only on the closed curve P(¢) in P() and not
on a particular choice of the Hamiltonian.
Now we show that @, depends only on the geometry of the projected curve
PO =y yv®l=1¥'®) (¥ O, (5.94)

in P(H). Let ¢ = ¢ (z) be an arbitrary closed curve in S(H) projecting onto P(¢), cf.
Fig. 5.1. Clearly, ¥’'(r) and ¢ (¢) differ by a time-dependent phase factor, i.e.,

¢) ="V Yy, (5.95)
such that f(T') = f(0). The easy computation

fOT(cp(t)]i%«p(r))dt

[ [-{vo|Lyo) (vl vl

4 "(HYdt, (5.96)
zd—two) , G

(r@-rm)+ /0 T(w’(r)

leads to the following conclusion:

/-OT <¢(r)]i% ¢(t)>dt = Pgeo - (5.97)

This proves that gge, is a characteristic geometric feature of the closed curve in P(H).
It is called the Aharonov-Anandan phase:

A@AA = @geo = Aharonov—Anandan phase .
Hence, the total phase shift corresponding to a cyclic evolution is given by
@ = @dyn + A@aa , (5.98)

and, as we have just shown, the geometric part Apaa does not change under the trans-
formation (5.83).
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Remark 5.2.1 The definition of the Aharonov—Anandan phase for a cyclic evolution
in P(H) is a special case of the reconstruction procedure from section 4.3.1. Projective
Hilbert space defines a reduced phase space for the Schrodinger dynamics. Hence, we
have a direct correspondence between Fig. 4.4 and Fig. 5.1. >

5.2.2 Example: spin-half in a magnetic field

Consider a spin-half particle interacting with a constant magnetic field B. Choose a
coordinate system such that B = (0, 0, B). The corresponding quantum Hamiltonian
H reads (cf. Example 2.2.1)

L1 ho(1 0
H=§B-a=§B<O _1), (5.99)

where, for simplicity, we set the giromagnetic ratio i equal to one. Let |+ ) € H = C2
denote two eigenvectors of a3, i.e., such that

o3|l£) =%£|£).

Taking as an initial state vector
6 6 .
Yo = cos (5") I+) + sin (%’) ev)—y (5.100)

one easily finds the following solution of the corresponding Schrédinger equation:

—iBt G iBt\ . [6p ivo
exp( T )cos (?) |+)+exp(§h—) s1n<2) e'—)

—i 6, Bt . [0 ;
exp (—;?) [cos (7()) |+ ) + exp (17) sin (EO) e — )] . (5.101)

Note that for T = 2—’1’% = %, one obtains

¥ (1)

Y(T) =e 7 (cos (%") I+ ) + sin (%") e”<00|—)) =e Ty (0), (5.102)

which means that the evolution is cyclic. The total phase shift ¢ = —m decomposes
into dynamical and geometric parts:

—7 = Qdyn + Pgeo -
The dynamical phase gayn is easy to calculate. One has
T
0

1 T N B
Qdyn = —5/0 (rlf(t)th/f(t))dt=——25/ (v (o3l () ) de

= —% (cos2 (92—0) — sin? (6;—0)) = —mcosby, (5.103)
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Figure 5.2: Cyclic evolution of the polarization vector s.

and hence, the geometric Aharonov—Anandan phase Agaa reads

Apap = —7r — @agn = m(cosBy — 1) mod 27 . (5.104)
Let us interpret this result in terms of the geometry of a quantum phase space

P(H)=CPl = §2.
Define a polarization vector, as follows:
s:={(yloly). (5.105)
Note, that if (| ) = 1, then |s| = 1, and hence we may define a map
SC=8 >y — s €852,

which is the celebrated Hopf map (cf. section 1.4.4). It is easy to see that the corre-

sponding evolution of s on a quantum phase space §? is given by

d
ESZSXB’ (5.106)

which describes precession of s about the direction of B with an angular velocity B.
Hence, the solution s = s(r), satisfying the initial condition

so = (¥olo|¥o) = (sinby cos gy, sin Gy sin gy, cos bp) , (5.107)
defines a closed curve C on §2, i.e, a circle (see Fig. 5.2). It is given by
s(¢) = (sin g cos(go + Bt), sin Gy sin(gg + Bt), cosbp) , (5.108)
and satisfies

s(T =h/B) =5s(0) . (5.109)
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Recall that the solid angle €2 (C) subtended by C is given by
Q(C) =2n(1 —cosbp) ,

and, therefore, the Aharonov—Anandan phase may be rewritten as
1
Apap = _EQ(C) mod 27 . (5.110)

Hence, Agaa is defined entirely in terms of geometric structures living on a quantum
phase space P(H) = S2.

5.2.3 Fibre bundle approach

Evidently, the Aharonov—-Anandan phase Agaa corresponds to a holonomy of an ap-
propriate connection in a principal U (1)-bundle

S(H) — PH),

or its associated line bundle H — P(H). It turns out that there is a natural connec-
tion giving rise to the Aharonov-Anandan phase. Recall that to introduce a connection
we have to define a subspace of horizontal vectors. To do so, let ¥ € S(H). The tan-
gent space Ty, S(H) may be identified as a linear subspace in . Hence, the subspaces
of vertical and horizontal vectors, which are related to Ty S(H) as follows:

H D TyS(H) = Vy + Hy , (5.111)

are linear subspaces in H. A fibre 771 (y) consists of all vectors of the form e .
Therefore, the vertical subspace Vy, is defined by

w,:{mpjxeux], (5.112)
and hence it may be identified with u(1) = iR. To define a natural connection we
use a hermitian scalar product in H. Let X be a vector tangent to S() at a point .

We identify X as a vector in H (using the same letter for X € H), and we call X a
horizontal vector w.r.t. a natural connection if

(¢|X)=0. (5.113)
Thus, the space of horizontal vectors at ¥ consists of all vectors orthogonal to ¥, i.e.,
H.p:{XGHI(l/fIX):O}. (5.114)

Acurvet —> ¥ (t) € S(H) is horizontal if

(YOI @) =0, (5.115)
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for any 7. Now, since (¥ |¥ ) = 1, one has
Re (¥ (Ol¥(®) =0,
and hence the horizontality condition reduces to
Im (y®)|¥©®) =0. (5.116)

Recall that a connection one-form 4 in a principal U (1)-bundle S(H) — P(H) is a
u(1)-valued one-form on S(H). Take X € Ty S(H) C 'H, and define

Ap(X) :i=ilm(¥|X) € u(l). (5.117)

It is clear that X is a horizontal vector at a point ¢ € S(H) if Ay (X) = 0. Consider
now a local connection form A on a quantum phase space P(H). Let

¥ P(H) — S(H)
be alocal section. The pull-back
A:=iy*A (5.118)

defines a local connection one-form on P(H) (in a gauge ¥).> The definition of A
implies the following formula for the local connection A (in a gauge ¥):

A=i(yldy). (5.119)
By performing a gauge transformation, as follows:
v — Y=y, (5.120)
we obtain a gauge-transformed connection A’
A'=A+df, (5.121)

which agrees with the transformation law for a connection form. Having defined a
connection we may compute the corresponding holonomy element

O(C) := exp (i f A) , (5.122)
C

where C is a closed curve in P(H). Evidently, ®(C) reproduces the Aharonov—Anadan
phase factor, that is

D(C) = /294 | (5.123)
In summary we have proved the following

Theorem 5.2.1 Let C be a closed curve in a quantum phase space P(H), correspond-
ing to a cyclic evolution of a quantum system. Then the corresponding Aharonov—
Anandan phase factor exp(iAgaa) defines the holonomy of C with respect to the nat-
ural connection in a principal U(1)-bundle S(H) —> P(H).

5Due to the factor of i , A is R-valued.
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5.2.4 Geometry of CP" and Aharonov-Anandan phase

Consider, now, an (n + 1)-level quantum system living in a finite-dimensional Hilbert
space H = C"*! (cf. section 5.1.3). Taking cartesian coordinates (z°, z!, ..., z")
in C"t!, we may express a natural connection one-form in a principal U (1)-bundle
s2n+l 5, CP”" as follows:

1
A=iIm Z.dz*) = 2 (Zodz® — 2%dZy) . (5.129)
Using local coordinates {(¢, wk, W), k=1,...,n}in §27+1 e obtain the following

formula for A:

1 wrdw* — whdwy

=i — =i — 5.12
A td(p+2 [ Dok i(dp —©), (5.125)

where ® was already defined in (5.40). Hence, it is clear that a local connection one-
form on CP" is given by

=-0, (5.126)

where we take A to be real-valued. The corresponding (real-valued) local curvature
reads

F=dA=-do. (5.127)
Note that, due to (5.46), we have
F=2w. (5.128)

This shows that the first Chern class of the Hopf bundle $?"*! — CP” is entirely
determined by the symplectic form w, as follows:

(F)= — (—iFy= 2. (5.129)
2 /4
Example 5.2.1 Consider once again the complex projective line CP! = $2. Using
the symplectic form w derived in Example 5.1.4, i.e.,
i dwAndw
W= ——,
2 (1+ww)?
one easily finds that the
1
Chern number of a complex line bundle = / ci1(F)=— / w=1,
52 T Js2

and, hence, that the U(1)-bundle S(H) —> P(H) reproduces the monopole bundle
§% — $2 witha monopole charge g = 1. <
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Finally, the Aharonov—Anandan phase Agaa is given by the following formula:

1 [ wWdw® — whdwy
A =pA=— ¢ —mM—F—— d 2 . 5.1
PAA ?{C 5 ‘(fc T+ ook mod 27 (5.130)
Applying the Stokes theorem one finds
A(pAA=¢A=/F=2fw mod 27 , (5.131)
c = by
where ¥ is any two-dimensional submanifold in CP”, such that C = 3X. This

shows that the Aharonov—Anandan phase corresponding to a closed curve C in P(H)
equals twice the symplectic area of . In particular, for a two-level system one has
(cf. Example 5.14) 0 = %a)o, where wq is the standard volume form on S2, i.e.,
wp = sin8dO A dg. Hence,

1 1
Apar =3 /E wo = 39(C) mod 27 (5.132)

where, as usual, 2(C) is the solid angle subtended by the closed curve C. Clearly, this
result agrees, as it should, with formula (5.110) for the Aharonov—Anandan phase for
a spin-half particle.

5.3 Quantum measurement and Pancharatnam phase

5.3.1 Geodesics in quantum phase space

The projective Hilbert space P(H), being a Kihler manifold, is equipped with a canon-
ical Fubini-Study metric. This metric enables us to measure the distance between
quantum states, i.e., points in P(H), and the length of curves in P(H). Consider a
curve

C: [0,11 3t — p@t) € PH),
and let
C: [0,11 51t — ¢@) € SH),

be a lift of C in the bundle S(H) —> P(H). The length of c may be computed in
terms of the Hilbert space structure as follows:

~ 1 . .
L(C) = /0 V{¥ly)de. (5.133)

Evidently, L(C) does depend on a particular lift, and hence the length of a lifted curve
does not define a gauge-invariant quantity. If C’ is another lift of C, such that ¥’ =
€', then

~ 1 . . 1 - - .
L& =/0 \/<t/f’|10’)dt=/0 VO + 2 + 20 Tm(ylyyde . (5.134)
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This poses a natural question: which lift of C has minimal length? Let us call such a
lift a minimal lift.

Theorem 5.3.1 A lift is minimal if and only if it is a horizontal lift w.r.t. the natural
connection. Moreover, the length of C with respect to the Fubini-Study metric on P(H)

is minimal, i.e.,
Lrs(C) = length of its horizontal lift .

Proof. The proof is based on the following simple inequality:

(P ) = () — K 1Y) = (f 1) — (F g Wl ) (5.135)

Note that the r.h.s. of the above formula is exactly the scalar product computed in terms
of the Fubini-Study metric (cf. (5.23)). Hence, the above inequality may be rewritten
as follows:

(Y1) = (T 8)y (b, ¥r) . (5.136)
Therefore a lift is minimal if and only if the lifted curve satisfies
(Yl¥)=0, (5.137)

which is exactly the condition for a lift to be horizontal with respect to the natural
connection in a bundle S(H) — P(H). Now, if 1/ (¢) is a horizontal lift, then

(V1) = (x*g) g (¥, ), (5.138)

and hence the second part of the theorem follows. O

Knowing how to measure length of a curve in P (H) lets us turn to curves with min-
imal possible length, i.e., geodesics with respect to a Fubini-Study metric. Consider
two points pj, p2 € P(H). Let y; and ¥, be two arbitrary nonorthogonal state vectors
from S(H) projecting to p; and p», respectively. Define a real plane in H spanned by
Y1 and vy, as follows:

{1ﬂ=/\11ﬁ1+)»21//2 AL, Ay € ]R} Cc H.

The intersection of any real plane with the unit sphere S(H) is a great circle which
defines a geodesic on S(H) with respect to the metric induced from H. Clearly, its
length equals 2. Now, a geodesic on S(H) projects to a geodesic on P(H) and hence
each geodesic on P(H) is a closed curve, since it is a projection of a closed curve (a
circle) on S(H).

Let us parametrize a geodesic joining ¥r; and > on S(H), i.e., an arc of a great
circle passing through ¥, and ¥, by an angle ¢ € [0, 27),° i.e., such that

V(@) = @) Y1+ AP Y2, (5.139)

5We follow Uhlmann 1987.
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and let us introduce the following real parameter

a:=Re(y|yn). (5.140)

Suppose, that a > 0 (if not we take a pair 1 and —,). The normalization condition
(¥ (@)Y () ) =1 implies the following formulae for A’s

M) = cosd — J%_ﬂ sin® | (5.141)
@) = ¥ (5.142)
T e '
Note, that
YO =91, Y@ =1, (5.143)

where the angle ¥ is defined by
costhy =a, (5.144)
with 99 € [0, /2). Now, one may easily show that
(Boldpyr) =1, (5.145)

and hence, a length of the geodesic arc between Y1 and ¥, reads

Yo
L = A V{0s¥|0sy ) dd =y . (5.146)

It is clear that this length attains its minimum if we choose Y1 and ¥, such that the
parameter a defined in (5.140) is maximized

a=Re(¢i|Y) = max. (5.147)
Now, since
(Y1l¥2) =re™* = rcosi +isini,

it is clear that Re ( |y ) attains its maximum if and only if (1| ) is real and
positive, in which case a = |{ ¥y }|. Uhlmann (Uhlmann 1986) proposed the ter-
minology horizontal plane for real plane spanned by such vectors. Now, let y be the
shortest geodesic joining p; with p,,” and let

o(p1, p2) := lengthof y .

The above discussion may be summarized in the following

7Since any geodesic on P(H) is closed, any pair of point in () defines two arcs of the closed geodesic
passing through them.
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Theorem 5.3.2 The length of the shortest geodesic joining p1 and p; in P(H) is given
by the following formula:

cos[a(p1, p2)] = K¥1lv2),

with yry and yr, being arbitrary elements from the corresponding fibres a1 p1) and
7~ 1(py), respectively. In particular, choosing | and yr, such that

(¥1|y2) is real and positive ,

one has

cos[o(p1, p2)] = (Y1l¥2) .
Corollary 5.3.1 Each geodesic on P(H) is closed and its length equals 7.

Proof. A closed geodesic on S(H) (a circle) passing through v and v is defined by
(5.139), where the A’s are given by (5.141)—~(5.142) and & € [0, 27). Note, however,
that

V(@) =-v@ +n),

and hence

@)W =1v@ +m) (v @ + )],

ie., () and ¥ (& + ) project to the same point on the projected geodesic in P(H).
Therefore, the length of the closed geodesic on P(H) is half that of the closed geodesic
in S(H). Recalling that the length of any closed geodesic in S(H) equals 27w, the
corollary follows. O

Remark 5.3.1 Note that if (y1|y2) = 0, then o(pi, p2) = 7/2 and there are in-
finitely many horizontal planes spanned by ¥ and . Indeed, a real plane spanned
by | = €' ¢ and vy = €1 9, is still horizontal. Hence, there are infinitely many
geodesics connecting p; and p; on P(H). Such points are called conjugated. Hence,
any two orthogonal vectors in S(H) give rise to conjugated points in P(). Note that
any two conjugated points divide each geodesic passing through them into two arcs of
equal length. <

5.3.2 Distance between pure quantum states

Let us consider two arbitrary points p;, p2 € P(H). The Fubini-Study metric enables
one to compute the distance between p; and p; as a length of the geodesic connecting
these points, that is, the Fubini-Study length between p; and p; equals o (p1, p2).

Note, however, that there are other ways to define a distance between pure quantum
states represented by the state vectors ¥; and ¥2. Denote by Py and P, the correspond-
ing one-dimensional projectors, i.e.,

=|Y1 (Y1l and Py = |y )(y2l,
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and introduce the following distance functions:

D1 (Py, ) :="Tr|P| — Py, (5.148)

Dus(Py, Py) := \/Tr (P — By)?, (5.149)

where |A| := +/A*A is the positive square root of A*A. As we shall see in section
5.4.2 the distance Dyg corresponds to the Hilbert-Schmidt norm. The reader can easily

show that
Dri(Py, Py) = 2y 1= [(ily2)?, (5.150)

and

and

Dus(Py, Py = /201 — (¥ lv2) ) (5.151)

Another way to measure the distance between 131 and 132 uses the norm in the original
Hilbert space H and it is usually called the Fubini-Study distance

Dis(Pr, Py) = inf |l Y1 — ey |1
= inf(y1 — Yy —€Yn) . (5.152)
¢
Performing the scalar product the above formula leads to:

inf (1 — €Yl — e'PY) = 2(1 — sup Re (Y11e'%y ) = 2(1 — [{¥11¥2)]) ,
14

and hence,

Drs(P1, Py) = V20— [(¥1[¥2)]) . (5.153)

This shows that all three distances (Dty, Dys, Drs) are closely related to the geodesic
(or Fubini-Study) length o (Py, P,). It is therefore not surprising that they give rise to
riemannian metrics closely related to the canonical Fubini—Study metric on P(H).

Finally, let us compute the explicit form of the (riemannian) Fubini-Study metric.
Take any local section ¥ : P(H) —> S(H) and define the corresponding metric
tensor as follows

dsfs =: gij(x)dx'dx’ (5.154)

where

os\/dsts = (Y @)Y +dx))|.
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A Taylor expansion applied to ¥ (x + dx) gives

Y (x +dx) = Y(x) + &Y (x)dx' + —;—Biajlll(x)dxidxj + ., (5.155)
and hence one obtains

1 S
(Y@NYx+dx)) =14+ (Y x)]8¥(x))dx' + 5 (Y130 ¥(x) Ydx"dx) + ... .
(5.156)

Therefore, up to second order terms
(¥ ()Y (x +dx) )
= 1+ %Re ((W(x)laiaﬂﬁ(X)) + (3 Y )Y ) ) (P (x)9;¥(x) ))dxidxj .
Using
Re(¢0;0;¢ ) = —Re (8 ¥|9;¥ ) ,

and the following expansion of the cosine function:
1
cos/dsis =1— 3 dsgs + higher order terms ,
we obtain finally

gij = Re((8,10;) — (391 ) (¥18;¥)) - (5.157)

It is easy to show that g;; is gauge invariant, i.e. it does not depend on the particular
choice of the local section ¥, and hence defines a metric tensor on P(H). It is instruc-
tive to show that (5.157) reproduces the holomorphic-antiholomorphic components g,
from the formula (5.42).

Example 5.3.1 (Two-level system — qubit) Consider a two-level quantum system liv-
ing in H = C? — in quantum information theory this is called a qubit, see Nielsen and
Chuang 2000. The corresponding quantum phase space

cplz=s?
may be parametrized by standard spherical angles (8, ¢). Take a local section
25 x — Y@x) € $$=85CH,
defined by

) = | (%)Qew > .

sin (2
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One can easily compute the following:

7 0
(i) =ico (3) . (Wlap) =0, (apiagy) = cos’ (%)

] 1
(B, |06y ) = —%sme . (B¥130¥) = 5 -

Hence, the corresponding components of the Fubini—Study metric tensor (5.157) are
given by

1 1.2
800 =7 80 =0, 8pp = 7 sin 0,

i.e., the Fubini—Study metric agrees with the standard metric tensor on a sphere of
radius r = 1/2. Moreover, any geodesic is a great circle with a length

L=2nr=m,

in perfect agreement with Proposition 5.3.1. Note that conjugated points correspond to
antipodal points on S2. <&

Let us note that the formula (5.157) for the Fubini-Study metric is a special case of
the quantum metric tensor introduced in section 2.2.6. In particular, examples 2.2.4
and 5.3.1 define the same metric on S? — in the former case S2 plays the role of the
parameter manifold, and in the latter it serves as the space of quantum states. Note that,
unlike the quantum metric tensor g on the parameter manifold M, the Fubini-Study
metric g on P(H) defines a proper riemannian metric.

5.3.3 Measurement process

Now, we are going to relate our previous geometrical considerations to the measure-
ment process in quantum mechanics. The most important object studied in this context
is the transition probability. For any state vector ¥ € S(H), one introduces a quantum
mechanical probability. distribution as a function on S(H) defined by

S(H) > ¢ —> KYol¥)* € Ry

Note that |( ¥g|¢ )| does not depend upon the phases of 1 and ¥ and, hence, it enables
one to define a function &, on the quantum phase space P(H), as follows:

PH) 3 p —> 8p(p) := [(Yol¥)I*, (5.158)

where ¥ and ¥ are arbitrary elements from the corresponding fibres, ie., ¥ €
7~ (po) and ¥ e nl(p). We may call 85, a quantum mechanical probability dis-
tribution on the quantum phase space P (H). By identifying the points pg, p € P(H)
with one-dimensional projectors Py and P, we have, equivalently,

85, (P) = (Tr BP) . (5.159)

Theorem 5.3.2 gives rise to the following simple interpretation of &p,:
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Corollary 5.3.2 A quantum mechanical probability distribution on P(H) satisfies
8p0(p) = cos® [a(po, P)] ,

where o (po, p) is the minimal geodesic distance separating po and p.

Suppose that we are dealing with a quantum observable F. Assume for simplicity that
F has a discrete, nondegenerate spectrum, i.e.,

Fyie = fivne (5.160)
with ¥ € S(H). Denote by pi the corresponding eigenstates in P(H):

pr = w(Y)
or, equivalently, define the one-dimensional projectors By

= [ (Yl

The spectral theorem implies the following spectral decomposition of E:

F=> fib. (5.161)

k
In the process of measurement any state Py € P(H) will collapse to one of the eigen-
states Py with probability equal to
sf,o(ﬁk) = Tr(PyPy) . (5.162)

Corollary 5.3.2 implies, therefore, a suggestive picture of the measurement process
on a true quantum phase space P(H): The probability of obtaining an eigenvalue f
in measuring a quantum observable F is a monotonically decreasing function of the
(minimal) separation of Py and the corresponding eigenstate Py; the system is more
likely to collapse to a nearby state than to a distant one.

Let F be a self-adjoint operator on M (a quantum observable) and let f € C®°(P(H))
denote the corresponding observable function, i.e.,

f(P) =Tr(PF).
Clearly,

)= fi. (5.163)

Recall that a hamiltonian vector field on H, corresponding to F.is given by

Xp() = —% Fy . (5.164)
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When calculated at 1y,

Xp(Wn) = —ﬂ Vi, (5.165)

and so is parallel to v, and, hence, is a vertical vector field. Therefore, the projected
hamiltonian vector field X ¢ vanishes at all eigenstates Py, which means that a quantum
observable function f has the eigenstates py as its critical points, i.e., df (P =0.

At this point a natural question arises: Which functions on P(H) are quantum ob-
servable functions, i.e., correspond to some quantum observable on H? It turns out
(Ashtekar and Schilling 1998) that an observable function may be entirely character-
ized in terms of geometric structures on P(H), without reference to an underlying
Hilbert space H. One has the following

Proposition 5.3.3 A function f : P(H) — R is a quantum observable function if
and only if its hamlltoman vector field X ¢ is a Killing vector field of the corresponding
Kdhler metric g2

It turns out that in a similar manner one may deal also with the problem of observables
with continuous spectra, and one may arrive at a complete formulation of quantum
mechanics on a true quantum phase space, i.e., projective Hilbert space P (). The
interested reader is referred to Ashtekar and Schilling 1998 (see also Brody and Hugh-
ston 2001).

5.3.4 Pancharatnam phase

Consider a pair of vectors ¥ and ¥’ = ¢/ representing the same quantum state, i.e.,
such that

Y ) (¥l = 19" (]

It is clear that the relative phase between ¥ and ¥’ is . However, when ¥ and v’
represent two different quantum states the definition of a relative phase is less obvious.
Apparently no one had posed this problem until Pancharatnam (1956) came up with
a physical interpretation of the relative phase between distinct polarization states of
light.® It turns out that Pancharatnam’s concept of relative phase has a quantal coun-
terpart, with a surprisingly rich structure related to the geometry of the quantum phase
space P(H).

Take two nonorthogonal vectors ¥, Y2 € S(H). We call the phase of their scalar
product the relative phase or phase difference between ¥ and ¥, i.e.,

(Y11¥2) = re™? — @y := phase difference between ; and v, .

8Xisa Killing vector field of a metric g if
Lxg=0

where Ly denotes the Lie derivative with respect to X.
9We shall discuss Pancharatnam’s idea in optics in more detail in section 6.1.4.
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We say that ¥| and v, are in phase or parallel if

{1l ) isreal and positive .

The above definition introduces the following relation between any two nonorthogonal
vectors:

¥ ~ ¢ <= they are in phase .

Clearly, v is in phase with itself, and if 1 is in phase with ¢ t.hen ¢ is al§o in phase
with . However, the above relation is not transitive, if ¥ is in Phase Wlt}} Y, ang
Y2 with 3, then ¥3 need not be in phase with 1. Hence, the notion “to be in phase
does not define an equivalence relation.

Example 5.3.2 Consider the following three normalized vectors:

w 1) meld). ved

)

e 1y is in phase with ¥, since (YY) =1/ V2 is real and positive,

Clearly:

e V is in phase with 3, since (¥2|¥3) = 1/+/2 is real and positive,
o 1 is not in phase with 3 since (¥r|y3) = —i/ﬁ is not real. <&

One often calls the above rule of defining relative phases a Pancharatnam connec-
tion. In this way a principal U (1)-fibre bundle S(H) —> P(H) is equipped with two
connections:

1. a natural connection giving rise to a Aharonov—Anandan phase, and

2. aPancharatnam connection defining relative phases between elements from S(H).

What is the relation between these connections? The answer to this question is given
by the following

Theorem 5.3.4 Consider two points p1, p» € P(H) and let y be a shorter arc of the
geodesic connecting p1 and p>. Moreover, let

Vi t— ¥ € SH,

be a horizontal lift of y with respect to the natural connection in a principal fibre bun-
dle S(H) — P(H). Then any two points in ¥ are in phase, i.e., a parallel transport
of ¥ keeps yr (¢) in phase with 1 (0).

Proof. Let C be a geodesic in S(H) projecting to y in P(H). Any geodf.:sic (a part of
a great circle) on a unit sphere S(H) is uniquely defined by a real plane in H spanned
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by two vectors ¥ and . Keeping the notation of section 5.3.1, we know that the
geodesic (more precisely, the shorter arc of the closed geodesic)

V(@) = A)Y1 + A0)y,

is a horizontal lift of y if and only if

{(¥11¥2) is real and positive ,

that is, ¥; and ¥, are in phase. Now, it is easy to show that

(Y@DIY@2)) = cos(® — ) > 0, (5.166)

since ¥, ¥, € [0, %), and %, defined in (5.144), satisfies Yo € [0, m/2]. Therefore,
any two points belonging to the horizontal lift ¥ are in phase. |

Notice that we called a real plane spanned by two parallel vectors a parallel plane;
this name is now fully justified. It should be stressed that only points belonging to the
same arc of the geodesic connecting v/; and ¥ are in phase. (Clearly, the geodesic
passing through ¥ and v is closed, i.e., there is a second arc from vy, to 1. Points
belonging to different arcs are, in general, not in phase.)

Consider, now, two vectors Yo, ¥1 € S(H) and let o be their relative phase. Denote
by po, p1 € P(H) the corresponding projections, i.e., po = 7w (o) and p; = w(yy).
The following theorem clarifies the geometric character of «:

Theorem 5.3.5 Let y be the shortest geodesic connecting py and py. Then

a:—/A,
y

where A is a connection one-form corresponding to the natural connection in S(H) —>
P(H), and ¥ is an arbitrary lifs of y connecting Yo and ;.

(5.167)

Proof. Let A be a local connection form in P(H). We have, therefore,

/7,4:/?,4.

Denote by $° a horizontal lift of ¥ passing through vy (cf. Fig. 5.3), i.e., let

(5.168)

Vi {011 31— w(@),
and

P01 5t — ¢().

Clearly, both lifts are related by time-dependent phase factor, i.e.,

(1) = Oyry, (5.169)
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Vi

-2

Y

b ¥° —horizontal lift

Figure 5.3: Lifts of y passing through ¥: 7#° — a horizontal lift; and 7 — an arbitrary lift
connecting ¥ and ;.

such that f(0) = 0. Now, by the very definition of a local connection form one has
A® =(¢lid|p) = A —df , (5.170)

and hence
/A:f(A°+df) = f(1), (5.171)
Y Y

since the integral of A? vanishes. Finally, the relative phase between ¥ and ¥ may
be computed as follows:

o _ (Wol¥) (¢©@ie" 7Dy (1)) — —if (D)

= = (5.172)
[{Pol1 ) ol M
since ¢(0) and ¢ (1) are in phase. Thus, one concludes that
a:-/A, (5.173)
14
which completes the proof. =

Let us turn to physical applications. Consider a sequence of projections (filtering
quantum measurements) that bring an initial state vector ¥ to itself after projections
on the state vectors ¥, ¥r3, ... , ¥, and finally on v1.!° The resulting vector Vnal

10Berry and Klein (1996) illustrated the theoretical treatment of the measurement process by experiment-
ing with polarized light beams.
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will differ by a phase factor from the initial one, i.e.,

Vinal = €41 . (5.174)

The relative phase ¢ is easy to compute. One obtains

'’ = (Y11 W YUnl¥n-1) ... (W31¥2 ) (Y2lY ) . (5.175)
Note that by defining the one-dimensional projectors
Pe = 1Y) (Yl ,
we have, equivalently,
el =Te(B,-Py_y-...- P, P, (5.176)

and hence ¢ corresponds to a geometric quantity defined entirely on P(H), i.e., with-
out reference to an original Hilbert space H. The phase shift ¢ is usually called the
Pancharatnam phase, and has a beautiful geometric interpretation. Denote by YVi+1,k @

geodesic connecting Py, and 13k+1, and define a closed curve
C = Vin *Vnn—1%...% V32 *x¥21 .

Due to Theorem 5.3.5 we have that the

Pancharatnam phase = — ‘(f A= — / F, (5.177)
c i

with F = d A being a curvature two-form on P(H), and T any two-dimensional region
such that 9% = C.

Example 5.3.3 Consider a finite-dimensional Hilbert space H = C". The correspond-
ing quantum phase space is the projective Hilbert space CP". Due to (5.128), one has

¢ = —2/ w, (5.178)
x

with w being a (Kahler) symplectic form in CP". In particular, for a two-level system
— a qubit — we have (cf. Example 5.2.1)

1
¢ = -3 Q) , (5.179)
with Q (C) being the solid angle subtended by C. <&

Remark §.3.2 Samuel and Bhandari (Samuel and Bhandari 1988) showed that one
can define a geometric phase for any (not necessarily closed) curve in P(H). Indeed,
consider an open curve C1 joining points p; and p; and define a closed curve

C:=y.2xCq,
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where y » stands for geodesic connecting p> and p;. One has, therefore,

A(pAA:='¢.A=/ A+/ A, (5.180)
C Cy Y12

where Agaa is the Aharonov—Anandan phase corresponding to the closed curve C.
Hence,

/ A= A(PAA+/ A (5.181)
Cy

Y1,2

uniquely defines a geometric object on P(H) corresponding to the open path C;. <

5.4 Geometric phase for mixed states

5.4.1 Mixed states in quantum mechanics

Up to now we have considered only pure quantum states, that is, elements from the
projective Hilbert space P(H). However, pure states form only a very limited class of
quantum states. The most general state, the so-called mixed state, is represented by a
density operator or density matrix in H, that is, a hermitian trace class operator!! p in
'H such that

p >0 and Trp =1.

Let us denote by P the space of mixed quantum states. Note that a density operator p
defines a pure state if and only if p is a projection of rank one, and hence

PH) = [,0 € P|p2=p}.

It is well known that P is a convex space and that pure states define a set of extremal
__points for P. The quantum dynamics on the space of mixed states is described by the
von Neumann equation:

d o
ih— p =[H, p]. 5.182
ih—p [H, p] ( )

If Fisa quantum observable, then the expectation value of £ in a mixed state p is
defined by

p —> Tr(ﬁp).

To discuss the structure of P in more detail, let us consider a finite-dimensional case
which is of great importance for applications. Let us note that if % = C”, then i p e

VN linear, self-adjoint operator A in H is trace class if Tr AA* < co.
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u(n) for any p € P. Moreover, any density operator p may be uniquely written as
follows:

1
p=-10,+ia, (5.183)
n

with & € su(n). For each p € P there exists a unitary matrix U € U (n), such that
p = UDU*, where D is a diagonal hermitian matrix. Let

AM>A>...> 4, >0, (5.184)
denote the eigenvalues of p, with multiplicities (k1, k2, ... , kn), i.€.,
ki+...+ky=n.
The normalization condition Tr p = Tr D = 1 implies that
AMki+ ..o+ Ak =1
One has, therefore,

Aplly,
D = " . (5.185)
)\m ]lkm

Observe that all density matrices unitary equivalent to D lie on the orbit

OD=[UDU*

Ueumﬂ,

which is nothing but the coadjoint orbit for U (n) passing through D (cf. section 1.2.2).
This orbit is a quotient space

Op =2UMn/Gp,
where G p denotes an isotropy subgroup of D, i.e.,
Gp = (e um|ubur=D}. (5.186)
It is clear that
Gp = Uky) x...x Utkm) ,
and, hence, that
Un)

~ . 5.187
Op Uk % ... x Ulkm) (5-187)
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A manifold defined as a quotient space, as in the above formula, is called a complex
flag manifold and is denoted by P,icl k- 10 particular, a flag manifold with k; = k and
kp=n—k,ie.,

U(n)

C ~
Gk = Uk xUmn—k '

is called a complex Grassmann manifold. It is a space of k-dimensional complex planes
in C". Clearly, if kK = 1 it reproduces a complex projective space

GE, = cp.
It follows from (5.187) that
dimg P& 4 =n*— (i +...+k)=2 > kik;. (5.188)
I<i<j<m
In particular,
dimg CP" = 2(n — 1) .
A sequence (ki, ..., kp) is called an orbit type, and it uniquely determines all the

geometric properties of the corresponding orbit, that is, any two orbits with the same
orbit types are diffeomorphic. We have shown that the entire phase space of a quantum
system is stratified into coadjoint orbits for the unitary group U (n).

Example 5.4.1 (Qubit) Any density matrix in C? may be written as follows:
= ! (I +x-0)
p=35 ,

where x € R3, and o stands for the vector of Pauli matrices. Hence, we have

_1 I+x3 x1—ix
P=3\x+ixs 1-x; ’

One easily finds two eigenvalues Ay of p. They are given by

1+ |x|
Ay = >

The positivity of p requires |x| < 1. Therefore, the space of mixed states P may
be represented as a unit ball in R? — the so-called Bloch ball. Note that pure states
correspond to points on a Bloch sphere — the boundary of the Bloch ball, i.e., CP! =
9P, (cf. Fig. 5.4). These are one-dimensional projections with eigenvalues A = 1
and A_ = 0. There are only two possible orbit types in this case:

1. (1, 1): An orbit of this type is a two-dimensional sphere with radius |x| = A4 —
A'— ]
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pure
states

Figure 5.4: Space of mixed states P for a two-level system. Pure qubsit states lie on the boundary
3P = CPL. The maximally mixed state pg lies in the center.

2. (2,0): An orbit of this type consists of one element only: o = 1,/2, which
corresponds to the center of the unit ball. One calls this point a maximally mixed
state. <&

For n > 2 the situation is much more complicated, e.g., for n = 3 we have three orbit
types:

1. Six-dimensional PS 10

2. The four-dimensional Grassmann manifold Ggl = G<3C,2 (e.g., an orbit of pure
states C P2 is of this type),

3. PE = (113) — the maximally mixed state.

However, even in this case we do not know what these orbits “look like”, i.e., the
geometric characterization of these orbits, as subsets of the entire space of states, is
not known.

5.4.2 Uhlmann’s non-abelian geometric factor

Recall that the space of quantum pure states — projective Hilbert space P(H) — has
an elegant interpretation as a U (1)-fibre bundle S(H) — P(H). This fibre bundle, or,
equivalently, Hopf fibration, is endowed with the canonical connection, whose holon-
omy is interpreted as the abelian Aharonov-Anandan geometric factor ¢'#AA. Now,
following Uhlmann (Uhlmann 1986, 1987, 1989, 1991), we are going to show that a
similar construction may be performed in the case of mixed quantum states. The key
idea of Uhlmann’s approach to the mixed state geometric factor is to lift the system
density operator p, acting on the Hilbert space #, to an extended Hilbert space

H* =HQH , (5.189)
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where H’ denotes another Hilbert space.!? We shall take H' = H. Denote by B(H) a
space of bounded operators in 7 and define the space of Hilbert—Schmidt operators,

as follows:
HHS . { W e B(H) ‘Tr(WW*) < oo} ‘
Such operators are endowed with the following scalar product:
(W1, Wa)lgs = Tr(W[Ws). (5.190)

A pair (HBS, (| )Yus) defines a Hilbert space. Clearly, the so-called Hilbert-Schmidt
norm is given by

|Wlhs = (W, Wns . (5.191)
It is evident that if dim H < oo, then

HeXt=H®HEHHS .
Now, let S(HHS) denote a unit sphere in HES je.,

S(HUS) = {W € HHS‘HWHHs:l] .

If p is a mixed state in P then we call an element W € § (HBS) a purification of p
(one also says that W purifies p) if
o =WW*, (5.192)

A purification of p is by no means unique. If W purifies p then any element of the
form

WV, with VeUMH),
does also. This notion gives rise to a natural equivalence relation in HHS, as follows:
Wi ~ W &< Wy =WV, forsomeV e UH),

that is, two Hilbert—Schmidt operators W, and W, are equivalent if they purify the
same mixed state p:

WIW]* = W2W2* . (5.193)
This observation enables us to introduce a natural map
T S (HHS) — P,

121, quantum information theory (see, e.g., Nielsen and Chuang 2000) the procedure of extension, H —>

H™, is known as attaching an ancilla living in H’.
3y(H) denotes the group of unitary operators on H. Clearly, if H = C", then U(H) = U(n).
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defined by
(W) = WW*. (5.194)

Note, however, that the above map does not define a fibre bundle projection. This is
because the different “fibres” may be completely different (i.e., they may not be the
same space). This deficiency may be easily cured. Let us define the following subspace
of HHS:

HHES {W c HHS‘KerW= {0}] c HHS | (5.195)
where Ker W stands for a kernel of W. Then the image
n(S(HHES)) = {p c Pl,o > 0} — pt (5.196)

contains only strictly positive (or faithful) density operators. Note that, for instance,
the set of pure states P () is excluded from P+. Nevertheless, it turns out that HHS is
dense in 'S in the |- ||ns-topology. This procedure leads to the well-defined principal
U (H)-fibre bundle

x o S(HES) — pt. (5.197)

The final step is to define a connection in S (ﬁHS) — P7T. It turns out that this bun-
dle possesses a natural connection, in perfect analogy to the U(1)-bundle S(H) —
P(H). Let X be a tangent vector to a bundle space at a point W. Identifying each
tangent space Ty S(HH1S) with a subspace of HHS, the formula (5.194) implies

(Twr)(X) = WX*+XW* . (5.198)
Hence, X is a vertical vector at W if
WX* + XwW* =0. (5.199)

The space of vertical vectors at the point W is isomorphic to the Lie algebra u(H) of
the unitary group U (H). The Lie algebra u(H) consists of antihermitian operators in
‘H. Note that any vertical vector at W is of the form X = WS, with S € u(H). Indeed,

WX*+XW =WWSH*+ WSW* = WS*W* + WSW* =0, (5.200)

since $* = —S§. A natural connection is defined as follows: A tangent vector X at W
is horizontal if it is orthogonal to the fibre passing through W, i.e., if

(X,Y)us =0, (5.201)
for all vertical vectors Y at W. Hence, X is horizontal if and only if

(X,WS)us = Tr (X*WS) =0, (5.202)
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for all S € u(H). However, if Tr (AS) = O for all antihermitian operators S, then A
must necessarily be Hermitian. Hence (X*W)* = X*W, or, equivalently,

X*W-W*X=0. (5.203)
In summary, the vertical and horizontal subspaces Vi and Hyw are given by
vw = { X e TwH™S | X*W + WX = 0}, (5.204)
and
Hy = {x € Ty HHS ‘ X*W — WX = 0} . (5.205)
Now, consider a curve
t — p@t) € PY,
and let
t — W@) e S(H™)

be a lift of p(r). We call a li'ft (or equivalently a purification) W (¢) a horizontal lift
(horizontal purification), if W is a horizontal vector, that is, if

W*W = W*W . (5.206)

Clearly, the above condition generalizes the law of parallel transport in the U(1)-
bundle S(H) —> P(H), that is,

Im(y|y) =0,
which is equivalent to
(Yly) = (vI¥).
Let us note that equation (5.206) may be solved by the following ansatz:
W=GW, (5.207)

with hermitian G. This leads to the following equation for the density matrix p =
Ww*:

p =[G, pl+ = Gp + pG . (5.208)

Example 5.4.2 Following Uhlmann 1989, consider the law of parallel transport (5.206)
in the case of a two-level quantum system. Any density matrix in C? reads as follows:

1
p=§(112+x-o'), xeR?.
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Since G is hermitian, it may be uniquely represented by

G=ylh+y o6, yeR,yeR>.
One easily finds that

Go+pG=(+x-y)h+y- o,
and, hence, equation (5.208) implies that
Yo=-Xx-y, and X=2(yx+y).

Now,

X x=20x> +x-y) =2y(x>— 1),

from which it follows that

d
—(lnA),
dt(n)

where A = 41‘1(1 — x?) = det p. Having determined yg, one finds the following expres-
sion for y:

1 1 1 d 1
= —x—yx=-A1 % (xa 1) .
y=gX—yx=5 A0 (xa )

In particular, if p(¢) = U(t)pU*(¢), then A(t) = const. and hence G = %x -o. In this
case equation (5.207) may be rewritten as follows: If W = wgl, + w - o, then

1
wozzx-w, and W=§(ikxw+w0i{).

Note that the above system has the following first integral:
det W = w(z) —w.

Thus det p is conserved during the unitary evolution of p(t), whereas det W remains
constant along the horizontal lift of p(¢), that is, during parallel transport of W (z). <

Now let us define the corresponding connection one-form taking values in u (). Fol-
lowing the abelian case S(H) —> P(H) where one has

A=Im(yldy) < (¢Yldy) - (dyly), (5.209)
the obvious guess for .4 would be

A x WdW — dW*W .
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Clearly, this form is antihermitian and vanishes on horizontal vectors. However, it does
not transform properly under the gauge transformation
W — WU, with U e U(H).
Following Uhlmann (Uhlmann 1991) let us instead define the one-form .4 as follows:
WAW —dW*W = W*W . A+ A-W*W . (5.210)

Obviously, this .4 also vanishes on horizontal vectors and is antihermitian: A* = — A4,
Moreover, it does obey the transformation law of a connection one-form. Indeed, let
W’ = WU. One has

dW' = @dW)U +WdU , and dW'™* = dUW*+UdW*, (5.211)
and, hence,
W dW' —dw* W’
- U*(W*dW - (dW*)W)U + (U*W*WdU - (dU*)W*WU)
- U*(W*W A+ A- W*W)U
+ (U*W*WdU - (dU*)W*WU) ) (5.212)
Using the definition of .4, this expression can also be written as
WW .- A+ A W'W =UWWU - A+ A - U*W*WU .  (5.213)

Then, since dU = —U(dU)*U, by equating the r.h.s.’s of equations (5.210) and
(5.211), one obtains

U*W*WU - A + A - U*W*WU
= UW*WA-UdUU + U*(A - UdUHW*WU . (5.214)
Hence
A =U*AU — (dUMU = U* AU + U*dU , (5.215)

which is the transformation law for a (nonabelian) connection form (cf. section 1.3.4).

Having defined a connection it is clear how to define the corresponding geometric
phase factor for mixed states; it is a holonomy of the natural connection A4, i.e., if C is
a closed curve in P, then

C — P(C) = Pexp (% A) (5.216)
C

is a (nonabelian) geometric phase factor corresponding to the cyclic evolution of a
mixed state in P*. In the above formula, A denotes a local connection form on P,
i.e., a pull-back of 4 with respect to some local section of the bundle. Clearly, ®(C) €
U (H) for any loop C in P™.
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5.4.3 Distance between mixed states

Recall that the space of pure states P(H) is endowed with a Fubini-Study metric,
which enables one to define a distance between states. Actually, as we have shown, the
Fubini-Study distance is a measure of the transition probability between correspond-
ing (pure) quantum states. One may now ask how to measure the distance between
mixed states, and, in fact, there are several possible ways. The simplest way is to de-
fine the trace distance, according to

Dr(p1, p2) :=Trlp1 — p2l , (5.217)

where we define [A] := +/A*A to be the positive square root of A*A.

Example 5.4.3 (Trace distance for qubit states) Consider the following two qubit
states:

1
pk=§(112+xk-o‘), k=12. (5.218)
One has

1
Dr(p1, 02) = Trlp1 — p2|l = ETI'KXI —X2) -0
1
= ETr [(x1 —x2) -0 = |x; — %2,

since (x - 0)? = Ix|?1l,. Hence, the trace distance for qubit states reproduces the eu-
clidean distance in the Bloch ball. &

Another possibility is to use the Hilbert—Schmidt distance, defined by

Dus(p1, p2) = |lp1 — p2llas =/ Tr(o1 — p2)? . (5.219)

Actually, for the qubit states (5.218) one finds

Dus(p1, p2) = % X1 — x| . (5.220)
Both the trace and Hilbert-Schmidt distances were often used in quantum optics. An-
other approach to measure the distance between quantum states is based on the idea
of purification discussed in the previous section. One introduces the so-called Bures
distance (Bures 1969) which measures the transition probability for a pair of density
operators. The definition of the Bures distance is perfectly analogous to the Fubini—
Study one. For any pair py, p; € P, one defines

Di(po1, p2) = winf N1 = Walls
= nf Te[(W - wHwi - wy)| (5.221)
Wi, W,

= 2— sup Tr(Wl*W2+W2*W1),
Wi, W,
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with Wy € 7= (p1), and W, € 77 1(pp).14 ‘ By
It is clear that the trace of W W, + (W;*W2)* is maximized if W' W is a positive,
and hence hermitian, operator, i.e.,

WiW, = Wiw, > 0. (5.222)

This condition is called the Uhlmann parallelity condition (Uhlmann 1986). We call
two Hilbert-Schmidt operators Wi and W, parallel if the above condition holds. Let
us choose Wi = ./p1. Using polar decomposition W, may be represented as follows:

Wy =JmU,

with U € U(H). Now, the parallelity condition implies the following condition for the
unitary operator U:

Ve U =U"p2/p1

and hence

2
WiW, + WiWy = 2WrWa =2,/ WiWa Wi Wi =24/ 01 2 )%,

which leads to the following formula for the Bures distance:

D(p1, p2) = 2(1 — F(p1, p2)), (5.223)

2 1/2
F(p1, p2) 1= Try/ py 2 py/ (5.224)

is called the fidelity of states p1 and p;.13
Note, that if p; and p; are both one-dimensional projectors in H, i.e., p1 = |¥1 ){ ¥1]
and py = |2 ){ ¥z, then

where the quantity

Voir=p1 and /pr=p2.
One has therefore
Fpr,p2) = Teyp,2 020t = Toi/[o ) (¥ 1¥2) (W2l ¥n Y ¥
Te /10 92 21 ) ¥ = 1) T/ 19 )l = [ l2)]

and hence

D3 (p1, p2) = Dis(p1, p2) . (5.225)

14This is not the original definition of Bures (Bures 1969) but a special version proposed by Uhlmann
(Uhlmann 1976, 1986). See also Alberti and Uhlmann 2000 for a recent review; Uhlmann 2000; and Alberti
2003.

15This notion was introduced by Jozsa (Jozsa 1994).

5.4. Geometric phase for mixed states 229

that is, when restricted to the space of pure states, i.e., projective Hilbert space, the
Bures distance reproduces the Fubini—Study one. It turns out that the Bures distance,
contrary e.g., to the trace distance, defines the riemannian metric on the space of den-
sity matrices P — we shall call it the Bures metric.

Example 5.4.4 (Bures metric for qubit states) Following Hiibner (Hiibner 1992, see
also Hiibner 1993 and Uhlmann 1996), we derive the Bures metric for qubit states.
Consider two states p; and p;, defined as in (5.218). Clearly, x; belongs to the Bloch
ball and hence |x;| < 1. Let us define

M = \/pi p2 /P - (5.226)

To compute the fidelity F(p1, p2) = Tr+/M, let us note that M is a positive 2 x 2
matrix and hence it has two non-negative eigenvalues m; and m,. Thus

TrvM = /my + J/m3 . (5.227)
The above equation implies that
(TrVM)? = my +my + 2 /mimz = Tt M + 2+/det M , (5.228)

so to find the fidelity F (p1, p2) one has to compute Tr M and det M. One easily finds

1
M = Tr(/pip2/PD =Te(oip2) = ;T [l 4+x1-0) (I + %2+ 0)]

Il

1 1
7T [(1 rx -xz)]lg] =3 A+x%), (5.229)
and
1
det M = det (/51 p2 /p1) = (det pp)(det p2) = (1 — [x1 )1 = )
(5.230)
where we have used
1 1 5
det[i(]lz +x -or)] = 21 —pxpP).
Hence, one has for the fidelity
172
Flo, ) = Tr/M = (TrM +24/det M)

1/2

1
= (1+xl-X2+J(1—|x112>(1—|x2|2)) . (5231)

from which one can easily find the corresponding formula for the Bures distance
D123 (p1,p2) = 2(1 — F(p1, p2)). In particular, by restricting the Bures distance to
the Bloch sphere, i.e., pure states satisfying [x| = 1, one obtains

1
Dg(p1, p2) = Dis(p1, p2) =2 (1 — (4% -xZ)) , (5.232)
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and, hence, if X} - X = cos @, then the geodesic distance o (x], X3) between x; and X
is given by

cosfo (X1, X2)] = %(1 +cos®) . (5.233)

Now let us look for the metric tensor ds]% = 85 dx' dx/, defined by
Dg(p, p+dp) =dsp .

Using p = %(112 +x-0) and dp = dx - o one finds

1/2
Di(p, p+dp) =2~ ﬁ(l X 4 dx (1= - |x+dx|2)) ,
(5.234)
and expanding to second order finally gives
1 (x - dx)?
ds: = —|@x?+ 2L
SB 4<( X) +l—|X|2>

d d dx3)?
(x1dx; +J;2 x22+x32x3) ) . (5.235)

1 —Xxf— x5 —x3

1
= 3 (dxl2 +dx} +dx? +
Hence the Bures metric tensor reads
1 XiX;
B _ o KX
gij_2(6l1+ 1_r2) s (5236)

with r = |x|. Clearly, it defines a non-euclidean metric. Note, however, that introducing
a new variable x4 via

xf =4detp=1— I1i(|2 ,

one obtains
1
dsh = (x2+23+x3+ 13) (5.237)

which shows that the Bloch ball can be isometrically embedded into a hemisphere
of §3, of radius %, defined by x4 > 0 (cf. Fig. 5.5). Clearly, the point (0,0, 0, 1)
corresponds to the maximally mixed state pp = %112. <&

Now, following section 5.3.1, we may reproduce analogous results for the space of
mixed states P. Let

[0,1] 3¢t — p@) € P,
be a curve in P and consider one of its purifications, e.g.,

0,11 3¢t — W) e HIS.
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A Xy

mixed states

pure states

Figure 5.5: Hemisphere of $3 representing qubit mixed states. Pure states define its boundary,
i.e., the equatorial sphere § 2. The maximally mixed state pg is situated at the “north pole.”

Clearly, a length of W (¢) is given by

1
L(W) =/ VW, W)gs dr . (5.238)
0

As in the case of pure states, one can show that L(W) is minimal if W = W()
is a horizontal purification, i.e., the condition (5.206) holds. We define the length of
p = p(t) as the length of its horizontal purification. Take two points p1, p2 € P and
consider a geodesic (with respect to Bures metric) connecting p1 and p2. Denote by
o (p1, p2) the length of the shortest geodesic connecting p1 and p;. Using arguments
similar to those used in the proof of Theorem 5.3.2, we arrive at the following

Proposition 5.4.1 The length of the shortest geodesic connecting py and p2 in P is
given by

cos [0 (p1, p2)] = F(p1, p2) .
Now, fix an arbitrary state po and define the transition probability
8pp 1 P — R
by
8pp(0) = Fpo, p) .
The above proposition gives us the geometric interpretation of the square of the fidelity

F2(p, o) as a transition probability between p and o, by relating it to the geodesic
distance between these states.
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5.4.4 How to measure geometric phase

It is not completely clear what is a physical interpretation of the Uhlmann geometric
phase for density matrices.!® Recently, some authors (see Sjoqvist et al. 2000) pro-
posed a different approach to geometric phases for mixed states. This new approach
is nicely related to an experimental context of quantum interferometry. Recall, that for
pure states one may define a relative (Pancharatnam) phase between state vectors {A )
and |B ), as follows:

Pancharatnam phase = arg (A|B) . (5.239)

The idea of relative phase is well suited for interferometric experiments. Shifting the
phase of [A) by x: |A) —> €'X|A) results in the following change in the intensity /
of |[A)+|B)

. 2
I =|X|A)+|B)| =2+2|{A|B)|cos[x —arg(A|B)], (5.240)
which attains its maximum at the Pancharatnam relative phase ¢ = arg( A|B ).
This observation may be generalized to the case of mixed state. Suppose that the
mixed state described by a density matrix pg undergoes unitary evolution, such that

p(t) = U)poU™(1). Let

po =) wilk) (K|, p(t) =Y wilk(®) k@), (5.241)
k k

be spectral decompositions of pg and p(t), respectively. Clearly, [k(z)) = U(1)|k).
Now perform a phase shift |k ) —> e'X[k ) and define the total interference profile

I = ;Ik = ;wk|e"’<|k> + k()

= 242 wil(klk(t) )| coslx — arg(klk(t))], (5.242)
3

|2

where we have used >, wk = 1, that is, the total profile / is an incoherent average
of the individual pure states’ interference profiles I, defined in (5.240). Interestingly,
the above formula may be rewritten in a perfect analogy to (5.240). Denote by ¢y the
relative phase between |k ) and |k(¢) ), i.e., ¢ = arg(k|k(t)) = arg(k|U(#)|k), and
define the so-called visibility vy := [{k]k(t) )| = |(k|U (¢)|k ). One obtains

I = 242 wevecos(x — @x)
k

2+ 2[cos X ( Z Wy Vg COS rpk) + sin x ( Z Wy Vk sin<pk)] , (5.243)
k k

16Some suggestions were proposed in Dabrowski and Jadczyk 1989 and Dabrowski and Grosse 1990.
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and hence, defining

@ = arg <Z wkvke""”‘) : (5.244)
k

and
V= Z wevee | | (5.245)
k
the intensity formula may be rewritten as
I =2+42vcos(x —¢). (5.246)
Let us observe that
p=ag[tUOM],  v=TUOMI, (5.247)
that is
Tr (U(t)po) = ve'® . (5.248)

Following Sjoqvist et al. 2000, one says that p(¢) acquires a phase with respect to pp
if arg [Tr (U (¢) po)] is nonvanishing. In this way one may define a parallel transport of
a mixed state p: p is parallel transported if p(¢) is in phase with p(¢ 4 dt). One has

o +dty=U@l+dt)poU*( +dt) = U@ +d)U*()p@)U @U@ +dt),

and therefore the phase difference between p(¢) and p(t + dr) is given by

dg = arg [Tr[p(t)U(t + dt)U*(t)]} , (5.249)
one may say that p(¢) and p(¢ + dr) are in phase if

Tr[p(t)U(t —+ dt)U*(t)] is real and positive .
Now, due to the normalization condition Tr o (¢) = 1 one has
Tr[p(t)U(t + dt)U*(t)] - Tr[p(t)(U(t) + U(t)dt)U*(t)]
= 1+ T[p0UOU*®]dr,

and the hermiticity of p(r) implies that the quantity Tr [o()U (t)U*(¢)] is purely imag-
inary. Therefore, the parallel transport condition for the mixed state p undergoing the

unitary evolution may be stated as follows:

Tr[p(t)U(t)U*(t)] =0. (5.250)
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On the space of density matrices the above condition may be rewritten as
Tr[p (dul) U*] -0, (5.251)

where dy denotes the exterior derivative on the space of density matrices. Note that
p(t) determines the unitary N x N matrix U (¢), up to N phase factors.!” These phase
factors may be uniquely fixed by the parallel condition

(k@)lk@)) =0, k=1,...,N. (5.252)
The geometric phase introduced by Sjoqvist et al. (2000) fulfills two basic properties:

1. If pg is a pure state pg = | )( Yo, then the formula (5.247) reproduces the
relative Pancharatnam phase between | ) and [y () ) = U()|vo );

2. If p(t) = | (@) ) (¥ (¢)| then the parallel transport condition (5.250) reduces to
corresponding condition for pure states (¥ (#)|¥(¢)) = 0.

The above result may be easily reproduced using the purification procedure (see the
derivation of the Uhlmann phase). Actually, any mixed state pg can be obtained by
tracing out some degrees of freedom of the larger system, which was in a pure state

Wo) =D Vg [k)Ik)a, (5.253)
k

where |k ), belong to the Hilbert space of the auxiliary system (ancilla). Then
po = Tra|Wo ) (Yol , (5.254)

where Tr, denotes the partial trace over the ancilla Hilbert space. Now, evolving |Wp )
according to a local unitary operation /() = U(¢) ® 1, one finds

(W()) =U@) Vo) =Z\/w_k|k(t)>|k)a: (5.255)
3

and, hence,

(WolW () = > wi(klk(t)) = Tr (U(t)po) , (5.256)
%

which shows that ¢ = arg[Tr (U (¢) pg)] is the relative phase between the purifications
[Wo ) and |W(2) ).

Example 5.4.5 (Qubit mixed states) Consider a mixed state of a qubit, i.e., a two-
level quantum system (see Example 5.4.1). Any density matrix can be written as

1
o= 5(112 +rmn-o0), (5.257)

17N is the dimension of the corresponding Hilbert space.
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where n =r/r and r < 1. Suppose that during a unitary evolution of p(¢), n(¢) traces
out a geodesically closed curve C on the Bloch sphere, i.e., C = C; x Cp with C;
an open curve and C> a geodesic segment, cf. Remark 5.3.2. Let 2 be the solid angle
subtended by C. Recall that the two eigenvectors of p, namely,

1+r
,ol:i:;n-tr)z————~2 l+;n-0),

acquire Pancharatnam phases ¢ = :F%Q and have identical visibilities vy = v_ =:
n. Therefore, the Pancharatnam relative phase corresponding to the evolution of p is
given by formula (5.244), as follows:

¢ = arg (w+v+e_i9/2 + w_v_eiQ/z)

arg {g [(e—iQ/Z +eisz/2) +r (e—i.Q/Z . ein/z):”

s o(8) e (O] - (2) -

where we have used w4 = %(1 =+ r). Moreover, according to (5.245) one easily finds

for the visibility
Q Q
V= ;7\/cos2 (5) + 72 sin? (E) . (5.259)

Observe that, for a cyclic evolution, 7 = 1 but the visibility v < 1. One has v =
1 only for pure states, corresponding to r = 1. Clearly, for pure states the formula
(5.258) reproduces the geometric phase €2/2. However, for mixed states the solid angle
formula is no longer valid. <&

A natural question is, what is the relation between the mathematical formulation of
Uhlmann and the more “experimental” approach of Sjoqvist et al? Note that if W(z)
defines a parallel purification in the Hilbert-Schmidt space H1S, i.e., the condition
(5.206) is satisfied, then one may define the Uhlmann phase

@Unimann = arg (W (1), Wo Jus = arg [ Te(W* () Wo) ) . (5.260)
Are @yuhimann and the ¢ of Sjoqvist et al. the same for unitary evolution of p? It turns

out that in general these two phases are different. This problem was studied by Slater
and the interested reader is referred to Slater 2001 and 2002.

Further reading

Section 5.1. Complex manifolds are discussed in Kobayashi and Nomizu 1969; Chern
1967; Wells 1979, and Choquet-Bruhat et al. 1982. Many authors contributed to the
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geometrical formulation of quantum mechanics. The geometric approach was initiated
by Tom Kibble (Kibble 1978, 1979). For recent contributions see Cirelli, Mania and
Pizzocchero 1990; Ashtekar and Schilling 1998; and Brody and Hughston 2001.
Section 5.2. Layton, Huang and Chu (1990) derived a formula for the Aharonov—
Anandan phase for an arbitrary spin in a magnetic field. For a three-level system,
which is equivalent to a spin-one particle in a magnetic field, the detailed calculations
were performed by Bouchiat and Gibbons (1988). For other examples see also Moore
1991. Other geometric aspects of Aharonov—Anandan geometric phases are studied in
Moore 1991; Anandan 1992; Mukunda and Simon 1993a, 1993b; Pati 1991, 1995; and
Chruscinski 1995.

A detailed discussion of the classification of bundles in connection with the Aha-
ronov—Anandan geometric phase may be found in Bohm, Boya, Mostafazadeh and
Rudolph 1993; Mostafazadeh and Bohm 1993; Mostafazadeh 1996.

Section 5.3. For a recent review of the Pancharatnam phase in quantum mechanics
see Sjoqvist 2002. It has been demonstrated by Wagh, Rakhecha, Fisher and Ioffe
(1998), that the Pancharatnam relative phase for an internal spin degree of freedom
may be tested in interferometry. Recently, Shi-Liang et al. (2000) derived a formula
for a Pancharatnam phase for a quantum spin-half particle subjected to an arbitrary
magnetic field.

Section 5.4. For more information about the structure of the space of quantum (mixed)
states, the reader is referred, e.g., to Bloore 1976; Adelman, Corbett and Hurst 1993;
Gibbons 1992; Chruscinski 1990, 1991; and Petz and Sudar 1996.

The geometric phases for density matrices of three-level systems in an SU(3) rep-
resentation were studied in Arvind et al. 1997, Khanna et al. 1997 and Byrd 1999.
A general discussion of geometric phases for n-level systems may be found in Boya
et al. 1998. For a detailed description of the differential geometry corresponding to a
three-level system we refer to Byrd 1998 and Ercolessi et al. 2001. For the interfero-
metric approach to the mixed states geometric phase see also Bhandari et al. 2002 and
Anandan et al. 2002. For other aspects of nonabelian phases see Herdegen 1989, and
Chrusciniski 1994.

Recently, the structure of the space of quantum states has received considerable at-
tention due to the investigation of quantum entanglement, see, e.g., Ku$ and Zyczkowski
2001 and the forthcoming monograph of Bengtsson and Zyczkowski.

Problems

5.1. Show that a Hermitian metric 4 on a complex manifold M is invariant under a
complex structure J, i.e., A(Ju, Jv) = h(u, v), for any vector fields 4 and v on
M.

5.2. Show that the general formula for the Fubini—Study metric (5.28) reproduces

the Kihler metric (5.42) in the case of n-dimensional projective complex space
(OF 4.
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5.3. Show that the function K : CP" — R, given by

K:=In W ,
defines a Kihler potential for the Fubini—Study metric (5.42).
5.4. Verify that the Kéhler two-form K defined in (5.45) is closed.
5.5. Derive the Hamilton equation (5.67) on the projective Hilbert space P(H).

5.6. Show that on a real plane in H an arc of the great circle on S(H) passing through
Y1, Y2 € S(H), thatis, ¥(3) = A1(F) ¥1 + Aa2(F) 2, satisfies

1) (¥ NNy (9)) =0,
@) (Y@ (D2)) = cos(Py — D2).

5.7. Show that the Fubini-Study metric (5.157), rewritten in terms of (holomorphic—
antiholomorphic) coordinates (wy, w*) on CP™, reproduces formula (5.42).

5.8. Prove Proposition 5.3.3.
5.9. Find all observable functions on CP!.
5.10. Show that the Uhlmann connection is antihermitian.

5.11. Find the Uhlmann connection in the principal SU (2)-fibre bundle over the space
of faithful density matrices in C? (Dittmann and Rudolph 1992). Show that it
reproduces a canonical connection in the instanton bundle §7 —> §* = HP!.

5.12. Prove the following properties of the trace distance:
(1) The trace distance is preserved under unitary transformations, i.e.,

D1 (UpU*,UaU*) = Dx(p, o) .

(2) The trace distance is convex in its first argument, i.e.,

Dy (Z PPk 0) <Y PeDrelpr, 0)
k k

where px > 0and }_, px = 1. By symmetry it is also convex in the second
argument.

5.13. Derive the Hilbert-Schmidt distance for the qubit states.

5.14. Show that the fidelity is symmetric, i.e., F(p, o) = F(o, p).
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5.15. Show that for qubit states

l 1
p=5l+x-0), o=502+y-0),

the fidelity is given by the following formula:

1 4
F(p.0) =3 (1 + Zxaya> :
a=1

where x4 = 24/detp and y4 = 2+/deto.

5.16. Prove the following coordinate-free formula for the Bures metric for qubit states:
1
Dg(p, p+dp) = > Tr (dp)” + (dy/det p)*

5.17. Derive the following formula for the Bures metric on the space of density matri-
ces in C™:

1 & [uldplv)?
dsg = Do, p+dp) =5 D ————
2 o Tt

3

where the A’s are the eigenvalues of p, i.e., such that p|p ) = A,|p ).

6

Geometric Phases in Action

6.1 Optical manifestation of geometric phases

Both Berry’s phase and Hannay’s angles could have been discovered long before they
were. In 1938 Russian physicist Sergei M. Rytov investigated the rotation of the po-
larization vector of light travelling along the coiled ray. Actually, as was shown by
V.V. Vladimirskii in 1941, Rytov’s observation finds an elegant interpretation in terms
of geometric properties of a coiled ray. It turns out that rotation of polarization may
be interpreted as a simple manifestation of the geometric phase. Actually, the simi-
lar conclusion was made by Bortolotti in 1926, however, both Bortolotti and Rytov—
Vladimirskii papers were completely unknown to optical community.

Another optical manifestation of the geometric phase is due to the (then young)
Indian scientist Pancharatnam. He showed in 1956 that there is a natural method of
defining the relative phase between two light beams in different polarization states. It
turns out that this relative phase has a purely geometric origin and is called now the
Pancharatnam phase.

6.1.1 Spins and helicities

One can describe a circularly polarized electromagnetic wave as a set of photons of
definite helicity. Recall that a helicity of a photon is the eigenvalue of the projection of
the photon spin on its momentum, i.e.,
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where S is the photon spin operator:
S =(51,52,8), with (S)u=/i€in, (6.1)

and p stands for the photon’s momentum. The corresponding eigenvalue problem has
the following form:

AV, =Wy . (6.2)

Note that the helicity of a photon may be treated as one would the spin S of a massive
particle. Consider an arbitrary smooth curve C in R3:

t — r(t) € R?.

Let t(z) be a unit tangent vector at r(z), i.e.,

)
= wor

Clearly, t — t(t) € 52 defines a new curve, call it 5, on a unit sphere S2. This
sphere is usually called a sphere of directions. Any curve in R? gives rise to a unique
curve on a sphere of directions S?, and the map

c — C

is called a Gauss map.

Suppose, now, that a particle carries a spin S, that is, the corresponding spin operator
S lives in the Hilbert space H = C25+1. Let us describe the transport of a particle spin
state ¢ € C>5t1 along a curve C such that the corresponding curve C is closed, i.e.,
t(0) = t(T) for some T > 0. Clearly, any two unit vectors t; and t are related by an
S O (3)-rotation; in fact, there are infinitely many rotations from t; to t,. Let us choose
the following one:

t, = RO, (6.3)
a rotation around the #-axis by an angle |01, with
0 .=t xty. 6.4)

Note that the rotation defined above is, in a sense, the simplest one: t; is rotated into t2
along a geodesic — an arc of a great circle in a plane perpendicular to . The rotation
R(8) gives rise to a unitary operator in C25*1, as follows:

U@) := exp[—iR@®)]. (6.5)

Note that if t; and t; satisfy (6.3) then the operators t; - S and t; - S — the projections
of S onto t; and t;, respectively — are related by

t-S=U® Mt -SHU®G . (6.6)
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Moreover, if ¥ is an eigenvector of t; - S, i.e., such that

(t1-S) ¥y =my, 6.7
then
Y2 :=U@®) ¥ (6.8
is an eigenvector of t; - S with the same eigenvalue m:
t-S)vr =my. (6.9)

Suppose that the initial state ¢(0) = |m ) is an eigenstate of t(0) - S, i.e.,
t0)-Sim)=mm), (6.10)

for some m. As we move on a sphere of directions along a curve C we perform a
continuous sequence of rotations t(t) —> t(¢ + d¢) from ¢t = 0 to t = T'. The product
of all these rotations is a rotation around the t(0)-axis. The state at time 7 is not
changed by this rotation because it is represented by an eigenvector of t(0) - S. Hence
the product rotation just multiplies the initial state vector |m ) by a phase factor, such
that, for instance,

final) = U(@,,)Im) , (6.11)
with
o =t0)p, (6.12)
and thus
|final) = e =™ |m ) . (6.13)

How to find ¢? Let x be _an arbitrary vector tangent to § 2 at the point t(0) and define
the transport of x along C as follows: x(t + dt) is obtained from x(z) by applying the
same rotation that leads from t(¢) to t(¢ 4+ dt). More precisely,

x(t) — x(t +dt) =x(t) +x@) dr,

where
X(1) = Q1) x x(t) , (6.14)
and
Q1) :=t(r) x t(t) . (6.15)
Hence
x=(t-x)t- @t - x)t=—(t-x)t, (6.16)
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since t-x = 0. Note, however, that (6.16) is the defining equation of a parallel transport
on 52, cf. formula (2.153). Therefore, the total angle of rotation after traversing a curve
C on S reads

¢ =Q(/), (6.17)

where 2(C) stands for the solid angle subtended by C on the sphere of directions.

Formula (6.17), together with (6.13), generalizes (2.117). Note, that we did not use
any specific Hamiltonian to perform the transport of spin states along C. The total
phase shift appears more as a property of the spin states than of the Hamiltonian. !
Note that all of the above arguments apply equally well to nonrelativistic particles or
relativistic particles with either zero (photons) or nonzero mass.

6.1.2 Chiao-Tomita—Wu phase

Raymond Y. Chiao, Akira Tomita and Yong-Shi Wu? were the first to check the validity
of the solid angle formula (6.17) in a simple optical experiment. Consider a linearly
polarized electromagnetic wave propagating in the direction of a wave vector k(t) —
e.g., by sending a light along an optical fibre. Suppose that the optical fibre is coiled
such that t(0) = t(7') for some T > 0, i.e., the initial and final directions of the fibre
coincide. If the shape of the fiber is regresented by a curve C, then under the Gauss
map C is mapped onto a closed curve C on the sphere of directions.

Now, in the plane % perpendicular to t(0) = t(7') let us introduce an orthonormal
basis (€1, €2). Suppose that € is the initial polarization vector, that is, € (0) = €. What
is the final polarization € (T)? Clearly, € (0) and €(T) differ by a SO (2)-rotation in the
plane X (cf. Fig. 6.1), i.e.,

€(T) = R(p)e(0) . (6.18)
Introducing circular polarization vectors

€1 i€y

1=z 6.19
€+ ﬁ ( )

one has

€4 +€_
that is, the initial linear polarization is a superposition of right (s = 1) and left (s =
—1) polarized waves. Now, the helicity eigenstates (with eigenvalues s = F1) acquire

€0) = (6.20)

I This fundamental aspect was stressed by Jordan (Jordan 1987, 1988a, 1988b).

2Rotation of the polarization of light travelling along an optical fibre bent in a nonplanar curve was first
observed in the laboratory by Neil Ross (Ross 1984) and then in a series of experiments by Chiao and Wu
(Chiao and Wu 1986).
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eT)

r\angle of rotation

€« ———— - === »

™~

optical fibre

€(0)

Figure 6.1: Rotation of the polarization vector.

a geometric phase s (C ) after passage through the optical fibre, where Q (5 ) is the
solid angle subtended by C on the sphere of directions. Hence, the final polarization is

eT) = —j—i (e—i9(5>e++e"9<5>e_)=e1cos9(5)+ezsinsz(5)
= R(Q(C))e(0). (6.21)

Thus, the geometric phase that appears for circularly polarized photons corresponds to
rotation of the linear polarization vector € by the angle

0 =), (6.22)

which proves our basic relation (6.17).

6.1.3 Rytov’s law and Fermi—-Walker transport

It turns out that the geometric law governing the transport of polarization vector € along
an optical fibre was initially observed in 1941, in a remarkable paper by Vladimirskii
which was an extension of an earlier paper by Rytov (Rytov 1938). Vladimirskii
showed that, along a light ray, the vectors E and H of the electric and magnetic field,
respectively, perform a rotation with respect to a natural Frenet’s triple (t, n, b) (recall,
that t stands for a vector tangent to, n for a vector normal to, and b for a vector binor-
mal to the curved ray — cf. section 3.3.4). At each point of the curve, these vectors are
related by the Serret—Frenet formulae (3.169):

dt n
a _
ds
- tt b, (6.23)
ds
db
= —7n,

ds
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where s parametrizes the curve describing the light ray/optical fibre. Define now the
following unit vectors:
E H

h=—,
and o

e =

which give rise to an orthonormal basis in the plane perpendicular to t. Hence, a pair
(e, h) isrelated to a pair (n, b) by an SO(2) rotation, i.e.,

e\ _ c95¢ —sin¢ n , (6.24)
h sin ¢ cos ¢ b
with ¢ = ¢(s). Let us study the transport of e and h along the curve describing the
optical fibre. The condition |e| = 1 implies that e - € = 0, and hence

e=at+ptxe). (6.25)

We shall assume that the medium is not gyrotropic, i.e., that § = 0 (cf. Vinitskii et al.
1990). As a result we obtain the so-called Ryfov law:

e= (et =—(e-Dt, (6.26)
which is nothing but the law for a parallel transport of e along the curve
s — t(s) € §%,

defined in (2.153). Let us note that, by the very definition of a parallel transport on § 2,
vector e (and of course h) does not rotate around t. However, it does rotate with respect
to the (n, b) basis. Using results from section 3.3.4, one finds that e and h rotate with
respect to (n, b) with an angular velocity

B(s) =1() . (6.27)
Hence, after a time 7 one has 7
e(T) cos (C) —sinQ(C) \ ( e0)
= . ~ ~ . (6.28)
h(T) sinQ(C)  cosQ(C) h(0)
The law of transporting vectors e and h along the curve in R3 is related to another ge-

ometric concept well known in General Relativity and called Fermi—Walker transport.
Consider a curve

s — x(s) € R,

and let
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denote the velocity and acceleration vectors, respectively. Let Y = Y(s) be an arbitrary
vector defined along the curve x(s). One defines the Fermi—Walker derivative of Y
along the curve, as follows:

DY Y +(Y (Y -uw) (6.29)
_— = — . —_ -u . -
Ds ds Y-a)u a
A vector Y is Fermi—Walker transported (or transported according to a Fermi—Walker
rule) if

DY _ 0 (6.30)
Ds '
Note that both e and h are Fermi—Walker transported, since
De _Dh _y (6.31)
Ds Ds |
This property does not hold for n and b. Rather, one easily finds that
Dn Db
— =71b, d — = —tn. 6.32
Ds T an Ds n (6.32)

Remark 6.1.1 It turns out that the parallel transport law for the polarization of the
electromagnetic wave was discovered by Bortolotti (1926). Bortolotti studied the evo-
lution of a linearly polarized wave in a medium with varying index of refraction
n = n(r), and observed that this evolution is governed to be a parallel transport with
respect to a metric connection whose components are determined by V log n?3 The
parallel transport of the polarization vector was later on independently discovered and
studied by Luneburg (1964). <

Remark 6.1.2 Some authors have raised the question of whether or not the effect of
rotation of the polarization vector is quantum or classical. Chiao and Wu (1986) sug-
gest that one ... would rather think of this effect as a topological feature of classical
Maxwell theory which originates at the quantum level, but survives the correspondence-
principle limit (h — 0) into the classical level. However, as was already noted by
Feynman, the quantum equations for photons are just the same as the classical Maxwell
equations. Let us define two complex vector fields, that is, complex induction

F=D+iB,
and complex intensity
G=E+iH.

Following Berry 1989a, we rewrite the Maxwell equations in an inhomogeneous me-
dium, defined by the constitutive relations

D=e¢(rE, and B=pu(rH,

3The authors thank Prof. I. Biatynicki-Birula for this remark.
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as follows:
iF=VxG.

Introducing the following spin-one representation of su(2):

00 O 0 0 i 0 —i 0
S= 0 0 —i , 0o o0}).,{:¢i 0 O ,
0 i O —-i 0 0 0 0 O
we have
—ihVxG=pxG=—i(p-9G,
where p = —i#V stands for the quantum mechanical momentum operator. The Maxwell

equations may therefore be rewritten formally as the following Schrodinger equation:
ind, ¥ = Hvawen ¥ ,

where

eV2)E(t, r) + inl/2(0)H(, 1) >

w(t,r) = el/z(r)E(t, r) — iul/Z(r)H(t, r)

and the “Maxwell Hamiltonian” is defined by

~ m-s ihE - S
Huaxwen == ¢ _ing-S -M-S J°

In the above formula, ¢ stands for the velocity of light and the vectors IT and § are
defined in terms of the index of refraction:

n(r) = e@u(r),
as follows:
n=n"2@pn/?@x),

and

1og £
anm " P um

Em =

The reader can easily check that ﬁMadol defines a hermitian operator. Hence, the
Maxwell equations have, formally, a Schrodinger-like form. <&
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6.1.4 Pancharatnam phase

In 1956, the young Indian physicist Pancharatnam, in the course of a study of polariza-
tion transformations of light waves propagating through optically anisotropic crystals,
posed the following question: how does one define a phase difference between mwo
light waves that are in different polarization states?* Pancharatnam concluded that the
most reasonable definition would be the one that defines two waves to be in phase
when their interference gives maximum intensity (Pancharatnam 1956).

Let us briefly recall the description of the polarization states for an electromagnetic
wave (see, e.g., Born and Wolf 1959, Jackson 1999). A monochromatic plane wave
travelling in a direction k is described by

Ex, 1) = (E €, + E_e_) it (6.33)

where w = k/c (with ¢ the velocity of light), and € are defined in (6.19). Two com-
plex numbers E4 € C determine a polarization state of the wave:

e If E+ # 0,and E,/E_ is a complex number, then the wave is elliptically
polarized.

e If E4 #0,and E,/E_ is a real number, then the wave is linearly polarized.

o If Ey = 0or E_ = 0, then the wave is circularly polarized (one calls it right-
handed polarization if E_ = 0 and left-handed if £, = 0).

Define a unit complex vector d € C2 by

E. E_
d=(dy,d ) := E+. E-) , (6.34)
[E|
or, using Dirac notation,
d —> |d) = i).

One calls d a polarization vector. Due to the normalization condition {(d|d ) = 1, we
have |d) € S* c C2. Now, the state of polarization is uniquely determined by the
vector

s:={(dlo|d) . (6.35)
Clearly

(dld)=1 = Is|=1,

4We recommend to the reader a beautiful article by M.V. Berry called Pancharatnam, virtuoso of the
Poincaré sphere: an appreciation, Berry 1994; see also Berry 1987a.
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Figure 6.2: Poincaré sphere: north and south poles correspond to right- and left-handed circular
polarizations, respectively, equatorial points represent linear polarizations, and the remaining
points define elliptical polarizations.

that is, s € $2. Note, that two polarization vectors |d; ) and |d> ) differing by a phase
factor, i.e., such that

ld2) = el ) , (6.36)
define the same polarization state:
(diloldy) = (d2lo|d2) .
Hence, the
space of polarization states = $°/U(1) = CP' = §?,
and the map
polarization vectord —> polarization state [d] := s

defines a Hopf bundte $> — §2.

The above two-dimensional sphere, which serves as the space of polarization states,
is called a Poincaré sphere (see Fig. 6.2). In summary, we have established that the
space of possible polarization states for a monochromatic plane wave is isomorphic
to the phase space of a two-level quantum system (more precisely, the space of pure
states).

If |A) and | B ) are the polarization vectors of two waves, then the intensity resulting
from their interference is given by

I:=((Al+(BD(UA)+|B)) =|AP + B> + 2Re(A|B) . (6.37)

Due to the Pancharatnam definition of the relative phase (cf. section 5.3.4), waves with
polarizations |A ) and | B ) are in phase if and only if

(A|B) isreal and positive .
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C

Figure 6.3: Geodesic triangle ABC on the Poincaré sphere.

Now, it is clear from section 5.3.4 that if | B ) is in phase with |A ), and |C ) with |B ),
then |C) is, in general, not in phase with |A ). Let |A”) be another polarization vector
defining the same polarization state as |A ), that is, |A’) = ¢/?|A). Suppose that |A")
is in phase with |C ). Then

1

g=-3 QaBc (6.38)

where Q4pc is the solid angle of the geodesic triangle ABC on the Poincaré sphere
(see Fig. 6.3). This phase shift is a special example of the general phase shift formula
(5.177), and is called a Pancharatnam phase.

6.2 Quantum mechanics as a gauge theory

It turns out that the geometric phase found by Berry is closely related to another ef-
fect observed by Yakir Aharonov and David Bohm in 1959 in Bristol. They showed
that in quantum mechanics, in contrast to the classical case, the behavior of a charged
particle in a region where there is no electromagnetic field can nevertheless be af-
fected by a nonvanishing electromagnetic potential. For example, if the trajectory of
a charged particle encloses a solenoid producing a magnetic flux, then the wave func-
tion of the particle acquires an additional phase factor, which is proportional to the
flux magnitude and may be easily explained as Berry’s geometric phase. Actually, this
phase depends only upon the topology of the space — for instance, by excluding the
solenoid the resulting space is no longer simply connected, and hence is topologically
nontrivial. Therefore, some authors use the name fopological phase to stress the topo-
logical origin of the Berry phase. However, in general, Berry’s phase depends not only
of the topology of the space, but also on the geometry of the closed curve in ques-
tion. In the following section we derive the Aharonov—Bohm effect and the closely
related Aharonov—Casher effect, using the gauge invariance of standard nonrelativistic
quantum mechanics under an U (1) x SU (2) gauge group.
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6.2.1 Classical particles in gauge theory

Recall that the classical dynamics of a charged particle interacting with an electromag-
netic field, described by the field tensor

Fuy = 8,4, — 8,4, ,

is governed by the Lorentz equation:
. q v
Pu=— Fuu”, (6.39)

where u* denotes particle four-velocity, p# = mu* stands for four-momentum, and ¢
for the electric charge (space-time indices 4 = 0, 1, 2, 3 are raised and lowered by the
Minkowski metric tensor g,,, = diag[1, —1, —1, —11], see e.g. Jackson (1999)). In the
non-abelian theory with a group G, the corresponding field strength is defined by

Gy = A5 — 8,A7, + fL AL A,

and the dynamics of a particle carrying a spin-like variable /¢ is given by the Wong
equations (Wong 1970, see Balachandran et al. 1983 for the review):

Pu=Gpu'l,, (6.40)
and
1= fAbutre, (6.41)

where I =}~ 19X, and the A’s define a basis of the Lie algebra g of G. Equivalently,
one may write

Pu=Tr(Gyuy-Du”, and [=[A,, ITu", (6.42)

where I, A, and G wv are g-valued zero-, one- and two-forms, respectively. They trans-
form under the adjoint representation of the internal symmetry group G, as follows:
Ay — U-A, U'4U-3,U",
Guw — U-Gu U,
I — U-1-U".

Note'that in the region of space-time where the field strength F),, or G, vanishes the
classical particle is free, i.e., it satisfies

P =0.

This is so even if the corresponding gauge potential A does not vanish. One usually
conclud.es that the potential does not have physical meaning in classical physics. How-
ever, this is no longer true in quantum physics. The archetypal example showing that
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quantum objects feel the gauge potential even if the field strength vanishes is the cel-
ebrated Aharonov-Bohm effect (Aharonov and Bohm 1959). In the next section we
show that the Aharonov—Bohm effect is a simple consequence of the U (1)-invariance
of the standard Schrodinger theory.

It turns out that there exists another closely related quantum mechanical effect —
the Aharonov—Casher effect (Aharonov and Casher 1984) — which is connected with
the Pauli nonrelativistic theory of spin. This effect is implied by the nonabelian SU 2)
symmetry of Pauli theory. Both effects find elegant explanations as abelian and non-
abelian geometric phases.

6.2.2 U(1)-invariance and the Aharonov-Bohm effect

In the presence of an external electromagnetic field, described by an electromagnetic
potential A, the standard nonrelativistic quantum mechanics of a charged particle is
govern by the Schrodinger equation

iy =Hy,
where the Hamiltonian is given by
—K2 ] 2
H =% (V - ﬁA) —q®. (6.43)
2m hc

In the above formula, g and m denote the charge and mass of the particle, respectively,
and the four-potential is defined by A, := (&, —A). This theory is invariant under the
simultaneous gauge transformation of the electromagnetic four-potential,

A— A+Vy, and & — &—yx, (6.44)

and the corresponding phase transformation of the wave function;
iq
¥ — exp —ax ¥ . (6.45)

In this way, the standard nonrelativistic quantum mechanics of a charged particle' de-
fines a U(1) gauge theory. Let x® = ¢t and set x# := (x0, x). Introducing a covariant
derivative

D, =9, +ia,, (6.46)
with

aw="2®, ad g=-La, k=123, (6.47)
hc hic

the Schrddinger equation may be rewritten in the following manifestly gauge invariant
form:

3
ihcDoyr = — > DiDy . (6.48)
k=1
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A key effect demonstrating this U (1) gauge invariance is the celebrated Aharonov—
Bohm effect (Aharonov and Bohm 1959). Consider an infinitely long solenoid along the
z-axis (its radius in the xy-plane equals a). Suppose that the solenoid carries a magnetic
flux ®¢ = wa’By, where B = (0, 0, Bp) is the magnetic field inside. Clearly, there is
no magnetic field outside. One may easily find the corresponding vector potential A
such that B = V x A. In a suitable gauge one has

1
= (—=y,x,0), r<a
Boa2 az( y )

-
ﬁ(—y,x,o), r>a

Alx,y,2) = (6.49)

Note that, unlike B, the vector potential is continuous at » = a (+ measures the distance
from the z-axis, i.e., rZ = x% + y?). If we take cylindrical coordinates (r, ¢, z), then
A, =A; =0and

B, oq
Ay = . (6.50)
24;—(;, r >a

The corresponding Hamiltonian in the region outside the solenoid is given by the fol-
lowing formula:

H~i(p—2A)2—L 2y L (p, 40 2+ 2 (6.51)
T 2m c Tom | Pr T2 \P 2rc Pz |- ’

The classical canonical transformation

po — pp— 120
¢ 7 ;e

completely eliminates the flux term from the Hamiltonian, so that the solenoid does
not influence the motion of classical charges outside it.

_However, in guantum theory the situation is quite different. There is likewise a uni-
tary transformation

1/[ N 1)[,/ :e—iq<1>0¢/hcw

that eliminates ®q from the Schrodinger equation. Note, however, that the flux is now
encoded into the boundary condition: if i is single-valued, i.e.,

Y(2r) =40,
then the transformed function ¥ is not; rather
¥ @m) = ey 0)

The experimental configuration for this effect is shown in Fig. 6.4. An electron wave
is split into two coherent waves. They pass on opposite sides of the solenoid and then

s
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electron @
source .

Solenoid

Figure 6.4: Aharonov—Bohm effect.

interfere. Although there are no magnetic fields outside the solenoid, i.e., in the region
in which the charged particles move, a relative phase shift between the two waves can
be observed as an interference pattern. The corresponding phase shift Ag is given by
the following formula:

_4% _ 4

— P A-dl, (6.52)

Ap = = —
¢ fic hic

where the integral is carried out along a closed curve formed by the union of the two
paths. Although the magnetic field vanishes everywhere outside the solenoid, the vec-
tor potential A cannot vanish there. This is because the loop integral of A around the
solenoid is equal to the magnetic flux

by = f B-dS, (6.53)
p>
through the solenoid. Note that the interference pattern is invariant under
hc i
by — dg+n—, nez,
q

since
Ap — Ap —27n = Ag.

It is clear that the Aharonov—Bohm phase shift A¢ may be interpreted as a geometric
Berry phase that a charged particle accumulates by circling around a solenoid carrying
a nonzero magnetic flux.

Remark 6.2.1 Consider the limiting case in which the magnetic field vanishes away
from a single line (a so-called flux line), e.g., the z-axis, and suppose that the motion of

5This was already observed by Berry (1984).
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the charged particles is restricted to the xy-plane, i.e., the allowed region for particle
motion is a punctured plane M = R? — {0}. The magnetic field in the xy-plane is given

by
B, (x) = ®g 82(x) . (6.54)
This field may be derived from the following vector potential:

A Doy 0 ,
2r 2

(6.55)

with r2 = x2 + y? (we have already considered a field of this type in Example 1.1.9).
In the above formula A denotes a two-dimensional vector field on M. Recall, that the
fundamental group of a punctured plane M is:

nmM) = 7.

Consider any closed curve C on M and let n be its winding number (cf. Example 1.4.3).
It is therefore evident that
?g A-dl
c

This shows that the Aharonov—Bohm phase shift is an example of a topological phase,
i.e., the shift Ag does not depend on the particular geometry of the closed curve C but
only on its winding number rn, which is a purely topological notion.

It turns out that the Aharonov—Bohm effect explains the possibility of fractional (or
so-called 8-) statistics of anyons in two-dimensional systems, i.e., particles carrying
electric charge g and magnetic flux . We refer the reader to Wilczek 1982a, 1982b,
1990, Frohlich and Studer 1993, and Morandi 1992 for more details. <

ndg . (6.56)

6.2.3 SU(2)-invariance and the Aharonov—Casher effect

As is well known, spin is a purely quantum concept. A particle with a spin S carries a
magnetic moment

SH
s = — S s
Hspin )

where g denotes the giromagnetic ratio (g = 2 for electron), and p = ekh/2m,c is the

Bohr magneton (m, stands for the electron mass). Clearly, the spin operator S is given
by

h
S = —L®,
2

where L) = (Lgs), L;s), Lgs)) are hermitian generators of s« (2) in the spin-s repre-
sentation.
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Now, a magnetic moment may also be considered from the classical point of view. In
particular, one has the following classical equation of motion for S, in a slowly varying
external electromagnetic field (E, B):®

S e

v 2
=S [gB — (gD x E] +O((w/c)). (6.57)

The terms proportional to g describe the precession of the spin (or magnetic moment)
in the magnetic field (in the rest frame of the spin). The remaining term describes a
purely kinematical effect known as Thomas precession. The above equation may be
rewritten as

dSr e 3, & .
- = 5 €kijSi [gBjUO+ (8 - 1)6iijjvm] =Y > ey Sibd,o*,
dt 2mect ot —
i,j=1 i,j=1pu=0
(6.58)
where v := (c, v), and
e
by = ——2gB,, 6.59
0 2meC2 8 Da ( )
e 3
a __ —_
Vi = g @=D ) amEn, =123, (6.60)

m=1

fora = 1,2,3. As usual S;, Ex and By (k = 1, 2, 3) are components of S, E and B,
respectively. In this way, one obtains the following gauge potential for an SU (2) gauge
theory:

3
bu(x) =iy b%@LY, p=0,1,2,3. (6.61)
a=1

Now, to define the quantum theory let us proceed as in the U (1) case. Define a covari-
ant derivative

D, =0, +ia,+by, (6.62)

and replace the free Schrodinger equation by
hZ 3
iheDop = —— > " Di- Dy, (6.63)
2m

with ¥ ) being a (25 + 1)-component complex spinor. Rewriting this equation as

ihdoy® = Hypia¥ ™, (6.64)

6This equation, found by Thomas in 1927, is a nonrelativistic version of the relativistic equation derived
in 1959 by Bergmann, Michel and Telegdi — see Jackson 1999 for more details.
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one easily finds the following expression for the spin Hamiltonian’:

1
Hpin == q® Iy — Hspin B+ m n?
1
B %[n  (Bspin X E) + (Hgpin X E) ~H] , (6.65)

where I is defined as follows:
) p—%A. (6.66)

In the above formulae g and m stands for the particle charge and mass, respectively. In
this way we have shown that the standard nonrelativistic theory of spinning particles is
manifestly U (1) x SU (2)-invariant. The spin SU (2) gauge transformations are defined
as follows:

by — U-b,-U'4U-8,U!
, (6.67)
VSO RN Uy

with U € SU(2). Interestingly, apart from the standard Pauli Hamiltonian

1
Hpayli == g lps41 — Hespin - B + m n’,
we obtain by the requirement of SU (2) symmetry an additional term, known as a spin-
orbit interaction.

Consider now a system of quantum neutral particles with spin s = 1/2, and hence
carrying a magnetic moment HMgpin, (.g. neutrons) moving in a xy-plane in R3. Fol-
lowing Aharonov and Casher (Aharonov and Casher 1984), we study the influence of
a static, external electric field on the dynamics of such particles. Consider the static
electric field E produced by a uniformly charged wire placed along the z-axis, with
constant charge Q per unit length (cf. Fig. 6.5), that is,

B 3) = 500 (5,3) 6.68)

Using the formula for E one obtains the following expressions for the x and y compo-
nents of b3, :

A , —
b(x,y) = (b, b%) = o % .03, (6.69)
where
e
A=(g-1 chz .
e

-

7 . .
Actually, we have omitted a term of order O(bz), which is neglected in the nonrelativistic theory.
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0

<— charged wire

Figure 6.5: A charged wire along the z direction.

One easily finds that for a two-dimensional system confined to the x, y-plane, the only
components of the su(2)-valued curvature

3
Gl = 3ub — % —2 ) €apchl, b, (6.70)
b,c=1

read
GHx) =—-G3(x) = —— 8% (%) (6.71)
LX) = 2® = —2 . .

Note the direct correspondence between (6.55) and (6.69), and between (6.54) and
(6.71). The gauge field Giv vanishes outside the charged wire, that is, in the region
in which the particle moves. In classical physics it means that in this region a particle
is free. Moreover, if S(0) is perpendicular to the plane, then S(¢) = S(0). Hence,
both particle momentum and spin are classically conserved. However, the scattering of
quantum particles at the wire depends upon its charge density Q, via the corresponding
holonomy element

et 0
U(C):Pexp(i%b-dl)=exp(iA03)=( 0 —iA ) ) (6.72)
c

e

where C is any closed curve enclosing the wire. Clearly, the Aharonov—Casher phase
factor U(C) has a purely topological nature and, like the Aharonov—-Bohm one, de-
pends on the winding number of the closed curve C.
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6.3 Phases in molecular physics

The manifestation of geometric phase in molecular physics was observed long before
Berry’s celebrated paper (Berry 1984). In 1958 Longuet-Higgens et al. drew atten-
tion to the fact that in some molecular systems the electron wave function acquires
an additional phase factor, whose existence could not be explained on the grounds of
the standard Born—Oppenheimer approximation. This additional factor was found to
appear when the coordinates of nuclei interchanged cyclically around a point where
the energy spectrum was degenerate. In 1979 chemists C.A.S. Mead and D. Truhlar
demonstrated that the nature of this effect closely resembles the Aharonov—Bohm ef-
fect, and suggested that is be called the molecular Aharonov—Bohm effect.

In the present section we briefly present two natural ways in which the geometric
phase enters the game: one way is via accidental degeneracies of the spectrum, and
the second way is via the improved Born-Oppenheimer approximation.

6.3.1 Degeneracies

As we have already noted, degeneracies of the spectrum play a crucial role in determin-
ing the geometric Berry’s phase. Recall, for example, our basic system of a spin parti-
cle in a magnetic field (see section 2.2.5), where Berry’s curvature F™ corresponds to
the field of a magnetic pole placed at the degeneracy point B = 0. Consider an arbitrary
quantum system parametrized by some parameters R = (Ry, ..., R,) € M. Suppose
that for some point R* two energy eigenvectors y (R) and ¥2(R) are degenerate, with
energy E* := E(R*), i.e.,

HR)Y:(R) = E;R)¥; (R), i=1,2, 6.73)
and
E\(R*) = E2(R*) = E*.

Near a degeneracy point R* the system may be considered as a two-level system, and
its Hamiltonian described by 2 x 2 R-dependent matrix:

(Hu(R) H12(R))
H5[R) Hnp@®R) ) -

In looking for eigenvalues, one solves the following secular equation:
E? — E(Hiy + Hy) + HiiHyp — [Hpp* = 0.

In order to have a degenerate eigenvalue, the discriminant of the secular equation has
to vanish, i.e.,

(Hi1 — H)* + 4|Hp* =0,
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which means that there are three conditions upon the matrix elements H; j» namely
Hiy=Hy, ReH=0, ImH;=0. (6.74)

The above system of equations define an (n — 3)-dimensional submanifold of M (with
n being the dimension of M). If n = 3, then degeneracies define isolated points in M.

In particular, for a system with time-reversal symmetry, the Hamiltonian H is real
and Im Hi, = 0. Hence, the subspace of degenerate points defines an (n — 2)-dimen-
sional submanifold of M. This fact was noted by von Neumann and Wigner (1929).
Note that if we introduce the three parameters

1 1 1
X = —2-(H11 —Hy), Y:= Z ReHy;, Z:= ZIHI Hy,, (6.75)
the formula for energy eigenvalues implies that near degeneracy, i.e., near a point
(X, Y, Z) = 0, the level surface of the eigenvalues of H, considered as a function
of (X, Y, Z), forms a double cone with its apex at the degeneracy point. That is,

Ei2X,Y)=E*+VX2+4+Y24+22, (6.76)

where E* denotes the energy of the crossing, i.e., E* = (Hi; + H») /2. The apex of
this cone is called a diabolical point.®

To see how the geometric phase is related to the degeneracies of the spectrum, let us
consider a simple example studied by Herzberg and Longuet-Higgins (1963). Suppose
that two electronic levels are degenerate at a degeneracy point r*. Hence, near r* the
Hamiltonian may be truncated to a 2 x 2 matrix acting only on the near-degenerate
states. Up to an unimportant identity operator 1, any real symmetric 2 x 2 matrix may

be written as follows:
y ):r( cos¢  sing ) , 6.77)

X
H(r) = x03 + yoy = ( sing —cos¢

y —x

where r = {/x2 4+ y2. The eigenvalués are E+ = =+r, and the corresponding eigen-
vectors ¥+ are given by

Q o
wo=| T ) =]

Now, let us trace a circuit on the xy-plane with the center at (0, 0), and radius r. Note
that

> . (6.78)

NS NS

weo=[g ) veo=[0). 679)

8For a discussion of the importance of diabolical points in molecular physics, see Berry 1985b.
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whereas,

Yoy (r,2m) = ‘ _01 > . Y_(r,2m) =l _01 > ) (6.80)

This means that the maps
R?— {0} 5 r — (0,

are not single-valued. In undergoing one circuit around the degeneracy point r* = 0,
one obtains

Vi(r, 2m) = €7 Y2(r.0) = —Y=(r, 0) . (6.81)
Note, however, that performing a simple gauge transformation:
x£(n @) = yz(n )., (6.82)
we arrive at single-valued eigenvectors x+(r), i.e., such that
X+, 2m) = x+(r, 0) . (6.83)

What is the basic difference between the single-valued x+ and the multi-valued 4?7
Let us note that x., contrary to ., give rise to a nontrivial gauge potential A&, One
easily finds that

(Yeldly+} =0, (6.84)
whereas
i(xeldlxe) = A7 dp + AP dr (6.85)
with
1
AP =0 and A =—2. (6.86)

This is an example of a situation that frequently arises in the theory of geometric phases
in molecular physics: One has to choose between the vanishing of a gauge potential
and the single-valuedness of the electronic eigenvectors. In general, it is not possible
to have both.

Let C be a closed curve on M := R% — {0} enclosing the degeneracy point r* = 0.
Any such curve defines an element of the fundamental group of M, which is isomor-
phic to the set of integers, i.e.,

C — [ClenM) =7Z.

Evidently, if C; and C, are homotopically equivalent, then

f A zf A®
C Cy
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Moreover, if n € Z denotes the winding number of C (cf. Example 1.4.3), then it is
easy to see that

fA(i) = (-D'7n. (6.87)
C

In the context of molecular physics the winding number 7 € Z is called the Longuet-
Higgins charge. 1t is the analog of the magnetic number (or magnetic charge) of a
Dirac monopole, and the instanton number (or instanton charge) in the SU(2) gauge
theory.

Finally, let us note that it is easy to construct a principal fibre bundle such that
the corresponding holonomy element reproduces a Longuet-Higgins phase shift +.
Note that the radial coordinate r does not play any role, and hence we may reduce
the parameter space M to a one-dimensional sphere S'. Both spaces have the same
fundamental group, i.e.,

mM) =m(SH = 7.

The corresponding fibre bundle is a principal Z,-bundle over S, constructed in perfect
analogy to a Mdbius strip (cf. Example 1.3.1). In the next section, we shall study
more complicated examples of molecular systems giving rise to nonabelian geometric
phases.

6.3.2 Time-reversal invariant fermionic system

Another interesting system displaying a nonabelian geometric phase factor is the time-
reversal invariant fermionic system. In section 2.2.5, we studied a spin system in a
magnetic field defined by the following Hamiltonian:

HB)=B-J, (6.88)
where J denotes a spin vector. The spectrum of H (B) is given by
Spectrum = {m|B| ‘m =J,—-J+1,... ,J},

and hence H(B) is nondegenerate away from a point B = 0, i.e., on a punctured three-
dimensional space M = R3 — {0}. It is convenient to “normalize” the spectrum of
H (B) by restricting B to a unit sphere $2, i.e., |B| = 1. Denote by Py, (B) the spectral
projection on the mth eigenspace of H(B). The corresponding mth spectral complex
line bundle over 5?2

JT,,,:P,,,—>S2,

is defined by

7 1(B) = {w eC¥H | P, By =y } : (6.89)
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It is an associated bundle to a principal U(1) Hopf bundle S — S2. Hence,
a spectral bundle is uniquely characterized by the corresponding Chern number. We
have already shown that (see formula (2.118))

Chern number of mth spectral bundle = —2m .

Moreover, if C is a closed curve on S? then the corresponding Berry adiabatic phase
is (cf. (2.117))

Berry’s phase = —m Q(C) , (6.90)

where 2(C) is the solid angle subtended by C.

Let us turn to a system displaying time reversal invariance. For the importance of
time reversal in molecular physics see, e.g., the review article Mead 1992. Time rever-
sal in quantum mechanics is implemented by an anti-unitary operator ©, such that

02 — 1 for bosons
“ | =1  for fermions

The distinction between bosons and fermions comes from the fact that the angular
momentum J is odd under time reversal, i.e.,

0J=-J6. (6.91)
Such an operator can be represented by
ey :=Uy, (6.92)

where U is a unitary operator acting in the Hilbert space H and ¥ denotes the com-
plex conjugate of . In the usual representation, where J; and J3 are real and J, is
imaginary, the unitary operator U represents a rotation by 7 around the y-axis, i.e.,

U =exp(~inty) . (6.93)
Hence,

0% = U? =exp(=2in ) , (6.94)

defines a 27 -rotation around the y-axis, and therefore ®2 = 1 for bosons, and — 1 for
fermions. Note that if H is finite-dimensional, then ®2 = —1 implies that dim¢H is
even. Indeed, for any ¢ € H one has

(VIO ) = (@*|Oy) = —(¢|0y),

where we have used the anti-unitarity of ©, i.e., (oY) = (OY|O¢). Thus, ¥ and
©y are orthogonal, which proves the even-dimensionality of . An immediate con-
sequence of the above observation is (so-called) Kramer’s degeneracy, ie., if H is a

(6.95)
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hermitian operator commuting with ®, then each eigenvalue of H has degeneracy of
even degree. Obviously, the dipole Hamiltonian (6.88) is odd under time reversal, i.e.,

®HB)=—-H(B)O. (6.96)

Mead (see Mead 1992) proposed to study a time-reversal invariant quadrupole system
described by the following Hamiltonian:

3
H(Q) := Z Ou iy, 6.97)

k=1

where Qy; are the components of a real 3 x 3 symmetric and traceless matrix — a
quadrupole matrix. For any quadrupole Q one has

OH(Q)=H(Q)O. (6.98)

Due to Kramer’s degeneracy, any quadrupole Hamiltonian H (Q) has always degen-
erate eigenvalues. Recall that a hermitian operator over R (C, or H) is simple if it
has no degenerate eigenvalues. Hence, the time-reversal invariant H (Q) is never sim-
ple over C. Interestingly, one may prove (see Avron, Sadun, Segert and Simon 1989)
that for @ # O, the time-reversal invariant H(Q) with odd J is simple over H. The
space of quadrupole matrices is a five-dimensional real vector space endowed with the
following scalar product:

(Q1, Q2) = % Tr(Q102) . (6.99)
A convenient orthonormal basis is given by
11 00 1 0 01 1 0 00
ass( v an)emnlege) emal 0
L1 00 L (010
o=sls ) emalies

The simplest fermionic system corresponds to J = 1/2. Note, however, that in this
case H(Q) = 0 for any Q. To see this, let us observe that for J = 1/2, we have
Jr = %O’k and, hence, it is easy to show that

3
D Qi =0, (6.100)

k,I=1

forany @ = 0, 1, 2, 3, 4. Let us therefore investigate fermionic systems with J = 3/2.
It turns out that, for quadrupole Hamiltonians H(Q), the case J = 3/2 plays a role
similar to that of the case J = 1/2 for dipole Hamiltonians H (B).
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Recall that for a dipole Hamiltonian H (B) with J = 1/2, there is a direct correspon-
dence between unit vectors B and traceless hermitian operators in C2, with spectrum
{—1, +1). This means that if H : C> —> C? is a traceless hermitian operator and
Specc(H) = {—1,+1}, then H = H(B) for some unit vector B. A similar corre-
spondence holds for quadrupole Hamiltonians H(Q) with J = 3/2, that is, there is a
direct correspondence between unit quadrupoles Q and traceless quaternionic hermi-
tian operators in H?, with spectrum {—1, +1}. That is, if H : H?> —» HZ? is a traceless
quaternionic Hermitian operator, and Specy(H) = {—1, +1}, then H = H(Q) for
some unit quadrupole Q.

Any two unit vectors By, B, € S? are related by an SO(3) rotation R, i.e., B; =
R B;. The corresponding dipole Hamiltonians H (B1) and H (B;) are unitary related,
as follows:

H(B)) = U(R)H(BI)U(R)_1 R (6.101)
where
SOB) > R — U(R) € SU®Q),

denotes a unitary representation of SO(3) in C2. More precisely, it is a representation
of the universal (two-fold) cover of SO(3), that is, Spin(3) = SU(2). Therefore, it
is only a projective representation of SO (3). A similar picture is true for quadrupole
Hamiltonians H(Q) with J = 3/2. The set of unit quadrupoles defines a unit sphere

S ={01©Q,Q=1} c R.

Any two Q1, Q2 € S* are related by an SO(5) rotation R, i.e., Q2 = R Q. It is
well known that the universal (two-fold) cover of SO(5) is Spin(5) = Sp(2), and
the unitary representation of Spin(5) (or equivalently, the projective representation of
SO(5))

Spin(5) 3 R — U(R) € Sp(2),
is realized by
H(Q2) =URHQDUR)™. (6.102)

Corollary 6.3.1 For J = 3/2, any two quadrupole Hamiltonians H(Q1) and H(Q>),
with Q1, Q2 € S§*, are unitary related.

We stress that this result holds only for J = 3/2.
Finally, let P+(Q) denote the spectral projections onto the positive and negative
eigenspaces of H(Q) (i.e., those corresponding to eigenvalues +1) with Q € §4:

1
Pi(Q) := o (1= H(Q)). (6.103)
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To see that P+ (Q) are projections in HZ?, observe that
[HOP =(Q, 0 l=1, (6.104)
for any unit quadrupole Q, and hence
1
[Pr(Q)]* = Z(]l £2H(Q)+ 1) = P+(Q) . (6.105)

Actually, for J = 3/2, the quadrupole operators H(Q) form a Clifford algebra
H(QH(Q2) + H(Q2)H(Q1) =2(Q1, 02) . (6.106)

(see Avron, Sadun, Segert and Simon 1989). Defining

Ty = H(Qy), a=0,1,234, (6.107)

).

one finds, for J = 3/2,

(1 0 . 0 —j _ 0
To—(o —1)’Tl—<j O)’Tz_(_é
0 1 0 —i
n=(1o) m=(%7%)

where 1, 7, k denote basic quaternions (cf. Appendix B). The formula (6.106) may be
equivalently rewritten as follows:

O A

ToTpg + TgTy = 254p . (6.108)
Denote by P the corresponding spectral bundles, i.e.,
e @ Py —> St
with

7' = {ves| P =y},

where S7 denotes the space of unit vectors in H2. Hence, spectral bundles are precisely
Hopf bundles

s — st

described in section 1.4.5. These bundles are entirely characterized by the correspond-
ing Chern number. Following section 1.4.5 the reader may show that the

Chern number of the Py spectral bundle = +1 . (6.109)
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Therefore, the above spectral bundles correspond to instantons (cf. section 1.4.3) with
instanton numbers

k==+l1.

Finally, the nonabelian geometric phase factor is defined as follows:

U(C) := P exp (f A) € SUQ2), (6.110)
C

where A denotes an su(2)-valued gauge potential (instanton) and C is any closed curve
in the sphere $* of unit quadrupoles.

6.3.3 Born-Oppenheimer approximation

The Born~Oppenheimer approach (Born and Oppenheimer 1927, Born and Huang
1954) is one of the basic tools of molecular physics (see, e.g., Bohm 1993a, Schiff
1968). Roughly speaking one divides the dynamics of a complicated physical system (a
molecule) into two parts: fast motion, which is described by fast variables r and p (the
positions and momenta of the electrons); and slow motion, which is described by slow
variables R and P (the variables of the nuclei). In the standard Born—-Oppenheimer
approach, one considers the slow variables as slowly changing classical parameters.
However, in the full quantum theory R and P become quantum operators R and P.
The Hilbert space H of the composed system is a tensor product of the space for slow
motion and the space for fast motion, i.e.,

H = Hslow ® Hfast .

The spaces H*1°" and H* are, in general, infinite-dimensional but often one obtains a
good approximation if one restricts oneself to a finite-dimensional subspace of Hs°%.
Consider a molecule with a Hamiltonian

R 132 132
A=— 4+ LyvRrp. 111
o T om TVRD (6.111)

Since the light electrons instantaneously follow the motion of the heavy nuclei, the
slow variables can also be understood as being the variables of the molecule as a whole,
i.e., collective variables. In particular, for a diatomic molecule, R will be the vector
along the internuclear axis and P its conjugate momentum. The potential V (R, r) is,
in general, a highly complicated function of the nuclear and electronic positions R and
r, and possibly some other operators, like, e.g., spin. One can divide the molecular
Hamiltonian into two parts, as follows:

N
H=_— +h®R),

.1
M (6.112)
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where
~ f)2
hR)y=—+ VR, D). (6.113)
2m
Let us take as a basis in H°Y, the generalized eigenvectors of f(, such that
RR) =RR), (6.114)
together with
(RIR) =3PR-R).
Similarly, we take |r) to be generalized eigenvectors of ¥:
#r) =r|r), (6.115)

satisfying the normalization condition
(rly =¥ -r).
Clearly, we may define a generalized basis in H as follows:
R,r):=R)®|r).
Now, for each eigenvalue R € R3, we define a basis [#(R) ) in 5 such that
IR,n) :=|R)® |n(R))
satisfies
AR)|R,n) = ¢,(R)R, n), (6.116)

together with (n(R)}}m(R)) =-&,,,.-Consider, now, the eigenvalue problem. for the
total Hamiltonian, i.e.,

HVE) = E|WE) . (6.117)
Using the notation
VER, r) = (R, rj¥E), and WER):= (R nvf),
one obtains
vER, 1) = Zde’(R,rlR’,n)(R’,nl\I/E) (6.118)
w

= Z/dR’(R]R’)(r|n(R’))Wf(R’) Z%(R, NYER),
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where
dn(R, 1) := (r|n(R) ).

Now, in the adiabatic Born—-Oppenheimer approximation one neglects mixing between
different electronic levels, so we can take for the entire wavefunction ¥ £ (R, r) just
one term in the sum (6.118), corresponding to the nth electronic level. The eigenvalue
problem (6.117) implies that

2
[‘;—Mvﬁ +hR, r>} on(R,DYER) = E ¢, (R, DVER), (6.119)

where the electronic Hamiltonian reads

. K2
AR, r) = —%Vr + VR, r).

Now, by the very definition of ¢, (R, r) one has
h(R, D) (R, 1) = €,(R)pn (R, T) .

Hence, multiplying both sides of (6.119) by ¢ (R, r), and integrating over r, one finds

hz 2 E E
" p2y vER) = EyER), 6.120

where we have introduced a covariant derivative
D := VR —iAP®R), (6.121)
and the gauge potential A is given by

AMR) = i(n(R)|Vg|n(R)) =i / dr ¢, (R, r)Vr¢a(R, 1) . (6.122)

The gauge potential A™ is called by chemical physicists a Mead potential. Tt was
neglected in the conventional Born—Oppenheimer approximation. Mead and Truhlar
(1979) called the result of the modification of the conventional Born-Oppenheimer
approximation a molecular Aharonov—Bohm effect. Obviously, if the nth electronic
level is N-times degenerate, i.e.,

fz(R)lna(R)) =R, R)), a=1,... ,N, (6.123)

then instead of (6.120) we obtain

N T_p2 N
Z |:_ DypDye + €5 (R)aac:| w,ﬁ'(R) = El/f,ﬁ,(R) , (6.124)
2M =

c=1

et R s By e
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with
Dy = 8u VR —iAY (6.125)
and the nonabelian gauge potential A® is given by

AY) = i(np(R)|VRIna(R)) . (6.126)

Clearly, the above formula reproduces the Wilczek—Zee gauge potential (cf. formula
(2.178)). Hence, the Born—-Oppenheimer treatment of molecular systems gives rise to a
natural manifestation of adiabatic geometric phases. We stress that in the conventional
approach to the Born-Oppenheimer approximation, the above-derived gauge structure
is completely absent; “slow parameters” R are kept fixed and one considers the quan-
tum dynamics of the “fast parameters” r. The improved approach, which takes into
account the back reaction® of the fast degrees of freedom on the slow ones, gives rise
to the appearance of the gauge structure (i.e., the slow degrees of freedom move in the
external gauge potential induced by the fast degrees of freedom) and leads in a natural
way to a nonabelian geometric phase.

6.3.4 Diatomic molecule

As an application of the general scheme of the Born-Oppenheimer approximation,
let us consider a diatomic molecule (Bohm 1993a,b). Such a molecule has an axial
symmetry about the internuclear axis R € R3. The electronic states are classified
according to the eigenvalues of

 := ,/eigenvalue of J - R/R,
where
J := Sejec + Letec »

is the total electronic angular momentum, i.e., the sum of the spin Sejec and the or-
bital angular momentum Lgjec. Consider the simplest situation of when the molecule
is in the so-called T state, i.e., Lejee = O. Clearly, 2 can take values from the set
{0, %, 1, %, 2, ...}, and for for a given energy state this value is fixed. Since the molec-
ular Hamiltonian is parity invariant, any energy eigenstate is doubly degenerate, i.e., if
2 = m, then one has two eigenvectors in 725, namely

m@R)) and |—-m(R)),
such that

HR)| £ m(R)) = E,(R)| xm(R)) .

9This back reaction will be further studied in section 6.3.5.
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Therefore, the Born—Oppenheimer approximation leads to the SU(2) gauge theory
with gauge potential

A™R) = i (b(R)|drla(R)) , 6.127)

where a, b = £m. To find the gauge potential A and its curvature F, we shall follow
the procedure developed in section 2.3.3. It is clear that in our discussion only t.he
direction of R is important, and hence let us assume that R = |R| = 1, and parametrize
the corresponding parameter space — a two-dimensional sphere — using the standard
spherical angles (6, ¢). Following (2.203), we define

Im(@,¢)) := U6, p)im(es)) , (6.128)

where U (8, @) is as introduced in (2.86). The corresponding connection form is given
by the following 2 x 2 matrix:

A™ (6, ¢) = ATV 6, 9)d0 + ALV O, ¢) dg . (6.129)

One finds, for |m| # 1/2 (cf. formulae (2.213)—(2.214)),

AW = o, (6.130)
AP = —m(1—cosf)o3, (6.131)

and, for m = 1/2 (cf. formulae (2.215)—(2.216)),

K . K 0 iei“’
Aélﬂ) = —2—(— cos poy — singoy) = 3 ( —ie"i® 0 ) , (6.132)
Afpl/z) = %[(1 — c0s0)o3 + « sin O (— cos poq + sin gooz)]
1 (1 —cos@) —k sinfe'? (6.133)
2 \ —ksinfe i —(1—cos6) )’ )

where the parameter « is defined by
K
(aten)lJelb(es)) = 5 @0)ap,  k=1,2. (6.134)

Recall that (a(e3)|J3|b(e3)) = had,p. Clearly, the above formulae reproduce thos‘e
from section 2.3.3 for k = 1/2. Now, the corresponding curvature two-form F is
given by

F™ = F{" do ndy
with

Fy = 9pA0M — 3,47 —i[AJ"V, Al
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One finds, for [m| # 1/2,

Fy) = —msin6 a3, (6.135)
and, form = 1/2,

1
Fy)? = ~50 —«?)sinfo3 . (6.136)

The reader should recognize the field of a magnetic pole (cf. section 1.4.2), or, more
precisely, a pair of monopoles with the following magnetic charges:

+m, for |m| ;é%
8 =
+3(1-«?, for|m| =1

Standard vector notation gives the following formulae for the so(3)-valued vector field
Fim.

R 1
F™ — _p,, o3 =3 Im| # 3 (6.137)
and
1 R
F1/2 — _5(1 _ K2) o3 ik (6.138)

Thus, if C is a closed curve in the two-sphere R = 1, then the doublet fm)and | —m)
acquires a geometric Berry phase, as follows:

- > — exp[-imQ(C)os]| I > (6.139)
form # 1/2, and
1/2 . 1/2 - S
l _1;2 ) — expl:—%(l —KZ)Q(C)O':;] _152 ) , (6.140)

for m = 1/2. As usual, Q(C) stands for the solid angle subtended by C on the R-
sphere.

6.3.5 Quantum geometric forces

The Born-Oppenheimer approximation shows that the dynamics of the slow subsys-
tem (describing the nuclei) should include additional reaction forces that depend upon
the geometry of the fast subsystem in the space of slow variables. Using notation from
section 6.3.3, let us define an effective Hamiltonian

HY R, P) := (n(®)|H[n(R)) =fdr¢;:(R, ) AR, P,r,p) ¢, (R, 1), (6.141)
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which governs the dynamics of slow motion. If

N 1 iinn ~
- — ip.p.
HR,P,r,p) = Z;Q PP +hR,r,p),
where Q'/ is an inverse mass tensor (in section 6.3.3 we have QY =6 /M), then,
using the standard position representation for the momentum, i.e.,

it is easy to show that

~ 1 iisd n 5. (n) (n)
AP R, P) = 3 Z 0" (B — AP R)(P; — AT (R)) + 2P (R) + & (R)
ij

(6.142)
where the vector gauge potential is given by
AP ®) =i(n®)3in(R)) ,
and the scalar potential by
®"™(R) = # > ol dP®). (6.143)
2 T H

In the above formula, gl.(;’) denotes the quantum metric tensor, introduced in sec-
tion 2.2.6, i.e.,

g =Re ({Binl(1 = n)(m)l3n)) -
The effective Hamiltonian gives rise to the following reaction forces:

The Born—Oppenheimer force: —0;en(R) ;
(n) .
The magnetic gauge force: Bi(;')(R) = h(B,-A&")(R) —3;A;" (R)) ;

The electric gauge force: -3, 9™ (R) .

The classical Hamilton equations of motion of the slow variables, i.c.,

(n) (n)
. 9H . 9HY
R' = eff N and P =- T
3 P; ! AR
imply that
R =3 0U (R By ) — di(en®) + 2P (R))) . (6.144)

J
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which is the Newton equation of motion in the “magnetic field” represented by a two-
form B = %Bidei A dRJ and “electric field” represented by 9; (e 4+ ®) dR'. Hence,
in the improved adiabatic (Born-Oppenheimer) approximation, the slow variable R is
no longer frozen, but is governed by (6.144).

Example 6.3.1 Consider a composite system in which the spin s = % of one (light)
particle is coupled to the spatial coordinates R of a second, otherwise free (heavy),
particle (Berry 1989b). The corresponding Hamiltonian reads as follows:

. P2 R

H(R, P, spin) = M + FR.0), (6.145)

where the function F defines an interaction between the light and heavy subsystems.
One has, for the eigenvectors,

R .o [n(R)) =nR|[n(R)), nzié.

Moreover, it is easy to show that the corresponding quantum geometric tensor Ti§") is
given by

T,;") = 2—11e2 {% (5,—,— - R—’I:;l) —ine,-,-kBI;] ) (6.146)
Clearly,
F = 2ImT™ = n¢ ,-kR_k , (6.147)
j ij R3
and
g’ =ReT" = é (3,-,- - %) : (6.148)

Note that the above formula, rewritten in spherical coordinates, reproduces (2.147).
Now, one finds the following expression for ®™:

hZ
™M (R) = : 6.149
®) = s (6.149)
and hence the corresponding equation of motion for the slow variables reads
. nh. R B R R
R=— — 4+ —— —nF'R-0)—. 6.150
MR=F Rt g — " RO% ©150)

Clearly, this equation for the heavy (mass M) particle involves the Lorentz force from
the magnetic monopole of strength n/2, and the inverse cube gauge electric force,
which repels the particle from the degeneracy point R = 0. <&
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6.4 The quantum Hall effect

The quantum Hall effect (QHE) is one of the most remarkable condens;d mattc.:r phe-
nomena discovered in the second half of the 20th century. In the. following section we
shall discuss only the integral quantum Hall effect, discovered in 1980 by' Klaus von
Klitzing. Soon after, in 1982, Tsui, Stormer and Gossard observed the fractional quan-
tum Hall effect. For a review we refer the reader to the bgoks of Prange and Girvin
(1987); Morandi (1988a); Stone (1992); Das Sarma and Pinczuk (1997); and JanBen
et al. (1994).

6.4.1 Preliminaries

Let us briefly recall basic facts about the classical Hall effef:t, di'scove'red by Edwin
Hall in 1879. Consider a homogeneous conducting plate, w1t.h dimensions (L, Ly)
placed in a strong magnetic field B = Be,. Imposing an electric current (I, 1) gives
rise to a change in voltage across the plate, given by

(6.151)
(6.152)

U = RI +Ryl,,
U, —Ryl; +RI,,

where R, R are longitudinal resistances and Ry is the so-called Hall resisFance. Usu-
ally, in performing an experiment, one has / y = 0 and hence the above relations reduce
to Ohm’s law,

Uy =RI, , (6.153)

and the classical Hall effect:

Uy = —Ryl, . (6.154)

Therefore, knowing the longitudinal resistance R and measuring U, and Uy, one finds,
for the the Hall resistance,
U

Ry =—-R2.

(6.155)
Ux

Let as assume that the electric current is produced by the constant electric field E =
(Ex, Ey), with

U, U,
== E, =—=. (6.156)
Ex L.’ YT L
Defining the current density j = (ji, j,) by
I s
Je = Jy=-=, (6.157)

Ly
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one introduces the resistivity tensor Puv according to the following relation:

E,= Zp;wjv ; (,v=x,y). (6.158)
v
One finds that
L ~ L
Pxx = pyy = RF; = RL_j , (6.159)
and
Pry=—pyx =Ry . (6.160)

The quantities Pxx and py, are called the longitudinal and Hall resistivities, respec-
tively.10 The corresponding conductivity tensor Ouv is the inverse of Puv, and hence

Pxx
T =0y = e 6.161
xx yy p)%x T p]%y ( )
Oyx = —Oxy = Pxy (6.162)

i+ 02,
Let us observe that when Pxy # 0, the conductivity o,, vanishes if and only if the
resistivity p,, vanishes.

The goal of physical experiments and theoretical investigations is to determine Oxx
and oy, as functions of electron concentration n :— N/LyL,, magnetic field B, and
temperature 7. In the Drude theory of the electrical conductivity of a metal, an electron
is accelerated by the electric field for an average time 7 — the relaxation or mean free
time — before being scattered by impurities, lattice imperfections, and phonons into a
state which has zero average velocity. The average drift velocity of the electron is

v="2g, (6.163)
m
where m denotes the electron mass. The current density is thus
J=—env=oyE, (6.164)
where
2
op =271 (6.165)
m

and n stands for electron concentration. In the presence of a steady magnetic field B,
formula (6.163) is replaced by

v= —fnl (E+§xB) , (6.166)

—_—

107, two-dimensional systems, resistivity and resistance are measured in the same dimensions,
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that is, the vectors j and E are no longer parallel. Ohm’s law (6.158) therefore gives

E, 1 1 Tw, Jx
= — ; , 167
(Ey) UO(“”"C 1 )(]y) (167

where w. = eB/mc is the cyclotron frequency. This implies that

1 TwWe
Pxx = — » Pxy =
00

(6.168)
o0

Now, in the Drude model the Hall resistivity py, is independent of the friction and is
given by

1
Pry = — (6.169)

s

OH
and hence one finds for the Hall conductance

en
B
Let us note that, in two dimensions, the physical dimension of the conductivity is
(charge)?/action. Thus its atomic unit is €2/ h, where h is the Planck constant. Hence

v €
og =v—,

="
where v is the so-called filling factor, defined by
v=2mt3n, (6.172)

and £p = /h/eB is so-called magnetic length. Note that

nh n
=" =", 6.173
v=pgo =5 % ( )
where ®g = h/e denotes the elementary quantum of magnetic flux. In this way one
finds the following microscopic interpretation of the filling factor:

(6.170)

OH =

(6.171)

number of electrons

V= : (6.174)
number of flux quanta
As revealed by the experiments of von Klitzing, the behavior of a real two-dimen-
sional system is dramatically different from that of an ideal two-dimensional electron
gas. Indeed, the Hall conductivity oy is not at all linear, but was found to be a step
function
P
og=4£4—,
="
with plateaus of an unexpected precision of order 1078 cf. Fig. 6.6. It turns out that this
quantization is universal and independent of all microscopic details such as the type
of semiconductor material, the purity of the sample, the precise value of the magnetic
field, and so forth. Note that the measurement of e/ h is equivalent to a measurement
of the fine structure constant, which is of fundamental importance in physics.

£=172,..., (6.175)

o
-
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Figure 6.6: A schematic view of the integer quantum Hall effect.

6.4.2 Quantum dynamics in a magnetic field

We shall now briefly describe the quantum dynamics of electrons in a constant mag-

netic field B = Be,. The Hamiltonian for electrons in the presence of the magnetic
field is given by

pl
=5 (6.176)
where the kinetic momentum IT reads
A=p+A=—invslaA
= —A = —1 - ) )
p . ~A (6.177)

and A.is a vector potential for B, i.e., B = V x A. The reader can easily check the
following commutation relation:

(M., [y] = —ikmo, . (6.178)
Now, introducing
= (i, —if
= e (I ify), (6.179)

one finds

[a,a*]1=1, (6.180)
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and the quantum Hamiltonian takes the following form:
H = ho, (a*a + %) , (6.181)

and hence corresponds to a harmonic oscillator of frequency w.. The corresponding
energy eigenvalues

1
€, = hw, (n + E) (6.182)

are called Landau levels. To find the corresponding eigenfunctions one needs to fix the
gauge of A. In particular, using the so-called Landau gauge,

A=(0,Bx,0), (6.183)
and by writing the wave function ¥ (x, y) in the form
Yi(x, y) = e (x) (6.184)
one obtains
Hipr(x) = epr(x) , (6.185)
with
LA W 2)* (6.186)
Hi= =g el (x+k65)

which corresponds to the Hamiltonian of a displaced oscillator. Hence, the correspond-
ing (unnormalized) eigenfunctions ¥, are given by

1 iy — 212 902 2

Yni(x, y) = \/—Lzy kY o= HkER 26 1 (x 4+ kt%) (6.187)
where H, is the nth Hermite polynomial. Each Landau level is highly degene:.itc,
since the energy does not depend upon k. To count the number' (?f sta‘tes corre;Ipont.mg
to a single Landau level, one assumes periodic boundary COI.ldlt:lonS in the y us;: ion.
Clearly, the use of the Landau gauge does not allowrforr.perlodlc boundary con t;(é;ls
in the x direction. Note, however, that Yrx rapidly vanishes for x away from — Bd.
Let us suppose that the left-hand edge of the rectangular sample is at x = f—L X ;nh
that the right-hand edge is at x = 0. Then the values of the wave vector k for whic

the basis state is substantially inside the sample, run fromk = 0tok = L/ £2B. Thus,
the total number of states in each Landau level is given by
ﬂ Ly/t% e BL,L,
2 0 )
and hence is equal to the number of flux quanta penetfating the sa.mple. Therefore,
using (6.174) we obtain another interpretation of the filling factor v, i.e.,

number of electrons (6.189)

(6.188)

E)

" number of states per Landau level -
Clearly, v = ¢ € Z if the first £ Landau levels are totally occupied.
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6.4.3 Fibre bundle approach to the QHE

To show that o, is quantized we shall use the topological approach to the QHE de-
veloped by Thouless et al. (1982), Niu et al. (1985), and Avron and Seiler (1985) (see
also Thouless 1997).

As a starting point let us consider a two-dimensional rectangular system in a per-

pendicular magnetic field with periodic boundary conditions for the wave functions in
both directions, i.e., such that

Y+ Ly, y) =¢(x,y), Y, y+ L)) =y, y). (6.190)

Imposing these conditions implies identifying the opposite edges of the rectangle,
which is in turn topologically equivalent to considering a two-dimensional torus. Now,
to apply the standard methods of condensed matter physics, we consider an infinite lat-
tice with lattice constants L, and L v respectively, that is, we repeat the original system
infinitely many times in both the x and y directions. The Hamiltonian of the system is
invariant under the discrete two-parameter group of so-called magnetic translations

Tayr(x) ;= exp (_if%B -(a x x)) Y(x+a), (6.191)

where a = (n,L,, nyLy), ny,ny = 0,1,2,... is the lattice vector. Magnetic trans-
lations commute with the Hamiltonian but not among themselves. In fact, it is easy to
show that

(o
Tn - Tp = exp (27{1' 3) Ty Ty, (6.192)
0

where ® = BL xLy is the magnetic flux through the unit cell of our lattice (i.e., it is
the flux through the sample). Clearly, for discrete values of B, such that

D =mdy, m=0,12,... (6.193)

(and thus corresponding to rational values of the filling factor v = N/m), the magnetic
translations do commute, and hence we may apply the Bloch theorem well known from

the quantum mechanics of periodic systems. The energy eigenvalues ¢, and eigenfunc-
tions ¥, defined by

Ao = €qs (6.194)

are labeled by & = (n, k), where n stands for the band index and k is the Bloch wave
vector. The Bloch theorem implies that

Vo (x) = ¥ %y (x) , (6.195)

where uq is strictly periodic, i.e.,

Ug(X) = uy(x + a), (6.196)
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with a being any lattice vector. Moreover,
€nk+g = €nk » (6197)

and

U kg (X) = € B Uy, (6.198)

where g = (g, &y) is a vector of the dual lattice, i.e.,

nx My 6.199)
=2 -, T . ( .
8 n(Lx Ly)

These properties enable us to restrict the Bloch wave vector k to the first Brillouin
zone, defined by

i m T < X (6.200)
—L—xskx<Lx, Ly—y L,

Now, let us recall that the unit cell Ly, Ly is topologically equivalent .to tl}e two-
dimensional torus. Therefore, it is convenient to parametrize the first Brillouin zone

by the following two angles:
@x =kxLy , ¢y =kyLy . (6.201)

Clearly, — < @x, ¢y < m. This construction gives rise to the following U (1)-fibre
bundle over the two-dimensional torus:

ung —> @ = (¢x, ¢y) € Torus. (6.202)
Define U (k) := ¢'*%, and
AK) = U KAUK), (6.203)
for an arbitrary operator A. With this notation one finds
HK)ug = €qitq - (6.204)
Now let us introduce the velocity operator v = (U, Dy), as follows:

. 18H®K L, 3H()

5. = (6.205)
YT B kg [ 10

and analogously . The celebrated fluctuation-dissipation Kubo fognula (Kgbo .1966)
relates the conductivity of a material to its current—current correlation function in the
following way:

1

Ouyv = 75—
LxL)' €p<€F

f o @) dox Adpy (6.206)
Torus
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where € denotes the Fermi level,

2 A ~ A A
) _ e“h (vv(¢))nm(vu(¢))mn — (0 (@) nm (00 (@) run
v @) =Gy ,; € @) — en(@))?

. (6.207)

and the matrix elements Oy, 1= (U, |01, ).11 To simplify the formula for a,ﬁ'f,) , recall
that

. L 3H (p)
(Vx (@Nnm = f(un,¢'W‘um,¢). (6.208)
Moreover, using
Ottm,p 1 ‘ab‘r«o) )
Un, —) = Up, Umgp) » 6.209
< ¢ dx ) €n(¢)—€m(¢)< e Doy ‘ " ( )

one finds

e’ i / ( Oup g
m=St [
h 2w Torus 8‘px
The above formula has the same form as the corresponding formula for the Berry phase

as the surface integral of the Berry curvature F®, cf. (2.62). In geometric terms the
Hall conductivity

Bun,,p) <3un‘¢ Oup e
0@y gy | dgx

)) de. Adey . (6210)

e iF®™
Oy = —
h Jtors 27

) (6.211)

where F® is the curvature two-form on the U (1)-bundle over the two-dimensional
torus. Recalling that

 F) .
/ 2 —¢eZ (Chernnumber), (6.212)
Torus 27

we have proved the quantization of .

6.5 Spin, statistics and the geometric phase

In this section, following Berry and Robbins (1997, 2000) (see also the recent article by
Harrison and Robbins 2003), we are going to show that the standard relation between
spin and statistics in the nonrelativistic quantum mechanics of identical particles may

llAc:mally, formula (6.207) is valid only for a temperature T = 0. If T > O there is an additional T-
dependent factor — see the literature on QHE.
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a) b) c)
m my mi my my mi
L ] L J [ ] [ ]
1 2 2 1 1 2

Figure 6.7: Three states of the two-particle system: a) corresponds to |M(r) ); b) to |[M(—r) );
and c) to |M(r) ).

be interpreted as another manifestation of geometric phase. (This time it has a purely
topological origin and hence it is an example of topological phase.)

We restrict ourselves to the two-particle case (for generalization to many particles
we refer the reader to the original article by Berry and Robbins). Here we show that
the celebrated Pauli sign (—1)5 appears as a geometric phase factor corresponding to
the parallel transport of states of spins in a certain enlarged Hilbert space (which con-
tains the original spin Hilbert space as a subspace). This parallel transport is realized
via a unitary operation called exchange rotation. Each exchange rotation produces the
corresponding Pauli sign. It turns out that the proper mathematical language to deal
with this object is the Stiefel-Whitney class of the corresponding vector (or rather
two-spin) bundle over the configuration space of two identical particles. As we shall
see, this space is neither orientable nor simply connected.

6.5.1 The transported spin basis

Consider two identical particles with spin S in R3. If ry and r, denote their positions,
then the wave function of the composite two-particle system depends on the relative
position r := r; — r;. Clearly, exchange of particles leads to

ry <> ry, or equivalently, r «— —r,

together with the exchange of spins. Each particle carries (25 + 1) spin states which
are usually described, one for each particle, by

|S,m1), and |[S,m2),

where my,mp = -5, -S+1,...,5-1,S represents the z-component of the spin
of the corresponding particle. We shall denote by M := {m, m»} the spin state of the
composite system. Then the exchange of spins corresponds to (cf. Fig. 6.7)

M={m,my} «— M={ma,m}. (6.213)

Now, apart from the fixed basis |M ) let as define an r-dependent (transported or co-
moving) basis |M(r) ) which represents spins in a way that depends on the relative
position of the particles. The transported spin basis is defined by

M) =U@M), (6.214)
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where U (r) is a unitary operator. It should be stressed that the above formula does not
represent a simple r-dependent change of basis in the corresponding Hilbert space of
spins Hpins = C(2S+1)2; rather, the vectors |M (r) ) live in an augmented d-dimensional
space with d > (25 + 1)2. Thus U (r) operates in an enlarged space and it is clear that
neither |M(r) ) nor |M ) span this space (recall that (25 + 1)? vectors (M ) span the
space of spins Hspins). We require the transported basis [M (r) ) to satisfy the following
properties:

e It is smooth for all r 0.
e |M(r)) is single-valued.
e [M(r) ) is parallel transported, i.e., the following equation is satisfied:
Ay =i(M'@IVMT))=0, (6.215)
for arbitrary values of M and M’.

Clearly, the above formula is an analog of the Born—Fock gauge conditions (cf. (2.16)
and (2.187)). By introducing the transported basis |M(r) ), we may incorporate the
indistinguishability of particles by identifying r and —r. Clearly, |[M(—r)) and |M(r) )
define the same spin state, and hence they may differ by an r-dependent phase factor
only, as follows:

IM(—r)) = O M(r)) . (6.216)
Now, since the basis is single-valued, a double exchange would lead to
IM@®)) = IM(—(-D)) = DM (=) ) = DO 31y )

and hence ¢ (r) = u(r) + 7K, where u(r) is an odd function, i.e., u(—r) = —u(r),
and KX is an integer. Therefore, the exchange rule (6.216) may be rewritten in the form

IM(=1)) = (DX O M) ) . (6:217)
Now, the parallel transport condition (6.215) implies
Am,m(—1) = Az 20 (0) — V() Spr,00 (6.218)

which shows that u is constant. However, u is an odd function, and hence it vanishes.
Thus the exchange rule reduces to a sign exchange, i.e.,

IM(—r)) = (-DX M) . (6.219)

Having defined a parallel transported basis we may represent any spin state |W(r) ) of
the two-particle systemn as follows:

@) =" Y@ IM®), (6.220)
M
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where ¥ (r) is a 25 + 1)2-dimensional vector. Note that |M (F)) .do not span tl;e
augmented d-dimensional space, the physical spin states span live in a (25 + 1)*-
dimensional subspace unitary related to Hspins via relation (6.214).. Hence, |¥(r)) as
a physical state is represented entirely in terms of |M (r) ). Now, single-valuedness of
the wave function requires

W(r)) = [W(-1)), (6.221)
and, hence, the sign exchange rule (6.219) gives

W(-1) =D (D)DK M) =) vur(-nE=DEIMm) . (6.222)
M M

Thus
V(-0 = DX yu @) . (6.223)

Obviously, this resembles the usual spin-statistics relation. Recall that in the standard
relation we have

V37 fixea(—T) = (=D ¥p fixea(r) , (6.224)
where Y7 fixed (r) are defined with respect to the fixed basis |M ), that is,
[Whired () ) = D ¥u,fixed®) 1M ) . (6.225)
M

What is the relation between 37 (r) and ¥ fixed (r)? Note that |Wfxeq ) and [W) live
in different spaces.

Proposition 6.5.1 Both v fixed (¥) and Y (r) satisfy the same Schrodinger equation
and hence they are equal.

Proof. We have to compare the action of the momentum operator P and the spi'n op-
erators S = (Sy, S2) on ¥y fixed(r) and ¥ (r). The momentum operator has, in the
fixed basis, the usual form, i.e.,

Pfixed = —iAV,
and therefore, in the transported basis, it is defined by
P(r) = U(n)Pfixea U™ (r) .
Clearly, in the fixed basis, one has
( M |Pfixed| Wrixed(r) ) = —iAV Y fixed(T) -
Now, due to

(M@|P@O|¥(r)) = (MIU*(0U [0)PfixeaU " @)W (X)) ,
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and
UrmI¥®) =Yy @ U ®IM'E) =Y yarr) M)
M M
one obtains

(M@)PEWI) =) (MM )Pyeatrpp (r) = =iV iy (r) . (6.226)
Mi'

Similarly, the action of Sgyeq, in the fixed basis, is given by

( M|Sﬁxed|wﬁxed(r) )= Z I/’M/,ﬁxed(r) <M|SﬁxedlM,> s (6~227)
MI
whereas
(MDISO¥(r)) = (M|U*@)UX)ShixeaU* (@)W (1))
= D U@ (M|SgxealM') . (6.228)
M/

This shows that the transported (¥37(r)) and fixed (¥M.fixea(r)) quantities satisfy the
same Schrddinger equation, and hence they are the same functions, i.c.,

Ym(r) = Y fixed (1) , (6.229)

for all r. O
The above proposition immediately implies that

W) = U(r)|Wixed(r) ) . (6.230)

Note that, unlike | ¥ (r) ), which does not change under exchange of particles, |Wxeq(r) )
may change.

6.5.2 Schwinger representation

It is well known that one may represent the Lie algebra su(2) in terms of the anni-
hilation and creation operators of the harmonic oscillator — the so-called Schwinger
representation (Schwinger 1965). For a single spin, two independent oscillators are

required, that is, we have two sets a, a* and b, b* together with the standard commu-
tation relations:

[a,a*]=1, and [b,b*]=1, (6.231)

with all other commutators involving a’s and b’s vanishing (since the oscillators are
independent). Let us construct a spin vector S = (S, Sy, S;) as follows:

S = g (@*b*) o (Z) , (6.232)
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where, as usual, o stands for the vector of Pauli matrices. In particular, one obtains
h
S, = 3 (a*a — b*b)

and
Sy =S +iSy, =ha*b, S_ =8 —iSy =hb%a.
Using (6.231), one easily finds the standard commutation relation of su(2), i.e.,
[S;, S+1=hS+, [S;,S-1=-hS_, [S+ S-1=24aS,.

Introducing oscillators eigenstates |n,; ) and |ny ), such that

a*alng) =nglng), and b*blny) =npiny ), (6.233)
one finds that

Szlna, nb ) = h m'"a» nb ) y (6.234)

and
S%(na, np) = B2 S(S + Dina, np ) , (6.235)

with

1 1

S = E(na +np) , m= z(na —np) . (6.236)

Therefore, in this represeatation, the eigenvectors of S? and S, with quantum numbers
§ and m correspond to number states of the oscillators, i.e.,

IS,m) = |ng,np) . (6.237)

Now, the standard spin-S representation of su(2) is (25 + 1)—dimcnsi.onal. Note that
the oscillator representation has the same dimension: We have to distribute 2§ quanta
among two oscillators (n, + np = 25) and this can be done in exactly 25 + 1 ways.

Example 6.5.1 If S = 1/2 one has a two-dimensional representation and the two
oscillators give two number state vectors:

[1,0),]0,1).
For § = 1, one obtains three eigenvectors:
2,0),10,2),]1,1).

The reader can easily find the corresponding (25 + 1) eigenvectors for an arbitrary S.
<&
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Now consider two particles, with spins S; and S,. The composite system carries spin
S =8, + S2. Now, two spins require four oscillators: (a1, by) for 8y, such that

S = g(ai‘ b} o (Z:) ) (6.238)

and (az, by) for Sy, such that

h a
$;:= 3 (@3 b)) ( bz) : (6.239)

The total space in which the two spin operators S1 and S, act is a tensor product of the
carrier spaces of the two su(2) representations; one of which is (281 + 1)-dimensional,
and the other (25 + 1)-dimensional. Hence,

Htotal — C2S1+l ®C2$2+1 a C(2Sl+1)(2S2+1) . (6.240)
Now, in Hiora) We have the following basis:

(81, 82, my,mz) =51, 8, M),
where M = {m;, m»}, and
m=-S,-S1+1,...,5—-18, my=-5,-5+1,...,5%—-1,85;.

Introducing the corresponding oscillator eigenstates |1, ), |12, ), In1s ), |n2p ), one
easily finds that

Szln1a, n2g, n1p, nop ) = g (n1a +n2a — n1p — n2p) |n1g, n2a, N1, N2 ), (6.241)
and
S%|n1a, n2a, M1 n2p ) = B2S(S + 1) |ny, N2a, Rip, N2p ) , (6.242)
with
S= % (n1a +n2ga +n1p + nap) . (6.243)

Hence, using the Schwinger oscillator representation we may reproduce the standard
basis |S, m1, my ) in Hyoap. One has

1 1
Si=zatny), $= 5 (n2a +n2) , (6.244)

and

1 1
m =z (g —nwp), my= 3 (n2q —n2p) . (6.245)
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Therefore,
neg=S8S1+mi, npag=8-+my, np=8—my, nyp==5-—my,
and hence

[n1g, P2a, B1p, N2p ) = |S1 +my1, S2 +m2, Sy —my, S2 —m2) =151, 52, M) .
(6.246)

Note that the set of vectors |n14, 124, P15, n2p ) Span a vector space with dimension
Dy, s,, which is greater than (281 + 1)(2S2 + 1). Clearly, Ds, s, equals the number
of ways 2(S1 + S2) elements may be distributed among four boxes (114, 24, 715, and
nyp count elements in separate boxes). Simple combinatorics gives

2(S1+82) +3
DSI,52=( (81 32) )

= é 2SI +25+1D2S1+25+2)2S1+25+3) > 251 +D2S%S+1).

Example 6.5.2 Let S| = S = 1/2. Then the total space H;otal is spanned by four
vectors, written as

I+s+)7 |+’_)v l_’+)’ |_7—)s

where we use the following obvious notation: |+ ) are solutions to S;|£) = i% |£).
The Schwinger representation gives a ten-dimensional space spanned by |r14, 124,
n1p, N2p ), With n1; + no, + n1p + nop = 2. The above four vectors are reproduced as
follows:

[1100) = |+, +),  [1001) =|+,—),

|0110) = |-, +), 0011) = |-, —) .

Moreover, there are the following six additional vectors:
[2000) , |0200), |0020), |0002), [1010), |0101).

Clearly, these additional vectors violate the rules (6.244) and (6.245), and hence they
do not correspond to physical states. <

6.5.3 Exchange rotation

Now we are ready to perform unitary transformations in the enlarged Dy, s,-dimen-
sional space (actually, we are interested in the special case when §; = S5). Define
vector operators E, and E, which mix the two spins, as follows:

/]
E, = 2 (aja})o (Z;) , (6.247)
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and
P b
E, = (bib})o ( b;) ) (6.248)
Clearly,
[(Edk, (Ea)l] = iheum(Edm .
[(Ep)k, (Ep)1] = ihe€um(Ep)m, (6.249)
[(Ek, (Ep)] = O,

where (E;)i ((Ep)k) denotes the kth component of E, ( Ep). Defining
E:=E;+E;,
one has immediately
[Ex, Ei] = ik €imEm | (6.250)

that is, E,, E; and E satisfy the commutation rules of angular momentum. Following
Berry and Robins (Berry and Robbins 1997) we shall call E the exchange angular mo-
mentum, because, as we shall see, it may be used to generate the unitary transformation
in the enlarged space such that the exchange sign condition (6.219) is satisfied. Before
we demonstrate this, let us observe that

[E25 Sl] = [EZs SZ] = [Ez, St()ta]] = 0 N (6.251)

where Sora1 = S1+S2. However, the x and y components of E, and E; commute with
neither the spins S; and S, nor with S 12 and S22. Now let us construct the map

Rs>r — U(r),

where the unitary operator U (r) acts in the enlarged space. Recall that our basic re-
quirement for U (r) is to satisfy the sign exchange rule (6.219). Suppose that the line
joining the particles is rotated from e, to r. The simplest way to do this is via a single
rotation about the axis n, where

e, xXr

n(r) := s
lez x r|

by 6 radians, where (6, ¢) are spherical angles of r in R3. Moreover, one easily sees
that

n(r) = —e,sin¢g +eycos ¢ .

Now, to the above rotation in R, we associate the following unitary transformation of
the two-spin state:

U(r) := exp { —ion() - E} . (6.252)
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Following Berry and Robbins, we shall call U(r) an exchange rotation. Clearly, due to
(6.249), the exchange rotation separates into

U(r) = exp { —ifn() - E,,] . exp { —ign) - Eb] = Ua(r) - Up(r) . (6.253)

Let us study the action of U (r) on the states |n14, n24, n1p, 725 ) spanning the Dy, s,-
dimensional (enlarged) space. We shall first consider a general situation with two
different spins (S; # S2) and finally restrict to the case of identical particles with
St = S2 = S. Any vector |ny,4, nq, n1p, n2p ) is created from the vacuum |0, 0,0, 0)
by the well-known oscillator prescription

In1a, n2a, b, n2p ) = N (ap)™e(a3)™= (bT)™ (b3)"* 10, 0,0,0) , (6.254)
where N stands for a normalization constant. Let us define
aj(®) =U,x)aj U;(r), a3(r):=Us()ajUl(r),
and
bi(r) :=Up(m b Us(x), b3(r) := Up(r) b3 U (r) .

One can show that

; 6
cos (g) at + €% sin (5) ay , (6.255)

: 7 7]
—e % gin (5) aj + cos (5) a; , (6.256)

and similarly for the b*’s. Now, let us introduce a transported basis in the enlarged
space, as follows:

ay(r)

a5 (r)

In1a, n2g, n1p, n2p (1) ) := U(X) [R1a, R2a, B1p, H2p ) . (6.257)
One then has
Iniq, 24, n1p, nop(r) ) = N (af (£))"4 (@3 (r))" (b7 (r))"2 (b3 (r))"% |0, 0,0,0) .
(6.258)

Using the formulae for the a*(r)’s and b*(r)’s one finds

[1a, n2g, n1b, n2K (X))

N(cos(g)af+ei¢sin() )

% ( —e 7 gin ( ) aj + cos (2) ) (6.259)
0 nip

X (cos (—) b + £'? sin ( ) )
2

X ( e"d’sm( )b*+cos( ) *) 10,0,0,0) .
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Having defined the action of U (r) it is straightforward to obtain the action of U (—n);
the reflection r — —r corresponds to the following replacements:

0 —m—6, and ¢ — ¢p+7m.
Therefore, using (6.259) we obtain the transformation under U (—r):

I1a, R2q, R1p, n2p(—T))

0 . 0 Nla
N (sin (E) ai — e'® cos <§> a’z“)
—i¢ 4 * . 6 * "
e '? cos 3 ay +sin 3 a, (6.260)
[ . 9 np
(sin (E) b} — €' cos (E) b;)
. "2
(e_'¢ cos (2) b} + sin ( ) b2) 10,0,0,0) .

The formula for |n14, 124, n1p, n2p(r) ) may be rewritten in a slightly different form
by factoring out an overall phase factor, as follows:

X

X

X

I1a,s n2a, R1p, n2p (X)) = NePMa(— )12 g=i®M2a b1y (_ | yn2b p—idn2

. 0 . 2] Nla
X {(e i cos (5) aj + sin (5) aé‘)
0 ; 6 "2a ; o\ .\
X (sin (-2—) ay — e cos (5) a%) x (e_’¢ cos ( ) b} + sin ( ) b2)
0 . 0 n2
x (sin (E) b} — €'® cos (5) b;) } 10,0,0,0) . (6.261)

Comparing with (6.260), one finds that

In1a, n2a, Rib, B2p(E) ) = (=1)2012 QI Matmib =20 —n0) o o o s () )

Thus U(r) does indeed generate the exchange of spins §; <« S;. Restricting to the
physical subspace, such that

1 1
Sy = 5("1(1 +nw), m = E(nla —np)=-S,-S1+1,...,8-1.8,
and
1 1
Sy = E(nza +n), mp= f(nza —nyp)=-5,-H+1,...,5%-1,5,

the above formula may be equivalently rewritten as follows:

[S1, S2; M(1)) = (—1)252£%¢S1=5) |5, 81 M(-1)) . (6.262)
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Hence, if S = 52 = §, it leads to

M) = (-1 |M(-1)), (6.263)

which proves the sign exchange formula (6.219), and it shows that K = 2§ in perfect
agreement with the celebrated Pauli formula (6.224).

6.5.4 Pauli sign as a topological phase

Now we show that the Pauli sign (—1)25 in (6.263) may be interpreted as a geometric
phase. In the standard approach to the Pauli principle one considers the coefficients
Y M fixed (T) Of the fixed-basis wave function |Wgxeq(r) ). According to formula (6.224),

Vit sixed (=0 = (=1 Up fixea (@) (6.264)

that is, ¥ fixed () acquires the standard Pauli sign (—1)25 under exchange of positions

and spins denoted by

r— -r, and M — M,

respectively. In the transported basis |[M(r)), the sign change of the coefficients
Yum(r) = Y fixed(T) is compensated by the sign change of |M (r) ) according to our
basic rule (6.263). Therefore, the wave function

W) =" yu®M)),
M

is single-valued.

Recall that the Pauli sign (—1)?S arises from the parallel transport generated by the
exchange rotation U (r) in the enlarged space; this is exactly the general mechanism
for producing geometric phases. The present situation reminds us how the adiabatic
phase in quantum mechanics arises: A total system is divided into two parts — the
space part (described by y¥37(r)) and the spin part (described by |M(r)}). The space
part ¥ (r) acquires an additional phase factor to keep the total wave function |W(r) )
single-valued.

Note that, contrary to the previous examples of geometric phases, the Pauli sign does
not arise from the line integral of the corresponding connection form, or, equivalently,
from the flux of the first Chern class of the corresponding fibre bundle. The mathemat-
ical origin of the phase factor (—1)25 is different. This time, the geometric phase has
purely topological origin and it is associated with the first Stiefel-Whitney class in the
two-spin bundle over the configuration space of two indistinguishable particles, i.e.,

Mo = @R xR —A)/S,,
where

A= {(l‘],l‘z) e R? x R? | ry =r2]

V=

grOTPO

6.6. Entanglement and holonomic quantum computation 293

and 7 is the permutation group of two elements. Hence, the corresponding bundle is
given by

E =~ (C25+1 ®(C2S+l — M,

In contrast to the other characteristic classes we have considered earlier, the Stiefel—
Whitney classes of the vector bundle E —> M are not integral cohomology classes
and are not given in terms of curvature. They are defined as

wi(E)e H(M,Zy), i=1,2,...,dimM—1, (6.265)
that is, the integrals of w; (E) are Z»-valued (i.e., 0 or 1) — see, e.g., Milnor and Stash-
eff 1974 for more details. It turns out that w; (T M) = 0 if and only if M is orientable.
Now, one can show (see, e.g., Morandi 1992) that the configuration space M3 is not
orientable and hence gives rise to nontrivial first Stiefel-Whitney class. Since the fun-
damental group m1(M3z) = S» = {e, o}, we have only two classes of loops in My,
i.e., contractible loops corresponding to the identity e in S, and noncontractible loops
corresponding to the exchange permutation . Each noncontractible loop y gives rise
to the nontrivial flux of w; through any two-dimensional region in M having y as its
boundary.

Remark 6.5.1 Actually, in physical applications the second Stiefel-Whitney class w»
plays a very important role. It turns out that w;(7T M) determines whether or not par-
allel transport of Dirac spinors can be globally defined on TM. If

wi(TM) = w2 (TM) =0,

then the Dirac spinors are well defined and M is called a spin manifold. <

6.6 Entanglement and holonomic quantum computation

Despite a popular claim that the research in the area of geometric phases is almost
over our final example shows that this statement need not be true. Quantum informa-
tion theory — a rapidly developing subject — has discovered a surprising application
of geometric phases in the modelling of quantum gates, basic units of a quantum com-
puter. This example shows that geometric phases are still worth to study.

6.6.1 Composite systems and entangled states

Consider two quantum systems A and B and let H 4 and H p denote the corresponding
Hilbert spaces.!? Suppose now that we are interested in the composite system AB,

121y quantum information theory one usually speaks about “Alice” and “Bob” systems.
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made up of A and B. The composite system Hilbert space H 4 is a tensor product of
H 4 and Hp, i.e.,

Hap=Ha®Hp, (6.266)

which means that if |[A) € H4 and |B) € Hp denote the state vectors of A and B,
respectively, then the joint system is in the state

|AB)=|A)®|B) € Hap . (6.267)

Note, however, that a general vector from H4p cannot be written this way. We call
an element ¢ € Hap a separable state if there exist Y4 € Ha and Yp € 7?13 such
that ¥ = ¥4 ® ¥p. If this is not the case we call ¢ an entangled state or, simply, a
nonseparable state.

Recall that if (e, ... , ey) denote a basis in H4 and (fi, ..., far) a basis in Hp,
then

e, ® fu, u=1,... ,Nyv=1,... .M,

define a basis in the (N x M)-dimensional space H 4p. This means that an arbitrary
vector Y € H4p may be represented as follows:

N M
V=)D Vweu®fy, (6.268)

u=1lv=1

with ¢, € C. Now, given a state ¥ € H4p, how can one tell whether it is separable
or entangled? To answer this question let us use the following

Theorem 6.6.1 (Schmidt~decomposition) For every \r in H ap there exist orthonor-
mal bases {é,}y_; and { fu}}L such that

K
Y= ayéa® fa, (6.269)

a=1
where aq > O with °X_ a2 = 1, and K < min{N, M).

The state ¢ € H 4 p is separable if and only if its Schmidt decomposition contains only
one term, i.e., K = 1.
Example 6.6.1 (Bell states) Consider two qubits, with individual Hilbert spaces H4 =

Hp = C2. Denoting by |0) and |1) the standard orthonormal basis in C? one intro-
duces so-called Bell states, as follows:

) = % (01) £ 110)) , (6.270)

and

lp¥) = % (100) £ |11)), 6.271)
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where |01) := |0) ® |1), etc. These four vectors define an orthonormal basis in C?®
C? = C*. Moreover, they are all entangled states. <&

The notion of separability and entanglement may be easily generalized to mixed
states of the composed system (Werner 1989). A mixed state represented by a density
matrix p in H4p is called separable if and only if it can be represented as

K
P=D) Pupu®0u, (6:272)
a=1

where p, > 0 with Ef=1 Pa = 1, and py and o, are mixed states of A and B, re-
spectively. Surprisingly, contrary to the case of pure states, the criterion of separability
is still unknown for composite mixed states, see Peres 1995 and Horodecki et al. 2001
for more details.

6.6.2 Qubits and bundles

Recall from sections 1.4.4 and 5.1.3 that a qubit (or, equivalently, a two-level quantum
system) gives rise to the celebrated Hopf fibration S° — §2. Any normalized qubit
state may written as follows:

v =al0)+B]1),
where o, B € C2 and
e + 187 =1,
which defines the unit three-dimensional sphere $3. The Hopf map

535 (@ B) — (x0,x1,x2) € 2

is defined by
x = (o) =laf?~|B,
x1 = (oy)=2Re(@p), (6.273)
x2 = (oy)=2Im@p).

Clearly, if ||? + | B|* =1, then xg + xl2 + x% = 1. Now, let us consider a composite
two-qubit system. Any normalized two-qubit state may be written as follows:

Y =al|00)+B01)+y|10)+48]|11), (6.274)
where «, B8, y, 8 € C and

lel> + 1B+ 1yP+182=1. (6.275)
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The above formula defines a unit seven-dimensional sphere S7. A two-qubit state  is
separable if it is a tensor product of two single-qubit states ¥ = /1 ® ¥>. Representing
¥ in the (JO), |1)) basis, as follows:

Y1 =al0)+b]1), Yo=cl|0)+d|1), (6.276)
one finds, for a separable state ¥; ® V2,
Y =acl|00)+ad|01)+ bc|10) 4+ bd |11) . 6.277)

Hence, the two-qubit state represented by (6.274) is separable if and only if
ad =By . (6.278)

Interestingly, the above separability condition for two-qubit states may be nicely de-
scribed in terms of another Hopf fibration, ST — s , discussed in section 1.4.5
(Mosseri and Dandoloff 2001). Any point on S” may be represented by a pair of quate-
nions (g1, q2), which we write as
qi=a+p], @=y+87], (6.279)

and which satisfy |g; |2+ |g2 |2 = 1 (J stands for the unit quaternion — cf. Appendix B).
The Hopf map

B (o, B,y,8) —> (x9,x1,%x2,X3,X4) € s*

is defined by
xo = lql’ —lgl*,
x1 = 2Re(ay + B9,
x = 2Im(ay + B8), (6.280)
x3 = 2Re(ad—By),
xa = 2Im(ad— By).

As observed by Mosseri and Dandoloff (2001), the above formulae may be rewritten
in perfect analogy with formulae (6.273). Let us define the so-called “entanglor” as

E:=—-J(oy®o0y), (6.281)

where J takes the complex conjugate of all complex numbers involved in an expres-
sion. Using this antilinear operator, formulae (6.280) are recovered as follows:

x = {(o;®1),

x1 = (ox®1),

x = (6y801L), (6.282)
x3 = Re(E),

x4 = Im(E).
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It is easy to show that if |g1]> + |g2]* = 1, then xZ + x? + xJ + x4+ x? = 1. Letus
observe that the separability condition (6.278) implies that x3 = x4 = 0, and hence, for
separable two-qubit states, the Hopf map sends points from S7 into $2 < $*. Therefore
the Hopf map detects whether the state is separable or entangled. This is just one more
elegant application of the Hopf map in quantum physics.

6.6.3 Quantum computer — an overview

Among the surprising discoveries made recently in quantum mechanics is that quan-
tum systems can be used to perform information processing tasks, including computa-
tions, and can do so more efficiently than any classical method (for reviews see, e.g.,
Steane 1998; Nielsen and Chuang 2000; Bennett and DiVincenzo 2000; and Ekert
2002). In recent years a lot of activity has been devoted to constructing and imple-
menting schemes for taking actual advantage of such quantum phenomena. Our aim in
this short section is to give a flavour of what a quantum computer is.

Classical computer circuits consist of wires and logic gates. The wires are used to
carry information around the circuit, while the logic gates perform manipulations of
the information. The basic ingredients of a quantum computer are roughly the same;
quantum information has to be transported and manipulated. As everybody knows,
classical information is measured in bits. Now, a qubit is an elementary unit of quantum
information. A quantum system is said to have n qubits if it has a Hilbert space of 2"
dimensions, i.e.,

n copies
e e
n =C2®®C2 .

Therefore, it should be clear that to perform any information processing one has to
learn how to operate on a single qubit. A single-qubit guantum gate is nothing but a
unitary operation on the qubit Hilbert space, that is, on C2. Some of the most important

quantum gates are the Pauli matrices, denoted in quantum information theory by
X =0y, Y=0, Z=0;.

Other quantum gates that play a crucial role are the Hadamard gate H and the phase
shift gate P(¢). They are defined as follows:
1 0
P(p) = ( 0 i ) :

=504

Clearly, not all of the gates defined above are independent. For example, H = % X+

Y), Z = P(mr) and obviously ¥ = X - Z. Note that an X gate is an analog of the
classical NOT gate:

X10)=11), X[1)=10).

Now let us turn to unitary operations on a pair of qubits, or, equivalently, on a two-qubit
state. Among these, there is a distinguished class of so-called controlled U operations:
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If U is an arbitrary unitary operator acting on C2, then the controlled U, acting on
C? ® C2, is defined by

OXO0l®@T + 11U . (6.283)

Taking U = X, one obtains one of the most important two-qubit controlled operations
— controlled-NOT, or, simply, “CNOT.” The reader can easily check that the effect of
CNOT is represented by

[00) — ]00), [01) — |01), [10) — |11), j11) — }10),
(6.284)

or by the following 4 x 4 matrix:

CNOT = (6.285)

S OO -
SO = O
= = e
o= OO

Clearly, there is an infinite number of unitary operations — quantum gates — that can
be applied to n-qubit states. A set of quantum gates is said to be universal for quantum
computation if any unitary operation may be approximated to arbitrary accuracy by a
quantum circuit involving only these gates. Surprisingly, the set of universal gates is
quite simple. As shown by Deutsch (Deutsch 1985) it consists of the Hadamard gate,
the phase shift gate and the CNOT gate. This is a remarkable observation — two-qubit
gates are sufficient for quantum computation.

Knowing how to operate on qubits let us say a few words about the way one trans-
ports quantum information. We stress that this is a nontrivial problem, since in mea-
suring a state we destroy it, while according to one of the basic principles of quantum
mechanics, the unknown quantum state cannot be cloned (copied). The solution to
this problem was found quite recently (Bennett et al. 1993) and is known as quantum
~-teleportation. Suppose that two observers (traditionatly Atice and Bob) would like to
exchange information about an unknown qubit state, say . More precisely, Alice has
a qubit in the unknown state ¥ and she would like to send this state (not a particle
itself!) to Bob. The procedure to teleport v from Alice to Bob works as follows: Alice
prepares an entangled two-qubit state and interacts the unknown qubit ¥ with one half
(“her” half) of the entangled pair. Then she measures the two qubits (the original one
and hers from the pair), obtaining one of four possible classical results [00), [01), |10)
or |[11). She sends this information to Bob, e.g., using a telephone or any other “clas-
sical communication channel,” together with the second qubit from the entangled pair.
Now, depending on Alice’s classical message, Bob performs one of four operation on
his qubit (one of the pair sent by Alice). Surprisingly, by doing this he recovers Alice’s
original (still unknown) qubit state . To see why this is so, suppose that the Alice
state to be teleported is ¥ = « [0) + $|1), with unknown o and B. Let us take as
an entangled two-qubit state one of the Bell states (cf. Example 6.6.1), say ¢t. The
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composite three-qubit system is in the following state:

1
¥ ®¢" = —=[@10)000) + 1))+ B11)(00) + 11 )]

where we use the convention that the first two qubits belong to Alice and the third one
to Bob. Now Alice sends her two qubits through a two-qubit CNOT gate. The new
three-qubit state obtained this way reads

1
vi= [ 10)400) + 1))+ (1)(110) + fo1))]

Then she sends her first qubit through a Hadamard gate, obtaining

1
Yo = E[a(IO) +11)(00) +11)) + B (10) — [1))(]10) + |01 ))] ,

which, after simple algebraic manipulation, may be rewritten as follows:

1
V2 = E[IOO)(aIO)+,3|1))+I01)(all)+ﬂ|0))
+ I10)(0t|0)—ﬂll))+I11)(OtI1)—ﬂIO))]-

Now a miracle occurs! Knowing the result of Alice’s measurements on her two qubits,
we can read off the state of Bob’s qubit, as follows:
00 — yP=al0)+481),
01 — y3'=all)+8l0),
10— y3°=al0)-pI1),
11 — yil=all)-B0).
Therefore, depending on the results of Alice’s measurements, Bob would recover the
unknown Alice state v, as follows: S
00 — y=yP,
01 — ¢ =Xxyd,
10 — ¢ =2Zyl
11 — y=2zXyll=rvyl'.
Let us summarize this short introduction using the following prescription for a “uni-

versal quantum computer” (Deutsch 1985). A quantum computer is a set of n qubits in
which the following operations are experimentally feasible:

1. each qubit can be prepared in some known state, say |0),

2. each qubit can be measured in the so called computation basis: {|0), |1)},
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3. auniversal set of quantum gates can be applied at will to any subset of qubits,
4. the qubits do not evolve other than via universal gates.

Whether or not such idea can be realized is still an open problem. However, at least
single quantum gates can be physically implemented, e.g., in ion traps, nuclear mag-
netic resonance and cavity quantum electrodynamics (see Nielsen and Chuang 2000
for details).

6.6.4 Holonomic quantum computation

The main idea of holonomic quantum computation is the following (Zanardi and Rasetti
1999; Pachos, Zanardi and Rasetti 2000; Pachos and Zanardi 2001; and Vedral 2002):
Suppose one is given a family of degenerate Hamiltonians H (1) parametrized by a set
of parameters A € M. The information is encoded into an n-dimensional eigenspace
Hn = C" of some Hamiltonian H (Ag). Such a subspace represents what “quantum
engineers” call a quantum code. The universal quantum computation can then be re-
alized by adiabatically driving the control parameters A along suitable loops C in M
rooted in A¢. Clearly, this resembles very much the procedure leading to the nonabelian
adiabatic Wilczek—Zee factor (see section 2.3). Each loop C gives rise to a nonabelian
geometric factor — the holonomy of C:

O(C)=Pexp (f A) ,
c

where A is a non-abelian connection form. In this way a loop C in the control space
M produces a quantum gate ¢ (C) in H,,. In other words, holonomic quantum com-
putation consists of the parallel transport of the states from the degeneracy subspace
Hy, governed by the connection A. The whole quantum network is built in terms of
holonomies and the entire computation process is fully geometrical.
In this framework the requirements for implementing the universal quantum com-
puter can be expressed in terms of the availability of closed paths in M. Universality
is the experimental capability of driving the control parameters along a minimal set of
loops C,, which generate the basic quantum gates ®(C,). That is, it should be possi-
ble to approximate any unitary operation U : ‘H,, —> H,, with arbitrary high accuracy
by means of ®(Cy,).
Recall that the holonomy group (based at a point Ag)

(6.286)

Hol(xp) = { @(C) | C — loop rooted at Ag € M }

is a subset of the unitary group U (n). When the holonomy group Hol(Ag) coincides
with U (n) the connection 4 is called irreducible.! Clearly, the notion of irreducibility
plays a crucial role in holonomic quantum computation; it is evident that the holonomic
quantum computation is universal if the corresponding connection is irreducible. Now,

BRecall that holonomy groups based at different points of M are conjugated, cf. formula (1.179).

6.6. Entanglement and holonomic quantum computation 301

to check whether the connection is irreducible it is useful to consider the corresponding
curvature two-form

1
F=dA+ E[A’ A]l. (6.287)

One can prove (see, e.g., Choquet-Bruhat et al. 1982) the celebrated

Theorem 6.6.2 (Ambrose-Singer) The Lie algebra of the holonomy group is spanned
by F(u, v), where u and v are arbitrary horizontal vectors.

The Ambrose—Singer theorem implies that when F' spans the whole Lie algebra u(n),
then the connection A is irreducible.
As an example, consider the degenerate Hamiltonian

Hy=¢n+1)(n+1], (6.288)

acting on the Hilbert space H = C"*1 spanned by the n + 1 vectors {|a )};‘;11. Clearly,
Hy is n-times degenerate: Hyla ) = O fora = 1,2, ..., n. As a family of Hamiltoni-
ans let us take the whole orbit of the adjoint action of U (n + 1):

OHY) ={UHU*|UeUm+1)}. (6.289)
One then has
L U+
O(Hp) = T <0~ cp", (6.290)

where CP" denotes the complex projective space, cf. section 5.1.3. This shows that
by taking as the control space M the n-dimensional complex projective space, we may
obtain any Hamiltonian from the family O(Hp). Let (21, ..., 2,) be local complex
coordinates on CP". Each point z = (z1, ... , Z,) corresponds to the unitary matrix

U@ =U1z))U2(z2) .. . Un(zn), (6.291)
where Uy (z4) = exp[Gy(z¢)] and
Go(za) = zgla Y {n+ 1| —Z¢ln + 1) {a}. (6.292)

Now, since M = CP”" is a homogeneous space, it is enough to find the curvature F at
one point on M, e.g., at z = 0. Introducing 2n real coordinates z(’;, as follows:

za::zg+iz‘§,, a=1,...,n, k=0,1,

and noting that, atz = 0,

e (o= 0) = i* (1 )n + 11 = (< DFn + 1)

(6.293)
azk
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one finds, for the curvature tensor,
Fi 0 = [ (=DMl ) (Bl = (=D¥1B)(al] . (6.294)

From the above expression it follows that F spans the whole algebra u(n), and hence
the corresponding adiabatic connection is irreducible. This means that taking CP”" as
a control space, one may, in principle, realize holonomic quantum computation. Note
that in order to generate loops on CP" one needs to control only 2n parameters instead
of the n2 — 1 necessary for labeling a generic quantum gate in C”.

Further reading

Section 6.1. For details of the Chiao-Tomita—Wu experiments see Chiao and Wu 1986;
Tomita and Chiao 1986; Chiao 1989, 1990a, 1990b. A more theoretical treatment may
be found in Segert 1987a and c. See also Berry 1987a; Robbins and Berry 1994; and
Hannay 1998a. Recently, Frins and Dultz (1997) proposed a simple interferometric
arrangement that allows a direct observation of Berry’s phase in optical fibers. A sim-
ilar result for the geometric phase of photons was obtained by Biatynicki-Birula et al.
(1987) and Barut and Bracken (1983).

A simple interferometric demonstration of the Pancharatnam phase was proposed by
Hariharan et al. (1999) — see also Hils et al. 1999. For a review of geometric phases
in optics, see Bhandari 1990 and 1997, and Vinitskii et al. 1990.

Section 6.2. We refer the reader to Olariu and Popescu 1985 and Peshkin and Tono-
mura 1989 for the detailed discussions of the Aharonov—Bohm effect from several
points of view, and for further references. The Aharonov—Casher effect was first de-
scribed by Aharonov and Casher (1984) in a slightly different context. A general dis-
cussion of this effect may be found in Anandan 2000 and Fréhlich and Studer 1993.
Sangster, Hinds, Barnet and Riss (1993) proposed a configuration suitable for observ-
ing the topological phase of Aharonov and Casher in atomic systems.

Section 6.3 Geometric phases in molecular physics are discussed in Guichardet 1984,

~see-also Berry 1985b; Moody, Shapere and Wilczek 1986, 1989; Aitchison 1987;

Jackiw 1988; Bohm 1993a,b; and Banerjee 1996. See also the review articles Zwanziger
etal. 1990 and Mead 1992.

The classical geometric forces are discussed in Berry and Robbins 1993a, 1993b.
For another approach, see Aharonov and Stern 1992.
Section 6.5. For a recent review of the spin-statistics theorem see Duck and Sudarshan
1997. For the generalization of the Pauli sign to more than two particles, see Berry and
Robbins 1997 (see also Anandan 1998 for the relativistic generalization of Berry and
Robbins 1997).
Section 6.6. There is an enormous number of papers devoted to quantum informa-
tion theory. Most of them may be found in http://xxx.lanl.gov/ archive /quant-ph. Two
excellent reviews are Nielsen and Chuang 2000 and The Physics of Quantum Informa-
tion: Quantum Cryptography, Quantum Teleportation, Quantum Computation, eds. D.
Bouwmeester, A. Ekert and A. Zeilinger, Springer-Verlag, Berlin, 2000.
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For the application of Hopf maps to quantum entanglement, see P. Lévay 2003.

Problems

6.1. Show that the map
6,9) — Im@.9)),
defined by (6.128), is well defined except at the south pole 6 = 7.
6.2. Using properties (2.110)—(2.111), derive

(a(e3)|Jklb(es)) = -;— (Ok)ab, k=12,

1
fora,b = +5.

6.3. Derive the formula for the effective Hamiltonian for slow motion, i.e.,

ADR,P) = % 2}: Q' (ﬁ,- - A,?"’(R)) (ﬁj - Aﬁ."’(R)) + ™ R) + €, (R) .

6.4. Derive the formula for the quantum geometric tensor Ti(." ), where |n(0, ¢)) =
U(9, ¢)|n(e3) ) is a nondegenerate eigenvector defined as in (6.128).

6.5. Show that the formula for the quantum metric tensor, i.e.,

1 RiR;
) _ (m) _ e’
g =Rel;" =13 (a,, R ) :

rewritten in spherical coordinates reproduces (2.147).

6.6. Solve the Schrodinger equation for-an electron-in a-magnetic field using-a sym-
metric gauge:

1
A=_-B .
3 X X

6.7. Compute the electric current corresponding to the eigenstates Yo :
. e o
(J)= —;(WOk!HIWOk) .

6.8. Prove the commutation relation for the magnetic translations.
6.9. Show that the velocity operator v(k) satisfies

ihv(k) =[x, HK)] .
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6.10.

6.11.

6.12.

6.13.

6. Geometric Phases in Action

Derive the following formula:
S2|n1a, n2a, n1p. n2p ) = K2S(S + 1) [n1g. n2a, N1y, n2p)

with § = % (n1a + n24 + n1p + n2p), in the Schwinger representation for two
spins.

Verify the commutation relations

[(Ek, (Eg)]l = iheum(Eg)m ,
[ELK, (Ep)i] = ihem(Ep)m,
[(E)k, (Ep)i] = O,

with E; and E;, defined in (6.247) and (6.248), respectively. Show that E2 =
St20tal'

Derive the following formula for the action of U,(r) on the two-dimensional
vector of annihilation operators:

1
(Z;) — exp{—iien(rya}(:g) ,

in the Schwinger representation for two spins.
Show that the transported basis defined is the exchange rotation
U(r) = exp{—if n(r) - E},

with E being an exchange angular momentum, satisfies the following basic prop-
erties (Berry and Robbins 1997):

(a) it is smooth,

(b) it is parallel transported.

Appendix A

Classical Matrix Lie Groups and
Algebras

Denote by M (n, IF) the space of n x n matrices over a field F (with F = R or C). Then

the general linear group is defined by
GL(»,F) := [x € M(n,F) l detX # 0} .
One defines also the special linear group as follows:
SL(n,F) = {X € GL(n, F) ‘ detX = 1 } C GL(,F).
Classical matrix Lie groups:
1. O(n) — the group of all matrices in G L (n, R) leaving the quadratic form
x% +...+ x,%
in R” invariant, thatis, O(n) ={X e GL(n,R) | XT = X~1}.
2. §0(n) =0n)NSL(n, R).
3. U(n) — the group of all matrices in G L(n, C) leaving the quadratic form
2121+ ...+ Zn2n
in C" invariant, thatis, U(n) ={X € GL(n,C) | X* =X"1}.

4. SUn)=Um)N SL(n, C).



306 Appendix A. Classical Matrix Lie Groups and Algebras

5. Sp(n, R) — the group of all matrices in GL(2n, R) that conserve the symplectic
two-form in R?", i.e.,

dxy Ady1 +...+dx, Ady, .

6. Sp(n, C) — the group of all matrices in GL(2n, C) that conserve the symplectic
two-form in C?", i.e.,

dzyndwy + ... +dz, Adw, .

7. Sp(n) = Sp(n,C)yNU2n) .

Let us turn to matrix Lie algebras. M(n, ), denoted also by gl(n, F), is a Lie algebra
for GL(n, F). The corresponding Lie algebra for SL(n, F) is defined by

sin,F) ={X egln,F) | TtX=0}.
Classical matrix Lie algebras:
l.on) ={X e gl(n,R) |IXT = =X }.
2. so(n) = o(n) Nsl(n, R).

w

Lun)={Xegln,O) | X*=-X}.
. su(n) =u@m) Nsln, C).

(S

sp(n, R) — the Lie algebra of all matrices in g/(2n, R) of the following form:

X1 X
X3 -xT )~

with X1, X2, X3 € gl(n, R), and X», X3 symmetric.

6. sp(n, C) — the Lie algebra of all matrices in g/(2n, C) of the following form:

X, X>
X3 ——X’f ’
with X1, X», X3 € gl(n, C), and X,, X3 Hermitian.
7. sp(n) =sp(n,C) Nu2n) .

For more detailed lists see Wybourne 1974; Gilmore 1974; and Barut and Raczka
1980.

Appendix B

Quaternions

A noncommutative field H of quaternions is generated as a real algebra over R by the
elements 7, j, k with the following property:

== =ijk=-1.
For any g € H of the form g = go+q17+42] +q312, one defines a conjugate quaternion
q by
7=q0—qii — g2 — gk . (B.1)
We call gq the real part of g, and 17 + g2] + g3k the imaginary part of g. Evidently,
Re(g) =Re(g), and Im(g) = —Im(g) .
The space of quaternions is endowed with the norm | - |, defined by
91> == qq , (B.2)
for any g € H. Note that
i —ioy, J]—> —ion, k—> —ioy,
defines a representation of the algebra of quaternions as antihermitian matrices in C2,
as follows:
H > g — i(gl+q103 — g2020 — q301) € u(2).

Since H is a noncommutative field, there are two possible ways to multiply vectors
by scalars (i.e., quaternions from H). Choosing right multiplication, we are led to the
following
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Definition B.0.1 A vector space V over H is defined by the following properties:
1. (v+w)qg =vqg +wg,
2. vg+4q)=vg+vq,
3. v(qq) = (vg)q',

foranyv,w e Vandq,q € H.

A quaternionic operator A on a quaternionic vector space V is an H-linear map A :
H — H satisfying

Al(v + w)q] = (Av)g + (Aw)gq , (B.3)
for any v, w € V and g € H. Choosing a base (eq, ... , e,;) in V, one has
n
(Av);i =) Ajjv; . (B.4)
j=1

Now, if A and B are two quaternionic operators on V then!
n
(AB)ij =)  AixBy . ®.5)
k=1

Definition B.0.2 A quaternionic inner product on a quaternionic vector space V is a
sesquilinear map (-, -) : V. x V. — H with the following properties:

1. (vq,wq’) =G(v, w)q’',

2. (v,w) = (w,v),
foranyv,we Vandq,q €H.

Definition B.0.3 The quaternionic adjoint A* of an operator A on a quaternionic
vector space V, endowed with an inner product (- , ) is defined by

(A*v, w) = (v, Aw) ,
Joranyv,we V.
Note that the corresponding matrix elements of A* and A are related by
A% =Aji . (B.6)

Definition B.0.4 Let W be a complex vector space. An antilinearmap ® : W — W,
such that ©* = +1, is called a structure map. If ©®% = —1 wecall ©® a quaternionic
Structure map.

ILet us note that left multiplication in the Definition B.0.1 would lead to (A B); =2 k= 1 BrjAik.
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Note that a quaternionic structure map ® defines a natural right action of H on W, as
follows:

wi=iw, wj:=0w, wk:=whj=0(w) =—iOw, B.7)

for any w € W. Any quaternionic operator A has to commute with the right action of
7, J and k. The first condition,

(Aw)i = A(wi), weW, (B.3)

makes A a complex-linear operator on W. Moreover,

(Aw)j = A(wj), weWw, (B.9)
implies that
A® =0A, (B.10)
and then (Aw)k = A(wk) automatically follows.
Let W be a quaternionic vector space with dimyW = n, and let (eq,... ,e,) be a
quaternionic basis of W. Then the 2n vectors (e1, @ey, ... , e,, Oe,) define a basis of

W, viewed as a complex vector space with dim¢W = 2n. Any vector w € W may be
decomposed into quaternionic components, i.e.,

n
w= qwy, w e€H, (B.11)
=1
and, hence, using (B.1), we have
n ~
wo= Y e(wo+wiai +waf +wisk)
=1
n
= Z [wro + iwr,)er + (wi2 — iwy 3)Oe] (B.12)

=1

with w; o € R. Any quaternionic operator A is entirely determined by its action on the
complex basis (e1, ey, ... , e,, Oe,).
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