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Preface 

If you have two small objects, one here on Earth and the other on the 
planet Pluto, what would you say of the following statement: No 
modification of the properties of the object on the earth can take place as 
a consequence of an interaction of the distant object with a third body also 
located on Pluto? 

The opinion that the previous statement is correct is very natural, but 
modern quantum theory implies that it must be wrong in certain cases. 

Consider in fact two arbitrary objects separated by such a large distance 
that they are unable to exert any important mutual influence. It is possible 
to show rigorously that a measurable physical quantity exists, with a value 
more than 40% different from the value theoretically predicted by quantum 
mechanics. 

Necessarily then, either space is largely an illusion of our senses and 
it does not exist objectively, or information can be sent from the future to 
the past, or ... something important has to be changed in modern physics. 

This is the essence of the Einstein-Podolsky-Rosen (EPR) paradox. 
A paradox is an argument that derives absurd conclusions by valid deduction 
from acceptable premises. In the case of the EPR paradox the absurd 
conclusion is that Bell's observable d should have two different values 

d = 2.Ji and 

The "acceptable premises" are the following: 

1. All the empirical predictions of the existing quantum theory are 
correct. 

2. Local realism has an unlimited validity, where by local realism one 
means a set of three reasonable ideas (reality criterion, separability, 
time arrow) that are discussed in depth in this book. 

3. Probabilities are well behaved, that is, they are positive, do not 
exceed unity, and satisfy the ergodic hypothesis. 

The incompatibility among (1), (2), and (3) shows that the EPR paradox 
is not merely a matter of interpretation of the quantum formalism, but holds 

vii 
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for all the conceivable interpretations, since it is a consequence of the 
empirical predictions of the theory only. Thus the EPR paradox leads to 
the fantastic conclusion that some empirical predictions of the existing 
quantum theory are incompatible with deep-rooted conceptions of modern 
science. This is the reason why the solution of the paradox is expected to 
have a profound effect on future physics. It is then understandable that 
Stapp could write that "Bell's theorem is the most profound discovery of 
science." 

In preparing their contributions to this volume the authors have kept 
in mind that it is directed to a broad spectrum of readers, including 
physicists, mathematicians, chemists, and philosophers of science. Therefore 
the book is not primarily directed to people already active on EPR (although 
they are welcome to buy a copy!). It has only been assumed that our readers 
are generally interested in EPR matters but know nothing about them and 
wish to learn from this book, starting from a mere knowledge of elementary 
quantum mechanics. 

Every chapter of the book considers as known and "given" only a few 
very general facts about the EPR paradox. These are contained in the 
introductory chapter, which consists of a very simple and general historical 
review of the most important ideas, those that are "obvious" to researchers 
active on the problem. There is no other book on the market entirely devoted 
to the EPR paradox. In order to fill the gap this book provides an almost 
complete review of all the lines of research which are today trying to 
solve the paradox in different ways. The following proposed solutions are 
presented: 

1. Existence of superluminal connections between atomic objects 
separated by a large distance. 

2. Retroactions in time, that is, the idea that the past can be actively 
influenced by choices made in the future. 

3. Variable detection probability, that is, the idea that some quantum 
probabilities are different for different individual quantum systems, 
so that new physical features arise only for two (or more) correlated 
systems. 

4. Breakdown of the "ergodic hypothesis," that is, the idea that 
ensemble averages can be different from time averages. 

5. Negative probabilities, that is, the idea that the usual numerical 
bounds for probabilities can sometimes break down. Such a possibil
ity has been advocated by Dirac and by Feynman. 

The book shows that it will be possible to decide experimentally on very 
fundamental conceptual matters, such as local realism and the existence 
of superluminal connections and their properties. New experiments are 
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proposed in some chapters, for instance in the domain of particle physics. 
It is also shown that, contrary to a rather widespread opinion, the question 
of locality in atomic-cascade experiments is far from settled, and that it 
will require an entirely new generation of experiments. 

Every conceivable solution of the EPR paradox is incredibly revolution
ary: There is a definite possibility that its study will lead to a new start in 
fundamental physics. If that happens we do not know what direction the 
field will take. It is, however, tempting to say that the solution of the paradox 
will be physical, that is, along the natural ways of science, and that the 
seemingly strange proposals which are popular today reflect, more than 
anything else, the depth of the problem which is being faced and the great 
expectations which everyone has for its future solution. 

Franco Selleri 
Bari, Italy 
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1 

History of the Einstein-Podolsky
Rosen Paradox 

1. Early Formulations 

Attention has recently (A. Einstein, B. Podolsky, 
and N. Rosen, Phys. Rev. 47 (1935), 777) been 

called to the obvious but very disconcerting fact 
that even though we restrict the disentangling 

measurement to one system, the representative 
obtained for the other system is by no means 

independent of the particular choice of 
observations which we select for that purpose and 

which by the way are entirely arbitrary. It is rather 
discomforting that the theory should allow a 

system to be steered or piloted into one or the 
other type of state at the experimenter's mercy in 

spite of his having no access to it. 
(E. SCHRODINGER, 1935) 

1.1. The Einstein-Podolsky-Rosen Paper (1935) 

Position, in quantum theory, is described by a linear Hermitian operator 
Q whose action on the wave function is equivalent to a multiplication by 
the position parameter x. Therefore the eigenvalue equation 

Q u(q; x) = q u(q; x) 

is solved by an arbitrary real value of q and by the corresponding eigenfunc
tion (normalized on the unit length in wave number space) 

u(q; x) = i)(x - q) (1) 



2 Introduction 

which is Dirac's 8-function. The wave function (1) predicts a fixed position 
q. As one can write 

u(q; x) = * f dp' exp[ip'(x - q)/ Ii] (2) 

it follows that all possible values of momentum have equal probability. 
With consideration next of the momentum operator 

the eigenvalue equation 

Ii a 
P=-

i ax 

Pv(p; x) = p v(p; x) 

is solved by arbitrary real values of p and by the corresponding eigenfunc
tions (i.e., plane waves, normalized on the unit length): 

v(p; x) = exp(ipx/Ii) (3) 

The position density I v( p; x W of the previous wave function is a constant, 
meaning that all conceivable positions can be found with equal probability. 

In the state u(q; x) the position is known exactly, but nothing can be 
said about momentum. The opposite holds for v(p; x), which leads to an 
exact prediction of momentum, but to a completely undefined position. All 
this is, of course, consistent with the nonvanishing commutator of Q and P: 

(Q,P]=Ii/i 

When, in physics, a situation is met in which one can predict with certainty 
the value of a measurable quantity, it is very common to assume that there 
is something real in the considered object, which is reflected in the exactly 
predictable value. This '~something real" is, however, attributed to the object 
before, or even in the absence of, an act of measurement. The latter 
attribution marks the difference between a realistic attitude and the strictly 
positivistic point of view which considers as real only acts of observation. 

Einstein, Podolsky, and Rosen gave a precise form to this idea when 
they wrote their famous reality criterion: If, without in any way disturbing 
a system, we can predict with certainty (i.e., with probability equal to unity) 
the value of a physical quantity, then there exists an element of physical reality 
corresponding to this physical quantity. 

The reality criterion can be applied to the wave function (1) and it can 
be concluded that an element of reality belongs to the physical object 
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described by the wave function (1), which corresponds to the predicted 
value q of position. A similar application to the wave function (3) leads 
instead to the attribution of an element of reality corresponding to the fixed 
value p of momentum. The notations u(q; x) and v(p; x) then show 
explicitly the objective physical properties q and p of the respective wave 
functions. 

All these considerations can be made only at one particular time to: 
the wave function (1), for instance, would be an imploding (exploding) 
wave function for t < to (t > to) if the Schrodinger time evolution were 
considered. 

When a single quantum object is considered, it is not possible to 
attribute to it, simultaneously, the two elements of reality corresponding to 
P and Q, on the basis of the Einstein - Podolsky- Rosen (EPR) reality criterion. 
Therefore, it is consistent with the quantum formalism to assume that when 
P is measured and obtains a definite value, an eventual previous element 
of reality corresponding to Q is destroyed. Furthermore it is natural to 
assume that this destruction is brought about by the action quanta exchanged 
between the measuring apparatus and the observed atomic object. In this 
way the attribution of elements of reality becomes a rather innocuous and 
probably useless exercise. 

Things change dramatically, however, when two correlated quantum 
objects (ex and f3) are considered. As is well known, the wave function can 
be assigned almost arbitrarily at a single time, the ensuing evolution being 
given by the time-dependent Schrodinger equation. Therefore, possible 
fixed-time wave functions for the system ex + f3 are 

r:/>(qo;xI. X2) = f dq' c(q')u,,(q'; x I )u/3(qo + q'; x2) (4) 

J(po; x], x2 ) = f dp' c(p')v,,(p'; x I )V/3(Po - p'; x2 ) (5) 

where the notation for fixed-position and fixed-momentum wave functions 
is the same as before, the only change being the specification of the quantum 
object (ex or f3) to which they refer. 

The meaning of r:/>(qo; Xl, X2) is the usual one; for instance, a position 
measurement on ex will give the result q' with probability lc(q'W. However, 
if q' has been found for ex it can then be predicted that a position measure
ment for f3 will certainly give the result qo + q'. In other words, correlated 
position measurements made on ex and on f3 will lead to results whose 
difference certainly equals qo. It can then be concluded that to qo there 
corresponds an element of reality of (ex + f3). 

A similar reasoning applied to J leads to the conclusion that to the 
sum Po of the momenta there corresponds an element of reality of (ex + f3). 
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The simultaneous attribution of qo and Po to a pair of quantum objects 
is no longer excluded a priori-as q and p were excluded in the case of a 
single object-since the difference of positions and the sum of momenta 
are represented by commuting operators: 

(6) 

as one can easily check. Einstein, Podolsky, and Rosen were able to find 
a wave function which allows the simultaneous attribution of the two 
elements of reality. It is given by 

and it can immediately be written in the form (5) with Po = 0 and with 
c(p') = h-I (apart from a constant phase factor). It can also be written in 
the form (4) [with c(q') = 1] since the integral in equation (7) gives 

",(qo, 0; x), X2) = 8(xI - X2 + qo) 

= f dq' 8(x I - q')8(q' - X2 + qo) (8) 

These results were used by Einstein, Podolsky, and Rosen for their 
proof that the quantum-mechanical description of physical reality cannot 
be complete. A theory is considered complete when it satisfies the following 
definition: every element of physical reality attributable to a certain physical 
system in a given state must have a counterpart in the mathematical description 
provided by the theory for that physical situation. For example, the-wave 
function (7) would provide a complete description of the pair (a, {3) if no 
further elements of reality beyond qo and Po could be attributed to the pair. 

There is, however, a reasoning proving that individual. positions and 
momenta of a and {3 do possess a physical reality, thus leading to the 
conclusion that the quantum-mechanical description provided by equation 
(7) is not complete. 

The argument goes as follows: Suppose we are given a very large set 
E of similar pairs (a, {3) all described by the wave function (7). It can then 
be predicted that measurements of the positions of a and {3, performed on 
individual pairs, will give results that always satisfy the relation X2 - XI = qo. 
Similarly, measurements of the momenta of a and {3 performed on (other) 
individual decay processes will give results PI and P2 that always satisfy 
the relation PI + P2 = Po = O. 

We consider now a subset EI not previously subjected to measurements 
and perform position measurements on every a of E I , where x;, xr, ... 
denote the values obtained. It can then be predicted with certainty that 
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simultaneous measurements of the position of every {3 will give x; - qo for 
the first pair, x~ - qo for the second pair, and so on. Consequently, one can 
invoke the EPR criterion of physical reality and conclude that to the position 
of {3 there corresponds an element of physical reality. It is natural to 
conclude that this element of physical reality exists regardless of whether 
or not a measurement on a has been made because, if this were not true, 
the only alternative (which Einstein, Podolsky, and Rosen wished to 
exclude) would be to say that the measurement made on a has created at 
a distance, and instantaneously, the element of reality of {3. Therefore, to 
the position of {3 there corresponds an element of reality for all the pairs 
of the full ensemble E. 

A parallel argument can be made for momenta by considering a subset 
E2 of E and performing a momentum measurement on every a of E2, 
where p;, p~, ... denote the obtained results. Since it can be predicted with 
certainty that subsequent measurements of the momentum of {3 will give 
-p; for the first pair, -p~ for the second pair, and so on, it can also be 
concluded that to the momentum of {3 there corresponds an element of 
reality for every {3 of E2 • Unless this element of reality is created at a 
distance and instantaneously by the measurements made on a, one can then 
extend the previous conclusion to the whole of E. 

Obviously the choice of the system (a or (3) on which measurements 
are performed is arbitrary. A symmetrical reasoning thus leads to the 
conclusion that to both the position and the momentum of particle a there 
correspond simultaneous elements of reality in the whole ensemble E. 

Individual positions and momenta are therefore seen to be real before 
measurements, in an indirect sense, for all objects (a and (3) of E, the sense 
being that there exists something in the physical reality of a and (3 that 
leads necessarily to preassigned results if and when a measurement of one 
or the other of the two observables is made. 

Since the wave function (7) describes these quantities a priori as 
indeterminate, one must necessarily conclude that the description of the 
physical reality provided by the wave function (7) is not complete, on the 
basis of the given definition of completeness. This was, in 1935, the essence 
of the EPR paradox, which was then only a paradox of incompleteness of 
the existing theory. 

1.2. Bohr's Answer (1935) 

Bohr stressed that the EPR paradox disappeared if one worked con
sistently within the notion of complementarity, which was for him "a new 
feature of natural philosophy." He showed that complementarity implied 
(1) a final renunciation of the classical ideal of causality, and (2) a radical 
revision of our attitude as regards physical reality. 
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Basically, one can therefore say that Bohr did not question the correct
ness of the EPR reasoning once all its implicit and explicit premises are 
accepted. But it is exactly these premises that, in his opinion, are not valid 
in the atomic domain. In order to show this, Bohr formulated causality as 
follows: A process is causal if it takes place according to well-defined and 
identifiable rules, the most important one being the law of conservation of 
energy and momentum. The physicist who studies the phenomena of the 
atomic domain will naturally try to use his macroscopic preconceptions 
and will try to describe atomic processes as taking place both in space and 
time and according to energy and momentum conservation. However, he 
will discover that it is not possible to do so because quantum observables 
described by noncommuting operators cannot be measured simultaneously. 
The measurement of one of them, in general, destroys previous knowledge 
of other ones. 

The roots of complementarity can best be exposed by discussing space 
localization (position measurement) and causality implementation (momen
tum measurement). Space localization can be obtained by measuring posi
tion with infinite precision (~x = 0). After such a measurement the wave 
function becomes the 8-function 8(x - q), if q is the obtained result. But 
a 8-function can be written as the superposition of all possible plane waves 
with constant weight [see equation (2)] and this means that absolutely 
nothing is known about momentum. All eventual knowledge about momen
tum prior to the position measurement is, in this way, lost. No evidence 
can therefore exist about momentum conservation, if no knowledge about 
momentum is available. A concrete localization in space of the phenomenon 
thus implies a necessary abandonment of the causal description. 

Symmetrically, in a different experiment, one could decide to implement 
the causal description by measuring momentum with infinite precision: the 
wave function would therefore become, as a result of the measurement, a 
plane wave. But this would immediately imply that nothing could be known 
about position, with a complete loss of the description of the quantum 
phenomenon in space. A concrete implementation of the causal description 
would thus force the physicist to abandon the description in space. 

The two possibilities (space-time and causality) are thus seen to be 
mutually incompatible. Bohr concludes that in the atomic world it is, in 
principle, impossible to give a picture of quantum processes as developing 
causally in space and time, and that this element of irrationality is introduced 
into quantum physics by the finite value of Planck's constant. For these 
reasons it becomes, in his opinion, necessary to limit the interest of the 
physicist to the exclusive consideration of the acts of observation. 

Obviously, then, no paradox exists when one considers two correlated 
systems described by the wave function (7). Let us consider, in fact, two 
apparatuses QI and PI (Q2 and P2) capable of performing position and 
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momentum measurements, respectively, on the system a ({3). If one choses 
to use QI and Q2, the wave function (7) predicts that the results XI and X2 

will be precisely correlated: XI - X2 = qo. If instead one chooses to use PI 
and P2 , the wave function (7) predicts a precise correlation of the results 
PI and P2: PI + P2 = o. The two apparatuses QI and PI are mutually incom
patible: One can choose to employ either QI or PI, but never the two of 
them simultaneously; the same holds for Q2 and P2 • From this point of 
view the EPR assumption about the elements of reality becomes useless: it 
now merely concludes that an element of reality is associated with a concretely 
performed act of measurement, since there is no other reality to speak of. In 
particular, the EPR conclusion that position and momentum correspond to 
two simultaneously existing elements of reality appears totally unjustified 
(Bohr says that it contains "an essential ambiguity"), because one can never 
perform simultaneous measurements of position and momentum. 

Einstein, Podolsky, and Rosen anticipated the possibility of such a 
refutation, but they considered it as unacceptable. In the conclusive part 
of their paper one can read: 

One could object to this conclusion on the grounds that our criterion of reality 
is not sufficiently restrictive. Indeed, one would not arrive at our conclusion if 
one insisted that one or more physical quantities can be regarded as simultaneous 
elements of reality only when they can be simultaneously measured or predicted. 
On this point of view, since either one or the other, but not both simultaneously, 
of the quantities P and Q can be predicted, they are not simultaneously real. 
This makes the reality of P and Q depend upon the process of measurement 
carried out on the first system, which does not disturb the second system in any 
way. No reasonable definition of reality could be expected to do this. 

The previous considerations apply to any two noncom muting operators. 
Consider, for instance, a spin-! particle and its spin-component operators 
S'" Sy, and Sz. It is well known that any two of them do not commute. This 
means that the corresponding spin observables cannot be assumed to be 
simultaneously measurable. Consider an electron in the spin state 

U(+)=G) 
which is the eigenstate of Sz with eigenvalue +11/2. If the observable 
associated with Sx is measured, there can be only two results: 

Sx = ±11/2 

The spin state after the measurement becomes an eigenstate of Sx, that is, 

either or 
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In either case the Sy component is totally unknown, as one can easily check. 
Bohr would say that the implementation of the reality of S", has made Sy 
completely undetermined. The opposite reasoning can obviously be made: 
Sy can become known, but then it is S", which becomes necessarily com
pletely unknown. One can thus say, with Bohr, that S", and Sy are com
plementary aspects of reality: either S", is real, or S.V is real, but never both 
of them at the same time. 

1.3. Schrodinger's Extension (1935) 

Schrodinger (1935) considered a wave function [like equation (7)] 
satisfying the two eigenvalue equations 

(9) 
P 'I'(x" x z) = Po'l'(x" xz) 

where Q = Qa - Q{3 and P = Pa + P{3 [the notation is the same as in Section 
1.1: see equation (6)] and showed that to every Hermitian operator 
F( Qa, Pa) of the first particle of an EPR pair there corresponds another 
Hermitian operator G( Q{3, P(3) of the second particle, such that 

(10) 

which can be read as follows: 'I'(x" xz) is an eigenfunction of F - G with 
eigenvalue zero. Therefore measurements of F on a and of G on f3 must 
give equal results if a and f3 are described by 'I!(x" xz). 

The proof of Schrodinger's theorem is easy if one starts from the 
operator 

Fmn(Qa, Pa) = Q:P: + H.c. 

and assumes that it corresponds to 

which can also be written 

Gmn ( Q{3' P(3) = (Qa - Q + qo)m(po + Pa - p)n + H.c. 

(11) 

by definition of Q and P. Therefore, when Gmn is applied to 'I! the factor 
(Po + Pa - p)n becomes P: because of equation (9). Since Pa obviously 
commutes with Q{3 + qo = Qa - Q + qo, one can commute P: to the extreme 
left of Gmn . On the right, there remains a factor (Qa - Q + qo)m which, 
applied to 'I'(x" xz), gives Q:. One thus obtains 
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The right-hand side coincides with Fmn 'l'(x\, x2 ) and thus relation (10) 
holds for the operator (11). 

The previous result can obviously be generalized to functions of the type 

(12) 
mn 

where the Cmn are numerical coefficients. There is, thus, a wide class of 
operators, containing infinitely many terms, which satisfy Schrodinger's 
theorem: in practice, every analytic function F( Qa, Pa) can be developed 
as in equation (12) and must therefore satisfy Schrodinger's theorem. 

In general two such operators, F\(Qa, Pa) and F2(Qa, Pa), [and their 
corresponding operators for f3: G\(Qf3, Pf3) and G 2(Qf3, Pf3)] do not com
mute with one another. Still, since by Schrodinger's theorem the measure
ments of an F operator and of its corresponding G operator must in all 
cases give equal results, a measurement of F on a steers f3 into an eigenstate 
of G. Schrodinger concludes with his deep understanding of the EPR 
paradox: 

It is rather discomforting that the theory should allow a system to be steered or 
piloted into one or the other type of state at the experimenter's mercy in spite 
of his having no access to it. 

1.4. Furry's Hypothesis (1936) 

If there are two quantum objects: a in the state I'l') and f3 in the state 
1<1», then the global system e = (a, f3) is described by the state vector 1'l')I<I». 

The opposite problem is also of interest: Given a general state vector 
for E, can one always write it as a direct product of two states separately 
describing the objects composing E ? 

That the answer is negative can be seen in the following way: Let {I'l';)} 
and {I<I»} be two orthonormal and complete sets of states for a and f3, 
respectively. If 111) is the state vector for E = (a, f3), one can carry out a 
(double) development of it over the sets {I'l'i)} and {I<I»} and write 

h) = L cijl'l' ;)1<1» (13) 
ij 

where the cij's constitute a set of generally complex coefficients. 
It is important to observe that in the absence of superselection rules 

every vector 111) of the previous form represents a possible state for E. This 
is a consequence of the superposition principle. In fact, every possible 
vector I'l' ;)1<1» is a conceivable state vector for E, given the fact that it 
describes a in the state I'l';) and f3 in the state 1<1». Therefore every linear 



10 Introduction 

combination of these vectors, such as the state vector (13), is also a possible 
state vector of e. 

Hence the coefficients cij are totally unrestricted, except for the nor
malization condition 

I !cij12 = 1 (i4) 
ij 

In particular, there is no way, if the superposition principle is to be of 
general validity, to restrict the cij's to numbers of the type 

(IS) 

Therefore, there is no way to guarantee that not only e but also a and f3 
be in a well-defined state. The factorization condition (is) is in fact necessary 
and sufficient for having a and f3 in a quantum state, as can easily be seen. 

In conclusion: the superposition principle forces us to consider vectors 
177), of the type in equation (13), for which condition (is) does not hold. 
This implies that some states for e are such that neither a nor f3 are in a 
quantum state. 

States for e = (a, f3) with the latter property are said to be of the second 
type, while those for which condition (IS) holds are said to be of the first type. 
One also says that state vectors of the first (second) type are the factorizable 
(nonfactorizable) state vectors. Since the state vector is the only link between 
the quantum-mechanical formalism and the microphysical reality, one thus 
sees that quantum theory does not ascribe any separate reality to the objects 
a and f3 whose complex (a, f3) is described by a state vector of the second 
type. An embryo of the EPR paradox is already visible in this strange fact. 

A general discussion of the EPR paradox was given by Furry shortly 
after the publication of the EPR paper (Furry, 1936). His starting point was 
a theorem proved by von Neumann, according to which the state vector 
(i3) can always be written in the form 

(i6) 

if the complete orthonormal sets {I'l'j)} and {I<I»} [in general different from 
those entering into the state vector (13)] are suitably chosen. If 177) is of 
the first (second) type only one (more than one) of the coefficients Cj will 
be different from zero. Let these two new sets of state vectors constitute 
sets of eigenstates of two linear Hermitian operators, A and E, respectively, 
so that 

(17) 
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these relations being valid for all values of the index i. One can thus say 
that A (B) represents an observable of the object a (f3) and that the possible 
values of such an observable are the eigenvalues ai (bJ. 

The state vector (16) predicts a strict correlation of the measured values 
of the two observables. In fact, since the structure (16) is preserved during 
time evolution, if a first observer measures A at time 1\ on the a component 
of a certain pair and finds A = ak, then a second observer will necessarily 
find B = bk (where the index k is the same) for a measurement made at 
time I ;?; 1\ on the f3 component of the same pair. 

If this prediction has been checked many times and always found to 
be correct, one can conclude that from the time 1\ onward the outcome of 
the B measurement is certain (and equal to bk ) for the object f3. But the 
two objects can be assumed to be very far from one another, so that no 
change of the state of f3 can have taken place as a consequence of the 
measurement performed on a. As a consequence, the result of an eventual 
measurement of B on f3 must have been fixed and equal to bk even before 
the measurement on a was performed. Quantum theory has a very precise 
way to describe a physical situation (or state) of an atomic object for which 
the result of a measurement is known a priori: It attributes as state vector 
the eigenvector corresponding to the known value of the considered physical 
quantity. 

If one recalls equation (17), it is obvious that the state of f3 must have 
been 1<1> k) even before time 1\. Given the predicted correlation of values for 
the observables A and B, one must conclude that the state vector for (a, f3) 
even before time 1\ was 

Repeating the previous argument for a statistical ensemble of pairs (a, f3) 
one concludes that the state vectors actually were 

in IcJ% of the cases 

in 1 c21 2 % of the cases 
(18) 

We started from the assumption that all the pairs of the considered statistical 
ensemble had the state vector 117) and concluded, instead, that the different 
state vectors 117\), 1172), .... , 1 11k), ... applied, with the stated frequencies, to 
different pairs. 
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Now, the states (16) and (18) are obviously different mathematical 
descriptions of the ensemble. Could it be that they are nevertheless 
equivalent descriptions for all practical purposes? Furry could show that 
the answer is negative. 

An elegant way to express the incompatibility, at the empirical level 
between the state vectors of the second type and the mixtures was found 
by Fortunato (1976). Consider the projection operator 

(19) 

which is Hermitian and can be assumed to correspond to an observable. 
Its expectation value over the state (16) is obviously unity: 

(20) 

The expectation value of the same operator over the mixture (18) is instead 

(P'1) = 1 c) 12('1')<1»1 P'1 1'1')<1») + IC212('I'2<1>2IP'1I'1'2<1>2) + ... 

+ ICkI2('I'k<l>kI P'1I'1'k<l>k) + ... 

Since it is a simple matter to show that 

it follows that 

(21) 

But the sum of the fourth powers of the moduli of numbers such that the 
sum of their squared moduli is one will certainly be less than one if there 
are at least two numbers different from zero. The latter condition is, however, 
precisely that of having a state vector of the second type. Therefore the 
observable corresponding to P'1 has an expectation value equal to one (less 
than one) over the state vector of the second type I T'f) [over the mixture of 
state vectors of the first type (18)]. 

1.5. Bohm's Formulation (1951) 

Let a physical system (atom, molecule, etc.) M be given decaying into 
two spin-! "particles" a and Il Let Ua (+) and Ua (-) be eigenvectors 
corresponding to the eigenvalues + 1 and -1, respectively, of the Pauli 
matrix (T3( a) representing the third component of the spin angular momen
tum for a; and let uf3 ( +) and uf3 ( -) be the corresponding eigenvectors of 
the Pauli matrix (T3({3) for {3. 
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The only factorizable spin states for (a, (3) that one can construct with 
these four spinors are 

u,,(+)u{3(-), 

where the first one applies when the spin vectors of both particles a and 
{3 point along the positive z direction, and so on. 

There are some concerete physical situations in which the spin state 
vector for (a, (3) must be the "singlet" state vector Tlo given by 

(23) 

Four important properties of Tlo will be used in the following proof of 
Bohm of the EPR paradox 

(Pt) It is not a Jactorizable state. 
(P2) It predicts the result zero Jor a measurement oj the total squared 

spin oj particles a and {3. 
(P3) It is rotationally invariant. 
(P4) It predicts opposite results Jor measurements oj the components 

along n oj the spins oj particles a and {3, n being an arbitrary unit 
vector. 

Property (PI) is not difficult to prove, since the most general spin state 
for a is 

(24) 

where a and b are constants. Similarly, the most general spin state for (3 
is given by 

(25) 

where c and d are some other constants. Obviously, the most general 
Jactorizable spin state for the combined system is 

(26) 

Now, since u,,(+)u{3(+) does not enter into TID, u"u{3 can equal Tlo only if 
ac = O. Thus a = 0, which implies that u" (+ ) u{3 ( -) also disappears from 
u"u{3, and/ or c = 0, which implies that u,,( - )u{3( +) disappears. It is therefore 
impossible, by any choice of u" and u{3, to satisfy TID = u"u{3' 
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As for property (P2), it can be verified by introducing the total squared 
spin operator, defined by 

}:2 = [O",(a) + O",(,8)f + [0"2(a) + 0"2(,8)f + [0"3(a) + 0"3(,8)f 

= 6IaI{J + 2(1(a) . (1(,8) (27) 

where Ia and I{J are the unit operators in the spin spaces of a and ,8, 
respectively. One can easily check that 

}:21]0 = 0 (28) 

from which it follows that a measurement of the observable corresponding 
to }:2, on a pair described by the state 1]0, will certainly give the result zero. 

The third fundamental property of 1]0 (i.e., rotational invariance) can 
be proved by introducing the new vectors ua(n±) and u{J(n±), which denote 
eigenvectors of(1(a)· nand (1(,8). n, respectively (n being an arbitrary unit 
vector) and showing that 1]0 transforms into 

which has the same structure as (23) with different states. 
As for property (P4) it can be checked that 1]0 is an eigenstate of the 

n component of the total spin operator with eigenvalue zero, that is, 

[(1(a) . n + (1(,8) . n]1]o = 0 (30) 

From the physical interpretation of eigenvalue relations, it then follows that 
measurements of the n components of the spins of a and ,8 must always 
give opposite results. 

Another state important for the discussion of the EPR paradox is the 
"triplet" state, given by 

(31) 

One can show that 1], shares with 1]0 the properties (P1) and (P4), but not 
(P3); it is not rotationally invariant. Moreover, in place of property (P2), 
1], has the following property: Any measurement of the total squared spin 
of the two particles described by 1], will give the result 2h2 (spin 1). 

One has 

Ua(+)U{J(-) = (l/v'2)(1]0+ 1],) 

ua(-)u{J(+) = (l/v'2)(1]0 - 1]1) 
(32) 
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as can be proved simply by adding and subtracting the states (23) and (31). 
Furthermore, on invoking the quantum-mechanical interpretation of super
positions, one sees that: 

Measurements of the total squared spin on a set of (a, {3) pairs described as a 
mixture of the factorizable state vectors (32) will produce with equal probability 
the results 0 and 21i 2• 

This large observable difference between an ensemble which is an arbitrary 
mixture of the states (32) and an ensemble whose elements are all described 
by 1/0 is the basis of the Bohm formulation of the paradox, given below. 
The Bohm formulation has several important advantages over the original 
one. First, it deals with dichotomic observables and therefore allows sharper 
definition of the results. Second, it allows the introduction of time, which 
enters only in the space-dependent part of the wave function, while the 
spin part is in most cases time-independent. Therefore the singlet state is 
stable, so to say, while the original wave function, equations (7) and (8), 
introduced by Einstein, Podolsky, and Rosen holds only at one particular 
time, and blows up immediately after. The third advantage of the Bohm 
formulation is that it allows one to deal with clearly separated objects (in 
space), while the wave function (7), based on plane waves, described the 
two correlated objects as present, with constant probability, in all points 
of space. 

In order to establish the EPR paradox in conceptually clear conditions, 
we consider only (a, f3) pairs with the following wave function: 

(33) 

where 1/0 is the singlet state (23) and 'I' ,,(XI) and 'I' /3(X2) are the space parts 
of the wave functions for a and f3, respectively. Suppose, furthermore, that 
'I' ,,(XI) is a Gaussian function with modulus appreciably different from 
zero only in a region RI of width AI, centered around the point XIO • Similarly, 
let 'I' /3 (X2) be a Gaussian function localized in the region R2 of width A2 
centered around X 20 • We shall consider a sufficient condition for separability 
of the systems a and f3 to be the validity of the condition 

(34) 

If now particles a and f3 are supposed to move to the left and to the right, 
respectively, so that the distance between the centers of the two wave packets 
increases linearly with time, it is not difficult to show that Schrodinger's 
equation allows for situations in which the condition for separability does 
not deteriorate with time. One can thus say that a and f3 are located within 
two small regions RI and R2 , respectively, very far from one another, so 
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that all interactions (gravitational, electromagnetic, strong, and weak) are 
known to be vanishingly small. In such conditions it is natural to conclude 
that a measurement performed on a does not give rise to any modification 
of the physical properties of f3, and vice versa. The presence of 710 in the 
wave function (33) leads instead to paradoxical conclusions. 

The EPR reasoning is as follows: Consider a large set E of (a, f3) pairs 
in the state (33). Measure 0"3 ( a) at time to on all a's of a subset E\ of E. 
If + 1 (-1) is found, a future (t > to) measurement of 0"3(f3) will certainly 
give -1 (+1). Using the EPR reality criterion, one can assign to the f3's of 
E\ an element of reality Al (A 2 ) fixing a priori the result -1 (+1) of the 
0"3(f3) measurement. 

But the quantum mechanics treats an object f3 with a predetermined 
value of 0"3(f3), by assigning it the state U/3 (-) [u/3 (+)]: This is the complete
ness assumption. The strict correlation (P4), applied to the z-axis, implies 
then, even for t < to, that the ensemble E\ had to be described in spin space 
by the mixture (32). Excluding the possibility that A\ (A 2) is created at a 
distance by the measurement of 0"3(a), it must be concluded that A\ (A 2 ) 

actually belongs to all f3's of E. Applying completeness again, one concludes, 
as before, that the mixture (32) applies to all pairs of E. 

But this contradicts the description (33) at the empirical level, as 
was shown above. One thus reaches an absurd conclusion (the EPR 
paradox). 

1.6. The Bohm-Aharonov Conclusion (1957) 

As early as 1936 it was clear that the EPR paradox had evidenced the 
existence of a striking 

... disagreement between the results of quantum-mechanical calculations and 
those to be expected on the assumption that a system once freed from dynamical 
interference can be regarded as possessing independently real properties (Furry, 
1936). 

This conclusion is, for some people, very difficult to accept and can lead 
to the idea that something must be wrong with the existing quantum theory. 
Even Einstein entertained such a point of view: 

... Einstein has (in private communication) actually proposed such an idea; 
namely, that the current formulation of the many-body problem in quantum 
mechanics may break down when particles are far enough apart (Bohm and 
Aharonov, 1957). 

The first organic examination of an eventual breakdown of quantum theory 
(with immediately negative conclusions) was made by Bohm and Aharonov 
in 1957. They considered the annihilation of a positron-electron pair into 
two energetic photons ("gamma rays") and showed that the quantum state 
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produced is 

(35) 

that is, the zero angular momentum negative-parity state, where x and y 
denote the direction of linear polarization of photon a and photon {3. Also 
the latter state, like the singlet state of the two spin-i particles considered 
before, is rotationally invariant. In practice this means that each photon is 
always found in a state of linear polarization, orthogonal to that of the 
other, no matter what the choice of axes with respect to which the state of 
polarization is expressed. Bohm and Aharanov calculated the ratio R = 

f I/f 2, where f I is the rate of double scattering of the two photons through 
a fixed angle 8, when the planes 'TTl and 'TT2 formed by the lines of motion 
of the first and the second photon (after scattering) with their common 
original direction of motion are perpendicular; and f 2 is the same rate when 
the planes 'TTl and 'TT2 are parallel. The value of R predicted by the 10-) state 
IS 

(36) 

where 

l' = (ko/ k) + (k/ ko) (37) 

Here ko is the wave number of the incident photon and k is that of the 
final photon. Bohm and Aharonov considered an angle of 82° for which 
the ratio ko/ k can easily be calculated from Compton scattering kinematics, 
and obtained R = 2.85. This figure could not be compared directly with the 
experiment of Wu (1950), because there photons were detected with an 
angular spread around the ideal value of 82°. For such a concrete situation 
the prediction R = 2.00 applied instead, obtained with a suitable angular 
average of equation (36), which agrees very well with the experimental 
result R = 2.04 ± 0.08. Bohm and Aharonov could also show that the 
hypothesis of a breakdown of the 10-) state vector with the increasing distance 
between the two photons, and of its substitution with mixtures of factorizable 
vectors led necessarily to considerably smaller values of R, always satisfying 
R ~ 1.5. 

These results show that Wu's experiment is adequately explained by 
existing quantum theory, which implies distant correlations of the type 
leading to the EPR paradox, but not by any hypothesis implying a 
simple-minded breakdown of the quantum theory that could avoid the 
paradox. 
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It would however not be correct to conclude that this experimental 
evidence constitutes an argument against local realism, since there are 
well-known local models capable of reproducing the quantum-mechanical 
predictions for the experiments on double rescattering following electron
positron annihilation into two gamma rays. One such model was proposed 
by Kasday (1971). Suppose there are two "hidden" vectors Al and A2 
associated with photon ex and photon /3, respectively, and let the photons 
ultimately scatter in the directions of these vectors. Then simply give Al 
and A2 the same probability distribution as that of the momenta kl and k2 
of the scattered photons: 

where H(kl , k2) is the probability distribution of the momenta kl and k2 
of the scattered photons, as predicted by quantum theory. The assumption 
is clearly that the photons have "decided in advance," at the time of 
annihilation, in which direction they would ultimately scatter. The model 
is local: changing the position of "detector 1" does not affect the parameter 
A2 , for example, and therefore it does not change the response of "detector 
2." Furthermore the model reproduces the results of all measurements that 
can be made on the scattered photons. 

Given the conclusive evidence found by Bohm and Aharonov against 
a simple-minded breakdown of quantum theory, it is surprising that several 
authors rediscovered their idea long after it had been discarded by its 
proponents. 

Thus Jauch (1971) developed an ambitious approach to quantum theory 
based on an "algebra of propositions," where he defined as "mixtures of 
the 2nd kind" the quantum-mechanical description of EPR pairs based on 
nonfactorizable state vectors, that is, the states which lead to the EPR 
paradox, and concluded that "Mixtures of the 2nd kind do not exist." 
(Jauch, 1971.) 

Similarly de Broglie (1974) objected to Bell's proof of the incompatabil
ity between local realism and quantum-mechanical predictions that the 
latter had been deduced from a formalism implying that the two particles 
are transported by one and the same "wave train." However, according to 
de Broglie, a unique wave train is possible, only if the two particles are 
near to one another. Therefore the usual quantum formulas should break 
down at distances larger than the coherence length of the two wave packets. 

The Bohm-Aharonov hypothesis has recently been rediscovered by 
Piccioni and Mehlhop (1987), who also came to the conclusion that the 
singlet state does not exist because it leads to unacceptable action at a 
distance. 
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2. Inequalities from Einstein Locality 

2.1. Bell's Inequality (1965) 

I hope that the rigor and beauty of the argument 
of EPR is apparent. If one does not recognize how 

good an argument it is-proceeding rigorously 
from premises which are thoroughly reasonable

then one does not experience an adequate 
intellectual shock when one finds out that the 

experimental evidence contradicts their conclusion. 
The shock should be as great as the one 

experienced by Frege when he read Russell's 
theoretical paradox and said, "Alas, arithmetic 

totters !" 
(A. SHIMONY, 1978) 

Consider again an ensemble formed by a very large number N of 
decays e ~ CI. + (3 and suppose that the observer 0" measures on CI. the 
dichotomic observable A(a), while in a distance region of space a second 
observer 013 measures on (3 another dichotomic observable B( b). 

The observables A( a) and B( b) have been taken to depend on the 
arguments a and b, respectively, which are assumed to be experimental 
parameters, fixed in the structure of the apparatuses in any given experiment, 
but possibly variable over different experiments, Examples of such 
dichotomic observables are those represented by the spin matrices (J( CI.) • a 
and (J({3) . b, where the experimental parameters are the unit vectors a and 
b. They could be fixed experimentally, for example, by the directions of 
the inhomogeneous magnetic fields of two Stern-Gerlach apparatuses. 

In practice, any physical quantity can be used to define a dichotomic 
observable: for instance one could say that A(a) = ±1 if the energy of an 
atom is above or below a certain level a. 

In any event, when measurements of such observables are made on all 
the N pairs of the given ensemble, 0" will obtain a set of results 
{At. A 2 , ••• , AN}' while Of! will collect a similar set {BI' B2 , .• , , BN}, all 
relative to fixed values of the parameters a and b. The results of the two 
sets are correlated in the sense that AI and BI pertain to the particles CI. 

and (3, respectively, arising from the first decay; A2 and B2 are similarly 
associated with the second decay; and so on, By definition, these results in 
every case equal ± 1. 

The correlation function P( a, b) of the results Ai and Bi is defined as 
the average product of the results obtained by 0" and 013: 

1 N 
P(a b)=- I AS 

, N i=1 L' 
(38) 
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Since every product AiBi is ±1, it follows that 

-1 .:;; P( a, b) .:;; + 1 (39) 

The quantum-mechanical correlation function, in the case of the singlet 
state, is given by 

P(a, h) = 7]~[O"(a) • a ® 0"(f3) • h]7]o = -a' h (40) 

This result is simple and elegant, but incompatible with local realism as we 
will soon see. 

Define now the quantity 

il = IP(a, h) - P(a, h')1 + IP(a', h) + P(a', h')1 (41) 

Consider two orthogonal unit vectors a and a', associated with particle a, 
and two orthogonal unit vectors hand h', associated with particle f3, and 
suppose that their orientation is such that they can be found by clockwise 
rotations of 7r /4 in the order a, h, a', h'. One can then easily see that the 
substitution of equation (40) into equation (41) leads to 

il = Iii . h - a . h'l + la' . h + a' . h'l = 2~2 

It can, moreover, be shown that 2~2 is the maximum value of il for all 
conceivable orientations of the vectors a, a', h, h'. This result is of great 
interest because, as we will see next, local realism allows il to have a 
maximum value of 2. The inequality il .:;; 2 is Bell's inequality, and it has 
been called "the most profound discovery of science." (Stapp, 1977.) 

In a theory developed according to the EPR reality criterion there are 
elements of reality A which fix all observables. In general, they can be 
expected to vary, with density p(A), over the set A. Of course 

f dA p(A) = 1 
A 

(42) 

The role of the new variable A is naturally that of fixing a priori the values 
of the dichotomic observables; for example, 

O"(a) • a ~ A(a, A) 
(43) 

0"(f3). h ~ B(b, A) 

where the discontinuous functions A( a, A) and B( b, A) can assume only 
the values ± 1. The correlation function as defined in equation (38) (average 
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product of the two observables) can obviously be written 

P(a, b) == f dA p(A)A(a, A)B(b, A) 

This is a local expression, in the sense that A does not depend on b, nor 
does B depend on a. 

It is a simple matter to show that 

IP(a, b) - P(a, b')I.;; f dA p(A)IB(b, A) - B(b', A)I (45) 

since IA(a, A)I == 1, and that 

IP(a', b') + P(a', b')I.;; f dA p(A)IB(b, A) + B(b', A)I (46) 

By adding equations (45) and (46) and using 

IB(b, A) - B(b', A)I + IB(b, A) + B(b', A)I == 2 

which is a consequence of IB(b, A)I == IB(b', A)I == 1, one obtains from 
equation (42) Bell's inequality 

Il == IP(a, b) - P(a, b')1 + IP(a', b) + P(a', b')I.;; 2 (47) 

The practical meaning of the inequality (47) will be discussed at length in 
the next and in subsequent sections. 

2.2. The Strong Inequalities (1969) 

A practical way of testing experimentally the validity in nature of Bell's 
inequality could be the following: a source is built in such a way that the 
decays e ~ a + f3 lead to the emission of the pair only when the object a 
(f3) flies to the right (to the left) where a two-channel analyzing apparatus 
can transmit it or reflect it at 90° depending on its physical properties. The 
dichotomic choice forced in this way upon the atomic objects can then be 
used for defining Bell's dichotomic observables, by saying that A(a) == ±1 
[B(b) == ±1], depending on the channel, first or second, chosen by the 
object a (f3). 

In 1969 Clauser, Horne, Shimony, and Holt (CHSH) suggested the 
use of pairs of optical photons emitted by atomic cascades. For such photons 
they assumed that the binary choice was the one between transmission and 
absorption in a polarizer. For every choice of the polarizers' orientations a 
and b, they introduced four probabilities w (a±, b±), where, for instance, 
w (a+, b_) is the probability that observer 0", finds A( a) == + 1 (photon a 
transmitted through polarizer with axis a) and that 0/3 finds B( b) == -1 
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(photon f3 absorbed by polarizer with axis b). The correlation function can 
then be written 

since the product of the results obtained by Ou and 0/3 is + 1 (-1) in the 
cases of w(a+, b+) and w(a_, b_) [in the cases of w(a+, b_) and w(a_, b+)]. 
Of course 

Considering further the case in which the second polarizer has been removed 
(the symbol co is used to denote this), one will obviously get 

(50) 

If, instead, the first polarizer has been removed, one similarly gets 

(51) 

Finally, if both polarizers have been removed both photons will certainly 
be transmitted, so that 

(52) 

Using now equations (49) to (51), we find it a simple matter to show that 
the correlation function can be written 

In the latter expression only cases of double transmission appear, which 
are nearer to experimental observation, since it is impossible to detect the 
absorption of a photon in a polarizer. However at this point one must face 
a very important problem: can one really measure the right-hand side of 
equation (53) with an error, say, of a few percent? Obviously, the only way 
to know that a photon has been transmitted through a polarizer is to detect 
its presence beyond that instrument, but the problem is that photon detectors 
have an efficiency of only 10 to 20%. This means that one cannot really 
measure a double-transmission probability, but only a joint probability for 
double transmission and double detection of the two photons. This is not 
what enters in equation (53)! 

One could attempt to redefine the correlation function by using only 
the measurable joint probabilities for detection and transmission. This can 
certainly be done, but the trouble is that the values of P( a, b) turn out to 
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be of the order of 10-2 which is far too small to lead to a violation of Bell's 
inequality (47). 

This problem has traditionally been "solved" by means of ad hoc 
assumptions concerning the nature of the transmission/ detection process. 
The additional assumption made by CHSH is the following: 

Given that a pair of photons emerges from two regions of space where two 
polarizers can be located, the probability of their joint detection from two 
photomultipliers is independent of the presence and of the orientation of the 
polarizers. 

Calling Do the double-detection probability dealt with in the previous 
assumption, and denoting by the letter D the joint probability for trans
mission and detection of both photons, one can translate the previous 
assumption into the following relations: 

(54) 

where D( a, b) is the joint probability in the case of polarizers with orienta
tions a and b, D(a, (0) is the joint probability with the second polarizer 
removed and the first one oriented along a, and so on. 

The rates of double detections depend of course on the number No of 
photon pairs entering, per second, into the right solid angles defined by the 
optical apparatuses. Using the letter R for denoting rates, one has 

R(a, b) = NoD(a, b) 

R(a, (0) = NoD(a, (0) 
(55) 

R(oo, b) = NoD(oo, b) 

where R (00, (0) has been called Ro and the meaning of the new symbols is 
obvious. If one obtains the w functions from the relations (54) and (55) 
and substitutes them in equation (53) one gets 

( b) R(a,b) R(a, (0) R(oo,b) 
Pa =4 -2 -2 +1 

, Ro Ro Ro 
(56) 



24 Introduction 

Only coincidence rates enter into equation (56): by virtue of the CHSH 
additional assumption the correlation function has therefore become 
measurable! 

Equation (56) allows us to transform Bell's inequality into a directly 
measurable expression. In fact from the inequality (47) it is easy to deduce 
that 

-2:0;;; P(a, b) - P(a, b') + P(a', b) + P(a', b'):o;;; +2 (57) 

Substituting into the previous inequalities the expressions of the type (56) 
for the four correlation functions one obtains 

R(a, b) R(a, b') R(a', b) R(a', b') R(a', (0) R(oo, b) 0 
-1:0;;; - + + - - :0;;; 

Ro Ro Ro . Ro Ro Ro 
(58) 

Only coincidence rates enter into the previous inequalities, which can 
therefore be checked experimentally. Historically, the second one was 
obtained in the 1969 CHSH paper, while the first one first appeared in print 
in the 1972 letter reporting on the Freedman-Clauser experiment. 

A useful simplification is obtained if two qualitative predictions of 
quantum theory, which have nothing paradoxical and which can be checked 
directly in experiments, are accepted: 

1. The prediction that R\ == R(a', (0) does not depend on a', and that 
R2 == R(oo, b) does not depend on b. 

2. The prediction that every R function should depend only on the 
relative angle between the polarizers' axes. For example, 

R(a, b) = R(a - b) 

Adopting these simplifications, one gets 

R(a - b) R(a - b') R(a' - b) R(a' - b') R\ R2 (59) 
-}:O;;; - + + ----:0;;;0 

Ro Ro Ro Ro Ro Ro 

The axes of the polarizers can be chosen in such a way that 

a - b = a' - b = a' - b' = 4>, a - b' = 34> (60) 

Therefore from equation (59) it follows that 

(61) 
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Considering the previous inequalities for 4> = 221° and for 4> = 671°, for 
which the maximal quantum-mechanical violations take place, one can 
easily obtain the so-called Freedman inequality 

(62) 

which does not involve R J or R 2 • 

It is perhaps worthwhile to repeat that all the new results deduced, 
starting from equation (56) and ending with inequality (62), have become 
possible only because the CHSH assumption has been made. It is therefore 
not correct to confuse the original Bell's inequality with the much stronger 
inequalities which were now deduced. In future we will therefore adopt the 
following definitions: 

1. Weak inequality: An inequality deduced from the sole assumption 
of local realism and violated by quantum mechanics in the case of 
nearly perfect instruments. 

2. Strong inequality: An inequality deduced from local realism and 
from ad hoc additional assumptions, such as the CHSH hypothesis 
stated above, or other hypotheses to be seen later, and violated by 
quantum mechanics in the case of real instruments. 

In order to see the difference, suppose that the CHSH hypothesis had not 
been made. One could then have redefined the joint probabilities w in 
equation (48) in the following way: 

w(a+, b+) = Probability that both photons are transmitted and detected 
w( a+, b_) = Probability that the first photon is transmitted and detec

ted, and that the second photon either is not transmitted 
or is transmitted but not detected 

and so on. 
In place of equation (53) one would then have obtained 

where wJ(a+) [w2(b+)] is the probability that the first [second] photon be 
transmitted and detected. These are single-photon probabilities and do not 
refer to joint events for the two photons. 

Bell's inequality (57) could then have been written 
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The trouble with the latter inequality is that in the case of real experiments, 
the single-photon probabilities are larger, by about an order of magnitude, 
than the joint probabilities. This results in the fact that the quantum
mechanical predictions do not violate the latter inequalities. They are thus 
weaker than inequality (58), which is also violated in the case of real 
instruments. 

2.3. Wigner's Proof of Bell's Inequality (1970) 

In the present section Wigner's 1970 proof of Bell's inequality will be 
reviewed in a form which is somewhat simpler and more general than the 
original one. Of course, the basic ideas are strictly the same. 

Wigner made two basic assumptions. The first one was that the results 
of all conceivable measurements are simultaneously prefixed (even in the 
case of incompatible observables). This realistic standpoint does not contra
dict Heisenberg's relations because the latter can be taken simply to mean 
that a concrete measurement made on a given object modifies the pre-fixed 
values of other observables of that object, not compatible with the measured 
one. But, before the action of the instrument, it is possible that the results 
of all conceivable measurements are predetermined. 

The second assumption was locality. A measurement made on a (f3) 
does not modify the pre-fixed values of the observables B(b), B(b') [A(a), 
A(a')] of f3 (a). If one writes 

A(a) = s, A(a') = s' 
(63) 

B(b) = t, B(b') = t' 

where s, s', t, t' all equal ±l, locality means that these four parameters, 
preassigned by the realistic assumption, are not modified at a distance by 
measurements. Therefore, if A( a) is measured on an a particle, for example, 
and the value s is found, the preassigned values t and t', associated with 
the correlated f3 particle, are in no way modified. 

We are obviously dealing with a realistic and deterministic approach, 
since the result of every possible measurement is predetermined by some 
concrete properties of the measured objects ("hidden variables"). This does 
not mean, however, that an active role of the apparatus is excluded, but 
only that the interaction between object and apparatus is driven to a pre-fixed 
outcome ("result of measurement") by the hidden variables of the object. 

As a consequence of these assumptions, the set E of N (a, f3) pairs 
splits into 24 subsets with well-defined populations in which the outcome 
of the four possible measurements is predetermined. Let E(s, s'; t, t') be a 
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subset of E with prefixed values of the four observables (63) and 
n(s, s'; t, t') be its population. Naturally 

L n(s, s'; t, t') = N (64) 

where L denotes a sum over the 24 different sets of values of the dichotomic 
parameters s, s', t, and t'. 

By virtue of the locality assumption, the concrete performance of the 
measurement of A(a), or of A(a'), on the a objects of a subset E1 c E 
does not in any way modify the pre-fixed values of B( b) and B( b') in that 
subset. In other words, there is no action at a distance modifying B( b) 
and/or B(b') arising from the measurements of A(a) or A(a') (and vice 
versa). 

The a priori probabilities 

( , ') 1 ( , ') w s, s ; t, t = N n s, S ; t, t (65) 

can therefore be used for the calculation of correlations of concretely 
performed experiments. Therefore: 

P(a, b) = L w(s, s'; t, t')st 

P(a, b') = L w(s, s'; t, t')st' 
(66) 

P(a', b) = L w(s, s'; t, t')s't 

P(a', b') = L w(s, s'; t, t')s't' 

where L again denotes a sum over the dichotomic variables s, s', t and t'. 
lt is now a simpler matter to show that 

IP(a, b) - P(a, b')1 ~ L w(s, s'; t, t')lt - t'l (67) 

since lsi = 1. Similarly, from Is'l = 1 it follows that 

IP(a', b) + P(a', b')1 ~ L w(s, s'; t, t')lt + t'l (68) 

By adding equations (67) and (68) and using the equality 

It - t'l + It + t'l = 2 
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which is a consequence of I tl = I t'l = 1, Bell's inequality [equation (47)] 
follows, since equation (64) is equivalent to 

L w(s, s'; t, t') = 1 

With Wigner's proof, probabilities entered for the first time into the EPR 
paradox. They were, however, deduced from a deterministic background, 
much in the same way as was done by Laplace with his formulation of 
probability calculus. 

2.4. Bel/'s Inequality within Quantum Theory (1973) 

A remarkable property of mixtures of factorizable state vectors is that 
in all cases they satisfy Bell's inequality, as first shown by Capasso, 
Fortunato, and Selleri (1973). A simple proof is the following: Consider 
an ensemble E of N quantum pairs (a, (3) and suppose that they are 
described by factorizable state vectors 1'1' k)I<I> k) with frequencies nk/ N 
(k = 1,2, ... ). Therefore in the ensemble E 

(69) 

and one has 

(70) 

Suppose that the dichotomic observables to be measured on a and (3 are 
described quantum-mechanically by the operators A( a) and B( b), respec
tively, so that the operator corresponding to the product of the joint 
measurements on the two systems is A(a) ® B(b). The correlation function 
predicted by quantum mechanics is precisely the average of the latter 
observable over the mixture (69), so that 

P(a, b) = LPk('I'kl(<I>kIA(a)® B(b)I<I>k)I'I'k) (71) 
k 
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where 

LPk = 1 (72) 
k 

The four correlation functions entering into Bell's inequality can then be 
written 

where 

Pea, b) = L PkAkBk Pea, b') = L PkAkB~ 
k k 

Pea', b) = L PkA~Bk Pea', b') = L PkA~B~ 
k 

Ak = ('It klA( a ) I 'It k) 

A~ = ('ItkIA(a')I'It k ) 

Bk = (cI>kIB(b)lcI>k) 

B~ = (cI>kIB(b')IcI>k) 

k 

(73) 

(74) 

The previous quantities are expectation values of operators having ±1 as 
only possible eigenvalues. Therefore 

(75) 

these inequalities being true for all k. 
By inserting equation (73) into equation (41) one easily gets 

(76) 

where 

(77) 

Recalling the inequalities (75), one can immediately deduce that 

(78) 

from which it follows that 

~k ~ 2 (79) 
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since any two real numbers x and y such that Ixl :s:; 1 and Iyl :s:; 1 always 
satisfy Ix - yl + Ix + yl :s:; 2. If equation (79) is inserted into equation (76) 
one finally gets Ll :s:; 2, that is, Bell's inequality as given by equation (47). 

2.5. Factorizable Probabilities (1974) 

In the considerations developed in Section 2.2, probabilities entered 
in an essential way; for example, double-detection probabilities were intro
duced in equation (53). This was of course a necessity, since the deterministic 
scheme, considered originally by Einstein, Podolsky, and Rosen and by 
Bell, cannot really apply to a concrete physical situation. 

A systematic probabilistic approach was proposed by Clauser and 
Horne (1974). They characterized pairs of correlated objects with a variable 
,\ representing their physical state, and introduced probabilities for describ
ing the interaction of a quantum object with an analyzer (e.g., the interaction 
of a photon with a polarizer) and the subsequent detection. Thus p(a,'\) 
is the probability that object a crosses the analyzer with parameter a and 
that it is subsequently detected; q( b, A) is the similar probability for object 
(3; and D(a, b, A) is the probability that both objects a and (3 cross their 
respective analyzers with parameters a and b, and that they are both detected. 
Furthermore, Clauser and Horne proposed that the very definition of the 
locality condition should be written 

D(a, b,'\) = pea, A)q(b, A) (80) 

It is not obvious that this definition should exhaust all possible local 
situations, but this important problem will be discussed later. Supposing 
that the variable A can vary in the set A with density p(A), both independent 
of a and b, one can write 

pea) = f dA p(A)p(a, A) 

q(b) = f dA p(A)q(b, A) 

D(a,b) = f d'\p(A)p(a,'\)q(b,'\) 

(81) 

(82) 

for the ensemble probabilities, expressed as weighted averages of the 
individual probabilities. The integrals in equations (81) and (82) are taken 
over A. 
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In order to deduce inequalities from their definition oflocality, Clauser 
and Horne considered the following simple algebraic theorem: Given six 
real numbers x, x', X, y, y', and Y, such that 

o~ x,x'~ X, o ~ y,y' ~ Y 

one must always have 

-XY ~ xy - xy' + x'y + x'y' - x' Y - Xy ~ 0 (83) 

The proof of equation (83) is straightforward, since the intermediate quantity 
in it is linear in each of the four variables x, x', y and y', so that its extremes 
must be looked for on the boundary of the variables. 

These inequalities can now be applied to the EPR paradox by making 
the identifications 

x=p(a,A) 

x'=p(a',A) 

y = q(b, A) 

y' = q(b', A) 

(84) 

Introducing equation (84) into equation (83), multiplying the result by p(A), 
and integrating over A, one obtains 

-XY ~ D(a, b) - D(a, b') + D(a', b) + D(a', b') - pea') Y - Xq(b) ~ 0 

(85) 

We may ask what the correct values of X and Yare in the inequalities 
(85). The straightforward answer is, of course, X = Y = 1, since the prob
abilities on the right-hand sides of equations (84) might reach the value 1 
for some value of A. This leads to inequalities of Bell's type (with no 
additional assumption), 

-1 ~ D(a, b) - D(a, b') + D(a', b) + D(a', b') - pea') - q(b) ~ 0 (86) 

which could also have been deduced directly from Bell's inequality (47). 
Inequalities of the previous type, which we decided to call "weak type" in 
Section 2.2, are sometimes also called "inhomogeneous inequalities" since 
they are based both on double- and on single-detection probabilities. 
"Homogeneous inequalities," which are based on double-detection prob
abilities only, will be deduced next. 
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The problem with the inequalities (86) is the usual one: for real detectors 
they are not violated by the quantum-mechanical predictions. For this reason 
Clauser and Horne proposed the following additional hypothesis, formu
lated for the case in which a and {3 are photons: 

For every photon in the state A, the probability of a detection with a polarizer 
in place on its trajectory is less than or equal to the detection probability with 
the polarizer removed (Clauser and Horne, 1974). 

In practice, this new assumption is equivalent to the following four 
inequalities 

pea, A) ,,;;; p(oo, A) 

pea', A) ,,;;; p(oo, A) 
(87) 

q(b, A)";;; q(oo, A) 

q(b', A) ,,;;; q(oo, A) 

where the symbol 00 indicates that the polarizer has been removed. The 
new relations (87) allow one to use equations (83) and (84) with 

x = p(oo, A), Y=q(OO,A) (88) 

Substituting equations (88) and (84) into equation (83), mUltiplying by 
p(A), and integrating over A, one obtains 

-Do";;; D(a, b) - D(a, b') + D(a', b) + D(a', b') 

- D(a',oo) - D(oo, b),,;;; 0 (89) 

where Do denotes the same physical quantity as in Section 2.2 and the 
meaning of the new symbols is obvious. 

This is an inequality of the strong type, deduced with the help of 
additional assumptions and much stronger than the weak-type inequality 
(86). In fact, inequality (89) contains only double-detection probabilities 
and the quantum-mechanical predictions can be shown to violate it for 
suitable choices of the polarizer's axes. Since the ratio of double-detection 
probabilities coincides with the corresponding ratio of detection rates, 
relation (89) can easily be shown to coincide with relation (58). From this 
observation it follows that all the results deduced in the CHSH approach 
from (58) are valid also in the present Clauser and Horne (CH) approach. 
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2.6. An Infinite Set oj Inequalities (1980) 

The restrictions imposed by local realism are not fully expressed by 
Bell's inequality, and an inequality can be deduced for an arbitrary linear 
combination of correlation functions (Garuccio and Selleri, 1980). In fact, 
given the numerical coefficients cij ' real but otherwise arbitrary, and the 
correlation functions P(a" bj), with i = 1, ... , nand j = 1, ... , m, local 
realism implies that 

n m 

I I cijP(ai, bj ) ,;;; Mo (90) 
i=1 j=1 

where 

(91) 

where, among all possible choices of the sign factors ~i = ± 1 (i = 1, ... , n) 

and Tlj = ± 1 (j = 1, .... , m), one must take the one giving the maximum 
value to the quantity within parentheses in equation (91). 

The whole story of this development, with the various methods of 
proof, and with the contributions made by different authors, is told in 
Chapter 3. Here, only four points will be enumerated: 

1. Bell's inequality is a particular case of equation (90) with m = n = 2, 
with three cy's equaling + 1, and with the fourth one equaling -1. 

2. All the physical restrictions of the set of inequalities with n = m = 2 
are given by Bell's inequality. 

3. An inequality is "trivial" (i.e., it does not provide physical restric
tions) if the cy's have factorizable signs, that is, if they can be written 

where 

with J.'i = ±1 and Vj = ±l (i = 1, ... , n; j = 1, ... , m). 
4. There are inequalities providing physical restrictions on the P(ai , bj : 

which cannot be deduced from any Bell's inequality. The so-callec 
"superinequalities" are of this type. 
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5. Recently Lepore (1988) could show that the set of inequalities (90) 
and (91) is not the most general one and that physically meaningful 
inequalities can be deduced from local realism for arbitrary linear 
combinations of joint probabilities. The set of inequalities (90) and 
(91) is recovered as a particular case of a more general set of 
inequalities. 

Interesting consequences of local realism were found by Garg and 
Mermin (1982), who were able to deduce Bell-type inequalities for two 
spin-j particles (with arbitrary j). They could show that the singlet state for 
two particles with spin j leads to violations of local realism for arbitrarily 
large values of j up to and beyond the threshold of classical physics. But 
in the classical domain it is always possible to assign a priori well defined 
values to all observable quantities. The result of Garg and Mermin does 
not augur well for the coherence and rationality of the existing quantum 
theory, which seems to extend its "magic" predictions to include the macro
scopic domain, where classical physics had successfully banished all 
"magic" approaches. 

2.7. Rapisarda's Experiment (1981) 

Up to the present section, formulations of the EPR paradox for experi
ments in which a one-way polarizer is put on the path of each photon were 
considered. However this is not a very convenient configuration, since the 
dichotomic choice is between the transmission of the photon and its lack 
of transmission (i.e., absorption or reflection). Now, of course, an absorption 
cannot be detected and a considerable amount of information is therefore 
lost inside the polarizer where the photon is absorbed. A better experiment 
would be one in which a truly binary choice is made, and where the two 
alternatives are both detected. 

In 1981 Garuccio and Rapisarda (GR) studied an experiment in which 
a piece of calcite, monitored by two detectors put on the ordinary and on 
the extraordinary ray, was used as analyzer for each of the two photons. 
While the theoretical approach of Garuccio and Rapisarda was similar to 
that of Clauser and Horne, with the variable A and with factorizable 
probabilities, an important difference is that they dealt with four simul
taneously-measurable coincidence rates. Denoting a photon detection on 
the ordinary ray and on the extraordinary ray by + and -, respectively, 
one has instead of equation (82): 

(92) 



History of the EPR Paradox 35 

where p( a+, A) is the probability that the photon a emerges and is detected 
in the ordinary beam when the axis of the calcite has orientation a, and 
so on. 

Garuccio and Rapisarda proposed an entirely new definition of correla
tion function, based on all the available experimental information, and wrote 

Substituting equation (92) into the latter expression one gets 

£(a b)= JdAp(A)f(a,A)g(b,A) 
, J dA p(A)F(a, A)G(b, A) 

(94) 

where 

f(a, A) == p(a+, A) - p(a_, A) 

g(b, A) == q(b+, A) - q(b_, A) 
(95) 

F(a, A) == pea+. A) + p(a_, A) 

G(b, A) == q(b+, A) + q(b_, A) 

The problem with equation (94) is that no inequality violated by quantum 
theory can be obtained from it for experiments that are actually feasible. 
Therefore, also in this case, one introduces an additional assumption, which 
can be formulated as follows 

For every photon in the state A, the sum of the detection probabilities in the 
"ordinary" and in the "extraordinary" beams emerging from a two-way polarizer 
does not depend on the polarizer's orientation (Garuccio and Rapisarda, 1981). 

The practical implications are that the function F does not depend on a, 
the function G does not depend on b, and the denominator of equation 
(94) does not depend on either a or b. A better notation is then 

F(A) = p(a+, A) + p(a_, A) 

G(A) = q(b+, A) + q(b_, A) 

Ho= f dAp(A)F(A)G(A) 

(96) 
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It will next be shown that the previous simplifications allow one to obtain 
a new inequality of the strong type, violated by quantum mechanics for 
real experiments. It is not difficult to show that 

IE(a, b) - E(a, b') + E(a', b) + E(a', b')1 

:s;; HoI f dp(A)[lf(a, A)llg(b, A) - g(b', A)I 

+ If(a', A)llg(b, A) + g(b', A)IJ 

whence, using the obvious inequalities 

one obtains 

If(a, A)I :s;; F(A), 

Ig(b, A)I :s;; G(A), 

If(a', A)I :s;; F(A) 

Ig(b', A)I :s;; G(A) 

IE(a, b) - E(a, b') + E(a', b) + E(a', b')1 :s;; 2 (97) 

since any two numbers g and g' satisfying Igl :s;; G and Ig'l :s;; G must also 
satisfy: Ig - g'l + Ig + g'l :s;; 2G. Garuccio and Rapisarda could show that 
the quantum-mechanical predictions violate equation (97) by as much as 
50%. The quantum-mechanical expression for E (a, b) will be given in 
Section 2.10. The Rapisarda experiment was carried out by Aspect, Grangier, 
and Roger (1982). An improved version is now underway in Catania (see 
Chapter 8). 

2.S. Is Factorizability General Enough? 

The factorizability condition, equation (82), has been proposed by 
Clauser and Home as the most general possible formulation of local realism 
at the probabilistic level. Their idea was that A specified the state of a single 
pair of correlated quantum objects, so that p(a, A) and q(b, A) were the 
probabilities of a certain behavior of a given object. One can then say that 
the Clauser-Home idea was based on objective probabilities for individual 
systems. Although most people are unable to see anything philosophically 
dangerous in this notion, it is a fact that the history of probability calculus 
has developed without it. The realistic definition of probability is based not 
on individuals, but on statistical ensembles. 

The EPR paradox is not a standard and well-established notion, and 
ought to be formulated starting only from generally accepted ideas. Quite 
apart from this general criticism, some difficulties have been found which 
cast doubts on the general validity of the CH formula. 
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1. Deterministic models have been found that are factorizable as such, 
but that lose factorizability as soon as they become probabilistic 
models owing to averaging over one of the hidden variables (Suppes 
and Zanotti, 1976; Selleri and Tarozzi, 1980; Garuccio and 
Rapisarda, 1981). 

2. It has been shown that a probabilistic model, assumed factorizable 
in the CH sense in n variables, loses factorizability as soon as it is 
averaged over one of these variables (Selleri, 1987). 

3. A concrete physical model has been constructed in the macroscopic 
domain, based entirely on local and realistic ideas, which is factoriz
able neither directly, nor in any conceivable indirect way (the 
example of the identical twins: Liddy, 1983; Selleri, 1987). 

4. A numerical example of probabilities satisfying the inequalities of 
Bell's type cannot be written in terms of factorizable probabilities, 
no matter how many hidden variables are introduced (Garg and 
Mermin, 1982). 

In the present section only the last problem will be reviewed. The situation 
discussed is similar to the one of equation (92), with the difference that 
three parameters ai and three parameters bj will be used. The notation is 
simpler if one writes 

(98) 

where u = ± and T = ± are sign factors. The model proposed by Garg 
and Mermin (1982) is 

(99) 

where i, k = 1,2,3; 0 < c ,;;; tAIl = A22 = 1 and Aik = -! in all other cases. 
It is very easy to show that all inequalities of the type (86) that can be 
written with the nine quantities (99) reduce to 

(100) 

so that they are always satisfied. We note that the coefficient c has disap
peared from the locality condition (100). Assuming factorizability, one has 

(101) 

where 

0,;;; Pi(U, A)';;; 1, (102) 
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and 

L dp(A) = 1 (103) 

Since in all cases it follows from equation (99) that 

one has for all A E A and all i, k = 1,2,3: 

Of the twelve probabilities entering into equation (102) only six are thus 
seen to be independent. Their number can be further reduced to four; in 
fact from equation (99) one sees that both DIl (+, -) and D 22 ( +, -) vanish. 
By using equations (101) and (105) one then gets 

(106) 
q2(+, A) = P2(+, A) = 1 or 0 

Let AI (A2) be the region of A where PI(+, A) = 1 [P2(+, A) = 1], and 
outside which it vanishes. Obviously the product PI ( +, A) q2( +, A) equals 
unity in AI n A2 and vanishes outside. Therefore 

Dd+, +) = f dp(A) = ~ - e/2 
A t rlA 2 

(107) 

where the numerical value was taken from the Garg-Mermin formula (99). 
Consider next the integral J below, a priori of unclear physical meaning: 

(l08) 

The following four relations allow one to get a lower limit for J: 

t'UA' = t, + t, -t,nA, (109) 

f dP(A)Q3(-,A)=f dp(A)pI(+,A)Q3(-,A)=~ (110) 
A, A 
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L, dp(A) q3(-, A) ~ 1 (11 1) 

f dp(A)q3(-,A)~t-e/2 
A 1nA2 

(112) 

Of these, relation (109) is of intuitive validity, relation (110) [(111)] is a 
consequence of the definition of Al [A2] and of the value of Du( +, -) 
[D23(+, -)] deducible from equation (99), and relation (112) is a con
sequence of equation (107). 

By using the relations (109) to (112) one easily gets 

(113) 

But the right-hand side of equation (113) equals the single probability q3( -), 
since it follows from equation (99) that 

From the definition of J one sees that it cannot be larger than q3( -). 
Therefore, comparing equations (113) and (114), one sees that it must be 
J = q3( -). This result entails two conclusions: 

1. q3(-, A) = 1, for all A E Al (l A2 
2. Q3(-, A) = 0, for all A E A if A = A - Al U A2 

Therefore 

for all A E A (115) 

Identical reasoning can be invoked for P3( -, A) and P3( +, A), with the result 

for all A E A (116) 

From equations (115) and (116) it follows that P3(+, A)Q3(+, A) = 1 for all 
A E A. Therefore 

D33(+, +) = f dp(A) P3(+, A)Q3(+, A) ~ f- dp(A) P3(+, A)Q3(+, A) 
A A 

= Ix dp(A) = 1- e/2 (117) 
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The latter inequality is, however, in disagreement with the value of D33 ( +, +) 
deduced from the Garg-Mermin formula (99). Therefore the latter formula 
is incompatible with the Clauser-Horne factorizability condition. 

The four difficulties listed above are strong enough to make one feel 
somewhat uncertain about the generality of the Clauser-Horne formula. A 
safer definition of probabilistic local realism should therefore be looked 
for, with the possibility, in case of lack of success, of finding a reconciliation 
between local realism and the quantum-mechanical predictions in the yet 
unexplored region of local-realistic situations which do not satisfy the CH 
formula. 

Unfortunately this possibility does not exist, as shown in Chapter 6, 
in which a fully general formulation of probabilistic local realism is 
developed that leads to the validity of Bell's inequality and of the other 
inequalities previously deduced from CH factorizability. 

It has been shown by Lepore (1988) that the Garg-Mermin model 
equation (99) is nonlocal in spite of its satisfying all the inequalities of the 
set of equations (90) and (91). A satisfactory solution of the factorizability 
problem has been found by Garuccio, Lepore, and Selleri (1988): It is not 
factorizability itself that breaks down, but the assumed independence of 
p(A) and A on the considered experimental parameters a l , 

a2,··.,b h b2 , ••.• 

2.9. The EPR Paradox in Particle Physics (1981-1987) 

Chapters 4 and 5 of the present book deal in an excellent way with some 
very interesting processes in particle physics which allow a formulation of 
the EPR paradox. The quantum-mechanical predictions for these processes 
disagree with some expectations which can be obtained from local realism. 
It is therefore possible to carry out experimental investigations of the 
paradox in particle physics. 

The processes considered are: 

1. Decay of the JP = 0- meson 7)c of mass 2980 Me V / c2 into a A
hyperon plus A-antihyperon pair, with subsequent decays A ~ 
P + 7T - and A ~ p + 7T +. If Ii and b are unit vectors in the directions 
of the emitted 7T - and 7T + mesons in the A and A rest frames, 
respectively, the suitably normalized decay rate, summed over p and 
p spins, is given by 

(118) 
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where a = -0.642 ± 0.013 is the A-decay asymmetry parameter. The 
latter quantum-mechanical prediction disagrees by as much as 10% 
from a limit deducible from local realism (Tornqvist, 1981). 

2. Decay of the JP = 1- meson J /'1' of the mass 3097 Me V / c2 into the 
same AA channel discussed above for the 1]c. If the J /'1' is polarized 
along the direction n, the decay rate summed over p and p spins, 
is given by 

(119) 

where 

h' ex: h - n(2h . n) (120) 

The latter quantum-mechanical prediction disagrees with expecta
tions deduced from local realism. 

3. Decay of a Jpc = 1-- state into K O KO. If charge conjugation-parity 
(CP) conservation is assumed and ta (tb ) is the proper time of the 
kaon moving to the left (right) and t = tb - fa, then the probability 
of a double KO observation at times ta and tb is given by 

- 2 exp( -Ys t/2) cos Ill] (121) 

where Ys is the total decay rate for the short-lived kaon, and a is 
the K long - Kshorl mass difference. The previous quantum
mechanical prediction disagrees by up to 12% from an upper limit 
rigorously deducible from local realism and given by the right-hand 
side of equation (121) without the term proportional to cos at 
(Selleri, 1983). 

4. Decay of the Y( 4s) vector meson into a pair of neutral pseudoscalar 
mesons EO jjo. The formalism for treating this EO jjO system is exactly 
the same as that for the K O KO system. However, the EO -Bo oscilla
tions are still in doubt and it is therefore not clear that this particular 
test can be carried out (Datta and Home, 1986). 

5. Quantum-mechanical treatment of KO-Ko mixing in double kaon 
decays of a spin-1 resonance with inclusion of CP violation. The 
predicted number of KO or KO observed in one hemisphere seems 
to depend on the position of an absorber in the other hemisphere, 
in evident contradiction to the locality condition (Datta, Home, and 
Raychaudhuri, 1987). 
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It would be very interesting to have experimental evidence for the above 
five processes, as a starting point for a deeper understanding of the relation
ship between local realism and particle physics. One should be careful, 
however, not to take too literally the theoretical predictions "deduced" 
from local realism. Additional assumptions of the type introduced in the 
analysis of the experiments with optical photon pairs have often been made. 
There is, in particular, little doubt that the quantum-mechanical predictions 
(118) and (119) cannot be reproduced by local realistic models. A model 
of the Kasday type (see the final part of Section 1.6), in particular, is 
certainly possible. By and large, it can be said that the interesting perspec
tives that are opened by strong interactions into providing high-efficiency 
detectors, and therefore in allowing one to avoid some additional assump
tions, are still to be investigated. 

2.10. Experiments with Pairs of Atomic Photons (1972-1987) 

In the first five sections of this chapter sets of a and 13 particles were 
considered and assumed to be "well-behaved" in the sense that all a (13) 
particles were taken to propagate toward a well-defined region R,. (Rf3), 
where an observer 0,. (0f3) was supposed to use some instruments in order 
to perform measurements on them. This is like saying that in experiments 
with pairs of optical photons the "source" is defined as incorporating the 
lenses which define the right solid angles. 

The above assumption/ definition does not cause any trouble in practice, 
because experimentalists know which fraction of photon pairs is well
behaved in the previous sense. As a consequence of this, our probabilities 
were all defined without factors representing the fractions of particles a 

and 13 actually arriving on their respective measuring apparatuses. 
Actual experiments on the EPR paradox have almost always been 

carried out with photons. The quantum-mechanical treatment of photon 
polarization is similar to that of spin-~ in one important respect: both 
observables are dichotomic. The absence of a photon mass has the practical 
effect of eliminating from the theoretical scheme the longitudinal polariz
ations. Only linear-polarization states perpendicular to the direction of 
propagation are therefore left, similarly to the case of classical electromag
netic waves whose transverse nature is well known. Considering also states 
of circular polarization, one can define 

I R), a single-photon state with right-handed circular polarization 
IL), a single-photon state with left-handed circular polarization 
Ix), a single-photon state with linear polarization along the x-axis 
Iy), a single-photon state with linear polarization along the y-axis 
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These two sets of states are not unrelated. Elementary quantum theory gives 

IR) = (Ix) + ily)/v'2 

IL) = (Ix) - ily»/v'2 
( 122) 

if the photon propagates in the positive z direction. The existence of 
dichotomic observables for photons has the practical effect that Bell-type 
and CHSH-type inequalities can be formulated also for pairs of photons. 
There are situations where quantum theory describes the polarization of 
two correlated photons with nonfactorizable state vectors, analogous to the 
singlet state of two spin-! objects, which imply violations of local realism. 

In the case of photons, the parity quantum number plays an important 
role and it is necessary to distinguish, for example, the JP = 0+ from the 
JP = 0- states, represented respectively by the state vectors 

10+) = (I Ra)IR/3) + ILa)IL/3»/v'2 

10-) = (I Ra)IR/3) -ILa)IL/3»/v'2 
(123) 

These states can also be expressed in terms of linear polarizations and one 
obtains 

10+) = (lxa )lx/3) + IYa)IY/3)/v'2 

10-) = (lxa)IY/3) -IYa)lx/3»/v'2 
(124) 

The basis states with respect to which the linear polarization is expressed 
are arbitrary. Using the rotated x' - and Y' -axes one obtains results identical 
to equations (124) for both states, with x' and Y' in place of x and y. This 
property is due to the invariance under rotations around the z-axis of the 
zero-angular-momentum states. 

All the inequalities of the Bell type and of the CHSH type found in 
the previous sections clearly apply also to photon pairs, since they were 
deduced from the dichotomic nature of the measured quantities, besides, 
of course, from locality and realism. In order to check that the quantum
mechanical predictions often violate those inequalities we will carefully 
present the theoretical formulas for the most important probabilities and 
correlation functions introduced in previous sections. This will also allow 
us to stress again the very important distinction between inequalities of the 
Bell type and strong inequalities. 

The most widely-used cascade is the (J = 0) -+ (J = 1) -+ (J = 0) cas
cade of calcium. The quantum-mechanical predictions following from the 
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state 10+), which applies to this case, are, for the double-transmission 
probabilities: 

(125) 

These relations give the correlation function P(a, b) through equation (53): 

P(a, b) = (1 - el)(1 - e~) + e~e:Fl(8) cos 2(a - b) (126) 

In these relations FI (8) is a function of the half-angle 8 subtended by 
the primary lenses representing a depolarization due to noncollinearity of 
the two photons and 

e~ = e~ ± e~, (127) 

Here e ~ (e~) is the transmittance of the first polarizer for light polarized 
parallel (perpendicular) to the polarizer axis; and a similar notation has 
been used for the second polarizer. All these transmittances are usually 
very near to the ideal case, with e:W close to unity and e;" close to zero 
(i = 1,2). Also, the depolarization factor FI is usually very close to unity, 
so that P( a, b), as given by equation (126), violates Bell's inequality (47). 
However, as already stressed, the trouble is that transmission probabilities 
are not measurable, so that Bell's inequality (47) cannot be tested. 

If the CHSH additional assumption of Section 2.2 is made, the double
detection probability Do becomes a crucial quantity, which is assumed 
independent of the presence and of the orientation of the polarizers. Quan
tum theory predicts 

(128) 

where 'TIl ('TI2) is the quantum efficiency of the first (second) photomultiplier. 
In the experiments performed, 'TIl and 'TI2 were of the order of 10%, so that 
Do was of the order of 10-2• The latter quantity relates the double-trans
mission probabilities w to the measurable double-transmission and double
detection probabilities D, once the CHSH additional assumption has been 
made. 
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In the usual quantum theory, the CHSH assumption does not need to 
be explicitly made, its validity being always taken for granted. The quantum
mechanical expressions for the D probabilities defined in equation (54) are 

D(a, 00) = (E~/2)11I1h 
(129) 

D(oo, b) = (E~/2)17t'1h 

D( 00,00) = 171172 

These double-detection and double-transmission probabilities are obviously 
proportional to the respective coincidence rates R [see equations (55)], the 
proportionality factor being No, the number of photon pairs entering per 
second into the right solid angles defined by the optical apparatuses. The 
inequality (58) can thus also be written 

D(a, b) D(a, b') D(a', b) D(a', b') 
- 1 :s;; - + + ----'----'----'-

Do Do Do Do 

D(a',oo) D(oo, b) 
- - :s;; 0 

Do Do 
(130) 

and it can easily be shown to be violated by the quantum-mechanical 
predictions (128) and (129). Experimentally, it has been found to be violated. 
One should remember that the inequality (130), as well as the inequality 
(58), is a consequence of local realism and of the additional assumption. 
Its violation can only mean that one of these tenets is wrong, but it cannot 
say which one. It is, for example, possible to build explicit local realistic 
models that do not satisfy the CHSH additional assumption, and that violate 
the inequality (130). This will be discussed in Section 3.7. 

We note that the inequality (130) essentially coincides with the 
inequality (89) deduced with the help of the CH additional assumption. If 
instead, the inhomogeneous inequality (86), which was deduced only from 
local realism, is considered, one can see that the quantum-theoretical predic
tions for the single-photon transmission and detection probabilities are 

pea') = (E~/2)17" q(b) = (E~/2)172 (131) 

Owing to the presence of a single 1]-factor these probabilities are an order 
of magnitude larger than the double-transmission and double-detection 
probabilities of equations (129). This implies that the inequality (86) is 
never violated. 



46 Introduction 

We now come to Rapisarda-type experiments with two-way polarizers. 
The quantum-mechanical predictions for the D probabilities defining 
E(a, b) [see equation (93)] are 

where 

and 

D(a_, b+) = ~[R~ Ti - R: T:Ft(lJ) cos 2(a - b)]l1t112 

D(a_, b_) = UR~Ri + R:R:Ft(fJ) cos 2(a - b)]l1t112 

(132) 

(133) 

(134) 

(i = 1,2). The T and R parameters are transmittances defined in the follow
ing way. There are two prisms, denoted by the index i = 1,2 above. From 
each prism two beams are emitted, a reflected one and a transmitted one. 
Til (TJ denotes the prism transmittance along the transmitted path for 
incoming light polarized parallel (perpendicular) to the transmitted-channel 
polarization plane; and RII (RJ denotes the prism transmittance along the 
reflected path for incoming light polarized parallel (perpendicular) to the 
reflected-channel polarization plane. 

A recent measurement (Falciglia et ai., 1983) gave, for example, 

Iii = 0.9095 ± 0.0023, T.J. = 0.0044 ± 0.0002 

RII = 0.7625 ± 0.0024, R.J. = 0.0041 ± 0.0003 

Insertion of equations (132) into equation (93) gives 

where 

E (a b) = f + g cos 2( a - b) 
, j'+g'cos2(a-b) 

f = (T~ - R~)(Ti - Ri), 

j' = (T~ + R~)(Ti + Ri), 

g = (T: + R:)(T: + R:) 

g' = (T: - R:)(T: - R:) 

(135) 

(136) 
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Garuccio and Rapisarda (1981) showed that the prediction (135) violates 
the inequality (97). However, it should once more be remembered that the 
inequality (97) was deduced by means of the GR additional assumption 
and that local-realistic models exist for which that assumption is not valid. 

Experiments with pairs of atomic photons were actually carried out by 
Freedman and Clauser (1972), Holt and Pipkin (1973), Clauser (1976), Fry 
and Thompson (1976), Aspect, Grangier, and Roger (1981 and 1982), 
Aspect, Dalibard, and Roger (1982) and Perrie, Duncan, Beyer, and Klein
poppen (1985). In all cases but one very good agreement with quantum 
theory was found and inequalities of the strong type were found to be 
violated. The story of these experiments is told in detail in Chapter 7. 

Important experiments remain to be done in at least three areas, even 
in the case of atomic cascades: 

1. Only two experiments have been reported which tried to measure 
circular polarizations of the photon pairs and in both cases strange 
effects were reported which were attributed to distortions generated 
in the A/4 plates. In particular, no violations of the strong 
inequalities were found. In view of the great importance of the EPR 
paradox it is vital that these measurements be repeated. 

2. A very important effect which has never been checked should present 
itself when the atomic source of photon pairs is inserted in a 
strong enough magnetic field. A kind of phase transition should 
take place as soon as the field is switched on, with a jump from a 
correlation function violating the strong inequalities to one respect
ing it. See Chapter 8 for more details. 

3. The "variable-probability" models discussed in the Section 3.7 lead 
to correlation functions very similar to the quantum-mechanical 
ones, but with a small extra term proportional to cos 4{ a - b). It is 
very important that this effect be looked for. 

3. Attempted Solutions of the Paradox 

3.1. Unbroken Wholeness 

So the quantum, fiery creative force of modern 
physics, has burst forth in eruption after eruption 
and for all we know the next may be the greatest 

of all. 
(J. A. WHEELER, 1980) 

According to Bohm, the essential new feature implied by quantum 
theory is nonlocality: a system cannot be analyzed in parts whose basic 
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properties do not depend on the state of the whole system, no matter how 
"well-separated" in space these parts might appear to be. He believes, with 
Hiley, that the well-known experiments on Bell's inequality reveal, in an 
especially clear way, the nonlocal nature of quantum phenomena (Bohm 
and Hiley, 1978). However, nonlocality, "is involved in an essential way in 
every manifestation of a many-body system, as treated by Schrodinger's 
equation in a 3 N-dimensional configuration space" (Bohm and Hiley, 1978, 
p.94). 

In the case of two particles with mass m Schrodinger's equation is 

a'V h 2 2 2 
ih- = --[V + V ]'V + V'V at 2m 1 2 

(137) 

where 

(138) 

is the wave function of the two particles, V(XI' X2) is the potential acting 
on them, and vi and V~ refer to particles 1 and 2, respectively. Writing 

'V = R exp(i5jh) 

and 

one can obtain from equation (137) 

and 

where 

a5 (V 5)2 (V 5)2 _+_1_+_2_+ V+ Q = 0 
at 2m 2m 

1i 2 (ViR V~R) Q = Q(x x t) = -- - + -
I, 2, 2m R R 

(139) 

(140) 

(141) 

(142) 

(143) 
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Evidently equation (141) describes the conservation of probability with 
density P = '1'*'1' in the configuration space of the two particles. Equation 
(142) is instead a Hamilton-Jacobi equation for the system of the two 
particles, acted on, not only by the classical potential V, but also by the 
quantum potential Q(x l , X2, t). There are two strikingly new features of 
this quantum potential: 

1. In general, it does not produce a vanishing interaction between the 
two particles as IXI - x21 -+ 00. 

2. It cannot be expressed as a universally determined function of the 
coordinates XI and X2. Rather, it depends on 'I'(XI' X2) and therefore 
on the "quantum state" of the system as a whole. 

It is the latter feature that brings out the non local nature of quantum 
phenomena. Bohm has also suggested a sort of ontological model of quan
tum nonlocality which tries to provide a general framework in which the 
new phenomena might look less unnatural. He has done this by introducing 
the notion of "unbroken wholeness" that characterizes two correlated quan
tum systems (see, for example, Bohm, 1987). He considers the interesting 
example of a hologram and stresses that the different parts of the object 
are not in correspondence with different parts of its hologram, but rather 
that each of the latter parts, individually, is somehow expressing the whole 
object. Accordingly, if one illuminates only part of the hologram, one gets 
information about the entire object, even if less-detailed and from fewer 
angles. Similarly Bohm thinks that what appears to us as two separated 
quantum objects might in actuality only be a manifestation of a truly
interconnected wholeness. The hologram of two spheres, for instance, stores 
the information of each ball over the entire hologram. It can therefore be 
said that in the hologram the two spheres are really, in a way, amalgamated 
and impossible to separate. Bohm views this as an example of the true 
physical situation giving rise to the EPR paradox: In space there is only 
an "unbroken wholeness," which sometimes can give rise to manifestations 
which appear as two separate objects. 

3.2. Superluminal Connections in Dirac's Aether 

A second possible solution of the EPR paradox is provided by the 
nonlocal model of Vigier and collaborators (Vigier, 1979). They adopt the 
idea, first presented by Dirac (1952), that the aether, with suitable properties, 
is no longer ruled out by special relativity, especially if the probabilistic 
nature of quantum phenomena is taken into account. In this approach, it 
is assumed that the velocity distribution of the particles constituting the 
aether has a constant value over the hyperboloid 

v~ - vi - v~ - v; = 1 
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In such a case, in fact, the velocity distribution looks the same to all observers 
and the aether does not produce any physical effect on moving bodies. In 
Vigier's model this aether-like physical vacuum is made of extended rigid 
particles which can support, within their interiors, signals with superluminal 
velocity. The statistical properties of quantum objects reflect, then, nothing 
but the real random fluctuations of the ether. 

In this theory there are also (quantum) waves which propagate as real 
physical collective excitations (i.e., as density waves) on the top of the 
foregoing Dirac aether. In this way, information originating on the boundary 
of the '" wave (such as the opening or closing of a slit in the double-slit 
experiment, or the observation of one of the two particles forming an EPR 
pair) reacts with superluminal velocity (via the quantum potential) on the 
particle motions which propagate with subluminal group velocities along 
the flow lines of the quantum-mechanical", waves. 

In Vigier's opinion the existence of superluminal propagations does 
not necessarily imply a breakdown of causality, if "causality" is defined as 
follows: 

1. The possibility of solving the two-particle problem in the forward 
(or backward) time direction as a Cauchy problem. 

2. The time-like nature of all particle trajectories. 
3. The invariance of the formalism under the Poincare group of trans

formations. 

We consider the following objection that can be raised against a theory in 
which superluminal connections are introduced: There are two particles 
propagating in two widely-separated regions of space R\ (on the Earth) 
and R2 (in the Andromeda galaxy) and forming an EPR pair. Their propaga
tion takes place according to precise deterministic equations containing 
nonlocal potentials like, for instance, Bohm's potential Q of equation (143). 
Each particle "knows" instantaneously what the other particle is doing, 
and reacts accordingly. It seems, therefore, obvious to conclude that the 
switching on and off of a magnetic field in R1 must have instantaneous 
consequences on the particle located in R2 , because of the superluminal 
physical connection. The experiment can then be set up in such a way that 
the second particle enters a detector D1 (a detector D 2 ) if the magnetic 
field in R1 is off (is on). Therefore the observer in Andromeda can instan
taneously learn what his fellow observer is doing on Earth. Using ensembles 
of correlated EPR pairs it then becomes possible to transmit instantaneous 
information from R1 to R2 • 

The problem of causality in general and the previous objection in 
particular have been discussed by Cufaro Petroni (1985) in a very clear 
way. His answer to the objection is that we live in a completely-deterministic 
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world and that it does not make any sense to consider "modifications" of 
its properties, such as the one introduced before, through the switching on 
and off of a magnetic field: 

In a completely deterministic world there is no possible "modification": The 
world IS and we cannot intervene from exterior to its tissue in order to modify 
it, because we are IN the world (Cufaro Petroni, 1985). 

A signal always needs a free will that is external to the physical process 
considered and that, at a given time, decides to modify the regular evolution 
of the process in order to send a message. But if instead we assume, with 
Cufaro Petroni, that the particles of the human brain are connected to all 
physical processes, obey the same equations, and therefore behave in an 
unique and strictly correlated way, then there are no "signals" at all. 

3.3. Nonloeal Weak Realism 

Stapp believes that the quantum-mechanical predictions for the situ
ation dealt with in the EPR paradox have been accurately confirmed "under 
experimental conditions essentially equivalent to those needed for the EPR 
argument." Hence he concludes that the world we live in is nonlocal. 
However, he does not believe that the results obtained by Bell (1965) and 
by Clauser and Horne (1974) are sufficient for establishing the need for 
nonlocality since, in his opinion, these authors made very strong assump
tions about microscopic reality that are not compatible with orthodox 
quantum thinking. The refutation of these "strong" assumptions of realism 
does not imply, however, any retreat to idealism or subjectivism. It is, in 
fact, possible to substitute them with an "informal" Copenhagen interpreta
tion of quantum phenomena. 

In this way Stapp distinguishes a strict Copenhagen interpretation, in 
which nothing at all is said about any reality other than our observations, 
from an informal interpretation, in which one accepts the common sense 
idea of a macroscopic reality that exists independently of our observations 
and can be described, at least approximately, with the concepts of classical 
physics. This "informal" interpretation is partly related, at least by Stapp, 
to Heisenberg's idea of a transition from the "possible" to the "actual" 
taking place during the act of measurement. Stapp's microworld is a "sea 
of micro level potentialities," that become "well-defined" physical properties 
only by interacting with an experimental apparatus. 

A model theory proposed by Stapp (1987) contains certain "hidden 
variables" A which represent all the deterministic and stochastic quantities 
that characterize the unified organic world and which are not used to provide 
the basis for a Clauser-Horne factorization structure of probabilities. They 
do not reflect ideas of separation, localization, or microscopic structure. 
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Stapp writes A = (A', A "), where A' is strictly predetermined, and A" is any 
stochastic variable. 

Furthermore, in this theory it is assumed that every act of measurement 
involves a choice. This choice "picks the actual from among what had 
previously been mere possibilities: the choice renders fixed and settled 
something that had prior to the choice been undetermined." A "choice" 
variable Z is also introduced and written Z = (x, y), where x and y represent 
the choices of experiment in the regions R" and R(3, respectively, where 
two correlated observations of the EPR type are made. The "choices" x 
and yare treated as independent free variables. Each of them can assume 
an infinite number of different values. 

Suppose there are two observables A and A' that can be measured in 
R" and another two, Band B', that can be measured in R(3. The choice 
variable picks one observable before an act of measurement is made. More 
precisely, the chosen observable is, in R", 

A if x EX, A' if x E X' (144) 

where X u X' is the set of possible values of x. Furthermore, in R(3 the 
chosen observable is 

B, if y E Y, B' , if y E Y' (145) 

where Y u Y' is the set of possible values of y. 
Depending on the values of x and y, there are four possible experiments 

that can be chosen to be performed in R" and R(3, corresponding to the 
four pairs of observables 

(A, B), (A, B'), (A', B), (A', B') (146) 

Now, the results of the measurements of whatever observables have been 
chosen are assumed to be 

r,,(x,y, A) in R", r(3(x, y, A) (147) 

in a general nonlocal theory, while r" does not depend on y and r(3 does 
not depend on x if instead locality is assumed. 

Stapp could easily prove that the local choice contradicts the empirical 
predictions of quantum theory and concluded: 

... neither determinism, nor counterfactual definiteness, nor any idea of reality 
incompatible with orthodox quantum thinking need be assumed in order to 
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prove the incompatibility of the empirical predictions of quantum theory with 
the EPR idea that no influence can propagate faster than light. 

S3 

The remark about the absence of a "counterfactual definiteness" is, of 
course, justified by the important fact that, in Stapp's theory, the fixing of 
x and y and A fixes the value only of the observable that is actually measured. 
The values of the other three observables remain, instead, completely 
indefinite. 

3.4. Actions of the Future on the Past 

A solution of the EPR paradox based on the idea that it is possible to 
modify past events by means of retroactions from the future was first 
proposed by Costa de Beauregard (1977). He noted that twice in classical 
physics contradictions were discovered between fact-like irreversible proces
ses and law-like reversibility of the physical theory: (1) When Boltzmann 
used statistical mechanics for deducing the Second Law of Thermody
namics: the paradox inherent in extracting time asymmetry from a theory 
like Newtonian mechanics that is intrinsically time-symmetric was exposed 
in specific forms by Loschmidt and Zermelo; and (2) When the principle 
of retarded waves was used in physical optics and in classical electrody
namics in order to exclude one half of the mathematically permissible 
solutions of the wave equations. 

Costa de Beauregard's idea is that a careful examination of the world 
in which we live is bound to lead to the conclusion that retroactions in time 
do play a role and should not be discarded in the formulations of our 
theories. One way to see this is to remember that for Aristotle, creator of 
the concept, information was not only knowledge, as is intended today, but 
it was also, symmetrically, an organizing power. The examples given were 
the craftman's or the artist's work, and also biological ontogenesis. A second 
way to see a final cause at work is to consider modern cybernetics which, 
surprisingly, came to rediscover the two faces of Aristotle's information. In 
computers and other information-processing machines the chain 

(1) (2) 

Information ------ negentropy ------ information 

means that a concept is coded and sent as a message, before being decoded 
and received. Negentropy is of course entropy with a minus sign. Step (2) 
above is the learning transition, where information shows up as gain in 
knowledge, while Step (1) is the willing transition, where information shows 
up as an organizing power. 
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In the theoretical framework (de jure) there is a complete symmetry 
between the two transitions. In spite of this there is a dissymmetry in practice 
(de facto) because irreversibility is generated by misprints in the coding: 
noise along the line, mistakes in decoding, and so on. 

The relationship between the variation of negentropy /::,.N and the 
variation of information /::,.[ is 

/::,.N = k·ln2/::,.[ 

If Nand [ are both expressed in "practical" units, it turns out that the 
factor mUltiplying /::,.[ is very small, of the order of 10-16• Therefore, Costa 
de Beauregard concludes that it is very difficult to produce important 
increases of negentropy (decreases of entropy) by increasing the informa
tion. Vice versa, even a very small increase of negentropy can give rise to 
a large gain of information. If one lets k -+ 0, one obtains a situation where 
gaining knowledge is absolutely costiess, but producing order is utterly 
impossible. In this limit, consciousness is made totally passive: it registers 
what is going on outside itself, and that is all. 

If the roots of Costa de Beauregard's conceptions go deep into classical 
physics, it is in quantum theory that he thinks the most important effects 
of retroaction can be seen. Again, he stresses, the theory is completely 
time-symmetrical, but only until the idea of the col/apse of the wave function 
is introduced. At this point quantum theory commits itself to the philosophy 
of retarded waves. In Costa de Beauregard's opinion this happens because 
"the Copenhagen school has forgotten the hidden face of Aristotle's infor
mation." 

It is precisely in the situations envisaged by the EPR paradox that this 
"hidden face" shows up again. In order to understand the essence of the 
EPR paradox, Costa de Beauregard considers the mathematical apparatus 
of quantum theory and concludes that the problem, today, is only that of 
tailoring the wording of the EPR situation after the mathematics. In his opinion 
there has in fact been, in our century, an irreversible victory of formalism 
over mode I ism. 

From this starting point he deduces that when an EPR pair, for instance 
two photons described by one of the state vectors of equation (124), is 
measured by two observers in two regions separated by a space-like distance, 
then it is precisely the act of observation that produces in the past of the 
measurement process, the right physical properties of the photon pair. Each 
observer is thus considered capable of telediction plus teleaction, by taking, 
so to say, a relay in the past, or more precisely, in the source that emitted 
the two photons. 

The conclusion that one can draw from this theory is that the element 
of reality introduced in the formulation of the EPR paradox can be accepted 
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as real, but that it is viewed as created by actually performed acts of 
observation, and as propagating backward in time with one of the two 
correlated quantum objects, from the region of measurement to the source. 

In particular, there can be no question of associating elements of reality 
with observables that are not concretely measured, as was done originally 
by Einstein, Podolsky, and Rosen, and later by Bell(l2) and other authors. 
In this sense the solution of the EPR paradox proposed by Costa de 
Beauregard is similar to that of Bohr. 

Several other authors have proposed propagations toward the past as 
a solution of the EPR paradox. In chronological order one can list: Stapp 
(1975), Davidon (1976), Rayski (1979), Rietdijk (1980), Cramer (1980), 
Sutherland (1983). 

3.5. The Nonergodic Interpretation 

The nonergodic interpretation of quantum mechanics assumes that a 
sequence of quantum objects, even if separated by large time intervals from 
one another, do not behave independently in their interaction with the 
measuring apparatus. The basic idea is that these objects may essentially 
interact with each other, by means of memory effects in an hypothetical 
medium filling the space crossed by them, on their way toward the measuring 
instruments. 

Let us consider, for instance, the double-slit experiment. The previous 
type of indirect interaction is such that a particle passing through a slit 
knows if the other slit is open, because this information is recorded in the 
medium filling the space between the two screens. Those particles, which 
came previously from the second slit, modified the physical properties of 
space, and gave rise to the storage of the relative information. Obviously, 
interference can happen only after a sufficiently large number of particles 
have crossed the apparatus and conditioned the medium. In this way 
particles interfere with other particles, but only indirectly, through the 
medium (Buonomano, (1980, 1987)). 

More generally, we consider a quantum experiment repeated a large 
number of times, every repetition being called a "run." Let R represent the 
number of runs, and N the number of quantum objects in every run, 
assumed constant for simplicity. Let Am represent the state of the nth particle 
in the rth run, and Srn represent the state of the experimental apparatus 
just before interacting with the nth particle of the rth run. The result of the 
measurement, A rn , is assumed to be completely fixed once Arn and Srn are 
given. Therefore 

(148) 
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Starting from these numbers two types of averages are possible: 

_ 1 R 

An = R I Am 
r=l 

(149) 

where A, is called the run average and An is the ensemble average at "time" 
n. Buonomano observed that it is always implicitly or explicitly assumed that 

(150) 

(the ergodic assumption) but that such an assumption should really be 
checked with suitably designed experiments. In order to do so it must be 
made clear that the only way to avoid the medium polarization effects is 
to keep the runs distant in time from one another, and eventually also to 
keep them in different regions of space where no experiments have been 
carried out previously. Thus the ensemble average for n = 1: 

should represent events collected in conditions where the medium does not 
act on the particles (there are no memory effects for n = 1, since no previous 
particles entered the apparatus in any of the runs considered!). Therefore 
An~l should describe a situation in which no quantum phenomenon appears 
and classical physics holds unreservedly. Instead, An for large n, and A, 
for all r describe quantum-mechanical situations. The case of An for not-too
large values of n, but with n.,e 1, represents mixed situations where a 
transition between classical and quantum physics is taking place. 

This non ergodic interpretation of quantum mechanics can, in principle, 
solve the EPR paradox, because it can explain the apparent violations of 
local realism as due to nonergodic effects within a strictly local theory. Let 
us consider, in fact, the left-hand side of a polarization-correlation experi
ment and divide the space between polarizer and source into M cells, 
numbering them from left to right. Thus the polarizer is in cell 1 and the 
source in cell M. We assume that the state of the cell m depends on the 
previous state of the neighboring cells. It follows that after one photon has 
passed the state of cell 2 depends on the state of the polarizer. After two 
photons have passed, cell 3 depends on the state of the polarizer, as so on. 
Then, after n ~ M photons have passed, cell M, that is the source, depends 
on the state of the polarizer. 

If the right-hand side of the polarization-correlation experiment is 
treated in the same manner, one obtains a situation in which the source 
produces pairs of photons in a state dependent on the configuration of the 
analyzing-detecting apparatus. As is well known, no Bell-type inequality 
can be obtained in such a case, and the EPR paradox does not exist. 
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3.6. Negative Probabilities 

The idea of negative probabilities has been entertained in different 
times by physicists such as Dirac and Feynman. In 1942 Dirac expressed 
the opinion that 

Negative energies and probabilities should not be considered as nonsense. They 
are well·defined concepts mathematically, like a negative sum of money, since 
the equations which express the important properties of energies and probabilities 
can still be used when they are negative. Thus negative energies and probabilities 
should be considered simply as things which do not appear in experimental 
results (Dirac, 1942). 

More recently Feynman (1982) has stated that the only difference between 
a probabilistic classical world and the quantum world "is that somehow or 
other it appears as if the probabilities would have to go negative .... " 

Following these ideas, a "negative-probability solution" of the EPR 
paradox has been proposed by Miickenheim (1982). In order to understand 
the logical possibility of solving the EPR paradox by extending the range 
of variation of probabilities, we should remember that in the proofs of 
Bell's inequality the implicit assumption is always made that probabilities 
(and frequencies in ensembles) are positive and not larger than one. For 
example, in Wigner's proof of Bell's inequality the probabilities w(s, S'; t, t' ) 
were introduced [see equation (65)] which were, by definition, positive and 
not larger than unity. Similarly, the proof based on factorizable probabilities 
used, in an essential way, the inequalities 

o ~ X, x', y, y' ~ 1 

where x, x', y, and y' were later to be identified with probabilities. In both 
examples, if these conditions are relaxed, Bell's inequality no longer has 
any validity. 

In view of these considerations, it is perhaps not surprising that 
Miickenheim could build a negative-probability local hidden-variable model 
that reproduces all the predictions of quantum theory for the "singlet" state 
of two spin-~ particles. 

The two particles have spin vectors S for the first one and -S for the 
second one, where S is assumed to have a random distribution over the 
sphere of radius (J3/2) Ii, in a statistical ensemble of such pairs. The length 
(J3/2) Ii is chosen, of course, in such a way as to reproduce the quantum
mechanical eigenvalue ofS2 , which is ~1i2. Ifa is a unit vector, the projection 
of S over a satisfies 

-(J3/2)1i ~ S· a ~ +(J3/2)1i (151) 
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Next Miickenheim assumes that the probabilities, w(a+, S) and w(L, S), 
of measuring S . a and finding the positive and the negative eigenvalue, 
respectively, are linear functions ofS . a, and that their expressions satisfying 

w(a+, S) + w(L, S) = 1 (152) 

are given by 

and w(L,S)=O.5-S·a/h (153) 

Obviously, these probabilities can assume negative values because of 
equation (151). 

In the case of an EPR pair, one can consider the case of correlated 
spin measurements along a and b for the first and the second particle, 
respectively. The correlation function is given by 

A h 2 f A A P(a, b) = - dO [wa+, S) - w(L, S)][w(b+, -S) - w(b_, S)] 
161T 

Substituting equations (153) into the previous expression and carrying out 
the integration one obtains 

which coincides with the quantum-mechanical correlation function for the 
singlet state. A local model is thus able to reproduce the quantum
mechanical violations of Bell's inequality, if negative probabilities are 
introduced. 

It has also been shown that the introduction of complex probabilities 
into the EPR paradox can reconcile locality with the quantum-mechanical 
predictions (Ivanovic, 1978). 

3.7. Variable Probabilities 

The idea of "variable probabilities" as a solution of the EPR paradox 
starts from the evidence provided by the experiments performed with atomic 
photon pairs and assumes that the inequalities of the strong type (deduced 
from local realism and from additional assumptions) are violated. This is 
probably a correct assumption, even though there is a debate going on 
regarding the role of rescattering in the atomic source (see: Sanz and Sanchez 
Gomez, 1987 and the bibliography quoted therein). 
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The point of view adopted with this line of research is that not local 
realism but the additional assumptions should be blamed for the failure of 
the strong inequalities. One must then study local models of reality in which 
the logical negation of the additional assumptions is explicitly taken as 
true. The interesting models should thus imply the simultaneous validity of 
the following three statements: 

1. Given that a pair of photons emerge from two regions of space where 
two polarizers can be located, the probability of their joint detection 
from two photomultipliers depends on the presence and / or on the 
orientation of the polarizers (the CHSH property). 

2. For a photon in the state A, the probability of a detection with a polarizer 
in place on its trajectory can be larger than the detection probability 
with the polarizer removed (the CH property). 

3. For a photon in the state A, the sum of the detection probabilities in 
the" ordinary" and in the" extraordinary" beams emerging from a 
two-way polarizer depends on the polarizer's orientation (the GR 
property). 

A detailed survey of results and problems concerning this line of research 
is provided in Chapters 15, 16, 17, and 19, so the present comments will 
be minimal. 

From a general point of view, one can maintain that local realism 
cannot be proved wrong by experiments designed for testing the strong 
inequalities. Only if weak inequalities could be tested, could a crucial 
confrontation between quantum theory and local realism finally take place. 
This appears unlikely in the foreseeable future as far as experiments with 
pairs of atomic photons are concerned. The situation is, however, better 
for some proposed particle-physics experiments and for experiments with 
pair of atoms, since detectors operate, in these cases, nearer to the ideal 
behavior. 

Even in the case of low-efficiency detectors there are interesting investi
gations to be carried out, for example, by replacing the usual additional 
assumptions (the CHSH, CH, and GR assumptions) with more physical 
restrictions. After all, it is unlikely that the considerable disagreement 
between quantum theory and local realism for high-efficiency detectors 
becomes perfect agreement for low-efficiency detectors! For instance, it 
would be interesting to study the use of symmetrical functions for describing 
the detection processes of the two photons, since it has been shown by 
Caser (1984) that the quantum-theoretical predictions cannot, in such a 
case, agree with the factorizable probabilities of Clauser and Horne. 

It is interesting to recall that the idea of variable probabilities presents 
itself as a natural consequence of probabilistic local realism, as shown in 
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Chapter 6. Also for this reason, it would be very interesting to carry out 
the experiments mentioned at the end of Section 2.10, which were: 

1. Insertion of the atomic source of photon pairs in a magnetic field 
of about 200 to 300 gauss. 

2. Use of A/4 plates for systematic measurements of circular polariz
ations. 

3. Search for small terms proportional to cos 4(a - b) in the correlation 
function P(a, b). 
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2 

Are Faster-Than-Light Influences 
Necessary? 

HENRY P. STAPP 

1. Faster- Than-Light Influences and Signals 

The question of whether influences act instantaneously over finite distances 
is as old as modern science itself. Newton, when he proposed his universal 
law of gravitation, was asked how the postulated force was transmitted. He 
declined to frame a hypothesis regarding the mechanism, but declared that 
anyone who believed that the force could act over a finite distance without 
an intervening medium had a mind not fit for the contemplation of such 
matters. But in spite of Newton's conviction, no significant progress was 
made on the question of action-at-a-distance for two centuries. Then Max
well propounded his theory for the analogous problem of electric and 
magnetic forces. This theory entailed the existence of light, and correctly 
predicted its velocity. It also entailed that no electric or magnetic influence 
of a sufficiently tangible kind could be transmitted faster than light. During 
the present century Einstein, generalizing this result, formulated the prin
ciple that no "signal" could propagate faster than light. 

A signal is a special kind of influence. For our purpose it is enough 
to identify as a particular type of signal an influence that can be initiated 
by human choice, which controls a faraway response. For example, the 
choice of whether or not to depress a telegraph key controls, under appropri
ate conditions, whether or not a device will sound at the other end of the 
telegraph line. 

HENRY P. STAPP • Lawrence Berkeley Laboratory, Berkeley, California 94720, United 
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The human choice and the response it controls can each be localized 
in a corresponding space-time region. A faster-than-light signal is a signal 
such that no point in the region of the response can be reached from any 
point in the region of the choice, without moving faster than light. Relativity 
theory postulates the nonexistence of faster-than-light signals, but does not 
necessarily impose an analogous requirement upon all other conceivable 
kinds of influences. 

2. The Spin-Correlation Experiment 

Einstein, Podolsky, and Rosen(l) argued in their famous 1935 paper 
that quantum theory did not provide a complete description of physical 
reality. Their argument was based on the analysis of a complicated experi
mental situation. David Bohm(2) later clarified t~e situation, by introducing 
a simpler experimental setup that exhibited all the essential features. Bohm's 
"spin version" of the EPR experimental arrangement is the basis of the 
present considerations. It is described in the introductory part of this book, 
and need not be further discussed here. 

One point should, however, be emphasized. My starting point, like that 
of Einstein, Podolsky, and Rosen, is the assumption that the. predictions of 
quantum theory, for the experiments under consideration, are valid. Some 
other authors start, instead, from the experimental data. Then questions 
concerning the counter efficiencies and the geometric details of those par
ticular experiments that have already been performed become relevant. But 
here we start directly from the predictions of quantum theory. These predic
tions are, for the experiments under consideration, expressions of the core 
ideas of quantum theory: the possibility that they are seriously incorrect 
appears to me to be extremely unlikely. 

One further stipulation should be made: in the experiment I am 
considering, the particles in the two initial beams of identical spin-! particles 
initially scatter near the center of a spherical array of counters. This array 
has two escape holes that allow some pairs of particles, which have scattered 
at 90°, to escape. These escaping pairs i are numbered from 1 to n by fast 
electronics. The geometric arrangement is such that one particle from each 
pair i will enter a deflection device in a space-time region R I , and the other 
particle from the pair i will enter a deflection device in a space-time region 
R2 • Detecting and recording devices are arranged so as to record in R I , 

for each i from 1 to n, either 'Ii = +1 or 'Ii = -1, according to whether the 
particle from pair i is deflected "up" or "down" in Rio relative to the 
preferred direction DI of the deflection device in R I • The numbers '2i = ± 1 
are similarly defined and recorded in R2 • A choice is made in RI between 
two alternative possible preferred directions, D; or Dr, of the device in 
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R\; and a choice is made in R2 between two alternative possible preferred 
directions, D~ or D~, of the device in R 2. The two regions R\ and R2 are 
space-like separated, which means that the information about the choice 
of setting made by the experimenter in R\ does not have time to get to 
region R2 before the results r2i = ± 1 are recorded there, and vice versa, 

without traveling faster than light. 
The choices of the experimenters in R\ and R2 are considered, for the 

purposes of this analysis, to be two independent free parameters. This does 
not mean that these choices are, necessarily, literally free and nonpredeter
mined. It only means that one is allowed, within the specific context of the 
analysis of the implications of the quantum-theoretical predictions for these 
particular experiments, to treat the choices of the two experimenters as two 
independent free variables. These predictions are extracted from a quantum
theoretical representation of the state of the two particles. The mathematical 
formalism used in this calculation has no representation at all of the 
processes of making choices that are going on in the brains of experimenters: 
it involves only the states of various mechanical devices during those periods 
in which the particles are in, or near, these devices, and not how the devices 
came to be in those particular states. The EPR analysis is, in this respect, 
identical to that of quantum theory itself, which also treats the choices of 
the experimenters as independent free variables, within the context of the 
study of these experiments. 

For our purposes the important prediction of quantum theory pertains 
to the correlation parameter defined by 

1 n 

c(r\, r2) = - L: r\hi 
n i=\ 

(1) 

Since each 'Ii and r2i is, according to the definitions given earlier, either 
+ 1 or -1, each term in the above sum is also either + 1 or -1. Thus the 
largest and smallest possible values of this sum are nand -no Consequently, 
c must lie between + 1 and -1. 

The relevant prediction of quantum theory is that if n is very large, 
then the value of c, computed according to equation (1), will be very close 
to 

(2) 

where e(D\, D2) is the angle between the preferred directions, D\ and D2 , 

of the deflection devices in R\ and R 2 , respectively. 
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An important special case is that in which the directions of D\ and D2 
are the same. Then the angle 8(Dt. D 2 ) is zero, and c(D\, D 2 ) is -1. The 
only way in which the value of c, computed according to equation (1), can 
be -1 is for every term in the sum to be -1. This means that, for every 
value of i, the signs of r li and r2i must be opposite: if the deflection in R\ 
is "up" then the deflection in R2 is "down," and vice versa. This means 
that if the directions of D\ and D2 are the same, then the deflections in R\ 
and R2 are perfectly "anticorrelated": an "up" deflection in one region is 
(almost) invariably accompanied by a "down" deflection in the other region, 
and vice versa. 

In the spin version of the EPR argument the alternative possible 
directions, D; and D~, differ by 90°, but D; is the same as DL and D~ is 
the same as D~. 

Einstein, Podolsky, and Rosen constructed a simple looking but actually 
rather subtle argument for the incompleteness of the quantum-mechanical 
description of physical reality. Before describing the EPR argument I 
shall describe a naive argument that appears to lead to the same conclusion. 

3. The Naive Argument 

Suppose that the choices of directions in R\ and R2 were such that D\ 
and D2 were the same. Then the deflections in R\ and R2 would be perfectly 
anticorrelated, as discussed above: each deflection "up" in one region would 
be paired with a deflection "down" in the other region, and vice versa. 

There is a natural way to explain this perfect anticorrelation: for each 
pair i, the decisions as to whether the deflections will be "up" or "down" 
in each of the two regions R\ and R2 are already fixed at the time and 
location of the initial collision between the two particles of this pair. The 
information about these decisions can then be carried by the particles into 
the regions R1 and R2 where the deflections occur. In this way the perfect 
anticorrelation is understood in a completely natural way without requiring 
any faster-than-light transfer of information. 

There is an alternative way of understanding the perfect anticorrelation. 
In this second scheme the decision as to whether the particle is deflected 
"up" or "down" in R1 is made only during the processes of deflection, 
detection, and registration in R\. In this case the information regarding 
this choice made in R\ cannot get to R2 without traveling faster than light. 
And the analogous statement holds also for the choice of result made in 
R2 : the information about this choice cannot get to R\ without traveling 
faster than light. Thus there is, in this second scheme, no way to understand 
the existence of the perfect anticorrelation without allowing faster-than-light 
transfer of information. If one rules out such transfers then one also rules 
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out the possibility that the choices of results are fixed in R\ and R2 - One 
is led to the conclusion that the choices of results that will eventually appear 
in R\ and R2 must be determined by information contained in the inter
section of the backward light cones from R\ and R2 (see Figure 1). 

This natural solution leads, however, to a problem. In the experimental 
situation under consideration here the choice between the directions D; 
and D~ is not made until a time long after the original collision has taken 
place. And the same is true of the choice between D; and D;. Thus the 
information about which experiments will eventually be performed in the 
two regions, R\ and R2 , is not available in the intersection of the backward 
light cones from R\ and R 2 • (Here it has been assumed that the information 
about the choice of experiment performed in either region can propagate 
only forward in time.) Consequently, the information residing in the inter
section of the backward light cones from R\ and R2 must fix the results of 
both of the then-existing possibilities for the experiment that will eventually 
be chosen in each region. 

This latter conclusion entails that the quantum-theoretical description 
is incomplete. For this conclusion amounts to admitting the predetermina
tion of the results of several experiments, only one of which can actually 
be performed. And these alternative possibilities are, according to the 
quantum formalism, incompatible possibilities. Therefore quantum theory 
has no way to represent, simultaneously, a well-defined result for all of 
these alternative possible measurements. So if these various results were, 
in fact, simultaneously well-defined, then the quantum-theoretical descrip
tion, being unable to represent all this information, would necessarily be 
incomplete. This is the naive form of the argument for the incompleteness 
of the quantum-theoretical description. 

Figure 1. The naive argument. If 
information travels no faster than 
light, then information sufficient to 
determine the results in R, and R2 
must be contained in the shaded 
region, which is the intersection of 
the backward light cones from R, 
and R2 , in order to explain the exact 
anticorrelation of results in R, and 
R 2 · But information about which 
experiment is performed in R, and / 
R2 is confined to the forward light 
cones from these regions, and hence 
is not present in the shaded region. Thus information sufficient to determine the results of all 
four possible measurements must be contained in the shaded region. This entails counterfactual 
definiteness, and hence the incompleteness of the quantum-theoretical description. 
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4. Orthodox Responses to the Naive Argument 

To understand the response of the orthodox quantum theorist to the 
naive argument, it is necessary to recognize that the orthodox Copenhagen 
interpretation has two levels, here called the "strict" and "informal" levels. 
A principal element of both is that the quantum formalism is to be regarded 
as merely a set of rules for calculating connections between certain kinds 
of observations. In the words of Bohr: 

and 

Strictly speaking, the mathematical formalism of quantum theory ... merely 
offers rules of calculation for the deduction of expectations pertaining to observa
tions obtained under well-defined conditions specified by classical physical 
concepts() 

... the formalism does not allow pictorial representation along accustomed lines, 
but aims directly at establishing relations between observations obtained under 
well-defined conditions.(4) 

The attitude that demands rigorous adherence to this point of view, and 
admits no discussion at all of what is "happening," is here called the "strict" 
interpretation. 

Bohr's words are, however, fully compatible with the idea that our 
observations are observations of things that are actually "happening" in 
the external world, on the macroscopic level. But Bohr carefully avoided 
making specific ontological commitments about these "happenings." 
Heisenberg, on the other hand, was more forthcoming. He speaks of transi
tions from the "possible" to the "actual" and says: 

If we want to describe what happens in an atomic event, we have to realize that 
the word 'happens' can apply only to the observations, not to the state of affairs 
between observations. It applies to the physical, not the psychical act of observa
tion, and we may say that the transition from the 'possible' to the 'actual' takes 
place as soon as the interaction of the object with the measuring device has 
come into play; it is not connected with the act of registration of the result in 
the mind of the observer. The discontinuous change in the probability function, 
however, takes place with the act of registration, because it is the discontinuous 
change in our knowledge in the instant of registration that has its image in the 
discontinuous change in the probability function.(5) 

He also speaks of the probability function as representing "tendencies" or 
"potentia" for these actual happenings or events, which take place when 
the interaction of the object with the measuring device has come into play. 

This idea, that the transition from the "possible" to the "actual" takes 
place when the interaction of the object with the measuring device comes 
into play, leads to the second scheme described above for understanding 
the existence of the strict anticorrelations. The problem with that second 
scheme was that it required faster-than-light transfer of information. 
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Heisenberg deals with this question in his 1929 book, The Physical 
Principles of the Quantum Theory. He discusses there the simpler situation 
in which a photon wave packet strikes a half-silvered mirror, and divides 
into two packets that move into separated regions. He then says: 

... if now an experiment yields the result that the photon is, say, in the reflected 
part of the packet, then the probability of finding the photon in the other part 
of the packet immediately becomes zero. The experiment at the position of the 
reflected packet then exerts a kind of action (reduction of the wave packet) at 
the distant point occupied by the transmitted packet, and one sees that this 
action is propagated with a velocity greater than light. However, it is also obvious 
that this kind of action can never be utilized to transmit a signal so that it is not 
in conflict with the postulates of the theory of relativity.(6) 

If, in accordance with Heisenberg's ideas, the probability function is 
regarded as representing tendencies for the macroscopic happenings, such 
as firings of particle counters, then the sudden "reduction of the wave 
packet" represents an abrupt change in tendencies at the distant point, and 
hence an immediate physical influence of some sort. The anticorrelation of 
the results in R\ and R2 that occur in the EPR-Bohm experiments can then 
easily be explained-and reconciled with the idea that the result of the 
experiment is not fixed until the interaction of the object and the device 
has come into play-by exploiting the abrupt change in tendencies in the 
distant region. The naive argument for the incompleteness of quantum 
theory is thereby dissolved, by considerations that were a standard part of 
quantum-theoretical thinking as early as 1929. However, this way of thinking 
admits the existence of faster-than-light influences. But the information that 
is transmitted faster than light pertains to nature's selections, rather than 
the experimenter's choices. 

Heisenberg's approach admits the existence of faster-than-light influen
ces, but not faster-than-light signals. However, the more usual strategy is 
to retreat to the strict interpretation, and simply refuse to discuss what is 
happening beyond what we do and what appears. Then the naive argument 
loses its force, because the quantum theorist simply refuses to recognize 
the categories of things upon which the argument is based. 

5. The EPR Argument 

The EPR argument is a modification of the naive argument. It is 
designed to invade the seemingly-impregnable position of the strict interpre
tation. The EPR argument meets the quantum theorist on his own ground, 
and on his own terms. For only in this way can the argument carry weight 
in the minds of these theorists. 
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The quantum theorist's terms are the acceptance of nothing other than: 
(1) the freedom of the experimenters to choose the experiments they will 
perform, and (2) the validity of the predictions of quantum theory. 

Restriction imposed by locality requirements can be entertained, but 
restrictions on influences must be confined to the influences of human 
choices: human choices can be assumed to be localized in the regions in 
which they are made, and it can be assumed that no such choice made in 
one region can influence anything in a second region if the second region 
can be reached from the first only by traveling faster than light. 

The aim of the EPR argument is to answer (in the negative) the question 
posed by the title of their paper: Can quantum-mechanical description of 
physical reality be considered complete? Thus they must give meaning to 
the words "physical reality." They do this by introducing their famous 
criterion of physical reality: 

If, without in any way disturbing a system, we can predict with certainty (i.e., 
with probability unity) the value of a physical quantity, then there exists an 
element of physical reality corresponding to that physical quantity. 

Einstein, Podolsky, and Rosen discuss this criterion of physical reality, and 
argue that it accords with the ideas of both classical physics and quantum 
theory. 

Let the two alternative possible physical quantities pertaining to region 
R\ be denoted by r~ and r~ respectively. And let the two alternative possible 
physical quantities pertaining to region R2 be denoted by r~ and r~ respec
tively. The prime and double prime relate to the superscripts on D~ and 
D~, and on D~ and D~. Thus each possible value for r~ is a set of numbers 
r~i = ±1, etc., and the equalities D~ = D~ and D~ = D~ lead, through 
equations (1) and (2), to 

for all i if D\ = D~ and D2 = D~ (3) 

and 

for all i if D\ = D~ and D2 = D~ (4) 

These equations represent, algebraically, the strict anticorrelations that were 
discussed above. 

Einstein, Podolsky, and Rosen's argument (with appropriate replace
ments of symbols) is this: 

by measuring either ,; or ,r we are in a position to predict with certainty [by 
using either equation (3) or equation (4)], and without in any way disturbing 
the system in R2 , either the value of '2 or the value of ,~. In accordance with 
our criterion of physical reality, in the first case we must consider '2 as being 
an element of physical reality, in the second case ,~ is an element of physical 
reality. Thus either '2 or ,~ is an element of physical reality depending on 
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whether we measure r; or rT in region R I . But maintaining that either r~ alone 
or r~ alone is an element of physical reality, depending on what we measure in 
R I , would make "the reality of r~ and r~ depend upon the process of measurement 
carried out in region R I . No reasonable definition of reality could be expected 
to permit this.(l) 
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Thus r~ and r~ must be simultaneous elements of physical reality. This 
immediately entails, for reasons already explained, the incompleteness of 
the quantum-theoretical description of physical reality. 

6. Bohr's Rebuttal 

Rosenfeld(7) has described the reaction in Copenhagen that the EPR 
paper evoked. Bohr's initial attempts at an answer were not satisfactory, 
but after six weeks of effort his reply was completed. This reply,(8) however, 
was addressed mainly to the question of the consistency of the quantum
theoretical description, in the experimental situation discussed by Einstein, 
Podolsky, and Rosen, and not to their argument itself, which questioned 
not the consistency but rather the completeness of the quantum-theoretical 
description. 

Bohr's rebuttal to the EPR argument itself was this: 

From out point of view we now see that the wording of the above-mentioned 
criterion of physical reality proposed by Einstein, Podolsky, and Rosen contains 
an ambiguity as regards the meaning of the expression "without in any way 
disturbing a system." Of course there is in a case like that just considered no 
question of a mechanical disturbance of the system under investigation during 
the last critical stage of the measuring procedure. But even at this stage there is 
essentially the question of an influence on the very conditions which define the 
possible types of predictions regarding the future behavior of the system. Since these 
conditions constitute an inherent element of the description of any phenomenon 
to which the term "physical reality" can be properly attached, we see that the 
argumentation of the mentioned authors does not justify their conclusion that 
quantum-mechanical description is essentially incomplete. 

The point of this rebuttal was to tie "physical reality" to what can be 
predicted about a system, and then to maintain that, since our predictions 
pertaining to region R2 depend upon what we do in R J , the physical reality 
in R2 is disturbed by what we do in R J • 

The subtlety of Bohr's response testifies to the strength of the EPR 
argument: Bohr evidently found no simple, adequate reply. In the end he 
denied the EPR locality assumption that what we do in one region leaves 
the physical reality in the other region undisturbed. Heisenberg's approach 
also denies this assumption: he accepts the existence of faster-than-light 
actions that are not faster-than-light signals. The fact that the responses of 
both Bohr and Heisenberg effectively reject the EPR locality assumption 
suggests that what we have here is some subtle sort of faster-than-light 
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connection. This is exactly what a deeper analysis, based on the work of 
Bell, appears to show. 

7. Bell's Theorem 

The problem of faster-than-light influences remained dormant in the 
minds of most physicists until it was stirred up in 1965 by a paper written 
by John Bell(9) who began his paper with a brief account of the EPR 
argument: 

Since we can predict in advance the result of measuring any chosen component 
of 0"2 by previously measuring the same component of 0"1 it follows that the 
result of any such measurement must actually be predetermined. Since the initial 
quantum mechanical wave function does not determine the result of an individual 
measurement, this predetermination implies the possibility of a more complete 
specification of the state. Let this more complete specification be effected by 
means of a set of parameters A. 

This version of the EPR argument introduces many elements that are 
not present in the carefully sculpted EPR argument itself: "in advance," 
"previously," "predetermined," and "parameters A." Bell put these extra 
ideas together to form the idea of a deterministic hidden-variable theory. 
This theory he subjected to a locality requirement, which demanded that 
the results that would appear in each region, under either of the conditions 
that might be set up there, must be independent of the choice made by the 
experimenter in the other region, which is space-like separated from the 
first. He then showed that no such local deterministic hidden-variable theory 
could reproduce all the statistical predictions of quantum theory for spin
correlation experiments of the kind we have been discussing. A key innova
tion was to consider not just the predictions associated with settings of D1 
and D2 at 0° and 90°, but to consider also some other appropriately chosen 
settings. 

This result of Bell's did not immediately appear to have any great 
significance for the question of faster-than-light influences in nature, for 
the assumptions of determinism and of hidden variables seemed doubtful: 
orthodox quantum thinking explicitly rejects both of these ideas. However, 
both of these extra assumptions can, as we shall see, be stripped away. 

8. Failure of Local Microrealism 

Bell's theorem has been extended by Clauser et al.(!O) to a broader class 
of hidden-variable theories, which accommodate stochastic elements. Much 
of the work of these authors is concerned with experimental tests, and 
hence with problems connected, for instance, to counter efficiencies. These 
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considerations do not concern us, since we are accepting the validity of the 
quantum predictions. 

Locality conditions for these stochastic hidden-variable theories were 
introduced by invoking semiclassical ideas(lI.12) at the microscopic level. 
These ideas suggested a certain hidden-variable factorized form for the 
probabilities of coincidence counts. 

In an effort to express in general terms the assumptions that underlie 
this proposed hidden-variable factorization property, Clauser and 
Shimony(l2) have considered the concept of realism: 

Realism is a philosophical view according to which external reality is assumed 
to exist and have definite properties whether or not they are observed by 
somebody. 

In the consideration of quantum theory it is necessary to distinguish 
macro realism from microrealism. The Copenhagen interpretation of quan
tum theory is certainly compatible with macrorealism: it is compatible with 
the idea that our observations are observations of a macroscopic external 
reality created by myriads of macroevents of the kind discussed by Heisen
berg. Of course, the strict Copenhagen interpretation enjoins us not to 
clutter quantum theory with superfluous ontological suppositions about the 
precise nature of these happenings. But it certainly allows their existence. 
Thus the general assumption of macrorealism does not take us outside the 
strict Copenhagen interpretation. 

However, the ideas that underlie the justification of the hidden-variable 
factorization property of Clauser et al. are ideas about a microscopic level 
of reality that is totally alien to orthodox quantum-theoretical thinking. 
Theories that satisfy this hidden-variable factorization property should 
perhaps be called local-microrealistic theories, instead of local-realistic (or 
objective) theories, to emphasize the fact that they express certain ideas 
about the character of reality at the microscopic level that go far beyond 
the simple idea that external reality exists and has some well-defined 
(macroscopic) properties whether or not they are observed by anybody. 

Clauser and Shimony have noted that an assumption of physical realism 
underlies the EPR argument. However, the EPR reality assumption is 
expressed by general principles that were designed to be compatible with 
orthodox quantum thinking and is thus totally different in character from 
the semiclassical ideas about a local microscopic space-time structure that 
underlie the hidden-variable factorization properties used by Clauser et at. 

9. Failure of EPR Local Realism 

The logical form of the EPR argument is this: 

OM + (LaC + REALITY) ~ CFD (Sa) 
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and 

CFD ~ QM IS INCOMPLETE (5b) 

where CFD stands for counterfactual definiteness. That is, from the assump
tion that the predictions of quantum theory are valid, and certain combined 
assumptions about locality and physical reality, Einstein, Podolsky, and 
Rosen conclude that the results of some unperformed (and mutually incom
patible) experiments must be simultaneously well defined. This first con
clusion, CFD, immediately entails, as noted by EPR, that the quantum
mechanical description is incomplete. 

Simple arithmetic shows, as will be discussed presently, that(l3) 

CFD + LOC ~ -QM (6) 

That is, counterfactual definiteness plus locality entails the nonvalidity of 
the predictions of quantum theory. The combination of this result with the 
first part of the EPR argument, (5a), entails 

QM + (LOC + REALITY) + LOC ~ -QM (7a) 

and hence, equivalently, 

QM ~ -(LOC + REALITY)EPR (7b) 

where 

(LOC + REALITY)EPR == (LOC + REALITY) + LOC (7c) 

The LOC that occurs in (6), which applies within a context in which 
CFD holds, is not identical to the LOC that occurs in the combined 
assumption (LOC + REALITY) that occurs in (Sa). But it expresses, within 
this CFD context, the same basic EPR locality idea that nothing in R; can 
be disturbed by what the experimenters do in Rj (j ,.r:. i). This justifies the 
notation of (7c). 

The result (7b), which is based on (6), invalidates the EPR argument, 
for it shows that its general assumptions are mutually incompatible. This 
purely logical argument eliminates the need for Bohr's epistemological 
rebuttal. It also yields a nonlocality result potentially far more interesting 
than the result of Bell, for it says that any theory that reproduces the 
predictions of quantum theory cannot satisfy the relatively weak locality 
and reality requirements that went into the EPR argument. 

A key ingredient here is the one symbolized by (6). The meaning 
of this result is as follows: The CFD conclusion of the EPR argument, 
(5a), says that the results of the two alternative possible experiments that 
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might be performed in R2 are simultaneously well-defined, and the same 
conclusion holds for the results of the two alternative possible experiments 
in R I • (A slight elaboration of the EPR argument is needed when three 
different angles 0°, 90°, and 135° are used, instead of only two). Since the 
results in all four alternative possible combinations of experimental condi
tions are then simultaneously well-defined, we may construct a table that 
shows these values. One conceivable possibility is shown in Table 1. Here 
n = 8, and the value of c, calculated according to equation (1), is shown. 
Also shown is the predicted value C, calculated according to equation (2), 
for the following choices of the azimuthal angles that define the possible 
directions of D. and D2: 

Once counterfactual definiteness is established, the EPR locality idea 
can be formulated as the requirement that what would happen in either 
region, under either of the two alternative possible conditions that might 
be set up in that region, does not depend upon which of the two alternative 
possible experiments is chosen by the experimenters in the other region. 
This means that the set of results r~ in RI does not depend upon the choice 
between D; and D~ made in R2 , and so on. 

Table 1. Conceivable Set of Possibilities for the Results of the Four Alternative 
Possible Experimentsa 

(D\.Dz) (D\.D~) (Dr.Dz) (Dr.Dn 

r' I r2 r' I rtf 
2 

rlf 
I r' 2 

rtf 
I r~ 

1 +l -1 +1 +1 -1 -1 -1 +1 
2 -1 +l -1 +1 +1 +1 +l +1 
3 -1 +l -1 -1 -1 +1 -1 -1 
4 +1 -1 +1 -1 -1 -1 -1 -1 
5 +1 -1 +l +1 -1 -1 -1 +1 
6 -1 +1 -1 +1 +l +l +1 +l 
7 +1 -1 +1 -1 -1 -1 -1 -1 
8 -1 +1 -1 -1 +l +1 +1 -1 

c=-1 c=o c = 0.75 c =0.25 
c=-1 c=o c= 0.707 c= -0.707 

aC=(l/n)L~_' '\;',,; c(IJ"IJ,)=-cos(IJ,-1J2 ). 
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In the, first three pairs of columns the values have been arranged so 
that the value of c is close to the value c predicted by quantum theory. But 
the fourth case then shows a large disagreement. It is in fact easy to ShOW(13,14) 
that this is always the case, for all values of n, provided the angles e;, e~, 

()~, and e~ are selected in the way shown: for this choice of these angles 
there is no conceivable possible arrangement of r;i = ±1, r~i = ±1, r~i = ±1, 
and r~i = ± 1 that satisfies both the locality conditions and the quantum
theoretical predictions. 

According to (7b), we may conclude from the mathematical result 
stated above that the assumptions that characterize EPR local realism are 
invalid. However, the significance of this conclusion is not totally clear. 
This is because the EPR assumptions of locality and reality are expressed 
in a manner not suited to our present aim, which is very different from that 
of Einstein, Podolsky, and Rosen. They wished to say something about 
"physical reality," and hence had to build their argument around a 
definition, or at least a criterion, of physical reality. And they wished to 
prove counterfactual definiteness in order to establish the incompleteness 
of the quantum-theoretical description. We are not interested in defining 
"physical reality," or in proving either counterfactual definiteness or the 
incompleteness of the quantum-theoretical description. Rather, we wish to 
clarify the result suggested by the independent considerations of Heisenberg 
and Bohr, namely, that the quantum aspects of nature are tied up to some 
subtle sort of faster-than-light connection. We shall need, therefore, to 
reformulate the results of this section in a way that circumvents the assump
tions about "physical reality" that are not germane to our purpose. First, 
however, we shaIl introduce our criterion for the existence of an influence. 

10. Criterion for the Existence of an Influence 

In discussing the question of "influence" we are in a position similar 
to that of Einstein, Podolsky, and Rosen in their discussion of "physical 
reality": almost any symbol one writes, or word one uses, can, from the 
point of view of the strict orthodox interpretation, prejudice the issue. No 
models or words suggesting determinism or counterfactual definiteness can 
be invoked. One must base the considerations on general principles that 
are reasonable in their own right. The problem for Einstein, Podolsky, and 
Rosen was to set forth a reasonable criterion for "physical reality." Our 
problem is to set forth a reasonable criterion for the existence of an 
"influence. " 

Consider a theory that has a variable y, and an independent variable 
x. The idea that, within the structure imposed by this theory, the choice of 
the value of x does not influence y does not mean that within this structure 
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the value of y must necessarily remain unchanged if the value of x is 
changed_ For y might depend upon many things, and some of these, such 
as random variables, might not necessarily stay the same if x were changed. 
However, the idea that the choice of the value of x does not influence y 
does entail that, for each choice of the values of the other independent 
variables, the value of x can, within the constraints imposed by the theory, 
be varied over its domain without the value of y changing: the random 
variables could be left undisturbed. That is, in terms of values, if x is the 
set of all independent variables other than x, then for each value of x there 
is a value y(x) such that the theory allows y to be held fixed at the value 
y(x) as x varies over its entire domain (see Figure 2). If no such value y(x) 
exists, then the theory forces y to vary as x is varied, and it cannot be said 
that, within the theory, the choice of x has no influence on y. 

11. The Existence of Faster-Than-Light Influences 

One principal aim here is to avoid the use of CFD. So we begin by 
specifying what CFD is, in the context of the specific situation under 
consideration here. CFD: "Regardless of which of the four alternative 
possible measurements is performed, the results of all four possible measure
ments are determinate." In more detail, "Regardless of which of the four 
alternative possible measurements is performed, nature, according to some 
underlying theoretical conception, fixes a quartet of values (rto r2, r3, r4 ), 

in which rm can be identified as the value that would be obtained as the 
result of the measurement if the measurement m were performed; i.e., all 
four values rm are fixed or determined within nature, according to some 
underlying conception, even though only one of these values can be revealed 
by actual measurement." 

Remark 1. We distinguish here between physical theories, such as 
quantum theory and classical physics, and some perhaps less
completely-defined theoretical conception of the nature to which 
our physical theories are supposed to refer. 

Remark 2. No significance is supposed to be attached to tense, i.e., to 
the distinction between is, was, or will be performed: CFD is 
supposed to mean that all four values eventually become fixed, 
even though only at most one of the four alternative possible 
measurements can ever be performed. 

Remark 3. This CFD property can be decomposed into two parts, one 
referring to the unperformed measurements (strict CFD), and one 
referring to the performed experiment (definite result). Here we 
take CFD to be their symmetrically-stated combination. 
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Remark 4. This CFD property is the property that is supposed to be 
proved by the Naive Argument, and by the EPR argument. 

Remark 5. Given CFD one can immediately deduce a contradiction 
with the predictions of quantum theory from the result(13) discussed 
in connection with Figure 2. 

This CFD property may be contrasted with the property of "Unique 
Results." UR: "For each of the four alternative possible measurements m, 
if m is performed then nature must select some unique value for the result 
of this measurement m, and will never fix any values for the results that 
the remaining three measurements would have had if they had been per
formed." 

The property UR is coordinated with quantum theory in the following 
way: QT: "For each of the four alternative possible measurements m, if m 
is performed then the unique value r that nature must, according to UR, 
select will, with probability greater than 1 - E, lie in a set Qm(E). This set 
can, for any E > 0, however small, be taken to be the set 

Qm(E) = {r; C(r) - Eml < O.Dl} (8) 

by taking n, the number of pairs, sufficiently large." 
Let Sm be the set of 4" conceivable possible values of the result of 

measurement m. On the basis of UR we may, for any quartet (,), r2, r3, r4 ) 

in S) ® S2 ® S3 ® S4, contemplate the conceivable possibility that: 

1. If we perform measurement m = 1, then nature will select the value 
r) for the result of this measurement, and will select no values for 
the results of the unperformed measurements m ,e 1. 

2. If we perform measurement m = 2, then nature will select the value 
r2 for the result of this measurement, and will select no values for 
the results of the unperformed measurements m ,e 2. 

3. If we perform measurement m = 3, then nature will select the value 
r3 for the result of this measurement, and will select no values for 
the results of the unperformed measurements m ,e 3. 

y y 

~x~x 
A B 

Figure 2. Conditions for influence. The 
shaded region indicates the region allowed 
by the theory, for some set of values of the 
independent variables other than x. If for 
some set of values of the independent vari
ables other than x it is not possible to vary 
x over its entire domain without y changing 
(as in A, but not in B), then y is influenced 
by the choice of x. 
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4. If we perform measurement m = 4, then nature will select the value 
'4 for the result of this measurement, and will not select any values 
for the results of the unperformed measurements m ¢ 4. 

This conceivable possibility has a certain similarity to CFD: both refer 
to a quartet ('to '2, '3, '4) in S) ® S2 ® S3 ® S4. But they are logically 
different. The existence of the conceivable possibility corresponding to the 
quartet ('), '2, '3, '4) does not entail or rest upon the assumption that nature 
has selected, or in any way determined, this quartet of values: the conceivable 
possibility is defined by a conjunction of assertions, each of which applies 
only under the condition that the appropriate measurement is performed, 
and these four measurements cannot be performed simultaneously. 

The CFD property contradicts quantum thinking, but the UR property 
does not. In fact, UR is completely in line with the quantum-theoretical 
idea that the values of the results of unperformed experiments are not 
physically well-defined. It is also in line with Heisenberg's idea that a 
transition from "possible" to "actual" takes place when the interaction 
between the quantum object and the measuring device comes into play. 
However, it goes slightly beyond the strict Copenhagen interpretation, which 
makes no explicit assumption that nature selects the unique value that 
appears to us. For example, the Copenhagen interpretation probably does 
not strictly contradict the many-worlds ontology, in which nature selects 
no unique values. (According to the many-worlds ontology, the uniqueness 
of the value that we perceive is a consequence of a limitation of human 
faculties, rather than a consequence of any singling-out of a unique value 
by nature herself). 

Since no faster-than-light action occurs in the many-worlds ontology, 
any argument for the existence of faster-than-light actions must be predi
cated, in part, on an assumption that excludes the many-worlds ontology. 
In the present case this assumption is UR. 

The EPR locality idea is this: nothing in Rj can be disturbed or 
influenced by what we can freely choose to do in the space-like-separated 
region Rj • To implement this idea we must deal, conceptually, with com
parisons involving alternative possible conditions of measurement. Our aim 
is to introduce the necessary comparisons by using UR, and the framework 
of conceivable possibilities, in such a way as to completely avoid the CFD 
idea that nature fixes the quartet of results ('to '2, '3, '4). 

The argument proceeds in two steps. First a concrete, local non-CFD 
model will be considered; then its abstract essence will be extracted. 

The concrete, local non-CFD model is constructed as follows: we 
suppose for any measurement m, if m is performed then nature will con
struct, in some local but nonpredetermined manner, a local mechanism that 
will pick a value for the result of measurement m. We suppose further that 
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precisely the same set of constituents is used to construct this mechanism 
in all four alternative possible cases, so that it is physically impossible for 
mechanisms corresponding to any two of the four alternative possible 
measurements to exist simultaneously. Since the mechanism is constructed 
in a nondeterministic manner there are no plans or traces or other indications 
of what the mechanism would have been if some other choice of measure
ment had been made. Thus this concrete local model is manifestly non-CFD. 

We consider now the process of the construction of the mechanism 
and, in view of the nondeterministic character of this process, the various 
conceivable possible mechanisms that might eventually be constructed. For 
each of these conceivable possible local mechanisms we can consider the 
part lying in V-(R;), which is the backward light cone from R j • According 
to the locality idea that causal influences propagate only forward in time 
and no faster than light, it is only this part of the mechanism lying in V-(Rj ) 

that can have any influence upon the output in R j • Similarly, it is only the 
part of the mechanism in V+(Rj ), the forward light cone from Rj , that can 
have been influenced by the human input in Rj • 

Owing to the space-like separation of Rl and R2 these two cones are, 
for i "" j, disjoint: 

(i "" j) (9) 

Thus, for any of the possible mechanisms that might be constructed, the 
parts that can influence the output in R j cannot have been influenced by 
the input in the space-like separate region Rj • 

We are concerned with these mechanisms only insofar as they can 
influence the outputs in Rl or R2 • Thus the mechanisms can be considered 
to be confined to the region V-(R 1) U V-(R2). The part of this region that 
can contain parts of the mechanisms that can have been influenced by the 
inputs in Rl and R2 is 

(10) 

Again owing to the space-like separation of Rl and R 2 , this region consists 
of two disjoint regions, V-(R 1) (\ V+(R 1) and V-(R2) (\ V+(R2 ), such that 
the part of the mechanism in the first of these regions cannot influence the 
output in R2 and cannot have been influenced by the input in R2 , and the 
part in the second region cannot influence the output in Rl and cannot 
have been influenced by the input in R1 • Thus each of the conceivable 
possible mechanisms has two disjoint parts such that all of the influence 
of the input in Rl is confined to one of these parts, V-(R 1) (\ V+(R 1), and 
all of the influence of the input in R2 is confined to the second part, 
V-(R2) (\ V+(R 2 ). Since the influences of the inputs in Rl and R2 are, 
within the mechanism that fixes the outputs in Rl and R2 , wholly confined 
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to disjoint parts of the mechanism, the influences of these two inputs must 
act independently upon the mechanism: neither input can influence the 
influence of the other. 

According to our criterion of influence, the part of the mechanism that 
is not influenced by the input in RI must be allowed to remain unaltered 
as the input in RI is varied. This means that, for either condition that might 
be set up in R 2 , the output in R2 , though nonpredetermined, and in general 
dependent upon the input in R2 , must be allowed to remain unaltered as 
the input in RI is varied. Similarly, for either condition that might be set 
up in R I , the output in R I , though nonpredetermined, and in general 
dependent upon the input in R I , must be allowed to remain unaltered as 
the input in R2 is varied. Physically, the requirement is that there be, 
conjunctively, no influence in either direction. Thus both conditions of 
noninfluence may be applied together. 

The condition that, under either condition that might be set up in RI 
the nonpredetermined output that appears there be unaltered as the input 
in R2 is varied restricts the allowed conceivable possibilities discussed above: 
the allowed quartets (rl' r2 , r3, r4) are restricted to those in which the output 
in RI is independent of the input in R2 • The other condition of noninfluence 
imposes a similar condition. These two conditions together restrict the 
allowed quartets (rl' r2, r3, r4) to those in which the output in RI is indepen
dent of the input in R2 and the output in R2 is independent of the input 
in R I • 

Remark 6. This restriction on the allowed quartets is the same as the 
one that arises from locality in the case where CFD holds. Thus 
the mathematical proof used in that case can be carried over to 
show the incompatibility oflocality and the predictions of quantum 
theory also in the present case. 

Remark 7. Although the mathematical aspect of the incompatibility of 
locality and quantum theory is the same here as in the case where 
CFD holds, the physical basis is different. The present argument 
is based on a model that is, generally, in line with orthodox 
quantum thinking in that it explicitly excludes CFD. 

Remark 8. The model does not entail or suggest that the "particles" 
exist in any objective or separate sense, or can be separated from 
the macroscopic devices. 

Remark 9. The localizations involved in the argument are not micro
scopic: they can be millimeters or centimeters, or, in principle, 
even meters or kilometers. 

The concrete model has several functions. The first is to cast in solid 
form the crucial property that under anyone of the four alternative possible 
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conditions nature must select a unique value for the result of the measure
ment that corresponds to the condition. This idea of a selection of unique 
value is essential, for it is the possible influence of the input in Rj upon 
this unique value appearing in R j that is the subject of the analysis: in a 
many-worlds ontology there is no analogous uniquely defined value upon 
which to base the argument. 

The second function of the concrete model is to exclude from the outset 
any possibility of satisfying CFO. The occurrence in the argument of a 
hidden assumption of CFO would eviscerate any claim of a violation of 
locality, since a violation of CFO would be far more plausible. 

These first two functions played by the concrete model are simply to 
put in a visualizable form the content of UR. 

A third function of the concrete model is to provide a concrete structure 
for describing the assumed faster-than-light limitation on causal influences. 
However, this concrete structure can be bypassed by formulating the locality 
condition directly as the requirement that, for each of the two possible 
values of i, and for each of the two possible inputs in Rj , the selection 
pertaining to the output in R j that, according to UR, nature must 
make cannot be influenced by the input made in the space-like separated 
region Rj • 

A fourth function of the concrete model is to establish the independence 
of the influences of the two inputs. However, this is a consequence of the 
disjointedness and space-like separation of the regions that can both be 
influenced by these two inputs and have a bearing on the results in Rl and 
R 2 • Abstractly, the independence of these two influences is expressed as 
the lack of any physical meaning to the order in which the events in Rl 
and R2 take place. 

A fifth function of the concrete model is simply to allow one to think 
more concretely about the various alternative possibilities, as various 
alternative possible mechanisms. But there is no reason not to think 
abstractly, in the equivalent way, simply about the various alternative 
possibilities themselves. So, although the concrete model is perhaps helpful 
as an aid to thinking, it does not play any essential role that goes beyond 
the combination of UR and the idea that causal influences can propagate 
only forward in time, and no faster than light. 

12. Analysis of a Counterclaim 

A recent article(l5) contains a purported proof that quantum theory is 
fully compatible with the demand that there be no faster-than-light influen
ces of any kind: 

QT E .:£ (11) 
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Here 2 is the set of theories that are "fully compatible with the demand 
that there be no faster-than-light influence of any kind" _ What is actually 
proved in Reference 15 is that quantum theory satisfies a certain "locality 
condition" that we here call KLC: 

QT E 'J{ (12) 

where X is the set of theories that is consistent with KLC. What is needed 
to complete the proof of the claimed result (11) from the proved result (12) 
is that 

'J{c 2 (13) 

But we shall exhibit a model theory (MT) that is contained in X but not 
in 2. This shows that KLC is too weak: it does not ensure full compatibility 
with the demand that there be no faster-than-light influences of any kind. 

The condition KLC, restricted to our special situation, is this: for each 
of the four possible values of the pair (Xi> X 2 ), and for each pair of values 
(r', rD that satisfies the statistical predictions of the theory under the 
condition that [MI(XI), M 2(X2 )] is performed, there is some pair of values 
(r~, r~) such that: (1) (r; , rD satisfies the statistical predictions of the theory 
under the condition that [MI(XI), M 2 ( -X2 )] is performed, and (2) (r~, r;) 
satisfies the statistical predictions of the theory under the condition that 
[M I(-X2 ), MAX2 )] is performed. The conditions for the four possible 
values of (XI, X 2) are imposed disjunctively: the values r;, r;, r~, r~ occurr
ing for each of the four alternative possible values of the pair (XI, X 2 ) are 
allowed to be independently chosen quantities. This disjunctive form is to 
be contrasted with the conjunctive form obtained in Section II. 

Let us consider the model theory defined by (with Xi = ± 1) 

(14a) 

and 

(14b) 

where each Ai = ±1 is a random variable, with probability 1 assigned to 
each of its two possible values. This model is blatantly nonlocal: the r li 
depend on X 2 , and the rZi depend on XI. The observable averages are 
easily computed. Owing to the random variables Ai the average values of 
r l and r2 are zero: 

(15a) 
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and 

(ISb) 

The predicted correlation function c(X) , X 2 ) is computed from equation 
(1), and its values are 

c(+I, +1) = +1 (16a) 

c(+I, -1) = +1 (16b) 

c(-I,+1)=-1 (16c) 

c( -1, -1) = + 1 (16d) 

The nonlocal character of any theory that satisfies equations (16) is 
easy to see. Consider first the two equations (16a) and (16c). Under the 
experimental conditions pertaining to equation (16a) the results appearing 
in R) and R2 are perfectly correlated: the value of 'Ji is always equal to 
the value of '2i. But under the experimental conditions pertaining to equation 
(16c) the results appearing in R) and R2 are perfectly anticorrelated: the 
value of 'Ii is always equal to the negative of the value of '2i. If one assumes 
that the results 'li appearing in Rl are undisturbed by what is done in R), 
then one can conclude that the two possible measurements in R) measure 
exactly the same thing, apart from a minus sign. That is, the two measure
ments in R) are related in the same way as the measurements performed 
by two Stern-Gerlach devices that are oriented in exactly opposite direc
tions. 

If we could find in nature two different possible measurement pro
cedures that yielded correlation functions of the form (16a) and (16c), 
respectively, relative to a measurement performed in R2 , and if we could 
assume that the choice between the two measurement procedures in R) 
necessarily had no effect upon the results '2i appearing in R2 , then we could 
certainly conclude that the two different possible measurements in R) were 
measuring exactly the same thing, apart from a minus sign. 

But let us now change the experiment performed in R2 • Then we find 
from equations (16b) and (16d), by means of the same argument as before, 
that the same two measurements in R) are measuring exactly the same thing, 
with no sign change. Thus the two measurements in R) measure either exactly 
the same thing, or exactly the same thing with a reversed sign. And which 
of these two cases holds depends upon which experiment is performed in 
the other region. 
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This state of affairs is manifestly incompatible with the idea that there 
are no faster-than-light influences of any kind_ Yet it is easy to show that 
the predictions (15) and (I6) entail KLC. For to verify KLC it is sufficient 
to show that for any set of values 'Ii satisfying (I5a) [resp., values '2i 

satisfying (I5b)] there is some set of values '2i [resp., 'Ii] that satisfy both 
(I5b) [resp., (15a)] and the appropriate correlation value from (16)]. But 
the two conditions (15) say that the set of 'Ii'S must be half + and half-, 
and the same must be true for the set of '2i'S. But then any correlation in 
the allowed range 1 ;;:. C ;;:. -1 can be readily constructed by making an 
appropriate matching of the + l's and -1's from the two sets. 

It has therefore been shown that expression (13) is false. Hence the 
result (11) claimed to be proved in Reference 15 does not follow from the 
result (12) that is proved there. 
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1. Introduction 

3 

All the Inequalities of 
Einstein Locality 

AUGUSTO GARUCCIO 

The Einstein, Podolosky, and Rosen paradox(l) proved the existence of an 
incompatibility among three hypotheses: (1) quantum mechanics is correct; 
(2) quantum mechanics is complete; and (3) "elements of reality" exist 
associated with the atomic system that determine the result of a measure
ment eventually performed. 

This paradox opened an as yet unsettled debate about which one of 
the three hypotheses should be discarded. For instance, Einstein proposed 
to admit that quantum mechanics is not complete, while Bohr(2) considered 
it unnecessary to suppose that "elements of reality" exist. 

An important step forward in this argument was taken in 1965 by 
Bell,(3) who found an inequality that is violated by quantum mechanics but 
satisfied by every theory satisfying the third hypothesis of the EPR paradox. 

This third hypothesis is usually known as Einstein locality and consists 
of the assumption that the results of measurements on atomic systems are 
determined by "elements of reality" (sometimes called hidden variables), 
which are associated with the systems being measured and, eventually, also 
with the measuring apparatuses, and which remain unaffected by measure
ments on other distant atomic systems. This determination can be either 
deterministic(4.5) in the true philosophical sense, or probabilistic, (6-~) in the 
sense that only the probabilities of the different outcomes of correlated 
measurements are fixed by the hidden variables. 
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These two different approaches to the Einstein locality give rise to two 
different mathematical formulations, which we present in this first section. 

Let us consider, therefore, two measurements in two space-time regions 
R(1) and R(2) with a space-like separation. In R(1) the first observer 
measures the dichotomic observable A(a), dependent on the instrument 
parameter a, while in R(2) the second observer measures the similar observ
able B(b). The measurements are performed on correlated systems, for 
instance, on two photons produced in the same atomic cascade. The only 
possible values of dichotomic observables are assumed to be ± l. 

In the deterministic approach (DA), the hidden variable A determines 
the result of every measurement: 

A(a, A) = ±1 B(b, A) = ±1 

and the correlation function of the two measurements is 

P(a,b)= f dAp(A)A(a,A)B(b,A) 

where p(A) is the normalized probability density. 
In the probabilistic approach (PA), one introduces the probabilities 

P±(a, A) that the results of measurements ofA(a) give ±1, respectively, and 
the analogous probabilities q±( b, A) for B( b). Therefore, the correlation 
function becomes 

Pea, b) = f dA p(A)p(a, A)q(b, A) 

where 

pea, A) = p+(a, A) - p_(a, A) 

and 

It has been shown(9-11) that the deterministic approach and the prob
abilistic one are equivalent, in the sense that inequalities for linear combina
tions of correlation functions deducible from the former are true also in 
the latter, and vice versa. 
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The aim of this paper is to deduce systematically from Einstein locality 
and in the case of dichotomic observables, * all the possible inequalities 
which it can generate and we shaIl consider in turn, the deterministic and 
probabilistic approaches, following the historical development of the 
subject. 

In Section 2 we wiIl review the methods and the results based on the 
deterministic approach. In Section 3 we wiIl present a general method for 
deducing all the possible inequalities of Einstein locality. The comparison 
between these inequalities and BeIl's inequality wiIl be developed in Section 
4, where it wiIl be shown that the physical content of Einstein locality is 
not fuIly expressed by BeII's inequality. In Section 5 new and more stringent 
inequalities for linear combination of joint probabilities are discussed. 

2. The Deterministic Approach 

2.1. First Method 

The first general method for deducing inequalities from Einstein locality 
was introduced by SeIleri,(l4) and is based on the assumptions of determinis
tic local hidden-variable theory, and perfect total anticorrelation between 
the two measurements, 

A(a, A) = -B(a, A) (1) 

If one considers the instrument parameters a), az, ... , an (n odd), one can 
always write 

(2) 

(where 7]i are factors equal to ±1 and can be chosen arbitrarily), because 
the quantity within square brackets can assume only the values n, 
n - 2, ... ,1, -1, ... ,2 - n, -no Developing the square, applying the 
operation f dA p(A), and using condition (1), one obtains 

(3) 

* For Bell-type inequalities deduced with multivalued observables refer to Baracca et a1Y2) 
and Mermin.(13) 
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On the left-hand side (Ihs) of equation (3) there are H n 2 - n) correlation 
functions, and 2"-1 different ways to choose the sign factors T/j in equation 
(2). In the case n = 3, it is possible to deduce the original Bell inequality, 
the Gutkowski-Masotto inequality (15) and the Clauser et al. inequality.(4) 

2.1.1. Generalization to Arbitrary Coefficients 

A generalization of Selleri's method can be obtained(16) by considering 
the inequality 

[aA(a, A) + [3A(b, A) + yA(c, A)]2;. min(±a ± [3 ± yf (4) 

which is obviously always true since A(x, A) = ± 1 and the minimum on the 
right-hand side (rhs) is taken over all the possible sign choices. 

We assume that the real parameters a, [3, and l' are positive. Without 
loss of generality we can also assume that 

(5) 

since the ordering of the three terms on the Ihs of the inequality (4) is 
arbitrary, and the possibility that some of the coefficients a, [3, and l' are 
equal to zero leads only to trivial inequalities. 

It is easy to show that equation (5) implies 

min(±a ± [3 ± 1')2 == (-a + [3 + 1')2 (6) 

Therefore, if one carries out the squares in equation (4), recalls that 
A2(a, A) = A2(b, A) == A2(C, A) == 1, divides by two, uses equations (1) and 
(6), mUltiplies by peA), and integrates over A, one obtains 

-a[3P( a, b) - ayP( a, c) - [3yP( b, c) ;. -a[3 - ay + [31' (7) 

Dividing the previous inequality by -a[3 < 0 and putting 

x = 1'/ [3 and y == 1'/ a (8) 

one obtains 

1 + x - y;. pea, b) + xP(a, c) + yP(b, c) (9) 

which is our basic generalized inequality. 
It is not difficult to prove that this inequality is the strongest possible 

one for three correlation functions. We note that from equation (5) it follows 
that 

(10) 
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The generalized system of inequalities for three correlation functions, which 
can be obtained by repeating, with minor changes, the previous reasoning, 
is 

1 + x - Y ~ P(a, b) + xP(a, c) + yP(b, c) 

1 + x - Y ~ P(a, b) - xP(a, c) - yP(b, c) 
(I 1) 

1 + x - Y ~ -P(a, b) + xP(a, c) - yP(b, c) 

1 + x - Y ~ -P(a, b) - xP(a, c) + yP(b, c) 

It is interesting to see for which values of x and y the inequality (9) is 
violated by the quantum-mechanical correlation function for the singlet state 

Po((J) = -cos 8 

The rhs R of the inequality (9) becomes 

(12) 

The partial derivatives of Ro with respect to 81 and 82 can be shown to 
vanish only if 

(13) 

(14) 

(I5) 

Calling 1/ and g the ±1 factors on the rhs of equations (14) and (15), 
respectively, and substituting equations (13), (14), and (15) into equation 
(12), one obtains 

It is not difficult to show that the largest value of Ro is obtained, for all 
possible values of x and y, by taking 1/ = g = + 1. 
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Therefore the plus sign should be adopted in equations (14) and (15) 
and 

(16) 

The previous results hold for all those values of x and y for which the three 
cosines of equations (13), (14), and (15) lie within the physical region. It 
is easy to show that this results in the conditions 

yl(1 + y) ~ x ~ YI(1- y) ify <! 
(17) 

yl(1 + y) ~ x ~ 1 if! ~ y ~ 1 

The low limit is obviously always satisfied, since in our case x ;;,: y. In Figure 
1 the region in which these conditions are satisfied is shown as a hatched 
area. Within this region, the generalized inequality (9) is always violated 
[except on the borderline x = y 1(1 - y)]. In fact the relation 

R;;,ax> 1 + x - Y 

can be easily be transformed into 

which is always true, except on the line x = y I (1 - y), where the lhs vanishes. 

X 
1 

.5 

lY 

Figure 1. The region B of the x, y plane in which equation (12) has a maximum for physical 
values of the angles 8, and 82 • 
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Outside the B region of Fiugre 1 the partial derivatives, with respect 
81 and 82 , of equation (12) never vanish in the physical region. This means 
that the maximum value of Ro must be looked for on the boundary, that 
is, for 

and (18) 

Here, all the cosines on the rhs of equation (12) assume the values ±l. 
Therefore it is not difficult to check that Ro on the boundary can never be 
larger than 1 + x - y. As a consequence, on the boundary, equation (18), 
the inequality (9) is never violated. It follows that for values of x and y 

lying outside the B region of Figure 1 the inequality (9) is never violated. 
We thus reach a strikingly simple conclusion: the inequality (9) is 

violated every time its rhs presents a maximum as a function of 81 and 82 

(and therefore in the whole of region B of Figure 1). 
It is, instead, never violated if the rhs of the inequality (9) assumes its 

maximum on the boundary of the 81 , 82 region, that is, if the values of x 
and yare outside the B region of Figure 1. 

It can be shown that the violation of inequality (9) reaches its maximum 
value only at the point x = y = 1, that is, in the case of the traditional Bell 
inequality for three correlation functions. 

Coming to Bell's inequality for four correlation functions, we note that 
from the first two and the second two inequalities of system (11), one 
deduces, respectively, 

1 + x - Y ~ Pea, b) + IxP(a, c) + yP(b, c)1 

1 + x - Y ~ Pea, b) + IxP(a, c) - yP(b, c)1 
(19) 

Performing the substitutions x' ~ x, y' ~ y, and c' ~ c In the second 
inequality, and summing the two together, one obtains 

2 + x + x' - Y - y' ~ IxP(a, c) + yP(b, c)1 + Ix'P(a, c') - y'P(b, c')1 (20) 

which generalizes Bell's inequality to arbitrary coefficients x, x', y, and y' 
such that 

and 1 ~ x' ~ y' > 0 (21) 

Substituting the quantum-mechanical result poe 8) = -cos 8 on the right
hand sides, RI and R2 respectively, of equations (19) and maximizing over 
the c direction, keeping the a and b directions fixed, one obtains 

RI = -cos 8 + (x2 + y2 - 2xy cos 8) 1/2 

R2 = cos 8 + (x2 + l + 2xY cos 8)1/2 

where 8 is the angle between" a and b. 

(22) 
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As can be seen in the inequality (20), one needs now to calculate R1 
plus R2 and obtain its maximum value for varying 8. A straightforward 
calculation leads to 

(R1 + R2)max = (xy + X'y')1/2 - + 2:: + - +--; (
X x' y,) 1/2 

Y X y' X 
(23) 

A numerical calculation for variable parameters x, y, x', and y' satisfying 
the relations (21) shows that the maximum violation of inequality (20) 
occurs for the values 

x = y = x' = y' = 1 

of the numerical parameters, and only for these values. Therefore we 
conclude, once more, that Bell's inequality is the strongest one of this set 
of inequalities deduced from Einstein locality. 

2.2. Second Method-The Roy and Singh Approach 

A first generalization of the method discussed in Section 2.1 was 
introduced by Roy and Singh,(7) who substituted the results of measurement 
of A(a, A) by the expectation values A(a, A), but assumed that 

A(a, A) = -R(a, A) (24) 

Let us note that this generalization is merely formal, because if equation 
(24) holds for all A, then it is possible to find a distribution function p'(A') 
such that 

A(a, A) = f p'(A')dA' A(a, A, A') 

= -f p'(A')dA'B(a, A, A') = -R(a, A) 
A' 

and thus return to the deterministic case. 
A second generalization of the method introduced by Roy and Singh 

does not assume the equality (24), but starts from the basic inequality 
O::~=l 1J;A; + I;=l 1J;BY;;': 1 for n + m odd and A; = Bi = ±1. By perform
ing the square and using AT = BJ = 1, it is possible to deduce the inequality 



All the Inequalities oj Einstein Locality 95 

9l3(Ai, B) ;:. 1 - n - m, where 9l3(Ai' Bj ) is a bilinear form in Ai and Bj • 

Then, for the bilinear form 9l3[A( ai, A), B( bj , A)], the following inequality 
holds: 

(25) 

since the bilinear form 913 reaches its maximum and minImum on 
the boundary, i.e., for A(ai , A) = Ai = ±1 = Bj = B(bj , A). Integrating 
the inequality (25) over A, one obtains on the lhs a linear combin
ation of correlation functions P( ai, bj ) plus functions like 
J p(A) dA A(ai, A)A(ab A), which do not have a direct physical interpreta
tion. It is necessary to combine different inequalities in order to eliminate 
the meaningless functions. 

2.2.1. Some Interesting Results 

Using the previous method, Roy and Singh deduced three interesting 
inequalities that provide restrictions on P( a j , bj ) which are not implied by 
Bell's inequality. 

Before presenting these inequalities let us note that given a linear 
combination 

n m 

i=l j=l 

the coefficients Cij define an n x m matrix which can be taken to represent 
completely the original linear combination. 

The first inequality is 

4 5 

L L CtP(aj, bj ) ~ 6 (26) 
i~1 j~1 

where 

c.{ 0 

-!) 
-1 1 

I) 1 1 0 -1 

1 -1 0 0 

The second one is 

4 7 

L L CtP(aj, bj ) ~ 8 (27) 
j~1 j~1 
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where 

c,{ 1 1 0 0 

j -1 0 0 1 
IJ 1 0 -1 0 -1 0 

1 0 0 -1 0 -1 

and the third one is 

6 8 
I I ctP(aj, bj ) ~ 16 (28) 
j~1 j~1 

where 

-1 -1 1 1 1 1 
1 1 -1 -1 1 

ct= 1 1 1 -1 -1 
-1 -1 -1 -1 
-1 -1 -1 1 1 -1 
-1 -1 1 -1 -1 

It is easy to show that inequalities (26), (27), and (28) provide restrictions 
on P(aj, bj ) not implied by Bell's inequality. Let us suppose, for example, 
that 

and the remaining P(aj, bj ) occurring in the equality (26) are all equal to 
~; then all the Bell inequalities involving these P(a j , bj ) are obeyed, but the 
inequality (26) is violated. 

We shall return to inequality (27) in Section 5. 

2.3. Third Method 

In a 1979 paper, Roy and Singh(J8) proposed new method for deducing 
a larger set of inequalities. 

The fundamental assumption is the perfect anticorrelation between the 
two expectation values: 
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Then, given a number N of settings of a measuring device (ai, a2, ... , aN) 
and a number N of integers (positive, negative, or zero) ("I, "2, ... , "N), 
one obtains 

Since the expression in braces is linear in each Xj(A), its minimum is reached 
when all the x;( A) lie on the boundary; hence 

N 

if I "j = odd 
i=1 

N 

if I "j = even 
i=1 

(30) 

The inequalities (3) of Section 2.1 are special cases of the inequalities (30) 
with "j = 0 or ±l. For example, for N = 6, "I = 2 and "j = 1 (i = 2, ... ,6), 
we obtain the following strong inequality: 

where 

Cij= 

6 

I CijP(aj, bj ) ~ 4 
jJ~1 

0 2 2 2 

0 0 1 

0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

3. The Probabilistic Approach 

3.1. General Method 

2 

1 

1 

1 

0 

0 

2 
1 

1 

o 

In the usual probabilistic approach, the hidden variable A determines 
the probability p±( a, A) [q±( b, A)] that the result of the measurement of 
A(a) [B(b)] gives ±1, respectively (a more detailed and critical analysis of 
this definition of probability is given in Chapter 6). 
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If p(A) ~ 0 is the probability density of the variable A, the correlation 
function is 

P(a, b) = f dA p(A)p(a, A)q(b, A) (31) 

where 

p(a, A) = p+(a, A) - p_(a, A) 
(32) 

We wish to stress that A, in the previous equation, is just a general symbol, 
which could cover several different "additional parameters." In fact, a given 
local-realistic theory of the type given by equations (31) and (32) above is 
specified by the following: 

1. Number and nature of the additional parameters At, A2 , •••• 

2. The functional dependence of p(a, At. A2 , ••• ) and q(b, At. A2 , ••• ) 

on these parameters. 
3. The probability density p(Ato A2 , ••• ). 

Two theories are different if they differ in anyone of the three previous 
specifications. Denoting again by a single symbol the parameters At, A2 , ••• , 

we can say, more simply, that two local-realistic theories are different if 
they are based on different functions p( a, A) and q( b, A) and/ or different 
probability densities p(A). 

The only interesting inequalities deduced from Einstein locality are 
those which hold true for all conceivable local-realistic theories of the type 
given by equations (31) and (32). Obviously, it is not possible today to say 
which one (if any) of the infinitely many theories based on Einstein locality 
is the correct one. Therefore, inequalities deduced from a particular theory 
(or from a particular set of theories) are not interesting. 

The following lemma permits us to deduce inequalities which are true 
for all conceivable local-realistic theories. 

Lemma. Given a real number M, the inequality 

L CijP(ai, bj ) ,,;;; M 
ij 

(33) 

can be true for all conceivable local-realistic theories if and only if the 
inequality 

L Cijp(ai, A)q(bj , A) ,,;;; M (34) 
ij 
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is true for arbitrary values of A and for arbitrary dependence of p and q 
on their arguments. 

Proof The inequality (34) is a consequence of inequality (33) since, 
among all the conceivable local-realistic theories, there are those in which 
the density function p is a delta function 8(A - Ao) and therefore 

implies that 

L. Cjj fdA 8(A - Ao)p(a j , A)q(bj , A)""; M 
I) 

L Cijp(aj, Ao)q(bj , Ao) < M 
ij 

where Ao, being arbitrary, can assume any value. Conversely, if the inequality 
(34) is true for arbitrary A and arbitrary dependence of p( aj, A) and q( bj , A) 
on their arguments, it is sufficient to multiply it by p(A) and integrate it in 
order to obtain inequality (33) as true for an arbitrary local-realistic theory. 
The proof is thus completed. 

Of course, the previous lemma does not specify the value of M and 
we shall call an inequality of the type (33) "trivial" if 

In fact the lhs of inequality (33) cannot be larger than the rhs of the previous 
inequality since every correlation function P(aj, bj ) has, by definition, a 
modulus not exceeding one. 

Our aim is therefore the determination of nontrivial inequalities satisfied 
by all the conceivable local hidden-variables theories. 

Obviously, the most stringent inequality is found when M is taken 
equal to the maximum value of the Ihs of the inequality (34): 

(35) 

If we are interested in theory-independent inequalities, then we must choose 
the maximum for all the conceivable dependences of p and q on A. Among 
them, there is independence of A, for which inequality (34) becomes 

L Cijp(aJq(bJ ",,; M (36) 
ij 
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The lhs of the inequality (36) is linear in pea) and q(b), therefore its 
maximum M is found in principle on the boundary, namely, at one of the 
vertices of the hypercube C in the multidimensional space having p( a i ) 

and q( bj ) as Cartesian coordinates, i.e., 

(37) 

where ~i = ± 1, TJj = ± 1, and the maximum is taken over all the possible 
choices of ~i and TJj. 

It is now easy to show that M coincides with Mo. In fact, the lhs of 
the inequality (36) is limited, by any particular A-dependence, to some 
curve or surface entirely within the hypercube C. The value of the lhs of 
inequality (36) itself depends only on the values of p(a i , A) and q(bj , A) 
for given coefficients Cij, that is, to say, on the considered point P of the 
hypercube C with coordinates qi and Pj, whatever the particular values of 
A, ai, and bj which allow one to reach the point P. The largest value of the 
lhs of equation (35) is therefore, in all cases, at one of the vertices of 
hypercube C, where p(ai , A) = ~i = ±1 and q(bj , A) = TJj = ±1 (see Figure 
2). 

" 
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Figure 2. Given a hidden-variable theory, the functions p(a" A) and q(bj , A) describe a surface 
or a line, inside the hypercube C, having n + m dimensions, where n is the number of a, and 
m the number of bj • Since the lhs of inequality (33) is linear in p( a" A) and q( bj , A), the 
maximum for all conceivable hidden-variable theories must lie on one of the vertices of C. 
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3.2. Three Useful Theorems 

In this section we shall prove three theorems which narrow the set of 
inequalities of the type given by relations (33) and (37), which can be 
considered to be of physical interest. 

Theorem 1. Every inequality whose coefficients Cij have factorizable 
signs is trivial. 

In fact, if 

(J-ti = ±1, IIj = ±l) 

one has from equation (37) 

since it is possible to choose gi = J-ti and Tli = IIj for all j and j. 

Theorem 2. If an argument a i or an argument bj appears only once, 
the inequality can be reduced to a more elementary one. 

In fact, there is a one-to-one correspondence between experimental 
parameters a i and sign factors gj, and between bj and Tlj. As a consequence, 
if we suppose that a1 enters only once then the sign factor gl enters only 
once, and 

since one can always choose Til in such a way that cilg1 Til = I Cili. In this 
case the inequality 

L CjP(ai, bj ) ~ Mo 
ij 

can be reduced to the more elementary one 

n m 

L L CijP(ai,bj)~Mo-ICill 
i=2j=1 
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Theorem 3. If the lhs of the inequality (33) can be split into two parts 
such that no argument aj or bj is common to two correlation functions 
belonging to each of these two parts, then the inequality deducible from 
Einstein locality can be reduced to two more elementary inequalities. 

Proof The correspondence between parameters a j and bj , and sign 
factors gj and 1Jj, ensures that if the lhs can be split into two parts, with no 
argument aj or bj in common, then also the rhs can be split into two parts 
having no sign factor tj or 1Jj in common. Hence, the original inequality 
can be written as the sum of two simpler one. 

Before concluding this section it is important to stress that the "singlet" 
case, defined by P( aj, a;) = -1 for all aj, requires special treatment. In fact, 
in this case, exactly the same technique that we used above leads to 

(38) 

The presence of two g factors gives new results with respect to the previous 
case and, in particular permits us to obtain all the results discussed In 

Section 2 that are deduced with the total anticorrelation assumption. 

4. The Physical Content of Einstein-Locality Inequalities 

4.1. First Results of a General Method 

In this section we will discuss the results of the previous general method 
for deducing inequalities, and we will compare these inequalities with that 
of Bell. 

From Section 2.2.1 we know that there are at least three inequalities 
which provide on P( a, b) restrictions not implied by Bell's inequality. 

Now, let us consider whether other inequalities exist that are simpler 
than the inequalities (26), (27), and (28), and not implied by Bell's inequality. 
In order to answer this question, let us use the previous method for deducing 
Einstein-locality inequalities. 

It is easy to prove, using Theorem 2, that linear combinations of three 
correlation functions give only trivial inequalities. 

Let us consider, then, the case offour correlation functions. By equation 
(37) the maximum for Einstein locality is obtained for 
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= max Lt ~j JI ICijIO"ij1]j} 

= maxL~1 IJI ICijIO"ij1]ji} 

= max {IICIII + 'Cd~1 + I'Cd + ICzIIO"~i} 
where O"ij is the sign of Cjj ' P = 0"11 . O"IZ . 1]1 . 1]z, and 0" = 0"11 • 0"12 • 0"21 . O"ZZ· 

If 0" = +1 (or, equivalently, the signs are factorizable) the result is 
trivial: 

ij 

If, instead, 0" = -1 then 

Mo = L ICijl- 2 minlC1ml 
ij 1m 

(39) 

From equation (39) it IS possible to deduce that, In the case of four 
correlation functions, 

Mo ~ ~L ICijl 
ij 

where the equality holds only when Cij is constant for all i and j, or, 
equivalently, for Bell's inequality; therefore we conclude that in the case 
of four correlations no inequality stronger than Bell's inequality exists. This 
result agrees completely with the one obtained in Section 2.1.1 using the 
deterministic approach. 

In the case of five correlation functions, at least one of the elements 
a j or bj must appear only once and therefore, because of Theorem 2, all 
the inequalities are trivial. 

The case n = 6 is more complicated and only the result will be presented 
here. One obtains 

Z 3 

L L CijP(a j , bJ :5 M (40) 
i=l j= I 

where 

M = ~!d IICIII + ICniPI + IC13lp21 + IICzII + IC22IPIO"I + IC23 lp20"zl} 

(41) 

where PI and PZ are sign factors to be chosen in such a way as to maximize 
M and 
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A particular application of inequality (40) is the following: 

peal> b l ) + P(a2, b2) - peal> b3 ) + P(a2, b l ) + P(a2' b2) - P(a2' b3 ) ~ 2 
(42) 

af can easily be checked. 

4.2. The Superinequalities 

Before proceeding to study inequalities with larger numbers of correla
tion functions, it would be useful to introduce the following definition: 
Given an Einstein-locality inequality, an associated BeIl inequality is a BeIl 
inequality which contains correlation functions that also appear in the 
original inequality. 

The foIlowing theorem gives a powerful method for analyzing Einstein
locality inequalities in order to single out those that provide restrictions on 
correlation functions not implied by Bell's inequality. 

Theorem 4. Given a linear combination L = Lij CijP(ai, bj ), if 

M=LICijl 
ij 

and if 

is the maximum value of L allowed by Einstein locality, then the inequality 
L ~ Mo implies the existence of physical restrictions not contained in any 
Bell inequality provided that 

(43) 

Proof Let us consider the n x m space in which the P( a;, bj ) are located 
on the axes, and the vector P = {P(ai' bj )}, which maximizes the linear 
combination L. The components of this vector all have, of course, modulus 
one and their signs are the same as those of the corresponding Cij. If we 
consider the new vector 

its components all satisfy the associated BeIl inequalities (i.e., each 
IP'(a i , b)1 = 0.5), but it results in 

ij 
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We will call the Einstein-locality inequalities satisfying the condition (43) 
"superinequalities." 

In what follows we will utilize the method given by Theorem 4 for 
studying the Einstein-locality inequalities, first in the case of three different 
directions for a and for b (3 x 3), and then in the case of four directions 
each (4 x 4). 

Indeed equations (37) and (43) allows us to use a computational method 
to solve the problem; details of this method are given in the Appendix for 
the case 4 x 4. 

4.2.1. The Case 3 x 3 

The case of three values for a and three (or more) for h was analyzed 
by Garg, (20) who proved that the necessary and sufficient condition for 
the validity of Einstein locality is that every associated Bell inequality be 
satisfied. 

Using the previous computational method, we can analyze the 3 x 3 
linear combinations with the Cij integer's in the range {-2, +2}; the result 
is that for all these 3 x 3 linear combinations, the maximum Mo for Einstein 
locality is equal to or larger than one half of the maximum possible. This 
confirms the result of Garg. 

4.2.2. The Case 4 x 4 

An interesting result is obtained in the case of four different directions 
each, for a j and bj • 

In this case the number of correlation functions is 16 and the number 
of different 4 x 4 matrices with integer coefficients Cij in the range {-2, +2} 
is 516• We analyzed, using the previous method, only 13,500,000 matrices 
(equivalent to 0.009% of the total) thereby obtaining 1050 superinequalities. 
Since the region analyzed has no special features, it is probably possible 
to generalize the result and conclude that an analysis of the complete set 
of 4 x 4 inequalities would give nearly 107 superinequalities of the stated 
type. 

It is easy to prove that, given a 4 x 4 matrix, it is possible, by permuting 
or changing the signs of rows and/or columns, to obtain another 255 
equivalent matrices, i.e., matrices with the same Einstein-locality maximum 
Mo. Therefore, we can conclude that the number of 4 x 4 independent 
linear combinations, leading to superinequalities, with coefficients in the 
range {-2, +2}, is nearly 45,000. 

The following are some examples of these inequalities: 

4,4 

1. L CtP(aj, bj ) ",;; 11 (44) 
iJ 
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where 

c,~( ~ 
2 2 

-~) 2 1 
I) -2 2 0 

1 -2 

4,4 

2. L CtP(ai, bj ) .s; 10 (45) 
iJ 

where 

c,~(~ 
2 2 

-~) 1 -1 
I) 2 1 -1 

2 -2 0 

4.4 

3. L CtP(ai, bj ) .s; 6 (46) 
iJ 

where 

( 1 
1 1 -1) -1 1 -1 

C 3. = 
I) 0 2 -1 1 

0 0 1 1 

This last inequality was discovered by Kemperman in 1984 in the course 
of studying other problems. 

In order to clarify the content of Theorem 4, we shall analyze in detail 
the inequality (44). The maximum possible value of the lhs is obviously 

4,4 -, I II M = L Cij = 23 
iJ 

and is obtained for a suitable choice of P(ai, bj ): 

1 

1 

1 

(47) 
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(We use a matrix representation for the vector {P( aj, bj )} in the 4 x 4 space.) 
Starting from the set (47) it is possible to define a new set of correlation 

functions 

( 05 
0.5 0.5 

{P'(a j , bj )} = -~:~ 0.5 0.5 

0.5 0 

0.5 0.5 -0.5 

0.5) -0.5 

o 
o 

(48) 

Since all the P'( aj, bj ) are within ±0.5, all Bell inequalities containing the 
P'(a j , bJ are satisfied. Therefore, using only the Bell inequality, we could 
conclude that the set {P'(a j , bj )} describes a physical system compatible 
with Einstein locality. This is, however, not true since the set (48) introduced 
in inequality (44) gives 

11.5 < 11 

and therefore the inequality is violated and the set of correlation functions 
(48) cannot be obtained from a local theory. 

Moreover, a hypersphere of center {P'(a j , bj )} and radius R = !(0.5) 
exists such that all the sets of correlation functions inside this circle that 
satisfy Bell's inequality violate inequality (44). 

It is possible to verify that the region of 4 x 4 space occupied by the 
P(aj, bj ) with these features is not unique; indeed the Kemperman inequality 
(46), for example, is violated for the following two sets of correlation 
functions: 

(' 
1 -I) -1 -1 

{P'(a j , bJ} = 0.5 ~ 
1 -1 1 
0 1 

and 

(P"(a;, bj )} = (~: 
0.6 0.6 -06) 0.6 0.6 -0.6 

0.2 0.2 -0.2 

0.6 0.2 -0.2 
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4.2.3. Conclusions 

We conclude with three remarks: 

1. We proved in the previous section that, in the case of 4 x 4 correlation 
functions, a large number of superinequalities exist. It is possible 
that only a finite number of these inequalities are independent and 
form a set which completely expresses Einstein locality. Further 
studies would answer this question. 

2. The correlation functions analyzed in all the experimental tests are 
functions of the absolute value of the angle between two directions 
a j and bj , therefore they are symmetric with respect to the exchange 
of aj and bj • The matrix coefficients Cij of inequalities stronger than 
Bell's inequality are, in general, nonsymmetric. Therefore, it is 
possible to suppose that there are symmetric matrices associated 
with the superinequalities. 

Let us consider now a superinequality defined by the 4 x 4 
matrix Cij; if the limit of Einstein locality is M o, it is easy to see 
that the transposed matrix Cjj = Cjj defines a new superinequality 
with the same limit Mo. It is possible to define the symmetrical 
matrix associated with Cij as 

For Cij' the limit of Einstein locality is 

where the equality holds if Cij and Cij are maximized by the same 
choice of signs {1jJ. 
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3. Theorem 4 only expresses a sufficient condition for the existence of 
an inequality stronger than Bell's inequality. For example, the 
inequality (27) of Section 2.2.1 has its rhs equal to one half of the 
possible maximum, but provides restrictions on P(a;, bj ) not implied 
by Bell's inequality. 

5. New Inequalities for Joint Probabilities 

5.1. A General Method for Joint Probabilities 

New and more stringent inequalities have been deduced in 1987 by 
Lepore (22) for linear combinations of joint probabilities. The physical 
content of these inequalities is not deducible from any inequality discussed 
in the previous sections. 

Let us consider M instrumental parameters ai, a2 , ••• , am for the first 
measurement apparatus and n instrumental parameters bl , b2 , ••• ,bn for 
the second measurement apparatus. Let 

(49) 

the joint probability of measuring A( aJ and obtaining h and measuring 
B(bj ) and obtaining k(h, k = + O. We can consider now the linear combina
tion of joint probabilities 

C = L C~kwhk(a;, bj ) 
hk 
ij 

where C~k are arbitrary 4rnn real coefficients. 
In order to deduce the inequalities 

(50) 

(51) 

true for all conceivable local realistic theories, it is sufficient, using the 
lemma of Section 3.1, to prove that the inequality 

rno":;; L C~k Ph(a j , A)qk(bj , A) ,,:;; Mo 
hk 
ij 

(52) 

is true for arbitrary values of A and for arbitrary dependence of Ph and qk 
from their arguments. 

Using the relations 
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we can write 

ij 

where F is a linear function of 

Obviously, the most stringent inequality is found when Mo is taken 
equal to the maximum value (and mo equal to the minimum value) of 
function F Since the linear function F is defined in the hypercube C in 
the multidimensional space having P+(a;, A) and q+(bj , A) as Cartesian 
coordinates, the maximum and the minimum is found in principle on the 
boundary, namely in one of the vertices of hypercube C. 

Therefore, setting 

mo= mIn F(gl, ... ,gm,'TI1,···,'TIn) 
<1.···.<m~O,l 
7]1.···.11n=O.l 

Mo = max F(gt. ... , gm, 'TIt. ... , 'TIn) 
<I '''·,<m ~O,l 
7]1.··.7]n=O.1 

we obtain the set of inequalities 

mo ~ I C~kWhk(a;, bj ) ~ Mo 
hk 
ij 

(54) 

(55) 

(56) 

For every choice of coefficient C~\ relation (56) provides the most stringent 
inequality that can be deduced from local realism, 

5.2. A Particular Inequality 

In order to prove the set of inequalities (52) is not equivalent to the set 
of inequalities of correlation function (37) and implies more stringent 
restriction for the Einstein locality, we will use the following model studied 
by Garg and Mermin in 1982.(23) 

In this model the joint probabilities are 

{ ~ : 1,2,3 
) - 1,2,3 

(57) 
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with 

(58) 

and 

(59) 
Ai} == -~ for i == 1,2. 3;j == 1,2,3; (i,j).,t. (1, 1), (2, 2) 

From equations (57) and (59) one has 

and it is easy to prove that this model satisfies all inequalities deduced from 
Einstein locality for correlation functions. 

Let us consider now the case of three directions Ql, Q2, Q3 for the first 
apparatus and three directions b1 , b2 , b3 for the second; we can write the 
following linear combination 

By calculating the minimum value of the associated function F one gets 
min F == 0; therefore the following inequality holds 

If now we substitute equations (57) and (59) into equation (60), we obtain 

-c?: 0 

and this contradicts equation (58). Hence the Garg-Mermin model satisfies 
all inequalities for correlation functions, but violates at least this particular 
inequality for joint probabilities: then the model cannot be reproduced by 
a local probabilistic theory. 

We can therefore conclude that the set of inequalities (52) is the widest 
set of inequalities deduced from Einstein locality for linear combination of 
joint probabilities with real coefficients. 
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Appendix: The Computational Method for Deducing the 
Superinequalities in the Case 4 x 4 

The maximum allowed by Einstein locality is given by 

where T}j = + 1. The number of possible choices of the four sign factors is 
16, but the presence of modulus signs reduces the number of independent 
choices to eight. Therefore, we can define the following matrix: 

-1 

1 

1 

1 

1 1 

-1 1 

-1 

1 1 

1 

1 

1 

-1 

-1 

-1 

1 

1 

-1 

1 
-1 

1 

-i) 
-1 

in which every column represents an independent choice of sign factors. 
The problem of the calculating maximum is now reduced to computing 

the elements of the 4 x 8 matrix ILj CijT}JI, summing the elements of each 
column, and finding the maximum sum (=Mo). 

If Mo is less than or equal to ! Lij I Cijl, then the inequality 

is a superinequality. 
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Einstein-Podolsky-Rosen 
Experiments Using the Decays of 

Y}c or J/f/! into AA ~ 7T - p7T + P 

NILS A. TORNQVIST 

1. Introduction 

An important key to the resolution of the Einstein-Podolsky-Rosen (EPR) 
paradox(l) lies in the finding of new ways to test the nonlocal correlations 
predicted by quantum mechanics. In this paper we shall discuss a novel 
type of experiment, involving 'TIc and J / '" decay, which has become experi
mentally feasible. Nowadays, a large number of J / '" decays accumulate in 
the course of e+ e- storage ring experiments. For the AA channel in par
ticular, over 1000 decay events are seen in some current experiments, 
although the branching ratio(2) is only (1.58 ± 0.21) x 10-3• Similar, although 
experimentally less feasible, reactions are J / '" ~ 2.i ~ 1TN1TN and e+ e- ~ 
f..L + f..L - ~ e+ e- + neutrinos. 

Such reactions, where the spontaneous decay works as a spin analyzer, 
do not touch on the EPR paradox as generally as those where the direction 
of the spin analyzer can be chosen at will, by the external experimental 
setup. However, these reactions do test the quantum-mechanical correlations 
at macroscopic distances and they involve weak interactions. Therefore 
high-statistics experiments that observe these correlations would provide a 
valuable contribution to the verification of the nonlocal correlations predic
ted by quantum mechanics. 

NILS A. TORNQVIST • Department of High Energy Physics, University of Helsinki, 
SF-00170 Helsinki 17, Finland. 
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In this chapter we first discuss, in Section 2, the nonrelativistic 'TIc -+ AX 
and J / '" -+ AX -+ 1T -P1T + P decays. Then in Section 3 we look at the relativis
tic effects in J / '" decay and in Section 4 we examine the Bell inequalities 
and present an instructive graph for displaying the domains separated by 
the Bell bounds on the one hand, and the bounds that follow from quantum 
mechanics on the other. The first experiment to test the quantum-mechanical 
correlations for the decays discussed in this chapter is currently being carried 
out,(3.4) and we review it in Section 5. Another experiment is also in 
progress.(S) (For the author's previous notes on the subject, see else
where. (6-8» 

2. Nonrelativistic Resonance Decay to AA 

In this section we first recapitulate the well-known results of A -+ TrN 
decay in the A c.m.s. Then we discuss the nonrelativistic situation for a 
spin-O or spin-l resonance which decays into AX, gradually generalizing 
so as to make the physical interpretation as transparent as possible. 

2.1. The A ~ TrN Decay 

Owing to parity violation, the A decay distribution depends on the A 
polarization, i.e., the decay works as a polarimeter. Denoting the S- and 
P-wave amplitudes by Sand P, the transition matrix for the hyperon decay 
can be written (cf. Perkins(9» 

Ma = S+ Pa 08 (2.1) 

where 8 denotes the unit vector along the pion momentum in the A c.m.s. 
and a the Pauli matrices. Forming l(xplMalxAW and summing over proton 
spins one obtains the decay rate for A -+ 1TN: 

(2.2a) 

where PA = IXA)(XAI =!(I + PA 0 a) is the A spin-density matrix, PA is the 
A polarization, and a is the A decay asymmetry parameter given by 

which, for A -+ P1T-, has the experimental value(1O) -0.642 ± 0.013 (for 
~+ -+ 1T+n it is near unity). For X -+ 1TN one gets, with our conventions 
<lxt) denotes a spinor which transforms as the conjugate representation), 
p;;,. = Ixx)(xxl =!(I - p,\ 0 a) and 

(2.2b) 
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Thus aX = -aA as required by CP invariance, a relation which has 
been experimentally tested. (II) 

2.2. Resonance Decay into AA ~ 71"-p71" + P 
The decay matrix elements for 1/c or J / 1/1 ~ AX ~ 1T - p1T + ji can be 

written 

L (xpl MalxA)Sij(XX) M);lx;> 
ij 

We denote the two-particle spin correlation L IXA)Sij(xXjl by 5. It is 
equal to the unit matrix for a singlet spin-O particle (1/c) and N . (J' for a 
spin-l particle (1/1/1) with polarization N. Forming the absolute square and 
summing over proton and antiproton spins gives the rate as a trace over 
Pauli spin matrices: 

where a is the unit vector along the 1T - momentum in the A c.m.s. and b 
is the corresponding quantity for X. (The boosts to the rest systems in 
question are performed along the AX-axis and the two rest frames are 
superimposed.) 

2.3. The 17c ~ AA Decay 

For a spin-singlet initial-state (1/c) decay, one has simply 5 = 1 and 
equation (2.3) takes the form 

(2.4) 

This decay is a realization of the classic Bohm(12·IJ) variant of the EPR 
problem. Apart from the constant a 2 and the sign, the rate of equation (2.4) 
is equivalent to that obtained in measuring the spin correlation in the Bohm 
experiment, the directions of the pion momenta a and b replacing the 
spin-analyzing directions of the polarimeters. 

It may be noted that the A decays as if it had a polarization P A = a b 
"tagged" in the direction of the 1T+ coming from the A [cf. equation (2.2a)]. 
Correspondingly, the A decays as if it had a tagged polarization Px = aa 
(in the direction of the 1T- coming from the A). This same conclusion also 
holds if complete spin measurements are done on the final proton or 
antiproton (see Tornqvist(6»). 
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In other words, As coming from a singlet AA state are indistinguishable 
from a A beam prepared to be "polarized" in a tagged direction a. This 
result is rather curious since, for individual events Tic ~ AA ~ 1T - p1T + p, the 
A can be thought of as polarized in the direction of the 1T +, while the A is 
polarized in the direction of 1T -. Knowledge of how one of the A decayed, 
or will decay (time ordering is not relevant here), tells an observer that the 
second A decayed, or will decay, as if it had a definite polarization. This 
is a practical demonstration of the conceptual peculiarities involved in the 
EPR problem. 

Another remark worth noting is that if, through some (hidden or not) 
measuring process, the spin of the A are measured before their decay (along 
a random direction), the correlation between the pion momenta is reduced 
by a factor of three,(6) since now the spin is "measured" a second time 
during the decay and, clearly, the first measurement will alter the result of 
the second. 

The Tic has been seen mainly in t/! or t/!' radiative decays (t/! ~ TleY)· 

Since the production of the Tic in this way is not easy, it is difficult to obtain 
sufficient statistics for a significant analysis. Producing the Tic through 
nearly-real yy reactions (e+e- ~ e+yye- ~ e+Tlee-) may make a detailed 
study feasible in the near future. We estimate that it would require of the 
order of 50 or more (all good ones) to allow a first look at the physics. To 
study the correlation experimentally, it is useful to plot the number of events 
against cos 0 ab = a . b and to determine the slope (cf. Figure 1). In Figure 
1 we also show bounds that can be obtained from Bell's inequalities 
supplemented by continuity arguments (details can be found elsewhere(6»). 
These are linear in the variable 0 ab : 

(2.5) 

where E = (r - 0/ a 2• With poor statistics, only the forward-backward 
asymmetry in this variable can be measured,(I4) although even this gives a 
first insight into the physics. As can be seen, the Bell bound requires a 
smaller slope or smaller backward-forward asymmetry. This asymmetry 
I(R - L)/(R + L)I, where Rand L stand for the integrals J~ r(0d cos 0 ab 

and el r(0)d cos 0 ab respectively, is predicted by equation (2.11) to be 
a 2/2 = 0.21 while equation (2.5) gives (1- 2/1T)a 2 = 0.15. 

With sufficient statistics it would be interesting to also analyze the 
space-like separated AA decays, since these are the most relevant to 
the EPR problem. For the Tic. a simple kinematic calculation shows that 
the events with space-like separated A or A decays satisfy xd Xs < 
(1 + f3)/(1- f3) = 4.94 (for the f/t/! it is 5.53), where XL and Xs are the 
longer and shorter decay lengths, respectively, and f3 is the velocity of the 
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Figure 1. The expected distribution of the angle 0 ab between the (boost-corrected) directions 
of the two pions produced in the reaction Tic .... AA .... 7T - p7T + p predicted by quantum mechanics 
(solid upward-sloping straight line). If a random (hidden) polarization measurement is done 
on the A or A before the decay, the correlation (i.e., the slope) is reduced by a factor}. Bell's 
inequalities supplemented by continuity arguments give the shaded regions.(6) 

1\. Without experimental cuts in the fiducial volume the fraction of such 
events would be f3 = 0.66. 

This decay is, from the experimental point of view, much more interest
ing since nearly 107 ] / '" are seen in some current e + e - ~ ] / '" experiments. 
This reaction is discussed eisewhere.(7) (An earlier discussion(6) was incom
plete and contains some obvious misprints.) As we shall see, the decay of 
a vector state is, in some circumstances, equally interesting, from the point 
of view of the EPR paradox, as is the scalar state discussed above. 

For the nonrelativistic decay of a spin-l particle, polarized in the 
direction N, S = N . 0'. Then the spin dependence of the rate in equation 
(2.3) takes the form 

(2.6a) 

which, when normalized such that 

(2.7) 
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and evaluated for real N, reduces to 

(2.6b) 

If we average over two orthogonal polarizations (which we shall choose 
to be in the x and y directions, although they are quite arbitrary at this 
stage) we simply get 

(2.8) 

We specify that the x and y directions be transverse, i.e., a boost from 
the A rest system is done in the z direction. The z-axis will then be the 
AX-axis in the reaction e+ e- ~ AA. (Laterwe shall choose x to be orthogonal 
to the e+e- ~ AX scattering plane, and y to be in the scattering plane.) 

The case of N = ez (longitudinal or helicity A = 0) gives 

( A A) 2( A A A bA 
) rz a, b = 1 - a a' b - 2az z (2.9) 

while the average over all three polarizations gives 

(2.10) 

From the point of view of EPR correlations, the simply-factorized form of 
equation (2.8) is uninteresting, as we show below. On the other hand, 
equations (2.6b), (2.9), and (2.10) are as interesting as the case of the decay 
of a spin-O state: 

(2.11 ) 

The sign of the the correlation between the pions in equations (2.6)
(2.11) is opposite to that between the A and X spins because, due to CP 
invariance, the decay parameters satisfy a A = - a A, as noted above in 
connection with equation (2.2b). 

The factor 1 in equation (2.10) should not be confused with the same 
factor 1 obtained when considering the possibility of a (hidden) spin 
measurement of the A or X before the decay (cf. the discussion above for 
TJc decay and eisewhere(6». For the spin-1 case, a similar averaging over a 
random spin-measurement direction X implies that we should average a 
distribution of the form (1 + aa· X)(1 + ab· Xr) (where Xr is defined as in 
equation (2.12) below), which gives equation (2.6b), but with an extra factor 
of t in the second term, similar to the spin-O case. For the average over all 



EPR Experiments Using Decays 121 

three initial polarizations, the factod in equation (2.10) is similarly replaced 
by b when a random spin measurement is performed before the decay. We 
note that in these situations the A spins are measured twice, first in the 
(hidden) spin measurement along X and then in the A decay. Clearly, the 
first measurement must disturb the result of the second, which explains why 
one gets two factors of 1 (i.e., b) when we average over both the initial 
polarization and the additional spin measurement along a random direction. 

The analogy between equations (2.6b) and (2.11) is obvious if one 
defines a new vector br obtained from b through a 1800 rotation about N: 

A A 2b· N 
b = -b+--N 

r N 2 
(2.12) 

There is an identical correlation between a and b" as in the spin-O case 
between a and b 

A A 2 A 

'N(a, b) = 1 + a a . b r (2.6c) 

For br = ±a we have the maximal correlation or anticorrelation (i.e., 
if A is spin-up along a then X is always spin-up along -br ). 

The helicity states A = ±1 correspond to N = (ex ± iey )/.../2 in equation 
(2.6a) and give 

(2.13) 

i.e., the rate simply factorizes. Therefore, in these cases, no interesting 
EPR-like correlations appear-for A = +1 the A and X spin will always 
point in the z direction. This could, of course, have already been seen from 
simple spin-conservation arguments. Averaging over A = ±1 gives equation 
(2.8) which, therefore, is uninteresting from the point of view of EPR-like 
correlations-the Bell inequalities are always satisfied. (The z direction may 
be thought of as a hidden variable.) 

The interesting cases thus occur when we have one linear (transverse 
or longitudinal) polarization state. If spin-averaged quantities are con
sidered then one may lose interesting EPR-like correlations, especially if, 
as in equation (2.8), one averages over only two polarizations both of equal 
weight. 

3. Relativistic Effects in Jjl/! Decay 

3.1. General 

We assume that the Dirac form factor, involving the uYlLu coupling, 
dominates over the Pauli form factor. This is supported both by the correctly
predicted angular dependence of the e+ e- ~ AX cross section and by 
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QCO,o5) The derivation of the relativistic correlation is simple if we remem
ber that the amplitude of the longitudinal polarization component is sup
pressed by the factor m/ E (where m and E are the fermion mass and 
energy respectively). Therefore the initial polarization of the J / IjJ is entirely 
transverse to the e+ e- -axis [the longitudinal J / IjJ being suppressed by a 
factor of (2me/ moJ-? = 10-7]. 

It is useful to choose for the two initial polarization components of 
the J / 1jJ: (1) the polarization component orthogonal to the scattering plane, 
N x ; and (2) the polarization component in the scattering plane, Ny (but 
orthogonal to the e+ e- -axis). By calculating the contributions from these 
two components separately and summing, the derivation is considerably 
simplified. 

For case (1) the result is the same as in the nonrelativistic case, since 
Nx is orthogonal also to the AA-axis: 

( A A) 2( A A A bA 
) Rx a, b oc 1 - a a' b - 2ax x (3.1) 

Case (2) is slightly more complicated since it has components both 
orthogonal and parallel to the AA-axis k. The parallel component sin 8ek, 

where 8 is the c.m.s. scattering angle, is reduced by the factor mAl EA' 
Therefore one gets a result equivalent to that from a nonrelativistic case 
with an initial polarization (cf. Figure 2) 

+ e 

(3.2) 

Figure 2. The definition of the vectors ey, k, N, and n in the e+ e- ... Ali. scattering plane. 
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whose norm is 

(3.3) 

We can now use our previous formula, equation (2.6a), and easily find 

2 [ A bA 
( rnA). ( A bA 

A bA 
) + 2a a y y - 1 - EA sm (J ay k + ak y 

(3.4) 

Averaging with the component orthogonal to the scattering plane [equation 
(3.1)] gives 

(3.5) 

A more useful and transparent form can be found if we use the fact, 
observed in equation (2.8), that the sum over two orthogonal polarizations 
of equal weight gives a simply-factorized form. We separate the x component 
of equation (3.1) into two parts, one proportional to N~2 and the other 
proportional to 1 - N~2. The first part can be combined with quantity Ry 
of equations (3.4) to give a factorized part, as in equation (2.8), while the 
second remains as a "net" polarization in the x direction. We let n be the 
unit vector orthogonal to N~ and ex (i.e., it lies in the scattering plane, cf. 
Figure 2). Then 

(3.6) 
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where e.J.. is perpendicular to ek. Then equation (3.5) can be written 

(
A A) ( e. 2) 2 A A k 2 • 2 2 A A A A R a, b oc 2 1 - -2 sm 8 (1 - a anbn) + -2 sm 8[1 - a (a· b - 2axbx)] 

E~ EA 
(3.7) 

In this final result, the first term is an average, as in equation (2.8), 
and is therefore uninteresting from the standpoint of EPR-like correlations. 
On the other hand, the second term results from the "net" linear polarization 
orthogonal to the scattering plane and thus is interesting from the standpoint 
of EPR-like correlations. 

3.2. Special Cases in JI'" Decay 

Using equation (3.7) one can easily see the result in certain special cases: 

1. For forward or backward scattering (8 = 0° or 180°), or in the 
nonrelativistic limit (k/ EA ~ 0), it reduces to the "uninteresting" 
form 

(
A A) 2 AbA R a, b oc 1 - a az z (3.8) 

2. For 90° scattering the second "interesting" term is maximal: 

3. In the ultrarelativistic limit we have 

R(a, b) oc 2(1 - a2Qkbk) cos2 8 + [1 - a 2(a • b - 2Qxbx)] sin2 8 

(3.10) 

Thus, without polarized beams, the interesting term is larger the closer 
the scattering angle is to 90° and the more relativistic the decay is. At the 
J /1/1, the factor k2 / E~\ is 0.48 and one is "half way" to the relativistic limit. 
At the Y, on the other hand, the same quantity is 0.94, i.e., one is essentially 
in the ultrarelativistic limit. 

If sufficient events are observed to permit a more detailed study, it 
would be of interest to study both space-like and time-like separated Ai\. 
decays, as discussed in Section 2.3 in the case of TJc decay. 
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4. The Domains of the Bell Inequalities and 
Quantum Mechanics 
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In this section we shall discuss Bell's inequalities(16.17) as well as bounds 
which follow from quantum mechanics in a way that makes their physical 
interpretation and comparison easy.(8) These comments are not restricted 
to the particular reactions discussed in previous sections. 

The violation of Bell's inequalities by quantum mechanics has been 
historically of great importance in removing any remaining doubt that a 
local theory (in the EPR sense) is incompatible with quantum mechanics. 
These inequalities are usually written in terms of correlations, such that for 
the case of a spin-O state decaying into two spin-! particles the spin
correlation function E(i, b) obeys the inequality 

IE(i, b) - E(i, c)1 ~ 1 + E(b, c) (4.1a) 

and similar inequalities with i, b, and c permuted. Here i, b, and c denote 
unit vectors along which the spin components are measured, and the two 
arguments refer to the two spin-! particles. For the case of 'TIc ~ AA discussed 
in Section 2.2, these directions can be identified with the pion directions in 
the respective c.m.s. of the A or A, and E = (1 - r)j a 2• 

The correlations E(i, b) are, in practice, obtained through measure
ments of differences and ratios of differential cross sections (either in the 
form of multiple scattering in polarimeters, or in the form of multi particle 
distributions as in the 'TIc or J j '" ~ AA ~ 1T'-P1T'+p decays discussed above). 
Denoting the cross section for observation of (±!, ±!) spin components in 
the directions (i, b) by 0' ±±(a, b), the relation is simply 

( " b") = O'++(i, b) = 1[1 + E(" b")] r a, (" x) 2 a, 
0' a,b 

(4.2) 

where O'(i, b) = O'++(i, b) + O'+_(a, b) and where we have assumed 0'++ = 

0' __ and 0'+_ = 0'_+ using general symmetry arguments. 
Bell's inequalities then take the form of triangle inequalities between 

the ratios of cross sections r defined in equation (4.2) (see also Wigner(18», 

Ir(i, b) - r(i, c)1 ~ r(b, c) (4.1b) 

and similar inequalities with a, b, and c permuted. Or, equivalently, in a 
symmetric form: 

'\[r2(a, b), r2(b, c), r2(c, a)] ~ 0 

using the triangle function A[x, y, z] = (x + y - Z)2 - 4xy. 

( 4.1c) 
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In quantum mechanics the correlation E(i, b) is simply -a' b. More 
specifically, one gets for r 

r(a, b) = l(x~lxbW = ~Tr[(1- (J" a)(1 + (J" b)] = !(1- a· b) = ~(a - b)2 
( 4.3) 

where a2 = 1 and IXa) is the spinor with spin in the direction a. Thus the 
norm of the amplitude (X ~IXb) is half the length of the vector a - b: 

(4.4) 

The phase is, apart from phase conventions, a rather complicated 
expression in terms of a and b. However, this phase is quite uninteresting 
from our point of view, since all measurable quantities can be formed from 
quantities like the one in equation (4.4). 

For the three absolute values of the amplitudes (X ~IXb)' (xlIXc), and 
(X;IXa) we can make a useful geometrical construction (see Figures 3 and 4): 

The three unit vectors a, b, and c form a tetrahedron (cf. Figure 3) and 
the end points of these vectors form a triangle whose sides are proportional 
to the norms of the amplitudes [equation (4.4)]. Thus quantum mechanics 
implies triangle inequalities for the norms of these amplitudes or, more 
physically, for the square roots of the cross sections: 

( 4.5a) 

a 

Figure 3. The tetrahedron formed by the three unit vectors a, b, and c. The end points of the 
three vectors form a triangle whose sides are proportional to the absolute values of the 
amplitudes [equation (4.4)]. The form of the triangle determines a point in Figure 4 which is 
inside the Bell bounds if the triangle is obtuse, but outside the Bell bounds if it is acute. 
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Figure 4. The triangle diagram with the normalized ratios Yi as the distances to the external 
triangle. The inscribed circle is the bound from quantum mechanics [equation (4.5)], while 
the inscribed triangle is the Bell bound [equation (4.1)]' The points A, B, and C correspond 
to the situation where two of the three directions i, b, and c are equal. 

and similar inequalities with a, b, and C permuted, all of which can be 
written, using the triangle function, as a single inequality: 

A[r(a, b), r(b, C), r(c, a)] ",;; 0 (4.5b) 

This inequality must always be satisfied for any choice of directions a, b, 
and C, although for given directions quantum mechanics is, of course, much 
more restrictive and provides a definite prediction for the amplitudes. 

It is instructive to picture the domains separated by these inequalities 
in a barycentric coordinate system (Figure 4) in which one plots the 
normalized ratios 

r(a, b) 
YI =---, 

'sum 

r(b, c) 
Y2=---, 

'sum 

r(c, a) 
Y3=--

'sum 
( 4.6) 

where rsum = r(a, b) + r(b, C) + r(c, a). The Yi are the distances to the sides 
of the external triangle. 

The inequality (4.5) defines the domain of quantum mechanics to be 
the inside of the inscribed circle, while Bell's inequalities (4.1) define a 
region inside the inscribed equilateral triangle shown in Figure 4. The three 
regions between the inscribed circle and the incribed triangle thus violate 
Bell's inequalities but are consistent with quantum mechanics. 
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In practice, when testing experimentally these inequalities, a measure 
of the degree of violation would be useful. The diagram of Figure 4 suggests 
the distance B to the Bell bound: 

B = minG- yJ (4.7) 

as such a measure. Negative values of B imply that the Bell bound is violated. 
Given the directions a, b, and c, quantum mechanics defines a point 

inside the circle. The position of the point depends on the form (but not 
size) of the triangle formed by the end points of the three vectors a, b, and 
c. If this triangle is equilateral, the point lies at the center of Figure 4; if 
the triangle is right-angled, the point lies on the boundary of the inscribed 
triangle (the Bell bound); and if the triangle "collapses" to a line (a "flat 
triangle"), the point lies on the circle. Obviously, inside the Bell bound 
the triangle is acute (i.e., each of the angles of the triangle is less than 90°), 
while outside this bound the triangle is obtuse (i.e., one angle is larger than 
90°). 

The corners A, B, and C of the inscribed triangle correspond to 
situations where two of the directions are equal, e.g., point A corresponds 
to a = b. Here the situation is that of maximal anticorrelation: £(a, b) = -1, 
and there is only one remaining independent amplitude (l(xlIXc)1 = 
I(x ;Ixa)l). Then, with or without Bell's inequalities, no conflict arises
hidden-variable theories are here assumed to agree with quantum mechanics. 

In quantum mechanics we superimpose probability amplitudes rather 
than probabilities. In choosing the different directions a, b, and c we form 
new linear combinations of amplitudes which can then correspond to any 
point inside the circle. In particular, if band c are kept fixed and a is varied, 
the amplitudes are linear combinations of the components of IXb) and IXc). 
Equalities a = b and a = c correspond to the corners A and C respectively, 
while other directions give points inside the circle. 

If, instead, one sums or averages over probabilities (or cross sections) 
as in EPR-Iocal (hidden-variable) theories, one gets a point in Figure 4 on 
the line connecting two corners. Thus with the corners of the inscribed 
triangle being allowed by ansatz, such theories can only allow points inside 
the Bell bound. 

It should be noted that since the Bell inequalities involve three direc
tions a, b, and C, a single event such as 'TIc ~ AA ~ 1T - p1T + P is not sufficient 
to give a point in the diagram of Figure 4. To obtain a point one must 
compare three differential cross sections in different regions of phase space. 
Thus one point in the diagram necessarily requires a large number of events. 
Therefore the diagram of Figure 4 is perhaps less useful in presenting data, 
than it is in demonstrating the Bell bounds in a simple and instructive way. 
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In the case of spin-1 decay it is easy to derive an inequality of the Bell 
type using equations (2.6b) or (2.6c): 

( 4.8) 

where the correlation E is related to r through E = (1 - r)1 a 2 , and where 
the rotated vectors a" b" and cr are defined in equation (2.12). 

5. The DM2 Experiment (Tixier et al.) 

Preliminary results from an experiment by the DM2 collaboration 
designed to test the predictions of equation (3.5) have recently been pub
lishedY·4) Another experiment by the SLAC Mark III group is in progress.(5) 
We shall briefly review the results published by the DM2 group to date. 

The DM2 collaboration observed 7.7 x 106 lit/! events of which 1284 
were identified as I I t/! ~ AA ~ 1T - p1T + p. The pion momenta were measured 
by the DM2 detector (Figure 5), whose acceptance is maximal for particles 
nearly 90° off the e+ e- -axis. This is fortunate because, for large angles 8, 
the interesting second term of equation (3.7) is also the largest. 

They studied the distribution in the angle 0 ab , which we defined at the 
end of Section 2.3 and plotted in Figure 2 for the case of TIc decay. This is 
the angle between the two pions "corrected" for the boosts from their 
respective c.m.s. to the overall I It/! c.m.s. (i.e., the 1T - direction in the A 
c.m.s. and the 1T + direction in the A c.m.s. are calculated and then the two 
reference frames superimposed). 

For the same reason, the group made a separate study of those events 
for which the scattering angle 8 lay between 105° and 75°. This took account 
of 422 of the 1284 events. Since between these angles sin2 8 > 0.933, the 
study was, in fact, very close to the second case enumerated in Section 3.2. 
They divided the variable cos 0 ab into 20 equally-spaced bins and obtained 
the experimental histogram shown in Figure 6. 

In order to compare this result with the theoretical prediction of 
equation (3.7) they performed a Monte Carlo simulation, using as input 
the prediction of equation (3.7) and a standard description for the I I t/! ~ AA 
differential cross section. The number of simulated events was normalized 
to the 422 events observed. Thus if equation (3.7) is a good description of 
the situation, the two histograms ought to agree. 

As can be seen from Figure 6 the two histograms agree within statistical 
uncertainties. In particular, we note that the experimental histogram seems 
to show a small downward slope to the right. This is the correct direction, 
in accordance with the equations of Section 3 (note the term -a2a . b), and 
the opposite direction compared to the one expected for the TIc case of 
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... ~ 

(a) 

7 8 

i::::::::::::::i:i:i:::i:i::g:m!!!!!l!l!!:!!!!:1 9 10 

~ 
Figure 5. (a) A general view of the DM2 detector. (b) A schematic picture in a plane orthogonal 
to the beam line. Note the positions of (1) multiwire prportional counters (two layers), (2) 
drift chambers (13 layers), (3) Cerenkov counters, (4) time-of-flight counters, (5) coil, (6) 
photon detectors, (7) iron, (8) muon detectors, (9) end cap detector, and (10) concrete (shown 
in (b) only) . 
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Figure 6. The data (solid line) of the DM2 group showing the distribution of the angle 0 ab 

between pion mon.enta (cf. Figure 1). For this data sample, the scattering angle 8 lies between 
75° and 105°, for which both the detector efficiency and the interesting EPR-Iike correlation 
are maximal. A Monte Carlo simulation, using equation (3.7) (normalized to the observed 422 
events) provided the quantum-mechanical prediction shown by the dashed histogram. As can 
be seen in despite the low statistics, the histograms are in quite close agreement. Note, in 
particular, the gradual downward slope to the right (in contrast to that of the TIc in Figure I). 

Figure 1. The test is, however, not very significant since there is insufficient 
statistics for so detailed a study of this variable. 

The author believes that the test could be made more significant by 
finding a single number which measures the quantum-mechanical spin 
correlation. As suggested by Willutski,(14) the forward-backward asymmetry 
in the variable 0 ab could be such a measure. As in the spin-singlet case, 
one would expect a smaller value for asymmetry to be predicted by theories 
which satisfy the Bell inequalities than what is predicted by quantum 
mechanics. 

A possibly better number to measure the validity of equation (3.7) 
would be obtained if, by using the maximum-likelihood method, one deter
mines the best experimental value of a by fitting equation (3.7) to the data. 
If, within experimental error, the number turns out to be 0.642, then the 
prediction of quantum mechanics can be said to be a good one. Alternatively, 
since the second term of equation (3.7) is the most interesting from the 
point of view of the EPR problem, one could try a fit in which a is kept 
at its physical value and, instead introduce another parameter as a multiplier 
for the second term. If the maximum-likelihood fit gives a value equal to 
one for this parameter, the quantum-mechanical prediction is, again, a good 
one. On the other hand, if one has reason to suspect that the Bell inequalities 
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are satisfied (or that a hidden spin measurement has been done before the 
decay), both of the above-mentioned parameters would turn out to be 
smaller than the quantum-mechanical prediction. 
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Einstein-Podolsky-Rosen Paradox 
for the KO-Ko and BO-Bo Systems 

DIPANKAR HOME 

1. Introductory Remarks 

The peculiarities of non local quantum correlations between space-like sep
arated systems were highlighted by Einstein, Podolsky, and Rosen in their 
seminal paper(1) which has stimulated lively debate over the past fifty years. 
A well-known illustration of the Einstein-Podolsky-Rosen (EPR) argument 
is Bohm's example(2) of a spin-O system decaying into two spino! particles. 

Apart from the epistemological interest that it has excited, the EPR 
debate has stimulated the study of viable experiments to test the nonsepara
bility of the two-particle quantum wave function and its incompatibility 
with various local-realistic models.* The photon-polarization correlation 
measurements using radiative atomic cascade transitions, conducted by 
Aspect et al.,(3-5) are a significant mark forward in this direction. However, 
the interpretation of these experimental results has been the subject of 
vigorous controversy(6-1I) owing to the low efficiency of the photomultiplier 
detectors used and uncertainties in the estimation of background counting 
rates. Specific examples of local-realistic modelsT have been proposed which 
reproduce the pertinent data of the atomic cascade experiments equally 

* "Local realism" implies the following notion: individual measuremental results pertaining 
to the physical properties of a given system are independent of measurements performed on 
another spatially-separated system with which the given system may have interacted in the 
past but at present is not interacting. 

t For an up-to-date review of such local-realistic models, see Marshall er al.< 12) and Marshal!.! \3) 
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well as quantum mechanics. One therefore suspects that the final verdict 
on the question of local realism has yet to be passed. 

A significant recent trend(14-18) has been the search for new examples 
of EPR-type situations, which may be amenable to experiment, in order to 
examine the incompatibility between quantum mechanics and local realism. 
An interesting example of such an experiment is provided, in the area of 
particle physics, by the decay of a fPC = 1-- vector meson into a pair of 
neutral pseudoscalar mesons. Lee and Yang(t9,20)* were the first to point 
out the EPR-type features of this case (pertaining to the pair of kaons 
KO -Ko resulting from a pp annihilation), followed by D'Espagnat, (22) Six, (23) 
and Selleri.(24) 

In this chapter we seek to provide a critical analysis of the present 
status of this example and shall indicate possibilities for future investiga
tions. We begin with a resume of the important features of this example, 
considering specifically the decay of the spin-l <I> (l020) resonance, by 
strong interaction, into a pair of neutral kaons KO - KO. 

2. EPR-Type Situation for the KO-Ko System 

If we invoke charge-conjugation invariance of the strong interaction, 
the wave function of the KO -Ko pair at its time of production (t = 0) from 
the decay of the fPC = 1-- state is given by 

(1) 

where L (R) refers to the left (right) hemisphere. 
The subsequent time-development of the KO-Ko pair is described in 

terms of the eigenstates of the effective Hamiltonian (which includes weak 
interactions). In the situation under consideration, the weak interactions 
induce decays of both KO and KO and also give rise to KO -Ko transitions. t 
The effective Hamiltonian is written H = M - if /2 where M and fare 
the Hermitian mass and decay matrices, respectively. The eigenstates of H 
are IKL) and IKs) with eigenvalues AL = mL - iyd2 and As = ms - iYs/2, 
respectively, where mL (ms) and YL ("Is) are the mass and the decay width, 
respectively, of IKL) (IKs»; mL - ms = 0.53 x 1O lo hs- 1 and "Is = 582YL = 

* From the historical perspective it is interesting to note that, according to Jammer,(21l Lee 
first mentioned this example of the KO-Ro system, during a talk at the Argonne National 
Laboratory in 1960, in which he anticipated the central idea of Bell's Theorem in the context 
of this example. Lee assigned further elaboration of this example to his assistant J. Schurtz 
who, unfortunately, began to work on another problem. 

t A pure IKO) (IRO» state, evolving in time, becomes a superposition of IKo), IRo), and decay 
products, This gives rise to KO - RO oscillations. 
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1.12 X 101Ohs- l • Throughout this section we assume CP invariance; the 
implications of CP violation for this type of example will be treated in 
Section 4. 

The eigenstates IKL) and IKs) are given by 

and 

and they time evolve as 

(2) 

with a corresponding equation for IKs). Here I4>L(t) <l4>s(t)) represents 
the decay products from IKL) (IKs»); I4>L) (l4>s») is taken orthogonal to the 
state IKL) (IKs»). CP invariance requires that (KdKs) = o. 

The wave function 1'1'0) given by equation (1) can be written in terms 
of the states IKL) and IKs) as 

(3) 

The time evolution of the nonseparable form of the two-particle wave 
function 1'1'0), given by equations (1) and (3), correlates the oscillations 
between the IKo) and IR.°) states such that it carries the essence of nonlocal 
correlation, reminiscent of the EPR-type situation. If the left (right) kaon 
is observed to be a KO (Strangeness, 5 = +1) at a particular instant, then 
the right (left) kaon can be predicted, with certainty, to be observable as a 
R.0 (5 = -1) at that same instant. Alternatively, if the left (right) kaon 
decays in the Ks mode (CP = +1) then the right (left) kaon is bound to 
decay as a KL (CP = -1) at some future time. It is to be noted that there 
is a subtle distinction between the KO - R.0 and Kc Ks correlations; while 
the former holds only for equal proper times, the latter is a time-independent 
consequence of the nonseparable form of the wave function. This aspect 
has been clearly discussed by Selleri.(24) 

Six(23) suggested that experimental test of this EPR-type situation would 
be the measuring of the joint probability P<.!.t:.'2) of a double R.0 observation 
(i.e., on two sides), at times tl and t2 on the left and right sides, respectively. 
The quantum-mechanical prediction for P_-(tl> t2 ) is given by 

where I'I'( tl> t2 ) is the state evolved from 1'1'0) at t = 0: 

1'I'(tl> t2 ) = (1/v'2HIKs)LIKL)R exp[ -i(Astl + AL t2 )] 

-IKL)LIKs)R exp[ -i(ALtl + ASt2)]} (4) 
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whence one obtains 

P_-(tt. t2 ) = Hexp[ -(-Ystl + y Lt2 )] + exp[ -yLtl - YSt2 )] 

- 2 exp[ -y(tl + t2)] cos .:1m{t1 - t2)} 

where Y = (YL + Ys)/2 and .:1m = mL - ms. 

(5) 

Selleri derived an upper bound on P __ ( t l , t2 ) for the KO - KO system 
[P~_( t I, t2 )] using a general argument based on the notion of local realism: 

P~-(tt. t2 ) = Hexp[ -( YStl + y Lt2 )] + exp[ -( yLt l + YSt2 )]} (6) 

This local-realistic upper bound differs from the quantum-mechanical pre
diction (5) by the absence of the interference term. Therefore, quantum 
mechanics leads to a prediction that violates equation (6) whenever the 
interference term is positive, that is, whenever cos .:1m(tt- t2 ) < o. The 
maximum possible discrepancy is calculated to be about 12% for Ys( t2 -

tl) = 5. Some experimentalists* have shown interest in checking this instance 
of incompatibility between quantum mechanics and local realism, but no 
significant findings have yet been reported. 

It is important to note that the experimental study envisaged in connec
tion with equations (5) and (6) has an intrinsic handicap: for meaningful 
results, t I and t2 must be shorter than the lifetimes of KL and Ks respectively; 
i.e., one requires t\, t2 "'" 10- 10 s. The uncertainties involved in ensuring that 
the observations are at the specified instants t\ and t2 would be quite 
appreciable within such a small time interval. This difficulty may be circum
vented by considering the time-integrated joint probabilities. This aspect of 
the envisaged experiment has recently been examined by Datta and Home(26) 
for the case of the 8°- BO system. This system is almost identical to the 
KO -Ko system, the only difference being that 'YL = Ys( = y). t The eigenstates 
of the SO - BO system are analogous to the I KL ) and I Ks) states, and are 
denoted by IBH) and IBL ) with masses mH and mL, respectively (mH > md· 

3. Proposal for a New Test Using the BO-So System 

Recently, experiments on the decay of the spino! Y(4s) vector meson 
into a pair of neutral pseudoscalar mesons 8°- BO have attracted considerable 

* Such as o. Piccioni (University of California, San Diego), D. Jovanovic (Fermi Laboratory, 
Batavia), and S. Zenone (Concordia University, Montreal). Some relevant experimental data 
on the two-kaon state given by the wave function (I) is available(25l but has never been 
analyzed in the context of the EPR problem. 

t IKL ) has a longer lifetime than IKs) because the phase space available in its principal decay 
mode IK L ) -+ 37T is smaller than that available in the decay mode IKs) -+ 27T. For the decay 
of the IB H ) and IB L ) states, the phase space available is roughly the same. Hence their 
decay widths are taken to be identical. 
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attention in the search for evidence of BO _8° mixing. (See, for example, 
Buras et al.(27) Following the treatment by Datta and Home,(26) we shall 
in this section analyze the possibility of investigating experimental1y the 
EPR-type quantum non 10 cal correlations within the framework of current 
experiments on the decay Y(4s) ~ B08°. We shal1 focus our attention on 
the time-integrated joint probabilities, remembering that BO and 8° can be 
identified by their characteristic semileptonic mode of decay: BO ~ riiX; 
8° ~ 1+ II X, where I and X denote lepton and hadron, respectively. 

The experimental arrangement currently in use to study Y(4s) ~ B08° 
was designed to measure the parameter R defined as fol1ows: 

(7) 

where N++ is the total number of double 8° decays (corresponding to the 
observation of double 1+ decay products on both sides); N __ is the total 
number of double BO decays (corresponding to the observation of double 
r decay products on both sides); N+_ is the total number of 8° decays on 
the left associated with BO decays on the right (corresponding to the 
observation of 1+ decay products on the left associated with r decay 
products on the right); and N_+ is the total number of BO decays on the 
left associated with 8° decays on the right (corresponding to the observation 
of r decay products on the left associated with 1+ decay products on the 
right). 

The parameter R is calculated by evaluating the quantities Nij (i, j = ±). 
The general expression for Nij is given by 

(8) 

where Pi; (t], t2 ) is the joint probability for observing the decay products 
Ii and Ij on both sides at times tl and t2 , respectively; No is the total number 
ofY(4s) decays, and A is the semileptonic decay width of BO decaying into 
a r, (which is equal to the semileptonic decay width of 8° decaying into 
a /+). 

The quantum-mechanical expressions for Pij ( t l , t 2 ) [derived from the 
nonseparable form of the wave function (4)] are given by 

P++(t .. t2) = P_-(tJ, t~) = H2 exp[ -y(tl + t2)] 

- 2 exp[ -y(tl + t2)] cos ~m(t2 - t l )} (9) 

P+-(t lo t2) = P_+(t lo t2) = H2 exp[ -y(tl + t2)] 

+ 2 exp[-y(tl + t2)] cos ~m(t2 - t l )} (10) 
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Using equations (9) and (10), we obtain from equation (8) the following 
quantum-mechanical values for Nij: 

(11) 

(12) 

where a2 = ·l + (~m)2. This leads to the following quantum-mechanical 
prediction* for the parameter R defined by equation (7): 

(13) 

where x = ~m/ 'Y. 
The result given by equation (13) hinges on the quantum nonseparabil

ity which is built into the wave function (1) and is assumed to be maintained 
even after the particles have become well separated in space. The experi
mental verification of equation (13) will, therefore, constitute a test for 
quantum nonseparability in this EPR-type situation. 

In this connection, it would be instructive to compare the prediction 
(13) with the corresponding prediction derived from the notion of local 
realism. As an example, let us consider Furry's hypothesis(29) in the following 
form: the wave function has the nonseparable form (1) at the time of 
production of the BO - BO pair, but after spatial separation of the two particles 
the wave function becomes an equal mixture (not superposition) of the two 
independent states IBH)LIBL)R and IBLhIBH)R' It is tempting to accept this 
hypothesis because it would enable us to avoid the conceptual anomalies 
arising from the quantum nonseparability presented by the EPR paradox. 
Einstein(30.31) himself favored such a proposal. Bohm and Aharonov(31) 
analyzed the tenability of Furry's hypothesis and pointed out the significance 
of testing whether this hypothesis leads to any conflict with the available 
experimental results. t 

If in our present EPR-type example of the BO-Bo system, we apply 
Furry's hypothesis to evaluate the general formula given by equation (8) 
we obtain 

= ~ exp[ -[(Ii + (2 )] 

* Okun et al.(28) have derived equation (13) in another context. 
t The suggestion by Bohm and Aharonov for verifying Furry's hypothesis, by measuring the 

polarization correlation of the two photons produced in a positron-electron annihilation, 
has certain critical aspects which have generated some controversy (see Peres and Singer(32) 
and Horne(33)). 
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whence 

(14) 

which leads to the following prediction for the parameter R, according to 
Furry's hypothesis: 

(15) 

Comparing the prediction (15) with the prediction (13) we observe that, 
within the present experimental framework for the study of the decay 
Y(4s) ~ SOSO, it is possible to discriminate between the predicted values of 
RQM and R F , unless x 2 » 1 (the case of maximal So-So mixing, correspond
ing to Am » 'Y). In this context, it is interesting to note that the CLEO 
group(34) have already provided an experimental upper bound on R, i.e., 
R < 0.3. This may appear to disprove Furry's hypothesis. However, one 
must be careful to remember that this upper bound involves certain theoreti
cal model-dependent inputs (such as the use of the spectator model of 
mesonic decay). Hopefully, with better statistics, it will be possible to set 
the empirical upper bound in a model-independent way.* 

As regards the quantum-mechanical prediction for R given by equation 
(13), we note that RQM is model-dependent. Confining our attention to 
within the ambit of the Glashow-Weinberg-Salam standard model of 
electroweak interactions, we note the following observation. There are two 
types of SO mesons: S~ (the bd quark-antiquark bound state) and S~ (the 
bs quark-anti quark bound state). Y(4s) decays into the S~-S~ system only. 
(The S~-S~ channel is forbidden by kinematic considerations.) In this case 
the standard model predicts Am/f :!is 0.2{3, where {3 is estimated to be within 
the range of 0.33 to 1.5.(38) It therefore follows that RQM « 1 according to 
the standard model, suggesting that it would be quite feasible to distinguish 
experimentally between RF and RQM based on the standard model. 

Sy way of suggesting further work along these lines we wish to point 
out that, apart from calculating the parameter R using the various local
realistic models (analogous to the types(l2.13) used for analyzing the EPR 
atomic-cascade experiments), it seems important to derive general bounds 
on R, from local realism, which are independent of the details of any 
particular model. This would enable us to make decisive use of the current 

* Recent experimental studies(3S) set an upper bound on R of 0.12. It has also been observed 
that the pertinent empirical data can accommodate R = 1 only if a large departure (i.e., 
greater than 50%) from the spectator·model predictions for B·mesonic decay is allowed.(36) 
Other experimental results, such as the limits on B+ and BO meson lifetimes, are consistent 
with the spectator.model predictions and theoretical arguments suggest that the deviations 
from the spectator model, if any, should not be more than 30%.(37) 
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experimental studies on R in order to test the notion of local realism against 
quantum mechanics. Such tests would constitute a valuable complement to 
the current EPR experiments. They would, incidentally, also be the first 
EPR tests to involve electroweak interactions. 

It is appropriate to recall here that Selleri(24) derived an upper bound 
on P __ (t1> t2 ) for the KO-Ko system using a general argument based on 
local realism; interestingly, this bound coincides with the value obtained 
from Furry's hypothesis. (This is, of course, mere coincidence!) It would 
be interesting to examine whether Selleri's treatment can be extended to 
the BO -So system in order to obtain general local-realistic bounds on the 
parameter R. Then empirical investigations may be restricted to the domain 
of incompatibility between such bounds and the quantum-mechanical pre
diction for R. This possibility is currently under study. 

4. Quantum Nonlocality and CP Violation: A Curious 
Gedanken Example 

Recently Datta, Home, and Raychaudhuri(39) (DHR) have examined 
the effect of CP violation on the EPR-type gedanken example, taking it to 
be a generalized situation of the KO-Ko or BO-So type system. A crucial 
feature, introduced by CP noninvariance, is that the eigenstates of the 
effective weak interaction Hamiltonian, which exhibit exponential decay, 
are not mutually orthogonal. DHR argue that this property leads to an 
intriguing incompatibility of quantum mechanics with Einstein's locality 
condition* at the statistical level, at least in the gedanken formulation. In 
the present section, we shall look at the details of the DHR example. 

Let us consider that a vector meson V with fPC = 1-- decays, by strong 
interaction, into a pair of spatially-separated neutral pseudo scalar mesons 
(one of which is the antiparticle of the other) denoted by MO-MO-typical 
examples are the decays of the cI>(1020) resonance into KO-Ko and Y(4s) 
into BO -So. Our analysis will be within the framework of the formalism 
discussed at the beginning of Section 2. 

Corresponding to equations (1) and (2) respectively we now have 

(16) 

and 

(17) 

* In his own words: "On one supposition we should, in my opinion, absolutely hold fast: the 
real factual situation of the system S2 is independent of what is done with the system SI> 
which is spatially separated from the former.,,(40) 
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and a corresponding equation for IMs). Taking CP noninvariance into 
account, we have 

IM L) = N[(l + s )IMo) + (1 - s )IMO)] 

IMs) = N[(1 + s)IMo) - (1 - s)IMO)] 

where the normalization factor N is equal to [2(1 + IsI2)rl/2 and the 
parameter s is a measure of CP violation. CP noninvariance requires !M L ) 

and !Ms) to be mutually nonorthogonal: (ML!Ms) = 4N2Re s. Unitarity of 
V (t, 0) implies that 

and 

«!>L(t)!4>L(t) = 1 - exp( -I'Lt) 

(4)s(t)!4>s(t)) = 1 - exp( -yst) 

where Ilm = mL - ms and y = !( I'L + ys). 

(18) 

Considering now MO-Mo oscillations, the probability PMo~Mo(t, 0) 
[PMo~Mo(t, 0)] of finding MO at time t in a beam which was pure MO (Mo) 
at t = 0 is given by 

- 2 exp( -yt) cos(llmt)] (19) 

PMo~Mo(t, 0) = ~[exp( -yLt) + exp( -yst) + 2 exp( -yt) cos(llmt)] 

The wave function !'I'(t), which has evolved from the wave function (16) 
at t = 0, is given by 

where 

!rfJ2) = [V(t, O)!M S )]L!4>L(t)h 

!rfJ3) = [V(t, O)!M L)h!4>s(t)R 

(20) 
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We now consider two possible situations: 

1. At time t = T, one detects the total number no of MO in the left 
hemisphere. Using 

(MOl U(t, O)IM L) = N(1 - E) exp( -iALt) 

(MOIU(t,o)IMs) = -N(1- e) exp(-iAst) 

and equations (18) and (20) we obtain 

no(T) = kNo{{1 + 1/ Z)[exp( -ysT) + exp( -yLT)] 

+ 2(1 - 1/2) exp( -yT) cos(~mT)} (21) 

where No is the initial number of V ~ MOMo decays and 1/ = 
I( 1 - e)/ (1 + e)1 is the CP violation parameter which is independent 
of phase convention. The second term on the right-hand side of 
equation (21) arises out of the nonorthogonality between IM L) and 
IMs) which implies that (4)LI4>s) "e o. 

2. At time t = T « T), measurement is performed in the right hemi
sphere with three possible results: (a) undecayed MO-Mo; (b) decay 
products I4>L( T»; or (c) decay products l4>s( T». Since (4)d4>s) "e 0, 
the collapse of the wave function I'I'( T» to a mixture of the states 
lI/1t), lI/1z), and 11/13) is only "partial", i.e., there remains an additional 
term involving a superposition of 11/12) and 11/13)' However, the exact 
treatment required for this "partial collapse" is rather unclear. We 
therefore proceed by assuming the collapse to be "total" and after
ward estimate the inaccuracy involved. Thus we consider the wave 
function given by equation (20) to collapse to a mixture (not super
position) of the states: 

lI/1t) = [(IMo)LIMo)R -IMOhIMO)R)/J2] exp[ -i(AL + As)T] 

11/12) = IMs)L exp( -iAsT)I4>d T»R/2J2N2(I - e 2 ) 

11/13) = IML)L exp( -iAL T)I4>s( T»R/2J2N2(I - e2) (22) 

where we have omitted the terms involving I4>L( T»L and I<t>s( T)h 
since they do not contribute to the total number of MO detected in 
the left hemisphere at the subsequent time T. This number n( T, T) 
can easily be calculated using equations (18), (19), and (22): 

n(T, T) = ~No{(1 + 1/ 2)[exp(-YsT) + exp(-YLT)] 

+ 2(1- 1/ 2) exp[ -y(T + T)] cos ~m(T - T)} (23) 
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The surprising feature is that the quantum-mechanically predicted value of 
n (T, T) turns out to be dependent on the time T at which measurement 
is performed in the right hemisphere, thereby violating Einstein's locality 
condition at the statistical level. A quantitative measure of this nonlocal 
effect can be defined as a = I(n - no)/ nol. 

Putting T = T + 8T and assuming 8T to be sufficiently small so that 
t:..m8T« 1 and y8T« 1, we get from equations (21) and (23) the following 
lower bound on a: 

! I exp( -2yT) - exp( -yT) + exp( -2YTh 8T ! 
a ;. 2 (M L M s) --''-'------''-'-'-'--~--'.--'----''--'--'--:......:--

exp(-YsT) + exp(-YLT) 
(24) 

In the presence of CP invariance (MLIMs) = 0), this nonlocal effect 
vanishes. In the presence of CP violation, the existence of this nonlocal 
effect (a "" 0) apparently contradicts a general theorem(41.42) in quantum 
mechanics which states that all statistical measurements on any observable 
of one of the systems in a correlated pair, are independent of measurements 
performed on the other system. However, the applicability of this theorem 
to the case of a correlated pair consisting of weakly decaying particles, in 
the presence of CP noninvariance, has not hitherto been analyzed. A key 
point to be noted is that the proof of this theorem relies on the condition 
that the measurement alluded to involves collapse of the pure-state wave 
function to a mixture of mutually-orthogonal states. This is, evidently, not 
satisfied in our gedanken example because (cf>LIcf>s) "" 0 in the presence of 
CP violation. 

We now turn our attention to the identification procedure for the decay 
products associated with the states Icf>L( T» and Icf>s( T». It is well known 
that the probability distribution peE) of the invariant mass of the decay 
products follows the Breit-Wigner form: 

where E is the invariant mass. For the decays of !M L ) and IMs) the 
probability distributions PL(E) and Ps(E) in gerreral overlap. If there was 
no overlap, one could unambiguously distinguish the decay products corre
sponding to the states !cf>L) and !cf>s). Equation (23) has been derived 
assuming such unambiguous distinction. The estimate of the nonlocal effect 
given by equation (24), therefore, involves an error which can be quantified 
by specifying the ratio r = Overlap area between the two curves/Total area 
under anyone curve. For the nonlocal effect to be perceptible, one must 
have r« a. 

A conservative upper bound on r (rJ is given by ru = Height of the 
probability distribution at the point of intersection/ Peak height of anyone 
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of the distributions. This yields 

With equations (24) and (25) the condition ru « 0: becomes, for the special 
case (.:lm)2 » 1'i. 1't 

1'i/(.:lmf« 21(MLIMs) exp(-21'T) - exp(-1'T) + eXP(-21'Th 8TI (26) 
exp( -1'sT) + exp( -1'L T) 

The requirement of unitarity sets an upper bound on (MLIMs) given by(43) 

whence equation (26) reduces to 

2 21( )1/2eXP(-21'T)-eXP(-1'T)+eXP(-21'Th8TI 
1's « 1'L 1's 

exp( - 1's T) + exp( - 1'L T) 
(27) 

[in units of (.:lmf = 1]. 
Let us further assume that, for our gedanken example, 1's = 1'L = 1'. 

Then the condition (27) becomes 

(28) 

which can be satisfied for suitable hypothetical values of 1'; for example, 
taking l' = 0.01, the left-hand side equals 10-4, while the right-hand side is 
about 6 x 10-3. 

So far our discussion has been in the context of hypothetical CP
violating systems. In reality, the KO -Ko system provides the only well-studied 
example of such a system. Using the actual values .:lm = 0.53 x 10101is-1 
and 1's = 5821'L = 1.12 x 1010Iis-\ we see that the condition r« 0: cannot 
be satisfied for any choice of T and T'. The BO-So system is another 
candidate for such a system. Theoretically, 1'L = 1's for this system and 
some theoretical models predict that (.:lm? » 1'i. 1'i. It is not yet clear 
whether the condition (28) can be satisfied for the BO -So system. 

The T' -dependence exhibited by equation (23), albeit hypothetical, is 
quite puzzling because it seems to permit, at least in principle, faster-than
light communication by Morse signaling, i.e., the performing of a measure
ment on the right at a distance vT' from the source (v is the average speed 
of MO and &to) and the subsequent counting of the MO particles at a distance 
vT to the left, with T as close to T' as one chooses. In this connection, the 
following observation, due to D'Espagnat, (44) is worth considering: equation 
(23) really expresses the mean number of the observed MO at a given instant. 
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In fact, this number fluctuates, and for superluminal signaling one requires 
this fluctuation to be smaller than any variation due to the measurement 
on the right. Whether this condition can actually be satisfied in the present 
example calls for careful analysis.* 

It may interest the reader to refer, in the context of this example, to 
Bohm's quantum-potential approach(47,48) as an aid toward a deeper under
standing of the nature of quantum nonlocality in the presence of CP 
violation. 

To sum up our discussion of the DHR example, we may say that it 
suggests that if there is an EPR-type gedanken situation involving basis 
states which are mutually non orthogonal but nevertheless at least partially 
distinguishable through some relevant physical observables then, in prin
ciple, there exists the possibility of nonlocal effects manifesting themselves 
at the statistical level. It appears possible that a situation of this type may 
occur in the unique case ofCP nonconservation which leads to nonorthogon
ality between the physically-observable states. (These states can, at least in 
principle, be partially distinguished from each other through differences in 
the nonoverlap areas between the probability distributions of the invariant 
masses of the decay products corresponding to these states.) 
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* As pointed out by A. Peres, one could raise the following objection to the DHR example: 
in view of the so-called quantum doctrine, which holds that it is not possible to simultaneously 
measure quantities that correspond to noncom muting observables, it appears that one cannot 
simultaneously determine precisely whether there are decay products in each of the two 
states I<I>L) and l<I>s) because these states are nonorthogonal in the presence of CP noncon
servation. 

However, it must be stressed that the justification for the above quantum doctrine 
is rather dubious. Lande(45) raised serious doubts about its validity. Later, Park and 
Margenau(46) provided a comprehensive critical examination of this question and justified 
Lande's doubts. They showed the precise points of vulnerability in the standard arguments 
put forward to defend this dogma. They also furnished counterexamples of simultaneous
measurement schemes for noncommuting observables. It is, therefore, felt that such a 
controversial proposition should not be invoked to assess the DHR example which admittedly 
involves a variety of intricacies that require further clarification, particularly since "imprecise" 
measurements are considered here. 
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1. Introduction 

6 

Even Local Probabilities 
Lead to the Paradox 

FRANCO SELLERI 

The essence of the Einstein-Podolsky-Rosen (EPR) paradox(l) is the incom
patibility at the experimental level between some empirical predictions of 
quantum theory and the consequences of local realism. This incompatibility 
has become fully evident after the 1965 paper by Bell(2) in which a class of 
local hidden-variable models was shown to lead to the validity of an 
inequality ("Bell's inequality") that is sometimes grossly violated by quan
tum mechanics. That pioneering work led slowly to the awareness that, 
more generally, it was the philosophy of local realism itself (in any tradi
tional definition of terms locality and realism) that disagreed at the empirical 
level with the existing quantum theory. This striking diagreement led Stapp(}) 
to the conclusion that "Bell's theorem is the most profound discovery of 
science." 

In spite of this there are several authors who are not convinced that 
the incompatibility between local realism and quantum theory really exists 
and many papers have been written in which the validity of "Bell's theorem" 
is questioned. It has even been observed that all the authors of such papers, 
collected together, could give rise to an international conference entirely 
devoted to "refutations" of the EPR paradox! 

The motivation of such points of view is very respectable as it arises 
from a double conviction: The idea that local realism is an extremely natural 
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point of view in physics, and the idea that the great successes of the existing 
quantum theory prove its power and its strength. The arguments usually 
made for the restoration of a locally realistic quantum physics are basically 
of two types: 

1. Those accepting the existence of the EPR paradox as a theoretical 
statement, but questioning the meaning of the experimental investi
gations performed up to now, especially as far as the validity of the 
ergodic hypothesis is concerned. 

2. Those questioning the very existence of the EPR paradox and 
attributing its demonstrations to wrong and/ or insufficiently general 
reasoning. 

Ideas of the first type are well represented in the present book. It is 
rather against arguments of type (2) that the present chapter is addressed. 
Two rigorous proofs of the EPR paradox are reviewed and developed. 

The first part of the chapter (up to Section 5) consists ofa demonstration 
based on the relatively strong assumptions of local realism(4) which are 
those of the original deterministic approach of Einstein, Podolsky, and 
Rosen and of Bell. 

The second part of the chapter is based on some far weaker assumptions 
of local realism, so weak that most people would probably believe them to 
be natural consequences of the existing quantum theory. In fact, only local 
probabilities are assumed. (5) The fact that the EPR paradox still results 
shows how strikingly strong the quantum-mechanical rejection of local 
realism is. Our results imply that local realism is a priori incompatible with 
the "additional assumptions" made in the analysis of Bell-type experiments. 

2. The Singlet State 

We assume that a spin-O object e is given and that it decays into two 
spin-! objects a and f3. Let us suppose that, in the final state, the spatial 
part of the total wave function is separated, meaning that it can be written 
as a product of two terms appreciably different from zero in two different 
regions of space, Ra and R f3 , separated by a very large distance. We denote 
the Pauli matrices representing the spin angular momentum for a [f3] by 
CT.(a), CT2(a), and CT3(a) [CT.(f3), CT2(f3), and CT3(f3)]. Furthermore, we let 
u+(a) and u_(a) [u+(f3) and u_(f3)] be the eigenvectors corresponding to 
the eigenvalues +1 and -1 of the Pauli matrix CT3(a) [CT3(f3)] representing 
the third component of the spin angular momentum for a [f3]: 

CT3(a)u±(a) = ±u±(a) 
(1) 
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There exist actual physical situations in which the spin state vector for 
the system (a, f3) has to be the "singlet" state vector given by 

(2) 

The singlet state is invariant under rotation, so that it can be written 

7]0 = [u~(a)u~(f3) - u~(a)u~(f3)]/v'2 (3) 

where u~(a) and u~(f3) denote eigenstates of un(a) == a(a) • ii and of 
un(f3) == a(f3) • ii, respectively, ii being an arbitrary unit vector. Therefore 

(4) 

From these well-known properties of the singlet state vector three 
important empirical consequences follow: 

(C 1) As already mentioned, 7]0 describes some empirically well-known 
pairs of quantum objects. An example is that of the (rare) decay 
of the neutral pion into an electron-positron pair. 

(C2) Let us suppose that an observer 0" [Op] performs a measurement 
of un(a) [un(f3)] in the region R" [Rp]. Then, even if the two 
observers perform their measurements at different times, they 
will find opposite results for all (a, f3) pairs. This holds for 
arbitrary ii. 

(C3) 7]0 predicts large (approximately 41 %) violations of Bell's 
inequality. 

In the following discussion quantum theory will be assumed only in 
the sense that (C1), (C2), and (C3) are being used. These three empirical 
consequences of the theory will therefore suffice for establishing the EPR 
paradox. 

3. EPR Paradox for a Complete Quantum Theory 

Consider a large ensemble E composed to N decays E ~ a + f3. The 
singlet state 7]0, which by assumption describes all these (a, f3) pairs, implies, 
by consequence (C2), that if the observer 0" measures un(a) and finds +1 
(-1), then a subsequent measurement of un (f3), performed by the second 
observer Op, will give -1 (+1) with certainty. 
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The latter observation is the basis of the EPR paradox and we shall 
formulate it by assuming that Oa and 0{3 use perfect instruments which 
never fail in detecting the measured systems and in recording the right 
values of the measured observables. 

Let us assume that Oa measures O'n(a) on the a-objects of an ensemble 
E., where E. c E and contains I pairs. He finds the results 

(5) 

each of which equals ± 1. 
The results of subsequent measurements of O'n(f3), performed by 0{3, 

on the 1 ,B-objects of E. can then be predicted with certainty, by consequence 
(C2), to be 

(6) 

This prediction can be checked, e.g., on an esemble E2 c E •. We are of 
course assuming that quantum theory is correct, so that every conceivable 
check of its predictions will give a positive answer. 

The next three steps in our reasoning use Einstein locality in an essential 
way, and allow us to introduce elements of reality into all the ,B-objects of 
E2, and to deduce their necessary existence in E\ and E as well (see Figure 
1 for the logical structure of the proof): 

1. Reality. The prediction with certainty expressed by equation (6) 
allows us to use the EPR reality criterion and to attribute to each 

E 

Figure 1. Structure of the proof of the EPR paradox: E2 is the set of (a, 13) pairs for which 
both un(a) and u n(l3) are measured. The EPR reality criterion attributes an element of reality 
to every a of this set; E. is the set of (a, 13) pairs for which only u n (l3) is measured. The 
"time arrow" assumption attributes an element of reality to every a of this set; and E is the 
set of all (a,l3) pairs. In general, no measurements on either the a or the 13 are made. The 
assumption of separability extends the attribution of an element of reality to every a of this set. 
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of the ,B-objects of E2 an element of reality r which determinates 
the result of the future measurement of O"n(,B).* 

2. Time arrow. Assuming that the element r is not generated retroac
tively in time by the future measurement on 13, we may conclude 
that r belongs to all 13 E El and not only to those 13 (that 
is, 13 E E2 ) for which a measurement of O"n(,B) will actually be 
performed. t 

3. Separability. If the objects a and 13 are separated by a very large 
distance, we assume that the element of reality r of 13 could not 
have been created by the measurement performed on a. Con
sequently, r exists even if no measurement on a is carried out and, 
therefore, it can be attributed to all 13 E E and not only to those 13 
(that is, 13 EEl) for which a measurement of O"n(a) has actually 
been carried out.:j: 

One should note that the elements of reality introduced must actually be 
of two types, since different effects presuppose different causes. We will 
denote by r + that value (or those values) of r which leads to the prediction 
"+1" in equation (6), and by r_ that value (or those values) of r which 
leads to the prediction "-1" in equation (6). Therefore the element of 
reality introduced can assume a plurality of values and is, in fact, a 
"variable. " 

We continue our reasoning by assuming that quantum mechanics is 
complete. If this is true then, by definition of completeness, the elements 
of reality r + and r _ must have counterparts in the quantum theoretical 
description of the ,B-objects. But the only state vectors which describe the 
outcome of a measurement of 0" n (,B) as certain and equal to + 1 or -1, are 
u:(,B) and u~(,B), respectively. One of these two descriptions must therefore 
apply to each 13 of E. 

Actually, u:(,B) and u~(,B) must be found in E with an equal frequency 
(of! each), since the two results +1 and -1 are present in equation (6) 
with equal probability. This last point is, however, inessential as far as the 
EPR paradox is concerned. 

By consequence (C2), it is clear that the Ii-component of the total spin 
of (a, ,B) must be zero in all cases. The only state vectors of (a, ,B) describing 
13 by either u:(,B) or u~(,B) and giving zero for the Ii-component of the 

• The negation of this assumption was, essentially, the basis of Bohr's refutation of the EPR 
paper (see Bohr(6»). 

t The rejection of this assumption leads to solutions of the EPR paradox in which retroactions 
in time are explicitly introduced (see, for example, Chapter 10). 

t The rejection of this assumption leads to solutions of the EPR paradox in which action-at-a
distance is explicitly admitted (see, for example, Chapter 9). 
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total spin of the two particles are 

and (7) 

We thus reach the conclusion that the total ensemble E is actually a mixture 
of the previous two (factorizable) state vectors. But this conclusion quite 
clearly contradicts the consequence (C3) since it implies the validity of 
Bell's inequality. * 

We thus arrive at an absurd conclusion [i.e., a contradiction with the 
consequence (C3)]. 

This implies that the set of hypotheses made during our earlier reasoning 
is self-contradictory and that at least one of these assumptions must be 
discarded. It was assumed that: 

1. The empirical consequences of quantum theory (Cl), (C2), and 
(C3) are correct. 

2. Einstein locality (i.e., reality + time arrow + separability) holds. 
3. Quantum theory is complete. 

The obvious way out of the paradox, as proposed by Einstein, Podolsky, 
and Rosen in 1935, is to declare quantum mechanics incomplete: after all, 
it is only natural that a statistical theory should give an incomplete descrip
tion of reality. What is far more important is that this description should 
be correct! 

It will be shown in the following section that, following Bell's discovery 
of his inequality in 1966, this obvious solution to the paradox no longer 
exists. 

4. The Case of Incompleteness 

Let us accept the foregoing EPR reasoning up to and inclUding the 
point at which it was recognized that the element of reality r can assume 
the different values r + and r _. 

Instead of assuming that quantum mechanics is complete, we shall 
now consider the contrary hypothesis, i.e., that quantum theory is not 
complete, whence it follows that the discovery of an exactly predictable 
result does not imply that one should adopt an eigenvector of the corre
sponding observable. 

The first part of the earlier EPR reasoning allowed us to conclude that 
r belongs to {3 even if no measurement on either a or {3 is carried out. In 
this way, r could be attributed to every {3 of E. 

* All mixtures of factorizable state vectors lead to the validity of Bell's inequality. This was 
first shown by Capasso et al. (7) 
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This means that the assignment of an element of reality has been com
pletely disentangled from all acts of measurement. 

Given that consequence (C2) holds for arbitrary ii, one may introduce 
an arbitrary number of elements of reality for every {3 of E: It does not 
matter whether they arise from incompatible observables (described by 
noncommuting operators) since all that is assumed is Einstein locality and 
the correctness of the consequences (Cl), (C2), and (C3). 

Given the symmetry between a and {3, one can also introduce an 
arbitrary number of elements of reality for every a of E. 

In particular, given four unit vectors a, a', b, and b' one can assign two 
elements of reality, sand S', to a and two elements of reality, t and t', to 
(3, as follows: 

s, corresponding to 0"( a) . a 

S', corresponding to 0"( a) . a' 
(8) 

t, corresponding to 0"({3) . b 

t', corresponding to 0"({3) . b' 

This new notation could be redundant, since a new symbol has been 
introduced every time a new observable had led to the discovery of an 
element of reality. There is, of course, no reason why these elements of 
reality should all be independent of one another. They could be related in 
various ways. It is even conceivable that nature is so simple that even when 
considering different observables we invariably uncover the same one ele
ment of reality which fixes all observables. This would only mean that our 
notation is too rich, but not that it is wrong! In all cases we could deduce 
the existence of the 24 sub ensembles which are the key to the proof of Bell's 
inequality given below. 

Given the dichotomic nature of all the observables of our problem, 
everyone of the elements of reality (8) will assume two (types of) values, 
depending on the predicted value (+ 1 or -1) of the corresponding 
observable: 

s' = s~ or s'-

(9) 

t = t+ or L 

t' = t~ or t'-
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Let us introduce the following new symbols: 

A( a, s) is the predicted value of the observable 0'( a) . i 

A(a', s') is the predicted value of the observable O'(a) . i' 
(10) 

B( b, t) is the predicted value of the observable 0'(/3) • 6 

B(b', t') is the predicted value of the observable 0'(/3) ·6' 

Depending on the alternatives (9), each of these predicted values can 
assume either the value + 1 or the value -1. The statistical ensemble E of 
N pairs (a, /3) thus splits into 24 subensembles, each of which has a fixed 
value ("plus" or "minus") of every one of these four elements of reality. 
Denoting by n(s, s', t, t') the number of pairs with fixed values of s, s', t, 
and t', one clearly has 

L n(s, s', t, t') = N (11) 

where the sum is taken over the 24 possible sets of values of the four 
variables, that is, over the choices (9) of s, s', t, and t'. 

By the very definition of correlation function (i.e., average product of 
results of correlated measurements on a and /3) it follows that it is given by 

P(a, b) = ~ L n(s, s', t, t')A(a, s)B(b, t) (12) 

where the sum is again taken over the 24 possible sets of values of the four 
variables. Similar expressions to (12) are easily formed for the remaining 
three correlation functions P( a, b'), P( a', b), and P( a', b'). Remembering 
that all the functions (10) can assume only the values +1 and -1, one easily 
obtains 

1 
IP(a, b) - P(a, b')1 ,.. N L n(s, s', t, t')IB(b, t) - B(b', t')1 

(13) 
1 

IP(a', b) + P(a', b')I'" N L n(s, s', t, t')IB(b, t) + B(b', t')1 

By summing these inequalities and using the obvious relation 
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one obtains Bell's inequality 

~ == IP(a, b) - P(a, b')1 + IP(a', b) + P(a', b')I'" 2 (14) 

In this way, we have again obtained the same contradiction with 
consequence (C3) as we did in the case of a complete quantum theory.* 

5. The Nature of the Paradox 

The same result (i.e., the validity of Bell's inequality) has now been 
deduced under the opposite assumptions of completeness and lack of 
completeness of the existing quantum theory. This shows that the question 
of completeness is totally irrelevant, as far as the EPR paradox is concerned. 
We may therefore conclude that Einstein locality is incompatible with 
quantum theory at the empirical level, and that this incompatibility is 
expressed by, for instance, Bell's inequality, which was shown in the previous 
section to be an inevitable result of the paradoxical reasoning, but which 
is violated by quantum mechanics. 

Einstein locality has been defined as the set of three assumptions: 
reality, time arrow, and separability. We must thus conclude that either these 
assumptions, or the empirical consequences of quantum theory introduced 
before [(Cl), (C2), and (C3)], are not correct. 

It should be noted that the above formulation of the paradox, like all 
the considerations developed in this chapter, is based on the existence of 
perfect detectors. This is so because predictions with certainty were assumed. 
possible. 

Recent papers that discuss the EPR paradox in the case of low-efficiency 
detectors(9-14) have shown that the earlier atomic-cascade experiments(l5-21) 
were far from providing conclusive evidence against Einstein locality. The 
reason is that the quantum-mechanical predictions in the case of low-efficiency 
detectors do not violate Bell's inequality. 

The introduction of additional assumptions(22) permits the deductiol\, 
from Einstein locality, of other inequalities, much stronger than Bell's 
inequality, that are violated by the quantum-mechanical predictions also in 
the case oflow-efficiency detectors. The experimental evidence indeed shows 
that these new inequalities (which can be called strong inequalities) are 
violated, but this is probably only because the additional assumptions are 
not true in nature! In fact Einstein locality, by itself, reduces the numerical 
value of ~, defined by equation (14), to 2, from its value of 2J2 as predicted 
by quantum theory. The introduction of the additional assumptions (for 

* This proof of Belrs inequality is similar to that given by Wigner.(BJ 
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example, "no enhancement") allows one to prove, typically, that ~ ,,;;; 0.02. 
Now, this inequality is violated experimentally, but it appears far more 
reasonable to question the correctness of an arbitrary ad hoc assumption 
introduced in the reasoning, than to question a basic scientific principle 
such as Einstein locality. 

The fundamental idea behind the above proof of the paradox is that 
of determinism, with the variables s, Sf, t, and t f fixing in each case, a priori 
and completely, the result of a future measurement [refer, for example, to 
equation (10)]. The limited scope of determinism was realized following 
the discovery of Bell's inequality and, in consequence, probabilistic proofs 
were looked for. The most popular approach was that of Clauser-Horne 
(CH) factorizability,(23) but it has since been criticized in various ways. Its 
weak point is understood to lie in its conception of probability for a single 
quantum object and for a single pair of correlated objects which is alien to 
our current understanding of probability theory.* 

In the following discussion, CH factorizability will be avoided 
altogether and probabilities will only be introduced for statistical ensembles. 

6. Probabilistic Reality 

Let us consider a set S of physical objects aI, a2, .. . , aN all of the 
same type (e.g., photons): 

(I5) 

and let a dichotomic physical quantity A( a) be given which can be measured 
on the a-objects composing S, and which can only assume the values ±l. 
We assume that the following reality criterion holds: 

Probabilistic Reality Criterion. If it is possible to predict the existence 
of a subset Sf of S: 

(16) 

and if it is possible to correctly predict that future measurements of 
A( a) on Sf will give the results + 1 and -1 with respective probabilities 
p+ and p_, and if the previous predictions can be made without in any 
way disturbing the a-objects of S and of Sf, then it will be said that 
a physical property A' belongs to Sf that fixes the probabilities 

and p_ = p(a_, Af) (17) 

* For a critical discussion of CH factorizability see Selleri.(24) 
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Of course, p+ + p_ = 1. 

The previous statement is called the "probabilistic reality criterion" 
(PRe) because it provides a natural generalization (i.e., to sets of objects) 
of the criterion for physical reality (of individual objects) put forward by 
Einstein, Podolsky, and Rosen in 1935. It can be applied to EPR experi
ments, where each of the a-objects composing S is physically correlated 
with a (separated) object {3. Let the set of these new objects be 

(18) 

For instance, the objects ai and {3i might have been produced together in 
the decay of an unstable system Ei (i = 1,2, ... , N). 

Thus, in a typical EPR experiment there are two observers: 0" who 
performs measurements of A(a) on the set S of a-objects, and OfJ who 
measures a second dichotomic observable B( b) on the set T of {3-objects. 
Assuming that OfJ is the first to perform his measurements (in the laboratory 
frame) and that T' is the subset of T for which B( b) = + 1 has been found, 
then OfJ himself can predict the existence of the subset S' (composed of 
the a-objects which are individually correlated with the {3-objects compos
ing T') for which at some later time 0" will find the results A( a) = + 1 and 
A(a) = -1, with respective probabilities p+ and p_. 

Note that p+ and p_ are, in general, different from the corresponding 
probabilities for the whole ensemble S. Therefore, if 0" does in fact find 
the predicted probabilities, it must be concluded that there is something in 
the physical reality of S' that somehow generates p+ and p_. 

It is in this sense that the physical property A' is attributed to S'. This 
property is a part of the physical reality of S' that is not detected directly 
in the usual experiments, in which only eigenvalues and probabilities are 
measured. It is therefore of the same nature as the so-called "hidden 
variables," even though it obviously is more general than these since it is 
attributed to statistical ensembles rather than to individual systems. At 
present the existence of A' is conjectural, but the conjecture is based on 
causality and it should one day become possible to detect A' by means of 
suitable experiments. 

We assumed that A' fixes the probabilities [see equation (17)]. In 
general, however, the probabilities, which become actual when the observ
able A( a) is concretely measured, may also depend on the instrument that 
is used. 

This is, in fact, the case in many real experiments where the precision 
of the analyzers, the efficiency of the counters, and so on, indeed affect the 
values of the probabilities observed. These probabilities thus have a dual 
nature, since they reflect actual properties of both the ensemble S' and the 
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instrument used. The notation (17) therefore represents the true nature of 
probabilities by showing them to be dependent on both A' and A(a) (the 
latter being denoted by the symbol a). 

The foregoing discussion shows us one reason why the probabilities 
were not attributed directly to S' as real properties and, instead, the physical 
property A' was introduced: Had we defined the probabilities, themselves 
as real then, although none of the results to be derived below would be any 
different, we would have exposed our approach to the criticism of attributing 
reality to something that can only be made concrete by the intervention of 
a measuring apparatus. This criticism is known as "counterfactuality." 

The exact nature of A' is not of interest here. This physical property 
results, in general, from the existence of a large number of "elements of 
reality" of the individual a-objects composing S' all of which cooperate to 
generate a physical situation for S' in which the probabilities are precisely 
p+ and p_. 

7. Probabilistic Separability 

Let us suppose that, at some time, the space parts of the quantum
mechanical wave packets describing an a-object and its corresponding 
~-object are separated by a very large distance. If this is the case for all 
(a,~) pairs, we shall then consider it a sufficient condition for the physical 
separability of the sets Sand T. This leads to the following assumption: 

Probabilistic Separability. Measurements performed on T (the set of 
~-objects) cannot generate physical properties (such as A', introduced 
above) which belong to S (the set of a-objects) or to any subset S' of 
S, and vice versa. 

We shall use this assumption of separability in the following way. We 
consider a measurement of B(b) made by O{3. The results B(b) = +1 and 
B(b) = -1 split T into two subsets: T' [all objects with B(b) = +1] and 
T" [all objects with B( b) = -1]. Now, the conditions of the PRe are satisfied 
by virtue of our assuming probabilistic separability (PS), and a physical 
property A' can therefore be attributed to S'. Naturally, a symmetrical 
reasoning can be carried out for T" by starting from the set S" of a-objects 
related to it and verifying that the probabilities are correctly predicted in 
this case as well and, in consequence, introducing a new physical property 
A" for S". 

The splitting of T into T' and T" takes place when B( b) is measured. 
It is this splitting that allows one to identify the sets S' and S" to which the 
physical properties A' and A" are attributed. But these physical properties 
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cannot be created at-a-distance in 5 by the measurements on T, this being 
excluded by PS. 

Therefore an unknown, but nevertheless actual splitting of 5 into 5' (with 
property N) and 5" ( with property A") exists even if no measurement is made 
on the f3-objects. 

The mere conclusion of existence of 5' and 5" (with their respective 
properties, N and A") suffices for establishing the EPR paradox, as we shall 
see, even when it is not possible to identify the a-objects composing 5' and 
5". 

8. Time Arrow for Probabilities 

Our next question is whether the splitting of 5, into 5' and 5", is 
generated by the instrument used for measuring A(a) in 5. It is not possible 
to believe that the subsets exhibit probabilities which may be very different 
from those of the set 5 as a whole, for example p( a+, N) and p( a_, N) in 
5', and p(a+, A") and p(a_, A") in 5", merely because of the intervention 
of the experimental apparatus. It is instead clear that the above probabilities 
are (at least partly) determined by physical properties of the subsets them
selves. It is for this reason that a physical property N (A") has been assigned 
to 5' (5"). 

It is, of course, natural to assume that the physical property N (A") 
belongs to 5' (5") even if no actual measurement is carried out on these 
subsets, provided that extensive experience with 5 and T has shown that 
probabilities for subsets are correctly predicted. 

By "extensive experience" we imply nothing more than the standard 
scientific procedure: If a large body of empirical evidence, gathered by 
repeated observations of the result B(b) = +1, proves that p+ and p_ 
invariably show up in the subset 5'-and, therefore, by our PRe, we can 
say that the property N invariably belongs to 5'-then we can conclude 
that N is real even if no measurement on the set 5' is made. 

We therefore make the following assumption: 

Time Arrow for Probabilities. Physical properties of sets (such as N of 
5') are the cause of the observed probabilities and not vice versa. In 
other words, there exists an arrow of time from the past to the future 
that cannot be reversed. 

With the assumption of a time arrow for probabilities (TAP) we exclude 
any possibility of future measurements creating the physical properties of 
the statistical ensembles on which they will be carried out. 
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9. Probabilistic Einstein Locality 

The assumptions made in the three previous sections, taken together, 
constitute the idea of probabilistic Einstein locality: 

{
probabilistic reality criterion (PRe) 

probabilistic Einstein locality = probabilistic separability (PS) 

time arrow for probabilities ( TAP) 

This generalization of Einstein locality has two very important advan
tages: First, it is not limited conceptually to those rare (or even nonexistent) 
cases in which one is able to make totally certain predictions. Second, it 
can be applied to all types of quantum-mechanical descriptions (i.e., eigen
states, superpositions, and mixtures) and not only to eigenstates of the 
predicted observable. Thus whenever one can predict values of probabilities 
our probabilistic approach can be applied, no matter what the source of 
information leading to the prediction (e.g., trusted theory, previous 
experiment). 

This present form of Einstein locality is so general, and rests on such 
a weak type of realism, that one wonders if even the physicists of the 
Copenhagen and Gottingen schools could not have accepted it. It will 
however be shown that it nevertheless suffices for the derivation of Bell-type 
inequalities. Since these latter inequalities are violated by quantum
mechanical predictions, it follows that not even the present weak form of 
local realism is compatible with existing quantum theory. 

10. Locality for Conditional Probabilities 

It will now be shown that Einstein locality, in its probabilistic formula
tion, leads to the conclusion that quantum probabilities must have a more 
detailed structure than is implied by the existing quantum theory. 

Let us consider a large set E of correlated (a, 13) pairs: 

and we suppose that a dichotomic observable A( a) = ± 1 is measured on 
the set S of a-objects: 

and that either the observable B(b) = ±1, or the observable B(b') = ±1, is 
measured on the set T of f3-objects: 
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Thus E is the physical union of Sand T (see Figure 2). The measurement 
of B(b} divides T, and therefore also E, into two parts. Let E'(b} [E"(b)] 
be the subset of E for which B( b} = + 1 [B( b} = -1] has been obtained. 
Naturally 

E = E'(b} u E"(b} 

We introduce four (conditional) probabilities: 

w(a+lb+} is the probability of finding A(a} = +1 in E'(b} 

w(a_1 b+} is the probability of finding A(a} = -1 in E'(b} 

w (a+ I b_) is the probability of finding A( a} = + 1 in E"( b} 

w(a_lb_} is the probability of finding A(a} = -1 in E"(b} 

If these probabilities can be predicted correctly, as we suppose, then 
they can be considered to be determined by some real physical properties 
of the subsets E'( b} and E"( b} to which they belong, by virtue of our PRe. 
We will assume that these physical properties belong locally to the sets of 
a-objects and are not generated at-a-distance by the measurements performed 
on the {3-objects. This is, of course, a consequence of our PS assumption, 
discussed in Section 7. 

We stress that a qualitative formulation of separability is sufficient for 
our present purposes. A quantitative formulation of the same idea will be 
given in the next section [see equation (24) below]. 

From the separability condition, it follows that the probabilities 
w( a± I b±} are necessary consequences of real properties of some unknown 
subsets even if no measurement of B( b} has been performed. In fact, if this 
were not the case, we would have to say that it is precisely the measurement 
of B( b} on the {3-objects that creates at-a-distance the physical properties 
of the a-objects, in violation of PS. 

E 
A 

5 T 
A A. 

~ ~ ~ 
" , 

~ ~ ~ - -,0,- -a, a2 aN I 

~N ~2 11, SOURCE 

Figure 2. Graphical representation of the sets S, T, and E. 
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It should be noted that separability here does not mean that w(a± I b±) 
is independent of b. This point can perhaps best be illustrated with an 
example. Let lis consider the set E of married European men currently in 
Japan who have a wife in Europe, and define the dichotomic properties: 

a = is French (true = +1, false = -1) 

b = has a French wife in Europe (true = + 1, false = -1) 

In addition, we consider the splitting of E into E'( b) and E"( b), generated 
by the b-property above. 

Obviously w(a+ I b+) will be very close to one, thus showing that there 
is a dependence on b. It could, however, take a very different value if we 
considered a different condition, as for example: 

c = weighs more than 75 kg (true = +1, false = -1) 

In this case one would expect a smaller value for w(a+1 c+), close to the 
fraction of French men in E. Thus w(a+ I b+) depends on b, but this does 
not imply a violation of separability since the physical correlation between 
a and b was established during the common past of the pairs considered. 

Returning to our general argument, we can then say that separability 
only means that the b-dependence of w (a± I b±) does not arise through an 
action-at-a-distance caused by some event concerning the ,B-objects. There
fore, we deduce from Einstein locality that even if no measurement of B( b) 
is made there exists a subensemble* E'( b) of E with two properties: 

1. Its population N'( b), divided by the total population N of E, equals 
the a priori probability Q( b+) of measuring B( b) on the ,B-o~jects 
and finding + 1: 

Q(b+) = N'(b)/ N 

2. It has a real physical property which gives rise to the probabilities 
w(a+1 b+) and w(a_1 b+) of measuring A(a) on the a-objects and 
finding ±1, respectively. 

* Actually, there must be several equivalent subsets of this type since, in a probabilistic 
approach, it cannot be fixed a priori which f:l·systems will produce the result 8(h) = 1 upon 
measurement. This complication is, however, irrelevant to our purposes. 
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Probabilities can also be introduced for a different splitting of E into 
E'(b') and E"(b') arising from a (possible, but not necessarily actual) 
measurement of B(b') on the f3-systems. For example, we could introduce 
w(a+1 b~) as the probability of finding A(a) = +1 in E'(b'). Once more, 
we apply the PRe and declare w(a+1 b~) to result from a real property of 
E'(b'). We have thus introduced three probabilities: 

w(a+lb+) which applies to E'(b) 

w(a+1 b_) which applies to E"(b) 

w(a+lb~)which applies to E'(b') 

They all refer to the result A( a) = + 1. As conditional probabilities they 
must depend on b or b', that is, on observables defined for the f3-systems, 
but we stress that this only true in the sense that the ensembles E'(b), E"(b), 
and E'(b'), to which they apply, depend on b or b'. 

Since E = E'( b) u E"( b), it follows that E'( b'), which is part of E, is 
necessarily composed of a fraction 'Y of pairs of E'( b) and a fraction 1 - 'Y 
of pairs of E"(b), where O~ 'Y~ 1. If the ensembles E'(b) and E"(b) are 
homogeneous, in the sense that every part of each of them gives a probability 
for the A( a) = + 1 which is exactly equal to that for the whole ensemble, 
then one necessarily has 

(19) 

Equation (19) gives w(a+lb~) as a weighted average of w(a+lb+) and 
w(a+lb_). This means that w(a+lb~) must lie in the interval between the 
other two probabilities. But the latter condition is in general not satisfied. 
Take, for instance, the quantum-mechanical predictions for the singlet state 
which are given by 

(20) 

If we substitute the functions (20) into equation (19) and take a - b = 

7T/2, then the right-hand side equals !, while the left-hand side varies 
according to the value of a - b'. 
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Therefore, if our formulation of Einstein locality is to be accepted, the 
quantum-mechanical probabilities, such as given by the functions (20), 
cannot arise from homogeneous ensembles but must result from averages 
of variously sized probabilities which arise from subensembles of which 
E'(b), E"(b), and E'(b') are themselves the unions. In short, we can say 
that if quantum probabilities arise from something real, then they must be 
endowed with a structure that is not given by the existing quantum theory. 

11. New Proof of Bell's Inequality 

The most general way of giving structure to a probability defined for 
an ensemble of similar objects, is to introduce individual probabilities. By 
so doing one is only in danger of overgeneralizing. It could happen, for 
instance, that individual probabilities can actually assume only a few 
different values, so that only probabilities for subensembles would have to 
be introduced. This obviously less-general situation can be recovered as a 
particular case of an approach which utilizes individual probabilities. Their 
introduction in this paper is therefore only for the sake of simplicity. 

We can then say that the physical properties, required by the PRe, for 
ensembles such as E'( b) and E"( b), arise from physical averages of individual 
physical properties which in general vary between different objects. 

For every object a of E it is therefore true that the object a possesses 
the physical property A which gives rise to the probabilities p( a+, A) and 
p(a_, A) for the two results A(a) = ± 1, respectively, if and when the observable 
A( a) is measured on this object. Of course, 

(21) 

The above conclusion holds for all objects a of the set E. This is true 
because similar conclusions of inhomogeneity hold for E'(b) and E"(b), 
and because the union of these two ensembles is E. 

As was stressed before, the situation is symmetrical in a and f3 so that 
similar individual probabilities, q(b+, A) and q(b_, A), can be introduced 
for the observation of B( b) = ± 1, respectively, with 

(22) 

By means of the individual probabilities, it is now possible to express 
all the interesting ensemble probabilities. Let P(a+) and P(a_) [Q(b+) and 
Q( b_)] be the probabilities of measuring A( a) [B( b)] on the a-objects 
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[f3-objects] of E and of finding the results ±1, respectively. One can 
obviously write 

(23) 

where the symbols (- .. ) denote, as usual, an average. 
The conditional probability of finding A( a) = ± 1 on the a-objects if 

B( b) = ± 1 on the f3-objects has previously been found is given by 

(24) 

According to the general rules of probability calculus, the joint prob
abilities of finding A( a) = ± 1 on the a-objects and B( b) = ± 1 on the 
correlated f3-objects are given by 

D(a±, b+) = w(a±J b+)Q(b+) 

D(a±, b_) = w(a±J b_)Q(b_) 
(25) 

With the help of the joint probabilities we can now calculate the 
correlation function, which is given by 

By using equations (23), (24), and (25) it is easy to show that correlation 
function (26) becomes 

where 

1T(a, A) = p(a+, A) - p(a_, A) (28) 

is a difference of two probabilities, so that 

(29) 

Considering next a new observable A(a') of the a-objects and the 
previous one B( b) for the f3-objects, we see that all the previous consider
ations can be repeated to obtain 
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From equations (30) and (27) we easily obtain 

P(a, b) - P(a', b) 

= Q(b+)([ 7T(a, A) - 7T(a', A)])£'(b) - Q(b_)([ 7T(a, A) - 7T(a', A)])£"(b) 

whence 

IP(a, b) - P(a', b)l",;; Q(b+)(I7T(a, A) - 7T(a', A)I}E'(b) 

+ Q(b_)(I7T(a, A) - 7T(a', A)I}£"(b) (31) 

But the right-hand side of equation (31) is just the weighted average 
ofl7T(a, A) - 7T(a', A)I over the whole ensemble E = E'(b) u E"(b). In fact, 
Q(b+) [Q(b_)] is the a priori probability of the set E'(b) [E"(b)] and, of 
course, 

holds as a consequence of equations (22) and (23). Therefore 

IP(a, b) - P(a', b)1 ~ (17T(a, A) - 7T(a', A)I)£ (32) 

A completely analogous reasoning can be carried out for the same two 
observables A(a) and A(a') of the a-objects, but for a different dichotomic 
observable B(b') = ±1 of the {3-objects. Taking now the sum of equations 
(27) and (30), with b' in place of b, we obtain 

IP(a, b') + P(a', b')1 ~ (17T(a, A) + 7T(a', A)I}£ (33) 

Since, besides (29), one also has 

(34) 

it is easy to prove that the inequality 

17T(a, A) - 7T(a', A)I + 17T(a, A) + 7T(a', A)I ",;; 2 (35) 

holds for arbitrary A. By summing equations (32) and (33) and using 
equation (35), one easily obtains 

IP(a, b) - P(a', b)1 + IP(a, b') + P(a', b')I",;; 2 (36) 

which is Bell's inequality. 
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The previous proof is based on a completely general probabilistic 
formulation of Einstein locality and the usual definition of probability, 
considered as a frequency in a statistical set of similar objects. In particular, 
no use was made of the CH factorizability condition. It can thus be said 
that the previous proof of the inequality is the first satisfactory formulation of 
the EPR paradox. Note the difference between the deterministic proof of 
the paradox, given in the first part of the chapter, and the probabilistic 
reasoning: Here, no discussion of completeness of quantum theory was 
needed, since a kind of incompleteness (the structure of conditional prob
abilities) was deduced directly from probabilistic Einstein locality. 

12. All the Inequalities of Einstein Locality 

Given an arbitrary linear combination of correlation functions, it has 
been shown(25) that a corresponding inequality must be satisfied if the CH 
formulation of Einstein locality is accepted. Therefore, the physical content 
of Einstein locality is not exhausted by Bell's inequality, which appears to 
be only one example of an infinite set of inequalities of the same nature. 
It has, furthermore, been shown that there are correlation functions which 
satisfy Bell's inequality for all possible choices of their arguments while 
violating other inequalities, thus showing their incompatibility with Einstein 
locality (see Chapter 3). 

In the present section, all these inequalities will be placed on a firmer 
footing by deducing them again from the probabilistic approach of the 
previous sections. 

Given the dichotomic observables A(aJ.<) (J.L = 1,2, ... , m) for the 
a-objects and B( bJ (II = 1,2, ... , n) for the ,B-objects, let us consider the 
linear combination of correlation functions 

(37) 

where the cJ.<v are m x n real coefficients. We will prove that Einstein locality 
implies 

(38) 

where 

(39) 
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the right-hand side being calculated for that choice of the sign factors 
~1'-(=±1) and 7Jp(=±l) which maximizes it. 

In order to proceed with the proof, we need to enrich our notation 
slightly. It has already been specified that N is the number of pairs contained 
in the (total) set E. Now we also introduce N'(b), the number of pairs in 
E'(b), and NI/(b) the number of pairs in EI/(b). Naturally 

N'(b) + NI/(b) = N (40) 

Furthermore we specify 

I = {I, 2, ... , N} 

the set of integers from 1 to N, corresponding to the (a, (3) pairs in E, and 
similarly /'(b), the set of integers corresponding to the pairs in E'(b), and 
/"( b), the set of integers corresponding to the pairs in EI/( b). Since 

E'(b) u EI/(b) = E 

one must have 

I'(b) u /"(b) = I (41) 

We will use an index i, running from 1 to N, to indicate a particular (a, (3) 
pair. The same index can be used in the probabilities introduced in the 
previous sections, which can now be written 

(42) 

Note that the probabilities of measuring B(b) and finding +1 and-1 
[denoted by Q(b+) and Q(b_), respectively] are measured by the relative 
populations of the ensembles [E'(b) and EI/(b ), respectively] in which the 
two results have been registered: 

Q(b+) = N'(b)/ N, (43) 
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It follows from equations (25), (42), and (43) that 

(44) 

so that the correlation function becomes 

1 1 
P(a,b)=- L 7T(a,AJ-- L 7T(a,AJ (45) 

N iEl'(b) N iE1"(b) 

where 

Obviously equation (21) implies that 

By introducing the sign function 

{
+1 

'TJi(b) = -1 

we can write the correlation function as 

if i E /'( b) 

ifiEI"(b) 

1 
P(a, b) = - L 'TJi(b)7T(a, AJ 

N iEi 

(46) 

(47) 

(48) 

(49) 

Note the different natures of 'TJi(b) and 7T(a, Ai) (i.e., dichotomic and 
continuous, respectively). 

Since the result (49) holds for arbitrary values of a and b, we can write 

(50) 

where 

(51) 
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The maximum on the right-hand side of equation (51) is to be calculated 
for fixed values of the (given) coefficients c;<v, but for all conceivable values 
of the sign factors 7]i(bv) and of the functions 1T(a;<, AJ. The right-hand 
side of equation (51) is linear in each one of the quantities 1T(a;<, AJ and 
its maximum can therefore be found on the boundary, that is, remembering 
equation (47), for 

(52) 

where the new terms ~i(a;<) are sign factors (=±1),just like 7]i(bv). We can 
then write 

(53) 

We recall that there are 2m + n different choices of the sign factors. From 
among these we have to choose that which maximizes the right-hand side 
of equation (53). But this choice depends only on the coefficients c;<v and 
has nothing to do with either the index i, or the parameters a;< and by. The 
result is therefore 

(54) 

implying that M&i) is independent of i, and that the sign factors must always 
be chosen in the same way, independently of a;< and by. 

Substitution of equation (54) into (50) then gives 

I c;<vP(ap., by) :s;; Mo (55) 
p.y 

Since it is straightforward to show that the minimum value of the left-hand 
side of equation (55) is simply - Mo, equation (55) itself becomes equivalent 
to equations (38) and (39), which is what we set out to prove. 

A discussion of the physical meaning of these new inequalities is 
presented in Chapter 3 of this book. 

13. The Need for New Experiments 

In Section 12, Bell-type inequalities were deduced from a very general 
formulation of Einstein locality resting on: 

1. The probabilistic reality criterion 
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2. Probabilistic separability 
3. The time-arrow assumption 

These three ideas give rise to such a weak form of realism that one wonders 
if the physicists of the Copenhagen and Gottingen schools could not 
perhaps have accepted it. It was nevertheless possible to deduce Bell-type 
inequalities, and since these are violated by quantum-mechanical predictions 
it follows that not even the present form of Einstein locality is compatible 
with existing quantum theory. 

The results obtained are important also from another point of view. 
All the conditions in the present chapter were made under the assumption 
of perfect detectors, this being evident from the condition 

E'(b) u E"(b) = E 

introduced in Section 10, which is equivalent to the idea that every time a 
measurement of B( b) is performed, either + 1 or -1 is obtained. (What 
could instead happen is that the arrival of some {3-objects goes undetected.) 
Nevertheless the necessity of introducing variable probabilities was 
proved, in full agreement with the conclusions deduced from experiments 
that have been performed on EPR pairs. It has in fact been shown else
where(9-14) that published experiments can be explained by means of local 
realistic models precisely because the quantum efficiency of the detectors that 
were employed is small. This means that the usual (arbitrary) additional 
hypotheses that are made in connection with these experiments are false 
and therefore that detection probabilities, which differ between the separate 
subsets of the ensemble of quantum pairs that were studied, must exist. 

This is, clearly, a very similar conclusion to the one which we reached 
in this chapter, although we could not deal with variable detection prob
abilities, given our assumption of certain detection of the a- and {3-objects 
by their respective instruments. In this chapter we obtained evidence, so to 
say, of variable "transmission" probabilities, while elsewhere(9-14) variable 
detection probabilities were introduced. All this points toward considering 
quantum objects as endowed of variable properties, even within a general 
probabilistic scheme. 

But this simply means that the usual additional assumptions are them
selves in direct contradiction to Einstein locality. It cannot therefore be 
correct to deduce that Einstein locality does not hold in nature, from 
experimental results (like violations of the strong inequalities), which 
are obtained using assumptions that already contain the impossibility of 
Einstein locality! 

A new set of experiments is therefore clearly needed. Fortunately, there 
are several interesting proposals which can, in principle, lead to a solution 
of the EPR paradox (see Chapters 4, 5, 8, and 16). 
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7 

The Experimental Investigation of 
the Einstein-Podolsky-Rosen 

Question and Bell's Inequality 

A. 1. DUNCAN AND H. KLEINPOPPEN 

1. Introduction 

The argument of Einstein, Podolsky, and Rosen, in 1935, concerning the 
completeness of quantum mechanics and the possible existence of hidden 
variables, (1) was originally couched in terms of the position and momentum 
coordinates of a pair of particles which could assume a continuous range 
of values. Subsequently, in 1951, Bohm(2) put the argument in terms of an 
initially spin-O system which dissociates into two spino! systems, the com
ponents of the spin of which could only take on discrete values. Later, in 
1957, Bohm and Aharonov(3) discussed the problem with reference to the 
polarization properties of the '}'-ray photons resulting from the annihilation 
of para-positronium. Then, in 1964, Bell(4) derived his inequality, which 
allowed a quantitative distinction to be made between the predictions of 
quantum mechanics and local realism, and, in 1969, Clauser et al.(5\ showed 
how this inequality might be tested experimentally by examining the polariz
ation properties of the two photons emitted in certain atomic cascade 
processes. 

A. J. DUNCAN AND H. KLEINPOPPEN • Atomic Physics Laboratory, University of 
Stirling, Stirling FK9 4LA, Scotland, United Kingdom. 
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1.1. The EPR Argument for Photons 

The EPR argument itself can, in fact, be discussed most conveniently 
in terms of photons. Consider, for example, an isotropic source emitting 
two photons, one in the + z direction and one in the - z direction. Then it 
can be shown from simple consideration of angular momentum and parity 
that the state vector must be in one of the forms 11/1) = (IR)tIRh ± 
IL)tILh)/.J2, where IR)t and IL)t represent photons of right-handed and 
left-handed helicity, respectively, propagating in the -z direction, with a 
corresponding definition for IRh and IL)2. In terms of linear polarization 
basis states the state vector takes one of the following forms: 

1 
11/1)+ = .J2 (Ix)tlxh + IY)tIY)2) (1.1) 

1 
11/1)- = .J2 (lx)tIY)2 -IY)tlxh) (1.2) 

where Ix)! and IY)t represent photons propagating in the -z direction with 
linear polarization, respectively, in the x direction and Y direction, with a 
corresponding definition for Ixh and Iyh. Most experiments have made use 
of a 0-1-0 cascade process in the source, which gives rise to the 11/1)+ 
even-parity form for the two-photon state vector. A few, however, have 
made use of a 1-1-0 cascade, in which case, and in the case of positronium 
annihilation, 11/1)_, the odd-parity form, is the appropriate state vector. 

The EPR argument can now be stated very simply: Assuming, for 
example, that the two photons are described by the state vector given by 
equation (1.1), then, if we make a measurement and obtain the result that, 
say, the photon propagating in the -z direction is polarized in the x 
direction, we know the state vector has been reduced to the form Ix)!lxh. 
We can then say, with certainty, that the photon propagating in the +z 
direction will be found, upon measurement, to be polarized also in the x 
direction. Thus, the polarization of the second photon in the x direction 
corresponds to an "element of reality." But, because of the rotational 
symmetry which exists about the z axis, the choice of x direction is arbitrary, 
so we are forced to conclude that the polarization of the second photon in 
any direction at right angles to the z axis is specified and corresponds to 
an "element of reality." A similar conclusion may be reached for the other 
photon of the pair. The specification of the polarization of a photon in 
more than one direction at a time is more than is allowed by quantum 
mechanics and, therefore, quantum mechanics, according to Einstein, 
Podolsky, and Rosen, cannot be a complete theory. 

The correlation between the polarization properties of the photons and 
the EPR argument are both a consequence of the nonlocal predictions which 
follow from the nonfactorizable form of the state vector given in equations 
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(1.1) and (1.2). Clearly the EPR argument would not hold if the two-photon 
state were to change spontaneously from one which is described by state 
vectors of the kind shown in equations (1.1) and (1.2) to one described by 
a mixture of states of the form IX)llxh [equation (1.1)] or IX)llyh [equation 
(1.2)], where x and y take on all possible orientations at right angles to the 
z axis. Such a suggestion was considered by both Schrodinger(6) and Furry, (7) 

and is sometimes referred to as the Schrodinger-Furry hypothesis. 
Almost all the experimental work in this field has centered on tests of 

Bell's inequality, making use of polarization measurements on photon pairs. 
For the sake of completeness Bell's inequality will now be derived in its 
various forms before a review of the relevant experimental work is under
taken. For further information the reader is referred to the review papers 
of Clauser and Shimony(8) and of Pipkin. (9) First, it is necessary to give 
quantitative meaning to the concept of polarization correlation. 

1.2. Polarization Correlation 

Consider first the ideal situation where pairs of photons, frequencies 
VI and V2, emitted in the -z direction and +z direction, respectively, from 
an atomic source, are analyzed by two-channel polarizers 7TI and 7T2 as 
shown in Figure 1. The detectors Dij (i,j = 1,2) are assumed to be 100% 
efficient. The transmission axes of the polarizers are set in the directions Ii 
and G, where Ii and G are unit vectors parallel to the x-y plane. The use 
of two-channel polarizers allows the polarization components of radiation 
both parallel to and perpendicular to the transmission axis of each polarizer 
to be monitored simultaneously. For simplicity of notation we shall, from 
now on, omit the unit vector sign from Ii and G. 

It is normal in this type of experiment, where we are looking for 
correlations between the polarizations of the two photons, to assign the 

x 

J-, 
y 

\I, ------ ~. ~ 'V2 

I 

/ 
SOURCE 

Figure 1. Diagram to illustrate the ideal measurement of polarization correlation. 1T, and 1TZ 

are ideal two-channel polarizers set with their transmission axes in the directions a and 6, 
respectively; Dij (i, j = 1,2) are 100% efficient detectors. The source emits pairs of photons, 
frequencies '" and "z, in the - z and + z directions respectively. 
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value + 1 to detection in DII or D21 and -1 to detection in DI2 or D 22 • 

Detection to the left of the source can thus be represented by a variable A, 
say, which can take on the values ±1, and detection to the right by a variable 
B which can also take on the values ± 1. It follows that a measure of the 
extent of the correlation between A and B for given settings a and b of 
the polarizers is the correlation coefficient E (a, b) defined as 

E(a, b) = AB (1.3) 

where the bar denotes an average over an ensemble of emitted pairs. If we 
denote by. P ++( a, b) the probability of a photon pair giving a result + 1 to 
the left ana +1 to the right with similar definitions for P+_(a, b), P_+(a, b), 
and P __ (a,b), then 

Alternatively, if, in a given time, N photon pairs are emitted resulting in 
N ++( a, b) detection events in which + 1 is registered to the left and + 1 to 
the right, then, provided N is sufficiently large, P++(a, b) = N++(a, b)j N, 
with similar expressions for P+_(a, b), P_+(a, b), and P __ (a, b) so that we 
can write 

In quantum-mechanical terms, we can say that there is an observable, 
represented by the operator A*(a) with eigenvectors la±) and eigenvalues 
A = ± 1, respectively, describing the results of measurements of photon VI 

parallel and perpendicular to a, and an observable, represented by the 
operator B*(b) with eigenvectors Ib±) and eigenvalues B = ±1, describing 
the results of measurements of photon V2 parallel and perpendicular to b. 
It is then easy to see that, in terms of the linear polarization basis vectors 
Ix) and Iy), 

(1.6) 

where IX)I and IY)I denote polarization states on the left, Ixh and Iyh on 
the right, while 01 and O2 are the angles between the x axis and a and b, 
respectively. It follows that 

(1.7) 
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and 

( 1.8) 

since then 

etc. ( 1.9) 

If the two-photon state vector is represented by 11/1), then we can calculate 
the expectation value for the product A* ® B* according to 

(I/IIA* ® B*II/I) = l(b+l(a+II/IW + I(b-I(a-II/IW -1(b+l(a-II/IW -1(b-l(a+II/IW 

= P++(a, b) + P __ (a, b) - P+_(a, b) - P_+(a, b) 

= E(a, b) (1.10) 

The correlation coefficient E (a, b) can thus be identified as the expectation 
value of the direct product operator A* ® B*. 

If equation (1.1) for 11/1) is inserted into equation (1.10) for E(a, b) 
and equation (1.6) used for la+), Ib+), la-) and Ib-), we find 

P++(a, b) = P __ (a, b) = ~ COS2(01 - O2) 

( 1.11) 

and hence 

(1.12) 

where EQM( a, b) represents the quantum-mechanical prediction for E (a, b) 
and (a, b) = 01 - O2 denotes the relative angle between a and b. Similarly, 
using equation (1.2) for 11/1), we find EQM(a, b) = -cos 2(a, b). In both cases 
E(a, b) ranges from -1 to +1, both extremes corresponding to complete 
correlation. 

1.3. Bell's Inequality for the Ideal Case 

The nonlocality and lack of realism inherent in quantum mechanics 
has inspired many attempts through the years to explain the results in terms 
of a theory which is both local and realistic. Without a specific local realistic 
theory it is, of course, not possible to predict a value for E(a, b) to compare 
with the quantum-mechanical value EQM( a, b) in equation (1.12). However, 
in 1964 J. S. Bell(4) showed for the first time that such theories place 
constraints on E (a, b), or rather combinations of E (a, b), for different 
values of a and b. 
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To understand Bell's approach consider the experimental situation 
represented in Figure 1. We assume that the initial state of the two photons 
can be described in terms of hidden variables A with a probability density 
p(A). The variable A may denote a single variable or a set of variables 
which may be discrete or continuous. However, for simplicity we write as 
if A is a single continuous variable. We also assume that 

L p(A) dA = 1 (1.13) 

where A is the space of the states A. The result A to the left then depends 
on A and on a, the result B to the right on A and b, but if we wish our 
theory to be local, A cannot depend on b nor B on a. If A determines 
uniquely the measurement outcome for each photon pair, we can define 

E(a, b) = L A(A, a)B(A, b)p(A) dA (1.14) 

in accord with our discussion regarding the correlation function (1.3). More 
generally, for a given A describing an emitted pair of photons, the quantities 
A and B may take on values + 1 or -1 with a probability depending on A. 
In this case, A does not determine uniquely the outcome of each measure
ment of A and B but only their average values A and E over an ensemble 
of emissions. (10) We can then define 

E(a, b) = L A(A, a)E(A, b)p(A) dA (1.15) 

where now the averages A and E will be, owing to locality, independent 
of b and a respectively. It follows that instead of A = ± 1 and B = ± 1 we 
now require only that IAI ,,:; 1 and lEI,,:; 1 and these latter conditions are 
sufficient to derive an interesting restriction on these so-called local stochas
tic realistic theories. 

Let a' and b' be alternative settings of the polarizers and consider the 
expression 

S(a, b, a', b') = E(a, b) - E(a, b') + E(a', b) + E(a', b') (1.16) 

By substituting for E (a, b) etc, in the form of equation (1.15) and noting 
the above restriction on IAI and lEI, it then follows easily that 

-2,,:; S(a, b, a', b') ,,:; 2 ( 1.17) 
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Figure 2. Orientations of the polarizers leading 
to extremum values of the function 
S(a, b, a', b'). 
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Essentially the same inequality was derived by Clauser, Horne, Shimony, 
and Holt(5) and it is sometimes referred to as the Bell, Clauser, Horne, 
Shimony, and Holt (BCHSH) inequality. Its importance lies in the fact that 
it represents a general restriction on the predictions of theories based on 
local realism. 

For example, if we take the quantum-mechanical form EQM(a, b) given 
by equation (1.12) and evaluate Sea, b, ai, b') for various orientations of 
the coplanar vectors a, b, ai, and b', it is easy to show that Sea, b, ai, b') 
takes on extremum values for the situations, shown in Figure 2, where 
(a, b) == (b, a' ) == (ai, b') == 22S, (a, b') == 67S when S == +2v'2, and where 
(a, b) == (b, a ' ) == (ai, b') == 67.5°, (a, b') == 22S when S = -2v'2. Both 
extreme values for S( a, b, ai, b') clearly violate Bell's inequality showing 
that local realistic theories must necessarily disagree with quantum 
mechanics over at least some of the range of relative polarizer orientations. 
This situation may not, at first, seem surprising given the general success 
of quantum mechanics but, in fact, before the development of Bell's 
inequality no necessary conflict between local realism and quantum 
mechanics had been demonstrated. Bell's inequality showed that conflict 
did indeed exist and brought the question concerning the possibility of a 
local realistic description of the physical world into the experimental 
domain. It also pointed out an area where there might conceivably have 
been a breakdown in conventional quantum mechanics. 

1.4. Bell's Inequality in Experimental Situations 

The various experiments that have been carried out differ mainly in 
their choice of source and type of polarizer used. Because of the angular 
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correlation of the photon pairs emitted in two-photon decay processes from 
an atom, the finite solid angle of detection, and the low detection efficiency 
of the photodetectors, in practice only a very small proportion of the photon 
pairs emitted by the source is actually detected. In this situation, in order 
to have any hope of violating Bell's inequality it is necessary to take N in 
equation (1.5) for E (a, b) to be the total number of photon pairs that would 
have been detected in the absence of the polarizers, rather than the total 
number actually emitted by the source. In evaluating E (a, b) we therefore 
take 

(1.18) 

Adoption of the above procedure, however, implicitly requires the additional 
assumption that, for each setting of the polarizers, the ensemble of detected 
pairs is a true representative sample of the ensemble of pairs emitted by 
the source. 

The above form (1.17) of Bell's inequality applies to the situation where 
both orthogonal polarization states are detected on each side of the source. 
However, most experiments that have been carried out only detect the 
signals that are transmitted directly through the polarizers. One can imagine 
that in Figure 1 only the detectors DlI and D12 are in place. In these 
circumstances, a new form for Bell's inequality is required since the quan
tities N+_(a, b), N_+(a, b), and N __ (a, b) cannot nowbe directly measured. 
These quantities, however, can be deduced from measurements with either 
one or both polarizers removed. If we denote by 00 the absence of a polarizer, 
then we expect that 

(1.19) 

and 

From equations (1.19) and (1.20) it then follows that the inequality (1.17) 
can be rewritten in the form 

-1.;;; S'.;;; 0 ( 1.21) 

with 

S' = [N(a, b) - N(a, b') + N(a', b) + N(a', b') 

- N(a', 00) - N(oo, b)]/ N(oo, 00) ( 1.22) 
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omitting, for clarity, the subscripts on the N++. Finally, if we assume that 
the results of measurement depend only on the relative angle between the 
axes of the polarizers and write the inequality (1.21) for the two sets of 
angles which give extreme values for S', i.e., (a, b) = (b, a') = (a', b') = 
22.5", (a, b') = 67.5", and (a, b) = (b, a') = (a', b') = 67.5", (a, b') = 22.5", 
then it is easy to derive the inequality 

== I N(22.5") - N(67.5") I ,,;:; 0.25 
1) N(oo,oo) 

(1.23 ) 

originally put forward by FreedmanYI) This form of inequality has proved 
to be one of the most useful experimentally, since it only requires three 
measurements to be made. 

2. Experiments Utilizing an Atomic Source 

Since 1972 a series of experiments, of increasing precision and making 
use of various atomic sources and detection arrangements, have been carried 
out to verify the form of the two-photon state vector given in equations 
(1.1) and (1.2), and to test one version or another of Bell's inequality. In 
the circumstances considered in Section 1.4, Bell's inequality allows a clear 
distinction to be made between the predictions of local realism and quantum 
mechanics. However, in a real experiment, several factors act to reduce the 
strength of the quantum mechanically predicted correlations, in certain 
circumstances to the extent that a violation of Bell's inequality can no longer 
be expected to occur. For example, in all the experiments to be described 
in this section, the radiation emitted by the atomic source is collected and 
collimated by a pair of lenses with a finite aperture before being analyzed 
by imperfect polarizers. If </> is the half-angle subtended at the source by 
the lenses, and EMI and Eml are, respectively, the transmission efficiencies 
for light polarized parallel to and perpendicular to the axis a of polarizer 
1Tl, and 8M2 and 8 m 2 the corresponding quantities for polarizer 1T2 with its 
axis orientated in the direction b, then it can be shown (5) that, according 
to quantum mechanics, 
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(2.2) 

and hence, assuming symmetrical two-channel polarizers, that 

The ± sign applies, respectively, to the situation where the photon pairs 
result from a 0-1-0 or 1-1-0 type of cascade. The quantity F(¢), which 
has a different mathematical form in the two cases and is equal to unity 
when ¢ = 0, takes into account the depolarizing effect of the noncollinear 
emission of photon pairs. 

In order to carry out a successful test of Bell's inequality, F( ¢) must 
be greater than some minimum value which depends on the transmission 
efficiencies of the polarizers. Let us assume for simplicity that the trans
mission efficiency eM is the same for both polarizers, then, since F( ¢) is a 
monotonically decreasing function of ¢, there is an upper limit (which 
depends on eM) on the detector half-angle necessary for a test of Bell's 
inequality, as shown in Figure 3. Clearly, the use of a 0-1-0 cascade places 
a less stringent requirement on the apparatus parameters than does a 1-1-0 
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EM 
Figure 3. Upper limits on detector half-angle </> as a function of polarizer efficiency eM. To 
test Bell's inequality, the experiment must be performed with apparatus parameters chosen in 
the region below the appropriate curve-the upper curve for a 0-1-0 cascade, the lower for 
a 1-1-0 cascade (after CI?user et al.(5»). 
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cascade. It should be noted that it is not necessary to know the results (2.1), 
(2.2), and (2.3) in order to test Bell's inequality. They must be used, 
of course, if it is required to compare the experimental results with the 
quantum-mechanical predictions. 

The original experiment of the type being considered here was, in fact, 
carried out by Kocher and Commins(12) in 1967 and, therefore, predated 
most of the theoretical work on Bell's inequality, in particular the important 
paper by Clauser, Horne, Shimony, and Holt(5) which showed how the 
work of Bell could be applied in a real experiment. Unfortunately, Kocher 
and Commins only made measurements for relative angles of 0° and 90° 
between the transmission axes of the polarizers and, in addition, the trans
mission characteristics of their polarizers did not satisfy the criterion illus
trated in Figure 3 for a satisfactory test of Bell's inequality. However, their 
results were, at least, consistent with quantum mechanics and Clauser(13) 
was able to use them to demonstrate the inadequacy of semiclassical radi
ation theory in this situation and to show that the Schrodinger-Furry 
hypothesis was not tenable in this case. The first proper test of Bell's 
inequality was carried out by Freedman and Clauser(14) in 1972. 

2.1. Freedman and Clauser (1972) 

The arrangement of the apparatus used by Freedman and Clauser, (14) 
shown in Figure 4, is typical of all subsequent experiments which differ, 
mainly, only in the nature of the source, its method of excitation, and the 
type of polarizers used to analyze the emitted photons. As indicated in 
Figure 5, in this experiment the 3d4p lpl state of calcium in a beam was 

Ca·OVEN 

LENS LENS 

~ 
FILTER2 {ILTER1 ~ 

POLARIZER 2 ® ~O~ POLARIZER 1 

L------;~ -!J LENS =--___ --' 
LENS 

P.H.A. T.A.C. 

Figure 4. Schematic diagram of the apparatus of Freedman and Clauser. (14) 
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Figure 5. Level scheme for calcium. Dashed 
lines show the route for excitation to the 
initial state 4p2 I So used in the experiment of 
Freedman and Clauser.(14) 

excited by radiation of wavelength 227.5 nm from a deuterium arc lamp. 
About 10% of the atoms which do not return directly to the ground state 
go to the 4p21S0 state which is the initial state of the 4p2IS0-4s4plpJ-4s2IS0 
cascade emitting photons of wavelengths 551.3 nm and 422.7 nm. Since the 
naturally occurring calcium used in this experiment contained 99.855% of 
the isotope with zero nuclear spin, there was no significant reduction to be 
expected in the polarization correlation due to the presence of hyperfine 
structure. It should also be noted that the calcium beam, whose density is 
about 3 x 1010 cm-\ was orientated at an acute angle to the observation 
axis thus ensuring that Doppler broadening of the resonance line reduced 
any effects due to resonance trapping of the 422.7 nm photon. On each side 
of the source, as shown in Figure 4, the photons were collected and 
collimated by a lens, then passed through a filter and linear polarizer to a 
photomultiplier. In order to satisfy the requirement for large efficient linear 
polarizers, they used pile-of-plates polarizers each of which was about 1 m 
in length and consisted of ten O.3-mm-thick glass sheets inclined nearly at 
Brewster's angle. The sheets were mounted on hinged frames so that they 
could be folded out of the optical path. The transmission efficiencies were 
measured to be eMJ = 0.97 ± 0.01, eml = 0.038 ± 0.004, eM2 = 0.96 ± 0.01, 
em2 = 0.037 ± 0.004 and the half-angle subtended by the lenses at the source 
was 30° giving F( cP) = 0.99. The photomultiplier pulses were fed to a 
coincidence circuit and coincidence measurements were made for 100 s 
periods, the periods during which all the plates were removed alternating 
with periods in which the plates were inserted. 

The results obtained, as the relative orientation of the transmission 
axes of the polarizers was varied from 0° to 90°, were found to be in 
agreement with the quantum-mechanical prediction as expressed in equation 
(2.1). Also, the results at (a, b) = 22S and (a, b) = 67S combined with 
those with both sets of polarizer plates removed gave Tf = 0.300 ± 0.008, in 
clear violation of the Freedman form of Bell's inequality expressed in 
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equation (1.23), and in agreement with the quantum-mechanical prediction 
TJQM = 0.301 ± 0.007 obtained from equation (2.1). 

2.2. Holt and Pipkin (1973) 

Holt and Pipkin(l5) observed the 567.6 nm and 404.7 nm photons emit
ted in the 9!P!-73S!-63PO cascade of the zero nuclear spin isotope !98Hg of 
mercury. The relevant transitions are shown in Figure 6, from which it can 
be seen that the final cascade level is not the ground state of the atom. 
Thus, in this experiment no precautions had to be taken to avoid the effects 
of resonance trapping. To produce the required radiation, mercury vapor 
was excited to the 9!P! state by a 100 eV electron beam, both the beam and 
the vapor being contained in an encapsulated source made from Pyrex 
glass. Since the source was of the 1-1-0 variety, the requirements on polarizer 
efficiency and collection solid angle were more stringent than in the 0-1-0 
case. In addition, any lack of isotropy among the excited atoms in the 9!P! 
state could have a significant effect on the results. A third photomultiplier 
viewed the 435.8 nm photons from the 73S!_63P! transition to monitor the 
lamp intensity and to produce a correction signal for the lamp stabilization 
circuitry. In contrast to the two previous experiments, calcite-type polarizers 
were used with transmission efficiencies EM! = 0.910 ± 0.001, 8M2 = 
0.880 ± 0.001, 8m!, 8m 2 < 10-4 • This type of polarizer has a much better 
extinction ratio than pile-of-plates polarizers, but the values of 8M! and EM2 

are not particularly high. What is more, since a 1-1-0 cascade was being 
used, the factor F( ¢) took on the relatively low value 0.951 even with an 
acceptance half-angle of only 13°. 

Figure 6. Level scheme for mercury 
showing the states used in the Holt and 
Pipkin experiment. (15) 
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Experimentally, it was found that TJ = 0.216 ± 0.013, a result which 
disagrees with the quantum-mechanical prediction TJQM = 0.266 and clearly 
does not violate Bell's inequality. Although this discrepancy has never been 
completely explained, it is thought that the low value of TJ may have arisen 
as a result of stress-induced optical activity in the walls of the Pyrex glass 
envelopeY6) However, since this result is, in fact, the only one of its kind 
consistent with a local realistic interpretation of these long-range two-photon 
polarization correlations, proponents of such theories have suggested that 
there may be some significance to be attached to the use of calcite polarizers 
or to the fact that the final state of the cascade is not the ground state of 
the atom. 

2.3. Clauser (1976) 

In view of the unexpected result obtained by Holt and Pipkin, (15) 

Clauser(l6) repeated their experiment using the same cascade but in the 
even isotope 202Hg of mercury. Also, instead of calcite polarizers, he used 
pile-of-plates polarizers of the type used previously in the experiment 
described in Section 2.1 but with 15 rather than 10 plates to give transmission 
efficiencies eM! = 0.965, em! = 0.011, eM2 = 0.972, em2 = 0.0084. With a col
lection half-angle of 18.6°, it is expected from quantum mechanics that 
TJQM = 0.2841 while the experiment gave TJ = 0.2885 ± 0.0093, violating 
Bell's inequality and in close agreement with the quantum-mechanical result. 
In addition, a calculation of the variation of N( a, b)! N( 00,00), from 
equation (2.1), with angle (a, b), taking into account the measured polarizer 
efficiencies, the collection half-angle, depolarization due to the presence of 
!99Hg and 2°!Hg isotopes, and alignment of the 9!P! state, showed close 
agreement between the experimental results and quantum mechanics. 

In an extension to the above experiment Clauser(t7) measured the 
circular polarization correlation by inserting quarter-wave plates between 
each linear polarizer and the source. The quarter-wave plates were construc
ted by applying pressure to bars of commercial grade quartz. Assuming 
ideal quarter-wave plates, quantum mechanics predicts that equation (2.1) 
still holds and thus equation (1.23) remains a valid form of Bell's inequality. 
From the experimental results Clauser found TJ = 0.235 ± 0.025 while, taking 
into account the transmission efficiencies of the linear polarizers, the collec
tion half-angle, and the lack of stability of the quarter-wave plates, he 
predicted TJQM = 0.252. Thus, although within the limits of experimental 
error these circular-polarization results were in agreement with quantum 
mechanics, they failed to provide a conclusive test of Bell's inequality. 
However, Clauser did show that the results were not consistent with the 
Schrodinger-Furry hypothesis. 



Experimental Investigation of the EPR Question and Bell's Inequality 189 

2.4. Fry and Thompson (1976) 

Fry and Thompson(18) used the 435.8 nm and 253.7 nm photons emitted 
in the 73S1-63PI-6IS0 cascade in the zero nuclear spin isotope 200Hg of 
mercury. The relevant transitions are shown in Figure 7. The 73S1 state in 
a mercury beam was populated in a two-step process with electron bombard
ment excitation of the 63P2 metastable state being followed downstream, 
where all short-lived states had decayed, by absorption of resonant 546.1 nm 
radiation from a tunable dye laser the output of which was polarized with 
its electric field vector in the direction of the observation axis. The magnetic 
field in the interaction volume was reduced to less than 5 mG in all directions. 
Although mercury of natural isotopic abundance was used, the laser band
width was narrow enough (15 MHz) that the 200Hg isotope could be selec
tively excited. In addition, since there was a one-to-one correspondence 
between all 435.8 nm and 257.3 nm photons, data accumulation rates were 
obtained which were high compared to those achieved in previous experi
ments, a typical run lasting about 80 min. The polarizers used in this 
experiment were of some interest, being of the pile-of-plates variety with 
each polarizer consisting of two sets of 7 plates symmetrically arranged so 
as to cancel out transverse ray displacements. 

Since the initial state of the cascade had J = 1, it was necessary to take 
into account possible effects resulting from unequal population of, and 
coherence between, the initial Zeeman sublevels, which Fry and Thompson 
did by measuring the polarization of the 435.8 nm fluorescence at appropri
ate angles. Allowing for these effects along with the transmission efficiencies 
of the polarizers EMI = 0.98 ± 0.01, EM2 = 0.97 ± 0.01, Eml = Em2 = 
0.02 ± 0.005, and the half-angle 19.90 ± 0.3 0 of the collection optics, it was 
predicted on the basis of quantum mechanics that T/QM = 0.294 ± 0.007 
while from the experiment the value T/ = 0.296 ± 0.014 was found, in agree
ment with the quantum-mechanical result but clearly violating Bell's 
inequality. Fry and Thompson also made a least-squares fit of the form 

Figure 7. Level scheme for mercury 
showing the states used in the Fry and 
Thompson experiment. (I8) 
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A + B cos 2c/J + C sin 2c/J to their data and obtained A = 0.242 ± 0.003, B = 
-0.212 ± 0.004, C = -0.003 ± 0.004 in good agreement with the values 
expected quantum mechanically. 

2.5. Aspect, Grangier, and Roger (1981) 

In common with Freedman and Clauser, (14) Aspect, Grangier, and 
Roger(l9) made use of 551.3 nm and 422.7 nm photons from the 4p21S0-
4s4plpl-4s2lS0 cascade of calcium. However, in their case, the calcium 
atoms were excited to the 4p2 ISO state by a nonresonant two-photon absorp
tion process using a krypton-ion laser beam of wavelength 406 nm and a 
dye laser beam tuned to 581 nm, both laser beams being at right angles to 
the calcium atomic beam emitted from a tantalum oven. The laser beams 
had parallel polarizations and were focused at the interaction region to 
provide a source about 60 JLm in diameter by 1 mm long. The density was 
about 3 x 1010 cm-3, which resulted in a typical cascade rate of 4 x 107 S-I. 
The narrow resonance of the excitation process (less than 50 MHz) allowed 
selective excitation of the even 40Ca isotope of calcium, thus preventing the 
strength of polarization correlation from being reduced by the effects of 
hyperfine structure. Feedback loops were used to control the wavelength 
of the tunable dye laser and the krypton-ion laser power output. After 
collection and collimation by a lens system which subtended a half-angle 
of about 32° at the source, the photons from the cascade were analyzed by 
polarizers and filters in much the same way as in previous experiments. The 
polarizers were of the pile-of-plates type each consisting of 10 optically flat 
plates set nearly at Brewster's angle, with efficiencies measured to be 
EMI = 0.971 ± 0.005, Eml = 0.029 ± 0.005, and Em2 = 0.028 ± 0.005. The pul
ses from two photomultipliers were fed in the usual way to a coincidence 
circuit, and the time correlation spectrum displayed on a multichannel 
analyzer. A typical spectrum obtained in this way<20) is shown in Figure 8. 
The asymmetry of the coincidence peak results mainly from the finite lifetime 
(5 ns) of the intermediate 4s4p Ip i state of the cascade. 

This experiment was noteworthy with regard to the strength of the 
source, with coincidence rates of up to 100 S-I allowing measurements of 
1 % statistical accuracy to be obtained in only 100 s counting time. The 
results of these measurements in the form of a graph of N( a, b)/ N( 00,(0) 
against the angle (a, b) between the transmission axes of the two polarizers 
is shown in Figure 9, which also shows the predicted quantum-mechanical 
curve. The agreement between the theory and experiment is clearly excellent. 
Using the experimental results at 22S and 67S gave 'Tl = 0.3072 ± 0.0043, 
in agreement with the quantum-mechanical prediction 'TlQM = 0.308 ± 0.002, 
calculated using equation (2.1), and violating Bell's inequality by more than 
13 standard deviations. 
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Figure 8. A typical time correlation spectrum obtained in the experiment of Aspect et al. (20) 

The asymmetry of the coincidence peak can be accounted for by an exponential decay with 
a lifetime T = 4.7 ns. 
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Figure 9. Normalized coincidence rate as a function of the relative orientation of the trans
mission axes of the polarizers in the experiment of Aspect, Grangier, and Roger.<'9) The solid 
curve represents the quantum-mechanical prediction. 
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Aspect, Grangier, and Roger also used this experiment to test Bell's 
inequality in the form of equation (1.21), -1 :s; S':s; 0, which does not 
assume the rotational invariance required for the Freedman form of the 
inequality. They found S' = 0.126 ± 0.014, violating inequality (1.21) by 9 
standard deviations, and in good agreement with the quantum-mechanical 
prediction SQM = 0.118 ± 0.005. 

Finally, it was observed that moving each polarizer up to 6.5 m from 
the source, i.e., to four coherence lengths of the wave packet associated 
with the lifetime of the intermediate state of the cascade (5 ns), produced 
no change in the results, thus providing further strong evidence against the 
Schrodinger-Furry hypothesis. 

2.6. Aspect, Grangier, and Roger (1982) 

As discussed in Section 1.4, the experiments described until now, in 
which only the N++ signals are detected, depart from the ideal arrangement 
discussed in Section 1.3. To remedy this situation, in 1982 Aspect, Grangier, 
and Roger(21) performed an experiment using the same source as described 
above but with two-channel polarizers instead of the previous one-channel 
pile-of-plates type. Their apparatus was essentially that of Figure 1 with 
the addition of collecting and collimating lenses. Each polarizer, in the 
form of a polarizing cube, constructed using the properties of dielectric 
thin films and antireflection coated, was rotatable about the observation 
axis. This arrangement allowed the quantity E (a, b) defined in equations 
(1.5) and (1.18) to be measured directly in a single run, using a fourfold 
coincidence technique for each of the four relative orientations of the 
polarizers (a, b) = (b, a') = (a', b') = 22S, (a, b') = 67S. In this way Bell's 
inequality could be tested in the form of equation (1.17), - 2 ~ S ~ 2, derived 
in Section 1.3. 

From the experimental results the value S = 2.697 ± 0.015 was found, 
while the quantum-mechanical prediction obtained using equation (2.3) 
for E (a, b) with 10M! = 0.950 ± 0.005, 10M2 = 0.930 ± 0.005, em! = 10m 2 = 
0.007 ± 0.005 gave SQM = 2.70 ± 0.05, in good agreement with the experi
mental result. In addition, as shown in Figure lOa measurement of E (a, b) 
as a function of the angle (a, b) between the transmission axes of the 
polarizers gave close agreement with the quantum-mechanical prediction 
based on equation (2.3). 

As already pointed out in Section 1.4, for the experiment to provide a 
satisfactory test of Bell's inequality it is necessary, of course, to assume that 
the ensemble of pairs actually detected is a true representative sample of 
the ensemble of pairs which are emitted. Although it is not possible to prove 
that the detected sample is unbiased in this way, nevertheless added 
confidence is given to the result of the experiment by the observation that 
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Figure 10. Correlation function E(a, b) as a function of the relative angle (a, b) for the 
experiment of Aspect, Grangier, and Roger. (21) The indicated errors are ±2 standard deviations. 
The dashed curve is the quantum-mechanical prediction. 

the quantity N++ + N __ + N+_ + N_+ was indeed constant as the polarizers 
were rotated about the observation axis. 

It should be noted here that an experiment similar to the one described 
in this section is being carried out by a group at the University of Catania 
who have published(22) descriptions of their apparatus. 

2.7. Aspect, Dalibard, and Roger (1982) 

In all the experiments described so far the orientations of the trans
mission axes of the polarizers have been fixed at various angles during the 
measurements. Thus, it could be argued that, in some way, the polarizers 
and the process of emission of photon pairs could reach some mutual 
rapport by exchange of signals with speed less than or equal to the speed 
of light. Such a possibility could be ruled out if the settings of the polarizers 
were changed in a time which was short compared to the time of flight of 
photons from the source to each polarizer. A possible scheme to achieve 
this ideal was suggested by Aspect(23) in 1976 and the experiment was 
realized in 1982 by Aspect, Dalibard, and Roger. (24) 

In their experiment, which used the same source as described in Section 
2.5, an optical switch rapidly redirected the light incident from the source 
to one of two polarizing cubes on each side of the source, as shown in 
Figure 11. In contrast to the previous experiment described in Section 2.6, 
however, only the transmitting channels of the polarizing cubes were used. 
The switching of the light was effected by what is essentially a Bragg 
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FOURFOLD COINC. 
MONITORING 

Figure 11. The experiment of Aspect, Dalibard, and Roger(24) with optical switches. Each 
switching device (Clo Cn) is followed by two polarizers in two different orientations. The 
arrangement is equivalent to one in which a single polarizer on each side is switched quickly 
between two orientations. L = 12 m. 

reflection from an ultrasonic standing wave in water. The light was com
pletely transmitted without deflection when the amplitude of the standing 
wave was zero, and was almost fully deflected through 10 mrad when the 
amplitude was a maximum. Switching between the two channels occurred 
about once every 10 ns and since this time, as well as the lifetime of the 
intermediate state of the cascade (5 ns), was small compared to L/ c (40 ns), 
where L was the separation between the switches (12 m) and c the speed 
of light, a detection event on one side and the corresponding change of 
orientation on the other side were separated by a space-like interval. The 
results were registered in a fourfold coincidence monitoring system as shown 
in Figure 11 but, because of the necessity to reduce the beam divergence 
in the optical system to achieve good switching, the coincidence rates were 
reduced to only a few per second, with an accidental background of about 
one per second. 

If the two switches work at random, it is possible to write Bell's 
inequality in the slightly modified form of equation (1.21), 

where 

-I':; S".:; 0 

S"= N(a,b) _ N(a,b') +_N---,(_a',"-,b-,-) 
N(oo,oo) N(oo,oo') 'N(oo',oo) 

N(a', b') N(a',oo) N(oo, b) + _ _ _,---,---c.. 

N(oo',oo') N(oo',oo) N(oo,oo) 

(2.4) 



Experimental Investigation of the EPR Question and Bell's Inequality 195 

Although the switching was, in practice, periodic rather than random, the 
switches on the two sides were driven by different generators at different 
frequencies and it was assumed that they functioned in an uncorrelated 
way. Experimentally, it was found that S" = 0.101 ± 0.020 in violation of 
Bell's inequality, while taking into account the solid angle of detection and 
the efficiencies of the polarizers gave the quantum-mechanical prediction 
SQM = 0.112. A measurement of the normalized coincidence rate as a 
function of the relative orientation of the polarizers also showed agreement 
with quantum mechanics, though with a statistical accuracy somewhat less 
than that achieved in the experiments described in Sections 2.5 and 2.6. 

Finally, it should be noted that some criticisms(25-27) have been made 
of the experiments making use of a high-density calcium source, on the 
grounds that there may have been significant effects due to resonance 
trapping. A reply to these criticisms has been given by Aspect and 
Grangier. (20) 

2.8. Perrie, Duncan, Beyer, and Kleinpoppen (1985) 

Perrie, Duncan, Beyer, and Kleinpoppen(28) measured for the first time 
the polarization correlation of the two photons emitted simultaneously by 
metastable atomic deuterium in a true second-order decay process and used 
the results to test Bell's inequality. Single photon decay from the 2S1/ 2 state 
of deuterium is forbidden and, as illustrated in Figure 12, the main channel 
for the spontaneous de-excitation of this state is by the simultaneous 
emission of two photons which can have any wavelength consistent with 
conservation of energy for the pair, the most probable occurrence being 
the emission of two photons each of wavelength 243 nm. Since the decay 
proceeds through virtual intermediate states the effects of hyperfine structure 
can be neglected(29,30) and, hence, the angular and polarization correlations 

10·2eV 

--:r---2P% 

-r-r--2Ph 

LYMAN-ALPHA 
121·6nm 

Figure 12. Level diagram for atomic deuterium, neglecting hyperfine structure (not to scale). 
The two photons, frequencies II, and liZ, can have any energy provided hll, + hllz = 10.2 eV 
(h is Planck's constant). 
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are predicted to be identical to those resulting from a 0-1-0 cascade in an 
atom with zero nuclear spin. 

In the experiment illustrated in Figure 13, a 1 keY metastable atomic 
deuterium beam of density about 104 cm -3 was produced by charge 
exchange, in cesium vapor, of deuterons extracted from a radiofrequency 
ion source. Electric field pre-quench plates upstream from the observation 
region allowed the 2S 1/ 2 component of the beam to be switched on and off 
by Stark mixing the 2S 1/ 2 and 2Pl/2 states and, at the end of the apparatus, 
the beam was fully quenched so that the resulting Lyman-a signal could 
be used to normalize the two-photon coincidence signal. As in previous 
experiments, the two-photon radiation was collected and collimated by a 
pair of lenses, each lens subtending a half-angle of 23° at the source. The 
polarizers were of the pile-of-plates type with 12 plates set nearly at Brew
ster's angle. In order to have a high transmission in the neighborhood of 
243 nm, both the lenses and the plates of the polarizers were made from 
high-quality fused silica with a short-wavelength cutoff at 160 nm. However, 

NEUTRAL ~" 
DETECTOR L 11" J 

- "-i-i" 

O2 

QUENCH +1-1 +11- L 
PLATES --. ............-L""-o<..r~'~ ~ 
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Figure 13. Schematic diagram of the apparatus of Perrie, Duncan, Beyer, and KJeinpoppen. (28) 
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Figure 14. A typical time correlation spectrum for the experiment of Perrie, Duncan, Beyer, 
and K1einpoppen(28) after subtraction of the spectrum obtained with the metastable component 
of the beam quenched. Polarizer plates removed. Time delay per channel 0.8 ns. Total collection 
time 21.5 h. Singles rate with metastables present (quenched) about 1.15 x 104 S-l (0.85 x 
104 s- 1). True two-photon coincidence rate 490h- 1• 

in practice, because of the absorption in oxygen, the short-wavelength cutoff 
occurred at 185 nm which, in turn, implied a long-wavelength cutoff at 
355 nm and hence an observation window between 185 nm and 355 nm. 
The transmission efficiencies of the polarizers were measured to be CM = 

0.908 ± 0.013 and Cm = 0.0299 ± 0.0020. On each side of the source the 
pulses from the photomultipliers were fed to a standard coincidence circuit 
with the time correlation spectra obtained with the metastable atoms present 
and quenched, being stored in separate segments of a multichannel analyzer 
memory and then subtracted at the end of a run. A typical spectrum obtained 
in this way is shown in Figure 14, from which it can be seen that the 
coincidence peak is symmetrical, as expected for a simultaneous emission 
process, in contrast to the situation illustrated in Figure 8 for a cascade 
process. 

The results of measurement are shown in Figure 15, and clearly agree 
with the quantum-mechanical prediction calculated in the usual way taking 
into account the half-angle subtended by the lenses at the source and the 
efficiencies of the polarizers, In addition, using the results at 22.5 0 and 67.5 0 

gave T[ = 0.268 ± O.OlD, in violation of Bell's inequality but in agreement 
with the quantum-mechanical result T[QM = 0.272 ± 0.008. 

In an extension to the above experiment(31,32) the circular polarization 
correlation was measured by placing achromatic quarter-wave plates in 
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Figure 15. Coincidence signal N(a, b)/ N(co, co) as a function of the angle (a, b) between the 
transmission axes of the polarizers for the experiment of Perrie, Duncan, Beyer, and 
KJeinpoppen. (28) The solid curve represents the quantum-mechanical prediction. 

each detection arm between linear polarizer and source. The results obtained 
were consistent with conservation of angular momentum for the photon 
pair along the observation axis but did not violate Bell's inequality. It seems 
most likely, however, that this failure to violate Bell's inequality was due 
to the fact that the retardation of the plates can vary by ± 10% over the 
wavelength range 185-355 nm even for a parallel light beam while, in the 
experiment, the light rays from the source, after collimation, could be at 
an angle of up to ±2° to the observation axis. 

2.9. Hassan, Duncan, Perrie, Beyer, and Kleinpoppen (1986a) 

As we have seen in Sections 2.1 to 2.8, the vast majority of the various 
experiments have agreed with quantum mechanics and have violated Bell's 
inequality. However, as pointed out in Section 1.4, to reach this latter 
conclusion it is necessary to make some additional assumption regarding 
lack of bias or enhancement in the detection process. The first assumption 
of this kind was proposed by Clauser, Horne, Shimony, and Holt(5.J in the 
form: If a pair of photons emerges from the a polarizers the probability of 
their joint detection is independent of the orientations a and b of the 
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Figure 16. Arrangement of apparatus for the experiment of Hassan et alY4) with A/2-plate 
in place. The transmission axis of the right-hand linear polarizer is rotated through an angle 
0, the fast axis of the ,1./2 plate through 0/2, relative to the x axis. 

polarizers. Subsequently, Clauser and Horne(J3) made the assumption, 
called by them the "no-enhancement" assumption, in the form: For every 
atomic emission, the probability of a count with a polarizer in place is less 
than or equal to the probability with the polarizer removed. 

An attempt to test the assumption in the form given by Clauser, Horne, 
Shimony, and Holt was made by Hassan, Duncan, Perrie, Beyer, and 
Kleinpoppen (32,34,35) in an extension to the experiment described in Section 
2.8, in which a half-wave plate was inserted in one detection arm of the 
apparatus between polarizer and photomultiplier as shown in Figure 16. 
By rotating the fast axis of the half-wave plate through half the angle of 
rotation of the transmission axis of the linear polarizer, it was possible to 
ensure that, insofar as it is acceptable to think in terms of individual photons 
emerging from the polarizers, the planes of polarization of the two photons 
were always parallel just prior to detection in the photomultipliers. 

The results of the experiment are given in Figure 17 from which it is 
clear that, within the limits of experimental error, the results are in agreement 
with quantum mechanics. In addition, it was found that T/ = 0.271 ± 0.021, 
violating Bell's inequality and agreeing with the quantum-mechanical pre
diction T/ = 0.272 ± 0.008 found previously. 

This experiment supports the assumption that there is no enhancement 
in the detection process but, because it is based on the idea that the Clauser, 
Horne, Shimony, and Holt statement can be put in terms of the polarization 
state of emerging photons, it does not rule out completely the possibility 
that enhancement may occur as a result of the settings of the polarizers 
themselves. It is quite easy, for example, to imagine that the linear polarizers 
may endow the photon pairs with properties, leading to enhanced detection, 
which are unaffected by passage through a half-wave plate. 

2.10. Hassan, Duncan, Perrie, Beyer, and Kleinpoppen (1986b) 

In a further experiment(32.34.35) making use of the same apparatus as 
in Section 2.8, an additional linear polarizer was inserted in one arm of the 
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Figure 17. Coincidence signal R(IJ) as a function of the angle IJ between the transmission 
axes of the polarizers in the experiment of Hassan et aI., (33) relative to Ro, the coincidence 
signal with the polarizer plates removed, and the A/2-plate in place. The solid curve represents 
the QM prediction using the median values for EM, Em' 

detection system, as shown in Figure 18. The orientation of polarizer a was 
held fixed, while polarizer b was rotated through an angle {3 in a clock-wise 
sense and polarizer a' through an angle a' in the opposite sense. The ratio 
R({3, a')! R({3, (0) was then measured as a function of a', for various angles 
{3, where R({3, a') was the coincidence rate with both polarizers in place 

Figure 18. Arrangement of apparatus for the three-polarizer experiment of Hassan et al. (31.33) 

The orientation of polarizer a is fixed with its transmission axis parallel to the x axis, while 
the transmission axes of polarizers b and a' are rotated, respectively, through angles f3 and 
Ct' relative to the x axis. 
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and R(f3, (0) the coincidence rate with the plates of polarizer a' removed. 
The results for f3 = 0° are shown in Figure 19, and are in good agreement 
with the corresponding quantum-mechanical prediction. The experiment 
for f3 = 0° can, in fact, be considered to be a test of Malus' law for the 
transmission of polarized light from a very weak source through polarizer a'. 

This three-polarizer experiment was, originally, suggested by Garuccio 
and Selleri(36) in order to test a local realistic model which included the 
possibility of enhanced photon detection. In their model a photon has, in 
addition to a polarization vector I, a detection vector A. which is unaffected 
by passage through a linear polarizer, the angle between 1 and A. determining 
the detection probability for a photon. Their model is consistent with 
single-photon physics and all two-photon polarization correlation measure
ments so far described, but predicts a discrepancy with quantum mechanics 
in the case of the three-polarizer experiment. In particular, for various 
angles f3, the model sets the upper limit on the ratio R(f3, ex')/ R(f3, (0) 
shown in Figure 19 by the broken line. The measurements at f3 = 0° do not 
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Figure 19. Variation of the ratio R(f3, a ' )/ R(f3, 00) as a function of ot' in the experiment 
of Hassan et al.m .33 ) The points marked 0 correspond to the results from 13 = 0°. The solid 
curve represents the QM prediction for 13 = o. The broken curve shows the upper limit for 
the ratio set by the Garuccio-Selleri model for various angles 13. The single point, marked as 
., is the result of measurement at B = 33°. 
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suffice to provide a conclusive test between quantum mechanics and the 
Garuccio-Selleri model, but the single result at f3 = 33° is clearly at variance 
with such a model. 

3. Experiments Utilizing Electron-Positron Annihilation 
Radiation and Proton Spin 

When a positron annihilates at rest, conservation of linear momentum 
requires that at least two photons with equal and opposite momenta are 
created. Wheeler(37) first showed that the polarization of the two photons 
should be correlated. Yang(38) showed that this two-photon polarization 
correlation is the consequence of invariance under rotation and parity 
transformation, and the appropriate form of the state vector is that given 
in equation (1.2). In contrast, however, to the situation in the visible and 
ultraviolet part of the spectrum, there are no standard optical tools such as 
polaroids, birefringent crystals, or quarter-wave plates available for a 
polarization-correlation measurement of the high-energy l' rays emitted in 
positron annihilation. Instead, the anisotropy of Compton scattering has 
been successfully applied to measure the linear polarization correlation of 
the annihilation radiation. Compton scattering acts like a linear-polarization 
analyzer for which Thomson scattering is the classical analogue. When a 
linearly polarized electromagnetic wave interacts with an electron, the 
electron vibrates in the direction of the electric vector and radiates like a 
dipole, so that the scattered l' rays have maximum intensity in a direction 
perpendicular to the electric vector of the incoming radiation. 

In the case of the two-photon annihilation radiation, which is polarized 
at right angles, the Compton radiation from two Compton scatterers would 
tend to scatter in perpendicular directions. Various measurements of polariz
ation correlations of annihilation radiation have been reported in the 1940s 
and 1950s. These measurements were mainly concerned with determining 
asymmetry parameters for Compton scattering angles. However, Bohm and 
Aharonov(3) made use of the results of Wu and Shaknov to show that 
equation (1.2) did indeed describe the two-photon system correctly and to 
provide evidence against the idea discussed by Schrodinger(6) and Furry(7) 
that the state vector might spontaneously change its form. Measurements 
of polarization correlation as tests of quantum mechanics versus local 
realistic theories were not reported until the 1970s. 

3.1. Kasday, Ullman, and Wu (1975) 

As an example of such an experimental arrangement for the linear 
polarization correlation of annihilation radiation, we refer to Figures 20-22 
taken from Kasday et al. (39) Positrons from a 64CU source annihilate between 
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Figure 20. Schematic view of the apparatus of Kasday et al. (39) for measuring the polarization 
of the e + e - annihilation photons. The positron source and the absorber are located in the 
center. The annihilation photons travel in opposite directions and strike the Compton scatterers 
S, and S2' The scintillation detectors D, and D2 detect the Compton scattered l' rays. <p, and 
1>2 are the azimuthal angles of the scattered photons. 

two Compton scatterers. The main characteristic of the 64CU decay scheme 
is illustrated in Figure 21. The {3+ activity consists of a 19% branching ratio 
and about 1 MeV "Y rays accompanying 0.5% of the positron emission. The 
positrons of the radioactive source were stopped and annihilated in the 
source itself and in a thin layer of the surrounding holder material (Figure 
22). The annihilation "Y rays were emitted in all directions; the vertical two 
opposite directions for the coincident two-photon detection were selected 
by a lead collimator which is shown in Figure 22. The Compton scatterer 
was of plastic material of conical shape, surrounded by a slightly larger 



204 

1.34 MeV 

19%P+ 

430f0E:C 

12.8 h 

6~CU 
19 

A. 1. Duncan and H. Kleinpoppen 

Figure 21. Decay scheme of ""Cu. 
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Figure 22. Collimator, source holder, and source of the two-photon annihilation experiment 
of Kasday et al. (39) 
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conical light reflector coated on the inside with MgO for more efficient 
diffuse reflection. The Compton scattered photons were detected by energy
sensitive scintillation detectors (2 in. long NaI crystals) with bi-alkali 12-
stage photomultipliers. Since the kinematics of the Compton scattering give 
a definite relation between the electron scattering angle 8 and the photon 
energy, one can write the probability of finding the two Compton scattered 
photons as a function of E1, E2 , 4>1, and 4>2 in the form 

1 
P(EIo E2, 4>1, 4>2) = -2 F(E1)F(E2)[1 - m(E1)m(E2 ) cos 2(4)2 - 4>1)] 

41T 

(3.1) 

where EI and E2 are the two photon energies, while 4>1 and 4>2 are the 
azimuthal angles as shown in Figure 20. The quantity F(E) is the usual 
Klein-Nishina cross section for Compton scattering, and m(E) = 
-sin2 8/X(Eo, E), X(Eo, E) = Eo/ E + E/(Eo - sin2 8), with Eo the energy 
of incident photon. The 4>-dependence of the coincident counting rate 
according to quantum mechanics is therefore of the form A
B cos 2(4)2 - 4>1)' 

Instead of measuring the coincidence rate as a function of the azimuthal 
angle (4)2 - 4>1)' Kasday et al. (39) measured the quantity R defined by 

(3.2) 

where Nss is the number of times the two photons Compton-scatter, N the 
number of times the two photons Compton-scatter and both photons are 
detected, n l the number of times the two photons Compton-scatter and 
only photon 1 is detected, n2 the number of times the two photons Compton
scatter and only photon 2 is detected, while 4>1 and 4>2 are the true azimuthal 
angles at which the slits are positioned. 

Quantum mechanics, local hidden-variable theory, and the Schrodin
ger-Furry (or Bohm-Aharonov) hypothesis predict the following simple 
relations for the quantities A and B: 

A = 1, B = m1 m2 if quantum mechanics is valid 

A = 1, B = m1m2/J'i if local hidden-variable 
theory is valid 

A = 1, B = m1m2/2 if the Schrodinger-Furry 
hypothesis is valid (3.3) 

Kasday et al. (39) chose four energy regions of the two Compton-scattered 
photons in order to measure the coefficient B; Figure 23 illustrates the 
energy regions expressed in units of the electron mass. Figures 24 and 25 
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Figure 23. The four energy regions chosen by Kasday et al. (39) to study the cosine dependence 
of the quantity R in their two-photon annihilation experiment. 

show results for the quantity Rand B. The measured angular correlation 
function R (Figure 24) appears to be fitted very well to the predicted form 
A - B cos 24>, where 4> = 4>2 - 4>1, using the Klein-Nishina formula and 
the known geometry of the apparatus. Taking into account limitations with 
regard to an ideal geometry of the experiment, A is extracted from the fit 
to the experimental data as A = 1.01 ± 0.05, which is consistent with the 
value unity. The B values extracted from experimental data at the energies 
of Figure 23 are shown in Figure 25 and compared to the predictions of 

1.5.------,.------,.------,------,------,--------, 

R 

1.0 

0~970-----~6~0-----~3~O-----OL----~3LO-----6LO--------~90 

",(degrees) 

Figure 24. Plot of experimental data for R versus the relative azimuthal angle </> = </>1 - </>2 
in the two-photon annihilation experiment of Kasday et al. (39) The data is fitted to the function 
A - B cos 2</>. The size of the data points 0 represents a typical ±lu uncertainty. 
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Figure 25. Experimental data for the quantity B from the two-photon annihilation experiment 
of Kasday et al. (39) for the four energy regions of the two photons indicated in Figure 23. For 
comparison, quantum predictions (QM) and the upper limits on B for Bell's inequality and 
the Schrodinger-Furry (or Bohm-Aharonov) hypothesis are included for the energy regions 
outlined in Figure 23. Note that according to the Schrodinger-Furry hypothesis, quantum 
mechanics should be valid for particles (or photons) which are close together. However, after 
the photons are some distance apart from each other their state vector would change into a 
product of states for individual photons. A measurement on photon 1 would affect the state 
vector of photon 1 but not the state vector of photon 2. 

equation (3.3). For each energy, the experimental value of B agreed with 
quantum mechanics and exceeded the upper limits from Bell's inequality 
and from the Schrodinger-Furry (or Bohm-Aharonov) hypothesis. 

3.2. Faraci, Gutkowski, Notarrigo, and Pennisi (1974) 

While the experiment of Kasday et al. (39) gives most clear evidence for 
a quantum-mechanical description of the two-photon annihilation of elec
tron-positron pairs, there is disagreement with the experiment of Faraci et 
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Figure 26. Schematic diagram of the experimental arrangement for the two-photon annihilation 
experiment to Faraci et af.C40 ) The source S consists of a 22Na positron emitter enclosed in a 
plexiglas container acting as annihilator; S, and S2 are plastic scintillators acting as Compton 
scatterers; R, and R2 are Nal scintillators. 
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Figure 27. Normalized angular correlation function R(4)) = N(60°, 60°,4»/ N(60°, 60°, 0°) for 
the two-photon annihilation experiment as a function of the relative azimuthal angle 4>. Upper 
curve: quantum-~echanical prediction corrected for finite geometry of the experiment, Inter
mediate curve: largest correlation allowed for Bell's inequality corrected for finite geometry. 
Lower curve: prediction based upon the Schriidinger-Furry (or Bohm-Aharonov) hypothesis. 
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al. (40) on the same process. Figure 26 shows their experimental arrangement. 
The source S is a 22Na positron emitter enclosed in a plexiglas container 
acting as annihilator. SI and S2 are plastic scintillators acting as Compton 
scatterers, R1 and R2 are NaI(Tl) scintillators. Faraci et al. from 
Catania measured the coincidence count rates N( 810 82, ¢» between the 
four scintillators. Figure 27 gives as an example the ratio R(¢» = 

N(60°, 60°, ¢»/ N(60°, 60°, 0°). The interesting feature of these data is that 
they significantly disagree with quantum mechanics and tend to agree with 
Bell's upper limit. The Catania group has also varied the distance between 
the detectors in order to test any influence possible from distance. Apart 
from symmetrical flight distances (at 5.5 cm, 10 cm, and 20 cm distances 
from the source to detector) asymmetrical flight paths of (6 cm, 13 cm) and 
(5.5 cm, 34 cm) have been reported (see Figure 28) for the anisotropy factor. 
The surprising "distance effect" (a decrease in the photon polarization 
correlation) cannot distinguish whether or not the effect depends on the 
difference of the flight paths or on the relative distance of the scattering 
events. 

2.0 

R 
QM 

r I BeLL 
1.5 :r! 1 

BA i 

1.0 
NC 

o 10 2()i 30 [em] 

Figure 28. Anisotropy ratio R at 0, = O2 = 60° as a function of the difference in the flight 
paths of the two annihilation photons in the experiment of Faraci et af. (40) Asymmetrical 
measurements for flight. path differences have been made for the detector positions at (6 em, 
13 em) and (5.5 em, 34 em). The three data points for symmetrical flight paths (abscissa 0) 
have been taken at 5.5 em, 10 em, and 20 em. 
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3.3. Wilson, Lowe, and Butt (1976) 

The puzzling distance effect in the experiment of Faraci et al. (40) has 
stimulated further investigations, and Figure -29 shows the results of this 
distance effect carned out by Wilson et al. (41) In their measurement, both 
the symmetrical as well as the asymmetrical anisotropies appear to be 
distance-independent up to 2.45 m and they are also in agreement with 
quantum mechanics. The resolving time of the coincidence apparatus of 
Wilson et al. (41) was 1 ns, which corresponds to a spread of III = cllt = 0.3 m 
for the photons. Accordingly the two polarization detectors can be con
sidered as "space-like separated" for source-polarimeter separation larger 
than 0.3 m. More recently, in an interesting extension to this experiment, 
Paramananda and Butt(42) have shown there is no change in the anisotropy 
factor for distances between the detectors as large as 24 m. With a resolving 
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Figure 29. Measured anisotropy in the two-photon annihilation experiment by Wilson el al. (41) 

as a function of the source-polarimeter separation. The upper results were obtained with the 
NaI scintillation crystals separated by a distance d = II cm from the Compton scatterer: the 
results associated with the straight line were obtained with d = 4.9 cm. For both these cases 
the positron source was placed symmetrically between the Compton polarimeters, while for 
the results marked X and Y the source was positioned asymmetrically with the separations of 
the two polarimeters from the source being indicated. 
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time for the detection electronics which could be made as small as 100 ps, 
this experiment gave the largest space-like separation so far achieved in 
such a measurement. 

3.4. Bruno, d'Agostino, and Maroni (1977) 

Another study of the polarization correlation of annihilation radiation 
has been reported by Bruno et al. (43) applying the 22Na positron source. 
Again their results are in agreement with quantum mechanics and they did 
not find a decrease of the polarization correlation in a range of distances 
between the Compton scatterers as wide as 10 photon "coherence lengths" 
resulting from the finite resolving time of the apparatus. 

3.5. Lamehi-Rachti and Mittig (1976) 

In a unique experiment of its kind, low-energy proton-proton scattering 
has been applied by Lamehi-Rachti and Mittig(44) as a test experiment 
between quantum mechanics and Bell's inequality. The basic idea behind 
the experiment is the spin correlation of two spin-! particles in a temporary 
singlet state. During the collision between the two protons the interaction 
may dominantly be a "singlet" scattering process (two spins of the protons 
antiparallei). After the collisional interaction the two protons would separate 
from the singlet state, so that a possible change of the initial-spin antiparallel 
spin correlation can be tested at a certain distance between the protons. In 
a reaction process we may express this situation as follows: 

p)(j) + P2(t) --~) p)(j) + P2(t) 
singlet 
state 

In practice such a spin correlation experiment can be carried out by 
means of a twofold combined double-scattering experiment as indicated in 
Figure 30. A beam of 13.2 or 13.7 MeV protons hits a target of hydrogen. 
After scattering at Olab = 45° (Oem = 90°) the protons strike a carbon foil 
and are scattered for' a second time. Four detectors for the doubly scattered 
protons measure the following coincidence count rates: N LL , N RR , N LR , 

and N RL , where NLL are the coincidences between the left counters LI and 
L 2 , etc. The detectors of one left-right scattering analyzer are in the scatter
ing plane while those of the other left-right scattering analyzer are rotated 
by an angle 0 round the axis defined by the protons entering the analyzer. 
As a test quantity Lamehi-Rachti and Mittig(44) defined the following 
correlation function which is related to the spin polarization correlation: 
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H target 

Figure 30. Schematic experimental arrangement for the measurement of the spin correlation 
in proton-proton double scattering. 

where PC a, b) is the probability of one proton having its spin in the direction 
a and of the other having its spin in the direction b; PI.2 and T1,2 are the 
analyzing power and transmission of the analyzers. 

Indeed, the left-right scattering asymmetries of each scattering analyzer 
are directly related to the transverse spin polarization of the protons with 
regard to the plane of the second scattering. Accordingly, the device of the 
proton double-scattering scheme in Figure 30 is analogous to the double 

DETECTORS STERN -GERLACH STERN GERLACH DETECTORS 

Figure 31. Double Stern-Gerlach experiment for a test of Bell's inequality. The source consists 
of particles with] = 0, decaying into two particles with j = ~. 
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Stern-Gerlach experiment of Figure 31, which is Bohm's version of the 
EPR paradox. In this Stern-Gerlach experiment, a source of particles in 
the intermediate state] = 0 disintegrates into two kinds of particles which 
are moving in opposite direction. After the separation each particle has 
spinj = L so thatl = jl + j2 = 0 is valid for a correlated pair of disintegrated 
particles. The corresponding correlation function for detected particles in 
coincidence after passing the Stern-Gerlach magnets with spin up (+ sign) 
and spin down (- sign) would be 

where N = N++ + N __ + N+_ + N_+. 
Quantum mechanics predicts a correlation function of 

P(a, b)QM = (0"1· a 0"2 • b) = -cos(a, b) = -cos 8 

for the two spins in the direction a or b with an angle 8. This relationship 
should also be valid for the proton double-scattering experiment apart from 
a small contribution due to triplet scattering: Pexp ( 8) = - Cnn cos 8 where 
Cnn is the Wolfenstein(45) parameter, which is Cnn = -0.95 ± 0.015 according 
to Catillon et al. (46) for the energy in the experiment of Lamehi-Rechti and 
Mittig. (44) The small difference of Cnn from -1 is attributed to the triplet 
contribution in the proton-proton scattering. To relate Pexp to the actual 
measured correlation P meas(a . b), one has to take into account the analyzing 
power of PI and P2 of the two analyzers and a geometric correlation between 
the two detectors Cg ; this gives the final expression 

P (. b) = NLL + NRR - NRL - NLR 
meas aNN N 

LL + RR + NRL + LR 

Measuring PI and P2 and Cg gives Pexp ( a . b). 
Table 1 gives results for the measured correlation function P meas( 8) 

for two target densities. From these data and the measured values for PI, 
P2 , and Cg , the quantity Pexp (8) has been calculated by means of equation 
(3.5). Figure 32 shows the results for Pexp ( 8) and a comparison for the 
quantum-mechanical prediction and the limits following Bell's inequality. 
It can be seen from this figure that the spin correlation of the proton-proton 
scattering gave good agreement to quantum mechanics, while the results 
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Table 1. Final Results for the Measured 
Correlation Functions P meas( 8) as a Function of 
the Angle 8 for 18.6-mg/ cm2 and 29-mg/ cm2 

Targets. Errors Are Statistical One-Standard-
Deviation Errors 

Pmeas(O) 
0 (1S.6 mgjcm2 ) 

0° -0.40±0.05 
30° -0.3S±0.04 
45° -0.29±0.04 
60° -0.24±0.04 
90° -0.01±0.03 

Pexp(O) 

o· 

! Exp 
OM 

X Bell's limit 

15" 30· 

)( 

45" 

Pmeas(O) 
(29 mgjcm2 ) 

-0.3S±0.025 
-0.27±0.025 
-0.26±0.023 
-0.17 ±0.025 
-0.03±0.04 

60· 75" 

o 
c;o. 

Figure 32. Experimental results for the spin correlation function Pexp ( 0) of the proton-proton 
double-scattering experiment carried out by Lamehi-Rachti and Mittig,(44) in comparison to 
the limits of Bell's inequality (x) and quantum mechanics (QM). 
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are in contradiction with the limiting values following Bell's inequality. The 
authors claim that the experimental spin correlation data contradict the 
limits of Bell with a statistical significance of 10600' By applying the predic
tion of quantum mechanics for Pexp( 8) the Wolfenstein parameter enn 

becomes enn = -0.97 ± 0.05, in good agreement with the value of Ayy = 
enn = -0.95 ± 0.015 of Catillon et al.(46) 

4. Discussion and Proposals for Future Experiments 

From the discussions in Sections 2 and 3 it is clear that, with two 
exceptions, the results of experiment confirm the validity of quantum 
mechanics and violate Bell's inequality, thus providing prima facie evidence 
against a local realistic view of the world. The experiments also support 
the conclusion that there is no spontaneous change in the form of the state 
vector of the kind discussed by Schrodinger and Furry, at least over the 
distances so far investigated. However, objections to these conclusions have 
been raised: In the case of the atomic physics experiments (Section 2) where 
the efficiency of the polarizers is high, these objections have centered on 
the low efficiency of detectors for photons in the ultraviolet and visible part 
of the spectrum, which leaves open the possibility that the observed polariz
ation correlation may be the result of some process of enhancement in the 
detection process itself. On the other hand, for the positronium annihilation 
and spin experiments, where the efficiency of detection is high, polarization 
and polarization correlation must be inferred indirectly from the results of 
a secondary scattering experiment. This fact has allowed the results to be 
explained easily in terms of ad hoc local realistic theories. Also, since in 
order to analyze the results in this type of experiment the validity of quantum 
mechanics itself must be assumed, it is questionable, logically, if such 
experiments can be used to test quantum mechanics. 

Given the above objections it would clearly be desirable to carry out an 
experiment with high-efficiency polarizers and high-efficiency detectors. To 
achieve such an ideal, in 1981 Lo and Shimony(47) suggested an experiment 
in which the spin of sodium atoms resulting from the dissociation of sodium 
dimers (Na2) would be analyzed by Stern-Gerlach magnets and hot-wire 
detectors. An experiment of this kind would, of course, be a realization of 
the type of experiment originally suggested by Bohm(2) in 1951. However, 
as Shimony(48) himself pointed out, the experiment may not be possible 
with sodium because of the difficulty in designing the Stern-Gerlach magnets 
in such a way that the sodium atoms will not precess excessively prior to 
entering the analyzer and, also, because of the loss of correlations of the 
electronic spins of the atoms in transit due to coupling with the nuclear 
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spins. In relation to EPR experiments making use of spin, it is probably 
worth noting at this point that it is not considered possible to use Stern
Gerlach magnets to carry out a spin analysis of free electrons, since the 
splitting produced by the inhomogeneous magnetic field would be less than 
the uncertainty in the deflection predicted by Heisenberg's uncertainty 
relation. 

Several proposals have also been made for EPR experiments involving 
the decay of elementary particles into two components. So far, these experi
ments are only in preparation or in a state where very preliminary results 
have been reported. A particularly interesting example, discussed by 
Selleri(49) and Six, (50) proposes the use of the neutral kaon pair KO KO 
resulting from the annihilation of a proton-antiproton pair according to 
pp ~ KOKo ~ KsKL' where Ks = (KO + KO)/J2 and KL = (KO - KO)/J2 
represent, respectively, the long-lined and short-lined mass eigenstates of 
kaons. By applying Einstein locality to the decay of the fPC = 1-- state into 
a pair of neutral kaons, Selleri(49) predicted a rate for double Ko observation 
which is about 12% lower than that predicted by quantum mechanics. 
Possible experiments in which the neutral pairs KO KO, KO KO, KO KO are 
converted into K± by the strong interaction have been discussed by Six. (50) 
Recently Datta and Home(51) have pointed out that an EPR experiment 
might be carried out by examining the decay of the spin-l vector meson 
')'(4s) into a pair of neutral pseudo scalar mesons BO fio. Yet another sugges
tion is that ofTixier(52) and Tornquist(53) to observe the reaction f / rf; ~ Ai\. ~ 
7T-P7T+P, in which the polarization properties of the AA particles are related 
to the angle between detected 7T± pairs. Preliminary measurements by the 
DM2 Collaboration(52) have been made of the correlation between the 
momenta of 7T± pairs and, within the limited statistical accuracy so far 
obtained, the results are consistent with the quantum-mechanical predic
tions. 

The EPR argument, as we have seen, hinges on the form of the state 
vector, given in equation (1.1) or (1.2), which is a coherent superposition 
of two states of joint polarization for the two photons. Thus, any demonstra
tion regarding the existence of such coherent superposition states in quan
tum mechanics is of considerable general interest. In this context it is worth 
mentioning the neutron interference experiments of Summhammer, 
Badurek, Rauch, Kischko, and Zeilinger, (54) the experiment involving the 
photodissociation of calcium molecules (Ca2) carried out by Grangier, 
Aspect, and Vigue, (55) and the proposal by Leggett(56) that such coherent 
superpositions may also be shown to exist for macroscopic states of super
conducting devices. In any event, it is clear that experimental work related 
to the EPR question and, more generally, the range of validity of quantum 
mechanics itself will continue to occupy the minds and rouse the passions 
of physicists everywhere. 
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Rapisarda's Experiment: Testing 
Quantum Mechanics versus Local 

Hidden- Variable Theories with 
Dichotomic Analyzers 

LORENZO PAPPALARDO AND FILIPPO FALCIGLIA 

1. Introduction 

Any decision about the validity of different physical theories can be taken 
only if it is possible to realize an experiment whose results can be directly 
compared with the different theoretical predictions. Owing to the lack of 
such an experimental check, the debate between the supporters of the 
orthodox formulation of the quantum mechanics (QM) and those who 
believed QM incomplete and therefore trusted in the possibility of complet
ing it causally within a realistic vision of the physical world has been for 
a long time a comparison between ideologies rather than between different 
physical theories. 

A considerable role against the QM's causal completion has been played 
by the theorem of von Neumann(I) whose validity, however, rests on some 
axioms not necessarily required by the properties of physical objects. Indeed 
Bohm and de Broglie(2-4) showed the existence of physical causal models 
which reproduced the statistical results of QM, so contradicting the con
sequences of von Neumann's theorem. However since 1965, thanks to Bell's 
work, (5) the physicists have the theoretical tools for planning experiments 
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suitable to discriminate between QM and local hidden-variable theories 
(LHVT). 

Bell's original paper gave rise to a considerable number of theoretical 
works, (6-10) which tackle the problem both in the deterministic and prob
abilistic hidden-variable theories (DHVT and PHVT) frame, and are today 
known as "Bell's inequalities" (BIn) or "Bell's theorem." Consequently, 
some experiments(II-14) were carried out whose interpretation however 
needs additional hypotheses, experimentally not verifiable, for taking into 
account the finite efficiencies of the detector. These hypotheses, although 
"physically reasonable," are not strictly necessary from a theoretical point 
of view and limit the BIn validity which, at least in an ideal case, should 
discriminate definitively between QM and LHVT. 

These first experiments, based on polarization-correlation measure
ment on the photons emitted in atomic cascades, although very accurate, 
suffered both from the additional hypotheses and from experimental prob
lems, e.g., the background noise due to the excitation mechanism of the 
cascade. That led Rapisarda, in the late 1970s, to propose an experiment 
requiring only one additional hypothesis, based on the use of dichotomic 
polarization analyzers, and using the latest experimental techniques.(15) 

2. Ideal Experiments with Dichotomic Analyzers 

A physical system leading to the Einstein-Podolsky-Rosen paradox, (16) 

and to which Bell's argument can be applied, is that comprising two parts, 
having somehow interacted in the past or having a common origin, but 
"separated" at the time when a measurement is made on either part. A 
couple of electrons in spin singlet state, as in the Bohm Gedankenexperi
ment,(2) or a photon couple emitted in an atomic cascade, are examples of 
such a physical system. The latter is the most suitable for an experimental 
realization. 

We shall now consider the ideal experiment depicted in Figure 1. In 
the source S photon couples originate in an angular-momentum singlet state 
created, e.g., by an atomic cascade J = 0 ~ 1 ~ o. 

If we consider only photons 'Y A, 'YB which travel in opposite directions 
along the z axis, the state of the system (photon couple before its interaction 
with the measuring apparatus) is described by QM, in the even-parity case, 
by the second-kind state vector: 

(1) 

where I R;)(IL;)) is the right- (I eft- ) circular polarization state along the z 
axis for the photon 'Y;(i = A, B). 
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Figure 1. Scheme of the experiment with dichotomic analyzers. 

An equivalent description employs linear polarization states along the 
x and y axes: 

(2) 

Let C j be ideal dichotomic linear polarization analyzers, set at angles 
({Ij with respect to the x axis. Ideal means that a photon 'Yj, linearly polarized 
at an angle cl>j with respect to the x axis, will be transmitted along the 
ordinary path (+) of the analyzer Cj with probability cos 2( ({Ij - cI> j ) or along 
the extraordinary path (-) with probability sin2( ({Ij - cl>j). 

We let OJ be photon detectors and ideal too, i.e., they have efficiency 
equal to one and independent of the impinging photon polarization. 
Therefore every photon interacting with its measuring apparatus (A or B) 
will certainly be detected by 07 or OJ. 

The measured physical observable OJ is the photon "linear polariz
ation": it is a dichotomic random variable with mean value equal to zero 
if it is assigned the value + 1 when the photon is detected by 07, and -1 
when it is detected by OJ. It should be noted that the event "0," namely 
absence of detection, does not exist in this ideal experiment. 

The observable "polarization product" can be defined as the product 
of the single-photon polarizations and can be described in a similar manner. 

Finally, we define the correlation function between the polarizations 
of photons 'Y A and 'YB as the mean value of the polarization products minus 
the product of the mean values: 

E«({IA, ({IB) = (OA«({IA)OB«({IB» - (OA«({IA»(OB«({IB» = (OA«({IA)OB«({IB» 
(3) 
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In the QM description the mean value (expectation value in the state 
11/1» is 

(4) 

where angles 'P A and 'Pa are measured as shown in Figure 2. 
In the PHVT it is assumed that: 

PI. To each photon couple ('PA, 'Pa) emitted in S is associated the 
value A E A, where A is the set of values of the hidden variable A. 

P2. p(A) is the normalized density function of A in A (fA p(A) dA = O. 
P3. The probability that the value j is obtained as the result of a 

measurement on the first photon and the value k on the second 
one is 

P(j, kl 'PA, 'Pa, A) = P(jl 'PA, A)· P(kl 'Pa, A) (j,k = -1,+0 (5) 

where the probabilities on the right-hand side refer to measurement 
on the single photons 'Y A and 'Ya. 

Therefore 

·[P(1I'Pa,A)-P(-II'Pa,A)]p(A)dA (6) 

Obviously IE('PA, 'Pa)1 ~ 1, because all the quantities in the square brackets 
have modulus less than or equal to one. 

I'A I's 
"--+-__ -*,--1---1 

S 

Figure 2. CHSH scheme (single output analyzers experiment). 
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We note that, given four numbers a, b, a', b' with modulus ~ 1, it can 
easily be shown that lab - ab'l + la'b + a'b'l ~ 2, whence 

f (lab - ab'l + la'b + alb'l)p(A) dA ~ 2 

Then the function 

satisfies the inequality 

C PHVT ~ 2 (8) 

Also, using the QM correlation function (4), it is possible to verify that 

(9) 

when 'PA + 'PB = cp'p. + 'PB = 'P'p. + 'P~ = 22S and 'PA + 'P~ = 135°, so violat
ing inequality (8). 

In order to verify PHVT (8) against QM (9), the predicted values must 
be compared with the results of experimental measurements. In the experi
mental frame using dichotomic analyzers it is possible to measure simul
taneously the four numbers N++, N+_, N_+, N __ of coincidences between 
the outputs of the four detectors. 

The experimental frequencies of the event (j, k) are given by 

and the correlation function will be 

(10) 

On performing measurements at various angles, function C in equation (7) 
can be evaluated and compared with the predictions of PHVT (8) and QM 
(9). 
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3. Experiments Based on CHSH and CH Configurations 

Clauser, Horne, Shimony, and Holt (CHSH)(6) demonstrated a BIn, 
valid in the DHVT frame, which takes into account the finite (i.e., < 1) 
detector efficiency. To do this they introduced the following hypothesis: 

11. The probability of a joint detection of a photon couple emerging 
from the analyzers is independent of lP A and lPB' 

This assumption, though "physically reasonable," is not at all experi
mentally verifiable but gave an impulse to the development of experimental 
checks. 

The first experiments performed (I 1-14) were based on the CHSH scheme 
outlined in Figure 2. The analyzers used have a single output (e.g., polaroids 
or piles-of-plates), so the only experimental information is: "the photon 
has been detected by DA (DB) on the ordinary channel." The lack of 
information on the extraordinary channel compels one to perform stunts. 
Indeed, it is necessary to perform coincidence measurements with and 
without the analyzers in place and to employ the following hypotheses: 

12. The density distribution p(A) and, in general, the flux of the 
analyzed photon couples is the same whether or not the analyzers 
are in place. 

13. The source is stable during the experiment and emits at a constant 
rate. 

Hypothesis 11 is replaced by the following: 

14. The detection probability of a photon when the analyzer is in place 
is always less than or equal to that when the analyzer is removed. 

By means of these hypotheses it is possible to derive a BIn that is 
experimentally testable. We note that both the impossibility of experi
mentally checking the above assumptions and, moreover, the necessity of 
performing measurements with and without the analyzers, corresponding 
to different physical situations, significantly lowers the validity of these 
experiments. 
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4. From Ideal to Real Experiments with Dichotomic Analyzers 

We shall now analyze the problems to be considered before planning 
a "real" experiment. They can be divided in two main classes: 

Cl. The problems concerning the quantum-mechanical purity of the 
photon-couple state. 

C2. The problems raised by the imperfect behavior of the analyzers 
and of the detectors. 

As regards the first class of problems we note that, if the photon-couple 
state is not a pure singlet state of the type (1), but some statistical mixture 
of it and other states having a different structure (e.g., odd or undefined 
parity), the QM correlation value will be lowered so that comparison with 
the predictions of the LHVT will become more difficult. 

An electric-dipole transition with an intermediate state unaffected by 
nuclear hyperfine or Zeeman splitting is a suitable candidate for the source. 
The most efficient dichotomic polarization analyzers available are the cal
cites, and the most efficient detectors are the photomultipliers (PMs), both 
working in the optical range. Therefore the most suitable choice is the Ca4°1 
atomic cascade 4p2 ISO ~ 4s4p Ip i ~ 4s2 ISO, in which optical photons are 
emitted. It is noteworthy that some decorrelation could be caused by 
rescattering phenomena (see Section 5.1 beloW). 

Another possible choice could be to use an atomic forbidden transition 
] = 0 ~ 0 as in the Stirling experiment. (17) The simultaneous emission of 
the two photons allows the coincidence time to be reduced, but the overall 
signal-to-noise ratio does not improve because the photon energy spectrum 
is very broad, so making more difficult the background-noise filtering. 

In any case, the decorrelation introduced by all optical systems used 
to collect the photons and by the finiteness of the solid angles subtended 
by them must be taken into account. The evaluation of both effects(9.18) 
shows that they are negligible when the collecting half-angles are less than 
30°. Obviously, in all the optics (lenses, windows, filters, etc.), birefringent 
effects like those induced by mechanical stresses must be absent. 

The second class of problems, C2, is more intriguing. Owing to the 
finite efficiency of the detector, only a few of the photon couples emitted 
from the source initiate a coincident count and so it is necessary to assume 
that the set of the detected couples, as regards the correlation, is a faithful 
image of the emitted ones. By definition this is true in the QM description, 
while problems arise in LHVT. It is then necessary to assume that the 
eventual hidden variable associated with the photon does not affect its 
probability to be detected or, from an opposite point of view, to build a 
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model in which the hidden variable appears explicitly in determining this 
probability. 

In this connection we note that the first choice is the "classical" one 
of CHSH and CH, while the second, which is today of growing importance, 
leads to the proposal of new experimental configurations. (4,19-21) 

A similar problem arises for the analyzers, whose transmittances are 
not exactly equal to 1 or 0; however, the practical values for the transmitt
ances of a good calcite crystal are not very different from the ideal ones, 
Hence it is reasonable to neglect their possible effects. 

In order to obtain a formulation of BIn which considers the above 
arguments we shall assume the CHSH hypothesis II, which is equivalent 
to the following: 

11.1. The detection probability is independent of the hidden variable 
associated with the photon. 

11.2. The detection probability of a photon which has passed through 
an analyzer set at angle 'Pi is independent of 'Pi' 

We wish to stress again that assumptions 11.1 and 11.2 can neither be 
justified theoretically nor tested experimentally, at least in a direct manner. 

If, to these hypotheses, is added that of system symmetry by rotations 
about the photon rropagation axis, experimentally verifiable by the con
stancy of the total number of counts ~k> then one can obtain the 
inequality(22.23) 

where the correlation function z is an appropriately defined generalization 
of the previous one (E) and takes into account the actual values of the 
analyzer and detector parameters. 

Let us assume the following experimental constraints: 

El. The analyzer extinction ratio is small. 
E2. The detector sees the photon always with the same polarization. 

Then, in the QM description, the above function z becomes 

(12) 

where f3i = (T7 - T~)/ (T7 + T~), T7 being the calcite principal transmit
tances. 

We note that equation (12) is true only if the calcites have a small 
extinction ratio and if the depolarization due to the finite collecting angles 
is negligible. 
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Equation (12) reduces to the usual QM correlation function (4) when 
at least one of the coefficients {3i is equal to zero, i.e., the corresponding 
calcite has identical transmittance for the ordinary and extraordinary 
channel. 

It can easily be verified (22) that in the interval 0 ::os:; (3 A{38 ::os:; 1/ J2 and 
for the angles which yield the maximum violation of BIn in the ideal case, 
one has QQM > 2J2, too. 

5. Rapisarda's Experiment 

We shall now analyze an experiment to measure the correlation function 
with optical photons and dichotomic analyzers, where the conditions satisfy, 
as faithfully as possible, the requirements imposed by the theoretical analy
sis. The experiment was proposed in 1979 by Rapisarda(15) and is presently 
being carried out in Catania by our group. 

The theoretical frame of the experiment is still that depicted in Figure 
1, while the experimental setup is outlined in Figures 3 and 4. 

5.1. Source of the Photon Couples 

The source of the photon couples is the Ca4°I atomic cascade shown 
in Figure 5. Starting from the ground level, the upper level can be populated 

Oven 

Figure 3. Rapisarda's experiment: general setup. 
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c = Co Inc idence or TAC 

T = Counter or PHA 

Figure 4. Rapisarda's experiment: scheme of the electronics. 

only by a two-photon absorption process, where the single-photon transition 
is forbidden. The extremely low yield of this process is proportional to the 
square of the incident-radiation intensity; in practice it can be obtained 
only by using a tunable laser. 

In effect an oven generates thermally a beam of neutral Ca atoms onto 
which the radiation of a dye-laser is directed. The interaction between the 
two beams takes place at the interior of a "scattering chamber" endowed 
with optical windows at Brewster's angle for the laser beam; the two beams 
are mutually orthogonal so as to minimize the Doppler effect. 

The calcium is contained in a tantalum cylindrical crucible, about 
100 cm 3 in volume, with an output hole 3 mm in diameter. The operating 
temperature (650-750°C) is maintained by a heating element electronically 
fed back so as to attain a temperature stability of ±0.5°C. Suitable 

1S 
o----~----~-----

YA 

1p 
551.3 

1 

478.5 nm 

Ys 

422.7 478.5 nm 

1S o----L------L-----

nm 

nm 

Figure 5. Partial level scheme for atomic calcium: excitation and decay paths. 
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diaphragms reduce the transversal dimensions of the beam so that, in the 
interaction region, about 60 cm from the Ca output hole, it is nearly a 
cylinder (divergence approximately 3.3 mrad) of diameter 1 mm. 

The atomic beam density can be regulated by varying the crucible 
temperature between the above-mentioned limits; the resulting experimental 
values in the interaction region are (1.38-5.46)' 108 atoms/cm3• The 
measurements were performed by depositing the Ca atoms on a silicon 
substrate and measuring the surface density by the ion backscattering 
method. Working at these density values ensures negligible rescattering 
phenomena(24) (i.e., the absorption and consequent re-emission of some 'YB 
photons from the atoms, in the ground state, present in the interaction 
region). 

In the interaction region a lens focuses the 478.5 nm radiation from a 
CR 599-21 dye-laser, using Coumar in 480 as dye. The dye-laser frequency 
is electronically stabilized and, when the laser is pumped with 2.5 W on the 
all-violet lines from a krypton-ion laser (CR 3000K Coherent), outputs 
about 50 mW in single frequency. An external feedback loop stabilizes the 
dye-laser against the long-term frequency drift by using, as reference, the 
decay rate of the excited atoms, monitored by a photomultiplier. 

5.2. Analyzing and Detecting Apparatus 

The photons emitted in the atomic cascade orthogonally with respect 
to the two beams are collected by two optical systems placed on the opposite 
sides of the source. Each optical system, comprising antireflection-coated 
lenses, subtends a solid angle of about 1.12 sr around the propagation 
direction: in this situation the depolarization effects are negligible. (18) 

The polarization analysis is conducted by means of two Foster-type 
cut calcites of useful aperture approximately 12 mm and length about 30 mm. 
One output ray has the same direction as the input one, while the other is 
orthogonal to it. The calcite optical parameters were measured by means 
of single-photon counting techniques, under conditions similar to those in 
actual use. (25) 

Typical measured values of the principal (T~II) and secondary (T~.L) 
transmittances are 

Tt = 0.9095 ± 0.0023, 

T: = 0.0044 ± 0.0002, 

Til = 0.7625 ± 0.0024 

T~ = 0.0041 ± 0.0003 

These experimental values warrant the above assumptions regarding the 
extinction ratio in the determination of QM correlation function (12). 

Behind the calcite outputs are placed interference filters which, besides 
selecting the photons of the "correct" wavelength for each couple of detec
tors, reduce the background noise due to the laser radiation diffused inside 



230 Lorenzo Pappalardo and Filippo Falciglia 

the scattering chamber. We note that the filter transmission can be taken 
into account by a corrective factor of the PM efficiency, if assumption 11.1 
is made. 

Between each filter and its relative PM is placed a lens which focuses 
the incident radiation on a small area of the photocathode so reducing the 
time-spread of the output signals. The aperture time of the concidence 
circuits can then be maintained at a minimum value, thereby improving the 
signal-to-noise ratio. 

The photomultipliers, suitable for single-photon detection, are placed 
in cooled housings rigidly connected to the relative ones containing the 
calcite and the filters; therefore each photomultiplier sees "its" photon 
always at the same point of the photocathode and always with the same 
polarization. We note that this is a requirement imposed by hypothesis 11.2. 

The photomultipliers were chosen on the basis of their spectral sensitiv
ity, background noise, and time resolution. For the YA photons they are 
EMI 9863B with S20 spectral response, whose efficiency is about 10 % at 
551.3 nm, while for the Y8 they are RCA 8850 with a bialkali-type photo
cathode and efficiency about 27 % at 422.7 nm. 

The two systems (analyzer + detectors) can obviously rotate about the 
photon-propagation axis and, moreover, can be placed at various distances 
from the source so as to vary the space-time geometry of the experiment. 
In this manner some of the hypotheses regarding the "luminal,,(26) or 
"superluminal,,(27,28) mechanisms of the correlation propagation can be 
verified (see Section 6.3). 

5.3. Data Collection and Analysis 

The output signals from the four PMs, suitably treated (see Figure 4), 
are sent to four double-input coincidence circuits whose outputs, totalized 
by four counters, give the four numbers ~k appearing in the experimental 
correlation function (10). The choice of coincidence-circuit resolving time 
should be made as a function of the intermediate-level mean life T of the 
atomic cascade (about 5 ns). 

Indeed the probability of a coincident count (apart from the geometrical 
factors, PM efficiencies, etc.) is l-exp(-t!T), where t is the coincidence 
resolving time. A too large t renders this probability near 1, but deteriorates 
the signal-to-noise ratio; a too narrow t makes this probability unacceptably 
small. A good choice (taking into account the PM jitter, the amplifier noise, 
etc.) is t = 20 ns. 

A more comprehensive analysis can be performed by using, instead of 
the coincidence circuits, four time to amplitude converters (TACs) whose 
output signals are directed to four pulse height analyzers (PHAs). A single 
TAC together with its PHA works as a large number (that of PHA channels) 
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of coincidence circuits whose resolving time, depending on the T AC and 
PHA characteristics and settings, is normally much smaller than that of a 
standard coincidence circuit (about 0.1 ns against approximately 2 ns). 

Therefore it is possible to study more accurately the time behavior of 
the system by choosing, among the events stored in the PHA memory, those 
with which to calculate the correlation function. We can say that a single 
measurement run is equivalent to a series of experiments performed in the 
same spatial configuration of the apparatus, but in different time situations. 

6. Interpretation of Results and Further Experimental Tests 

It is well known that almost all the experiments performed so far in 
the CHSH configuration have yielded results seemingly favorable to QM 
predictions. The same holds for the experiments performed more recently 
by Aspect and co-workers both in the old CHSH configuration(29) and in 
the Rapisarda one. (30) We note that the interpretation of these experiments 
is not as straightforward as it may seem; this has already been stressed by 
Selleri. (4,21) 

Indeed, a result seemingly favorable to QM could imply two things: 
the QM description is true, or one of the auxiliary assumptions is false. In 
any case one must search for the validity of the assumptions and for the 
possible mechanisms of the nonlocality propagation. A result seemingly 
favorable to LHVT, moreover, does not imply the correctness of the assump
tion, in that it could be due to poor experimental apparatus. Therefore it 
is necessary to rule out any possible source of decorrelation or, better, to 
plan a variant of the experiment which can give prediction quite distinguish
able from QM ones. Again this implies the necessity of abandoning 11. 

We show how in the basic experimental configuration just described 
some of the hypotheses adopted in order to explain the "mechanism" of 
the correlation propagation can be tested with only minor experimental 
changes, besides the effects of magnetic fields on the photon-couple state 
and the validity of hypothesis 11. 

6.1. On the Kinematics of the Correlation Propagation 

Various mechanisms of the correlation propagation have been pro
posed. Two of them can easily be tested: both are connected to the propaga
tion of a certain type of "information" generated when the first photon 
( 'Y A) is detected, going back toward the source (26) or the other detection 
apparatus(27,28) and conditioning the emission of the second photon of the 
couple or its detection. 
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The first mechanism should occur at a (sub)luminal velocity and can 
be normally ruled out, provided that the two detection events are separated 
by a space-like interval. On the other hand, the second mechanism requires 
a superluminal velocity and can be analyzed by measuring the correlation 
function at various space-time configurations of the apparatus. In practice, 
if LA (L B) is the distance of detector 0 A (DB) from the source, a set of 
measurements is performed by keeping LA fixed and by varying LB' One 
should find a minimum value LB below which the correlation descends 
below that expected from QM. Then it can be shown(27) that the velocity 
of the superluminal signal is v = c( LA + LB)/ ILA - LB I. 

6.2. Magnetic Field Effects on the Polarization Correlation 

If in the basic experimental configuration an external magnetic field B 
is applied,(3J) the intermediate level lp1 is split into three levels m = -1, 
0, + 1 whose energy difference is I1E = J.LBB. If the analysis is conducted 
along the B direction (coincident with the direction of the z axis), the only 
contributions are due to the two decays shown in Figure 6. 

When the level separation is sufficiently larger than their natural width, 
then it is possible, at least in principle, to distinguish which of the two 
decay paths has been taken. This implies that the photon-couple state is no 
longer described by equation (1), but by a statistical mixture (with almost 
the same probability) of the following two states: 

and (13) 

For such a system hk = L which in the main satisfies the BIn (11). 
When the magnetic field is switched on the correlation function should 

decrease abruptly, and that would indicate transition from a nonlocal 
situation (strong correlation) to a local one (no correlation). Besides, such 
an experiment should verify, in an indirect way, the capability of the 
experimental apparatus to discriminate between situations satisfying or not 
satisfying the locality. 

1p 1--+---""':--- ·1 I o m 
-1 

Figure 6. Magnetic field effect on the Ca atomic cascade. 
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If the natural width of the intermediate level is f).E nat = hi T = 
1,3 , 10-7 eV, an easily obtainable magnetic field B = 200 G would give 
f).E = 20f).E nat , allowing one to perform such an experiment. We note that 
the separation due to the Earth magnetic field (about 0,4 G) is considerably 
smaller (approximately 4,6' 10-9 eV) than the natural width of the leveL 
Therefore, it is not normally necessary to shield the interaction region, 

6.3. Test of Additional Assumptions 

We saw that to obtain experimentally verifiable inequalities it is 
necessary, in addition to the locality hypothesis P3, to assume hypothesis 
II about the real detector's behavior. In all the experiments to which we 
have so far referred, this hypothesis could not be verified. 

The only experimentally verifiable statement is that the detection proba
bility of a linearly polarized photon is statistically independent of the 
polarization, This means that, given a huge number of photons, all with 
the same polarization and with hidden variables statistically distributed 
over a certain ensemble, the mean value of the detection probability does 
not depend on the polarization value. Nothing can be deduced from that 
about the detection probability of an individual photon to which a particular 
A value is associated. 

The only way around the problem is to dispense with the hypothesis 
and assume that the detection probability is a particular function both of 
the polarization and of A whose average is equal to the detector's quantum 
efficiency. 

Various models of this class, recently proposed, (4.19-21) lead to predic
tions experimentally distinguishable from the QM ones, These models can 
be verified in the above basic experimental configuration by simply adding 
auxiliary polarizers or half-wave plates between the calcites and the photo
multipliers. 
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Nonlocality and the Einstein
Podolsky-Rosen Experiment as 

Understood through the 
Quantum-Potential Approach 

D. BOHM AND B. 1. HILEY 

1. Introduction 

The Einstein, Podolsky, and Rosen (EPR) experiment was originally 
suggested as a criticism of the conceptual completeness of the quantum 
theoryYJ However, with the advent of Bell's theorem(2) it became possible 
to look on it as a test between locality and nonlocality in the basic properties 
of matter. 

For several centuries there has been a feeling that nonlocal theories 
are not acceptable in Physics. It is well known, for example, that Newton 
felt uneasy about action-at-a-distance and that Einstein regarded this action 
as "spooky." However, until the development of field theory there was no 
way to avoid such an assumption. But, as is well known, field theories 
explain interaction entirely through local forces. 

When these theories were made relativistic, the requirement of locality 
became even stronger because relativity demanded that no signal should 
be propagated faster than light. When field theories were quantized, it 
appeared at first sight that the question of locality was not fundamentally 
changed. For the field operators were now still local in the sense that the 
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operators at different points on a space-like surface either commuted or 
anticommuted. However, the question of locality versus nonlocality cannot 
be fully treated merely by considering the commutation or anticommutation 
of operators. For it was the essential meaning of the EPR argument that, 
even though the operators for different places commuted, quantum 
mechanics could still imply a nonlocal relationship between the measure
ments. 

Within the context of Bohr's(3) discussion of the EPR experiment, 
however, it is not necessary to go into this issue. What Bohr did was to 
show that even if the EPR experiment is done at macroscopic orders of 
distance, the actual process of the movement of the particles is unanalyzable 
so that no detailed conception of the means by which interaction takes 
place, has any meaning. Therefore it would be pointless to raise the question 
as to whether the forces were local or nonlocal. 

It is significant to note, however, that most physicists do not follow 
the Bohr interpretation consistently, but for the most part tend to use the 
von Neumann interpretation in terms of the quantum states, as represented 
by the wave function. As we shall see, a certain kind of nonlocality can 
already be discerned through the von Neumann approach. However, since 
this has not generally been clearly realized, it has not thus far had much 
influence on the development of the subject. Rather, the main source of 
such development was an interest in hidden variables. As a result of this 
interest Bell(2) was led to suggest a criterion that had to be satisfied by a 
local hidden-variable theory. Since that time a number of experimental tests 
have been performed, and the majority of these support the conclusion that 
if there are to be hidden variables they must be nonlocal. (4,5) Of course, 
from Bohr's point of view all of this discussion is irrelevant, but if one 
wishes to pursue the question of whether "quantum reality" is objective 
and not fundamentally dependent on observation, then the meaning of the 
experiments aimed at testing Bell's inequality must be considered seriously. 

One possibility is to open our minds to the suggestion that there may 
after all be nonlocal interactions in nature. However, there seems to be a 
very strong aversion to this idea. Some people regard it as aesthetically 
unattractive, others feel that the possiblity of doing science itself depends 
on restricting scientific thought to purely local theories in space-time.(6) 
There is no way to answer these objections, which are personal judgments. 
However, a more significant objection would be that nonlocal theories imply 
that the transmission of impulses faster than light violate special relativity. 
But, as we shall see later, this objection can be answered with the aid of 
our own proposals in terms of the quantum-potential approach. 

This whole discussion generally has suffered from the fact that people 
have not agreed on a clear space-time model, which could illustrate what 
is meant by nonlocality and show what the so-called nonlocal hidden 
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variables would have to be doing in order to explain the implications of 
the quantum theory. Evidently the meaning of nonlocality cannot even be 
put except on the basis of some kind of space-time structure. We feel that 
the main value of the quantum potential in this context is that it is able to 
do just this. 

In this paper we shall show in detail how the quantum-potential 
approach deals with the EPR experiment in a way that is free of confusion 
and paradoxes. No insoluble problems arise and the only objections that 
remain are those based on personal judgments as to what is a suitable 
theory. In particular, we discuss the question of transmission of impulses 
faster than light. We show that the quantum potential is so highly unstable 
and fragile, that any attempt to impose a form on it will change it radically 
and in such an unpredictable and uncontrollable way that no preassigned 
meaning can be given to this form. And so the quantum potential cannot 
carry a signal. Therefore, while the quantum potential may make possible 
connections that are faster than light, these will not, as we have indeed 
already indicated earlier, violate relativity. 

We are suggesting this approach not as a definitive theory but rather 
as something to explore. Although it certainly does not disagree with 
experiment there is, at present, no way to tell whether it is right or wrong. 
However, we feel that such an exploration will bring about insight into 
meaning of the quantum theory which is not available in other approaches 
and which will, perhaps, suggest new directions of research. 

2. The Experiment of Einstein, Podolsky, and Rosen 

To begin the discussion, let us recall the salient features of the EPR 
experiment.(l) Consider a quantum state of two particles, with coordinates 
XI and X2, and which is given by 

(l) 

where S is a very sharply peaked function with width much less than a. If 
the position of the first particle, XI, is measured, then we know that the 
position of the second particle is X2 - a, with a negligible uncertainty. 
Therefore by measuring XI , we are simultaneously able to know X2. However, 
the wave function may be Fourier analyzed as 

<fJ(kl' k2 ) = L Sk e ik(l<2-l<,) e- ik. g 

k 
(2) 

where Sk is the Fourier coefficient of S(X2 - XI - a) and where k = k2 + kl . 
If the momentum of particle 1 is measured, then particle 2 will have exactly 
the opposite momentum. Thus a measurement of kl enables us to know k2 • 
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The above results will hold regardless of how large a is. This led EPR 
to conclude that quantum mechanics as it now stands cannot be conceptually 
complete. To show how they came to this conclusion, we recall that they 
defined what they called "elements of physical reality." They did not attempt 
to provide a necessary criterion for what such an element is. However, they 
proposed that if a variable corresponding to an element can be measured 
precisely without disturbing the system, then this is a sufficient criterion 
that this variable represents an element of reality. As is well known, when 
we measure the properties of particle 1, they are generally disturbed, so 
that we cannot obtain simultaneous values of XI and PI precisely. However, 
the measurement of XI enables us to know X2 as precisely as we please 
without disturbing particle 2 itself. Likewise, the measurement of PI enables 
us to know P2, again without disturbing particle 2. Of course we cannot 
know X2 and P2 precisely at the same time, but nevertheless, the implication 
of the above argument is that they must exist in the second particle with 
precisely defined values. (For, since there is no disturbance, they cannot 
be made uncertain.) But in the usual interpretation of the quantum theory, 
all properties are assumed to be contained in the wave functions and the 
operators. However, this provided no way to define X2 and P2 simultaneously. 
EPR therefore argued that some further concepts are needed to describe 
the elements of reality corresponding to the simultaneous definition of X2 

and P2. 

It must be emphasized once again that this conclusion depends upon 
the fact that there is no interaction between the particles. Of course, we are 
presupposing that the classical potential V(XI, X2) is zero so that, at least 
in terms of the language of current quantum theory, it would follow that 
there is no such interaction. However, it would seem natural when presented 
with the argument of EPR to ask whether or not there may be some unknown 
interaction that would connect the particles. If there were such an interac
tion, particle 2 might be disturbed when particle 1 is measured and so one 
of the basic assumptions of EPR concerning this experiment would be called 
into question. EPR do not seem to have considered this as a serious 
possibility, probably because it would imply a nonlocal interaction even at 
macroscopic distances. Such a nonlocal interaction could perhaps be 
avoided by postulating an interaction propagated at a speed not greater 
than that of light. But this would have implied that the EPR correlations 
would not be obtained if measurements on both particles are carried out 
simultaneously. EPR seemed to have sufficient confidence in the current 
formalism so that they did not even raise the question of whether there is 
such a propagated interaction (which clearly would have led to predictions 
contradicting those of the current quantum theory). Their criticism concer
ned only the lack of an adequate conceptual basis and was not directed at 
the statistical predictions of the theory itself. 
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Schrodinger(7) was one of the earliest to understand the full implications 
of the argument of EPR. He realized that many-body wave functions, such 
as that given in equation 0), represent a new type of "entanglement" of 
systems which is significant even when the potential energy of interactions 
between them is zero. Such an entanglement is, in fact, the rule in quantum 
mechanics and is behind all the quantum-mechanical treatments of 
molecules, chemical properties, properties of solids, metals, etc. Few 
physicists would feel uncomfortable with this sort of nonlocality if it took 
place only at very short distances. What was hard to accept, however, was 
the implication of nonlocality at large distances. 

Bohr saw that the experiment of EPR was an important challenge to 
his own interpretation of the theory and he was quick to provide what he 
regarded as an adequate response. (3) Essentially this consisted in pointing 
out that his notions of complementarity still applied, even when particles 
are separated by large distances and when the results of experiments are 
separated by large intervals of time. He concluded therefore that the attempt 
to discuss in detail how the "disturbances might be carried from one particle 
to another" has no meaning. This is because the form of the experimental 
conditions and the content (meaning) of the experimental results are, in 
Bohr's view, a whole that is not further analyzable. Therefore there is no 
way, properly, to think about the properties of particle 2 apart from the 
experimental contexts within which they are measured. But the context 
needed in a position measurement is not compatible with that needed for 
a momentum measurement. This signifies that even though we can infer 
either the position or the momentum of particle 2 without disturbing the 
latter, there is no experimental situation with regard to particle 2 in which 
both of these inferences could have meaning together. Therefore the ques
tions raised by EPR have no place to which they could be relevantly applied. 

It also follows from the above that there can be no meaning to discussing 
in detail any underlying process by which the experimental results could 
be brought about (since there is no experimental situation in which this 
process could reveal itself). According to Bohr all that is available is the 
overall phenomenon which is, as we have said, an unanalyzable whole and 
all that we can do is to use what he terms the "quantum algorithm" to 
calculate the probabilities of the various results.(8) 

Originally, there was no technically feasible way to test whether the 
predictions of the quantum theory with regard to the EPR correlations are 
correct. However, one of US(9) proposed an equivalent experiment involving 
a molecule of zero spin consisting of two particles of spin one-half. The 
wave function for this system is 

(3) 
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This implies that if the spin of particle 1 is measured in any given direction, 
that of particle 2 measured in the same direction will come out opposite 
no matter how far apart they are. A very similar situation arises with two 
photons whose combined spin is zero. A test was proposed that would 
distinguish between the predictions of the quantum theory and another 
theory(1O) that was essentially an extension of the hypothesis proposed by 
FurryYI) Basically this consisted in assuming that when the two photons 
separate, the individual states of polarization in some direction are well 
defined, but both photons have states of opposite polarization. It was further 
assumed that the polarization directions of individual pairs would be 
random. 

It is fairly evident that with this model there will be less correlation 
than is implied by quantum theory. Thus, suppose we measure the polariz
ation in a certain direction, clearly almost all the photons will in general 
be polarized in other directions. It will therefore be impossible to guarantee 
that when photon 1 is polarized in a certain direction, the other will be 
opposite as demanded by the quantum theory. It was found that the 
experiments were in agreement with the predictions of the quantum theory 
and not with those of this model. (12-14) 

We emphasize, however, that the Furry model was really based on the 
idea that after the photons separated, each developed certain properties 
which were carried along with the movement of the photon. In this way 
correlations were explained basically in the classical manner. However, 
quantum mechanics was still being used for the individual particles them
selves, but the two-body wave function of the type shown in equation (3) 
was no longer used once the photons separated. 

The experimental results ruled out this rather natural way of trying to 
treat the problem. But because the experiments used the Klein-Nishina 
formula to analyze the scattering of photons off the plastic scatterers, this 
conclusion has been criticized. For it is not simply a test of the long-range 
correlations, but rather of a combination of the long-range correlations and 
the Klein-Nishina formula, both of which are based on the quantum theory. 

The above model clearly provides a rather restricted test of this nonlocal 
feature of the quantum theory. Bell later proposed a far more general test. 
The basic idea may be considered as follows. A molecule disintegrates into 
two particles 1 and 2, associated with which are the parameters Al and A2 
which determine, at least statistically, the results of all measurements on 
these respective particles. We may say, therefore, that Al and A2 are able 
to carry information about the molecule from which the particles emerged, 
in a purely local way. This information is represented by some probability 
function /(AI> A2) which can explain the correlated properties of the two 
particles. We then assume that the probability of a given result of a measure
ment on the first particle, for example, the spin in the direction fi1, is 
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gl (A 1,01), The corresponding probability of the second particle is g2(A 2, 02)' 
The total probability of the combined result is 

The essential feature of the above is that the probability of any measurement 
in the direction 01 is independent of the measurement in the direction 02 
in which the second particle is measured. This seems to cover the most 
general type of hidden-variable theory one can consider, in which the 
correlations are carried or propagated locally along with the movements of 
the particles. 

Using essentially this assumption, Bell arrived at his well-known 
inequality which has to be satisfied by such a local theory, and he demon
strated that the quantum mechanics does not satisfy this inequality. 
However, without the assumption that the probability of the two measure
ments contained the product gl(A lol)g2(A 202), the Bell inequality would 
not have been obtained. This product function represents the relative 
independence of the two distributions implying no direct contact between 
the two particles. Therefore the failure to satisfy the Bell inequality would 
mean that measurements made on one of the particles would directly affect 
those made on the other, even though the distance between them is large. 
The quantum mechanics would therefore still be compatible with a model 
having some kind of parameters that were nonlocally related. 

The Furry model is actually a special case of the class of (local) models 
considered by Bell. However, Bell's approach is more general in that it may 
include "hidden variable" theories in which even the individual particles 
do not obey quantum mechanics. 

A number of experiments have been done to test not only the extension 
of the Furry model to a pair of photons, but also the more general models 
implied by Bell's inequality.(4) On the whole the results strongly favor the 
quantum theory. Moreover, the experiments of Aspect et al.(5) have been 
done under conditions in which the properties of both photons have been 
measured at the same time. In this way any possible explanation in terms 
of the propagation of an unknown force at a speed not greater than that 
of light is ruled out. 

The above experiments have been criticized by several authors, (15) who 
point out that they all depend on assumptions concerning the functioning 
of the apparatus that they feel can be questioned. However, it appears that 
it will be difficult in the present state of the art to close these possible 
loopholes. Nevertheless, we feel that the available evidence makes a reason
able prima facie case for the conclusion that if there is an explanation of 
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the results, it must be nonlocal (recalling, of course, that in Bohr's approach 
such an explanation would have no meaning). 

3. The von Neumann Theory of Measurement 

We are going to give an explanation of the EPR experiment in terms 
of the quantum potential which, in general, is nonlocal in its action. 
However, before doing this we want to emphasize further that nonlocality 
as such does not depend on the assumption of a quantum potential or, 
indeed, of any kind of hidden-variable theory. For nonlocality is already 
implied by the usual interpretation, and this implication is especially clear, 
as we have pointed out earlier, in the form proposed by von Neumann. (16) 

To show this we shall begin by summarizing some of the essential features 
of von Neumann's theory of measurement as extended along the lines 
described by Bohm.(9) 

An essential step is to divide the measurement process into two parts. 
In the first part, different quantum states are distinguished, but this distinc
tion has not yet been made irreversible. In the second step, amplification 
to a macroscopic scale of the outcome of the measurement is made and in 
this way the result is fixed irreversibly. 

Let the initial wave function of the observed system be "'(x) and let 
the significant apparatus variable, such as a pointer, be represented by y. 
Initially the state of the apparatus will correspond to a packet cf>o(y), It is 
sufficient for our purposes to deal with impulsive measurements such that, 
during the interaction of the observed system and the measuring instrument, 
the self-Hamiltonians of the both systems may be neglected. During this 
period we assume an interaction Hamiltonian 

(4) 

where 0 is the operator to be measured. Its eigenvalues and eigenfunctions 
are, respectively, On and "'n(x). We express the initial wave function of the 
measured system as 

(5) 

The initial wave function for the whole system is 

(6) 
n 

The use of the Hamiltonian (4) then gives rise to 

(7) 
n 
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where T is the duration of the interaction. If A T is much larger than the 
width of the wave packet <Po, then, clearly, there will be no overlap of the 
pacKets corresponding to different possible results On, of the measurement. 

However, as we have already indicated, this process is still, in principle, 
reversible. What we do now is to assume an interaction with a detecting 
apparatus, D, which magnifies the differences in On to macroscopic orders 
of magnitude. Such an apparatus will have a vast number of internal 
coordinates Zs corresponding to all of its constituent particles. It is evident 
that this process will be irreversible in the thermodynamic sense. (9) 

After the detection process is over, the overall wave function will be 

(8) 

where Xn represents the state of the apparatus that has registered the 
eigenvalue n. Since the Xn represents states of the detecting device that are 
clearly distinct for different states of the observed system, it follows that 
the Xn are orthogonal. The set of <Po(y - AOn T) is evidently also orthogonal 
because they do not overlap. Using this orthogonality we obtain for the 
average value of an arbitrary operator, M, belonging to the observed particle 

(9) 

Thus far the wave function (8) still spreads over all values of n. However, 
the average value M given by expression (9) can also be obtained if we 
assume that the system falls into one of the states, n = m, with probability 

This is equivalent to the assumption that wave function collapses from 
equation (8) to 

(10) 

Statistically, this collapse is equivalent to going from a pure state to a mixed 
state. Of course, such a collapse violates what has been assumed to be a 
basic quantum law, namely, Schrodinger's equation. Nevertheless, von 
Neumann has assumed this step to be a basic feature of the measurement 
process which is, indeed, now called the projection postulate. (As we have 
indeed already pointed out, this approach seems to be the one commonly 
adopted, at least tacitly, by most physicists.) 
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To see what the projection postulate implies, consider two alternative 
kinds of measurement, that of x and that of p. When we measure x, then 
the original wave function t/Jo(x) undergoes the projection 

(11) 

where Xn is the actual result of the measurement. If, however, we measure 
p, then the projection is 

(12) 

where 4>n is the Fourier coefficient of t/Jo. The effect of measurement is thus 
to transform the original wave function into something very different-in 
this case, either into a IS-function, or into a plane wave. Therefore it seems 
inappropriate even to call this process a measurement, because the result 
does not in the least resemble the state in which the system started. Rather, 
as has also been explained by Bell, (17) it would be better to call this process 
a transformation in which the apparatus and the system of interest are left 
in correlated states. 

Let us now go on to discuss the EPR experiment in terms of the above 
analysis. The system to be "measured" now contains the two particles Xl 

and X2 with initial wave function 

However, measurements will be carried out on only one of the particles, 
say, Xl. Initially the total wave function is 

(13) 

After the position-measuring Hamiltonian has operated (on the variables, 
Xl only), the wave function will be 

and after the momentum-measuring Hamiltonian has operated the wave 
function will be 

A '\' S ik(x -x) -ik·a-J. ( \kT) (Z Z ) B = L.. k e 2 I e '1'0 y - 1\ Xo 1, ••• , S> ••• (15) 
k 
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The next step is to bring in the detecting device. When this operates, 
the wave function XO(ZI,"" Z" ... ) in equation (14) will change to 
Xg,(ZI' ... , Z" ... ) and in equation (15) it will change to 
Xk(ZI, ... , Z" ... ). We then use the projection postulate which gives the 
final states 

and 

The key new feature here is that the measurement of particle 1 alone 
leads to the simultaneous projection of both particle 1 and particle 2, either 
into 8- functions of position, or into plane waves. One might perhaps accept 
that the apparatus could transform particle 1 to bring about its projection 
into an appropriate state. But we have no understanding at all of how 
particle 2 is projected in a similar way without any interaction between 
them or with the measuring apparatus. It is thus clear that something highly 
nonlocal is implied, especially in view of the fact that the state into which 
particle 2 is projected depends on the apparatus with which particle 1 has 
interacted. We therefore emphasize again that von Neumann's interpretation 
implies a certain kind of nonlocality. Since, as we have already indicated, 
this is at least tacitly the interpretation most commonly adopted in physics, 
it would follow that the implications of nonlocality of the quantum theory 
are not to be avoided simply by refraining from using "hidden variables." 
And, as we have seen, this kind of nonlocality is one of the most essential 
features of the quantum theory and therefore cannot be dismissed as a mere 
side issue. 

It must be emphasized, however, that von Neumann's approach and 
Bohr's aproach are different in certain key ways. In Bohr's approach there 
is no attempt to analyze the process of measurement as von Neumann has 
done. Rather, as we have already pointed out earlier, Bohr expressly enjoins 
us to regard the entire experimental situation as an unanalyzable whole 
which he considers to be a phenomenon, i.e., an appearance. Bohr does not 
clearly commit himself as to whether or not there is a "quantum reality" 
underlying this phenomenon. But it seems to be implied by him that even 
if there is such a reality, we can say nothing about it. Therefore it follows 
in Bohr's view that analyses of the type given by von Neumann, along with 
the necessary assumption of the "collapse," are not really relevant to the 
issues under discussion. 

In such an analysis von Neumann's notion of the quantum state, 
represented by the wave function ",(x, t), plays a key role. In effect von 
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Neumann assumes that the quantum state is the most complete description 
of reality that is possible. Indeed it would be fair to say that for von 
Neumann the quantum state is the basic element of reality. Thus, for 
example, in a typical experiment, one begins with the initial quantum state 
"'o(X, t) and after the interaction Hamiltonian has operated this "collapses" 
into a new state "'J(x, t). 

Bohr, however, never even refers to the quantum state, and, in fact, 
for him this concept can have no meaning. For, as we have already pointed 
out, all that we can properly talk about in this point of view is the one 
unanalyzable whole phenomenon which is described in terms of the form 
of the experimental conditions and the content of the experimental results. 
In this description there is no room for any element of "quantum reality" 
such as would be implied by the term quantum state. That is to say, it has 
no meaning to think, for example, of an electron in a quantum state that 
is acted on by an apparatus that gives rise to another quantum state. Rather 
we must begin with one total initial experimental phenomenon and use the 
quantum algorithm to compute the probability that this will give rise to a 
certain experimental result. As we have already emphasized throughout this 
chapter, not only is there no way to discuss a process by which this happens, 
but also we cannot relevantly discuss even the initial and the final states of 
the quantum system. The terms appearing in the solution of Schrodinger's 
equation, such as the initial and final wave functions, are merely parts of 
the quantum algorithm and have no more physical significance than, for 
example, do the terms in the power-series expansion of a function in classical 
physics. (Feynman(18) has come out with a very similar view.) 

Since nothing can thus be said either about the state of "quantum 
reality" or about its detailed process of movement and interaction, it follows 
in Bohr's view that there is no way relevantly to use either the concepts of 
locality or of nonlocality (which after all could refer meaningfully only to 
some kind of "quantum reality"). One simply has to be silent on this issue 
except, perhaps, to say that we have gone beyond the domain in which this 
distinction has any meaning. 

Most physicists who reject nonlocality would not be satisfied, thus, to 
have to reject locality as well and to be required to conclude that quantum 
reality is so mysterious that nothing at all can be said about it. * In some 
ways this view should perhaps be even more repugnant to such physicists, 
since the inability to speak either of locality or of nonlocality is surely even 
"spookier" than would be the need to speak of mere nonlocality. To be 
sure it seems to be logically consistent to talk as Bohr does, but anyone 
who is interested in the question of the locality versus the nonlocality of 

* In this connection d'Espagnat(l9) for example discusses a "veiled reality" about which 
nothing can be known. 
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the details of the actual process (and not men!ly of the formal properties 
of the commutation relations of operators at different points) cannot use 
Bohr's approach as a foundation or even as a point of departure. 

Most physicists, however, accept Bohr's interpretation, at least verbally. 
Nevertheless, they generally also accept von Neumann's notion of the 
quantum state which is, as we have seen, not compatible with Bohr's 
approach at all. As we have already suggested earlier, it does not seem to 
be commonly known that the two views are so different. It would perhaps 
be better for physicists to acknowledge this difference and state which, if 
any, of these views they prefer. It seems to us that if such a choice were 
made in most cases, von Neumann's interpretation would be favored. And, 
as we have seen, in this view one can already see a certain physical meaning 
of the kind of nonlocality that is present in the many-body Schrodinger 
equation. Moreover, as we shall show in subsequent sections, this feature 
of nonlocality can be brought out more clearly in the causal interpretation 
in terms of the nonlocal quantum potential. 

4. Brief Resume of Measurement Theory in the Causal 
Interpretation 

We shall now summarize the essential features of measurement in the 
causal interpretation. (20) First we recall that in the causal interpretation, we 
assume the particle has a well-defined position, x(t). 

In addition the particle has associated with it a new kind of 
"Schrodinger wave" satisfying the wave equation 

(18) 

The momentum of the particle is assumed to be p = V s and its equation of 
motion will then be 

dp 
-= -V(V+ Q) 
dt 

(19) 

where V is the classical potential and Q is the quantum potential given by 

(20) 

and where", is expressed in polar form', '" = R e iS/ h • 
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It has been shown that the main new features of the quantum theory 
can be explained in terms of the quantum potential. (2\.22) However, one 
must add to the assumptions that we have already given, a statistical 
postulate, namely, the probability density of particles in states having the 
same Schrodinger wave IjJ is 

(21) 

This postulate has been shown to be consistent with the equations of motion, 
so that if it holds at anyone time, it will hold at all times. We may therefore 
simply take it as an assumption. However, this assumption can be justified 
in various ways, for example, by postulating a new random Brownian-type 
motion to the particle(23) leading eventually to a stable distribution of the 
type given in equation (21). 

In the many-body system, the wave function ljJ(x\, .. , XN, t) depends 
on the configuration space of all the particles. This cannot be understood 
as a wave in a three-dimensional space but, as we have shown, (22) it can 
be interpreted as a kind of active information in that it determines the 
many-body quantum potential, 

where IjJ = R e iS / h • 

li 2 V2R 

Q(x\, ... , XN, t) = --I-n-
2m n R 

(22) 

We show that, in general, this quantum potential determines a nonlocal 
interaction which may have an indefinitely long range. Moreover, it is not 
a preassigned function of the particle coordinates but depends on what is 
commonly called the quantum state of the whole system. However, if the 
wave function factorizes into a product of functions of the coordinates of 
each particle, then the quantum potential reduces to a sum of independent 
terms 

Q(X\, ... , XN, t) = L Qj(Xj , t) 
j 

(23) 

In this case there is no nonlocal interaction and the behavior of the particles 
that are far from each other is independent. 

We show that, generally speaking, in the large-scale limit and at high 
temperature, such factorization takes place, at least to the extent that 
large-scale phenomena arising at large distances generally do exhibit the 
kind of independence that is observed. Nevertheless, at the atomic level 
and at low temperatures, e.g., in superconductivity, the quantum potential 
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is seen to bring about a characteristic new kind of wholeness of the entire 
system. This is similar in certain key ways to Bohr's notion of wholeness, 
but differs in that the process is analyzable in thought, while for Bohr it is 
essential, as we have already pointed out, that the process is completely 
unanalyzable even in thought. 

To deal with the measurement process, we use a treatment of the wave 
function which is essentially the same as that given in Section 3 for the von 
Neumann interpretation. The new feature is that we assume the observed 
system to be a particle with a well-defined position, x( t), and that the 
apparatus variables y( t) and Z;( t) are also well defined. Because of the 
stochastic process responsible for the probability distribution, P(x, y, ZJ, 
there is no way to predict or control the initial positions of these particles 
apart from saying that they are somewhere in the region of configuration 
space in which the wave function of the system is appreciable. 

Initially, the quantum potential breaks into a sum of separate terms 
and therefore x(t) and yet) move independently. When the interaction 
Hamiltonian, HI, as described in equation (4), is operating, the wave 
function becomes a sum of products. The quantum potential is then a very 
complex and rapidly fluctuating function of all the relevant coordinates. 
However, when the interaction is completed the apparatus packets corre
sponding to different eigenvalues of the operator, On [as given in equation 
(7)] no longer overlap. Because the probability density is proportional to 
l'l'f no particle can enter the region between the packets (where 'l' = 0). 
Every particle enters one of the packets and thereafter stays there. The 
unoccupied packets make no contribution to the quantum potential acting 
on the particle. 

We can obtain a helpful image of what happens by saying that each 
of the apparatus packets determines a channel into which the particle may 
enter. During the period in which the interaction Hamiltonian is operating, 
the quantum potential will contain a set of bifurcation points such that 
particles on one side enter a particular packet, while those on the other do 
not. The motion is highly unstable and, indeed, chaotic in the sense of 
modern chaos theory. (24) Even if we could predict or control the initial 
positions of the relevant particles to a fair degree of accuracy, we could 
not determine beforehand which channel the particle will enter. And if one 
assumes the statistical distribution (21) of initial positions of the particles, 
one can show(20) that the probability of entering the channel, n, is 1 en 12. 
This is, of course, the same as the probability of obtaining the corresponding 
result in the usual interpretation. 

It is clear that the interaction Hamiltonian has induced a transformation 
of the whole system such that the net result is to have the x particle in what 
is commonly called the quantum state I/Jn(x) while the apparatus particle y 
is in a correlated channel. However, as we have already pointed out in 
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Section 3, this transformation is still reversible. This implies that, by means 
of a suitable interaction Hamiltonian, the apparatus packets could be made 
to overlap, and thus interfere again. In the causal interpretation, this means 
that the packets not occupied by the particle can still come to affect the 
quantum potential at a later time. Therefore the result of this operation is 
not yet irrevocable. But, of course, as we have already indicated in Section 
3, after the system interacts with the detecting device no more interference 
of this kind is possible. The quantum potential in anyone channel therefore 
cannot later be affected by the empty wave packets and the result of the 
process is irreversible. 

In this way we explain how the measurement process produces a definite 
result without invoking any assumption of collapse of the type needed in 
the von Neumann interpretation. The definite result follows from the theory 
itself, without further assumptions. 

Some physicists have found the notion of empty wave packets disturb
ing, but we have given a further explanation of their significance in our 
paper.(22) 

Our treatment also gives a simple explanation of Heisenberg's uncer
tainty relationships. For example, to measure x we may use an interaction 
Hamiltonian 

and to measure p, we may use 

a 
H = iAX-

I, ay 

a 
H = iAP-

I, ay 

(24) 

(25) 

These two operators do not commute. From this it follows that they cannot 
be carried out at the same time, in the sense that the conditions needed to 
set up one of them are incompatible with those needed to set up the other. 
What this implies in essence is that, as we have indeed already pointed out, 
what has commonly been called a measurement is actually not a measure
ment but a transformation. We shall therefore call this a measurement 
operation. We can thus understand in a simple way why x and p cannot be 
"measured together." 

In this connection we could say that the value of a quantity that comes 
out of a measurement operation does not, in general, correspond to some 
preexistent "element of reality" within the system itself. To be sure in this 
interpretation the system is assumed to possess elements of reality which 
include, for example, a position x and a momentum p = V s as well as the 
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wave function I/I(x, t). However, in the measurement operation these ele
ments undergo transformations. Thus, as we have seen, the wave function 
is transformed into an eigenfunction of the interaction Hamiltonian. 
Moreover, in most cases, both the position and the momentum change in 
a way, as we shall show, that is unpredictable and uncontrollable (though 
in special cases, such as measurement of position, it is, in principle, possible 
to carry out a measurement operation which reveals the value that the 
corresponding element of reality had before the operation). Owing to the 
incompatibility of the conditions needed to bring about an eigenfunction 
of momentum and an eigenfunction of position, only one of these poten
tialities can be actualized on any given occasion. (A similar conclusion has 
been drawn in the usual interpretation by Bohm(9) and by Heisenberg(25).) 
This is, in essence, the way in which the causal interpretation treats the 
same phenomena which Bohr treats in terms of complementarity. 

To discuss how the causal interpretation deals with the Heisenberg 
relationships 6.x6.p - n, we consider the fact that the initial coordinates of 
the apparatus particles and those of the observed system have a statistical 
scatter. As a result, and because the quantum potential is chaotically unstable 
and full of bifurcation points during the period of operation of the interac
tion Hamiltonian, it follows that the final channel that the particle enters 
is unpredictable and uncontrollable. But since the probability of each result 
is the same as it is in the usual interpretation, it also follows that the scatter 
in the results will satisfy the Heisenberg relationships. 

It can be seen from the above that in the causal interpretation the 
uncertainty relations are explained in a way that is basically similar in spirit 
to the original explanation proposed by Heisenberg, i.e., that they come 
about through unpredictable and uncontrollable disturbances taking place 
during the "measurement." The key difference is that, in Heisenberg's 
approach, there was no clear concept of what the trajectory would have 
been without such a "measurement" and therefore no clear meaning could 
be assigned to the disturbance. In the causal interpretation, however, all 
these notions are clearly defined and even the unpredictability and uncon
trollability of the disturbance is a consequence of the theory and is not 
merely an a priori assumption. 

5. The Causal Interpretation of the EPR Experiment 

We now proceed to discuss the causal interpretation of the EPR 
experiment. Here the treatment of the wave function is also the same as in 
the von Neumann approach described in Section 3. The main difference 
from our discussion of Section 4 is that the observed system contains two 
particles Xl and X~. However, only one of these particles, Xl, is directly 
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observed. Nevertheless, as we shall see, the unobserved particle goes into 
a definite state correlated to that of the observed particle. 

In Section 3 we have worked out how the wave function changes in 
the "measurement" process. This is shown in equations (13), (14), and (15). 
All that we have to add is that these wave functions are now determining 
the quantum potential and that during the period of operation of the 
interaction Hamiltonian on particle 1, this becomes a very rapidly fluctuating 
function of all the variables Xl, X2, and y that is full of bifurcation points 
implying unstable and chaotically complex motions. 

However, after the interaction Hamiltonian ceases to operate, the 
system enters one of its possible channels and, as explained in Section 4, 
the wave function representing the other channels can thereafter be neglected 
(as if the wave function had "collapsed" into the actual channel). During 
the interaction period, particles 1 and 2 are closely connected owing to the 
nonlocal character of the quantum potential, but afterwards the effective 
wave function (representing the channel actually occupied by the whole 
system) is just a product of factors. From then on all interactions are local 
and each system behaves independently. Nevertheless, the properties of 
each particle are left correlated with those of the other in the way demanded 
by the quantum theory. 

Thus we have explained the correlations which are, in fact, produced 
by the action of the quantum potential, the latter giving rise to a nonlocal 
interaction between the particles. (26,27) In this way we deny one of the basic 
assumptions of EPR, that is, no interactions between the particles. Once 
we admit that these particles interact, we no longer conclude with EPR that 
the properties of particle 2 can be measured without disturbing that particle. 
Therefore we also no longer say that the properties of particle 2 are already 
"existent elements of reality" before interaction with the apparatus has 
occurred. Rather we have shown that, as we have indeed already pointed 
out in Section 3, they are potentialities which are actualized not only through 
the effects of the interaction Hamiltonian acting on particle 1, but also 
through the overall quantum potential which acts on both particles. That 
is to say, the properties actualized in quantum measurement operations are 
potentialities of the combined system (including the apparatus). However, 
even the particle that does not interact directly with the apparatus still has 
its potentialities realized in a measurement operation. Through such an 
analysis the EPR experiment can be made intelligible in a relatively simple 
way. 

Since the experimental tests of the EPR correlation have all involved 
spin or polarization in some way, we shall discuss briefly how these consider
ations can be extended to include the latter. Beginning with spin we point 
out that there are several ways of extending the causal interpretation to 
include this. One of these was proposed by Bohm et aI. (28) but this was only 
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possible in the case of the one-particle system. Another was suggested by 
Bell(29) which could, in principle, be developed so as to treat the N-body 
system. However, to deal with this would involve a long and complex series 
of questions. Instead we shall discuss the case of a pair of atoms each with 
spin one (i.e., with internal orbital angular momentum L = 1). 

If the center of mass of the atom is denoted by R and the coordinate 
of the electron relative to the nucleus by x, then a state of unit angular 
momentum has the wave function 

t/lm(R, x) = F(R)fm(x) (26) 

where fm(x) represents a state of unit angular momentum of the internal 
electron and F(R) represents the state of the center of mass. 

A molecule of total spin zero will then have the wave function 

We have chosen F and G separately to allow the centers of mass to be in 
different places. 

Clearly the above wave function implies that if the angular momentum 
of particle 1 is measured, that of particle 2 will come out opposite. Thus 
we have an EPR correlation similar to that discussed for spin!, but different 
in that each particle has three possible states rather than two. But it is clear 
that the same treatment that we have used for the spin system will go through 
here and so no further discussion of this case is required. 

There remains the polarization states of photons. The proper treatment 
of this requires the quantum-potential treatment of the electromagnetic 
field. We have already given such a treatment elsewhere and indicated how 
it works out for the EPR paradox. (22) 

6. The EPR Experiment and Relativity 

Our treatment has so far been nonrelativistic and so no problems arise 
with the notion that the quantum potential acts instantaneously. Moreover, 
we have already shown that in the classical limit (i.e., large scale and high 
temperatures) the quantum potential becomes essentially factorizable, so 
that there will be no significantly non local interactions. Therefore there will 
be no contradiction between our approach and relativity physics applied 
in the classical domain. 

In the quantum domain, however, we might, at first sight, conclude 
that the instantaneous connection of distant systems brought about by the 
nonlocal action of the quantum potential could lead to contradictions with 
the requirement of relativity. But here let us recall that these requirements 
will be satisfied if no signal can be transmitted faster than light. However, 
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as we shall see, the quantum potential cannot be made to carry a signal, 
and so on this score there need be no violation of the requirements of 
relativity theory. 

For example, the simplest way to send a signal between two particles 
by means of EPR correlations would be to put one of the particles in a 
definite state, e.g., of spin, and then to see if this state is changed when a 
measurement is carried out on the other particle. However, the interaction 
that puts the first particle into a definite state will bring about a product 
wave function for the two particles. Thus the quantum potential would now 
be local and so no signal could be propagated between the particles. 

The above illustrates a feature of the quantum potential that is very 
significant in this context, i.e., that anything one would do to it to make a 
signal possible changes it so radically that no signal can actually be transmit
ted. For example, suppose one were to try to modulate the quantum potential 
as one does with a radio wave so that it could carry a signal. To treat this 
process one would have to take into account the modulating system to 
produce a combined wave function which includes the latter as well as the 
particles. The interaction Hamiltonian between the modulating system and 
one of the particles would produce complex changes in the overall wave 
function similar to those in a measurement operation. This would result in 
a quantum potential with many bifurcation points leading to chaotic motions 
of both particles. In this context the order of the signal would be totally 
scrambled up in an unpredictable and uncontrollable way and so no mean
ingful signal could be transmitted. 

More generally, the nonlocal type of quantum potential is so fragile 
and its effects are so unpredictable and uncontrollable that it can never be 
used to carry a signal. From this we conclude that the causal interpretation 
of the EPR correlation will not lead to a violation of the theory of relativity. 

One can see this in another way which is based on the fact that the 
causal interpretation and the usual interpretation give the same statistical 
results for all measurement operations no matter which operator is 
"measured." But the usual interpretation has been shown to be capable of 
a covariant extension in which field operators at different positions either 
commute or anticommute. From this it follows that the causal interpretation, 
which gives the same statistical results, must be covariant in this purely 
statistical context. 

What about the context of a single measurement operation? As long 
as the initial conditions are unpredictable and uncontrollable in the way 
we have assumed, nothing more can be concluded about a single measure
ment operation. And so no further question of this kind can arise in this 
context. However, one of US(21) has elsewhere discussed the possibility of 
going beyond the laws of current quantum theory in such a way that more 
might be known about the individual process than is possible in the present 
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statistical theory. In this case the instantaneous connections brought about 
by the quantum potential could lead to a definite violation of the theory of 
relativity (which would, however, still be statistically valid). If this happens, 
then we would have to admit that there is a preferred frame in nature and 
the covariance of the laws of physics would apply only in some limited 
context which includes that of the statistical results discussed in the current 
theory. (The classical limit is a particular and limiting case of the statistical 
context in the sense that the statistical fluctuations can be neglected for this 
domain.) 

The above would imply that the theory of relativity is limited, just as 
Newtonian mechanics is. This sort of notion is not entirely foreign to the 
current development of physics. Thus special relativity is limited by general 
relativity and the latter is, in turn, limited by some of the cosmological 
implications of the theories dealing with the origin of the universe (e.g., 
there must have been a time so close to the origin that, through quantum 
fluctuations, the gravitational tensor gp.v would fluctuate so much that there 
would be no way even to express what could be meant by the notion of 
the covariance). 

We are proposing that if we go in the opposite direction to reach a 
domain beyond that of the quantum theory, this too will carry us beyond 
the range of applicability of the theory of relativity. In some ways our 
proposals might be similar to those of Lorentz, who explained the Lorentz 
covariance of the laws of physics in terms of an "ether" which constituted 
a preferred frame. Nevertheless, Lorentz invariance was shown to follow 
from the changes of the material structures as they moved through this 
ether. We are also suggesting there is some ultimately non-Lorentzian 
substructure which, however, implies Lorentz invariance of all processes at 
the statistical level treated by the current quantum theory. 

7. Conclusion 

We have shown that the quantum potential provides an adequate 
explanation of the EPR experiment. The nonlocality that it implies was 
seen to be a perfectly rational idea leading to no insoluble physical or 
mathematical problems. Its implications may eventually require us to revise 
our basic concepts of physics, to go beyond both those of relativity theory 
and those of quantum theory as these are now understood. 
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10 

Interpretation of the Einstein
Podolsky-Rosen Effect in Terms of 

a Generalized Causality 

JERZY RA YSKI 

1. Introduction 

After many years of discussion of the Einstein-Podolsky-Rosen (EPR) 
effect (and of similar effects which appear in the consideration of a pair of 
correlated systems which were once coupled with one another and sub
sequently separated), a majority of physicists have come to the conclusion 
that the quantum phenomena, revealed by measurements performed on 
such systems, exhibit a manifestly nonlocal character, even on a macroscopic 
scale. A measurement performed on one of two widely-separated systems 
affects the other system-as it seems-instantaneously, or in other words, 
information about the result of the measurement appears to propagate with 
superluminal velocity, in apparent violation of the laws of relativity and 
causality. Quantum physicists explain this situation by pointing out that 
quantum phenomena are characterized by a certain "discreteness" and 
integrity due to the existence of the quantum-of-action h. Some of them 
even believe that quantum phenomena cannot be completely accommodated 
within the realm of space-time and, therefore, surpass its framework. 

The question arises as to whether these nonlocal features are, in effect, 
a violation of relativity. They certainly violate our usual concept of causality, 
but may still be reconcilable with a generalized concept of causality which 
accepts also a backward-in-time propagation of information. Whether this 
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implies that we must put causality on an equal footing with anti causality 
will be the main subject of our analysis and the principal problem of 
investigation in this chapter. 

2. Causality within Classical Physics 

The notion of causality in classical physics differs from the Aristotelian 
concept of causality as well as from our everyday intuition. The popular 
and intuitive understanding of causality gives decisive preference to one 
direction along the time axis: cause must precede effect, or in other words, 
the effect should be a consequence that follows from a precedent-an earlier 
cause. However, the temporal sequence of cause and effect is absent from 
classical physics, the latter being expressible in terms of differential 
equations (usually of the second order, but occasionally of the first order 
in the time derivatives) wherein the "initial" conditions, at an arbitrary 
time instant t = 0, determine not only the future of the physical system but 
also, equally well, its past (t < 0). 

If the physical state at the initial instant of time is understood to 
constitute a "cause" then its "effects" are determined not only for the future, 
but also for all previous instants of time. Thus, in classical physics, causality 
is on an equal footing with anti causality, and ordinary action with retro
action. 

The conflict with everyday intuition may be removed by assuming a 
consequently "deterministic" viewpoint: according to such determinism our 
free will is to be regarded as an illusion, explicable by the simple circum
stance that our actions often coincide with our wishes and desires. It appears 
to us that we act freely, while in reality we are unable to make any free 
decision but are simply passive participants tightly captivated in a chain of 
events, by causal bonds on the one side and anticausal bonds on the other. 
Being unable to change our fate or to influence the course of events, we 
must therefore also be passive spectators in any act of measurement, its 
type and result being predetermined by our own (i.e., the observers') fate. 

3. The EPR Effect and Anticausality 

If the same fatalism would also hold true in quantum mechanics, then 
the EPR paradox could be solved immediately. We could imagine that the 
effect of a measurement which we executed upon one of a pair of systems 
(and that we were forced to perform by command of our destiny) would 
first propagate backward in time, until the instant when both systems 



Interpretation of the EPR Effect 259 

constituted a single whole; would be transferred to the other system; and 
then the relevant information would propagate forward in time. Both frag
ments of information propagated in this roundabout way would be carried 
along by the particles themselves (of both systems) whose velocities do not 
surpass the velocity of light in vacuo. Thus, nonlocality of interaction, or 
the superluminar propagation of information, would only be illusory 
because, in reality, information would be transferred partly anticausally 
and partly causally, in accordance with relativity, but allowing for both 
retarded as well as advanced interactions. This would remove the necessity 
of introducing action-at-a-distance and an intrinsic nonlocality of quantum 
phenomena. 

The paradox of being able to "kill our grandfather" by means of a 
retroaction could be avoided by assuming that our destiny generally forbids 
actions that form closed loops, or knots, along the two-way causality chain. 
However, it may be doubted whether quantum mechanics (QM) is reconcil
able with such a fatalistic understanding of our role as being merely that 
of passive observers, unable to decide what kind of action or what sort of 
experiment we are going to perform. 

Nevertheless, some workers(l-4) pursued investigations along these lines 
and accepted the existence of retroaction in order to remove paradoxes of 
the EPR type. In particular, it was pointed out by Costa de Beauregard(l) 
that the equations of relativistic quantum-field theories are invariant under 
the charge-parity-time (CPT) transformations and are certainly applicable 
in both directions along the time axis. Paradoxes that might appear in 
consequence of admitting causality with anticausality, symmetrically, must 
be-according to him-restricted to microscopic domains of space-time 
and cannot affect macroscopic and classically describable systems for which 
only classical determinism holds true. 

4. Is Quantum Mechanics Reversible? 

The explanation of symmetry under time-reversal, described in the 
previous section, gives rise to serious doubts. Several authors have pointed 
out that reversibility of the equations of motion, or of the Schrodinger 
equation, is not sufficient to put past and future on an equal footing because, 
in quantum physics, one must also take account of the problems of measure
ments that involve manifestly irreversible features. The most radical position 
in this connection was assumed by Weizsacker(5) who was of the opinion 
that the mere concept of probability, in quantum theories, applies only to 
future, as yet unaccomplished events. As long as an event is still virtual, it 
remains undecided and therefore subject to a probabilistic treatment in 
terms of a state vector or Schrodinger wave function. On the other hand, 
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past events have already been decided and therefore cannot be subject to 
a probabilistic treatment in terms of the concept of state functions. The 
author does not agree with these views and would like to point out that 
physical science, does not distinguish between an accomplished past and 
a prospective future and nor does it admit the existence of a single time
instant between them which denotes "now." All points along the time axis 
are equivalent and a point t = 0 is merely a convention. It could be shifted 
arbitrarily by a transformation, i.e., a translation of the time coordinate. 
Moreover, physical science has included neither the concept of time flow 
nor that of an uninterrupted streaming of our consciousness distinguishing 
a present instant, a "now" (ever-changing), between the approaching future 
and escaping past. Those are categories of psychology, but not of physics. 
Consequently, the concept of probability has nothing to do with the question 
of whether an event has already happened or is still virtual. The point is 
o·nly whether information is, or is not, available. Whenever full information 
is missing there exists the possibility of introducing the concept of probabil
ity, regardless of whether the lack of information concerns the future or past. 

In physical science there exists a sharp distinction between theories of 
a statistical type, that privilege one direction along the time axis (e.g., the 
theory of diffusion), and dynamical theories that are symmetric under time 
reversal (or, more generally, under the CPT transformation). This is quite 
independent of the questions of which time instant denotes an actual "now," 
or of whether there is a constant flow of time. The question arises as to 
whether QM is a dynamical theory or a theory of a statistical type. If the 
first alternative holds true, QM should be applicable both to predictions 
and to "retrodictions" (of an unknown past), symmetrically. If the second 
alternative holds true, the situation is less clear: it might still be applicable 
in both directions (although the results of predictions and retrodictions 
would not be symmetrical) or-in view of the asymmetry-even the mere 
applicability backward in time might be forbidden by some a prioristic 
reason. In this case Weizsacker would be right. 

The simple fact that, in the Heisenberg picture, the equations of motion 
assume exactly the same form as in classical mechanics, assures one that 
QM is a dynamical theory. The same applies to quantum field theory: since 
quantized-field equations admit retarded as well as advanced solutions, 
probabilistic retrodictions are admissible. Nevertheless, there also exist 
contrary arguments. It could be pointed out that the equations of motion 
(in the Heisenberg picture) or Schrodinger's equation (in the Schrodinger 
picture) do not yet represent the whole quantum theory. The latter also 
involves the problem of measurements and their repeatability, while each 
quantum measurement entails an irreversible element. This circumstance, 
as well as the fact that quantum theories yield only probabilistic assertions, 
may be regarded as arguments in favor of their statistical, rather than 
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dynamical, character. In this case retarded potentials would be preferred 
to advanced ones and anti causality would have to be dispensed with. 

In order to solve this dilemma, a more detailed discussion of the 
problems of measurements in the world of quanta is needed. 

5. An Analysis of the Measurement Process 

In most papers devoted to interpretational problems of QM, one finds 
statements to the effect that measurements always introduce an uncontrol
lable perturbation which leads to uncertainty in the measurement's result 
and thus only probabilistic, and not deterministic, assertions are possible. 
It is also stressed that the perturbation caused by the act of measurement 
is irreversible. This last assertion seems to imply that probabilistic statements 
of QM refer only to predictions, and not to retrodictions. Such statements 
are not precise and constitute only half-truths. 

Three phases may be distinguished in the measuring process: 

1. An initial phase-a preparation for the act of measurement by the 
installation of a suitable apparatus and the securing of suitable 
measuring conditions. 

2. The main phase-interaction between the apparatus and the object 
of measurement. 

3. The final phase-registration of the result. 

In the case of a position measurement one has to fix, in the initial phase, 
a certain domain ~x in order to be able to answer "yes" or "no" to the 
question of whether the particle is situated in that domain. In the case of 
a measurement of an angular-momentum component one first has to distin
guish a certain axis in space (e.g., by introducing a constant magnetic field) 
so as to specify which of the components is to be measured. The following 
interpretation is to be recommended: The initial phase is an active phase 
while the proper measurement (second phase) is passive with respect to the 
quantity that is to be measured. By this we mean that already in the 
introductory phase a decision has been made as to the value of the respective 
observable (e.g., whether the particle is or is not in the previously fixed 
domain). The value of the observable to be measured has already been 
fixed in the first phase. This value has been decided, but nevertheless remains 
unknown. In the proper, second phase of the act of measurement one 
secures information about the value which was predetermined in the first 
phase. It is really only a confirmation of a preexisting, but hitherto unknown, 
fact (or property). In this sense the second phase is a passive securing of 
information about a preexisting, objective reality. The reader is here referred 
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to the Appendix for an explanation of what constitutes a "perfect" 
measurement. 

In connection with the main topic of this book, it should be stressed 
that not all measurements cause a perturbation of the object of measurement, 
namely those that constitute "indirect" measurements, e.g., those encoun
tered in the EPR effects. But even in the case of ordinary, i.e., "direct," 
measurements, such statements are misleading. They do not distinguish 
between the act of measurement, itself, and what may be deduced from it 
with regard to the results of other possible measurements. The result of a 
measurement need not be uncertain: if one is measuring an observable 
possessing a discrete set of eigenvalues, a good measurement will yield a 
specific eigenvalue. If, on the other hand, an observable Q possesses a 
continuous spectrum, we may always perform a measurement with an 
arbitrarily small uncertainty !::.Q. In this sense, the result of a measurement 
may be arbitrarily exact. An inexactitude, or rather a dispersion of the results 
of possible future measurements, refers to the results of possible future 
measurement of another quantity described by an operator that does not 
commute with the former one (otherwise we could apply an axiom of 
repeatability of measurements.) 

Now, it would be incorrect to conclude that, due to an element of 
irreversibility inherent in any measurement, QM is only applicable to 
predictions, and not to retrodictions. 

First of all, we must distinguish this irreversible element, which is 
unavoidably connected with the act of measurement itself (both its first and 
second phases), from that connected with the necessity of registering the 
result. Although in practice these stages of the process of measurement are 
often intermingled, this does not mean that in better-planned measurements 
they cannot be separated. The contrary opinion is reminiscent of the belief 
of those critics of Newton who maintained that free motion must always, 
sooner or later, come to rest. The assumption that it is possible to perform 
measurements that completely separate the act of measurement (and its 
consequences for the object of measurement) from that irreversible process 
which is inherent in the act of registration of its result, is a fruitful one just 
as was Newton's idealization and extrapolation consisting of the complete 
neglect of friction. 

This does not mean that during the act of measurement itself (i.e., its 
second phase), there is no other irreversible process involved. On the 
contrary, every measurement in quantum physics, even an ideal measure
ment, possesses two aspects which one may compare to two faces of the 
god Janus (or, if one likes, to the two Chinese characters Yang and Yin). 

On the one hand the measurement increases one's degree of knowledge 
about the quantity actually being measured, and on the other hand it 
produces an unwanted side effect in the form of uncontrollable and 
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unpredictable perturbations of all other observables whose operators do 
not commute with that one describing the quantity actually measured. These 
side effects diminish one's level of information about these observables (if 
such information was, indeed, formerly available) thereby increasing the 
total entropy, and thus the process becomes irreversible. 

We may therefore distinguish two sides, or aspects, of the act of 
measurement: an "instructive" and a "destructive" side. The instructive (or 
constructive) side increases ones information, while the destructive side 
produces an uncontrollable change in the values of other, complementary, 
observables. It decreases information and increases entropy. In order to 
properly interpret quantum phenomena one must be aware of this "double
faced" character of measurements: their constructive and destructive aspects 
comparable to Janus' peace-like and war-like faces. 

Since the two aspects of the measurement process concern different 
and complementary properties, there is no contradiction between the poss
ible applicability of QM backward in time, and the irreversibility of the 
perturbation effects unavoidably connected with the act of measurement 
itself. 

6. Applicability Backward in Time 

A clear understanding of the "double-faced" character of the act of 
measurement solves the problem of whether QM can be applied symmetri
cally to past and future. It should be stressed that this problem has nothing 
to do with the discovery that some physical objects (i.e., kaons) are describ
able by a Hamiltonian which is asymmetric under time reversal. The problem 
is not whether there exists symmetry (even under a CPT transformation) 
but, more generally, whether it is possible to draw conclusions about the 
past and make probabilistic retrodictions. Inasmuch as evolution in time is 
described by the Schrodinger equation, a differential equation of the first 
order in time, knowledge of the value of the wave function at to enables 
one to find a solution not only for t> to but also for t < to. Thus, the 
Schrodinger equation is also applicable backward in time. It does not 
contradict our previous interpretation of the act of measurement, since the 
Schrodinger equation is only valid when the physical system is decoupled 
from the measuring device and since the wave function !/J is a function of 
information (not of "de-information"), i.e., it refers to the aspect which 
does not increase the entropy and, consequently, is equally meaningful in 
both directions along the time axis. 

The other aspect of the act of measurement, or metaphorically speaking, 
the other face of the god Janus, only reveals itself when a new measurement 
takes place, thereby canceling the existing information, i.e., when the old 
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wave function is invalidated and validity conferred on a new function (which 
is an eigenfunction of the actually measured observables). 

However, it should be noted that if we admit the applicability of QM 
backward in time, then we will find that for one and the same time interval 
{tlo t2} there in general apply two different wave functions, one computed 
from the initial values at tlo and the other from the final values at t2 • But 
this does not imply any contradiction since neither of the two "state 
functions" is an intrinsic property, as such, of the physical system (in other 
words, neither of them is its "state"), rather they are functions (or states) 
of information that serve different purposes: one serves to predict and the 
other to retrodict. The state should not be called a "state of the physical 
system" but a "state of information" (about the system). This makes a great 
difference, according to the modern philosophy of languages. 

7. The EPR Effect and Realism 

While analyzing the Einstein-Podolsky-Rosen effect, several authors 
have tried to convince the reader that the correlations exhibited in this effect 
are in full accord with the formalism of QM and, consequently, must be 
realistic because QM is a realistic theory, since it shows a satisfactory 
agreement with experiment. Such an explanation does not seem very satis
factory. It is not sufficient to prove that QM does not violate the requirements 
of consistency or that it is not incomplete. The nonlocality exhibited by the 
EPR effect is of a macroscopic character, far beyond the nonlocality of 
position Llx appearing in the uncertainty relations of Heisenberg, and 
requires some explanation, not only a formal demonstration that it follows 
as a straightforward consequence of the formalism of QM. 

Inasmuch as Einstein et al. have cast doubt on the realistic character 
of the quantum-mechanical description of physical phenomena, we 
should-first of all-<iefine what we mean by "realistic" in this context. In 
our opinion, a realistic theory must satisfy two requirements: (i) repeatability 
of measurements, and (2) causal propagation of perturbations as well as 
causal transfer of information. The EPR effect appears to violate the latter 
requirement, well beyond the limits imposed by the uncertainty relations, 
i.e., it violates not only microcausality but macrocausality as well. 

However, as we mentioned earlier, the action-at-a-distance exhibited 
by the EPR effect can be regarded as simply an illusion because, in effect, 
the information obtained from a direct, spin or momentum, measurement 
performed upon the first of the two particles, is to be viewed as propagating 
first backward in time until the instant when the particles formed a common 
system, and then-after transfer to the second particle-as propagating, 
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together with it, forward in time. Neither of the two segments of information 
exceeds the velocity of light because they are conveyed, in a roundabout 
way, by the two particles themselves. 

Our intuition revolts against the introduction of anti causality since it 
would mean that the effect precedes its cause. But a closer examination of 
the measurement process in QM may convince us of its admissibility and 
intelligibility. As discussed earlier, there are two different aspects to quantum 
measurement processes, comparable to the two faces of the god Janus. One 
acquires information about a quantity A that is going to be measured, and 
the other produces a loss of information about those observables B, C, ... 
which are represented by operators that do not commute with A. Such a 
loss is an unavoidable side effect of any quantum measurement. It is only 
this unwanted side effect that produces an increase in entropy and thereby 
privileges one direction along the time axis, i.e., propagates only forward 
in time, while the main (and positive) role of the act of measurement (the 
peace-like face of Janus, in our metaphor) does not prefer future to past 
or vice versa. Instead it is strictly symmetric, in agreement with the fact that 
dynamical equations of physics admit retarded solutions on an equal footing 
with advanced solutions. The other (war-like) face of the act of measurement 
is quite different: by introducing a decrease of information, i.e., an increase 
of entropy, it results in an irreversible process. 

We conclude by stating that anticausality is on an equal footing with 
causality in classical physics, but is not on quite so equal a footing in 
quantum physics. A generalized causality ("ambicausality") admits causal 
as well as anticausal propagation of information, but not of de-information, 
the latter being an inherent property of the quantum measurement process. 

In this way the paradox of a future action actively disturbing the past 
is avoided. As regards the possibility of an influence acting backward in 
time, it should be stressed that a measurement may, at most, contribute to 
making the past better understood, or more definite, but can never change 
or destroy it. 

We believe that the above explanation of the EPR paradox would 
satisfy both Einstein and Bohr. 

8. The Grandfather Paradox 

By admitting advanced actions along with retarded actions, we are 
faced with the "grandfather paradox," mentioned earlier, which consists 
of the possibility of "killing, by means of an advanced action, our own 
grandfather in his earliest childhood." This paradox is avoided by classical 
physics (where advanced and retarded interactions appear on a perfectly 
equal footing) by denying the existence of free will. Classical observers and 
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classical experimentalists are not situated beyond the world of classical 
physics, but constitute an intrinsic part of it-an "ingredient"-so that their 
actions are also predetermined. If we are thus treated classically, then we 
are unable to change either our future or our past. We cannot produce 
knots or closed loops in the bicausal chain of events, either. 

The situation as regards quantum causality appears quite different. 
There is not a complete symmetry between causality and anticausality. 
While-metaphorically speaking-classical physics admits only one face of 
the god Janus: the peace-like face (which looks rather passive), quantum 
physics admits both faces simultaneously so that we are not only spectators 
of, but also actors in, the act of measurement. In quantum physics the 
"peace-like face" reveals itself to be less passive than it appears in classical 
physics: we choose which (complete set of) observables we are going to 
measure and our measurement creates some order-it is constructive, while 
the complementary "war-like" face produces disorder and deinformation 
as unavoidable side effects of the measurement act. 

The two complementary aspects of physical reality reveal themselves 
not only in acts of observation and measurement, but also in other actions 
that we might be involved in. The appearance of complementary aspects 
of physical reality introduces an element of indeterminism and a certain 
tolerance, which together constitute a margin for the existence of a free 
will. If looked upon from the point of view of an external observer, our 
actions appear subject to an unpredictable quantum uncertainty; but from 
our personal viewpoint the same actions appear to be controlled by our 
free will. A free will-if it exists-acts in one direction only: toward the 
future, otherwise we would merely be passive spectators as in classical 
physics, rather than actors as is admitted by quantum physics. Indeed, both 
aspects of reality are essential for us to be regarded as active participants 
rather than mere spectators, while only one of the aspects (that one tending 
to increasing entropy) admits propagation toward the future only. This is 
a sufficient reason for us to be unable to "kill our grandfather." 

9. Conclusions 

A thorough analysis of the quantum measurement process reveals the 
existence of two complementary aspects of quantum phenomena: one is 
symmetric, the other asymmetric under time reversal (or a CPT transforma
tion). The propagation of information with a velocity that does not exceed 
that of light in vacuo is symmetric under time reversal, while its counterpart 
induced by unavoidable and uncontrollable perturbations, and carrying 
deinformation and increasing entropy, is asymmetric and propagates only 
toward the future. 
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The symmetric-under-time-reversal propagation of information guaran
tees the realistic character of the EPR effect, in agreement with the require
ments of relativity and (a generalized) causality. A roundabout transfer of 
information (partly anticausal) demonstrates that the nonlocality inherent 
in the EPR phenomenon is only apparent. On the other hand the other 
aspect, connected with an increase of entropy, explains why there is no 
danger of disturbing the past by means of a retroaction (or killing our 
grandfather). 

The completely symmetric-under-time-reversal classical dynamics 
exhibits only one side (or aspect) of physical reality and is strictly determinis
tic, while quantum mechanics with its two complementary aspects, the one 
symmetrically causal and anticausal and the other only causal, admits some 
tolerance as regards determinism and allows for something subjectively 
interpretable as free will. The problem of free will is strongly connected to 
the EPR paradox and appears unavoidable if we ask the question: what 
will happen if we choose freely this or that experiment to be performed on 
one of two objects that once interacted with one another and then separated. 

Thus, a solution to the EPR controversy necessitates a thorough dis
cussion of the fundamental ideas of contemporary physics: quantum 
measurements, uncertainty relations, relativity, complementarity, as well as 
the introduction of a generalized causality concept, including both anticau
sality and retroaction, in order to remove the apparent nonlocality of 
quantum phenomena. The EPR debate involves the deepest philosophical 
arguments, pro and contra realism and neopositivism, and even touches on 
the questions of fatalism and free will which are so deeply rooted in both 
Eastern and Western cultures. 

Appendix: Perfect Measurements 

In the last two or three years interest in the foundations of quantum 
mechanics and its philosophical implications has increased considerably. 
The main reasons for this renewed interest are twofold. First, we have 
recently witnessed a considerable advance in the technology of quantum 
measurements, enabling us to actually perform some crucial experiments 
which in earlier times could only be discussed as the so-called "Gedankenex
periment." The second reason was the 50th anniversary of the EPR debate 
which was marked by the organization of several symposia, devoted to the 
foundations and philosophy ofQM, in particular those in Finland (Joensuu, 
June 1985) and Italy (Urbino, September/October 1985). 

Our aim is to discuss the EPR effect, but in order to do so we must 
discuss, more thoroughly than hitherto, the problem of observation of events 
on a microscale and what is usually called a "theory of measurement." 
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Several physicists have complained that the originators of QM had not 
paid enough attention to the process of measurement on the microscale 
and tried to fill this gap by formulating a "theory of measurement" for 
quantum physics. There seems, however, to have existed-from the very 
beginning-considerable confusion and misunderstanding surrounding this 
point. We must be aware of the fact that in the modem, highly complex 
world specialization is unavoidable, otherwise we would not make any real 
progress in our endeavors. In particular, science and technology form two 
distinct domains and physicists should be, and in fact are, classified as 
theoreticians, experimentalists, and technical physicists. Obviously, the 
concept of measurement is viewed by each of them from a different angle, 
and different aspects of the problem of measurement are of particular 
interest to each of these three categories of physicists. 

One should not forget that QM is a branch of theoretical physics. 
Consequently, neither the design of measurement apparatus, nor the prac
tical methods of conducting measurements, belong to the main domain of 
interest of a theoretician but rather to that of the experimental and technical 
physicists. If that is so, the question arises as to what a "theory of measure
ment" implies for a theoretical physicist specializing in QM. Is a theory of 
measurement a meaningful concept at all? It has often been argued that a 
"theory of measurement" is essential to the interpretation of QM, or even 
that it constitutes its most fundamental part. However, what does "interpre
tation of QM" mean? Quantum mechanics itself consists of two parts: the 
formalism and its interpretation. The latter establishes links between the 
formalism itself and the results of measurements performed on the physical 
objects of the microworld, as well as establishing relationships between the 
results of different measurements. Therefore it is incorrect to speak of the 
"interpretation of quantum mechanics" because both the formalism and its 
interpretation constitute a single whole: a physical theory called "quantum 
mechanics." If, despite this, theoreticians decide to develop what they call 
a "theory of measurement" they begin by producing some mathematical 
formulas. But, by so doing, they are merely building up to an even greater 
extent, the formalism of QM. This does not seem to be very legitimate 
because it amounts to explaining and interpreting the formalism of QM by 
means of the formalism of QM itself. To be more specific, some theoretical 
physicists practice a "theory of measurement" by trying to apply a mathe
matical (quantum) description to the act of measurement itself. In this way 
they only complicate the problem by including the apparatus, or at least 
its essential parts, into the physical system that is going to be observed, 
forgetting that the enlarged system, itself, needs another apparatus for its 
observation. Including the apparatus into the system is thus an unending 
process, the system meanwhile becoming more and more complicated. Such 
a procedure seems to contradict the spirit of a theorem in mathematics, 
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known as Goedel's theorem, which states that it is impossible to construct 
a complete and closed logical system without the help of some elements 
from outside the system. There is no reason why this theorem should not 
also apply to QM. Thus we conclude that QM divides physical reality into 
two distinct parts: the physical phenomena and the experimental apparatus, 
the latter constituting an external element with respect to the physical 
system, itself subject to observations and measurements. 

Contrary to experimental physics and technology, theoretical QM 
physics is not so much interested in the process of measurement itself, or 
in detailed methods and recipes of measurements, but rather in the results 
of possible measurements and in their consistency with the existing formal
ism of QM. To this end, a concept of the "perfect" (or ideal) measurement 
is needed. This concept should not be confused with what is usually 
understood by an imperfect but practical measurement, i.e., one which is 
limited by the available technology. 

The characteristics of perfect measurements must be introduced 
axiomatically. They are not direct consequences of the formalism but 
constitute its completion and, of course, must not be inconsistent with the 
mathematical formalism. 

Let us define what is meant by perfect measurements by means of the 
following two postulates: 

1. Inasmuch as the observables (described by self-adjoint operators) 
possess either discrete eigenvalues or continuous spectra, the 
perfect measurement yields either an exact eigenvalue of the 
measured quantity represented by this operator, or inexact values 
belonging to the continuous spectrum with an inexactitude that 
reaches a minimum. For instance, a perfect measurement of a pair 
of canonically-conjugate quantities q and p is characterized by an 
uncertainty given by 

(1) 

in agreement with Heisenberg's uncertainty relation. If this uncer
tainty were larger than ~I! we would qualify this measurement as 
impeifect. 

2. Perfect measurements are measurements of complete sets of observ
abies (described by commuting operators), enabling one to deter
mine the !/I-function (or equivalently, a normalizable state vector in 
Hilbert space) valid for a statistical description of the future as well 
as the past of the physical system, as long as the latter remains 
disentangled from interaction with a similar or different apparatus. 
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Most practical measurements turn out to be imperfect. They either do 
not reach the limit of exactitude imposed by the Heisenberg relation (1) or 
they introduce a violent disturbance that completely cuts the system off 
either from its past (i.e., destroys any memory about its past state) or from 
its future. In that case the measurement serves merely as a preparation of 
the state for the future (and is unable to say anything about its past) or 
confirms (statistically) predictions (supplied by another state of the system) 
valid prior and up to the instant of the measurements, but destroys the 
system or makes it useless for predictions of its future fate (e.g., measuring 
a particle's position by stopping it in a photographic emulsion). 

Many physicists deny the validity of the concept of a perfect measure
ment as defined above. They distinguish sharply between the act of preparing 
the state of the system for the future and the actual act of measurement, 
and believe that in order to repeat a measurement one must necessarily use 
another specimen from an ensemble of identical systems or prepare the 
initial state of the same system anew. Basing themselves on a superficial 
analysis of some imperfect measurements they speculate in the spirit of 
Aristotle (who said that every motion tends to a state of rest) instead of 
following the example of Newton, who boldly extrapolated everyday 
experience and introduced an idealization of it for the case of motion free 
of any sort of friction (and said that every body not subject to external 
forces moves with constant velocity). Similarly to Newton's idealization of 
zero friction, the idealization of perfect measurements constitutes a very 
useful concept. Perfect measurements are to be regarded as the limiting 
case, to which realistic measurements may approach arbitrarily closely. 

The consequences of the existence of perfect measurements (even if 
they constitute only a limiting case) are crucial to the interpretation of QM. 
One consequence is the repeatability of measurements in the "strong" sense, 
i.e., a repeatability of measurements on one and the same object, and not 
that one need necessarily make each measurement on another specimen 
from an ensemble. Such strong repeatability follows from the fact that a 
perfect measurement also constitutes [according to postulate (2)] a prepar
ation of the system for a subsequent measurement. Strong repeatability is 
evident in the tracks observed in Wilson or bubble chamber wherein each 
droplet or bubble constitutes a new measurement of position of the same 
particle which is performed without any (other) previous preparation. 

The applicability of Q M backward in time, that is permitted (ex 
definitione) by the concept of perfect measurements-i.e., those that allow 
not only predictions but also retrodictions or, in other words, the conveying 
of information in both directions along the time axis-will be shown to be 
of importance for a "realistic" explanation of the EPR effect and for a 
satisfactory conclusion to the discussion between Einstein and Bohr. 
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Quantum Action-at-a-Distance: 

1. Introduction 

The Mystery of 
Einstein-Podolsky-Rosen 

Correlations 

A. KYPRIANIDIS AND J. P. VIGIER 

Among Einstein's many remarkable papers, one of the most astonishing 
was published in 1935(1) (in collaboration with Rosen and Podolsky) with 
the objective of establishing the incomplete character of the Copenhagen 
Interpretation of Quantum Mechanics (CIQM). Far from being obsolete 
or refuted it is still now, in 1986, at the very center of the current crucial 
epistemological confrontation on the physical and philosophical implica
tions of quantum mechanics. Its discussion, originally limited to the question 
of the complete (or incomplete) character of the quantum-mechanical 
description (Bohr believed in completeness; Einstein, Podolsky, and Rosen 
did not), has indeed blossomed, in successive steps., into questions concern
ing the space-time coordination of quantum events and their objective 
existence beyond measurements; the causal nature of physical laws; the 
wave-particle dualism; the existence of hidden variables; the nature of 
quantum correlations; and so on. All these questions were already present 
in the Bohr-Einstein debate in which strongly antagonistic positions were 
defended: Einstein tended to a causal-deterministic conception while Bohr's 
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approach led in the opposite direction. This debate has now arrived at a 
new stage following the realization of the Bohm spin version of the original 
Einstein-Podolsky-Rosen (EPR) experiment by Aspect(2) that established 
the validity of quantum predictions over those of local models on the basis 
of Bell's inequalities (see Figure O. But the most interesting implication of 
Aspect's experiments is, perhaps, the emergence of quantum nonlocal 
correlations and their relation to causality in microprocesses. This point is, 
of course, of great importance for the interpretation of the quantum for
malism. 

Confronted with this situation, various attitudes are possible: One 
could still follow Bohr's line of reasoning, deny the objective existence of 
microphenomena unless measurement intervenes, and explain the EPR 
effect by means of nonseparability. On the other hand, one could try to 
reconcile these results with local-realistic models which could reproduce, 
sufficiently accurately, the experimental results.(3) A third possibility would 
be to introduce nonlocal hidden-variable models which, while being 
equivalent to the quantum-mechanical formalism, would satisfy causality 
and space-time coordination despite the presence of nonlocal interactions. 

It is precisely this approach that we will follow in the presentation of 
this chapter. In the next section we will discuss the possible implications 
of the quantum formalism and we will show that what is often presented 
in the name of the Copenhagen school as a vigorous "sticking to the facts," 
is nothing more than a set of arbitrary, unjustified, irrational philosophical 
assertions. Sections 3 and 4 treat a specific action-at-a-distance quantum
potential model (in Section 3 the scalar, and in Section 4 the spin version 
of it) that we shall construct in order to account for quantum nonlocal 
correlations. It is demonstrated that this specific form of quantum nonlocal
ity satisfies the criteria of Einstein causality, and does not produce quantum 
paradoxes. In Section 5 a simple example is presented so as to illustrate 

z 

x 

Figure 1. Schematic representation of the Aspect experiment on the Bohm spin EPR-correla
tion. Random switches orient the photons in the ordinary (0) or extraordinary (E) ray in 
order for them to be detected through pairs of linear polarizers L, L' and N, N'. 
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the shortcomings of the Copenhagen interpretation of EPR correlations 
and quantum-measurement theory. This example also serves as a test of the 
validity of our nonlocal quantum-potential model in this context. Finally, 
in Section 6 we will briefly discuss the physical origin of quantum nonlocality 
in terms of the existence of a random subquantal medium, i.e., Dirac's 
"covariant aether" model. 

2. The Quantum Formalism and Acausal Deviations 

It would be very useful, from the point of view of our further presenta
tion, to be clear on the meaning we attach to causality in Physics (see Figure 
2). In our opinion there is no better way to clarify this concept than by 
presenting Einstein's and de Broglie's views on the subject. These can be 
summarized by the following few points: 

1. Microprocesses exist objectively, i.e., independently of any measure
ment or act of consciousness. Matter, space, and time are objective 
realities and not merely mathematical or physical conventions. The 
laws of nature must remain invariant under the causality group 
G = T~ @ .Pi 0 D + P, where T4 denotes space-time translations 
in the objective four-dimensional space-time, .Pi is the ortho
chronous Lorentz group (which preserves the time ordering of 
time-like separated events and therefore the order of causal chains), 
D is a scale dilatation, and P represents space parity. 

2. The causality group implies the absolute conservation of energy
momentum pJoL and angular momentum MJoLv in all macroscopic and 
microscopic phenomena. 

t 

p 

x p x 

Figure 2. Causal origins and causal consequences of an event are limited to its backward and 
forward light cone, respectively_ 
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3. All physical processes consist of positive energy: E = Po> 0 propa
gating in positive time with a velocity ,,;; c. Antimatter can be rep
resented as negative energy moving backward in time, this being a 
mathematical (and not a physical) convention. 

4. For all isolated systems one can solve the Cauchy problem, i.e., one 
can determine the future evolution of a system from a set of initial 
conditions, defined on a space-like surface at some initial time. 

S. Probabilistic theories reproduce real chaotic motions which are, in 
principle, analyzable in terms of "hidden parameters." Any proba
bility distribution resulting from acts of observation on physical 
systems reflects an objective limit of real frequencies which result 
from a deeper random causal behavior of the system, inextricable 
at the observation level. 

Why do we lay so much stress on the causality concept and its unam
biguous definition? The reason is because it is very frequently claimed that 
this concept is in contradiction with the quantum formalism; moreover, it 
is claimed that the quantum formalism implies an acausal behavior of 
microsystems. Advocates of the Bohr standpoint(4) have recently developed 
an approach to EPR correlations, based on a relativistic S-matrix scheme, 
which claims to exhibit an "isomorphism between the formalism and its 
interpretative discourse.,,(5) Let us briefly state the basic ingredients of this 
approach: 

1. If I cPo) is the initial prepared state and 11/10) the measured state, then 
the system's state IS) is neither in retarded evolution: IcPi) = I UiOcPo), 
nor in advanced evolution: II/Ii) = I U-:c/ 1/10)' but only in a transient 
state located beyond space-time.(5) This combined advanced and 
retarded action (which is PT invariant) manifests an arrowless 
causality on the microlevel.(6) The macroscopic irreversibility is 
"fact-like" but not "law-like," i.e., not a strict consequence of the 
formalism. 

2. Physical causality should merely be identified with conditional 
expectations: (AI C) = I(AI cW, where (AI C) is a transition condi
tional amplitude which is, in fact, a timeless definition, invariant 
with respect to time zigzagging(7) (see Figure 3). 

3. The solution to the Cauchy problem can be written as 

(x'la) = (x'lx)(xla) 

where (x'lx) is the Pauli-Jordan propagator which is invariant under 
P = - T = -C = 1 separately, contrary to the Feynman propagator, 
invariant under P = CT = 1.(5) The latter entails an exponential 
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Figure 3. In the retroaction-in-time model, nonlocal correlations result from a time zigzag 
where E > 0 is always propagated. 

decay of higher energy levels in a predictive calculation, a fact not 
present in the structure of the former. 

4. EPR correlations should be explained by taking account of the fact 
that adjustable parameters exist at the measurement positions, and 
not at the place of common preparation of the system. (8) The link 
that establishes the correlation is the time zigzag, consisting of two 
time-like vectors with a relay at the source in the past,(9) a mechanism 
which is insensitive to the space-like or time-like character of the 
separation of the two measuring processes.(JO) 

5. Finally, the following are some ontological consequences of this 
point of view(9,J 1): 

... both "reality" and objectivity concepts must yield in favor of "inter
subjectivity," thus entailing a world-view very akin to the Hindu "maya" con
cept ... a sort of a common daydream, the illusory character of which is pin
pointed by the so-called "paranormal phenomena." 

... Fact-like irreversibility does not mean suppression but repression of advanced 
waves and decreasing probabilities; it does not mean suppression but repression 
of the lower against the upper arrow in the reversible negentropy +=! information, 
or N +=! I transition. T<!ken as basic, the 1- N transition has a name: psychokinesis. 
The formalism not only allows, but suggests its existence. 

All these assertions are not, of course, implications of the formalism 
but only arbitrary deviations from it. A simple criticism is sufficient to 
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recognize this fact: No need exists for a "collapse plus retrocollapse" 
mechanism for quantum measurement since Bohm(12) and Cini(t3) have 
shown that "fact-like" irreversibility results from a realistic model for the 
measurement process, where the latter is conceived as a spectral-decomposi
tion procedure of the wave packets, the particle entering one of the resulting 
subpackets (see Figure 4). The CPT invariance of the formalism simply 
denotes the existence of antiparticles in the relativistic frame. Feynman 
zigzags are a mathematical picture of combined particle/ antiparticle
creation/ annihilation processes, and the use of Feynman propagators 
(instead of acausal Pauli-Jordan ones) implies an irreversible increase of 
entropy in future evolution, as well as the prohibition of particle evolution 
towards the past. The shooting of positive energies backward in time, 
advocated by this model, violates the conservation laws at the source, since 
energy appears from the future without any apparent cause. Finally, let us 
stress that this "antitelegraph toward the past" mechanism is not a con
sequence of the formalism, nor a consistent extrapolation of it, but simply 
an arbitrary and unallowed adjunction to it. 

If one wishes to examine what the quantum formalism really implies 
then one has to limit the arbitrary assertions to a minimum and, using a 
physical model, try to approach the quantum correlations by checking, at 
every step, the consistency of an attempted explanation (and its congruence) 
with formal apsects of quantum theory itself. We intend to follow precisely 
this line of approach by using an action-at-a-distance scheme as an explana
tory pattern, and we hope to demonstrate that it consistently reproduces 

Figure 4. A wave packet 'IF interacting with a measuring device M splits into nonsuperimposed 
packets 1/1, •. ..• 1/14 and a subsequent measurement will always find the particle in 1/13· 
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the formal quantum aspects as well as satisfies the usual causality conditions 
in the frame of a space-time approach to quantum mechanics. 

3. A Scalar Action-at-a-Distance Mechanism 

The essential difficulty with nonlocal correlations (or action-at-a-dist
ance mechanisms) arises in the context of relativistic theories. Classical 
theories and dynamics (which do not contain a limiting-velocity concept 
and obey Galilean invariance) are devoid of any similar problem. If one 
takes, as an example, Newtonian mechanics, this is in fact an action-at-a
distance theory and no formal difficulty arises in connection with it. 
However, since in relativity theory all interactions propagate with a specific 
velocity smaller than or equal to the velocity of light (i.e., are retarded 
interactions), this concept of action-at-a-distance seems, at first sight, to be 
in conflict with basic relativistic assumptions. In fact, it seems that the 
retarded propagation and the direct interaction properties are mutually 
exclusive on the simple ground of causality: The former guarantees a causal 
evolution, independent of any frame characteristic, while the latter makes 
the causal chain of cause-effect connection a frame-dependent property 
and, moreover, authorizes the existence of causal loops and retroaction in 
time. 

Let us clarify this point in the case of a simple example. We consider 
two relatively moving observers 0 1 and O2 with respective rest frames S 
and S'. At the event CI, observer 0 1 sends a superluminal signal in its 
relative future which is absorbed by O2 at C2' Then observer O2 waits until 
the event C3 happens and sends, again in its relative future, a superluminal 
signal which is absorbed at C4' It has been shown(14) that one can always 
arrange things in such a way that C4 precedes CI, so that we find ourselves 
confronted by the following paradox: Starting from CI, we can use super
luminal signals in order to modify the past of 0 1 by performing a criss
crossing of space-like paths and effectively transporting positive energy 
backward in time from CI to C4 (see Figure 5). Ifa direct interaction inevitably 
implies such a criss-crossing mechanism, then it is clear that it is in severe 
conflict with causality. Moreover, the action-at-a-distance mechanism is 
then acausal and, whenever we reveal the presence of this mechanism, the 
underlying behavior of the related system must violate causality. 

But first of all let us determine the precise physical origins of possible 
space-time criss-crossing mechanisms. By examining the problem closely, 
we can extract from the above qualitative description two major causes for 
the existence of a causal paradox. The first is linked to the fact that the 
relativistic potentials which mediate the mutual interdependence of the 
constituent elements of a system of particles are, in general, nonlocal, i.e., 
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ct 

x 

Figure 5. An example of space-time causal anomalies. 

they depend on the characteristic properties (positions, momenta, and so 
on) of all the particles in a direct (nonretarded) way. The second cause is 
related to the basic difference between relativistic and nonrelativistic 
mechanics: The latter possesses a universal evolution parameter, the physical 
time t, while in the former this role is played by the proper times Ti of each 
particle, which figure as nonuniversal particle-dependent parameters. 

One would therefore be tempted to ascribe an acausal behavior to 
action-at-a-distance theories, if it were not for the fact that this problem 
has been satisfactorily resolved in the frame of the Hamiltonian formulation 
of relativistic constraint dynamics. (15) Let us briefly state the main lines' of 
this demonstration in the simplest case of two scalar relativistic particles. 

Here we can define a 16-dimensional phase space for the canonical 
coordinates q;, P; (i = 1,2, JL = 0, 1,2,3) which satisfy the standard 
Poisson bracket relations {q;, PjJ = 8ij8';;. In this phase space we define 
the two covariant Hamiltonians which consist of free terms and additive 
interaction terms which are, in general, nonlocal potentials: 

(1) 

As can be deduced from the above equation, the Hamiltonians are constants 
of the motion but, unlike in the nonrelativistic case where they are equal 
to the particle energy, here they are identified with the squared masses. 
Furthermore we see, for example, that the potentials Vi are momentum 
dependent with respect to both Pi and Pj, a dependence which is, in general, 
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nonlocal. These are two major differences from nonrelativistic dynamics 
but there is still a significant third one: This formalism is a multitime 
formalism with parameters Tj which are suitable generalizations of the 
proper times. 

In general, if we allow an unconstrained evolution for the system, the 
Hamiltonians are functions of both parameters. In that case, however, no 
world lines can be defined for any of the particles and the system's behavior 
is unpredictable. It is, therefore, necessary to impose a predictivity constraint 
on the system, which mainly states that the Hamiltonian of system i is a 
function only of the parameter Tj and not of Tj(j "" i), or equivalently: 

aH 
-'={H H}=O a "J Tj 

(2) 

This predicting condition ensures the existence of the world line /;( T;) and 
the time-like character of the paths, thus avoiding the emergence of the 
causal paradoxes discussed above. To get a clearer idea of how this can be 
ensured, we now proceed with a brief quantitative treatment of the two
particle system. 

It is sufficient for our purposes to treat the single-potential case, i.e., 
VI = V2 = V because it simplifies the calculations considerably and, further
more, because it is the case relevant to our later discussion. First, by 
introducing the center-of-mass (CM) total momentum P"" = pj + pi{, we 
can rewrite the difference between equations (1) as follows: 

(3) 

A transformation to the CM rest frame, where P = (po, P = 0) because 
pO = p? + p~ and p~ = -p~, yields the following two equations for the 
particle energies: 

pO mi - m~ 
p? = - + -'----= 

2 2Po 

o pO mi - m~ 
P2 =2"- 2Po 

(4) 

which implies that, in this frame, no exchange of energy occurs between 
the particles since both p? and p~ are constants of the motion. 

We can then evaluate the implications of the predictivity condition of 
equation (2), which is, in fact, a condition on the nonlocal potential V 
Equation (2) now takes the form 

(5) 
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This condition has been shown to restrict the general (p, q) dependence of 
the nonlocal potential V to the following functional dependence on a 
projection of the relative variable z'" = qi - qj: 

(6) 

This is a suitable form from which the nonlocal property of the relativistic 
potential can immediately be derived. Consider, e.g., a transformation to 
the rest frame, i.e., P", = (Po, 0). Then the projected relative coordinate is 
z'" = (0, Zk) so that the potential is only a function of the spatial distance 
z\ i.e., VCM = V(Zk). Since the fourth component of the relative coordinate 
vanishes, we see that the potential does not depend on the relative time but 
only on the space interval between the two particles. It represents an 
instantaneous form of action-at-a-distance which, because p~ and p~ are 
constants of the motion [cf. equation (4)], does not imply any exchange of 
energy in the CM rest frame. There is, however, a minor detail that we have 
not, as yet, commented upon: The relative coordinate z'" is a difference 
between the canonical position coordinates which, owing to the existence 
of the so-called "no interaction theorem,,,(I7) cannot be identified with the 
physical position coordinates in the presence of an interaction. However, 
it has been shown(15) that the identification q'" = x'" can be performed, even 
in the case of interacting particles, on the "equal-time surface," i.e., on a 
three-dimensional surface in Minkowski space where the physical times t; 

for each particle coincide. This is precisely the case in the CM rest frame 
where the relative time coordinate of V vanishes, so that we find ourselves 
on the "equal-time surface." Consequently, in this frame, the potential must 
be a function of the form V(x~ - x;), i.e., a function of the relative physical 
distance between the particles. 

Finally, using the obvious relation P"'i", = 0, we immediat ;ly deduce 
that the action-at-a-distance mechanism between the two particles exists 
only on a space-like surface perpendicular to the CM total momentum P"', 
which is a time-like vector. The action-at-a-distance mechanism is thus 
always confined to a space-like direction perpendicular to P'" owing to the 
constraint introduced by the predictivity condition. Furthermore, at any 
instant, an exchange of energy/momentum between the two particles in an 
arbitrary frame occurs in the way prescribed by equation (3), i.e., by 
preserving a constant angle between the CM momentum P'" and the relative 
momentum pi - pj (which becomes perpendicular in the case of rn 1 = rn2 ). 

Any such exchange occurs in a ladder scheme and space-time criss-crossings 
are excluded (see Figure 6). 

Up to now we have been treating a system of two point particles, tied 
by nonlocal potentials, in the scheme of relativistic constraint dynamics. 
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Figure 6. The relative four-momentum of two particles correlated by a nonlocal potential 
forms a constant angle with the eM four-momentum. No causal anomalies are therefore 
possible. 

The question which naturally arises now is to what extent this fictitious 
system has any relation to the system of two free Klein-Gordon particles 
which we have set out to examine. As we shall now show, this question can 
be answered by demonstrating that the two systems can be mapped one 
upon another, so that a clear correspondence can be established between 
them. To this end, we consider a system of two Klein-Gordon equations 

(7) 

which describes two free spin-zero relativistic particles obeying the laws of 
quantum mechanics. We write the wave function as!/J = exp(P + i/IiS) and 
consider the case where the CM propagates freely, i.e., is an eigenstate of 
the total four-momentum operator pI'- = i/ Mar + an. In this case we can 
separate the motion by writing 

(8) 

where K I'- is a constant time-like vector representing the CM motion and 
(j> is the wave function of the relative motion: 
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We can now show that the following relations hold: 

(10) 
(aj + anS' = 0 or (aj + ai)S = KI-' 

which imply the independence of the relative motion from the CM motion. 
To proceed further, we can decompose equation (7) into real and 

imaginary parts, thereby obtaining a Hamilton-Jacobi type equation: 

and a continuity equation: 

(lIb) 

From equation (11 b) we can justify an assumption at S = pt. Furthermore, 
by introducing the quantum potential in its relativistic form V j = 

-!h 2(D j P + ajl-'Pat P) and using equation (10), we can show that the 
quantum potentials in the two Hamilton-Jacobi equations are equal, i.e., 
V\ = V 2 = U. Then equations (lIb) can be rewritten in the following (c = 1) 
form: 

(12) 

where V = V(xj - xi, KI-'). This result enables us to identify equation 
(12) [which is the real part of equation (7)] with equation (1) of relativistic 
constraint dynamics, under two conditions: (1) K I-' is put equal to pI-'; and 
(2) the quantum-potential dependence on the relative coordinate and the 
CM time-like vector is reduced to a projection of the relative coordinate 
of the form presented in equations (6), namely 

(13) 

Our two systems can thus be mapped one upon another and what has been 
deduced for the relativistic Hamiltonian system holds equally well for the 
system of two Klein-Gordon particles. 

Let us therefore summarize the information gained from this com
parison. The system consisting of two free noninteracting Klein-Gordon 
particles is, in reality, a system of two relativistic scalar particles coupled 
by nonlocal potentials. The role of coupling potential is played by the 
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quantum potential which is a nonlocal action-at-a-distance mechanism. This 
direct interaction, restricted to space-like three-surfaces in Minkowski space, 
becomes instantaneous on the equal-time surface of the CM rest frame of 
the system. It does not violate causality, in the sense of Einstein, because 
it is subject to specific constraints (the predictivity condition) implying a 
specific dependence on the space-time coordinates and the CM four
momentum. What appears in the quantum-mechanical formalism as a free
particle system is therefore, in reality, a system of nonlocally, directly 
interacting particles which nevertheless preserves Einstein causality and 
does not imply causal paradoxes. 

4. Spin-Dependent Action-at-a-Distance 

In the previous section we gave as a simple example of a scalar 
action-at-a-distance mechanism a system of two relativistic quantum parti
cles. How can we now demonstrate the corresponding effect in the case of 
spinning particles, in particular for two spin-l particles, as are involved in 
the experimentally tested version of the original EPR gedanken experiment? 
It is evident that we must extend the preceding treatment to the spin-l case, 
and we can use as a basis for this treatment de Broglie's theory of light,(18) 
which is essentially a nonzero-mass photon model (my ¥=- 0). This is justified 
by the fact that the nonzero-mass theory (Proca theory) has a zero-mass 
limit which is physically indistinguishable from the usual Maxwell wave: 
the main difference between the two models lies in the appearance of an 
extra longitudinal mode in the Proca field theory which, for my ~ 0, decou
pIes from the usual transverse modes and describes a Lorentz-scalar 
Coulomb fieldY9) The Proca nonzero-mass theory is thus equivalent to the 
usual photon theory provided my is very small (my« 10-48 g). 

The generalization of the calculus of the preceding section is now 
straightforward if one substitutes a second-rank tensor AI''' in place of the 
scalar field", in the usual Klein-Gordon equations(20): 

(14) 

where the Proca field tensor can be written as 

(15) 

with wl'Vwl'V = 1 and where the amplitude and phase effects have been 
separated out on the right-hand side. As we know this most general form 
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of a compound state of two spin-1 particles can be split into three separate 
contributions: A symmetric part A(jJ.v) with total spin J = 2, a skew part 
A[jJ.vJ with total spin J = 1, and a trace AjJ.jJ. corresponding to our present 
singlet state J = O. Therefore we can write, for this state, the simplified 
Proca equations: 

(16) 

where AIjJ.(xdA~(xz) = exp[P'(x lo xz) + (i!11)S(x lo xz)], the factor wjJ.jJ. 
being included in the amplitude part of the wave function. This system, as 
can be easily seen, is formally equivalent to the scalar Klein-Gordon case 
and therefore the whole demonstration of Section 3 can, without difficulty, 
be carried over to our present formalism. We can recover the nonlocal 
character of the quantum potential by decomposing equation (16) into real 
and imaginary parts; we can show that the direct interaction is limited to 
space-like directions and becomes instantaneous in the CM rest frame on 
the "equal-time" three-surface; and, finally, we can again demonstrate the 
specific dependence of the quantum potential on the projected relative 
variable n~xf;l = za - (zvr)pa! pZ where pjJ. is the time-like four
momentum of the system's CM motion. We therefore see that the Proca 
singlet state can be treated on exactly the same footing as the scalar 
Klein-Gordon system, but that its different formalism obscures the essen
tially new feature of the system of two spin-1 particles, namely, the spin-spin 
correlation and its nonlocal characteristics. One can easily see that this is 
the case if one preserves the distinction between the contributions due to 
the scalar and spin-dependent amplitudes, introduced in equation (15), by 
writing 

(17) 

where w~ = aljJ.(xl)a~(xZ) and aijJ.ai = 1 (i = 1,2). Then one can calculate 
explicitly the form of the quantum potential for this wave function: 

U. = -- DP+a· piJjJ.p+-'-jJ. +2~ajJ.p 
112[ D.wjJ. a. WV ] 

, 2 ' 'jJ.' w ~ w ~ , 
(18) 

From this expression we can deduce that the usual quantum potential of 
the relativistic scalar case is supplemented by the two spin-dependent 
contributions which together manifest the spin-spin correlation between 
the spin angular momenta of the two Proca particles. Since we have deduced 
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the direct-interaction form of the total expressions for the quantum potential, 
this property, i.e., nonlocality, evidently holds for the spin-dependent contri
bution to Uj as well. 

We can try to make this point a little clearer, without extending our 
discussion to complicated formal patterns, by presenting the following 
argument: The Proca equation (16) can be evidently derived from a 
Lagrangian formalism by performing the usual variations with respect to 
the field variables and writing the Euler-Lagrange equations of motion. 
The appropriate Lagrangian for this approach has been shown to be(21) 

2 2 

:£ = m;~ <t>*<t> + al!£ <t>*ar<t> + a2 !£ <t>*ai<t> (19) 

with <t>(Xh x 2 ) = A I !£(x l )Ai(x2 ). The advantage of this approach rests on 
the fact that, on the basis of this Lagrangian, we can perform a classical 
relativistic hydrodynamical analysis(22) and build the usual field magnitudes, 
such as the energy-momentum tensors for each particle tl!£V' t2!£v' Of interest 
to us is the fact that we can hereby define a spin-density tensor (with 
UIAU~ = 1): 

(20) 

and from it a spin vector: 

(21) 

From this expression we see that the spin vector of photon 1 does not 
depend simply on the field magnitude A~(XI)' which would imply a perfectly 
local theory, but also on the field magnitude A~(X2)' present in the spin
density tensor S~13 in a nonlocal way, as we have previously established. 
An explicit calculation of the spin-vector variation along a line of flow 
manifests the specific form of this nonlocal spin correlation between SI and 
S2 but, even at the level of this general formalism, one recovers the essential 
features of this action-at-a-distance property. In order not to complicate 
the discussion with tedious calculations, we shall from now on restrict our 
presentation to a semi qualitative approach by showing the direct and 
indirect consequences of the spin-spin nonlocal correlations in a photon 
singlet state, as is present in the EPR spin experiments. 
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To get an idea of what is, in reality, the consequence of spin action-at-a
distance, one has to consider the effect of a one-sided measurement act, 
i.e., measurement of the spin of particle 1 and calculation of the spin of 
particle 2 which can, of course, be verified by a second measurement act. 
In order to be clear about the local classical prediction, let us consider an 
example from classical mechanics (see Figure 7). Two particles leave the 
source A with antilinear and equal momenta: PI + P2 = 0, and remain so 
all the way from A to 0 and 0', respectively. At 0, particle 1 rebounds on 
a wall and reverses its momentum: PI -+ -PI, by transferring a quantity 2pI 
to the wall. Meanwhile, the second particle propagates unperturbed: P2 -+ P2' 
Total-momentum conservation holds since PI + P2 = 0 at every point 
between A and 0, and A and 0', respectively, before particle 1 hits the 
wall. But even after passing 0 and 0', respectively, momentum conservation 
is still guaranteed, at every instant, if the momentum transfer to the wall is 
taken into account, since P; + Pw + P2 = O. Therefore if we think of the wall 
as a momentum-measuring device then we can say that, in our example, 
local conservation laws (i.e., at the source A and at the collision point 0) 
imply total-momentum conservation if the change in momentum of the 
measuring device is taken into account. And, furthermore, total-momentum 
conservation implies, in its tum, that the conserved quantity of one part of 
the system is unchanged, unless a local application of the conservation law 
intervenes, no matter what changes the other part of the system undergoes: 
Particle 2 propagates with momentum P2, unless it collides with another 
particle or system, no matter what happens to particle 1. Total conservation 
is thus guaranteed by a succession of local conservation laws. 

What, then, is the situation in quantum mechanics? There are some 
major differences from the classical case. Let us consider a spin singlet 
state, as shown in Figure 8, where the spin-up state is measured in a 
measuring device M (a Stern-Gerlach apparatus), while the other state is 
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Figure 7. Momentum conservatiun holds for the two-particle system in case (a). It also holds 
in case (b) if the momentum transfer 10 the wall is taken into account. 
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Figure 8. Angular-momentum conservation holds before measurement (case a). After measure
ment this is no longer the case due to the local angular-momentum change of the apparatus 
(case b l. Conservation can be reestablished if one takes the quantum torque into account. 

not subjected to any measurement at all. The remarkable result, given in a 
recent publication,(23) is the following: If one calculates the total angular
momentum change after the measuring interaction, i.e., the change of spin 
of particle 1 and of particle 2 and, additionally, the angular-momentum 
change of the apparatus M, then one finds that the total angular-momentum 
change is not zero, contrary to the classical case discussed above. What 
does this imply? Since the process of twisting the spin of particle 1 to the 
"up" position occurs under local angular-momentum conservation, this 
results in a net change of zero. Therefore the spin orientation of particle 2 
has changed. This is precisely the prediction of the quantum calculation. 
By twisting the spin of particle 1 to the "up" position at M, the spin of 
particle 2 is, without any measuring intervention, twisted to the "down" 
position by means of the spin action-at-a-distance. There is no classical 
analog of this situation because it would imply, in our first example, that 
particle 2 reverses its momentum when particle 1 rebounds on a wall. The 
difference between the quantum and classical cases lies, according to our 
approach, in the existence of an action-at-a-distance mechanism in the 
quantum case, only. Of course, there exists an explanation of this 
phenomenon in the usual Copenhagen context, by claiming that the spin 
expectation value becomes a definite spin value only upon quantum 
measurement. Before a quantum measurement there is no significance 
attached to spin variables, twisting of spin, and action-at-a-distance. "Real
ity" of observables is only created by a measurement. This is a consistent 
view, which is not a necessary implication of the formalism although often 
presented as such, but one which can run into serious difficulties in certain 
unusual situations. In the next section we shall discuss one such interesting 
configuration which reveals the shortcomings of ordinary measurement 
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theory and which was recently presented by Sutherland(24) in connection 
with a specific EPR-type measurement in a singlet-state system. 

5. The Sutherland Paradox and Its Causal Resolution 

Interestingly, a simple and elegant test of the measurement theory, in 
the context of EPR spin correlations, was proposed by one of the former 
proponents of the "retroaction model": Sutherland(24) proposed a "para
dox" involving a measurement on EPR-correlated pairs whose result 
depends on the time-like or space-like character of their separation. The 
paradox holds equally well in the quantum calculus, unless additional 
restrictions are introduced. Let us summarize the Sutherland paradox as 
follows: In Figure 9 we show the space-time picture of a decay, at 0, of a 
spin-zero state into two spino! particles. Spin measurements are performed 
at MI and M2, or M~ and M2, any observed differences depending on the 
space-like or time-like character of the intervals. According to the quantum 
formalism, the results at MI and M2, as well as those at M~ and M2, are 
always correlated since there are no predictions that depend on the specific 
space-like or time-like character of the separating interval. Then for a 
time-like separation of M ~ and M2 the following reasoning can be advanced: 
(1) The result at M2 depends on the choice at M~. Therefore, for some pairs 
of particles, it is true that choosing a direction WI for the M; measurement 
would yield +!Ii at M2, and choosing W2 at M; would yield -!Ii at M2. 
(2) Since the interval between M; and M2 is time-like we can, in principle, 

ct 

/ , 
/ , 

/ , 
x 

Figure 9. Space-like (M t M2) and time-like (M;M2) separated measurements performed on a 
two-particle system. 
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signal from M2 to M; and, at will, instruct the measuring device at M; to 
choose a particular direction. (3) Then when +!Ii is observed at M2 we can 
instruct M; to choose W2 and for -!Ii at M2 we can instruct M; to choose 
WI. Using point (1) above, we conclude that neither +!Ii nor -!Ii is a 
consistent outcome for the particle at M~, this paradox invariably emerging 
for all pairs of directions. 

This paradox raises a serious difficulty in the standard Copenhagen 
interpretation as well as in the "retroaction in time" approach, as we shall 
presently discuss. However, let us first approach this problem in the frame 
of the quantum-potential model and the resulting action-at-a-distance 
mechanism that we presented in the previous sections. Our resolution of 
the paradox rests on the following two points: 

1. In the "retroaction approach" and the standard Copenhagen school, 
it is usually claimed that composite states are nonseparable and 
unanalyzable and reality is created iff a measurement process is 
actually performed. Contrary to that approach, our model rests on 
an incommensurable physical assumption: The system plus context 
(e.g., experimental arrangement, measuring devices) are a unified 
whole owing to permanently active nonlocal action-at-a-distance 
correlations between existing real physical (i.e., observable) 
variables of its constituent elements, these correlations being 
independent of any attempted or performed measurement process. 
Nevertheless, the system is analyzable, at least in principle. 

To gain a clearer understanding let us examine the Sutherland 
paradox in our scheme. The paradox implies: (i) the existence of 
spin values for each particle which are independent of any measure
ment. We gave a brief sketch of a calculation, in the relativistic 
frame, in the preceding section. In a nonrelativistic approach, by 
means of a causal interpretation of the Pauli equation, similar 
calculations have been carried out in the case of different experi
mental arrangements and can be found elsewhere.(25) (ii) The spin 
vectors of the two particles in a singlet state are correlated by the 
spin-spin action-at-a-distance, and the spin motion by a quantum 
torque, which forces them to remain in opposite directions.(26) If 
we twist the spin of one particle, by means of an interaction, so 
as to lie in a particular direction, then the nonlocal quantum 
torque twists the second particle's spin vector to a corresponding 
direction so that the singlet state is preserved, despite the external 
interaction. 

2. The quantum-measurement results are assumed to correspond to 
real interactions between the apparatus and the measured particles. 
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No wave-packet collapse exists in this model. Since the two particles 
are permanently nonlocally spin correlated (i.e., in the singlet state) 
for space-like separations, if space-like separated measurements are 
performed on the two particles then, owing to the existence of a 
"quantum torque," the measurement results at M1 and M2 must 
possess this correlated feature depending on the choice of polariz
ation directions. 

The situation is quite different if the two measurements are 
separated by a time-like interval, M2 preceding M; in the time 
ordering. Then at M2, due to the interaction with the device, the 
spin S2 rotates and acquires a certain value for its z component, 
say +~Ii, and consequently the "quantum torque" twists SI, which 
is space-like separated from S2, into a corresponding value: SZI = 
-~Ii which is not measured. The measurement at M2 is an objective 
procedure, for example, a Stern-Gerlach splitting of the original 
wave packet into two packets where only the spin-up packet is 
occupied by particle 2. This measurement result rests on the action 
of the "quantum torque" which depends on the system as a whole 
(i.e., the two particles and the apparatus).(25) The system remains 
in the correlated singlet state, i.e., particles 1 and 2 interact nonlo
cally, after particle 2 has emerged from the measuring device. The 
subsequent measurement at M; on particle 1 can be conceived along 
the same scheme and the results again depend on the context of the 
experiment and the "quantum torque" between the two particles. 
In any case, the spin values SI and S2 remain singlet correlated. 
However, this is not the point envisaged by the "paradox," because 
the latter is concerned with the correlation of the measurement 
results at M; and M2. 

In connection with the spin values remaining singlet correlated 
we can state the following: If the relaxation time of, e.g., the 
2(j)-1(!) state is big with respect to the time separation of the events 
in the observer frame, then the separation of the spin-up and spin
down packets after passage through M2 persists and a subsequent 
M; measurement will yield a result correlated with the M2 measure
ment. No direct correlation exists between the measuring devices, 
but the correlation of results is mediated via the fixing of the S2 
value after the passage through M2. On the other hand, if the 
relaxation time is very small with respect to the time separation of 
the two measurements, or if the separated spin-up and spin-down 
wave packets of particle 2 recombine, then the subsequent M; 
measurement will not be correlated to the M2 measurement owing 
to the loss of the splitting characteristics after the M2 measurement 
although, at M;, SI and S2 are still singlet correlated. 
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Let us once more stress that since action-at-a-distance is limited to 
space-like directions, any nonlocal influence exists between space-like separ
ated particles and not between time-like separated measurements. It is really 
incomprehensible to think of measurement results as being influenced by 
the preexisting settings of a measuring device supposed to operate in the 
future light cone of an actually occurring measurement on one of the 
particles. 

The Sutherland paradox is really a paradox of the quantum measure
ment theory and its shortcomings; it is not real but only conceptual. It is 
tied to the basic philosophical assertion that reality is created by a measure
ment which also lies at the origin of the completely unfounded, and in our 
opinion unjustified, extrapolations of the time-retroactive type. On the other 
hand, our model meets the requirement imposed by Sutherland, namely, a 
different behavior for time-like and space-like separations between the 
measurement processes, because it is not the measurement processes which 
are nonlocally connected but the particles themselves. Moreover, our model 
is plausible because it does not rest on an a priori assumption but deduces 
the results out of a nonlocal causal action-at-a-distance mechanism. Finally, 
it does not contradict quantum mechanics, as wrongly implied by Suther
land,(24) but only certain assertions of the highly controversial topic of 
"quantum measurement theory"-a common label for a set of mostly 
controversial, and in any case incoherent, calculatory recipes with one 
common denominator: the "reality creation by measurement" assumptions. 

6. The Physical Origin of Nonlocality: Stochastic Motions in 
the Dirac Aether 

The notion of the existence of nonlocal correlations between physical 
observables and, moreover, the idea of attributing a physical reality to 
quantum 1/1 waves, advocated by the pilot-wave interpretation of de Broglie, 
inevitably introduces the concept of an underlying medium as a possible 
carrier of these phenomena. The problem is to reconcile this need for a 
subquantal medium, with the relativity requirement of space-time isotropy 
in the light cone. The solution was found by Dirac.(27) He observed that 
the rejection of the aether on the basis of relativity theory applies only to 
the classical concept of an aether. A quantum aether is necessarily subject 
to uncertainty relations and its velocity, at a certain space-time point, will 
not be a well-defined quantity but, rather, will obey a probability-distribution 
law according to 11/112 of the aether. Dirac then assumed the existence of a 
wave function which makes all values of the aether velocity equiprobable 
and showed that the perfect vacuum state, which results from it, is in 
accordance with the principle of relativity. One can, thus, construct this 
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covariant aether vacuum by requiring that the four-momenta of the particles 
of Dirac's vacuum are uniformly distributed over mass hyperboloids: 
PILPIL = m 2c2 and, in particular, by assuming that in the ground state all 
negative-energy states are filled while the positive-energy hyperboloid con
tains empty states (see Figure 10). Any Lorentz transformation thus leaves 
both this hyperboloid, and the assumed uniform-state distribution on it, 
unchanged. Futhermore, it has been shown(28) that the uniform-state distri
bution implies a nonuniform energy distribution, in the sense that it favors 
thp. momenta close to the light cone: In Dirac's aether distribution the 
weight of the almost light-like four-momenta is thus predominant. 

The main problem in this context is to specify the reaction of Dirac's 
vacuum when a positive-energy particle is introduced into it. One has, of 
course, to introduce a specific mechanism for this interaction; but one 
already knows the results of this interaction: it is reflected in the behavior 
predicted by quantum laws for microphenomena which reproduces, on a 
higher level, the action of the subquantal medium on quantum entities. As 
for an explicit model for this interaction, several proposals already exist in 
the literature: A mechanism of momentum exchange by simultaneously 
conserving energy was proposed by Cufaro and Vigier,(28) and a complex 
aether model, in the form of a superfluid state of particle/ antiparticle pairs, 
was introduced by Sudarshan, Sinha et aI., and Vigier et al. (29-31) Futhermore, 
the structure of the subquantal medium has been shown to provide us with 

pI 

Antiparticles 

Figure 10. The momentum distribution for particles and antiparticles in Dirac's covariant 
aether for a given mass value (or mass shell). 
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an H-type theorem which ensures the stability of quantum mean distribu
tions despite temporary deviations from it due to perturbative effects.(32,33) 

Apart from having opened this new direction of research (which is 
still in its early stages but holds great promise), the hypothesis of an 
underlying random covariant vacuum has one very important consequence. 
It is apparent that a particle, inserted into this medium, is subjected to a 
random process which is a consequence of random collision processes, 
analogous to classical Brownian motion. This is not merely conjecture but 
a point of fact, because Nelson(34) has shown that the Schrodinger equation 
can be derived from a stochastic process, provided that specific assumptions 
are made about this process. These specific assumptions deviate from the 
self-evident scheme of Brownian theory, and imply a strange behavior of 
the random component of the motion which does not fit into an ordinary 
random process scheme_ In ordinary Brownian theory, drift and random 
forces are added together in the equation of motion, i.e., 

(22) 

while in the present case they must be subtracted, so that we get 

(23) 

where D is a derivative and the subscripts d and r denote "drift" and 
"random," respectively. One further puzzle remains in the following sense: 
If one assumes a local arbitrary collision model for a particle ensemble, 
then the statistical behavior of the ensemble is reproduced by Maxwell
Boltzmann statistics_(35) These puzzles, although formally resolved, cannot 
be answered in a physically satisfactory way, in the frame of Schrodinger 
quantum mechanics. 

The real breakthrough in the understanding of the physical context of 
the quantum stochastic process was achieved in parallel research in the 
relativistic domain.(36) In particular, a nontrivial extension of the Markov 
process property,(37) according to which the future and past are disconnected 
if the present is known, was only achieved at the price of introducing 
apparent space-like motions. Furthermore, Vigier(38) showed that the specific 
form of the drift- and random-force addition law in equations (22) and (23) 
is due to a requirement of sign inversion under proper-time reversal, i.e., a 
characteristic particle/ antiparticle symmetry, and that the difference 
between the additive and subtractive forms of equations (22) and (23) lies 
in a restriction to light-cone processes in the former form, while the latter 
form contains space-like contributions as well (see Figure 11). What is the 
consequence of all this? The evident implication is that quantum stochastic 
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x x 

CASE 1 CASE 2 

Figure 11. In case (a) the stochastic processes contributing to the force law come from 
space-like and time-like separated regions while in case (b) the contributions are restricted to 
the volume inside the light cone. 

processes contain apparent space-like contributions which are due to par
ticle/ antiparticle transition processes (see Figure 12). A Feynman zigzag 
due to a creation/ annihilation process yields this apparent space-like motion 
while, at the same time, no element of the process leaves the light cone. 
Finally, the quantum-statistics puzzle has been clarified because it has been 
shown(39) that Bose-Einstein or Fermi-Dirac statistics can be deduced from 
Maxwell-Boltzmann distributions if the probability weight of the phase
space states are not constant but random, a fact established by the quantum 
potential. It therefore seems that the quantum-mechanical formalism can 
be deduced from a generalized stochastic mechanics endowed with nonlocal
ity, and no serious obstacle has been reported (up to now) in the efforts to 
extend this approach to different applications in the relativistic domain.(40) 

/\ 
\ 

/ \ 
11 ~ 

/ \ 
/ \ 

Figure 12. Decomposition of an apparent space-like motion in a particle/ antiparticle transition 
process (dashed line). 
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It is now quite clear that the vacuum, in the form of Dirac's random 
covariant aether, is a mixture of particles and antiparticles and that this 
additional degree of freedom lies at the origin of nonlocal correlations and 
action-at-a-distance phenomena. Furthermore, it allows us to understand 
the quantum evolution as a generalized stochastic process where par
ticle/ antiparticle symmetries play an essential role in its constitution. Of 
course, several problems still remain unsolved, for example, a specific model 
for the superfluid medium or the introduction of some alternative mechan
ism. But we believe that the fundamental steps have already been taken 
toward a real space-time approach to quantum mechanics, i.e., in the field 
that we tend to label, schematically, as the "causal stochastic interpretation" 
of quantum mechanics. 

7. Conclusions 

The EPR paradox, originally proposed to demonstrate the incomplete
ness of quantum mechanics, has thus followed a quite remarkable trajectory. 
After being thought of as yet another solved problem, by the Copenhagen 
orthodoxy, immediately following Bohr's reply in 1935, it has reemerged 
several decades later to find itself in the middle of unceasing scientific 
debate. Apart from the refined experiments that have been performed in 
connection with it and the problem of nonlocality or action-at-a-distance 
that it revealed, it has already achieved the major goal of every scientific 
argument. Namely, it initiated a discussion just where the matter seemed 
to be settled, and forced physicists to analyze a situation which went beyond 
the "nonseparability" curtain. While quantum incompleteness is generally, 
explicitly or implicitly, admitted, the proponents of strict quantum agnostic
ism now try to avoid the main consequence of the EPR argument by insisting 
on the confirmation of quantum predictions by the Aspect experiments. 
They thus attempt to avoid the new reality created by the research of the 
last few decades (and the EPR-type experiments), namely, that alternative 
theories and concepts have emerged which do not refute quantum mechanics 
but are able to reproduce it and can still go beyond it in the limit. This 
Copenhagen "impossibility" dogma was first successfully opposed (in the 
form of an erroneous theorem of Von Neumann) in connection with the 
de Broglie pilot-wave theory but it failed to prevent the revival of the subject 
in the form of the quantum-potential model of Bohm, its relativistic 
extension and nonlocal implications, the new vacuum theory of Dirac's 
aether, the stochastic quantization method, as well as other alternative 
approaches. This recent revival which is so scientifically encouraging and 
theoretically promising, owes much to the EPR trajectory and a basic 
element contained in it which we could summarize as follows: Scientifically 
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complete physical theories are the (temporary) product of (philosophically) 
completely self-satisfied physicists. 
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Particle Trajectories and 
Quantum Correlations 

C. DEWDNEY AND P. R. HOLLAND 

In this paper we present a series of computer calculations carried out in 
order to demonstrate exactly how the causal interpretation works for two
particle quantum mechanics. In particular we show how the causal interpre
tation can account for the essential features of nonrelativistic, two-particle 
quantum mechanics in terms of well-defined, correlated, individual particle 
trajectories and spin vectors. We demonstrate exactly how both quantum 
statistics and the correlations observed in Einstein-Podolsky-Rosen (EPR) 
experiments can be explained in terms of nonlocal quantum potentials and 
nonlocal quantum torques which act on the well-defined individual particle 
coordinates and spin vectors. 

Quantum mechanics only presents great difficulties for those who 
believe that the task of physics is to describe the structure of the material 
world. For quantum phenomena seem to defy the imagination, and our 
intuitive notions about how matter behaves, structured by classical physics, 
do not appear to serve as useful guides when attempting to conceive the 
structure of the quantum world. The fact that "classical" notions of the 
world, instead of clarifying our experience only lead to ambiguity when we 
attempt to conceive what may lie beyond the statistical predictions of the 
theory, reflects the deep crisis that quantum mechanics has brought about. 
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Henri Poincare Institute, 75231 Paris Cedex OS, France. 
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Of course it is fair to say that many physicists, who have "learned to stop 
worrying and love the statistics," would deny the existence of such a crisis. 
If pressed with questions of interpretation these physicists tend to resort to 
some variation of the Copenhagen interpretation. But how many are really 
prepared to accept the consequences and to give up any possibility of 
understanding the statistical predictions of quantum mechanics in terms of 
some underlying reality? How many are satisfied by Bohr's resolution of 
the difficulties in terms of a particular restrictive epistemology, that is, a 
particular opinion about how we come to know and what it is possible to 
know; or Wigner's idea that consciousness must be introduced in order to 
make anything definite; or Everett's idea of multiple splitting universes. Is 
quantum mechanics just an abstract formalism for connecting the statistical 
results recorded at the presumably unproblematic classical level, or is it 
indicative of a new order in the structure of the material world, that is, a 
new ontology? 

2. The Causal Interpretation of Quantum Mechanics 

One way of exploring a possible underlying structure is through the 
causal interpretation, proposed originally by de Broglie(l) and rediscovered 
by Bohm(2) in 1952. In this context the wave function is not held to exhaust 
the possibilities of description of individual systems, but does, as usual, 
encompass the limits of prediction. This approach allows a description of 
quantum phenomena in terms of well-defined individual particle motions; 
the statistics have no special status and neither does measurement. The 
disturbance caused by measurement can be analyzed, but not avoided, and 
the Heisenberg uncertainty relations are interpreted as statistical scatter 
relations which arise in the repeated measurement, on similarly prepared 
systems, of well-defined variables. It is assumed that a particle, an electron 
for example, has a well-defined position, momentum, and spin vector at all 
times. In addition the particle always has an associated 1/1 wave. The 
evolution of the particle coordinates and spin depends on the form, rather 
than the amplitude, of the associated wave as can be seen from the particle's 
equations of motion, deduced from the appropriate wave equation. These 
equations of motion correspond closely to those of classical mechanics but 
contain additional "quantum" terms. As we shall see these extra terms 
depend on derivatives of the associated 1/1 wave rather than its intensity. 
This means that the particular behavior that will be displayed by an 
individual particle depends not only on its precise initial coordinates, but 
also on the initial form and the development in time of its associated 1/1 
wave. Of course the evolution of the 1/1 wave is determined by the wave 
equation appropriate to the situation, and the form of the wave will therefore 
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come to reflect the structure of the particle's relevant environment. Through 
this description it can be seen that a particle, although separable from its 
environment for the purposes of analysis, in fact forms with its environment 
one undivided whole, as has been emphasized by Bohm.(3) 

In a series of explicit calculations(4-6) for the single-particle case, we 
have demonstrated how the equations of motion deduced in the causal 
interpretation imply individual particle motions, determined by quantum 
potentials and quantum torques, which account completely for the observed 
quantum phenomena and serve to distinguish classical from quantum 
behavior. 

The specific calculations presented here show clearly the new features 
that this description entails in the two-particle case. As we shall see the 
dependence of the individual particle's behavior on the quantum state of 
the system, .p(1, 2), implies in the two-particle case that, in addition to the 
dependence on the environment, an individual particle's behavior will 
depend on the coordinates of all the other particles constituting the system 
as well. 

3. Nonlocality and the Causal Interpretation of Two-Particle 
Motion 

The two-particle Schrodinger equation 

can also be interpreted within the framework of the causal interpretation. 
Writing 

we find for two particles of equal mass 

a two-particle Hamilton-Jacobi equation, with 

p = R\ and 
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The continuity equation is 

Here V represents external potentials while V 1 and V 2 operate on coordinates 
1 and 2, respectively. Evidently the quantum potential acting on particle 
one, say, depends not only on the coordinates of particle one but on those 
of particle two as well. The velocities also show this interrelationship. The 
additional terms in the Hamilton-Jacobi equation lead, as in the single
particle case, to nonclassical behavior in which even "classically" noninter
acting particles can influence each other through the quantum potentials. 
Since, quantum mechanically, a collection of particles behave in a way that 
depends also on the form of the associated wave, they may obey a different 
type of statistics than a collection of noninteracting particles in the classical 
case. 

3.1. Particle Motions and Quantum Statistics 

In order to illustrate the conditions under which the correlation between 
the particles becomes significant, giving rise to quantum statistics, we 
consider the case of two particles in a harmonic-oscillator potential,(7) 
V(x) = 0.5mw 2• A wave-packet solution may be constructed for the motion 
of a particle in such a potential which is, incidently, nondispersive: 

t/J(X, t) = exp( -iwt) exp[ -!(x - Xo cos wt)2] 

x exp [~ (!x~ sin 2wt - 2xxo sin wt) ] 

Assuming that there are two particles, one in each of the packets t/Ja and 
t/Jb, centered initially at Xo = -Xo = 1.5, in our arbitrary units in which Ii = 1, 
m = 0.5, and w = 1, then there are three possible wave functions that may 
be written. These are 

<PSE = aSE[t/Ja(Xh t)t/Jb(X2, t) + t/Jb(Xh t)t/Ja(x2, t)] 

<PFD = aFD[t/Ja(xh t)t/Jb(X2, t) - t/Jb(Xh t)t/Ja(X2, t)] 

where the as are normalization coefficients. 
Now in the first case the wave function is a simple product and it is 

fairly evident that the factorizable wave function enables the two-particle 
Schrodinger equation to be factored into two separate one-particle 
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equations. The same is true of the equations of motion derived in the causal 
interpretation and hence each particle exhibits, independently, the motion 
of a single particle in a harmonic-oscillator potential. The trajectories are 
shown in Figure 1. 

The other two wave functions correspond to those written when the 
two particles are said to be indistinguishable, being symmetric (the Bose
Einstein case) and antisymmetric (the Fermi-Dirac case). Of course the 
particles can only be considered to be indistinguishable when the two con
stituent wave packets overlap. When they do not, the particles are in principle 
distinguishable by their histories. In the causal interpretation, of course, 
the particles are always distinguishable, in analysis if not in practice, and 
hence the different statistics they obey cannot be accounted for by reference 
to indistinguishability. Instead, as is demonstrated here, the different statis
tics arise as a result of the development of the two-body quantum potentials 
which depend on the wave function assumed. 

Figure 2 shows a set of correlated pairs of trajectories, for the symmetric 
wave function ¢BE, in which the initial position of particle one x1(O) is 

PARTICLE TRAJECTORY _._._ VARIANCE OF WAVE PACKETS. 

Figure 1. Particle trajectories for two particles in a harmonic-oscillator potential with a 
factorizable wave function. Maxwell-Boltzmann statistics (solid lines). The interrupted lines 
plot the variances of the individual wave packets. 
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_._._ YARIANCE aF WAVE PACKET", 

Figure 2. Correlated pairs of particle trajectories for two particles in a harmonic-oscillator 
potential, symmetric wave function. Initial position of particle one is the same for a range of 
initial positions of particle two. Bose- Einstein statistics. 

chosen to be the same for each pair of trajectories while the initial position 
of particle two X2(0) is different for each pair. It is very clearly shown in 
the form of the correlated trajectories that the motion of each particle 
depends on the position of the other. To show which of the trajectories are 
the correlated pairs we plot in Figure 3 the trajectories in the region of 
overlap. The position of the numbers at the right-hand side of the plot 
indicates the order of trajectories at the center. In Figure 4 we plot the 
correlated trajectories that arise from the antisymmetric wave function ¢>FD. 
The initial positions are chosen as for the symmetric case and clearly the 
different wave function introduces a different form of correlation in which, 
on the average, the particles tend to stay further apart. In Figure 5 we plot 
the quantum potential acting on particle one (01), after one eighth of a 
cycle, for a fixed position of X2 (= -1.0 in our arbitrary units h = 1, m = 0.5). 
The solid line represents the quantum potential arising from the antisym
metric wave function and the interrupted line, the quantum potential arising 
from the symmetric wave function. Clearly at this stage particle one will 
not be affected by the presence of particle two, since the quantum potential 
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o. 

Figure 3. Correlated pairs of trajectories for two particles in a harmonic-oscillator potential, 
symmetric wave function, in the region of overlap. The numbering of the upper trajectories 
gives the vertical ordering at the center of the plot. 

acting on particle one is a constant in the region where it has a nonnegligible 
probability density. Figure 6 depicts the same thing at one quarter of a 
cycle, when the spatial wave functions are superimposed. Figure 7 shows, 
for the antisymmetric case, the effect of varying the position of particle two 
X2 = -1.5, -1.0, -0.5 on the quantum potential acting on particle one. 
Similarly, Figure 8 shows this affect for the symmetric case. 

From these illustrations it can be seen that the magnitude of the nonlocal 
correlation is only appreciable in the region of overlap between the two 
wave packets I/Ia and I/Ib' This is understandable, since the different statistics 
arise from the interference terms. In this case then the strength of the 
nonlocal interaction depends on the amount of overlap between the two 
wave packets. This is interesting since it tells us that the fate of particle 
one, for example, will not be appreciably altered by what happens to particle 
two when we can be sure that they are separated. In the example studied 
here then we may say that, when the particles can be distinguished, according 
to the definitions of the usual approach, we can expect no nonlocal correla
tion of their trajectories, while when they become indistinguishable, by 
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-1.5 

__ PARTICLE TRAJECTORY ___ VARIANCE OF ..... VE PACKETS, 

Figure 4. Correlated pairs of particle trajectories for two particles in a harmonic-oscillator 
potential, antisymmetric wave function. Initial position of particle one is chosen to be the 
same for a range of initial positions of particle two. 

virtue of the overlap of the two wave packets, nonlocal correlation will 
arise. According to this particular example nonlocal interaction between 
the particles, in the causal interpretation, only exists in those cases in which 
the particles cannot be said to be definitely separated in space according 
to the usual interpretation. 

3.2. EPR Correlations 

In the example of correlated particle motion suggested by Einstein, 
Podolsky, and Rosen(8) the wave function that they proposed is 

I/J = f dk l f dk2 8(kl + k2 ) e2 ,,-i(k,x,+k,x,) e-2 ,,-ik,d = f dkl e2".,k,(x,-x,+d) 

This wave function implies that measurement of the momentum of one of 
the particles allows us to deduce that of the other: kl = - k2 • Also, measure
ment of the position of one of the particles allows us to deduce the position 
of the other: XI = X2 - d. The essential point of the EPR argument, at that 
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Figure 5. The quantum potential acting on particle one, when X2 = -1.0 after one eighth of 
a cycle. Solid line for the antisymmetric wave function and interrupted line for the symmetric 
wave function. 

time, was that we may choose whether to measure the momentum or the 
position of particle one, say, and hence infer the value of the momentum 
or position of particle two, without interacting with it at all. EPR then 
argued that if we can, in this way, predict with certainty the values of these 
quantities of particle two, then they must be preexistent. In other words, 
the particles must possess a well-defined position and momentum, even 
before the measurements are carried out. Furthermore, the above reasoning 
is independent of how far apart the particles actually are situated; the 
correlation should exist to infinity. Their conclusion was that the quantum
mechanical description of reality through the wave function is incomplete. 

From the point of view of our discussion of the two particles in the 
harmonic-oscillator potential we can see that, in the EPR case, the correla
tion between the particles exists to infinity, as a result of the particular wave 
function assumed. In particular the particles, in the state defined by them, 
cannot be considered to be separated in space, in the usual approach, and 
hence a nonlocal connection can be expected to exist in the approach of 
the causal interpretation. It can be seen then that the use of spatially infinite 
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Figure 6. The quantum potential acting on particle one, when x2 = -1.0 after one quarter of 
a cycle. Solid line for the antisymmetric wave function and interrupted line for the symmetric 
wave function. 

waves by EPR is responsible for the distance independence of the correla
tion. It was pointed out by de Broglie(1) that it is this feature that enabled 
Bohr(9) to reply to the problem posed by the EPR example. Further on we 
examine the same problem from the point of view of the version of the 
EPR argument proposed by Bohm, dealing with a correlation between the 
particles' spins. We conclude that even when the particles' spatial packets 
do not overlap, a nonlocal correlation may still exist between the spins and 
hence positions. In the next section we discuss the interpretation of spin 
in the single-particle case to facilitate the discussion in the two-particle 
EPR example. 

4. The Causal Interpretation of Spin 

In the usual interpretation spin is simply treated as an empirically 
required addition to the angular momentum. It is argued that no intuitive 
model can possibly provide an understanding of phenomena associated 
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Figure 7. The quantum potential acting on particle one after one quater of a cycle, antisym
metric wave function, plotted for x2 = -1.5, -1.0, and -0.5. 

with the spin. (This is the case for all quantum phenomena in the usual 
approach.) Since the operators for the components of the spin along three 
mutually perpendicular directions (~~,~, 5,,) do not commute, it is argued 
that they cannot be simultaneously well defined. As is usually the case the 
value of a quantity, in this case the spin component, does not become 
definite until a measurement "throws" the system into an eigenstate of the 
observable being measured, simultaneously throwing the values of noncom
muting operators into an indefinite state. 

The causal interpretation can be extended to include the description 
of spin, as has been demonstrated by Bohm et al. (10) and also by Takabay
asi.(II) More recently we have shown how the causal interpretation of spin 
actually works in a series of specific calculations, which show explicitly the 
continuous motion of the well-defined spin vector during a spin-superposi
tion experiment and during the passage through a Stern-Gerlach measuring 
device. (12-14) 

In the causal interpretation, the Pauli spinor is interpreted as defining 
the state of rotation of a body in terms of the Eulerian rotation angles 
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e, ,p, X, relative to a standard spinor (b) defining a z direction, according to 

lj; = R eix/2 2 (
cos!!. e iq,/2 ) 

i sin ~ e- iq,/2 

(1) 

The spin vector is defined to be 

The Pauli spinor evolves according to the equation 

alj; [ li 2 ( ie)2 ] ili- = -- V - - A + p.B· (J' + eAo + V lj; 
at 2m lie 

(2) 

where A is the external vector potential, B = V x A, Ao is the external electric 
potential, and V any other scalar potential. 
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The velocity of the particles is given by 

v=~(vx+cos(J Vl/J -~A) 
m 2 2 he 

The equations of motion can be derived by direct substitution of equation 
(1) in (2) and yields 

h (ax al/J) 2,." - - + cos (J- + !mv2 + Q + Qs + - B . s + eAo + V = 0 
2 at at h 

(3) 

a Hamilton-Jacobi equation, where 

is the quantum potential and 

is a spin-dependent addition. The total energy is given by 

- -+ cos (J-h(ax al/J) 
2 at at 

The equation of motion of the spin vector can be written in the form 

ds 1 2,." 
- = -s x a·(pa·s) + - B x s 
dt mp I I h 

(4) 

where the first term on the right-hand side is an additional quantum torque 
and p = R2. The continuity equation is 

ap - + V . (pv) = 0 
at 

(5) 

From the equations of motion (3), (4), and (5) it can be seen that even in 
the absence of magnetic fields, free spinning particle trajectories will not 
be the same as Schrodinger trajectories, nor will the spin vector orientation 
remain constant if the particle is in a nonstationary spin state. 
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4.1. Spin Measurement 

In the usual approach it is said that when a component of the spin is 
measured, along z say, the system is "thrown" into an eigenstate of the 
corresponding operator. However, the effect of such a measurement is to 
disturb the other x and y components which become indefinite, and hence 
the spin cannot be considered to be well defined even after the measurement 
has been carried out. In the following we demonstrate how the causal 
interpretation can account for these features of the quantum description in 
terms of a well-defined but continuously variable spin vector. The process 
has been described in detail elsewhere(13) and here we simply review the 
results. 

We represent the initial state of an atom with angular momentum h/2 
by the spinor wave function 

where c+ and c are unknown real coefficients and foe z) a localized packet, 
which we assume to be of Gaussian form. On writing 

and 

the initial spin-vector orientation is 

Solution of the Pauli equation with approximate interaction Hamiltonian 
HI yields rjJ(z, t). The velocities and orientations of a set of representative 
single-particle motions can then be calculated for various choices of the 
parameters c+ and c. Figures 9, 10, and 11 show the spin-dependent 
trajectories, the field of orientations e(z, t) and ¢(z, t), respectively, for the 
choice 1e+1 = Ie-I = (0.5)1/2. This illustration demonstrates explicitly that it 
is possible to describe the process in terms of well-defined particle motions. 
Clearly the quantum torque aligns the particle's spin vector parallel or 
anti parallel to the field. Which of the two alternatives is in fact realized in 
a particular case depends on the actual initial values of the hidden variables 
of both the system (here the spin-vector direction) and the apparatus (here 
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Figure 9. Spin-dependent trajectories, from a Gaussian distribution of initial positions, at the 
exit of a Stern-Gerlach field oriented in the z direction. Initial spin-vector orientation perpen
dicular to the field. 
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Figure 11. The field of orientations </>(x, t) corresponding to the trajectories of Figure 5. 

the particle position, since by observing this we can deduce the value of 
the spin). In the particular example described here the spin-dependent 
quantum potential splits the packet at its center, and as the two packets 
separate the quantum torque rotates the spin vector to align parallel or 
anti parallel to the analyzing field. In the causal interpretation, after the 
measurement in the z direction Sx = Sy = 0 and Sz = !. 

Evidently, in this description the outcome of the measurement is related 
deterministically to the actual (uncontrollable) initial values of the hidden 
variables, but measurement does not simply reveal them. Rather the evolu
tion of the spin variable is correlated with the evolution of the apparatus 
variable (the particle position), the correlation being introduced by the 
inhomogeneous field. It is the existence of well-defined variables in the 
system and in the apparatus, evolving according to the causal equations of 
motion, that ensures unique initial conditions lead to unique and well
defined outcomes. In this way it can be seen that wave-packet collapse is 
a redundant hypothesis. 

Clearly there is nothing special or extraordinary about measurement; 
it is simply a particular case of the correlated evolution of the variables of 
two systems according to the laws of quantum mechanics. During this 
evolution the apparatus variable enters the space of one of a series of 
unambiguously distinguishable states, each of which is correlated with a 
different state of the system under observation. 
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5. Nonlocal Spin Correlations in the Two-Particle Case 

The description given above of spin-half particles can be extended to 
the two-particle case. This enables a description to be given of the EPR 
experiment in the form proposed by Bohm,(l5) in which the correlations 
are between spin measurements carried out on each of two particles in a 
singlet state. Bohm's version of the experiment has been of great historical 
importance and the results obtained by Aspect et al. can be easily discussed 
in terms of spin rather than polarization. Although it is still possible to 
question whether the experiments of Aspect et al. have finally demonstrated 
the existence of nonlocal phenomena in physics, this has become increas
ingly difficult. Indeed it only seems to be possible by denying the validity 
of many-body quantum theory. 

We have already seen in the foregoing that the particle motions calcu
lated in the causal interpretation of many-body phenomena exhibit nonlocal 
correlations under certain circumstances. In particular we saw that when 
the wave function can be written as a sum of products of individual spatial 
wave functions, nonlocal correlation will only produce observable results 
when these functions overlap. We now demonstrate that the causal interpre
tation of the two-body Pauli equation naturally implies that nonlocal correla
tions will indeed exist between two spin-half particles in the singlet state. 
We present plots of the correlated trajectories of the particles and the 
evolution of their spin vectors as a result of the measurement of the spin 
components of each. Our conclusion is that although the model presented 
here is an idealized one, it provides an insight into the meaning of nonlocality 
in terms of an underlying causal process, in a way that no other interpretation 
of quantum mechanics has managed to do. 

5.1. The Two-Body Pauli Equation 

We consider a system of two spin-half particles of masses m l , mz and 
charges el , e2 respectively, which are placed in external electromagnetic 
fields and possibly interact. The two-body Pauli equation is 

al/l { 1i 2 [ie l J2 ili-= -- 'i/ --A (x x) at 2ml I lie I I, 2 

where XI and X2 are the coordinates of particles 1 and 2 while 
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is the wave function of the system; V = V(XI' X2, t) is the total external 
plus internal scalar potential, 

where J-tl, J-t2 are the particles' magnetic moments with 

and 

and 0'1,0'2 are two sets of Pauli matrices which commute and operate 
independently. 

Writing 

where Rand S are real amplitude and phase functions respectively and 
4> t 4> = 1, we may deduce a Hamilton-Jacobi equation 

and a continuity equation 

where p = ",t", = R2 is the configuration-space probability density, 

i = 1,2 

are the velocities of the particles which contain spin-dependent contribu
tions, 

1i 2 \7 2 R 
Q=---'-

, 2m; R 
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are the usual quantum potentials which arise in the two-body case, 

i = 1,2 

are spin-dependent additions to the quantum potentials, and 

i = 1,2 

are the vectors which we shall adopt here to describe the local spin orienta
tion of each particle. The total energy of the system 

as t a</> --ih</> -at at 

is clearly spin-dependent. Each of the above functions depends on the 
coordinates of both particles, and it is simple to show that the trajectories 
and spin vectors of the two particles will only evolve independently when 
the wave function factorizes: 

5.2. EPR Spin Correlations 

The basic setup is as shown in Figure 12. A pair of spin-half particles 
of mass m and magnetic moment f.L are formed at 0 in a simultaneous 
eigenstate of the spin operator in the z direction !h(uZt + u t ,) and the total 
spin operator ~h2(0"1 + 0"2)2 of eigenvalue zero. The particles separate in 
the y direction and pass through Gaussian slits oriented so as to produce 
packets in the directions of the analyzing fields of two identical Stern
Gerlach devices. The magnet 2 is set to measure spin in the z direction, 
and magnet 1 has been rotated counterclockwise through an angle 8 about 
the y axis so that it has a gradient in the z' direction. 

At the entrance to the fields the wave function is 

(6) 
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Figure 12. The experimental arrangement for the Einstein-Podolsky-Rosen experiment. 

wherefl(z;) andf2(z2) are normalized packets, ZI and Z2 are the coordinates 
Jf particles 1 and 2 in the z' and z directions, respectively, and (Tz, U± = ± U± , 

~Z2V± = ±v±. The state (6) predicts the following expectation value for the 
:orrelations of the spins measured in the z, z' directions: 

In treating this problem we have suppressed the motion in the y direction, 
;ince this is not relevant to the measuring process. We only assume that 
:he particles are sufficiently far apart on the y axis that they do not interact 
md the measuring devices cannot influence one another. As we saw in the 
;ingle-particle case discussed above, the state before the measurement takes 
place is one in which the spin is independent of position. The Stern-Gerlach 
jevices introduce couplings between the spins (the variables measured) and 
the particle positions (the apparatus coordinates). As in the single-particle 
:ase at the exit of each magnet, two superposed packets are formed which 
;eparate with time along the direction of the analyzing fields. The calculation 
Jf the motions when the fields are aligned along different directions are 
~iven in our paper.(16) Here we demonstrate explicitly the correlated particle 
:notions which arise in the causal interpretation by presenting the results 
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of these calculations in terms of correlated particle motions and spin-vector 
orientations. 

If we write 

and 

then the velocities are simply given by 

and 

The spin vectors are SI = S2 = O. This clearly demonstrates the context
dependence of particle properties in the causal interpretation, since the 
individual spin vectors are here zero in the singlet state, something that 
cannot occur in the single-particle case. 

In order to understand what happens during the measuring process, 
we consider first the simplest case, namely, a measurement on one side 
only. The calculation yields the result that at the exit of the field the particle 
undergoing measurement enters one of the separating packets, depending 
on its initial position on the z axis, under the influence of the total spin
dependent quantum potential, and its spin-vector component in the direction 
of the analyzing field changes continuously from 0 to +n/2 or -n/2 as the 
packets become separated in the z direction. Simultaneously, the spin-vector 
component in the z direction of the second particle not undergoing measure
ment changes in the opposite sense from 0 to - n/2 or + n/2 as a result of 
the operation of the nonlocal quantum torque. That is, the spin of particle 
two depends on the position and hence spin of particle one. The velocities 
however in this case remain independent: 

and 
IR I +1 2v 151+ + IR I _1 2V 151-

VI = m(IR+d2 + IR_112) 

The trajectory of particle two is unaffected by the measurement on particle 
one and the trajectory of particle one depends simply on local factors. If 
we were subsequently to measure the spin of particle two in the z direction, 
we would of course find the opposite result to that found for particle one. 
The trajectories and spin-vector magnitudes (indicated by the length of the 
arrow which always lies in the z direction) are shown in Figure 13. Consider 
now the case in which both Stern-Gerlach devices are operational and set 
to measure the spin component in the z direction on both particles simul
taneously. The motion of each particle for any pair of trajectories depends 
sensitively on the choice of both initial positions at the entrance slits to the 
Stern-Gerlach devices. The calculation in this case yields the results plotted 
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in Figure 14. These results were calculated by taking the initial position of 
particle one to be the same in each case and then calculating the correlated 
trajectories which develop for a representative range of initial positions of 
particle two. The situation when the initial position of particle one ZI,O is 
chosen to be equal to that of particle two Z2,O represents a bifurcation point 
(actually, a bifurcation line in configuration space). If Z2,O < ZI,O, then 
particle two has a negative velocity and its Z spin component decreases 
form 0 to -! while the correlated particle one has a positive velocity and 
its Z spin component increases from 0 to + L with a corresponding result 
if zz,o > ZI,O' Clearly the fate of each particle depends sensitively on what 
happens to the other one. In Figure 15 we illustrate the same phenomenon 
with a different choice of the constant zz,o. 

The description given above demonstrates the manner in which the 
causal interpretation can account for EPR correlations. The description is 
based on that proposed by Pauli, however it must be born in mind that 
Pauli simply introduced the minimal extra mathematical structure necessary 
to deal with the statistics of phenomena dependent on spin, A more natural 
way to treat the spin is through an extension of the dependency of the 
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Figure 13. Trajectories and correlated spin,vector orientations for two particles initially in a 
singlet state after the impulsive measurement of the z component of the spin ofparticIe two only. 
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Figure 14. Correlated pairs of trajectories and correlated spin-vector orientations for two 
particles initially in a singlet state after the impulsive measurement of the spin in the z direction 
on both particles: ZI.0 = constant, Z2.0 variable. 

Schrodinger wave function to encompass internal orientation coordinates. 
The Schrodinger equation must then include the contribution to the energy 
from the rotational motion of the particle and appropriate operators must 
be defined. A full description of this approach is beyond the scope of the 
present chapter, but we might mention here that in this more general 
approach the results of the Pauli theory are recovered as averages over the 
internal coordinates. The trajectories and spin-vector orientations plotted 
here then represent these averages over the internal coordinates and this 
leads to a more natural interpretation of the zero spin vector of each particle 
in the singlet state. In fact, in the more general theory although the individual 
spin vectors will not be zero in the singlet state, the average values however 
will be. 

6_ Conclusion 

The illustrations presented here demonstrate clearly how the results of 
experiments in quantum mechanics, including EPR-type experiments, can 
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Figure 15. Correlated pairs of trajectories and correlated spin vectors for two particles initially 
in a singlet state after the impulsive measurement of the spin in the z direction on both 
particles: ZI.O = a different constant to that of Figure 12, Z2.0 variable. 

be accounted for in terms of a reality in which well-defined and continuously 
variable quantities evolve in a deterministic manner according to the 
equations of motion of the causal interpretation. They also illustrate that 
the fundamentally new feature of matter introduced in the quantum theory 
is a kind of wholeness in which the behavior of an individual particle is 
irreducibly connected with its context (expressed through the wave func
tion), evidenced in the two-particle case by the existence of nonlocal 
connection. Einstein's elements of reality exist, they are not described by 
quantum theory which deals with eigenvalues of operators, and in general 
they are not simply revealed in measurement interactions. As we have seen 
the interactions regarded as measurements are, in fact, those in which a 
particular variable of a "measured" system becomes correlated with a 
particular apparatus coordinate according to deterministic laws of evolution 
of the whole undivided system-plus-apparatus. In this sense the elements 
of reality in quantum theory are essentially different to the elements of 
reality of Newtonian physics. Although we use the same terms, position, 
momentum, kinetic and potential energies, to describe the particle's motion, 
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the individual and its relation with these attributes is not similar to that 
which exists in classical mechanics. In the history of ,science each new 
epoch-making discovery has indicated a new feature matter, one of which 
was the introduction of the idea of the field. In our opinion, assuming 
reality has this fundamentally new feature of wholeness is preferable to 
assuming that it does not exist except when we are looking at it! 
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Bell's Inequality and the 
Nonergodic Interpretation of 

Quantum Mechanics 

VINCENT BUONOMANO 

1. Introduction 

The nonergodic interpretation has been described and discussed in various 
worksY-3) Here we very briefly review it in Section 2 and make some 
observations. In Section 3 we clarify the various types of averages that one 
actually deals with in a laboratory experiment and also establish some 
notation. Section 4 discusses theories which involve only a flow of informa
tion from the source to the polarizers for time averages. In Section 5, theories 
in which there is also a flow of information from the polarizers to the source 
are considered for time averages. Some miscellaneous comments are made 
in Section 6. Appendix 1 describes an experimental test in a low-intensity 
interference experiment and Appendix 2 examines Nelson's stochastic 
mechanics in relation to our view. Parts of this work follow Buonomanoy,2) 

2. The Physical Viewpoint 

2.1. The Physical Idea 

The nonergodic interpretation is a local realistic view which assumes 
a certain physical viewpoint of how particles behave in the microworld that 
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is distinct from the usual interpretations of quantum mechanics (e.g., 
Copenhagen, statistical, causal, and De Broglie's). It assumes that a 
sequence of particles, which consecutively pass through an apparatus separ
ated by large times, is not independent in general. That is, it imagines that 
particles may indirectly interact with each other via memory effects in an 
hypothesized medium. Particles which first pass through a region will affect 
the medium, which then affects the particles, which later pass through that 
same region. By large times we mean times sufficiently great to guarantee 
that there is almost never more than one particle in the apparatus at a time. 
One might make the logical analogy of two professors who are never 
simultaneously in a room together, but communicate with each other only 
indirectly by leaving messages on the blackboard. 

For example, consider the double-slit experiment which motivated this 
interpretation. The above type of indirect interaction permits one to say 
that a particle passing through one slit knows if the other slit is open (closed) 
from this information being recorded in the medium in their common path 
by particles which previously passed (didn't pass) the other slit. Here 
interference can only happen after a sufficiently large number of particles 
have traveled through the apparatus and conditioned our imagined medium. 
Particles interfere with other particles, but only indirectly via the medium. 
There can be no interference whatsoever for an ensemble average. See 
Buonomano(1) for more details. Appendix 1 describes an experimental test. 

In other words, one might describe the nonergodic interpretation by 
saying that it questions the ergodic-type assumption that it is currently 
necessary to make in interpreting both the existing low-intensity interference 
experiments and the polarization-correlation experiments as giving the true 
quantum-mechanical ensemble averages. * 

2.2. The Formal Definition 

The nonergodic interpretation is a well-defined alternative interpreta
tion of quantum mechanics. It assumes the same Hilbert-space formalism 
used in both the Copenhagen and the statistical interpretations except for 
the following. In these usual interpretations one associates the mathematical 
object, (A) = (",IAI"'), representing the average of the observable A in the 
state "', with the laboratory procedure of taking an ensemble average. 
Instead, the nonergodic interpretation identifies this same mathematical 

* We recall that, for example, in the double·slit experiment the ideal quantum-mechanical 
ensemble average for a one· particle system should be made over many identical independent 
apparatus with exactly one photon in each apparatus, all of which are prepared in the same 
quantum-mechanical state. Real laboratory averages are time averages and, of course, 
necessarily involve an ergodic-type assumption to interpret the averages as ensemble averages. 
See discussions of this in Glauber(4) and MargenauY) 
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object with the laboratory procedure of taking a time average.* This is the 
only difference in the formalism. Here we are making a different association 
between mathematical objects of the Hilbert-space formalism and laboratory 
procedures than either the Copenhagen or the statistical interpretations. The 
nonergodic interpretation always makes the same numeric predictions as 
the usual interpretations, but it makes them only for time averages and not 
for ensemble averages. 

2.3. The Medium 

We would like to emphasize that we are not presenting a concrete 
physical theory. We are only talking about a physical idea of a medium 
with some sort of memory effects which permits us to justify an indirect 
interaction between particles. One may try to justify this medium as a 
stochastic medium or as a fluid medium. One may wish to remain abstract 
and refer to it as a field, whose properties depend on what passed through 
it. One could think about vacuum states. One might talk about an index of 
refraction of the medium or field which depends on its past history. Concepts 
from cooperative phenomena look particularly promising. Any future phy
sical theory would have to somehow justify a medium of some type which 
can be forced into stable modes by many similarly prepared particles which 
consecutively pass through it. Lorentzian invariance of this memory would 
also have to be dealt with. Despite this lack of concrete physical basis, it 
is as well defined an interpretation as the others, in addition to being 
completely falsifiable (Appendix 1). 

2.4. Memory Decay Time 

The existing interpretations of quantum mechanics predict that interfer
ence must exist independent of the light intensity. This forces us to consider 
a more specific type of memory. We must imagine that we can obtain the 
same memory buildup in the case of intense light, using relatively few 
photons, as in the case of weak light, using many photons. That is, in this 
view, as one reduces the light intensity one may compensate for this by 
using many more photons (i.e., much longer time averages) in order to 
obtain the same level of memory development. In the limit of infinitely-low
intensity light one must use infinitely many photons to condition the 
mediumY) Another way of saying this is that the memory decay time (after 
an equilibrium has been established between the particles and the medium) 
depends on the intensity; the lower the intensity the larger the decay time. 
On the other hand, it will take more particles to establish the equilibrium 

* Actually we should say a grand-time average. This will be defined in the next section. 
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in the first place when the intensity is low. In any case, this concept of 
memory decay time does not appear to be a very satisfactory way of 
trying to describe the kind of equilibrium phenomena that we are 
imagining. 

3. Time Averages 

Here we discuss the various averages that must be considered in 
laboratory experiments and establish some notation. Consider an ideal 
laboratory experiment, namely, there is no noise, we have perfect counters 
and polarizers, and there is no drift or warm-up effects (see Figure O. In 
particular, this means we may turn on our apparatus and immediately begin 
to collect meaningful data in any of the individual experimental runs. Let 
R represent the number of experimental runs which we assume to be strictly 
independent, * and N be the number of photon pairs in each of the runs. 
Also, Am represents the characteristics of the nth particle pair in the rth 
run, and Srn (s~n) is the state of polarizer A (8) of Figure 1 prior to particle 
Am interacting with it. When we say Polarizer A (8) we mean to include 
the counters and any other instrumentation on side A (8) of the apparatus. 
We let Crn == cm(a, b) be the correlation measurement of the particle pair 
Arn and define the following averages: 

(1) 

(2) 

(3) 

* For an ensemble average it is essential to speak of independent individual measurements. In 
the nonergodic interpretation it is essential to speak of independent experimental runs. It is 
difficult to define what independence means in both cases in terms of concrete laboratory 
procedures. It seems obvious to almost all the research community that as long as the particles 
are not in the apparatus together, then they must be independent. This work is calling 
attention to this assumption. On the other hand, we will assume that runs that are separated 
by the procedure of turning the apparatus off for a short period of time and on again will 
guarantee independence of the runs. 
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Polarizer A (s) Polarizer B (5') 

Detector A Detector B 

C 
la 

.. 0 ~ :::J 
Source (A) b 

Figure 1. This is just the canonical polarization correlation experiment with light: A represents 
the state of the photon pair; s (s') represent the state of the polarizer-detector system A (B 
respectively); a and b are the angles of polarizers A and B, respectively. 

The indexes rand n go from 1 to Rand N, respectively. Quantity C is 
sometimes called a grand-time average, Cr is the run-time average in run r, 
and Cn is the ensemble average at "time" n. The indexes on the character 
C identify the average being referred to. We will frequently say time average 
to mean either a run-time average or a grand-time average. It is well known 
that in general these averages (1-3) are unrelated. 

Unless one makes some type of ergodic assumption it is only Cm~1 
that represents rigorously the conceptually correct quantum-mechanical 
average (assuming that the experimental runs are independent). It is almost 
always implicitly or explicitly assumed by the research community that 

Cn(a, b) = Cr(a, b) = C(a, b) (4) 

for all nand r in an ideal experiment. This involves an ergodic-type 
assumption and it is exactly what the nonergodic interpretation is question
ing. There is no experimental evidence for the validity of equation (4) that 
we are aware of. For example, in the double-slit experiment, one might say 
that this assumption is based on the belief that two particles which are not 
in the same place at the same time cannot affect each other, or, in other 
words, particles must be "touching" to affect each other. This is a very local 
assumption considering the kind of global behavior that one is trying to 
explain. 

The nonergodic interpretation says that Cn(a, b) must agree with Bell's 
inequality for small n, while for large n it will agree with (converge to) the 
quantum-mechanical predictions. No criteria for small or large n are known. 

4. One-Directional Information Row 

Here we will introduce local realistic theories for time averages which 
involve only a flow of information from the source to the polarizers (via 
the photons) with no flow of information from the polarizers to the source. 
We call such theories one-directional theories. These are, of course, the 
theories for which Bell's inequality is usually derived for ensemble averages. 
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For time averages they are much more general and complicated. For 
example, in the notation of the previous section, we may imagine a theory 
where 

(5) 

In other words, the state of a polarizer depends on its previous state and 
the state of the previous photon which passed through it. The states of the 
distant polarizers are not factorizable in this case. We note that here it is 
not necessary to imagine a medium to provide for the type of communication 
between particles, since the memory may exist in the polarizers. 

The following is a more concrete formal example of this. Let our particle 
source produce orange and white photons under a conservation-of-color 
law. That is, both photons are either orange or white. We also assume that 
the colors are random with a probability of one-half each. Let polarizer A 
be such that it has the following properties. It is a filtering device with only 
two states, 0 and w. It will permit an orange photon to pass only if it is in 
state 0, and will permit a white photon to pass only if it is in state w. In 
addition, it is assumed that the polarizer's state becomes 0 (w) after an 
orange (white respectively) photon impinges on it regardless of whether or 
not the photon passes and regardless of the polarizer's previous state. We 
assume polarizer B is identical to A, and we make R experimental runs 
with N measurements (i.e., photon pairs) in each of the runs. Assume that 
the initial states ofpolarizers, sr.n=O, are 0 and w randomly with a probability 
of one-half. Now it is easy to see the following. The ensemble average Cn=l 

is zero. After the first measurement the polarizers are always in the same 
state, 0 or w, since the photons are both the same color. Therefore both 
will pass or both will not pass their respective polarizers. The run-time 
averages Cr = 1 for all r, the ensemble averages Cn = 1 for n > 1, and the 
grand-time average C = 1. One may modify this example to produce any 
desired correlation and also make it so that Cn converges to the correlation 
1. The point of this example is that it clearly shows that for time averages, 
the states of the distant polarizers are not independent. They cannot be 
factorized and therefore the usual proof of Bell's inequality does not apply. 

In Buonomano(6) it was claimed that even these theories must obey 
Bell's inequality if one averages over all initial states of the apparatus and 
all sequences of particle pairs (i.e., for a grand-time average). More recently, 
a series of works(7-14) involving time, but not permitting information flow 
from a polarizer to the source or to the other polarizer, have been published. 
In some cases they reported a violation of Bell's inequality. We are currently 
analyzing these works in light of these seemingly conflicting claims and 
hope to publish a detailed comparison of all these works. Therefore we 
must leave the analysis of all these one-directional theories incomplete here. 
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5. Two-Directional Information Flow 

By a two-directional theory we mean a local realistic theory in which 
there is also a flow of information from a polarizer to the source or to the 
other polarizer. It is, of course, trivial that such theories may violate Bell's 
inequality for either ensemble or time averages. In this section, we simply 
want to argue that for time averages, such theories would appear to be 
physically much more reasonable than for ensemble averages. First we show 
a formal example ofa two-directional theory which violates Bell's inequality 
for a time average (either a run-time or a grand-time average). 

5.1. A Formal Example 

We consider the left-hand side of a polarization-correlation experiment 
as shown in Figure 2. The space between the polarizer and source is divided 
into M cells, numbered from left to right. Hence the polarizer is in cell 1 
and the source in cell M. Each photon then passes through each of these 
cells. Let s~ be the state of cell m after the nth photon has passed through 
it in run r, while A,n, Sm, and Cm are as defined in Section 3. It is assumed 
that 

(6) 

that is, the state of cell m depends on the states of the two neighboring 
cells as well as the state of the previous photon that passed. Relation (6) 
is valid every time a photon passes through a cell. Therefore, after one 
photon has passed, cell 2 depends on the state of the polarizer. After two 
photons have passed cell 3 depends on the state of the polarizer, and so 
on. Then after N > M photons, cell M, and therefore the source, depends 
on the state of the polarizer. The other side of the polarization correlation 
is treated in the same manner. This is, of course, sufficient to violate Bell's 
inequality, since the state of the source depends on the states of the 
polarizers. 

Polarizer A (5) 

Detector A 

[ 
Cells l-M (sm) 

a Source (A) 

Figure 2. This is the left· hand side of Figure I. The little boxes represent the cells in the 
formal example of the text; sm is the state of cell m. 



334 Vincent Buonomano 

5.2. Discussion 

As stated above, constructing a formal example for a two-directional 
theory that violates Bell's inequality is completely trivial. The important 
question is: "Does there exist a physically reasonable theory with such 
properties?" This is a much more difficult question being partially subjective. 
We want to argue that for time averages, two-directional theories are more 
physically reasonable than for ensemble averages. * 

Consider our formal example, where the cells are arbitrary divisions 
in a medium of some type. After a sufficient number of photons have passed 
through the system, we have imagined that the state of the photons (i.e., 
the state preparation of the photon) is affected by the polarizer. If we ·change 
the polarizer angle, then the state preparation is affected differently, but 
only after a sufficient number of photons have again passed to establish a 
new equilibrium between the polarizer and the state preparation. Is it so 
unreasonable to think in terms of some sort of cooperative phenomena 
here, perhaps something analogous to the Benard phenomena (e.g. 
Haken(l5» where water molecules organize themselves into hexagonal 
shapes when slowly heated? It is important to point out that there are very 
large numbers of photons in these experiments. For example, in those of 
Aspect et aZY6) there were millions at each given configuration. With these 
numbers it is not farfetched to speak of some basically probabilistic 
phenomenon that orders the medium into an equilibrium which depends 
on the polarizer angle. If the distance between the polarizer and source is 
increased, then one may still imagine the same development except that 
many more photons would have to be used in order to obtain the same 
average. 

The nonergodic interpretation imagines that quantum mechanics is 
basically an equilibrium phenomenon with feedback between the state 
preparation and measurement parts of apparatus. That is, the strong quan
tum-mechanical correlations do not initially exist, but develop after many 

* We think that there may sometimes be a double standard applied here in terms of what type 
of explanation of information flow may be considered physically reasonable. For example, 
there is a gravitational force between the polarizer and the source. For certain types of 
polarizer, this force depends on the angle. What is the mechanism for transmission of this 
force or information between the polarizer and source when we suddenly change the angle 
of the polarizer? Neither Newton's nor Einstein's theory gives us an entirely satisfying 
answer. In the former, one speaks of the propagation of a gravitational field. In the latter, 
one speaks of the propagation of a geometry (i.e., the metric tensor). These are more 
mathematical than physical explanations, and furnish us with little understanding of how 
information flows from one place to the other or what is the information (i.e., the mechanism 
of gravity). Copenhagen has been telling that such questioning is naive. They may be right, 
but this is what is at issue. 
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particles pass through the system. In this view, if for example you do things, 
like increase the distance or lower the particle intensity, then the convergence 
to the quantum-mechanical predictions is slower (i.e., you need more 
particles). 

5.3. Aspect's Experiment 

We now discuss Aspect's last experiment.(16) If in this experiment the 
polarizers were randomly switched between parameter values, then the 
nonergodic interpretation could not agree with quantum mechanics in this 
experiment. This is because, even if there is a mechanism for information 
flow between a polarizer and the source, the information must arrive at the 
source at a delayed time and therefore must be uncorrelated with the actual 
state of the polarizer. In Aspect's experiment, the switching between 
parameter values is not random but periodic. One might imagine theories 
in which the polarization information about the parameter value of a 
polarizer is modulated by the commutator. In other words, one may justify 
saying that the source accumulates information such that it knows when 
the photons leave the source what the parameter settings of the polarizers 
will be. Such theories are more complicated, but are not eliminated by 
Aspect's experiment, as he has pointed out. In order to have the equivalent 
of random commutator switching, the autocorrelation time of the switching 
should be small in comparison to the time of flight of the photons. Aspect 
intended to have this condition satisfied in his experimental proposal. In 
the actual experiment this condition was not satisfied. 

6. Some Comments 

We make some miscellaneous comments in this section. 

6.1. Interference Is Independent of Intensity, but . .. 

It is commonly stated that interference is independent of the intensity. 
This could be misleading in the following sense. Quantum mechanics does 
predict that you obtain interference independent of the intensity, and this 
is confirmed in a wide range of experiments with various types of particles. 
But if Buonomano(17) (see also Buonomano and Bartmann(18») it is argued 
that the number of particles, M, needed to measure the visibility of an 
interference pattern with some specified precision and probability depends 
on the intensity, in general. For laser light, M is independent of the intensity, 
but not for thermal light. In other words, as you reduce the intensity, the 
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number of particles that you need to measure the visibility within that same 
specified precision and probability changes. The number M depends on 
the intensity, that is, the statistics of interference is not independent of the 
intensity, in general. Even though you consider the consecutive particles to 
be independent, in a sense each particle must know the intensity of its 
preparation. 

6.2. A Comment on the Joint Probability Question 

In the nonergodic interpretation, there is a logical mechanism for 
feedback between the measuring part of the apparatus and the state prepar
ation part. They are not independent. The measurement you choose to make 
affects the state preparation. The logical mechanism is simply our time 
average. (We have offered no concrete physical mechanism for this feedback 
other than for some speculations about cooperative phenomena.) For a true 
ensemble average this would not make sense. In our view the phase distribu
tion of the properties of our particles will, in general, depend on the 
observable (but only for a sufficiently long time average). This means that 
the marginality requirement (Cohen) is not valid here. Therefore the con
clusions about the nonexistence of classical joint probability distributions 
do not apply to the nonergodic interpretation (Mugur-Schachter(l9) and 
Buonomano(3»). 

This same comment may be applied to the question of understanding 
the object-apparatus interface in quantum mechanics. In the nonergodic 
interpretation, the properties of the object are not independent of the 
properties of measuring apparatus and vice versa for sufficiently long time 
averages. It says that when you first begin an experimental run, they (the 
states of the object and apparatus) will be independent, but after a sufficient 
number of particles pass through the apparatus they will not. One may 
easily think of examples of this type of behavior from both the physical 
and social sciences. 

Appendix 1. An Experimental Test 

It is clear that the nonergodic interpretation is experimentally distin
guishable from all the usual views in interference and polarization-correla
tion experiments, since it predicts no interference effects and no strong 
correlations whatsoever for a real ensemble average. Of course, it is not 
practical to take a true ensemble average. We now sketch a limited low
intensity interference experimental test which avoids the necessity of having 
to take a genuine ensemble average. Various other, perhaps more difficult, 
experiments have been described in Buonomano.(2,3) Although the basic 
idea of some of these proposals may be easily applied to the polarization-
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correlation experiments, they would appear to be much more difficult to 
perform. 

As in Section 3 we will again assume that our experiment is performed 
under absolutely ideal conditions with perfect instrumentation. Consider a 
neutron or photon interferometer as in Figure 3. We have shown it in the 
form of a Mach-Zehnder interferometer. There are two counters, Cl and 
C2, placed at the maximum and minimum of the interference pattern, 
respectively. There is a chopper in arm A which is half solid and half 
transparent. If the chopper frequency is f, then the chopper lets no particles 
pass for the first 1/ (2f) seconds and lets all of them pass for the next 1/ (2/) 
seconds, and so on and so on. Quantity / is assumed to be small, for 
example, it might be chosen to be of the order of 1 cycle per second for a 
photon experiment. Also, it is assumed we have a timing circuit that permits 
us to unambiguously know if it was a two- or one-arm configuration for 
each of the detected particles. We let n max and nmin be the counting rates 
at Cl and C2 with both arms open, with n == n max + nmin, and so n/4 is 
the counting rate at Cl and C2 when the chopper is blocking arm A. 

What we want to examine are the average counting rates at the two 
counters when we initially change the configuration from a two-arm to a 
one-arm experiment, and vice versa. (We will only discuss the former case, 
as the latter case is the same but with the counting rates changing in the 
opposite sense.) The nonergocdic interpretation makes dramatically 
different predictions than the usual interpretations in how the counting rates 
must initially change when the configuration is first altered. 

Arm B J--
C2 

So urce Arm A 

Chopper 

Timing 
circuit 

Cl data 
-) 

To microcomputer 
-) 

C2 data 

Figure 3. A Mach-Zehnder interferometer; Cl and C2 are two counters which are positioned 
at the maximum and minimum of the interference pattern. The chopper rotates slowly and is 
half solid and half transparent. The timing permits us to unambiguously know if arm A was 
open or closed for each of the detected particles. 
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The usual views clearly say that when you first close arm A, then the 
counting rate at Cl will go from nmax to n/4 abruptly. That is, in the very 
next counting interval after the arm is closed C 1 will give n / 4 on the average. 
This is because we definitely know that all the particles that are detected 
must have come from path B and therefore there can be no interference. 
Our view says that the counting rate at Cl will gradually change from nmax 

to n/4. More accurately, it will change from nmax to nmax/2 in the first 
counting interval after arm A is closed, and then it will change gradually 
to n/4. That is, the initial particles (which all must have passed arm B) are 
fooled, so to speak. They will act as if the other arm was still open, since 
there was not yet time for the medium to become reconditioned to a one-arm 
experiment. After a sufficient number of particles have passed the medium 
becomes reconditioned (i.e., a new one-arm equilibrium has been reached). 
At this point Cl will give the rate n/4. No criteria for how many particles 
are needed for this reconditioning to date are known, but it certainly must 
depend on the intensity among other factors. The counting rates at C2 may 
be described in an analogous way in the two views. 

We will now be somewhat more precise about the above. Imagine that 
we perform one experimental run in which our chopper has made M 
revolutions, where M is large. We let T be a small counting time interval 
(T« 1/ f) during which we measure the number of particles, N1 (i, j) and 
N 2(i,j), detected at the counters Cl and C2, respectively. The indexes i 
and j refer to the following: N k (1, 1), k = 1 or 2, is the number of counts 
at Ck in the time interval [0, T] during the first revolution of the chopper; 
N k (2, 1) is the number of counts in the second time interval [T, 2 T], again 
in the first revolution of the chopper; Nd i,j) is then the number of counts 
at Ck in the time interval [iT, (i + 1) T] in the jth revolution of the chopper. 
Now the average over the various revolutions, Nk(i), is given by 

The quantities N k ( i) are the basic objects of interest. They permit us to see 
the (statistical) behavior of the counting rates when we first change the 
configuration (i.e. before, during, and after we change from a two-arm to 
a one-arm configuration). 

Figure 4 shows the non ergodic predictions and the usual predictions 
for counter Cl. The predictions are dramatically different. In particular 
N1 (1) represents the number of counts just after arm A was closed. Again 
the usual views say that since you know with certainty which path these 
photons traveled, then there can be no interference. So N 1(1) = N 2(1) = 
n/4, that is, the rates must be the same for both counters. Our view says 
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Figure 4. Average normalized counts at Cl in the time intervals [iT, (i + 1)T] as predicted by 
the nonergodic and the usual interpretations. Curve = = = is where the interpretations agree, 
curve - - - gives the predictions of the usual interpretations alone, and curve x x x gives the 
nonergodic predictions alone. The entire vertical axis has the value n, where we have taken 
n = n max and nmin = O. The horizontal axis is in units of T seconds; m is the number of 
intervals of time T for the medium to become reconditioned. No criteria for m are known. 
Curve x x x is shown as a straight line, but its shape is not known. 

the medium in the common region is still conditioned to a two-arm configur
ation and therefore mostly all the photons will still register in C 1 when the 
arm is first closed [i.e., N1(l) is approximately equal to nmax/2] but will 
converge to nmax/4. The counting rate N 2(1) will be approximately n min/2 
and N 2(i) will converge to n/4. In the figure we have taken nmin to be zero 
and normalized for simplicity. 

In the above we have not mentioned concrete values for T, f, n, and 
so on. We have also used freely undefined terms like "small," "large," and 
"the initial particles." The experimental parameters will, of course, depend 
on whether one is conducting photon or neutron experiments. Works are 
in preparation that will give concrete criteria and more details.* 

* Note added in proof Buonomano(20) contains some of this information. It also corrects the 
above in the sense that a chopper cannot be considered as giving a test of all conceivable 
nonergodic theories. A random shutter in place of the chopper would test all nonergodic 
theories. Also 1. Summhammer has performed a rough test of the nonergodic interpretation 
with a neutron interferometer. It shows that if memory exists, then it must develop in under 
200 neutrons at the most (at the intensity and coherence conditions of the experiment). A 
more sensitive experiment is underway. 
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Appendix 2. Nelson's Stochastic Mechanics 

Given the fact that the nonergodic interpretation conceptually depends 
on a medium, it is natural to modify Nelson's stochastic quantum 
mechanics(21) in the manner for time averages (see Prado(22) for details). A 
review of the stochastic interpretation is given in Ghirardi et al.(23) In the 
stochastic interpretation one derives a stochastic process, X, from 
Schrodinger's equation and ljJ(x, 0). The first-order probability density p(xt) 
of X then equals IIjJ(x, t)[2; X is a stochastic process like Brownian motion 
and is defined over an ensemble of particles. That is, the average is defined 
over a set of strictly independent particles, each of which experiences a 
statistically identical medium. By definition there can be no question of an 
interaction (direct or indirect) between the particles. 

The physical situation we must imagine in our view is the following. 
In each of the experimental runs, a first particle passes through the medium, 
affecting the medium and being affected by it. A second particle then passes 
through the medium, again affecting the medium and being affected by it, 
and so on. (We assume for simplicity that there is rarely more than one 
particle in the apparatus at any given instant of time.) We want to define 
an average that will represent the motion after very many particles have 
passed through the medium, i.e., after an equilibrium between the particles 
(state preparation) and the medium has had a chance to set in. 

One way of doing this is the following. We must average over all 
independent experimental runs; each experimental run will have many 
particles consecutively passing through the apparatus. We define a stochastic 
process, Xi> as the stochastic representation of the first particle in each of 
the experimental runs. We let X2 represent the motion of the second particle 
in each of the experimental runs in our ensemble of experimental runs, and 
Xn represent the stochastic motion of the nth particle in each of our 
experimental runs, etc. Then, in the nonergodic interpretation, we associate 
IjJ with the limit (in a sense we now define) of the Xn as n goes to infinity. 
If Pn(xt) is the first-order probability density of X n, and Pn(x[ti>"" xmtm) 
the mth-order probability density, then X is defined to be the stochastic 
process defined by the probability densities 

p(xt) = lim = Pn(xt) 
n-oo 

p(x[ti>"" xmtm) = lim Pn(x[ti>"" xmtm) 
n-cc 

X itself does not necessarily represent stochastic motion of real particles, 
but instead the limit of such motion. In the nonergodic interpretation 
associate IjJ with X and not any of the X n • 
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The Criticism against the Stochastic Interpretation 

The stochastic interpretation has been criticized in a number of recent 
articles. The review by Ghirardi et al.(23) describes most of these criticisms 
and contains the references. Here we argue that many of these criticisms 
do not apply to the nonergodic interpretation.(22) 

The first criticism that we consider relates to the fact that the transition 
probability density P of the stochastic process, associated with the 
Schrodinger equation, depends also on the initial value of 1jI. Another way 
of saying this is that the properties of the medium are affected by ljI(x, 0), 
i.e., the state preparation affects the properties of the medium(23) For 
example, in an interferometer experiment the medium in the common path 
region must be imagined to have different properties in the three cases of 
one or other arm being open and both arms being open. Here we have all 
the well-known difficulties in understanding how the opening or closing of 
an interferometer arm can affect the medium on which the stochastic 
interpretation implicitly depends. We observe that we may block an arm 
with a piece of paper or a large piece of lead. We may block the arm at 
any of various positions. Also we may leave the arm open and put that 
same piece of paper or lead near the arm but not blocking it. The medium 
must only be sensitive to whether the arm is blocked or not, and not the 
distribution of matter. In a Michelson interferometer the medium in the 
common path region is sensitive to a half-wavelength change in the position 
of a mirror in one of the arms. But the medium is totally insensitive to any 
other distribution of matter in the interferometer as long as a path is not 
blocked. What is relevant is whether a path is open or closed and not the 
distribution of matter. In the independent laser interference experiments, 
the medium in the common path region must be sensitive to a path being 
blocked as well as one of the lasers being turned on or off. Further, in a 
many-slit interference experiment (i.e., with a grading) the medium would 
have to be sensitive to the width of the light beam, as the diffraction pattern 
is different depending on the number of slits through which the beam can 
pass. Such causal relationships are difficult to understand in the stochastic 
interpretation. Existing stochastic mechanics has shed no new insight on 
these physical problems despite its very elegant mathematical nature. 

The nonergodic interpretation hypothesizes a structure to understand 
these types of causal relations. That the state preparation affects the medium 
is trivially true, by assumption in our viewpoint. (The transition probability 
density of any stochastic process which represents particles that may interact, 
directly or indirectly, will in general depend on the state preparation.) 

A second criticism is related to the fact that in the presence of nodal 
surfaces, such as in the hydrogen atom, the stochastic interpretation has 
more solutions than Schrodinger's equation (see Ghirardi et a1Y3) for 
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references). Such extra solutions can only be ruled out by using quantum 
mechanics. These extra solutions in the case of the hydrogen atom corre
spond to an electron being trapped permanently between two nodal surfaces. 
The demonstration of the above does not apply to our view, since we do 
not associate", with a diffusion process but with the limit of a sequence of 
diffusion processes. In our view we may imagine, again in the example of 
the hydrogen atom, that for long time averages we obtain the quantum
mechanical averages. However, there is a tendency for an electron between 
two nodal surfaces to remain there for disproportionate times, but eventually 
to escape. Here it is only in the unrealized physical limit of the Xn that the 
electron becomes trapped. The above is a modification of Nelson's(21) own 
attempt to confront this difficulty, which we consider less ad hoc. Here we 
have only one electron, which arrives at an equilibrium with itself and the 
medium as it revolves. 

The last criticism that we consider is the lack of distinction between a 
pure and mixed state in the stochastic interpretation. In the nonergodic 
interpretation one may make a conceptually clear distinction between the 
ways one may superimpose state preparations. If one does it in such a way 
as to physically permit indirect interference between the particles via our 
medium, then we have a pure superposition.* If, on the other hand, one 
superimposes the preparations in such a way that the particles cannot 
interact with each other via the medium, then the superposition is a mixed 
one. For example, for us a true ensemble average in an interference experi
ment is always a mixed state superposition, since there is no possibility of 
indirect interference between the particles in this case. 
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An Extended-Probability Response 
to the Einstein-Podolsky-Rosen 

Argument 

w. MOCKENHEIM 

1. Introduction 

A variety of answers to the Einstein-Podolsky-Rosen (EPR) argument have 
been proposed. Why not let us consider a different one-as unattractive as 
(but not more unattractive than) all the others-which does not obey 
Kolmogorov's axiom according to which probabilities p are restricted to 
the range 0 ~ p ~ I? Instead of starting with a conventional introduction, 
this topic appears strange enough to allow us to dispense with the usual 
form taken by scientific expositions and to take the liberty of beginning by 
eavesdropping on a fictitious conversation which could have happened but 
(probably) did not. Other than that this mode of occurrence is frequently 
involved in EPR considerations, the content of the discussion is not in any 
way related to the main part of this chapter. 

Let us imagine a dark and frosty winter's evening, say December 31, 
1733, to give it a date. Two scholars, Speculati and Orthocredo, are sitting 
comfortably in a chimney corner and, while imbibing some exquisite wine, 
are discussing metaphysical and philosophical problems. 

Spec. I'm occupied with this strange idea. Could it be that the geometry 
of nature does not exactly follow the rules which Euclid has taught us? 

Ortho. What a silly question! What makes you wonder about some
thing of that kind? 
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Spec. There's no real reason. I'm just considering whether it might 
be possible. 

Ortha. Oh, do stop it! You're wasting your time. It's well known that 
Euclid's authority has never failed and, besides, it's obvious that the world 
must obey his laws. 

Spec. But you know, his fifth postulate, in particular, is rather difficult 
and lengthy. 

Ortha. That's right. But its validity has been proven so recently by 
Saccheri. The title of his work is just to the point: Euclides ab amni naevo 
vindicatus. 

Spec. Are you quite sure that Saccheri's proof isn't based on invalid 
conclusions? 

Ortha. As the result is correct, his conclusions must be accepted. But 
if you're not open to logical argument, then be convinced by your own 
eyes: could you even imagine two parallel lines that cross each other or 
that vary in their distance apart by even the hundredth part of a foot? 

Spec. Consider a sphere. The pair of lines which could reasonably be 
regarded as the straightest lines possible between two given pairs of points, 
even though they are parallel at one of each of their points, will cross each 
other at two other points. 

Ortha. That example doesn't prove anything. Euclid's geometry deals 
with our world and not with a sphere. According to Plato straight lines are 
represented by light rays, and they could never twist around a sphere: 
Straight lines which cross each other aren't parallel, and straight lines which 
are parallel don't cross each other. If you're really that insistent on disputing 
this point, we could settle it once and for all using a couple of well-made 
rulers that I happened to buy a few days ago. But that's just too silly. Any 
fool could tell you the truth of the matter. 

Spec. I was really thinking in terms of extremely long distances, rather 
than in terms of rulers. 

Ortho. What's the difference? Take thousands of rulers! Lay them 
end-to-end precisely, along two parallel lines and you'll find that the distance 
between them always remains the same. You'd only be testing the accuracy 
of your own work by the very definition of parallelism. 

Spec. Perhaps one would have to replace this definition by a different 
one. 

Ortho. I can't see any advantage in complicating the wonderful system 
of geometry by so doing. Lines that are subject to other specifications are 
simply not parallel or not straight! 

Spec. I can't see any advantage either. However, that doesn't rule out 
the possibility; and that's just what keeps going around in my head. 

Ortha. There are things which are possible and others which simply 
aren't. Your idea is of the latter sort. But in order to finish this discussion, 
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let me tell you that all scholars I know are convinced that Euclid is right. 
They haven't even thought along different lines. What more proof can you 
ask? 

Meanwhile the fire is waning, the flask of wine is empty, and New 
Year's Eve has turned into New Year's Day. Speculati and Orthocredo bid 
each other goodnight and go to sleep. Thereafter, owing to the quantity of 
wine they consumed, they are unable to remember their discussion, other 
than as a confused dream. How lucky for Speculati! 

Any reader who cannot sympathize with Speculati's attitude (as it 
relates to extended probabilities, of course; nowadays nobody will deny 
the usefulness of Riemannian geometry) is advised to skip the rest of this 
chapter. 

2. Axioms 

In order to set the stage for our discussion, we will first delineate our 
point of departure. The following propositions will be considered axioms 
throughout this chapter: 

1. There is something outside ourselves that exists whether or not a 
living being observes it. We call it "objective reality." 

2. Reality is "local" or "separable" for it is simply impossible even to 
define a unique time relation between space-like separated events.* 

3. The results of quantum theory, as far as they are utilized in this 
chapter, are correct. 

Owing to their logical status, these axioms can be neither proved nor 
disproved. This in no way precludes a world description, based on different 
axioms, which may be more successful. But our choice has been fixed, 
assuming the impossibility of the instantaneous collapse of any nonsingular 
wave packet (because even nature would not "know" what "instantaneous" 
meant in this case). 

Starting off with the EPR argument,(l) Bohm,(2) Bell,(3) Clauser,(4) 
Aspect,(S) and many others have contributed to showing that the world 
described by our three axioms is not the one that we live in. 

* "I take Relativity seriously as a theory of space-time structure-not just as a prohibition on 
sending detectable signals faster than light" (H. Putnam). 
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It might, however, be possible to maintain these axioms and to remove 
the resulting conflict (with our world) by sacrificing one or another self
evident truth, e.g., Kolmogorov's axiom according to which probabilities p 
are restricted to the range 0,,;; p ,,;; 1. In spite of its apparent inconsistency, 
this idea has been applied more frequently than is commonly perceived.(6,7) 
Its formal consistency has been shown by Bartlett,(8) and Dirac(9) has 
furnished a plausible interpretation, at least of small negative or complex 
probability numbers, simply saying that the corresponding events are 
unlikely. 

3. Extended Probabilities 

The usual interpretation of probabilities is based upon the relative 
frequency of observed events exhibiting a certain property A (so-called 
"successful" trials) in a number No of observed events (or trials). We let 

No = N(A) + N(,A) (1) 

with -,A denoting the absence of A. Then the probability of observing A 
is given by 

peA) = lim N(A)j No 
No-co 

(2) 

This event-related definition serves very well in all practical applications, 
but it entails a degree of uncertainty because No can never reach infinity. 
(In any case, most physical quantities can be verified only approximately.) 

In order to avoid the uncertainty of the event-related definition, the 
fact-related density definition can be applied. The chance, for instance, that 
the reader has turned to this page during the last quarter of any minute is 
0.25, independently of how precisely this result is verified by observation 
(of course, only one trial per reader is allowed), because the density of 
"last quarters" is known to be 0.25. The problem with this definition is that, 
in physics, not only are densities not always known, but sometimes even 
their objective existence is doubted. 

Both definitions given above obviously lead to probabilities which obey 
Kolmogorov's axiom strictly. Extended probabilities cannot emerge from 
them, just as negative energies cannot emerge from the classical definition 
of energy: E = !mv2• In order to exchange or extend the meaning of a 
notion the replacement of its definition is usually required. The notion of 
probability may presently be subject to such a process-as is suggested by 
Wigner's carefully worded statement(lO): 

I fully agree that the concept of a negative probability is in contradiction to the 
usual definition of the probability concept. However, other quantities from which 
an actual probability can be calculated are often called "probabilities." 
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If reality includes features which can appropriately be described by 
extended probabilities, we have to look for them at the microscopic level: 
Extended probabilities are not involved in everyday life. We know that 
quantum-mechanical phase-space distributions (usually termed "Wigner 
functions") necessarily entail negative values, (11) which have to be inter
preted as negative probabilities if considered in the light of axiom (1). This 
feature disappears if the phase-space functions are smeared out over phase
space regions of order 1'1.(12) Also, the time-resolved probability distribution 
for photon emission from an excited state, as calculated by the Weisskopf
Wigner formalism(\3) as well as from the model of the classical electromag
netic oscillator, leads to probabilities of both less than zero and larger than 
unity.(6) The latter case has even been verified by experiment.(14.15) Not 
surprising this behavior is also found when analyzing the Glauber-Sudar
shan P-functions,(16) which are applied in quantum optics in order to 
describe modes of an electromagnetic field, and which are closely related 
to Wigner functions. 

These and some other(6) observations suggest that we revise our concept 
of probability at the microscopic level. How this can best be accomplished 
is not yet known. One very simple approach will be presented below, but 
even without a suitable definition, it may be possible to calculate probability 
values by applying only symmetry and invariance considerations, as Jaynes 
has shown in his beautiful resolution of Betrand's paradox.(17) 

One concrete approach to obtaining a definition for extended prob
abilities makes use of two kinds of events (in close analogy to tl).e theory 
of matter): 

Let us consider a number No of particles prepared in a pure quantum 
state but, deviating from quantum theory, populating different "microstates" 
Ai, i = 1, ... , n. For the sake of simplicity we assume that the different states 
Ai are taken with equal positive probability Pi. As the result of an interaction, 
the particles change their microstate from Ai to A j, j = 1, ... , m, the transi
tion probability being denoted by Pij. We assume, further, that the primed 
microstates belong to different quantum states, one of them being called 
A. Those values of A j which form state A are denoted by A j(A). The result 
of a measurement shows N(A) particles in state A and N( ,A) particles 
in different states (,A). Conservation of particle number necessitates the 
validity of equation (1). The combined probability for transition to state A 
follows, by experiment, in the case of No ~ 00: 

peA) = n- 1 L L Pij = lim N(A)/ No 
i j(A) No~oo 

(3) 

If single transitions could interfere with each other, it would be possible 
to introduce, in addition to "normal" events, a second kind of event by 
which normal events are eliminated. Then a negative probability could be 
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interpreted as a positive probability for the occurrence of such an eliminating 
event; and a probability exceeding unity would imply that sometimes more 
than one transition may take place from a microstate populated by only 
one particle. 

While in this picture the usual macroscopically observable probabilities 
are restricted to 0,,;: p(A) ,,;: 1, the individual probabilities Pij need only 
satisfy the normalization condition 

n- I L L Pij = 1 
i j 

and, for distinguishable results, the left-hand side of equation (3). 

(4) 

Of course, negative probabilities are not directly observable, just as 
electrons with negative energy are not directly observable. Only the absence 
of an electron in the Dirac sea, or its transition from and to a negative-energy 
state, can be observed. Similarly, evidence for negative probabilities would 
be obtained when a probability distribution is known to be normalized, and 
the experimental integration over a part of this distribution yields a value 
larger than unity. 

The application of extended probabilities to problems of quantum 
electrodynamics (QED) has been discussed by Dirac, (18.19) and an appropri
ate formalism has led to Gupta's "Indefinite Metric .. (20) which has served 
as a paradigm for Heisenberg's unified field theory of elementary parti
cles.(21) The following application to QED has been discussed most recently 
by Feynman.(22) 

In order to account for the Coulomb interaction, a photon is assumed 
to have four directions of polarization x, y, Z, and t, no matter which way 
it is going. The time component is coupled with ie instead of e. Then for 
real photons, the probability of a t-photon emission is negative, proportional 
to -I(flitl iW (j denotes the current with components j" Iv,)., and it). The 
probability of emission of an x-photon is +1(fI}xli)12. The total probability 
of emission of any sort of photon is 

(5) 

We paraphrase Feynman's own explanation(22) of this expression as follows: 
It is always positive for, by conservation of current, there is a relationship 
between}t and the space components of}: klJ.}1J. = 0 if klJ. is the four-vector 
of the photon. For example, if k is in the Z direction, then kz = wand 
kx = ky = 0 so that it = }z and we see that equation (5) is equal to the usual 
result in which we sum only the transverse emissions. The probability of 
emission of a photon of definite polarization elJ. is (assuming elJ. is not a 
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null vector): 

(6) 

This has the danger of producing negative probabilities. The rule whereby 
to avoid them is to allow only photons whose polarization vector satisfies 
kf.'ef.' = 0 and ef.'ef.' = -1 to be observed asymptotically in the final or initial 
states. But this restriction is not to be applied to virtual photons: intermediary 
negative probabilities are not to be avoided. Only in this way is the Coulomb 
interaction truly understandable as the interchange of virtual photons, i.e., 
photons with time-like polarization which are radiated as real photons with 
a negative probability. 

One problem with an interpretation of extended probabilities in terms 
of normal and eliminating events is to understand how and why both sorts 
of events always interfere sufficiently closely to cancel each other out and 
thus prevent negative probabilities from being detected. This applies in 
particular to the EPR experiment in which it is possible to detect single 
events in correlation measurements. Another problem connected with the 
application of any probabilistic hidden-variables theory to the EPR problem 
is that strict correlations do not ever apply to single events [see equation 
(7) in Section 4] but only to the average of several events. If and how these 
obstacles can be overcome is open to question. 

Notwithstanding this disadvantage we will now discuss some 
approaches to preserve the physics of our world while maintaining our 
three axioms, in spite of Bell's inequalities. 

4. Bell's Inequalities Circumvented 

Bohm's popular version(2) of the EPR argument deals with a pair of 
spatially separated spin-1 particles in the "singlet" state. That is, if the spin 
component s of one particle (arbitrarily labeled" 1 ") is measured in direction 
a yielding the result s1(a), the same measurement performed on the second 
particle will yield the result 

(7) 

As equation (7) is valid for any direction a whatsoever, it must be concluded 
that information about the result for every direction of measurement is 
contained in each particle (unless nonlocal interactions are permitted), 
although equation (7) can be verified in only one direction without one's 
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possibly destroying the information about all the other directions. It has 
been argued that measurements which could have been performed, but were 
not, are meaningless. With respect to our axiom (1) we cannot but follow 
Schrodinger, who disproves this line of argument using the plain picture: 
From so many experiments performed in advance, I know that the pupil always 
answers my first question correctly. Hence it follows, that in every case he 
knows the answers to both questions. (23) According to quantum theory the 
pupil does not know more than one answer. And Bell(3) has shown that 
this claim is unconditionally entailed by the predictions of quantum 
mechanics with respect to correlation experiments (subsequently verified 
on several separate occasions by means of correlated photon pairs) thus 
turning the EPR argument into a paradox.* 

Nevertheless, it is easily seen that Bell used Kolmogorov's axiom 
implicitly, in the step between inequalities (14) and (15) of his famous 
treatise.(3) By rejecting this axiom his result can be circumvented. There 
may be different ways of so doing, but applying some plausible restrictions 
we arrive at the simplest one dealing with spin-1 particles(26) (which, to the 
knowledge of the present writer, is the only one that adheres to the technical 
spin properties). 

4.1. Correlated Pairs of Spin-~ Particles 

In Bell's version(3) of the EPR experiment the spin component of 
particle 1 is measured in direction a and the spin component of particle 2 
in direction b. The quantum-mechanical expectation for the product of both 
measurements is (if a and b are unit vectors, and Ii = 1): 

(8) 

Here 1) is the (nonlocal) wave function of the particle pair in the singlet 
state. This result cannot be reproduced by any local hidden-variables theory 
obeying Kolmogorov's axiom. 

In order to find a formalism which satisfies equation (8) while leaving 
the measurement results independent of each other, we assume the total 
spin of each particle to be represented by a "spin vector" S of length 1J3. 
After interaction with a magnetic field the spin component in the field 
direction is either s+ = +1 (spin-up) or L = -1 (spin-down) although, 
beforehand, the spin vector may have pointed in any random direction. 

The probability w+(a, S) for the result spin-up depends on the orienta
tion of the incident spin vector S with respect to the field direction a. For 

* A comprehensive review of the first experiments of this kind is given by Clauser and 
Shimony.(24) A table including the more recent results can be found elsewhere.(21 ) 
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conservation of particle number, the probability w_(a, S) for the result 
spin-down is then related to w+(a, S) by 

(9) 

In order to correctly describe the result for particles which are already 
polarized in direction a, the condition 

for a· S = ! (10) 

must hold. 
Symmetry considerations supply the condition 

for a· S = 0 (11) 

In order to determine a simple expression for w+(a, S) we require that 
it varies only linearly with a . S 

(12) 

From equations (9)-(12) we obtain the probability functions 

(13) 

or, if the angle between a and S is denoted by 6, 

and (14) 

In the interval (0, 7T) W _ is the mirror image of w +> reflected about 
7T/2. Thus the discussion will be restricted to w+ (see Figure 1). Between 
o and 61/ 2 , w+(6) exceeds unity where 

61/2 = arccos(1/J3) = 54.r (15) 

while it takes negative values between 6- 1/ 2 and 7T, where 

6- 1/ 2 = arccos(-I/J3) = 125.3 0 (16) 

If a beam of unpolarized particles is measured, the probability for the 
result spin-up is given by 

(17) 
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Figure 1. Probability function w+( 8) and weighted probability function sin 8 w+( 8). w+( 8) is 
the probability for the result spin-up if the spin vector of an incident spino! particle forms an 
angle 8 with the direction of measurement. 

as it should for a random (41T )-1 distribution of spin vectors. The average 
of the angles 8+ the original angles of those of the incident spin vectors 
which have yielded the result spin-up, is 

= (4 - J3)1T/8 = 51.00 (18) 

Accordingly the mean square can be calculated, yielding 

(19) 
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and, from equations (18) and (19), we obtain the standard deviation: 

(20) 

Of course, this low value is generated by the negative parts of w+( 8) and 
has only formal character, because the shape of the probability distribution 
w+( 8) does not actually look like that. But it is remarkable that those spin 
vectors which, after measurement, form an angle 81/2 with the field direction 
arise from an incident angular distribution with average angle (8+) differing 
by less than one standard deviation from 81/2 .* 

The probability function w+( 8) and the weighted probability function 
sin 8 w+( 8) are shown in Figure 1. The latter takes its maximum value ./2/3 
at 

(21) 

precisely, and its minimum value -1/8 at 

8min = 57r/6 (22) 

It goes to zero for 

801 = 0, (23) 

One further property of the probability function w+( 8) should be noted 
from the point of view of practical calculations: Its average w+( 810 ( 2 ) over 
any interval (81 , ( 2) on the sphere is always equal to its average value at 
the borders of the interval: 

(24) 

In the case of Bell's version of the EPR experiment, with detectors 
oriented in directions Ii and b, and correlated spin vectors S = SI = -S2' 
we obtain for the expectation value of the product of both measurements: 

(SI(a, S) . s2(b, -S» = (47r)-1 In [w+(a, S)s+ + w_(a, S)L] 

x [w+(b, -S)s+ + w_(b, -S)L] dO. (25) 

* It is easy to construct probability functions w+( 8) which lead to a zero or even imaginary 
standard deviation t.8+ while satisfying equations (9), (10), and (11). Unfortunately they 
fail to reproduce the correct quantum correlations. 
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Denoting the angles as follows: 4(a, S) = 8, 4(a, b) = 1>, 4(b, -S) = rj; = 
1T - 4(b, S), and dO = dTd8 sin () where T is the angle between 1> and () 
(see Figure 2), we can utilize the relation 

cos( 1T - rj;) = cos 1> cos () + sin 1> sin () cos T (26) 

to arrive at the desired result: 

(8') 

for a random distribution of incident spin-vector pairs in the singlet state. 
Similarly, all predictions of quantum theory that concern averages of 
measurements on spin-! particles are reproduced. 

If, for instance, a beam of spin-! particles is polarized in direction 0 
(i.e., the particles have passed a magnetic field oriented in the direction 0, 
and those which have shown spin-down have been removed), the expectation 
for a spin measurement in the direction a is (see Figure 3): 

(27) 

A straightforward calculation, like the one above, results in 

(s(a, S(o») = !a . 0 (28) 

These examples show that every version of Bell's inequality which has 
been derived hitherto, or will be derived in the future, is invalid if extended 
probabilities are permitted. Also Wigner's refutation,(27) obviously not based 
on probabilities, does not apply because it involves determined sets which, 
in a probabilistic theory, simply do not exist. 

a 

Figure 2. Angular configuration for a certain direction of the incident spin vector S in Bell's 
version of the EPR experiment. T (not indicated) is the angle between q, and (J. 
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Figure 3. According to the adopted model, the spin vectors S(o) of a beam of spin-~ particles 
polarized in direction 0 lie on a cone of angle (J1/2 about o. 

The probability functions (13) for spino! particles have also been derived 
by Barut and Meystre.(28l Their approach is based on a decomposition of 
the operator u)a ® U2b similar to the joint probabilities: P++ for both 
particles showing spin-up, P __ for both particles showing spin-down, and 
P+_ and P_+ for opposite results. Equation (8) can then be written 

= Usin2(c/>/2) + sin2(c/>/2) - cos2(c/>/2) - cos2(c/>/2)] 

= i[P++(a, b) + P __ (a, b) - P+_(a, b) - P_+(a, b)] (29) 

The operator can be given an analogous form by decomposing it in terms 
of the projection operators as follows: 

u)a ® u 2b = M(1 + u l a)(1 + U"2b) + (1 - u)a)(1 - U"2b) 

- (1- u)a)(1 + U2b) - (1 + u)a)(1 - U2b)] (30) 

Denoting a -5 by x and b· (-5) by y, one can use the identity 

xy == M(a + x)(f3 + y) + (a - x)(f3 - y) 

- (ex - x)(f3 + y) - (a + x)(f3 - y)] (31) 

valid for arbitrary constants a and f3, in order to obtain a decomposition 
similar to equation (29). With an appropriate choice: a = f3 = t the 
bracketed terms become equal to the probability functions (13) which, if 
averaged over the sphere, exactly reproduce the quantum-mechanical joint 
probabilities for Bell's version of the EPR experiment: 

and similarly for P+_, P_+, and P __ . 
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Barut and Meystre(28) note that these probability functions are not 
positive definite and, therefore, cannot be interpreted as probabilities. This 
feature can be avoided by rejecting some events(29) or recording each event 
with a weight factor equal to or less than unity. (28) A full discussion of this 
type of approach is beyond the scope of this chapter. 

To complete our own discussion of this type of approach, we note that 
a two-dimensional probability function (using the angle* () between a hidden 
variable and a polarizer direction within a plane) has been given by Scully. (30) 

This "passage probability" (for the result spin-up) is given by 

(33) 

The distribution of spins which have passed a polarizer set up in the x 
direction (</> = 0), showing spin-up, consists of two components 

p+(8) = 1£8(8 - 1T/4) + 8(8 + 1T/4)) (34) 

For this distribution we find that the probability P +( </» of showing spin-up 
after passing a second polarizer oriented at an angle </> with respect to the 
x direction is 

(35) 

This result is correct, but obviously the probability function w+( (}) takes 
values between 1(1 - J2) and 1(1 + J2). 

In a closely-related hidden-variables treatment, Scully arrives at a 
nonnegative passage probability. This theory, however, violates our axiom 
(2) in that it is nonlocal. 

4.2. Correlated Photon Pairs 

The most convincing evidence against the existence of local hidden 
variables has been gathered by employing photon pairs stemming from an 
atomic cascade. (4.5.24) Such experiments measure the transmission or deflec
tion of both photons of a pair incident on polarizers which are oriented 
along axes a and b, respectively. Of course, any description of the axis of 
polarization in terms of hidden variables has to obey Malus' cos2 law. 

* Throughout this chapter <I> is the angle between the directions of measurement while 8 and 
'" are reserved to denote the angles between analyzers and hidden variables. Thus the couple 
denoted elsewhere(30) by (a, 8) is here written (8, <1». 
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Hence, if the polarization of the first photon was known to be along 8, and 
that of the second photon was known to be along ifJ, the probability for 
simultaneous transmission of both photons is given by 

(36) 

In order to verify this, one could prepare pairs of suitably polarized photons 
by means of auxiliary polarizers_ 

In Bell's version of the photon-correlation experiment the axes of 
polarization are not known but are assumed to exist. In order to predict 
the expectation value, one has to calculate the average over the right-hand 
side of equation (36) by inserting the initial distribution p( 8, ifJ) of hidden 
polarizations_ In the case of photon pairs emitted from a 0-1-0 cascade, 
8 == ifJ and 8 is randomly distributed_ This means that 

p(8, ifJ) == 8(8 - ifJ)/21T (37) 

Thus, if two photons are emitted from a 0-1-0 cascade, the averaged 
probability for simultaneously passing the polarizers is at most(31) 

(38) 

No local hidden-variables theory can do better, i_e_, can produce stronger 
correlations_ But integration of equation (38) yields (with 4> the angle 
between a and b): 

(39) 

violating Malus' law and experimental observation for every choice of 4>, 
except 1T / 4, 31T /4, and related angles_ 

The way to improve this result, considered by Meystre,(32) leads us into 
the realm of extended probabilities_ As the 8-function is apparently not 
sharp enough to reproduce the strong quantum correlations, he adds a 
"quantum correction" such that the corrected distribution is then: 

pA8, ifJ) == 8(8 - ifJ)/21T - 8"(8 - ifJ)/81T (37') 

and, by inserting this into equation (38), he arrives at the correct result: 

(39') 
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In order to show explicitly that extended probabilities occur, we choose 
8"( e - if;) = a2[ 8( e - if;)]/ ae 2• Then equations (37') and (38) giye: 

(40) 

and, within the interval (0, 7T), the integrand becomes negative for 7T/3 < 
(e - b) < 27T/3, no matter what the value of (e - a). Owing to our choice 
of 8", this asymmetry is not surprising, but it is unphysical. Equation (40) 
can be written in a symmetrical form: 

1 '( A) 1 2( A) - 4 cos- e - a - 4 cos e - b ] (40') 

The integrand of equation (40') can be considered to be a probability 
function that assumes values between -~ and +L and reproduces precisely 
the quantum-mechanical expectation for Bell's version of the EPR experi
ment employing photons. But the present writer has been unable to find a 
decomposition of the integrand in the form of a product of two probability 
functions, each of which depends on the orientation of one polarizer only, 
as would be required by a local theory. 

In order to describe the interaction of photons with polarizers in a 
completely symmetrical and local way, we begin by stipulating the correct 
result. 

The simultaneous transmission probability of two photons, emitted 
from a 0-1-0 cascade, through polarizers which are set up at a relative 
angle 4> is thus to be calculated by means of two independent probability 
functions: 

(41) 

This condition is satisfied by<33) 

(42) 
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Accordingly, the probability function for deflection is 

w~(O) = ~ - cos(20)/J2 ( 42') 

As required, these probability functions supply the correct results for the 
outcome of Bell's version of the EPR experiment, if inserted in equation 
(41) and in the analogous equations: 

However, the angle 0 cannot be regarded as being between polarizer 
axis and polarization axis, because w+( 0 = 0) exceeds unity_ Instead, we 
have to introduce a hidden variable, which we call ii, that is situated in the 
plane perpendicular to the motion of the photon_ 

For an unpolarized beam, the hidden variables ii assume a 
homogeneous (27T )~l distribution_ After having passed through a polarizer, 
they form an angle of Op = ± 7T /8 with the polarizer axis, while those of the 
deflected photons form an angle of (}d = ±37T/8 with the polarizer axis. 
These directions are indicated in Figure 4 for a beam of photons which has 
interacted with a polarizer oriented along the x-axis_ These conditions are 
necessary because the passage probability for the respective angles is unity 
or zero, and repeated measurements in the x or y directions have to be 
taken into account. 

Y 
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u(y) 

u(x) 
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Figure 4. Four directions to be assumed by the hidden variables it of a photon beam polarized 
along the x-axis (solid arrows) and the y-axis (dashed arrows), respectively. The angles 
indicated are always 7r/8. 
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The distribution of the u in a beam which is polarized under ¢ = 0 is 
given by (normalized to unity): 

4 

pp(8) = ~ L 8(8 - 8;) (43) 
i=1 

where 8j represents the angles 7T 18, 7T - 7T 18, 7T + 7T 18, and - 7T 18. The 
transmission through a polarizer for a beam polarized under the angle ¢ 
is then 

(44) 

The result is P+( ¢) = cos2 ¢, as desired (because the polarized beam had 
been normalized to unity). 

Consequently, we find the correct results for both cases: Bell's version 
of the EPR experiment and polarizers set up consecutively, if we accept 
probabilities between (1 - J2)/2 and (1 + J2)/2, and the existence of micro
states which, after interaction with a polarizer, are populated with equal 
probability (otherwise it would be possible to enhance one of them, and 
another polarizer, oriented suitably, would show a transmission exceeding 
unity). 

It is not known whether the U have a vector-like character or whether 
they are to be treated as axes only; there is no experimental evidence for 
them at all, other than it being precisely that angle of 7T/8 that lies on the 
threshold where the difficulties with most local hidden-variables theories 
of photons start and the most significant violations of Bell's inequality 
appear. In the above treatment the u were assumed to be vectors, thus 
resulting in four different microstates. If they had been treated as axes, we 
would have had to deal with only two different microstates. This is not an 
unfamiliar situation because every linearly polarized beam can be decom
posed into two beams with different circular polarization. However, it should 
be emphasized that this treatment has only been given in order to show 
that extended probabilities are capable of supplying a formal resolution of 
the EPR problem in the case of photon correlations as well. The very 
existence of the hidden variables u can quite reasonably be doubted and a 
more plausible theory is to be developed. 

5. Conclusion 

From the examples discussed one might conclude that extended prob
abilities are required for elementary particles only, i.e., where the quantum 
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behavior manifests itself most significantly_ This is correct insofar as exten
ded probabilities disappear as soon as the corresponding phase space is 
smeared out over regions of order Ji, but it has been proved by Mermin (34,35) 

that without such a procedure a description of composed systems in terms 
of our three axioms involves extended probabilities even for macroscopic 
objects. Thus the EPR problem has become more pressing then ever. 

It is sometimes advocated that the locality requirement, i.e., our axiom 
(2), should be relinquished in order to leave quantum theory as it is. But 
it can be shown explicitly that even nonlocal deterministic or probabilistic 
interactions do not permit us to maintain the quantum-theoretical notion 
according to which the total value of the spin is -13/2 and the measured 
component is ~ .(36) Thus if locality is abolished, which is in fact suggested 
by a variety of recent experiments, then this quantum-theoretic definition 
will also have to be modified. 

It has been shown in this chapter that by introducing extended prob
abilities a formalism can be constructed which, if applied to spino! particles 
or photons, always yields the correct results by utilizing local interactions 
only. But it is really inconceivable that probabilities should always interfere 
sufficiently precisely to prevent the negative probabilities from being detec
ted. It is also inconceivable that they interfere at all when the measurements 
are performed at distant places. Their so doing necessarily entails some 
kind of nonlocality-not on the physical level but on a level at which the 
experimental results are evaluated and compared. 

This theory is ugly enough to restrain the author from any further 
dealings with it-if someone would only show him a more plausible reso
lution of the EPR paradox. 
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The Search for Hidden Variables 
in Quantum Mechanics 

EMILIO SANTOS 

1. Can Quantum-Mechanical Description of Physical Reality 
Be Considered Complete? 

The main task of the Einstein-Podolsky-Rosen (EPR) paper/I) as posed 
in the above title, was to question the completeness of quantum mechanics, 
completeness which has been assumed by the majority of the scientific 
community since 1927. Theories attempting to complete quantum 
mechanics are called "theories with supplementary parameters" or "hidden
variables theories." Although the first name is more correct, I shall use the 
second, which is more popular. The conclusion of the EPR paper was that 
quantum mechanics is not complete, so that paper is regarded as one of 
the main supports of hidden-variables theories. The EPR theorem is illus
trated in Figure 1. 

The reason quantum mechanics is not complete can be seen most clearly 
from the example presented by Einstein at the Solvay Conference of Physics 
in 1928. (2) It is slightly altered here. A spin-zero radioactive atom is placed 
at the center of a sphere of photographic emulsion. After a while a dark 
spot appears at some point in the photographic plate. According to quantum 
mechanics, the emitted particle is represented by a spherical wave that 
travels from the atom to the emulsion, where it arrives with equal amplitude 
at all points. However, the particle is detected at a single point and, at this 
moment, the wave vanishes at all other points, this process being the 

EMILIO SANTOS • Department of Theoretical Physics, University of Cantabria, 
Santander 39005, Spain. 
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Figure 1. Illustration of the EPR theorem: quantum 
mechanics is either nonlocal or incomplete. An atom 
placed at 0 decays with emission of a particle, which 
is detected at A. Just before the detection, the particle 
is represented by a spherical quantum-mechanical 

A wave (having the same intensity at A, at B, etc.). If 
the wave is a physical field possessing energy and 
momentum, then the wave-packet collapse implies 
an instantaneous energy transfer from B, C, etc. to 
A (nonlocal); if the wave is just a formal representa
tion of our knowledge, then more detailed informa
tion should be possible (incomplete). 

"collapse of the wave function." Now, either the quantum-mechanical wave 
is just a representation of our knowledge about the particle's position, or 
it represents a real field propagating in space. In the first case, quantum 
mechanics is not complete because it does not describe completely the real 
world. In the second case, quantum mechanics is not local because the 
wave collapse takes place at all points of the screen simultaneously, i.e., 
the detection event produces action at a distance (propagating with infinite 
velocity). The EPR argument, which is reproduced in detail in other chapters 
of this book, is just a refinement of the above example. 

The trouble with quantum theory is that both alternatives-complete 
and incomplete-are unsatisfactory. The first alternative, which is assumed 
by the Copenhagen interpretation, gives rise to many paradoxical situations 
some of which will be commented on briefly below: de Broglie's box, 
Schrodinger's cat, Wigner's friend, quantum Zeno's paradox, and so on. 
The second alternative-sometimes called the statistical interpretation-is 
quite reasonable at a superficial glance, but it involves the following 
difficulties: 

1. Sixty years after the discovery of quantum mechanics, nobody has 
been able to develop it in a coherent form. 

2. There are numerous proofs, of various degrees of generality, that it 
is really not compatible with the quantum formalism (proofs of 
impossibility of hidden variables). 

3. It is considered disproved empirically by the results of the recent 
experimental tests of Bell's inequalities (but see below). 

The purpose of the present paper is to show that the second alternative 
is still possible, with some small changes in the accepted formalism of 
quantum theory, maybe not implying a change in the predictions of actual 
experiments. 



The Search for Hidden Variables in Quantum Mechanics 367 

We shall now comment on the paradoxes which arise from the complete
ness assumption. These paradoxes are very well known but, strangely 
enough, the scientific community seems unaware of them, to the extent that 
it is at present more respectable to speculate about what happened 10-43 

second after the "birth of the universe" than to search for completions or 
alternatives to quantum mechanics. It is certainly to the credit of Niels 
Bohr(3) and his followers that they offered the scientific community an 
extremely subtle set of conventions able to hide, if not destroy, the problems 
of the completeness assumption. This subtle-and, in my opinion, con
fused-way of thinking is called the Copenhagen interpretation. Although 
confused, this interpretation has survived for sixty years because no real 
alternative has been found. 

All paradoxes derive from the fact that, according to quantum 
mechanics, there are two types of evolution. Isolated systems evolve accord
ing to unitary transformations of the Hilbert space (the Schri:idinger 
equation), but systems interacting with measuring apparatus evolve accord
ing to nonunitary transformations consisting of projections onto a subspace 
related to the observables measured. This type of evolution is usually called 
the reduction or col/apse of the wave packet. 

A typical example is an initially excited atom, which decays to the 
ground state with emission of an a particle, i.e., 

(1) 

The Schri:idinger equation for this problem is cumbersome but, for our 
purposes, the solution can be represented schematically by the wave function 

(2) 

where I/IA represents atom A with lifetime 1/ 'Y and 1/18 represents the system 
consisting of atom B plus the a particle. If a measurement is made at time 
t, > 0, then the system is found either as atom A (with probability 1 - e- yt ,) 

or as atom B plus the a particle (with probability e- yt ,). The problem is 
how to interpret the wave function (2) prior to the measurement. Two 
possibilities exist. If we assume that 1/1 ( t) fully describes the real state of 
the system, then it is very difficult to understand what such a state is. In 
order to illustrate the problem more clearly, Schri:idinger(4) considered an 
imaginary example where, besides the radioactive atom, there is some device 
that kills a cat when the atom decays. Then, the corresponding 1/1 ( t) for the 
full system (atom + device + cat) is similar to equation (2) and corresponds 
to a state in which the cat is partially dead and partially alive. The obvious 
alternative is to think that 1/1 ( t) does not describe the real system, but rather 
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our knowledge about the system. In this case, however, the quantum descrip
tion is not complete because it does not tell us whether the cat is actually 
dead or alive at time t 1 • We note that the interpretation of rjJ as describing 
knowledge does not necessarily give it a subjective character. In fact, the 
wave function can be objectively related to the available data about the 
system in a similar way, as each possible result of tossing a (nonbiased) 
dice has an objective probability of 1/6. 

There is another argument, known already in 1927, that prevents the 
possibility of a naive interpretation of the wave function as a real field 
propagating in space. It derives from the fact that the wave function of a 
system of N particles depends on 3N coordinates-plus time-and so is 
a wave in an abstract space of 3 N dimensions (configuration space) and 
not in real three-dimensional space. This fact has been confirmed by detailed 
calculations in the helium atom, (6) the simplest nontrivial many-body prob
lem. As a consequence we can consider as firmly established that the wave 
function cannot represent a real field. (Surprisingly enough, recent papers 
in respected review journals(7) seem unaware of this sixty-year-old knowl
edge.) It should be stressed that this fact is established for electron systems, 
but certainly not for other entities like the quantized electromagnetic field, 
where a "many-photon configuration space" simply does not exist. Much 
confusion has arisen by the attempt to put all material entities on the same 
footing, and derives from the belief that all of them possess both a particle 
and a wave character. Actually, photons are sharply different from electrons 
even in quantum theory, a distinction extendible to all elementary bosons 
and fermions, respectively. 

The remaining possibility is to consider the (many-electron) wave 
function as just a mathematical construction able to represent the available 
information. This leads to the so-called statistical interpretation. (8) It is a 
fact that this is the interpretation supported-unconsciously-by the major
ity of working physicists. The most aware supporters, however, realize that 
this interpretation leads naturally to the idea that quantum mechanics is 
incomplete, and therefore one should search for hidden-variables theories 
which, on the other hand, are forbidden by the impossibility theorems. As 
a consequence, supporters of the statistical interpretation try to avoid the 
problem by detaching the "knowledge interpretation" of the wave function 
from the incompleteness of quantum mechanics andl or this incompleteness 
from the need for hidden-variables theories. In my opinion, this detachment 
is artificial and transforms the statistical interpretation into a close relative 
of the Copenhagen interpretation. 

Finally, we comment on the Copenhagen interpretation. It starts with 
the assumption that quantum mechanics is complete and therefore rejects 
emphatically hidden-variables theories. Indeed, the impossibility proofs or 
the empirical disproofs of hidden variables have been celebrated as triumphs 
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of the Copenhagen interpretation. Then, what about the paradoxes of 
Schrodinger, EPR, and so on, or the configuration-space domain of the 
wave function? These problems are solved by a change in the concept of 
science. In the prequantal era or in the view of most present-day "non
orthodox" people, the purpose of science is to describe as closely as possible 
a real external world, "which is independent of any theory," as EPR (I) put 
it. Following also EPR, the description can be complete only if there is 
some element in the theory corresponding to each element of the physical 
reality. In contrast, for Bohr(3) and the followers of the Copenhagen interpre
tation, the purpose of science is to predict (to be able to calculate) the 
results of experiments or observations. The question of the existence of a 
real world is rejected as metaphysical, i.e., outside the realm of science. 
Then, completeness is not the adequacy between the theory and the real 
world (whose existence is not necessarily assumed), but the adequacy 
between what can be predicted and what can be measured. In this sense, 
quantum mechanics is considered complete. For instance, the Heisenberg 
uncertainty relations-a consequence of the quantum formalism
correspond fairly well to the precision bounds in the measurements as 
shown, for instance, by the Heisenberg microscope. 

The criticism of the Copenhagen interpretation is that it hides rather 
than solves the problems. In particular, the question of completeness invol
ves a circular reasoning, because nothing can be measured if there does 
not exist a previous theory-even tentative-to define what is to be 
measured. For instance, prior to Einstein's theory of Brownian motion(9) 
many workers tried to measure the average velocity of Brownian particles, 
without success, because the different measurements gave apparently quite 
diverse results. Einstein's theory showed that the relevant quantity is not 
the ratio ~x/ M (velocity), but the ratio (~X)2/ ~t (diffusion coefficient), 
and thereafter it was measured quite accurately. In a similar way, quantum 
mechanics is considered complete (in the Copenhagen sense) simply because 
there is no other more detailed theory able to guide us toward measurements 
at the sub quantum level. To summarize, as Schrodinger put it, the Copen
hagen interpretation is a desperate attempt at confronting a serious crisis. (10) 

2. The Various Kinds of Hidden Variables 

As discussed in the previous section, the debate about the interpretation 
of the quantum formalism is closely related to the controversy about the 
possibility or not of hidden-variables theories. The controversy began in 
the founding years of quantum mechanics, 1925-7, and seemed closed with 
the 1932 book of von Neumann,(5) who established rigorously the mathe
matical structure of the theory and showed that it is not compatible with 
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hidden variables. Due to von Neumann's authority the search for hidden 
variables was blocked for twenty years. The criticisms of the current interpre
tation of quantum mechanics were not absent, however, the EPR argument 
being the outstanding example. In 1952 Bohm(lI) was able to construct a 
particular hidden-variables theory, which showed the incorrectness of the 
usual interpretation of von Neumann's theorem. Bohm's work reactivated 
the field and a large number of papers(l2.\3) were devoted to the subject in 
the following decade (such as Mackey, (14) Gleason, (15) Kochen, Specker, 
lauch, (16) Piron(17); see Hooker(13») culminating in the two celebrated papers 
of John S. Bell in 1965_6.(18.19) In the last twenty years Bell's inequalities 
and their empirical tests have been the subject of most discussions in relation 
to the foundations of quantum mechanics.(2o,21) The strange fact that there 
are both proofs of impossibility and particular examples of hidden-variables 
theories shows that there are several different concepts included under that 
heading. The purpose of this section is to clarify the subject by discussing 
the various types of hidden variables used. 

Hidden-variables theories attempt to do for quantum mechanics what 
statistical mechanics achieved for thermodynamics, namely, to provide a 
more detailed theory which agrees with the former when suitable averages 
are considered. Quantum mechanics considers two kinds of states for 
physical systems: pure states and mixtures. A pure state is represented by 
a wave function or, more generally, a vector in a Hilbert space. Actually, 
all vectors in a ray (one-dimensional subspace) are assumed to represent 
the same state, so that the most appropriate representation for a pure state 
is by means of a projection operator 

(3) 

where 11/1) (or (1/11) is a ket (or bra) vector in Dirac's notation. Mixed states 
are represented by density operators, which can be obtained by convex (i.e., 
with positive coefficients) linear combinations of projection operators. On 
the other hand, any hidden-variables theory associates with a physical 
system a set of hidden parameters A with domain A. The quantum states, 
either pure or mixed, correspond to probability distributions on A and are 
therefore mixed states in the theory. Pure states are now associated with a 
given value of A, and will be called "microstates." Observables correspond 
to self-adjoint operators in quantum mechanics and to real functions on A 
in the hidden-variables theory. The condition that this theory reproduces 
quantum predictions leads to the assumption that all expectation values 
agree, i.e., 

tr pA = f A(A) d/-L(A) == (A)p 
,\ 

(4) 
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where A and p [A(A) and /L(A)] represent the quantum operator (hidden
variables observable) and state, respectively. In the case of a pure quantum 
state, equation (4) reduces to 

(5) 

Similarly, correlations between compatible observables should also agree, 
i.e., 

tr pA· .. B = L A(A)' .. B(A) d/Lp(A) == (A· .. B)p (6) 

If no other restriction than equation (6) is imposed, it is rather obvious 
that a large degree of freedom exists for the construction of hidden-variables 
theories. However, a number of additional conditions could be imposed on 
physical grounds. von Neumann(5) considered the following: 

Q1. All self-adjoint operators correspond to observables. 
Q2. All density operators correspond to possible states. 
Q3. If A is the operator associated with observable A, then An is the 

operator associated with An. 
N. The linear (vector space) structure of the set of operators is 

isomorphic with the corresponding structure of the set of hidden
variables observables (functions of A). 

From these postulates von Neumann proved that hidden-variables theories 
are not possible. It must be stressed that assumptions Ql, Q2, and Q3 are 
considered a part of the quantum formalism and are usually not questioned 
in the search for hidden-variables theories. On the other hand, assumption 
N (for von Neumann) defines a kind of hidden-variables theory and can 
be certainly questioned. 

The theorem can be proved by showing the impossibility in a simple 
example: the ground state of the one-dimensional harmonic oscillator. 
According to postulates Q 1 and Q2 above, plus the general condition (4), 
we have 

(7) 

whence the probability distribution for the position is a Gaussian, a well
known result. Now, quantum mechanics as well as classical mechanics 
assumes the following relation between kinetic energy T, potential energy 
V = 4mw 2x 2, and total energy E: 

(8) 
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where the inequality originates from the assumption T ~ O. From condition 
N above, a similar inequality must hold for the observables of the hidden
variables theory, i.e., 

(9) 

Multiplying this inequality by dp.,(A) and integrating over the subset of A 
associated with a given position y, we get 

(10) 

where (E)y is the average energy of those microstates whose position is y. 
But in quantum mechanics the total energy of the ground state is dispersion
less and has the value ~hw, so that relation (10) leads to 

(11) 

However, the set of values of A violating relation (11) has a nonzero 
probability, thus proving that at least one of the assumptions is false. In 
consequence, there are no hidden-variables theories fulfilling the four condi
tions stated above. von Neumann's theorem is illustrated in Figure 2. 

The most frequent criticism of von Neumann's theorem is that the 
assumption N is unreasonable physically. In particular, an implication like 

aA + f3B = C ~ aA(A) + f3B(A) = C(A), a, f3 E R (12) 

postulated by N, should not be imposed if A and B do not commute, 
because then the measurements of A, B, and C require different experimental 
arrangements. This argument against the relevance of von Neumann's 

Figure 2. A particle in a parabolic poten
tial well (a harmonic oscillator) has a 
sharp energy E = !liw in the ground state, 
but a measurement of position may give 
x> xo = (Ii/ mw )1/2 with finite probabil
ity. These predictions of quantum 
mechanics are incompatible with the rela
tion E.- !mw 2x 2 = p2/2m ;. O. Con
sequently, the quantum-mechanical state 
cannot be considered as a probability dis

E 

x 
tribution over dispersion-free states, each having well-defined position and momentum. This 
illustrates von Neumann's theorem of the impossibility of hidden variables in quantum 
mechanics. The possibility exists, however, if the above relation is modified to E = 

!mw2x 2 + p2/2m + Ehidden' 
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theorem is today widely accepted, but it should be noted that the rejection 
of postulate N has dramatic consequences. For instance, in the above
considered example of the harmonic oscillator, the conservation of energy 
equation (7) will no longer be valid. In order to restore this conservation 
law, it would be necessary to assume, besides potential and kinetic energy, 
another "hidden energy," maybe originating from some subquantum 
medium. Then, hidden-variables theories compatible with assumptions Q1, 
Q2, Q3 but not N are nontrivial. 

The problem, however, is even worse because an impossibility theorem 
can also be proved on replacing von Neumann's assumption N by the 
following weaker one. 

G. The linear structure of any subset of commuting self-adjoint 
operators is isomorphic with the structure of the corresponding 
subset of hidden-variables observables. 

This is equivalent to assuming the validity of implication (12) only if A 
and B commute, which is quite reasonable because then A and B can be 
measured simultaneously, so that the probability distribution of C can be 
easily obtained from the joint distribution of A and B by just using the 
second equation (12) (without any need of additional measurements). This 
important theorem was first shown by Gleason('5) in 1957. The proof of 
Gleason's theorem is more involved than that of von Neumann's and is not 
given here. However, a similar theorem will be proved in Section 4. 

In 1966 Bell criticized Gleason's theorem, as well as von Neumann's 
and similar ones, on the basis that there is an implicit assumption in equation 
(6) which is not physically reasonable. It is the hypothesis that the numerical 
value A(A) depends only on the "microstate" A of the system, besides the 
measuring apparatus which defines the observable A. According to Bell, 
that value will also depend on all other things which may possibly influence 
the process of measurement, such as other measuring apparatus acting 
simultaneously. All these things define the "context" of the measurement 
and we should replace equation (6) by 

tr pA· .. B = f A(A, C)· .. B(A, C) dj.Lp(A) == (A· .. B)P.c (l3) 

It is noteworthy that the context includes, in particular, all observables 
being measured at the same time. Contextual theories, resting on equation 
(l3) instead of equation (6), are always possible, as shown by Gudder.(W 
In other words Gleason's-and similar-theorems do not exclude hidden
variables theories of the contextual kind. 
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In his 1965 paper (written after the 1966 one) Bell (19) considered local 
theories, which are somewhat intermediate between contextual and noncon
textual. In these theories, it is assumed that the context of an observable 
contains only those things able to influence the measurement of this observ
able by means of actions propagating not faster than light. The typical 
situations are EPR-type experiments, where two measurements are perfor
med on two subsystems (e.g., two particles of a correlated pair) in spatially 
separated regions (i.e., the measurement events are conducted within a time 
interval smaller than the distance between them divided by the velocity of 
light). In this case, equation (13) must be replaced by 

(14) 

The important point is that the context C1 (C2 ) does not contain any 
reference to B (A). Hence if one measures A and B' or A' and B or A' 
and B', the correlations could be obtained from 

(15) 

where R (S) stands for A or A' (B or B'). The factorization property of 
relation (15) was exploited by Bell to derive some inequalities that should 
be fulfilled by every local hidden-variables theories. Bell was able to show 
that these inequalities are violated by the quantum-mechanical prediction 
in some particular examples. In summary, local theories are contextual 
within each separate region, but noncontextual for different regions. They 
have been shown to be incompatible with quantum mechanics. Thus, Bell's 
theorem is stronger than the impossibility proofs of noncontextual hidden
variables theories (by Gleason and others) in that it excludes the contextual 
theories which are local besides all non contextual theories. 

As the distinction between contextual, noncontextual, and local theories 
is very important, a new but equivalent characterization of them is given 
by introducing the concept of "formal joint probability distribution" for 
several observables. If A(A) and B(A) are the functions associated with 
two observables, in a noncontextual hidden-variables theory, it is possible 
to define a formal joint probability density'/p(A, B), related to the quantum 
state p by means of 



The Search for Hidden Variables in Quantum Mechanics 375 

We note that, if the operators A and B commute, we can also write 

in view of our assumption G. However, if A and B do not commute, the 
operator associated with aA(A) + f3B(A) is not aA + f3B in general, and 
equation (17) may not agree with equation (16). This can be generalized 
to more than two observables. After that, we see that a necessary condition 
for noncontextual hidden-variables theories is the existence of a formal 
joint probability distribution for all observables associated with each quan
tum state. A proof that this probability does not exist will therefore prove 
Gleason's theorem. The word "formal" has been included in order to stress 
that the distribution cannot always be determined empirically. In particular, 
it cannot be determined whenever the operators involved are not jointly 
measurable. This is the reason why we distinguish carefully between 
"empirical joint distributions," that require joint measurability, and "formal 
joint distributions," which are purely mathematical constructions not requir
ing that condition. However, the mere existence of the mathematical function 
called "formal joint probability distribution" gives rise to empirically test
able consequences (Bell's inequalities). 

If we try to apply the previous construction to contextual hidden
variables theories, we realize that we cannot get a joint distribution for all 
observables, but only for those which are jointly measurable in a given 
context. Then, the corresponding quantum operators commute and we get 
a result similar to equation (17), namely 

It should be noted, however, that now the probability density corresponds 
to a given state and a given context. Nevertheless, if the theory is to agree 
with quantum mechanics, the marginal probability distribution of a given 
observable depends only on the state of the measured system and not on 
the context, a truly remarkable fact showing that contextual hidden-variables 
theories are somewhat artificial, contrary to a widespread opinion. (19) 

The lack of a clear definition of contextual, local, and noncontextual 
theories is currently the origin of much misunderstanding. For instance, 
there are people(23-25l who insist very strongly that Bell's inequalities are 
irrelevant as regards the question of locality, because they can be derived 
just from the existence of a joint probability distribution for observables 
which are not simultaneously measurable. There is some truth in the second 
part of the assertion, but the first part simply means that these people are 
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not worried by the nonexistence of local (in Bell's sense) hidden-variables 
theories, an opinion they share with the supporters of the Copenhagen 
interpretation. 

3. Are Noncontextual Hidden- Variables Theories Still 
Possible? 

A frequently expressed opinion in recent years is that local hidden
variables theories have been disproved by the recent experiments of Aspect 
and collaborators. (26) This opinion is wrong, as we shall see in the next 
section. Even more widespread is the opinion that noncontextual theories 
are impossible. For instance, Shimony has recently stated that "Gleason's 
theorem doomed the program of noncontextual hidden-variables theories." 
It is a fact, however, that no empirical disproof of these theories has yet 
been exhibited. On the other hand, noncontextual theories were those 
implicitly supported by EPR(I) when they concluded: "The wave function 
does not provide a complete description of physical reality .... We believe 
that such a theory is possible." In fact, they "arrived at the conclusion that 
two physical quantities, with noncommuting operators, can have simul
taneous reality." This simultaneous reality, which implies the existence of 
a (formal) joint probability distribution, is the characteristic of noncontex
tual theories, as discussed in the previous section. We are thus obliged to 
search for either noncontextual hidden-variables theories or empirical dis
proofs of them. 

Gleason's theorem shows that noncontextual hidden-variables theories 
are not compatible with all currently accepted postulates of quantum 
mechanics. Therefore, if these theories exist, at least one of these postulates 
is incorrect. Quantum mechanics is so firmly established at present that just 
suggesting a change in any of its postulates sounds like a scandal. It is 
clear, however, that some of the postulates are extrapolations that could 
never possibly be tested. For instance, the postulate Ql of the previous 
section states that all self-adjoint operators correspond to observables, but 
there are infinitely many such operators and certainly only a finite number 
of them will ever be measured. Similarly, according to Q2, all vector!) 
represent states, but only a finite subset of them could ever be prepared. 
Finally, in Q3 all powers of an operator are assumed to correspond to the 
powers of the associated observable. Again, the axiom could possibly be 
tested only for a finite number of such powers. The point is that if we 
replace the word "all" in the three axioms by "a suitable subset of the set 
of," then Gleason's theorem cannot be proved, thus opening the door for 
noncontextual hidden-variables theories. The important question is: Will 
the agreement with experiments be destroyed by this change? The answer 
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to this question consists in finding empirical tests of non contextual hidden
variables theories. One of the two great lessons of Bell's work(l9) has been 
to show us that we should change from searching for general impossibility 
theorems to looking for particular empirical tests. The other lesson, actually 
taken from EPR, is the relevance of locality for the hidden-variables prob
lem, a subject discussed at length in other chapters of this book. 

In order to find empirical tests of non contextual theories, it is con
venient to analyze situations where the conflict is more acute. One such 
case is provided by the Kochen-Specker paradox. (27) These authors con
sidered a system in a state with total spin (or angular momentum in general) 
equal to one. In this case, it is easy to realize that the three operators Jx. 
I n and Jz fulfill the conditions 

(in units of h 2 ). Also, the operators J~, J;, and J; have eigenvalues 0 and 
1. In consequence, a joint measurement of the observables corresponding 
to these operators is possible and, furthermore, if the value of one of them, 
say J;, is 0, then the value of each one of the other two is 1. If we want to 
construct a noncontextual hidden-variables model for the system, the possi
bility must exist of associating either the number zero or one to every spin 
component squared, with the condition that if the number is 0 for a given 
direction, it is 1 for all perpendicular directions. Kochen and Specker proved 
that this is impossible, i.e., one cannot divide the sphere into two regions, 
the first (second) including the points where (J . U)2 = 1 (=0) and such that 
if a point, taken as the pole, lies in the second region, all points in the 
corresponding equator lie in the first region (see Figure 3). 

The Kochen-Specker theorem is actually a proof that non contextual 
theories are not compatible with quantum mechanics for systems whose 

Figure 3. The spin components of a spin-l system fulfill 
J~ + J~. + J; = 21i2 and J~ = 0 or 1i 2, so that J; = 0 
implies J~ = J; = 1i 2 , and vice versa. A dispersion-free 
state with these properties should correspond to a 
division of the sphere into two regions A and B, such 
that if a point, taken as a pole, lies in A, all points of 
the equator lie in B, and reciprocally. Kochen and 
Specker showed that such a division does not exist, so 
proving the impossibility of hidden variables under 
weaker assumptions than von Neumann. However, 
according to Bell, it is still possible to have contextual 
theories, where the result of measuring J; depends on 
whether we measure at the same time J~ and J~. or J~. 
and J:.. . 

z 



378 Emilio Santos 

associated Hilbert spaces have dimension three or more. In fact, in such 
Hilbert spaces, the construction of operators with the formal properties of 
(J . U)2 is always possible and the proof can follow similar lines. (In contrast, 
general noncontextual models have been found(28) for any two-dimensional 
Hilbert space.) In consequence, this theorem is similar to Gleason's theorem. 

It should be clear that the proof of the Kochen-Specker theorem 
involves the postulates Q1, Q2, and Q3 of the previous section. For instance, 
we may assume that pure states with] = 1 are not realized in nature, but 
only some linear combinations of ] = 1 and ] = 0, which amounts to 
modifying postulate Q2. For such states the Kochen-Specker theorem 
cannot be proved. On the other hand, if the weight of ] = 0 is small enough 
it might not be detected empirically. The point is that only actual experiments 
could show whether or not noncontextual hidden variables are possible. 

The Kochen-Specker paradox demonstrates the difficulty of finding 
probability distributions for the angular-momentum vector that are compat
ible with the quantum predictions. Similar difficulties arise, for instance, 
when one tries to find probability distributions in phase space such that 
their marginals reproduce the quantum prediction for the position and the 
momentum of one or several particles. (29) Again, a weakening of the postu
lates Q1, Q2, and Q3 might perhaps solve the problem. In this paper we 
will not be concerned with the question of how the postulates should be 
changed without destroying the truly spectacular success of quantum 
mechanics, but rather with the previous problem of whether this program 
is possible. 

4. Elements of Physical Axiomatics 

A rigorous analysis of the possible empirical tests of hidden-variables 
theories requires an axiomatic approach to quantum mechanics. Con
sequently, the last two sections of this chapter will necessarily be more 
formal than the previous one. Several related axiomatics(30) have been used 
for quantum mechanics, starting from that of Hilbert space, initiated by 
von Neumann. (5) The most convenient for our purposes is a logicoalgebraic 
one.(13-I7) 

We must begin by formalizing the concept of "experiment." This is 
dangerous because any experiment consists of a sophisticated set of manipu
lations, especially if the experiment deals with microsystems. Then, any 
formalization implies an oversimplification (the same could be said, for 
instance, about the quantum theory of measurement). In spite of this, we 
shall state that a simple experiment consists of the preparation of a system 
followed by a measurement on it. The measurement gives the values of 
some set of compatible observables whose joint probability distribution is 
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conditioned by the previous preparation. Note that we shall call "one 
experiment" not the actual performance of the manipulations involved once, 
but the performance of them a very large number of times, so that the joint 
probability distribution of all the (simultaneously measurable or "compat
ible") observables can be obtained with enough precision. 

A comment is necessary at this stage. Many authors of articles or books 
dealing with the logicoalgebraic approach to quantum mechanics start 
writing about "yes-no" experiments in order to introduce the concept of 
"experimental proposition" or "question" (see, e.g., Gleason, (15) Jauch, (16) 

and many of the papers reproduced in Hooker(13»). This practice appears 
to be misleading and gives rise to much confusion. In fact, this approach 
forces one to define as "compatible propositions" those corresponding to 
two "yes-no" experiments which can be performed one after the other in 
either temporal ordering, a definition trying to imitate the commutativity 
of the quantum (projection) operators. However, commutativity is a mathe
matical property having no relation with time ordering, contrary to what is 
sometimes suggested. In practice, "yes-no" experiments are rather excep
tional, and nobody says, for instance, that the propositions "this table is 
longer than one meter" and "this table is shorter than five meters" are 
compatible just because the answer to each question is independent of the 
order in which the questions are investigated. They are compatible because 
a single measurement of the length of the table gives the answer to both. I 
think that it is essential for a correct understanding of the hidden-variables 
problem to realize that any experiment involves a whole set of "experimental 
propositions" (this set has the mathematical structure of a Boolean lattice, 
as will be shown subsequently). 

Besides simple experiments, we define compound experiments. These 
consist of several different experimental runs such that the same preparation 
is always involved, but several different sets of compatible observables are 
measured in different measurements. In other words, a compound experi
ment is defined as a set of (a few) simple experiments, all with the same 
preparation for the system. Compound experiments are relevant when they 
involve noncompatible observables (measured in different experimental 
runs) because this condition is necessary for the test of Bell's inequalities 
(see below). 

Now, we must investigate the mathematical structure of the sets of 
observables. It proves convenient, and it is a common feature of the logico
algebraic approach, to use dichotomic observables or "experimental propo
sitions" as the elementary concept. It is seen that any measurement can be 
reduced to finding the truth value of a set of such propositions. For instance, 
measuring the length of a table with a precision of one millimeter is 
equivalent to finding what propositions in the class "the length is greater 
than N millimeters" (N = 0, 1,2, ... ) are true. After that, we may formally 
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define a physical system by a set of propositions and a state of the system 
by a probability for each proposition being true. 

In the following, a very brief sketch is given of the most relevant 
mathematical concepts needed for the next section. The reader is referred 
to the literature(13-17) for details. The set of propositions of a system is a 
partially ordered set or "poset," 'l? The partial ordering relation is given 
by the implication. Proposition a implies proposition b, written a < b, if 
whenever a is true, then b is also true. As mentioned above, it is assumed 
that the implication is an ordering relation, i.e., it fulfills the axioms: 

(1) a < a; (2) if a < band b < c, then a < c (20) 

If a < band b < a, then a and b are called equivalent, denoted a = b. 
Another important property of the poset of propositions of a physical system 
is that for each proposition a E 'l? there exists also the negation a' E 'l? with 
the conditions 

(1) (aT = a; (2) if a < b then b' < a' (21) 

A poset with this property is called orthocomplemented. For mathematical 
convenience we include in 'l? the "absurd proposition" 4> (always false) 
and the "obvious proposition" I (always true) with the properties 

4>' = I, 4> < a < I for all a E 'l? (22) 

A state, attaching a probability pea) to every proposition a E 'l?, is a mapping 
of'l? into [0,1] such that 

p(¢)=O, p(I) = 1, pea) + pea') = 1, 

if a < b thenp(a) ~ pCb) (23) 

The above properties are rather limited and additional postulates are 
introduced in most practical cases. In particular, if we consider not the full 
po set of a system, but the subset 5£ of a simple experiment, it is assumed 
that, for any two propositions a, b E 5£, there is a greatest lower bound or 
"meet," a 1\ b, and a least upper bound or "joint," a v b, such that 

al\b<a, a 1\ b < b, if c < a and c < b then c < a 1\ b (24) 

a < a v b, b < a v b, if a < c and b < c then a v b < c (25) 
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A poset fulfilling these conditions is called a lattice. Furthermore, the lattice 
of a simple experiment is Boolean, i.e., the following distributive identities 
are valid: 

a v (b 1\ c) = (a v b) 1\ (a v c), a 1\ (b v c) = (a 1\ b) v (a 1\ c) (26) 

A state p on a Boolean lattice fulfills, in addition to properties (23), 

if a < b', thenp(a v b) = p(a) + p(b) (27) 

For mathematical convenience, this property is extended to infinite 
(denumerable) sets (a property called sigma additivity<13-18», so that the 
state p becomes a probability distribution with the usual (Kolmogoroff) 
axioms (a a-additive Boolean lattice is a a-algebra, this being the standard 
mathematical structure used in the axiomatics of probability). To summarize, 
the poset of a compound experiment has subsets which are Boolean lattices, 
each associated with a possible single experiment. For this reason, the poset 
is sometimes called a "partial Boolean algebra." 

The crucial question for the problem that we are studying is whether 
the poset of any compound experiment is itself a Boolean lattice. It turns 
out that the answer is yes for all phenomena in the classical domain, but 
it is no in the quantum domain, this being the essential difference between 
classical and quantum theory. (31) It is precisely the different mathematical 
structure which is at the root of all impossibility proofs of non contextual 
hidden-variables theories. In fact, in the logicoalgebraic language, we may 
say that any hidden-variables theory tries to associate a Boolean lattice 2 
with any compound experiment in the quantum domain in such a way that 
the poset (or non-Boolean lattice) PP of the quantum projection operators 
is a subset of 2. If no other condition is imposed, this can be always carried 
out, and this is why contextual hidden-variables theories are always possible. 
However, it seems natural to demand that the (non-Boolean) lattice structure 
of PP is the restriction of the Boolean lattice structure of 2. But this is 
impossible because any sub lattice of a Boolean lattice is also Boolean. This 
is why noncontextual theories are incompatible with quantum mechanics 
(if all its axioms are maintained). Hence, our suggestion is to modify 
postulates Ql, Q2, and Q3 of the previous section in agreement with the 
following principle: 

H. Only those compound experiments are physically possible which 
can be interpreted by a non contextual hidden-variables theory. 

The possible modification of QI-Q3, in order to make the quantum 
formalism compatible with H, does not contradict the present formalism 
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in the sense of predicting different empirical results. It just prevents the 
possibility of some special experiments. In the last section it will be shown 
that no performed experiment contradicts H, so showing that the question 
of noncontextual hidden variables in quantum mechanics is still open, in 
sharp contrast with the widely held opinion. We note that some restrictions 
of type H have already been introduced into the quantum formalism in the 
form of superselection rules. They forbid one, for instance, to consider as 
physical states those represented by vectors in the Hilbert space that are 
linear combinations of two vectors representing states with different electric 
(or barionic, leptonic, etc.) charge. 

To end this section, it is convenient to analyze in more depth what is 
the relevance of associating a Boolean lattice of propositions with a physical 
system. It derives from the property that equations (24) and (25) are always 
fulfilled if the propositions a, b, and c have a simultaneous truth value (the 
proof is trivial if it is taken into account that a v b is true whenever a is 
true or b is true or both, and a 1\ b is true only when both a and bare 
true). In other words, the simultaneous truth value of all propositions of a 
lattice is a sufficient condition for the lattice to be Boolean. Then, a 
non-Boolean lattice implies that not all propositions can have a truth value 
simultaneously. 

After that, it is possible to identify the realistic position (expressed, 
e.g., by EPR) with the belief that the set of propositions of any physical 
system is a Boolean lattice. Let us consider, for instance, the conclusion of 
EPR that a particle has two elements of reality associated with the position 
and the momentum. In our logicoalgebraic language, this is equivalent to 
assuming that the propositions "the position is q" and "the momentum is 
p" have simultaneous truth values. In consequence, it should be possible 
to define the meet and the join of these propositions. As this can be made 
for any two propositions, the set is a lattice, and the lattice is Boolean by 
the property of having simultaneous truth values. Then, the realistic state
ment "the properties of the systems exist independently of whether or not 
they are measured" can be formalized by assuming that the set of proposi
tions is a Boolean lattice. (It has been proposed elsewhere(32) to call BEL 
theories those describing nature by means of "Boolean Extended Lattices" 
of propositions, where "extended" emphasizes the fact that the full set of 
propositions is considered, in contradistinction to the set associated with a 
simple experiment, which is always Boolean.) 

The reader who has followed this brief introduction to the logicoalge
braic language will realize that noncontextual hidden-variables theories 
have a Boolean lattice. The question, whether or not contextual theories 
have a Boolean lattice, depends on how one defines a proposition. This 
question, however, is not very relevant for us so this study will no longer 
be pursued. 
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5. Tests of Noncontextual Hidden- Variables Theories 

The possibility of empirical tests of noncontextual theories rests upon 
the following theorem: 

If, on a Boolean lattice 5£, there is defined a probability distribution 
[i.e., a mapping of 5£ into [0,1] fulfilling properties (23) and (27)], then 
the following inequality holds for every three elements a, b, C E 5£: 

d (a, b) + d (b, c) ~ d (a, c) (28) 

where 

d(a, b) == p(a) + p(b) - 2p(a /I b), a, b E 5£ (29) 

The proof is easy(33) but will not be reproduced here. We are interested 
in applying the theorem to orthocomplemented lattices of propositions. In 
this case, the distance function (29) fulfills 

d(a, a) = 0, d(a, a') = 1, d(a, b) + d(a, b') = 1 (30) 

where a' is the negation of a. If the changes a ...... a', b ...... b, and c ...... c' are 
introduced into inequality (28) and relations (30) employed, then 

d (a, b) + d (b, c) + d (c, a) ~ 2 (31) 

for any three propositions in 5£. We may use either inequality (28) or (31) 
in the applications. 

The incompatibility of noncontextual theories with the full formalism 
of quantum mechanics can be illustrated by inequalities (28) and (31) in 
the following manner (here "full" means that the restriction H of the 
previous section is not incorporated). The propositions or dichotomic 
observables are represented in 'luant}lm mechanics by pr.?ject~rs, i.e. 
operators, which are Hermitian (A = A+) and idempotent (A" = A). It is 
easy to see that, if the projectors A and 13 associated with two propositions 
a and b commute, then A13 is the projector associated with a /I b. In 
consequence, the "distance" between commuting projectors, corresponding 
to relation (29), is given by 

(32) 
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It is easy to show that equations (30) and inequalities (28) and (31) are 
fulfilled for any set of commuting projectors. This shows that the construc
tion of a (contextual) hidden-variables theory for each (simple) experiment 
is possible. 

The problem appears with noncommuting operators. In fact, if A and 
B do not commute, quantum mechanics does not make any prediction for 
the proposition a " b. (Workers in quantum "logic" have made different 
assumptions, like associating lim(AB)" with a " b as Birhoff and von 
Neumann(31) or saying that a" b is not defined as Reichenbach.(3S») The 
problem is that, if we attempt to generalize relation (32), several non
equivalent definitions appear, like the family 

dCa, b) = «(A - B)2n), n = 1,2,3, ... (33) 

[The equivalence of i1" t~e relations (33) for commutin~ proje~tors follows 
from the fact that (A - B? is itself a projector when A and B commute.] 
Now, a proof of the impossibility of noncontextual theories could be 
obtained if it is shown that no definition of distance can be found so that 
inequality (28) is fulfilled for any triple of projectors. Such a proof is 
achieved by Bell's theorem, as shown below. We may illustrate the problem 
by choosing the simplest definition (32). Then, the definition equations (30) 
remain valid but neither relation (28) nor (31) is fulfilled. Instead, weaker 
inequalities hold, such as, for instance, 

d (a, b) + d (b, c) + d (c, a) :s; ~ (34) 

which follows easily from the obvious inequality 

3(A + B + C) - «(A + B + C)2) :s; ~ 

Hence, it follows also that 

dCa, b) + deb, c) + ~ ~ dCa, c) (35) 

As an example, we may consider a mixed quantum state with angular 
momentum] = 1 represented by the density operator 

p = WIO)OOI + 111)(111 + 11 -1)(1- Ii) 

(which arises in connection with the Kochen-Specker paradox; (27) see 
Section 3). It is straightforward to calculate the distance between two 
projectors of the form (J . U)2, U being a unit vector. It depends only on the 
angle e between the unit vectors, the function being 

dee) = ~ sin2 e (36) 
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It is enough to choose 81 = 82 = !83 « 1 in order to exhibit a violation of 
inequality (28), but if the projectors commute namely 81 = 82 = 83 = 7r/2, 
no violation is found of either inequality (28) or (31). Also, no violation 
of relation (34) or (35) is possible. 

After this discussion, it is clear that empirical tests of noncontextual 
hidden-variables theories can be found if there are particular instances of 
inequality (28) where a violation is predicted by quantum mechanics. A 
difficulty appears as follows. If the three projectors involved in inequality 
(28) commute, then the inequality is certainly fulfilled and no test exists. 
Alternatively, if two of the projectors do not commute, then the correspond
ing observables cannot be measured simultaneously and, again, the test is 
not possible. (An exception arises when the observables can be measured 
at different times and tests of this kind have been proposed. (36») The way 
out of this difficulty is to use quadrilateral inequalities, easily derivable 
from relation (28), instead of triangle inequalities. For instance, 

d (a, b) + d (b, c) + d (c, e) ;.. d (e, a) (37) 

Tests using inequality (37) are p~s~ible Ab¥ choAo~ing f<?ur projectors such 
that not all pairs commute (e.g., AC ~ CA or BE ~ EB or both) but only 
commuting pairs appear in the distances involved. If this inequality is 
expressed in terms of probabilities, then relation (29) enables us to obtain 

p(c) + p(b) ;.. p(a 1\ b) + p(b 1\ c) + p(c 1\ e) - p(a 1\ e) (38) 

which is the Clauser and Horne(34) form of Bell's inequality. (See Figure 4.) 
Inequality (38) and similar ones can be tested in compound experiments 

consisting of the preparation of a micro system a large number of times 
(e.g., a pair of correlated photons from an atomic cascade) followed by 
four different measurements (one at a time). In one measurement p(a 1\ b) 

Figure 4. Given two "propositions" (or 
dichotomic observables) A and B, it 
is possible to define their "distance" 
by d(A, 8) = p(A) + p(8) - 2p(A, 8), 
where p(A), p(8),a nd p(A, 8) denote the 
probabilities that A, 8, or both are true. 
Distances range between 0 (if 8 is 
equivalent to A) and 1 (if 8 is the negation C 
of A). In any classical theory, triangle and 

A/'~~--__________ _ 

I 
I 

I 
I 

8 

quadrilateral inequalities are fulfilled, such as d(A, 8) + d( 8, C) + d( C, D) > d(A, D). Quan
tum mechanics predicts violations of these (Bell's) inequalities, so allowing for crucial tests. 
The tests are more dramatic in EPR-type experiments where A and C are measured in a region 
and 8 and D in another region, spatially separated from the first. In this case, contextuality 
cannot be invoked without violating relativity theory. 
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is determined (e.g., the probability of joint detection after the photons have 
crossed two polarizes at angles a and b, respectively), in another pCb 1\ e), 
and so on. The probability p( b) can be measured either in the first or second 
measurement. In any case, the inequalities can be used with two quite 
different scopes according to the experimenter's desire of testing either 
noncontextual hidden-variables theories or the wider family of local ones. 
The latter are tested in EPR-type experiments. (We have proposed 
elsewhere(32) using the name BEL inequalities-for Boolean extended lat
tice-for tests on noncontextual theories, reserving the name BELL for 
those testing locality.) 

This section is brought to a close by stressing an extremely important 
distinction which, however, is not usually made, namely, that between 
homogeneous and inhomogeneous inequalities. Inequality (38), as all genuine 
inequalities derived from noncontextual (or local) hidden-variables theories, 
are inhomogeneous in the sense of comparing probabilities of single events, 
like pee) or pCb), with probabilities of coincidence events, like pea 1\ b). A 
single event is, for instance, the detection of a particle, and a coincidence 
event corresponds to a coincidence detection on two detectors placed at 
two regions R\ and R2 • The test of an inhomogeneous inequality like (38) 
is difficult, due to the fact that only a fraction of the signals produced in 
the source can be analyzed with the apparatus placed at R. and R2 • First, 
the signals may travel in the wrong direction not arriving at regions R. and 
R 2 • Second, the measuring apparatus have a finite efficiency, so that not 
all signals arriving are detected. If / is the fraction of the signals emitted 
which are actually detected, then pee) and p(b) are of order/while pea 1\ b), 
and so on, are of order /2. Therefore, inequality (38) cannot be violated 
unless / is close to unity. More or less plausible estimates could be made 
about the fraction of all signals which arrive at the measuring apparatus, 
hence estimating the different probabilities involved in inequality (38) from 
the counting rates, but the procedure is uncertain. It is even more dangerous 
to extrapolate the results actually measured with low-efficiency detectors 
in order to estimate the results with ideal (100% efficient) detectors. This 
point will be treated further in the next section. 

A suggested procedure to avoid these problems is to test homogeneous 
inequalities, involving only coincidence probabilities. Such inequalities 
cannot be derived from the above-stated theorem, but the derivation involves 
additional assumptions. For instance, it has been postulated, on the basis 
that the apparatus placed at R\ (R 2 ) usually involves a selector (polarizer, 
Stern-Gerlach, etc.) and a detector, that the detection probability with the 
selector in place is less than the probability with the selector removed. 
Therefore, some homogeneous inequalities have been derived that have 
been tested in actual experiments. To summarize, homogeneous inequalities 
do not derive from local realism and inhomogeneous inequalities, like 
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relation (38), could only be tested with very efficient selector-detector 
systems. 

6. Experimental Tests of the Inequalities 

Many empirical tests of Bell's inequalities have been proposed so far 
and several have been performed. Practically all tests involve measuring 
the correlation between the spin projections (or polarizations) of pairs of 
particles (or photons) prepared in a pure quantum state (such as a spin 
singlet). We do not attempt to review all proposed tests but only discuss 
two most important kinds: atomic cascade (or related ones) and molecular 
tests. (A review of the empirical tests previous to 1978 was given by Clauser 
and Shimony(20) and only the Orsay(26) and Stirling(37) groups have perfor-
med later experiments.) A common feature of these two kinds of tests is 
that they involve low energies (of the order of electron-volts), while energies 
one thousand ~imes larger are involved in most other tests (e.g., pairs of 
gamma rays produced in the decay of positronium or proton-proton 
scattering(20)). Low-energy tests have the advantage that the selector used 
in the EPR experiments (polarizers in the atomic-cascade tests or Stern
Gerlach analyzers in the molecular tests) can be described in classical 
terms. In contrast, the spin projection (or polarization) of a high-energy 
particle (or photon) can only be measured by the interaction with another 
particle, and this process must be analyzed using quantum concepts. 
Recourse to quantum theory for the analysis of the experiment invalidates 
the test of local realistic theories in most high-energy tests. (The word 
photon is used only as a shorthand for light signal, without necessarily 
attaching quantum properties to it.) 

In atomic-cascade experiments, the inhomogeneous inequality (38) is 
very well fulfilled, the left-hand side being about one thousand times greater 
than the right-hand side. This is due to the combination of two facts. In 
the first place the pair of photons to be analyzed appears in a three-body 
decay, as a result of which the two photons only just propagate in opposite 
directions. The probability that a photon enters the system of lenses (cover
ing an angle not greater than 60°) is about 10%, and the probability that 
both photons of a pair enter is of order 1 %. It is possible, in principle, to 
derive the inhomogeneous inequality (38) only for pairs of photons such 
that both enter the system of lenses. It is not so easy, however, to estimate 
the probabilities involved in relation (38) from the measured rates, because 
the ratio between coincidence and single counting rates is not the same 
as the ratio between coincidence and single probabilities. But even if the 
fraction of single counts corresponding to pairs both entering the measuring 
apparatus could be accurately estimated, a problem arises due to the low 
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efficiencies of photon detectors. In fact, the efficiencies are of order 15%, 
so that the left-hand side of inequality (38) is about one hundred times 
higher than the right-hand side even for the restricted subensemble of pairs 
just discussed (see Figure 5). 

The standard procedure to circumvent the problem is to assume that 
the ensemble of pairs actually detected is a representative sample of the 
pairs arriving at the selectors. But this implicitly uses an assumption of 
indistinguishability for the photons which is typically quanta!. It is obvious 
that this assumption means nothing in the case of, say, classical wave 
packets. It is not necessary to repeat here the arguments given in the previous 
section showing that homogeneous inequalities are not genuine Bell's 
inequalities, derived only from local realism. In conclusion, atomic-cascade 
experiments are inadequate for the test of local realism, a fact already recog
nized 12 years ago,(34) but not seriously taken into account until recentlyYS) 

In view of the impossibility of testing local realism with atomic-cascade 
experiments, due to the low-efficiency of optical photon detectors, Lo and 
Shimony(39) have proposed a molecular test. Here, a sodium molecule in a 
singlet state is dissociated, by laser light, into two atoms whose spin com
ponents along chosen axes can be measured with Stern-Gerlach analyzers. 
This kind of test solves, in principle, the two difficulties discussed above 
for the atomic-cascade tests. In fact, the molecular dissociation is a two-body 
problem, so that the resulting atoms travel in opposite directions with the 
result that if one enters the aperture of the first measuring system, the other 
atom of the pair is also likely to enter the corresponding aperture in the 
second system. In the second place, very efficient detectors are available 
and the Stern-Gerlach analyzers also have a high efficiency. A careful 
analysis, however, has shown that the experiment, as initially proposed, 
does not provide a reliable test of local hidden-variables models. (40) 

Figure 5. In atomic-cascade experimental tests of 
Bell's inequalities, proposition A (respectively B, C, 
D) is: "a light signal, coming from an atomic two
photon decay, is detected after crossing a polarizer 
with axis at angle 0 (respectively Tr/8, Tr/4, 3Tr/8)." 
The quantum-mechanical prediction for the "dis· 
tances" is (assuming ideal behavior for all devices 
except detectors) d(X, Y) = 1) - !1J2(l + cos 2</», </> 

being the angle between X and Y and 1) the photon· 
detector efficiency. Then, the quadrilateral Bell's 
inequality (see Figure 4) could only be violated if 
1) :;. 2( v'2 - 1) = 0.83, while practical detector 
efficiencies are of order 0.15. The incorrect claim that 

8 

~------~---------+ 
A 

local hidden variables have been refuted rests upon the empirical violation of other inequalities 
whose derivation involves additional, untestable, assumptions. 
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The present status of empirical tests of Bell's inequalities can therefore 
be summarized as follows. No experiment performed until now has provided 
a valid test of non-contextual hidden-variables theories. In fact, high-energy 
experiments should be interpreted using quantum theory if the results are 
to be considered as violations of Bell's inequalities, but this invalidates 
them as tests of (classical-like) models. Atomic-cascade experiments are 
useless due to the low efficiency of optical photon detectors. Also, no suitable 
test seems to be in preparation for the near future. The lack of a true 
empirical test of local realism versus quantum mechanics 20 years after 
Bell's discovery suggests that the contradiction of principle may not exist 
in practice. In conclusion, noncontextual (and, a fortiori, local) hidden
variables theories are still possible. 

7. Conclusions 

In the first section it is shown that the EPR (1) statement remains valid, 
namely, that the quantum-mechanical description of physical reality is not 
complete. Consequently, the search for hidden-variables theories should be 
a priority of theoretical physics. In Section 2, it is argued that hidden
variables theories should preferably be of noncontextual type. In Section 
3 it is shown that, although noncontextual theories are incompatible with 
the full quantum formalism, they are compatible after some, possibly minor, 
modifications of it. Hence, the relevant question is whether such theories 
are compatible with experiments. After a necessary introduction to physical 
axiomatics, it is shown in Section 5 that empirical tests of noncontextual 
theories are possible using Bell's inequalities. Finally, after a short review 
of the performed experimental tests, it is concluded that no evidence exists 
that noncontextual theories of the microworld are impossible. 
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Variable Detection Probability 
Models for Einstein-Podolsky

Rosen-Type Experiments 

SA VERIO PASCAZIO 

1. Introduction 

Paradox is a word of Greek origin: it means against expectation, against 
the common opinion (para + doxa). The paper of Einstein, Podolsky, and 
Rosen (EPR)(I) in 1935 shocked the whole physics community because its 
far-reaching conclusions were against expectation. The EPR ingredients 
were only two: a reality criterion (what is called today a realistic attitude) 
and a firm belief in what is known as Einstein's locality. Starting from this 
simple recipe they showed that quantum mechanics is not a complete theory: 
there exist elements of physical reality which have no counterpart in the 
quantum-mechanical formalism. 

This conclusion was put in a quantitative form only 30 years later, 
when BeU(2) showed that in a local-realistic theory (LRT) the correlation 
function is constrained to obey an inequality that can be violated by quantum 
mechanics (QM). Bell's inequality was unfortunately not liable to experi
mental investigation, essentially because it relied strongly upon a perfect
correlation assumption that cannot be achieved in actual experiments. The 
first ones who solved this problem and derived an experimentally testable 
inequality were Clauser, Horne, Shimony, and Holt (CHSH)(3) in 1969 
and then Clauser and Horne (CH)(4) in 1974. Unfortunately, there is a 
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shortcoming in the derivations of both CH and CHSH inequalities: the 
so-called no-enhancement hypothesis (NEH). 

The aim of the present work is to point out that the NEH, despite its 
"natural" appearance, is strange to the realm of locality and realism. The 
"naturalness" of a hypothesis is not a scientific problem and is not liable 
to experimental tests. Non-Euclidean geometries were "unnatural" to 
Greeks and atoms were "unnatural" to most physicists of the last century, 
but neither the former nor the latter were correct. As we noted at the 
beginning of this section paradox means "not expected" which is, roughly 
speaking, the synonym of "not natural." Therefore, a way out of the EPR 
paradox cannot be found in a "natural" way, nor in an obvious one. Among 
possible logical solutions to the puzzle is the denial of the "natural" NEH: 
We will show in the following that by assuming that individual photons 
behave differently when interacting with the photon detector, one can 
reproduce the experimental data within errors, in all the experiments so far 
performed. 

We commence our considerations by reanalyzing CH and CHSH no
enhancement assumptions. 

2. The No-Enhancement Hypothesis 

We shall deal in the following with the atomic-cascade tests of Bell's 
inequaliti Sl in which two correlated photons are emitted by an excited 
atom and subsequently spin-analyzed by two analyzers (polarizers) and 
detected by two detectors (photomultipliers). Our local-realistic attitude 
allows us to write the probability of detecting the first photon, given its 
analyzer's orientation a, as PI (A, a). Similarly, the probability of detecting 
the second photon given the second analyzer's setting b is P2(A, b). Parameter 
A describes the state of the source (emitting atom, neighbor atoms, possible 
fields, and so on), where A spans the space 1\ of the possible physical states 
with distribution function p. It is assumed that L. dp = 1. 

We note that PI (P2) does not depend on b (a), in agreement with our 
local philosophy which demands a measurement on the first (second) photon 
not to depend on the second (first) photon's analyzer. 

The probability of detecting both photons given a, b, and A is 

(1) 

and the average probabilities are 

pda, b) = L Plo.., a)P2(A, b)p(A) dA (2) 
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for a coincidence count, and 

(3) 

for a single count. CH proved that if equations (1), (2), and (3) hold, then 

-1!'S pda, b) - PI2(a, b') + PI2(a', b) + pda', b') - PI(a') - P2(b)!'S 0 (4) 

The problem with inequality (4) is that it involves single-count as well as 
double-count probabilities. Let us consider the 4p21 So-4p4s IPI_4s2 ISO cal
cium cascade. The QM predictions in this case (8 being the angle between 
the polarizer settings) are 

(5) 

where e ~ are the well-known polarizer efficiency parameters, Tli the quantum 
efficiencies of the counters,]; the probability that the ith photon enters the 
ith optical apparatus, g the conditional probability that the second photon 
enters the second apparatus if the first photon entered the first one (three
body decay: weak angular correlation between the emissions), and F (F!'S 
1) is a depolarizing factor taking into account the finiteness of the collecting 
lenses' angles. The last inequality in relation (4) takes the form 

5(8)!'S1 (6) 

with 5(8) = [3pd8) - pd38)]/(PI + P2) ifsome rotational symmetries are 
taken into account; on the other hand, the QM prediction for 5 is 

(6') 

where it has been assumed that Tit = Tl2 = TI, It = 12, and e ~ = e~ = e±. 
We now follow Clauser and Shimony's(6l interesting analysis: if the 

value 8 = 7r/8 is chosen in equation (6'), then the condition to violate 
inequality (6) is 

(7) 
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However in practical cases one can have, at most, e± = F = 1, but never 
g = 1 nor 1) = 1. In fact in a three-body decay (sayan atom which emits 
two photons) one always has g« 1, and for existing photomultipliers 
1) "" 0.2. Therefore, with an atomic-cascade experiment, one can never 
violate condition (6) or (4). This is the reason why one is forced to introduce 
some additional hypotheses in order to eliminate the single-count prob
abilities in equations (4) and (6). Even with g = 1 (two-body decay), it 
should be noted that inequality (7) is a stringent condition on the detectors' 
and analyzers' efficiencies, something already remarked on by CHSH in 
1969. 

A loophole to this inconvenient situation was found by CHSH and 
then CH by means of their no-enhancement hypothesis (NEH). It reads: 

NEHI (CHSH version). If a pair of photons emerges from two 
polarizers, the probability of their joint detection is independent of the 
polarizers' settings a and b. 

NEH2 (CH version). For every state A, the probability of a count 
with a polarizer in place is less than or equal to the probability with 
the polarizer removed. 

By NEH one usually refers to the CH version, which is somehow more 
general than the original CHSH version. We note that NEH2 is easily 
written in the form 

for every A 

where ex) denotes "absence of the polarizer." Both NEHs deserve some 
comments. In the first place CHSH, (3) CH, (4) and Clauser and Shimony(6) 
very much stressed the physical "plausibility" of their assumption. For 
instance, CHSH write that in case the outcome of an experiment favors 
QM against LRT, their assumption "could be challenged by an advocate 
of hidden variable theories· . . However, highly pathological detectors are 
required to convert hidden variable emergence rates into QM counting 
rates." And also: "both assumptions, in our opinion, are physically 
plausible.,,(6) Second, it is worth remarking that NEH2 is somehow both 
stronger and weaker than NEH 1: it is stronger because it is stated for every 
A while NEHI applies only to those photons which passed through the 
polarizer. It is weaker because it is only an inequality while NEHI is an 
equality. 

Finally, we stress that NEH 1 does not hold in the semiclassical radiation 
theory, where the amplitude of a wave after its passage through the polarizer 
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depends on the polarizer's orientation, and that the obviousness of NEH2 
(an obstacle cannot increase the probability of detection) "vacillates" if we 
think that, for instance, the probability of detection does increase if we 
insert a diagonally oriented polarizer between two perpendicular ones_ This 
has been observed(6) but in our opinion, has not been given the attention 
it deserves. 

It is similarly very important to stress that every Bell-type inequality 
so far tested experimentally relies upon NEH-type assumptions. For inst
ance, in the second Orsay experiment(S) the correlation coefficient 

E(a b) = R++(a, b) + R __ (a, b) - R+_(a, b) - R_+(a, b) 
, R++(a, b) + R __ (a, b) + R+_(a, b) + R_+(a, b) 

is measured, where Ru( a, b) are coincidence rates. The theoretical scheme 
for this four-coincidence experiment was first proposed by Garuccio and 
Rapisarda, (7) and a careful study of their paper shows that an additional 
NEH-type hypothesis is made there because the quantity p++(A, a, b) + 
p--(A, a, b) + p+_(A, a, b) + p_+(A, a, b) is supposed to be independent of 
A[P±±(A, a, b) are the four-coincidence experiment equivalents of 
pdA, a, b) in equation (1)]. The Orsay group's remark concerning the 
experimental observation that the sum of the four coincidence rates 
R±±(a, b) is constant when changing the analyzers' orientation is, in our 
opinion, misleading if one does not stress the fundamental difference 
between statistical hypotheses [LJ~± Rij(a, b) = const] and individual 
hypotheses D::iJ~± pij(A, a, b) = const]. After all, NEH is nothing but the 
requirement that a statistical property (the detector quantum efficiency TJ) 
be also valid at an individual level (for every emission A). 

In 1974, CH devised a model involving an angular hidden variable 
which could reproduce the QM predictions. Of course their model violated 
the NEH and was physically sensitive only for low values of the photomulti
plier efficiencies. Moreover, the model had the unpleasant feature of dealing 
asymmetrically with the two photons of a correlated couple, which means 
that the analytical expressions for PI and P2 in equation (2) were different. 
Clauser and Shimony(6) even expressed "some hope for a theorem to the 
effect that any model consistent with the experimental data will have 
anomalous features as does the CH model." As we shall see in the next 
section, this hope would be blighted by Marshall, Santos, and Selleri, who 
explicitly constructed such a model in 1983. We defer to a subsequent 
section some further considerations about Clauser and Shimony's "hope" 
in connection with some interesting papers explicitly taking into account 
the symmetry between the two EPR-correlated photons [PI = P2 in equation 
(2)]. 
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3. The Model by Marshall, Santos, and Selleri 

In 1983 Marshall, Santos, and Selleri (MSS)(8) obtained a model able 
to reproduce the experimental data for atomic-cascade experiments within 
errors. The model involved just one angular hidden variable in such a way 
that the elementary detection probabilities in equations (1) and (2) are 
given by the Fourier expansions 

00 00 

p.(a,A)= L ancos2n(a-A) and P2(b,A) = L bncos2n(b-A) (8) 
n=O n=O 

MSS remarked that it is impossible to obtain even partial agreement with 
the QM predictions if only two terms are taken in expansion (8). However, 
if one more addendum is retained, then one arrives at 

PI2(fJ) = c(1 + 2a.{3. cos 26 + 2a2{32 cos 46) (9) 

where 6 = (a - b) and c, ai, and {3i (i = 1,2) are related to coefficients ai 
and bi (i = 0, 1,2) in expansion (8). By setting 

a = 6: ff 
• 6~ V "2' 

and 

where the last two parameters are lower-bounded owing to positivity require
ments on the probabilities (8) (the possibility a2 = (32 = 0, which would 
give exact agreement with QM, is therefore ruled out), one obtains the same 
expression as QM for the coincidence count probability, plus a small term 
proportional to cos 46. 

A natural interpretation of the model proposed is the following: If for 
the sake of simplicity, F = 1 and /; (6~/2) is the probability that the ith 
photon enters the ith lens system (is transmitted by the ith polarizer) 
(i = 1,2), then 
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(where a i is the ith polarizer's setting) can be interpreted as the probability 
that the ith photon is detected by the ith counter. It is noteworthy that: 

L (11i(A»,\ = 11i, as expected on the basis of the definition of quantum 
efficiency 11i; 

2. the model deals symmetrically with the two photons of an EPR
correlated couple. 

Equation (10) rests on the idea of a variable detection probability 
(VDP), namely, different photons behave differently when interacting with 
photon detectors, the interaction being specified by the variable A. Of course, 
A is unknown within the bounds of the QM description of the physical 
reality, but it is not contradictory to QM by virtue of property 1. It is 
important to stress that VDP means that there are some photons carrying 
a A such that 

11(A) > 11 

If we interpret 11 as the probability of detecting a photon with the polarizer 
removed, then NEH is violated. The consequences of NEH are clear to us 
only in the light of the above-mentioned interpretation of the MSS model: 
roughly speaking, NEH forbids the possibility that, of a statistical ensemble, 
some photons have a higher intrinsic probability of being detected than 
others. 

The interpretation (10) is physically sensitive only for some values of 
11; the ideal case 11 = 1, for instance, is a priori excluded because it implies 
the possibility that 11(A) > 1 for some A [remember, 11(A) is a probability]. 
In the model proposed, for example, one must require that 

11 < v"E:/[(~ + JE;;,)/v'2 + (~+ .Je:)] 

This is a common feature of every VDP model, as we shall see. One ought 
to expect that when and if experiments are performed with (almost) ideal 
photon counters, different photons should behave (almost) identically when 
interacting with a counter, so that the A-dependence in equation (10) would 
fade away. In other words equation (10), or any other VDP, provides a 
good approximation when describing the behavior of a photon only in the 
case of low detector efficiencies (say 11 "" 0.8) but it cannot be expected to 
hold in the limit of ideal experimental situations. We will not extend our 
considerations in this direction for two reasons: First, the technical problems 
of achieving high values of 11 (for instance in photomultipliers) are so 
difficult that our discussion would be purely academic. Second, it seems to 
us that the possibility of an intrinsic physical upper bound on the value of 
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TJ should be seriously investigated. For if, for some reason, the value TJ = 1 
were not attainable even theoretically, the interpretation of VDPs would 
undergo a dramatic change in that the quantum efficiency TJ of a photon 
detector could be interpreted as a physical parameter whose value would 
be specified by physical sensitivity requirements on the probabilities. 

4. The Distance Separating Quantum Theory from 
Local Realism 

We saw in the previous section that the MSS model removes the 
unpleasant asymmetrical features that forced Clauser and Shimony to 
terminate their research on enhancement in the hope of a theorem that, as 
we have seen, could not be proven. The MSS model gives predictions which 
differ very little from the QM ones, so that no discrimination is possible 
on the basis of currently realized experiments. 

The question now arises whether the QM prediction can be obtained 
in a local realist fashion. Of course we know that any local realist explanation 
we envisage must bear on VDP and must lead to a violation of NEH. We 
have been taught this lesson by the experimental violations of CH 
inequality(5) which leave no other way out. Some works by Marshall, (9) 

Caser,(IO) and Corchero(1l) have tried to answer this question. As we shall 
see it is impossible, within a certain class of local realist theories, to 
reproduce exactly the QM prediction for the coincidence count probability. 

Marshall was the first to realize that, even dropping the NEH, a VDP 
model involving one angular hidden variable A cannot give predictions 
identical to those of QM. Indeed, by defining the distance 

(11) 

where P12 is given by equation (2), with 8 = a - b, and p~M by equation 
(5), Marshall finds that this distance has a finite constant do as lower bound. 
The analysis of Marshall (9) will not be presented because it requires some 
computer numerical evaluations, but it is worth emphasizing that Marshall 
concludes that a discrimination between QM and the class of VDP models 
considered by him is still possible if one makes use of better statistics than 
those usually achieved. Another step forward in this direction was made, 
independently, by Caser in 1984.0°) We will sketch his analysis, which is 
also the first (as far as we know) to develop the consequences of the explicit 
symmetry assumption PI = P2 in integral (2). 
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Caser considers the case of one angular hidden variable A and factorizes 
the counting probability P; (p;) for an ordinary (extraordinary) ray which 
has crossed a two-channel polarizer in the following manner: 

p;(A, aJ = Pi(A - aJf(A - a;) 

p;(A, ai) = Pi(A - aJ[1 - f(A - aJ] 
(12) 

where ai is the ith polarizer setting, Pi is a detection probability and j; the 
transmission probability for, say, light polarized along an "active" direction 
(ordinary ray). (We are modifying Caser's original discussion in order to 
deal with photons and not electrons: two-channel polarizers are the photon 
equivalent of Stern-Gerlach apparatuses.) It is necessary that 

p7t(lJ) = P~2-(lJ) =!C cos2 8 and P72-(8) = p~t(8) =!C sin2 8 (13) 

where 

Similar expressions hold for P --, P +-, and P -+ (C is a constant allowing 
for renormalization). Caser shows that if PI = P2 andfl = f2' then equations 
(12) and (13) are in contradiction. His theorem can be generalized to an 
arbitrary number of parameter A if they all lie in the plane of the analyzers. 

In our opinion this result is very important, because it shows that no 
symmetric VDP model can reproduce the QM prediction (13) if it makes 
use of parameters A restricted to the plane of the analyzers. It is anyway 
less general than one understands at first sight, because it has been shown 
by Home and Marshall(12) that, by means of a symmetrization attributed 
by them to Mermin, any asymmetric model may be turned into a symmetric 
one by the addition of one discrete variable s, in the following way. We set 

p'(A, s) = !p(A), A E A, s = ±1 

where p is the distribution function of A in A [equation (2)] and p' the 
distribution function of (A, s) in A ® {-I, 1}, and then introduce 

p;(A, 1, a) = PI(A, a) 

p;(A, 1, b) = P2(A, b) 

and 

and 

p;(A, -1, a) = P2(A, a) 

p;(A, -1, b) = PI(A, b) 
(14) 

where PI and P2 are the same as in equation (2). Then the coincidence rates 
obtained by p', P;, P; are identical with those obtained by p, PI> P2. In a 
correlated photon couple, one photon (say the first emitted) is assumed to 
be of type 1 and the other of type 2 (state s = + 1), or vice versa (s = - 1). 
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The model is then symmetrized by assuming the states s = ± 1 to be equally 
populated. It is worth stressing that this "symmetrization procedure" does 
not completely invalidate Caser's theorem. In fact, the set of equation (14) 
describes an ensemble of asymmetric photon couples, the symmetry being 
recovered in a subsequent step, but only at a statistical level. Therefore, if 
one believes that in every single couple of EPR correlated photons the two 
photons behave symmetrically when interacting with analyzers and detec
tors, then Caser's results(lO) still hold. 

We conclude this section by mentioning the work ofCorchero,(Il) who 
somehow blends the two preceding authors' conclusions. Corchero con
siders the family of local hidden-variables theories which involve just one 
single parameter and are symmetric in the sense of Caser. He shows that 
a suitably defined distance S between this class of models and QM is an 
increasing function of the parameter 1= FE:E:/ E~E~ [see expressions (5) 
for the notation]. The function S(n has a maximum So at 1= 1 (ideal 
case) and reaches its minimum atl = 0.5, being zero for I".; 0.5. In practical 
cases, a discrimination is possible if one combines: a ] = 0-1-0 cascade, 
for which F = 0.99; calcite polarizers, for which Em/ EM < 10-4; relatively 
high statistics. 

Moreover, in no experiment so far performed have these three condi
tions been fulfilled simultaneously. Corchero's work is noteworthy because 
it gives a finite numerical bound for the discrepancy between symmetric 
local theories and QM (Caser's work did not provide any) and because it 
shows that a lower statistics than that suggested by Marshall suffices in 
order to discriminate this class of models from QM. 

The three works summarized in this section are extremely interesting, 
even though they share a certain limit with regard to their generality: indeed 
they all deal with the very particular case of one angular hidden parameter. 
But a door seems to be open for possible generalizations: Caser extended 
the validity of his theorem to an arbitrary number of parameters if they are 
restricted to the plane of the polarizers, while Ferrero, Marshall, and 
Santos(13) have apparently proved that the equivalent of Caser's theorem 
holds also in the general case of n arbitrary hidden variables. 

5. Garuccio and Selleri's Proposal 

An important step forward in VDP was taken by Garuccio and Selleri(14) 
and later by Selleri, (15) who studied an interesting class of VDP models 
restricted by some physical assumptions. 

We begin with an example. A photon is assumed to carry a polarization 
vector I and a detection vector A such that the probability that the photon 
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crosses a polarizer set at a is given by 

(15) 

(Malus' law) and the probability of being detected by a photomultiplier 
with quantum efficiency TJ is 

(16) 

It should be noted that the transmission probability C in expression (15) 
does not depend on A, which is transmitted unchanged through the polarizer 
and then specifies the interaction of the photon with the photomultiplier 
[see equation (16)]. The photon, by crossing the polarizer, acquires the 
polarization a which "matches" A to give the detection probability. It is 
easy to check that 

(D(A - a),\ = TJ 

so that interpreting TJ as the quantum efficiency of the photomultiplier is 
consistent with our scheme. If we assume TJ to be the detection probability 
when no polarizer is present, then we see that the VDP (16) exhibits 
enhancement, because there exist values of A such that 

D(A-a»TJ 

in violation of NEH. 
A straightforward calculation gives for the double count probability 

PI2(fJ) = ~(I + & cos 28 + fs cos 48) TJI TJ2 

which agrees weII with the result of the first Orsay experiment(5): 

pd8) = (0.249+0.218 cos 28)TJITJ2 

The presence of a small term proportional to cos 48 is a characteristic of 
models of this type and yields experimentally testable discrepancies with 
QM. The example we have just presented is extremely useful for understand
ing the physical meaning of the class of models investigated by Garuccio 
and SeIIeriY4.15) The polarization I looks much like a wave property of the 
photon field, while A possesses rather the features of a "particle" property, 
because it does not interact with the polarizer, nor with any other optical 
devices such as a half-wave plate (as is assumed by SeIIeri(15»). It will be 
shown that this class of VDP models leads to large discrepancies with QM 
if other optical devices are inserted in the photon paths. 
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In order to elucidate the results obtained by Garuccio and Selleri, we 
will follow the more realistic approach of Garuccio et al. (16) in view of the 
interest shown by the Stirling and Catania groups in the experiments 
proposed by Garuccio and Selleri. (14.15) The class of VDP models that we 
consider can be characterized by the following assumptions: a photon is 
endowed with a linear polarization 1 such that C(/- a) is the transmission 
probability through a polarizer set at a, and a detection variable A, uniformly 
distributed between 0 and 1T such that D(A - a) is the detection probability 
after the photon has acquired the polarization a. The interaction with the 
polarizer does not change A and the transmission probability C does not 
depend on A. In the 0-1-0 calcium atomic cascade, the two correlated 
photons leave the source with the same A and polarization vectors l, l' with 
normalized distribution function p(/, 1'). We will first examine the case of 
ideal polarizers. The coincidence count probability is then 

pda - b) = T(a - b)R(a - b) 

where 

T(a - b) = LT dl {1T dl' p(l, I')C1(/- a)C2(/- b) 

is the double transmission probability and 

1 f1T R(a - b) = - dA D 1(A - a)D2(A - b) 
1T 0 

is the double detection probability. In order to be close to the QM predic
tions, we require that 

T(a - b)R(a - b) = !7]17]2[1 + cos 2(a - b)] (17) 

Garuccio and Selleri's idea is to insert a third polarizer, set at a', between 
the first one, set at a, and the photomultiplier. The probability of a double 
count then becomes 

wjDP(a', a, b) = T(a - b) cos2(a' - a)R(a - b) 

which is to be compared with the QM prediction 
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The ratio 

can be written as 

1+cos2(a-b) 3T(a'-b) 

3[1 + cos 2(a' - b)] T(a - b) 

403 

(18) 

due to relation (17). But the transmission probability T satisfies the Bell-type 
inequality 

3T(e) > T(3e) 

so that, by choosing a - b = 3(a' - b), relation (18) becomes 

ID 1+cos6(a'-b) 
y ;;::, ------'----'--

3[1 + cos 2(a' - b)] 
(19) 

This curve is plotted in Figure 1. Equation (19) is a Bell-type inequality for 
the class ofVDP models considered. A discrimination with QM seems easily 
possible in the range 80° < a' - b < 90°. Unfortunately, when polarizer 
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Figure 1. Lower limit of ylD for the YOP class considered (ideal polarizers). 
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imperfections are taken into account, it is not possible to repeat the simple 
analysis leading to relation (19). A rather different (and lengthy) 
approach(16) yields the result of Figure 2. The upper curve is relative to the 
Catania experiment, the lower curve to the Stirling one. It can be inferred 
from Figure 2 that a discrimination with QM is still possible, at a - b = 69° 
in the Catania case and a' - b = 68° in the Stirling case, but it is not that 
easy to carry out, experimentally, owing to the low values of the maxima. 

Another kind of experiment has been proposed by Selleri, (IS) who 
suggests inserting a half-wave plate between each polarizer and the respec
tive detector. The idea in this case is that the detection variable A does not 
interact with the half-wave plate, but the photon polarizations a and b do, 
so that the angles A - a and A - b can be varied in the detection probabilities 
DIU - a) and D 2(A - b). As a consequence, the average probability for a 
double detection 

can be arbitrarily varied by changing the polarizations a and b into, say, 
a' and b' without modifying the polarizer settings, which are still a and b. 
On the other hand, no variation in the double count probability should be 
observed according to QM, and a discrimination is easily possible. It is 
noteworthy that Selleri also derives an inequality by making no additional 
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Figure 2. Upper bound to the lower limit of yREAL (real polarizers). 
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assumptions of NEH-type. This inequality is a constraint for the class of 
VDP models considered by him. 

The painless derivation of theoretical discrepancies between QM and 
the class of VDP model considered led Garuccio and Selleri to conjecture 
that the insertion of a third polarizer in an EPR experimental setup should 
give rise to nonquantum-mechanical effects for every VDP model one can 
devise. The criticisms of this conjecture will be the subject of the next section. 

6. The Counterexample by Ferrero, Marshall, and Santos 

Garuccio and Selleri's claim, that the "anomalous" behavior of the 
ratio rID [relations (18) and (19)] should be a feature of all VDP models, 
has been criticized by Marshall and Santos(17) and Ferrero and Santos.(18.19) 
We will not examine their papers in detail, because they are subject to a 
number of criticisms: for instance, Malus' law is sacrificed, (17.18) in order 
to approach closely the QM predictions for the coincidence count prob
abilities, while the probability of a coincidence count without polarizers is 
given by(I9) 

so that some photons are lost somewhere in the experimental apparatus 
(the probability for a double detection without polarizers should be the 
simple product of the detector efficiencies). We will therefore sketch another 
recently proposed model(20.13) that overcomes all the above-mentioned 
difficulties. A photon is characterized by three parameters (I, cp, 8). The first 
two are similar to those used in classical optics to describe elliptic polariz
ation: 

so that for a photon traveling along the z-axis, the electric vector is 

Ex = A(t) Re[(cos A cos ¢ - i sin A sin ¢) e iwt ] 

Ey = A(t) Re[(sin A cos ¢ - i cos A sin ¢) eiwt ] 

The distribution function of I and cp is 

1 
p(l, cp) = - cos 2cp 

7r 
(20) 
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and these two parameters are assumed to obey the laws of classical optics 
when interacting with optical devices; for instance, (I, ip) --+ (a, 0) when 
the photon crosses a polarizer set at a. The variable 8 has five possible 
values: 81 (82) corresponds to the first (second) photon of a correlated pair, 
and when a photon crosses a polarizer 

81 is changed in 83 

. d' {84 82 IS change In 
85 

83 , 84, 85 do not change 

ifll- bl < 1T/4 

ifll- bl > 1T/4 

(The model can then be symmetrized by applying, for instance, the procedure 
suggested by Home and Marshall. (12)) The corresponding transmission and 
detection probabilities are given in Table 1. It is then a simple matter to 
show that 

P\2( 00, 00) = TJ 1 TJ2 

pda, b) = h1TJ2[1 + cos 2(a - b)] 

in agreement with the QM predictions. Moreover, the prediction for yID 
[relations (18) and (19)] is 

yID = 1 

which shows that Garuccio and Selleri's conjecture was not correct. If it is 
assumed that the distribution function p(l, ip) [equation (20)] does not 
change if quarter- or half-wave plates are inserted in the optical paths, the 
model gives predictions identical to the QM ones for any experiments of 
the type proposed by Garuccio and Selleri. (14.15) 

The example discussed in this section is rather artificial but, in our 
opinion, extremely useful because it shows the versatility of VOP models. 
In spite of the theorems presented in Section 4, it has been possible to find 
a local realistic model which agrees with the QM predictions for all the 
correlation experiments so far contrived. Notwithstanding its unnatural 
features, we consider this model to be an important step forward in research 
on VOP. Nevertheless, we think that Garuccio and Selleri's proposals(l4-16) 
are worthy of attention because the class of VO P models they studied, even 
though not exhaustive, has the nice feature of regarding the detection 
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Table 1. The Model by Ferrero, Marshall, and Santos 

Incomingl i 

photon I Polarizer i 

a 

(I, !p, (2) I 00 

I 

I 
- I 
(I,!p, (3) I 

b 

Transmission probability 

1 

o 
ifll- al < 1T/4 
ifll-al> 1T/4 

i 
i Average 
i transmission: 
: probability 

I 
2 

-~ 

Detection 
probability 

-----------r-----
(I, !p, (2) 1/2 

parameter A as a "particle attribute," in contrast to the wave parameter I, 
which is a polarization. It is indeed "fascinating that in trying to save 
Einstein locality one is pushed to give a more detailed dualistic description 
of the photon than provided by the usual quantum theory.,,(15) 

7. Disguised VDPs 

Other proposed solutions of the EPR puzzle can be related to the idea 
of VDP by a careful inspection of their characteristics. An example is the 
model proposed by Barut and Meystre, (21.22) who suggest measuring the 
spin correlation function on two separated subsystems of a classical spin-O 
system. By defining the correlation function as 



408 Saverio Pascazio 

where A = SI . a and B = S2 . b (SI and S2 are classical spin vectors, with 
SI + S2 = 0), Barut and Meystre succeeded in obtaining predictions identical 
to the QM ones. Several different interpretations have been suggested by 
Barut and Meystre in order to explain their result. In particular, they propose 
a discretization procedure of the classical spins that consists in recording 
each event with a weight factor of the type 

or (21) 

according to the measure being performed on the first spin or the second 
spin (cp, CPa, and CPb being the angles between an arbitrary z-axis and the 
spin, a and b, respectively). Their conclusion is that, "Whether our system 
can be called local, in some generalized sense, is ( ... ) probably a question 
oftaste.,,(2!) In our opinion Barut and Meystre's system is nonlocal, indepen
dently of questions of taste, if one does not identify VDP features in it. 
This has been done by Home and Marshall, (12) who put forward a model 
in which the weight factors (21) enter as a VDP. It is noteworthy that also 
Seipp(23) reaches the same conclusion, interpreting the factor (21) as a 
detection probability. It is remarkable that Seipp introduces in his discussion 
the probabilities Po(il., a) and Po(A, b) for the photons not to be observed, 
and estimates an upper bound of (1T - 1) -I = 0.47 for the number of 
observed coincidences divided by the number of observed events. 

This interesting result is closely related to a paper by Pearle (24) who 
first realized, in 1970 (before the CH paper had appeared!), that one can 
obtain the same results as QM if some of the data are "rejected," so that 
the recorded data are not a faithful sample of all pairs. Pearle also obtained 
a lower bound for the fraction of undetected particles; in our opinion, his 
results are "forerunners" of VDP. Moreover, we think that Pearle's and 
Seipp's bounds on the fraction of particles that must go undetected in order 
to reproduce the quantum-mechanical correlation have much to do with 
some estimates on how inefficient the detectors must be in order to not 
make the NEH. This problem has been tackled by Clauser, Horne, and 
Shimony, (4,6) Lo and Shimony, (25) and Garg and Mermin, (26) The best result 
in this direction was obtained by these last two authors who, improving 
a previous analysis,(25) have shown that the quantum efficiency TJ of a 
detector must satisfy the inequality 

TJ > 2(Y2 -1) = 0.83 

if one wishes to conduct a meaningful experiment without NEH. 
This concludes our comments about the bounds on the fraction of 

"rejected data" and detector inefficiencies, but we conclude this section on 
"disguised" VDPs by presenting another example in which one can violate 
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NEH by starting from a different (and apparently completely unrelated) 
point of view. (27) We consider a hidden parameter A controlling the interac
tion between a photon and a detector in such a way that if an a-polarized 
photon reaches the detector at time t = 0, it leaves (in the form of an 
electrical pulse) between t and t + dt with probability 

p{t) dt = e-t/T(A-a) dt/T{A - a) 

the "lifetime" T of the process is therefore a function of the angle A-a. 
It has been shown(27) that such a mechanism can lead to violations of Bell's 
inequalities. This model, which has apparently nothing to do with VDP, 
can nevertheless violate NEH. To see this, let us assume that a photon that 
has crossed no polarizer (say one belonging to an EPR-correlated couple) 
interacts with the detector with a "lifetime" To: 

If photons can be detected only within a coincidence window w, then the 
probability of being detected is 

p{A, a) = ~ {W p{t) dt = ~(l- e-w/T(A-a» 

for a polarized photon, and 

for an unpolarized one. It is a simple matter to show that if TO> w/ln 2, then 

p{A, a) > p{A, (0) for some A 

in violation of NEH. 
This is the last example proposed here. The presence of a finite

coincidence window brings to light a disguised VDP and Bell's inequality 
can be violated. 

8. Concluding Remarks 

It has been claimed that the EPR problem is solved (28) and that the 
experimental results refute Einstein's locality and shatter our conception 
of physical reality. (29) 
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If the rate of scientific discoveries were as high as the rate of allegations, 
words like science and mystery would not be found in our dictionaries 
nowadays. But luckily (or unluckily, it is a matter of taste) science means 
facts and Nature is rather reluctant to give us unblurred facts. The situation 
with EPR-type experiments is not clear. The presence of extra assumptions, 
like NEH, in the derivation of experimentally testable Bell-type inequalities 
contaminates the local-realistic philosophy, which is the basis of Bell's 
original inequality derivation. (2) This leaves a reasonable (and peculiar) 
way out, via VDP models. We have seen in this chapter that a VDP can 
have many causes, can be the consequence of many different conceivable 
phenomena, and can have many important consequences. But above all, a 
VDP is a local-realistic explanation to the EPR puzzle. And this is sufficient 
reason to pursue the investigation in this direction. 
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Note Added in Proof 

After reading the preprint of this paper, Marshall made the following 
comment: CHSH's hypothesis is not, strictly speaking, a no-enhancement 
hypothesis, and therefore its description as NEHI in Section 2 is somehow 
misleading. 

We emphasize that our purpose, when labeling CHSH's and CH's 
hypotheses as NEH 1 and NEH2, was just to stress their common philosophy 
and that they both aim at a "painless" derivation of experimentally meaning
ful Bell-type inequalities. In addition models that violate CH's hypothesis 
usually (if not always) violate CHSH's hypothesis (even if the contrary is 
not true; see, for instance, semiclassical radiation theories). In conclusion, 
we think that it is worth defining CHSH's hypothesis as NEH 1 for historical, 
more than strictly logical, reasons. 

We are grateful to Trevor Marshall for having raised this "sore point." 
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Stochastic Electrodynamics and the 
Einstein-Podolsky-Rosen 

Argument 

TREVOR MARSHALL 

1. Introduction 

The Einstein-Podolsky-Rosen (EPR) argument(1) was originally intended 
to demonstrate the incompleteness of quantum mechanics, but since the 
discovery of the Bell inequality(2) it has been used (see the introductory 
chapter of this book) to indicate a point at which we may expect the quantum 
theory to break down. The crisis comes about because, as foreseen by 
Einstein himself,(3) quantum theory predicts violations of the Principle of 
Local Action. (4.5)* This principle, which is a consequence of Special Relativ
ity,(6) forbids the existence of any action propagating faster than light. 

It is widely believed that every theory under threat has a protective set 
of auxiliary theories erected around it, (7) some of which may be abandoned 
in the face of unfavorable experimental evidence leaving the central theory 
intact. Quantum theory has a rather different kind of defensive system. It 
seeks to disarm the threat from the Principle of Local Action by attacking 
the scientificity of that principle. Since, so we are told, (8) quantum 
theory disproves the notion of objects existing independently of human 
consciousness, we cannot make statements about the actions such objects 

* Born translates Prinzip der Nahwirkung as "Principle of Contiguity." I believe "Principle 
of Local Action" is more accurate. 

TREVOR MARSHALL • Department of Theoretical Physics, University of Cantabria, 
Santander 39005, Spain. 
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can exert on each other. In similar vein, the Sage of Copenhagen said(9) 
that no two objects which have once interacted can, at a later time, be 
observed separately. * 

My view(IO) is that it is the Bohr side of the argument which is 
unscientific. Such a theory of causation is characteristic of all prescientific 
cultures; it is magic. And magic, as Frazer(ll) told us before quantum theory 
had been thought of, is "the bastard sister of science." 

In this chapter, therefore, we simply assume Einstein locality as an 
inevitable feature of our world, and will use it both to interpret those 
experiments which have been done already and to suggest directions in 
which new experimental work should go. 

The Principle of Local Action (PLA) is not a purely philosophical 
statement. Its scientific content was first pointed out, though somewhat 
obliquely, by Clauser and Horne. (12) As a result of the Clauser-Freedman (13) 

experiment and its subsequent refinements we have, by using the PLA, 
discovered a rather surprising property of atomic light signals ("photons"). 
This property is called enhancement, and is the subject of Section 2 of this 
chapter. 

The new phenomenon of enhancement has given us what may be a 
very valuable clue to the oldest puzzle in quantum physics-the nature of 
light. I submit that, while we can now do formidable and accurate calcula
tions in quantum electrodynamics, most of us are today no nearer to 
understanding wave-particle duality than Einstein was in 1905 (and, inciden
tally, he said so himself(l9) toward the end of his life).t 

The physics community, to its disgrace, has not until now taken the 
PLA seriously, which explains why so little effort has gone into examining 
enhancement. Recently two lines of investigation have been developed; (14,15) 

they may be considered as modern continuations of the ideas of Einstein 
and Planck, respectively. Einstein (16) considered that the primary objects 
of the electromagnetic field are strongly localized, the Maxwell description 
being valid only on the average. Planck, (17) on the other h~nd, considered 
that all electromagnetic signals should be treated as classical solutions of 
the Maxwell equations, and proposed that many of the apparently particle
like properties of light could be explained by the hypothesis of a real 
zero-point field. 

I believe there is now some possibility of achieving a synthesis of these 
two approaches, but at the present stage it is better to see them developed 

* The quote is: "any attempt at subdividing the phenomenon will demand a change in the 
experimental arrangements introducing new possibilities of interaction between objects and 
measuring instruments which in principle cannot be controlled." 

t The quote is: "All these fifty years of conscious brooding have brought me no nearer to the 
answer to the question 'What are light quanta?' Nowadays every Tom, Dick and Harry 
thinks he knows it, but he is mistaken." 
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separately. The approach of stochastic electrodynamics, leading to stochastic 
optics, is the modern continuation of Planck's theory and will be described 
in the present chapter. Elsewhere in this book, Saverio Pascazio will describe 
other approaches to enhancement, including those based on Louis de 
Broglie's idea of particles carried by pilot waves, which is in the tradition 
of Einstein's approach. 

2. Stochastic Realism: The Need for Enhancement 

The experiments which have come closest to a realization of Bohm's 
version(18) of the EPR thought experiment are those using optical 
cascades, (13.20-24) and their close relative, the Stirling experiment, (25) which 
uses the two-photon decay of metastable atomic hydrogen. All except one (23) 
of these use one-channel analyzers, and we shall confine our discussion to 
such devices. This is for simplicity only; the analysis of two-channel devices, 
for all realist theories with enhancement, follows trivially from the one
channel analysis. An explicit example of such an extension is given in the 
model of Home and Marshall. (26) 

We therefore consider the typical optical-cascade experiment (Figure 
O. The source emits a succession of pairs of signals (one "red" and one 
"green"). Each pair is normally assumed to be independent of its pre
decessors and may be specified by a set of random variables A. The polarizer
detector A is fitted with a polarizer of variable orientation 8A , and B has 
a similar one of orientation 8B • A registers a given red signal with probability 
PI (8A , A), while B registers independently a green signal with probability 
P2 ( 8B , A). It is at this stage that we have imposed the requirement of the 
PLA; if action at a distance were possible, then PI could be a function of 
8B as well as 8 A. In the most recent version of the experiment, (24) very 
drastic steps were taken to ensure that the experimental conditions guaran
teed such a decoupling of the two detection apparatuses. 

Source 

Pair of 
light signals (A) 

Polari zer-detector A Polarizer-detector B 

Figure 1. Diagram of a typical atomic-cascade experiment. 
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It now follows that the singles rate RI of registration at A is given by 

(2.1) 

where Ro is the rate at which pairs are emitted, and peA) is the probability 
density of the signal variables. The singles rate R2 at B is given by a similar 
expression, while the coincidence rate R12 is given by 

the assumption that PI and P2 are independent of ()A and ()B, while PI2 is 
a function of the difference between these angles, is a natural consequence 
of rotational invariance, and is well verified experimentally. We shall assume 
in this chapter that PI and P2 are given by the same function of their 
arguments, so that we may simply put PI == P2 == P. This means we assume 
that the operations of the two detectors are at least approximately the same, 
with perhaps minor variation on account of the different colors of the two 
signals. It cannot be ruled out that the triggering of the counting mechanism 
by the first "photon" of the cascade produces a more substantial 
asymmetry. (27,28) however, it is my opinion that such an effect will eventually 
be shown to give a minor contribution. The explanation of enhancement, 
on the other hand, is greatly simplified by the above assumption. Hence 

PI = P2 = f p(A)P{()A, A) dA (2.3) 

and 

PI2 = f p{A)P{()A, A)P(()B, A) dA (2.4) 

Now according to quantum theory (29) the probability PI may be 
factorized into the probability of the red "photon" passing the polarizer 
times the probability of its activating the detector, If the polarizer is ideal 
and the detector efficiency is T/, this gives 

PI = P2 = h (2.5) 

(2.6) 
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where 
(2.7) 

Equation (2.6) is interpreted as follows: P12 is the joint probability of a pair 
of "photons" both passing their respective polarizers and both being detec
ted; since it is considered that the processes of passing the polarizers and of 
being detected are independent, we may regard ql2 as the joint probability 
that a pair of "photons" both pass through their respective polarizers. 

If we accepted the above italicized clause we would say that there 
exists a probability Q( 0, A) such that 

f p(A)Q(O, A) dA = ~ (2.8) 

and 

(2.9) 

Clauser and Horne(l2) showed that no such probability can exist for any 
p(A). This is the modern form of the EPR "paradox." But within the local 
realist analysis there is no paradox: we simply infer that ql2 cannot be a 
joint probability; the above italicized clause is incorrect. 

Now for the experimental evidence. It is well verified that, after making 
some fairly small corrections for the imperfection of real polarizers, PI, P2, 
and P12 do indeed satisfy equations (2.5) and (2.6). However, this does not 
invalidate our conclusion; it is quite easy to find p(A) and P( 0, A) satisfying 
equations (2.3) and (2.4). Here is a model, due to Watson,(S) which does 
so approximately: 

P(oo, A) = 7J 

K = 7T(sin 2,u - 2,u cos 2,u)-1, ,u = O.37T 

(2.10) 

(2.11 ) 

(2.12) 

(2.13 ) 

where the notation ( )+ means that the expression is zero if the bracket 
is negative and P( 00, A) denotes the detection probability of A when the 
polarizer is removed. In Table 1 we give the values of the experimental 
quantity 

(2.14) 



418 

a 

Table 1. Values of the Angular 
Correlation Function r( 6) for 

the Watson Model in the 
Perfect Polarizer Casea 

8 r(8) rQ(8) 

0 0.522 0.500 
7T/8 0.427 0.427 
7T/4 0.233 0.250 

37T/8 0.073 0.073 
7T/2 0.014 0.000 

rQ( 8) is the quantum value. 

Trevor Marshall 

for the most commonly observed angles, according to the quantum model 
and the Watson model. It has been shown(30) that none of the existing 
experiments provides us with data good enough to discriminate between 
the two models. 

A significant feature of the Watson model is that, for A = e, it gives 

p(e, e) = 7T sin2 J.L(sin 2J.L - 2J.L cos 2J.L)-1 = 1.341 (2.15) 

and hence 

P( e, e) > P( 00, e) (2.16) 

This means that, for a signal with A = e, the probability of activating the 
photodetector is enhanced when a linear polarizer is interposed between 
the source and the detector. Clauser and Horne(12) showed that any local 
realist model capable of explaining the atomic-cascade data must have the 
general property of enhancement, in the sense that there must be values of 
A for which 

p(e, A) > P(oo, A) (2.17) 

It is possible, (26) with a little ingenuity, to devise a model which agrees 
exactly with the quantum prediction for r( e A - es). While such an exercise 
has some pedagogic value, it can cause us to lose sight of the main scientific 
issue. We are not seeking agreement with quantum theory, but rather 
explanation of experimental data. Indeed, since quantum theory gives us 
the quantity qd e A - es) which, as we saw above, is not a proper 
probability, we can claim that, notwithstanding all their ad hoc features, 
models like the Watson model provide the only possible explanation of the 
experimental data. (I should add that the very word "explanation" has 
become debased in Physics these last sixty years.) 
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We see, then, that enhancement is necessary to explain the data obtained 
in the atomic-cascade experiments. The earliest proof of the Bell inequality(2) 
was for local deterministic models only; all the probabilities like P( e, A) 
were zero or one. In such models enhancement was, literally, inconceivable. 
This emphasizes that we are dealing here with a realism more sophisticated 
than determinism, to which the name stochastic local realism* may be given. 
A signal A has a probability P( 00, A), lying between zero and one, of 
activating a detector. If a polarizer is interposed, so that the context is 
changed, then this probability is modified to P( e, A). All enhancement 
models, whether of the stochastic optics or of the wave-particle duality 
type, must assume that the modification of P( 00, A) to P( e, A) goes beyond 
a simple multiplication by a polarizer-transmission factor. 

I do not treat wave-particle duality models in this chapter, but it is a 
general feature of such models, which Selleri (14) calls variable detection 
probability, that P( 00, A) does actually vary with A. The Watson model may 
be regarded (see the next section) as the simplest example of a stochastic 
optical model, and from equation (2.11) we see that variable detection in 
this sense is not a necessary feature of all enhancement models. This means 
that some care will be needed in assessing the results of the Stirling 
three-polarizer experiment, described in A. J. Duncan and H. Kleinpoppen's 
chapter of this book. 

3. Stochastic Optics: The Mechanism of Enhancement 

Stochastic optics is a semiclassical radiation theory. In general such 
theories treat the pure electromagnetic field classically, while continuing to 
use nonrelativistic quantum mechanics to describe the motion of electrons 
in atoms. It has been known for a long time(31,32) that such theories are 
capable of explaining emission and absorption oflight by atoms. The greatest 
difficulty for semiclassical theories(33) has been in explaining the interaction 
of light with macroscopic devices, such as linear polarizers and beam 
splitters. 

In this and subsequent sections we shall show that the latter difficulties 
are overcome in a semiclassical theory which supposes the existence of a 
real zero-point field. The basic idea of stochastic optics is to treat the 
transmission of light (through lenses, mirrors, polarizers, and so on) exactly 
as in classical optics, but including the existence of a zero-point radiation 
present everywhere. The assumption is made that the zero-point radiation 
has the same nature as ordinary light but, for reasons to be discussed later, 

* The world view represented by stochastic local realism seems very similar to that given by 
what ShimonyC65) calls "contextual hidden variables theories of environmental type," The 
argument presented here shows that Shimony is incorrect in stating that the factorizability 
condition [his equation (2)] for such theories has been shown by experiment to be untenable. 
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it cannot be detected directly. In consequence, we assume for the trans
mission of light-including the zero-point-the same laws as in classical 
optics. On the other hand, we shall use ad hoc assumptions for the emission 
and absorption of radiation. We hope that these rules will one day be 
derived from more basic (classical, although stochastic) principles. 

Thus stochastic optics is a less developed theory than either quantum 
optics or Jaynes (32) semiclassical radiation theory. It has its origin in a fairly 
well developed classical theory, namely, stochastic electrodynamics. (34-39) 
However, one certainly cannot claim that this latter theory gives an adequate 
treatment of atomic emission and absorption, though many of its results 
seem to point tantalizingly in such a direction. Its main successes to date 
lie precisely in the area where previous semiclassical radiation theories have 
failed: the interaction of radiation with macroscopic devices. An outstanding 
example is the explanation of the Casimir effect and other long-range van 
der Waals forces. (40,41) 

In stochastic electrodynamics the radiation emitted "spontaneously" 
from an excited atom is considered to have been stimulated by an appropri
ate component of the zero-point field. Instead of being spread over a broad 
wave front, such radiation may be supposed to be concentrated in a pencil
shaped region, whose length is of the order of the natural coherence length 
(typically 1-10 m), and whose cross-section is of the order 10-4 to 10-3 m. 
The general description of the signal is similar to that originally proposed 
by Einstein(42) under the name of needle radiation (Nadelstrahlung), and 
the dimensions of the pencil are discussed elsewhere(43) within the general 
context of stochastic electrodynamics. 

For present purposes it will suffice to describe the pencil, in its interior, 
as a plane wave, traveling in the z-direction, whose electric vector is 

(3.1) 

We shall suppose that {3 has a fixed value, which is the same for all such 
single-atom signals, and that the angles (cp, t/J, X) are random variables whose 
distribution is dictated entirely by considerations of rotational invariance(44): 

From the standpoint of classical optics, (cp, t/J, X) is simply the set of Stokes 
parameters(45) describing the signal, while from the standpoint of local 
realist theory it corresponds to the set of "hidden variables" traditionally 
labeled by A, that is, 

(3.3) 
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When such a signal, denoted E = (Elo E2 , E3 , E4 ) interacts with a 
two-channel polarizer or beam splitter, fields Et and Er are transmitted. 
However, while in deterministic classical optics it would be natural to 
assume, on energy grounds, that E2 = E; + E~, where the bar indicates 
time averaging, we must assume that, in stochastic optics, a contribution 
Eo from the zero-point field is added to both channels, as depicted in Figure 
2. The relevant part of the zero-point field is supposed to have the same 
plane-wave description as the signal, but with amplitude 130 = 1 and Stokes 
parameters Ao == ('Po, 1/10, Xo) statistically independent of A. For an ideal 
beam splitter the signals in the two channels will be 

(beam splitter) (3.4) 

while for an ideal linear polarizer they will be 

It is of interest that the description of a beam splitter in quantum optics 
is formally the same as equation (3.4),(46) though in that case the fields are 
interpreted as Hermitian operators rather than random variables. It would 
seem that both theories agree on the important role of the zero-point field; 
the parallel between operators and random variables in the two theories 
has been noted previously. (47,48) We shall return to the beam splitter in the 
next section and concentrate, for the moment, on the action of a linear 
polarizer, described by equation (3.5). The signals Et and Er cause photo
multiplier activations in their respective channels. The normal semiclassical 

EO 

E 

Figure 2. Action of a beam splitter or linear polarizer in stochastic optics. The incoming signal 
E is mixed with the zero-point component Eo and split to produce the outgoing signals E, 
and Er • 
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assumption is(33) that the activation probability P for a time window of w 
is 2gwE2, where g is the detector efficiency. We shall modify this assumption, 
taking account of the real zero-point field, to write 

(3.6) 

where the subscript + means that P is zero if the bracket is negative and 
'Y is a threshold greater than one (the zero-point intensity). Then the 
activation probabilities with and without a linear polarizer are 

P( 00, A) == gW(f32 - 'Y) (3.7) 

and 

f .,,/2 

P( e, A) == gw 0 sin 2fPo[f( 0) + sin2 fPo]+ dfPo (3.8) 

where 

cos 20 = cos 2e cos 2fP + sin 2e sin 2fP cos(t/I - A) (3.9) 

and 

/(0) = 13 2 cos2 0 - 'Y 

The integral may be evaluated to give 

{
gW(f +~) 

p(e, A) = ~gw(f+ 1)2 

(f;. 0) 

(0;./;.-1) 

(f~-1) 

(3.10) 

(3.11) 

and it is now clear that there are values of A = (fP, t/I, X) (such as fP = e, 
t/I = A, giving 0 = 0) for which equation (2.17) is satisfied, that is, enhance
ment occurs. 

The Watson model of the previous section is now seen to be a primitive 
version of stochastic optics, in which the Stokes parameters were replaced 
by a single parameter A representing linear polarization, so that 0 was 
simply equal to (A - e). The threshold parameter 'Y is represented, in the 
Watson model, by cos2 fJ-. The main difference between the Watson model 
and that studied in this section is that we now have a mechanism for the 
enhancement process; the enhancement factor K [see equation (2.13)] now 
no longer has to be put in "by hand." Enhancement occurs, for small 0, 
because a single-atom signal is superpo/arized. This means that, to extend 
a concept of Dirac, the signal has the same polarization both above and 
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below the "sea" of zero-point radiation. On transmission through a linear 
polarizer the original intensity of f32 is reduced to f32 cos2 e , in accordance 
with Malus' law, but, referring to Figure 2, this is enhanced by an intensity 
of ~ coming from Eo. We do not expect that the phenomenon of enhancement 
will easily be directly observed, since it always disappears after carrying 
out an ensemble average over A. A direct observation of enhancement would 
require us to prepare an ensemble of signals all with the same A, which 
means in the same polarization state. Referring again to Figure 2, it is 
evident that, according to our model of enhancement, the zero-point radi
ation field is precisely what prevents us from preparing such a pure polariz
ation state. 

It should be noted that, according to the interpretation now proposed 
for A in the Watson model, the red and green signals may be considered 
to be perfectly correlated, that is, AR = Ao. More generally, we should 
suppose that the set of pairs is described by a probability density P(AR' Ao) 
and, indeed, if the apertures of the light-collecting systems are finite, such 
a description would be necessary, leading to a classical calculation of the 
depolarization factor, denoted e\sewhere(29) by F. The assumption of perfect 
correlation is appropriate in the limit of zero aperture. For a 0-1-0 
cascade(13·22-24) we may then put AR = Ao. For the 1-1-0 cascade(20.2J) the 
corresponding assumption would be to put AR = 7r/2 - Ao which would 
simply result in r( 8 A - 8s) of Table 1 being replaced by r( 7r /2 - 8 A + 8s ). 

We may now make a similar assumption for the model of stochastic 
optics. Putting A R = (II', IjI, X), we assume that Ao = A R for the 0-1-0 cascade 
and Ao = (7r/2 - 11', IjI, X) for the 1-1-0 cascade. The relation between the 
counting rates for the two types of cascade is then the same as above, and 
it is necessary to carry out the calculation only for the 0-1-0 case. The 
substitution of equations (3.7) and (3.11) in equations (2.3) and (2.4) is a 
tedious but straightforward matter. (43) The threshold parameter 'Y is chosen 
so that the singles rate is reduced by a factor of exactly one half with the 
polarizer in place, that is, 

f p(A)P(8, A) dA = ~P(oo, A) (3.12) 

Table 2 gives the results for the value 1.511 of parameter f3. In the 
range 1.511 < f3 < 1.518, the values of r( 8 A - 8B ) come out just as close to 
the quantum values as they did in the Watson model. Since further 
refinements of this model are possible, I think it is best at this stage to draw 
attention to two qualitative features shared by Tables 1 and 2: (1) the values 
of r( 7r/8) - r(37r/8) always exceed 0.25, thereby violating the Clauser
Freedman(29) inequality, and showing again that enhancement can result 
in a violation of any homogeneous Bell-type inequalities; (2) the value of 
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Table 2. Values of the Angular 
Correlation Function in the 

Perfect Polarizer Casea 

8 r(8) rQ(8) 

0 0.499 0.500 
71"/8 0.417 0.427 
71"/4 0.241 0.250 

371"/8 0.093 0.073 
71"/2 0.039 0.000 

a The parameter f3 has the value \.511 and the 
threshold y is chosen so that the linear 
polarizer reduces the singles rate by exactly 
one half; rQ{ 8) is the quantum value. 
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r( n"/2) is substantially greater than it is in quantum optics. In my opinion 
both experimental and theoretical work should now be concentrated on the 
latter of these two features. For too long now our efforts have been concen
trated on discriminating between quantum theory and a rather narrow family 
of realist models which satisfy homogeneous Bell inequalities. For a more 
general discussion of the distinction between homogeneous and 
inhomogeneous Bell inequalities, reference should be made to the article 
of Emilio Santos in this book. 

We shall also see in the following sections that the introduction of 
specific new local realist models, such as those based on the ideas of 
stochastic optics or of wave-particle duality, suggests further tests of quan
tum optics. These new tests may in some cases be easier to perform than 
the optical-cascade tests. We can therefore justifiably claim that the program 
of investigation opened up by the EPR argument is now becoming more 
and more relevant to the rest of Physics. 

4. The Beam Splitter in Stochastic Optics 

I should explain why the present section is included in a book devoted 
to the EPR argument. As indicated at the end of the previous section, optical 
experiments other than those using linear polarizers and atomic cascades 
can be used to discriminate, for example, between stochastic optics and 
wave-particle duality. However, semitransparent mirrors and other types of 
beam splitter playa much more central role than this in respect of the EPR 
argument. It has become traditional to claim that all semiclassical radiation 
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theories must give counting statistics, in the two channels of a beam splitter, 
which satisfy certain inequalities. (33,49-51) More recently(52) Chubarov and 
Nikolayev have discovered that, according to quantum optics, a pair of 
independent "photons" from a monochromatic source, after passing 
through a beam splitter, have polarizations which are correlated (see Figure 
3) in exactly the same way as a pair of "photons" from an atomic cascade. 
This means that, potentially at least, the beam splitter is a simpler EPR 
source than an atomic cascade. It also means, as Chubarov and Nikolayev 
point out, that the description of the beam splitter, according to quantum 
optics, is in contradiction with all local realist theories. Of course, both 
stochastic optics and realist theories based on wave-particle duality fall in 
this latter category. That is why we have to study the beam splitter. 

I propose to confine myself in this chapter to stochastic optics, so the 
first task is to show why the traditional inequalities(33,49-51) of semiclassical 
radiation theory do not apply in this case. Indeed, in view of the experimental 
evidence, (49,51) we must show how a theory based on a purely wave descrip
tion of light can account for a strong particle-like anticorrelation between 
the counts in the two channels of a beam splitter. 

To see how this can occur, we refer again to Figure 2. The stochastic 
addition of E and Eo gives, in both the transmitted and reflected channels, 
a signal whose intensity, according to equation (3.4), lies between ~(f3 - 1)2 
and ~(f3 + 1)2, where 13 2, as explained in the previous section, is the signal-to
noise ratio. The actual values of these intensities depend on the phases of 
the Ao-variables relative to the A-variables, but for all such phases the sum 
of these intensities is 13 2 + 1. Now in both channels the detectors have a 

Polarizer, 6A 

E 

==1==::::1 Polarizer, 6S 

Figure 3. Thought experiment of Chubarov and Nikolayev showing the beam splitter as a 
source of EPR·correlated photons. As in Figure 2, the zero· point component £0 produces the 
correlation. 
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threshold intensity of 'Y. This means that, if 'Y > !({32 + 1), at most one 
detector can be activated by each single-atom signal. In order that activations 
do occur for some values of A and AO, we must have 'Y < !({3 + If. It 
follows that we will obtain the same anticorrelation statistics as in quantum 
optics, provided that 

(4.1) 

With a purely wave theory, such as we are considering, there is no 
difficulty in interpreting wave-recombination experiments of the Janossy
Naray type. (53.51) Here reference should be made to Figure 4, where it will 
be seen that the second beam splitter recombines the signals Et and Er from 
the first beam splitter, giving the transmitted signal 

(4.2) 

I being the difference between the two path-lengths. Now on substituting 
for Et and Er from equation (3.4), we find that, for I = 0, E: = E, while for 
1= 'TTc/ W, E: = Eo. This means that, if the path lengths differ by an integral 
number of half-wavelengths, the signal E and the noise Eo are perfectly 
reproduced in the two outgoing channels. Since the threshold is above the 
zero-point level, the fringe visibility, as defined by Grangier et al., (51) is 
100%, which is in good agreement with the 98.5% reported by these authors. 
It should be especially noted that the outcome of this experiment is, 

"'\'" ". 
E 

EO 

"""",!351 

EI" 

Et 

E' I" 

Figure 4. A typical recombination experiment of Janossy- Naray type to illustrate single-photon 
interference. 
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according to our analysis, the same even if it is carried out in a "delayed 
choice" manner, with the second beam splitter inserted after the signals Et 

and Er have left the first beam splitter. This is one prediction in agreement 
with orthodox quantum theory, but in disagreement with certain "alternative 
interpretations,,(54) of that theory. The property that, for most values of '\0, 

one of the two signals Et and Er is subthreshold, but nevertheless retains 
its phase coherence so that the two signals interfere on recombination, may 
be considered a form of latent order. (55) 

Although stochastic optics explains qualitatively the phenomena gen
erally considered to exhibit most clearly the wave-particle-duality nature 
of light, the actual coincidence rates predicted are not identical with quan
tum optics. We saw in the previous section that, to explain the atomic
cascade data, the parameter f3 may lie in the range 1.511 < f3 < 1.518. Also, 
for a given f3, the threshold parameter 'Y was fixed by requiring that the 
singles rate with a polarizer in place is exactly one half of its value without 
the polarizer. While f3 is certainly a property of the signal alone, and must 
therefore be given the same value for both analyzing devices, we could 
plausibly suppose that 'Y takes a different value for different devices. The 
counting rate in one channel of the beam splitter is given(43) by 

(4.3) 

and if we put it equal to ~(f32 - 'Y )gw, this determines 'Y in terms of f3. A 
calculation(43) then shows that the 'Y so obtained for the beam splitter differs 
by no more than five percent from the value obtained for the linear polarizer 
in the previous section. With the values of 'Y corresponding to the f3 at the 
two ends of the above range, one obtains 

0< f32 + 1 - 2'Y < 0.28 (4.4) 

This means that the second inequality (4.1) is not necessarily satisfied. There 
is a small range of values of '\0 for which the beam splitter gives signals of 
around the same intensity in the two channels, resulting in a nonzero 
activation probability in both channels. Stochastic optics predicts that the 
photon can be split. 

The above conclusion certainly seems shocking, in that it contradicts 
what is probably the most elementary assumption of quantum optics. This 
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is therefore an appropriate point for me to say again that the locality 
argument of Einstein, Podolsky, and Rosen is a basis not for reinterpreting, 
but for superseding, quantum theory. Realist models incorporating the 
locality property will inevitably lead to predictions different from those of 
quantum theory, and that is the proper basis for the design of experimental 
tests. If we look at the best existing data (5I) we find (56.57) that they are not 
good enough to discriminate between stochastic optics and quantum optics. 
This is because there is always a background of accidental coincidences 
between the two channels of a beam splitter, arising from the possibility 
that two atoms emit their signals within the same time window of w. Hence 
the counting statistics must be sufficient to separate the true "photon
splitting" events given by equation (4.4) from such an "accidental" back
ground. 

5. Future Experiments 

In the previous two sections we have established that in respect both 
of polarization correlation and of beam-splitter counting rates, the conven
tional wisdom is at fault. Neither a violation of a homogeneous Bell 
inequality nor a violation of Clauser's (49) beam-splitter inequality is evidence 
of nonlocality in nature. Nevertheless, given a slightly improved method 
of statistical analysis, both these techniques can be used to obtain valuable 
evidence about the nature of the light. Data from polarization correlation 
counts should concentrate on the value of r( 7T'/2) rather than on that of 
r( 7T'/8) - r(37T'/8), while data from beam splitters should be concentrated 
on source insensities for which Nw« 1, where N is the rate at which signals 
are emitted. 

The improvement required in the quality of data has been estimated 
in both these areas(30.57) and it is almost certainly achievable. But the aim 
of such experiments should be clearly defined. Having abandoned the 
immature idea that all classical or local realist theories must be deterministic, 
it should be clear that the program of testing the whole family of local 
realist theories is impossibly overambitious. Instead we should look at 
stochastic realist ralternatives to quantum theory, and see where they differ 
from quantum theory in their predictions. If they agree for a wide range of 
phenomena and disagree in a region not yet investigated, then we know 
where we should look. 

The proposal of Garuccio and Selleri (58) leading to the design of the 
new Stirling experiments(59) falls entirely within the above experimental 
philosophy. It considers a class of models, based on the de Broglie version 
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of wave-particle duality, which agrees with quantum optics over a very wide 
range of phenomena-what the authors call "single-photon physics," and 
which also fits the hitherto existing atomic-cascade data. Such models 
predict rather large departures from quantum optics if, in Figure 1, a third 
polarizer is added between the polarizer and detector at A. The experimental 
results so far obtained do not yet definitely rule out Garuccio-Selleri-type 
models, but they do indicate this as a likely outcome. 

The analysis of the Stirling experiments according to stochastic optics 
is rather different from the Garuccio-Selleri analysis. As we saw in the 
previous section, stochastic optics does not necessarily give the same predic
tions as quantum optics for single-photon processes, and it is not a trivial 
matter to devise experiments which discriminate between these predictions. 
According to quantum optics, a second polarizer reduces the counting rate 
by a factor of cos2 e, where e is the angle between the polarizers. This is 
Malus' law. Stochastic optics gives, for "single-photon" signals, small but, 
in principle, measurable deviations(43) from Malus' law. But there seems to 
be no previous experimental evidence on this point. The Stirling experiment 
may well be the first to check the predictions of Malus' law for single-atom 
signals. Here then is another field of investigation suggested by stochastic 
optics. It could be that, with two polarizers at A, just as much will be 
learned with no polarizer at all at B (see Figure 1), using the detection at 
B only to trigger the opening of the window w at A. Such an experiment 
would be similar in scope to the beam-splitter experiment of Grangier, 
Roger, and Aspect(51) discussed in the previous section. 

The other area which, I would suggest, has been badly neglected is the 
study of the effects of using real instead of ideal polarizers. It has been 
considered adequate(29) to characterize linear polarizers, such as piles of 
plates and calcite crystals, by the two quantities eM and em, which give the 
transmission rates when light polarized parallel and perpendicular to the 
polarizer's axis is incident on it. For classical light, whose polarization is 
described by the Stokes parameters (see Section 3), we need(60) twice as 
many polarizer parameters as this. It is particularly important in this connec
tion that the Holt-Pipkin(20) experiment be repeated. This, the only atomic
cascade experiment to use calcite polarizers (em = 10-4), was also the only 
one to find significant deviations from the quantum predictions. The best 
pile-of-plates polarizers have em = 0.02, which means that the amplitude of 
the perpendicular component is fifteen percent of the parallel. According 
to stochastic optics, this certainly makes an important difference to Malus' 
law investigations. (43) It may well be that the biggest deviations of stochastic 
optics from the quantum prediction for cascade coincidences are for near
ideal polarizers. This has been a feature of most ad hoc enhancement 
models; the original one of Clauser and Horne(12) breaks down altogether 
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for calcite polarizers, while that of Marshall, Santos, and Selleri(61) gives a 
deviation about twice as big for calcite as for piles of plates. 

6. Conclusions 

This chapter, taken in conjunction with that of S. Pascazio, should 
convince anyone that concrete local realist models of the electromagnetic 
field can generate an interesting and growing research program. Although 
its motivation is largely philosophical, such a program shows us how to 
pose new problems and reexamine old ones in traditional areas of Physics 
such as optics. 

If the stochastic optics approach leads us to a more profound under
standing of the electromagnetic interaction, there will be a kind of historical 
justice done. As I remarked in the first section of this chapter, the most 
serious "paradox" (I prefer to say inconsistency) of the quantum theory 
has its origin in quantum optics-in the quantization of the electromagnetic 
field. Neither Einstein, (19) the originator of this quantization, nor Dirac, (62) 
who gave us its modern formalism, considered it fully satisfactory, especially 
as its nonlocal features became more apparent. Furthermore, it now begins 
to look as if some of the earliest opponents were rejecting field quantization 
precisely on the grounds of what we now recognize as its nonlocality. I 
referred in the introduction to the criticisms of Planck(17) which led him to 
introduce the zero-point field, an idea also developed by Nernst. (63) When 
Einstein first introduced Bose statistics of "photons" he was criticized by 
Ehrenfest, and Einstein's reply to this criticism was an admission that the 
interaction between "photons," causing them to satisfy Bose statistics, must 
be "very mysterious ... (64) We now know how mysterious! 

Viewed in this way, the Einstein-Podolsky-Rosen argument, and Ein
stein's precise statement of the Principle of Local Action, show Einstein's 
rather late conversion to the school of Planck, Nernst, and Ehrenfest. 
Because the argument of the EPR article was posed for particles, it was 
natural that its rediscovery by Bell should also be so posed. It took another 
ten years for the argument to be extended, by Clauser and Horne, to cover 
both particles and waves, but their treatment was flawed by an over-hasty 
dismissal of the enhancement possibility. In this chapter I have tried to 
show that Einstein was correct in his championship of locality. But also I 
have tried to show that a full development of the EPR argument, in the 
light of recent experimental evidence, leads us to conclude that those who 
criticized Einstein's quantum theory during its earliest period were also 
correct. Far from being an EPR-type particle, the "photon" is not a particle 
at all. 
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Explicit Calculations with a 
Hidden- Variable Spin Model 

A. O. BARUT 

1. Introduction 

The basic problem we study here is whether the two-spin correlation experi
ments together with the theoretical Bell inequalities have already excluded 
the possibility of introducing hidden variables into quantum theory, as 
is often concluded. This question is answered negatively by explicitly 
reproducing the quantum-mechanical two-spin correlation function by 
a classical model, where the spin is associated with a classical dipole
moment vector. We then study the behavior of single events in classical and 
quantum models and conclude that the detector efficiency may be a funda
mental limitation rather than just a technical problem to be overcome by 
better techniques. We further show that the assumptions underlying the 
derivation of Bell inequalities involve statements about single events 
which are consistent with neither the classical nor quantum models. It is 
important therefore to work with explicit physical situations rather than 
with abstract assumptions. 

2. Classical Spin 

In a nonrelativistic domain, by a classical spin we mean a dynamical 
variable S which satisfies in the presence of a magnetic field B the equation 
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dS 
-= aSx B 
dt 

A. O. Barut 

(1) 

where a is a constant. The set of dynamical variables of the particle (x, p), 
namely the phase space, is augmented now by the vector S. 

The first point to emphasize, which is perhaps not generally realized, 
is that the conjugate variable to a spin component is another spin component 
even in classical theory. To see this, we note first that the magnitude of 
spin vectors S is constant even in an inhomogeneous field, because 

dS d 2 
2S . - = - (S ) = 0 

dt dt 

using equations (1). This leaves us with two independent spin components 
only, and not three. Since equations (1) are of first order, we expect that 
the phase space is two-dimensional. Indeed, we have a two-dimensional 
symplectic or canonical system, and a pair of canonical dynamical variables 
can be chosen in at least three different ways. We require from a set of 

Table 1. Three Choices of the Conjugate Pair of Variables and 
Corresponding Poisson Brackets 

Conjugate 
pair Hamiltonian and Poisson brackets 

H = aJ S2 - S~(BI cos </J + B2 sin </J) + aS3B3 

( af ag af ag ) 
S3, </J {J. g} = aS3 a</J - a</J aS3 

{S3, </J} = 1 

H = a(SIBI + S2B2 + JS2 - sf - S~B3) 

{J.g}=JS2-Sf-s~(af!.!.- af!.!.) 
aSI aS2 aS2 aSI 

{SI' S2} = (S2 - sf - SDI/2 

H = as(sin 9 cos !pBI + sin 9 sin !PB2 + cos 9B3) 

1 (af ag af ag) 
9, !p {J. g} = S sin 9 a9 alP - alP a9 

1 
{9, !p} = -S . 9 

Sin 
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canonical conjugate variables (p, q) that both the Poisson bracket and 
Hamilton's equations are satisfied: 

Ii = aH/aq = {H,p} and q = -aH/ap = {H, q} 

For the Hamiltonian H = as . B, Table 1 shows the three choices of the 
conjugate pair of variables and the corresponding Poisson brackets. 

The whole phase space of spin is thus the homogeneous space S2, the 
sphere. The essential point is that even for classical spin there is only one 
coordinate degree of freedom (one spin component or one angle) and one 
conjugate generalized momentum. Thus in the canonical formalism we can 
specify only one component of spin at a time for a given magnitude S 
of canonically conjugate pairs so that although, for example, SI and S2 
do not "commute" (nonzero Poisson bracket) they could be, classically, 
simultaneously measured at a given time. 

With this spin model, first the single spin measurement will be discussed 
and then the two-spin correlation experiment. 

3. The Stern-Gerlach Experiment with Classical Spins 

This is the experiment par excellence, the prototype of a quantum 
measurement, in which the eigenstates of an observable are separated, the 
reduction of the wave packet takes place, and the system is in an eigenstate 
after the measurement. 

The naive classical theory of the Stern-Gerlach experiment proceeds 
as follows. If a classical spin or magnetic dipole moment fJ. = gs enters 
the inhomogeneous magnetic field, the deflection of the particle in the 
z-direction of the magnetic field after a length I is (I) 

1 J.tz aBz [2 
S = - - - - cos e = So cos e 

6 m az v2 
(2) 

where e is the angle between fJ. and B (in the z direction). The number n 
of particles, in a repeated experiment, that arrives at S can be found from 

dn dn de 

ds de ds 

Now from equation (2), ds/ de = -So sin e; dn/ de depends on the initial 
distribution of spin directions. If we assume that they are uniformly dis
tributed over the sphere, we have n( e) de = no sin e de or dn/ de = no cos e, 
hence 

dn no cos e no s 
-=----=-
ds So sin e So (S~_S2)1/2 
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or, by integration, 

So we would expect a broad, almost uniform distribution (Figure O. 
The deflections of spin in the inhomogeneous fringe fields have been 
neglected. If the distribution of 8 at the entrance to the Stern-Gerlach 
magnet is not like n( 8) = no sin 8, but a function which favors the two poles 
(8 = 0, 8 = 7T), due to the magnetic field in the z-direction, then we would 
get a distribution peaked at the two values s = ±so. Quantum mechanics 
assumes that the spin components in equation (1) take only two values, 
hence the deflection has two values s = ±so. (The experimentally observed 
broad distributions can be explained by the thermal distribution of 
velocities.) 

The theory of the Stern-Gerlach experiment is actually much more 
complicated both classically and quantum mechanically. This is because, 
in an inhomogeneous field, the equations of orbit and of spin are nonlinearly 
coupled. The full phase space consists now of (x, p, S1, S2), for example, 
and we have the equations (nonrelativistically and for a neutral magnetic 
dipole moment) 

1 
x=-p, 

m 
Ii = JL x B(x) (3) 

The quantum-mechanical equations are the same except that JL is replaced 
by J.1-0U', where U' are the noncommuting Pauli matrices. 

Furthermore, because V . B = 0, B cannot just be chosen in the z
direction but it must have at least another component, say Bx. Hence the 
Stern-Gerlach instrument is not a pure device to measure J.1-z. for example. 
Sometimes one considers a large constant field Bo in the z-direction, and 
an inhomogeneous field B(x, z) satisfying the condition div B = 0, and one 
averages out over the x-direction, for example, in order to have approxi
mately a single equation 

Figure 1. Number of particles n(s) 
with a deflection s in the z-direction. 

n 

(4) 

s 
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for the measurement of J.Lz. All these imply that we do not have a simple 
and straightforward device such that if a polarized particle enters it, it will 
surely be deflected in the z-direction and its spin will be unchanged. It may 
also be deflected otherwise and its spin might get rotated along the way, 
both classically and quantum mechanically. 

These considerations will be used to put into question one of the basic 
so-called natural assumptions underlying Bell inequalities, namely, that 
every single event that enters the Stern-Gerlach detector will be detected, 
and it has a definite outcome, either + 1 or -1. In fact, it may not be detected 
at all, ending up at the walls of the magnet, for example, or it may be 
misdirected even with some small probability; but we can only say that, on 
the average, among all detected events, half have the value +1, the other 
half -1. 

There is another interesting effect which can cause a change in the 
distribution of spin direction which we assumed to be isotropic, besides 
the fringe fields. If some nonlinear, radiative-reaction type of terms, are 
added to equation (1), then 

dS '" dt = as x B + A[S - (S' S)S] 

Then it turns out(2,3) that for B in the z-direction, the ±z-directions are 
attractors so that all initial spins in the upper hemisphere end up after a 
long time in the direction of the north pole, and all spins in the lower 
hemisphere end up in the direction of the south pole. Although the classical 
value of A is small, hence this process is very slow, this model shows nicely 
how an apparent quantization of spin or change of the isotropic angular 
distribution might come about. 

4. On the Quantum Theory of the Stern-Gerlach Experiment 

The ideal textbook Stern-Gerlach experiment is discussed in terms of 
the two equations 

. 1 
z =-Pz 

m 
and 

. aB 
pz = - J.L --a; O'z (5) 

only. And since O'z has two eigenvalues and eigenvectors, a single polarized 
spin (in the z-direction) will be surely deflected into the + z or - z direction 
(with probability one) and an unpolarized spin beam, after repeated experi
ments, splits into two parts each with probability ~. It is also tacitly assumed 
in many theoretical discussions that for each single event there is a definite 
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outcome, + 1 or -1. In other words, there are no undetected events, or false 
events (spin-up being deflected once in a while to the wrong side, and vice 
versa). Of course, we could have undetected and false events, yet, after 
repeated counts, still a splitting each with probability t on the average. We 
note that quantum theory does not make statements about individual events, 
but only about probabilities in repeated events. 

Now as in the classical case, the real equations for the Stern-Gerlach 
experiment are 

. 1 
x=-p, 

m 
Ii = -JLoa • VB, a=axB (6) 

Again, because div B = 0, the magnetic field cannot be purely in the z
direction. There are three sets of coupled dynamical variables x, p, and a 
which lead to a highly complicated nonlinear problem, even for the simplest 
possible B-field geometry. It can be shown that the propagator for this 
problem is not diagonal in spin variables, so that there is a probability of 
a spin-up to end in the spin-down direction. (4) If one puts a large constant 
magnetic field Bo in the z-direction and averages over the other precessions, 
one could perhaps say approximately that we measure the z-component of 
the magnetic moment, but of course only on the average, and not for each 
individual event. 

It is actually sufficient in quantum theory to make only probability 
statements and avoid making mental pictures about individual events. This 
is in fact what quantum theory tells us to do. In so doing, we also avoid 
the difficulties associated with the reduction of the wave packet. The difficulty 
comes if one says that an individual state which is a superposition of 
eigenstates will be found after the measurement in an eigenstate with 
probability one. Instead we should say that the measurement produces 
eigenstates only on the average; the individual state is as undetermined 
after the measurement as before the measurement. The measurement can 
only tell us how many eigenstates there are, and with what probabilities a 
state is associated. 

Another way of putting this discussion is to question the existence of 
an ideal measuring device which monitors every incoming particle and 
produces a definite final result for each particle. 

The detection efficiency TJ of a measuring device many not be just a 
temporary technical limitation eventually to be overcome by a perfect 
detector, but of a more fundamental nature. In addition, we have the 
quantum or probabilistic nature of the source of the particles which we 
assume always prepares the right initial states (e.g., always a singlet state). 

If we remain within quantum theory and work with repeated events 
and probabilities, there is no problem; all the indeterminacies of individual 
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events go into the probabilities_ However, the difficulties arise when we 
come to the problem of hidden variables, or try to show the impossibility 
of introducing hidden variables, or reality of states_ In so doing some 
assumptions are introduced about single events which seem natural, but 
actually contradict quantum theory, such as the assumption underlying Bell 
inequalities that each individual spin event has a definite outcome + 1 or 
-1 with efficiency one_ We now turn to a discussion of these problems_ 

5. Two-Spin Correlation Experiments 

Again we shall compare calculations with both classical and quantum 
spins. In both cases we have two observables A and B: 

A =SI·a and B = S2· b 

where a and b are the two directions of the polarizers, SI and S2 two 
(correlated) spins, and we are interested in the correlation function 

(7) 

In the quantum case SI = ~(Tl' S2 = ~(T2' and (. > means the quantum
mechanical expectation value in a state 1/1. For the singlet state II/Is> of two 
spins, in particular, (A> = (B) = 0, and equation (7) simplifies to 
E(a, b) singlet = (I/Islul • aU2 . hll/l,>, which has the well-known value 

E(a, b )singlet = -a· h (8) 

Classically, SI and S2 are the spin vectors and ( . > means an expectation
value integral over all angles with measure (1/ 41T) J d'P sin 6 d6_ We have 
SI> say, in the direction (6, 'P) and S2 in the direction (6 - v, 'P + u) with 
v and u fixed. Thus the two spins are correlated. We take the component 
of SI along a, and that of S2 along b. We repeat the experiment, assuming 
that SI is uniformly distributed over the sphere, and evaluate the expectation 
values in equation (7)- Clearly (A> = (B) = 0, and we find(5) 

E(a, b) = cos v cos(6 - u) (9) 

with cos 6 = a· h. 
For antiparallel spins, SI = -S2, U = 0, and v = 1T; hence we have(6) 

E (a, h) antiparallei = - a -h (10) 
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the same result as equation (8). For parallel spins, U = 0, v = 0, and 
E (a, b) = a· G, while for two perpendicular spins E (a, b) = 0. (In these 
calculations we have assumed vectors a and G to be in the equatorial plane.) 

The final correlation function E (a, b) measured in repeated experi
ments is thus exactly the same in quantum theory and for classical correlated 
spin vectors. There is no problem of reproducing this measured 
correlation, (7) which agrees with quantum mechanics, by a hidden-variable 
spin model. The hidden variables A here are the angles (8, cp) of the spin 
vector S. But although the finally evaluated correlation functions are the 
same, each individual event looks apparently quite different in the classical 
and in the quantum case. The behavior of individual events that we shall 
discuss in the next section is really the key to the entire controversial subject 
of hidden variables versus quantum mechanics. It goes beyond quantum 
mechanics, because quantum formalism cannot make statements about 
individual events. 

6. Individual Events 

In the analysis with hidden variables A of the correlation function 
E (a, G), the following two main assumptions are made: (8) 

1. E(a, b) = f peA) dA A(a, A)R(b, A) (11) 

where peA) is a measure in the A-space, while A(a, A) and R(b, A) 
are the two densities for the observables A and B for each setting 
of A. Equation (11) is a form of "locality," and for our present 
purpose we do not need to investigate the meaning of this concept 
here, as it has been extensively analyzed in the literature. 

2. The second assumption is that A and R have the values ±1, or ±~ 
for spins, or are bounded by 1 in absolute value. 

With these assumptions (or with slight modifications of them), it is 
then possible to derive the so-called Bell inequalities, or that the correlation 
function (11) cannot be completely identical to the quantum correlation 
functions, hence the class of hidden-variable theories satisfying assumptions 
(1) and (2) cannot reproduce quantum theory. 

Since we have already reproduced the quantum result by a hidden
variable model, we must see how it fares with the above assumptions. First, 
it is convenient to introduce the projection operators (5-6) 

(12) 
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and their expectation values 

(13) 

as well as the correlations 

(i,j = ±) (14) 

in both the classical and quantum cases. We then have the identity 

In the quantum case, P: = !( 1 ± (7\ • a) are the usual spin projection 
operators so that P++, P __ , and so on, have the meaning of both spin 
components (relative to a and G, respectively) being measured up, both 
down, and so on. 

In the classical case, it can be seen that the projector operators P: 
project the spin vector S into the upper or lower hemisphere relative to the 
vector a pointing to the north pole. This gives us a natural discretization 
of the continuous classical spins. 

In terms of these probabilities Pi, Pi) the two assumptions above are 
given by 

(16) 

i,j = ± 

For the singlet spin state we also have explicitly 

Pi) (a, b) = ~ (1 - a 0 b) for ij = ++,--
(17) 

=Hl+a o b) for ij = +-,-+ 

Now the general expression (7) with (A) = (B) = 0 always satisfies the 
"locality" assumption (11), as its form shows. For our classical spin vectors 
it can be written as 

E(a, b) = ~ f dip dO sin OA.(a, A )B(b, A) (18) 
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with(6) 

A( a, A) == v'3 cos J.L and B(b, A) == -v'3 cos A 

Here J.L and A are the angles between SI and a, and S2 and b, respectively. 
Thus, clearly the second assumption that A and B are bounded in absolute 
value by 1 is not satisfied. Yet the integrated function E (a, b) is the correct 
quantum-mechanical correlation function. For equations (16) we find 

and 

pj(a) == _1_ f dip de sin e ~(1 ± v'3 cos J.L) == ~ 
41T 

1 f . pj(b) == - dip de SIO e 4(1 ± v'3 cos A) == 4 
41T 

1 f . Pij( a, b) == - dip de SIO e j(1 ± v'3 cos J.L)( 1 ± v'3 cos A) 
41T 

(19) 

(20) 

Again the integrated results are as in equations (16) and (17) but the 
densities pj (a, A) and pj (b, A) are not bounded by one, hence not prob
abilities. 

The two-spin correlation experiment is often visualized as a black box 
with two outcomes on both sides, two light bulbs indicating the +, -
outcomes on both sides (Figure 2). Thus one measures the coincidence ++, 
+-, -+, -- and evaluates equation (15). In this picture, each classical 
spin event would not light one and only one bulb on each side, but would 
contribute to all four bulbs, in general some bright some dim. Thus what 
we are testing here is not just the final correlations (they are the same), but 
whether an individual event lights up one lamp or two, three or four. We 
have assumed a discrete set of single events and try to model this discreteness 
by a hidden variable. 

Let us continue to do this. The projection operators (12) introduced a 
natural discreteness to the classical spin. We denote by n; the upper 

Figure 2. Two·spin coincidences with discrete ± outcomes indicated by light bulbs. 
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hemisphere with a being the north pole and n~ the lower hemisphere. 
Similarly for n~. If SI E n; we call the outcome +1, and if SI E n~ we 
call the outcome -1. We have further to project SI on a so that 81 • a = cos}J-. 
We then obtain a discrete model with outcomes ±1 subject to the following 
rules: 

pJa) = N f dA cos }J-X~, i = ±1 (21) 

where X~ is the characteristic function of the hemisphere n:. After integra
tion with respect to 8, this can be written as 

(22) 

and gives correctly p±( a) = !. 
For the joint probabilities we must count the events in the intersection 

of the hemispheres n~ n n~, and with the projection factor cOS}J-. This 
gives the rule 

(23) 

For example, 

In this version of the model we have reproduced the discrete outcomes, but 
the joint probability (23) does not quite fit the assumption (16), which we 
shall critically reexamine at the end. 

We remark that the factodlcos( rp - rpa)1 arises because our observables 
A and B are the components of spins in the directions a and b. There are 
two other observables A' and B', with discrete ±1 outcomes, 

A' = sign(SI . a) and B' = sign(S2 . b) 

which measure just whether spins point into the upper or lower hemispheres 
but do not take into account the length of their projections. For these the 
correlation function is quite different. (6) 

We give a third version of the hidden-variable spin model, which 
satisfies both the assumptions (16); however, this model assumes the detector 
efficiency in a fundamental way. The factor ilcos(rp - rpa)1 in equation (23) 
will be related to the detector efficiency. (9) 
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Let P±( a, A) be the probability densities as before, but introduce another 
density Po( a, A) measuring the probability that the event is not recorded. 
Similarly, we will have in addition to P++, P+_, P_+, P __ the probabilities 
P+o, P-o, Po,+, po.- for single counts, and PO~ for no count at all. We note 
that the single counts are undoubtedly present in the actual experiments. 
It is sufficient to consider the equatorial plane, hence one angle cP for the 
hidden variable A. The model is then formulated as follows: 

p_(a, cp) = M(Xa -1) cos(cp - CPa) 

Po( a, cp) = 1 - p+ - p_ 
(24) 

Po( b, cp) = 1 - N 

Here, Xa is the characteristic function on the circle such that 

Xa = 1, 

= 0, otherwise 

The measure is dA = (l/21T) dcp. The equation does not look symmetric, 
but will be symmetrized at the end. 

We can now calculate all the integrated probabilities and obtain 

1 
P±(a) = - M, 

1T 

and also the joint probabilities 

2 
po(a) = 1 - - M 

1T 

Po(b) = 1 - N 

1 
p++(a, b) = p __ (a, b) = - MN[1 - cos(a - b)] 

21T 

1 
p+_(a, b) = p_+(a, b) = - MN[1 + cos(a - b)] 

21T 

(25) 
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1 
p+o(a, b) = p-o(a, b) = - M(1- N) (26) 

7r 

1 1 
Po+ (a, b) = Po-(a, b) = - N - - M N 

2 7r 

2 
Poo( a, b) = 1 - N - - M(1 - N) 

7r 

On the event space of measured coincidences, we define the reduced joint 
probabilities 

-c' b)- pij(a,b) _pij(a,b) 
P a - -
Y' P++ + P+_ + P_+ + p__ C 

(27) 

where C is the total number of all coincidences. We find C = (2/ 7r) MN, and 

ji;(a) = t ji;(b) =~, i = ± 

pij(a, b) = Hl- a· b) 

= ~(1 + a' b) 

for ij = ++, --

for ij = -+, +-

(28) 

(29) 

as in equation (17). The results (28) and (29) are independent of the 
constants M and N of the model (24). It becomes symmetric, if we choose 
M = ~7rN Further, we have the restriction 0 < N < 2/7r. 

The ratio of coincidences to the sum of total counts is 

_C_= (2/7r)MN __ N_ 

1 - Poo 1 - N - (2/7r)M + (2/7r)MN 2- N 

7r 
for M = - N 

2 

which must be less than 0.47. Or, the ratio of single counts to coincidences 
is greater than 7r - 2 = 1.13. According to these numbers the maximum 
efficiency for a symmetric model is about 64%. Only if the experimental 
efficiency becomes larger than 64% can such a model perhaps be ruled out. 
The efficiency of the present experiments is about 2 or 3 %. (7) Furthermore, 
it is important to measure the single counts as well as the coincidences; 
there seem to be more of them. 

In all three versions of our hidden-variable two-spin correlation model, 
some of the assumptions underlying Bell inequalities are not satisfied: In 
version I, the continuous spin, the assumption IA(a, A)I ~ 1; in version II, 
the "locality"; and finally in version III, the existence of poe a, A)-the 
accounting for detection efficiency. 

The detector efficiency problem has been discussed extensively by other 
authors(1O,!1) as well. 
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7. Conclusions 

When discussing hidden variables in general terms, we have to assign 
them some properties. The assumptions underlying Bell inequalities are not 
as obvious as they appear when compared to our explicit model. They 
assign to the hidden variables partly quantum-mechanical and partly 
classical properties: The spin projections are supposed to have discrete 
values, either + 1 or -1, as in quantum mechanics, but, unlike quantum 
mechanics, they have definite values in every direction simultaneously. 
Furthermore, every single event is assumed to be detected and have a definite 
outcome, while quantum mechanics makes only statements about prob
abilities in repeated experiments. One could require other properties from 
hidden variables. Our purely classical explicit hidden variables for spin 
reproduce exactly quantum spin correlations in three different forms. 
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Symmetric and Asymmetric Models 
for Atomic Cascade Experiments 

1. Introduction 

MIGUEL FERRERO, TREVOR MARSHALL, 

AND EMILIO SANTOS 

It is pointed out elsewhere in this book (see, for example, the chapters of 
Santos and of Marshall) that the evidence from optical tests of the Bell 
inequalities cannot be used to support any claim(I,2) that quantum nonlocal
ity is an experimentally established phenomenon. Such claims have been 
based on some confusion between the two principal types of Bell inequality: 
homogeneous and inhomogeneous. The first type of inequality is satisfied 
only in those local realist theories satisfying some kind of auxiliary 
hypotheses, while the second must be satisfied in all local realist theories. 
This was already clear in the article of Clauser and Home,(3) but it is only 
relatively recently that any serious study has been made of those local realist 
theories which do not satisfy the auxiliary hypotheses. 

2. Experiments with Two Polarizers 

Homogeneous Bell inequalities are the only type which have been 
tested. They relate coincidence rates between events, separated by a space
like interval, in two photomultipliers. There are two different experimental 
procedures, depending on whether the linear polarizers are of the one-

MIGUEL FERRERO • Department of Physics, University of Oviedo, Oviedo, 
Spain. TREVOR MARSHALL AND EMILIO SANTOS • Department of Theoretical 
Physics, University of Cantabria, Santander 39005, Spain. 
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channel (4-7) or two-channel type. (8.9) It is widely believed that the second 
of these gives the most complete test of the Bell inequalities. Indeed the 
article reporting this experiment was entitled" A realization of the Einstein
Podolsky-Rosen-Bohm Gedanken experiment," and it was claimed that its 
result refuted all possible local realist theories. In this experiment the 
quantity 

E(a b) = R++(a, b) + R __ (a, b) - R+_(a, b) - R_+(a, b) (1) 
, R++(a, b) + R __ (a, b) + R+_(a, b) + R_+(a, b) 

was measured. The quantum theoretic value is 

E(a, b) = cos(2a - 2b) (quantum) (2) 

(We are quoting here the value for ideal polarizers.) 
The authors reporting this experiment made what they call the "highly 

reasonable" auxiliary assumption that the set of photon pairs detected is a 
faithful sample of all the pairs emitted. Given this assumption, they proved 
that no local realist theory can satisfy equation (2). They also claimed that 
they had demonstrated the truth of the auxiliary assumption by checking 
that the quantity R++( a, b) + R+_( a, b) is independent of a and b. 

The "reasonableness" of an assumption is not accessible to scientific 
analysis, and we do not discuss it here. It is, however, a simple matter(JO) 
to find a local realist model reproducing all the quantities in the numerator 
and denominator of equation (1) in exact correspondence with their quan
tum values. This means finding peA), P+(a, A), and Q+(b, A), and so on 
such that 

(3) 

(4) 

and so on. The functions achieving this are 

peA) = 1/1T (O~A~1T) (5) 



Symmetric and Asymmetric Models for Atomic Cascade Experiments 449 

(Ia - AI < 1T/4) 

(1T/4 < la - AI < 1T/2) 
(6) 

( ) { ( 1TTJ/2) cos(2b - 2A) 
Q+ b, A = 0 

(Ib - AI < 1T/2) 

(1T/4 < Ib - AI < 1T/2) 
(7) 

(Ia - AI < 1T/4) 

(-rr/4 < la - AI < 1T/2) 
(8) 

{o 
Q_(b,A) = 

(-1TTJ/2) cos(2~ - 2A) 

(Ib - AI < 1T/4) 

(1T/4 < Ib - AI < 1T/2) 
(9) 

The range of integration in equations (3) and (4) is (0, 1T) and all functions 
P and Q are periodic in A with period 1T. In equations (6)-(9) the efficiency 
of both photodetectors is denoted by TJ, and the fact that, for example, 

(10) 

expresses the property of enhancement, which is characteristic of any local 
realist model violating a homogeneous Bell inequality. For a fuller dis
cussion of this point see the chapter of Marshall in this book. 

3. Experiments with More than Two Polarizers 

It has been suggested by Garuccio and Selleri(lI.12) that all local realist 
models of enhancement type, and agreeing with quantum theory in the 
two-polarizer experiment, will necessarily give predictions different from 
quantum theory if a second polarizer or a half-wave plate is put between 
polarizer a and its detector. Their model has been tested experimentally, 
and the results are reported in KJeinpoppen's chapter of this book. 

The conjecture is false and the opposite can be now proved: 

Theorem. If all photon detector efficiencies are smaller than 2/1T, no 
contradiction exists between quantum mechanics and local realistic theories 
in atomic cascade experiments in which any number of one-channel optical 
devices are inserted between the source and each detector. 

Proof. The theorem is proved by constructing a local realist model 
which agrees with quantum mechanics for all such experiments. For the 
sake of simplicity we construct the model assuming ideal behavior for all 
optical devices except detectors. (It is easy to change the model to take 
account of nonideal behavior.) The present model improves slightly a 
previous one.(I3) 
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We assume that the experiment consists of measuring, with two detec
tors, the coincidence rate of photons coming from an atomic source suitably 
excited (e.g., with a laser). Between the source and each detector is 
inserted a system of lenses, sometimes a filter, and any number of additional 
devices. 

We characterize each photon by three parameters (I, cp, 8) which corre
spond, together, to A in Section 2. The parameters I and cp, with - 11"/2 ~ I ~ 
11" /2 and - 11"/4 ~ cp ~ 11"/4, are similar to those used in classical optics for 
the specifications of elliptical polarization, i.e., if an electromagnetic wave 
propagates along the z axis, the electric field has components along x and 
y given by 

Ex = A( t) Re{( cos I cos cp + i sin I sin cp) eiW'} 

(11) 
Ey = A(t) Re{(sin I cos cp - i cos I sin cp) eiW'} 

where A(t) is a slowly varying function of time. We assume perfect correla
tion in the photon pair so that both photons have identical values of I and 
cpo The photons emitted by the source are assumed to have a distribution 
in (I, cp) proportional to cos 2cp. Therefore, the function p(A) of Section 2 
becomes now such that 

f 1 f-rr/4 f-rr/2 
p(A) dA -+ - cos 2cp dcp dl 

11" --rr/4 --rr/2 

(12) 

The parameter 8 is assumed to have five possible values: 8 = 1 and 8 = 2 
correspond to the two photons of a correlated pair before crossing a 
polarizer. These values are associated at random in such a way that half 
the time 8 = 1 (8 = 2) corresponds to the left (right) photon of the pair, 
and vice versa the other half. On the other hand, when a photon crosses a 

Table 1. Change of the Three Parameters and Transmission 
Probability of Photons Arriving at a Polarizer at Angle a 

Incoming Outgoing Transmission probability 

I, 'P, S = 1 a, 0, S = 3 1 ifll-al<rr/4 
0 ifll- al > rr/4 

I, 'P, S = 2 a,O, S = 4 cos 2(/ - a) ifll- al < rr/4 
a,O, S = 5 1 + cos 2(/ - a) ifll- al > rr/4 

I, 'P, S ;;. 3 a, 0, same S cos2(/ - a) 
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polarizer we suppose that the value of {j is changed according to Table 1. 
An essential assumption of the model is that photons with {j = 1 or {j = 2 
are less likely to be detected than those with {j = 4. This is related to the 
fact that the no-enhancement hypothesis must be violated, for some A, if 
we want to agree with quantum mechanics. We shall assume that a photon 
with {j "'" 2 is detected with probability 11 (where 11 is the efficiency of the 
detector), a photon with {j = 4 is detected with probability 117T/2, and 
photons with {j = 5 cannot be detected. The transmission probability of the 
photons in a polarizer is also given in Table 1 (we note that all photons 
with {j ~ 3 are linearly polarized). 

In all other instances (i.e., when a photon arrives at a half-wave plate, 
a lens, etc.) it is assumed that the parameter {j does not change, the 
parameters 1 and cp change according to the usual laws of optics, and the 
transmission probability is as predicted by quantum theory. 

It can be realized that this model predicts the same single and coin
cidence counting rates as quantum mechanics in all cases. For instance, 
when a beam of photons arrives at a polarizer for the first time, it consists 
of a mixture of 50% 8 = 1 and 50% {j = 2. From the incoming photons, a 
fraction * emerges with {j = 3, (27T )-1 with {j = 4, and (7T - 2)/47T with 
{j = 5, all linearly polarized. This mixture, which contains on average one 
half of the incoming photons, has a mean detection probability 11. It therefore 
behaves as an ensemble of identical photons because the parameter {j 

remains hidden thereafter. In particular, the final fraction detected will be 
411 if no more absorption exists. On the other hand, the predicted coincidence 
detection probability is [compare with equation (3)] h 2 cos2 (a - b). It is 
noteworthy that any quarter-wave or half-wave plate inserted between the 
source and the polarizer does not produce any change in the mixture (12) 
of polarization parameters. (14) The model is not possible if the photon 
efficiency of any detector is greater than 2/7T = 0.64, because in this case 
photons with {j = 4 would have a detection probability greater than 1. 
(Actual efficiencies are about 0.15.) As mentioned in Section 1, no models 
with enhancement are possible with ideal detectors. 

The model can be easily adapted to include two-channel polarizers, as 
well as beam splitters, giving rise to any number of branching processes, 
provided that no recombination of the beams is performed. However the 
model, being a purely corpuscular one, cannot account for typically wave 
behavior (e.g., interference effects). Therefore, it does not prove the compati
bility between quantum theory and local realism for all conceivable optical 
experiments. We have recently developed purely wave models (stochastic 
optics, see the chapter by Marshall in this book). Such models give, at least 
qualitatively, the same type of behavior at a polarizer or beam splitter as 
the model discussed above, and they describe also the interference effects 
obtained by recombination. 
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4. Symmetric Local Realist Models 

The models discussed in the previous two sections are important as 
counterexamples to the incorrect claims referred to in our introductory 
section. In this capacity we consider as irrelevant any feelings that may 
arise as to their implausibility or artificiality. 

Nevertheless, it must be said that the central reason for studying local 
realist models is to obtain some idea of what an eventual replacement for 
quantum theory would look like. From that point of view, we consider that 
the least satisfactory feature of the models we have been considering is the 
enormous difference between the polarizer-transmission probabilities of the 
two types of photon emitted. The principal concrete models of the elec
tromagnetic field are those based on wave-particle duality and those based 
on stochastic optics (see the chapters of Pascazio and Marshall). Both of 
these are essentially symmetric in their treatment of the two light signals 
coming from the source. Some slight asymmetry may arise owing to the 
different frequencies of these signals and also possibly because one signal 
of a cascade, being emitted before the other, acts as the start of the 
coincidence circuit. However, in at least one of the experiments we are 
considering, that of the Stirling group, (7) both of these possible asymmetric 
features are absent. It is therefore reasonable to pose the question: Can we 
still reproduce the coincidence rates predicted by quantum theory with 
models having the same polarizer transmission probabilities for both signals 
of a pair? 

This question has so far been studied for the two polarizer situation 
only. Caser(16) has proved that it is not possible to find a probability P( Q) 
such that 

1 f" - P(A - a)P(A - b) dA = RQ(d - b) 
1T 0 

where, when nonideal behavior of detectors, polarizers, etc., are taken into 
account, the quantum-mechanical prediction can be written as 

RQ(a - b) = const[l + Jcos2(a - b)] (13) 

Caser actually proved the theorem for a more general set of auxiliary 
variables. We present below a variant of that theorem. 

Theorem. There do not exist a probability density p(A) and a probabil
ity P( a, A) such that 

f p(A)P(a, A)P(b, A) dA = const[l + J cos(2a - 2b)] (14) 

if J>!. 
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Here it has been assumed that the two signals of the cascade are 
perfectly correlated and that each signal is described by the same set of 
auxiliary variables A. 

Proof The dependence on (a, b) through (a - b) implies the property 
that J p(A) P( a + 8, A) P( b + 8, A) dA is independent of 8. It follows then 
that equation (14) implies 

-; t1T d8 f p(A)P(8,A)P(a - b + 8,A) dA = const[1 + fcos(2a - 2b)] (15) 

Because P( 8, A) must be periodic in 8 with period 11", we may write 

00 

P(8, A) = ao(A) + L an(A) cos[2n8 + 8n(A)] (16) 
• 

Then 

1 f1T 00 

- P(8, A)P(a - b + 8, A) d8 = a~ +! L a~ cos(2na - 2nb) (17) 
11" 0 • 

Comparison with (14) shows that 

f p(A)a~(A) dA = 0 (n ~ 2) (18) 

and hence, since p(A) ~ 0, 

for all A (n ~ 2) (19) 

Therefore 

p(A)P(8, A) = ao(A)p(A) + a.(A)p(A) cos[28 + 8.(A)] (20) 

and since this must be nonnegative for all 8, it follows that 

and (21) 

But we now find from equation (17) that 

f p(A)P(a, A)P(b, A) dA = f p(A)[a~(A) +~a~(A) cos(2a - 2b)]dA (22) 
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The property (21) ensures that, as (a - b) varies, 

Min f p(A)P(a, A)P(b, A) dA :;'1 f p(A)a~(A) dA (23) 

and 

Max f p(A)P(a, A)P(b, A) dA ~ ~ f p(A)a~(A) dA (24) 

Since the results are not compatible with equation (14) the theorem is proved. 
It should be noted that the definition of symmetry used in equation 

(14) presupposes that the two light signals are perfectly correlated. A wider 
definition of symmetry would use a source distribution p(A I, A2 ), where Al 
and A2 are the sets of auxiliary variables for the two signals. We would then 
require 

It is not possible to prove a theorem of the above type for such models, 
because the model of the previous section belongs to this family. 

The above theorem indicates that we should expect to find divergence 
from the quantum prediction for the coincidence rates, using any symmetric 
local realist theory. But before this knowledge can be put to practical use, 
we need to know the possible magnitude of such divergence. In other words 
we need inequalities; the homogeneous Bell inequalities are now obsolete, 
having served the very useful purpose of leading us from no-enhancement(3) 
to enhancement. 

The search for such inequalities is in its initial stages. Marshall (17,18) 

has proposed various criteria for measuring the "distance" separating the 
set of functions 

R(e, {P}) = LT p(e + e/»P(e/» de/> 

(25) 
[P(e/»:;' 0 for all e/>, and P(e/> + 17") = P(e/»] 

from RQ( e/» in relation (13). One distance which certainly has a lower 
bound is 

(26) 

for n :;. 3, Owing to the interest in the homogeneous Bell inequality, all the 
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data so far obtained have been for n = 4, usually with a concentration on 
the values r = 1 and 3. With hindsight it would have been better to design 
experiments to measure d3 , but since it was anticipated that the first serious 
exercise would be a reexamination of existing data, the function P was 
found(I7) which minimized d4 • This gave values of R(nr/n) differing from 
RQ( nr / n) by less than 0.02, and a discussion based on the usual theory of 
significance tests(18) showed that none of the existing data was good enough 
to detect such a difference. 

Recently Corchero(I9) has proposed a modified distance 

(27) 

0.002 

r 

0.9 f--+ 

Figure 1. The lower bound of the distance d~ defined by equation (27) as a function of the 
parameter J appearing in the quantum prediction (13). With piles-of-plates polarizersJ cannot 
be greater than about 0.95, while calcite polarizers would allow values as high as 0.99, so 
providing better tests. In the figure we display the 95% confidence interval for d~ obtained 
from the first Orsay experiment.(S) This is the only experiment for which sufficient published 
data to construct such an interval are available. The interval so obtained is compatible with 
both quantum mechanics and symmetric local hidden-variable theories. 
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This expression for the distance function has the effect of giving a greatly 
increased weight to the contribution from R( 7T/2). The function p+ which 
minimizes d~ is found to give substantially greater deviations from RQ in 
the situation where the linear polarizers are calcite crystals than where they 
are piles of plates, because of the much smaller value taken by RQ( 7T/2) 
in the former case (see Figure 1). In our view this justifies a repetition of 
the Holt-Pipkin experiment(20) which is the only one so far to use calcites. 
These authors obtained the biggest divergence so far reported from RQ( 7T/8) 
and RQ (37T/8), but unfortunately did not report any measurements at all 
for R(O), R( 7T/4), and R( 7T/2). 
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