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Preface

Planck proposed the quantum idea in 1900. Now the quantum theory is the most precisely
tested and most successful theory in the history of science. As we know, many high science
and technology industrials are based on quantum mechanics. In developed countries the
output value of these industrials is the 30% of the gross national product (GNP).

Although quantum mechanics is a very important and not a young subject, now quantum
mechanics still looks like to cover with mysterious veil or to fall from skies. “Quantum
mechanics is very impressive,” Einstein wrote in 1926, “But an inner voice tells me that
it is not yet the real thing.” Bohr said: “Anyone who is not shocked by quantum theory
has not understood it.” Dirac said: “To improve the quantum mechanics people need a very
large revolution in basic concepts.” Feynman said: “We should always keep in mind the
possibility that the quantum mechanics may be fail, since it has certain difficulties with
philosophical prejudices that we have about measurement and observation.” Feynman also
said: “I can safely say that nobody understands quantum mechanics”.

This textbook tries to reveal the mysterious veil, and thus makes quantum mechan-
ics a subject easy to be understood, accepted, and mastered. For this goal this textbook
proves 52 theorems, 18 corollaries, 1 criterion, and establishes 1 law for all basic concepts,
pictures, and conclusions in quantum mechanics. The criterion, the law, and half of the
theorems and corollaries are given by this textbook at the first time. Except the law, this
textbook makes quantum mechanics independent of postulates, axioms, guesses, principles,
hypotheses, paradoxes, and assumptions. In one word, quantum mechanics in this and all
other textbooks can be called roughly quantum mechanics upon theorems and postulates,
respectively.

Let me list partially the identical and different points between quantum mechanics
upon postulates and theorems.

(1) Quantum mechanics upon postulates contains such as: postulate of operator repre-
sentation of observable; Schrodinger equation postulate; postulates of three formulations of
quantum mechanics postulate; postulate of commutation relation instead of Poison bracket;
de Bloglie matter wave hypotheses (i. e., wave-particle duality hypotheses); principle of
Heisenberg uncertainty relations; principle of state superposition; wavefunction axiom:;
identity axiom of multiparticle system. ([1]-[9]).

All the above postulates, axioms, principles, hypotheses become theorems and corol-
laries.

(2) Some long-standing, big and difficult problems in quantum mechanics upon postu-
lates are completely solved by quantum mechanics upon theorems. For example:
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(2.1) Quantum mechanics upon postulates does not know the origin of sharp contradic-
tion between quantum mechanics and general theory of relativity, and thinks this contradic-
tion is the rigorous challenge faced by physics in 21 century.

Quantum mechanics upon theorems does.

(2.2) Quantum mechanics upon postulates gives the quantummechanically theoretical
lifetime of free, for example, electron is T = 10736 second [10].

Quantum mechanics upon theorems gives a theorem, according to which T = oo,

(3) Quantum mechanics upon postulates think that, for example, measurement depen-
dence of quantum mechanics, collapse of wavefunction, ensemble description of wavefunc-
tion, environment dependence of decoherence, indistinguishability of identical multiparticle
system.

Quantum mechanics upon theorems proves: quantum mechanics is independent of mea-
surement, collapse of wavefunction is not necessary, wavefunction describes individual
particle other than particles’ ensemble, decoherence is independent of environment, and
the particles in identical multiparticle system are only of identity other than the so-called
indistinguishability.

(4) Quantum mechanics upon postulates is very difficult to image the picture of wave-
particle duality, and thus the wave-particle duality as a concept drifts from a place to place.
Quantum mechanics upon theorems proves a theorem of mathematical structure of objects,
including big and small massy particle, massless photon and phonon. According to this
theorem, any object consists of two parts: substance and wave, and thus the wave-particle
duality of object is easy to be imagined.

(5) Quantum mechanics upon theorems proposes some new concepts such as the still
more microscopic processes, equiprobability, spontaneous equiprobability symmetry break-
ing and so on.

Quantum mechanics upon theorems proposes some new viewpoints such as the origins
of probability of observed super light speed in tunneling processes and in nonlocality of
entangled states.

In one word, at least, the quantum mechanics upon theorems tries to discard the dross
and select the essential, and to eliminate the false and to retain the true in the quantum
mechanics upon postulates. Note that mast contents in the quantum mechanics upon pos-
tulates are correct, and this textbook inherits also many methods and skills of calculations,
derivations, arguments, and demonstrations in the quantum mechanics upon postulates.

The best interesting thing in “Quantum Mechanics upon Theorems” is at end of this
textbook the exercise:

(i) Would readers, including students and beginners, please argue that quantum
mechanics upon theorems will cause fourth science and technology revolution in our
world; [The first, second, and third are steam engine (1765, Watt), electric motor (1821,
Faraday)—applications of electricity (1880, Edison), and computer (1946) —

internet (1960)—information, respectively.]

(i) Would readers please appraise classical mechanics, quantum mechanics upon pos-
tulates, special and general theory of relativity; (This textbook has introduced history of
physics, and hope readers to understand the relations between main theories of physics
through this exercise.)
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(iii) Would readers please estimate the influences of quantum mechanics upon theorems
to social science, especially, philosophy.

(iv) Do you agree that the quantum theory from Planck quantum (1900) to basic quan-
tum field theory (1929) cannot be cause of a world science and technology revolution?
Why?

The author of this textbook believes that before reading this textbook no one reader
believes that this textbook with only no more than 500 pages can cause fourth world science
and technology revolution; on the contrary, after reading this textbook, no one reader does
not have strong wish and maximum enthusiasm to accomplish the above exercise. Actually,
in this preface I just list some obvious features of this textbook. I would like to give readers,
including students and beginners, bigger elaboration space and imaginary space.






Chapter 1

Birth of Quantum Mechanics

1.1. Difficulties of Classical Physics

1.1.1. Introduction

Until the end of nineteenth century, classical physics, including classical mechanics,
classical electrodynamics, thermodynamics, classical acoustics, optics, hydromechanics,
and classical statistical physics, appeared to be sufficient to explain all physical phenomena.
During the latter part of nineteenth century and the early years of twentieth century, the
experimental facts mentioned in sections 1.1.2 - 1.1.8 revealed four difficulties:

(1) The observed radioactivity of matter;

(2) The energy of hydrogen atom is discrete;

(3) The electron and other massy particles are of wave property, and the electromagnetic
field has particle property;

(4) The uncertainty relations between coordinate and momentum and between energy
and time.

All these difficulties required new concepts and ideas radically different from those of
classical physics.

Outlined below are the discoveries and events that occurred near the turn of the century
that removed some enigmas and led naturally to the development of the quantum mechanics
and quantum field theory.

1986 Bacquerel Radioactive uranium

1901 Mme. Curie Radioactive polonium and radium (1903 Nobel Prize)
1901 Planck Blackbody radiation (1918 Nobel Prize)
1905 Einstein Photoeffect (1921 Nobel Prize)
1911 Rutherford Model of atom

1913 Bohr Quantum theory of spectra (1922 Nobel Prize)
1913 Stark Splitting of spectral line in

electric field (1919 Nobel Prize)
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1916 Millikan Elementary charge of electricity
and Photoeffect (1923 Nobel Prize)
1922 Compton Scattering photons off electrons (1927 Nobel Prize)
1925 Pauli Exclusion principle (1945 Nobel Prize)
1925 de Bloglie Matter wave (1929 Nobel Prize)
1925 Heisenberg Matrix mechanics
1926 Schrodinger Wave mechanics (1933 Nobel Prize)
1927 Heisenberg Uncertainty relation (1932 Nobel Prize)
1927 Davidson Experiment on wave properties
and Germer of electron (1937 Nobel Prize)
1927 Born Statistical interpretation
of wavefunction (1954 Nobel Prize)
1928 Dirac Relativistic wave mechanics
and prediction of positron (1933 Nobel Prize)
1929 Heisenberg Basic structure of quantum field
and Pauli theory
1932 Anderson Discovery of positron (1936 Nobel Prize)
1932 Wiener Path integral method of Brown motion
1933 Dirac Path integral of quantum mechanics
1948 Feynman, Path integral formulation of quantum
Feynman, mechanics
Schwinger, Quantum electrodynamics (1965 Nobel Prize)

and Tomonaga

In the remainder of this chapter and other chapters we will illustrate all these topics in
more detail.

1.1.2. Radioactive Decay

Radioactivity or Radioactive decay is the process by which an atomic nucleus of an unsta-
ble atom loses energy by emitting ionizing particles (ionizing radiation). The emission is
spontaneous, in that the atom decays without any physical interaction with another particle
from outside the atom [11].

Radioactivity was discovered in 1896 by French scientist Henri Becquerel, while work-
ing on phosphorescent materials. During experiments to see if phosphorescent materials
would expose photographic materials through black paper in the manner of the recently-
discovered X-rays, which produced fluorescence, Becquerel used a phosphorescent ura-
nium salt and eventually found that it blackened the plate through paper wrapping, in a
desk drawer over a weekend, even without application of light, or production of its phos-
phorescence. These penetrating radiations, accidentally discovered emanating from ura-
nium minerals, were first called Becquerel rays.

Pierre and Marie Curie soon became clear that the blackening of the plate did not have
anything to do with phosphorescence, because the plate blackened when the mineral was
in the dark. Non-phosphorescent salts of uranium and metallic uranium also blackened the
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Figure 1.1. Spectrum of blackbody radiation. The curves have been discussed to bring out
some important features.

plate. It was clear that there is a form of radiation that could pass through paper that was
causing the plate to become black.

At first it seemed that the new radiation was similar to the recently-discovered X-rays.
Further research by Becquerel, Ernest Rutherford, Paul Villard, Pierre Curie, Marie Curie,
and others discovered that this form of radioactivity was significantly more complicated.
Different types of decay can occur, producing very different types of radiation. Rutherford
was the first to realize that they all occur with the same mathematical exponential formula
(see below), and Rutherford and his student Frederick Soddy were first to realize that many
decay processes resulted in the transmutation of one element to another. Subsequently, the
radioactive displacement law of Fajans and Soddy was formulated to describe the products
of alpha and beta decay.

The early researchers also discovered that many other chemical elements besides ura-
nium have radioactive isotopes. A systematic search for the total radioactivity in uranium
ores also guided Marie Curie to isolate a new element polonium and to separate a new ele-
ment radium from barium in 1901. The two elements’ chemical similarity would otherwise
have made them difficult to distinguish.

1.1.3. Black Body Radiation

When there is an equilibrium between black body (hollow cavity) and thermal radiation, the
radiation leaving the hole on a heated hollow cavity is termed as black body radiation. The
experimentally observed spectral energy density u(v) of black body radiation as a function
of wavelength at different temperatures is shown in Fig. 1.1.
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Basing on classical electrodynamics and statistical physics theory, Rayleigh (1900)-
Jeans (1905) obtained the spectral distribution of a radiation field in equilibrium at the
temperature 7'

8mv?

c3

(V) = kT (1.1)

for low frequencies. kg is Boltzmann’s constant. c is the speed of light. While Rayleigh-
Jean’ formula is valid at low frequencies, it is seen to diverge (Historically, this diverge
was called ultra-violet catastrophe.) at larger frequencies, where as shown in Fig. 1.1, the
observed spectral distribution falls to zero. Basing on thermodynamics theory, Wien (1893)
obtained a half-empirical formula

uy(V) = crvie VT (1.2)

where c¢; and ¢, are empirical parameters. However, Wien formula has obvious departure
from experimental data at low frequencies. Planck (1900) improved the Wien formula, and

obtained
Cl V3

up(v) = T 1’ (1.3)

which fits the data at both low and high frequencies very well. Considering the good fit-
ting between Planck’s formula and the data of black body radiation, scientists at that time
thought that this good fitting was not occasional, there should be a new scientific principle
behind the Planck formula, which has not yet been revealed.

1.1.4. Photoelectric Effect

Herz (1887) discovered the photoelectric effect: electrons (which is also called photoelec-
tron) were observed to be ejected from metal when light of an appropriate frequency is
incident on its surface. See Fig. 1.2. Further studies were done to learn about the effect
observed by Hertz, however it wasn’t until 1905 that a theory was purposed that explained
the effect completely. The theory was proposed by Einstein and it made the claim that elec-
tromagnetic radiation had to be thought of as a series of particles, called photons, which
collide with the electrons on the surface and emit them. This theory ran contrary to the
belief that electromagnetic radiation was a wave and thus it was not recognized as correct
until 1916 when Robert Millikan preformed a series of experiments using a vacuum photo-
tube to confirm the theory. The modern research indicates that if the energy of the photon
is less than 100 eV, then we observe the photoeffect. However, if the photon has a lot of
energy, Compton scattering (thousands of eV) or pair production (millions of eV) may take
place at the same time.
The photoelectric effect (= photoeffect) has the following characteristics:

(1) There exists a critical cutoff frequency v.. When v < v, no electrons are liberated
from the metal irrespective of the intensity of light;

(2) The energy of photoelectron is dependent only on v, and is independent of the
intensity of light. The stronger the latter is, the more the photoelectrons liberated from
metal in unit time are;
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Quartz window — Ultraviolet light

Figure 1.2. This diagram shows the electron emission induced by light incident upon metal
durface.

(3) If v > v,, then the photoelectrons appear instantly (= 10~°) second even when the
light intensity is very low.

The first and second characteristics cannot be understood by classical physics in princi-
ple.

1.1.5. Compton Effect

Sadler (1912) observed that when a beam of X-rays strikes matter, there was a phenomenon
that the wavelength of X-ray becomes longer after scattering. Compton made a series of
studies (1923). Compton discovered that some of the X-ray are scattered through an angle.
The scattered radiation contains both the same wavelength and the wavelength longer than
the wavelength of the incident X-rays. The change of wavelength is called Compton shift.
It varies with the scattering angle. The frequency of the scattered radiation is independent
of the material.

According to classical electromagnetic theory, the wavelength of scattered wave should
be the same as the wavelength of incident wave. Therefore, the classical theory cannot
explain Compton effect.

1.1.6. Rule of Atomic Line Spectra

Balmer (1885) discovered that the line emission spectrum of hydrogen atom has the follow-
ing rule.
11



6 Fu-sui Liu

6562.8 A
48613 A
43405 A
41017 R

H, H, H H H

v ) oo

Figure 1.3. The Balmer series of hydrogen atom spectrum.

where k(= 1/A = v/c) is wavenumber, A is wavelength, R is Ryderberg constant, R =
109677.581 cm™!, n=3, 4, 5, - --. The above spectrum of hydrogen atom is called Balmer
series of lines, and is shown in Fig. 1.3. The term in Eq. (1.4) is called spectrum term 7'(n).

Based on many observed data, Ritz (1908) discovered combination rule. According
to this rule, every kind of atoms has itself spectrum term 7'(n), and the wavenumber of
emission spectrum can be expressed always by

konn = T (n) — T (m). (1.5)

Then, there is a series of problems: Why the atomic spectrum does not distribute continu-
ously? Why it appears as discrete line spectrum? What is the mechanism of line spectrum?
Why the combination rule is so simple? What is the essence of spectrum term?

1.1.7. Stability of Atom

Based on his a particle scattering of atom, Rutherford (1911) proposed a model for the
atom, which is called “planet model of atom” or “nucleus model of atom”. According to
Rutherford, the atom consists of electrons orbiting around a positive charged nucleus, and
the latter’s scale is less than 10~!2 cm.

Although Rutherford model can explain the large angular deflection of o particle, it still
meets difficulty, i. e., the problem of stability of atom. The motion of electrons orbiting
around a nucleus is accelerative. According to classical electrodynamics, the accelerated
electron would continue to radiate until they had exhausted all the positive energy, would
fall into the nucleus, the atom would collapse (Atom’s lifetime is only 10~!2? second in this
case.), and in this process atom would a wide continuous spectrum, which also contradicts
with the observed sharp line spectrum of atom.

1.1.8. Specific Heat of Solid

In solid every atom makes small oscillation around it equilibrium position, and can treated
as a particle with three freedoms. According to the classical statistical mechanics, its aver-
age kinetic and potential energy are 3/2kgT, the total energy is 3kzT. Therefore, the average
thermal energy per one gram atom is 3NkgT = 3RT. N=6.023 x 10?3, N is the Avogadro
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Figure 1.4. The variation of specific heat of Einstein solid with temperature.

constant. Thus, the specific heat of solid should be Cy = 3R = 5.958 cal/K, which is called
Dulong-Petit empirical rule (1819). However, the observe specific heat at low temperature
approaches to zero (See Fig. 1.4).

At that time, no body knew the cause of the zero specific heat at low temperature.

1.2. Planck-Einstein’s Quantum Postulate of Light

On October 19, 1900, Planck published a paper on the radiation formula of black body,
i. e. Eq. (1.3). Just after 45 days, on December 4, 1900, Planck published a paper to
understand the physical meaning of Eq. (1.3). Planck said that if one hypothesized that
when the system absorbs or emits radiation, it can only in a unit (or quantum) 4v (4 is called
Planck constant.), then Eq. (1.3) can be derived in theory. Due to that the Planck’s light
quantum hypothesis cannot be understood by the continuous concept in classical physics,
before 1905 there were only a few scientists to note the Planck’s non-continuous concept of
electromagnetic radiation.

To explain the photoelectric effect, Einstein (1905) hypothesized that light is composed
of localized bundles of electromagnetic energy. The bundle was called by Lewis photon
(1926). At frequency Vv, the energy of a photon is E = hv, which is called Planck-Einstein
relation. Considering the special theory of relativity, the momentum of a photon p is p =
E /c, where E is the energy of a photon. Accepting the concept of photon, the photoelectric
effect was readily solved. Although the photon incident upon metal surface can be absorbs
by an electron, to eject from the metal the electron needs to overcomes the work function
(®) of metal. Einstein gave the kinetic energy of ejected electron

%mvz =hv — . (1.6)

Eq. (1.6) is called Einstein formula. When v < v, = ®/h, the electron cannot be ejected
from the metal, and thus there is no photoelectron. Einstein formula was verified directly by
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the Milliken’s photoelectric experiment (1916), in which the energy of the most energetic
photoelectrons as a function of frequency obeys Eq. (1.6).

Applying the non-continuous concept of energy to the oscillation of atom at equilibrium
position in solid, Einstein (1907) solved the observed zero specific heat of solid at low
temperature successfully. After Einstein’s works, the Planck’s light quantum hypothesis
caused more attention.

The concept of light quantum and Planck-Einstein relation are verified directly by
the Compton effect. Compton suggested that Compton shift came from elastic collision
between photon in X-ray and electron (1923). Assume that the momentum and energy in
collision are conservative. Due to the recoil of electron, electron takes a part of energy and
momentum, and thus the energy and momentum of scattered photon are reduced, i. e. the
wavelength of radiation becomes longer.

Comments of this textbook:

(1) The quantum transition theory in chapter 10 proves that the Einstein formula Eq.
(1.6) does not hold when the pulse of light is less than the femto second (10~!> second).

(2) According to the wavepacket-only theory in chapter 3, any objects, including massy
particle and massless photon, consist of various wavepackets. The wavepacket-only theory
can prove: (A). The existence of universal Planck constant (See theorem I in chapter 3); (B).
In Planck-Einstein relation E = hv = ho, v(k,) = ho(k, ), where k is the root-mean-square
wavenumber of a photon wavepacket (See corollaries V and VI in chapter 3).

1.3. Bohr Postulates of Atomic States

To solve the stability of Rotherford’s atom model (1911) and the line spectrum of atom
(1885, 1908), Bohr (1913) proposed three postulates of atomic states:

(1) First postulate (stable state). The energy of atom is quantized, i. e., atom can only
exists in a series of stable states with discrete energies (Ey, Ey, E3, ...).

(2) Second postulate (orbital quantization). The above states are characterized by dis-
crete values of the angular momentum given by the relation:

fpedezn-h, (1.7)

with n an integer greater than zero, and the dimension of pg is energy X time. Eq. (1.7) is
called Bohr quantization condition of angular momentum. In these states the atom does not
radiate. The line integral follows the electron in one complete orbit around the nucleus.

(3) Third postulate (frequency condition). The change of atomic energy, including
emission and absorbtion of photon, can occur only between any two stationary states in
terms of quantum transition other than continuous transition.

The energy is conservative in the quantum transition process, i. e., if E,, > E,,, then the
frequency of photon in emission or absorbtion processes is determined by Bohr’s frequency
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condition
hv=E,—E,. (1.8)

The first postulate solves the problem on stationariness of atom. The concept of quan-
tization can also solves the problem of the observed zero specific heat of solid at low tem-
perature.

The second and third postulates can explain the Redberg-Ritz composition rule of
atomic spectrum. The Redberg-Ritz composition rule of atomic spectrum Eq. (1.5) con-
nects with the frequency condition Eq. (1.8). The physical meaning of spectrum term is
T(n) = E,/hc, 1. e., T(n) connects with the stationary energy of atom E,,.

Let us recall how the orbital quantization condition Eq. (1.7) leads to a discrete set of
energy {E,}. The energy of a stable hydrogen atom whose electron is moving in circular
motion is

1 62 p2 62
E—-m?_S_Po__ & 1.9
zmv ro 2mr: r (1.9)

The radius r obeys the centripetal condition

2 2 2
m-_ P_e3 _ "_2 (1.10)
r mr r
So that, with the orbital quantization condition Eq. (1.7)
2 2 252
h
£ P T2 (1.11)
ro omr:  mr?
h = h/(2m) is the (reduced) Planck constant.
252
h
Py = (1.12)
me

These are the quantized values of r at which the electron persists without radiating. The
values of the energy at these radii are

2
where R is the Ridberg constant:
me*
R:Z—hz:z.lsx10—“erg:13.6ev. (1.14)

The negative quantity of energy reflects the fact that we are dealing with the bound states.
When n = 1, the atom is in ground state and has energy —R. The value of r when the atom

is in the ground state is
h2
rn=do=—5=529x10""cm. (1.15)
me
This is a fundamental length in physics. It is called the Bohr radius.
Of course, Bohr postulates of atomic states cannot determine completely the energy of

atom, because it cannot determine the unknown energy constant. To solve this problem,
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Bohr (1913) proposed correspondence principle, which says that if n — oo, then quantum
system approaches to classical system. If the electron and the nucleus of hydrogen atom are
infinitely far removed (r,, — o) and at rest, then there should be no both kinetic and potential
energy. E., = 0 for a classical system. If we rewrite Eq. (1.13) as E, = —R/n*+-constant,
then Bohr correspondence principle tells us that the constant is zero.
According to Egs. (1.7) and (1.13), the Balmer Series of lines is generated by transitions
to the first n = 2 excited state:
hVB:En—EQ, (116)

with n > 2.

Comments of this textbook:

(1). Bohr quantum theory of atomic states is only a phenomenological theory. It cannot
answer the origin of the non-continuity of atomic energy. The quantum mechanics born in
1925 - 1926 can solve this problem.

(2). In Eq. (1.7) pg is the momentum in polar coordinate. Eq. (1.7) can be written
as L, = pg = rmv = nh where n is an integer larger than zero. However, the solution of
Schrédinger equation for hydrogen atom in chapter 6 indicates that L? = [(I + 1)A? other
than L? = [?h? given by Eq. (1.7).

Using the theory in chapters 3 and 6, one can prove that the difference between L? =
I(14+1)h?* and L7 = I>h* comes from Heisenberg uncertainty relation.

1.4. de Bloglie Matter Wave Hypotheses

Inspired by that the light has both wave and particle (photon) properties, de Bloglie imag-
ined that the massy particle (rest mass m > 0) might be have wave property as well as the
photon, and proposed matter wave hypotheses (1923).

As we know, the three laws of geometric optics can be expressed by Fermat principle
(shortest light range principle), i. e.

Bﬂ_
AV_

S 0, 1.17)

where v is the speed of light in a medium. Eq. (1.17) means that the practical path of light
takes the extreme value of light range [, f dl/v in comparison with all the other possible
pathes. On the other hand, according to classical mechanics, the practical path of a particle

moving in potential field is determined by Maupertuis’s least action principle (Refer to
section 2.2 of chapter 2), i. e.

B B
5/ pdl:S/ V2m(E—V)dl =0. (1.18)
A A

Eq. (1.18) means that the practical path of a particle takes the extreme value of action
integral [ f pdl in comparison with all other possible pathes.

According to the comparison between Eq. (1.17) and Eq. (1.18), de Bloglie proposed
that a massy particle being of energy £ and momentum p connects with a matter wave,



Birth of Quantum Mechanics 11

which’s frequency and wavelength are

) (1.19)

p= 5 =hk, (1.20)

where k represents the wavenumber of matter wave. The de Bloglie hypotheses of matter
wave consist of the above two equations. According to de Bloglie hypotheses and Bohr’s
atomic model, the electron in atom, which makes a round motion around the nucleus, should
be a stationary wave..

The stationary wave condition requires that the length r of round orbit of electron should
be an integer of wavelength, i. e.

21r = nA, (1.21)
wheren=1,2,3, ---. From Egs. (1.20) and (1.21) the angular momentum of electron is
nh
J=rp=— =nh. 1.22
p=g_=n (1.22)

Therefore, from the stationary wave condition of matter wave one can obtain the quantiza-
tion of angular momentum.

Comments of this textbook:
It can be seen from the theorem VI, corollaries VI, VII, and VIII in chapter 3 that:

(1) A particle consists of body-factor and guide-factor. The mass of the particle is
carried by the body-factor, and the guide-factor is only a wave, which’s action is to guide
the body-factor to move. Thus a particle has both particle and wave properties;

(2) The physical meaning of wavenumber k, = p, /% in de Bloglie matter wave hypothe-
ses should be the average wavenumber of wavepacket, and appears in guide-factor, which
expresses wave property of a particle;

(3) Any object consists of guide-factor (which is a mathematical function) and body-
factor (which is the substance of an object, carrying mass and/or charge) is more reasonable.
The electron is a rigid (Refer to the comment in the end of this section.) sphere with radius
less that 10~!8 cm. This small rigid sphere cannot absolutely becomes a wave or spreading
electron cloud under very weak Coulomb interaction in one atom. (According to the special
theory of relativity, the electron has to have structure other than an absolutely rigid body.
Otherwise, the propagation speed of interaction acted on an object will surpass light speed.)

1.5. Davidson and Germer Experiment

The wave property in motion of massy particle can be observed only when de Bloglie
wavelength (A = h/p) is of order or larger than the characteristic dimensions of the massy
particle used to investigate it. Since / is very small, A is so small as to preclude the hope
observing de Bloglie hypotheses. The wave property in motion of electron was verified
directly by Davidson-Germer experiment. A parallel beam of electrons with definite low
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Figure 1.6. (a). Number of scattered electrons as a function of accelerating voltage for
0 = 50°. (b).Number of scattered electrons as a function of 0 for accelerating voltage of 54

eV.

energy are incident normal to surface of Ni crystal. See Fig. 1.5. The number N(8) of
scattered back at an angle 0 to the incident direction can be measured by detector. For the
periodic distribution of Ni atoms on the surface, the repetition is @ = 0.215 nm, which is

comparable to the de Bloglie wavelength of the incident electrons.
In the conditions that the electrons are incident normal to the surface and that the de

Bloglie matter wave hypotheses are correct, the Ni atomic surface is equivalent to a refrac-
tion grating with distance a. When

asin® = nA, (1.23)

the intensity of reflection wave will have extremes (n =1, 2, 3, ...). Eq. (1.23) is called
diffraction condition of grating. From the energy of incident electron and Eq. (1.20) one
knows the wavelength of the incident electron A = h/p = h/\/2mE. If the energy of electron
is E =54 eV, then A = 0.167 nm. However, we can obtain an experimental value of A,
from the observed value of N(0) at 6 = 50° in case of n = 1. See Fig. 1.6. Substituting this
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Figure 1.7. Schematic double slit experiment.

wavelength into Eq. (1.23) yields that the peaks of intensity of refraction wave appears at
the following directions:

Aex = 0.21nm x sin50° = 0.165nm ~ 0.167nm. (1.24)

The two values of A obtained agree to within accuracy of the experiment.

Comments of this textbook:

(1). This experiment demonstrates only that the electron has wave property. This ex-
periment cannot tell us that why the electron is of wave property. Chapter 3 indicates that
Davidson-Germer experiment verifies actually that the wavepacket contains a guide-factor,
which is a plane wave with wavenumber k... k. is the root-mean-square wavenumber of a
wavepacket.

1.6. Young’s Double Slit Experiment

Suppose that a disturbance propagates from one point to another point in space. What
is propagating, waves or particles? A principal distinguishing characteristic is that waves
exhibit interference and diffraction, particles do not. Hysterically, the evidence of the wave
property of light was deduced from Young’s double slit experiment (1804). Experiment
with electrons (instead of light) using double slit arrangement (Fig. 1.7) indicates that
electron possesses wave-like characteristic.

Consider electrons directed towards double slits A and B in a screen. Let the slit B is
closed and slit A is open. By carrying out the experiment for a sufficient time, one obtained
a pattern identical with the case when the light is diffracted from a slit A. Similar behavior
is observed when A is closed and B is open.

When A and B are both open the final interference pattern should be a simple superposi-
tion of the intensities of the blackening on the screen arising when electrons are let through
A or B. However, the distribution of intensities of blackening is of completely different
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character and shows interference pattern. Thus electron, like a wave, possesses interference
properties.

A low-intensity double-slit experiment was first performed by G. Taylor in 1909, by
reducing the level of incident light until photon emission/absorption events were mostly
nonoverlapping. A double slit experiment was not performed with anything other than light
until 1961, when Clauss Junsson of the University of Tbingen performed it with electrons.
In 2002, Junsson’s double slit experiment was voted “the most beautiful experiment” by
readers of Physics World.

In 1999, objects large enough to be seen under an electron microscopetbuckyball
molecules (diameter about 0.7 nm, nearly half a million times larger than a proton) were
found to exhibit wave-like interference.

Variations of the experiment have been done. An important version of this experiment
involves single massy particles. Sending them through a double slit apparatus one at a time
results in single particles appearing on the screen, as expected. See Fig. 1.8. Remarkably,
however, an interference pattern emerges when these particles are allowed to build up one
by one. For example, when a laboratory apparatus was developed that could reliably fire
one electron at a time through the double slit, the emergence of an interference pattern
suggested that each electron was interfering with itself, and therefore in some sense the
electron had to be going through both slits at once, an idea that contradicts our everyday
experience of discrete objects. This phenomenon has been shown to occur with electrons
(See the famous experiment on Ref. [13].). This phenomenon has also been shown to occur
with atoms and even some molecules, including buckyballs. So experiments with electrons
add confirmatory evidence to the view of Dirac that electrons, protons, neutrons, and even
larger entities that are ordinarily called particles nevertheless have their own wave nature
and even their own specific frequencies. This experimental fact is highly reproducible.
However, the electrons do not arrive at the screen in any predictable order. In other words,
knowing where all the previous electrons appeared on the screen and in what order tells us
nothing about where any future electron will hit. Also note that if there is a cancelation
of waves at some point, that does not mean that a particle disappears; it only means that
the probability of a particle’s appearing at that point will decrease, and the probability that
it will appear somewhere else increases. Thus, we have the appearance of a seemingly
causeless selection event in a highly orderly and predictable formulation of the interference
pattern. Ever since the origination of quantum mechanics, some theorists have searched for
ways to incorporate additional determinants or “hidden variables” that, were they to become
known, would account for the location of each individual impact with the target.

The experiment has been performed with particles as large as Cgg. Nairz et al. (2004)
observed that the beam of Cgy molecules has the same interference phenomenon like that of
electron [14]. In Nairz’s experiment the beam of Cgy molecules comes from furnace with
1000 K. The most probable velocity of molecules is v = 117 m/s, Av/v = 17%. The beam
goes through two collimation slits at first. Then the beam hits the SiN, grating (the width
of every slit is 50 nm, and the distance between slits is 100 nm). Nairz ef al. obtained a
similar interference pattern on screen, as that if the Cg is a de Bloglie matter wave.

Another kind of single photon interference experiment can be found in Ref. [15].

Comments of this textbook:
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Figure 1.8. The accumulating electron’s buildup of an interference over time in double slit
experiment. The number of electrons are just 10. These 10 electrons are distribute on the
screen randomly. The diagram corresponding to 70 000 single electrons gives a very clear
interference pattern like Fig. 1.7.

We have to point out that if we carry out the single and double slit experiments for
single massless photon or single massy particle, instead of a beam with both many photons
or many massy particles (electron, Cg, and so on), then at short time the blackening on the
screen looks like a random distribution. This phenomenon can only be explained by the
composition character of free wavepacket, proved by theorem VI, and law of wavepacket
in chapter 3.

1.7. Establishment of Quantum Mechanics

In 1925 - 1926 two equivalent theoretical formulations: Heisenberg matrix mechanics and
Schrédinger wave mechanics were proposed.

Heisenberg (1925), Born (1925), and Jordan (1925) proposed matrix mechanics. In
Heisenberg matrix mechanics, any observable physical quantity is assigned by a matrix. Its
calculation rule is different from classical physical quantity, e. g., it obeys the canonical
communication relation other than the classical Poison bracket.

Based on the enlighten of de Bloglie matter wave idea, Schrodinger (1926) found a wave
equation of quantum object. Similarly to the matrix mechanics, many significant problems
and difficulties, such as the spectrum of hydrogen atom, were solved by Schrédinger wave
equation well. Schrodinger also demonstrated the equivalence of Schrédinger wave me-
chanics and Heisenbeg matrix mechanics.

In one word, the quantum mechanics was born under the bases of both the discoveries
of many difficulties in classical physics and the earlier phenomenological and empirical
explorations for these discoveries.

Comments of this textbook:

(1) Although quantum mechanics got extremely brilliant successes in so wide and mul-
titudinous fields, the until now quantum mechanics is still not a truth. We should remember
the Feynman’s following warn: “We should always keep in mind the possibility that quan-
tum mechanics may fail, since it has certain difficulties with philosophical prejudices that
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we have about measurement and observation.”
(2) Wavepacket-only theory proposed in chapter 3 has proved exactly that:

(a) What does the wave-particle duality mean;

(b) Prove exactly Schrodinger equation;

(c) Why does the wavefunction represents probability amplitude of an object;

(d) Heisenberg uncertainty relations (See next section) are characteristics of one kind
of mathematical functions, which € M (R) (Refer to section 2.3 of chapter 2);

(e) Quantum mechanics can be free from all the so-called difficulties, which are thought
by some references that the quantum mechanics has to be faced. For example, the quantum
measurement and environment influences;

(f) Based just on the theorem of commutation relation in chapter 3, section 5.8 of chap-
ter 5 proves exactly all the three formulations of quantum mechanics: Schrodinger wave
mechanics; Heisenberg matrix mechanics; Feynman path integral mechanics.

1.8. Heisenberg Uncertainty Relation

Heisenberg uncertainty relation, put forth in 1927, implies the following:

(1) Experiment cannot simultaneous determine for a particle the exact value of a com-
ponent of momentum, say p,, and also the exact value of the corresponding coordinate
X5

(2) Our precision of measurement is inherently limited by the measurement process
itself such that

h
AxApy = 5, (1.25)
where the momentum p, is known with an uncertainty Ap, and x at the same time with an
uncertainty Ax. Similarly

AyAp, > (1.26)

DS | S

AzAp, > . (1.27)

(3) Heisenberg feels that there is likewise a minimum for the product of uncertainties
of the energy and time

AEAt > g (1.28)

(4) Heisenberg uncertainty relation is not a statement about the inaccuracy of measure-
ment instrument, nor a reflection on the quality of experimental methods. Even with perfect
instruments and techniques, the uncertainties are inherent in the nature of things.

Next, we would like to tell you the story about the history of Heisenberg uncertainty
relations and the present status [16].

Heisenberg formulated the uncertainty principle at Niels Bohr’s institute in Copen-
hagen, while working on the mathematical foundations of quantum mechanics in 1925,



Birth of Quantum Mechanics 17

when Heisenberg developed matrix mechanics, which replaced the ad-hoc old quantum
theory with modern quantum mechanics. The central assumption was that the classical
concept of motion does not fit at the quantum level, and that electrons in an atom do not
travel on sharply defined orbits. Rather, the motion is smeared out in a strange way: the
Fourier transform of time only involve those frequencies that could be seen in quantum
jumps. Heisenberg’s paper did not admit any unobservable quantities like the exact posi-
tion of the electron in an orbit at any time; he only allowed the theorist to talk about the
Fourier components of the motion. Since the Fourier components were not defined at the
classical frequencies, they could not be used to construct an exact trajectory, so that the
formalism could not answer certain overly precise questions about where the electron was
or how fast it was going.

In March 1926, working in Bohr’s institute, Heisenberg realized that the non-
commutativity implies the uncertainty principle. This implication provided a clear physical
interpretation for the non-commutativity, and it laid the foundation for what became known
as the Copenhagen interpretation of quantum mechanics. Heisenberg showed that the com-
mutation relation implies an uncertainty, or in Bohr’s language a complementarity. Any two
variables that do not commute cannot be measured simultaneouslytthe more precisely one
is known, the less precisely the other can be known. Heisenberg wrote:

“It can be expressed in its simplest form as follows: One can never know with perfect
accuracy both of those two important factors which determine the movement of one of the
smallest particlestits position and its velocity. It is impossible to determine accurately both
the position and the speed of a particle at the same instant.”

In his celebrated 1927 paper, “On the Perceptual Content of Quantum Theoretical Kine-
matics and Mechanics”, Heisenberg established this expression as the minimum amount of
unavoidable momentum disturbance caused by any position measurement, but he did not
give a precise definition for the uncertainties Ax and Ap. Instead, he gave some plausible
estimates in each case separately. In his Chicago lecture in 1930 he refined his principle:

Ax Ap 2 h, (4)
Kennard in 1927 first proved the modern inequality:
ox op 2 h, (B)

where i = h /2, and ox, Op are the standard deviations of position and momentum. Heisen-
berg himself only proved relation (B) for the special case of Gaussian states in 1930.

On the terminology and translation on the uncertainty relation. Throughout the main
body of original 1927 paper, written in German, Heisenberg used the word “Unbes-
timmtheit” (“indeterminacy”) to describe the basic theoretical principle. Only in the end-
note did he switch to the word “Unsicherheit” (“uncertainty””). However, when the English-
language version of Heisenberg’s textbook, The Physical Principles of the Quantum The-
ory, was published in 1930, the translation “uncertainty”” was used, and it became the more
commonly used term in the English language thereafter.

The uncertainty principle is quite counter-intuitive, so the early students of quantum
theory had to be reassured that naive measurements to violate it were bound to be always
unworkable. One way in which Heisenberg originally illustrated the intrinsic impossibility
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Figure 1.9. Heisenberg’s gamma-ray microscope for locating an electron. The incoming
gamma ray is scattered by the electron up into the microscope’s aperture angle 6. The
scattered gamma-ray is shown in red. Classical optics shows that the electron position can
be resolved only up to an uncertainty Ax that depends on 6 and the wavelength A of the
incoming light.

of violating the uncertainty principle is by using an imaginary microscope as a measuring
device. See Fig. 1.9.

Heisenberg imagines an experimenter trying to measure the position and momentum of
an electron by shooting a photon at it.

Problem-I: If the photon has a short wavelength, and therefore a large momentum, the
position can be measured accurately. But the photon scatters in a random direction, trans-
ferring a large and uncertain amount of momentum to the electron. If the photon has a long
wavelength and low momentum, the collision does not disturb the electron’s momentum
very much, but the scattering will reveal its position only vaguely.

Problem II: If a large aperture is used for the microscope, the electron’s location can be
well resolved (see Rayleigh criterion); but by the principle of conservation of momentum,
the transverse momentum of the incoming photon and hence the new momentum of the
electron resolves poorly. If a small aperture is used, the accuracy of both resolutions is the
other way around. The combination of these trade-offs imply that no matter what photon
wavelength and aperture size are used, the product of the uncertainty in measured position
and measured momentum is greater than or equal to a lower limit, which is (up to a small
numerical factor) equal to Planck’s constant. Heisenberg did not care to formulate the
uncertainty principle as an exact limit (which is elaborated below), and preferred to use it
instead as a heuristic quantitative statement, correct up to small numerical factors, which
makes the radically new noncommutativity of quantum mechanics inevitable.

There are some critical reactions for the Heisenberg uncertainty relations.

The Copenhagen interpretation of quantum mechanics and Heisenberg’s uncertainty
principle were in fact seen as twin targets by detractors who believed in an underlying de-
terminism and realism. According to the Copenhagen interpretation of quantum mechanics,
there is no fundamental reality that the quantum state describes, just a prescription for calcu-
lating experimental results. There is no way to say what the state of a system fundamentally
is, only what the result of observations might be.
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Albert Einstein believed that randomness is a reflection of our ignorance of some fun-
damental property of reality, while Niels Bohr believed that the probability distributions are
fundamental and irreducible, and depend on which measurements we choose to perform.
Einstein and Bohr debated the uncertainty principle for many years.

The first of Einstein’s thought experiments challenging the uncertainty principle went
as follows:

Einstein slit. Consider a particle passing through a slit of width d. The slit introduces
an uncertainty in momentum of approximately h/d because the particle passes through the
wall. But let us determine the momentum of the particle by measuring the recoil of the wall.
In doing so, we find the momentum of the particle to arbitrary accuracy by conservation of
momentum. Bohr’s response was that the wall is quantum mechanical as well, and that to
measure the recoil to accuracy the momentum of the wall must be known to this accuracy
before the particle passes through. This introduces an uncertainty in the position of the
wall and therefore the position of the slit equal to , and if the wall’s momentum is known
precisely enough to measure the recoil, the slit’s position is uncertain enough to disallow a
position measurement.

Einstein’s box. Bohr was present when Einstein proposed the thought experiment which
has become known as Einstein’s box. Einstein argued that “Heisenberg’s uncertainty equa-
tion implied that the uncertainty in time was related to the uncertainty in energy, the product
of the two being related to Planck’s constant.” Consider, Einstein said, an ideal box, lined
with mirrors so that it can contain light indefinitely. The box could be weighed before a
clockwork mechanism opened an ideal shutter at a chosen instant to allow one single pho-
ton to escape. “We now know, explained Einstein, precisely the time at which the photon
left the box.” “Now, weigh the box again. The change of mass tells the energy of the emitted
light. In this manner, said Einstein, one could measure the energy emitted and the time it
was released with any desired precision, in contradiction to the uncertainty principle.”

Bohr spent a sleepless night considering this argument, and eventually realized that it
was flawed. He pointed out that if the box were to be weighed, say by a spring and a
pointer on a scale, “since the box must move vertically with a change in its weight, there
will be uncertainty in its vertical velocity and therefore an uncertainty in its height above the
table... Furthermore, the uncertainty about the elevation above the earth’s surface will result
in an uncertainty in the rate of the clock,” because of Einstein’s own theory of gravity’s
effect on time. “Through this chain of uncertainties, Bohr showed that Einstein’s light box
experiment could not simultaneously measure exactly both the energy of the photon and the
time of its escape.” [17]

In 1934 Popper published Zur Kritik der Ungenauigkeitsrelationen (Critique of the Un-
certainty Relations) in Naturwissenschaften, and in the same year Logik der Forschung
(translated and updated by the author as The Logic of Scientific Discovery in 1959), outlin-
ing his arguments for the statistical interpretation. In 1982, he further developed his theory
in Quantum theory and the schism in Physics, writing:

“Heisenberg’s formulae are, beyond all doubt, derivable statistical formulae of the quan-
tum theory. But they have been habitually misinterpreted by those quantum theorists who
said that these formulae can be interpreted as determining some upper limit to the precision
of our measurements.”

Popper proposed an experiment to falsify the uncertainty relations, though he later with-
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drew his initial version after discussions with Weizsocker, Heisenberg, and Einstein; this
experiment may have influenced the formulation of the EPR thought experiment.

The Many-worlds interpretation for the uncertainty relations. The many-worlds in-
terpretation originally outlined by Hugh Everett in 1957 is partly meant to reconcile the
differences between the Einstein and Bohr’s views by replacing Bohr’s wave function col-
lapse with an ensemble of deterministic and independent universes whose distribution is
governed by wave functions. The uncertainty relations in the many-worlds interpretation
follows from each observer within any universe having no knowledge of what goes on in
the other universes.

The free will interpretation for the uncertainty relations, i. e., two-stage model of
free will. Some scientists including Arthur Compton and Martin Heisenberg [18] have
suggested that the uncertainty principle, or at least the general probabilistic nature of
quantum mechanics, could be evidence for the two-stage model of free will. The standard
view, however, is that apart from the basic role of quantum mechanics as a foundation for
chemistry, nontrivial biological mechanisms requiring quantum mechanics are unlikely
due to the rapid decoherence time of quantum systems at room temperature. [19]

Comments of this textbook:

(1) The theorem of uncertainty relations in Chapter 3 proves exactly that Heisenberg
uncertainty relations are the inherent property of mathematical functions € M (R), which
expresses a space of functions of moderate decrease on Euclidean space (Refer to section
2.3 of chapter 2).

(2) Many references call Heisenberg uncertainty relations Heisenberg uncertainty prin-
ciple. Considering that the Heisenberg uncertainty relations can be proved exactly by the-
orem V in chapter 3, we suggest that people abandon the term “Heisenberg uncertainty
principle”, and use “Theorem of uncertainty relations”.

In the above, we give only an initial discussions on the uncertainty relations. After read-
ing chapter 3 I suggest that the readers make an exercise to discuss all the above viewpoints.
(The solutions are that all the above viewpoints on Heisenbeg uncertainty relations are not
necessary.)

1.9. Statistical Interpretation of Quantum Mechanics

The statistical (or, ensemble) interpretation of quantum mechanics is about the interpreta-
tion of wavefunction. The solution of Schrédinger equation is called wavefunction, and
is often expressed by ¥(r,t) or y(r,7). Born suggested in 1927 that, when referred to the
propagation of particles, |¥|? is more appropriately termed a probability density wave quan-
titatively. The Born’s probability density wave postulate states as follows (for example, in
Cartesian coordinate space). The wavefunction for a massy particle W(x,y, z,#) is such that

¥ (x,y,z,1)|*dxdydz = Pdxdydz, (1.29)

where Pdxdydz is the probability that measurement of the particle’s position at time ¢
finds it in the volume element dxdydz about the point x, y, z. According to the Born’s
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probability density interpretation, Born thought that a wavefunction connects with a
statistical ensemble. Now a number of authors support the idea of the above Born’s
viewpoint [21]. Along this line, Ref. [22] proposed a little different viewpoint. Under
the title “What is the meaning of the wavefunction?” and after remarking that “Since the
discovery of quantum theory, a very fundamental question has haunted physicists: what
is the physical meaning of the wavefunction”, Ref. [22] explains how it is possible to
extend the usual interpretation of the wavefunction (with a physical meaning by ensemble
averages of a large number of identical systems) to an individual or single system. This
is done by considering a measurement that lasts a long time, a “protective measurement”,
during which the wavefunction is prevented form changing appreciably by means of
another interaction which is undergoes at the same time [21, 22].

Comments of this textbook:

(1) The statistical interpretation for the wavefunction brings a series of difficulties, such
as Einstein even has remarked that quantum mechanics is incapable of describing the be-
havior of a single system, such as an electron [20].

(2) Although the wavepacket-only theory in chapter 3 will also prove that the prob-
ability density is represents by |¥(x,y,z,¢)|% but the wavefunction belongs to individual
particle instead of statistical ensemble. The wavepacket-only theory establishes the proba-
bility interpretation in terms of the spontaneous equiprobability symmetry breaking, stated
by the law of wavepacket motion.

(3) It is easy to see that that any wavefunction has to connect with an ensemble is with-
out confidence. Because the wavefunction is a solution of a single particle Schrodinger
equation, and thus that the wavefunctiin should connect with an ensemble is an “absurd”
argument and “strange tale”. The idea from statistical interpretation to individual interpre-
tation in Ref. [22] is also nearly without confidence. Hope the readers give detail comments
for them after learning chapter 3.

1.10. Exercises and Solutions

(1) Wikipedia gives a very nice summary of the various interpretations for the quantum
mechanics [23]). The author of this textbook would like to suggest that after reading the
chapter 3 of this textbook make an exercise to discuss all the viewpoints listed in the table
of Ref. [23].






Chapter 2

Classical Mechanics and
Mathematics

2.1. Introduction

Classical mechanics have three formulations: Newtonian formulation, subsequent La-
grangian formulation and Hamiltonian formulation. In this chapter we will introduce La-
grangian and Hamiltonian formulations of classical mechanism starting from Newtonian
formulation. These subsequent reformulations of Newtonian mechanics bring with them a
great deal of elegant and computational ease. But our principal interest in reformulations of
Newtonian mechanics stems from the importance that they are the ideal springboard from
classical to quantum mechanics.

Classical mechanics describes any object by using a function of coordinates and
momenta at the same time. However, according to a theorem in chapter 3, any object
cannot be described by using both coordinates and momenta at the same time, and can only
be described by using either coordinates or momenta. Therefore, any object connects with
a function in position space or momentum space. Considering this function, describing an
object, should be local, an object can called a wavepacket. Thus, the term “wavepacket” is
not a patent of quantum mechanics. In the language using in this textbook,

(small or large) object = (small or large) massy or massless particle =
wavepacket;

wavepacket can connect with a mathematical function of spacetime, which
is called wavepacket- function;

wavepacket = wavepacket- function # wave function;

For convenience of statement,

wavepacket = wavepacket- functioin.

We call the theory, which connects any object with a wavepacket wavepacket-only the-
ory. Wavepacket-only theory does not need to know the structure and form of any objects,
and, correspondingly, the concretely mathematical form of the wavepacket-functions. The
wavepacket-function can represent in principle the distribution of object’s mass or charge
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or energy and so on. The wavepacket-only theory just explores the common and general
characteristics of this mathematical function connecting with a wavepacket.

The wavepackets in our exploration can be large or small, and can be heavy or light or
even massless. For example, the objects (=wavepackets) can have the following sizes given
in Ref. [24].

The lengths L of wavepackets (i. e., objects) (10¢ cm) are: o of radius of the infinite
unverse, 28 of radius of the visible unverse, 23 of radius of the Milky Way, 18 of length of
light year, 15 of radius of the solar system, 11 of radius of the sun, 9 of radius of the earth, 5
of wavelength of the radio waves, 3—-1 of wavelength of sound, 3.75cm of wavelength of
the cosmic background radiation, -3 of wavelength of heat radiation, 4 x 10~7 — 8 x 107 of
wavelength of visible light, -7 of radius of molecules, -8 of radius of atoms, -8 of wavelength
of X rays, -10 of Compton wavelength of the electron, -13 of radius of protons, -13 of
wavelength of cosmic rays, -13 of Compton wavelength of the proton, < —18 of radius of
quarks and electrons, -33 of Planck scale, string, quantum graviton, and more less of others
[24].

For example, the objects can have the following energy scales given in Ref. [24].

The energy scales E of wavepackets (i. e., objects) (10F GeV, 1GeV=1.6 x 10~2* g) are:
-8 of binding energy of the electron in the hydrogen atom; energy of chemical processes,
-3 of rest energy of the electron, 1 GeV of rest energy of the proton, 2 of rest energy of
the vector bosons W+, W~ Z°, 3 of weak and electromagnetic interaction decouple at this
particle energy, 3 of particle energy at the new CERN accelerator in 2008, 14 of energy
consumption of a human being per day, 15 of strong and electroweak energy decouple at
this particle energy, 19 of Planck energy, 27 of rest energy of a stone (mass of 1 Kg), 29 of
energy production of a hydrogen bomb, 36 of energy production of the sun per day, 52 of
rest energy of the earth, 57 of rest energy of the sun, 68 of rest energy of the Milky Way, 79
of rest energy of the visible unverse, oo of rest energy of the infinite unverse.

The wavepacket-only theory have many theorems, which will be proved in chapters 3,
4,5, 9, and 10. These theorems indicate the importance of reformulations of Newtonian
mechanics. Next, we list some important points:

(1) The passage from Lagrangian formulation of classical mechanics to Feynman path
integral formulation of quantum mechanics is easy;

(2) The passage from Hamiltonian formulation of classical mechanics to Heisenberg
matrix mechanics formulation of quantum mechanics is easy;

(3) The passage from Hamiltonian formulation of classical mechanics to Schrodinger
wave mechanics formulation of quantum mechanics is easy;

(4) The passages from classical theory, including classical particle theory and classical
field theory, to quantum theory, including quantum mechanics and quantum field theory, are
based on the same basis.

In terms of classical mechanics and mathematics, introduced just in this chapter, the
wavepacket-only theory can make in subsequent chapters that:

(1) The quantum mechanics becomes theories without any assumptions, any hypothe-
ses, any postulates, any axioms, any guesses, any principles, any ambiguous and vague
concepts, any paradoxes, and any physical pictures hard to be understood, except one law;
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(2) The quantum mechanics becomes theory from theorems to theorems, i. e., any
things in quantum mechanics can be proved, except one law.

The classical theory includes classical (particle) mechanics, and classical field theory.
The quantum theory includes quantum (particle) mechanics, and quantum field theory.

It can be proved that the watershed between classical theory and quantum theory is
merely in that: if any object connects with a function of both coordinates and momenta at
the same time, then this theory belongs to classical theory; if any object connects with a
function of either coordinates or momenta, then this theory belongs to quantum theory. The
readers might have heard some conclusions and pictures in quantum mechanics, such as
massy particles have wave property, energy quantization and so on. All of these “strange”
things come from the theorems proved by the wavepacket-only theory.

From this introduction, the readers will see that the classical theory and mathematics,
introduced in this chapter, are important for studying quantum theory. This is the reason
why this textbook addresses at first classical analytical mechanics and necessary knowledge
of mathematics. I would like to say that if you know classical analytical mechanics very
well, then you know quantum mechanics very well.

2.2. Foundation of Classical Mechanics

2.2.1. Lagrangian Formulation of Classical Mechanics

In this subsection we will introduce Lagrange function, and derive the Euler-Lagrange equa-
tion of motion to replace Newton’s second law (i. e., force law).

Suppose that the Lagrange function of system is L(q1, - ,qn,q1,"**,qn,t) or, for
brevity, L(q,4,t), ¢; (n =1,2,---,n) are independent coordinates of system in n dimen-
sional configuration space, n is the number of degrees of freedom of system, ¢; are the
generalized velocity. [The term “configuration space” is used even if the n coordinates are
not Cartesian. (q1,---,¢n, g1, - ,qn) together construct phase space]. Assume that sys-
tem is in a conservative potential field V, and T is the kinetic energy. Define L=T —V.
If V is explicitly dependent on time ¢, then system is not conservative. Let us study the
conservative system for simplicity.

For each path, i. e., trajectory, ¢(#) connecting point A at initial time ' = ¢; and point B
at final time 1" = 17, we define an action A4[q(r)] as

t
alq()] = /t " L(g,q)dr. (2.2.1.1)
The action can also call the Hamiltonian principal function. We use square brackets to
enclose the argument of A4 to remind us that the action A4 depends on an entire path or
function ¢(¢), and not just the value of ¢ an some time 7. One calls 4 a functional to
signify that it is a function of function. The dimension of A4 is angular momentum (i. e.,
energy xtime).

The principle of least action states that: The actual path of a particle is one on which
A takes a minimum value. (Actually, we will only require that it is an extremum. It is,
however, customary to refer to this condition as the principle of least action.)
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Figure 2.1. Arbitrary trajectories q(t) going between specific initial and final points, and the
extremal trajectory q“*(t). The deviation dq(t) is defined as dq(t)=q(t)-q“*(t).

We will now verify that this principle reproduces Newton’s second law.

The mathematical statement of the principle of least action is as follows. Suppose ¢(t)
make an infinitely little variation, i. e., ¢(t) — ¢(t) + 9q(t). See Fig. 2.1. Under the
condition

dq(t;) = dq(tr) =0, (2.2.1.2)

this principle requires that
34 =0. (2.2.1.3)

According to Eq. (2.2.1.3) (principle of least action), one can obtain a differential equation

of g(1). . aL aL
/,, Z{ i+ 5 qi]. (2.2.1.4)

1

Noting that 8¢; = ddq/dt = ddq;/dt, one makes the partial integration for the second term
of the right hand side in Eq. (2.2.1.4), and obtains

tr [dL d oL aL 17

Substituting Egs. (2.2.1.2) and (2.2.1.3) into Eq. (2.2.1.5) yields
oL d dL
54 = / @ 9%\ 5gi=0. 22,16
Z [@l wa@]q ( )
Due to that the d¢; (i = 1,2,-,n) are arbitrary, we have

oL d [dL .
% @ [a_ql] =0,(i=1,2,---,n). (2.2.1.7)
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Eq. (2.2.1.7) is called Euler-Lagrange equation.
If we take g; as Cartesian coordinate x;, then

1
L:T—V:E;mix?—V(xl,---,xn). (2.2.1.8)

Substituting Eq. (2.2.1.8) in Eq. (2.2.1.7) yields Euler-Lagrange equation
oV

m Xi= _a—Xi,(izl,---,n), (2.2.1.9)
i. e., Newton equation. Set
_ oL (2.2.1.10)
pl - aq.l Lol
and oL
Fi=— (2.2.1.11)
9

stand for the generalized (or canonical) momentum and generalized force corresponding
to the generalized (or canonical) coordinate g;, respectively. In these conditions, Lagrange
equation is formally same as the Newton equation, i. e.,

pi=F. (2.2.1.12)

To the readers who wonders why one bothers to even deal with a Lagrangian when all
it does is to yield Newtonian force law in the end. I present a few of its main attractions.
In comparison with the Newtonian formulation, the Lagrangian formulation of classical
mechanics (or Lagrangian mechanics) has the following four features.

First. The Lagrangian formulation is of its closeness to path integral formulation of
quantum mechanics.

Euler-Lagrange equation Eq. (2.2.1.7) is a differential equation containing second order
derivative of time ¢ over D coordinate variables g;. If we are given the initial state variables,
¢i(0) and ¢,(0), these equations can be integrated step by step, just as Newton approach, to
determine the trajectory.

In the Lagrangian formulation, for example, the problem of single particle in potential
V(x) is posed in a different way: given that the particle is at x(;) and x(z¢) at times #; and ¢”,
respectively, what is it that distinguishes the actual trajectory x(¢) from all other trajectories
or paths that connect these points x(z;) and x(z7)?

The Lagrangian formulation is thus global, in that it tries to determine at one stock the
entire trajectory x(¢), in contrast to the local approach of Newtonian formulation, which
concerns itself with that the particle is going to do in the next infinitesimal time interval.

Second. In the Lagrangian formulation of classical mechanism, one just needs to con-
struct the L, which is a scalar quantity, and all the motion equations can be obtained just
by differentiation operations over L. On the contrary, to establish Newton’s force equation
concerns with the vector operation, and thus is more complicate, especially, in case of curve
coordinates.

Third. Although Newton equation Eq. (2.2.1.9) is simpler, but it holds only in Cartesian
coordinates. On the contrary, in any coordinate Euler-Lagrange equation Eq. (2.2.1.7) is
the same.
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Fourth. In Lagrange form, it is easy to analyze conservative quantity. Suppose L does
not depend on coordinate g;, and only depends on ¢; (in this case g; is called cyclic coordi-
nate). According to Egs. (2.2.1.7) and (2.2.1.10), one knows that the generalized momen-
tum p; is a conservative quantity (p; = 0). Due to that in any coordinate system, Lagrange
equation Eq. (2.2.1.7) is same, one can choose appropriate coordinate, and thus find the
conservative quantity and the symmetry of potential energy.

2.2.2. Hamiltonian Formulation of Classical Mechanics

Why it is necessary, or even desirable to recast classical mechanics in Hamiltonian formu-
lation? The answer is that the Hamiltonian equations have an elegant symmetry that the
Lagrange equations lack. Another answer, not directly related to the classical mechanics,
is that the Hamiltonian is used to write the Heisenberg equation of quantum mechanics, as
discussed in section 5.8 of chapter 5.

In the Lagrangian formulation of classical mechanics, the Lagrangian is expressed as
a function of canonical coordinates ¢; and generalized velocities ¢; (i = 1,2,---,n). The
canonical momentum is defined as: oL

P o

In Hamiltonian formulation of classical mechanics, the coordinates and momenta in set
q, p are lumped together and considered to be coordinates of 2n dimensional space called
phase space. The variables q1,---,q,,p1,---,p, are referred to collectively as canonical
coordinates of phase space. The g; is called the i-th canonical coordinate, and p; is called
i-th canonical momentum. The pair g;, p; for the same i value are called canonical conju-
gates. Hamiltonian formulation or Hamiltonian mechanics is essentially Newton’s second
law translated from Lagrangian form into a form appropriate for this phase space. In Hamil-
tonian mechanics, the ¢g; and p; are coequal coordinates of phase space. This contrasts with
Lagrangian mechanics, where p; is defined by Eq. (2.2.2.1), pi(q, p,t) =9dL(q,q,t)/9dqg;, and
therefore cannot be considered an independent variable. The transition from Lagrangian to
Hamiltonian mechanics therefore requires a declaration of independence for the p; vari-
ables. Define the Hamiltonian of system as:

(2.2.2.1)

p)= Zpiq'i —L(q,q)- (22.2.2)
Notice that ¢;,p; (i = 1,2,---,n) are independent variables, i. e., H is a function of 2n
independent variables. Utilizing Egs. (2.2.2.1-2), one can obtain
oL dq;
= gj. 2.2.2.3
OV N L (2223
Utilizing Euler-Lagrange equation yields
oH dq; OL oL 9q; dq; oL
— = =t ——— =—— = —pj. 2224
g Zp, dgi  dgi Z 94; 9g; g b ( )
In summary,
oH
gi=— (2.2.2.5)

B api,



Classical Mechanics and Mathematics 29

pim—on (i=1,2,--n). (2.2.2.6)

Egs. (2.2.2.5-6) are the Hamilton canonical equations. The first Hamiltonian equation Eq.
(2.2.2.5) provides the same information as Eq. (2.2.2.1), so that information is not lost. But
the Hamilton equations are not identities that define their left hand sides (g; in this case)
for all values of ¢, p,t. They are equations of motion whose solution defines the trajectory
qi(1), pi(t) of the mechanical system through phase space. This trajectory is often called the
system path, and the Hamilton equations are said to hold only on the system path.

Next we derive the Hamilton canonical equations from the principle of least action. In
this case the action is

iy iy
- / il — / di [Zpic]i—H(q,p,t)], (22.2.7)
t t i

where 4 is a function of 2n independent variables (p;, g;). Making variations for p;, g; yields

t
84 = Z/fdf q4i0pi + pidqgi — aH(q’?’t)qu — aH(q’?’t)gpi '
i Vi aql apl

(2.2.2.8)

After the partial integration of the second term in Eq. (2.2.2.8) the second term becomes

1f d t o o
dl‘pigsq,‘ = pl‘sq,‘|,'[, _/z dl‘pl‘sql‘ = —K dl‘pl‘aql‘. (2.2.2.9)

1 i

Substituting Eq. (2.2.2.9) into Eq. (2.2.2.8) yields

t
84 = Z/,f di [(‘?f B 3—5) Spi — (Pi + %f’”) 8%‘] : (2.2.2.10)

According to the principle of least action, 84 = 0. Therefore, one obtains the Egs. (2.2.2.5-
6).
If the system is in a conservative field V (V does not depend on time ¢), then we can
demonstrate that
H=T+V, (2.2.2.11)

where T stands for kinetic energy, and H for energy. The demonstrations are as follows.
In Cartesian coordinates

1
T = Ezi:mix?’ (2.2.2.12)
oL
Pi= (2.2.2.13)
Y pixi=2T. (2.2.2.14)
i

From Egs. (2.2.2.12-14) we have

H=Y pti—L=2T—(T-V)=T+V. (2.2.2.15)
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In any curve coordinates, supposing
T= Z]ij(CI)C]iC]ja (2.2.2.16)
ij

one still can demonstrates that Eq. (2.2.2.14) holds, and thus the Eq. (2.2.2.11) holds as
well.

Both the Lagrangian and Hamiltonian are scalar quantities. The Hamilton equations
Egs. (2.2.2.5-6) should be independent of the choice of coordinates. We can choose ap-
propriate coordinates to give the conservative quantities and symmetries of the system. For
example, in V (and thus H) is not explicitly dependent on time ¢, then from Eqgs. (2.2.2.5-6)
we have

3H OHOH OHOH
] Z {aqi dp; Ip; a%] 0. (2.2.2.17)

dH aH.
E‘Xi:[aq !

Eq. (2.2.2.17) means that H (energy) is a conservative quantity. If H does not depend on
some coordinate g;, then p; =0, i. e., p; is a conservative quantity. This coordinate is called
cyclic coordinate of the system.

2.2.3. Poison Bracket

In Hamiltonian mechanics, all physical quantities are represented by phase space function.
Assume that F(q, p,t) is such a function. We write the total time derivative of F(q,p,t) in a
useful form (g = ¢1,-+- ;g4 and p = p1,---, pa)

. d oF oF oF
F= E _Z<a Qz+a Pz> at

¢ <aF o0H OF 8H)_|_8F
= \oqidp; dpidgi) ot
The sum in Eq. (2.2.3.1) appears frequently enough to merit a special notation for it. It is

called Poison bracket {F,H} of two phase space functions F (g, p,t) and H(q, p,t), so that
Eq. (2.2.3.1) becomes

(2.2.3.1)

e diFA (F,H}+ a—F (2.232)

In Eq. (2.2.3.2) the first and the second term of the rlght hand side represent the con-

tributions of the explicit time relation and the motion of phase space point, respectively.

Eq. (2.2.3.2) implies that a phase space function that is not an explicit function of time ¢

will be a constant of the motion if and only if it has a vanishing Poison bracket with the

Hamiltonian. The Poison bracket {A,B} can be defined more generally, for any two phase
space functions A(q, p,t) and B(q, p,t),

oF 0G  JF dG

{F,G} = Z ( ————— > . (2.2.3.3)

dq; dp;  Op; 9g;

Note that, since partial derivatives are functions of the same variable set as was the function
differentiated, the {F,G} is itself another phase space function.
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This definition of Poison bracket implies some useful algebraic properties. First, by
construction, the Poison bracket is anti-symmetric in the exchange of the two functions so
that for any A and B,

{F,G} =—{G,F}, and hence {F,F}=0. (2.2.3.4a)

Also, when F = F(q,p,t),G= G(q,p,t),and C = C(q, p,t) are phase space functions, and
o, B are numbers or otherwise not functions of ¢, p, then the following Jacobi identities
can be proved,

{F,(0G+BC)} = a{F,G} +B{F,C}. (2.2.3.4b)
{F,GC} = {F,G}C+G{F,C}. (2.2.3.4¢)
{F,{G,C}}+{G,{C,F}}+{C,{F,G}} =0. (2.2.3.4d)

Here, for example, {F,{G,C}} denotes the Poison bracket of function F with the function
{G,C} which was obtained by taking the Poison bracket of G and C.

The following identities follow directly from the definition in Eq. (2.2.3.3). If one puts
F(q,p,t) and G(q, p,t) equal to any single canonical coordinate or canonical momentum,
then, for any choices i, j=1,---,n, it follows that

{9i,p;} = 8ij.{ai,a;} = {pipj} =0, (2.2.3.5)

where §; ; is called the Kroeneker delta function or Kroeneker notation. Eq. (2.2.3.5) is
called fundamental Poison bracket, and are analogous to similar canonical commutation re-
lations in quantum mechanics. In classical mechanics, from Poison bracket one can derive
all the dynamical properties of a system. Similarly, in quantum mechanics, from commuta-
tion relation one can derive all the dynamical properties of a system as well.

It is easy to show that:

oF oF
WF}==— WFp=—=—". 2.2.3.6
{C]w } apl ) {pl’ } aql ( )
Utilizing Poisson bracket, the Hamilton canonical equations can be expressed by Poison
bracket form. Replacing A(q,p,t) in Eq. (2.2.3.1) by the single variables ¢;, p;, H in
succession

pi={pi,H}, (2.2.3.8)
and 0H OoH
H:{H,H}—|—§:§. (2.2.3.9)

Poisson Theorem. If F and G are the conservative quantities of system, then {F,G} is a
conservative quantity as well.

Proof 1. Suppose that F and G does not contain explicitly time ¢. Utilizing Eq. (2.2.3.4d),
{F,H} =0, and {G,H} =0, one can obtain

{H7{F7G}} =0, (2.2.3.10)
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which means that {F, G} is a conservative quantity.

Proof 2. If F and G are time-dependent, and conservative, i. e.,

oF

§+{F,H}:O (2.2.3.11)
and 26

§+{G,H} =0. (2.2.3.12)
Considering

L{RGY = (FGLH)+{FG)
- —{{GaH}aF}—{{H,F},G}+{aa_f7c}_|_{F’aa_?}

- {aa—lj+{F,H},G}—|—{F,aa—(:—|—{G,H}}. (2.2.3.13)

According to the assumptions in the theorem, the two terms at the right hand side are zero.
Therefore,

%{F, G} =0. (2.2.3.14)

2.2.4. Canonical Transformations

In Hamiltonian formulation of classical mechanics, the freeing of canonical momentum p;
from the Eq. (2.2.2.1) allows it to be treated as an independent variable on the same footing
as the g;. This equal status for all the variables of phase space is exploited in the definition
of canonical transformations.

As we have mentioned, the form of Lagrange equations is not changed when new gen-
eralized coordinates are defined as invertible function of the old coordinates and possibly
the time. But Hamiltonian formulation allows a much more richer transformation scheme,
called canonical transformations, in which the new coordinates and momenta can depend
on both the old coordinates and the old momenta.

What we call extended canonical transformations can be found in special theory of
relativity. They permit time to be transformable coordinate and hence allow the Lorentz
transformation of special relativity to be canonical. The extended canonical transformation
is based on the extended Lagrangian and Hamiltonian theory which treat time as a coordi-
nate rather than as the fixed parameter of nineteenth century physics. This book will not
address this extended canonical transformation (Refer to Ref. [25]).

Let us at first introduce the so called point transformation. We have known that Euler-
Lagrange equation does not depend on the choice of coordinates, i. e., under the coordinate
transformation

Qi_’Qi(q17QZ7"'7Qn)7 (1217277]/1) (2241)
the Lagrange equation still is in form

A d /oL .
aQi_E<a—Qi>_0? (1_1727"'7n)' (2'2'4'2)
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Actually, the L in Eq. (2.2.4.2) is L(Q,Q), which’s form is different from L(g,q). For
brevity, we write L(q,§) = L(Q, Q). Under the coordinate transformation in Eq. (2.2.4.1),
one can show that

aq
— P = Lp 2.2.4.3
The Eqgs. (2.2.4.1) and (2.2.4.3) are called point transformation.
The invariance of the form of Lagrange equations under the point transformation im-
plies that the form of Hamilton equations does not change as well, i. e.,

. OH

Qi= 9P (2.2.4.4a)
. oH
P=— 30 (2.2.4.4b)

The point transformation is in » dimensional space.

Next, we present a brief introduction to what we call traditional canonical transforma-
tions in 2D dimensional phase space [25]. Here, “traditional” means that we do not allow
the time to transform. In Hamiltonian mechanics the system is in 2n dimensional phase
space. We allow the following more general transformation in 2n dimensional phase space,
1. €.,

q—q(Q.P), p— p(Q,P). (2.2.45)

Of course, arbitrary new 2n variables (Q;, P;) (i = 1,2, -,n) cannot ensure that the Hamilton

canonical equations in Eq. (2.2.4.4) do not change. (For example, Newton equation m q=
—0dL/dt holds only for Cartesian coordinates) If a transformation Eq. (2.2.4.4) can ensure
the invariance of the canonical form of Hamilton equations, then this transformation is
called canonical transformation.

For a given transformations in Eq. (2.2.4.5), how to judge that whether it is a canonical
transformations?

Theorem. If
{0, 0} ={P;,P} =0
and
{Q). P} =8, (2.2.4.6)

then Eq. (2.2.4.5) is a canonical transformation.

Proof. Calculate

s v (90,  99; .\ _y (9Qj0H 09Q;dH
=% (S 5) X (aron o) (2247

Making H(q,p) — H(Q,P) = H(q,p), we have

0H(g,p) _ H(Q,P) _ y < OH 30,  OH apk>

v o 30; ap: | P ap:
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0H(q,p) _ dH(Q,P) <8H 00 | oH BPk)
= = — — . 2.2.4.
g g L 90y 9g; OB g, ( ®)
Substituting Eq. (2.2.4.8) into Eq. (2.2.4.7) yields
) oH oH
Qj:zk‘,{a—Qk{QﬁQk}—i‘ﬁ{Qj,Pk}}- (2.2.4.9q)
Similarly,
. oH oH
P; :zk"{a—Qk{Pj,Qk}—l—ﬁ{Pj,Pk}}. (2.2.4.90)

Using the known conditions, one can conclude the proof. QED.

Note that: Here we do not consider special theory of relativity; If the canoni-
cal transformations in Eq. (2.2.4.5) do explicitly depend on time, then the Hamiltonian
considered here will be different in the g, p and Q, P systems (For detail, refer to Ref. [25]).

Jacobi Theorem. The form of Poisson bracket does not change under the canonical trans-
formation. (Refer to Ref. [1, 25] for the proof of this theorem.)

2.2.5. Jacobi-Hamilton Equation

In subsection 2.2.2 we introduced the principle of least action. The basic idea of this princi-
ple is as follows. We have many particle’s possible paths, which’s initial position x(#;) and
final position x(75) are given. We make comparisons between the many paths, and choose
the path, which has minimum action (84 = 0. Actually, extreme value of the action is
enough.) as the actual path of the particle, and from 84 = 0 the Euler-Lagrange equations
are derived.

Now, we take a different method to derive the motion equation of particle. Suppose
that the ¢(7) in 4 is just the path determined by the Lagrange equations. Assume that at
initial state time #; the position of particle is definite [8¢g(#;) = 0], but at final state time ¢
the position of particle is allowed to vary. Thus, the A4 is a function of upper limit ¢(z) of
integration. Then we make variation of g(¢) over 4[q(¢),t], and compare each with others.

<xfal G)

= ZB dq;(t) Zp,ﬁql (2.2.5.1)

! oL
04 = o6 Ldt= —8,'
f Za&]i

Due to that we look upon 4 as a function of ¢(z), from Eq. (2.2.5.1) one obtains

04

pPi= 35—

3 (2.2.5.2)

and . JS
ﬁl:/ Ldt, — =L. (2.2.5.3)
t dt



Classical Mechanics and Mathematics 35

From Eq. (2.2.5.3) we have

dAalq(t),1] 04
L= Z ” l+ Zp,q, . (2.2.5.4)
Therefore,
=L— Zp,q, =—H(q,p;1). (2.2.5.5)
In Eq. (2.2.5.5) p; =094/dq;, i. e.,
04 aﬂ
—+H t]=0. 2.2.5.6
In detail,
04 04 04
—+H — e, — =0. 2.2.5.7
at + (qh 7nvaq17 7aqn7t> ( )

Eq. (2.2.5.7) is called Jacobi-Hamilton equation. It is a first order partial differential equa-
tion satisfied by the action S as action of coordinates ¢;(¢) and ¢. The independent variables
are qi,---,qn,t. It contains (n+ 1) integration constants. Due to that Eq. (2.2.5.7) just
contains the first order derivatives of S, one integration constant appears in a sum with other
integration constants. Another n integration constants are expressed as O, - - - , 0.

If H does not explicitly contain time ¢, then Eq. (2.2.5.7) can be made by separation of
variables as follows.

Alq(1),1] = As[q(1)] + f(1). (2.2:5.8)
Substituting Eq. (2.2.5.8) into Eq. (2.2.5.7) yields
04, .
H [q(t),m] +f(t) =0. (2.2.5.9)

Eq. (2.2.5.9) can be rewritten as

[ 9 E, (2.2.5.9)

‘J(’)’W;)] — )

where E is the Hamiltonian which does not explicitly contain time ¢. However, the ¢ in
the Hamiltonian can depend on time ¢, and thus E still can be depend on time ¢. From Eq.
(2.2.5.9) we have

—f(t)=E. (2.2.5.10)

From Eq. (2.2.5.10) we have
f(t)=—Et (2.2.5.11)

Substituting Eq. (2.2.5.11) into Eq. (2.2.5.8) yields
Alq(t),t] = A,]q(t)] — Et. (2.2.5.12)

Eq. (2.2.5.9) can be rewritten as

H [q(t), ;q—ﬂ(l;)] —E, (2.2.5.13)



36 Fu-sui Liu

Thus, we have found an integration constant £ = ;.
To illustrate Jacobi-Hamilton equation we give two examples.

Example 1: Discuss the motion of a particle in potential V [x(¢),y(¢),z(t)].

Solution: Eq. (2.2.5.12) gives that the action is
Alx(1),y(2),2(1),1] = Ao [x(2), y(2),2(¢)] — Et. (2.25.14)

Substituting Eq. (2.2.5.14) into Eq. (2.2.5.7) yields

04,
—-E+H ,——| =0. 2.2.5.15
4ot 5] (22343)
94,1 pi+pi+p?
H [q(t),aq(t)] = T +V(x,y,2). (2.2.5.16)
Substituting Eq. (2.2.5.2) into Eq. (2.2.5.16) and then Eq. (2.2.5.15) yields
1[4, 1® [04.]° [04.1°|
% { [ax(t)] + [W] + {m] } —E—V[x(t),y(t),z(t)]. (2.2.5.17)

Notice that we emphasize the time dependence of x, y, and z.
The momentum of the particle is from Egs. (2.2.5.2) and (2.2.5.12)

p=VAa,. (2.2.5.138)
Eq. (2.2.5.17) can simply be written as

VA,-VA, = |VA|* =2m(E—-V). (2.2.5.19)

Example 2: Discuss the similarities between geometrical optics (i. e., limit of short
wave of wave optics ) and the motion of particle in potential field.

Solution: Eq. (2.2.5.19) is similar to the Eikonal equation of geometrical optics.
Eikonal equation is
VA, |* = n(x,y,2). (2.2.5.20)

n(x,y,z) stands for the refraction coefficient, and corresponds to \/2m[E —V (x,y,2)]. A
stands for the phase of wave. In homogeneous medium # is a constant, and corresponds to
V = constant, i. e., free particle. The equal phase plane is plane cluster, and is given by

A, = ax+by+cz+d. (2.2.5.21)

The normal direction (a, b, c¢) of the equal phase (i. e., the direction of p = V4,) stands for
the propagation direction of the ray, and correspond to that the trajectory of free particle
is straight line. Non-homogeneous medium in optics correspond to the particle in external
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field. In non-homogeneous medium the equal phase plane is the cluster of curved surface,
and its normal direction (i. e., the direction of VA4,) is the propagation direction of ray, and
has refraction phenomenon. These similarities between particle mechanics and geometrical
optics had been discovered by Hamilton in 1825. However, this discovery did not cause
caution, and forgot by peoples. When the wave mechanics was proposed in 1926, peoples
began to notice this discovery in 1825. However, the origin existing the similarities has
not yet been revealed until now by any theories or ideas. Basing on the wavepacket-only
theory (photon and massy particles are wavepacket), the theorem VI in subsection 3.4.1 and
the corollary VII in subsection 3.4.5 of chapter 3 proves that both photon and free massy
particles have guide-factors, which is plane waves, and the phase is ¢. The corollary IV in
chapter 3 indicates that the momentum p = AV ¢ for both photon and massy particles. The
direction of momentum is the propagation direction of wave. For more discussions on this
similarity between photon and massy particle see Ref. [109, ?].

2.3. Hilbert Space and Operators

It is the aim of this section to equip you with the necessary mathematical machinery. All
the math you need to learn quantum mechanics are developed in this section and in section
2.4. This section will tell you the present available math related to quantum mechanics.
In section 2.4 we will demonstrate some new mathematical theorems related quantum me-
chanics.

2.3.1. State Vector and Dirac Notation

It is important to realize that quantum mechanics is a linear theory in which physical state
of system is described by vector in complex linear vector space V. The vector in linear
vector space may represent free particle or particle bound in an atom or particle interacting
with other particles or with external fields. The state vector is much like vector in ordinary
three dimensional space, following many of the same rules, except that it describes a very
complicated physical system.

It is convenient that the mathematical structure of a quantummechanical system will be
presented in terms of notations proposed by Dirac.

A physical state in this notation is described by an abstract “ket” vector, | >, designated
variously as |o >, B >, |y >, |¢ >, and a ket with other appropriate symbols depending on
special problem at hand. The kets can be complex. Their conjugates, | >*, are designated
by < | which are called “bra” vector. The physical interpretation is derived through their so
called “representatives” in the coordinate or momentum space or in a space appropriate to
the problem under consideration. In this chapter all formulas, notations, and theorems are
independent of particular forms of state vector | >. From chapter 3 we will begin to seek
particular forms of state vector | > in various problems.

Using the Dirac notations, we can say that a complex linear vector space, V, is a collec-
tionof [A >, |[B>, ---,|Z>.

The dimensionality of the linear vector space can be finite (e. g., the spin) or discretely
(denumerably) infinite (e. g., the discrete bound state of hydrogen atom) or continuously
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(indenumerably) infinite (e. g., a free electron with momentum that takes continuous val-
ues).

The vectors |y > have the following important properties (Note that in our language:
state vector = state = vector = ket):

(1) o and c|a. >, where ¢ is a complex number, describe the same state.
(2) The bra vector corresponding to c|o. > will be ¢* < alf;
(3) The kets follow a linear superposition rule

alo> +b|p >=c|y >, (2.3.1.1)

where a, b, ¢ are complex numbers. That is, a linear combination of states in vector space
is also a state in the same space. This superposition rule corresponding to a very important
rule, which is called superposition theorem of state in quantum mechanics.

(4) The inner product (or scalar product or point product) of two states |o. > and | >
is defined as < B|o >, which is a complex number and not a vector. We demand that the
inner product obeys the following axioms:

o <Bloa>*=<af > (conjugate symmetry or skew-symmetry)

e <ajaa>>0if [ >#£(0>, =0 if |[o>=|0> (positive definiteness)

o <al(alp>+bly>)=<a|aB+by>=a<o|p>+b<aly>) (linearity in ket or
linearity in second argument)

Suppose that A and B are two vector in three dimensional coordinate space. The defini-
tion of inner product is equivalent to < A|B >= (A,B)=A-B = (A,A,A;) - (B, By,B;) =
AB.+A,B,+ A B,. From this definition of inner product you can verify that the above
three axioms of the inner product are satisfied. A vector space with inner product is called
inner product space.

(5) The two state vectors are orthogonal if
<alp>=0. (2.3.1.2)

(6) It is postulated that < A|A >> 0. One calls /< A|A > the norm or length of the
state vector |A >. If a state vector |A > is normalized to unity, then

<AlA>=1. (2.3.1.3)

This state vector is called normalized state vector. If the norm vanishes, then |[A >= 0,
in which case |A > ia called null vector.

(7) A set of d linearly independent vectors in the d-dimensional vector space can be
taken as a basis. Any vector in this space, |y >, can be expressed as

d
v >=Y ali>, (2.3.1.4)
i=1

where the vector |i >’s form a basis, and g; is called the component of vector |y > in
that basis. If the vector space is continuously (indenumerably) infinite dimensional space
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instead of finite or discretely (denumerably) infinite dimensional space, then the summation
in Eq. (2.3.1.4) is replaced by integration. If |i >’s are orthogonal, then a; =< i|y >. Itis
then stated that |a;|? is the probability that the state |y > will be in the state |i >. If

<ili>=1 for anyi and <i|j>=0 for any i#j, (2.3.1.5)

then |i >’s construct a orthonormal basis.

(8) A state vector may be depend on time, in which case one writes it as |i(z) >, |y(r) >,
etc. In the following, except when necessary, we will suppress the possible dependence on
time.

(9) The product |A > |B > has no meaning unless it refers to two different vector spaces,
e. g., one corresponds to spin, the other to momentum, or, if a state consists of two particles
described by |A > and |B > respectively.

(10) Since bra vectors are obtained through complex conjugation of the ket vectors, the
above properties can be easily extended to the bra vectors.

2.3.2. Hilbert Space

We have defined norm or length of vector |v >, which is denoted by ||v|| = |v| = /< v|v >.
A complete normed vector space is called a Banach space. We shall not deal with Banach
space, but only with those spaces whose norms arise naturally from an inner product. This
leads to the following definition: A complete inner product space, commonly denoted by
H, is called Hilbert space. Hilbert space can be finite dimensional or infinite dimensional.
The Hilbert space can be real or complex. According to the definition of norm [Eq.
(2.3.1.3)], every inner product space $) is a normed space.

(1) The Hilbert space is linear. A function space is linear under the following two
conditions: (a). If a is a constant and ¢ is any vector of the space, then a¢ is also an vector
of the space; (b). If ¥ and ¢ are any two vectors of the space, then W+ ¢ is also a vector of
the space.

(2) There is an inner (or “dot” or scalar) product, < y|0 >= (y, ), for any two vectors
in the Hilbert space. For functions defined in the interval a < x < b (if one dimension), we
may take

b
<yl >:/a dxy* . (2.3.2.1)

The inner product is strictly positive-definite, i. e., < ¢|¢ >= 0 implies ¢ = 0

(3) Any vector of # has norm (length) that is related to the inner product as
[(norm) (o f)(9)]> = [10]]> =< 9]¢ >.

(4) The Hilbert space # is complete. Every Cauchy sequence of function in H
converges to a vector of #. A Cauchy sequence {¢,} is such that ||0,, — ¢;|| — 0 as n and [
approach infinity. Loosely speaking, Hilbert space contains all its limit points.

In the following we give some examples [26, 28].

(1) A vector space V over R (R = real numbers) is a set whose elements (vectors) may
be “added” together, and “multiplied” by scalars. Many textbooks and this book sometimes
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like to express the vector in this space as X, Y, and so on. For example, an inner product (or
scalar product or dot product) on a vector space V over R (d numbers) associates to any
pair X =x;+xp+---+x4, Y =y1 +y2+---+yq of vectors in V a real number which we
denote by (X,Y).

(X,Y)=xiy1+- - +xqya. (2.3.2.2)

1X]| = (X, X)F = /3 4422, (2.3.2.3)

which is the usual Euclidean distance, or norm, or length. One often uses the notation |X|
instead of || X||.
(2) The set of functions defined on the interval (0 < x < @) with finite norm

Then

loll2= [ dxoo < (23.2.4)

(3) In applications Hilbert space has many concrete forms. The benefit of using one
particular concrete form rather than another is that certain operations may be easier to
handle or a calculation may be easier to perform.

One very useful class of concrete Hilbert space is that consisting of so called square
integrable functions. Let € be the real line R or an interval on R. Mathematicians uses
L2(Q) to denote the set of complex valued functions on Q for which the integral

/|f(x)|2dx is finite
Q

To be more precise, functions are required to be measurable and two functions are identified
if they are equal almost everywhere. With these conditions, £2(Q) is a separable infinite
dimensional Hilbert space equipped with an inner product [29]

<wm>:Ameh. (2.3.2.5)

Roughly speaking, £2(Q) is a separable infinite dimensional Hilbert space, which is a con-
crete form of Hilbert space and consist of square-integrable functions.

We recall that if two vectors U and V in three-dimensional vector space are orthogonal
to each other, then their inner product vanishes. In a similar vein, two vectors in Hilbert
space, ¢ and V, are said to be orthogonal if

<ylp>=0. (2.3.2.6)

Furthermore, we recall that the three unit vectors ey, ey, and e, can span a three dimensional
Cartesian space. Similarly, there is a set of vectors that spans Hilbert space. For instance,
the Hilbert space whose elements all have the property given by Eq. (2.3.2.5) is spanned
by the sequence of functions {¢,}, which are the (energy) eigenfunctions of a very simple
Hamilton operator. This means that any function ¢ in this Hilbert space may be expanded
in a series of the sequence {0, }.

O(x) = iand)n(x)- (2.3.2.7)
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The geometrical interpretation of Eq. (2.3.2.7) is as follows. The coefficient a,, is the
projection of ¢ onto the vector ¢,. Generally, we set that the basis vectors {0, } comprise
an orthogonal set. That is,

< Op|dw >=0 n#n'. (2.3.2.8)

Two functions ¢; and ¢, satisfied Eq. (2.3.2.8) are of orthonormality. Furthermore, ¢, ia a
unit vector, if it has unit length or unit norm

< 0ultn >= [0]2 = 1. (2.3.29)
Egs. (2.3.2.8) and (2.3.2.9) may be combined into a single equation
< O[O >= 8- (2.3.2.10)
The symbol 6, is called Kronecker d function and is defined by
SOnw=0 for n#n', S y=1 for n=n (2.3.2.11)

Any sequence of functions that obeys Eq. (2.3.2.10) is called an orthogonal set.
To show that a,, is the projection of ¢ onto ¢,, we first rewrite Eq. (2.3.2.7) by Dirac
notation.

M) >= Z’an/q)n/ > (2.3.2.12)
n/
Then we multiply from the left by |¢, > and use the relation Eq. (2.3.2.10).

< Onld >=Y < Oulawy >

=Y aw <0u|0w >=) 8w = ap (2.3.2.13)

Eq. (2.3.2.13) indicates that coefficient a,, is the inner product between the basis vector ¢,
and the vector ¢. Since ¢, is a “unit” vector, a, is the projection of ¢ onto ¢,. The reader
should recognize that Eq. (2.3.2.7) to be a discrete Fourier series representation of ¢, in
terms of, for example, the following trigonometric sequence.

On = \/gsin ("7“) : (2.3.2.14)

The eigenfunctions (or eigenvectors) of momentum operator p = hk:

1 ikx
x) = ——e™, 2.3.2.15
where k is a continuous variable other then the discrete number n in Eq.(2.3.2.14), can be
used to replace ¢,,.
Let us look if this (continuous) set of functions is an orthogonal set. Towards these ends
we form the inner product

1=
< O[Oy >=§/ dxe™ K = §(k' — k). (2.3.2.16)



42 Fu-sui Liu

Here, (k' — k) is called Dirac delta function [Refer to Eq. (2,3.6.10)]. It follows that the
inner product between any two distinct eigenvectors of the operator p vanishes.

Any function ¢(x) in L£> may be expanded in terms of the vector set {fi(x) =
1/(v/2m)exp(ikx)}. Since this sequence is a continuous set, the expansion is not a dis-
crete summation as in Eq. (2.3.2.7), but an integral. If ¢(x) is any vector (or, say, any
element) of £2, then since { fi(x)} spans this space, one may write

o(x) = /_ dea(k)q)k(x). (23.2.17)

This is the Fourier integral representation of ¢(x). The coefficient of expansions, ¢(k) is the
project of ¢(x) onto ¢x(x). To exhibit this fact, we first rewrite the last integral in the form

o >= [dea(k)|¢k > (2.3.2.18)

Again, if this equation is compared to Eq. (2.3.2.12), then we see how the summation over
discrete a, values is replaced by an integration over the continuum of ¢(k) values. If we
now multiply Eq. (2.3.2.18) from the left with < ¢p/|, there results

<qlo> = [ dk<ouldWge>= [ dkd(h) < gulor >
_ /Ndka(k)a(k’—k)za(k'). (2.3.2.19)

The coefficient of expansion (k') is the inner product between ¢y and ¢.
If X and Y represent two continuous functions in Hilbert space, defined at infinitely
large interval, then Eq. (2.3.2.1) becomes

(X,Y) z/ dTX*Y. (23.2.1)

2.4. Fourier Transformation

2.4.1. Integration of Functions on Real Line

We begin by extending the notion of integration to functions that are defined on the whole
real line. The integral of a continuous functions over R, where R means real numbers, is
[26]

/_o;dxllf(x) :Allﬂ/_];dxw(x). (2.4.1.1)

A useful condition for correctness of Eq. (2.4.1.1) is as follows:
A function y defined on R is said to be of moderate decrease if y is continuous and
there exists a constant A > 0 so that [26]

lw(x)| < T for all x e R. (2.4.1.2)

This inequality says that y is bounded (by A for instance), and also that it decays at infinity
at least as fast as 1/x2, since A/(1+x?) < x>. For example, the function ¥(x) = 1/(1 +
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|x|") is of moderate decrease as long as n > 2. Another example is given by the function
exp(—alx|) fora > 0.

We shell denote by M (R) the set of functions of moderate decrease on R. M (R) forms
a vector space over C, which denotes complex numbers.

2.4.2. Definition of Fourier Transform

Suppose that y(x) € M (R). We define its Fourier transform for k € R by

V(k) = \/Lz_ﬂ /R dxy(x)e = V%? [ " dry(e ™ (2.42.1)

Of course, |exp **| = 1, so the integrand is of moderate decrease, and the integral makes
sense. However, nothing in the definition above guarantees that y(k) is of moderate de-
crease, or has a specific decay. In particular, it is not clear in this context how to make sense
of the integral [, dkW(k)exp(ikx) and the resulting Fourier inversion formula. To rem-
edy this, people often introduce a more refined space of functions considered by Schwartz
which is very useful in establishing the initial properties of the Fourier transform [26]. More
discussions on the restrictions for Fourier transform can be found in Ref. [27].

This book does not introduce the Schwartz space. We give an additional assumption
that the Fourier transform of the function under consideration is of moderate decrease [26].
This assumption, although modest in scope, is nevertheless useful [26].

Theorem of Fourier inversion. If the Fourier transform is defined by Eq. (2.4.2.1), then

1 ~ 7 ikx
w(x) = T 1 Ndk\p(k)ek . (2.4.2.2)

Proof. Substituting Eq. (2.4.2.1) into Eq. (2.4.2.2) yields

\/%_n /_(>o dk\/%—n /_oo dx'y(x)e ¥ o = /_oo dx'y(x)8(x —x') = y(x).
QED.

2.5. Mathematical Uncertainty Relations

2.5.1. Demonstration

In this section we will prove two mathematical uncertainty relations, and introduce some
applications of these uncertainty relations. From the wavepacket-only theory in chapter 3
we will see that the two mathematical uncertainty relations in this section correspond to two
(physical) Heisenberg uncertainty relations in many Heisenberg uncertainty relations.

Define a new quantity, variance (which is also called mean-square deviation), of coor-
dinate x as follows:

)

(Ax)> =< (x— < x )% >= / (r— < x >)?|y(x) [2dx, (2.5.1.1)

—o0
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where < x > represents the average value of x in the function € M (R). For convenience,
we assume that y(x) is normalized:

/ dx|y(x)|> =1, (2.5.1.2)
The Fourier transform of y(x) is
(k) = \/% [ wdxw(x)e*”‘x, (2.5.1.3)

Of course, we can define the variance of k:
:/ dk(k— < k>)?[g(k)|?, (2.5.1.4)
where < k > represents the average value of k in the the Fourier transform y(x).

Theorem of uncertainty relation. If y(x) is a normalized function in M (R), then

1
(Ax)2(Ak [/ dx(x— < x>)2|y(x yz] V dk(k— <k > [FR)P| = .
(2.5.1.5a)
Ax-AkZ%, (2.5.1.5b)
and equality holds if and only if y(x) = A x exp(—Bx?) where B > 0 and A> = /2B/x.
Proof. At first we prove that the following equation is same as Eq. (2.5.1.5).
* * 1
([ astorive) ([ antoror) = (25.16)
We prove a property of Fourier transform:
If
Y(x) — eyt <x>),
then '
(k) — Pk+ < k >)elkr<k>)<x>, (2.5.1.7)

The method to prove Eq. (2.5.1.7) is same as that for Eq. (2.4.3.2). Making the transforma-
tion of Eq. (2.5.1.7) for Eq. (2.5.1.6) and changing variables, we can obtain Eq. (2.5.1.5).
Therefore, we just need to prove Eq. (2.5.1.6).

Beginning with our normalizing assumption [ dx|y(x)|> = 1, and assuming that y(x)
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and ' (x) = dy(x)/dx are moderate decreasing, an integration by parts gives

1= [ advp

= / dxx—|\|! /dxx— x)y(x)

= /_ dx (x\l/ —|—x\|/ ) (2.5.1.8)
2 [ mdxlxllw(x)llu/(x)l

2( [ aveiyo?) % (/- dx\w’(x)\z)% 25.19)
= 2/ sy ) ([ gy —w(x))%
- z(/_idxxzwxﬂf

([ s [ cneon [ s
ST |2> (/@i [~ avww)aose—i)
= dexﬂw(xw)f (f dekZW(k)\2>%~ (2:5.1.10)

The equality Eq. (2.5.1.9) follows because the Cauchy-Schwartz inequality proves in
subsection 2.3.2. The equality Eq. (2.5.1.10) follows from the properties of Fourier
transform. Here we concludes the proof of the inequality in the theorem. QED.

IN

IN

If the equality in Eq. (2.5.1.6) holds, then we must also have equality where we applied
Cauchy-Schwartz inequality, and as a result we find that W' (x) = Bxy/(x) for some constant
B. The solutions to this equation are y(x) = Aexp(Bx?/2), where A is a constant. Since
we want Y to be a function € M (R), we must take f = —2B < 0, and since we impose the
normalized condition, we find that A> = /2B/m, as was to be shown.

Let us explain qualitatively that why is < x > our best guess of the position of the
particle? Consider the simpler (idealized) situation where we are given that the particle
can be found at only finitely many different points, x, x3, ---, xy on the real axis, with
p; the probability that the particle is at x;, and p; + p» + p3 +---+ py = 1. Then, if we
knew nothing else, and were forced to make one choice as to the position of the particle,
we would naturally take < x >= nyzl x;pi, which is the appropriate average of the possible
position [26].

Let us define the uncertainty. Having determined that the average position of a function
(vividly speaking, a particle or a wavepacket) is < x >= X, the resulting uncertainty is
defined by the quantity Ax = /(< x— < x >>)2. Notice that if y is highly concentrated
near < x >, it means that the larger part of the function is near < x >, and so Ax is small,
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because most of the contribution to the integral takes place for values of x near < x >. Here
we have a small uncertainty. On the other hand, if y(x) is rather flat (that is, the position
probability density of single particle is not very concentrated), then the integral in Ax is
rather big, because large values of (x— < x >)? will come into play, and as a result the
uncertainty is relatively large.
It is also worthwhile to observe that the average value of < x > is that choice, for which
the uncertainty .
/ (x— < x >)*y(x)|2dx (2.5.1.11)
is the smallest [26]. Indeed, if we try to minimize this quantity by equating to 0 its derivative
with respect to < x >, we find that

z/jodx(x— <x>)|w)[*=0, (2.5.1.12)

which gives < x >.
If a function y(z) of time and its Fourier transform () (® represents angular fre-
quency) are € M (R), then the theorem can be expressed as

@aof = | [~ <o=PivP| | [ doe- <o>Po)] > (%)

(2.5.1.13)
and equality holds if and only if y(¢) = A x exp(—Bt?) where B > 0 and A> = \/2B/.

Eq. (2.5.1.13) can be called time-frequency uncertainty relation.

2.5.2. Applications of Mathematical Uncertainty Relations

To remove the mysterious feeling to the Heisenberg (physical) uncertainty relations,
introduced in chapter 3, we give the following examples to show that even a purely
mathematical uncertainty relations have many applications in practices, i. e., in our
everyday life we already can meet with may things, which are determined by mathematical
uncertainty relations proved here. We hope that after reading these examples, physicists
and students do not feel mystery for the Heisenberg physical uncertainty relations. Physical
uncertainty relations are merely a characteristic of any functions € MR in essence, and
appear in many classical things.

(1) Television and radio broadcasting [30]. The broadcasting uses electromagnetic ra-
diation, with each television or radio channel being broadcast in a narrow range, or band,
of frequencies (Not at a particular frequency, as is often considered the case). So, for ex-
ample, a particular radio station may be using the frequency band from 900 to 910 KHz,
corresponding to a range of @ from 5.65x10%/sec to 5.71 x 10%sec. The mean angular
frequency of broadcast signal must be about 5.68x10%sec. The spread must be less than
0.03 x 10%/sec. From the uncertainty relation we obtain that Ar > 17 x 1076 second. In other
words, the radio station cannot transmit a signal which lasts less than 17us. This sounds
like a very short signal. But a long signal is merely many short signals transmitted succes-
sively. Thus, 17 us is a limit on the time resolution of the transmitted signals. The station
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can transmit no signal with any detail finer than 17 us. Now in order to get reasonably
good sound reproduction, the system must be able to transmit pitches as high as the ear can
hear, which is around 20 KHz. A sound wave at this frequency has a period of 50 us: just
three times the resolution limit of a signal. There is barely room in the frequency band for
a good signal [30]. Television systems are even more demanding. Existing European tele-
vision tubes make up their pictures from 625 lines, scanned 24 times a second. For a good
picture, the lines must be able to change sharply in brightness over 1/300 of their length,
corresponding to a picture resolution of about 2 mm for a large screen. Thus the television
signal must have a time resolution of not worse than 1/(24 x625x300) second, or 0.2 us.
Indeed for a color signal, three separate lines are sent concurrently—for red, green, and blue
picture elements—so the time resolution must be divided by 3. The bandwidth of television
broadcasts must be corresponding large.

(2) The mathematical uncertainty relation of frequency(f)-time(¢), Eq. (2.5.1.12) (0 =
f/(2m)), has been used in practice as well. For example, Piano tuner has exploited it for
centuries. Piano tuner sounds a vibrating tuning fork of standard frequency in union with
a piano note of the same nominal frequency and listens to a beat tone between the struck
tune and the tuning fork. If a fork frequency f is 500 Hz and a string frequency f’ is 501
Hz, then one beat tone will be heard per second. The goal of the piano tuner is to reduce
the number of beats as much as possible. For example, if the piano tuner tries to achieve
an accuracy of Af = 0.01 Hz, then the piano tuner will wait for at least 314 second to be
sure no beat had occurred. Piano tuner therefore relies on our mathematical frequency-time
uncertainty relation, which clearly means that measurement of the frequency with infinite
accuracy requires a infinite time period of measurement, or equivalently, it is impossible
within any finite period of time to determine the frequency of the string exactly.






Chapter 3

Wavepacket-Only Theory

3.1. Introduction

The historical experiences and lessons are worthy to notice. Let me tell you a long story on
processes of exploration of mankind for the innate character, intrinsic quality, and motion
of nature and object. This story can be traced back to remote antiquity [31].

The move towards a rational understanding of nature and object began at least since the
book of Shangshu of ancien China (1066-771 BC). In this book the five elements (metal,
wood, water, fire, and earth) held by the ancients to compose the physical universe and later
used in traditional medicine to explain various physiological and pathological phenomena.

During the Vedic period (1100-500 BC), Indians (Indo-Aryans) had classified the ma-
terial world into five elements: Earth (Prithvi), fire (Agni), air (Maya) and water (Apa), and
ether (Akasha). According to some scholars these five elements or pancha mahabhutas were
identified with the various human senses of perception; earth with smell, air with feeling,
fire with vision, water with taste and ether with sound. The Buddhist philosophers who
came later, rejected ether as an element and replaced it with life, joy and sorrow. In In-
dian philosophy, Kanada was the first to systematically develop a theory of atomism during
the 6th century BC, and it was further elaborated on by the Buddhist atomists Dharmakirti
and Dignaga during the 1st millennium CE. Pakudha Kaccayana, a 6th century BC Indian
philosopher and contemporary of Gautama Buddha, had also propounded ideas about the
atomic constitution of the material world. These philosophers believed that other elements
(except ether) were physically palpable and hence comprised miniscule particles of matter.
The last miniscule particle of matter which could not be subdivided further was termed
Parmanu.

The move towards a rational understanding of nature and object began at 650 BC-480
BC with the Pre-Socratic philosophers in Greece. The philosopher Thales (7th and 6 cen-
turies BC), dubbed “the Father of Science” for refusing to accept various supernatural, reli-
gious or mythological explanations for natural phenomena, proclaimed that every event had
a natural cause. Thales also made advancements in 580 BC by suggesting that water is the
basic element, experimenting with magnets and attraction to rubbed amber, and formulat-
ing the first cosmologies. Anaximander, famous for his proto-evolutionary theory, disputed
the ideas of Thales and proposed that rather than water, a substance called apeiron was the
building block of all matter. Heraclitus (around 500 BC) proposed that the only basic law
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governing the universe was the principal of change and that nothing remains in the same
state indefinitely. This observation made him one of the first scholars in ancient physics
to address the role of time in the universe, one of the most important concepts even in the
modern history of physics. The early physicist Leucippus (first half of 5th century BC)
adamantly opposed the idea of direct divine intervention in the universe, instead proposing
that natural phenomena had a natural cause. Leucippus and his student, Democritus, were
the first to develop the theory of atomism-the idea that everything is composed entirely of
various imperishable, indivisible elements called atoms.

Aristotle (384 BC-322 BC) promoted the concept that observation of physical phenom-
ena could ultimately lead to the discovery of the natural laws governing them. Aristotle’s
writings cover physics, metaphysics, poetry, theater, music, logic, rhetoric, linguistics, pol-
itics, government, ethics, biology and zoology. He wrote the first work which refers to that
line of study as “Physics” (Aristotle’s Physics). Aristotle attempted to explain ideas such as
motion (and gravity) with the theory of four elements. Aristotle believed that all matter was
made up of aether, or some combination of four elements: earth, water, air, and fire. Ac-
cording to Aristotle, these four terrestrial elements are capable of inter-transformation and
move toward their natural place, so a stone falls downward toward the center of the cosmos,
but flames rise upward toward the circumference. Eventually, Aristotelian physics became
enormously popular for many centuries in Europe, informing the scientific and scholas-
tic developments of the Middle Ages. It remained the mainstream scientific paradigm in
Europe until the time of Galileo Galilei and Isaac Newton.

Important contributions were made by Ibn al-Haytham (965-1040 AD), a mathemati-
cian from Basra, Iraq considered one of the founders of modern optics. Ptolemy and Aristo-
tle theorised that light either shone from the eye to illuminate objects or that light emanated
from objects themselves, whereas al-Haytham (known by the Latin name Alhazen) sug-
gested that light travels to the eye in rays from different points on an object. The works
of Ibn al-Haytham eventually passed on to Western Europe where they were studied by
scholars such as Roger Bacon and Witelo.

Based on Aristotelian physics, Scholastic physics described things as moving accord-
ing to their essential nature. Celestial objects were described as moving in circles, because
perfect circular motion was considered an innate property of objects that existed in the un-
corrupted realm of the celestial spheres. The theory of impetus, the ancestor to the concepts
of inertia and momentum, was developed along similar lines by medieval (about 1100-1400
AD) philosophers such as John Philoponus and Jean Buridan. Motions below the lunar
sphere were seen as imperfect, and thus could not be expected to exhibit consistent motion.
More idealized motion in the sublunary realm could only be achieved through artifice, and
prior to the 17th century, many did not view artificial experiments as a valid means of learn-
ing about the natural world. Physical explanations in the sublunary realm revolved around
tendencies. Stones contained the element earth, and earthy objects tended to move in a
straight line toward the center of the earth (and the universe in the Aristotelian geocentric
view) unless otherwise prevented from doing so.

From 200 BC until 1500 AD, China was the world’s most technologically advanced
society.

During the 16th and 17th centuries, a large advancement of scientific progress known
as the Scientific Revolution took place in Europe. Dissatisfaction with older philosophical
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approaches had begun earlier and had produced other changes in society, such as the Protes-
tant Reformation, but the revolution in science began when natural philosophers began to
mount a sustained attack on the Scholastic philosophical program and supposed

Let me state in more detail the story on the understanding the light and the matter from
about more than 300 years ago up to now.

The particles or waves, that the matter and light are, have formed the two poles between
which the imagination of physicists has worked. During the three centuries from the end
of seventeenth century to 2012, a long struggle had taken place in physics, sometimes ac-
rimoniously, over how to think the world. Newton, for example, thought of the universe in
terms of particles.

Newton said: “It seems probable to me, that God in the beginning formed matter in
solid, massive, hard, impenetrable, movable particles, of such sizes and figures, and with
such other properties, and such proportion to space, as most conduced to the end for which
he formed them... [32].”

On Newton’s model, everything was particle. Newton contended in 1672 that light was
made up of individual particles. In opposition, other physicists felt that part-and perhaps
all-of the world could not be so described. They developed a model that emphasized the
smooth, unbroken, character of nature, creating a continuum mechanics in which wave
phenomena find a natural account. Light above all, with its host of interference effects,
seemed especially amenable to a continuum treatment. For example, Hooke (who was
utterly despised by Newton) wrote on the wave-like properties of light. In 1801, Thomas
Young’s double slit experiment demonstrated the wave-like property of light, analogous to
sound waves in air, or water waves in a pond.

By 1900 the world of physics was neatly divided into two domains, particle dynam-
ics versus continuum dynamics: particles versus waves, for short. Baseballs and pebbles,
on one hand, were particles, obeying the laws of discrete mechanics. Light and sound,
on the other hand, were waves, running through the unfragmented media in ether and air.
In skipping pebbles at the beach, particles meet waves-but a much more significant meet-
ing between them took place at the dawn of the twentieth century, with birth of quantum
mechanics.

Einstein (1905) revisited the theory of light acting as a particle to resolve conflicts be-
tween the wave theory of light and certain experimental results such as the photoelectric
effect. The initial steps were taken by Planck and Einstein, who suggested that black body
radiation and the photoelectric effect were better explained if one thought of light as par-
ticle in character. But the real shock came later, when de Bloglie made the even bolder
suggestion that matter particles could behave like waves. During the early decades of this
century, when the quantum theory was being developed, the evidence for the matter waves
was meager. But by to day, with many new experiments, the evidence has become utterly
compelling.

Now many physicists accept the viewpoint of “wave-particle duality”, which says that
light, atom, neutron, and so on have both wave property and particle property. The wave-
particle duality looks like to be an indubitable “fact”. On that how to understand and to
visualize the wave-particle duality different viewpoints are possible.

We list the following two opposite viewpoints.
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(1) The quantum mechanics is incomplete. This viewpoint thinks that the reason, that
the concepts on the wave-particle duality and so on in quantum mechanics are difficult
to be understood, is in the incompleteness of quantum mechanics. Throughout his life,
Einstein never accepted the quantum mechanics. He consistently argued that the theory has
failed us in an essential respect. Surely something is going on these experiments, he would
have claimed, some remarkable processes that accounts for each particle’s strange behavior.
Quantum mechanics has not told us what that process is, and it is our wish to search for an
understanding of this “something”. According to Einstein’s viewpoint, quantum mechanics,
while perfectly adequate so for as it does, simply does not go far enough. It is not telling us
everything we demand of a good theory. The quantum mechanics is incomplete.

(2) The quantum mechanics is complete. Bohr championed an opposing viewpoint.
According to him, particle interference experiments present us with a state of affairs that
is quite literally incomprehensible, at least if we are restricted to conventional ways of
thinking. While we naturally wish to build in our minds a picture of the behavior of the
particles used in the experiments, we are not going to get our wish-not because we have
not yet found the right means, but because the atomic world simply cannot be approached
in this manner. Mental pictures draw their elements from our sense world, but nothing
like the quantum world has ever appeared to our senses, so how can we expect to make
a suitable image if it? Up to the point of the development of scientific knowledge, it has
always been possible, to a greater or lesser degree, to build in our minds a visualization
image of the working of the world. But, according to Bohr’s view, we are now presented
with a situation in which such visualization is impossible.

The debate over the completeness of quantum mechanics continued throughout Bohr’s
and Einstein’s lives. Now many physicists think that [35]: “In entering the atomic realm,
we have entered a world in which our very ideas of what human knowledge can achieve
need revision. Reality can no longer be thought of in the terms we have become used to;
new terms need to be invented. Any theory that seeks to comprehend in classical terms
what has been going on in our experimental apparatus is guaranteed to fail.” Now one new
viewpoint exists that would account for the wave-particle duality, which says that electrons,
neutrons, atoms, and light are not really behaving in an incomprehensible manner after
all. Rather, as they travel towards the experimental apparatus they sense its setup, and
they adjust their nature accordingly. If they sense an experiment capable of demonstrating
interference (for example, two slit interference), they become waves. But if they sense one
capable of demonstrating particle property, they become particles. We might refer to such
a viewpoint as a conspiracy theory of physical reality [35]. The quantum mystery which
cannot go away (in Feynmans words) of “wave-particle duality” is illustrated in a striking
way by the delayed-choice experiment suggested by Wheeler.

In 2000, Kleppner and Jackiw wrote: “Quantum theory is the most precisely tested and
most successful theory in the history of science.” [34] Although quantum theory got so great
success, but many principles and concepts of quantum mechanics, such as wave-particle
duality, the statistical interpretation for the wavefunction, Heisenberg uncertainty relations,
measurements and so on, contradict seriously with people’s everyday life. Therefore, it is
difficult to accept these principles and concepts. Bohr said: “Anyone who is not shocked by
quantum theory has not understand it.” Feynman exhorted us: “We should always keep in
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mind the possibility that quantum mechanics may fail, since it has certain difficulties with
philosophical prejudices that we have about measurement and observation.”

Let me tell you briefly that how does the story on the understanding properties of the
light and the matter (including both the small quark and big universe) continue in our
“Quantum Mechanics upon Theorems”. We list briefly the following six conclusions,
proved exactly by the wavepacket-only theory in this textbook. The detail explanations
will be given in whole textbook, especially, in chapters 3, 4, 5, 9, and 10. The basic
contents, based on quantum mechanics both upon theorems and upon postulates are the
same. In the following we well illustrate the differences between the quantum mechanics
upon theorems and classical mechanics and between quantum mechanics upon theorems
and upon postulates. The main difference between quantum mechanics upon theorems
and upon postulates is merely in that the latter’s quantum mechanics needs to invoke
hypotheses, postulates, axioms, assumptions, guesses, and principles; on the contrary, the
former firmly establishes quantum mechanics upon a series of theorems and corollaries,
and one law. (In our language, wavepacket-only theory contains quantum mechanics upon
theorems, and might contain other as well.)

(1) As is well known, classical mechanics describes any object by using both coordi-
nates and momenta at the same time. However, one theorem of wavepacket-only theory
proves that any object can only be described by either coordinates or momenta, and cannot
be described by both coordinates and momenta at the same time. Readers might feel that
this difference is negligible, and is of no a wee bit of importance. Actually, it is not so!
One theorem of wavepacket-only theory proves that the sole watershed between classical
mechanics and quantum mechanics is just in this difference “apparently looking like can be
neglected”. All the marvelous phenomena, such as wave-particle duality, energy quantiza-
tion, uncertainty relations, come merely from description for any object by (r,7) or (p,t)
other than (r, p,t). Vividly speaking, the difference between the quantum theory and the
classical theory is merely in that one cannot or can set foot (=wavepacket=object) on two
boats (=coordinates and momenta).

(2) Taking the above difference as a staring point, the wavepacket-only theory proves
that the wavepacket as a spacetime function consists of body-factor and guide-factor, the
body-factor brings all the mass, energy, momentum, spin and so on of the object, the guide-
factor is just a mathematical function, which is called wavefunction, does not brings any
substance, serves merely as a guide of object’s motion. The guide of the guide-factor has
equiprobability symmetry, and every time motion of body-factor is a time of spontaneous
equiprobability symmetry breaking. In contrast to the wavepacket-only theory, the classical
theory cannot give these two factors for object.

(3) Taking this difference as a staring point, the wavepacket-only theory proves commu-
tation relations between coordinate and momentum instead of the Poison bracket in classical
mechanics. In quantum mechanics upon postulates, the commutation relation is a hypoth-
esis or postulate. If you ask that why can the quantum mechanics make this hypothesis?
Some references’s answer is: “Because it fits indirectly experimental facts”.

(4) Taking this difference as a staring point, the wavepacket-only theory can prove ex-
actly all the three formulations of quantum mechanics (Heisenberg matrix, Schrédinger
wave equation, Feynman path integral). From these three quantummechanical formula-
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tions, further one can prove the energy quantization of bound state, the periodic table of
elements, and so on. On the contrary, the classical theories can only derive the Newton
equation from Poison bracket.

(5) Although the wavepacket-only theory proves, for example, Schrodinger equation,
but Newton mechanics is not wrong. The latter can be used as an approximate theory for
objects with large scale, high energy, and large mass. (This chapter will give a criterion for
classical or quantum mechanics). In this aspect, we recall the special theory of relativity.
When we have classical relativistic mechanics, we still say that the classical Newton me-
chanics is an approximate theory. For example, we say that if the velocity of object is not
too high, then the classical Newton mechanics is still a good enough approximate theory.

(6) Although the basis of wavepacket-only theory is very simple (Just that, any objects,
including both the massless photon and the massy particle, connect with mathematical
functions only of either spacetime variables or momentum-time variables.), but its inten-
sions are very plentiful. The quantum mechanics based on wavepacket-only theory can
explain all the experimental facts, including that the until now quantum mechanics can and
cannot explain, and gives a clear picture of wave-particle duality of any objects. Based on
many theorems and analyses for experimental facts, wavepacket-only theory establishes a
law, which states that the motion of any object accepts guide of the guide-factor according
to spontaneous equiprobability symmetry breaking. From this law, the wavefunction
(=guide-factor) represents a probability amplitude, which is exactly the same as that
accepted by all physicists, and the wavefunction describes an individual object, which is
different from some references’s viewpoint (Some references think that the wavefunction
describes an ensemble of particles. Although Ref. [22] mad an effort to start from ensemble
interpretation of wavefunction to argue that wavefunction still represents individual object,
yet it is not successful.). Both this textbook and many textbooks and references believe that
“The God plays dice”. However, Einstein said: “I do not believe that the God plays dice.”

This chapter has the following arrangement. At first, we prove a theorem which de-
notes that in nature there is a universal constant, which’s dimension is (energy xtime). For
memory, we call this constant Planck constant. As a corollary we prove that how to under-
stand correctly the de Blohlie matter wave, i. e., the wave-particle duality. We extend the
two simple mathematical uncertainty relations, proved in section 2.3 of chapter 2 by math-
ematicians, to more general forms. Combining these mathematical uncertainty relations
and the de Bloglie wave corollary and energy-frequency corollary, we prove all Heisenberg
(physical) uncertainty relations. In the mean time, we prove some theorems on the operator
representation of observable and on the commutation relation between canonical conjugate
variable pair. Then, we prove a series of theorems, such as the wavepacket composition
theorem. Then, we try to use these theorems to explain all known experimental facts, which
the old quantum mechanics can or cannot. Basing on many theorems and analysis for large
number of experimental facts, spontaneous equiprobability symmetry breaking motion of
object is established as a law. Then we prove that the guide-factor of wavepacket obeys
a wave equation, which is called Schrodinger equation for memory. Although our deriva-
tion of Schrodonger equation is completely different from the derivation of Schrédinger in
1926, but for the readers’ interest we introduce the Schrodinger’s work in 1926 and other’s
approaches to obtain Schrodinger equation. Subsequently, we address and discuss the prop-
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erties of Schrédinger equation.
In this introduction it is appropriate to write O-th theorem.

Theorem 0: Watershed theorem. There is only one watershed between classical and
quantum mechanics. If one describes any object by using both coordinates and momenta at
the same time, then this is classical mechanics. If one describes any object by using either
coordinates or momenta, and not by both at the same time, then this is quantum mechanics.

Would readers please finish proof for this theorem after learning all this textbook.
This chapter is the center of quantum mechanics upon theorems. If you understand this
chapter, then you have understood quantum mechanics basically.

3.2. Existence of Universal Constant

Theorem I: Existence of universal constant. The dimension of product of canonical
coordinate and canonical conjugate momentum is always (energy x time). In nature there
is a universal constant, which’s dimension is (energy x time). For memory, we call this
constant Planck constant, and is expressed by /i = h/2n. (Note that the dimensions of
angular momentum and action are (energy x time) as well.)

Proof. For that it is easy to be understood by readers, we use the following four steps to
prove this theorem. (For the proof one can refer to Ref. [25], although Ref. [25] does not
give this theorem.)

(1) First step. We prove that dimension of product of canonical coordinate and canonical
conjugate momentum is (energy x time). This conclusion can be proved directly from the
definition of canonical conjugate momentum. From section 2.2 in chapter 2, we know

oL

P 5 (3.2.1)

where g; and p; are the i-th canonical coordinate and canonical conjugate momentum, re-
spectively. In Eq. (3.2.1), the dimension of Lagrangian is (energy), the dimension of ¢; is
(canonical coordinate/time). Therefore, the dimension of product of canonical coordinate
and canonical conjugate momentum is (energy x time). We use & to denote a constant with
dimension energy X time.

(2) Second step. We prove that the / is a universal constant. The Lagrangian is a
function of coordinates s;, velocities s; (i = 1,2,3,---,D), and time t. We call this the
s-system. According to definition, the canonical conjugate momentum in s-system is

oL

P= .
"0

(3.2.2)

Let (91,92,93, -+ ,qp) be any set of D independent variables, which we will call the g-
system, such that theirs values completely specify all of the s-system values, and vice versa.
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We write each of the s;, fori = 1,2,---,D, as a function of these ¢ variables and possible
also time ¢,

Si:Si(qlana"'anat)' (323)
Under some conditions we have inverse relations for j = 1,2,---,D,

q; =q;(s1,82, -+ ,5p,1). (3.2.4)

The canonical conjugate momentum p; of canonical coordinate g; is defined

) oL
pj = Pj(‘]a%t) = g
j

2 aL(Sajat) aji(qat)

= 0s; 9g;
%, 0 dsi(q,t)dq; 9si(q,t)
- 1_213£< oq di T o
D dsi(q,t)
= P; LAy 3.2.5
l; %; (3.2.5)
Similarly,
D 9q;(s,1)
= . 2.
P, kglpl 3, (3.2.6)

Using Egs. (3.2.3) and (3.2.5), with the notation for a differential at fixed time with & = 0,
the chain rule gives

;PJSQJ = Z(Z a;t)>8qj

Jj=1

= i (): aq, ) ZPﬁsl (3.2.7)

i=1

We define a constant 7/ for g-system, p; = I'k;, and a constant A" for s-system , P; =
h"K;. Substituting these definitions into Eq. (3.2.7) yields

D D D D
Z pidq;=n Z kidq; = ZPl-Ssl- = h”ZKl-Ssi. (3.2.8)
j=1

j=1 i=1 i=1

Because g-system is an arbitrary coordinate system, and K;, k; are not definite completely,
we can set that i’ = h” = h in Eq. (3.2.8). Then, we have

D D
Y kidg; =) Kids;. (3.2.9)
j= i=1

(3) Third step. We prove that 7 is a universal constant even we take time as a coordinate.
Often, the time’s role is as a background parameter. Now, we take the time as a coordinate.
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This means that time is removed from its role as a universal background parameter, and
elevated to the status of a generalized coordinate with gg = t. When time is a coordinate,
the path of particle must be specified by introducing a new background parameter, which is
denoted by B [25]. The particle will trace out of a path in an augmented (D + 1) dimensional
configuration space defined, for all j =0,1,2,---,D, by writing the equations of motion as
q; = q;(B), including g9 = ¢o(B) which is the same as t =¢(3).

The dimensions of canonical coordinate gg and sg are time. The dimensions of canonical
conjugate momenta py and Fy are:

dL(4,4;1)

= —H(q,4,1), 3.2.10
240 (4:4,1) ( )

Po (Qaq) =
which denotes that canonical conjugate momentum corresponding to time coordinate is
Hamiltonian with minus sign.

We define a constant /2’ for g-system that pg = k'@, and a constant /" for s-system that
Py = h"€y. Then, we can prove i’ = i’ = h by the similar method as that in point (2).

(4). Fourth step. Due to go and sq are time, and py and Py are energy, The points (2)
and (3) show that the 7 is a universal constant even we take time as a coordinate and energy
with minus sign as canonical conjugate momentum [25]. QED.

Corollary I: Momentum and energy. Momentum p = hk. Energy £ = h®. The
dimensions of k and w are 1/length and 1/time, respectively.

Proof. This proof is simple and direct.

From theorem I we have:

(canonical coordinate x canoniucal conjugate momentum/h)

is a quantity without dimension, and the dimension of

(canonical conjugate momentum/A) is the inverse of the dimension of (canonical coor-
dinate). Therefore, we have the following conclusion:

If g; represents the canonical coordinate, for example, the length x, then the correspond-
ing canonical conjugate momentum is p; = p = hk, where k is called wavenumber, and its
dimension is 1/length. At this stage, we cannot say more about the physical meaning of k.

If go represents the canonical coordinate, for example, the time ¢, then the corre-
sponding canonical conjugate momentum is po = —E = —®h, where o is called angular
frequency, and its dimension is 1/time. At this stage, we cannot say more about the ®.
QED.

Note that from theorem I we still do not know how to determine the value of the con-
stant. At this stage we just know that, for example, if p = hk, p = mv, is momentum of
x direction, then the dimension of k is 1/lengthand if energy E = hw, then the dimen-
sion of @ is 1/time. After establishing the wavepacket law in subsection 3.4.7, we prove a
corollary, according to which we know k represents the average wavenumber of a particle
(particle=wavepacket). The average wavenumber of a particle can be determined by exper-
iments. Of course, the momentum of a particle can be determined. Thus, from p = hk the i
is determined. Similarly, we can determine / from E = h®. The present most precise value
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is h = h/(2m) = 1.05457266 x 10727 erg-second. One often calls & and & Planck constant
for memory. Some books also call % the reduced Planck constant.

3.3. Uncertainty Relations

3.3.1. General Theory of Fourier Transformation
3.3.1.1. Four Dimensional Spacetime

Take mathematical function of spacetime, W¥(r,7) € M (R) as wavepacket-function. This
wavepacket-function can be made Fourier expansion. Considering theorem I in last section,
we know that the product of canonical conjugate variable pair, i. e., canonical coordinate
and canonical conjugate momentum, divided by £, is without dimension. Therefore, we
can take the canonical conjugate variable pair in analytical mechanics as the variable pair
in Fourier transformation. We take the plane wave as

ei(p-rJrPot)/h _ ei(p-rfEt)/h = ei(k-rfmt)’ (3'3'1'1'1)

where k is called wavevector (or wavenumber vector), and ® is called angular frequency.

1 Fee — :
W(rt)=Y(x,y,2,1) = e dkd ¥ (k,m)e' k7=, (3.3.1.1.2)
i I} 1 e —i(k-r—oor)
lP(k,(O) :‘P(kx,ky,kz,m) = W - drdt‘P(l’,t)e . (33113)

The notations, dr and dk, when they follow an integral symbol, are merely shorthand no-
tations for dr = dxdydz and dk = dk,dk,dk;, and the single integral signs preceding drdt
and dkdw are shorthand for integrals over all 4-D spacetime and 4-D wavevector (k, ®),
respectively.

I
¥(rt)= o). do¥(r,m)e . (3.3.1.1.4)
w w 1 oo iot
‘P(r, (,0) = lP(x,y,Z,O)) = W - dth(l’,t)e . (33115)
1 tee w izk,
¥(rt)= e ) di;¥ (x,y,k,t)e™. (3.3.1.1.6)
_ 1 oo i
lP(X,y,kZ,t> = W/_oo dz‘I—’(x,y,z,t)e i <, (33117)

The function in Eq. (3.3.1.1.2) is called wavepacket or wavepacket-function in 4 dimen-
sional spacetime. [We would like to stress that quantum mechanics does not need to know
the particular or special forms of the wavepackets (=wavepacket-functions) at all. The solu-
tions of Schrodinger equations are called wavefunctions, which is also called guide-factors.]
The function in Eq. (3.3.1.1.3) is called a wavepacket in four wavevector (or, momentum)
space or Fourier transform of ¥(r,7). Because ik = p, and p represents momentum, we
also call the function in Eq. (3.3.1.1.3) a wavepacket in four momentum space. Similarly,
we can also define a time function and its Fourier transform (frequency function).
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3.3.1.2. Phase and Number of Plane Waves

We show that the number of plane waves, N, and the phases of plane waves, ¢, can be the
variable pair of Fourier transformations. Assume that a function is a direct product of many
plane waves. Its form is

ki) tilkyry+9) _ pilkiri)++ilky-ry) 5iN (3.3.1.2.1)
Eq. (3.3.1.2.1) reminds us that ¢ can be made as a basis to expands a function of particle
number N, ¥(N). Generally, ¥(N) is a complex function of N € Z (Z means integers), and
can be made Fourier expansion [26].

1 +t .
¥(N) = W/—n dOP(0)e™?. (3.3.1.2.2)
¥ —LN:W\PN —iNg (3.3.1.2.3)
(0) = (2n)1/2N:Z_,,O (N)e N, 3.1.2.
L (™ e —ive | O if M#N
5 | _doe™e N¢_{ AN (3.3.1.2.4)

3.3.1.3. Root-Mean-Square Deviation

The “root-mean-square deviation” of any variable, for examples, Ak, of k,, Ax of x, are
defined as follows.

Ak, = \/< (k,— < k; >)? >. (3.3.1.3.1)

We have defined that \/< (k,— < k, >)2 > as uncertainty of a variable in one dimension
case in section 2.4 of chapter 2. In high dimension space the generalization is easy.

[2 dxdydik, ¥ (x,y, k1) (k2 — 2k, < ky > + < k, >2)¥(x,y, k1)
fj: dxdydkzﬁ* (x,y, kz, t)@(x, ¥V, k1)

. (33.13.2)

where < k, > is called “mean value” of k,. The “mean-square deviation” is also called
variance. Eq. (3.3.1.3.2) is the expression of Ak,. Note that if ¥ satisfies normalized
condition, then the denominator in Eq. (3.3.1.3.2) is equal to one.

o Jo dadydk Y (ke 1) (k) W (.3 e 1)
T dadydk ¥ (x ke, 1) (5,3 k)
Note that < k, > can be a function of ¢ through that ¥(x, y, k.,7) is a function of 7.

(3.3.1.3.3)

Ax:\/<(x—<x>)2>

_ \/ff:dxdydz‘l’*(x,y,z,t)(xz—2x <x >4 <x>2)P(x,y,z,1) (33.13.4)
[T dxdydz¥* (x,y,2,t)¥(x,y,2,1) ’ T
where [T dxdydz¥* (x,y,2,1) (x) ¥ (x,y,2,1)
x> I BARS EARL (3.3.1.3.5)

J2Z dxdydz¥* (x,y,2,0)® (x,y,2,1)
Note that < x > can be a function of 7 through that ¥(x, y, z,¢) is a function of ¢.
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3.3.1.4. From Number to Operator

The two variables in Fourier transformation are called Fourier pair variables. We will
prove in this subsubsection that any Fourier pair variables belong to non-commutation
variables. Some textbooks like to call the non-commutation incompatible. The exam-
ples of such non-commutation pair variables are: any (canonical coordinate) and its
(canonical conjugate momentum), any (canonical coordinate) and its (canonical conjugate
momentum/h), (particle number) and (phase), and so on. Besides these non-commutation
pair variables, there are some compositions of Fourier pair variables, which also belong
to non-commutation pair variables, and is called Fourier pair variable compositions. For
example, the two in the three components of angular momentum vector. In the following
we will prove that the commutation relation of the non-commutation pair variables is not
equal to zero, and there is the Heisenberg uncertainty relation between non-commutation
pair variables.

Theorem II: Operator representation of observable. The two variables in Fourier pair
variables construct two theirs own spaces. Any variable in its own space is a number, but
in space of partner variable is an operator.

Let us at first make some qualitative illustrations for the theorem II. In the integrals
of “mean values” of k¢, ki, and k? in k space (or wavevector space, or momentum space.
Momentum py = hky.). The variables kY, ky, and k7 are numbers. The conjugate spaces of
ky, ky, k; are x, y, z, respectively. In these spaces one can also write equivalent integrals of
“mean values” of ky, kj, and k7 according to the following two steps: (a). Transform &y,
ky, and k7 into operators 0" /(i"dx"), " /(i"dy"), and 0" /(i"dz"), respectively; (b). These
operators have to operate just on ¥ other than on W* in the integral formula of average
value. Let us write this theorem with one example.

TS dkdydZ ¥ (ke y, 2, K (ks Y, 2,1)

<k >= " . (3.3.1.4.1)
[ dkedydzdt¥P* (ky,y,2,1) ¥ (ky,y,2,1)
Eq. (3.3.1.4.1) can be changed into
oo * 9"
dxdydz¥V IRA) 7t ﬁlp R4 7t
< g o Jm XYY (63,2 ) g (0, 3,21 (3.3.1.4.2)

J72 dxdydz ¥+ (x,y,2,1) ¥ (x,,2,1)

Note the following two points: (1). The theorem II does not need that W is normalized.
If we do normalization, then it is convenient; (2). It is very important to note that in the
integrand of Eq. (3.3.1.4.1), which is in wavenumber space, the k] can be put anywhere
because it is just a number (or a special operator = a constant.) However, in conjugate
space, i. e., in the position space, k7 is a differential operator, and has to be put in between
W*(x) and ¥(x). The operator representation of a variable was mentioned in section 2.4 of
chapter 2.

Proof. The proof for Eq. (3.3.1.4.2) is as follows. We transform the Fourier transforms
W (ky,v,2,1) and ¥ (ky,y,z,¢) in Eq. (3.3.1.4.1) into ¥*(x,y,z,7) and ¥(x,y,z,¢). The nu-
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merator becomes
+oo oo

_ dkdydz s

o) dx‘P* (x,y,2,1)e**

1 +oo , Pl oy ,
rEnrr 3.3.14.3
(27‘5)1/2/_00 dx |:(_l')naxlne :| (x,y,z,t), ( )

where the derivative is only for the factor exp(—ik,x’). The denominator becomes

+oo Foo
vl |

1 [t
We have supposed that the function ¥ € M (R). Therefore, ¥ and its derivatives at any

order approach sufficiently fast to zero at x = —co and x = 4oo. Making integrations by
parts in Eq. (3.3.1.4.3), then Eq. (3.3.1.4.2) becomes

dx‘P* (x,y,z,1)e "~

dXP(X,y,z,1)e* (3.3.1.4.4)

f+ dxdydz¥* (x,y,2,1) 7o nax P (x,,2,1)

<k >
J72 dxdydz ¥+ (x,y,2,1) P (x,y,2,1)

(3.3.1.4.5)

Similarly to Eq. (3.3.1.4.5), we have

[12do¥ (r,0)0"P(r,0)
[t do¥ (r,0)P(r,0)

<@'>=

o0 * d"
B f_oo dr¥ (r,t)m‘l‘(r,t)
[T2drY (r,1) ¥ (1)

The “mean value” of N can be defined as follows.

(3.3.1.4.6)

B N,_M‘P*(N)N”‘P(N)
LR PE(N)P(N)

<N"> (3.3.1.4.7)

By using the similar derivations as to obtain Eq. (3.3.1.4.5), < N" > can also be expressed

as
+T gt d" I
<N'>= [ 0¥ (q))(("’)"aq’")ql(q)). (3.3.1.4.8)
J 7 do¥ (0)¥(0)
QED.
In summary,
71
N" in N representation — (D) in O representation. (3.3.1.4.9q)
an
0" in O representation — in N representation. (3.3.1.4.9b)

((@)"oN")
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an
k" in k representation — e in x representation. (3.3.1.4.9¢)
i)"ox:
an
" in ® representation — i in t representation. (3.3.1.4.9d)
—i

According to the corollary I, 4k is canonical conjugate momentum of canonical coordinate
x, and the energy A® is the minus value of canonical conjugate momentum of canonical
coordinate ¢. Therefore, from Eqgs. (3.3.1.4.9b-c) we obtain the operator expressions of the
momentum and energy:

njyn
p" = (hk)" in p representation — (h) J in x representation. (3.3.1.4.9¢)
(i)"ox™
h)ro"
E" = (hw)" in E representation — % in t representation. (3.3.1.4.9¢)
—1 n n

On the one hand, p and x are the canonical conjugate variables in classical mechanics.
On the other hand, p, x are Fourier pair variables in Fourier analysis. Note that in all
references the operator representation of observable is given as a postulate.

3.3.1.5. General Inequality of Product of Mean-Square Deviations

To make our statement clear and for the importance in quantum theory, we introduce some
definitions.

The commutation relation (=commutator) of operators A and B is defined as [A,B]=AB-
BA, which is still an operator. If [A,B]¥ # 0, then A and B do not commute with each
other, and A and B are non-commutation operators. If [A,B]¥=0, then A and B commute
with each other, and A and B are commutation operators. More generally, for Fourier pair
variable compositions com; and comy, if

[comy,comy]¥ = (comicomy — comycom)¥ # 0, (3.3.1.5.1)

then com; and com, are non-commutation operators.

If average value of an operator is real, then this operator is called Hermitian operator
(Proof is geven in section 5.2). Two variables of Fourier pair variables have real average
values. Therefore, they are Hermitian operators. Fourier pair variable compositions consist
of Fourier pair variables. Thus, the Fourier pair variable compositions are Hermitian
operators as well.

Theorem III: Non-commutation property. The product of Fourier pair variables, AB, is
without dimension, and [A, B] = i.
For Fourier pair variable compositions [A, B] = iC, where C is Hermitian operator.

Proof. For convenience, we consider a particular example. The more general proof is easy
to obtain. Taking A = x and B = k, one obtains from Eq. (3.3.1.4.9)

k) = (x(—)L () L) Wi

dx dx
Cd¥(x)  d¥(x)
- dx T dx

+iP(x) = iP(x). (3.3.1.5.2a)
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Therefore, for A =x and B =k, C =1 is a special Hermitian operator. The key of this proof
is in that one of Fourier pair variables is certainly an operator instead of a number. As an
exercise, readers give general proof.

Considering the corollary I (momentum p = hk) and Eq. (3.3.1.5.2) yield

[x, p] = ih. (3.3.1.5.2b)

The Fourier pair variable compositions may be: for example,

(1) x* and Pxs

(ii) Any twoin Ly, Ly, and L. {L., L,, L. are the three components of angular momen-
tum [See Eq. (3.3.2.1.2) and section 6.1.1.]}.

The Eq. (6.1.1.9a) in subsection 6.1.1 of chapter 6 proves following formulas:

[Le,Ly| = ihL., [Ly,L.]=ihLy, [L.,L]=ihL, (3.3.1.5.2¢)(6.1.1.9q)

where C =L, L,, L, are Hermitian operators.

Next, let me give more general proof.

Suppose A and B are the two compositions of any Fourier pair variable compositions.
Consider following integral inequality:

1(5) = (EAW + iBW, EAW + iBY) — / EAW + iBY|%dxdydz >0,  (3.3.1.5.2d)

where W is any function, & is any real parameter number. Using the Hermitian property of
A and B, the Eq. (3.3.1.5.2d) can be written as

1(§) = (EAY+iBY,EAY +iBY)
= E(AY,AY) +iE(AY,BY) — iE(BY,AY) + (BY, BY)
E2(¥,A%Y) +iE(P, [A, B]Y) + (P, B*¥) > 0. (3.3.1.5.2¢)

Considering that & are real number, Eq. (3.3.1.5.2¢) requires (\P, [A, B]¥) = iC, where C is
Hermitian operator. QED.

[A,B] is called commutation relation, which is an operator as well. Because
[A,B] =iC # 0, A and B are called non-commutation operators.

Theorem IV: Preparation for uncertainty relations. If W is a real number, and Aa,, AP
are two quantities, which satisfy

|Ao|> =AW +A2|ABJ2 >0 (3.3.1.5.3)

for all real number A, then the product of these two quantities satisfies
1
|Aat|?|AB)? > sz (3.3.1.5.4)

Proof. It is easy to confirm that Eq. (3.3.1.5.3) is correct forh — oo, To determine the sign
of left hand side of Eq. (3.3.1.5.3) for finite values of A, let us express Eq. (3.3.1.5.3) in
terms of its roots in A.

MABP =AW +|Aa)? = |ABP(A— A1) (A — 1), (3.3.1.5.5)
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where A and A, are the roots, which we write as

M =a,—A (3.3.1.5.6)
and
A = a0 +A, (3.3.1.5.7)
where W
L 3.15.
@ = aBP (3.3.1.5.8)
2_4 A 2 A 2
= YW 41ABP A (3.3.1.5.9)
2|ABJ?
Since |AB|? is positive definite, Eq. (3.3.1.5.5) implies that
A=A (A=22) >0. (3.3.1.5.10)

However, left hand side of Eq. (3.3.1.5.10) is negative for
M <A< . (3.3.1.5.11)

To solve this apparent contradiction, we substitute Egs. (3.3.1.5.6) and (3.3.1.5.7) for A,
and A, in the product

A=A)A=A) = A—ao—|A)(A—ao+|A) = (A—a,)* — A”. (3.3.1.5.12)

In order to satisfy Eq. (3.3.1.5.10), the right hand side must be > 0, which implies that
A% < 0,i. e. Ais pure imaginary,
A=i|Al. (3.3.1.5.13)

Hence,
A=A A=2A) = (A—a.)* + A% (3.3.1.5.14)

This is a positive definite quantity. We note that since W is real, a, [defined by Eq.
(3.3.1.5.8)] is real. For A to be a pure imaginary we must have, from Egs. (3.3.1.5.13)
and (3.3.1.5.9),

4(AB)?*(A)? > W2. (3.3.1.5.15)

Eq. (3.3.1.5.15) concludes the proof of theorem IV. QED.

3.3.2. Uncertainty Relations
3.3.2.1. Theory

Theorem V: Uncertainty relations. Suppose that A and B represent the Fourier pair vari-
able compositions or the Fourier pair variables (or, after we prove that p = hk represents
momentum and E = ho represents energy, considering p = hk, E = h®, and so on, the
above statement becomes: Suppose that A and B represent the canonical conjugate pair
variables or the canonical conjugate pair variable compositions) and W is given by

o0
W = i dxdydz¥* (x,y,z,t)[A,B]¥(x,y,z,1)

i < W|[A,B]|¥ >, (3.3.2.1.1)
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then 5
(AA)*(AB)* > WT' (3.3.2.1.2)

The lowest bound in Eq. (3.3.2.1.2) is independent of time ¢, although the left hand side of
Eq. (3.3.2.1.2) can be dependent on ¢ through W. The often used form of Eq. (3.3.2.1.2) is

(3.3.2.1.3)

(In history, Heisenberg first proposed the uncertainty relation between coordinate and
momentum. This and the following corollaries give a general proof for the uncertainty
relations. For memory, we call Eq. (3.3.2.1.3) either uncertainty or Heisenberg uncertainty
relation.)

Proof. From Eq. (3.3.2.1.1) and theorem III, we know that W are real. Theorem IV tells us
that if
I(A) = |AA]> =AW +A%|AB|* > 0 (3.3.1.5.2)(3.3.2.1.4)

holds for any real number A, then we have

1
|AA]?ABI? > JW?. (3.3.2.1.5)
Now let us prove Eq. (3.3.2.1.4).
~+oco
W' = i| dxdyd?¥(x,y,z,1)[A- <A > B— <B>|¥(x,y,z1)
~+oco

= i dxdydz¥* (x,y,z,t){(A— <A >)(B— <B>)

— (B—<B>)(A— <A >)}¥(x,y,z,1)
= i<VY|AB|¥>=W. (3.3.2.1.6)

Considering the definitions |AA|? =< (A— <A >) >< (A— <A >) >*, |AB|> =< (B— <
B >) >< (B— < B>)>"and Eq. (3.3.2.1.6), the Eq. (3.3.2.1.4) can be written as
oo
I\) = dxdydz%¥* (x,y,7,1) [(A— < A >) +iM(B— < B >)[*¥(x,y,z,1) > 0.
(3.3.2.1.7)

Eq. (3.3.2.1.7) holds for any real values of A. Thus, from theorem IV we prove the theorem
V. QED.

Corollary II: Variables of function. Any function € M (R) cannot depend on the two
variables of Fourier pair variables or the two compositions of the Fourier pair variable
compositions commonly at the same time, or, equivalently, any wavepacket-function
€ M (R) cannot depend on the two variables of canonical conjugate pair variables or the
two compositions of canonical conjugate pair variable compositions commonly at the same
time.
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Proof. This corollary is equivalently to say that any function € M (R) cannot depend on
the two non-commutation variables at the same time.

The theorem of uncertainty relations [Eq. (3.3.2.1.3)] indicates the existence of lowest
bound. If A takes certain value, then AA = 0, and thus AB = o, which is not reasonable.
QED.

Although this Corollary II can be proved very easy, but its significance is significant.
As is well known, the Cartesian coordinate r and the canonical conjugate momentum p
are Fourier pair variables. The wavepacket in physics describes an object. The wavepacket
in mathematics is a function € M (R). Corollary II tells us clearly that the function,
corresponding to a wavepacket, can only be a function either r or p, but cannot be a
function of both r and p at the same time.

Corollary ITI-1: Object volume. If any position space function € M (R) represents the
distributions of mass or energy or charge or momentum of any object, including both
massy and massless particle, then this object has to be three dimensional in position space.

Proof. If the object is two dimensional in (x,y) plane, then according to the Heisenberg
uncertainty relation theorem, the z direction momentum and thus the energy of object are
infinite, which is not reasonable.

Corollary III-2: Zero point energy. Any object has zero point energy, which is caused by
Heisenberg uncertainty relation. This zero point energy is independent of temperature, and
is not equal to zero even at 0 K.

Proof. From uncertainty relation Ap - Ax > h/2 we deduce that if Ax < e, then Ap > 0,
which means that the absolute value of momentum and, thus, kinetic energy of any object
are larger than zero. This energy is called zero point energy.

In many cases the object is in potential field. The potential energy function is V (x).
Next we show that even in potential field, the zero point energy exists still.
Suppose that the x-dependence of the potential energy is

2 2

H=2 v =L +A¥, (nisreal) (3.3.2.1.8)
2m 2m

The average value on any states is

<p*>> <p’>
H = | =
<H> . +<V(x)> o
2 2
<(p—<p>P>+<p>
_ =lm<pr)>tep FA<[(x—<x>)?>+<x>H"?2>

2m
- (AZ—’;BZ +A < [(Ax)7? >= % +A < (Al)" >
hZ
8im(Ax)?

+A < |x]" >

+A(Ax)H"2., (3.3.2.1.9)
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The first and second equalities come from definitions of average values. The third equality
comes from < x >=< p >= 0. (Since < x > and < p > are independent of each other and
of (Ap)? and (Ax)?, such a choice is always possible.) The fourth equality comes from the
Heisenberg uncertainty relation (Ap)(Ax) > h/2.

Eq. (3.3.2.1.9) clearly shows that the average value of H has minimum value. This
minimum value is independent of temperature, and is called called zero point energy. The
author of this textbook hopes that when readers know exact zero point energy of harmonic
oscillator, seek zero point energy from Eq. (3.3.2.1.9) and make comparison. (The result of
comparison is that two expressions are same.) When readers know exact zero point energy
of hydrogen atom, seek zero point energy from Eq. (3.3.2.1.9) and make comparison. (The
result of comparison is that two expressions only have difference of factor 2.)

3.3.2.2. Various Uncertainty Relations

Mathematician’s statement on the uncertainty relations are: “The effective width of func-
tion, multiplied by effective width of its Fourier transform, cannot be less than certain min-
imum value” [26, 30]. However, the Fourier pair variables in mathematician’s language are
confined only within position ~ wavenumber and time ~ frequency [26, 30, 38]. Fourier
pair variable compositions (such as L, ~ Ly, x ~ p?, and so on have not yet been explored
by mathematicians.

Let us prove many uncertainty relations for different Fourier pair variables and Fourier
pair variable compositions.

(1) Uncertainty relations between two components of “angular momentum vector”. The
W in Eq. (3.3.1.2) becomes
1

W=i—0
[ dxdydz¥* (x,y,z,t)¥(x,y,z,1)

X

~+oo
dXddelP* (xvyvzv Z)(LzLy - LyLZ)lP(xLvav t)

=<L,>. (3.3.2.2.1)
Substituting W =< L, > into Eq. (3.3.2.1.3) yields

1
(AL)(AL) > 5| < Lo > |, (3.3.2.2.2)

where due to AL, is Hermitian operator, < L, > is real. (AL,), (AL;), and < L, > can be
dependent on ¢ through ¥(r,7).

(2) Position~wavenumber, x ~ k,, uncertainty relation. Similarly to “angular momen-
tum”, in this case

d
W=i k] >=i —| >=i*=-1. 3.3.2.2.3
< [x,ky] > l<[xiax]> i ( )
Substituting [W| = 1 into Eq. (3.3.2.1.3) yields
1

(&%) (Mks) > 5. (3.3.2.2.4)
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(Ax) and (Ak,) can be dependent on ¢ through . However, the right hand side of Egq.
(3.3.2.2.4) is independent of ¢.

Here, we give a more direct understanding for the uncertainty relation between x and k.
As we know, in the aspect of dimension, k, < 1 /x. Therefore, if Ax is zero, then Ak, = co.
Of course, this simple understanding cannot obtain the lowest limit in Eq. (3.3.2.4).

(3) Time~angular frequency uncertainty relation. In this case

9 2
W=i =i —,t| >=i"=—1. 3.3.2.2.5
i<[ot]>=i< [—iax’ ] >=i ( )
Substituting |W| = 1 into Eq. (3.3.2.1.3) yields
1
(Ar)(Aw) > 3 (3.3.2.2.6)

Eq. (3.3.2.2.6) is the uncertainty relation of angular frequency-time. Because f = ®/(2m)
the uncertainty relation of frequency-time is

1
At)(Af) > —. 3.3.2.2.7
I ES= (3:3227)
(4) Number~phase uncertainty relation, i. e. N ~ ¢ uncertainty relation.
0
W=i<I[N,p|>=i< [%,(D] >=i=—1. (3.3.2.2.8)
i

Substituting [W| = 1 into Eq. (3.3.2.1.3) yields

1
(AQ)(AN) > 3 (3.3.2.2.9)
(&) Position(x)Nwavenumberz(kf) uncertainty relation. In this case
W = i<[x k] >=i<xkl—kix>
= i < xkoky — koxky + koxky — kekox >=10 < [x, ky]ky + ki [x, ky] >
= i<iketiky>=-2<k>. (3.3.2.2.10)
Substituting |W| = 2| < k, > | into Eq. (3.3.2.1.3) yields
(Ax)(AK2) > | < ky > |. (3.3.2.2.11)

(6) Position(x?)~wavenumber(k,) uncertainty relation. In this case

W = i<t k] >=i<xk,—kx*>
= i< xxky —xkex + xkox — kyxx >= i < x[x, k] + [x, ke]x >
= i<ixtix>=-2<x>. (3.3.2.2.12)

Substituting [W| =2| < x > | into Eq. (3.3.2.1.3) yields
(AX?) (Aky) > | < x> |. (3.3.2.2.13)
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3.3.2.3. Heisenberg Uncertainty Relations

From the corollary I we see that wavenumber X h = momentum and ®h = energy. There-
fore, the Heisenberg uncertainty relations in subsection 3.3.2.2 can be expressed by other
forms.

Eq. (3.3.2.2.2) becomes

>h|<Lx>|‘

(AL)(AL;) 2 ————— (3.3.2.3.1)

The k, k,, and k, in Eq. (3.3.2.2.1) are transformed into p,, p,, and p,.

Eq. (3.3.2.2.4) becomes

(Ax)(Apy) > ; (3.3.2.3.2)
Eq. (3.3.2.2.6) becomes
(At)(AE) > ;—i (3.3.2.3.3)
Eq. (3.3.2.2.9) still is
(AN)(AQ) > % (3.3.2.3.4)
Note that Eq. (3.3.2.3.4) does not contain .
Eq. (3.3.2.2.11) becomes
(Ax)(Ap?) > h| < pr > |. (3.3.2.3.5)
Eq. (3.3.2.2.13) becomes
(AX)(Apy) > Bl < x> |. (3.3.2.3.6)

3.3.2.4. Comments on Heisenberg Uncertainty Relations

We make the following ten comments on Heisenberg uncertainty relations.

(1) Subsections 3.3.2.1-3 clearly show that Heisenberg uncertainty relations are inherent
characteristics of any function € M (R). Heisenberg uncertainty relations do not have a wee
bit of connections with the so-called non-control disturbance of measurement instruments.

(2) To explain the Heisenberg uncertainty relation, Bohr proposed the so-called com-
plementarity principle in 1927 and accepted by some scientists. According to the so-called
complementarity principle, the observables obeying an uncertainty relation are called non-
complementary observables. Although some scientists accepted, but until now the so-called
complementarity principle is still an ambiguous and vague concept. No body understands
its actual physical meaning. From subsections 3.3.2.1-3 we can understand that quantum
mechanics does not need the so-called complementarity principle. The two observables or,
equivalently, two dynamical variables in uncertainty relations are only Fourier pair variables
or Fourier pair variable compositions multiplied by 7" (n=1,2,3,---).

(3) To derive uncertainty relations does not need at all the probability wave hypothesis
for the wavefunction, proposed by Born in 1927. The root-mean-square deviation Ax means
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that the particle, described by a wavepacket, mainly concentrates in the region Ax. The
root-mean-square deviation Ahk, = Ap, means that the momentum mainly concentrates
in the region Ahk,. The product of Ax and Ahk, has lowest bound, which is in essence
the characteristic of a non-commutation variables or operators, and is called Heisenberg
uncertainty relation. The At corresponds to the time uncertainty of an object existence.
For example, the Ar corresponds to time duration of a signal in radio technology. The
AE corresponds to the energy uncertainty in which the object must have mainly. (The
A® = AE /i corresponds to angular frequency width of a signal in radio technology.)

(4) If one tries to use a big wavepacket, to describe the big universe, then it is possible
under the condition: the function is € M (R), i. e., it has Fourier transform.

The reason is as follows. We have to require that the wavepacket as a function and its,
at least, first order derivative over coordinate is sufficiently fast to approach zero at |r| — oo
for derivation of uncertainty relation between x and k, or p,. Note that we can use the
function without normalization to derive the Heisenberg uncertainty relations. Therefore,
normalization condition does not be a necessary condition for the Heisenberg uncertainty
relations.

(5) Let us give the following three examples. The three examples show that different
wavefunction or wavepacket-function ¥ have different lowest bounds for the products
of two root-mean-square deviations, and reductions of |¥(x,t)|? at root-mean-square
deviation of x are much different for different functions.

(i) Gaussian wavepacket at t = 0.

1 _op
W) = e 2, (3.3.2.4.1)

where the constant factor comes from normalization condition.

oo 1
Ax = / dxx? W (x))2 = —. 3.3.2.4.2
\/_w ¥ =5 ( )
_ 1 e ‘ 1
‘P(kx):\/—z_n B dxlp(x)e—’erzme—k?/z, (3.3.2.4.3)

where the constant factor comes from normalization condition.

Fee — 1
Ak, = dk 2| (ky)|? = —=. 3.3.2.44
\/ [ dRRIFRP = (33244)
Therefore, physical position-momentum uncertainty relation is
(Ax) (hdky) = h L — 5L (3.3.2.4.5)
" N 5 3.2.4.

The relative value |¥(x = Ax)|?/|¥(x = 0)|? is 0.60653. The relative value |¥(k, =
Ak |?/|¥(k, = 0)|? is 0.60653. If the normalized Gaussian function is

1 27092
— —x*/(2a%)
Y(x) = a1/2(2n)1/4e , (3.3.2.4.6)



Wavepacket-Only Theory 71
~+oo
Ax = / dxx?|¥(x)]? = a. (3.3.2.4.7)
_ 1 oo ) 2a 2,2
Plky) = — dx¥(x)e Rk = | | ek 3.3.2.4.8
(k)= = [ 0¥() - (33248
where the constant factor comes from normalization condition.
+oo _ 1
Ak, = dk, k2| (ky)|*> = 2 (3.3.2.4.9)
oo a
Therefore, position-momentum uncertainty relation is
1 1
Ak = ha— = h— 3.24.1
(Ax)(hAk,) = ha P > (3.3 0)

for any value of a. //2 is the lowest bound for the product in uncertainty relation, and,
thus, Gaussian wavepacket is called minimum wavepacket (which was demonstrated in
subsections 3.3.2.1-3 by general mathematical formula.) The relative value of |¥(x)|? at
x =0 and Ax = a is also 0.60653. The relative value of [¥(k,)|? at k, = 0 and Ak, = 2a is

also 0.60653.
(i1) One dimensional function at t =0

W(x) = e 2,

V2
-|—oo
Ax = \// Ao ¥(0)2 = VI3) = V2.
T(k,) = +°°dlp —ike — !
( X) - \/ﬁ C X (x)e — 7'51/2(052—{—]()%)1/2’

where the integration formula can be found in Ref. [39].

oo _ 1
Ak, = / dkek2[P(ky) |2 = —.
\/_m P (k)| NG

Therefore, physical position-momentum uncertainty relation is

(Ax)(hAky) = A2 — =1,

R
V2

(3.3.2.4.11)

(3.3.2.4.12)

(3.3.2.4.13)

(3.3.2.4.14)

(3.3.2.4.15)

where the value of product is larger than 1/2. This means that different function can have
different lowest bound. The relative value at x = 0 and Ax = /2 2 is [¥(x = V2)? /| (x =
0)|?> = 0.243. The relative value at k, = 0 and Ak, = 1/v/2 is [P (k, = 1/v2)|*/|P(k, =

0)|> =0.333.
(iii) One dimensional function atz =0

3 P
lP(X): me ||/2

(3.3.2.4.16)
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oo 1
Ax = 2P (x)|2 =4/ =————— =0.61 . 3.2.4.1
\//_m Ao | (x)| \/r<1/3) 0.61098 (3.3.2.4.17)
_ 1 oo
= —= [ dx¥(x)e
+°°d cos(kex)e ™ /2 (3.3.2.4.18)
nl/z 1/3 X kyx)e . 3.2.4.
oo —
Ak, = / dkxk%\‘P(kx)P =0.87074. (3.3.2.4.19)

Therefore, position-momentum uncertainty relation is
(Ax)(hAk,) = 1(0.61098)(0.87074) = 0.53199h, (3.3.2.4.20)

where the value of product is still larger than //2. The relative value at x = 0 and
Ax = 0.61098 is |¥(x = 0.61098)|?/|¥(x = 0)|> = 0.79607. The relative value at k, = 0
and Ak, = 0.87074 is |¥(k, = 0.87074)|?/|¥(k, = 0)|*> = 0.63150.

(6) We point out by an exercise in chapter 10 that at present there are many mistakes on
deriving and understanding the Heisnberg energy-time uncertainty relation.

(7) Chapter 10 will points out that one cannot confuse the energy-time uncertainty re-
lation with the linewidth-lifetime uncertainty relation. They are different uncertainty re-
lations. The lowest bound of the linewidth-lifetime uncertainty relation depends on the
definitions of the lifetime and the linewidth, and its lowest bound can be zero in principle.

(8) To obtain number(N)-phase($) uncertainty relation, the present methods in some
references give many different definitions of the phase operator, and, naturally, the lowest
bounds given by different authors are much different. In our derivation, the phase operator’s
form is definite.

(9) The necessary conditions in deriving uncertainty relation now in some references
are to assume that the related quantities are operators, which’s commutation relation is
not equal to zero. Their method is established on operator representation assumption, and
thus precludes us to understand the origin and essence of uncertainty relations. Subsections
3.3.2.1-3 exactly proved that all uncertainty relations are only the methematical characteris-
tics of Fourier pair variables and Fourier pair variable compositions. In essence, Heisenberg
uncertainty relations are characteristic of mathematical functions € M (R). Physicists have
to abandon any mysterious feeling for physical uncertainty relations.

(10) In future, the connection between quantum mechanics and mathematics will be-
come more and more close, because many quantummechanical properties are simple math-
ematical properties of mathematical functions which can make Fourier transformations, or,
simply say, which are € M (R).

3.4. Wavepacket-Only Theory

In this section we will explore the common properties of wavepacket-function, i. e., object.
All the following properties of wavepacket-function do not need to concern its particular
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form; on the contrary, we just require the wavepacket-function is a function either coordi-
nate or momentum, but not both at the same time.

3.4.1. Free Wavepacket Compositions

This textbook will establish common wavepacket-only theory on the massy particle (such
as electron, sun, Earth, universe) and massless particle (such as photon and phonon), will
derive all the three formulations of quantum mechanics, and will explain the relative con-
cepts and pictures through 52 theorems, 15 corollaries, 1 law, and 1 criterion, and, at the
same time, without any hypotheses, axioms, postulates, principles, paradoxes (for example
Schrodinger cat paradox), guesses, and assumptions except the law.

Classical mechanics describes any object by a function which depends on both coordi-
nates and momenta at the same time. Corollary II tells us that the wavepacket-function can
depend on either coordinates or momenta, and cannot depend on both at the same time.

Note that in our textbook we use ¥ to represent both the wavepacket-function
(=wavepacket) and the guide-factor (=wavefunction). Please do not make confusion for
them. We always do not need to know the particular form of wavepacket-function. We
allow the wavepacket-function is unknown.

In this textbook

objects = massy paerticles or massless particles,

massy particles = electrons, airplanes, the Milky Way, finite Universe,-- -,

massless particles = photons, phonons, graviton,---.

In chapters 3 - 10, the wavepacket-only theory will derive whole quantummechan-
ical conclusions and formulas without using a wee bit of particular information on the
wavepacket-function form and the structure of object.

For convenience, let wavepacket-function ¥ satisfy normalization condition, i. e.,

/:o|‘P(r,t)|2dr:/_i‘P*(r,t)‘P(r,t)dr: 1. (3.4.1.1)

If wavepacket-function ¥(r,r) satisfies the normalization condition, then, for example,
m|¥(r,t)|? and e|¥(r,1)|? represent the true mass or charge position (not probability!) den-
sity of electron, respectively. If we take out the m and e, then |¥|? represents the position
density of actual object, which is of extension in position space.

For simplicity, we consider one dimensional wavepacket (in our language, wavepacket
= massy particle and/or massless particle). Suppose that the motion direction of wavepacket
is along direction of x, and wavepacket W(x) can have following Fourier transformation.

1t

Y(x) = — dk, P (ky)e™*, 3.4.1.2
()= = | kFk) (34.12)
where W (k) satisfies
_ 1 oo .
V(ky) = —— dx¥(x)e ke, 3.4.1.3
(k)= = | a¥( (34.13
From Egs. (3.4.1.2) and (3.4.1.1) we have
—+oco

diee [P (k,)|* = 1. (3.4.1.4)
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Because W(k,) satisfies normalization condition Eq. (3.4.1.4), |¥(k,)|? represents density
in wavenumber space. If k,, is defined as

ko = (/< (k)2 > = \/ [ @), (3.4.1.5)

then k,, represents the root-mean-square of wavenumbers of wavepacket.
Let us consider a more general wavepacket-function (for simplicity, we set
wavepacket=wavepacket-function) ¥(x,7) which can be expressed by Fourier integral.

1 T
V2T e
This is general form of wavepacket-function. According to the corollary I, free particle of
mass m has well defined momentum in, for example, x direction p = pye, = hk,ey, and the
energy E = ho = p?/(2m) = h*k?/(2m). Thus, the w(k,) in Eq. (3.4.1.6) as function of k,

is known.
We make an expansion of ®(k,) around point ky,.

W(x,1) = dk P (ky )K=k (3.4.1.6)

do 1 d*m

x) = X0 e kx_kxo YT
m(k) m(k )+ dkx kxo( )+ 2 dk% kxo

(ke — ko). (3.4.1.7)

To obtain an expansion expression of ®(k,) at k.., we take its non-relativistic form at first.

From m = m,/\/1—v?/c? ~ m,, we have

_lpm 1K

(k) = =—— 34.1.8
(k) h2m h 2m ( )
We can also take the relativistic form of (k). Then
k22 L 2t
ok, = Y - e (3.4.1.9)
The group velocity v, of wavepacket is defined as
do
= — . 3.4.1.10
Kb ( )
For non-relativistic form of w(k)
hkyo
Von—r= n;‘ . (3.4.1.11)

We would like to remind readers that the next theorem occupies the central position in the
wavepacket-only theory.

Theorem VI: free wavepacket compositions. A wavepacket in free motion consists of
product with three factors: guide-factor; front-factor; and body-factor.
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Proof. Suppose E = ho o< k.
kex — o(ky )t = kyx — [0(kyo ) 4 vg (kx — kyo )2, (3.4.1.12)

where k,, is an absolute value of average wavenumber of wavepacket. Thus

~+oco
W(x,t) = elkevsgiothe) dk P (ky )eelevet) 3.4.1.13
(1) T3 ) kR (3.4.1.13)
which can be rewritten as
P (x,1) = eferel x e 70kl 5 W(x —p1,0). (3.4.1.14)

Set x = v, 4+ x/, where X’ represents any point of the wavepacket at t = 0. Substituting
x—x' = vt into Eq. (3.4.1.14), we have

W(x, 1) = ekl e=keXp( 0) = I x I x I1. (3.4.1.15)

The factors I, II, and III are called guide-factor, front-factor, and body-factor of
wavepacket, respectively. It is very important to note that the time-dependence of values of
x' and x have not yet been determined uniquely. Let us determine it in terms of mankind
practice experience, experiment facts, and mathematics. Because many observed facts tell
us that free electrons, protons, neutrinos, big body, and photons can be stable in a quite
long time interval, do not spread, and move with a velocity v (in case of photon v = c) as an
entity. Therefore, wavepacket-only theory has to think that the free particle does not spread.
From Eq. (3.4.1.14) we see that v, is the group velocity of free wavepacket. Therefore,
we set v = v, naturally. This means that if v, # 0, then x' = x/(r = 0) + v,¢. Therefore,
x =x"+vet =x'(t =0)+2v,t. In case of photon, v, = c, thus x = x'(t = 0) +2ct. The
factors I and II are only simple mathematical functions, i. e., plane waves. Therefore, the
mass and/or charge and/or energy, and/or momentum can only be carried by factor /11.
This concludes the proof of theorem of wavepacket compositions. QED.

The guide-factor is a plane wave. Let us discuss its phase. Substituting x = x/(t =
0) +2ct and ¥’ =x'(r = 0) 4 vt into Eq. (3.4.1.15), we see the following two novel points.
First, the concept of phase is still kept. Second, x and x’ are time-dependent other than time-
independent. Therefore, for the guide-factor the concept of phase velocity is not needed.

For photon ® = ck,, the expansion ®(k,) = (ko) +c(ky —ky o) is exact. Eq. (3.4.1.15)
clearly shows that wavepacket of photon does not spread at all with time. However, if the
expressions of ®(k,) are not linearly dependent on k,, then we should keep the second and
higher order expansions in Eq. (3.4.1.7) to show the non-spreading of free wavepacket (i.
e., free particle). The following theorem in section 3.4.2 is devoted to solve this problem.

3.4.2. Non-Spreading of Free Wavepacket

Theorem VII: Free wavepacket non-spreading. Free massy wavepacket with central
symmetry and massless wavepacket do not spread at all with time.



76 Fu-sui Liu

Proof. That the free massless wavepacket (photon and phonon) does not spread at all with
time can be obtained directly from theorem VI. Next, we discuss massy particle.

Suppose that there are contributions of second order term in the expansion of ®(k,) as
a function of &, [See Eq. (3.4.1.7)].

The meaning of central symmetry in one dimensional case, x, is that if the center of
coordinate is taken at the center of wavepacket, then the wavepacket is an even function of
x. Substituting Eq. (3.4.1.7) into Eq. (3.4.1.6) yields

1t
V2T J —eo
Supposing x'(r) +vet = x(1), Eq. (3.4.2.1) becomes

W(x,1) = Ak P (k) o= Ok )t —velhe—huo)t = 5 (ko)) (3.4.2.1)

. . kxovg s .
Wler) = clerilol) ik

L oo dkx¢<kx)eikx(x/-i_vg‘xl)_i;l%(kx>2t

V2T J =

. . kxovg,s : /
_ elkXOX7l[(D(kXo)+—zg—]leflkxox ‘P[(x' + Vg7st) , t] . (3422)

The definition of v,  can be found in Eq. (3.4.1.7).

We see that W[(x' + v, ),17] in Eq. (3.4.2.2) is more complex than ¥(x',0) in Eq.
(3.4.1.15). However, we can show that both functions give the exactly same time-
dependence for average value of < (X' +vg )% >.

~+o0
<[ (1) +vg ] >=< (X')? >= dx" (X2 (X, )P (A1), (3.4.2.3)

—oo

Eq. (3.4.2.3) becomes

1 oo oo —x ix i vg.s
<= [ad ey [T ak e i

oo — ] Vost o1y
/ KT (K ) o1t () (3.4.2.4)

For the following calculations we need the particular forms of ¥(k,) and W(k.). Let us
consider a Gaussian wavepacket.

1 _ a2
lPgal,tssian(x) = We 4a2
. /+mdk P (ky)e (3.4.2.5)
- ZTC - X X 9 B V4N
and
N7 20 _a2k2
ngaussian(kr) = \/—Z_J'Ce *, (3426)

where a is equal about to the size of a particle. Substituting Eq. (3.4.2.6) into Eq. (3.4.2.4)
and finishing the integrations over k,, k| and x” [39], we obtain

V2 12

<" >=da*+ m (3.4.2.7)
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Substituting Eq. (3.4.2.6) into Eq. (3.3.1.5) yields (k.,)? = 1/(4a?), and, therefore, Eq.
(3.4.2.7) becomes

< () Fvg ] >=< (1)) >=a® + (vgt)* (3.4.2.8)

On the other hand, if we use W(x',0) instead of W[(x' + vy )] to calculate time-
dependence of < [¥'(¢) + v, ] >, then we obtain

< (1) +veut]? >=< W ([1)]? > +(vgit)* = a® + (vg.1)%. (3.4.2.9)

In the derivations of Egs. (3.4.2.8) and (3.4.2.9) we have used the central symmetry of the
particle. Considering W[(x'+v,),] and ¥(x’,0) can give the same time-dependence for
the average values, we always use W(x’,0) instead of W[(x' + v, ), ]. This replacement is
equivalent to say that the effect of factor v, ; in the x’ + v, (¢ of integrand of W[(x' + v, s),1]
is the same as the effect of the explicit z-dependent factor exp|—ivy (ky)?t/(2ky)] of
integrand of W[(x" + vy ,t),7]. It is obvious that after this replacement, the ¥(x,7) in Eq.
(3.4.2.2) does not spread. QED.

This theorem indicates also that even we consider the high order approximations in
the expansion of ®(k,), the free wavepacket still consists of factors I, 71, and III in Egq.
(3.4.2.4).

Some references concluded from Eq. (3.4.2.8) or similar expressions that a wavepacket
(which represents a real massy particle and massless photon) in free motion spreads with
time certainly, and many wrong concepts are deduced from this wrong conclusion such as
the inevitable spreading of a free wavepacket. However, this textbook obtains completely
reverse conclusion from Eq. (3.4.2.8). We show that wavepackets with central symmetry in
free motion do not spread at all with time.

The some references’s reason of the so-called spreading of free wavepacket is as fol-
lows. Using the mathematical formula in Ref. [39], one can obtains from Egs. (3.4.2.1) and
(3.4.2.6)

1 ) 2 2
(X, 1)]> = e 2laH (vt [2akee) ]} (3.4.2.10)
V2T /a2 + (vg 5t [2akys)?

Using the |¥(x',¢)|? in Eq. (3.4.2.10), one can find the average value of (X' — < x' >)?2
< (W= <A > >=a+ (ve ) (3.4.2.11)

Some references concluded from Eq. (3.4.2.11) that the wavepacket will spread to whole
space when t — o, which contradicts sharply with the our conclusion that every point x’
in the body-factor moves uniformly with velocity v = v, if the wavepacket (i. e., particle)
is free. In our derivation the x’ in W(x',7) of Eq. (3.4.2.11) is a definite function of ¢, i. e.
x'(t) = vgt, and the explicit  dependence in W¥(x',7) of Eq. (3.4.2.11) cannot determine the
time behavior of (). The latter has its own time-linear relation. In our wavepacket-only
theory the calculation of < (¥ — < x’ >)? > has to be as follows

< (= <A > >=< (vgt— < et >)2>=0# a4+ (vg4t)7, (3.4.2.12)
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even we use Eq. (3.4.2.10).
In summary, we have the following four conclusions:

(1) The free wavepackets, such as free electrons, protons, atoms, phonons, photons,
universe, and any big macroscopic bodies, do not spread with time, which is just as that
observed in mankind practices;

(2) The wavenumber of guide-factor of wavepacket is kyo. kyo = pxo/ .

(3) The group velocity v, of wavepacket and the velocity v of both massy and massless
particles are equal each other.

(4) Although photon is not massy particle due to its zero rest mass, the wavepacket of
photon does not spread with time. The phonon is also a wavepacket. Ref. [40] thinks that
for phonon the wavepacket is a necessary concept. Any object has size or scale in position
space, and thus connect with certain position function. It is natural that our universe
consists of big and complex wavepacket. In other words, our universe is a wavepacket-only
universe. Due to the necessity to explain experiments in section 3.4.7, the motion of
wavepacket has to be of some characters. However, considering the conveniences, we
will explain these characters in section 3.4.6, and then use these characters to explain
experiments.

Considering the above exactly mathematical proofs, the expression of wavepacket given
by Eq. (3.4.1.15) is exact. Remember that every point X’ in body-factor moves with group
velocity vg, and X’ = x, + vot. The x in guide-factor of wavepacket is x = x’ + v,¢. In non-
relativistical quantum mechanics the body-factor of wavepacket is a rigid body without
structure, corresponds to particle in classical meaning, such as an electron looks like a rigid
sphere. However, in relativistical quantum mechanics, quantum electrodynamics, and quan-
tum field theory, for example, a meson, a quark, or a proton are of structures, which look
like a large wavepacket consisted of many small wavepackets. Our theorem of wavepacket
compositions still holds water for the quark’s and meson’s wavepacket in the proton (For
this conclusion, please refer to the following corollary VI.). An exact rigid sphere violates
the special theory of relativity, because in a rigid sphere the interaction and the action are
allowed to propagate with infinitely large speed.

3.4.3. Average Wavenumber of Wavepacket

According to the image or picture of free wavepacket in subsection 3.4.1, the guide-factor
goes ahead with speed 2v,, and the front-factor and body-factor go together with speed v,.

Theorem VIII: Average wavenumber and average frequency. The average wavenum-
ber of wavepacket is < k, >= k.. The average frequency of wavepacket is < ® >= ®(kyo).
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Proof. From Eqgs. (3.4.1.15), (3.3.1.4.9¢), and definition of average value, we have

<k> = / AW (x, 1)k (x, 1)

oo . p)
_ /_ W (1) (1)
e

— (3.4.3.1)
<O> = /_m dr¥” (x,1) 0¥ (x,1)

_ /_Zdt\p*(x,t)%wx,z)

= 0(ke). (3.4.3.2)

Corollary IV: Average momentum and energy. Average momentum of wavepacket is
< pyx >=< hk, >= hky.. Average energy of wavepacket is < E >=< h® >= ho(ky).

Corollary V: Possible wave property. A free object (universe, electron, photon,
phonon, and so on) has wave property in principle. The wavenumber is determined
by (average momentum)/h, and frequency is determined by (average energy)/h. (In
history, de Bloglie first proposed the wave property of massy particle as a hypothesis in
1925. This corollary proves that the possible wave property of massy and massless particle.)

In subsection 3.4.7, basing on both inductive method and deductive method, we will
establish a law of wavepacket, according to which we prove corollary VIII, which says
that massy particle is of wave property, and prove corollary IX, which says that optical and
acoustic waves has particle property. According to corollaries VIII and IX, we give the
picture of so-called wave-particle duality, shown in the front-cover of this textbook.

3.4.4. Expressions of Free Wavepacket
3.4.4.1. OneDimensional Cartesian Coordinate and Discrete Values of Wavenumber

According to the corollary I

h R
E=ho=—w0=hv=——. 4.4.1.1
ho 77 hv . (3 )
p = |p| = hlk| = hk. (3.4.4.1.2)
We have used the following plane wave
W (x,1) = Aelhrmiotkr (3.4.4.1.3)

to expand the wavepacket-function. k, represents the wavenumber. The wavenumber can
take both discrete and continuous values. “Discrete” or “continuous” depend on two stan-
dard prescriptions for the normalization of Wy (x,1).
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The first normalization method can be called periodic or discrete or box normalization.
Here one divides up the space into units of L, with (—L/2 < x < +L/2, and the number of
intervals L can be infinite.), in which the plane wave ¥ (x,7) is taken to be periodic, (The
second normalization method can be called d function or continuous normalization. See the
next.)

lka (X, [) — AeikxX—i(D(kx)l‘ — Aeik,r(X+L)—i(D(k,r)t —_ lka (X"‘ L, [) ) (344 1 4)

From Eq. (3.4.4.1.4) we know that the wavenumbers k are then discrete, satisfying the
relation Lk,, = 27tn, where 7 is an integer. Thus we have

2232
ky=22 E,=2TE 5 =0,41,42,- . (3.4.4.1.5)
The function Wy_(x,) becomes
P, (x,1) = Celkw—iokt - L <y < L (3.4.4.1.6)
For convenience, we use normalization in the traditional manner as follows:
+L/2
/ AV (6,0 (,1) = Sy (3.4.4.1.7)
—-L/2

The normalization constant is found to be C = 1/+/L, and, hence,

Y, (x,1) = ﬁe”ﬁx—mhﬁ = ‘Pn(x)eif?'l, —Lax<t (3.4.4.1.8)
where w(k,) = E,/h is given by Eq. (3.4.4.1.1). When we go to three dimensions, this
type of normalization will be extended to the space divided up into units of cubes. This is
then called “box normalization”. We shall use this term even for normalizing in one or two
dimensions. It is easy to show that P, (x) satisfies the completeness relation, i. e.,

Y W () Wa(x 1) = 8(x— ). (3.4.4.1.9)

The second method of normalization involves the entire infinite space —oo < x < 40 by
taking L — oo. This method leads to continuous values of k,, and is thus called continuous
method. Actually, continuous method can be deduced from discrete method. In order to do

this we first start with the completeness relation Eq. (3.4.4.1.9) and insert expression Eq.
(3.4.4.1.8) for W, (x). The left hand side of Eq. (3.4.4.1.9) is then

1 ik, (x—x"
ZZeM ), (3.4.4.1.10)

First we note that, since n runs over integers, the separation, An, between two adjacent
values of n, is simply given by An = 1 and so on. Hence,

% ;eik,,(x—x’) _ %;(An)eikn(x—x/)

= —) — —Lptnlr=x 4.4.1.11
LG: m ¢ G )

1 . /
_ A ikn(x—x")
2n n( kn)e
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with k,, given by Eq. (3.4.4.1.5), we find, therefore, that in the limit when L becomes
large, the interval extends to (40, —o0), and Ak, becomes infinitesimal. Therefore, k,, can
be replaced by a continuous variable, which designate as k, in the interval (—oo, +o0). Eq.
(3.4.4.1.10), in the limit L — oo, can be written as

oo . /
% / dk ™), (3.4.4.1.12)

where we have replaced Ak, by dk, and the sum over n by an integral. From the properties
of the Dirac § function, the integral above, indeed, reproduces 8(x —x'). Thus our results
are consistent with the completeness relation Eq. (3.4.4.1.9). We shall, therefore, write the
¥, (x) in Eq. (3.4.4.1.8) in (—oo, 4-o0) as

Wi (x) = =™ with pe=hke (—o0<x<oo) (3.4.4.1.13)
The completeness relation Eq. (3.4.4.1.9) now reads
oo
dk Wi (x) Wi, () = 8(x —x'). (3.4.4.1.14)
The function Wy (x) also satisfy the orthogonal condition
e Lo ki) /
3 dx¥ (x) Wy, (x) = ﬁ/_ dxe" TR = 3(ky — kL), (3.4.4.1.15)

where instead of the Kronecker delta, which appeared for discrete wavenumbers, we have
Dirac’s  function on the right hand side.

Expression Eq.(3.4.4.1.13) for plane wave corresponds to the second way of normaliza-
tion method, which here is referred to as 6 function and continuous normalization. We need
to point out that in contrast to the box normalization, the W, (x) here cannot be normalized
to unity since for k, = k/, the right hand side of Eq. (3.4.4.1.15) becomes infinite. This
is the price one has to pay by going from box to 0 function normalization, although both
methods are correct for infinite position space.

In summary, a plane wave normalized with § function is

—iEgt

Wi, (x,1) = Wp (x)e ™7, —eo <x < oo (3.4.4.1.16)
where Ey, = h*k2/(2m).

3.4.4.2. Three Dimensional Cartesian Coordinate and Discrete Values of Wavenum-
ber

In three dimensional case,
V=L,L,L,. (3.4.4.2.1)

It is enough for expanding the wavepacket-function to use the most simple form of plane
wave, which is as follows.

W p(53,01) = Aelbrthrti—olink ]
xRy Kz

AeihxtLo) ilkyy+Ly) ilkz+Le) p=i0(keky ke t)

= lka,ky,kz(x+L1,y+L2,Z+L3,I)- (34422)
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From Eq. (3.4.4.2.2) we know that the wavenumbers k,, ky, and k, are then discrete, satis-
fying the relation Lyk,, = 21n, Lyky = 27l, L k,, = 21m, where n, [, and m are an integer.
Thus we have

hop =22, Ey=2EE p=0,41,42,- (3.4.4.2.3)
k=2, By = WHR ] =0,41,42, . (3.4.4.2.4)
kg = 2 By = 20Ty = 0,1, (3.4.4.2.5)

Note that the m in k., does not represents mass. The function Wi x . (x,y,2,7) becomes

¥ (x’ 9,2, l‘) _ Ceikmxfu)(km)teik_‘,leu)(kyl)teikzmxfu)(kzm)t

=W, (x,y, 7) e~ Okt g0k} =it (ken)t (3.4.4.2.6)

where
L, Ly Ly Ly Lz Lz
—5 <x<3, —35 <y<7’, —5 <z< 75 . (34427)

For convenience, we make box normalization in the traditional manner as that taken in one
dimensional case:

+h +3 +5
/ Ly dx/ Ly dy/ Ly lePZlm(xayaZ)an/l/m/ (x,y,z) = 8rm/sll/smm/- (3'4'4'2'8)
-7 -7 -7

The normalization constant is found to be C =1/, /LyLyL,, and, hence,

iknx— O (kyp )1 ikyx—(ky )t ikzmX— O (kg )t

anlm(xayaZat) = \/—L_e
x

—F€ —¢€

1
VL VL.
= Wi (x,y,2) e Okl gm0k}t g (ke (3.4.4.2.9)

where ®(ky,) = E,/h and so on are given by Eq. (3.4.4.1.1). For example,

Exn 1 212
olky) = 2o = LKy

= . 3.44.2.10
h h 2m ( )

It is easy to show that W¥,,;,,(x,y,z,1) satisfies the completeness relation, i. e.,

Y (63, 2) i (XY, ) = 8(x = x)8(y —y)8(z — 7). (3.4.4.2.11)
nlm
Let us demonstrate that even in three dimensional case and discrete values of wavenum-
ber, a wavepacket (massy particle and massless photon) consist still of three factors similar
to that given by Eq. (3.4.1.15). A wavepacket is a function ¥(x,y, z,¢), which can be ex-
panded as follows.

[kyry—(kyt)]

(xy,z,0) =Y ¥ kw)

kx,,x @ (kynt)] Z

l

ﬁ

‘<
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Z

From Eq. (3.4.4.2.12) we have

Y [@ka)P = ¥ [®k)P = ¥ [k = 1. (3.4.42.13)
n ) m

Because W(ky,), P(ky), and ¥(k,,) satisfy normalization conditions Eq. (3.4.4.2.13),
[P (kyn) |2, [W(ky)|?, and [P (kyy)|? represent probabilities in discrete wavenumber space,
respectively. If k,, is defined as

ko = \/< K2, > \/Z (k) 2, (3.4.4.2.14)

then k,, represents the average value of discrete wavenumbers k,, of wavepacket. Similarly,
we obtain Ky, and k.
We make an expansion of ®(k,,) around the point k... [Refer to subsection 3.4.1.]

>

2o
2 dk2, ke

dw

— ke — ko). 3.4.4.2.15
dh |, ( ) ( )

O(ky) = 0(kyo) +

(kxn - kxo) +

To obtain an expansion expression of ®(k,,) at k.., we can take, for example, the non-
relativistic form. According to the de Bloglie relations, given by corollary I, for a non-
relativistic particle, and m = mo/+/1 —v? /c? ~ m,, we have

Lph, _ 112K,

Y= D , 4.42.16
oka) = 20 = & m (3 )
2 21,2
1py  1h%
o(ky) = ﬁz_;i == 2my’. (3.4.4.2.17)
1ph, 10k
k) = — 2o — 27 Tam 4.42.18
0)( z ) h 2m h 2m (3 )

The group velocities of wavepacket at x, y, and z directions are v,g, Vy¢, and v, respectively.
They are defined as

Vyg = jkm . (3.4.4.2.19)
XN kxo
do
Vyg = —— (3.4.4.2.20)
s dky; ky
do
= — . 3.4.4.2.21
Vzg dkzm kzo ( )

The velocity of free wavepacket (free particle) is v = (Vyg,Vyg, Vo). For the the non-
relativistic form of w(k,)

ko _ Pk = ke (3.4.4.2.22)

Vxgn—r = m Vygn—r = m Vign—r m
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For convenience, we take out the subscripts n — r. For the wavepacket in free motion we
can prove the similar theorems as in subsection 3.4.1. For example,

Theorem IX-1: Wavepacket compositions. Even we use the plane waves with
wavenumbers of discrete values to expand wavepacket-function, a free wavepacket in
three dimensional position space still consists of product with three factors: guide-factor;
front-factor; and body-factor.

Proof. At first we note that for the photon ® = ck, there is no the second order term of k.
However, for massy particle the second order approximation in Eq. (3.4.4.2.15) is not equal
to zero. In this subsection we assume temporarily that the second order approximation
term is equal to zero. One exercise requires to prove: If the Eq. (3.4.4.2.15) holds, then
a wavepacket in free motion in three dimensional position space and discrete values of
wavenumbers still does not spread and consists of product with three factors.

We take

ant — (ki )t = Kot — [0(kxo) -+ Vg (xn — Ko )1 (3.4.4.2.23)
kyly — (I)(kyl)t = kyly — [(I)(kyo) + Vyg (kyl — kyo)]t. (3.4.4.2.24)
Kz — @ (ko )t = kmz — [0(kzo) + Vog (Ko — ko)1 (3.4.4.2.25)
Thus
Wlxyzr) = elheremoltl VL ; W (kg om0
ei[kwv)gf(o(k)o)]t 1 ZW(kyl)eik’vl (y—vb\,.gt)ei[kzcvzg—u)(kzo)]t
VLT
1 _ ‘
V7 - 'kzm(x_Vth) 4.4.2.2
\/l: ; (kZ )e ) (3 6)
which can be rewritten as
‘P(x,y, Z, l‘) _ ei[kxovxg—(o(kxo)]llp(x — Vel O)ei[kyoVyg—(l)(kyo)]I\P(y — Vet 0)
ei[kzovzg_“)(kw)]llp(z — vzgt70)' (344227)

Set x = vyt +x', y = vyt +y', and z = vt + 2/, where x'y'z’ represent any point of the
wavepacket at t = 0. Introducing x’,y', 7, Eq. (3.4.4.2.27) becomes

W(ryr) = elreibor ol ol olklg/ o)

= IxIIxIII. (3.4.4.2.28)

It is very important to note that the time-dependence of value of 7’ has not yet been deter-
mined solely. Let us determine it in terms of mankind practice and mathematics. Because
many observed facts tell us that free electrons, protons, neutrinos, photons, big macroscopic
body are stable, do not spread at all, and move with a velocity v (in case of photon ¢ instead
of v) as an entirety. Therefore, wavepacket-only theory has to think that the free particle
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does not spread. From Eq. (3.4.1.15) we see that v, is the group velocity of free wavepacket.
Therefore, we set v = v, naturally. This means that if v, # 0, thenx’ =x'(f = 0) +v,. There-
fore, x = x' + vyt =x'(t = 0) +2v,t. In case of photon, v, = ¢, thus x = x'(r = 0) 4 2cr. Eq.
(3.4.4.2.28) clearly shows that a free wavepacket consists of the same three factors as that
in Eq. (3.4.1.15). This concludes the proof. QED.

3.4.4.3. Spherical Coordinates

Theorem IX-2: Wavepacket compositions. Even we use the spherical coordinate to
expand wavepacket-function, a free wavepacket in three dimensional position space still
consists of product with three factors: guide-factor; front-factor; and body-factor.

Proof. For the free wavepacket traveling in the x direction, the wavepacket is given by Eq.
(3.4.1.15).

W(xt) = ekt ioke) gk y(y ()
. . . / 1 +°° et . !
_ ikyoX ,—i0(kyo)t ,—ikyoX ik X
= ™% e — dk, ¥ (k,)e"™" . 3.4.4.3.1
=/ auTi) (3443.1)

If we take the wave vector k is in the x direction and the 0 is the angle between k and r. The
factors exp(ikx') = exp(ikr’'cos®) and exp(ikyx) = exp(ikorcos0). In spherical coordinate

oo

R = gikricos® _ Z(Zl + l)iljl (kr)le(cose)eimq’
=0
= Y @i+ 1)iji(kr)Pi(cos6), (3.4.4.3.2)
=0
where m = 0,+1,+2,---. Considering that exp(ikr'cos®) does not depend on ¢, one must

take m = 0. The details of derivations for Eq. (3.4.4.3.2) can be found in chapter 6. j;(kr')
is spherical Bessel function with/ =0,1.2,- -,

I . /
jikr') = (kr')! <—kr,dcékr,)> s’”lff,r ). (3.4.4.3.3)

P"(0) is Legendre polynomial. For m = 0

!
Pi(cos®) = (—1)1%“@[1 — (cos0)?]". (3.4.4.3.4)

- |m] d‘m‘
P"(cos®) = [1 — (cos8)*] 2 WP[(COSG). (3.4.4.3.5)

In spherical coordinate

Y(x,t) = W(rcos6,t)

P ik
gikorcosd,, zm(ko)te ikor ”’Se‘P(r’cose, 0)

. . o 1 Feo o
etkorcosee—tm(ko)le—tkor cos8 / dk\P(k)elkr cose' (34436)
V2T J e
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Eq. (3.4.4.3.2) can give the expressions in spherical coordinate for the factors exponential
factors in Eq. (3.4.4.3.6). Therefore, from Eq. (3.4.4.3.6) we conclude that in spherical
coordinate the theorems, proved in subsections 3.4.2 and 3.4.2, on the free wavepacket hold
as well as that in Cartesian coordinate.

Eq. (3.4.4.2.27) gives the expression of free wavepacket in three dimensional Cartesian
coordinates as follows.

Wix,y2,1) = oo ke i) tolk:) tolkig ()
— ke gkt =ik )+ 0(kyo) + 0kt
x / dkydky dk P (ke Ky ), (3.4.4.3.7)
where
elte” = gitecostr, (3.4.4.3.8)
¢ ket = gikocostr (3.4.4.3.9)

r and r’ are in the same direction. In the integrand of Eq. (3.4.4.3.7) we take r’ as the pole
axis, the angle between r’ and k is ©’. then we have

eik.r/ _ eikr/c()se/' (344310)

dkdkydk. = k>sinfdkd0do. (3.4.4.3.11)

Substituting Eq. (3.4.4.3.2) into Eqgs. (3.4.4.3.8), (3.4.4.3.9), (3.4.4.3.10), and then into Eq.
(3.4.4.3.7) yields the expression of free wavepacket in spherical coordinate.

3.4.4.4. Wavepacket-Only Theory of System Consisting of Many Different Particles
Theorem IX-3: Wavepacket compositions. For a system consisting of many different

particles the wavepacket composition theorem VI is still correct.

Proof. A system consisting of many different particles can be looked as a system consisting
of many separated and different wavepackets. Assume that we have two free wavepacket
(i. e., two free particles) ¥(r;) and ®(r,). Of course, the wavepacket of two particles is

\P(I"l,l"z,[) = ‘P(rht)(b(rZ?t)
1

— ; ; 1
— 3 /dkllp(kl)elkl'rle—l(l)(k])l 3
V2m Van

= efon—iolki)t =ik T () gkeramiolke)t =ik Tagp (1 ). (3.4.4.4.1)

/de@(kz)eikz-rze—i(l)(kz)l

For this two different wavepackets we can also use relative coordinates:
r=ry—ry relative coordinate . (3.4.4.4.2)

R=5(ri+ry) mass center coordinate . (3.4.4.4.3)
k=

= N[—

(ki —kp) hk relative momentum . (3.4.4.4.4)
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K=k +ky hK total momentum . (3.4.4.4.5)

Using relative coordinates, Eq. (3.4.4.4.1) can be rewritten as

Y(ri,r,t) =Y(R,nt)
_ L / dK / KT (K, k)oK RHikrgiolK)iolk)
2n3 ’

= /Ko Rpi0(Ko)t pikorr o =i (ko)t o —iKo 'R/e_ik°'r/‘I’(Rl, ¥,0). (3.4.4.4.6)

Eq. (3.4.4.4.6) shows that in relative coordinates the theorem of wavepacket constitution
Eq.(3.4.1.4) does not change.

Here, we just would like to mention that if the many identical single particle wavefunc-
tions are together, then there might be some new physical requirements for the multiparti-
cle wavefunction. Chapter 9 will prove that if many identical single particle guide-factors
(guide-factor=wavefunctiion) are put together, then what the total multiparticle wavefunc-
tion should be?

3.4.5. Schrodinger Equation Determining Wavefunction

In this subsection we prove that the basic equation of quantum mechanics, i. e., Schrédinger
equation, is the equation determining guide-factor (= wave function). Note that, for brevity,
we use W to represent both the wavefunction and wavepacket. However, we have to remem-
ber that the both are much different. If the W appears in the Scrodinger equation, then it
represents the wavefunction (i. e., guide-factor) definitely. In case of non-zero potential,
although the guide-factor is not a plane wave, but the wavefunction and the guide-factor are
still the same thing, i. e., the solution of Schrédinger equation.

34.5.1. One Dimensional Time-Dependent Schrodinger Equation of Free
Wavepacket

We shall derive one dimensional time-dependent Schrodinger equation satisfied by guide-
factor.
Eq. (3.4.1.15) gives general expression of one dimensional free wavepacket, which is

W(x,t) = eferioke)y e kX’ P(x',0)
= IxII xIII
= W(x,t)xIIxIII (3.4.5.1.1)

In Eq. (3.4.5.1.1) we use ¥(x, ) to represent the guide-factor. It is easy to verify the guide-
factor I in Eq. (3.4.5.1.1) satisfies the following differential equation.

0 ki) ookl K o io(ko)r
lh_e X0 xo — hm(kxo)e X0 xo )l X el xoX—1 X0
ot 2m
— p_zeikxox—iw(kxo)t
2m
2 3
_ I kot (3.4.5.1.2)

 2m ox2
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Considering new W(x,7) in the third equality of Eq. (3.4.5.1.1), Eq. (3.4.5.1.2) can be
written as 3 g

lhg‘l’(x,t) =553
Eq. (3.4.5.1.3) is the one dimensional time-dependent guide-factor equation of free
wavepacket. This equation is called one dimensional time-dependent Schrodinger (wave)
equation of free particle. The solution of this equation is called wavefunction. We should re-
member that Schrodinger equation in Eq. (3.4.5.1.3) is derived by wavepacket-only theory.
Note that W(x,7) in Schrodinger equation represents just the wavefunction (i. e., guide-
factor of wavepacket) instead of wavepacket. Do not confuse the meanings of W in differ-
ent cases, because we use the same notation ¥ to represent both wavepacket-function and
wavefunction.

P (x,1). (3.4.5.1.3)

3.4.5.2. Three Dimensional Time-Dependent Schrodinger Equation of Non-Free
Wavepacket

Theorem X: Schrodinger equation. The guide-factor (=wavefunction) of wavepacket in
potential V(r,¢) satisfies generally the three dimensional time-dependent differential equa-
tion
iﬁi‘P(r 1) = [—h—2V2+V(r z)] ¥(r1) (3.4.5.2.1)
5 P o ! \1). 4.5.2.
Eq. (3.4.5.2.1) is called Schrodinger equation, because Schrédinger proposed this equation

in 1926.

Proof. The expression of a three dimensional free wavepacket is given by Eq. (3.4.4.2.27),
which is

¥(x,y,2,1) V=0 gikor—io(ke)t o g=ikor' ¥(r',0)
V=0

I <11 <111

%
P (r,t) x I x 11, (3.45.22)

0

ISl

where ¥(r,¢) in the third line of Eq. (3.4.5.2.2) corresponds to the guide-factor / in the
second lines.

Let me argue that the reasonableness of the third line in Eq. (3.4.5.2.2). The terms
II and I1I are independent of . Therefore, we can think that the terms /I and /II are in
potential field V = 0, and all the variations in case of V # 0 appear in term .

It is easy to verify that in case of V = 0, guide-factor / satisfies the following three
dimensional differential equation:

0 h?
h=—"P(rt) = ——V>¥(rt 3.4.5.23
i W (r,t) = =3V (r1) (3:45.23)
where W(r,1) represents the guide-factor (=wavefunction) other than the wavepacket and the
body-factor! Eq. (3.4.5.2.3) is the three dimensional time-dependent guide-factor equation
of free wavepacket, and is called three dimensional time-dependent Schrodinger equation
of free particle.
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Let us seek the equation satisfied by ¥(x, ) in case of V (r,1) # 0.
Theorem II in subsection 3.3.1.4 has proved that in spacetime representation

0
p=hk— —ihV, E— ihg, (3.4.5.2.4)
where E represents the total energy of the system.
ThusEq. (3.4.5.2.3) can formally be written as

2
Et()tallP = g_mlp = Ekineticlp- (34525)

If V #0, then Eq. (3.4.5.2.5) is transformed naturally into
EtOtallP — (Ekinetic +V)lP — EtOtallP' (34526)

Considering the operator representations in Eq. (3.4.5.2.3) yields Eq. (3.4.5.2.1). QED.

Eq. (3.4.5.2.1) is called three dimensional time-dependent Schrédinger equation of the
guide-factor of a non-free wavepacket. (guide-factor=wavefunction).

In section 5.8 of chapter 5 Schrodinger equation will be derived just from the proved
commutation relation [x, p] = ih. Due to that these derivation steps in section 5.8 of chapter
5 are more complex, we introduce here the above simple method to prove schrodinger
equation.

Corollary VI: Wavepacket non-spreading. Any wavepacket never spreads in weak
external field.

Proof. Look at the third equality of Eq. (3.4.5.2.1). The prominent character of this formula
is that all the x- and ¢-dependences of wavepacket-function are contained just in the guide-
factor. The substance of object exists in the the body-factor, which just contains x'(z).

Eq. (3.4.5.2.6) tells us that in external potential field, the guide-factor has variation, and
the body-factor still keeps its original form. In other word, all the influences of potential
field are just onto the guide-factor, and the body-factor does not suffer any perturbation.
Therefore, the body-factor never spreads, which means wavepacket non-spreading.

This corollary needs weak field condition. If the field is strong enough, then the object
can be broken and so on.

Corollary VII: General wavepacket compositions. The wavepacket (= object = particle
= wavepacket-function) in potential field consists still of the three factors as the case of
V(r,t) = 0. The sole difference is that the guide-factor in cases of V # 0 obeys Schrodinger
equation of V # 0.

Proof. This corollary comes from the third line of Eq. (3.4.5.2.2) and Eq. (3.4.5.2.1).
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3.4.6. Other Methods to Obtain Schrodinger Equation

Although this textbook does not use the methods in subsections 3.4.6.1-2, but, considering
to widen the readers’ outlook, we introduce them here. Please make comparisons with the
method in subsection 3.4.5.2. From these comparisons you will see that the way of science
is tortuous, but the prospects are bright.

3.4.6.1. Derivation of Schrodinger in 1926

Under the elicitation of Planck’s (1900) and Einstein’s (1905) quantum theory of light, de
Bloglie proposed in 1925 that the massy particle has wave property. The next problem is
how to establish an equation to describe the law of wave motion for a massy particle.

The physical idea of Schrodinger to derive this equation in 1926 is as follows. In the
wave optics the wave of light is described by the following function:

Z = ae", (3.4.6.1.1)

where a is amplitude, and ¢ is phase. The variation of the phase relates with the wavelength.
In physics, the light line in the geometric optics moves along the shortest path (Fermat
principle). In mathematics, the Fermat principle is equivalent to that the phase variation is
minimum. In view of this comparison, Schrédinger guessed that the phase of light wave
might be equivalent to the Hamilton principle function or, say, action A4 (for action see
section 2.2 of chapter 2). Schrodinger tried to use the following function:

.4
P =Re'n (3.4.6.1.2)

to describe the wave motion of a massy particle. Here, the appearance of 7 in Eq. (3.4.6.1.2)
is to make the phase without dimension. Schrodinger is familiar with Jacobi-Hamilton
equation of particle.

04 1 (04
o 2m (a—
Eq. (3.4.6.1.3) is energy conservative due to the time-independence of V (x). The first term
equals —E, second term equals kinetic energy, and third term is potential field. Considering
Eq. (3.4.6.1.2), Schrodinger guessed that

>2—|—V(x) =0. (3.4.6.1.3)

04 ihow

= (3.4.6.1.4)

Considering the possibility of complex ¥, Eq. (3.4.6.1.3) was rewritten as

Ety (%—f) <aa—f) 4V (x) =0, (3.4.6.1.5)

Substituting Eq. (3.4.6.1.4) into Eq. (3.4.6.1.5) yields

[V(x) — E]¥*®¥ + % (a%) (aa—lf) =0. (3.4.6.1.6)
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Schrodinger used the £ to express the left hand side of Eq. (3.4.6.1.6), took the L as a
Lagrangian density, which is a function of general coordinates: ¥, ¥*, 0¥ /dx, and 0¥* /dx,
and defined action

1) 1)
a = / diL = / / dxL
I 151 %

- /htz/vdtdx{[V(x)—E]‘P*‘P—i—% (aa%) (%f)} (3.4.6.1.7)

Eq. (3.4.6.1.7) is same as Eq. (2.2.8.2.4). Using the method from action to Euler-Lagrange
equation Eq. (2.2.8.2.8), Schrodinger obtained corresponding Euler-Lagrange equation,
which is

oL 0 oL
o2 [a(alp*/ax)} 0, (3.4.6.1.8)
1. €., ) 0
h* 0°¥

which is just the time-independent Schrédinger equation, i. e., the energy eigenequation of
a particle in potential V(x). (For this subsubsection readers can see Refs. [1, 41])

Comments of this textbook for the works of Schrodinger in 1926:

Without any doubt, Schrédinger’s works in 1926 is great, and promotes the development
of quantum theory. The historical experiences are worth to notice. Next, we make some
analyses for Schrodinger’s works in 1926.

Classical mechanics is possible to calculate, for example, the vibrational models of a
string, membrane, or resonator by solving a wave equation, subject to certain boundary
conditions. At a very beginning of the development of quantum mechanics (1926), one was
faced with the problem of finding a wave equation satisfied by wavefunction describing
massy particle after proposition of the de Bloglie matter wave hypotheses. At the beginning
time, one had to search for parallels in classical mechanics, and tried to “derive” the desired
equation on the basis of plausible arguments. Such a wavefunction equation, not derived but
guessed at intuitiveness, would then be a postulate of quantum mechanics, and its validity
would have to be verified by experiments.

For the wavepacket-theory, the situation is much different. Just basing on the commu-
tation relation [x, p] = ih, proved by theorem III, the wavepacket-only theory will prove
exactly in section 5.8 of chapter 5 all the three different formulations of quantum mechan-
ics (Schrodinger wave equation, Heisenberg matrix, Feynman path integral) instead of any
guesses.

3.4.6.2. Another Method to Derive Time-Dependent Schrodinger Equation

Now let us introduce an another method to derive time-dependent Schrédinger equation,
often being used in until now many textbooks [4]. This method requires to make three
assumptions.
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(1) First assumption. Assume that the equation has a plane wave solution, i. e., the
solution W(r,7) is .
W(r,1)=Ae ko0, (3.4.6.2.1)

In one dimensional case, Eq. (3.4.6.2.1) takes the form
W(x,1) = Aelkx=on), (3.4.6.2.2)

(ii) Second assumption. Use the de Bloglie matter wave hypotheses, mentioned in
chapter 1, i. e., p = hk and E = ho. Therefore,

W(r,1) = AePrEN/R, (3.4.6.2.1)
In one dimensional case, Eq. (3.4.6.2.1) takes the form
W(x,1) = Ae!kx=0) = Agl(Px—ED/h, (3.4.6.2.2)

If an equation is correct, then substituting Eqs. (3.4.5.6.1-2)’ into it, we should get an
equality. To find the wave equation conveniently in this method, we give the following
differentiations with respect to x, y, z, and ¢ of ¥ in Egs. (3.4.6.2.1-2)'.

iw——iEw a—zlp——iEzlp (3.4.6.2.3)
o0 h 0 e m
ilp—i ¥ iqf——i 2y (3.4.6.2.3)
P TN T Pl
Oy L,y ﬁl}f——i 2y (3.4.6.2.3)"
Jy —hpy , 92 = thy .
i\p_i Wy il}l—_i N (3.4.6.2.3)"
. R a2t T TP

The form of the wave equation applicable to many classical waves (electromagnetic wave,
transverse waves on a string, plane sound waves in a gas, and so on) is

*¥ o’y
=7 = vzﬁ, (3.4.6.2.4)

where v is real constant equal to the wave velocity. Substituting Eq. (3.4.6.2.3) into Eq.

(3.4.6.2.4) yields
—E?¥ = v p°Y. (3.4.6.2.5)

E =v|py|. (3.4.6.2.6)
From Egs. (3.4.6.2.5) and (3.4.6.2.6)

E = hvlk,|. (3.4.6.2.7)
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For a non-relativistic free particle of mass m, the kinetic energy is

p2
E=1tx 4.6.2.
- (3.4.6.2.8)

The difference between Eqs. (3.4.6.2.8) and (3.4.6.2.7) shows that the wave equation Eq.
(3.4.6.2.4) cannot be the wave equation governing the wavefunctions. We have thus to
discard the differential equation Eq. (3.4.6.2.4).

It is observed that to get Eq. (3.4.6.2.8) other than Eq. (3.4.6.2.7), the differential
equation should have first order derivative with respect to ¢ and second order derivative
with respect to x, that is

oV oMY
— =B= 3.4.6.2.9
where B is a constant. Substituting Eq. (3.4.6.2.3) into Eq. (3.4.6.2.9) yields
P2
—IE¥Y = —B%‘P, (3.4.6.2.10)
E
p=" zh (3.4.6.2.11)
Dx
From Egs. (3.4.6.2.8) and (3.4.6.2.11) we have
ih
=—. 4.6.2.12
B>, (3.4.6.2.12)
Substituting Eq. (3.4.6.2.12) into Eq. (3.4.6.2.10) yields
¥ h? O*¥
h—=——=. 3.4.6.2.13
" 2m dx? ( )
Eq. (3.4.6.2.13) is Schrodinger equation satisfied by plane wave.
(iii). Third assumption. Assume that in potential field, i. e., when
2
E= 5—"—|—V(x,t) = @pin (ko) B+ V (x,1), (3.4.6.2.14)
m
the Eq. (2.4.1.13) can be extended to
¥ R* 9?
h—=——= g 4.6.2.1
ih 5, < 5 32 —|—V(x,t)> , (3.4.6.2.15)

which is the desired one dimensional time-dependent Schrédinger equation for a wave-
function.

Comments:

Although the Eq. (3.4.6.15) is same as that from the wavepacket-only theory, but this
another method requires three assumptions. The first assumption in this another method
corresponds to the conclusion proved by theorem VI. The second assumption in this an-
other method corresponds to the conclusion proved by corollaries I and IV. The third as-
sumption in this another method is not an assumption in the wavepacket-only theory, be-
cause the wavepacket-only theory has proved that ifid/ot represents the total energy, and
—h?V? /(2m) just represents Kinetic energy.
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3.4.7. Wavepacket Motion Law and Explanations for Experiments

To connect a theory with experimental facts is very important because

(1) Any theory has to be verified by experiments; Practice is the only standard to test
truth;

(2) The processes to use a theory to explain experimental facts are also processes to
improve theory.

(3) The theory can predict new phenomena, some in which might be important for
mankind life and science.

The quantum mechanics, based on wavepacket-only theory, has to explain, at leat, all
the five experiments in sections 3.4.7.1-5. In these processes of our explanations, we use
both inductive and deductive methods to find some necessary relations between the guide-
factor and the body-factor of wavepacket. Let us interpret these necessary relations in detail
as follows.

We have known that the body-factor is the substance of wavepacket, and the guide-
factor is only a mathematical wavefunction (a plane wave for free particle). Does the
guide-factor have positive action for wavepacket’s motion? Let us seek the guide-factor’s
action. We make the following analyses:

(1) It is very important to note that according to the wavepacket composition theorems,
the time variation appears just in the guide-factor. Therefore, we must have to connect the
particle’s motion with the guide-factor, i. e., the motion of body-factor has to obey guide of
the guide-factor.

(2) On other hand, if the body-factor’s motion obeys the guide of the guide-factor, then
the particle is of wave property. Many experiments have observed this wave property.

(3) Further, we have known that the guide-factor can be a complex function. The body-
factor cannot follow the guide of any complex functions. Therefore, we have to think that
the body-factor obeys the guide of square of absolute value of the guide-factor.

(4) How does the guide-factor guide the body-fsactor’s motion? In experiments of
interference pattern of particles through double slit, the squares of absolute values of the
guide-factor have a distribution on the screen in experiments. This distribution can be
calculated because the guide-factor is a known plane wave in the double slit experiments.
We have known that Born’s probability density interpretation of wavefunction fits exper-
imental facts, although the Born’s connection between wavefunction and ensemble does
not accepted by all physicists. Next, we hope: (i). That the Born’s probability density
interpretation of wavefunction is still correct; (ii). Wavefunction describes individual
object other than ensemble. We find that if the guide of the guide-factor for motion of the
body-factor is of equiprobability symmetry, and every time motion of the body-factor is a
spontaneous equiprobability symmetry breaking, then our hopes (i) and (ii) can be realized,
and the explanations for experimental facts, such as the interference pattern of particles
through a double slit, can be done well.

To understand the following statement, readers need to read the subsection 3.5.3 at the
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first.

Let us illustrate the equiprobability symmetry in detail. For convenience of statement,
assume that the values of coordinate x on screen and observed square of absolute value of
the guide-factor as a function of x take integers instead of actual continuous values. Suppose
that the possible position number (i. e., the values of x) on double slit experimental screen
in the Fig. 1.7 of chapter 1 are 17, and they are

X1,X2,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17- (3.4.7.1)
The values of square of absolute value of the guide-factor on these 17 positions are
ny = 2,712 = 1,713 :0,714 = 2,715 :4,716 :2,717 :0,713 :4,719 = 8,

niyo— 4,7111 = 0,7112 = 2,7113 = 4,7114 = 2,7115 = O,m(, = 1,n17 =2. (3.4.7.2)

The total value of squares of absolute values of the guide-factor on these 17 positions
are 38. For statement convenience, we say 38 units. Of course, one body-factor can only
choose one unit in the 38 units in every time motion. But, what is the choosing rule? This
is a very important problem. We can look for the answer just from many experiments. The
experiments of interference pattern of particles through double slit in Fig. 1.7 of chap-
ter 1 and next subsection 3.4.7.1 can have many ways. For example, the particles can be
electron, neutron, quite big molecule Cgg, and photon. For example again, all the particles
go through the double slit at the same time, or at one time just one particle goes through
the double slit (Of course, in this way, one should do the same experiment, for example,
N x 38 times. N is big integer.). According to analysis for large amount of experimen-
tal data, obtained in interference pattern of particles through double slit, we find that the
body-factors choose one unit from the 38 units with equiprobability. The reason to con-
clude the equiprobability is as follows. When experimentalist made, for example, 10x38
experiments of interference pattern of particles through a double slit, and every time ex-
periment uses just one particle, the observed particle number distribution on the screen is
nearly proportional to ny = 2,ny = 1,n3 =0,ny = 2,n5 = 4,n6 =2,n7 = 0,ng = 4,ng =
8,no=4,n1=0,np,=2,n3=4,n4=2,n5=0,n6=1,n17=2. In the past 200 years
this kind of experiments for photon (from 1804) and massy particle (from 1961) has been
done more than, for example, 10° times, and the conclusions are same. The large amount
of experiments indicate that the body-factors choose, for example, one unit in the 38 units
with equiprobability. The subsequent question is that although the body-factor motion is of
equiprobability symmetry, but the body-factors cannot remain in a undecided state in a long
time, when the body-factor needs to make just one choice in, for example, the 38 units of
the guide-factor. It is obviously that the body-factors will make choice without a wee bit of
hesitations. Thus, the choice has occur in a uniquely way, i. e., spontaneous equiprobability
symmetry breaking.

Based on the necessary of explaining large amount of experimental facts and on the
wavepacket composition theorems, we deduce and induct a law of wavepacket motion:

Wavepacket motion law.
Any objects, including both massy and massless particles, are wavepackets.



96 Fu-sui Liu

Any objects have both wave and particle (corpuscle) properties because theirs
wavepackets consist of guide-factor (which is also called wavefunction) and body-factor
(which is substance of the object).

The motion of the body-factor accepts guide of the guide-factor. This guide is of
equiprobability symmetry.

The actual motion of the body-factor is determined by spontaneous equiprobability sym-
metry breaking.

This spontaneous equiprobability symmetry breaking process is a still more microscopic
process. In essence, this process is stochastic or random. In this process the momentum
conservation, the energy conservation, the general and special theory of relativity and so
on, determined by theories belonging to determinism, might be violated.

The equiprobability symmetry and spontaneous equiprobability symmetry breaking ap-
pear often in macroscopic phenomena and human society as well.

Example 1. Let us look at the macroscopic spontaneous magnetization phenomenon. In
some solids individual ions have non-vanishing vector magnetic moments. Above a critical
temperature 7, the directions of vectors of magnetic moments are random, and thus the total
magnetic moment is zero. However, below T the total magnetic moment is not zero, which
is called spontaneous magnetization. For an isotropic system, the direction of spontaneous
magnetization of a ferromagnetic body is of equiprobability. Therefore, no people knows
this direction before appearance of the spontaneous magnetization.

Example 2. lottery ticket. Every equal-value lottery ticket is of equal probability to
draw a prizewinning in a lottery. However, to draw a prizewinning in a lottery occurs in a
way of spontaneous equiprobability symmetry breaking.

Corollary VIII: Matter wave. Massy particle (rest mass# 0) has wave property. The
wavenumber of the matter wave is k = p/h, where k and p represent the average wavenum-
ber and momentum of the marry particle, respectively. The angular frequency of the matter
wave is @ = E/h, where @ and E represent the average angular frequency and momentum
of the marry particle, respectively.

Proof. From theorem I we know energy £ = h® and momentum p = hk.

From theorem VI we know that a free wavepacket has a guide-factor, which is a plane
wave. This plane wave has angular frequency ® and wavenumber k.

From theorem VIII and corollary IV we know that the k and ® appearing in the guide-
factor are the average wavenumber and angular frequency of the wavepacket of massy par-
ticle, respectively.

From wavepacket motion law we know that the guide-factor guides the particle’s
motion according to spontaneous equiprobability symmetry breaking rule. Therefore, the k
and o in the guide-factor con be observed. QED.

This corollary is equivalent to the de Bloglie matter wave hypotheses introduced in
section 1.4 of chapter 1.

Corollary IX: Wave quantum property. Wave, such as light and acoustic wave, has
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Corollary IX: Wave quantum property. Wave, such as light and acoustic wave, has
quantum property. The energy and momentum of wave quantum are E = ho and p = hk,
respectively. The wavenumber of the wave quantum is k, which is the average wavenumber
of the wavepacket of wave quantum. The angular frequency of the wave quantum is ©,
which is the average angular frequency of the wavepacket of wave quantum.

Proof. From theorem I we know energy E = h® and momentum p = hk.

From theorem VI we know that a free photon and phonon wavepacket has a guide-
factor, which is a plane wave. This plane wave has angular frequency ® and wavenumber
k.

From theorem VIII and corollary IV we know that the k and ® appearing in the guide-
factor are the average wavenumber and angular frequency of the wavepacket of wave quan-
tum, respectively.

From wavepacket motion law we know that the guide-factor guides the wavepacket’s
motion according to spontaneous equiprobability symmetry breaking rule. Therefore, the k
and o in the guide-factor can be observed. QED.

This corollary is equivalent to the Planck-Einstein quantum postulate of light introduced
in section 1.2 of chapter 1.

3.4.7.1. Interference Pattern of Particles through a Grating or Double Slit

Wave propagation can be well explained by the Huygens-Fresnel principle. According to
this principle, each point along the wave-front can act as a source of secondary waves.
The Huygens-Fresnel principle is the very good method to explain the formation of wave
diffraction or interference on the screen behind single or double slit and grating. Therefore,
the formation of interference pattern on the screen (See Fig. 1.7.), when a beam of massy
particles passes through a double slit or a grating, is a signature of that wave property of
particle.

Recently, the interference pattern was observed in beam of big molecules of Cgg [14,
42]. Refs. [14, 42] detected the central maximum and two first-order interference peaks in
the pattern. The molecules had a most probable velocity of 117 meters per second, which
correspond to a de Bloglie wavelength of wavepacket of 0.0047 nm. On the Cgy grating
interference experiment, Ref. [42] made the following three conclusions.

First, one of the deepest mysteries of quantum mechanics is that an interference pattern
is formed even if there is only one particle in experimental set-up at any given time. All
their observations support the viewpoint that each Cg( interferes with itself only.

Second, the interactions of Cg with environment, such as the spontaneous emission of
photons by the thermally exited molecules, could not reveal which slits they had passed
through. Even the merely small possibility of being able to know which slits the particle
passes through would be enough to wipe out the interference pattern. This phenomenon
also observed in many other references.

Third, the same interference pattern for Csy molecules, that contained one or two atoms
of 13C (the heavy isotope of carbon), can also be observed.

The above experimental results are easy to be explained by wavepacket motion law,
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because the wavepacket itself contains purely plane wave factor, i. e. guide-factor, which’s
expression is like the light wave. The pattern is determined by the square of absolute value
of the superposition of two plane waves, coming from the two slits, on the screen. (For
grating, coming from the all slits) According to the wavepacket-only theory a free single Cgg
molecule has a guide-factor, which is a plane wave just like the light wave. After through the
two slits or many slits, the guide-factor consists of the superposition of two or many waves.
According to the equiprobability symmetry, the motion of the body-factor of wavepacket is
determined by the square of the absolute value of the superposition of two or many waves.
Similarly to the light wave, at the screen we observe a interference pattern. The two or
many waves come from one free individual particle, and thus the interference on the screen
is self-interference. If at every time just one individual Cgy molecule goes from the source,
and goes through the two or many slits, then according to equiprobability symmetry the
individual particle will take a position on the screen due to spontaneous equiprobability
symmetry breaking. Because one molecular cannot gives a interference pattern, we shall
see on the screen that the Cgy molecules look like to distribute on the screen randomly at the
beginning step of the experiment. However, after longer time many Cgy molecules will give
on the screen a pattern exactly like the interference pattern determined by the interference
of two or many plane waves. If we know that which slit does the Cgp molecule pass through,
then the equiprobability symmetry will be destroyed, and therefore the Cgy molecule will
move deterministically, and the interference pattern will be wiped out. If the Cgy molecules
contain one or two atoms of heavy isotope of carbon, then the the average wavenumber
of Cep molecule has only a little change, and therefore the guide-factors have only a little
change. Naturally, the interference pattern coming from different Csy molecules has only a
little change.

3.4.7.2. Interference Pattern of Photon through Grating or Double Split

Let us look at that how does the wavepacket-only theory explain the light interference.
The observed single x-ray photon interference through a grating is as follows [43]. For
photon w(k,) = kyc, and the group velocity of photon wavepacket v, = c. The compositions
of the photon wavepacket are the same as the massy particle. Therefore, the explanation
for Cgp in section 3.4.7.1 can be used to photon as well, and all the results in Ref. [43]
can be explained. The number #n,,,; of photons emitted from light source is always larger
than the number n,,, of photons which pass through the grating. np.s/nem < 1 is called
light pupil function or screen function [44]. The equiprobability symmetry can explain
Npas/Nemi < 1. Some photons, emitted from source, will distribute on the grating uniformly
because the squares of absolute value of plane wave at any point y, z on the grating are the
same. Some photons will be obstructed by the non-slit parts on the grating. According to
the equiprobability symmetry
Npas Wsp

=0 3.4.7.2.1
Nemi Wsp + Wsd ( )

where W), is the width of slit, and Wy, is the distance between two nearest neighbor slits on
the grating.

From subsections 3.4.7.1-2, we know that the wave property of photon and massy par-
ticle are exactly the same.
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3.4.7.3. Polarized Photon Experiment

To clearly explain the polarized photon experiment, let us at first learn the language of
optics to make some preparations.

Assume that a so-called monochromatic light propagates along z direction, and the
electric field intensity is

E = Eexpli(k;z— ot)]e, + Eyexpli(k;z — 0t ) ey, (3.4.7.3.1)

where
E, = Egexp(ioy), E,= E;exp(iocy) . (3.4.7.3.2)

If E, =0 and E, = 0, then they are x- and y-linearly-polarized light, respectively. If E, = E,,
then it is 45°-linearly-polarized light. If E, = E,exp(in/2) and E, = E,exp(—imn/2), then
they are right and left dextrorotatory circle-polarized light, respectively.

The experimental results of polarized photon (or light) passing through polarizer @i. e.,
crystal tourmaline thin piece) are as follows. Take the crystal axis of the polarizer to be
along x direction. If incident photon is a x-linearly-polarized, then it can pass through the
polarizer without a bit of absorptions. If incident photon is a y-linearly-polarized, then it
is absorbed by the polarizer, and cannot pass through the polarizer. For the 45°-linearly-
polarized photon (Note that photon is a wavepacket.), if at every time just set one single
photon to pass through polarizer, then at the initial time, when there are only a few photons
which pass through polarizer, the pattern on the screen behind looks like that the photon
passes through polarizer randomly. Just after a long time, when many single photons pass
through polarizer, one can observe that half of photons pass as x linearly-polarized photon
and half of photons cannot pass because they are y-linearly-polarized photon [1].

Let us use our wavepacket-only theory to explain above experimental results, and an-
swer the question having not yet been answered by modern quantum mechanics. The photon
as a quantum has an extension in position space. Photon is a wavepacket as well as electron.
Considering wavepacket in Eq. (3.4.1.15), the formulas in Ref. [44], and that the light wave
is a transverse wave, the wavepacket of the linearly-polarized photon is described by

W(z,1) = (Ege, + Eye ekt Ol gk g/ (), (3.4.7.3.3)

where z is the propagation direction of photon, and E,, E| just belong to one photon. The
W(z,t) is called x- or y-linearly-polarized (or plane-polarized) photon wavepackets, and is
a vector in the (x,y) plane. If E, = E, in Eq. (3.4.7.3.3), then ¥(z,¢) is called 45°-linearly-
polarized photon wavepacket. According to (Exe, + Eyey) - (Exex + Eyey) = EZ + Ey2 and
the equiprobability symmetry, the body-factor of wavepacket will take x- or y-linearly-
polarization with equiprobability before entering the polarizer. If one just observes a
few photons, then the numbers of x- and y-linearly-polarized (or plane-polarized) pho-
ton (wavepackets) might be not equal to each other due to the fluctuation caused by the
spontaneous equiprobability symmetry breaking. So, the experimental results of polarized
photons of both a few and many single photon can be explained by our wavepacket-only
theory well. Zeng proposed a question in 2010 in Ref. [1], i. e., how does the photon
change its polarized state from 45°-linearly-polarized to x- or y-linearly-polarized, when
the photon passes through the polarizer. The answer of our wavepacket-only theory is as
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follows. When the guide-factor of 45°-linearly-polarized photon wavepacket meets polar-
izer, the body-factor will have the equal choice for the x- and y-linearly-polarized state.
According to the equiprobability symmetry when the body-factor of wavepacket arrives in
the polarizer, the body-factor of wavepacket will have the same probability to choose the x-
or y-linearly-polarized state. Therefore, according to wavepacket-only theory, there is no
the so-called question that how does the photon change its polarized state in the polarizer,
because before entering in the polarizer the probability already is definited.

34.74. Delayed-Choice Experiment

“Wave-particle duality” of light has dumbfounded physical scientists for more two cen-
turies. Newton contended in 1672 that light was made up of individual particles while
Hooke (who was utterly despised by Newton) wrote on the wave-like properties of light.
In 1801, Thomas Young’s double slit experiment demonstrated the wave-like properties of
light. In 1905, Einstein revisited the theory of light acting as a particle to resolve conflicts
between the wave theory of light and certain experimental results such as the photoelectric
effect. The quantum mystery which cannot go away (in Feynmans words) of “wave-particle
duality” is illustrated in a striking way by the delayed-choice thought experiment suggested
by Wheeler [45, 46, 47]. In Wheeler’s words: “We hope to choose whether the individual
photons should act schizophrenically or not.” [48] In this experiment [45], the configura-
tion of a two-path interferometer is chosen after a single-photon pulse has entered it: either
the interferometer is closed (i.e., the two paths are recombined), and the interference is
observed, or the interferometer remains open and the path followed by the photon is mea-
sured. Refs. [45, 46] report an almost ideal realization of that Wheeler’s experiment, where
the light pulses are true single photons, allowing unambiguous which-way measurements,
and the interferometer, which has two spatially separated paths, produces high visibility
interference. Measurements in the closed configuration show interference with a visibility
of 94%, while measurements in the open configuration allow us to determine the followed
path with an error probability lower than 1% [45].

Wheeler’s delayed choice thought experiment put the wave-particle complementarity
principle of quantum mechanics to the test. The corresponding interpretation of the ex-
periments is still a matter of debate. Some physicists are attempting to find a classical
interpretation completely ignoring quantum mechanics altogether, while others consider
the experiment relevant to explaining quantum decoherence. As with many classic thought
problems, the realization of Wheeler’s delayed choice experiment has answered one ques-
tion and created several new ones. How does light know when to display wave-like or
particle-like properties? Present popular answer to this was that the light can “sense” what
the experiment is attempting to measure. Based on the initial “feel”, light would decide
whether or not it will display wave-like or particle-like behavior before entering the exper-
iment. This hypothesis is aptly named the “conspiracy” theory [49].

The experimental results in Refs. [45, 46] on Wheeler’s thought experiment can be
explained by the wavepacket-only theory very easily. The single photon is emitted from
source. The guide-factor (plane wave) in Eq. (3.4.1.15) will separate into two parts,
one part goes through the splitter, and one part is reflected by the splitter. The body-
factor of wavepacket will move according to the equiprobability symmetry and spontaneous
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equiprobability symmetry breaking. At last the two parts of the guide-factor will arrive at
end point, and have interference. The body-factor of wavepacket will take the direction
and the position according to the equiprobability symmetry and spontaneous equiprobabil-
ity symmetry breaking. Thus the wavepacket-only theory can explain experimental results
exactly. In our wavepacket-only theory the body-factor of wavepacket of individual photon
itself moves as an entity in Wheeler’s thought experiment.

3.4.7.5. Interference of Refraction Wave of Electron on Surface of Single Crystal
and One Prediction

In the wavepacket-only theory the wavepacket of electron consists of three factors given by
Eq. (3.4.1.15). The direct verification for existence of the guide-factor and the equiproba-
bility symmetry is the interference experiment of electron on the surface of a single crystal,
made by Davidson-Germer and Thompson [50, 51, 52] (See section 1.5.). The wavepacket-
only theory explains the Davidson-German experiment as follows. The guide-factor of free
electron wavepacket, which is exactly a plane wave, can give the intensity distribution of
refraction wave of this plane wave, and the body-factor of wavepacket moves according
to the equiprobability symmetry and spontaneous equiprobability symmetry breaking. If
the electron beam contains many electrons, then we observed the interference pattern of
refractory electrons, which is the same as that observed by Davidson-Germer.

The guide-factor of the free wavepacket is just a plane wave in essence. Therefore, it
cannot been observed. However, its intensity distribution is proportional to the distribution
of “rooms in a hotel”, in which the wavepacket body-factor as a guest can reside according
to the equiprobability symmetry and spontaneous equiprobability symmetry breaking. The
body-factor of a wavepacket represents the rigid electron sphere with radius < 107'® cm
If we do single electron experiment for a long time instead of an electron beam containing
many electrons, then the wavepacket-only theory predicts that initial observed distribution
of refraction electrons will be random due to the fluctuation caused by the spontaneous
equiprobability symmetry breaking. However, after a long time we can see the interference
pattern in Davidson-Germer experiment clearly.

3.4.7.6. Experiment of Partial Stop of Csy Molecules at Grating

To let readers believe the equiprobability symmetry in the wavepacket-only theory deeply,
we design the following thought experiment. According to the equiprobability symmetry,
mentioned in the beginning of subsection 3.4.7, if a wavepacket moves along x direction,
then the body-factor of wavepacket can take any value of (y,z) plane with equiprobability
before passing through the grating. The widths of slit and non-slit on the grating are 50
nm and 50 nm [42], respectively. Only half Cgy molecules can pass the slits of the grating
to give the interference pattern, and half Cgy molecules are stopped by the non-slit parts
on grating. This particle stop phenomenon was already observed in photon interference
experiments mentioned in subsection 3.4.7.2.
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3.4.8. Properties of Wavefunction
3.4.8.1. Normalization

The guide-factor (= wavefunctioin) W¥(x) can be normalized. Due to the equiprobability
symmetry, the square of absolute value of guide-factor |¥(x)|?, represents the probability
density if values of x are continuous and the probability if the values of x are discrete.
For convenience, we often think that the wavefunction is normalized. The definition of
normalization is, for example,

/hdx|‘P(x)|2 =1, (3.4.8.1.1)

where a and b can be finite or infinite. More normalization methods can also be found
in sections 5.1 and 5.4 of chapter 5. The equiprobability symmetry gives the normalized
guide-factor the following physical meaning:

The probability of the body-factor to appear in all the domain of the guide-factoris 1;

The probability of the body-factor to appear in small range x — x + dx is |¥(x)|?dx =
p(x)dx. Therefore, |¥(x)|? represents probability density.

In momentum space

Y(x) — Y(k,) = \/LZ_n /:O dx¥ (x)e ", (3.4.8.1.2)

In momentum space the guide-factor still is a guide-factor.

The probability of the body-factor to appear in the momentum domain of the guide-
factor is 1;

The probability of the body-factor to appear in small range k, — k, + dk, is
|¥(k,)|*dk, = p(k)dk,. Therefore, |¥(k,)|* represents probability density in momentum
space (py = hky).

3.4.8.2. Individual Interpretation for Wavefunction

Some references think that the wavefunction represents statistical ensemble behavior of
large number of identical particles other than the individual behavior of one particle.

Wavepacket-only theory thinks that the wavefunction (i. e., guide-factor) represents
the individual behavior of one particle other than the statistical ensemble behavior of large
number of particles, i. e., the wavepacket-only theory gives the individual interpretation of
wavefunction. The reason of our individual interpretation is obvious. From the beginning of
this chapter to now we have proved the wavepacket compositions, derived the Schrédinger
equation, and deduced the character of wavepacket. All these things do not have a wee bit
of connections with other particles or with the so-called statistical ensemble. We cannot
absolutely right now connect our single particle wavepacket guide-factor and body-factor
quite unaccountably with other particles or with the so-called statistical ensemble.

According to the statistical interpretation of wavefunction, p(x) = |¥(x)|? represents
position probability density of appearance of the single particle. In this aspect of probability
density, both our individual interpretation and the statistical interpretation are the same
formally. But, there are two differences between them:



Wavepacket-Only Theory 103

(i) The latter thinks that |W|? describes the behavior of ensemble of large number of
particles, and the former thinks |¥| describes still the behavior of the single particle;

(i1) The latter is a purely phenomenological hypothesis. Although the latter says that
it gives a statistical interpretation, actually, the latter does not know more reasons for his
statistical interpretation besides that if it represents probability, then it has to connect with
an ensemble. On the contrary, our individual interpretation comes from theorems proved
and from analysis for large amount of experimental data. Why the probability in the
wavepacket-only theory does not require to connect with an ensemble? Because the the
wavepacket-only theory uses the spontaneous equiprobability symmetry breaking concept,
and thus does not need to invoke the ensemble concept.

3.4.8.3. Comments for Wavefunction Collapse

There are many arguments on the wavefunction collapse, which was proposed by von
Neumann in 1932 [53, 55, 56, 57, 21]. The so-called collapse of wavefunction says: for
example, if a wavefunction (i. e., guide-factor) is W¥(x), and one finds that the value of
momentum of a particle is p,; = hiky, then the wavefunction (guide-factor) collapses from
Y(x) to Aexp(—ikyx). The origin of this collapse might be non-control distribution of
measurement processes.

Our comment on the wavefunction collapse is as follows.
The wavefunction W(x) can be transformed from x representation to k, = p,/h repre-
sentation.

N S A ol
Wi = /_ dk(k) e (3.4.8.3.1)

|¥(k,)|? represents the momentum probability density of appearance of single particle. In
detail, |¥(k,)|?dk, represents the momentum probability of appearance of single particle
between p, = hk, and p, + Ap, = hk, + hAk,. If one measures the single particle’s mo-
mentum, and obtains value p,, = hk,,, then this just means that the single particle takes
a special value of many momentum values, provided by the guide-factor (i. e., wavefunc-
tion), according to spontaneous equiprobability symmetry breaking. For a wavepacket there
are at least two factors: guide-factor and body-factor. If single particle takes special value
Dx, = hk,, contained in wavefunction, then this does not mean that all other values of mo-
mentum, contained in the wavefunction, do not exist or vanish. In our everyday life, Neu-
mann’s wavefunction collapse looks like that: Neumann (a single particle) touches the tail
(special momentum value) of a big elephant (the wavefunction), then Neumann concludes
that the big elephant becomes elephant’s tail. Another our everyday life example to indicate
the mistake of wavefunction collapse is as follows. The hotel looks like a wavefunction.
The guest looks like a single particle. We always cannot say that if a guest chooses a room
in the hotel, then the hotel becomes one room chosen by the guest. We always cannot say
that if there is no guest in the hotel, then the hotel does not exist.

The origin of mistake in the wavefunction collapse is simply due to confusing the guide-
factor with the body-factor of wavepacket. In our wavepacket-only theory, in measurement
processes, apparatus and instruments are purely classical, and there are no a wee bit of
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necessities to consider the so-called non-controllable disturbance of measurement appara-
tuses.

3.4.8.4. On Phase Velocity of Guide-Factor

There are two discussions on the concept of phase velocity in case of the guide-factor as a
plane wave.
First, the guide-factor in Eq.(3.4.1.15) is exp{i[kwx — (ko )t]}. Considering x = 2v,t

yields
e{i[kxcxf(i)(km)t]} — e{i[kmz\zgfm(km)]t} . (3484 1)

Eq. (3.4.8.4.1) clearly shows that the phase is dependent linearly on time 7. Although the
phase-equal plane at any time can exist, but there should be no velocity of equal-phase
plane, because the phase is a monotonous increasing function.

Second, in some references the method to determine the so-called phase velocity v,
is as follows. At first, some references assume that kyox — 0(kyo )t is a time-independent
constant C. Then, some references obtain

dC  dlkeox — ®(kyo )t] dx

= _ = ko — 0(kyo) = 0. (3.4.8.4.2)

Some references define that the so-called phase velocity v, is dx/dt, and from Eq.
(3.4.8.4.2) obtain the phase velocity

dx (k)
Vp,some references = Z = kxo . (34843)

If we take io(kyo) = (Hkyo)?/(2m) in Eq. (3.4.8.4.3), then vy, some references = Fkxo/ (2m) =
vg/2. Thus, the phase velocity of the guide-factor of wavepacket described by Eq.
(3.4.8.4.2) is less than the group velocity of the same wavepacket, i. e., the propagation
velocity of phase is less than the moving velocity of wavepacket. The diffraction and in-
ference phenomena of massy particle and massless photon in our wavepacket-only theory
come from that the guide-factor is a plane wave. If the phase of the plane wave is behind the
wavepacket-body, then there are no diffraction and inference phenomena of massy particle.

Therefore, we conclude that for the guide-factor there is no the concept of phase veloc-

ity.

3.5. Schrodinger Equation

3.5.1. One Dimensional Time-Independent Schrodinger Equation

Consider a system in which the potential is time-independent. In one dimensional case
V(r) = V(x). Schrodinger equation is

o _

10
! ot

( "o —I—V(x)) P, (3.5.1.1)

2mox?
Because V(x) is time-independent, W(x,#) can be written as

Y(x,t) =Y (x)F(t). (3.5.1.2)
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Substituting Eq. (3.5.1.2) into Eq. (3.5.1.1) and then dividing both sides by ¥ (x)F (¢) yield

1 dF(r) R 1 d*

i F(t)T——%WW‘P(xH—V(x). (3.5.1.3)

Each side of Eq. (3.5.1.3) is equal to certain function F’ of x and ¢. The left hand side does
not depend on x, so F’ is independent of x. The right hand side does not depend on ¢, so F’
is independent of ¢. Since F’ is independent of both variables x and ¢, F* must be a constant.
We denote this constant by E. Equating the left hand side of Eq. (3.5.1.3) to E yields

1 dF(t)
h—— =E. 5.1.4
“Fo) o (3:5.1.4)

After integration .
F(1)=e BN, (3.5.1.5)

Equating the right hand side of Eq. (3.5.1.3) to E yields
B2 d>¥(x)

T +V(X)¥(x) = H¥Y(x) = E¥(x). (3.5.1.6)

Eq. (3.5.1.6) is called time-independent Schrédinger equation for determining the wave-
function (i. e., the guide-factor) of a particle with mass m and moving in time-independent
potential V(x). From Eq. (3.5.1.6), E has dimension of energy. We should take that E is the
energy of the particle, and is called eigenenergy. The H is called Hamiltonian. The ¥(x) is
called eigenfunction.

From Egs. (3.5.1.5) and (3.5.1.2)

W(x,1) = e FMp(x). (3.5.1.7)

The wavefunction W(x,7) corresponds to state of constant energy.

Let us here give an simple example to look for ¥(x) in Eq. (3.5.1.7). Suppose that a
particle with mass m is constrained to move between two impenetrable walls which are a
distance a apart. The corresponding potential has the values

V(x) (x<0,x>a) (domain 1)

W@z: (0<x>a) (domain 2) (3.5.1.8)

This form of V (x) is known as one-dimensional box. According to Eq. (3.5.1.6), the Hamil-
tonian for this problem is as follows.

R d>
Hl:__Zm—dx2 +o (x<0, x>a) (domain 1) (3.5.1.9)
R d?
HQZ_%ﬁ (0>x>a) (domain 2). (3.5.1.10)

In domain 1 the time-independent Schrodinger equation gives ¢(x) = 0. The reasons are as
follows. For any finite energy E, in this domain Eq. (3.5.1.9) reads

Hio(x) = Eo(x). (3.5.1.11)
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Since ¢(x) and E are finite, the right hand side of Eq. (3.5.1.11) is finite. Therefore, the left
hand side has to be finite as well, and ¢(x) must vanish in the domain 1.

That the ¢(x) = 0 in domain 1 implies that there is no the guide-factor, and thus the
body-factor of wavepacket has no probability in domain 1. The domain 1 is called “for-
bidden domain” where E < V (x) = oo. Certainly, this is the case in domain 1 for any finite
energy E.

In domain 2 the time-independent Schrodinger equation Eq. (3.5.1.10) is
n* d?

The subscript 7 is an anticipation of a discrete energy spectrum E, and eigenfunctions ¢, (x).
The wavefunction is continuous. Therefore, it must be at x =0 and x = a

q)n(o):q)n(a):()- (3.5.1.13)
which is called boundary conditions. To solve Eq. (3.5.1.12), we rewrite it in the form
d2¢n(x) 2
2 +k;,0,(x) =0. (3.5.1.14)
2mkE,
kn =" (3.5.1.15)

Eq. (3.5.1.15) is merely a change of variables from energy E, to wavenumber k,. The
solution to Eq. (3.5.1.14) appears as

0, (x) = Asink,x+ Bcoskyx. (3.5.1.16)
The boundary conditions Eq. (3.5.1.13) give
B=0. (3.5.1.17)

Asinkya = 0. (3.5.1.18)

Eq. (3.5.1.18) serves to determine the eigenvalues k,,.
k,a=nn, n=0,1,2,--- (3.5.1.19)

This is equivalent to the requirement that an integer number of half-wavelengths, n x /2,
fit into the width a.

The spectrum of eigenvalues is discrete. To find the constant A in Eq. (3.5.1.18), we
normalize ¢, (x).

/ dxo> = 1. (3.5.1.20)
0

The normalization condition is convenient for quantum mechanics. According to the
equiprobability principle and after normalization, |0, (x)|?dx represents the probability of
body-factor of wavepacket at x — x -+ dx. This normalization of ¢(x) requires that the ¢,,(x)




Wavepacket-Only Theory 107

is square-integrable. For convenience, one always makes the normalization expressed by
Eq. (3.5.1.20). From Eq. (3.5.1.20) one obtains A = /2 /a, and

On(x) = \/gsin (%m) (3.5.1.21)

Substituting Eq. (3.5.1.19) into Eq. (3.5.1.15) yields

h2k} hn?
— 20k

E,=n’E| = . o3 (3.5.1.22)

The eigenstate corresponding to n = 0 is ¢o(x) = 0. This, together with the solution in
domain 1, gives 0p(x) = 0 over the whole x axis, which means that there is no particle
(body-factor of wavepacket) to take the state 0o (x). This is equivalent to the statement that
the particle does not exist in the n = O state. Another argument that disallows the n = 0 state
follows from Heisenberg uncertainty relation of energy-time (See section 3.3).

3.5.2. Stationary State

Using Eq. (3.5.1.7) yields
¥ (x,1)|* = |¥(x)]% (3.5.2.1)

The probability density occupied by body-factor of wavepacket is then independent of time.
A particle in such a state will remain in that state until it is acted upon by some external
object that forces the particle out of that state. The solution of Schrodinger equation for
time-independent potential is called stationary state. The stationary state is a state with well
defined energy, E being the definite value of its energy. For a stationary state, ¥(x, ) equals
a function of time multiplied by a function of particle coordinate, ¥(x), which is called an
eigenfunction (or eigenvector) of Hamiltonian H.

h? d?

HY(x) = [_%W

—I—V(x)] Y(x,t) = E¥(x). (3.5.2.2)
Eq. (3.5.2.2) is called the eigenequation of Hamiltonian. ¥(x) is called eigenfunction of
Hamiltonian.

3.5.3. Superposition of States

It is better to put this subsection 3.5.3 after subsection 3.4.5 and before subsection 3.4.7.
If we put subsection 3.5.3 in that way, then we address the law in subsection 3.4.7 easily.
Considering the superposition of states is an important property of Schrodinger equation,
we put it still here. Schrodinger equation is linear in W¥(x,7). As a result, its solutions
W (x,t) satisfy superposition theorem which can also be called superposition theorem of
states or wavefunctions or guide-factors. Note that the wavepacket-function is not the
solution of Schraodinger equation, and thus do not satisfy superposition theorem. In all
other textbooks the superposition theorem is called superposition principle. The proof of
state superposition theorem is very simple, and is given as follows.
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Theorem XI: State superposition. Linear composition of possible states (= wavefunctions
= solutions of Schrodinger equation = guide-factors#wavepacket-function) is also a pos-
sible state. In mathematics, if W;(x,¢), (i=1,2,---,N) satisfy Schrodinger equation Eq.
(34.5.2.1)

ha+h2 i —V(x,t)|¥i(x,t) =0, (i=1,2 N) (3.5.3.1)(3.4.5.2.1)
% omdd X, i(x,t)=0, (i=1,2,---,
then the wavefunction
n<N
Y(x,t) =Y ci¥Wi(x,1) (3.5.3.2)

i=1

also satisfies Schrodinger equation Eq. (3.5.3.1).

Proof. From Eq. (3.5.3.2) and Eq. (3.5.3.1) we have

0 h* 9? nNT o9 R
L d  hmo N _ g0 o _
lhat +2mdx2 V(x,t)] (x,1) ; [Zhat + S T V(x,t)| Wi(x,7) =0.
(3.5.3.3)
Therefore, W(x,¢) is the solution of the Schrodinger equation as well. QED.

The key to prove the state superposition theorem is in that the Schrodinger equation is
a linear equation. Because the superposition property of wavefunctions can be proved, it is
better to call it superposition theorem instead of superposition principle.

Corollary X: Interference between component states. There are interference between
component states of superposition state, or say, the state superposition is a coherent
superposition.

Proof. See Eq. (3.5.3.2). The ¥(x,¢) satisfies Schrodinger equation, and thus it is guide-
factor of wavepacket. According to wavepacket motion law, the probability density of an
object to appear in x — x +dx at time ¢ is [¥(x,)|> = | XN, ;¥ (x,1) 2 # T | [ (x,1)|%
i. e., the cross terms of the components are of contributions to the total probability.

For example, See Young’s double slit experiment in Fig. 1.7 [5]. The incident wave-
function of free electron is plane wave, Yy = Aexpli(ky — r)], incident direction is y, the x
direction is perpendicular to the slits, and the two slits are S; and S,, which are distance a
apart. At adistance d parallel to it is a row of detectors that measures the intensity as a func-
tion of the position x measured along the fluorescent screen. Simply, d is the perpendicular
distance between slit surface and screen (Refer to Fig. 3.1 (a) in Ref. [5]).

If we first keep only S| open, the incident wavefunction will come out of S| and prop-
agate radially outward. One may think of S; as the virtual source of this wavefunction y1,
which has the same frequency and wavelength as the incident wavefunction. The intensity
pattern I} = |y|? is registered by the detectors. Similarly, if S, is open instead of Sy, the
wavefunction y, produces the pattern I, = |y,|?. In both cases the arrival of energy at the
detectors is a smooth function of x and ¢.
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Now if both §; and S, are opened, both wavefunctions y; and y;, are present and pro-
duce an intensity pattern, according to optics, I; 12 = [y + 2|2, According to theorem X1,
Y1+ is also a state of the incident free electron.

The interesting thing is that I, # I} + I, but rather the interference pattern shown in
Fig. 1.7. The ups and downs are due to the fact that wavefunctions y; and W, have to
travel different distance d; and d;, (Refer to the nice Fig. 3.1 in Ref. [5].) to arrive at some
given x and thus are not always in step. In particular, the maxima correspond to the case
dy — dy = nk (n is integer. A is the wavelength of the incident plane wavefunction. d; and
d, are the distances from slits to the common point x on the screen, respectively.), when
the wavefunctions arrive exactly in step, and the minima correspond to the case d; —dr =
(2n+1)/2A, when the plane wavefunction are exactly out of step. In terms of the phases 0;
and ¢, ¢2(x) — ¢1(x) = 2nm at a maximum and ¢, (x) — ¢;(x) = (2n+ 1)® at a minimum.
One can easily show that the spacing dx between two adjacent maxima is dx = Ad/a.

The feature to take special notability is that if x,,;, is an interference minimum, there is
more electron flowing into x,,;, with just one slit open than with both. In other words, the
opening of an extra slit can actually reduce the electron flow into x,;;.

From these facts of electron and photon double slit experiment Born (1927) drew the
following conclusion: with each free electron or photon is associated a wavefunction Vs,
called probability amplitude or simply amplitude, whose modulus squared |y|? gives the
probability of finding the particle at x. [Strictly speaking, we must do not refer to [y|? as
the probability for a given x, but rather as the probability density at x since x is continuous
variable.]

3.5.4. Requirements for Wavefunction

The wavefunction can be a complex function in principle, and therefore the wavefunction
itself cannot be observed directly. The square of absolute value |¥(x,?)|? evaluated at
a particular position and at a particular time is proportional to the position probability
density of appearance of body-factor at that time. The position probability density is
positive and real, and is equal to ¥*(x,)¥(x,7). Although the wavefunction (guide-factor
of wavepacket) can take negative values, but position probability density is always positive.
Due to that |¥(x,#)|? represents position probability density, the wavefunction should be
square-integrable, and thus belongs to £2. The wavefunction can be described by both
position space and momentum space, and belongs to M (R). Generally speaking, the
solution (i. e., wavefunction) of time-independent Schrédinger equation must satisfy the
following physical conditions or requirements. The requirements for wavefunctions can be
called boundary conditions.

(1) The wavefunction must be continuous and single valued.

(2) 0¥ /0x, d¥/dy, and 0¥ /dz must be continuous and single valued everywhere. There
is an exception, which is given at the end of this subsection.

(3) The integral of square modulus of wavefunction over all values x must be finite.

/‘P*‘de = finite, (3.5.4.1)
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i. e., the wavefunction must be square-integrable. This condition means that wavefunction
can be normalized, i. e., wavefunction must go to zero as x(y,z) — oo in order that
[ [¥|2d®r over all space is a finite constant.

These requirements for the wavefunction ensure that the position probability density
of appearance of body-factor of wavepacket in the vicinity of any point is unambiguously
defined and continuous rather than having two or more possible values. If ¥ and (d¥/dx)
are not single valued and finite, then the same is true for ¥(x,¢) and 0¥/dr, since the given
formula for calculating the average values of position and momentum contains ¥(x,7) and
0¥ (x,1)/ot.

The first order derivative of the wavefunction with respect to position coordinates must
be continuous every where except where there is an infinite discontinuity in the potential.
We know that any function always has an infinite derivative whenever it has a discontinuity.
Let us consider the time-independent Schrédinger equation in one dimension.

2
% _ ;—T(v _E)W. (3.5.4.2)
If V, E, and ¥, and (d>¥/dx?) is finite, then this in turn requires d¥/dx to be continuous.
A finite discontinuity in % /dx implies an infinite discontinuity in d>¥/dx>. Some special
V(x) in the Schrodinger equation may have this discontinuity. For example, for the step
square potential
Vi x<a
V(x) —{ Vy x>a (3.5.4.3)
The theorem XIII-5 in chapter 4 says that if (V; — V») is finite, then ¥(x) and d'¥(x) /dx are
continuous. However, if [(V| — V,) — +eo], then this theorem does not hold water.

3.5.5. Observable as Operator

The terminology “dynamical variable” or (physical) “observable” is generally used for a
physical quantity that can be determined experimentally. For brevity, some times we call
the dynamical variable simply the quantity. We have seen that a quantity has to be expressed
by an operator. For example, the momentum in coordinate representation (See section 3.3)
is an operator, and the energy in time representation is an operator. For the convenience of
studying quantum mechanics, here we give a complete discussion on operator.

(1) An operator O is a mathematical terminology that transforms a function ¢ into
another function . We have known the following five operators in position space: co-
ordinate r (a special operator, i. e., a number operator in position space), momentum
operator (h/i)V, kinetic energy operator (—h?/2m)V?, potential operator V (r,t) (a spe-
cial operator, i. e., a number operator in position space), and Hamiltonian operator
H = (—h?/2m)V?+V(r,t). They correspond to dynamical variables: position r, momen-
tum p, kinetic energy 7', potential energy V (r,7), and total energy H, respectively.

(2) The form of operator for a dynamical variable depends on space used to express
the dynamical variable. For example, section 3.2 tells us that if we use momentum space,
then the form of momentum operator will be simply represented by the number momentum
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itself. Similarly, if we use position space, then the form of position operator will be simply
represented by the number position itself.

(3) Dynamical variables correspond to linear operators. An operator O is called
a linear operator if it satisfies two criteria: O(c0) = cO0 = ¥ and O(c10; + c20,) =
1001 + 2002 = c1¥1 + c»W,, where ¢’s are complex constants. The examples of lin-
ear operators are differential operator, position operator etc. Nonlinear operators are, for
example, /some (take the root of some) and [some]? (take the square of some). We do not
study nonlinear operator.

(4) In formula HY = E¥, we have defined that W is the eigenfunctions of Hamiltonian.
Generally speaking, we can define the eigenfunctions and eigenvalues of any operator O.
The definitions are as follows. When an operator acting on a function yields a constant
times the function, we call the function eigenfunction and the constant the corresponding
eigenvalue. Let the function is ¥ and the operator is O

oY = 0¥, (3.5.5.1)

where o is a complex number. Eq. (3.5.5.1) defines the eigenvalue equation. For a given
operator O many eigenfunctions may exist so that

O‘Pi = Oi‘Pi, (3552)

where W; are the eigenfunctions, and o; are the corresponding eigenvalues. Each eigen-
function of O is unique. If two or more eigenfunctions have the same eigenvalues, then the
eigenvalue is said to be degenerate. Let ¥ and W, are eigenfunctions of the operator O
with the eigenvalue o, i. e.,

OlPZ = 0‘}’2. (3554)

This eigenvalue is said to be doubly degenerate. The eigenvalue can be also three-, tour-,
---, n-fold degenerate. The eigenvalue is nondegenerate, if there is only one eigenfunction
corresponding to the eigenvalue.

If ¥ and ¥, are eigenfunctions of O with the same eigenvalue, then their linear com-
position is also an eigenfunction, that is,

Y =¥ +¥s;. (3555)

oY = 0(01‘1”1 —i—CQlI"z) =c10¥ |+, 0¥, = 0(6‘1‘1”1 +C2‘I”2) =oV. (3556)

If a state (= wavefunction = guide-factor) ® is not any one in the eigenstates of operator O,
but is a state which can be expressed by a superposition of eigenstates ¥, ¥,, W3, - - -, then
the state ® consists of many eigenstates of operator O according to definite proportionality.
O represents both operator and quantity, for brevity.

(5) We hope that readers feel that it is a natural thing to represent a dynamical variable
[or (physical) observable] in terms of operators. The basic reason to represent a dynam-
ical variable by an operator is just a mathematical requirement. The theorem proved in
subsection 3.3.1.4 of chapter 3, is independent of physics, and is just dependent on the
mathematics.
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3.5.6. Probability Current Density of Single Particle

The position probability density occupied by the body-factor of wavepacket (= position
probability density of the single particle) is

p(rt) =¥ (r,t)¥(rt). (3.5.6.1)
ov* oY
/d3rp rt) /d3r‘P* rt)¥(r,1) /d3 ( LEE G > ) (3.5.6.2)
The time-dependent Schrédinger equation can be written as
o  ih_,
= lP——V Y. 3.5.6.3
o " amV RV (3:5.6.3)

Substituting Eq. (3.5.6.3) and its conjugate into Eq. (3.5.6.2) yields

/d3rp (r,1) ——/d3 var B (va ST (3.5.6.4)
Substituting the vector identity
WAL SRvA 250 RvA Gl EL Gl vl R A vas th (3.5.6.5)

into Eq. (3.5.6.4) yields

We define probability current density or probability density flux, J, of single particle J(r,¢)
as

J(rt) = —%(w*vw—wvw*). (3.5.6.7)

mJ(r,t) is called mass probability current density of single particle with total mass m.
Substituting Eq. (3.5.6.7) into Eq. (3.5.6.6) yields

0
— / d*rp(r,t) —|—/d3rv J=0. (3.5.6.8)
ot Jy 14

According to Gauss theorem, the surface integral of the component of any vector V along

the outward normal taken over a closed surface S is equal to the integral of the divergent of
V taken over the volume V enclosed by the surface S, that is,

/ dPryy-V = /dzs -V, (3.5.6.9)
\% S

where d’s is a vector whose magnitude is equal to an element d’s on the surface S. Substi-
tuting Eq. (3.5.6.9) into Eq. (3.5.6.8) yields

/d3rp (r,1) /dzsv J. (3.5.6.10)
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The left hand side of Eq. (3.5.6.10) represents the increase of the rate of total probability
that the particle appears in closed volume V. The right hand side of Eq. (3.5.6.10) (Note the
minus sign!) represents the rate of the probability, entering in volume V trough the closed
surface S.

Let the volume V is extended to the entire space. The S in Eq. (3.5.6.10) then recedes to
infinity. Since W is square integrable, it vanishes at large distances so that surface integral
in Eq. (3.5.6.10) is equal to zero. The Eq. (3.5.6.10) is then

E/cl3rp(r,t):0, (3.5.6.11)
ot Jv

that is, normalization integral [*_d>rp(r,t) is independent on time ¢. If a wavefunction is
normalized at initial time, then this wavefunction will always be normalized.
Using Eq. (3.5.6.9), Eq. (3.5.6.8) can be written as

0
Ep(r,t) +x7-J(rt)=0. (3.5.6.12)
By analogy with charge conservation in electrodynamics and with the equation of conti-
nuity in hydromechanics, Eq. (3.5.6.12) can be interpreted as the conservation of position
probability density occupied by the body-factor of wavepacket, and is called continuity
equation. Eq. (3.5.6.7) can also be written as

J(r,t) =Re (‘P% vw). (3.5.6.13)

The operator /57 /i represents momentum p therefore, i<y /(im) represents the velocity
of the particle, since p/m = v. However, one cannot naively think that J corresponds to
product of the velocity and the position probability, and that velocity is equal to J/p. Since
¥ and 7YV are continuous function of r, therefore p(r,t) and J(r,t) have no discontinuous
change distribution as r varies.

The dimension of J(r,¢) in Eq. (3.5.6.7) is cm~2sec™!. Note that the one dimensional

form of Eq. (3.5.6.7) is
h a¥ av*
Ji=—— (V' —— . 3.5.6.14
] ( dx dx ) ( )

The dimension of J, is sec™!, which is different from the three and two dimensional J(r,?)
in dimension. It is reasonable to call J, probability current. However, for convenience, we
often still uniformly call J, probability current density.

3.5.7. More about Average Values

At first consider the average or expectation value of x for a single particle in one dimensional
wavefunction state W(x,¢), which represents the wavefunction other than the wavepacket.
The one dimensional particle is a line particle. The |¥(x,?)|? represents the position prob-
ability density. The |¥(x,t)|?dx will take different values at different interval dx — x + dx,
and thus the contribution of different intervals will be different. The probability of a line
particle at x — x+dx and t is

P (x, 1) | dx. (3.5.7.1)
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Thus the average value of x, symbolized by < x >, is
<x>:/ dox P (x,1) 2. (3.5.7.2)

Note that if |¥(x,¢)|? is an even function, then < x >= 0. Therefore, one often uses
< x% > to represent the average value of x.
For three dimensional case, the probability of the three dimensional particle at x —
x+dx,y —y+dy,z— z+dz,and 1 is

¥ (x,y,z,1)|*dxdydz. (3.5.7.3)

Thus for three dimensional case
<x >:/ / / dxdydzx|¥(x,y,z,1)|*. (3.5.7.4)

The average value of some physical quantity A that is a function of x, y, and z is

<A(x,y,z)>=/ / / dxafydzA|‘P(x,y,Z,t)|2

= / / / dxdydz¥*AY. (3.5.7.5)
In general, the property A depends on both coordinates and momenta, that is,
A =A(X,Y,2, Px, Py; P2)- (3.5.7.6)

Remember that we have used position space to find average values. The momentum in
position space is an operator instead of a numerical value (Number is sometimes called
special operator). Thus

< A(X,¥,2, Px; Py, Pz) >= / / / dxdydz¥(x,y,z,t)

ho had hoa
A <x7y7Z77a;7$a7a_Z> lP(x;y,Z,t)- (3577)

The A under the integral notation is an operator corresponding to the observable A.
For N-particle case, the formula of average value is naturally extended to

<A>= /dI\P*A\P, (3.5.7.8)

where d7t indicates a definite integral over the full range of 3N coordinates. In the above
expression the operator A is sandwiched between ¥* and W. The quantity W*AWY is not the
same as AY*W or W*WA. On right hand side of the Eq. (3.5.7.8) at first A operates on ¥
to produce a new function which is then multiplied by ¥*. One then integrates over all the
coordinate space to produce < A >. If the functions are not normalized, then the average

value of A is
_ [dTPrAY

- [dtyre’
Note that if ¥ does not satisfy the normalized condition, then all formulas of average
values have to have a denominator [ dt|¥|>.

<A> (3.5.7.9)
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3.6. Quantum or Classical Mechanics

3.6.1. Criterion

The watershed theorem tells us that:

If you connect an object (such as universe, electron, quark, photon) with a function
of both coordinates or momenta at the same time, then you can prove that the equation
of motion is decided by Poison bracket, and you can further prove Newton equation and
further you can derive a series of properties of the object, and you call this object the
classical object.

If you connect an object (such as universe, electron, quark, photon) with a function of
either coordinates or momenta, then you can prove that the equation of motion is decided by
commutation relations instead of Poison bracket (See section 5.8 of chapter 5), and you can
further prove all the three formulations of quantum mechanics instead of Newton equation
and further you can derive a series of the object’s properties (such as energy quantization
of a bound state, tunneling effect, and so on), and you call this object the quantum object
instead of classical object.

We know that the series of classical theories are not wrong. They are approximately
good enough in some cases. The calculations and treatments using classical theory are
much easier than the calculations and treatments using quantum theory. Now we propose
a question: When we have to use the exact, correct, but much trouble quantum theory? To
answer this question we give the following criterion and two corollaries.

Criterion: Criterion of quantum or classical mechanics. Suppose that the system is one
dimensional.

A > Ly
or, equivalently, quantum ef fect prevails over classical ef fect,  (3.6.1.1)
h > myygL,

A << Ly
or, equivalently, classical ef fect prevails over quantum ef fect,  (3.6.1.2)
h << mvyL,

Ay < L < 10A,
or, equivalently, quantum ef fect still manifests a little, (3.6.1.3)
mvy, < h < 10mvyeLy

where Ay, Ly, m, vy, and h are the average wavelength, size, group velocity in x direction
of wavepacket, and Planck constant, respectively.

Proof. The guide-factor and the body-factor of wavepacket represent the wave and particle
property of wavepacket, respectively. The guide-factor is a wave with wavelength A, =
27/ ke = h/(mvy). If Ay = h/(mvy,) > Ly, i. €., the size of body-factor of wavepacket is less
than the wavelength of wavepacket, then this means that the wave property of wavepacket
will prevail over the particle property of wavepacket. If the wave property of an object is
clear, then the object will manifest quantum property.
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On the contrary, if A, = h/(mvy,) << L, i. e., the size of body-factor of wavepacket is
much larger than the wavelength of wavepacket, then this means that the particle property
of wavepacket will prevail over the wave property of wavepacket. If the wave property of
an object cannot manifest, and thus cannot be observed, then the object will appear as a
classical object, and obey classical mechanics.

Corollary XI: If 7 —0. If h — 0, then even a microscopic particle such as electron obeys
classical mechanics. On the contrary, so long as 4 is big enough, then even our Earth has to
obey quantum mechanics.

Corollary XII: Velocity and mass effects. From 4 < mv,,L, we see that the larger the v,
or m are, the weaker the quantum mechanical effects are, i. e., the high velocity and large
mass of particle does not benefit quantummechanical effect.

If a macroscopic particle with mass of one gram and with v,, = 1 cm per second, then
the condition for that the quantummechanical effect prevails over the classical mechanical
effect in x direction is the particle’s length L, < 6.6 x 10~27 ¢cm, which is too short. The ac-
tual size of this particle is much much larger than this value of L,. Therefore, the properties
of the so-called macroscopic particle always corresponds to the average values of quantum
mechanics, and thus there is no quantummechanical wave effect, i. e., the classical effect
prevails over the quantum effect.

If A, << Ly, then we call this object macroscopic object. If L, < 10\, then we call it
microscopic object.

Here, we would like to mention our viewpoint coming from this criterion and the zero
theorem.

Classical physics includes: Newton classical mechanics, special and general theory
of relativity, and so on. In these theories, any objects are described by both momenta
and coordinates at the same time, the variations of objects are deterministic, there are no
coherence between two macroscopic objects, and so on.

Quantum physics includes: quantum mechanics, quantum field theory, and so on. In
these theories, any objects cannot be described by both momenta and coordinates at the
same time, the variations of objects are stochastic, there are coherence between two micro-
scopic objects (except macroscopic quantum phenomena), and so on.

3.6.2. Ehrenfest Theorem

Theorem XII: Ehrenfest average value theorem. Newton equations, written in the forms

dr p
== 6.2.1
m (3.6.2.1)

i
and
dp

o _gv 3.6.2.2
0 vV, ( )

are exactly satisfied by the average values of corresponding operators (p, r, V) on
wavefunction (guide-factor). Here, V represents real potential energy. (Ehrenferst proved
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this theorem in 1927.)
Proof. Set W represent the wavefunction. Consider the average value of x

<x>= /d3r‘P*x‘P. (3.6.2.3)

d<x> P 5 [ O¥* . ot
~ dt/dr‘Px‘P /d ( W (3.6.2.4)

From Schrédinger equation Eq. (3.4.5.2.1), its conjugate equation, and Eq. (3.6.2.4), we
have for real potential V

d x> /d3 [Wx(72W) — (V29 )] (3.6.2.5)
From Green’s theorem we have
/v)l med3r(u v—vyiu) = /‘ o ‘edzs- (usyv—vyu). (3.6.2.6)
If u =W¥* and v = xP, then from Eq. (3.6.2.6) we have

/ SV (T2 — x(02P)]
volume

= d*s - [ (x¥) — 2P (7P (3.6.2.7)

sur face
If the integration is carried over the entire space and the wavefunction vanishes at infinity,
then the surface integral approaches zero and hence from Eq. (3.6.2.7)

¥ 2 (xW) = x¥ 2 W (3.6.2.8)
Substituting Eq. (3.6.2.8) into Eq. (3.6.2.5) yields

d<x>
dt

_ %/d% (W x(V2%) — W 2 (x)]. (3.6.2.9)

Using /2 (x¥) = 2V¥ +xV2Y, Eq. (3.6.2.9) becomes

d<x>
dt

i
_ 2l—m/d3r[‘P*x(V2‘P)—‘P*(Zv‘l‘—i—xvz‘P)]
= —/d3rlp*%vlp. (3.6.2.10)

Eq. (3.6.2.10) can be written as

d<x>
dt

=< py >, (3.6.2.11)

where p, = hd/(idx). Eq. (3.6.2.11) is the quantum counterpart of the x component of
Newton equation Eq. (3.6.2.1).
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Let us now consider

d<pe> \ *ha‘P_h/ L0 (W | 0w o
dt dt/d q]7$ i ‘Pa o ) T x| (3.6.2.12)

Substituting Schrodinger equation Eq. (3.4.5.2.1) and its conjugate equation into right hand
side of Eq. (3.6.2.12) yields

d<px 3 *a *alI]
S Kad e e
hz 3 ¥ 2\ * 2 ¥ ]
—%/d r[g(v Pty <§> . (3.6.2.13)

Using u = d0¥/0x and v = W* in Green’s theorem Eq. (3.6.2.6) yields

oY R AN
31V (S2gry g2 20
/volumed r|:ax (v ¥ ) vV (ax>_

oV 0¥
= ds- [—V‘P* Wy —— ] . (3.6.2.14)
sur face

ox ox

If the integration is carried over the entire position space and the wavefunction vanishes at
infinity, then the surface integral approaches zero. Thus the second term on the right hand
side of Eq. (3.6.2.14) vanishes and we have

d < p;> 3 LoV v
oA /d (‘P = lp>_ <ax . (3.6.2.15)

The Eq. (3.6.2.15) is the counterpart of the x component of Newton equation Eq.
(3.6.2.2). Egs. (3.6.2.11) and (3.6.2.15), together with the similar ones for the y and z
components, constitute the mathematical formulation of the theorem of average value.

The connection of quantum mechanics with classical mechanics can be more close in
some cases. If the potential is linear or square (for example, oscillator), i. e. V(x) =
a+ bx+ cx*. We make Tailor expansion at < x > for V, then we have

2 1 o’V
V_ & +(x— <x>) IV + (= <x>)? (x) +---. (3.6.2.16)
ax ax <x> axz <x> 2 ax3 <x>
Considering < x— < x >>= 0, from Eq. (3.6.2.16) we have
oV — 2V
V_NW| | amorsp YW (3.6.2.17)
ox x| o |

If the V(x) = a + bx +cx? in Eq. (3.6.2.17), then Eq. (3.6.2.15) becomes

md2<x>_d<px>__aV(x)

= = 3.6.2.18
dr? dt ox ( )

<x>

Eq. (3.6.2.18) shows that the motion of average values of the particle position obeys exactly
Newton equation for some special potential.
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3.6.3. Still More Microscopic Process

(1) Some references think that there is a sharp contradiction between general theory of
relativity and quantum mechanics, and that this contradiction is a rigorous challenge faced
by mankind in 21 century [1, 58].

The wavepacket-only theory thinks that the above so-called “rigorous challenge” has
been solved by wavepacket-only theory completely. For the so-called “challenge” in Refs.
[1, 58], wavepacket-only theory makes following analysis. When quantum mechanics
writes Hamiltonian to establish equation of motion of the particle (i. e., Schrodinger equa-
tion), quantum mechanics requires that the particle obeys the general theory of relativity,
such as the weak equivalence principle, rigorously and exactly. In this aspect, there is no
any contradiction between quantum mechanics and general theory of relativity.

The wavepacket-only theory thinks that after solving Schrédinger equation and find-
ing out the solution (i. e., the wavefunction or, say, the guide-factor), the body-factor of
wavepacket obeys the guide of the wavefunction according to spontaneous equiprobability
symmetry breaking. This process is a still more microscopic process, and is a stochastic
procees. For this process, general theory of relativity cannot say anything (General theory
of relativity belongs to one kind of deterministic theories.). The quantum theory is a theory,
which can describe stochastic processes, and thus goes beyond the scope of general theory
of relativity, or, is higher than the general theory of relativity. In this aspect, we cannot
say that there is a contradiction between quantum theory and general theory of relativity,
because the latter is powerless and helpless for the spontaneous equiprobability symmetry
breaking. The so-called “contradiction” in Refs. [1, 58] looks like the following question in
our everyday life: one person asks: “Why does guest in room of hotel and the hotel’s room
do not obey the same rule?” This is obviously a stupid question because guest is a person,
and room is a nonliving matter. Thus, this question itself in Refs. [1, 58] is not reason-
able. guest=peaple=body-factor) # hotel=guide-factor=wavefunction because guide-factor
# body-factor. The action of guide-factor is to guide a spontaneous equiprobability sym-
metry breaking motion of body-factor. Both special and general theory of relativity study
the motion roles satisfying determinism. In the following we will give many examples to
interpret that the action of wavefunction violates the general theory of relativity.

Actually, all potentials in Schroédinger equation are written by Newton mechanics
(if low velocity) and the weak equivalent principle. Therefore, there is no contradic-
tion between quantum mechanics and general theory of relativity. Let us give an exam-
ple. The cold neutrons in the Earth’s gravitational field are allowed to fall along z di-
rection towards a horizontal mirror put on the Earth’ surface. The cold neutron poten-
tial is V = mypeurongz. Let us recall how to obtain this potential expression. The neu-
tron receives force —dV /dz = —Mpeutron,gravirational- However, if a neutron has accelera-
tion g, then according to Newton second law the neutron receives force —mpeutron inertial§-
When one writes the expression of the potential in gravitational field in Schrodinger equa-
tion, one always uses the weak equivalent principle of general theory of relativity, i. e.,
Myeutron,inertial = Mneutron,gravitational = Mneutron- Therefore7 from the aspect of establishment
of Schrodinger equation, the wavepacket-only theory requires any objects to obey the weak
equivalent principle, i. e., there is no any contradiction between wavepacket-only theory
and general theory of relativity.



120 Fu-sui Liu

However, we have to note that although Hamiltonian of wavepacket obeys general the-
ory of relativity and so on, but the actual motion of particle obeys the equiprobability sym-
metry and spontaneous equiprobability symmetry breaking law. The wavepacket motion
law has no direct connection with general theory of relativity and so on. According to
equiprobability symmetry, the actual motion is decided by the square of absolute value
of the guide-factor. If, for example, the energy connected with a wavefunction might be
discrete, then the actual motion of the particle will be jumping or hopping. This actually
observed motion is a result of wavepacket motion law. (The particle jumping motion in
gravitational field was observed, which will be introduced in subsection 4.5.2 of chapter
4.) Both the equiprobability symmetry and spontaneous equiprobability symmetry break-
ing are independent of general theory of relativity, Maxwell equation, and so on. How-
ever, when we write Schrodinger equation, we have to think that the particle’s Hamiltonian
obeys general theory of relativity, and so on. Thus, the actual quantummechanical motion
of a body-factor of particle and the weak equivalent principle obeyed by the Hamiltonian
of particle are two different things. In other words, general theory of relativity and the still
more microscopic process are independent of each other. The law of wavepacket motion is
a law, which all particles, including Earth, the sun, quark, meson, neutrino, photon, phonon,
electron, and so on, have to obey. The spontaneous equiprobability symmetry breaking is a
new process.

Let us look at the cold neutron falling experiment in more detail. The falling neutron
experiment on Earth’s surface has non-continuous energy levels (Energy quantization of
bound state. See chapter 4). Experiment showed that the falling neutrons really do not
move continuously along the vertical direction, but rather jump from one height to another
hight [36]. Although the falling cold neutron jumps from one height to another hight, but
when we write Hamiltonian in the motion equation of the wavepacket, we have to use
rules such as Newton laws and the weak equivalent principle. But, the quantum state or
wavefunction or guide-factor determined by Schrédinger equation does not obeys weak
equivalent principle and so on.

The prominent character of the still more microscopic processes is the equiprobability
symmetry and spontaneous equiprobability symmetry breaking, which is a new symmetry
and rule obeyed by objects. We can say that quantum mechanics (or more generally speak-
ing, wavepacket-only theory) needs the general theory of relativity, but wavepacket-only
theory gives new motion rule of object. Therefore, in aspect of theoretical administrative
levels, the wavepacket-only theory is higher than the general theory of relativity.

Next, we list some properties of wavefunction, which violate weal equivalence principle
[1, 30].

(i) The wavelength of de Bloglie wave of free massy particle is A = h/p = h/(mv),
which is dependent on the mass m. Therefore, all phenomena on diffraction and interference
are related to mass;

(ii) The radius of hydrogen atom is r,, = n’a = n*h*/(me?), n is the principal quantum
number, and a = /?/(me?) is the Bohr radius, dependent on the electron mass m. If we use
Schrodinger equation to calculate motion of a particle with mass m in gravitational field of a
body with huge mass M, then the radius of the circle trajectory of the particle m s r,, = n’a =
n?h? /(mGMm) (in which e — GMm). The r, depends on the m. However, according to
the weak equivalence principle, the acceleration # = —V¢(r) (¢ is the gravitational potential
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energy) should be independent of mass of the particle;

(iii) The uncertainty relations do not obey general theory of relativity. For example,
Ax-Ap = mAx-Av=> h/2. Ax- Av is dependent on m;

(iv) In gravitational field V = m¢, Schrédinger equation is

h2
<—%V2 +m¢> ¥, =E,¥,

can be rewritten as

2
<_h—vz +¢> ‘Pn - &lpn
2m? m
Therefore, the energy of particle and the wavefunction are both dependent on mass m.
However, according to the weak equivalence principle, the particle energy E = mv? /2 +m¢.

E /m should be independent of m.

(v) Weak equivalence principle for elementary particle in quantum state might be vio-
lated by some direct observations. Quantum states of neutrons in gravitational and centrifu-
gal potentials can be considered the first direct demonstration of the weak equivalence prin-
ciple of the general relativity for an object (a particle) in a pure quantum state. The current
accuracy of such a comparison is limited by the precision of the gravitational experiment,
but it will be significantly improved in the near future. In the classical case, the weak equiv-
alence principle has been verified with the best accuracy 10~ 2, using macroscopic bodies.
The accuracy of measurements with atoms, 7 x 1077, is very high as well. Concerning
elementary particles, the best accuracy 3 x 10~* has been achieved with neutrons. How-
ever, a known contradiction occurs in the analysis of another neutron experiment, where a
gravitationally induced phase shift was measured in a neutron interferometer. Accounting
for dynamical diffraction effects in the silicon of neutron interferometer results in a formal
violation of the weak equivalence principle. This statement was followed by a series of
more precise experiments, where a small deviation was also measured. Although the most
probable reason for this deviation is apparently some methodical error, an increase in ac-
curacy of neutron experiments by a few orders of magnitude would help clarify the current
contradiction. Such an improvement could be achieved in planned experiments with a neu-
tron interferometer of another type, or in precision experiments with gravitational quantum
states of neutrons in the spectrometer. For this point (v) please refer to Ref. [36].

(2) Chapter 10 and many other references such as [103, 6] prove that in some quantum
transition processes the energy is conditionally not conservative more or less, and, espe-
cially, point out that there are already some experimental data on the light absorption in
semiconductor which require the explanation of energy nonconservation.

(3) As is well known, the general and special theories of relativity are compatible with
the energy conservation. If the energy conservations are violated by quantum mechanics
more or less in principle, then, at least, we can say that the general and special theory of
relativity are violated indirectly by the still more microscopic processes in quantum me-
chanics.

In one word, the wavepacket-only theory is a theory more higher and more prominent
in scientific administrative levels in comparison with general and special theories of rela-
tivity, and thus general and special theories of relativity shouldn’t interfere with the spon-
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taneous equiprobability symmetry breaking in wavepacket-only theory. Why? Because the
wavepacket-only theory is based basically on the exact mathematics, and is thus more basic.

3.7. Exercises and Solutions

(1) Use the uncertainty relation to estimate the characteristic energies of particles in
different levels.

Solution:
First level. For atom, molecular, and nuclei, the non-relativistic energy formula can be
used, 1. e.
2m  2m

For atom, Ax ~ 1078 c¢m, the energy of electron is

hZ
E~————=~4eV.
2m,(Ax)?
For comparison, the binding energy of an electron in hydrogen is 13.6 eV (= 4 eV).
Second level. For nuclei with middle size Ax =~ 6 x 10~!3 cm, the energy of neutron or
proton is
hZ
2my, ,(Ax)?
We note in passing that this is a far from academic exercise. The energy we have obtained,
which is the typical energy obtained from nuclear reactions, is some five million times
greater than our earlier estimate of the typical energy of an electron in an atom, which is
the typical energy obtainable from chemical reactions. This is the origin of the terrible
destructiveness of nuclear, as opposed to the conventional, weapons.
Third level. In particle physics, the size of particle is Ax < 10~!3 cm. Use approximate
relativistic formula

h
E ~ pc =~ c(Ap) = (iF) ~ 0.2GeV.

(2) Ref. [60] tells us that the phase ¢ quantization is one of the frontier problems in
quantum mechanics. Ref.[60] states: (i). Assume [N,§] = i; (ii). Set a = ¢i®/N and
at =VRe ™ then N = ata=vNe ©e®/N. However, the average value of commutation
relation is

<N|[N,§]IN> = <N|NOIN > — < N|ON|N >
= N<N|QIN>—<N|§|N>N=0+#i. (2.1)

It is obvious that to explain the contradiction, we need that exp(i§) is not an unitary oper-
ator. To solve the contradiction revealed by Eq. (2.1), the present references proposed two
theories: SG and PB. In SG theory, Boson number can be arbitrary, but the phase operator
does not have unitary property. On the contrary, in PB theory, Boson number has upper
limit, but the phase operator keeps unitary property.
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Would reader please propose a method to make every thing OK.

Solution:
Eq. (3.3.1.49b) is

0
0 in ¢ representation — AN in N representation. (3.3.1.4.90)(2.2)
i
From Eq. (2.2) we can prove
1Y

0] =
. d
exp (i9) x exp (—id) = exp ( > X exp <_lﬁ> =

Eq. (3.3.1.2.3) shows that N is an arbitrary integer number. In our method, Eq. (2.1) in Ref.
[60] is wrong.

<N|[N,§]|N > = <N|NO|N > — < N|ON|N >

d d
= N<M5ﬁN> <N| MN>

= N<N|—|N> N<N| |N> <N|- |N>
= z;«éN<N|¢|N>—<N|¢|N>N

(3) Newton said that our universe need “fist driving force of God”. Do you believe?

Solution:

No. I do not believe. I can give two parallel reasons.

First. The theorem of uncertainty relation proves that if any big or small body is in rest,
then its momentum will be infinite. That is the body itself can produce motion.

Second. The law of wavepacket tells us that any body can have spontaneous equiproba-
bility symmetry breaking. This breaking process does not need any force, it is spontaneous.

(4) Einstein said on quantum mechanics that “I do not believe: God plays dice.” Do
you agree?

Solution:
No. I do not agree. The spontaneous equiprobability symmetry breaking process is a
process to dice.

(5) In section 3.8 I said: “The uncertainty principle is quite counter-intuitive, so
the early students of quantum theory had to be reassured that naive measurements to
violate it were bound to be always unworkable. One way in which Heisenberg originally
illustrated the intrinsic impossibility of violating the uncertainty principle is by using an
imaginary microscope as a measuring device. See Fig. 1.9.” Do you think that it is correct
that the Heisenberg’s explanation for uncertainty relation by using thought microscopic
experiment?
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Solution:

No, it is not correct completely. This thought experiment indicates that even Heisenberg
at that time did not understand the physics of uncertainty relation correctly. As explanation
and derivation in this chapter, we know that the uncertainty relation does not connect with
any kind of measurements, and is an intrinsic characteristic of an object. If we can put an
electron on a plate, that the electron cannot have certain position. On the contrary, it will
move around an equilibrium position. Sometime the electron moves to east spontaneously
with very high speed v. In principle, v can surpass light speed ¢, which’s reason is simple,
because the law of wavepacket is the higher law of nature than the special theory of
relativity. Sometime the electron moves to west spontaneously with very low speed v.
But, the product of the root-mean-square values of coordinate and momentum has lowest
bound. The momentum uncertainty of the electron under the thought microscope does not
come from the randomly scattering photons.

(6) In section 1.8 you can also see that there were tit-for-tat arguments between Einstein
and Bohr on the uncertainty relation. Please join these arguments, review both Einstein’s
and Bohr’s viewpoints, and propose yours viewpoint.

(7) Ref. [60] gave a typical and representative statement for the superposition of states,
which is: “One of the arresting features of quantum mechanics is that particles or system of
particles do not have in general definite attributes. When we express the wavefunction as

Y =c1y;+cv

where y and y, are eigenfunctions of an operator A, corresponding to an observable A,
we are saying that before we make a measurement of A the particle does not have a definite
value of that attributes. The probability that a measurement yields a; is, of course, ¢3. After
a measurement yielding a;, the wavefunction collapses to Y, since a measurement of A
immediately thereafter again yields the value a;. How this collapse happens is a mystery.
It is referred as the measurement problem.”

Please use the wavepacket-only theory to review the above statement.

Solution:

In the language of the wavepacket-only theory, wavepacket=object=massy particle (e.g.,
electron, cat, sun, universe) and massless particle (e.g., photon, phonon). The wavepacket-
only theory proves that wavepacket consists of two factors: guide-factor and body-factor.
The body-factor carries the substance, such as mass, charge, and spin, of the object, and the
guide-factor is only a function, which is often called wavefunction. Although the guide-
factor is only a mathematical function, which is determined by Schrodinger wave equation,
but is is necessary for an object, because the motion of body-factor obeys the guide of the
guide-factor according to the spontaneous equiprobability symmetry breaking law.

In the wavepacket-only theory, the statement in exercise should be:

“One of the arresting features of quantum mechanics is that the object consists of two
parts: body-factor and guide-factor(=wavefunction). The guide-factor does not have in
general definite attributes. When the guide-factor is in state W

Y =cy +ays
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general definite attributes. When the guide-factor is in state ¥

Y =cyi+cwm

where Y and y, are eigenfunctions of an operator A, corresponding to an observable A,
we are saying that before the body-factor takes a; and a; the guide-factor does not have
a definite value of that attributes. According to the spontaneous equiprobability symmetry
breaking, the probability that the body-factor takes a; is ¢7. After that the body-factor takes
ai, the guide-factor(=wavefunction) accomplishes its guide action or task. This process
does not mean that the guide-factor collapses to y;; on the contrary, this process means that
the body-factor takes value a; of the observable A with probability ¢3. A measurement of A
immediately thereafter this process yields the value a; with probability 1. Therefore, there
is no any mystery in this process. In the wavepacket-only theory, the body-factor’s motion
has no a wee bit of connections with measurement.”

From the above discussions, you can see that the wavepacket-only theory requires that
quantum mechanics abandons the viewpoints of wavepacket collapse and measurement-
dependence of quantum mechanics.

(8) Schrodinger cat is an unsolved basic problem of quantum mechanics. Although
Schrodinger cat has been observed in experiments such as Refs. [61, 62] and even in macro-
scopic superconducting system in Ref. [63], but Schrédinger cat has not yet been observed
in a macroscopic non-superconducting system.

Please use the wavepacket-only theory to argue that Schrodinger macroscopic cat is a
pseudo-proposition.

Foe convenience of readers, at first I summarize the present research situations on
Schrodinger cat (For detail refer to Ref. [64]).

Schrodinger’s cat is a thought experiment, sometimes described as a paradox, devised
by Austrian physicist Schrodinger in 1935. It illustrates what he saw as the problem of
Copenhagen interpretation of quantum mechanics applied to everyday objects, resulting
in a contradiction with common sense. The scenario presents a cat that might be alive
or dead, depending on an earlier random event. Although the original “experiment” was
imaginary, similar principles have been researched and used in practical applications. The
thought experiment is also often featured in theoretical discussions of the interpretations of
quantum mechanics. In the course of developing this experiment, Schrodinger coined the
term Verschronkung (entanglement).

(A) Origin and motivation. Schrédinger intended his thought experiment as a discus-
sion of EPR articlelnamed after its authors Einstein, Podolsky, and Rosentin 1935. EPR
article highlighted the strange nature of quantum entanglement, which is a characteristic of
a quantum state that is a combination of the states of two systems (for example, two sub-
atomic particles), that once interacted but were then separated and are not each in a definite
state. Copenhagen interpretation implies that the state of the two systems undergoes col-
lapse into a definite state when one of the systems is measured. Schrodinger and Einstein
exchanged letters about Einstein’s EPR article, in the course of which Einstein pointed out
that the state of an unstable keg of gunpowder will, after a while, contain a superposition of
both exploded and unexploded states.
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To further illustrate, Schrodinger describes how one could, in principle, transpose the
superposition of an atom to large-scale systems. He proposed a scenario with a cat in a
sealed box, wherein the cat’s life or death depended on the state of a subatomic particle.
According to Schrodinger, the Copenhagen interpretation implies that the cat remains both
alive and dead (to the universe outside the box) until the box is opened. Schrédinger did not
wish to promote the idea of dead-and-alive cats as a serious possibility; quite the reverse,
the paradox is a classic reductio ad absurdum. The thought experiment illustrates quantum
mechanics and the mathematics necessary to describe quantum states. Intended as a critique
of just the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrédinger
cat thought experiment remains a typical touchstone for limited interpretations of quantum
mechanics. Physicists often use the way each interpretation deals with Schrodinger’s cat
as a way of illustrating and comparing the particular features, strengths, and weaknesses of
each interpretation.

(B) The thought experiment. Schrdinger wrote:

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along
with the following device (which must be secured against direct interference by the cat):
in a Geiger counter, there is a tiny bit of radioactive substance, so small that perhaps in
the course of the hour, one of the atoms decays, but also, with equal probability, perhaps
none; if it happens, the counter tube discharges, and through a relay releases a hammer
that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself
for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The
psi-function of the entire system would express this by having in it the living and dead
cat (pardon the expression) mixed or smeared out in equal parts. It is typical of these
cases that an indeterminacy originally restricted to the atomic domain becomes transformed
into macroscopic indeterminacy, which can then be resolved by direct observation. That
prevents us from so naively accepting as valid a “blurred model” for representing reality.
In itself, it would not embody anything unclear or contradictory. Schrodinger’s famous
thought experiment poses the question, when does a quantum system stop existing as a
superposition of states and become one or the other? (More technically, when does the
actual quantum state stop being a linear combination of states, each of which resembles
different classical states, and instead begins to have a unique classical description?) If
the cat survives, it remembers only being alive. But explanations of the EPR experiments
that are consistent with standard microscopic quantum mechanics require that macroscopic
objects, such as cats and notebooks, do not always have unique classical descriptions. The
thought experiment illustrates this apparent paradox. Our intuition says that no observer
can be in a mixture of statestyet the cat, it seems from the thought experiment, can be such
a mixture. Is the cat required to be an observer, or does its existence in a single well-defined
classical state require another external observer? Each alternative seemed absurd to Albert
Einstein, who was impressed by the ability of the thought experiment to highlight these
issues. In a letter to Schrodinger dated 1950, he wrote:

You are the only contemporary physicist, besides Laue, who sees that one cannot get
around the assumption of reality, if only one is honest. Most of them simply do not see
what sort of risky game they are playing with realitytreality as something independent of
what is experimentally established. Their interpretation is, however, refuted most elegantly
by your system of radioactive atom + amplifier + charge of gunpowder + cat in a box, in
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which the psi-function of the system contains both the cat alive and blown to bits. Nobody
really doubts that the presence or absence of the cat is something independent of the act of
observation.

Note that no charge of gunpowder is mentioned in Schrédinger’s setup, which uses a
Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpow-
der had been mentioned in Einstein’s original suggestion to Schrodinger 15 years before,
and apparently Einstein had carried it forward to the present discussion.

(C) Interpretations of the experiment. Since Schrodinger’s time, other interpretations of
quantum mechanics have been proposed that give different answers to the questions posed
by Schrodinger’s cat of how long superpositions last and when (or whether) they collapse.

(C.1) Copenhagen interpretation. Main article: Copenhagen interpretation The most
commonly held interpretation of quantum mechanics is the Copenhagen interpretation. In
the Copenhagen interpretation, a system stops being a superposition of states and becomes
either one or the other when an observation takes place. This experiment makes apparent the
fact that the nature of measurement, or observation, is not well-defined in this interpretation.
The experiment can be interpreted to mean that while the box is closed, the system simulta-
neously exists in a superposition of the states “decayed nucleus/dead cat” and “undecayed
nucleus/living cat,” and that only when the box is opened and an observation performed
does the wave function collapse into one of the two states.

However, one of the main scientists associated with the Copenhagen interpretation,
Niels Bohr, never had in mind the observer-induced collapse of the wave function, so that
Schrodinger’s Cat did not pose any riddle to him. The cat would be either dead or alive
long before the box is opened by a conscious observer. Analysis of an actual experiment
found that measurement alone (for example by a Geiger counter) is sufficient to collapse a
quantum wave function before there is any conscious observation of the measurement. The
view that the “observation” is taken when a particle from the nucleus hits the detector can
be developed into objective collapse theories. In contrast, the many worlds approach denies
that collapse ever occurs.

(C.2) Many-worlds interpretation and consistent histories. The quantum-mechanical
“Schrodinger’s cat” paradox according to the many-worlds interpretation. In this interpre-
tation, every event is a branch point. The cat is both alive and deadtregardless of whether
the box is openedtbut the “alive” and “dead” cats are in different branches of the universe
that are equally real but cannot interact with each other. In 1957, Hugh Everett formulated
the many-worlds interpretation of quantum mechanics, which does not single out observa-
tion as a special process. In the many-worlds interpretation, both alive and dead states of
the cat persist after the box is opened, but are decoherent from each other. In other words,
when the box is opened, the observer and the already-dead cat split into an observer looking
at a box with a dead cat, and an observer looking at a box with a live cat. But since the dead
and alive states are decoherent, there is no effective communication or interaction between
them.

When opening the box, the observer becomes entangled with the cat, so “observer
states” corresponding to the cat’s being alive and dead are formed; each observer state
is entangled or linked with the cat so that the “observation of the cat’s state” and the “cat’s
state” correspond with each other. Quantum decoherence ensures that the different out-
comes have no interaction with each other. The same mechanism of quantum decoherence
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is also important for the interpretation in terms of consistent histories. Only the “dead cat”
or “alive cat” can be a part of a consistent history in this interpretation.

Roger Penrose criticizes this:

“I wish to make it clear that, as it stands, this is far from a resolution of the cat paradox.
For there is nothing in the formalism of quantum mechanics that demands that a state of
consciousness cannot involve the simultaneous perception of a live and a dead cat”. How-
ever, the mainstream view (without necessarily endorsing many-worlds) is that decoherence
is the mechanism that forbids such simultaneous perception.

A variant of the Schrédinger’s Cat experiment, known as the quantum suicide machine,
has been proposed by cosmologist Max Tegmark. It examines the Schrodinger’s Cat exper-
iment from the point of view of the cat, and argues that by using this approach, one may be
able to distinguish between the Copenhagen interpretation and many-worlds.

(C.3) Ensemble interpretation. The ensemble interpretation states that superpositions
are nothing but subensembles of a larger statistical ensemble. The state vector would not
apply to individual cat experiments, but only to the statistics of many similarly prepared cat
experiments. Proponents of this interpretation state that this makes the Schrédinger’s cat
paradox a trivial non-issue.

This interpretation serves to discard the idea that a single physical system in quantum
mechanics has a mathematical description that corresponds to it in any way.

(C.4) Relational interpretation. The relational interpretation makes no fundamental dis-
tinction between the human experimenter, the cat, or the apparatus, or between animate and
inanimate systems; all are quantum systems governed by the same rules of wavefunction
evolution, and all may be considered “observers.” But the relational interpretation allows
that different observers can give different accounts of the same series of events, depending
on the information they have about the system. The cat can be considered an observer of the
apparatus; meanwhile, the experimenter can be considered another observer of the system
in the box (the cat plus the apparatus). Before the box is opened, the cat, by nature of it
being alive or dead, has information about the state of the apparatus (the atom has either
decayed or not decayed); but the experimenter does not have information about the state of
the box contents. In this way, the two observers simultaneously have different accounts of
the situation: To the cat, the wavefunction of the apparatus has appeared to “collapse”; to
the experimenter, the contents of the box appear to be in superposition. Not until the box
is opened, and both observers have the same information about what happened, do both
system states appear to “collapse” into the same definite result, a cat that is either alive or
dead.

(C.5) Objective collapse theories. According to objective collapse theories, superposi-
tions are destroyed spontaneously (irrespective of external observation) when some objec-
tive physical threshold (of time, mass, temperature, irreversibility, etc.) is reached. Thus,
the cat would be expected to have settled into a definite state long before the box is opened.
This could loosely be phrased as “the cat observes itself,” or “the environment observes the
cat.”

Objective collapse theories require a modification of standard quantum mechanics to
allow superpositions to be destroyed by the process of time evolution.

(C.6) The decoherence (or say, localization) of macroscopic system, caused by the
inevitable interaction of the macroscopic system with the environment [116]. This paper
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confirms through theirs numerical calculations for the influence on a macroscopic system
by the scattering of the microscopic particles in the environment [which contains at least
10° microscopic particles (photons and so on) per cm’] that the decoherence, or say,
localization of a macroscopic system comes from this scattering influence.

Solution:

The wavepacket-only theory thinks that just the (C.6)’s illustration for Schrédonger
cat in all the six illustrations is better, although it is still wrong. The following proof also
negatives any form of so called inevitable environment influence, for example, the influence
in Ref. [69].

For convenience, suppose that the cat is one dimensional. Let us estimate the cat’s
minimum momentum.

h
Apy) > ——.
According to the present measurement technique of length, if the cat’s (Ax) > 10~* cm,
then we can measure. Therefore, it becomes

Ap) > 1"
(Apx) 2 5o

The cat’s de Bloglie wavelength is
Ae AT X 1074 em << Ly ~ 20 cm,

where L, represents the size of the cat. According to the criterion of quantum or classical
object, it can be concluded that the cat is a classical object, and thus there is no the interfer-
ence state of alive and dead cat. Therefore, “Schrodinger cat” is a pseudo-proposition. The
decoherence of a macroscopic object does not be caused by the influence of environment;
on the contrary, this decoherence is an intrinsic characteristic of a macroscopic object.

Although Schrodinger cat paradox is one in the frontier problems of quantum me-
chanics [60], but in our wavepacket-only theory it can be proved exactly and easily
by one theorem and one criterion that the Schrédinger macroscopic cat paradox is a
pseudo-proposition.

(9) To describe the classical Kepler motion, the Ruterger-Lenz vector M is introduced
instead of L. The importance of M can be found in Ref. [60].

1
M=—pxL—k-, (9.1)
m r

where m is the point mass, angular momentum L = r X p, the central force field V(r) =
—k/r, for example, for the hydrogen-like ion, k = Ze?. Its extension in quantum mechanics
is

1 r
The M satisfies the following canonical commutation relations:

2ih : .
(M My) = == =HLz, [My, L] =0, [My, My) = ihM., [M:, M.] = iiM,, (9.3)
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where | ‘
The Heisenberg uncertainty relation is
1
(AMX)(AMy)2§]<—2iHLZ>]ifh:m:Ze2:1. (9.5)

Prove one of the canonical commutation relations, and the Heisenberg uncertainty relation.

Solution:
(A) Using the formula, given by Eq. (9.3.1.4.9.d), one can prove the commutation
relations.

(B) Using Theorem V, one can prove the Heisendberg uncertainty relation.

(10) Ref. [70] listed many quantum paradoxes. Please, in terms of the wavepacket-only
theory, prove exactly that quantum mechanics is without a wee bit of paradoxes.

(11) It is concluded that the state of a particle with zero energy cannot exist in the
infinitely deep pit with finite width a. Give an argument from Heisenverg uncertainty
relation in section 3.3.

Solution:

The energy of the particle in the pit is entirely kinetic, in turn, implies that the particle is
in a state of absolute rest (Ap = 0). From physical uncertainty relation (Ap)(Ax) > (h/2).
If Ap =0, then Ax = . Therefore, The state with £ = 0 is an illegitimate state of affairs
for a particle constrained in a finite domain.

(12) The quantum of gravitational field has not yet been observed by any experiment.
Argue that if it exists really, then the quantum cannot be monotonous.

Solution:

Any object, including a quantum, has to be a wavepacket. Heisenberg uncertainty
relation does not allow that it is a point without size. Heisenberg uncertainty relation
(At)(A®) > 1/2. Because the time duration of a signal cannot be infinitely long, thus the
gravitational quantum cannot be monotonous.

(13) The size of superstring is Planck length 10733 cm. Estimate its energy connected
with Heisenberg uncertainty relation.

Solution:

In the string theory the strings can constitute any particles such as quark, electron,
and proton. The size of string is equal to about 10733 cm. Some authors even think
that the string theory might be the last theory on nature and unverse [71]. The string
has at least to be described by a mathematical function satisfying not too harsh terms,
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which’s requirement is independent of any physical principles, rules, laws, and theorems.
Therefore, the string has to satisfy Heisenberg uncertainty relation, which requires the
string to have Ax x Ap, > h/2. From Ax = 10733 cm we obtain Ap, > 10°37/2. Even we
neglect the rest mass of superstring, the energy of superstring is E = 1.5 x 10'® erg. The
size of electron is Ax = 107!8 cm. Therefore, Ap, = 5 x 10~ for electron. The energy of
electron is thus \/p2c2 +m2c* = 8 x 107 erg. Here, we derive a doubtful conclusion from
the string theory. That is, although many superstrings constitute an electron, but the energy
of electron is less than the (energy of string)x10~°. The other problem of superstring
theory is as follows. If the superstring is one dimensional along x axis, then Ay = 0, and
Ap, = . Obviously, the latter equality is not reasonable in mathematics.

(14) Assume that a particle with negligible mass is confined in a box, the size of which
is around 1 fm = 10~ m. Use Heisenberg uncertainty relation to estimate the energy of
the confined particle.

Solution:
(Ax)(Apy) > h/2.  Apy > 107 % erg.second/(2 x 10~ 3cm). E =~ c(Apy) >
5x 1071 x3x 1019 = 1.5 x 10~ %erg ~ 100MeV .

(15) For photon, A¢p = 10~*rad, what is SN?

Solution: (AN)(A¢) > 1. Thus, AN > 10%/2 =5 x 10°.
Note: AN may be made vanishingly small at the expense of very large phase A¢. The
obtained field is called “squeezed light”. The field is squeezed in the sense that intensity
fluctuations are vanishing small [6].

(16) The size of atom is approximately 10~8 cm. To locate an electron within the atom,
one should use electromagnetic radiation of wavelength not longer than, say, A = 10~ cm.

(a) What is the energy of a photon with such a wavelength (in eV)?

(b) What is the uncertainty in the electron’s momentum if we are certain about its
position by 107 cm?

Solution:

(a) The energy of a photon is i = hc2n/A = 1.9 x 1077 erg~ 1.2 x 10° V. (b). From
(Ax)(Apx) > h/2 we have the uncertainty in the electron’s momentum Ap, > 5 x 10~
g.cm/sec.

(17) There is a small dust, mass ~ 107'2 g, radius r ~ 10~* cm, velocity v ~ 0.1
cm/sec, momentum p ~ 10~13 g.cm/sec. Suppose its position uncertainty is Ax = 1078 cm.
Find its momentum uncertainty Ap.

Solution:

Ap > h/[2(Ax) ~ 10712 g.cm/sec. Ap/p =~ 107, which is a very small magnitude.
Therefore, in practice people does not need to consider the effect of uncertainty relation
of the dust, and the dust can be described quite well at the same time by position and
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momentum or velocity.
(18) Estimate the size of particle in terms of the momentum uncertainty.

Solution:
By “size” we mean Ax in the sense of the uncertainty relations. According to this

uncertainty relation
h
Ax~ —.
Ap
A typical value of Ap is given by the momentum mv of the particle. The maximum possible
value of the velocity according to the special theory of relativity is the velocity of light c.

The minimum value of Ax is then

h
AX) pin = —.
(A%) i o~
Therefore, one does not think of a particle of mass m as a point particle but rather as an
object with a finite size, i/mc. This is also called Compton wavelength characteristic of

that particle and it enters into calculations whenever a length scale for the particle appears.

(19) Just use the uncertainty relations to estimate Bohr radius and ground state energy
of hydrogen atom.

Solution:

Classically, an electron of charge —e orbiting around of charge e would lose energy
due to radiation and eventually fall into the proton. This is, of course, in contradiction
to the observed fact that the electron executes stable orbits. This is explained quantum-
mechanically in the simplest terms through the uncertainty relations.

The total energy E of the electron is a sum of the kinetic energy mv? /2 and the potential
energy, which in the case of hydrogen is just the Coulomb potential. Thus, writing the
kinetic energy in terms of p = mv, the momentum, we have

2 2
g-P_¢
2m r

where r is the distance between the proton and electron. Taking Ap =~ p and Ar = r, uncer-
tainty relation says that
pr = h.

Thus, as r for the electron gets small due to the Coulomb attraction, p becomes large due
to the uncertainty relation. In other words, as the attractive Coulomb potential moves the
electron towards the proton, the increasing kinetic energy pushed the electron away from
the system. The electron will then settle down at a minimum of the total energy. We can
obtain this minimum by writing

h? e’
T 2mP
and then taking
oE
=0.

5 =
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This gives
K2 &2
——+—==0.
mr? + r2
We find
h2
Vmin = w

This is, indeed, the Bohr radius of the hydrogen atom, which is designated as a,. Substitut-
ing this in the expression of E, we obtain

me4

E=—=—.
212

(20) Assume that an one dimensional particle has certain momentum p,, and its wave-
function is ¥, (x) = exp(ipox)/h)/+/2mh, which are called eigenvalue and eigenstate of
momentum, respectively.

(a) Discuss the uncertainty relation;

(b) Find the form of this quantum state in momentum space.

Solution:

(a) p = po means the uncertainty of momentum Ap = 0. |¥,_ (x)|*> means that the
particle exists in infinitely large position space. Thus Ax = oo, which fits the uncertainty
relation of position momentum uncertainty relation;

(b) According to the definition of transformation of a function from position space into
momentum space, the Fourier transform of ¥,,_ (x) = exp(ipox)/h) //2nh is

1 B i2ox i
q)po(p):ﬁ/;wdxe %/\/ZTthe F=8(p—po)

(21) ¥, (x) = 8(x —x, ) describes the quantum state of an one dimensional particle with
certain position x = x,, which are called eigenstate and eigenvalue of position (coordinate),
respectively.

(a) Discuss the uncertainty relation;

(b) Write this quantum state in momentum space.

Solution:
(a) x = x, means the uncertainty of position Ax = 0. Thus Ap = oo;
(b)

I e

q)XQ(p) = \/ﬁe .

(22) In the so-called “Quantum Land”, a strange land, where & = 10* erg.sec, melons
with a very hard peel are grown. They have a diameter of approximately 20 cm, the mass
density is 1 g/cm?®, and contain seeds with a mass of around m = 0.1 g [2].

Problems:

(a) Why do we have to be careful when cutting open melons grown in Quantum Land?
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(b) How big the recoil of a melon at the reflection of a “visual” photon of 628 nm
wavelength?

Solution:

(a) From the uncertainty relation of position-momentum follows for the momentum
of uncertainty of the melon seeds Ap > h/(2 x 20) ~ 10% g.cm.ses® and therefore their
velocity uncertainty is Av > A/m = 1000 cm.sec”!. The seeds leave the melon with this
(mean) velocity when it is cut open.

(b) A photon of wavelength A = 628 nm has the momentum p = A(2xw/A) = 10°
g.cm.sec”! and the energy E = pc = 3 x 10!” erg. The mass of melon is M ~ (31/4)10° x 1
g.cm™3 ~ 4 kg, its rest energy is Mc?> = 36 x 10°* erg; hence we can calulate nonrela-
tivistically. Let the collision be elastic. The momentum of the melon after the collision
is approximately 2p = 2 x 10° g.cm.sec™!. This corresponds to a velocity Vieion = 5
km.sec™! which is less than the escape velocity from the Earth. The collision of melon
with such a photon would be rather unpleasant for a human being.

(23) Show that in three dimensional case, the position-momentum uncertainty relation
may be written

(Ar)*(Ap)* > =h?, (23.1)

10

where
(Ar)?=<(r—<r>)?>, (Ap)=<(p—<p>)*>. (23.2)

Solution:
Working in the frame where < p >=< r >= 0, we have (Ar)? =< r? >, (Ap)? =<
p? >. The resulting nine Cartesian products separate into two groups as follows:

(Ar)*(Ap)* = [(AxApy)® + -]+ [(AxApy)* + (AyApy)* +---]. (23.3)
The first bracketed terms give

[(AxAp,)? +---] > %hz. (23.4)

In the second bracketed six terms, with Ap, > hi/Ay, etc., we write

R\? | /Ax \? Ay
[(AxApy)” + (AyAp,)* +- -] > (5) (A—y+) + (E) S (23.5)
As z+z"! > 2, for all positive z, we find
A\ 2
[(AxApy)* + (AyApy)* +-+] > 6 <5> . (23.6)

Adding both contributions give the desired result.

(24) According to the meson theory of nuclear force, the long range part of the nuclear
force is determined by the exchanging ® meson. The ® meson’s mass is my ~ 270m,.
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Estimate the force range r, of the nuclear force.

Solution:
The concerning energy uncertainty is

AE ~ mncz.

The momentum uncertainty is
Ap ~AE/c ~ mgc

The position uncertainty is
Ax ~ 1o~ hJ/Ap ~ h/mgc = 1.4fm (1.4 x 10" "m)

(25) In monochromatic plane wave ¥,,_(x) = exp(ip.x)/v/2nh, the particle has definite
momentum p = p,, which is called eigenstate of position space. Find its expression ¢,_(p)
in momentum space.

Solution:
At first expand W, (x) in momentum-space

1
V21h

+oo .
V). (1) = <= [ dpdy.(p)e"

Then
1

oo o
0.(0) = o= | W (e =800 p.),

(26) ¥, (x) = 8(x — x,) describes a particle with definite position x, , which is called
the eigenstate of the particle in position space, and eigenvalue is x,. Find the expression of
this state in momentum space.

Solution: |

2n
(27) A quantum state in position space is ¥(r). The position average value of particle

is <r>= [d®rr'?* (r)¥(r). Calculate < r >= 7 in momentum space.

—iXop

Ox, (p) =

e

|/-\m

Solution:
First expand ¥(r) and W*(r) in momentum space. Second, substituting these expan-
sions into the definition expression of < r > yields

< r>=7=/d3p¢*pihvp¢(p)-

That is, in momentum space r should be an operator 7 = ii/,. From this example we
know that the operator of an observable is a requirement of mathematics. r in position
space is a number (a special operator). However, it has to be expressed by a operator in
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momentum space.

(28) In non-local potential V (r,7"), Schrodinger equation is
ihi‘P(r 1) = _h_Z \vak (I /d3r/V(r Y(r,1)
at Y 2m Y Y Y *

Find the requirement of conservation of probability density of single particle for the
non-local potential.

Solution:
V(r,r)=V*(,r).

(29) Suppose that the Hamiltonian of N particle system is

N h2v2 N
H:—Z 3 ! —|—Zvl~j(ri—rj|).
=1 “m S
Y(ry,r,- -+ ,rn,t) is the state function of the system. Define

p(r7t) = Zpi(rat)

= /d3r2---d3rN‘P*‘P+/d3r1d3r3---d3rN‘P*‘P+---.

j(?‘,l) = Z]l
h 3 3 * *
= ﬂ/d Fz-'-d FN(lP vl‘P—‘PvllP )
h
+ ﬂ/d3r1d3r3---d3rN(‘P* T2 W — W, P,

Prove

ap .
g‘FV']—O.

Solution:
Refer to the case of single particle.

(30) Is the wavefunction of a single particle ¥(x) = x correct?

Solution:
No. It does not satisfy the normalization condition, i. e.

/ dXPP £ 1.

(31) At ¢t = 0, the particle in a stationary state is described by a linear composition of
two lowest energy states ¥(x,0) = A¥g, (x) + B¥E, (x). Calculate the wavefunction ¥ (x, 7).
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Solution:
Using the time dependence of stationary eigenstate, we have

iE|t

iEyt
IP(X,[) :Ae_T‘PEl —|—Be_T2‘PE2.

(32) The sun light power per cm? on the Earth surface is 100 mW. Assume that the
average energy of photon wavepacket in sun light is 1.56 eV. Find the number n of photons
of the sun light on the Earth surface per cm? per second.

Solution:
n=4x10"7/(cm?sec).

(33) Consider a situation where it is equally likely that an electron has momentum
+p.. Measurement at a given instant of time finds the value +p,. A student concludes that
the electron must have had this value of momentum prior to measurement. Is the student
correct?

Solution:

Our answer is that the student is correct. It is obvious that the given information indi-
cates that the electron was in a superposition state prior to measurement. This superposition
state shows that the both possibilities, that electron takes +p, and —p,, are equal to 0.5,
which does not depend on measurement. The practical electron will take a momentum ac-
cording to equiprobability symmetry and spontaneous equiprobability symmetry breaking,
which does not depend on measurement as well.

For this exercise, Ref. [3] gives an opposite answer. Please make comment.

Some textbooks of quantum mechanics think also that the student is incorrect. They
think: “The given information indicates that the electron was in a superposition state prior
to measurement. In quantum mechanics one cannot rely on the premise of inference.” [6]
Please also make comment.

(34) Prove that in case of discrete values of wavenumbers, a wavepacket in free motion
in three dimensional position space does not spread.

(35) Is there a possibility that the electron obeys the classical mechanics?

Solution:
The mass and size of an electron are m, = 9.1 x 1072 gand L = 107!8 cm. According
to the criteria, if

Ve > (35.1)

mL’
then the electron obeys the classical mechanics. Considering special theory of relativity,
Eq. (35.1) becomes

hy/1—=vZ/c?
vg> —————=73x10"%/1-12/c2.

moL
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7.32 x 1036
s = N\ 15732 % 10

(36) The size of superstring is the Planck length 10733, the velocity at the parts of ends
of superstring is light speed c. So short length contains at least energy E = 1.6 x 106 erg
(the estimation from uncertainty relation). The superstring can constitute any particles such
as quark, electron, and proton. Some authors even think that the superstring theory might
be the last theory on nature and unverse.

Discuss the condition that the superstring obeys classical mechanics.

Solution:
We assume the velocity of entirety of superstring v, = 10° cm/sec. From the criterion
in section 3.4, the condition should be

h
= . A
m> = 66(g) (36.1)

(37) Suppose that the potential is a separable potential in Cartesian coordinates, i. e.,
V(r) =Vi(x) +Va(y) +V3(2). (37.1)

Seek the general form of stationary wavefunction.

Solution:
The Schrodinger equation in Cartesian coordinates is

s

82 al 2
- (— + 5>+ —) ¥(x,y,2) +V(x,5,2)¥(x,y,2) = E¥(x,y,2). (37.2)

ox2  dy* 072

Considering that the potential is of the separable form, the solution of Eq. (37.2) is also
separable, i. e.,

Y=Xx)Y()Z(z). (37.3)

Substituting Eq. (37.3) into Eq. (37.2) yields

- 2m

hd? ¢ d*y d*z
YZ—4+XZ—+XY— Vi+Vo+ V3| XYZ =EXYZ. 37.4
< 2 Xt dz2>+[1+ >+ Vi) (37.4)
This equation can be reduced further by dividing it by XY Z to obtain

hd? <1d2X 1d%y 1d%*z

L e S —E. :
o \ X 22 +Ydy2+Zdz2)+Vl+V2+V3 (37.5)

Now combining the terms with individual variables yields

hd®> 1 d’X n n hd?> 1 d*Y vl hd’> 1 d*Z N _E (37.6)
2m X d2 ! omY dyr | ? 2mzZdzz | '
Eq. (37.6) can be written in three one dimensional equations.
hd? d*X
+ViX=EX. (37.7)

2m dx?
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hd? d*Y

—_ Y =E,Y. 7.
2m dy? Vi 2 (37.8)
hd? d*Z

_ Z=FE37. 7.
o A2 +V3 3 (37.9)
E=FE +E,+E;. (37.10)

If X;(x), Yj(y), and Z(z) are the solutions with eigenvalues Ey;, E»j, and E3, respec-
tively for the Egs. (37.7-8), then the solution for the three dimensional system is

Wik (x,y,2) = Xi(x)Y;(y) Zi(2), (37.11)

with energy eigenvalues
Eijk = Eyi+Epj+ E3;. (37.12)

(38) Ref. [72, 21] tells us that the decoherence (i. e., there is no interference between
two macroscopic object) is a present hot open problem. Now the nearly common viewpoint
is that the interference loss comes from the environment influence on macroscopic objects.

Do you agree? Why?

Solution:
No. Would reader please write reasons according to the criterion of quantum or
classical mechanics. Please give the picture of decoherence.






Chapter 4

Stationary states of One Dimension
System

4.1. General Properties

Both classical and quantum mechanics use function to describe object. This function is a
localized mathematical function € M (R). If a particle with mass m moves along x axis and
in potential V (x), then Schrédinger equation is

h? 9

., 0 B
lh—‘P(x,t) = [—%w

py —I-V(x)] Y(x,t). (4.1.1)

The solution of Schodinger equation is called wavefunction or guide-factor. The body-
factor of wavepacket will move according to equiprobability symmetry and spontaneous
symmetry breaking. For stationary state (i. e., a quantum state being of certain energy), the
expression of wavefunction is

Et

W(x,1) =¥(x)e . (4.1.2)
Substituting Eq. (4.1.2) into Eq. (4.1.1) yields
n? d?
[_%W —I—V(x)] Y(x) = E¥(x). (4.1.3)

V(x) = V*(x), that is, V(x) is real. (Generally, in quantum mechanics potential V (x) is
taken as real quantity to ensure that the eigenvalue of energy is real.) (For the theorems
XIII-1 - XIII-6 and the corollaries in this section refer Ref. [1].)

Theorem XIII-1. If ¥(x) is a solution of Eq. (4.1.3), and eigenvalue is E, then ¥*(x) is
also a solution, and its eigenvalue is also E.

Proof. The complex conjugate of Eq. (4.1.3) is

h? d?

3 V) W) = MW (2). (4.1.4)
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Considering V*(x) = V(x) and E* = E yields

R d?
[_%ﬁ

—I—V(x)] W (x) = ¥ (x). (4.1.5)
QED.

Corollary XIII. If for some E the solution of Eq. (4.1.3) is not degenerate (i. e. just has
one independent solution), then the solution can be taken as real except a constant real or
complex factor. QED.

Proof. If W(x) is a solution with energy E and the energy level is not degenerate, then
Y*(x) and W(x) describe the same quantum state. Thus, ¥*(x) = C¥(x). Its complex
conjugate is ¥(x) = C*¥*(x) = |C|*¥(x). Therefore, |C| = 1 and C = €/*. « is real
number. For convenience, we take oo = 0, then W*(x) = W(x) which means that ¥(x) is a
real function.

Theorem XIII-2. Suppose that V(x) is invariant under space reflection, V(—x) = V(x). If
Y(x) is a solution of Eq. (4.1.3) and its energy is E, then ¥(—x) is also a solution with
energy E.

Proof. When x — —x, d?/dx* — d*/d(—x)? = d*/dx*. Suppose V (—x) =V (x). Eq. (4.1.3)
becomes
h? d?
[‘ mde
Eq. (4.1.6) shows that ¥(—x) is also a solution of Eq. (4.1.3), and its energy is E as well.
The reflection operator (parity operator) P is defined by

—I—V(x)] PY(—x) = E¥(—x). (4.1.6)

PW(r) = ¥(—r). (4.1.7)

Thus the reflection operator reverse the sign of each cartesian coordinate. The operator is
equivalent to an inversion of the coordinate system through origin.

Corollary XIV. If V(x) is invariant under space reflection, and ¥(x) is not degenerate, then
¥(x) has definite parity.

Proof. Because in this case ¥(—x) and W(x) represent the same solution, i. e., P¥(x) =
Y(—x) and ¥(x) represent the same quantum state. The difference between them is at the
largest a constant factor C. Therefore, if ¥(x) is an eigenfunction of P, then the eigenvalue
equation is

P¥(x) = C¥P(x). (4.1.8)

Operating with P again yields

PPY =C(P¥)=C*¥ =Y. (4.1.9)
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C? =1, C = £1. The eigenfunction corresponding to the eigenvalue 1 is called function of
even parity (for example, P¥(x) = ¥(x)). The eigenfunction corresponding to the eigen-
value -1 is called function of odd parity (for example, P¥(x) = —¥(x)). One dimensional
harmonic oscillator and one dimensional symmetric square well belong to these case. QED.

For the case of degeneracy of energy levels, the energy eigenstate does not definitely
have certain parity. Theorem XII-3 can solve this problem.

Theorem XIII-3. If V(—x) = V(x), then for any energy eigenvalue E, one can always find
a group of complete solutions of Schrédinger equation. Every solution has certain parity.

Proof. If W(x) is a solution of Eq. (4.1.3) and has no certain parity, then according to
theorem XIII-2 ¥(—x) is also a solution of Eq. (4.1.3), and is different from ¥(x) (although
both refer to same E.) Therefore, we can construct

fx)=¥(x)+¥(—x), gx)=¥Yx) —¥(—x) , (4.1.10)

where f(x) and g(x) are solutions of Eq. (4.1.3), both refer to the same E, have definite
parities (f(—x) = f(x), g(—x) = —g(x)), and their linear superposition can express ¥(x)
and ¥ (—x)

P(x) = 5 [f(x) +g(0)], W(—x) = 3[f(x) —g(x)] , (4.1.11)

Theorem XIII-4. For some energy eigenvalue E, one can always find a group of complete
real solutions, i. e., any solution with energy E can be expressed as a linear superposition
of these real solutions in the group.

Proof. Suppose that ¥(x) is a solution with energy eigenvalue E. If it is real, then one
can refer this solution to the group of real solutions. If it is complex solution, according
to theorem XIII-1, W*(x) is also a solution with energy eigenvalue E. According to the
superposition theorem of solutions of linear differential equation,

o(x) = W(x) + ¥ (x), Blx) = —i[¥(x) =¥ (x)]

are also solutions of Eq. (4.1.3), and are real. a(x) and B(x) have energy E, and independent
each other. ¥(x) and W* (x) can be expressed as linear superposition of a.(x) and B(x). That
is

¥ = o) +iB(x)], W= 3[o—iB(x)]
QED.

Theorem XIII-5. If V(x) is step square potential, i. e.,

IV, x<a
V(x)—{ Vs, x>a (4.1.12)

and V, — V) is finite, then energy eigenfunction ¥ (x) and its derivative P’(x) are continuous
certainly.
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Proof. According to Eq. (4.1.3),

d> 2m

TSW(x) = — 3 E - V()] ¥(). (4.1.13)

In the region where V (x) is continuous, ¥(x) and ¥ (x) are continuous obviously. However,
at the point x = a of the step jump of V(x), V(x)¥(x) has finite change. At x ~ a we do
integration overa —& < x < a+¢€ (¢ — 0™) for Eq. (4.1.13), and we obtain

a+

Wiate)-W(a—e) = tim [ dx[E— V)W), (4.1.14)

hz e—0t a—e

Due to the finiteness of [E — V (x)]¥(x), the right hand side of Eq. (4.1.14) is zero. There-
fore,
Y(a+e)="(a—¢), (4.1.15)

that is, W'(x) is continuous at the step jump point (x = a) of potential V (x). Thus ¥(x) is
continuous as well. QED.

Theorem XIII-6. If for one dimensional particle ¥ (x) and ¥, (x) are the solutions of Eq.
(4.1.3), and belong to the same energy, then

¥\ ¥, — P,V = constant. (4.1.16)

Proof. According to the hypotheses of this theorem

'{—i—zh—’?[E—V(x)]‘Pl(x) =0. (4.1.17)
’2’+2h—'?[E—V(x)]\P2(x) =0. (4.1.18)

From ¥ x (4.1.17) — ¥, x (4.1.18) one obtains ¥,V — ¥, ¥ = 0, that is, (V¥ —
W,W¥,) = 0. After integration one obtains

¥\ W, — ¥,V = constant, (4.1.19)

where the constant is independent of x. QED.

4.2. Infinite Square Well and Discrete Spectrum

Particle in an one dimensional box [also known as the infinite potential well or infinite
square (rectangular) well] is defined as a particle confined in a box where it experiences no
force, that is, the potential energy is constant or zero. At the walls of the box the potential
is infinitely large. Therefore, the particle is constrained to remain in the box (infinite square
well). Section 3.5 of chapter 3 calculated the one dimensional infinite and asymmetric (i. e.
V(x) =0 for 0 < x < aand V(x) = for x < 0 and x > a) well, and gave the eigenenergy
and eigenfunction, respectively.
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Now let us study the infinite and symmetric square well. The potential is

V=0 for —2<x<2 (4.2.1a)
2 2
V=oco for x<—o, x>2. (4.2.1b)
2 2
d®¥  2m
—+—=|E-V|¥=0. 4.2.2
dx2 + hz [ ] ( )
In the region —a/2 < x < a/2 where V =0, Eq. (4.2.2) is
d*¥Y 2mE
— 4+ ——¥=0. 423
dx? * h? ( )
leP+k2lP—0 (4.2.4)
dx? - o
where S
m
The general solution of Eq. (4.2.4) is
Y(x) = Asin(kx) + Bcos(kx). (4.2.6)

Since the wavefunction vanishes outside the well, the requirement that the wavefunction be
continuous gives
Yx)=0 at x==£5 (4.2.7)

From Egs. (4.2.7) and (4.2.6) at x = a//2
W(x = a/2) = Asin(ka/2) + Bcos(ka/2) = 0. (4.2.8)

From Egs. (4.2.7) and (4.2.6) at x = —a/2
W(x = —a/2) = Asin(—ka/2) + Beos(ka/2) = 0. (4.2.9)

Egs. (4.2.9) and (4.2.8) can be expressed in the matrix form

< _s;f:él(czc{/zz)) iZigZﬁ; ) < 2 ) =0. (4.2.10)

For nontrivial solution to this set of homogeneous equation in A and B, the determinant of
the coefficients vanishes, that is,

2sin(ka/2)cos(ka/2) = sin(ka) =0 (4.2.11)

or
ka = nm, (4.2.11)

where 7 is an integer. Now A and B both cannot be set to zero, since this would give the
physically uninteresting solution ¥ = 0 everywhere. Further both sin(ka/2) and cos(ka/2
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cannot be zero for a given value of k and E. There are then two possible classes of solutions.
For the first class
A=0 and cos(ka/2)=0 (4.2.12)

and for the second class
B=0 and sin(ka/2)=0 . (4.2.13)

Thus ka/2 = nmt/2 where n is an odd integer for the first class and even integer for the
second class. Thus
Y(x) = Bcos(nnx/a) n odd (4.2.14)

Y(x) = Asin(nnx/a) n even (4.2.15)
and Eqgs. (4.2.11) and (4.2.5) give

2mE  n’m?
K2 = = (4.2.16)
and b 2in
n-m-h

n = 0 gives the physically uninteresting result ¥ = 0 and the solutions for negative value
of n are not linearly independent of those for positive. The energy given by Eq. (4.2.17) is
the same as that in section 3.5 calculated for one dimensional infinite and asymmetric (i. e.
V(x) =0for 0 <x < aand V(x) = for x < 0 and x > a) well.

To obtain A, we normalize the function in Eq. (4.2.15)

a/?

Aa [ ansin?™™ =1, (4.2.18)
—a/2 a
Eq.(4.2.18) yields
L2 2
AA=2, A== (4.2.19)
a a

To obtain B, we normalize the function in Eq. (4.2.14)

a2
BB[  drost™ —1. (4.2.20)
—a/2 a
Eq.(4.2.20) yields
2 2
BB=2, B=4/Z. (4.2.21)
a a

For convenience, we take A and B are real numbers. The functions in Eqs. (4.2.14) and
(4.2.15) are

\/gcos% n=1,3,5-- even parity |x|]<§$
. (4.2.22)
2

W (x) = \/gsin% n=2,4,6,--- odd parity |x|<
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Table 4.1. Forms of potentials

X —wo——q|—-—a—0|0—a|la—o
a,step potential, E >V | V(x) 0 0 Vv 1%
a,step potential, E <V | V(x) 0 0 % v
b,barrier potential [E >V | V(x) 0 Vv Vv 0
b,barrier potential [E <V | V(x) 0 1% 1% 0
c,well potential [ E>0 | V(x) 0 -V -V 0

4.3. One Dimensional Potential Barrier and Well

4.3.1. Basic Rules

In one dimensional experiment (potential barrier, well, and step), the energy £ > 0 of the
incident single particle is known in addition to the structure of the potentials, V(x) (In the
table 4.1, we take V > 0.).

In this section we have to remember clearly the following three points proved in chapter
3.

First, the incident single particle is a free wavepacket E > 0, and its expression is given
by Eqgs. (3.4.1.14-15), which is

W (x,1) = elox—ioke)t =ik (¢ () (4.3.1.1)

The first factor ) )
I — elkxox*lm(kxo)t (43 1 2)

is called guide-factor. The velocity of the wavepacket is v, = fikyo /m. x = 2v,t. X' = vyt if
at t = 0 the particle is at the origin point of coordinate system. The second factor

I =e ¥ (4.3.1.3)
is called front-factor. The momentum of wavepacket is /i X ky, = mv,. The third factor
1 =¥ (x',0) (4.3.1.4)

is called body-factor. From x’ = v, and x = 2v,t we know that the guide-factor goes always
ahead, and the other two factors of wavepacket go always behind. The time producing
reflection or transmission, is the time when the guide-factor arrives at the boundary of
barrier or well or step.

Second, ¥(x',0) is called body-factor of wavepacket. We allow that ¥(x',0) can
be a complex function. A complex function cannot corresponds to an observable quan-
tity. Therefore, in practice we use W*(x',0)¥(x,0) = [¥(x,0)|>. The body-factor of
wavepacket is substance of wavepacket, carries mass and/or charge, spin, and so on, and
when we write Hamiltonian of wavepacket, we use classical mechanics (if v, << ¢), special
theory of relativity, Maxwell equation set, weak equivalent principle of general theory of
relativity, and so on.
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Third, the actual motion of body-factor of wavepacket obeys equiprobability symmetry
and spontaneous equiprobability symmetry breaking, i. e., the square of absolute value of
guide-factor gives the position probability density or discrete spectrum probability.

We solve these kinds of problems always through four steps.

First step. We write Shrodinger equation, and solve Schrédinger equation in every
domain of potential barrier or well or step potential to obtain the guide-factors (i. e.,
wavefunctions) of incident, reflected, and transmitted wavepacket;

Second step. According to the equiprobability symmetry and spontaneous equiprob-
ability symmetry breaking we have to obtain the squares of absolute values of incident,
reflected, and transmitted wavefunctions, which are expressed as |A|?, |B|?, and |C|?,
respectively;

Third step. According to definitions calculate the reflected R and transmitted T
coefficients. According to the equiprobability symmetry and spontaneous equiprobabil-
ity symmetry breaking, these coefficients represent the probability of motion of body-factor.

Fourth step. Derive the expressions of the wavepacket in different domains. Please
remember

wavepacket=wavepacket-function=object=particle

=guide-factor x front-factor x body-factor

=wavefunction x front-factor x body-factor.

The first, second, and third steps are explained very well in many textbooks such as
Ref. [3]. However, the until now all references and textbooks have not yet give the avove
fourth step.

4.3.2. Potential Step

We study two configurations of potential steps.

(1). Let us consider the first configuration of a simple step potential (barrier), £ >V
(see Table 4.1a.up).

First step. Actually, the true incident free particle is a free wavepacket including three
factors given by Eq. (4.3.1.1). However, at the first step, we only seek the guide-factor given
by Eq. (4.3.1.2), which is a plane wave. The so-called wavefunction, ¥ for all x, is just
guide-factor. The potential function is zero for x < 0 and is a constant V > 0 for x > 0. The
incident plane wave, i. e., wavefunction comes from x = —oo. To construct wavefunction
W as a function of x (See Table 4.1a.up), we divide the x axis into two domains: region I in
x < 0 and region I in x > 0.

In region I, V = 0, the time-independent Schrédinger equation is

hZ

——VY¥, = EY,. (4.3.2.1)
2m

The subscript x denotes differentiation. In this region I, the energy is entirely kinetic. If we
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set

h2k3
—=<=E 4322
2m ’ ( )
then Eq. (4.3.2.1) becomes
W=k WP in region I (4.3.2.3)

In region II, the potential is a constant V' > 0, corresponding to repulsive force, and the
time-independent Schrodinger equation is

hZ
—5 i = (E=V)¥. (4.3.2.4)

The kinetic energy, connected with wavenumber, decreases by V, and is given by

21,2
_hzl;zixo _E_vV (4.3.2.5)

In terms of kp,., Eq. (4.3.2.4) becomes
W= —ks Wi in region II (4.3.2.6)
¥, and ¥}, are the general solutions of Egs. (4.3.2.3) and (4.3.2.6), respectively.
¥, = Aeffier - Bekinr, (4.3.2.7)

¥}, = Ce*ror - De=ikaer, (4.3.2.7)

Since the term Dexp(—ikycoX) = Dexp|ikow(—Vv,t)] represents a wave emanating from the
right (that is, from x = +o0), and there is no such wave, we may conclude that D = 0. The
interpretations of the remaining A, B, and C terms are as follows.

. . 272
lPI,inc = Aelklxox_lmlt, hO)] = Einc = hzkr;;“’ 5 (4328)
. . 272
lPI,ref :Beﬂklxoxfz(olt’ hO)l :Eref _ hzlj;fo =Ep (4328)/

. . R2k2 "
lI"II,trans = Celkzmx zmzt’ hay = Ejrans = ) 22 +V = Ejpe = hoy > (4328)

m

where subscripts inc, ref, and trans represent incident, reflected, and transmitted guide-
factors, respectively. Considering time uniformity, the energy is conservative (Refer to
section 5.6 of chapter 5). Energy is conserved across the potential hill so that the angu-
lar frequency remains constant (0; = ;). The change in wavenumber k corresponds to
changes in momentum and kinetic energy, connected with wavenumber, of wavepacket
(particle). Note that ¥y j,., W and Wy, (with D = 0) in first step represents only the guide-
factors, which are solutions of Schrédinger equation for potential curve depicted in Table
4.1a.up.

Second step. Since the wavefunction and its derivative are continuous at the point x =0,
where W; and Wy, join, it is required that

¥ (0) =¥,(0). (4.3.2.9)
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ad d
—%;(0) = —¥;(0). 4.3.2.9)
5, 11(0) = 5-%1(0) ( )
These equalities give the relations
A+B=C. (4.3.2.10)
A—p="rree (4.3.2.10)'
klxo
Solving for C/A and B/A yields
C 2
B — 4.3.2.11
A~ Tk fki (#3.2.11a)
B 1 —koo/kixo
B _1=kwo/kixe (4.3.2.11b)

A B 1+k2xo/k1xo‘

Third step. Subsection 3.5.6 in chapter 3 gives current expression. (If the system is
three dimensions, then Eq. (3.5.6.14) gives the current density.) Substituting Eq. (4.3.2.8)
into Eq. (3.5.6.14) yields

ho,.

Jine = z—nu.zlklxo‘A‘z- (432120)
ho .

Jirans = Z—WZZkao’C’2- (43212]9)
ho .

Tres = _2mizzk1xo\3\2. (4.3.2.12¢)

It should be noted that these current relations of a single particle are formally similar to
the classical single particle current J = pv, with p = [¥|> and v = hk/m. The wavefunc-
tions in this first step: incident, reflected, and transmitted wavefunctions represent just the
guide-factor of incident, reflected, and transmitted wavepacket, respectively. The three
wavefunctions are plane wave other than the complex wavepacket representing the single
particle.

The transmission coefficient 7 and reflection coefficient R are defined as the transmitted
and reflected probability of incident particle. The often used formulas of R and T are as
follows.

Jr s
T = |2 (4.3.2.13a)
Jinc
Jref
R= |2 (4.3.2.13b)
Jinc
Substituting Eq. (4.3.2.12) into Eq. (4.3.2.13) gives
C ? k2xo
T=|— 4.3.2.14
5 = (432.140)
2
B
R= ‘Z (4.3.2.14b)
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A

T+R=1

\ =
_Sh_Y
E=V E=o gy Sy L= g

Figure 4.1. T and R versus kp / k1. Note that in Fig. 4.1 we use k; /k; to express koo /kixo-

Substituting Eq. (4.3.2.11) into Eq. (4.3.2.14) gives

dkoxo/k1xo
7 ek (4.3.2.15q)

(1 +k2xo/klxo)2 ’

2

1—k X0 k xo
R= ‘27/1 (4.3.2.15b)

1+ k2xo/klxo
The ration kyy. /k1o is obtained from Egs. (4.3.2.2) and (4.3.2.5).

koxo \ 1%
=1—-—. 4.3.2.16
<k1x0> E ( )

In the present case E >V, s0 0 < koyo/kixo < 1. For E >V, koo /kivo — 1l and T — 1,
R — 0. There is the total transmission and zero reflection. On the other hand, for E =V,
koxo/kixo =0 and T = 0, R = 1. There is zero transmission and total reflection. The 7 and
R curves for the simple step potential are sketched in Fig. 4.1.
For all values of kyyo/kixo,
T+R=1. (4.3.2.17)

Fourth step. Some references think that this step potential problem has been solved
completely by the above three steps, and stop the derivations. On the contrary, this textbook
thinks that the problem has not yet been solved completely. For example, some references
think that the reflected and transmitted waves are plane waves. As we know, the square
of absolute value of plane wave is a constant independent of space position. Therefore,
according to probability density interpretation for the square of absolute value of wave-
function no person knows that where are the reflected and transmitted particles. However,
our wavepacket-only theory will continue the derivations to answer the following questions:

(1) Where are the particle;
(2) What are the velocities of reflected and transmitted particles;
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(3) What are the expressions of the particles in all regions. (Note that parti-
cle=wavepacket)

It is obvious that the incident wavepacket (particle) cannot be separated into two
wavepackets. It can only become one of the transmitted and reflected wavepackets with
definite probabilities determined according to T and R. If there are 100 same incident par-
ticles, and they make incidence separately and individually, then just after finishing all the
incidences we can find out that the number of reflected and transmitted particles are about
100R and 1007, respectively. At the beginning of the incidences the numbers of reflected
and transmitted particles are a few, and we cannot find out the rule. (Refer to the double slit
experiment in many time single particle experiments.)

Let us write the expression of transmitted wavepacket. We show in next that koo is
average wavenumber of transmitted wavepacket. According to Eq. (4.3.2.8)

1 [ .
Wirans (x,1) = NG / dkoxbirans (kpy ) eox 020201 (4.3.2.18)

Substituting the plane wave in Eq. (4.3.2.18) into time-dependent Schrddinger equation
yields

1 /1243 1 /12 1% 1%
kyy) = — 2x = —= — =) (k) + —. 4.3.2.19
@ (k2x) h<2m +V> h<2m>+h 0 (ko) + 3 ( )

Substituting Eq. (4.3.2.19) into Eq. (4.3.2.18) yields
Vi 1 °° . /
lPtrans (x7 t) = e_l‘% = / dkz,xb[rans (kzx)el[kzxx—ﬁ)2<k2x)l] . (43220)
'\/E —00
Using the same method as that in section 3.5, Eq. (4.3.2.20) can be rewritten as

. el Vi i , 1 oo ) ,
P (1) = T Kl ot [ by (e

= eikmx—i[m’z(kzxo)—k %]teiikzxoxﬁptrans (x/7 0) ) (43 2.21 )

where x = 2V jrangt. As We KNOW, Vg 1rans = 00 (koy) /0x at ky, = ko, is the group velocity
of the transmitted wavepacket. Eq. (4.3.2.16) has been given the relation between ki, and

koo, which is
% V2m
o =kixor/ 1 — = =kixor /1 — 57— 4.3.2.22
k2x klx E 1x ﬁ2k1xo ( )

From Eq. (4.3.2.22) we see that the group velocity of the transmitted wavepacket or velocity
of the transmitted particle is less that of the incident particle.

Let us write the expression of the reflected wavepacket. We have to note that the
ki in Eq. (4.3.2.8) represent actually k... kiyo is the average wavenumber of the inci-
dent wavepacket. We can understand that —k;,, is average wavenumber of the reflected
wavepacket. To make sure, we make the following derivations. According to section 3.5 of
chapter 3 and Eq. (4.3.2.8)

1 /= .
Frep(x,t) = NG /_ dkyybye p(kyy)eFna= ot (4.3.2.23)
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Substituting the plane wave in Eq. (4.3.2.23) into time-dependent Schrodinger equation

yields
212
(M) : (4.3.2.24)

1
0 (kix) = — .

h
Substituting Eq. (4.3.2.24) into Eq. (4.3.2.23) yields

Wrep(x,1) = % /_ dkyibyep(ky ) el Rtk (4.3.2.25)

Using the same method as to derive Eq. (2.3.2.4), Eq. (4.3.2.25) can be rewritten as
o . ’ 1 eS) o ,
qlref(x7 t) = el[_klxox_ml (klxo)t] elklxox % /700 dklxbref(klx)el[ klxx]

. - i | e i[— /
= eller—oilkio)] pikiox %/mdklxbref(kx)e[ k]
= e ikuex—ion (et gk (4 1), (4.3.2.26)

where x = 2vg rost = 2h(—kixo)t/m = —2vg inct, and vg ¢ is the group velocity of the
reflected wavepacket. In physics, we know that the body-factor of incident and reflected
wavepacket should be same, i. e., the forms of b, ¢(ky) and bjnc (k1) as function of k;, are
same. In mathematics, Schrodinger equation in region I just tells us the changes of the
factor exp{—i[kix — 0 (k1,)t]} in region I, and tell us nothing about b,.s. In physics, we
take by f(kix) = binc (k1) obviously.

(2) Let us consider the second configuration of a simple potential step (barrier), £ <V
(see Table 4.1a.down).

First step. Once again, the x domain is divided into two regions: region / x < 0 and
region I1 x > 0.

In region I the Schrédinger equation becomes

lPI,xx = _k%xokplj (4.3.2.27)

where )y
"k _ g, (4.3.2.28)

2m

In region II the Schrédinger equation becomes

P = K2, (4.3.2.29)
where S,
h K

— =V —-E>0. 4.3.2.30

m > ( )

The kinetic energy in region Il is negative (—h?k?/2m < 0). In classical physics region Il is
a forbidden domain. In quantum mechanics, however, it is possible for particle to penetrate
the barrier. One obtains

W, = Aerer 4 Be ki, (4.3.2.31a)



154 Fu-sui Liu

P, =Ce ™. (4.3.2.31b)

Second step. Continuity of ¥ and W, at x = 0 gives

A+B=C. (4.3.2.324)
K
A-B=i—C. (4.3.2.32b)
1xo
Solving for C/A and B/A yields
C 2 B 1—-ix/kixo
_1=iv/k (4.3.2.33)

A 1+ik/kie A 1+ik/kig

The coefficient B/A is of the form z*/z, where z is a complex number. It follows that
|IB/A| =1, s0
R=|8=1, T=0. (4.3.2.34)

Eq. (4.3.2.34) indicates that there is total reflection; hence the transmission must be zero.

Third step. To obtain the latter result analytically from our equations above, we must
calculate the transmitted current. The function is of the form of a complex amplitude times a
real function of x Eq. (4.3.2.31). Such wavefunctions do not represent propagating waves.
They are sometimes called evanescent waves. That they carry no current is most simply
seen by constructing J;,,,s [refer to Eq. (2.3.3.14)].

Jirans = %ycyz <e“aa—xe'“ —e"xaa—xe“> =0. (4.3.2.35)

We conclude that T = 0. T = 0 means that there is no the transmitted wavepacket, i. e., the

transmitted particle. The total reflection means that, according to spontaneous equiprobabil-

ity symmetry breaking, every incident wavepacket (particle) becomes reflected wavepacket
(particle).

Fourth step. The expression of the reflected wavepacket is same as that given by Eq.
(4.3.2.26).

4.3.3. Rectangular Potential Barrier and Well

The scattering configuration, we now wish to examine, is shown in Table 4.1b. This
configuration can be called rectangular or square barrier or well. In physics, rectangular
barrier and well are equivalent to that the incident particle touches repulsive and attractive
force, respectively. We will study three types.

(1) The first configuration is that the energy of the single particle (wavepacket) is
greater than the hight of the potential barrier £ > V.

First step. we study the guide-factor, which obeys time-independent Schrodinger equa-
tion. For the case at hand there are three relevant domains (see Table 4.1b.up).

Region I: x<—a, V=0, . (4.3.3.1a)
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Region 1I: —a<x<+a, V>0, and constant . (4.3.3.1b)
Region IIl: a<x, V=0, . (4.3.3.1¢)
The solutions in each of the three domains are
W, = Ackier 4 Bkt e _p (4.3.3.2a)
. . 27,2
W, = Celkaox JrDe*lkzXOx, hzkon —E—-V . (4.3.3.2b)
Wy = Felfe, ki _p (4.3.3.2¢)
2ma®v  g?
(akixo)? — (akaxo)* = = (4.3.3.3)

The parameter g contains all the barrier (or well) characteristics. The Eq. (4.3.3.3) (conser-
vation of energy) reveals the simple manner in which ak;,, and akyy. are related.

The permitted values of k1, (and therefore E) comprise positive unbounded continuum.
For each such eigen-k..-value, there is corresponding eigenstate (7, ¥y, W) which is
determined in terms of the coefficients, (B/A,C/A,D/A,F/A). Knowledge of these coeffi-
cients gives the scattering parameters

(4.3.3.4)

Second step. The coefficients are determined from the boundary conditions at x = a and

X=—a,
e (g) et = (%) e Mty (%) g, (4.3.3.5q)

Kixo [e""'m“ - <§> el”%“] = koo [(%) ¢ ke _ (g) e"’%“] : (4.3.3.5b)

(%) ekued 4 (g) ¢ kot — <§> elkinea, (4.3.3.5¢)

kaxo K%) effaed (%) e—”%“] = kixo (g) ekieed, (4.3.3.5d)

These are four linear, algebraic, inhomogeneous equations for the four unknowns: (B/A),
(C/A), (D/A), and (F/A). Solving the last two for (D/A) and (C/A) as functions of (F/A) and
substituting into the first two permits one to solve for (B/A) and (F/A). These appear as

-1
F —2ikiyoa i k%xo + k%xo .
I xo 2 o N —_— e 2 Yo . 4 .
1= [COS( ko) 2( o sin(2kyyoa) (4.3.3.6a)
B Fk,—k

2= =2 o2k .a). 4.3.3.
A= P sin(2kyyoa) (4.3.3.6D)

Third step. The transmission coefficient is most simply obtained from the second of these,

together with the relation

2 2

F
T+R :‘ =1. (4.3.3.7)

A

e
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Thus we have

1 (A /K2 —1k2 \*
—=|=| =14~ 20 ) in?(2kw0a). 4338
T |F +4< Kinokone > sin’ (2kzxd) (4.3.3.8)

Rewriting k1, and ks, in terms of E and V as given by Eq. (4.3.3.2), one obtains

1 1 V2
=1+

7= aEE vy Gkeea), (E> V). (433.9)

The reflection coefficient R = 1 —T. According to the equiprobability symmetry and
spontaneous equiprobability symmetry breaking 7 is the probability of transmission of the
body-factor, and R is the probability of reflection of the body-factor.

Fourth step. From Eq. (4.3.3.2) and the last two equations of Eq. (4.3.3.5), we obtain

klxo
E _ 1+ kaxo o~ Zkawa
- Kixo
D 1 o kaxo
1+, /75 -
_ E-V e*Zia Zm;iE V)
E
1 E-V

:{ o, D=0, if V=0 (4.3.3.10)

—1, C=-D, if E—-V>0

The physical meaning of Eq. (4.3.3.10) is obvious. If V =0, then there should be no
reflected wave in region /1. If E — V > 0, then the amplitudes of both reflected and trans-
mitted waves are equal to each other in region /1.

From Table 4.1b.up and Eq. (4.3.3.2) one obtains that the reflected wavepacket is the
same as that given by Eq. (4.3.2.26), and the transmitted wavepacket is the same as given
by Egs. (3.4.1.4) or (4.3.1.1). The wavepacket, Wy, in region /I can be obtained as follows.
From Eq. (4.3.1.1) we know that the incident free wavepacket is

Wl ine(x) = ei[k““’xfm(kl)m)t]e*ikuox’lp(xl’ 0)
. o e o
— ellkiox—o(kio)] g—ikiex' 2 / dkyob(ky, ) ek 4.3.3.11
e e x X e ’ . . .
Jan ) (k1x) ( )

where E = h?k3 _ /2m.

From physics, we know that the wavepackets in region I and III are free wavepacket,
which is given by Eqs. (3.4.1.4) and (4.3.1.1). We just need to determine the wavepacket in
region I, Wy, (x,1). Let us write the general forms of the wavepackets in regions 7, I, and

1.

Y, (X, t) = Alyl,inc + BlPI,ref
Aei[klxox*m(klxo)ﬂ e*iklxoxllpl (x/’ 0)
+ Bell huexm ol pkuexg (i ), (4.3.3.12a)
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Wi(x,t) = CYrine +D¥iirer

Cei[khox*m(kbco)t] e*ikzxox/lpll (xl’ 0)

+ Dl her—olko)] gitoe\p (i ), (4.3.3.12b)
Yii(x,t) = FY¥uirans
= Felfuer—olhel o=k, (/ 0). (4.3.3.12¢)

Considering that any wavefunction and its first derivative with respect to x are continuous
at boundaries (Here they are x = —a and x = a.), from Eq. (4.3.3.12) we obtain the same
relations between A, B, C, D, and F as that given by Egs. (4.3.3.5), (4.3.3.2). Solving these
equations yields the wavepacket in region II, Wy (x,7).

IPII (X, t) =4 { %ei[kh"xfm(kho)t] eiikzxox,lpl ()CI, 0)

N gei[—kzxox—m(km)f] Jesg (. 0) } , (43.3.13)
where "
F o ) e
% — Xelkl)coa <1 _|_ _k]i—’;> ¢ 2 , (43314)
X0
D F . k R —ikyyoa
D _E s (1 - ) - (4.3.3.15)
X0

and F /A was given by Eq. (4.3.3.6). kixo = V2mE/h. kyyo = VE —V /h. Often, A =
1. Therefore, from Eq. (4.3.3.15) the wavefunction in region II consists of two known
wavepackets.

If we just need the probability of reflection and transmission of a free incident particle,
then it is enough to know R and 7', and it is not useful to know the wavefunction in the
region II.

(2) The second configuration is that the energy of the free incident single particle
(wavepacket) is less than the hight of the potential barrier £ < V, as depicted in Table
4.1b.down.

First step. The structure of the solutions Eq. (4.3.3.2) is still appropriate, with the
simple modification

K22
m
2 2
aky o)+ (ax)? = 2V _ 8 4.3.3.16b
2 4

This latter statement of energy conservation indicates that the variables ak;,, and ax lie on
a circle of radius g /2.



158 Fu-sui Liu

The permitted ki..-values now comprise a bounded continuum, so that the eigenener-
gies .
E = e (4.3.3.17)
2m
also comprise a bounded continuum.
Second and third steps. The algebra leading to Eq. (4.3.3.6) remains unaltered so
that the transmission coefficient for this case is obtained by making the substitution of Eq.

(4.3.2.22) into Eq. (4.3.3.8). We also recall that sin(iz)=isinh(z). Thus we have

L. ! Kk} + 12
T 4

2
= % > sinh?(2Ka). (4.3.3.18)

Rewriting k1., and K in terms of E and V as given by Eq. (4.3.3.16), one obtains

1 1 V2

—=14-————sinh*(2 E<V. 4.3.3.1
T +4E(V—E)Sm (2xa) E<V (4.3.3.19)

Eq. (4.3.3.19) indicates that in the domain £ <V, T < 1. The limit that £ — V deserves
special attention. With

V—E h*?
" = 4.3.3.2
v P e—0 (4.3.3.20)
one obtains |
T =——+— 1. 4.3.3.21
lJrg2/4+0(8)< (4.3.3.21)
2m(2a)*V
&= % (4.3.3.21)

The expression 0(€) represents a sum of terms whose value goes to zero with €. We con-
clude that for scattering from a potential barrier, the transmission is less than unity at E =V
For example, if g> = 16,then T = 0.2 << 1.

Returning to the case E >V, Eq. (4.3.3.9) indicates that 7 = 1 when Sin2(2k2xoa) =0,
or equivalently when

2akyyo =nn (n=1,2,--) . (4.3.3.22)
Setting kyyo = 27/, the latter statements is equivalent to
A
2a=n 5 ) (4.3.2.23)

When the barrier width 2a is an integer number of half-wavelength, n(A/2), the barrier
becomes transparent to the incident particle, that is, 7 = 1. This is analogous to the case of
total transmission of light through thin reflecting layers.

Written in terms of E and V, the requirement for perfect transmission, Eq. (4.3.3.22),
becomes

2h2
E-V=n <ga2m> — nEy, (4.3.3.24)

where E; is the ground state energy of an one dimensional box of width 2a [see Eq.
(4.3.2.21), and note that the barrier width in this equation is a].
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Egs. (4.3.3.9) and (4.3.3.19) give the transmission coefficient 7', as a function of E, V,
and the barrier width 2a. The former of these indicates that 7 — 1 with increasing energy
of incident particle. The transmission is unity for the values of E given by Eq. (4.3.3.24).
Eq. (4.3.3.19) gives T for E < V. The transmission is zero for E = 0 and is less than 1 for
E =V.Eq. (4.3.3.10) can give a physical interpretation for 7 < 1 when E = V.

The fact that 7 does not vanish for E < V is a purely quantum mechanical result. This
phenomenon of particle passing through barrier higher than their own incident energy is
known as tunneling effect. This tunneling effect leads to the emission of o particle from a
nucleus and field emission of electron from a metal surface in the present of a strong electric
field.

Let us make an estimation for the transmission coefficient 7 given by Eq. (4.3.3.18). If
2Kka >> 1, then sinh2ka ~ ¢*** /2 >> 1. Eq. (4.3.3.18) can be expressed approximately as

16k K

~ 1xo e—41<u
(kf o +x2)?

= 7165:(; —E) pta/En7=EVR, (4.3.3.25)
From Eq. (4.3.3.25) we see that T connects closely with barrier width 2a, V — E, and
particle mass m. Therefore, in macroscopic experiment, it is difficult to observe the phe-
nomenon of penetrating barrier of particle. For example, for electron and proton, if £ =1
eV,V =2¢eV,2a =2 x 1078 cm, then Eq. (4.3.2.25) gives T ~ 0.51 and T =~ 2.6 x 1073,
respectively. However, for electron, if 2a = 5 x 108 cm, then T ~ 0.024.

Fourth step. Now we look for the expressions of the wavepackets in every region. From
physics, we know that the wavepackets in region I and III are free wavepackets [Refer
to Egs. (3.4.1.4) and (4.3.1.1)]. We just need to determine the wavepackets in region II,
W (x,t). We have to write the wavepackets in every regions exactly. Let us write the
general forms as follows.

lP[(x, t) — Ael‘[k"“’xiw(k“‘o)t]eil‘k"“’x/lpl(x,, 0) _I_Bei[*klxoxfm(klxo)t] eiklmx,lpl(—x,, 0)

| | (4.3.3.26a)
Wy (x,1) = Ce Oy (i 0) 4 De 0y (o 0). (4.3.3.26D)
W1(x,1) = Felkmer=okue) =ik g (1 (). (4.3.3.26¢)

The particle’s energies at region I and II are conservative. Referring to Eq. (4.3.3.16) yields
hoy(K) = —h*6?/(2m) +V = kK3, / (2m) = E = ho(ky,o). Referring to Eq. (4.3.3.5), we

1xo
have the following boundary conditions.

. B\ D
e ka4 (Z) kot — <%> e 4 <Z> er. (4.3.3.27a)
‘ ‘ D
tkixo [e_’k““’“ - <§> e’k”"“] =i(—ix) {(%) e — <Z> em] . (4.3.3.27D)
D F\
<§> e+ (X) e ™= <X> ekt (4.3.3.27¢)
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i(—ix) K%) Xt — <§) e_m} = ikyzo <§> etk (4.3.3.27d)

Comparing Eq. (4.3.3.27) with Eq. (4.3.3.5), we find that if k»,, — —iK, then Eq. (4.3.3.5)
becomes Eq. (4.3.3.27). Therefore, we make k;,, — —ik in Eqgs. (4.3.3.14) and (4.3.3.15),

and obtain c L .
F o o \ € ¢
— = a1 4.3.3.2
1= 7 <+—iK> 7 (4.3.3.28)
D . F ikiyod k]xo €Ka
= (1— —nc) - (4.3.3.29)
where the F /A in Eq. (4.3.3.6) becomes
-1
F —2k1 . i k% _K2 . .
R K] x0d -2 | XX —12 . 4.3.3.
1= [cos( i2Ka) 3 ( T sin(—i2xa) (4.3.3.30)

Substituting Eq. (4.3.3.30) into Egs. (4.3.3.28) and (4.3.3.29) and then into Eq. (4.3.2.26)
yield the wavepacket in region /1. If we just need the probability of reflection and
transmission of a free incident particle, then it is enough to know R and 7', and it is not
useful to know the wavepacket in the region II.

The present research situation on this barrier tunneling problem in academic circle is
as follows. There are still no an accepted theory, an accepted physical essence of tunneling
time, and an accepted wavepacket in barrier region [73]. Some authors [74, 75] analyzed
the following experimental facts:

(i). Several photon tunneling experiments have revealed considerably higher tunneling
speeds than vacuum light speed c. For example, v =4.7 ¢, 10 ¢;

(i1). The phonons after tunneling do not have the change of theirs frequencies. This
means that one can listen the superluminal music, and this superluminal music had been
listened;

(iii). There is a Hartman effect: No time is lost in the tunnel behavior. The related
experimental data are as follows. If the length of the barrier is doubled, then the tunneling
time remain the same;

(iv). The tunneling times of, for example, photon, electron, phonon, o-particle, depend
only on energy or frequency of particle, and do not on the kind of the barriers,

and guessed:

(i). The tunneling process is as follows. The tunneling particle interacts for a certain
time at the entrance of the tunnel before it either turn back or transverse the barrier;

(i1). When the particle in inner part of barrier, the tunneling particle moves with infinite
speed, and looks like through a space with zero time.

Until now, the above two points (i) and (ii) are in arguments of physicists, and thus the
tunneling process still is an open problem. Ref. [76] (2013) points out: “It is possible for
spin zero particles to travel faster than the speed of light when tunneling. This apparently
violates the principle of causality, since there will be a frame of reference in which it arrives
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before it has left. However, careful analysis of transmission of wavepacket shows that there
is actually no violation of relativity theory.” More recently experimental tunneling time data
of phonons, photons, and electrons are published by Ref.[77].

Although our wavepacket-only theory supports the above two guesses (i) and (ii) as
well, the reasons are different from Ref. [76]. Next, we introduce our arguments. In the
barrier domain, the wavefunction is exponential decaying. But, the body-factor keeps
always its original form, and accepts the guide of guide-factor according to the spontaneous
equiprobability symmetry breaking. This spontaneous equiprobability symmetry breaking
process is a stochastic process. The speed of tunneling body-factor can surpass the light
speed, or even can be infinite, because it belongs to a more microscopic process. There
is only one point to add to the (i) and (ii): According to the spontaneous equiprobability
symmetry breaking law, the body-factor within the barrier still has possibility to turn back
with infinite speed as a reflecting particle.

(3). The third configuration is rectangular well, which is depicted in Table 4.1c. (In
case of E > 0 and V < 0, it is called Ramsauer effect.) The rectangular well can be called
also square well.

First-third steps. Once again Eq. (4.3.3.2) is used with the modification

h2k?
ﬁzE—V:E—I—\V\. (4.3.3.31)
2m

The transmission coefficient Eq. (4.3.3.9) becomes

1 1 V2
1+

)
S l4-— in’(2kowa) E>0. 4.3.3.32
T 4E(E+\v\)sm (2hznca) E > ( )

Again there is perfect transmission when an integral number of half-wavelength fit the well
width.
2akyo =nm (n=12,---) . (4.3.3.33)

This condition may also be cast in terms of the eigenenergies of one dimensional box of
width 2a:
E+|V| =n’E,. (4.3.3.34)

From Eq. (4.3.3.32) we see that T — 1 with increasing incident energy. At E =0, T =0.
Thus we obtain an idea of the shape of T versus E. The transmission is zero for £ =0
and rises to the first maximum (unity) at £ = E; — |V|. It has successive maxima of unity
at the values given by Eq. (4.3.3.34), and approaches 1 with growing incident energy E.
The phenomenon that T = 1 in case of E = —|V| = n?E] is called resonance transmission.
E = —|V|+n?E; is called resonance energy.

Fourth step. The wavepacket, ¥j;(x), in region /I consist of two wavepackets. If we

take kpyo = +/2m(E + |V|)/h other than ko = /2m(E — |V|)/h, then Egs. (4.3.3.13-15)

gives the Wj;(x). (See Table 4.1c.)
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The preceding theory of scattering of particle by a potential well has been used as
model for scattering of low-energy electrons from atoms. The attractive well represents the
field of the nucleus, whose positive charge becomes evident when the scattering electrons
penetrate the shell structure of the atomic electrons. The reflection coefficient is a measure
of scattering cross section. Experiments in which this cross section is measured (for rare
gas atoms) detect a low-energy minimum which is consistent with the first maximum that
T goes through for typical values of well depth and width according to the model above,
Eq. (4.3.3.32). The transparency to low-energy electrons of rare gas atoms is known as the
Ramsauer effect.

The student should not lose sight of the following fact. For any of the solutions to
scattering problems considered in sections 4.2 and 4.3, we only found out the guide-factor
(wavefunction) of the wavepackets. The guide-factor obeys Schrodonger equation. The
Hamiltonian in Schrédinger equation is of the form

2

H= 5—m+V(x), (4.3.3.35)
with the potential in Table 4.1. In cases of V < E, the wavenumber of guide-factor repre-
sents the average wavenumber of a wavepacket. In each case considered (except V > E,
such as the tunneling through barrier), the spectrum of energies is a continuum, the kinetic
energy connected with wavenumber is Ey;, = h’k2, /(2m). For each value of k;, of incident
particle, a corresponding set of coefficient ratios (B/A, C/A for simple step and B/A, D/A,
C/A, F/A for the rectangular potential barriers and wells) are determined. The coefficient
|A|? is equal to position probability density occupied by the body-factor of wavepacket.
(Suppose that the guide-factor of incident wavepacket is normalized.) These coefficients
then determine the motions of the wavepackets according to equiprobability symmetry and
spontaneous symmetry breaking. The guide-factor of a wavepacket in free motion is in un-
bound state or scattering state. A continuous spectrum is characteristic of unbound states,
while a discrete spectrum is characteristic of bound states. The guide-factors of particle
in box, harmonic oscillator and so on are in bound states. The another characteristic of
wavefunction (guide-factors) of incident, reflected, and transmitted wavepacket in scatter-
ing states is that these wavefunctions have finite value for + — $oo. (Refer to Ref. [3] for
subsection 4.3.3)

4.4. One Dimensional Harmonic Oscillator

4.4.1. Harmonic Oscillator Potential

The harmonic oscillator is a system in which a particle of mass m subjects to a linear restor-
ing force F proportional to the displacement from the equilibrium position .

F=—K(r—r.). (4.4.1.1)

The proportionality constant K is known as force constant (or spring constant). Eq. (4.4.1.1)
is Hooke law. The minus sign indicates that force is in the direction opposite to direction of
the displacement. The potential energy V (x) near equilibrium position can be expressed in
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Taylor series, with r —r, = x as

N 1 d*v
x —_—
0 20 dx? |,

V(x) = V(0)+ fl—‘;

PR (4.4.1.2)

The potential at x = 0, that is, V(0) can be taken as zero. The first order derivative term is

also absent because the slope is zero at the minimum in V (x). The second derivative term
1d*V
2 dx?

1
X = —Kx%, (4.4.1.3)
)

where K is force constant.
The potential energy in Eq. (4.4.1.2), after ignoring cubic and higher terms in x, is given
by

V(x) = %sz = %m(ozxz > 0. (4.4.1.4)
0= g (4.4.15)

The o in Eq. (4.4.1.5) is called natural frequency of classical harmonic oscillator. The V (x)
given by Eq. (4.4.1.5) is called one dimensional harmonic potential.

4.4.2. One Dimensional Harmonic Oscillator

We use coordinate representation. The time-independent Schrodinger equation of one di-
mensional harmonic oscillator, which means that a particle with mass m in potential field
given by Eq. (4.4.1.4), is

A’¥Y  2m 1
——+ 5 |[E—KX*| ¥ =0 4.4.2.1

2 T [ 2 ] : ( )
where E is the energy, and ¥ represents wavefunction (guide-factor of wavepacket) other
the wavepacket itself. Eq. (4.4.2.1) can also be called energy eigenequation of one dimen-
sional harmonic oscillator. For brevity, let ® represents angular frequency and

2m , mK m2o?
then Eq. (4.4.2.1) is written as
d*¥ 2 2.2
W—i_(k — X )‘P:O, (4.4.2.3)

with the boundary condition ¥ — 0 as |x| — oo, which means that a perfect potential of one
dimensional harmonic oscillator is an infinitely deep potential well, and thus there are only
bound states. The Eq. (4.4.2.3) has two asymptotical solutions for very large value of |x|
(2 >> A /o).

W(x) = eF/2, (4.4.2.4)
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Of the two asymptotic solutionsin Eq. (4.4.2.4) the exp(ow?/2) is unsatisfactory as a bound
state, since it tends rapidly to infinity with increasing value of |x|. Thus we abandon it. Let

§=ouw. (4.4.2.5)
W(E) =e ™2 f(x) = e T PH(E). (4.4.2.6)
Substituting Egs. (4.4.2.5) and (4.4.2.6) into Eq. (4.4.2.3) yields

A
H"(&)—2EH'(E) + <& — 1) H(E)=0. (4.4.2.7)
For |§| < o, the Eq. (4.4.2.7) can be solved by assuming a power series of the form
HE) =Y af'. (4.4.2.8)
5s=0
Substituting Eq. (4.4.2.8) into Eq. (4.4.2.7) yields
< s—2 - A s
Y s(s—1)a &2+ Y 5 125 )af =0 (4.4.2.9)
5s=0 5s=0

In order for Eq. (4.4.2.9) to vanish for all values of &, that is, for H(&) to be a solution of
Eq. (4.4.2.7) the coefficients of individual power of § must vanish separately, i. e.

A A
1x2a2+<a—l>ao:0, 2x3a3—|—<a—1—2>a120 etc.

In general

(s+1)(s+2)ag + (g ~1 —2s> as =0, (4.4.2.10)

Eq. (4.4.2.10) is called recursion formula. Using this, a;, as, - -- can be calculated in terms
of a, and ay, which are arbitrary. If a, is set to be zero, then only odd powers appear. If a;
is set to be zero, then only even powers appear. For large values of s in Eq. (4.4.10)

<2s+1 —i)
dsyr _ a _x_2 (4.4.2.11)
ag (s+1)(s+2) 52 s

§—00

It is seen that this behavior is the same as that of the series for

§2 ) 4 gs &s—i—Z
=1 =4 4.4.2.12
e TR v TRl TPy e T ( )
The ratio of the coefficient £&+2 and &* in Eq. (4.4.2.12) is 2/s for large values of s. Thus
H (&) behaves like exp(&?).

The function in Eq. (4.4.2.6) behaves like an exp(§? /2), which increases with increasing
value of £ or increasing value of x, thus making it unacceptable as a bound state wavefunc-
tion. Therefore, we choose the values of the energy parameter, which will cause the series
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for H(&) to break off after a finite number of terms. This yields a satisfactory wavefunction
of bound state, because the negative exponential factor exp(—&?/2) will cause the wave-
function to approach zero for large value of & The value of A, which cause the series to
break off after the n terms, can be found from Eq. (4.4.2.11).

A= (2n+1)o. (4.4.2.13)

Substituting the definitions of A and a in Eq. (4.4.2.2) into Eq. (4.4.2.13) yields the energy
eigenvalues of harmonic oscillator

1
E, = <n—|— 5) ho. (4.4.2.14)

The possible energy levels of the harmonic oscillator are restricted to the infinite discrete
set of values given by Eq. (4.4.2.14) withn=0, 1,2, ---.
Thus the wavefunction of bound state (eigenfunction) is

W, (x) = Wa(E) = Ne & /2H, (), (4.4.2.15)
where H, (&) is Hermite polynomial of n-th degree in & and N, is a normalization constant
of ¥,,, ¥, is a real function, and satisfies

~+oo

dx W, = 1. (4.4.2.16)

—o0

The value of N,,, which makes the above condition true, is

1
ay: 1 ]?
N, = [(E) Z”n!] . (4.4.2.17)
To obtain the normalization constant in Eq. (4.4.2.17), consider two generating functions
v B8 e sy
S(E,s) _ZTS =e e : (4.4.2.18)
v Hn(®) e
T(&,1) _ZTI =e e : (4.4.2.19)
and HEVH
/ d&sSTe S =YY 5™ / d&%e‘iz. (4.4.2.20)

Substituting Eqgs. (4.4.2.18) and (4.4.2.19) into the left hand side of Eq. (4.4.2.20) yields

/oo dge—sz—tz—&-Zsi—&-Zti—iz _ eZst /oo d(E_.—s _t>e[—(§—s—t)2}

—o0

:eZSI\/E
25t 225%2 23533 2"s"t"+ >

et

1—!—1-—2! 3 Py (4.4.2.21)

=ﬁ<1+
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Considering coefficients of s"¢" in the two equal series expansions Eqs. (4.4.2.20) and
(4.4.2.21) yields for m # n

| e @@ =0 (44.222)
and form =n [ °; dEH, (E)Hy(E)e & = 2'nIV/A. (4.4.2.23)
Therefore
[ Z V() (x) = \/2’" :, dEH, (8)Hy(E)e

_ N\"/Iém 21 TSy (4.4.2.24)

For n # m, §,,, = 0 and therefore
/ AW ()P, (x) = 0. (4.4.2.25)

For n = m, 8,,, = 1 and therefore
/_ (W) = LV 1 (4.4.2.26)

Eq. (4.4.2.26) gives Eq. (4.4.2.17).
The wavefunction in Eq. (4.4.2.15) becomes

%@z“%i&few%&) (4.4.2.27)

The wavefunction in Eq. (4.4.2.27) is either even or odd, depending to n. The functions
Y,, are even [that is, W5,(—x) = Wy,(x)] and Wy, 1(x) are odd [that is, ¥p,41(—x) =
—¥,,+1(x)] as Hermite polynomial H,,(x) are even and Hp,1(x) are odd.

The wavefunctions of harmonic oscillator at lowest four energy levels

(04 1/4 ) e
W, () = <E> e8/% = H,(x)e /2, (4.4.2.28)
Py () = (%) ke (e 2. (4.4.2.28)’
Wy (x) = (%) g _0)e B (e (4.4.2.28)"
Ps(x) = (23((];“) e (887 — 128)e 872 = Hy(x)e /2, (4.4.2.28)"

W, (x) is a wavefunction corresponding to energy eigenvalue E,, and not degenerate. Ac-
cording to the corollary of theorem XII-2, ¥, (x) has definite parity. Actually, from the
property of H,(x), one can show that

W, (x) = (—1)"¥, (x). (4.4.2.29)
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Let us discuss the ground state. First, the energy of ground state is

ho
E,=—. (4.4.2.30)
2
It is not equal to zero, and it is called zero point energy. This is the minimum vibrational
energy, that the oscillator may have at 0 K. The existence of zero point energy can be
explained by uncertainty relation.

Second, the position probability density of particle (wavepacket) in ground state is

o 1/2
P, ()2 = (E> e, (4.4.2.31)
This is Gaussian type distribution. The position probability density, occupied by the parti-
cle, at x = 0 is the largest. Due to the particle energy E, = ho/2, it is not difficult to show

that at x = 1//a = y/h/(mo)
V(x=1/Va)=E, = hw/2. (4.4.2.32)

1/+/a is called characteristic length of harmonic oscillator. According to the viewpoint of

classical mechanics the harmonic oscillator in ground state is allowed to exist in |x| < 1/+/a

(that is, & < 1), and the region in |x| > 1/1/a belongs to forbidden domain of classical

mechanics. However, according to quantum mechanics the particle (that is, the harmonic
oscillator) can have certain probability in |x| > 1/1/a, which is

0 0 a2

f]/\/adx\‘l‘o(x)\z B fl/\/adxe o

Jo ™ dx[Wo (x)]? Jo ™ dxe=e

~ 16%. (4.4.2.33)

This is a quantum effect or, equivalently speaking, an effect of wavepacket-only theory,
corresponding to that the particle can penetrate a finite barrier. For subsection 4.4.2 refer to
Ref. [4].

4.4.3. Operator Method

In this subsection we shell take harmonic oscillator as example to illustrate that Heisenberg
matrix (or, operator) mechanics formulation of quantum mechanics can also be used to
solving the harmonic oscillator problem. In references this method is called operator or
ladder or algebraic method. This subsection derives the eigenvalues of harmonic oscillator.
In subsection 5.8.1.2 we seek the eigenfunctions of harmonic oscillation problem.
We turn to general solutions of Schrédinger equation Eq. (4.4.2.1). Eq. (4.4.2.1) can be
rewritten as 22 :
H= oot o Kxl = §—m+5mm2x2, (4.4.3.1)

where p is momentum operator,
K
W=4/— (4.4.3.2)
m
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is the natural frequency, and x can take positive or negative values in the range —oo < x <
+oo0. Since the force constant in Eq. (4.4.3.2) is positive, the eigenvalues of the Hamiltonian
would be positive, i. e.,

E,>0. (4.4.3.3)

The operator method involves the operators

1
- e ( + —m> = X +iP (4.4.3.40)
1 m ip
t=—y/— =X —iP, 4.4.3.4b
o=\ ( mw) iP (4.4.3.4)

where X and P are Hermitian operators.
Inasmuch as a # a™, a is non-Hermitian operator. The properties that these operators
have been determined through the fundamental commutator relation

[x,p] = ih. (4.4.3.5)
Let us using Eq. (4.4.3.5) to show that
[a,a"] =aa” —ata=1. (4.4.3.6)
aat = (X+iP)(X —iP)=X*>—iXP+iPX + P*
= X*+P*—i[X,P]. (4.4.3.7)
X,P] = mo..p . p_ Mo,
2h 2mh0) 2mh0) 2h
ih i
— = =_, 4.4.3.

Substituting Eq. (4.4.3.8) into Eq. (4.4.3.7) yields

/ 1
+:X2—|—P2—i[X,P]:X2—|—P2—i%:X2+P2+§. (4.4.3.9q)
Similarly,

1
ata=X*+P*— 3 (4.4.3.9b)

Substituting Eqgs. (4.4.3.8) and (4.4.3.9) into Eq. (4.4.3.6), one knows that Eq. (4.4.3.6)
holds. The inverse of Eq. (4.4.3.4) is

+
_ata (4.4.3.10a)

(4.4.3.10D)
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With the aids of Eq. (4.4.3.9) and the definitions of X and P, the Hamiltonian for the
harmonic oscillator in Eq. (4.4.3.1) becomes

H = ho(X? 4+ P?) = ho <a+a+%>. (4.4.3.11)

In this manner we see that the problem of finding the eigenvalues of H has been transformed
into finding eigenvalues of operator
N=a"a, (4.4.3.12)

where N is called number operator.
Let y,, be the eigenfunction of N corresponding to the eigenvalue n, so that

Ny, = ny,. (4.4.3.13)

We do not assume that n is an integer at this stage. This property is established later.
Consider the effect of operating on ay,, with N.

Navy, = a"aay, = (aa™ —1)ay, = ala*a—1)y,
=a(n—1)y, = (n—1)ay,. (4.4.3.14)

Eq. (4.4.3.14) tells us that ay, is the eigenfunction of N which corresponds to the eigen-
value (n-1). Apart from the normalization factor,

ay, = Y,_1. (4.4.3.15)

Similarly,
avyp—1 = Yu—2, (44316)

and so forth. Because of this property, a is called an annihilation or stepdown or destruction
or demotion or lowering operator.
In similar manner, if we consider the operation Na™y,,, there results

Naty, = (n+1)aty,. (4.4.3.17)

Similarly,
a+Wn+l = Vni2, (4'4'3'18)

and so forth. The operator a™ is called creation or promotion or raising operator.
Considering that x and p are Hermitian operators, it is easy to show that (H) > 0.

| e 1 oo
(Hy = — / dx¥* p*¥ + —m? / dx¥* * ¥

2mJ 2 —eo
1 [t 1 oo

= —/ dx(p¥)*p¥ + _mmz/ dx(x¥)" x¥
2m J oo 2 oo
1t 1 oo

= —/ dx|p¥)? + —mmz/ dx|x¥)? > 0. (4.4.3.19)
2mJ o 2 —oo

In the eigenstate ,,

1 1
Hvy, = ho <N+ 5) y, = ho <n+ 5) Y. (4.4.3.20)
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1
(H) = ho <n+§> >0. (4.4.3.21)
This implies that the eigenvalues n must obey the condition
1
nz= 5 (4.4.3.22)

That is, all eigenvalues of N, corresponding to eigenvalues n < —1/2 must vanish identi-
cally. This condition is guaranteed if we set

ayy =0. (4.4.3.23)
With Eq. (4.4.3.14) we obtain
ayYo=VyY_; = 0 and ay_1 =VY_, = 0. (4.4.3.24)

As will be shown, Eq. (4.4.3.23) has a nontrivial (i. e., other than zero) solution for Y.
Furthermore,
Nyo =atayy = 0= 0y, (4.4.3.25)

and we may conclude that the eigevalue of N corresponding to the eigenfunction yy is zero.
It follows that

Na*wo=a"aa yy=a"(aTa+ 1)y =a o= la"yo = y;. (4.4.3.26)

This construction allows one to conclude that the index n, which labels the eigenfunction
VY, is indeed an integer.
Repeating Eq. (4.4.3.20),

1
Hvy, = ho (n—i— 5) v, (4.4.3.27)
one finds that the energy eigenvalues of the simple harmonic oscillator are
E,=ho(n+1%), (n=0,1,2,---) . (4.4.3.28)

Eq. (4.4.3.26) shows that the n, which labels the eigenfunction ,,, is indeed an integer.
Now let us consider the effect of creation and annihilation operator on y,, = |n >. Assume

atln>=cyln+1>, and aln>=d,Jn—1>. (4.4.3.29)
The Hermitian conjugate of Eq. (4.4.3.29) is

<nla=c,n+1>, and <nla"=d; <n—1|. (4.4.3.30)
From Egs. (4.4.3.29-30)
<nlaat|n>=|c > <n+1n+1>=|c,|* (4.4.3.31)

From Egs. (4.4.3.6) and (4.4.3.13)
<nlaat|ln>=<nlata+1ln>=n+1)<nn>=n+1. (4.4.3.32)
From Egs. (4.4.3.31-32) we have
cp=c,=vVn+1. (4.4.3.33)
From similar derivation we obtain

dy=d’ = /. (4.4.3.34)
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4.5. Particle in Gravitational Field

4.5.1. Unbound (Dissociated) Particle

Here the term “unbound” means that although the wavepacket is in a gravitational attractive
potential field, the particle can move to infinity. Unbound particle can be called dissociated
particle.

Assume that the mass of a particle is m, and the gravitation potential is —mgx (g =9.81
m/sec?.). This potential is called linear potential, which can be generally expressed as Fx,
due to that it is proportional to x. The particle falls from x = 0. Schrodinger equation is

h? d?
- — Y =F¥ 4.5.1.1
(- gz —men ) w = (451.0)
where x > 0, g is the gravitation acceleration, and £ > 0. If an electron is emitted from
a metal surface x = 0, is accelerated by an electric fields along direction x > 0, and the
potential energy of the electron is V(x) = —e|E|x, then the electron satisfies Eq. (4.5.1.1)
as well.
Taking natural units (h = m =mg = 1), Eq. (4.5.1.1) becomes

2

W+2(E —i—x)‘P:O, (4.5.1.2)
where x > 0. Set
£ =2"2(x+E) >0, (4.5.1.3)
then Eq. (4.5.1.2) becomes
dZ
d—Ef+§lP:O' (4.5.1.4)
Set
=282 W=/t , (4.5.1.5)
then ) (17372
du 1du 1/3)
—+——|1- =0. 45.1.6
dz? * zdz [ 2 ] N ( )
Eq. (4.5.1.6) is Bessel equation with order of v = 1/3. Its general solution can be obtained
by linear superposition of any two functions from Jy 3, Ny 3, H]%, and H](% In physics, an

unbound particle can move to infinity. Therefore, we need that the solution (wavefunction)
of Eq. (4.5.1.6) is a traveling wave along the positive direction of x. Traveling wave means
that the wave can go to co. Therefore, we have to take the first kind Hankel function H ](}; (2),

1. €.,
w(e) = e 2H()) @8/2) . (4.5.1.7)

Eq. (4.5.1.7) tells us that the E is continuous. Let us at first introduce a wrong method
to discuss the problem on the energy conservation (This wrong method can be found in
many textbooks). Discuss the case £ > 1. Using the expression of asymptotic expansion of

Hankel function
(1 _ 2 [ 5m N
Hyj3(2) =Cry[ —exp [z<z 12)], 2] = oo, (4.5.1.8)
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we have

2
P(E) = CC & exp (,5&3/2) , & — oo (4.5.1.9)
The position probability current J and position probability density p are
h d¥ d¥*
J=—¥"—— . 4.5.1.10
2im < dx dx > ( )

Using natural units (Note that dx = 27!/3d€) and substituting Eq. (4.5.1.9) into Eq.
(4.5.1.10) yield

J— %21/3 (lp*%_lpd;é ) =213, (4.5.1.11a)
p=wy=¢12 (4.5.1.11b)

The Eq. (3.5.6.13) in chapter 3 shows that J corresponds to product of the velocity and the
position probability density taken by single particle. Therefore, the velocity of the particle

vis
v:g:ZI/z\/g:\/Z(x—l—E). (4.5.1.12)

In ordinary units, Eq. (4.5.1.12) becomes

E
V= 2<gx—|——>. (4.5.1.13)
m

Eq. (4.5.1.13) is the same as the result of classical mechanics. Because according to the
energy conservation law in classical mechanics
1,

57 —mgx =E. (4.5.1.14)
According to Eq. (4.5.1.13), the unbound falling neutron at x — oo will keep energy con-
servation. However, according to our exact derivations, we get Eq. (4.5.1.20) instead of
Eq. (4.5.1.13). Eq. (4.5.1.20) indicates that the unbound falling neutron does not keep
energy conservation although it is of energy continuous spectrum. The exercise (8) in the
last section of chapter 4 requires the readers to point out the mistake in derivation of Eq.
(4.5.1.11a).

Next we will see that the neutron falling processes do not obey the “energy conservation
law”. We do not assume & — oo. In this case we can still demonstrate the continuities of
velocity v and energy spectrum E in case gravitational field. We have to use the exact

expression of the first kind Hankel function H 1(})3(2) (z>0)[78,79]. Eq. (4.5.1.7) becomes
N — CE? (1) (2 3/2
(E:») - E:» H1/3 5&
Deim/2X3 e "
12 2632en(1) /3, (L
gz /0 die ch(3>. (4.5.1.15)

In Eq. (4.5.1.15) the € and thus the E [See Eq. (4.5.1.3)] is continuous.
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Substituting Eq. (4.5.1.15) into Eq. (4.5.1.11) yields

2 X 21/3€ iE3/2 3/2
- =2 —i28%%ch(1)/3 . 282 ch(1) /3 .,
/ 2in? [/ dre d&/ de (3)
28/2ch(1) /3 ., / —i28¥2ch(1)/3
/ dte ), e h(3>]. (4.5.1.16)
Substituting Eq. (4.5.1.15) into Eq. (4.5.1.11b) yields
A 7 oty (PN [T e a3, (T
_F/o dte ch(3>/o dte ch(S). (4.5.1.17)

From Egs. (4.5.1.16) and (4.5.1.17) we have

2[R e () eht) | e R0 () e
vV = B_ 2 fo d612§3/2ch() h(%) f() d[€713§3/26h() h(%)
213\ /E 1 1 [[2(mgx+E)
_ _! _ |2 R g 45.1.1
3 x 1 3 2(x+E)xI 3 [ - ]xl (4.5.1.18)

Considering ch(t) > 1 for any value of 7 in the first equality of Eq. (4.5.1.18) yields

2 E
v {M] (4.5.1.19)
m
From Eq. (4.5.1.19) we have
my?

Eq. (4.5.1.20) indicates that even the particle can go to o (i. e., unbound or dissociated
particle) and the E is continuous, but the movement of particle in gravitational field does
not satisfy energy conservation law.

The COD experiments on the phase shift of gravitation for neutrons also clearly indicate
that Shrodinger equation is correct for the unbound particle in gravitational field [41]-[81].
Therefore, the solution of Shrodinger equation Eq. (4.5.1.15), and thus Eq. (4.5.1.20) are
correct.

4.5.2. Bound Particle

If a particle (a wavepacket) suffers infinitely high potential barrier, then the guide-factor
of wavepacket has discrete energy spectrum. In this case, the body-factor of wavepacket
will take jumping motion from one energy level to another energy level according to the
equiprobability symmetry and spontaneous equiprobability symmetry breaking law. Let us
illustrate with the following example the jumping motion. Note that in section 4.5.2 we still
use both actual and natural units, but the statements have some differences in comparison
with the subsection 4.5.1.
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A ultracold neutron is bounded above the horizontal plane z = 0 by using a reflecting
mirror, 1. €.,
B o, if z<0
V(z) —{ mgz, if 23>0 (4.5.2.1)
where m is the mass of neutron. The potential in Eq. (4.5.2.1) is called linear potential well.
Schrodinger equation is
h* d?
-—— Y —EW¥=0 (z>0, E>0). 4.52.2
2m de +(ng ) (Z = > ) ( )
Once again, we write the Eq. (4.5.2.2) in terms of dimensionless variables, based on
appropriate scales for length and energy. In this case, the dimensionless length scale is
2o = [?/(2mmg)]"/? and dimensionless energy scale is €, = mgz, = (h*mg?/2)'/3. When
we use dimensionless variables, we can say that we use natural units. Using dimensionless

variables yields

¥
Note that in Eq. (4.5.2.3) z and E are actually z/z, and E /€., respectively. The boundary
conditions are

¥(0) = 0. (4.5.2.4)
Y(eo) =0 (boundary condition of bounding state) . (4.5.2.4)
Make variable transformation. Set
£=2"3(z-E), (4.5.2.5)
Considering 0 < z < o, we have
—2BE <& < oo, (4.5.2.5)

where —2!/3E < & < 0 is the classical allowing region, and & > 0 is the classical forbidden
region. (Let us explain that the § > 0 is in the classical forbidden region. & > 0 means z > E.
In dimensional units z/z, > E /mgz., i. e., mgz > E. It is obvious that classical mechanics
does not allow mgz > E.) Egs. (4.5.2.3-5) become

d*¥
d§§§> _EW(E) =0. (4.5.2.6)
w(—2'3E) =0. (4.5.2.6)'
Y(0) =0 (boundary condition of bounding state) . (4.5.2.6)"

Eq. (4.5.2.6) is the Airy equation, which’s solution is called Airy function, which is ex-
pressed by Ai. This function has a peculiar behavior, oscillatory for negative values of
argument and decreasing rapidly towards zero for positive values. Of course, this is exactly
the behavior we expect for the wavefunction, since & = 0 is the classical turning point.
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Note that the boundary condition at z = 0 [Eq. (4.5.2.4)] translate into zeros for Ai(§),
where § = —23E [Eq. (4.5.2.6)’]. In other words, the zeros (roots) of the Airy function
determines the quantized energies.

v, (-2'3E,) = Ai(-2'PE,) = Ai(—\,) =0. (4.5.2.7)
From the table 10.13 of Airy function in Ref. [82] we can find all the roots. For example,

A =2333, A =4.088, A3=5.521, A4=6.787, As=7.944

A6 =9.023, A7 =10.040, Ag=11.009, A9 =11.936, Ajp=12.829 ° (4.5.2.8)

It can be seen that the bound energy levels in linear potential well Eq. (4.5.2.1) are

2 2\ 1/3
E, = 27'3, (natural unit) = <hmg> A

2
= &Mh, =0.602A, (peV), n=1,2,3,---, (4.5.2.9)
where characteristic energy €, = mgz..
1/3
o= (35) " =587 (um) - (4.5.2.10)

From Eqgs. (4.5.2.8) and (4.5.2.9) the bounding energy levels of ultracold neutron are
(peV=10"12¢V)

Ey =141, E; =246, E5=332, E4=4.08, E9g=7.21, E|9="7.75,--- peV.
(4.5.2.11)
Eq. (4.5.2.11) indicates that the intervals between energy levels are not homogeneous. The
larger the n are, the denser the energy levels are.
From Eq. (4.5.2.7) the eigenfunctions of bound ultracold neutron in gravitational field
are

[E(2)] = Wa(2) = GAIlE(2)]- (4.5.2.12)

In quantum mechanics, the probability of observing a neutron with the energy E,, in the n-th
quantum state at height z is equal to squared modulus of its wavefunction Eq. (4.5.2.12).
We can see on left side in Fig. 4.2 that the squared modulus of the neutron wavefunction in
the n-th pure quantum state has » maxima and » — 1 minima between them; the minimum
values and the wavefunction at zero height are equal to zero, and the wavefunction tends
asymptotically to zero at an infinitely large height. The squared modulus of the neutron
wavefunction is greater than zero at any height z > 0; but it is exponentially small at height
7> Zno = E,/mg. In physics, within the classical description, a neutron with the energy E,
can rise in the gravitational field up to the height z,, = E,;/mg. z,. is called classical turning
height. z,, = E,/mg = 13.8, 24.0, 32.4, and 39.9 um for n = 1, 2, 3, and 4, respectively.
For the four lowest quantum states. The square modules of eigenfunctions of lowest four
energy levels, other data, and measurement equipments are given in Figs. 4.2-4. To see the
original diagrams, please see Refs. [83, 36, 84].

The neutron wave functions ¥, (z) tend to the following asymptotic functions at large
heights z >> z, forbidden in classical mechanics:

¥, [8(2)] :Cn§71/487%§3/2- (4.5.2.13)
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Bottom mirrar

Figure 4.2. Wavefunctions of the quantum states of neutrons in the potential well formed
by the Earth’s gravitational field and the horizontal reflection mirror. The probability of
finding neutrons at height z, corresponding to the n-th quantum state, is proportional to the
square module of the neutron wavefunction |¥,(z)|. The vertical axis z provides the length
scale for this phenomenon. E, is the energy of the n-th quantum state.

Here, &, — oo and C,, are normalization constants.

Using the known eigenfunctions in Eq. (4.5.2.12), we can calculate their Fourier trans-
form, thus obtaining the amplitudes ¢(v) measuring the velocity v of neutrons in the n-th
quantum state (Refer to Refs. [83, 36, 84]):

Ou(v) = 4 /;ti—h/owdzqf,,(z)e"% (4.5.2.14)

Vo = +/2€/m is the characteristic velocity in the problem. The probability |,(v)|? of ob-
serving neutrons in the n-th quantum state as a function of velocity can be found in Ref.
[36].

Using the asymptotic expansion of Airy function at z — oo, one obtains

2
cos (57&/2—%) —0 (4.5.2.15)

determines the eigenvalues, i. e.,

2,30 T 1 323 1
37»,, 4—<n 27t),0r7» S\ ™ (4.5.2.16)
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3 1 1%
2 N 1/3 2/3
E, =273\, (natural unit) = (h ’:g ) [% <n— %) n] , (n>>1) (4.5.2.18)
or
9m 1\? 23
E,= ?(Tchg)2 <n— Z) ] , (n>>1). (4.5.2.19)

The quantummechanical treatment of the linear potential such as gravitational potential
may appear to have little to do with real world. It turns out, however, that a potential of type
V =kz is actually of practical interest in studying the energy spectrum of a quark-antiquark
bound system called quarkonium. In this case, the z represents the quark-antiquark separa-
tion distance. The constant k is empirically estimated to be in the neighborhood of

GeV
1fi ~ 1.6 x 10°N, (4.5.2.20)

m

which corresponds to a gravitational force of about 16 tons.

Indeed, another real world example of linear potential is the “bouncing ball”. In this
case, the potential energy of a ball of mass m at a height z above the floor, and k = mg,
where g is the local acceleration due to gravity. Of course, this is the potential energy only
for z > 0 as there is an infinite potential barrier that causes the ball to “bounce”. In this
case the quantummechanical calculations have been given by Egs. (4.5.2.1-19), and have
illustrated with neutron as an example.

The bouncing ball happens to be one of those rare cases where quantummechanical ef-
fects can be observed macroscopically. The trick is to have a very low mass “ball”, which
has been achieved with ultracold neutrons by the Nesvizhevsky’ group working at the In-
stitute Laue-Langevin in Grenoble, France [83, 36, 84]. These experiments verified clearly
that the falling ultracold neutron makes a jump movement from high to low position due to
quantization of energy (See, for example, the reports in Figs. 4.2-4 by Refs. [83, 36, 84].).
It is the first time that this kind of jump movements is observed in human history. Let us
introduce these experiments in details as follows.

The discrete quantum properties of matter are manifested in a variety of phenomena.
Any particle that is trapped in a sufficiently deep and wide potential well is settled in quan-
tum bound states. For example, the existence of quantum states of electrons in an elec-
tromagnetic field is responsible for the structure of atoms, and quantum states of nucleons
in a strong nuclear field give rise to the structure of atomic nuclei. In an analogous way,
the gravitational field should lead to the formation of quantum states. But the gravitational
force is extremely weak compared to the electromagnetic and nuclear force, so the observa-
tion of quantum states of matter in a gravitational field is extremely challenging. Because
of their charge neutrality, low mass, and long lifetime, neutrons are promising candidates
with which to observe such an effect. Nesvizhevsky et al. report experimental evidence for
gravitational quantum bound states of neutrons. The particles are allowed to fall towards
a horizontal reflecting mirror which, together with the Earth’s gravitational field, provides
the necessary confining potential well. Under such conditions, the falling neutrons do not
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move continuously along the vertical direction, but rather jump from one height to another,
as predicted by quantum theory. In order to allow for the experimental observation of grav-
itational bound states, all interactions of the massive particles with other fields must be so
small that their interference with the gravitational quantum phenomena can be neglected.
The choice of neutrons seemed the most favorable because (1). They are neutral; (2). They
have a long lifetime; (3). They are elementary particles with low mass. The reasons why
these properties are advantageous will become more evident from the following explana-
tions.

We now consider how to demonstrate that bound states exist for neutrons trapped in the
Earth’s gravitational field. The gravitational field alone does not create a potential well, as
it can only confine particles by forcing them to fall along gravity field lines. We need a sec-
ond ‘wall’ to create the well. This can be obtained by introducing a reflecting mirror. Let
us consider a neutron, which is lifted up by a few um and is then dropped vertically onto the
mirror. The neutron wave is reflected by the mirror and interferes with itself, as illustrated
in Figs. 4.3 and 4.4. This self-interference creates a standing wave in the neutron position
probability density distribution: the probability of finding a neutron at a given height ex-
hibits maxima and minima along the vertical direction, the position of which depends on
the quantum number of the bound states. The neutron that was dropped has gone through
quantum ‘steps’. The classical analogue, the vibrating musical string, gives a visualization
of a particle in a rectangular potential well. In this case, strict boundary conditions must
be met: both the wavefunction amplitudes of the particles and the displacement amplitudes
of the string vanish at the boundaries. In contrast, the gravitational well described above
is asymmetric: whereas the reflecting mirror (under total reflection condition) corresponds
to an infinite sharp wall, the gravitational field is much softer; as a result, the gravitational
well extends in the opposite direction to the gravity field with increasing quantum number.

Consequently, as can be seen from Fig. 4.2, the neutron wavefunctions are deformed
upwards, and the energy differences between states with neighboring quantum numbers
become smaller with increasing level number. More detailed discussions, precise analytical
solutions and related publications can be found in the above equations of this subsection.

We will here simply summarize the results of these theoretical analyzes: the energies of
the four lowest quantum states of a neutron in the Earth’s gravitational field are £} = 1.41
peV, E, = 2.46 peV, Ez = 3.32 peV, and E; = 4.08 peV, respectively (1 peV=10"12 eV).
It is worth keeping in mind that the classical energy that is needed to lift a neutron by 10
um against gravitation on Earth (given by mgz) is almost exactly 1 peV. (Here m is the
neutron mass, g is the acceleration due to gravity, and z is the height.) Thus the energy
E corresponds in the classical approximation to the height z; ~ 13.8 um, at which the last
level of the quantum phenomenon for neutrons should be observed.

This *macroscopic’ height is very advantageous, and helps people to design experiments
to demonstrate the existence of gravitational levels for neutrons. In a realistic experiment
it is not possible to just lift a neutron, let it drop, and then measure its position probabil-
ity density distribution as a function of height. But we can take a beam of neutrons and
let them fly horizontally above a reflecting mirror. If all forces can be eliminated except
for gravitation and repulsion by the mirror (such as that due to magnetic field gradients,
mechanical vibrations and so on), then the motion of the neutrons can be decoupled into
independent vertical and horizontal components. The gravitational force acts on the verti-
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I Absorber

/7 ™\ Neutron

{ |
“. _/ detector

=

~10 cm

Figure 4.3. Layout of the experiment. The limitation of the vertical velocity component
depends on the relative position of the absorber and mirror. To limit the horizontal velocity
component we use an additional entry collimator. The relative height and size of the entry
collimator can be adjusted.

cal component only, and in this direction we then obtain the potential well that leads to the
physical consequences described above. No forces act on the horizontal velocity compo-
nent. A compromise has to be found between the length of the reflecting mirror and the
horizontal velocity of neutrons. Refs. [83, 36, 84] used mirrors with a length of 10 cm, and
neutrons with a horizontal velocity of 10 m/sec. The energy E| corresponds in the classi-
cal approximation to the vertical velocity component v /= 1.7 cm/sec, which is significantly
smaller than the horizontal velocity component. If we let the neutrons fly ‘slightly upwards’
(see Fig. 4.2), they will follow a parabolic trajectory due to gravity. At the maximum of
the parabola their vertical velocity component will be zero in the classical approximation,
and will then increase again. To limit the vertical velocity component, experimentalists use
an absorber parallel to the bottom mirror and placed above it (see Fig. 4.3). The distance
between absorber and mirror can be adjusted.

In experiments, neutrons flow between the mirror below and absorber above, and the
neutron transmission N is measured as a function of the width z of the slit defined by the
mirror and the absorber. This width z acts as a selector for the vertical velocity compo-
nent. In order to keep the vertical and horizontal velocity components decoupled, severe
restrictions concerning quality and adjustment of the different parts used in the set-up must
be met. Ideally, from Fig. 4.3, we expect a stepwise dependence of N as a function of z
at z =14 — 15, 24, and 32 um. At sufficiently large slit width z, the classical dependence
N o< (z)!- should be approached, and the stepwise increase should be washed out. (Naively
we might expect that classically N o< (z); this is not the case because one can obtain an
additional 79 due to the fact that an increase in z also allows for an increase in the accepted
spread of velocities.) The identification of the lowest quantum state is easier than that of the
higher states because in this case the relative change in the count rate N is maximal. The
effects, that Nesvizhevsky et al observed (shown in Fig. 4.4) are consistent with the expec-
tations described above theoretically. Careful analysis of the experiments has allowed us to
rule out any systematic errors. In particular, tests have shown that the shape of the transmis-
sion curve (Fig. 4.4) does not depend on the value of the horizontal velocity component,
but that it depends only on the vertical velocity component, as expected.

Fig. 4.4 shows on an extended scale the initial part of the transmission curve N as a
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Figure 4.4. The neutron throughput N versus the absorber height at low height values.
The data points are summed up in intervals of 2um. The dashed curve corresponds to a
fit using the quantum-mechanical calculation, in which all level populations and the height
resolution are fitted from the experimental data. The solid curve is again the full classical
treatment. The dotted line is a truncated fit in which it is assumed that only the lowest
quantum state-which leads to the lowest step-exists.

function of slit width z. The curve shows the results of a quantum fit, in which the level
populations and the height resolution are free parameters. The solid line is the full classical
treatment (N o< z'%). The dotted line is a truncated fit to the assumption that only the lowest
quantum level-which leads to the lowest-step exists. Then it continues at the absorber height
of z; o< 13.8 um with a shifted classical treatment (N o< (z —z;) 1:3) that is more like a ‘guide
to the eye’ curve.

Here we want to give five comments for the Nesvizhevsky et al’s ultracold neutron
gravitational quantum state experiments.

(1). We argue that if the sensitivity of detector in Refs. [83, 36] can be raised, then the
transparency number N(z) > 0 can be found at 0 < z < 15 um. Our reason is as follows. At
z=13.8 and z = 10 um, the N(7.8) and N(10) are, respectively

4
N(13.8) = Y |¥,(13.8)>=C(2+3.7+8.4+1) = C15.1. (4.5.2.21)

n=1

4
N(10) = ¥ |¥,(10)[> = C(9.3+0.05+0+1.7) = C11.05. (4.5.2.22)
n=1

From the comparison between Eqs. (4.5.2.21) and (4.5.2.22), it is obvious that N(13.8) ~
N(10). Therefore, if N(13.8) can be observed, then N(10) can be observed as well. It might
be wrong that the authors of Refs. [83, 36] concluded that if z < 13.8 um, then N = 0.
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(2). It is clear from Fig. 4.4 that besides the stepwise variation of N, there are also slow
variations between two stepwise jumps such as between z = 13.8 — 15, between z ~ 24 — 26,
and between z ~ 33 — 35. The theoretical origin is in that the square modules in these
intervals are not zero although are small.

(3). Let us here make a theoretical comment. The gravitational potential belongs to a
linear potential. The general treatment of linear potential can utilize Airy function. The
linear function is

V(z) = klz, (4.5.2.23)

where £ is an arbitrary positive constant. Given a total energy E, this potential has a classical
turning point at a value z = a, where E = ka. This point will be important for understanding
the quantum behavior of a particle of mass m bound by this potential.

The Schrédinger equation becomes

R d*Yg

Z

It is easiest to deal with the absolute value by restricting our attention to z > 0. We can do
this because V(—z) =V (z), so there are two types of solutions, namely Wg(—z) = +¥£(z).
In either case, we need Wg(z) to tend towards zero as z — oo. If Wg(—z) = —Wg(z), then
we need Wg(0) = 0. On the other hand, if Wz (—z) = Wg(z), then we have ¥, (0) =0,
because Wi () — P (—€) = 0, even for € — 0. We refer to these solutions as “odd” and
“even” parity.

(4). For any states, the probability density distributions along the z axis cannot be
always oscillatory. At the enough hight, it reaches the tuning point, above which the neutron
goes into the gravitational battery domain, and the neutron will make barrier tunneling
penetration, correspondingly, the probability density distribution becomes exponentially
decreased.

(5). Fig. 4.2 clearly shows that when the cold neutron is, for example, the state W4(z)
initially, and falls down to state W3, according to the spontaneous equiprobability symmetry
breaking law the coldneutron is of a possibility to from hight 20 um to hight 30 um. This
process violates momentum conservation, and is a prediction at this time.

4.6. Energy Quantization of Bound State

The definition of bound state is: a potential prevents the particle in this state from escaping
to infinity. Bound states are thus characterized by

Yx) — O

X — o0

Bound states appear in quantum mechanics exactly where we expect them classically,
namely, in situation where V(+o0) > E.

The energy spectrum of bound state is always quantized (i. e., discrete). Many students
might hear some about energy quantization, and feel that the quantum mechanics and mi-
croscopic world are strange and unimaginable. Now we prove that solutions of Schrédinger
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equation for bound states have to be discrete energy spectrum, i. e., the energy quantiza-
tion is an inevitable result solving Schrodinger equation under the boundary condition for
bound states. To help readers to understand mathematical origin of the discrete spectrum
vividly, we shell base our consideration on a qualitative, mostly graphical discussion on
the solution of Schrodinger equation, in order to underscore the key elements. Actually,
the oscillation theorem in this section was exactly proved by mathematicians, Sturm and
Liuvile, in 1836. Oscillation theory was initiated by Jacques Charles Franois Sturm in
his investigations of Sturm-Liouville problems (Sturm-Liouville problem was introduced is
chapter 2.) from 1836. There Sturm showed that the n-th eigenfunction of SturmCLiou-
ville problem has precisely n-1 nodes. For one dimensional Schrédinger equation the study
about oscillation/non-oscillation answers the question whether the eigenvalues construct
discrete/continuous spectrum. Readers can refer to Ref. [10, 5, 86], especially, to Ref. [10],
for Theorem XIV.
For clarify, we rewrite the one dimensional Schrodinger equation:
2

%‘P(x) =¥ (x) = —2—’? [E—V(x)|¥(x) = —k*¥(x). (4.6.1)
If E—V(x) <0, then the state is bound state. For reference, let us give the simplest one
dimensional uniform potential

Ve ={ g Wi (462

where x, is the width of the potential well, and U, is the hight of the well.

Theorem XIV: Quantization of bound state. For bound system, its ground state has
no node. Its excited state is an oscillation function in space, has thus nodes. The n-th
excited state has n nodes. The energy spectrum of excited states is discrete, i. e., energy
quantization. (Note that the label of ground state is 0.)

Proof. Recall now that in analytic geometry, ¥ (x) is related to the curvature of ¥(x) at
the point x. ¥ has the following properties.

(1) E > V(x) which correspond to classically permitted region. If ¥ is in upper half-
plane W > 0, then in classical permitted region ¥’ < 0. Therefore, in upper half-plane ¥ is
concave downward (See Fig. 4.5a.);

If W is in lower half-plane ¥ < 0, then in classical region ¥’ > 0. Therefore, in lower
half-plane ¥ is concave upward. (See Fig. 4.5a.)

As shown in Fig. 4.5b, these conditions permit oscillation solutions.

(2) E < V(x) which correspond to classically forbidden region. ¥ has following prop-
erties.

If W is in upper half-plane ¥ > 0, which is equivalent to negative kinetic energy, then
Y < 0. Therefore, in upper half-plane ¥ is concave upward; (See Fig. 4.6a.)

If ¥ is in lower half-plane ¥ < 0, then ¥” < 0. Therefore, in lower half-plane ¥ is
concave downward. (See Fig. 4.6a.)
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Figure 4.5. The y axis represents V.

These conditions permit monotonously rising (growing) or falling (decaying) solution,
without oscillation phenomena with variation of x. The wavefunction can be of the form
exp(£px). B = +/2m(U, —E)/h > 0. See Fig. 4.6b.

(3) Generally speaking, the solutions of Schrodinger equation have to be constructed
from the elements in Figs. 5a and 6a in a continuous and continuously differentiable
manner. On the above jointing conditions, the boundary conditions of bound state (¥ — 0
at x — +oo) will lead to the energy quantization of 0 < E < U,. Next, we give a detail
qualitative explanations for this energy quantization.

According to Figs. 4.5 and 4.6, one can qualitatively analyze the possible energy (E)
values corresponding to wavefunction, and node number of the wavefunction in region
O0<E<V.

At first we discuss ground state. For the ground state the possible energy is the smallest.
In region x < —x,/2 (classical forbidden region), due to E < U, bound state ¥ — 0 at
x — —oo, When x becomes larger, ¥ rises exponentially, and the curve of W versus x is
concave upward. When x > —x, /2 (classical permitted region), due to E > 0 = V (x), the
curve of ¥ versus x is concave downward until x = x, /2. However, when x > x,/2, in
this region x > x,/2 (classical forbidden region), due to E < U, = V(x), the curve of ¥
versus x is concave upward once again as in x < —x, /2. (At the turning point we always
has ¥ =0.)

Due to two necessary requirements: (i). the requirement of the smoothing joint con-
ditions (, i. e., the wavefunction and its first order derivative are continuous at boundary
X = X, /2, where is the turning point); (ii). the solution decaying or falling to zero at oo,
it is only that when E takes an appropriate value, one can have ¥ — 0 at x — oo, If E,
satisfies the two requirements, then let us look at that what will happen for E = Ej — |¢| or
E=Ey+ ’8’

Try if E = E( — |€| can also satisfy the two requirements? At this small E, the turning
point will have left shift. From Eq. (4.6.1) the small E corresponds to that the W curve is
weakly concave downward. After this left shifted turning point, the ¥ curve will be concave
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Figure 4.6. The y axis represents .

upward, and cannot approach to zero as that case when E = Ej.

Try if E = E + |€| can also satisfy the two requirements? At this large E, the turning
point will have right shift. From Eq. (4.6.1) the large E corresponds to that the W curve
is strongly concave downward. After this right shifted turning point, the ¥ curve will be
concave upward, and cannot approach to zero as that case when E = Ej; on the contrary,
the W curve will cross the x axis at some point, and after this cross point the ¥ curve goes
into the plane where ¥ < 0, and thus the ¥ curve will continue to be concave downward,
and will approach to —eo instead of to +co. This appropriate value of E is the lowest energy
eigenvalue of the particle. If the value of E is even a little departure from this appropriate
value, then W does not satisfy the boundary condition of bound state, ¥ = 0 at x = +-co.

When the energy of particle increases from the ground state energy, the curvatures of the
curves of ¥ versus x will reduce at |x| > x, /2 (classical forbidden region). However, when
the energy of particle increases from the ground state energy, the ¥ curve will be concave
downward more strongly, and cross the x axis before arrive the turning point. The ¥ curve
in the W < 0 region is concave upward, and will enter the classical forbidden region. Using
the similar method as that when E = E, the wavefunction ¥ — 0 at x — +oo, one can know
that the wavefunction ¥ at E = E| > Ey has one node in the classical permitted region.
This appropriate value of E| is the first exited energy level, the corresponding wavefunction
is the first exited state, i. e., the second eigenstate of bound energy (odd parity state).

Continuing the similar analyses, one can obtain that: only when the particle energies
in the well take some discrete values Ey, E, E», - - -, the corresponding wavefunctions ¥y,
Y, ¥,, --- can satisfy the boundary conditions of bound states: ¥ — 0 at |x| — oo, and the
smooth connecting conditions. These values of energy are the energy eigenvalues, and the
corresponding wavefunctions are the energy eigenfunctions. The wavefunction of ground
state is of no node point except the infinitely far points. The number of nodes of the nth
exited state is n. The higher the energy of exited state is, the stronger the oscillation of the
wavefunction in region |x| < a/2 is. This is the so called oscillation (or Sturm) theorem in
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the eigenvalue problem of differential equation (Refer to Ref. [10]). QED.

Let us make some discussions for the case of £ > V.

In this region the kinetic energy E —V is everywhere positive. Classically, there are two
independent states of motion: particle moves towards right and left. Quantummechanically,
there are also two independent, if more complicated, states of motion which are just the
two independent solutions of the second order differential equation Eq. (4.6.1). Since
the kinetic energy is everywhere positive, we see from Eq. (4.6.1) that ¥ and ¥ have
opposite sign everywhere. Hence, W is always concave towards the x axis, or in other
words, oscillatory. Consequently ¥ is bounded but extends to infinity in both directions.
These states occur for any energy E, and thus we conclude that the energy spectrum is
continuous and doubly degenerate in this region.

Let us make some discussions for the case of 0 > E, where 0 is the minimum value of
V(x).

In this region the kinetic energy is everywhere negative. No quantummechanical states
exist either, because the solutions of Eq. (4.6.1) are everywhere convex with respect to
the x axis (see Fig. 4.6a) and hence must increase without limit in one direction or the other.

If the well is, instead of that given by Eq. (4.6.2), as

0, |x|<a/2
Vix)=<¢ Vo x>a/2/ , (4.6.3)
Vi x< —a/2 Vo >Vi

where a is the width of the non-symmetrical potential well.

Let us make some discussions for the case of V| < E < V..

In this region the kinetic energy is positive to the left of the intersection of £ and
Vs, negative to the right. The point of intersection, where £ = V, and the kinetic energy
vanishes, is the classical turning point of the motion. Classically, a particle moving to the
right is reflected at the turning point and returns to the left, which is the only general type
of motion. Quantummechanically, there are still two independent solutions of Eq. (4.6.1),
but only one is admissible (even as an idealized state), as we now show. To the left of the
classical turning point, the solutions of Eq. (4.6.1) are oscillatory. To the right, however,
where ¥ has the same sign as W, the solutions are convex with respect to the x axis and
hence either increase without limit or decrease strongly to zero as x increases. The general
solution to Eq. (4.6.1) contains an arbitrary superposition of these two types of terms,
but only the particular solution which decreases to zero is permitted by the requirements
of physical admissibility. We thus conclude that the energy spectrum is continuous and
nondegenerate in this region. The solutions resemble the classical ones in the sense that a
particle is always reflected.

The above method can, in principle, also be used to V (x) # V.. For example, V (x) is the
potential energy of the harmonic oscillator. It is clear how the above arguments generalize
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to a particle bound by some arbitrary potential. If we try to keep W exponentially damped
as x — —oo, it blows up as x — +oo (and vise versa), except at some special energies.

4.7. Exercises and Solutions

(1) Referring to the derivation of Eq. (4.3.3.19) and Table 4.1b.down, under the condition
that at the right side of the barrier there is a potential well, —V,,.;; < 0, i. e., Vi <0,
calculate the transmission coefficient 7. Argue that the magnitude of T can be changed
by the variation of the magnitude of —V,,.;; due to that the wavenumber k,;;;, in region III
will go up. Discuss the relation between transmission coefficient 7 and Vj;;. Then design a
novel tunneling diode with high efficiency.

(2) According to our wavepacket-only theory, review the viewpoint and calculation
method for the incident, reflecting, and transmitting wavepackets in the barrier problem in
section 7.9 of Ref. [3].

Ref. [3] considers a chopped one dimensional pulse, L cm long, containing many
particles moving with momentum p = hk, and the Fourier transform of any particle’s

“wavepacket” is
2 sin(k—ko,)L/2
bk)=\ ———————. 7.159
W=\ =& (7.159)

Suppose this “wavepacket” is at x = —X at t = 0, and the form of the “wavepacket” is

1 oo . .
y(x,1) = N /_ mdkb(k)e’kxe’(kx_mt), (7.158)

which is a superposition of plane waves. Each such incident k-component plane wave is
reflected and transmitted. Every incident plane wave has its own reflected and transmitted
plane wave. Reassembling all of these plane waves, Ref. [3] obtains three “wavepackets”

1 °° N

x<—a Vinsident = \/—2_75/ dkb(k)elkxel(kx_(ot)7
1 °° . . .

x < —a \Vreflect — —275/ dk\/1_?61¢Rb(k)elkxe_’(kx+mt)7
1 °° . —

x> +ta Viranmitted = —TTC/ dkﬁ€l¢Tb(k)elkXel(kx_mt).

Then Ref. [3] obtains the following results. The trajectories of reflected, incident, and
transmitted “wavepacket” are:

= hkx°z+x+ N0 , X< —a. (7.162)
m ok, ke
hkyo
X = r—X, x<—a. (7.163)
m
hkyo 0O
= —X— — . 7.164
x=— o, kw’ x>a ( )
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In Eqgs. (7.162-164), X represents the position of the incident “wavepacket” at t = 0.
Do you agree with the above analyses and calculations? Why?

Solution:

We would like to remind readers to note that some references also use the above method
in this kind of problems. Ref. [3] is just a typical, clearly writing, and representative one
within some references. We do not agree the above analyses and calculations. Our opinions
for the above method are listed by point by point as follows:

(A) We should remember that above method is to use Schrodinger equation to make
calculation. Therefore, the first thing is to satisfy Schrodinger equation. A free Schrodinger
equation can only have solution of plane wave. It is obvious that the so-called chopped
pulse is very complex, and cannot be a solution of free Schrodinger equation.

(B) Actually, the chopped pulse can consist of many massive particles or photons. An
correct calculation has, at least at the start step, to calculate one photon or one massive
particle. As is well known, although one often says that a particle is a wavepacket, one has
to remember in mind at the same time that the particle is rigid and thus cannot be separated.
Therefore, the above “Reassembling all of these plane waves” is not physical.

(C) The barrier method of our wavepacket-only theory is that the wavefunction
(=guide-factor) of a free particle, having complex structure, is a plane wave. It is that
this plane wave makes scattering with the barrier, and the body-factor of wavepacket
(wavepacket=particle) moves according to spontaneous equiprobability symmetry breaking
law. We never consider the direct scattering between the particle (or the body-factor) and
the potential barrier. We can consider the direct scattering between the wavefunction of
particle and the potential barrier.

(3) Show that T+ R =1 [See Eq. (4.3.2.17).] for all one dimensional barrier problems.

Solution:
Since the scattering process is assumed to be steady-state, the continuity equation Eq.
(3.5.6.12) becomes
s _
ox

Integrating this equation yields
= aJ

Jx(_m) = Jinc _Jref-

But

Jx(+°°) = Jirans-

So that the equation above becomes

Jirans +Jref = Jine-
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Dividing through by J;,, gives the desired result.

(4) Obtain the average value of x> using the harmonic oscillator wavefunction

w0 =N 51,0 = (2) 5| e T, (@)
Solution:
The average value of x? is
(Pha= [ a2, = Nog | den@EmEeF. @2

Let us at first calculate

hn= [ antiruno =" [ da @@ @3)

Using the recursion relations of Hermite polynomials

EHE) = & | (B4

1 (&) =t 1 (84 382

! Hr11+2 (&)

= (= D2+ SHAE) + (4 DHA(E)+

2
1 1
= — Hm
(m+3) @)+
Substituting Eq. (4.4) into Eq. (4.3) yields

Phon= | a2, (0%,(

—Hy2(8) +m(m—1)H,»(§). (4.4)

N Nm 1 2
0 [ de, @) [ (3 ) )+ i@ +mln— D 2(E)] e F. (43
Substltutmg Eq. (4.5) into Eq. (4.2) yields

o = [ a0 =N (e 5) [ dem@mge s
= Zj <n—|—%> 2"nl\/1

[

(5) Discuss the energy quantization in the following potential:

oo, x<0
Vix)=9 =V, 0<x<a , (5.1)
0 x> a.
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Solution:

Study -V, < E < 0.

(a) In the region I (x < 0). ¥ = 0.
(b) In the region II (0 < x < a).

W = Asin(kx+8) k= Y2EL (5.2)

Utilizing the boundary condition ¥(0) = 0, one knows
Y = Asin(kx). (5.3)
(c) In the region III (x > a).

P oo othx B:M. (5.4)

Considering the boundary condition at x — +oo ¥ = 0, one can only take
Y=cP (x>a). (5.5)
Then, according to the continuity condition of (/n'¥)’, one can find
kcotka® = —P. (5.6)
Eq. (5.6) can be rewritten as
cotka = —% <0. (5.7)
Therefore, ka is in the II and IV quadrants. Eq. (5.7) can be rewritten as
1 k |E|
+ =+ =+ .
v 1+cot?ka VK +B? Vo

Utilizing the diagram method, one can find the roots of Eq. (4.8). For example, we can find
out the initial five roots. These five roots are the intersection points of the line y = ka/k.a
and y = |sinkal|. k, = \/2mV, /h.

When V, — oo, the problem becomes an infinitely deep well. The line y = ka/k.a
becomes y = 0. The intersection points of y =0 and y = sinka are

sinka = (5.8)

ka=nm, n=1,2,3,---, (5.9)

which is exactly same as we discussed before.

Note that the potential in Eq. (5.1) might be no bound state. The necessary and sufficient
condition for, at least, existing one bound state is that at ka = t/2, y = ka/k.a < 1, i. e.,
koa > m/2. This condition can written as

h’n?

Voa? > ——. 5.10
az—e (5.10)

Eq. (5.10) is the limitation for the potential deep and width.
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An application: estimate roughly the interaction between the proton and neutron in the
deuteron. Experiment indicates that: the binding energy of the ground state of deuteron
is B=V, —|E| ~ 2.237 MeV. The deuteron radius is a ~ 2.8 x 1071* cm, M, ~ M, =
1.67 x 107 g, where M, and M, are the mass of proton and neutron, respectively. The
reduced mass is m ~ M, /2. Therefore, for the ground state of the deuteron, utilizing Egs.
(5.6) and (5.4) yields

V2
kacotka = —B = — ;?Ba ~ —0.650. (5.11)

Numerical calculation gives ka = 1.90. From ka = v2mBa/h = \/2m(V,—B)a/h, one
obtains V, ~ 21.3 MeV.

(6) Prove that the energy level of the neutron falling on the surface of Earth is equal to
the average value of kinetic and potential energy on the corresponding state.

Solution:
This conclusion is just our guess. Readers can consult subsection 6.2.4 in chapter 6 to
solve this problem.

(7) We have derived from Eqgs. (4.4.3.4a-b)

1 . 1 .
a= N—zmhm(mwx—l—lp) = —thm(mmx—l—zp)

1 1
t_a_ N _
a = N2mh0) (mwx —ip) 2mhm(mmx ip)

the Eqs. (4.4.3.29)
an>=+vVn—1n—1> and atln>=Vn+1jn+1>.

Now, would you please take Eq. (4.4.3.29) as starting point to prove Eqs. (4.4.3.4a-b).

Solution:

aatln> = +n+lan>=(n+1)n>

= AZ(p—imw)(p+imw)|n >
N*{2Hm +imw|[p, x| }|n >

= AZ(n+1)2mho|n >

Solving the above equation yields
1
= S
(8) Ref. [36] (2010) points out that: “Noncommutative extensions of quantum mechan-

ics, in particular those following from quantum gravity theories, have been discussed for a
long time, and most intensively recently. Noncommutative extensions are usually based on
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Heisenberg algebra in a D dimensional space. For gravitational quantum states, the problem
reduces to the 2 dimensional space.”

We give an exercise on the noncommutative extensions of quantum mechanics. If the
readers want to know more about this exercise, please refer to Ref. [85].

Assume that

[x,y] =0, [pxapy] =in, [xzap]] h8117 i=1,2, (81)

where, in the last commutation relation, x; = x, x =y, p1 = px, and p> = py, and the
parameters 0 and n correspond to the noncommutative parameters.

The following Heisenberg uncertainty relations:
AxAp, >

0
AxAy > 57 Aprpy > (8'2)

n
=2 2

The first possible way of implementing algebra Eq. (8.1) is to construct the noncom-
mutative variables x, y, p., py from the commutative variables x', y', p, p) by means of linear
transformations. Given the canonical commutation relations,

[xlay,] =0, [p;mp;] =0, [x;,p;] = ihsijv i=1,2, (83)

Please prove that Eq. (7.1) can be obtained from Eq. (7.3) through the linear transforma-
tions:

0
x=x— ﬁp;v y= y,7 (8461)
., 0 n 0
Px = P; = _lhwa Py = Py - ﬁxl —lh? — ﬁxl (8.4b)

The second possible way of implementing algebra Eq. (8.1) is to construct the non-
commutative variables x,y, py, p, from the another commutative variables x”,y", p’/, p} by
means of linear transformations. Given the canonical commutation relations,

X'y =0, [p;',p;'] =0, [xg',p;-'] =ihd;;, i=1,2, (8.5)

Please prove that Eq. (7.1) can be obtained from Eq. (8.5) through the linear transforma-
tions:

x=x"y=y"+ %pﬁc’, (8.6a)
n J 1, 8
px = p‘;/_i_ gy” — —lhw + hy py py a ”e (86b)

The second possible way of implementing algebra Eq. (8.1) is to construct the non-
commutative variables x,y, py, py from the another commutative variables x”,y", p/, py by
means of linear transformations. Given the canonical commutation relations,

[xfij”] = 07 [p),clvp;,] = 07 [xglvp;,] = lh81j7 i= 1727 (85)

Please prove that Eq. (8.1) can be obtained from Eq. (8.5) through the linear transforma-
tions:

0
x=x",y ="+ =pi; (8.6a)
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0 0
Px = p),(, + 2)7" = —ZFLW + 2)7”, Py = p} ha k (86b)

The third possible way of implementing algebra Eq. (8.1) is to construct the noncommu-
tative variables x,y, py, p, from the another commutative variables x”,y", p\’, py" by means

of linear transformations. Given the canonical commutation relations,
Y"1 =0, [p)py]1=0, &', p}]=ihd;, i=1,2, (8.7)

Please prove that Eq. (8.1) can be obtained from Eq. (8.7) with a small modification through
the linear transformations:

0 0
o n
x=x" = oepy, = ¥+ 2hpx, (8.8a)
p :P///+ n y/// —ih 0 _i_ly/// p p/// n N —ihi— lx’” (8.8b)
* Y 2h o’ 2nT Y Y 2h " 2hn ’

The two first commutation relations in Eq. (8.1) are recovered. However, the last one is
changed to:

. 0
[xi,pj| =ih <1 + 4—7?2> d;j (8.9)

(9) Eq. (4.5.1.13) indicates that at x — oo the unbound neutron in gravitational field (or
electron in electric field) keeps energy conservation. However, our Eq. (4.5.1.20) indicates
that for any value of x, including x — oo, the unbound falling neutron in gravitational field
(or electron in electric field) does not keep energy conservation. Point out the mistake in
derivation of Eq. (4.5.1.13) (Ref. [1] obtains Eq. (4.5.1.13) as well).

Solution:
The Eq. (4.5.1.9) can be written as

2
gim W(E) =CCi& Viexp <i§§3/2) . (4.5.1.9)
The position probability current J, Eq. (4.5.1.10), can be written as

P P
lim J = Tim —" (lp*d——lpd ) (4.5.1.10)’

E—oo E—oo 2im dx dx
Because 5 J TP
lim J ¥ — [im¥Y - ¥ lim W* 4.5.1.10)
glm 7 2ihm < dx gg{l@ dx ggl:o > ’ ( 0)

i. e., the exchange of order between derivative and limitation operations is illegible, one
cannot substitute Eq. (4.5.1.9)” into Eq. (4.5.1.10)’. Therefore,

lim J #2'/3 (4.7.1.11Y

é—mo

MA



Chapter 5

General Formalism

5.1. Expansion in Eigenfunctions

We have defined the scalar product (inner product or dot product) in section 2.3 of chapter
2. If the scalar product of ¥ and ¢ vanishes, that is,

(¥,0) =0, (5.1.1)
then W and ¢ are said to be orthogonal. Let ¥; are eigenfunctions of operator O and
(Wi,¥;) =0, for i#j. (5.1.2)

The set of functions, which are both orthogonal to each other and normalized, is called
orthonormal set.

Consider an orthonormal set of n (n can be equal to « as well as to finite number.)
linearly independent functions: W, W5, ---, ¥,. Suppose that an arbitrary function (for
example, state function or wavefunction) ¥ can be represented by the following linear com-
bination (= expansion)

n n
Y= Z ¢;¥;, or in Dirac notation |¥ >= Z cili >, (5.1.3)
i=1 i=1

where c; are a given set of complex number.

(¥, %) = ‘P,,Zc] Z (¥, %)) Zn:cjsij:ci. (5.1.4)

If Eq. (5.1.3) holds, then the set |i > (in x representation < x|i >= ¥;(x)) is called complete
set. For a complete set, we have the following completeness relation or closure relation of
complete set |i > (or ¥;(x)).

Y li><i|=1I, orinxrepresentation Y W;(xX')¥;(x)=38(x—x). (5.1.5)
where [ is called identity operator or unit operator. In mathematics, the completeness prob-

lem is a very complex problem [1]. However, in case of quantum mechanics, the eigen-
function set of any Hermitian operator is definitely a complete set, and has completeness
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relation [1]. General speaking, eigenfunction set of Hermitian operator, ¥;, constitute a
complete basis of Hirbert space. Eq. (5.1.5) is invaluable to quantum mechanics. One often
uses the completeness relation to expand any state function or to make decomposition of
unity.

The scalar product ¥ and ¥ is

ZC‘P,,ZCJ ZC cj(¥i,¥)) Zn:\ci\zzl, (5.1.6)
i=1

i,j

in which ¢; are the expansion coefficients in Eq. (5.1.3). The last equality in Eq. (5.1.6)
comes from normalization of V.

If an arbitrary wavefunction @ can be represented by a linear combination of ¥,
W¥,,- -, ¥, such that

CD:ZOilPi:01T1+021P2+"'+0,11Pn (5.1.7)

where o; are a given set of complex number. The scalar product of ¥ and & is

P) = <Zcilpi>zojq'j> =Y cioj(¥,¥)) Zc 0;8;; = Zc 0;. (5.1.8)
i j ij

Let ¥; be eigenfunctions of the operator O and, at the same time, ¥; is complete set of
functions. The eigenvalue equation is

OIP,‘ = OilPi, (519)

where o; is the eigenvalue of operator O. The average value of operator O is

<0>= [wovir=(v.09)- (Zc,‘P,,OZc] ): (Zcilyi,xojcj\y
i J

(5.1.10)
<0 >= Zc cj0;dij = Z|Cl| 0;. (5.1.10)

ij

The average value of O is
<0*> = [woir—(v,0%) - (Zc,ql,,o Yo )
= (Zciwi,20§chj>, (5.1.11)

i J

Z>= Zc;‘cjoiﬁij :Z\ci\zolz. (5.1.11)
ij i

In general
<O0">=(¥,0") =Y |ci|]. (5.1.12)

i
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In some textbooks, the explanation for c; is as follows: “The results of individual mea-
surements of dynamical variable O for state W are the eigenvalues o;, the value of which
denotes the probability of the state ¥;
in state W, and therefore, denotes the probability that an individual measurement for the
dynamical variable O yields the value o;. In other words, the absolute square of the coef-
ficient ¢; in the expansion of ¥ in the eigenfunctions ¥y, V5, --,%¥, of operator O is the
probability that a measurement of O will yield the eigenvalue o;.”

This textbook thinks that it is better to do not connect quantum mechanics with mea-
surements. This textbook prefers the following explanation: “According to the spontaneous
equiprobability symmetry breaking law, denotes the occupation probability of state ¥;
in state W, and therefore, denotes the probability that the dynamical variable O takes value
o0;. In other words, the absolute square of the coefficient c; in the expansion of ¥ in the
eigenfunctions ¥, ¥, - -,¥, of operator O is the probability that O will take the eigen-
value 0;.” We think that the simpler the theory is, the better the theory is. Why we have to
connect quantum mechanics with measurements? The probability is a property of any ob-
jects, and is, therefore, objective reality, and independent of any measurements absolutely.
It is better to believe that objective law does not depend on subjective will certainly.

Consider that the W is a function of continuous variable x only. Substituting Eq. (5.1.4)
into Eq. (5.1.3) yields

Zc,, Z\y,,\y {/dx‘l’* )}‘I‘(x), (5.1.13)

where x’ is the dummy variable of integration. Interchanging the order of summation and
integration yields

= [ {Z‘Pz‘(x’m(x)}w(x’). (5.1.14)

If Eq. (5.1.14) holds water, then we have
Y W) Wilx) = 3(x— ). (5.1.15)
i

5.2. Hermitian Operators

A physical quantity O can be represented by a linear operator O. Readers note that, for
brevity, in our book we always use O to represent both quantity (observable) and operator
(of observable). Suppose we have the following scalar product.

/ d1D O — (D,09), (5.2.1)

where O under the integral sign is operator. O™ is called the adjoint operator or conjugate
operator to O if
(07D, ¥) = (D,09), (5.2.2)
that is, N N
/ dt(01T®)"P = / dtd*OY. (5.2.3)
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The operator O is called Hermitian or self adjoint or self conjugate operator if
0" =0, (5.2.4)

that is,
[2.dT(00)'Y = [, d1®* 0¥, (0D,¥)=(P,0¥) . (5.2.5)

The operators representing position and momentum are Hermitian. The Hermitian operator
has the following properties.

Theorem XV: Eigenvalue of Hermitian operator. The eigenvalue of Hermitian operator
are real.

Proof. Let us consider the eigenvalues of the Hermitian operator O.

O, = 0, (5.2.6)
/ ATV OW,, — / ATV 0, ¥, = Om / ATV, (5.2.7)
That is
and

/ dT(0%,)"W,, — / dT(0n ¥, W, = 0. / TV,

= (0¥, YY) = 0, (P, ¥imr). (5.2.9)
For O to be Hermitian (operator)
/dT‘P,’;O‘Pm = /dr(O‘Pm)*‘Pm = om/dr‘P;‘Pm (5.2.10)
or
(om—o;)/drly;lym —0. (5.2.11)
Om = 0. (5.2.12)

Eq. (5.2.12) concludes the proof. QED.

Theorem XVI: Orthogonality of eigenfunction. The eigenfunctions of Hermitian
operator are orthogonal to each other if the corresponding eigenvalues are unequal.

Proof. Consider the eigenvalue equation
oY, =0,V (5.2.13)

oY, =o0,¥,. (5.2.14)
Taking scalar product of Eq. (5.2.14) with ¥,

(leaaan) :On(wmawn)~ (5215)
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From Eq. (5.2.13)
(O¥,,,¥,) =o0,,(¥n,¥,). (5.2.16)

From Eqgs. (5.2.15) and (5.2.14)
on(¥, Pn) = 0y, (P, P). (5.2.17)

(On—OL)(‘va‘Pn) =0. (5.2.18)

Since the eigenvalue of Hermitian operator is real,

Om = Oy (5.2.19)
Eq. (5.2.18) is thus
If the eigenvalues are unequal

On 7 Om, (5.2.21)
then

Eq. (5.2.22) concludes the proof. QED.

Theorem XVII-1: Real average value. The average value of Hermitian operator on any
state is real.

Proof. According to the definition in Eq. (5.2.5)
<0>= /dt‘P*O‘P _ (F,0%) = (OW,%) = (W,09) =< 0>".  (5.2.23)
Eq. (5.2.23) concludes the proof.

Theorem XVII-2: Hermitian operator. If for any state W the average value of an operator
is real, then the operator is Hermitian.

Proof. According to the assumption < O >=< O >*, that is,
(P,0¥) = (¥,0¥)" = (0¥, ¥). (5.2.24)

Take
V=Y, 4 ¥, (5225)

where W, ¥,, and ¢ are arbitrary. Substituting Eq. (5.2.25) into Eq. (5.2.24) yields
c[(¥1,0%,) — (0O¥,¥,)] = ' [(0¥,,¥)) — (¥2,0%))]. (5.2.26)

Taking ¢ = 1 and ¢ =i in Eq. (5.2.26) yields two equations (1) and (2). Then from (1)+(2)
and (1)-(2) we have

(P),0%,) = (0¥,¥,) (F,,0%)) = (0¥,,¥)) . (5.2.27)
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Eq. (5.2.27) satisfies the definition of Hermitian operator in Eq. (5.2.5). Thus Eq. (5.2.27)
concludes the proof. QED.

Corollary XV: Average value of O°. If O is Hermitian operator, then for any state

< 0% >=(¥,0™¥) > 0. (5.2.28)

5.3. Commutation Relations of Operators

The commutator or commutation relation, [0, P| = OP — PO, of two operators plays a very
important role in quantum mechanics. This commutation relation corresponds to Poison
bracket in classical mechanics. If the commutation relation between canonical coordinates
and canonical conjugate momenta are determined, then the dynamical equation of motion
is determined as well. The evolution of commutation relation of operators O and P can be
accomplished by allowing the operator to act on arbitrary function which is removed at the
end of calculation. Let us consider the commutation relation of position and momentum.

The position and momentum in coordinate representation are represented by operator r
and (h/i)v/, respectively. Consider x component of position operator and p, component of
momentum operator. The corresponding operators are x and (4/i)d/dx (Refer to theorem
II in chapter 3). Actually, in coordinate representation, x is a special operator, i. e., itis a
number.

[, pa] W (x) = { ?aa_x] W)= " (xaa_x - a%x) W(x)

h o¥ ho .
=xao za(x‘l‘(x)) = ih¥(x). (5.3.1)
From Eq. (5.3.1) one obtains
[x, pa] = ih. (5.3.2)

The commutator between x and p, plays a fundamental role in quantum mechanics. The
appearance of & in Eq. (5.3.2), which is much different from Poison bracket, signals that
we are now in the regime of quantum mechanics.

Here, we remind readers to remember that the section 3.2 in chapter 3 has proved the
operator property of p, and the commutation relation Eq. (5.3.2). Due to the importance
we repeat hear again.

In classical mechanics, Poisson bracket is given by

_9fdg  df dg
{f.gr= xdp.  dpsox’ (5.3.3)

where f(x,py) and g(x, p;) are functions of x coordinate and x component of momentum.

In classical mechanics the x and p, are called canonical variable or canonical conjugate
variables or proper variables.

Consider Hamiltonian )

Dx

H
2m

+V(x). (5.3.4)
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Poisson bracket of x and H is

P P
wH) = {x%mx)}:{x%}w,vo«)}
ra(pD) _ Ax ApY)  AxV _ ax v
ox dpy  Odpy Ox 0xdp, Op, Ox

1:)( .
= = =3 5.3.5
X ( )

Similarly,
{px,H} = px. (5.3.6)

{x,px} =1 (5.3.7)
From Eq. (5.3.2), the relation between Poisson bracket and commutator of x and p, is
ih{x,px} = [X,px]- (5.3.8)

or, in general, commutator of f and g are related to Poisson bracket of f and g as

in{f,e}=1f8l- (5.3.9)

Consider the commutator of x and p,.

ho h o¥ ho
From Eq. (5.3.10) one obtains
[x,pz] = 0. (5.3.11)

Thus x component of position vector and z component of momentum vector commutes. If

two observables commute, then the two observables are called compatible because between

these two observables there are no the limitation of Heisenberg uncertainty relation. If

two observables do not commute, then the two observables are called incompatible because

between these two observables there are the limitation of Heisenberg uncertainty relation.
Egs. (5.3.7) and (5.3.11) can be generalized to

[xiapi] = ihsi,jv (i,j=1,2,3) , (5.3.12)
where x| = x, xp =y, x3 =zand p; = py, pp = Py, P3 = Pz

Theorem XVIII: Commutation. If two linear and Hermitian operators, O and P, have the
same eigenfunctions, then they commute, that is, [0, P] = 0.

Proof. Let O and P are the two operators and W is their common eigenfunction, that is
OY =o¥ (5.3.13)

and
PY = pVY, (5.3.14)
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where o and p are eigenvalues. Operating on Eq. (5.3.13) with P from left and Eq. (5.3.14)
with O from left
POY = oPY = opV. (5.3.15)

OPY = pOVY = poV¥. (5.3.16)
From Egs. (5.3.15) and (5.3.16)

(OP—PO)Y¥ = (op—po)¥ =0

(OP—PO)¥ =0, (5.3.17)

that is,
[0,P]=0. (5.3.18)

Eq. (5.3.18) concludes the proof. QED.

Theorem XIX: Theorem of Common eigenfunction set. If operators O and P commute,
then a common set of eigenfunctions can be chosen for them.

Proof. Suppose W is an eigenfunction of the operator O, i. e.,
oY = o¥ (5.3.19)
Operating the Eq. (5.3.19) from the left by operator P
POY = OPY (5.3.20)
as O and P commute. The left of Eq. (5.3.19) becomes
POY = P(0¥) = o(PY¥). (5.3.21)
Therefore, from Egs. (5.3.20) and (5.3.21)
O(P¥) = o(PY). (5.3.22)

Eq. (5.3.22) indicates that if P # 0, then PW is also an eigenfunction of O corresponding
to the same eigenvalue o. QED.

Theorem XX: Inverse theorem. If ¥ is common eigenfunction of O and P, then [0, P] =0

Proof. Consider the case when o is non-degenerate, i. e., it correspond to one independent
eigenfunction . The P¥ can differ from W by a constant multiplier, i. e.,

PY = pV¥, (5.3.23)
where p is a constant. Eq. (5.3.20) becomes

(OP—PO)¥Y =0 , (5.3.24)
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e., [0,P] =0. QED.

Let us consider the case when eigenvalue o is degenerate. Suppose o is doubly degen-
erate, 1. €.,
0‘1“1 == Olpl, Olpz == 0‘}‘2 . (5325)

The linear composition of ¥ and ¥; is also an eigenfunction of O, i. e.,
Y =c¥ +c¥; (5326)

and
oY = O(Cllpl —I—Czlpz) =cO¥ + ¥, = O(Cllpl —|—c2lP2) (5.3.27)

Now ¢ and ¢; are to be determined. ¥; and W, do need not to be eigenfunction of P but ¥
is an eigenfunction of P, i. e.,

PY =p¥ = p(Cllpl —{—CQ\PQ). (5328)
P\P:P(C1\P1+C2\P2) = c1P¥Y| + o P¥;. (5329)

But
PlPI 75 plpl’ and Plpz 75 plp2 . (5330)

Taking the scalar product of Eq. (5.3.29) with ¥ and ¥, yields
(l}ll ,PlP) = (lpl,clPlP]) + (T],Czplpz) = (lpl ’P‘Pl) +C2(lP1 ,Plpg), (5331)

(le’PlP) = (le’ CIPlPI) + (TQ,CQPTQ) =C (TQ,P‘P]) “+c (lPZ,PlPZ). (5331)/
Taking the scalar product of Eq. (5.3.28) with ¥; yields

(¥1,PY¥) = p(¥1,¥) = p(¥1,c1¥1) + p(¥1,02¥2)

= pci(W1, W) + per (P, ¥2) = per. (5.3.32)
Taking the scalar product of Eq. (5.3.28) with W, yields

(¥2,P¥) = p(¥2,¥) = p(¥2,c1'¥1) + p(¥2,2¥2)

= pci (TQ,‘P])-FPCQ(‘PQ,‘PZ) = pcy. (5333)
Comparing Eq. (5.3.31) and Eq. (5.3.32) and considering the orthogonality of eigenfunc-
tion yield
Ccl (T],PT])+C2(T],PT2) = pcy. (5334)
Comparing Eq. (5.3.31) and Eq. (5.3.33) and considering the orthogonality of eigenfunc-
tion yield
Ccl (TQ,P‘P])—"_CQ(TQ,PTZ) = pCa. (5335)
Let
(¥1,P¥y) =P, (¥1,P¥2) =P, (5.3.36)

(V2,P¥1) =Py, (W2, P¥2) =Py . (5.3.36)’
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From Eqgs. (5.3.34), (5.3.35), and (5.3.36) one obtains
c1Pi1 + 2Py = pey, (5.3.37)

c1Pr 2Py = pes. (5.3.37)
The solution of Egs. (5.3.37) is given by

Pihn—p P2

=0. 5.3.38
Py Py, —p ( )

From Eq. (5.3.38) one obtains the equation to determine the p.
p? = p(Pi1 + P) + (P11 Py — PiaPsy ) = 0. (5.3.39)

The quadratic equation has two roots p(!) and p(®) which lead to two corresponding set of

constants cgl) cgl) and ng) ng). The two distinct functions are thus

p) =y, 4 M, (5.3.40)

w2 = Dy 4 Py, (5.3.40)’

¥ and y®) are common eigenfunctions of commuting operators O and P.
Operators O and P are defined to be compatible when [0, P] = 0, and to be incompatible
when [0, P] # 0. QED.

Let us introduce concepts of the complete set of commuting observables, and the com-
plete set of commuting conserved observables. We have already seen that for the particle in
one dimension, the plane waves are possible eigenstates of H, and the eigenvalues are dou-
bly degenerate. The two plane waves of H corresponding to the eigenvalue E = h2k*/(2m)
are exp(+ikx) and exp(-ikx). However, once we specify what p is (say, +hk), in addition
to E, then one can say that the system is in one and only one state, exp(+ikx) (to within a
multiplicative constant). Merely prescribing the energy of the particle does not uniquely de-
termine the state of the particle. Further specifying the momentum removes this ambiguity
and the state of the particle is uniquely determined.

Suppose that an operator O has degenerate eigenvalues. If o is one of these values,
specifying o does not uniquely determine which state the system is in. Let P be another
operator which is compatible with O. Consider all the eigenstates {{,, } which are common
to O and P. Of the degenerate eigenstates of O, only a subset of these are also eigenfunctions
of P. Under such conditions, if we specify the eigenvalue p and the eigenvalue o, then the
state that the system can be in is a smaller set than that determined by specification of o
alone. Suppose further that there is only one other operator R which is compatible with
both O and P. Then they all share a set of common eigenstates. Call these states ¢,,,. Then

Oq)opr = 0¢0pr7 (5.3.41)

Pq)opr = pq)opm (5.3.41)/
Rq)opr = rq)opr- (5.3.41)”
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These wavefunctions are still a smaller set than the set ¢, or ¢,,,. Indeed, let us consider that
0,pr 1s uniquely determined by the values o, p, and r. This means that having measured o,
p, and r: (1). Since ¢, is a common eigenstate of O, P, and R, simultaneous measurement
(or a succession of three immediately repeated “ideal” measurements) of O, P, and R will
definitely find the values o, p, and r. (2). The state ¢, cannot be further resolved by more
measurement. This state contains a maximum of information which is permitted by the
laws of quantum mechanics. (3). There are no other operators independent of O, P, and
R which are compatible with these. If there were, the state ¢,,, could be further resolved.
An exhaustive set (in the sense that there are no other independent operators compatible
with O, P, and R.) of communing operators such as O, P, and R above, whose common
eigenstates are uniquely determined by the eigenvalues o, p, and r and are a basis of Hilbert
space, is called a complete set of communing operators.

If Hamiltonian of system does not explicitly contain time, i. e., 0H /ot =0, then H is a
conservative quantity. In this case, if the complete set of communing operators contains H,
then every observable of the complete set of communing operators is a conservative quan-
tity. This set is called complete set of communing conserved operators. If the eigenvalues
o, p, r, and E, which may be so specified in the common eigenstate ¢,,,£ of the complete
set of communing conserved operators, are called good quantum numbers. Using 0,,-£
to expand stationary or non-stationary state the square of absolute value of the expanding
coefficient does not change with time. The good quantum numbers are analogous to the
generalized coordinates whose values determine the state of a system classically. Such
classical coordinates are also labeled by good variables.

5.4. Normalization and Periodic Boundary Condition

We have addressed this problem in chapter 3. Now we address here in detail. For the
eigenfunctions of continuum spectrum the normalization cannot be made in terms of the
Kroneker delta function. For example, the momentum eigenfunction is a plane wave

¥, (x) = Ce Px/h, (5.4.1)
It is easy to see that

/ x|, (x)2 = \C\Z/ dx — oo, (5.4.2)

i. e., ¥,(x) cannot be normalized, is not square-integrable, and is, thus, outside Hilbert
space. In this case, quantum mechanics loosens the square-integrable condition, and just
requires the scalar product between any functions € M (R) and the eigenfunction of con-
tinuum spectrum is finite. According to this loosened condition one can also make Fourier
expansion by using the eigenfunctions of continuum spectrum, and discuss the spontaneous
equiprobability symmetry breaking [1, 53].

Under the above loosened condition, we solve the so-called “normalization” difficulty
of continuous spectrum eigenfunction such as momentum eigenfunction (plane wave), by
using two equivalent proofs, which are given in theorems XXI-1 and XXI-2.

First proof is to introduce Dirac d function. There are two methods to introduce Dirac
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o function. The definition of & function is

[0, x#x
S(X_XO) - { oo’ X :xo (5.4.3)
and  [77Edxd(x—x.) = [T, dxd(x—x,) =1, (e—o") . (5.4.4)

From this definition of the & function, we know that it is not an ordinary function. The
dimension of the § function is 1/x in this one dimensional case. Therefore, the § function
is a distribution function, concerning the distribution theory in mathematics.

Or equivalently, we define the d function as: if f(x) is continuous in the vicinity of x.,
then

Flx) = /_ def(x)S(x—xo). (5.4.5)

We use the d function to express the “normalization” of continuum spectrum eigenfunction
as follows.

Theorem XXI-1: Normalization of eigenfunction of continuous spectrum. The
continuum spectrum eigenfunction is orthogonal and is normalized to Dirac & function.

Proof. From Fourier integration formula, a continuous function f(x) satisfies

1 [ o
flxe) =5- /_ _dx /_ wdke’k(x‘x"). (5.4.6)

Comparing of Eq. (5.4.6) with Eq. (5.4.5) yields
d(x—x,) = / dke* (%) (5.4.7)

Therefore, for example, if we take momentum eigenfunction, i. e., plane wave, which is an
eigenfunction of continuous spectrum,

1
¥, (x) = mew xR, (5.4.8)

then
(p// p/ ‘(

(¥y, W) = o h/ dxe 7 =8(p'—p"), (5.4.9)

i. e., the continuum spectrum eigenfunction is orthogonal and normalized to Dirac o func-
tion. (Note that the discrete spectrum eigenfunction is orthogonal and is normalized to
Kroneker 6 function.) QED.

The “normalization” of eigenfunctions of position operator can be treated similarly.
According to the property of d function

(x—x)3(x—x') =0, (5.4.10)

xd(x—x') =x8(x—x). (5.4.11)
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Eq. (5.4.11) tells us that 8(x — x’) is the eigenfunction of position x, its eigenvalue is x’, and
can be written as
Yo (x) =8(x—x") =8(x' —x). (5.4.12)

Using the property of 8 function, the normalization and orthogonality of position operator
eigenfunction can be expressed as

(P, W) = / AxS(¥ — )8 —x) = 8 —x"). (5.4.13)
Any function of position x can be expanded as
W(x) = / AW ()8 —x). (5.4.14)
The coefficient of expansion is
P(x) = (8(x —x),¥(x)). (5.4.15)

|¥(x')|? represents the position probability density distribution of a single particle.

Second method to introduce the normalization of continuous spectrum is to use box
normalization. This method can be separated into two steps. First step, suppose that the
particle is confined in a finite domain [—L/2,L/2]. Second step is to set L — oo.

At first, as a preparation to this second method, we demonstrate a theorem.

Theorem XXII: Periodic boundary condition. To ensure that the momentum operator
px = —ihd/ox in domain [—L/2 < x < L/2] is Hermitian operator, ¥(x) has to satisfy
periodicity boundary condition W(—L/2) = W(L/2). (Refer to Ref. [1] for proof.)

Proof. According to the definition of Hermitian operator given by Eq. (5.2.1), for any two
functions ¢ and ¥

/7 dx(])*}—,ii‘l’—l—/z dx<7—?a¢ >‘P:0, (5.4.16)
L i Ox -L i Ox
i.e.,
T I SN L

Therefore,

0"(L/2)W(L/2) ~ 0" (~L/2)¥(~L/2) =0, (5.4.18)
i. e., for any two functions

0°(L/2) = P=L/2) = constant. (5.4.19)

0*(—L/2)  W(L/2)
From Eq. (5.4.19) one deduces that for any function (or for all functions) ¥ has to be

Y(=L/2)

WL/2) = ¢ (a is real number). (5.4.20)
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The momentum eigenfunction

¥, (x) oc P/, (5.4.21)
If p’ =0, then
o—i0L/2 .

Eq. (5.4.22) requires o. = 0. Therefore,
Y(—L/2)=W(L/2) (periodicity boundary condition) . (5.4.23)
Eq. (5.4.23) concludes the proof. QED

Theorem XXI-2: Normalization of eigenfunction of continuous spectrum. The
continuum spectrum eigenfunction is orthogonal and is normalized to Dirac J function.

Proof. According to the periodicity boundary condition

Wy (—L/2) =%y (L/2), (5.4.24)
1. e.,
¢ LI — IP'LI2R o QLR — (5.4.25)
Eq. (5.4.25) requires that
sin(p'L/h) =0, cos(p'L/h)=1 . (5.4.26)

Therefore, p'L/h =2nm forn=0,+1,+£2,---,1i. e,

/__ 2nmh _ nh
P=pm=—"F-=7

(5.4.27)

From Eq. (5.4.27) we see that the momentum eigenvalues are not continuous. The corre-
sponding normalized eigenfunction is

1. 1 .
¥, (x) = —ePn¥/h — _—_ pi2nmy/L (5.4.28)

VL VL

Reader can verify that ¥, (x) satisfies orthogonal and normalized condition, i. e.,

[ s, (), (9 = (5429
2

Using the set ¥, (x), 6 function can be expressed as

1 & /
dx—x') = Zn;me’Z"”(x_x)/L. (5.4.30)
When L — o,
2nh
App = ppy1 —pn = TC_ — 0, (5.4.31)
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i. e., the momentum eigenvalue approaches continuous variation. Set

2nh & e
Z Apy = i / dp. (5.4.32)
Or

y L +md 5.4.33
n_zmﬁﬁ/_w ». (5.4.33)

Therefore, Eq.(5.4.30) approaches
ip(x—x')/h ik(x— x) 4.34
d(x—x) 2nh/ dpe'’” 2n/ dke™t (5.4.34)

Eq. (56.4.34) is same as the Eq. (5.4.10). When we treat particular problems, for avoidance
of the normalization difficulty of plane wave, one can use the orthonormal wavefunction to
make calculations, and at last set L — oo,

In three dimensional case, the normalized wavefunction is (V = L?)

1
lel(r) = T h (5435)
where
pe=3ln, p,=2 pl =y (5.4.36)
and n,l,m=0,%1,£2,---. ¥ (r) is of orthogonality and normalization
/(' ) dxddelP;;/ (r)‘Ppu(r) = 817;[7;,8[7(~17(~,617,117,1,' (5437)
V J J

The J function can be constructed as follows.

d(r—7) = 8(x—x)d(y—y)d(z—7)

1 = 2l ) H(y—y ) tm(z—)]
)y :

5.4.38
y L (543

n,l,m=—oco
When L — oo, pl, p},, and p/, will become continuous, i. e., (21h)* /L* — dpldp/dp!,
oo L3 s,

y - a7 (5.4.39)

n,l,m=—oo

Eq. (5.4.39) indicates that the volume element in phase space, (21th)? = A3, has one quan-
tum state. Eq. (5.4.38) can be expressed as

S(r—r) = zm / &Pplem (5.4.40)

QED.
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5.5. Motion Equation of Operator

Theorem XXIII: Motion equation of operator. An operator O, corresponding to an ob-

servable, satisfies 3
do o 1
— =—+—]0,H].
dt ot Jrih[O’ )

Proof. The definition of average value is
<0 >= /dr‘P*O‘P. (5.5.1)

If we assume that space r and time ¢ are independent, then

d<0> L 00 v . 0¥

Using the Schrodinger equation

¥ 1 v -1

R —=—H D.

a v Tu in VY (5:5:3)
to find the values of the derivatives in Eq. (5.5.2), and bearing in mind that H is Hermitian,
we can transform Eq. (5.5.2) as follows:

d<0> L [00 1
T—/dr‘l’ {§+£[0,H]}lp. (5.5.4)

Note that the Schrodinger equation in Eq. (5.5.3) also assumes that r and time ¢ are inde-
pendent. If we introduce the operator dO/dt by the relation

d<0> do 4O
4<9= _ 29 _ [ g Py 555
dr (! / T (5:5-5)

then we get, using Eq. (5.5.4), the operator equation of motion

d0 90 1
= =5 i l0.H]. (5.5.6)

In essence, Eq. (5.5.6) comes from Schrodinger equation Eq. (5.5.3). QED.

Note that motion equation of operator comes from both Schrédinger equation and the
definition of average value of operator.

Corollary XVI: Integral of motion: If operator O does not explicitly depend on time
and commutes with Hamilton operator, then the average value of the physical observable O
does not change with time for any state. Such a observable is called a (quantummechanical)
integral of motion. The proof for this corollary is easy.
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5.6. Symmetries and Conservations of Average Values

5.6.1. Coordinate Transformations

We showed in section 5.5 that any physical quantity, the operator of which does not depend
explicitly on time and commutes with Hamiltonian of system, is called integral of motion,
i. e., its average value does not change in time. We remind ourselves that the integral of
motion in classical mechanics is any function of the coordinates and momenta which remain
constant whatever are the initial conditions. Once we know the integrals of motion, we can
formulate the corresponding conservation laws which is very important for understanding
physical properties of the phenomena we study. (Refer to Ref. [87] for section 5.6.)

Here, I would like to emphasize the following difference between quantum and classical
mechanics and between quantum mechanics upon theorems and postulates: the quantum-
mechanical conservation of a physical quantity just means the average value of correspond-
ing operator on wavefunction. The contributions to this average value come from a large
number of the still more microscopic processes, in which even very strong nonconservation
can occur still. To point out this difference is a feature of section 5.6 of this textbook. In
the following, I will emphasize this difference repeatedly.

We shell show that the presence of integral of motion and the corresponding conserva-
tion laws is closely connected with the symmetry properties of system of quantum mechan-
ics, i. e., with the invariance of Hamiltonian operator under certain coordinate transforma-
tions.

Before considering different concrete examples we investigate how the wavefunction
transforms under coordinate transformation. A coordinate transformation may be one of
the two kinds:

(a) A transformation of coordinates, which determine position of points in the system;
In this case, the basis vectors which determine the coordinate axes remain fixed;

(b) A transformation of coordinates of the basis vectors, which determine the coordinate
axes. In the present section we consider coordinate transformation of the first kind.

Let S be an operation through which the coordinates of the vector r determining the
position the a point are transformed, i. e.,

r—r =8r (5.6.1.1)
The inverse transformation of Eq. (5.6.1.1) is
r=s"1. (5.6.1.2)

Let us consider how the wavefunction transforms under the coordinate transformation
Eq. (5.6.1.1). The result of the coordinate transformation is that we find at the point r’ the
value of the function we found earlier atr, 1. €.,

() = W(r). (5.6.1.3)

On the other hand, by definition the action of an operator upon the wavefunction ¥ (') must
give us a new wavefunction of the same argument

W' (1) = Re¥(r). (5.6.1.4)



210 Fu-sui Liu

Combining Egs. (5.6.1.3) and (5.6.1.4) we find the rule defining the action of the operator
Rs upon a wavefunction: Rg¥P(r') = ¥(r). Substituting Eq. (5.6.1.2) into the right hand
side of this equation, we have

Rs¥(r) =¥(S~'r), (5.6.1.5)

or, dropping the primes, we find finally the very important equation
Rs¥(r) =W(S'r), (5.6.1.6)

which determines the rule for transforming wavefunction when the coordinates are trans-
formed according to Eq. (5.6.1.1).

Let us now study the integrals of motion connected with the properties of space and
time. Experimentally, one establishes that time is a uniform (i. e., homogeneity) quantity
and that free space is uniform and isotropic. Which integrals of motion and conservation
laws are connected with these properties of space and time?

5.6.2. Uniformity of Time

Theorem XXIV: Average energy conservation. The uniformity of time leads to conser-
vation of average value of Hamiltonian, i. e., average energy conservation.

Proof. As the time is a uniformity quantity, the Hamiltonian of any closed system, i. e.,
a system which is not subjected to the action of an external agent, or of a system that is
acted upon by a constant external forces, will not depend explicitly on the time. If the
Hamiltonian does not depend explicitly on the time (i. e., dH/dt = 0) we have from Eq.
(5.5.6)

dH 1

dt  ih
Hence, we find from Eq. (5.5.5) thatd < E > /dt = 0. If the average energy of system
initially had a well-defined value, then this value is retained at a later time. Thus QED.

[H,H] =0. (5.6.2.1)

Let us make the following four discussions on the energy conservation and so on:

(1) The invariance of the operator H under certain transformation, defined by the oper-
ator F', means that the action of the operator F' on the wavefunction HY is equivalent to the
action of H on the wavefunction F'¥, i. e.

FHY = HF'W. (5.6.2.2)

In other wards, the invariance of H with respect to the transformation realized by the oper-
ator F reduces to the condition that ' commutes with the Hamiltonian:

FH = HF. (5.6.2.3)

Let us introduce a time-shift operator 7; which shifts the time by an amount T. By
definition 7; = t 41, and we have from Eq. (5.6.1.6)

TY¥Y(r) =¥ —n1). (5.6.2.4)
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The quantity T is a parameter of the operator 7;. The fact that the time is uniform for the
system considered by us can mathematically be expressed by the commutation relation (i.
€., commutator)

[T:,H] = 0. (5.6.2.5)

Instead of the time-shift operator it is convenient to use a generating function for the trans-
formation or the infinitesimal time-shift operator /(7). which is defined as a limit as T — 0
of the derivative of the time-shift operator with respect to the parameter 7.

We have thus

I(t) = aa—q:TT » (5.6.2.6)
We can easily find that the explicit form of the operator /(z), if we bear in mind that
I()¥(r) = iTT‘P(t) = ilP(t—t) = —E‘P. (5.6.2.7)
ot o OT 0 ot
We have thus
I(t) = —%. (5.6.2.8)

The energy conservation law is connected with the fact that the operator H commutes with
the infinitesimal time-shift operator /(z). The operator

d
h_a
ot
which has the dimension of energy is in this connection sometimes called the energy oper-

ator.

—ihl(1) =i (5.6.2.9)

(2) Many authors such as Ref. [87] at this stage will point out that: “One should,
however, bear in mind the conditions under which one can use this terminology, i. e., the
above energy operator. The energy in quantummechanical system in a stationary state is
determined by the eigenvalues of Hamiltonian operator. Hamiltonian, i. e., a function of
the operators of coordinates and momenta, is thus the operator of energy of system. In
contrast to the spatial coordinates, the time coordinate is not an operator, and is only a
parameter.”

To this viewpoint, we have different viewpoint. We have proved in theorem II of
chapter 3 that in time ¢ representation the energy has to be an operator; on the other hand,
in energy representation the time has to be an operator as well.

(3) The exact meaning of the energy in the quantummechanical energy conservation is
average value of Hamiltonian. An average value of Hamiltonian comes from contributions
of infinitely still more microscopic processes. Therefore, the energies in some still more
microscopic processes might violate this classical energy conservation law.

(4) The necessary condition of theorem XXIV is uniformity of time. In chapter 10
we will introduce quantum transition theory under external perturbation. The existence of
external perturbation will destroy the time uniformity, and thus the average energy noncon-
servation can occur in transition processes in principle.



212 Fu-sui Liu

5.6.3. Uniformity of Position Space

The uniformity of position space means that the properties of system do not change
under any parallel displacement of the system as a whole. As in quantum mechanics
the properties of a system are determined its Hamiltonian, uniformity of position space
must imply that Hamiltonian is unchanged (invariant) when the system suffers a parallel
displacement over any distance. Any finite displacement can be constructed out of in-
finitesimal displacements; it is thus sufficient to consider the invariance of the Hamiltonian
under an infinitesimal displacement da.

Theorem XXV: Average momentum conservation. The uniformity of position space
leads to conservation of average value of momentum operator, i. e., average momentum
conservation.

Proof. If the wavefunction depends only on the coordinate of a single particle, then accord-
ing to Eq. (5.6.1.6) the wavefunction W will change to the wavefunction

Y(r—38a) =¥(r)—(8a-V)¥(r)=[1—(8a-V)]¥(r) (5.6.3.1)
under the infinitesimal displacement ' = r 4 8a. It follows from Eq. (5.6.3.1) that the factor
Ts,=1[1—(8a-V)] (5.6.3.2)

can be called the infinitesimal displacement operator as its action upon a wavefunction is
equivalent to a displacement of the radius vector r over a distance da.

If we now use Eq. (5.6.3.2), then we can say that the condition that the operator H be
invariant under an infinitesimally small displacement reduces to the equation

VH = HV, (5.6.3.3)

since both the unit vector and the constant vector da commute with any operator. As the
operator p differs from V only by a constant factor —ih, this last equation can be written in
the form

pH =Hp. (5.6.3.4)

by using Eq. (5.5.6), Eq. (5.6.3.4) reduces to the statement that the momentum of a free
particle is an integral of motion is thus a consequence of the uniformity of position space.
Here we accomplish the proof. QED.

Expressing V in terms of the momentum operator, we can rewrite the infinitesimal dis-
placement operator as follows

Tse=1— %(pﬁa). (5.6.3.5)

The operator for a displacement over a finite distance a can be obtained by successive
application of Eq. (5.6.3.5). We find thus

T, = e~ (ra)]. (5.6.3.6)
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The three components a; (I = 1,2,3) of the displacement vector a are parameters of the
displacement operator Eq. (5.6.3.6). Some books define

T, = el (Pa)] (5.6.3.7)

as translation operator. We call the derivative of the displacement operator Eq. (5.6.3.6)
with respect to the parameter g; in the limit as all @; — 0 the generating operator for the
transformation of a spatial displacement, or the infinitesimal spatial displacement operator
I(x;). The operator of an infinitesimal displacement along the x axis,

I(x) = —%pl (5.6.3.8)
is thus directly connected with the corresponding momentum component operator.

If the wavefunction W refers to a system of particles, the operator of an infinitesimal
displacement of the system as a whole can also be expressed by Eq. (5.6.3.5) if we under-
stand by the momentum operator p the sum-operator of the momenta of all particles of the
system, i. e., if

p=)Y.pi (5.6.3.9)
1

In that case, the invariance with respect to spatial displacements reduces to the conservation
of the total momentum of the system.
Our two comments for theorem XXV.

(1) The exact meaning of the momentum in the above quantummechanical momentum
conservation is average value of momentum operator. An average value of momentum oper-
ator comes from contributions of infinitely still more microscopic processes. Therefore, the
momentum in some still more microscopic processes might violate the classical momentum
conservation law.

(2) The necessary condition of theorem XXV is uniformity of position space. If an ex-
ternal perturbation destroys the position space uniformity, and then the average momentum
nonconservation can occur in principle.

5.6.4. Isotropy of Position Space

Theorem XXVI: Average angular momentum conservation. The isotropy of position
space leads to conservation of average value of angular momentum operator, i. e., average
angular momentum conservation.

Proof. The isotropy of position space, i. e., the equivalence of all directions, consists
in the invariance of the properties of closed systems under arbitrary rotations. Such an
invariance also occurs for systems in centrally symmetrical fields if the rotation takes place
with respect to the center of the field.

We shell determine the operator of an infinitesimal rotation. We shell consider a in-

finitesimal rotation. It is characterized by a vector & @, the length of which is equal to the
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angle 0@ over which we rotate, and the direction of which is along the axis of rotation.
Under such a rotation the change in the radius vector r is determined by the expression

—

r—r+[0 @ xr]. (5.6.4.1)

Let us evaluate the corresponding change in the wavefunction retaining only the first order
terms: . .
Yir—0@ xr])={1—-[09 -(rxV)]}¥(r). (5.6.4.2)

It follows from Eq. (5.6.4.2) that

Ry =1-[8¢-(rxV)] (5.6.4.3)

is the operator of an infinitesimal rotation over an angle o $ It is easy to be verified that
Eq. (5.6.4.3) can be expressed as

—ih[rx V] =L, (5.6.4.4)

where L is called angular momentum operator (or operator of moment of momentum). Eq.
(5.6.4.4) gives

(a9
L.=L,=—ih (ya—z—25> = YP: — 2Dy, (5.6.4.5)
Loy — —in (22 2\ =, (5.6.4.5)
y =Ly = —i Zax xaZ = ZPx — XDz,
L=y = —in (v —y2-) = xp, — (5.6.4.5)"
7 — L3 — 1 xay yax —xPy YPx- e

The operator of an infinitesimal rotation over an angle 3@ can thus be expressed in terms of
the angular momentum operator:

1 .-
Ry = {1 ~ 80 -L] (5.6.4.6)

That the Hamiltonian operator is invariant under arbitrary infinitesimal rotations is ex-
pressed by the fact that the Hamiltonian commutes with the operator Ra?p’ or with the com-
ponent along any rotational axis of the angular momentum operator:

(n-L)H=H(n-L), (5.6.4.7)

where n is the unit vector in the direction of the rotational axis. It follows from Eq.
(5.6.4.7) that in isotropic position space or in an arbitrary centrally symmetrical field the
component of the angular momentum along an arbitrary direction will be an integral of
motion. If the external field is axially symmetry, the Hamiltonian is invariant only under
a rotation along the axis of axial symmetry and only the angular momentum component
along that direction is conserved. Here we conclude the proof.
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We can construct from the operators of an infinitesimal rotation around an axis, defined
by the unit vector n, the operator of the rotation around the same axis over a finite angle o:

Rl = e~iLm)/h (5.6.4.8)
Here, we define R}, as rotational operator. However, some books define
Rl = ¢/™Ln/h (5.6.4.9)

as rotational operator.

It follows from Eq. (5.6.4.8) that the generator of the transformation of a rotation or the
operator of an infinitesimal rotation or the operator of an infinitesimal rotation around an
axis n is determined by the angular momentum component along that axis:

i
I(n) = —ﬁ(L-n). (5.6.4.10)
The connection between the angular momentum component operator and the infinitesimal
rotation operator can be used to determine the angular momentum components and the
commutation relations for them. Let o be the angle of rotation around the axis 1. In a
Cartesian system of coordinates the operator of rotation over an angle o can then be written

in the form of a matrix
1 0 0

Ro=1| 0 cosa. —sino | . (5.6.4.11)
0 sina  cosd

Hence, the operator of the infinitesimal rotation around the axis 1 can be expressed by the
matrix

00 O
oR
h:-gﬁ =00 -1 |. (5.6.4.12)
@la=o \0 1 0
In the same way, we find for rotations around the two other axes
0 0 1 0 -1 0
L= 0 001, =1 0 O . (5.6.4.13)
-1 0 0 0 0 O

Using the expressions obtained here and the rules for matrix multiplication, we can evaluate
the commutation relations for the operators of infinitesimal rotations

L —bLI =1 (5.6.4.14)

We obtain two other relations from this one by a cyclic commutation of the indices. Since
I} = —iL; /h, we get from these commutation relations for the I; the commutation relations
for the angular components:

LiLy — L) =ihL;. (5.6.4.15)

We can also use the relation Eq. (5.6.4.10) to define the operator for the intrinsic angular
momentum, i. e., the spin operator, although this operator does not have a classical coun-
terpart, i. ., it cannot be reduced to a function of the coordinates and momenta (se chapter
8).
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Our two comments for theorem XXVI.

(1) The exact meaning of the angular momentum in the above quantummechanical an-
gular momentum conservation is average value of angular momentum operator. An average
value of angular momentum operator comes from contributions of infinitely still more mi-
croscopic processes. Therefore, the angular momentum in some still more microscopic
processes might violate the classical angular momentum conservation law.

(2) The necessary condition of theorem XXVI is isotropy of position space. If an
external perturbation destroys the position space isotropy, and then the average angular
momentum nonconservation can occur in principle.

5.6.5. Inversion Invariance of Position Space

The above consideration of translations and rotations refers to a class of continuous trans-
lation since we can realize them through multiple consecutive applications of infinitesimal
transformations. The invariance of the Hamiltonian under these transformations leads to the
conservation laws for the average value of linear and angular momentum which correspond
to the conservation laws of classical mechanics. Symmetry conditions may lead not only to
continuous transformations, but also to discrete transformations which cannot be reduced
to infinitesimal transformations. Invariance under such transformations does not lead to
a conservation laws in classical mechanics. In quantum mechanics, however, there is no
essential difference between continuous and discrete transformations. Therefore, discrete
transformations will in quantum mechanics also lead to conservation laws.

Let us consider one such discrete transformation under which the Hamiltonian remain
invariant: the so-called inversion. Inversion, or to be precise, spatial inversion, or spatial
reflection consist in the simultaneous change in sign of all three spatial coordinates.

X— =X, y——y, Z— —2Z.. (5.6.5.1)

Under an inversion a right-handed system of coordinates goes over into a left-handed sys-
tem.

The Hamiltonian of a closed system in which nuclear and electromagnetic forces oper-
ate is invariant under an inversion. This invariance, the symmetry between left-handed and
right-handed systems of coordinates, remains true for systems in an external, central field,
provided the center of the inversion is chosen to be the force center.

Let us denote the inversion operator by P. Many books call P also parity operator.
Mathematically, we can express symmetry between left-handedness and right-handedness
by the fact that P and the Hamiltonian commute, i. e.,

PH = HP. (5.6.5.2)

Theorem XXVII: Parity conservation. The invariance of inversion leads to parity
conservation.
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Proof. By definition the action of the inversion operator upon the wavefunction ¥ reduces
to the transformation Eq. (5.6.5.1), i. e.,

Y(—r) =P¥(r). (5.6.5.3)

If we want to determine the eigenvalues of the inversion operator, then we must solve the
equation
P¥(r) = P¥(r). (5.6.5.4)

Applying to both sides of Eq. (5.6.5.4) the inversion operator and bearing in mind that
applying the inversion operator twice reduces to the identical transformation, we get

¥(r) = P?¥(r). (5.6.5.5)
From the condition P> = 1 we get P = 4+1. We can thus write Eq. (5.6.5.4) in the form
PY(r)=£¥(r). (5.6.5.6)

We see thus from Eq. (5.6.5.6) that we can divide the wavefunctions of states with a well
defined eigenvalue of the operator P into two classes:

(1) Wavefunctions which are not changed when acted upon by the inversion operator,

and the corresponding states are called even parity states;
(2) Wavefunctions which change sign when acted upon by the inversion operator,

PY_=-¥_, (5.6.5.8)

and the corresponding states are called odd parity states.

As the inversion operator commutes with the Hamiltonian, the parity of a state, i. e., the
fact that a state is even or odd, is an integral of motion. The invariance of the Hamiltonian
under an inversion leads thus to the conservation of parity.

Our two comments for theorem XXVII.

(1) The exact meaning of the parity in the above quantummechanical parity conserva-
tion is not average value of the parity operator, or, equivalently, the average value of the
parity operator on a state is equal to the parity of this state, because we can prove that that
the matrix element between different parity states is equal to zero as follows. (What does
the matrix mean will be given in chapter 10. The matrix element represents the probability
amplitude of transition from right state into the left state.)

<Y_|P|¥y >=<Y_|(+)|¥s >=<Y¥Y_|(+)PP|¥y >=<V_|P(+)P|¥+ >=— < ¥P_|P|¥, >,

therefore, < W_|P|¥, >=0.
(2) The necessary condition of theorem XXVII is invariance of inversion of position
space. If an external perturbation destroys this invariance, then the parity nonconservation



218 Fu-sui Liu

can occur in principle.

The parity conservation is satisfied to a very high degree of accuracy in all phenomena
determined by nuclear and electromagnetic interactions. Up to 1956, it was assumed that
the parity conservation was a universal law of nature. However, it was established in 1956
by Yang and Lee and by Wu and co-workers that in the B-decay of atomic nuclei and in the
decay of muon, pion, and hyperon an asymmetry was observed which made it possible to
distinguish between left-handedness and right-handedness. These phenomena showed that
for weak interactions which determine these decay processes, the symmetry between left
and right is violated, that is, the invariance under a spatial inversion is violated. The parity
conservation is thus violated. We shell in the present book consider only such processes for
which there is a right-left symmetry.

5.7. Pictures of Quantum Mechanics

In addition to the representations in quantum mechanics stemming from transformation of
bases in Hilbert space, one also speaks of different pictures of quantum mechanics. The
different pictures give the different time evolutions of both state vectors and basic oper-
ators (like r, p, angular momentum, and spin). There are altogether three pictures: the
Schrodinger, the Heisenberg, and interaction pictures. These alternative formulations stem
from the fact that wavefunctions and operators cannot be observed directly, and the observ-
able quantities are the average values coming from the combination of wavefunction and
operator. We will find that some picture is convenient for some quantummechanical prob-
lems, and is not convenient for other quantummechanical problems. To introduce the three
pictures we need the concept of unitary transformation.

5.7.1. Unitary Transformation

Let us give the definitions of unitary transformation and unitary (transformation) operator
U. Suppose that |¥; > represents a set of orthogonal kets (i. e., bases).

Consider a transformation
0; >= ZUij\‘Pj > (5.7.1.2)
J
If the kets |¢; > also form a set of orthogonal kets, i. e.,
<0;[0; >= 9§y, (5.7.1.3)

then the transformation is said to be unitary or unitary transformation and Uj;; is said
to be unitary matrix of unitary transformation operator. Thus, a unitary transformation
correspond the a rotation of basis in # space.

Theorem XXVIII: Unitary transformation. If U is a unitary transformation operator,
then Ut =U"".
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Proof. Eq. (5.7.1.3) means that the unitary transformation connects the orthogonarmal
basis. (Orthogonarmal basis represent orthogonalized and normalized basis.) Therefore,
the coordinates of an arbitrary state in the two basis are related by unitary transformation.
From Eq. (5.7.1.2)

<ol =Y U < ¥l (5.7.1.4)
J
From Egs. (5.7.1.3) and (5.7.1.4)
<0i0; >=9;; = ;;Uifntn < O] P >= Zn:Ui’;an. (5.7.1.5)
If i = j, then
Utu =1, (5.7.1.6)

where U is Hermitian adjoint of U. Applying U~! (U~ is the inverse operator of U,
UU~! = 1) from the right on both sides of the Eq. (5.7.1.6) we have

vtou'=u!, (5.7.1.7)

i. e.,
utr=u-". (5.7.1.8)

Eq. (5.7.1.8) concludes the proof. QED.

Theorem XXIX: Three pictures of quantum mechanics. If H does not depend on time
explicitly, then define .
Ut t,) = e I=)/R, (5.7.1.9)

If H depends on time explicitly, then
Ul(t,t.) = Te I d/HW)/h, (5.7.1.9)

where T is time-ordering operator.
If H=H,+V(x,t)and H, does not depend on time ¢ explicitly, then we define

Up(t,1)) = e Hel=n)/R. (5.7.1.9)"

If H= H,(t)+V(x,t) and H,(¢) depends on time 7 explicitly, then we define

Uo(t,11) = Te /' Hl)/n (5.7.1.9)"
Schrédinger picture:
|Ws(t) >=U(t,t,)|Ps(ts) > . (5.7.1.10)
Ogs is independent of time.
v
ih%:m‘{’g(ﬂ > (5.7.1.11)
@:0 (5.7.1.12)

dt
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Haisenberg picture:

Yy >= |Ys(ts) > . (5.7.1.13)

Oy (t) = U™ (t,t,)0sU (1,1,). (5.7.1.14)
. a|lPH > .

ih=——=0. (5.7.1.15)

ithTH;(t) — [Ou(0), H]. (5.7.1.16)

Interaction picture:
Assume that H = H, + V (t), where H, represents Kinetic energy operator, and is inde-
pendent of time.

(W) (1) >= Uy (t,11)|Ps(t) >= Us(t,1)|¥s(to) > . (5.7.1.17)

O(t) = Uy (¢,11)OsUy(t,11). (5.7.1.18)

U(t,to) = Uy (t,61)U (t,15)Up(to,11) = T exp (—% /t:dt’\/,(t)) . (5.7.1.19)
iha‘lllla# = Vi|¥ () > . (5.7.1.20)

Vi(t) = Uy (t,0)V (1) Uo(t,11). (5.7.1.21)

ihdgi ¢ _ [04(1),H.). (5.7.1.22)

Proof. We would like to give a very detail proof for this theorem in the following three
subsections. Refer to Ref. [10].

5.7.2. Schrodinger Picture

The so-called Schrodinger picture refers to the formulation which is based on the
Schrodinger equation. In the description of the dynamical evolution of a physical sys-
tem we used time-dependent wavefunction ¥(r,¢). The physical quantities, at least the
not explicitly time-dependent ones, are described by time-independent operator. Let us in-
terpret these in detail as follows. For convenience we assume that the Hamiltonian H is
time-independent. The time evolution of the state vector |¥(¢) > is then determined by the
Schrodinger equation

0
lhgppg(l‘) >:H|‘PS(Z‘) > (5721)
Since H is time-independent
0Ws(t)> H iH
= —dt = ——dt 5.7.2.2
|lP5(t) > ih h ( )
(Ws(t) >= e HER)P\Yg (1) >= Ut 1,)|Ws(ts) > . (5.7.2.3)

If the Hamiltonian contains time explicitly, then

Ult,t,) = Te™ i Jud'H{) (5.7.2.3)
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where T is the so-called time-ordering operator. Here, U(t,1,) is called time evolution
operator or time translation operator. It is easy to verify that U(z,t,) is a unitary operator.
In Schrodinger picture it is requires that the basic operators (like x or p,) are time-
independent, i. e.,
Os
i
and all the time evaluation from, the dynamics is from the states. Eqs. (5.7.2.3-4) are called
Schrodinger picture.

0, (5.7.2.4)

5.7.3. Heisenberg Picture

In Schrodinger picture the state vectors evolve with time, while the operators are indepen-
dent of time. In the Heisenberg picture the state vectors ¥y > are fixed in time, i. e.,

¥y >= |Ws(to >= U (1,1,)|P(t) > . (5.7.3.1)

One can derive the time evolution of the basic operators Oy from Schréinger picture and
the physical requirement of the invariance of average values of operators in any pictures, i.
e.,
< lPs(l‘)|05|lP5(l‘) >=< lPH|0H(Z‘)|lPH > (5732)
From Eqgs. (5.7.4.3.1-2) we have the expression of O (#) as follows:
<Ws(1)|0s|¥s(1) > = < Ws(to)|UT(1,20)OsU (1,10) [s(10) >
= < lPH|U+(Z‘7l‘o)OSU(Z‘,to)|lPH >
= <\PH|0H(Z)|lPH> . (5733)
Oy(t) = U (t,t,)0sU(t,1.). (5.7.3.4)
The time evolution of Oy (t) is
OH(t) = U+(t7to)OSU(t>to) = U+(t>to)OSU+(to>t)
Ut (t,t Y UT(t',1.)0OsU™ (t., YU (¢,1)
= U1,/ Ou(tU(t,1). (5.7.3.5)

Taking the time derivatives on both sides of Eq. (5.7.3.4), we obtain

dOy (1) iH —i
T = UY(t,t.)05U(t,t) U (t,1,)OsU (t,t,) ——
_ %’[OH’H]' (5.7.3.5)

Thus, in the Heisenberg picture the operator is time-dependent, and the time dependence of
operator is governed by the commutator of the operator with the Hamiltonian. Eq. (5.7.3.5)
is called Heisenberg equation.
In the following we will confine our attention entirely to the Heisenberg picture. The
position and momentum operators, xy and py respectively, satisfy
dxH

h—— = H]. 5.7.3.6
l dt [va ] ( )
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d
ih% — [pu.H]. (5.7.3.7)

We see, at once, that if an operator commute with H, i. e.,
[0s,H] =0, (5.7.3.8)

then Oy stays constant as a function of time and is called the constant of motion. In Heisen-
berg picture

On(t),H(t)] = [UT(t,t.)0sU(t,1,),Ut(t,t.)HU((t,1,)]
= U™(t,1,)[0s,H]U(t,t,) = 0. (5.7.3.9)

Therefore, in any picture a constant of motion still is a constant of motion.
For one dimensional free particle

H= p—2+V(x). (5.7.3.10)

2m

The time evolution of the right hand side in Eq. (5.7.3.6) proceeds by the application of the
fundamental commutation relation

[x, p] = [xs, ps] = ih. (5.7.3.11)
dxH(t) 1 1 +
g _— H = — o ,H sto
WL = (), H) = U (1) HIU 1,1
p p
= UT(t,t)=U(t,1,) = =. 5.7.3.12
(1) 2ur,1) = 2 (5:7.3.12)
From Eq. (5.7.3.12) one obtains
x(1) = x(0) + %z, (5.7.3.13)

which is same as a classical particle.

5.7.4. Interaction Picture

The interaction picture accommodates certain aspects of both the Schrodinger and Heisen-
berg pictures and is used must often when the interaction Hamiltonian, representing the
potential, depends on time. Consider the following Hamiltonian

H=H,+V(1), (5.7.4.1)

where H,(= p?/(2m)) represents the kinetic energy and is independent of time, while V/(¢)
corresponds to the interaction potential, which can depend on time. Define

Uo(t,1) = e~ Hol=m)/R (5.7.4.2)
where ¢ is an arbitrary time parameter. If H, depends on time 7, then

Uo(t,11) = Te I @ Helt)/, (5.7.4.2)
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where T is time-ordering operator. In our textbook we consider only the case that H, does
not depend on time.
Define the state vector in interaction picture as [88, 10]

(1) >= Uy (t,11)|Ws(t) > . (5.7.4.3)
From Egs. (5.7.4.3) and (5.7.2.2)’, we have

Wi (1) > = Uy (t,0)U(1,1)|Ps(to) >
= U (t,0)U(t,1)U (to,11) W1 (t) >= Us(t,10) |y (2o) >, (5.7.4.4)

where Uj(t,t,) is called the time evolution operator in interaction picture.
Since the matrix elements of any operator O in different pictures must be the same in
physics, we have
< Ws(1)|Os|Ws (1) >=< W1 (1)|O1(t) i (1) > . (5.7.4.5)

Using Eq. (5.7.4.20), we have
< Ws(1)|Os|Ws () >=<W1(1)|U; (1,01) OsUo (2, 11) W1 (1) >=< W1(1)]04(1) ¥ (2) >,
(5.7.4.6)

where Oy(t) represents the operator in interaction picture.
Taking the derivative of both sides of Eq. (5.7.4.3) yields

ih% = —Uf (t,n)H,|¥Ys(t) > —I-Uo(t,tl)iﬁ%‘l’g(t) >
= U (t,01)Ho|s(t) > +U, (t,11) (Ho +V (1)) |Ps(t) >
= Uy (t,0)V(0)[¥s(t) >= Uy (t,0)V (1) Uo(t,11) Uy (1,15) s () >

= Vi()|¥(t) > . (5.7.4.7)

The time derivative of O;(¢) can be calculated from its definition in Eq. (5.7.4.6). After
certain mathematical steps similar to the case of Op it is found that

dO](t)

i
SR

= [04(1),Ho ) = [O4(t), Ho). (5.7.4.8)

Egs. (5.7.4.7-8) indicate, in the interaction picture, the time dependence of the state vectors
is governed by the interaction Hamiltonian, while the time evolution of the operators is
determined by the free Hamiltonian.

From Eqgs. (5.7.4.4) and (5.7.4.7), we have that the time evolution operator U (z,t,)
satisfies the equation

a(t,to) i
— - —ﬁVI(I)Ul(t,to). (5.7.4.9)

From the definition of Uj(t,t,) and U (t,,1,) = 1, we must have Uj(t.,t,) = 1. Integrating
both sides of Eq. (5.7.4.9) yields

; t
Ul(t,to)zl—%/ At Vi) Us(11,1,). (5.7.4.10)
2
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Through recursion of Eq. (5.7.4.10) we obtain the following series expansion.

U(l lo) —1——/ dl]V] t1 <——) /dl]V] n / dl]V] tz (5.7.4.11)

Since the order of integration is unimportant, we can write

/dl]V] n / dle] tz /dlz/ dl]V] l‘z)V](l‘]) (5.7.4.12)

Hence

t 1
/ dtl/ dtzV](tl)V](tz)
to to

1 2

t f .
= E [/ dhy dtQVl(tl)Vl(tQ) + dtp dhy V](lg)V](ll)] (5.7.4.13)
1 to to to

To obtain a simple expression for Uj, let us define the “time-ordering product” of two oper-
ators A(t;) and B(t) as

T[A(l])B(ZQ)] = 6(11 — lz)A(l])B(lz) —1—6(12 — N )B(lg)A(ll), (5.7.4.14)
where the O-function is defined by

O, n<nh

. 7.4.1
1, nH>n (57 5)

6(11 — 12) = {
This function is also called a step function. The relation Eq. (5.7.4.12) can then be written
as

t 1 1 t t
/dn cmwmwmgzi/dn AT [Vi(1)\Vi(i2)], (5.7.4.16)
to to I

to

where according to the definition Eq. (5.7.4.14),
T[V[(l])V[(lz)] = 9(11 —ZQ)V1(11)V1(12) +9(t2 —ll)V1(lz)V1(ll), (5.7.4.17)

where T is called time-ordering operator. We note that the upper limits in the double integral
are the same, and thus we can write the series form conveniently.

Even though it is somewhat complicated, one can define the time-ordering product when
a product of more than two V;’s is involved. We will not pursue this matter further. For now
we note that Eq. (5.7.4.11) leads to

i —i\"1 t t t
M@Q—Z<—>—/w1d@~ AT ViV () - Vit)].  (5.7.4.18)
i\ o) nli fo fo

Since the series in Eq. (5.7.4.18) is the same as the exponential series, one can write this
more compactly as

Uj(t,t.) = Te o dnVit/h, (5.7.4.19)
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5.8. Three Formulations of Quantum Mechanics

Just based on the canonical commutation relation, proved in chapter 3, between canonical
coordinate x and canonical conjugate momentum p, this section will prove in mathematics
all the formulations of quantum mechanics: Heisenberg matrix (operator) mechanics,
Schrodinger wave mechanics, and Feynman path integral mechanics. Not exactly speak-
ing, Schrodinger wave equation formulation of quantum mechanics looks like classical
Jacobi-Hamiltonian equation, Heisenberg matrix formulation of quantum mechanics looks
like classical Hamilton formulation, and Feynman path integral formulation of quantum
mechanics looks like classical Lagrange formulation. For all the three formulations of
quantum mechanics, we give the following theorem.

Theorem XXX: Three formulations of quantum mechanics. Just from the proved com-
mutation relation [x, p] = ih, all the three formulations of quantum mechanics can be de-
rived exactly and without any assumptions, postulates, hypotheses, and axioms. The three
formulations are:

(1) Heisenberg operator (matrix) formulation,

do i 00
— =—=[0,H]+—=— 5.8.1
= —l0.H+ (5:8.1)
(2) Schrodinger wave equation formulation,
0 —n? 9
ih— = 8.2
M) = | S5 4V ) ), (582

(3-1) Propagator K (x¢,x0;1¢,1y) in phase space (=Feynman Hamiltonian path integral):

x(tr)=xs

-
K(x¢,x03tf,t0) :/ DpDxexp [7—;/ dt[pX—H(p,x)]] , (5.8.3)
4]

x(t()):xo

where p = p(t), x = x(t), x = dx(t) /dt,

N
. dxidpy | dpo
DpDx =1 — 5.84
P Nlill!,[[l 2nh ]2nh’ (5.8.4)
x(ty)=xs N oo oo dxkdpk bl de
DpDx = li — 5.8.5
(3-2) Propagator in configuration space (=Feynman Lagrangian path integral)

x(tp)=xy S

K(xr,x03f,10) :/ Dxexp <l—> ) (5.8.6)
x(to):xo h

S— lim i@W—v(m)s_[(meZ—v(xde, (5.8.7)

N — o0 k=0
e—0
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1 N d
Dx= lim * (5.8.8)
N — o V2Tilim—'e j—g V2mihm~ e

e—0

Proof. We would like to make detail illustration for the notations, proofs and discus-
sions in the following subsections. This proof is very long (It overs all the section 5.8).

5.8.1. Heisenberg Matrix Mechanism Formulation
5.8.1.1. Derivation of Matrix Mechanism

Here, the matrix is equivalent to an operator because an operator in a certain basis (represen-
tation) becomes a matrix. So, more general speaking, it is better to call Heisenberg operator
mechanics formulation instead of matrix mechanics formulation. In this subsubsection we
will show that just utilize the canonical commutation relation for canonical coordinate x
and canonical conjugate momentum p, proved in chapter 3, we can derive the equation of
motion of operator in Heisenberg picture.

We use the elementary identity:

[A,BC] = B|A,C]+ A, B|C. (5.8.1.1.1)
Computing the commutator
[x, p?] = [x, plp + plx, p] = 2ifip, (5.8.1.1.2)
we then obtain the result,
[x, p*]x = xp*x — p?x* = 2ifipx. (5.8.1.1.3)

Using Eq. (5.8.1.1.2), we obtain
[x,p"] = ihp" '+ plx, p" 1. (5.8.1.1.4)
Then we use induction to prove that
[x, p"] = ihnp™ ! (5.8.1.1.5)
forn=1,2,---. Combining Eq. (5.8.1.1.5) and [x,x"] = 0, we obtain
[x, X" p"] = il p" ! (5.8.1.1.6)

Eq. (5.8.1.1.6) can be symbolically be written as
d
[x,x"'p"] = ihg(xmp”). (5.8.1.1.7)

The analogous relation with p is obtained automatically if we interchange x < p and change
the sign of the commutator i to —ih, i. e., we have also

m.ny __ . a m
[P, p" "] = —ihz-(p"x"). (5.8.1.1.8)
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By using Eq. (5.8.1.1.1) we can extend the Eq. (5.8.1.1.7-8) to the form x“p?x¢, and obtain
a b.c : a, b—1_c : J a b.c
[x,x*p”x] = ihbx“p°~'x :lha—(xpx). (5.8.1.1.9)
D

Here it is implied that the derivative d/dp acts only on p where it appears in the expression.
The operator (x and p) ordering should remain unchanged, i. g.,

%(p3xp2x) = 3p*xp*x+2pxpx. (5.8.1.1.10)
An analytic function f(x, p) is expanded into a sum of the terms of the form
...xaphxcpd...
and the Eq. (5.8.1.1.9) can be generalized to terms of this form. Each term of the
expansion of f(x, p) satisfies the relation. Therefore, the sum will also satisfy the relation.
So, we obtain

5 p)] = ()PS0 =~ 5. p) (5.8.1.1.11)

Using Eq. (5.8.1.1.11), which comes from canonical commutation relation between x and
p, the classical Hamilton equations Eqgs. (2.2.3.5-6) become

dx i dp i

—=—=|x,H|, —=—=|p,H|. .8.1.1.12
The two equations in Eq. (5.8.1.1.12) are called quantum Hamilton equations, in which the
Poison bracket is replaced by canonical commutation relations. Note that x does not com-
mune with dx/dt because p = mdx/dt, where m is the mass of a particle, and is independent
of ¢. So the time derivatives of, e. g., x° must be written as

d
E)ﬁ = X% 4ok X (5.8.1.1.13)

It is easy to show that for any operators A, B, H (A and B are not necessarily Hermitian)
that satisfy

) )
EC:[C,H], gB:[B,H], (5.8.1.1.14)
the following properties hold:
) ) aC oB
E(C—l—B) =[C+B,H], E(CB) = §B+C§ = [CB,H]. (5.8.1.1.15)

In terms of Eqgs. (5.8.1.1.14-15) and quantum Hamilton equations Eq. (5.8.1.1.12) we
can show that if A = f(p, x,t) is an analytical function, then A satisfies

dA i A

— =—|AH|+ — 8.1.1.1
dt h[’ Hat’ (58 0)

which is called Heisenberg equation of motion.
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By induction, starting from x, p, and Eq. (5.8.1.1.12), we can prove the same property
for arbitrary terms of the form - - - x*p’xp? - - - and their linear combinations. Any analytical
function A = f(x, p) that can be expressed by such a polynomial terms will satisfy Eq.
(5.8.1.1.16).

Let us for simplicity take an operator which does not depend on time explicitly, i. e.,

A = f(x, p). The formal solution of Eq. (5.8.1.1.16) is
A(r) = M)A (1) e~ HIE)/ T, (5.8.1.1.17)

From the last equality of Eq. (5.7.3.3) we know that A() is just the operator Oy in Heisen-
berg picture. For any quantum state vector |y(z,) >= |yy > the time-dependent average
value of A(t) is

< A1) >=< Wy|A) Wy >=< y(t.)|eT ) PA (1) e HE) M y(1,) > . (5.8.1.1.18)

This relation can be rewritten using a time-dependent state vector

Wy (r) >= e FH0) [y (1) > (5.8.1.1.19)
and time-independent operator A(z,) as
<A(t) >=<y(t)|A(t) [w(r > . (5.8.1.1.20)

Taking the time derivative of Eq. (5.8.1.1.19), we find that the state vector |y(¢) > satisfies
the following equation:

ih%\w(z) >=H|y(t) > . (5.8.1.1.21)

We would like to reminder the readers that the basic starting point for all the derivations
from Eq. (5.8.1.1.1) to Eq. (5.8.1.1.21) is the canonical commutation relation of opera-
tor x and p, [x,p] = ih, and this canonical commutation relation has been proved by our
wavepacket-only theory in a more general form of many degrees of freedom in chapter 3.
So, the Heisenberg matrix (or say, operator) mechanics can be proved by our wavepacket-
only theory.

Because the starting point of Heisenberg matrix mechanics is canonical commutation
relations, we call the Heisenberg matrix mechanics formulation of quantum mechanics
canonical quantization formulation of quantum mechanics.

5.8.1.2. Application of Matrix Mechanism

We illustrate with two examples: (1). The a and a™ operators greatly facilitate the calcula-
tion of matrix elements of other operators between the oscillator eigenstate; (2). Seek the
eigenstates of quantum harmonic oscillator.

(1) From Egs. (4.4.4.29) and (4.4.4.33-34) we obtain

<rlaln>=n"? <n'|n—1>=n"28,,_. (5.8.1.2.1)

<dlatn>=n+ D)2 <n'ln+1>=n+1)"28, .. (5.8.1.2.2)
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To find the matrix elements of x and p, we invert Eqs.(4.4.4.4a-b) to obtain
x= <%> (a+a™). (5.8.1.2.3)
ok /2
p=i (’"T> (a* —a) (5.8.1.2.4)

and then use Egs. (5.8.1.2.1-2). The two basic matrices in this energy basis (|n > is eigen-
state of energy) are

n=0 n=1 n=2
n 0 0 0
. n=1 12 0 0
n=3 0 0 32
and its adjoint operator
[ n=0 n=1 n=2 n=3 i
n=0 0 12 0 0
ae | n=1 0 o 22 o (5.8.1.2.6)
n=2 0 0 0 312

We get the matrices representing x and p by turning to Egs. (5.8.1.2.3-4). The Hamiltonian
is of course diagonal in its own basis:

n=0 n=1 n=2 n=3
n=0 1/2 0 0 0
Ho | n=1 0 3/2 0 0 (5.8.1.2.7)
n=2 0 0 5/2 0

Eq. (4.4.4.4) also allows us to express all normalized eigenvectors |n > in terms of the

ground state |0 >:
+ + + +\n
a a a
= ’n — 2 > P ( )
n'/2 (n—1)1/2 (n!)1/2
The a and a™ operators greatly facilitate the calculation of matrix elements of other oper-
ators between the oscillator eigenstate. Consider, for example, < 3|x*|2 >. In the x basis

(coordinate representation) one would have to carry out the following integral (refer to sec-
tion 4.4.2 in chapter 4):

12
3 o mo 1/2 1 1 —m 22}1
<> = (%) (sqm) [ {em™

X Hj [(%m)]/zx] x3e_m°°x2/2hH2 [(m—;>1/2x] dx

n>=Sln—1> 0> . (5.8.1.2.8)
n
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whereas in the |n > basis (representation)

h
2mm

N
N <ﬂ> <3la*+a*at +aata+aatat +ataa+ataat
m

+ atata+atatat2 >

Bo\32
= (—) <3latata+taatat +ataat|2 >

32
<3P 2> = < ) <3|(a+a")?2>

2mm

h\? 1/2 1/2 1/2
= <%> 2(3Y/2) +4(3'/2) +3(3'/%))]. (5.8.1.2.9)
Since a lowers n by one unit and a™ raises it by one unit and we want to go up by one unit
from n = 2 to n = 3, the only nonzero contribution comes from a*a*a, aa*a®, ataa™.
Therefore, we have the third equality in Eq. (5.8.1.2.9). From the above discussions we see
that the |n > basis is ideally suited for evaluating the matrix elements of operators between
oscillator eigenstates.

(2) We illustrate with an example, the harmonic oscillator, to show that if one just uses
the Heisenberg matrix mechanics (without using the Schrédinger equation), then we can
also obtain the eigenvalue and eigenstates of a quantum harmonic oscillator. The eigenval-
ues of harmonic oscillation have been found by using the Heisenberg operator mechanics in
subsection 4.4 of chapter 4. Therefore, here we just need to seek the eigenfunctions. There
are three methods to solve this problem. First, to find the eigenvectors |x > of the matrix of
operator x, which has been given by Egs. (5.8.1.2.3) and (5.8.1.2.5-6); Second, to evaluate
the inner product < x|n >= y,(x); Third, a more practical way is introduced in the next
paragraph.

We start by projecting the equation defining the ground state of oscillator

al0 >=0 (5.8.1.2.10)
on the x basis (representation):
0> — <x|0>=wyp(x)
mmy 1/2 ) 1 1/2
« = (%) x+l<—2mmh> b
may 1/2 h\'?d
— — —. .8.1.2.11
- () x+<2m0)) dx (58.12.11)

In terms of y = (mw/h)'/?x and Eq. (4.4.4.4a),

a_\% <y+diy>. (5.8.1.2.12)

For later use we also note that (since d/dy is anty-Hermitian),

a+:\%< —%). (5.8.1.2.13)
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In the x basis Eq. (5.8.1.2.10) then becomes

d
(y—i— d_y> yo(y) =0 (5.8.1.2.14)
or o)
Yoly
———= =—vd 5.8.1.2.15
Wo(y) a ( )
From Eq. (5.8.1.2.15) we obtain
Yo (x) = Ce O/ 2N), (5.8.1.2.16)
After normalization, )
Wo(x) = (ﬁ> emme?/(2h), (5.8.1.2.17)

By projecting the Eq. (5.8.1.2.8) on to the x basis, we get the normalized eigenfunction

1 d\ 1" jmo\1/4 _»
= —_— | — _— J—— -y /2
(n!)1/2 [21/2 (y dy)] <nh> ¢ . (5.8.1.2.18)

A comparison of the above result with the Eq. (4.4.2.27) shows that
72/2 d " _ 2/2
H,(y) =¢€ —— ] e/ (5.8.1.2.19)
We would like to emphasize the following two points:

(1). The starting point or, say, the origin of the Heisenberg matrix or operator mechanics
formulation of quantum mechanics is the theorem on the canonical commutation relation,
proved by our wavepacket-only theory in chapter 3. Heisenberg matrix or operator mechan-
ics formulation of quantum mechanics does not contain any assumptions or postulates;

(2). Although Heisenberg operator mechanics can give eigenvalues and eigenfunctions,
but it is more trouble to do these in comparison with the Schrédinger wave mechanics for-
mulation. Heisenberg operator mechanics starts from the canonical commutation relation,
proved by our wavepacket-only theory. Therefore, Heisenberg operator mechanics can also
be called canonical quantization formulation of quantum mechanics. This canonical quan-
tization formulation is easy to be extended to the systems with many or infinitely many
degrees to freedom. We can call our living space a field. If we think that every point of this
continuous position space is one degree of freedom, and use canonical quantization formu-
lation, and we do the same stapes as that of the Heisenberg operator mechanics formulation
of quantum mechanics, then we obtain nonrelativistic and relativistic quantum field the-
ory. We will derive in our coming textbook the nonrelativistic and relativistic quantum field
theory.
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5.8.2. Schrodinger Wave Mechanics Formulation

In this subsection we will derive the Schrodinger wave mechanics formulation of quantum
mechanics from the canonical commutation relation between x and p. To do this, it is
enough to continue the derivation of the Eq. (5.8.1.1.19).

Eq. (5.8.1.1.19) can be rewritten using a time-dependent state vector

(1) >= e )My (1,) > (5.8.2.1)
and time-independent operator A(7,) as
<A(t) >=<y(1)|A(to) [y(t > . (5.8.2.2)

If we write the state vectors and operators in the manner in Egs. (5.8.2.1-2), then this
means that we consider problems in Schrodinger picture. Taking the time derivative of Eq.
(5.8.2.1), we find that the state vector |y(z) > satisfies the following equation:

ih%\w(r) >=H|y(t) > . (5.8.2.3)

Many textbooks call Eq. (5.8.2.3) Schrodinger equation, which does not depend a particular
representation. We would like to reminder the readers that the basic starting point for all the
derivations from Eq. (5.8.1.1.1) to Eq. (5.8.1.1.17) is the canonical commutation relation
of operator x and p, [x, p|] = ih, and this canonical commutation relation has been proved by
our wavepacket-only theory in a more general many degrees of freedom in chapter 3.

Next, we derive the form of Schrodinger wave equation, given by Eq. (5.8.2.3), in x
representation. Eq. (5.8.2.3) can be expressed generally as

0 s
h—|w(t) >= | =— . .8.2.4
) 5= | v i) > (5824
We express the state vector |y(z) > in x representation. Eq. (5.8.2.4) gives directly the
Schroédinger wave equation in x representation:

32 2
ih%\p(x,t) = {%aa? —I—V(x)] y(x,1). (5.8.2.5)

5.8.3. Feynman Path Integral Formulation
5.8.3.1. Introduction

The Feynman path integral formulation of quantum mechanics is a description of quantum
theory which generalizes the least action principle of classical mechanics. It replaces the
classical notion of a single, unique trajectory for a system with a sum, or functional integral,
over an infinity of possible trajectories to compute a probability amplitude.

The basic idea of the path integral formulation can be traced back to Wiener, who in-
troduced the Wiener integral for solving problems in diffusion and Brownian motion. This
idea was extended to the use of the Lagrangian in quantum mechanics by Dirac in his 1933
paper. The complete method was developed in 1948 by Feynman. Some preliminaries
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were worked out earlier, in the course of his doctoral thesis work with Wheeler. The orig-
inal motivation stemmed from the desire to obtain a quantummechanical formulation for
the Wheeler-Feynman absorber theory using a Lagrangian as a starting point rather than a
Hamiltonian.

This formulation has proved to be crucial to the subsequent development of theoreti-
cal physics, because it is manifestly symmetric between time and space. Unlike previous
formulation, the path integral allows a physicist to easily change coordinates between very
different canonical descriptions of the same quantum system.

The path integral also relates quantum and stochastic processes, and this provided the
basis for the grand synthesis of the 1970s which unified quantum field theory with the statis-
tical field theory of a fluctuating field near a second-order phase transition. The Schrédinger
equation is a diffusion equation with an imaginary diffusion constant, and the path integral
is an analytic continuation of a method for summing up all possible random walks. For
this reason path integrals were used in the study of Brownian motion and diffusion a while
before they were introduced in quantum mechanics [89].

Recently path integrals have been expanded from Feynman paths to Lévy flights. The
Lévy path integral formulation leads to fractional quantum mechanics and a fractional
Schrodinger equation [90].

In subsubsection 5.8.3.2 we will derive the Feynman path integral formulation by just
using the canonical communication relation between X and P. In subsection 5.8.3.2 we use
X, P represent coordinates and momentum operators, respectively, and use x, p represent
corresponding classical numbers. The summation over all possible pathes between initial
point x;, 7o and final point x, s is tied in mathematics to the existence of many decomposi-
tions of the unity, i. e., to the existence of many complete bases being of completeness.

Following this we will discuss in subsubsection 5.8.3.3 one simplest example: to seek
the propagator of free particle. In subsubsection 5.8.3.4 we make the inverse derivations, i.
e., we derive the canonical commutation relation from Feynman path integral formulation,
i. e., from the result back to starting point. Because we can derive canonical commuta-
tion relation, we can say that from Feynman path integral formulation one can derive the
Heisenberg matrix formulation. We can also demonstrate that the Feynman path integral
formulation can derive Schrodinger equation. We will point out in subsubsection 5.8.3.5
that although the Feynman path integral has been applied successfully in many aspects,
such as gauge field quantization, polymer, and so on. However, for the application in free
particle, which, of course, should be the simplest application, some references made a con-
ceptual mistake, and derived a fantastic conclusion.

5.8.3.2. Derivations of the Path Integrals

Propagator. For convenience, we consider one spatial dimensional system, the Hamilto-
nian does not explicitly contain time. In Schrédinger picture the equation of motion of state
vector is given by Eq. (5.8.2.3), which has a formal solution:

lw(tr) >=U(ts,10)|W(t0) >, (5.8.3.2.1)
where the subscripts 0, f represent initial and final, and

Ulty,19) = e Htr—0)/h (5.8.3.2.2)
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is called time evolution operator. In the coordinate representation, a quantum state is de-
scribed by a wavefunction, which is

Y(xp,tp) = <xplylty) >=<uxp|U(ty,10) </dxo\xo >< xo\) ly(to) >
= /don(xf,xo;tf,to)w(xo,to), (5.8.3.2.3)

where we used the decomposition of unit operator, and the matrix element
K (xp,x03t5,10) =< x/|U(t7,10) [x0 > (5.8.3.2.4)

is called the propagator, which can give the final state wavefunction y(x,7;) when the
system is initially at the state y(xo,7) in terms of Eq. (5.8.3.2.3). Note that the propagator
is not an operator, it is just a number function.

Expression of propagator as path integral. The short time propagator is differential form
of propagator. In any physical problems, one always begins from the derivation of short
time propagator. The propagator can be expressed as an path integral over all trajectories
connecting the initial state at xo, o and final state at x7, 7¢. Note that in the following
derivations we use a subscript index to distinguish different quantum states |xo >, |x; >
, --- of the same system with one degree of freedom x. One should not confuse this
subscript with an index enumerating the different degrees of freedom.

To express the propagator as a path integral, at first we need to divide the
time interval from initial to final time, (9 — ), into N+ 1 small equal intervals
(to:t1), -+, (testig1), - - - 5 (v, 1) With £ =ty and any small time interval = €. This process
is called time slicing. In this time slicing, there are N inner spatial points between xy and
x¢. Eventually, we shall pass to the limit N — oo and Aty = #;1 —#; — 0. The evolution op-
erator U (ty,1) is equal to the product of the evolution operators for the N + 1 intermediate

ranges (fk, fe+1)

N
U(l‘f,l‘()) = U(tf,tN) s U(t1,to) = H U(tk+1,tk), (l‘f = IN+1) (58325)
k=0
and therefore the propagator
N
K(Xf,xO;tf,to) =< Xf|U(l‘f, to)|)€0 >=< Xf| HU(tk+17tk)|x0 > (58326)
k=0

Short time propagator. At first we express the propagator in Eq. (5.8.3.2.6) in terms of
the N + 1 short time propagators. Inserting N decompositions of unity operator:

)

/ dxk\xk >< xk\
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in Eq. (5.8.3.2.6) between any two nearest neighbor short time evolution operators, we have

K(Xf =XN+1 ,xo;tf = tN+lat0)

= <Xf‘U(l‘f = tN+1,tN) /de\xN > XN > U(Z‘N,l‘Nfl) cee ’)CO >
---/dka]ka > X1 > U(l‘k+1,l‘k) /dxk]xk > Xp > U(l‘k,l‘kfl) cee

X /dxl\xl > X > U(tl,to)’xO >

N
= /dedef1“'dx1 (HK(ka,xk;tkH,tk))
k=0

(e} (o] N
= / / dxydxy-1---dxi ( K(karlaxk;S)) ; (5.8.3.2.7)
—eo oo k=0

where the last equality comes from that the Hamiltonian does not explicitly contain time,
and the xy x;, xp,--- label the different quantum states at the moments of #y, 1, to,---,
respectively. Thus, it follows that the propagator is the N-fold integrated product of the
N + 1 short time propagators of all the intermediate time intervals.

In Eq. (5.8.3.2.7) the product of (N + 1) short time propagators,

K(xk+1,xk;8) =< Xk4+1 |U(tk+1,tk)|xk > (58328)

is just equal to one special probability amplitude related with just the specially certain (or,
more vividly speaking, constrained) chain of propagations |xg >— |x; >— |x; >— -+ —
|x¢ >. This special probability amplitude just connects with that the particle propagates
from fixed point xy to fixed point x; while visiting the special certain intermediate points
Xi at time #;. Actually, when a particle propagates from fixed point x( at time #; to fixed
point x at time 7z, the particle should have many choices, because, e. g., the x; can take
different values. As is well known, the special probability amplitude is also a state vector
in Hilbert space #, and, therefore, satisfies superposition theorem. So, if we want to find
the total probability amplitude at point x; at time #; and initially is at point xq at time 7o,
then we have to do the integrations in Eq. (5.8.3.2.7) (Please connect the integration with
equiprobability symmetry and spontaneous equiprobability symmetry breaking.). At this
stage of our derivations, the readers have understood the mathematical and physical origins
of the path integral, and feel that the path integral formulation of quantum mechanics is so
easier to be understood as that the other two formulations of the quantum mechanics.

At this stage of derivations, the readers will do not ask the question, such as, why we
should do path integral. The readers will ask that how to continue the derivations? We will
at first continue our derivation in phase space to connect the short time propagator with
Hamiltonian of the system, and then do the derivation in configuration space to connect
the propagator with Lagrangian of the system. (Here, phase space means (p,x) space, and
configuration space means x space.)

Expanding the short time evolution operators as

Ultyyr,ty) = e en—H/R — p=ieH/h _ g _ %SH +0(e?) (5.8.3.2.9)
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one obtains
K(X11,%65€) =< X1 |U (frr1, 1) | Xk >=< Xge11] <1 — %HG) |xx > +0(£2). (5.8.3.2.10)

The matrix element of Hamiltonian can be calculated by inserting the decomposition of
unity operator in momentum representation,

I :/ dpilpe >< pal, (5.83.2.11)
where we use py simply to distinguish the momentum eigenstates at #.
Considering
~+o0
< X1 |H |xp >= / dpk < Xk1|pr >< pi|H |x, > (5.8.3.2.11)
and the matrix element |
< xip1|pi >= ——=ePn/h, 5.83.2.11)"
+1] 5r ( )
one obtains
K(xXer1,508) = /dpk < Xkt [P > < prelxi >

ie dpk i _ A
— dpir— < S< plHlxg >= | 22K oiprlas—x)/
/ Pry Xk1|px >< pi|H|xx S

d : £
Pk_ iprisi /RIS < plH|xi > . (5.8.3.2.12)

V27h h

To find < pi|H |xx >, we must first reorder all the operators P in the Hamiltonian and move
them to the left, so that H(X, P) is rewritten as

H:ij(P)gj(X), (5.8.3.2.13)

which can be done by using the canonical communication relation [X, P| = ifi. For example,
if

H =H(P,X)=XPX = P°X> 4+ 2ihPX, (5.8.3.2.14)
we have
H = H(P,, X)) = XuPEX, = PIX} + 2ihPX;. (5.8.3.2.14)
As aresult, we find
<pilH|x > = [ij(pk)gj(xk)] X < prloe >= H(pr,xx) < plx >
j
= H(pp,x e P/ h, 5.8.3.2.15
(Pk>Xx) NG ( )

where if H = H(P,X) is given by Eq. (5.8.3.2.14), then the H(py,x;) in Eq. (5.8.3.2.15) is

H(pr,xi) = pixq +2ihpix. (5.8.3.2.16)
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Note that the (py,xx) in Egs. (5.8.3.2.15-16) are numbers, other than operators. Substituting
Eq. (5.8.3.2.15) into Eq. (5.8.3.2.12) yields

K (Xk41, X3 €)
dpx

i€ 2 ipr(Xey1—x) /B
— |1——H Pi\Xk+1—Xk

B / Zﬁ;]; p[l£< @—H(Pk’xk))JrO(ﬁz)]- (5.8.3.2.17)

Propagator in phase space (Hamiltonian path integral). Substituting Eq. (5.8.3.2.17)
into Eq. (5.8.3.2.7) yields

K(XfExN-i-l?xo;tf tN+lat0 / 21th 21h

ﬂ dxkdpk] dpo
=1

exp (5.8.3.2.18)

N e _
¥ 2 (n B ) +o(e)

k=0 €

We would like to point out that, since Eq. (5.8.3.2.7) contains N 4 1 short time propagators,
Eq. (5.8.3.2.18) contains (N + 1) integration over py but only N integration over x.

Now let us consider the limit N — o € — 0. When the number of intermediate time
points #; becomes infinitely large, one can introduce the functions x(¢), p(¢) such that
xx = x(tx), pr = p(t), and replace the sum replace the sum in Eq. (5.8.3.2.18) by an
integral over ¢. In this limiting case Eq. (5.8.3.2.18) becomes

x(tp)=xy i [

K(xf,x03tf,t0) :/ DpDxexp [i/ dt[pX—H(p,x)]] , (5.8.3.2.19)
x(l‘()):xo h )
where p = p(t), x = x(t), x = dx(t) /dt,
N
. dxidpi | dpo

DpDx =1 — 5.8.3.2.20
P = LI:II 2nh ] 2nh’ ( )

and note that

x(ty)=xy dxid *d
/ DpDx = hm / / k@ Pk ero
x(t9)=xo k 1 21th w0 2Th
Let us make the following five interpretations:

(1) The integration over infinitely many intermediate values of x;, py in Eq. (5.8.3.2.18)
is naturally interpreted as the integration over all the functions x(z), p(¢) such that x(¢y) =
x0, x(tf) = xy. An integral of this kind is called a functional integral of path integral.
In the limit N — oo, the (2N + 1)-fold integration over dp; and dx; becomes an infinite-
dimensional integration measure, given by Eq. (5.8.3.2.20). This formal expression must
be understood as the limit of the finite-dimensional integral in Eq. (5.8.3.2.18) as N — oo,
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(2) The H(p,x) in Eq. (5.8.3.2.19) is no longer an operator, and it is a classi-
cal Hamiltonian. Correspondingly, according to classical mechanics, the phase factor
f,f)f dt[px — H(p,x)] = Su[x(t),p(t)] is the Hamiltonian action, which is a functional of
two functions x(¢), p(t). According to the classical Hamiltonian action principle, i. e.,
x(t), p(t) must be varied independently to extremize Sy, and thus determine the trajectory
of the particle in phase space. However, we should note that due to the uncertainty relation
of canonical coordinate and canonical conjugate momentum we cannot use the classical
Hamiltonian action principle in quantum mechanics.

(3) The generalization to the case of an arbitrary number of degrees of freedom, includ-
ing an infinite number of degrees of freedom needed in field theory, is largely straightfor-
ward.

(4) So far we considered only systems with time independent Hamiltonian, but the path
integral formulation also applies to time dependent Hamiltonian.

(5) At last we prove that the term in Eq. (5.8.3.2.18), containing 0(82), really can be
neglected. The term is

T A 2t —10)?
lim Y 0(”) ~ Ne* =N-—+——

— 0. 5.8.3.2.22
N (NF 1) ( )

Propagator in configuration space (Lagrangian path integral). If the Hamiltonian is a
quadratic function of the momenta, then the integration over the momenta can be performed
explicitly and the path integral is simplified. Let us consider, for example, a system with

the Hamiltonian 5

H(P,X) = §—m—|—V(X). (5.8.3.2.23)

In this case, the integral in Eq. (5.8.3.2.18) becomes

karlaxk’S)

dpx i€ [ Xpr1—X PR 2
_— == .8.3.2.24
= [omew | § (W 2 viw) o) (583224

where the integration over momentum belongs to Gaussian type, and can be finished in

advance.
dpie [ i (P plsin —x)
2nh h \2m €
dpk i€ m 2 m 2
mh S p{—ﬁ [(Pk_ E(xkﬂ —xk)) - (E(Xk+] —xk)> ]}
_ m \1/2 ime (g1 —xe \’
- <2nihs> e"p{ﬁ (78 : (5.8.3.2.25)

In the last step of Eq. (5.8.3.2.25) we use the equality

/ dpge™ a7 = \/%. (5.8.3.2.26)
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Substituting Eq. (5.8.3.2.25) into Eq. (5.8.3.2.24) yields

. 2 .
m m (X — X l
K (X1, X€) = 4 /ths exp [ﬁ% - ﬁSV(xk)] [14+0(e?)].  (5.8.3.2.27)

Substituting the short time propagator in Eq. (5.8.3.2.27) into Eq. (5.8.3.2.7), taking N —
oo, € — 0, and finishing the N + 1(# N) integration over momenta (due to the product
k=0,1,2,--- ,N), we finally obtain

x(tp)=xs iS
K(Xf,xO;l‘f,l‘()) :/ Dxexp | — |, (5.8.3.2.28)

x(l‘o):xo h/

where

N (ka —xk)2 [ mx2
S= Ilim m———-———V(x >£ :/ (— —Vix >dt 5.8.3.2.29
N%kg( % () Je= | (F -V )dr )

e—0

is the Lagrangian action and the measure of the Lagrangian path integral is

. 1 N dxk
Dx = lim . (5.8.3.2.30)
N — oo V2Wilim= e g V2mihm—'e
€—0

The dimension of Dx is the inverse of length.

From Eq. (5.8.3.2.28) we see that the contribution of every path between two points
x(to) = x0 and x;, = x¢ to the propagator is equal-probabilistic and the the weight is related
to the Lagrangian action. Therefore, in practice, the main contributions to the propagator
come from the pathes, along which the Lagrangian action is stable.

The propagator in Eq. (5.8.3.2.28) is not normalized. However, in practical applications
when we seek the average value of a dynamic variable, the normalization factor is not
important.

The Lagrangian path integral in Eq. (5.8.3.2.28) is the original form introduced by
Feynman, and is called path integral. We should note that although the propagator for
any system can be always written as the Hamiltonian path integral in Eq. (5.8.3.2.18), but
the Lagrangian path integral exists only for the systems with Hamiltonians quadratic in
momenta.

5.8.3.3. Propagator of One Dimensional Free Particle

For seeking the propagator of one dimensional free particle, we need the Gaussian integra-

tion formulas: 12
/ " e = (T
—0Q ai

w N 1)2
/ dxkeia[(ka—Xk)2+(xk_xk—l)2]:<§> %eia(xk-kl_xk—l)z/z' (5.8.3.3.1)
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Considering V(x) = 0 for free particle, neglecting terms 0(€)? in Eq. (5.8.3.2.27), and
utilizing Eq. (5.8.3.3.1), we have from Eqgs. (5.8.3.2.27)

/dka(karl,xk;thrl,tk)K(xkaxkfl;tkatkfl)

m o0 im [ (e —x0)? (o —xx1)?
= 7 [ 4 =
2mikiv/e? Lo xkexP{ h [ 2 2

_ m_ im (1 —x%-1)°
\ 2minze P | 4¢

= K(xk+1,xk_1;tk+1,tk_1). (58332)

In this manner we can integrate over all the intermediate points x; and obtain the propagator
of free particle with mass m:

m i m(xy—xp)*
K03 5,00) = 4 | — ! . 5.8.3.3.3
i) = =y |1 2| 38:3:3.3)

The characteristics of propagator of free particle are:

(A) The expression depends only on the given boundary values of x and ¢;

(B) The N and € vanish automatically at the last step of the derivation;

(C) The factor m(xs —x0)?/2(ty — to) is equal to the classical action of free particle,
because

roomx  m [ d(xx) m_ o om(xp—x;)?
Se :/ dt—:—/ dt( —xjc'> = —xx| =—-—". 5.83.34
e T2 2 )y di 27 2 - ( )
(D) Noticing the expression of § function is
1 . 1 (xf—xo)z
O(xr—x)=—71 — - 5.8.3.3.5
(=) = = tim { ey | =00 (58335
one obtains
}imK(xf,xo;tf,to) = S(xf—xo). (58336)
f—)
It is easy to prove that K (xz,xo;15,19) satisfies the free particle Schrédinger equation
10 K xoitrto) = —5 O K xontroto) (5.833.7)
ih=—K (x¢,x0;tf,t0) = —=— ==K (xs,X03t7,0).
oty Fr70:51570 Zmaxfc JR0 00

Schrodinger equation has infinite solutions, and the ordinary plane wave solution is only a
solution with definite momentum. The propagator in Eq. (5.8.3.3.3) is the solution of free
particle Scurddinger equation, satisfying the boundary condition of Eq. (5.8.3.3.6).
(E) For a free particle we can also use the matrix element of evolution operator U =
exp(—iHt/h) to directly obtain
K()Cf,xO;tf,to)
= < xple /M xy >

= dp ip i
/_wznne’(p [_hzm(’f_to)JFhP(xf—xo) - (5.8.3.3.8)

After integration over p, we obtain the same expression as that of Eq. (5.8.3.3.3).
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5.8.3.4. Path Integral Formulation as Starting Point

Derivation of Heisenberg matrix mechanics. We assume that we have the Feynman for-
mulation at first. We want to derive the Heisenberg matrix mechanics from Feynman path
integral formulation. Of course, this thing is easy. We would like to remind the readers to
remember that although the Feynman path integral is complex and useful, but the physical
basis or origin is just the canonical commutation relation, which has been given as a the-
orem in chapter 3. Next, we make the inversive derivation, i. e., from path integral in Eq.
(5.8.3.2.28) to canonical commutation relation, which is the starting point of Heisenberg
matrix mechanism.

We take the variation over x, 8x s = dx(#7) # 0 and dxp = dx(7p) =0, in Eq. (5.8.3.2.28).
We can directly write

d
OK (xf,x051f,10) = K (xf +8xp, x0:1,10) — K (xp, %0317, 10) = 5xfng(xf7xo;tho)-

(5.8.3.4.1)
On the other hand,
x(t)=xs S
OK (xf,x05tf,10) = 5/ Dxexp (%)
X0
x(tp)=xs ioS
= Dxexp < ) 5.8.34.2
/x(lo)—xo h h ( )
The following steps are familiar from classical mechanics:
) oL oL
85(x) = o[ diL(x,£)= / O ox+ 55
l‘() to a a

_ dtaLSx—ir/ a2t 5x

/d 8+[ s]to—/ttfd—ei)a

oL d (OL oL_ 1"
ss(x):/ di {a‘ﬂax)&] 5x+{ax5x] . (5.8.3.4.3)

fo

and hence

The classical equation of motion follows from the the least action principle for which &x =0
att =ty, to. Thus in this case of classical mechanics

oL d [JL
a__<ax> 0. (5.8.3.4.4)

However, in our case here dx; # 0 for t = ¢, (although dxy = 0 for t = #(), and we demand
the validity of the equation of motion. Hence,

8S(x) = <%)U 8x(17) = (%)H 8x ;. (5.8.3.4.5)
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Substituting Eq. (5.8.3.4.5) into Eq. (5.8.3.4.2) yields

(%)

i iS
= Dx— — . .8.3.4.
ox s o) xhp(tf) exp ( h> (5.8.3.4.6)

x(fo

x(tf)

oL
SK()Cf,xO;tf,to) = SXf Dx— <ax>

Comparing Eq. (5.8.3.4.6) with Eq. (5.8.3.4.1) yields

x(tr) ) iS () iS
o) Q)xa exp ( h> = @xhp(tj)exp < h> (5.8.3.4.7)

From Eq. (5.8.3.4.7) we obtain

0 i 0
— =—p(t = —ih—. 5.8.3.4.8
3% p(y), or p=—ihs ( )
From Eq. (5.8.3.4.8) we obtain
[x, p] = ih. (5.8.3.4.9)
Derivation of Schrodinger equation. Eq. (5.8.3.2.3) is
w(x,1) = / dxoK (x, 031, 10)W(x0, o). (5.83.23)

The propagator K (x,xo;7,%) is given by Eq. (5.8.3.2.28). Eq. (5.8.3.2.3)" shows that the
propagator K is the kernel of the integral equation satisfied by the wavefunction. Next, let
us demonstrate that the wavefunction y(x, ) satisfies Schrodinger wave equation.

To do this we need to seek the time partial derivative of y(x,#). We expand the y(x, 7+
€) in terms infinitesimal time €,

Wi +g) = / dyK (x,v:t +&1)W(3,1). (5.8.3.4.10)

From Eq. (5.8.3.2.27) we know

. 2
m i€ |m(x—y
Kixyiten) = \ ZinhsexP{% [5 (T) Vo)

Substituting Eq. (5.8.3.4.11) into Eq. (5.8.3.4.10) and making variable transformation y —
X+, one obtains

V(x,t+€) \/;/ nep{ n}[l—%eV(ern)]

X ylx+n,0)[140(e2)]. (5.8.3.4.12)

}[1+0(82)}. (5.8.3.4.11)

Due to that € — 0 is very small, therefore, if 1 is large, then the exponential function
oscillates strongly. Thus, we conclude that the main contribution to the integration comes
from the region: 0 < |n| < (2nfie/m)'/2. Next steps are: Make Taylor expansions of the
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functions y(x+m,7) and V(x+m) in the integrand, and keep the first order of €; Treat the
expansion expression by using the following formulas:

/ J _ [i2nhe 1/2
nexp Zhi—: - m ’
/mdﬂﬂexp{% n }

/ J im ,| (i2nhe 12 ihe
m”exp 2he - m m’
At last we obtain

y(x,t+¢€) = \/%/:anexp{% n } {1 i;“V(xH—O(sz)]

v+ ()= T ) +o(n)

X
i€ ihe 0? 5
= y(x,1) —ﬁV(x)\p(x,t)—i—%@w(x,t)—i—O(s ). (5.8.3.4.13)
Eq. (5.8.3.4.13) indicates that
0 () —y(xr) n* 9?

Eq. (5.8.3.4.14) is the Schrédinger equation.
On the other hand, the Feynman propagator itself satisfies Schrédinger equation:

0
ith(x,xo;t,to) = <x|He' Ht=to /h\x >
h* 0?

and boundary condition

K(X,XO;Z‘,Z‘()) =< x,t\xo,t >H= S(X—XO). (5.8.3.4.16)

5.8.3.5. One Wrong Application of Path Integral

Let us at first tell you that how to seek the free particle wavefunction y(x,#) by path integral
in some references. Some references assumed that the initial free particle is a Gaussian
wavepacket. The initial state is:

1 .
\II(X(),Z() = 0) = melkoxoe—x%/ﬂaz)’ (58351)
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which is normalized. Substituting the propagator in Eq. (5.8.3.3.3) and the initial wave-
function in Eq. (5.8.3.5.1) into the Eq. (5.8.3.2.3) yields

1 > x3 m i m(x—xp)?
t) = —— /[ d koxg — —% LA H0)
Wixt) Jav2m [w 0 [eXp (’ 0%0 4a2>] \ 2mine P [h 2
1

= expliko(x — hkot /(2m))

Va(2m)'/4\/1+it/t

x — hkot /m)?
x exp[—ﬁ], (5.8.3.5.2)

where T = 2ma?/h. In derivation the second equality in Eq. (5.8.3.5.2) we use the mathe-

matical formula
/ dye™’ e” = \/gevz/(4”), (Re u > 0). (5.8.3.5.3)

If Reu = 0, then to obtain a converge integral, first replace the i in the first equality of
Eq.(5.8.3.5.2) by o =i + €, where € is a small positive number. After integrating, let € — 0.
The corresponding probability density is

o 1 exp | = kot /m)*
P(x,t) = [w(x,1)] TR iR P[ za2[1+(z/r)2}]‘

If we compare this form with the initial probability density we see the generic shape of
P(x0,0) = |y(x0,0)|?, i. e., that of a bell, has remained intact with the following three
modification:

(a). It has became wider, a — (1 +12/12)1/2);

(b). The center of symmetry of the Gaussian wavepacket is now at x = fikot /m;

(c). The hight of the probability density function has diminished,

1 1
— .
av2m a/2n(1 +12/12)1/2
(d). The area under the curve P, at any time, remains unity.

Let us give you a numerical estimation. If we represent a piece of chalk by a
wavepacket, a = 1 cm, m = 1 g, there results

(5.8.3.5.4)

1~ 107 s~ 10% year.

It is quite clear that the wavepacket begins to distort significantly after a time t. But the
universe is only about 10'? year old. So some references think that the classical objects are
never observed to suffer a quantummechanical spreading.

Let us make an estimation for proton or neutron. a ~ 1013 cm, m ~ 1072* g, and
thus T = 2ma?/h ~ 10723 second. Let us make an estimation for electron. a ~ 10~'8 cm,
m~ 10727 g, and thus T = 2ma®/h ~ 1073 second. Therefore, according to the these esti-
mations, all free electrons, protons, neutrons, and so on, cannot exist actually. However, the
coldneutron experiment in 2010 mentioned in subsection 4.5 of chapter and the photoeffect
experiment in 1916 mentioned in chapter 1 observed the stable (at leat more than 300 sec-
onds) neutron and electron, separately. It is obvious that these theoretical derivations from
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Eq. (5.8.3.5.1) to Eq. (5.8.3.5.4) make mistake, violate the people’s basic practice seriously.
(At this stage, I hope that the readers to consider how to free from this predicament.)

Some authors also assumed that the initial free wavepacket is a delta function. The
mathematical valid expression of the delta function is given by the limit

e /0 (5.8.3.5.5)

Of course, we can repeat the derivations from Eq. (5.8.3.5.1) to Eq. (5.8.3.5.4), and obtain
the corresponding probability density. It is simple to take the limit a — O of Eq. (5.8.3.5.4)
and obtain results from Eq. (5.8.3.5.4)

_ _ 2ma 2a*(x — hkot /m)?
limP(x,t) = lim————= _
al_l,l(l) (x’ ) al_r,l(l) th(ZTC) 1/2 eXp tzhz/mz
2ma

- 2

clil—r%W[l—i_O(a )] (5.8.3.5.6)
The notation 0(a?) denotes “order” of a®. It stands for a group of terms, the sum of which
goes to zero like a?, with decreasing a. From Eq. (5.8.3.5.6) we see that for all 1 > 0,
lim P(x,7) vanishes uniformly for all x, in the limit @ — 0. This instantaneous flattening of
an infinitely peaked delta function initial state violates the special theory of relativity (the
velocity of the propagation of perturbation is much larger than the light speed c).

Until now that, where is the mistake in, has not yet been pointed out by all until now
references and textbooks. However, actually, this textbook thinks that the answer is simple.
The answer is that the Feynman path integral formulation of quantum mechanics is correct,
and the mistake in some references is in that the initial free state wavefunctions are not a
reasonable assumption. The initial free wavefunctions has to satisfy the Schrédinger equa-
tion. Both the Gaussian and the delta function wavefunctions do not satisfy Schrodinger
equation of free particle at all.

A free particle has to be described by a plane wave. Next, we prove that if the initial
free state wavefunction is a plane wave, then path integral formulation will also give a plane
wave final state wavefunction. Let us show you. Suppose that the initial state free particle
wavefunction is a plane wave with momentum p:

. 1 .
X0, 10) = ———=e'PX0/ T ciFoto/ T, 5.8.3.5.7
Wl o) V2nh V2nh ( )

For simplicity, we take 7y = O in the following calculations. Substituting the propagator in
Eq. (5.8.3.3.3) and the initial wavefunction in Eq. (5.8.3.5.7) into the Eq. (5.8.3.2.3) yields

1 o . m i m(x—xg)?
_ d ipxo/h T\ 7Y
vx1) ,/—znh/_m N i P BT 2
o it/ hyiv?t/(2hm) (5.8.3.5.8)

It is easy to verify that both the assumed initial state wavefunction and the final state
wavefunction, obtained by path integral formulation, satisfy the following free particle
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The wavefunction in Eq. (5.8.3.5.8) is an oscillation function with time ¢, and thus it always
does not decay.

5.9. Exercises and Solutions

(1) Find the eigenfunction of the z component, L, = —i%id/d0, of angular momentum.

Solution:

The eigenequation is

—ih?)% = 1@, (1)

where [, is the eigenvalue. Eq. (1) can be written as

dn® il
kil ——— 2
% " (2)
The solution of Eq. (2) is
illo
() = CeF . (3)

The C is an integration constant, can be determined by the normalization condition. After
rotating one circle around z axis, ¢ — ¢ + 2, the particle returns to the previous position.
As an operator corresponding to an observable, L, = —ifid/d¢ must be a hermitian operator.

Let us demonstrate a theorem on the boundary condition of any eigenfunction of
operator L;.

Theorem XXXI: Eigenfunction of L,. To ensure that L, is a hermitian operator, any
eigenfunction of L, must satisfy periodic boundary condition (or, single value condition).

Proof. According to definition, if L, is a hermitian operator, then (®,L,¥) = (L,D,¥).
Here @ and W are any two states of the particle. In position representation

R S N ()
(@,L¥) = A d¢7¢ <¢)W
ho, Mmoo p 9t
- Torwe)| - [Taet (5)
21

= (OO L)
Therefore,

@ (21)¥(21) — D (0)¥(0) = 0, (4)
that is,

w(2rn)  d*(0)

P0) @ (2m) 5)
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The ratio in Eq. (5) is the same for all wavefunctions ¥, &, ---. From Eq. (3) the
eigenfunction corresponding to I, = 0 is ®(¢) = C. Thus ®*(0) /®*(2x) = 1. From Eq. (5)
Y(2m) /P(0) = 1. Therefore, for any wavefunction ¥(¢), we have ¥(2r) = ¥(0), which
is the so-called periodic boundary condition. Here we conclude the proof. QED.

Using the above theorem, we have
(¢ +2m) = D(9). (6)
From Eq. (6) the eigenvalues of z component of angular moment operator L, are

IL=mh (m=0,£1,42,---) . (7)

Z

Eq. (7) indicates that [, is quantized. The corresponding eigenfunction is
D, () = Ce™. (8)

Using the normalization condition we can determine the C.

2n
A do|®,(9)* =2x|C]” = 1. ©)
We often choose C is a positive real number, C = 1/+/2%. Therefore, the normalized wave-

function is |

D, (¢) = —e™. 10
(0)==e (10)
It is to show that ®,, is orthogonal.
2n
(P @) = | dOL"(9)2(0) = 8 (1)

(2) Find the energy eigenvalue of a rotor around z axis.

Solution:
The classical energy of a rotor around z axis is lZ2 /21. I is rotation inertia. [, is angular
momentum. In quantum mechanics, the Hamilton operator of corresponding rotor is

2 m? o

H=*=———. 5.9.2.1
21 21 9¢? ( )
The eigenequation is
n* 9?
———W¥Y=EVY. 5.9.2.2
21 09?2 ( )
The wavefunction satisfying periodic boundary condition and orthonormal condition is
The corresponding energy is
m’h?
E,= >0. (5.9.2.4)

21
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Note that one energy eigenvalue corresponds to two eigenfunction (except m = 0), i. e.,

exp=ti|m|0, where
im| = /21;5'"’ (jm|=1,2,---) , (5.9.2.5)

i. e., the energy level is two-fold degenerate.

(3) Find the eigenstate of x component of momentum, p, = —ihd/dx.
Solution:
The eigenequation is
., 0
—zha‘P =pl¥, (5.9.3.1)
where p/, is eigenvalue of momentum. Obviously,
oan¥  ip
== 5932
ox h ( )
Therefore,
¥, =Ce't, (5.9.3.3)

where C is the integration constant. If the position of particle does not have limit, then p/,
can take any real number in —eo < p’. < oo, and is continuous. Eq. (5.9.3.3) is a plane wave,
and cannot be normalized. However, one often takes

e (5.9.3.4)

It is easy to show that
—+o0

dx¥ e (X)pr (x) = 8(pl — YY) (5.9.3.5)

In this problem we have to note that it is that a wavepacket other than a plane wave
represents the real particle.

(4) Find the energy eigenstate of one dimensional free particle.

Solution:
For one dimensional free particle, Hamiltonian is H = p?/(2m) = —h?/(2m)d*/dx>.
Eigenequation is
h? 02
—-———¥Y=FEVY. 5.9.4.1
2m ox? ( )
The solutions can be taken as
Wi (x) o< eher, ko= /2E >0 . (5.9.4.2)
The corresponding energy is
h2k2
E=—2>0. (5.9.4.3)
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Because k, > 0 and k, < O correspond to the same energy, the energy level is two-fold
degenerate.

(5) Show the Hermiticity of the momentum operator p, = —ifid/0x.

Solution:
Let us look at the matrix elements of p,.

* 0
(px)IZ = (‘Plapx‘Pz):[ dr‘P’[ (—lha>l}‘2
L (D
_ —zh[mdrwl <a>l}1
I 9\ ..
= —lh‘Pz‘Pleﬂh/ dr¥, (_> P
—oo ox

= ih/w dr¥, (;) ¥
—00 x

where we consider that ¥; and ¥, are square-integrable functions, and thus

P77, =0.

| (=)

(6) Compute the commutator [py, x].
Solution:
Since

., 0 ox J¥ R g
px¥ = —zha(x ) =—ih (‘Pax —I—xg> h(‘P%—xg)

) 2 4
xpyV =x <zh§) = —lhxg

and

We easily obtain
[Px,X] = pxx —xpy = —ih.
(7) Let L, Ly, Ly, L3, M be linear operators in a complex linear space. Show (with the
help of the definition of a commutator) the some commutation rules for commutators.

Solution:
We use the definition [L,M]=LM-ML.

[L]Lz,M] = Lil,M—-—MLiL,
= LiML,—ML L, +LiI,M—L ML,
- [L17M]L2+L1 [L27M]
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M,LiL,] = —[LiLy,M]=—[L{,M]L,—L;[Ly,M]
= Ll[M,Lz]—I—[M,Ll]Lz

(L1, [L2,L3]] = [LilaL3] —[L1Lo, Ls]
= [Ll,Lz]L3 + 1L, [Ll,Lz] — [LI,L3]L2 — L3 [LI,LQ]
= —[L3,[L1,Lo]] - [L2, L3, L1]]

The last equation is also called Jacobi identity.

(8) Let A and B be Hermitian operators, C = —i[A, B], and D = {AB+ BA}. Prove the
following inequality of average values:

1
<A*><B*>> Z[<C2>+<D2 >].

Solution:
Let ®(x,7) be an arbitrary state, A = a.+ i3 be a complex number. We define

0<I() = /y(A+ixB)c1>yzdx
- / (A — iMB)(A + iMB)Ddx

= /&ﬁﬁ@dﬁﬂM{/@ﬁ#@dpﬁ/@ﬂAmk—BMM@dx

= <A’> 4+ <B>\-a<C>-B<D>

With 5
<C> <C%*>
<B’>|lo-—" | =o*<B’>>—-a<C ——
{ 2<BZ>] et TS

and 5
<C> <C*>
<B*>|p——— | =p*<B*>-P<C>+—"
[B 2<BZ>] b ks i Es

we now have )
<C> ]

<A’>+4+<B>|lo—— "
* [ 2<B>>

c> 17 c? D?
—|—<BZ>|:B—< >] <C*> <D*>

2<B2>| 4<B2> 4<B2>"

But o and P can be chosen arbitrarily, i. e.,

1
<A?><B’>> Z(<C2>+<D2 >)

must hold.
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(9) Prove
T(a) =eP%/" with p=—ihV.

Solution:
Let wavefunction can be expandable in its Taylor series. Then we have:
;o o 1 —ihV)-al”
T(@)¥(r) =5 ¥(r) = ¥ [ii( = ) “] w(r)

nl
= n!

n

- f‘b("'!v)"qf(r) —¥(r+a)

as the penultimate expression is simply the shorthand notation for the Taylor expansion of
the function of [r+a] at the point r.

(10) If operator A is Hermitian, show

<A*>>0
Solution:
<A >= [ A — [ ) (AW)*AWdx
_ [ AW dx > 0,
(11) Prove that if

/‘P*H‘de

is minimum, then the normalized wavefunction is the ground state.

Solution:
It is easy to verify that the wavefunctions for a particle in a one dimensional box with
walls at x = 0 and « satisfy the equality

/‘P*‘Pxxdx:—/ P, |%dx, (5.9.11.1)
0 0

where the subscript x denotes differentiation. Apart from a constant factor and with the Eq.
(5.9.11.1), we may write

<H>= —/ W2y, (5.9.11.2)
0

Let ¥ minimize < H >. Then infinitesimal variation of ¥ causes no change in < H >. Let
Y — ¥ 4 8¥. The variation 8¥ is an arbitrary infinitesimal function of x that vanishes at
x = 0and a. Then

<H>= /‘P%dxa/(‘Px+6‘Px)2dx:<H>+8<H>. (5.9.11.3)

8 <H>= Z/TXS‘I’xdx = Z/TX%S‘de =0. (5.9.11.4)



252 Fu-sui Liu

Integrating the last term by parts and dropping the “surface” terms gives
/ W, 8Wdx — 0. (5.9.11.5)
Variation of the normalization statement (both ¥ and ¥ + 8% are normalized) gives
k/‘PS‘de:O, (5.9.11.6)
where A is an arbitrary undetermined multiplier. Combining the last two equations yields
/ 8P (W, — AW)dx = 0. (5.9.11.7)

If this equation is to be satisfied for an arbitrary variation of ¥ about the minimizing value,
we may conclude
Y, =A¥, (5.9.11.8)

where W is an eigenstate of H. It follows that, in any eigenstate, < H > is stationary and is
minimum in the ground state.

(12) Let Oy =< ®,|0P; >, show that (OT);, = (Oy)*.

Solution:
0, = < (I)n‘Oq)l >
= < 0P/, >"

Taking the complex conjugate of the last and first terms in this equality gives the desired
result.

(13) Employing Hermitian property of H, show that, in general, extreme values of
< H > yield the eigenfunction of H, and that any eigenfunction of H makes < H > an
extremum. Your derivation should be independent of the specific boundary conditions.

Solution:
To incorporate the wavefunction normalization in the analysis we write
<YHY >
<H>= ——7——. 5.9.13.1
<Y|¥> ( )

Taking the variation of Eq. (5.9.13.1) yields

(KPP >)8<H> = — <WHY > [<V|¥ >+ <PV >
+ <Y|¥> [<dVIHY > + < WY|HSY > +0[(8¥)]

Neglecting terms of 0[(8¥)?], and recalling the Hermiticity of H, the preceding equation
becomes

(KPP >)8<H> = — <WHY > [<P|¥>+ < WY >
+ <Y¥>[<dVYHY >+ <VPHNY >]
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With < ¥|HY >= A and < ¥|¥ >= 1, it follows that any wavefunction ¥ which makes
8 < H >= 0, to first order in 8%, gives

0=2Re < d¥,(—A+H)Y¥Y >

If we label < 8¥,(—A+ H)W >= z, where z is a complex number, then the preceding
statement remain valid if 8¥ is multiplied by z, in which case the preceding gives

<8¥,(-A+H)¥ >=0

If this relation is to be satisfied for any arbitrary variation 8P, then it must be the case
that HY = A¥. Furthermore, it is clear from the equation above for 8 < H >, that any
eigenfunction of H makes < H > an extremum.

(14) Give the forms of position and momentum operators of a free particle in Heisen-
berg picture.

Solution:

For a free particle

p2

=—. 9.14.1
o (5.9 )
Substituting Eq. (5.9.14.1) into Eq. (5.7.3.10) yields
dpy B
th = [pu,H| =0. (5.9.14.2)

From Eq. (5.9.14.2) the momentum operator of free particle in Heisenberg picture is

pr(t) = pu(ts) = pr(0) = constant = ps

Substituting Egs. (5.9.14.1) and (5.7.3.7) into Eq. (5.7.3.10) yields

d;_;’ a %[xHaH} - % [e%H(t_to)xSe_%H(t_t"),H
i
. 2 . . :
= _leﬁH(F’") xs, DS | = fH—10) = pRH—1) S (= fH(t—t:) _ PH (5.9.14.3)
ih 2m m m

From Eq. (5.9.14.3) we have the position operator of free particle in Heisenberg picture is

(1) = xu (1) + %Hr. (5.9.14.4)

(15) Discussion one dimensional oscillator in Heisenberg picture.

Solution:
P;zc 22
H¢=Hy = —= +-m®
S H m + 2m X
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xg(t) = ¢t xge
jHL _jH
Pru(t)=enpesen (5.9.15.1)
It is easy to find that
dxn (1) = l««,”‘%[JCS,H]E"% = Pen(l)
dt ih m
d t | Hi
”)‘Tf;’() = %e’% [Prs, Hle % = —mo?xy (1). (5.9.15.2)
i
Therefore,
d? 1 dpypl(t
WXH(I) = EPXTIZ() = —’xy(1), (5.9.15.3)

which is similar to the Newton equation of one-dimensional harmonic oscillator. The solu-
tion of Eq. (5.9.15.3) is
xpg(t) = cicosot + cysinwt

dxy(t
Prp(t) = m%() = —mOSinot +mc,Wcosot . (5.9.15.4)
If the initial condition is

xg(0)=c; =x

Pri(0) =m0 = p,
Do

0= , (5.9.15.4)
me
then
xp (1) = x.cosot + Lo Sinot
me
P (1) = —m@x,Sin®t + pocoso. (5.9.15.5)
(16) The project operator P, is defined

P, =|n><nl|, (5.9.16.1)

where |n > is a normalized state. Applying P, to an arbitrary state|¥ >
P)|¥ >=|n><n|ly >=<n¥>|n>. (5.9.16.2)

Eq. (5.9.16.2) indicates that after acting of P, on |¥ > we obtain a ket |n > multiplied a
constant < n|¥ >. We can say that the operator P, projects |¥ > on to |n >.

Prove
P2=p, (5.9.16.3)
Solution:
Consider
PyP, =|m><m|n><n|=38,,|m><n|=P~,. (5.9.16.3)

Eq. (5.9.16.4) gives Eq. (5.9.16.3). The Eq. (5.9.16.3) states that once a state is projected
into a particular state, then a further projection on to that state does not change anything.
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(17) Show that the matrix representation of P, has eigenvalue zero and one.

Solution:
From Eq. (5.9.16.3) we have

P,(P,—1) =0. (5.9.46.1)

From Eq. (5.9.46.1) the projection operator has the value zero and one, i. e., the matrix
representation of P, has eigenvalue zero and one.






Chapter 6

Angular Momentum and
Hydrogen-Like Atoms

6.1. Orbital Angular Momentum

6.1.1. Definition

Angular momentum is one of the fundamental constants of motion together with linear
momentum and energy of an isolated system. In classical mechanics the angular momentum
L of a particle of mass m about the origin O is defined as

L=rxp, (6.1.1.1a)
where r and p represent the position and linear momentum of the particle.
Quantummechanically, we know p = —ihV. Thus Eq. (6.1.1.1a) can be rewritten as
L= —ihrxV. (6.1.1.1b)

The components of L are

0 d
Ly =yp.—zpy = —ih | y=— —2= ). 112

x = YP: —2py = —ih (y % ¢ ay) (6 a)

) d d
Ly, =zpy—xp, = —ih (za —xa—z> . (6.1.1.2D)

) 0 0
L, =xp, —ypx = —ih <x$ —ya> . (6.1.1.2¢)

Utilizing the fundamental commutator

[xa,pﬁ] B ihﬁaﬁ, (6.1.1.3)

one can show the following commutation relations:

[nyx] =0, [any] = ihz, [anz] =ihy
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[Ly,x] = —ihz, [Ly,y]=0, [Ly,z]=ihx
[L;, x| =ihy, [L;y|=—ihz, [L;,z]=0 . (6.1.1.4)
[Le;px] =0, [Lx,py] = ihp;, [Ly.2] =ihpy
[Ly.px] = —ihpz, [Ly,py] =0, [Ly,ps] = ihpx
[L:, px] = ihpy, [Le,py] = —ihpx, [L:,pc]=0.

If one writes x,y,z as x1,x2,x3 and Ly, Ly, L, as Ly, L;, L3, then one can rewrite Eq. (6.1.1.4)
as

where €,py is called Levi-Civita notation. It is a totally antisymmetric tensor in three di-
mensins, which’s definition is:

Eapy = —Epoy = —Eop €123 =1, (6.1.1.6a)

where o, B,y = (1,2,3). For the permutation of subscripts in €4, its sign should be
changed. Thus, if two subscripts are the same, then €4, is zero, for example €112 = €121 =0.
The Eq. (6.1.1.6a) can be written in the following better form:

+1, if a,B,y is an even permutation of 1,2,3
Eapy=94 —1, if o,By is an odd permutation of 1,2,3
0 if two or more subscripts are equal
(6.1.1.6D)
Similarly, one can show that
[La,plg] = SaByihpy, (6.1.1.7)
[Loc>L[3] = gaByith (6.1.1.8)

Eq. (6.1.1.8) can be written explicitly.
[Ly,Ly) =ihL;, [Ly,L;)=ihL, [L; L, =ihLy . (6.1.1.9a)

Eq. (6.1.1.9) tells us that the operators representing any two components of angular momen-
tum do not commute and therefore the corresponding observable cannot be simultaneously
measured. The commutator relations in Eq. (6.1.1.9a) are some times combined in the
single vector equation

ihL=LxL, (6.1.1.90)
which in determinant form appears as
ex e e
ih(exLy+eyLy+eL;)=| L L, L |. (6.1.1.9¢)
L. L, L
[Ly,Ly] = [Ly,L,) = [L;,L;] = 0. (6.1.1.10)

The Eqgs. (6.1.1.9) and (6.1.1.10) can be written in an equivalent form as

LxL=ihL or also [Lq,Lp)=iheqpLy. . (6.1.1.11)
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Figure 6.1. The spherical polar coordinates (r,0,0) of a space point P.

The square of angular momentum is
2_ 727272
L" =Ly +Ly+L;. (6.1.1.12)
The commutator of L? with L, is

L2,L) = [L? +L§ +L2,L) = (L2 L]+ [Lg,Lz] +[L2,L,]
— Lx[anLz] + [anLz]Lx“‘Ly[LyaLZ] + [Ly _LZ]Ly +0
= —ihL,Ly —iAL Ly +iRLLy+ihL,L,=0.  (6.1.1.13)

Similarly,
(L%, L,]) = [L* L)) =0 (6.1.1.14)
or
[[* L) =0 (a=x,y,2) . (6.1.1.15)

From Eq. (6.1.1.15) we see that L> commutes with the three components of the angular
momentum, therefore total angular momentum and one of its components can be simulta-
neously measured very precisely.

6.1.2. Angular Momentum Operator in Spherical Polar Coordinates

For determining the the eigenvalues and eigenfunctions of the operator L2, it is more con-
venient to express Ly, Ly, and L, in spherical polar coordinates r, 0, and ¢ rather than in the
Cartesian coordinates x, y, and z. The Cartesian coordinates and spherical polar coordinates
are related as

x = ysinBcosd, y = rsinBsind, z= rcord . (6.1.2.1)

r=+/x2+y>+z2, 6 =arctan~ biaiy ¢ = arctan? - (6.1.2.2)

Z
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Differentiating r, 6, and ¢ with respect to x, y, and z, we have

0 00 0 0 —1
i sinBcosd, — = M, % _ —cosecOsing. (6.1.2.3a)

ox ox r ox r
g—; = sinBsing, g—g = m, g—i’ = LcosecBcosd (6.1.2.3b)
g—; = cosb, g—g = —sind, a—f =0. (6.1.2.3¢)

Operating L, on wavefunction ¥(r,0,0), one has:

[ o¥ o¥
LY(r,0,0)=—ih {xa —yx]

) o¥Vodr Jd¥adb J¥a o¥Vor Jd¥ad6 J¥ I
Substituting Eq. (6.1.2.3) into Eq. (6.1.2.4) yields

L¥(r,0,0) = —ih™U00 1 = —ing . (6.1.2.5q)

Similarly, ] ]
L.=ih [sinq)% —I—COtGCOS(])%] . (6.1.2.5D)
L, =ih [—cosq)% —l—cotesinq)%] . (6.1.2.5¢)

Utilizing Eq. (6.1.2.5) yields

d d
2 — — k2 |si —
LY (r,0,0) = L LY (r,0,0) = —h [smq)ae +cot600s¢a¢]

[sinq)% +cotecos¢aa—¢] Y(r,0,0). (6.1.2.6)

We can also obtains the expressions of L%‘P(r,e,q)) and L2¥(r,0,0). On adding these ex-
pressions one obtains

2o [ L9 (el ) L 9
Lr==h Line 6 <Smeae T Sin?0 002

h? 9 0 1,
— "% (ingZ )+ ——12. 1.2,
5in® 00 (Smeae> T in20' (6.1.27)

Since the variable r does not appear in any one of these operators, their eigenfunctions are
independent of r. The operator L, is also independent of 6 while L., L,, and L? are functions
of 0 and ¢.
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6.1.3. Rising and Lowering Operators

In the next subsection we will derive the eigenvalues and eigenfunctions of L? and L, that
follow from the commutation relations Eq. (6.1.1.9a). To facilitate the derivations we
introduce the ladder operators L, and L_. The reader will find that these similar to the
annihilation and creation operators (a and a™) introduced for the harmonic oscillator in
chapter 4. The ladder operators are defined according to

Ly=L,+iL,, L =L,—iL, . (6.1.3.1)
Some immediate properties of these operators are
[L,Ly|=hLy, [L,,L_]=—hL_ . (6.1.3.2)

[L?,L;]=0, [L*L]=0. (6.1.3.3)

The Egs. (6.1.3.2) and (6.1.3.3) follow from Eq. (6.1.1.9a). To establish the two relations
in Eq. (6.1.3.2) one merely inserts the definitions of L, and L_. For example,

[Le,Ly] = [L;,Ly+ily] = [L;, L] +i[L.,L,) = ihLy —i-ihL, = hL. (6.1.3.4)

Other relations that L, and L_ satisfy are

=L Ly +L}+hL,. (6.1.3.5q)
*=L,L +L}—HhL,. (6.1.3.5b)
[Ly,L_]=2AhL.. (6.1.3.6)

2L ~L2)=LiL_ +L L. (6.1.3.7)

The ladder operators can be written in spherical polar coordinates by using Egs. (6.1.2.5b)
and (6.1.2.5¢).

LY = (L. +iL,)¥ =ih [sinq)aa—e —|—cot6cos¢i] Y

90
+i*h —coscp—a +cotesinq>—a ¥ (6.1.3.8)
% 30| ¥ 1.3
From Eq. (6.1.3.8) one obtains
; ) 0
— iRt | ;i —
L, =ihe [ i —|—cotea¢] . (6.1.3.9)

Similarly,

7 a a
— 7 i P _
L_=ihe [la —|—cot9a ] . (6.1.3.10)
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6.1.4. Eigenvalues and Eigenfunctions of L> and L,

We have found the eigenvalues and eigenfunctions of the z component of angular momen-
tum operator L,. They are given by Eq. (5.8.1.10), and are depicted in the following:

d
L.®(0) = —ih%cb(q)) = L&(0). (6.1.4.1)
1 imd
®,,(0) = Ve (6.1.4.2)
l,=mh, m=0+1,+2, . (6.1.4.3)

The commutation relation of operators L and L, is zero [See Eq. (6.1.1.15)]. Therefore,
the operator L? and operator L, have common eigenfunctions.

L*¥(0,0) = H*0¥(0,0) = h*(O(0)D,.(0), (6.1.4.4)

where  is proportional to the eigenvalue of operator L?, is dimensionless and real.
Substituting Egs. (6.1.2.7) and (6.1.4.1-3) into Eq. (6.1.4.4), and multiplying by
sin®(0)/(©(8)d(¢)) yields

ﬁdie (Sine%ée)) + (C— S?;;) ©(6) =0. (6.1.4.5)

Putting u = cos in Eq. (6.1.4.5), writing ®(8) = P(u), and noting that 1 —i?> = sin®# yield

e N L @ 6.1.4.6
28~ dude gy = UKL ( )
o 1 d d
4 _4a 6.1.4.7
sind®  du ( )
The Eq. (6.1.4.5) becomes
d 2, AP (u) m’
LW . P(u) = 0. 6.1.4.8
e e e (6.1.45)

Eq. (6.1.4.8) is an eigenvalue equation that is a second order differential equation (asso-
ciated Legendre equation) andtherefore, has two solutions. The solutions are obtained in
standard mathematical textbooks on special functions. One finds that for the solution that
is regular in 0 in the interval (0,7), i. e., cos6 in the interval (-1,+1), is well known and is
called the associated Legendre function, designated as

Pr(cos®), C=I(I+1), 1=0,1,2,---, |m|<I. (6.1.4.9)

In the section 6.2 we will show that the quantum number / is linked to the orbital angular
momentum, while m is given by the z component of the orbital angular momentum. For
fixed m, P"* and P;/" are mutually orthogonal

! 2 (I+|m|)!

71d‘LlPl (y) ! = mmﬁuu (61410)
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The function ®(6) can now written down as
O(0) = P(u) = constant x P"(cos). (6.1.4.11)

Using the normalization constant, ®(6) becomes

—|m|)1]"?
ezm(e)z[y%l%] P"(cos8)(—1)". (6.1.4.12)

The complete eigenfunction of L? corresponding to quantum / and m is thus

2041 (1 —|m|)!

1/2 o
3 W] P"(cos0)e™ (—1)" = Y/"(0,0) (6.1.4.13)

¥(6.0)=0(0)2(0) = |
for m > 0.
For m < 0, using the property

Y= (—1)"ym, (6.1.4.14)

one obtains that the same expression holds but without the factor (—1)™. The function Y,
is called a spherical harmonic function or simply a spherical harmonic.

The function ¥;”'(6, ¢) forms an orthogonal and normalized set or, for brevity, forms an
orthonormal set:

21 b ,
/ do / 46Y"(8,0)Y (6,0) = S1rSyr (6.1.4.15)
0 0
Thus the eigenvalue equation takes the form:

L2Y/"(8,0) = (I + 1)Y"(8,0), (I=0,1,2,---) . (6.1.4.16)

where (I + 1)h? are the eigenvalues of operator L?, Y/" = |Im > being the corresponding
eigenfunction. (Note that L? represents both operator and the eigenvalue of operator L?.)
The eigenvalues /(14 1)A? is (214 1) fold degenerate corresponding to a particular value of
[ there will be (21 + 1) values of m (= —I,—1+1,---1). [ is often referred to as the orbital
quantum number.

We also have:

m . J 1 im m
LY, (G,q)):—zh% [@,(e)ﬁe ¢] = mhY/"(0,9), (6.1.4.17a)
1. €.,
LY"|lm>=mh|lm>, |m| <] m=—l,—-1+1,---,1-1,1 . (6.1.4.17b)

Thus ¥/"(0,0¢) are simultaneously the eigenfunction of L? and L,. But L? and L, (Ly) do
not have simultaneously eigenfunction except for / = m = 0 case. m is referred to as the
azimuthal or magnetic quantum number.

The form of Eq. (6.1.4.16) indicates the following. Suppose that a system (e. g.,
a wheel) is rotating some where in space, far removed from other object. According to
spontaneous equiprobability symmetry breaking law, what possible values can be taken by
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the body-factor? The values are only the form L = f\/I(l+1), where [ is some integer.
For example, one would never observe the value L = /v/7, since it is not the form L?> =
R2I(1+1). There is no integer for which /(I + 1) = 7, and thus the body-factor cannot take
I(l4+1) =7. This is similar to the fact that a particle in an one dimensional box is never
found to have the energy £ = 7E;. This value does not fit the energy eigenvalue recipe
E = n®E;.

Suppose that the body-factor takes the magnitude of angular momentum of the wheel
and find the value L? = 6A? according to the wavepacket law. This corresponds to the
[ = 2. Having taken L?, the body-factor is left in an eigenstate of L?>. What value does the
body-factor take for L,? The answer is given by the form of the eigenvalues of L, in Eq.
(6.1.4.17). Since [ =2, L, can only be found to have one of the five values:

I, =2h,k,0,—h,—2h.

Suppose that the body-factor takes [, = 2h, which means that the result of the spontaneous
equiprobability symmetry breaking is that the body-factor chooses the m = 2. Then the
wheel as a body-factor is left in the state Y7.

The form of Eq. (6.1.4.16) indicates that the eigenvalues of operator L? are 2/ + 1-fold
degenerate. For the problem considered, all the five states Y7(8,0),Y5 (8,0), .-+, Y, 2(8,0)
correspond to the same eigenvalue of operator L? (i. e., L* = 6h%). (See Fig. 6.2.)

Since the angular momenta are quantum operators, they cannot be drawn as vectors
like in classical mechanics. Nevertheless, it is common to depict them heuristically in this
way. Depicted on the Fig. 6.2 is a set of states with quantum numbers, [ = 2 and m =
—2,—1,0, 1,2 for the five cones from bottom to top. Since, |L| = VL2 = h/6, the vectors
are all shown with length 711/6. The rings represent the fact that L_ is known with certainty,
but L, and L, are unknown; therefore every classical vector with the appropriate length and
z-component is drawn, forming a cone. The true angular momentum for the particle (i.
e., the body-factor of the wavepacket) would be somewher on this conee according to the
spontaneous equiprobability symmetry breaking. Again, this visualization should not be
taken too literally.

This quantization rules of orbital angular momentum are technically true even for
macroscopic systems, like the angular momentum L of a spinning torque. However they
have no observable effect of angular momentum quantization. For example, if L, /A is
roughly 100000000, it makes essentially no difference whether the precise value is an inte-
ger like 100000000 or 100000001, or a non-integer like 100000000.2, because the discrete
steps are too small to notice. The classical torque is shown in Fig. 6.3.

For [ = 2, L?> = 6h*. The only possible orientations of L onto the z axis are the five
values shown in Fig. 6.2. The precessional motion depicted preserves L and L.. 6 =
cos~'2/1/6 is the smallest possible angle between L and z axis.

Next we discuss the Heisenberg uncertainty relation of angular momentum. We have
derived this relation in Eq. (3.4.1), and is depicted as follows:

h| <L, > |

(AL)(AL) = =2

(6.1.4.18)

(ALc)(AL;) > @ (6.1.4.19)
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Figure 6.2. The vector model of angular momentum. The eigenvalue of operator L? =
R*L(L+1) is (21 + 1)-fold degenerate. For a fixed magnitude, L = h+/I(l+ 1), there are
only (2 + 1) possible projection of L onto a given axis. The vector L, of length /I(/ + 1)A,
precesses about the axis of quantization, the (2/ + 1)/ allowed projections of L on this axis
given by mh, withm = -, —[+1,--- | +1.

>M<Q>|

(AL)(ALy) 2 ————, (6.1.4.20)
(AL*)(AL) =0. (i=x,y,z2) (6.1.4.21)

The three components of angular momentum cannot be simultaneously measured very pre-
cisely because there are uncertainty relations between them, from which we deduce that if
a system (such as a wheel, a particle, an atom, a rigid rod, etc.) is in an eigenstate of one of
angular momentum say L., it will not be simultaneously in an eigenstate of either of the L,
or L.. The operator L> commute with components of L, therefore total angular momentum
and one of its component can be simultaneously measured very precisely.

Angular momentum is a vector operator. The square magnitude of this vector is given
by L%. Having obtained L2, Eq. (6.1.4.18-21) tells us clearly that the body-facor absolutely
cannot take precisely simultaneously all the three Cartesian components of L, the reason of
which comes from the characteristic of a mathematical function (See chapter 3.) other than
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= o

L

T

Figure 6.3. The torque caused by the two opposing forces Fg and -Fg causes a change in
the angular momentum L in the direction of that torque (since torque is the time derivative
of angular momentum). This causes the top to precess.

comes from the destruction or perturbation of measurement processes on the corresponding
states. In one word, uncertainty relations do not have any connection with measurement.

Consider a case of a wheel whose center is fixed in space. The body-factor of the
wheel takes some values of L? according to the wavepacket law. What motion of the wheel
will preserve these values but not preserve L, and L,? A very worthwhile model for such
motion is given by a classical solution in which the angular momentum vector of constant
magnitude precesses about the z axis at a constant inclination to that axis (See Fig. 6.3.),
thereby maintaining L,. Such motion is realized by a spinning top, with fixed vertex, in a
gravity field.

In classical mechanics L is precisely determined as a function of time. At any instant L
may be observed and completely specified. In quantum mechanics L is an operator. It is in
principle possible that the eigenstate of L? is dependent on time. In this case the observed
value at any instant of L. may be completely specified as well as that in classical mechanics.
If at any instant time #, the system is in such a state with definite / and m values, then it is
more consistent to view the related configuration as one in which the L vector is uniformly
spread over a cone about the z axis with half apex angle 6 = cos~!'m/+/I(I+1) (See Fig.
6.3). However, we have to point out that magnitudes of both the value of / and the value of
m can be a function of time, i. e., the cone about z axis can be varied with time.

For a given value of L [i. e., i\/I(I+1)] the maximum value of L, is Al. Butl <
VI(I+1). Tt is follows that the angular momentum vector is never aligned with a given
axis. Furthermore, there are only a distance, finite /(/ 4+ 1) number of inclinations that
L makes with any given axis. This extraordinary property (classical mechanics permits a
continuum of inclinations) is sometimes called the quantization of space.

In order to know the properties of eigenfunction ¥,"(cos8) = ¥;"(u), we give the fol-
lowing mathematical formulas:

If m = 0, then P/"(u) becomes a simple polynomial called the Legendre polynomial,
written as P;(u). We summarize the properties of P;(u) first and then those of P"(u) before
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discussing Y"(8,¢).
;1 d

B = (~1) 5 (1) (6.1.4.22)
|m|
B ) = (12", (6..4.23)

Some of the individual functions can be written as: Py(u) = 1, P (u) = x, P, = (3u* —
1)/2. We also note: P;(—u) = (—1)'P;(u) and P,(0) = 1.
The normalization relation for the Legendre polynomial is found to be

1
/_ dub ()P

We also note that P;(u) appears as a coefficient of expansion for the following function:

2
3 1.4.24
TENRL (6 )

—-Y
1 —=2us+5% %

For the associated Legendre function, P/"(u), we have correspondingly the following:

= /1 —p2, P} (1) =3uy/1— 2, P3(u) = 3(1 —p?), with the normalization condition

2 (I+m)
/ duP/" (u /“)_—21+17(l—m)!5”/' (6.1.4.26)

Pi(u)s'. (6.1.4.25)

The spherical harmonic function Y;*(0, ¢) is already defined in Eq. (6.1.4.13). Some typical
expressions of ¥,"(0,¢) are given by:

YY) = (6.1.4.27)

1
Vi
0 3
Y = Ecose. (6.1.4.28)
3 Lo
F\ g2 sin®. (6.1.4.29)
o_ |3 2
Y, = EC’)COS 0—1). (6.1.4.30)
+1 15 o0
;5 =7 g sin®. (6.1.4.31)
w2 _ |15 20
Y; o sin®. (6.1.4.32)

The spherical harmonics can also be written in real form by taking linear combinations of
Y/"(0,0). The real form of spherical harmonics for m = 0 are

-~
t
I

YO

1,cos0 = \/g (Ylo +Y10*) = Ylo Yl(,)cose = _l\/g (YZO —YZO*) . (61433)
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Table 6.1. The first few spherical harmonics in real form

[ | m | notation | Spherical harmonics in real form
0]0 s V/1/(4n)

110 - \/3/(47)cos®

1|1 Dx \/3/(47)sinBcosd

1)1 Py \/3/(47)sinBsing

210 | dyo e V/5/(161)(3cos?0 — 1)
201 dy, \/15/(4m)sinBcosBeosd
211 dy, \/15/(4m)sinBcosBsing
212 dep \/15/(4m)sin®cos2¢

212 dyy \/15/(47)sin?@sin2¢

For m = 0, chosa is identical to Y,O. The first few spherical harmonics in real forms are
listed in Table 6.1. The subscripts in Tab. 6.1 z, x, y, xy, yz etc. indicate the behavior of the
real spherical harmonics in terms of Cartesian coordinates. The designation for example p,
or d,, reflects the orientation of these atomic orbitals along the z axis for p, or along the
xy plane for d,,. The necessity to introduce the real forms p, or d,, etc. will be explained

latter.

6.2. Hydrogen Atom

6.2.1. Two Body Problem

A hydrogen atom is an atom of the chemical element hydrogen. This electrically neutral
atom contains a single positively-charged proton in the center of the hydrogen atom and
a single negatively-charged electron bound to the nucleus by the Coulomb force. Atomic
hydrogen comprises about 75% of the elemental mass of the universe.

In the next calculations we assume that the proton number is Z = 1. So, we can discuss
both the hydrogen and the hydrogen-like atom. We consider the hydrogen-like atom as a
system of two interacting particles ) and m;, being at r; and r;, respectively, the interaction
being due to Coulomb attraction potential V (|r; —r|) = V(r) of their electrical charges. Let
the charge on the nucleus is Q| = Ze and the charge on the electron is O, = —e < 0.

The time-dependent Schrodinger equation is

. d K2 h?
lﬁg‘l’(rl,rz,t)—[—(TWV%—F%V%)—&-V(r]—rz)}‘l‘(rl,rz,t), (6211)
where ) ) )
V%:g’?+§7+§?, for i=1,2 (6.2.1.2)

The V2 is called Laplacian operator or “del squared” in rectangular coordinates. Eq.
(6.2.1.2) can be separated into two equations, one of which represents the translational
motion of the hydrogen-like atom as a whole and the other, the relative motion of the two
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particles. For this we consider new variables X, Y, Z which are Cartesian coordinates of the
center of mass of the hydrogen-like atom and r, 6, ¢ of the poler coordinates of the second
particle (electron) relative to the first (nucleus). These coordinates are related to the two
particle by the equations:

r=ri—r=(xy2). (6.2.1.3)
R=(X,y,z)="" T (6.2.1.4)
M
where
M =my +my =total mass . (6.2.1.5)
X =x1 —Xxp = rsinBcoso. (6.2.1.6a)
Y =Yy1 —y2 = rsin®sing. (6.2.1.6D)
=21 —22 = rcos0. (6.2.1.6¢)
We introduce the reduced mass mm
= 1 (6.2.1.7)
my +my
Let us show that 5 5 5
Wy g o Mo (6.2.1.8)
21’}’11 2m2 2M 2/,1

where V% and V2 have the same expression as given by Eq. (6.2.1.2) except in the former
case we replace x,y,z by X, Y, Z while in the latter case x, y, z refer to the relative coordinates
in Eq. (6.2.1.6).

o s aa s aa 00z 22 oo
ox; 0Xdx; Oxdx; 0Ydx; 9dyox; 0Zdx; 0zox|

Substituting Egs. (6.2.1.6) and (6.2.1.4) into Eq. (6.2.1.9) yields
0 m; 0 0

5 = 3% T ar (6.2.1.10)
%:%%:(%)Z%JF%JF %%. (6.2.1.11a)
Similarly,
aa;% _ %ail - (%)Zaa; +8822 +2%%. (6.2.1.11b)
%:%%:<%>2%+%+2%%' (6.2.1.11¢)
aa; aizaiz - (% 28%+%—2%%. (6.2.1.11d)
%:%a%: (%)2;—;+%_ %%. (6.2.1.11e)
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* 99 _<m2>2 X P m P 62.1.115)

—) ==t -2——.
2 dmon \M) a2 "o "M aza:
Substituting Eqgs. (6.2.1.11a-f) into the left hand side of Eq. (6.2.1.8), one knows that Eq.
(6.2.1.8) is correct.
Substituting Eq. (6.2.1.8) into Eq. (6.2.1.1), one obtains that the time-dependent
Schrodinger equation (6.2.1.1) becomes

'hE‘P( Rit)=|— hzv +h2V2 +V(r|¥(r,R,1) (6.2.1.12)
lal‘ rontl) = ZMRZ r rot),

To solve the energy eigenvalue problem we use the separation method of variables, and
write, replacing the energy term by Er + E,

W(r,R,1) = y(r)o(R)e "ExTEN/R, (6.2.1.13)
Substituting Eq. (6.2.1.13) into Eq. (6.2.1.12), one obtains

IPy(r) )y2 I*0(R)
2u

e OB G2() +V ()W) = (Ex+E)(r)o(R).  (6.2.1.14)

VZO(R) —
Dividing Eq. (6.2.1.14) by ¥(r)¥(R) and simplifying yield

hZ
— 5 VRO(R) = Exd(R). (6.2.1.15)

which is equivalent to Schrodinger equation of free particle.

12
——Vzw( )V (ry(r) = Ey(r). (6.2.1.16)
The solution of Eq. (6.2.1.15) is ‘

O(R) ~ TR/M (6.2.1.17)
with -
h2P

Ep=—— 2.1.
R= Sy (6.2.1.18)

where P = p;| + p» is the total momentum of the hydrogen-like atom.

Eq. (6.2.1.16) is a partial differential equation because it contains three independent
variables. To solve this equation it is often to use the separation method of variables. The
purpose of variable separation is to split the equation into terms each of which just involves
one such coordinate. However, the Coulomb potential V (r) = V (y/x* +y? +7z2), and thus
the separation into x, y, z cannot be carried out. We can utilize the spherical polar coordinates
1,0, ¢ instead the rectangular coordinates. From sunsubsection 3.5.9 in chapter 3 we know
that the form of Eq. (6.2.1.16) in spherical polar coordinates is

li 28\I’(r79a¢) 1 i . aW(raeaq))
r? or <r or * r2sin® 00 sinb 20

1 2y(r,0,0)
rzsinze 00?2 h2 [

E—-V(r)]y(r.6,0)=0. (6.2.1.19)
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Eq. (6.2.1.19) tells us that
V(r,6,0) = R(rO(0)D(0) = R(r)¥ (8,0). (6.2.1.20)

Substituting the ¥ in Eq. (6.2.1.20) into Eq. (6.2.1.19), then dividing the obtained equation
by W, one obtains

19 (,0R\ L[ 1 9/ .o 1 ] 2u -
ROr (r 5) Ty [%% (s’”(a%) +t 570 W] + 35 [E-V()]=0. (6:2.121)

Using Eq. (6.1.2.7), Eq. (6.2.1.21) becomes

[_%% (ﬂ%) * % +V(r)] v(r,0,0) = Ey(1,6,0). (6.2.1.22)
Eq. (6.1.4.16) is
L2Y/"(6,0) = RI(I+1)¥/"(6,0), (1=0,1,2,--) . (6.2.1.23)
Thus
W(r,0,0) = Ri(r)Y]"(8,9). (6.2.1.24)

Substituting Egs. (6.2.1.23-24) into Eq. (6.2.1.22) yields

d’R;  2dR, I(I+1) 2u

-—— —|E-V R, =0. 6.2.1.25
dr?  r dr + r? + hz[ (]| Ri ( )
Eq. (6.2.1.25) is called radial equation. Under certain boundary conditions solve it, and can
obtain the eigenvalues E. For the unbound state £ is continuous. For the bound state the E
is quantized.

Sometimes, make the following substitution

xi(r) = rR(r). (6.2.1.26)
is convenient. Substituting Eq. (6.2.1.26) into Eq. (6.2.1.25) we have
I(I+1 2
X+ |- ( 3 ) —I—h—'g[E—V(r)] x = 0. (6.2.1.27)

For the hydrogen-like atom the charge of atomic nucleus is Ze, the radius is about 10~13
cm, the electron which moves around the nucleus, the charge is —e, the electron trajectory
radius around the nucleus is about 10~® cm. The Coulomb potential between the nucleus
and electron is

7 2
V()= -2 (6.2.1.28)
r
V(r =o0) = 0. Writing y;(p) = x;(r) with
SUE 1/2
p= <—?> g (6.2.1.29)
letting
Ze? u\1/2
== (_ﬁ) , (6.2.1.30)
and using Eq. (6.2.1.8), Eq. (6.2.1.27) becomes

g | W) B 1)
x,+[ P 2 |u=0. (6.2.1.31)
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6.2.2. Asymptotic Behavior
When p — 0 (i. e., r — 0), Eq. (6.2.1.31) can be expressed asymptotically as

" I(1+1
X+ [— ( 52 )] x:=0. (6.2.2.1)

At the neighborhood of p = 0, assume ;(p) o p*, and substitute it into Eq. (6.2.2.1), we
have
s(s—1)=1(I+1) =0, (6.2.2.2)

which is called characteristic equation, which has two solutions:
si=14+1 s, =—1, (6.2.2.3)
i. e., the radial function at the neighborhood of p — 0 is
x o< pUt) or ecpl . (6.2.2.4a)

Ryo<p! or ocplth (6.2.2.4b)

Next, let us argue that the solution of asymptotic behavior R; = y;/r o< !~ has to be
abandoned. The reason is as follows. In physics, the square of the absolute value of |R;|?
at the neighborhood of p — 0 represents the position probability density, and therefore is
finite. We conclude that we only keep the solution R; = y; /r o< p’.

Next, let us consider the asymptotic behavior at p — c. We confine to bound state
E < 0. Eq. (6.2.1.31) becomes

1
X — k= 0. (6.2.2.5)

The solution of Eq. (6.2.2.5) is
1(p) < ™t (6.2.2.6)

Considering the boundary condition of bound state, we can only take
x1(p) o e P/ (6.2.2.7)

as our solution.
Thus, the general solution of the radial equation Eq. (6.2.1.31) is

u(p) = p' e L(p). (6.2.2.8)

Substituting Eq. (6.2.2.8) into Eq. (6.2.1.31) yields
pL"(p)+[2(I+1)—plL' (p) +[B—1—1]L(p) = 0. (6.2.2.9)

Let us try a power series solution for Eq. (6.2.2.9) by putting

L(p) = i asp’ (6.2.2.10)
s=0
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in Eq. (6.2.2.9). One obtains
Y {s[(s— 1) +20+2]asp* ' + (B—1—1—5)ap’} = 0. (6.2.2.11)

For Eq. (6.2.2.11) to be true the coefficient of each term must vanish which leads to

asi1 I[+s+1-— B
= . 6.2.2.12
as (s+1)(s+21+2) ( )
For large value of s, and fixed [, Eq.(6.2.2.12) is
: 1
Betl _, _ (6.2.2.13)
ag s
The behavior of an exponential series is
2 s—1 N s+1
P—1 oIS L A I 6.2.2.14
N TR oy TR T e STA ( )

in which the coefficient at large s is same as that in Eq. (6.2.2.13). Thus the solution of Eq.
(6.2.2.8) is of the form
x(p) = ptleP/2eP = pltleP/2, (6.2.2.15)

If the true ; takes the form in Eq. (6.2.2.15), then the boundary conditiony; — 0 as p — oo
is violated. Therefore, the series has to be terminated and this is only possible if for some
value of s = s,,,4x, We have

Smax Hl+1=P. (6.2.2.16)

Smax = 0,1,2,--- is radial quantum number, and is often written as n,. Since both s,,,, and
[ take only integer value, we can write Eq. (6.2.2.16) as

Smax+1+1=Bp=n, (6.2.2.17)

where n is called principal quantum number. From Eq. (6.2.2.17) we know that if n and /
are fixed, then the radial quantum is fixed as well.
For a fixed energy level n, Eq. (6.2.2.17) tells us that

=0, 1, 2, ey on—1
n=Smax=n—1, n—2, n—=3, -, 0 (6.2.2.18)
6.2.3. Eigenvalues
Substituting Eq. (6.2.1.30) into Eq. (6.2.2.17) yields
2 4
2 uze 2
=————— =n". 6.2.3.1
B w2 " ( )
From Eq. (6.2.3.1) we obtain the eigenvalues are
VAT Z2e* 1 RechZ?
Y el ¢ ¢ n=1,2.3, (6.2.3.2)

"2m2R2 2a, 2 n2
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where R.. is Ryderberg constant, and a, = [A?/(ue?)] = 0.529 x 1078 cm is the Bohr radius,
and n is principal quantum number.

Egs. (6.2.1.24) tells us that the hydrogen-like atom wavefunction is ¥(r,0,0) =
R(r)Y/"(0,0). Eq. (6.2.1.25) tells us that the R(r) is [-dependent. Eq. (6.2.3.2) tells us
further that R;(r) is n,- or n-dependent. Therefore, the hydrogen-like atom wavefunction is

Woim(7,0,0) = Rt (r)Y"(8,0). (6.2.3.3)

From above calculations we know that the W,;,,(r,0, ) are the common eigenfunctions of
H,L? L.. The quantum number n,/,m themselves may be said to indicate the eigenstate of
the hydrogen-like atom. The allowed values of these quantum numbers are

no= 12,3,
= 0,1,2,--,n—1
m = 0,4£1,42,.-- 4+l (6.2.3.4)

The quantum numbers / and m are related to the magnitudes of the orbital angular momen-
tum L and the z component of L, i. e., L., respectively. Since L? and L. do not operate on
the radial part of the wavefunction, W,;,, itself is a simultaneous eigenfunction. The en-
ergy eigenvalue E, in Eq. (6.2.3.2) depends only on n, whereas the the wavefunction ¥,
depends on n, [, and m. From Eq. (6.2.3.4) for the n-th energy level, / can takes values
0,1,---,n—1 and for each value of [, there are 2/ + 1 possible values of m. The total n-th
energy level degeneracy is therefore given by

n—1

n—1 n—1
fnZZ(Zl—l-l):ZZl—FZl:Z[g(n—l)}—i—n:nz, (6.2.3.5)
=0 =0 =0

i. e., n’-fold degenerate.

Now let us use the energy level formula given by Eq. (6.2.3.2) to explain the observed
rule of hydrogen atomic line spectra. According to Eq. (6.2.3.2), when the electron makes
transition from high level E,, to low level E,,, the wavenumber of emitted light k(=v/c) (v
is frequency.) is

E,—Ep, 1 1
kn = e =R (ﬁ — ?> (l’l > m) (6236)
For hydrogen atom Z = 1.
For m = 1, i. e., transition from every excited state to ground state,
E,—FE 1
kip=—"1—R.(1-=) (n=2,34,) (6.2.3.7)
hc n?
When n — oo, k1o = Re. This is the Lyman line series in chapter 1.
Form =2,
E,—E

11
=22 R (- = 2.3.
k=" =R <4 n2> (n=3,4,5-) (6.2.3.8)
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Figure 6.4. The energy spectrum of hydrogen atom.

when n — oo, kyeo = Ro. /4. This is the Balmer line series in chapter 1.
Form =3,

=25 =k, (é—,%) (n=345--") (623.9)
when 1 — oo, kyeo = Ro/9. This is the Paschen line series in chapter 1. See Fig. 6.4.

The calculations in Eq. (6.2.3.7-9) are for hydrogen atom Z = 1. The Eq. (6.2.3.2) can
also be used to hydrogen-like atoms: He™t, Li* ™, Be™ ™, etc., for which Z > 1.

For the hydrogen-like atom He™t, Z = 2. According to Eq. (6.2.3.2), when the electron
makes transition from high level E, to low level E,,, the wavenumber of emitted light k(=
v/c) (v is frequency.) is

_E,—E,

o = —4Rm<1 i2> (n>m) (6.2.3.10)

he m2 n

Form =4,7Z =2, and n > 4, we have

k4n: nhc :Roo(Z_n_z)_)T’ lf n— oo (62311)

One can see that Eq. (6.2.3.11) is similar to the Balmer line series in Eq. (6.2.3.8),
especially, is nearly same at n — co. Let us explain the little difference between R () and
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Reo(Upe+) Reo o< .

mempy 1
= e (1—-——). 6.2.3.12
LA — m( 1836> ( )
MMy o+ 1
=Y o (1——— ). 2.3.1
. m( 4><1836> (6.23.13)

6.2.4. Eigenfunction

The polynomial solution of Eq. (6.2.2.9) can be expressed in terms of the associated La-
guerre polynomial L%:;l (p) apart from an arbitrary constant factor N,;. Therefore, from
Egs. (6.2.1.26), (6.2.3.2) and (6.2.2.8) we know that the radial function in Eq. (6.2.1.24) is

labeled by two indices n and /, and after normalization is

1/2
22\ (n—1-1)!
Ru(r) = — L e P2pl 2 (). 6.2.4.1
e [() L ) (624.1)
From Egs. (6.2.1.29) and (6.2.3.2) we know
27
== (6.2.4.2)
na,
n—l-1 24k
+1)°p
1241 (5) — _q)kt2u+] (n ' 4
vt (P) ,§)< Py iy T PR W ATy (6.2:4.3)
Thus, the wavefunction given by Eq. (6.2.1.24) is
Wnim = Ru(r)Y"(6,0), (6.2.4.4)

where the radial function is given by Egs. (6.2.4.1-3), and ¥;" is given by Eq. (6.1.4.13).
Explicit forms of W, are shown in Table 6.2.

The normalized expressions of the angular wavefunctions (spherical harmonics) have
been given by Eqgs. (6.1.4.23-28). One often uses the following spectroscopic notations:
n=1,1=0—-18n=2,1=0—-25n=2,l=1—-2P,n=3,1=0—-35,n=3, 1=
1—3P,n=3,1=2—3D.

The stationary state wavefunctions of hydrogen-like ions in Table 6.4 are the complete
set of conservative quantities H,L?,L,. Utilizing these wavefunctions, one can obtain the
following information. Take the hydrogen atom as an example.

(A) Radial probability density distribution.
The position probability of the electron in sphere shell r — r+dr is

rdr / dQ¥ 1 (1,0,0) > = [Ru(r)|*r?dr = [yu(r))*dr = Q,dr. (6.2.4.5)

The curve of Q, versus r/a, is shown in Fig. 6.5. From Fig. 6.5 we see that the node
number of radial wavefunction (do not contain the points r = oo and r = 0) is equal to n,.
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Table 6.2. The first few normalized eigenfunctions of hydrogen-like ions (Z > 1)

n l nr anlm(rae,q))
372
1{0]0 W0 =2 (;) ¢ 7r/acy0
32
2107]1 W0 =2 ((ZZT)> (1—2Zr/2a.)e /24y
o 32 Y,
2011(0 W | =% ((25 )) Zr g7/ |y
P11 y;!
32
31012 Y300 =2 (%) (1 —2Zr/3a.+2/3(Zr/3a0)?|e %13y
W31 32 Y]
311 B0 | =87 (%) Zr (1~ Zr[6as)e 73 | ¥
W31 v, !
R E5Y) Y2
P 32 2 Y,
31210 Yo | = % (35) (?) e Zr/3as | yD
W31 y,!
W32 Y, 2

In quantum mechanics, the electron in hydrogen atom does not have exact orbital, and
we can only study its position probability distribution. However, O, has a maximum value
(See Fig. 6.5).

For example, let us look at the ground state.

4 5, _
On = (Ri)*r* = a—gﬂe 2r/a., (6.2.4.6)
The maximum value of Q,, is at
d
EQ,, =0. (6.2.4.7)
From Eq. (6.2.4.7) one obtains
Tmas = do.- (6.2.4.8)

a, is the Bohr radius, which represents the most probable radius.

It is interesting to note that for a fixed n, [ =n—1 (i. e., n, = 0), the most probable
radiuses of the radial probability distributions (|)10|%, |X21]% |X32/?, etc.) can be found as
follows.

W, 1 o< e M lym (9 ). (6.2.4.9)

Let us ask the probability of finding the electron of the hydrogen atom in spherical shell of
radius r and thickness dr:

/ (Wi 1| P2 drd Q. o< €2/ 2 g (6.2.4.10)
Q
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Figure 6.5. The electronic radial probability density distribution function of 2s and 3s states
of hydrogen atom.

The probability density reaches a maximum when
4 (e*”/"“oﬂ") ~0. (6.2.4.11)
dr

Solve the Eq. (6.2.4.11). We obtain that the probable position of the electron in state ¥,

is at

Foax = N%as, (n=1,2,3,---) . (6.2.4.12)
The average values of various power of r are defined as
< >=< nl|Hnl >= /drrj‘[Rnl(r)]z. (6.2.4.13)
For example, [4]
<rt>y= % (6.2.4.14)

(B) The angular dependence of probability density.
The probability of the electron in hydrogen atom in solid angle d€2, which’s direction
is (0,0) is
[Y/™(8,0)|°dQ =< |P"(8)|%dQ, (6.2.4.15)

which is independent of ¢. Therefore, the angular probability distribution keeps the turning
symmetry. See Fig. 6.6. Note that only the |Y)(6,0¢)|? has sphere symmetry.

Fig. 6.6 shows the first few hydrogen atom orbitals (energy eigenfunctions). These are
cross-sections of the probability density that are color-coded (white represents zero proba-
bility density and black represents the highest probability density). The angular momentum
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kel

Figure 6.6. Visualizing the hydrogen electron orbitals, or, say, the probability distributions
of the electron in hydrogen atom. Probability densities through the xz-plane for the electron
at different quantum numbers (/ = 0, 1,2, corresponding to s, p,d, respectively. m = 0).

(orbital) quantum number [ is denoted in each column, using the usual spectroscopic letter
code (s means [ =0, p means / = 1, d means / = 2). The main (principal) quantum num-
ber n (=1, 2, 3, ...) is marked to the right of each symbol. For example, 3d, represents
n=3, =2, m=0. For all pictures the magnetic quantum number m has been set to 0,
and the cross-sectional plane is the xz-plane (z is the vertical axis). The probability density
in three-dimensional space is obtained by rotating the one shown here around the z-axis.

The “ground state”, i.e. the state of lowest energy, in which the electron is usually
found, is the first one, the 1s state (principal quantum level n =1, [ = 0).

An image with more orbitals is also available (up to higher numbers n and /).

Here, we make a simple explanations for the introducing the linear composition of
spherical harmonics, such as p,, py, and p,. See Tab. 6.1 in subsection 6.1.4. Yl0 and YljE
are three independent states. However, p,, py, and p, are also three independent states. The
difference between Yli and py, p, is the forms of the squares of absolute values. | pil? is
a spindle like the |Y?|* in Fig. 6.6, but the spindle is along the x axis. |p,|* is a spindle
like the |Y|? in Fig. 6.6, but the spindle is along the y axis. When several atoms con-
struct a molecule, it is necessary to have a wavefunctions which’s probability distribution
concentrates in some direction.

(C) Probability current density of the electron in hydrogen atom and magnetic moment.

The probability current density of the electron in hydrogen atom is given by Eq.
(2.5.3.7), and is depicted as follows. (The charge of electron is —e.)

J:_( nimY Ynim —Cuim VY, ) (6.2.4.16)

nlm nlm
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Utilizing the expression of V in spherical polar coordinates

10 1 9

0
V— -z
“ror r 00 Te rsin® oo’

3 +eg—

(6.2.4.17)

one can obtains the components of J. Due to that the radial wavefunction R,;(r) and the
8-dependent part P;"(0) are real, one can see that J, = Jo = 0. Thus we just need to seek

ieh 1 0 0
B o= L (e, g
¢ 2‘Ll rsinG( nlmaq) nlm ﬂmaq) nlm)
ieh 1 . ehm 1
= ﬂrsinGQ’Zm’q”nlmF:_ 7 m’lpnlm’2 (62418)

Jy is the probability current density around the axis z.

Eery part of |¥,;,,|> moves with certain velocity around the z axis instead of motionless.
The motion of |W,;,,|> cause important effect. Because the electron has mass, this motion
makes the electron to have an angular momentum around z axis. Because the electron has
charge —e < 0, this motion makes the electron to have a magnetic moment around z axis.
The probability current density element, through cross section do, dI = Jydo. This current
element has magnetic moment (Gauss unit) SdI/c, S = nt(rsin®)? is area of circle turning
around the z axis. Therefore, the total magnetic moment along the z axis is

1 1
M, = - / dIs = - / 1 25in0 - J.do
= _—m/]‘Pnlm] 2nrsin0dc
= ——m/yanlmFdr (6.2.4.19)

where volume element dt = 2nrsin®dc. Considering the normalization of W¥,;,,,, from Eq.
(6.2.4.19)

eh
m; = —ﬂm = —upm, (6.2.4.20)
where Bohr magneton
h
s =~ =579 x 10°(eV /G) (6.2.4.21)
2uc

is a minimum unit of atomic magnetic moment. From Eq. (6.2.4.20) one sees that quantum
number m determines the magnitude of magnetic moment, and is therefore called magnetic
quantum number. For state with / = 0 the magnetic moment is zero, which’s physical origin
is the zero current.
From Eq. (6.2.4.20)
M, e

6.2.4.22
R Tt ( )

where mh represents the z component of orbital angular momentum, g is called gyromag-
netic ratio or g factor. If take e/2uc = 1, then g = —1, which is the characteristic of orbital
angular momentum. In chapters 7 and 8 we will explain that for electron spin angular
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momentum and electron inherent magnetic moment (i. e., spin magnetic moment), g = —2.

Let us prove that the |¥,;,,|> makes rotational motion. Using the similar method, we
can calculate the angular momentum of the electron. The mass element du of the electron
in volume element dt is

du = u|¥nlm|*dt = p|¥ | *dSrsindo. (6.2.4.23)
du = uJydSdt, (6.2.4.24)
where dS is the the side area element, which is

dS = rd®dr. (6.2.4.25)

From Eqs. (6.2.4.23-25) and (6.2.4.18), one obtains the the velocity of the probability
density [W,;|? at (8,0), which is

b rsin®d¢  ul./(—e)

= = . 6.2.4.26
dt ;u‘lpnlm‘z ( )
Substituting Eq. (6.2.4.18) into Eq. (6.2.4.26) yields
yo (6.2.4.27)
ursin®

The mass element du in the volume element dT has angular momentum element
dL. = duvrsin® = Em|%¥ | > r*sin®drd0d¢. (6.2.4.28)

Making the integration over all the position space and considering the normalization of
wavefunction, one obtains
L, = hm. (6.2.4.29)

This result is obtained directly from the basic definition of angular momentum. It is obvious
that Eq. (6.2.4.29) has to be consistent with that ¥,;,, is an eigenstate of operators L> and
L., and the eigenvalue of operator L, is hm. We have given in section 6.1 of this chapter the
operator form of L, in position space.

< nlm|L;|nlm >= mh. (6.2.4.30)

This result, < nlm|L |nlm >> 0, makes us to believe that the |¥,,;,,|> makes rotation motion
really, i. e., the variable ¢ itself is a function of time ¢.
Here, we would like to remind readers to note the following points:

(A) Some references always say that the solution of the Schrédinger equation of
hydrogen-like atom is a wavefunction, refers to one electron wavefunction, is called atomic
orbital, and is described by the quantum numbers (n,,m).

However, we hope the readers to note that an orbital (i. e., ¥,;,,) does not indicate
the exact location of an electron in position space. The |W,,|> only gives the position
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probability density of the body-factor of the electron wavepacket to occupy any point in
position space. The wavefunction is a guide-factor of an electron wavepacket;

(B) If there are many electrons out the nucleus and the interactions between electrons
can be neglected, then the electrons will occupy states (n,/,m) according to energy mini-
mum, i. e., low energy state is more stable. However, the electron is a Fermion, and thus
obeys the Pauli theorem proved in identical particle system.

(C) Now we propose a sharp question. Does the electron in ¥, eigenstate really
like an electron “cloud” distributing around the nucleus according to \‘Pnlm\z? Our answer
is: “No. Absolutely not.” Our reason is obvious. Because an electron is a very rigid sphere
with radius < 10~!3 cm under nonrelativistic approximation. The electron cannot transform
from a rigid small sphere to a “cloud” under the very weal electromagnetic interaction.

Now we propose an even more sharp question. If the electron moves around the nucleus,
then the picture of an atom should be like a star model (The planets move around the sun).
However, according to the observations after 2010, the cloud model of an atom is more
appropriate. The wavepacket-only theory gives the following explanations. If an electron is
in W, (r,0,0) state, according to the law of wavepacket, the electron in state ¥, (r,0,9)
still can take many locations allowed by W, state. Therefore, we feel that the cloud model
is better. However, the cloud model of the atom does not mean that the very rigid electrons
in the atom becomes really a drifting cloud. On the contrary, the electrons in a atom are
still the rigid sphere, but the electrons as rigid spheres in state ¥,,;,,, changes theirs positions
allowed by the state W¥,;;,,, according to the spontaneous equiprobability symmetry breaking.
Therefore, our observation is that the electrons look like cloud.

(D) According to the law of characteristic of wavepacket in chapter 3, |¥,,;,,|* represents
the position probability density. We consider the state W¥,,;,,,. If the electron as a very rigid
small sphere, then this electron in state W, can occupy any point (r,6,¢) in spherical
polar coordinates with position probability density |¥,;,(r,0,0)|>. What is z component
of angular momentum L, ,cr0n Of this electron as a small rigid sphere at point (r,0,¢)?
In comparison with the average value calculations in Eqgs. (6.2.4.29) and (6.2.4.30), now
we will make a microscopic calculation, i. e., we just calculate the angular momentum
z component at one point. Because the electron is too small, we look upon it as a point
particle. The angular momentum z component of a point particle with mass u at point

(r7 e? q)) is

14

Lz,electran = RI X rsinO’ (62431)
where R; is the rotation inertia of the point electron.
Ry = x (rsin®)?, (6.2.4.32)

where u =~ m, is the relative mass, and m, is the static mass of one electron. Substituting
Egs. (6.2.4.32) and (6.2.4.27) into Eq. (6.2.4.31) yields

L&electron =mh. (62433)

That is, even the electron is a point particle in state W,;,,, its angular momentum z compo-
nent is also mh, which is same as given by Egs. (6.2.4.29) and (6.2.4.30). The consistence
between microscopic and average value comes from that ¥, is the eigenstate of a physical
quantity (Here, it is the angular momentum z component).
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(E) Now let show you an interesting paradox. Would you please from now begin to
consider where do we make mistake? We make the average value calculation of the energy
and then make comparison with the energy eigenvalue. We discuss the energy in the ground
state of hydrogen atom. The wavefunction of the ground state is

Wi00(r;6,0) = \/ge"/‘w&(em = Rio(r)¥'(8,9). (6.2.4.34)

From the definition of average energy in a quantummechanical state, we know that the
average energy of the ground state is

E = / 12 sin®drd0d oW, HY 100

h? e?
= /r sin®drd0d oY, [ o —V2_ —] W00
2
= / Psindrd0doWio [T +V]Wioo = —5 — (6.2.4.35)
1 —r/a
Wigo = e °. (62436)

a’

[¢]

The average value of kinetic energy is

< 100|T[100 > = 7ta3 dr de/ ddr*sinBe” r/a (—h V2e r/“")
2 2
_ Zh 72 —r/ao a_ 20 e—r/uO
ual Jo 8r2 ror
4 2
= — h3 —4/ drre /e
pa3 Jo pal Jo

402 2! 402 1 h?
- B S 6.2.4.37
el 2/a)s | pad 2 2ua? (62437
Using the expression of the ground state wavefunction in Eq. (6.2.4.35) or in the Table 6.2,
one can obtains the average value of potential energy in the ground state, which is

1 oo T 2n &2
< 100|V|100 > = > [ dr a’@/ dor’sin®e” "% <——e_r/“°)
na; Jo 0 0 r
-~ < (6.2.4.37)
- ao M . . .
Therefore,
2
< 100[H100 >=< 100|T +V|100 >= —2e (6.2.4.38)
o

The result of Eq. (6.2.4.38) comes from average value of energy, and is the same as the
eigenvalue of eigenstate |100 >, given by Eq. (6.2.3.2).
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Now we use another average method, which will gives a paradox. The wavefunction is
Y100 given by Eq. (6.2.4.35) and Table 6.2.

2 e | L. (6.2.4.39)

W00 =
100 (00)3/263 i

Eq. (6.2.4.39) tells us that in principle the electron in ground state can appear anywhere
with corresponding probability. For example, the position probability density at r — r+dr
is )

. (6.2.4.40)

e—r/uO

Pioo(r) = ‘

(a0)3/2

Let us consider that the electron is a small individual rigid sphere, which’s wavefunction
(guide-factor) is in the ground state W¢p. This electron’s potential energy is only a function
of r.

v =-2. (6.2.4.41)

r

If the electron takes r = 10°a, with non-zero probability, then V(10°a,) = —e?/(10%as).

The ground wavefunction W is not the eigenstate of kinetic energy or momentum
operator. Therefore, the kinetic energy and the momentum is not definite. To seek the
momentum probability density, we should make a Fourier transformation of the ground
state wavefunction from position space to momentum space.

1 X242 as yik-r-
0= Gor )3/2\/ (@) 3/2/ dhedhydk P (ke ky, ke )e™ VTR R (6.2.4.42)

w 1 1 X ao g —ik-r
Fllok k) = /2,/ o / dxdydze V)

1
ao

ZaOszn[arctg(kao)]
= =Y (k). 6.2.4.43
IR (6:2443

Eq. (6.2.4.43) indicates that ¥ (ky, ky, k;) is a function of k or momentum p = hik. Therefore,
the momentum probability density between k — k+dk or p — p+dp is

8aos1n [arctg(kas)]

Pioo(k) = [P(k) [ k*4m (11 k2a2)?

(6.2.4.44)

From Eq. (6.2.4.44) we can see that the electron in the ground state W;og can take, for
example, k = 1000/a, with non-zero probability. In this case the kinetic energy of the
electron in the ground state is (Use h?/u = a.e®)

h2k? B h2(1000)?
2u 2u as

T(k=1/1000a,) = (6.2.4.45)
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The total energy is

e> [10° 1 e’
E, = T(k = 1/1000610) —I—V(r = 1000610) = d_o (7 — m) >> _2610 =E.

(6.2.4.46)
Eq. (6.2.4.46) indicates clearly that even the electron, which’s wavefunction (guide-
factor) is in the ground state W, the electron’s energy can be still possible equal to the
10%x (eigenvalue of the ground state). It is easy to see that if the electron, which’s wave-
function (guide-factor) is in the eigenstate W,;;,, # W1g0, then the electron’s energy can be
still possible equal to the 10°x (eigenvalue of the eigenstate P,;,,). Therefore, if there is
a transition of the electron from ¥gg to Wy, then, generally speaking, the energy is not
conservative.

We see that the two differen methods of seeking the average values on energy give
completely different conclusion. This is the paradox. Actually, the second method is wrong.
In the first method to seek the average value uses the position space. In position space, the
kinetic energy in Eq. (6.2.4.37) is a differential operator. The second method is to use the
momentum space. In this space, the position coordinates should be a differential operator.
However, the second method looks upon the » as a number. Therefore, the first method is
correct. The second method is wrong.

Therefore, this paradox tells us that one cannot in calculations and derivations use both
representations corresponding to the two non-commutative operators at the same problems.
This is the so called “One cannot stand on two boats at the same time”.

6.3. Hellmann-Feynman Theorems

Hellmann-Feynman (HF) theorem concerns the rules of the variations of the parameters in
the average value expressions of energy. If the energy eigenvalue has been sought, then one
can obtain in terms of HF theorem many informations about the average values of mechan-
ical quantities without large number of calculations by using the wavefunction. One can
derives the virial theorem by using the HF theorem as well. Now the HF theorem is used in
molecular structure, quantum chemistry, and particle physics. More particularly speaking,
HF theorem relates the derivative of the total energy with respect to a parameter, to the
expectation value of the derivative of the Hamiltonian with respect to that same parameter.
Its most common application is in the calculation of forces in molecules (with the param-
eters being the positions of the nuclei) where it states that once the spatial distribution of
the electrons has been determined by solving the Schrodinger equation, all the forces in the
system can be calculated using concepts of classical electrostatics (Refer to the problem 15
in the last section).

The theorem has been proved independently by many authors, including Giittinger
(1932), Pauli (1933), Hellmann (1937) and Feynman (1939).
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6.3.1. HF Theorem of Time-Independent Wavefunctions

Theorem XXXII: HF theorem of time-independent wavefunctions.

aEnk _ aﬂ
o = /anX o lP,mdl", (6311)

where H, is Hamiltonian operator depending upon a continuous parameter A, ¥, is a
wavefunction (eigenfunction) of the Hamiltonian, depending implicitly upon A, E,,; is the
energy (eigenvalue) of the wavefunction, dr implies an integration over the domain of the
wavefunction.

Proof. The proof of Hellmann-Feynman theorem requires that the wavefunction is an eigen-
function of the Hamiltonian under consideration. However, the wavefunction does not need
to be exact. For instance in Hartree-Fock theory the wavefunction is a relatively poor ap-
proximation to the true wavefunction, but because it is variationally optimized with respect
to the Hamiltonian, the Hellmann-Feynman theorem can be applied. The proof also em-
ploys an identity of normalized wavefunctions, which can set that the derivatives of the
overlap of a wavefunction with itself must be zero. Using Dirac’s bra-ket notation these
two conditions are written as

H\|¥)0) = Enl¥m)- (6.3.1.2)

0

The proof then follows through an application of the derivative product rule to the average
value of the Hamiltonian viewed as a function of A:

P[P0 (6.3.1.3)

ag}r:x _ aa_x <1an Hy, ‘an>
_ <a§;f% H, m> - <‘I‘nx aa% ‘PM> i <TM h ag—’”w
- () (o 5 ) e ()
_ Enx%<‘an\lP'zk>+ <‘P"7“ aa% \P”k>

M,

- 0+ <lpn}L W

an?x.>

Here, we finish the proof. QED.

The most common application of the Hellmann-Feynman theorem is to the calculation
of intramolecular forces in molecules.
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6.3.2. HF Theorem for Time-Dependent Wavefunctions

Theorem XXXIII: HF theorem for time-dependent wavefunctions. For a general
time-dependent wavefunction satisfying the time-dependent Schrodinger equation, the
Hellmann-Feynman theorem is not valid. However, the following identity holds:

<lp ()] 2 | ()> :ih% <wnh(z)‘%>. (63.2.1)

oA
Proof. The proof only relies on the Schrédinger equation and the assumption that partial
derivatives with respect to A and ¢ can be interchanged.
0¥,
walt)) (S0 1w

()| G (o)) = 53 (Eml0]
- (reln?52)

Hy,

o 3 (1) 0%, (1)
= ax< w0) alp"l(”>_lh< | o
s <alp? alpnx >
aZanh alpnk alpnh( )
T >+’h< x| >

= ih <‘P
., 0

6.4. General Properties of Central Field

a\Pn;\‘ t >

Here, we finish the proof. QED.

In section 6.2 we addressed the hydrogen-like ions, which are only an example referring
to the central field problems. Actually, in our nature there are many phenomena which
refer to the central field problems. For example, the Earth moves around the sun under
action of the gravitational field; the electron moves around the nucleus under action of the
Coulomb field; harmonic fields; the important effect of the screen Coulomb field on nucleus
structure; the spectroscopic analysis of heavy meson (quarkonium) indicates that there are
some characteristics of logarithmic and linear central potential. In view of importance of
the central field we address in this section some general properties of central force fields.

6.4.1. Conservation of Angular Momentum and Radial Equation

The most important characteristic of motion in central force fields is the conservation of
angular momentum L = r X p.
For classical particle (mass u) this conservation is obvious, because

d_ dr dp_ rdv(r)\ _
EL EXP—I_rXE vxu+rxF =0+r (—; P )—0. (6.4.1.1)
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Eq. (6.4.1.1) implies the force moment of the particle is zero. Considering L-r =L-p =
0, the classical motion of a particle in central field is in plane surface. The normal line
direction of the motion is just the direction of L. In an appropriate coordinate system the
classical motion in central field can be reduced to a plane motion. (For the closure of
trajectory Refer to [1].)

In quantum mechanics the L is also a conservative quantity. Eq. (5.6.4.6) tells us that
L is an operator of infinitesimal rotation. p> = p- p is a scalar quantity. A scalar quantity
does not change under rotation. Thus [L, p?] = 0. L depends only on the angular variables
0,0, thus [L,V(r)] = 0. Therefore,

2

H=21v(). (6.4.1.2)
2u
[L,H] = [L, p* /2] + [L, V()] = 0. (6.4.1.3)

Eq. (6.4.1.3) indicates that L is also a conservative quantity.

The difference between classical and quantum mechanics is that the three components
of L do not commute. Therefore, the three components of L. do not have definite values
simultaneously except zero angular momentum, and thus the motion cannot be reduced to
a simple plane motion.

We have to seek a complete set of conservation quantities, and use this set to describe
a stationery eigenstate. Considering [L?,Ly] = 0, (& = x,y,z), and [H,L?] = 0, one often
takes H,L?, L, as the complete set. The energy eigenequation is

h2
[ —VZ4+V(r )] ¥ =FEY¥. (6.4.1.4)
2u

Considering a spherical symmetry of central field, we take spherical polar coordinate. In
spherical polar coordinates the kinetic energy operator 7 is

hz V2 pr L2

T = 6.4.1.5
2,u 2u 2yr2 ’ ( )
where 3 1 L3
= —ih|=—+-)=—ih| -=— 6.4.1.6
b lh<ar+r> ' <rarr> ( )
and p, is called radial momentum and is a Hermitian operator, i. e.,
pr=n;- (6.4.1.7)
10 \*
2 2
=— - . 6.4.1.8
p=-it (120 (6.4.1.8)
Thus the stationary Schrédinger equation is
19 \* 12
HY = [T4+V¥=|—— — 4V ¥
[T+V] [ <r or > 2ur? V()

R? 19 2a L?
[ 2/,1r28r ar+ﬁ+v( )]lp

19> L?
o ) L (0419)
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In Eq. (6.4.1.9) the first term is called radial kinetic energy, and the second term is called
centrifugal potential. Note that the total kinetic energy 7T is equal to the sum of the two
terms.

Take ¥ as the eigenfunction of operator complete set (H,L?L,),i. e.,

¥(r,0,0) = Ri(r)Y"(8,0)
1=0,1,2,-, m=1,1—1,--,—1+1,—1. (6.4.1.10)

The radial equation is

d’R; 2dR, I(1+1) 2u
St {_ = +S[E—-V(r)]| R =0. (6.4.1.11)

Making transformation R;(r) =, /r, one obtains the radial equation given by Eq. (6.2.1.27)

X;’+|:_l(l:2_1)+;—l;[E—V(i’)]:| ¥ = 0. (6.4.1.12)

Under certain boundary conditions solving the Eq. (6.4.1.12), one obtains the energy eigen-
values. For unbound state the E is continuous. For bound state the E is discrete, and is de-
pendent on the radial quantum number n,, n, = 0,1,2,---. n, represents the nodal number
of radial wavefunction. E depends of n,,/ or n,[, and is independent on m. E is denoted by
E,.

6.4.2. Behavior of Radial Wavefunction near r =0

Suppose that V(r) satisfies
when r—0, r’V(r)—0 . (6.4.2.1)

Many central potentials, such as harmonic potential o< 72, liner center potential o< r,
Coulomb potential < 1/r, effective potential o< exp(—ar) /r, free particle, spherical square
potential, logarithmic center potential etc. satisfy Eq. (6.4.2.1). When r — 0, Eq. (6.4.1.11)
becomes

dszJrg@ RED
drr  r dr r2

In the neighborhood of the canonical singular point » = 0, supposing R; o< r* yields

] R =0. (6.4.2.2)

s(s+1)—=1(l+1)=0, (6.4.2.3)
which is called characteristic equation. From Eq. (6.4.2.3) we have

si=1, s;= —(l+ 1) , (6.4.2.4)

Rl(r)o<rl or r~ 0 g neighborhood of r=0 . (6.4.2.5)
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Next, we argue that the solution r~(+1) has to be abandoned. The probability P of appear-
ance of the particle in neighborhood around r = 0 should be finite.

1
P /drrz\rf(lJrl)\2 = /drrfﬂoc S, . (6.4.2.6)
0 0 —21+1 —0

If / > 1, then |P| = oo, i. e., the solution of #~U+1) is not reasonable. If [ = 0, then is the
solution 7~(+1) reasonable? Our answer is that although Eq. (6.4.2.6) tells us that it is
reasonable, but the solution ¥;_g = R;Yé) = Ro/v/4m o< 1/r does not satisfy Schrodinger
equation Eq. (6.4.1.4) if the point » = 0 is included, because

VZ% = —473(r). (6.4.2.7)
Therefore, )
[E—V(r)]¥—o= %5(;»). (6.4.2.8)

Eq. (6.4.2.8) does not hold. Therefore, the W;—( o< 1/r does not satisfy Schrodinger equa-
tion Eq. (6.4.1.4). Thus we conclude that the radial wavefunction in Eq. (6.4.1.11) can only
take the solution R;(r) o< r' and x;(r) = rR;(r) o r'*! when r — 0.
Discuss the case [ = 0. In this case Eq. (6.4.1.12) becomes
o g (e =0 (6.4.2.9)
— — r = 0. N SVON
dr: = h? Xo
Eq. (6.4.2.9) likes the one dimensional Schrodinger equation, and the differences between
them are: (a). 3o — 0 when r — 0; (b). r > 0 instead of —oo < 7 < oo,
Let us take a free particle as an example. For a free particle, Eq. (6.4.1.9) becomes

p2 L2
— L WYy = E¥un. 6.4.2.10
|: 2'u + 2'ur2:| kim klm ( )

The quantum number & is defined below. The radial kinetic energy operator p? /2uinferred
from Eq. (6.4.2.10). Insofar as p? is a function only of r, and L? is a function only of the
angle variables (6,¢), one may seek solution of Eq. (6.4.2.10) by separation of variables.
Substituting the product form

Phim(r,0,0) = RiuY;" (6,0) (6.4.2.11)
into Eq. (6.4.2.10) yields
1 d? I(1+1) 2uE
ol —— | Ry = —Ru. 4.2.12
[ <r 0 r) t—03 s Bl (6 )
With the substitution
h2k?
E= x=kr (6.4.2.13)

2u’
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Eq. (6.4.2.13) becomes the spherical Bessel differential equation

L 24 (1+1)
—R ——R 1— R =0. 4.2.14
gkt oo kl+[ 2 k=0 (6 )

The ordinary linear equation Eq. (6.4.2.14) for the radial function Ry;(r) has two linearly
independent solutions. They are called spherical Bessel and Neumann functions and are
denoted conventionally by the symbols j;(x) and n;(x), respectively. However, only the
spherical Bessel functions { j;(x)} satisfy the asymptotic behavior at » — 0, and are regular
at the origin. The spherical Neumann function is not regular at origin. Thus we only take
the spherical Bessel function as solution.

In this manner we take that the eigenstates and eigenenergies of the free particle Hamil-
tonian in spherical polar coordinates are (Refer to Ref. [3].)

lPklm(’”a 9, ¢) = jl(kr)ylm(e, ¢) (642 15)
h2k?
Ex=——. (6.4.2.16)
2u

The orthonormality of this sequence { Wy, } is given by the relation

T 2T o ,
< Imk|'m'K > = / dBsind / do / drr [Y"(8,0)]" [Y;ﬂ(e,q))}
0 0 0
Jilkr) ju(K'r) = 818y Z%S(k— K). (6.4.2.17)

The allowed values of momentum hk of a free particle comprises a continuum.
Once again we note that the projection

<r,0,0|lmk >= ji(kr)Y;"(8,0) (6.4.2.18)

gives the coordinate representation of the ket vector |/mk). In a similar manner, the coordi-
nate representation of the free-particle ket vector |k > is given by

1 .
<rlk>= (Zn)3/2el’<". (6.4.2.19)

In the spherical polar coordinates (H, L?, L.) are specified. In Cartesian coordinates (E, p =
P, Dy, ;) are specified. In the latter coordinates, E is redundant (E = p?/2u), but in the
former coordinates it is not, because E is not determined by L? = h*/(I 4 1) and L, = hm.
Thus we find that in either Cartesian or spherical polar coordinates, there are three good
quantum numbers.

6.4.3. Expansion of Plane Wave in Spherical Harmonics

Expansion of plane wave in spherical harmonics is also called partial wave expansion of
plene wave. As we have known, both massy particle and photon are wavepacket. In the
Cartesian coordinates the guide-factor (i. e., wavefunction) of a free wavepacket is a plane
wave with average wavevector k, and average momentum p, = hk,. According to the law
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of wavepacket in chapter 3, the motion of the body-factor of the free wavepacket is related
to the guide-factor. Thus the plena wave problem is equivalent to the free wavepacket
problem. The free wavepacket is often met in practice. For example a free wavepacket
(electron, photon, phonon, etc.) is scatted by a barrier or by an another particle (electron,
photon, phonon, etc.). The guide-factor is a plane wave, and is expressed as

¥y (r) = AeT. (6.4.3.1)

o

The plane wave is an eigenstate of free Hamiltonian and momentum operator. There-
fore, the energy E of the wavepacket is certain to be h?k2/2u, and the momentum of the
wavepacket is certain to be p, = hik,. Note that these problems do not have any connection
with measurement. Even you do not make the energy measurement, the energy of the free
wavepacket is still E = h?k2 /2u. For brevity, in following calculations we use k instead of
k.

The plane wave is not an eigenstate of operator L, and L?. We can ask that to what the
probability of the free wavepacket in the eigenstate ¥y, of operators L2, L. is equal? Note
that this question does not any connection with measurements.

As we know that Wy, form a complete set, regular at the origin, of solutions of the
Schrodiger equation. The energy of state W,,;,, is E = h*k* /2u. Any other regular solution
can be expanded using this complete set. In particular, this can be applied to the pane wave
that has no singularity at the origin,

Z Z i (k) ji(kr)Y]"(6,0). (6.4.3.2)

=0m=-—1

To find the amplitudes a;,, in the expansion Eq. (6.4.3.2), we use the freedom of choice
of the quantization axis z for the spherical functions ¥;". We combine the z axis with the
direction of the wavevector K, so that

k-r=k,rcor. (6.4.3.3)

The plane wave in Eq. (6.4.3.2) has axial symmetry around the z axis and does not depend
on the polar angle ¢. Therefore, the expansion contains only Y = /((2{+ 1) /47P;(cos8)
so that

zkrwse ZalPl ]l kr a, = %alo- (6434)

Because the orthogonality of the Legendre polynomials,

——ay ji(kr). (6.4.3.5)

+1 .
/_] dcos8e™**®p, (cos0) = TR

This relation must be correct identically in kr, so that it is sufficient to calculate the left
hand side for some value of kr. The integral by parts gives

dcos®e™™ O p;(cosB) = ki dcos®e™™ i (cosB) + r =" —(=1)!e ™,

—1 rJ—1
(6.4.3.6)
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for the boundary values of the Legendre polynomials we used the formulas:

1
Pi(cos®) = 211” d(cdise)(wsze 1)! (6.4.3.7)
and
P(—1)=(=1)". (6.4.3.8)

The integrated term of the left hand side of Eq. (6.4.3.6) equals (2/kr)i'sin(kr — Im/2),
while, as can be seen by further integrations by parts, the remaining integral has order of
magnitude 1/(kr)? at large kr. By equating the asymptotic j;(kr) — sin(kr —Ir/2) /kr at
(kr) — oo of the right hand side of Eq. (6.4.3.5), we come to

lsm(kr—lTC/Z) 21+1a1m(k+m/z)—> aj=i'(21+1) . (6.4.3.9)

Egs. (6.4.3.5) and (6.4.3.9) define a useful integral relation,
1 [t rcoso
Jilkr) = ?/ dcos0e™ " P(cosH). (6.4.3.10)
rJ-
Thus, the required expansion Eq. (6.4.3.2) of the plane wave over spherical waves is

eik~r — ezkrwse Zl 21 + l)jl(ki”)Pl(e)
=0

oo

= Y Q@+ 1)ji(kr)P(6rr). (6.4.3.11)
=0

Using normalized spherical harmonics,

[20+1
YY) = 4+ Pi(cos®), (6.4.3.12)

the Eq. (6.4.3.11) can be rewritten as

zkrcme Zl 47 21+] Jl(kr)Yl (9) (6.4.3.13)

Egs. (6.4.3.11) and (6.4.3.13) may both be used to advantage. Remind that the definition of
0 is the angle between k and r.

Let the plane wave propagate not in z direction, not in any other direction k defined
by polar angles ®,® in Cartesian coordinates (x,y,z). Remind that the direction of r is
determined by polar angles 6, ¢ in the same Cartesian coordinates (x,y,z). If 8 denotes the
angle between the vector k and r, we have according to Eq. (6.4.3.13),

Mo = kT =N i\ fam(20 + 1) i (kr) Y (0). (6.4.3.14)
1=0

We then make use of the addition theorem of spherical harmonics,

20+1 =! e
arraat = ¥ @) (0.0

m=—1
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yielding the generalized formula

=Y ami'ji(kr)Y"™ (©,P)Y]"(6,0).
=0

6.5. Exercises and Solutions

6.5.1. Angular Momentum

(1) Define
Jy = Jo£il,.
Prove that:
Jo=3s+J2), Ly=30s=J2)
[, Js] = £hJs;
Jide =J* —J2 £ 1.
(o J | =JdJ —J J, =2hJ;
Ui s =Jdd+J Jp =2(J* = J2);
Solution:

Let us prove Eq. (6.5.1.1.3).
[JZ7J+] = [jZaJx+in] = [jZaJx] +i[JzaJy] = ih-]y"i'i(_ih-]x)
= ihJy+hJy = h(J+iJy) = hJ,.
[ J-] = [jvax_in] = [Jzs ] _i[-]za-]y] = ih-]y_i(_ih-]x)
= ihJy—hJy = —h(J,—iJy) = —hJ_.
Let us demonstrate Eq. (6.5.1.1.4).
Jd_ = (Je+idy) (e —idy) = J; —idody + iy J+ T
=T —i(Jdy =)+ T = T; —ille, ] + T}
=T —i(ih) +J] =T+ T, + b =T — 2+ hJ..
J_Jy = (Je—idy)(Jx+idy) = T +idedy —idyJ +J;
=T +i(Jdy =)+ T = T+ il Jy] + 5
=T +i(ih) +J; =T +J; —hl. = J* — j2 = hl..
Let us demonstrate Eq. (6.5.1.1.5).
[J_HJ_] - J+J_ —J_J+.
Substituting Eq. (6.5.1.1.4) into Eq. (6.5.1.1.7) yields

Ui J) =T+ T} 4+ 1. —J; —J} 4 hJ. = 2hJ..

(6.4.3.15)

(6.5.1.1.1)

6.5.1.1.2
6.5.1.1.3
6.5.1.1.4
6.5.1.1.5
6.5.1.1.6

~—~~ o~ o~ o~
T — — Y~ ~—

(6.5.1.1.7)
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(2) We can define quasi-angular momentum (Refer to chapter 3), which are

L, =yk, —zky = —i (yaiZ —z%) . (6.5.1.2.4a)
0 )
r _ __i(,2_.9
L, = zky — xk; i <Zax xaz> . (6.5.1.2.4Db)
;L R )
L, = xky, — yk, = —i <xay —yax> . (6.5.1.2.4c¢)

Prove that the quasi-angular momentums are quantized as well as the angular momentum
in quantum mechanics.

Solution:

In Eq. (6.5.1.2.4) k represents wavevector. Using the exactly same procedures as in
section 6.1.4 of this chapter and assuming k = kk (thus “Kk” is a quantity without dimension),
we obtain a similar following equations like the Egs. (6.1.4.16) and (6.1.4.17):

LY"(0,0) =K1+ 1)Y"(8,0), (I1=0,1,2,--+) . (6.5.1.2.5)

where (I + 1)h? are the eigenvalues of operator L2, Y/" = |Im > being the corresponding
eigenfunction. (Note that L'? represents both operator and the eigenvalue of operator L?.)
The eigenvalues /(I + 1)k? is (21 + 1) fold degenerate corresponding to a particular value of
[ there will be (2/+ 1) values of m (= —1,—l+1,---1).

LY"Im >=mk|lm>, |m| <l m=—l,—1+1,---,1—-1,] . (6.5.1.2.6)

Therefore, the quasi-angular momentum is also quantized, and this quantization is inde-
pendent of quantum mechanics, although at present we do not know how to measure L’ or
L2

(3) According to the formula given in section 6.4, = cos~'m//I(l + 1), calculate

AD = 91:1047"121 — 9121047"121_1 . (651141)

Solution:
AB = 0.0057°.

(4) Prove the Eq. (6.4.1.7).

Solution:
Eq. (6.4.1.7) is

hia 1\
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The Hermitian character of the radial momentum operator can easily be checked by showing
it to be self-adjoint, i. e., to satisfy the relation

<ulpyy >=< pyuly > (6.5.1.4.2)

for any pair of complex functions u and v for which these integrals exist.

<ulpyy >= /dru - (ﬁ%— V> (6.5.1.4.3)

or
h(ou  u\"
d i\or r Y
h(ou* u*

The two integrals in Egs. (6.5.1.4.3-4) become equal if expansion

< pyulv >

Il
—
QU

h Lov o1 ot .1
?/dr{ Fp +u —v+ 5 v+u ;v} =0 (6.5.1.4.5)
orif )
%dedq)sme/ drr? { (u*v)+ u v} 0. (6.5.1.4.6)

The inner integral may be reshaped into

dr uvr —uvr2 , 6.5.1.4.7
0

which indeed vanishes if «* and v remain finite at » = 0 and vanish exponentially for » — oo,
It should be noted, however, that the normalization integrals < u|u > and < v|v > will
still exist if # and v become singular as 1/r at the origin. Normalization alone therefore
does not always suffer to exclude solutions without physical significance, e. g., inside a
spherical potential well for / = 0.

(5) Show that, if a state is a simultaneous eigenstate of L, and Ly, then this state has the
eigenvalue Ly =L, =L, =0.

Solution:
Let W be the said state. Then

OF = [Ly,L,|W = iAL. . (6.5.1.5.1)

Eq. (6.5.1.5.1) follows that ¥ is an eigenstate of operator L, corresponding to the eigenvalue
L, = 0 (This eigenstate is called null eigenfunction of operator L..). From the uncertainty
relation Eq. (3.3.2.1.6), and the fact that ¥ is an eigenstate of operators L, and L, we find
that

0= (ALY)(AL) > g\ <L :glLy]. (6.5.1.5.2)
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Because the absolute value of any quantity is > 0, thus Eq. (6.5.1.5.2) tells us the < L, >=
L, = 0. Similarly, <L, >=L, =0.

This exercise shows that a state of a system corresponding to finite angular momen-
tum cannot be a simultaneous eigenstate of any Cartesian components of operator L.
Furthermore, from the definitions of operators L,,Ly,L;, it follows that any constant is a
simultaneous, null eigenfunction of operators Ly, Ly, L.

(6) Show that operators L, and L? are Hermitian.

Solution:

To prove the Hermit property of operator L,, we must show that

L.=L'

or, equivalently, that

(p:—zpy) " = (yp-—2py)

Look at the yp, term.

(p.)"=piy" =py=yp..

The last two equalities from (a). Operator p, and y are Hermitian ; (b). [y, p;| = 0.

6.5.2. Hydrogen-Like Ions

(1) For the ground state of hydrogen atom verify the uncertainty relation between position

and momentum.

Solution:

The wavefunction of ground state of hydrogen atom is

1\ 12 )
p— —r/dos
Wigo = <—Jta2> e .

Its parity is even. Due to the the parities of operators x and p, are odd, we have

<x>=<p,>=0

Due to that W is isotropic, appears as spherical symmetry distribution, it is obvious that

<K >=<y>=<?>=-<r>

<pr>=<py>=<pr>=_—<p’ >

<r’>= /a’rrz(‘Ploo)2 = 3a,

oW i00\” h2
<p2 >—/’pl1"100’2d1”—ﬁ2/( a:f”) dr =

a3
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Therefore,

<X>=d, M=[<X®>—<x>}?

<pr>=W/3a%, Apy=[<p?>—<pe> "% =n1/\V3a,

At last we have

:ao

Ax'Apx:

| St

f >
V3
The general uncertainty relation is

h
Ax'Apr E

6.5.3. HF Theorem

(1) In terms of HF theorem seek the force acting on the X component of a given nucleus in
a molecule at R,.

Solution:
For a molecule with 1 < i < N electrons with coordinates r;, and 1 < a < M nuclei,
each located at a specified point Ry, = (Xq, Yo, Zo) and with nuclear charge Z,, the molecule

Hamiltonian is u )
M N
e’Z e Zalp
—_— 6.5.3.1.1
Lk b Ry (653.1.1)

o=1 ‘rl 06:1]3>0¢

[V]z

H=T-

Il
-

i

where T is the kinetic energy operator of the molecule, the second and third terms represent
the electron-nucleus and nucleus-nucleus interaction potentials in the molecule, respec-
tively.

The force along the X direction, applied on the y-th Fy,, is equal to the negative of the
derivative of the total energy E with respect to that coordinate. Employing the Hellman-
Feynman theorem this is equal to

oE oH
s~ (5%

lp> (6.5.3.1.2)

The parameter A in the HF theorem corresponds to the coordinates of the nuclei. Only
two components of the Hamiltonian in Eq. (6.5.3.1.1) contribute to the required derivative.
Differentiating the Hamiltonian in Eq. (6.5.3.1.1) yields

oH 0 I X &2z f iv,‘ Lol
aXY aXY a=1o0=1 |r’ RO“ oa=1B>a RB’
M
—-X
2 v
= —e°Z R 6.5.3.1.3
e YZ RaP te ZY(;Y Ro _RY‘% ( )

Suppose that the average position density of electron in the molecule is the same for every
electron

p(r)=p(r1) =p(r2) = =p(ry) = ¥"¥. (6.5.3.1.4)



Angular Momentum and Hydrogen-Like Atoms 299

Insertion of Eq. (6.5.3.1.3) into the Hellmann-Feynman theorem in Eq. (6.5.3.1.2) returns
the force on the X-component of the given nucleus at Ry in terms of the electronic density
p(r) in Eq. (6.5.3.1.4) and the atomic coordinates and nuclear charges:

- (/drp RaP Z : Ry|3> (6.5.3.1.5)

oty

6.5.4. General Properties of Central Field of Force

(1) Discuss the S states of free particle.

Solution:
S means / = 0. In this case the Schrédinger equation is

p2
LY = B Y. (6.5.4.1.1)
2u

The radial kinetic energy operator p2/2u commutes with the radial momentum operator p,
and they have common eigenstates. Due to the degeneracy, however (the eigenstates Ej, are
doubly degenerate), eigenfunctions of p? are not necessarily eigenfunction of p,. Owing to

the inadmissibility of the eigenfunctions of p,, it is the eigenstates of p? alone which are
physical relevant. Namely, these functions are

sinkr
Y = jolkr) = Pt (6.5.4.1.2)
Rewritten W}, in the form
1 elkr e ikr
Yo+ = % < PP > (6.5.4.1.3)

reveals that it is a superposition of the outgoing spherical wave W, and the ingoing
spherical wave W_y, which gives zero flux at the origin.

(2) Seek the eigenstates and the eigenenergies if a particle of mass M is confined to the
interior r < a of a spherical well with impenetrable walls.

Solution:
The general solution is given by Egs. (6.4.2.16) and (6.4.2.15). To impose the boundary
condition Wy, (r = a,0,0) = 0 we set

Ji(ka) = 0. (6.5.4.2.1)

Actually, from Eq. (6.5.4.2.1) we can find infinite number of solutions. To delineate these
values we return to the notation x = kr in terms of which Eq. (6.5.4.1) becomes

Jixim) =0, (6.5.4.2.2)
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where x;,, is the nth zero point of j;(x). The energy spectrum becomes a discrete spectrum
instead of the continuous spectrum of k values for the free particle.
Eigenfunctions and eigenenergies for the spherical well are then

Wi (,6,0) = ji () ¥/"(6,0) (654.2.3)
a
h2x?
Ey=-14. 6.5.4.2.4
nl 2Ma2 ( )
Orthogonality of the spherical Bessel functions is given by
a 2. (Xinh\ . (XiwT a’ . 2
/0 arr jy (P i () = S L (o) P (6.5.4.2.5)

Using Eq. (6.5.4.2.5) one can normalize the wavefunction in Eq. (6.5.4.2.2).
The ground state wavefunction and eigenenergy for the spherical well are given by

[ 1 1 r
=l = 1 ( )
=0=1 2na’ ji(m) P\a

h2n2
2Ma?

E—op=1=

Note that this ground state is nondegenerate.

(3) Momentum space wavefunctions for central force potentials. To show that the
splitting off a spherical harmonic in the wavefunction in ordinary space permits the
same factorization in momentum space. (Refer to [94]. However, this book makes some
modifications)

Solution:
In the Fourier transform

1 ik-r
¥ =555 /dke f(k) (6.5.4.3.1)
and |
— —ik-r
fk) = Y /dre ¥(r) (6.5.4.3.2)
it shell be supposed that W is factorized:
1
¥(r) = —xu¥("(6,9). (6.5.4.3.3)

In order to find its Fourier transform according to Eq. (6.5.4.3.2), let us expand the expo-
nential into spherical harmonics of angle y between the vectors r in direction 6, ¢ and k in
the direction @, P [cf. Eq. (6.4.3.13)]

o ikreosy _ Z i 4m(20+ 1)j7b(kr)Y7?* (cosy). (6.5.4.3.4)
A=0
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Here Y,? (cosy) may be expressed by the polar angles of r and k using the addition theorem
of spherical harmonics [cf. Eq. (6.4.3.4)]

4 =M y
Yy (cosy) = ,/m Y Y"(0,2)ry(6,0). (6.5.4.3.5)
u=—>

Substituting Eq. (6.5.4.3.5) into Eq. (6.5.4.3.4), and the result and Eq. (6.5.4.3.3) into Eq.
(6.5.4.3.2), we get

_ 4 ) A u e Xnl om
g, 4 0 T k0.9 0.0 117 0.0

flk) =
The integration over all the directions of the vector r can be performed:

?{erYf* (e’ q))Ylm (97 q)) = 5l?»s,um

so that only one term (/,m) remains of the double sum:

kf(k) = \/%i_l /Omdrkrjl(kr)xnl(r)Y,’"(@,<I>),

i. e., the momentum space function f(k) may be factorized in the form

f(k) = %gnz(k)lﬁm(GJ,CD) (6.5.4.3.6)

with

(k) = \/%i_l /0 " drkr i (kP (r). (6.5.4.3.7)

The radial parts g,;(k) and i~y (r) therefore stand in the mutual relation of a Hankel
integral transform. The inversion of Eq.(6.5.4.3.7) is

Xt (r) = \/gil /0 mdrkrjz(kr)gnz(k). (6.5.4.3.8)

If we normalize the position space function ¥ in the usual way to permit its probability
density interpretation,

/ drlgu(r)* =1, (6.5.4.3.9)
0

we find by putting Eq. (6.5.4.3.8) into Eq. (6.5.4.3.9):

2 1) 1) )
= [ [ak [ aw ki) g (0K (k) (K) = 1.
0 0 0
Performing at first the integration over r,

/ kr ji(kr)k'rji(K'r) = g (65.4.3.10)
0
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we get
/ dk|gm(k)|* =1, (6.5.4.3.11)
0

1. e., the same probability density interpretation holds in momentum space: in the quantum
state under consideration the particle will be found with the absolute value of momentum
between k and k +dk with the probability |g,;(k)|*dk.

(4) In the subsection 3.5.8 of chapter 3 we have derived a momentum space Schrédinger
equation, which is a differential equation. This exercise is to derive a momentum space
integral equation or, equivalently, momentum space Schrodinger integral equation for
central force potentials. The Fourier transform f(k) of the wavefunction ¥(r) describes
the momentum distribution in a quantum state. An integral equation shell be derived for
f(k) in which the Fourier transform of the potential plays the role of kernel. (Refer to [94].
However, this book makes some modifications)

Solution:
Between ¥(r) and f(k) there hold the two reciprocal relations

1 .
Y(r) = ST / dke™" f (k). (6.5.4.4.1)
1 .
flk) = 7 / dre” ¥ (r). (6.5.4.4.2)
The potential is
V(r)= / dke™ W (k). (6.5.4.4.3)
W (k) = 21? / dre *TV (r). (6.5.4.4.4)

The position space wavefunction satisfies the Schrédiger equation

h2
—2—V2‘P+V(r)‘P:E‘P. (6.5.4.4.5)
m

Substituting Egs. (6.5.4.4.1) and (6.5.4.4.3) into Eq. (6.5.4.4.5) yields

m

1 2 . o
=T {Zh— / dke™ K2 £ (k) + / dk / dk' e )T (k) £ (K)

E / dke*” f(k)} —0.

In the double integral let us use k” = k + k’ as integration variable (and then again write
k instead of k”). Then, as the integral will only vanish for any value of r if the integrand
vanishes, we arrive at

2m

(ﬁ —E) Fk) = — / KW (k—K) f(K). (6.5.4.4.6)
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The integral equation Eq. (6.5.4.4.6) can be established only if the Fourier transform Eq.
(6.5.4.4.4) of the potential exists, i. e., if V(r) at large values of r vanishes at least as r~ !¢
with infinitesimal € > 0.

It should be noted that from the normalization

/dr\‘P(r)\z 1

one can obtains

just by direct substitution.

(5) Momentum space integral equation for central force potentials. We have shown in
the problem (3) of this subsection that for a central force field the solution can be factorized

in the form |
fk) = 7 gu(K)Y]"(©,P). (6.5.4.5.1)

The special integral equation for g,; (k) shall be derived for the hydrogen atom.

Solution:
The integral equation Eq. (6.5.4.4.6), written in atomic units,

k2
(5 —E> Flk) = — / AW (k—K) £ (k') (6.5.4.5.2)
with |
_ —ik-r
W) =5 / dre TV (r) (6.5.4.5.3)
shall be reduced to a radial equation for g,;(k) if V(r) depends on the absolute value r of

the vector r. In that case, Eq. (6.5.4.5.3) may be integrated over the solid angle, the result
depending only upon the absolute value of the vector k:

smkr

W(k) = 87t3/ drrv(r) . (6.5.4.5.4)

The kernel of the integral equation then becomes a function of
(k—K')? = k2 +k? —2kK cosy, (6.5.4.5.5)

where 7 is the angle between the vectors k and k’. The function W may be then expanded
into a series of Legendre polynomials,

W(lk—K]) Za, (k,k")P;(cosy), (6.5.4.5.6)

whose coefficients a; depend on the absolute values k and k' only. This is the essential point
leading to possible factorization.
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Using Eq. (6.5.4.5.1) for f(k), the integral equation Eq. (6.5.4.5.2) now becomes

sz —E> %gnz(k)Yz”’(@»‘I’)

o oo 1
—— Y [Tk K et f QB comp (@), @)
i=0

The angular integral can be evaluated using the addition theorem

) r(e, @) (e,

p=—i

Py(cosy) = 21
which reduces the sums to one term only withi =1/, y =m:

47
21+1

L (k)Y (@,@) =

; /0 PR ar(k, k) gn (K)Y](©, D).

This is an identity in the polar angles thus showing that the factorization Eq. (6.5.4.5.1) is
correct, and leaving us with the radial integral equation

2 4 o)
(% —E) gulk) = —3 l’fl /0 Ak K ay(k, K ) g (K). (6.5.4.5.7)

If the central force is Coulomb attraction of the hydrogen atom,
V(r)=—-, (6.5.4.5.8)
the integral Eq. (6.5.4.5.4) can solved using the limiting relation

oo

lim | dxe ®sinx=1

e—0J0
So that we find |
=——— .5.4.5.
W (k) TR (6.5.4.5.9)
and, according to Eq. (6.5.4.5.5),
1 1
Wk—kK)=— =—
( ) 2m2 |k —K'|? Am2kk! (z — cosy)
with S
k“+k
= (6.5.4.5.10)
Putting cosy=t, Eq. (6.5.4.5.6) then is the well-known expansion of
1 oo
= Y (2i4+1)Qi(2)Pi(1), (6.5.4.5.11)
_ o]

1

where the coefficients
1 +1 Pl(l‘)
Qi(z) = —/ dt—— (6.5.4.5.12)
2J-1  z—t
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are the Legendre functions of the second kind. We therefore find

, 1 . k2 —|—k/2

so that finally we arrive at the radial integral equation

K 1= K>+ k>
(5 —E> gu(k) = _E/o dK'Qy (W) gni(K'). (6.5.4.5.14)

The integral equation Eq. (6.5.4.5.14) was solved by Ref. [95]. This way means deter-
mination of the momentum space eigenfunctions without any recourse to position space
functions. The latter way, however, proves simpler for the Coulomb field field and shall be
given in the following exercises.

(6) Momentum space wavefunctions for the hydrogen atom. To determine the mo-
mentum space wavefunctions for the lowest levels 15,25, 2P of hydrogen atom. Refer to
the Table 6.2. 1Smeans n =1, =0,m=0. 28 means n =2,/ =0,m = 0. 2P means
n=21=1m=-1,0,+1

Solution:
Since in exercise (3) of this subsection we have shown that, in a central field, a factorized
coordinate wavefunction

oun(1,0,0) = 2, ()Y (6.9) (654.6.1)

leads to a factorized momentum space wavefunction
1
flk) = 28:Y1"(0,®), (6.5.4.6.2)

we have only to determine the radial part g, (k) which follows from a Hankel transform of
Xn(7), and is given in Eq. (6.5.4.3.7):

2 0o
gni(k) = \/;il / drkr ji(kr)xu(r). (6.5.4.6.3)
0
For the chosen states we have from Table 6.4, in atomic units,
18S:
An=1,=0 = 2re”".

sinkr

jo(kr) = .

Jo(kr) p”

2 o sinkr
n=1 1= = -2 2re "
g 1,1 ()(k) \/; /0 drkr r re

2 4k
_ \/;(1 e (6.5.4.6.4a)
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2S: | |
2\ -r/2
n r——r
An=2,1=0 e ( 2 >
) B sinkr
Jolkr) = kr
gn=2i=0(k) = [—= / drkr Smkr( ! 2> e "2
32 k 1—4k2)
= \/_m (6.5.4.6.4D)
2P: !
) —r/2
An=2,1=1= 24r e .
) sinkr  coskr
Jji(kr) = 2 ke
sinkr  coskr
n= — k pry - 2 —r/2
8 —2,1—1( ) \/F < )2 kr )r e
(128 kP
In all the cases there holds the normalization law
/0 dklgm(K) =1, (6.5.4.6.5)

which can be checked directly for each of the functions in Egs. (6.5.4.4a-4c).



Chapter 7

Charged Particle in Electromagnetic
Fields

7.1. Electromagnetic Field in Classical Mechanics

Until now, we consider quantum problems with potential V(r). Magnetic fields, in con-
trast to the static electric field, cannot be included in this way. All the troubles come from
including the magnetic field, when we treat the motion of charged particle in electromag-
netic field. We must generalize the least action principle in classical Lagrange mechanics
to include the magnetic field.

We introduce two approaches to include the electromagnetic field in classical mechan-
ics. Both approaches can be used to the canonical quantization procedure in section 7.2.

(A) Lagrange function. The canonical quantization procedure, explained in section
7.2, is appropriate for any non-singular Lagrangian system (i. e., Hessian determinant is
not equal to zero, and thus the Legendre transformation can be carried out). We treat the
electromagnetic field as a classical external field, the Lagrangian is not singular, and thus the
canonical quantization procedure can be carried out. The electromagnetic field is switched
on for a non-relativistic charged particle of mass u and charge g through Lagrange function,

2
A
L(rv) =5~ —q0+2[a(r) ], (7.1.1)
where ¢ is the electromagnetic scalar potential, and A(r) is the electromagnetic vector po-
tential. The canonical momentum can be found from Lagrange function
oL
v c
One can see from Eq. (7.1.2) that the canonical momentum does not equal to the mechanical
kinetic momentum .
The Lagrangian equation of motion is given by

dp OL

L (7.1.3)
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The i-th component of Eq. (7.1.3) is

dvi__qPA_ %0 g (A A
ari arj '

= =v; 7.1.4
i c ot qariJerj ( )

As always, the sum is implied over the twice repeated indices. At this point, one can
introduce electric E and magnetic B fields though the derivatives of the potentials:

10A
B=VxA. (7.1.6)

Substituting Egs. (7.1.5-6) into Eq. (7.1.4) yields the equation of motion

dv q

,uZ:qE—l—;va. (7.1.7)
The second term in the Eq. (7.1.7) is called Lorentz force. In classical mechanics it is
stressed that the E and B are contained in motion equation. On the other hand, the potential
0 and A are considered auxiliary quantities which are not observable because there is the
gauge invariance which leads to some arbitrariness of the set of potentials ¢ and A. To see
the gauge invariance let us make a gauge transformation to a new set of potentials.

A=A =A+Vf(r1),

d
T S (7.1.8)

c

where f(r,t) is an arbitrary single-valued function, and is called gauge function. Under the
gauge transformation in Eq. (7.1.8), the fields E and B and hence the equation of motion
are invariant,

104’
E'=-V¢'--—-=E, B =VA'=B (7.1.9)
c

One can determine the Hamilton function according to the rules of classical mechanics
from Lagrange function in Eq. (7.1.1),

oL

H = —.v_L
v Y
v

- e

—q/cA)?
_ (pmgfed) (7.1.10)
2u
The second equality of Eq. (7.1.10) indicates that the velocity (or kinetic momentum)-
dependence of Hamiltonian does not change. The third equality of Eq. (7.1.10) indi-
cates that the velocity (or kinetic momentum)-dependence of canonical momentum p does
change.
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(B) Hamilton function. In classical mechanics the Hamilton function is

2 2
pv (p—4q/cA)
H=— = . 7.1.11
5 +ad oy a0 ( )
Let us explain the reason to write the Hamiltonian in magnetic field as given by Eq. (7.1.11).

Substituting Eq. (7.1.11) into canonical equation

. o0H - oH
- - 7.1.12
=3 p=—=" ( )
one obtains .
yf:q(E—i——vXB), (7.1.13)
c

where electronic field E and B are given by Eqgs. (7.1.5) and (7.1.6), respectively. Eq.
(7.1.13) is the Newton equation of the charged particle in electromagnetic field. The second
term in Eq. (7.1.13) is called Lorentz force. We take the x component of Eq. (7.1.13) as an
example to show the Eq. (7.1.13).

. 0H 1 q
=2 2 ——A). 7.1.14
opx M (px c ( )
Therefore,
pe=ni+a,. (7.1.15)

Eq. (7.1.15) is the same as Eq. (7.1.2).
Making derivative of Eq. (7.1.14) over ¢, and utilizing Eqgs. (7.1.11) and (7.1.12), one
obtains

¢ _ 5 4, _ 9H 4
HX = Dx CAx— o CAx
1 q,.\qoA; 9 ¢
= L () (5 e oA
3 3
Ly o % gfon Joa,
- clg‘x' ox _qax_c<at —I—I;x, ox;

q
q < O0A, . 0A, .0A, .OJA, .OJA, . BAX>
c

LA G R PR R MR P N
B 10A q B q
= —q(Vq)—l—;g)x—i-z[vx(VxA)]x—q<E—|—Ev><B>x. (7.1.16)

7.2. Electromagnetic Field in Quantum Mechanics

Next we give you two statements on the transformation of the canonical momentum p into
operator —ihV in position space (i. e., coordinate representation):
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(a) In chapter 3 we have demonstrated generally that quasi-canonical momentum p’ in

position space is an operator:
pl=-iv, (7.2.1)

and the relation between canonical and quasi-canonical momentum is p = Ap’, therefore,
p=—ihV, (7.2.1)

(b) Some references take the following statement: according to the stipulation in quan-
tum mechanics, which is called canonical quantization procedure, in coordinate representa-
tion we have Eq. (7.2.1).

This book prefers the statement (a), because it gives some reasons to take. Feynman
gave a physical explanation for the Eq. (7.2.1) in Ref. [96]. Note that according to Eq.
(7.2.1), the canonical momentum and canonical coordinate satisfie the normal commutation
relation.

The Hamilton operator of the charged particle in electromagnetic field is thus

(p—q/cA)?

H =
2u

+q0. (7.2.2)

This book use p to represent both the operator and the quantity. The Schrédinger equation
is

(1 oo g vo 4
- [Eﬁ<—ﬂﬁﬁ—;A)-(ﬂhV-EA)+q¢]qa (7.2.3)

General speaking, the operator p and A do not commute, and satisfies the commutation
relation:
[p,A] = —ihV-A. (7.2.4)

If we use the transverse wave condition V-A = 0, then Eq. (7.2.3) can be written as:

1 2
_pZ_iA.p+q_A2+q¢]lp

d
29y _
in ot [Z,u uc 2uc?

P, (7.2.5)

For the Schrodinger equation Eq. (7.2.5) we make the following three discussions:

(A) Gauge invariance of Schrodinger equation.

The canonical momentum operator and canonical coordinate operator do not change
under the gauge transformation given by Eq. (7.1.8), because they do not relate to A and ¢.
We show that if the wavefunction makes the following transformation:

Y g =l hey (7.2.6)
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under the gauge transformation, then the ¥’ satisfies the same equation as the P, i. e.,

(p—q/cA")?

ot 2u

The proof for the Eq. (7.2.7) is as follows:
Substituting the following equations

ihg‘l” = { —|—q¢’] v (7.2.7)

-a/ //_iqf/hc-a
lhg‘P —qd¥V' =e lhE‘P—i—q(b‘P

(—ihv _ ﬂA’) g — piaf/he (—ihV _ ?A> N
C C
2 L 2
(-ihv _ %’) g — glaf/he (-ihv — QA) N
C C
into Eq. (7.2.7), one obtains

_g/cA)?
o [0 r

This concludes the proof.
For the reader’s convenience, we summarize the principal idea of gauge invariance in

quantum mechanics, in relativistic notation. The gauge transformation in Eq. (7.1.8) for
electromagnetic field A, (x,u) is

of
!/
—A + =L
u= At ox,
with
Ay={A,i¢}, and x,={xict} . (7.2.9)

This leaves the electromagnetic observables, i. e., the field strengths E and B, unchanged.
The four momentum operator is given by

. 0 9 09 0 iH
pﬂ__lh{avgaaaa}_{pa?}a (7210)

and minimal coupling is achieved through the replacement
q
Pu— Pu— EA,,. (7.2.11)

Therefore, in quantum mechanics, to guarantee the the gauge invariance of Schrédinger
equation, the gauge transformation Eq. (7.1.8) must be supplemented by the phase trans-
formation Eq. (7.2.7) of the wavefunction.

(B) Gauge invariance of the continuity equation (i. e., the local probability conserva-
tion).

Take the complex conjugate of Eq. (7.2.5) (A and ¢ are real function. In position space

P =-p) ; ,
) 1 q q

—ih=¥'=|—p*+ LA p+ P 7.2.12

ihs i TP +q0 ( )
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Making W* x (7.2.5) =¥ x (7.2.12) and utilizing V - A = 0, one obtains

d 1
(W) = — (P p*¥ —wp?) — L (pra. pw WA . pe)
ot 2u uc

1
= —p (TP —wp¥) - Ly (wraw)
2u uc

ih 2
= v (v pw —wpw) - g aw| (7.2.13)
2u uc
Eq. (7.2.13) is
)
Ep—I—V-J:O, (7.2.14)
where probability density is
p=""Y, (7.2.15)
and probability current density operator is
1 * * q *
J = —(W'p¥—-¥Yp¥") - —AV'Y
2u uc
= Jo+Jy4
1 *
= o [w (p-2a)+w (p-Ta) v
2u c c
1
= E(T*V‘P—i—‘l’v*‘l’*) = Re(¥"vW), (7.2.16)

where v is the velocity operator of the particle given in Eq. (7.1.2).

The first term in the first equality of Eq. (7.2.16) is the old expression for the probability
current density, Jy, in a potential field, while the second term, the diamagnetic probability
current density Jy, is directly proportional to the vector potential and the probability density
at a given point,

Ja(r) = —l%\\p(r)m(r). (7.2.17)

Note that the velocity field defined by J/p is no longer irrotational; its cul is proportional
to the magnetic field.

J
Vx o Dyyp=_9p (7.2.18)
p pc pe

The Stokes theorem gives the circulation C of the velocity field along a closed contour

pierced by the magnetic field line,

c = j[dl.v: —ifdlA-dl:—i/VxA-ds
uc uc
>
- —i/B-dS: .y (7.2.19)
uc uc
where ® is the magnetic flux through the surface subtended by the contour. This results

is also gauge-invariant since the gradient of the single-valued gauge function f does not
contribute to the contour integral Eq. (7.2.19).
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(C). Scully and Zubairy derived the Eq. (7.2.3) from free particle Schrodibger equation

2
i 2 (1) = HW (1) = — V2w (1), (7.2.20)
ot 2u

just in terms of gauge invariance under (local) gauge transformation given by Eq. (7.2.6).
For detail see Ref. [97].

7.3. Aharonov-Bohm Effect

The time-dependent Schrodinger equation is

2 i 2
ihg‘P(r,t) = —% <v— C-%A@)) Y(r,1), (7.3.1)

where we assume vector potential A(r) is time-independent. Consider Eq. (7.3.1) in a
region where the magnetic field vanishes. That is, where

VxA=0. (7.3.2)
One can write the solution of Eq. (7.3.1) as
W(r,1) = x(r,1)e""), (7.3.3)

where
v(r) = /0 %A(r’) dr, (7.3.4)

which is a function of r only.
To obtain the equation for k(r,7) we note from Egs. (7.3.3-4) that

V¥ = (Vk)e' + ik (QA) e, (7.3.5)
h
Hence,
[V - %A(r)] ¥ = (Vi)el. (7.3.6)
Substituting Eq. (7.3.6) into Eq. (7.3.1) yields
oK h?
h— = ——V°k. 3.
ih 5 o K (7.3.7)

Thus we have nicely separated out the function x, which satisfies the Schrodinger equation
without the presence of any interaction.

Consider a situation in which a solenoid carries the magnetic field By along its axis.
The magnetic field is assumed to be uniform inside the solenoid but it vanishes outside. If
the solenoid has radius R, then the magnetic flux through it is given by

® = nR’B,, (7.3.8)
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Figure 7.1. P is charged particle source. A and B are the two slits on screen S7. The charged
particle from source P is detected at, for example, D. If the magnetic field in solenoid
(shaded area) does not equal zero, then the interference pattern on screen will change due
to the phase shift given by Eq. (7.3.10).

and the vector potential at a point r > R from the axis of the solenoid is given by

A=2d (r>R), (7.3.9)

2nr

where @ is a unit vector in the direction of the azimuthal angle ¢. Note that the magnetic
field vanishes in this region.

If a charge passes by the solenoid (See Fig. 7.1), then from the relation Eq. (7.3.4) the
phase is given by o 1o ®

q q
Y_ﬁ 7~ra’<l>_j:ﬁ¢. (7.3.10)

The £ sign depends on the whether the electrons are traveling in the same direction as
the current in the solenoid (which is the same direction as A) or the opposite.

Suppose a beam of electrons directed at the solenoid splits in two and goes around
either side of the solenoid. The phase difference between the two parts of the beam when
they recombine on the other side causes interference between them. The azimuthal angle
0 covered by the beam in the direction of the current (which is in the same direction as A)
will be &, and for the beam in the opposite direction will be —m. The difference between
these two values is 27. Taking the positive sign for the difference we obtain the total phase
difference is ¢®/h. This is the essence of the Aharonov-Bohm effect.

7.4. Exercises and Solutions

(1) Prove that inherent in the Hamiltonian of Eq. (7.2.5) is a term that corresponds to the
interaction of the magnetic field with the orbital angular momentum.
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Solution:
Let us express the Hamiltonian of the Eq. (7.2.5) in the presence of a magnetic field as

H:ipz—i(A'p—i—p)-A-l-iAz. (1.1)
2u 2uc 2uc?
The second term on the right hand side gives, after substituting p = —ihV and introducing
the wavefunction W,
(A-p+p-A¥Y = —ih[V-(A¥)+A-(V¥)]
—ih[(V-A)P+2A- (VY)]. (1.2)

We choose the transverse wave condition so that the condition

V-A=0. (1.3)
We then obtain
(A-p+p-A)=2A-p. (1.4)
Let us now use symmetry gauge
1
AZE(BXF)’ (1.5)

where r is the radius vector. Eq. (1.5) satisfies the gauge condition for A and reproduces
V x A = B, where B is the magnetic field. Hence

(A-p+p-A)=(Bxr)-p. (1.6)
Using the vector identity A x B-C = A - (B x C), we obtain
(Bxr)-p=B-(rxp)=B-L, (1.7)
where L = r X p is the orbital angular momentum. Thus we have

2 2
p=g/cA)” Lo 45, & g (1.8)
2u 2u 2uc 2uc?
Therefore, inherent in the Hamiltonian is a term that corresponds to the interaction of the
magnetic field with the orbital angular momentum. The second term signifies an interaction
of the type —M - B, which corresponds to the interaction of the magnetic field with the
magnetic moment due to the current generated through the particle’s orbital motion, given
by
mMm=-"Lr
2uc

(2) Would you please study on yours own the following content on Landau energy level

and make discussions.
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Landau Levels in Uniform Magnetic Field

(A) Classical mechanics.

Consider that an electron (Mass M, charge —e. e > 0) is in uniform magnetic field.
Suppose that the magnetic direction is along the z axis. The equation of motion Eq. (7.1.7)
becomes

{/:z—‘;:—MicvaEaxv, (1)
which describes circular motion of the particle in the plane perpendicular to the vector of
angular velocity,

— e
w= —B. 2
Ve (2)

The rotation proceeds with the cyclotron angular frequency

— eB
0. =|0|=—. 3
=0 =1 3)
Integrating Eq. (1) over time yields
V=0 X(r—rs)+vo, (4)

where we assume that the classical trajectory with the center at the point r, = (xo,y,) and
longitudinal velocity v, = (0,0, v,). Written in coordinate representation, Eq. (4) becomes

eB
Vx:__(y_yo)v Vy:;TBc(x_XO)a V; = Vo. (5)

Mc
In order to express Eq. (5) in terms of canonical momentum Eq. (7.1.2), we need to select
the gauge of the vector potential. Taking symmetry gauge A = B X r/2, we have

eB
vasz—7y, MVy:pya Mv, = p,. (6)

It is easy to verify that VXA = B and V- A = 0 in the symmetry gauge. Substituting Eq.
(5) into Eq. (6) yields

Px eB eB Py eB

M_M_cy:_M_c(y_yo)’ MZVC(X—%), (7)

where the fixed coordinates of the center of the orbit can now be linked to the running
coordinates and components of the momentum,

S—x— P 8

Xo=X—— (8a)
CDx

o — 5 8b

Yo= (8b)

Eq. (8) indicates that the center of the trajectory in (x,y) plane is a constant of motion
in the symmetry gauge. [Note that in the exercise (5) in subsection 7.5.2, Egs. (2.8-9))
shows this conclusion does not depend on the gauge. Eq. (2.13) shows that in quantum
mechanics, (x.,y,) are non-compatible]
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(B) Quantum Mechanics.

Although in comparison with many other textbooks (such as Refs. [98, 1, 3], the fol-
lowing derivations are largely identical but with minor differences, we hope readers to note
the differences in concepts. The wavefunctions of an object as a solution of Schrodinger
equation has Landau levels, the object itself does not have any changes, and the object will
move according to the guide of wavefunction with Landau energy levels. We have

11
(AvayvAZ) = <_§By7§Bxa 0) . (9)
The electron’s Hamilton is
1 eB \* eB \*
H = — _e + &
2M[<”" 2cy> +<p>+2cx> M
= L)+ SE ey B )+ p? (10)
= oM PP T g2 Y )T gy Py TP T G P

We just discuss the motion on electron in the x,y plane. Therefore, we do not write the last
term in Eq. (10). The Hamiltonian can be rewritten as

H=Hy+oL., (11a)
Ho= - (024 p2) + 2adM(2 +?) (115)
oM Y 2 ’

where 0, = eB/2Mc = ®,/2 is the Larmor frequency, B in @, represents the interaction
of the orbital magnetic moment of electron with the applied magnetic field, and the second
term in Eq. (11b) is called anti-magnetic term.

. 0 J\ .,
L, =xpy, —ypx = —ih <x$ —ya) = —zh%. (11¢)

The common eigenstates of the complete set of conservation quantities are the energy eigen-
states of the electron. In cylindrical polar coordinates (r,¢,z) ((r,0) is in the (x,y) plane)

¥(r,0) =R(r)e™, m=0,+1,£2,--- . (12)
Substituting Eq. (12) into eigenequation HW = E'V, one obtains the radial equation

2 2 m 2
[_j_M (;‘_ Lo u) ; ;Mm%rz] R(r) = (E-mhoo)R(r). (1)

ror  r?

To determine the solution form of R(r), we try r — 0 and r — oo.
When r — 0, Eq. (13) becomes

R? 19 |mP
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The only non-singular solution of Eq. (14) at r — 0 is

R(r) o rm. (15)
When r — oo, Eq. (13) becomes
R > 1
<—wﬁ+§M0)%F2> R(F)ZO (16)

The solutions of Eq. (16) can be R(r) o< exp(£0?r?/2) with o = \/Mawy/h. However,
the only the solution R(r) o< exp(—a?r? /2) satisfies the boundary condition of bound state.
Therefore, the general solution of Eq. (13) is

R(r)= r‘m‘e_azrz/zu(r). (17)

Substituting Eq. (17) into Eq. (13) and using natural unit (M = h= oy = 1. Thus o0 = 1.
We obtain

2u(r m u\r
ddr(2 ) +<2I |r+1 _2r> dd_(r)+[2(E_m)_2(|m|+1)]u(r):o. (18)

Set & = r2. Eq. (18) becomes

d’u(&)

+(’m’+1_§)du(§) B <|m|—|-1 _E-m

= B )a(&) —o. (19)

Eq. (19) is just the Kummer (i. e., confluent hypergeometric) equation [82]. Thus the radial
part of the energy eigenfunction in Eq. (17) becomes

R(r) ~ r‘m‘e_“2r2/2F(—nr, Im|+1,0r?), (20)

where F represents the confluent hypergeometric (or Kummer) function. The energy eigen-
values (Landau levels) are
heB
E=Ey = 1 =(N+1)— 21
W= (V+ Do = (N+1) 30 (1a)
with
N=2n,+|ml+m=0,2,4,---, n,=0,1,2,--- , (21b)

where 7, represents the node number of the radial function except r = 0, co.
If we include the term pg /2M in Eq. (10), and substitute Eq. (20) into Eq. (12), then
the wavefunction of the electron in magnetic field becomes

\ankz(r’ q)’z) ~ r|m|e*a2r2/2F(_nr’ |m| + 1’a2r2)eipzl/h’ (20>/

where exp(imd) is the eigenfunction of angular momentum operator component L,, and
exp(ip.z/h) is the eigenfunction of canonical momentum operator component P,.
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If we include the term pg /2M in Eq. (10), then the energy eigenvalues of the electron
in magnetic field becomes

heB  P?
E=Ey=(N+1 =(N+1)— + = 2la)’
v =N+ Dhoy = (N+1)50- + 50 (21a)
with
N=2n+|ml+m=0,2,4,--, n,=0,1,2,-- (21b)’

We make the following four discussions:

(A) Degeneracy of energy level.

For the electron in uniform magnetic field, the Hamiltonian Eq. (10) has the term w;L,.
Although this term does not influence the form of energy eigenfunction, but the energy
eigenvalues Eq. (21.a-b) has a term mhy. Therefore, it is easy to see that all the terms of
m < 0 have the same energy. Thus the degeneracy of energy levels is oo.

(B) The degeneracy of the energy levels is independent of the choice of the gauge.

For example, if we use the Landau gauge

A,=-B,, A,=A,=0. (22)

The Hamiltonian of the motion of the electron in (x,y) plane is

1 eB \* 2
H=_— - —
M [(Px c)’) +py

The eigenstrates of the H can be the common eigenstates of the complete set (H,P;) of
conservative quantities, i. e.,

(23)

P(x,y) = Py (y). (24)

In Eq. (24) p, is the eigenvalue of operator py, and is real number. —co < p, < 4-o0. %(y)
satisfies

1 eB \’ , d?
i [(Px— 7)’) —h d—yz] x(y) = EX(y).- (25)
Setting y, = cpy/eB, Eq. (25) becomes
hz " ! 2 2
—ogg % )+ M (y—yo) x(y) = Ex(y). (26)

Remember that . = eB/Mc is called cyclotron angular frequency.
Eq. (26) is equivalent to an one dimensional harmonic, the equilibrium point is at
Yy = Yo = cpy/eB. Therefore, the energy eigenvalues are

1
E=E, = <n+§)hmc, n=0,12,--
= (N+1howy, N=2n=0,24,--. (27)

Eq. (27) is same as the Eq. (21). The corresponding eigenfunctions are

Tyon () o< e C OIS RE [a(y—y.)], o= \/Mo./h. (28)
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H, represents Hermite polynomials. These eigenfunctions depend on n and y, = cp/eB.
—oo <y, < +oo. However, the E, do not depend on y,. Therefore, energy levels are of in-
finitely large degeneracy. There is an interesting phenomenon, i. e., the electron in uniform
magnetic field can appear at infinitely far location, which means that unbound state with
discrete energy levels.

(C) The energy E > 0 shown in Eq. (21) can be understood as follows. When the elec-
tron moves in applied magnetic field B = (0,0, B), it can has an induced magnetic moment

4
eh
,uZ:—(2nr—|—1—|—\m\—|—m)2—MC. (29)

The minus sign in Eq. (29) indicates that when the electron suffers the action of applied
magnetic field, the electron is of anti-magnetism.

(D) The Landau energy levels are very helpful to understand the quantum Hall effect,
which states that at low temperature and strong magnetic field the resistivity of two dimen-
sional electron gas produces quantization phenomenon [98, 5].



Chapter 8

Particle of Spin 1/2

8.1. General Concept

A large number of particles in nature have spin 1/2, such as electrons, neutrons, leptons,
and quarks. We considered the angular momentum in chapter 6, which has a classical coun-
terpart. The angular momentum is derived from the position coordinates and momentum of
a particle and is akin to classical r X p angular momentum. The dimension of spin is the
same as angular momentum. Therefore, we call the spin spin angular momentum vividly.
However, in contrast to the orbital angular momentum, the spin angular momentum does
not relate to a particle’s coordinates or momenta, nor are the eigenstates of spin dependent
on boundary conditions imposed in the coordinate space. Spin is an inherent property of
a particle, likes mass and charge. It is an extra degree of freedom attached to a quantum-
mechanical particle and must be prescribed together with the values of all other compatible
properties of a particle in order to designate the state of the particle. In particular, note that
spin wavefunctions do not have a coordinate representation. The concept of particle of spin
1/2 is a uniquely quantummechanical. To understand the mathematical origin of spin one
must go to relativistic quantum mechanics as outlined by Dirac’s theory. This chapter con-
siders the nonrelativistic, phenomenological aspect of the spin 1/2 concept. The spin 1/2 is
treated as a new intrinsic (or internal) degree of freedom, and the corresponding magnetic
moment is called intrinsic (or internal) magnetic moment.

The direct observation of the electron spin was by Stern and Gerlach in 1922, and con-
cluded that the electron’s spin just takes two values -/1/2. See Figs. 8.1 and 8.2. To explain
the spectroscopic experiment data, Uhlenbeck and Goudsmit proposed the hypothesis of the
existence of electron spin in 1925.

The Stern-Gerlach experiment involves sending a beam of particles through an inho-
mogeneous magnetic field and observing their deflection. The results in Fig. 8.1 show that
particles possess an intrinsic angular momentum that is most closely analogous to the an-
gular momentum of a classically spinning object, but that takes only two quantized values
(Refer to Ref. [99].).

The experiment is normally conducted using electrically neutral particles or atoms. This
avoids the large deflection to the orbit of a charged particle moving through a magnetic
field and allows spin-dependent effects to dominate. If the particle is treated as a classical
spinning dipole, it will precess in a magnetic field because of the torque that the magnetic
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Figure 8.1. Basic elements of the Stern-Gerlach experiment.

field exerts on the dipole (torque-induced precession). If it moves through a homogeneous
magnetic field, the forces exerted on opposite ends of the dipole cancel each other out and
the trajectory of the particle is unaffected. However, if the magnetic field is inhomogeneous
then the force on one end of the dipole will be slightly greater than the opposing force on
the other end, so that there is a net force which deflects the particle’s trajectory. If the
particles were classical spinning objects, one would expect the distribution of their spin
angular momentum vectors to be random and continuous. Each particle would be deflected
by a different amount, producing some density distribution on the detector screen. Instead,
the particles passing through the Stern-Gerlach apparatus are deflected either up or down
by a specific amount. This was a measurement of the quantum observable now known as
spin, which demonstrated possible outcomes of a measurement where the observable has
discrete spectrum. Although some discrete quantum phenomena, such as atomic spectra,
were observed much earlier, the Stern-Gerlach experiment allowed scientists to conduct
measurements of deliberately superposed quantum states for the first time in the history of
science.

By now it is known theoretically (See the next sections of this chapter 8.) that angular
momentum of any kind has a discrete spectrum, which is sometimes imprecisely expressed
as “angular momentum is quantized”.

The present known spin values for some fermions are as follows.

Electrons are spin 1/2 particles. These have only two possible spin angular momentum
values measured along any axis, +hA/2 or —h/2. Because its value is always the same, it
is regarded as an intrinsic property of electrons, the spin angular momentum is a purely
quantummechanical phenomenon, and is sometimes known as “intrinsic angular momen-
tum” (to distinguish it from orbital angular momentum, which can vary and depends on the
presence of other particles).

Many textbooks illustrate that the spin angular momentum is a purely quantummechan-
ical phenomenon by using the following reasons: If the electron spin value arises as a result
of the electron rotating the way a planet rotates, then the individual electron would have to
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Z axis

Figure 8.2. Spin values of electron.

be spinning impossibly fast. Even if the electron radius were as large as 2.8 fm (=2.8x10~1°
m=the classical electron radius), its surface would have to be rotating at 2.3 x 10'! m/s. The
speed of rotation at the surface would be in excess of the speed of light, 2.998 x 108 m/s,
and is thus impossible. This textbook would like to remind readers to note the fact that: The
electron’s radius is < 10729 m, and thus the surface of electron would have to be rotating at
2.3 x 10° m/swhich is much less than the light speed.

For electrons there are two possible values for spin angular momentum measured along
an axis. The same is true for the proton and the neutron, which are composite particles made
up of three quarks each (which are themselves spin-1/2 particles). Other particles have a
different number of possible spin values. Delta baryons (A**, AT, A°, A7), for example,
are spin-3/2 particles and have four possible values for spin angular momentum. Vector
mesons, as well as photons, W and Z bosons and gluons are spin-1 particles and have three
possible values for spin angular momentum.

8.2. States of Spin 1/2

Because the spin 1/2 is a new degree of freedom, we have to describe an electron by the
wavefunction W(r,s;), where s, represents the projection of spin 1/2 on the z axis.

Due to that s, just takes two discrete values +/,/2, we use two component wavefunction
to directly and explicitly write the two component values of the spin 1/2. We write

¥ =Y(ns,) = [ q‘,}(’ir_hf{/zz)) } : (8.2.1)

which is called spinor wavefunction. The physical meanings of the spinor wavefunction are
as follows:
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|¥(r,h/2)|? indicates probability density of the body-factor of electron with spin //2
and at r.

|¥(r,—h/2)|? indicates probability density of the body-factor of the electron with spin
—h/2 and at r.

[ |¥(r,h/2)|%dr indicates probability of the electron with spin /2.

[ |¥(r,—h/2)|*dr indicates probability of the electron with spin —//2.

Therefore, the normalization condition should be

Y [1¥es)P = [wrwar
s;=+h/2

_ /dr (¥ (r,s. = h/2) 2+ [¥(rs, = —h/2)]?] = 1. (8.2.2)

If Hamiltonian does not include spin variables or can be expressed as a sum of spin space
and position space part, then we write

Y(r,s,) =P(r)Y(s,), (8.2.3)

where Y(s;) is called wavefunction of spin state or, for brevity, spin function.

Y(s;) = [ Z ] : (8.2.4)

The spin 1/2 vector Y(s;) is called spinor. The normalization condition of wavefunction of
spin state is
Y R =1T=(ab)( § ) =lal b =1 (5.2.5)
s;=+h/2
Electrons, protons, and neutrons have spin 1/2 (spin of one-half). There are two values of
mg, 1/2 and -1/2. We use Y, (s;) to represent the spin state (or eignstate) with eigenvalue

of s, = mgh. my is called spin quantum number. s, is the variable of the spin function. The
spin function with quantum number m; = 1/2 is

Yy )o(s;) = [ (1) } . (8.2.6a)
The spin function with quantum number my; = —1/2 is
Yo p(s) = [ ‘1) } . (8.2.6b)
Sometimes for brevity,
a:[H, B:[” | (8.2.6.)

o and [ construct an orthonormal complete basis vectors. Any spin state expressed by Eq.
(8.2.4) can be expanded by a and B:

Y(s;) = ao.+ bP. (8.2.7)
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Including position space coordinate r, Eq. (8.2.1) becomes
Y(r,s,) =¥(r,h/2)o.+¥(r,—h/2)B. (8.2.8)

Example 1. The wavefunction of electron with spin 1/2 (spinning free electron).

The coordinates of electron include the spin variables (s,m;) and the position vari-
ables (x,y,z). The operators corresponding to these variables (2,5, x,y,z) are assumed to
commute. Their eigenvalues may therefore be prescribed simultaneously because one may
locate the electron without destroying its spin state. Another set of commuting operators
for an electron is (S2,S;, Py, Py, P;)).

The Hamiltonian of an electron is

H= p? H’ 8.2.9
Y] +H, (8.2.9)
where the first term is the Hamiltonian of free electron, and the second term is the interaction
term, which can depend on time but is independent of the spin. The reason that operator S’s
do not enter in the Hamiltonian of a free electron is that the spin manifests itself only in the
presence of an electromagnetic field. For relativistic electrons this is not the case. In this
event, the free electron Hamiltonian includes spin-dependent term. It follows that H also
commutes with §? and S,. These operators have simultaneous eigenstates. Let Wy (7,7) be
an eigenstate of H, and Y, (s;) is the eigenstate of $% and S.. The total wavefunction for
the electron is

Wit m, (1:1,57) = Vi (r, 1)L, (s2). (8.2.10)

If the electron is free, then

Wy (152) = (\/;_7)3% (5.)e. (8.2.11)

Due to that for the system of spin 1/2 s = |s;
11).

Example 2. To describe the eigenstate of the electron in central field of force, neglecting
the coupling between spin and orbital angular momentum, one can choose (H,L? L;,s;) as
the complete set of conservative quantities, use notation ¥,j,,, which in (r,s;) representa-
tion 18

, the s does not need to appear in Eq. (8.2.10-

anlmmS<ra Sz) = anlm<ra 9, ¢>Ym5 = RnlY[m<ea q))YmS (8212)

8.3. Spin Operator

Considering that the spin has angular momentum dimension, we denote it by the symbol S.
The Cartesian components of S, being angular momentum components, obey the commu-
tation rules:

[St, Sy] = ihS,,  [Sy,S;] =ihSy, [S;,Si =ihS,, [$%,S]=0. (8.3.1)

§*=8745; 457, (8.3.2)
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Similarly to the orbital angular momentum operator L, we may conclude that a similar
structure exists for the eigenstates of $> and S.:

S2|smg >= h2s(s+1)|smg >, S.|smg >= hmg|smg > . (8.3.3)

Unlike the quantum number, [/, for the orbital angular momentum, which has values
0,1,2,--- with z components m = —I[,---,+[, the quantum number s of the spin 1/2 is
assumed to have a unique value s = 1/2 with z component m; = —1/2,1/2. The eigen-
states are referred to as spin 1/2 states. They are characterized by the eigenvalues of two
commuting operators, S> and any one of the three S; (Generally, take S..), and designated
by the kets |1/2,mg >.

A general eigenstate in spin 1/2 system is taken to be a column matrix of the type

i

The spin operator S; are then 2 x 2 matrix,

# #

# # |
Introducing operator without dimension, c=2S /h, which is called Pauli spin operator. If
it is in the matrix form, then it is called Pauli matrix.

-2
[6,,0,] =i20,, [0,,0,]=i20,, [0;,0,] =i20,, [0 ,0/]=0 - (8.3.4)

—2
G =0,+0, +0.. (8.3.5)

Assume that Oy, 6y, 6, are Hermitian operators same as the orbital angular momentum op-

erator, i. e., Gy, 0y, G, = G, ,0,, 07, respectively. Eq. (8.3.4) can be rewritten as

[0i,0/] = 2ig;jxOk (8.3.4)

or
.—)

G x06=2i0. (8.3.4)"

Due to that the projections of S on any direction can have only +//2, thus the projections
of ¢ on any direction can have only £1. Therefore,

c;=0,=0.=1, (8.3.5)
Utilizing the second equality of Eq. (8.3.4) and Eq. (8.3.5)’

6,(6,0; —6,0y) = 6; — G,6,6, = G,2iCy (a)

Similarly,
6,(0,06, — 6,0;) = G,2i0, (D)
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From (a) + (b) and similar method we have

6,6, +06,6,=0
0,0, +0.6,=0 . (8.3.6)
6,6, +0,0,=0

Eq. (8.3.6) indicates that the three components of G are anticommutative.
Combining Egs. (8.3.6) and (8.3.4) yields

0,0y = —0,0, = 0,
6,0, = —G.0), = iy . (8.3.7)
0,0, = —0,0, = IO,

Egs. (8.3.5) and (8.3.7) and the requirement of Hermitian operator are the complete alge-
braic properties of Pauli spin operator.

Next, we choose a particular representation to express the Pauli spin operator as a ma-
trix. We choose G, representation, i. e., in which representation G, is a diagonal matrix with
+1 and -1 along the diagonal.

10
c, = [ 01 ] . (8.3.8)
Set the matrix of G, is
a c
o, = [ b d } . (8.3.9)
We will now try to determine the a, b, c,d.
Due to 6,6, = —0,0, we have
a b | | —a b
— —d| | —c d
Therefore, a =d = 0, and i
. — 0 ¢
Tlb o0

According to the requirement of Hermitian operator, 6, = Gy, one obtains ¢ = b*. Thus

s [0 b
10

=[p o)l o]=1"% we]=[o V)

b|?> =1, and b = exp(iat) (0. is a real number).

@:[Wﬁm)“Tw]. (8.3.10)

Therefore,
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Utilizing the last equation in Eq. (8.3.7) yields

6, = —Ii0;0x

N _i[ (1) _01 ] [ exp(O—iOt) "xp(()ia) ]

_ _i[ _exp(()_ia) "’x”(()io‘) ] (8.3.11)

As is well known, in quantum mechanics the matrix of a dynamical quantity in any repre-
sentation has an uncertainty of the phase. We often take oo = 0. (o0 = 0 and diagonal o, are
capped Pauli representation.) If oo = 0, then Eq. (8.3.11) becomes

0 1 0 —i 1 0
Gx—[l 0], Gy—[i 0 ], Gx—{o _1]. (8.3.12)

Let us now define the following operators:

T (8.3.13)

(o)
+ 2 2

These are the counterpart of the ladder operators L. we consider in chapter 6. We note that
6_ = 6. One can derive the following commutation relations from Eq. (8.3.4)

[GZ7G+] = 2G+7 [GZ,G,] = _2677 [G+7G*] = 4GZ (8314)

From Eq. (8.3.13) we obtain the matrix form of 6..:

G+:[8 (1)], G:[?g]. (8.3.15)

8.4. More about Eigenstates of Spin 1/2

We have thus far considered eigenstate of 6,. Let us obtain, as a simple exercise, the
eigenstates of the other Pauli matrixes. If we designate |x+ > as the spin-up and spin-down
state in the x direction, then

Oxlx+ >=|x+ >, and Oyfx—>=—|x—> . (8.4.1)

Let us obtain |x+ > by writing it as a superposition of the eogenstates of o,

ot >= [ . ] ter [ ; ] (8.4.2)

where
‘C]‘Z—F‘Cz‘z: 1. (8.4.3)

From Egs. (8.3.12), (8.4.1), and (8.4.2) we have

[? éH“{H*”[?H‘“[H*Q[Hv (8.4.4)
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which gives, together with Eq. (8.4.3), the result
(8.4.5)

where we have taken the positive square root. Thus,

|x+>:\%{[H+[?]}:\%[z+>+z—>}=%[H. (8.4.6)

Similarly, one can obtain the eigenstate of G,

Let us now obtain eigenstates of G pointing in an arbitrary direction. We use G, rep-
resentation. We designate a state corresponding to spin pointing in the direction of a unit
vector n as

Y4 . (8.4.7)

This state is then an eigenstate of the projection of the spin operator ¢ in the n direction
with eigenvalue +1, that is,

6 nlY,) =Tuy). (8.4.8)

If the polar angle of n is 0 and the azimuthal angle is ¢, then in terms of its coordinates in
the Cartesian system one can write

n = (sinBcos0, sinBsind, coso), (8.4.9)
then
on = G,5inBcos + oy sinBsind + 6,cosO
= [ (1) (1) }sin6c0s¢+ [ ? Bi }sinesin¢+ [ (1) _01 }cose
o i
- [, ) s
Let
Xai) = [ . } , (8.4.11)

with |a|? 4+ |b|? = 1, then according to Eq. (8.4.8) we have

cos®  sin@e a a
sinBe®  —cosO } [ b } N [ b } ’ (8.4.12)
which gives rise the following two equations:

acos®+bsinBe @ =a, asinBe®—cos®=>b . (8.4.13)

The first equation gives ‘
a(1 —cos®) = b sinBe ™. (8.4.14)
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Since (1—cos0) = 2sin*(0/2) and sin® = 2sin(6/2)cos(6/2), we find a normalized solution
as

a=cos(0/2) and b=sin(0/2)e® . (8.4.15)
Hence
. ol O cos(0/2
Y1) = cos(6/2) [ (1) ] —|—s1n(9/2)e¢’[ ) ] = [ sin(e(/é)e)iq) ] . (8.4.16)
Similarly, .
Yo-) = [ _CS;Z((S//;L@ ] : (8.4.17)

8.5. Exercises and Solutions

(1) Would you please study on yours own the following content on the intrinsic magnetic
moment of electron and make discussions.

Intrinsic Magnetic Moment of Electron
The systematic theory of inherent magnetic moment of electron will be interpreted in
quantum field theory. For the method to introduce intrinsic magnetic moment of electron in
this section please refer to Ref. [1].
A non-relativistic electron’s Hamiltonian is often expressed as
P2
H=—. 1
I, (1)
If we consider that the electron has spin 1/2, then we should assume that the free electron’s
Hamiltonian is

o (2)

If there is no external magnetic field, then (8 -P)2 = P2, and Eq.(2) is same as the Eq. (1).
However, if we consider that the charge of electron is —e, and the external magnetic
field is B =V X A, then according to the discussion in section 8.1, Eq. (2) becomes

. 2
G- (P+e/cA)

H= oM : (3)

Using the equality (8 Vi) (8 Vo) =V -Va+i G -(V1 x V), Eq. (3) can be transformed into

2 .
(P+e/cA) Ll

H= —
2M 2M

G -[(P+e/cA)x (P+e/cA)], (4)

where the first term on the right hand side includes the interaction between the electron’s
orbital magnetic moment and the external magnetic field, and the second can be transformed

into ) ) 5
ie — ie — eh —
—— 0 (PXxA4+AXP)=—0 - (—iIhRVXA)= —0©
2Mc ( xA+AXP) c ( ihV % A) 2Mc

o B. (5)
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We define
— eh — e —

———06=-——3"5, S=%c. 6
M= = oe Mc™’ 2 (6)

From Eq. (5) we see that ﬁs is equivalent to the magnetic moment corresponding to the
electron’s spin S, and is called intrinsic or internal magnetic moment. Eq. (5) denotes the
interaction energy between the electron’s intrinsic magnetic moment and external magnetic
field. The absolute value of intrinsic magnetic moment is equal to the Bohr magneton
up = eh/2Mc. M is the static mass of electron.

If we define that the g =(magnetic moment/angular moment), then the g factor of the
intrinsic magnetic moment of the electron’s spin is

For comparison, the magnetic moment, 4, of electron in external magnetic field satis-
fies
— e
Mp=———L. (7)

Making comparison between Eqs. (6) and (7), we know that the g factor of intrinsic mag-
netic moment is equal to 2 x the g factor of the orbital magnetic moment.






Chapter 9

Identical Particles

9.1. Characteristics of Identical Particles

The definition of identity of particles: Particles (= Object = Wavepacket = Wavepacket-
function # Wavefunction) are identical if they have the same intrinsic properties.

By “intrinsic” I mean properties inherent to the particles, such as static mass, charge,
definite spin, magnetic moment, lifetime etc. The coordinate variables, momentum vari-
ables, and spin variables etc. do not belong to intrinsic properties of particles.

This chapter will use the wavepacket-only theory to analyze the identical particle sys-
tem. Especially, note that any particle contains two factors: guide-factor and body-factor.
At first we would like to point out that all the unique characteristics of identical particle
system manifest in multiparticle guide-factor (i. e., multiparticle wavefunction) of identical
wavepackets, other than the multiparticle body-factor of the identical wavepackets. In an
identical multiparticle system the body-factor of a wavepacket still accepts the guide of the
guide-factor according to the spontaneous equiprobability symmetry breaking law. How-
ever, the construction of multiparticle wavefunction (= multiparticle guide-factor) from all
the single particle wavefunctions is of unique characteristic.

The following quantities in identical particle system are of obvious exchange symmetry:

(1) All observable quantities, i. e., operators;

(2) Average values of observable quantities.

Here, the “exchange” means the exchange of two particles, i. e., all the variables in
all spaces, including position space, spin space, and so on, describing the two identical
particles i and j.

Examples of exchange symmetry (symmetry=invariance) of observables in identical
particles:

Example 1. The Hamiltonian H of identical particles. Hamiltonian is an operator cor-
responding to energy. In this aspect, the simplest example is helium atom. One helium
atom has two electrons. These two electrons construct an identical particle system. The
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Hamiltonian of this identical particle system is formally

2 7 2e* 267 e’
U e e S S (9.1.1)
2m  2m  ri o |ri—n]
If we exchange the location variables of the two electrons 1 and 2, then it is obvious that
the Hamiltonian in Eq. (9.1.1) does not change, i. e.,

(P12, H] =0, (9.1.2)

where the Pj, is called permutation operator, represents the exchange (of coordinate vari-
ables in this case) of two particles 1 and 2. Eq. (9.1.2) tells us that H and P, commutes.

Example 2. Actually, any operators, corresponding to observables, such as the density
at r of the identical N particle system

and the current density at r

J(r)= % L [%S(r—ri) —|—8(r—ri)%

are invariant under the exchange of any two particles.

The above exchange symmetry does need the identity of the identical particles, and does
not need the so called indistinguishability of identical particles. Although some references
think that the identical particle system obeys the so called “indistinguishability principle”,
but this textbook still insists that if a terminology, i. e., indistinguishability in this case, is
not necessary, we do not need to propose it. Or, more exactly speaking, this textbook thinks
that the particles in a identical system are distinguishable.

At this stage, the quantum and classical mechanics do not have difference. As is well
known, the exchange symmetry is trivial for classical mechanics. But quantum mechanics
has the wavefunction besides the substance of a particle. For this identical multiparticle
system there should be a multiparticle wavefunction if we use quantum mechanics to study
the identical multiparticle system.

In quantum mechanics, the prominent character is the observed value of an object does
not directly connect with substance of the object. The observed values of any observable
quantities (= operators) are connected certainly with average values through the square(!)
of absolute value of wavefunction.

Therefore, one cannot deduce from the two exchange symmetries of operators and aver-
age values that the wavefunction of an identical multiparticle system does not change under
the particles’ exchange. Let us make detail analyses.

Suppose that there are N identical particles, and the multiparticle wavefunction is

lP(qlquf"qu)v (913)

where g; denotes all the dynamical variables of the i-th particle, such as position space
coordinates, spin coordinates etc.
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The average value of Hamiltonian H is

<H>:/W@“”mﬂmwﬂ%@wwwﬂmmww (9.1.4)

Besides the examples of the above mentioned exchange symmetries of identical particle
system, we put a looking like trivial requirement, i. e., the exchange symmetry of average
value.

Pj<H> = Pij/‘P*(CIl,C]z,“'761N)H‘P(6117612,"'761N)d611"'d611v

= [PiPsiqran g g an) P
Pij\P(C]laCIZa'“ yGir gy aCIN)dCII"'dCIN
- /Pijlp*(qlaq%"'7qi7"'7qja"'an)H

pijly(qlaq27"' 'y 5 qis 7qN)

= <H>
= /IP*(QI,QZ,"',QI',"'>Qj>"'>CIN)H
lP(qthf" s iy 7qja"' 7qN)dq1"'qu~ (915)

Making comparison between the third equality and the fifth equality yields

I)ijly*(qlaqza"' yqis gy ,QN)Piij(QI,QZ,"' yqis gy 7CIN) ) (916)
El{l*(‘]]?qZ)"' sqiy gy >qN>lP(q1>q2>"' yqis gy >qN)

From Eq. (9.1.6) we obtain if

Pij‘P(CIbQZV“ sqiy gy 7CIN) :ei(P‘P(CIl?q%'” sqis gy 54N, (917)/

and

Pijlp*(chaq%"' sqis gy ,CIN> :e—i(PlP*(qqu,___ yqis 54y 4N, (917)//

where the @ can be an arbitrary real numbers, then Eq. (9.1.6) holds. From Egs. (9.1.7)’
and (9.1.7)" and the definition of P;;, we obtain two equations to determine ¢

Pl]Pl]lP(qlaqza s iy gy 1qN) :ei2<plp(q1’q2’,,, s iy gy an) (918)/
:T(ql,qz,,q”,q‘]’,q]v) ’
and

PUPU‘P*(CIhCIL yqis gy 7‘1N) :e_iZ(P‘P*(QIyqzy"‘ sqis gy 7qN)
:T*(QI,QZ, ,qi,... ,q‘j,... ,qN)

9

(9.1.8)"
Egs. (9.1.8)" and (9.1.8)" require

e =1, ¢ =1. (9.1.9)
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The solution of Eq. (9.1.9) is
¢ =0, and m. (9.1.10)

From Eq. (9.1.10) we deduce:

ij(ql’q2’7q17 ’qj7... ’qN) :el(PlP(ql’q27 ’qi’...’qj’...’qN)
::l:lp(qlvq27"'7qi7"'7qja"'an)- (9111)

Eq. (9.1.11) tells us that the eigenvalues of the permutation operator P;; are +1 and -1.
Because we have shown that P;; is a constant of motion, the eigenvalues of P;; and the
energy eigenvalues can simultaneously describe the state of the identical particle system.
Thus, the multiparticle wavefunction of identical particle system is proved to have to satisfy
either

P = +98 (9.1.12)

or
PvA = A (9.1.13)

fori# j=1,2,---,N. We call the wavefunction ¥ with eigenvalue +1 the symmetric,
and W4 with the eigenvalue -1 the antisymmetric. We call the properties of the multiparti-
cle wavefunction of identical multiparticle system in Eqgs. (9.1.12) and (9.1.13) exchange
symmetry of wavefunction of identical multiparticle system.

Eq. (9.1.2) tells us that P;; is a constant of motion, and thus is a conservative quantity.
Therefore the symmetry of multiparticle wavefunction does not change with time. This
point can be explained as follows.

Suppose at initial state r = 0 W(0) is of exchange symmetry. P;;¥(0) = A¥(0). If H
does not include time ¢ explicitly, then ¥(¢) = exp(—iHt /h)¥(0). Considering [P;;, H] =0,
one knows

P¥(1) = Pye M/M(0) = e MNP, p(0)
P Mg (0) = ¢~/ Pl (). (9.1.14)

Therefore, ¥(0) and P(¢) are of the same exchange symmetry if H does not contain time ¢
explicitly. If H depends on time explicitly, then

(W(f) >= Te ' h@HO/ Mg (0) > | (9.1.15)

Using Egs. (9.1.14-15), we can also obtain that ¥(0) and ¥(¢) are of the same exchange
symmetry if H contains time ¢ explicitly.

We define that the particles described by an antisymmetrical wavefunction are called
fermions, and the particles described by a symmetrical wavefunction are called bosons.

Note that the ¢; in Eq. (9.1.5) can represents r;,t; besides r;, and all the above conclu-
sions are correct also for the time-dependent case.

The quantum field theory proves a Pauli theorem, which states:

Theorem XXXIV: Pauli theorem. The criterion that distinguishes between the two kinds
of particles is their spins: Fermions have half-integer spin, and obey Fermi-Dirac statistics;
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Bosons have integer and zero spin, and obey Bose-Einstein statistics.[6, 100]

Examples of fermions are electrons, protons, neutrons, neutrinos, C'* nuclei etc. (all
spin 1/2). Examples of bosons are T mesons (spin 1), o particles (spin 0), oxygen nuclei
(spin 0). For particles that are consisted of several elementary particles, the total spin also
determines the exchange symmetry of wavefunction. The o particle that consists of 4 nu-
cleons with spin 1/2 has spin zero and is boson. We get the same result when considering
that the exchange of an « particle requires the exchange of two protons and two neutrons;
the signs that result from the two-fermion exchange compensate for each other in this state.

Next, we show that a transition between symmetric and antisymmetric states is impos-
sible. This is because the interaction between particles is symmetric under their exchange;
hence, e. g.,

V(I"l,l"z,"',I"i,"',I"j,"',I"N):V(I"l,l"z,"',l"j,"',I"i,"',l"N). (9116)

For Eq. (9.1.16), the matrix elements between symmetric and antisymmetric states vanish:

<‘I’S]V]‘I’A >:<‘PS(F1,F2,"',I”j,"',Fj,"',FN)’V(Fl,Fz,"',l”j,"',l"i,"',l”N)
’\PA(I"l,I"z,"',I’j,"',l"i,"',I"N) >
:<‘I’S(r1,l"2,"',l"j,"',l"i,"',I"N)!V(h,l"z,"',Fi,"',l"j,"',l"zv)
’TA(I"l,I"z,"',I"j,"',l"i,"',I"N) >
<TS(F1,7"2,"',ri,"',T”j,"',FN)’V(FI,FZ,"',FI',"',rj,"',rN)
’—‘PA(I"l,I"z,"',l’i,"',l’j,"',l"/\/) >
(9.1.17)
On the other hand,
<l}15‘v‘lPA >—=< lIIS(,-]’rz’...7,-1.7...7,-1.7...7rN)‘V(r17r27...7,-1.7...7,-].7...7,-1\])
‘lPA(I"],I’Q,-“,l’l’,"',l’j,"',VN)> '
(9.1.17)"

Making comparison between Egs. (9.1.17)" and (9.1.17)” yields < ¥5|V|¥4 >= 0.
In summary, we give the following more general theorem, which contains the theorem
XXXI1V, for the identical multiparticle system:

Theorem XXXYV: Identity of identical multiparticle system. The multiparticle wave-
function (which can depend on time) of identical particle systems are separated into two
kinds: Symmetric if the eigenvalue of permutation operator is +1; Antisymmetric if the
eigenvalue of permutation operator is -1. The particles in identical multiparticle system,
described by an antisymmetric wavefunction, are of half-integer spin, are called fermions,
and obey Fermi-Dirac statistics; The particles in identical particle system, described
by a symmetric wavefunction, are of integer or zero spin, are called bosons, and obey
Boson-Einstein statistics. The exchange symmetry of multiparticle wavefunction of the
identical multiparticle system does not change with time, and the state transition between
different symmetry states is impossible.

In some references our identity theorem is called “indistinguishability principle of iden-
tical multiparticle system”. This textbook thinks:
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(1) The so called indistinguishability is not a necessary concept or even is a wrong con-
cept. Because the particles in an identical multiparticle system are distinguishable. The
identity defined in this textbook is enough to deduce all the properties of identical multi-
pleparticle system;

(2) The unique characteristics of the identical multipleparticle system can be proved.
Therefore, we use “identity theorem” other than “indistinguishable principle”.

9.2. System with two Identical Particles
Suppose that the Hamiltonian of two identical particles is

H = h(q1) +h(q2), (9.2.1)

where h(g) represents single particle’s Hamiltonian, and can contain the external field po-
tential, g represents the all coordinates of the single particle. Eq. (9.2.1) indicates that we
neglect the interaction between the two particles. Obviously, [Pj2, H] = 0.

Suppose that the operator i(q) is of eigenequation

h(q@)Wk(9) = &Vi(q), (9.2.2)

where Y (g) is orthonormalized, and k represents a group of complete quantum number of
the single particle. If one particle is in the state y,, and another is in the state yy,, then
Wi, (91)Wk, (92), Wk, (92) Wk, (q1), and their linear compositions are of energy €, + €,. The
degeneracy which is connected with the exchange symmetry is called exchange degeneracy.

We need to use Wi, (g2), Wk, (q1), Wk, (¢1), and W, (g2) to construct the symmetric or
antisymmetric multiparticle wavefunctuin for the two identical particles.

For bosons, we need a symmetric multiparticle wavefunction.

If k; # k, then the orthonormalized symmetric wavefunction is

W (qna) — %ml (41) Wi (42) + Vi (42) Vs (1)

= L(1 +P12) Wi, (91) Wk, (92), (9.2.3)

N

If ky = ko = k, then the orthonormalized symmetric wavefunction is

Wik(91,42) = Wi(q1) Wi(q2)- (9.2.4)

For fermions, we need antisymmetric multiparticle wavefunction. This wavefunction
can be constructed as follows.

Pen(aq) = (Wi, (91) Wi, (92) — Wi, (92) Wik, (q1)]

2
(1= Pi2) Wi, (91) Wi, (q2)

‘~I’k1(611) \Ilkl(qz)
Vi (91) Wi(gq2) | (9.2.5)

Sl- -5l
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Figure 9.1. Symmetric wavefunction given by Eq. (9.2.3) for a (bosonic) 2-particle state in
an infinite 2-dimensional square well potential.

Eq. (9.2.5) clearly tells us that: it is not possible to exist a many fermion state in which
there are two fermions in the same single particle states. Historically, this confirmation is
called Pauli exclusion principle because Pauli proposed empirically this confirmation for
the electrons of an atom in 1925. This textbook suggests to use the terminology “Pauli
exclusion theorem” instead of “Pauli exclusion principle”. For this suggestion we have two
reasons: (a). The so called Pauli exclusion principle has been proved by the later quantum
mechanics exactly; (b). For any theory, the less the principles, axioms, hypotheses, and
postulates in the theory are, the better the theory is. Thus, we give:

Theorem XXXVI: Pauli exclusion. It is not possible to have a multiparticle fermion state
in which there are two fermions in the same single particle states.

Proof. For general proof, see section 9.3.
Figs. 9.1 and 9.2 clearly show that the space distributions of wavefunctions of two
identical bosons and fermions are completely different, respectively.

9.3. Wavefunctions of N Identical Particle System

9.3.1. Three Identical Particles

(A) Consider a system consisting of three fermions. Due to the Pauli exclusion theorem,
the three identical particles can only be in three different single particle states: W, , W,,
and y,. For the convenience of normalization of the multiparticle wavefunction, we sup-
pose that Wy, , Wx,, and Wy, are orthonormalized. k; indicates the complete set of quantum
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Figure 9.2. Antisymmetric wavefunction given by Eq. (9.2.5) for a (fermionic) 2-particle
state in an infinite 2-dimensional square well potential.

numbers characterizing the quantum state of the single particle i. The antisymmetrical three
particle wavefunction can be expressed as

1| Ye(a) Wa(a2) Wi(g3)
T?1k2k3(41,612,613) T Vi (41) Wi (92) Wi (g3)
Vis (q1) Wi (q2)  Wis(q3)

\/— (Wi, (91) Wiy (92)Wis (93) + Wi, (93) Wik, (92) Wiy (1)

Wk, (93) Wiy (91)Wis (92) — Wiy (93) Wiy (92) Wik (1)
— Yk, (qZ)sz (ql )Wk3 (q3) — Vi, ((11)% (q3)Wk3 (qZ)]

(L+Py3+Pi3+Po3Pio — P13 — Pio — Po3) Wi, (91) Wk, (92) Wis (¢3)

8-

=A Wi, (41) Wi (92) Wi (43), (9.3.1.1)

where A is called antisymmetrizer.

(B) Consider a system consisting of three bosons. In Egs. (9.2.3) and (9.2.4) we have
considered the system consisting of two bosons. Similarly, we discuss the following three
cases for the three identical particle system:

(1) k1, k2, k3 are different mutually. In this case every single particle is in different single
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particle state. It is easy to verify that the symmetrical and normalized wavefunction is

P 01,02:05) =\ 3 Wi (400 (92) Wi (93) + Wi, (01) W8, (03) Wi (42)
+ Wi (92) Wi (91) Wi (93) + Wik, (92) Wk, (43) Wis (1)
+ Wi (93) Wi (91) Wi (92) + Wk, (93) Wi (91) Wi (1)] - (9.3.1.2)

In Eq. (9.3.1.2) the number of terms is

3!
T

(9.3.1.3)

and every term is orthogonal to all other terms.
(2) Two particles are in k; state, and one particle is in k, state. It is easy to verify that
the symmetrical and normalized wavefunction is

P 00,45) =\ 2 W (00w, (02)W5,(03) + i, (00, (05) s, 42)
+ Wi (93) Wk (92) Wi (q1)- (9.3.1.4)

In Eq. (9.3.1.4) the number of terms is

31
o~ &

(9.3.1.5)

and every term is orthogonal to all other terms.
(3) All the three particles are in state kj. It is easy to verify that the symmetrical and
normalized wavefunction is

s 31010
lPklklkl (CllaCIZaCB) = 3‘ [Wkl <q1>Wk| <612>\Ifk, <q3>] (9316)

In Eq. (9.3.1.6) the number of terms is

31
3000 |

(9.3.1.7)

9.3.2. N Identical Particle System

(A) N fermions.

We can generalize the antisymmetrization property of the multiparticle wavefunctions
for the two fermions in Eq. (9.2.5) and three fermions in Eq. (9.3.1.1) to the case of
N fermions. In such a system there are N! possible different permutations of fermions.
The function corresponding to one of these permutations can be obtained from the origi-
nal standard function [y, (¢1)Wk,(g2), -+, Wky (gn)] by successive permutations of pair of
fermions. Let P, [Wx, (91)Wk,(92), - - - , Wiy (gn)] denotes the function which can be obtained
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from (Wi, (q1)Wk,(q2), -+, Wiy (gn)] by V consecutive permutations of fermion pairs. Then
the antisymmetrical wavefunction of N fermion system is
=\ Z ) PolWi, (91) Wi (92), - s Wiy (gn)], (9.3.2.1)

where the summation is over all N! terms corresponding to the different possible permuta-
tions of the N fermions in the system, and every term is orthonormalized.

We can write the antisymmetrical wavefunction instead of the form Eq. (9.3.2.1) in the
form of a determinant (the so-called Slater determinant)

Vi (q1) - Wi (gn)
1
IPA:lpl;f“lkz"'kN: \/]W Wk‘z‘(‘ql) sz.(.?N) ) (9'3'2'2)
Wiy (q1) -+ Wiy(gn)

where the change in sign of the N! terms in Eq. (9.3.2.2) under a permutation of any two
fermions follows immediately from the change of sign of a determinant when two of its
columns are interchanged.

Here, we would like to mention once again the Pauli exclusion theorem in section 9.2.
Eq. (9.3.2.2) is an antisymmetrical multiparticle wavefunction of an identical multiparticle
system with particle number N. This N can be an infinitely large number. From the deter-
minant property, we know that there cannot be two Fermions in a same single particle state.
Therefore, from Eq. (9.3.2.2) we give a more general proof for the Pauli exclusion theorem.

(B) N bosons.

We can generalize the symmetrization of the wavefunction for the two bosons in
Eq. (9.2.3) and three bosons in Eq. (9.3.1.2-7) also for the case of N bosons. In
such a system there are N!/([TY., n;!) possible different permutations of bosons. Here,
n; represents the number of bosons in k; single particle state. The function cor-
responding to one of these permutations can be obtained from the original standard
function [Wi, (q1)Wk,(q2)," -, Wiy (gn)] by successive permutations of pair of bosons.
Let Py[Wi, (91)Wk,(g2), -+, Wiy (gn)] denote the function which can be obtained from
(Wi, (91)Wk, (q2), -+ , Wiy (gn)] Y V consecutive permutations of boson pairs. Then the sym-
metrical wavefunction of N boson system is

va n;!
\P \Pgan ny 1 ZPV Wk, m)‘lsz(%) : aWkN(qN)]a (9323)

where the summation is over all N!/ H 1 ni! terms corresponding to the different possible
permutations of the N bosons in the system, and every term is orthonormalized.

9.4. Spin States of Two Electron System

Denote the spin operators of two electrons as S; and S, respectively. Set

S=85+85. (9.4.1)
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Due to that S; and S, belong to different electrons, and thus belong to different degrees of
freedom. Therefore, [S,S2] = 0. Utilizing this commutation relation, one can show that

(S, Sy] = ihS., [Sy,S:] = ihSy, [S:,Sy] = ihS, . (9.4.2)

Set
ST =S87+S8;+S2. (9.4.3)

Using Egs. (9.4.2) and (9.4.3), one can show
[$2,85]=0, i=xy7. (9.4.4)

For the system consisting of two electrons, the spin degree of freedom is 2. We can
choose operators (S1,S5,) or operators S, S, as a complete set of spin dynamical variables.
Suppose that the eigenstates of S, are a(1) and B(1) and the eigenstates of S,, are o (2) and
B(2). We use notation a(1)c(2) to indicate a state where electron 1 has spin up and electron
2 has spin up. Similarly B(1)B(2) to indicate a state where electron 1 has spin down and
electron 2 has spin down.

We choose operators (S1;,5,;) as a complete set of spin dynamical variables. The com-
mon eigenstates of (Sy,, ;) are 4, i. e.,

a(l)a(2), B(HB(2), a(1)B(2), B(1)a(2) . (9.4.5)

Let us apply the permutation operator P, to the four spin wavefunctions in Eq. (9.4.5):

Pro(1)o(2) = a(2)a(1). (a)
PB(1)B(2) = B(2)B(1). ()
Proo(1)B(2) = a(2)B(1). (c)
Pro(2)B(1) = o(1)B(2). (d)
From Egs. (a)-(d), the spin wavefunction (1) (2) and B(1)B(2) are symmetric. However,

the spin wavefunctions o(1)B(2) and a(2)B(1) are neither symmetric nor antisymmetric
and so are not acceptable.

We try to choose operators S2,S. as a complete set of spin dynamical variables. It is
obvious that the four spin wavefunctions in Eq. (9.4.5) are also the eigenstates of S, =
S1; + S2;, the eigenvalues are h,—h,0,0, respectively. Therefore, the last two states are
degenerate eigenstates of S.. Let us demonstrate that they are the eienstates of S? as well.
The demonstrations are actually very simple. As is well known that S and S, commute, i.

e., [$?,S,] = 0. Therefore, S? and S, have common eigenstatres. Actually, we can also use
the following method to demonstrate that o.(1)o(2) and B(1)B(2) are the eigenstates of S2,
and to seek the eigenvalues:

§* = (S48 =S8 +817+251-5,
3, B?
= Eh + ?(GleQX + G1y02y + GIZGQZ)' (946)
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Utilizing the results in the exercise (1) of subsection 8.7.1 in chapter 8:
ca=p, of=0a oca=ip, opf=—ia (9.4.7)

and noting that 6, and o, act on the spin wavefunctions of electron 1 and electron 2, re-
spectively, it is easy to demonstrate that

S Ys—1p,=1(S21,522) = S2a(1)a(2) = 2h%a(1)a(2) (9.4.8q)
and
S Ys—1.m=—1(S21,82) = S*B(1)B(2) = 21°B(1)B(2) (9.4.8D)

are the eigenstates of S2, and the eigenvalues are 272,

We use the linear superposition of the two degenerate eigenstatres of S., o(1)B(2) and
B(1)a(2), to construct the another two eigenstates of S, which are of exchange symmetry
of wavefunction of the system, and therefore satisfy the theorem of exchange symmetry.
Set

Y =cio(1)B(2)+c2B(1)e(2). (9.4.9)

If Y is a eigenstate of S2, then it satisfies the following eigenequation
S2Y = AR, (9.4.10)
where A is a constant without dimension. Utilizing

Y = R(ei+e)a(1)B(2)+ 7 (cr +e2)B(1)o(2)
= M2[cio(1)B(2) +eB(1)a(2)], (9.4.11)

one obtains

Loz nas o412
The sufficient and necessary condition for the nontrivial solution is
‘ IIK 1ix ‘:0. (9.4.13)
Solving the Eq. (9.4.13) yields two roots:
A=0,2. (9.4.14)
Substituting A = 0 into Eq. (9.4.12) yields
S (9.4.15)
(&)
Substituting A = 2 into Eq. (9.4.12) yields
SRy (9.4.16)

2
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Utilizing the normalization condition and taking phase = 0 in the arbitrary phase factor,
one obtains the two orthonormalized eigenfunctions, corresponding to Eqs. (9.4.15) and
(9.4.16), of §* are

To-om-a= J=la(1B2) - Ba2). h=0 (9.4.17.0)
Tootm—o— %[a(l)[&(z) +B(Da(2), h=2. (9.4.17.5)

Egs. (9.4.17a-b) and (9.4.8.a-b) give the four normalized two electron spin common eigen-
states of (S2,5.), with correct exchange properties. They are:

TS:LMXZI = (X,(l)(X,(Z) (941861)
s t0 = —(a(1)B2)+B(1)a(2) (9.4.18.5)
TS:l-,M.v:—l = 6(1)6(2) (94186‘)
Yscom-0 = 5 [0(DBE) —B(1)ox2)] (9.4.18.d)

The three states in Egs. (9.4.18.a-c)are S=1=1/2+1/2, My =0, 41, symmetrical for the
exchange of the two spins in the system, and called spin triplet state. In physical picture,
S =1=1/2+1/2 means parallel coupling between the two spins of the two particle. The
state in Eq. (9.4.18.d) is S=0=1/2—1/2, My = 0, antisymmetrical for the exchange of
the two spins, and called spin singlet state. In physical picture, S = 0= 1/2 —1/2 means
antiparallel coupling between the two spins of the two particle.

We can directly verify that Ys—1 y,—o and Y's—o s,—0 are symmetric and antisymmetric,
respectively.

1

PiaYs—1m,—0 = PlZﬁ[a(l)B(z) +B(1)a(2)] = +Ys=1 m,o0-
P12Ys—0m,—0 = Pu% [a(1)B(2) —B(1)o2)] = —Ys=0.m,=0-

In the actual case, the electron’s spin cannot exist individually. Because the electron’s spin
is an intrinsic property, therefore, we have to use both the spin and coordinate spaces to
describe the electron’s state.

For example, He atom where the two electrons are in s orbital we have the zeroth or-
der ground state wavefunction 1s(1)1s(2) excluding the spin. ns(i) represents the quantum
state n = 1,1 = 0 of electron i in the hydrogen atom. This wavefunction in position space
is symmetric with respect to the exchange of the two electrons. We now include the spin
with the zeroth order ground state wavefunction. According to the Pauli exclusion the-
orem, the overall wavefunction including the spin must be antisymmetric with respect to
the interchange of two electrons. Hence we must take the product of symmetric position
space wavefunction 1s(1)1s(2) by an antisymmetric spin wavefunction. There is only one
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antisymmetric two electron spin wavefunction given by Eq. (9.4.18.d). The ground ground
state zeroth order wavefunction for the two electron system including the spin is therefore,

o) _ 13(1)13(2)%[(1(1)[3(2) “B(D)a(2)] antisymmetric. (9.4.19)

¥() is an eigenfunction of permutation operator P;, with eigenvalue -1 as pauli exclusion
theorem requires.

Now consider the excited state of two electron system which is obtained by exciting one
of the electron to the next s orbital. The wavefunction is 1s(1)2s(2) or 15(2)2s(1). These
wavefunctions are neither symmetric nor antisymmetric. However, their linear combina-
tions can be symmetric or antisymmetric. The lowest excited states to have the zeroth order
spatial wavefunction are

%[1s(1)2s(2)—2s(1)1s(2)] antisymmetric. (9.4.20.a)
% [1s(1)2s(2) +2s(1)1s(2)] symmetric. (9.4.20.0)

Since the spatial wavefunction according to Eq. (9.4.20.a) is antisymmetric, we must mul-
tiply it by a symmetric spin wavefunction. From Eqgs. (9.4.18.a-c) and (9.4.20.a) we have
the following three overall excited state wavefunctions:

%[1s(1)2s(2) —2s(1)1s(2)]a(1)ax(2). (9.4.21.a)
1
5 [15(1)25(2) =25 15 B)B(). (9.4.21.5)
1 1
5 [15(1)25(2) = 25() 15(2)] —={a()B(2) + B(u(2)]. (9.4.21.¢)

The first excited state is a triplet state (S = 1). For the next excited state the require-
ment of antisymmetric overall wavefunction leads to zeroth wavefunction by using Egs.
(9.4.20.b) and (9.4.18.d)

1
%[ls(l)Zs(Z) +2s(1)1s(2)}ﬁ[a(l)ﬁ(2) —B(1)a(2)]. (9.4.21.d)
The second excite state is a singlet state (S = 0). The same considerations apply to 1s2p,
153d etc. states.

Note that all states where the two electrons are assigned to the excited orbital turn out to
have such a high energy that they cannot exist as a bound state. All the bound states of He
atom therefore involve linear combination of products in which one of the electron’s spatial
wavefunction is in the 1s orbital, while the second electron is placed in atomic orbital, for
example, 1s, 2p, 3s, 3p, 3d etc. Thus the excited states of He atom consist of one electron
in 1s state (the hydrogen ground state) and the other in an excited states ¥,,;,;,.

The requirement that the total wavefunction must be antisymmetric in the exchange of
electrons leads a coupling between the spin and the spatial variables. They act as if they



Identical Particles 347

move under the influence of a force whose sign depends on the relative orientation of their
spins. This is called exchange force. The force is zero for the two electrons which are far
apart, for example, the two electrons of two hydrogen atoms. Although,in principle, these
two electrons in the two hydrogen atoms are of exchange symmetry of the total wavefunc-
tion, but we do not need to consider this exchange symmetry of wavefunction in practice.

9.5. Bell Basis and Entangled States

From the discussions in section 9.4, we see that there are two approaches to construct the
four spin states of two particles with spin //2. In this subsection we use another often used
notations to express the spin state. @ = | T>= | > and B =| | >=|— 1 >. For example,
B = 1>1 [ 1>2=3,—3 >

(A) The four spin states can be the common eigenstates of operators (S;.,S2;). Eq.
(9.4.5) have given these four spin wavefunctions:

o(l)a(2), B(1B2), o(1)B(2), a2)B(1) . (9:5.1)
Using the arrow method, Eq. (9.5.1) can be rewritten as

1> [1>2, [I>1]1>2, [1>1]1>2, [1>2] >0 (9.5.2)

Using the four spin wavefunctions in Eq. (9.5.2), we can construct a vector space to express
any spin states of two spin 1/2 particles. The two operators (S, and S,;) can be separated,
belong to different particles, and both they are single body operators. We call this vector
space, consisting of common eigenstate of single body operators, angular momentum non-
coupling representation. We have pointed out that the two of the four spin wavefunctions in
Eq. (9.5.2) do not satisfy the exchange symmetry of total.

(B) The four common eigenstates of operators (S2,S,.), given by Egs. (9.4.18.a-d)
can also construct a vector space. The two single body operators in operator S = (§; +
S$,5)? = S% +S% +281-8, =3h*/2+ 28-S, = h?/2(3+ 81 . 82) cannot be separated. The
§? is called two body operator. We call this vector space angular momentum coupling
representation. Egs. (9.4.18.a-d) is as follows:

Ys—1m,=1 = ocl(l)oc(z) (9.5.3.a)
Ys—1.m,—0 = E[O‘(UB(Z) +B(1)a(2)] (9.5.3.0)
Yoo m1 = ?(1);3(2) (9.5.3.0)
Ys—om=0 = ﬁ[a(l)ﬁ@ —B(H)a(2)] (9.5.3.d)

Using the arrow method, Eq. (9.5.3) can be rewritten as
Y1 =Ys—1m=1=|T>1T>2 (9.5.4.a)

Tio= YS:I,MSZO = %H T> ’ 1>2 —H 1> ’ T>2] (9.5.4.b)
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T4 EYS:l,szfl = | l>1 | l>2 (9.5.4.6‘)
1
YOO = YS:O,MrZO = ﬁ“ T>1 | l>2 —| l>1 | T>2] (954d)

Using these four spin wavefunctions, we can also construct a vector space to express any
spin states of two spin 1/2 particles.

If a quantum state of composite system consisting of more than one particle can be
expressed as a product of single particle states, then it is called separable state, or in this
simplest case it is called product state. If a quantum state of composite system consisting
of more than one particle cannot be expressed as a product of single particle states, then
it is called entangled state. For example, the four states in Eq. (9.5.2) and the two states,
Ty; and Y in Eq. (9.5.4), are separable states, and the states Yo and Yo in Eq. (9.5.4)
are entangled state. Sy, S»,, and S, = S, + S, are single body operators. S? is two body
operator because the two operators in 81 . 82 cannot be separated. If we take a complete
set which contains even one two body operator, the the common eigenstates of the complete
set contains entangled state.

If we take the two commuting two body operators (G1,0,;,51,02,) as the complete set,
then all the four common eigenstates are entangled states:

\%(YHHH) _ \%n 151152 4 1>1 ] 1>2). (9.5.5.0)
Y= %[ T>1] 1>+ I>1 ]| T>2]. (9.5.5.h)
\%(Y“_n_l) = %n 15112 -] 151 ] 1>, (9.5.5.¢)
Yoo = \%[ 151 ] 12 =] 151 [1>2]. (9.5.5.d)

The four entangled states in Eq. (9.5.5) can also construct a complete basis as the basis in
Eq. (9.5.4). The four entangled states in Eq. (9.5.5) are called Bell basis.

Now the entangled states have many applications, e. g., quantum computing, quantum
communications, quantum state teleportation, information, and so on. This is an exciting
and modern subject. Next we give a theorem, which is just to scratch the surface of the
entangled state.

Theorem XXXVII: Nonlocality of quantummechanical multibody states. The
quantummechanical multibody states such as entangled states have nonlocality
(nonlocalty=distance-correlativity).

Proof. About the mathematical proofs for this theorem there are many references such
as Refs. [102, 103, 104, 60, 105]. ([105] introduces representation of entangled states.)
We do not want to repeat these purely mathematical proofs. If the readers do not have
enough time, then it is OK that they do not read these proofs. We hope to note the origin of
nonlocality, i. e., the aspect of physics, and ask why?.
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We list some examples, and interpret the physical aspects of this theorem, especially,
the origins of nonlocality, and the classical analogy if it has.

First example of nonlocality comes from the identity theorem XXXV. Considering the
spin-singlet state (S = 0)

L
V2

which is a superposition of two product states | 1>, Q| | >»; and | |>1; @ | T>2,. Con-
sidering the invariance of space rotation of the Y [9], we can also take, equivalently,

Yoo = H T>1z | l>21 _| l>lz | T>2z]a (9'5'5'd)/

Yoo = %n 10| 120 ] 151> (9.5.5.d)"

Let us explain what does the nonlocality of entangled states mean. Suppose that Alice is
an observer for particle (system) 1, and Bob is an observer for particle (system) 2. If in the
entangled state given in Eq. (9.5.5.d)" and Eq. (9.5.5.d)" Alice makes an observation in the
eigenbasis of particle 1, there are two possible outcomes, occurring with equal probability:

(i) Alice observes T, (T,), and the state of the particle 2 automatically (i. e., the proba-
bilityis 1)is |, (1.);

(i1) Alice observes |, (|), and the state of the particle 2 automatically (i. e., the proba-
bility is 1) is T, (T.);

If the former (i) occurs, then any subsequent observation performed by Bob, in the
same basis, will always return |. If the latter (ii) occurs, (Alice observes T,), then Bob’s
observation will return T with certainty. Thus, the particle 2 has been altered by Alice
performing a local observation just on particle 1. This remains true even if the particles 1
and 2 are spatially separated very far. This is the so called nonlocality. Nonlocality has
many manifestations.

The outcome of Alice’s measurement is random, or more exactly speaking, has proba-
bility 50%. Alice cannot decide which state of the composite system (particles 1 and 2) will
be, and therefore cannot transmit information to Bob by acting on her system. Causality is
thus preserved, in this particular scheme.

To understand the origin of the entanglement of the above entangled states, we can even
include more freedom degree besides spin. For example, Eq. (9.4.21.d) gives an expression
of the many excited states of He atom, which is

W(r1,r) = \%[u(l)zs(z) +2s(1)1s(2)]%[a(1)ﬁ(2) “B(o(2)]. (9.4.21.4)(9.5.6)
Similarly to Eq. (9.5.6), if the two electrons are plane wave, then the the wavefunction of
these two electrons can be [4]

1 1

) . 1 . 1 .
Wy ’ L ipn/h_ lpz-rz/h_|_ ipyri/h ip1-r2/h
er) = B ame ame Vanh o amh
1
x  —la(1)B(2) —PB(1)a(2 9.5.7
ﬂ[()ﬁ()ﬁ()()] (9.5.7)

More vividly speaking, in Eq. (9.5.5.d)’ there are two double particle states: | 1> | |>2
and | | > | 7>. Each state appears with probability 50%. We should always remember
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that although the body-factor carries the substance of the particle, but the body-factor looks
like a blend person, the body-factor’s motion is always in terms of the guide of the guide-
factor according to the spontaneous equiprobability symmetry breaking. Actually, if Alice
observes that the particle 1 is in T state, which means that the body-factor of the particle
1 takes T due to the result of spontaneous equiprobability symmetry breaking. In this case
the particle 2 has no other choice, and the sole choice of the particle 2 is |. Therefore, the
entanglement and the nonlocality is a quantummechanically due and deserved effect.
We have the following physical analyses for the nonlocality.

(i) The two free electrons are identical particles (=wavepackets). The identity theo-
rem XXXV of identical wavepackets requires that the wavefunction (=guide-factor) of this
two electron system has to be antisymmetrical. Eq. (9.5.7) satisfies this requirement of
antisymmetry.

(ii) This requirement of antisymmetry does not connect with the space distance of these
two electrons (=wavepackets). The action of the guide-factor (=wavefunction) is to guide
the motion of the body-factors of the two wavepackets. Actually, the electron’s spin is
carried by the body-factor. The [o(1)B(2) —B(1)o(2)]in Eq. (9.5.7) is only a mathematical
function, and can guide the motion of the electron spins.

(iii) It is easy to see that the spacetime part of wavefunction (=guide-factor) of the
two electrons has nonlocality as well. But until now the related experiments have not yet
been reported, or even the two electron spacetime entanglement has yet not been noted by
researchers.

Second example is two (or many) photon time-frequency entanglement [106, 104]. The
single photon wavefunction (guide-factor) can be, generally, expressed as

T ‘
@ppe(z/c—1) = NG /0 AP e (0) E(0)e O 1), (9.5.8)

where ‘E(hio/e,V)!/? is the electric field of one photon. ®,,,.(z/c —1) is the photon wave-
function (=guede-factor). |®,,.(z/c —1)|? represents the spacetime distribution of field
strength of one photon [104]. Note that some references think that ®,,,.(z/c —t) is a photon
wavepacket other than a wavefunction. This textbook thinks that a photon wavepacket looks
like an electron wavepacket, is a rigid sphere, and cannot be separated arbitrarily. One can
only expand the wavefunction (=guide-factor), other than the substance of an object.

The general form of the two photon wavefunction is

1 1 o o
D0 — 1, - = T ==
t (Zl/C n Z2/C 2‘2) \/ﬁ\/ﬁ/o d(l)l/o dm,
X DBpyyo (01,)E(07) E(ary) e Olla/ et F(z2/et2)]
7& q)one(Zl/C_tl) X q)one(Zz/C_tZ)- (959)

There is two photon entanglement if

6two((’)lao)Z) = 6two(("‘)%(")l) or 6Iw¢)<('01;('02> = _6tw0<0)2;0)1>~ (9510>
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This two photon frequency entanglement has been observed by beam splitter experiments,
and is called two photon interference [104, 107, 108].

Third example is the two photon coordinate-momentum entanglement, which is also
called two photon interference [104].

Fourth example of nonlocality comes from the momentum-coordinate representation
transformation for the entangled states. Let us use a very simple example to explain
what does the momentum-coordinate representation transformation mean? We will ad-
dress the paper of EPR (Einstein-Podolsky-Rosen) in 1935, because this paper propose
a EPR paradox for the quantum mechanics, and EPR paradox is one kind of nonlocality
[7, 103, 102, 109].

Suppose that we have two particles 1 and 2, and the wavefunction of this two particle’s
system is [109]

1
\P(xl’)Q) = ﬁﬁ(?ﬂ — X2 +XO)
1 o0 sl 1 ! 1 in
_ dp P/l gP/h_____ —ip'xa/h 9.5.11
V27mh /—oo P V27th V2nh ( )

Now, the very important thing is to understand the physics of Eq. (9.5.11). The function
in the right hand side of first equality is the eigenfunction of total momentum operator
P = P 4+ P, and relative coordinate operator X = X; — X, (In the coordinate representation
it is a number.)

1
X‘P(x],)Q) = (X] —Xz)\P(JQ,XQ) = (X1 —XQ) WS(M — X2 +xo)
= —X \/217[_}18()61 —X+Xo). (9.5.12)

Therefore, the function in the right hand side of first equality in Eq. (9.5.11) is an eigen-
function of relative coordinate operator X = X; — X, (In this coordinate representation it is
a number.)

P‘P(xl,xz) = (P1—|—P2)‘P(X1,XQ)
9 0 1
- (g ms)
- ((—)mi—(—)m L ) L5, 1z +1.)

8x1 8 — X2

1
=0 S(x1 —x2 +x5). 9.5.13
Vv2nh (1= ) ( )
Therefore, the function in the right hand side of first equality in Eq. (9.5.11) is a common
eigenfunction of total momentum operator P = P; 4+ P> and relative coordinate X = X; — Xj.
Considering that [P;,P] = 0 and [P, P] =0, but [P, X] # 0 and [P>,X] # 0, we know
that the function in Eq. (9.5.11) as a common eigenstate of X, P cannot be the common

S(x) —x2 +x5)
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eigenstate of P; and P, and only can be a superposition of common eigenstates of Py, P, i.
e., can have common eigenfunctions, such as

1 ;1 ip/xl/h; —ip'xa/h

\/ﬁ/dp \/ﬁe \/ﬁe . (9.5.14)
Egs. (9.5.14) tells us that although the distance x, of the two particles can be very large,
but if you measure the momentum of particle 1, and obtain p; = p’, then the momentum
of particle 2 is definitely p, = —p’. The two particles are in state given by Eq. (9.5.11).
Why when the particle 1 is in a eigenstate p’ of momentum of particle 1, then the particle 2
is automatically is in a eigenstate —p’ of momentum of particle 2? This is the nonlocality.
This kind of nonlocality can be understood by classical mechanics. The physical meaning
of the 8(x; —x2 +x,) in Eq. (9.5.11) is that two free particles 1 and 2 suffer an imposed
constraint condition, i. e., always keep the distance x| —x; = x,. For example, the two
particles situate at the two ends of a rigid stick. The length of rigid stick is x,. If you also
require that the total momentum p = p; + p» = 0 of the two particles, then from momentum
conservation p = p; + p = 0 and the measured p; = p/, you, of course, can say p, = —p/'.
So simple arithmetic! The p, = —p’ is also independent of the distance between the two
classical particles, because p = p; + p» = 0 does not depend on this distance.

According to our viewpoint that the historical experiences and lessens are worth no-
tice, we introduce the discovery history of the nonlocality. From this history, you well
understand that: (i). Science develops always, but the developing way might be tortuous
sometimes; (ii). The discovery of nonlocality belongs to the so called “hit the mark by a
fluke (like to point out the weak point of quantum mechanics), score a lucky hit (like to find
a new effect of the nonlocality)”; (iii). The history of discovery of nonlocality tells us that
even the wise are not always free from error.

The EPR paradox comes from the Einstein and et al’s paper in 1935 [110]. The num-
ber citing by references is the largest in scientific history. This paper has two contents.
This textbook will introduce the two contents, and in parentheses expresses our completely
different opinions.

First content is to discuss one particle. EPR paper assumes that an one dimensional
particle is in state, described by the wavefunction

< xp,x0x=—x,,P=0>=

1.
¥, (x) = ——¢PM", EPR(2)(9.5.15
in which EPR(2) represents that our Eq. (9.5.15) is same as the Eq. (2) of EPR paper.
This wavefunction is an eigenfunction of momentum operator P = —ihd/dx(EPR(3)),

the eigenvalue is po(EPR(3)). EPR think that in this state given by Eq. (9.5.15), the
momentum has a certain value and is thus a physical reality. Due to that in this state given
by Eq. (9.5.15) the values of coordinate do not have the certain value, EPR think that in
this state given by Eq. (9.5.15) the coordinate is not a physical reality.

Comment of this textbook for EPR paradox.

The wavefunction is only a mathematical function, does not carry any substances of a
particle, acts just as a guider to guide the motion of the particle according to the sponta-
neous equiprobability symmetry breaking law. According to the spontaneous equiprobabil-
ity symmetry breaking law, the wavefunction in Eq. (9.5.15) tells us that in position space
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the particle will take any position with equiprobability. Of course, the particle’s coordi-
nates are still a truly physical quantity. The criterion of physical reality given by EPR is not
correct.

Second content is just the above second example of nonlocality.

Schrodinger wrote a letter (in German) to Einstein in which he used the word Ver-
schriinkung (translated by himself as entanglement) to describe the correlations between
two particles that interact and then separate, as in the EPR thought experiment. Schrodinger
shortly thereafter published a seminal paper defining and discussing the notion, and terming
it “entanglement”. In the paper he recognized the importance of the concept, and stated:
“I would not call (entanglement) one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical lines of thought.” [111, 112]
Schrodinger (1935) proposed an another thought experiment, i. e., the so called Schrodinger
cat. Schrodinger assumed that in a box there are one cat and one atom, and when the atom
is in excited state with probability 50%, the cat is alive, and when the atom is in ground
state with probability 50%, the cat is death. Schrodinger wrote the total wavefunction as
follows:

¥ > = doalive cat > |excited state of an atom >
+ Bl|death cat > |ground state of an atom >,
o +B*=1. (9.5.16)

This Schrodinger cat state |¥ > is a superposition of states and has nonlocality. If the “cat”
is not a macroscopic system, then many experiments have alresady found the Schrodinger
cat state.

Bohr thought that EPR prove a problem of quantum mechanics, and used his comple-
mentary principle to argue the completeness of quantum mechanics in 1935.

As with Einstein, Schrodinger was dissatisfied with the concept of entanglement be-
cause it seemed to violate the speed limit on the transmission of information implicit in
the special theory of relativity. Einstein later famously derided entanglement as “spukhafte
Fernwirkung” or “spooky action at a distance”.

After the papers of Schrédinger and Bohr, the EPR paper generated significant interest
among physicists and inspired much discussion about the foundations of quantum mechan-
ics (perhaps most famously Bohm’s quantum potential interpretation of quantum mechanics
and hidden parameter), but relatively little other published work. Here we have to mention
the important idea of Bohm [113]. Bohm is the first to explore the nonlocality by discussing
a two spin system.

So, despite the interest, the flaw in EPR’s argument was not discovered until 1964, when
John Stewart Bell demonstrated precisely how one of their key assumptions, the principle of
locality, conflicted with quantum mechanics. Specifically, he demonstrated an upper limit,
known as Bell’s inequality, regarding the strength of correlations that can be produced in any
theory obeying local realism, and Bell showed that quantum mechanics predicts violations
of this limit for certain entangled systems. Bell’s inequality is experimentally testable,
and there have been numerous relevant experiments, starting with the pioneering work of
Freedman and Clauser in 1972 and Aspect’s experiments in 1982. These experiments have
shown agreement with the nonlocality of quantum mechanics rather than the principle of
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local realism. However, the issue is not finally settled, for each of these experimental tests
has left open at least one loophole by which it is possible to question the validity of the
results. The work of Bell raised the possibility of using these super strong correlations as a
resource for communication.

At this stage, the readers have believed the quantum nonlocality without a wee bit of
doubts. But, why is the nonlocality possible? Let us recall the super-light speed observation
in the barrier tunneling experiments in chapter 4. In that subsection, we point out that due
to the more microscopic process, mentioned in chapter 3, when the particle tunnels through
a barrier, that the particle moves with super-light speed is possible. In the entanglement
case, the propagation of information between two particles in entangled states or other
quantummechanical multibody states is allowed to have super-light or even infinite speed.
We think that the properties of more microscopic process is just the origin of nonlocality.
It is obvious that even for a sole particle the transmission speed of information between the
guide-factor and the body-factor can be infinitely large in principle, because for the more
microscopic processes, which is stochastic processes, until now there are no any accepted
theories.

9.6. Exercises and Solutions

9.6.1. Characteristics of Identical Particles

(1) Some references think that the symmetry of wavefunction of identical particle system is
an effect which’s cause is: “the overlapping of the single particle wavefunction. Originally
the wavefunctions of massive particles, e. g., labeling 1 and labeling 2, are prepared sepa-
rately. At the just beginning the single particle wavefunctions do not overlap. As time evo-
lution, the single particle wavefunctions proceed, they overlap and it is no longer possible
to distinguish the single particle wavefunctions, i. e., “who is who” cannot be distinguished
because “you in me and I in you” [6].

Therefore, Ref. [6] thinks that the cause of the exchange symmetry of the multiparticle
system is the indistinguishability of identical particles. please make comment.

Solution:
We give the following five comments:

(A) There is misunderstanding on both the wavefunction and wavepacket in many text-
books. The wavepacket and particle are the same thing. For example, the electron is a rigid
small sphere, and it cannot absolutely spread with time. According to wavepacket-only
theory, one always has to remember that:

(wavepacket) # (wave function);

(guide-factor of wavepacket) = (wave function);

(wavepacket) = (particle); (wave function) # (particle).

(B) Even there is no any overlapping between the single particle wavefunctions, the
identical particle system still has the exchange symmetry of multiparticle wavefunction.
Just, if there is no any overlapping between single particle wavefunctions, then some prop-
erties such as exchange energy will be negligible. The basic origin of the exchange sym-
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metry of multiparticle wavefunction comes from: The average value of operator and op-
erator itself do not change when one exchanges two identical particle; This characteristic
does not mean any thing for classical mechanics, and is just a trivial thing; However, for
quantum mechanics, this characteristic can produce large effect because although the prob-
ability density does not change, but the multiparticle wavefunction can change its sign due
to probability density = | = wave function|?.

(C) Theoretically, when one proves the theorem of exchange symmetry of multiparticle
wavefunction, one does not need to consider the overlapping. In other word, the overlapping
does not have a wee bit of connections with the exchange symmetry.

(D) Therefore, the following viewpoints are wrong:

(i) Ref. [4] thinks: “For the identical particle system there is a principle of indistin-
guishability.”

(i1) Ref. [7] affirms: “In quantum mechanics, identical particles are truly indistinguish-
able, and are not even in principle.”

(iii) Ref. [114] suggests: “The principle of indistinguishability of identical particle
system refers to the fifth postulate of quantum mechanics.”

(E) We would like to remend the readers to note a basic fact. In chapter 1 we introduce
the double slit experiment. This experiment can be done in two approach, and get the
same experimental interference pattern on the screen. One approach is to use just one
particle (photon, electron, or the big Cgy molecule) to go through the double slit at every
time experiment, and do the same kind of experiments many times (for example, 1000
times). Another approach is to use just a beam of particles (photon, electron, or the big
Ceo molecule) to go through the double slit at one time experiment. Of course, the beam
of identical particles constructs an identical multiparticle system. The two approaches in
double slit experiments clearly tell us that the every particle in the beam still knows “who
is who” or “which is which”.

The aim of this exercise is to let the readers to believe that the particles in identical
multiparticle system are distinguishable. This aim is meaningful, since some references ac-
cept the viewpoint that the particles in identical multiparticle system are indistinguishable.

(2) There were many different viewpoints on the identical particle system, for example,

(A) Ref. [4] thinks: “For the identical particle system there is a principle of indistin-
guishability.”

(B) Ref. [7] affirms: “In quantum mechanics, identical particles are truly indistinguish-
able, and are not even in principle.”

(C) Ref. [114] suggests: “The principle of indistinguishability of identical particle
system refers to the fifth postulate of quantum mechanics.”

Are the identical particles in quantum mechanics really indistinguishable as said in
Refs. [4, 7, 114]? This exercise requires that readers give many arguments to negative the
indistinguishability upon the bases of the exercise 1.
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Solution:
No! The identical particles in quantum mechanics really distinguishable. Let us give
you more reasons besides the reasons in the solution of exercise 1:

(A) Let us give you a very very simple example. Assume that there are two free elec-
trons in an one dimensional box, i. e., in one dimensional infinite potential well. Every
substance of the two electrons (=wavepackets) is still a small rigid sphere (non-relativistic
approximation) in this one dimensional box. Every electron in the two electron has itself
guide-factor (=wavefunction), which are simple triangle functions given by Eq. (4.2.1.22).
If the two electrons are separated far from each other, then, of course, we know “who is
who” obviously.

We think that that the identical particles are distinguishable are a very obvious thing,
and do not really understand that why some references do not consider the basic practice of
mankind, and prefer the so called indistinguishability.

(B) That the two electrons in the box are distinguishable or indistinguishable does not
have a wee bit of connections with that how to write the multiparticle wavefunction of the
two electrons in the box. They refer to different things.

(C) Actually, to demonstrate that the eigenvalues of permutation operator are +1 or -1,
we just need that the observables and the average value of observables is independent of
the exchange of all coordinates of the identical particles. This is a trivial thing for classical
mechanics. However, this is not a trivial thing for quantum mechanics, because in quantum
mechanics the average value are determined by both W* and . Even we do not make any
mathematical derivations, we can confirm that P;;'¥ = =¥ do not change the average value
at all.

(D) We think that the permutation operator’s existence itself means the distinguishable
property of identical particles. Otherwise, how can you say the permutation of two
particles?

(3) Do you prefer to name identity theorem or identity principle?

Solution:

The exchange symmetry of multiparticle wavefunction of identical particle system has
been exactly demonstrated in subsection 9.1.1. Therefore, it is a theorem other than a
principle or a postulate.

(4) Many textbooks write, for example Ref. [1]: “¥” and P;;'¥' can only have a
difference of a constant? Does this statement exact?

Solution:

No, It is not exact. We should say that “¥”” and P;;'¥ can only have a difference of a
constant phase factor. For example, when |¥|? represents probability density, it is needed to
make the normalization of wavefunction. In this case we cannot give an arbitrary constant
factor except an arbitrary constant phase factor.
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(5) Ref. [54] makes a brief summary:
If the identical particles are distinguishable, then we obtain the Maxwell-Boltzmann

distribution function (i. e., the average occupation number of identical particles at energy
E)

B 1
n(E) = o0 oE/ksT

If the identical particles with integer or zero intrinsic spin angular momentum are indistin-

guishable, namely bosons, then we obtain the Bose-Einstein distribution function (i. e., the
average occupation number of identical particles at energy E)

n(E) = !

% eE/ksT +1
If the identical particles with half-integer intrinsic spin angular momentum, namely
fermions, are indistinguishable, then we obtain the Fermi-Dirac distribution function (i.
e., the average occupation number of identical particles at energy E)

) — 1
n(E) = 0BT 1

At high energy E >> kT, the Bose-Einstein distribution function and the Fermi-Dirac
distribution function reduce to the Maxwell-Boltzmann distribution function.

After reading the above paragraph from Ref. [54] or any other textbooks on statistical
physics, do you think that the identical bosons or fermions are indistinguishable?

Solution:

No. We still think that the identical bosons or fermions are distinguishable. “Indis-
tinguishable property” is subjective. “lIdentity of intrinsic properties” is objective. The
Maxwell-Boltzmann distribution function is historical thing [L. Boltzmann, Wier. Ber. 63,
397 (1871)]. Actually, today the Maxwell-Boltzmann distribution function is not necessary,
it is just an approximations of the other two distributions.

We would like to introduce a paragraph from Ref. [61] for reference. “All particles
which are known today obey the Bose-Einstein distribution function (or statistics) or Fermi-
Dirac distribution function (or statistics). Because at high energy or high temperature the
two types of statistics become the same, namely, the statistics play no role. Therefore,
it is convenient to introduce a third type of distribution functions (or statistics), namely
Maxwell-Boltzmann distribution function (or statistics), which gives the high temperature
behavior of both the fermion and boson systems.”

9.6.2. Two Identical Particles

(1) Suppose that a system contains three particles, every particle can be in any state of
single states Y, W, W3. Seek the number of possible states of the three particle system.

Solution:

(A) The three particles are identical bosons. Because for bosons any state in Yy, Wy, Y3
can contain infinitely many bosons, the possible number of multiparticle symmetrical wave-
functions are 10
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(B) The three particles are identical fermions. Because for fermions any state in
Y1, V2, Y3 can contain only one fermions, the possible number of multiparticle antiferro-
magnetic wavefunctions are 1.

(C) The two particles are nonidentical particles. The number is 3 x 3 x 3 =27.

(2) Eq. (9.2.5) gives the wavefunction of two fermion system

W (g1q) = %[w.wl)qu)—w. (42)Wis (41)]

L v (q1) Wi (q2)
| vl velg) | 21)

The second term in Eq. (2.1) comes from the antisymmetry of the wavefunction, and is
called exchange term. Seek the probability density of the two fermion system.

Solution:
(W2 1 (q1.92) [F = 5 {1, (00) P 1k, (92) 12 4 [k, (92) 2w, (q1) 12 _ (2.2)
—2Re[Wi, (q1)Wi, (q1) - Wi (92) W5, (2)]}

The third term is exchange term. If the overlapping of the two states Wy, (¢1) and Wy, (g1)
is equal to zero, then the contribution of the exchange term is equal to zero as well.

(3) Suppose that a system contains three particles, every particle can be in any state of
single states Y, W2, 3. Seek the number of possible states of the three particle system.

Solution:

(A) The three particles are identical bosons. Because for bosons any state in Y1, Y, W3
can contain infinitely many bosons, the possible number of multiparticle symmetrical wave-
functions are 10

(B) The three particles are identical fermions. Because for fermions any state in
V1, Ws, Y3 can contain only one fermions, the possible number of multiparticle antiferro-
magnetic wavefunctions are 1.

(C) The two particles are nonidentical particles. The number is 3 x 3 x 3 =27.

(4) Define spin exchange operator

P, = (l—l-gl 82) (LZ)

N —

Prove

Praa(1)B(2) = a(2)B(1). ()
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Solution:

Pro(1)B(2)

(5) Prove

Solution:

%(L+31-8ﬁa603@)

E(1 + 61402 + 61,02y +61:62,) (1) B(2)

1 1 0
1 +G1x02x + G1y02y + 611621) 0 1
1 2

1 A& ]+[?H5L+f[?]l<—f>[éh

(G] . 82)2 =3 —2(81 . 82)

= \2

107)° = Z G1i01,02i02;

ijk=x,y,2

= Z 01,05+ Z (i€iji) 6140
i=X,y,2 ijk=x,y,2

= 3-— Z (€ix)*C 140
ijk=x,y,z
i#]
= 3-20,-0,

(6) Sometimes one uses the spin exchange operator to calculate in spin noncoupling
representation. For example, prove

<RS- SB(1)o2) >= .
Solution:
<a(B@IS-SBER) > = o <a(l)p@)IP— 5IB(1)02) >
= ampe)PBeR) =

9.6.3. Bell Basis and Entangled States

(@)

()

(1) Egs. (9.6.3.a-d) have given the four common eigenfunctions of operators S2, S.. Prove:

01,02, Y10 =

§H

1
(01:02¢ — 61x02;) Y11 = —=(01:62¢ — 61x02;) Y11 = Yoo
V2
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(2) The negatively charged pion ™ is a spin-zero particle roughly 280 times more
massive than the electron. Suppose the two electrons in a helium atom are replaced
with two ™, generating a pionic atom. Assume that the ground state wavefunctions
of the two n~s are Wi, and ¥;,. Which of the following four wavefunctions are
correct for the pionic helium atom? (A). Wig(r1)Wig(r2). (B). Wig(r2)Wau(r1). (O).
1/V2(W15(r1)Pag(ra) +Wig(r2)Wag(r1)). (D). 1/v2(W1g(r1)Wag(r2) — Wig(r2) Wag(r1)).

Solution:

Since the pion is a spin-zero particle, it is a boson. Consequently, the two pion’s
waveunction must be symmetric under particle exchange r; «— r,. The wavefunctions
(A) and (C) are symmetric under r| < r,, while (D) is antisymmetric under r; «— r».
The wavefunction (B) does not have any definite symmetry under r; «— r,. Thus only
(A) and (C) are allowed wavefunctions for pionic helium atom.

(3) It is often stated that the Pauli exclusion theorem asserts that no two electrons can
be in the same state in an atom. What then is wrong with the two electron waveunction:
W =y, (1)WY, (r2)Y1(1)Y|(2) in which one of the two electrons is in the single particle
ground state with its spin up and the other is in the single particle ground state with its spin
down?

Solution:

Because electrons are spin 1/2 particles, a two electron’s wavefunction must be anti-
symmetric under exchange. The ¥ is symmetric under r; «— ry, but if the spin states of
the two electrons are exchanged Y1 (1)Y|(2) «— Y (1)Y{(2). Thus the spin state is not
antisymmetric under the combined operation of exchanging the positions nd spins of the
two electrons. The correct ¥ is

W = () r2) T (D) =T (DT

9.6.4. Applications of Pauli Exclusion Theorem

(1) Basing on the energy level formula and eigenfunction notations of hydrogen atom
in chapter 6, the electron spin in chapter 8, and Pauli exclusion theorem in this chapter,
discuss the periodic table of elements.

Solution:

The quantum state of electron in atom can be described by four quantum numbers:
n,l,m,m, (The meaning of the notations n,/,m can be found in Eq. (6.2.3.4) of chapter
6. m, is the quantum number of the z component of electron spin). According to Pauli
exclusion theorem, we can assign different quantum state to the electron in a given
atom, i. e., only one electron can have the certain values of n,l,m,m,. The electrons
that have the same principal quantum number n are said to be in the same shell. For a
given n, the electrons having the same value of / are said to in the same sub shell. Now
we can calculate the maximum number of electrons belonging to the same shell or sub shell.
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(A) The case of a sub shell:

For electrons in a sub shell we have same value of quantum numbers n and /. These
electrons must differ either by the value of quantum number m [which can be one of the
2] +1 integer values between —/ and +I[. Please refer to Eq. (6.2.3.4)] or by quantum
number m, (which can take values -1/2 or 1/2). There exists, therefore, 2(2/+ 1) distinct
quantum states corresponding to the same value of n and / and therefore, there can be
2(21+ 1) electrons in a sub shell of quantum number /. According to the spectroscopic
custom, we express [ =0,1,2,3,4,5,6,7,--- as s,p,d, f,g,h,i, j,---, and call s orbit (or
sub shell) p orbit (or sub shell) etc. The maximum number of electrons in s, p, d, and f sub
shell are therefore 2, 6, 10, and 14, respectively. A sub shell containing 2(2/+ 1) electrons
is said to be complete.

(B) The case of a shell.

For electrons in a shell we have same values of principle quantum number n but different
quantum numbers /, m, and mg. The quantum number / can have all values from [ to n — 1.
The maximum number of electrons in n-th shell, N, max, can be obtained by adding the
maximum number of electrons in each sub shell.

n—1
Np—thmar = Y 2(21+1) =2+4+6+10+ 14+ +2(2n— 1) = 2n*.
=0

For the above derivation refer to Eq. (6.2.3.5) in chapter 6. The maximum number of
electrons of quantum 7 (n-th shell) is therefore 2n”. The shell notations corresponding to
n=1,2,3,456are K,L,M,N, O, P, respectively.

A shell containing the maximum number of electrons is called a complete shell. We
may be tempted to say that the electron configuration of any atom follows the general rule,
and thus the periodic table of elements obeys this rule:

1522522p%3s23p®3d'1%45%4p04a 04 f14. .. .

But this is not true. The actual order in which the levels must be filled so that the resulting
energy is minimum (corresponding to a stable atom) is as follows:

1522522p®3523p%45%3d'04 p05524d"05 pS6s24 145406 p° 752640 - - - .

Let us explain the notations. For example, 5p® means n = 5, I = 2, and the maximum
number of filled electrons is 6. s, p,d, f corresponding to [ =0, 1,2, 3, respectively.

Let us explain the periodic table of elements.

The first period is the K shell. This period (or shell) contains two elements: H with
atomic number Z = 1 and one electron; He with Z=2 and two electrons. Both the electrons
are in the energy level 1s.

The second period is the L shell, atomic number 3 < Z < 10, contains eight elements:
Li,Be,B,V,N,O,F,Ne, and occupies two energy levels: 1s and 2p.

The third period is the M shell, atomic number 11 < Z < 18, contains eight elements:
Na,Mg,Al,Si,P,Cl,Ar, and occupies two energy levels: 3s and 3p.

The fourth period is the N shell, atomic number 19 < Z < 36, contains 18 elements, and
occupies three energy levels: 4s,3d,4p.
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The fifth period is the O shell, atomic number 37 < Z < 54, contains 18 elements, and
occupies three energy levels: 5s,4d,5p.

The sixth period is the P shell, atomic number 55 < Z < 86, contains 32 elements, and
occupies three energy levels: 6s,4f,5d,6p.



Chapter 10

Time Dependent Perturbation
Theory

If a system is an isolated system, then this system is of time homogeneity, the related
Shrodinger equation is time-independent, and the average energy conservation is proved
in chapter 5. If a system is an open system, then it not is of time homogeneity, the related
Shrodinger equation is time-dependent, and the energy in this system might be not conser-
vative. The time dependent perturbation theory discusses an open system, but the external
action is weak enough, such that we can make approximate perturbation calculations. Only
a few problems of open system can be solved precisely [114, 118].

The quantum transition is caused by the time dependent perturbation. The development
of time dependent perturbation was initiated by Dirac’s work on the semi-classical descrip-
tion of atoms interacting with electromagnetic fields [119]. Dirac, Wheeler, Heisenberg,
Feynman, and Dyson developed it into a powerful set of techniques for studying interac-
tions and time evolution in quantummechanical systems which cannot be solved exactly.
One often calls the quantum transition from continuous spectrum to continuous spectrum
the scattering.

This chapter will prove some theorems of quantum transition, and give some examples
to use the time dependent perturbation theory. Time dependent perturbation theory is an
extremely important tool for calculating properties of any physical system.

Some references, such as Refs. [108, 10], conclude the energy conservation in quantum
transition processes. Some references, such as Refs. [2, 103, 3], conclude the energy
nonconservation more or less in quantum transition processes. This textbook hopes very
much that readers especially notice:

(1) Is the energy nonconservation in quantum transition processes an exact result or an
approximate result?

(2) What are the conditions of energy conservation or nonconservation in quantum tran-
sition processes?

(3) How many manifestations of energy nonconservations did we found, at least, theo-
retically?

(4) Continue the explorations on the possible energy nonconservation even after learn-
ing this textbook.
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(5) All until now textbooks and this textbook can prove the conditional correctness of
the so-called Fermi golden rule. But, all until now textbooks require the energy conserba-
tion; On the contrary, this textbook requires energy nonconservation.

(6) The mathematical treatment for transition processes, including scattering processes,
in all until now references and textbooks exists one very seriously purely mathematical
mistake in the treatment of limit time — oo.

10.1. The Problem

The studies on the quantum state in quantum mechanics before this section are separated
into two kinds:

(A) The first kind is that under the condition that Hamiltonian does not explicitly contain
time, to solve the energy eigenequation

H,|n >=E,|n >, (10.1.1)

where |n > is a complete set of quantum number including energy. For Eq. (10.1.1) we
have many discussions before this chapter.

(B) Another main task for the study on the quantum state in quantum mechanics before
this section is to calculate the state’s time evolution. This time evolution of quantum state
satisfies the time dependent Schrodinger equation, which was given by chapter 3,

ih%mf(t) >=H|¥(1) > . (10.1.2)

Eq. (10.1.2) includes a first order time derivative. If the system’s Hamiltonian is given, then
one can obtain |¥(¢) > at any time from initial state |¥(0) >. It is deterministic [1].

If the Hamiltonian does not contains time explicitly (i. e., dH /dt = 0) and is expressed
as H,, then energy is an conservative quantity. In this case from Eq. (10.1.2) one obtains

W(1) >= e /M P(0) >= U (1)|W(0) >, (10.1.1.3)

where operator U (t) called time evolution operator of quantum state. However, if H con-
tains time ¢ explicitly, then due to

[H(t1),H(12)]] #0, for t1 #1 (10.1.3)

(W (1) >= Te o dHO/ Mg (0) > = hdHO/Mg(0) >, (10.1.3)"

where T expresses the time-ordering operator. This textbook does not concerns the case
H=H(t).
If we take the energy representation (the bases as the energy eigenstates of H,), then
|¥(0) > can be expanded as
W(0) >=) anln >, (10.1.4)

and
an =< n|¥(0) >, (10.1.5)
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where n represents a complete set of discrete quantum numbers, e. g. the bound energy
states |n, 1, m;,my > of hydrogen atom or the states |n > of a harmonic oscillator are discrete.
Substituting Eq. (10.1.4) and H,|n >= E,|n > into Eq. (10.1.3) yields

() >= Y ae B0 > . (10.1.6)

If at + = O the system is in the state |k >, is of energy Ej, then
|¥(0) >= |k >. (10.1.7)
Substituting Eq. (10.1.7) into Eq. (10.1.5) yields a, = §,. Therefore, Eq. (10.1.4) gives
(1) >p= e B/ Pk > . (10.1.8)

Eq. (10.1.8) means that the system still keeps the original energy eigenstate at ¢ > 0, but in
comparison with the original |¥(0) >= |k >, |¥(¢) > has an additional factor

exp(—iEyt /h) (quantum beat), which does not alter its orthogonality to |¥(0) >= |k >.
|W(r) > is called stationary state.

If at initial time ¢ = O the system’s state |¥(0) > is in a superposition state of many
energy eigenstates [Eq. (10.1.4)], then at 7 > O the system’s state |¥(¢) > is still in a
superposition state [Eq. (10.1.6)], which is a non stationary state. However, due to that H
is a conservative quantity, |a, exp(—iE,t/h)|? = |a,|* does not depend on time. Therefore,
the proportionality of eigenstates in Eq. (10.1.6) do not change with time.

This chapter will introduce the third kind of studies on the quantum states in quan-
tum mechanics. In many cases person does not interest in the time evolution of quantum
state. Instead, person interests in the transition probability of a system between unperturbed
bound stationary states under the influence of time dependent perturbation. We have proved
in chapter 4 that the energy of bound state is discrete. The transition between bound states
is called transition between discrete states, briefly, D-D transition. In section 10.6 we will
study the transition between discrete and continuous states, briefly, D-C transition. Quan-
tum transition as a new concept was proposed by Bohr in the early quantum theory before
Dirac, but he did not give systematic method to solve this problem.

Let us explain the concept of quantum transition and transition probability in more
detail.

Assume that at initial time ¢ = O the system is in the state

|P(0) >= |k >. (10.1.9)
The state |¥(0) > at¢ > 0 is [See Eq. (10.1.8)] is
(W(1) >i= e B/Mk > (10.1.9)
If a system suffers an applied interaction H’(t), then the total Hamiltonian is
H=H,+H'(t), (10.1.10)
and

(Wi(t) >= Y < nle®t/MYy > e Bt >= Y ay(t)e Bt/ Pln > (10.1.11)
n n
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From Eq. (10.1.11) we know that at time ¢ the probability of the system in state |n > is

Puc(t) = |an(1)?,  (am(0) = 8). (10.1.12)

Py (1) is called transition probability. The average and instantaneous transition rate is de-

fined as
1 1

d
Wit = = Puc(t) = ~ lanc(1)[, and Wins ni =

dr
respectively. To seek a,x(¢) we need to solve the time dependent Schrodinger equation,
which has been given by chapter 3,

Pur(2), (10.1.13)

o)
ihgml(t) >=H|¥(r) > . (10.1.14)
Substituting Eq. (10.1.11) into Eq. (10.1.14) yields

ithnk(t)e_iE”t/hm >= Zank(t)e_iE”t/hH'(t)|n > . (10.1.15)

Taking the inner product of the Eq. (10.1.15) with (|¥(1) >y )* =p< ¥(r)|eE*/", defined
in Eq. (10.1.9), and utilizing the orthonormality of < k’'|n >= &/, one obtains

ihdy(t) = Y. B —ENR < KIH' (1) |0 > a(t) = Y e < K |H'(1)|n > am(t).

(10.1.16)
aypi(t) is a probability amplitude of an object, initial in the eigenstate k of H, and final at
time 7 (H, — H) in the eigenstate k’ of H,. Actually, Eq. (10.1.16) is a matrix representation
of Schrédinger equation in representation of H,. The H, refers to conservative system. But,
H does not refer to conservative system. Therefore, the transition processes might be energy
nonconservative.

If H'(z) is large, then the Eq. (10.1.16) is difficult to solve. If H'(¢) is weak
(H'(t) << H.,), then |a,(t)|> << 1 (n # k), which means that |a,(¢)|> << 1 varies with
time slowly, and the probability that the system still keeps in state |k > is large. In the
weak perturbation condition, we can use the time dependent perturbation theory to seek the
transition probability.

10.2. Basic Formulas

(A) Zero order approximation
Set H' = 0. Eq. (10.1.16) gives

a2 (1) =0, (1) =a(0) = . (10.2.1)

(B) First order approximation
Substituting the zeroth approximation into the right hand side of Eq. (10.1.16), one
obtains first order approximation:

ihal) (1) = e HY, (1). (10.2.2)
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After integration over time ¢ one obtains
My L[ R NG

The ¢ in Eq. (10.2.3) represents the duration time of perturbation. Therefore, from Eqgs.
(10.2.3) and (10.1.12) one obtains that in first order approximation

1 1 U i ’
Po(t) =P (1) = 1a}}) (1) 2 = = /0 N (1dt| (K 2 k). (10.2.4)
In Eq. (10.2.4) P,Slk) << 1 to satisfy the perturbation conditions.
10.3. Periodic Perturbation Theory
10.3.1. Simple Case
Periodic perturbation '
H'(t)=H'e™™ (10.3.1.1)

can also be called harmonic perturbation.

The physical meaning of ¢ in Eq. (10.2.3) is the duration time of H'(z).

According to Eq. (10.2.3), at time ¢ the transition probability amplitude from initial
state |k > to final state |k’ > is

i(op—o)t _
(l)zl/t i(op o) gt dt:iH’ e~ - ! 10.3.1.2
e =h )y ¢ Kk i o —w) (10.3.1.2)
The corresponding transition probability is
2 4H],? [sin](op —0)/2]]*
Pui(t :’ ) = Tk . 10.3.1.3
k(1) = |apy % (0w —0) ( )

Eq. (10.3.1.3) is an important basic formula of transition theory. If ® = 0, then Eq.
(10.3.1.3) is a formula for time independent perturbation in the time interval [0,¢]. Let
us make some discussions for this formula. If ¥’ and k represent discrete energy states,
then it is called D-D transition. If X’ and k represent continuous and discrete energy state,
respectively, then it is called D-C transition. If X and k represent continuous energy states,
then it is called C-C transition. In all textbooks entitled “Advanced Quantum Mechanics”
there is a chapter, entitled “Scattering Theory”, which is a general theory of C-C transition.
Therefore, C-C transition and scattering theory have common theoretical basis.

For the convenience of statement, we use the method proposed in Ref. [1], i. e., we
introduce formally the concept about the density of states for the discrete energy states,
p(k"), and set p(k’)dEy and p(k")dwy are dimensionless. Ey = hoy. After introducing
the p(k’) the summation over all states becomes integration, and after integration we set
p(k") = 1. Using the concept of density of states, if the final state is continuous energy
states, then we put a factor, p(k')dwy or p(k')dEy to the Eq. (10.3.1.3), and if the initial
state is continuous energy states, then we put a factor, p(k)dwy or p(k)dEy to the Eq.
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(10.3.1.3). Note that according to the definition, p(k’) can represent state density of energy
or angular frequency.

Make some discussions for Eq. (10.3.1.3).

(1) If we take the time 7 to be fixed, then the transition probability Py () is an oscillation
function of (@ — ®) = (Ex — E; — hw) /h, which means that Py (7) > 0 can occur at the
case of |(yx — ®)| = |(Ex — Ex — ho)|/h > 0. In physics, |(Exy — Ex — ho)| > 0 means
that the quantum transition process allows both energy conservation and nonconservation!
For example, (Ep — E;, — ho) = 0 means that the initial state energy Ej plus external energy
ho is equal to the final state energy Ep. If we use photon language instead of electric
field language, then (Ey — Ex — how) = 0 means the initial state energy Ej plus the absorbed
photon energy hm is equal to the final state energy Ej.

(2) Further, the shorter the duration time ¢ is, the more strong the energy nonconserva-
tion is. Let us explain this point. The first maximum value (first peak) of oscillation func-
tion in Eq. (10.3.1.3), sin[(owx — @)t/2]/ (0 — 0)2, is 2 /4 at (g — ®) = 0. This latter
expression means energy conservation. The second maximum value (second peak) of oscil-
lation function in Eq. (10.3.1.3), sin[(op — @)t /2] /(o — )2, is 12 /(97)? at (apy — @) =
31/t o< 1/t # 0. This latter expression means energy nonconservation. If we use the attosec-
ond technology (10~!8 second), then (@ — ®)/(27) = 3/(2¢) = 1.5 x 10'® Hz, which is
equal to energy 1.5 x 108 x 4.1356 x 10713 eV = 6.2 x 103 eV.

(3) o = o + ® means energy conservation. There is one question. If @y > @ + ®
and such that (@p — @ — ®)f << 1, what is the time variation of Py(¢)? In this case Eq.
(10.3.1.3) may be expanded to yield

_ PH,|?

Pur(t) = — 4% (10.3.1.4)

The related transition probability rate is

1 t|H}, |?
wik(t) = ?Pk’k(t) = k.

(10.3.1.5)

If the transition rate is independent of time, then persons call it Fermi golden rule. The
cause of Fermi golden rule will be explained in the next. It is obvious that Eq. (10.3.1.5)
violates Fermi golden rule.

(4) Of course, readers will ask a sharp question that if the energy nonconservation is
possible, then why there is no any experimental report on the observed energy nonconser-
vation in the quantum transition processes in the past 80 years? The author of this book
would like to give four reasons:

(4.1) The attosecond technology is a newest thing. Until now this attosecond technology
has not yet produced enough field intensity. Therefore, this kind of experiments has not yet
been done;

(4.2) The large number of experiments of light pulse in the previous time is > 10713
second. In this case the scale of the quantity of the energy nonconservation at the second
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peak (@ —®) =37/t <3.1x 1072 ¢V. Itis really a small quantity in comparison with the
characteristic energy in the concerned problems. For example, the ground state energy of
hydrogen atom is —13.6 eV. Therefore, the quantum transition corresponding to the second
peak is neglected by experimentalists (Refer to Fig. 10.1);

(4.3) (The height of the first peak):(The height of the second)=(¢/2)?: 1> x /(37)? =
2.5m%. Therefore, the first peak corresponding to the energy conservation is easy to be
observed in comparison with the second peak corresponding to the energy nonconservation,
because the transition probability corresponding to the first peak is much larger than that of
the second peak.

From the above discussions, we see that under the periodic perturbation the system can
transit to many final states including both energy conservative and energy non conservative.
Therefore, if we seek the transition rate from the initial state |k > to any final state under
the periodic perturbation, wyyx (Wi is called transition rate), we can use following
two methods.

Method 1:
Wall—k = —ZPk/k
! iZk
1 [te
= 7/ doyp(o) Pri(t)

1 +oo H/ ,_ o ) 2
= - d(l)k/ (l)k/ ’ kk’ [Sm (mk g (0)1‘/ ]]
J—e (0 — 0 — )

4|H], |? oy — 2112
_ | ka‘ oo~ d o sin[(oy — @ — )7/2]
h (0 — 0 — )
Z‘Hli/k‘z 1 pt=  sin’x
= h2 p(O)k/)?t _ d-x
p% 1); (A C— 27‘CH// 2—
- 2l zkk‘ p(mk/):Mp(Ek/)' (10.3.1.6)
R h
Method 2:
d
Wins,all—k = _ZPk/k(l)
dt,#k
d +°°d R
= - ’ )P (t
dt/_m P (o) Pe (1)
to —AH],|? d [sin](op — o —0)/2]]°
= doy p (0 k'k
. kp( k) hQ dl|: (0)k%—0)>

4\H, P——— = d [sin][(op — o —o)t/2]]*
h? oo dt

= / d ) —
p(ox) 08 (O —0)
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_ 4\I;é/k‘zw _J:odmk/ ZSi”[(?clgk; ?kw_)zm)t/Z]

X cos|[(oy — o — )t /2](op — o — ) /2)

_ 4|Zék|zm _:wdmk/sm[(((’)o’jk;(_oz)_) )t]

_ 2|Zék|2m _:wdmk/sm[(((’)o’jk;(_oz)_) )1]

- %p(mk’):wm. (10.3.1.6)

For D-C and C-C transitions, the p(k’) should be p(k’). In the fourth equality in Egs.
(10.3.1.6) and (10.3.1.6)’, we make an approximation, i. e., p(k’)|H;,, |2 does not depend of
K.

That the w4 in the last equality of Egs. (10.3.1.6) and (10.3.1.6)' is time independent
is called Fermi golden rule.

We would like to tell the readers an interesting story on the Fermi golden rule. The
formula similar to Eq. (10.3.1.6) was found to have such widespread application that Fermi
dubbed it “Golden Rule No. 2” (E. Fermi, Nuclear Physics, University of Chicago, 1950).
However, we should point out that the physics and method to derive Eq. (10.3.1.6) in this
textbook are much different from some references. To derive the formula similar to Eq.
(10.3.1.6), some references take the limit ¢t — oo. In this limit some references obtain that
the energy in the transition process from |k > to |k’ > is conservative, Py (f — o) o< ¢, and
wyk(t — o) is time independent. Based two conditions,  — oo and the k’-independence
of |H},|*p(k’), some references obtain time-independence of wy;x(t — o), and call the
time-independence of wy. (t — o) Fermi golden rule. However, in our derivation, the
time-independence of w,;;.  does not need the limit # — oo, but needs the k’-independence
of |H], |*p(K'), and the calculations for w; consider essentially the contributions from
all energy states. In the next we will mention Fermi golden rule once again.

Similarly to the derivation of Eq. (10.3.1.6), we can also obtain the transition probability
from initial state |k > to all possible final states, Py (7).

Pall<—k(t) = ZPk’k(t) = Z Dk
K’ K
o0 —4|H], |* [sin](op — o)1/2]]?
= | _dowp(ov) hkzk [ (o — )
= d(ok/Pk/k

—LHIQ%‘Z /Do doy [Sin[(wk,k — 0))1/2] :| 2

(o — )
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2|H], |>*— [ sin’x
= e | T
2m|Hy,|?

hz

(Dk/)l‘. (10313)I

In the fourth equality of Eq. (10.3.1.3)" we neglect the k'-dependence of |H,,, |*> and p(K').
In this condition, the oscillation function, sin’[(@px — ®)t /2] /(@ — ®)?, determines the
magnitude of P, . Due to that the oscillation function has very large value at @y —
® = 0 (energy conservation), we can say that, under the condition of k’-independence of
|H},.|*p(K'), the important transition process is energy conservative, i. e., the energy is
approximately conservative.

(5) In Eq. (10.3.1.3), if @ = || = ||, then we call it boundary transition.

Theorem XXXVIII: Boundary transition. For the boundary absorption, if

\H,, |*p(K) = Acok, (B = 0) in Eq. (10.3.1.3), then

(i) The transition probability (density) Py (7) in Eq. (10.3.1.3)" has maximum value at
O — ® = @y = 0, which means that quantum transition of boundary absorption mainly
occurs in the process being of energy nonconservation.

(ii) The time-dependence of transition probability P, (t) is 1B,

Proof. (i) In physics, this theorem means that, for example, if an electron of atom absorbs
a photon with energy just equal to the binding energy of the electron in atom ® = ®, and
|H}, |*p(K') o coE, (B = 0), then the transition is definitely energy non conservative.

Assume that ey, = —hay, and |H}, |?p(K) :AO)E,. Eq. (10.3.1.3) becomes

B sin [((ok/)t/Z]

1 1
= Ax o x IT = AT 1. (10.3.1.3)"

The factor /1 is called oscillation factor. If (e )/2 = 0, then Py (t) = 0. The largest value
of I is called first peak of /. This first peak is at (@y)t/2 > 0 if § > 0. Let us seek the value
of (wy)7/2, at which is the first peak of I. Set (wy)7/2 = x. Thus I = (¢/2)?> Px¥2sin?x.
The maximum condition of / is

tanx = 2313)6’ x= w;'t. (10.3.1.7)
(ii) From Eq. (10.3.1.3)" we have
in? 1 —Ey —E)t,
Pacs) = gz [ fo(Bi)” [(I[E(Ek—Elfk /G
_ sin’[(e — 0 —@)1]/(2)
= hz/ ’Hk/k’2 (o) (ow — (Ok— o)/ )1 doy
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d ()%

72 ] (o — o — )/ (2)]2

A /°° g sin®[(p — 0 —@)t.]/(2)

A [ B sin2 [OJk/tO/Z]
e —_ ,7d ’
hZ /—oo k [0)y/2]2 O
A21HB e gsiniy
= S [ AT
A2 By
= 0 1-B (10.3.1.7)’

Here we finish the proof for the theorem. QED.

Let us make many discussions for Egs. (10.3.1.7) and (10.3.1.3)".

To show the variation of Py(t) with @y /(2n) = f clearly, we draw Figs. 10.1 and
10.2, which show the variations of Py (f) with @y /(2n) = f when =0 and B = 1.5,
respectively. We use Py, to express the n-th maximum value of Py .

If B =0, then

Py 1(1‘ ) 1
: = >> 1. 10.3.1.8
Pk’k,Z(t) 1/(157t)2 ( )
The first peak is at @y = 0. (10.3.1.8) means that the main transition process is energy
conservative (in case of boundary absorption, @y = 0 means energy conservation).
If B = 2, then

P (t) _ Pura (1) _
Pk’k,2(t) Pk’k,}(t)
Eq. (10.3.1.9) means that the transition probabilities of both energy conservation and energy

nonconservation are exactly same.
If B > 2, then

=1. (10.3.1.9)

P i(t)  Puka(2)
Puoka(t) ~ Purs(t)
Eq. (10.3.1.10) means that the more serious the energy nonconservation is, the more large
the transition probability is. Considering the importance of |Hy|?p(k’), we name it vacuum
energy support ability.
The solution of Eq. (10.3.1.7) can be found out approximately. For example if f = 1.5,
the solution of Eq. (10.3.1.7) is

(10.3.1.10)

opt  3.113484
x= =—.
2 2

(10.3.1.11)

Eq. (10.3.1.11) indicates that the more shorter the duration time ¢ is, the more larger, for
example, the kinetic energy of the emitted electron in photoeffect is.

To show the variation of Py (r) with 2nwp = f clearly, we draw Figs. 10.1 and
10.2, which show the variation of Pyy(z) with 2ney = f when =0 and B = 1.5,
respectively. Note that if the transition process is not boundary, then from Eq. (10.3.1.3)
2n(p o — o) = f.
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Figure 10.1. Theoretical curve of II versus f. If there is no energy variation of /11, i. e.,
B =0, then I is proportional to the transition probability P ().

10.3.2. General Case

In the following we do two things: (i). Consider a more general harmonic (or, periodic
perturbation), which can be used to both absorption and emission. (ii). We express the
duration time as ¢, other than . When ¢ > ¢,, the perturbation is zero, and the perturbed
system will keep the state at z, at any ¢ > t,. The perturbation is

H/
H//(t) —

: (6 +e7 ), (H'=0if t>1, or 1 <0), (10.3.2.1)

where the second and the first term correspond to processes of absorption and emission of
photon, respectively. If ® =0 in Eq. (10.3.2.1), then H” represents a time-independent
perturbation. From Eqgs. (10.2.1.4), the transition probability from state ®y to interval
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f(10"5Hz)

Figure 10.2. Theoretical curve of I versus f in case of f = 1.5. I is exactly proportional to
the transition probability Py (7).

between 0y and ©y + d Wy 1s

1 to . ) 2
Pk'k(t 2 to)d(l)kl = ’al(;k) ([)lzd(,()k/ = ﬁ /0 dtHk,k(t)el(Ok/kp(k/)dEk,
1 2 ! 1o (0 —©) () 2
- E‘Hk/k\ p(k')doy /0 dt[e"\ =) 4 Ot O)]
1 o0 —0)e _ |
= —|Hy 2 k) doy
h2| | P (K)d ooy (00— @)
el'(ﬁ)k/k-i'ﬁ))to 1 2
4‘H]/c/k‘2 , Sin[(mk/k—m)to]/z 2
~ ——p(k)doy
B2 p(k')do (O —0)
sin[( g + 0)t.] /2 2
[ [((mkwm)) s } } (10.3.2.2)

If ® =0, then Eq. (10.3.2.2) becomes a formula of constant perturbation in finite time
interval. The two terms in Eq. (10.3.2.2) have maximum values at @y —® = @y — QO — O =
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0 or @y + ® = @ — 0 + ® = 0. The former and the latter correspond to absorb and emit
one photon, respectively. The sizes of the two terms are equal each other. For brevity, we
just consider the the term of absorbing a photon. Transform ® to E/A. In Eq. (10.3.2.2)
Pui(t > t,) represents the transition probability from state |k > to state [k’ >. The total
transition probability from initial state |k > with energy Ej to all possible final states [k’ >
with energies Ej is thus

sinz[(Ek/k — E)ZO]/(ZH)
[(Ewx—E)/(2h)]?

where E = h@ is the an energy of one photon. For the time-dependent transition (® # 0),
such as photoeffect (i. e., an atom absorbs a photon and emits an electron. See subsection
104.5, Ex = E(initial—electron) - E(electron—binding—energy) = E(initial—electron) — Ep, and Ey is the
kinetic energy of the ejected electron.

1
P(t>1.)= / Por(t = 1)y = -5 / HL, oK) dEy, (10.3.2.3)

Theorem XXXIX: Energy in transition processes. If the energy-dependence of the inte-
grand in the formula of Py (t > 1,) is

. 2 (Ey—E)ts
S 57

EP_2h
K (Exx —E)?
= ElI (10.3.2.4)

Pk/k(l > lo) o<

then the maximum values of Py (t > 1), which correspond to the probable transitions,
satisfy the following relations

Ey > E +E if B>0,
Ey=E,+E if BZO,
Ey <E.+E if —1<p<0,

which means that the system energy in the most probable transition increases (i. e.,
nonconservation), maintains (i. e., conservation), and reduces (i. e., nonconservation) if
B>0,B=0,and —1 < B < 0, respectively.

Proof. This proof is easy. Note that Ey = E; + E at B = 0 does not mean that all
possible transitions are energy conservation because the transition processes of energy
nonconservation still can occur with very small probability. The existence of transition
process with energy nonconservation can see from the curve of Pyy(t > 1,) versus Ep
under the condition of B = 0, i. e., |H},|*p(K) is an energy constant. This curve has been
shown in Fig. 10.1. In Fig. 10.1 II = sin®[(Exx — E)to/(2h)]/ (Exx — E)? o< Pur(t > t.),
and f denotes frequency and f o (Ep — Ex — E). Note that in this case, the energy is still,
generally speaking, not conservative. QED.

Next, let us consider the approximately conservative conditions of energy in, for
example, the photoeffect. In photoeffect, an electron in atom or metal needs to overcome
a barrier 0 < Ej, = ho,. Eq. (10.3.1.3) is a transition formula of absorption of photon.
We take the energy zero point is at the boundary of metal. Thus the initial energy of the
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electron is Ey = —Ej, = —hwy, < 0. The following corollary XVII gives the condition of
approximate energy conservation.

Corollary XVII: Condition of approximate energy conservation in transition pro-
cesses. If the perturbation energy is vary large, and the k’-dependence of the vacuum
support ability is weak enough.

Proof. The proof is easy. For example, we consider absorption process. If the incident
photon (or phonon) frequency ® >> |Ex|/h= ®, and |B| is not too large, then the transition
probability Pk/k(t) has maximum value at h(wk/k — (D) = Euy — how = Ey — E;, — ho =
Ep +Ep — ho = (0 + @p — ®)h =~ 0, which means approximate energy conservation of
the transition process.

In physics, this corollary means that, for example, if an electron of atom or metal
absorbs a photon with very high energy much higher than the binding energy of the
electron in the atom or metal, then the transition is energy conservation approximately even
|H},,|*p(K) is (K')-dependent but weakly.

Theorem XXXX: Time-dependence of transition rate. If |H,, |>p (k) o (DE, (B#0) in
Eq. (10.3.2.2), then the transition rates, wg;—x = Zk/?ékkak /t is time-dependent, i. e., the
Fermi golden rule does not hold water. Fermi golden rule holds just in the case of B = 0.

Proof. Suppose |H, |*p(k') :AO),E,.
_ Lz Per(t)
Wall—k =~
J22 dop (o) P (1)

t

1 +oo 4‘H,/ ‘2 Sin[((l)k/ — @ — (O)I/Z} ?
e — d 4 ! A%
o p (@) B2 [ (O — @ — )
— oy [ dua [ on 2
- (O — o)

Rt )

g 4A tee (0 — o)t P sin?x
— Bi
t 3515 | L dx (x—l— > 2 (10.3.2.5)

Eq. (10.3.2.5) clearly shows theorem XXXX. QED.
Comments for theorem XXXX:

(1) If we define wayx = d Yoy Prrr/dt, then wyy i is time-dependent for [3 % 0, and
Fermi golden rule does not hold always.
(2) In some cases the time dependences of |H,|*p(k’) are much more complex than

\H], [*p(K') o (DE/. Let us illustrate with an example. The photoeffect in subsection 10.4.5
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demonstrates that

s Uy _
|H |*p (k') o< (lTk’zaz)(” K = o 4= 0.53 x 10 8¢m, u= electron mass.

(10.3.2.6)
Substituting Eq. (10.3.2.6) into third equality of Eq. (10.3.2.5) and making numerical
integration, we obtain a curve of w,y; versus ¢, which is shown in Fig. 10.3.

20 -
15 -

10 -

log,,w

-10 1

-5 -10 -5 0 5 10 15
log, .t

Figure 10.3. Theoretical curve of log;o W = logqwai—k versus log;q¢ (t/second).

If Fermi golden rule holds water, then the curve in Fig. 10.3 should be a horizontal line.

(3) This textbook prove Fermi golden rule just under one condition, i. e., |Hy|*p (k')

is independent of &/, and all other steps in our derivations are exact. However, all un-

til now references and textbooks prove Fermi golden rule under two conditions: both the

|Hp|>p(K') is independent of &’ and the time limit condition ¢, — co. They use the following
mathematical formula

sin®o,

lim 5

to—teo TU QL
Substituting Eq. (10.3.2.7) into Eq. (10.3.2.5), the integrand has a delta function 8(Ey —
Ey — E), which is an energy conservation factor, and after integration the expression is

= §(av). (10.3.2.7)
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proportional to a factor .. From these, they think that both energy conservation and Fermi
golden rule in transition processes are proved.

As is well known, the less the conditions in a theory are, the better the theory is. There-
fore, the derivations for the Fermi golden rule in this textbook are certainly better than
the method of until now all references and textbooks. Next we will point out the purely
mathematical mistakes in all until now references and textbooks.

(4) The physical meaning of ¢, is duration time of a time-dependent perturbation, the
magnitude order of which should be the observed relaxation time. The magnitude orders of
relaxation time are generally from 10~° t0 10~!3 second. Therefore, the condition 7, — oo is
not reasonable in physics, and is dangerous in mathematics (Every body knows the famous
words on arbitrarily coming from taking infinite limit.).

(5) Based on the two conditions, all until now references and textbooks conclude that
in the integrand of the total transition probability formula there is a delta function which
can ensure energy conservation of transition processes. Some references think that energy
conservation of transition processes is a matter of course, and in the past 80 years some ref-
erences do not have a wee bit of doubts for this energy conservation in quantum transition
processes. Even some authors found the possible energy nonconservation in transition pro-
cesses, but still looked for some “reasons” to argue the energy conservation. For example,
Schiff in Ref. [120] thought that the energy nonconservation comes from Heisenberg un-
certainty relation and/or the Fourier expansion of a time-dependent perturbation function.
However, in our above derivations the integrand in formula of total transition probability the
energy conservation’s delta function never appears. On the contrary, our proof for Fermi
golden rule needs, exactly the inverse, the contributions of processes coming from even
very strong energy nonconservation.

(6) We estimate that in the past 80 years (from 1930 to now) some references made
probably 103 conclusions by using Fermi golden rule and the mathematical mistake taking
infinite time limit, but 500 in the 1 000 are of clear mistakes. If readers check many cal-
culations drawn from transition processes, including scattering processes, once again, then
readers might modify the conclusions, and thus might have important new discoveries.

10.4. Applications of Transition Theory

Many contents in this section come from Refs. [121]-[127].

10.4.1. Absorption and Stimulating Emission of Light

If an atom is in the energy level and absorbs the incident light wave or a photon (energy
hv), then the atom can be excited to higher energy level Ey = E,. If the frequency, v,
of the incident light v = vy = (Ex — Ei)/h, then the transition process will have larger
probability. This process is called absorption of light or stimulated absorption.

If an atom is initially in the higher energy level E, and absorbs the incident light wave
(a photon) with frequency v = vy = (Ep — Ey) / h, then this excited atom can also be stim-
ulated, and transits to lower energy level Ey/, and emits a stimulated photon. This process
is called stimulated or induced emission. If there are many electrons at higher energy level,
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which is called population inversion, then one incident photon can cause many high energy
electrons to be stimulated emission, which’s processes are the principle of laser.

In 1917, in an article titled “On the Quantum Theory of Radiation”, Einstein laid out the
basic principles of absorption and of spontaneous and stimulated emission of electromag-
netic radiation in its interaction with atoms. Einstein’s work established the basic principles
responsible for laser action, although the first operational laser was not invented until 1960.
Since then the laser has become such an invaluable and commonplace tool in science and
technology that may be tempted to take its unusual quantum properties for granted.

We will use the periodic perturbation theory to the absorption of light in this subsec-
tion. Because in our calculations the electromagnetic field is classical, i. e., continuously
variational field (not the photons), and the atom is a quantum system, the method in this
subsection is semiclassical. In this method the electromagnetic field is treated as a time
dependent periodic perturbation. This method cannot treat the spontaneous emission. The
spontaneous emission will be treated in subsection 10.4.2.

For brevity, we assume that the incident light is monochromatic. The intensity of elec-
tromagnetic field is

E =E,cos(ot—k-r) and B=kxE/|k|, (10.4.1.1)

where K is a wave vector. The direction of k is the direction of light propagation. ® is the
angle frequency of light. For an atom, the electron speed v << c¢. Therefore, the action of
magnetic field on electron is much less than that of electric field:

vaBWkEMvK<<1. (10.4.1.2)
C C

Therefore, we can only consider the action of electric field in our physical problem. For the
light wavelength A is between (4000 ~ 7000) x 1019 m >> a (Bohr radius). In the atomic
scale, k- r ~ a/A << 1, the variation of electric field is very small. Taking k- r =~ a/A =1
is called dipole approximation. In this approximation the field is uniform, and the field
potential depends on r. We make dipole approximation, and the electric field becomes

E = E cos(mt). (10.4.1.3)
The potential of the electric field is
O=—E-r. (10.4.1.4)

Substituting Eq. (10.4.1.3) into Eq. (10.4.1.4), one obtains the action of incident light on
the atom is

H = —eh = (E,) - (—er)cosot = E, - dcosot = Ucost, (10.4.1.5)

where the vector d = —er is called electric dipole moment. Substituting H' in Eq. (10.4.1.5)
into the Eq. (10.2.1.3), one obtains the first order transition amplitude

1 (A ’ U L ’ ) )
a](;k)(t) _ E/0 el Hl, (1) dt = 2%6 A oIt (ezoot —i—e_w)[)dt/
Uk ei(cok/k+m)t -1 ei(cok/k—m)t -1 (10 i1 6)
2h Ok + O O — W o
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The second term of Eq. (10.4.1.6) will be much large, if @y = @ + ®. Therefore, the
second term corresponds to transition of absorption of light. For the transition of absorption
of light,

i(op—w)t _ |
(1) Ui e
()= — _ 10.4.1.7
akk( ) 2h O — O ( )
Therefore, the transition probability from state |k > to state |k’ > is
Upk|? sin®[(owx — 0)1) /2
Per(t) = |l (o) = [l sinml(@wn — ©)1) /2] (10.4.1.8)

4n?  [(opr — ) /2]

To continue our derivations, we have to consider the physics of stimulated emission.

First. The photon energy of stimulated emission is 20 = 0.

Second. The incident photon in the stimulated emission process cannot be precisely
monochromatic, i. e., there is a natural dispersion, around @/, coming from uncertainty
relation.

Basing on the above physical considerations and supposing that the density of states of
photon in free space is p(®), Eq. (10.4.1.8) can be written as

Upre|? sin®[( o — 2
Pult) = [ dop(o) G- L0002
Ui > =, sin®[(ogg — o)) /2]
412 /mdm [(opx — ) /2]

®)

%

p (k)

]
|Upie|* /°° sin?[(ey — 0)1) /2]
= (V)% d(l)
p( kk) 4h2 700 [((Dk’k_ )/2]2
o A2
Wk 42 x2
Uy |?
= n’hikzk’p((ok/k)t. (10.4.1.9)
The transition rate is
1 7| Upi |
v = =" p(ou

T T
= 2—752 ‘dk/k -Eo\zp(mk/k) = 2—152 ]dk/kIZEgcoszﬂp(wk/k), (10.4.1.10)

where 6 is the angle between dy and E,. E is the intensity of electric field. If the light is
not polarized, then we should seek the average value of cos?8 on all directions, i. e.,

cos20 = E/dﬂcos 0= H/o dq)/o dBsinBcos 0 = 3

Therefore,

Wik = = |due|* E2p(@pr). (10.4.1.11)

6h

Eq. (10.4.1.11) is correct for monochromatic light with natural dispersion, such as laser
light with angular frequency .
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From Eq. (10.4.1.11) we see that the transition rate is proportional to the light intensity,
which is the feature of stimulated emission. Besides this, the transition rate is proportional
to the matrix element rpy. rpy # O concerns the property of initial and final states. Let us
make discussions for this.

First, let us consider the parity of the initial and final states. Note that operator r is an
odd parity operator.

lk>= |nlm > parityll = (=1)!, |k >=|n'l'm' > parityIl' = (—1)"". (10.4.1.12)
Because that r is an odd parity operator, only when IT' = —I1, the matrix element ry # 0.
Therefore, for the electric dipole radiation there is a parity selection rule: initial state and
final state have to have different parity.
Second, let us study the angular momentum selection rule. Utilizing the following
mathematical relations:

x=rsinfcos = %sine(eiq’ +e )

r . .
y =rsinfsing = ?sine(elq’ —e ), z=rcos®
i

(I4+1)2—m? 1> —m3
cos oY, \/(2l+1)(2l+3) N\ @@

: I+m+1)(l+m+2) ({Fm)(IFm+1)
0 gingym — & | ¢ yml Y™l (10.4.1.13
e sy \/ Qi n@+3) T aey@en )

and considering the orthogonality of spherical harmonic function:
2n i ,
/ dq)/ dosin0Y"Y;" = &, 8mm’, (10.4.1.14)
0 0

one can see that the non zero conditions of dyy = —ery #0are ' =1+1and m' =m, m=*1.
Electromagnetic radiation caused by non-vanishing matrix element ryy is called electric
dipole (quadrupole) radiation and is denoted simply by E1. Thus we obtain the angular
momentum section rule of electric dipole radiation is:

Al=1'-1=%+1, and Am=m'—m =0, +1. (10.4.1.15)

Generally, electric 2/ —pole transitions are denoted by E[—transition.

Correspondingly, magnetic 2/ —pole transitions are denoted by MI—transition.

In the above discussions we have not yet considered the electron spin-spin and spin-
orbital coupling. If we consider them, then the selection rules of transition processes have
a bit of changes.

For the future reference, we give a formula of energy density of electromagnetic field
for one photon with angular frequency ® [3]. We consider the atom in interaction with a
plane electromagnetic wave whose vector is of the form

A(r,t) = aAscos(k-r—wt), (10.4.1.16)
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where a is a unit polarization vector (|a|? = 1) which is normal to the propagation vector k.
We wish to construct the amplitude A, so that the corresponding wave carries one photon
per unit volume. One time period-averaged energy density carried in a plane wave is

_ 1 — J —
U=-—E?= B2, 10.4.1.1
4T 41 ( 7)
As we know
B=VxA. (10.4.1.18)
_ 1 — 1
U=—B>=—kA>% 10.4.1.19
4 &m ° ( )
For one photon per unit volume we set
kA2 ho
° = — 10.4.1.20
ar =V ( )
which, with ® = ck, gives
8hc?
A2 = . 10.4.1.21
o= ~ov ( )

10.4.2. Spontaneous Emission

The first term in Eq. (10.4.1.6) shows that if an external light applies on an atom, then
the atom can transit from high energy level to low energy, and at the same time emits an
photon, which is called stimulated emission. Besides stimulated emission, experimentalists
also observed spontaneous emission or spontaneous decay, i. e., the excited atom can transit
from high energy level to low energy level, and at the same time emits an photon. However,
in our earlier description of hydrogen we found atomic states to be stationary if there is no
external perturbation. So, in reality, spontaneous decay must have a triggering mechanism.
What is this mechanism?

The answer to this question stems from the observation that an electromagnetic field
may be represented as a collection of harmonic oscillators. We have found in chapter 4 that
a harmonic oscillator always has a residual energy which is called its zero point energy.
In like manner, no region of space is ever free of electromagnetic energy perturbation. It
is such a perturbation is responsible for the spontaneous emission. Besides the zero point
energy, there is also a term which is proportional to the number of quantum of harmonic
oscillator. This later term corresponds to the stimulating emission [87]. In this subsection
we just discuss the spontaneous emission.

Using the notations in Eq. (10.4.1.8), Eq. (10.3.2.2) gives the total transition probability
of emission of photon is

P(t>t,) = /Pk/k(tZto)p(h(o)dh(o
Uy 2 in /, ° 2
- Jomm s
0*[(Egy +E)ts]/ (2h)
[(Exx +E)/(2h)]?
0’ [(Exx + E)t] /(2h)
(B +E)/(2R)]* 7

1 si
= rfiz/p(hm)dhm\Uk/k\z

e’ nE? si
= 155 [ PEME

(10.4.2.1)
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where the p(hm) (p(E)) represents the the density of states per unit frequency (per unit

energy) in volume V and in solid angle of dQ2 of the light wave or the photon (The energy

spectrum of photon in free space constructs a continuum). The number of states in volume

V for light wave or photon with momentum between p and p +dp and within a solid angle

dQ is determined by

p*sinbdpd6d¢  Vp>dpdQ
(2rh/L)}  (2mh)?

As for photon E = pc, dp/dE = 1/c, the corresponding density of states is equal to

dN, =

(10.4.2.2)

dN, VEXQ Vo’dQ
 dE  (2cmh)d  (2cm)3h

(10.4.2.3)

Eq. (10.4.1.12) tells us that VE?/(81) = E if only one photon with energy E is in vacuum
space.
The transition rate from |k > to |k’ > (Ey > Ej) with emitting a photon is thus

_Pu(t>1) € mESm sin®[(Eyx + E)t,) / (2h)
wek(t > 1) = o = = p(E)dE|ryy|? [(Ek/:iE)/(Zh)]lz

to 4h?t, 3 'V
4.2.4)
Substituting Eq. (10.4.2.3) into Eq. (10.4.2.4) and noting that the spontaneously emitted
photon’s frequency is exactly equal to the incident photon frequency (in case spontaneous
emission, the incident photon comes from zero point electromagnetic oscillation.), we can
take out the E in p(E) from integral. The interval of integration over energy is the range
of dispersion of incident light. Due the the character of the oscillation integrand we can
take integration range as £oo. Noting that the p(E) in Eq. (10.4.2.3) includes dQ2 and the
emitting direction of the spontaneous emitted photon is same as that of the incident photon,
we do not need to make integration over solid angle. We have

Wk/k(l > lo) = dQ

¢ mWE8m VE? el /w J sinz[(Ek/k—l—E)to/(2h)]
4h2to3 vV (2cmh)3 "k Ew+E)/(2h)]2
2

]rk/k]m> 2hto/ i sin dQ

H

)

N

a

(3]

St

0o

q“‘s
7N TN —~

[

2 2
_ %ﬂ(@) 1 (10.4.2.5)

To estimate the order of magnitude of wy( > 1,), we put |ryx| = a, where a is a quantity
of the order of the linear dimensions of the quantum system (atom); we get

Wikt > 1) ~ e;—zo (?)2 ~ % <7>2 41ndQ (10.4.2.6)

For a system with Coulomb interaction a ~ ¢?/(h), and thus

o 1

S — 10.4.2.
1373 47 (10 7)

Wk/k(l‘ > to) ~
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It follows from Eq. (10.4.2.7) that for optical radiation (» ~ 10'°) second(— 1), the order of
magnitude of transition rate is ~ 10° second(~!). For Y—radiation (@ ~ 10?!) second(~1),
the order of magnitude of transition rate is ~ 10> second (.

In this simple case, where the wy (¢t > 1,) is independent of time, the relaxation time or,
say, lifetime T~ 1 /wy(t > 15).

It is interesting to note that the calculation methods in subsections 10.4.1 and 10.4.2
are nearly the same. If the transition probability is proportional to and independent of the
number of incident light photons, then we call it stimulating and spontaneous, respectively
[87].

10.4.3. Perturbation in Finite Time

We discuss two cases: constant and variation perturbations in finite time. At first we give
correct method, then we introduce the wrong method, existing in some references, and
explain where are the mistakes.

(1). Constant perturbations in finite time interval.

Generally speaking, the external perturbation acts only in a finite time interval. Let
us discuss a very simple case, i. e., a constant perturbation in finite time 0 <t < 7T. In
mathematics,

H'(t)=H'[6(t)—08(t—T)], (10.4.3.1)
where 0(7) is called step function, which’s definition is
0, r<0

0(1) _{ D iso (10.4.3.2)

According to Eq. (10.2.3), the probability amplitude of transition from state |k > to |k’ >
caused by H'(r) at ¢, is

ap) (1 h/ e Hy, (1)t (10.4.3.3)
After integration by parts, one obtains

(1)<l‘) _ H,i/k<l‘)€xp<i0)k/kl‘) +/’ exp(i(ok/kt’) BH,Q/k(t’)
Wk Aok —oo Rk ot’

dr. (10.4.3.4)

When ¢t > T the first term in Eq. (10.4.3.4) is zero. a,((}k)(t) is determined by the second
term. Substituting the expression of a,((,l,z(t) into Eq. (10.1.12), one obtains the transition

probability from state |k > to state |k’ >

2
exp l(!)k/kt

/ / /
et H{y[6(1) — 0( ~T)ds

Pt >T) = |al)@>T1)P ’/
| He
| ho

|H}, | sin*(eyx T /2

hr o (owk/2)?

|l

2

(1 _ elmk’kT)

x 1. (10.4.3.5)
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Figure 10.4. The functions sin(x)/x (dashed curves) and [sin(x)/x]?> (solid curve). The
vertical dotted lines denote the region |x| < 7.

If we neglect the (k')-dependence of |Hj, |, then the variation of I o< Py (t > T') with ook
is shown in Fig. 10.4. It is interesting to note that we have met the similar diagram in Fig.
10.1.

Fig. 10.4 indicates that although under the condition of (k’)-independence of |H;,, | the
main transition process keeps energy conservation, but the transition processes of energy
nonconservation has also a non zero transition probability. If we only consider the transition
process of energy conservation A®y = hwy, then

Pk’k(t > T) = 2 T (Q)k/kT/Z)z ((l)k/ = (l)k)
|H// |2
7’; T? o< T2, (10.4.3.6)

Eq. (10.4.3.6) indicates that if we do not take the limit  — oo, then the energy conservation
process in Eq. (10.4.3.5) gives Pui(t > T) o T? other than Pyy(t > T) o< T, and thus,
actually, cannot obtain the Fermi golden rule.

We prefer to make legal in mathematics but approximate derivation from Eq. (10.4.3.5)
for the transition probability, P, (¢t > T), from initial state |k > to all possible final states.
Similarly to Eq. (10.4.1.6), we introduce an approximate constant average density of states
[i. e., the average number of states in a unit energy interval p(E) = constant or the average
number of states in a unit angle frequency interval p(®) = constant], and use energy or
angle frequency integrations instead of the summation over discrete states. At the last step,
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we take p = 1. Assuming that |H}, |> and p(®) are independent of (', k), one obtains

Pu(t=T) = Yl|al)(t>1)]
k/
e (1) )
= dmk/p(mk/)\ak,k (t>T)]|

_ / L/ p(ow) sin?(@ T /2
2 (0c/2)?

|H/£’k| P((Dk’) /+°° m/Sinz((ok/kT/z
2 w O (or/2)2

2|H1£/k|2 (oo T/+°° sinx

— TT
72
H,,|*p(Ex
_ 2o (Er) kk}Lp( . (10.4.3.7)

where p(wy) and p(Ey) represent the number of states per unit interval of angular fre-
quency and energy, respectively.
The transition rate from state |k > to all possible final states is

Puyx(t>T)  2m|Hy,|*p(Ev)

(t>T)= =

(10.4.3.8)

All textbooks, including this textbook, call the time independence of wyy.(t > T) the
Fermi golden rule. Note that in our derivations of Fermi golden rule we do not need
T — o, which leads to energy conservation of transition processes, but we need the (k')-
independence of both |Hj, | 2p(m) and the contributions coming from all transition processes
including strong energy nonconservation processes.

Now we introduce the common but wrong method existing in all until now references
and textbooks.

The mistake in some references occurs after Eq. (10.4.3.5). The Eq. (10.4.3.5) is

\H,|? sin®(opiT /2

P (t>T 10.4.3.5)'
[4 k( ) B2 (mk’k/z) ( )
Some references use the correct mathematical formula
.2
. sin” o
0161_1};— 2 = mod(x), (10.4.3.9)
and think that 5
] nT /2
fim SPOT/2) s o), (10.4.3.10)

T —oo ((Dk/k/2)2
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set T — o in Eq. (10.4.3.5)" and obtain
2n ., s
Pui(t) = =) ’Hk/k’ S(pi)T. (10.4.3.11)

To avoid the difficulty of appearance of the delta function in Eq. (10.4.3.11), some refer-
ences, such as Ref. [1], say that although the oo of the delta function in Eq. (10.4.3.11)
carries difficulty for a perturbation theory, but this difficulty do not have practical trouble
by taking the following procedures: in practical problems we often meet integration for
the delta function, and thus the delta function does not carry difficulty, and due to that the
delta function ensure the energy conservation, in physics, of course, energy in the transition
process has to be conservative.

To avoid the difficulty of appearance of the T — oo, and thus Py (t) — oo, in Eq.
(10.4.3.11), all until now references and textbooks, such as Ref. [1], say that the transi-
tion rate
Pe(t)

T

wi(t) =

is time independent, i. e., Fermi golden rule.

This textbook thinks that one cannot a priory conclude that the energy has to be con-
servative for an nonisolated system. (In the quantum transition the system is not an isolated
system.) (Remember that the principle of conservation of energy in classical physics states
that the energy of an isolated or a conservative system is constant in time, i. e., is con-
servative [3]. One has to prefer to believe a conclusion, which is legal in mathematics and
corresponds to actual case (i. e., all the transition processes are completed in an finite time.),
although this conclusion is not to be understood temporarily. One should be not to prefer to
believe a conclusion, which is obviously wrong in mathematics, and does not corresponds
to actual case, although this conclusion is easy to be understood by the known physical laws
or rules.

(B). Perturbation of variation with time in finite time interval.

Assume the external perturbation H'(¢) is dependent on time at 0 < ¢t < 7', and is zero
at other times. The H'(¢) can be expressed by Fourier integral:

1 ,
H'(t :—/ doH' (®)e™ "™, 10.4.3.12
(=75 doH'(®) ( )
where
H' (o) = —— / T H (e = / " (e (10.4.3.13)
V2T S~ V21w Jo

According to the definition of the H' (wy ) in Eq. (10.4.3.12), its dimension is enery X time.
Similarly to Eq. (10.4.3.5), at r > T the transition probability from state |k > to state
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|k > is

1 2

T . /
_h/ elmk,kt H]i/k(t/)dt/
l 0

1 1 T A .
= T /o dt’ e'¢! /7 dwH], (w)e "™

_ 11 °° / T o (@ — @)t
= lh\/ﬂ/mdek%(a))/o' dte

1 1 e exp[i((nk/k — Cl)) T} —1
= |=—— H,,

iﬁ\/ﬂ/mdm kk(m) i(O)k/k—O))

L= expli(op; — ®)T /2]
= |= H,,

ih /_mdm (@) (g — @)°
{expli(wwx — ©)T /2] — exp[—i(opx — ©)T /2] }

i@y — )

B 4 1 e ; Sin[(O)k/k—O))T/Z]
= "o ‘/_ood(DHk/k(O)) Opp —

Pu(t>T) = la)t>T)P=

2

2

2

2

2
, (10.4.3.14)

where
H;, (®) =< K'|H'(0)|k >, (10.4.3.15)

is a matrix element of operator H'(w). A mathematically correct method has to stop
here because we do not know the explicit dependence of H;,, (®) on w. However, from Eq.
(10.4.3.14) we know that the transition process can occur at ® # M.

Next, let us introduce the wrong method in some references. Some references thinks
that one can continue the derivations as follows. Seek Py (r > T') under the condition of
T — oo. In this case some references use a correct mathematical formula (See Ref. [1]):

tim S0 8. (10.4.3.16)

T —o0 X

Substituting Eq. (10.4.3.16) into Eq. (10.4.3.14), some references obtain

2n
Jim Poy(t > T) = 5 [Hi (o) ? . (10.4.3.17)

Oy =0

Eq. (10.4.3.17) clearly indicates that if T — oo, then the transition from state |k > to state
|k’ > can occur only under the condition of the existence of the Fourier component @y =
(Ex — Ex)/h in Fourier expansion of Eq. (10.4.3.12).

The above conclusions are obviously wrong because:

(i) limy_Py(t > T) is independent of ¢ and 7. Therefore, the transition rate
dlimy_,. Py (t > T)/dt = 0, which is wrong in physics obviously.

(i) T — oo is not reasonable in physics, because the duration time 7 causing the tran-
sition processes cannot be completed in infinitely long time. The duration time should be
equal to the relaxation time approximately.
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10.4.4. Semiconductor Optical Absorption

Some references’s theories of optical absorption in semiconductors are not an exact theory.
To clearly make comparisons of theory in this textbook with some references’s theories of
optical absorption, this subsection introduces briefly the some references’s theories.

Some references’s D-C transition theories make the 7 — oo. When the readers study this
subsection, it is not necessary to derive every formula. We just hope readers to know how
to correctly calculate the transition probability in D-C transition, to have a bit of impression
on the applications of the time dependent perturbation theory, and to know that the energy
nonconservation occurs actually in the semiconductor optical absorption.

If light, or, say, photon enters into the semiconductor, the the electron (which’s energy
is Ey = —Eg, E, > 0 is the energy gap between valence top and conduction bottom) in
valence band can absorbs this photon, transits to the conduction band, and energy becomes
E. We take that the zero point of Ejy is at the bottom of the conduction band. Therefore,
the incident light intensity will be reduced by these absorptions. The absorption coefficient
o can describe this attenuation of the light, and is experimentally observable quantity. The
definition of « is as follows: it indicates the attenuation of the incident light intensity by
1/e~ 1/2.7 2~ 0.37 per unit propagation length. From this definition of o, one can obtain
the following expression: [For detail derivation, refer to Eqs. (4.21), (4.31), (4.39), (4.41),
(4.51), and (4.52) in Ref. [128]]

« = 2 p
 nocA2e,00t Kk
1 1 sin(Epy — E)t/2h

= et [ )

- dEy 10.4.4.1
nocA2e,mt h K ( )

((Ewx —E)/2h)

where E is the energy of absorbed photon, A, is the amplitude of the vector potential of
electromagnetic field, Py represents the transition probability of an electron from valence
band top to conduction band due to optical absorption, Ey is the energy of an electron in the
conduction band, Eyy = Ep — Ex = Ey — (—Eg) = h°k?/(2u*) + Eg, E; > 0 is the energy
gap between valence band and conduction band, n, is the refractive index, and u* is called
the reduced mass of the electron and hole, p(k’) is the (joint) density of states, which is
proportional to \/Ey. Let us make an explanation for this. Similarly to Eq. (10.4.2.2), we
know that the number of states in volume V for free electron with momentum between p
and p +dp and within a solid angle dQ is determined by

_ 2p2 sinOdpdOd¢ Vp*dpdQ

WNo =2 0mhjLy ~  (mh)

(10.4.4.2)

where the factor 2 comes from spin of electron. As for electron Ey = h2k’? /2u* and p = hk/,
the corresponding density of states per solid angle and per unit energy interval is equal to

dN, Vuh [ 2u*Ey

=35~ iV (10.4.4.3)

p(K,Q) = p(Ex,Q)

In physics, Eq. (10.4.4.1) is easy to be understood. The large transition probability means
more absorption of photon. The more absorption of photon means that the attenuation of



390 Fu-sui Liu

the light intensity in semiconductor is more larger, i. e., larger value of a.. Anyway, we
meet with the transition probability in D-C transition. Some references do not make exact
numerical integration for the Py in Eq. (10.4.4.1). On the contrary, some references assume
t — oco. Under this limit, the oscillation factor in Eq. (10.4.4.1) becomes a delta function
O(Ew — (—E,;) —E) = 8(E — E, — Ey). After integration over Ey, Eq. (10.4.4.1) becomes

o< \/E —Eg, (10.4.4.4)

where the factor /E — E, comes from p(k')3(E — Eg — Ey') o< \/EuS(E — Eg — Ey) and the
integration over Ej.

The experimental data in Fig. 10.5 shows a0 = 1995 cm™! at E = E, = 1.42 eV. On
the contrary, the preceding theoretical formula of o, Eq. (10.4.4.2), gives a =0 at E =
E,. To extricate theory from a predicament, some references replace the 8(E — E, — Ex)
function by the Lorentz function for two cases that there is and is no an interaction between
electron and hole. The Lorentz function is characterized by the center located at E = E,
and by its full-width half-maximum I'. It is obvious that this replacement of §(E — E, —
E}) by Lorentz function is very phenomenological, which cannot reveal a bit of origins of
the serious departure of some references theory from experimental data. This text book
thinks that if we make exact numerical calculations directly for Eq. (10.4.4.1), then the
theoretical result should be, at least, better than Eq. (10.4.4.2). For brevity, in the following
calculations we only write the Ey-dependent part in Eq. (10.4.4.1), which is

2Ek/l‘

+oo

/ VE —E, +Ek/ Zh L aEy

E-E, sin Ek/t/2h
+ / VE—-E; —Epy——/—-"—

The solid line in Fig. 10.5 is the theoretical curve given by Eq. (10.4.4.5), which fits the
data at E > E, very well. I in Eq. (10.4.4.3) can be called energy reduction part because
E —E, > E} is necessary. Otherwise, I1 is an imaginary number. / in Eq. (10.4.4.5) can be
called energy increment part because E — E, < Ep is allowed. The ratio of I1/I is given in
Fig. 10.6. I > Il means that the energy increment contribution is always larger than that the
energy reduction contribution in the absorption of semiconductors.

dEy =I1+1I. (10.4.4.5)

10.4.5. Photoeffect

If the energy hw of photon exceeds the ionization energy of the atom, absorption of photons
will be accompanied by the transition of one electron from a bound state to a state of the
continuous spectrum (continuum) in vacuum space or conduction band. This is the photo-
effect or photoelectric effect. The photoeffect plays an important rule in the absorption of
X —rays and y-quanta and in a number of other physical phenomena.

This subsection will consider the elementary theory of the photoeffect by using the D-C
transition theory. Especially, we will remind the readers to note the influences of ultra-
fast technology started from 2001 on photoeffect. In that year, attosecond (10~'® second)
pulses were generated for the first time. The advent of the attosecond light pulse makes it
possible to investigate the much faster electron dynamics, such as real-time observation of
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Figure 10.5. The solid line is our theoretical curve of absorption coefficient o versus photon
energy E at E > E, = 1.42 eV. The data are for GaAs at 300 K [128]. The unit of o is cm .
The dotted line comes from the phenomenological Urbach tail.

valence electron, and radiation-matter interaction. Now the attosecond physics has been es-
tablished. One possible main aspect of the attosecond physics is the attosecond photoeffect.
For example, an attosecond pulse photon with energy E shoots a hydrogen atom in ground
state, the binding energy of the electron in ground state is Ej;, = —E; = 13.6 eV, and the
ejected photoelectron energy is Ey > 0 if E > Ep;, = —E;. However, some references’s
researches on attosecond photoeffect are still confined in the real-time observation of the
motion of ejected photoelectron and the influences of high light intense on the photoeffect.
There is still no any research on the possible maximum kinetic energy of ejected photo-
electrons. Therefore, it is necessary to study attosecond photoeffect theory, and give some
predictions. The aim of this subsection is to study elementary theory for both attosecond
and low frequency photoeffect.

Eq. (10.3.1.3)’ gives that in case of photon absorption the transition probability of the
electron from initial bound state |k > in an atom to all possible final ejected states |k’ >,



392 Fu-sui Liu

5 |

0.0 T 1 ' T
1.3 1.4 1.5 1.6

E(eV)

Figure 10.6. The I and /I represent the energy increment and reduction contributions com-
ing from Eq. (10.4.4.3), respectively. II/I < 1 means that in light absorption of semi-
conductors the contribution of energy increment part is always more important than the
contribution of energy reduction part.

Pall<—k(t Z to):

oo 4|H!, |? [ sin(op — ©)s /2 2
iz = [ o VL e

) 4H’, 2
= /dQ/ dEk/p(Ek/) ‘ hklk‘

[sin[(Ek/k —Et, /2}} 2
(Evk —E) .

(10.4.5.1)
In comparison of Eq. (10.4.5.1) with Eq. (10.3.1.3)’, there are two changes:

(1) We use the true density of states of the final states [k’ > instead of the imaginary
average density of states;

(2) Because the definition of the density of states is within a solid angle d€2, so there is
an integration over d<2.
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The density of states p(k’) in Eq. (10.4.5.1) has been given by Eq. (10.4.4.3). Now let
us calculate the matrix element Hj,,. To simplify, the calculations, we shell neglect in the
final state the interaction between the emitted electron and the atom, that is, we write the
final state wavefunction of the electron in the form of a plane wave

1 p M
Wp(r)= —=e*", K="=" 10.4.5.2
b(r) = e, K =P =B (10.4.5.2)
normalized in the volume V. This approximation is fully justified, if the energy of the
emitted electrons is large compared with the ionization energy / of the atom, that is, if the
inequality
2 4 262

1, Z7e'u
= I= =— 1 10.4.5.2)
2,uv>> 22,0r§ V<< (10.4.5.2)

is satisfied. The quantity & is the ratio of the ionization energy to the kinetic energy of
the emitted electron. Since uv?/2 = hw — I, it follows from Eq. (10.4.5.2) that the photon
energy must be sufficient large. The photon energy must, on the other hand, be small
compared with the rest-mass energy of the electrons, in order that we can solve the problem
in the non relativistic approximation.

If the photon energy only just exceeds the ionization energy I of the electron bounded
in an atom, then we cannot, in principle, describe the final emitted electron state by plane
waves, and we must use the exact electron wavefunctions of the continuous spectrum, be-
cause the emitted electron is still in the neighborhood of the atom. Ref. [129] has per-
formed non relativistic calculations using the wavefunctions of the continuous spectrum
in a Coulomb field. His calculations show that if one takes the Coulomb interaction be-
tween the atom and the emitted electron into account, then the transition probability for the
photoeffect decreased by a factor

F(g)= Zn\/% e’ip:jlf’(“g:é)@ , (10.4.5.3)

where ho is very close to I, & — oo, and F (&) — 0.12. This estimation indicates that even
the emitted electron is just in the neighborhood of the atom, the non plane wave correction
is not large.

We choose the electron initial state wavefunction as 1S-state of atom, i. e.,

1 2
‘Pi — e—r/a h

, a= )
Va3 pe*Z

Now let us calculate the matrix element of perturbation Hamiltonian H},,. In photoeffect
the atom (system) absorbs photon. Eq. (10.4.2.5) gives

(10.4.5.4)

H”> =H'¢® = —er-E,e’™ = —ercos0”Ee'”, (10.4.5.5)

where 0 is the angle between electron position vector r and electric field E,.

—eE

efik’rcose’rcose”e*”/adr’ (10.4.5.6)
wa’V

H]i/k =< k/|H/|l >=
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where ' is the angle between r and k’. We use 0 to denote the angle between k” and electric
field E,. The integration over r in Eq. (10.4.5.6) can be performed by taking k’ as a polar
axis (in this case 0" has to be denoted by ', 0) or by taking the electric field direction as a
polar axis (in this case 0’ has to be denoted by 6”,0). We take k’ as the polar axis. In this
case

c0s0” = cos 0’ cos 0 +sin®’ sinBcos(0’ — ), (10.4.5.7)

where 0, ¢’ are the polar angles of r by taking kK’ as polar axis, and 0, k are the polar angles
of E, by taking kK’ as polar axis [120].

Now, in Eq. (10.4.5.6), we can take r*drd(cos®')d¢’ to replace the dr. The integration
over ¢’ makes the second term in Eq. (10.4.5.7) to vanish. The other calculations for the
matrix element is directly. At last, we have

2mieEk a’
HYy =< K|H|i 5= —2RieERa"cos® (10.4.5.8)
Va3V (1 +k2a?)3
Eq. (10.4.4.3) gives
V,Llh Z/J*Ek/
p(K, Q) = p(Ew,Q) = e\ (10.4.5.9)

Substituting Egs. (10.4.5.8) (H,,,) and (10.4.5.9) (p(k)) into Eq. (10.4.5.1), one obtains
Puii(t >1t,) = /Palh—k,dﬂ(t >t,)

_ 256ue’E2d’ /dQCOSZG/m d(Eyx —E) k3
N nh? —oo 2h (1+k"2a?)6

Sin2 [(Ek’k — E)IO/ZH]
[(Eex —E)/(2R)>
where Eyy — E = Epy —Ey —E = Epy + E, — E. —E, = E}, denotes the ground state energy
of the atom, and E denotes the energy of one photon.
From Eq. (10.4.5.10) we see that transition probability from initial bound state of an
electron in an atom to all possible final emitted free states per solid angle is

Puikaa(t > to)
dQ
The result of Eq. (10.4.5.11) is not strange. We can be expected that the amplitude of tran-
sition probability should be proportional to the component of electric field (which causes
the electron transition) in this direction. This component is —eE cos 0.

Some references’s formula to calculate transition probability of photoeffect are exactly
same as our Eqgs. (10.4.5.10-11). However, the subsequent calculations are much differ-
ent. Correspondingly, some references give the conclusion of energy conservation in D-C
transition. Let us look at some references’s calculation approach. Some references assume
1o — oo,

Under these two approximations some references obtain

272 7 B poo
Pari(i>1,) = mff (61”' - /5353)6 2“3" [ dEgt.3(Ex +Ey— E)
256ue’Ea’ 2wk’
TCh3(l +k/2ag)6 3

(10.4.5.10)

o< cos 0. (10.4.5.11)

: (10.4.5.12)
Ey=E—E,

[¢]
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and the transition rate is

Py (t > t,) 256ye2E§a7 2mk’
Wai(t > 1) = = , 10.4.5.13
all k( = ) t n53(1_|_kfza%)6 3 Ey—E-E, ( )

where the subscript denotes E — Ej;, = h°k?/(2u). The prominent character of some
references’s photoeffect theory is energy conservation.

Without using the time infinite limit, this book makes the following treatments for Eq.
(10.4.5.10). From this equation we obtain the transition probability per unit energy of
Ey;, and per solid angle in the direction perpendicular to the incident direction of photon
(cos® =cosO0=1)is

) 256ue’E2a’ 1 2uEy\?
it 2 1) = =5 (1+2,uEk//h2a2)6< 72 >
sinz[(Ek/k —E)to/2h]
[(Exx —E)/(2h))
SiHZ[(Ek/k — E)to/(2h)]
[(Exx —E)/(21))?
= IxII (10.4.5.14)

The energy dependence of the factor / in Eq. (10.4.5.14) comes from the product of
|transition matrix element|* and density of states. Eq. (10.4.5.14) shows clearly that factor
I is dependent on Ey, which is the kinetic energy of the emitted electron. If a metal (such
as copper) is irradiated with light of a given frequency, then electrons can also be ejected
from the metal surface. In this case E; = —F), is called work function, and E, =W — Ep,
where W is the depth of the potential well, and Er is the Fermi energy.

Let us make comparisons between some references’s Eq. (10.4.5.12) and this textbook’s
Eq. (10.4.5.14). Eq. (10.4.5.14) shows that the kinetic energy Ey of photoelectron (i. e.,
the emitted electron) is a complex function of the energy of photons. We can find out the
theoretical maximum photoelectron kinetic energies Ey;,. According to Eq. (10.4.5.12)
Eiin = E — E) = Eppoton — Ep. In our numerical calculations we take —E;, = —13.6 eV,
which corresponds to the energy of 1S electron of hydrogen atom. (1 eV=2.418x10'
Hz) In any cases Eq. (10.4.5.12) always gives an exactly linear relation between Ey;, and
Ephoton, Which indicates energy conservation. Fig. 10.7 draws two curves of Ej;, versus
photon energy Epno0n 0f Eq. (10.4.5.14). If 1, is less, then in case of boundary absorption
(. e., Epporon = Ep) the energy nonconservation is more obvious. The curve 2 (7, = 10-13
second) in Fig. 10.7 is nearly linear and gives Ey;, = 0.02 ~ 0 eV at E,j10n = Ep = 13.6 €V
(Ephoton = E} 1s called boundary absorption.). The curve 1 (z, = 10~13 second.) in the Fig.
10.7 Eyjp, = 2> 0 eV at Epppron = Ep = 13.6 €V, which means that there is a obvious energy
nonconservation in photoeffect. On the contrary, Eq. (10.4.5.12) always give Ej;, = 0 eV
so long as for the boundary absorption, which means that Eq. (10.4.5.12) always gives
energy conservation. From Fig. 10.7 we see also that so long as ¢, > 10~ second, the Eq.
(10.4.5.12) is good enough.

As is well known, the Millikan’s photoeffect experiment in 1916 is generally accepted
as the determinant verification for Einstein’s photon theory of light and Einstein’s photoef-
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Figure 10.7. Curves 1 and 2 indicate the relations between maximum photoelectron kinetic
energy E;, and energy of incident photon E 10, due to Eq. (10.4.5.14). In our numerical
calculation, 7, = 10~ 13 second for the curve 1, and z, = 10~ '3 second for the curve 2. Ej;,, =
13.6 eV. 1 eV = 2.418x10'* Hz. Curve 2 indicates the relation between Ey;, and Epporon
when ., = 1073 second and Ejy, = 13.6 €V. If Epporon = Ep = 13.6 €V, then Ey;, =2 eV
and Ey;,, = 0.02 eV for curve 1 and curve 2, respectively. However, according to the energy
conservation formula Eq. (10.4.5.12), if E,j010n = Ep, then always Ey;, = Epporon — Ep = 0.

fect equation. To compare with the Millikan’s experiment [130], we take Ej, = Ej, pitjikan =
1.8156 eV, and draw the Fig. 10.8.

Although the curve 2 (t, = 10~!3 second) is nearly linear, which fits Millikan’data
well. However, the energy, exactly speaking, is still not exactly conservative, because at
Ephoton = Ep = 1.8156 €V Ey;, = 0.018 eV instead of Ey;, = 0 from Eq. (10.4.5.12). The
minimum energy of photon used in Millikan’s experiment is 2.2456 eV. The corresponding
Erin = 0.43 eV. This value can be obtained theoretically by both Eq. (10.4.5.12) and Eq.
(10.4.5.14). However, Millikan did not use the E o1, = 1.8156 V. Therefore, we cannot
make comparison between experiment data and theoretical curve. If #, = 10~!# second and
Ephoton = Epin = 1.8156 €V, then the curve 1 gives Ej;, = 0.18 > 0 eV, which means that
the energy is obviously non conservative. However, Eq. (10.4.5.12) always gives Ey;, = 0.
The curve 3 in Fig. 10.8 is an imaginary case in which z, = 10~ second.
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Figure 10.8. Curve 1 indicates the relation between maximum photoelectron kinetic energy
Eyin and energy of incident photon Epron, When to = 10714 second and Ej, = 1.8156 €V.
Curve 2 indicates the relation between Ey;, and E o100, When t, = 1013 second and Ej, =
1.8156 eV. If Epjoron = Ep = 1.8156 €V, then Ey;, = 0.18 €V and E;,, = 0.018 €V for curve
1 and curve 2, respectively. The data are taken from Ref. [130].

In the cases of £, << 10~!3, the energy nonconservation becomes more stronger. There-
fore, it is not convenient to draw diagram. Let us derive a general formula, appropriate for
any value of ¢,, for the maximum kinetic energy of ejected electron in case of boundary
absorption. For convenience, we suppose that Eq. (10.4.5.14) is

Ekinto
2h

Py (t>1)~ E];;/Zsinz(

). (10.4.5.15)

The equation of maximum Ey;, of the emitted electron at fixed 7., Ey;,, can be obtained from
Eq. (10.4.5.15), and has given by Eqgs. (10.3.1.9) and (10.3.1.10). It is

tan(x) = 4x, (10.4.5.15)
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where x = 1,Ey;,/(2h) = t,0/2. The solution of Eq. (10.4.5.15) is
to O = 3.10484. (10.4.5.16)

Thus, generally speaking, the smaller the ¢, is, the larger the Ey;, is. (As long as for bound-
ary absorption , Eq. (10.4.5.12) gives always Ey;, =0.) If t, = 1071, 10714, 10713 second,
then Ey;, = 2.05, 0.205, 0.0205 eV, respectively. These values are nearly equal to the values
in Fig. 10.6. In Fig. 10.6 Epjpr0n = Ep = 1.8156 V. If we take that E ;o100 = Epin = 13.6
eV, then Eq. (10.4.5.16) gives that for , = 10~!5 and 10~ second, Ej;, = 2.05, 0.0205 eV,
respectively, which approach well the rigorous numerical values in Fig. 10.5. Therefore,
Eq. (10.4.5.16) is good enough for applications. For one attosecond ¢, = 10~!'8 second,
Eyin = 2050 >> 0 eV, which is much larger than the expected value from Eq. (10.4.5.12).
If we note that the Eq. (10.4.5.12) gives Ey;, = 0 << 2050 eV, then we can say that the
energy is strongly non conservative in attosecond photoeffect. To verify this theoretical
prediction, Ey;, = 2050 eV, we need the following experimental conditions: (a). The at-
tosecond light pulse, for which the E,;o0n = 4135 €V; (b). Epiy = Epporon = 4135 €V. Ref.
[131] points out that the inner-shell electrons of atoms have widely spaced energy levels
from 107 to 10° eV. Therefore, it is not difficult to find some inner-shell levels which can
give Ep = 4135 eV.

The present technique of attosecond light pulse is still very difficult to obtain 1 attosec-
ond pulse. Let us give a now available simple atomic example [131]. Ref. [131] reported
that when a helium atom in its ground state absorbs an 100 attosecond light pulse (f, = 10~ 1°
second) photon with energy of 40.35 eV (=E}), a single electron can be emitted, leaving the
other electrons in the ground state, through direct attosecond photoeffect. It is a big pity
that Ref. [131] did not measure the observed energy Ey;, of emitted electron. According
to Eq. (10.4.5.12), Exin = Eppoton — Ep, = 0. However, according to our exact formula, Eq.
(10.4.5.16), Ei;, = 20.5 eV.

The now available experimental photoeffect was done only at picosecond (¢, = 107 !2
second) and subpicosecond (¢, = 1013 second), which does not contradict with our Figs.
10.9 and 10.10. Figs. 10.9 and 10.10 show that the obvious energy nonconservation in
photoeffect occurs only at 7, < 10~!3 second.

In the famous Millikan’s experiment [130], so-called determinant verification for the
Einstein equation of photoeffect, there are only five experimental points. All the five points
in Fig. 10.8 are at Ej10n > 2.24 €V, and thus the five points are still quite far from the
2.24 eV. In Millikan’s times there were no attosecond and femtosecond pulse techniques.
Therefore, Millikan’s experiment can neither negative nor confirm our Eq. (10.4.5.14).

Because the strong energy nonconservation in attosecond photoeffect has not yet been
verified by experiment, it is very important to analyze its reliability and reasonableness.
Let us give this analysis directly, quantitatively, and without any numerical calculation.
First, we note that t, — oo is not correct in physics. Therefore, the Eq. (10.4.5.12) is not
legitimate, that is, one cannot use the condition #, — o in photoeffect theory. Second,
even if ¢, — oo is correct, we still need to consider that the factor / in Eq. (10.4.5.14) is

proportional E,fl{f # EQ. . Thus we have

lim E>/?
fo—00

/2 5 I # 21h(Egin — E photon -+ Ep o, (10.4.5.17)
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which clearly shows energy nonconservation more or less.
The Einstein equation of photoeffect is

Eyin = photon — Ep, (104518)

which is obviously a energy conservation equation. Because this paper has shown that
the energy conservation in photoeffect is conditional. If #, < 10~'3, then the energy is
not conservative obviously, and thus Einstein equation of photoeffect does not hold water
exactly.

10.4.6. Scattering

As an application of transition theory, in this subsection we will introduce theory of elastic
scattering of an electron by an atomic nucleus, and simultaneously illustrate some con-
cepts of scattering theory. Because our transition theory considers the possibility of energy
nonconservation in transition process, our approach will different from some references’s
approach, and will possibly give new results. As a representative method in some refer-
ences, in this subsection we will introduce the method in Ref. [6], and in appropriate place
we propose more correct method. We examine the scattering of a high velocity electron by
a nucleus with the charge number Z. The interaction between electron and nucleus is the
pure Coulomb interaction. We treat this interaction as a perturbation:

2
H (R = [ e IR,
v —

(10.4.6.1)

where r marks the coordinates of the electron, R those of the nucleus. The exponential
factor in Eq. (10.4.6.1) is introduced because of the screening effect of the electron on
the nuclear charge. We need it for mathematical reasons, too, since it helps to avoid di-
vergencies when integrations are performed. The length d is a measure for the screening
distance. For |r — R| >> d, the interaction disappears, because the charge of the nucleus is
then completely shielded by the surrounding electrons.

Before the scattering, the whole system is described by the state |¥; > and after-
wards, by the state | ¥} >. We need to calculate the transition probability for the transition
|W; >— |¥p > in order to learn something about the charge distribution of the nucleus
when comparing it with experiments. The electron is in a state of motion with momentum
p = hk and energy E} before scattering occurs and is scattered by the Coulomb potential
in Eq. (10.4.6.1) into a state with momentum p’ = hk’ and Ej. Since these are continuum
states, the transition probability is given by Eq. (10.5.7). The transition probability P,
of internal conversation of a nucleus from initial state |¥; > to all possible final states of
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|lPk/>iS
Pkt >1t,) = / dQPyi ka0
1 teo Sin2(0)k/ — mk)to/2
= dQ—/ H.|*p (oo do
/ 2 ), | Hel“p (0 a0) or o2 K
1 te /2
— [dogs [ 1HuPe(E i)
. )
Ey,—E)t,/(2h
sin (B = Ete/ 1) (10.4.6.2)

[(Ew — Ex)/(2R)]

The total wavefunctions of the electron-nucleus system are product of the wavefunction
of the electron and that of the nucleus. We use plane waves as an approximation for the
wavefunction of the electron. This approximation is called the Born approximation. But
is only valid if the electron-nucleus interaction is small, i. e., the nuclear charge should be
not too large and the velocity of the electron has to be great enough. These conditions are
summarized by the relation

1%% << 1. (10.4.6.3)

Thus the wavefunctions are
¥, = eP""D(R), and Wy = e "D (R), (10.4.6.4)

or, by using Dirac notation,
|Wp >=|k>|i>, and Y >= K >|f>. (10.4.6.5)

This can also be expressed as

< rlk>= P = gk, (10.4.6.6a)
<K >= e rh = K (10.4.6.6b)
< R|i>=®;(R), and <R|f>=D(R). (10.4.6.6¢)

The ®(R) are the normalized wavefunctions of the nucleus. We did not normalized the
plane waves in Eq. (10.4.6.4).

Let us now evaluate the matrix elements. Since the wavefunction factorizes into an elec-
tronic and a nuclear part, the volume element dV also implies integration over both volume
dV, (electronic space) and dV,, (nuclear space). The indices e and n stand for electron and
nucleus, respectively. Thus

exp(—|r—R|/d)

KT qy,av,.  (10.4.6.7)
[r—R|

< W H |y >= 76 / @ (R)®i(R) /

We first calculate the integration over the electronic coordinates and abbreviate k —k’ by the

vector S:
k—K =s. (10.4.6.8)
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Therefore, hs = p — p’ is momentum transfer from the electron to the nucleus during the
scattering process. The integration over dV, is evidently a function of R:

Je(R)_/exP(’_rV_Rf'/d) ik=K)r gy, (10.4.6.9)

Since we integrate over the whole space, we can change our system of coordinates and
integrate over the whole space again (the integration boundaries do not need be changed).
We replace r by ’=r-R and introduce spherical coordinates with 6 being the angle between
sand 7.

In terms of these coordinates we have

dV, = r*dr' sin®d8d¢, (10.4.6.10)
and, from =r+R, we get

(k—K)r = s-r=s-r+sR
= sr'cos®+s-R. (10.4.6.11)

Thus the integral becomes

—r/d ,
J, (R) _ / € et(sr cos0+s-R) r/2 sin Gdr’ded(p

r/

— 2Te lS‘R/ dr/ dor' e 7r’/d isr’ cosOSlne
_ nR/ dr'r 7r/d 1/( ist! _efisr’)

— ZnemR._/ dl"/(el (s—1/d)r _efi(xfl/d)r’)
[A)

1 1 1
- 2 is-R —
e <zs—l/a’ lS+1/d)

is- 4TC

This result can be simplified: the term 1/d? in the denominator can be neglected if s*d? >>
1. This means that the momentum transfer must be not too small. Hence,

- 4T
Jo(R) ~ "= (10.4.6.13)
s
Therefore the matrix takes the form
47 ;
< Wy H'|¥y >=Ze*— / D% (R)e“ R D;(R)dV,. (10.4.6.14)
S

For elastic scattering, the state of the nucleus is not changed. Let the nucleus be in its
ground state ®. Thus we have & = ®; = ®;, and the product Z&*(R)P(R) is the density
distribution of the protons in the nucleus. Instead of the wavefunctions, we can introduce the
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charge density p,(R) of the atomic nucleus [more accurately: p,(R) is the charge density
without the factor e, which we have explicitly taken out]:

Z&*(R)B(R) = py(R) with / p,(R)dV, = Z. (10.4.6.15)
For further simplification we assume spherical symmetry of the charge distribution:

Pp(R) =pp(R). (10.4.6.16)

This assumption is only valid for atomic nuclei in the vicinity of the magic numbers. There-
fore we obtain for the matrix element

4me? ;
<SWH|W> = T / 0, (R)e*Rav,

4me?
The quantity F(s) is called a form factor. It is the Fourier-transformed charge distribution
and reflects the deviation of the nuclear charge distribution from point structure. Indeed, if
the nucleus is assumed to be point-like, i. e., p,(R) = 8 (R), we get F = 1.

The form factor can be further evaluated by again introducing spherical coordinates and

using the axis defined by s as the polar axis. Hence, we get

dV,, = R*sin0dRdOd¢d and s-R = sRcos, (10.4.6.18)

and therefore
_ = [T iscosOR p2 _.:
F(s) = 2m pp(R)e R”sinOdRd6
0 Jo

= 2 R isR _ —isR RZdR
7 [ pp(R) (e =)
ar [

= = [ p,(R)sin(sR)RdR. (10.4.6.19)
s Jo

The last integral can be calculated only if the charge distribution p,(R) is known. Our
present result can be summarized as

4 2
< Wy |H' Wy >= T F(s), (10.4.6.20)
S

The density of states p(k’) of the electron in unit volume space has been given by Egq.
(10.4.4.3), which is.

2 /

p(K)dQdEy = WdEkfdQ = p(Ep,dQ)dQ. (10.4.6.21)
2 / 2

P(Ew, Q) = pdp__ _P ! (10.4.6.22)

(2nh)3dEy  (2mh)? dEg/dp'”



Time Dependent Perturbation Theory 403

To calculate the derivative in Eq. (10.4.6.22), we assume that the electron is very fast and
therefore proceed from the relativistic energy-momentum relation

Ep = \/p22+m2c*, (p =hk), (10.4.6.23)

If the kinetic energy of the electron is large enough compared with the rest energy, then the
2

term /mc” can be neglected and we obtain

Ep=pe. (10.4.6.24)
From Eqgs. (10.4.6.24) we get

‘;i’j’ =c. (10.4.6.25)

Substituting Eq. (10.4.6.25) in to Eq. (10.4.6.22) we get the following expression for the

density of states:
pIZ 1 plz
Ep. Q)= = . 10.4.6.2

Substituting Egs. (10.4.6.26) and (10.4.6.20) into Eq. (10.4.6.2) yields

Pall«—k(t > to) = /d-QPalh—k,dQ(t > tO)
1 [+e|4me? ? p?
= [dQ— F
Jaog |, |FF0 c(2mh)?
in?(Ex — Ex )t/ (2h
sin” (B —Eulto/ 2h) (10.4.6.27)
[(Ev — Ey)/(2R)]
where, according to the definition of s,

Correspondingly, the transition rate is

Pa—i(t > 1)
I

o 1 [+ 472\ ° o p? sin®(Ep —Ep)t./(2h)
o [ () PO Gt (Ee—E/@RP "

= /dQWﬁ’dQ. (104629)

w fi

to h2

The transition probability itself cannot be measured directly, but a quantity can be observed,
which is called a cross-section, or, more accurately, a scattering cross-section, and is de-
noted by 6. Or, more conveniently, we introduce differential cross-section dG; 4o, which
is defined as the number of particles scattered per unit time and per unit of the incoming
particle current into the section of the solid angle (Q — Q+dQ). Since the initial states
|i >= |k > represent particles, the current of which is v;, we obtain

Wfi’dgd.Q

dei’dQ = (10.4.6.30)

Vi
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Since we use the high velocity approximation for the scattering electron, v; =~ c¢. Substituting
Eq. (10.4.6.29) into Eq. (10.4.6.30) yields

2(Ek/—Ek)IQ
h—dEp.  (10.4.6.31)
[(Exv —Ex)/(2h)]

sin

dGﬁde 1 1 too (47‘5)2€4p/2 5
dQ 1, R2(2mh)3c /o T IFO)

Eq. (10.4.6.31) is called exact scattering formula.

Although some references do not give the exact formula Eq. (10.4.6.31), but if some
references like, then they can give this formula. This means that until now the treatments
of both some references and this textbook are the same in essence. (See for example
Ref. [6].) However, for treatment of Eq. (10.4.6.31) the significant difference between
some references and this textbook manifests. Some references such as Ref. [6] make the
following treatments:

(1) Some references make ¢, — oo, use Eq. (10.4.6.19), and obtain (See, for example,
Ref. [6])

dos_iqq e? 2 1
1 2
—— = | — | ——=IF()|". 10.4.6.32
dQ (2pc) sin4®/2’ )l ( )
Eq. (10.4.6.32) is called Rutherford scattering formula.

If the effect of the recoiling nucleus is taken into account, then one can put a recoiling
factor, and Eq. (10.4.6.32) becomes

doyiaq &2 2 1 5 1
a0 (N _ 1 p . 10.4.6.33
aQ <2pc) a2 T G ste ( )

Eq. (10.4.6.33) is called modified Rutherford scattering formula.

(2) Experiments have given the angular distributions of scattered electrons from many
different nuclei, such ad: '°’Au, 'V, and 4°Ca. For example, in one observed curve the
scattering probability is proportional to the scattered electron number and dG . 40/dQ
[132].

Some references think that the figure in Ref. [132] tells us that the nucleus is of a
spherical distribution of positive charge of essentially constant density, so that the nuclear
radius could be modeled by the relationship: r = r,A!/3 (this formula is called the Fermi
model for nuclear radius), where A=atomic mass number (the number of protons, Z, plus
the number of neutrons, N), ro = 1.2 x 1071 m=1.2 fm.

(3) Actually, the correct function form of p,,(R) is not known. Some references assumed
that the function’s form of p,(R) is the following Fermi-distribution:

_ Po
- I+exp[(R—Ry/2)/a]

Pp(R) (10.4.6.34)
where the parameters Ry /2 and a are adjusted to obtain the best fit with the experimental
curves. By taking po = 1.65 x 10** nucleons/m?, a = 0.55 fermi, and Ry = 1.07 x A!/3
fermi (A is the number of nucleons in a nucleus), for the heavy nuclei many experimental
curves can be fitted. Robert Hofstadter, who made systematic measurements of this kind,
was awarded the Nobel Prize for this work in 1961. Some of the most accurate charge
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distributions of atomic nuclei were measured in the same way by Peter Brix at the electron
accelerator in Darmstadt.

We have the following comments for the above points (1)-(3), taking by some refer-
ences:

(1)’ General speaking, the infinite time limit is not good, and thus Eq. (10.4.6.33)
should be not exact.

(2)’ Actually, the charge distribution of, for example, lead nucleus, which is obtained
by using the approximate Eq. (10.4.6.34), is too simple. Ref. [133] gives the charge distri-
butions in many other nuclei, which are obtained by using the approximate Eq. (10.4.6.34).

10.4.7. Internal Conversion

Let us consider quantum transition under the influence of time independent interactions in a
time interval. Examples of such transitions are: (1). Internal conversion, that is, the process
in which an exited nucleus transfers its energy to the atomic electrons; (2). The Auger effect,
that is, the readjustments of the electron shells of atoms with several electrons, accompanied
by the ejection of one electron from atom.

In the present section, we shell consider internal conversion. This term reflects the
original, incorrect viewpoint according to which the transfer of the excitation energy of the
nucleus to the electrons in the atom was considered to be an intranuclear photoeffect, caused
by the photons emitted by the nucleus. Afterwards it becomes clear that the excited nucleus
can transfer its energy to the electron also when the emission of a single photon is absolutely
forbidden, that is, when the transition is between states with zero total angular momentum
(0 — 0 transitions; see the photoeffect in many textbooks on quantum mechanics such as
Ref. [10]. Internal conversion and emission of photons by the nucleus must be considered as
two alternative possibilities, which can realized when an atomic nucleus makes a transition
from an excited state to the ground state [87]. Many authors have considered the problem
of calculating the transition probability for internal conversion; their papers differ from one
another in the various approximations made for the wavefunctions of the atomic electrons
and for the operator determining the transition. We shell consider here an elementary theory
of internal conversion in which we choose the wavefunctions of the ejected electrons in the
form of plane waves and use a non-relativistic approximation. Refer to Ref. [87] for this
subsection.

We shell thus use for the initial state of the electron

| I h?
W (r) = Ve /e, a= oz (10.4.7.1)
where W, can be a wavefunction of hydrogen-like K-electron, u is the mass of electron, Z
is the proton’s number in a nucleus. For the final state

o (r) = —=€*", (10.4.7.2)

4-
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which is a plane wave of the ejected electron. If we denote the wavefunctions of the initial
and final states of the nucleus by ¢;(¢) and ¢s(g), respectively, we have for the wavefunc-
tions of the initial and final states of whole system

ki >=Pi(r)9i(q) and |K'f>=TPp(r)ds(q). (10.4.7.3)

The transition probability P, of internal conversation of a nucleus from initial excited
state ¢;(g) to final state ¢(¢g) and one of the atomic K-shell electrons going from initial
state Wi (r) to final ejected state Wy (r) is

Puii(t > 1) = / dQPui ka0

. = t
sin2 (0 m2A+(o;,)

1 [te
= dQ—/ H, |?p(op doy
/ m2 Jo |Hjoi | "p (o) |:(1)k/_(1)A+(1)b:|2 k
2

= [aog: [ iHuleE)

. 2 (Ey—EA+E,
1112 i —Ea+ b)

X —szk/ (10.4.7.4)
[Ek/ 7EA+E,,}
2h

where @y, ®p, and M, are the angular frequency of the ejected electron, the excitation of
nucleus, and the atomic K-electron binding, respectively, Wy = 0y — 0 = @p — (0 — @),
p(y ) is the density of states per unit angular frequency interval of ejected electron within
a solid angle dQ, Ey, Ea, and Ej, are the energies of the ejected electron, excitation of
nucleus, and atomic K-electron binding, respectively, Eyx = Ey — Ex = Ex — (Ea — Ep),
p(K') is the density of states per unit energy interval of ejected electron within a solid angle
dQ, and t, is the duration time of the perturbation Hamiltonian.

uhk’'

p(K) = e (10.4.7.5)

H;,, is the matrix element of perturbation Hamiltonian.

2

H,, =<K f|H' ki >=< K f| Z ki >, (10.4.7.6)

11 —ajl

where H' represents the Coulomb interactions between all Z protons in a nucleus at ¢; and
one electron at r (take the center of the nucleus as origin), and the summation is over all
the protons in the nucleus. Because the perturbation operator H' in Eq. (10.4.7.6) does
not contain spin variables, so that we cannot describe nuclear transition corresponding to
magnetic multiple radiations.

If || >> |gj|, we can expand the perturbation operator H' in spherical harmonics,

2

ZZZ 2,+1 ( ) Y"(©,2)Y"(6;,9;), (10.4.7.7)

]OIOm
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where (©,®) are the angles defining the direction of r and (6;,¢;) are the angles defining
the direction of the g;
Using Eqs. (10.4.7.7) and (10.4.7.3), we can write

(@‘I’)

After substituting Eqs. (10.4.7.1-2) into the matrix element containing the integration over
the electronic coordinates, we get

/|ym I+1 7r/a —ik'r
<K[Y"(©D)/r |k >= \/W/ o e *rar, (10.4.7.9)
Expanding exp(—ik’ - r) in spherical harmonics,
e M =4n Y (—i) ju(K'r) Y (00) Y™ (©D), (10.4.7.10)
Im

where (0,¢) are angles defining the direction of the wavevector k', and integrating over
angles (©,®), we get

<k’|Yl’"(®<I>)/rl+1|k>:4,/%(—i)lYl’”(Gq))/ H_]J(k/> gy (10.4.7.11)

When evaluating the the integral in Eq. (10.4.7.11), we must bear in mind that in our
approximation, K’a >> 1, only small values of r are important in the integral because of the
fast oscillation of the spherical Bessel function; therefore

1 . R k/l—l
/rmj(kr)e dr S ) (10.4.7.12)

Substituting Eq. (10.4.7.12) into Eq. (10.4.7.11), and then Eqs. (10.4.7.8) and (10.4.7.5)
into Eq. (10.4.7.4), integrating over the angles defining the direction of the emission of
electron, i. e., integrating over the solid angle in Eq. (10.4.7.4) using the orthogonality of
the spherical harmonics:

/ QY™ (6,0)Y" (8,0) = 818, (10.4.7.13)

we find the transition probability per ejected electron:

P

1287te,u |<f\Z, 151, (0,0,
Puri(t >t dEpk* =3
11—k ( Z ((214+1)1)2 /

.2 (Ek/—EA+Eh) °
Sin — n

Ey—Es+Ey >
2h
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Q(E,/—E +E )to
1287’y 74 / dE 3

h(ah)3 4= ((21+1)!!)? |:EL/—EA+Ehi| 2

2h
128me*u Z2d¥ 2\ B3/
= h(ah)p & (2I+1)1)? (ﬁ)
(Ek’ EAJrEb)
x / N Lo s — (10.4.7.14)
[EA/ EM—E,,}
2h

where the matrix element in the first equality of Eq. (10.4.7.14) is approximately taken as
2

VA
<fIY. d5Y"(8;0))]i >| ~2Z*d*, (10.4.7.15)
j=1

where d is the linear magnitude of the nucleus. The square of the matrix element occurring
in Eq. (10.4.7.14) is proportional to the probability of the nuclear transition corresponding
to an E/ multiple radiation. We must remind the reader that Eq. (10.4.7.14) was derived
under the conditions v << ¢, and Ze? /(Av) << 1.

To seek the expression of Eq. (10.4.7.14), Some references calculate the integral in
Eq. (10.4.7.14) by taking the following two approximations. First approximation is that the
factor in the integrand E ,E,l /2 s taken as a constant independent of integration variable
Ep. Second approximation is to assume that z, approaches to infinity. Then some authors

find from Eq. (10.4.7.4) that

128227564/1 k12173d21
P i (to — o) = lim ¢, .
ait k(1o = o0) = lim (ha)> & 20+ 1)!!

(10.4.7.16)

Eq. (10.4.7.16) is some author’s formula to calculate the internal conversion process. The

transition rate is

Pari(to —o0) 64Z°me*u K 3d%
fo - (ha)® &2+

Waii—i(to — o0) = (10.4.7.17)

According to the two approximations made by some references the energy in internal
conversion is conservative.

Comments for the above some references’ treatment of the internal conversion. Gen-
erally speaking, the experimental value for time needed by one nucleus to emit one elec-
tron through internal conversion is only, for example 10~ second. Therefore, the 7, — oo
should be bad. The approximation that neglects the energy dependence of E,E,ZI_W %in Eq.
(10.4.7.14) should be bad as well because the integration up limit is co. From the integrand
of Eq. (10.4.7.14), it is possible that the larger the Ey is, the larger the transition probability
is. Therefore, let us try to establish a more exact internal conversion theory by using exact
calculations.

The treatment of this textbook for the internal conversion is as follows. For simplicity,
we consider parity-favored electric fourth multipole transition £4 (I = 4) in Eq. (10.4.7.14).
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The factor E,EZZ_W 2= ,f/ % in the integrand of Eq. (10.4.7.14) is strongly E;-dependent.

For element Bi, Z=83, E;, = 95.7 x 10? eV, Ex = 5 MeV, and the lifetime of excited nucleus
t, = 1077 << oo (second). It is obvious that if we abandon the two approximations taking
by some references, then the theoretical results should be better. Therefore, let us continue
our calculations.

The exact formula for internal conversion is Eq. (10.4.7.14). To keep that perturbation
theory of D-C transition process holds water, we should take, for example, P = 0.05 << 1.
In this case the up limit of integral in Eq. (10.4.7.14) should be finite. If we take that the
down limit of integral is zero, then the integral should be timed by a factor 2. Numerical
calculations give the up limit of integral is Ey,, = 6.4 x 10° erg = 4 x 10'> Mev, which is
much larger than the excitation energy of nucleus Ex = 5 MeV, and even much larger than
the Einstain’s static mass energy of Bi nucleus Mpuclensc” = 0.3 erg = 0.3 x 0.624 x 100
MeV. Eg p = 2 X 101Myclensc?. If we rewrite Eq. (10.4.7.14) as

P= / " P(E)dE;, (10.4.7.18)
0

then P'(Ey) represents the energy density of transition probability. From the expression
of P'(Ey) in Eq. (10.4.7.14), we know that the larger the energy of ejected electron Ej is,
the larger the value of P'(Ey) is, i. e., the ejected electron with higher energy has higher
transition probability. Therefore, the internal conversation process is a strong energy non-
conversation process.

It is also interesting to note that if the initial excited state of a nucleus transits to final
ground state, and a ¥ photon is emitted, then the transition probability is proportional to
(Refer to any textbook on nuclear physics for derivation)

2 (Ex—Ea)to

B o1 SIN" =55
Pyoc/o E? Wda(, (10.4.7.19)

where Ej, represents the energy of one photon. Due to that the energy-dependence of factor
E,fl“ in Eq. (10.4.7.19) is stronger than the factor E,EZI_I)/Z in Eq. (10.4.7.14), the energy
nonconservation in the internal conversion of ejecting y—rays will be much stronger than
that in the internal conversion of electron ejection.

Let us here make some discussions for the above calculations.

(1) Generally speaking, the energy is more or less not conservative in time-dependent
and time-independent D-C quantum transition processes.

(2) We can obtain infinite energy from vacuum space in terms of some D-C transitions
such as internal conversation of electron ejection. According to our exact calculations for
the internal conversation of electron ejection above, the energy will be strongly not conser-
vative.

The internal conversion process can be repeated by three steps:

(2.1) We get the ejected electron in the internal conversion;
(2.2) The ejected electron gives 4 x 10'° /2 MeV energy to the environment, and then
goes back to the original K-shell;
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(2.3) The nucleus absorbs a photon with energy 5 Mev, and transits from the state of
lower energy W to the state of higher energy ¥;.

After the above three steps the internal conversion process can occur once again, and
we can obtain energy Eone—ejected—electron = 4 X 101 /2 Mev once again by energy loss of 5
MeV only.

If the volume of element Bi is 1 mm?, then this volume contains number of Bi atoms

B 9.78
© 1000 x 207 x 1.6 x 1024

Ngi =2.95x10". (10.4.7.20)
Assume that the number of the Bi nuclei, for which the internal conversion pro-
cesses of electron ejection occur in the time interval of the lifetime 7, = 1077 sec-
ond, are only Nejecred—nuclei = 1072 x Np;. The energy of oil per gram is E,; = 2.5 x
10'6 eV. The energy, obtained in one second from one mm® of Bi atoms, is E =
Epne—ejected—electronNe jected—nuctei] (toEoit) = 4.5 x 10 ton of oil. This is a very high rate
of energy generation. For example, everybody in our world can share in the energy about
107 tons of oil from internal conversation just in one second and in volume mm>. Because
this energy gain process in the internal conversion can be repeated, we can say that one can
obtain infinite energy in terms of internal conversion transition process of electron ejection.

If we can obtain infinite energy from vacuum space, then the vacuum space has to have
infinite energy.

(3) Although the high rate of energy generation is so inconceivable and unimaginable,
but we have to emphasize that our theoretical result on the energy nonconservation in inter-
nal conversion transition process is absolutely reliable, the reason for which is very simple
and obvious. Because our basic physical formula to calculate the internal conversion pro-
cess is exactly the same as that in some references, and the sole difference between our
method and the methods in some references is that we make exact numerical calculations
without using the two “illegal” approximations, and some references always make the two
“illegal”. Here we say two “illegal” approximations because: (a). The |H;¢|*p(Ey) E,f/ 2
in Eq. (10.4.7.14), which is strongly energy-dependent; (b). ¢, — o is non-physical.

(4) The light absorption in semiconductors are the particular verification for the energy
nonconservation in D-C quantum transition process.

(5) According to famous Einstein formula, static mass 71,,,.j,s can be transformed into
energy MyyciensC>, and at the same time 71,705 vanishes into the void. However, according
to our theory of internal conversation of electron ejection, one excited Bi (or other) nucleus
can produce energy 102 X mpi_nucieus® = 1.5 X 1017 M free—etectrons and at the same time
MBi—nucleus Still exist after transition process.

(6) The reasons that why the energy nonconservation in D-C transition has not yet been
reported in a large number are as follows:

(6.1) The until now experiments of the internal conversations are confined to measure
the number of the ejected electrons. Therefore, the energy nonconservation cannot be dis-
covered;

(6.2) The until now experiment of the internal conversations are confined to measure
low angular quantum number, for which the effect of energy nonconservation is not large;
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(6.3) Although some references gave also the curve of transition probability versus
energy, which has contained small energy nonconservation, but some references think
that the second peak in this curve is too low, and therefore can be neglected in any case.
Therefore, the present controversial issue is not that the nonconservation has not yet been
reported in a large number, but is that can one neglect the nonconservation just due to its
littleness in special case of = 0? The obvious answer is: Cannot.

(7) Warning! We have given in this section that the energy, obtained in one second
from one mm® of Bi atoms contained excited nuclei, is E = 4.5 x 10! ton of oil. This is
a very high rate of energy generation, and absolute value of energy is also too high. It is
well known, in energy aspect, one ton of oil = 10~ ton of TNT. Therefore, E = 4.5 x 107
ton of TNT in energy. From this estimation we know that to use many exited Bi nuclei to
verify our theoretical prediction has to be prohibited. We give readers an other estimation.
The energy of only one ejected electron released in 7, = 1077 second by just one exited
Bi nucleus is equivalent to 150 Kg of oil. We sincerely hope that the readers consider our
estimations.

10.5. General Theory of Transition Processes

10.5.1. Other Examples of Energy Nonconservation in Transition Process

Example (1).

A charged particle with charge g and mass y is placed in the harmonic oscillator poten-
tial of angular frequency ®, and is in ground state |0 >. A finite pulse of spatially uniform
electric field is applied to it.

H'(t) = —gxEe /7, (10.5.1.1)

where E is electric field intensity, T is the pulse duration. In the approximation of week field,

(1.1) Find the transition probability from the ground state to one of the excited oscillator
states |n > after the pulse;

(1.2) Discuss the condition of producing transition;

(1.3) Discuss that if the energy in transition process is not conservative.

Solution:
(1.1) The transition probability amplitude is

1 /= )
aty) = _h/ (—gE) < n|x|0 > e_’z/TzJ”m""’dt, (10.5.1.2)
l —00

where ®,, = (E, — E,)/h = nw, and < n|x|0 >= \/h/(2u®)d,;, which means that the
particle can only transit to the first exited state. We have

—gE | /
aly) = q 5 m/ dre /PO — jgE \/—re—‘*’z*/‘* (10.5.1.3)
u
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Therefore the transition probability from |0 > to |1 > is

22
_mp2_ 9E 2 01?2
Po= = . 10.5.1.4
10 = |ayg | 2yh0)m e ( )

The probability that the particle stays still in the ground state |0 > is 1 — Pyg.

(1.2) If the time duration 7 is large enough so that @t >> 1, than Py — 0, i. e., the
transition does not occur.

(1.3) In the transition process the total momentum transfer by the pulse is

P:/ dtgEe"/" = \/ngEr. (10.5.1.5)

In one transition the particle gets energy from electric field is

22

q°E 2 —w’t?/2 P’ —w’t?/2
AE = howP)g = h = — . 10.5.1.6
®Pyg 0)2,uh03m e 2ﬂe ( )

Comparing Eq. (10.5.1.6) with Eq. (10.5.1.5), we find that in the real transition process the
energy is not conservative due to the factor exp(—®?1?/2) in Eq. (10.5.1.6).

T — 0 means the time duration of the field as a perturbation approaches zero, i. e., the
transition does not occur.

T — oo means the time duration of the field as a perturbation is infinite. Eq. (10.5.1.4)
tells us that this transition does not occur. The physical basis lies in the fast oscillating
character of the motion. The action of the field is compensated during different parts of the
period. This is a general rule that slow changing (i. e., adiabatic) tail to excite the system.
Instead, the system remains in its original state with the wavefunction adiabatically adjust-
ing to the slow changing perturbation and coming back after the perturbation is switched off.

Example (2).
Free hydrogen atom Hamiltonian H,, Energy level E,;, energy eigenstate W, (for brevity,
set n denote three quantum numbers n/m.). The eigenequation is

HY,=E,%,. (10.5.1.7)
Take the electric field direction as z axis. Perturbation Hamiltonian is
H' =eE(t)-r=eEzd(t). (10.5.1.8)
Find

(2.1) The total transition probability from ground state to all possible excited states;
(2.2) Discuss if the energy is nonconservative.

Solution:
(2.1) In electric field

ih%‘l’(r,t) = (Ho+H')¥(r1). (10.5.1.9)
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Initial condition is

‘P(r,O) :lploo(r) E‘Pl(r). (105110)
Set ‘
P(r,t) =Y an(t)Pu(r)e Ent/h, (10.5.1.11)
Initial condition rewrites as
an(07) =3d,. (10.5.1.12)

Substituting Eq. (10.5.1.12) into Eq. (10.5.1.9), taking H'Y ~ H'¥| (H' is a week pertur-
bation), one obtains

da, .
Zih‘lfn%e iEit/h _ ) — B2 8(1). (10.5.1.13)

Multiplying the left hand side of Eq. (10.5.1.12) by ¥}, and integrating over whole space
yield

d .
ih% = Bz, 8(t)e B/ ™. (10.5.1.14)
Making integration over ¢ from —oo — oo yields
eE
an(t)ZEan- (n#1) (10.5.1.15)

Therefore, after the action of the pulse electric field the transition probability to ¥, state is

,_ ¢F 2
According to the selection rule (Al = 1,Am = 0), the quantum numbers of final states have
to be (nlm) = (n10), i. e., electron can only transits to np states (I = 1,m = 0).

The total transition probability to all possible excited states is

! €2E2 / €2E2
an = |an(t)|2 = 72‘2111‘2 = ? (Z’ZM’Z - ’le’z) ) (105117)

n

where 7] =< W00|z| 100 >= 0 (because z is odd parity operator).

Ylal? = Y <Pioolz|¥, >< Walz|¥io0 >
n n

1
= < Wig|’|¥, >= 3 < P100/r?[P100 >= a?, (10.5.1.18)

where a, is the Bohr radius. Substituting Eq. (10.5.1.18) into Eq. (10.5.1.17) yields

/ 2E2 2
Y P =lan(n) =< hZa"- (10.5.1.19)

The probability that the electron stays still in the ground state [¥; > is 1 — Y| P,.
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(2.2) In the transition process the total momentum, transferred by the electric field pulse,
is

P= / di(—eEd(1)) = —eE. (10.5.1.20)
In the transition process the total energy, transferred by the electric field pulse, is
22
e“E
Efield,mral = 2“ . (105121)

When the electron transits to all possible excited states from ground state under the action
of the electric pulse perturbation, the electron gets energy

AE =

- (F - 1> ~ 0.5E fietd soral: (10.5.1.22)
where Bohr radius a, = h?/(ue?), and the forth equality comes from Eq. (10.5.1.18).

10.5.2. More General Theory of Transition Processes

Theorem XXXXI: Energy nonconservation in transition processes. In quantum
transition processes the energy is more or less not conservative except some physical
conditions are imposed.

Proof. We use two methods to prove this important theorem. First method is not exact.
Second method is exact in the sense of first order time-dependence perturbation approxi-
mation.

First method. The formula of transition probability given by Eq. (10.2.1.4), which is
quoted as follows:

P (t) _ P(l)(t) _ | (1)(t)|2 _ i ! iy ! (t)dt 2
k'k — Kk == ak’k == h2 0 e Kk
L 2
— o3| B < B )| | (10.5.2.1)
0
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where H'(¢) is a nonperiodic external perturbation. If the transition process of a system
from state |k > to |k’ > is energy conservation, then the following energy conservation
equation has to hold water:

AE = Eoxternal, (10.5.2.2)

where E,\.rnq1 1S the energy transfer from the external perturbation into the system, and AE
is the energy obtained in the transition processes from the initial state |k > of the system to
all possible final states of the system.

AE = Z Ek/Pk/k(t) = Z(Ek/ —Ek)Pk/k(l‘). (10.5.2.3)
k' 7k g

To seek Eoyernal, We can at first find the momentum transfer P (Note that P is no relation
with the probability.) by external perturbation

1o
:/ di|F), (10.5.2.4)
0

where F is the force applied on the system by external perturbation, and F = —VH'.

P(t) P*(0
2u 2u

~—

(10.5.2.5)

Eexternal =

Egs. (10.5.2.4-5) are completely independent of Eq. (10.5.2.3). Therefore, transition pro-
cess does not satisfy generally the energy conservation equation Eq. (10.5.2.2).

Second method. Use Eq. (10.4.3.14). We write the Eq. (10.4.3.14) as the following Eq.
(10.5.2.6).

2

| A
Pa(t=T) = lat=T)P= |- /0 doul Bl () dr'

1

1 1 r g [ .
= £\/—_/ dt/em)k,kt /; d(l)H]i/k(Os))eil(m
- lh\/_/ d(l)Hk/k / dt/ I(Dk/k (D)

) exp[ (@ —®)T]— 1]
N l_h \/—_ / dek/k( ((Dk’k - (,0)
_ expli(owy — 0)7T /2]
= zh/ dwH}, (o) (mk]jkk_m)o
{expli(wpr — ©)T /2] — exp[—i(wwx — )T /2]} |
i — @)

sin v — )T /2] |
= &1 dor o llon 0T

where |k’ > and |k > represent the quantum states of discrete spectra. For free particles, we
use box normalization, and thus Eq. (10.5.2.6) can also be use to free particles. The H'(r)

2

2

: (10.5.2.6)
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in Eq. (10.5.2.6), i. e., Eq. (10.4.3.14), generally, has three cases. Correspondingly, Eq.
(10.5.2.6) becomes the following results:

4 1

o _ 2
4L fjooode]i/k(m)sm[(mk/k ®)7/2]

Oy —®
lfH/ = Hl(.x,l’);
4 sinf(wy, )T /2] 2
Pk/k(t Z T) = 2 ‘Vk’k(w)W‘
if H =V (x)exp(+iot);

] )T /2 2
i | Vi (o) 2L L2

if H =V(x)

(10.5.2.7)

The three formulas in Eq. (10.5.2.7) show that we can only say that for the transition
processes between any assigned two states, the transition of energy conservation is not
definitely of the largest probability. We explain this point in detail as follows.

If we ask that what is the transition probability from an assigned initial state |k > to a
possible final states under the perturbation H'(z), for this possible final state the transition of
energy nonconservation can have the largest probability. The transition probabilities from
an assigned initial state |k > to any possible final states under the perturbation H'(¢) are:

‘ 2
o0 sin[(0,—0)T /2
Luk 7 ‘f—m doH], (o)A ‘
if H =H'(x,1);
4 |y, sinl(@yE0)T/2] 2
Y P(t>T) = Lk 32 ’ka oy ED (10.5.2.8)
k' Zk if H =V (x,t)exp(Limt);
4 sin[(@,,)T/2] |
Ytk 72 Vk’k#‘
if H =V(x)

In Eq. (10.5.2.8) the magnitude of Y/ Puk(t > T') is determined by two factors, for ex-

ample,
2

in|(ow +®)T /2
sin[(opx £ )T /2] = Vinl? x 1, (10.5.2.9)

Oy O

|Vier|?

other than just by the factor /. In this case, if, for example, ]Vk/k]2 o< (1),2/, then it is obvious
that the larger the @y is, the larger the transition probability from |k > to this special |k’ >
is. QED.

Comment 1: Although in some cases the magnitudes of the energy nonconservation is
not large, but we should have an estimation for the magnitude of the energy nonconserva-
tion. Especially, in some cases the magnitude of energy nonconservation might be huge.
In some processes, such as stimulated emission, the energy conservation is a physical
requirement, and thus in these cases we have to impose the energy conversation condition
to the transition formula before calculations.

Comment 2: The energy nonconservation in transition processes does not violate the
energy conservation proved in chapter 5. The latter says that if H has homogeneity (or
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uniformity) of time, then 0H /dt = 0, and thus dE /dt = 0 from

d(H) dE /i OH\
7_E_<E[H,H]+a—t>_o. (10.5.2.10)

The condition to obtain Eq. (10.5.2.10) is that the variation of state with time obeys the
time-dependent Schrodinger equation. However, in the case time-dependent transition the
system is in external time-dependent perturbation, the time is no longer of homogeneity.
On the other hand, the transition between initial and final states is determined by the
time-dependent transition probability instead of the time-dependent Schrodinger equation.
More simply speaking, in quantum transition process, 0H /dt # 0.

Comment 3: The energy sources of energy nonconservation come from vacuum space
because the energy dependence of |H;,, |* = |Vix|* in Eq. (10.5.2.8) or |H],p(k’)|* in Eq.
(10.3.2.4) determines the energy nonconservation of transition process. The particular
energy dependence of |Hj,|*p(k') is determined by the wavefunctions in states |k > and
|k’ >, the form of the perturbation Hamiltonian H’, and density of states, which are all
dependent on the space structure such as dimensions, and so on. We name |Hy|>p(K')
vacuum energy support ability.

At the end of this chapter 10, I would like to tell the readers that some references treat
the quantum transition problems by using a method, which can be called “cutting up with
one time knife”. According to this method, all transition processes obey the Fermi golden
rule, and, correspondingly, keep the energy conservation.

However, according to the theorem in this subsection, we should consider the energy
dependence of |H}, |*p(k') on k. If the dependence of k" is weak, then we can obtain the
time independence of the transition rate, i. e., Fermi golden rule. However, even in the case
of approximate time independence of transition rate, the physics between our textbook and
some references still has differences. Some references deduce the energy conservation
under the hypotheses that duration time of perturbation 7' = (¢, — 0) — oo. On the contrary,
this textbook deduces Fermi golden rule without using finite duration time of perturbation.

Theorem XXXXII: Zero initial transition rate: The initial transition rate of any
nonstable system is certainly zero.

Proof. The survival probability of any nonstable system can be defined as

P(t)=| <¥(0)|¥(t) > |>. (10.5.2.11)
This theorem means P
ﬂ =0. (10.5.2.12)
dt |r—o

The proof for Eq. (10.5.2.12) is as follows: (Refer to Ref. [114].)

d¥(r) > 1 :
— = EH(IMPSI(I) >, (10.5.2.13)
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and

ﬂ%¥m2%<“WN (10.5.2.14)
Therefore,
dl;—gt) = <0 {%T(t) >} <W(1)|¥(0) > +h.c
= < WO)H) () > < W) B(0) > +he
=0 (10.5.2.15)
QED.

Although the above derivations are the same as that in Ref. [114], the physical cause of
this theorem is different between this textbook and Ref. [114]. Ref. [114] argues that this
theorem is correct just for particle ensemble, and makes many arguments.

On the contrary, this textbook thinks that this theorem is for individual particle. The
reasons are as follows:

(i). In this textbook, we think from beginning to end that wavefunction, state, and
Schrodinger equation belong to individual particle;

(i1). The theorem can be proved also as follows.

" 2
/dﬂ<mﬂmwk> —0
0 =0

dP(I) . deu_k(l) . ii
dt dr  dth?

10.5.3. Quantum Zeno Effect

Theorem XXXXIII: Quantum Zeno effect. The survival probability of a nonstationary
initial state increases with increase of observation times # in finite time interval r = nédt,
where Ot represents the time interval between two time observations (i. e., the time inter-
val producing transition) and in continuous transition case, i. e., n — oo and & — 0, the
nonstationary state will stop decay or transition, i. e.,

n—oo

&t—0
Pex—grn — L.

Proof. ndr = infinite and n — 0,8t — 0 is called continuous observation of transition
process. Consider, for example, the spontaneous emission of an °Be™ ion [134]. The tran-
sition probability from excited state to ground state and emitting a photon with frequency
® during time interval 87 is

hort

N (0gr.ex + 0)0t /2 "5

sin ((mg ,exim))z / & B(&t)*, B>0. (10.5.3.1)
gr,ex

Pacr80) 24 [ dolHy o p(@)
[ aolm;,

If the duration time & is short, then we obtain the last equality of Eq. (10.5.3.1).
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If we make observations to know if the ion is still in the excited state in finite time
interval ndr, and make n time observations, then the survival probability that the ion keeps
in excited state is [60]

2 n
lim {Pn(t) = [1 —-B (E) ] e B/ _ e—Bt(St)Q-l)} 8—0 1, (10.5.3.2)

n—o0 n

which means that the continuous observations will stop the transition or the decay. This
phenomenon is called quantum Zeno effect [103, 114]. The observed data are if n =
64, then P,—¢4 = C, and if n = 1, then P,—; = 0.09C. Therefore, experiment confirmed
Zeno effect.

Quantum Zeno effect needs P, = Bt* (0. > 1), which indicates that the Fermi golden
rule is not correct, and further indicates indirectly that the energy in transition process is not
conservative.

Quantum Zeno effect is a present interesting subject. Readers can refer to Refs. [103,
114]. The quantum Zeno effect was proposed as a paradox by Refs. [135]. All until
now references and textbooks like to connect the so-called measurement with Zeno effect.
However, according to our statement and proof of Zeno effect, it is not necessary to connect
measurements with Zeno effect.

10.6. Exercises and Solutions

(1) This exercise is for subsection 10.3.1.

Eq. (10.3.1.3) can be found in some references, such as Refs. [1, 103]. We would like
to say that our understanding for the Eq. (10.3.1.3) is different from some references in
both physical and mathematical aspects. For reader to make clear distinction between right
and wrong, to be skilful at transition theory, and to have significant contributions in both
energy sources and quantum mechanics, as an exercise we require readers to know theory
of transition probability and transition rate, given by some references, and make comments
for these theories in both physics and mathematics.

Some references, such as Refs. [1], use the mathematical formula

sin®xt

lim = lim md(x), (1)

t—o0 X t—o0

or, such as Refs. [103], use mathematical formula equivalent to Eq. (1), and obtain from
Eq. (10.3.1.3)

|Hli’k|2 Sil’lz[((l)k/k — 0))1‘/2]

Pk/k(l‘—>0°) = lim

= B2 [(o — 0) /2]
. 2m|H,, |t
= =T Sen-o)
2n|H,, [t
= hmMS(Ek,—Ek—hm). (2)

t—o0



420 Fu-sui Liu

Some references obtain the corresponding transition rate from initial state |k > to state
k' > is

. d 2n|H., |?
Wk’k(t - °°) = tlgg EPk’k(t — °°) = %8(@]{% - (D)
2n|H!, |
= %S(Ek/ —E;,— h(l)). (3)

The delta function in the some references’s Eq. (3) represents the energy conservation in
the quantum transition process. That the wy/x does not depend on time is the so-called Fermi
golden rule.

As is well known, the §(x) function in Egs. (2-3) is a distribution function of x, i. e., x
is a continuous variable distributed in the range —eo < x < +o0, and the dimension of 8(x)
is [1/x]. Therefore, @y can continuously vary. Ref. [1] suggests a method to take out the 8
function from Egs. (2) and (3). Ref. [1] introduces density of states p(k’), puts p(k’) into
Egs. (1-2), and makes integration, and obtains:

2m|Hj, |2
k'k p.

2n|H), |t
Pui(t — o) = lim M 5

[—o0 h

P, wik(t —o0) = (2-3)
Here we finish the introductions on the derivations for the transition probability and
transition rate by some references.

Solution:
We make some comments for the above derions in Egs. (2-3), or, in other words, makes
some comments for some references’s transition theory:

(1.1) The limit t — oo in the second equality of Eq. (2) violates the validity of perturba-
tion theory because of the unlimited growth of the transition probability;

(1.2) The limit t — oo in Eq. (2) is not physical, because any physical transition process
has a finite lifetime. For example, for many transition processes in atoms the observed
lifetime is 1071 — 1077 << oo second;

(1.3) Some references, such as Refs. [103], think that if the physics of the condition of
long time limit is in that the duration time ¢ of periodic perturbation is considerably greater
than typical period 27/ (@p — ).

Let us give readers a numerical example to explain that t >> 2m/(@p — ) does not
satisfy the condition of long time approximation. It is clear from Eq. (13.1.4.1.9) that the
exact mathematical condition of the long time approximation is (@ — ®)f >> 1 other than
oyt >> 1. Take hoy —hwy =5—4 =1 eV. According to some references the condition of
long time approximation is t >> 27/ (e — ;) = 2nh/(Ep — Ex) =21h/(1.602 x 10712) =
4.118 x 10" second. Because some references think that from the condition @t >> 1 one
can obtain hwy — hwy — Ao = 0. To make numerical comparison,let us take hwy — hoy —
hw=0.001 eV. From the exact mathematical condition of the long time approximation, one
can obtain that 7 >> 2nh/(hoy — hoy — ho) = 2nha/(0.001 eV) = 21A/(0.001 x 1.602 x
10712) = 1000 x 4.118 x 10> second. It is clear that t >> 4.118 x 10> second cannot
ensure ¢ >> 1000 x 4.118 x 103 second;
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(1.4) Some references, such as Refs. [103], think that the conclusions of quantum
transition theory represent behavior of quantum ensemble.

On the contrary, our transition theory thinks that any conclusion, including that from
quantum transition theory, in quantum mechanics represents the individual behavior of the
studied system;

(1.5) Some references, such as Refs. [103], think that the conclusions of quantum
transition theory do not change, if \H,i,k\z is a smooth function of X’ and .

On the contrary, we think that if |H], |? is a smooth function of Ey — Ej, then the prob-
lems in some references’s transition theory are even more serious. Let us cite an exemple
to illustrate why. Let us consider the energy dependence of |H}, |> = |H”|*(Ex — Ex)' P,
and calculate P, which represents transition probability from initial state |k > to all
possible final states of the system. To avoid the mathematical divergence, in the following
calculations we take B =a — 0.

Pori(t = 0) = }E{},ZP kit
Kk
. +°o
~ }1_{2 dayp (@) Pry(t)
teo — _a|H, | [sin](op — o — 0)t/2]]>
_ dovdlon THx
Pty P (k) h2 [ (o — 0)
~ fim T (copr) Jrooala)/(a)/—oa)l’[3
B t—o0 hz p k —oo k K k
{sin[(mk/—mk—m)t/Z]r
(O — )

AT
= Jim = plow)

~+o0

B doaké [(wk/ o —0))1’[34—0)1’3} %

sin[(op — o —0)2/2]1?

[ (@px — )f/2 ]
2 ——

t [ gsin?[(op — o — o)t /2]
) a’m ~3P
h? p( g kZ{ OJk/ 0)k+0))l‘/2}1+[3
o' Bt sin?[(op — o — )t /2]

2 (o — o + @)1 /2]?

= lim
t—o0

. 4|H? +eogin?x @' By sin®x
= Jfim = —p(ov) a L dx g += 2 ). e
- ‘ ,,2_ _2zﬁr(_[3)cos([3n)/2 o' Prr
N 1152 ) 21-B T
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|H”|? —2f0(-B) o' P

= Jim =5 —p(ox) 2 T2
= I+1 B=a—0). (4)

The second term is recognized by some references as a term corresponding to energy con-
servation transition. Even though we agree with some references’s this opinion, the first
term belongs definitely to energy nonconservation transition. Due to that the  can be very
small and I'(—0) = —eo, the probability of energy nonconservation transition can, in prin-
ciple, much larger than that of the energy conservation transition;

(1.6). The oscillation factor in Eqs. (2) and (10.3.1.3), sin®[(aw — ®)t/2]/[(@pr —
®)/2]?, gives that the first peak is at ay; — @ = 0, the height of the first peak is very height,
and the first zero point is at (@ — ®)f/2 = =7 (For example, see our Fig. 10.1 or Fig. 2.1
in Ref. [103]). From these features of the oscillation factor, some references confirm that:

(1.6.1) The quantum transition process is energy-conservative;

(1.6.2) The width 2 X (@ — ®)¢/2 = T between two zero points (W — ©)t/2 = —X
and (0 — )¢ /2 = 1) comes from Heisenberg uncertainty relation, and thus does not need
to be considered;

(1.6.3) (The height of the first peak):(The height of the second peak)~ 22. Thus, some
references think that although the oscillation factor does not equal zero at |@yy — ®| > 0,
but due to theirs smallness one can neglect all the contributions from | — ®| > 0.

Let us make some comments for the some references’s opinions in points (1.6.1-3).
Eq. (10.3.1.8) contains two terms, I and /1. Correspondingly, the oscillation factor in the
seventh equality of Eq. (4) contains the following two terms as well, named as I’ and II'.
Noting that f = a — 0, and the second term can be neglected, we have
[(or — o — ) Bt sin®[(op — @ — )t /2]

2 [((Dk/k—(l))t/Z]Z
ot sin’[(0p — o — 0)/2]
2T (oo
[(op — 0 — )" Bz sin?[ (oo — oo — @)1 /2]
2 [(@p — )2 /2]
sin®[(op — o — o)t /2]

= (5)

[(op — o — )1 /2] 4B

r'+1 =

Q

The oscillation factor in Eq. (5) gives that the first peak is at (0 — ®)¢/2 = 1/2, the height
of the first peak is very high, and the zero points, nearest to the first peak of the oscillation
factor, are at (@p — ®)7/2 =0 and (0 — ®)¢/2 = ®, which are much different from Fig.
10.1 and Fig. 2.1 of Ref. [103]. From these features of the oscillation factor, the author of
this book confirms with a tit-for-tat that:
(1.6.1)’ The quantum transition process is energy-nonconservative;

(1.6.2)’ (The height of the first peak):(The height of the second peak):(The height of the
third peak)=1:1/3: 1/5. We think that due to that the second and third peaks do not too
low, one cannot neglect the contributions from second and third peaks;
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(1.6.3) The width of the first peak does not connect with Heisenberg uncertainty
relation. Our reason is simple. The second and third peaks do not too low. Therefore,
anybody cannot think that just the peak width of the first peak connects with Heisenberg
uncertainty relation.

(1.7) The quantum transition process of the system’s initial state |k > to any other final
state |K' > belongs to a still more microscopic process. In chapter 4 we have pointed out
that in a still more microscopic process, the energy is generally not conservative;

(1.8) In the simple case that H,;,, does not depend on k', the inverse of transition rate
is called lifetime of initial state |k >. This lifetime can be measured by experiment. We
have to stress that this observed lifetime connects with all possible final states instead of
connection with just the single energy conservation transition.

(1.9) Although Ref. [1] suggests a method to take out the & function from Egs. (2-3) by
introducing a physical quantity, density of state, and, formally, Eqs. (2-3)’ are same as our
Egs. (2) and (10.3.1.3)’. However, we have to point out that:

(1.9.1) Our Egs. (10.3.1.6) and (10.3.1.3)’ do not need t — oo, and Eqgs. (2-3) need;

(1.9.2) In mathematics, the procedure to obtain Eqgs. (10.3.1.4) and (10.3.1.3)’ are le-
gitimate, but that of Egs. (10.3.1.6-7) is not legitimate;

(1.9.3) In physics, our Egs. (10.3.1.6) and (10.3.1.3)’ say that that the transition
process with large probability is energy conservation just occurs under the condition of
k'-independence of |H},|p(k). On the contrary, Eqs. (2-3) think that their delta function
can ensure the k’-independence of |H,, |p(k’), and in treating any particular problems some
references always use Fermi golden rule, and affirm energy conservation in transition
processes.

(1.10) The condition of long time approximation in some references is (@ — @)t >> 1.
This condition is self-contradictory in mathematics. This condition leads to energy conser-
vation, i. e., @gx — ® = 0. Then, from (0 — ®)7 >> 1 we conclude that 7 — co. However,
in practical experiments on transition processes experimentalists cannot wait with infinite
long time. If # = 1 second, then some references’s condition (@ — )¢ >> 1 is equivalent
to condition Wy = W — ®)k >> ®, which shows serious energy non conservation.

(1.11) Some authors have recognized that the limit # — oo in the second equality of
Eq. (2) violates the validity of perturbation theory because of the unlimited growth of
the transition probability [103]. However, these authors also provide explanation to still
legitimately use the + — oo. They said: “However, the transition process is finished after a
few period of the transition frequency so that use the ¢ — oo rather safely.”

On the contrary, our viewpoint and logic are: “Just due to that the transition process
is finished after a few period of the transition frequency, t — oo is not legitimate. Any
mathematician knows that limit procedure cannot be taken randomly. Otherwise, one can
derive even an absolutely ridiculous conclusion.”

(2) This exercise is for section 10.3.1.
List, in mathematics, some cases in which the oscillation factor appears.
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Solution:

= / dtezkx pe zkox/Z < ikox/2 _efikox/2>

> sin?kox/2
- (kox/2)?

That is, Fourier transform of a constant in some interval is of this oscillation certainly.

(3) This exercise is for section 10.4.3.

In point (B) of subsection 10.4.3 we studied the variation perturbation in finite time
interval. All the until now references and text books, such as Ref. [1], studied this problem
as well. However, they made the following derivations, and gave the following different
expression, Eq. (13.1.5.11)’, for the transition probability from |k > to [k’ > att > T

1 T 2
Pk’k(tZ T) = |a/((}k)(l‘ZT)|2: z_h/ e"”k’k’ ( )dl‘
0
2

— h/ I(Dk/kt )dt

l
= h/ dt'e lmk”"/ d(,l)Hk/k e i

l

1 o , 2 M ) 2
= l_h/f dek’k(m)an(mk’k_m) = i—th/k(O)k/k)

4m?
= 7 Hu o). (10.4.3.14)’

Eq. (10.4.3.14)’ is different from our Eq. (10.4.3.14). Please point out the mistake in
the derivations of Eq. (10.4.3.14)’.

(4) This exercise is for section 10.4.3.
Similarly to Eq. (10.4.3.7), seek Py x(t > T).

Solution:
We hope that readers can confirm that H}, (®) has to be dependent, at least, on .
Otherwise, the integration over my will be divergent.

(5) Exercise for subsection 10.3.2.
Discuss the physical meaning of the term neglected in Eq. (10.3.2.3). Estimate the
scale of the neglected term.

(6) Exercise for the theorem XXXIX in subsection 10.3.2.

Some references give the same result as the case = 0 of theorem XXXIX, and the
same curve as Fig. 10.1. Some references’s interpretation and treatment for their obtained
transition formula and Fig. 10.1 is as follows. Some references only take the value of Py
at f = (Epy —E;x —E)/h = 0 as the transition probability in any cases. Some references
think that the k’-dependence of |H}, |*pk’ always can be neglected. Some references’s
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reasons for this are:

(a) f = (Ex — Ex — E) /h # 0 violates the energy conservative law;

(b) The width of the first peak at Ey — E — E = 0 comes from Heisenberg uncertainty
relation, and therefore does not need to be considered;

(c) The heights of second peak and so on are too small, and thus can be neglected.

Please make comments.

Solution:
This book thinks that some references’s viewpoints are wrong because:

(a) Every body should do not negative rashly his (hers) direct calculation results accord-
ing to apriorism. Therefore, we have to study deeply this small energy nonconservation
shown in Fig. 10.1. If some processes violate the energy conservation law, then we should
ask a question that is the energy conservation law really true in any cases?

(b) From derivation we see that the width of the first peak in Fig. 10.1 does not have even
a wee bit of connection with Heisenberg uncertainty relation. This point can be understood
by Fig. 10.2.

(c) It might be that in some D-C transitions the transition at f >> 0 becomes important,
and thus the transition of energy nonconservation becomes important. We should do not
give a simple negation only due to its littleness. Actually, this paper demonstrates in subse-
quent subsections that the transition at @ — @; — ® >> 0 becomes important in 3 > 0 cases.

(7) This exercise is an exercise for subsections 10.4.4 and 10.3.1.

We have indicated in subsection 10.4.4 that both experimental data and our theory
show that the energy in the optical absorption of semiconductor is not conservative.
The origin of the energy non conservation comes from the factor \/Ey in the density of
states. In subsection 10.4.4 the density of states is three dimensional. Discuss the energy
nonconservation in case of one and two dimensions.

Solution:

Do not need to write the whole expression of . First, write the energy-dependence of
density of states in one and two dimensional systems; Second, put this energy-dependence
in the integrand, and make integration over energy; Third, make comparisons of the
magnitudes of energy non conservation in one, two, and three dimensions. We hope readers
to know from these comparisons that energy non conservation of D-C transition is related
to the vacuum energy support ability.

(8) Exercise for subsection 10.4.5.
Obtain the time dependence of transition rate for photoeffect, and negative Fermi
golden rule.
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Solution:
It is easy to show that for photoeffect the transition rate is nearly proportional to ¢ 1 2
(9) Exercise for subsection 10.4.5.
By numerical analysis, explain the characters of theoretical curve 1 and 2 of Fig. 10.10
under boundary absorption.

Solution:

In the case of photoeffect of atom, if 7, << 10~!3, the energy nonconservation becomes
more stronger. Therefore, it is not convenient to draw diagram. Let us derive a general
formula, appropriate for any value of #,, for the maximum kinetic energy of ejected electron
in case of boundary absorption (® = ®p). For convenience, we neglect the complex energy
denominator in Eq. (13.1.6.5.14). Then, we have

~1/2 . 2, Ekinto
it = 1) & B Psin®(Z502). (1)
2h
The equation of maximum Ey;, of emitted electron at fixed #,, Ey;,, can be obtained from
Eq. (1), and has been given by Egs. (13.1.4.1.9) and (13.1.4.1.10). It is

tan(x) = 4x, (2)
where x = t,Ey;, /(2h) = t,0/2. The solution of Eq. (2) is
toOin = 3.11484. (3)

Thus, generally speaking, the smaller the ¢, is, the larger the Ey;, is. (As long as for
boundary absorption, Eq. (3) gives always Ey;, =0.) If t, = 10~', 10~'3 second, then
Erin = 0.205, 0.0205 eV, respectively. These values are nearly equal to the values in Fig.
10.10. In Fig. 10.10 Epp0n = E = Ej = 1.8156 V.

(10) Exercise for subsection 10.4.5.
If the following experimental conditions:

(a) The attosecond light pulse, for which the E};10n = E ~ 4135 €V;

(b) Epin = Ep = Eppoton = E = 4135 eV. (Ref. [131] points out that the inner-shell
electrons of atoms have widely spaced energy levels from 10 to 10° eV. Therefore, it is
not difficult to find some inner-shell levels which can give Ej, = 4135 eV.) can be fulfilled,
then under the boundary absorption of atom photoeffect seek the magnitude of energy
nonconservation.

Solution:

From Eq. (3) of the last exercise (2), if . = 10~'® second, then the kinetic energy of
emitted electron Ey;, = hy;,, = 2050 eV, which is much larger than the expected value 0 eV
from energy conservation theory. We can say that the energy is strongly nonconservative in
attosecond photoeffect.
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(11) Exercise for subsection 10.4.5.

The 2010 available ultrafast technology is 100 attosecond [131]. Ref. [131] reported
when a helium atom in its ground state with energy -40.35 eV absorbs an 100 attosecond
light pulse (t, = 10'® second, photon energy = 40.35 eV=E}), a single electron can
be emitted, leaving the other electrons in the ground state, through direct attosecond
photoeffect. It is a big pity that Ref. [131] did not measure the observed kinetic energy Ey,
of emitted electron. Would you please give the theoretical expected value.

Solution:
According to Eq. (3), Exin = Ephoton — Ep = 20.5 V.

(12) Exercise for subsection 10.4.5.

What are the reasons that the famous Millikan’s experiment [130], so-called deter-
minant verification for the Einstein equation of photoeffect, looks like to support the
photoeffect theory of energy conservation?

Solution:

In Millikan’s experimental data there are only five experimental points. All the five
points are at Epjr0n > 2.24 €V. In Millikan’s times there were no attosecond and femtosec-
ond pulse techniques. For boundary absorption in Millikan’s experiment the photon energy
has to be E,jo10n = Ep = 1.85 V. Therefore, Millikan’s experiment can neither negative nor
confirm our energy nonconservation photoeffect theory.

The now available experimental photoeffect was done only at picosecond (t, = 10712
second) and subpicosecond (¢, = 10~ 13 second), which does not contradict with our Figs.
10.7 and 10.8. Figs. 10.7 and 10.18 show that the obvious energy nonconservation in
photoeffect occurs only at 7, < 10713 second.

(13) Exercise for subsection 10.4.5.
The Einstein equation of photoeffect is

Eyin = photon — Ep

which is obviously a energy conservation equation, and is verified by Millikan’s photoeffect
experiment. Would you please argue that Einstein equation of photoeffect does not hold
water exactly.

(14) Exercise for subsection 10.4.5.
Design an experiment to verify the obvious energy nonconservation under boundary
absorbtion condition of photoeffect.

Solution:
Refer to the discussion on the attosecond technology in photoeffect at subsection
13.1.6.5 (after Eq. (10.4.5.16)).
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(15) Exercise for subsection 10.4.5.
Point out the significance of the above experiment.

Solution:

According to Einstein photoeffect equation, which is an energy conservation equation
and is thought as a correct equation until now, under the bound absorbtion the emitted
electron energy is equal to zero. Therefore, if your experimental data is that the emitted
electron energy is equal to 2050 eV, then this is definitely an interesting experimental result
because this is a direct energy nonconservation observation.

(16) Exercise for section 10.4.6.

The following quotation on the elastic scattering problem comes from Ref. [133]. The
author does not agree with this method. But for reader to be familiar with our energy
nonconservation transition theory, this exercise will at first quote, then ask the readers to
point out which equation is wrong and why?

Ref. [133] wrote after our Eq. (10.4.6.22) that:

To calculate the derivative, the energy condition of the collision have to be examined.
We assume that the electron is very fast and therefore proceed from the relativistic energy-
momentum relation

VP22 +m2ct + M = \/p2 +m2ct + V252 + M2t = E, (1)

where the first and second terms represent the system (one electron and one nucleus) initial
and final state energy. That the two energies are equal to each other means energy conser-
vation in scattering process. If the kinetic energy of the electron is large enough compared
with the rest energy, then the term mc? can be neglected and we obtain

E
— =p+Mc? =p + W22+ M2 (2)
c
According to the definition of s, we have
h2s* = p? 4 p'* —2pp’ cos®. (3)

Because the great mass M of nucleus, the energy transfer can be considered small compared
with Mc?, and therefore p ~ p’ and (p’ — p)? ~ 0, so that p’> + p*> = 2p’p. Thus we get

h2s* =2pp’ (1 —cos®) = 4pp'sin’ % (4)
From Eq. (4) we find for E /¢ that
(p—p' +MP)* = B> +M>c*
= 4dpp'sin? % + M (5)
On the other hand, we have

(p—p' +M*)? = (p—p)+2(p—p)Mc+M*c
~ 2(p—p)Mc+M>c?, (6)
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because p — p’ =~ 0 and thus the square (p’ — p)? is vanishingly small. From Egs. (5) and
(6) we have

e)
(p—p')Mc =~ 2pp'sin® > (7)

and with this, finally,

;) 14
P 2p/Me)sin? @2 ®)

Now the expression dEy /dp’ has to be calculated. For this purpose we start with

Ep = p'c+V/ h2s2c? + M2 c*, 9)
from which we get
dEy h2c?(ds*dp)
= ¢
dp’ 2V R2s2c? + M4
h2 2 d 2
N i (10)
2Mc2 dp’

and if we make use of Egs. (4) and (8), then we obtain

dp/ %C(I—FM—CSIH 5 :C?. (11)

Finally, we get the following expression for the density of states in Eq. (10.4.6.22):

p/2 1 p/3
E / = = . 12
PUE40) = 333 aB Jdp — (2mh)ep (12)

Substituting Egs. (12) and (10.46.20) into Eq. (10.4.6.2)yields

1 [+ 4me? PP sin (Ey—E)ts
Pat(t > 1 :/dQ—/ F(s)? % .. (13
all k( = ) 12 Jo ‘ §2 (S)‘ (znh)gcp [Ek/—Ek}z k ( )
2R
Correspondingly, the transition rate is
Wi = Warek(t > 1) = Puri(t > 1)
1 o 4m 2 3 sin2 (Ey—Ex)to
= /dQ—/ | ¢ F(S)’z P 2h2 dEk/
h? Jo 52 (27h)3cp  [E.-E
]
= /‘dQWfl"dQ. (14>

The transition probability itself cannot be measured directly, but a quantity can be observed,
which is called a cross-section, or, more accurately, a scattering cross-section, and is de-
noted by 6. Or, more conveniently, we introduce differential cross-section dG¢; 4o, which
is defined as the number of particles scattered per unit time and per unit of the incoming
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particle current into the section of the solid angle (Q — Q+dQ). Since the initial states
|i >= |k > represent particles, the current of which is v;, we obtain

(15)

Wi iad€
doy 40 = 117

Vi

Since we use the high velocity approximation for the scattering electron, v; =~ c¢. Substituting
Eq. (14) into Eq. (15) yields

de?—i,dQ _ 1 /J,-oo (4%)2e4p’3 |F(S)‘2
c h?(2mh)3c?p Jo s4
. Z(Ek/_Ek)to
X Slnizhszk/
Ey—Ey
o5
e p 1 :
= _ F(s)|% 16
(chpsin4®/2) F(5) (16)

The last equality in Eq. (16) comes from assumptions of p’-independence of p /s*|F(s)|?
and t, — oo.

Solution:

According our transition theory the energy before and after scattering does not be con-
servative, therefore Eq. (1) is wrong. Egs. (2-8) and (11) are wrong because the energy
before and after scattering does not be conservative. Eq. (10) is wrong because after scat-
tering p’ can be infinite, it is might be that 25> >> Mc?. Although in comparison of Eq.
(10) with our Eq.(10.4.6.26)

p/2 1 plz

Ey = = 10.4.6.2
P(Ek.a0) = s TEeTdy — (amh)ie’ (10.4.6.26)

formally, the difference is little, but, in essence, the difference is big, the reason of which is
that p’ can be equal to . Of course, Egs. (13-16) are wrong.

(17) Exercise for section 10.4.6.
Assume that the nuclear charge density distribution is given by the so-called Fermi

distribution
Po

~ 1+exp[(R—Ry/2)/a]’

The values of parameters in Eq. (10.4.6.34) are as follows. p is determined by the
experimental value, i. e., the incident electron energy is 200 MeV. ¢, represents the duration
time of scattering. Although we cannot exactly determine it, but we can approximately
estimate it. Due to that the Coulomb interaction is proportional to |r — R|, which is the
distance between initial position of incident electron and the target position, we take
|r—R|=1cm. Thust, ~2/c=0.7 x 107! second. Take M = My, = 197 x 1.67 x 10~%’
Kg. A=197. Ry ~ (1.0 —1.2)A'/? fermi. p, = 1.65 x 10* nucleons/m>. Substituting
all these values and Eq. (10.4.6.34) into Eq. (10.4.6.31), you can obtain a theoretical

Pp(R) (10.4.6.34)
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curve of do; 4o /d€Q o< the scattering probability versus scattering angle ®. Based on the
comparison of your theoretical curve and the experimental data in Ref. [132], please make
conclusion.

Solution:

If your theoretical curve fits the data, then the conclusion is that the nuclear charge
density distribution is given by the so-called Fermi distribution correctly.

If your theoretical curve departures from the data seriously, then the conclusion is that
the nuclear charge density distribution does not obey the so-called Fermi distribution, and
scientists have to find true nuclear charge density distribution. If your theoretical curve
departures from the data seriously, then would you please write a paper to negative the so
called Fermi distribution model of nucleus, accepted by some references.

(18) Exercise for subsection 10.4.6.

According to the shell model of nucleus, inside the nucleus there should be some
places where there are no charges. The shell model was awarded the Nobel Prize. Do you
have ability to propose a nucleus charge density distribution model instead of the so called
Fermi distribution model, and to put your model distribution function into Eq. (10.4.6.31)
to explain the experimental data given by Ref. [133]?

Solution:

To approach the shell model of nucleus, the distribution model can have many
possibility. Even you have not yet had enough reasons to negative the Fermi distribution
model, but if you have enough reasons to doubt the Fermi distribution model, then it also
has significance for science.

(19) Exercise for subsection 10.4.6.

Using the Eq. (10.4.6.31), calculate the transition probability in direction of ® = 1/2.
©® = 1/2 represents the angle between electron incident direction p and scattered electron
direction p’.

Solution:
The transition probability is proportional to

=, p° = . , sin’[(p' — p)cto /1]
Jy @0 Gy, ARop RIS PP PR/ RE s

To continue the calculation, we need to make some assumptions about the charge density
distribution in nucleus.

(20) This exercise is for subsection 10.4.6, and might be a paper if you have enough
time to finish it.

Please study that which formula is better for the o scattering: Rutherford’s and
modified Rutherford’s formulas Eq. (10.4.6.2-3) or this textbook’s exact formula Eq.
(10.4.6.31)? The related experimental data are in the Table 1.1 of Ref. [133]. Table 1.1 of
Ref. [133] gives the experimental values of scattering angle 6 and the scattered o particle
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number N(0), which is proportional to differential scattering cross section, and also gives
the calculated values of N(8)sin*(8/2).

(A) Do you think that Rutherford’s formula has been verified by the experimental data?
(B) Can the modified Rutherford’s formula explain the experimental data good enough?
(C) Use the exact formula to explain the data.

Solution:

(A) According to Rutherford’s formula, N(8)sin*(6/2) has to be a constant. How-
ever, the data are:, for example, N(15°)sin*(15°/2) = 38.4, N(30°)sin*(30°/2) = 35.0,
N(105°)sin*(105°/2) = 27.5,- - -. Therefore, Rutherford’d formula is not good.

(B) Use the modified Rutherford’s formula to calculate N(0) o differential scattering
cross section and make comparisons with the experimental data in the Table 1.1.

(C) Use the exact scattering formula to calculate N(8) o differential scattering cross
section and make comparisons with the experimental data in the Table 1.1.

(D) Use the exact scattering formula with recoil effect to calculate N(8) o differential
scattering cross section and make comparisons with the experimental data in the Table 1.1.

(21) The newest textbook Ref. [10] proves the same formula as our

27
lim Pog(t > T) = 25 | Hin owr)| (10.4.3.17)

T—oo

for the D-D transition. Do you think that is the result of Ref. [10] correct?

Solution:
No. It is still wrong although Ref. [10] is the newest textbook. We still insist that

2

Sll’l[(mk’k —0)T] ’ (10.4.3.14)

P (t>T d H/
kk( h22 ’/ kk Oy — O

is correct.
Our reason, besides the reason mentioned in that subsection, is as follows. Assume that
Hj, () ~ constant. Eq. (10.4.3.14) becomes

2
sin[(oyx — )T]
P (t>T = , do
kk( el ) h22 kk‘ / mk’k—O)
. 2 sinx|?
= h22 ‘Hk/k‘ / dx—
4 1 ) P /
- m2an | Hyy|* x Q‘Hk’k" (10.4.3.14)

Although our Eq. (10.4.3.14)" looks like the formula in Ref. [10] apparently, but there
is significant difference, i. e., the formula in Ref. [10] is based in the non-physical limit
T — oo, on the contrary, our formula is based on that: (i). The T can be long or short; (ii).
The energy is not conservative in transition process. We prefer to believe a physical new
effect (which does not contract with any known experimental facts), and do not prefer to
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believe an obviously wrong assumption 7 — oo,

(22) The transition from continuous state into discrete states can occur in many actual
processes, e.g, the capture of electron by ions, the absorption of an electron a valence band
into an acceptor state in a doped semiconductor, the neutron capture by nuclei, and in
plasma or early evolution of universe [10]. There are many papers to calculate the radiative
capture cross section for electron-proton recombination into arbitrary hydrogen shells [10].
However, until 2012, the calculations results of the electron capture cross section for ions
from radiative recombination were much too small to explain the experimental values. To
set theoretical result to fit better the experimental values people proposed many model on
the scattering process and so on. Ref. [115] found from experiment that if the electron
energy is high, then the theoretical result is better, and if the electron energy is low, then
the theoretical result is worse.

(A) Do you have other method other than present scattering model to make a new theo-
retical calculations? Is it might be that your calculations have important significance?
(B) Can you qualitatively explain the experimental values in Ref. [115]?

Solution:

(A) There is an obvious weak point for the treating the quantum transition in some ref-
erences, i. e., all they neglect the possible energy nonconservation processes. We can try to
make an exact numerical calculations for the transition probability. Qualitatively speaking,
our theoretical calculations will definitely can give larger cross section, because we consider
both the contribution from the energy conservation process (which is considered solely by
some references) and all contributions from energy nonconservation processes (which have
not been considered by some references). Of course, if we really can quantitatively explain
the experimental values, then the significance is: (i). Many models should be wrong; (ii).
We can conclude that the energy nonconservation in transition processes is verified by this
C—D transition.

(B) At first, we should remember that theories in some references for C—D transition
do not consider the contribution of energy nonconservation. The theorem in this chapter
denotes that for high energy electron the contribution of energy conservation in C—D tran-
sition is important, and thus the theories in some references are easy to fit the experimental
values [10]. However, the theorem in this chapter denotes that for the low energy electron
the contribution of energy nonconservation in C—D transition process is important, thus
the theoretical results in some references will be bad definitely.

(23) Let us systematically discuss Fermi golden rule in case of D-C transition, make
detail comparisons between the methods of some references and this textbook.
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Solution:
We calculate the differential transition probability in first order approximation

dP_y

dE'p(E")| < K|Us(t,t.)|k > |*
= dE'p(E")|Skx(t.10)]?

1| <K|H' k> |?
h? [(owr — ) /2]
Under first order approximation, the differential transition rate into a final state energy
interval E' — E' +dE’ is

dE'p(E') — sin*[(opr — ©)(t —1.)/2]. (23.1)

0
dwip = Edpk—ﬂc/(tato)

B )1]<k’]H’]k>]28

72 [(aee —w) 2P 3" (@ = 0)(t = 1) /2], (23.2)

Integration over the final state energy E’ then yields an expression for the transition rate of
initial state |k >

Wkoall ks = / dwi i

_ /dE, )Lk
? [(orn - 0)/27

sin®[(@px — )(f—to)/2]

t—to

2
2\<k’\H\k>\ p(E ’t

)
sin®[(op — @) (1 —t )h/Zh]
/0 aE (@ — )7 /20)?
J
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2
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X
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n-x

X
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—lo

%

X
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27
= —I< K|H'|k> [*p(E"). (23.3)

1 1
= Sl <KIHk> Pp(E)—

The fourth equality is an approximate expression, because we assume the E’(k')-
independence of | < k'|H'|k > |?p(E"). The sixth equality is also an approximate expression,
because we take the lower limit of the integration is —eo. Under the three conditions of these
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two approximations and allowing the strong energy nonconservation in transition, we de-
rive the Fermi golden rule (= time independence of the transition rate of initial state |k >).
From our derivation, we can see that Fermi golden is not an exactly rule. On the contrary,
it is an quite approximate rule. This rule requires the independence of energy of final state
of | < K'|H'|k > |?p(E"). In fact, generally, this condition cannot be satisfied. For example,
always p(E’) o< VE'.

Next, we introduce the method of some references to obtain the time-independence of
Wik—all ks- Would the readers please to make comparisons with our Eq. (23.3), and points
out the mistakes in the derivations.

Some references (such as [10]) make the following derivations (Suppose H'(t) =
H'exp(—iwr)):

2

dP_v = dE'p(E) —%/ dt e < [ \H' (1)) |k >

! ! 1
= dE'p(E") 5| <K|H'|k> [?(2m)*[3( oo — )]

1
= dE’p(E’)ﬁ\ < k"H"k > ‘Z(Zﬂ)za((ﬂyk—(ﬂ)
)2

X lim  lim — dte! (@it
(@, —®)—0T —e0 270 T/2

1
= dE'p(E’)ﬁ\ < K|H'|k > |*(21)*8( i — o)

T
X lim —. (23.4)
T—o0 270
Therefore,
00 . 00 1
Wik—all k's = /odwk*k/:rhf; A TdP/ka

_ / ) dE’p(E’)%\ < K|H'[k > [2(2%)25] (0wx — o)l
0

. 1T 21
lim —— = —
T—oo T 2T h

X

p(E)| < K|H'|k > |?

(23.5)
E/:Ek+7:l,(1)
Eq. (23.5) is exactly same as the Eq. (13.29) in Ref. [10], and is used by some references.
Let us discuss Egs. (23.3) and (23.5).

(1) It is obviously that the duration time 7' of time-dependence perturbation has to have
a magnitude order of relaxation time of the transition process. Generally, the relaxation
time is from 10~ to 10~ '3 second. Therefore, the limit T — oo is not reasonable in physics.
Generally, the condition that p(E’)| < k'|H’|k > | does not be satisfied.

Therefore, when one uses the Fermi golden rule, one has to use the rule based on the
proof of this textbook, i. e., we should know that the Fermi golden rule is not exact, and thus
one should: (a). consider the conditions in any particular cases, and make an estimations
for the error; (b). abandon the often energy conservation of transition process.

(ii) As is well known, when some references treat the problems in solid state, particle
physics, nuclear physics, and so on, some references use the Fermi golden rule, and make
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further analyses based on the Fermi golden rule. By using this “cutting up with just one
knife”, from 1930 up to 2013, some references make conclusions, the number of which
will be more than 10°. This textbook believe that in the 103 conclusions there are, at least,
more than 500, which are of serious mistakes. If a person makes derivations once again,
then one the person might have new discoveries.

(24) Would reader please read and understand in both physics and mathematics the
paper in “E. S. Liu, Energy and Power Engineering, 2010, 2, 137-142”, and then design
some interesting experiments to verify the possible strong energy nonconservation in
quantum transition processes. In my coming textbook “Advanced quantum mechanics
upon theorems” I will give some of them.

(25) At beginning of this chapter, we write: “(5). We would like to point out that the
mathematical treatment for transition processes and scattering processes in the until now
all references and textbooks exists one very seriously purely mathematical mistake on the
limit time — o0.”

Would you please point out the serious consequences in physics due to this mistake.

(26) Born and Fock proposed adiabatic (approximate) theory in 1928 [136] for quan-
tum transition. All until now references and textbooks prefer to use adiabatic theory to treat
quantum transition processes [120, 114, 57, 7]. However, after first strongly criticizing this
adiabatic theory by Ref. [137], and then supporting Ref. [137] by Ref. [138], now many ref-
erences want to modify the adiabatic theory, and the adiabatic theory in quantum transition
of open system becomes a modern open hot problem. The physical idea of adiabatic theory
in all until now references and textbooks is simple. The idea is to find a better conditions to
set the limit # — oo reasonable. If one takes r — oo, and obtains energy conservation result
and keeping Fermi golden rule, then one thinks that his method is nearly with confidence.

This textbook does not agree the above idea, and suggest to stop using the adiabatic
theory since 1928 to now. Our reasons are also very simple, and are listed as follows:

(1) The limit ¢ — oo in transition processes is not physical, i. e., violates all experimental
facts;

(i1) The limit + — oo is wrong completely in mathematics. We have to remember that
the actual quantum transition is a short time problem. The treatment for a physical problem
is not a game. One cannot play a mathematical infinite limit game, one cannot also take
mathematical infinite limit as an approximation arbitrarily.

(iii) No anybody and no any theory have proved that an open system has to obey energy
conservation and Fermi golden rule. Actually, this chapter exactly proves that the quantum
transition in an open system does not maintain energy conservation.

Do you think that the critiques of this textbook for the adiabatic theory are excessive?

Solution:
No. They are balanced criticism.
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(27) As you know, transition process requires to find a matrix element, which is
independent of pictures. Until now this textbook uses Schrodinger picture to study
quantum transition. Please use the interaction picture in chapter 5 to give quantum Zeno
effect a more general proof.

Solution:
From Egs. (5.7.4.18) and (5.7.4.3), we obtain

Poscisgromn(81) = | < W (t = 0) % (8r) > [> "% 1 — B/ (81).

Using the same method as that in subsection 10.5.3, we obtain if & > 1, then there is
quantum Zeno effect. However, if oo = 1, then the transition or decay process do not be
suppressed.

(28) Using interaction picture in chapter 5 derives the first approximation theory of
quantum transition. (Refer to Refs. [120, 114].)

(29)

(i) Would readers, including students and beginners, please argue that quantum
mechanics upon theorems will cause fourth science and technology revolution in our
world; [The first, second, and third are steam engine (1765, Watt), electric mo-
tor(1821, Faraday)—applications of electricity(1880, Edison), and computer(1946) —
internet(1960)—information, respectively.]

(i) Would readers please appraise classical mechanics, quantum mechanics upon pos-
tulates, special and general theory of relativity;

(iii) Would readers please estimate influences of quantum mechanics upon theorems to
social science, especially, philosophy.

(iv) Do you agree that the quantum theory from Planck quantum (1900) to basic quan-
tum field theory (1929) cannot be a cause of third world science revolution? Why?
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Balmer series of lines, 5
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black body, 3

black body radiation, 3
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Bohr correspondence principle, 9

Bohr frequency condition, 8
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Bohr quantization condition of angular
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Born approximation, 402
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boundary condition, 106

boundary conditions, 109
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box normalization, 80, 207

C-C transition, 371

canonical conjugate variables, 200
canonical conjugates, 28
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canonical momentum, 27, 28
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canonical quantization procedure, 312

canonical transformation, 32, 33
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common eigenfunction, 201

commutation operators, 62

commutation relation, 62, 200

commutation relations, 60
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Compton shift, 5

configuration space, 25
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coupling representation, 349
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dipole approximation, 381
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discrete normalization, 80
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dot product, 40
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eigenequation of Hamiltonian, 107

eigenfunction, 105

eigenfunction of Hamiltonian, 107

eigenfunction of operator, 111
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Einstein formula, 7

electric dipole moment, 381

electric dipole radiation, 383

energy conservation, 212

energy operator, 213

energy quantization, 182
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Euler-Lagrange equation, 27
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exchange degeneracy, 340
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exchange term, 360

Fermat principle, 10

Fermi golden rule, 370, 422

fermion, 338
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Fourier pair variables, 60
Fourier transform, 43
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functional integral, 239

gauge function, 310

gauge invariance, 310
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generalized coordinate, 27
generalized force, 27
generalized momentum, 27
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guide-factor, 74, 84, 85

Hamilton canonical equations, 29, 30
Hamiltonian, 30, 105

Hamiltonian principal function, 25
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Heisenberg equation, 223
Heisenberg picture, 220

Heisenberg uncertainty principle, 20
Heisenberg uncertainty relation, 16
Hellmann-Feynman theorem, 287
Hermitian operator, 198, 200
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Lagrangian, 27
Lagrangian formulation, 27
laser, 381

law of wavepacket, 96
least action principle, 10
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line spectrum of atom, 5
linear operator, 111
linear potential, 171
Lorentz force, 310

massy particle, 10

moderate decrease, 42

momentum probability density, 103
momentum space, 60

non-commutation operators, 62

non-commutation pair variables, 60

non-statistical interpretation of wave-
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noncoupling representation, 349

nonlocality, 350, 351
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normalization condition, 73
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normalized state vector, 38
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object, 23

observable, 110

odd parity, 143

one dimensional harmonic oscillator, 163
one dimensional harmonic potential, 163
operator, 60

operator of dynamical variable, 110
orthnormality, 293

orthogonal, 38, 195

orthogonal set, 41
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orthogonarmal basis, 221

orthonormal basis, 39

orthonormal set, 195, 265
orthonormality, 41

parity operator, 143,218

partner variable, 60

path integral, 239

path of classical mechanics, 29

Pauli exclusion theorem, 341

Pauli matrix, 330

Pauli representation, 330

Pauli spin matrix, 328

Pauli spin operator, 328, 330

Pauli theorem, 339

periodic normalization, 80

periodic perturbation, 369

permutation operator, 336

phase space, 25, 28

photoeffect, 4, 392

photoelectric effect, 4, 392

photon, 7

Planck constant, 58

Planck light quantum hypothesis, 7

Planck-Einstein quantum theory of light,
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Planck-Einstein relation, 7

planet model of atom, 6

point transformation, 33

Poisson bracket, 30, 201

population inversion, 381

potential step, 148

principle of least action, 25, 27

probability amplitude, 369

probability current, 113

probability current density of single par-
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probability density, 20, 102

probability density flux of single particle,
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probability density in momentum space,
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probability density wave, 20

product state, 350

project operator, 256

proper variables, 200

quantization of space, 268
quantum Hall effect, 322
quarkonium, 177
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radial quantum number, 275
rectangular barrier, 154

rectangular well, 144, 154, 161
reduced Planck constant, 58
reflection, 218

Reflection coefficient, 150

reflection operator, 143
requirements for wavefunctions, 109
Ridberg constant, 9

rotational operator, 217

scalar product, 40

scattering cross-section, 405, 431

scattering state, 162

Schrodinger equation, 88

Schrodinger picture, 220

selection rule, 383

self adjoint operator, 198

self conjugate operator, 198

separable state, 350

single body operator, 349

Slater determinant, 344

spatial inversion, 218

specific heat, 6

spectrum term, 6

spin 1/2, 323

spin angular momentum, 323

spin exchange operator, 360

spin function, 326

spin singlet state, 347

spin triplet state, 347

spinor, 326

spontaneous emission, 381, 384

spontaneous equiprobability symmetry
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spring constant, 162

square barrier, 154

square well, 144, 154, 161

state vector, 220

stationary state, 107, 141

stationary wave, 11

stationary wave condition, 11

statistical interpretation of wavefunction,
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step function, 226

step potential, 148

still more microscopic process, 96
stimulated absorption, 381
stimulated emission, 381
superposition principle, 107
superposition theorem, 107
symmetric wavefunction, 338
symmetry gauge, 318
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time evolution operator, 236, 366

time evolution operator , 223

time slicing, 236

time translation operator, 223

time-dependent Schrodinger equation, 93

time-independent Schrodinger equation,
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time-ordering operator, 226

time-ordering product, 226

time-shift operator 7r, 212

transition probability, 367

translation operator, 215

transmission coefficient, 150

tunneling effect, 159

two body operator, 349

ultra-violet catastrophe, 4
unbound particle, 171
unbound state, 162
uncertainty, 45, 59

unitary operator, 220
unitary transformation, 220

vacuum energy support ability, 374, 419
variance, 43
vector space, 37, 39

wave-particle duality, 51, 100
wavefunction, 88
wavefunction of spin state, 326
wavenumber space, 60
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zero point energy, 66
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