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PREFACE

This book is an essay in conceptual analysis: the analysis of one of the most
prominent and exciting new areas of physics—quantum information theory. Quan-
tum information is a field at the intersection of quantum physics, communication
theory and computer science. It has considerably increased our understanding of
quantum mechanics, developed our conception of the nature of computation, and
spurred impressive increases in our ability to manipulate and control individual
quantum systems. Not only that, but the theory hints enticingly at ideas of rich
philosophical promise.

My aim here, first of all, is to carve out an understanding of the nature of
information and particularly, of quantum information, which will allow us to
gain a clear view of what quantum information theory is all about. The account
I give of the concept of quantum information allows us to resolve various puzzles
internal to the theory, concerning the nature of nonlocality and information
flow in the presence of entanglement; and it provides us with a better grasp of
the relation between quantum information theory and the world. This in turn
permits a clear view of what the ontological and methodological lessons provided
by quantum information theory are; lessons which bear on the gripping question
of what role a concept like information has to play in fundamental physics.

My second (but not secondary!) aim is to assess the claim that advances
in quantum information theory pave the way for the resolution of the tradi-
tional conceptual problems of quantum mechanics; roughly speaking, the deep
problems which loom over measurement and the issue of entanglement and non-
locality; more generally, the puzzles about what the quantum world is like. Being
clear to begin with on the notion of information renders this task of assessment
considerably more manageable. I critically assess a number of the concrete pro-
posals which have been offered. One moral which will be drawn is that there are
no cheap resolutions of the traditional problems to be had: various of the ap-
proaches, whatever other merits they may have, leave these problems untouched.
And even then, there is still considerable work to be done. The deepest lessons,
perhaps, are still waiting to be learnt; but I trust that we will be better placed
to appreciate them having trodden the path that I lay out here.

A note on the genesis of this work: this book is a development of my 2004
DPhil thesis of the same title (Timpson, 2004b). Some matters of a more narrowly
technical interest included there have been excised and a good deal of material
revised and added. The discussion of the nature of information (Chapters 2
and 3 of the present work) has been considerably extended and developed; in
particular, the positive account of the nature of quantum information which
was only implicit in the 2004 thesis receives a full treatment here. The most
notable addition (filling the most obvious previous lacuna) is the discussion of
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quantum Bayesianism (Chapters 9 and 10). A slightly shortened version of this
material appeared as ‘Quantum Bayesianism: A Study’, Studies in the History
and Philosophy of Modern Physics, 39(3), 579–609 (2008), published by Elsevier.
I thank the UK Arts and Humanities Research Council for a research leave award
and the Department of Philosophy at the University of Leeds for additionally
providing matching leave, which together enabled me to spend a good deal of the
academic year 2006–7 working on this material. Chapters 4 and 5 have previously
been published as, respectively, ‘The Grammar of Teleportation’, British Journal
for the Philosophy of Science, 57(3), 587–621 (2006) (Oxford University Press)
and ‘Nonlocality and Information Flow: The Approach of Deutsch and Hayden’,
Foundations of Physics, 35(2), 313–343 (2005) (Springer). They appear here
with minor amendments. Part of Chapter 6 is a much revised version of part of
Timpson (2004a).

It is my pleasant duty to record here a goodly number of further thanks. My
main intellectual debts are to my former teachers, now colleagues and friends,
John Hyman and Harvey Brown. This book would not be at all as it is (more
probably: simply would not be) without their respective influences. In addition
I should particularly mention Jon Barrett, Chris Fuchs, Jeff Bub, Jeremy But-
terfield, Antony Valentini and Jos Uffink for their help and support. Thanks are
also due to a large number of friends and colleagues at Oxford and elsewhere, in-
cluding Marcus Appleby, Katherine Brading, Guido Bacciagaluppi, Carl Caves,
Ari Duwell, Doreen Fraser, Steven French, Alexei Grinbaum, Hans Halvorson,
Michael Hall, Leah Henderson, Clare Horsman, Richard Jozsa, Pieter Kok, James
Ladyman, Matt Leifer, Owen Maroney, Peter Morgan, Wayne Myrvold, Michael
Nielsen, Oliver Pooley, Greg Radick, Alastair Rae, Simon Saunders, Rüdiger
Schack, Nick Shea, Michael Seevink, Mauricio Suarez, Rob Spekkens and Mark
Sprevak. David Wallace and Joseph Melia have both been particularly influential
on my thinking. I must thank my editor at OUP, Peter Momtchiloff, above all
for his remarkable patience.

This book is intended to be of interest both to physicists and to philosophers
concerned with the conceptual standing and implications of quantum information
theory. Accordingly I have made some effort to define my terms and to explain
what may be unfamiliar as I go along (though there is much to get through,
so the pace perhaps remains unfortunately quick at times). The book is also
intended to be accessible to advanced undergraduates in either field. However,
a good grasp of the quantum mechanical formalism is presupposed throughout.
In case that should constitute a bar, an appendix reviewing the elements of the
quantum formalism is provided. A more serious presupposition, perhaps, is a
fair degree of familiarity—at least in outline—with the standard foundational
debates in quantum mechanics: the problem of measurement, debates surround-
ing the nature of entanglement and quantum nonlocality, the pros and cons of the
standard interpretations of quantum theory. Much of interest would be gained
by following up the various references I cite in the course of the discussion, but if
this area were unfamiliar and pointers needed, one might turn to Albert (1992),
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before moving on to Redhead (1987), Bub (1997), and Wallace (2009).
This book is dedicated to my wife Jane and daughter Catherine. Quite apart

from everything else, Jane was kind enough to make the figures.

CGT
Brasenose College,
Oxford
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1

INTRODUCTION

Much is currently made of the concept of information in physics, following the
rapid growth of the fields of quantum information theory and quantum com-
putation. These are new and exciting fields of physics whose interests for those
concerned with the foundations and conceptual status of quantum mechanics are
manifold. On the experimental side, the focus on the ability to manipulate and
control individual quantum systems, both for computational and cryptographic
purposes, has led not only to detailed realization of many of the gedanken-
experiments familiar from foundational discussions (cf. Zeilinger, 1999a, for ex-
ample), but also to wholly new demonstrations of the oddity of the quantum
world (Boschi et al., 1998; Bouwmeester et al., 1997; Furusawa et al., 1998).
Developments on the theoretical side are no less important and interesting. Con-
centration on the possible ways of using the distinctively quantum mechanical
properties of systems for the purposes of carrying and processing information
has led to considerable deepening of our understanding of quantum theory. The
study of the phenomenon of entanglement, for example, has come on in leaps
and bounds under the aegis of quantum information (see, e.g., Bruss (2002) for
a useful review of developments).

The excitement surrounding these fields is not solely due to the advances
in the physics, however. It is due also to the seductive power of some more
overtly philosophical (indeed, controversial) theses. There is a feeling that the
advent of quantum information theory heralds a new way of doing physics and
supports the view that information should play a more central role in our world
picture. In its extreme form, the thought is that information is perhaps the
fundamental category from which all else flows (a view with obvious affinities
to idealism), and that the new task of physics is to discover and describe how
this information evolves, manifests itself, and can be manipulated. We can call
this kind of view, which would do away with material items like particles and
fields at the fundamental physical level and replace them with an immaterial
basis of information, informational immaterialism. The best known proponent
of such an idea is perhaps the late John Wheeler with his infamous ‘It from Bit’
proposal, the idea that every physical thing (every ‘it’) derives its existence from
the answer to yes–no questions posed by measuring devices:

No element in the description of physics shows itself as closer to primor-
dial than the elementary quantum phenomenon . . . in brief, the elemen-
tary act of observer participancy . . . It from bit symbolizes the idea that
every item of the physical world has at bottom—at a very deep bottom,
in most instances—an immaterial source and explanation; that which we
call reality arises in the last analysis from the posing of yes–no questions
that are the registering of equipment evoked responses; in short that all
things physical are information-theoretic in origin and this is a participa-
tory universe. (Wheeler, 1990, pp. 3, 5)
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Less extravagantly, we have the ubiquitous, but baffling, claim that ‘Information
is Physical’ (Landauer, 1996) and the widespread hope that quantum informa-
tion theory will have something to tell us about the still vexed questions of the
interpretation of quantum mechanics.

These claims are ripe for philosophical analysis. To begin with, it seems that
the seductiveness of such thoughts appears to stem, at least in part, from a
confusion between two senses of the term ‘information’ which must be distin-
guished: ‘information’ as a technical term which can have a legitimate place in
a purely physical language, and the everyday concept of information associated
with knowledge, language, and meaning, which is completely distinct and about
which, I shall suggest, physics has nothing to say. The claim that information is
physical is baffling, because the everyday concept of information is reliant on that
of a person who might read or understand it, encode or decode it, and makes sense
only within a framework of language and language users; yet it is by no means
clear that such a setting may be reduced to purely physical terms; while the mere
claim that some physically defined quantity (information in the technical sense)
is physical would seem of little interest. The conviction that quantum informa-
tion theory will have something to tell us about the interpretation of quantum
mechanics seems natural when we consider that the measurement problem is
in many ways the central interpretive problem in quantum mechanics and that
measurement is a transfer of information, an attempt to gain knowledge. But
this seeming naturalness only rests on a confusion between the two meanings of
‘information’.

My aim in this study is to make progress with these and other puzzles; and
the first step is to achieve clarity on the nature of quantum information theory.
The key to that, in turn, is getting clear on the concept of information; and
in particular, on the concept of quantum information. Many have found this
concept rather opaque and puzzling: needlessly so, I shall argue.

It is commonly supposed that the straightforward question ‘What is quantum
information?’ has not yet received—and perhaps cannot be expected to receive—
a definite or illuminating answer. Compare the Horodeckis:

Quantum information, though not precisely defined, is a fundamental con-
cept of quantum information theory. (Horodecki et al., 2006)

And Jozsa:

|ψ〉 may be viewed as a carrier of ‘quantum information’ which . . . we
leave . . . undefined in more fundamental terms . . . Quantum information
is a new concept with no classical analogue . . . In more formal terms, we
would aim to formulate and interpret quantum physics in a way that has
a concept of information as a primary fundamental ingredient. Primary
fundamental concepts are ipso facto undefined (as a definition amounts
to a characterization in yet more fundamental terms) and they acquire
meaning only afterward, from the structure of the theory they support.
(Jozsa, 2004)
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But I shall argue that we can do rather better than this: the concept of quantum
information can be laid quite plain and bare before us. It can be straightforwardly
defined (it is not a primitive) and a simple account may be given of the ontological
status of quantum information. When a proper understanding of the significance
of the coding theorems is in place, it can be seen (pace Jozsa and his Hilbertian
analysis above) that quantum information and classical Shannon information are
more than analogous: they are species of a single genus.

The account I will go on to provide of the nature of quantum information
is ontologically deflationary. We should not take the view that information in
general, nor quantum information in particular, is any kind of physical substance
or stuff—even if a very nebulous and aethereal one—as the writings of some
authors might lead us to suppose. But neither should we take the nihilist view
that quantum information does not exist. The middle way—the right way—is
to pay careful attention to the logical status of the concept of information. It
proves essential to recognize that ‘information’ is an abstract noun: then we can
see clearly what information talk is doing, both in the quotidian and in the
quantum context.

Before we can begin to make these helpful steps towards understanding the
concept of quantum information, however, we need to be sure that we are start-
ing off on the right foot, with a proper understanding of the familiar Shannon
concept. Now discussions of information theory, both quantum and classical,
generally begin with an important caveat concerning the scope of their subject
matter. These warnings typically take some such form as this:

Note well, reader: Information theory doesn’t deal with the content or
usefulness of information, rather it deals only with the quantity of infor-
mation.1

But while there is obviously an important element of truth in statements such
as these, they can also be seriously misleading, in two interrelated ways. First,
the distinction between the technical notions of information deriving from infor-
mation theory and the everyday semantic/epistemic concept is not sufficiently
noted;2 for it may easily sound as if information theory does at least describe
the amount of information in a semantic/epistemic sense that may be around.
But this is not so. In truth we have two quite distinct concepts (or families of
concepts)—the everyday and the technical—and quantifying the amount of the

1Examples of the disavowals—Weaver: ‘. . . information must not be confused with meaning.
In fact, two messages, one of which is heavily loaded with meaning and the other of which is
pure nonsense, can be exactly equivalent from the present viewpoint as regards information’
(Shannon and Weaver, 1963, p. 8). Similarly Feynman: ‘. . . “information” in our sense tells us
nothing about the usefulness or otherwise of the message’ (Feynman, 1999, p. 118); and Cherry:
‘It is important to emphasise, at the start, that we are not concerned with the meaning or truth
of messages; semantics lies outside the scope of mathematical information theory’ (Cherry,
1951, p. 383).

2Bar-Hillel (1955) is an early and an exemplary entreaty not to confuse the information
theory notion of information with information proper. Bar-Hillel also notes, with chagrin, the
tendency of authors to backslide once they get beyond their opening disavowals; I share his
sense of regret.
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latter does not tell us about the quantity, if any, of the former (a claim which
would be no surprise to Shannon himself, in fact (Shannon, 1948, p. 31)). The
second point of concern is that the coding theorems that introduced the classical
(Shannon, 1948) and quantum (Schumacher, 1995) concepts of information do
not merely define measures of these quantities. They also introduce the concept
of what it is that is transmitted, of what it is that is measured. Thus we may
as happily describe what information in the information-theoretic setting is, as
how much of it there may be. It is this which opens the door to a general def-
inition of what information in a Shannon-style information theory is; and the
consequent—clarifying—recognition that quantum information falls under this
general definition.

Thus I begin in Chapter 2 by addressing the general question ‘What is in-
formation?’ The shape of the issues is cleanest if one transposes this question
immediately into the formal mode: ‘How does the term “information” behave?’
This highlights various features of the everyday notion, specifically, that ‘infor-
mation’ is an abstract noun whose function is to be explained in terms of the
conceptually simpler verb ‘inform’; which is in turn to be explained by appeal
to the concept of knowledge. I draw a distinction between possessing and con-
taining information; and I indicate the lines of difference between the everyday
concept and Shannon’s technical one. Various philosophical terms of art—and
more importantly, the distinctions they mark—are then introduced: distinctions
between sentence and statement (proposition); between sentence type and sen-
tence token; between type and token more generally; and finally between object
and property. These distinctions prove essential to appreciating the ontological
status of information. We then turn to the Shannon concept and I provide a
general definition of what information in a Shannon-style theory is.

It is easy to come away from standard presentations of the Shannon theory
with the wrong impression. Thus some of the claims I shall make about it may
sound surprisingly revisionary: the Shannon concept of information is not at all
to do with uncertainty; and neither is it centrally concerned with correlation.
Neither uncertainty nor correlation provides the key to the Shannon concept.
(One is not helped by overtones of the everyday concept sliding in here.) Instead
what is crucial is the abstract characterization of information sources and the
requirement that what is produced by a source be reproducible at the far end of a
communication system. The quantitative side of the Shannon theory is concerned
purely with specifying the resources required to achieve this task of transmission.
The quantitative concept of Shannon information is then just that of the degree
of compressibility of the output of a source: what channel resources are required
to transmit the message? What is produced—the piece of Shannon information
to be transmitted—we will see to be a particular kind of sequence of states;
an abstract item. Thus it transpires that ‘information’ in the Shannon theory
is an abstract noun just as much as it is in the everyday context. I close the
chapter with a brief discussion of Dretske’s attempt to base a semantic notion of
information on ideas from information theory; I argue that this attempt is not
successful.
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In Chapter 3 the approach to thinking about information developed in the
previous chapter is turned towards the quantum theory. First, some of the char-
acteristic ideas and applications of quantum information theory are presented:
bits versus qubits; accessible versus specification information; the Holevo bound;
the no-cloning theorem; the use of entanglement to assist communication; the
examples of superdense coding and teleportation; a brief sketch of the notion
of quantum computation. Then comes the core of the chapter (Section 3.6): the
discussion of the nature of quantum information. With the correct conception of
Shannon information to hand, the dimension of generalization which the quan-
tum concept occupies becomes clear. Quantum information is simply what is
produced by a quantum information source. As in the classical case, a piece of
quantum information will be an abstract type (in fact a sequence of quantum
states), rather than some kind of concrete thing or physical substance. This con-
ception is defended from a number of potential objections which might be raised.
With a clear grasp obtained of the relation between quantum information and
the world, it proves short work to dissect the slogan ‘Information is Physical’
and dispatch the prospect of informational immaterialism (Section 3.7.1).

Chapter 4 is a case study whose purpose is to illustrate the value of recogniz-
ing clearly the logico-grammatical status of the term ‘information’ as an abstract
noun: in this chapter I investigate the phenomenon of quantum teleportation in
detail. While teleportation is a straightforward consequence of the formalism
of non-relativistic quantum mechanics, it has nonetheless given rise to a good
deal of conceptual puzzlement. I illustrate how these puzzles generally arise from
neglecting the fact that ‘information’ is an abstract noun. When one recognizes
that ‘the information’ does not refer to a concrete particular or to some sort of
pseudo-substance, any puzzles are quickly dispelled. The central moral is that
one should not be seeking, in an information-theoretic protocol—quantum or
otherwise—for some particular ‘the information’, whose path one is to follow,
but rather concentrating on the physical processes by which the information is
transmitted, that is, by which the end result of the protocol is brought about.
When we bear this in mind for teleportation, we see that the only remaining
source for dispute over the protocol is the straightforward one regarding what
interpretation of quantum mechanics one wishes to adopt. I go on to describe
how teleportation looks within a number of familiar interpretations.

Chapter 5 continues the theme of the preceding chapter. In it I discuss the
important paper of Deutsch and Hayden (2000), which would appear to have
significant implications for the nature and location of quantum information:
Deutsch and Hayden claim to have provided an account of quantum mechanics
which is particularly local, and which finally clarifies the nature of information
flow in entangled quantum systems. I provide a perspicuous description of their
formalism and assess these claims. It proves essential to distinguish, as Deutsch
and Hayden do not, between two ways of interpreting their formalism. On the
first, conservative, interpretation, no benefits with respect to locality accrue that
are not already available on either an Everettian or a statistical interpretation;
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and the conclusions regarding information flow are equivocal. The second, on-
tological, interpretation, offers a framework with the novel feature that global
properties of quantum systems are reduced to local ones (this is an extremely
striking result); but no conclusions follow concerning information flow in more
standard quantum mechanics. We see in particular that the Deutsch–Hayden
approach does not provide us with a novel account of the nature of quantum
information or of how quantum information behaves.

Chapter 6 is a discussion of some of the philosophical questions raised by
the theory of quantum computation. First I consider whether the possibility of
exponential speed-up in quantum computation provides an argument for a more
substantive notion of quantum information than I have previously allowed, con-
cluding in the negative, before moving on to consider some questions regarding
the status of the Church–Turing hypothesis in the light of quantum computation.
In particular, I argue against Deutsch’s claim that a physical principle, the Tur-
ing Principle, underlies the Church–Turing hypothesis; and consider briefly the
question of whether the Church–Turing hypothesis might serve as a constraint
on the laws of physics.

In Chapter 7 we change tack and turn our attention directly towards the
question of the foundations of quantum mechanics. Whether advances in quan-
tum information theory will finally help us to resolve our conceptual troubles
with quantum mechanics is undoubtedly the most intriguing question that this
new field holds out. Interestingly, such diametrically opposed interpretational
viewpoints as Copenhagen and Everett have both drawn strength since its de-
velopment. Copenhagen, because appeal to the notion of information has often
loomed large in approaches of that ilk; and a quantum theory of information
would seem to make such appeals more serious and precise (more scientifically
respectable, less hand-waving); Everett, because the focus on the ability to man-
ipulate and control individual systems in quantum information science encour-
ages us to take the quantum picture of the world seriously; because of the intui-
tive appeal of a parallel-processing-in-many-worlds view of quantum algorithms
(a view due to Deutsch); and most importantly, because of the theoretical utility
of always allowing oneself the possibility of extending a process being studied to
a unitary process on a larger Hilbert space.3 In addition to providing meat for
interpretational heuristics, quantum information theory, with its study of quan-
tum cryptography, error correction in quantum computers, the transmission of
quantum information down noisy channels, and so on, has given rise to a range
of powerful analytical tools that may be used in describing the behaviour of
quantum systems and therefore in testing our interpretational ideas.

In this chapter, however, my intention is merely to set out some simple pre-
liminaries that are needed to guide us when investigating what work appeal to
the concept of information might do for the foundations of quantum mechanics.
One point noted is that if all that appeal to information were to signify in a

3This is known in the trade as belonging to the Church of the Larger Hilbert Space.
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given approach is the advocacy of an instrumentalist view, then we would not be
left with a very interesting, or at least, not a very distinctive, position. Another
is the warning that the factivity of ‘information’ (one can’t have the information
that p unless it is the case that p) tightly constrains what a direct appeal to the
notion of information can do for you in understanding the quantum state.

The most prominent lines of research engaged in bringing out implications
of quantum information theory for the foundations of quantum mechanics have
been concerned with establishing whether information-theoretic ideas might fi-
nally provide a perspicuous conceptual basis for quantum mechanics, perhaps by
suggesting an axiomatization of the theory that lays our interminable worrying
to rest. That one might hope to make progress in this direction is a thought that
has been advocated persuasively by Fuchs (2003), for example. In Chapter 8,
I investigate some proposals in this vein, in particular, Zeilinger’s Foundational
Principle and the information-theoretic characterization theorem of Clifton, Bub
and Halvorson (Clifton et al., 2003). I show that Zeilinger’s Foundational Prin-
ciple (‘An elementary system represents the truth value of one proposition’) does
not in fact provide a foundational principle for quantum mechanics and fails
to underwrite explanations of the irreducible randomness of quantum measure-
ment and the existence of entanglement, as Zeilinger had hoped. The assess-
ment of the theorem of Clifton, Bub and Halvorson is more positive: here in-
deed an axiomatization of quantum mechanics has been achieved. However, I
raise some questions—as others have too—concerning the C∗-algebraic starting
point of the theorem. It seems that this is not a sufficiently neutral theoreti-
cal framework for the axiomatic project. Moreover, I argue that far from the
Clifton–Bub–Halvorson result motivating an information-theoretic approach (or
so-called principle theory approach) to understanding the quantum world which
obviates our traditional conceptual concerns, such an approach simply fails to
engage with the crucial interpretational issues.

The final proposal we shall consider—in Chapters 9 and 10—is perhaps the
most radical. It is the quantum Bayesianism of Caves, Fuchs and Schack. This
approach is dramatic in its starting point, which is to insist that all probabilities,
even those encapsulated in a quantum state assignment, are entirely subjective
(in the subjective Bayesian sense); merely matters of the degrees of belief that
an agent might have, rather than of how things are. The thought is that once
the correct view of the quantum state and related structures is adopted—i.e.,
the subjective Bayesian view—it will be possible to find within the quantum
formalism the real ontological truths it is trying to teach us. Using the tech-
niques of quantum information theory, the aim is to separate the chaff of the
subjective elements of the formalism (to do with our reasoning) from the wheat:
the objective features of the theory which reflect physical facts about the world.
In Chapter 9 I begin by presenting and motivating the approach in some de-
tail, before defending it from various common objections; while in Chapter 10
I present some more substantive challenges which the approach faces. The con-
clusions are mixed. In many ways, quantum Bayesianism represents the acme of
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certain traditional ways of thinking about quantum mechanics (broadly speak-
ing, Copenhagen-inspired ways). If one hopes to defuse the conceptual troubles
over collapse and nonlocality by conceiving of the quantum state in terms of
some cognitive state, then the only satisfactory way to do so is by adopting the
quantum Bayesian line. Moreover, the quantum Bayesians do not rest at the
stage of merely providing an (admittedly highly contentious) interpretation of
the quantum formalism; they seek to go further and explain why it is that the
world has to be construed that way. Now, the latter task, we must grant, is a
research programme rather than a fait accompli, but as things stand, the quan-
tum Bayesian faces difficulties in providing a satisfactory account of explanation
in the quantum realm and over the question of whether subjective probabilities
are really adequate; or so I shall argue.

Where do these deliberations leave us? It is useful to distinguish between
two general kinds of strategies which have been manifest in attempts to obtain
philosophical or foundational dividends from quantum information theory: the
direct and the indirect. The direct strategies include such thoughts as these: the
quantum state is to be understood as information; quantum information theory
supports some form of immaterialism; quantum computation is evidence for the
Everett interpretation; information is to be thought of as some new kind of
physical entity which provides a subject matter for quantum mechanics. None of
these proposals survives close examination; and it seems unlikely that any such
direct attempt to read a philosophical lesson from quantum information theory
will. Much more interesting and substantial are the indirect approaches which
seek, for example, to learn something useful about the structure or axiomatics
of quantum theory by reflecting on quantum information-theoretic phenomena;
that might look to quantum information theory to provide new analytic tools for
investigating that structure; or that look to suggested constraints on the power
of computers as potential constraints on new physical laws. In these directions,
there may be much to be learnt.

A general methodological moral suggests itself too. Disunity is a prominent
theme in current philosophy of science: the failure of the dream (or illusion?) of
positivist unified science; the explanatory (and perhaps nomological?) autonomy
of various sections of scientific knowledge; the sheer diversity displayed across
the range of scientific endeavour. Presented with this dauntingly diverse land-
scape, it is natural to seek for concepts which may nonetheless deploy some kind
of unifying power across this disparate range; and for many information natu-
rally presents itself as just such a concept. It seems to be employed fruitfully
in very many different areas, from linguistics to cognitive science, from biology
to computer science, from engineering to thermodynamics, statistical mechan-
ics and quantum physics. Surely information is a natural candidate to provide
high-level unification4 across these and other areas? Well, the results of our in-
vestigations here should give us pause. To make sense of the field of quantum

4As opposed to the dream of reductive unification.



Introduction 9

information and of its philosophical implications, it is necessary to treat the
concept of information highly critically; to emphasize the distinctness between
various different concepts and measures of information that might be employed;
to see carefully the differences between the ways in which the term ‘information’
functions in various contexts. The fact that the same term—‘information’—is
being employed in various areas is of course no guarantee that the same con-
cept is being employed; or that the same features of a given concept are in play.
The lesson seems to be that one should not be overly hasty in seeking to iden-
tify notions that arise in different contexts, even if they go by the same name;
one needs first to check carefully how these concepts function in their various
domains before beginning to think about identifying them. The temptation to
hope for explanatory benefits arising from unification across apparently diverse
subject areas is strong, but unless there are bona fide links between the concepts
in play, then the appearance of explanatory benefits will, of course, be bogus.
Shannon (1956) warned against jumping on a bandwagon of information talk; I
suggest that his is a warning we must be careful to heed today.



2

WHAT IS INFORMATION?

‘To suppose that, whenever we use a singular substantive, we are, or
ought to be, using it to refer to something, is an ancient, but no longer a
respectable, error.’ Strawson (1950)

2.1 How to talk about information: Some simple ways

The epigraph to this chapter is drawn from Strawson’s contribution to his fa-
mous 1950 symposium with Austin on truth. Austin’s point of departure in that
symposium provides also a suitable point of departure for us, concerned as we
are with information.

Austin’s aim was to de-mystify the concept of truth, and make it amenable
to discussion, by pointing to the fact that ‘truth’ is an abstract noun. So too
is ‘information’. This fact will be of recurrent interest during the course of this
study.

‘ “What is truth?” said jesting Pilate, and would not stay for an answer.’ Said
Austin: ‘Pilate was in advance of his time.’

As with truth, so with5 information:

For ‘truth’ [‘information’] itself is an abstract noun, a camel, that is
of a logical construction, which cannot get past the eye even of a gram-
marian.

We approach it cap and categories in hand: we ask ourselves whether
Truth [Information] is a substance (the Truth [the information],
the Body of Knowledge), or a quality (something like the colour
red, inhering in truths [in messages]), or a relation (‘correspondence’
[‘correlation’]).

But philosophers should take something more nearly their own size to
strain at. What needs discussing rather is the use, or certain uses, of the
word ‘true’ [‘inform’]. (Austin, 1950, p. 149)

A characteristic feature of abstract nouns is that they do not serve to denote
kinds of entities having a location in space and time. Typically it is added that
these are nouns which do not denote entities which may be objects of percep-
tion, or seats of causal power. ‘Wisdom’, ‘justice’, ‘terror’, ‘honesty’ are abstract
nouns, as are ‘number’, ‘set’, and ‘policy’. An abstract noun may be either a
count noun (a noun which may combine with the indefinite article and form a
plural) or a mass noun (one which may not). ‘Information’ is an abstract mass

5Due apologies to Austin.
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noun, so may usefully be contrasted with a concrete mass noun such as ‘wa-
ter’; and with an abstract count noun such as ‘number’.6 Very often, abstract
nouns arise as nominalizations of various adjectival or verbal forms, for reasons
of grammatical convenience.7 Accordingly, their function may be explained in
terms of the conceptually simpler adjectives or verbs from which they derive;
thus Austin leads us from the substantive ‘truth’ to the adjective ‘true’. Simi-
larly, ‘information’ is to be explained in terms of the verb ‘inform’. Information,
we might say, is what is provided when somebody is informed of something. If
this is to be a useful pronouncement, we should be able to explain what it is
to inform somebody without appeal to phrases like ‘to convey information’, but
this is easily done. To inform someone is to bring them to know something (that
they did not already know).

Now, I shall not be seeking to present a comprehensive overview of the differ-
ent uses of the terms ‘information’ or ‘inform’, nor to exhibit the feel for philo-
sophically charged nuance of an Austin. It will suffice for our purposes merely
to focus on some of the broadest features of the concept, or rather, concepts, of
information.

The first and most important of these features to note is the distinction be-
tween the everyday concept of information and technical notions of information,
such as that deriving from the work of Shannon (1948). The everyday concept
of information is closely associated with the concepts of knowledge, language,
and meaning; and it seems, furthermore, to be reliant in its central application
on the prior concept of a person (or, more broadly, language user) who might,
for example, read and understand the information; who might use it; who might
encode or decode it.

By contrast, a technical notion of information is introduced de novo for spe-
cial purposes and will typically be specified using a purely mathematical and
physical vocabulary. Prima facie, it will have at most limited and derivative
links to semantic and epistemic concepts.8

A technical notion of information might be concerned with describing corre-
lations and the statistical features of signals, as in communication theory with
the Shannon concept, or it might be concerned with statistical inference (e.g.,
Fisher, 1925; Kullback and Leibler, 1951; Savage, 1954; Kullback, 1959). Again,
a technical notion of information might be introduced to capture certain ab-
stract notions of structure, such as complexity (algorithmic information, Chaitin
(1966); Kolmogorov (1965); Solomonoff (1964)) or functional role (as in biological
information perhaps, cf. Jablonka (2002) for example9).

6An illuminating discussion of mass, count, and abstract nouns may be found in Rundle
(1979, §§27–29).

7For a characteristically pithy illustration of how this may happen, see Ryle (1979, pp.
29–30).

8For discussion of Dretske’s opposing view, however, see below, Section 2.3.
9N.B. To my mind, however, Jablonka overstates the analogies between the technical notion

she introduces and the everyday concept.
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In this book our concern is information theory, quantum and classical, so
we shall concentrate on the best known technical concept of information, the
Shannon information, along with some closely related concepts from classical
and quantum information theory. The technical concepts of these other flavours
I mention primarily to set to one side.10

With information in the everyday sense, a characteristic use of the term is
in phrases of the form: ‘information about p’, where p might be some object,
event, or topic; or in phrases of the form: ‘information that q’. Such phrases
display what is often called intentionality . They are directed towards, or are
about something (which something may, or may not, be present). The feature
of intentionality is notoriously resistant to subsumption into the bare physical
order. (We shall see more of this—briefly—below.)

As I have said, information in the everyday sense is intimately linked to the
concept of knowledge. Concerning information we can distinguish between pos-
sessing information, which is to have knowledge; acquiring information, which is
to gain knowledge; and containing information, which is sometimes the same as
containing knowledge.11 Acquiring information is coming to possess it; and as
well as being acquired by asking, reading, overhearing, or inferring, for example,
we may acquire information via perception. If something is said to contain infor-
mation then this is because it provides, or may be used to provide, knowledge.
As we shall presently see, there are at least two importantly distinct ways in
which this may be so.

Any statement of fact is a candidate piece of information: if somebody is
ignorant of it, or perhaps merely some constituency imaginable who might be in
want of it, then they could at least potentially be informed of it. By contrast, no
falsehood is a candidate item of information: plying people with falsehoods is not
a way of informing them: it is misinforming them. Misinformation, then, is not a
kind of information. Whether a statement of fact will be counted as information
by a particular party may depend on their background beliefs, knowledge, and
interests. If it is already known by an individual, then it will not inform them.
However, just as we may allow an impersonal sense of knowledge (the sum total of
human knowledge may surpass what is currently remembered by all individuals—
think of libraries with their valuable stacks of books and journals), we may
be inclined to allow a broader impersonal sense of information—consider the
possibility of imagining a constituency, as noted above.

Returning to the possessing/containing distinction, it is primarily a person
of whom it can be said that they possess information, whilst it is objects like

10Although it will be no surprise that one will often find the same sorts of ideas and math-
ematical expressions cropping up in the context of communication theory as in statistical
inference, for example. There are also links between algorithmic information and the Shannon
information: the average algorithmic entropy of a thermodynamic ensemble has the same value
as the Shannon information of the ensemble, to a good approximation (Bennett, 1982).

11Containing information and containing knowledge are not always the same: we might, for
example, say that a train timetable contains information, but not knowledge.
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books, filing cabinets and computers that contain information (cf. Hacker, 1987).
In the sense in which my books contain information and knowledge, I do not. To
contain information in this sense is to be used to store information, expressed
in the form of propositions (or perhaps expressed pictorially), or in the case
of computers, encoded in such a way that the facts, figures and so on may be
decoded and read as desired.

On a plausible account of the nature of knowledge originating with Wittgen-
stein (e.g., Wittgenstein, 1953, §150) and Ryle (1946, 1949), and developed, for
example, by White (1982), Kenny (1989), and Hyman (1999, 2006), to have
knowledge is to possess a certain capacity or ability, rather than to be in some
state. On this view, the difference between possessing information and contain-
ing information can be further elaborated in terms of a category distinction: to
possess information is to have a certain ability, while for something to contain
information is for it to be in a certain state (to possess certain occurrent cate-
gorical properties). We shall not, however, pursue this interesting line of analysis
further here (see Kenny (1989, p. 108) and Timpson (2000, §2.1) for discussion).

In general, the grounds on which we would say that something contains in-
formation, and the senses in which it may be said that information is contained,
are rather various. One important distinction that must be drawn is between
containing information propositionally and containing information inferentially.
If something contains information propositionally, then it does so in virtue of a
close tie to the expression of propositions.12 For example, the propositions may
be written down, as in books, or on the papers in the filing cabinet. Or the
propositions might be otherwise recorded; perhaps encoded, on computers, or on
memory sticks. The objects said to contain the information in these examples
are the books, the filing cabinet, the computers, the USB sticks.

That these objects can be said to contain information about things derives
from the fact that the sentences and symbols inscribed or encoded possess mean-
ing and hence themselves can be about, or directed towards, something. Sen-
tences and symbols, in turn, possess meaning in virtue of their role within a
framework of language and language users.

If an object A contains information about B13 in the second sense, however,
that is, inferentially, then A contains information about B because there exist
correlations between them that would allow inferences about B from knowledge
of A. (A prime example would be the thickness of the rings in a tree trunk
providing information about the severity of past winters.) Here it is the possibility
of our use of A, as part of an inference providing knowledge, that provides
the notion of information about.14 And note that the concept of knowledge is
functioning prior to the concept of containing information: as I have said, the
concept of information is to be explained in terms of the provision of knowledge.

12One might perhaps wish to add some additional provisions for pictorial representation: I
shan’t do so here.

13Which might be another object, or perhaps an event, or state of affairs.
14Such inferences may become habitual and in that sense, automatic and unreflective.
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It is with the notion of containing information, perhaps, that the closest
links between the everyday notion of information and ideas from communication
theory are to be found. The technical concepts introduced by Shannon may be
very helpful in describing and quantifying any correlations that exist between A
and B. But note that describing and quantifying correlations does not provide us
with an explanation of why A may contain information (inferentially) about B,
in the everyday sense (not an explanation on its own, at any rate). Information
theory might be deployed to describe the facts about the existence and the type
of correlations; but to explain why A contains information inferentially about B
(if it does), we need to refer to facts at a different level of description, one that
involves the concept of knowledge. A further statement is required, to the effect
that: ‘Because of these correlations, we can learn something about B’. Faced
with a bare statement: ‘Such and such correlations exist’, we do not have an
explanation of why there is any link to information. It is because correlations
may sometimes be used as part of an inference providing knowledge that we may
begin to talk about containing information.

While I have distinguished possessing information (having knowledge) from
containing information, there does exist a very strong temptation to try to ex-
plain the former in terms of the latter. However, caution is required here. We
have many metaphors that suggest us filing away facts and information in our
heads, minds, and brains; but these are metaphors. If we think the possession of
information is to be explained by our containing information, then this cannot
be ‘containing’ in the straightforward sense in which books and filing cabinets
contain information (propositionally), for our minds and brains do not contain
statements written down, nor even encoded. As we have noted, books, comput-
ers, and so on contain information about various topics because they are used
by humans (language users) to store information. As Hacker remarks:

...we do not use brains as we use computers. Indeed it makes no more
sense to talk of storing information in the brain than it does to talk of
having dictionaries or filing cards in the brain as opposed to having them
in a bookcase or filing cabinet. (Hacker, 1987, p. 493)

We do not stand to our brains as an external agent to an object of which we may
make use to record or encode propositions, or on which to inscribe sentences. We
do not stand to our brains, that is, as we do to the familiar objects we make use
of to store information.

A particular danger that one faces if tempted to explain possessing informa-
tion in terms of containing it, is of falling prey to the homunculus fallacy (cf.
Kenny, 1971).

The homunculus fallacy is to take predicates whose normal application is
to complete human beings (or animals) and apply them to parts of animals,
typically to brains, or indeed to any insufficiently human-like object. The fallacy
properly so called is attempting to argue from the fact that a person-predicate
applies to a person to the conclusion that it applies to his brain or vice versa.
This form of argument is non-truth-preserving as it ignores the fact that the
term in question must have a different meaning if it is to be applied in these
different contexts.
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‘Homunculus’ means ‘miniature man’, from the Latin (the diminutive of
homo). This is an appropriate name for the fallacy, for in its most transpar-
ent form it is tantamount to saying that there is a little man in our heads who
sees, hears, thinks and so on. Because if, for example, we were to try to explain
the fact that a person sees by saying that images are produced in his mind, brain
or soul (or whatever), then we would not have offered any genuine explanation,
but merely postulated a little man who perceives the images. For exactly the
same questions arise about what it is for the mind/brain/soul to perceive these
images as we were trying to answer for the whole human being. This is a direct
consequence of the fact that we are applying a predicate—‘sees’—that applies
properly only to the whole human being to something which is merely a part of
a human being, and what is lacking is an explanation of what the term means in
this application. It becomes very clear that the purported explanation of seeing
in terms of images in the head is no explanation at all, when we reflect that
it gives rise to an infinite regress. If we see in virtue of a little man perceiving
images in our heads, then we need to explain what it is for him to perceive,
which can only be in terms of another little man, and so on.

The same would go, mutatis mutandis, for an attempt to explain possession
of information in terms of containing information propositionally. Somebody is
required to read, store, decode, and encode the various propositions, and peruse
any pictures; and this leads to the regress of an army of little men. Again, the
very same difficulty would arise for attempts to describe possessing information
as containing information inferentially: now the miniature army is required to
draw the inferences that allow knowledge to be gained from the presence of
correlations.

This last point indicates that a degree of circumspection is required when
dealing with the common tendency to describe the mechanisms of sensory per-
ception in terms of information reaching the brain. In illustration (cf. Hacker,
1987), it has been known in detail since the Nobel Prize-winning work of Hubel
and Wiesel (see, for example, Hubel and Wiesel (1979)) that there exist system-
atic correlations between the responses of groups of cells in the visual striate
cortex and certain specific goings-on in a subject’s visual field. It seems very
natural to describe the passage of nerve impulses resulting from retinal stimuli
to particular regions of the visual cortex as visual information reaching the brain.
This is unobjectionable, so long as it is recognized that this is not a passage of
information in the sense in which information has a direct conceptual link to
the acquisition of knowledge. In particular, the visual information is not infor-
mation for the subject about the things they have seen. The sense in which the
brain contains visual information is rather the sense in which a tree contains
information about past winters.

Equipped with suitable apparatus, and because he or she knows about a
correlation that exists, the neurophysiologist may make, from the response of
certain cells in the visual cortex, an inference about what has happened in the
subject’s visual field. But the brain is in no position to make such an inference,
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nor, of course, an inference of any kind.15 Containing visual information, then, is
containing information inferentially, and trying to explain a person’s possession
of information about things seen as their brain containing visual information
would lead to a homunculus regress: who is to make the inference that provides
knowledge?

This is not to deny the central importance and great interest of the scientific
results describing the mechanisms of visual perception for our understanding of
how a person can gain knowledge of the world surrounding them, but is to guard
against an equivocation. The answers provided by brain science are to questions
of the form: what are the causal mechanisms which underlie our ability to gain
visual knowledge? This is misdescribed as a question of how information flows,
if it is thought that the information in question is the information that the
subject comes to possess. One might have ‘information flow’ in mind, though,
merely as a picturesque way of describing the processes of electrochemical activity
involved in perception, in analogy to the processes involved in the transmission
of information by telephone and the like. This use is clearly unproblematic, so
long as one is aware of the limits of the analogy. (We don’t want the question
to be suggested: so who answers the telephone? This would take us back to our
homunculi.)

2.2 The Shannon Information and related concepts

The technical concept of information relevant to our discussion, the Shannon in-
formation, finds its home in the context of communication theory. Famously, the
Shannon theory is much concerned with quantity of information—and quantity
in a very restricted, special-purpose sense: a count in bits (two–state systems)
of the resources required to transmit messages of particular specified kinds. But
as we shall see, the Shannon theory also—and importantly—introduces its own
novel concept of what pieces of (Shannon) information are. It introduces its own
technical notion of what it is that is transmitted. It is a theory, then, not only
of bits (amount), but of pieces (what) of information too.

2.2.1 Warming up
It is instructive to begin by quoting Shannon:

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently these messages have meaning . . . These semantic aspects
of communication are irrelevant to the engineering problem. (Shannon,
1948, p. 31)

The communication system consists of an information source, a transmitter or
encoder, a (possibly noisy) channel, and a receiver (decoder). It must be able
to deal with any possible message produced (a string of symbols selected in the

15It is a person as a whole who ponders, reasons, worries, hypothesizes, infers; albeit that (as
a matter of contingent fact) their so-doing is causally dependent on possession of a functioning
brain.
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source, or some varying waveform), hence it is quite irrelevant whether what is
actually transmitted has any meaning or not, or whether what is selected at the
source might convey anything to anybody at the receiving end. It might be added
that Shannon arguably understates his case: in the majority of applications of
communication theory, perhaps, the messages in question will not have meaning.
For example, in the simple case of a telephone line, what is transmitted—what
is sent down the line—is not what is said into the telephone, but an analogue
signal (a pattern of amplitudes over time) which records the sound waves made
by the speaker, this analogue signal then being transmitted digitally following
an encoding.

Let us explore this kind of example a little further to try to distinguish
different levels of information, message and signal; and to see more clearly what
the subject matter of the Shannon theory really is.

Thus let us imagine the following scenario. A news room is awaiting a call
from their sports reporter who is at the cricket ground on the first morning of
the next Test Match. They await a report on the weather. Suppose our (rather
laconic) reporter will make one of only four (say) different reports: that it is
sunny, that it is rainy, that it is windy or, finally, that it is overcast. It is in fact
overcast; and our reporter duly phones up and says so.

To get going on analysing this situation, it will prove useful to introduce a few
philosophical terms of art and to deploy a number of distinctions: distinctions
between statement (proposition) and sentence; between sentence type and sen-
tence token; between type and token more generally; and finally, between objects
and their properties. Thus our reporter (‘Jim’) speaks into his telephone, utter-
ing the stirring sentence: ‘It’s Jim here; it is overcast’, then he puts the phone
down. His sentence is, evidently, something which possesses linguistic meaning;
and because of that, it can be used by a competent language-speaker on a par-
ticular occasion to say something, to make a particular statement; or (in other
words), to express a proposition; in this case, the humble proposition that it is
overcast at the cricket ground in question.

However the very same thing could have been said (the same proposition
expressed) using a different sentence (perhaps in a different language: ‘C’est Jim
ici; il est couvert’), so proposition—what is said—and sentence—what is used to
say it—are different things.16 Next, consider that Jim’s sentence is repeatable;
the very same string of words might be uttered on various occasions, in various
ways (louder or softer, faster or slower, higher or lower pitched, gratingly or
mellifluously, to name a few). What is, on each of these occasions, produced (a
particular pattern of soundwaves corresponding to the phonemes making up the
sentence), is called a token of the sentence. What each of these tokens is an
instance of —what is repeatable—is the sentence type. Inscriptions of sentences,

16Equally, the very same sentence can be used to say different things on different occasions
of utterance; e.g., in sentences containing indexical or deictic elements: consider ‘I’m looking
forward to play’ said by Jim and said by me; or his sentence about the weather uttered the
following day instead.
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as well as utterances, count as tokens of particular sentence types. So if I write
‘It is overcast’ then ‘It is overcast’ once more on a piece of paper, I will have
produced two tokens of one and the same sentence type.

It is of crucial importance to note a difference in ontological status between
propositions and sentence types on the one hand, and sentence tokens on the
other. Sentence tokens are concrete things: they take up space and they exist
over time. I can wave an inscription of a sentence (ink marks on paper) un-
der your nose; I might be knocked physically off my feet by a giant’s orations.
Propositions and sentence types, by contrast, are abstracta; they are not concrete
things. They do not exist in space and time; they are not of themselves causally
efficacious; they are not, in short, part of the material contents of the world. I
might spend half-an-hour in the lecture room, between 2.30pm and 3pm, stating
Bell’s theorem (I’m being careful over the details); but Bell’s theorem itself, a
certain proposition (or conjunction of propositions), isn’t half-an-hour long and
it wasn’t in the lecture room with me between 2:30 and 3. Neither was it outside
the lecture room, nor anywhere else, for that matter.17 Similarly, while the sen-
tence tokens I uttered can be placed within the room while I was lecturing, the
sentence types of which they are instances were not quietly lurking there too.

The type/token distinction is originally due to C.S. Peirce and was intended
in the way we have just seen, as part of an analysis of what goes on in linguistic
transactions. However, the distinction may be generalized. The basic idea is of
a pattern or structure: something which can be repeatedly realized in different
instances; and perhaps realized in different media. We might think of a wall-paper
pattern—a type of which one will have many tokens when one has papered the
hallway; and one can have the very same pattern (type) in fabric, instead of on
paper, for curtains or soft furnishings, perhaps. Hierarchies of types can occur
straightforwardly: the same pattern (type) might come in different colour-ways
(sub-types); some cushions might provide instances of the red version of the
pattern, others, the green.

Type/token in this more general sense can in fact be seen as a particular
instance of a more basic distinction; that between property and object. The basic
objects of predication are the moderately sized concrete objects which make up
our familiar surroundings: tables and chairs, stones, trees, people, animals, and
so on. We can identify these objects in thought and talk; and we can say various
things of them: we attribute them properties. Thus the stone may be large, grey,
and heavy. Other things may—or may not—share these same properties, so we
say that the stone is an example of, or an instance of, something which has the
property of being large (grey, heavy). In fancier language, we would say that the
stone (object) instantiates the various properties.

Now while the stone is evidently something which has a spatio-temporal
location, the properties it instantiates do not. The stone may lie right in the

17‘Proposition’, like ‘number’ is an abstract count noun. Just as numbers and other mathe-
matical objects do not litter the Earth—there’s no danger of tripping over the number three,
for example (and that’s not because it’s too small or too light)—neither do propositions.
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middle of the gorge, but its size, weight, and colour do not lie there; nor could
I drop any of these three on my foot if trying to pick them up. Or to take a
more interesting physical example, the field in a certain spatio-temporal region
might have a particular energy (the field has such-and-such an energy density
associated with the various spatio-temporal points making up the region), but
the property of having that energy isn’t something located in the region: it is
the object (part of the field)—the thing having the property—which is.18 To
force the point home: to ask ‘How much energy is located in region x?’ is a
very different kind of question from the question ‘How much syrup is located in
region x?’ In the former case, one is asking what the value of energy possessed
by the objects (if any) in the region x is; in the latter, one is asking about the
spatio-temporal distribution of a physical stuff—something which genuinely has
a location of its own.

Location questions only really make sense for the objects which have various
properties; they do not for the properties themselves.19

Thus we can see that the abstractness of types is inherited from the abstract-
ness of properties. To be an instance of a particular type is to display a particular
complex property of a given kind. That complex property, like any property, is
an abstractum; that which has it—the token—won’t be (at least for our cases of
interest).

With all this in hand, let us return to our example communication scenario.
Jim utters his sentence into the telephone. How should we describe what has
happened here? Well let us first of all identify what information—in the every-
day sense—Jim has provided. It is, in the first instance, the information that it is
overcast at the cricket ground; a particular true proposition. This piece of infor-
mation, obviously, is an abstract, rather than concrete, item. He expressed this
proposition by employing a particular sentence type (abstract) in his producing,
vocally, a sentence token—a concrete item: a particular sequence of sound waves.

However, when it comes to the level of Shannon’s communication theory, nei-
ther the information (everyday sense) provided, nor the sentence type employed
plays any role whatsoever in the analysis. Neither, moreover, does the fact that
the sequence of sound waves produced is a sentence token. All that is significant
is that the soundwaves produced correspond to a particular pattern of ampli-
tudes over time. This pattern of amplitudes alone is the signal, the message, from
the point of view of the Shannon theory; once the microphone has done its work,
this pattern will be instantiated by some particular set of electrical oscillations,

18One may prefer an analysis in terms of which spatio-temporal points are the bearers of field
properties, rather than thinking of the field as a kind of extended object occupying spacetime.
Then it is the spacetime points which have the location and have the energy (in virtue of
having the various field properties that they have).

19One must add the proviso, of course, that when the subjects of predication are themselves
abstract objects (e.g., propositions, numbers, sets...) then not even the objects having the
properties possess a location. The exact status and nature of abstract objects is a bone of
contention amongst philosophers; myself, I am inclined towards a relaxed view of the matter;
cf. Strawson (1976, 1979). Nothing of significance in what follows hangs on this.
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rather than by sound waves. The pattern of amplitudes is itself a type (quite
different from the sentence type) of which there can be various tokens. The job
is to be able to produce at the far end of the communication system another
token of this type. Of course, there’s a reason we are interested in achieving this:
it’s because we know that by using a suitable transducer and amplifier, we will,
from this token of the signal, be able to produce an additional token of the orig-
inal sentence type; indeed, one audibly similar to the sentence token originally
produced. The distant observers will then be able to hear what Jim said—in his
own tones—and thereby learn what he wished them to know. But all this bears
on the purpose of setting up the communication system in the first place—what
it is for. It doesn’t bear on the analysis of the system within the terms of the
Shannon communication (information) theory itself. There the signal is just the
plainly (and entirely non-linguistically) characterized pattern of amplitudes.

Before turning to the more detailed development of the Shannon theory, let
us note a final few points arising from this example. There’s more to be said
at the level of the everyday concept of information in characterizing what infor-
mation Jim has provided, illustrating some general points. First, in identifying
what information he provided, we have made tacit use of important background
knowledge which the people on the other end of the line possessed: they knew
who Jim was and, accordingly, that they could trust him; they knew where he
was; they were competent speakers of English; and so on. Jim, in choosing his
words, also made these assumptions about his listeners (the presence of such as-
sumptions is a generic feature of linguistic interactions). A new boy on the job,
answering the phones for the first time, would have gained a quite different—and
not very useful—piece of information from the same utterance: that somebody
calling themselves ‘Jim’ had called up, claiming something about the weather
somewhere or other. Second, for suitably knowledgeable listeners, Jim’s state-
ment might provide more information than that which it blankly states.20 For
example, one might know that if it is overcast, then whoever wins the toss will
bowl first (as it gives one an advantage). Thus, as well as gaining the information
that it is overcast, one will gain—as a matter of inference—the further, distinct,
piece of information that the winner of the toss will opt to bowl. Finally, gaining
(everyday sense) information in the latter way—on the back of an inference from
what is said—does not require that what is said be true, or known to be true
(although if false, what is said will obviously not itself count as a piece of infor-
mation). One might gain certain information (perhaps more or less interesting)
from the mere fact that somebody has said something. In this case, that so-and-
so said such-and-such would be the starting item of information, rather than that
such-and-such was the case. None of these interesting facets of communication
feature at all in the Shannon theory.

20This also relates to the idea that as well as sentences uttered having a straight linguistic
meaning, they can also carry ‘illocutionary force’ (Austin, 1976; Strawson, 1973) and speakers’
meaning: aspects involving what the speaker may intend to achieve or to convey by what they
say.
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2.2.2 Formal development of the theory; and the definition of Informationt

We now have something of a sense of the subject matter of Shannon informa-
tion theory. We are concerned with the production and the subsequent further
production of certain resembling signal tokens: the transmission of certain (de-
nuded) messages (signal types). This will become clearer as we introduce the
central starting notion of the Shannon theory: the Shannon-information source.
We will focus on the discrete source, for simplicity. (From here on in I shall often
use a subscript ‘t’ to indicate when talking of the Shannon information—the
technical concept.)

In Shannon’s theory, an informationt source is some physical item which can
be characterized as repeatedly producing letters from some fixed alphabet, each
with a given probability. We’ll label the source ‘X’, with an alphabet of letters
{x1, x2, . . . , xn}, which occur with probabilities p(xi). ‘Letter’ and ‘alphabet’
should be taken advisedly: these are terms of convenience which should by no
means be taken to imply linguistic properties. What one means is that the source
can be thought of as producing an output of systems, each of which will be in
some one of a discrete set of states, labelled by the xi.21 Messages consist of
length N sequences of states produced by the source. An example might look
like:

x2x1x3x1x4 . . . x2x1x7x1x4.

We are concerned with messages of very large N .
It is essential to realize that ‘information’ as a quantity in Shannon’s theory

is not associated with individual messages, but rather characterizes the source
of the messages. The point of characterizing the source is to discover what ca-
pacity is required in a communications channel to transmit all the messages the
source produces; and it is for this that the quantitative concept of the Shannon
informationt is introduced. The idea is that the statistical nature of a source can
be used to reduce the capacity of channel required to transmit the messages it
produces.

For large N messages, we know that typical sequences of letters will contain
Np(xi) of letter xi, Np(xj) of xj and so on. The number of distinct typical
sequences of letters is then given by

N !
Np(x1)!Np(x2)! . . . Np(xn)!

and using Stirling’s approximation, this becomes 2NH(X), where

H(X) = −
n∑

i=1

p(xi) log p(xi), (2.1)

21There are, of course, very many different ways in which this could be realized physically.
Instead of systems popping out of the source one by one like Scrabble tiles being drawn from
a bag, one might have a single system which takes on different states over time, for example.
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is the Shannon informationt quantity (logarithms are to base 2 to fix the units
of informationt as binary bits).

Now as N → ∞, the probability of an atypical sequence appearing becomes
negligible and we are left with only 2NH(X) equiprobable typical sequences which
need ever be considered as possible messages. We can thus replace each typical
sequence with a binary code number of NH(X) bits and send that to the receiver
rather than the original message of N letters (N logn bits).

The message has thus been compressed from N letters to NH(X) bits
(≤ N logn bits). Shannon’s noiseless coding theorem, of which this is a rough
sketch, states that this represents the optimal compression (Shannon, 1948). The
Shannon informationt is, then, appropriately called a measure of informationt

because it represents the maximum amount that messages consisting of letters
produced by a source X can be compressed.

One may also make the derivative statement that the informationt per letter
associated with a message is H(X) bits, which is equal to the informationt of
the source. But ‘derivative’ is an important qualification: we can only consider
a letter xi produced by a source X to have associated with it the informationt

H(X) if we consider it to be a member of a typical sequence of N letters, where
N is large, drawn from the source.

So we have now seen the basis of the quantitative side of the Shannon
informationt concept—the story of bits. If we are interested in being able to
reproduce the output of a given informationt source at some far location (for
whatever reason that may be), then we now know the minimum amount of
channel resources that will be required to do so. But what of the promised story
of pieces of informationt?

Well, recall our initial quotation from Shannon: the task is to reproduce at
one point, either exactly or approximately, a message selected at another. That
is, to reproduce at a far point whatever it was that the informationt source
produced. The pieces of informationt to be transmitted, then, are simply what
it is that is produced by the source. Thus we may reach the following general
definition of what pieces of informationt in a Shannon-style theory are22

Definition 2.1. (Definition of informationt) Informationt is what is pro-
duced by an informationt source that is required to be reproducible at the des-
tination if the transmission is to be counted a success.

One will note immediately that this definition is a very general one; but that,
I submit, is as it should be. If we follow Shannon in his specification of what
the problem of communication is, then the associated notion of informationt in-
troduced should be sensitive to what one’s aims and interests in setting up a
communication system are. Different aims and interests may give rise to more
or less subtly differentiated concepts of informationt as what one is interested in
transmitting and reproducing varies—we will see a vivid example of this when

22This definition was originally presented in Timpson (2004b, §1.2.3); with only the slight
variation that ‘reproduced’ there has been replaced with ‘reproducible’ here.
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coming to compare classical and quantum informationt, in fact. Yet these all re-
main concepts of informationt as they all arise in the general setting adumbrated
by Shannon that this broad definition seeks to capture.

There are several components to the generality of the definition. We have the
specification of what informationt sources are (there is evidently much room for
variety in the things which fall under the abstract characterization given above);
the specification of what they produce; and the specification of what counts
as success: these issues are clearly interdependent. What counts as successful
transmission will depend (once more) upon what one’s aims and interests in
devising the communication protocol are. Specifying what counts as success will
play a large part in determining what it is we are trying to transmit; and this,
in turn, will determine what it is that informationt sources produce that is the
object of our interest.

Now for the example of our source X with its set of possible output states
{x1, x2, . . . , xn}, we had as an example of what it might produce the sequence:

x2x1x3x1x4 . . . x2x1x7x1x4.

(This sequence might ultimately be of interest, for example, because it forms
part of a digitization of some sound waves we wished to send to a friend.)

There are various different ways in which this particular sequence could be
identified: by description (e.g., ‘It’s the sequence “x2x3x1 . . .”, ’ etc.) or by name
(call it ‘sequence 694’) for example. There’s a further option which will mark
an important point of contrast with the quantum case: the varying outputs
of a classical Shannon informationt source are always—in principle at least—
distinguishable one from another: one can tell whether the output was an x1 or an
x2, for example. Thus another way of identifying the sequence is just by gesturing
(demonstrative identification): handed a concrete token of the sequence, one
could in principle determine—generally, infer—what particular sequence it was.

This particular sequence will have been realized by some system, or systems,
taking on the properties that correspond to being in the various states xi in
order. What will be required at the end of the communication protocol is either
that another token of this type actually be produced at a distant point (as a
consequence of the production of the initial token); or at least that it be possible
to produce it there (as a consequence of the initial production) by a standard
procedure.23

But what, we might finally ask, is the piece of informationt that the source
produces that we desire to transmit? Yes, it’s what is produced by the source—a
sequence—but do we mean the sequence type or the sequence token? The answer
is quick: it is the type; and we see why when we reflect on what it would be to
specify what is produced and what is transmitted. We would specify what is

23The parenthetical clauses are important as they capture the idea that we genuinely have
transmission, rather than just random production of tokens of the same type: that would not
count as a transmission of informationt.
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produced (transmitted) by naming or otherwise identifying the sequence itself—
it was sequence 694, the sequence ‘x2x3x1 . . .’, in the example—and this is to
identify the type, not to identify or name a particular concrete instance of it.24

Production of a sequence token and then a consequent further production of
another token of the same type (or at least the possibility of such a consequent
production) is what constitutes transmission of the sequence type. The sequence
type is what is transmitted by these paired sequence token productions; the
sequence type is the piece of informationt that the source produces. It might
initially seem odd to denote these plain, clearly meaningless and contentless
sequences of states as pieces of informationt; but that feeling only arises from
conceptual indiscipline. Of course being a piece of Shannon informationt has
nothing to do with being a piece of information in the everyday sense; nor has it
even to do with being something from which one could learn anything. It just has
to do with being what is produced by an informationt source that is required to
be reproducible at the destination. And the Shannon theory is silent about why
that might be something we are interested in achieving: those concerns belong at
the level of our interests in applying the theory. Typically, we will be interested
in managing to transmit the type in this way because doing so will allow us to
achieve something else in which we are interested: for example, following the
transducer and amplifier, automatically producing soundwaves that allow us to
hear Jim’s voice. Shannon’s theory is primarily concerned with characterizing
the performance and capabilities of the substrate: the background machinery;
the off-stage wires and pulleys involved in achieving the tasks which are our real
objects of interest.

An important corollary follows once one has recognized that pieces of
informationt in the Shannon theory are particular kinds of sequence types. It
will be recalled that ‘information’ in the everyday sense is an abstract noun; that
pieces of information (e.g., the truth that it is overcast at the cricket ground be-
fore the match) are abstract, not concrete, objects (in so far as they are objects
at all). It does not automatically follow from this that ‘informationt’ in the Shan-
non theory is an abstract noun too. But we have now seen that it certainly is. If
one has in mind the Shannon informationt as a quantity—the compressibility of
a source—then we certainly have in mind an abstract item, not a concrete one,
just as any property must be abstract. If one has in mind pieces of informationt,
then, as these are various types, they are abstract too, just as any type is. Thus a
shift from the everyday to the technical context does not involve any shift in the
truth of the claim that the term ‘information’ is an abstract noun, even though
in the technical Shannon case, ‘informationt’ evidently does not derive from the
verb ‘inform’.

24Even when we identify what was produced by gesturing to the concrete token and saying
‘That was what was produced’, we are identifying the sequence type, here by means of what
Quine would call ‘deferred ostension’ (Quine, 1969, Chpt. 1). The ‘what’ in these contexts is
functioning as an interrogative, not a relative, pronoun (cf. Glock (2003, p. 76) for an analogous
case).
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2.2.2.1 Summary To summarize the preceding two sections, then. The Shan-
non theory begins with the notion of the informationt source. This is a device
which produces long sequences of states composed in a probabilistic manner
from a fixed stock of possible states. These sequences (types) are the pieces of
informationt the source produces; it is these that we wish to transmit. For long
enough sequences, the output of the source can be compressed: in order to send
the informationt (pieces) which the source produces, the noiseless coding theorem
tells us that we need a minimum of H(X) bits (informationt quantity) per letter
in the sequence. It is the noiseless coding theorem, then, which gives us the quan-
titative notion of Shannon informationt. Pieces of informationt are abstracta, but
particular instances of them—sequence tokens—are concrete. Beyond the min-
imal characterization of sequences as being produced probabilistically from the
fixed stock of distinct and distinguishable states (letters), the Shannon theory
itself has little to say about the identity of pieces of informationt. That will be
determined in more detail by our interests in setting up a communication system
and analysing it using Shannon’s tools.

It may be helpful, finally, to recapitulate the comparison with pieces of infor-
mation in the everyday sense. Jim said ‘It’s overcast’. We distinguished between
the sentence token—the concrete utterance—the sentence type, and the propo-
sition expressed. The latter was the piece of information that his colleagues
acquired. Here we had three levels: the concrete utterance, the meaningful sen-
tence type, and the proposition (the information), stemming from his use of this
meaningful sentence on the occasion in question. On the Shannon-theory side,
however, we have only two levels: that of the sequence token and the sequence
type; and it is the type which constitutes the informationt in the technical sense
of the theory. The further level, if any, of what various types might mean, or
what instances of these types might convey, is not relevant to, or discussed by,
informationt theory: the point once more that informationt in the technical sense
is not an epistemic or semantic notion. Indeed, considered from the point of view
of informationt theory, the output of an informationt source does not even have
any syntactic structure.25

2.2.3 Information and Uncertainty

There’s another way entirely of thinking about the Shannon expression H(X).
That is, to recognize its role as a measure of uncertainty as well as its role as a
measure of compressibility. One can go further and draw an intuitive link from

25Let me expand further on this gnomic remark, for the interested. Syntax governs the licit
combination of smaller linguistic components into larger ones: it provides the rules for correct
combination of components. But the random selection of items to be concatenated, as in a
Shannon informationt source, cannot be a way of following rules: one needs a right or wrong
for what should follow what, not mere chance. This is a perhaps more fundamental point than
Chomsky’s nonetheless still very significant observation that the grammar of English cannot be
modelled by a Markov process Shannon informationt source (finite state machine) (Chomsky,
1957, Chpt. 3). Thanks are due to Greg Radick for bringing this well-known result of Chomsky’s
to my attention.
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uncertainty to a notion of information: the more uncertain we are about what
the result of some experiment will be, the more information we stand to gain
when we learn it. Shannon himself was happy to talk in these terms, something
of a departure from his normal surefootedness and an aspect of his presentation
which has given rise to a little trouble over the years (see Section 2.2.4 below and
Appendix B). H(X) is also often recognized as displaying the form of an entropy
and is therefore sometimes termed the Shannon entropy. This is a label I shall
largely eschew, to avoid being dragged precipitately into the murky waters of
the debate on the relations (or lack thereof) between uncertainty, information,
Shannon informationt, and thermodynamic or statistical mechanical entropy.

While the Shannon measure H(X) certainly can be used as a measure of
uncertainty—and is often extremely useful in that regard—I claim that one
should not think of the quantitative notion of Shannon informationt in this way,
namely, as uncertainty. The roles of H(X) as a measure of uncertainty and as a
measure of Shannon informationt are logically distinct, thus the concept of the
(quantitative) Shannon informationt is not the same concept as the concept of
measure of uncertainty. This is a corollary of work on measures of uncertainty
by Uffink (1990). Amount of informationt in Shannon communication theory
should not, then, be thought of as being amount of uncertainty, for all that it is
sometimes heuristically useful to think of the mathematics in this way. The one
expression, H(X), is thus associated with two (at least) distinct concepts.

We should begin by drawing an important distinction between two kinds of
uncertainty: uncertainty in prediction and uncertainty in inference (Hilgevoord
and Uffink, 1991).26 In the first case—uncertainty in prediction—one is presented
with some probabilistic experiment with a known distribution over the outcomes
and one asks: how well can I predict what the outcome will be? In the second
case—uncertainty in inference—one faces a standard problem of statistical infer-
ence: presented with the outcome of some probabilistic experiment one asks: how
much can I infer about which probability distribution this outcome was sampled
from?27 With the Shannon quantity H(X), we are concerned with uncertainty
in prediction.

Imagine a random probabilistic experiment described by a probability dis-
tribution �p = {p(x1), . . . , p(xn)}. A measure of uncertainty is a quantitative
measure of the lack of concentration (the amount of spread) of such a probabil-
ity distribution. We call this an uncertainty because it measures our uncertainty
about what the outcome of an experiment completely described by the distri-
bution in question will be: the more spread out the distribution, the less able

26This distinction is highly pertinent if trying to make good sense of the rather shambolic
discussions of the uncertainty principle by the founding fathers (Hilgevoord and Uffink, 1988,
1990, 1991).

27The trick with the discussions of the uncertainy principle is to note that often these two
kinds of uncertainty were mixed in one and the same thought experiment; but different kinds
of quantity are appropriate for measuring these different kinds of uncertainty; even if those
differences appear blurred for certain specific probability distributions.
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we are to predict what the outcome will be. H(X) has a number of features
one would intuitively associate with a measure of uncertainty: it takes its least
value (0) when �p is maximally peaked (one outcome receives probability 1, the
others 0) and its maximum value (log n) when �p is completely flat; moreover, as
the number of outcomes n increases, H also increases, monotonically: the more
possibilities there are, the more uncertain we are about what will happen.

But H(X) is not the only measure of uncertainty: Uffink (1990) provides an
axiomatic characterization of measures of uncertainty, deriving a general class of
measures, Ur(�p), of which the Shannon information is only one (corresponding
to r = 0, see also Maassen and Uffink (1988)).28 The key property possessed
by these measures is Schur concavity; they—the Shannon measure included—
work by tracking the (pre-)ordering on probability distributions imposed by the
underlying majorization relation: it is this latter relation which provides the
basic notion for comparison between probability distributions as more or less
concentrated (uncertain). For details of the property of Schur concavity and
majorization, see Uffink (1990), Nielsen (2001) and Appendix B.

So as a measure of uncertainty, H(X) is not unique; however, as a measure
of Shannon informationt—of compressibility—it is unique (this follows from the
noiseless coding theorem). Hence H(X) as a measure of uncertainty is distinct
from H(X) as a measure of informationt and the concepts measure of uncertainty
and measure of informationt are distinct.

Let us take up a different question. We may grant that Shannon’s
informationt quantity is not an amount of uncertainty, but what of the intuitive
link between uncertainty and information with which we began this section?
Doesn’t that still stand? Indeed it does—so far as it goes—and this tells us that
whatever information in the sense delivered by the link to uncertainty might be,
it is not the informationt of the Shannon theory. It is something else instead.
What is it?

In some degree, we evidently have a link to the everyday notion of informa-
tion, as uncertainty seems to be an appropriately epistemic concept: The more
uncertain I am about the outcome, the less I know; the less I know, the more
information I gain when I learn what the outcome is. But these equations are
rather tortuous and shouldn’t be admitted without further ado. To begin with,
we need to handle the question ‘How much do I know about the outcome?’ with
care. We are supposing that the experiment is genuinely probabilistic; and all
one knows is the probability distribution. Thus, strictly speaking, all one knows
about what outcome will occur is that any of the outcomes assigned non-zero
probability can occur (and conversely, that none of those assigned zero probabil-
ity will occur); and that is consistent with continuum-many different probability
distributions, many of which will receive different values of uncertainty. So when
we say that one knows more when one has a more peaked probability distri-

28Shannon, by contrast, had claimed H(X) to be unique as a measure. The fate of this
uniqueness claim is an interesting one. See below, Section 2.2.4 and Appendix B.
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bution (lower uncertainty distribution), we are providing a new sense for ‘how
much does one know?’, equating ‘how well can I predict?’ (how spread is the
distribution) with ‘how much do I know?’ in this new sense.29 This should be
contrasted, for example, with a case in which I have partial knowledge about
some predetermined fact about what the outcome will be—I know something,
but not everything about it: that would be a quite different sense of how much
I know about the outcome.

But what information have I gained as the result of the experiment? The
information that the outcome was thus-and-so, rather than being any of the
other outcomes consistent with the probability distribution. This is a bona fide
piece of information in the everyday sense. But does the uncertainty measure
H(X) (or equally one of the other Ur(�p)) then tell me how much information in
the everyday sense I have gained from acquiring this piece of information? That
is, is H(X) (Ur(�p)) a measure of amount of information in the everyday sense?
It would seem not; at least not without heavy qualification.

Notice, to begin with, that amount as conveyed by H(X) (Ur(�p)) must be
silent on features which are essential to assessing the amount of information
gained in the everyday sense. By definition, it has to be silent on questions of
what (and how much) might be implied by the outcome in question occurring—
what it would allow one to infer—that would be a question of uncertainty in
inference, rather than uncertainty in prediction. Furthermore, it must be silent
on the question of what the outcome’s occurrence might convey in and of itself—
for example, if the occurrence (as might be the case) corresponded to the making
of some statement. But both of these dimensions of assessment are crucial in
judging the amount of information (everyday sense) that an outcome’s occurring
provides.

Related, but perhaps more fundamental, we know that the information (ev-
eryday sense) provided by an occurrence must be tied to what one learns from
the occurrence; and moreover, how much one learns ought to be a function of
what one learns. But in general, what one learns from an occurrence is quite in-
dependent of the probability assigned to it.30 So measures such as H(X) which
turn only on the probabilities cannot provide us with an adequate notion of the
amount of information acquired in the everyday sense. (One shouldn’t hurry to

29In the link between information and uncertainty, we are focusing on what one stands to
gain—so the less one knows, the more information one has to gain and we look at measures
of that. But sometimes one will speak of a measure of information in the inverse pattern, as
increasing with the concentration of the probability distribution, rather than decreasing as the
Shannon measure, for example, does. Then what we have in mind, of course, is not what one
has to gain, but the amount that one currently knows: how well one is able to predict.

30This observation provides one perspective on what is going on in Bar-Hillel and Carnap’s
attempt on a semantic (so-called) measure of information (Bar-Hillel and Carnap, 1953a,b;
Bar-Hillel, 1952). In effect what they do is rig up the probabilities assigned to items in such
a way that the probabilities aren’t independent of what one learns, as they define it. Needless
to say the construction is rather limited and artificial: too limited and artificial, in my view,
to deliver a particularly useful concept.
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suppose that any formal measure—or any single formal measure—will provide
us with that.)

This last observation leads on to assessment of another common way in which
the Shannon quantity H(X) is advertised. Frequently, those offering an intuitive
interpretation of H(X) begin by focusing on the probability for an individual
outcome of an experiment, rather than the probability distribution as a whole.
They then proceed in a now-familiar way: the less likely a given event is, the
more we will be surprised by its occurrence, so the more we gain when we see it
happen.31 A high probability event, by contrast, is no surprise, so we gain little.
Thus a natural step is to measure the value of the outcome—what one gains—via
a decreasing function of the probability of its happening. A nice such function
is − log p(xi). This quantity is sometimes called the ‘surprise’ information asso-
ciated with an individual occurrence. If we then look to our expected surprise
information gain (the sum of the surprise for each individual event, weighted by
its probability of occurrence) we will have the Shannon quantity H(X), so we
can call this the expected (surprise) information gain.

This is an acceptable gloss on the Shannon measure of uncertainty, so long
as we note a few things. First, the surprise quantity − log p(xi) evidently cannot
in general provide an everyday-sense amount of information associated with the
outcome, for the reasons we have already seen: there is no appropriate link be-
tween what one would learn and the amount stated. Second, one might choose
any monotonically decreasing function of the probability to be one’s amount
of surprise information. If one took (1 − p(xi)) instead, for example, then the
expected amount of surprise information would be 1 −∑i p(xi)2, which, as it
happens, is Uffink’s U1(�p), to all intents and purposes. Finally, one might object
to the entire approach of calculating an amount of surprise for each individ-
ual outcome and then averaging, as this may not sufficiently take into account
comparative features of the overall shape of the probability distribution.32

Where does all this leave the story of information and uncertainty? We began
by noting that the true-blue quantitative concept of informationt stemming from
Shannon’s theory should not be understood as a concept of uncertainty, for all
that the expression H(X) has a genuine interpretation of that ilk. Compressibil-
ity—quantity of informationt—is not uncertainty. Next we explored the intuitive

31For familiar early antecedents of this idea—which also informed Bar-Hillel and Carnap’s
approach—see Popper (1959, Chpt. 6 esp. §§31–35).

32These final two points relate in the following way: one can argue for − log p(xi) as the cor-
rect quantity for the surprise information by noting that it has the desirable property, which
other choices do not, of being additive for independent probabilities. So if two independent
experiments are being performed, the total amount one gains (measured by surprise) is equal
to the sum of the amounts gained from the experiments individually. One—quite reasonable—
response to this uniqueness claim is that whether quantities of information should be added,
or multiplied, or combined in some other way is a conventional matter, rather than one of
substance. A different response would be to reject the strategy of summing ‘surprise’ for indi-
vidual events for the reason given above. It is a noteworthy fact that additivity for independent
probability distributions holds for the entire class of Uffink’s measures, which are measures for
the whole probability distribution.
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link that nonetheless exists between measures of uncertainty and information in
some other sense. ‘More uncertainty = more information to be gained’ does make
sense, with qualifications. The information gained in such a scenario is a piece
of everyday information, but, I argued, the amount of information decreed, in
the given sense, by a quantity like H(X) (or any of the Ur(�p)) should not be
understood as an amount of information in the everyday sense.

One might offer a more qualified conclusion. It would be perfectly reasonable,
perhaps, to conclude instead that H(X) (etc.) could be understood in the ad-
vertised way in terms of the uncertainty/information link; and we could accept
that quantity as sometimes measuring an amount of information in the everyday
sense, but only sometimes. That is, when the scenario is pared down to the ex-
tent that one’s only interest is the given experiment and what the probabilities
of its various outcomes are: a situation when none of the other standard features
involving what one learns, or what one might infer, or what one’s various inter-
ests might be, are in play. In this little corner, it perhaps does no harm to grant
H(X) (etc.) as measuring information in the everyday sense, as applied to this
restricted situation. But one will note that this is far from a representative epis-
temic scenario. Furthermore, one will note that as it stands, the everyday notion
of information does not really admit of the kind of precise degree of weighting of
amount that a quantitative measure (such as H(X)) would import. Judgements
of amount supported by the everyday concept will generally be qualitative, par-
tial and interest relative. Thus if employing a measure such as H(X) to measure
uncertainty/information (in its little corner where we may happily let it run free),
we should bear in mind that we are creating an answer to a quantitative ‘how
much’ question—an answer which did not exist before—rather than bringing to
bear on the situation a finely tuned instrument which is finally able to reveal
some pre-existing, but previously hard to measure, facts.

2.2.4 More on the communication channel

So far we have concentrated on only one aspect of describing a communication
system, namely, on characterizing the informationt source. It is high time we
turned to the other very important task, which is to characterize the communi-
cation channel.

A channel is defined as a device with a set {xi} of input states, which are
mapped to a set {yj} of output states. If a channel is noisy then this mapping will
not be one-to-one. A given input could give rise to a variety of output states, as a
result of noise. The basic type of channel—the discrete memoryless channel—is
characterized in terms of the conditional probabilities p(yj |xi): given that input
xi is prepared, what is the probability that output yj will be produced?

If the distribution, p(xi), for the probability with which the various inputs
will be prepared, is also specified, then we may calculate the joint distribution
p(xi ∧ yj) = p(yj |xi)p(xi). We may consider which input state is prepared on a
given use of the channel to be a random variable X, with p(X = xi) = p(xi);
which output produced to be a random variable Y, p(Y = yj) = p(yj); and we
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may consider also the joint random variable X ∧ Y (by which notation I mean
the ordered pair of the X outcome and the Y outcome), where

p(X = xi ∧ Y = yj) = p(xi ∧ yj).

The joint distribution p(xi ∧ yj) allows us to define the joint informationt or
joint uncertainty

H(X ∧ Y ) = −
∑
i,j

p(xi ∧ yj) log p(xi ∧ yj), (2.2)

and an important quantity known as the ‘conditional entropy’:

H(X|Y ) =
∑

j

p(yj)
(−∑

i

p(xi|yj) log p(xi|yj)
)
. (2.3)

The scare quotes are significant, as this quantity is not actually an entropy or
an uncertainty (or even an informationt!) itself, but is rather the average of the
uncertainties of the conditional distributions for the input, given a particular Y
output. It measures the average of how uncertain someone will be about the X
value when they have observed an output Y value.

As Uffink (1990, §1.6.6) notes, it pays to attend to the fact that H(X|Y ) is
not a measure of uncertainty. It is easy to show (e.g., Ash, 1965, Thm. 1.4.3–5)
that

H(X|Y ) ≤ H(X), with equality iff X and Y are independent; (2.4)

and it is often held that this is a particularly appealing feature of the Shannon
measure H, because it captures the intuitive idea that by learning the value of
Y , we gain some information about X, therefore our uncertainty in the value of
X should go down (unless the two are independent).33 Thus, Shannon describes
the inequality (2.4) as follows:

The uncertainty of X is never increased by knowledge of Y . It will be
decreased unless Y and X are independent events, in which case it is not
changed. (Shannon, 1948, p. 53)

But this is a mistake. As Uffink remarks, one’s uncertainty certainly can in-
crease following an observation: increasing knowledge need not lead to a decrease
in uncertainty. This is well illustrated by Uffink’s ‘keys’ example: my keys are
in my pocket with a high probability; if not, they could be in a hundred places
all with equal (low) probability. This distribution is highly concentrated so my
uncertainty is low. If I look, however, and find that my keys are not in my pocket,
then my uncertainty as to their whereabouts increases enormously. An increase
in knowledge has led to an increase in uncertainty.

This does not conflict with the inequality (2.4), of course, as the latter involves
an average over post-observation uncertainties. Uffink remarks, against Jaynes
(1957, p. 186), for example, that

33In fact, insisting on this property would be sufficient to pick out the Shannon quantity H
from amongst the general family of uncertainty measures (cf. Uffink, 1990, pp. 81–84).
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. . . there is no paradox in an increase of uncertainty about the outcome
of an experiment as a result of information about its distribution. The
confusion is caused by a liberal use of the multifaceted term ‘information’,
and also by the deceptive name of conditional entropy for what is actually
an average of the entropies of conditional distributions. (Uffink, 1990,
p. 83)

To see why the conditional entropy is important—these terminological mud-
dles notwithstanding—consider a very large number N of repeated uses of our
channel. There are 2NH(X) typical X (input) sequences that could arise, 2NH(Y )

typical output sequences that could be produced, and 2NH(X∧Y ) typical se-
quences of pairs of X,Y values that could obtain. Suppose someone observes
which Y sequence has actually been produced. If the channel is noisy, then there
is more than one input X sequence that could have given rise to it. The condi-
tional entropy measures the number of possible input sequences that could have
given rise to the observed output (with non-vanishing probability).

If there are 2NH(X∧Y ) typical sequences of pairs of X,Y values, then the
number of typical X sequences that could result in the production of a given Y
sequence will be given by

2NH(X∧Y )

2NH(Y )
= 2N(H(X∧Y )−H(Y )).

Due to the logarithmic form of H, H(X ∧ Y ) = H(Y ) +H(X|Y ), and it follows
that the number of input sequences consistent with a given output sequence will
be 2NH(X|Y ).

Shannon (1948, §12) points out that this means that if one is trying to use
a noisy channel to send a message, then the conditional entropy specifies the
number of bits per letter that would need to be sent using an auxiliary noiseless
channel by an observer who knew both what was sent and what was received,
in order to correct all the errors that have crept into the transmitted sequence,
as a result of the noise. If input and output states are perfectly correlated, i.e.,
there is no noise, then obviously H(X|Y ) = 0.

Another most important quantity is the mutual informationt, H(X : Y ),
defined as

H(X : Y ) = H(X) −H(X|Y ). (2.5)

It follows from Shannon’s noisy coding theorem (1948) that the mutual
informationt H(X : Y ) governs the rate at which informationt may be sent
over a channel with input distribution p(xi), with vanishingly small probability
of error.

The following sorts of heuristic interpretations of H(X : Y ) are sometimes
also given: With a noiseless channel, an output Y sequence would contain as
much informationt as the input X sequence, i.e., NH(X) bits. If there is noise,
it will contain less. We know, however, that H(X|Y ) measures the number of
bits per letter needed to correct an observed Y sequence, therefore the amount
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of informationt this sequence actually contains will be NH(X) − NH(X|Y ) =
NH(X : Y ) bits.

Or again, we can say that NH(X : Y ) provides a measure of the amount that
we are able learn about the identity of an input X sequence from observing the
output Y sequence (this would be to employ H(X : Y ) as a measure of uncer-
tainty in inference): There are 2NH(X|Y ) input sequences that will be compatible
with an observed output sequence, and the size of this group, as a fraction of
the total number of possible input sequences, may be used as a measure of how
much we have narrowed down the identity of the X sequence by observing the
Y sequence. This fractional size is

2NH(X|Y )

2NH(X)
=

1
2NH(X:Y )

,

and the smaller this fraction—hence the greater H(X : Y )—the more one learns
from learning the Y sequence.

The most important interpretation of H(X : Y ), however, derives from the
noisy coding theorem (just as the most important interpretation of H(X) derives
from the noiseless coding theorem). Consider, as usual, sequences of length N ,
whereN is large; the input distribution to our channel is p(xi). Roughly speaking,
the noisy coding theorem tells us that it is possible to find 2NH(X:Y ) X sequences
of length N (code words) such that on observation of the Y sequence produced
following preparation of one of these code words, it is possible to determine which
X sequence was prepared, with a probability of error that tends to zero as N
tends to infinity (Shannon, 1948). So if we were now to consider an informationt

source W , producing messages with an informationt of H(W ) = H(X : Y ), each
output sequence of length N from this source could be associated with an X
code word, and hence messages from W be sent over the channel with arbitrarily
small error as N is increased.34

The capacity, C, of a channel is defined as the supremum over all input dis-
tributions p(xi) of H(X : Y ). The noiseless coding theorem states that given
a channel with capacity C and an informationt source with an informationt of
H ≤ C, there exists a coding system such that the output of the source can be
transmitted over the channel with an arbitrarily small frequency of errors.

2.2.5 Mutual informationt and flow

It is tempting to think of the mutual informationt H(X : Y ) as telling us about
how the Shannon informationt produced by a source flows around: telling us how
much of what is produced by a source is diluted, or degraded, or adulterated, or
leaks away, or is destroyed—or something of the sort—by the time it reaches the
point where the Y system is located, as a result of noise or poor correlation. But

34This result is particularly striking as it is not intuitively obvious that in the presence of
noise, arbitrarily good transmission may be achieved without the per letter rate of informationt

transmission also tending to zero. The noisy coding theorem assures us that it can be achieved.
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this picture needs to be handled with extreme caution; for picture it is, rather
than statement of fact.

It should be clear that this putative flow-interpretation is not warranted by
the description of the mutual informationt provided by the noisy coding theo-
rem. There the idea was to characterize the capacity of a channel for a given
input distribution; by looking at the capacity, one is trying to see how much
informationt one can send intact over the channel. One is not looking at how
much of what one is trying to send one will lose.

Further, we need to be more precise with the locution ‘what is produced by
a source’. One might have in mind piece of informationt; but what really seems
to motivate the flow picture is the idea that some diffuse quantity of stuff is
produced by a source, of an amount measured by H. Let’s take ‘piece’ first.

A source W of informationt H(W ) produces a piece of informationt (call
it α) of length N . To transmit this item we need a channel X,Y—which may
be noisy—of capacity C of value at least H(W ). If the channel is noisy, we
can code in such a way that α nonetheless reaches the destination intact: the
point of the coding is to render the channel effectively noiseless, so long as
H(X : Y ) ≥ H(W ). But suppose C is strictly less than H(W ). What can we
say of the fate of the piece of informationt α when we try to transmit it down
the channel then? Well we know for sure that we will not be able to reproduce
α at the far end. We will obtain instead some sequence α′ which differs from
α.35 But do we at least have some part of α transmitted? A portion measured
by H(X : Y ), or some such quantity; where we would then have lost a portion
H(W ) −H(X : Y ) of the original message?

Well, what would a part, or a portion, of α be? One might speak of transmit-
ting the first half, or third, of the message, perhaps (one ran out of time for the
rest, or the machine broke before the end); or of sending every other, or every
third, letter in the sequence (to tease one’s friend, maybe). These would clearly
be parts of α. The piece of informationt α is itself a sequence, so a part of it
will be some systematically related and suitably order-preserving sub-sequence.
But α′ is no such thing, of course. It isn’t itself part of α and neither does it
contain some transmitted portion of α. No part of α′ is systematically related to
any part of α; their various parts are only probabilistically related. We haven’t
managed to transmit any of our original piece of informationt α, for no part of
α can be non-accidentally reproduced following the attempted transmission.

This is all by way of saying that trying to transmit pieces of informationt down
a noisy channel (one which we are unable to render noiseless by suitable coding)
is not like trying to transmit oil down a leaky pipeline, or like transporting milk
in a porous container. We don’t, at the destination, end up with at least some of
what we started with, a lesser amount of the same thing, with which one could
perform exactly the same kind of tasks (run your car/pour on your breakfast

35If by pure chance α′ happened to be identical to α (within tolerances), then this would
still not count as the transmission of α, as it would be a matter of pure happenstance, rather
than a reproduction of the piece of informationt.
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cereal), just not for so long, or so often. Rather, one ends up with something else
entirely. α′ does not count as a piece, portion, or part of transmitted informationt

at all.
Of course, what we have instead managed to achieve by employing our overly

skimpy channel is to make things a little easier for ourselves in the future. We
haven’t transmitted any of α, but we have at least made it easier for ourselves
to reproduce it at the destination at a later date: one would now only need
H(W ) −H(X : Y ) noiseless bits per letter to be sent (by someone cognizant of
both sequences) to produce α from α′.

So if by ‘how much of what is produced by a source reaches the destination’,
we have in mind portion or percentage of the pieces of information produced
by the source, H(X : Y ) does not measure that. Indeed, if the channel is irre-
deemably noisy (i.e., H(X : Y ) < H(W )), then none of what is produced by W
(pieces) is transmitted. Our mnemonic could be this: criteria of identity associ-
ated with parts of pieces of informationt (like α) are independent of any notion
of addition or subtraction of informationt quantities.

This spurs a further thought. We could profitably swap to a different sense
of ‘information’. Noting that H(X : Y ) is a good measure of the correlation of
random variables, we can treat it along the lines of a measure of uncertainty in
inference. The greater H(X : Y ) is, the more we can infer about the identity of
the input X sequence; and hence the more we should be able to infer about the
identity of α, given α′. So surely H(X : Y ) can be used to measure how much
information about α has made it to the end of the channel?

Well, yes and no. It’s highly significant that we have switched to a different
sense of ‘information’. (And notice the lack of a subscript in the previous para-
graph!) H(X : Y ) does not, in this sense, tell us how much of what is produced
by the source makes it to the end of the channel, because the source does not
produce information about α, it produces α itself, a particular piece of Shannon
informationt. We could say that NH(X : Y ) measures the amount of informa-
tion about α that α′ contains, but this is inferential information in something
close to the everyday sense, rather than Shannon informationt, which is what the
source produces. Given α′ and knowing the correlation, we can infer something
about the identity of α: that it lies within a certain restricted range of possible
sequences. We are then better prepared to make a guess at its identity, should we
be so bold. But learning in this way something about the identity of a sequence
is very different from learning the identity of part of the sequence: the point
once more that the criteria of identity for parts of pieces of informationt are in-
dependent of considerations of adding and subtracting quantitative informationt

measures. We might say that what one acquires is the information that α lies
within some restricted range, but that’s not an answer of the appropriate sort
to the question ‘what’s been transmitted?’, for it was not something produced
by the source nor fed into the channel.

And so to ‘stuff’. Suppose that along with the piece of informationt α, we
thought of the source W as producing an amount (quantity) of informationt
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H(W ) that inhered in the concrete token of α. As the token interacts with
various other systems, we might imagine that quantity of informationt spreading
out or perhaps diffusing in various ways, until we finally reach the location of Y .
H(X : Y ) might then tell us how much of that original quantity of informationt

was still present. Does this picture make any sense?
We should be troubled if we were led to think of (quantitative) informationt

as being a kind of (oddly) inscrutable stuff attached to messages. It’s not the
token or the piece of informationt produced, after all, we know that; instead it
has to be some quantity that the source produced at the same time as these other
items, and which somehow sits on top. This stuff then slops about, sometimes
managing to transfer in part or whole onto other systems, sometimes not. The
mistake here, of course, is to think of quantity of informationt along the lines
that are appropriate for a quantity of a concrete stuff (substance), for example,
of milk or sugar: to think of a source of informationt like the source of a river;
to mistake what is an abstract mass noun for a concrete one. The fishiness, the
troubling inscrutability, of the supposed informationt stuff is a direct consequence
of making this kind of mistake in logical category. Forcing one set of concepts to
walk in shoes that don’t fit—as they were designed for other feet—gives rise to
strangely shaped bunions: the postulation of odd ontology.

We can innoculate ourselves against this kind of mistake easily enough,
though, by paying sufficient heed to reminders that objects and their proper-
ties are to be distinguished; that object and property are of different (logical)
kinds. What had gone wrong was thinking of what is in fact a property—the
informationt of the source—as a kind of object (physical substance or stuff).
No wonder things looked mysterious then! With this idea that (quantitative)
informationt is a property rather than an object firmly in mind, can we make
better sense of the flow picture?

On the positive side we should reflect that it is quite common to talk of the
flow of things which are not concrete stuffs: energy and heat are two common ex-
amples. But it is doubtful that we can talk of flow of informationt along parallel
lines. Energy (to take this example) is a property, so as we remarked earlier (Sec-
tion 2.2.1), it is not something which, properly speaking, has a spatio-temporal
location at all, so it is not something which—in strict sense—moves around. Thus
by talk of the flow of energy, what we have in mind is certain kinds of changes in
the energies possessed by things having spatial locations: the energies of various
located items can change over time. It is pattern in this change that we call flow.
Things will look particularly clear when the property in question—as energy (in
most theories) does—obeys a local conservation equation.

Now informationt as a quantity in the Shannon theory certainly doesn’t obey
a local conservation equation; and more significantly, it doesn’t seem to be the
kind of quantity it would make sense to think of as flowing as energy and the like
flow. The difficulty is this. What seems to be crucial in the story of energy flow—
and I would suggest in stories of physical property flows more generally—is that
there should be changes over time (of a certain pattern) in the values of the prop-
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erty possessed by systems at various locations. Moving systems might then be
thought to carry a particular energy with them, as they possess that same value
of energy over time as they change in position; waves carry energy by oscillators
at one position subsequently influencing others nearby. But informationt isn’t a
property currently possessed (carried) by systems in a similar sort of sense. To
begin with, informationt is introduced to characterize a (stationary) source, not
a moving message. Moreover, the characterization given is of how compressible
the output of the source is. How compressible the output of a source is clearly
isn’t something that could sensibly be said to move from A to B.

Suppose we allowed by extension that a length N message token produced
by a source W has the informationt NH(W ) associated with it. The message
token is certainly something that can move about; does it carry the quantity
of informationt NH(W ) with it as it moves, as a billiard ball carries its energy
as it moves? It seems not. To say that the token has the information NH(W )
associated with it is to say that it was produced by a source of a certain kind,
to say, more specifically, that it could be compressed to length NH(W ) bits.
But this is not an occurrent property of the message token—it is not made true
by the properties which the message token currently possesses—it is both modal
(referring to what one could do with the message, if a suitable communication set-
up were in place) and historical. The fact that the message token has associated
with it the informationt NH(W ) is not determined by the current state of the
message token; an exhaustive listing of the current physical properties of the
token will make no mention of the informationt. One needs to look back to where
it came from to see what the informationt is. ‘Being produced with a certain
probability’ is not a property that systems can be said to carry around with
them (unlike their energy); it is a feature of their past history. Similarly, ‘being
compressible to a certain degree’ is not a property that systems carry around with
them. Because informationt does not play a part in the occurrent characterization
of locatable systems (other than sources), being only an historical feature (not
part of the story of how the system is now), I suggest it cannot be thought to
flow in anything like the sense that energy can be said to flow.

Recognizing that the informationt (quantitative) that a source produces is
not something that inheres in the message tokens produced and is not something
which can be carried around by systems should defuse the thought that the
mutual informationt tells us about how much of that quantity reaches the end
of the channel. H isn’t a quantity which it makes sense to think of as moving
around in the first place. Informationt isn’t a kind of physical stuff which can
be transported or piped around; and neither (avoiding that mistake) is it the
right kind of property (not object!) to obey some kind of flow equation. We
do, however, talk of the flow of information; but we must, accordingly, have
something else in mind altogether. Typically, I would suggest, changes in the list
of places where it is possible to learn, or learn about, something or other; or if
we are thinking of pieces of Shannon informationt, changes in the list of places
where it is possible to reproduce these items. We shall see more of this issue in
later chapters.
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2.3 Alternative approaches: Dretske and Semantic Naturalism

So far, little mention has been made of other philosophical discussions of the
nature of information. Instead, we have noted some features of the everyday
concept of information, seen how this concept is distinct from the concept of
informationt due to Shannon, and explored some of the facets of the latter con-
cept. Floridi (2003, 2008) provides a useful summary of various other approaches
to the concepts of information to be found in the philosophical literature (see
also van Bentham (2008)).

However, there is one particular approach that we must look into in greater
detail—that of Dretske in Knowledge and the Flow of Information (Dretske,
1981). Dretske is a proponent of semantic naturalism; and in this book he ar-
ticulates a position that is directly opposed to the view that I have advocated
regarding the significance of the communication-theoretic notion of informationt.
His distinctive claim is that a satisfactory semantic concept of information is in-
deed to be found in informationt theory and may be achieved with a simple
extension of the Shannon theory: in his view there is not a significant distinction
between the technical and everyday concepts of information.

I shall suggest, however, that Dretske fails to establish this claim. Moreover,
whether or not his proposed semantic concept of information is in fact a satis-
factory one, it enjoys no licit connection with Shannon’s theory.

Before turning to the details of Dretske’s approach, a few words are in order
on what the idea of semantic naturalism is. Broadly speaking, the aim of the
project is to show that semantic properties such as reference, truth, and mean-
ing can be reduced to suitably respectable naturalistic properties, for example,
to physical properties. The conception is a contentious one, however: there is
little agreement on what level of success has so far been achieved, or even on
whether the project is well grounded. While Adams (2003) presents an up-beat
account of progress, for example, two pertinent sympathetic reviews (Loewer,
1997; McLaughlin and Rey, 1998) suggest that the project has yet to overcome
important systematic difficulties.

As noted in these reviews, proposals for naturalizing semantics typically face
two sorts of problems, whose ancestry, in fact, may be traced back to difficulties
that Grice (1957) raised for the crude causal theory of meaning. These are what
may be called the problem of error and the problem of fine grain.

In brief: it is an essential part of a proposal to naturalize semantics that
an account be given of the content of beliefs (or of propositional attitudes in
general): the problem of error relates to the feature of intentionality mentioned
earlier in this chapter, particularly as it applies to the analysis of beliefs. Here’s
the general problem. Language and thought seem to reach out and to latch
on to the world in a way which is hard to fathom. It may seem mysterious
enough how one’s thoughts can reach out and encompass—be about—the various
external objects which surround us (particularly if one is inclined to a materialist
conception of the mind). But how can I think and speak about things that no
longer exist or that never existed at all? There’s nothing out there for my thought
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to be about, for it to latch on to! And what sort of physical (naturalistic) relation
could my thought or belief (or what instantiates it) possibly have to something
that doesn’t even exist? The problem of error is a version of this puzzle: one
might believe that p when p is not the case; and this is hard to accommodate in
a naturalized account of content. (A very simple illustration: we might suggest
that one has the belief that p when one’s belief is caused by the fact that p.
But then one could only believe that p if p were the case; and this is false.)
The problem of fine grain is in articulating the detailed structure of what is
believed without using linguistic resources, as semantic relations have a finer
grain than causal ones. (To use a hackneyed example, my belief that x is a
creature with a heart is distinct from my belief that x is a creature with a kidney,
yet the properties of having a heart and having a kidney are (nomologically) co-
instantiated. Whatever is caused by a creature that has a heart is caused by a
creature that has a kidney.) There is no consensus on whether these problems
have been, or can be, satisfactorily addressed while an account still maintains
its credentials as a fully naturalistic one.

Moreover, we should note that there are many who would be inclined to argue
that there is system in our apparent failure to provide a satisfactory naturalized
account of semantics thus far. The pertinent thought is that language, being a
rule-governed activity, has an essential normative component that cannot be cap-
tured by any naturalistic explanation. The impetus behind this line of thought
derives from Wittgenstein’s reflections on meaning and rule-following (Wittgen-
stein, 1953). All this suggests that we need to approach Dretske’s arguments
with caution.

2.3.1 Dretske’s information that
Whilst agreeing with Shannon that the semantic aspects of information are irrel-
evant to the engineering problem, Dretske also concurs with Weaver’s assessment
of the converse proposition: ‘But this does not mean that the engineering aspects
are necessarily irrelevant to the semantic aspects’ (Shannon and Weaver, 1963,
p. 8). Of course, if the engineering aspects of mechanical communication sys-
tems are relevant, though, it still needs to be demonstrated precisely what their
relevance is.

Dretske begins by noting that one reason why the Shannon theory does not
provide a semantic notion of information is that it does not ascribe an amount of
information to individual messages, yet it is to individual messages that semantic
properties would apply. To circumvent this difficulty, he introduces the following
quantity as a measure of the amount of information that a single event yj , which
may be a signal, carries about another event, or state of affairs, xi:
Definition 2.2. (Dretske’s information measure)

Ixi(yj) = − log p(xi) −H
(
p(xi′ |yj)

)
,

where xi ∈ {xi′}, i′ = 1, . . . ,m; yj ∈ {yj′}, j′ = 1, . . . , n. That is, the amount of
information that the occurrence of yj carries about the occurrence (or obtain-
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ing) of xi is given by the surprise informationt of xi, minus the uncertainty (as
quantified by the Shannon measure) in the conditional probability distribution
for the xi′ events (states of affairs) given that yj occurred.

From this definition of the amount of information that a single event carries,
he moves to a definition of what information is contained in a signal S:
Definition 2.3. (Dretske’s information that)

A signal S contains the information that q def= p (q|S) =1.

The point of this definition is that there is to be a perfect correlation between
the occurrence of the signal and what it is supposed to indicate: that q.

Does this establish a link between the technical communication-theoretic no-
tions of informationt and a semantic, everyday one? Not yet, at any rate. Whether
definition (2.3) supplies a satisfactory semantic notion of information isn’t to be
settled by stipulation, but would need to be established by the successful comple-
tion of a programme of semantic naturalism demonstrating that Dretske’s notion
of information that is indeed an adequate one. We have already noted that the
question of whether such an objective might be achieved remains open.

However, perhaps more tellingly, there appear in any case to be major difficul-
ties in the other direction—for the thought that Dretske’s notion of information
that has any genuine ties to informationt theory. I shall mention two main sources
of difficulty, either of which appears on its own sufficient to frustrate the claim
that there are such ties.

In Dretske’s proposal, the link to informationt theory is supposed to be me-
diated by definition (2.2) of the amount of information that an individual event
carries about another event or state of affairs. He argues that if a signal is to carry
the information that q it must, amongst other things, carry as much information
as is generated by the obtaining of the fact that q.

Unfortunately, the quantity Ixi(yj) cannot play the role of a measure of the
amount of information that yj carries about xi. To see this we need merely
note that the surpise informationt associated with xi is largely independent of
the uncertainty in the conditional probability distribution for xi′ given yj . For
example, our uncertainty in xi′ given yj might be very large, implying that we
would learn little from yj about the value xi′ , yet still the amount said to be
carried by yj about xi, under Dretske’s definition, could be arbitrarily large, if the
surprise informationt of xi dominates. Or again, the channel might be so noisy
that we can learn nothing at all about xi from yj—the two are uncorrelated, no
information can be transmitted—yet still Ixi(yj) could be strictly positive and
very large (if the probability of xi is sufficiently small).This is sufficient to show
that Ixi

(yj) is unacceptable as a measure. The hoped-for link to information
theory is snapped.36

36One might try to finesse this difficulty by proposing different definitions for the amount of
information that a single event carries about another, or more likely, adopt a direct criterion
for when a signal carries ‘as much’ information as is generated by the obtaining of the fact
that q (see below). None of the obvious approaches, though, suggest that the appeal to an
amount of information content (and hence a link to a quantitative theory of information) is
really anything other than a free-wheel.
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The second main source of difficulty is that in most realistic situations it
would appear very difficult to specify how much information should be associated
with the fact that q.37 Life might be a little easier, perhaps, if we always had a
natural fixed range of options to choose between, as we are supposing the set {xi′}
provides, but how should the different options in a realistic perceptual situation,
say, be counted? The suspicion is that typically, there will be no well-defined
range of distinct possibilities. Dretske himself notes this problem:

How, for example, do we calculate the amount of information generated
by Edith’s playing tennis? . . . [O]ne needs to know: (1) the alternative pos-
sibilities . . . (2) the associated probabilities . . . (3) the conditional proba-
bilities . . . Obviously, in most ordinary communication setings one knows
none of this. It is not even very clear whether one could know it. What,
after all, are the alternative possibilities to Edith’s playing tennis? Pre-
sumably there are some things that are possible (e.g., Edith going to the
hairdresser instead of playing tennis) and some things that are not pos-
sible (e.g., Edith turning into a tennis ball), but how does one begin to
catalog these possibilities? If Edith might be jogging, shall we count this
as one alternative possibility? Or shall we count it as more than one, since
she could be jogging almost anywhere, at a variety of different speeds, in
almost any direction? (Dretske, 1981, p. 53)

His answer is that this spells trouble only for specifying absolute amounts of
information; and it is comparative amounts of information with which he is
concerned, in particular, with whether a signal carries as much information as is
generated by the occurrence of a specified event, whatever the absolute values.
But this response is surely too phlegmatic. If the ranges of possibilities aren’t
well defined, then the associated measure of information is not well defined;
and the difference between the two quantities will not then be well defined: two
wrongs don’t make a right. Dretske’s attempt to forge a link with a theory of
quantity-of-information-carried seems highly doubtful.

Of course, at this point Dretske could re-trench and argue that what he means
by a signal carrying the same amount of information as is associated with the
fact that q is simply that signal and fact are perfectly correlated. This would be
consistent, but would make it very plain that the digression via a quantitative
theory of how much information a signal contains or an event generates is super-
fluous. It would now just be the concept of perfect correlation that is operative ab
initio, not anything to do with measuring amounts of information that a signal
can contain. This contrasts with Dretske’s original hope that the requirement of
perfect correlation between a signal and what it indicates could be motivated
or derived from constraints on how much information a signal can carry. As is
well known, in his later work Dretske did in fact move away from conditional
probabilities in defining his concept of information that, using the idea of perfect
lawlike correlation instead (although for different reasons than the ones we have

37And that’s so even if we put to one side the arguments made earlier (Section 2.2.3) that
the surprise informationt does not link to an everyday amount of information, in any case.
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been dwelling on here (Dretske, 1983, 1988)), further emphasizing that concepts
from informationt theory really play no genuine role in his framework.

It thus seems that the appearance of a link between Dretske’s 1981 semantic
notion of information and informationt theory is illusory. No ideas that involve
quantifying amounts of information transmitted truly play any substantive role
in arriving at definition (2.3). This means, first of all, that Dretske’s notion
of information that gains no validation from the direction of informationt the-
ory; and second, that his argument does not establish that there are closer ties
between the communication-theoretic notion of informationt and the everyday
notion than are usually admitted.

It should be noted, finally, that care is required when considering Dretske’s
definition (2.3) (and the later statements that do not involve conditional proba-
bilities) as a possible primitive notion of information that.38 One must be aware
that the definition may appear intuitively appealing for illegitimate reasons: as
the result of the new notion it introduces being conflated with the idea of contain-
ing information inferentially, for example. With this latter notion of containing
information, it is clear enough why perfect correlation can have a link to infor-
mation: someone who knows of the correlation between signal and state of affairs
may learn something about the state of affairs by observing the signal, in virtue
of an inference. However, this notion of information, containing information in-
ferentially, is evidently not apt for the role of a primitive notion of information
that, as it relies upon the prior concept of a cognitive agent who may use their
knowledge of the correlation to gain further knowledge. For Dretske, information
is ‘that commodity capable of yielding knowledge’ (Dretske, 1981, p. 44), but the
obvious ways in which perfect correlation can yield knowledge—via an inference,
or as part of a natural sign that may be understood or interpreted—are not
available for picking out a primitive notion of information that, on pain of the
homunculus fallacy.

2.4 Summary

We began by noting some elementary features of the everyday notion of informa-
tion: that ‘information’ is an abstract (mass) noun derived from the verb ‘inform’;
that the notion of informing and thus of information itself is to be made out in
terms of the prior concept of knowledge; that there is a distinction between pos-
sessing information and containing it, while the latter category admits a further
distinction between containing information propositionally and containing it in-
ferentially; that one should be wary of the trap of trying to explain possession of
information simply as containing it; that pieces of information must be truths.
Above all, the aim was to sharpen our appreciation of the differences between the

38By ‘primitive’, I mean a notion of information that comes before the concepts of knowledge
and cognitive agent and may be used to explain these latter concepts. Cf. Dretske: ‘In the
beginning there was information. The word came later. The transition was achieved by the
development of organisms with the capacity for selectively exploiting this information in order
to survive and perpetuate their kind’ (Dretske, 1981, p. vii).
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everyday notion of information and that of informationt theory. The everyday
notion is a semantic and an epistemic concept linking centrally to the notions
of knowledge, language, and meaning; to that of a person (language user) who
might inform or be informed.

The Shannon concept, by contrast, we saw to be concerned with the be-
haviour of various physical systems characterized abstractly, at a level at which
no semantic properties are in play, nor even any epistemic ones. The noiseless
coding theorem defines the concepts both of the quantity of informationt pro-
duced by a source and also that of the pieces of Shannon informationt produced.
Drawing from this case, a general definition of what informationt in a Shannon-
type theory actually is was presented: informationt is what is produced by a
source that is required to be reproducible at the destination if the transmission
is to be a success. This led us to distinguish between the piece of informationt

produced on an occasion—an abstract type, a particular sequence of states—
and the concrete object or objects which instantiate it: the token of the piece of
informationt. Thus we concluded that ‘information’ in Shannon’s theory was an
abstract noun too.

It is sometimes thought (as noted in the introduction) that the Shannon con-
cept is merely a quantitative one, defining an amount of information only; but at
least the amount it quantifies is the amount of everyday information that might
be about in a given situation. However, we have seen that this is an error on both
counts: Shannon’s analysis does provide us with a notion of what is produced
(pieces of informationt), but it certainly does not in general quantify informa-
tion in the everyday sense. To reinforce this point I argued that the common
interpretation of the Shannon quantity H(X) in terms of uncertainty did not
capture the Shannon concept of informationt proper (measure of informationt

and measure of uncertainty are distinct concepts) while an amount of uncertainty
as given by a measure like H(X) will typically not measure the amount (or even
average amount) of information in the everyday sense to be gained. Similarly,
we noted that the primary interpretation of the mutual informationt H(X : Y )
was in terms of the noisy coding theorem, even though this same mathematical
quantity can be useful as a measure of uncertainty in inference.

The abstract nature of pieces of informationt and of quantity of informationt

proved important when we came to consider the question of the flow of
informationt. Informationt, whether piece or quantity, is not a kind of stuff that
flows around, no matter how aethereal. This is the wrong picture; and one stem-
ming from a logical mistake: thinking of abstract items as oddly nebulous con-
crete ones. Even with this mistake corrected, I argued that one can’t interpret
the mutual informationt as telling us how informationt as a quantity might flow,
analogous to a flow of energy, for example; for informationt as a quantity in the
Shannon theory does not play a part in the occurrent characterization of the
properties of systems (save of a source): how compressible the output of a source
is, or how much a particular message can be compressed, are apparently not
quantities it makes sense to think of as flowing around as energy or heat, for
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example, might flow. The question of the flow of informationt will become more
pressing when we move to the quantum theory of informationt; and especially
so when we consider the examples of entanglement-assisted communication.

Finally, I addressed Dretske’s version of the project of semantic naturalism,
as it purported to draw much closer links between the information-theoretic and
the everyday notions of information than my arguments so far have permitted.
Note that both the proponent and the opponent of semantic naturalism could
in principle agree that these sets of concepts are in fact distinct. An attempt to
naturalize semantics need not proceed by way of informationt theory; and given
the very pronounced prima facie divergences between information-theoretic no-
tions and the everyday concept, it does not look a terribly promising avenue to
explore. The early Dretske did attempt such an approach, however, as we have
seen; and would claim that the distinction between informationt theory and the
everyday notion of information may be elided. I have suggested, though, that this
attempt to build bridges between information theoryt and the everyday concept
of information is not successful.

With our conceptual tools now finely honed by this thorough practice on the
classical concept—setting our understanding of it straight—it is time to consider
the quantum realm.
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QUANTUM INFORMATION THEORY

‘Physics is an attempt conceptually to grasp reality as something that
is considered to be independent of its being observed. In this sense one
speaks of “physical reality”. In pre-quantum physics there was no doubt
as to how this was to be understood...In quantum mechanics the situation
is less transparent.’ Einstein (1949)

3.1 Introduction

Quantum information is a rich theory that seeks to describe and make use of
the distinctive possibilities for information processing and communication that
quantum systems provide. What draws the discipline together is the recognition
that far from quantum behaviour presenting a potential nuisance for computa-
tion and information transmission (in light of the trend towards increasing mini-
aturization) the fact that the properties of quantum systems differ so markedly
from those of classical objects actually provides opportunities for interesting new
communication protocols and forms of information processing. Entanglement and
non-commutativity, two essentially quantum features, can be used.

To give some examples: Deutsch (1985) introduced the concept of the uni-
versal quantum computer , and the evidence suggests that quantum computers
are exponentially more powerful than classical computational models for the
important task of factoring large numbers (Shor, 1994); meanwhile quantum
cryptography makes use of the fact that non-orthogonal quantum states cannot
be perfectly distinguished in designing protocols for sharing secret random keys
(e.g., Bennett and Brassard, 1984), thus holding out the promise of security of
communication guaranteed by the laws of physics; entanglement may also be
used in such protocols (Ekert, 1991).

Although the field of quantum information began to emerge in the mid-1980s,
and the term ‘quantum information’ was in use by the early 1990s at the latest
(cf. Bennett et al., 1993), the concept of quantum information itself was not truly
available until the quantum analogue of Shannon’s noiseless coding theorem—the
quantum noiseless coding theorem—was developed by Schumacher (Schumacher,
1995; Jozsa and Schumacher, 1994).39

Quantum information theory may be considered as an extension of classical
(Shannon) informationt theory which introduces new communication primitives,

39Historical note: Chris Fuchs has informed me that Ben Schumacher recollects first present-
ing the notion of quantum information at the IEEE meeting on the Physics of Computation
in Dallas in October 1992. The germ of the idea and the term ‘qubit’ arose in conversation
between Schumacher and Wootters some months earlier.
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e.g., the qubit (two-state quantum system) and shared entanglement, while pro-
viding quantum generalizations of the notions of sources, channels and codes.
We will now review a selection of results (by no means comprehensive) that will
be relevant to what follows (Sections 3.2–3.5). For systematic presentations of
quantum information theory, see also Nielsen and Chuang (2000); Bouwmeester
et al. (2000); Preskill (1998); Bennett and Shor (1998). Ekert and Jozsa (1996)
also provides a nice review of quantum computation up to and including the
development of Shor’s algorithm.

What is distinctive about the approach I shall pursue in this chapter is that
it will provide us with an explicit answer to the question of what quantum infor-
mation actually is (Section 3.6). With this answer in hand and the ontological
status of quantum information thereby clarified (Section 3.7), we will then turn
to some philosophical corollaries (Section 3.7.1), resolving some of the puzzles
that were noted in the Introduction. In particular, we shall confront the propo-
sition that Information is Physical and address the claims (such as they are) of
informational immaterialism.

3.2 Bits and qubits

It is useful to begin by focusing on the differences between the familiar classical
communication primitive—the bit—and the corresponding quantum primitive—
the qubit (quantum bit). A classical bit is some physical object which can occupy
one of two distinct, stable classical states, conventionally labelled by the binary
values 0 or 1. As we have seen, the term ‘bit’ is also used to signify an amount
of classical informationt: the number of bits that would be required to encode
the output of a source. Classical (Shannon) informationt sources always produce
systems in one of some range of distinct and distinguishable states.

A qubit is the precise quantum analogue of a bit: it is a two-state quan-
tum system. Examples might be the spin degree of freedom of an electron or
of a nucleus, or an atom with an excited and an unexcited energy state, or the
polarization of a photon. The two basic orthogonal states of a qubit are often
represented by vectors labelled |0〉 and |1〉. These states are called the compu-
tational basis states and provide analogues of the classical 0 and 1 states. But
of course, analogy is not identity. While a classical bit may only exist in either
the 0 or 1 states, the same is not true of a qubit. It may exist in an arbitrary
superposition of the computational basis states: |ψ〉 = α|0〉 + β|1〉, where α and
β are complex numbers whose moduli squared sum to one. There are, therefore,
continuously many different states that a qubit may occupy, one for each of the
different values the pair α and β may take on; and this leads to the natural
thought that qubits contain vastly more information than classical bits, with
their measly two-element state space. Intuitively, this enormous difference in the
amounts of information associated with bit and qubit might seem to be their
primary information-theoretic distinction.

However, a little care is required here. While it is certainly true that the
existence of superpositions represents a fundamental difference between qubits
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and bits, it is not straightforward to maintain that qubits therefore contain vastly
more information. For a start, it is only under certain conditions that systems
may usefully be said to contain information (or informationt) at all—for example,
when it might be possible to learn something of interest from them (information),
or when they are playing a suitable role in a communication protocol of some sort
(informationt). But more importantly, we need to make a distinction between two
different notions of information that coincide in the classical case, but diverge
in the quantum; that is, a distinction between specification informationt and
accessible informationt.

Consider a natural sort of task one might want to attempt using qubits:
the transmission (or attempted transmission) of classical informationt over a
quantum channel, i.e., trying to encode ordinary Shannon informationt into an
array of qubits. Whilst we are used to thinking that an n-dimensional quantum
system (e.g., an array of m qubits, where n = 2m) possesses at most n mutually
distinguishable (i.e. orthogonal) states in which it might be prepared, one is also
free to prepare such a system in one of any number of non-orthogonal states,
as we noted above. The price, of course, is that it will not then subsequently be
possible to determine perfectly which state was prepared. It is this which forces
us to draw the distinction between the amount of informationt that is used to
prepare, or is needed to specify, the state of a quantum system (the specification
informationt) and the informationt that has actually been encoded into a system
(the accessible informationt).

So, consider a classical informationt source, A, that has outputs ai, i = 1 . . . k,
which occur with probabilities p(ai). We will attempt to encode the output of
this source into sequences of n-dimensional quantum systems, as follows. On
receipt of output ai of A, a quantum system is prepared in the signal state ρai

.
These signal states may be pure or mixed, and may or may not be orthogonal.
If the number of outputs, k, of the classical source is greater than n, though, the
signal states will have to be non-orthogonal.

We may consider sequences of length N of signal states being prepared in this
manner, where N is very large. For pure signal states, such a sequence might
look something like this:

|a7〉|a3〉|a4〉|a9〉|a9〉|a7〉|a1〉 . . . |a2〉|a1〉|a3〉|a7〉 . . . |a1〉|a9〉|a1〉.

The amount of informationt needed to specify this sequence will be NH(A) bits.
The specification informationt, then, is the number of bits per system in the
sequence needed to specify the whole sequence of states, and is given by the
informationt of the classical source. If you sent someone that amount of classical
informationt they would be able themselves to produce a copy of the above
sequence of quantum states, or look it up in a book to see which sequence it is.

The quantum analogue of the Shannon informationt H is the von Neumann
entropy (cf. Wehrl, 1978):
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S(ρ) def= −Trρ log ρ = −
n∑

i=1

λi log λi, (3.1)

where ρ is a density operator on an n-dimensional Hilbert space and the λi are
its eigenvalues. For very large N , the sequence of quantum systems produced by
our preparation procedure may be considered as an ensemble described by the
density operator

ρ =
k∑

i=1

p(ai)ρai
. (3.2)

Equally, if one does not know the output of the classical source on a given run
of the preparation procedure, then the state of the individual system prepared
on that run may also be described by this density operator.

The von Neumann entropy takes its maximum value, logn, when ρ is max-
imally mixed, and its minimum value, zero, if ρ is pure. It also satisfies the
inequality (Wehrl, 1978):

S
( k∑

i=1

p(ai)ρai

) ≤ H(A) +
k∑
i

p(ai)S(ρai
), (3.3)

which holds with equality iff the ρai
have disjoint support, i.e., ρai

ρaj
= 0, for

i �= j. Thus the specification informationt H(A) of the sequence, which is limited
only by the number of outputs k of the classical source, may be much greater
than its von Neumann entropy, which is limited by the dimensionality of our
quantum systems.

So, how much informationt have we actually managed to encode into these
quantum systems? To answer this question we need to consider making mea-
surements on the systems, and the resulting mutual informationt H(A : B),
where B labels the observable measured, having outcomes bj , with probabilities
p(bj), j = 1 . . .m. Taking ‘encoded’ to be a ‘success’ word (something cannot
be said to have been encoded if it cannot in principle be decoded), then the
maximum amount of informationt encoded in a system is given by the accessible
informationt (cf. Schumacher, 1995), that is, the maximum over all decoding ob-
servables of the mutual informationt. A well-known result due to Holevo (1973)
provides an upper bound on the mutual informationt resulting from the measure-
ment of any observable, including positive operator valued (POV) measurements
(which, recall, may have more outcomes than the dimensionality of the system
being measured). This bound is:

H(A : B) ≤ S(ρ) −
k∑
i

p(ai)S(ρai), (3.4)

with equality iff the ρai commute.
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The Holevo bound (3.4) implies the weaker inequality

H(A : B) ≤ S(ρ) ≤ logn,

which reinforces the more considered opinion one might have reached after any
initial excitement at the size of the qubit state space: the maximum amount
of informationt that may be encoded into a quantum system will in fact be
limited by the number of orthogonal states available, i.e., by the dimension of
the system’s Hilbert space (even if we allow ourselves POV measurements to try
to distinguish better between non-orthogonal states). In particular, note that for
a single qubit, the most that can be encoded is one bit of informationt. Despite
the fact that we can prepare some sequence of qubits having an unboundedly
large specification informationt, we would not thereby have managed to encode
more than a single bit of informationt into each qubit.40

Again, from the Holevo bound and inequality (3.3) it follows that

H(A : B) ≤ S(ρ) −
k∑
i

p(ai)S(ρai
) ≤ H(A).

The inequality on the right-hand side will be strict if the encoding states ρai
are

not orthogonal, implying that the accessible informationt will be strictly less than
the specification informationt H(A) in this case. This is a way of making precise
the intuition that when encoding in non-orthogonal states, it is not possible to
determine which states were prepared. If H(A : B) < H(A) for any measurement
B, then it is impossible to determine accurately what sequence of states was
prepared by performing measurements on the sequence.

A caveat. In the previous chapter when considering the mutual informationt,
I took care to consider exactly what happens to a piece of (classical) informationt

when one tries to send it down a channel with insufficient capacity. The conclu-
sion was that none of that piece can be said to reach the far end, as none of it
can be non-accidentally reproduced there; instead one has laid down a pre-cursor
which will make it easier to send the whole piece in the future: one just needs
to correct the errors, and that will now take fewer bits of noiseless transmission.
The same lesson applies when thinking about the accessible informationt in the
quantum context. The right way of thinking about this quantity is either as a
means of calculating the classical capacity of a channel consisting of quantum
systems (how much classical informationt one can send over it noise free), or as
giving us a measure of how much it is possible to infer about the identity of the
input sequence—which is a different thing from achieving the transmission of any
of that sequence.41 Thus strictly speaking, we should not think, in the protocol

40Looked at from a certain perspective, this presents an intriguing puzzle. As Caves and
Fuchs have put it: just why is the state-space of quantum mechanics so gratuitously large,
from the point of view of storing informationt? (Caves and Fuchs, 1996).

41One might want to distinguish between the task of achieving the transmission of any of
the sequence and the task of achieving any of the transmission of the sequence. One might
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described above, of the classical sequences produced by the source A as being the
pieces of (Shannon) informationt one is trying to send. Rather, one will choose
codewords from amongst the A sequences that one knows will be distinguishable
at the far end of the channel (following the encoding onto quantum systems and
their subsequent measurement; the accessible informationt tells us how many of
these codewords we can find); and one will associate these codewords, one by
one, with the outputs of some other classical source which is providing the pieces
of classical informationt one is keen to send.

3.3 The no-cloning theorem

The difference in the nature of the state spaces of bit and qubit—the fact that
qubits can support superpositions and hence enjoy a large number of distinct,
but non-distinguishable, states—does not, therefore, manifest itself in a simple-
minded difference in the amount of information the two types of objects can
contain, but in more subtle and interesting ways. We have already seen one,
in the ensuing difference between accessible and specification informationt. A
closely related idea is that of no-cloning.

We have already used the idea that it is not possible to distinguish perfectly
between non-orthogonal quantum states; equivalently, that it is not possible to
determine an unknown state of a single quantum system. If we don’t at least know
an orthogonal set the state in question belongs to (e.g., the basis the system was
prepared in), then no measurement will allow us to find out its state reliably.42

This result is logically equivalent to an important constraint on informationt

processing using quantum systems.
Whatever kind of informationt processing task we are trying to achieve using

quantum systems, we will be involved in preparing those systems in various
quantum states. The no-cloning theorem due to Dieks (1982) and Wootters and
Zurek (1982) states that it is impossible to make copies of an unknown quantum
state. Presented with a system in an unknown state |ψ〉, there is no way of ending
up with more than one system in the same state |ψ〉. One can swap |ψ〉 from one
system to another,43 but one can’t copy it. This marks a considerable difference
from classical informationt processing protocols, as in the classical case, the value

perform a task which counts as getting you half-way through the transmission of the sequence
without thereby having actually transmitted half (or any) of the sequence. Transmitting the
sequence is more like baking bread than whistling a song, in that regard.

42Imagine trying to determine the state by measuring in some basis. One will get some
outcome corresponding to one of the basis vectors. But was the system actually in that state
before the measurement? Only if the orthogonal basis we chose to measure in was one containing
the unknown state. And even if we happened on the right basis by accident, we couldn’t know
that from the result of the measurement, so we could not infer the identity of the unknown
state. For a fully general discussion, see Busch (1997).

43Take two Hilbert spaces of the same dimension, H1 and H2. The ‘swap’ operation US

on H1 ⊗ H2 is a unitary operation that swaps the state of system 1 for the state of system
2 and vice versa: US|ψ〉1|ψ′〉2 = |ψ′〉1|ψ〉2. If we take {|φi〉1,2} as basis sets for H1 and H2

respectively, then US =
∑

ij |φj〉〈φi| ⊗ |φi〉〈φj |, for example.
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of a bit may be freely copied into numerous other systems, perhaps by measuring
the original bit to see its value, and then preparing many other bits with this
value. The same is not possible with quantum systems, obviously, given that
we can’t determine the state of a single quantum system by measurement: the
measuring approach would clearly be a non-starter.

To see that no more general scheme would be possible either, consider a device
that makes a copy of an unknown state |α〉. This would be implemented by a
unitary evolution44 U that takes the product |α〉|ψ0〉, where |ψ0〉 is a standard
state, to the product |α〉|α〉. Now consider another possible state |β〉. Suppose
the device can copy this state too: U |β〉|ψ0〉 = |β〉|β〉. If it is to clone a general
unknown state, however, it must be able to copy a superposition such as |ξ〉 =
1/

√
2(|α〉 + |β〉) also, but the effect of U on |ξ〉 is to produce an entangled

state 1/
√

2(|α〉|α〉 + |β〉|β〉) rather than the required |ξ〉|ξ〉. It follows that no
general cloning device is possible. This argument makes use of a central feature
of quantum dynamics: its linearity .

In fact it may be seen in the following way that if a device can clone more than
one state, then these states must belong to an orthogonal set. We are supposing
that U |α〉|ψ0〉 = |α〉|α〉 and U |β〉|ψ0〉 = |β〉|β〉. Taking the inner product of the
first equation with the second implies that 〈α|β〉 = 〈α|β〉2, which is only satisfied
if 〈α|β〉 = 0 or 1, i.e., only if |α〉 and |β〉 are identical or orthogonal.

I said above that no-cloning was logically equivalent to the impossibility of
determining an unknown state of a single system. We have already seen this in
one direction: if one could determine an unknown state, then one could simply do
so for the system in question and then construct a suitable preparation device to
make as many copies as one wished, as in the classical measuring strategy. What
about the converse? If one could clone, could one determine an unknown state?
The answer is yes. If we are given sufficiently many systems all prepared in the
same state, then the results of a suitable variety of measurements on this group
of systems will furnish one with knowledge of the identity of the state (such a
process is sometimes called quantum state tomography). For example, if we have
a large number of qubits all in the state |ψ〉 = α|0〉+β|1〉, then measuring them
one by one in the computational basis will allow us to estimate the Born rule
probabilities |〈0|ψ〉|2 = |α|2 and |〈1|ψ〉|2 = |β|2, with increasing accuracy as the
number of systems is increased. This only gives us some information about the
identity of |ψ〉, of course. To determine this state fully, we also need to know the
relative phase of α and β. One could find this by also making a sufficient number
of measurements on further identically prepared individual systems in the rotated
bases {1/√2(|0〉±|1〉} and {1/√2(|0〉±i|1〉}, for example (Fano, 1957; Band and
Park, 1970). (One would need to make more types of measurement if the system
were higher dimensional. For an n-dimensional system, one needs to establish

44Is it too restrictive to consider only unitary evolutions? One can always consider a non-
unitary evolution, e.g., measurement, as a unitary evolution on a larger space (cf. Appendix A,
Section A.2). Introducing auxiliary systems, perhaps including the state of the apparatus,
doesn’t affect the argument.
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the expectation values of a minimum of n2 − 1 operators.) Thus access to many
copies of identically prepared systems allows one to find out their state; and with
a cloner, one could multiply up an individual system into a whole ensemble all
in the same state; so cloning would allow identification of unknown states. (It
would also imply, therefore, the collapse of the distinction between accessible
and specification informationt.)

In fact it was in the context of state determination that the question of cloning
first arose (Herbert, 1982). Cloning would allow state determination, but then
this would give rise to the possibility of superluminal signalling using entangle-
ment in an EPR-type setting: one would be able to distinguish between different
preparations of the same density matrix, hence determine superluminally which
measurement was performed on a distant half of an EPR pair. The no-cloning
theorem was derived to show that this possibility is ruled out.

So the no-cloning theorem is not only interesting from the point of view of
showing differences between classical and quantum informationt processing, im-
portant as that is. It also illustrates in an intriguing way how tightly linked
together various different aspects of the quantum formalism are. The standard
proof of no-cloning is based on the fundamental linearity property of the dy-
namics: suggestive if one were searching for information-theoretic principles that
might help illuminate aspects of the quantum formalism. Furthermore, cloning
is logically equivalent to the possibility of individual state determination and
hence implies superluminal signalling; thus no-cloning seems to be a crucial part
of the apparent peaceful co-existence between quantum mechanics and relativity.
All this might seem to suggest some link between no-signalling and linearity of
the dynamics: see Svetlichny (1998) and Simon et al. (2001) for some work in
this connection (but cf. Svetlichny (2002) also); Horodecki et al. (2005) discuss
no-cloning and the related idea of no-deleting in a general setting.

3.4 Entanglement-assisted communication
The use of entanglement as a communication resource is a centrally important
feature of quantum information theory; while the perspective provided by ques-
tions of the sort: what can one do with entanglement that one could not clas-
sically? has paid off handsomely for the theory of entanglement. It has led to
the development of a range of quantitative measures of entanglement, intensive
study of different kinds of bipartite and multipartite entanglement, and detailed
criteria for the detection and characterization of entanglement (see Bruss (2002)
for a succinct review; Eisert and Gross (2007) for more on multi-particle en-
tanglement; and Horodecki et al. (2009)). The conceptual framework provided
by questions of communication and computation was essential to presenting the
right kinds of questions and the right kinds of tools to drive these developments.

A state is called entangled if it is not separable, that is, if it cannot be written
in the form:

|Ψ〉AB = |φ〉A|ψ〉B , for pure, or ρAB =
∑

i

αiρ
i
A ⊗ ρi

B, for mixed states,
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where αi > 0,
∑

i αi = 1 and A, B label the two distinct subsystems. The case
of pure states of bipartite systems is made particularly simple by the existence
of the Schmidt decomposition—such states can always be written in the form:

|Ψ〉AB =
∑

i

√
pi |φ̄i〉A|ψ̄i〉B , (3.5)

where {|φ̄i〉}, {|ψ̄i〉} are orthonormal bases for systems A and B respectively, and
pi are the (non-zero) eigenvalues of the reduced density matrix of A. The number
of coefficients in any decomposition of the form (3.5) is fixed for a given state
|Ψ〉AB , hence if a state is separable (unentangled), there is only one term in the
Schmidt decomposition, and conversely. For the mixed state case, this simple test
does not exist, but progress has been made in providing operational criteria for
entanglement: necessary and sufficient conditions for 2⊗2 and 2⊗3 dimensional
systems and necessary conditions for separability (sufficient conditions for en-
tanglement) otherwise (Horodecki et al., 1996a; Peres, 1996). (See Seevinck and
Uffink (2001); Seevinck and Svetlichny (2002) for discussion of N -party criteria.)

It is natural to think that shared entanglement could be a useful
communication-theoretic resource; that sharing a pair of systems in an entan-
gled state would allow you to do things that you could not otherwise do. (A
familiar one: violate a Bell inequality.) The essence of entangled systems, after
all, is that they possess global properties that are not reducible to local ones;
and we may well be able to utilize these distinctive global properties in trying to
achieve some communication task or distributed computational task. The central
idea that entanglement—genuinely quantum correlation—differs from any form
of classical correlation (and therefore may allow us to do things a shared classical
resource would not) is enshrined in the central law (or postulate) of entangle-
ment theory: that the amount of entanglement that two parties share cannot be
increased by local operations that each party performs on their own system and
classical communication between them. This is a very natural constraint when
one reflects that one shouldn’t be able to create shared entanglement ex nihilo. If
two parties, Alice and Bob, are spatially separated, but share a separable state,
then no sequence of actions they might perform locally on their own systems,
even chains of conditional measurements (where Bob waits to see what result
Alice gets before he chooses what he will do; and so on) will turn the separable
state into an entangled one. Classical correlations may increase, but the state
will remain separable.45 Possessing such a non-classical shared resource, then,
we can proceed to ask what one might be able to do with it.

The two paradigmatic examples of entanglement-assisted communication are
superdense coding and teleportation. In superdense coding (Bennett and Weisner,

45If Alice and Bob were in the same location, though, it would be easy for them to turn a
separable state into an entangled state, as they can perform operations on the whole of the
tensor product Hilbert space (e.g., perform a unitary on the joint space mapping |↑〉A|↑〉B to
1/

√
2(|↑〉A|↓〉B −|↓〉A|↑〉B)). When spatially separated, they may only perform operations on

the individual systems’ Hilbert spaces.
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Table 3.1. The four Bell states, a maximally entangled basis for 2⊗2 dimensional systems.

A choice of one of four Pauli operations {1, σx, σy , σz} applied to her system by Alice may

transform, for example, the singlet state to one of the other three states orthogonal to it.

|φ+〉 = 1/
√

2(|↑〉|↑〉 + |↓〉|↓〉)
|φ−〉 = 1/

√
2(|↑〉|↑〉 − |↓〉|↓〉)

|ψ+〉 = 1/
√

2(|↑〉|↓〉 + |↓〉|↑〉)
|ψ−〉 = 1/

√
2(|↑〉|↓〉 − |↓〉|↑〉)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−iσy ⊗ 1|ψ−〉
−σx ⊗ 1|ψ−〉
σz ⊗ 1|ψ−〉
1 ⊗ 1|ψ−〉

1992) prior shared entanglement between two widely separated parties, Alice and
Bob, allows Alice to transmit to Bob two bits of classical informationt when she
only sends him a single qubit. This would be impossible if they did not share a
maximally entangled state, e.g., the singlet state (one of the four Bell states, see
Table 3.1) beforehand. The trick is that Alice may use a local unitary operation to
change the global state of the entangled pair into one of four different orthogonal
states. If she then sends Bob her half of the entangled pair he may perform a
suitable joint measurement to determine which operation she applied; thence
acquiring two bits of information.

However, this protocol can appear puzzling: what of the Holevo bound? How
can it be that a single qubit is carrying two classical bits in this protocol? The
simple answer is that it is not. The presence of both qubits is essential for the
protocol to work; and it is the pair, as a whole, that carry the two bits of
informationt; therefore there is no genuine conflict with the Holevo bound. What
is surprising, perhaps, is the time ordering in the protocol. There would be no
puzzle at all if Alice simply encoded two classical bit values into the state of a
pair of qubits and sent the pair to Bob (and she could choose any orthogonal
basis for the pair, whether separable or entangled to do this, so long as Bob
knows which she opts for). But although there are two qubits involved in the
protocol, Alice doesn’t make her choice of classical bit value until one half of the
entangled pair is with her and one half with Bob. It then looks mysterious how,
when she has access only to one system, she could encode informationt into both.
How can this possibly square with our intuitions about locality and continuity?
In due course we shall see how these troubles are to be dispelled.

In the teleportation protocol, by contrast (Bennett et al., 1993), instead of
being used to help send classical informationt, shared entanglement is used to
transmit an unknown quantum state from Alice to Bob, with, remarkably, noth-
ing that bears any relation to the identity of the state travelling between them.
Furthermore, during the protocol, the state being teleported disappears from
Alice’s location before reappearing at Bob’s a little while later, thus provid-
ing the inspiration for the science fiction title of the protocol. Also during the
protocol, the intial shared entanglement is destroyed.
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Since teleportation is a linear process it may also be used for entanglement
swapping . Let’s say that Alice and Bob, who are widely spatially separated, share
a maximally entangled state of a pair of particles labelled 3 and 4. Alice may
decide to perform the teleportation operation on a system, 2, which is half of
an entangled pair, 1 and 2. Following the protocol, the entanglement between 1
and 2, and between 3 and 4, is destroyed, but 1 and 4 will end up entangled,
whereas before they had been uncorrelated. The entanglement of 1 and 2 has
been swapped onto entanglement of systems 1 and 4.

We shall be considering dense coding and teleportation in detail in later
chapters.

These basic examples we have seen of superdense coding and teleportation
both make use of maximally entangled pairs of qubits. If the qubits were less than
maximally entangled then the protocols would not work properly, perhaps not at
all. Given that entanglement is a communication resource that will be used up
in a process like teleportation, it is natural to want to quantify it. The amount
of entanglement in a Bell state, the amount required to perform teleportation of
a qubit, is defined as one ebit . The general theory of quantifying entanglement
takes as its central axiom the condition that we have already met: no increase of
entanglement under local operations and classical communication. In the case of
pure bipartite entanglement, the measure of degree of entanglement turns out to
be effectively unique, given by the von Neumann entropy of the reduced states of
the entangled pair (Popescu and Rohrlich, 1997; Donald et al., 2002). In the case
of mixed state entanglement, there exists a range of distinct measures. Vedral
et al. (1997) and Vedral and Plenio (1998) propose criteria that any adequate
measure must satisfy and discuss relations between a number of measures.

3.5 Quantum computers

Richard Feynman was the prophet of quantum computation. He pointed out
that it seems that one cannot simulate the evolution of a quantum mechanical
system efficiently on a classical computer. He took this to imply that there might
be computational benefits to be gained if computations are carried out using
quantum systems themselves rather than classical systems; and he went on to
describe a universal quantum simulator (Feynman, 1982). However, it is with
Deutsch’s introduction of the concept of the universal quantum computer that
the field really begins (Deutsch, 1985).

In a quantum computer, we want to use quantum systems and their evolution
to perform computational tasks. We can think of the basic components of a
quantum computer as a register of qubits and a system of computational gates
that can be applied to these qubits to perform various evolutions and evaluate
various functions. States of the whole register of qubits in the computational
basis would be |0〉|0〉|0〉 . . . |0〉, for example, or |0〉|1〉|0〉 . . . |1〉, which can also
be written |000 . . . 0〉 and |010 . . . 1〉 respectively; these states are analogous to
the states of a classical register of bits in a normal computer. At the end of a
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computation, one will want the register to be left in one of the computational
basis states so that the result may be read out.

The immediately exciting thing about basing one’s computer on qubits is
that it looks as if they might be able to provide one with massive parallel pro-
cessing. Suppose we prepared each of the N qubits in our register in an equal
superposition of 0 and 1, then the state of the whole register will end up being
in an equal superposition of all the 2N possible sequences of 0s and 1s:

1√
2N

(|0000 . . . 00〉 + |0000 . . . 01〉 + |0000 . . . 11〉 + . . .+ |1111 . . . 11〉).

A classical N -bit register can store one of 2N numbers: an N -qubit register
looks like it might store 2N numbers simultaneously, an enormous advantage.
Now if we have an operation that evaluates a function of an input string, the
linearity of quantum mechanics ensures that if we perform this operation on our
superposed register, we will evaluate the function simultaneously for all possible
inputs, ending up with a register in which all the 2N outputs are superposed!

This might look promising, but the trouble is, of course, that it is not possible
to read out all the values that are superposed in this state. Measuring in the
computational basis to read out an outcome we will get a collapse46 to some one
of the answers, at random. Thus despite all the quantum parallel processing that
went on, it proves very difficult to read much of it out. In this naive example,
we have done no better than if we had evaluated the function on a single input,
as classically. It is for this reason that the design of good quantum algorithms is
a very difficult task: one needs to make subtle use of other quantum effects such
as the constructive and destructive interference between different computational
paths in order to make sure that we can read out useful information at the end of
the computation, i.e., that we can improve on the efforts of classical computers.

The possible evolutions of states of quantum mechanical systems are given
by unitary operators. A universal quantum computer will thus be a system that
can (using finite means) apply any unitary operation to its register of qubits.
It turns out that a relatively small set of one- and two-qubit quantum gates is
sufficient for a universal quantum computer.47 A quantum gate is a device that
implements a unitary operation that acts on one or more qubits. By combining
different sequences of gates (analogously to logic gates in a circuit diagram) we
can implement different unitary operations on the qubits they act on. A set
of gates is universal if by combining elements of the set, we can build up any
unitary operation on N qubits to arbitrary accuracy.

So what can quantum computers do? First of all, they can compute anything
that a classical Turing machine can compute; such computations correspond to

46Or, an effective collapse, if one believes only in unitary evolution.
47See for example Nielsen and Chuang (2000, §4.5). We are considering the quantum network

model of quantum computation which is more intuitive and more closely linked to experimental
applications than the alternative quantum Turing machine model that Deutsch began with.
The two models were shown to be equivalent in Yao (1993).
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permutations of computational basis states and can be achieved by a suitable
subset of unitary operations. Second, they can’t compute anything that a clas-
sical Turing machine can’t. This is most easily seen in the following way (Ekert
and Jozsa, 1996).

We can picture a probabilistic Turing machine as following one branch of a
tree-like structure of computational paths, with the nodes of the tree correspond-
ing to computational states. The edges leading from the nodes correspond to the
different computational steps that could be made from that state. Each path is
labelled with its probability and the probability of a final, halting, state is given
by summing the probabilities of each of the paths leading to that state. We may
see a quantum computer in a similar fashion, but this time with the edges con-
necting the nodes being labelled with the appropriate probability amplitude for
the transition. The quantum computer follows all of the different computational
paths at once, in a superposition; and because we have probability amplitudes,
the possibility of interference between the different computational paths exists.
However, if we wished, we could program a classical computer to calculate the
list of configurations of the quantum computer and calculate the complex num-
bers of the probability amplitudes. This would allow us to calculate the correct
probabilities for the final states, which we could then simulate by tossing coins.
Thus a quantum computer could be simulated by a probabilistic Turing machine;
but such a simulation is very inefficient.

The advantage of quantum computers lies not, then, with what can be com-
puted, but with its efficiency. In computational complexity, the crudest measure
of whether a computational task is tractable or not, or an algorithm efficient, is
given by seeing how the resources required for the computation scale with in-
creased input size. If the resources scale polynomially with the size of the input
in bits, the task is deemed tractable. If they do not, in which case the resources
are said to depend exponentially on the input size, the task is called hard or
intractable. A breakthrough in quantum computation was achieved when Shor
(1994) presented an efficient algorithm for factoring on a quantum computer,
a task for which it is believed no efficient classical algorithm exists.48 Hence
quantum computers provide exponential speed-up over the best-known classical
algorithms for factoring; and this is strong evidence that quantum computers
are more powerful than classical computers. Another very important quantum
algorithm is due to Grover (1996). This algorithm also provides a speed-up,
although not an exponential one, over classical methods for searching an un-
structured database. For a database of size n, the algorithm allows the desired
object to be found in

√
n steps, rather than the order of n steps one would expect

classically.

48Thus quantum computers would destroy the security of the widely used RSA public-key
protocol which is based on the computational diffficulty of factoring. It’s therefore perhaps
comforting that what quantum mechanics takes with one hand (ease of factoring, therefore
violating state-of-the-art security) it gives back with the other (quantum key distribution).
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3.6 What is quantum information?

We have now surveyed a few characteristic aspects and protocols of quantum
information theory. It is time for some more conceptual matters. Thus far we
have seen nothing explicitly of the notion of quantum information itself; a notion
which really lies at the core of the theory. We have seen some interesting ways
in which quantum systems can be used to propagate classical informationt (e.g.,
superdense coding), but things get far more interesting with protocols which
genuinely involve quantum information, for example, the teleportation protocol
and entanglement swapping. But what is quantum information?

As noted in the Introduction, for many, this has been a deeply puzzling and
perhaps unanswerable question; and on the face of it, one can see why. Compared
with pieces of classical informationt, the output of a good old Shannon source,
quantum information can seem strangely nebulous. You know where you are with
a piece of Shannon informationt: you can look at it and it says on its face what it
is; you can read it off, or infer its identity without trouble. You can send a friend a
description of it and that will serve him just as well as the piece of information you
started with. Moreover, it’s clear how classical communication channels work: if
two classical random variables are correlated, then it’s simple to see how one can
learn the information about the value of one variable from the value of the other.
But this transparency all seems to break down in the quantum case. You can’t
find out what quantum state an individual system is in—whatever information
(quantum or otherwise) being in that state counts as, you don’t have access
to it directly; all you can do is measure the system to try and produce some
classical-level information about it; but then that can’t be whatever quantum
level information it contained; it’s just some classical information. So what is
quantum information? What could it be?? We can see why one system would
contain information about another if the two are correlated, but how can that
work in the quantum case? In the first place, as we just noted, you can’t find
out what the state of the first is, so how can you infer anything about the state
of the second? And if you did, and could, wouldn’t that then just be a matter
of classical information now, given by classical correlation? But without being
able to use the idea of correlation and of learning the state that something is in
(that returns us to the classical concept), what room is there left for a notion
of information at all? If there is some distinct notion, as the theory seems to
assure us there is, then it must surely be of a very unusual, unprecedented and
unspeakable kind. And all that’s before we even begin to look at how oddly this
kind of information can travel . . .

Given all the spade-work of the preceding chapter, however, alarm bells
should have been ringing loudly by now. There is a clutch of confusions here.
The key mistake is to focus on the wrong aspects of the familiar classical theory;
one is then puzzled when these do not generalize. As we have seen, the core
of the Shannon theory is not to do with uncertainty and reducing uncertainty
(epistemic notions), nor to do with correlation allowing inference and learning
(epistemic and semantic notions). If we focus on these ideas, then it’s no surprise
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that one will stumble with quantum information, for they are not the centre of
a communication theory of Shannon’s stripe and do not, therefore, provide the
relevant dimension of generalization. One is allowing too much of the overtones
of the everyday concept of information to infect one’s conception of the technical
notion; and this is deadly in the quantum context. If one begins with the core
Shannon notions of source, channel, and coding, however, the generalization is
straightforward and unproblematic. There is, and should be, no mystery about
the nature of quantum information. We’ll take the first steps in seeing this now;
further aspects, particularly to do with the propagation of quantum information,
will be explored in the following two chapters.

We need to begin, then, by recalling once more our key aim in an informationt

theory: reproducing at one point a message selected by a source at another.
Informationt in that theory will then be what is produced by the source that is
required to be reproduced or reproducible at the destination if the transmission is
to be counted a success. To get the notion of quantum informationt, we will need,
first of all, that of a quantum informationt source; the immediate generalization
of the Shannon prototype. This is where Schumacher began.

3.6.1 Quantum sources: how much

Let’s start with amount of quantum informationt. If a classical source can be
modelled by an ensemble A from which letters ai are drawn with probabilities
p(ai), the quantum source will be modelled similarly by an ensemble of systems
in states ρai

, produced with probabilities p(ai) (Schumacher, 1995). We will
assume these states to be pure, ρai

= |ai〉〈ai|. Then, just as Shannon’s noiseless
coding theorem introduces the concept of the bit as a measure of informationt,
the quantum noiseless coding theorem introduces the concept of the qubit as a
measure of quantum informationt, characterizing the quantum source.

By an ingenious argument, the quantum noiseless coding theorem runs par-
allel to Shannon’s noiseless coding theorem, using much the same mathematical
ideas. If we consider a long sequence of N systems drawn from the quantum
source, their joint state can be written as

ρ⊗N = ρ1 ⊗ ρ2 ⊗ . . .⊗ ρN ,

where ρi is the density operator for the ith system, given by eqn (3.2), with
ρai

= |ai〉〈ai|. In the classical case, for large enough N , we needed only to
consider sending typical sequences of outcomes, of which there were 2NH(A) for
a source A, as only these had non-vanishing probability. Similarly in the quantum
case, for large enough N , the joint state ρ⊗N will have support on two orthogonal
subspaces, one of which, the typical subspace, will have dimension 2NS(ρ) and
will carry the vast majority of the weight of ρ⊗N, whilst the other subspace
will have vanishingly small weight as N → ∞ (Schumacher, 1995).49 Because

49To see this, note that ρ⊗N can be written as a weighted sum of N-fold tensor products of
one-dimensional eigenprojectors of ρ, with weights given by the products of the correspond-
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of this, the state ρ⊗N may be transmitted with arbitrarily small error by being
encoded onto a channel system of only 2NS(ρ) dimensions (Schumacher, 1995;
Jozsa and Schumacher, 1994), for example, onto NS(ρ) qubits. These channel
systems may then be sent to the receiver and the original state recovered with
near perfect fidelity. Thus, analogously to the classical case, we have a measure
of the resources (now quantum resources, mind) required to transmit what is
produced by our quantum source. The von Neumann entropy provides a measure,
in qubits, of the amount by which the output of our source may be compressed,
hence provides a measure of the amount of quantum informationt the source
produces.50

3.6.2 Quantum sources: what

So now we know what is meant by how much quantum informationt a source
produces; let us turn to what it produces: what pieces of quantum informationt

are. It will be easiest to consider two cases separately.
Pure states In the simplest case we consider our source producing systems in
one of the states {|a1〉, |a2〉, . . . , |an〉} with probabilities p(ai), where these states
need not be orthogonal. Then the output of this source on a particular occasion
after it has been running for a while will be a sequence of systems in particular
quantum states, of a kind we have seen before, e.g., a sequence like

|a7〉|a3〉|a4〉|a9〉|a9〉|a7〉|a1〉 . . . |a2〉|a1〉|a3〉|a7〉 . . . |a1〉|a9〉|a1〉.

The difference is that earlier we were considering these systems to have classical
informationt encoded into them; now we are thinking of them as presenting a
piece of quantum informationt itself.51

Now, just as before when considering pieces of classical informationt (Sec-
tion 2.2.2), we have here a sequence type, instantiated by particular systems
taking on various states in order (quantum states, now). And just as before,
such a sequence may be named (‘It’s sequence q17’, for example) or described
(‘It’s the sequence of quantum states “|a7〉|a3〉|a4〉 . . .”.’ etc.), but of course this

ing eigenvalues λi of ρ. For large N there will be 2NH(�λ), with H(�λ) = −∑n
i=1 λi log λi,

equiprobable typical sequences of eigenprojectors in this sum, i.e., sequences in which the rel-
ative frequency of occurrence of a given projector is equal to its associated eigenvalue, while
all other sequences in the sum have very small weight. But −∑n

i=1 λi log λi is just the von
Neumann entropy S(ρ).

50The converse to the quantum noiseless coding theorem, that 2NS(ρ) qubits are necessary
for accurate transmission, was proved in full generality by Barnum et al. (1996).

51N.B. In the proof of the quantum noiseless coding theorem the output of the source was
written as a tensor product of mixed states, rather than as a tensor product of pure states,
as here. That is because when considering coding, we need to be able to provide for whatever
the output of the source might be, so the appropriate state to consider as output is the convex
combination of the |ai〉 on each run of the source. Alternatively, one needs to provide for the
case in which the output of the source is not in a pure state itself because it is entangled with
something else (see below); again the tensor product of the mixed states is the one to consider
for coding here.
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time it will not, in general, be possible to identify what sequence a given number
of systems instantiate merely by being presented with them, as the |ai〉 need
not be orthogonal, so typically will not be distinguishable. But this does not
stop the general lesson learnt above (Section 2.2.2) about the nature of pieces
of informationt applying once more: the informationt produced by the source—
quantum informationt, now—will be specified by specifying what sequence (type)
was produced. These sequences will clearly be of a different, and more interesting,
sort than those produced by a classical source. (One might say that with classi-
cal and quantum informationt, one was concerned with different types of type!)
Just as before, though, what will be required for a successful transmission to be
effected is that another token of this type be (non-accidentally) reproduced, or
reproducible (following a standard procedure) at the desired destination. That
is, we need to be able to end up with a sequence of systems taking on the appro-
priate quantum states in the right order at the far end; that’s what will count
as successful transmission in this case. What is transmitted is a particular se-
quence of quantum states. Production of a token of the sequence type, followed
by a consequent production of another token of the type (or the possibility of
such a consequent production), is what transmission of the piece of quantum
informationt—the sequence type—will consist in.
Entangled case That was the most basic form of quantum informationt source.
We gain a richer notion when we take into account the possibility of entangle-
ment. So consider a different type of quantum informationt source (Schumacher,
1995), one that always outputs systems in a particular mixed state ρ. Such a
source might seem dull until we reflect that these might be systems in improp-
erly mixed states (d’Espagnat, 1976), that is, components of larger entangled
systems, the other parts of which may be inaccessible to us. In particular, there
could be a variety of different states of these larger systems that give rise to
the same reduced state for the smaller components that the informationt source
presents us with. How should we conceive of what this informationt source pro-
duces?

We have a choice. We might be unimaginative and simply require that what
we might call the ‘visible’ output of the source be reproducible at the destination.
The source produces a sequence ρ⊗ρ⊗ρ⊗. . . and we should be able to reproduce
this sequence at the destination. What is transmitted will then be specified by
specifying this sequence. But we might be more interesting and require that not
only should the ‘visible’ output sequence be reproducible at the destination, but
so also should any entanglement that the original output systems might possess.
Given the importance of being able to transfer entanglement in much of quantum
informationt theory, this latter choice turns out to be the better one to make.52

We may model the situation as follows. Take three sets of systems, labelled
A, B, and C. Systems in set B are the systems that our source outputs; we

52As Duwell (2008) has emphasized, this corresponds to the choice of the entanglement
fidelity (cf. Nielsen and Chuang, 2000, Section 9.3) as the criterion for a successful quantum
informationt transmission protocol.



62 Quantum Information Theory

suppose them all to be in the mixed state ρ. Systems in set A are the hidden
partners of systems in set B. The ith member of B (Bi) can be thought to be
part of a larger system whose other part consists of the ith member of A (Ai);
in addition, we assume that the joint system composed of Ai and Bi together is
in some pure state |ψ〉AiBi which will give a reduced state of ρ when we trace
over Ai (such a state is called a purification of ρ). If ρ is mixed then |ψ〉AiBi

,
by assumption pure, will necessarily be entangled. The systems in set C are the
‘target’ systems at the destination point.

Now consider the ith output of our informationt source. This will be the
system Bi, having the reduced state ρ. But this is only half the story: along with
Bi is the hidden system Ai; and together these are in the state |ψ〉AiBi

. As the
end result of the transmission process, we would like Ci to be in the state ρ, but
if we are to preserve entanglement, then our truly desired end result would be Ci

becoming entangled to Ai, in just the way Bi had been previously. So we actually
desire that the pure state |ψ〉 previously instantiated by AiBi should end up
being instantiated by Ai and Ci. This would be transfer of the entanglement, or
transfer of the ‘quantum correlation’, that Bi—the visible output of the source—
had previously possessed.

This may all now be expressed in terms of sequences of states once more.
The quantum source outputs sequences of systems in entangled states, half of
which (systems B) we see, and half of which (systems A) we do not. A particular
segment of such a sequence might look like:

. . . |ψ〉AiBi
|ψ′〉AjBj

|ψ′′〉AkBk
. . . ,

where |ψ′〉 and |ψ′′〉, like |ψ〉, are purifications of ρ. Such a sequence is the piece
of quantum informationt produced and it will be successfully reproduced by a
protocol if the end result is another token of the type, but this time involving
the systems C:

. . . |ψ〉AiCi
|ψ′〉AjCj

|ψ′′〉AkCk
. . .

3.6.2.1 Moral The general conclusion we may draw is that pieces of quantum
informationt, far from being mysterious—perhaps unspeakable—are quite easily
and perspicuously described. A given item of quantum informationt will simply
be some particular sequence of Hilbert space states, whether the source produces
systems in individual pure states, or as parts of larger entangled systems. What
is more, we have seen that quantum informationt is closely analogous to classical
informationt: in both cases, informationt is what is produced by the respective
informationt sources (both fall under the general definition of Section 2.2.2);
and in both cases, what is produced can be analysed in terms of sequences of
states (types). In the two theories, what we are interested in producing and
re-producing differs enormously, as do our reasons for being interested in this
production and re-production; there are different criteria for successful message
reproduction too. All this means we have richly different concepts of informationt;
but they are still both concepts of informationt.
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3.6.3 An objection: Jozsa’s argument

Let us now consider a possible objection to the account of the nature of quantum
informationt that I have proposed. In the course of his interesting discussion,
Jozsa (2004) presents some observations which might be parlayed-up into an
argument against this conception of quantum informationt.

He begins by making a distinction close to one which we have already seen:
A quantum state |ψ〉 may be viewed as a carrier of information in two
fundamentally different ways. First, |ψ〉 may be regarded as carrying the
classical information of the state identity. As an example, a sender may
prepare one of the two (non-orthogonal) states |ψ0〉 and |ψ1〉 to encode
the bit values 0 and 1 respectively . . .(Jozsa, 2004, p. 79)

This is essentially what we called the specification informationt earlier, when
considering encoding classical informationt in quantum systems.

. . . In a second way, |ψ〉 may be viewed as the carrier of ‘quantum in-
formation’ . . . Quantum information is a new concept with no classical
analogue, and it is important to distinguish it from the state identity.
(ibid.)

Now evidently I disagree with Jozsa on the matter of the lack of a classical
analogue for quantum informationt: I have argued that classical and quantum
informationt are two species of a single genus. But what is of present concern
are his reasons for wishing to distinguish quantum informationt from the state
identity. Here’s the argument:

. . . given a physical realization of one of the two states |ψi〉 . . . quantum
theory considerably restricts (in a richly structured way) the allowable
manipulations that we can perform, in contrast to what is possible if we
are given the identity of i.

Indeed, ‘being given the quantum state |ψi〉’ is very different from
being given any kind of classical information, and by an analogy of ter-
minology we apply the phrase quantum information to describe what we
have received. (ibid.)

Why is this germane? One might be tempted to argue as follows: we need
to distinguish the state identity (what state something is in) from quantum
informationt proper; this means that pieces of quantum informationt cannot be
mere sequences of quantum states, for we can state what such sequences are (e.g.,
‘It’s the sequence of quantum states “|a7〉|a3〉|a4〉 . . .”’). But that is to provide
the state identity; it is not a matter of quantum informationt at all; we have none
of the richly structured restrictions on manipulation of that information which
are crucial to the interest of quantum informationt. Taking pieces of informationt

to be sequences of quantum states would be to collapse quantum informationt

into the (in effect, classical) state identity.
Now, such an argument would in fact have no merit at all; but it may be

instructive to elaborate a little on why.
It’s a general truth that being given some physical object and being given a

description of it are very different things. One can’t eat the fish that got away,
no matter how much one hears about it in the pub afterwards.
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Similarly, being given a series of quantum systems in some particular sequence
of states is very different from being told about them, and is very different from
being given a sequence of classical bits which encode the piece of specification
informationt one could use to identify or re-create that sequence of quantum
states (create another token of that type). What’s true of the fish, e.g., that it
can swim, need not be true of its description, nor of the gusts of air which provide
the concrete tokens of our angler’s increasingly rambling utterances. What’s true
of the series of quantum systems need not be true of the description of them,
nor of the material underlay of that description.

Thus the fact that one can describe what a particular piece of quantum
informationt is—describe a particular sequence of quantum states—and that one
can provide an encoding of that identity in bits (the specification informationt)
does not mean that that sequence is in fact a piece of classical informationt.
The statement of what something is (the description of the sequence) and what
something is (the sequence itself) are quite different. I’m a man; but I’m not the
statement that I’m a man.53 That would be gibberish.

To state what sequence of quantum states a number of systems is in, then, is
to provide a piece of everyday information which can be encoded into classical
bits; but what is thereby described is not a piece of classical informationt, nor
in fact a piece of information at all. What is described is a collection of concrete
objects. To state what a particular piece of quantum informationt is—to describe
or identify the type (not the token)—is again to provide a piece of everyday in-
formation which can be encoded into classical bits; what is described is a piece
of informationt this time, but it is not a piece of classical informationt. This be-
comes very obvious when reflecting that the properties of what is described differ
fundamentally from those of a piece of classical informationt: what is described
(the quantum sequence type) can only be instantiated by systems which allow
for the presence of non-orthogonal pure states, for example; its tokens can only
ever be quantum systems: that’s not true of classical sequence types.

‘Being describable by classical resources’ does not mean ‘is classical’. The fact
that one can’t do what one could with the quantum system (and contrariwise,
that the restrictions that would obtain were one dealing with a quantum system
are not in effect) when presented with a classical description of it is trivially
explained by the fact that one hasn’t been given a quantum system! One hasn’t
been given a token of the type which is being described, so one wouldn’t expect
the possibilities and constraints that are relevant to tokens of those types to
be in place. Instead, one has been given some classical token or other. None of
this provides any difficulties for the idea that pieces of quantum informationt are
particular kinds of sequence types which can be perfectly clearly and straightfor-
wardly described. For describing a piece of quantum informationt is not giving
you it (handing you a token).

53‘Statement’ bears a—sometimes useful, sometimes distracting—duplicity of sense (cf.
Strawson, 1950). It can be used to refer either to the act of stating that p, that act being
a datable and locatable event of a certain character; or it can be used to refer to what was said
on the occasion in question—the proposition expressed. My remarks hold of both senses.
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So we see that in truth what Jozsa is pointing to above is not a distinction
between the state identity and quantum informationt proper. Rather, what is
being drawn on is the simple difference between being given a system in some
state and being given a description of it, or the related difference between being
given some qubits and being given some classical bits. Let me stress that Jozsa
himself doesn’t present (what we have seen to be) the bad argument against my
conception of quantum informationt; that argument is merely one suggested by
his presentation and particularly by his terminology of ‘the state identity’. If by
its state identity one means what quantum state something is in, then to specify
the state identity is in fact to specify a (short!) piece of quantum informationt.
Having that state identity (a property of an object) is to instantiate (be a to-
ken of) that piece of quantum informationt. So in what sense, then, if any, do
quantum systems carry classical informationt about their state identity as Jozsa
seems to suggest? Well, perhaps in none. Recall earlier that I called ‘encoded’ a
success word. Something doesn’t count as encoded unless it can be decoded; a
system won’t carry a piece of informationt unless it can be decoded from it. The
specification informationt associated with a system generally can’t be (whenever
non-orthogonal states are involved), so sequences of quantum systems generally
do not carry (encode) their specification informationt at all. They may be used as
part of a quantum channel for other pieces of classical informationt produced by
some source; and then (so long as the capacities and coding are right) they will
count as carrying that piece of informationt produced on a particular occasion,
whatever it happens to be. Or, they may simply be considered to be tokens of
pieces of quantum informationt.

3.7 The worldliness of quantum information

We have now reached some important conclusions. Quantum informationt is
not mysterious, nebulous and unspeakable. Pieces of quantum informationt can
be quite clearly and simply described, while the quantitative concept (amount
produced by a quantum source) is entirely straightforward and intelligible; just
as straightforward and intelligible, in fact, as the corresponding classical no-
tion. We have also recognized that quantum informationt is not part of the
material contents of the world: pieces of quantum informationt are certain ab-
stract items—sequences of quantum states (types)—just as pieces of classical
informationt are abstract items: sequences of classical (distinguishable) states.
These abstract types, quantum and classical, differ markedly in their properties:
in what count as tokens of them; in how such tokens behave; in what is permitted
by the theories where these different types of type find their home—the theories
in which the complex properties of being a token of such-and-such a type are to
be found. As abstracta, pieces of quantum informationt (again, like pieces of clas-
sical informationt) do not themselves have a spatio-temporal location; it is their
tokens (if any) which do. This underlines the result that we should not think of
informationt quantum or classical as a kind of concrete stuff which inhabits the
world and which may ebb and flow around in various ways.
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The realization that quantum informationt is not a substance (whether in the
sense of concrete particular or in the sense of physical stuff) and is not part of
the spatio-temporal contents of the world, might conceivably lead one to argue
that it therefore does not exist at all ; that there is no such thing as quantum
informationt after all. That quantum informationt does not exist was indeed the
conclusion of Duwell (2003) although he has since retreated from this position to
one closer to that advocated here (Duwell, 2008). The negative conclusion might
be termed nihilism about quantum informationt.

Adopting a nihilist position, however, would be an over-reaction to the fact
that informationt is not a material thing (this is a point I shall be re-iterating
later, in the context of teleportation). As we have seen, quantum informationt is
what is produced by a quantum informationt source. This will be an abstractum
(type), but there is no need to conclude thereby that it does not exist. Many ab-
stracta are very often usefully said to exist. To appreciate the point it is perhaps
helpful to compare with a famous example of a genuinely non-existing substance.
Let us consider the example of caloric.

For a long time, the term ‘caloric’ was thought to refer to a material sub-
stance, one responsible for the thermal behaviour of various systems, amongst
other things. But we found out that there was no such substance. So we now say
‘Caloric does not exist’. But we also now know that there is no such substance as
quantum informationt: why should we not therefore say ‘Quantum information
does not exist’?

The reason is that the two cases are sharply disanalogous (as the oddity of
the phrasing in the previous sentence might alert one to). The role of ‘caloric’
was as a putative substance-referring term; semantically it was a concrete noun,
just one that failed to pick out any natural kind in this world. By contrast
‘informationt’ was always an abstract noun. Its role was never that of referring
to a substance. So it’s not that we’ve discovered that there’s no such substance
as quantum informationt (a badly formed phrase), but rather that attention has
been drawn to the type of role that the term ‘informationt’ plays. And this is
not one of referring to a substance, whether putatively or actually. So unlike
the case of caloric, where we needed to go out into the world and discover by
experiment whether or not there is a substance called ‘caloric’, we know from the
beginning that the thought that there might be a substance called ‘informationt’
is misbegotten, based on a misconception of the role of the term.

At this stage a further point must be addressed (one for the philosophers,
this). One might be discomfited by my comment that many abstracta are often
usefully said to exist. Isn’t this an area of some dispute? Indeed, wouldn’t nom-
inalists precisely be in the business of denying it? Happily enough, however, the
purposes of my argument may be served without having to take a stand on such
a contentious metaphysical issue. The point can be made that ‘informationt’
is an abstract noun and that it therefore plays a fundamentally different role
from a substance-referring term; that it would be wrong to assert that quantum
informationt does not exist on the basis of recognizing that quantum informationt
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is not a substance, without having to take a stand on the status of abstracta. In
fact all that is required for our discussion throughout is a very minimal condi-
tion concerning types that comes in both nominalist and non-nominalist friendly
versions.

The non-nominalist version says the following: a piece of informationt, quan-
tum or classical, will be a particular sequence of states, an abstract type. What is
involved in the type existing? Minimally, a sufficient condition for type existence
will be that there be facts about whether particular concrete objects would or
would not be tokens of that type. (Notice that this minimal condition needn’t
commit one to conceiving of types as Platonic objects.) The nominalist version
takes a similar form, but simply asserts that talk of type existence is to be para-
phrased away as talk of the obtaining of facts about whether or not concrete
objects would or wouldn’t be instances of the type.

So the nihilist worry may be put to one side. But couldn’t a related concern
arise in the following way? It’s all very well saying that quantum informationt is
abstract and not part of the material contents of the world, perhaps, but wouldn’t
that simply deprive quantum informationt theory of its subject matter? Certainly
not! should be our robust reply. We have a subject matter both on the formal
and on the concrete (material) side. On the formal side we can conceive the
subject matter to be the study of the structural properties of pieces of quantum
informationt: the study of various sequences of quantum states and—the really
interesting bit—the study of their possible transformations. On the concrete side,
we have the tokens of the various abstract types to study; we have, moreover,
the quantum sources and various types of channels. More generally the concrete
subject matter is given by focusing on the new types of physical resources the
theory highlights (qubits and shared entanglement) and the fascinating questions
of what can be done with them.

3.7.1 Information and the physical

We will close this chapter by considering two further issues of a philosophical
stripe, both turning on the relation between information (or informationt) and
the physical.

3.7.1.1 Information is Physical? As noted in the Introduction, a very striking
claim runs through much of the literature in quantum informationt theory and
quantum computation. This is the claim that ‘Information is Physical’. From
the conceptual point of view, however, this statement can often seem rather
baffling; and it is perhaps somewhat obscure exactly what might be meant.
Be that as it may, the slogan is often presented as the fundamental insight
at the heart of quantum informationt theory; and it is frequently claimed to
be entailed, or at least suggested, by the theoretical and practical advances of
quantum informationt and computation.54

54Perhaps the most vociferous proponent of the idea that information is physical was the
late Rolf Landauer (e.g. Landauer, 1991, 1996).
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Prima facie, however, the slogan ‘Information is Physical’ seems to face some-
thing of a dilemma. If it is supposed to refer to information in the everyday sense
then it would apparently imply some kind of rather strong reductionist claim.
It would seem to have to amount, amongst other things, to the claim that cen-
tral semantic and mental attributes or concepts are reducible to physical ones.
This, however, is a purely philosophical claim, and a contentious one at that,
as we saw in our discussion of Dretske and semantic naturalism (Section 2.3).
As such it is hard to see how it could be supported by the claims and successes
in physics of quantum informationt theory. No doubt semantic naturalizers (as
we might call them) would not jib at the claim that information in the every-
day sense is physical, but this does not affect the point that if ‘Information is
Physical’ adverts to information in the everyday sense, then what is at issue is
a philosophical claim about the relations between different groups of concepts;
and quantum informationt theory does not engage in this debate. Rather, as we
have seen, this piece of physical theory seeks to describe the distinctive ways
in which quantum systems, with all their unusual properties, may be used for
various tasks of informationt processing and transmission. It does not, therefore,
adjudicate upon, nor provide evidence for or against, a philosophical claim con-
cerning the reduction of semantic properties to physical ones; and it is none the
worse for that.

So is ‘information’ in the slogan supposed to be construed in the technical
sense, then? Well, perhaps. But if so, then the claim would seem to be that
some physically defined quantity (informationt) is physical; and that is hardly
an earth-shattering revelation. In particular it is now hard to see how it could
represent an important new theoretical insight. (Another possible reading of the
slogan will be discussed in Chapter 6.)

The following quotation from a representative article in Reviews of Modern
Physics provides an apt illustration of the problematic:

What is . . . surprising is the fact that quantum physics may influence the
field of information and computation in a new and profound way, getting
at the very root of their foundations . . .

But why has this happened? It all began by realizing that informa-
tion has a physical nature (Landauer, 1991; 1996; 1961). It is printed
on a physical support . . . it cannot be transported faster than light in a
vacuum, and it abides by natural laws. The statement that information
is physical does not simply mean that a computer is a physical object, but
in addition that information itself is a physical entity.

In turn, this implies that the laws of information are restricted or
governed by the laws of physics. In particular, those of quantum physics.
(Galindo and Mart́ın-Delgado, 2002)

Whilst illustrating the problem, this passage also invites a simple response, one
indicating the lines of a solution.
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Let’s pick out three phrases:

1. ‘The statement that information is physical does not simply mean that a
computer is a physical object’

2. ‘in addition...information itself is a physical entity’

3. ‘In turn, this implies that the laws of information are restricted or governed
by the laws of physics.’

Statement (2) is the one that purports to be presenting us with a novel ontological
insight deriving from, or perhaps driving, quantum informationt theory. The
difficulty is in understanding what this portentous-sounding phrase might mean
and, most especially, understanding what role it is supposed to play.

For it is statement (3) (with ‘laws of information’ understood as ‘laws govern-
ing informationt processing’) which really seems to be the important proposition,
if our interest is what informationt processing is possible using physical systems,
as it is in quantum informationt theory. And (2) is entirely unnecessary to estab-
lish (3), despite their concatenation in the quotation above. All that we in fact
require is the innocuous part of statement (1): computers, or more generally,
informationt processing devices (including channels and sources), are physical
objects. What one can do with them is necessarily restricted by the laws of
physics.

Quantum informationt theory and quantum computation are theories about
what we can do using physical systems, stemming from the recognition that the
peculiar characteristics of quantum systems might provide opportunities rather
than drawbacks. (That they do in fact provide such interesting opportunities, of
course, is by no means a trivial observation: they might not have done.) This
project is evidently quite independent of any philosophical claims regarding the
everyday concept of information or any claims which invoke a curious ontolog-
ical status for information. All that is required is the obvious statement that
the devices being used for informationt processing are physical devices. Contra
statement (1) and the suggestion of Galindo and Mart́ın-Delgado above, if any-
thing more than this is meant (literally) by ‘Information is Physical’ then it is
irrelevant to quantum informationt theory.

There’s another way—a quick and revealing way—one can take with the slo-
gan, focusing now explicitly on pieces of informationt: it simply involves a cat-
egory mistake. Pieces of informationt, quantum or classical, are abstract types.
They are not physical, it is rather their tokens which are. To suppose otherwise
is to make the category mistake. Thus the slogan certainly does not present us
with an ontological lesson, but rather with a logical confusion; a confusion of to-
ken and type. Perhaps it might be thought that the lesson was simply supposed
to be this, though: we have made a discovery of a certain kind: that there really
are physical instantiations of various pieces of quantum informationt (sequence
types) possible in our world; and this need not have been so. Perhaps. But the
force of this lesson is surely limited: it should come as no surprise given that we
already knew the world could be well described quantum mechanically.
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Landauer said:
Information is not a disembodied abstract entity; it is always tied to a
physical representation. (Landauer, 1996, p. 188)

But this isn’t really right. Pieces of information, whether everyday, classical or
quantum, are abstract items; while informationt as a quantity (compressibility
or channel capacity) is a property, so by no means a concrete thing. Yes, to have
a token of a piece of informationt, or to write down or record an everyday item
of information, one will need some physical systems, but that doesn’t make what
is encoded, stored, written down (what have you), physical. Talk of the necessity
of a physical representation (cf. Steane (1997, p. 5): ‘no information without
physical representation!’) only amounts to the truism that if you are writing
information down, or storing it in a computer memory, or sending it down a
channel, then we need something to write it on, or to store it in or to encode
it.55 No novel ontological consequences stem from this. The fact that tokens are
physical does not mean that the types of which they are instances are.

3.7.1.2 Informational immaterialism A philosophical spectre haunts the pages
of a number of discussions of quantum informationt theory: the spectre of im-
materialism. The thought runs along some such line as this: Now that we are
presented with a fundamental physical theory which turns on the notion of in-
formation (a quantum information theory, no less), perhaps information itself
should be recognized as the fundamental constituent of the world, rather than
those putative constituents provided by the more familiar foundational story
of a mechanics of particles and fields: the story of a mind-independent world
of material things. Traditional immaterialist metaphysical pictures began with
suitably mentalistic items from which to construct the world: ideas, perhaps,
or sense data, which items inhere in the mind of the experiencing subject. The
world was then the sum of the actual sense data (Berkeleyan idealism), or a
logical construction from actual or possible sense data (phenomenalism). Pieces
of information (or maybe informationt?) are the new-fangled correlates of sense
data; Berkeleyan ideas-in-the-mind in the modern dress of the latest theory.

As remarked earlier, the late John Wheeler, with his ‘It from Bit’ proposal,
presented the best-known version of this view:

55It’s possible that for some, ‘no information without representation’ would sound a little
like a so-called Aristotelian conception of properties (properties having to be ‘immanent’ in
the world; to have instances to count as existing), applied to the case of our account of pieces
of information as abstracta. I’m not entirely sure that the distinctions such positions turn on
are entirely clear, but in any case, debates on the details of the metaphysics of properties
are entirely orthogonal to any concerns arising from within quantum informationt theory. We
do not need to worry about such things. A further point: within the everyday concept of
information it is by no means clear that with possessing information (as opposed to containing
it) there is any useful sense in which information finds a representation (a much over-used
term); although, it may be the case that, as a matter of contingent fact, someone’s possessing
information supervenes on facts about their brain, nervous system and, perhaps, unrestrictedly
large regions of the universe.
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. . . It from Bit symbolizes the idea that every item of the physical world
has at bottom—at very deep bottom, in most instances—an immaterial
source and explanation; that which we call reality arises in the last analy-
sis from the posing of yes–no questions that are the registering of equip-
ment evoked responses; in short, that all things physical are information-
theoretic in origin and this is a participatory universe. (Wheeler, 1990,
pp. 3, 5)

Compare (the rather more measured) Steane:
It now appears that information may have a much deeper significance.
Historically, much of fundamental physics has been concerned with dis-
covering the fundamental particles of nature and the equations which
describe their motions and interactions. It now appears that a different
programme may be equally important: to discover the ways that nature
allows...information to be expressed and manipulated, rather than parti-
cles to move. (Steane, 1997, pp. 120–121)

And finally, Zeilinger:
So, what is the message of the quantum? I suggest we look at the situ-
ation from a new angle. We have learned in the history of physics that
it is important not to make distinctions that have no basis—such as the
pre-Newtonian distinction between the laws on Earth and those that gov-
ern the motion of heavenly bodies. I suggest that in a similar way, the
distinction between reality and our knowledge of reality, between reality
and information cannot be made. (Zeilinger, 2005)

But does the rich success of quantum informationt theory really provide any
support for an informational immaterialist view of some sort? Our work over
the preceding chapters allows us to assert: decisively not.

1. We need to distinguish between the everyday semantic and epistemic notion
of information and the technical notions of informationt theories. When we
make this distinction sharply we see that the pieces of informationt of those
theories are not at all the right kinds of things to be the modernized corre-
lates of mental items from which an immaterial world might be constructed.
They do not, for example, carry any mental, semantic or representational
content; and the theories in which they are postulated do not deal with,
or bear in the least on, these kinds of matters.

2. Moreover, pieces of informationt are abstracta. To be realized they will
need to be instantiated by some particular token or other; and what will
such tokens be? Unless one is already committed to immaterialism for
some reason (and let me not be coy: there can be no good reason why one
would be), these tokens will be material physical things. So even if one’s
fundamental (quantum) theory makes great play of informationt, it will
not thereby dispense with the material world. One needs the tokens along
with the types.

Thus we may conclude that immaterialism gains not one whit of support from
the direction of quantum informationt theory.
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3.8 Summary

In this chapter we have surveyed some central features and paradigmatic ex-
amples of quantum informationt processing: the no-cloning theorem; the Holevo
bound; the distinction between specification and accessible informationt when
encoding classical informationt into quantum systems; the use of entanglement
to assist communication in superdense coding and teleportation; the notion of
quantum computers. Most importantly, however, we have seen that a clean and
unmysterious statement of the nature of quantum informationt may be provided.
When the correct way of thinking about informationt in a Shannon theory is
held firmly in hand—one that eschews confused accretions from the everyday
concept and eschews also misguided thoughts of uncertainty and correlation as
the key notions—then quantum informationt can be recognized as forming a
species of the same genus as classical Shannon informationt. Pieces of quantum
informationt are simply particular sequences of quantum states (types) produced
by a quantum source. I then defended this conception from a number of objec-
tions: that it would collapse quantum into classical informationt; that it would
lead to the conclusion that quantum informationt does not in fact exist; that it
would rob quantum informationt theory of a subject matter. We saw that these
concerns could be rebutted.

As before when considering classical informationt, we saw that it was neces-
sary to distinguish between the type—the piece of quantum informationt itself—
and its tokens. The latter are the concrete objects, while the type itself is
abstract: not part of the material contents of the world. With clarity thereby
achieved regarding the ontological status of quantum informationt (abstractness
of the types, concreteness of the tokens) we saw that we were able to resolve
some of the puzzles with which we began in the Introduction. On ‘Information
is Physical’, we noted that the slogan faced a difficult dilemma, whether it was
supposed to advert to information in the everyday sense or in the technical.
The quickest and cleanest way with it, as we saw, was simply to recognize an
incipient category mistake: it is not information, but rather any tokens of pieces
of information that are physical. The pieces of information (informationt) are
themselves abstract, even while having concrete tokens. In similar vein, the al-
lure of informational immaterialism was dispelled: with the distinction between
the everyday and information-theoretic notions of information plain before one,
it is clear that pieces of informationt are not at all the right kinds of sufficiently
mentalistic objects with which to compose an immaterial world; while one will
still require tokens along with the abstract types, if the types are to be instanti-
ated; and these tokens are good old material items: the familiar kinds of subject
matter of physical theories.

Clarity about the concept of quantum informationt is a good for its own
sake: this is the central notion of quantum informationt theory and we will not
understand that theory properly until we understand what quantum informationt

is. Happily, the account I have provided is simple and straightforward, albeit
that it is somewhat deflationary, ontologically (but not nihilist!). Moreover it has
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already provided us with some side benefits by relieving some of the philosophical
puzzles with which we began. We shall get further exercise with this concept
in the next two chapters, where we shall see more vividly the virtues of the
deflationary account of quantum informationt.



4

CASE STUDY: TELEPORTATION

‘The questions “What is length?”, “What is meaning?”, “What is the
number one?” etc. produce in us a mental cramp. We feel that we can’t
point to anything in reply to them and yet ought to point to something.
(We are up against one of the great sources of philosophical bewilder-
ment: a substantive makes us look for a thing that corresponds to it.)’
Wittgenstein (1958)

4.1 Introduction

The phenomenon of teleportation (Bennett et al., 1993), introduced in the last
chapter, is perhaps the most striking example of entanglement-assisted com-
munication. It illustrates several distinctive features associated with quantum
informationt protocols; most notably the fact that entanglement (a characteris-
tically quantum property) serves as an important resource; and that unknown
quantum states cannot be cloned.

Although a straightforward consequence of the formalism of non-relativistic
quantum mechanics, teleportation has nonetheless given rise to some confusion
and to a good deal of controversy. In this chapter we will review the main lines
of controversy (Sections 4.2 and 4.3) and I shall seek to dispel the confusion that
has surrounded the interpretation of the protocol.

I will suggest (Section 4.4) that puzzlement has generally arisen as a conse-
quence of a familiar philosophical error—in fact the very one that Wittgenstein
famously warns us of in the Blue Book. That is, the error of assuming that ev-
ery grammatical substantive functions like a common-or-garden referring term.
Here the culprit is the word ‘information’. As we have now seen in some detail,
both in the everyday context and in the technical context, ‘information’ is an
abstract (mass) noun and hence does not refer to a spatio-temporal particular,
to a concrete entity, or to a physical substance. It follows that one should not be
seeking in an information-theoretic protocol—quantum or otherwise—for some
particular, denoted by ‘the information’, whose path one is to follow, but rather
concentrating on the physical processes by which the informationt is transmit-
ted, that is, by which the end result of the protocol is brought about. Once this
is recognized, I suggest, much of our confusion is dispelled. (A subsidiary source
of difficulty—what I term the simulation fallacy—will also be remarked upon.)

With this clarification in place, the other major source of controversy is
thrown into relief: just what are the physical processes by which teleportation
is effected? This is, in fact, a relatively straightforward question; but it is a
question which will find a different answer depending on what interpretation of
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quantum mechanics one wishes to adopt (Section 4.5), a point which has not
been sufficiently recognized to date.

The central thought I shall be developing here is that the conceptual
puzzles surrounding teleportation arise from thinking about information (and
informationt) in the wrong way. The converse point holds too: the clarification
of these puzzles clearly illustrates the value of recognizing the logico-grammatical
status of ‘information’ as an abstract noun: of recognizing pieces of information
(informationt) to be abstracta.

Let us begin with a brief review of the teleportation protocol.56

4.2 The quantum teleportation protocol

In the teleportation protocol, recall, we consider two parties, Alice and Bob,
who are widely separated, but each of whom possesses one member of a pair
of particles in a maximally entangled state. Alice is presented with a system in
some unknown quantum state, and her aim is to transmit this state to Bob. In
the standard example, Alice and Bob share one of the four Bell states and she
is presented with a spin-1/2 system in the unknown state |χ〉 = α|↑〉 + β|↓〉.

By performing a suitable joint measurement on her half of the entangled
pair and the system whose state she is trying to transmit (in this example,
a measurement in the Bell state basis), Alice can flip the state of Bob’s half
of the entangled pair into a state that differs from |χ〉 by one of four unitary
transformations, depending on what the outcome of her measurement was. If
a record of the outcome of Alice’s measurement is then sent to Bob, he may
perform the required operation to obtain a system in the state Alice was trying
to send (Fig. 4.1).

The result of the protocol is that Bob has obtained a system in the state
|χ〉, with nothing that bears any relation to the identity of this state having
traversed the space between him and Alice. Only two classical bits recording
the outcome of Alice’s measurement were sent between them; and the values of
these bits are completely random, with no dependence on the parameters α and
β. Meanwhile, no trace of the identity of the unknown state remains in Alice’s
region, as is required in accordance with the no-cloning theorem (the state of her
original system will usually now be maximally mixed). The state has apparently
disappeared from Alice’s region and reappeared in Bob’s, hence the use of the
term teleportation for this phenomenon. Alice began with a token of quantum
informationt; this token is destroyed; and the piece of quantum informationt then
re-appears with Bob.

To fix the process in our minds, let’s review how the standard example goes.
We begin with system 1 in the unknown state |χ〉 and with Alice and Bob sharing
a pair of systems (2 and 3) in, say, the singlet state |ψ−〉. The total state of the
three systems at the beginning of the protocol is therefore simply

56Helpful discussions of further conceptual aspects of teleportation, in particular concerning
the relation of teleportation to nonlocality, may be found in Hardy (1999), Barrett (2001), and
Clifton and Pope (2001). Mermin (2001) also provides an interesting perspective.
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��
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Bob

Alice

Fig. 4.1. Teleportation. A pair of systems is first prepared in an entangled state and shared

between Alice and Bob, who are widely spatially separated. Alice also possesses a system

in an unknown state |χ〉. Once Alice performs her Bell-basis measurement, two classical

bits recording the outcome are sent to Bob, who may then perform the required conditional

operation to obtain a system in the unknown state |χ〉. (Continuous black lines represent

qubits, dotted lines represent classical bits. Time runs along the horizontal axis.)

|χ〉1|ψ−〉23 =
1√
2

(
α|↑〉1 + β|↓〉1

)(|↑〉2|↓〉3 − |↓〉2|↑〉3
)
. (4.1)

Notice that at this stage, the state of system 1 factorizes from that of systems
2 and 3; and so in particular, the state of Bob’s system is independent of α and
β. We may re-write this initial state in a suggestive manner, though:

|χ〉1|ψ−〉23 =
1√
2

(
α|↑〉1|↑〉2|↓〉3 + β|↓〉1|↑〉2|↓〉3

− α|↑〉1|↓〉2|↑〉3 − β|↓〉1|↓〉2|↑〉3
) (4.2)

=
1
2

(
|φ+〉12

(
α|↓〉3 − β|↑〉3

)
+ |φ−〉12

(
α|↓〉3 + β|↑〉3

)

+ |ψ+〉12
(−α|↑〉3 + β|↓〉3

)
+ |ψ−〉12

(−α|↑〉3 − β|↓〉3
))
.

(4.3)

The basis used is the set

{|φ±〉12|↑〉3, |φ±〉12|↓〉3, |ψ±〉12|↑〉3, |ψ±〉12|↓〉3},

that is, we have chosen (as we may) to express the total state of systems 1, 2,
and 3 using an entangled basis for systems 1 and 2, even though these systems
are quite independent. But so far, of course, all we have done is re-written the
state in a particular way; nothing has changed physically and it is still the case
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that it is really systems 2 and 3 that are entangled and wholly independent of
system 1, in its unknown state.

Looking closely at (4.3) we notice that the relative states of system 3 with
respect to particular Bell-basis states for 1 and 2 have a very simple relation to
the initial unknown state |χ〉; they differ from |χ〉 by one of four local unitary
operations:

|χ〉1|ψ−〉23 =
1
2

(
|φ+〉12

(−iσ3
y|χ〉3

)
+ |φ−〉12

(
σ3

x|χ〉3
)

+ |ψ+〉12
(−σ3

z |χ〉3
)

+ |ψ−〉12
(−13|χ〉3

))
, (4.4)

where the σ3
i are the Pauli operators acting on system 3 and 1 is the identity.

To re-iterate, though, only system 1 actually depends on α and β; the state of
system 3 at this stage of the protocol (its reduced state, as it is a member of an
entangled pair) is simply the maximally mixed 1/21.

Alice is now going to perform a measurement. If she were simply to measure
system 1 then nothing of interest would happen—she would obtain some result
and affect the state of system 1, but systems 2 and 3 would remain in the same old
state |ψ−〉. However, as she has access to both systems 1 and 2, she may instead
perform a joint measurement, and now things get interesting. In particular, if
she measures 1 and 2 in the Bell basis, then after the measurement we will be
left with only one of the terms on the right-hand side of eqn (4.4), at random;
and this means that Bob’s system will have jumped instantaneously into one of
the states −iσ3

y|χ〉3, σ3
x|χ〉3, −σ3

z |χ〉3 or −|χ〉3, with equal probability.
But how do things look to Bob? As he neither knows whether Alice has

performed her measurement, nor, if she has, what the outcome turned out to
be, he will still ascribe the same, original, density operator to his system—the
maximally mixed state.57 No measurement on his system could yet reveal any
dependence on α and β. To complete the protocol therefore, Alice needs to
send Bob a message instructing him which of four unitary operators to apply
(iσy, σx, −σz, −1) in order to make his system acquire the state |χ〉 with cer-
tainty; for this she will need to send two bits.58 With these bits in hand, Bob
applies the needed transformation and obtains a system in the state |χ〉.

Now of course, this quantum mechanical process differs from science fiction
versions of teleportation in at least two ways. First, it is not matter that is
transported, but simply the quantum state |χ〉, a piece of quantum informationt.
Second, the protocol is not instantaneous, but must attend for its completion on
the arrival of the classical bits sent from Alice to Bob. Whether or not the
quantum protocol approximates to the science fiction ideal, however, it remains

57Notice that an equal mixture of the four possible post-measurement states of his system
results in the density operator 1/21.

58Two bits are clearly sufficient; for the argument that they are strictly necessary, see Bennett
et al. (1993), Fig.2.



78 Case Study: Teleportation

a very remarkable phenomenon from the information-theoretic point of view.59

For consider what has been achieved. An unknown quantum state has been
sent to Bob; and how else could this have been done? Only by Alice sending a
quantum system in the state |χ〉 to Bob,60 for she cannot determine the state
of the system and send a description of it instead. (Recall, it is impossible to
determine an unknown state of an individual quantum system.)

If, however, Alice did per impossibile somehow learn the state and send a
description to Bob, then systems encoding that description would have to be
sent between them. In this case something that does bear a relation to the
identity of the state is transmitted from Alice to Bob, unlike in teleportation.
Moreover, sending such a description would require a very great deal of classical
informationt, as in order to specify a general state of a two-dimensional quantum
system, two continuous parameters need to be specified.

The picture we are left with, then, is that in teleportation there has been
a transmission of something which is inaccessible at the classical level; in the
transmission this informationt has been in some sense disembodied; and finally,
the transmission has been very efficient—requiring, apart from prior shared en-
tanglement, the transfer of only two classical bits.

4.2.1 Some information-theoretic aspects of teleportation

There are two information-theoretic aspects of the teleportation protocol it may
helpful to go into in somewhat more detail. The first concerns our reason for
saying that a very large amount of informationt is required to specify the state
that is teleported.

As we just recalled, in order to describe an arbitrary (pure) state of a two-
dimensional quantum system, it is necessary to specify two continuous param-
eters. A useful means of picturing this is via the Bloch sphere representation.
The pure states of a two-state quantum system are in one-to-one correspondence
with the points on the surface of the unit sphere in three-dimensional space, and
we may specify two real numbers (angles) to determine a point on the sphere.
Why should doing this have associated with it an amount of informationt? If
it is to do so we will need to imagine a classical informationt source that is se-
lecting these pairs of angles with various probabilities; then a certain Shannon
informationt may be ascribed to the process. Given a particular output of this
informationt source, a quantum system is prepared in the state corresponding to
the two angles selected. The quantum states prepared in this manner will then
have associated with them a specification informationt (cf. Section 3.2) given by
the informationt of the source. Once a system has been prepared in some state

59Interestingly, it can be argued that quantum teleportation is perhaps not so far from the
sci-fi ideal as one might initially think. Vaidman (1994) suggests that if all physical objects are
made from elementary particles, then what is distinctive about them is their form (i.e. their
particular state) rather than the matter from which they are made. Thus it seems one could
argue that objects really are teleported in the protocol.

60Or by her sending Bob a system in a state explicitly related to |χ〉 (cf. Park, 1970).
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in this way, it is presented to Alice, who may proceed to teleport the state to
Bob.

Rather than the pairs of angles being selected from their full, continuous range
of possible values, the surface of the sphere might be coarse-grained evenly to
give a finite number of choices. One might pick the angles specifying the mid-
point, say, of each small element of surface area to provide the finite set of pairs
of angles to choose between. Loosely speaking this coarse-graining corresponds
to considering angles only to a certain degree of accuracy. As this accuracy is
increased (the choices made more finely grained), the number of bits required to
specify the choice increases without bound. If our informationt source is selecting
states to an arbitrarily high accuracy then, the specification informationt is un-
boundedly large. (On the other hand, if the informationt source is only selecting
between a small number of distinct states, then the specification informationt is
correspondingly small. From now on we will assume that unless otherwise stated,
the unknown states to be teleported are selected from a suitable coarse-graining
of the whole range of possible angles.) It is essential to note, however, that even if
the specification informationt associated with the state that has been teleported
to Bob is exceedingly large, the majority of this information is not accessible to
him. This leads on to the second point.

As will be recalled from the earlier discussion (Section 3.2), when one con-
siders encoding classical informationt in quantum systems, it is necessary to
distinguish between specification informationt and accessible informationt. The
specification informationt refers to the informationt of the classical source that
selects sequences of quantum states, the accessible informationt to the maxi-
mum amount of classical informationt that is available following measurements
on the systems prepared in these states (the maximum amount of channel ca-
pacity that would be provided, or the maximum amount one could infer about
the identity of the input states). In teleportation, of course, the systems are
prepared near Alice before teleportation of their states to Bob. He may then
perform various measurements to try and learn something. Call the informationt

of the source selecting the states to be teleported by Alice H(A); the mutual
informationt H(A : B) will determine the amount of classical informationt per
system that Bob is able to extract (the available capacity) by performing some
measurement, B, following successful teleportation of the unknown state. The
accessible informationt is given by the maximum over all decoding measurements
of H(A : B). As we know, the Holevo bound restricts the amount of informationt

that Bob may acquire to a maximum of one bit of informationt per qubit, that is,
to a maximum of one bit of informationt per successful run of the teleportation
protocol.

So this gives us the sense in which the very large amount of informationt that
may be associated with the unknown state being teleported to Bob is largely
inaccessible to him. Note that the amount of informationt that Bob may acquire
from the teleported state is less than the amount of classical informationt—two
bits—that Alice had to send to him during the protocol. This fact is of the
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utmost importance, for if the Holevo bound did not guarantee this, and Bob
were able to extract more than two bits of informationt from his system, then
teleportation would give rise to paradox (when embedded in a relativistic theory)
as superluminal signalling would be possible.61

So the Holevo bound ensures that teleportation is not paradoxical, but it
also means that teleportation, when considered as a mode of ordinary classical
informationt transfer, is pretty inefficient, requiring two classical bits to be sent
for every bit of informationt that Bob has available at his end.

4.3 The puzzles of teleportation

Let us return to the picture of teleportation that was sketched earlier. An un-
known quantum state is teleported from Alice to Bob with nothing that bears
any relation to the identity of the state having travelled between them. The
two classical bits sent are quite insufficient to specify the state teleported; and
in any case, their values are independent of the parameters describing the un-
known state. The unboundedly large specification informationt characterizing
the state—informationt that is inaccessible at the classical level—has somehow
been disembodied, and then reincarnated at Bob’s location, as the quantum state
first disappears from Alice’s system and then reappears with Bob.

The conceptual puzzles that this process presents seem to cluster around two
essential questions. First, how is so much informationt transported? And second,
most pressingly, just how does the informationt get from Alice to Bob?

Perhaps the prevailing view on how these questions are to be answered is
the one that has been expressed by Jozsa (1998, 2004) and Penrose (1998). In
their view, the classical bits used in the protocol evidently can’t be carrying
the informationt, for the reasons we have just rehearsed; therefore the entan-
glement shared between Alice and Bob must be providing the channel down
which the informationt travels. They conclude that in teleportation, an indefi-
nitely large, or even infinite amount of informationt travels backwards in time
from Alice’s measurement to the time at which the entangled pair was created,
before propagating forward in time from that event to Bob’s performance of his
unitary operation and the attaining by his system of the correct state. Telepor-
tation seems to reveal that entanglement has a remarkable capacity to provide
a hitherto unsuspected type of informationt channel, which allows informationt

to travel backwards in time; and a very great deal of it at that. Further, since it
is a purely quantum link that is providing the channel, it must be purely quan-
tum informationt that flows down it. It seems that we have made the discovery
that quantum informationt is a new type of informationt with the striking, and
non-classical, property that it may flow backwards in time.

61The argument parallels the one given by Bennett et al. (1993) to the effect that two full
classical bits are required in teleportation. In essence, if Bob were able to gain more than two
bits of informationt in the protocol, then even if he were not to wait for Alice to send him the
pair of bits each time and simply guessed their values instead, then some informationt would
still get across.
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The position is summarized succinctly by Penrose:

How is it that the continuous ‘information’ of the spin direction of the
state that she [Alice] wishes to transmit...can be transmitted to Bob when
she actually sends him only two bits of discrete information? The only
other link between Alice and Bob is the quantum link that the entangled
pair provides. In spacetime terms this link extends back into the past
from Alice to the event at which the entangled pair was produced, and
then it extends forward into the future to the event where Bob performs
his [operation].

Only discrete classical information passes from Alice to Bob, so the
complex number ratio which determines the specific state being ‘tele-
ported’ must be transmitted by the quantum link. This link has a channel
which ‘proceeds into the past’ from Alice to the source of the EPR pair,
in addition to the remaining channel which we regard as ‘proceeding into
the future’ in the normal way from the EPR source to Bob. There is no
other physical connection. (Penrose, 1998, p. 1928)

But one might feel, with good reason, that this explanation of the nature
of informationt flow in teleportation is simply too outlandish. This is the view
of Deutsch and Hayden (2000), who conclude instead that with suitable analy-
sis, the message sent from Alice to Bob can, after all, be seen to carry the
informationt characterizing the unknown state. The informationt flows from
Alice to Bob hidden away, unexpectedly, in Alice’s message. This approach, and
the question of what light it may shed on the notion of quantum informationt,
is considered in detail in the next chapter. Suffice it to say at present that
Deutsch and Hayden disagree with Jozsa and Penrose over the nature of quan-
tum informationt and how it may flow in teleportation.

One might adopt yet a third, and perhaps more prosaic, response to the
puzzles that teleportation poses. This is to adopt the attitude of the conservative
classical quantity surveyor .62 According to this view, an amount of informationt

cannot be said to have been transmitted to Bob unless it is accessible to him.
But of course, as we noted above, the specification informationt associated with
the state teleported to Bob is not accessible to him: he cannot determine the
identity of the unknown state. On this view, then, the informationt associated
with selecting some unknown state |χ〉 will not have been transmitted to Bob
until an entire ensemble of systems in the state |χ〉 has been teleported to him,
for it is only then that he may determine the identity of the state.63 To teleport

62A resolution along these lines, tied also to an ensemble view of the quantum state (vide
infra) has been suggested by Barrett (2001) and Morgan (2001).

63Note that we will need to adjust our scenario slightly to incorporate this view. In our initial
set-up, the source A selected a sequence of states which were then teleported one by one to
Bob. Now we imagine instead that following some particular output of A, an entire ensemble
of systems is prepared in the pure state associated with that output; then this ensemble of
systems—all in the same unknown pure state—is teleported. This adjustment is required be-
cause in our initial set-up for the teleportation procedure, the only way in which an ensemble of
systems all in the same state could be teleported to Bob would be by setting the informationt

of the source A to zero, with the tiresomely paradoxical result that Bob could now determine
the state all right, but would gain no informationt by doing so.
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a whole ensemble of systems, though, Alice will need to send Bob an infinite
number of classical bits; and now there isn’t a significant disparity between the
amount of informationt that has been explicitly sent by Alice and the amount
that Bob ends up with. One needs to send a very large number of classical
bits to have transmitted by teleportation the very large amount of informationt

associated with selecting the unknown state.
This approach does not seem to solve all our problems, however. Someone

sympathetic to the line of thought espoused by Jozsa and Penrose can point out
in reply that there still remains a mystery about how the informationt charac-
terizing the unknown state got from Alice to Bob—the bits sent between them,
recall, have no dependence on the identity of the unknown state. So while the
approach of the conservative classical quantity surveyor may mitigate our worry
to some extent over the first question, it does not seem to help with the second.

4.4 Resolving (dissolving) the problem

Dwelling on the question of how the informationt characterizing the unknown
state is transmitted from Alice to Bob has given rise to some conundrums. Should
we side with Jozsa and Penrose and admit that quantum informationt may flow
backwards in time down a channel constituted by shared entanglement? Or per-
haps with Deutsch and Hayden, and agree that informationt should flow in a
less outlandish fashion, but that quantum informationt may be squirrelled away
in seemingly classical bits? Counting conservatively the amounts of informationt

available after teleportation may make us less anxious about the load carried
in a single run of the protocol, but the question still remains: how did the
informationt, in the end, get to Bob? Should we just conclude that it is trans-
ported nonlocally in some way? But what might that mean?

If the question ‘How does the informationt get from Alice to Bob?’ is caus-
ing us these difficulties, however, perhaps it might pay to look at the question
itself rather more closely. In particular, let’s focus on the crucial phrase ‘the
informationt’.

Our troubles arise when we take this phrase to be referring to a particular,
to some sort of spatio-temporally located substance or entity whose behaviour
in teleportation it is our task to describe. The assumption common to the ap-
proaches of Deutsch and Hayden on the one hand, and Jozsa and Penrose on the
other, is that we need to provide a story about how some located thing denoted
by ‘the informationt’ travels from Alice to Bob. Moreover, it is assumed that this
supposed thing should be shown to take a spatio-temporally continuous path.

But recall that ‘information’ in the technical context, just as much as in
the everyday context, is an abstract noun. This means that ‘the informationt’
certainly does not refer to a substance or to an entity. The shared assumption is
thus a mistaken one, and is based on the error of hypostatizing an abstract noun.
(We shall return to this issue in the context of the Deutsch–Hayden approach
once again in the following chapter.) If ‘the informationt’ doesn’t introduce a
spatio-temporal particular, then the question ‘How does the informationt get
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from Alice to Bob?’ cannot be a request for a description of how some thing
travels. It follows that the locus of our confusion is dissolved.

But if it is a mistake to take ‘How does the informationt get from Alice to
Bob?’ as a question about how some thing is transmitted, then what is its legit-
imate meaning, if any? It seems that the only legitimate use that can remain for
this question is as a flowery way of asking: What are the physical processes in-
volved in the transmission? Now this question is a perfectly straightforward one,
even if, as we shall see (Section 4.5), the answer one actually gives will depend
on the interpretation of quantum mechanics one adopts. But there is no longer a
conceptual puzzle over teleportation. Once it is recognized that ‘informationt’ is
an abstract noun, then it is clear that there is no further question to be answered
regarding how informationt is transmitted in teleportation that goes beyond pro-
viding a description of the physical processes involved in achieving the aim of the
protocol. That is all that ‘How is the informationt transmitted?’ can intelligibly
mean; for there is not a question of informationt being a located substance or
entity that is transported, nor of ‘the information’ being a common-or-garden
(concrete) referring term. Thus, one does not face a double task consisting of
a) describing the physical processes by which informationt is transmitted, fol-
lowed by b) tracing the path of a ghostly particular, informationt. There is only
task (a).

The point should not be misunderstood: I am not claiming that there is
no such thing as the transmission of informationt, but simply that one should
not understand the transmission of informationt on the model of transporting
potatoes, or butter, say, or piping water. This is a point we broached before
when discussing the notion of the (putative) flow of Shannon informationt (Sec-
tion 2.2.5); it also applies in the quantum context (Section 3.7). Neither everyday
information, nor quantum, nor classical informationt are any kind of stuff that
flows around, whether physical stuff or aethereal stuff; and neither do the tech-
nical notions connote kinds of property which could be said to flow as a property
like energy may flow. The transmission of a piece of informationt from A to B
will consist in the production at B of another token of the type produced at
A, where the production at B is consequent on the token’s being produced at
A.64 In these terms, what is distinctive about the teleportation protocol is that
the piece of quantum informationt—the unknown state—is reproducible at B
without being reproducible at any point in between A and B in the meantime.
But this does not mean that we have a something—an item of informationt—
which is actually flowing in an uncanny way. It just means there was, but no
longer is, a token at A; while there wasn’t, but now consequently is, a token at
B. If one asks: but how is this possible without something which depends on the
identity of the unknown state traversing a path from A to B? then, once more,

64Possible production at B following a standard transformation would suffice, too, of course.
In the teleportation case, note that this condition would not be satisfied until the message
bits sent by Alice have arrived. The ‘standard transformation’ in this case is a conditional
transformation: conditional on those bit values.
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one is simply asking: what are the physical processes involved? We shall see in
a moment.

4.4.1 The simulation fallacy

Whilst paying due attention to the status of ‘informationt’ as an abstract noun
provides the primary resolution of the problems that teleportation can sometimes
seem to present us with, there is a secondary possible source of confusion that
should be noted. This is what may be termed the simulation fallacy.

Imagine that there is some physical process P (for example, some quantum
mechanical process) which would require a certain amount of communication or
computational resources to be simulated classically. Call the classical simulation
using these resources S. The simulation fallacy is to assume that because it re-
quires these classical resources to simulate P using S, there are processes going
on when P occurs which are physically equivalent to (are instantiations of) the
processes that are involved in the simulation S itself (although these processes
may be being instantiated using different properties in P). In particular, when P
is going on, the thought is that there must be, at some level, physical processes
involved in P which correspond concretely to the evolution of the classical re-
sources in the simulation S. The fallacy is to read off features of the simulation
as real features of the thing simulated.65

A familiar example of the simulation fallacy is provided by Deutsch’s argu-
ment that Shor’s factoring algorithm supports an Everettian view of quantum
mechanics (Deutsch, 1997, p. 217). The argument is that if factoring very large
numbers would require greater computational resources than are contained in
the visible universe, then how could such a process be possible unless one admits
the existence of a very large number of (superposed) computations in Everettian
parallel universes? A computation that would require a very large amount of
resources if it were to be performed classically is explained as a process which
consists of a very large number of classical computations. But of course, con-
sidered as an argument, this is fallacious. The fact that a very large amount of
classical computation might be required to produce the same result as a quan-
tum computation does not entail that the quantum computation consists of a
large number of parallel classical computations.66

The simulation fallacy is also evident in the common claim that Bell’s theorem
shows us that quantum mechanics is nonlocal, or the claim that the experimental
violation of Bell inequalities means that the world must be nonlocal. Of course,
what is in fact shown by these well-known results is that no local hidden variable
model can simulate the predictions of quantum mechanics, nor provide a model

65Note that it will not always be fallacious to take features of a simulation to correspond to
features of the simulated—if the features in question are explicitly analogues of features of the
system or process being simulated. One should thus distinguish between i) simulations that
involve analogues and ii) functional ‘black-box’, or input–output, simulations.

66For further discussion of Deutsch’s conception of quantum parallel processing, see Steane
(2003), Hewitt-Horsman (2002) and Timpson (2009).
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for the experimentally observed correlations. But these facts about simulation
don’t lead directly to facts about the simulated: the fact that any adequate
hidden variable model must be nonlocal, or at least, non-factorizable, does not
show that quantum mechanics is nonlocal (this, of course, is an interpretation-
dependent property—see e.g. Timpson and Brown (2002) for discussion), nor
show the world to be nonlocal.

While the question of what classical resources would be required to simulate
a given quantum process is an indispensable guide in the search for interesting
quantum informationt protocols and is vitally important for that reason, the
simulation fallacy indicates that it is by no means a sure guide to ontology.

With regard to teleportation, it is important to recognize the simulation
fallacy in order to assuage any worries that might remain over the question ‘How
does so much informationt get from Alice to Bob?’, and to undermine further
the thought that teleportation must be understood as a flow of informationt.

For the fact that it would take a very large number of classical bits to transmit
the identity of an unknown state from Alice to Bob does not entail that in
teleportation there is a real corresponding transmission of informationt, some
physical process going on that instantiates, albeit in a different medium, the
transport of this large amount of informationt.67 (Note that the flow of the
hypostatized quantum informationt of Jozsa and Penrose plays precisely this
role: the analogue, in a different medium, of the transport of the large amount
of classical informationt.) Equivalence from the point of view of informationt

processing does not imply physical equivalence.
Awareness of the simulation fallacy is particularly relevant when we consider

the approach of the conservative classical quantity surveyor. Recall that the point
of this approach is to deny that a large amount of informationt can be said to
have been transported to Bob in teleportation until that informationt is actually
available to him. However, it might be objected to this that after a single run of
the teleportation protocol, the informationt characterizing the state is certainly
present at Bob’s location, even if inaccessible to him, as a system in the unknown
state is present.68

This contention would seem to rest on an argument of the following form: The
only way the unknown state can appear at Bob’s location is if the informationt

characterizing the state has actually been transported to Bob, hence on appear-
ance of the state, the specification informationt associated with the state has
indeed been transported to Bob’s location. (Crudely, if a system in the given
state is present, then the informationt is present, as it takes this informationt to

67Nor, for example, does the fact that there are protocols in which the state of a qubit can
be substituted for an arbitrarily large amount of classical informationt (Galvão and Hardy,
2003) imply that this large amount of informationt is really there in the qubit.

68It is for this reason that it is natural to marry conservative classical quantity surveying
with an ensemble view of the quantum state (see footnote 62), for then this objection would not
go through—when the two positions are conjoined, not only is the informationt characterizing
the state not available until the whole ensemble is teleported, but neither has the state been
teleported until the whole ensemble has been teleported to Bob.
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specify the state.) But such an argument needs to be treated with care, for the
main premise appears to rest on the simulation fallacy. Just because it would
take a large amount of informationt to specify a state doesn’t mean that we
should conclude that this amount of informationt has been physically trans-
ported (lugged across) in teleportation when Bob’s system acquires the state.

In any event, a simple way to remain clearer on whether or not, or in what
way, informationt can be said to be present at Bob’s location following a single
run of the teleportation protocol is to respect the distinction between the speci-
fication informationt associated with a system and the amount of informationt

that may be said to be encoded or contained in the system. Once Bob’s system
has acquired the state |χ〉 teleported by Alice, then his system has associated
with it the same specification informationt, H(A): if one were now asked to
specify the state of Bob’s system, then this number of bits would be required, on
average. This quantity of informationt is not encoded or contained in the system,
however. The mutual informationt H(A : B) and the accessible informationt

provide the relevant measures of how much informationt Bob’s system can be
said to contain, for they govern the amount that may be decoded. Alternatively,
one might remark that getting het-up about the large amount of informationt

is off-target anyway: that was classical informationt. It’s only one qubit’s worth
of quantum informationt that was transmitted, despite all the kerfuffle. What is
puzzling about that? And finally, of course, as ‘informationt’ is an abstract noun,
containing informationt—whether quantum or classical—is not containing some
thing, however aethereal.

4.5 The teleportation process under different interpretations

By reflecting on the logico-grammatical status of the term ‘informationt’ we have
been able to replace the (needlessly) conceptually puzzling question of how the
informationt gets from Alice to Bob in teleportation, with the simple, genuine
question of what the physical processes involved in teleportation are. While this
may not, perhaps, be quite enough to still all the controversy that trying to
understand teleportation has evoked, the controversy is now of a very familiar
kind: it concerns what interpretation of quantum mechanics one adopts. For the
detailed story one tells about the physical processes involved in teleportation will
of course depend upon one’s interpretive stance. Two questions in particular will
find different answers under different interpretations: first, is nonlocality involved
in teleportation? and second, has anything interesting happened before Alice’s
classical bits are sent to Bob and he performs the correct unitary operation?

We will now see how some of these differences play out in the following famil-
iar interpretations (the list of approaches considered is by no means exhaustive).

4.5.1 Collapse interpretations: Dirac/von Neumann, GRW

The natural place to begin is with the orthodox approach of Dirac (1947) and
von Neumann (1955) in which there is a genuine process of collapse on meas-
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urement.69 (The vagueness over where, when, why and how this collapse takes
place might be alleviated along lines suggested by Ghirardi et al. (1986), per-
haps.) If one has a genuine process of collapse then as noted long ago by Einstein,
Podolsky and Rosen (1935),70 one has action-at-a-distance. In the presence of
entanglement, a measurement on one system can result in a real change to the
possessed properties of another system, even when the two systems are widely
separated. (Although, as is well known, these changes do not allow one to send
signals superluminally—this is known as the no-signalling theorem.71)

In teleportation, then, under a collapse interpretation, the effect of Alice’s
Bell-basis measurement will be to prepare Bob’s system, at a distance, in one of
four pure states which depend on the unknown state |χ〉, by using the nonlocal
effect of collapse. It then only remains for Alice to send her two bits to Bob to tell
him which (type of) state he now has in his possession. Under this interpretation,
teleportation explicitly involves nonlocality, or action-at-a-distance; and it is
precisely because of the nonlocal effect of collapse, preparing Bob’s system in a
state that differs in one of only four ways from |χ〉, that a mere two classical bits
need be sent by Alice in order for Bob’s system to acquire a state parameterized
by two continuous values.

It is enlightening to compare the effect of collapse in this scenario to that of
a rigid rod held by two parties. Imagine that Alice wanted to let Bob know the
value of a parameter that could take on values in the interval [0, 1]. If they were
each holding one end of a long rigid rod, then Alice could let Bob know the value
she has in mind simply by moving her end of the rod along in Bob’s direction
by a suitable distance. Bob, seeing how far his end of the rod moves, may infer
the value Alice is thinking of.72 There is no mystery here about how the value
of the continuous parameter is transmitted from Alice to Bob. Alice, by moving
her end of the rod, moves Bob’s by a corresponding amount. In teleportation,
the effect of collapse is somewhat analogous: Bob’s system is prepared, by the
nonlocal effect of collapse, in a state that depends on the two continuous param-
eters characterizing |χ〉. As we have said, collapse allows a real change in the
physical properties that a distant system possesses, if there was prior entangle-
ment. Compare: pushing one end of a rigid rod axially leads to a change in the
position of the far end. The nonlocal effect of collapse, which is here understood
as a real physical process, is providing the main physical mechanism behind tele-
portation; and recall that once the physical mechanisms have been described (I

69One of the defining features of what I here term ‘orthodoxy’ is the adoption of the standard
eigenstate–eigenvalue link for the ascription of definite values to quantum systems. See e.g. Bub
(1997).

70See Timpson and Brown (2002) for a recent discussion.
71An early version of the no-signalling theorem, specialized to the case of spin 1/2 EPR-type

experiments, appears in Bohm (1951). Later, more general versions are given by Tausk (1967);
Eberhard (1978); Ghiradi et al. (1980). See also Shimony (1984); Redhead (1987, Chpt. 4.6).

72Of course, in a relativistic setting, rigid bodies would not be permissible, although they
are in non-relativistic quantum mechanics. This does not in any case affect the point of the
analogy.
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have argued) there is no further question to be asked about how informationt is
transmitted in the protocol.

In a collapse interpretation, teleportation thus involves nonlocality, in the
sense of action-at-a-distance, crucially. Also, something interesting certainly has
happened once Alice performs her measurement and before she sends the two
classical bits to Bob. There has been a real change in the physical properties
of Bob’s system, as it acquires one of four pure states. (Although note that at
this stage the probability distributions for measurements on Bob’s system will
nonetheless not display any dependence on the parameters characterizing |χ〉,
in virtue of the no-signalling theorem. It is only once the bits from Alice have
arrived and Bob has performed the correct operation that measurements on his
system will display a dependence on the parameters α and β.)

4.5.2 No collapse and no extra values: Everett
It is possible to retain the idea that the wavefunction provides a complete de-
scription of reality while rejecting the notion of collapse; this way lies the Everett
interpretation (Everett, 1957).73 The characteristic feature of the Everett inter-
pretation is that the dynamics is always unitary; and no extra values are added
to the description provided by the wavefunction in order to account for definite
measurement outcomes. Instead, measurements are simply unitary interactions
which have been chosen so as to correlate states of the system being measured to
states of a measuring apparatus. Obtaining a definite value on measurement is
then understood as the measured system coming to have a definite state (eigen-
state of the measured observable) relative to the indicator states of the measuring
apparatus and, ultimately, relative to an observer.74 A treatment of teleportation
in the Everettian context was given by Vaidman (1994). Braunstein (1996) pro-
vides a detailed discussion of the teleportation protocol within unitary quantum
mechanics without collapse.

With teleportation in an Everettian setting, and unlike teleportation under
the orthodox account, it is clear that there will be no action-at-a-distance in

73It should be noted that there have been a number of different attempts to develop Everett’s
original ideas into a full-blown interpretation of quantum theory. The most satisfactory of
these would appear to be an approach on the lines of Saunders and Wallace (Saunders, 1995,
1996a,b, 1998; Wallace, 2002, 2003a) which resolves the preferred basis problem and has made
considerable progress on the question of the meaning of probability in Everett (on this, see in
particular Deutsch (1999); Wallace (2003b, 2006, 2007)). For the state of the art, see Saunders
et al. (2010) and Wallace (2012).

74This is the case for ideal first-kind (non-disturbing) measurements. The situation becomes
more complicated when we consider the more physically realistic case of measurements which
are not of the first kind; in some cases, for example, the object system may even be destroyed in
the process of measurement. What is important for a measurement to have taken place is that
measuring apparatus and object system were coupled together in such a way that if the object
system had been in an eigenstate of the observable being measured prior to measurement, then
the subsequent state of the measuring apparatus would allow us to infer what that eigenstate
was. In this more general framework the importance is not so much that the object system is
left in an eigenstate of the observable relative to the indicator state of the measuring apparatus,
but that we have definite indicator states relative to macroscopic observables.
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virtue of collapse when Alice performs her measurement, for the simple reason
that there is no process of collapse. Instead, the result of Alice’s measurement
will be that Bob’s system comes to have definite relative states related to the
unknown state |χ〉, with respect to the indicator states of the systems recording
the outcome of Alice’s measurement. (It will be argued in the next chapter
that this does not amount to a new form of nonlocality.) Note, though, that at
this stage of the protocol, the reduced state of every system involved will now
be maximally mixed.75 As Braunstein (1996) notes, this feature corresponds
to the disembodiment of the informationt characterizing the unknown state in
the orthodox account of teleportation: following Alice’s measurement, all the
systems involved in the protocol will have become fully entangled. Dependence
on the parameters characterizing the unknown state will only be observable with
a suitable global measurement, not for any local measurements. In particular, one
can consider the correlations that now exist between the systems recording the
outcome of Alice’s measurement and Bob’s system. Certain of the joint (and
irreducible) properties of these spatially separated systems will depend on the
identity of the unknown state. In this sense, the informationt characterizing |χ〉
might now be said to be ‘in the correlations’ between these systems. (This is the
terminology Braunstein adopts.)

Once Bob has been sent the systems recording the outcome of Alice’s meas-
urement, however, he is able to disentangle his system from the other systems
involved in the protocol. Its state will now factorize from the joint state of the
other systems; and will in fact be the pure state |χ〉. Dependence on the param-
eters α and β will finally be observable for local measurements once more, but
this time, only at Bob’s location.

In collapse versions of quantum mechanics, the nonlocal effect of collapse
was the main physical mechanism underlying teleportation. In the no-collapse
Everettian setting, the fundamental mechanism is provided by the fact that
in the presence of entanglement, local unitary operations—in this case, Alice’s
measurement—can have a non-trivial effect on the global state of the joint sys-
tem.

So, has anything significant happened at Bob’s location before Alice sends
him the result of her measurement and he performs his conditional unitary op-
eration? Well, arguably not: nothing has happened other than all of the systems
involved in the protocol having become entangled, as a result of the various local
unitary operations.

4.5.3 No collapse, but extra values: Bohm

The Bohm theory account provides us with an interesting intermediary view of
teleportation, in which there is no collapse of the wavefunction, but nonlocality

75This would not in general be the case if the initial entangled state were not maximally
entangled, or if Alice’s measurement were not an ideal measurement; with these eventualities,
the teleportation would be imperfect (fidelity less than 1).
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plays an interesting role. We shall follow the analysis of Maroney and Hiley
(1999).

The Bohm theory (Bohm, 1952) is a nonlocal, contextual, deterministic hid-
den variable theory, in which the wavefunction Ψ(x1,x2 . . .xn, t) of an n-body
system evolves unitarily according to the Schrödinger dynamics, but is supple-
mented with definite values for the positions x1(t),x2(t) . . .xn(t) of the particles.
Momenta are also defined according to pi = ∇iS, where S is the phase of Ψ,
hence a definite trajectory may be associated with a system, where this tra-
jectory will depend on the many-body wavefunction (and thus, in general, on
the positions and behaviour of all the other systems, however far away). If the
initial probability distribution for particle positions is assumed to be given by
|Ψ|2, then the same predictions for measurement outcomes will be made as in
ordinary quantum mechanics. For detailed presentations of the Bohm theory, see
Bohm and Hiley (1993) and Holland (1995).

The guiding effect of the wavefunction on the particle positions may also be
understood in terms of a new quantum potential that acts on particles in addition
to the familiar classical potentials. The quantum potential is given by

Q(x1,x2, . . . ,xn) = −�
2

n∑
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∇2
iR

2miR
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where R is the amplitude of Ψ and mi is the mass of the i-th particle. Among
the ways in which this quantity differs from a classical potential is that it will
in general give rise to a nonlocal dynamics (that is, in the presence of entan-
glement, the force on a given system will depend on the instantaneous positions
of the other particles, no matter how far away); and it may be large even when
the amplitude from which it is derived is small. Bohm and Hiley (1993, §3.2)
suggest that the quantum potential should be understood as an ‘information po-
tential’ rather than a mechanical potential, as a way of accounting for its peculiar
properties.

The determinate values for position in the Bohm theory are usually under-
stood as providing the definite outcomes of measurement76 that would appear
to be lacking in a no-collapse version of quantum mechanics, in the absence of
an Everett-style relativization. Following a measurement interaction, the wave-
function of the joint object-system and apparatus will have separated out (in the
ideal case) into a superposition of non-overlapping wavepackets (on configura-
tion space) corresponding to the different possible outcomes of measurement. The
determinate values for the positions of the object-system and apparatus pointer
variable will pick out a point in configuration space; and the outcome that is
observed, or is made definite, is the one corresponding to the wavepacket whose

76Note, though, that measurement may not usually be understood as revealing pre-existing
values in the Bohm theory. Interestingly, Brown and Wallace (2005) have recently argued that
these definite position values may not be so helpful in solving the measurement problem as is
often supposed, although the view is contentious.
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support contains this point. The wavefunction for the total system remains as
a superposition of all of the non-overlapping wavepackets, however. Bohm and
Hiley (1993) introduce the notions of active, passive, and inactive information
to describe this feature of the theory. If Ψ may be written as a superposition of
non-overlapping wavepackets, then they suggest that the definite configuration
point of the total system picks out one of these wavepackets (the one whose
support contains the point) as active. The evolution of the point is determined
solely by the wavepacket containing it; and in keeping with their conception of
Q as an information potential, the information associated with this wavepacket
is said to be active. The information associated with the other wavepackets is
termed either ‘passive’ or ‘inactive’. ‘Passive’, if the different wavepackets may in
the future be made to overlap and interfere, ‘inactive’, if such interference would
be a practical impossibility (as, for example, if environmental decoherence has
occurred in a measurement-type situation—this corresponds to the case of ‘ef-
fective collapse’ of the wavefunction).

In their discussion of the teleportation protocol, Maroney and Hiley adopt
the approach in which a definite spin vector is also associated with each spin 1/2
particle, in addition to its definite position. The idea is that with each system is
associated an orthogonal set of axes (body axes) whose orientation is specified
by a real three-dimensional spin vector, s, along with an angle of rotation about
this vector; where these quantities are determined by the wavefunction.77

The analysis of teleportation then proceeds much as in the Everett interpreta-
tion, save that we may also consider the evolution of the determinate spin vectors
associated with the various systems. Initially, the system in the unknown state
|χ〉 will have some definite spin vector which depends on α and β, s(α, β), while
it turns out that if Alice and Bob share a singlet state, the spin vectors for their
two systems will be zero (Bohm and Hiley, 1993, §10.6). Now Alice performs her
Bell-basis measurement. As in the Everettian picture, the effect of measurement
is to entangle the systems being measured with systems recording the outcome
of the measurement. But this is not the only effect, in the Bohm theory. The
total wavefunction is now a superposition of four terms corresponding to the
four possible outcomes of Alice’s measurement; and one of these four terms will
be picked out by the definite position value of the measuring apparatus pointer
variable. For each of these four terms taken individually, Bob’s system will be
in a definite state related to the state |χ〉, thus with each will be associated a
definite spin vector sj(α, β), j = 1, . . . , 4, pointing in some direction. When one
of the four terms is picked out as active, and the others rendered passive (or
inactive), following Alice’s measurement, the spin vector for Bob’s system will
change instantaneously from zero to one of the four sj(α, β) (Maroney and Hiley,
1999).

77This is the approach to spin of Bohm et al. (1955). For a systematic presentation see Bohm
and Hiley (1993, §§10.2–10.3) or Holland (1995, Chpt. 9). Other approaches to spin are possible,
e.g., Bohm and Hiley (1993, §§10.4–10.5), Holland (1995, Chpt. 10), or the ‘minimalism’ of Bell
(1966, 1981), in which no spin values are added.
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Thus in the Bohm theory, teleportation certainly involves nonlocality; and
moreover, something very interesting does happen as soon as Alice has made her
measurement. Bob’s system acquires a definite spin vector that depends on the
parameters characterizing the unknown state, as a result of a nonlocal quantum
torque (Maroney and Hiley, 1999). Furthermore, there is a one in four chance
that this spin vector will be the same as the original s(α, β); and all this while the
total state of the system remains uncollapsed, with all the particles entangled.

Finally, as we have seen before, once Alice sends Bob systems recording the
outcome of her measurement, he may perform the conditional unitary operation
necessary to disentangle his system from the others, and leave his system in the
state |χ〉. The spin vector of his system will now be s(α, β) with certainty.

4.5.3.1 A note on active information The conclusion of Maroney and Hiley
(1999) and Hiley (1999) is that according to the Bohm theory, what is transferred
from Alice’s region to Bob’s region in the teleportation protocol is the active
information that is contained in the quantum state of the initial system. However,
questions may be raised about how apposite this description is.

For ease of reference, let us re-introduce labels for some of the systems in-
volved in the teleportation. Call the system whose unknown state is to be tele-
ported, system 1; Alice’s half of the entangled pair, system 2; and Bob’s half,
system 3. Also let us label the pointer degree of freedom of the measuring appa-
ratus by x0. At the beginning of the teleportation protocol, the state of system
1 factorizes from the entangled joint state of 2 and 3; and the state of the mea-
suring apparatus will also factorize. Accordingly, the quantum potential will be
given by a sum of separate terms:

Q(x1,x2,x3, x0) = Q(x1, α, β) +Q(x2,x3) +Q(x0), (4.5)

where it has been noted that the first term, the one that will determine the
motion of system 1, depends on the parameters characterizing the unknown
state.78

Once Alice performs her Bell-basis measurement, however, all the systems
become entangled; and the potential will be of the form:

Q(x1,x2,x3, x0) = Q(x1,x2, x0) +Q(x3, x0, α, β) (4.6)

The part of the quantum potential that will affect system 3 now depends on α
and β.

Finally, at the end of the protocol, systems 1, 2, and the measuring apparatus
are left entangled; and system 3, in the pure state |χ〉3, factorizes. The quantum
potential then takes the form:

Q(x1,x2,x3, x0) = Q(x1,x2, x0) +Q(x3, α, β) (4.7)

Maroney and Hiley say:

78The component of the force on the i-th system due to the quantum potential is given by
miẍi = −∇iQ (cf. Holland, 1995, §7.1.2); therefore, only terms in the sum which depend on
xi will contribute to the motion of the i-th system.
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What we see clearly emerging here is that it is active information that has
been transferred from particle 1 to particle 3 and that this transfer has
been mediated by the nonlocal quantum potential. (Maroney and Hiley,
1999, p. 1413)

. . . it is the objective active information contained in the wavefunction
that is transferred from particle 1 to particle 3. (Maroney and Hiley,
1999, p. 1414)

Note that the part of the potential that is active on system 3 will already
have acquired a dependence on α and β before the end of the protocol; that
is, as soon as Alice has performed her measurement. So if active information
depending on these parameters is transferred at all, it will have been transferred
before the end of the protocol. However, it is not until Alice has sent her message
to Bob and he performs his conditional operation that the term Q(x3, α, β) in
eqn 4.7 will take the same form as the initial Q(x1, α, β).

The difficulties for the stated conclusion arise when we consider more closely
what is meant by ‘active information’. In Maroney and Hiley (1999) and Hiley
(1999), the connection is made with a different sense of the word ‘information’
than the ones with which we have so far been concerned. This is a sense that
derives from the verb ‘inform’ under its branch I and II senses (Oxford English
Dictionary), viz. to give form to, or, to give formative principle to (this latter, a
Scholastic Latin offshoot).

Thus ‘information’, as it appears in ‘active information’ and company, means
the action of giving form to.79 ‘The information of x’ (read: The in-formation of
x) means the action of giving form to x.

Now, while we may understand what is meant by Q being said to be an infor-
mation potential—it is a potential that gives form to something, presumably the
possible trajectories associated with particles (although note that the distinction
with mechanical potentials is now blurred, as these give form to the possible tra-
jectories too)—and may understand the term ‘active’ as picking out the part
of the quantum potential that is shaping the actual trajectory in configuration
space of the total system, it does not make sense to say that active information
is transferred in teleportation. Because ‘information’ here refers to a particular
action—the giving of a form to something—and an action is not a thing that
can be moved.80 The same type of action may be taking place at two different
places, or at two different times, but an action may not be moved from A to B.

Thus with ‘active information’ understood in the advertised way, all that can
be said is that an action of the same type is being performed (by the quantum
potential) on system 3 at the end of the teleportation protocol as was being
performed on system 1 at the beginning, not that something has been transferred
between the two. We may not, then, understand ‘transfer’ literally. When all is

79Cf. OED ‘information’, sense 7.
80On some accounts, an action is the bringing about of some event or state of affairs by an

agent (Alvarez and Hyman, 1998); on others, an action is an event (Davidson, 1980). On no
account is an action something which can intelligibly be said to be moved about.
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said and done, it is perhaps clearer simply to adopt the standard description and
say that the quantum state of particle 1 has been ‘transferred’ in teleportation;
that is (as a quantum state is a mathematical object and therefore cannot literally
be moved about either), that system 3 has been made to acquire (is left in) the
unknown state |χ〉.

To sum up: it perhaps looked as if the Bohmian notion of active information
might provide us with a sense of what is transported in teleportation if we insist
that information, ‘the information in the wavefunction’, is, in a literal sense,
transported. But this proves not to be the case.

4.5.4 Ensemble and statistical viewpoints

So far, in all the interpretations we have considered, the quantum state may
describe individual systems. Let us close this section by looking briefly at ap-
proaches in which the state is taken only to describe ensembles of systems.

We may broadly distinguish two such approaches. The first I will term an
ensemble viewpoint. In this approach, the state is taken to represent a real phys-
ical property, but only of an ensemble. Following a measurement, the ensemble
must be left in a proper mixture,81 in order for there to be definite outcomes, i.e.,
the ensemble is left in an appropriate mixture of sub-ensembles, each described
by a pure state (eigenstate of the measured observable). Thus there will be a
real process of collapse, but only at the level of the ensemble, not for individual
systems (which are not being described by a quantum state, if at all).

The second approach I call a statistical interpretation. (This is the interpre-
tation that would be adopted by instrumentalists, for example.) On this view,
the quantum formalism merely describes the probabilities for measurement out-
comes for ensembles, there is no description of individual systems and collapse
does not correspond to any real physical process.

On both these approaches, as the state is only associated with an ensemble,
it is not until an entire ensemble has been teleported to Bob (that is, Alice has
run the teleportation protocol on every member of an ensemble in the unknown
state |χ〉) that he acquires something in the state |χ〉. An ensemble or statis-
tical viewpoint thus makes a natural partner to conservative classical quantity
surveying in teleportation.

Under the statistical interpretation, there is clearly no nonlocality involved
in teleportation, as there is no real process of collapse; and nothing of any in-
terest has happened before the required classical bits are sent to Bob. (The
no-signalling theorem entails that Alice’s measurement won’t affect the proba-
bility distributions for distant measurements.) The end result of the completed
teleportation process is that Bob’s ensemble is ascribed the state |χ〉; where this
merely means that the statistics one will expect for measurements on Bob’s en-
semble are now the same as those one would have expected for measurements on
the initial ensemble presented to Alice.

81For this terminology, see d’Espagnat (1976), Timpson and Brown (2005), and Ap-
pendix A.2.
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The ensemble viewpoint presents a rather different picture, as it does involve
a real process of collapse, even if only at the ensemble level. Let us suppose that
Alice has performed the Bell-basis measurement on her ensembles, but has not
yet sent the ensemble of classical bits to Bob. The effect of this measurement
will have been to leave Bob’s ensemble in a proper mixture composed of sub-
ensembles in the four possible states a fixed rotation away from |χ〉. Thus there
has been a nonlocal effect: that of preparing what was an improper mixture
into a particular proper mixture, whose components depend on the parameters
characterizing the unknown state. The use of the flock of classical bits that Alice
sends to Bob is to allow him to separate out the ensemble he now has into
four distinct sub-ensembles, on each of which he performs the relevant unitary
operation, ending up with all four being described by the state |χ〉.

4.6 Concluding remarks

The aim of this chapter has been to show how substantial conceptual difficulties
can arise if one neglects the fact that ‘informationt’ is an abstract noun. This
oversight seems to lie at the root of much confusion over the process of telepor-
tation; and this gives us very good reason to pay attention to the logical status
of the term. A few closing remarks should be made.

Schematically, a central part of the argument has been of the following form:
Puzzles arise when we feel the need to tell a story about how something travels
from Alice to Bob in teleportation. In particular, it might be felt that this some-
thing needs to travel in a spatio-temporally continuous fashion; and one might
accordingly feel pushed towards adopting something like the Jozsa/Penrose view.

But if ‘the informationt’ doesn’t pick out a particular, then there is no thing
to take a path, continuous or not, therefore the problem is not a genuine one,
but an illusion.

We can imagine a number of objections. A very simple one might take the
following form: You have said that a piece of informationt is not a particular or
thing, therefore it does not make sense to inquire how it flows (but only inquire
about the means by which it is transmitted). But don’t we have a theory that
quantifies informationt (viz. communication theory); and if we can say how much
of something there is, isn’t that enough to say that we have a thing, or a quantity
that can be located?

This is an objection we have already dealt with. Note that this form of ar-
gument will not work in general—one can say how much a picture might be
worth in pounds and pence, for example, but this is not quantifying an amount
of stuff, nor describing a quantity with a location—and it does not work in this
particular case either (cf. Sections 2.2.1; 2.2.5; 3.7). The Shannon informationt

doesn’t quantify an amount of stuff that is present in a message, say, nor the
amount of a certain quantity that is present at some spatial location. The Shan-
non informationt H(X) and the von Neumann entropy S(ρ) describe specific
properties of sources (not messages), namely, the amount of channel resources
that would be required to transmit the messages the sources produce. This is
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evidently not to quantify an amount of stuff, nor to characterize a quantity
that has a spatial location. (The source certainly has a spatial location, but its
informationt does not.) Or consider the mutual informationt. Loosely speaking,
this quantity tells us about the amount we may be able to infer about some
event or state of affairs from the obtaining of another event or state of affairs.
But how much we may infer is not a quantity it makes sense to ascribe a spatial
location to.

Another objection might be as follows: You have suggested that it is a mis-
take to hypostatize information (informationt), to talk of it as a thing that moves
about. How is this to be reconciled with some of the ways we often talk about
information in physics, especially the example in relativity, where the most nat-
ural way of stating an important constraint is to say that relativity rules out the
propagation of information faster than the speed of light?

The response is that one can admit this mode of talking without it entailing
a hypostatized conception of information. The constraint is that superluminal
signalling is ruled out on pain of temporal loop paradoxes (e.g. Rindler, 1991,
§7.ix). What this means is that no physical process is permissible that would allow
a signal to be sent superluminally and thus allow information to be transmitted
superluminally. What are ruled out are certain types of physical processes, not,
save as a metaphor, certain types of motion of information.82

A final objection that might be raised to support the line of thought that
inclines one towards the Jozsa and Penrose conception of teleportation is just
this: Well, don’t we after all require that informationt be propagated in a spatio-
temporally continuous way? Even if this is not to be construed as a flow of stuff,
or the passage of an entity?

The response illustrates part of the value of noting the features of the term
‘informationt’ that have been emphasized throughout our discussion so far.

The genuine question we face is: What are the physical processes that
may be used to transmit informationt? Not the (obscure) question ‘How does
informationt behave?’ Once we see what the question is clearly, then the an-
swer, surely, is to be given by our best physical theory describing the protocol in
question. To be sure, many of the most familiar classical examples we are used
to use spatio-temporally continuous changes in physical properties to transmit
informationt (a prime example might be the use of radio waves), but it is up
to physical theory to tell us about the nature of the processes we are using to
transmit informationt in any given situation. And the examples we have found
in entanglement-assisted communication seem precisely to be examples in which
global rather than local properties are being used to carry informationt; and
there seems not to be a useful sense in which informationt is being carried in a

82The types of processes in question might not be identifiable without recourse to concepts
of what would count as successful transmission of information, but this does not mean that
one has to conceive of information as an entity or substance, just that one needs a concept of
what it means to receive a signal from which one can learn something.
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spatio-temporally continuous way (although, see Chapter 5 for further discussion
of Deutsch and Hayden’s opposing view).

It is not the nature of a hypostatized informationt substance that is at issue,
but the nature of the physical objects and the physical properties we may use
to transmit informationt. (The value of getting clear on the real nature of the
question one faces about informationt transmission in teleportation will become
evident again in the following chapter.)

It is appropriate at this juncture to apply the lessons we have learnt so far
about teleportation to the simpler case of superdense coding (there will be a snip-
pet more to say in the next chapter). In superdense coding we were again puzzled
about how exactly the informationt got from Alice to Bob. A pair of qubits was
involved, so there was no official violation of the Holevo bound, but what was
puzzling was how, when Alice only had access to one half of the entangled pair,
she could encode the two classical bits of informationt into both systems. Indeed,
given our intuitions about locality and continuity, we are tempted to conclude
that that informationt really had to have been in the qubit she actually sent to
Bob. But how can two classical bits possibly fit into a single two-state quantum
system?! (Some have been inclined to make the ‘backwards in time informationt

transmission’ move again here.) From our current enlightened position, we can
see where the error lies, however. We should simply reject the premise that
informationt has to flow locally, that it must somehow be contained in Alice’s
qubit; for this premise relies on the incorrect ‘thing’ model of informationt.

On a final note, the deflationary approach that has been adopted towards
teleportation in this chapter should be compared with what may be called—in
the terminology I used earlier—the ‘nihilist’ approach toward teleportation of
Duwell (2003). While I am in broad sympathy with much of what Duwell had
there to say, we differ on some important points. Duwell advocated the view
that quantum informationt is not a substance, but reached from this the strong
conclusion that quantum informationt does not exist.83 From the current point
of view this conclusion is unwarranted. Certainly, quantum informationt is not
a substance or entity, but this does not mean that it doesn’t exist, it is just
a reflection of the fact that ‘informationt’ is an abstract noun. ‘Beauty’, for
example, is also an abstract noun, but no one would want to conclude that there
is no beauty in the world. Moreover, Duwell’s previous conclusion could only
possibly be hyperbolical, for if classical informationt can be said to exist, then
so too can quantum informationt; and contrapositively, if quantum informationt

does not exist, then no more does classical informationt. The concept of classical
informationt is given by Shannon’s noiseless coding theorem, the concept of
quantum informationt, by the quantum noiseless coding theorem. As we are by
now vividly aware, these are not concepts of material quantities or things. But
rejecting the concept of quantum informationt would be akin to cutting off one’s

83As remarked earlier, he would no longer subscribe to this claim (Duwell, 2008).
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nose to spite one’s face; and is by no means necessary in order to get a proper
understanding of teleportation.

Teleportation is not rendered unproblematic by trying to do without the
notion of quantum informationt and facing the protocol equipped only with
Shannon’s concept, but simply by resisting the temptation to hypostatize an
abstract noun; and, having recognized the status of ‘informationt’ as an abstract
noun, by realizing that the only genuine question one faces is the relatively
straightforward one of describing the physical processes by which informationt

is transmitted.



5

THE DEUTSCH–HAYDEN APPROACH: NONLOCALITY,
ENTANGLEMENT, AND INFORMATION FLOW

‘But on one assumption we should, in my opinion, insist without qualifi-
cation: the real state of the system S2 is independent of any manipulation
of the system S1, which is spatially separated from the former.’ Einstein
(1949)

5.1 Introduction

The existence of entanglement, and the associated questions concerning non-
locality, are of perennial interest in the foundations of quantum mechanics (Ein-
stein et al., 1935; Schrödinger, 1935a, 1936; Bell, 1964; Redhead, 1987; Maudlin,
2002). As we have seen, following the development of quantum information the-
ory, entanglement-assisted communication (Bennett and Weisner, 1992; Bennett
et al., 1993) has presented a new sphere in which puzzles may arise. In this
context, an important development has been the claim of Deutsch and Hayden
(2000) to provide an especially local story about quantum mechanics, by making
use of the Heisenberg picture. They claim, moreover, finally to have clarified the
nature of information flow in entangled quantum systems, reaching the conclu-
sion that information is a local quantity, even in the presence of entanglement.
The approach of Deutsch and Hayden was mentioned in passing in the previous
chapter. The aim of this chapter is to assess their claims in detail.

Their discussion takes place within the context of unitary quantum mechan-
ics without collapse, and without the addition of determinate values; and they
proceed to make two claims to locality. First, they suggest, even in the presence
of entanglement, the state of the global system can in fact be seen to be com-
pletely determined by the states of the individual subsystems, when these states
are properly construed (a conclusion not available in the usual Schrödinger pic-
ture and one supposed to chime with Einstein’s well-known demand for a real
state for spatially separated systems (Einstein, 1949, pp. 77–83)). Second, the
effects of local unitary operations, again, even in the presence of entanglement,
are explicitly seen to be local in their picture.

However, before the implications of their formalism may be assessed, some-
thing needs to be said about how it is to be interpreted. Deutsch and Hayden
are not explicit on this point and do not offer any interpretation. This proves
problematic as two different modes of interpretation of their formalism may be
discerned—what may be called the conservative and the ontological interpreta-
tions—and quite different conclusions follow concerning the questions of locality
and information flow within these interpretations.
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The conservative interpretation, perhaps the most natural way of reading the
Deutsch–Hayden paper, takes the formalism at face value, simply as a re-writing
of standard unitary quantum mechanics. In this case, we shall see, there are
no novel gains with respect to locality and Deutsch and Hayden’s claims about
information flow prove at best misleading. Under the ontological interpretation,
though, a dramatic departure from our usual ways of understanding quantum
mechanics is made and a wholly new range of intrinsic properties of subsystems
introduced. These would substantiate Deutsch and Hayden’s claims, but at a
certain cost of plausibility. We should note too that the ontological interpretation
of the Deutsch–Hayden formalism must be seen as the postulation of a new
type of theory, rather than being a new way of interpreting familiar quantum
mechanics.

The discussion will begin in Section 5.2, where the machinery of the Deutsch–
Hayden approach is outlined, in particular, the mathematics that lies behind
the two claims to locality. These claims are then assessed (Section 5.3), for the
conservative and ontological interpretations in turn.

Note that in Deutsch–Hayden we have a formalism without collapse and with-
out the addition of determinate values. If we are to consider the question of the
locality of their approach, the appropriate comparisons are therefore with other
approaches that are consistent with this assumption. On the one hand, we should
compare with a realist approach of the Everett stripe (Everett, 1957; Saunders,
1996a; Wallace, 2002), while on the other, we should compare with a form of
statistical interpretation, by which, recall, I mean an interpretation in which
quantum mechanics merely describes probabilities for measurement outcomes
for ensembles, there is no description of individual systems, and collapse does
not correspond to any real physical process for individual systems. The question
to be answered, then, is: Do Deutsch and Hayden present us with advantages
with respect to locality that are not also shared by these other approaches? We
shall see that under the conservative interpretation, they do not.

In Section 5.4, attention finally turns to the question of information flow in
entangled systems. In Section 5.4.1 the nature of the question at issue is clar-
ified, before Deutsch and Hayden’s explanation of quantum teleportation and
their introduction of the concept of locally inaccessible information is consid-
ered (Section 5.4.2). Their claims regarding the nature of information flow are
then evaluated for the conservative and ontological interpretations in turn (Sec-
tion 5.4.3), along axes provided by three questions: i) Have Deutsch and Hayden
finally given the correct account of teleportation, as compared to related accounts
such as that of Braunstein (1996)? ii) Is the concept of locally inaccessible infor-
mation useful? iii) Have they provided us with a new concept of information, or
quantum information? I close with a brief summary.

5.2 The Deutsch–Hayden Picture

Deutsch and Hayden consider a network of n interacting qubits as their model
of a general quantum system. They take as the object describing the state of the
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ith qubit at time t a triple

qi(t) = (qi,x(t), qi,y(t), qi,z(t))

of 2n × 2n Heisenberg picture operators satisfying the familiar commutation and
anti-commutation relations of the Pauli spin operators. This object they term
the ‘descriptor’ of a system. To see how this representation works, let us first
recall the basics of the Heisenberg picture.

As expressed in the equations

〈ψ(t)|A|ψ(t)〉 = 〈ψ|U†AU |ψ〉 = 〈ψ|A(t)|ψ〉, (5.1)

time dependence in quantum mechanics can either be associated with the vector
(ket) representing the state, or with the operator representing the observable. In
the Schrödinger picture, the state ket undergoes unitary evolution (|ψ〉 �→ U |ψ〉);
in the Heisenberg picture, the state ket remains unchanged and the basis kets
{|αi〉} of the Hilbert space are evolved (|αi〉 �→ U†|αi〉). Another useful way of
representing these facts is given by the Hilbert–Schmidt representation.

It is well known (e.g. Fano (1957)) that the set of N ×N complex Hermitian
matrices forms an N2 dimensional real vector space, Vh(CN ), on which we may
define an inner product (A,B) = Tr(AB), A,B ∈ Vh(CN ) and norm ||A|| =√

TrA2; and just as in our familiar examples of vector spaces, e.g. Euclidean R3,
it is useful to define a set of basis vectors for the space. We require N2 linearly
independent operators Γj ∈ Vh(CN ), and we may require orthogonality and a
fixed normalization: Tr(ΓjΓj′) = const.δjj′ .

An observable can then be represented in this space in the form:

A =
N2−1∑
j=0

Tr(AΓj)Γj =
N2−1∑
j=0

ajΓj , (5.2)

where the Tr(AΓj) = aj are the components of the vector A representing the
observable A. In particular the density matrix ρ can also be written as a vector:

� =
1
N

+
N2−1∑
j=1

Tr(ρΓj)Γj =
N2−1∑
j=0

ρjΓj , (5.3)

where Γ0 has been chosen as 1, the identity. In this representation, the ex-
pectation value of A is just the projection of the vector � onto the vector A:
〈A〉ρ = Tr(Aρ) = (A.�). The equivalence between the Schrödinger and Heisen-
berg pictures now takes on a very graphic form. We can either picture leaving
the basis vectors (operators) as they are and rotating the vector � under time
evolution, or we can picture rotating the basis vectors (and hence any observ-
able A) in the opposite sense, and leaving � unchanged. In either case, the angle
between the two resulting vectors and hence the expectation value is clearly the
same: A(t).� = A.�(t).
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Writing the time dependence out explicitly, we will have, in the Heisenberg
picture:

A(t) =
∑

j

ajU
†(t)ΓjU(t), (5.4)

while in the Schrödinger picture,

�(t) =
∑

j

Tr(ρU†(t)ΓjU(t))Γj =
∑

j

〈Γj(t)〉ρΓj . (5.5)

The expectation value of observable A at time t is simply
∑

j aj〈Γj(t)〉ρ.
Notice that in both expressions (5.4) and (5.5), the time evolved operators

Γj(t) = U†(t)ΓjU(t) feature. These operators, along with their expectation val-
ues 〈Γj(t)〉ρ, will be our main objects of interest.

What should we choose as basis vectors? For N = 2, the set of Pauli operators
forms an orthogonal basis set, Tr(σiσj) = 2δij (we adopt the convention that
σ0 denotes the identity) thus we can choose

√
2Γj ∈ {1, σx, σy, σz} to provide

an orthonormal basis {Γj}.84 We are then interested in the behaviour of the set
{U †(t) (σi/

√
2)U(t)}.

So far, all we have done is translate some very familiar results into the lan-
guage of the space Vh(CN ). We now make the all-important move that provides
the core result of the Deutsch–Hayden picture (following Gottesman (1998)).
That is, we note that unitary transformations of operators have the property of
being a multiplicative group homomorphism:85

U†ABU = (U †AU)(U†BU). (5.6)

In other words, the time evolution of a product will be given by the product of
the time evolution of the individual operators. Thus we do not need to follow
the evolution of the whole basis set of operators, but only of a generating set.
For example, in the N = 2 case, noting that σxσy = iσz, we see that σz(t) =
−iσx(t)σy(t) and that we need only follow the evolution of the generating set
{σx, σy} to capture the time evolution of the whole system. (For completeness,
note that σ2

i = 1; the time evolution of the identity is of course trivial.)
For N = 2n, n-fold tensor products of Pauli matrices will provide us with an

orthogonal set, thus our basis operators will be

Γj =
1√
2n

σ1
m1

⊗ σ2
m2

⊗ . . .⊗ σn
mn

, (5.7)

where the index j runs from 0 to (4n − 1) and labels the ordered n-tuple
<m1,m2, . . . ,mn >, mi ∈ {0, 1, 2, 3}. We are interested in the behaviour of

84The choice of the Pauli operators as a basis set gives us the familiar Bloch sphere repre-
sentation of the density matrix of a two-state system.

85A map f : A �→ B is a group homomorphism if ∀a1, a2 ∈ A, f(a1a2) = f(a1)f(a2).
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the 4n Γj(t); again, however, we need only track the evolution of objects of the
form

1 ⊗ 1 ⊗ . . .⊗ σi
mi

⊗ . . .⊗ 1,

which we denote qi,mi
; the Γj are given by ordinary matrix multiplication of

these objects:

Γj =
n∏

i = 1

1√
2
qi,mi

. (5.8)

The behaviour of the Γj(t) is thus determined by following the time evolution of
a minimum of 2n of the qi,mi

and taking appropriate products.
The qi,mi

with mi running from 1 to 3 are, of course, the components of
the Deutsch–Hayden descriptor qi. This choice of three operators per system as
the basic objects whose time evolution we are to follow is more than is strictly
necessary for a generating set, but it leads to a very simple description of an
individual system, as we shall shortly see. First, however, note that the density
matrix at time t can now be written as

�(t) =
1
2n

∑
m1m2...mn

〈∏
i

qi,mi
(t)
〉
ρ

∏
i

qi,mi
. (5.9)

That is, the 4n components ρj(t) of the vector representing the density matrix at
time t are given by the expectation values of products of the qi,mi(t). The state
of the joint system at time t is thus completely determined by the time evolution
of the 2n or 3n chosen qi,mi

and the initial state ρ. To see the significance of
the triple qi, note that any observable Ai on the ith system alone will have the
form:

Ai =
3∑

mi = 0

ami
(1 ⊗ 1 ⊗ . . .⊗ σi

mi
⊗ . . .⊗ 1) = a01⊗n +

3∑
mi = 1

ami
qi,mi

. (5.10)

Thus qi(t) tells us about observables on the ith system at time t and 〈qi(t)〉ρ de-
termines their expectation values. Equivalently, the three components of 〈qi(t)〉ρ
give us the interesting components of the vector �(t) lying in the subspace
spanned by observables pertaining to the ith system alone; and with renor-
malization, the components, in our vector representation, of the reduced density
matrix of the ith system.

Explicitly, this reduced density matrix is:

ρi(t) =
1
2

∑
mi

〈qi,mi
(t)〉ρ σi

mi
. (5.11)

It is also easy to write down the reduced density matrix for any grouping of
subsystems. If we were interested in the systems i, j, and k, say, taking the
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partial trace of (5.9) over the other systems will give us a reduced state of the
form:

ρijk(t) =
1
8

∑
mimjmk

〈qi,mi
(t)qj,mj

(t)qk,mk
(t)〉ρ σi

mi
⊗ σj

mj
⊗ σk

mk
. (5.12)

So we have now seen the basis for the first claim to locality: given just the
descriptors qi(t) for each individual system, and the initial state ρ, we may
calculate the reduced density matrix for each subsystem, and the density matrix
for successively larger groups of subsystems, up to and including the density
matrix for the system as a whole.

We may note in passing another interesting feature of the Deutsch–Hayden
formalism. A question that often arises, particularly in discussion of quantum
correlations, is whether different preparations of the same density matrix real-
ly correspond to physically distinct situations, as all observable properties of
systems having the same density matrix are identical. A pleasing aspect of the
Deutsch–Hayden set-up is that it provides a representation in which differences in
the way systems are prepared may find direct expression in the formalism.86 For
example, it may be the case that 〈qi(t)〉ρ = 〈qj(t)〉ρ, i.e., the two systems have
the same reduced density matrix, but that qi(t) and qj(t) differ, representing
differences in their histories.

5.2.1 Locality claim (2): Contiguity

Let us now consider the second claim to locality. This, recall, was the claim that
it can be seen explicitly in the Deutsch–Hayden formalism that local unitary
operations have only a local effect. As Jozsa (2001) has emphasized, this aspect
of the Deutsch–Hayden picture is in fact a re-expression of the no-signalling
theorem.

In the Heisenberg picture, a sketch of a simple version of the theorem would be
as follows: let us write an observable acting on subsystem i alone as Ai = 1⊗A;
at time t, Ai(t) = U†(t)(1 ⊗ A)U(t). Suppose U(t) does not act on i, then
Ai(t) = (U† ⊗ 1)(1 ⊗ A)(U ⊗ 1) = 1 ⊗ A, i.e., an observable is unaffected by
unitary operations on systems it does not pertain to. Now consider our qi,mi

; the
foregoing clearly applies to them—a unitary operation on a system j does not
affect qi,mi . More generally, if our network of n systems were divided up into two
subsets of systems, M and N , whose members interact amongst themselves but
not with systems from the other subset, then the unitary operator describing
the time evolution of the network will factorize: UM ⊗ UN . Then the qi,mi

for
i ∈ M will not be affected by UN , nor those for i ∈ N by UM . We can do
more than merely note that the descriptors of a set of interacting systems do
not depend on unitary operations on a disjoint set, however. In fact we can

86Although, it must be noted that as we are in the context of no-collapse quantum mechanics,
the possibility does not obtain of preparing a distant system in a particular way via collapse,
à la EPR.
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i

j U1

U2

t=1 t=2

qi(1)= qi
qj(1)=U1

†qjU1

qi(2)=U
†
1U

†
2qiU2U1

qj(2)=U
†
1U

†
2qjU2U1

a)

i

j U’2

U’1

t=1 t=2

qi(1)= U’†1qiU’1
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†
1qjU’1

qi(2)=U’
†
1qiU’1
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†
1U’

†
2qjU’2U’1

b)

Fig. 5.1. a) At t = 1, a unitary operation, U1, which acts only on system j, is applied; the

descriptor of system i, qi(1), is unaffected. After i and j interact via U2 at t = 2, however,

qi(2) will depend on the operation U1. In (b) systems i and j initially interact via U ′
1. At

t = 2, U ′
2, acting on j alone, is applied; qi(2) is unaffected.

see that the descriptor at time t of a given system will depend, apart from
the history of operations applied to it alone, only on its previous interactions
and on the histories and past interactions of the systems it has interacted with.
This property may be called contiguity, and is best seen with a simple example
(Fig. 5.1).

Imagine we have two systems, i and j, and that we are going to perform
two unitary operations. First, at t = 1, we perform U1, which acts on j alone;
clearly, after this operation, qi,mi(1) = U†1 qi,miU1 = qi,mi . Next we allow i and
j to interact via U2; now, however, qi,mi

(2) = U †1U
†
2qi,mi

U2U1. Because U2 acts
on both i and j, U1 no longer factors out; interaction causes the qi,mi

to lose the
form of a product of a single Pauli operator with the identity and they can pick
up a dependence on what has happened to the system that i has interacted with.
We can say that all this remains happily local, however, as this dependence on
the history of j only arises following an entangling interaction between the two
systems. The reasoning extends in the obvious way to more complicated chains;
if j had previously interacted with k, then once i and j interact, the qi,mi

(t)
pick up what they would not previously have had, a dependence on what has
happened to k; and so on.

To re-emphasize that the Deutsch–Hayden descriptor of a system at time t
will not, however, depend on what happens at t to a system with which it has
interacted in the past, we take the following simple example (Fig. 5.1). Again
consider two systems i and j; this time, however, we begin by allowing them to
interact via a unitary operation U ′1, then

qi,mi(1) = U ′†1 qi,miU
′
1 �= qi,mi , and

qj,mj (1) = U ′†1 qj,mjU
′
1 �= qj,mj . (5.13)
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Now we perform U ′2, which acts on j alone. Whilst qj,mj
(2) = U ′†1 U

′†
2 qj,mj

U ′2U
′
1,

for the descriptor of i we have

qi,mi
(2) = U ′†1 U

′†
2 qi,mi

U ′2U
′
1 = U ′†1 qi,mi

U ′1, (5.14)

U ′2 factors out; there is no immediate dependence on what happens at the present
only to j, even when i and j have interacted in the past.

The picture, then, is that following an interaction, the descriptor of a sys-
tem i picks up a backwards looking (and hence what we might call a local, or
contiguous) dependence on what has happened to the system that i has inter-
acted with, and on the previous interactions of that system. As an illustration,
let us consider how the non-factorizable probability distributions for Bell-type
experiments come about in this formalism (Fig. 5.2).

As usual, we begin by preparing a pair of systems (2 and 3) in an entangled
state. These systems are spatially separated and two local measurements per-
formed, at an angle θ on system 2 and an angle φ on system 3. The outcomes
are recorded into systems 1 and 4 respectively. Immediately following the meas-
urement, the descriptor of system 1 will depend on θ, but not on the parameter
characterizing the distant measurement, φ. However, as system 1 has interacted
with system 2, its descriptor will also depend on what has happened to 2 in
the past; which was, in this case, an entangling interaction between 2 and 3.
Similarly, the descriptor of 4 following the local measurement will depend on φ

H

P(�,�)�,�)
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��
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3
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Fig. 5.2. A Bell experiment. An entangled state of systems 2 and 3 is prepared (here by the

action of a Hadamard gate, H, which performs a rotation by π around an axis at an angle

of π/4 in the z-x plane; followed by a controlled-NOT operation—the circle indicates the

control qubit, the point of the arrow, the target, to which σx is applied if the control is in

the 0 computational state) and the entangled pair is shared between two distant locations.

A measurement at an angle θ is performed on 2 and the outcome recorded in system 1; a

measurement at an angle φ made on 3 and recorded in 4. Time runs along the horizontal

axis. Note that in no-collapse quantum mechanics without added values, correlations do

not in general obtain until they are displayed by a suitable joint measurement.
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and not on θ, but will depend too on what happened to system 3—that is, on 3’s
initial entangling with 2. Because the descriptors of 1 and 4 depend, following the
pair of local measurements, on the initial entangling interaction between 2 and
3, their product can give rise to the familiar non-factorizable probability distri-
bution when 1 and 4 are subsequently brought together and joint measurements
performed.

It is tempting to think of the contiguity property of the Deutsch–Hayden
descriptors as depicting a causal chain in which dependence on the parameters
characterizing the history of a system is passed on during interactions, or even
more metaphorically, in terms of information about the relevant history of a
system being transmitted via local interactions. More soberly, we see that if the
qi are taken to be the primary objects of interest then the effects of local unitary
operations on these are indeed explicitly seen to be local, as the descriptor of a
system cannot come to depend on a parameter characterizing a unitary operation
selected in a distant region without the system having undergone an appropriate
chain of local interactions. As I have said, however, this is just the no-signalling
theorem writ large.

5.3 Assessing the Claims to Locality
Having outlined the machinery of the Deutsch–Hayden approach, we may now
consider the status of its claim to provide a particularly local picture of quantum
mechanics. As remarked in the Introduction, it is necessary to distinguish two
modes of interpretation of the formalism.

5.3.1 The Conservative Interpretation
The conservative interpretation is to take the formalism at face-value, simply
as a re-writing of standard (unitary) quantum mechanics, in which we fix the
initial state ρ and track time evolution via the qi(t). If we want to talk in terms
of properties, we may see the qi(t), against the background of a chosen ρ, as
denoting propensities for the display of certain individual and joint probability
distributions for measurement outcomes, via eqns (5.11) and (5.12).

5.3.1.1 Locality Claim (1) The first claim to locality was that the global state
can be seen to be determined by the states of individual subsystems. What is
certainly true is that given the n qi(t), the 4n Γj(t) are determined and hence we
can keep track of the changes to the joint system over time. Note, however, that
the initial global state ρ still has to be specified and plays a very important role.
It is needed to determine the experimentally accessible properties of individual
and joint systems; both the Γj(t) and ρ are required to determine expectation
values of measurements. That it is the global state is crucial, as in general in the
presence of entanglement, 〈qi,mi

(t) qj,mj
(t)〉ρ �= 〈qi,mi

(t)〉ρ〈qj,mj
(t)〉ρ.

With the global state of the system still playing such an important role,
however, it is not clear that we have yet gained much in the way of locality by
considering the Deutsch–Hayden construction under the conservative interpreta-
tion. Taking the simplest picture of a time-evolving density operator, products
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of the qi(t) determine how any given initial state will evolve; it is no surprise
if the initial state of the joint system is specified and we have kept track of the
changes to the system (albeit that these are fixed by the individual qi(t)) that
we then know what the final state will be.

In reply it is open to Deutsch and Hayden to argue that appeal to the global
state is in fact innocuous, as a standard initial state can always be chosen and
the qi(0) adjusted accordingly. To be sustained, however, this line of argument
commits one to the ontological interpretation, which we shall consider in due
course. For now, let us consider the status of the second locality claim under the
conservative interpretation.

5.3.1.2 Locality Claim (2) We begin by asking why it might seem important
to show explicitly that local unitary operations have only a local effect. (We
recall, of course, that the standard no-signalling theorem already assures us that
local unitaries will not have any effect on the probability distributions for distant
measurements.) It is clear that if we were only to consider the question of non-
locality as it is usually raised in the context of Bell-type experiments, then the
Deutsch–Hayden approach would not offer us any distinctive advantages. For, as
has been mentioned, their point of departure is to assume no-collapse quantum
mechanics with no determinate values added, thus the appropriate comparisons
must either be with an Everettian or a statistical interpretation. But it is well
known that the Everett interpretation does not suffer from the familiar difficul-
ties with nonlocality in the Bell or EPR setting that accrue to theories involving
collapse or additional variables (indeed, this is often presented as one of the
selling-points of the approach); while for a statistical interpretation, the familiar
no-signalling theorem does all that could be required to ensure that nonlocality
does not arise (see Timpson and Brown (2002) for further discussion and ref-
erences). Thus if one is considering the question of locality in this context, the
crucial factor is the assumption of quantum mechanics without a real process
of collapse, and without additional variables, rather than anything distinctive
about the Deutsch–Hayden approach.

However, things may look rather less clear-cut when one considers the phe-
nomena of entanglement-assisted communication such as superdense coding
(Bennett and Weisner, 1992) and teleportation (Bennett et al., 1993). These
phenomena vividly illustrate the fact that in the presence of entanglement, local
unitary operations can have a very significant effect on the global state of the
system. And might this not indicate a novel sort of nonlocality of which even
the Everett interpretation would be guilty? If so, the Deutsch–Hayden approach
would seem to offer a clear advantage, with its explicit locality regarding the
effects of local unitary operations.

Consider the example of superdense coding in more detail (Fig. 5.3). In this
protocol, Alice is able to send Bob two bits of informationt with the transmission
of a single qubit, by making use of the global effect of a local operation.

The two parties begin by sharing a maximally entangled state; let us say the
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Fig. 5.3. Superdense coding. A maximally entangled state of systems 1 and 2 is prepared

by Bob (B). System 1 is sent to Alice (A) who may do nothing, or perform one of the Pauli

operations. On return of system 1, Bob performs a measurement in the Bell basis, here by

applying a controlled-NOT operation, followed by the Hadamard gate. This allows him to

infer which operation was performed by Alice.

singlet state. Then, simply by applying one of the Pauli operators to her half of
the shared system, Alice may flip the joint state into one of the others of the
four orthogonal, maximally entangled Bell states: a local operation has resulted
in a change in the global state that is as great as could be—from the initial state
to one orthogonal to it. Now, if Alice sends her half of the shared system to
Bob, he just needs to measure in the Bell basis to determine which of the four
operations Alice performed, arriving at two bits of informationt. In this protocol,
the possibility of changing the global state by a local operation has been used to
send informationt in a very unexpected way. The phenomenon of teleportation
may also be viewed as arising from the fact that the set of maximally entangled
states may be spanned by local unitary operations (Braunstein et al., 2000).

So, does the example of entanglement-assisted communication indicate an
important sphere in which Deutsch–Hayden presents benefits of locality? Note
that these examples do not affect the question of locality for the statistical in-
terpretation, as on this interpretation the quantum state does not correspond to
anything real. But one might be interested in a more realist approach. Thus we
should ask how the Everett interpretation fares with locality in entanglement-
assisted communication.

It can in fact be argued that the examples of superdense coding and tele-
portation do not demonstrate a new form of nonlocality in Everett. Our worry
is about the effect on the global state of local operations; however, even if we
are being robustly realist about it, the global state is not itself a locally defined
spatio-temporal entity.87 Thus changes in the global state do not correspond

87This is due to the existence of entanglement: non-separability. See Wallace and Timpson
(2010) for further discussion of the relationship between the quantum state and spacetime.
As explained there, one can view the quantum state as depicting a kind of physical field on
spacetime, but it will be a non-separable field, changes in which by local unitaries will not
entail nonlocality (action-at-a-distance).
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straightforwardly to local or to nonlocal changes. It is better to think in terms
of changes to properties of the systems; but it is clear that unlike the sort of
change that would be associated with collapse, the effects of local unitary op-
erations that we are considering do not give rise to any changes in local and
non-relational properties of the separated systems (i.e., locally observable prob-
ability distributions are unchanged). Thus, although certainly striking, and non-
classical, the potential global effects of a local unitary operation in the presence
of entanglement are not appropriately construed as nonlocal.

The case is clear enough for superdense coding; teleportation invites a further
brief comment. When this protocol is analysed from the Everett perspective, the
significant feature is that immediately following Alice’s measurement and be-
fore she sends a record of her outcome to Bob, Bob’s system will already have
acquired a definite state related to the state Alice is sending, relative to the out-
come of Alice’s measurement. And this may look like a form of nonlocality: the
pertinent relative state of Bob’s system has come to depend on the parameters
characterizing the state being sent by Alice, merely as a result of a local oper-
ation (measurement) carried out at a distance by Alice, and without any direct
interaction between the two sides of the experiment.

It seems that this appearance of nonlocality is again not genuine, however.
What have changed as a result of Alice’s measurement are the relative states of
Bob’s system; that is, roughly, relational properties of his system. It is no mystery
that relational properties can be affected unilaterally by operations on one of
the relata and it certainly does not connote nonlocality.88 The effect of Alice’s
measurement has been to entangle further systems with the initial entangled pair,
namely, the system whose state was to be transmitted and systems recording
the outcome of the Bell measurement. The trick is that the type of measurement
interaction Alice performs has been chosen so that the way in which the systems
recording the outcome of her measurement are allowed to become related to
Bob’s system (in virtue of the initial entanglement) entails that relative to their
outcome recording states, Bob’s system will have the required states. That is,
the genuine change is in fact all on Alice’s side. (Vaidman (1994) has also argued
to the effect that teleportation does not involve nonlocality, when understood in
Everettian terms.)

The conclusion is that when considered under the conservative interpretation,
the explicit locality in the effect of local unitary operations that the Deutsch–
Hayden formalism provides in the contiguity of changes in the qi(t) does not
vouchsafe an important sense of locality that would be lacking in an Everettian
or statistical interpretation. Indeed we can see that it would necessarily be quite
misleading to suggest that the contiguity property points to a novel feature of
locality in the Deutsch–Hayden formalism interpreted conservatively. As we have
noted, the novelty must be supposed to concern the absence of any effect on the

88Consider the following classical example: We have two heaps of sand, x and y, piled on the
ground, some distance apart. Let us say x is heavier than y. By adding a few more shovel-fulls
to y, we may make this statement false; but this does not imply a nonlocal effect on x.
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global state from local unitary operations, even in the presence of entanglement;
and this indeed follows, in a trivial sense, if we fix the initial state ρ and track
time evolution via the qi(t), adopting the Heisenberg viewpoint. But what we
described in the Schrödinger picture as a change in the global state following
a local operation now merely becomes, in the Heisenberg picture, a change in
the expectation values for some joint observables that can’t be understood in
terms of changes in expectation values for observables pertaining to subsystems.
But why, if we were supposed to be worried at all, should we be less worried by
changes in these joint expectation values as a result of local unitary operations,
than in changes to the global state?

5.3.2 The Ontological Interpretation
Maudlin, in the course of his careful discussion of the question of holism in
quantum mechanics, arrives at the following dialectical position:

We now have a reasonably clear question: according to the quantum the-
ory, can the physical state of a system be completely specified by the
attribution of physical states to the spatial parts of the system, together
with facts about how those parts are spatiotemporally related? (Maudlin,
1998, p. 50)

In standard quantum theory, the answer, of course, is no. The point of the
Deutsch–Hayden approach under the ontological interpretation is to answer in-
stead ‘yes’.

To see how this might be achieved, recall why the conservative interpretation
must fail to give an affirmative answer to Maudlin’s question.

In the conservative interpretation, the assignment of properties at a given
time is necessarily a joint venture between the global state ρ and the descriptors;
and as we noted (Section 5.3.1.1), appeal has to be made to global properties of
the state. The qi(t) cannot themselves be said to denote properties of the subsys-
tems, rather, they determine what the effects of dynamical evolution would be
for any possible initial state of the whole system. It is only when some particular
initial state is specified that we may begin to talk about the properties of subsys-
tems and of the whole, denoted by expectation values of the qi(t) and products
of the qi,mi

(t), respectively. And we have already noted a crucial feature several
times: in general, the properties that are assigned to joint systems (expectation
values for joint observables, or propensities for the display of certain joint proba-
bility distributions on measurement) will not be reducible to properties assigned
to subsystems (individual expectation values and propensities).

The ontological interpretation departs from this in two ways. First, the status
of the global quantum state is fundamentally revised. A fixed standard state is
adopted by convention (for example, the computational basis state |0〉|0〉 . . . |0〉)
and it is delegated to playing a purely mathematical role in the machinery of
the theory, rather than representing any physical contingency. Its status is now
simply that of a rule for reading off the observable properties of systems. Sec-
ond, the qi(t) are taken to represent intrinsic (i.e., non-relational) and occurrent
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(i.e., non-dispositional) properties of individual subsystems. The first feature is
required of these properties if the global properties of the total system are to
be reduced to the properties currently possessed by its subsystems; the second
feature is a natural requirement in this context. A change in the descriptor of a
system now represents a change in the actually possessed, intrinsic properties of
the system. These intrinsic properties are clearly of a new sort; and they do not
receive any further characterization or explanation than is provided by their role
in the formalism. Thus on the ontological interpretation, the content of the first
claim to locality is that the global properties of the joint system are reducible
to local, intrinsic properties of subsystems, while the content of the second is
that changes in the global properties are reducible to changes in the currently
possessed properties of subsystems. Under the ontological intepretation, then,
we certainly have an interesting thesis. Note that now, as adumbrated earlier,
changes in the initial conditions of a system may be reflected in changes in the
qi(0), whereas under the conservative interpretation they would be represented
by changes in the time-zero density matrix, ρ(0).89

It can hardly be emphasized enough that the approach of the ontological
interpretation marks a considerable departure from our usual ways of thinking
about quantum mechanics. Indeed it is best thought of as the proposal of a new
theory, in which the behaviour of the intrinsic properties denoted by the qi(t) is
fundamental.90

In gaining with respect to reducibility, however, the ontological interpretation
acquires what might be felt to be some rather objectionable features. The first
is a problem of underdetermination.

The central, distinctive, claim of the ontological interpretation is that the
intrinsic properties of a subsystem, denoted by the descriptor qi(t), are funda-
mental. This means that there is a fact about which properties a given system
actually possesses at any stage; and thus also, a fact about what the true descrip-
tor of the system is. However, the interpretation also involves a strict distinction
between observable and unobservable properties. The observable properties are
those that are given by expectation values. But this means that we can never in
fact know the true descriptor of a system. We only have empirical access to ex-
pectation values and to the density matrices of systems, but continuously many
different qi(t) will be compatible with this data. The true descriptor of a system

89A half-way house is unsatisfactory. One might adopt a conventional fixed initial state in
the conservative interpretation and adjust the qi(0) accordingly, but this would not eliminate
the global role of the state in determining joint properties, i.e., we do not have reducibility to
individual properties, as in this interpretation the qi(t) do not represent intrinsic properties.

90Note, however, that the ontological interpretation of Deutsch–Hayden lacks a measurement
theory. Although we have a prescription for what the probability distributions associated with
various measurements will be, we do not yet have a description of the measurement process
itself, or of the obtaining of various outcomes, in terms internal to the theory. It might be
thought that some sort of Everettian approach could be adopted, but as the relative state finds
no place in the Deutsch–Hayden framework, it appears, at least prima facie, to be resistant to
standard Everettian analysis.
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could be any one of the many that would provide consistency with both the den-
sity matrix of the subsystem (eqn (5.11)) and that of the total system (eqn (5.9)).
Thus the facts about the true descriptors, and hence about the intrinsic proper-
ties that systems actually possess, although supposedly the fundamental reality,
are empirically inaccessible. According to the ontological interpretation, there is
an important fact about what the correct descriptors of a set of systems are, but
any assignment of descriptors to such a set will necessarily be underdetermined
by the accessible data (cf. Wallace and Timpson, 2007).

As a corollary of this point, it is worth remarking that the analogy Deutsch
and Hayden suggest between their descriptors and Einstein’s desired ‘real state’
for separated systems might be overstated. While it may be the case that under
the ontological interpretation, subsystems do indeed possess independent real
states, we would still face the epistemological problem that this real state could
never be determined by local measurements—we could at most only ever learn
the 〈qi(t)〉ρ for a system, when presented with a sufficient number of identically
prepared systems.

The second difficulty for the ontological interpretation, and one closely re-
lated to the underdetermination problem, is that the shift in meaning of the
qi(t), from determining time evolution for any given initial state, to denoting in-
trinsic properties of subsystems, induces a worrisome redundancy. In the normal
quantum mechanical picture one can think of the qi(t) in the following way.

Take some fixed sequence of unitary operations performed on a group of
systems. This sequence will correspond to some particular evolution of the set
of qi(t). Now we could consider different initial quantum states for the set of
systems; these states would evolve variously under the sequence of unitary op-
erations whose effect is captured in the evolving qi(t). At any given time, the
actual quantum state of our group of systems could be one from a whole range,
depending on which initial state was in fact chosen. The evolution of some par-
ticular initial state from time 0 to time t may therefore be said to depict one
history from the range of possible ones. To use the term favoured by philoso-
phers, the evolution of this state represents the history of one possible world. A
choice of different initial state is a choice of different possible world (not to be
confused with an Everettian possible world, mind).

Now the qi(t) capture the effects of our sequence of unitary operations for
all initial states. Thus their time evolution can be said to depict the histories
of the entire set of possible worlds; whilst the world from amongst these that is
realized is determined by which initial state is chosen. However, when we move
to the ontological view, the very same structure (the sequence of time evolving
qi(t)) only represents a single world, as the choice of initial state is a fixed part
of the formalism. What seems like it can represent a range of possible worlds,
we are to suppose, can only represent a single one; and conversely, the structure
being used to describe a single world in the ontological Deutsch–Hayden picture
is one we know in fact to be adequate to describe a whole set of possible worlds
in quantum mechanics. Thus the Deutsch–Hayden picture, taken ontologically,
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would seem to be extremely, perhaps implausibly, extravagant in the structure it
uses to depict a single world. This difficulty, whilst certainly not a knock-down
objection to the ontological intrepretation, nonetheless serves to highlight some
of its unpalatable features.91

5.4 Information and Information Flow

We have seen that under the conservative interpretation, the Deutsch–Hayden
formalism does not confer any benefits with respect to locality that do not follow
directly from adopting no-collapse, unitary, quantum mechanics as a basic theory,
and hence would be equally available with an Everettian interpretation, or, if one
were perhaps to allow a formal collapse, but deny that it corresponded to any real
process, on a statistical interpretation. With the ontological interpretation, by
contrast, we do find something new, but this is better characterized as concerning
the reducibility of global properties to local intrinsic properties of subsystems,
rather than being a question of locality or nonlocality (which is a question of
dynamics: of action-at-a-distance, or lack thereof).

One of the most important aspects of the Deutsch–Hayden approach, how-
ever, is the claim that their formalism finally clarifies the nature of informationt

flow in quantum systems; indeed, that it reveals that informationt can be seen
to be transported locally in quantum systems, the phenomena of entanglement-
assisted communication notwithstanding. It is to this question that we now turn.
Again, the matter must be assessed independently for the two different modes
of interpretation of the formalism. We shall begin, however, with a few general
remarks about the topic of information flow.

5.4.1 Whereabouts of information

As we saw in the previous chapter, the puzzle that seems to be posed by the exam-
ples of teleportation and the like is over the question ‘How does the informationt

get from A to B?’ This is a perfectly legitimate question if it is understood
as a question about what the physical processes involved in the transmission
of the informationt are, but recall that it would be a mistake to take it as a
question concerning how informationt, construed as a particular, or as some
pseudo-substance, travels. Since ‘information’ is an abstract noun, it doesn’t
serve to refer to an entity or substance. Thus when considering an informationt

transmission process, one that involves entanglement or otherwise, we should

91In fact objections to the ontological interpretation of Deutsch–Hayden can be pressed
further (Wallace and Timpson, 2007, 2013): the underdetermination already mentioned can
be seen as analogous to gauge freedom: a large range of transformations leave the observable
quantities intact. The ontological version of Deutsch–Hayden is equivalent to being realist about
these gauge-type degrees of freedom, with familiar (bad) consequences: the underdetermination
already mentioned and radical indeterminism, associated with the possibility of arbitrary time-
dependent transformations. The usual response to these difficulties in gauge theories is to
quotient out these additional degrees of freedom, to leave the gauge-invariant quantities as the
physically real quantities. Applied to the Deutsch–Hayden case, this would return us to the
familiar non-separable density operator as the representative of the true physical state.



Information and Information Flow 115

not feel it incumbent upon ourselves to provide a story about how some thing,
denoted by ‘the informationt’, travels from A to B; nor, a fortiori, worry about
whether this supposed thing took a spatio-temporally continuous path or not.
By contrast, we might very well be interested in the behaviour of the physical
systems involved in the transmission process and which may or may not usefully
be said to be informationt carriers during the process.

A second general point concerns what it might mean to ask whether or not
informationt is a ‘non-local quantity’ (Deutsch and Hayden, 2000, p. 1759). Note
that for the reason just stated, informationt is not something that can be said to
have a spatio-temporal character, but nonetheless one can, in certain contexts,
intelligibly ask ‘Where is the information?’ This question is a fairly specialized
one, though: it presupposes that we have some specific piece, or kind, of infor-
mation in mind and asks where this may be found, in the sense of asking where
one might learn, or learn about, the fact, or facts, it pertains to. (And, of course,
to specify where something may be learnt is not to say that what is learnt has
to be located there.) Alternatively, one might be asking where one can find a
token of a particular piece of informationt (which as an abstractum does not
itself genuinely have a spatio-temporal location).92 Sometimes no very precise
answer to these questions in terms of a designated spatio-temporal region will
be possible, or particularly helpful.

As a particular example of the latter case (no precise answer being
available)—one which will figure again later—consider the following scenario
of encrypting a message. Let us say that Alice and Bob are spatially separated
but share a secret random bit string, the key. Alice also has in her possession
a message she wishes to send to Bob, a string of bits denoting something; this
is the informationt we are interested in. At this stage, we can say that Alice’s
notebook, in which the message is written, contains the informationt. If she then
encrypts the message by adding (mod 2) the message string to the key, writes
the result down (producing the cyphertext), and destroys both the original mes-
sage and her copy of the key, then the question ‘Where is the informationt now?’
leaves us without a straightforward answer. We can’t answer by gesturing to
Alice’s side, or to Bob’s side, or to the cyphertext, since from none of these,
taken individually, may we learn what the message was; although if we had ac-
cess both to Bob’s key and the cyphertext then we should be able to learn it.
A simple request for a location doesn’t have a useful answer in this scenario.
For this reason, we introduce further vocabulary and talk instead of the message
being encrypted in the cyphertext. It is not to be found wherever the cyphertext
is located, rather, it may be learnt whenever cyphertext and key are brought

92The question ‘Where is the information (that p) located?’ means ‘Where is something
located which will inform me that p’ (note the de-nominalization: ‘information’ �→‘inform’);
that is, ‘Where is something located from which I can learn that p?’ Similarly, ‘Where is
the piece of informationt α located?’ means ‘Where is something located which exemplifies
type α?’, or possibly ‘Where is something located from which I may produce a token of α
by a standard transformation?’ Compare: ‘Where is φ-ness located?’ vs. ‘Where is something
located which is φ?’, ‘φ’ being an adjectival phrase.
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together, and not otherwise; the asymmetry in the roles of the cyphertext and
key is captured by the fact that it is the cyphertext and not the key in which
the message is said to be encrypted (although not located). The bald question
‘where is the informationt throughout this protocol?’ does not, in this case, in-
vite answers with sufficient articulation for a perspicuous description of what is
going on.

Deutsch and Hayden, however, have something specific in mind when they
raise the question of whether in quantum systems, informationt is a local or
nonlocal quantity (bearing in mind that pieces of informationt are abstracta,
so lack genuine spatio-temporal location, while informationt (quantitative) is a
property, so again an abstractum). If it is the case that a joint quantum system
can have global properties that are not reducible to local properties of sub-
systems, then these global properties might be used to encode and transmit
informationt in a way that cannot be understood as subsystems individually
carrying the informationt. This is what they would mean by informationt being
a nonlocal quantity. The issue is whether we can, in general, always understand
an informationt transmission process involving quantum systems in terms of the
properties of subsystems being used to carry the informationt. The examples
of entanglement-assisted communication, as usually understood, would strongly
suggest otherwise.93

We shall focus on teleportation as the most interesting case; and one which
displays the characteristic features at issue.

5.4.2 Explaining informationt flow in teleportation: Locally accessible and
inaccessible informationt

Let us recall once more what the teleportation protocol looks like in the absence
of collapse (Fig. 5.4). Sharing a maximally entangled state with Bob, Alice per-
forms a joint measurement on her half of the entangled pair (4) and on a system
(1) prepared in some unknown state, with the result that the state of Bob’s sys-
tem (5), relative to the outcomes of her measurement, is changed in a way that
relates systematically to the unknown state to be teleported. At this stage of
the protocol, every system involved is now in a maximally mixed state, i.e., the
informationt that characterizes the unknown state will not be available to local
measurements. As we have seen, the protocol continues with the sending of the
systems (2 and 3) recording the outcome of Alice’s measurement to Bob, who
can now perform the conditional unitary operations required to disentangle his
system (5) from the others, in such a way that it ends up in the original, unknown

93What do I mean by ‘carry’ here? Earlier I said messages could not be thought to carry a
quantity of informationt as, e.g., a moving ball might carry energy. But that was informationt

as a quantity. What is at issue here is which properties of physical systems are being used to
carry (in the sense of encode) pieces of information. That is, we are asking which properties
are employed to bring about the completion of the protocol: the possibility of reproducing the
type at a distant location. Are these properties just the locally defined ones, or do they include
irreducibly global ones?
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Fig. 5.4. Teleportation. All systems begin in the 0 computational basis state. Bob (B)

creates a maximally entangled state of systems 4 and 5. System 1 is prepared in some

unknown state |χ〉, by a rotation depending on the parameter θ. When system 4 is sent to

Alice (A), she performs a measurement in the Bell basis, recording the outcome in systems

2 and 3. Systems 2 and 3 are transported to Bob, who performs a controlled-σz operation

on 2 and 5, and a controlled-NOT on 3 and 5. System 5 is left in the original unknown

state |χ〉.

state. The informationt characterizing the unknown state is now available again
to local measurements, but this time, only at Bob’s location.

The crucial feature in this protocol is the change in the relative states that
is allowed by the global property of entanglement. Subsystems, therefore, do not
seem to be playing the role of informationt carriers in teleportation, and this
conclusion is further supported by the fact that the only systems that are sent
from Alice to Bob during the protocol are both maximally mixed.

Deutsch and Hayden, though, wish to give an account of teleportation in
which informationt flow is local; that is, in which subsystems can indeed be seen
to carry informationt from Alice to Bob. In particular, they are concerned to
rebut claims such as that of Braunstein (1996), who suggests that the
informationt characterizing the unknown state is contained in the global system
rather than in subsystems during the protocol; or the—by now very familiar—
approach of Penrose (1998), who suggests that the informationt must flow along
a channel constituted by the initial shared entanglement between Alice and Bob,
first backwards, and then forwards again in time.

Clearly, a good starting point for the debate would be an appropriate cri-
terion for when a system may be said to contain informationt. Deutsch and
Hayden would seem to have one of two slightly different necessary and sufficient
conditions in mind, although they are not explicit.

They begin by introducing a fairly familiar sufficient condition for a system
S to contain information about a parameter θ: If a suitable measurement on S
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would display a probabilistic dependence on θ, then S may be said to contain
information about θ. (Here it seems we are close to the realm of containing
information inferentially , so I shall drop the subscript ‘t’ for the remainder of this
sub-section.) Then a necessary condition for containing information is presented:
S can be said to contain information about θ only if its descriptor depends on
θ. These definitions motivate an informal argument of roughly the following
form: Let us say we have a group of systems that includes S; denote this group
by S ∪ S⊥. Assume that the descriptor of S alone depends on θ. If we know
that the group S ∪ S⊥ as a whole contains information about θ, because global
measurements would display suitable probabilistic dependence, but S⊥ does not
(as the descriptors of the systems in S⊥ do not depend on θ), then the information
must be in S, in virtue of S’s descriptor depending on θ. Therefore from the fact
that the descriptor of S depends on θ, we may infer that it contains information
about θ.

This conclusion would be underwritten by either one of the following two
definitions:94

Definition 5.1 S contains information about θ ↔ its descriptor depends on θ

Definition 5.2 S contains information about θ ↔ its descriptor depends on
θ and measurements on the global system S ∪ S⊥ would display a probabilistic
dependence on θ.

These two definitions differ as it is possible for the qi(t) to depend on θ, but
for ρ(t) not to (recall the problem of underdetermination). The second is rather
more natural, particularly if we are to tie the notion of information being used
to the context of definite communication-theoretic procedures.

With one of these definitions of containing information in hand, Deutsch and
Hayden’s claim for the locality of information flow follows directly from the con-
tiguity property of the changes in the qi(t). The proposal is that teleportation
should now be understood in the following way. System 1 is prepared in some
state characterized by the parameter θ; its descriptor now depends on θ. Fol-
lowing Alice’s Bell-basis measurement, the descriptors of the ‘message qubits’ 2
and 3 also come to depend on θ. These two systems, as they are transported,
carry the information about θ to Bob’s location, where, following a suitable local
interaction, the descriptor of his system (5) also comes to depend on θ. We must
note the further, crucial, point, however, that the systems 2 and 3 carry the
information to Bob in a locally inaccessible manner. Although their descriptors

94The two statements that follow must be understood as proposed definitions, as they are not
entailed by Deutsch and Hayden’s argument, just sketched. The argument uses the necessary
and the sufficient condition for containing information, and the rule of inference: if a group
of systems contains information about θ, and a subgroup does not, then the complement of
that subgroup contains the information about θ. However, if we have more than one system
whose descriptor depends on θ, then all that the argument based on these principles allows us
to conclude is that their union contains the information, not each system individually, which
is the desired conclusion.
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depend on θ, and hence the systems may be said to carry information under the
Deutsch–Hayden definition, this dependence may not be revealed by measure-
ments on the systems individually—their reduced density matrices are maximally
mixed.

Deutsch and Hayden define locally inaccessible information as information
that is present in a system, but that may not be revealed by individual meas-
urements on the system. The explanation of teleportation, then, is that the
message qubits do actually carry the information characterizing the unknown
state to Bob, but they do so locally inaccessibly. The general conclusion is that
subsystems can always be thought to carry information in entanglement-assisted
communication protocols (hence ‘information is a local quantity’), it is just that
these protocols involve locally inaccessible information.

5.4.3 Assessing the claims for information flow

How satisfactory is this account as an explanation of teleportation, and, indeed
as a general picture for information transmission in quantum systems? We shall
consider three questions:

1. Have Deutsch and Hayden finally given the correct account of teleportation,
as opposed, say, to Braunstein?

2. Is the concept of locally inaccessible information useful?

3. Do Deutsch and Hayden provide us with a new concept of information, or
quantum information?

We must consider the answers to these questions for the two modes of interpre-
tation of the formalism in turn.

Before that, a preliminary remark. Recall that as properly understood, the
question ‘How does informationt get from Alice to Bob?’ is a question about
the causal processes involved in the transmission. It is clear that simply answer-
ing: ‘the informationt is carried in the message qubits’ would not be enough
to explain teleportation on its own, as it might never be possible to make this
informationt accessible again at Bob’s location, or it might be made locally ac-
cessible, perhaps, but not in such a way that Bob’s system could be found in
the original unknown state. Obviously, the explanation has also to refer to the
role of the initial entanglement and the changes in the global properties of the
system that this entanglement allows, and which the teleportation protocol ex-
ploits. This suggests a moderate way of understanding the application of the
Deutsch–Hayden formalism in teleportation that would not involve commitment
to their claims about locality or informationt flow.

On this view, the advantage their formalism presents is simply in highlight-
ing the difference in roles played by the initial entanglement and the message
qubits in teleportation. The asymmetry in these roles is, as Deutsch and Hayden
point out, analogous to the asymmetry in the roles of the key and cyphertext in
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classical encryption based on a shared secret random string.95 Before the final
stage of the protocol, it is the message qubits, and not Bob’s qubit, that have
had the direct dynamical coupling to the system whose state is to be teleported
(reflected in the fact that their descriptors depend on θ)—compare with the
classical cyphertext, which is generated from the message. But it is the correla-
tions that are established between the relative states of the message systems and
Bob’s qubit, in virtue of the initial entanglement, that allow the unknown state
to be recovered by Bob. (Similarly, the classical correlations between the key and
cyphertext allow the encrypted message to be recovered.) This suggests that it
may well be useful to distinguish between the question of whether an analysis in
terms of the qi(t) helps us understand an aspect of teleportation, and whether
the account in terms of informationt flow does so.

Returning to our three questions. The adjective ‘correct’ in the first question
might be understood in one of two ways; either correct simpliciter, or correct
given the background assumptions. In order to be correct simpliciter, the account
of teleportation would clearly have to be, first of all, correct given the background
assumptions, while these background assumptions themselves also have to be
correct. The relevant background assumption when we consider the conservative
interpretation is that unitary (no-collapse) quantum mechanics is our setting;
this is the setting also for Braunstein (1996), hence the point of the comparison.

5.4.3.1 Conservative interpretation From the previous remarks on the con-
servative interpretation, we know that the assignment of properties to systems
involves both the global state and the qi(t): we do not have reducibility of global
properties to properties of subsystems and therefore subsystems cannot, after
all, always be thought to carry informationt in entanglement-assisted communi-
cation. It makes no odds whether one adopts the Heisenberg or the Schrödinger
viewpoint; it is still the case that joint (and irreducible) properties of subsystems
are being used to carry informationt in the protocols. In Braunstein’s account of
teleportation, after Alice’s Bell-basis measurement, the information characteriz-
ing the unknown state is said to be in the correlations between the message qubits
and Bob’s qubit, i.e., it is carried by certain joint properties of these systems.
The same is true in the Deutsch–Hayden setting, understood conservatively; so
we are not in fact being offered a substantially different account of teleportation.
This entails part of the answer to the second question.

Under the conservative interpretation, there is an important sense in which
there is no difference between saying that a system contains locally inaccessi-
ble information and saying that the information is in the correlations. In both
cases this would translate into: the informationt is carried by joint, and not indi-
vidual, properties of subsystems. One can frequently make perfectly good sense
of a system being said to contain information about a parameter if a suitable
measurement on the system would display a probabilistic dependence on the

95The analogies and, importantly, disanalogies between entanglement and shared secret bits
are developed in detail in Collins and Popescu (2002).
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parameter, for then one can learn something about the parameter by perform-
ing the measurement. But if the information is locally inaccessible, then this
means either i) for some different initial state of the global system then there
will be a probabilistic dependence for the local measurement—but this would be
physically irrelevant to the situation actually being considered; or ii) for some
measurement on the global system, a probabilistic dependence on the parameter
will be displayed—and this is no different from what one would say on Braun-
stein’s account.

So where, if anywhere, does a difference lie? In marking an asymmetry. But
note that the pertinent aysmmetry may also be understood in a Schrödinger pic-
ture account such as Braunstein’s. In teleportation, the point being emphasized
is that it is the message qubits, and not Bob’s qubit, that have had the direct
dynamical coupling to the system that was prepared in the state characterized
by the parameter θ; and this is clear enough without invoking locally inaccessible
information. (The significance, of course, is that we know from the no-signalling
theorem that dependence on a parameter chosen in one region may not be dis-
played in another unless there has been a direct, or indirect, dynamical coupling
between systems from the two regions. Direct or indirect coupling will therefore
be a necessary condition for successful type reproducibility.) Another way to
mark the asymmetry would begin by pointing out that the initial entanglement,
the sending of the message qubits to Bob, and the correct sequence of unitary
operations being performed by Alice and Bob, are individually necessary, and
jointly sufficient conditions for a successful teleportation protocol. If we were to
miss any one of these out, then the protocol would fail, but evidently, for different
reasons in each case.

The preceding discussion indicates that under the conservative interpreta-
tion, the concept of locally inaccessible information is not playing a very useful
explanatory role. It is misleading to suggest that the message qubits really carry
anything—at best this is a roundabout way of saying that joint properties do.96

This conclusion in turn casts doubt on the value of adopting either of the pro-
posed definitions of containing information in the context of the conservative
interpretation.

However, it would be precipitate to conclude from this that we may in fact
learn nothing from the analysis of teleportation in the Deutsch–Hayden formal-
ism. As suggested earlier, one can distinguish between the description using the
qi(t) being useful and the concept of locally inaccessible information being so.
Deutsch and Hayden are certainly right that an analysis in terms of their de-
scriptors does help emphasize the important asymmetry between the roles in the
protocol of sending the message qubits and the existence of the initial entangle-
ment; and due consideration of this asymmetry contributes, for example, towards

96Recall from the comments in Section 5.4.1 and the previous chapters that we are not forced
to say that the informationt must be located in one system rather than another, or that it is
carried by one system rather than another. The assumption that we must is predicated upon
the misleading picture of informationt as a particular or substance.



122 The Deutsch–Hayden Approach

undermining the plausibility of a Penrose-type explanation. The analogy with
the cyphertext and key is also enlightening in this regard. But as we have just
noted, it is quite possible to mark this asymmetry without needing to invoke
talk of containing information, which has potential to mislead.

The answer to the third question under the conservative interpretation is per-
haps the most intriguing. We have seen that locally inaccessible information does
not figure successfully in an attempt to retain subsystems as informationt car-
riers in the presence of entanglement, but have Deutsch and Hayden nonetheless
succeeded in shedding light on the contested concept of quantum information?
They say, for example:

. . . it is impossible to characterize quantum information at a given instant
using the state vector alone. To investigate where information is located,
one must also take into account how the state came about. In the Heisen-
berg picture this is taken care of automatically, precisely because the
Heisenberg picture gives a description that is both complete and local.
(Deutsch and Hayden, 2000, p. 1773)

It seems, though, that this suggestion would incorporate a number of confusions.
While it is true that the qi(t) provide more information than simply following

the time-evolved state would, this is not information about the time evolution of
particular systems that the latter description lacks. The qi(t) look more infor-
mative because they capture time evolution for any given initial state, thus they
say more about the dynamics a system has been subject to; but in the conserva-
tive interpretation, this is not to say more about the system, but rather about
the unitary operators. This extra information that one gets is not then complete,
i.e., information that would be lacking in the description of a given network of
systems in the Schrödinger picture, but is given one in Heisenberg. Instead, it is
information about something else; about how other systems, prepared in a dif-
ferent way, would react, or information about, for example, the fields that have
driven the systems’ evolution.

Furthermore, one can readily accept that one has more information if one
knows how the state came about, but deny that this information is a property
that has to be located. So again, one can, in fact should, deny that there is
information located with systems that is lacking from the state vector picture.
The ‘extra’ (so-called) information represented in the qi(t) consists of facts about
the unitary operations undergone; and this information cannot be said to be
here, there, or anywhere, as it makes no sense to ask where these facts are. Facts
are of the wrong logical category to possess a location Strawson (cf. 1950)).
The underlying thought seems to be that the description in terms of the qi(t)
allows us to ‘determine where the information about a given parameter is located
at a given instant’ (Deutsch and Hayden, 2000, p. 1771). But note that the
question ‘Where is the dependence on the parameter?’ could be a bad question;
one inviting us to confuse the description of a thing with the thing itself. It is
what depends on the parameter that is important; and in entanglement-assisted
communication, under the conservative interpretation, this will often only be
joint, and not individual, properties.
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5.4.3.2 Ontological interpretation The discussion of our three questions for the
ontological interpretation may be somewhat more brief. As to the first: on the
ontological interpretation, global properties are reduced to intrinsic properties
of subsystems, therefore, the properties of subsystems may indeed be thought to
be carrying the informationt in entanglement-assisted communication protocols.
Thus, adopting the Deutsch–Hayden formalism understood in the ontological
way, we would have an explanation of teleportation in which the informationt

that the system carries as a whole can be thought a consequence of informationt

being carried by subsystems; in which informationt is genuinely carried between
Alice and Bob in the message qubits during teleportation. (Of course, this ex-
planation may not be reflected back onto our more usual ways of understanding
quantum mechanics, but relies on the ontological interpretation. As such it has
no power to confute opposing views, such as Braunstein’s, that derive from a
different set of assumptions.)

Why does it now seem acceptable to say that information is carried in subsys-
tems, despite the fact that it may not be possible to learn anything by performing
measurements on an individual system? Because in the ontological interpreta-
tion, the explanation of the physical processes by which informationt is trans-
mitted from A to B (answering ‘How does the informationt get from A to B?’
in the legitimate way) involves the intrinsic properties of subsystems denoted
by the qi(t). In contrast to the conservative interpretation, we are now able to
answer the question ‘What depends on the parameter?’ with: the intrinsic prop-
erties of subsystems. As the intrinsic properties of subsystems are being used
as the information-bearing properties under the ontological interpretation, the
definitions given above of containing information would have a point.97

Regarding the usefulness of the concept of locally inaccessible information,
the purpose of the introduction of this category is to recognize that there are two
ways in which a system may be said to carry information in the ontological inter-
pretation: either in its observable, or in its unobservable, empirically inaccessible,
properties. This distinction is necessary for the explanation of entanglement-
assisted communication in the ontological interpretation, thus the introduction
of the category is useful.

In answer to our third question, however, it is important to recognize that
the ontological interpretation of Deutsch and Hayden is not providing us with
an account of a new type of information, but of new properties, new ways in
which informationt may be carried. Again, because this turns on the details

97Although it is not clear that they are wholly trouble-free. Under definition (1), for example,
there will be cases in which a system is said to contain information locally inaccessibly, but
where it could never be made accessible, i.e., could never be displayed even under global
measurements. This would tend to undermine the plausibility of the claim that the system does
in fact contain information, which casts doubt on the acceptability of the definition. So again,
definition (2) would seem preferable. But it might be beneficial to restrict talk of containing
information still further, to cases in which some particular information transmission protocol is
envisaged, or in which an agent would stand to learn something by performing measurements
on a group of systems.
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of the ontological interpretation, it cannot be taken to provide us with a new
understanding of information, or quantum information, that could be transferred
back to more familiar quantum mechanical settings.

5.5 Conclusion

Deutsch and Hayden present their formalism as an avowedly local account of
quantum mechanics, which finally clarifies the nature of informationt transmis-
sion in entangled quantum systems. To what extent is this successful? We have
seen that in order to assess the claims of locality, and the claims regarding the
nature of informationt flow, it is essential to distinguish between a conservative
and an ontological interpretation of the formalism, as very different conclusions
follow. To summarize:

On the conservative interpretation, there are no benefits with respect to local-
ity that do not follow immediately from adopting a version of quantum mechan-
ics in which there is no genuine process of collapse and no additional properties
added (and which, consequently, would be shared by an Everettian or a statistical
interpretation); thus no distinctive feature of the Deutsch–Hayden approach is
in play. As far as informationt transmission is concerned, the formalism does not
show that informationt is, after all, a local quantity (in Deutsch and Hayden’s
sense), as it remains the case that joint, rather than individual, properties are
used to carry informationt in entanglement-assisted communication protocols.
The explanation proffered of teleportation does not differ in substance from that
which would be given by an account sharing the same initial assumptions, such as
that of Braunstein. Furthermore, we have seen that it would be confused to think
that the description in terms of the qi(t) fills in an account of information, and
where it is located in quantum systems, that is missing in the usual Schrödinger
picture. The additional information the qi(t) provide (when they do so) consists
of certain facts about the unitary operations undergone (not information carried
by systems); and it makes no sense to propose that these facts have a location.

With the ontological interpretation, on the other hand, we have an interesting
result; although one better characterized as regarding the reducibility of global
properties of quantum systems to individual properties, rather than as a question
of locality or nonlocality. With this reducibility, the claim about the locality of
informationt transmission, even in the presence of entanglement, follows. How-
ever, as the ontological interpretation provides a picture which differs so markedly
from our usual ways of understanding quantum mechanics, these results clearly
cannot be taken to shed light on the nature of informationt flow in entangled
quantum systems when we have not taken the dramatic step of introducing an
entirely new range of intrinsic properties of systems. And reducibility does not
come free: one is confronted with an unpleasant form of underdetermination and
the bogey of redundancy.

Unfortunately, Deutsch and Hayden do not distinguish the two different
modes of interpretation of their formalism; indeed they are arguably conflated,
to deleterious effect. The reason to believe that they must have something along
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the lines of the ontological interpretation in mind is that their main claims would
not be true in any interesting way otherwise; but at certain points they would
seem to suggest clearly that the conservative reading is correct: when they im-
ply that it is merely the move to the Heisenberg picture which does the work
(p. 1759); when suggesting that they have simply provided a reformulation of
Schrödinger picture quantum mechanics (p. 1773). As we have seen, however,
if there is equivocation between the conservative and the ontological interpreta-
tions, then it is impossible to draw any conclusion regarding informationt flow
and locality.

So, having drawn this all-important distinction, the conclusion of our discus-
sion is that in the ontological interpretation, we have a bold thesis which might
be adopted, despite its objectionable features, in order to obtain reducibility
of global properties to local properties, if this was thought particularly desir-
able for some reason.98 Retaining the conservative approach, on the other hand,
we would have a formalism with some occasionally useful features, but not one
which provides a novel sense of locality, nor, indeed, of informationt flow. En
route, the discussion should have shed some more light on the puzzles that so
often seem to surround the question of informationt transmission in entangled
quantum systems, while illustrating once more the value of being straight on the
logical nature of informationt and consequently rejecting the ‘thing’ model.

98Although compare Wallace and Timpson (2007, 2013) for more pungent statements of the
costs of doing so.
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QUANTUM COMPUTATION AND THE CHURCH–TURING
HYPOTHESIS

‘[T]he word “machine” . . .may refer to any one of various things. It may
refer to a machine program that I draw up, embodying my intentions as to
the operation of the machine . . . [W]hat program (in the sense of abstract
mathematical object) corresponds to the “program” I have written on
paper?

I may build a concrete machine, made of metal and gears (or transis-
tors and wires), and declare that it embodies the function I intend . . . the
values that it gives are the values of the functions I intend. However . . . if
I say that the machine embodies the function in this sense, it must do
so in terms of instructions (machine “language”, coding devices) that tell
me how to interpret the machine . . .’ Kripke (1982)

6.1 Introduction

In this chapter we will be considering some of the philosophical questions raised
by the theory of quantum computing. First, and briefly, whether the efficiency of
quantum computing gives us an argument for a substantive notion of quantum
information (Section 6.2); and second, in more detail, we shall consider some
questions regarding the status of the Church–Turing hypothesis (Sections 6.3
and 6.4).

The advent of quantum computers has raised a question concerning the re-
lationship between the classical theory of computation, based on the Church–
Turing hypothesis, and the quantum theory. It is quite common to find the claim
that the quantum theory of computation is the more fundamental. However, one
sometimes also encounters a much stronger claim to the effect that the quantum
computer has succeeded in finally making sense of Turing’s theory of computa-
tion, or that Turing’s machines were really quantum mechanical all along. We
shall be considering some of the issues that have arisen around this question of
the relation between the classical and quantum theories of computation.

As previously remarked, while Richard Feynman was the prophet of quantum
computation (the name of Paul Benioff should also be mentioned here (Benioff,
1980)), it is with Deutsch’s introduction of the concept of the universal quantum
computer in his 1985 paper that the field really begins (Deutsch, 1985).

While Deutsch’s paper is the seed from which the riches of quantum computa-
tion theory have grown, in it are to be found roots of philosophical confusion over
the notion of computation, in particular, in the claim that a physical principle,
the Turing Principle, underlies the Church–Turing hypothesis.
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The Turing Principle is stated as follows:
Every finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means. (Deutsch,
1985)

It is the claim that the Turing Principle underlies the Church–Turing hypoth-
esis that is primarily responsible for the thought that quantum computers are
necessary to make proper sense of Turing’s theory. For the Turing Principle is
not satisfied in classical physics, owing to the continuity of states and dynamics
in the classical case, when compared with the discrete character of the classical
Turing machine; yet it is satisfied, Deutsch argues (Deutsch, 1985, §3), in the
case of quantum mechanics. If the Turing Principle really were the heart of the
theory of computation, then prior to the development of the notion of quan-
tum computers we would have been faced with a considerable difficulty, for this
supposedly fundamental Principle is false under classical mechanics. I shall be
arguing, however, that it is a mistake to see the Turing Principle as underlying
the Church–Turing hypothesis (Section 6.3), hence this issue does not arise. In
Section 6.4 we will consider whether the Church–Turing hypothesis might play
a role as a constraint on physical laws, as suggested in the quantum case by
Nielsen (1997), for example.

6.2 Quantum computation and containing information

Before moving on to discuss the Church–Turing hypothesis and the Turing Prin-
ciple, let us pause to consider briefly an argument suggesting that quantum
systems should be seen to contain information in a more literal, or substantive,
sense than I have so far allowed. This argument is based on the gains in efficiency
over the best-known classical algorithms that can be achieved for certain impor-
tant computational tasks using quantum computers. The argument is suggested
by the presentation of Jozsa (2000).

It is very natural (although not wholly uncontroversial) to view the property
of entanglement as the main source of the exponential speed-up given by quantum
algorithms such as that of Shor (1994).99 This view can be motivated in the
following way. If we consider specifying the state of a system composed of n two-
state classical systems, then n bits are needed. By contrast, in order to specify
a general state of an n qubit system, we will need to specify 2n coefficients for
the 2n basis vectors of the system (because of the tensor product structure of
the state space); the order of the number of bits needed will be exponential in n.
It is often therefore said that ‘. . . a quantum system can embody exponentially
more information than its classical counterpart’ (Jozsa, 2000, p. 108).

Now when we consider information processing, i.e., evolving the quantum
state in a particular way, then even the simple case of a single 1-qubit opera-
tion (a single computational step for a quantum computer) is equivalent to an
exponentially large amount of classical computation, when the initial state is

99Cf. Jozsa (1998); Ekert and Jozsa (1998); Jozsa (2000); Jozsa and Linden (2003).
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entangled. The effect of the unitary operation on the state would need to be
calculated classically as a (2× 2) matrix multiplication for each of the 2n coeffi-
cients specifying the state. The quantum evolution corresponds to exponentially
much classical computation, in the presence of entanglement:

Natural quantum physical evolution may be thought of as the processing
of quantum information . . . [T]o perform natural quantum physical evo-
lution, Nature must process vast amounts of information at a rate that
cannot be matched in real time by any classical means . . . (Jozsa, 2000,
p. 109)

There is a strong suggestion that quantum evolution is doing a great deal
of work—a great deal of work in processing something—and therefore, there
is something a great deal of which is being processed: we should allow a more
substantive notion of quantum information.

This conclusion can be resisted by noting that we have here a further example
of what I have termed the simulation fallacy (cf. Section 4.4.1). The fact that
quantum evolution corresponds to an exponentially large amount of classical
computation implies that we can use quantum systems to do something that
corresponds to a very great deal of work in classical terms. But we cannot infer
from this that the quantum computer is doing this amount of work, rather than
merely causing, in a different way, a result which could only be brought about
with a lot of effort, classically.

6.3 The Turing Principle versus the Church–Turing Hypothesis

Let us now turn to consider the Turing Principle. In his landmark 1985 paper,
Deutsch argues that underlying the Church–Turing hypothesis, the basis for the
classical theory of computation, there is an implicit physical assumption, namely,
the Turing Principle, which is, recall:

Every finitely realizable physical system can be perfectly simulated by
a universal model computing machine operating by finite means.100

(Deutsch, 1985)

The Church–Turing hypothesis, by contrast, he states as follows:
Every ‘function which would naturally be regarded as computable’ can
be computed by the universal Turing machine. (Deutsch, 1985)

The two main ways in which these statements differ are, first, that Turing’s
‘functions which would naturally be regarded as computable’ has, in effect, been
replaced by ‘functions which may in principle be computed by a physical system’
(Deutsch, 1985, p. 99), the result of the stipulation that the universal computing

100A computing machine M is said to perfectly simulate a physical system S, under a given
labelling of their inputs and outputs, if there exists a program π(S) for M that renders M
computationally equivalent to S under that labelling. The ‘finite means’ are along the lines of
Gandy’s specification (Gandy, 1980): i) only a finite subsystem is in motion in a given step
(though which subsystem it is may change from step to step); ii) the motion only depends on
the state of a finite subsystem; and iii) the rule specifying the motion can be given finitely in
the mathematical sense, e.g., specified by an integer.
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machine perfectly simulates every finite physical system (any system on which
experimentation would be possible); and second, that the reference to a specific
form of universal computer—the universal Turing machine—has been replaced
by an unspecified universal computing machine, with the requirement only that
it operate by finite means.

The heuristic value of the move to the Turing Principle is undoubted, for it
led Deutsch to define the universal quantum computer and hence spark a vigor-
ous new field of physics. The psychological liberalization involved in this move
from the Church–Turing hypothesis was thus invaluable, but, I shall suggest, it
is mistaken to argue that the Turing Principle underlies the Church–Turing hy-
pothesis, or that this physical principle should be thought of as the real basis for
the theory of computation. Instead, we do better to try to think carefully about
what propositions like the Church–Turing hypothesis and the Turing Principle
might be for; and to be aware of various important differences between such
propositions and the roles they might have to play in the theory of computation.

To begin with, it is important to recognize that in his famous paper ‘On
Computable Numbers’, Turing (1936) was concerned with what is computable
by humans, not with describing the ultimate limits of what we now mean by
‘computer’. Deutsch is well aware of this fact (e.g. Deutsch et al., 1999, p. 2)),
but by glossing over it here, we would miss several important things. We would
miss, first of all, the purely mathematical element of Turing’s thesis; the sig-
nificance of his formalization of the fact that mechanical devices can be made
to produce the results of calculations on our behalf. Second, we would miss the
chance to separate out the precursors of the computational analogy—the idea
that human cognition is to be explained fundamentally in computational terms—
from the foundations of the theory of computation.101 And finally, we would miss
the all-important distinction between the task of characterizing the effectively
calculable—a task which had become so urgent by the mid-1930s and to which
the Church–Turing hypothesis was directed—and the rather different project of
considering what classes of functions can be calculated by machines or physical
processes most widely construed (a distinction which Copeland, in particular,
has emphasized, e.g., Copeland (2000)). To see something of the significance of
these points, let us make the comparison with Church’s position in his 1936
paper.

Church proposed that the intuitive notion of effective calculability be made
precise by identifying effectively calculable functions with the recursive func-
tions (Church, 1936, §7). Again, calculability here means calculable by humans.
By contrast, Turing presented the mathematical insight that if certain functions
could be encoded in, for example, binary terms, then a machine could be made
to compute analogues of those functions for us. The machine was the Turing ma-
chine and, it turned out, the functions the recursive functions. The subsequent
part of his argument, §9 of the paper, was then to relate this to human calcu-

101Shanker (1987) investigates this area and undertakes this separation in detail.
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lation; an argument for why computability defined in terms of Turing machines
should capture all that would ‘naturally be regarded as computable’ by humans.

As Shanker, for example, recounts (Shanker, 1987, §2), the differences be-
tween Church’s and Turing’s presentations were all important for Gödel. Gödel
did not accept what is best seen as Church’s stipulation that the effectively
calculable functions are the recursive functions until Turing’s argument in ‘On
Computable Numbers’ became known. His objection was that Church had not
shown why the properties associated with our intuitive notion of effective cal-
culability would be captured by the class of recursive functions (see also Davis
(1982); Soare (1996)). That he came to accept Church’s convention after ‘On
Computable Numbers’ shows that he took Turing to have solved this problem.
Presumably, what was important about this solution was not Turing’s demon-
stration of the capabilities of the Turing machine, but rather the argument in
§9 that Turing machine computability captures that which would ‘naturally be
regarded as computable’. Thus Gödel was convinced of the adequacy of Turing’s
account of what it is for a human to calculate in a formal system; and that this
was no different from the operation of a Turing machine. In this way Turing was
supposed to have explicated the intuitive notion of effective calculability.

We can usefully separate out what Turing was doing into two main parts,
then. First, we have the demonstration that computation can be mechanized:
the provision of a specific computational model (the Turing machine) and an
identification of how the states and evolutions of machines of that sort are to
map onto the mathematical functions and arguments we take them to evaluate.
Second, we have the stipulation that the effectively calculable functions are ex-
actly those which are computable by Turing machine. This second, stipulative,
move is supported by drawing the comparison with the human computer, the
clerk with pen and pencil, calculating in a manner we agree to be algorithmic.
The comparison proceeds by proving that the actions of the human computer
can be mimicked by a Turing machine: for any given algorithmic pen-and-pencil
calculation the human computer might perform, there is a Turing machine which
will produce the same results, by matching steps, and conversely. Since we agree
that Turing, in his picture of the clerk, really has captured the essence of what
we meant by effective calculability or by an algorithm, we must then agree that
the calculable functions are co-extensive with the Turing machine computable
ones.

In drawing this conclusion, though, we need to be careful not to go too far,
as it seems Gödel may arguably have done. The crucial part of Turing’s proof is
establishing that there is a one-to-one correspondence between the procedures
of the imagined human computer and Turing machines. There is no need to
conclude beyond this that the human computer’s actions are really, in some
philosophically important sense, just like those of the Turing machine (this seems
to be the further step that Gödel was inclined to make). All that is in fact required
is that the Turing machine would suitably mimic or correspond to the human’s
actions; not that the human’s actions in computing and the machine’s processes
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should be in every respect identical, or be different versions of one and the same
process. Thus we are by no means forced in accepting Turing’s argument to
identify human calculations with machine computations, nor should accepting
the argument automatically lead us to seek to explain human computational
competences in purely mechanical terms, a pattern which forces us towards the
computational analogy quite generally.102 That is, we can buy Turing’s argument
that the class of functions that may be calculated algorithmically by a human
computer is co-extensive with the class of Turing machine computable functions,
without having to buy into explaining human computation in mechanical terms,
or buy into the project of reducing human to machine computation.

That was the second part of Turing’s argument. Let us now turn back to the
first component, the demonstration of the possibility of mechanizing computa-
tion. It is crucial to recognize that in making this step Turing had first to specify
what it is for a physical object to compute a function; to provide a range of
statements which would endow physical states and their evolutions with mathe-
matical meaning. This he did by specifying the abstract Turing machine, whose
states could then be physically modelled. This requirement of meaning being
endowed is, I would suggest, in fact a general feature of the theory of computa-
tion: physical evolutions do not bear a mathematical or computational meaning
of their own; such meaning needs to be provided.103 Whether the evolution of
some system is a computation, and if it is, what it is a computation of, depend
on whether and how mathematical meaning has been assigned to its states and
evolutions; to a large extent, what a physical device counts as computing will
be a conventional matter depending on how things have been arranged, or how
things are being thought of, by the user (e.g., merely re-labelling states will

102Shanker (1987) locates the ultimate source of the pressures that lead here to the computa-
tional analogy (as he calls it, the Mechanist Thesis), with Hilbert. Granted, one isn’t forced to
identify human and machine computation to benefit from Turing’s argument, but why might
one have any hesitation about identifying them in the first place? At a general level one might
want to resist the ensuing push towards the computational analogy, thinking that the lat-
ter may not be the best manner of achieving a philosophical understanding of the mind and
its place in nature. More specifically, though, if one thinks that following rules has an essen-
tial normative component which cannot be reduced to causal terms (cf. Wittgenstein, 1953;
Kripke, 1982), then the crucial difference will be that the human will be following rules, albeit
mindlessly, while the computing machine will not. See Shanker, ibid. and Timpson (2004a) for
further discussion.
103Here I am therefore assuming that physical evolutions are not of themselves intrinsically

mathematically meaningful. The questions of what makes a physical evolution a computation
and what the exact criteria might be for computational identity have been an increasing locus
of discussion for philosophers of science and cognitive science in recent times, particularly in
response to the trivialization arguments of Searle (1992) and Putnam (1988) which purport to
show that without some substantive external constraint, virtually any physical device would
compute any algorithm, a reductio ad absurdum. See Chalmers (1996); Copeland (1996); Sha-
grir (1999); Sprevak (2005, 2010) for discussion. In asserting that physical evolutions must
have a mathematical meaning to make them instantiate the computations they do I am thus
siding with Sprevak (2005, 2010) as against Piccinini (2008), for example. However, Sprevak
is inclined to allow, whereas I am not, that at least some physical systems might have their
meaning intrinsically; albeit not those artefacts we use for computing.
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typically change what function we take to have been evaluated: is +5 volts a 0
or a 1 state?). Thus at the basis of the theory of computation—the theory of
what computations we can get machines to do for us—we require statements
of what the physical states under consideration are and what would have been
computed by their evolution. A very convenient feature that arose with Turing’s
conception was the existence of a universal machine; a device able to cover all
the behaviour of any other Turing machine in one go. Assigning mathematical
meaning to the possible states of the universal machine then automatically does
it for all others, making the job much easier and more systematic.

Now, returning to our main line of argument: If we were to follow Deutsch and
reinterpret Turing’s ‘functions which would naturally be regarded as computable’
as the functions which may in principle be computed by a real physical system,
then, to repeat, we are neglecting the fact that Turing meant computable by
humans. As should now be clear, this is no mere historical point. Most obviously
we would be ignoring the possibility of making the useful distinction between
computing by human and computing by machine—a physical system considered
as a computer. But perhaps more importantly, we miss the significance of Tur-
ing’s purely mathematical thesis, his recognition that certain functions can be
encoded and machines thus made to compute them for us. Deutsch’s argument
for his reinterpretation is that

. . . it would surely be hard to regard a function ‘naturally’ as computable
if it could not be computed in Nature, and conversely. (Deutsch, 1985, p.
99)

In the first part of this, ‘computed in Nature’ suffers from the suggestive ambi-
guity between computable by human and computable by physical object, so let
us take it to mean the latter: computable by machine, or more widely, physical
object considered as a computer. More important for the present is the converse,
which would read:

It would be hard to regard a function computable in Nature as not ‘nat-
urally’ computable.

But this is rather a teasing play on words. Part of the point at issue is what it
means for a function to be computable in Nature, for a function to be computed
by a machine, a meaning that Turing had to provide en route to determining
what the relation between functions computable in Nature and the ‘naturally
computable’ might be. If we just claim that the ‘naturally computable’ functions
are all and only those functions that can be computed in physical reality, we not
only, perforce, miss the original point of trying to capture the effectively calcula-
ble, but more importantly for present purposes, we miss out the key mathematical
component at the heart of the theory of computation. For we have not provided,
as Turing did, a specification of what it is for a physical object to compute, to
give a mathematical meaning to the possible evolutions of physical states.

What can be computed in physical reality has two sorts of determinant, then:
mathematical and physical. The mathematical determines what the evolution
of given physical states into others in a certain way would mean, what would
have been computed by such a process; and the physical determines whether
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such a process can occur. Identifying the ‘naturally computable’ functions with
those that can be computed by physical systems, we emphasize the physical
determinant to the exclusion of the mathematical one—we say that what can
be computed is whatever can be computed by any physical system, but we
have not said what, if anything, these various physical processes amount to in
mathematical terms.

When Deutsch says104 that behind the Church–Turing hypothesis is really an
assertion of the Turing Principle, what he is trying to capture is the imperious
nature of the hypothesis: you can’t find any computation that can be done that
can’t be done by the universal Turing machine. He takes this imperious claim to
require the possible existence of a physical object that could actually perform
every (physical) computation. For ‘. . . the computing power of abstract machines
has no bearing on what is computable in reality’ (Deutsch, 1997, p. 134), what
is important is whether the computational processes that the machine describes
can actually occur. The essence of the universal computing machine is supposed
to be that the physical properties it possesses are the most general computational
properties that any object can possess. It follows that if the universal machine
is to be an interesting object of study, it must be physically possible for it to
exist (although supplies of energy and memory may remain a little idealized),
otherwise studying it could tell us nothing about what can be computed in reality.

The significance of the Turing machine, for Deutsch, is thus supposed to lie in
the fact that its description is so general that it has been pared down to the bare
essentials of computing, with the result that any computation by any object can
be described in terms of the operation of a Turing machine.105 Deutsch considers
Turing’s machine to be a very good, but ultimately inadequate attempt to give
a description of the most general computing machine possible (Deutsch, 1997, p.
252). He would suggest that Turing had made himself hostage to fortune by offer-
ing such a concrete characterization of what is supposed to be the most general
computing machine, in particular by explicitly describing the machine in classi-
cal (mechanical) terms and not allowing for the possible implications of quantum
mechanics or some other successor theory.106 Taking Turing’s intention to refer
to the most general machine as the important thing and erasing the unnecessary
physical details of the Turing machine,107 the content of the Church–Turing hy-
pothesis becomes the assertion that this most general machine can exist. The
hypothesis has become the physical Principle—it is now just an empirical ques-
tion whether the universal computing machine can exist: the device which can
simulate everything.

104Deutsch (1985, p.99) and Deutsch et al. (1999, p.3).
105This is perhaps a common view of the significance of Turing’s machine.
106Deutsch cites, for example, Feynman’s remark a propos Turing: ‘He thought that he un-

derstood paper’ (Deutsch, 1997, p. 252).
107The essence of the Turing machine is retained in the requirement that the universal com-

puting machine operate by finite means.
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But this misrepresents the import of the Church–Turing hypothesis, for we
have missed the mathematical component, the definitional role of the Turing
machine model in the theory of computation. Imperiousness does not stem from
the universal model machine exhausting the computational properties of any
other system, i.e., from the Turing Principle’s physical claim about one device
being able to simulate all other systems perfectly. Rather, it stems from the
manner in which the model defines what it is to be a computation, providing
physical evolutions with mathematical meaning. When thinking about what can
be physically computed we should be thinking in terms of sets of conditionals: if
such-and-such states are possible and evolve like so, then these (indicating some
set) are the functions which we could take to be evaluated; if, however, it is
some other set of states and evolutions which are physically possible, then these
others are the set of functions which can be evaluated. Such conditionals cover
the mathematical side of the theory; we then need to ask: Which (if any) of these
states and evolutions can be physically realized? This is the physical side.

The limits on what can be computed come jointly, therefore, from a) the
purely mathematical side, which attributes meaning to (potential) physical states
and their evolution; and b) the physical side, with its facts about what states
and evolutions are actually physically possible. Then, given that mathematical
meaning does need to be supplied to physical states and evolutions, any physi-
cal processes which aren’t covered by the definitional computational model—the
model which specifies labellings for states and processes and which imputes math-
ematical meaning to them—will simply not count as a computation. Absent an
(a) specification, physical evolutions will not be computations. Covering all cases
is not a matter of exhaustion, then, but a matter of definition.108

Having noted that from two computing machines we can form a composite
machine, whose set of computable functions contains the union of the sets of
functions computable by its components, Deutsch suggests that:

There is no purely logical reason why we could not go on ad infinitum
building more powerful computing machines, nor why there should exist
any function that is outside the computable set of every physically pos-
sible machine . . . although logic does not forbid the physical computation
of arbitrary functions, it seems that physics does. (Deutsch, 1985, p. 98)

This is partly right; but it is also partly wrong. We always need to start with
a putative computational model, a listing of states and their evolutions one is

108Of course, it is conceivable that there could be physical processes that are not covered
by our abstract model and which we decide we might want to call computations, but these
processes still need to gain a mathematical meaning from somewhere; and once we have given
them such meaning, we will have extended our definition of computing to cover these cases as
well. Until they are accepted under the definition, however, they are not yet computations; see
Section 6.3.1 for an example of a specific type. Note that the question currently at issue differs
from the question of whether the definition of machines computing captures all that would
‘naturally be regarded as computable’ by humans. What is currently at issue is the mathe-
matical meaning that can be given to various physical processes, not whether the definition of
computing offered would include all and only that which falls under the intuitive notion of the
effectively calculable.
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considering; and given such a model, it will precisely be logic (and mathematics)
which will determine what could be computed by such a system and thus provides
a limit. Physics provides no constraint at this stage. Physics only gets into the
game afterwards, when we ask whether or not those states and evolutions can
be physically realized. The mathematical (definitional) and the physical are very
different kinds of constraints; but both are important.109

Again, in a later discussion with Ekert and Lupacchini (Deutsch et al., 1999),
Deutsch considers the halting problem and admits that logical and physical fea-
tures can be linked. From the halting problem, of course, we learn that there
are some computational problems, in particular, determining whether a speci-
fied universal Turing machine given a specified input will halt, that cannot be
solved by any Turing machine; and it is logic which tells us this. Deutsch, Ekert
and Lupacchini go on to say that:

In physical terms, this statement says that machines with certain proper-
ties cannot be physically built, and as such can be viewed as a statement
about physical reality or equivalently, about the laws of physics. (Deutsch
et al., 1999, p. 4)

But this claim requires careful evaluation. Given a particular defining computa-
tional model, such as the Turing machine or the universal quantum computer,
then for the computational states and evolutions as there defined, it will not
be possible to evaluate the halting function. However, this isn’t a claim about
physics at all; it is a straightforward logical claim. Given the specification of
computing states we are dealing with, logic tells us that nothing could count as
providing the solution to this problem; no possible state is the solution. It is not
that the machines are physically forbidden to possess these properties, that some
force prevents it. It is that nothing would count as building a machine with these
properties. There is no statement about the laws of physics here. Once more: we
should be thinking in terms of a range of conditionals: if these are the states
and evolutions we are dealing with, then these are the functions which may be
evaluated. If we start with a given computational model (an interpreted set of
physical states and evolutions) then it certainly won’t be a physical claim what
functions can and cannot be computed.

Suppose then that we try to dodge the requirement of starting with some
defining computational model. Suppose, for example, that we are assured by
some oracle that whatever computational model we might adopt, whatever set
of states and evolutions we might try to use, none of them would be capable
of evaluating the halting function. Would this amount to a substantive physi-
cal statement? Well, what statement would it be? Return to our conditionals
and take the contrapositive form. If the evaluable functions do not include the

109To give another example of Deutsch over-emphasizing the role of physics at the expense of
mathematics: ‘Computers are physical objects, and computations are physical processes. What
computers can or cannot compute is determined by the laws of physics alone and not by pure
mathematics.’ (Deutsch, 1997, p. 98). On the contrary: physics may determine what physical
state can follow from what physical state, but mathematics determines whether or not this is
a computation and what it is a computation of.



136 Quantum Computation and the C–T Hypothesis

halting function, then certain states and evolutions (those that would count as
evaluating it) are ruled out as physically impossible. This does look like some
kind of physical constraint, but its exact content seems unclear. Without a clear
designation of the set of all conceivable states and evolutions (which looks a
somewhat problematic notion), it is equally unclear what would be being ruled
out; indeed it might even be questioned whether the claim was really well de-
fined. In any case, we are never going to be in a position to have such an oracle
whispering in our ear.

In its usual form, then, the halting problem tells us nothing about what can
be built; it tells us the mathematical constraints on what can be computed given
the way we have defined computing. Failing to recognize this means failure to
understand the way in which the definitional role of the computational model
gives mathematical meaning to the evolution of physical states. This in turn can
be traced back to a failure to recognize Turing’s purely mathematical achieve-
ment in ‘On Computable Numbers’, quite separate from the concern there with
epistemological issues surrounding effective calculability.110

To sum up, then. Deutsch’s emphasis on the possible physical existence of
the universal computing machine, encapsulated in his Turing Principle, misrep-
resents its significance; missing the definitional role of determining the mathe-
matical meaning of the evolution of physical states. The Turing Principle’s claim
of the possibility of simulation of every finitely realizable system is not the start-
ing place for the theory of computation. Rather we need to begin with a range
of claims which provide mathematical meaning for physical processes, making
them computations. In the Turing machine context, it is not that the universal
machine covers all the possibilities, the universal machine determines the pos-
sibilities. Where Deutsch is evidently correct, however, is that there is a clear
sense in which we should be interested in the physical realization of any abstract
computing machine we might choose to consider (universal or not). The impor-
tance of being able to build the machine, if only in principle, is that we want
the progressions of states it describes actually to be do-able! This clearly deter-
mines whether we have an interesting definition of computation and one worth
pursuing.

6.3.1 Non-Turing computability? The example of Malament–Hogarth
spacetimes

As a particularly striking example of where the interplay of mathematical defi-
nition of computational processes and their physical realizability is relevant, let
us consider Hogarth’s presentation of non-Turing computability in certain rela-
tivistic spacetimes (Hogarth, 1994). The idea is that in these spacetimes, dubbed
Malament–Hogarth spacetimes, it appears possible to perform supertasks—an in-
finite number of steps in a finite length of time. These spacetimes (M, g) are such
that they contain a path λ that starts from a point p and has infinite length, but

110I am indebted to Shanker (1987) for the emphasis on this separation.
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that on this path it is always possible to signal to a point q that can be reached
from p in a finite span of proper time.111

A toy example of such a spacetime is given by Earman and Norton (1993).
Starting with a Minkowski spacetime (R4, η) we choose a scalar field Ω onM such
that Ω = 1 outside a compact set C ⊂ M and Ω tends rapidly to infinity as we
approach a point r ∈ C. The spacetime (R4−r,Ω2η) is then a Malament–Hogarth
spacetime and the path λ will start at p and go towards r. What we are supposed
to do is project a given Turing machine down the path λ and then travel to q,
by which time the machine will have signalled to us if it has halted. Using this
technique, we might, for example, solve the Goldbach conjecture by programming
our Turing machine to check each even number in turn to determine whether it is
the sum of two primes, and halt if it finds a counterexample. We then send it off
down λ and travel to q. If we have received a signal, the conjecture is false, if not,
it is true. Generalizing this approach, we appear able to solve Turing unsolvable
problems in these spacetimes.

The decision problem for a property P is said to be solvable if there is a
mechanical test (effective procedure) which will tell us whether or not any object
(of the appropriate category) possesses P in a finite number of steps (Boolos and
Jeffrey, 1974, p. 115). Thus the decision problem for P is Turing solvable if there
is both a Turing machine that will halt after a finite number of steps if and only
if P holds and a Turing machine that will halt after a finite number of steps if
and only if P does not hold. If only one of these exists, the problem is partially
Turing solvable. The halting problem and the decision problem for first-order
logic are partially Turing solvable, but the full decision problem can be solved
for them in a Malament–Hogarth spacetime. For the halting problem, all we need
do is project the Turing machine in question down λ, set to signal if it halts. We
travel to q and if we have received a signal, we know the machine halts and if not,
we know it never halts. Similarly for the decision problem for first order logic,
noting that there exists a Turing machine that will halt after a finite number of
steps if a given sentence S is valid (Boolos and Jeffrey, 1974, p. 145), we adopt
the same procedure—if we have received a signal at q, the sentence is valid, if
we have not, it is not. It is clear that the decision problem for any partially
Turing-solvable problem is solvable in a Malament–Hogarth spacetime (we will
have to vary our interpretation of signal/no-signal appropriately, of course).

Hogarth goes on to describe more complicated computational processes that
would seem to solve the decision problem for arithmetic, but the simple case
serves for our purposes. We have here a clear example of the question of the
physical realizability of the processes described being all-important. If the pro-
cesses Hogarth describes are physically possible, then we have a whole new class
of computability distinct from Turing computability and we extend our notion of
computability accordingly. Note that the mathematical meaning of the processes

111That is, all points on λ are contained in the chronological past of q. The chronological past
of a point q is the set of all points p for which there is a nontrivial future-directed timelike
curve from p to q (Earman and Norton, 1993, p. 24, fn. 1).
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Hogarth describes piggy-backs on our current definition of computability—we
think we can see clearly what these processes would mean if they were physically
possible. Given the meaning we have already given to computational processes in
terms of the universal Turing machine and what it can compute, these meanings
seem to follow.112 The reason why the claim that it is a conceptual truth that our
particular universal computing machine can perform all possible computations
is not undermined by the Hogarth example and others like it is that we have, as
it were, recognized new possibilities in our (abstract) universal computing ma-
chine, not discovered that it could not in fact perform all possible computations,
which would be logically impossible. Or rather, to be more precise, by general-
izing or slightly adjusting the sets of physical states and their evolution for our
definitional universal machine (in the Hogarth case, by including evolutions in
these unusual spacetimes), we change the class of computations and computable
functions at the same time.

Returning to the question of the physical realizability of Hogarth’s processes,
we need to recognize that the computational process extends from the initial
launch of the Turing machine to the possible reception of the signal by the re-
ceiver. Thus whether these are physically possible computations will depend on
whether a suitable Turing machine can exist in the spacetime in question (in par-
ticular we will be worried about what happens to it as it approaches r), whether
a signal from the Turing machine can reach the observer intact, and of course,
whether Malament–Hogarth spacetimes are physically possible.113 If it turns out
that these processes are physically possible, then we must extend our notion of
what can be computed to include these striking non-Turing computations. If
they are not, then a definition of computability that included Hogarth’s compu-
tations would not be an interesting one for practical purposes—it would be no
more than a mathematical toy. We cannot learn any maths from the conceivabil-
ity of peculiar computational processes, for our knowledge of the relevant maths
is already explicit in our conceiving them; that it might be an open question
whether these processes are physically possible is only relevant to the question
of what we can make machines (or physical objects in general since ‘machine’
implies manufacturing) do for us.

112I say ‘think’ and ‘seem’ here, for we may believe that these mathematical meanings unfold
from, since they are already contained in, the mathematical concepts we have. But we may
believe that the mathematical meaning of these processes ultimately rests on our decision to
accept the conclusions set out as following from our present stock of mathematical propositions.
This allows for the positions of those who believe there is a fact about, for example, whether
Golbach’s conjecture is true independent of whether a proof or disproof has been or ever will
be found; and those who believe there is no such fact until a proof or disproof has been found.
113These questions should be approached with an open mind; see Earman and Norton (1993)

for an interesting discussion, and compare Hogarth (1994, §6). See also Shagrir and Pitowsky
(2003) for a general discussion.
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6.3.2 Lessons

We have seen, then, that Deutsch has over-emphasized the physical determinants
of computing to the exclusion of the mathematical. The Turing Principle should
not be seen to underlie the Church–Turing hypothesis, for that misrepresents
the mathematical significance of the concept of the universal computing ma-
chine. The universal machine defines the mathematical meaning of the possible
evolution of physical states and hence it is a necessary fact that the universal
computing machine can perform every possible computation. It is certainly in-
teresting that the Turing Principle happens to be true in quantum mechanics,114

but we should hesitate to draw any far-reaching conclusions from this. Certainly,
the claim adumbrated in Section 6.1 that the advent of the quantum computer
makes sense of Turing’s theory of computation, that his machines were quantum
mechanical after all, is false.

The discussion might be summarized in the following way.
It is useful to distinguish between three different tasks with which the

Church–Turing hypothesis is associated: characterizing the effectively calcula-
ble, providing the evolution of physical states with mathematical meaning, and
fixing upon a useful definition of physical computability. The Turing Principle
could not replace or underlie the Church–Turing hypothesis for any of these tasks.
Not the first, because the Turing Principle is supposed to concern all functions
computable by physical systems, rather than what is computable by a human;
and not the second or third because an empirical principle cannot play the cru-
cial definitional mathematical role that I have emphasized. It is perhaps worth
noting that the Turing Principle is undoubtedly most closely tied in intention to
the third of these tasks rather than to the first. However, although it is true that
Turing did not consider the possibility of computations using explicitly quantum
objects, this can hardly be said to be to the detriment of the Church–Turing
hypothesis. The third of the tasks I have mentioned, delimiting the bounds of
physical computability, is not really, after all, the object of the Church–Turing
hypothesis.

As has been emphasized at various points, we have been talking in this section
only of computation by machine or by physical object considered as a computer,
as opposed to human computing or calculating. This is an important clarifying
step that allows us to distinguish clearly the mathematical and physical sides
of the theory of computation. Having mentioned this convenient separation of
human from machine, however, one’s thoughts seem naturally drawn to the fur-
ther, notoriously vexed, question of the relation between human cognition and

114Intuitively, the state of any finite quantum system is just a vector in Hilbert space and can
be represented to arbitrary precision by a finite number of qubits; and any evolution of the
system is just a unitary transformation of this vector and can be simulated by the universal
quantum computer, which by definition can generate any unitary transformation with arbitrary
precision. Deutsch offers a more rigorous proof taking into account the fact that any sub-system
must always be coupled to the environment (Deutsch, 1985, §3).
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machine computation. Rather than delve into this question here,115 it suffices to
note that even if it is thought that human calculation is no more than physical
calculation with a cherry on top, this separation remains important, for it em-
phasizes the different types of role the mathematical and physical determinants
of computation play; and this distinction in role is one which, I suggest, should
be retained independently of any judgement on the value of the computational
analogy.

6.4 The Church–Turing Hypothesis as a constraint on physics?

In the preceding section we saw the necessity of distinguishing between a num-
ber of different ideas with which the Church–Turing hypothesis is often loosely
associated; and it was emphasized in several places that the task of character-
izing the effectively calculable functions should be distinguished from the task
of delimiting the bounds of the physically computable, while it is the former
task to which the Church–Turing hypothesis is directed. This important point
has been ably expounded by Copeland (2000, 2002); see also Gandy (1980);
Pitowsky (2002); Shagrir and Pitowsky (2003).116 Careful commentators such
as these typically introduce an explicit terminology to distinguish the two kinds
of task, differentiating the Church–Turing Hypothesis proper (the class of effec-
tively calculable functions is the class of Turing-machine-computable functions)
from what is often called the Physical Church–Turing Thesis: that the class of
functions which can be computed by any physical system is co-extensive with the
Turing-computable functions. Sometimes this latter thesis comes in a stronger
version which imposes some efficiency requirement, e.g., that the efficiency of
computation for any physical system is the same as that for a Turing machine
(or perhaps, for a probabilistic Turing machine). Deutsch’s Turing Principle can
evidently be seen as something directed along such lines, but where the specific
details of the Turing machine have been abstracted away in the aim of generality.

On the topic of this distinction, a telling observation concerns the nature of
the evidence that is cited as endowing the Church–Turing hypothesis with the
very high degree of entrenchment that it deservedly enjoys. This evidence gen-
erally centres on the fact that the large number of different attempts to make
precise the intuitive notion of effective calculability all give rise to the very same
class of computable functions, along with the fact that all the functions we in-
tuitively take to be effectively calculable fall into this class. A representative
textbook statement (Cutland, 1980) is the following (N.B. the basic computa-

115See Timpson (2004a, §4) for discussion of this question. One point that it is perhaps helpful
to note is that the debate about the nature of human cognition and of thinking machines
might generate less heat and confusion if the question of whether it might be possible to build
a machine which we could appropriately ascribe mental conduct terms to were always clearly
distinguished from the question of whether it is possible to analyse cognition and conation in
computational terms.
116For a slightly heated reply to Copeland, in defence of the supposed orthodoxy which

conflates these and other ideas, see Hodges (2004). Copeland and Proudfoot (2004, §5) reply.
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tional model in this book, equivalent to the universal Turing machine, is the
universal register machine (URM)):

The evidence for Church’s thesis, which we summarise below, is impres-
sive.

1. The Fundamental result: many independent proposals for a precise
formulation of the intuitive idea led to the same class of functions,
which we have called C.

2. A vast collection of effectively computable functions has been shown
explicitly to belong to C [ . . . ]

3. The implementation of a program P on the URM to compute a
function is clearly an example of an algorithm; thus . . . we see that
all the functions in C are computable in the informal sense. Simi-
larly with all the other equivalent classes, the very definitions are
such as to demonstrate that the functions involved are effectively
computable.

4. No one has ever found a function that would be accepted as com-
putable in the informal sense, that does not belong to C.
(Cutland, 1980, p. 67)

The point is that all this evidence, while certainly telling us something impor-
tant, has no implications at all for the question of what the bounds of physical
computability are—on the question of what we can get physical systems to do for
us. It simply points to the fact that Church, Turing and others did indeed succeed
(amazingly well) in making precise the intuitive notion of effective calculability.
And note that the facts cited are not really evidence for a hypothesis, but rather
emphasize that the Church–Turing definition, or stipulation, does not lead to
conflict with any pre-theoretic notions of effective calculability. These facts are
not evidence, then, but are reasons why this definition is both a very good and
a remarkably powerful one.

The unimpeachable status that the Church–Turing hypothesis enjoys does
not, therefore, impugn (nor could it be impugned by) the possibility of phys-
ical computational models that go beyond Turing computability (the example
of Malament–Hogarth computability gave us a concrete example); the areas of
concern are quite distinct. It follows that one shouldn’t seek to use the Church–
Turing hypothesis as a restricting principle on physical laws.

By contrast, the physical thesis is an empirical claim and consequently re-
quires inductive support. Its truth depends on what you can get physical systems
to do for you. The physical possibility of Malament–Hogarth spacetimes (and of
the other elements required in Hogarth’s protocol), for example, would prove it
wrong. It’s not clear how much direct or (more likely) indirect inductive support
it actually possesses—a systematic study of this would be most worthwhile; cer-
tainly it should not be thought as deservedly entrenched as the Church–Turing
hypothesis, although many are inclined to believe it. (Some admit: it’s just a
hunch.) What we do know is that quantum computation shows that the strong
version, at least, is wrong (so long as no classical efficient factoring algorithm
exists; and we believe none does).
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Some have been tempted to suggest that physical constraints on what can
be computed should be seen as important principles governing physical theory.
Nielsen (1997), for example, argues that the physical Church–Turing hypothe-
sis is incompatible with the standard assumption in quantum mechanics that a
measurement can be performed for every observable one can construct (neglect-
ing for present purposes dynamical constraints such as the Wigner–Araki–Yanase
theorem (Peres, 1995, pp. 421–422)) and the thesis is also incompatible with the
possibility of unrestricted unitary operations. The abstract to this paper states:

We construct quantum mechanical observables and unitary operators
which, if implemented in physical systems as measurements and dynam-
ical evolutions, would contradict the Church–Turing thesis which lies at
the heart of computer science. We conclude that either the Church–Turing
thesis needs revision, or that only restricted classes of observables may be
realized, in principle, as measurements, and that only a restricted class
of unitary operators may be realized, in principle, as dynamics. (Nielsen,
1997)

From this and the body of the paper it is unclear which version of the Church–
Turing thesis he has in mind, but in fact it is the physical version which is the
target.117

To give a flavour of the approach: Nielsen begins by considering an observable
defined by

ĥ =
∞∑

x=0

h(x)|x〉〈x|,

where {|x〉} is an orthonormal basis for some physical system with a countably
infinite dimensional Hilbert space (e.g., the number states of a particular mode
of the e–m field), and h(x) is the characteristic function for the halting problem.
We may suppose that the various |x〉 states can reliably be prepared. Measure-
ment of this observable on systems prepared in these states will then evaluate
the halting function for us. Nielsen concludes that this would conflict with the
(physical) Church–Turing thesis, therefore, we must either revise the thesis, or
conclude that this type of measurement is not in fact physically possible. Given
the entrenchment of the physical Church–Turing thesis, Nielsen opts for the lat-
ter. Whether this is the correct conclusion to draw would depend on whether
the inductive support for the physical thesis was greater than that accruing to
quantum mechanics in its usual, unrestricted form. This seems questionable; al-
though teasing out the evidence on either side would be an interesting task.118

117Personal communication.
118In fact, one can raise a further problem for this example of Nielsen’s—it is not clear

that it would constitute an example of non-Turing computability. In order to perform the
measurement corresponding to the operator ĥ, we need to be able to pick out the correct piece
of equipment in the lab. But in order to do this one would already have to have evaluated the
halting function (imagine a shelf in the lab with a series of apparatuses all of which measure in
the {|x〉} basis, but have different eigenvalue spectra associated with them). Thus the outlined
procedure would not count as an effective procedure, as one can’t pick out the desired piece of
apparatus by an effective procedure. In essence, the solution to the halting function has been
hardwired into the apparatus, but we can’t get at it unless we already have the solution.
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A plausible default position might be that if one has in hand a well-confirmed
and detailed physical theory that says that some process is possible, then that
theory holds the trump card over a less specific generalization covering the same
domain. Consider the case of thermodynamics: this theory suggests that fluc-
tuation phenomena should be impossible; kinetic theory suggests that they will
happen—which one are you going to believe?119

Jozsa has presented another very interesting argument in similar vein (cf.
Jozsa, 2004)). In his view, there is reason to think that computational complex-
ity is a fundamental constraint on physical law. It is noteworthy that several
different models of computation, very distinct physically—digital classical com-
puting, analogue classical computing, and quantum computing—share similar
restrictions in their computing power: one can’t solve certain problems in poly-
nomial time. But this is for different reasons in the various cases. In the analogue
case, for example, exponential effort would be needed to build sufficiently precise
devices to perform the required computations, because it is very difficult to en-
code larger and larger numbers stably in the state of an analogue system. In the
quantum case, one can see a restriction with measurement: if we could but read
out all the results contained in a superposition then we would have enormous
computational power; but we can’t.

Thus both analogue and quantum computation might appear to hold out the
hope of great computing power, but both theories limit the ability to harness
that power, while slight variations in the theories would allow one access to it.120

This looks like a conspiracy on behalf of nature, or to put it another way, a case
of homing in on a robust aspect of reality. Perhaps, then (the thought is), some
general principle of the form ‘No physical theory should allow efficient solution
of computational tasks of the class x’ obtains. We might then use this as a guide
to future theorizing. However, it is unlikely that such a principle could sustain
much commitment unless it were shown to mesh suitably with bona fide physical
principles. If one constructed a theory that was well formed according to all
physical desiderata one could think of, yet violated the computational complexity
principle, it seems implausible that one would reject it on those grounds alone.

6.5 Message

It is sometimes suggested that part of the meaning of the slogan ‘Information
is Physical’ for the quantum information scientist is to encapsulate the recog-
nition of the need to go beyond the Church–Turing hypothesis in the theory
of computation. Our reflections in this chapter give the lie to this conception,
however. It is based on an equivocation between the task of characterizing the

119This leads us to an interesting general methodological issue: the default position just
outlined looks plausible in some cases, but less so in others: consider the advent of Special
Relativity in Einstein’s hands. Perhaps in that case, though, one can point to specific defeating
conditions that undermined the authority of the detailed theory in the domain in question.
120For an example of this in the quantum case, consider Valentini (2002c) on sub-quantum

information processing in non-equilibrium Bohm theory.
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effectively calculable functions—the task of the Church–Turing hypothesis—and
the distinct task of investigating the bounds of physical computability. Yet on
the other hand, Deutsch’s general point about liberalization is a good one: we
may miss opportunities if our most general computational model does not take
into account all the possible kinds of physical process there are which might
accommodate a computational reading; while a model which relies on processes
that could not be physically implemented would not be an interesting one for
practical purposes. We certainly should not ignore the physical side of the the-
ory of computation. But we must not take this point too far. Equally, we cannot
ignore the mathematical side.



7

INFORMATION AND THE FOUNDATIONS OF QUANTUM
MECHANICS: PRELIMINARIES

‘Information theory has, in the last few years, become something of a
scientific bandwagon . . .

Although this wave of popularity is certainly pleasant and exciting for
those of us working in the field, it carries at the same time an element
of danger. While we feel that information theory is indeed a valuable
tool . . . it is certainly no panacea for the communication engineer or, a
fortiori, for anyone else. Seldom do more than a few of nature’s secrets
give way at one time. It will be all too easy for our somewhat artificial
prosperity to collapse overnight when it is realised that the use of a few
exciting words like information, entropy, redundancy, do not solve all our
problems.’ Shannon (1956)

7.1 Information Talk in Quantum Mechanics

Shannon’s words above represent a salutary warning for those of us interested
in the question of whether quantum information theory has implications for
the foundational problems of quantum mechanics. Is it, perhaps, that we have
become overly excited by the appearance of a few trigger words (information,
uncertainty, entropy...) in books, journals and pre-print servers dedicated to
quantum theory? Compare, on the other hand, Fuchs:

. . . no tool appears better calibrated for a direct assault [on quantum
foundations] than quantum information theory. Far from a strained ap-
plication of the latest fad to a time-honored problem, this method holds
promise precisely because a large part—but not all—of the structure of
quantum theory has always concerned information. It is just that the
physics community needs reminding. (Fuchs, 2002a)

In this brief chapter I shall set out a few preliminaries: some points that are
rather basic, but essential when trying to see what can be made of information
talk in quantum mechanics.

Appeal in some form to the notion of information as a way of addressing
the conceptual problems presented by quantum mechanics has been a recurrent
feature of many discussions of the quantum foundations, particularly for those
in the Copenhagen tradition; and this trend has been reinvigorated following the
growth of quantum information theory. For a selection of more recent statements
see, for example, Fuchs and Peres (2000); Mermin (2002b, 2003); Peierls (1986,
1991); Peres (1995); Wheeler (1986, 1990); Zeilinger (1999b).

Very often, the suggestion proceeds along the lines that the traditional prob-
lems of measurement, nonlocality, and so on are resolved when one recognizes
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that the quantum state should simply be viewed as representing one’s knowledge
or information rather than any objective property of the world. A representative
formulation is the following, due to Hartle:

The state is not an objective property of an individual system but is that
information, obtained from a knowledge of how a system was prepared,
which can be used for making predictions about future measurements.

. . . A quantum mechanical state being a summary of the observers’ in-
formation about an individual physical system changes both by dynamical
laws, and whenever the observer acquires new information about the sys-
tem through the process of measurement. The existence of two laws for
the evolution of the state vector . . . becomes problematical only if it is be-
lieved that the state vector is an objective property of the system . . . The
‘reduction of the wavepacket’ does take place in the consciousness of the
observer, not because of any unique physical process which takes place
there, but only because the state is a construct of the observer and not
an objective property of the physical system. (Hartle, 1968, p. 709)121

As so often in the foundations of quantum mechanics, however, it is instruc-
tive to turn to the writings of John Bell; and there we find a warning. For
‘information’ is on Bell’s famous list of bad words that ‘have no place in a
formulation with any pretence to physical precision’ (Bell, 1990, p. 34).122 Bell
indicates the pertinent sources of disquiet with two rhetorical questions: Infor-
mation about What? ; and Whose information?

These are indeed good questions, and the first most especially. For it presents
a fundamental dilemma: the Scylla and Charybdis facing proponents of informa-
tion talk in quantum mechanics.

If the quantum state is to be construed in terms of representing one’s infor-
mation then it seems that there are two possible sorts of answer that could be
given to the question ‘Information about what?’:

1. Information about what the outcomes of experiments will be;
2. Information about how things are with a system prior to measurement,

i.e., about hidden variables.
Now the latter option is unlikely to be attractive to anyone who is trying to

appeal to information as a way of avoiding the problems caused by the seemingly

121It may be noted in passing that Hartle’s argument for these propositions in 1968 is by no
means entirely persuasive (he no longer subscribes to this kind of view, it should be added).
While there is not room to go into details here, suffice it to say that his argument for construing
the state of a system as information trades on an ambiguity between specifying what a state
is (e.g., an assignment of truth values to experimental propositions) and specifying what state
something is in; moreover, a realist opponent can always insist that the quantum state only
allows us to make predictions about the behaviour of a system precisely because it corresponds
to a system’s possessing certain objective properties.
122To illustrate Bell’s use of the term ‘formulation’: ‘Surely, after 62 years, we should have an

exact formulation of some serious part of quantum mechanics? By “exact” I do not of course
mean “exactly true”. I mean only that the theory should be formulated in mathematical terms,
with nothing left to the discretion of the theoretical physicist...until workable approximations
are needed in applications.’ (Bell, 1990, p. 33).
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odd behaviour of the quantum state. The aim, roughly speaking, was to circum-
vent the problems associated with collapse or nonlocality by arguments of the
form: there’s not really any physical collapse, just a change in our knowledge;
there’s not really any nonlocality, it’s only Alice’s knowledge of (information
about) Bob’s system that changes when she performs a measurement on her
half of an EPR pair. But we all know that if we are to have hidden variables
lurking around then these are going to be very badly behaved indeed in quantum
mechanics (nonlocality, contextuality). So it surely can’t be this second answer
that our would-be informationist is really after.123

But now consider the first answer. If the information that the state represents
is information about what the results of experiments will be, then the difficulty is
now to say anything interesting that doesn’t simply slide into instrumentalism.
Instrumentalism, of course, is the general view that scientific theories do not
seek to describe the laws governing unobservable things, but merely function
as devices for predicting the outcomes of experiments. An instrumentalist view
of the quantum state understands the state merely as a device for calculating
statistics for measurement outcomes: this is very close to the view that the
state merely represents information about what the results of measurements
will be. But if all that appeal to information were ultimately to amount to is a
form of instrumentalism, then we would not have a particularly interesting—and
certainly not a novel—interpretational doctrine. It should be noted that merely
presenting an old doctrine such as instrumentalism in the currently popular
idiom of information does not make it any more (or any less, admittedly,) of an
attractive doctrine. (Here Shannon’s warning is very pertinent.)

Thus the dilemma. To present a distinctive and hence an interesting doctrine,
it seems that the proponent of information has somehow to steer a course that
avoids hidden variables, yet does not merely amount to instrumentalism; but it
is not clear that this is easily done.

One option might be the following: one could emphasize that in contrast to
standard instrumentalism, the focus of one’s interest is individual systems rather
than the statistics of measurements for ensembles (look once more at Hartle’s
wording above). But this approach suffers from a decisive objection.

Let us begin by noting that descriptions of the quantum state in terms of a
person’s knowledge or information will typically involve mixed ascriptions. That
is, they will involve both the everyday semantic/epistemic concept of information
and at the same time, the distinct technical concept of informationt introduced
in information theory. We see this when we recognize that one will need to
answer the question what information the state represents (Bell’s question again);

123A caveat. If one adopted an informational view of the state not in order to address the
measurement problem; and not in order to relieve problems over nonlocality; if one could argue
that it was natural for quite other reasons, perhaps, to take the state to represent information,
then one might not be so moved by this objection; and one might willingly embrace the charge
that one was dealing with hidden variables. Compare Spekkens (2007). Of course, one must
then admit that it’s not really the notion of information that is doing any of the interesting
work; rather it is the behaviour of the hidden variables.
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and one will answer by talking of information that p or about q, both locutions
signalling the everyday concept. At the same time, one might be interested in how
much information the state represents, a phrase which in this context typically
signals the technical concept.

However, once we have the everyday concept of information in play, we need
to recognize that the term ‘information’ is, just as the term ‘knowledge’ is, fac-
tive. That is, having the information that p entails that p is the case. Just as I
can’t know that p unless it is true that p, no more can I have the information
that p unless p. And the major difficulty that this presents for those wishing to
understand the quantum state of an individual system as information is that this
factivity entails just the sort of objectivity that the invocation of information
was originally intended to bypass.

The straightforward instrumentalist seeks to avoid the problems associated
with measurement and nonlocality by remaining at the level of statistics only:
individual systems are not described and collapse doesn’t correspond to any
real process. (So on this view it would be a badly posed question to ask in
quantum mechanics something like: how does an individual electron travel in a
two-slit experiment? One can only ask about what observable results one might
expect to see for very many electrons.) So far as it goes (not very far), this
strategy is reasonably successful.124 For someone taking the information route
and associating a quantum state with individual systems, however, the essence
of their approach is that different agents can ascribe different states to a given
quantum system, because they have different information regarding it.

Thus consider the Wigner’s friend scenario, for example, (Wigner, 1961), a
familiar way of making vivid the problem of measurement. Here we imagine
Wigner’s experimentalist friend in a lab, about to perform, say, a Stern–Gerlach
measurement in the z-direction on a spin-half system prepared in an eigenstate of
spin in the x-direction. Wigner himself remains outside the lab. The experiment
is run. What state should the friend assign to the system and apparatus? What
state should Wigner assign? One normally argues: The friend, presumably, sees
some definite outcome of the experiment so, we assume, assigns one of the pure
product states corresponding to spin in some definite direction for the system,
along with a definite pointer position recording that direction. Wigner, however,
positioned outside the lab, unable to see any measurement result and considering
the lab as a whole—friend included—to be a closed system (hence one subject
to unitary Schrödinger evolution) will ascribe an entangled state to the system
and measuring apparatus; and perhaps even to the friend. But who is right?

Now, according to the information view, there is just not an issue here: one
is being misled by a jejune literalism about the quantum state. There is no
mysterious collapse coming into play at some point or other; nor is there any
troublesome hanging-in-limbo for the poor old friend. Rather, both agents in-

124See Saunders (1994) for some criticisms of instrumentalism as a solution to the problem
of measurement, though.
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volved (Wigner, and friend) simply ascribe different states to the system being
measured, without contradiction. There is not supposed to be one correct state
which is in some sense an objective property of a system; rather, each agent
will ascribe a different state based on their differing information (whether they
are inside the lab doing the measurement, or waiting patiently outside for their
friend). The story about nonlocality runs much the same. In an EPR-type sce-
nario, Alice and Bob are widely separated and share an entangled state, e.g.,
the singlet state of two spin-half systems. Alice performs a measurement in some
direction on her system and gets an ‘up’ outcome, say. What’s happened to
Bob’s system? The usual thought (Einstein et al., 1935) is that nonlocality is
involved:125 Alice’s action has a nonlocal effect on Bob’s system. Whereas before
it had no definite spin property, being in a(n improper) maximally mixed state,
following her measurement, it jumps into a definite spin state, now having spin
down. But on the information view, Alice’s measurement is understood not to
change any real properties of Bob’s system; her measurement merely provides
her with some particular information about it, in virtue of the correlations in-
volved in the initial entanglement. Post measurement, she will ascribe a new
state to Bob’s system—which is located at a distance—but since the state does
not correspond to an objective property of the system, this does not connote
nonlocality. Indeed, Bob continues, all the while, to ascribe the same old state
(density operator) to his system as ever, until he performs a measurement of his
own, or gets in touch with Alice.

However, the factivity of information and knowledge puts paid to these forms
of argument: if the quantum state represents what one knows, or what informa-
tion one has, then things have to be as they are known to be. For example, if
I know what the probability distributions for the outcomes of various measure-
ments on a system are, then the probabilities must indeed be thus and so. We
have a matter of right or wrong determined by what the properties of a system
actually are. If Alice performs a measurement on her half of an entangled pair
in the singlet state and subsequently knows the pure state of Bob’s system, then
his system objectively has to be in that state. Alice now knows that a particular
experiment will have some outcome as a certainty, whereas before it didn’t; and
this is a determinate matter of fact. Thus we end up, in this approach, having to
talk again about objective properties of a system, and objective properties that
can be changed at a distance, even after making our appeal to knowledge and
information talk. No progress is thus made with the conceptual problems in this
direction; the approach is a blind alley.

I have so far emphasized only one of Bell’s questions. The point of the sec-
ond, ‘Whose information?’, is presumably to highlight what Bell felt would be an
unacceptable level of vagueness associated with use of the term ‘information’, if
it were to occur in a putative formulation of fundamental theory. This vagueness

125At least if one is assigning states to individual systems, but is not eschewing collapse as
Everett, for example, would.
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could be seen to come from two different directions: first, a vagueness of an-
thropocentrism (how are we to specify with any precision what counts as a bona
fide cognitive agent?); second, a vagueness associated with subjectivity (different
agents might occupy different perspectives, perhaps) although this sort of worry
is to some degree mollified by realizing the factivity of information.126

The dangers of amounting to no more than a form of instrumentalism and the
factivity of the terms ‘knowledge’ and ‘information’ are the first two preliminary
considerations that need to be borne in mind when assessing information-based
approaches to quantum mechanics. The third and final one is as follows. It was
emphasized in earlier chapters that the everyday notion of information—with its
links to knowledge, language and meaning—is to be firmly distinguished from
the technical notion of informationt that arises in information theory. The latter
is not a semantic or an epistemic concept; and pace Dretske, considerations of
mechanical communication systems would seem to have precious little to do
with explaining semantic and epistemic properties. Now, keeping the distinction
between the everyday and the technical notions of information clearly in mind is
crucial when considering the role that quantum informationt theory might have
to play in the foundations of quantum mechanics, for otherwise one may easily
fall prey to some serious misconceptions.

One example would be the thought we have already seen discredited, that
the development of quantum informationt theory supports an informational im-
materialism (Section 3.7.1). Another is this: It might well seem simply obvious
that quantum informationt theory will shed light on the interpretive problems
of quantum mechanics. For the key conceptual problem in quantum mechanics
is the problem of measurement; but what is measurement other than a transfer
of information, an attempt to gain knowledge? As we are now equipped with a
theory of information in the quantum domain, enlightenment is sure to follow!

This line of thought rests, of course, on a flagrant confusion between infor-
mation in its everyday and its technical senses; between an epistemic and an

126Interestingly, Mermin (2002b), developing an idea due to Peierls (1991), has sought to
respond to the challenge presented by the ‘Whose information?’ question, by deriving conditions
under which different density matrices can be thought to represent different knowledge that
various agents might have about one and the same system (see also Mermin (2002a), Brun
et al. (2002)). This approach has rightly been criticized by Fuchs, however (see Fuchs (2002b,
esp. pp. 19–25; 42–51); and also Caves et al. (2002a)) on the grounds that any approach in
this vein, that involves assessing whether an agent’s ascription of a state to a system is correct,
or admissible, or what-not, amounts to giving up on the original desire for non-objectivity of
the state that was supposed to be doing the distinctive conceptual work. If there is a question,
ultimately, of being right or wrong, then one might as well openly admit that the quantum
state is objective after all. In essence, the point here may be put in terms of factivity again:
if we imagine different knowledge that people might have about a system and the different
states they may assign on the basis of that knowledge, then there must exist determinate facts
about the system that each of them is, to a greater or lesser degree, aware of. Although he does
not himself put it in these terms, Fuchs’ awareness of the factivity of the terms ‘knowledge’
and ‘information’ and his related criticism of Mermin, mark the change from the objective
Bayesianism of Fuchs (2001) to the more consistent subjectively Bayesian position of Fuchs
(2002a).
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information-theoretic sense of information. The following is an example of the
tempting slide from one sense of ‘information’ to another:

Quantum measurements are usually analyzed in abstract terms of wave-
functions and Hamiltonians. Only very few discussions of the measure-
ment problem in quantum theory make an explicit effort to consider the
crucial issue—the transfer of information. Yet obtaining knowledge is the
very reason for making a measurement. (Zurek, 1990, p. viii)

However, if any link is to be established between the techniques and applications
of quantum informationt theory and the conceptual puzzles of quantum mechan-
ics, it is not to be achieved by a facile equation of radically different senses of
the term ‘information’. Here, more than anywhere, we need to be vividly aware
of Shannon’s warnings about getting over-excited by a few heavily loaded terms;
and we need to be on the lookout to make sure no one is being misled by an
implicit or explicit slide between different senses of the term ‘information’.

With these preliminary reflections behind us, we shall turn, in the next
chapter, to consider some specific proposals for the application of information-
theoretic ideas to the foundational problems of quantum mechanics.



8

SOME INFORMATION-THEORETIC APPROACHES

‘The simplest kind of proposition, an elementary proposition, asserts the
existence of states of affairs...It is obvious that the analysis of propositions
must bring us to elementary propositions...Even if the world is infinitely
complex, so that every fact consists of infinitely many states of affairs
and every state of affairs is composed of infinitely many objects, there
would still have to be objects and states of affairs.’ Wittgenstein (1961)

8.1 Introduction

If one of the prima facie difficulties faced by attempts to appeal to notions of
information in approaching foundational questions in quantum mechanics is that
of avoiding an unedifying descent into instrumentalism, then where else may we
hope to make progress with the project? One obvious avenue for attack is to
investigate whether ideas from quantum information theory might help provide
a perspicuous conceptual basis for quantum mechanics, perhaps by leading us
towards an enlightening axiomatization of the theory. Certainly, strikingly dif-
ferent possibilities for information transfer and computation are to be found in
quantum mechanics when compared with the classical case, and might these
facts not help us characterize how and why quantum theory has to differ from
classical physics?

The thought that ideas from quantum information might lead us towards a
transparent conceptual basis for quantum mechanics has been expressed perhaps
most powerfully by Fuchs and co-workers (cf. Fuchs, 2003). In this chapter,
we shall investigate two particular approaches in this vein, the Foundational
Principle of Zeilinger; and the information-theoretic characterization theorem of
Clifton, Bub, and Halvorson.

8.2 Zeilinger’s Foundational Principle

Zeilinger (1999b) presents an apparently very simple and compelling information-
theoretic foundational principle for quantum mechanics. (The idea is developed
also in Brukner and Zeilinger (1999); Brukner et al. (2001); Brukner and Zeilinger
(2003).) This foundational principle, he suggests, is to play a role in quantum
mechanics similar to that of the Principle of Relativity in Special Relativity, or
to the Principle of Equivalence in General Relativity. Like these, the Founda-
tional Principle is to be an intuitively understandable principle which plays a
key role in deriving the structure of the theory. In particular, he suggests that
the Foundational Principle provides an explanation for the irreducible random-
ness in quantum measurement and for the phenomenon of entanglement. We
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will examine whether the Principle can indeed be successful as a foundation for
quantum mechanics, while also unpacking some of the (dispensable) philosophi-
cal assumptions that appear to be built into Zeilinger’s views.

Before stating the Foundational Principle, it is helpful in particular to iden-
tify two philosophical assumptions that Zeilinger’s position incorporates. The
first is a form of phenomenalism. Physical objects are taken not to exist in and
of themselves, but to be mere constructs relating sense impressions (Zeilinger,
1999b, p. 633).127 The second assumption is an explicit instrumentalism about
the quantum state:

The initial state . . . represents all our information as obtained by earlier
observation . . . [the time evolved] state is just a short-hand way of repre-
senting the outcomes of all possible future observations. (Zeilinger, 1999b,
p. 634)

With these assumptions noted, let us consider the two distinct formulations of
the Principle presented in Zeilinger (1999b):

FP 1 An elementary system represents the truth value of one proposition.

FP 2 An elementary system carries one bit of information.

At first glance, these two statements appear most naturally to be concerned
with the amount of information that can be encoded into a physical system.
However, this interpretation is at odds with the passage in which Zeilinger moti-
vates the Foundational Principle. In this passage, his concern is with the number
of propositions required to describe a system. He considers the analysis of a com-
posite system into constituent parts and remarks that it is natural to assume
that each constituent system will require fewer propositions for its description
than the composite does.128 The end point of the analysis will be reached when
we have systems described by a single proposition only; and it is these systems
that are termed ‘elementary’.

127Zeilinger remarks that properties are assigned to objects only on the basis of observation
and are held only as long as they do not contradict further observation; and ‘In fact, the
object therefore is a useful construct connecting observations’ (Zeilinger, 1999b, p. 633). It
perhaps scarcely needs noting that if the foregoing is supposed to be an argument for the
immaterialist position, then it is an extremely weak one; for example, failing to distinguish
between the grounds on which one might assert a proposition and what would thereby have
been asserted; and containing ambiguity about what it is to assign a property to an object
on the basis of observation. For Zeilinger, extreme subjectivism is kept in check, however, by
the requirement that there be intersubjective agreement between different agents’ ‘mentally
constructed objects’ (Zeilinger, 1999b, p. 634).
128Is it so very natural? Only, perhaps, relative to a fixed system of concepts adequate to de-

scribe all levels of physical complexity; i.e., in which one begins with elementary propositions
describing basic objects; and more complex objects are described by truth-functional combi-
nations of these elementary propositions. (Consider: one could plausibly maintain that it takes
fewer propositions to describe a table adequately than it does to describe an electron. Doesn’t
the sheer effort involved in science show that it typically gets harder to describe things the
smaller they are?) Zeilinger’s approach here bears marked similarities to Wittgenstein’s views
in the Tractatus Logico-Philosophicus. The concern is that one may already be importing
substantial assumptions into the very starting place of the approach.
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The apparent tension between these different ideas of how FP1 and 2 should
be read is relieved when Zeilinger goes on to explain what he means by an
elementary system carrying or representing some information:

. . . that a system ‘represents’ the truth value of a proposition or that it
‘carries’ one bit of information only implies a statement concerning what
can be said about possible measurement results. (Zeilinger, 1999b, p. 635)

Thus the Foundational Principle is not a constraint on how much information
can be encoded into a physical system. It is a constraint on how much the state
of an elementary system can say about the results of measurement. This inter-
pretation is rendered consistent with the discussion in terms of the propositions
required to describe a system, as from Zeilinger’s instrumentalist point of view,
describing (the state of) a quantum system can only be to make a claim about
future possible measurement results. Furthermore, we can understand the pecu-
liar idiom of a system ‘representing’ some information, where this is taken not
to refer to the encoding of some information into a system, when we recall that
from the point of view of Zeilinger’s phenomenalism, a physical system is not an
actual thing. On his view, a system represents a quantity of information about
measurement results because a physical system literally is nothing more than an
agglomeration of actual and possible sense impressions arising from observations.

In short, however, it seems that a clearer, and perhaps more philosophically
neutral, statement of the Foundational Principle would be the following:

FP 3 The state of an elementary system specifies the answer to a single yes/no
experimental question,

where we have used the fact that by ‘proposition’ Zeilinger means something
that represents an experimental question. With this relatively clear—and philo-
sophically less burdened—statement of the Foundational Principle in hand, let
us now consider its claims as a foundational principle for quantum mechanics.

To begin with, we should note the limitations implied by Zeilinger’s con-
ception of the description of a system. It might not always be the case that
the state of an individual system can be characterized appropriately as a list of
experimental questions to which answers are specified; and in such a case, the
terms of the Foundational Principle cannot be set up. Consider the de Broglie–
Bohm theory, for example, with its elements of holism and contextuality—even
though the theory is deterministic, the results of measurements are in general
not determined by the properties of the object system alone but are the result
of interaction between object system and measuring device. It would seem that
this theory could neither be supported nor ruled out by the Foundational Prin-
ciple, as we can neither identify something that would count as an elementary
system in this theory, given the way ‘elementary system’ has been defined, nor,
a fortiori, begin to enumerate how many experimental questions such an entity
might specify. However, for present purposes, let us put this sort of worry to one
side.
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Another concern arises when considering the distinction we have drawn be-
tween describing a system and encoding information into it. Unlike encoding,
the notion of describing a system presupposes a certain language in which the
description is made, and the description of a given system could be longer or
shorter depending on the conceptual resources of the language used. If we are to
make a claim about the number of propositions required to describe a system,
then, as we must when identifying an elementary system to figure in the Foun-
dational Principle, we must already have made a choice of the set of concepts
with which to describe the system. But this is worrying if the purpose of the
Foundational Principle is to serve as a basis from which the structure of our the-
ory is to be derived. If we already have to make substantial assumptions about
the correct terms in which the objects of the theory are to be described, then it
may be that the Foundational Principle will be debarred from serving its foun-
dational purpose. With this worry in mind, let us now consider the first of the
concrete claims for the Foundational Principle, that it explains the irreducible
randomness of quantum measurements.

Zeilinger’s suggestion is that we have randomness in quantum mechanics
because:

...an elementary system cannot carry enough information to provide
definite answers to all questions that could be asked experimentally
(Zeilinger, 1999b, p. 636),

and this randomness must be irreducible, because if it were reduced to hidden
properties, then the system would carry more than one bit of information. Un-
fortunately, this does not constitute an explanation of randomness, even if we
have granted the existence of elementary systems and adopted the Foundational
Principle. For the following question still remains: why is it that experimental
questions exist whose outcome is not already determined by a specification of the
finest-grained state description we can offer? That is: How is it that any space
for randomness remains? Or again, why isn’t one bit enough?

The point is, it has not been explained why the state of an elementary system
cannot specify an answer to all experimental questions that could be asked:
this does not in fact follow from the Foundational Principle. The Foundational
Principle says nothing about the structure of the set of experimental questions,
yet this turns out to be all-important.

Consider the case of a classical Ising model spin, which has only two possible
states, ‘up’ or ‘down’; here one bit, the specification of an answer to a single
experimental question (‘Is it up?’), is enough to specify an answer to all questions
that could be asked. There is no space for randomness here, yet this classical
case is perfectly consistent with the Foundational Principle. Thus it seems that
no explanation of randomness is forthcoming from the Foundational Principle
and furthermore, it is far from clear that the Principle, on its own, in fact allows
us to distinguish between quantum and classical.

Of course, if one assumes that experimental questions are represented in the
quantum way, as projectors on a complex Hilbert space, then even for the sim-
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plest non-trivial state space, there will be non-equivalent experimental questions,
the answer to one of which will not provide an answer to another; but we cannot
assume this structure if it is the very structure that we are trying to derive.
It appears from the way in which the Foundational Principle is supposed to be
functioning in the attempted explanation of randomness, that something like the
quantum structure of propositions is being assumed. But this is clearly fatal to
the prospects of the Foundational Principle as a foundational principle.129

Does the Principle fare any better with the proposed explanation of entan-
glement? The idea here is to consider N elementary systems, which, following
from the Foundational Principle, will have N bits of information associated with
them. The suggestion is that entanglement results when all N bits are exhausted
in specifying joint properties of the system, leaving none for individual subsys-
tems (Zeilinger, 1999b), or more generally, when more information is used up
in specifying joint properties than would be possible classically. The underlying
thought is that this approach captures the intuitive idea that when we have an
entangled system, we know more about the joint system (which may be in a pure
state) than we do about the individual subsystems (which must be mixed states).
The proposal is further developed in Brukner et al. (2001), where a particular
information measure is used to provide a quantitative condition for N qubits to
be unentangled, which is then related to a condition for the violation of a certain
N -party Bell inequality.

To give a basic example of how the idea is supposed to work, consider the
case of two qubits. Notice that the maximally entangled Bell states are joint
eigenstates of the observables σx ⊗ σx and σy ⊗ σy. From the Foundational
Principle, only two bits of information are associated with our two systems, i.e.,
the states of these systems can specify the answer to two experimental questions
only. If the two questions whose answers are specified are ‘Are both spins in the
same direction along x?’ (1/2(1⊗1+σx ⊗σx)) and ‘Are both spins in the same
direction along y?’ (1/2(1 ⊗ 1 + σy ⊗ σy)), then we end up with a maximally
entangled state. If, by contrast, the two questions had been ‘Are both spins in
the same direction along x?’ and ‘Is the spin of particle 1 up along x?’, the
information would not have all been used up specifying joint properties and we
would have instead a product state (joint eigenstate of σx ⊗ σx and σx ⊗ 1).

Now, although this idea may have its attractions when used as a criterion
for entanglement within quantum mechanics, it does not succeed in providing an
explanation for the phenomenon of entanglement, which was the original claim.

If we return to the starting point and consider our N elementary systems,
all that the Foundational Principle tells us regarding these systems is that their
individual states specify the answer to a single yes/no question concerning each

129In a sense, we could say that Zeilinger’s explanation of randomness is problematic because
it fails to explain why the state space of quantum mechanics is so gratuitously large from
the point of view of storing information (Caves and Fuchs, 1996). It is then striking that this
attempted information-theoretic foundational approach to quantum mechanics has not allowed
for one of the significant insights vouchsafed by quantum information theory.
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system individually. There is, as yet, no suggestion of how this relates to joint
properties of the combined system. Some assumption needs to be made before
we can go further. For instance, we need to enquire whether there are supposed
to be experimental questions regarding the joint system which can be posed and
answered that are not equivalent to questions and answers for the systems taken
individually. (We know that this will be the case, given the structure of quantum
mechanics, but we are not allowed to assume this structure, if we are engaged
in a foundational project.130) If this is the case then there can be a difference in
the information associated with correlations (i.e., regarding answers to questions
about joint properties) and the information regarding individual properties. But
then we need to ask: why is it that there exist sets of experimental questions to
which the assignment of truth values is not equivalent to an assignment of truth
values to experimental questions regarding individual systems?

Because such sets of questions exist, more information can be ‘in the cor-
relations’ than in individual properties. Stating that there is more information
in correlations than in individual properties is then to report that such sets of
non-equivalent questions exist, but it does not explain why they do so. However,
it is surely this that demands explanation—why is it not simply the case that all
truth value assignments to experimental questions are reducible to truth value
assignments to experimental questions regarding individual properties, as they
are in the classical case? That is, why does entanglement exist? In the absence of
an answer to the question when posed in this manner, the suggested explanation
following from the Foundational Principle seems dangerously close to the vacu-
ous claim that entanglement results when the quantum state of the joint system
is not a separable state.

Of course, if we are in the business of looking within quantum mechanics and
asking how product and entangled states differ, then it is indeed legitimate to
consider something like the condition Brukner et al. (2001) propose; and we can
then consider how good this condition is as a criterion for entanglement.131 But
as mentioned before, if we are trying to explain the existence of entanglement,
then we cannot simply assume the quantum mechanical structure of experimental
questions.

Let us consider a final striking passage. Zeilinger suggests that the Foun-
dational Principle might provide an answer to Wheeler’s question ‘Why the
quantum?’ (Wheeler, 1990) in a way congenial to the Bohrian intuition that
the structure of quantum theory is a consequence of limitations on what can be

130To illustrate, a simultaneous truth value assignment for the experiments σx ⊗ σx and
σy ⊗ σy cannot be reduced to one for experiments of the form 1 ⊗ a.σ,b.σ ⊗ 1.
131At this point it is worth noting that there have been other discussions of entanglement

which develop the intuitive idea (originally due to Schrödinger (1935b)) that when faced with
entangled states, we know more about joint properties than individual properties. A very
general framework is presented by Nielsen and Kempe (2001), who use the majorization relation
to compare the spectra of the global and reduced states of the system; a necessary (but not
sufficient) condition for a state to be separable is then that it be more disordered globally than
locally. See Appendix B for further discussion.
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said about the world:
The most fundamental viewpoint here is that the quantum is a conse-
quence of what can be said about the world. Since what can be said has
to be expressed in propositions and since the most elementary statement
is a single proposition, quantization follows if the most elementary system
represents just a single proposition. (Zeilinger, 1999b, p. 642)

But this passage contains a crucial non sequitur. Quantization only follows if
the propositions are represented by projection operators on a complex Hilbert
space. And why is it that the world has to be described that way? That is the
question that would need to be answered in answering Wheeler’s question; and
it is a question which, I have suggested, the Foundational Principle goes no way
towards answering.

8.2.1 Word and world: Semantic ascent

At this juncture let us pause to consider the following parenthetical, but perhaps
illuminating, remarks.

The sentiment expressed in the last quotation of Zeilinger is evidently very
close to that captured by the famous (or infamous) statement attributed to Bohr
by Petersen:

There is no quantum world. There is only an abstract quantum physical
description. It is wrong to think that the task of physics is to find out
how nature is. Physics concerns what we can say about nature. (Petersen,
1963, p. 12)

The last sentence is particularly pertinent: ‘Physics concerns what we can say
about nature.’ Compare again, another statement of Zeilinger’s, ‘ . . . what can
be said about Nature has a constitutive contribution on what can be “real”’.
(Reported in Fuchs (2003, p. 615).)

These views clearly pick out one strand of thought that can be seen to con-
tribute to the wider speculative thesis that information may, in some sense, pro-
vide a new way in physics. If quantum mechanics reveals that the true subject
matter of physics is what can be said, rather than how things are, it seems but a
small step from there to the view that what is fundamental is the play of infor-
mation across our psyches. Now, if tempted by this, one might do well to begin
by recalling our previous discussion and dismissal of informational immaterialism
(Section 3.7.1). Here is a further pertinent consideration:

There is a very obvious difficulty with the thought that what can be said
provides a consitutive contribution to what can be real; and that physics cor-
respondingly concerns what we can say about nature. Simply reflect that some
explanation needs to be given of where the relevant constraints on what can be
said come from. Surely there could be no other source for these constraints than
the way the world actually is—it can’t merely be a matter of language.132 It is
because of the unbending nature of the world that we find the need to move,

132Of course, what statements can be made depends on what concepts we possess; and,
trivially, in order to succeed in making a statement, one needs to obey the appropriate linguistic
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for example, from classical to quantum physics; that we find the need to revise
our theories in the face of recalcitrant experience. Zeilinger and Bohr (in the
quotation above) would thus seem to be putting the cart before the horse, to
at least some degree. Schematically, it’s the way the world is (independently of
our attempted description or systematization of it) that determines what can
usefully be said about it, and that ultimately determines what sets of concepts
will prove most appropriate in our scientific theorizing. It is failure to recognize
this simple truth that accounts, perhaps, for the otherwise glaring non sequitur
in Zeilinger’s proposed answer above to ‘Why the quantum?’. One can’t expect
a substantive empirical truth (e.g., about the correct structure of the set of ex-
perimental questions) to follow from a series of tautologies about propositions.

Another point can be drawn from the Petersen quotation. With its focus on
the level of physical description and what can be said about nature (as opposed
to how nature is) this passage can be seen to provide us with an example of what
is often known as semantic ascent .

Semantic ascent is the move from what Carnap called the material mode to
the formal mode, that is, roughly speaking, from talking about things to talking
about words. As Quine says, ‘semantic ascent . . . is the shift from talking in
certain terms to talking about them’ (Quine, 1960, p. 271). Bohr, it would seem,
would have us ascend from the level of using words within our theory, to the
level of describing our descriptions. This, the suggestion is, is the true task of
physics.

What would such an ascent achieve? As Quine is quick to note, semantic
ascent doesn’t bake much ontological bread:

Semantic ascent . . . applies anywhere. ‘There are wombats in Tasmania’
might be paraphrased as ‘ “Wombat” is true of some creatures in Tasma-
nia’, if there were any point in it. (Quine, 1960, p. 272)

The point is this. It’s true, but trivial, that if we ascend to a level at which we
are describing what we say about nature, that is, take the physical description
as our focus of interest, then our subject matter will no longer be the world, for
we have moved from talking in various terms to talking about them. At this level
there will, in a sense, be no quantum world, for we are talking about words and
not the world.

But the fact that we have ascended doesn’t mean that the level we have
ascended from goes away. The world doesn’t disappear because we may be talking
about the terms in which we describe it. It follows that one can’t shirk the

rules. But the point at issue is what can make one set of concepts more fit for our scientific
theorizing than another? For example, why do we have to replace commuting classical physical
quantities with non-commuting quantum observables? As Quine perspicuously notes ‘ . . . truth
in general depends on both language and extra-linguistic fact. The statement “Brutus killed
Caesar” would be false if the world had been different in certain ways, but it would also be false
if the word “killed” happened to have the sense of “begat”.’ (Quine, 1953, p. 36). The world
is required to provide the extra-linguistic component that will make one set of concepts more
useful than another; furthermore, without an extra-lingustic component to truth, we could
only ever have analytic truths—and that would no longer be physics.
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difficulties and mysteries of interpreting quantum mechanics by simply saying:
‘Physics concerns what we can say about nature’, for, crucially, we can always
ask—well, what is said? (descent after our semantic ascent), as well as—how do
we say it? (remaining at the ascended level).

The fact that one can always make a semantic ascent does not mean that
one can do without the level from which ascent has been made.133 Indeed, the
interesting interpretational questions concern why one should take one stance
rather than another to claims made using terms within a theory, and the usual
ranges of options (various forms of realism, instrumentalism and hybrids thereof)
will remain open irrespective of ascent. It is important to realize that the seman-
tic ascent of the Bohrian quote doesn’t succeed in highlighting any differences
between the classical world view and quantum mechanics. In so far as ‘there is
no quantum world’ is true in the Petersen quotation, it would be true of the
classical world too: it is a universal and entirely innocuous observation that if
we ascend to the level at which we are describing our physical-theory discourse,
then our subject matter will be words rather than world.

The ‘There is no quantum world’ passage is apt to induce apoplexy in the
realist-minded, but there seems after all no call for raised blood-pressures. When
analysed as an example of semantic ascent, it seems that the passage is, so far
as it is intelligible—or not obviously false—somewhat innocuous in import.

8.2.2 Where next?

We have seen that Zeilinger’s Foundational Principle can be separated from the
philosophical baggage of phenomenalism and instrumentalism; but even once
separated in this way, it proves wholly unsuccessful as a foundational principle
for quantum mechanics, achieving none of what was hoped for it. Can nothing
be salvaged from the approach, however?

Well, perhaps if we were to add further axioms that entailed something about
the structure of the set of experimental questions, progress could be made. A
possible addition might be a postulate Rovelli (1996) adopts: It is always possible
to acquire new information about a system. One wouldn’t be terribly impressed
by an explanation of irreducible randomness invoking the Foundational Princi-
ple and this postulate, however, as it would look rather too much like putting
the answer in by hand. But there might be other virtues of the system to be
explored.134 However, one needs to be delicate in pursuing the ‘just add more
axioms!’ line: not any old axioms will do. Recall that the point of the exercise is

133It might be felt, perhaps, that this is the real import of the Bohr quote, and serves to
distinguish the quantum from the classical case: in the quantum case, we might be supposed
to imagine that one can intelligibly kick away the lower level, having made the semantic
ascent. Such a suggestion (‘vertiginous semantic ascent’, as it might be called) is incoherent,
however. It would amount to the claim that the ‘descent’ question ‘So: what was said?’ becomes
unintelligible, but this would entail that the terms under discussion have to become entirely
devoid of meaning, and as such they would have no role whatsoever in physics.
134Grinbaum (2005) discusses another axiom of similar pattern to Zeilinger’s Foundational

Principle, from a quantum logical perspective.
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to render quantum mechanics conceptually transparent; and on an information-
theoretic basis at that. The aim is not just to recover quantum theory using any
old axioms, otherwise there would be no explanatory gain to be had. Consider
that there has been substantial progress in the quantum logical tradition of pro-
viding axiomatizations of quantum mechanics (see, e.g., Aerts and Aerts (2005)
for a succinct review), but it is not clear that these approaches render quantum
mechanics any less mysterious or any more intuitively understandable. It is not
clear, in any case, that this is really their purpose.

On a different note, Spekkens (2007), in a very suggestive paper, presents a
toy theory whose states are epistemic states—states of knowledge—but where the
states of maximal knowledge (pure states) cannot tell us everything: the finest-
grained state description the theory allows leaves as many questions about the
physical properties of a system unanswered as answered. This constraint has
something of the flavour of Zeilinger’s, but is, by contrast, explicit that there are
non-trivial restrictions already operating on the set of experimental questions;135

and one is well within one’s rights to ask where (physically) these restrictions
come from. What is remarkable about these states of the toy theory is that (as
Spekkens demonstrates) they display much of the rich behaviour that quantum
states display and which we have become accustomed to thinking is characteris-
tic of quantum phenomena.136 The subsequent thought is that if such phenom-
ena arise naturally for states of less than complete information, then perhaps
quantum states also ought to be thought of in this manner: as states of know-
ledge rather than as states of the world. But of course, adopting this approach
wholeheartedly, we have to run once more the gauntlet outlined in the previous
chapter: What is the information supposed to be about? Just the outcomes of
experiments (but aren’t we uncomfortably close to mere instrumentalism, now)?
Or about hidden variables? But then do we really have a new position?137

135Spekkens is postulating a particularly structured set of questions—not trying at this stage
to explain where that structure comes from—and he is then imposing a constraint on how much
can be learnt about the answers. Another important difference from Zeilinger is that Spekkens’
theory is essentially a (toy) hidden variable theory: the questions answered are about the values
of the hidden variables (as he calls them, ‘ontic states’), whereas for Zeilinger, the questions
answered are instrumental, or operational, about the outcomes of measurements.
136He lists ‘the noncommutativity of measurements, interference, the multiplicity of convex

decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the
impossibility of a universal state inverter, the distinction between bipartite and tripartite en-
tanglement, the monogamy of pure entanglement, no cloning, no broadcasting, remote steering,
teleportation, entanglement swapping, dense coding, mutually unbiased bases, and many oth-
ers’ (Spekkens, 2007). This is a truly impressive list, but exactly what conclusions one might
draw from all this are open to debate (cf., for example, Myrvold (2010)).
137In his defense, Spekkens might reply: yes we would have a new position, even if it is simply

hidden variables being posited. Because in most standard hidden variable theories (cf. the Bohm
theory) the quantum state still enters as a significant entity: it typically plays some kind of role
in governing the dynamics. But if one took wholeheartedly the view that the quantum state
was only a state of incomplete information about hidden variables (as outlined, for example,
in Harrigan and Spekkens (2010)) then it should not be playing any kind of dynamical role at
all at the level of the hidden variables. Thus the novelty of the position would consist in the
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8.3 The Clifton–Bub–Halvorson characterization theorem

I have argued that Zeilinger’s Foundational Principle does not constitute a prin-
ciple from which we may derive the structure of quantum mechanics, nor which
allows us to understand the origins of entanglement and quantum randomness.
In essence, it is silent about the structure of the set of experimental questions,
yet it is this that turns out to be crucial. The next approach we shall consider,
that of Clifton, Bub, and Halvorson (Clifton et al., 2003), provides a happier
conclusion. Their project of characterizing quantum mechanics in terms of three
information-theoretic constraints does indeed achieve its aim, although it may be
questioned whether all three constraints are strictly necessary. More pressingly,
however, it may be questioned whether they didn’t begin rather too close to their
intended goal in the first place. I shall outline the approach first, before moving
on to raise some questions concerning the initial assumption of a C∗-algebraic
starting point; and then consider in what sense their axiomatic approach may be
said to provide an information-theoretic interpretation of quantum mechanics,
or to motivate such an interpretation.

8.3.1 The setting

Proceeding within a C∗-algebraic framework, Clifton, Bub, and Halvorson
(Clifton et al., 2003; Halvorson, 2004b) succeed in characterizing quantum theory
in terms of three information-theoretic constraints. We shall call this the CBH
characterization theorem.

The constraints are these:

1. No superluminal information transmission between two systems by meas-
urement on one of them;

2. no broadcasting;
3. no unconditionally secure bit-commitment.

Let us briefly review these various terms.
First, the setting is to assume a C∗-algebraic characterization of physical

theories (for a friendly introduction to this formalism, see for example Gud-
der (1977)). A C∗-algebra is an involutive Banach algebra B over the complex
numbers satisfying ‖A∗A‖ = ‖A‖2 for every A ∈ B.

Some definitions: A complex algebra is a complex vector space with an identity
and an associative, distributive product, AB. An involution on a complex algebra
B is a map ∗ : B �→ B, satisfying:

(A∗)∗ = A, (A+B)∗ = A∗+B∗, (λA)∗ = λ∗A∗, (AB)∗ = B∗A∗, ∀A,B ∈ B.
postulation of an empirically adequate hidden variable theory with a dynamics for the hidden
variables that made no appeal at all to the quantum state. At the fundamental level, the state
would be absent, even from the dynamics. It’s hard to see how such a theory could plausibly
be constructed; and we would need to see it constructed. But it would certainly be novel. (See
Pusey et al. (2012) and Maroney (2012) for some significant difficulties lying in the way of such
models, and Lewis et al. (2012) for an example, though one acknowledged by the authors as
contrived.)
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A Banach algebra is an algebra equipped with a norm such that ‖AB‖ ≤
‖A‖‖B‖, complete in the norm topology.

An element of B is self-adjoint if A∗ = A. A familiar example of a C∗-algebra
is given by the set B(H) of bounded linear operators on a Hilbert space H, where
the involution operation ∗ is the familiar adjoint †. The self-adjoint elements of
a C∗-algebra are usually interpreted as observables.

In a C∗-algebra, a state, ω, is a linear functional on the C∗-algebra that is
i) positive, ω(AA∗) ≥ 0, and ii) normalized, ω(1) = 1. The state is to be under-
stood as ascribing expectation values to the elements of the algebra correspond-
ing to observable quantities.

In this framework, the schematic picture of a physical theory involves ‘black
box’ preparation and measuring devices. A fixed preparation procedure in the
lab will give rise to certain observed average values for measurements using a
range of devices; systems prepared in this way will correspondingly be assigned
a particular state, ω. The measuring devices themselves are associated with el-
ements of the algebra corresponding to observable quantities: we can imagine
black boxes in the lab with the letters ‘A’, ‘B’, ‘C’ and so on, inscribed on their
surfaces, where A, B...are self-adjoint elements of a C∗-algebra.

Finally, Clifton et al. (2003) assume a very general form of dynamical evolu-
tion, viz., non-trace increasing completely positive maps (see Appendix A.2).

By ‘a quantum theory’, Clifton, Bub, and Halvorson mean a theory formu-
lated in C∗-algebraic terms for which the algebras of observables pertaining to
distinct systems commute, for which the algebra of observables on an individual
system is non-commutative, and which allows space-like separated systems to
be in entangled states. Roughly speaking, these characteristics are associated
respectively with the first, second, and third information-theoretic constraints.
Now, while there is clearly much, much more to quantum theory than these rather
abstract algebraic features, it is nonetheless plausible to argue that together they
do capture the distinctive structural features of the theory.138

It is of course an important pre-supposition of the general argument that
the C∗-algebraic approach be a sufficiently general one, and Clifton, Bub, and
Halvorson argue accordingly, e.g.:

. . . it might seem that C∗-algebras offer no more than an abstract way
of talking about quantum mechanics. In fact, the C∗-algebraic formalism
provides a mathematically abstract characterization of a broad class of
physical theories that includes all classical mechanical particle and field
theories, as well as quantum mechanical theories. (Bub, 2004, p. 245)

Thus, as well as reflecting that the set of bounded operators on a Hilbert space is
a C∗-algebra, and that via the Gelfand, Naimark, and Segal (GNS) construction
and the Gelfand–Naimark theorem, we know that every abstract C∗-algebra
has a concrete faithful (i.e., isomorphic) representation as a ∗-sub-algebra of the
bounded operators on some appropriate Hilbert space H (cf. Clifton et al., 2003),

138Although see Myrvold (2010, §2) for a particular caveat.
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it is pertinent to point out that classical phase space theories may be formulated
in C∗-algebraic terms, and moreover to note that it may be shown that every
commutative C∗-algebra may be given a phase space representation (cf. Clifton
et al., 2003; Bub, 2004). However, as we shall shortly see, some questions can
nevertheless be raised about whether the starting assumption of a C∗-algebraic
framework may perhaps be overly strong.

Turning now to the constraints featuring in the characterization theorem.
The very first, and a non-information theoretic one, is a constraint not yet men-
tioned, intended to capture the idea that if we have two sub-algebras A and B
of a C∗-algebra C, whose self-adjoint elements are to represent, respectively, the
observables of two distinct systems A and B, then we need to ensure that A and
B are distinct objects. Clifton et al. (2003) adopt the notion of C∗-independence
to this end, the criterion being that the preparation of any state of A has to be
compatible with preparation of any state of B. That is, for any state ρ1 of A
and for any state ρ2 of B, there is some joint state ρ of the joint algebra A ∨ B
such that ρ|A = ρ1 and ρ|B = ρ2. (The significance of requiring a notion of
independence of this sort is elaborated in Halvorson and Bub (2005).)

The first of the information-theoretic constraints, no superluminal signalling
via measurement, is fairly self-explanatory, corresponding to the no-signalling via
entanglement feature in ordinary quantum mechanics. The requirement is that
the state of system B, say, should be unaffected by any (non-selective) operation
performed on the other system. Clifton et al. (2003) show that this will hold iff
the algebras A and B commute (kinematic independence).

The property of no broadcasting , the second of the three constraints, is a
generalization of the idea of no cloning appropriate to mixed states (Barnum
et al., 1996). The requirement on a cloning device was that it take as an input
a system in any arbitrary state |α〉 and return two systems, each in the state
|α〉. Now, one might consider instead a process which takes as an input a system
in a state ρ and returns as an output a pair of systems A and B with a joint
state ρ̃AB, which may not be equal to ρ ⊗ ρ, but for which the reduced states
of A and B are equal to ρ, TrBρ̃AB = TrAρ̃AB = ρ. Such a process is termed
broadcasting. (Clearly, it represents a more general process only when the input
state is mixed; for pure states it reduces to cloning.) Barnum et al. (1996) showed
that in quantum mechanics, broadcasting is possible for a set of states ρi iff they
are commuting.

Clifton et al. (2003) first generalize the notion of broadcasting to the setting
of C∗-algebraic states, and then prove that if A and B are abelian, then there
is an operation on A ∨ B that broadcasts all states of A, while, conversely, if
for each pair {ρ0, ρ1} of states of A, there is an operation on A ∨ B that may
broadcast this pair, then A is abelian.

So, thus far it has been proved that for a C∗-algebraic theory, if it satisfies
no-signalling and no-broadcasting, it must have algebras of observables that are
non-commuting for individual systems, while observables for distinct systems
commute; and conversely.
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The third information-theoretic constraint—no bit-commitment—takes a lit-
tle more explaining. A bit-commitment protocol is an information-theoretic pro-
tocol in which one party, Alice, provides another party, Bob, with an encoded
bit value (0 or 1) in such a way that Bob may not determine the value of the
bit unless Alice provides him with further information at a later stage (the ‘rev-
elation’ stage), yet in which the information that Alice initially gives to Bob is
nonetheless sufficient for him to be sure that the bit value he obtains following
revelation is indeed the one that Alice committed to initially. An illustrative
analogy would be a case in which Alice chooses a bit value and writes it on a
piece of paper. She then locks the piece of paper in a safe and delivers the safe to
Bob, but keeps the key to the safe herself. Bob may not immediately determine
the value of the bit as the paper is locked in the safe, but he does know that
when Alice later gives him the key, the bit value he will learn after opening the
safe and reading the paper is indeed the one that Alice wrote down earlier. An
insecure bit-commitment protocol is one in which either party can cheat: Bob,
by determining something about the encoded bit value prior to revelation, or
Alice, by remaining free to reveal either bit value at will at the revelation stage.

Bit-commitment is not unconditionally secure classically because the en-
crypted information that Alice initially provides to Bob will always display some
bias towards the encoded bit value that will allow Bob to cheat. It was shown
by Lo and Chau (1997) and Mayers (1997) that bit-commitment is not secure in
the quantum mechanical case either, but importantly, for a very different reason.

In ordinary quantum mechanics we are familiar with the idea of the ambiguity
of density operators: quite different preparation procedures may give rise to the
same density operator, and one will not be able to determine which preparation
procedure was used by performing measurements on the systems prepared. This
seems to suggest a way in which quantum bit-commitment might be possible.
If Alice were to associate her commitment with two different preparations of a
given density operator, then Bob would not be able to determine anything about
the bit value thus encoded; if Alice later tells him the preparation procedure she
used, then we might be able to arrange things so that Bob can check that she is
true to her word in having previously committed to a specific bit value.

An example might go like this. Consider a spin-1/2 system: a 50/50 mixture
of spin-up and spin-down in the z-direction is indistinguishable from a 50/50 mix-
ture of spin-up and spin-down in the x-direction—both give rise to the maximally
mixed density operator 1/21. Alice might associate the first type of preparation
with a 0 commitment and the second with a 1 commitment. Bob, when presented
with a system thus prepared, will not be able to determine which procedure was
used. Alice also needs to keep a record of which preparation procedure she em-
ployed, though, to form part of the evidence with which she will convince Bob
of her probity at the revelation stage. Thus, for a 0 commitment, Alice could
prepare a classically correlated state of the form:

0 commitment: ρ12
0 =

1
2
(|↑z〉〈↑z | ⊗ |↑z〉〈↑z | + |↓z〉〈↓z | ⊗ |↓z〉〈↓z |),
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whilst for a 1 commitment, she could prepare a state

1 commitment: ρ12
1 =

1
2
(|↑x〉〈↑x | ⊗ |↑x〉〈↑x | + |↓x〉〈↓x | ⊗ |↓x〉〈↓x |).

System 2 is then sent to Bob.
At the revelation stage, Alice declares which bit value she committed to, and

hence which preparation procedure she used. The protocol then proceeds in the
following way: If she committed to 0, Alice and Bob both perform σz meas-
urements and Alice declares the result she obtains, which should be perfectly
correlated with Bob’s result, if she really did prepare state ρ12

0 . Similarly, if
she committed to 1, Alice and Bob both perform σx measurements and Alice
declares her result, which again should be perfectly correlated with Bob’s result,
if in truth she did prepare state ρ12

1 . If the results reported by Alice and obtained
by Bob don’t correlate then Bob knows that Alice is trying to mislead him.

The trouble with this otherwise attractive protocol is that Alice is able to
cheat freely by making use of what is known as an EPR cheating strategy . Thus,
rather than preparing one of the states ρ12

0 or ρ12
1 at the commitment stage,

Alice can instead prepare an entangled state, such as the Bell state |φ+〉12. The
reduced density operator for Bob’s system will still be 1/21, but Alice can now
simply wait until the revelation stage to perform a suitable measurement on her
half of the entangled pair and prepare Bob’s system at a distance in whichever
of the two different mixtures she chooses.

It turns out that this sort of EPR cheating strategy will always be available
for any quantum bit-commitment protocol (Lo and Chau, 1997; Mayers, 1997;
Bub, 2001): the possibility of preparing entangled states shared between Alice
and Bob rules out unconditionally secure bit-commitment in quantum mechanics.
The result in the general case relies upon the theorem of Hadjisavvas (1981) and
Hughston et al. (1993), prefigured in Schrödinger (1936), which tells us that
for a bipartite quantum system, any mixture of states on one system may be
prepared by performing a suitable measurement (which may involve an ancilla)
on the other system, when the pair are in an appropriate entangled state (viz.,
one giving the correct reduced state for the first system). Following Schrödinger
(1935a, 1936), this phenomenon associated with entanglement is often called
remote steering .

The intuitive role for the no bit-commitment axiom in an attempted
information-theoretic characterization of quantum mechanics is then as follows.
In quantum mechanics, the ambiguity of density operators seems to hold out
the possibility of secure bit-commitment, but this possibility is vitiated by the
fact that entanglement may exist between two widely separated parties. Now,
we could consider a class of possible theories which were locally like quantum
mechanics in that they allowed ambiguous mixtures to be prepared, yet in which
entanglement between separated systems was ruled out, perhaps decaying over
distance—such a theory was in fact entertained by Schrödinger (1936) as a way
of resolving the EPR dilemma. Call such a theory a Schrödinger-type theory. In
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a Schrödinger-type theory, secure bit-commitment would be possible as the EPR
cheating strategy, which relies on entangled states, cannot be employed. In order
to cheat, we would need entanglement.

But now suppose that in our attempted axiomatic characterization we arrive
at a class of theories which we know all to allow ambiguous mixtures. If we were
then to add to our list of axioms the further requirement that bit-commitment
should be impossible, then this would seem tantamount to picking out those
theories that do contain non-local entanglement, as, drawing on the analogy
with the familiar quantum mechanical case, we might expect that entanglement
is required to cheat. By insisting on no bit-commitment in our axioms, we rule
out the Schrödinger-type theories from our consideration.

That is the intuitive idea. Clifton et al. (2003) argue rigorously as follows.
First they show that a C∗-algebra A is nonabelian iff it allows ambiguous mix-
tures, i.e., distinct mixtures of pure states giving rise to the same mixed state. As
in the spin 1/2 example given above, such mixtures may be used as the basis for
Alice’s bit commitment. They then prove that if Alice and Bob only have access
to classically correlated states (convex combinations of product states), then the
bit-commitment protocol based on these distinct mixtures will be secure: there
is no classically correlated state that will allow Alice to change her commitment
from 0 to 1 at the revelation stage. The contrapositive statement of this result is
that if, for a theory in which the algebras of observables for individual systems
are nonabelian, unconditionally secure bit-commitment is not possible then en-
tanglement between spatially separated systems must be allowed. The converse,
that for any quantum theory in the sense of Clifton et al. (2003), unconditionally
secure bit-commitment is not possible, was proven by Halvorson (2004b).

The achievement of the CBH characterization theorem then, is, first of all,
a formulation of the three information-theoretic constraints in the general set-
ting of C∗-algebraic theories, followed by the main result of a characterization
of quantum theory in terms of these three constraints: Any theory formulated in
C∗-algebraic terms that satisfies the three information-theoretic constraints will
take the form of a quantum theory; with a non-commuting algebra of observables
for individual systems, kinematic independence for the algebras of space-like sep-
arated systems and the possibility of entanglement between space-like separated
systems; while conversely, any C∗-algebraic theory with these distinctively quan-
tum properties will satisfy the three information-theoretic constraints.

How much light does this result shed on the nature or origin of quantum
mechanics? Clifton, Bub, and Halvorson suggest that

The fact that one can characterize quantum theory . . . in terms of just a
few simple information-theoretic principles . . . lends credence to the idea
that an information-theoretic point of view is the right perspective to
adopt in relation to quantum theory. (Clifton et al., 2003, p. 4)

Certainly, the CBH characterization theorem indicates that concentrating on
some information-theoretic principles has proven fruitful in providing a novel
axiomatization of the theory, but is something more than this intended by the
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statement that ‘an information-theoretic point of view is the right perspective
to adopt’? In particular, does the CBH characterization shed light on how we
should understand the quantum formalism more broadly? Above all, does it have
implications for the traditional interpretive questions in quantum mechanics; for
the knotty problems of the meaning of the formalism? Clifton et al. (2003) seem
to suggest so:

We . . . suggest substituting for the conceptually problematic mechani-
cal perspective on quantum theory an information-theoretic perspective.
That is, we are suggesting that quantum theory be viewed, not as first
and foremost a mechanical theory of waves and particles...but as a theory
about the possibilities and impossibilities of information transfer. (Clifton
et al., 2003, p. 4)

The thought is pursued further by Bub (2004):
Assuming the information-theoretic constraints are in fact satisfied in our
world, no mechanical theory of quantum phenomena that includes an ac-
count of measurement interactions can be acceptable, and the appropriate
aim of physics at the fundamental level becomes the representation and
manipulation of information. Bub (2004, p. 242), my emphasis.

We shall return presently to the question of the interpretational implications
of the CBH characterization. First, let us consider some points relating to the
C∗-algebraic starting point of the theorem.

8.3.2 Some queries regarding the C∗-algebraic starting point

It is of course evident that any axiomatic characterization of a physical theory
has to start from somewhere, and as mentioned above, Clifton, Bub, and Halvor-
son suggest that adopting a C∗-algebraic framework is an appropriately neutral
starting point. However, some questions can be raised about the strength of this
starting assumption.

For some, the very fact that C∗-algebras make use of a complex vector space,
as opposed, say, to a real or quaternionic one, may already be to assume too
much.139 A second sort of worry is raised by the existence of various toy theories
that satisfy the three information-theoretic constraints of the CBH characteri-
zation theorem and yet are palpably not quantum mechanics (Spekkens, 2007;
Smolin, 2005). These toy theories are not counterexamples in the logical sense to
the CBH theorem, as they fail to satisfy the requirements of the theorem: Halvor-
son and Bub (2005) argue that Smolin’s toy theory exhibits physical patholo-
gies as it violates an analogue of the C∗-independence condition, and Halvorson
(2004a) proves that Spekkens’ toy theory is not a C∗-algebraic theory. But if,
from the point of view of the CBH characterization, what distinguishes Spekkens’
theory, which satisfies the three information-theoretic constraints, from quantum
mechanics, is the fact that it is not a C∗-algebraic theory, then this throws into
stark relief the question of what the important physical, or information-theoretic,

139Cf. Fuchs (2001, p. 5), for example; this complaint is noted in Bub (2004); Halvorson
(2004a).
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content of the initial C∗-algebraic assumption is. Indeed one can press the ob-
jection that for the finite dimensional case there are only really three kinds
of theories that are allowed within the C∗-algebraic setting:140 classical theo-
ries, quantum theories with superselection rules, and quantum theories without
superselection rules.141 This is not a terribly impressive range of options.

For the moment, however, we shall pursue two further questions. The first
is discussed in some depth in Halvorson (2004a), but it bears re-emphasizing. It
concerns the role that can be attributed to the no-bit commitment axiom when
one starts in the C∗-algebraic setting.

8.3.2.1 The role of no bit-commitment As we have noted, the intuitive role
for the no bit-commitment axiom in the characterization theorem is to ensure
that one arrives at theories which allow entanglement between separated systems.
However, it is known (Landau, 1987; Bacciagaluppi, 1994) that if the C∗-algebras
A and B associated with two distinct (spatially separated) systems are kinemat-
ically independent and non-commutative, then it already follows automatically
that there are entangled states for the joint system, in the C∗-algebraic frame-
work. That is, if we assume no-signalling and no-broadcasting, then entanglement
follows automatically, and a further axiom is not required. But this seems to in-
dicate that the formal structure of C∗-algebras is not as neutral as one might
suppose and is really doing a good deal of work in arriving at the distinctive
quantum features we are seeking to derive.142

This fact is already noted in Clifton et al. (2003). There the suggestion is
made that the third axiom is required nonetheless, to ensure that the entangled
states for spatially separated systems that arise are actually part of the physical
state space, as opposed to being mere mathematical artefacts of the formalism.
But this argument seems unconvincing. Whilst we are familiar with the idea
that it may sometimes be necessary to place restrictions on the allowed states
within a given state space (superselection rules and the like), the case we are
now being asked to entertain is of a very different kind. It is not that we have
a state space that we are restricting by adding a further clause—ruling certain
states out—rather, we have a particular state space postulated, and are being
asked to consider having to rule certain states in as physical. But ruling states
in rather than out by axiom seems a funny game. Indeed, once we start thinking
that some states may need to be ruled in by axiom then where would it all end?
Perhaps we would ultimately need a separate axiom to rule in every state, and
that can’t be right. Thus the role that is supposed to be being played by the
third axiom remains obscure.

140I owe this observation to Matt Leifer (cf. Barnum et al. (2006, §6), also Myrvold (2010)).
141These correspond to theories with diagonal matrices, block-diagonal matrices and non-

diagonal matrices, respectively.
142This is consonant with Leifer’s point above: in a C∗-algebraic framework, as soon as one

insists on any feature which is non-classical, e.g., no-broadcasting, one will immediately be
catapulted all the way into a fully quantum theory.
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One might try to re-phrase the argument so as not to appeal to the ob-
jectionable idea of the axiom being required to ‘rule states in’.143 One might
instead emphasize that the role of the no bit-commitment axiom is to rule out a
certain class of theories—namely, Schrödinger-type theories—that would still be
on the table otherwise. But we should be clear in what sense the Schrödinger-
type theories are an option once one has postulated the first two information-
theoretic axioms. We know that all (C∗-algebraic) theories consistent with the
first two axioms allow entangled states between space-like separated systems,
thus a Schrödinger-type theory, which lacks such states, could only arise as the
result of imposing further restrictions on allowed theories that cut the entangled
states out.144 Thus a Schrödinger-type theory is only an option in the sense that
we could arrive at such a theory by imposing further requirements to eliminate
the entangled states that would otherwise occur naturally in the theory’s state
space. (Of course, such a theory would not be quantum mechanics, and in the
light of the experimental violation of Bell inequalities, we know such a theory
would not be empirically adequate, but that is by-the-by.)

Having postulated the first two axioms, the pertinent question to ask is
whether the desired class of theories has then been delimited. The answer, given
the C∗-algebraic setting, is indeed ‘yes’. The fact that there may be other types
of (perhaps rather gerrymandered) theory that could be reached by imposing
further requirements of some sort would not seem to undermine this claim. We
don’t need to appeal to the no bit-commitment axiom to leave us only with
quantum-type theories: all the theories before us (following the first two axioms)
are of the desired type.

The no bit-commitment condition does not seem, then, to play a genuine role
in characterizing quantum theory in a C∗-algebraic setting, but to figure more as
a corollary: quantum theory may be characterized as a C∗-algebraic theory that
abjures both superluminal signalling by measurement and broadcasting; having
thus reached our desired class of theory, it transpires that this desired class will
also be one for which secure bit-commitment is not possible. Note, though, that
a scenario could be imagined in which the no bit-commitment condition would
play more of an active role. If, for some reason, we were unsure about whether a
Schrödinger-type theory or a quantum theory were the correct physical theory,
then being informed by an oracle whether or not unconditionally secure bit-
commitment was possible would be decisive: we would be saved the effort of
having to go out into the world and perform Aspect experiments. But as this is
not our position, the no bit-commitment axiom does not play an active role in
picking out quantum theory.

143Bub, personal communication.
144N.B. A further option may be noted. It could be that the dynamics is such as to lead

to decay of entanglement on spatial separation—but to consider this possibility is, strictly
speaking, to go beyond the remit of the CBH theorem which is intended to concern itself with
the quantum mechanical kinematics.
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The position we have reached seems to be as follows. If one is attempting
to provide a characterization of quantum mechanics in information-theoretic
terms, it seems reasonable to desire an information-theoretic explanation of the
existence of entanglement (Clifton et al., 2003; Bub, 2004). Starting from the C∗-
algebraic setting of the CBH characterization theorem, however, entanglement
just seems to spring automatically out of the mathematical machinery, when
one would hope instead to be providing an information-theoretic explanation.
We have seen, moreover, that the no bit-commitment condition is precluded
from providing such an explanation in the context of the CBH theorem. How,
then, might one proceed?

One option, as Bub (2004, p. 6) notes is to conjecture that in a weaker alge-
braic setting (he mentions Segal algebras; another kind of option will be discussed
briefly below) the existence of entangled states would not follow from the first
two information-theoretic axioms, but would require the imposition of the no
bit-commitment axiom in addition. On the other hand, however, it is also con-
ceivable that the intuitive argument outlined above linking no bit-commitment to
the existence of entanglement might simply be misleading. Perhaps, in the end,
it may turn out not to be possible to cash out the intuitive argument formally.
(We will see a result bearing on this in Section 8.4.)

Another option, if one is after a proper information-theoretic explanation of
the appearance of entanglement, would be to provide an information-theoretic
reason for the initial choice of C∗-algebras as the mathematical framework. Then
the fact that entanglement emerges naturally in the framework would not be
worrying. However, in this case, it is not immediately obvious that one should
expect such a reason to be based on the possibility of bit-commitment.

8.3.2.2 Additivity of expectation values There is another way to illustrate the
thought that adopting a C∗-algebraic approach is an overly restrictive starting
point; to illustrate how the framework may not be quite so neutral as it first
appears. This concern centres on the nature of states in C∗-algebraic theories.

Ever since Bell’s influential criticism of von Neumann’s no hidden variables
theorem (Bell (1966), von Neumann (1955, pp. 305–324)) it has been widely
appreciated that it is an extremely strong assumption to adopt a requirement of
additivity of expectation values for observable quantities. Vide Bell:

. . . the additivity of expectation values . . . is a quite peculiar property of
quantum mechanical states, not to be expected a priori. (Bell, 1966, §3)

In particular, he goes on to note, when one is considering hidden variable theories:
There is no reason to demand [expectation value additivity] individually
of the hypothetical dispersion free states, whose function it is to reproduce
the measureable peculiarities of quantum mechanics when averaged over.
(Bell, 1966, §3)

These familiar observations are relevant to our concerns because the C∗-algebraic
notion of state makes precisely this assumption: states are linear functionals of
observables. In what follows I shall seek to elaborate this concern by adapting
the methodology of Valentini.
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It is well known that in many ways, the de Broglie–Bohm theory is char-
acteristic of what a hidden variable theory for quantum mechanics must look
like. We know, for example, that any acceptable hidden variable theory would
have to be nonlocal and contextual; indeed it was the example of the de Broglie–
Bohm theory that led Bell to pose the question of whether any hidden variable
theory replicating the predictions of quantum mechanics would have to be non-
local. Now the de Broglie–Bohm theory reproduces the empirical predictions
of quantum mechanics if and only if the probability distribution P for particle
positions is given by |Ψ|2. That P equals |Ψ|2 is an additional assumption in
the standard de Broglie–Bohm theory; the (primary) role of the wavefunction
as a guiding field is logically independent of its role in determining the distri-
bution for particle position. Bohm (1952) therefore explicitly countenanced the
possibility that situations could arise in which P would differ from |Ψ|2 and
thus empirical predictions would be expected that differ from those of quantum
theory; in particular, violation of the position–momentum uncertainty principle
becomes possible.145 However, he also went on to suggest that an argument could
be given that the distribution P can be expected to tend to |Ψ|2 as a kind of
equilibrium distribution.

This thought was developed in detail by Valentini (1991a) who showed that
the relation P = |Ψ|2 can indeed be derived as the ‘quantum equilibrium’ dis-
tribution towards which systems will tend, as the result of a ‘subquantum H-
theorem’. He also demonstrated that signal-locality (the impossibility of super-
luminal signalling via measurement) and the uncertainty principle hold in general
only in the equilibrium state, i.e., only if P = |Ψ|2 (Valentini, 1991b). Thus the
features of signal-locality and uncertainty can be understood to arise as effective
features of an underlying nonlocal and deterministic theory, a pleasing result if
one is exercised by the apparently conspiratorial fact that quantum mechanics
(on many interpretations) gives rise to nonlocality, but only of a carefully re-
stricted kind (‘passion-at-a-distance’?) that does not permit signalling and hence
avoids explicit conflict with relativity.

More recently, Valentini (2002b) has shown that the role of the de Broglie–
Bohm theory as a stereotype hidden variables theory extends further: it can
be shown that for any deterministic hidden variable theory, signal-locality will
hold in general only in equilibrium. These facts are pertinent to our discussion
of the axiomatic derivation of quantum mechanics from information-theoretic
principles, as many of the principles appealed to will be, from the perspective of
a deterministic hidden variable theory, merely contingent and accidental features
of the equilibrium state. This factor leads Valentini (2002a,c) to discuss the
possibility of ‘sub-quantum’ information processing that would be possible using

145 ‘If the theory is generalized . . . The probability density of particles will cease to equal |Ψ|2.
Thus experiments would become conceivable that distinguish between |Ψ|2 and this probability;
and in this way we could obtain an experimental proof that the normal interpretation, which
gives |Ψ|2 only a probability interpretation, must be inadequate’ (Bohm, 1952, I §9).
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non-equilibrium matter (perhaps matter left over from early stages of the life of
the universe (Valentini, 2001)).

In particular, out of equilibrium, instantaneous signalling would be possible,
thus conflicting with the first of the three information-theoretic conditions of the
CBH theorem; and it would also become possible to distinguish non-orthogonal
states (Valentini, 2002c, §5), leading to a violation of no-cloning and hence con-
flict with the no-broadcasting constraint of CBH.

Now we may adopt Valentini’s framework of deterministic hidden variables
theories which admit of an equilibrium distribution that ensures empirical agree-
ment with standard quantum mechanics, along with non-equilibrium distribu-
tions that in general lead to violations of the quantum predictions, in order to
elucidate the sense in which the assumption of linearity associated with the C∗-
algebraic notion of state may be seen as problematic. In brief, the assumption of
linearity, hence additivity of expectation values, rules out by fiat the possibility
of non-equilibrium deterministic hidden variables theories. That is, one can show
that additivity of expectation values can be expected to hold only in equilibrium
for such hidden variable theories. Thus, by taking C∗-algebras as our theoreti-
cal starting point, we are immediately ruling out the possibility of deterministic
hidden variables theories in the general case. But this is a big assumption.

The relevant result is a straightforward generalization of Bell’s argument
contra von Neumann.146 We will consider schematic hidden variables theories
of the following sort. Assume (following Bell (1966, 1982)) a function f which
determines the value of the outcome of an experiment measuring the quantum
mechanical observable A, for an initial hidden variable λ and quantum state |ψ〉.
So f is a function f(λ, |ψ〉, A) whose range is the set of eigenvalues of A.147 The
expectation value of the observable A will then be given in the usual way by
averaging over the space Λ of hidden variables:

〈A〉 =
∫
dλP (λ)f(λ, |ψ〉, A), (8.1)

where P (λ) is the probability distribution for the hidden variables λ. (This dis-
tribution may also depend on the quantum state |ψ〉.) Ex hypothesi there exists
an equilibrium distribution Peq(λ) for which eqn (8.1) will return the quantum
expectation values.

Now we know that the function f will not be linear in the observable argument
A, as the outcome of the measurement has to be one of the eigenvalues of the
operator in question, and the eigenvalues of linearly related operators are not

146See also Valentini (2003) for a closely related discussion.
147Clearly, the mapping f will in general also depend on the way in which the observable in

question is measured (in order to avoid the sorts of problem made famous by Kochen–Specker).
For example, in the de Broglie–Bohm theory, the mapping from the initial value of the hidden
variable to determinate outcome depends on the measurement Hamiltonian. (Compare also
Valentini (2003, p. 6).)
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themselves linearly related (cf. Bell, 1966, 1982). The requirement of additivity
of expectation values is that

〈A+B〉 = 〈A〉 + 〈B〉;
in our deterministic hidden variable context this will become:∫

dλP (λ)f(λ, |ψ〉, A+B) =
∫
dλP (λ)

[
f(λ, |ψ〉, A) + f(λ, |ψ〉, B)

]
. (8.2)

Now we know this equation holds for the equilibrium distribution Peq(λ): it has
to for empirical adequacy; but it can hold for arbitrary P (λ) only if

f(λ, |ψ〉, A+B) = f(λ, |ψ〉, A) + f(λ, |ψ〉, B),

that is, only if f is linear in the observable argument. But we know it isn’t, hence
expectation values won’t be additive for general distributions for the hidden
variables.

Thus we see that the assumptions involved in the C∗-algebraic notion of state
are arguably overly strong when seeking to provide an axiomatic characterization
or derivation of quantum mechanics. A large and potentially interesting class of
theories is being ruled out by assumption. The requirement of expectation value
additivity will not hold in general for a non-equilibrium deterministic hidden
variable theory. Even if one is not particularly enamoured of hidden variables,
this nonetheless serves as a vivid illustration of the fact that the assumption of
states as linear functionals is a non-trivial one.

Having presented this argument, however, it is important to note that there
is a danger of a certain degree of failure of communication between a proponent
of the argument and advocates of C∗-algebras as a comprehensive framework for
describing physical theories. For, the latter will argue, there is surely no problem;
the definite particle trajectories of the de Broglie–Bohm theory, for example,
can happily be incorporated into the C∗-algebraic framework: the algebra of
observables for the de Broglie–Bohm theory, in fact, will be the commutative
algebra generated by the position observable (cf. Bub, 2004, pp. 257–258).

The source of the trouble is a possible equivocation over what is meant by
‘observables’ by the two parties. In the argument that I have presented, ‘an
observable’ refers to a quantum mechanical observable; in concrete terms, to
those quantities measured in the standard ways by quantum physicists in the
lab. By contrast, when it is said that de Broglie–Bohm trajectories may be
described in the terms of a C∗-algebraic theory, it is not these observables which
are the observables of the theory, hence my argument does not get a grip; but
equally, the theory in question does not then (in general) assign values to the
outcomes of the experiments we might expect to be interested in—those being
performed by quantum physicists.148

148Another way of putting it is that you might be able to describe de Broglie–Bohm trajecto-
ries in the C∗-algebraic formalism, but you won’t be able to describe the statistical predictions
of the theory in the general case.
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If one is interested in a theory which assigns values to the outcomes of meas-
urements that are performed by quantum physicists, i.e., to measurements of
observables with the quantum structure (and such theories, of course, have a
prominent history in discussion of the foundations of quantum mechanics), then
the argument given above will apply; in the general case, expectation value ad-
ditivity will not hold. Even if one is unmoved though and remains persuaded of
the generality of the C∗-algebraic framework for all cases of interest, the argu-
ment described here remains important. It provides another example, to add to
those already provided by Valentini, of where the assumptions involved in the
CBH characterization theorem depend, from the point of view of a deterministic
hidden variable theory, on a special feature of quantum equilibrium: that is, on
contingent and accidental matters of fact that will not obtain in general.

8.3.3 Questions of Interpretation

Perhaps the most intriguing question from the philosophical point of view is
whether, or to what extent, the CBH characterization theorem has implica-
tions for the familiar interpretational questions of quantum mechanics. As we
have noted, Clifton et al. (2003) do seem to suggest that some implications of
this nature are forthcoming. On reflection, however, this suggestion may appear
somewhat surprising: the aim of their enterprise, after all, was to provide an
axiomatic derivation of the mathematical structure of quantum theory; yet we
are all too aware that this structure may be subject to interpretation in very
many different ways (we saw, for example, an incomplete selection of views in
Section 4.5). One would think that to provide an axiomatic characterization of a
particular mathematical structure is to do just that and no more. Surely, when
faced with the same old structure before us once again, the standard range of
interpretations will be as applicable as ever?

Clifton et al. (2003) suggest, though, that their theorem intimates that quan-
tum mechanics may be seen as a principle theory and it is in this sense that an
interpretation is provided. Bub (2004) adopts a rather different tack. I shall
maintain against these arguments that the rather negative line of assessment
just mooted regarding the interpretational implications of the CBH theorem is
nevertheless on track.

8.3.3.1 Quantum mechanics as a principle theory? The distinction between
principle and constructive theories is familiar from Einstein’s discussions of his
1905 methodology in arriving at the correct form of relativistic kinematics.149

The paradigm example of a principle theory is thermodynamics, which is to be
contrasted with a constructive theory such as the kinetic theory of gases. While

149His most detailed presentation of the distinction is to be found in Einstein (1919). See
Brown and Pooley (2001, 2006) for recent discussions of the principle/constructive distinction in
relativity; in particular for their emphasis that—as recognized by Einstein—principle theories
lose out to constructive theories in terms of explanatory power. As they note (Brown and
Pooley, 2001), while the distinction between principle and constructive theories is not absolute,
it is nonetheless enlightening.
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constructive theories seek to ‘build up a picture of the more complex phenomena
out of the materials of a relatively simple formal scheme from which they start
out’ (Einstein, 1919), principle theories proceed from the basis of some well-
grounded phenomenological principles that are found to govern a class of physical
processes of interest (e.g., the non-existence of perpetual motion machines of
the first and second kind, in the case of thermodynamics), in order to derive
constraints that all instances of such processes have to satisfy.

As recounted in his Autobiographical Notes (Einstein, 1949, pp. 49ff.), Ein-
stein turned to the methodological example of thermodynamics as a faute de
mieux, given the confused state of knowledge in electrodynamics and mechanics
at the turn of the twentieth century:

Gradually I despaired of the possibility of discovering the true laws [of
electrodynamics and mechanics] by means of constructive efforts based
on the known facts. The longer and more desperately I tried, the more
I came to the conviction that only the discovery of a universal formal
principle could lead us to assured results. The example I saw before me
was thermodynamics. (Einstein, 1949, p. 49)

The Principle of Relativity and the Light Postulate became, of course, the prin-
ciples that Einstein fixed upon; and these allowed him to derive the correct form
of the co-ordinate transformations between inertial frames.150

Now Clifton et al. (2003) suggest that their theorem shows that quantum
mechanics may be understood as a principle theory—where the relevant princi-
ples are information-theoretic—and that in this sense an interpretation of quan-
tum mechanics is provided. One has arrived at a description of the conditions
(viz., the obtaining of the three information-theoretic constraints) under which
quantum theory will be true. To illuminate this sense of interpretation, they
present an illustrative fable in which one imagines that relativity had originally
been formulated geometrically by Minkowski as an algorithm for relativistic kine-
matics, and then Einstein came along and provided an interpretation of this al-
gorithm by presenting his principle theory derivation of the Lorentz transforma-
tions. Similarly, the analogy goes, we have quantum mechanics as an algorithm
for predicting the results of various experiments; and this algorithm now finds an
interpretation in terms of the three information-theoretic constraints. We now
understand how the world is organized so that quantum theory has to be true
(or so the claim).

However, it may be doubted whether this approach provides us with a partic-
ularly interesting sense of ‘interpretation’. To pursue the analogy with relativity:
Einstein showed us why the co-ordinate transformations between inertial frames
had to be the Lorentz transformations—if they were not then one or more of

150Note, however, that it would be a mistake to construe special relativity purely as a principle
theory. Einstein was later to refer to the ‘sin’ of treating rods and clocks as unanalysed bodies,
as opposed to ‘moving atomic configurations’ (Einstein, 1949, pp. 55–57); see also Pauli (1981,
p. 14) in this regard. This point is elaborated in detail in Brown (1993); Brown and Pooley
(2001, 2006), and especially Brown (2005).
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the principles (or the symmetry assumptions) in his derivation would have to be
false. But this explanation, or interpretation, remains silent on a very important
point. The fact that the Lorentz transformations are the correct transformations
between inertial frames encodes a great deal of detail about the dynamical be-
haviour of (ideal) rods and clocks—these are, after all, complex material bodies.
Arguably, the fact that the speed of light, say, is measured to be the same in all
inertial frames is ultimately to be explained in terms of the dynamical behaviour
of rods and clocks—a constructive style of explanation (cf. Brown, 2005).151 In
any event, it is clear that if appeal to the principles of relativity is providing an
interpretation of the formulae of relativistic kinematics, it is an interpretation
that glosses over a lot: there is a good deal more to be said about the conditions
under which the Lorentz transformations constitute the correct transformations
between inertial frames.

Analogously, in the case of quantum mechanics, given the three information-
theoretic constraints, the CBH theorem provides us with an explanation of why
the states and observables in our theory have to take their characteristic quan-
tum structure: if they did not, at least one of the assumptions would be false.
But nothing is said about how the world should be understood if states and
observables take on this form.

By assumption, the world is such that the information-theoretic constraints
are true, but this is too general and it says too little: it is consistent with a wide
range of ways of understanding the quantum formalism.

To elaborate: If one were to adopt the proposal under discussion, that quan-
tum mechanics should be seen as a principle theory, then the objects of the
theory whose behaviour the principles constrain are preparation devices and
measuring apparatuses, considered as unanalysed black boxes. (Recall the asso-
ciation of states with preparation devices and observables with measuring ap-
paratuses in the C∗-algebraic setting, discussed earlier.) From the information-
theoretic principles, the general sorts of relations that should obtain between
various preparations and measurements (and sequences of measurements) are
derived. These principles are thought to provide an explanation (in some form)
of why preparation devices and measuring apparatuses display the relations—in
terms of observed relative frequencies of various experimental outcomes—that
they do.152 Note that in saying this we are supposing what might be called a
basic level of interpretation of our theory: we have related elements of the formal-
ism (states, observables) with physical quantities (the statistical frequencies with
which various outcomes of experiments may be expected). The main difficulty for
the principle theory approach, construed as providing a putative interpretation
of quantum theory, is that it doesn’t involve anything going beyond this most
elementary level of interpretation.

151And we should note too that Einstein himself was always quite clear that constructive
theories were to be preferred to principle theories; and that constructive theories were more
explanatory (cf. Brown and Timpson, 2006).
152But is this really an explanation, rather than a mere codification?
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However, typically when one is concerned with the interpretation of a theory,
and in particular, with the interpretation of quantum theory, one is interested
in the further question of how these reports posed in terms of experimental re-
sults are to be understood. Are they merely reports of brute regularities, for
example—an instrumentalist view—or is something more realistic appropriate?
Do measurements reveal pre-existing values, or contextually determined out-
comes, or are they to be understood in some other way? And so on. This is
the traditional battleground of interpretive questions in quantum theory; and
something needs to be said at this level, even if it is the bare claim that there
is no more to be said (instrumentalism).153 But the principle theory approach,
as it only engages with the statistical relations between preparation devices and
measuring apparatuses, says nothing.

Of course, various different approaches might be taken to specifying what is
involved in the interpretation of a theory. The route I have adopted here is close
to that of Redhead (1987). Redhead (1987, Chpt. 2) distinguishes two senses
of interpretation of a theory. To provide an interpretation in the first sense is
to supply rules which correlate elements of the mathematics of a theory with
physical quantities. In this bracket, for example, is what he terms the minimal
instrumentalist interpretation of quantum mechanics: the familiar rules that tell
us what the possible results of measurements are in quantum mechanics and
how the statistical frequencies may be calculated with which these measurement
results will turn up when a measurement is repeated very many times on systems
prepared in the same way.

An interpretation in the second sense, he says, is:
. . . some account of the nature of the external world and/or our episte-
mological relation to it that serves to explain how it is that the statistical
regularities predicted by the formalism with the minimal instrumentalist
interpretation come out the way they do. (Redhead, 1987, p. 44)

He goes on to note that we might simply accept the statistical regularities as
brute facts, which is to take the instrumentalist view (theories in physics just
are instruments for expressing regularities between observations); but this is
certainly to take a stance on interpretation in sense two.154

Now, the sense of ‘interpretation’ associated with the principle theory ap-
proach is this: an argument is given for why we have one theory (which is al-
ready interpreted in Redhead’s sense 1) rather than another; why the states and
observables take one form, rather than another. But to repeat, this doesn’t tell
us anything about how the theory thus chosen should be interpreted in sense 2.

153This recalls the earlier discussion of Bohr’s semantic ascent (Section 8.2.1): ascent notwith-
standing, something still had to be said about how claims made using the terms of the theory
are to be understood.
154‘Indeed we shall often refer to the formalism of QM plus the minimal instrumentalist

interpretation in the first sense as the minimal instrumentalist interpretation in the second
sense’ (Redhead, 1987, p. 44). Redhead’s minimal instrumentalist interpretation (sense 2) is
what I earlier termed a statistical interpretation.
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It is only a minimal instrumentalist interpretation (in sense 1) linking the for-
malism to empirical predictions that is ever involved. In the thin sense in which
an interpretation might be forthcoming from the principle theory approach, it
is not a sense of interpretation that engages with the traditional problems of
the meaning of the quantum formalism: with the question of how this familiar
formalism is to be understood. Since the result of the CBH theorem is to recover
the standard structure of quantum theory, the usual ranges of interpretive op-
tions will be open to us; and indeed one of these options must be taken, even if
one adopts the principle theory viewpoint as advocated by Clifton et al. (2003).
Thus, far from the CBH theorem motivating a principle theory viewpoint (‘an
information-theoretic perspective’) that ameliorates the conceptual puzzles of
quantum mechanics, we see that it simply fails to engage with these questions.

8.3.3.2 Bub’s 2004 argument: a problem of underdetermination More recently,
Bub (2004) has adopted a rather different line of attack. He argues that in light
of the CBH theorem we are not in fact free to adopt the full range of (sense
2) interpretations of the quantum formalism. Assuming that the information-
theoretic constraints are satisfied in our world, he insists, no mechanical theory
of quantum phenomena that includes an account of measurement interactions
can be acceptable. Such accounts will face, in his view, a problem of in-principle
underdetermination which renders them unacceptable:

. . . a mechanical theory that purports to solve the measurement problem
is not acceptable if it can be shown that, in principle, the theory can have
no excess empirical content over a quantum theory. (Bub, 2004, p. 261)

We need to examine how this problem of underdetermination is thought to
arise, but first it will be useful to have a rough statement of how the different
styles of interpretation one might be interested in are to be divided up. For the
purposes of this discussion, then, let us distinguish between those interpreta-
tions (in sense 2) that involve adding extra structure to the bare formalism to
ensure a definite measurement outcome (this group would include the de Broglie–
Bohm theory, hidden variables theories, and the sorts of modal interpretation
picked out by the Bub–Clifton uniqueness theorem (Bub, 1997, Chpt. 4)); those
interpretations that appeal to a non-unitary dynamics (i.e., dynamical collapse
theories à la GRW); and those that stick as closely as possible to the bare quan-
tum formalism (e.g., instrumentalist views and modern versions of the Everett
interpretation155).

It is the first group, Bub suggests, that will suffer from in-principle under-
determination, in light of the CBH theorem; while GRW approaches may conflict
with the exact obtaining of the no bit-commitment axiom and are to be ruled
out on that ground (spontaneous collapse might interfere with some efforts to

155Bub in fact appears to lump the Everett interpretation in with ‘extra structure’ interpre-
tations. While this may be appropriate for some attempts to cash out Everett’s ideas, it is
not for the more satisfactory (for this very reason!) modern versions of Everett, as formulated
by Saunders, Wallace and company (see refs. in Section 4.5). This point is important for the
conclusions that can be drawn from Bub’s argument, as we will see below.
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cheat in bit-commitment (Bub, 2004, p. 256)). Let us now see how the under-
determination argument is supposed to run.

It is essential to recognize that the argument has two components. The first is
the claim that follows from the CBH theorem, that if the information-theoretic
constraints are satisfied in this world, then the empirical results we obtain will
be those modelled by a quantum theory in the sense of Clifton et al. (2003) (i.e.,
a theory with a non-commuting algebra of observables for individual systems,
kinematic independence for distinct systems, and entangled states across space-
like separated systems). The second part of the argument is the assertion that
the information-theoretic constraints do hold in our world, both exactly (with
no exceptions) and as a matter of law.

Now consider an ‘extra structure’ interpretation, such as the de Broglie–
Bohm theory. Bub views this as an extension of a quantum theory that seeks
to describe the mechanics underlying the statistics of a C∗-algebraic quantum
theory. However, if the information-theoretic constraints are to hold, then the
empirical predictions of the Bohm theory, or any other such extension (‘extra
structure interpretation’) must be just the same as the quantum theory. But now,
if the information-theoretic constraints are both law-like and hold exactly, then
in any physically possible world, the empirical predictions of such an extension
will be just the same as those of the bare quantum theory. In other words, it is
physically impossible that there could be any evidence that would favour one such
extension over another: there is in-principle underdetermination. Accordingly,
the claim is, we should reject all such extensions.156 It is for this reason that
extra structure interpretations are not acceptable, for Bub.

This argument fails, however. It has no dialectical power against extra-
structure interpretations as it involves a petitio principii. The crucial assump-
tion, that the information-theoretic constraints are both law-like and hold ex-
actly, is denied in the extra structure interpretations (at least in the case of the
de Broglie–Bohm theory and hidden variables theories). We have seen how, in the
case of the de Broglie–Bohm theory and deterministic hidden variables theories,
the information-theoretic constraints and even the assumption of expectation
value additivity hold, if they hold at all, merely as contingent and accidental
(non law-like) matters of fact. From the point of view of these theories, the con-
straints certainly don’t hold in all physically possible worlds, and they might not
even hold under all conditions in this world. Similarly, the argument against the
GRW-type theories is also a petitio; while the information-theoretic constraints
are law-like in this case, they don’t always hold exactly: there may sometimes be
a violation of no bit-commitment. But one does not provide an argument against
a position by simply insisting on an assumption that is inconsistent with it.

156Bub emphasizes that the epistemological principle at work here is not the—implausible—
claim that it is never rational to adopt one theory over an empirically equivalent rival, but
the far weaker claim that if there could never, in any physically possible world, be evidence
favouring one theory over another, then it would not be rational to believe either.
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In all this, it is important to recognize that we only have reason to believe
that the information-theoretic conditions obtain in the quantum context as they
are consequences of the standard quantum formalism.157 The empirical evidence
we have for them derives second-hand from the empirical evidence for quantum
theory. The evidence for quantum theory doesn’t settle the question of how the
formalism is to be interpreted (if it did one wouldn’t need to try to detour via
the CBH theorem!), so the empirical evidence we have is consistent with various
different views on what the status of the information-theoretic conditions should
be. From the point of view of an ‘extra structure’ interpretation such as the
de Broglie–Bohm theory, they will, as we have said, be seen as contingent and
accidental features that obtain in some conditions; from points of view that
stick closely to the quantum formalism (instrumentalism, Everett), they will be
understood as law-like and exact. But if the status of the information-theoretic
constraints is explicitly an interpretation-dependent question, we may not appeal
to an argument that essentially involves a controversial assumption about their
status, in order to rule out certain forms of interpretation.

Towards the end of his 2004 paper, Bub remarks that if one has succeeded
in ruling out dynamical collapse theories and those interpretations that involve
extra structure then

It follows that our measuring instruments ultimately remain black boxes
at some level that we represent in the theory simply as probabilistic
sources of ranges of labelled events[ . . . ] i.e., effectively as sources of sig-
nals . . . (Bub, 2004, p. 261) original emphasis.

Furthermore, he suggests:
. . . this amounts to treating a quantum theory as a theory about the repre-
sentation and manipulation of information . . . [A] consequence of reject-
ing Bohm-type hidden variable theories or other ‘no collapse’ theories is
that we recognize information as a new sort of physical entity . . . (Bub,
2004, p. 262)

Regarding the first point, it is pertinent to note that if one accepts my broad
three-way carving up of the different interpretational options, then even if one has
somehow managed to rule out the first two sets of possibilities (extra structure
and dynamical collapse—and we have seen that Bub’s argument has by no means
achieved this), then this still leaves us with at least two options in the third
category, that is, with some form of instrumentalism, or an Everettian approach.
Now while instrumentalism may well be appropriately described in the terms
Bub uses—measuring apparatuses that must remain as unanalysed black boxes—
this characterization is by no means apt for the Everett interpretation. Here
measurement is perfectly well analysable, as one particular sort of dynamical
interaction amongst many, set within a realist view of the universal quantum
state.

157Note the disanalogy with the case of Special Relativity: Einstein fixed on his principles in
desperation as he had no idea how to develop an adequate constructive theory of dynamics.
We already have quantum theory, which, in its quotidian form and application is clearly the
constructive theory for physics.
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On the second point, even if one has placed Everettian views to one side, it re-
mains obscure in what sense quantum theory would have become a theory about
the representation and manipulation of information (or perhaps informationt?),
if this is supposed to be more than a new way of describing an old instrumen-
talist view. There is a simple difficulty, for instance, with trying to cash this
idea out by suggesting that a measuring apparatus can be seen as a source of
signals. If one has a signal, then it is intelligible to ask what the signals signify or
indicate (whether naturally or as a matter of convention), or what communica-
tion protocol they play a role in. But what is a particular measurement outcome
a signal of? It would seem that the only thing that could be signified would
be something about pre-existing hidden variables; and this, presumably, is not
what is desired at all.158 As for the inference to information as a new sort of
physical entity, it was, of course, a large part of the trajectory of argument in
earlier chapters to point up the sheer implausibility, the downright mistakenness
of such a conception. In combative mood, we should insist that to give an other-
wise instrumentalist view of quantum mechanics a subject matter does not seem
a sufficient reason to conclude that information, or quantum informationt, is a
physical entity. If, that is, that proposal were even to make any sense in the first
place: recall the distinction between the abstractness of pieces of informationt

(types) and the concreteness of their tokens; the incipient category mistake in
‘Information is Physical!’ (cf. Section 3.7.1).

The attempt to provide a new way of thinking about quantum mechanics
on the back of the CBH theorem—an information-theoretic interpretation or a
principle theory interpretation—is thus a failure. The principle theory approach
adumbrated in Clifton et al. (2003) simply fails to engage with any of the im-
portant interpretive issues: it by no means displaces them, nor shows them to
be redundant: they remain as essential and as intractable as ever. Meanwhile,
no support at all accrues to the proposal that quantum mechanics is about the
representation and manipulation of information; in fact it remains unclear what
this proposal might even be supposed to mean. Left with that thought, one can
imagine running through a number of potential options of what might be meant;
and an unhappy trilemma looms:

1. Perhaps one has in mind the thought: ‘Quantum mechanics is all about
the behaviour of pieces of (quantum) informationt.’ But this is obviously

158It is a quite different matter, of course, to consider a measuring apparatus as an
informationt source in the sense of informationt theory, for then one is considering compressing
and transmitting the output of the source, while the physical constitution of the source itself
is wholly irrelevant (but for this very reason, one will not find any implications for quantum
ontology here). From the point of view of informationt theory, the outputs of an informationt

source signify nothing and have no meaning, conventional or otherwise. They are elements
which have no semantic, nor even syntactic, significance. This is just to repeat the familiar line
that ‘informationt’ in the technical sense is not a semantic notion. If something is a source of
signals then one might well be interested in applying communication theory to it and modelling
it as an informationt source in the sense of that theory. But you don’t make something a source
of signals by considering it as an informationt source.
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false—quantum mechanics does allow us to talk about characteristics of
abstracta—particular sequences of quantum states—but we need tokens
(concreta) along with the types (recall the previous discussion of informa-
tional immaterialism and of Bohr’s semantic ascent); moreover, it seems an
entirely unmotivated claim about the scope of quantum mechanics: there
are simply enormous numbers of applications of quantum theory where no
information-theoretic characteristics of the goings-on are of any interest.

2. Perhaps, then, one might mean: ‘Quantum mechanics is all about the be-
haviour of the concrete objects which instantiate (are tokens of) pieces of
quantum informationt.’ Well, maybe this is true: anything with a quan-
tum state can be seen, in a certain light, as instantiating some (perhaps
very short) piece of quantum informationt; but it is only true because it
is trivial. It amounts to the claim that quantum mechanics is about those
physical objects which have quantum states. No one would disagree; but
no more would we have got anywhere in understanding the quantum world
by making this claim.

3. So perhaps, finally, one just means: ‘Quantum mechanics is to be construed
instrumentally.’ (The information is the information that we have about
what the outcomes of measurement interactions will be.) But we have been
given no reason to suppose this true; and more importantly, it is simply
not an interesting or distinctive position.159

8.4 Further Developments: Generalized Probability Theories

On the much more successful side of the CBH result—regarding the question of
axiomatizing quantum theory—we saw that the main difficulty was that the CBH
theorem seemed to start rather too close to the desired end-point: Beginning with
C∗-algebras, it seems, is to assume too much.

On this front, however, interesting progress has recently been made: Barrett
(2007) and Barnum et al. (2006, 2007) have fastened on a more promising frame-
work within which to pursue the information-theoretic axiomatic project, one
which includes C∗-algebraic theories as a special case, but which is genuinely—
and interestingly—broader. This is the framework of generalized probability theo-
ries. (This approach also builds on previous work of Popescu and Rohrlich (1994)
and Hardy (2001, 2002): the framework may be more familiar to some under the

159In his most recent discussions of these topics (Bub, 2007; Bub and Pitowsky, 2010), Bub has
attempted to distance himself from the charge that all this information talk merely amounts to
a form of instrumentalism. This is certainly achieved in Bub and Pitowsky (2010) (not obviously
so in Bub (2007), though), but at the cost of not retaining anything which might interestingly
be called an information-theoretic interpretation of quantum mechanics. Instead what we are
presented with is a realist collapse theory (or a flavour of modal interpretation), but one lacking
a dynamics for the collapse (a dynamics for the value-state, in modal-interpretation terms).
This does not seem a particularly attractive option. See Timpson (2010) for analysis.
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name of the convex sets approach of Mackey (1963), Ludwig (1983), and Davies
and Lewis (1970) et al.160)

One immediate respect in which the generalized probability theories are pal-
pably broader, and a better starting point than C∗-algebras for the project
of locating quantum theory within a general space of theories which allow
information-processing of various kinds, is in the matter of the permitted correla-
tions.161 Theories in this framework are designed to be non-signalling: operations
performed on one system will not have any affect on the probabilities for mea-
surement outcomes of a distant system. As we know from considering the case
of quantum entanglement, it is possible to have stronger-than-classical (Bell-
inequality-violating) correlations between separated systems which nonetheless
preserve no-signalling. However, as Popescu and Rohrlich (1994) showed, no-
signalling is in fact consistent with stronger than quantum correlations. Quantum
theory is not the extremal theory: the correlations between systems in quantum
theory—and indeed in any C∗-algebraic theory—can be no larger than the bound
proven by Cirel’son (1980). The generalized probability framework admits theo-
ries with superquantum correlations going beyond the Cirel’son bound (theories
containing so-called non-local or Popescu–Rohrlich (PR) boxes, for example) and
thus it provides a setting in which one can try to answer the intriguing question
which Popescu and Rohrlich posed: Given that stronger correlations than those
of quantum theory are consistent with no-signalling, why aren’t quantum corre-
lations stronger than they in fact are? We know it can’t be anything to do with
maintaining consistency with the requirements of relativity, as no-signalling still
holds. So what is it?

Potential answers to this question (a question which cannot even be posed
from a C∗-algebraic starting point), along with answers to the general problem
of locating quantum theory squarely within the space of possible theories, are
still a matter of current exploration and debate; but some interesting results
have already been obtained.162 On the possibility of broadcasting: Barnum et al.
(2006, 2007) have shown that for theories in their framework which are not clas-
sical, no-broadcasting is a generic feature: any theory for which broadcasting is
possible is a classical one. Their framework is broad enough that any departure
from classicality does not automatically tumble one into a quantum theory; no-
broadcasting entails a departure from classicality, but that is all it says; it is not
a specifically quantum-mechanical property. There are many theories which are
non-broadcasting, so non-classical; but they are not quantum either (theories
with superquantum correlations provide a case in point). From this perspective,
broadcasting appears rather more a means to emphasize the particularity of clas-

160See Myrvold (2010) for a judicious comparison of the algebraic and the convex sets ap-
proaches and for helpful comments on the operationalist starting point of the latter.
161Another is in the fact that one is freed from the restrictive C∗-algebra trichotomy of

classical theory, quantum theory, and quantum theory with superselection rules (Barrett, 2007;
Barnum et al., 2006).
162For details I refer you to the papers already cited.
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sical theories than a means to distinguish quantum mechanics in a substantive
way.

No bit-commitment seems to take on a rather more encouraging aspect in
this setting, though; something in keeping with its intended intuitive role in
the CBH theorem. Barnum et al. (2008) show that in any theory which is lo-
cally non-classical (cf. CBH’s non-commutativity of local algebras) but does not
provide entangled states in its state space,163 bit-commitment will be possible.
Thus for locally non-classical theories, insisting on no bit-commitment ensures
one will have theories with entangled states too; in this general framework the
initial intuition behind the axiomatic role of no bit-commitment seems to be
justified. However, the flip-side of working in this general framework is that
even narrowing one’s theory down to one containing entanglement is not to nar-
row the theory down to quantum mechanics (Barnum et al., 2008). The search
continues, then, for conditions which would help one narrow down to quantum
mechanics; whether these might be suitably non-generic qualitative conditions
(the possibility of teleportation in a theory has been mentioned as a possibil-
ity (Barrett, 2007)) or whether they might have to be quantitative conditions,
quantum mechanics perhaps being the only theory within which the success rate
at some informationt-processing task takes on some specific value or other. (The
suspicion would be that qualitative conditions would pay a greater conceptual
reward—many quantitative conditions might simply be very unrevealing, con-
ceptually.)

8.5 Conclusion

We have seen that neither Zeilinger’s Foundational Principle, nor the CBH the-
orem, do the job for us of revealing a transparent conceptual basis for quantum
mechanics. But we should distinguish between the various respects in which,
individually, they do not make the grade.

Zeilinger’s approach, we saw, could be relieved of its atavistic baggage of
phenomenalism and instrumentalism. The central problem which remained was
that the Foundational Principle implied no constraints on the set of experimental
questions; but without some such constraints, the proposal has no real content. It
should perhaps be added that with the phenomenalism and instrumentalism cut
away, it is less than obvious why the Foundational Principle should in the least
seem an appealing starting point for an axiomatization. We noted the elementary
logical point that nothing particularly substantive can follow from the fact that
the description of an elementary system can be given by a single proposition.

Spekkens’ approach is far more suggestive, however, with the demonstration
that his states of maximal knowledge—being states which nevertheless have to
leave questions unanswered—share many of the properties which quantum states
display. But this remains only the suggestion that there are fruits to be borne

163This conjunction is an option in their setting: not so in C∗-algebras, recall.
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by dwelling on a mismatch between the number of questions that one’s (epis-
temically construed) states can answer and the questions that there are to be
answered—this being the intuition behind Zeilinger’s attempted explanation of
quantum randomness and complementarity. To go beyond suggestion, of course
(however arresting), we await a more realistic development of the theory—the
passage from a toy to an empirically adequate theory—and an explanation of
where the structure of the set of questions and the complementary (sic!) con-
straint on what can be known come from. Spekkens’ presentation enjoys the
signal advantage that these requirements are explicitly acknowledged and easily
recognized to be of crucial importance: rightly—and commendably—so.

Regarding the CBH theorem, we should distinguish between the interesting
and moderately successful attack on the axiomatic project on the one hand; and
the dubious and misfiring attempts to drag from it ontological and interpreta-
tional consequences for the quantum world on the other. Stabs at a principle
theory approach to, or an information-theoretic interpretation of the quantum
formalism took us nowhere, save, perhaps, to instrumentalism by another name.
By contrast, it is interesting to see a novel axiomatization of the quantum for-
malism achieved with information-theoretic axioms, even if it transpires that
the mathematical framework for the theorem was itself doing too much of the
interesting work. But as we noted, here the generalized probability (convex sets)
approach holds out considerable promise to develop this kind of programme fur-
ther: it offers a framework which is significantly wider, but not so wide as to
preclude revealingly concise and conceptually clear statements of the axioms.

Should we expect this kind of axiomatic approach to quantum mechanics to
bear on the traditional conceptual problems of quantum mechanics? To reveal
the true ontology of the theory? It’s not at all clear why we should; but that
need not be a problem. There are further interesting questions one can ask about
quantum theory than just those which make up the traditional battleground of
interpretations. Yes, we would understand more about quantum mechanics when
the measurement problem (etc.) were resolved; but we would also understand
more about quantum mechanics if we were to know where the theory lies within
a sufficiently broad space of physical theories of interestingly different kinds.
These are distinct kinds of understanding to be had; different kinds of questions
being asked. One might be chary of the operationalist or instrumentalist setting
of C∗-algebraic or convex sets approaches (preparation and measuring devices as
unanalysed black boxes, etc.).164 Adopting the starting point of these kinds of
axiomatic approaches might seem to bias the interpretational question in ways
it shouldn’t; and it would seem to take us towards an unedifying instrumentalist
understanding.

These concerns are valid, but only in so far as the axiomatic approach is
supposed to reveal the fundamental or final form of the theory: but it is not

164Think once more of Bell’s warnings (Bell, 1990, 1987)—measurement should not be treated
as a primitive in a fundamental physical theory because it is not a primitive; it is one kind of
dynamical process amongst many and should be modelled as such.
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automatic that this be so. The form of a theory convenient for placing it within
a space of theories need not be the fundamental, ontologically revealing, form of
the theory: identifying properties of the theory (the former setting) and saying
how the world is (the latter) are different tasks; and it is not at all surprising
that we might expect different formal representations of the theory to be more
or less useful for these distinct tasks. An operationalist black-box formulation of
a theory might be most appropriate for the former task, but there is no reason at
all why that should be taken to be the final story, the end of discussion about the
theory: there is still an ontological story to be told too—the underlying dynamics
giving rise to the results schematized within the story of black boxes.



9

QUANTUM BAYESIANISM 1: THE PROPOSAL

‘Covering-law theorists tend to think that nature is well-regulated; in
the extreme that there is a law to cover every case. I do not. I imagine
that natural objects are much like people in societies. Their behaviour is
constrained by some specific laws and by a handful of general principles,
but it is not determined in detail, even statistically. What happens on
most occasions is dictated by no law at all.’ Cartwright (1983)

9.1 Introduction

Within the broad programme of seeking to understand quantum mechanics
with the aid of resources from quantum informationt theory, one of the most
interesting—and radical—proposals to date is what can be called the quantum
Bayesianism of Caves, Fuchs, and Schack (Fuchs, 2002a; Caves et al., 2002c;
Fuchs, 2002b; Caves et al., 2002a, 2007). As remarked before, Fuchs has been
at the forefront of the call for information-theoretic axiomatization of quantum
theory (Fuchs, 2003). He has urged that for each of the familiar components of
the abstract mathematical characterization of quantum mechanics (states are
represented by density operators, they live on a complex Hilbert space, etc.) we
should seek to provide an information-theoretic reason, if possible. Again, the
thought is that once a transparent axiomatization of quantum mechanics has
been achieved, we will have available a conceptual framework for thinking about
the theory which will render it unmysterious.165 Moreover, Fuchs urges that an
interpretation of quantum mechanics should be judged on the extent to which
it aids us in the completion of this project; the extent to which it helps us un-
derstand why we have quantum mechanics: why the theory is just as it is. It
is the absence of any such account which he deems responsible for the (appar-
ent) interminability of the arguments between proponents of the various different
interpretations of quantum mechanics.

What is radical about the approach adopted by Caves, Fuchs, and Schack is
the starting point: it is to maintain that probabilities in quantum mechanics are

165Fuchs explicitly draws a comparison with the claim regarding Special Relativity: the idea
that the meaning of the Lorentz transformations is rendered unmysterious by Einstein’s Light
Postulate and Principle of Relativity. As we have seen above in discussion of CBH’s attempted
principle theory route (Section 8.3.3.1), this kind of claim about relativity is problematic.
It is one thing to derive or predict what the correct co-ordinate transformations between
inertial frames are; it is quite another to understand why this is so, or what it even means
(cf. Brown, 2005). As I will mention further below, despite Fuchs’ illustrative appeal to the
relativity example, it would be a mistake to construe the quantum Bayesian programme as
being anything at all like a principle theory approach.
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subjective, across the board. This means that quantum states will be subjective
too: a matter of what degrees of belief one has about what the outcomes of
measurement will be. States will not, then, be objective features of the world.
Subjectivism, it is argued, is the natural way to understand probability; and it is
the natural way, therefore, to understand quantum states. It allows, for example,
a clean dissolution of traditional worries about what happens on measurement;
and it dissolves worries about non-local action in EPR scenarios.166 Furthermore,
it provides a novel way of approaching the business of axiomatisation. For if
quantum states are subjective, features of agents’ beliefs rather than features of
the world, we may ask: What other components of the quantum formalism might
be subjective too? If we can identify these and then whittle them away, we will
be left with a better grasp of what the objective core of the theory is.

Now, as a formal proposal, quantum Bayesianism is relatively clear and well
developed. But it is rather less transparent philosophically. What exactly is at
stake when one adopts this line? Is such an apparently radical approach sustain-
able? What would we have to be saying the world is like if quantum Bayesianism
were the right way to understand it? It is the philosophical underpinnings of the
approach which will be the subject of our scrutiny in this chapter and the next.

I will begin by setting the scene for the quantum Bayesian programme by
outlining the interesting conjunction of realism and anti-realism that provides
the distinctive rationale for the approach: a general realism about physics, com-
bined with anti-realism about much of the structure of quantum mechanics (Sec-
tion 9.2). Within such a setting, the quantum Bayesian’s search for axioms for
quantum theory takes on a special character: if it is supposed that no directly de-
scriptive theory of the fundamental physical level is possible, then our attempts
to grasp what there is at the fundamental level, and to understand how it be-
haves, will need to proceed indirectly. Next, more detail of the quantum Bayesian
proposal is presented (Sections 9.2.1, 9.2.2) and the important question broached
of how, if quantum states are supposed to be subjective, scientists nevertheless
tend to end up agreeing on what the right states for particular systems are.
Further, the crucial issue of how the notoriously shifty divide between system
and apparatus is to be managed in this approach is discussed (Section 9.2.2.2).
It is suggested that the quantum Bayesian has rather less trouble here than one
might suppose.

In Section 9.3, three common objections to the proposal are aired; and then
rebutted. The objections are these: that the approach is tacitly committed to
solipsism; that it is overly instrumentalist; and that it cannot adequately deal
with the data that would be empirically available in a Wigner’s friend scenario.
With these objections disposed of, I close the chapter by re-stating the virtues
of the quantum Bayesian programme (Section 9.4).

166The pattern of argument here is the same as the one we saw in Chapter 7, where the
conception of the quantum state as information was aired. As we shall see below, where the
information approach foundered—on the factivity of ‘information’—the quantum Bayesian
approach does not. This is one of its signal advantages.
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The ground is then clear to consider some more substantive challenges, which
I take up in the next chapter. To look ahead, three challenges in particular sug-
gest themselves: 1) Can one find some kind of sensible ontology to underlie the
quantum Bayesian’s approach? 2) Can one make requisite sense of explanations
which involve quantum theory if one takes the Bayesian line? and 3) Are sub-
jective probabilities in quantum theory really adequate? The first question will
be answered in the affirmative: it seems one can make out a suitable ontological
picture, particularly if one makes use of components of Nancy Cartwright’s phi-
losophy of science, specifically, her emphasis on the causal powers or dispositions
of objects as prior to any law-like generalizations which might be true of them
(cf. Cartwright, 1999).

The second two questions prove more problematic, however. By the quan-
tum Bayesian’s lights, much talk involving quantum mechanics will be non-
descriptive: assignment of a state to a system will not involve characterizing the
properties of that system, for example. But then it becomes unclear how a large
class of explanations which make use of quantum mechanics could be supposed
to function: those which proceed by explaining the properties of larger systems
in terms of the properties possessed by their constituents and the laws governing
them. Prima facie, the quantum Bayesian approach would rob quantum theory
of explanatory power which it nonetheless seems to possess (Section 10.2). Re-
garding subjective probabilities (Section 10.3), it is argued that the quantum
Bayesian is committed to a certain objectionable class of statements: what can
be thought of as quantum versions of Moore’s paradoxes (Wittgenstein, 1953,
II.x). These seem to betray something wrong in the links that the quantum
Bayesian can allow between beliefs about outcomes which are certain to occur
and the reasons which one could have for believing them to be so. Finally, I
express the worry that the quantum Bayesian’s subjectivism about probability
renders mysterious how the means of enquiry about the world (gathering data by
experiment) could deliver the intended ends: coping better with what the world
has to throw at us. It may be that these concerns arising from questions (2)
and (3) do not constitute insurmountable objections to the quantum Bayesian’s
position, but equally, it seems that they are concerns which cannot lightly be
dismissed.

A final note before proceeding. The quantum Bayesian position to be dis-
cussed here is attributed jointly to Caves, Fuchs, and Schack. It is clear that
each is fully committed to the subjective Bayesian conception of probability and
correlatively, of quantum states; the proposal has been developed collaboratively
between them. But this leaves room for the possibility of some disagreement be-
tween them in matters of detail; and particularly when it comes to filling in
the details of the philosophical package which might be developed to underpin
the position. Here the primary textual sources are Fuchs’ writings, important
amongst which are his collections of email correspondence sent to various col-
leagues and co-workers (Fuchs, 2003, 2002b, 2006). The exposition that follows
should therefore be understood as most closely informed by consideration of
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Fuchs’ view, while still aiming to represent the views of Caves and Schack, but
perhaps to a lesser extent. There may well be points—perhaps important ones—
on which they would wish to demur, or to remain uncommitted. With this caveat
in place, we may turn to setting the scene.

9.2 Setting the Scene

Let us begin with the straightforward thought that science in general—and
physics in particular—is engaged in the business of finding out how things are
and how things work. That the world we investigate exists and has its various
physical characteristics independently of any of our thoughts and feelings about
it; that finding out in science is a (joyfully rich!) development and extension of
our common-sense means of finding things out in everyday life.

Let us then grant that as physics progresses, we wish to develop theories
that are not only increasingly accurate in their predictions, but are also, at the
same time, explanatory. Theories that are (in some sense) at least approximately
true; theories that describe (and, perhaps, if appropriate, unify) the underlying
objects and processes giving rise to the phenomena of our interest. And let us
grant that, historically, physics has, by and large, been reasonably successful in
achieving these aims (the common epistemological objections notwithstanding).

But now suppose that this realist progression of explanatory, descriptive,
theory construction eventually runs into difficulties. Suppose that, although ap-
plying just the same kinds of exploratory techniques, the same kinds of reasoning
and the same kinds of approach to theory construction that have served so well
in the past, one nonetheless ends up with a fundamental theory which is not
descriptive after all; a theory which, one slowly comes to realize, has no direct
realist interpretation; a theory whose statements are not apt to describe how
things are. And let us suppose that this eventuality does not arise through any
lack of effort or failure of imagination in theory construction; nor through want
of computational ability; nor through any mere psychological or sociological in-
hibition. Perhaps it is just the case that once one seeks to go beyond a certain
level of detail, the world simply does not admit of any straightforward descrip-
tion or capturing by theory, and so our best attempts at providing such a theory
do not deliver us with what we had anticipated, or with what we had wanted.
A descriptive theory in any familiar sense is not to be had, perhaps, not even
for creatures with greater cognitive powers and finer experimental ability than
our own, for the world precludes it. The world, perhaps, to borrow Bell’s felici-
tous phrase (Bell, 1987), is unspeakable below a certain level. What then for the
realist?

Just this provides the starting point for the quantum Bayesian approach to
understanding quantum mechanics.

In the quantum Bayesian picture, quantum mechanics is the theory which, it
is urged, should not be thought of in standard realist terms; either, for example,
by being a realist about the quantum state (e.g., Everett, GRW) or by seeking to
add further realist components to the formalism (e.g., hidden variable theories,



192 Quantum Bayesianism 1: The Proposal

modal interpretations, consistent histories). Rather, we are invited to recognize
quantum mechanics as being the best we can do, given that the world will not
admit of a straightforward realist description. That best, it is suggested, is not a
theory whose central theoretical elements—quantum states, measurements and
general time evolutions—are supposed to correspond to properties or features
of things and processes in the world; rather, it is a structure which is to be
understood in broadly pragmatic terms: it represents our best means for dealing
with (that is, for forming our expectations and making predictions regarding) a
world which turns out to be recalcitrant at a fundamental level; resistant to our
traditional—and natural—descriptive desires.

But we need not give up our realism on account of this! Rather, the project
must be transformed. Granted, our traditional realist descriptive project has
been stymied: we are to take seriously the suggestion that quantum mechanics
(with any of the paraphernalia of familiar realist interpretations of the formalism
eschewed) is the best theory that one can arrive at. Better—and closer to the
descriptive ideal—cannot be achieved, runs the thought. But if this is so then
our realist desires must be served indirectly. One need not give up on the task
of getting a handle on how the world is at the fundamental level just because no
direct description is possible; one can seek an indirect route in instead. Quantum
mechanics may not be a descriptive theory, we may grant, but it is a significant
feature that we have been driven to a theory with just this characteristic (and
unusual) form in our attempts to deal with and systematize the world. The
structure of that theory is not arbitrary: it has been forced on us. Thus by
studying in close detail the structure and internal functioning of this (largely)
non-descriptive theory we have been driven to, and by comparing and contrasting
with other theoretical structures, we may ultimately be able to gain indirect
insight into the fundamental features of the world that were eluding us on any
direct approach; learn what the physical features are that are responsible for
us requiring a theory of just this form, rather than any other. And what more
could be available if the hypothesis that the world precludes direct description
at the fundamental level is true? All we can do is essay this ingenious indirect
approach.

Thus the essence of the quantum Bayesian position is to retain a realist view
of physics and of the world whilst maintaining that our fundamental theory—
quantum mechanics—should not itself receive a surface realist reading; while no
simple-minded realist alternative is to be had either. The story that quantum
mechanics has to tell about the world needs must, on this conception, be an
indirect one. It is the bold positive part of the research programme to try to tell
this story.

9.2.1 An outline of the position
With the general setting of the approach thus sketched, how does the quantum
Bayesian position proceed in more detail? Considered as an interpretation of
quantum mechanics, the characteristic feature of quantum Bayesianism is a point
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already mentioned above: its non-realist view of the quantum state. This takes
a distinctive form:
The quantum state ascribed to an individual system is understood to represent a com-
pact summary of an agent’s degrees of belief about what the results of measurement
interventions on a system will be, and nothing more.

Two important points: unlike in many non-realist views of the state, for example,
those of Ballentine (1970) and Peres (1995), quantum states are assigned to indi-
vidual systems, not just to ensembles; and most important of all, the probability
ascriptions arising from a particular state assignment are understood in a purely
subjective, Bayesian manner, in the mould of de Finetti (de Finetti, 1989, 1937)
(see also Ramsey (1926); Savage (1954); Jeffrey (2004)). Then, just as with a
subjective Bayesian view of probability, there is no right or wrong about what
the probability of an event is, with the quantum Bayesian view of the state, there
is no right or wrong about what the quantum state assigned to a system is.

This is a radical conception: what might motivate us to believe it? One set
of reasons might derive from general convictions about the notion of probability.
Making out a non-mysterious and non-vacuous notion of objective probability is
notoriously controversial (the problems with frequency and propensity accounts
are well known, for example); by adopting a subjectivist view of probability,
where probabilities are analysed simply as agents’ degrees of belief rather than
objective quantities fixed by the world, one avoids these perplexities. It is widely
held that in a physically deterministic world, probabilities would all have to
be subjective anyway (at least single case ones), based on our ignorance of the
relevant initial conditions, so it is often supposed that, at best, only when funda-
mental theories posit stochastic properties at a fundamental level in their laws
is there any scope for non-subjective probabilities. Quantum mechanics is typ-
ically seen as just such a theory providing objective probabilities (e.g., Giere,
1973). But the quantum Bayesian maintains that one can retain the clarity of
subjectivist probabilities right across the board; and that this is conceptually
advantageous. Their analysis results in showing that it is quite consistent even
to take quantum probabilities to be subjective too.

A second set of reasons derives from the resolution one achieves of the stan-
dard perplexities of quantum mechanics; from the interpretive traction one gains
on the standard problems of measurement and nonlocality by adopting this ap-
proach. These problems are not so much resolved as dissolved in this setting;
they don’t arise in the first place. Thus the problem of measurement as it is
standardly construed is the problem of explaining how measurement interactions
end up presenting us with definite outcomes when the typical result of such an
interaction is just that system and apparatus end up in an entangled state; or it
is the problem of specifying exactly how, when and why collapse (as opposed to
unitary dynamics) occurs on measurement.

But the quantum Bayesian takes a similar line here to those who conceive
of the quantum state of an individual system as information (Chapter 7). It is
maintained that these concerns about measurement are predicated on a false
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assumption, namely, the assumption that the quantum states assigned to sys-
tems represent actual properties of those systems. They do not, according to the
current view; instead they represent beliefs about what the results of measure-
ment interactions will be. The process of collapse doesn’t imply a sudden change
in the properties of a system; it does not correspond to a physical process at all,
hence not to any mysterious physical process in want of explanation. It is simply
an updating of one’s beliefs about what the results of future measurements on the
system will be; an updating that occurs whenever one has data to update upon.
Measuring apparatuses have definite properties at all times and, on interaction
with a quantum system, will produce some particular outcome. On observation
of that outcome, the experimentalist will revise the state that they assign to the
initial system, using the standard rules. This process need be no more mysterious
than the familiar one of conditionalizing one’s prior probability in some hypoth-
esis on receipt of some data; replacing one’s prior p(h) with the posterior p(h|d)
when one observes that d obtains.167 Furthermore, since states only represent
beliefs about what the results of future measurement outcomes will be, the fact
that one might assign an entangled state to system and apparatus taken together
does not mean that one must deny that the apparatus has definite properties,
deny that it has its pointer pointing in some definite position following measure-
ment; rather it just means that one’s anticipations for the future involve certain
non-factorizable probability distributions for joint measurements on system and
apparatus taken together, which is quite another thing. (This may not be quite
obvious: we shall return to this point in Section 9.2.2.2.)

So, as before, the Wigner’s friend conundrum, for example, would be resolved
by arguing that there is no matter of right or wrong about what the quantum
states assigned by Wigner and by his friend should be. On the quantum Bayesian
view, these are wholly subjective judgements; thus it is quite consistent for agents
in differing epistemic positions—one within the lab (friend) and one without
(Wigner)—to assign different states to things. There is no tension between them.
Again, as before, if Wigner strolls into the lab to see what the result of the
measurement his friend performed is, then he will update his beliefs and assign
a product state to system and apparatus (and friend!); but there is no question
of his friend hanging in limbo until Wigner does so. There is no relevant change
in anything physical (external to Wigner) when he does so; the only changes are
internal to the agent ascribing the state. Given this lack of conflict between state
assignments, no measurement problem arises.168

Similarly, the story about nonlocality also runs much as we saw before. On
the quantum Bayesian picture, there is no nonlocal effect caused by Alice’s meas-
urement on her half of a pair of systems entangled in the singlet state; there is no
nonlocal effect of collapse. The consequence of Alice’s measurement is just that
she updates her state assignment to the pair of systems, now assigning them an

167Fuchs expands on this comparison in detail in Fuchs (2002a, §6). See fn. 183 below.
168There are some interesting further subtleties to the Wigner’s friend scenario in the context

of the subjectivist’s approach, but we shall not have space to explore them here.
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anti-correlated product state rather than the entangled singlet state. But that
change doesn’t correspond to any physical change in Bob’s system at all, it is
just an update of her beliefs, hence no nonlocal action is implied. It may be
that she assigns a spin eigenstate to his system, while Bob maintains the good
old mixed state, but that doesn’t mean that she’s right and he’s wrong, or vice
versa, even though they are both willing to make single-case probability claims
about the results of measurement on his system that would disagree. Given the
subjective Bayesian setting, they may both disagree on what the probabilities for
measurement outcomes are without either one or other (or both) being wrong.

So we can see that what are arguably the most troubling conundrums typi-
cally taken to block our understanding of quantum theory are dissolved in this
approach: we need worry about them no longer.

The final set of reasons for entertaining the quantum Bayesian viewpoint re-
cur to the philosophical point of departure of the programme elaborated earlier.
The hope expressed in the approach is that when the correct view is taken of
certain elements of the quantum formalism (i.e., when the subjective Bayesian
conception of quantum states and related structures is adopted), it will be pos-
sible to see through the quantum formalism to the real ontological lessons it is
trying to teach us. Fuchs and Schack put it in the following way:

[O]ne . . .might say of quantum theory, that in those cases where it is not
just Bayesian probability theory full stop, it is a theory of stimulation
and response. (Fuchs, 2002b, 2003)

The agent, through the process of quantum measurement stimulates
the world external to himself. The world, in return, stimulates a response
in the agent that is quantified by a change in his beliefs—i.e., by a change
from a prior to a posterior quantum state. Somewhere in the structure of
those belief changes lies quantum theory’s most direct statement about
what we believe of the world as it is without agents. (Fuchs and Schack,
2004)

Given the point of departure of a Bayesian view of the state, and using techniques
from quantum informationt theory, the aim is to winnow the objective elements
of quantum theory (reflecting physical facts about the world) from the subjective
(to do with our reasoning). Ultimately, the hope is to show that the mathemat-
ical structure of quantum mechanics is largely forced on us, by demonstrating
that it represents the only, or, perhaps, simply the most natural, framework in
which intersubjective agreement and empirical success can be achieved given the
recalcitrance of the world: its resistance to normal descriptive theorizing. (Here
we may emphasize the links to thoughts familiar from the Copenhagen tradition:
we are being invited to see quantum theory as the best we can do given that—in
Pauli’s phrase—the ideal of a detached observer may not be obtained.169) So the
final reason to consider adopting this viewpoint is that it may lead us to new
insights that would be impossible otherwise. However, it will be conceded on all
fronts that the proof of this pudding will be in the eating.

169This striking phrase appears in a letter from Pauli to Born (Born, 1971, p. 218).
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9.2.2 In more detail

Let us now set things out a little more formally. According to the quantum
Bayesian view, the world contains systems, apparatuses and agents. An agent,
when choosing to apply quantum mechanics, will assign states ρ (density oper-
ators) to systems, based on his or her background beliefs and knowledge; and
(to repeat) different agents may come to different assignments, even when in
the same situation (just as a subjective Bayesian treatment of probability would
allow). Agents will, furthermore, assign POVMs {Ed} to apparatuses, corres-
ponding to what they think a given piece of apparatus (having a range of possible
outcomes or ‘pointer positions’ labelled by the set {d}) measures; and they will,
finally, associate quantum operations E , representing time evolutions, to various
physical processes.170

As we know, the quantum Bayesian deems the state subjective; but a little
thought reveals that things can’t stop there (Fuchs, 2002a,b; Caves et al., 2007).
The POVM assigned to an apparatus and the associated quantum operations
must be a subjective matter too: this is required for consistency. Simply consider
a preparation procedure. We commonly suppose that we can design devices in the
lab that reliably produce certain quantum states. As a familiar model, consider
an ordinary projective (von Neumann) measurement. Take the POVM associated
with the measuring device in this case to be a set of one-dimensional projectors
{Pd} (so this in fact will be a PVM: a Projection Valued Measure). The state
change rule (the quantum operation, including re-normalization) associated with
obtaining the outcome d of this particular kind of measurement is

ρ �→ ρ′ =
PdρPd

Tr(ρPd)
= Pd,∀ρ. (9.1)

(This mapping is often known as the Lüders rule.) Now if the POVM (PVM)
{Pd} associated with the measuring apparatus were an objective feature of that
apparatus, determined by the physical facts pertaining to it, then so would the
state change rule be; and so too the post-measurement state. It would no longer
be a subjective matter what the state of the system is: it would be a matter of
right or wrong determined by the physical facts. Post-measurement, the system
would definitely be in the state Pd. This reasoning generalizes to non-projective
measurements and to the more general associated state-updates.171 Here too
objective constraints on what the right states are would inevitably be introduced.
The general conclusion is that the POVM associated with a measuring device
must be a subjective matter, in order to maintain the subjectivity of the state; as
must the quantum operations assigned to measurement processes and to state-
preparation processes in general. (Of course, this does not mean that whether
or not an apparatus provides a particular read-out, or any read-out at all, is
a subjective matter; on measurement one of the outcomes d will, objectively,

170See Appendix A for details of POVMs and quantum operations.
171See Fuchs (2002a, §7) and Caves et al. (2007, §§3–4).
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obtain. But what will be allowed to be subjective is what POVM element is
associated with that outcome—what it represents the measurement of—Ed or
some E′d?)

Once this is conceded it seems overwhelmingly natural simply to take all
quantum operations, not just those associated with measurement and state
preparation, as subjective, even though it is not strictly required by the consis-
tency argument.172 After all, if the state at time t is just a subjective probability
assignment for the outcomes of measurement at time t, and the state at a later
time t′ is just a subjective assignment for measurements at t′, then the relation-
ship between them looks very much like an updating of subjective probabilities
and hence analogous to conditional probabilities in a standard Bayesian setting,
which, of course, would immediately be granted as subjective. Against this one
might be inclined to argue that at least some time evolutions should be objective,
for example, if one were convinced that at least the Hamiltonian that governs
a particular system (or group of systems) must be an objective matter. We do,
after all, often spend a good deal of time—and attach considerable importance
to—calculating what the ground states or spectra of various Hamiltonians are;
and this practice might seem to be undermined if we were to grant that Hamil-
tonians couldn’t be objective features either. But if it is already conceded that
quantum states are subjective, it’s not clear what force this consideration can
have. If it is not an objective matter whether any system ever is in its ground
state or not, for example, then it is unclear that there would be any further loss
of explanatory power if it were conceded in addition that it is not an objective
matter what the ground state of any system actually is. So it seems reasonable to
conclude that the quantum Bayesian should adopt the subjectivity of quantum
operations wholesale.

9.2.2.1 Coming to agreement: The quantum de Finetti representation At this
juncture we should air an obvious objection to all this; an objection which might
have been felt increasingly urgently as we have progressed. That is: One might
be prepared to grant that the quantum Bayesian position outlined so far is a
logically consistent way of thinking about states and operations, but isn’t it just
de facto false? Isn’t it just the case that different scientists do agree on what the
quantum states prepared in the lab are, what POVMs measuring devices actually
measure, and what time evolutions are? In quantum mechanical practice there’s
surely none of this differing (dithering?) of subjective judgements to be found.
If there ever are any disagreements we just do further measurements and that
settles the matter, full stop.

It should be clear that this objection is just as much, or as little, of an ob-
jection as the corresponding complaint against ordinary subjective Bayesianism.
Traditionally, subjectivists have responded by proving various theorems to the
effect that subjectivist surrogates for objectivity may be found (e.g., de Finetti,

172Fuchs (Fuchs, 2002a, §7) argues for this conclusion and Leifer (Leifer, 2006, 2007) provides
supporting considerations.
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1937): explanations of why different agents’ degrees of belief may be expected
to come into alignment given enough data, in suitable circumstances; hence the
appearance (but only the appearance) of objective properties. Impressively, this
same kind of reasoning proves to be available in the quantum case too (Caves
et al., 2002c; Schack et al., 2001; Fuchs and Schack, 2004).

An important example is given by the estimation using frequency data of
what are often thought of as the unknown chances associated with repeated
independent, identically distributed (i.i.d.) trials. If a number of parties consider
the frequency data from many repeated throws of a biased die, for example,
then we intuitively think that they will all home in on the correct probability
distribution entailed by the bias, given enough of the i.i.d. trials. Cases like this
provide a lot of the intuitive support for objectivism about probabilities: there
must be objective probability as there is something out there that we are all
finding out about. But de Finetti famously provided a counter to this line of
thought.

Begin with the recognition that ‘an unknown probability’ is a nonsense from
the subjectivist view. Probabilities are people’s degrees of belief, so whenever
there is a probability, there had better be somebody to bear it, hence it can’t be
unknown. Thus to begin with it seems impossible even to state what is going on
in the estimation scenario just described: so much the worse for the subjectivist,
it seems. But de Finetti showed how to get around this problem. Consider the
event space composed of all the different possible sequences of outcomes for a
large number n of repeated trials of the experiment. The objectivist will think
that there is a probability distribution over these sequences generated from the
i.i.d. chances associated with each of the trials; the subjectivist will not, instead
assigning a certain prior probability distribution over the sequences. De Finetti
identified what the relevant aspect of this prior will be in the estimation scenario.
If one judges (no more) that each trial is relevantly similar, then the prior prob-
ability distribution one assigns will be permutation symmetric: it would make
no difference to your probability assignment if you were to imagine two or more
of the outcomes in a sequence being swapped in order. If we further judge that
an arbitrary number of the trials would be relevantly similar (again capturing a
natural aspect of the setting) then the prior will in addition be what is termed
exchangeable; that is, both symmetric and derivable by marginalizing a symmet-
ric prior over a larger number n + m, (m > 0) of events. Finally, if the prior
is exchangeable, then de Finetti showed in his representation theorem that it
may be written uniquely as if it were an ignorance probability over a range of
unknown i.i.d. chances. So if we imagine that some variables xi are the random
variables representing the outcome of each individual trial and p(x1, x2, . . . , xn)
were our exchangeable prior, capturing our thought that the various trials were
relevantly similar, then the prior may be expressed as:

p(x1, x2, . . . , xn) =
∫
P (p)px1px2 . . . pxndp, (9.2)
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where the pj are what one would think of as the chances of getting outcome
j on a particular run of the experiment, were one an objectivist, and P (p)
is a distribution (normalized to one) over the space of all the possible chance
distributions p = {p1, p2, . . .}, 0 ≤ pj ≤ 1,

∑
j pj = 1. Then one would appeal

to Bayes’ theorem to show how by conditioning the exchangeable prior on the
frequency data received, the weighting P (p) becomes increasingly peaked as data
is received; and that different agents beginning with different exchangeable priors
will find their respective distributions P (p) peaking around the same point.173

Thus the Bayesian account of the appearance of objectivity: homing in is
coming to agreement.

Caves, Fuchs, and Schack apply the same conceptual manoeuvres to the quan-
tum case, for the same ends.174 The quantum analogue of the classical estimation
case just described is what is often known as quantum state tomography , a pro-
cess described in Chapter 3. While it is impossible to determine the unknown
state of an individual quantum system,175 if one is presented with a sufficient
number of identically prepared systems then it becomes possible to identify the
state by taking suitable measurements. As remarked previously, if one has a large
number of k dimensional systems, all prepared in the same way, then determin-
ing the expectation values of k2 linearly independent operators by measurement
will suffice to determine the state (Fano, 1957; Band and Park, 1970).176 It is in
this kind of way that one typically establishes that one’s preparation device in
the lab is actually doing what one hopes.

The quantum Bayesian response is first to present a quantum version of
de Finetti’s representation theorem. If one begins with an exchangeable177

density operator assignment ρ(n) for n systems which one judges (not knows)
to have been identically prepared, then it may be shown that the state may be
written uniquely in the form:

ρ(n) =
∫
P (ρ)ρ⊗ ρ⊗ . . .⊗ ρ dρ, (9.3)

173More detailed statements of the results involve noting that the various agents must be
suitably reasonable to begin with, for example, as Fuchs puts it (Fuchs, 2002a), being willing
to learn, which would manifest itself in the requirement that the initial distributions P (p) may
be arbitrarily close to zero at any point but must at none actually be zero.
174Quantum versions of the de Finetti theorem had been proven before by a number of authors

(for references see Caves et al. (2002c)), but Caves, Fuchs, and Schack were the first to deploy
the ideas as part of the debate over the nature of quantum states; and they provided a simplified
proof of the theorem.
175This fact lies at the heart of quantum cryptography, for example, and as we saw earlier,

lies behind many of the significant differences between quantum and classical informationt. For
a philosophers’ introduction to quantum cryptography see Timpson (2009, §2).
176In fact k2 − 1 will suffice if we take into account the requirement of normalization of the

state.
177‘Exchangeable’ for density operators means just the same as for probability distributions:

the operator is symmetric under interchange of systems and may be derived by taking the
partial trace over a symmetric assignment to a larger number of systems.
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where P (ρ) is a distribution (again, normalized to one) over the space of density
operators. The second step is the proof that a suitable analogue of the Bayes rule
reasoning applies (Schack et al., 2001): given suitable data from measurements
on the prepared systems, P (ρ) will approach a delta function, the same even
for different priors. Related results (Fuchs et al., 2004; Fuchs and Schack, 2004)
may also be proven for quantum process tomography, the business of establishing
what evolution is applied by a given procedure in the lab, again defending the
subjectivist view, this time for the subjectivity of operations.

These are impressive results for the quantum Bayesian programme; and the
emphasis which has been laid on quantum analogues of the de Finetti theorem
by this approach has already borne independent theoretical fruit in providing im-
proved means of establishing the difficult question of whether particular quantum
cryptographic protocols are really secure against the most general kinds of quan-
tum attacks (Renner, 2005). But it is worth noting that the quantum subjectivist
responses to the objectivist challenge do of course share a common weakness with
the usual classical subjectivist stories. That is, the objectivist might be quick to
respond that all that has been shown in these theorems is how it might be pos-
sible for certain agents in idealized situations to come to agreement,178 not that
actual agreement in the real world would ever be met; and they might add that,
moreover, Bayesianism is plausible only as a normative theory, specifying how
agents should act if they are to satisfy certain consistency requirements; it is
not a descriptive theory stating how agents will act (nothing forces someone
to reason Bayesianly after all), so there is an important sense in which it can-
not provide the kind of explanation for agreement that might be required. The
subjectivist’s (quite reasonable) tu quoque might be that objectivist theories of
statistical inference are scarcely in good shape (cf. Howson and Urbach, 1989);
however I shall leave this issue to one side as it is part of the general debate be-
tween subjectivist and objectivist notions of probability and not specific to the
quantum case. What we should not lose sight of is the impressive result which
has been established: that appealing to the laws of quantum mechanics does not
settle the issue of the existence of objective probabilities.

9.2.2.2 What gets to be an apparatus? We have said that an agent will assign
states to systems and associate POVMs to measuring apparatuses, but what gets
to be an apparatus? What gets to be a system? This is one of the common forms
in which our disquiet about dealing with the quantum world has manifested
itself. Bohr, for instance, is notorious for his free-wheeling attitude to where one
might draw the line between quantum and classical (Bohr, 1935, 1949); and his
apparently shifty and unprincipled (in both senses!) sliding of the split has often
induced nausea in the realist minded. ‘One should not play so fast and loose
with reality!’ runs the thought.

178In particular, one might be concerned about the rate at which agreement would be reached
for differing priors and the initial constraints that the various agents be reasonable in certain
technically defined ways.
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Others in the Copenhagen tradition have argued in Bohr’s defence, however.
Peres makes what would seem to be the appropriate rejoinder quite crisply:

Bohr never claimed that different physical laws applied to microscopic and
macroscopic systems. He only insisted on the necessity of using different
modes of description for the two classes of objects. (Peres, 1995, p. 11)

This response doesn’t solve all difficulties (as Peres himself immediately goes on
to note), but it is a move in the right direction if one were inclined to defend Bohr
(I am not); and it signals the right kind of direction for the quantum Bayesian
to take too. The best way of thinking in their approach is that there is a single
world, not a divide between quantum and classical worlds; and this single world
is a quantum world, that is, a world in which we have learnt that we must use
quantum mechanics as a largely pragmatic tool if we wish to make very detailed
predictions; a world which precludes descriptive theory below a certain level.
Above that level there will be a mass of stateable truths, many of which will be
pretty well subsumable under theory; yet there is only one world. A world which
contains big things and small things and where the big things are composed of
the smaller ones.

Thus the rule will be that one treats as a system that which one needs to
apply quantum mechanics to in order to ensure best predictive success. For the
truly microscopic we have learnt that no classical description gets things even
vaguely right and hence the microscopic must always be treated as system. For
larger objects it may be that fairly good, or even very good, descriptions are
to be had, so one may often not need to apply quantum mechanics to them,
not need to treat them as system; but one may always choose to do so if one
wishes (although typically it will make no predictive difference); and sometimes
one may need to do so, for example if one is interested in particular fine detail
of a micro–macro interaction.

So: what get to be apparatuses rather than systems are items i) about which
there are stateable facts at all times (so one always has the option of not treating
them as quantum) and ii) which one happens to be using to probe the objects
being treated as systems, or which one deems apt for such a purpose.

As already mentioned, one is always free to step back and apply quantum
mechanics to the apparatus too; one will then have other objects in mind as the
apparatuses with which one might probe this large system and its relation to
other systems; but it is important to recognize that this shift doesn’t change any
of the facts about the object concerned, nor indicate any change in our attitude
towards the facts about it (so no call for queasiness!). We may still believe that
the object previously treated as a measuring device, but now being treated as
a system to be assigned a quantum state, has stateable truths about where its
pointer may be pointing (for example). And that’s so even if I assign it a quantum
state; and even if I end up assigning it a state which is not an eigenstate of the
pointer observable.

Why so? Well, attend to the discipline that states only represent degrees of
belief about what the outcomes of future measurements would be. If I believe
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that the pointer is at position x, and I wish to ascribe a quantum state to the
apparatus, then, given one’s normal assumptions about the functioning of one’s
perceptual faculties, I certainly will assign it the corresponding eigenstate of the
pointer observable: I believe it has a particular position and I believe I will see
the pointer in just that position when I look (barring silly accidents); a certain
state assignment follows. But the converse kind of reasoning doesn’t hold: the
fact that I do not assign a pointer eigenstate does not mean that I don’t believe
that the pointer has some definite position or other: that would hold only if one
subscribed to the eigenstate–eigenvalue link, which is out of the question in this
approach. The state I assign only corresponds to my probabilistic predictions
for where the pointer will be found when I look; and the theory which informs
my judgements—quantum theory—might dictate that a superposition of pointer
eigenstates, or more likely, an entangled state involving such a superposition, is
predictively the best. So to recap, contrary to one’s intuition shaped by the
common use of the eigenstate–eigenvalue link, I can believe that there is some
fact (of which I am ignorant) about where the pointer of a device is pointing,
without having to assign it a pointer eigenstate, or even a convex combination
of projectors onto such eigenstates. When I look I will certainly find it in a
definite position (there is a fact about where it is at all times, after all) but my
probability distribution over the possibilities may be a non-classical one given
by some state assignment involving a superposition. The facts about the pointer
position don’t determine a state assignment, nor does any belief that there are
some such facts; only my beliefs looking forward to measurement do.

Thus the quantum Bayesian is in a pretty good position when it comes to
the system/apparatus divide: in this picture a shift in the status of an object
from apparatus to system should have no tendency to induce nausea as it has
no association with a downgrading of definite, observable properties to wavy
indistinctness. Furthermore, the shiftiness is principled given that one begins
from a setting in which quantum mechanics is to be treated as a pragmatic
means of dealing with the world rather than being a candidate descriptive theory:
one only treats an apparatus quantum mechanically when one needs the greater
predictive detail; but that’s not being mercenary—it is just the name of the game.
And there is a final advantage. One of the things which is a trouble for approaches
such as Peres’, which also allow a shift from treating apparatus as apparatus in
a measurement to treating it as system, is in obtaining consistency between the
two descriptions provided of what is, after all, only one physical measurement
process. In particular, one will obtain different system-apparatus correlations
depending on whether one treats the apparatus as quantum or not; that is, joint
probability distributions for measurements on system and apparatus together
will be different in the two cases. Now one would typically appeal to decoherence
to suggest that the difference isn’t ever going to be much in practice, but the
position is still rather unsatisfactory. But happily, the problem does not arise
for the quantum Bayesian. Given that probability distributions are subjective,
the different levels of description with their different joint probabilities do not
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disagree about how anything is in the world.
We normally tend to think that our fundamental physical theories are, or

ought to be, universal in scope: that they apply equally to all physical objects
in any situation and provide a framework for a comprehensive treatment of the
physical world at a basic level.179 It is clear that in one sense the quantum
Bayesian picture does not satisfy this ideal. In order for the theory to be in-
telligible, we must draw distinctions between system and apparatus, treat these
items differently, and highlight the role of agents as the owners and appliers of
quantum states. Quantum mechanics on this picture cannot be a universal the-
ory in the sense that it can be applied to everything at once; some things are
not assigned a quantum state in order that ‘assigning a quantum state’ can be a
meaningful phrase. The theory doesn’t proffer a view from nowhere, in Nagel’s
phrase (Nagel, 1986). However, there remains a perfectly good sense in which the
theory thus construed is universal, namely, it is applicable to anything and ev-
erything, only piecewise, not all at once.180. Maybe that should be good enough
for us. Certainly, it will allow us to make all the predictions we could ever want.

9.2.3 From information to belief

The earlier expressions of the quantum Bayesian viewpoint (Fuchs, 2001, 2003;
Caves et al., 2002b) suffered from an uncomfortable problem. In these, the notion
of information played a more central role; indeed the central statement of the
position was that the quantum state represented information about what the
results of future experiments would be. This proved to be a false start, for as we
have seen (Chapter 7) the concept of information is not apt to play the required
role. The term ‘information’ is, like the term ‘knowledge’, factive: one can’t
have the information that p unless p is the case; one can’t know that p unless
p; one can’t have any information about something unless that information is
correct. But then, as recounted earlier, this factivity re-introduces the objectivity
of quantum states it was the express aim of the approach to avoid; and the
proposed resolutions of the problems of measurement and nonlocality founder.
Thus if one wishes to associate the quantum state with a cognitive state in
order to ameliorate the conceptual difficulties of quantum mechanics, one has
to choose belief rather than knowledge and one must eschew ‘information’ as a
way of expressing what one takes the state to represent. Fuchs recognized the
difficulty—although not putting it in quite these terms—and it forms the main
theme of the discussions in Fuchs (2002b).

The shift from the notion of information to that of belief also goes along with
a shift from so-called objective Bayesianism about probabilities to the full-blown

179This presumption has not, however, gone unchallenged. For stimulating arguments against
see Dupré (1993) and especially Cartwright (1983, 1999); while Hoefer (2003) and Sklar (2004),
for example, defend the orthodoxy.
180One can even make sense of assigning a wavefunction to the universe, so long as one does

not take it to include all degrees of freedom; cf. Fuchs and Peres (2000).
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subjective Bayesianism we have been discussing. In an objective Bayesian view-
point (e.g., Jaynes, 1983), probabilities are degrees of belief, but it is maintained
that circumstances can entail that certain assignments are correct and others
wrong (e.g., the general rule might be that one ought to assign a probability
distibution that maximizes entropy subject to the constraints, as Jaynes (1957)
maintained). The problem with this sort of view in the quantum case is that it
would mean that some state assignments are right and others wrong, in virtue
of how the world is; but of course it was just this kind of objectivity which
the approach seeks to avoid in order to make progress. If some states are right
and others wrong then we can no longer discount Wigner’s friend concerns and
the resolution of the conundrums of nonlocality in quantum mechanics becomes
highly problematic. It looks as if no half-way house would be satisfactory. If
one wants to adopt something like the Bayesian line in quantum mechanics to
any purpose then it seems one must go the whole hog and accept the radical
subjective Bayesian line.

9.2.4 Two hints

Let us close this section by recording two hints which Fuchs (Fuchs, 2002a) sees
the quantum Bayesian programme as providing, one a hint towards the nature
of the world, the other a hint towards the question ‘Why quantum theory?’

There are various ways in which one can expand on the notion that a quan-
tum state expresses a range of probabilities for measurement outcomes. Formally,
states are normalized linear functionals on the space of operators associated with
a system (see Appendix A for more details). To every operator a state assigns an
expectation value and for the subset of those operators associated with measure-
ment outcomes (familiarly, projectors; more generally, POVM elements) these
quantities will be the probabilities of obtaining that outcome on measurement.
Thus the specification of a state encapsulates an enormous number of probability
statements (judgements). One need not specify every one of those probabilities
in order to specify the state, however. As we have already remarked, in quantum
mechanics, k2 expectation values of linearly independent operators will suffice to
specify a state of a k dimensional system exactly. A very familiar example of this
is the Bloch sphere representation of the state of a qubit, where the expectation
values 〈σx〉, 〈σy〉, 〈σz〉 are chosen to express the state.181 There is considerable
freedom in the choice of the k2 operators one might make; the requirement is
only that together they span the space of operators. In particular one might re-
strict one’s choice to operators associated with measurement outcomes, in which
case the quantum state of a k dimensional system can now be expressed as a list
of only k2 probabilities. To specify these probabilities is then also to specify all
others.

In the POVM setting, the number of outcomes of an experiment is not lim-
ited by the dimensionality of the Hilbert space of the system one is concerned

181The fourth quantity required in this case (k = 2, k2 = 4) is just 〈1〉 = 2, the same for all
states.
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with so one can consider a single experiment with k2 outcomes, each associated
with one of a linearly independent set of positive operators (the set taken as
a whole is required to sum to unity, of course). Such measurements are called
informationally complete (see Fuchs (2002a, §4.2) and references therein). Re-
peated trials of this single experiment on identically prepared systems will allow
us to determine a state. Conversely, the probability judgements one makes for
the k2 outcomes of this special measurement fix one’s probability judgements for
every single other experiment one might perform.

Fuchs makes this point vivid with the conceit of a Standard Measuring Device
stored in a vault in Paris (along with the standard metre, standard kilogram
and so on). To make a state assignment in quantum mechanics is to make a
judgement about what the probabilities are for the outcomes of measurement
using this standard device. The point of this conceit is to make comparison with
usual non-quantum Bayesian reasoning more perspicuous, for now the quantum
state is not a (perhaps) unfamiliar object (a density operator) but it is simply a
list of probabilities for the outcome of one specific experiment.

And now the hint. Reasoning classically about what the possible probability
assignments to the outcomes of the measurement could be (the admissible priors)
we would just say: well, any assignment of numbers between 0 and 1 over the k2

outcomes which sums to one would be allowed. Mathematically this structure is
a particular kind of convex set, known as a simplex, a convex set where decom-
position into convex combinations of extremal elements is unique; the extremal
elements here being the 0,1 probability assignments to outcomes.182 Making an
extremal assignment corresponds to certainty that the outcome in question will
occur: one assigns this outcome probability 1 and the other possibilities proba-
bility 0.

However, in quantum mechanics we do not have this freedom; and this we may
take to mark the imprint of the world on the structure of our subjective reason-
ing. It is possible to show (Fuchs, 2002a, §4.2) that (as may be intuitively obvious
given the existence of incompatible observables) for no quantum mechanical state
assignment can we reach the extremal points of the classical probability simplex.
Being committed to quantum mechanics as providing the optimum framework
for our reasoning about the world, we can never attain certainty (0,1 probabil-
ity assignments) for the outcomes of the standard measurement. And that, of
course, is irrespective of how much data we gather. The space of allowed quantum
probability assignments is a subset of the allowed classical assignments; and one
whose boundaries lie some distance within the classical set. All that gathering
data (and thereby updating our quantum state) can do is move us around in
this subset. The way we are to read this, Fuchs suggests, is that there is some-
thing about the world, some physical feature, which is precluding the increased

182Think of each probability assignment as being a vector in a vector space where the unit basis
vectors are the 0,1 assignments. By taking mixtures, i.e., convex combinations, of these unit
vectors, we reach any general probability assignment. The vectors corresponding to probabilities
all lie on a particular surface in the vector space and within a bounded region of that surface.
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sharpening of our assignments towards what would be possible classically. No
matter how many experiments we do, we can never reach certainty; it is beyond
our grasp. The world, Fuchs suggests, ‘is sensitive to our touch. It has a kind of
“Zing” that makes it fly off in ways that were not imaginable classically.’ (Fuchs,
2002a, pp. 8–9). Having identified and quantified the extent to which the world is
forcing a departure from, or better, imposing a restriction on, standard Bayesian
reasoning, the challenge is to go on and try to identify more precisely what the
feature of the world is that is giving rise this. This would be just the kind of
indirect peek behind the veil that we are after on this approach.183

Giere maintained (Giere, 1973) that when one
insist[s] that there is only one legitimate concept of probability, that which
identifies probability with subjective uncertainty . . . one lacks the concep-
tual apparatus to distinguish uncertainty due to lack of information from
uncertainty which no physically possible increase in present knowledge
could eliminate . . . [T]o admit the possibility of uncertainty not due to
lack of information would be to admit the possibility of physical, i.e.,
nonsubjective, probabilities—an admission [subjectivists] refuse to make.
(Giere, 1973, p. 475)

But Fuchs’ analysis gives the lie to this conception. If one maintains that quan-
tum theory is the best theory that one can reach (it isn’t about to be replaced by
some pretty hidden variables theory, for example) then the containment of the
quantum mechanical probabilities well within the classical probability simplex
illustrates precisely that there is no physically possible increase in knowledge
to be had (no further data to be gathered) which would allow a sharper prob-
ability assignment; yet the probabilities themselves are, all the while, wholly
subjective. The distinctions one needs are simply those between extremal and
non-extremal states in the space of probabilities (states of greater and less cer-
tainty, respectively) and between the extremal states which our commitment to
quantum mechanics enforces and those which are allowable classically.

183Fuchs also uses the Standard Measurement notion to illuminate the comparison of quantum
state updating with normal Bayesian updating. While Bub, for example (Bub, 1977), argued
that the Lüders rule of quantum mechanics was a natural generalization of Bayes’ theorem,
Fuchs prefers to view quantum updating as being almost identical to Bayesian updating (Fuchs,
2002a, §6). Having argued that one can divide a general state change into a component which
is formally analogous to Bayes’ rule in the classical case (refining one’s beliefs) followed by
a unitary ‘mental re-adjustment’ which takes into account the disturbance one believes one’s
intervention will imply to the system one has measured, it follows when one moves to expressing
states in terms of probabilities for the Standard Measurement, that modulo the unitary re-
adjustment, the quantum state change just is Bayesian updating. Again, the separation of
the familiar classical goings-on from what quantum mechanics additionally imposes (the re-
adjustment factor) seems well suited to the aims of the Bayesian programme of identifying
what it is that forces us to have quantum theory. Bub (Bub, 2007) maintains that the correct
way of seeing state change is not as Fuchs sees it, but rather as he sees it, as a generalization of
Bayes’ theorem to a non-commutative probability structure, but this charge is obscure. Both
are evidently quite reasonable ways of thinking, but Fuchs’ is just particularly well served to
the quantum Bayesian foundational project: it is more apt to provide the conceptual dividends
he seeks.
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Giere adds:
Not being able to make the distinction [between uncertainty due to lack
of information and uncertainty that cannot in principle be removed],
Bayesians are forced to assume that all uncertainty is due to lack of
information, i.e., to assume determinism. (ibid.)

But I think we can see how it is possible to steer between the horns of the dilemma
of determinism vs. objective probability. If we adopt what I have suggested is the
quantum Bayesian picture, that the world at the fundamental level precludes de-
scriptive theorizing and hence may not be captured by law, then we neither have
determinism nor probabilities that follow from law—what Giere terms physical
probabilities. And yet we may still have subjective Bayesian probabilities that
may not be sharpened beyond a certain level. The world, that is, may preclude
sharpening beyond a certain level without having to go so far as furnishing actual
objective probabilities.

The second hint that Fuchs holds out is simply this. It is a long-standing
question in the foundations of quantum mechanics exactly why one makes use of
a complex Hilbert space. Why won’t a real one, or a quaternionic one, perhaps,
do instead? In their discussion of the quantum de Finetti theorem, Caves, Fuchs,
and Schack show that the theorem only holds in the complex case. We have
seen the importance of the theorem to the subjectivist’s account of coming to
agreement, however; and if quantum mechanics is conceived of as the best we
can do in terms of reasoning and coming to inter-subjective agreement in light
of the world’s resistance, then perhaps that is why we have complex Hilbert
space quantum mechanics: such a theory supports the de Finetti theorem. Other
theories would not allow independent agents to come to agreement on states and
operations in that way, and not being able to come to agreement would be a bad
thing for the progress of science.

9.3 Not solipsism; and not instrumentalism, either

Having explored the quantum Bayesian position in some detail, let us now con-
sider some common objections or misconceptions to which the approach has been
prey.

The first is the charge that the position boils down to a fancy form of solip-
sism: the view that only my mind and my mental states exist, there is no external
world, and there are no other minds. It would certainly be a killer blow to the
position if this charge could be made to stick; but it cannot. The challenge is
suggested by the pre-eminence of the notion of the agent in the statement of
what quantum mechanics concerns: states (etc.) are individual agents’ degrees
of belief about what they would see in various circumstances; in the limit, a
quantum state is my set of degrees of belief. Now one gets from here to the
charge of solipsism by adding the assumption, quite natural in some settings,
that everything is made out of matter characterized quantum mechanically (pic-
turesquely: ‘everything is made out of wavefunctions’). That is, that statements
made in quantum mechanical language describe what there is in the world; and
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that everything is to be characterized by the quantum state assigned to it. But
if to make a quantum mechanical statement attributing a state only involves a
claim concerning my beliefs (quantum Bayesianism), then there can be no things
but the beliefs themselves and the bearer of the beliefs (solipsism); for no other
kind of content latching onto externally existing things is expressed. It would be
of no avail to say that the beliefs concern what might happen to various concrete
objects, some of them macroscopic, as those objects themselves will, ultimately,
only be analysed in quantum mechanical terms too, the argument proceeds. Thus
one ends up with no substance to the world other than a pattern of beliefs. To
put it another way, if one deletes the agent ascribing states, then there are no
states, so no things having any properties at all.184

It should be quite evident where this reasoning breaks down: the quantum
Bayesian simply rejects the idea that the quantum mechanical statements one
would typically make describe how things are. They don’t think that everything
is ultimately made from matter which is characterized—attributed properties—
by the quantum state. Moreover, the view is not a reductionist one and because
of this it is by no means solipsist.

The typical view encapsulated in the idea of theory reduction is that the
laws, statements, predictions and so on of one theory are determined by, or
can be derived from, another, more fundamental theory; perhaps with a little
correction along the way. And it is a very natural thought that the physical facts
about the familiar objects that surround us (e.g., tables, chairs, lab benches,
computers) are determined by more fundamental facts about their constituents;
and these constituents being quantum systems (when you get down to it) that
the facts about these familiar objects will be determined by facts stated in the
terms of quantum mechanics about those constituents.

Many views of quantum mechanics would be very happy to allow this, but it is
no part of the quantum Bayesian picture at all. The point of departure of the po-
sition, after all, is that quantum mechanical statements do not provide us with a
story about how things are with microscopic systems, a set of facts characterizing
them; hence these statements are simply not candidates for a class of statements
that might serve as a reduction base for classical level (non-quantum) statements.
The issue of solipsism cannot arise. For the quantum Bayesian, microscopic ob-
jects exist mind- and agent-independently, although it is granted that there is
little that can be said about them:185 one deals with them by assigning an agent-
dependent state. Macroscopic objects also exist mind- and agent-independently;
and there is plenty that can be said about them, although the facts about them

184It’s true that one might point out that it would still be allowed by this argument that
there are externally existing things—those to which states might be attributed if I actually
existed—it’s just that they would have no properties, given my absence, as there would be no
states. This isn’t quite solipsism, perhaps, but it’s not a great position to be in either.
185Which need not be to say that there aren’t various truths about them; but the majority of

such truths are just unspeakable—beyond the capture of theory and description. We will see
more of this below.
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aren’t supposed to be reducible, even in principle, to facts stated in the language
of quantum mechanics about their microscopic constituents.

A second common charge is that quantum Bayesianism is no more than a
version of instrumentalism. Instrumentalism, recall, is the doctrine that scien-
tific theories do not describe the world; rather they are merely instruments that
one uses for making predictions about what will be observed. Thus the theoret-
ical claims made in a theory are not apt to be judged as true or false on this
conception, they are just tools that are used to help organize empirical predic-
tions. Now it is clear that something along these lines is true of the quantum
Bayesian position, but it is less clear that what is true counts as an objection.
Thus the quantum Bayesian begins by adopting a form of instrumentalism about
the quantum state, but that is far from adopting instrumentalism about quantum
mechanics tout court. The state is, of course, not to be given a realist reading,
it is construed instrumentally, or pragmatically, as concerning predictions only;
but that is conceded at the outset of the programme. And it is conceded in order
to serve realist ends. The non-realist view of the state is not the end point of
the proposal, closing off further conceptual or philosophical enquiry about the
nature of the world or the nature of quantum mechanics; rather it is the starting
point. Thus it would be misguided to attack the approach as being instrumen-
talist in character. There is certainly no assertion that the aim or end of science
is merely prediction, that we should stop right there. Given the hypothesis that
the world precludes descriptive theorizing below a certain level, to turn away
from literal realist readings of one’s best fundamental theory is not to turn away
from realism, but to seek the only kind of access one can have.

Another kind of objection invites us to reconsider Wigner’s friend. The quan-
tum Bayesian view will allow different agents to assign different states; and
Wigner and friend will typically assign different states to the contents of the
lab after the friend’s experiment. These different states, however, correspond to
different predictions for joint measurements on system and apparatus in the lab;
and surely we can just test these predictions (at least in principle) to see who
is right. Given that, the quantum Bayesian must be in error when they submit
that Wigner and friend can disagree unproblematically: on the contrary, one is
right and the other is wrong. Hagar, for example (Hagar, 2005), refers to this
kind of objection.

As is no doubt obvious, the objection only looks plausible if one is not working
with subjective probabilities, however. With subjective Bayesian probabilities
the facts don’t determine or make right or wrong a probability assignment, so
there is no measurement one could do which would show one assignment or the
other to be wrong. This illustrates a general property of the quantum Bayesian
position. No objection can be successful which takes the form: ‘in such and
such a situation, the quantum Bayesian position will give rise to, or will allow
as a possibility, a state assignment which can be shown not to fit the facts’,
simply because the position denies that the requisite kinds of relations between
physical facts and probability assignments hold. (No more, obviously, could it
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fall to the converse argument that the facts in such and such a situation require
a particular probability distribution, yet quantum Bayesianism allows another.)
The subjectivist conception of probabilities is a consistent one. If one wants to
convict the quantum Bayesian of error then one will need to furnish a general
argument for the failure of the subjectivist conception of probability in addition;
and this is no straightforward task.

In his discussion, Hagar notes the crucial point that the relevant joint proba-
bilities on which the challenge turns are supposed to be subjective, so not subject
to decision by experiment, but still seems to think that there is a difficulty in
making quantum mechanical probabilities relative to the agent in this setting,
as this will introduce an arbitrary cut between the observer and nature which
will imply that ‘what counts as real, i.e., as having definite properties is now
dependent on where this cut is made’ (Hagar, 2005, p. 767). And this seems too
far to go for consistency even with the quantum Bayesian’s subtle realism. But
it is unclear why it should be supposed that where one decides to make the cut,
that is, where one chooses in a given situation to draw the line between system
and apparatus, should have any ontological implications at all. Just to treat an
object as quantum mechanical—that is, to assign it a quantum state—is to take
no stance at all towards its ontology, in this setting. It is merely to apply a cer-
tain structure of probabilistic reasoning to consideration of its interaction with
devices apt to investigate it. As we saw above in detail, the quantum Bayesian
has no difficulties with a shifting quantum/classical split; and to attribute a
(perhaps entangled) quantum state to a macroscopic device is consistent with
continued belief in that device’s definite classical level properties. There are no
troubles for the quantum Bayesian here.

9.4 Summary: The virtues

As a framework for thinking about and investigating quantum mechanics, quan-
tum Bayesianism has considerable virtues. In many ways it represents the acme
of certain traditional lines of thought about quantum mechanics. It leaves us
with a radical picture, but that is salutary in indicating what is involved in
consistently developing those ideas in a useful way. Thus if one were inclined
to Copenhagen-flavoured analyses of the quantum state in terms of some cog-
nitive state, in order to avoid difficulties that realist conceptions of the state
entail (e.g., Hartle, 1968; Mermin, 2002b; Peierls, 1991; Wheeler, 1990; Zeilinger,
1999b), then quantum Bayesianism, where the cognitive state called on is belief,
not knowledge, is the only consistent way to do that.186 It shows that there is
no cheap resolution of our traditional troubles to be had here. Or perhaps one
is drawn to the Paulian thought that quantum mechanics reveals us to be living
in a world where the observer may not be detached from the phenomena he or
she helps bring about. The quantum Bayesian programme seeks to move such

186The only consistent way, that is, if one wishes either to allow single-case probabilities or
to avoid subscribing to an unilluminating instrumentalism.
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reflections from the realm of loose metaphor to the realm of concrete and use-
ful theoretical statements; and it sets out a precise formal starting point and a
recommended direction for doing so.

This point bears double emphasis. A main, perhaps the main, attraction of
the approach is that it aims to fill in a yawning gap associated with many views
that can be grouped broadly within the Copenhagen tradition: It is all very well,
perhaps (one may grant), adopting some non-realist view of the quantum for-
malism (as Bohr and many others have urged that we should); but, one may ask
(with increasing frustration!), why is it that our best theory of the very small
takes such a form that it needs to be interpreted in this manner? Why are we
forced to a theory that does not have a straightforward realist interpretation?
Why is this the best we can do? The programme of Caves, Fuchs, and Schack sets
out its stall to make progress with these questions, hoping to arrive at some sim-
ple physical statements which capture rigorously187 what it is about the world
that forces us to a theory with the structure of quantum mechanics. And in doing
so it invites us to consider interesting new kinds of question in the foundations
of quantum mechanics. We have already seen, for example: ‘How ought one to
make sense of the notion of an unknown state in quantum mechanics if states are
subjective?’, ‘How exactly does the region of quantum-allowed probability judge-
ments compare to the classically allowed; and why?’, and ‘What Bayesian reason
might there be for complex Hilbert spaces, as opposed to real or quaternionic?’

While the aim of the programme is to seek a transparent conceptual basis
for quantum mechanics, with the help of techniques from quantum informationt

theory and with the suspicion that some information-theoretic principles might
have an important role to play, it should be noted that there is no claim that
quantum mechanics should be understood as a principle theory, unlike Clifton,
Bub, and Halvorson’s contention (Clifton et al., 2003). Not all attempts to gain a
better understanding of quantum mechanics by appeal to information-theoretic
principles that help characterize the theory need conceive of the theory as a
principle theory in contrast to a constructive theory. In further contrast to the
approach of Clifton, Bub, and Halvorson, rather than seeking to provide an ax-
iomatization of the quantum formalism which, when it is recovered, will perforce
be open to interpretation in various ways,188 the quantum Bayesian instead takes
one interpretive stance to begin with and then proposes to see whether or not
it will lead us to a perspicuous axiomatization. This is obviously quite another
approach.

187We’d like a better answer than: the finite size of the quantum of action entails a disturbance
not to be discounted (Bohr, 1928), for example!
188You’ve got the structure of Hilbert spaces, states, observables, operations etc., back. Now,

how does it all relate to reality? Realistically? Instrumentally? Bohr? Everett? Bohm?
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QUANTUM BAYESIANISM 2: CHALLENGES

‘Thank God that quantum mechanics keeps us alive!’ Barbour (1998)

We have seen that the quantum Bayesian position has many benefits; that it
is an important and an intriguing proposal. It is time now to consider some
significant challenges the position faces. The first (Section 10.1) concerns whether
or not we can make out some kind of reasonable ontology for the theory; whether
we can render sufficiently intelligible the proposed world-picture in which the
fundamental level of physical reality is unspeakable in some manner; is resistant
to the capture of law and to descriptive theorizing. And if we are able to make
out such an ontology, is it one which we could sensibly adopt? Next we shall
consider (Section 10.2) whether the quantum Bayesian conception would leave
us with sufficient explanatory resources in quantum mechanics. Our final set of
concerns (Section 10.3) turn on whether the subjective Bayesian conception of
probabilities is really, in the end, acceptable within quantum mechanics.

10.1 What’s the ontology?

In fact it seems that a reasonably sensible, indeed, an almost off-the-shelf, ontol-
ogy is available to the quantum Bayesian, but first a caveat. We already noted
in the previous chapter that the exposition of the quantum Bayesian position
so far is most closely guided by Fuchs’ writings, while still aiming to represent
the views of the other main proponents of the position, Caves, and Schack, but
perhaps to a lesser degree. That warning should be doubly emphasized when
we turn to a detailed consideration of what ontology, or ontologies, might be
available to underpin the quantum Bayesian picture, for the textual sources here
are almost exclusively Fuchs’ writings in correspondence with Caves, Schack,
and other colleagues (Fuchs, 2003, 2002b, 2006). But while it is Fuchs who has
perhaps expended the greatest effort on trying to clarify the kind of ontology
that might go along most naturally with the quantum Bayesian position, I fear
he might not favour the kind of ontology that I shall offer; for it will be rather
more conservative than the sort of position I take it he would most prefer.

What furniture does the quantum Bayesian need? Let us start with the basic
thought that at least we must have systems and measuring devices. The systems
are assigned quantum states and the measuring devices quantum operations
and POVMS. Systems and devices interact and events will occur. So we have
systems, devices (or apparatuses), and we have events. Now naturally we should
take the measuring devices (and all the other larger kinds of objects that we
admit, including ourselves) to be made from various of the systems: the quantum
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Bayesian does not go so far as to deny this humdrum truth. But the by-now
familiar thought is that the behaviour of the systems falls under no law and they
do not properly admit of direct description.

In particular, the really crucial conception is that what (singular) event will
occur when a system and a measuring device interact is not determined by any-
thing, not even probabilistically. That is, there are no facts about the world, prior
to the measurement outcome actually obtaining, which determine what that out-
come would be, or even provide a probability distribution over different possible
outcomes. This feature strongly emphasizes the departure from standard ways
of thinking about quantum theory: for example, hidden variable theories of any
flavour would precisely be in the business of providing facts of the kind that
are being denied here: either facts that determine what the outcome of a mea-
surement would be (deterministic hidden variable theories), or that do so given
the additional specification of a context (contextual hidden variable theories), or
at least provide a probability for what the outcomes will be (stochastic hidden
variable theories, within which we may include realist collapse theories such as
GRW). But none of these kinds of facts is supposed to exist on the quantum
Bayesian picture.

Fuchs is tempted to draw from this last crucial insistence on the absence
of any determination of what event would—or might be likely to—occur on
measurement, philosophical conclusions of a pragmatist189 and open-future (or
‘growing block theory’) variety.190 Thus:191

Something new really does come into the world when two bits of it [system
and apparatus] are united. We capture the idea that something new really
arises by saying that physical law cannot go there—that the individual
outcome of a quantum measurement is random and lawless. (To Caves–
Schack 4.9.01)

A quantum world . . . [is] a world in continual creation (Fuchs, 2005, p. 1)

There is no such thing as THE universe in any completed and waiting-
to-be-discovered sense . . . the universe as a whole is still under construc-

189Pragmatism is the position traditionally associated with the nineteenth- and early
twentieth-century American philosophers Peirce, James, and Dewey; its defining character-
istic being the rejection of correspondence notions of truth in which truths are supposed to
mirror an independently existing reality after which we happen to seek, in favour of the thought
that truth may not be separated from the process of enquiry itself. The caricature slogan for
the pragmatist’s replacement notion (definition) of truth is that ‘Truth is what works!’ in the
business of the sincere and open investigation of nature.
190The philosophical doctrine of a growing block view of reality is the idea that the present

moment and the past exist, but future events and objects do not; and there are no facts about
what will obtain in the future: it is open. As time passes, the ‘line’ of the present rolls forward
and more events are thereby incorporated into the real. The view contrasts with presentism, the
idea that only the present exists and eternalism, the view that all events in the four-dimensional
‘block universe’ are on a par, ontologically.
191In what follows, recipient and date locate where quoted items may be found in Fuchs

(2006).
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tion . . . Nothing is completed . . . even the ‘very laws’ of physics. The idea
is that they too are building up in precisely the way—and ever in the
same danger of falling down—as individual organic species. (To Wise-
man 24.6.02)

My point of departure, unlike [William] James’s, [is] not abstract philos-
ophy. It [is] simply trying to make sense of quantum mechanics, where
the most reasonable and simplest conclusion one can draw from the
Kochen–Specker results and Bell inequality violations is . . . ‘unperformed
measurements have no outcomes’. The measurement provokes the
truth-value into existence; it doesn’t exist beforehand. (To Wiseman
27.6.02)

How does the theory tell us there is much more to the world than it can
say? It tells us that facts can be made to come into existence, and not just
some time in the remote past called the ‘big bang’ but here and now, all
the time, whenever an observer sets out to perform . . . a quantum meas-
urement . . . [I]t hints that facts are being created all the time all around
us. (To Musser 7.7.04)

But adhering to the thought that unperformed measurements have no out-
comes and that the actual results of measurements that obtain are not deter-
mined by anything—are ‘new life’ events—does not require one either to be
pragmatist along the lines of James, Peirce, or Dewey, or to deny eternalism.
So even if the advertised view of quantum measurement is correct, it does not
support the pragmatist position or the idea of the growing block, as a less philo-
sophically contentious alternative is available.

It would seem that the cleanest setting for the proposal is just this. Grant
facts to be timelessly true as the eternalist would assert: facts may pertain to
particular times, or to objects existing at particular times, or to happenings at
particular times (that is to say, there are various truths about these things) but
the facts themselves are not temporally qualified: statements about the world are
just true or false simpliciter; facts don’t come into or go out of existence at any
time (they are not themselves part of the spatio-temporal order), they just are
thus-and-so. For any time let us suppose that there is (timelessly) a fact about
how things are at that time; there is still a lot of freedom about how the facts
about different times might relate to one another. Thus consider a particular
time t at which some quantum measurement outcome has occurred. There is a
fact pertaining to t about what that outcome is. All we require to capture the
quantum Bayesian position is simply to assert that there are no facts pertaining
to any previous times that determine what that fact about the measurement
outcome is. And this assertion is to be generalized: for no time t do any of the
facts about previous times (later ones too, one might want to add) determine
the facts at t, nor do any of these previous (or subsequent) facts even confer
a probability on how things are at t. Hence the claim of lawlessness: we can
picture the world as involving at the fundamental micro-level a four-dimensional
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pattern of events, where the events at a given time do not determine, or imply
probabilities for, events at any earlier or later time. The four-dimensional pattern
is too unruly: it does not admit of any parsing into laws, or even weaker forms
of generalization, not even statistical ones.

This, then, is the micro-level we have dubbed unspeakable; to which we are
denied direct descriptive access. The picture is of a roiling mess. Fuchs adds:

For my own part, I imagine the world as a seething orgy of cre-
ation . . . There is no one way the world is because the world is still in
creation, still being hammered out. It is still in birth and always will
be . . . (To Sudbery–Barnum 18.8.03)

But how to think of this unspeakable micro-level? It is here that we can begin to
engage with some off-the-shelf ontology; for an immediate thought that might be
suggested is that we should opt for a conception in which the basic systems have
largely modal or dispositional characteristics, rather than occurrent, categorical
ones. Thus the systems primarily have dispositions to give rise to various events
when they interact with one another. Some of these events produced will be the
outcomes of interaction of smaller systems with the larger composite systems
(for example, measuring devices) with which we are familiar; and it is these
events that the Bayesian agent will update upon. However, it is important that
the dispositions, or powers, possessed by the systems will not stably give rise to
repeatable, regular behaviour when the systems interact with one another; the
rules of composition of the powers are too loose (or are non-existent) we may
imagine, giving rise to the lawless pattern of events.

This idea of the systems primarily possessing modal properties—powers or
dispositions—fits well with Fuchs’ imagery of creation and birth, for the obtain-
ing of events (their ‘birth’) will be the manifestation, or joint manifestation, of
these powers of the systems; while the modal properties possessed by systems at
a given time will perhaps imply a certain range of possibilities for future times—
only one of which could come to be realized—even if we concede that their joint
interaction does not go so far as conferring probabilities on future events. Thus
we can think of the world as at each time pregnant with possibilities ; while yet,
what will happen is completely undetermined.

The ontological picture being borrowed from here is of course that of Nancy
Cartwright (Cartwright, 1999), who advocates an ontological picture for science
in which objects primarily have dispositions or powers and it is only when these
powers interact in highly contrived, or highly specialized, situations that they
will give rise to the repeatable, regular behaviour that can be described by the
kinds of general statements we traditionally think of as laws of nature, or as law-
like truths. Where things differ in our case is that we are imagining that at the
fundamental level192 there are no situations, however specialized, in which we

192Cartwright, we should note, might well be sceptical of loose talk of a ‘fundamental level’ at
all, as she wishes to combat the ‘fundamentalist’s’ notion that the laws of nature form something
like a pyramid, with the basic laws of physics at the bottom, and with the laws, general claims,
and theoretical statements of the more specialized sciences sitting on top, supported by this
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will obtain law-like behaviour. Interactions of the powers of our micro-systems
always give rise to unruly results.

Why is this micro-level unspeakable? Well, most importantly, by fiat ; this
is just the hypothesis we are exploring: no laws can be found to govern the
behaviour of the micro-level—no such laws exist; nor can we gain any descriptions
of the properties or behaviour of the micro-systems adequate for any kind of
systematic theorizing. But from what has been said so far, we can elaborate a
little more on why the unspeakability. If the properties possessed by the micro-
systems are primarily dispositional on this picture, then there is just not much
to be said about how things are occurrently. The micro-objects are seats of
causal powers and there is nothing to explain (we are supposing) why they give
rise to the particular manifestations of their powers that they do, when they
do.193 Moreover, dispositions and powers are primarily identified by what they
are dispositions and powers to do; and if we cannot find anything systematic
to say about how these modal properties will manifest themselves, then it is
unsurprising that we will lack a grasp of what these properties themselves are.
In general, the uniform absence of law-like regularity (or even any weaker form of
robust regularity) in the behaviour of micro-systems would seem to make proper
grasp of the properties possessed by the systems difficult or impossible.

Of course, there are good reasons to be chary of the notion of an unspeakable
realm: we would be ill-advised to go so far as to suggest a quasi-Kantian realm of
the noumenal. As Wittgenstein perspicaciously remarked, ‘A nothing would do
as well as a something about which nothing could be said’ (Wittgenstein, 1953,
§304). So we should note that the unspeakability of our micro-level is consid-
erably mollified: we can certainly say some things about its inhabitants, albeit
not as much as we should like from the point of view of the traditional realist
descriptive project (we perforce lack a complete and detailed dynamical theory,
or theories, for instance). In particular, we can know that various micro-systems,
of various types, exist: after all, these items can be isolated and experimented
upon; we know that we are built from electrons and quarks, for example. We
can know about these systems indirectly, by our experiment and causal interac-
tion with them; and our fundamental micro-theory (which will, of course, always
be apt for revision in its details) will provide the so-called sortal concepts under
which these systems (or at least some of them) will fall, e.g., ‘electron’, ‘neutrino’,
‘quark’, ‘mode of the electromagnetic field’. What we lack—what is unspeakable,
for there is not much to say—is any detailed story about these items and how
they behave.

foundation. But this is perhaps another locus where what I am advocating for the quantum
Bayesian differs from Cartwright’s picture.
193It might be that in addition to their modal properties, the systems possess some underlying

occurrent, categorical properties of some sort; but by hypothesis, these do not ground the modal
properties in the sense of explaining how and why the powers of the systems obtain; how and
why the powers will manifest themselves in the particular way they do, when they do.
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Now, I have suggested that the natural ontological setting for the quantum
Bayesian picture is one in which the micro-systems primarily possess modal
properties: dispositions and powers. But we should note that while the distinction
between dispositional, say, and occurrent or categorical properties seems clear
enough in some settings, it is not so clear in this. Thus we tend to introduce the
distinction—and the notion of dispositional properties at all—with such work-
aday examples as the fragility of a vase. A vase is fragile: it has a disposition to
break when dropped, or to shatter when struck sharply. It has this disposition
at all times: various conditionals are true of it; but it will only manifest the
disposition (if at all) on some particular (unfortunate) occasion; indeed it might
never manifest the disposition at all, if you are lucky. Now this rather never-never
property of the vase contrasts with properties like its shape or the structure of
its constituents. Its shape and its microstructure are occurrent or categorical
properties; they are both possessed and manifest at all times during the history
of the vase. We don’t need the antecedents of some counterfactual conditionals
to be true in order for the shape and structure of the vase to be manifest. The
shape and structure pertain to what is true now, not what would be true in
certain other conditions, we think. It is by these kinds of considerations that one
motivates the distinction; and one is often inclined to explain why an object has
the dispositional properties it has by appeal to its occurrent properties. Thus one
would explain the fragility of the vase by appeal to features of its microstructure,
for example.

The difficulty I have mentioned arises when one considers more recherché ex-
amples. In particular, when one considers the kinds of properties that typically
figure in physical theories (think, for example, of such simple cases as mass and
charge): these properties are often introduced and explained in terms of their
typical causes and effects (perhaps by citing the various laws into which they
enter); that is, one tends to identify them in just the way one would a disposi-
tional property, yet for all that, one might think that they were supposed to be
occurrent properties, pertaining most basically to what is true of systems now.
Which are they? Can we really maintain significance for a distinction between
dispositional properties and non-dispositional ones when considering the ontol-
ogy of our most basic theories194 and if not, what of the position I have suggested
for the quantum Bayesian?

I think the correct response is to concede the point.195. The distinction is not
clear. Would the quantum Bayesian ontology best be described as one in which
systems primarily have dispositional properties, or as one in which they have
simple categorical properties that imply the corresponding modal truths about
the dispositions of the object (and no more)? It does not seem to make much
odds. One can remain agnostic on whether the properties are basically modal, or

194I am indebted to Joseph Melia for emphasizing this difficulty to me.
195Cartwright herself admits that she does not see much of importance in insisting on a

dispositional/categorical properties distinction, tending to think of these as two different ways
of thinking about, or picking out, one and the same property (Cartwright, 2002, p. 272).
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basically categorical (but implying the same modal truths); or even on whether
this is a difference that makes a difference. The significant point is how the
modal truths and laws relate. There are no laws at the fundamental level, so
modal truths cannot derive from these. They must derive from the properties
that the systems possess; and these modal truths are only such as to give rise
to the lawless patterning of events we have described. There is an additional
reason why agnosticism on this matter is advisable: we have talked of the systems
manifesting their powers by giving rise to events, but what is the status of the
events? One often thinks of events as involving the modification of properties of
objects, so don’t we need some occurrent properties of the systems to be around
to be modified if there are to be any events? Perhaps. But again we can (and
should) be agnostic on the details. There are various ways in which one could
flesh-out in more detail the ontology—or framework for an ontology—for the
quantum Bayesian that I have been sketching, but our desideratum was only to
establish whether a reasonable kind of ontology would be available; and it seems
that this should be so whichever way one goes on the occurrent/dispositional
properties issue.

10.1.1 Objectivity and the classical level

While remaining agnostic on some of the details of the proposed ontology, there
are some pertinent questions one can pursue further, in particular, the ques-
tion of what kind of relation there might be between the lawless micro-level
and the relatively well-behaved macroscopic or classical level. The question of
what might count, precisely, as the macroscopic or classical level is no doubt
deserving of careful discussion, but we have sufficient pointers already for a per-
fectly adequate rough-and-ready characterization. The macroscopic or classical
level will be a level of objects which do have unproblematically stateable truths
about them,196 a level of objects regarding which we can make (more or less
approximate) true generalizations; perhaps even roughly law-like ones in certain
circumstances; perhaps generalizations which follow roughly the line of classical
Newtonian physics. These are objects that we don’t have to invoke quantum
mechanics to deal with, if we don’t want to; if we don’t delve too deeply. It
should be no surprise or mystery that such a level of objects exists: they in-
clude the familiar physical objects which surround us and with which we are in
constant interaction, day and night. We know that these objects are pretty well
behaved and have a large number of stateable physical truths about them.

Now we can ask: how do the facts at the (roughly) classical macro-level relate
to those at the micro-level? Although our model ontology is light on details, we
can at least say this: the relation can be no stronger than supervenience of the
macroscopic truths on the microscopic ones; and it might be weaker.197 It can

196Recall, we already employed this criterion when discussing in the previous chapter what
gets to be an apparatus.
197If truths of domain A are said to supervene on truths of domain B then this means that

there can be no change in the A-truths without a change in the B-truths, but not necessarily
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be no stronger because this would require some form of theory reduction be-
tween the two levels, minimally, general statements regarding micro-level facts
which would imply when and where various macro-level truths and generaliza-
tions hold. But given that there can be no theory about the micro-level and no
true generalizations about the behaviour of micro-systems, this is clearly im-
possible. The reason that the relation might be even weaker than supervenience
is that it could be that when various micro-systems interact, they, taken as
a whole composing some larger macro-object, can possess what are sometimes
called metaphysically emergent properties. These are properties that a composite
can possess but which its components cannot; and which are not conferred on it
by the properties possessed by its components and the laws (if any) which they
obey. The emergent properties are added on top: one imagines all the micro-level
properties of the world being specified and then one having to add these further
truths to the mix: specifying all the micro-properties isn’t enough. While such
emergent properties might in some instances be consistent with supervenience
(Horgan, 1993), they might also very well not be. So although we must insist that
macro-objects are composed of the micro-systems and so are not ontologically
autonomous objects (if one took the micro-systems away, then you’d perforce
no longer have any macro-objects), it might be that there are some autonomous
facts about the macro-objects; it might not be the case that the four-dimensional
pattern of truths, such as they are, regarding the micro-level is sufficient to fix
the pattern of macroscopic truths.

An analogy that might prove helpful is with the doctrine of epiphenomenal-
ism in the philosophy of mind. According to epiphenomenalism, mental goings-on
both genuinely exist and are distinct from physical goings-on, yet they don’t act
on the physical goings-on; they just bob along on top. There is no claim of reduc-
tion of the mental to the physical, but neither of consequent elimination of the
mental. Instead the idea is that mental happenings are a somewhat incidental
(apart from to themselves!) by-product of the physical behaviour of the brain and
central nervous system: something merely thrown up by the physical goings-on;
pleasant and interesting enough to enjoy, no doubt, but secondary to the level
(the neurological) where the real action is. A froth thrown up on top of a deep
sea rife with shifting currents. We can think of the relation between micro-level
and macro-level in the quantum Bayesian picture as having something of this
character: from the roiling, unspeakable mess of microscopic events is thrown
up the level of relatively enduring, well-behaved and characterizable macro-
scopic objects. In contrast to the epiphenomenalist picture, though, which would

conversely. This basic definition can be elaborated in various ways to capture distinct notions:
for example, one might have in mind change over time within a single model of the world (e.g.,
if all the B-facts in a given model remain the same over some interval of time, then there can
be no change in the A-facts during that time) or one might have in mind changes between
different models (if two models of the world—two different possible worlds—are the same with
respect to all the B-facts, then they will also be the same with respect to the A-facts). Exactly
which form of supervenience relation might be apt for our case is underspecified by our model
ontology, so we shan’t pursue it further.
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locate causal laws and influences at the lower (neurological, physical) level, in
our quantum Bayesian picture, the only place where anything vaguely law-like
could be found is in relations between goings-on at the higher (that is the roughly
classical, macroscopic) level.

This suggests the next question: How can we have complete lawlessness at
the fundamental physical level yet the possibility of lawfulness, or at least the
possibility of pretty good true generalizations, at the macroscopic level? Does
this possibility make sense? I think it does, on a number of counts. To begin
with, it seems quite possible that unruliness at the fundamental level can simply
wash out to allow useful (perhaps somewhat approximate) generalizations at a
higher level: think of kinetic theory and thermodynamics, for example. It even
seems quite intelligible that exact laws could hold at the higher level on top
of lawless underpinnings, irrespective of one’s detailed view of laws. Thus if
one were broadly Humean about laws, holding that all that is important for
lawhood is the obtaining of particular kinds of regularity in the phenomena, then
it could simply be that at the higher level such regularities do obtain, albeit that
there is wild unruliness beneath. Or perhaps one holds the view that laws are
given by the obtaining of special higher-order ‘necessitation’ relations between
physical properties (Armstrong, 1983; Dretske, 1977). Again, there seems to be
nothing to rule out these relations obtaining between properties of the higher-
level classical objects, but not between those of objects lower down; and the
regularities at the higher level that these relations might be supposed to entail
can indeed be in place, just as much as for the Humean. Finally we should note
that this kind of challenge is one which already faced Cartwright’s position:
in her view, there is interaction between the causal powers of physical objects,
giving rise to lawlikeness in some domains but not universally. Our consideration
is just a special case of this in which all the domains in which laws hold are
higher than the micro-level. Her response to the concern is simply to note that
it could well be the case that the world just is arranged in such a way that
we do get consistency between the behaviour in these different domains, some
governed by some laws, others by others, some not at all (Cartwright, 1999,
p. 33). Consistency is possible; and indeed if the world is composed of systems
having causal powers which only sometimes give rise to law-like behaviour in
various restricted domains—a patchwork of laws and elsewhere unruliness—then,
trivially, inconsistency is impossible, logically so, so one doesn’t need to worry
about it.

10.1.2 Quantum states for classical objects

We now turn to a different issue concerning the macro-level.198 We know that
it is essential to the quantum Bayesian picture that there are no facts about
micro-systems which determine what the correct quantum state assignment to
them would be. State assignments are a purely subjective matter. However, it

198The following thoughts were stimulated by correspondence with Jon Barrett.
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seems that things are not so straightforward when one also considers the macro-
level: here it turns out that there are in fact agent-independent facts which can
determine whether some state assignments are right or wrong. Why? Because
given natural and mundane assumptions about the behaviour of macroscopic
objects and of our perceptual faculties,199 the facts at a given time about the
features of a macroscopic object determine what we will see when we look at
it; our beliefs about what we will see when we look at it are then either right
or wrong in virtue of those facts; and, of course, beliefs about what we will see
when we look at the object correspond to the quantum state we assign it.

Note, this is not to say that our beliefs about what we see and hence the
quantum states we assign are entailed by the classical level facts: far from it.
Facts about our surroundings don’t entail corresponding beliefs: one might get
things wrong, for example. But typically we do get things right (at least about
simple perceptual matters) and to get things generally wrong is to have deviant
or defective perceptual apparatus in a well-defined sense. How things are is a
norm for belief (a standard for whether beliefs are right or wrong); and reliably
determining how things are a norm for belief-forming processes.

There are some subtleties involved in this claim that classical facts can make
some state assignments right or wrong, however. There are two different kinds of
quantum states one might assign to a classical (macroscopic) object: a detailed
joint state (no doubt massively entangled) of each of its component parts, or more
simply, just a quantum state for one or two macroscopic degrees of freedom (some
average over microscopic degrees of freedom, e.g., approximate centre of mass
position, mean kinetic energy). Let us take the latter kind of state assignment
for simplicity. Suppose we take a table and that we grant (as we should) that
there is some classical fact about where it is (roughly) located. What quantum
state ought we to assign to it? The quantum Bayesian, we might think, will
surely assert: there’s no ought to the matter! An agent will just assign what they
assign and they are neither right nor wrong. But haven’t we just seen that the
classical fact would make some state assignment for the centre of mass variable
right? How do we reconcile the two?

The correct thing to say, it seems, is this: If the agent were to assign a
quantum state corresponding to, that is predictively equivalent (regarding ob-
servation), to the classical description, then they would be right. And if they
were to assign one orthogonal to this, then they would be wrong. But apart from
that, the agent is neither right nor wrong. For the classical object, its classical-
level properties determine what subspace one ought to assign a state lying in (at
least for these macro degrees of freedom) given the supposition of non-disturbing
observation. Notice, however, that this does not conflict with, but rather elab-
orates, our earlier discussion in Sections 9.2.1 and 9.2.2.2, where it was noted
that one was free to assign non-classical superposition states (or perhaps states

199Amongst which will be the assumption, broadly speaking, of non-disturbing measurement
for macro-objects, which certainly looks plausible for—is perhaps an essential feature of—
objects which have classical-level facts about them.
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involving entanglement to other systems) to objects about which one nonetheless
knew there was some classical-level property. This freedom exists because there
is no requirement that one always ought to assign a state predictively equivalent
to a classical one in such circumstances.200 It’s just that if one assigns a state
predictively equivalent to a definite classical one, then one can determinately be
right or wrong. If you don’t, the only constraint is that you had better not rule
out as a possibility that which is entailed by what is indeed the case (e.g., that
the table will be found right there). To do so would mean you were wrong.201

Thus: Not of all things to which one might assign a quantum state is it true
that the result of measurement on that item is a new birth, for one might be
assigning a state to a macroscopic object. And then the ‘revelation’ model for
the result of measurement (on that item alone) is quite appropriate.

As one would expect, things are more complicated with the more serious
state assignments when one is trying to assign a joint state for all the micro
components of the macro-object. There should still be a pattern here of not
ruling out in one’s expectations what is entailed by the classical facts, but this
features as a far weaker constraint as there will be enormous classes of joint
quantum states predictively equivalent to classical statements, particularly given
that there might be not much fixing one’s beliefs about what the composition of
the macro-object is.

In summary, the classical level facts can serve as a constraint on quantum
state assignments to classical objects, even in the quantum Bayesian setting.
They entail that one ought to assign a state lying in (or having its support
within) the complement of the subspace orthogonal to the state predictively
equivalent to the classical truths about an object.202 The question now is, is this
a problem for the quantum Bayesian’s general position?

Now it clearly would be if one could run some kind of slippery-slope argu-
ment along the lines: given that the quantum Bayesian has to concede that there
are some constraints on state assignments for macroscopic objects, it follows that
there are constraints on what quantum states are correct for at least some micro-
objects. But it doesn’t seem as if such an argument will fly. It would need to
trade either on the interaction of micro- with macro-objects, or on the relations
between macro-objects and the micro-objects that compose them; but neither of
these kinds of relations would seem to be strong enough in the quantum Bayesian
setting to run the argument, given a) the subjectivity of quantum operations,
b) the subjectivity of correlations between macro-objects and micro-objects

200That one ought to assign, that is, an eigenstate of the operator corresponding to the par-
ticular macro-variable of interest, or a convex combination of projectors onto such eigenstates.
201Thus one might note that to be what one could call ‘predictively correct’, i.e., to make

the state assignment that one believes will give one the best match to what the (probabilistic)
results of measurement will be, need not be to have the correct belief in the sense of matching
what is indeed the case regarding the properties of the classical-level object.
202This is the formal way of saying ‘Don’t rule out in your expectations what is entailed by

what is in fact the case’.
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which do not compose them, and c) the one–many relation between quantum
states of macro-objects and the quantum states of the micro-objects composing
them.

Thus it seems that admitting some constraints on what would definitely be
incorrect state assignments for macro-objects can be allowed by the quantum
Bayesian without either collapsing or subverting their position.

Let us consider this final question: The micro-level facts do not determine
correct or incorrect states for micro-systems; macro-level facts do determine some
constraints for macro-systems: do the micro-level facts determine the macro-level
constraints? If they were to do so, a certain form of supervenience of the macro-
level facts on the micro would need to be true. For example, suppose it were
the case that in any world in which the four-dimensional pattern of micro-events
were thus-and-so, the pattern of macroscopic facts would also be some particular
way. Then we can think of the microscopic facts fixing the macroscopic ones,
hence also fixing the constraint on the states for macro-systems. But notice
that this result is importantly different from the thought that there could be a
micro-theory possible which would entail the constraints on the states for macro-
systems. There can be no theory for the micro, on our hypothesis, which means
that there is nothing about the micro-level which an agent could know which
could tell him or her what state for a given macro-system they ought, or ought
not, to assign.

10.2 Troubles with explanation

If called upon, then, the quantum Bayesian seems able to present an intelligible
ontology to underlie their position. More worrying for the view is the question
of how they fare with the possibility of explanation in the physical realm.

It seems incontrovertible that we require our physical theories to be able to
provide us with explanations of various kinds: explanations of why things are
as they are, or of how things work, or of how the processes going on at one
level of organization relate to those at another, for example. This, after all, is
one of the main reasons why we go in for the business of science in the first
place. The requirement that science must (by and large) involve the provision of
explanations (amongst the many other things it might be called on to do) is one
of the sticks with which one traditionally beats the instrumentalist. For there is a
big difference between explaining something and predicting it (as we emphasize
in traditional criticisms of the Deductive–Nomological approach to explanation,
for example), yet the instrumentalist view of science would reduce theories to
black boxes which merely spit out predictions and are incapable of furnishing
explanations. We have already noted that the quantum Bayesian view is not
an instrumentalist one: it does not maintain (indefensibly) that the business of
science is merely prediction, not explanation; nor, more weakly, does it maintain
this view restricted to the domain of microphysics alone. But for all that, it is
hard to see how, if the quantum Bayesian approach to quantum mechanics were
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correct, we could have the kinds of explanation involving quantum mechanics
that we certainly do seem to have.

The seeds for this worry were in fact sown earlier, in our discussion of the
solipsism charge against quantum Bayesianism (Section 9.3). There we noted
that the quantum Bayesian position is not reductionist: given that quantum me-
chanical statements typically do not attribute properties to objects (certainly not
those statements involving state assignments, in any case) they will not be apt to
serve as a base to which other kinds of physical statements—about classical-level
objects, say—can be reduced. But one need not belong to the brigade of impe-
rialists about physics—those who believe that all scientific theories of whatever
domain can, in a strong sense, ultimately be reduced to physics—to be concerned
that we may have gone too far here. Blanket reductionist claims are implausible,
but surely we can and do expect suitably modest flavours of reduction when
we seek to explain why macroscopic or classical-level objects have the kinds of
physical properties that they do in virtue of the properties their constituents
possess?

The examples need not be terribly recherché. Think of such bread-and-butter
examples as explaining why matter is stable given that it is composed of charged
particles, or of explaining the thermal and electrical conductivity properties of
solid matter. These are amongst the most basic, but important, explanations that
we think of quantum mechanics as providing: they count as great explanatory
successes. But how, if quantum mechanics is not to be construed as a theory
which involves ascribing properties to micro-objects along with laws describing
how they behave, can we account for this explanatory strength?

Thus think of the question of why some solids conduct and some insulate;
why others yet again are in between, while they all contain electrons, sometimes
in quite similar densities. To answer this question, we need to talk about the
behaviour of charge carriers in bulk solids and what influences it. It presumably
will not do to be told how, for example, by conditioning on data, independent
agents who have certain beliefs about the constituents of sodium might come to
have high degrees of belief that matter having that structure would conduct. This
might be revealing if such reflections on beliefs could be read as a circumlocutory
way of talking about facts about sodium in virtue of which one’s beliefs would
be justified; but in the quantum Bayesian picture, that is disallowed.

The central point is this: Ultimately we are just not interested in agents’
expectation that matter structured like sodium would conduct; we are interested
in why in fact it does so. The normal quantum mechanical discussion proceeds by
reflecting on how the periodic structure of ions in a solid influences the allowed
electronic states, opening up gaps (band gaps) in the energy spectrum of the
allowed momentum states. Then one considers the location of the Fermi surface:
the surface in (crystal) momentum space below which all the filled states lie.
If this surface cuts a band of allowed states, the material will be a conductor
as there are higher energy states for electrons to move into on application of a
potential. If, however, the surface falls into a band gap between allowed states
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then the material will either be an insulator or a semi-conductor depending on
the size of the gap to the next lot of allowed states. Now how much of this
talk would remain as explanatory if we were to move to the quantum Bayesian
position where there are no facts about what the states of electrons in a solid
even are?203

A closely related concern is raised by Hoefer regarding Cartwright’s ‘capaci-
ties first’-based picture of science (Hoefer, 2003). Suppose we consider the sim-
plest realistic quantum mechanical system of all, a hydrogen atom. We have two
components, a positively charged proton and a negatively charged electron. We
take these objects to be endowed with certain causal powers, whose joint interac-
tion in certain circumstances will, in Cartwright’s view, give rise to regular law-
like behaviour; behaviour that would be captured by the Schrödinger equation
for a single electron in a Coulomb potential. Her thought is that the capacities
of the objects are basic and the Schrödinger equation behaviour derivative from
them. But basic in what sense? Could we just drop the Schrödinger equation
and work alone with the capacities borne by proton and electron? Showing how,
in their interaction, these capacities in fact allow the formation of stable, non-
radiating atoms? Certainly not. There is no hope of such an approach succeeding,
for, as Hoefer points out, we would need to have independent grasp of what the
capacities of the objects were and then be able to show how, under the right
circumstances, they gave rise to the possibility of stable atomic configurations.
But of course we have no such independent access to the capacities. The only
kind of detailed access to them that we have is via the generalizations true of
them: in this case, via the Schrödinger equation. The point can be put in terms
of an explanatory deficit: if we insist on the capacities-first picture, then the only
explanation we have of why stable hydrogen atoms are possible is this: ‘Protons
and electrons are endowed with the capacity to form stable atoms under certain
conditions’. This is laughably meagre explanatory fare (close to a ‘dormitive
virtue’-style explanation) when compared to the richness that follows when one
begins with the thought that these systems are governed by the Schrödinger
equation and proceeds to explore quantitatively as well as qualitatively exactly
how and why stable conditions of various kinds arise.

The explanatory deficit problem seems to occur in the quantum Bayesian’s
picture too. Returning to our conductivity examples: what can we say about
why metals conduct if we eschew quantum mechanics as being in some sense a
descriptive theory? Well, we can at least say that a sample of metal will contain

203Two points to note: the kinds of examples I am concerned with here are not, I take it,
question begging against the quantum Bayesian, as, for example, a demand ‘How do you
explain the half-life of uranium if not by objective probabilities derived from objective states?’
would be. The examples do not seem to turn centrally on probabilistic notions, but rather arise
when having particular states for systems plays an explanatory role of some sort. Second, the
instrumentalist is in bad shape with their programmatic silence about properties of systems at
the micro-level and their insistence on prediction alone, but in some ways the quantum Bayesian
is in worse shape given that there aren’t even any facts, for them, about what predictions from
the theory would be right, given the facts about the world.
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a large number of electrons: we know that these are charged and apt to be
accelerated when a field is applied; and given that these electrons in the solid flow
when a voltage is applied, they must be free to some degree to move around in
the sample. This seems about the limit of the descriptive claims about the charge
carriers and their behaviour that we can make if we remain within the quantum
Bayesian’s limits. When we are disallowing the possibility of any descriptive
theory below this kind of level of generality it seems that there is little that we
can say about why macroscopic objects have the properties they do, other than
saying that they are composed of things which are disposed to give rise to this
kind of behaviour under certain circumstances (the shadow of ‘dormitive virtue’
explanation again). But then look how much more one gets when one turns to
quantum mechanics more normally construed! Interestingly, it turns out that
the model where one assumes that the electrons in a solid are completely free
to move around (forming a kind of ‘gas’ permeating the lattice of ions) actually
fits the qualitative features of many metals pretty well, but in order to explain
why that assumption is a good one—why aren’t the electrons scattered by the
ions, for example?—and to explain other anomalies (e.g., specific heats, the Hall
effect coefficients and magnetoresistance) and the very existence of insulators
and semiconductors, then one needs a detailed set of quantum mechanical claims
about what is going on in the solid, as outlined above.

So the challenge is this: it looks like the quantum Bayesian faces an explana-
tory deficit. It seems that we do have very many extensive and detailed expla-
nations deriving from quantum mechanics, yet if the quantum Bayesian view
were correct, it is unclear how we would do so. For it would deny what seems
to be a crucial part of the functioning of these kinds of explanations, namely,
that quantum mechanics makes claims about the properties of micro-systems
and describes how they behave.

Now it should be conceded that this perhaps amounts only to a prima
facie challenge, for the quantum Bayesian could always explore the possibility
of endorsing or developing some heterodox account of explanation which could
show why quantum mechanics would still count as providing us with explanations
notwithstanding its non-descriptive character. Perhaps something along the lines
of Cartwright’s so-called simulacrum account of explanation (Cartwright, 1983,
Chpt. 6), whereby to explain some phenomenon is to provide a model which fits
it into the theory, might be a suitable starting point. But until some such ap-
proach is developed, the question of explanation does seem to raise considerable
difficulties for the quantum Bayesian’s conception.

10.3 Subjective probabilities

Our final locus of concern is whether subjective probabilities can really do the job
in quantum mechanics. It is sometimes baldly asserted that they cannot: that
probabilities in quantum mechanics must be objective: what could properties
such as half-lives for radioactive decay (for example) be but objective physical
properties? These aren’t a matter of what one thinks, but of how things are!
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Or so one might be inclined to insist. However, such assertions clearly carry no
weight against the quantum Bayesian, as they are question begging. For quantum
Bayesians take themselves to be in possession of a perfectly adequate account of
probabilistic reasoning in quantum mechanics. So our route will be to begin by
highlighting a certain uncomfortable oddity that the quantum Bayesian’s posi-
tion commits them to, before raising a more systematic doubt for the conception.

10.3.1 A Quantum Bayesian Moore’s Paradox

G E Moore highlighted an interesting oddity in the logic of belief assertions. It
seems plainly wrong, even paradoxical, to assert a sentence like

• ‘It is raining, but I don’t believe it’, or

• ‘It is raining, but I believe that it is not raining.’

Such utterances seem to hang uncomfortably between being straight contradic-
tions (‘It is raining and it is not raining’) and being empty strings of words which
fail to add up to saying anything. But following Moore (cf. Austin, 1976) the
orthodox view came to be that one can see these sentences as making sense; and
can even imagine circumstances in which their utterance might express a truth:
circumstances, that is, in which I am right in what I say about the weather (‘It
is raining’) but where I happen to have the wrong belief about it. Such circum-
stances might be highly atypical—if sincere, my statements about the weather
and my beliefs about it will usually line up—but they do seem possible. Straight
contradiction is avoided, runs the thought, because the first half of the sentence is
used to state something about the world external to myself, while the second half
is used to state something about me: the two halves aren’t quite talking about
the same thing. Then what is wrong about these Moore’s paradox sentences,
what makes them uncomfortable and paradoxical, is not that they are nonsense
or contradiction, but that they force one to violate the rules for the speech act of
sincere assertion. To a first approximation (Austin, 1976; Searle, 1969), in order
to make a sincere assertion, one needs to believe what one is going to assert; and
that one believes it will be expressed—although not stated—by one’s assertion.
The trouble with the Moore’s paradox sentences is that they subvert these rules:
in uttering such a sentence, one would be denying that one had the belief that
is a pre-requisite for validly making the initial assertion. Thus they can never
be used to make licit assertions—herein lies their pragmatic paradox—even if
they are meaningful and there are circumstances in which they could express
truths. (While this is the orthodox view of these sentences, it is worth noting
that there remains a minority view stemming from Wittgenstein’s discussion
(Wittgenstein, 1953, II.x) (cf. Heal, 1994) which maintains that the sentences
involve a semantic, not just a pragmatic, contradiction.)

Now oddly enough, the quantum Bayesian seems to be committed to the
systematic endorsement of utterances which are very closely analogous—and
similarly uncomfortable—to Moore’s paradoxes. These arise when one considers
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pure state assignments.204

Pure states are absolutely central to the theoretical structure and standard
presentations of quantum mechanics, although perhaps somewhat less so to the
practice of experimentalists. For the subjective Bayesian, they represent a special
case; for not only will their assignment involve making a number of probabilistic
claims, but will also involve a claim of certainty. If I assign a pure state to
some system—an eigenstate of some observable—then I am certain that if that
observable were to be measured (using a good measuring device), the result would
be thus-and-so. Pure state assignments are black and white in a way that mixed
state assignments are not. Because of this, one might be inclined to think that
pure states are less subjective than mixed states—after all, it is perhaps easier
to imagine how different agents, knowing different things, could assign different
mixed states to one and the same system; and one might imagine that as these
agents gather more data they will refine their belief states to narrow down on
the actual pure state the system possesses. For non-extremal states, different
state assignments can be explained away as arising from access to different data;
not so any differences in pure—extremal—states. However Caves, Fuchs, and
Schack maintain, quite correctly, that for the quantum Bayesian, pure states
can and ought to be understood in just the same—fully subjective—way as
mixed states (Fuchs, 2002b; Caves et al., 2007). Any state assignment, pure or
mixed, is a purely subjective matter, not one determined by the facts; otherwise,
their central claims about the nature of measurement and nonlocality do not go
through.

Nonetheless, one might still be puzzled by the subjectivity of a pure state
assignment. In particular, one might be puzzled about how one could be certain
that some particular outcome will obtain, when—by the quantum Bayesian’s
lights—there is no fact about what that outcome will be (no fact that makes the
state corresponding to that outcome the right one). Don’t I need something to
explain why that outcome is going to be the way it is, something which would
justify my certainty about it? Caves, Fuchs, and Schack argue not (Caves et al.,
2007), maintaining that the subjective Bayesian picture has the resources to
answer this kind of concern; and on the face of it they seem right.

They begin by clarifying what might be supposed to be in need of explanation.
Imagine that an agent assigns the pure state ‘spin-up in the z-direction’ to a spin-
half system and proceeds to perform a long sequence of non-disturbing z-spin
measurements on the system, getting outcome ‘up’ each time. One might think
that in the absence of an actual fact that the system was in the state ‘spin-
up’, it would be both surprising and in need of explanation that this particular
sequence should be observed. But surprising for whom, they enquire? Not for
the agent in question: on the contrary, given that he had assigned a pure state

204That there might be some oddity for the quantum Bayesian’s position around this area was
first suggested to me by Howard Wiseman at a conference in Konstanz in 2005. The following
argument and the connection to Moore’s paradox can be seen as an attempt to develop the
concern and make it more precise.



Subjective probabilities 229

and hence was certain, he would have been surprised (to say the least!) had
that sequence not been observed. And what would be required to explain the
sequence, from his point of view? Nothing, given that it would be of no surprise
to him that it occurred—in reaching the pure state assignment in the first place,
all the factors that he deemed relevant to what was going to happen would have
been considered; if there were any pertinent gaps in the story about what was
going to happen then a pure state would not have been assigned. Finally the
agent’s certainty about the outcome is to be explained by citing those factors
which he considered in reaching the original assignment. It is not obvious that
more is required.

This defence of the subjectivity of pure state assignments might be aided
further by appeal to a distinction drawn by A R White between the certainty
of people and the certainty of things (White, 1972, 1975). This follows a gram-
matical distinction between personal and impersonal forms of certainty state-
ments: ‘I/You/Freddy...is/are certain’ versus ‘It is certain’. White proposes that
something is certain if circumstances (facts about the world) exclude the possibil-
ity of its being otherwise, whereas someone is certain (that p) if they are settled
that p because they do not entertain the possibility of its being otherwise—
perhaps because, but not necessarily because, they think that it is certain that
p.205

White goes on to argue that the certainty of people and the certainty of
things are logically independent, thus: I can be certain that p without it being
certain that p (I can be certain that p when it is just false that p—maybe I
have the wrong expectations—a fortiori I can be certain that p without it being
certain that p) and vice versa, it can be certain that p, yet I’m not certain that p
(perhaps because I have various false beliefs, or irrelevant worries, or just don’t
know all the facts). Moreover, White argues that an utterance ‘It is certain’ does
not state, but only expresses my certainty (compare above: ‘It is raining’ does
not state, but expresses my belief, hence the tension—but non-contradiction—in
the Moore’s paradox sentences). Finally, somebody who is certain that p need
not logically (even if they typically might) think that it is certain that p; and
again vice versa. For example, consider a frenzied gambler who is certain that
it will be red next time. He may have this belief without having to think that
there is any mechanism in the roulette table or elsewhere which is going to entail
that the ball will land red, that makes it certain: he just has this conviction
about the outcome: he is certain, tout court. Or in the other direction, consider
an obsessive worrier who definitely thinks that it is certain that p, yet whose
timorous nature nonetheless precludes that producing in him certainty that p.

All this is grist to the quantum Bayesian’s mill. If certainty of people and
certainty of things are logically independent then one can be certain of something

205White has in mind a non-epistemic sense of possible that and hence a non-epistemic sense
of certainty of things. That is, he does not seek to analyse the certainty of things in terms of
the certainty of people, or of suitable populations of people. This might be a matter for debate,
but does not seem crucial for current purposes.
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without anything guaranteeing that things will be so. Specifically, one can be
certain that the outcome of measurement will be spin-up in the z-direction (for
example) while it is not certain that the outcome will be spin-up: no fact entails
it. So far so good.

What now if we ask: can one be certain that p when one doesn’t know that it
is certain that p? Again, this will be allowed; in fact it is entailed by the previous
case. But now consider an apparently closely related statement:

• Can one be certain that p when one knows (or believes) that it is not
certain that p?

Now we seem to have trouble.
For notice that a proponent of quantum Bayesianism, who is self-conscious

about their position and their understanding of quantum states, must be happy
to assert sentences like:

• ‘I assign a pure state (e.g. |↑z〉) to this system, but there is no fact about
what the state of this system is.’

That is, they will be committed to asserting sentences like:
• QBMP: ‘I am certain that p (that the outcome will be spin-up in the
z-direction) but it is not certain that p.’

And isn’t such a sentence paradoxical? In much the same way that Moore’s
sentences are? The two halves of the assertion are in some kind of conflict: this
is what we may call a quantum Bayesian Moore’s paradox. It doesn’t suffice
that it is quite in order to assert that one is certain that p, when it may not
be certain that p; for given the nature of their position, the quantum Bayesian
must in addition be happy to assert at the same time both that they are certain
that p and that it is not certain that p; and this is quite another thing.

Caves, Fuchs, and Schack maintain:
It might . . . be argued that an agent could not be certain about the out-
come ‘Yes’ without an objectively real state of affairs guaranteeing the
outcome, i.e., without the existence of an underlying instruction set. This
argument, it seems to us, is based on a prejudice. What would the exis-
tence of the instruction set add to the agent’s beliefs about the outcome?
(Caves et al., 2007, p. 271)

This seems right: the prejudice in question is based on a failure to appreciate
the distinction between certainty of people and certainty of things; as Caves,
Fuchs, and Schack remark, when associated with the assignment of a pure state
by an agent, ‘Certainty is a function of the agent, not of the system’ (Caves
et al., 2007, p. 258). Yet identification of that prejudice is not the full story.
One might grant that addition of the instruction set—the fact determining what
the outcome will be, or the fact determining what the real state is—would not
add anything to an agent who already assigned a pure state; but conjoining the
explicit denial that there is any such instruction set or relevant facts—something
the quantum Bayesian must be prepared to do as a matter of course—cannot be
met with equanimity. It sets up an unbearable tension. Why isn’t the first half
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of the assertion undermined by the second half? How can the agent’s certainty
about an outcome reasonably be maintained when it runs concurrently with an
explicit denial that the outcome is certain? Isn’t the agent simply convicting
themselves as irrational?

Three points to note. First, the difficulty we have broached here is one which
would seem to affect subjective Bayesianism in general, not just as it finds ap-
plication to quantum mechanics; at least whenever extremal probability assign-
ments feature. The point about the quantum example is that the pure state
assignments make up a very important class of cases which can’t just be ignored
as oddities; at least not without further argument. Second, we can imagine other
kinds of cases—not just subjective Bayesian ones—where sentences like QBMP
might come to the fore: Imagine that our frenzied gambler comes to a moment of
lucidity, realizing his thoughts: ‘I am certain that it’ll be red; but it’s not certain
that the outcome will be red’. We can imagine him nonetheless sticking with his
conviction; and would be happy thereby simply to grant him as irrational in this
instance. That such thoughts are intelligible and consistent with the concept of
certainty follows once we allow the logical independence of certainty of people
and things. What is special about the quantum Bayesian case is that, again,
the occurrence of these paradoxical sentences isn’t just an occasional oddity
which can be ignored—as the gambler case might be—rather, the phenomenon
is absolutely generic. It arises whenever one finds a quantum Bayesian who is
happy to assign pure states and is also explicit about what their understanding
of the quantum state is. Finally, while noting their similarity, I have not said
exactly what the relation between the standard Moore’s paradox sentences and
the quantum Bayesian versions involving certainty is. Are they perhaps at root
identical? If the equation “‘I am certain that p” = “I believe that: it is certain
that p”” were true then they would be; but the equation seems false (cf. White,
1975, p. 76)). This is a matter for further investigation; as is the question of how
the minority view that Moore’s paradoxes are genuinely, not just pragmatically,
inconsistent might transform the quantum case.

What are we to make of all this? The quantum Bayesian is unlikely to concede
that this nouveau Moore’s paradox is an insuperable objection to their position:
there seems to be a fair amount of wriggle room left to them. For example, one
might suggest that the two halves of the pertinent sentences concern different
levels of discussion; that the second claim—‘it is not certain’—is made at a meta-
level of philosophical analysis; is said, perhaps, in a different tone of voice, from
the ground level ‘I am certain’; and thus the tension is defused. Or one might
point to apparently similar phenomena in other areas of philosophy. Consider
for example error theorists or non-cognitivists about ethics—those who hold
that there are no moral facts. Such theorists would nonetheless be happy to
utter such apparently paradoxical sentences as ‘Stealing is wrong, but it’s not
true that stealing is wrong’; and this isn’t generally taken to be an objection to
their position. The reason for this, presumably, is that these theorists have (or
purport to have) a detailed story to tell about the purpose of moral discourse;
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and this is a story in which that purpose may be served without there being
any moral truths; and that purpose still served, moreover, when it is recognised
that there are no moral truths. Perhaps the quantum Bayesian could similarly
elaborate on how there can be a role for personal certainty within our intellectual
economy which is insulated against i) the absence of any impersonal certainty;
and—crucially—ii) the recognition that impersonal certainty is absent.

Such moves might be made; but I am nonetheless inclined to see the quantum
Bayesian Moore’s paradox straightforwardly, as a significant difficulty for the
quantum Bayesian. This is because the trouble it raises seems of a piece with—is
perhaps a direct symptom of—a more general worry to which we now turn; a
worry that in the quantum Bayesian setting, something has gone wrong in the
relation between the reasons one can have and one’s beliefs; in how one’s reasons
could be good bases for action.

10.3.2 The means/ends objection

At a great level of generality, it seems reasonable to insist that when considering
some domain of enquiry, there should be an appropriate match between the
means of the enquiry and its end : what it seeks to achieve. What is puzzling
about the quantum Bayesian position is how, if its premises are granted, its
means could be expected to achieve its ends. What are these ends?

Well, the quantum Bayesian, recall, is at heart a realist about physics; is
one who believes in the existence of a mind-independent world of microscopic—
and macroscopic—goings-on; but is also one who concedes that there is a limit to
what we can describe of this world. In their view, our best theory of the very small
(quantum mechanics) is a theory which has to be understood pragmatically, as a
way of dealing with a world which refuses direct description at the fundamental
level. We might, therefore perceive two distinct ends: one of finding out how the
world is; the other the pragmatic business of coping with the world. Let us focus
on the latter of these, as the logically weaker of the two.

Now what are the means? The familiar business of setting up experiments,
collecting data, and drawing inferences on the basis of this data. When we get
down to our best physical theory, where probabilities rule, this will be the busi-
ness of updating our subjective probabilities on the basis of the data we’ve gen-
erated. The puzzle is this: if there are only subjective probabilities, if gathering
data does not help us track the extent to which circumstances favour some event
over another one (this is the denial of objective single case probability), then
why does gathering data and updating our subjective probabilities help us do
better in coping with the world (if, that is, it does so)? Moreover, why should it
be expected to? Why, that is, should one even bother to look at data at all? It’s
not as if it’s going to guide us in what the world will throw at us; it just leads
us to a different subjective probability distribution. An unexplained gap opens
up between the means of the enquiry and its ends. Put in terms of reasons and
beliefs: if one’s reasons derive from the experiments one has performed then it is
unclear how these could provide good reasons for belief that such-and-such is to
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be expected, or good reasons to act in such-and-such a way. For example, good
reasons to be certain that x will happen are typically reasons for thinking that it
is certain that x will happen; but the latter are never available by the quantum
Bayesian’s lights.

There is an immediate reply to this, of broadly Darwinian stripe. That is: We
just do look at data and we just do update our probabilities in light of it; and
it’s just a brute fact that those who do so do better in the world; and those who
don’t, don’t. Those poor souls die out. But this move only invites restatement
of the challenge: why do those who observe and update do better? To maintain
that there is no answer to this question, that it is just a brute fact, is to concede
the point. There is an explanatory gap.206

By contrast, if one maintains that the point of gathering data and updating
is to track objective features of the world, to bring one’s judgements about what
might be expected to happen into alignment with the extent to which facts
actually do favour the outcomes in question, then the gap is closed. We can see
in this case how someone who deploys the means will do better in achieving
the ends: in coping with the world. This seems strong evidence in favour of some
sort of objective view of probabilities and against a purely subjective view, hence
against the quantum Bayesian.

Throughout the course of our discussion, I have been careful to highlight
and discount those objections, or putative objections, to the quantum Bayesian
position which simply beg the question against subjective probabilities. Isn’t
the means/ends objection just sketched merely another one of these? I think
not. Perhaps something like these means/ends concerns does form part of the
background to many a dogmatic rejection of subjective probabilities, but the re-
flections themselves are not dogmatic. The form of the argument, rather, is that
there exists a deep puzzle if the quantum Bayesian is right: it will forever re-
main mysterious why gathering data and updating according to the rules should
help us get on in life. This mystery is dispelled if one allows that subjective
probabilities should track objective features of the world. The existence of the
means/ends explanatory gap is a significant theoretical cost to bear if one is to
stick with purely subjective probabilities. This cost is one which many may not
be willing to bear; and reasonably so, it seems.

10.4 Conclusions

We began in the previous chapter by exploring the quantum Bayesian position
in some detail and seeing that it could be defended from certain objections
that had been levelled against it. It is clear that once quantum Bayesianism
is properly understood, it does not admit of the charge of solipsism nor yield

206There do, of course, exist various theorems to the effect that one’s expected utility will
typically increase on gathering data (most famously, Good (1967)), but such theorems do not
address our question. At best what they show is that one will believe that it is good for one
to gather data; but this does not, on its own, explain why in fact it is good for one to do so. I
thank Wayne Myrvold for pressing this point.
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to the challenge that it is straightforwardly instrumentalist. Perhaps the two
most important features developed in the presentation were a) the elaboration
of the philosophical setting of the quantum Bayesian position: how it seeks to
retain a realist view of physics whilst admitting limits to what can be described;
and b) the elucidation of how the quantum/classical divide functions in this
setting: how a shift in what gets treated as quantum or as classical is natural
and unproblematic in this approach; most of all, how a shift from treating an
item as classical to treating it as quantum is not associated with a shift in
the ontological status of the object. We saw that it is perfectly permissible to
assign a non-classical quantum state to macroscopic objects about which there
are nonetheless determinate classical level facts.

These are positive features, but we may not conclude that quantum Bayesian-
ism is unproblematic. In our consideration of three substantive questions that
the position faces, we saw that the first—the question of ontology—could be
managed. While the ontological picture that seems most naturally to go along
with the quantum Bayesian proposal of a world unspeakable at the fundamental
level is not a standard one, it does not seem unintelligible, nor intrinsically ob-
jectionable. In fact it drew on what are familiar elements in current philosophy
of science: a Cartwrightian picture of the causal powers or capacities of objects
as basic and universal fundamental laws as absent. However, we saw that on the
issue of explanation and the issue of subjective probability, significant problems
present themselves. Quantum Bayesianism, as it stands, faces the explanatory
deficit problem: it is unclear how what is explanatory could be so. Regarding
probabilities, we found that the quantum Bayesian is committed to endorsing
objectionable Moore’s paradox-type assertions and saw that their position has
the unfortunate weight to bear of a worrying gap between the means and ends
of the enquiry. It may be possible to resolve these problems; the challenge for
the quantum Bayesian is to do so.

Here is a further question to consider. We have now surveyed the philosophi-
cal underpinnings of the quantum Bayesian position in some detail and assessed
its pros and cons. But what, finally, has information got to do with it? We noted
earlier that the correct statement of the quantum Bayesian position does not use
the notion of information and indeed it cannot, given the problem of factivity.
Instead the notion of belief is employed: the quantum state corresponds to an
agent’s degrees of belief, not to what information (if any) they might have. Thus
it appears that Fuchs perhaps cannot say with such confidence that ‘a large
part...of the structure of quantum theory has always concerned information. It
is just that the physics community needs reminding’ (Fuchs, 2002a). For what
the quantum Bayesian assessment would actually allow is that a large part of the
content of quantum theory is to do with the structure and updating of degrees
of belief about the result of measurement interventions, not anything, strictly
speaking, to do with information, or even informationt. It is misleading to think
of any of the core quantum Bayesian proposal (the conception of states, opera-
tions, etc.) as having anything to do with information (informationt); it won’t
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do to say that quantum state represents information, or Shannon informationt,
in their approach. If information or informationt theory is to come to the fore
in this approach at all then it can only be in the flavour of the axioms that
are sought and in the kind of mathematical tools—to do with state disturbance
and distinguishability, to do with sources, channels, cryptography and coding—
which might be employed in the search. In a sense, then, whether or not quantum
Bayesianism ends up having anything at all to do with information will depend
on what the fruit of the search for axioms is. This is still to be seen.
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CONCLUSIONS

‘. . . my readers . . . will see in the tell-tale compression of the pages before
them, that we are all hastening together with perfect felicity.’ Austen
(1818)

And so to the conclusions. What are they?
Well, we have answered one of the questions with which we began: what

is quantum informationt? The answer is almost banal: quantum informationt is
what is produced by a quantum informationt source, just as classical informationt

is what is produced by a classical informationt source. In the quantum case, what
is produced that we desire to transmit (the piece of informationt) is an (abstract)
type, a given sequence of quantum states.

To develop and to appreciate this answer, though, we had to reflect carefully
on the Shannon concept of informationt and take care to dispel any inappropriate
hangovers from our thinking about the everyday concept; and we also had to
appreciate the ontological distinction between types and tokens; and between
properties and objects. With a clear grasp of the nature of informationt, we were
able to dissolve puzzles about the character of informationt flow in entangled
quantum systems: these difficulties were arising primarily as a result of thinking
of information in the wrong way; of having the wrong logical prototype in mind.
It is a mistake to conceive of there being a task of trying to trace the path of some
thing—the informationt—in an informationt transmission protocol: there is no
spatio-temporally located thing to take a path, continuous or not. The focus of
one’s attention should rather be the nature of the physical processes involved in
the transmission; and for that, one should simply look to the theory describing
the processes in question. There is nothing else to be said.

The lesson of entanglement-assisted communication is that global properties
of systems can be used to achieve informationt transmission in ways that do
not involve locally defined properties having a dependence on the identity of
the piece of informationt in question. Any mystery which remains about that
is simply the mystery of the existence of irreducibly global properties; if that
should be thought to be a mystery at all, rather than simply an empirical fact.
It is a mistake to try and scrape around to find locally defined properties to be
informationt bearers, as Deutsch and Hayden, for example, seemed to: there is
nothing wrong with allowing irreducibly global properties to do the job, if that’s
what one’s best theory of the protocol in question postulates. The thought that
one must find some such local properties, or some other means of tracing a spatio-
temporally continuous path, arises from the (no-doubt unarticulated) grip of the
‘thing’ model on one’s imagination.
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So we know what quantum informationt is; what now is quantum informationt

theory? Or better, what kind of theory is quantum informationt theory? Well, it
is important to state something which it is not. It is not a theory which postulates
a new kind of physical substance—quantum informationt—and seeks to describe
how this substance behaves. It does not, that is, add to the contents of the
world; it does not postulate new ontology. Rather it gives us ways of talking
about—and, in particular, gives us interesting new things to ask about—what
is already there: the systems that are already postulated in quantum mechanics.
Realizing this, we can see how thoroughly misguided thoughts of informational
immaterialism always were. Talk of information in quantum informationt theory
is not talk of a new kind of immaterial ontological stuff; it’s simply a way of
talking about certain interesting features of the material stuff that was there all
along.

We could adopt a simple mnemonic to remind ourselves of this: it’s all a ques-
tion of bracketing. It’s not that we have a (quantum informationt) theory—a
theory of an enticingly mysterious new stuff called ‘quantum informationt’; but
rather that we have a quantum (informationt theory)—a theory which pur-
sues the tasks of computing and communicating using distinctively quantum
resources.

Let us return to the slogan ‘Information is Physical’. I gave this slogan rather
a rough ride. It elicits a dilemma over whether ‘information’ is meant in the
everyday or in the technical sense, with neither answer seeming satisfactory (if
the everyday, quantum information theory gives us no reason to believe it true,
nor would its truth matter for quantum information theory; if the technical, then
it’s hard to see how it could be informative); whilst it might equally be charged
with committing a category mistake: it is not pieces of information (informationt)
which are physical, it is their tokens which are. But the slogan also connects with
the valid thought that the conception of quantum computers was a liberation
from effectively classical presuppositions about informationt processing; and this
was indeed an important thing. The best sense to be made of the slogan, then,
is this: it is not to be construed as any kind of ontological claim, but rather
as a methodological one (albeit one poorly expressed). It does not represent a
claim about how the world is, nor an insight into the nature of information,
but it should be seen, rather, to express a commitment characteristic of the
discipline. Roughly speaking, the view that it is a very interesting and fruitful
business to study the informationt carrying, storing, and processing capabilities
of physical systems as described by our most fundamental physical systems. This
need not have been so; it might have been that our fundamental physics allowed
no particularly interesting or distinctive informationt processing possibilities,
merely supporting the classical results of surface experience. But the vibrant
health of quantum information science assures us, emphatically, that in the case
of quantum systems, it most certainly is a productive business.

Regarding the role of informationt theory in addressing the conceptual diffi-
culties of quantum mechanics, the fruits of our labours have been to some extent
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ground-clearing. Fertile ground allows briar to thrive, just as much as the rose.
By flattening some thickets (and possibly uprooting them too; but who knows...),
I hope to have left clearer exactly where progress may genuinely be hoped for.
We saw the delicate tightrope that had to be walked between instrumentalism
and hidden variables if one is to tread an interestingly new interpretational path;
while the factivity of ‘information’ precludes a simple solution to interpretational
troubles merely by conceiving of the state as information. Not many proposals
survive these constraints.

In the Introduction, I proposed a distinction between direct and in-
direct strategies for philosophical or foundational dividends from quantum
informationt. We have seen that the indirect proposals are in much better shape
than the direct. The most promising indirect strategy seems to be that of trying
to learn something new about structural features of quantum mechanics, or what
may sometimes be the same thing, to learn where the theory is situated amongst
other possible theories, by reflecting on the distinctive information-theoretic phe-
nomena the theory provides. Part of the problem we saw with the CBH theorem
was that there ended up being a mix of indirect and direct strategies. The purely
axiomatic part of the project was interesting, albeit that it ultimately foundered
on building too much into the starting point to deliver a great deal of insight. The
direct part, an attack on the traditional ontological problems of quantum mech-
anics (the attempt on a principle theory understanding of quantum mechanics,
or an information-theoretic interpretation of it; the suggestion that information
might be a new kind of physical entity to form the subject matter of quantum
mechanics), however, was dubious and unsuccessful. By contrast, the generalized
probability approach (which looks like a very promising framework for the ax-
iomatic project) seems quite clear on the distinction between the task of locating
quantum theory within a space of theories which display differing information-
theoretic features (indirect) and the task of answering the traditional ontological
questions (direct). It is essential to bear in mind that we already possess quantum
theory; we know which theory it is whose place we are trying to find; it is there-
fore not what is to be found at that particular location which is the main object
of our interest in this approach, but rather the process of finding; the mapping of
the environs. So we should not expect an approach of this ilk itself to provide us
with answers to the standard (open) ontological and interpretational questions
about quantum mechanics, because we already know the theory we are trying to
interpret; and these approaches will not tell us anything new about this theory
considered in and of itself, in isolation. But this is just to say that there are more
kinds of questions one might interestingly pose about quantum theory than just
those concerning the business of interpretation; essential and engaging as that
is.

The quantum Bayesians took another route. Rather than begin with the
familiar structure of quantum mechanics and try to find an axiomatization of it
which might then be interpreted in various different ways, they instead adopt a
bold interpretational stance as their starting point and seek from there to find
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a novel and conceptually revealing axiomatization. The difficulty we found with
their approach was whether the starting point was itself really supportable. It
will be crucial to see what fruits the search for axioms might bear.

There is an important question which my deliberations throughout the course
of this study have touched on repeatedly, but have not answered. This is the ques-
tion of what the role of a concept like information is, or might be, in physics. In
particular, the question of whether we ought now to recognize information to be a
fundamental physical concept, as, for example, energy (fairly uncontroversially)
is. It is possible to say a few clear things about this in conclusion, however. First,
we have seen that reflecting on quantum informationt theory and the founda-
tional questions of quantum mechanics gives us no reason at all to think that
information in the everyday sense is physically fundamental; quite the reverse,
in fact. The question, then, is whether informationt is physically fundamental.
But what does this question actually mean? There are various different senses
in which a concept might be fundamental; for example, it might be explanato-
rily fundamental while not corresponding to a property which is ontologically
fundamental. Energy in a Newtonian theory would be an example of this. The
concept plays a very important role in the explanations we offer—we would be
loath to do without it—but the dynamical laws can be postulated without it:
a complete story of the history of the contents of a Newtonian universe given
without calling on the property of energy.207

Now we can certainly conclude that informationt in both classical and quan-
tum informationt theory is not ontologically fundamental : this is the point once
more that informationt is not a kind of stuff postulated by an informationt

theory. This promotes a useful methodological reflection: quantum informationt

theory provides a fascinating example of a theory of rich vigour and complex-
ity in fundamental physics which does not proceed by introducing new kinds
of material things into the world: it does not postulate new fundamental fields,
particles, aether or ectoplasm. What it does do is ask new kinds of questions,
illustrating the fact that fundamental physics need not always progress by the
successful postulation of new things, or new kinds of things, but can also progress
by introducing new general frameworks of enquiry in which new questions can
be asked and in which devices are developed to answer them. Thus quantum
informationt theory might be another example to set alongside analytical mech-
anics in Butterfield’s call for more attention on the part of philosophers of science
to the importance of such general problem-setting and solving schemes in physics
(Butterfield, 2004).

Returning to the question of fundamentality: The conjecture that I would be
inclined to make following our detailed reflections on the notion of informationt in
quantum informationt theory and the foundations of quantum mechanics—what
is suggested to me—is that informationt is not a candidate fundamental physical
concept. Rather, it seems to me more an adventitious one: of the nature of an

207This example was suggested to me by Jos Uffink.



240 Conclusions

addition from without; an addition from the parochial perspective of an agent
wishing to treat some systems information-theoretically, for whatever reason.
But I say this in full recognition that a good deal of work still needs to be done
in clarifying in any detail what is at stake with the question of fundamentality;
clarifying what the question even means. This is a topic to be taken up on another
occasion.



APPENDIX A

A REVIEW OF THE QUANTUM FORMALISM

The discussion in the body of this book has assumed a certain degree of famil-
iarity with the mathematical machinery of quantum mechanics. In case it should
prove useful, I assemble here some fairly informal remarks to serve either as an
introductory sketch of the area, or as a reminder of various concepts or defini-
tions. The presentation is skewed towards finite dimensional quantum mechanics,
as here lies much of the bread-and-butter of quantum information theory.208

A.1 Hilbert Space and Linear Operators

To begin: Our main arena when thinking about quantum mechanics is a partic-
ular sort of complex vector space, namely, Hilbert space.
Vector spaces. The key notion is that vector spaces (sometimes also called lin-
ear spaces, or linear manifolds) allow linear combination of their elements, where
the linear combination gives you something else belonging to the space. That is,
adding two vectors from the space together gives you a third also belonging to
the space; and multiplying a given vector by some number (scalar) again gives
you another vector belonging to the space. Familiar examples are physical three-
space, where the vectors are objects having a length and direction, represented
as ordered triples of real numbers; n-dimensional real vector space, where an
element of such a space may be represented as an ordered n-tuple of real num-
bers; and importantly, n-dimensional complex vector space, where elements are
ordered n-tuples of complex numbers, i.e.,

⎛
⎜⎜⎜⎝
α1

α2

...
αn

⎞
⎟⎟⎟⎠ ,

where the αi are complex numbers, x + iy. More general sets of mathematical
objects may also form vector spaces, however, such as functions or operators.

Thus, generalizing: A vector space V is any set of objects {vi} on which is
defined an operation ‘+’ of addition and ‘·’ of scalar multiplication, for which

1. Addition of any two elements (vectors) yields another in the set (the set
of objects is closed under addition, vi + vj ∈ V);

208For more detailed presentations of the formalism at the appropriate level one might consult
particularly Peres (1995), Nielsen and Chuang (2000, Chpts. 2 and 8) and Jordan (1969).
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2. Multiplication of an element by a scalar yields another in the set (closed
under scalar multiplication: α · vi ∈ V, where α is some scalar); and

3. A zero element, 0, is contained, such that for all i, vi + 0 = vi.
The type of scalars chosen for the definition of multiplication determines the
field over which the vector space is defined. For a real vector space, the scalars
are real numbers, for a complex vector space, the scalars are complex numbers;
and so on.
Inner Product Spaces. It is very useful to be able to talk about the lengths of
vectors and of the angles between them. This we may do when there is an inner
product defined on our vector space, which tells us about the projection of one
vector onto another. We are familiar with the formula a.b = |a||b| cos θ from the
case of physical three space. For an n-dimensional real vector space, the inner
product between two vectors may be calculated as:
⎛
⎜⎜⎜⎝
a1

a2

...
an

⎞
⎟⎟⎟⎠ .

⎛
⎜⎜⎜⎝
b1
b2
...
bn

⎞
⎟⎟⎟⎠ =

(
a1 a2 . . . an

)
⎛
⎜⎜⎜⎝
b1
b2
...
bn

⎞
⎟⎟⎟⎠ = a1b1 + a2b2 + . . .+ anbn. (A.1)

The inner product of a vector with itself gives us its length squared.
The inner product for complex n-dimensional vectors is an immediate gen-

eralization of (A.1). Since we want the inner product of a vector with itself to
give us a real number we can interpret as the square of a length, in calculating
the inner product, we will need to multiply the components of one vector with
the complex conjugates of the corresponding components of the other:

(
α∗1 α

∗
2 . . . α

∗
n

)
⎛
⎜⎜⎜⎝
β1

β2

...
βn

⎞
⎟⎟⎟⎠ = α∗1β1 + α∗2β2 + . . .+ α∗nβn. (A.2)

(Here and in what follows, ∗ represents the familiar operation of complex conju-
gation.) In general, the resulting quantity will be a complex number, but notice
that the inner product of a complex vector with itself will certainly be real. Two
vectors are called orthogonal if their inner product is zero.

In the general case we will define an inner product for a given vector space V
as a function which takes pairs of vectors from V as an input and gives a scalar
number (in our case, a complex number) as an output. Write this function as
( , ).

Such a function will be an inner product when for any vectors vi ∈ V, (vi,vj)
is:

1. Linear in the second argument: (vi,
∑

j αjvj) =
∑

j αj(vi,vj); and satisfies
2. (vi,vj) = (vj ,vi)∗; and
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3. (vi,vi) ≥ 0, with equality iff vi = 0.
The norm of a vector v (another term for its length) is given by ‖v‖ =

√
(v,v).

It is often convenient to express an arbitrary vector from a given vector space
in terms of a set of basis vectors. A set of basis vectors is some subset of vectors
from the space which will allow us to represent any given vector from the space
as a linear combination of vectors drawn from this subset. A general vector will
be expressed as a sum of these basis vectors, each having been multiplied by
some coefficient. The basis vectors ‘span’ the vector space. There are usually
many different sets of basis vectors that could be used. We often choose basis
vectors that are mutually orthogonal and of unit length (an orthonormal basis).
A set of basis vectors {ei} will be orthonormal if (ei, ej) = 0 for i �= j and
(ei, ei) = 1. The dimension of a vector space is specified by the number of
linearly independent vectors required to span the space. An n-dimensional space,
therefore, will require n basis vectors. For an n-dimensional complex vector space,
then—our main interest—we will require n basis vectors |ei〉, which we may
require to be orthonormal; and a general vector may be expressed as:

α1|e1〉 + α2|e2〉 + . . .+ αn|en〉,
where the αi are complex coefficients.

We may now state the definition of a Hilbert space. A Hilbert space H is
simply a complex vector space of finite or infinite dimensions, on which an inner
product has been specified.209

The familiar starting notion of a (pure) quantum state is that of a vector of
unit length, which we write as |ψ〉, belonging to a Hilbert space H.
Dual Vectors. Quantum states |ψ〉 are sometimes (following Dirac) called ‘kets’.
It is very useful to define dual vectors 〈ψ| to kets |ψ〉. Officially, such a dual vector
is a linear functional 〈ψ| ( ) on H, that is, it will take an element of H as an input
and return a complex number as an output; moreover for linear combinations of
inputs, it will return the same linear combination of outputs.210

The vector 〈ψ| (also called a bra) is defined by the equation

〈ψ| (|φ〉) = (|ψ〉, |φ〉). (A.3)

Equation (A.3) specifies a given dual vector 〈ψ| uniquely, given |ψ〉. In the in-
spired Dirac shorthand, we write 〈ψ|(|φ〉) as 〈ψ|φ〉. We see that we can use the

209For the infinite dimensional case there are one or two more mathematical subtleties in
the definition that need not concern us here. The complications turn on what happens when
one takes infinite linear combinations (sums) and whether, if the sum has a limit, that limit
belongs to the space you’re interested in or not. Hilbert spaces are required to have this latter
property (being closed); it’s always satisfied, trivially, in the finite dimensional case.
210Officially, these dual vectors are special kinds of functions, but they may themselves be

linearly combined and will produce another such function, i.e., they themselves form a vector
space. This is a different vector space (the dual space) from the one we started with, H, but
it is in fact isomorphic to H; i.e., we can think of them as being the same kind of thing, as
vector spaces.
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action of dual vectors on elements of H to give us the inner product on H (read
eqn (A.3) from right to left). For finite dimensional Hilbert spaces, the familiar
way to take the dual is just to take the transpose conjugate of a column vector.
Linear Operators. An operator O on a vector space H is an object which acts
on vectors from the space to give us another vector in the space:

O|u〉 = |v〉,
where |u〉, |v〉 are both elements of H, not necessarily normalized. In quantum
mechanics, we are interested in linear operators, that is, operators whose effect
on a linear combination of vectors is equal to the same linear combination of the
effects of the operator on each vector taken individually:

O(α|u1〉 + β|u2〉) = αO|u1〉 + βO|u2〉 = α|v1〉 + β|v2〉.

In a finite dimensional complex vector space (e.g., an n-dimensional Hilbert
space), a linear operator is simply an n× n complex matrix:

⎛
⎜⎜⎜⎝
O11 O12 . . . O1n

O21 O22 . . . O2n

...
... . . .

...
On1 On2 . . . Onn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
u1

u2

...
un

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
v1
v2
...
vn

⎞
⎟⎟⎟⎠ .

Many linear operators on infinite dimensional spaces can be written as (infinite)
square matrices too.

Importantly, linear operators themselves form a further vector space: αO1 +
βO2 is a linear operator too, if O1 and O2 are. (We deployed this fact, for
example, in investigating the Deutsch–Hayden formalism in Chapter 5.) Here
are some simple examples of linear operators:

1. Projection operators (P 2 = P ). Write the ‘outer product’ |φi〉〈φi|. (A one-
dimensional projection operator.) Its action on a general vector |ψ〉 (not
necessarily normalized) is to project out that component which lies in the
space spanned by |φ〉: (|φi〉〈φi|)|ψ〉 = α|φi〉.

2. Write the outer product |φi〉〈φj |, where {|φi〉} is some basis set for H.
|φi〉〈φj | maps one element of the basis to another: (|φi〉〈φj |)|φk〉 = δjk|φi〉.

Linear operators (of finite dimension, and certain of those of infinite dimension)
can be specified by their action on a basis:

O|φi〉 =
∑

j

oij |φj〉,

from which we may infer:
O =

∑
ij

oij |φj〉〈φi|.
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Subspaces. If {|φi〉} is a basis set for H, then we can choose some finite subset
of those basis vectors. They will span a lower-dimensional subspace of H, e.g.,

• |φ〉 spans a 1-d subspace, which |φ〉〈φ| projects onto;
• |φ1〉 and |φ2〉 span a 2-d subspace, which |φ1〉〈φ1|+ |φ2〉〈φ2| projects onto;
• ∑i |φi〉〈φi| = 1 projects onto the whole space; it leaves every vector invari-

ant.
Eigenstates. The eigenstates of a linear operator are those elements of the space
on which it acts which it leaves invariant, up to a scalar:

O|ψ〉 = λ|ψ〉,

where λ (known as an eigenvalue) will typically be a complex number. Partic-
ularly important are those operators which have a complete set of eigenstates,
that is, the set of eigenstates spans the space; and where those eigenstates also
happen to be orthogonal.
Adjoints and normal operators. The adjoint operation, acting on a vector, maps
a vector to its dual vector: (|ψ〉)† = 〈ψ|. The adjoint O† of a linear operator O
is defined by:

〈φ|O† = 〈ψ| = (O|φ〉)†.
That is, the adjoint of an operator can be thought of as acting on a bra sitting
to its left to produce another bra (in fact the bra which is dual to the vector
which O would have produced acting on a ket to its right).211 If a linear operator
O commutes with its adjoint ([O,O†] = OO† − O†O = 0), then it is said to be
a normal operator and the spectral theorem holds: there exists an orthonormal
basis composed of eigenstates of O.
Spectral representation. For normal operators, then, we have a very convenient
representation. If {|oi〉} are the eigenstates of O, with eigenvalues oi, then O
may be written as:

O =
∑

i

oi|oi〉〈oi|.

In matrix form this will be a diagonal matrix with the eigenvalues on the diag-
onal.

A very important case of normal operators are self-adjoint (or Hermitian)
operators:O† = O. For these operators, one is guaranteed that the eigenvalues are
real. Self-adjoint operators are the standard candidates for representing physical
quantities in quantum mechanics, which quantities may take on the values given
by the eigenvalues of the self-adjoint operator.

211In the finite dimensional case, this will again be familiar as taking the transpose conjugate
of a matrix: swap the columns and rows of the matrix and take the complex conjugate of each
element. So if the i, jth component of an operator O is Oij , the i, jth component of its adjoint
O† is O∗

ji. N.B. The definition of the adjoint stated in the text should be read as an implicit
definition of an operator on the original Hilbert space, rather than as an explicit definition of
an operator on the dual space.
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Spectral Decomposition and Degeneracy. With the spectral representation of
some self-adjoint operator A, A =

∑
ai|ai〉〈ai|, where ai are the (real) eigenvalues

and |ai〉 the eigenstates of A, we have a diagonal matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0
0 a2 0 . . 0
. .
. .
. . 0
0 . . . 0 an

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Notice that if A is degenerate—one or more of the ai have the same value as
another—then there is a subspace of H of dimension greater than one associated
with that eigenvalue; the several eigenstates all having that eigenvalue span the
subspace in question.

In general, then, we can write a spectral representation (or decomposition)
of a self-adjoint operator (on a finite or infinite dimensional system) in the form:

A =
∑

j

ajPj , (A.4)

where the aj are the distinct eigenvalues of A (called its spectrum) and the Pj are
the projectors onto the subspaces of H (not necessarily one-dimensional) which
A associates with the eigenvalues aj .212

When a self-adjoint operator is not degenerate, it is called maximal ; all the
projectors in the expression (A.4) are then one-dimensional.
Commuting and Non-commuting sets of operators. A diagonal matrix (oper-
ator) is a very classical-looking beast; for a self-adjoint operator A written in
its eigenbasis, we just have a list of real numbers on the diagonal telling us the
possible values that the quantity can take on. And if the state |ψ〉 of some sys-
tem were an eigenstate of A (some eigenstate or other) we might just think of
it as recording which eigenvalue the system possesses. This mundanity extends
to commuting sets of operators (AB = BA); it is simple to prove that such
operators share an eigenbasis. The only ways in which commuting self-adjoint
operators may differ is thus in the eigenvalues which they associate to each
eigenstate. Things therefore get interesting in quantum mechanics only because
we have bona fide physical quantities which have to be represented by non-
commuting operators (e.g., different components of spin or angular momentum
or polarization, position vs. momentum): here we do not have a common set of
eigenvectors: a system with a state |ψ〉 which is an eigenstate of some operator

212The form (A.4) for the spectral decomposition makes sense when the spectrum is discrete.
For quantities with continuous spectra (e.g., position and momentum) a similar expression
with an integral form is used.
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(physical quantity) A will typically be in a superposition with respect to some
non-commuting operator (physical quantity) B:

|ψ〉 = |ai〉 =
∑

j

βj |bj〉;

〈ai|bj〉 �= δij : these are not vectors which are mutually orthogonal. In the finite-
dimensional case, we typically assume that to any orthonormal basis there cor-
responds some physical quantity of interest, which these basis vectors form the
eigenstates of.
Functions of an Operator. How should we understand an expression of the form
f(A) where A is some linear operator? Given the spectral representation of an
operator, this question has a simple answer: we leave the eigenstates alone and
apply the function to the eigenvalues:

f(A) =
∑

i

f(ai)|ai〉〈ai|.

In matrix form we would have:⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0
0 a2 0 . . 0
. .
. .
. . 0
0 . . . 0 an

⎞
⎟⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎜⎜⎜⎝

f(a1) 0 . . . 0
0 f(a2) 0 . . 0
. .
. .
. . 0
0 . . . 0 f(an)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Important cases we have seen, apart from simple polynomials, include the opera-
tor −ρ log ρ, whose trace (see below) gives us the von Neumann entropy function.
Resolutions of the Identity. The identity operator 1 on H leaves all elements of
H invariant. Trivially, 1 is a self-adjoint operator, with a trivial spectral decom-
position. For any orthonormal basis {|φi〉} of H, we can write:

1 =
∑

i

|φi〉〈φi|. (A.5)

Inserting a resolution of the identity of the form (A.5) is a useful tool in calcu-
lations. If one wanted to express a state |ψ〉 in the |ai〉 basis, for example, one
would write:

|ψ〉 = 1|ψ〉 =
∑

i

|ai〉〈ai|ψ〉;

the inner products 〈ai|ψ〉 give the components of |ψ〉 as expressed in the |ai〉
basis. Important examples are expressions of states in the position or momentum
basis:

|ψ〉 =
∫
dx|x〉〈x|ψ〉; and |ψ〉 =

∫
dp|p〉〈p|ψ〉.

〈x|ψ〉 and 〈p|ψ〉 are what we normally think of as the wavefunctions of a system,
in position and momentum space, respectively. Wavefunctions ψ(x) = 〈x|ψ〉
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and ψ(p) = 〈p|ψ〉 specify the expansion coefficients of the state in the position
(momentum) basis.213 For an N -particle system we would have:

|Ψ〉 =
∫
dx1dx2 . . . dxNΨ(x1, . . . , xN )|x1, . . . , xN 〉,

where Ψ(x1, . . . , xN ) = 〈x1, . . . , xN |Ψ〉.

A.2 States and Measurement

Measurement Procedures in quantum mechanics are associated with partic-
ular resolutions of the identity. Why so?

In standard presentations the quantum state is usually introduced and moti-
vated by means of a probabilistic interpretation. Thus we often start off in fairly
operationalist terms: the quantum state of a given system tells us the probabili-
ties for the outcomes of various measurement procedures on that system, where
we make no effort to analyse what’s involved in a measurement, beyond labelling
each possible outcome with a particular operator.

Suppose we have 1 =
∑

i |φi〉〈φi|, where {|φi〉} is the set of eigenstates of
some physical quantity of interest. Let us associate each operator |φi〉〈φi| with
some outcome i of measurement, this outcome registering the response that the
system being measured has the ith eigenvalue of the property in question. Let
|ψ〉 be the state of the system prior to measurement.

Then notice that

〈ψ|1|ψ〉 = 〈ψ|
(∑

i

|φi〉〈φi|
)
|ψ〉 = 1,

since |ψ〉 is normalized. Written out long-hand we would have:

〈ψ|φ1〉〈φ1|ψ〉 + 〈ψ|φ2〉〈φ2|ψ〉 + . . .+ 〈ψ|φn〉〈φn|ψ〉 = 1;

that is,
|〈ψ|φ1〉|2 + |〈ψ|φ2〉|2 + . . .+ |〈ψ|φn〉|2 = 1.

Hence if |ψ〉 is normalized, we can interpret the quantities |〈ψ|φi〉|2 as probabil-
ities, as they are positive real numbers ≤ 1 which sum to 1.

This example was for measurement of a maximal physical quantity. We can
generalize to resolutions 1 =

∑
i Pi where the Pi do not project onto 1-d sub-

spaces; in this case the subspaces are associated with degenerate eigenvalues of
the physical quantity being measured.

213There is an important subtlety here: |x〉 and |p〉 are not strictly speaking states in H
at all, since they aren’t properly normalizable, e.g., 〈x|x′〉 = δ(x − x′), which isn’t properly
defined at x = x′. However, this needn’t worry us as, physically, one would never expect states
corresponding to |x〉 (respectively |p〉) to arise. There are many situations in which these
quantities are well behaved mathematically (e.g., when under a suitable integral) and they
may be retained as perfectly respectable computational aids (cf. Peres, 1995, Chpt. 4, esp.
Appendix).
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In fact, we can generalize still further, to cases in which the resolution of
the identity need not be into projectors at all, but merely in terms of positive
operators: 1 =

∑
i Ei, where the Ei are linear operators (sometimes called ef-

fects) for which ∀|ψ〉 ∈ H, 〈ψ|Ei|ψ〉 ≥ 0; this is the definition of positivity. Here
again we will be delivered with a set of real numbers between 0 and 1 which
sum to 1. The eigenvalues of such an operator will all be greater than or equal
to zero; positive operators on a complex Hilbert space will be Hermitian. This
kind of resolution of the identity is called a Positive Operator-Valued Measure
(POVM). POVMs provide a generalized notion of measurement going beyond
traditional von Neumann projective measurements and they are very important
in representing many physically realistic measurement scenarios. (See Nielsen
and Chuang (2000, §2.2.6), Peres (1995, §§9.5–9.6) or Busch et al. (1996) for
further details.) An important point to note is that, whereas for a projective
measurement, the number of measurement operators (terms in the decomposi-
tion of the identity) is limited by the dimension of the system’s Hilbert space,
this is not so for POVMs; any resolution of the identity into positive operators
is allowed.
Density Operators. Thinking of the quantum state in terms of assigning prob-
abilities to measurement outcomes allows us to generalize in another direction
too.

First, define the trace of a linear operator. The trace of a matrix is just the
sum of its diagonal elements. Similarly, given an arbitrarily chosen orthonormal
basis {|φi〉}, the trace of an operator A is

Tr(A) =
∑

i

〈φi|A|φi〉. (A.6)

The value of the trace so defined is independent of what basis is chosen. An
important feature of the trace is also that it is cyclic: Tr(AB) = Tr(BA).

We may now introduce the quantum state simply as a positive normalized
linear functional of operators on H. Mathematically, this will be given by a
density operator ρ on H, that is (def.) a positive operator of unit trace.

The point is that such a normalized linear functional will assign numbers to
the operators Ei which will satisfy the axioms of the probability calculus: they
can be interpreted as probabilities that a given outcome should occur. The rule
is that the probability p(i) of obtaining outcome i of a measurement is:

p(i) = Tr(ρEi). (A.7)

This is the Born Rule, in its general form. Observe that given that ρ is normalized
and the Ei are positive and sum to the identity, each of the p(i) will be a real
number between 0 and 1 where

∑
i p(i) = 1; moreover due to the linearity of the

functional Tr(ρ . ), for two distinct outcomes i and j of a given measurement,
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the probability that one or other will occur, p(i ∨ j), will be Tr(ρ(Ei + Ej)) =
p(i) + p(j), as required.214

Pure and Mixed states. The set of density operators—potential quantum
states—is convex. That is to say, if ρ1 and ρ2 are density operators and 0 ≤ λ ≤ 1,
then ρ = λρ1 + (1 − λ)ρ2 is also a member of the set. Pure states are defined as
projectors onto one-dimensional subspaces of H: ρ = |ψ〉〈ψ|, |ψ〉 ∈ H. These are
what correspond to the normal vector states |ψ〉, or equivalently, to wavefunc-
tions.215

The set of pure states make up the extremal elements of the set of density
operators: these cannot be reached by convex combinations of other elements
of the set; they also comprise the boundary of the set216. Density operators
which may be arrived at by taking convex combinations of pure states, and
thus lie inside the boundary, are called mixed states. The more mixed a state,
as measured, for example, by −Trρ log ρ, the von Neumann entropy (cf. Wehrl,
1978), or by Tr(ρ2) (Fano, 1957), the length of the state in the Hilbert–Schmidt
norm on operators, the less able one is to predict the result of measurements on
systems in that state (cf. Timpson, 2003). The more mixed a state, the more
spread out the probabilities for measurement outcomes it provides are.

In the case in which the system is in a pure state ρ = |ψ〉〈ψ| and one is
measuring some maximal (non-degenerate) observable with eigenvectors |φi〉 (so
that Pi = |φi〉〈φi|), the Born Rule (A.7) takes the very familiar form:

p(i) = Tr(|ψ〉〈ψ||φi〉〈φi|) = 〈ψ|φi〉〈φi|ψ〉 = |〈ψ|φi〉|2. (A.8)

Convexity is a very natural structure to the set of states when one com-
mences with a probabilistic interpretation of the quantum state. If a preparation
procedure itself involves probabilities, so that it may produce a system in state
ρ1 with a probability λ or in state ρ2 otherwise, then the probability of getting
outcome i on a subsequent measurement on the system will simply be the sum

214The import of Gleason’s remarkable theorem (Gleason, 1957) is that (A.7) is the only
expression which will provide a normalized real function on outcomes of projective measure-
ments (i.e., where Ei = Pi) which is additive for orthogonal projectors, at least for dimensions
greater than two. We may note that this additivity requirement is stronger than just that
probabilities of outcomes for a given measurement be additive (be probabilities). Controver-
sially, it connects different measurement processes too, as a given projector will belong to more
than one orthogonal set summing to the identity. It is a requirement of non-contextuality of
probabilities, cf., famously, Bell (1966). For extension of the theorem to the more general case
of positive operators, where it applies also in the d = 2 case, see Busch (2003); Caves et al.
(2004).
215Note, however, that we usually take |ψ〉 and eiθ|ψ〉 to represent the same physical state,

as they would give rise to no different physical consequences. The two vectors are said to differ
only by a global phase. Alternatively we say that, properly speaking, the state is not given
by the ket |ψ〉, but by the ray; the subspace of H composed of all vectors of the form eiθ|ψ〉.
Moving to the density operator, even for pure states, automatically takes care of this; the phase
factors on the ket and the bra cancel out when multiplied together.
216This is a distinctive property of the quantum case: in general, convex sets can have bound-

ary elements which need not also be extremal.
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of the probabilities which would follow from ρ1 and ρ2 individually, weighted by
the probability that they were in fact produced:

p(i) = λTr(ρ1Ei) + (1 − λ)Tr(ρ2Ei). (A.9)

Eqn (A.9), by linearity, is equivalent to:

p(i) = Tr
(
(λρ1 + (1 − λ)ρ2)Ei

)
; (A.10)

that is, considering the probabilistic preparation procedure as a whole, we can
take it simply to produce a system in state ρ = λρ1 + (1 − λ)ρ2, as this state
captures all the statistics that we will expect to see on measurement.

Since a density operator ρ is a normal, indeed, a self-adjoint, linear operator,
it has a (unique) spectral decomposition into (not necessarily 1-d) projectors;
such a decomposition would take the form

ρ =
∑

i

λiPi, (A.11)

where the λi are the (real) eigenvalues of ρ, between 0 and 1; and the Pi project
onto orthogonal subspaces. For a mixed state, more than one of the λi will be
non-zero (unless the state is maximally mixed in which case there will only be
one projector in the sum, but it will project onto the whole Hilbert space). In
general, however, a given density operator will admit of many other decompo-
sitions of the form (A.11), where the λi are convex coefficients, if the Pi need
not project onto orthogonal subspaces. (See Hadjisavvas (1981); Hughston et al.
(1993) for discussion of the wide freedom of decomposition of density opera-
tors.) The support of a density operator ρ is the subspace of H spanned by the
eigenstates of ρ having non-zero eigenvalues.
Compound Systems. Consider two systems, labelled 1 and 2. Suppose system 1
has Hilbert space H1 with an orthonormal basis {|φi〉}; and that system 2 has
a Hilbert space H2 with an orthonormal basis {|χj〉}. We can define a Hilbert
space H12 for the joint system by taking the tensor product (sometimes also
know as the direct product) of the Hilbert spaces H1 and H2.

The tensor product H1 ⊗H2 is defined as the space spanned by all combina-
tions of basis vectors taken from the individual spaces:

|ψij〉12 = |φi〉1 ⊗ |χj〉2;
the |ψij〉12 form a basis for H1 ⊗ H2. A general state |Ψ〉12 ∈ H1 ⊗ H2 will
therefore be of the form:

|Ψ〉12 =
∑
ij

αij |φi〉1 ⊗ |χj〉2.

If H1 is n-dimensional and H2 is m-dimensional, then H1 ⊗ H2 is nm-
dimensional.217 Often the explicit tensor product sign between vectors is sup-
pressed and we simply write |φ〉1|χ〉2 or just |φ〉|χ〉 for |φ〉1 ⊗ |χ〉2.
217The tensor product contrasts with the Cartesian product from which the direct sum of

two vector spaces is built up. With the Cartesian product, we just take ordered pairs made
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If a linear operator A acts on H1 and B on H2 then their tensor product
A⊗B acts (linearly) on H1 ⊗H2:

A⊗B|Ψ〉12 = A⊗B
(∑

ij

αij |φi〉1 ⊗ |χj〉2
)

=
∑
ij

αijA|φi〉1 ⊗B|χj〉2.

Since they themselves form a vector space, it is always possible to write any
linear operator O12 acting on H1 ⊗H2 in the form:

O12 =
∑
kl

cklAk ⊗Bl,

where {Ak} and {Bl} form bases for the linear operators on H1 and H2 respec-
tively.
Proper and Improper Mixtures. Because states of compound quantum systems
live in the tensor product space, entanglement exists in quantum mechanics: as
well as allowing product states of the form: |Ψ〉12 = |φ〉1 ⊗ |χ〉2, there also exist
entangled states, which cannot be written in this form, e.g.:

|Ψ〉12 =
∑

i

αi|φi〉1 ⊗ |χi〉2. (A.12)

When a system is entangled, then, by definition, there are no vector states which
may be assigned to its individual subsystems (if there were, the system would
be in a product state rather than entangled!). However, it is quite possible to
assign a density operator to the subsystems of entangled systems. This is called
the reduced state of a system.

Begin by noting that taking the trace of some operator can be done in stages.
Thus if O is some linear operator on H12, then

Tr(O) =
∑
ij

〈φi|〈χj |O|φi〉|χj〉

=
∑

i

〈φi|
(∑

j

〈χj |O|χj〉
)
|φi〉

= Tr1(Tr2(O)),

i.e., we sum over an orthonormal basis for one subsystem first, then over the
other (it doesn’t matter which order we do this in).

of elements of the respective spaces. Then the direct sum V1 ⊕ V2 of two vector spaces V1,
V2, is a vector space entirely composed of elements f = 〈fi, fj〉, for all fi ∈ V1 and for all
fj ∈ V2. If {gi,j} represents a basis for V1,2 respectively, then a basis for V1 ⊕ V2 will be given
by {〈gi,0〉, 〈0, gj〉}, hence dimV1 ⊕V2 = dimV1 +dimV2. By contrast, with the tensor product,
dimV1 ⊗ V2 = dimV1.dimV2.
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Now with the reduced state for a given system, we are looking for an object
which will capture all the probabilities for the outcomes of measurement pertain-
ing to that single system alone. If the state of the joint system were |Ψ〉12, then
the set of probabilities for measurements on system 1, say, would be captured
by items of the form

Tr
(|Ψ〉〈Ψ|A⊗ 1

)
, (A.13)

where A is a self-adjoint operator on H1. A⊗ 1 is a self-adjoint operator on the
whole system, but its only non-trivial component concerns the first system alone.
(A.13) can be written as:

Tr1 (Tr2(|Ψ〉〈Ψ|A⊗ 1)),

which is equivalent to:
Tr1(Tr2(|Ψ〉〈Ψ|)A). (A.14)

Tr2(|Ψ〉〈Ψ|) is a positive normalized linear operator on H1, i.e., it is a density
operator: it is the reduced state of system 1 as it captures all the probabilities for
measurements on system 1 considered in isolation. If we label it ρ1, then (A.14)
becomes:

Tr1(ρ1A),

which is the standard Born Rule form for the first system considered in isolation.
When |Ψ〉12 is an entangled state, the reduced states of its subsystems have

to be mixed; if they were pure (one-dimensional projectors) then the system as
a whole would have been a product state rather than entangled. When a system
has a mixed state because it is the reduced state of some larger entangled system,
it is said to be a case of an improper mixture. Importantly, this contrasts with
the case of proper mixtures (the terminology is due to d’Espagnat (1976)) which
are mixed states which may be given an ignorance interpretation. When a mixed
state admits an ignorance interpretation that is because there is some less-mixed
(typically, pure) state which the system is actually in; we just don’t know which
it is and so put a probability distribution over the various options. To emphasize
why we need to distinguish the two kinds of mixture, consider some N -party
entangled state. By definition, this state cannot be expressed as an N -party
product state, nor a convex combination of such states (a separable state). The
reduced state for each subsystem individually will be some mixed state. Assume
that each such state may be given an ignorance interpretation: there is some
underlying less-mixed (possibly pure) state that each subsystem actually has.
The true state of the N -party system would then simply be the tensor product
of each of these true states for subsystems, or a convex combination of these if
there were further correlations between them. But then the total state would
not be entangled. Thus reduced states of entangled systems cannot be given an
ignorance interpretation. The distinction between proper and improper mixtures
is crucial when one comes to consider the problem of measurement in quantum
mechanics.
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Dynamics. The dynamics for quantum systems which follows from the
Schrödinger equation is known as unitary dynamics.

The beginning thought is that we should represent time evolution in quantum
mechanics as a (linear) map from (vector) states to states:

|ψ(t0)〉 �→ |ψ(t)〉.

If we are to map states to states, then the map must be length preserving. The
only linear operators which have this property (it is their defining feature) are
unitary operators: UU † = 1.

1 = 〈ψ|ψ〉 = 〈ψ|U†U |ψ〉;

|ψ(t)〉 = U |ψ(t0)〉.
Unitary operators are the generalization to complex n-dimensional spaces of

ordinary rotations (also known as orthogonal transformations) in 3-d real vector
spaces. We can specify a common-or-garden rotation by saying how a set of axes
are rotated; similarly, unitary transformations map orthonormal Hilbert space
bases (one-to-one) from one to the other:

U : {|φi〉} �→ {|φ′i〉},

where {|φi〉} and {|φ′i〉} are orthonormal bases. Using the Dirac notation this
may be expressed neatly as:

U =
∑

i

|φ′i〉〈φi|.

Suppose |ψ〉 =
∑

i αi|φi〉; then

|ψ(t)〉 = U |ψ〉 =
∑

i

αiU |φi〉 =
∑

i

αi|φ′i〉;

this expresses the important linearity of the evolution.
Now if Ĥ were the time-independent Hamiltonian featuring in the

Schrödinger equation for a given system, then the operator representing the
evolution over the time interval (t− t0) = ∆t would be

Ut−t0 = exp
{
− i

�
Ĥ∆t
}

;

and the state at time t therefore |ψ(t)〉 = e−
i
�

Ĥ∆t|ψ(t0)〉.
Quantum Operations. Quantum dynamics can be put into a broader framework
of which unitary evolution is a special case, however. Unitary evolution told us
how to map pure vector states linearly to pure vector states, but what if we
consider the more general class of states given by density operators? Here the
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appropriate notion to fix on is that of a trace non-increasing completely positive
map, often called a quantum operation.

A linear map O is positive if it maps positive operators to positive operators
and is called completely positive if, when we consider adding a further system
to the one under study, the extended map 1⊗O acting on the enlarged Hilbert
space still maps positive operators to positive operators. The point is that such
a map will, even in the presence of entanglement between systems, take density
operators to density operators, up to normalization.

The general form for a quantum operation Oi acting on a state ρ is given by

Oi(ρ) =
∑

k

OikρO
†
ik, (A.15)

where the Oik are linear operators on the Hilbert space of the system for which
∑

k

O†ikOik ≤ 1.

This sum will in fact itself constitute a positive operator; and if we choose care-
fully, we can arrange it so that

∑
ik

O†ikOik = 1,

i.e., each of the
∑

k O
†
ikOik = Ei is an effect operator.

Following the action of a quantum operation on ρ, we won’t in general have
another allowed quantum state until we re-normalize. Thus the state following
the physical process represented by the operation Oi will be:

ρi =
Oi(ρ)

Tr
(Oi(ρ)

) =
∑

k OikρO
†
ik

Tr(ρEi)
, (A.16)

since Tr
(∑

k OikρO
†
ik

)
= Tr
(
ρ
∑

k O
†
ikOik

)
= Tr(ρEi), due to the cyclicity of the

trace. Of course, if Tr(Oi(ρ)) is in fact equal to one then there is no need to
re-normalize to reach another valid state—such quantum operations are called
trace-preserving.

In the quantum operation formalism, it is specified that the probability that
a process represented by an operation Oi should occur is given by Tr(ρEi), where
Ei is the effect given by summing the operation elements Oik over k, as above.
From the perspective of a probabilistic interpretation of the quantum state, this
makes a lot of sense. If a fixed range of processes Oi might occur, each with
probability p(i), but we don’t know which, then the subsequent properly mixed
(ignorance interpreted) state ρ′ will be

∑
i p(i)ρ

i. If p(i) is given by Tr(ρEi),
then (from eqn A.16) that sum becomes

∑
i Oi(ρ), which will be of unit trace;

and ρ′ will then be of unit trace too, i.e., an allowed density operator.
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Thus quantum operations allow formulation of both deterministic and in-
deterministic evolutions of states in quantum mechanics; the former associated
with trace-preserving quantum operations and the latter with trace-decreasing
quantum operations. Unitary evolution ρ �→ UρU † is an important case of the
former kind (this is the very simple case of a quantum operation with only one
element, viz., U); measurement processes (on the assumption of collapse) pro-
vide an important case of the latter. With trace-preserving operations, the map
from density operator to density operator is linear, since no re-normalization
is required. However, with trace-decreasing operations, it is the necessity to re-
normalize (eqn A.16) which introduces non-linearity into the stage-change rule.

Trace-preserving quantum operations on a given system can always be mod-
elled as the result of a unitary interaction between that system and an ancilla
system, followed by tracing out the ancilla; the converse proposition holds too
(we’ll see an example of that in a moment). Trace-decreasing quantum operations
can always be modelled as the result of a unitary interaction between system and
ancilla followed by a projective measurement, followed once more by tracing out
the ancilla. Again, the converse holds too.

To illustrate the case of a (trace-preserving) quantum operation arising as a
result of unitary interaction with another system, consider, as before, systems
1 and 2 possessed of orthonormal bases {|φi〉} and {|χj〉} respectively. Suppose
system 1 begins in the state ρ and system 2 in the state |χ0〉; they interact by
some unitary U on H12. Following this interaction, the state of the total system
is U (ρ⊗ |χ0〉〈χ0|)U†. The state ρ′ of system 1 alone, therefore, is given by:

ρ′ = Tr2
(
U (ρ⊗ |χ0〉〈χ0|)U†

)
=
∑

j

〈χj |
(
U (ρ⊗ |χ0〉〈χ0|)U†

)|χj〉

=
∑

j

〈χj |U |χ0〉ρ〈χ0|U †|χj〉

=
∑

j

OjρO
†
j ,

where Oj = 〈χj |U |χ0〉. This is of the required form as 〈χj |U |χ0〉 is a linear
operator on H1 and is suitably normalized:∑

j

〈χ0|U †|χj〉〈χj |U |χ0〉 = 〈χ0|U†U |χ0〉 = 〈χ0|1 ⊗ 1|ψ0〉 = 1.

Selective and non-selective projective measurements. As an important example
which we have already touched on, projective von Neumann measurements of the
standard form can be modelled either as trace-preserving or as trace-decreasing
quantum operations, depending on whether they are considered as non-selective
or as selective measurements, respectively.

In measurements of this kind, we take some self-adjoint operator A with
spectral decomposition A =

∑
i aiPi. The resolution of the identity is into the
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projectors in this spectrum; thus this is a Projection Valued Measure. We know
from the Born Rule that the probability of getting the outcome corresponding
to eigenvalue ai is p(ai) = Tr(ρPi). The quantum operation associated with
this particular outcome happening is given simply by PiρPi; and, by design, the
probability that this process should occur is identical with that mandated by the
Born rule.

If we imagine the case in which the measurement takes place, but we do not
observe what the outcome is, then this is called a non-selective measurement (the
actual outcome is not selected from the various post-measurement possibilities
it might be). The result is that we end up with a properly mixed state given by

ρ �→ ρ′ =
∑

i

p(ai)PiρPi. (A.17)

The mapping represented by (A.17) is a single, trace-preserving quantum oper-
ation which put in the form (A.15) becomes:

O(ρ) =
∑

i

√
p(ai)Piρ

√
p(ai)Pi,

i.e., the individual linear operators making up the elements of the quantum oper-
ation are

√
p(ai)Pi. Since this operation is trace-preserving, no re-normalization

is required; the starting state is mapped (deterministically) to a (more mixed)
finishing state.

That’s when we don’t look to see what the outcome is. If the actual outcome
is selected from the possibilities, perhaps by observation, then only one element
from the convex combination (A.17) will remain. If the outcome corresponding
to eigenvalue ai obtains, then the post- (selective) measurement state will be

ρ �→ ρ′ =
PiρPi

Tr(ρPi)
. (A.18)

This is known as the Lüders rule; it is composed of the trace-decreasing single-
element quantum operation O(ρ) = PiρPi, followed by re-normalization. The
starting state is mapped indeterministically to a finishing state, which may be
more pure than the starting state. Of course, if one thinks that the fundamental
quantum dynamics always needs to be unitary, then such an indeterministic
process cannot obtain. This way lies the measurement problem, in one of its
standard forms.



APPENDIX B

GENERALIZED UNCERTAINTY MEASURES: UFFINK’S
AXIOMS

B.1 The Uncertainty Measures Ur(P, µ)

As previously mentioned, Uffink (1990) introduces a general class of measures of
uncertainty of which the Shannon measure is only one example.

These measures of uncertainty (we may equally work with their inverses:
measures of the concentration of a probability distribution) are real-valued func-
tions U(P, µ), where P is a probability measure and µ a background measure on
the probability space which is included for generality and to ease the transition
to cases of continuous probability distributions. For many cases of interest, par-
ticularly for probability measures over a finite number of outcomes (events), µ
can be taken simply to be the counting measure, according to which the meas-
ure assigned to a set A (a subset of the event space on which the probability
measure is defined) is simply the number of elements in A. Thus if we had a
probability distribution �p assigning the values pi to a finite number of events i,
i ∈ {1, . . . , n}, we would naturally adopt the counting measure and the values of
µ would be µ(i) = 1 for all i and we could accordingly write U(P, µ) simply as
U(�p).

Uffink argues that the natural constraints on measures of uncertainty are
that any such function U(P, µ) should be:

• Invariant under permutation of the outcomes of the probabilistic experi-
ment;218

• continuous; and
• strictly Schur concave.

This last constraint is key. It means that measures of uncertainty are required
to track the ordering (in fact the pre-ordering) imposed by the majorization
relation.

The majorization relation ≺ (see Uffink (1990, §§1.3.3–1.3.5) and Nielsen
(2001)) holds between pairs of n-dimensional real vectors.219 Let �x and �y be
two such vectors. We denote by �x↓ the vector composed of the components of �x

218Note that—by design—this means that any structure which exists in the order of the
events over which the probabilities are defined (e.g., metrical or topological structure) is being
ignored. Again, the aim is to proceed with the utmost generality.
219It is sometimes helpful (we will see a case below) to consider the relation as holding between

vectors which are of unequal dimension, in which case the vector of lower dimension should be
extended by adding additional zeros until it is of equal dimension.
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rearranged in non-increasing order, i.e., �x↓ = (x↓1, x
↓
2, . . . , x

↓
n), where x↓1 ≥ x↓2 ≥

. . . ≥ x↓n). Then �x ≺ �y (read: ‘�x is majorized by �y ’) if and only if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i ,

for all k when 1 ≤ k < n, with equality holding when k = n.
When applied to probability distributions, the majorization relation is a natu-

ral way of capturing the notion that one distribution is more mixed or disordered
(spread out) than another. This is most easily seen when we note an alterna-
tive way of stating the relation: a probability distribution �q will be majorized
by a probability distribution �p, �q ≺ �p, if and only if qi =

∑
j Sijpj , where Sij

is a doubly stochastic matrix (that is, an n by n matrix whose elements are all
greater than or equal to one and where

∑
i Sij =

∑
j Sij = 1). Since a doubly

stochastic matrix can be represented as a mixture of permutations (this fact is
known as Birkhoff’s theorem), we can see that �q is majorized by �p if and only
if �q is a mixture of permutations of �p and thus certainly more spread out than
�p.220

The relation ≺ imposes an order on probability distributions, but only a
relatively weak one. It is reflexive and transitive, but not anti-symmetric, that
is, it is not the case that if �q ≺ �p and �p ≺ �q then �q = �p. Therefore the relation
is a pre- rather than a partial order. (In fact if the relation holds both ways
between two probability distributions, then one is a permutation of the other;
and conversely.) Furthermore, the relation is not connected: it is not the case
that for any distributions �p and �q, either �p ≺ �q or �q ≺ �p. The purpose of a
numerical measure of uncertainty, therefore, is to turn the fundamental pre-
ordering on probability distributions captured by the majorization relation into
a total ordering by mapping each probability distribution to a point on the real
line: then any two distributions can be compared for spread.

As mentioned, the way to achieve this is to insist that one’s measure of
uncertainty is Schur concave (Schur convex for measures of concentration): a
function f is Schur concave if, if �q ≺ �p then f(�q) ≥ f(�p), and Schur convex if,
if �q ≺ �p then f(�q) ≤ f(�p). A function is strictly Schur concave(vex) if equality
holds only if �p and �q are permutations of one another. Of course, there are many
different ways in which a total order may be imposed on a pre-order; accord-
ingly, different choices of strictly Schur concave functions will often disagree on
how respectively uncertain they deem various probability distributions to be. We
should bear in mind, however, that these differences arise only as artefacts of
the different ways a total order has been imposed. Nonetheless, all Schur concave
functions will agree on certain important cases: reflect that the uniform distribu-
tion is majorized by any distribution, and that any distribution is majorized by

220Certainly more spread out so long as there is more than one permutation operation in the
mixture. In the trivial case in which Sij is itself just a permutation, the degree of mixture or
spread should not be thought to increase.
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a 0,1 assignment. Therefore, any strictly Schur concave function will agree that
the uniform distribution is the most uncertain and that the 0,1 distributions are
least uncertain.

Uffink narrows down the class of measures by imposing a final qualitative
constraint:

• When two probability distributions (P, µ) and (Q, ν) over distinct outcomes
are combined with coefficients α and β = 1−α, α ≥ 0 (i.e., there is a chance
α that the first probabilistic experiment will be performed and a chance
1 − α that the other will be), then the uncertainty associated with the
combined situation should be a function of U(P, µ), U(Q, ν) and α.

He then shows that the only functions satisfying these postulates are of the form:

U(P, µ) = χ−1
(∑

µiφ(
pi

µi
)
)
, (B.1)

where φ is a convex function and χ is a continuous decreasing function.
This is still a rather large class of functions, so to narrow it down, Uffink

proposes two scaling conventions:

• If P is non-zero only in a subset A of the event space, and is uniformly
distributed over that subset, then U(P, µ) = µ(A); and

• If the background measure is blown up by some positive factor c, then the
uncertainty increases by the same factor: U(P, cµ) = cU(P, µ).

Then the class of expressions is narrowed down to those of the form:

Ur(P, µ) =
(∑

µi(
pi

µi
)(1+r)

)−1/r

, (B.2)

where r > −1. Conveniently, this is now a class which depends on only one real
parameter.

The limiting value for r = 0 is defined to be U0(P, µ) = exp{−∑ pi log pi

µi
},

i.e., we have the exponential of the Shannon measure.
Alternatively, we might equally well choose to adopt different scaling conven-

tions (these are merely conventions, after all). If we had chosen instead that:

• When P is uniformly distributed over its support A, U(P, µ) = log µ(A);
and

• U(P, cµ) = U(P, µ) + log c,

then the class we should have arrived at would be of the form:

Hr(P, µ) = logUr(P, µ), (B.3)

in which case H0 would be exactly the Shannon information (at least when µ
is the counting measure). The functions Hr are also known as Renyi entropies
(Renyi, 1961).
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B.2 Uniqueness arguments for the Shannon Information

In his original paper, Shannon put forward three properties as reasonable require-
ments on a measure of uncertainty and showed that the only function satisfying
these requirements has the form H = −K∑i pi log pi.

The first two requirements are that H should be continuous in the pi and
that for equiprobable events (pi = 1/n), H should be a monotonic increasing
function of n. The third requirement is the strongest and the most important in
the uniqueness proof. It states that if a choice is broken down into two successive
choices, the original H should be a weighted sum of the individual values of H.
A precise statement of Shannon’s third requirement (one that includes also the
second requirement as a special case) is due to Faddeev (1957) and is often known
as the Faddeev grouping axiom:

For every n ≥ 2

H(p1, p2, . . . , pn−1, q1, q2) = H(p1, . . . , pn−1, pn) + pnH(
q1
pn
,
q2
pn

), (B.4)

where pn = q1 + q2. The form of the Shannon information follows uniquely from
requiring H(p, 1− p) to be continuous for 0 ≤ p ≤ 1 and positive for at least one
value of p, permutation invariance of H with respect to relabelling of the pi, and
the grouping axiom.

In contrast to some later writers, however, notably Jaynes (1957), Shannon
set little store by this derivation, seeing the justification of his measure as lying
rather in its implications (Shannon, 1948). Save the noiseless coding theorem,
the most significant of the implications that Shannon goes on to draw are, as
Uffink points out (Uffink, 1990, §1.6.1), consequences of the property of strict
Schur concavity and hence shared by Uffink’s general class of measures. More-
over, Uffink (1990, §1.6.3) argues that the grouping axiom should be rejected as
an axiom for measures of uncertainty for three reasons: i) it imports what are
purely conventional elements to do with a choice of scale into the axiomatic de-
velopment; ii) it leads to problems of divergence when the number of outcomes
is unbounded; and iii) it does not allow extension to the case of continuous
distributions. Thus Shannon’s uniqueness argument should be rejected.

However, as previously noted (Section 2.2.4, fn. 33), there are other con-
straints which would serve to pick the Shannon measure out uniquely from
amongst Uffink’s measures, to do with joint probability distributions (Uffink,
1990, §1.6.5–6); and these deserve a little discussion.

Consider, therefore, the probability distribution p(xi ∧ yj) over two random
variables X and Y . (We adopt the counting measure as the background.) From
this joint distribution we can derive the marginal distributions for X and Y
individually: p(xi) =

∑
j p(xi ∧ yj) and p(yj) =

∑
i p(xi ∧ yj). Now it is a

property of Uffink’s measures that when a joint distribution factorizes, i.e., when
p(xi ∧ yj) = p(xi)p(yj), then the uncertainty measure likewise factorizes:

Ur(p(xi ∧ yj)) = Ur(p(xi))Ur(p(yj)). (B.5)
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If we had adopted the logarithmic scaling, then the result would be:

Hr(p(xi ∧ yj)) = Hr(p(xi)) +Hr(p(yj)), (B.6)

which is known as the property of additivity for uncertainty measures.
What happens, however, if we compare the uncertainty associated with a joint

distribution with the uncertainty associated with the product of its marginals?
Uffink shows that if one were to insist that

Ur(p(xi ∧ yj)) ≤ Ur(p(xi)p(yj)), (B.7)

which from eqn (B.5) is equivalent to

Ur(p(xi ∧ yj)) ≤ Ur(p(xi))Ur(p(yj)), (B.8)

then r must equal 0. In terms of the logarithmic scaling, the constraint is

Hr(p(xi ∧ yj)) ≤ Hr(p(xi)) +Hr(p(yj)), (B.9)

which is only satisfied for the Shannon information, H0.
One might think (and indeed it has been thought) that the inequality (B.7)

(equivalently, (B.9)) is a very natural constraint indeed: surely when a joint
distribution is replaced by the product of its marginals, one is throwing away
information—all the information about correlations—and so our uncertainty
must increase. We would then have a good argument for the uniqueness of the
Shannon information as a measure of uncertainty. But as Uffink points out, the
reasoning is fallacious, based on equivocating between different senses of ‘infor-
mation’. True, we do lose information about what the joint probability distribu-
tion is, but it doesn’t follow that we are less well able to predict the outcome of
an experiment: that our uncertainty increases. These are different notions.

An alternative formulation of constraint (B.9) is via the notion of the con-
ditional entropy (cf. Section 2.2.4, fn. 33). Recall (Section 2.2.4) that the con-
ditional Shannon entropy H(X|Y ) is really an average of the Shannon uncer-
tainties of conditional distributions. Due to the logarithmic form of the Shannon
measure, it follows that

H(X|Y ) = H(X ∧ Y ) −H(Y ), (B.10)

where we have now returned to the familiar notation in which the name of the
random variable labels the probability distribution which H is a function of.
Let us now take (B.10) to define an analogous notion for the general class of
measures Hr:

Hr(X|Y ) =def. Hr(X ∧ Y ) −Hr(Y ). (B.11)

Then from (B.9) it would follow that

Hr(X|Y ) ≤ Hr(X), (B.12)

with equality iff X and Y are independent. Again requiring that (B.12) be
satisfied forces r = 0. But for the reasons already given here and in Section 2.2.4,
we should not insist on a criterion like (B.12).
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B.3 Majorization and entropic criteria for entanglement
It is a remarkable feature of entanglement that the state of a joint system may
be pure while the states of the individual subsystems are mixed. It is this aspect
of entanglement that Schrödinger had in mind in his well-known statement that

Maximal knowledge of a total system does not necessarily include to-
tal knowledge of all its parts, not even when these are fully separated
from each other and at the moment are not influencing each other at all.
(Schrödinger, 1935b, §10)221

For example, with a pair of qubits in the singlet state, the joint state is pure,
while the reduced states of the subsystems are maximally mixed. If we look at
the von Neumann entropy as a measure of mixedness of these states, the entropy
of the singlet state will be zero, while the entropies of each of the subsystems
will be 1. This phenomenon couldn’t obtain with the Shannon information of a
pair of classical random variables, as H(X ∧ Y ) ≥ H(X), H(Y ); and this line
of thought has led to the investigation of various entropic inequalities as criteria
for entanglement (Horodecki et al., 1996b; Cerf and Adami, 1999; Tsallis et al.,
2001).

This aspect of entanglement achieved its definitive characterization in the
majorization criterion of Nielsen and Kempe (2001). In making this application
we need to recognize that as well as holding between probability distributions,
the majorization relation may equally apply to the vectors of eigenvalues of den-
sity matrices (for such eigenvalues must of course be non-negative real numbers
summing to one). For a bipartite system, therefore, we may consider how the
vector of eigenvalues �λ(ρ12) of the joint system compares to the vectors of eigen-
values of the subsystems, �λ(ρ1), �λ(ρ2). (Here, given that the reduced states live
on smaller Hilbert spaces than the joint state, the vector of eigenvalues of the
reduced states will need to be padded out with zeros when the majorization
relation is applied.)

Nielsen and Kempe (2001) showed that if the state ρ12 is separable, then

�λ(ρ12) ≺ �λ(ρ1) and �λ(ρ12) ≺ �λ(ρ2). (B.13)

That is, in words: if a state is separable, then it is more disordered globally
than it is locally—the vector of eigenvalues of the joint state is majorized by
the vectors of eigenvalues of the reduced states of the subsystems. If we then
have any (strictly) Schur concave function U that may serve as a measure of
uncertainty, we will have the inequalities:

U(�λ(ρ12)) ≥ U(�λ(ρ1)), U(�λ(ρ2)). (B.14)

221Note, however, that this statement is not the most felicitous, as it is ambiguous between
the thought that we lack total knowledge of the subsystems because there are facts to know
about the individual subsystems of which we are ignorant; and the—perhaps happier—thought
that there simply is no further knowledge to be had regarding the properties of subsystems
individually than is given by their reduced density matrix, which in the case being considered,
won’t be pure.
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For a separable state there is more uncertainty associated with the global state
than with the states of subsystems (for all measures of uncertainty). Contrapos-
itively, if there is less uncertainty associated with the global state than there is
with the states of the subsystems, then the global state must be entangled.

Importantly, Nielsen and Kempe (2001) also proved that the majorization
condition is only a necessary condition for separability and not a sufficient one,
as there exist entangled states with the same global and local spectra as sep-
arable ones—in this case, eqn (B.13) will not be able to distinguish between
entangled and separable states. This demonstrates the inherent limitation of the
thought expressed in the quotation of Schrödinger above as a characterization of
entanglement.

It was perhaps not widely appreciated immediately that the Nielsen and
Kempe result brings to an end at a stroke the programme of finding entropic
and related criteria for entanglement, e.g. using Renyi and Tsallis entropies.
This is evident following Uffink’s characterization of uncertainty measures based
on the majorization relation—which includes quantities of this type—as all such
criteria will be implied by the condition (B.13). (Though latterly there was some
appreciation of this, see, e.g., Rossignoli and Canosa (2003).) Furthermore in
light of the Nielsen and Kempe result, we know without further ado that criteria
of this form can only be sufficient and not necessary for entanglement.
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spondence). Växjö University Press. arXiv:quant-ph/0105039. Second edition
published as Coming of Age with Quantum Information: Notes on a Paulian
Idea, Cambridge University Press 2010.

Fuchs, Christopher A (2005). Delirium quantum. Unpublished manuscript.
Fuchs, Christopher A (2006). Quantum states: What the hell are they?

and Darwinism all the way down (Probabilism all the way back up).
http://www.perimeterinstitute.ca/personal/cfuchs/nSamizdat-2.pdf.

Fuchs, Christoper A and Peres, Asher (2000). Quantum theory needs no ‘inter-
pretation’. Physics Today , 53(3), 70–71.
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