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Preface

The last decades have demonstrated that quantum mechanics is an inexhaustible
source of inspiration for contemporary mathematical physics. Of course, it seems
to be hardly surprising if one casts a glance toward the history of the subject;
recall the pioneering works of von Neumann, Weyl, Kato and their followers which
pushed forward some of the classical mathematical disciplines: functional analysis,
differential equations, group theory, etc. On the other hand, the evident powerful
feedback changed the face of the “naive” quantum physics. It created a contem-
porary quantum mechanics, the mathematical problems of which now constitute
the backbone of mathematical physics. The mathematical and physical aspects
of these problems cannot be separated, even if one may not share the opinion of
Hilbert who rigorously denied differences between pure and applied mathemat-
ics, and the fruitful oscilllation between the two creates a powerful stimulus for
development of mathematical physics.

The International Conference on Mathematical Results in Quantum Mechan-
ics, held in Blossin (near Berlin), May 17-21, 1993, was the fifth in the series of
meetings started in Dubna (in the former USSR) in 1987, which were dedicated
to mathematical problems of quantum mechanics. A primary motivation of any
meeting is certainly to facilitate an exchange of ideas, but there also other goals.
The first meeting and those that followed (Dubna, 1988; Dubna, 1989; Liblice (in
the Czech Republic), 1990) were aimed, in particular, at paving ways to East-West
contacts. The most recent conference in Blossin was organized after a three year
period during which the old barriers were removed completely. There are, how-
ever, other challenges which have nothing to do with the vagaries of politics and
geography: in a period of high specialization in scientific thought scientists with
a different bent of mind should be gathered under the same “roof” emphasizing
similarities, convergences and analogies between ideas they are advocating in their
fields of research. For us this “roof” was the Mathematical Results in Quantum
Mechanics conference.

The proceedings start with lectures devoted to the traditional core of the
Quantum Mechanics — “Schrddinger and Dirac Operators”. They touch on spec-
tral problems, asymptotic behaviour of the resolvents, singular potentials and
other topics. Following naturally from these subjects is the section “Generalized
Schrédinger Operators” wherein lectures from less traditional fields have been col-
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lected: the quantum Hall effect, contact perturbations, predissociation, etc. In the
section “Stochastic Spectral Analysis” readers will find results strongly motivated
by Quantum Mechanics: decay of eigenfunctions, Dirichlet operators and semi-
groups and others. The section “Many-Body-Problems and Statistical Physics”
contains lectures related to the problems of quantum statistical mechanics, in-
cluding the spectra of reduced density matrices, macroscopic quantum fluctua-
tions, ground-states of the quantum spin chains and spectrum of the spin-boson
model etc. Lectures on delicate problems of the quantum evolution irregularities
are collected in the section “Chaos”. The last section, “Operator Theory and Its
Applications”, was reserved for lectures motivated by different types of mathe-
matical observations with roots in Quantum Mechanics such as trace formulas for
obstacle problems, self-adjoint extensions and singular perturbations, adiabatic
reduction theory or p-adic quantum theory.

We hope that the broad areas covered by these proceedings may give read-
ers an impression of the contemporary situation at the intersection of quantum
mechanics and mathematical physics at least from the point of view of a not in-
considerable part of the community working in this field.

We would like to thank the Deutsche Forschungsgemeinschaft, Sonderfor-
schungsbereich 288 and the Max-Planck-Gesellschaft for their financial support
which made the conference possible. We want to stress, in particular, that it was
this support that allowed the scientists of the former USSR to participate.

November 1993, The Editors
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Discrete spectrum of the periodic Schrodinger
operator for non-negative perturbations *

M.Sh.Birman!

1. Let us consider the periodic operator
A = —div(g(z)grad) + p(z) (1)
acting in Ly(R?). Assume that g,p € Lo, (R?) are real functions obeying
gz +n)=g(z), plz+n)=pl), neZ

and that the matrix function g is positive definite. If the matrix g is constant,
then the operator A with the lattice periods Z¢ is equivalent to the Schrédinger
operator with arbitrary lattice periods. Further, together with A the perturbed
operator

Ala) =A+aV, V(z) >0, a >0, (2)

is considered where V' € Ly, 1o behaves like
V() ~ |27 f(9), d=7=, 0>0 (3)

as |r| — o0o. The exact definition of the operators (1),(2) is given by quadratic
forms. Let the interval (A_,A;) be a gap of the spectrum of the operator A and
let X be a fixed number in the closed gap, i.e. A- < A < Ay. By N(a, A) we denote
the number of eigenvalues of the operator A(t) which go through the point A if
the coupling constant ¢ increases from 0 to a.

We are interested in the asymptotic behaviour of N (o, A} as & — 0. Similar
questions were earlier considered in the remarkable paper [2]. In contrast with
[2] we allow the value A = A_ which needs a new technique. Further notes and
literature hints can be found in Section 6.

Notation: @ C R¢ is the unit cube; Q, = [, 7]¢ is the closed cube in R%; (

is the plane torus which is obtained by identifying the opposite boundaries of €2,.
Further we set W = /V.

*Translated by the editors
tSupported by the Russian Foundation for Fundamental Researches (Grant 93-011-1697)



4 M.Sh.Birman

2. Let us introduce the operator
TO) =-W(A-A)TW,  A_ <A<, (4)

For A = Ay it is assumed that the operator (4) exists as the limit of T()) in the
operator norm for A — Ay. By ny(-,T())) we denote the spectral distribution
function with respect of the positive spectrum of the operator T'(A). Then

N(a,)) =ni(s,T(A), as=1, A <A<, (5)

Let us describe the spectral representation of the resolvent (4 — AI)~L. In Ly(Q)
we consider the family of operators A(k), k € 2 which is given by the expression
(1) and the boundary condition which guarantees the periodic continuation of
the function u(z)exp(—ikz) for u € Dom(A(k)). Let E;(k) be the sequence of
eigenvalues of the operator A(k) and let ¢;(k, ) be the corresponding orthonormal
eigenfunctions. Further, let us introduce the operators

(T;u)(k) = (2m)~4/2 / B30k, DJu(z)dz

which maps Ly (R?) onto Ly (£2). The operators P; = U%; are pairwise orthogonal
projections in Ly(R?) obeying >; P = I. By [h] we denote the multiplication
operator which is generated by the function h : @ — C. Then
T(O) =Y WUIA-E) W, A <A< (6)
J

Let the number r be determined by the condition

A= Il?ea%Er(k)’ Ay = ‘,EQSET“(’“)'

In the sum (6) the first r summands are positive operators while the other ones
are negative. Thus
T(N) <Y WA - Ey) 7 |O,W = T,())
jsr

and hence
'I’L+(S,T()\)) < n(SaTT()‘))a ASAL )‘+‘ (7)

3. From (5),(7) we see that the investigation of the asymptotics of the spec-
trum of the positive operator T,.(\) leads to upper asymtotic estimates for N(a, A).
It is useful instead of T'(A) to consider a more general class of operators. Let
hj : Q—Ry,j=1,...,r. Weset

H=>) W¥hIW. (8)

isr

Important for us is the following theorem.
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Theorem 1 Let 20 < d, f € Ly(S% 1), ¢ =d/20(> 1) in (3) and let
hj € Ly(Q), j=1,...,m (9)
in (8). Then

lim s'n(s, H) =

8—

M(hy, ... hey f) = (2m)7 %! Z/th(k)dk /Sdlqu)dsw). (10)

J<r

The proof idea of Theorem 1 consists in replacing the operators ¥; in (8) by the
Fourier transformation ®. Doing so it can be shown that the leading term of the
spectral asymptotics remains unchanged. Moreover it is possible to carry out some
other transformations of the operator under investigation. In order to legitimate
these transformations the generalized Cwikel estimate (see [4],[5]) is used essen-
tially. By these considerations the problem transforms into the investigation of the
spectrum of an orthogonal sum of operators of type

2ever R, j=1,...,r 1
J J

which act in Ly(€2.). The operators (11) are W-differential operators of negative
order (—20). For them the spectral asymptotics can be obtained directly from
the general results of the paper [3]. As can be seen from (10) the asymptotic
contributions of the different spectral zones of the operator A sum up.

Remark 1 For U-differential operators of type (11) the role of the variables x and
k is ”non-traditional”: The order of the operator is determined by the asymptotics

(3) while the functions h;(k) can be chosen sufficiently arbitrary and behaves like
” potentials”.

Remark 2 The condition ¢ > 1 in Theorem 1 has a technical reason and can be
replaced by the condition ¢ > 0. However for ¢ < 1 it is necessary to use other
estimates which need a certain smoothness (dependent on g) of the data of the
problem.

4. From Theorem 1 and from (5),(7) we find the following corollary.

Corollary:

a) For A\_ < A < A4, 20 < d the upper asymptotic estimate

limsupa ™ IN(a, A) < M(hy,..., hr; f) (12)
holds where
hi(k)=(A—E;(k)™",  j=1,...,r (13)
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b) If the condition (9) is satisfied for the function (18), then the estimate (12)
is valid for X = A_ too.

Remark 3 With respect to conditions of point a) the functions (13) are bounded.
The same takes place in the case A = A_ for those functions of (13) for which
max E;(k) < A_. However, the condition (9) is essential for those h; for which

max Ej(k)=X_. (14)

Assume in particular that (14) is satisfied only for j = r and, moreover, that max
in (14) is obtained only in a finite number of points and that these maximal points
non-degenerated. Then obviously the condition (9) is valid if and only if 0 > 1. It
is not hard to see that under the conditions of point b) it must be satisfied always
o>1

Remark 4 Let us make some remarks concerning the validity of lower asymptotic
estimate of type
liminf o "IN (a,A) > M(h1,...,h; f) (15)

a— 00

under the conditions of the corollary. Till now the author can prove it only assum-
ing that the functions Ej, v; are sufficiently smooth on the torus 2. However, it
is hard to verify these conditions in the general case, although, for r = 1 this is
satisfied automatically. Therefore we prefer to use the results of the paper [2] in
order to obtain (15) for A = A_.

5. In this subsection we believe that the matrix g in (1) is constant (case
of the Schrddinger operator) and that the function f of (3) is continuous. Under
these conditions and for A € (A_, A1) the asymptotics was found in [2], i.e., both
estimates (12), (15) are verified where the functions hy, ..., h, are given by (13).
Since N(«, A) monotonuously dependents on A the estimate (15) can be extended
to A = A_ for functions obeying

hj=(A-—E;) P eLyQ), j=1,...,r (16)
Summing up we get the following theorem.

Theorem 2 Assume that the matriz g is constant in (1). Let 1 < o < d/2 in (8)
and let f be a continuous function. Then under the condition (16) the asymptotics

lim o N(a,A_) = M(h1, ..., he; f) (17)

a—00
are valid.
Remark 5 The condition 20 < d (ie. ¢ > 1) is not used in the asymptotic

theorem of [2]. Therefore, taking into account Remark 2 the asymptotics (17) can
be proved for ¢ < 1.
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6. Comments. In [2] it were considered only inner points of the gap. This
fact is very important for the technique which is used there. In [2] the Schrodinger
operator must not be necessarily periodic. It is only assumed that the state density
exists for it in terms of which then the asymptotics are written down. In the
periodic case the asymptotic coeflicient can be transformed into the form (10).
Let us mentioned the recent paper [1] where the operator of type (1) is perturbed
by a non-negative differential operator of second order.

For d = 1 essential asymptotic results were obtained in [6] for N(a, ) in
both cases @ > 0 and a < 0. The Schrédinger operator is assumed to be periodic.
For X the values A_ and Ay are allowed. Hoewever, in (6] it is essentially used that
the problem is an one-dimensional one.
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The discrete spectrum in a gap of the continuous
one for compact supported perturbations

M.Sh. Birman T. Weidl

1. We start from the traditional problem on the negative spectrum of the
Schrodinger operator in R4, d > 3. Let A = —A,

Ala)==A—-aV, V(z) >0, a>0, (1)

and A < 0. By Na(a, A) we denote the number of eigenvalues of the operator (1)
on the left-hand side of the point A. Then for potentials V € L, /Z(Rd) we have
the well-known asymptotics

Na(o, A) ~ (27r)_dwdad/2/Vd/2da:, a — 0o, (2)

with wg the volume of the unit ball in R% We call potentials V' € Lg/»(R?)
regular” perturbations of the operator A (cf. [BS1]). The asymptotic (2) do not
depend on A < 0, it’s character is determined by the behavior of the symbol
|€|2 — oV (z) for large |¢| only. In [BS1] the asymptotics of N4(e, A) are discussed
precisely for potentials violating the assumption V € Ly /Z(Rd) because of a slow
decrease as || — oo (”non-regular perturbations”). There typically Na(a, A) =
o(N(,0)),A < 0, is found; the main asymptotical term of N(0,A) for a — oo
is given by the symbol of A(a) for small |£| (threshold effect). So, for instance,
for V € Lo, V(z) ~ |z|™2(In|z|)~9, 2¢ > d, |z| — oo, we have N(a,0) ~
c(d)ad, N(a,\) = O(a??Ina), and the latter estimate can be refined. Here we
discuss the inverse case, when V ¢ Ld/z(Rd) because of local singularities. In
detail we assume

VeL(RY, suppV CKp:={z:|z|<R}, V>0. (3)
We call potentials of the form (3) ”quasi-reqular”.

2. For V ¢ Ly/»(R?) the number of eigenvalues N4(a, ) can show non-
powerlike asymptotics. Our second aim is to show that the technical tools devel-
oped in [W1], [W2] allow us to consider non-powerlike asymptotics, too. We call
a function f: N — R, a normal estimation function (NEF), if f 1 oo for n — oo
and if the function f* is subadditive for some x > 0. We introduce the functionals

Af(AA) = lim supa™! f(Na(ai ), @
8¢(NA) = alig;oinfa_lf(NA(a;)\)). (5)
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Theorem 1. Let (3) be fullfilled and assume, that for some A < 0 and for a
NEF f Ag(A A) < oo holds. Then for every u < 0 we have the equalities

Ap(\A) = Mg, A), 67(AA) = 85(u, A). (6)

In particular (6) is fullfilled for A < 0,u = 0; this explains why we call
potentials 'V satisfying assumption (3) ”quasi-reqular”. We remark, that under
assumptions of theorem 1 the functionals (4), (5) are determined by the behavior
of the symbol of A(«) for large || only.

3. Further we consider the operator
H=-A+p(x), p€Ly(RY), d>3, (7)

as unperturbed. The spectrum o(H) may be interrupted by gaps. Let A = (A_, A\4)
be such a gap. For a large class of potentials V decreasing to zero sufficiently fast
for |z| — oo the spectrum of the perturbed operator

H(a)=H-aV, a>0, V(z) >0,

in the gap A is discrete. For A, A < X\ < A4, we introduce Ng(a, A) - the number
of eigenvalues of H(t) which passed the point A for coupling constant ¢ increasing
from 0 to «a, (for operator A(a) and A < 0 the function N4(a, ) coincides with the
function N4 from subsection 1). In [B1] an abstract theorem was presented, which
gives the equality of the asymptotical functionals Ay, 65 for A, < 0 and H, X € A,
in the case of powerlike estimation functions f. We state here an analogue of this
theorem for arbitrary NEF and apply it to the Schrodinger operator. Next we
prepare some material required in the corresponding formulations.

4. Let ‘H be a Hilbert space, T € Seo(H) (i.e. T' is a compact operator on
H); and let {sx(T)} xcN denote the sequence of singular numbers of the operator
T. For some NEF f we introduce the operator classes

Yr={T € Sx : |T|f := sup sp(T)f(n) < oc}.
nEN
The class ¥ is a complete, non-separable space with respect to the quasi-norm
|-|. We denote by E(} the subspace of operators T' € ¥, for which s, (T)f(n) — 0.
The set of finite rank operators is dense in 2%. For T € %5 we define the functionals

A(T) = nler;o sup s, (T) f(n), 6¢(T) = nan;O inf s, (T) f(n).

For T = T* analogous functionals A(fi), 6(fi) can be introduced by the sequences

{)\gli)(T)}, e.g. the sequences of positive eigenvalues of the operator £T. All six
functionals Ay, Agti) , 07, 6§ci) are continuous on X¢. In fact they are well defined
and continuous on the factor space X5/ E(f’, too. The class Xy is a two-sided ideal
in the space of bounded operators on H. The material of this subsection was
developed in [W1].For similar powerlike ideals see [BS2].
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5. Let A = A* > 0, P = P* be operators in H; a,p are the corresponding
bilinear forms. We assume that
Ip[,v]* < pufu, ulps[v, ], (8)
where p, is a nonnegative form such that
p«[u, u] < eafu, u] + c(e)||ul|?, Ve > 0. 9)

Put H = A+ P (in form sense). Let, moreover, W be a closed operator, Dom W >
Dom AY? and W(A + I)™Y/% € S,,. We set v[u,u] = |[Wu||? and consider oper-
ators H(a) = H — oV the perturbation V is given by the form v. Further p(-)
denotes the resolvent set of an operator.
Put
X\(A) =W(A-M)"'W*, A€ p(4)NR,

and the operator X,(H), p € p(H) NR is defined analogously.
Theorem 2. Let assumptions (8), (9) be fullfilled and let

WA+I)V2 e 5, (10)
WA+D™ ¢ 1Y, (11)
for some NEF f. Then for A= X € p(A), =T € p(H) we have
X)\(A) - X, (H) e E(}z.

For T =T* € S, we use the notation ny(s,T) = card{k : )\fj)(T) > s},s >
0. We recall the well-known relation

N (e, p) :n+(a_17XlL(H))7 p="7n€ p(H),

and the analogous equality for A. Then from theorem 2 we claim the following
"stability theorem”.

Theorem 3. Under the conditions of theorem 2 for g = f? the following
identities for the fucntionals (4),(5) hold

Ag(MA) = Aglp, H), 8,(\A) = 8, H). (12)

For powerlike functions f theorems 2,3 were proven in [B1].

6. Next we apply theorem 3 to operators (1), (??) in case of quasi-regular
potentials. It remains true that

Proposition 4. Put A = —A and for a potential V suppose the condition (3)
holds. Let assumption (10) be fullfilled for some NEF f. From this follows (11).

Together with theorem 3 this proposition leads to
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Theorem 5. Put A = —A and let H be the operator (7). Let Ag(A, A) be
finite-valued for some NEF g and for some A < 0. Then for all p = 1 € p(H)
equalities (12) hold.

We remark, that theorem 5 can be sharpened and remains true for weaker
conditions on V' too. More significantly for periodic p relations (12) can also be
shown for u = Ay ; for regular perturbations this is discussed in detail in [B2].

Theorem 3 can be used not only in regular or quasi-regular situations. We
give an example of a non-regular perturbation. Put V(z) = (1 + |z|?)~!. The
asymptotical behavior of Na(a, A), A < 0, is known (and doesn’t depend on A < 0).
Theorem 3 allows us to carry this asymptotic into a gap of the operator (7). In
fact, for 4 € A we have

Nu(a, p) ~ c(d)a®?loga, ¢(d) = 2d~1(2r) W2

We can describe a sufficiently large class of non-quasi-regular potentials, to which
theorem 3 can be applied, but do not discuss it here in detail.
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Schrodinger Operators with Strong Local Magnetic
Perturbations: Existence of Eigenvalues in
Gaps of the Essential Spectrum

Rainer Hempel* and Jorg Laitenberger

1 Description of Our Main Result

In the present note, we show that perturbations by strong magnetic fields of
compact support may produce eigenvalues inside a spectral gap of a (periodic)
Schrédinger operator. Here we will discuss the following situation:

In the Hilbertspace H = L2(R"), we consider the Schrodinger operator H =
—A +V, with a fixed potential V : R” — R, V bounded and V > 1, where H is
defined as the unique self-adjoint extension of (—A + V) |C°(RY). We shall make
the basic assumption that H has a (non-trivial) gap in its essential spectrum; more
precisely, we assume that there exist b > a > inf o, (H) with [a,b]No(H) = 0. In
view of the applications in solid state physics, one may think of H as a periodic
Schrodinger operator.

Suppose now that we are given a vector potential a = (a;)j=1,. ., a; €
C'(RY) real-valued and of compact support. Introducing also a coupling A € R,
we define the associated magnetic Schrodinger operator as

H()a):= (iV ~ Xa)? + V(z) = i(iaj —Xa;)? + V(z).

J=1

Again, there are classical results assuring that H{\a) is essentially self-adjoint on
C*(RY). The domains of H = H(0) and H()a) coincide with the Sobolev space
H?. (For a general account of magnetic Schrédinger operators, see, e. g., [AHS],
[CFrKS), [S].)

The operators H{Aa), with v = 2, provide a simple mathematical model for a
thin layer or wafer of solid matter which is locally penetrated by a magnetic field.

For a € C!, a of compact support, it is easy to see that the magnetic terms
—iXM2a - V +diva) + A%|a|? are a relatively compact perturbation of H; as a

1On leave from Math. Inst. der Univ. Miinchen, Theresienstr. 39, D-8000 Miinchen 2
Address after September 1, 1993: Dep. of Maths., Univ. of Alabama, Birmingham, AL 35294
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consequence, the essential spectrum does not change as we switch on the magnetic
field, i. e., we have

H()a)) =0, (H), AeR.

ess ( ess (

However, as we let A increase from 0 to oo, discrete eigenvalues may move into
the gap. As in our previous work ([DH], [ADH], [AADH], [H1]), we now fix some
“control point” E € (a,b) and ask whether there exist coupling constants A with
the property that E € o(H(Aa)). In other words, it is our aim to produce lower
bounds for the eigenvalue counting function

N(\a, E) Z dim ker(H (ua) — E).

0<p<A

In the present brief note, we concentrate on the paradigmatic case where we
have a constant field inside a cube Qr = {z € R";|z;| < R, j = 1,...,v} while
the field is zero outside the cube Qg+, for some R > 1. To construct such a
situation, we choose, for any R > 1, a cut-off function ¢, € C*(R") satisfying

SOR(J") =1, z€Qg, QOR(:B) =0, =z ¢ QRr+1,

and we fix a (real-valued) vector potential b on R” which generates a (non-zero)
constant magnetic field.

Since our mechanism will basically rely on the “repulsive” effect of the mag-
netic perturbation A, b on the cube Qr, we need a (rather weak) condition on
the density of states of H below E: for any self-adjoint operator A, let Pi_, g)(A)
denote the associated spectral family, so that dim P, g) (A) is just the number
of eigenvalues of A below E, if A has compact resolvent. Letting Hg denote the
operator —A + V', acting in Lo(Qg) with Dirichlet boundary conditions, we shall
assume that there exist constants ¢y > 0 and Ry > 1 such that

dim P_ 5y (Hr) > co R”, R>Ry. (%)

This condition is satisfied for periodic potentials V', for example. Now our main
result on the eigenvalues of H(A ¢, b) can be stated as follows:

Theorem 1.1. Let H, E, b and ¢, be as above; in particular, let us suppose
that (x) holds. Then, given any k € N, there exist R > 1 and X\ > 0 such that

N(;p.b, E) > k.

A more complete presentation of these and related results will be given in a
forthcoming paper. In the subsequent remarks, we put the result of Theorem 1.1
in perspective:

1. There exist extensive studies ([DH], [ADH], [H1], [GS], [B]) dealing with
the situation where a Schrédinger operator H = —A + V' with spectral gap is
perturbed by a multiplication operator W, W a real-valued function of compact
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support or with some decay at infinity. While the case where W does not change
sign allows the application of the Birman-Schwinger-principle, the general case
W = W, — W_ requires a thorough analysis of the competition between the
“attractive” potential well versus the “repulsive” barrier created by W, and W_,
respectively, in H — AW, for A > 0. Note that in Theorem 1.1, above, the magnetic
terms have no definite sign, so we are a priori in deep water.

2. In a context related to control theory,? [AADH] have obtained the existence
of eigenvalues in gaps in situations where the unperturbed operator A is given
by A = -3 0ja;;(x)0;, a second order elliptic divergence form operator with
a spectral gap (examples are constructed in [H2]), and the perturbation B =

— > 0;bi5(x)0;, with (b;;) > 0 decays at co. Again, one asks for eigenvalues of A+
AB, for A > 0. In this problem, one looses relative compactness of the perturbation
but, at least, the perturbation does not change sign.

In the present work, we are now dealing with perturbations given by a first or-
der differential expression where we have relative compactness but no monotonicity
and, in general, no Dirichlet-Neumann-bracketing. (Note that Birman and Raikov
[BR] have studied eigenvalues in gaps under the influence of magnetic fields; in
their work, however, the eigenvalues are still “produced” by a potential W while
the whole system is “bathed” in a (constant) magnetic field.)

3. Due to the particular structure of the magnetic terms, the coupling A
enters in a non-linear way. This seems to rule out any use of Birman-Schwinger-
type arguments.

2 Sketch of the Proof

Let us first sketch the basic strategy of our proof: again, we use a sequence of ap-
proximating problems on large cubes Q,, with suitable operators H,, and H (Appa),
constructed as in [ADH], [H1]: if H,, denotes the operator —A+V acting in La(Q4,),
with Dirichlet boundary conditions, one knows that the eigenfunctions of H,, as-
sociated with eigenvalues in the interval [a/,b] (where a < o/ < F < ¥ < b)
decay exponentially away from the boundary 9Q),. Since, on the other hand,
dim Pyg p)(Hy) < en”, it can be shown that the operators

f{n = Hn + wnp[a’,b’](Hn)d)n’

with ¢, € C°(Qn), wn(z) =1l forze@, \ Q3n/47 and 1/1n(17) =0, forz e Qn/2,
enjoy the following two properties: 1. There exist @ < E < 3 such that, for n large
enough, o(Hy,) N[, 8] =0. 2. The “non-local” part of H,, vanishes on Q,, /2-
We now compare the number of eigenvalues below E for the operators H, =
H,,(0) and )
Ho(Ap,pb) = Hy(Ap,b) + 9, P[a’,b’](Hn) (2

2Here one asks to which extent localized impurities in periodic microstructures will affect the
controllability of the wave equation.
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using Neumann decoupling on the boundaries of Qg and of Qr+1:

Proposition 2.1.  Leta and ¢, be as in Section 1. Then, for any given k € N,
we can find Ry > 1, Ay > 0 and n,, € N such that

dim P_ o, k) (I:In(Ak goRkb)) < dim P_ gy (I:In> -k, n>ng.

From Proposition 2.1, it is easy to conclude by Kato-Rellich perturbation
theory that at least k eigenvalues of the family (H,(Apg,b);0 < A < Aj) must
cross the level E. Hence, there exist couplings 0 < )\;") < A, j =1,...,k,

such that E is an eigenvalue of fIn()\g-") ¢Rr,b), and it follows via a convergence
argument of [DH], [H1] that there exist at least k coupling constants \1,..., A\, €
(0, Ay] such that E is an eigenvalue of H(\; pg,b), j = 1,..., k, which proves our
theorem. We will now try to give an idea of how to obtain Proposition 2.1.

Proof of Proposition 2.1 We decouple the region @, into the three pieces
Qr, @r+1 \ @r, and @ \ @r+1, by adding in a Neumann boundary condition on
0Qr and on 0Q) r41; this will increase the number of eigenvalues of the operators
fIn()\ ¢, b) below E. We introduce the notation I:IR+1,n;ND, Hp ry1.vn(Aopb),
Hpg,n(Ab), to denote, respectively, the parts of the decoupled operator acting in
Ly(Qn\Qr+1): L2(Qr+1\Qr), and in Ly(QR), with Dirichlet boundary conditions
on 0@, and Neumann b. ¢. on 0Q g1 and on Q) g. Note that there is no magnetic
part on @, \@r+1, while there is no contribution from ,, Piar p1n living on Q g1,
provided n > 2(R + 1); furthermore, ¢,|@r = 1. As a consequence, we obtain

dim P_ o0 (FIn(A<pr)> < dimP_s g (Hr.v(AD))
+dim P(— o £y (HR,R+1,8 (A 1 b))
+dim P ) <I:IR+1,n;ND) .

The last term is not contaminated by any magnetic terms and we may employ the
estimate of [H1]

dimP(—oo,E) (IEIR-H,n;ND) < dim P(—oo,E) (I:In) _dimP(—oo,E) (HR+1) +CR"—1,

with a constant C' which is independent of R and n, as long as R > 1 and n > 4R.
By the assumption made in Theorem 1.1, dim P _w.E) (Hpy1) > cgR”.

In order to estimate the contribution coming from the dangerous “transition
region” Qr+1\ @r, we employ Lemma 2.2, given below, which is based on a trace
class estimate of Simon [S]. As may be expected, we find a “surface term?”, i. e.,
there exists a constant C’ such that

dim P(—oo,E) (HR,R+1;N<)‘ SORb)) < c’ Ry_l 3
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where the constant C” is independent of A and the special choice of the cutoffs ¢, .

For k given, we now first choose Ry, large enough to ensure that ¢g R — (C +
C') R*~1 > k, so that, by the above estimates,

dimP(—oo,E) (ﬂn()\ <kab)> < dimP(_OqE) (f{n> - k+dimP(_oo7E) (HRJV()\b)) .

By adapting the estimates of [AHS] (cf. also [CdV]) to the case of Neumann
boundary conditions, it follows that the infimum of the spectrum of Hp. y(Ab)
goes to infinity, as A — o0, and the result follows. |

Lemma 2.2. Let Q C R” denote a cube of sidelength 1, centered at the origin,
and let Hg.n(a) = (iV —a)? acting in Lo(Q) with Neumann boundary conditions.
Then, given E > 0, there exists a constant Cg such that

dlmP(_oo’E) (HQ,N(a)) S CE7

independently of the real-valued vector potential a € C*(R¥).

Proof. We shall only discuss how the corresponding estimate is obtained in
the case of Dirichlet boundary conditions; the Neumann estimate follows from the
Dirichlet case by extending the Neumann eigenfunctions to a larger cube, applying
a cut-off procedure and using min-max arguments.

Define a sequence of auxiliary potentials vy (z), k € N, by setting v (z) := 0,
for z € Q, and vg(x) := k(1 + |7|?), for = ¢ Q. Then, by a classical estimate due
to Simon (see [S]), we have (“tr” denoting the trace)

tr (e‘t(H(aH”’“)) <tr (e_t(H(O)+”’“)> , t>0,

for any real C'-vector potential a; it is clear that the RHS is finite for all K € N
and for all ¢ > 0. By standard convergence arguments ([W]), H(a) + vj converges
in norm resolvent sense to Hg.p(a), the operator (iV — a)? on @ with Dirichlet
boundary conditions. We now put ¢t = 1 and conclude that

tr (e—HQ;D(a)) < tr (e—HQ;D(0)> ,

independently of a. As each eigenvalue of Hg.p(a) below E will contribute at least
e~F to the trace on the LHS, our claim follows. |

Acknowledgements. R. Hempel would like to thank T. Hoffmann-Ostenhof for
the kind invitation to the Erwin Schrédinger Institute in Vienna and 1. Herbst for
enlightening conversations on magnetic fields.
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Regularity of the nodal sets of
solutions to Schrodinger equations

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof
and N. Nadirashvili

1 Introduction

Let © be an open set in R™ and let V : Q — R with V € L] (). We consider real
valued solutions u # 0 which satisfy

Au=Vuin (1.1)

in the distributional sense.

In a recent paper two of us [HO2] investigated the local behaviour of such
solutions under rather mild assumptions on the potential V, namely we assumed
that V € K™%(Q) for some & > 0, see e.g. [AS, S|, where the class K™° is defined
by requiring that

. V(y)l
lim sup / xXo——>—=5dy =0 1.2
€l0 zeRn J|z—y|<e |z — y[n—2+e (12)

Here xq denotes the characteristic function of €.
One of our main results was

Theorem 1.1. Suppose u # 0 is a real valued solution of (1.1). Let g € Q then
either there is a harmonic homogenous polynomial Py # O of degree M such that

u(z) = Py(z — z0) + O(2) (1.3)
with
2(x) = Ol — 2o ™) V8 <5 forz— mg (14)

or u vanishes at xq faster than polynomially, that s

lim |z — zo| *|u(z)] =0
0

T—T

for every a > 0.
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It is known [AS, S] that V € K™%(Q), 6§ < 1 implies u € C%¥(Q) where
C%% denotes Holder continuity. Suppose u has a zero of first order at zg so that
u = Pi(z — z0) + ® in a neighbourhood of z according to Theorem 1.1. (1.3) and
(1.4) implies that for §' < 6 <1

lim lu(z) — Py(z — 20)|

T—To I.’L‘ - .’11'0|1+6, =0

so that u is at xg ‘smoother’ than at points for which u # 0. So the question arises
whether the zero sets of solutions of Schrédinger equations are in fact smoother
than the corresponding solutions.

Let us illustrate this with an explicit example. According to the theorem of
Cauchy and Kowalewski there is a small disk

B, = {(z,y) € R? : 2* + y* < p?}
such that
Av=wvin B,

with

1 1
v=r—y+ 6:133 — §$2y + higherorderterms

and with v(0,y) = -y, %(O, y) = 1. Now let in B,, u be defined by
w— {ac -y for x <0
v for x >0

then Au = Vu with 1 50
T
V:V(x’y):{o £ <0

and a simple calculation shows that the nodal line of u is given by

y=zc for <0
y =gz — 1z°+ O(z®) for x>0.

Hence y(z) has a second derivative and one sided third derivatives. But u itself
already has a jump in the second derivative for every (z,y) with z = 0 and |y| # 0.

Results on this additional regularity of nodal sets together with some proofs
will be presented in this announcement, the full paper will appear elsewhere.

2 Regularity of nodal sets

Without loss of generality we consider (1.1) in Br, = {z € R": |z| < Ro} and we
assume V € K™%(Bg,). Let

N, = {z € Bp, : u(z) = 0} (2.1)
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and let Nqsl) = {z € N, : u vanishes of first order at z} so that for each zo € Nq(il)
there is a P{® (z — ) # 0 with

u(z) = P (¢ — zo) + ®(x) (2.2)
for x — xg according to Theorem 1.1.

Theorem 2.1. Pick zg € ngl) and assume 0 < 6 < 1. Then for each §' < 6 and
for sufficiently small € > 0, NYn B.(z¢) is a CY -hypersurface.

Remarks.
(i) By a C1%" hypersurface we mean that NYnB. (zo) can be represented as the
graph of a C1%'- function.

(ii) Theorem 2.1 is sharp in the sense that § > & is not possible. We do not
know whether §' = § might be allowed.

(i) We shall later discuss the case of smoother potentials, say V € K™%(Q)
for 6 € (1,2) or V € Ck(Q). C** denotes the usual Holder spaces.

Sketch of the proof.
We first state a Lemma which is a sharpening of Theorem 1.1.

Lemma 2.1. Let 2o € Ny N Bg, (0) with Ry = Ro/2 and suppose sup,cp, |ul =
C1 then for every 8’ < 6, there is a Cy such that for |z| < Rg

fu(z) = P (@ — 20)| < Calo — 2o+, (23)

where

Co = Co(V,C1,6 — &' ,n, Ro)

Remark. The V-dependence can be made explicit via a suitable norm of V. The
important fact is that C; does not depend on zg. If £y happens to be a higher
order zero of u then Pl(w‘])(w — o) = 0. The proof of Lemma 2.1 relies heavily on
the techniques which have been developed in [HO2] in order to prove Theorem
1.1. Some additional technical complications arise, causing however no entirely
new problems. Naturally a complete proof is, as already the proof of Theorem 1.1
somewhat involved.
Since for zg,x1 € N,

(Vu)(z;) = (VPE))(z;), i=0,1 (2.4)
it can be shown via Lemma 2.1

Lemma 2.2. Letzg,z1 € NyNBg,, Ry = Ro/4 then for §' < § there is a constant
Cs such that ,
[(Vu)(z1) = (Vu)(22)| < Cslzg — z1]° . (2.5)

with C3 = C3(Cy), Cy the constant given according to (2.3).



22 M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili

For later purposes we prove the following more general statement.

Lemma 2.2" Suppose PI(V(IJ) and Pz(v}) are polynominals of degree M with
P} (@) = Py (& — 21)| < elaa [+

for |z| < 2|z1|. Then for every M-th partial derivative there exists a constant
C(M,n) such that

100 (P (z) = PP (2 — 21))| < cC(M,n)|z1|”

Proof. Let Qu(z) = Pﬁg)(x) —P](\,}) (z—x1). In the one-dimensional case |@p(z)| <

clz1|M*? for |z| < 2|z1| implies via a classical inequality of Chebyshev that

M ;
|WQM($)| < cCplz1|

To obtain the corresponding estimate for the n-dimensional case we consider di-
rectional derivatives of M-th order. There the one-dimensional estimate obviously
holds. The partial derivatives can then be estimated by linear combinations of the
directional derivatives [BO].

We shall now proceed in the following way: we assume that xy € Ni(f) and
that

(Vu)(zo) = (A,0,...,0) = dey, A#D0. (2.6)

We shall first show that in a neighbourhood of zg the nodal set u(z) = 0 can be
represented as the graph of a uniquely determined continuous function

¢: By(mz) CR" - R

such that
w(p(y),y) =0 Vy € B,(mzo). (2.7)

Thereby 7z := (z2,...,2n), for every z = (z1,22,...,%,) and B,(7zo) = {y €
R |mzo — y| < v} with v > 0 small enough.

Proposition 2.1. For sufficiently small p > 0
T Ny N By(zg) » R™1

1s tnjective.
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Proof. We start with some rather obvious observations and definitions. Since
u(zg) =0, z¢ € G where G = {z € Bpg, : u(z) > 0}. Let & € 0G. We say ¢; is
an n — 1 dimensional affine hyperplane to G at 7 if for every sequence of points
z; € 0G with z; — T

dist(z;,e5) = of|z; — Z|) for i — oc.

Let y € 0G and dy(z) := (z — y, (Vu)(y)) then £;,, = {x € R" : dy,(z) = 0}. Now

define for z € G N Nél)
(Vu)(z)

|(Vu)(z)|

then by Lemma 2.2 it is straight forward to show that for small p’

(Vu)(e) =

((Vu)(zo), (Vu)(z)) = (2.8)

[N

for z € N, N By (zo) with By (zo) = {z € R* : |z — 20| < p'}. Set p = p in
Proposition 2.1.

Now suppose that Proposition 2.1 is wrong. Then there exist Z,z € By (zg)N
N.,T # z such that (%) = n(z) := & = (0,22,%3,...,7n). Let E = 77 1&) N
Ep(xo) NN,. E is a closed set with cardinality > 2. If E has an accumulation point
y then 771(&) C ¢y, but ¢, = {z € R* : (z — y,(Vu)(y)) = 0} and this implies
((Vu)(zo), (Vu)(y)) = 0 contradicting (2.8). So there are z),z; € E where 21, 29
only differ in the first coordinate such that

g(z1,20) = {x ER™ 1z =tz; + (1 — t)z2,t € (0,1)}
satisfies g(z1,22) N N, = 0 implying w(z) # 0 Vz € g(z1,22). But

((Tu)(e0). (Va)() = g (s0) 5= ()

and 5 5
u u .
sgn 535—1(21) # sgn 8_:::1(22)’ J=12,
hence sgn ((Vu)(zo), (Vu)(21)) # sgn ((Vu)(zo), (Vu)(z2)) again contradicting
(2.8). This proves the proposition.

Now we have to show that Vy € B, (nz(), v small enough, thereis at € Rsuch
that (t,y) € B,(zo) N Ny. But this is an immediate consequence of the continuity
of u: Denote g = (zo1,...,%on), let y € B, and x4 := (20,1 £ ¢,y) such that
T4 € By(xg). Since Vu(zg) = Aey and u(zg) = 0, sgn u(xo1 +€,202...2Ton) #
sgn u(zo1 — €,Z0,2 - - - Ton) for € small enough. Since u is continuous we also have
Vy € B, for v sufficiently small, sgn u(zo,1 + €, y) # sgn u(zo,1 — €,y). Hence by
the intermediate value theorem there is a t with |t —z¢ 1| < € such that u(t,y) = 0.
This implies (2.7).
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Further via [H, Satz 170.1] we conclude that ¢ € C'¥(B,) so that N s
indeed locally the graph of a CL%" function.

We give now a brief discussion of the higher regularity of nodal sets if V' is
assumed to be more regular.

Theorem 2.2. (i) Suppose (1.1) holds with V € K™°(Q) with § € (1,2). Then
NV s locally a C*% -hypersurface for & < 6 —1.

(i) Suppose (1.1) holds with V € C**(Q) with o € (0,1) then N s locally
a CFt3:2_hypersurface.

The idea of the proof is basically the same as for the proof of Theorem 2.1.
However we have to replace Theorem 1.1 by a more detailed result.

Theorem 2.3. (i) Suppose (1.1) holds and V € K™%(Q),6 € (1,2). Let zo €
then either there exist two harmonic homogenous polynomials Pay # 0, Pary1 of
degree M, M + 1 respectively such that

u(z) = Py(z — zo) + Pus1(z — xo) + O(2)

with )
®(z) = O(|x — zo|M 1) for z — zo, Vo' < 6

or u vanishes at xo faster than polynomially.
(ii) Suppose (1.1) holds and

Veck(Q), ae(0,1).

Let 2o € Q, then there is a polynomial of degree M + k + 2 such that p(z) =
Py(x) + Prpya(z) + p1 with Py, Pary1 again harmonic and homogenous of degree
M, M + 1 respectively and Py # 0, and py(x) vanishes at least of order M + 2 at
zero. We have then
u(z) = p(z — o) + ®(2)
with
B(x) = O(|z — ao|)MHr+2ta for T — Zo

Remarks. (a) Under the conditions of part (ii) of this theorem strong unique
continuation is well known. Also (ii) is related to the classical Schauder estimates,
see e.g. [GT].

(b) The proof of Theorem 2.3 again uses the techniques of [HO2| but some
iterations are necessary.

(¢) For the coulombic case a more detailed version of Theorem 1.1 was re-
cently shown in [HO2S1] and [HO2S2]. An investigation of the regularity of the
nodal sets for this important case should be possible along the present lines.

Starting from Theorem 2.3 the proof of Theorem 2.2 follows the same ideas as
the proof of Theorem 2.1. So one first proves a suitable analog of Lemma 2.1, uses

Lemma 2.2’ and proceeds essentially as we did above in order to prove Theorem
2.1.
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Results in the spectral theory of Schrodinger
operators with wide potential barriers

Glnter Stolz

Introduction

Motivated by the beautiful results but also open problems in the spectral theory of
Schrédinger operators with random or almost periodic potentials, in recent years
there was rising interest in spectral properties of deterministic potentials with
some kind of irregular asymptotics near infinity. Here we consider (rapid enough)
decay of a potential to zero or {asymptotic) periodicity as regular asymptotics,
typically leading to isolated eigenvalues and absolute continuity of the rest of the
spectrum.

That potentials consisting of an infinite number of suitably placed barriers
can give rise to completely different types of spectra was first found by Pearson [9],
who showed that sparsely distributed barriers in dimension d = 1 lead to purely
singular continuous spectrum. Simon and Spencer [10] showed the absence of ab-
solutely continuous spectrum for (i) high barriers in one-dimensional Schrddinger
operators and their discrete counterparts (see also [6] and [13]), (ii) wide barriers
and low energy in the discrete case for arbitrary d. Kirsch, Molchanov and Pastur
(7], [8] have shown that in some of these situations one actually gets dense pure
point spectrum. Another interesting result was found in [5], where it is shown
for d > 1 that operators of the type —A + cos|z| have alternating intervals of
absolutely continuous spectrum and dense pure point spectrum.

In the following we present some contributions to the study of Schrédinger
operators with wide potential barriers. We start with a result on absolute continu-
ity for slowly oscillating perturbations of periodic potentials in d = 1 (Section 1).
This generalizes results of Behncke [1], who did not consider a periodic background.

InSection 2 we give a result on the absence of absolutely continuous spectrum
for 1d-Schrodinger operators, which can be applied to (i) potentials with wide
barriers, and (ii) perturbations of periodic potentials. The results of Sections 1
and 2 are illustrated in Section 3 by studying the examples —d? /dz? + cos ® and
—d?/dz? + cosx + Acosz® with o € (0,1) and A > 0.

In Section 4 we give a generalization of the result of Section 2 to arbitrary
dimension d. This final result is joint work with P. Stollmann. A closely related
investigation was carried out by Combes and Hislop in [2].
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1. Pure absolute continuity in d =1

We start with a number of definitions in order to make precise what we mean by
a slowly oscillating potential. Let

n+1
ff(Ll) = {f:sup/ |f|d:13<oo}

TLZO n

and for 1 <p < oo

LAV {f Z(/ |f|dx>p<oo}.

For w > 0 let the difference operator A,, be defined by (A, f)}(t) = f(t+w)—
f(t) and for k = 1,2,... let the class D be defined by

feDE = Alfesti@Y), j=0,.. .k

Finally we introduce the class D, := Uk21 Dk of slowly oscillating functions
(with respect to w).

Examples: (i) If V € L'(0,00) or V is smooth with V' € L!(0,w), then V € D,,
for all w

(ii) If V is bounded, V' € LP(0,00) for some p < oo and V¥ € L1(0, )
for some 7 > 2, then V € D, for all w. This includes the particular examples
V(x) = cos(z®), where a € (0, 1), explaining the notion slowly oscillating.

(iii) Let V € D,, and ¢q bounded and w-periodic, then ¢V € D,,. This shows
that D, depends on w (in particular: V = 1).

Theorem 1 Let H = —d2/dzv2 + Vo + V be defined as a self-adjoint operator
in L2(R), where Vo,V € L} . and real valued, Vy is w-periodic, V € D, V =
Vi + Va, where Vi is bounded near +00, and limg_. f;“ |Va(t)| dt = 0. Define
Vi = liminf, o Vi(z) and Vi = limsup,_, , Vi(z).

If (o, B) is a stability interval of —d?/dx? + Vy, then H is purely absolutely
continuous in (a + Vi, B+ V4).

Remarks: (i) Note that no condition on the potential is needed near —oo (de-
spite L} . and real). This includes situations, where the self-adjoint realization of
—d?/dz*+Vy+V is not unique (limit circle case at —o00). In this case the Theorem
holds for every self-adjoint realization. It is also true for self-adjoint realizations
in L?(0,00) with arbitrary boundary condition at 0.

(ii) A similar result holds for discrete Schrédinger operators (Jacobi matrices)
h of the form (hu)(n) = u(n — 1) + u(n + 1) + (Vou)(n) + (Vu)(n) in ¢3(Z).

The general method underlying the proof of Theorem 1 is the method of
Subordinacy introduced by Gilbert and Pearson in [4]. By this method the proof
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of the Theorem can be reduced to showing that all solutions (in o.d.e. sense) of
Hu = Au are bounded near +oo for all A € (a + V1,6 + V1). Boundedness of

solutions of Hu = Au follows from the boundedness of “ngl T,

the T, are the transfer matrices defined by

u((n+1w)\ T u{nw)
v((n+1w)) T"\w(nw)/)
The result now follows by subjecting the products ngl T, to an iterative

diagonalization procedure. Details of this can be found in [14] and [15]. The illus-
trative special case V € D), was already treated in [12].

in N. where

2. Absence of absolute continuity in d =1

Our next result can be used to show that many Schrodinger operators have inter-
vals of essential spectrum, which do not contain any absolutely continuous spec-
trum.

We consider operators Hy = —d?/dz? +V; and H = —d?/dz? + V in L?(R),
where we assume Vy € LlloC to be bounded from below and V ¢ LlloC such that

—d?/dz? + V is limit point at +oc. In both cases this gives unique self-adjoint
operators.

Theorem 2 Let I, C (0,00) and I_, C (—0,0) be intervals for n = 1,2,.. .,
such that |I,| — 00 as |n| = 00 and V(z) = Vo(z) forz €Y, In.
Then 04c.(H) C 0ess(Hop).

The proof of this result, which can be found in [15], uses the same principal
ideas then the proof in [10] for a similar result in the discrete case: decoupling by
Dirichlet boundary conditions, trace estimates for resolvent differences and trace
class methods from scattering theory. In obvious form the Theorem also holds for
operators in L?(0, c0).

Applications of this result are as follows:

(i) Let V(z) > ¢ for x € |J I, with I,, as above. Then o,.(H) N (—00,c) = 0.
This can be seen by choosing Vj(z) = max{V (z), c}.

(ii) Let Vo be periodic with (v,6) a gap in o(Hp). If f:ﬂ [V/(t)|dt — 0 as
In| = 0o, then V := liminf|;_, V(z) and V := lim SUP|3|—co V (z) are finite and
Theorem 2 can be used to show that oo .(H)N(y+V,6 + V) =0.

3. A typical example
A typical example where the results of both Theorem 1 and Theorem 2 can be

applied is given by H = —d?/d2z? + cosz + Acosz® with o € (0,1), A > 0.
Theorem 1 says that the absolutely continuous bands of —d?/dz? + cos z shrink
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by A from both sides to give absolutely continuous regions of H. On the other
hand the spectrum as a set grows by A at the ends of every band and Theorem 2
assures that intervals of length 2\ at all the band edges do not contain absolutely
continuous spectrum, i.e. are purely singular:

acC ac
L ] L ]
I~ 1 I 1
d2
o(———= +cosx
( dz? )

S ac S S ac S
et ——
I I I 1

A A AA

Similarly one gets that —d?/dz? + cosz® has purely singular spectrum in
[—-1,1) and purely absolutely continuous spectrum in (1, o).

ac

L
!
-1

2

a(—@ + cos %)

[==Th /)]

We do not know the nature of the spectrum in the singular intervals, i.e.
whether there is singular continuous or point spectrum. There are interesting an-
swers to this question for the half line operator corresponding to the last example:

Let Hg := —d?/dz*+cos z* in L?(0, c0) with boundary condition f(0) cos ©—
f'(0)sin® = 0, ©® € [0,7). Then for almost every © with respect to Lebesgue
measure we have that o(Hg) N [—1,1) is dense pure point! See [8]. Moreover, a
result announced in [3] shows that o(Hg)N[—1, 1) is purely singular continuous for
© € L, where L C [0,7) is a dense Gg-set, i.e., in particular, locally uncountable!!

4. Absence of absolute continuity in d > 1

Let Hy = —A+V, and H = —A+V be defined as self-adjoint form sums in L2(R%),
where it is assumed that Vo o, Vi € L}, and V, _, V_ € K, the d-dimensional
Kato class.

A sequence of subsets S, of R%, n = 1,2,..., is called a decomposition of
{z e RY: Vy(z) # V ()}, if (i) S, is compact with Lebesgue measure |S,| = 0 for
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all n, (i) R\ U, S» = U, U: (disjoint union), where the U; are open subsets of
R?, and (iii) |U;| < 0o if U; N {Vy # V} # 0.

Finally, we say that some compact S C R has generalized measure a(S) >0,
if there exists a < d such that

H{z:r < dist(z,S) <r+ 1} <o(S)(r* + 1)

forallr > 0.

In the particular example of spheres S = {|z| = R} one can choose o(5) =
cg(R +1), ie. 0(S) is a surface measure for large R, which also holds for much
more general S.

Theorem 3 Let (S,) be a decomposition of {Vo # V}, 6p := dist(Sn, {Vo #
V}) > 60 > 0 and oy, := 0(Sy) the generalized area of Sy. If

Z one S < oo forall € >0,
n

then oq.(H) N (—00,1nf 0css(Hp)) = 0.
If, in addition, (Sy,) is a total decomposition, i.e. |U;| < oo for all i, then
Uac(H) - Uess(H0)~

The proof of this Theorem uses similar ideas than the proof of Theorem 2, a
main step being the successive introduction of Dirichlet boundary conditions on the
Sy.. The most important change is that differences of the corresponding resolvents
are no longer finite dimensional. A way of getting trace estimates directly is to
replace resolvents by semigroups, which can be calculated via the Feynman-Kac
formula. Details are given in [11]. For the trace estimates of semigroups see also
the contribution of P. Stollmann to this volume.
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Stark ladders and perturbation theory

V. Grecchi, M. Maioli and A. Sacchetti

Abstract

We consider the Bloch problems with a finite number of open gaps and
we prove, for any external weak enough electric field, the existence of a
finite number of Stark ladders, given by complex translation, decoupled band
approximation and regular perturbation theory.

Some of the results reported in this lecture have been announced in [6] and given
with more details in [7]. We don’t discuss here other well known rigorous results
on this field (see for instance [2] and [4]).

Let us consider a one-dimensional Bloch-Stark problem with Hamiltonian:

Hp = Hp + Fu, (1)
where Hp is the Bloch operator :
Hg=-A+V(z), V(z)=V(z+a), F,a>0,

in the space H = L%(R), with o(Hp) = U, By, where B,, = [E™, EM] is a band
and G, = (EM,E™ ) is the n-th gap. Let k(E) = a~'arccos(D(E)/2), where
D(E) is the discriminant of the Bloch operator, be the crystal momentum and
en(k) the energy functions defined on the torus B = R\b where b = 27/a.

A naive approach to the problem was followed in [5](where the problem is
extended to the disordered case). Let V(z) = >_,u(z — ja), where u(z) is both
translation and dilation analytic, somewhere negative and vanishing fast enough
at infinity, so that the atomic operators

have one isolated eigenvalue A. Thus the atomic Stark operators
Hpajrp=Ha;+Fz

have one resonance near A + Faj. We expect (and prove [5]!) the existence of a
ladder of resonances of Hp near {A + Faj}; for F' small fixed and the parameter
a large.

In order to consider fixed Bloch problems ( a = 27) for any F small enough
we must use other intuitions and other techniques. The other intuition we shall
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consider is more deep and goes back to the Zener tilted bands picture and to
the more precise Buslaev adiabatic approximation. Near = zo and for F' small
enough Hp acts locally as the Bloch operator with effective energy Ey = E—Fxzy =
f(xo). Thus if we connect each band to the next one turnig around a branch point
[3] we have effective (Zener) barriers in the inverse image of the gaps: f~1(Gy),
with effective potential U(z) = E + Im[k(f(z))]?. Because of this picture we can
expect bound states or sharp resonances, but we don’t have any suggestion on the
position of the energy levels. For this purpose we should consider the Wannier [9]
idea of decoupling the one-band spaces at finite field F. The compression of the
operator on a one-band space gives a compact resolvent operator with a ladder as
its spectrum. The prove of the last statement is easy in the Crystal Momentum
Representation (CMR). Let us define the unitary operator U on a function ¢
belonging to S :

a=Uy, a={an}tn=1,an € L*(B),
(2)
an(k) =n( n)¢)'H> HB"MCL = €, (k) fn
where n = (271')—% and ¢F are the Bloch vectors orthonormalized on X =
L?([0, 27], g—:) The transformed operator in CMR is given by:

Hp = diag(e, +iFdi)n + FX, (X)nm(k) =X} ., (3)

where Xff’m =4 < d,WE W¥ > and WP is the sequence of Fourier coefficients
of e” =y (z), k € B=R\1.

The Decoupled Band (DB) approximation HZ? of Wannier has the eigen-
values {\, j}n,; = {< €, > +27FjJ}, ; with eigenvectors

.k
Y (k) = exp % /0 (n(h) = An.j)dhR

in L?(B). Since the spectrum of the DB operator is generically dense in R, it is
not suitable as a strarting point of perturbation theory. As suggested by Avron
[1] we restrict ourself to the Bloch operators with a finite number of open gaps,
which in some sense are a dense subset, and are translation analytic (we now
assume inversion symmetry z — —z). In this case the DB approximation gives
a finite number of ladders imbedded on a continuous spectrum coming from the
infinite band. A good starting point is obtained by the same models transformed
by the complex translation zJ — z 4+ «, with |[Im(a)] < 2ap + 6. In order to
control the spectrum we define the Extended Crystal Momentum Representation
(ECMR) which is directly applied to the translated operator. Let for simplicity
to have one finite band and ¢’f7a, k € B, ¥ ., p € R be the translated Bloch
vectors, defined as above. . We define €3 continuous (and analytic) on R, and we
have e~ "P*yf(z) = 1 + O( Il-)) Let v be a translation analytic vector of class S as
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well as its translated vectors, we define :

Uoﬂp = {al,ay a2,a}
where (4)

a1,a(k) = (¥ 5,9), azalp) = neP* (¥} 5, ¥)
The translated Bloch-Stark operator Hr o in the ECMR becomes

Hp,o = diag(ey(k) + iFdy, e3(p) + iFdy + Fa) + FX, (5)
on L*(B) @ L?(R). The DB approximation gives now the operator
HPE = Hp, - FX,

with discrete spectrum {A; ;}, on the real axis and essential spectrum on all the
line Fa + R. The coupling operator X,, and Uy, (U,)~! are bounded analytic on
a stripe [Im(a)| < 20p.

We now consider the auxiliary perturbative parameter f, with |f| < F, and

-E[F,a(f) Zﬁgf—FfXa (6)

so that H Fa(F)= H F.o- Let us now fix a and F' and drop them from the labels.
We have:

Theorem. Let H(f) be as above, we have:

i) The essential spectrum does not depend on f because of the relative compactness
of X

i) The ladder is stable for small fized F and any f, |f| < F, and the resonance
A1,;(f) is analytic in the disk and given by the perturbation formula:

- fr(wl,j’Rl,l(fa z2)1 j)zdz
fl"(wlm Ry (f, 2),5)dz

where I" is a closed path encircling only one point (A, ;) of the unperturbed spec-
trum, and staying at the mazximal distance from the unperturbed spectrum.
R1.1(f,2) is the resolvent of the operator in (6) at parameter z and compressed
on the space of the first band.

The proof is based on explicit expressions of the unpertubed components of
the resolvent, integration by parts, and the estimates of X based on the estimates
of the vectors WE, n = 1,2.

A control on the full resolvent shows that there isn’t any other sharp reso-
nance.

If we expand the perturbation coefficients in power series of F', taking f = F,
we get explicit expression of the coefficients of the asymptotic series studied by
Nenciu [8]. The second perturbation coefficient gives the width of the resonances
in the Fermi Golden Rule approximation which coincides with the adiabatic eval-
uation of the full width [3] up to a factor 72/9 which seems to be universal in a
class of semiclassical perturbations [6].
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Singular potentials: Algebraization

Miloslav Znojil

Abstract

Energies of certain spiked oscillators (possessing a singular repulsive core
in the origin) are shown obtainable as roots of a set of algebraic equations.
These equations represent an adequate generalization of the so called Hill-
determinant non-variational prescription applicable, under certain assump-
tions, in the regular cases.

Keywords. Schrodinger equation, strongly singular potentials, binding en-
ergies, algebraic equations

1 Introduction
Quantum systems are often described by the differential Schrodinger equation
[-A+V(r)]y = E.

It is numerically solvable, usually without any serious troubles. A few exactly
solvable models V(r) may also prove useful [1].
Sextic oscillator

V(r)=ar? +br*+cr®

represents one of the simplest “unsolvable” examples which have attracted a lot of
attention in the methodical context. In accord with the proposal of Singh et al [2]
and its later modifications and proofs (3], it may admit various continued-fraction
re-summations of the perturbation series. Moreover, its spectrum of binding en-
ergies may coincide with roots of certain (so call Hill) secular determinants with
non-variational origin [4].

All the latter results may be generalized to a broad class of potentials which
are regular or at most weakly singular in the origin [5]. Here, in the similar me-
thodical setting, we intend to study the challenging, strongly singular counterpart

Vir)=ar® +br *+cr % a=4p% c=40" (1)

of the sextic oscillator.
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The challenge also comes from the needs of physics: The presence of a sin-
gularity at r — 0 is a typical feature of phenomenological potentials V(r) in the
nuclear and molecular physics. At the same time, it is very unpleasant compu-
tationally. Here, we shall describe and recommend its Hill-determinant-like full
algebraization.

2 Bound States and Infinite Series

Let us contemplate our differential Schrédinger equation or rather its ordinary-
equation radial projection

S
dr2? r2

+ V(r)} v(r)y=Ey(r), 1=0,1,..., (2)

in a variational setting. Then, we usually choose an orthonormalized basis (e.g.,
harmonic oscillators) x,(r) and decompose

) = 3 xalr) .

This, in accord with the standard textbooks, converts our equations into the matrix
eigenvalue problem
det <Xmi (H - E) IXn) =0.

This — variational — form of algebraization introduces no problems but the solutions
remain purely numerical.

Non-variationally, we may try to search for (or classify) the exactly solvable
cases via a systematic non-orthogonal and non-normalized, much simpler choice
of xn(r)’s. With the weaker pair-of-series Ansétze

P () = Y xa(r) A (3)

only superpositions
) = 1 W (r) + ca @ (r)
may provide the solutions acceptable as physical.

Usually, we intend to succeed in an explicit representation of the coefficients

S (and subsequent use of special functions) in such a context. Indeed, the
ambiguity in the ¢;’s has to be removed via boundary conditions

$(0) =0, (o0} =0 (4)

in such a case and, up to the exaxctly solvable examples, this would amount again
to a purely numerical prescription.
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The method of Hill determinants [4] lies somewhere in between the variational
and special-function extremes. For regular potentials, it starts from non-orthogonal
Xn(r)'s, €.g.,

Xn(r) = r*"exp [~ f(r)] (5)

with a quasi-variational parameter v and with an auxiliary Riccati-like function
f(r). Nevertheless, it avoids the use of ¢;’s, basically, by making all the s individ-
ually compatible with the physical boundary condition in the origin, x,(0) = 0,
and in infinity, x,(c0) = 0.

The method of Hill determinants shares a number of features with the solu-
tions obtainable in terms of special functions [5]. In particular, its transparency
and simplicity must be “paid for” by the necessary rigorous proofs of its valid-
ity. In some cases, this price is reasonable. Here, we intend to offer, describe and
recommend one of the possible extensions of this method to the strongly singular
forces [6].

3 Regular Potentials as a Methodical Guide

All the forces regular in the origin enable us to choose and classify Y1) = [ +1 as
physical and v(2) = —[ as unphysical. Then, we may choose ¥(r) = 1 (r) with

P (r) = plresulan) (py o+ 4 corrections

and make the first boundary condition redundant (c; = 0).

In general, our regular solution is numerically obtainable, e.g., by the Runge-
Kutta algorithm. Of course, after we use a polynomial exponent f(r) and succeed
in constructing an analytic, Taylor series representation of the wavefunctions,

00
w(regular) (T‘) — Z Xn(r) hglregular)’
n=0

energies may also become roots of the related “Hill determinants” (cf. [4] for more
details). Here, analogous simplifications will be studied for Laurent series and
oscillators with a strongly repulsive core.

As a guide, we may just review the separate steps of construction in the
regular cases: Routinely, we

(1) convert differential Schrodinger equation (for ’s) into its difference, dis-
crete conterpart (for h,’s);

(2) find an explicit special-function-like formula for coefficients,

hn = hy(E) = g(n) det Q™(E)

where, often, n-dimensional matrices Q" (E) have a sparse, Hessenberg structure;
(3) treat the trivial identities h_y = h_o = h_3 = ... = 0 as a counterpart
of the original » — 0 boundary condition in the origin;
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(4) prove, under certain assumptions, that we may also replace the continu-
ous, 7 — oo physical boundary condition by its discrete analogue

hny1 =0, N —o0

(5) notice that we may re-write the above discrete asymptotic boundary
condition in the Hill-determinant language,

det Q[°N(E) = 0.

As a consequence, we may also re-express Schrodinger equation in a matrix,

quasi-variational form
Q[oo](E) h(physical) =0.

It may prove suitable for perturbative purposes [7].

4 Singular Interactions as a Challenge

Our example (1) remains fairly simple in the continuous coordinate r. In particular,
its independent solutions may exhibit the contrasted threshold behaviour

Plregulan) (1)  exp[—vr~2 + O(lnr))
w(irregular)(,r) ~ (b=6V)/80 explvr=2 + 0(r2)]
or, alternatively, asymptotic behaviour
P (1) ~ exp|—pr? + O(lnr)]
pmon=Jost) (ny , p=(B+20)/8u eynl 1r2 4 O(1/r2)].

Thus, any Laurent power series (12 (r) = 9019 (r) = $%°_ ... (3) with the
Floquet parameter v = 71,2 and exponent f(r) = ur? + vr=2 (5) may routinely
be decomposed near the origin,

DO (r) = ay plirresulan) (1) 4 g (regular) (py
VD (r) = agplrresuen (1) 4 g, ,l/)(regular)(,r)
as well as in infinity,
YO (r) = m @700 () + 6, 0 (r)
O () = 7 90T () + b YU (1),

Now, we may re-formulate the analytic physical boundary conditions (4) in
the form ¢; a1 + coag =0and ¢;y; + 272 =0, i.e.,

Wy @0
det( SO0 $ ) =0 ©)

Numerical tests confirm reasonable precision of results (energies) obtained from
this condition [6].
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4.1 The Discrete Boundary Conditions

Unexpectedly, apparent analogues

hguw) =0, RO 72) 0

-0

of eq. (4) do not reflect any physics at all: These conditions are trivial, responsible
just for the convergence of our power-series Ansatz. An explanation may be found
in close analogy with Mathieu functions. Thus, “secular equation”

det QI >, B) =0
with the doubly infinite matrix
QUM Ny, B) - QU =l(y, E), M,N— oo

determines just the pair of Floquet parameters v = v, (E), y2(E).
The analogy with the regular case seems to fail completely: The pair of the
doubly infinite matrix equations

QU==ly, Eyx | A | =0, j=1,2

leaves the problem of boundary conditions unresolved.

4.2 Main Result: The Determination of Energies

The suitable n > 0 and n < 0 changes of variables

__ (@yrT(n+4)
" T(n+ B®)T(n+ BO)

Pn

A=~/2—E/8u+1/4, B® =~/2+D+3/4, 4d* = (1+1/2)* +8uv

and

b - (@)"T(m+S)
" T(m 4+ T (m + TO) ™

S=—7/2+b/8v+3/4, TEH =_4/24+D+5/4,
respectively, convert our difference Schrodinger equation or recurrences
Qn,n—l hn—l + Qn,n hn + Qn,n+1 hn—i—l =0

Qn,n-1=2pu(dn+2y-3) - E, Qnony1 =b—2v(dn+2y+1)
Qnn=8uw+Il(l+1)—2n+v)2n+v-1)
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into equations exactly solvable in the |n| > 1 asymptotic region. Thus, we get
Pn = Poo expldur/n 4+ O(1/n%)], n>1
or
Gm = Goo expldpv/m + O(1/m?)], m > 1

and our main

Theorem. The fully algebraized secular equation reads

(21) ™" Ppoo(m)  (21)7*poc(2) \ _
det( @) 2q00(m1)  (20)72/ %o (72) >—0

and fixes the energies.
Proof. We shall show that
(2ur®)/AHESUE2 N " by (4)r = pog(v) expl2ur® + O(1/r)), 73> 1

(12204352 § b () = oo () expler ™ +0G)), <1

For brevity, we take just r 3> 1 — the r < 1 case is fully analogous.

In the first step, we insert our power-series wavefunctions in the original
boundary conditions and omit an exponentially small error, 3> — Zno, ng >
1. Then, due to the positivity of all its terms, we may replace the new, simply
infinite series by an integral,

o0

D ha(Mr* T & / exp g(n)dn.

n=ngp o

In the second step, a technical core of the proof is found in a second-order
saddle-point method. Indeed, as long as a move of ng to —oc only introduces a
small error, we approximate

g(n) = g(N) + (n = N) g'(N) + 3(n — N)?¢"(N)

and evaluate the integral.
In detail, the latter step uses the fact that the integrand

g(N)=(2N +4)lnr = NInN + N(In2u + 1)-

4

is peaked around such N that ¢/(N) = 0. Hence, we implicitly define N = N(r)
and/or r = r(N),

3 E
—(3r+-+ g,:)mN + Inpeo(y) — In 27 + O(1/N)

N(r)expl(3+ 5 + 52)/N(r)] = 20 + O(1/1%)

which — after insertions — gives the final result. QED.
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We may summarize that in the strongly singular cases (r?V(r) > 1 for
r < 1), Hill determinants are related to mere convergence of the Laurent series and
define just the Floquet exponents v = 4(E). Our full algebraization changes the

representation, ¢(?)(r) — h{"? | transforms continuous coordinates 7 € (0,0)
into their discrete analogue n € Z, and generates the discretized Schrodinger

equation for h(nl’Z)’s which is asymptotically solvable. This leads to the transpar-
ent, intuitively acceptable and rigorously understood boundary conditions which
degenerate back to the old HD method for regular potentials.
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Asymptotic Behavior of the Resolvent of the Dirac
Operator

Chris Pladdy, Yoshimi Saité and Tomio Umeda

1 Introduction

We consider the Dirac operator
N
HI—’J§:1:aj87j+ﬂ+Q($)a (1.1)

which appears in the relativistic quantum mechanics. For the detailed definition
of the Dirac operator (1.1) see §2. It is well-known that the liming absorption
principle holds for the Dirac operator (1.1) and, as a result, that the extended
resolvents Ry () exist for any real value A with |A| > 1. The limiting absorption
principle has a close connection with the spectral and scattering theory for the
Dirac operator.

Our aim here is to investigate the asymptotic behavior of Ry (A) as |A| — oo.
Our results indicate that the extended resolvents of the Dirac operator decay much
more slowly, in a certain sense, than those of the Schrodinger operator. (Compare
Theorems 2.3 and 2.4 with Theorem 3.1.)

We are introducing the notation which will be used in the note. For = € R?,
|z| denotes the Euclidean norm of z and

() = /14 |z]2. (1.2)
For s € R, we define the weighted Hilbert spaces Lg (R?) and H!(R3) by
Lys(R%) = {f / (2)°f € Loy(R7)}, (1.3)

and

Hy(R®) = {f / {2)°0 f € La(R®), |o] < 1}, (1.4)

where a = (a1, a9, a3) is a multi-index, |of = a1 + a2 + a3, and

lerf
0y 0

T Ox1 052025
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The inner products and norms in Ly s(R3) and H!(R3) are given by

(f, g)s = /R3 <$>2sf($)@dx,
1£lls = [, )],

(1.6)

and

(Fohe= [ @ [95)- T3 + f@)a)] do

1/2
Hf“l,s = [(faf)l,s] s
respectively. The spaces Lo s and H! are defined by

{£2,s = [L2,s(R32]4’ (1.8)

(1.7)

My = [H;(R%)],

ie., Los and M. are direct sums of the Hilbert spaces Ly s(R3) and H}(R3),
respectively. The inner products and norms in L3 and ‘H}are also denoted by

(, )s, Il lls and (, )1.s, || ll1,5, respectively. When s = 0, we simply write
‘CQ = EQ,O)
{ Y (1.9)

For a pair of Hilbert spaces X and Y, B(X,Y’) denotes the Banach space of all
bounded linear operators from X to Y, equipped with the operator norm

IT| = sup |Tzlly/ll=lx, (1.10)

z€X\{0}

where || ||x and || ||y are the norms in X and Y.
This is an expository note. The detailed proofs and discussions will be found
in a paper to be published elsewhere.

2 Main results

We first consider the free Dirac operator
SN
Hy=—1 E — 2.1
i Zj:la]amj o @D

where i = /—land z = (21,22,23) € R3. Here «;,3 are 4 x 4 Hermitian
matrices satisfying the anticommutation relations

ajor + aga; = 25jk1, (], k=1,23,4) (2.2)
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with the convention a4 = 3, 6;; being Kronecker’s delta and Ibeing the 4 x
4identity matrix. It is known that Hyrestricted on [C§°(R?)]*is essentially self-
adjoint in £, and its selfadjoint extension, which will be denoted by Hj again, has
the domain H1.

We make the following assumption on the potential.

Assumption 2.1.
(i) Q(z) = (gjk(z))is a 4 x 4Hermitian matrix-valued C' function on R?;
(i1) There exist positive constants eand K such that

3
1+e aqjk

; —— | <K 2.3
0"l + 2 5221 < (23)

for j,k=1,2,3,4.
Under Assumption 2.1 the multiplication operator @ = @(z)x is a bounded
selfadjoint operator in L. Hence, by the Kato-Rellich theorem (Kato[3], p.287),
H restricted on [C$°(R?)]* is also essentially selfadjoint in £ and its selfadjoint

extension, which will be denoted by H again, has the same domain H!as H,. We
write

Ro(2) = (Ho—2)7", (2.4)

and
R(z)=(H -2)"% (2.5)

As we mentioned in the Introduction, the limiting absorption principle holds for
the Dirac operator H.

Theorem 2.2 (Yamada [7]).

Suppose that Assumption 2.1 is satisfied and let s > 1/2.

Then for A\ € (—o00,—1) U (1,00), there exist the extended resolvents Ri(\) €
B(Ly,s, HL ) such that

s- 11% R\ +in)=Ri(\)  inH.,. (2.6)
n

Moreover, for f € Las, Re(N\)fis an Lo _s-valued, continuous function on the
set (—00,—1) U (1,00). We now state the main theorems, which are concerned

with the asymptotic behavior of the extended resolvents Ro4(A) of the free Dirac
operator.

Theorem 2.3. Let s > 1/2. Then
[ Box (M)l = O(1) (1Al = o0), (2.7)

where ||Rox())|| denotes the operator norm of Rox(A)in B(Las, L2 ).
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As we shall see in Remark 2.5, |[Ro+())|| cannot be small no matter how
|A| is large. In this sense the estimate in Theorem 2.3 is best possible. However,
Ro+()) can become small as |A| — oo in a weaker sense than in Theorem 2.3.

Theorem 2.4. Let s > 1/2.
Then Ro+(\) converge strongly to 0as |A — oo, i.e.,

lim Ror(A)f=0 in Lo _s (2.8)

|A]—o0

forany f € Lo,.

Remark 2.5. Yamada [8] proved the following:
Let s > 1/2. Then there exists a sequence {fn}in La s such that

sup [falls < o0, (2.9)
and
nlLH;O(R0+(n)fn, fa)o #0. (2.10)
Since
|(Ro4 () fu, fn)ol < 1Ror ()| | fulls?, (2.11)

Yamada's example implies that ||Ro;()\)| cannot converge to 0 as A — oo.
Based on Theorems 2.3 and 2.4, the Dirac operator with a small coupling
constant can be handled; one can use the Neumann series expansion. Let

3
8
Ho=-i) % B + 8+ 71Q(x), (2.12)
j=1

where 7 is a real number. The extended resolvents of H. will be denoted by
R.+(A) . Then we have the following

Theorem 2.6.
Suppose that Q(x) satisfies Assumption 2.1 and 1/2 < s < (1+€)/2. Let R.+())
be the extended resolvents of H.. Then for sufficiently small T
(i) The operator norm of Ry(X) in B(Ly s, Lo,_s) is bounded as |A| — oo;
(i) R.4(A) converge strongly to 0 as |A| — oo.

3 A Known result for Schrodinger operator

The limiting absorption principle for Schrédinger operators has been extensively
studied. We will use a result due to Saito [5, 6]. For this reason, we make a
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review. Let T denote the selfadjoint operator which is defined to be the closure of
—A+V(x)restricted on C§°(R"), where V(z)is a real-valued function satisfying

V()] < Cla)™° (3.1)

for C >0 and € > 0. Let R(z) = (T — 2z)~'. Then it is well-known that the
limiting absorption principle holds for T', that is, for any A > 0, there correspond
the extended resolvents R4 (A) in B(Lg (R™), Lo, _s(R™)) such that

s—li% R\ +in)f = R+(\)f  in Ly_, (3.2)
n

for any fin Lo 4(R™). Furthermore, it is known that Ri()\)f are Lo _s(R"™)-
valued continuous functions in (0, 00). (Sait6 [5], Ikebe-Saito [2] and Agmon [1].)
As for asymptotic behaviors of Ry (), we have

Theorem 3.1 (Saito [5, 6]).
Let ||[R+(\)|| be the operator norm of Ri(\)in B(Lgs(R™), Ly _s(R™)).
Then
[RL VI = 0072) (A = o). (3.3)

More precisely, Saito proved

Theorem 3.2 (Saito [5, 6]).
Let s > 1/2. Then for any a > 0 there exists a positive constant C > 0 such that

1R(x*)] < C/|x] (34)

for all kwith |Rex| > aand Imk > 0, where | R(k2)|| is the operator norm of
R(k%)in B(Lg s(R™), Lo, _s(R")).

4 Pseudo-differential operators

The proof of Theorem 2.3 is based on the resolvent estimate for the Schr”odinger
operator (Theorem 3.2) as well as the theory of pseudo-differential operators. So
we need to introduce a class of symbols of pseudo-differential operators which are
suitable to our purpose.

Definition 4.1.
A C* function p(z,£)on R? x R?is said to be in the class Sy if for any pair
aand fof multi-indecies there exists a constant Cyg > Osuch that

(32)" () 9(0,6)| < Cs )

for all z,& € R3.
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Remark 4.2.
The class SOO’O is a Fréchet space equipped with the semi-norms

0y _ 0\a
bl = e s {1 ()" G

A pseudo-differential operator p(z, D) with symbol p(z,£)is defined by

i )ﬂp(x,f){} (¢=0,1,2,--). (4.2)

e D)f(e) = m) ™ [ ™ol )(e) (43)

for f € S(R®), the space of all rapidly decreasing functions on R?. Here f (&) de-
notes the Fourier transform of f. In connection with the limiting absorption prin-
ciple, pseudo-differential operators which are bounded in L s are important.

Lemma 4.3.
Let p(x,€) € SOO’O . Then for any s > 0 there exist a positive constant C (= Cs) and
a positive integer € (= ;) such that

Ip(z, D)flls < ClolN1£1ls (f € S(R?)). (4.4)

We shall omit the proof of Lemma 4.3, which is based on the Calderén-Vaillancourt
theorem and some techniques in the theory of pseudo-differential operators. Now
we need to extend Lemma 4.3 to a system of pseudo-differential operators. Let

P(z,8) = (pjk(2,€)) 1< pes (4.5)

be a 4 x 4 matrix-valued symbol. Then we define

P(z, D) = (pjk(2, D)) ¢ pea (46)

by
P, D)f(@) = )" [ ¢ Plee)fi6) e (4.7)

for f € [S(R?)]*. Here an explanation must be needed. For a C*-valued function
f(&) = (filz), fa(x), f3(2), fa(x)) on R, the Fourier transform f&) =Ff© s
defined by f( ) ( ( ) f2(€) f3(§)7f4(£)) If p]k(xaé.) € SOO,Oa 1 S .77k S 45 we
define

PO = (3 ol (48)

7,k=1

for £ =0,1,2,..., where |pjk|g0) are the semi-norms introduced in Remark 4.2.

We then have a natural extension of Lemma 4.3.
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Lemma 4.4.
Let pje(z,€) € S for j, k =1,2,3,4. Then for any s > 0 there exist a positive
constant C (= Cs) and a positive integer £ (= {;) such that

IP(z, D)f|l, < C P £l (4.9)
for f € [S(R?).

5 Outline of the proof of Theorem 2.3

In view of Theorem 2.2, we see that Theorem 5.1 below implies Theorem 2.3. Note
that ||R+(\)|| are bounded on any compact interval in (—oco, —1) U (1, o0). Before
giving the outline of the proof of Theorem 5.1, we make a few remarks on the free
Dirac operator Hyp.

For f € [S(RY)J,

Hof = F'Lo(€)F ¥, (5.1)
where \
Lo(¢) =) a6 + B. (5.2)
j=1
It is easy to see that
. 2
(Lo(®))” = (©°1 (5:3)
Using (5.3), we get
. f/o(ﬁ) +z

for f € [S(R?)]* and 2z € C\R.

Theorem 5.1.
Suppose that s > 1/2. Then

sup { [Ro(Ain)|| / 2< A, 0<n <1} < oo, (5.5)
where |Ro(A £ in)|| denotes the operator norm of Ro(A £ in) in B(Las, Lo —s).

Outline of the proof.
Set
J={z€C/2<|Rez|,0< [Imz| <1}. (5.6)

Choose p € C§°(R)so that

(1 i < 1/2;
plt) = {0, it |t > 1 (57)
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For each z € J, we define a cutoff function ~,(¢) on R3 by

((€) —Rez), if Rez>2;
Y(§) = {Z(<§> +Rez), if Rez< —2. (5.8)

Using (5.4) and +,(£), we decompose the resolvent of Hy into three parts:
Ro(2) = (mA+1-22)"YA, + B, + 2(-A+1-2%)7"! (5.9)

where

4. = F 7 [1(OLo(®)| 7,

[l (5.10)
B,=F1 [WLO(Q]}'.
Applying Lemma 4.4 to A,, we get
A4-fll, < CilzllI£1l,, (5.11)

where C is independent of z € J. Combining (5.11) with Theorem 3.2, we see
that
II(—A+1”Z2)_1AZf|I—s < C2||f||s’ (512)

where Cj is independent of z € J. It is easy to see that there exists a constant
C3 > 0 such that

8@ <o er (.13

for all z € J. Using (5.13), we have

||BZf“—s S CBHf”s (514)
for all z € J. It follows from Theorem 3.2 that

l2(=A+1-=2)7 I, < Callfll,, (515)

where (Y4 is independent of z € J. Combining (5.15), (5.14) and (5.12), we get
the desired conclusion.

6 Outline of the proof of Theorem 2.4

We use the following two lemmas.
Lemma 6.1. Define
Yo = {felS®/ Ffe [CF®R)*}. (6.1)

Then Xpis dense in Ly s for any s e R .
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Lemma 6.2. For z € C, put

~

Lo(§) +z.
(€)° - 22

Then for any K > 1 and any multi-index o there exists a constant Ck, > 0 such

that
0

&
for all £ and z satisfying (€) < K and |z| > 2K.

R(&z) = (6.2)

)" R(§2)| < Ckall2l (6.3)

Outline of the proof of Theorem 2.4.
In view of Theorem 2.2, it is sufficient to show that

lim RO:}:(/\)f =0 in £27_S (64)

|A|—o0
for any f € Xp. Let f € Xy. Choose K > 1so that
supp[Ff] C {£€R’[(€) < K }. (6.5)
Then we see that for A € Rwith |A\| > 2K
Rox(N)f = FHR(ENIFS, (6.6)

and that Ro+(\)f € [S(R?)]*. Moreover, for any non-negative integer ¢, there
exists a constant Cp > 0 such that

[Rox(A)fle.s < Cef|A| (6.7)

for any A € R with |A| > 2K, where |- |5 are the semi-norms in [S(R?)]* in-
duced naturally from S(R?). Then (6.7) implies (6.4). This completes the proof.

References

[1] S. Agmon, Spectral properties of Schrédinger operators and scattering theory,
Ann. Scoula Norm. Sup. Pisa (4)2 (1975), 151-218.

[2] T. Ikebe and Y. Saitd, Limiting absorption method and absolute continuity
for the Schrédinger operators, J. Math. Kyoto Univ. 7 (1972), 513-542.

[3] T.Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag,
1976.

[4] Y. Saitd, The principle of limiting absorption for second-order differential
operators with operator-valued coefficients, Publ. Res. Inst. Math. Sci. Kyoto
Univ. 7 (1972), 581-619.



54 Chris Pladdy, Yoshimi Saito and Tomio Umeda

5 . daito, e principle of limiting absorption for the non-selfadjoint Schro-

Y. Saito, The principle of limiti b ion for th Ifadjoint Schré
dinger operator in RY (N # 2), Publ. Res. Inst. Math. Sci. Kyoto Univ. 9
(1974), 397-428.

[6] Y. Saitd, The principle of limiting absorption for the non-selfadjoint Schro-
dinger operator in R2, Osaka J. Math. 11 (1974), 295-306.

[7] O. Yamada, On the principle of limiting absorption for the Dirac operators,
Publ. Res. Inst. Math. Sci. Kyoto Univ. 8 (1972/73), 557-577.

[8] O. Yamada, private communication, 1992.

Chris Pladdy, Yoshimi Saito, Department of Mathematics, University of Alabama at
Birmingham, Birmingham, Alabama 35294, USA

Tomio Umeda, Department of Mathematics, Himeji Institute of Technology, Himeji 671—
22, Japan



Operator Theory:
Advances and Applications, Vol. 70
(© Birkhauser Verlag Basel

Discrete spectrum of the perturbed Dirac operator

M. Sh. Birman and A. Laptev

1. Let v = (71, 72,73) and 4o be (4 x 4) Dirac matrices; let 0o be the unit matrix.
The Dirac matrices satisfy the equations

Yive + Yy = 26800, 4,k=0,1,2,3.
Let us consider the “free” Dirac operator in Ly(R3; C*)
Do=7v-D+vy, D=-iV,
and its pertubation by an operator of multiplication by the electric potential V(x)
D(a)=Dy—aVoo, a>0,

Ve LiyR?, V(z)>0. (1)

The spectrum of the operator Dy is continuous and covers the complement of the
interval (gap) (—1,1). The continuous spectrum of the operator D(a) coincides
with the continuous spectrum of Dy. Besides, the operator D(«) has discrete spec-
trum in the gap. The eigenvalues of D(a) are monotonically moving to the left,
when « is increasing.

For a fixed A, |A| < 1, we denote by N(a, A) the number of eigenvalues of the
operator D(t) passing the point A when the coupling constant ¢ is increasing from
0 to the value t = a. We study the asymptotic behaviour of N(«, A) when a — 0.
In the case A = +1 we need some additional assumptions on V. In particular,
these assumptions guarantee N(a, 1) to be finite for all & > 0.

The starting point of our paper is the following result of [3].

Theorem 1 ([3]) Let us assume that, as well as (1), we have
V € L3(R?). (2)

Then the following asymptotic formula holds*

o000 371'2

1
lim o 3N(a,+1) = — / V3 dz. (3)

IThe coefficient in [3] is incorrect and this mistake is repeated in [5].
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In this paper we claim the following statements in addition to the result of
Klaus.

a) The asymptotic formula (3) holds for N(a, A), |A| < 1, whenever we only have
condition (1).

b) The asymptotic formula (3) survives under some weaker (compare with (2))
additional restrictions on V.

c¢) There are potentials satisfying (1), such that N(«,1) has an asymptotics of the
order o?, g > 3.

d) There are potentials, satisfying (1), such that N(q, 1) ~ ca®, but the coefficient

¢ > J, where

1 3

2. Let us clarify the previous statements. We begin with the necessary notations.
Before stating the precise results we notice the following: let us consider the (com-
pact) operator

XN =W(Do—A)"'W, W=V"2 |N<L (4)

Let ny(.,X(X)) be the counting function of the positive spectrum of the operator
(4). We use the standard relation

N(a,A) =ni(s,X(A)), as=1, |[A\<L
The operator (4) decomposes (see [K]) into the sum

XN =YW +20), N<L,

YA =Wy -D(=A+o)™HYW, o=1-)2 (5)
Z(A) =Wy + doo)(=A+ol)7'W, o=1-)\% (6)
In particular, for A = +1
Y(x1) = W(y- DID|*)W, (7)
Z(£1) = W (70 + 00)|D|*W. (8)

The operators (5), (6) are pseudodifferential operators of order (—1) and (—2)
respectively. The symbols of the operators (7), (8) are homogeneous. Besides,
+Z(£1) > 0.

The general results of the paper [1], about the asymptotics for the spectrum
of pseudodifferential operators of negative order, imply that under condition (1)
the following (quasiclassical) formula holds

lim Sni(s,Y(N)=J, |N<L
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The following study is reduced to the analysis of the contribution of the oper-
ator Z(A) into the asymptotic formula of the spectrum of the operator X(A).
If A = +1 then there are different cases depending on some additional (see (1))
restrictions on V.

In what follows we denote by Lp7q(Rd), 0 <p< 0,0 < q< oo the functional
Lorentz classes (see for example [6]). Recall that L, , = L,. By ® we denote the
Fourier operator.

3. We begin with the case of dominating contribution of the operator Y (\)
Theorem 2. Let the condition (1) be fulfilled. Then

lim a®N(a,A\) =J, |\ <1

a—00

Theorem 3. Let us assume that together with (1) we have
V € Ly o 5(R%). (9)

Then the asymptotic formula (8) holds.

The condition (9) obviously is less restrictive then (2). Futhermore, let ¢ €
L3/9,00(R?), ¢(x) > 0; in particular we can take @(z) = |x|"2. Then the asymp-
totic formula (3) holds if, together with (1), the following condition is fulfilled for

2
some ¢

/ngo%—q dz < 00, 3<29<6. (10)

4. Let us now consider the case when the second term dominates in the sum
X(£1) =Y (£1) + Z(£1). (11)
Let us introduce the Schrédinger operator with the potential V
H=-A—-aV, a>0, (12)

and denote by Ny (a) the number of the negative eigenvalues of the operator H .
The asymptotic behaviour of Np(a) was studied in detail in [2].

Theorem 4. Let the condition (1) be satisfied and Np(o) = O(a?), q > 3.

Then
lim supa~?N(a,1) = 29! lim supa~Ny(a),
a—00

a—o0
lim infa™IN(a,1) = 27" lim infa INg(a,0), (13)
lim a”?N(a,—1) =0.
a—>0Q

2Regarding conditions of the type (10) see [2]. It follows from the estimates obtained there
that conditions (10) imply n4 (s, Z(%£1)) = o(s~%), s — 0. However, it is possible to show that
any of conditions (10) follows (9). This was varified by T.WeidLl.
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We introduce more special conditions providing the asymptotic formula of
the type

N(a,1) ~cal, a—o00, q>3. (14)
Let us consider the potential
_ [l (nf2)77e(0), 2| > 2,
Ve = {1 o] <2, )

where § = z/|z|, 7>0 and ¥ € L,(S?), gr =1, 2¢> 3.

The asymptotics of Ny(c) for the operator (12) with the potential V =V,
was obtained in [4] (the case ¥ = 1 earlier was obtained in [2]). On the basis
of this result and Theorem 4 we can establish (14) for V = V,. Indeed, let us
consider in Ly (S?) the operator with a parameter s > 0

~Ag — s~TE(H), (16)

where Ay is the Laplace operator on the unit sphere. Let {l/l(T)

of the eigenvalues of the operator (16) and
I e 1)1/ ?
MT_WXI:/O () +5) " ds

Theorem 5. Let V € L3 1o and

(s)} be the sequence

V=V:(1+0(1)), l|a|— oo, (17)

where V. is the potential (15), 71 = q > 3. Then (13) is fulfilled and the asymp-
totic formula (14) holds with ¢ = 2971 M.

5. The most interesting case is
Ng(a) =0(a®), a— oo (18)

Under condition (18) both terms on the right hand side of (11) give the same con-
tribution o? into the asymptotic formula for N (e, 1). For a sufficiently large class
of potentials we succeed in proving that these contributions lead to the summa-
tion of the respective asymptotic coefficients. This is caused by the fact that the
main contribution of the operator Y(+1) into the spectrum under the condition
(1) is given by large momenta, but the contribution of the operator Z(+1) (for
V' considered below) is given by small momenta. Let us impose a supplementary

condition on V; it is convenient to express this condition in terms of the Fourier
transform W = ®@W, W = V1/2

/|€|> (W ()2 d¢ < 00, €>0. (3.12)
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Theorem 6. Let conditions (1), (18) and (19) (for some & > 0) be fulfilled. Then

lim supa>N(a,1) = J + 16 lim supa >Ng(a),

lim infa3N(a,1) = J 416 lim inf o 3Ny(a), (20)
a—00 a—0o0
lim a3N(a,~1) = J.

From Theorem 6 it is not difficult to deduce the following analogy of Theorem 5.
Theorem 7. Let V € Lo and (17) be fulfilled with 7 = 1/3. Then (20) is
satisfied and the following asymptotic formula holds

lim o 3N(a,1) = J + 16M 3.

a—00
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The Spectrum of Schrodinger Operators
in L,(RY) and in Cy(RY) *

Rainer Hempel and Jiirgen Voigt

Introduction

The aim of this paper is to present results on the independence of the spectrum
of Schrodinger operators in different spaces. We treat Schrédinger operators of a
very general kind, namely —%A perturbed by certain measures .

In Section 1 we recall what measures can be used and we review results stating
the p-independence of the spectrum of the realizations of —%A + p in L,(RY),
I1<p< oo

In Section 2 we show that the realizations of —%—A + 1 in spaces of continu-
ous functions, e.g., the bounded uniformly continuous functions or the continuous
functions vanishing at infinity, again have the same spectrum, for suitable y. In
fact, this is derived in a much more general context, utilizing the semigroup dual
of a Banach space with respect to a strongly continuous semigroup.

In Section 3 it is shown thal Shnol’s method of constructing singular se-
quences can also be employed in a proof of the inclusions o(Hzv) C 0(H, v) and
o(Hsv) C o(Hg,,v), for suitable potentials V. This establishes the connection

between the spectrum in L, and Cy and the existence of polynomially bounded
generalized eigenfunctions.

1. Review of L,-results.

In order to state the results we have to recall some notations. Let

Moy = {p: B— [0,00]; pu o-additive, u(B) =0
for all sets B € B with capacity zero},
where B denotes the o-algebra of Borel subsets of R:i.
For the definition of the extended Kato class Sxg C My of measures and of

the constant c(y) defined for y1 € Sk we refer to [StV]. We recall that for py € My,
p_ € Sk with ¢(p_) < 1 a closed form in Lo(R%) is defined by

(h—p_ + py)u,v] = %/Vu-%dm—/u%?d,u_+/u~?du+,

*Presented at the meeting by J. Voigt
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with domain
Dt~ -+ 1s) = {u € WHRY: [ P ds < oo}

(u” denoting a quasi-continuous version of u). The closure of D(h — u_ + p4)
in Ly(RY) is of the form Ly(Y), for a suitable set Y € B. The operator H, =
H, _,_ is the self-adjoint operator in Ly(Y') associated with h —p_ + py. It is
shown in [StV; Corollary 4.2 that the semi-group (e‘tH”; t> O) on Ly(Y) acts
also as a strongly continuous semigroup Uy, ,(.) on L,(Y'), for all p € [1,00); the
generators of these semigroups will be denoted by —H,, ,. Also, Hy ,, = Hp,
The corresponding unperturbed operators (for u = 0) will be denoted by Hp.

1.1. Theorem. With the notations introduced so far, we have
o(Hp,u) = 0(Hz,p)

for all p € [1,00].
We are going to give an outline of the proof of this result. In order to do so we
first collect several facts which are needed in the proof.

1.2. Remark. (a) Let ¢ > 0. There exist constants C, w such that
6 etHow =62, < 01Tt

forallt >0, 1<p<q< oo, €€ R with [¢] < ¢, where v = %(% - %) (Here
|| - l|p.q) denotes the norm in L(Ly, Lg).)

The proof of this fact consists in two steps. In both of these steps it is essential
that there exists ¢ > 1 such that ap is also in the class considered above (in
particular, c(ap) < 1).

(i) One shows the inequality for £ = 0, using Stein interpolation; cf. [StV;
Theorem 5.1 (b)].

(ii} From the fact that the desired statement is true for the unperturbed heat
semigroup (u = 0) one concludes it for the perturbed semigroup, again using Stein
interpolation; cf. [ScV; Remark 3.4 (b), (c)].

(b) Let € > 0,w be as in (a). Then there exists C' such that

- 1 —tx 1 1
||6€ (HM_’U.)) le 3 “p,qSC(m‘F_w_w)

for all w € R with w < —w, p < q with v = %(11—) - %) < 1, |¢| < e. Further,
(=00, —w) C p(Hp,,) for all p € [1,00], and

(Hpp—w) ™' = (Hy—w)™!

on Ly(Y)N Ly(Y), for w < —w.
The proof consists in integrating the inequality in (a) after multiplying by
e**; cf. [HV; Proposition 3.7, [ScV; Remark 3.4 (d)].
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1.3. Lemma. ([ScV; Corollary 3.3]) Let 1 < p < g < 00, 0 < ¢ < €". Then
there exists C > 0 such that for each linear operator

A Loo’c(Rd) - Loo,loc(Rd)
(Loo,c denoting Lo -functions with compact support) satisfying
lefTAe 7|, , <1 forall £€€R? with ¢ <

one has

Heg'IAe_g'zH <C
T

forp<r<g, [§<¢€.
The inclusion p(Hp, ,) C p(Ha,,) in Theorem 1.1 is obtained as in [HV; section
2], using Remark 1.2 (a) for £ = 0.

Sketch of the proof of the inclusion p(H; ) C p(Hp ) (compare [ScV]).

It is sufficient to prove the assertion for all p € [1,2]. According to Remark
1.2 (b) we find w (< —w), C such that

”eg.m(Hu - w)“le_g'z”p,q <C
whenever 1 <p<gq<2, %(5—%)§%, €] < 1. B
Let K C p(Ha,,) be compact, Io( connected, K = Io(, w EIO{ . Then there
exist € € (0,1] and a constant C’ such that K C p(ef®H, ,e~5®) for |¢]| < ¢, and

€52 (Hay = 2) 7™ = (" Haue™ —2)7Y|
< O (¢ <e z€K).

This follows from perturbation theory and analytic continuation. (Note that the
equality
-1
e T(Hyy —2) e 47 = (e57Hy e 8% — 2)
on Ly(Y) N Ly (R%), whose validity for z = w is obtained by Laplace transform,
has to be extended to K by analytic continuation. The absence of this argument
in [HV] was pointed out to the authors by W. Arendt.)
Using the resolvent equation

(Hapu —2)7t = (I + (2 ~ w)(Hz,u — 2) ™) (Hap — w) ™
together with Lemma 1.3 one concludes the existence of C” such that
||e£'z(H2,u - Z)_le“g'sz,q <c”

forz€ K, 1<p<2with (3 - 1)< 3, [/ <5
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Iterating this argument one obtains the last inequality for all p € [1,2] and
small |¢|. Using this estimate for £ = 0 and the fact that

(Hy, —w)™' = (Hp, —w)™" onL,N Ly(Y)

one obtains K C p(Hp,,.). ||

1.4. Remarks. (a) A slightly different situation has been treated in [ScV]. In
this paper the perturbation p is the sum of a form small distributional part pg
(cf. [HS]) and p; € Mo. This implies that the semigroup (e~t«; t > 0) acts as a
strongly continuous semigroup on L,(Y") for pg < p < pj where pg € [1,2) depends
on the form bound of po (cf. [BS]). It is then shown that o(H, ) = o(H, ) for
all p € (po, pp)-

(b) The p-independence of the Ly-spectrum of elliptic operators on certain
Riemannian manifolds was shown in [Stu]. In a similar context the p-independence
for 1 < p < oo was shown in [Sh; Proposition 2.6].

(c) The p-independence of spectra has been shown in [Al] for perturbations
of certain translation invariant operators.

(d) If U(:) is a strongly continuous semigroup on Ly(f2) (where (! C R)
satisfying a Gaussian estimate, then it was shown in [Ar| that the spectra of the
generators of the corresponding semigroups on L,(Q2) are p-independent.

2. The spectrum of —%A + 1 in spaces of continuous functions

We want to show that under suitable hypotheses the spectrum of —%A + pin
Co(RY) = {f € C(R?); f(z) — 0 (Jz| = o0)}

(or in other spaces of bounded continuous functions) is the same as the L,-
spectrum.

It turns out that the main point which is specific about this situation is
the question whether (e *Hx; t > 0) acts as a strongly continuous semigroup on
Co(R%). The fact that then coincidence of spectra can be concluded will follow
from very general considerations presented next.

Let X be a Banach space, (U(t);t > 0) a strongly continuous semigroup on
X, and T its generator. The semigroup dual of X is then defined by

X®:={z* e X* T(t)*s* — 2" (t = 0)};

see, e.g., [HP; Chap. XIV], [BB; Sec. 1.4] (where X© is denoted by X)), [Ne]. (We
use the adjoint space X™* of continuous conjugate linear functionals on X in order
to stay consistent with duality in L.)

2.1. Theorem. Let Y C X© be a closed subspace which is invariant under
U*(t) (t>0). Denote by Uy (-) the part of the semigroup U*(-) in Y, and by Ty
the generator of Uy (-).



The Spectrum of Schrédinger Operators 67

(a) Then Ty is the part of T* inY,

D(Ty) = {z*e€YNnD(T*); T*z* €Y},
Ty = T*|D(Ty).

(b) po(T) C poo(Ty), and (X — Ty)™! is the part of (A —T)™1)* in Y, for
A € poo(T). (Here pso(T) denotes the component of p(T) containing a right half
plane; and similarly for Ty .)

(c) If additionally Y is equi-norming for X, i.e., the norm
lzlly == sup{] <z%,z>|; 2" €Y, |lz*| <1} (z€X)

is equivalent to the original norm in X, then

poo(T) = poo(Ty ).

Proof. (a) This is known for Y = X©, and the proof carries over to our case (cf.
[BB; p. 51], [Ne; Theorem 1.3.3]).

(b) For A € C with ReA larger than the type of U(-), the resolvents of T
and Ty are given by the Laplace transform of U(-) and Uy (-), respectively, and
therefore

<z*,A-D)7lz> = <A-Ty) 'z*z>
for all z € X, z* € Y. Therefore (A — Ty)~! is the part of (A —T)~!)* in Y.

This implies that (A —T)"!)* maps Y to Y for all A € poo(T’). By uniqueness we
obtain the claimed assertions.

(¢) The equivalence of || -|| and || - ||, implies that there exists a constant ¢
such that
A=) <el(A=Ty)7H| forall € poo(T).
This implies 8(poo(T)) C o(Ty ), and therefore poo (T) = poo (Ty). |}

2.2. Remark. The assymptions made in the previous theorem are satisfied, in
particular, for Y = X©. For this case, however, one has p(T®) = p(T); cf. [Ne;
Theorem 1.4.2].

2.3. Corollary. Assume that p satisfies the hypotheses of Theorem 1.1. Let
Y be a closed subspace of Lo, which is equi-norming for Ly, invariant under
(e7tH1w)* (t > 0) and such that

Ie™ )" f — flloo = 0 (¢ —0)

for all f € Y. Denote by —Hy,, the generator of the strongly continuous semigroup
on'Y induced by ((e7t1.x)*: ¢t > 0). Then

o(Hy,u) = o(Hz,p).
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2.4. Remarks. (a) The semigroup dual of L;(R?) for the unperturbed Schré-
dinger semigroup (e *H1; ¢ > 0) is

Cypu(RY) = {f € C(R?); f bounded and uniformly continuous}.

The generator is then the part of —H in Cp y,
1
D(He,,) ={f € Cou(RY); Hg, . f = —58f € Chu}-

For V € Cb’u(Rd), the multiplication operator by V is a bounded operator in
Ch«(R?), and therefore Theorem 2.3 is applicable to H + V with Y = C}, , (R%).

(b) The space Cy(R?) is invariant under the unperturbed Schrodinger semi-
group, and

D(He,) = {f € Co(RY; He,f = —3A7 € Co).

For bounded V' € C(R%) the multiplication by V is a bounded operator on Co(R%).
Therefore Theorem 2.3 is applicable to H + V with Y = Co(R).

() For V.=V, —-V_, V4 >0, V_ € K4, Vi € Kgjoc it is shown in [S;
Theorem B.3.1] that e™*#V maps L..-functions to continuous functions, for ¢ > 0.

As a consequence,
Y := L;(RY)®

consists of continuous functions, in this case.

3. An application of Shnol’s method.

In order to establish a connection with the PDE-world, we will now discuss an
alternative proof of the inclusions

O’(prv) D O'(Hgyv), U(HC’O,V) D U(Hg’v). (31)

To this end, we will produce rather explicit “Weyl sequences” in L, and also in
Co which are obtained by applying suitably chosen cut-offs to generalized eigen-
functions associated with the expansion theorem for Ho v ([B], [S], [PStW]); this
requires some mild modifications of Shnol’s method (cf. [Shn], [S; Section C.4], and
[HSt]). Therefore, we learn that properties of the Schrodinger operator in Hilbert
space Lo fully determine the spectra in L, and even in Cp: while estimates for the
resolvent kernel (Ha v —z) ! (z,y) give the inclusion o(H,v) D o(Hz,v), the con-
verse inclusion will now be a consequence of the eigenfunction expansion theorem
for H, v. Related ideas are also discussed in [Sh].

It should be stressed, however, that the approach proposed here requires
more restrictive assumptions on the potential V, as compared with the “duality
and interpolation”-proof described in Section 2. In the following, we will restrict
the discussion to the case V € Lo, (R%) where it is easy to obtain L,-bounds for
the gradient of a generalized eigenfunction.
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We first collect a few facts (where we always assume that V' is bounded):

(1) For 1 < p < 0o, we have ([HV1])
D(Hpv)=D(Hp) ={ue Ly, Au€ Lp}. (3.2)
If, more strongly, V' is bounded and continuous, then (cf. Section 2)

D(Hcmv) = D(HCO) = {u € C(); Au € Co} (33)

(2) From the generalized eigenfunction expansion theorem for Hy v ([B], [S],
[PStW]), we can draw the following conclusion: for any u € o(Ha,y) and any € > 0,
there exists a A € (1 —¢,u+¢€) and a (non-trivial) distributional solution u of the
PDE

—%Au + Vu = Ay, (3.4)

satisfying a polynomial growth bound
Ju(@)] < ex(1+ [2)¥, (3.5)
with some constants ¢; > 0 and K € N. For V bounded, it is also known that «

is (equivalent to) a continuous function (cf., e.g., [9]).

(3) To control the cut-off errors, we need an Ly-bound on Vu, for u satisfying
(3.4), (3.5). Note that there is no L,-analogue of the Ly-gradient bound given in
[S; Lemma C.2.1]. Here we proceed as in [HV1], using an argument of L. Schwartz,
to obtain the following lemma.

3.1. Lemma. Letp € [1,00|, and suppose that 2 C ' are open sets in R® with
the property that dist(Q2,0Q)') > 1. Then there exists a constant C = C(p), which
15 independent of both Q and ', such that

IVl @) < € (Il @) + 180z, @) (3.6)

for all u € Ly(Y) with the property that Au € L,().

Proof. We proceed as in [HV1]: letting T' denote the usual fundamental solution
for —A, and picking some x € C°(R%) with support in the unit ball and x(z) = 1
for |z| < 1/2, we have

Vu = (V(xT)) x Au — V( xu, (3.7)

(where ¢ = (Ax)T + 2Vx - VT € C(RY)), and the required estimate follows
from Young’s inequality ([RS]). Furthermore, it is clear from eq. (3.7) that Vu is
continuous, provided u and Au are continuous functions. |

Now let u be a (continuous) generalized eigenfunction of Hyy and ¢ € O (RY).
Then it follows from Lemma 3.1 and A(pu) = @Au + 2VpVu + (Agp)u that pu
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will belong to the domain of H, v, for 1 < p < co. Similarly, if V' is bounded and
continuous, then pu will belong to the domain of Hg, v.

(4) Central to Shnol’s method is the observation that the growth bound (3.5)
implies that the Lo-norm of u, considered on a suitable sequence of balls, will
not grow too rapidly (cf. [S]). While the exposition given in [S; Section C.4] can
directly be carried over to the L,-case for 1 < p < 00, it has to be modified for
p = oo and, similarly, also for the space Cy. We therefore change the scenario used
in [S] and consider

&, = {x € RY; |z| < 2}, Frn=E+1\én (n € N). (3.8)
We then have the following lemma.

3.2. Lemma. Let1 < p < o0, and let u be as in (3.5). Let a > 2 and set
¢y = ca(p) = aKt%. Then there exists a sequence <nj)jeN C N, n; — oo, such
that

Hulfnj ,sa Hulen,. ”p (j €N). (3.9)

Proof. If the statement of the lemma were not true, there would exist some ng
such that

lulzll, = ez lule,ll, >0 (n2=no), (3.10)
so that
||u]gn||p > ||'U/|]-'"71 Hp >y ||u]gn71 ||p (n > ng). (3.11)
This leads to
lulellp 2 2" lule,, lp (7 = no), (3.12)

in contradiction with the polynomial growth bound of w. Jj
With these preparations, it is now easy to prove the inclusions stated in eq. (3.1).

Proposition 3.3. Let V € Ly (R%). Then o(H,yv) D o(Hsyv), for all p €
[1,00]. If, moreover, V is (bounded and) continuous, then o(He, v) D o(Hz v ).

Proof. We first choose a function ¢ € C°(—2,2) with the property that p(x) =
1, for |z| < 4/3, and p(x) = 0, for |z| > 5/3, and we define

pn(@) =p(27"fz)), zeRZ

Then G, := supp(Vy,) C F,, and dist(G,,0F,) > 1, for n > 2. Furthermore, we
have [|[Vin ||, < 327" and || Ap,||,, < cs272

Now let u € o(Hz,v) be given, and let € > 0. By what was said in point (2),
there exists some A € (u — ¢, + €) and a (non-trivial) generalized eigenfunction
u of Hy y that satisfies (3.4), (3.5). For given p € [1, 00], we will prove that there
exists a sequence (n;) C N so that
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Therefore, Hy, v — A does not have a bounded inverse, whence A € o(Hp, v). Taking
€ — 0 then gives p € o(Hpv).

Applying Lemma 3.2 to u, we find a constant ¢, and a sequence (n;) such that
(3.9) holds. As ¢, u € D(Hpv) and (Hp v — M) (@n,;u) = —(Ven, ) Vu—2(Apy, u,

we have

|(Hp,v = N, u)|,

IA

1V6n, 1 [|Veden, | + 118w, L e,

c5 2™ <”u|fnj ) ,
P

by Lemma 3.1. From V € Lo and 2Au = (V — M\)u we now conclude that

P

IN

+ HAuif"'
P 2

[y = Nony )], < cs2™

u|.7.—nv II <ep27 M
Tlp

dle,, | <2 flonull,

and the result follows.
The proof in the case of the space Cj is essentially identical with the p = 00
proof and omitted. |}
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On the spectral properties of generalized
Schrodinger operators

J.F.Brasche

Let X be a locally compact separable metric space, m a positive Radon
measure on X such that m(U) > 0 for each open set U C X and H a self-adjoint
operator in L?(X,m) which is uniquely associated to some regular Dirichlet form
£ in the sense that

&(f,9)=(Hf,9) VfeD(H)CDE) VgeD(E).

We refer to [1] and [2] for the notions from the theory of Dirichlet forms.
We are mainly interested in the following

Example 1: X = R%, dm = dz =Lebesgue measure, H = —A. b
More generally we are interested in the following

Example 2: Let ¢ € LfOC(Rd). Suppose that for each compact set K C R? there
exists a constant cx > 0 such that ¢ > cx on K. Let

Eo(f,g) = / VF-Vg d2de Vg € D(E,) = C°(RY).

&, is closable in L2(R?, ¢%dx) (cf. [3]) and its closure &, is a regular Dirichlet form
in L?(R%, ¢*dz). Thus we may put X = R?, dm = ¢*dz and H = Hy where H,
is the self-adjoint operator uniquely associated with &y. b

Let py and g be positive Radon measures on X charging no set with £-
capacity zero. We put p := py — p— and |p| := p4 + p—. We suppose that there
exist a constant a < 1 and a finite constant b such that

/ FRdlul < a&y(f.f) VfeDE). (1)

Here f denotes any quasi-continuous representative of f and & := £ +b (., ). Let

(E+1)(fr9) =E(frg) + / Fadu Vf.g€D(E +p) = D(E).
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By the inequality (1) and the KLMN-Theorem, £ + y is lower semi-bounded and
closed in L?(X,m). We shall denote by H + p the self-adjoint operator uniquely
associated with £ + p.

Example 1’: If H = —A and the measure p is supported on some closed set
I’ then the operator —A + p describes the interaction of a quantum mechanical
particle with a potential which is concentrated on the set I'. i

Example 2’: In the situation of the Example 2 consider the special case that
¢ = Gq xv for some a > 0 and some positive Radon measure v supported by some
closed set I". Here Go(x — y) = (—A + a) " !(z,y). Suppose that the measure y is
also supported on I'. Then the operator

¢(Hy +N)% -a

in L?(R%, dx) describes the interaction of a quantum mechanical particle with a
potential concentrated on I' (cf. [4]). It is noteworthy that, in contradistinction to
the Example 1, the classical capacity of the set I' may be equal to zero. f

Let v,p € {m,|u|}, @ > 0 and |m| := m. Let h € L*(X,v). By (1) and
Schwarz’ inequality, the linear functional g — [ hgdv is bounded on the Hilbert
space (D(£),&,). Thus there exists a unique U, (hv) € D(E) such that

£ulUall).g) = [ T Vg € D(E).
We define the mapping R, : L*(X,v) — L*(X, p) by

Rypoh = Us(hv) p-ae. Yhe L*(X,v).

By (1), there exist an @ < 1 and an ap > 0 such that for all @ > ¢ and all
feDE)

/ IfPdp < a&u(f,f) and / If2dv < a&.(f, ).

Let a > ag and S, := {f € D() : E4(f, f) = 1}. For each h € L*(X,v) we have

[ U (hv)[* dp
aSuPseg, |€a(Ua(hV)af~)|2
a[|h?dv-supseg, [If]I*dv

ay(Uy(hv), Uy(hv))

asupseg, | [ hf dvf?
a? [ |h|? dv.

IN
IA A
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Thus the operator R, ,, is bounded with operator norm less than one.
Theorem 1: There exists an ag such that for all a > ag the number —« is in the
resolvent set of the operator H + p and we have
(H+p+a) ' —(H+a)t
= ~Riymall + YRiujulal " Rmula-

Here the function v is chosen such that v|p| = p.

Scetch of the proof: Let f € L*(X,m). Let a > 0 be such that [|Rj,uall < 1.
We put h := [I + YR, juja] " Y Rmjujaf- It suffices to show that

€+ wal(H+a) f = Riymah,9) = (f,9) Vg€ D(E).

A short computation gives that the expression on the left hand side equals
(f.9) + /(H + o)~ fgdp - /ﬁédlul
- / U (hlil) g

We have

— —

(H+a) 1 f =Us(fm) = Ryjpiaf  |ul-ace

and, since £ is regular, for each g € Cy(X) there exists a sequence {g,} in
D(E) N Cy(X) converging to g uniformly such that supp(gn) C supp(g) for each
n € N. Thus we have only to show that

’Yleulaf ~h— 7Ua(h|,u“|) =0 |ﬂ'|_a'e'
This equality follows from a simple computation. a

A straightforward computation gives the following lemma which is useful in
order to derive Birman—Schwinger bounds for the number of negative eigenvalues
of the operator H + p.

Lemma: Vo > 0 : dimker(H + p + «) = dimker[I +YR|,jjujal-
In the special case that H = —A we have that

Uy(hv) = Gy x (hv)  p-ace.

(cf.[5]). By this equation and the above theorem one has an explicit representation
of the resolvent of the operator —A + p. In [5] this explicit representation has
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been the starting point for a detailed investigation of the spectral properties of
the operator —A + u. In particular, in [5] there have been derived the following
results:

Theorem 2: If |u|(R%) < co then gess(—A + p) = [0,00).

Scetch of the proof: For sufficiently large o the operators Rj,me and [I +
YR ula]_l are bounded and the Schur test gives that R, is compact. Thus
by Weyl's essential spectrum theorem and Theorem 1 the operator —A + u has
the same essential spectrum as the operator —A. m|

Theorem 3: If the measure u has compact support and belongs to the Kato class
then ggc(—A + p) = [0,00), osc(—A + p) = 0 and the set of positive eigenvalues
of —A + p is discrete.

Scetch of the proof: Let v,p € {m, |u|} and (v, p) # (m,m). Let C* be the set
of all complex numbers with positive real part. First one shows that the mapping
z— R,,(2) == Ryp—, from (—00,0) to the Banach space of bounded everywhere
defined operators from L?(X,v) to L?(X, p) has an analytic continuation to the
set D := ({z € C : Re(z) < 0,Im(z) > 0} UC™)\ {0}, that for each z of the
extended definition domain D the operator R, ,(z) is compact and that for each 2
in D with Im(z) > 0 the following equation holds:

(~A+p—2)7 = (=A = 2)7" = —Rium (D) + YR)uju(2)] YR ujm (2)-

By the analytic Fredholm theorem and Theorem 1, it follows that the mapping

— (=A 4 p — 2)7! from the set {z € C : Im(z) > 0} to the Banach space of
everywhere defined bounded operators on L?(R%, dz) has an analytic continuation
to D\ S for some discrete set S. By the limiting absorption principle, the theorem
is proved. ]

Theorem 4: Let 1 < g < 2. There exist the following bounds for the number
(counting multiplicities) N(—«) of eigenvalues of the operator —A + p below —a :

N(-a) < / v_(x) d{Rp / Galz -y <y>m(dy>} @
zeltd

Scetch of the proof: One uses the Birman—Schwinger method and the lemma in
order to show that N(—a) < ||R,jjulallb for each 1 < p < oc. Here || - ||, denotes
the norm in the trace ideal of order p (with the convention that ||Al|, = oo if the
operator A does not belong to this ideal). Then estimates on the || - ||,—norm of an
integral operator due to Solom’jak (cf. [6]) give the above inequalities. O

Of course one is mainly interested in the number (counting multiplicities)
N(0) of negative eigenvalues of the operator —A + . An upper bound for N(0)
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can be obtained by taking the limit as « tends to zero on the right hand side of
the inequality (2). This method, however, gives the trivial upper bound +oo in the
cases d = 1 and d = 2 since then G, () — o0, as a — 0 for all z € R¥. Fortunately
the method can be modified in the same way as in [7], [8], [9] because the singularity
does not depend effectively on the spectral parameter and corresponds therefore
to just one bound state which can be taken into account separately.

Theorem 5: Suppose that [~y_dm > 0. Then we have the following bounds for
the number N(0) of negative eigenvalues of —A + p :
d=1:
1 -
N(0) < 14 207 = vh- (@ ()m(dy)m(dz)
[~ (@ml{dz)

NO) <1 +{ / 7_<x>m<dx>}_2 [ [[] [-en-wn-en-w

In|z — y|In ("" —ullz= “') m(dz)m(dy)m(dz)m(du).

|z = 2| |y — ul
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A Fermi-type rule for contact
embedded-eigenvalue perturbations

J-P. Antoine, P. Exner, P.Seba and J.Shabani

Abstract

A perturbation theory of embedded eigenvalues is constructed for a class
of models with a contact interaction which are inspired by heavy-quarkonia
mesonic decays.

1 Introduction

Contact—type interactions have been studied intensively in the last decade — see
[2, 3, 14, 15] and the papers [5, 7-10, 16-18]; a more complete bibliography can
be found in a journal version of this paper [4]. Recently they have been shown to
yield solvable models of some decay and resonance-scattering processes [12, 13];
the importance of this observation stems from the fact that there are only a few
situations where the embedded-eigenvalue perturbation problem can be solved —
see [11], [21, Sec.XIL.6] and references therein.

The aim of this talk is to present another model of this type; in distinction
to [13] the embedded eigenvalues will correspond here to a potential interaction
rather than to boundary conditions. On the other hand, comparing to [12], the
perturbation—-theory parameter will be now contained in the boundary condition
as the strength of the contact interaction. This allows us to prove a Fermi-type
rule for the considered class of contact-interaction decays.

To link the mathematical problem with a physical situation, we shall con-
sider excited states of heavy quarkonia decaying into mesons. In reality, this is
a complicated process governed by the QCD Lagrangian, however, it is known
that both the quark-antiquark pair and the mesons resulting from the decay are
non-relativistic with a reasonable degree of accuracy [6, 19], so we can model this
unstable system coupling the two dynamics directly. Moreover, we know that the
transition between the quark and meson states can occur only at small distances.
Hence it is reasonable to employ a contact-type interaction: we shall suppose that
the quarks can annihilate when they hit each other giving rise to a meson pair at
a distance R (this parameter plays essentially no role in the model).
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2 Description of the model

For simplicity, we remove the centre-of—mass motion in both the quark and meson
channels. Moreover, we shall assume that the interaction is rotationally invariant so
one can perform the partial-wave decomposition. Following the standard contact—
interaction ideology, we construct then the model Hamiltonian as

H=@w ' 'H9WeI, (1)
=0
where I, is the unit operator on L%(S;), W := Wi @ Wy with (W;¢;)(r) =
rY(r), and furthermore, H (©) denotes a self-adjoint extension of the operator
Hée) = Hé? ® Hég on L?(R;,00) ® L*(Rz,00) defined by

¢ 1 d2 0e+1)
Hyj = = g+ Val1s) & =g+ 2my —ma)e? 2)

with D(H(g?-) = C§°(R;,00) . In other words, H(gi) are the partial-wave Hamil-
tonians in the quark and meson channels, j = 1,2, respectively, restricted to
function supported out of the interaction region; a possible difference of the rest
energies has been added to the quark potential.

We set in the following Ry = 0 and Ry := R > 0. Furthermore, we have
to specify requirements on the potentials. For simplicity, we suppose that (apart
from the interaction with the quark channel) the mesons are free, i.e.,

Vo =0 3)

(this is not quite realistic in case of the decay to charged mesons but the model
will be easier to solve with this assumption). On the other hand, for the quark
potential we adopt the rather weak assumption that

V1 islocally integrable and li%1+V1(r) exists and is finite . 4)

With the standard picture of a quarkonium state in mind, we shall also suppose
that the quarks are confined,
lim Vi(r) = oo, (5)

r—00

even if the model works without this hypothesis as long as the first—channel free
Hamiltonian has eigenvalues embedded in the continuous spectrum of the other
channel (in conclusion, we shall mention the case when (4) is modified by adding a
Coulomb potential in the quark channel). To be able to construct the self-adjoint
extensions, one has to know first whether it is possible and how many there are.
Using (21, Thm.X.10] we check easily

2.1 Proposition: Under the assumptions (3)—(5), the deficiency indices of the
operators Hée) are:
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(a) (2,2) if £=0,
(b) (1,1) if £>1 and R=0,

() HY isesaif £>1 and R=0.

Thus the two channels can be coupled in the case (a) only, since otherwise at least

one of the operators Héf]) is e.s.a. This means, in particular, that the decay into
higher partial waves, £ = 1,2,..., is forbidden, hence we shall put ¢ = 0 and drop
the index ¢ in the following.

3 Boundary conditions

The most straightforward way to couple the operators Hp ; is to subject them
to suitable boundary conditions at the points r1 = 0 and ro = R. Using the
standard argument, one can check that the adjoint Hy acts as the same differential

operator as Hy and its domain consists of all f := ( 3;; ) with f;, fi absolutely

continuous, f;' € Lj,, and fi —m;V;f; € L*(R;j,00) — see, e.g., [21, Appendix
to Sec.X.1]; the self-adjoint extension are then obtained by suitable restrictions of

this domain. The most general form of the boundary conditions is

f1(0) = a1 f1(0) + a2 f2(R),  f2(R) = a2 f1(0) + azz f3(R). (6)
Choosing appropriate boundary functionals, we find easily

3.1 Proposition: The conditions (6) specify a self-adjoint extension of Hy ;
iff the coefficients satisfy the relations aj; = a;;, j = 1,2, and mia21 = maaia.

We choose for our model a subclass among the extensions specified by the
proposition above. The diagonal coefficients a;; correspond to a point interaction
in the j-th channel supported by the point r; = R;. There is no physical reason
why such an interaction should be present in the considered system, hence we put
aj; = 0. The channels are coupled through the off-diagonal coefficients, i.e., the
model boundary conditions read

f1(0) = afy(R), fo(R) = T2 f(0), 7

1

where a := a19 is the coupling strength; it is a reasonable choice because in the
non—interacting case, a = 0, we get the Dirichlet boundary condition in both
channels as expected. The extension corresponding to the boundary conditions (7)
will be denoted as H, in the following.
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4 The resolvent

In the standard picture [21, Sec.XIL.6], [11, Chap.3] the leading behaviour of the
unstable states is determined by poles in the analytic continuation of the resolvent,
in fact, the mere existence of decaying modes of the system is usually put into
correspondence with existence of these resonance states. Hence, in order to solve
the model, one has to find the resolvent of the Hamiltonian H, . In view of the
particular form of this operator, this can be done by means of the Krein formula
[1, Sec.106]. Denote by ¢, x the solutions to the equation

(- & 4 Wil + 2l - m)) 1) = 2501 ®)

for z ¢ IR such that ¢(0) =0 and x is L? at infinity; because of the assumptions
(4) and (5) they are unique up to a constant (the facts from the theory of ordinary
differential equations we use here are usually formulated for the case of smooth
coefficients but they hold for locally integrable coefficients as well [20]). They allow
us to express the free quark—channel resolvent

L mansn) . r<s
Gi(r,52) = W(o,x) { x(r; 2)p(s; 2) r>s ©)

where W(&,x) := ¢x’' — x¢’ is the Wronskian of the two solutions. On the other
hand, by the assumption (3) the free meson resolvent can be expressed explicitly
as
L ik(rto2R) _ _iklr—s]|

) _ pik|r—s 10
(e eikirl), (10)
where k£ := ,/mgz is the meson momentum with the cut conventionally chosen
along the positive real axis. Now we have the following result.

Ga(r,s;2) =

4.1 Theorem: Under the stated assumptions, the resolvent of H, is given, for z
outside the two spectra, by the formulae

(Ha—Z)_l = ()—Z + Z )\]k Fk;, ] (]‘1)

7 k=1

R = (%) o= () 1)

and the coefficient functions are

where

—ikma|al? —mypae” FE
A = A = —_——
u@ = e eapas 2 = mDes’
(13)
Male) = B () = O T
T Dl asz) A m1D(x, a; z)
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where m
D(x,a2) = x(0;2) ~ ikla]’ == x/(0;2). (14)
1

Proof: The component functions in (12) solve the equations (Hg; —2)f =0 for
j = 1,2, respectively. Furthermore, x is L? at infinity by definition, and the same
is true for e**" if 2 ¢ IR, as long as k belongs to the upper complex halfplane;
it remains therefore to find the coefficients ;i (z). To this end, we use the fact
that for any g € L®(IR,) ® L%(R, ), the vector f:= (H,—2)"'g has to belong
to D(H,), i.e., its components must satisfy the boundary conditions (7). This
requirement yields a system of four linear equations for the coefficients which is
solved by (13). [

Hence we are able to determine the analytic structure of the resolvent, in particular,
of its projection on the quark—channel discrete spectral subspace which is essential
for determining the decaying—state poles [11, Sec.3.1]. The behaviour of D(x, a;")
plays a decisive role. The first term in this function is zero at the quark bound-
state energies, where the solutions ¢, x become linearly dependent, however, the
corresponding singularities are easily seen to cancel with those of G1(r,s;-) so the
only poles in the analytically continued resolvent come from the lower-halfplane
zeros of (14); they are given by the equation

x(0;2) — ik|a|2—;”7j X (0;2) = 0 (15)

which has to be solved with respect to z.

5 The Fermi rule

The equation (15) can be solved for particular potentials; we refer to [4] for the
examples of square—well, linear and harmonic confinement. The results motivate
the following general claim.

5.1 Theorem: Under the assumptions (3)-(5), the quarkonium decay width is
given for the n-th s—wave state by

m

To(a) = sﬂkn;n—; la?[¥n(0)]> + O(|al®), kn = VmiE,, (16)

provided E, > 0, where E, is the bound-state energy (scaled by the differ-
ence of the rest energies — ¢f. (8)) and ¥, (0) is the value of the corresponding
wavefunction at the origin.

5.2 Remark: Though it is not the matter of our interest here, the present analysis
yields also an expression for perturbation of the quarkonium energies in the case
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where the unperturbed eigenvalues are isolated, E,, < 0. One has

En(a) = By + 4k, ;Z— [ (0)2 + O(la}*) (17)

where k, := /—my E, ; the fourth-order term can be computed easily from the
formula (18) below.

Proof of Theorem 5.1: For simplicity, we put m; = 1 and define g := mylal? ;
the extension to the general case is straightforward. Equation (15) takes then the
form

D(k, g) = X(O7 kZ) - ingr(O, k2) =0,

where ., xx2z etc.denote the partial derivatives with respect to the indicated
variable. One has D(k,,0) =0 for n=0,1,..., so the implicit function theorem
may be applied provided Dg(ky,0) = 2k, x42(0,k2) # 0. It yields
dk ixr(0, k2
&% (kn, 0) = _X(__Q)_
2Xk2 (0, kn)

dg
The higher derivatives can be computed in the same way; we restrict ourselves to
the second one obtaining

ig xr(0,k7)

ka9) = kn + 5 xx2(0, k2)
(18)
2 2
9|3 ([ x ky, . 3
2 |74kn (sz) + 2X22 (2XrXk2 Xri? +Xk2k2):| (0,k2) + O(g )

Hence to prove the formulae (16) and (17), one has to check that

_ Xr(Oa k%)2
B fooo X(Sa krzz)2ds ’

where f, is the normalized reduced wavefunction, i.e., to establish the identity

.dk 2 2
2i @(kn,o) = 4r|Yn (0)|° = (fr(0))

X2 (0,k2) = ! ; /0 (5. k2 ds (19)

- xr(0,k2
To do that one has realize that the function x(-,k"?) satisfies the equation
— "+ (V=K = (K* - K))f. (20)

In order to solve this equation, we interpret its lhs as (Hy — k2)f, where Hy is
quark Hamiltonian of the equation (8), but with the Neumann boundary condition
at the origin. Introducing the corresponding regular solution ¢ which verifies the
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boundary conditions ¢,(0,4%) = 0 and $(0,k%) = 1, we may solve the equation
(20) immediately as

X(r, k%) = c(K?)x(r, k) + ca(k?)(r, k%) + (K* — k?)g(r, k%),  (21)
with

g(r, k%) == ((Hy = k*)71x)(r, %)
(22)
x(r, k?) / olr, k2) [
s, K )x (s, k) ds + —Z—5< / s,k?)%ds
= 0.1 é( )ds TR | x(s, k%)
Since the rhs of (21) is L? at infinity by definition, it suffices to check that

g(-,k?) is square integrable; indeed, this implies cy(k”?) = 0 for any k' and
limg . c1(k") =1 so that

Xia (1 k) = ey (K*)x(r,k?) = g(r, k?). (23)

However, at the points k = k2 the solutions y and ¢ are linearly dependent
and equal up to a multiplicative factor to the bound-state (reduced) wavefunction
which satisfies, of course, the Dirichlet boundary condition at the origin. Hence
(23) gives xx2(0,k2) = —g(0,k2) , which is nothing but the identity (19).

Finally, since x(-, k%) belongs to L?(0,00) for any k, the function g(-, k?)
is square integrable provided k? does not belong to the spectrum of Hy . This is
true, of course, since the free quark Hamiltonian Hp corresponds to the Dirichlet
condition, and therefore o(Hp) No(Hy) = @ (this is a reason why we have
considered the operator Hy ). Notice also that the rhs of (19) is non-zero so
xx2(0,k2) # 0 ; this justifies the use of the implicit—function theorem. [}

5.3 Remark: In fact the regularity assumption in (4) is not very realistic; since
quarks are charged particles, they should have in addition to the confining potential
Vi also an attractive Coulomb potential Vo (r) = —yr™1, v > 0 [19]. Fortunately,
the above analysis can be easily modified to cover this case. It suffices to replace
in the boundary conditions (7) the value f;(0) which becomes now singular by

f{,reg(o) = hm T [fl( ) - f1(0+)(1 +’7T IOg "7[7‘)] ’ (24)

where f1(0+) is the boundary value of the function itself, which remains well
defined. Replacing now Vi(r) in (8) by Vi(r)—~/r, we may repeat the discussion
of Sec.4. First, the particular solutions ¢ and ¢ are replaced by their Coulombic
counterparts ¢¢ and x¢ with ¢o(0) = 0 and xc being L? at infinity. As before,
these solutions are unique up to a multiplicative constant. The main difference is
that (as in the pure Coulombic case, V3 =0), x’ has a logarithmic singularity at
the origin for k # —iy/n. The free quark—channel resolvent reads, of course

Clr g z) — 1 dc(r; 2)xe(s; 2) r<s
Gr(r52) = W(oc, xc) { xc(r;2)c(s; z) r>s (25)
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Thus the analogue of Theorem 4.1 can be proved in exactly the same way; the
statement is unchanged except that the denominator function D takes the form

) m
D(xc,a; z) = xc(0; z) - Zklal2 m—j X/C’,reg(O; z) . (26)

As for Theorem 5.1 and Remark 5.2, they remain valid too; we refer to [4] for
details.
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A Simple Model for Predissociation

P. Duclos and B. Meller

Abstract

We analyse a very simple class of one dimensional two by two matrix
Schrédinger operators. Their diagonal part has embedded eigenvalues in the
continuous spectrum which become resonances when the off-diagonal part is
turned on. Our analysis is semiclassical and contains a regular perturbative
calculus of these resonances, asymptotics of the Fermi rule contribution to
the width of these as well as lower bounds on the corresponding life time.

1 Introduction

We start directly exposing the model; the discussion about the content of this
paper is split in several parts which are put at the end of their relevent sections.

1.1 The Model

Let

H' 0 ‘ 0 y12
H .= H®+W. H?:= W =
. ) . ( 0 H2 > 3 . ( ‘/2,1 0 )

be a matrix Schrédinger operator acting on L?(IR) @ L?(IR) =: H, where

HY = D*4Vk, k=12 D=19
1 dx
Vix) = 2%, VV2.=h(tD+ Dt)=-V2L,

Dilation and translation analyticity of the potentials play here an important role;
we assume

V! and it are bounded analytic multiplication operators
in Lgy.ne := {2z €T, |Arg z| < fo or |Imz| < no}, Bo,mo (H1)
being both strictly positive; V' and it are real on IR.

The images of all operators under the scaling z — e’z will be denoted when
necessary by a subcript 6. With these assumptions we have the following
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Theorem 1. Hy, H, ;, i=1,2 are selfadjoint analytic families of type A for all § such
that [Im 6| < Go := min{fp, §} with domains

D(Hs) = D(Hy)® D(Hj),
D(H}) = H(R), DH?) =H:NH(R).

The definition of “type A family” may be found in [Ka, Ch.VII §2.1]. H"(IR)
denotes the usual Sobolev space and H™ its Fourier image. The proof of this
theorem is rather standard. For Hj it is obvious, since V' is bounded analytic; for
H? a detailed proof can be found in [BCD2]. Hp can be treated perturbatively as
in [DES]; in the form sense on D(H§) one has

1 0
Wil < 1slal0? + 27517 (o )

which shows that Wy is H%bounded with relative bound zero.
In order to have a reasonable spectrum for H! we assume

Je >0, o <0, VO < [Imf] < Bo, Vg = veo + (H2)
O(z717¢), as |z| tends to infinity.

This implies in particular that the essential spectrum of Hé} is simply:
Oess(H) = voo + e ¥R,

1.2 Discussion and Further Hypothesis

H? has only discrete spectrum, o(H?) = (2IN + 1)h. When 6 equals zero, these
eigenvalues are embedded in the continuous spectrum of H!. The effect of the
perturbation W is usually to couple these bound states to the scattering states
of H'. If the quantum system is initially prepared in a state 0 @ ¢?, »? being a
bound state of H?, it will eventually turn into a scattering state. The mechanism
behind this effect is very similar to the one which causes the existence of shape
resonances, viz. tunneling through the potential barrier (see e.g. [CDKS, HeSj|).

If the two potentials V! and V? cross one can reduce the problem for the
lowest energies to a shape resonance situation [K]; the relevent effective potential
is min{V!,V2} which possesses a well, separated from the escaping regions by a
potential barrier.

Here we want to address explicitly the case with no crossing of V! and V2%
we assume

max V! < minV? = 0. (H3)

Now, at first glance, one would say there is no barrier. But classically one can see
that for the energy eg = (2n + 1)i (the nt* quantum state of H?) the allowed
momenta for H' and H? are separated by a gap of size v/— max V! for h small
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enough. This gap indicates a classically forbidden region for the hamiltonian H¢
in the momentum space rather than in the configuration space. So we can speak
of a dynamical barrier being present and of dynamical tunneling as the reason for
the escape of the bound state (see [AD] for the same discussion in the case of
the reflection over a potential barrier). However assumption (H3) is much stronger
than necessary for this phenomenon to take place. Wilkinson [W] and Martinez
[Ma2] have remarked that it is sufficient to require that the energy shells do not
cross: {H}(g,p) = H%(q,p) = E}' = 0 to get such an effect which they called
respectively tunneling in phase space and microlocal tunneling.

The dynamical tunneling manifests itself in the so-called resonances of the
quantum system. According to the standard machinery ([AgC, RS4]) these reso-
nances are recognized as complex eigenvalues of Hg which are the perturbed eigen-
values of H, g. Notice that these eigenvalues do not depend on 8. Since the essential
spectrum of H; has turned down in the complex energy plane, the eigenvalues of
Hg to be perturbed are now isolated provided Hg does not have eigenvalues too

close. This last requirement is achieved by imposing a nontrapping condition on
Vi

15<0, VO<B<B Ime?Vj<gs (H4)

The perturbation Wy being Hg-bounded with relative bound zero our problem
falls into the category of regular perturbation theory. Section 2 is devoted to this
perturbation theory. Once the resonances are shown to exist we shall give for a
restricted model the asymptotics of the Fermi rule contribution to their width in
section 3 and finally estimate this width in section 4.

Such a model with V! = —1 and V12 = V2! = K% has been proposed
by J. Asch [A] as a simple model to understand the predissociation phenomenon
in diatomic molecules. V! and V2 play the role of the electronic curves, h? the
inverse of the nucleus mass. We have chosen, here, more realistic coupling terms.
Reducing the complete molecular hamiltonian to a two by two matrix of this type
is the purpose of the Born-Oppenheimer approximation, see e.g. [CDS] and [Mal].
In these articles the basic algebraic tool is a method bearing numerous names:
Brilloin-Wigner, Feshbach, Grushin, Schur... not to forget the Livsic Matrix [Ho].
However by “putting” into H' all the electronic curves except the second one, it is
conceivable to obtain the same result not using the energy dependent perturbation
theory, see e.g. [DES].

2 Perturbation Expansion of the Resonances

We first prove that under (H1,4) H} has no spectrum close to a given eigenvalue
e of H?. It will be sufficient to have this property in the closed neighbourhood of
eo bounded by the contour I' := {z €@, |z — ep| = h}.

1Hil denotes the classical Hamiltonian funtion associated to H*.
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2.1 Nontrapping Estimates
Lemma 2. Under hypothesis (H1,4) one has:

-2 1
VO <B<fo, Icp = 35 VO<h< 5, Vzel, IRi5(2)| < cj.
8

Sketch of the proof: Such type of result is now rather standard (cf. [BCD1]). The
condition on f (stronger than necessary), insures that

I Ccv:={z €, Ime*?*’z > §S}.

v is a set of complex energies that cannot be resonances of H' due to (H4). More
precisely, since in the form sense on D(H?!) one has:

: , , S
|Hls — 2| > Ime'??(z — H}ﬁ) =Ime?P(z — Vig) > Ime??z — 85 > —ﬁ§7

which yields the a priori estimate we need to bound Rilﬁ(z). In the last step we
have explictely used that z belongs to I' and the condition on %. @

2.2 Stability of the Resolvent Set of H{

The previous lemma gives sufficient conditions to insure that I' is included in

p(H}), the resolvent set of Hj. Since it is well known (see e.g. [BCD2] ) that the
spectrum of Hj is invariant w1th respect to 6 as long as [Im#| < §, we conclude
that T is also in p(HgZ) under this extra condition on Im 6. Therefore by standard
perturbation theory, I' will also be in p(H,z) if in addition

Vz €T, |Rl(2)Vi5?Ri(2)VE' < 1.

R}ﬁ(z) is already estimated by lemma 2. In the next lemma we shall estimate
1/1.}3’2R1-2B(2)V2’1 and other quantities needed in the sequel. As in Kato [Ka, Ch.II

i8
§2.1], we use the notation:

S’Zﬂ(k) (Rzﬁ(eO)) ,if k> 1 and S2 0 _ p

where Rfﬂ(eo) is the reduced resolvent of Hfﬂ at ey and Pfﬁ the corresponding
spectral projection.

Lemma 3. For any 0 < § < ﬁo there exists c% such that for any & > 0,

Ve, ||v.1’2R2(> VA < &R,
YE>0, [[VEISHOVEY < &R
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Sketch of proof: By the scaling & — vha V%JR?B(Z)V%I is unitarily equivalent
to:
B2 (tig (W )0, + ¢)(—e 7202 + €202 — ()7 (Outig(h3 ) + c.)

where c. means ‘commutated term’ and ¢ belongs to the fixed compact set AT :=
{¢ €@,|¢—(2n+1)| = 1}. The first statement follows easily by the continuity in ¢
of the lhs of the formula above since ;3 is bounded and 9, relatively bounded to
—e7 #2892 + ¢12P22. For the derivation of the second statement we use the Cauchy
formula and the same scaling trick. m

Thus we have obtained the stability of the resolvent set:

N 1
(0 <B<Brand 0<h< c—) =T C p(Hig), cp:=max{cy,c3}. (1)
B

2.3 Stability of the Spectrum of H? and Existence of Reso-
nances for H

The preceeding analysis proved that for & small enough P;g, the eigenprojection
of H;g associated to I', is well defined. This certainly remains true if one replaces
W by aW with 0 < a < 1 thus defining a continuous family of projections
interpolating between P;g (o = 1) and Pfﬁ (o = 0). Consequently

- 1
V0<ﬂ<ﬂ0,\10<h<c—, dim Pjg = 1.
8

Standard arguments on resonances ([RS4, Ch. XIIL.10]) insure that the imaginary
part of the eigenvalue associated to P;g cannot be positive. So we have proven the
existence of a resonance of H close to each eigenvalue of H2; however we cannot
exclude a vanishing imaginary part of this resonance.

Remark 1. cj depends only on 8 and S whereas ¢ depends on 8 and the quantum

number n of the eigenvalue ey of H?. So the range of values of A for which the
existence of the resonances is obtained depends on 3, S and n.

2.4 Convergent Expansion of the Resonances

We denote by E the resonance obtained by perturbation of eg = (2n + 1)h. With
the standard formula of regular perturbation theory [Ka, Ch.II§1] and noticing
that W is off-diagonal we get:

E = Zemv (2)
m=0
lm—l
_ 2,1/ plyki 171,27 @2\l 2,1/ p1Vkm 171,27 02\Im
em = 5 ZtrV (RHYFvI2(s2)h | y2L(RYEmy12(52)im
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g = {Zlizl/\ZkiZQm—l—l, lzZO, kzZ].},

where we have dropped the indices i3; all the resolvents in the above formula are
evaluated at z = ej. Straightforward combinatorics, lemmas 2 and 3, the definition
(1) of cg and the extra condition hcg < 1 to simplify the analysis yield

1 — 2
eml < ———(3’” )(e;ah)?m“.

Using the d’Alembert criterium we arrive at

Theorem 4. Under hypothesis (H1,4) and for i small enough each eigenvalue of
H? gives rise to a resonance of H of multiplicity one. Furthermore for all 8 in
(0, B0) let ¢z be defined by (1). If A is in (0, k), where hg := %Cg_l, then the
series (2) converges to this resonance.

2.5 Discussion

The method of this section follows tightly [DES] with extra niceties due to the
simple form of H and the fact that the perturbation is off diagonal. Also we
have been able to give a critical value of i below which the convergence of the
perturbation series is assured. c}, is easily estimated in terms of V! but for c%
we have only an existence result since we do not yet know how to estimate the
resolvent of the harmonic oscillator scaled with a complex parameter # and for a
spectral parameter in the numerical range. Thus this critical value of & is for the
moment merely theoretical. We stress that we do not give here expansions of the

resonances in f; Martinez [Mal] has shown that such expansions are asymptotic,
see also [CDS)].

3 Fermi-Rule Contribution to the Width of the
Resonance

3.1 Asymptotics of Ime; as i Tends to Zero

Heuristic arguments [LL, §90] lead to the conclusion that the width of the reso-
nances of H which we found in section 2 are in fact exponentially small as % tends
to zero. As an indication of this property we compute below the asymptotics of
the imaginary part of the first order coefficient in the expansion (2).

Definition 1. Each point z in }7, . which is a root of V!(z) = V?(z) is called
a transition point.

We shall only consider here the restricted model
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V= Voo, Voo < 0. (H5)
We then conclude immediately that there are two transition points
Ty =iV —VUs and — z,.

The other important points are the singularities of V12 or equivalently of t. We
suppose

Mo > |z.| which means that t is analytic beyond the tran- (H6)
sition points.

Theorem 5. Under (H1,5,6) and for the resonance associated to ey := (2n +
1)k, n € IN one has

hne1=-—

n+%
2v/21 52 <4d*> eXp(_2

nlg2ntl 7 Z* Hlt(z,)]* + O(h)} (3)

where

—v Tx
d, = T°° = |Im/ V=V2(y)dy|.
0

Proof: Under (H5) H! obviously has a pair of generalized eigenvectors at energy
€0

H'oW = eqpl” v = £1, " := (20h) 3" %% k = \/eg — Voo.

e1 which is constant with respect to 8 may be computed for § = 0 using the
boundary value of R! at ey +i0. We get [RS4, XIL.6]

7T v
Imel = —ﬁ Z |(Vv2’1<)017 7<p2)|2a

v==%1
where
C, 22
<p2(1:) = — Pl < eom, O, = w_%(2"n!)_%,

P, being the n** Hermite polynomial. One derives easily
2,1 1v .2 lv 2 h 1
(V2" ¢%) = =h(fe™",¢%), fi=2wkt+ -t

Since by (H6) R+ivkisin )4 1> We may take it as the “contour” of integration:

Ch

T + vik 22
V2w .

Vi T

N P s /Rf(x T uik)Pa
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It is now easy to compute the asymptotics of the last integral by first scaling x by
v, then expanding
vik vik vik
Vik+Vha)Pp(—= + z) = ( f(vik)+ f (vik)Vhz <P — —I—Pﬁl—x)
f( Pu(7 +2)=(F(wk) +f (rik)VRz ) PalT2) + L)
+0 (h_%ﬂ(l + |:EI"+2)> (as h — 0 and uniformly in z),

22

and finally integrating with e™ 7 .

3.2 Discussion

The idea of looking at the imaginary part of the first non real coefficient of the
perturbation expansion (2) has a long history, see e.g. [RS4, Ya, GMS, DES] not
to mention the physics litterature. Methods to compute the aymptotics of Ime;
using the analyticity of the potential are all based more or less on the stationary
phase or steepest descent methods.

However since it is expected that all coefficients of (2) will contribute to
the imaginary part of the resonance F with the same exponential behavior, the
prefactor of (3) has not the right asymptotics for Im E. Such a phenomenon is
discussed for example in [Be]. Below we give a classical interpretation of d,.

3.2.1 Exponential Decay of Im £ and Classical Action of Instantons

The following interpretation of d, is a well known heuristic fact (see [LL]); we
would like to illustrate it in detail with our simple model.
On the complex phase space @ x € we consider the two energy shells

Z)(i)(eO) = {(qap) ewa Hél(qap) = 60}7 1= 1527

and their trace on the real phase space 233,2’ = 1, 2. The two real energy shells do
not intersect, but the complex ones do:

p2+voo = €9 — p = +v/eg — Voo = Lk
P+ = e g = +iV—ve =4z,

These points will also be called transition points.

We want to endow the union of the two complex energy shells X(ep) :=
YW (ep) U X®)(ey) with a (pseudo-) distance 6§ as follows. Let A and B be two
points of X(eg), then

A Bex%9(eg) = 6(A, B):=Ims(4,B)],

where s(A, B) is the minimal (complex) action to join A and B by a (complex)
trajectory on the energy shell () (eg):

s(A,B) := /A_)B pdq = /A_}B Veo — Vi(q)dg.
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Such a complex trajectory is usually called an instanton. Otherwise,

Aex(e), BEXD(e), i #j, =
8(A,B) = min{|Ims(A,T,) +Ims(T,, B)|, T, € M (eg) N T®) (eg)}.

In other words the distance 6(A, B) is the minimal imaginary part of the action
of all instantons joining A and B.

We want to compute the distance 6(2%) (o), E(ﬂ? (eg)) between the two real
energy shells. We remark that the distance between two points of the same con-

nected component of Egz?(eo),i =1, 2, of course vanishes. As consequence we may
take any point in each one and compute their distance. So let A = (0,k) be in

E%) (eg) and B = (0,,/e,) be in Zg)(eo). We choose T, = (z4,k) among the
transition points. Then we have:

s(A, T, )+ s(T%, B)

T 0
/ kdq + / Veo — q2dq
0 T
1
kz, + 5 [q\/ eo — ¢ + e arcsin(—q—)

Je

0

Il

T 5

= id, +O(RInh)

Performing the analoguous calculations for the other transition points, we see
that the above result gives indeed the minimal contribution to the definition of
8(A, B). This shows that the distance between the two real energy shells is d, in
the limit & tending to zero. But on the other hand this is nothing else than the
rate of exponential decay of the width of the resonance due to quantum dynamical
tunneling between the two real energy shells. This tunneling takes place through

3.2.2 The Dynamical Barrier.

Looking at the two real energy shells in the real phase space we see three curves.
Z%) (eg) is the circle centered at the origin with radius \/€p and Z%) (eo) consists of
the two straight lines p = +k. As already mentioned the curves do not intersect.
More precisely their projections in the configuration space do intersect but not
their projection in the momentum space. The latter are the classically allowed
regions in the momentum space: {+k} for H, and [—/€q, \/€o| for H3. They are
separated by the classically forbidden region: (—k,—+/eo) U (\/€0, k). In analogy
with tunneling in the configuration space we would like to say that associated
to this classically forbidden region there is a dynamical barrier. And through this
barrier the bound state of H? has to tunnel to become a scattering state of H. The
strength of this tunneling, as in the configuration space, depends on the diameters
of the dynamical barriers. These are measured by the length of each component
of the classically forbidden region in the instanton metric:

(VA (p? — e0))? dp? = (p° — e0)+dp®. (4)
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Computing this diameter for the barrier of the positive momenta we obtain

k
/ V(p? — eo)+dp =d, + O(Rlnh)
e

which is in agreement with the result of theorem 5. The reason why V! does not
enter in formula (4) is due to the fact that the instanton joining A and T, has a
constant velocity.

4 Exponential Bounds on the Resonance Width

We recall that in section 2 we proved that H possesses a resonance E in the vicinity
of each eigenvalue eg of H? for small enough k. In section 3, for the restricted model
V! = vy (see H5), we have shown that the imaginary part of the first term e; of
the perturbation expansion (2) of F — eq is actually exponentially small as h tends
to zero. The purpose of this section is to show that this exponential behavior is
also true for the full width of the resonance E.

For technical reasons we have to require the following additional condition
on the coupling term V12

B e o
Je > 0, t(z) = O(|z|7%) as z tends to infinity in (HT)
Z,30,710"

to state our main

Theorem 6. Assume (H1,5,6,7). Then each eigenvalue ey of H? gives rise for h
small enough to a resonance E of H and:

2d,
V1>¢£>0, ozImE=0(5—2hexp(——h§)) as h — 0,

where
|}

de == | V(V2(y) — e — hi) 1 dy.

Remark 2. Since the lifetime 75 of the resonance F is defined as ﬁ, the above
theorem provides a lower bound on 7g.
One can check easily that

E—Qhe—m*‘dg _ O(€—2h—n+(1—§)/2e—2h*1d*).

This shows that the exponential behaviour of the bound of theorem 6 is the same
as the one of Ime; (see (3)). However the exponent in the prefactor differs by the
quantity —1 — % We do not know yet whether the A behavior of the prefactor of
Ime; differs from the one of Im E or if our upper bound is not optimal.
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Since the proof is rather involved we only give a synopsis of it. The details of the
proof will appear somewhere else together with a more general analysis including
non constant V'’s.

4.1 Passing to the Fourier Image

As we explained in §3.2, the exponential behaviour of the width of the resonance E
is due to tunneling through the barrier of classically forbidden momenta between
the two energy shells 2%)(60) and 2%) (o).

A Fourier transformation of H causes the exchange of g and p in the classical
picture. Consequently the tunneling takes now place in the configuration space, a

situation we are more familiar with. We denote below by the same symbols the
Fourier image of H*,i = 1,2 and V12

H'=2*+vy, H?*=D?42% VY2 =nt(D)x+zt(D)).

The price to pay is that we have to deal with non local operators as, e.g. t(D) (see
§4.5 below). We emphasize that this transformation is only for convenience and in
principle not necessary.

4.2 Why Exterior Scaling?

Consider now (FE, ¢y) a resonance and its resonance function: Hy¢y = E¢y. By a
simple algebraic manipulation one also has

(Hj — Bo)¢h = Egj, By =V Ry(E)V, ",
where ¢}, denotes the ith component of ¢g. Thus
Im E||g51* = (Im (Hg — By)$, 65)- (5)

In section 2 we have seen that ¢y and therefore ¢2 “converge” in norm to 3,
the corresponding eigenfunction of HZ2. The latter is of course known to decay
exponentially as x goes to infinity and/or h tending to zero. So suppose that the
operator Im (HZ — By) is localized on (2, where

Q; = (~w,w), Qe:=R\Q, w?= v,
we would obtain that Im E is roughly ||x.¢2||> ~ e~"""“* which is more or less
what we are looking for. y, will denote the sharp characteristic function of Q,,a =
i, e. §2; is nothing but the dynamical barrier for /i = 0 (see §3.2.2). With the usual

complex scaling Im (Hj — By) is certainly not localized in (2., whereas Im HZ would
be with the exterior scaling

(I) . if ze (6)
S0NT) = two+el(zFw) if +r>w.
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Thus in this section we choose the above complex exterior scaling to deform all
our operators; a subscript # will now mean the image under (6).

It is well known that the resonances of H do not depend on the choice of the
complex deformation (see e.g. [Hu)). Here they will be considered as eigenvalues
of Hy for a certain complex # where, as announced above, Hy is now obtained by
(6). Making sense out of all our scaled objects is rather standard (see e.g [CDKS])
except for the non local terms Vgl’2 and By. We shall explain briefly in §4.5 how
we proceed. We have in particular the analogue of theorem 1:

Theorem 7. Hj,i = 1,2 and Hy are selfadjoint analytic families for all § such
that [Im#@| < Bo. Hj is of type A with domain D(H}) = D(z?). The domain of
H? is given by

u€D(HE) < ueH () ®H* () and
u(w + 0) = e ?u(+w F 0)
u'(+w + 0) = e39/24/ (+w F 0).

4.3 Spectral Stability Again

We shall need in the sequel information on the spectrum of Hg and some bounds
on its resolvent. Since H} is a multiplication operator its spectrum is nothing but
the range of the function = — vy + s3(z). There are two facts to remark here.
First the spectrum of H} consists of the union of the interval [veo, 0] and a curve
starting from zero, contained in the sector {|Im6| < sgn(Im6)arg(z) < 2|Im8|};
secondly the essential spectrum of H' above zero turns up in the upper half plane,
if Im@ > 0. In order to work with the resonances which have a negative imaginary
part we shall from now on take only # with negative imaginary part. The spectrum
of H} remains (2IN + 1)k by standard arguments. So for small enough % the same
contour I as in §2 is contained in the resolvent set of H g. To prove that it lies also
in p(Hg) we need the

Lemma 8. For any 0 < |3| < B and for any z on I one has

o (171,2 2,1

i) “Vzﬂ R?ﬁ(z)Viﬂ | = O(hz)-

i) |Ri5(2)l, lxRig(2)l, |z Rig(2)x|| are all O(h™1); this is also valid for z inside

Thus stability of ey is assured for A small enough.

4.4 Estimate of (Im (HZ¢Z, ¢2)

We want to show that (Im (HZ¢2, ¢2) is exponentially small using the decay prop-
erties of ¢2 and the localisation of Im H3. The following estimate is adapted from
[Agm]. However there is a novelty with respect to the standard situation: the op-
erator H7 — By contains the non local energy dependent “potential term” Bg. Let
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exp(—h ™ p) be the expected decay behavior and let G5, = exp(h ™! p)¢Z be the

boosted eigenfunction; more generally we denote all objects boosted by exp(h ™" p)
with the subscript p. ¢ , is a solution of (Hj , — By, — E)¢5 , = 0 and therefore

Re((Hg,p - Bo,ﬂ - E)qsz,pa ¢3,p) =0.

To cope with the By , problem we use the following property

Lemma 9. Assume (H6), then there exists a,b > 0 such that for any 0 < [Im 6| <
0o and any real Lifschitz function p one has:

i<ty = —Re By, > —ahRex% — b3,

From this result we deduce that
_1
h?||sp~20:05 1% + (1 — ah)Rexj — bh® — Re E — p'%)45 ,, 65 ,) < 0.
This motivates the choice of p:
p’% = ((1 — ah)a® — bh* —Re E — heE), xin €>0,

and we obtain the

Lemma 10. For any 0 < [Im8| < f one has as % tends to zero and for any
0<é<:

162, = O%), lxead? | = OB7), hlxedudl,| = O?).

We can now estimate Im (H} ¢3, ¢3):
Im (Hj¢3,65) = Tm(c™™ PHje " 74} ., 63 ,)
—oh~1p(w —9h 1 p(w
= e PO ImHi 65 ,) = O(he ™ #1).

An elementary calculus shows that e~ 2% #(«) — O(e=2""'d¢) 5o that this term
has the announced behavior. It remains to do the
4.5 Estimate of Im (By¢3, ¢2).
We start by explaining how we make sense out of Byg. We may write formally
By = —h*(2t(Dg)zg + iit'(Dg)) Ry (E)(2xgt(Dy) — iht'(Dy)).

The operator zg is controlled by Rj(E) (see lemma 8) so it is sufficient to show
that t(Dy) and t'(Dy) are bounded operators. Dy is the image of D under our
exterior scaling for which we know the
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Theorem 11. {Dy,0€ @'} is a selfadjoint analytic family of operators and:
i) the domain of Dy is defined by

D(Dg) 2u <= u€H Q) D H(Qe) and
u(tw £ 0) = e/ 2u(tw F 0);

ii) the spectrum of Dy is just: o(Dy) = e ?R.
iii) The following resolvent estimate holds: let v := {z€ @, Imsyz > 0 or Im sjz <
0}; then for every z in v, one has

I(Dg — 2)7H|| < Imspz| ™! = dist(z,@ \ v)" L.

To define ¢(Dy) we use the Dunford-Taylor integral

1 A
t(Dg) := =— [ t(A\)(Dp— A7), |Imb| < Sy
2m Jo
where the contour C' is taken in v N}, - enclosing 0(Dp) and such that we

have dist(C,v)~! = O(A™1) as |)| tends to infinity. The convergence of the above
integral is due to (H7) and lemma 11 iii). Furthermore we know that

Lemma 12. t(Dy),t'(Dg) are bounded selfadjoint analytic families as long as
|Im 0| < fy.

We now explain how one can define By ,. Using the same strategy as for By and

the fact that the boost €* '# commutes with zo and RI(E), it suffices to show
that (D ,) and t'(Dy, ,) are bounded. One can show the analogue of theorem 11
and lemma 12 for them. Moreover ¢(Dg,,) and t'(Ds,,) are uniformly bounded
with respect to p as long as p obeys: p'? < w?y;. Here one must use assumption
(H6). By a straightforward though rather involved algebraic calculus one gets a
reformulation of (5)

o B([ol|” + (1= 2) 8], |I*) = 7 ") m ((Hj ~ Ba,,)3 1, 65,.)- (7)
One has the estimate
lgh,,I1* = IR (E)V, 65 ,11° = O¢7),
(use lemma 8, 12 and 10). Finally one also has
(Bo,095,: $6.,0) = O(hE™).

Inserting this estimate and the one of §4.4 in (7) completes the proof of theorem
6.
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4.6 Discussion

The use of a complex deformation in the momentum space leaving invariant §2; . :=
{p € R,|p| < w— ¢},e small, i.e. a region which contains approximately the
dynamical barrier (see §3.2.2), was brought to our attention by M. Rouleux. In his
notes [Ro] he combines this idea with the Green’s formula

2ImE / |p(x)|2dz = —h21m¢'53 ; (8)
Qe

i,€

as above ¢ stands here for the Fourier image of the original ¢.

The last ingredient to get the asymptotics of Im F would be the knowledge
of the behavior of the r.h.s. of (8) since obviously the norm of ¢ on §; . is 1+ 0(1)
as h tends to zero.

The idea of using the Green’s formula can be traced back to Herring [Her]
through e.g. [HeSj, AsHa, W|.

The first idea, the exterior complex deformation, is now rather standard when
translated to the shape resonance framework (see e.g. [CDKS, HeSj)).

The choice of €; . with a non zero ¢ is a consequence of the use of a smooth
exterior distortion. Here we hope to get immediately the right exponential decay
rate by employing an exterior scaling (84.2).

Also instead of the Green’s formula (8) we use a full L? calculus (5). With (5)
we need only L%-exponential decay estimates on ¢ (see §4.4,5) which are simpler
to derive than the pointwise estimates needed in (8). However by using this L2
approach we are forced to loose a little bit of the exponential decay rate; the
correct one being given by d¢ with £ = 0 (see theorem 6).
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Scattering on Several Solenoids

Pavel Stovicek

Abstract

The problem is treated in an idealized setup and reduced to a scattering in
the plane. The Hamiltonian H in L?(R?) is defined as a self-adjoint extension
of the symmetric operator X = —A, with D(X) = C(R%) @ C(R2),
determined by boundary conditions on the first coordinate axis. The wave
operators Wi(I:I , flo) exist and are complete. Generalized eigen—functions
of H giving a stationary picture of the scattering are constructed.

1 Introduction

The Aharonov-Bohm effect [1] is an exciting problem from the both physical and
mathematical point of view. Here we are going to consider an idealized setup with
infinitely thin and parallel solenoids. This means that we can treat this problem
as a scattering in the plane. While the case of one solenoid enjoys the rotational
symmetry and is solvable explicitly [1, 2] the case of two and more solenoids
is considerably more complicated. It is also worth of noting that this problem
differs from the usual potential scattering. In the gauge we have chosen the given
Hamiltonian and the free Hamiltonian are not related by an additive potentional
but, on the other hand, they are self-adjoint extensions of the same symmetric
operator [3, 4]. This fact enables to apply the Krein’s formula and to prove, in
the framework of the Kato-Birman theory, that the wave operators exist and are
complete. Using the theory of self-adjoint extensions rather than the Lippman-
Schwinger equation, one can also construct the generalized eigen—functions giving
a stationary picture of the scattering and thus obtain the S-matrix [5]. This result
is only of theoretical importance. But in the case of two solenoids and in the
asymptotic region kd >> 1, with &k being the length of the wave vector and d the
distance between the solenoids, one can simplify the formula to allow also numerical
evaluation [6]. It turns out that, alike the one-solenoid case, the differential cross
section diverges for the forward scattering. The only exception is the configuration
with equal but opposite fluxes. This situation is physically most consistent since
the total flux is zero [7].

The aim of this paper is to treat this scattering problem in the framework
of the regular mathematical theory. It contains only a brief survey of results; the
complete proofs will appear elsewhere.
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2 Boundary conditions defining the Hamiltonian

Suppose we are given a measurable real function v(u) defined on R. Let @, be
the closed subspace in the orthogonal sum of Sobolev spaces H'(R3 ) ® H!(R%) C
L%(R?) determined by the boundary condition

P(u,0-) = 2™ My, 0,). (1)

The restriction to @}, of the scalar product in the sum of Sobolev spaces yields
a closed form ¢, in L?(R?) fulfilling q,(¢,4) > ||¢||*. Hence by a standard con-
struction, one can relate to g, a positive self-adjoint operator H, Itis easy to see
that the intersection of D(H,) with the subspace H2(R2) & H?(R2) C L*(R?) is
formed by those functions ¢ which fulfill in addition to (1) also

atp(u,0_) = 2™ 951h(u, 04). (2)

In this case, H,,@b = —At where the generalized derivative on the RHS is taken
in ]R2 UR2. In this sense, H, is determined by the boundary conditions on the
first coordmate axis (1), (2) It is also clear that for v(u) = 0 one obtains the free
Hamiltonian Hy = —A in L*(R?).

Proposition 1. The point spectrum of H, is empty.

In our problem, the function v is piecewise constant with finitely many dis-
continuities. So let a,as,...,any be a finite sequence of reals ordered increas-
ingly and ag,az,...,ay be some numbers from the interval (0, 1). Denote Iy =
(—oo,al), Ij = (aj,ajH) fOI‘j =1,.. .,N — 1, Iy = (aN,+oo), and set

k
v(u) =y = Zaj foruely. (3)

=1

The Hamiltonian is then denoted simply by H.

The both Hamiltonians H and Hy are self-adjoint extensions of the same
symmetric operator X = —A with the domain D(X) = CP(R%) @ C(R%).
The resolvents are related by the Krein’s formula. Denote by N(z) the deficiency
subspace and let P(z) : L?(R?) — N (z) be the orthogonal projector. Furthermore,
V(2),Vo(2) : N(2) — N(2) designate the unitary operators determining these self-
adjoint extensions. The Krein’s formula then reads

(fI —2) = (ro —2) 4+ P(2)*

Denote by A(z) the closed operator in L?(R,dk) acting by multiplication
with (k2 — 2)1/2, z € C\ [0, +00). Q stands for an operator in L%(R ) defined by

W = (¥ )" (5)
So A(2)7! is bouded and {2 is unitary.
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Denote by p,, with z ¢ [0,+00), the following strictly m-accreative form in
L*(R),

p2(,9) = [17 dr VT =2 ([9(0)” + 12(x) ),

and by Z(z) the associated closed operator [8]. One finds easily that for ¢ €
D(E(2)),
Re (), 2(2)9) > (2(12] — Re2))/*(, 9). (6)
Consequently, Z(z)~! exists and is bounded. Since p; =p; it holds Z(2)* = Z(Z).
It follows that Ran=(z) = D(Z(z)7!) is dense in L?(R) and so coincides with
L*(R). One can show that Z(z) is the closure of the operator A(z) + Q7'A(2)Q.
Consequently, Ran (A(z) + Q7 1A(2)Q) is dense in L?(R) and Z(z)~! is the closure
of (A(z) + Q7 IA(2)Q)~L.
The deficiency subspaces are easy to describe. N(z) is the range of the unitary
mapping

U(z) :C2 ® L2(R)— N(2)
defined by ¥ = U(2)p,
P(z) = F L, &K, x2) , where
B, u) = (2Re ViZ —2) % exp(—vRT =% ful) (o (R)(u) + p_ (k)8(~u)) -

We have ascribed the symbols {ey,e_} to the standard basis in C? and 9 stands
for the Heaviside step function. With respect to the chosen basis in C%, V(z) :=
U(2)~'V (2)U(z) splits into a 2 x 2 matrix (V.,(2)), &, 0= =*.

Proposition 2. It holds

I+ Vi, =(2—2) (2ReA(2))"Y22(2) "1 (2Re A(2)) V2,
Vi_ =(z—2)(2ReA(z)) Y22(z) 10 (2Re A(2))"V/2, "
V_y = (z-2)(2ReA(2)) V20 E(2)"Y(2Re A(2)) V2,

I+V__ =(2—2)(2ReA(2))"V2Q2(z) ' Q" (2Re A(z))"1/2.

3 A perturbative formula

Let us relate to the j* solenoid the operator RV (z) = (Rg,))s, o=+ in C?>® L*(R)
determined by the kernel

<I‘L|R£Jé)|)\> = —SiL::gi (k% + w?) "V exp(—iajx)
ool tos) ~Fas-al o

1+ explew(x) + ow(A) —i(5 — 0)(e ~ 0)]
x exp(ia;) (A + wz)—1/4 )
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with w = /=2 and w(k) := argsh(w™'k). This definition makes sense directly
only for 2 < 0 and hence w > 0. Nevertheless, one can show that R()(z) extends
analytically to the domain z € C\ [0, +00). Clearly, RY)(2)* = RU)(z).

We denote by {e1,...,en} the standard basis in CV. The following formula
was derived in a form of an infinite series in [4]. It can be also extracted from the
results given in [9].

Theorem 3. For any z € C\ [0, +00), it holds
1
227 = AR + % Az (f@et I-DI) 'DEge )A(z) 2, (9)

where

D = diag(RV(2),...,RN)(2))
is an operator in CN® C? @ L?(R),

0 K ... K
Kt 0 ... K
. 0 1
J=1... ... ... .1, with K_<O 0>,
Kt Kt ... 0

i1sa2N x 2N matrix andf =e; + e+ ... +en.

One can deduce from the following Lemma and from the analytic Fredholm
theorem [10] that (I — DJ)~! exists. For z negative, a perturbative expansion
into a geometric series is possible if the numbers characterizing the strength of
the magnetic fluxes, sin 7a;, are small enough or, on the other hand, if |z| is large
enough.

Lemma 4. For z < 0, the operator (DJ)*" belongs to the trace class and its
norm can be estimated by

(DT> < C (max sin(ma;)) Ko(wd), (10)

where w = \/—2z > 0, d = min;» |a; — ax| and K, (z) is the Macdonald function.

4 Wave operators, generalized eigen—functions

Using the Krein’s formula (4), the explicit expressions (7) and the Kato-Birman
theory [11] one can prove
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@ o

Figure 1:

Theorem 5. The wave operators W (H, Hy) exist and are complete.

Assume that k£ > 0. Instead by means of the Lippman-Schwinger equation one
can gain generalized eigen—functions of the Hamiltonian H as follows. Suppose that
one can choose ¢(z) € N(z) depending on the spectral parameter z € C\ [0, 4+00)
in such a way that the function ¥4 (z) = ¢(z) + V(2)p(z) has a limit when z =
k2 —ig, o | 0. Since H(p(z) + V(2)p(z)) = z¢(z) + 2V(2)p(2) the limiting
function v (k? — i0) is expected to be a generalized eigen—function.

To proceed more formally, choose h € CS°((—k, k)) and define

Yi(z2) == Fil,, fzk,22) . (11)
where
f(z;k,u) = (exp(—V K2 — zu) — exp(—V K% — Zu)) h(k)
+ exp(=V k2 = Zu) 2(2) "HA(Z) — A(2)) h(k), foru>0,
= exp(VK2 = Zu) QE(Z)"H(A(Z) — A(2)) h(k), foru<0.

Furthermore, set

Yo(k;z) = drk exp(ikz1 — iV k% — K2 z2) h(k). (12)

1
V21 Jik|<k
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Theorem 6. The functions v, (k*—i0; ) given in ( 11), with k > k, large enough,
are generalized eigen—functions of the Hamiltonian H corresponding to the value
k%. Moreover, it holds

W_vo(k; z) = 94 (k* — i0; z) (13)

in the usual sense.

Finally we note that it is possible to extract from the eigen—function ¢ the
S-matrix S(6,6,) [5]. Here 6, is the angle of the incoming plane wave, 8, € (7, 27),
and 6 is the angle of the scattered wave. Figure 1 depicts X := 27 [S(6,6,)|? in the
case of two solenoids. For the sake of convenience, it dependson © =0 -0, + 7
(mod 27), © € (—m,m), rather than on 6. The values of parameters are oy =
0.4, az =0.6, kd=10 (d = |a; — az|) and §, = 1.4 7.
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Hall conductance of Riemann surfaces

Markus Klein

We shall briefly describe some spectral results on Schrédinger operators with
a constant magnetic field on Riemann surfaces of finite volume. These essentially
go back to some old results on automorphic forms of arbitrary real weight [14].
Their physical interpretation in the context of magnetic fields, however, is new and
leads to some natural generalizations. We refer to our joint paper [3]for background
and results. Detailed proofs shall be presented elsewhere [4].

We consider a Riemann surface M of genus g, with r cusps. For simplicity
we do not consider elliptic points. By the uniformization theorem [7], each such
surface can be represented up to conformal equivalence as the quotient of the
complex upper half plane H, with the Poincare metric ds? = y~2(dz? + dy?), by
some discrete subgroup I' of PSL(2,R) , provided x = 2g — 2+ r > 0. Thus the
surface is represented by a geodesic polygon in H (the boundary of a fundamental
domain) with appropriate identifications of the sides. Recall that the geodesics are
semicircles centered on the boundary of H, 0H = {y = 0} U {00}, and the sides
of the polygon can be taken to be circular arcs. Since the group I' is isomorphic
to the fundamental group of M punctured at the r cusps, the canonical polygon
of T' is obtained (topologically) from the canonical polygon of a compact genus
g surface by filling in adjoining edges leading to the cusps, and the sidepairing
Moebius transformations, subject to the obvious circuit relation, generate T".

If we equip M with a Riemannian metric of constant negative curvature —1
by pulling back the hyperbolic metric on the upper half plane, it follows from the
Gauss-Bonnet theorem that vol(M) = vol(H/I') = 27(2g + r — 2). Because of
the negative curvature, the geodesic flow on such surfaces is chaotic. The Lapla-
cian associated with compact multihandle tori has been studied in the context
of chaology [9],[5], [6], [8]- In classical dynamics at low energies, [0, B?), Lorentz
force dominates and one finds closed orbits, while at high energies, (B2, 00), the
negative curvature dominates and the dynamic is (presumably) chaotic [1]. For
our purpose, however, this aspect is of minor importance. Instead we observe that,
if M is noncompact (the case we are interested in here), it can be deformation
retracted to a bouquett, and thus its second cohomology group H?(M,G) with
values in any abelian group G is zero.

These remarks serve to simplify the introduction of constant magnetic fields

on M and the corresponding Schrodinger operator. A constant magnetic field on
M is given by a constant multiple of the Riemannian volume form on M, which
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in the noncompact case we may write as
By~ 2dz A dy = dA, (1)

where the vector potential A is a globally defined 1-form on M. We identify A with
a [-periodic vector potential on H. Up to gauge equivalence, A is characterized
by its holonomy around the homology cycles of M: Denoting by §;(¢) loops on M
shrinking to the cusps (in the sense that the enclosed volume tends to zero as e
tends to zero), we may prescribe the Aharonov-Bohm fluxes threading the cusps

¢; = lim A j=1,..r (2)
=0J85(0)

and the 2¢g handle fluxes

(L1A7""/bgA):(¢7‘+17"')¢7‘+29) (3)

where ay,...by are loops based at some arbitrary reference point which generate
the homology classes associated with the g handles of M, provided the magnetic
field and the fluxes fulfil the Dirac quantization condition

Buol(M) = Z ;. (4)

In the noncompact case this simply follows by integrating A along a fundamental
polygon of M. The Dirac quantization condition remains true in the compact case:
there it restricts the allowed values of B, while in our case it imposes a consistency
condition on the value of the magnetic field and the fluxes through handles and
cusps. We remark that by adding an exact 1-form to A (corresponding to a gauge
transformation) we may assume that ¢; € [0, 27).

The Schrodinger operator with constant magnetic field B on M (or equiva-
lently on the fundamental domain F' C H) is given by

H(B,$) = (—id — A)*(—id — A), (5)
which is self adjoint on the domain
D(H) = {f € H*(F,y "dady); f(yz) = f(z)vy € T},

where * denotes the Hilbert space adjoint on forms and H?(F) is the second
Sobolev space with respect to the hyperbolic measure. Since this I-periodic vector
potential is not explicit, it is often convenient to work instead with a fixed, not
I-periodic, connection Ay = By~ 'dz on the fundamental domain F and put, via
gauge transformation, all geometric complications in the boundary conditions of
an appropriate Schrodinger operator. In this form one finds a Hamiltonian with
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constant magnetic field in the literature on automorphic forms (see in particular
[16]). More precisely, letting

U(z,2z0) = expi/z(A — Ap),

20

where zg is an arbitrary reference point in F'; we obtain by conjugation
H(B,¢)=U""H(B,¢)U = y*(~0; - 9}) + 2iByd, + B, (6)
acting on functions which satisfy

(cz +d)?B

¥lrz) =l ), u(r,2) = () (g (™

Z €T acts on H as a M6bius transformation, and vg(7), a com-
plex number of modulus one, is a multiplier system on I' associated to the fluxes.
The properties of a multiplier system are the consistency conditions ensuring uni-
valuedness of the wave function on the universal covering space and are easily

computed from the definition of the gauge transformation Uz, zp):

Here v = (Z

vg(—1) = e7¥7B (8)

and
u(mye, 2) = u(y,122) (2, 2), m,72 €T (9)

Equation (8) is the consistency condition to lift the definition of » from the group
of Moebius transformations to its lift in SL(2,R), and equation (9) is a cocycle
condition on the covering space.

We remark that the notion of multiplier system is particularly useful in the
compact case, since it allows to discuss operators on nontrivial bundles on a man-
ifold as long as only they pull back to trivial bundles on the covering space.

We fix the relation of multipliers to fluxes by setting

u(yj,2;) =€, 1<j<2g+r,

where, for 1 < j <, z; is the site of the j-th cusp, and ; generates the subgroup
of T that leaves z; fixed. For 7 +1 < j < r+2g, v; is a transformation identifying
sides in the fundamental polygon which dissect the g handles, and z; is an arbitrary
reference point on such a side. (There is no distinguished reference point on the
2g-dimensional torus of handle fluxes which naturally corresponds to zero flux).
A piercing flux ¢g at zg can be added via the usual vector potential, singular at
29. We remark that this discussion in particular proves the existence of multiplier
systems on I' and replaces the arguments in [14] or [10].

Note that the fluxes through the handles do not enter this relation, while the
cusp and piercing fluxes do.
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The spectral analysis of Schrédinger operators with magnetic fields and flux
tubes on leaky tori has a very long history in the theory of automorphic forms,
where it is known as the spectral analysis of the Maass-Selberg Laplacian for non-
classical automorphic forms of real weight with multipliers [14]. Below we list some
key facts; see [16],[14],[8]. Towards the end of this note we shall indicate how they
can be derived.

One distinguishes four energy ranges: (—oo, B) which is outside the spectrum;
low energies [B, B%) where the spectrum is reminiscent of the usual Landau levels
in the plane; intermediate energies (B2, B% + 1) where except for being discrete
little is known about the spectrum; and high energies (B2 + 1,00) which admit
scattering states if at least one cusp flux is zero.

Scattering states: Each cusp which is threaded by a flux tube carrying an
integer number of flux quanta is an open scattering channel. Each such scattering
channel contributes the interval of energies [i + B2, 00), with multiplicity 1, to the
absolutely continuous spectrum. Cusps that carry fluxes which are not integral are
in some sense plugged, and a particle can not leak through such cusps to infinity.
If all the cusps are plugged the spectrum in [i + B2, 00) is discrete.

Maass supersymmetry : For B > 1 and fixed multiplier system vg(7), the
spectrum of H(B) coincides with the spectrum of H(B + 1) — (2B + 1) with the
ground state removed, counting multiplicity.

Spectrum of Landau levels when ¢o = 0 : In the interval of energies [B, B?|,
B > 1, for ¢g = 0, the spectrum has [B — %] points at energies:

E,(B.é,60=0) = B(2n+1) — n(n+1), n:O,l,...,[B-—g], (10)

where [z] denotes the integer part of z. E, depends explicitly on B only, and
implicitly on the cusp fluxes through the Dirac quantization condition. It is com-
pletely independent of the fluxes through the handles.

Degeneracy of Landau levels when ¢g = 0: Like the Landau levels on the flat
torus, the energies in equation 10 are in general degenerate. Unlike them their
degeneracy decreases with energy. Let || be the greatest integer strictly smaller
than z and set {z} =z — |z] € (0,1]. The degeneracy of the n-th Landau level is
then given by:

Dl o =0) = (B-m)29—2+7) - (2} ~(g~ 1) +osabr - (1)
j=1

By Dirac quantization, the right hand side of equation (11) is an integer. (11) and
(4) are invariant under deformations of the leaky torus within the moduli space
of topologically equivalent Riemann surfaces. Since generically the spectrum and
degeneracies are sensitive to deformations, this invariance is remarkable, especially
since the dimension of the moduli space can be large. In particular, it will follow
from this invariance that the transport properties we shall calculate are constant
on the moduli space.
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Adiabatic charge transport: Suppose that initially all cusp fluxes are non-
integer and so are plugged. Now vary two of the cusp fluxes e.g. along the line ¢; +
¢; = const # 0 mod 27 by decreasing ¢; by 2. The initial and final Hamiltonians
are unitarily equivalent: Up to a gauge transformation, the Schrédinger operator
underwent a closed cycle. In particular, the initial and final spectra, counting
multiplicity, coincide. As in Laughlin’s original argument, this cycle can transport
net charge, and indeed it does: As ¢; passes through an integral flux quantum,
cusp ¢ opens briefly and, according to equation 11, one state per Landau level is
sucked in from (spatial) infinity. As ¢; passes through an integral flux quantum,
these additional states disappear at (spatial) infinity via cusp j. We remark that
these states correspond to classical holomorphic forms with real weight B (or
2B, depending on the definition of weight) for I' and the fixed multiplier system,
which at the critical value of ¢; just fail an integrability condition in the cusp. If
N Landau levels are occupied, N charges will be transported. The cycle describes
a quantum charge pump which transports integer charges. It is noteworthy that it
gives integral adiabatic charge transport for systems whose area is finite. In the Hall
effect and in the Niu charge pump [13] precise integers require the thermodynamic
limit.

Hall conductance: For the plane Laughlin defines the Hall conductance as the
charge transported to infinity by increasing the piercing flux by 27. In the present
context the charge can be transported to infinity along any of the r cusps, and
moreover, by Dirac quantization, the piercing flux can not be varied independently.
We therefore define the j-th Hall conductance as the charge (); transported to
infinity along the j-th cusp, increasing ¢y by 27 along the path ¢o+¢; = const. All
these r Hall conductances turn out to be identical. Unfortunately, since equations
(10, 11) hold for ¢9 = 0, we can not directly follow the charge transport along the
path ¢g + ¢; = const. To compute the charge transport we therefore deform the
path: First, the ¢ increase is compensated by an increase in B by 27 /area. This
changes the degeneracy of all Landau levels by one. Then B decreases to its original
value at the expense of the j-th cusp flux. This sends one particle per Landau level
to infinity along the j-th cusp, while the Hamiltonian returns to its initial form up
to unitary equivalence. We see that the Hall conductance of each Landau level (for
non interacting electrons) is unity, for all leaky tori, if the magnetic field is large
enough, i.e. B > 1.

These results for the Hall conductances generalize what one knows for Landau
levels in the plane where, interestingly enough, the condition on the strength of B
does not enter [11].

The energy and degeneracies are independent of the fluxes through any of the
handles, and so is Dirac quantization. It follows that manipulating handle fluxes
only does not transport any charge from infinity even if the cusps are open. For a
proof of (10) via supersymmetric arguments we refer to the classical paper of [16].
We shall now briefly outline a derivation of (11).

We remark that both the Dirac quantization condition and the formula for
the degeneracy are due to Petersson, and go back to 1938! His proof of the degener-
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acy formula is based on the Riemann-Roch theorem. Alternatively the degeneracy
can be derived from the Atiyah-Patodi- Singer index theorem [2]. The basic tool
is Maass supersymmetry which identifies the ground state degeneracy with an in-
dex which can be computed from the small time asymptotics of the heat kernel.
Because of the punctures the manifold is non-compact, and one needs to compute
corrections to the heat kernel from the boundaries. Like most higher order correc-
tions to the heat kernel, this is a computational effort. The boundary terms lead
to the flux dependent terms in equation (11) (the handle fluxes drop because they
are not boundary terms). The fluxes may be thought of as a 1-dimensional version
of the 3-dimensional 7-invariant for the signature [2]. In this way the degeneracy
formula can be generalized to operators with a piercing flux ¢y at some point
2o € M on a manifold of nonconstant negative curvature, as long as the magnetic
field stays constant (see [15] for the basic idea).

Finally we remark that there are additional (229) interesting adiabatic trans-
port coefficients associated with transport of charges around the handles due to the
fluxes through the handles. Such transport coefficients are related to first Chern
classes [19].

;From the spectral results in this paper it follows that, since variation of
the handle fluxes never gives level crossing, all these first Chern classes as well
as higher Chern classes are constant on the moduli space. Using the Schottky
uniformization and a deformation argument, they can actually be computed and

turn out to be 1 (for ”intersecting” fluxes) or 0 (for "nonintersecting” fluxes), see
[4].
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Framework and Results of
Stochastic Spectral Analysis

Michael Demuth and Jan van Casteren

Abstract
The framework of stochastic spectral analysis is explained. The central
and initial magnitude is the transition density function in a Hausdorff space.
Free and perturbed Feller operators are introduced. Spectral theoretical re-
sults can be obtained by compactness, continuity in Kato-Feller norms, semi-
classical and large coupling estimates. A collection of results illustrates each
possibility.

1 The framework of stochastic spectral analysis

The centre of this theory is a function
p:(0,00) x Ex E— [0,00)

(E - second countable locally compact Hausdorff space). This function has differ-
ent names depending on the field of mathematics which is studied. In stochastic
analysis it is a transition density function of a Markov process, in the theory of
partial differential equations it is called fundamental solution. In operator theory
it is an integral kernel of a semigroup. The following scheme shows that p(t, z,y),
t € (0,00),z,y € E, is the main link between operator theory and stochastic anal-
ysis. The consequence is that one can use the theory of stochastic processes to
study the spectral behaviour of large classes of operators. On the other hand it di-
rects the interest in the theory of Markov processes to spectral analytic properties
of their generators.

Of course the whole theory is only interesting if p(¢, z,y) can not be estimated
by the Wiener density. On the other hand the assumptions on p(t,z,y) have to
admit the use of stochastic analysis. For that we (Demuth, van Casteren, 1989 and
1992) established the following Basic Assumptions on Stochastic Spectral Analysis,
shortly denoted as BASSA:

BASSA
1.Ezistence and Symmetry

Let (E,€) be a second countable locally compact Hausdorff space with Borel
field £. A non-negative Radon measure is assumed on E and denoted by dx. Let p
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be a continuous function mapping (0,00) x E X E — [0,00) with

/p(t,x,y)dyél,
A

t>0,z€ E,ACE and

/ p(s,z, u) p(t, u, y) du = p(s + ¢, 2,y)
E
Moreover p is assumed to be symmetric, i.e.

p(t,z,y) = p(t,y,z)

for all t>0 and all z, y € E.

2. Continuity

Let Coo be the set of continuous functions vanishing at infinity. For any f € Cy
and any
x €F we assume

timy [ 1) p(t.2,8) dy = F(o)

3. Feller property
For any f € Co we assume that the function

au—»/f p(t,z,y)dy € C(E)

Under these assumptions exists a strong Markov process (Ry,Q, F, Pr,w(t))
with the following properties:
The one-dimensional distribution is

Pe(ult) € B) = [ plt.ay)dy
B
t > 0, B Borel subset of E. Its sample paths are Pr-almost surely right continuous
and possess Pp-almost surely left hand limits in E on their lifetime, and they start

in w(0) = z. The free Feller operator K is then the L?-generator of the Feller
semigroup determined by p(t,z,y), i.e

(50 f)(z) = Eu{ f(w(t)} = /tzy dy

and the free resolvents are given by

(o + a0 i) = | " e B, {flw(s))) ds
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where a is strictly positive. The class of free Feller operators contains a vari-
ety of operators: second order elliptic differential operators with variable un-
bounded coeflicients, Laplace Beltrami operators on locally finite Riemannian
manifolds, pseudo-differential operators, relativistic Hamiltonians of quantum me-
chanics. Feller operators are free Feller operators together with a regular or singular
perturbation. They can be introduced naturally by studying the properties of

Eo{e™ o VOO )} = (Py(t)f)(2)

where V is a real-valued function on E. Py(t) is a strongly continuous, quasi-
bounded semigroup on L?(E) with the selfadjoint generator Ko+V if V is a Kato-
Feller potential, i.e. if V =V, — V_ satisfies

lim sup / ds Ex{V._(1(s)) + x5 (w(s)Vs (w(s)))} = 0

T x

where B is a compact subset of E. Moreover, Py (t) is an integral operator and its
kernel has the explicit representation

(e—t(Ko-i—V))( Ey t{e fo w(s))ds}

where E¥*{} is the conditional Feller expectation. Instead of finite V; one can
also include infinitely high parts of V. Let Vi (x) = 1p(x)3 where I' is some closed
subset of E; § is a positive parameter tending to infinity. Let St = Sp(w) be the
penetration time of w in T', i.e.

Sk = inf{r >0 / Ir(w(s))ds > 0}
0
Then

Eofe Jo V@O (0 515 1) fuw(t))

restricted to L2(X), ¥ = E\T, is a Feller semigroup. Its generator is denoted
by (Ko+V-)g. Alltogether we have the following integral kernel of regularly and
singularly perturbed Feller semigroups:

i 13
(e—t(KoJrV.)z)(x,y) — Eg,t {e_fo V_(w(S))ds,SF > t)
and

S—ﬁlin;o e—t(Ko-i-Vf-{-ﬁlI‘)f — e—t(Ko-i—V_)Ef

f € L*(Z). Coming back to our framework p(z,t,y), given by BASSA, determines
the free Feller semigroup, the class of free Feller operators, the corresponding
Markov process. The expectation of the process provides perturbations of Ky. In
all the cases the semigroups and resolvents are integral operators. Their kernels
have explicit representations in terms of conditional Feller measures.
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2 Principle spectral theoretical results

Assume always BASSA, two Kato-Feller potentials V and W, and the singularity
region I' as described above. Then there are several possibilities to study the
spectral data of the Feller operators determined by the investigation of resolvent
or semigroup differences.

Compactness: It is possible to find conditions on p, V, W or I' such that the
differences

e~ tKo+V) _ —t(Ko+W) ’

(Ko+V +a)7! — (Kg4+W +a)7!,

Je—tKo+V) _ e—t(Ko+V)zJ’

J(Ko+V +a)7! — (Ko +W + a)5'J

(where J is defined by Jf := f 15, ¥ = E\I', T singularity region) are trace class,
Hilbert-Schmidt, or compact operators. The conditions link always the density
function p(t,z,y) with V, W, or I. In order to verify these conditions one needs
more information on p. Very often it is sufficient to have L'-L° smoothing, i.e.

supp(t,z,y) < 0o,
z,y

Moreover it is often very useful that the perturbed kernels satisfy

KOV (g y) < cet pA(t,2,y) sup pA(tz,y)
z,y€FE

Examples of results are given in the next section.

Continuity in V: For any Kato-Feller potential the Kato-Feller norm

1
Wl = sup [ ds BV (w(o))

exists. Then the resolvent difference for regular resolvent values a, a large enough,
can be estimated by this Kato-Feller-norm

(Ko +V +a)™" — (Ko+W+a)7'|| < c|lV - Wlikr

For applications it is important that we treat here the operator norm. That can be
used to study also the behaviour of these resolvents in the limiting absorption case.
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Let ¢ be a nonvanishing continuous function mapping E into R} with ¢! < 1.
For special real positive values A it turns out that

sup || (Ko +V — A +ie) ! — (Ko4+W — A +ie) !
€€[0,1]
< e[ (V=-W)elkr -

Again the operator norm (in weighted L2-spaces) is studied. That implies conse-
quences for any spectral property depending on the resolvents near the real axis.

Semiclassical limits: As explained in section 1 one has explicit representations
for the kernels of the semigroups e~*%0+V) That remains true if we introduce
a parameter k%, ie. if we study generators of the form A2 Ky + V. For certain
potentials the behaviour of

e—t(h2 Ko+V) _ e—t(h2 Ko+ W)
for small #2 can be studied.

Large coupling behaviour: The singularly perturbed semigroup e~*(¥o +Vo)s
was obtained by limits of semigroups the generators of which have finite potential
heights

e~ t(Ko+V_+081r)

The operator resolvent norm is
I J(Ko+V- + B1r)™! — (Ko +V)s +a)7 1 || = f(B)

f(B) is mainly determined by

1
sup [Ez {e"ﬁ Jo 1 wnds g 1}}

TED

where Sr is the penetration time of I'. For certain boundaries § " the last term
can be estimated uniformly in x.

3 Collection of results

In order to illustrate the kind of conditions typical in stochastic spectral analysis we
collect some results concerning the principles mentioned in the preceding section.
We always assume BASSA, Kato-Feller potentials and closed singularity regions
I'. Proofs are omitted. They are given in the articles referred. Hints are not given
because it seems to be unmodest to mention always our names.
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Compactness

Proposition 1 : The semigroup difference

e*t(Ko+V) — ¢ tKo
is a Hilbert-Schmidt-operator if
sup p(t,z,y) < oo
x7y

and if

/02td)\)\/dx/dy|\/(g;)||V(y)]p(>\’x’y) < o

Proposition 2 : The resolvent difference
(Ko4+V+a)™t — (Ko+a)™!

is a trace class operator if

oo A
/ d)\)\e——az\/dyEg,/\{e* fo V(w(s)) ds}IV(y)I < 00
0

Proposition 3 : For singular pertubations the difference

e*t(KO)E\F - e—'tKO
is Hilbert-Schmidt if

sup p(t, z,y) < oo
z"y
and if
/ dz [Pe{Sr < b w(0) = 2)]? < o0
The singular semigroup difference is a trace class operator if
/dgc (Pr{St < ¢ ,w(0) = s}/ < 0

(see also Stollmann 1992).
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Continuity in V

Proposition 4 : Kq+V and Ko+W are selfadjoint operators in the Hilbert space
L%(E). Let Ev(.), Ew(.) denote its spectral measures. Let ¢ be a non-vanishing
Borel-function (typically

o(x) = (1+|z|*)*, a >0). Let

(Ko +a) " |o’](2) < clo(a)f?
for all x € E. For one of the potentials, take V, we assume
sup [l (Ko+V + A +i0) 1o < 00
AcA
where A = (a, B) is an interval in Ry, o, B no eigenvalues of Ko+V or Ko+W.

Let |(V — W)p?||kr be sufficiently small, such that the last estimate holds also
for Ko+W . Then for Ay € A we get

H“"_l [dE;/)\()\) B dE;;\()\)} -

< ciroa) |V =W)e?||

A=Xg

The constant c(y,,q) can be estimated quantitatively.

Proposition 5 : Let V and W be Kato-Feller potentials in L'(E). Assume

o0
/ dA de”™ supp(\, z, 1) < oo.
0 T
Then the wave operators

Q1 (Ko4V, Kp) := s— lim eKotV)e—tKop (K)

t—+too

and Q4 (Ko+W, Ko) ezist. (Py.(Ko)-projection operator onto the absolutely con-
tinuous subspace of Ky). Define the scattering operator by

Sv = Q4 (Ko+V, Ko)2-(Ko+V, Ko)

Both Sy and Sy commutes with Kq, providing that the corresponding scattering
matrices Sy (), Sw(A) are well defined. Assume that for some Ao

Ve Y (Kot W — Xo — i0) Yo~ Y|| < 1

Let sup, |p(z)V(z)| < 0o and sup, |p(z)W(z)| < co. The operator norm of the
scattering matrices is a norm in the fiber of the spectral resolution of the absolutely
continuous subspace of Ky. This norm can be estimated as

1SV (X0) = Sw(Aa)ll :< e(Xo) [|(V — W)SOQHKF
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Semiclassical limits

Proposition 6 : Let B be a compact set in E and (h2Ko+V ) g the Feller operator
with Dirichlet boundary conditions on 6B. Assume positive V such that

V=Vigr+Vlir

Vir 21

I' C B, i.e. V is larger than a constant v on I'. Let 2 be the ground state of
(h?Ky +V)p, i.e.

(Ko + V)p tn2)(z) = Ep2tope(x)

Let sup,, , p(t, z,y) < 00 and Eyz = h2E. Then

|¢h2 (:E)| < EE E${e_h*2’7 Tl,r(w)}

where Ty p(w) := meas{s,s < t,w(s) € I'} is the spending time of the trajectory w
in L. If we consider x in a subset I' C T with dist(I', B\I') > r, a uniform estimate
is possible:

[nz (z)] < €F Bo{e™h "7 Tuam (@)}

where B(r) is a ball of radius r with centre in the origin. The right hand side tends
to zero as h — 0. A rate of convergence can be given for special K.

Large coupling limits

Proposition 7 : Let V = 0 and compare Kz = Ko + flr with (Ko)xs, £ = E\I'
for large parameters 8. Denote again Jf = f 1s. Then

||Je_tK" _ e—t(Ko)EJ” < sup Ex{e_,aTt,l"’Tt’F > 0}
€D

(T:r is the spending time defined in Proposition 6)

Remark: To estimate the Laplace transform of the spending time (or occupation
time) is a difficult problem. If Ko = —A in L?(R") it is done recently by De-
muth, Kirsch, Mc Gillivray (1993)and explained in another contribution of these
proceedings.
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Occupation time asymptotics with an application
to the decay of eigenfunctions

Michael Demuth, W. Kirsch and 1. McGillivray

1 Main results

We aim to study the large coupling limit for the difference of Schrodinger semi-
groups with a view to an application in spectral theory, concerning the behaviour
of eigenfunctions in special Dirichlet problems.

We start by detailing our set-up. We are interested in perturbed operators Hy, of
the positive Laplacian Hy := —%A acting in L? (Rd), d > 2 of the form

HM Z=H0+V+MU

where V is a uniformly bounded potential and U = 1y for I a closed subset of
R4, called the singularity region, and M is an arbitrary positive parameter. Hy,
¥ := R% — T denotes the operator Hy + V in L?(Z,dz) with Dirichlet boundary
conditions on 0%. We study the asymptotic behaviour of the semigroup difference

|| Je M — et ]|, ¢ >0

as M — oo. Here J is restriction J : L2 (]Rd;dx) — L%*(%,dz). It turns out
that these asymptotics are linked to the geometry of the singularity region T.
We assume that I' is an uniform Lipschitz set, a condition slightly stronger than
just Lipschitz. An important quantity in our estimates will be the so called cone
constant. To explain this, a cone C in R? will be a set of the form

C:= {xERd:(az,e]) >pllz|l}, —1<p<1

where <, > is the inner product in R? and e; is the unit vector in the z; direction.
Let F be the closed subset of S9!, the unit sphere centered at the origin, given
by F := C NS ! The cone constant is defined by

M (FO)

A=A(C) = (0 + 20 (FO)7 10

where v = % —1and X\ (F C) is the lowest eigenvalue of the Laplace-Beltrami
operator -—%A on FC := §4-1 — F with Dirichlet boundary conditions on OF€.
Given any uniform Lipschitz set in our sense, there exists C = Cj,; such that
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¥y € 0T I rigid transformation S, of R
such that S, C B(y,r)NT and S,(0) =y

Our main result is

Theorem. Suppose that T is a uniform Lipschitz set and that A = A(C) <
1/2, C = Cint. Then for each 0< v< 1, t > 0 there exists a constant c,(t) such
that

| JemtHm — emtH2 g|| < e, ()M, Mlarge

We also have upper bounds for the resolvent differences of the same form. Un-
der slightly different assumptions we have obtained similar lower bounds on the
semigroup and resolvent differences.

2 Occupation time asymptotics

The key to these results lies in certain Brownian motion estimates. We have the
following theorem, interesting in its own right.

Theorem. Let C be a cone and
Tic:=|{s€[0,t]: Xs € C}|

the total occupation time up to time t in C. Then there exist constants c,c’ > 0
such that

logMt
Mt

A
c’(Mt)_A < Ege ™ MTie < ¢ ( ) , A= A(C)

for MT > e.
This result rests on the next Lemma, whose proof we sketch to give the flavour of
the methods used in the article.

Lemma. Let C be as above. Then
logt\*
Py (Ti,c <1) SC<Tg) ,t>e
Proof. Let v € S¥ ' Nint C. Then for each a > 0 there is a cube @, of side-length
Aq (A independent of a) centered at the origin such that
N+ Qe CC—{2av+C), Vn€av+0C
Write

Po(Tyc £1) =Py (Ty,oc < 1,000 <t) + Po (T}, < 1,09 > 1)
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when o, is the first hitting time of av + C. Since each tajectory in the first RHS
term leaves X, + Q. after o,, before o, + 1

2 2 2 A
spo(cf(czz)s1>+Po<a2a>t)5ce-Aa/2+c(“7) |

the last line due to an estimate in [2] and standard Brownian motion estimates.
Choosing a® = 2¢logt leads to the result. O

3 Applications to spectral theory

We are able to get estimates on the limiting absorption principle for the difference
of Schrédinger and Dirichlet operators, but prefer here to describe an application
to the decay of eigenfunctions. Let B be an open ball in R¢, d > 2 centered at the
origin and C be a cone. Let Hys be the operator Hys 1= —%A 4+ Mle, M > 0in
L?(B) with Dirichlet boundary conditions on B. Then H ) has discrete spectrum.
If & is a normalized L? eigenvector of Hy; we have

logM
M

|<I>M(O)|§c< >A, M > e A=A(C)
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Holomorphic semigroups and
Schrodinger equations

El Maati Ouhabaz

1 LP? - holomorphy

We report on some recent results in [Ou] on holomorphy of semigroups. We also
discuss the application of these results to the study of the general Schrédinger equa-

: u(t) = (A=V)u n
tions of the type { w0) = =z on LP (R™) 1 < p < o0, or Cy (]RN).

Here V = V. — V_ is a potential satisfying V. € L}, (R"Y) and V_ is in the Kato
class.

Let Q be an open set of RN (with the Lebesgue measure) and consider a self-
adjoint semigroup T' = (T(t):>0) on L?(Q) with generator A. It is known that T is
a bounded holomorphic semigroup of angle % i.e. T has an extension to the domain
D = {z;Rez > 0} s.t.

1.T(z+2)=T()T(2), =z 2 €D

2. z — T(2) is holomorphic from D to £ (L%(2)).

3. lim, 0 ,ep T(2)f = f for all f € L*(Q)

4. For each 6 € (0, %) there exists a constant M (depending on 6) s.t.

IT(2)| g2y <M

for all z € £() = {X € C, |arg)| < 6}

Assume now that T interpolates on LP(Q2)1 < p < oo, that is, there exists
for each p , a strongly continuous semigroup T, on LP(Q) with T, = T and sat-
isfying T,(t)f = Ta(t)f (¢t > 0) for f € LP(Q) N L?(R). It follows from the Stein
interpolation theorem that for 1 < p < oo the semigroup 7}, is holomorphic in the

sector 0
{z; larg z| < g (1— L—D——l>}

However, the case p = 1 is more delicate. The following result is shown in [Ou].

Theorem 1.1 Assume that T has a Gaussian estimate i.e. there exist positive
constants M and b s.t.

(E) IT@)f] < MG@t)|f| for 0<t<1, feL*Q)
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where G = (G(1));»¢ is the Gaussian semigroup on L? (RN). Then there exists
w > 0 s.t. the semigroup e~ T}, is bounded holomorphic with angle 3 on LP(Q2)
1<p < o0.

Using the Gaussian estimates developed recently by Davies [Da](chap 3) for uni-
formly elliptic operators, this result is applicable in the following framework.

Assume that A is the associated operator with the following symmetric form

N
a(u,v) = Z /QaijDiuDjf)d:v+/QVu17da:

ij=1

with a;; = aj; € L>®(Q) satisfying the ellipticity condition Y a;;(2)&€; > c[¢|?
a.e.z € Qandall £ = (&,...,n) € CV. The potential V is positive and in L} ().
The domain of the form a is given by D(a) = W N {u € L*(Q), [, V|u|® < o0},
where W is a closed subspace of the Sobolev space H'(2) which contains Hj(Q2).
We can apply Theorem 1.1 in the following situations:

1. W = H}(Q) for  any open set of RN (this corresponds to the Dirichlet
boundary conditions).

2. W satisfies the two following properties

* 4 € W implies |u| € W
*IfO0<u<v,veW andu€ H(Q) thenu e W.

In this case we assume that Q has the extension property (W = H!({2) corresponds
to the Neumann boundary conditions).

If the boundary 99 of (2 is regular, one can take as example of situation 2, W =
{ue HY(Q); wr =0}. T is a closed set of Q. This corresponds to the mixed
boundary conditions, Dirichlet on I' and Neumann on 9Q\I'. We recall that if the
coefficients a;; are smooth, bounded and of class C?, it was shown by Amann
[Am] that A generates a holomorphic semigroup on L!(f2). The result has been
extended by Arendt and Batty [Ar.Ba] to arbitrary open set Q2 under the Dirichlet
boundary conditions. We recall that in these works [Am] and [Ar.Ba] it is shown
that the holomorphy on L!(f2) holds with some ”small” angle. More precisely, it
is shown that the estimate

AR, A)ll ez < M 1)

holds for Re A > 0. Here R()\, A) is the resolvent of A in L!(f2).
Our result gives that the estimate (1) holds in each sector
S (0+Z) :={zlargz| <0+ Z} forall § € (0,%).
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2 Cy-holomorphy

We denote by Cy(€2) the space of continuous functions which vanish at infinity of
2. We suppose that the assumptions of Theoreml.1 are satisfied and T acts as a
semigroup on Co(€2) i.e. there exists a strongly continuous semigroup Ty on Co(2)
s.t. To(t)f = T(t)f for t >0 and f € L%(Q) N Co(Q). We have

Theorem 2.1 The semigroup e~ Ty is bounded holomorphic with angle 5.

To show this result one has to show that the estimate |[AR(), Ao)llz(co()) < M

holds in each sector ) (0 + %), for all 6 € (0, %) Here Ap is the generator of the
semigroup e~ “'Ty. The desired estimate follows by a duality argument and the
result in L!((Q2).

Corollary 2.1 Let Q be any open set of RN and assume that there exists a real-
ization Ag of the Laplacian A s.t. Ay is a generator of a semigroup Ty on Co(2).
Then Ty is bounded holomorphic with angle 7.
Moreover, D (Ag) = {u € Co(2), Au € Cp(Q)}.

This corollary follows immediatly from Theorem 2.1 if we show that
To(W)f =T@®)f feL*(QNCo(Q) (t20) (2)

where T is the semigroup generated on L2(2) by the Dirichlet Laplacian Ap. The
equality (2) is easy if 2 is bounded and regular. Now if  is arbitrary we take a
sequence (€2, ),, of bounded and regular open sets s.t. Q, C Quy1 and LnJQn =Q.
We show that if f € C*°(Q) with compact support, the solution u,, of (A—A)u = f

on {2, converges to the solution of (A—Ag)u = f and to the solution of (A\—-Ap)v =
f. This gives (2)

3 The general Schrodinger equation

We consider the general Schrédinger equation

(SE) {1;’((5; z Z,'E(A—V)u teR

on LP (RM),1 < p < oo. Here V =V, —V_, V; € L} (R") and V_ is in the
Kato class.

On L% (RV) th equation (SE) is well-posed for all z € D(A — V) by the Stone’s
theorem. But on LP (]RN ) for p # 2 it is known that ¢A is not a generator of a
strongly continuous semigroup and then the equation (SE) is not easy in these
spaces. We have the following
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Theorem 3.1 (see [B.dL] and [E.M]) let E be a Banach space. Assume that A
generates a bounded holomorphic semigroup of angle 3 on E. Assume that

T lece) < (3 ®)

for all z, Rez > 0. Here C' and r are positive constants. Then the evolution
equation

u(t) = iAu teR

u(0) = =z
is well posed for x € D(AY) for all v > r.
We apply this result to the operator A=A —V on L? (]RN), 1<p<oo(p#2).
It is known by the Feyman-Kac formula that the semigroup genereted by A has
a Gaussian estimate (E) (see for example [ALB.M] and [D.VC]. In [ALB.M] it is
shown that Gaussian estimates hold for A—p with 4 = py —p— is a certain regular
measure). It follows by theorem 1.1 that a —w is a generator of a bounded holo-
morphic semigroup with angle % on LP (]RN ), 1 < p < 00. Moreover, the estimate
(3) holds in L' (RY) with 7 = N (see[Ou]). By the Riesz-Thorin interpolation
theorem, the estimate (3) holds in L? (RV) with r = N <% - 1), 1<p<2
We then use Theorem 1.1, Theorem 3.1 and these estimates to conclude that
the equation (SE) has a unique classical solution in LP (RN ) forz € D (Ag),
v>N (% - 1), where A, = A — V considered in LP (RN). For p > 2 we use the

duality. Finally, these arguments works also in Cp (RN ) if we show that A — V
generates a semigroup on Cy (RN )
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Some Problems on Submarkovian Semigroups

V. A. Liskevich*and Yu. A. Semenov

Abstract
We present a perturbation result for generators of submarkovian semi-
groups acting on LP. It characterizes the domain of the generator of a sub-
markovian semigroup by means of the domain of the quadratic form. For
the particular case of submarkovian perturbations the well known KLMN-
theorem is extended to the LP-spaces.

The object of this note is a generator of a submarkovian semigroup in LP-
space. We characterize the domain of the generator by means of the domain of its
quadratic form in L2. The main result concerns the non-symmetric form-bounded
perturbations of the generator of the submarkovian semigroup. Under the assump-
tion of form boundedness the form sum can be correctly defined by virtue of the
well known KLMN- theorem. It is shown that this operator is the generator of a
Co-semigroup in LP, where p depends on form bounds only. The domain of the
perturbed generator is characterized and (LP, L9)-estimates of the resolvent are
obtained.

Let (M,u) be a measurable space with the o-finite measure p. We use
the following notations: LP = LP(M,u), | - |lp is the norm in LP, (f,g) =

Jur f(x)g(x)du(x), L(LP,L9) is the space of bounded operators acting from
LP into L9.

Let A > 0 be the self-adjoint operator acting in L2(M, u) with the domain
D(A) and the form-domain Q(A) = D(A?). For f € Q(A) define t4[f] := || A% f|3.
Definition. We say that A is a generator of a submarkovian semigroup (submarko-

vian generator) if the following conditions are satisfied:
(i) A is a non-negative self-adjoint operator in L?.
(i) fle™*flloo < Nfllw > V¥ F €L NL™.
(iif) 0 < f € L? = e * f > 0 almost everywhere.

Now let A be a submarkovian generator. We can define the operator A, as a
generator of the contraction semigroup in LP:

(eTML2 N LIPS, 1» = et (the closure in LP).

T!, =: (e7*1)* (x denotes the adjoint operator).

*Recipient of a Dov Biegun Postdoctoral Fellowship
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—A, we denote the generator of the semigroup T}, so T = e~*4» for all ¢ > 0
and p € [1,00). Since T, ! is a contraction the operator A, is accretlve w1th respect
to the semi-inner product [u,v] = (u, [v[P~Lsgn v)||v]|2~ i in LP:

Re [Apu,u] > 0for all u € D(Ap) and [Apu,u] > 0 for all u € D(A,)NRe LP.

The following theorem makes more precise this property for submarkovian
generators.

Theorem 1. Let f € D(A,) for some p € (1,00). Then f, := f|f|# € Q(A),
and

2L 05] < Re (A fsgn £ 1P < sp)talfy) (1)

D
where »(p) = sup{(l + %)(l-}-s )(1+52)72; s€(0,1)}
lp—2|

L
7

\Im (Apf,sgn f |fIP71)] < ﬁRe (Apf,sgn fIfIP7T) (2)
If f € D(Ap) N LE, then f% € Q(A), and
P talf8] < (Apf, f770) < talff]. (3)

Remark. (3) is the Stroock—Varopoulos inequality [S],[V],[CKS]. (1) with f = Re f
has been proved in [LSe]. From (2) the analyticity of the semigroup T} follows (see
[G]). (2) improves, in particular, the sector of analyticity which can be obtained
from Stein’s interpolation theorem [St].

Outline of the proof. Let P(t,z,G) = (TL1g)(z), G € M, where 1¢ is
the characteristic function of the set G. Then P(t,z,-) is finitely additive on M,
P(t,z,M) < 1and T% f(z) = [ P(t,z,dy)f(y), Vf € L™ (see, e.g. [D]). Using
these properties of P(t x G) and the following elementary inequalities

p—1

—(s5 —tEY < (s —t)(sPt —tP7h) < (sF - £B)2
Y4

4

4P
p?

(¥ +¢5)° < (s +8)(sP ! +8771) < () (5% +15)?
1 e
[sP + tF + 2b(st)2] < sP + ¢ + b(stP ! +¢sP7Y), Vb e [-1,1]

2
|sin 6] |stP~! —tsP7!| < p—2| ( P4 tP — | cosf|(st)?),

2vp—
Vp € (1,00), V0 € R!

P+ 1P + b(stP ™+ £sP7Y) < xe(p)[sP + P + 2b(st) %], Vp € (1,00), Vb € [1,1]

(for all 0 < s, < 00 and all p € [1,00)) one can prove Yf € LP

4pp; (- 13) fpr fp) < Re (1= Tp)f,sgn f-1fP71) < se(p)((1 = T3) fp, fp),

4pp_21<(1 —THFE R < (U-T)A 77 < (A -T)FE £5) vielt
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Since Q(A) = {g € L* : sup;0 ${(1 ~ T3)g, g) < oo} and limy o 7((1 — T§)g, 9) =
talgl, Vg€ Q(A) the statements (1) and (3) follow from the spectral theorem for
self-adjoint operators. (2) will follow from the inequality

(I (L= f,sqn £+ 1F7)1 < S22 Re (1~ T)f,sqn £ - ().
24/p

O
Definition. We say that operator B is form-bounded relatively to A and write

1

B € PKg(A) if B is a self-adjoint operator in L2, D(|B|7) > D(Az) = Q(A) and

I 1BIZ¢l2 < BllAZ o3 +cs(B)llel, V¢ € D(A?)
for some G € (0,1), cp(B) > 0.

Theorem 2. Let A, B, C be submarkovian generators. Suppose that B € PKj, (A)
for some 3; € (0,1) and C € PKg, (A) for some 8, > 0. Let t; and ¢5 be the roots of
the equation (31 + 2'\‘1/;2?'1@)%@) = 4‘1;—21, 1<g<oo. !Let Hy=H = A-B+iC
be form-sum, i := /—1. Then for every p € [t;,t,] and t > 0

Y

) _ #(p){es (B1)+ 5222k oo (B2)}
) le=tH fll, < PTG OB g pepa e

and consequently this defines the family of operators {Hp}+,<p<t, which generate
quasi-contraction Cy-semigroups.

i) H,> A, — B, +iC,

i14) the semigroup e *#7 is holomorphic with respect to ¢ of the angle

0, = g —arctanil, 0< 0 < g, p € (t1,t2), where

_ %(P)[%(l + 1) + Ba)
425 — (B + %@)K(P)

iv) Vp € (t1,ts), Vf € D(Hp) fp=fIfI"T €Q(A) and

Wﬂ
zﬁ_

g e () + eI,

IThe roots always exist and if ¢t; € (1,2) then tp = t] € (2,00). This follows from the
la—2| _ la'-2|

Vel T ot

Re (Hyf,|fP " sgn f) > (4F—— = (8 + )<(p) | A% f, 13

abovementioned properties of 3(p) and from
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Proof. Let B, and C,, be the Yosida approximations of B, and Cj,. It is enough
to prove i} with B,, instead of B and with C,, instead of C, i.e. without loss we
can assume that B,C € L£(L?) N L(LP). Since Re (L, u|u|p" )= pdt||u||p then

———||u||p = Re ((A, — Bp + iCp)u, ulu|’~ 2)

= Re {Ayu, uluP~) — Re (Byu,ulul?"2) — Im (Cyu, ululP~2)
lp—2| 1

u € D(Ap). (We used consecutively (1) and (2)). To finish the proof of i) it remains
only to use the conditions B € PKp, and C € PKg,. The proof of ii) is standard.
In order to prove iii) let us estimate [Im (Hpu, sgn u-|u[P~')| by Re (Hyu, sgn u-

|ulP~1), where H, = H, + [ for an appropriate [ which will be chosen below. As
before we assume B and C to be bounded operators in L? and in LP. We have

p—1 1 1
> 4*pT||A2Up||§ — #(p)|| B3 up |5 -

i — 1
|Im (Hpu, sgn - [uf™1)] < Kal| AZwp|l3 + Ay fJull?,

where K1 = (p) (G222 (14 81) + o), A1 = #(p)(L=ecn(B1) + co(B2)),
Re (Hyu,sgn u- [ul™") 2 K| Adup||3 + Allull3,

where K = 4251 — (8 + 4222.8,)3(p), A =1 - sp)(cn(B1) + s2kcc(Br)) =
[ — As.
Setting [ = Ay + K%Al, we obtain

K1

[Tm. (Hyu sgn w-JuP )] < 2 Re (Apu, sgn - ™). (4)

In order to complete the proof of iii) it remains only to pass to the limit in
(4). Let Hy(n,m) := Ay — Bpp + iCpm, and uy , = exp(—tHp(n,m))f, u =
exp(—tH,)f, f € L*N LP. Using the general approximation theorem [K] it is not
difficult to check that w, », {; u

Furthermore by virtue of (4) the semigroups exp(—tH,(n, m)) are holomorphic and
uniformly bounded with respect to m,n in the sector S, = {t;|argt| < 8, V0 €
(0,61)}. By (4) un,m converges pointwise on the positive semiaxis. Consequently
by the Vitali convergence theorem u is holomorphic in S, and u(z) = s — LP —
imn,m— o0 tn,m(2), 2 € Sp. In particular u'(2) = s — LP —limy, m— 00 Up, 1 (2), 2 €
S,, and H,(n,m)uy, zs;; H,u. Moreover passing to a subsequence if required
we have gnm = SN Upm|tnm|P~t — g := sgn ululP~! pointwise p-a.e. and
gnmllp = Hun,mﬂg“l — lgllyy = ||u||g_1 by virtue of (4). Therefore g, 9
Thus, in (4) we can pass to the limit (n,m) — oo. ]
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Theorem 3. Let A and B be submarkovian generators. Suppose that
1) B € PKg(A) for some j € (0,1).
2) [Ifl13; < ¢ ta[f] for some j > 1 and all f € Q(A).

Let H = A-B and t(8),t'(3) be the corresponding roots of the equation 3s(q) =
4957}, 1 < ¢ < 0o. Then

(i) Hie My e L(IP,L9), 0=0,1,2,..., t>0

for arbitrary p € (¢(8),t'(8)) and q € [p, jt'(B)).
If in addition 1/p —1/g < 1/5' then

(i4) (I +H) " e £(IP,L9), Vi€ p(—H,).
Moreover if g € L2 N L¥'(® then

(i)l |+ H) Mgl 2 8]) S -5 s, s> exp ot

The proof is based on Theorem 2(iv) and on Chebyshev’s inequality.

Remarks.

1. Assumption 2) of Theorem 3 is an abstract version of Sobolev’s imbedding.
2. Statements (i) and (ii) of Theorem 3 are sharp in the following sense: simple
examples show that for arbitrary B € PKg(A) the imbedding (I+H) }[L'NL*>] C

Lj't/(ﬂ), [ € p(—H) fails. On the other hand, one can prove that if M = RY, du=

loc

dr, A=—-Aand B=V"~ € PKg(—A) N L¥?>(IR?) then
(1+ Hp) ™' € L(LP, LIV O), L e p(—Hy), p € (H(B),t'(B)).

The last leads to the conjecture that the estimate for the distribution function of
(I + H)™1g obtained in Theorem 3 can be improved (on #n’s).

References

[CKS] Carlen, E.A., Kusuoka, S. and Stroock, D.W., Upper bounds for symmetric
Markov transition functions, Ann. Inst. Henri Poincaré, 23, (1987), 245
287.

[G]  Goldstein, J., Semigroups of Linear Operators and Applications, Oxford
University Press, New York, 1985.

[K]  Kato, T., Perturbation theory for linear operators, Springer-Verlag, Berlin-
Heidelberg, 1966.



148 V. A. Liskevich and Yu. A. Semenov

[LSe] Liskevich, V.A. and Semenov, Yu. A., Some inequalities for submarkovian
generators and their applications to the perturbation theory, Proc. AMS,
to appear.

[St]  Stein, E.M., Topics in harmonic analysis related to Littlewood—Paley the-
ory, Princeton Univ. Press, Princeton, N.J. 1970.

[S] Stroock, D.W., An introduction to the theory of large deviations, Springer-
Verlag, New York, 1984.

[V]  Varopoulos, N. Th., Hardy-Littlewood theory for semigroups, J. Funct.
Anal., 63, 1985, 240-260.

V. A. Liskevich, Department of Mathematics, The Weizmann Institute of Science, Re-
hovot 76100, ISRAEL

Yu. A. Semenov, Department of Mathematics, Kiev Polytechnic Institute, Kiev 252056,
UKRAINE



Operator Theory:
Advances and Applications, Vol. 70
(© Birkh&user Verlag Basel

Smoothness Estimates and Uniqueness
for the Dirichlet Operator

V.A. Liskevich*

Abstract

We study the equation du/dt + Hu = 0, where H is the operator as-
sociated with Dirichlet form in IR?. Estimates of the first and the second
derivates of the solutions are obtained in LP-spaces with weight. The results
on strong uniqueness in L? are also given.

The object of this note is the Dirichlet operator associated with a Dirichlet
form on IR?. The theory of Dirichlet forms is of increasing interest because of its
relations to probability theory and quantum field theory (see. e.g. [ABR], [BK] and
references therein). We are interested here in smoothness estimates of solutions of
the parabolic equation dd—? +Hu = 0in LP, where H is a Dirichlet operator. In fact,
we obtain the estimates for the first and the second order derivatives of solutions
in LP for the approximating equations with smooth coeflicients. The main feature
of these estimates is that they do not depend on the smoothness of the coefficients
and on the dimension of IR%. Moreover, as examples show, they correctly reflect
the relationship between differential properties of solutions and LP-properties of
coefficients. We extend here the method and some of the results from [LS1]. The
results on strong uniqueness in L? are also given.

Let H be the operator in L? (IRd, pdx) associated with the closure of the form

H is the generator of a Markov semigroup.

We use the following notations: L = LP(IR, pdw) |-1l, is the normin L?,

= [re f(2)g(2)p(z)dz, 3, = S, V= ax , Cp is the set of all uni-

formly continuous bounded functions, Cp° is the set of all infinitely differentiable

bounded functions with all their derivatives. 8 = Vp/p is the logarithmic deriva-

tive of the measure pdx. We assume below that p > 0 almost everywhere and
[ pdz = 1, all functions are real-valued.

*Recipient of a Dov Biegun Postdoctoral Fellowship
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Theorem 1. Let || € L?(IR%, pdzx), 3/2<p< oo, B" € C,
A, =[-(V+ ﬂ")V[C{,’O]Eb_)Cb, u, = e tAnf fe cye, t20.
Then

t
/0 [IVunllzods < Cotl FIZZCNIB™ 1z + 1181125) + Coll FIZ NV Az,

t
/ 1Y (ViV5ua)?) 2 14ds < CotI FI2, (118" 125 + IBI11Z5 + 1)
O iy
+Cp(1+ I FIZNV Flllzp—2s e
where ¢ =2ifp>2andg=pif3/2<p<2.
Proof. Let us consider the problem

dun

o =(V+")Vu,, u,(0)=f

(the equality in L? D C). Taking the inner product of both sides with —(V; +
B wslwls ™!, where w = Vu,, |w| = (3, w?)l/z, lw|; = max{|w|,s}, s>
0, v+ 3= 2p after summing we have

1 d‘w‘ v—1 v—1
2( di s |wlg >+Is+(y_1)Js:_Zwiviwj’wjm‘s )
12y
n v— dun n v— 1
—(6" - w, |wl; ld_t> -(v=-1) Z(ﬁ cw, wi w2V ;| wls) (1)

j
(B w, [wl; (B~ B) - w),

where Iy = 3, (Viwy, [wly ™ Viwg), Js = 3 (Vj|wls, [w]s =1 V;|w]s).
From the following equality

dun du,, 1 dwl|?

SR = (5 - 8wl S - 5 (o

= 1) Y wl2 )

J

Jwl™

lewls™

we obtain
_dun 1 dw? 1 n vt
ols™ Bz 2O gy < 28 - 57 - whle T IR+ 0 - 12,
By virtue of the inequality |||'w|s ||2p < T, = (Jw|?, [wlytly, % + 1% =1,¥6§>0
we have
vt dun d wl y n
Ihuts™ o B o) < 267, 420,807 57— BlIE + 4w 1), (2)

dt
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Estimating the terms from the right-hand side of (1) and using (2) we arrive at

djwf?

(S ol ) + g, < 6T, + G TSI + NETlIE) v6>0.  (3)

Now using integration by parts and the original equation we have

Ts = —{un, lei“éu—"%(vﬂ)(um [wlfw: Viw]e) = (un, [wls (6 5")-w). (4)

dun "
[Cum, [l =) < 1115 (26T, +2C,6 218" = B3y + 4w — 1)*J,
dlw* b3y 2
—2A = lwlg >)+Z(Ts+s ), 6>0.

Choosing 6 = 1/16]| f||%, we rewrite the last inequality in the form

[{un, [w]s ™

—)I< T +4(v = DI fIl%Ts + Coll FIZI116™ = BllI5h

dlwl

1 b
8 AR ), Y20,

Using Holder’s inequality in the second term of the right-hand side of (4) we arrive
at

A " 5 d|w
T, < Gyl flI2Js + Coll FI221118 —ﬂ|||§$+1 — 8| fll2 (= i Jwls™h. (5)
Note that
! d|w|2 v—1 2 v—1 v—1 2 v—1
[l = Q- ol ) — (VA SV )

and (Jw|? — £ |w|2, |w|; ") > 0. From (3) and (5) after integration in ¢ we obtain

¢

| Tr < oA + NnIE) + Coar? .
6

v—1

IVS2 VAL,

+C|IFII IV FI? =

The last inequality holds Vs > 0 and admits passing to the limit s | 0. This proves
the first statement of the theorem. To prove the second statement note that for
0 < v < 1 from Holder’s inequality it follows that

I (Vo) 20 < B, 4 2027, 45000,

2%
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Setting s = || f||co and using (3) and (6) after integration we obtain the desired
inequality. For v > 1 note that from (3) it follows

d|w|2 v—1

> (Vawy, Vawy) < I < T+ Co([1B135 + 1187 11135) — (= lwli ™).
ihj
It remains only to integrate in ¢ and use (6) with s = 1. O

Remark. Passing to the limit 8” — (3 in L?? one can conclude that if 3 € L??
then Vu € L?” where u is the solution of the equation ‘;—7; + Hu=0.
Theorem 1 enables us to prove the following uniqueness result.

Theorem 2. Let 8 € L?. Then the operator (V(V + 8)[C(IRY))3,_, 1, is the
generator of a Cy-semigroup of contractions on LP.

Modifying the arguments from [LS2] one can prove the following perturbation
result.

Theorem 3. Let 3 € L?. Let V be a measurable function satisfying (V?) <
NVel2 + Cyllgl3, v € (0,1), Cy >0, VYo € CP(RY) and V € LP with
pE (ﬁ, ﬁ) Then the operator (V(V + ) — V[C@‘J(IRd));th is the

generator of a Cy-semigroup of quasicontractions on LP.
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Trace Ideal Properties of Perturbed
Dirichlet Semigroups

Peter Stollmann

Introduction

We study semigroup differences of the form

e—t(H+u) _ e—t(H+p+1/)’

where H is the generator of a regular Dirichlet form and u and v are suitable
measures. In the first section the appropriate classes of measures are introduced.
Moreover, we provide a list of examples which can be treated in the Dirichlet form
framework.

In the second section the above semigroup is investigated in terms of Hilbert—
Schmidt and trace class properties. It turns out that if the set on which v “lives”,
the so—called quasi—support, has finite capacity then the above semigroup difference
is Hilbert-Schmidt. A more restrictive condition on the quasi-support of v is
exhibited which implies that this difference is trace class.

1. Dirichlet forms plus measures

We consider trace ideal properties and their consequences in the framework of
regular Dirichlet forms, see [10]. In [13] the more general setting of quasi-regular
Dirichlet forms is described in detail; with minor changes, our results hold true
in this setting. To begin we briefly recollect some basic material concerning the
perturbation of Dirichlet forms by measures. Instead of reproducing all the defini-
tions we illustrate the scope of this setting by some examples. In this respect, the
monograph [6] is a good reference.

1.1. Examples. (1) On Ly(IR?) the form
boluso] = [ VuVods, Ding) = W3 ()

is a regular Dirichlet form.
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(2) More generally, forms of the type

blu,o] =3 / i3 (2)su(2)d;v(z)de

’i’ﬂj

with domain W,'*(Q) are regular Dirichlet forms for suitable ay;; see [6], Section
1.2,

(3) In the last example also Neumann boundary conditions can be included,
provided (2 has the extension property, see [1], p. 83f (in order that the form be
regular, one needs that C(f2) is dense in W2(Q)).

(4) If p: [0,00) X E x E — IR satisfies the basic assumptions of stochastic
spetral analysis, “BASSA”, then the generator of the associated semigroup corre-
sponds to a regular Dirichlet form on Ls(E). Thus our setting incorporates all the
examples listed in [7].

We consider measure perturbations of regular Dirichlet forms and refer the
reader to [2, 3, 14, 19, 21] where he can find more details as well as more relevant
literature. A recent investigation of spectral theoretic properties of —A + u can be
found in [4]; see also the article of J. Brasche in the present volume.

Let us mention one point which makes measure perturbations interesting:
They provide a convenient means of treating potentials and Dirichlet boundary
conditions simultaneously.

We recall that a regular Dirichlet form § with domain D defines a set—
function, the capacity, by

cap (K) = inf{h[u, u] + [lull* u € D,u > xx}

for compact K and regular extension to arbitrary sets. The right class for the
positive part of our perturbations is

Mp := {p: B — [0, 00]; u countably additive, u << cap},

the class of measures which do not carge sets of zero capacity. It is wellknown that

(b + p)[w, v] == hlu,v] + /aﬁdu

defines a closed form, where we write @ for the quasi—continuous representative of
u.

1.2. Examples. (1) If p = Vdx then h + 4 = h + V is the usual form sum.
(2) (Cf. [3]) The measure
004 (B) := 00 - cap(A N B) defines an element of Mj. It is clear that

D(h+004)={u € D;a=0q.e. on A} = Dy(A°).
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(3) For the classical Dirichlet form b, (see Example 1.1 (1)) and A = A4 it is
not hard to check that

D(bg + 004) = Wy?(A°),

so that hy + 004 is the form corresponding to the Dirichlet Laplacian on A€. For
more details on that we refer to [12, 9].

As negative parts of perturbations measures which satisfy a Kato condition
turn out to be especially well suited. This is due to the fact that the corresponding
semigroups still act on different L,—spaces. We fix a regular Dirichlet form § with
domain D on some Ly(X,m) and denote the corresponding operator by H. Let us
now briefly recall the extended Kato class, introduced in [19]. We denote

Sk = {p € My; (u; (H+ E)™") € Ly (X, m) = Loo(X,m)},

ce(p) = [(u, (H + E)™)l|oo,

c(u) := inf cg(p),

which generalizes the Kato class K of potentials. More precisely: V € K, implies
that Vdz € Sk with respect to the classical Dirichlet form b, and ¢(Vdz) = 0.
We refer to [2, 19] for details. In [19] it is in particular shown that each p~ € Sk
is form bunded with respect to h with bound ¢(u) so that p = p* —p=, pt € Mj,
u~ €S ke~ ) < 1 gives rise to a closed form b + . Due to the fact that u* may
be infinite this form is not necessarily densely defined, but we can associate a self
adjoint operator H + p in the Hilbert space D(f + u) which is of the form Ly(Y)
for a subset Y of X. We extend the semigroup e *##) by 0 to all of Ly(X) and
recall from [19] that it also acts on the spaces L,(X).

A simple way of defining a suitable notion of support for measures in My is
the following: A quasi-closed set X(v) is called quasi—support of v if

[‘)-+—OOV:h+OOE(V).

This definition from [17] is based on the characterization of closed lattice ideals
in [15] and extends the notion of quasi-support which was given for the smaller
class of smooth measures in [11]. It is easy to see that, for Radon measures, X(v) is
smaller than the usual support and that these sets need not be equal; the examples
in [21], Section 9 can be interpreted in this sense.
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2. Trace ideal properties of semigroup differences

Throughout this section we assume that § is a regular Dirichlet form with the
additional property that e *# : L; — L, is bounded. We write || - || g5 for the
Hilbert—Schmidt norm.

2.1. Theorem. Let pu*,v € My and p~ € Sk with cp)y<1/2. If
cap(X(v)) < oo then

le™ HH) — e~ HHH 1t 4 g < 2cap(T(v)) /2| H 2 T) 1 Ly — Ly

for allt > 0.

The proof goes essentially along the same lines as the proof of Theorem 1
in [16] and will be given in [5]. This Theorem can, in particular, be applied to
p=V €L, —K4and v = ocor in the setting of “BASSA”. As a consequence
concerning large coupling limits we have (see [17], Corollary 2.4)

2.2. Corollary. Let p,v be as in the Theorem. Then
H+u+n-VﬁH+M+OOg(,,),
which means convergence in the norm resolvent sense.

Our next aim is an estimate of the trace norm ||||; of the semigroup difference
if v has sufficiently small support. A recent application of such an inequality can
be found in [18], where H = —A,p =V € L} . — K4 and v = o0og is considered.

To formulate the appropriate condition on Z](Iljo)C we have to recall that there exists
a Markov process which is associated with b in the sense that
e f(z) = E*(f o Xi].
By 7B we denote the first hitting time of B,
7p(w) =inf{t > 0: X;(w) € B}
for B C E. We have:

2.3. Theorem. Let If cs(,) := | (]P:c [TE(V) < t])1/2 dx < oo for somet > 0,
where p,v are as in Theorem 2.1. Then

||e—2t(H+u) _ e—2t(H+,u+V)“tr < %p - ||e—t(H—2,u‘) L — L2||2.

Again, this may be applied to obstacle scattering, setting v := oog. The
slightly simpler case 4 = 0 had been studied in [16]; under the more restrictive
regime of “BASSA”, the corresponding results for 4 = Vdz, v = oor were obtained



Perturbed Dirichlet semigroups 157

in [8]. Let us mention that the above Theorem can also be applied to scattering
by non—closed obstacles. Of course, the Theorem implies trace class convergence

e—t(H—{—/,L—i—m/)_)e—t(H-HH'OOE(u))_

In the case of the classical Dirichlet form on R%, the assumption on ()
occuring in the Theorem is satisfied for bounded sets. Related estimates for cgy,
can be found in Section 2 of [18].

Acknowledgement. It is a pleasure to thank R. Lang for a fruitful discussion

and for pointing out [20] to me.
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Quantum Dynamical Semigroups

Kalyan B. Sinha

1 Introduction

Feller [1] and Kato [2] proved the existence of a unique minimal semigroup asso-
ciated with the classical Fokker-Planck equation:

dpi
I = Zpikgk]‘, t>0

, (L.1)
with initial condition p;;(0) = 6;;
and subject to the Markov condition:
ij > 0fork 76_] and Z Qk]‘ = "Qkk < 0. (12)

#k

By analogy, one can consider the quantum mechanical Fokker-Planck equation in
V = By(h) (the real Banach space of selfadjoint trace-class operators in a complex
separable Hilbert space h):

di’i_(tt) - yp(t)+p(t)Y*+;Lkp(t)LZ,
0 = p (1.3)

where is the generator of a Cy contraction semigroup C(t) on h,{Ly} are linear
operators satisfying

() v
+(Yf, +Z (Lef, Lrg) =0, ¥ f,g € D(Y). (14)

k>1

(i) D(Lg)2D
i) (f,Yg+(Yf

The condition (1.4) is the quantum mechanical equivalent of the Markov condition
(1.2). We seek the solution of (1.3) as a strongly continuous semigroup o on V
such that p(t) = o¢(p). One can instead look at the dual picture i.e. look for a
w — * continuous semigroup 7y on B(h) such that

th (X)
dt

= n(L(X)), (1.5)
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for all X in a suitable subset of B(h) where the map £ (Lindbladian) is defined as
a form:

(f, L(X)g) = (f, XYg) + (Y, Xg) + Y _(Lrf, X Lig) (1.6)
k

for all f,g € D(Y). Then formally the Markov condition (ii) reads as £(I) = 0,
but this should be rigorously interpreted only as a form.

Remark : If Y € B(h) i.e. if C(¢) is a norm-continuous semigroup on h, then
(1.4) implies that Ly’s are all bounded and the sum ZL,’;Lk converges strongly.
E>1

Then (1.6) actually defines a bounded linear map £ on B(h). In such a case (1.5)
obviously has a unique solution 7; as a norm-continuous semigroup of completely
positive maps on B(h) [3]. Lindblad [4] infact established the converse, viz. every
norm continuous semigroup of completely positive maps on B(h) has its generator
L given by (1.6) as operator on B(h) subject to (1.4). In general, however, the
relation (1.4) implies that each Li is Y-bounded with relative bound < 1.

2 Construction of the minimal semigroup

We define two maps : V — V by Si(p) = C(t)pC(T)*, =(p)=(1-Y)1p(1-
Y*)~!, and set D = w(V). Then it is clear that S; is a strongly continuous positive
contraction semigroup on V with its generator Z given formally as :

Z(p)=Yp+pY™. (2.1)

The following proposition sums up the results, omitting those parts of the proof
given in Davies [5].

Proposition 2.1 : Let {Lx},Y be operators in h satisfying (1.4). Then
(i) D is a core for Z and (2.1) is valid on D.

(ii) Define J on D by J(p) = ZLka*k ¥V p € D. Then J has a positive
k
extension J’ on D(Z) such that for p € D(Z),
Tr[Z(p) + T'(p)] = 0. (2.2)

(iii) For each fixed A > 0,7'(A — Z)~! is a linear map from D into V and
has a unique bounded positive extension Ay in V with [|[A,[| € 1 and J'(p) =
Ailp— Z(p)] ¥ p € D(2Z).

(iv) For any fixed 7(0 < r < 1), W) = Z 4+rJ" is the generator of a strongly

(r)

continuous positive contraction semigroup o; ’ on V whose resolvent is given by

RO =(A-w)l= (- 2) rk Ak, (2.3)
k=0
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where the series converges in trace norm, and
IR <AV A>0 and 0<r<l.

(v) For each A > 0 RE\T) and for each p € V+, t>0, ot(r)(p) are increasing

with r and converges strongly to Ry = (A — Z)~ ZA and o+(p) respectively.
E>0
The family o, so defined is a strongly continuous positive contraction semigroup

and Ry = (A~ W)L, the resolvent of W, the generator of o;. Also W = Z + J
onD.

(vi) The semigroup o: is minimal in the following sense: if there exists a
positive strongly continuous semigroup o; will generator W’ extending Wlp, then
op >0 Vt>0.

Proof': For (i)-(iv) and part of (v), see Davies [5]. Set Rf\rzl (A-2)t Z T AY,

0<k<n
Ryn= R/\ ;. and Ry = s~lim R( " asr 71 (which exists since RE\T) is an increasing
bounded famlly of positive maps) Then it is clear that

R/\T) < R(T) < Ry and hence R) , < R.

But since R, , is also increasing with n, Ry = s— lim R, , exists and Ry < R).
=00

On the other hand, R{"), < Ry < R so that

R)\—s—hnlls— lim R(r) < Ry.

n—o0

For (vi), we note that W’ is a closed extension of W|p and since D is a core
for Z, D(W') 2 D(Z). The resolvent R} = (A — W')~! = [ e *oldt exists for
sufficiently large A and is positive . Also by (ii), R} —Ry) = R\(W' - W(T))Rg‘r) =
(1- r)Rﬁ\j'Rg\r) and therefore R} — R is positive. Thus for 0 <t < 00,p € Vy :
(1= W't/n)""(p) > (1 — Wit/n)™™ for n large enough, leading to o; > oy for
0<t< oo

Having obtained the minimal semigroup o; in V associated with (1.3) and
(1.4), the next natural question that arises is : Is oy conservative i.e. is Troy(p) =
Tr p V p € V, t > 07 The next theorem gives some necessary and sufficient
conditions for this to happen.

Theorem 2.2 [6] : Let o; be the minimal semigroup constructed above, Wy =
W|D and let W be the adjoint of Wy. Then the following are equivalent:

(i) Troy(p) =Tr pVpeV, t > 0;

(i) for each fixed A > 0, A} — O strongly as n — oo;

(iii) for fixed A > 0, (A — Wy)D is dense in V;
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(iv) for fixed A > 0, the characteristic equation Wj X = AX has no non-zero
solution in B(h);
(v) for any A > 0,

B = {X2>0,X eBMh)|(f,L£(X)g) = A, Xg),f,9 € DY)}
= {o}.

The proof of this theorem can be found in [6].
There is a dual version of the theorem 2.2. We define for A > 0 a map

Q> : B(h) — B(h) as
(103000 = [ XYL, XLuCle)g). 24)

k

Theorem 2.3 : Let Qx(X) for X € B(h) be defined as a form on D(Y) x D(Y)
by (2.4). Then

(i) @ ( ) is well-defined and extends to an operator in B(h);

(i) @ : B(h) — B(h) is contractive and completely positive;

(i) ﬁx ={X € B(h),0 < X <I|Qx(X) = X}

(iv) Qx = A3

(V) Xx=s— hm Q Y(I) exists and is the unique maximal element of 3y;

(vi) oy is conservatlve iff X = 0 for some A > 0.
The proof of this can be found in [7,8] and we give here a brief sketch only.

Proof : The condition (1.4) implies that (f,Qx(X)g) is well defined and

|(f,QA(X)9)|2 < IX|P(f, (I )f)(g QD))
SIXIP(fo - e M ZNCOAP) Sy e g IC®all?)
= | X|I?I /II2llg||* which proves (i) and (11) complete positivity being obvious.

For (iv), we note that for p€ D, Tr [pQx(X)]
= [Ce —/\tdtZTr pC(t *L*XLkC’(t)]

= fo e Mdt Tr [T (Se(p))X] = Te[T'(A = Z71)(p) X] = Tx[Ax (p) X].
Clearly Q% is a positive contraction for all n = 1,2, ... and hence for f € h

(£, Q3 D)) (f, QX (@A) f)
IR, QD) < (f, QX (D)S)

showing that Q%(I) is a decreasing family of positive contractions from which (v)
follows. Thus 0 < Xy < I and Qx(X)) = X so that Xy € Bx. Now if X € Sy,
then by the positivity of @y one has 0 < @»(X) = X < @x(I) which on iteration
gives 0 < X < X,.

Since X, is the unique maximal element of 3, the ‘if’ part of (vi) follows
easily. If on the other hand o, is conservative, then by Theorem 2.2 (ii) TrA%(p) —

IA
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0asn — ooV pe Vi But by (iv), Tr [pQY(I)] = Tr A%(p) — 0 and therefore
(f,@%(I)f) — 0V f € h which implies the strong convergence of Q%(I) to 0 as
n — 00. ]

Some examples of conservative and non-conservative minimal semigroups
have been given in [7,9]. In particular, if Lg’s are bounded or if L is normal
(but possibly unbounded) for k¥ = 1, then the corresponding minimal semigroups
are conservative. On the other hand, it is shown in [7] that for a very standard
closed symmetric operator L (for k = 1) with Y = —%L*L, the semigroup is not
conservative. Thus a natural question arises, viz. if the minimal semigroup o, is
not conservative, then what are its possible conservative extensions ? There does
not seem to exist too much literature dealing with this, but the original article of
Feller {10] gives some hints, and recently a fresh attempt has been made in [11,12].
Next, we discuss briefly some of these results.

3 Perturbations of the minimal semigroup

In this section, we study some perturbations of the minimal semigroup o; when
o, is not conservative. If we denote by 7 the semigroup on B(h), dual to oy,
then we note that if o, is conservative i.e. if 7(I) = I then there is no other
contractive positive semigroup on B(h) satisfying (1.5). For if 7{ is one such, then
for0< X <1,

(X)) = 7()-7(1-X)<I-n-X)
= 7p(I)— (I - X) = (X) < 1}(X).
As in section 2, let Ry, Xy be the resolvent of the minimal semigroup o,
and the maximal element of 8 (assumed to be non-zero in most of this section)

respectively. Also we choose and fix a real number m and a state w, i.e. w € V
s.t. Tr w =1, and set for A >0

Ry = R\I+(m+1—ay) w)(Xa])
R)\(I"i'H)\)a (31)

where we have used the Dirac notation
lw){X]:V = V by [w){X|p = Tr(pX )w,

with X € B(h) V p € V and ay = Tr(wX,). It is also convenient sometime to
write the relation dual to (3.1) :

Py = (14+(m+1-ay) X)) (w]|)Ps
= (I+K)\)P)\, (3.2)

where Py, and 15>\ are dual to Ry and f%,\ respectively. Then we have
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Theorem 3.1 : (i) X, = I — AP,\(I) so that 7,(I) = I iff P\(I) = AL
(i) For p > 0, # A

Py(Xy) = (b= )71 (X~ X,)
(iii) Py satisfy resolvent equation :
Py —P,=(u—-NPP, (3.3)
and hence by duality so does R, ie.
Ry—R,=(u—NR\R,. (3.4)

(iv) The null space of Ry, is trivial for each A > 0 and Ry is the resolvent of
a closed operator W, called the perturbation of W.

(v) ||1Rx]l < A=t if m > 0 and hence W is the generator of a positive strongly
continuous semigroup d;, the perturbed semigroup, which is conservative if m =0
n (3.1).

(vi) D(W) = D(W) and for p € D(W)

Wp = Wp—(m+ 1) WwTr[Xy(W — Ay
= Wp—(m+ 1) lwTr(Wp). (3.5)

If f,g € D(Y), then p = |f){(g] € D C D(W) and Tr(XWp) = Te(XWp) =
(9, L(X)f)V X € B(h), where L(X) is defined in (1.6).

Proof (i) By the notation of the proof of Proposition 2.1, (7' + Z)Rx.p = —p +
ARy .p+ AYt!(p) and taking the trace, using (2.2) we have for p € V,

QL (1)p] = Tr AL (p) = Te([I = AR nlp).

Taking limit n — 0o, using Theorem 2.3 (v) and Proposition 2.1 (v), this leads to
the relation X = I — APy(I). The last part follows easily from Theorem 2.3 (vi).

(ii) Let A # p. Then by (i) and the fact that Py satisfies resolvent idenity:
P\ — P, = (p— A)P\P,, we have

P(%) = P(D) = iBPuD) = B(I) = = E BT = Bu(0)]

pBu(I) = APA(T) =X>\—Xu
w—A p—Xx

(iii) Note that by (ii), PAK, = rirr 22Xl and hence

]5)\]5# = (I+ KA)(P)\PM + P)\K)\PH) or
(b—ANP\P, = P\-P,+K\P\—K\P, +
[(m+1-—a))(m+1-a,) K\- K,P,
+(m+1-ax)(m+1-—a,) 'K~ K\K,)P,.
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Noting that by the definition of K and e, in (3.2), K K, =
au(m+1—a,) K, for all 4 and X > 0 we have

(/J, - )\)P,\P# = (1 + K)\)P,\ — (I + KM)Pu

+K\P -1+ (m+1-a)(m+1-a,) " +ar(m+1-a,) ' —au(m+1-a,)7}
=P, —P,.
(iv) From the definition of ay and Hy, it is clear that (I + H))™ = (I —
(m 4+ 1)"w)(X,|) which is a bounded linear map in V. Since R) is one-to-one,
it follows that R is one-to-one. The rest of the conclusion of (iv) follows from a
standard argument (see page 428 of [13]).

(v) Since H) is a positive map, it is clear that R, is also positive. Let p € V.,
then

TrRx(p) = Tr Ra(p) +(m+1—a)) ' (Tr Ryw)(Tr X,p)
= TrRi(p)+(m+1—0) A7 1 —a)[Tr p— X Tr Ryp),

where we have used (i) to conclude that
ATr Ryw = Tr[w(APy(I)] = Tr(w(l — X)) = 1 — ay.
Thus

~ m l-a
Tr Ry(p) = ———— Tr Ra(p) + —ﬁ—)\_a)\

m+1—ay
Since 0 < X, < I and since R, is positive with HR,\H < AL it follows that
1 — ay > 0 and hence for m > 0,p € Vi, Tr Ry(p) < A~! Tr p which implies the
first part of (v). Therefore by Hille-Yoshida theorem [3], the associated semigroup
is a positive contraction semigroup with generator W, obtained in (iv).

AT Tr p. (3.6)

JFrom the formulae 7; (the dual semigroup of 6;) = s — hm (n P, /)" and

Py = [° e dt, it is clear that 7(I) = I iff PA(I) = A™™. On the other hand,
it follows from (3.2) and Theorem 3.1 (i) that AP\(I) = I+ m(m + 1 — ay) 71X,
which leads to the last part of (v).

(vi) It follows from the resolvent equation (3.4), the fact that (I — H)) is
bounded invertible and standard arguments that Range Ry = Range Ry, which
is independent of A. This implies that D(W) = D(W) = Range R). Since by (iv)
R, is invertible, for p € D(W)

Ry = (A-W)p=(I+H)'R'p
= (I=(m+ 1) XD - W)p
= A=W)p+(m+1)"'w Tr [Xa(W — M)
which is the first part of (3.5). For the second part, we need only to observe that

Te[XA(W = Npl = Te[(I = APA(D))(W — N
= Te(W = N)p— ATr Ry(W — M\)p = Te(Wp).
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Finally, if p = | f){g| with f,g € D(Y) then clearly p € D as defined in section
1 and since by Proposition 2.1 (v) W = Z + 7' on D, we have

Te(XWp) = Te(XWp)—(m+1)" Tr(wX)(g,[L(Xn) = AXA]S)
= Tr(XWp) = (9, L(X)f).

Here we have used the fact that X € 8y (Theorem 2.3 (v)). |

The above thoerem says that W is a sort of rank-one perturbation of W,
though both are associated with the same Lindblad-form £(X). It is interesting
to note that W is essentially the same as the “extension” considered by Davies in
[5] and that the maximal element X in the Feller set 3y (defined in Theorem 2.2
and 2.3) determines the perturbations written down in (3.1) and (3.2). This has
some formal similarity to the theory of extensions of a symmetric operator in a
Hilbert space. If we formally write ¥ = —%L*L +iH (with k = 1), then

£(X) = (", X]L ~ L*[L, X]} ~ i[H, X]

in which we can think of the first term in the R.H.S. as the abstract generalization
of % Laplacian while the second term is a derivation.

References

1. W. Feller, An introduction to probability theory and its applications, Vol. 2,
John Wiley, New York 1966.

2. T. Kato, On the semigroup generated by Kolmogorofl’s differential equation,
Jour. Math. Soc. Japan 6, 1(1954).

3. E.B. Davies, One parameter semigroups, Academic Press, London, 1980.

4. G. Lindblad, On the generators of quantum dynamical semigroups, Commun.
Math. Phys. 48, 119 (1976).

5. E.B. Davies, Quantum dynamical semigroups and neutron diffusion equa-
tion, Rep. Math. Phys. 11, 169 (1977).

6. A. Mohari and K.B. Sinha, Stochastic dilation of minimal quantum dynam-
ical semigroup, Proc. Indian Acad. Sciences (Math.) 102 (3), 159 (1993).

7. B.V.R. Bhat and K.B. Sinha, Examples of unbounded generators leading
to non-conservative semigroups, Indian Statistical Institute, New Delhi, pre-
print, February 1993.

8. F. Fagnola, Unitarity of solutions to q.s.d.e. and conservativity of the associ-
ated semigroups, Quantum Probability and Related topics VII, 139 (1992),
World Scientific.



Quantum Dynamical Semigroups 169

9. B.V.R. Bhat and K.B. Sinha, A stochastic differential equation with time-

dependent unbounded operator coeflicients, Jour. Funct. Anal. 114, 12
(1993).

10. W. Feller, On boundaries and lateral conditions for the Kolmogoroff differ-
ential equations, Ann. Math., 65, 527 (1957).

11. B.V.R. Bhatt, Markov dilations of non-conservative quantum dynamical
semigroups and a quantum boundary theory, Ph. D. Thesis, Indian Sta-
tistical Institute, New Delhi, 1993.

12. B.V.R. Bhatt and K.R. Parthasarathy, Markov dilations of non-conservative
dynamical semigroups and a quantum boundary thoery, Indian Statistical
Institute, New Delhi, preprint, July 1993.

13. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York
1966.

Kalyan B. Sinha, Indian Statistical Institute, Dethi Centre, 7, S.J.S. Sansanwal Marg,
New Delhi — 110016, India



Operator Theory:
Advances and Applications, Vol. 70
(© Birkhauser Verlag Basel

Limits of Infinite Order,
Dimensionality or Number of Components
for Random Finite-Difference Operators

A M .Khorunzhy and L.A.Pastur

Abstract

We consider random operators that are analogs of the statistical mechan-
ics Hamiltonians with a varying interaction radius R , the dimensionality
of space d and the number of the field components (orbitals) n . We prove
that all the moments of the Green functions for nonreal energies of these
operators converge as R, d, n — oo to the products of the average Green
functions, just as in the mean field approximation of statistical mechanics.
We find in particular the selfconsistent equation for the limiting integrated
density of states and the limiting form of the conductivity, which is nonzero
on the whole support of the integrated density of states.

1. INTRODUCTION

The spectral and related properties of random operators have attracted consid-
erable interest in both physical and mathematical literature. It is believed, in
particular, that under suitable conditions the spectrum of these operators is pure
point and dense. This have been proven under various circumstances (in the one-
dimensional case or in any dimension near the edges of the spectrum or for a
sufficiently large random potential). Therefore, although many important prob-
lems still remain open here (two-dimensional localization, calculation of the low
frequency conductivity and other physical quantities, etc.), the strong disorder (or
low energy) regime in the spectral theory of random operators can be regarded as
rather well understood rigorously, especially in comparison with the weak disor-
der (or high energy) regime. This regime is almost unexplored rigorously despite
extensive numerical and theoretical physics studies. In particular, the weak local-
ization theory (see e.g. review [15]) allows us to calculate the so-called quantum
corrections for many important physical quantities and, being supplemented by
some renormalization group ideas, predicts complete localization in one and two
dimensions, a mixed spectrum in higher dimensions and, as a result, the metal-
insulator transition. The latter is largely similar to phase transition in statistical
mechanics. Thus, based on the statistical mechanics experience it is natural to try
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to develop some versions of the selfconsistent approaches that are widely accepted
tools of study of difficult phase transition problems. In statistical mechanics the
most widely accepted selfconsistent schemes, such as numerous versions of the
molecular field approximation or the spherical model, can be obtained as the lim-
its of the infinite interaction radius, dimensionality of space or the number of field
components (dimensionality of the spin space). An important feature of these lim-
its is that they are nonperturbative in the sense that the interaction, responsible
for the phase transition, is not assumed to be small in corresponding models. Small
(or at least suppressed) in these limits are the fluctuations of the order parameter
and other important physical quantities.

In this paper we study some random operators that can be regarded as
analogs of statistical mechanics models with a large interaction radius R, a large
dimensionality of space d or a large number of components n . We calculate the
integrated density of states (IDS) of these operators and the conductivity in the
limits of infinite R, d and n . In fact, the latter model was introduced and studied
at the physical level of rigour by Wegner [25] (for some rigorous results on the IDS
of this model see also [6]).

We use the method which is analogous to the method of correlation equations
(or cluster expansion) of statistical mechanics and allows us to calculate the IDS
and the conductivity (more exactly, the measure which is naturally associated with
the conductivity) in all the three limits.

In principle, our method can also be used to construct the respective R~!-
, d7!- and n™! -expansions for which our limit expressions are the leading terms.
We hope to discuss these expansions in subsequent publications (see however [27]
where the physical n~! -expansion scheme was developed for the conductivity and
[6] for rigorous n~! expansion for the IDS).

The matherial is organized as follows. In Section 2 we introduce the models
and formulate the main results, according to which the IDS and the conductiv-
ity are practically the same for all the three models and can be calculated from
some selfconsistent equation. The former fact should be contrasted with statistical
mechanics, where the limits R = 0o and d = oo coincide with the mean field ap-
proximation, while the limit n = oo coincides with the spherical model. In Section
3 we derive infinite systems of equations for the moments of the Green functions of
the respective operators, that are our main technical tools. In Section 4 we solve
these equations in the limits R, d, n = oo , derive a selfconsistent equation
for the limiting IDS (see equation (2.9) below) and in Section 5 we study some
properties of the IDS (existence of the bounded density, location of the support,
the form of singularities at the edges of the support). In Section 6 we calculate
the conductivity of the respective disordered system in the same limits. Section 7

is devoted to discussion of our results, in particular their relation to the random
matrix theory and their possible interpretations.
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2. MODELS AND RESULTS
We start from the random operator of varying order. Let Hr be the selfadjoint
operator, acting in ¢2(Z%) and defined by the matrix

Hg(z,y) = h(z —y) + R~Y% ¢((z — y)/R) W(z,y). (2.1a)

Here z,y € Z¢, h(—z) = h*(z) , . | hz) | <00, R>0, &(t),tcR?, s
a piece-wise continuous, nonnegatlve and such that | ¢(t) | < g0 < 00, o(t) =
0, |t]>1, [¢*(t)dt=1and W(z,y)=W(y,z) are identically distributed and
independent (modulo the above symmetry condition) random variables with zero
mean value and such that for all z,y € Z¢

E{W (z1,51)W (z2,2)} = w*{8(z1 — 22)8(y1 —y2) + 6(x1 —y2)é(y1 — 22)}, (2.1b)

where §(x) is the Kronecker symbol in Z¢.
Our second random operator Hy contains explicitly the dimensionality d of
the space Z¢ . It acts also in £2(Z?) and is defined by the matrix

Hy(z,y) = ha(z — y) + (2d) /% Wy(z,y), (2.2a)

where

= /2 Zhl z;) [[8(x), Ra(0)=0, (2.2b)
k#j

hi(z), © € Z' , satisfies (2.1b), Wi(z,y) = W(z,y) 6(lz —y| — 1) and W(z,y)
are as in (2.1b). The simplest and quite important example of the operator hg is
the discrete Laplacian for which hy(z) =0, | z |# 1.

The third operator Hy, acts in £>(Z%) ® C™ and is defined by the matrix

H(a,;B,y) = h(z —y) Sag +n7"/? 8(z ~ y) Wag(2) (2.3a)

where z,y € Z%, o,8 = 1,..,n, h(x) is the same as in (2.1), 844 is the Kro-
necker symbol, W,s(z) = Wga(z) and Wog(z) are identically distributed and

independent for 1 < o < 8 < n random variables with zero mean value and such
that (cf. (2.1b))

E{Wq, g, (@1) Wa,p,(22)} = w® 6(21~22) {baraz 63, 8, 80, B, Sz} (2:30)

The random operator (2.3) is a special case of the operator introduced by Wegner
[25] (the case of the site-diagonal disorder, according to Wegner’s terminology).
It can be regarded as the n-component analog of the discrete Schrodinger oper-
ator (the Anderson model) or as the Hamiltonian of a disordered system in the
dimensions d+d;, d; = n,in which the random potential in n ”transverse”
dimensions is considered in the "mean field” approximation.

All the three families of random matrices (2.1)-(2.3) define the essentially
selfadjoint metrically transitive operators in the sense of book [21]. Our intention
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is to study, first of all, the simplest though rather important in several respects
spectral characteristic of random operators known as the integrated density of
states (IDS). It is defined as the measure

Na(d)) = E{E4(0,0;d\)}, (2.4)

where ais R or d and E,(d)) is the resolution of identity of the operators
H,,a = R, d, and E,(z,y;d)\), z,y € Z¢ are the respective matrices. For the
model (2.3),

N,(d)\) = E{n~! i En(a,0;0,0;d))}, (2.5)

a=1

where E,(a, z; 8,y;d\) is the matrix of the resolution of identity of the operator
H,,. For another definition of the IDS, which is based on a kind of the thermody-
namic limiting transition, and for equivalence of this definitions, see [21].

For an arbitrary nonnegative measure p(dt) on R , such that [ p(dt) =1, we
define its Stieltjes transform f(z) = [ (t — z)~! p(dt), Imz # 0. It is an analytic
function for Im z # 0 such that

Imf(z)-Imz>0; f(z)=—2"1+0(z"1), z— oo, (2.6)

The Stieltjes transform uniquely determines the respective measure, since due to
the Stieltjes-Perron inversion formula for any interval A = (A1, A2) whose end-
points are continuity points of u(dt) [1]

Az

(&) = lim (2mi) ™ [ [FO i) - 3= )] d (2.7)
7 Ar

Denote by Ny(dA) the IDS of the unperturbed operators in (2.1)-(2.3). It is easy

to show that for this Toeplitz operators,

No(d\) = meas{h(k) € dX, k € T}, (2.8)

where T¢ = [0,1]¢ is d-dimensional torus and h(k) = 3 h(z) exp{2nikz} is the
symbol of these operators.

Our result for the IDS states (see Theorem 5.1 below) that the measures
N,(d)\),a = R, d, n converge weakly as a — oo to the limit N(d)) whose Stieltjes
transform r(z) = [(A—2)~! N(dA) can be found as a unique solution in the class
(2.6) of the equation

r(z) = ro(z + wr(2)) (2.9)

in which rg(z) is the Stieltjes transform of the IDS of the unperturbed (nonran-
dom) operators in (2.1)-(2.3).

Note that for the operator Hy of (2.2) the unperturbed operator and its IDS
depend also on the parameter d . Therefore, unlike Hg and H,, in the case of
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H, the limiting transition d — oo affects Ny(dA) also. More precisely, in this case
No(d)) is

No(dA) = (2mhg) ™% exp{—A?/2ho} dX, hy =Y hi(a). (2.10)

Equation (2.9) was found by Wegner for the ensemble (2.3) in the limit n =
oo (infinite number of the orbitals in the terminology of Wegner). In fact, this
equation had appeared before the Wegner’s paper as the equation for the limit
eigenvalue distribution of some n X n random matrices in the limit n = o
[20]. This distribution is known as the deformed semicircle law. The situation here
is similar to that in statistical mechanics, where selfconsistent equations of the
Curie-Weiss model (the mean field approximation) and the spherical model had
been proposed long before than it was understood that these are the limits of an
infinite interaction radius [16] and an infinite number of components [11, 22] of
the classical Heisenberg (n-vector) model.

Now we shall outline the strategy of derivation of (2.9). Consider the family

E{l_[f:1 G(zi,y:)}, k > 1, of the moments of the Green function of the random
operators (2.1)-(2.3). By using the resolvent identity, we derive for this family an
infinite system of linear relations (that can be regarded as analogs of the BBGY
or the Kirkwood-Salzburg equations in statistical mechanics). Some terms in these
relations contain the small parameter ™! in front of them. Treating these relations
as an infinite system of equations for the moments and neglecting the small terms,
we observe that the truncated system admits the factorized solution Hle [(z; —
vi), k > 1, where I'(z — y) is the Green function of the Toeplitz operator which
is the sum of the nonrandom part of H, and the effective coordinate-independent
potential w? §(x —y) ['(0) . This yields equation (2.9) which is in this scheme the
solvability condition for the truncated system.

To justify this procedure, we act again as in statistical mechanics. Namely, we
consider our infinite system as a linear equation in some Banach space containing,
in particular, our family of moments. We prove that if the imaginary part of
the energy is large enough, then the nonsmall part of the equation defines the
contracting linear operator and that the norm of the remainder is small.

Thus, our central technical result (see Theorem 4.1) says that in the limit
a = oo the moments of the Green function of our random operators (2.1)-(2.3) are
factorized into the products of the first moments, and these first moments are to
be found selfconsistently, by solving the nonlinear functional equation (2.9). This
result is fairly similar to the main technical result of the mean field approximation
(R, d = oo limit) and the spherical limit (n = oo limit) in statistical mechanics,
where the correlation functions of all orders are factorized into products of the
correlation function of order one (mean field approximation) or of orders one and
two (spherical model). We refer to the papers [2, 10, 14] for some form of the latter
results and for references.

Consider now the conductivity of a disordered system, described by the
Hamiltonians (2.1)-(2.3). According to the Kubo formula, the conductivity of d-
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dimensional ideal Fermi gas at a temperature 7T, described by a one-body Hamil-
tonian H and subjected to an external alternating electric field of the frequency
v, is [17]

Oac(v,T) = 2¢* 771 /00 vl [np(E+v)—np(E)] o(v,E) dE . (2.11)

— o0

Here e is the electron charge, np(E) = (exp{(E—EFr)/T}+1)"! is the Fermi dis-
tribution function, Ep is the Fermi energy, o(v, E) = m(E +v, F), and m(A1, A2)
is the density of the measure

d
M(dAr,ddg) = ) E{[0xE(dA\)8:E(dA2)](0,0)}

on R? in which ¢ = i[H, £] is the velocity operator, # = (z1, ..., z4) is the coordinate
operator and E(d)) is the resolution of identity of the Hamiltonian H . For T =0,
(2.11) has the form

Eprtv
Oac(v,0) = 1/’1/ o(v,E) dE (2.13)

and for low frequencies v < Ep
Oac(1,0) =262 771 m(Ep +v,Ep) (1+0(1)), v—0 (2.14)

i.e. the low frequency conductivity (de conductivity in particular) can be expressed
through the density m(A1, A) itself.
Consider first the case of a = R . According to (2.10) and (2.1),

MR?) =Y 2* ([h(z) ? +v* R™* ¢*(x/R)).

xT

Thus, to obtain a finite and nontrivial answer in the limit R = oo, we have to
consider the normalized measure M) (d\;,dXs) = R™2 M(dA;,d)2) and with
this normalization we can set without loss of generality the nonrandom part of
(2.1) to be zero (h(z) = 0). Similar arguments show that for a = n, d the
properly normalized measures are M@ (dA;,dAs) = M(dA;,d)2) and

n d
MM (A, ddg) =n~ Y Y B (9, EM () 9; E™ (de)](@, 052, 0) },

a=1 j=1

respectively.
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3. EQUATIONS FOR THE GREEN FUNCTION MOMENTS
Since derivation of the infinite system of linear relations for the moments of the
Green functions is rather cumbersome, we divide the problem into two parts.
First, we consider these relations for the operators (2.1)-(2.3) with the Gaussian-
distributed random variables W’s. After that we consider arbitrarily distributed
W’s with finite third moment. However, for a = d we restrict ourselves to the case
of h(z)=0in (2.3a).

Definition. Let f(X;Yx) be a complex-valued function of the arguments
Xp=(z1,...,21), Yo = (y1,-- -, W), Ti,y €Z% i=1,..,k, k>1.Then,

”Jc”(a) _ {Supxk’yk | f( Xk, Yi)l, a=R, n
k [Supy1 Zzl et Supyk Z-Tk If(Xk’ Y$)|2 ]1/27 a = d

Proposition 3.1. Let H,, a = R, d, n be the random operators, defined by
(2.1)-(2.8) with the Gaussian-distributed random variables W’s |

(3.1)

. - (Ha'—l)—l(,’lf,y) 3 ifa:Ra da
Gle,y2) = {n S (Hy - 2 Moyziay), ifa=n, (32)

n=|Imz| #0, and g(z —y) = (h~z) " (z,y) be the Green function of the Toeplitz
operator h , defined by the nonrandom part in (2.1)-(2.3). Introduce the moments

Fi(Xi; Vi) = B{ [[ Glai,w) }. (33)

i=1

Then,

Fo(Xi; Vi) = glay —y1) 6k — 1) + (1 = 8(k — 1)) Frm 1 (X115 Yeo1) g9(@e — wi)+

w? " Xal(s =) Fen1(Xe, 8 Yeo1,t,5) gt —ye) + 5@ (Xis Ya),  (34a)

s,t

Xa(z) = § 6(z), ifa=mn; (3.4b)

R4 ¢*(z/R), ifa=R;
2d)! 6z —1), ifa=d,

8(z) is the Kronecker symbol, and for some n9 > 0 which is independent of a
and n=|Imz| > no,

aj (@) & Jal, ifa=R,n;
s <okt {e, HeTy 55

Remark. We use here and below the common symbol C for quantities, in-
dependent of a, k, 7, but dependent, generally speaking, on the moments of
W(z,y), the function ¢(z) and 7.
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Proposition 3.2. Let H,, a =R, n, d be defined in (2.1)-(2.3), where the
arbitrarily distributed i.i.d. W’s satisfy (2.1b) and (2.3b) and, in addition,

E{|W(z,y) I’} <oo, E{|Was(2) [’} <oco.

Assume also that h(z) = 0 in (2.3a) . Then, the moments (3.3) satisfy (3.4) ,
where

sup | Sp(Xp;Yi) | < Chka V2 yk (3.6)
Xk, Yi

with n > 19 , some ny and C being independent of k, n and a.
4. ASYMPTOTIC SOLUTION OF THE MOMENT EQUATIONS
In the previous section we have seen that the moments (3.3) of the Green functions
of the operators (2.1)-(2.3) satisfy the infinite system of relations (3.4a). In this
section we treat this system as a linear equation in some Banach space and show
that for @ — oo this equation admits a rather simple solution. As a result, we
obtain (2.9).
Theorem 4.1. Let Go(z,y;2) be defined in (3.2), the respective operators
H, satisfy the conditions of Proposition 3.1 in the case of Gaussian W’s and the
conditions of Proposition 8.2 in the general case and
_ - _J3w/2, ifa=R, n;
nl_ma‘x{4w52h}’ g_{w, ifCI,:d,
where h = Y |h(x)|. If a is large enough, then

k k
sup || B{J] Ga(wi,i;2)} — [[ Talmi —wis2) 1Y < Ce*aV2 (4)

1Im z(>n, i=1 i=1

Here k> 1, C isindependent of k and a,
Lolx; 2) = / (h(k) — 2z — w’xara(2) )™ exp{2mika} dk,
d
where h(k) is given by (2.8),

Xa =) xalz) = {{x%z(x)dx’ fa=R;

~ , if a=n, d,

and 1,(z) is a unique solution of the equation

rale) = [0 = 2= u? xa 7ala) ™ Nofa), (42)
in the class of functions analytic in 2z for nonreal z and such that

Imr(z)-Imz >0, Imz#0, sup n|r(in)| =1 (4.3)
n>0

and No(dy) is specified by (2.8) for a = R, n and (2.10) for a = d.
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Proof. Let us consider the Banach space B,, a = R, n, d whose elements are
sequences f = {fi(Xk; Yi; 2) sy » Xo = (21, Tk), Yo = (Y1, Yx), Tir¥i € Z?
, and each component fi for fixed k, Xj, Yx is an analytic function of z for
nonreal z . The norm in B, is defined as follows:

171 = sup  sup &€* [|fi]l (. (4.4)
|Imle771 1

According to their definition, the moments (3.3) satisfy the inequalities || Fy|x <

n~*, k > 1. Since £ < m, the sequence F = {Fx}x>1 of the moments (3.3)

belongs to B, . Now, according to (3.1), the sequence S = {Si}k>1 for n > no
satisfies the inequality

||S||(“) <Ca /2 sup £7F no_k. (4.5)
k>1

Since our bounds in Proposition 3.1 are monotone in 79, we can assume without
loss of generality that no = 71, where 7, is given by (4.1). Then, £ - ng <1, and
(4.5) implies that

IS < ¢y a™!/? (4.6)
where C is independent of a .

Consider now the linear operator A, defined by the second and the third
terms of the r.h.s. of (3.4a):

(AKX, Ye) = 8(k=1) Y Xal(s —t) fa(@1,5,5) gt — va)+

(1=6(k—1) {fe—1(Xp-1;Ye—1) 9(zk — y) +
w? > Xals —t) frr1(Xk, s Yi1,t,9) g(t — u).

s,t

It is easy to prove that ||A| <3/4if a is large enough. Therefore we can regard
relation (3.4) as a linear relation in By,:

F=AF+U+S (4.7)

where U = {g(x1,11),0, ...} belongs obviously to B, . Since, according to (4.5), S
is small for @ — oo, it is natural to consider the following linear equation in B, :

J=AJ+U. (4.8)

This equation has a unique solution in B, . The ansatz

k
Te(Xi; Ye) = [[ @i — i) (4.9)

1=1
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reduces the infinite sustem (4.8) to the single equation
T(@—y)=g(z—y)+w* > xa(s—t) T(0) T(z ~t) g(t — v).
s,t

The formal solution of this equation is ['(z —y) = g(z — y; 2 + w?x.['(0; 2)), where
Xa 18 specified by (3.4b) and the dependence on the complex energy z is indicated
explicitly. Respective compatibility condition

T(0;2) = g(0; z + w’xaI'(0; 2))

can be rewritten in the form (4.5).

We prove that equation (4.2) has a unique solution in the class of functions
that are analytic for Im z # 0 and satisfy (4.3). Therefore formula (4.9) give the
unique solution of the infinite system (4.8) in our spaces B,. Subtracting (4.8)
from (4.7) and iterating the resulting relation, we find that F — J = (I — A)~!S.
Thus, in view of (4.6),

|F—J)|@ <4C; a2, (4.10)

According to (4.4) and (4.9), the k-th component of (4.10) is (4.1). The theorem
is proved.

Corollary 4.1 . For every fixed k>1, Xy = (z1,..., zk), Y& = (Y1, Yk)
and uniformly in z belonging to a fizred compact set such that Imz # 0 , we have

k
lim (Fk(Xk,Yk) - HF(.’L’Z - yz)) = 0

a—00 .
=1

5. THE DEFORMED SEMICIRCLE LAW

Theorem 5.1 . Let H,, a = R, n, d be the nonrandom operators de-
fined in (2.1)-(2.3), No(dA) be defined by (2.8) for a = R, n and by (2.10)
for a = d, No(dX) be the IDS of H, given by (2.4) and (2.5) and
No(A) = No((—00,A]) . Then, for each A € R

lim N,(A) =N\ (5.1)
a—»00
where the Stieltjes transform of N(dX) can be found as a unique solution of (2.9)
in the class (2.6).
Proof. According to the spectral theorem, (2.4), (2.5) and (3.2), the Stieltjes
transform of N,(d\) is E{G,(0,0; z)} and, according to Corollary 4.1, for k =1

Jim [B{Ga(0,0:2)} ~ ra(2)] =0

where Imz # 0 and r,(z) is a unique solution of (4.2). By Lemma 4.2, we can
perform the limiting transition ¢ — oco. Thus, we have proved that the Stieltjes
transform of N,(d\) converges for Imz # 0 to the solution of (2.9). Since this



Limits of Infinite Order 181

convergence implies weak convergence of the respective measures, we have thus
proved weak convergence of N,(d\) to N(d)). According to the property (5.4)
below, N(d)) posesses a bounded density for any No(d)) . This proves pointwise
convergence in (5.1). The theorem is proved.

The simplest case of equation (2.9) corresponds to N(dA) = 6(X), when the
unperturbed (nonrandom) part of (2.1)-(2.3) is zero. Then, r = — (z + w? r)~}
and

r=(u?)™! (22 — w2 — 2), (5.2)

where we use the branch of the radical that has a positive imaginary part on the
upper edge of the cut Imz = 0, |[Rez| < 2w. (5.2) and (2.7) yield N(d\) =
p(A) dX, where

_ av-1 J(Aw? — X)Y2 i | )| < 2uw;
P = (27 wr) {o, if | A > 2w. (5:3)

This is the well known Wigner or semcircle law which is the n = oo limiting
eigenvalue distribution for the ensemble of n x n symmetric random matrices
whose entries are independent identically distributed random variables with zero
mean value and variance w?/n (this ensemble is called the Wigner ensemble of
random matrices, see [18,19,26] for the references, the history and numerous related
results). The limiting eigenvalue distribution defined by equation (2.9) is known as
the deformed semicircle law. This distribution was found in [20] (see also [12,14]).

Now we will list some useful properties of the deformed semicircle law, defined
by equation (2.9).

(i) For any nonperturbed No(d) ,

N(@dA) = p(2) dr, 0<p(A) < (mw)™ (5.4)

(ii) Let us call suppN and suppNy the spectrum o and the unperturbed spec-
trum oo . Then, o is contained in the 2w-neighbourhood of o .

(iii) If a and b are the left and right endpoints of the interval containing
o and ay and by are the same points for oo , then a<ay and b>by .

(iv) If oo = (ao,bo) , then o = (a,b)(and according to (i) and (iii),
(ao, bo) C (a, b) C (ao — 2w, bo + 211))).

(v) Consider the intervals that comprise the complement of oq , find the
inverse  Mo(r) to To(A) for these intervals, locate the intervals on which the
function Xo(r) — w? r is monotonically increases and then determine the set of
values of this function on these intervals. The spectrum o 1is the complement of
this set.

If «p is an endpoint of one of the above mentioned intervals, then we get
that @ = Xg(a) — w?a is the endpoint of one of the components of o . Suppose
that in the neighbourhood of a, Xo(r) — w?r is analytic. Then simple arguments
show that the density of states in the neighbourhood of o behaves as follows:

p(A) = const | A—a|V?* 1+0(1), |A-al—=0
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for some k = 1,2,... . Generically, k = 1, and this corresponds to the nondegen-
erated extremum of Ag(r) — w? r (a maximum if « is the right endpoint, or a

minimum if « is the left endpoint of such an interval).

6. THE CONDUCTIVITY

As was explained in Section 2, we are going to prove weak convergence of the
measures M(® ¢ = R, d ,n for a — oo and calculate the respective limits.
Therefore it suffices to consider their Stieltjes transforms

M@ (dA;,dAs)
(a) - 1, 2 I
C (21,22) / ()\1 _Zl) (/\2 —2:2)’ mzij2 750 (61)

and find their limits for a — oo for Imz; 2 # 0. After that we can apply the
inversion formula (2.7) to each of the two variables and find the limiting measure.
We will consider here the simplest case of the Gaussian-distributed randomness in
(2.1)-(2.3), postponing the proof for an arbitrarily distributed randomness for a
subsequent publication.

Theorem 6.1 . Let H,, a =R, d, n be given by (2.1)-(2.3) in which

h(@) =h(-z), Y |z||h(@)|<o (6.2)
zeld

and W’s be the Gaussian-distributed random variables. Then for Imz; 5 # 0

lim C(a) (21, 22) =

w? r(z1) r(z2) [2? ¢*(z) dz, ifa=R
w? r(z1) r(zz), ifa=d
| Vh(k) |? dk (6:3)

w? , ifa=n,
/ (h(k) — 21 — wr(21)) (h(k) — 20 — wr(22))

where 1(z) is given by (2.9) and (2.8) for a = R, n and by (2.9) and (2.10) for
a=d .

Proof. Since the proof of (6.3) is somewhat tedious even for the Gaussian
Ws in (2.1)-(2.3), we describe in detail the case of a = n that turns out to
be simplest. Note also that the case a = n was considered for the first time in
[25] where respective results on the density of states and the conductivity were
obtained by the perturbation theory arguments.

The velocity operator in this case is identity with respect to the orbital indices
o, # and its coordinate-dependent part is defined by the matrix

(@~ y) = i(z—y) h{z~y) (6.4)
and is bounded in view of (6.2). Therefore, according to (6.1) and (6.4),

C(n) 21 Zg ZZ Ul To 0 Y, 6 21,22) (65)

y,t i=1
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where
n

To(z,y,t; 21; 22) = B{n ™" Z Q(z,y,t,21, 22,0, )} (6.6)

a=1
and

Q(J"a y7t7 21, %2, a?’)/) = ZG(aax;ﬁa u+ t;zl) G(/Baua’}laya 22).
Bu

Consider now the infinite sequence of moments containing (6.6)

Te(Xi; Yi; Zi3 4,9, 8, 21, 220) =
k n
E{HG(%,%,CJ) n_le(l‘,y,t,Zl,Zg,OZ,OZ)}, kZO
j=1 a=1

where G(z,y;¢) is specified by (3.2) for a =nand z=¢, | Im¢ [> 7, |
Im z1 5 |> 7. By using the resolvent identity for G(8, u; @, y; z2) and the arguments
similar to those in the derivation of (3.4), we obtain the system of relations

T (Xk; Yi; Zis 2,9, 8, 21, 22)

Zu Fk+1(Xk,$; Yk,(u+t);Zk,Z1) g2(u_y) +
w? 3, | Toy1(Xk, 23 Yi, 83 Zk, 213 8,8, 8, 21, 22) +
+

I

Tio+1(Xk, 8 Yk, 83 Zk, 2257, 8,8, 21, 22) | g2(s — ) Ry
where ga(z —y) = (h— z2)"(z — y) and
| Ry | <4n~ ' w? (k+1) nF 4 (6.8)
Consider now the Banach space of the sequences
T = {T(Xk; Yi; Zes T, y, £, 21, 22) Foe g (6.9)

with the norm

IT| = sup & sup sup | Tk | -
k>0 Tm ¢kl Im zy 2|20 Xe:Ye,z,ut
If A, is the linear operator defined by the sum over s in (6.7), then it is easy to
show that ||A;]] < 4w? €71 n7! and if R is the sequence specified by Ry, then
in view of (6.8)
IR <4n~'w?p~* sup k(En7H)E.
k>0

Thus, to guarantee a finite norm of T in (6.9), the contractivity property of A;
and the finiteness of ||R||, it suffices to take

¢£=mn/2, n=max{3w, 2h}. (6.10)
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Then, ||[A;] < g <1, ||R| £ Cn7!, where C is independent of n. If, in
addition, F = {Fy} k>0 18 the sequence defined by the first sum in the r.h.s. of

(6.7), then ||F| < n"2_ supg>; (€ 771)F < oco. Theorem 4.1 and summability of
g2(z) imply that F =T + €, where limy o ||én]| = 0 and T = {Tx}2° = with

Tr(Xk; Yo Zr;x,y,t, 21, 22) =

n'mw

~453¢) 3 D@ —u—t21) glu—y;2)

u

where I'(z; 2) is defined in Theorem 4.1. o )

Now, if T' = {T¢}32 , is a unique solution of the equation T'=1I"+ AT, then
limy oo [|T =T = 0and Ti(Xx; Ye; Zk; 2,9, 1, 21, 22) = 5=, Dz —y;; ) Tz~
y,t; 21, 22), where I'(z,t; 21, 22) is a solution of the equation

fix—y,t )= f‘x—t—u;zl)g(u—y;zg_)+ (611)
Yoo [T(0;22) T'(z —s,t) + Tz —s;22) T(0,¢) ],

provided that this equation is uniquely solvable. The latter fact can readily be
proved in the space with the norm

IT| = sup sup | T(z,t; 21, 20) |
I ImzLQ |Z n Iat

with 77, specified by (6.10). Besides, it is easy to check by direct calculation that
f‘(l‘, t; 21, ZQ) = Flz(l‘ + t) + w? Flg(fﬂ) Fu(t) (1 — P12(0))_1 (6.12)

where T'1a(z—t) is the product of the Toeplitz operators I'|z = 2; , whose kernel
is specified by (4.3), i.e

o) = exp{2mikz}dk
L1z(z) ./ d (ﬁ(k) —z1 —w?r(z1)) (ﬁ(k) — 29 — wzr(zz)).

According to (6.2), h(k) is even. Thus, TI'j»(z) has the same property and since
o(z) specified by (6.4) is odd, the second term of (6.12) gives no contribution to
(6.5). Besides, since the Fourier transform of #(z) is Vh(k), the substitution of
(6.11) into (6.5) yields (6.3) for a = n and | Imz; 2 [> 7. By using the analytic
continuation arguments it is easy to show that the same limiting relation is true
for all Im 21 2 # 0 . Thus, we have proved the proposition for a = n.

7. DISCUSSION

As we mentioned in Section 5, the deformed semicircle law appeared for the first
time [20] in a somewhat different problem on the limiting eigenvalue distribution
of the random matrices, known as the deformed Wigner ensemble. This ensemble
arose in nuclear physics (see e.g. [18,26]), where it was proposed in order to describe
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the statistics of low-lying levels of heavy nuclei. Later similar ensembles appeared
in quantum field theory [4], quantum chaology [9] and statistical mechanics [8].

The main difference of the respective random matrices from those modelling
elementary excitations in disordered condensed matter (in particular, the random
operators (2.1)-(2.3)) is that the former have all the entries of the same order
of magnitude (e.g. identically distributed ), while the latter have nonzero entries
only on the finite number b of diagonals adjacent to the principal diagonal
(for instance in (2.1) b= (2pR)®+ 1, where p is the radius of the support
of ¢(t)). In other words the former random matrices correspond to nonlocally
interacting disordered systems (the range of the interaction is of the order of the
size of the system), while the latter correspond to the locally interacting (short
range) systems. Therefore it is rather natural that we have obtained the deformed
semicircle law as the result of the limiting transition R, d, n — oo .

Let us consider the finite volume version of (2.1), i.e. the restriction HI(\R)
of (2.1) to a finite cube A C Z¢ centred at the origin and having the side length
L . Then the Wigner ensemble of random matrices corresponds to (2.1) with
d=1, L=1=2m+1, R =2m and ¢() = x1(t) , where x;(¢) is the
indicator of the interval [—1/2,1/2]. Therefore Theorem 5.1 of this paper and
the results of [20] (see also [12]) show that the deformed semicircle law is the

limiting eigenvalue distribution in the two extreme cases of HI(\R) : the first one
corresponds to the two successive limiting transitions L — oo and then R — oo
(Theorem 5.1), while the second one corresponds to the simultaneous limits L —
00, R — o0, LR™! —1.In view of these results it is natural to analyse the
intermediate cases when L — 00 and R— oo but 0<v=lim LR ! <1.It
is the so-called band random matrices, which appear for instance in the studies of
quantum chaos [5]. In paper [13] it was shown that under fairly general conditions
(condition (2.1b) in essence) the limiting eigenvalue distribution of these random
matrices with Hp = 0 is again the semicircle law if v = 0 . The case of
0 <v <1 is more complicated (for details see [3,13]).

We have mentioned in Introduction that there exists an analogy between the
spectral problems which we are studying in this paper and the mean field theories
in statistical mechanics and solid state theory. Therefore it is natural to compare
our results with results of mean field type approximations developed in the theory
of disordered systems (see reviews [4,17,28]). These approximations are known
also as single-site approximations and are applied mainly to the averaged Green
function of the respective random operator.

The most widely accepted approximation of this type is the coherent potential
approximation (CPA). It was proposed and applied to random operators with a
diagonal disorder, i.e.the discrete Schrodinger operator

—h Adisc + Q(l’), T e Zd (71)

with an 1.i.d. random potential first of all. Therefore one cannot expect too much
similarity between our results obtained for the ”opposite” case of the ”"maxi-
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mum” off-diagonal disorder and results of the CPA. In particular for the Cauchy-
distributed random potential (the Lloyd model), when

P{gz)edg}=yn 1 (*++*) ' dgq, 7>0, (7.2)
the basic relations of the CPA [8,21,34]
E{ G(z,z;2) } = Go(0,z + A(z)), (7.3)

B ale) + A)
1+ (¢(z) + A(z)) Go(0,2z + A(2))

yield the following for the selfenergy A(z)

}=0 (7.4)

A(X +1ig) = iy signe. (7.5)

Since according to our notation the Lh.s. of (7.3) is r(z), we can write (7.3) and
(7.5) for Imz#0 as
r(z) =ro(z + ). (7.6)

This formula is obviously different from our basic equation (2.9) which determines
the selfenergy
A(2) = w? r(z2) (7.7)

as the solution of this equation. Nevertheless, as was shown in [25], the equations
(7.3) and (7.4) yield (2.9) if the probability distribution of ¢(z) is the semicircle
law (5.3).

According to many suggestions and numerical results, the accuracy of the
CPA increases with increase of the coordination number of a lattice, i.e. its dimen-
sionality in particular (note that no general quantitative criteria for the validity of
the CPA seem to be available). Consider in this connection the Lloyd model (7.1),
(7.2) again. It is well known that for this model [17]

E{G(z,y; A +ie)} = Go(z — y; A + ic + iy - signe). (7.8)

Comparing this relation with (7.3) and (7.5) we conclude that the CPA is exact
for the Lloyd model. Now, rescaling the translation invariant part of (7.1) in ac-
cordance with (2.2b) h = hg d~'/2, we find from (7.8) with z =y and Imz >0
that

r(z) = hmE{Gazmz} / (A — z = A2) ) 'Ng(dN),

where Ny(d)) is the Gaussian distribution given by (2.10) and A(z) is given by
(7.5). This formula as well as (7.6) is different from equation (2.9) (with the same
No(dN)) according to which the selfenergy is given by (7.7).

Thus, at least in the case of the Lloyd model, the d = oo limits of the
exact averaged diagonal element of the Green function and of its CPA form are
different from the same limit of E{G(z, z; z)} for the random operator (2.2) with
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an off-diagonal disorder satisfying (2.1). This conclusion is supported by recent
diagrammatic analysis [24], according to which the d = oo limit of E{G(z,z;2)}
and of its CPA form coincide for an arbitrary random i.i.d. potential in (7.1).

To this point we have being discussing the first moment of the Green function
which determines equilibrium characteristics of disordered systems. However, to
calculate kinetic characteristics, the conductivity first of all, we need to know the
second moment of the Green function. It was recognized long ago [7,28] that the
simple decoupling E{G G} = E{G} E{G} , which is in the spirit of any single-site
(mean field type) approximation including the CPA, is inconsistent with certain
physical and mathematical conditions. The most important is the Hilbert identity
which plays the role of the Ward identity here. It was also found that a modification
of this decoupling which is free of the above mentioned inconsistencies should only
take into account the multiple scattering of two particles by the same site [23].

As we have mentioned above the infinite R, d and n limits do not coincide with
the CPA. However these limits have similar properties. In particular, according to
Theorem 4.1, all the Green function moments decouple into the products of the first
moments in these limits and, according to Section 6, this fact does not contradict
the Hilbert identity. The reason is not too fast decay of the respective remainders.
As a result we cannot perform these limits inside the sums over the whole lattice
entering into the Hilbert identity or in expression (6.5) for the Stieltjes transform
of the conductivity. To calculate an expectation containing the mentioned sums
we are to consider a larger family of quantities including both the products of the
Green functions and certain infinite sums of some of these products and to derive
a new infinite system of equations for the expectations of this family. However
the common feature of this new system and the systems for the expectation of the
products of the Green functions is that in both cases the solutions of the respective
limiting systems have a factorized form (see (4.1) and (6.11)) in accordance with
the spirit of the single-site approximations.

This should be regarded as the proper mathematical mechanism of these
approximations.

It is worth noting that, though the respective corrections (see e.g. (6.12)) are
neccessary to guarantee the Hilbert identity, they do not contribute to the conduc-
tivity (6.5) due to the antisymmetry of the velocity operator o in (6.4). Thus, we
can use the simple decoupling E{G G} = E{G} E{G} in the final calculation of
the conductivity. This fact is also well known in the theory of disordered systems
(see [7,17,28]).

Vanishing of the simplest two-body corrections to the conductivity seems
physically related to vanishing of the backscattering term in a transport equation
[23]. As is generally accepted (see e.g. review [15]), the absence of the backscat-
tering contribution is in turn closely related to the absence of localization. This
is in agreement with the absence in our formulae of such well known manifesta-
tions of localization as exponential tails of the IDS, vanishing of the zero frequency
conductivity for the Fermi energies for which the density of states is nonzero, etc.

Since for finite R,d and n the localized states should always be present at
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least at the edges of the spectrum of the operators (2.1)-(2.3), we have to conclude
that the limiting transitions R, d, n — oo "remove” completely the pure point
spectrum of these operators. In particular, since according to (6.3) in all the three
limits (as well as in the CPA) the support of the zero-frequency conductivity as
a function of the Fermi energy coincides with the IDS support , then one may
speculate that the edges of this support coincide with the R, d, n — oo limits of
the mobility edges of respective operators.

AKNOWLEDGEMENTS

This work was partially supported by Grant N 1/82 of the State Committee for
Science and Technology of Ukraine. L.P. would like to thank the Mittag-LefHer
Institute for the kind hospitality.

REFERENCES

1. Akhiezer N. The Classical Moment Problem. London: Oliver and Boyd 1964.

2. Berlin, T., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86,
821-825 (1952).

3. Bogachev, L., Molchanov, S., Pastur, L.: On the density of states of random
band matrices (in Russian) Mat. Zametki, 50 , 31-42 (1991).

4. Brezin, E., Itzykson, C., Parisi, G., Zuber, J.: Planar diagramms. Commun.
Math. Phys. 59 , 35-51 (1978).

5. Casati, G., Molinari, L., Izrailev,F.: Scaling properties of band random ma-
trices. Phys. Rev. Lett. 64, 1851-1854 (1990).

6. Constantinescu, F., Felder, C., Gawedzki, K., Kupiainen, A.: Analyticity of
density of states in a gauge invariant model of disordered systems. J. Stat.
Phys. 48 , 365-391 (1987).

7. Elliot, P., Krumhansl, J., Leath, P.: Theory and properties of randomly dis-
ordered crystals and related physical systems. Rev. Mod. Phys. 46 , 463-510
(1974).

8. Fernandez, R., Frohlich, J., Sokal, A.: Random Walks, Random Surfaces,
Critical Phenomena and Triviality in Quantum Field Theory. Berlin, Heidel-
berg, New York: Springer 1992.

9. Haake, F.: Quantum Signatures of Chaos. Berlin, Heidelberg, New York:
Springer 1991.

10. Kac, M.: Mathematical mechanisms of the phase transitions. In: Chretien,
M., Deser, S. (eds.) Statistical Physics, Phase Transitions and Superfluidity,
Vol.I, pp. 241-301 . New York: Gordon and Breach 1968.

11. Kac, M., Thompson, C.: Spherical model and the infinite spin dimensionality
limit. Physica Norwegica 5 , 163-168 (1971).

12. Khorunzhy, A., Pastur, L.: On the eigenvalue distribution of the deformed

Wigner ensemble of random matrices. In: Operator Theory and Related Top-
ics, AMS (in press).



Limits of Infinite Order 189

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.
21.

28.

Khorunzhy, A., Molchanov, S., Pastur, L.: On the eigenvalue distribution of
band random matrices in the limit of their infinite order (in Russian) Teor.
Mat. Fiz. 90, 163-178 (1992).

Khorunzhy, A., Khoruzhenko, B., Pastur, L., Shcherbina, M.: The large—n
limit in statistical mechanics and the spectral theory of disordered systems.
In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena
Vol. 15, pp. 73-239 . New York: Academic Press 1992.

Lee, P., Ramakrishnan, T.: Disordered electronic systems. Rev. Mod. Phys.
57 , 287-337 (1985).

Lebowitz, J., Penrose, O.: Rigorous treatment of the van der Waals-Maxwell
theory of the liquid-vapour transition. J. Math. Phys. 7 , 98-110 (1966).

Lifshitz, I., Gredeskul, S., Pastur, L.: Introduction in the theory of disordered
systems. New York: Wiley 1988.

Mehta, M.: Random matrices. New York: Academic Press 1967.

Pastur, L.: Spectra of random self-adjoint operators. Russ. Math. Surveys,
28 , 1-67 (1973).

Pastur, L.: On the spectrum of random matrices (in Russian). Teor. Mat.
Fiz. 10 , 102-112 (1973).

Pastur, L., Figotin, A.: Spectra of random and almost periodic operators.
Berlin, Heidelberg, New York: Springer 1992.

Stanley, H.: Spherical model as a limit spin dimensionality. Phys. Rev. 176,
718-721 (1968).

Velicky, B.: Theory of electronic transport in disordered binary alloys: co-
herent potential approximation. Phys. Rev. 184 , 614-627 (1969).

Vlaming, R., Vollhardt, D.: Controlled mean field theory for disordered elec-
tronic systems: single particle properties. Rutgers preprint RWTH/ITP - C
6/91.

Wegner, F.: Disordered system with n orbitals per site: n = oo limit. Phys.
Rev. B19, 783-792 (1979).

Wigner, E.: Random matrices in physics. STAM Review J. 9 | 1-23, (1967).

Wegner,F., Opperman, R.: Disordered systems with n orbitals per site: 1/n
expansion. Z. Phys. B34 , 327-348 (1979).

Yonezawa,F., Morigaki, K.: Coherent potential approximation. Suppl. Progr.
Theor. Phys. 53 , 1-76 (1973).

A.M.Khorunzhy, L.A.Pastur, Institute for Low Temperature Physics, Academy of Sci-
ences of Ukraine, 47 Lenin Ave,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>