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Preface 

The last decades have demonstrated that quantum mechanics is an inexhaustible 
source of inspiration for contemporary mathematical physics. Of course, it seems 
to be hardly surprising if one casts a glance toward the history of the subject; 
recall the pioneering works of von Neumann, Weyl, Kato and their followers which 
pushed forward some of the classical mathematical disciplines: functional analysis, 
differential equations, group theory, etc. On the other hand, the evident powerful 
feedback changed the face of the "naive" quantum physics. It created a contem­
porary quantum mechanics, the mathematical problems of which now constitute 
the backbone of mathematical physics. The mathematical and physical aspects 
of these problems cannot be separated, even if one may not share the opinion of 
Hilbert who rigorously denied differences between pure and applied mathemat­
ics, and the fruitful oscilllation between the two creates a powerful stimulus for 
development of mathematical physics. 

The International Conference on Mathematical Results in Quantum Mechan­
ics, held in Blossin (near Berlin), May 17-21, 1993, was the fifth in the series of 
meetings started in Dubna (in the former USSR) in 1987, which were dedicated 
to mathematical problems of quantum mechanics. A primary motivation of any 
meeting is certainly to facilitate an exchange of ideas, but there also other goals. 
The first meeting and those that followed (Dubna, 1988; Dubna, 1989; Liblice (in 
the Czech Republic), 1990) were aimed, in particular, at paving ways to East-West 
contacts. The most recent conference in Blossin was organized after a three year 
period during which the old barriers were removed completely. There are, how­
ever, other challenges which have nothing to do with the vagaries of politics and 
geography: in a period of high specialization in scientific thought scientists with 
a different bent of mind should be gathered under the same "roof" emphasizing 
similarities, convergences and analogies between ideas they are advocating in their 
fields of research. For us this "roof" was the Mathematical Results in Quantum 
Mechanics conference. 

The proceedings start with lectures devoted to the traditional core of the 
Quantum Mechanics - "Schrodinger and Dirac Operators". They touch on spec­
tral problems, asymptotic behaviour of the resolvents, singular potentials and 
other topics. Following naturally from these subjects is the section "Generalized 
Schrodinger Operators" wherein lectures from less traditional fields have been col-
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lected: the quantum Hall effect, contact perturbations, predissociation, etc. In the 
section "Stochastic Spectral Analysis" readers will find results strongly motivated 
by Quantum Mechanics: decay of eigenfunctions, Dirichlet operators and semi­
groups and others. The section "Many-Body-Problems and Statistical Physics" 
contains lectures related to the problems of quantum statistical mechanics, in­
cluding the spectra of reduced density matrices, macroscopic quantum fluctua­
tions, ground-states of the quantum spin chains and spectrum of the spin-boson 
model etc. Lectures on delicate problems of the quantum evolution irregularities 
are collected in the section "Chaos". The last section, "Operator Theory and Its 
Applications", was reserved for lectures motivated by different types of mathe­
matical observations with roots in Quantum Mechanics such as trace formulas for 
obstacle problems, self-adjoint extensions and singular perturbations, adiabatic 
reduction theory or p-adic quantum theory. 

We hope that the broad areas covered by these proceedings may give read­
ers an impression of the contemporary situation at the intersection of quantum 
mechanics and mathematical physics at least from the point of view of a not in­
considerable part of the community working in this field. 

We would like to thank the Deutsche Forschungsgemeinschaft, Sonderfor­
schungsbereich 288 and the Max-Planck-Gesellschaft for their financial support 
which made the conference possible. We want to stress, in particular, that it was 
this support that allowed the scientists of the former USSR to participate. 

November 1993. The Editors 
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Discrete spectrum of the periodic Schrodinger 

operator for non-negative perturbations * 

M.Sh.Birmant 

1. Let us consider the periodic operator 

A = -div(g(x)grad) + p(x) 

acting in L2(Rd). Assume that g,p E Loo(Rd) are real functions obeying 

g(x + n) = g(x), p(x + n) = p(x), n E Zd 

(1) 

and that the matrix function 9 is positive definite. If the matrix 9 is constant, 
then the operator A with the lattice periods Zd is equivalent to the Schrodinger 
operator with arbitrary lattice periods. Further, together with A the perturbed 
operator 

A(a) = A + aV, V(x) ~ 0, a> 0, (2) 

is considered where V E Loo,loc behaves like 

V(x) f"V Ixl-2u f({)), 
x 

{)= ~' (3) 

as Ixl ~ 00. The exact definition of the operators (1),(2) is given by quadratic 
forms. Let the interval (.X-, A+) be a gap of the spectrum of the operator A and 
let A be a fixed number in the closed gap, i.e. A_ ::; A ::; A+. By N(a, A) we denote 
the number of eigenvalues of the operator A(t) which go through the point A if 
the coupling constant t increases from 0 to a. 

We are interested in the asymptotic behaviour of N(a, A) as a ~ 00. Similar 
questions were earlier considered in the remarkable paper [2]. In contrast with 
[2] we allow the value A = A_ which needs a new technique. Further notes and 
literature hints can be found in Section 6. 

Notation: Q C Rd is the unit cube; n* = [_7f,7f]d is the closed cube in Rd; n 
is the plane torus which is obtained by identifying the opposite boundaries of n*. 
Further we set W = VV. 

"Translated by the editors 
tSupported by the Russian Foundation for Fundamental Researches (Grant 93-011-1697) 



4 M. Sh. Birman 

2. Let us introduce the operator 

T(A) = -W(A - AI)-IW, (4) 

For A = A± it is assumed that the operator (4) exists as the limit of T(A) in the 
operator norm for A ------7 A±. By n+ (-, T( A)) we denote the spectral distribution 
function with respect of the positive spectrum of the operator T(A). Then 

N(a, A) = n+(s, T(A)), as = 1, (5) 

Let us describe the spectral representation of the resolvent (A - A1)-I. In L2 (Q) 
we consider the family of operators A(k), kEn which is given by the expression 
(1) and the boundary condition which guarantees the periodic continuation of 
the function u(x) exp( -ikx) for u E Dom(A(k)). Let Ej(k) be the sequence of 
eigenvalues of the operator A(k) and let 'ljJj(k, x) be the corresponding orthonormal 
eigenfunctions. Further, let us introduce the operators 

which maps L2(Rd) onto L2(n). The operators Pj = WjWj are pairwise orthogonal 
projections in L2(Rd) obeying I:j Pj = I. By [h] we denote the multiplication 
operator which is generated by the function h : n ------7 C. Then 

T(A) = l: WWj[(A - Ej)-I]WjW, 
j 

Let the number T be determined by the condition 

(6) 

In the sum (6) the first T summands are positive operators while the other ones 
are negative. Thus 

T(A) ::; l:WWj[(A - Ej )-I]Wj W =: T,.(A) 
j<5.,. 

and hence 
(7) 

3. From (5),(7) we see that the investigation of the asymptotics of the spec­
trum of the positive operator T,.(A) leads to upper asymtotic estimates for N(a, A). 
It is useful instead of T(A) to consider a more general class of operators. Let 
h j : n ------7 R+, j = 1, ... , T. We set 

H = l: WWj[hj]WW. (8) 
j<5.,. 

Important for us is the following theorem. 
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Theorem 1 Let 2a < d, f E Lq(Sd-l), q = d/2a(> 1) in (3) and let 

j = 1, ... ,r, (9) 

in (8). Then 

lim sqn(s, H) 
8-->0 

M(hl"'" hr; f) 

The proof idea of Theorem 1 consists in replacing the operators \II j in (8) by the 
Fourier transformation ~. Doing so it can be shown that the leading term of the 
spectral asymptotics remains unchanged. Moreover it is possible to carry out some 
other transformations of the operator under investigation. In order to legitimate 
these transformations the generalized Cwikel estimate (see [4],[5]) is used essen­
tially. By these considerations the problem transforms into the investigation of the 
spectrum of an orthogonal sum of operators of type 

j = 1, ... ,r (11) 

which act in L2 (0*). The operators (11) are \II-differential operators of negative 
order (-2a). For them the spectral asymptotics can be obtained directly from 
the general results of the paper [3]. As can be seen from (10) the asymptotic 
contributions of the different spectral zones of the operator A sum up. 

Remark 1 For \II-differential operators of type (11) the role ofthe variables x and 
k is "non-traditional": The order of the operator is determined by the asymptotics 
(3) while the functions hj(k) can be chosen sufficiently arbitrary and behaves like 
"potentials" . 

Remark 2 The condition q > 1 in Theorem 1 has a technical reason and can be 
replaced by the condition q > O. However for q ::; 1 it is necessary to use other 
estimates which need a certain smoothness (dependent on q) of the data of the 
problem. 

4. From Theorem 1 and from (5),(7) we find the following corollary. 

Corollary: 

a) For.X- < A ::; A+, 2a < d the upper asymptotic estimate 

limsupa-qN(a,A)::; M(hl, ... ,hr;f) (12) 
0-->00 

holds where 
j = 1, ... ,r. (13) 
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b) If the condition (9) is satisfied for the function (13), then the estimate (12) 
is valid for A = A_ too. 

Remark 3 With respect to conditions of point a) the functions (13) are bounded. 
The same takes place in the case A = A_ for those functions of (13) for which 
max Ej(k) < A_. However, the condition (9) is essential for those hj for which 

(14) 

Assume in particular that (14) is satisfied only for j = r and, moreover, that max 
in (14) is obtained only in a finite number of points and that these maximal points 
non-degenerated. Then obviously the condition (9) is valid if and only if (1 > 1. It 
is not hard to see that under the conditions of point b) it must be satisfied always 
(1)1. 

Remark 4 Let us make some remarks concerning the validity of lower asymptotic 
estimate of type 

(15) 

under the conditions of the corollary. Till now the author can prove it only assum­
ing that the functions Ej , 'lj;j are sufficiently smooth on the torus o. However, it 
is hard to verify these conditions in the general case, although, for r = 1 this is 
satisfied automatically. Therefore we prefer to use the results of the paper [2] in 
order to obtain (15) for A = A_. 

5. In this subsection we believe that the matrix 9 in (1) is constant (case 
of the Schrodinger operator) and that the function f of (3) is continuous. Under 
these conditions and for A E (A_, A+) the asymptotics was found in [2], i.e., both 
estimates (12), (15) are verified where the functions hI, ... ,hr are given by (13). 
Since N(a, A) monotonuously dependents on A the estimate (15) can be extended 
to >. = A_ for functions obeying 

j = 1, ... ,r. (16) 

Summing up we get the following theorem. 

Theorem 2 Assume that the matrix 9 is constant in (1). Let 1 < (1 < d/2 in (3) 
and let f be a continuous function. Then under the condition (16) the asymptotics 

(17) 

are valid. 

Remark 5 The condition 2(1 < d (i.e. q > 1) is not used in the asymptotic 
theorem of [2). Therefore, taking into account Remark 2 the asymptotics (17) can 
be proved for q :::; 1. 
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6. Comments. In [2] it were considered only inner points of the gap. This 
fact is very important for the technique which is used there. In [2] the Schrodinger 
operator must not be necessarily periodic. It is only assumed that the state density 
exists for it in terms of which then the asymptotics are written down. In the 
periodic case the asymptotic coefficient can be transformed into the form (10). 
Let us mentioned the recent paper [1] where the operator of type (1) is perturbed 
by a non-negative differential operator of second order. 

For d = 1 essential asymptotic results were obtained in [6] for N(ex,)..) in 
both cases ex > 0 and ex < O. The Schrodinger operator is assumed to be periodic. 
For)" the values ).._ and )..+ are allowed. Hoewever, in [6] it is essentially used that 
the problem is an one-dimensional one. 
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The discrete spectrum in a gap of the continuous 
one for compact supported perturbations 

M.Sh. Birman T. Weidl 

1. We start from the traditional problem on the negative spectrum of the 
Schrodinger operator in R d, d ~ 3. Let A = -~, 

A(o:) = -~ - o:V, V(x) ~ 0, 0: > 0, (1) 

and A ::; 0. By NA(O:, A) we denote the number of eigenvalues of the operator (1) 
on the left-hand side of the point A. Then for potentials V E L d/ 2(Rd ) we have 
the well-known asymptotics 

NA(O:, A) '" (27r)-dwdo:d/2 J V d/2dx, 0: ~ 00, (2) 

with Wd the volume of the unit ball in Rd. We call potentials V E Ld/2(Rd) 
"regular" perturbations of the operator A (cf. [BSIJ). The asymptotic (2) do not 
depend on A ::; 0, it's character is determined by the behavior of the symbol 
1~12 _ o:V(x) for large I~I only. In [BSI] the asymptotics of NA(O:, A) are discussed 
precisely for potentials violating the assumption V E L d / 2 (Rd ) because of a slow 
decrease as Ixl ~ 00 ("non-regular perturbations"). There typically NA(O:, A) = 
o(N(o:, 0)), A < 0, is found; the main asymptotical term of N(O, A) for 0: ~ 00 

is given by the symbol of A(o:) for small lei (threshold effect). So, for instance, 
for V E Loo , V(x) '" Ixl-2 (lnlxl)-l/q , 2q > d, Ixl ~ 00, we have N(o:,O) '" 
c(d)o:q, N(o:,A) = O(o:d/2In o:), and the latter estimate can be refined. Here we 
discuss the inverse case, when V ~ L d / 2 (Rd ) because of local singularities. In 
detail we assume 

V E L1(Rd), supp V c KR := {x : Ixl < R}, V ~ O. (3) 

We call potentials of the form (3) "quasi-regular". 

2. For V ~ Ld/2(Rd) the number of eigenvalues NA(o:, A) can show non­
powerlike asymptotics. Our second aim is to show that the technical tools devel­
oped in [WI], [W2] allow us to consider non-powerlike asymptotics, too. We call 
a function f : N ~ R+ a normal estimation function (NEF), if f i 00 for n ~ 00 

and if the function r is subadditive for some /'i, > 0. We introduce the functionals 

~f(A, A) .-

8f(\ A) .-

lim sup 0:- 1 f(NA(O:; A)), 
0--+00 

lim inf 0:- 1 f(NA(O:; A)). 
0--+00 

(4) 

(5) 
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Theorem 1. Let (3) be full filled and assume, that for some A :::; ° and for a 
NEF f ~ f (A, A) < 00 holds. Then for every /1 :::; ° we have the equalities 

(6) 

In particular (6) is fullfilled for A < 0, /1 = 0; this explains why we call 
potentials·V satisfying assumption (3) "quasi-regular". We remark, that under 
assumptions of theorem 1 the functionals (4), (5) are determined by the behavior 
of the symbol of A(o:) for large I~I only. 

3. Further we consider the operator 

(7) 

as unperturbed. The spectrum a(H) may be interrupted by gaps. Let A = (A_, A+) 
be such a gap. For a large class of potentials V decreasing to zero sufficiently fast 
for Ixl -+ 00 the spectrum of the perturbed operator 

H(o:) = H - o:V, 0: > 0, V(x) ~ 0, 

in the gap A is discrete. For A, A_ :::; A:::; A+, we introduce NH(O:, A) - the number 
of eigenvalues of H(t) which passed the point A for coupling constant t increasing 
from ° to 0:, (for operator A(o:) and A:::; ° the function NA(O:, A) coincides with the 
function NA from subsection 1). In [B1] an abstract theorem was presented, which 
gives the equality of the asymptotical functionals ~ f' {5 f for A, /1 < ° and H, A E A, 
in the case of powerlike estimation functions f. We state here an analogue of this 
theorem for arbitrary NEF and apply it to the Schrodinger operator. Next we 
prepare some material required in the corresponding formulations. 

4. Let H be a Hilbert space, T E Soo('H.) (i.e. T is a compact operator on 
H); and let {sk(TnkEN denote the sequence of singular numbers of the operator 
T. For some NEF f we introduce the operator classes 

L,f = {T E Soo : ITlf := sup sn(T)f(n) < oo}. 
nEN 

The class L, f is a complete, non-separable space with respect to the quasi-norm 
1·lf. We denote by L,~ the subspace of operators T E L,f, for which sn(T)f(n) -+ 0. 
The set of finite rank operators is dense in L,~. For TEL, f we define the functionals 

~f(T):= lim supsn(T)f(n), 
n-->oo 

{5f(T):= lim inf sn(T)f(n). 
n-->oo 

For T = T* analogous functionals ~j±), {5J±) can be introduced by the sequences 

{A~±) (Tn, e.g. the sequences of positive eigenvalues of the operator ±T. All six 

functionals ~ f' ~ ~ ±) , {5 f' {5J ±) are continuous on L, f. In fact they are well defined 
and continuous on the factor space L, f /L,~, too. The class L, f is a two-sided ideal 
in the space of bounded operators on H. The material of this subsection was 
developed in [W1].For similar powerlike ideals see [BS2]. 
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5. Let A = A* > 0, P = P* be operators in 'H; a, p are the corresponding 
bilinear forms. We assume that 

(8) 

where p* is a nonnegative form such that 

(9) 

Put H = A+P (in form sense). Let, moreover, W be a closed operator, Dom W :=l 
Dom AI/2 and W(A + I)-1/2 E Soo. We set v[u, u] = IIWul1 2 and consider oper­
ators H(a) = H - aV; the perturbation V is given by the form v. Further p(.) 
denotes the resolvent set of an operator. 

Put 
X.x(A) = W(A - AI)-IW*, A E p(A) n R, 

and the operator XJ-L(H), f.L E p(H) n R is defined analogously. 

Theorem 2. Let assumptions (8), (9) be full filled and let 

W(A + I)-1/2 E L.f, 

W(A + I)-I E L.~, 

for some NEF f. Then for A = X E p(A), f.L = Ji E p(H) we have 

X.x(A) - XJ-L(H) E L.~2' 

(10) 

(11) 

For T = T* E Soo we use the notation n+(s, T) = card{k : A~+) (T) > s}, s > 
0. We recall the well-known relation 

and the analogous equality for A. Then from theorem 2 we claim the following 
"stability theorem" . 

Theorem 3. Under the conditions of theorem 2 for g = P the following 
identities for the fucntionals (4),(5) hold 

(12) 

For powerlike functions f theorems 2,3 were proven in [Bl]. 

6. Next we apply theorem 3 to operators (1), (??) in case of quasi-regular 
potentials. It remains true that 

Proposition 4. Put A = -~ and for a potential V suppose the condition (3) 
holds. Let assumption (10) be full filled for some NEF f. From this follows (11). 

Together with theorem 3 this proposition leads to 
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Theorem 5. Put A = -~ and let H be the operator (7). Let ~g(A, A) be 
finite-valued for some NEF g and for some A < o. Then for all f.L = 7i E p(H) 
equalities (12) hold. 

We remark, that theorem 5 can be sharpened and remains true for weaker 
conditions on V too. More significantly for periodic p relations (12) can also be 
shown for f.L = A±; for regular perturbations this is discussed in detail in [B2]. 

Theorem 3 can be used not only in regular or quasi-regular situations. We 
give an example of a non-regular perturbation. Put V(x) = (1 + IxI2)-1. The 
asymptotical behavior of NA(a, A), A < 0, is known (and doesn't depend on A < 0). 
Theorem 3 allows us to carry this asymptotic into a gap of the operator (7). In 
fact, for f.L E A we have 

NH(a, f.L) '"" c(d)ad/ 2 log a, c(d) = 2d-l(27f)-dw~. 

We can describe a sufficiently large class of non-quasi-regular potentials, to which 
theorem 3 can be applied, but do not discuss it here in detail. 

References 

[Bl] M.Sh.Birman "Discrete Spectrum in the Gaps of a Continuous One for Per­
turbations with large Coupling Constant", Adv. SOy. Math. v.7, AMS 1991 

[B2] M.Sh.Birman "On the discrete spectrum in gaps of a perturbed periodic op­
erator of the second order" (Russian), Func. Anal. t. 25 vyp. 2, 1991 

[BSl] M.Sh.Birman, M.Z.Solomyak "Estimates for the Number of Negative Eigen­
values of the Schrodinger-Operator and Its Generalizations", Adv. SOy. 
Math. v.7, AMS 1991 

[BS2] M.Sh.Birman, M.Z.Solomyak "Spectral Theory of Self-Adjoint Operators in 
Hilbert Space", D. Reidel Publishing Company, 1986 

[WI] T.Weidl "General operator ideals of the weak type" (Russian), Algebra i 
Analiz t.4 vyp. 3, 1992 

[W2] T.Weidl "Estimates for operators of the type b(x )a(D) in non- powerlike 
ideals", Mittag-Leffler-Report 4, 1992/93, to be published in Algebra i Analiz 

M.Sh. Birman 
Department of Physics 
St.Petersburg State University 
Ulyanovskaya 1, Stary Peterhof 
St. Petersburg 198904 
Russia 

T. Weidl 
Max-Planck-Arbeitsgruppe 
"Partielle Differentialgleichungen" 
U niversit" at Potsdam 
Am Neuen Palais 10 
0-1571 Potsdam, Germany 



Operator Theory: 
Advances and Applications, Vol. 70 
© Birkhauser Verlag Basel 

Schrodinger Operators with Strong Local Magnetic 

Perturbations: Existence of Eigenvalues in 

Gaps of the Essential Spectrum 

Rainer Hempel* and Jorg Laitenberger 

1 Description of Our Main Result 

In the present note, we show that perturbations by strong magnetic fields of 
compact support may produce eigenvalues inside a spectral gap of a (periodic) 
Schrodinger operator. Here we will discuss the following situation: 

In the Hilbertspace 1{ = L 2(RV ), we consider the Schrodinger operator H = 
-~ + V, with a fixed potential V : R V --t R, V bounded and V 2 1, where H is 
defined as the unique self-adjoint extension of (-~ + V) IC~(RV). We shall make 
the basic assumption that H has a (non-trivial) gap in its essential spectrum; more 
precisely, we assume that there exist b > a > inf aess(H) with [a, bj na(H) = 0. In 
view of the applications in solid state physics, one may think of H as a periodic 
Schrodinger operator. 

Suppose now that we are given a vector potential a = (aj)j=1, ... ,v, aj E 
0 1 (RV) real-valued and of compact support. Introducing also a coupling A E R, 
we define the associated magnetic Schrodinger operator as 

v 

H()..a) := (iV' - )..a)2 + V(x) = ~)i8j - )..aj)2 + V(x). 
j=1 

Again, there are classical results assuring that H()..a) is essentially self-adjoint on 
Cg"(RV). The domains of H = H(O) and H()..a) coincide with the Sobolev space 
1{2. (For a general account of magnetic Schrodinger operators, see, e. g., [AHS], 
[CFrKSj, [Sj.) 

The operators H()..a), with ZI = 2, provide a simple mathematical model for a 
thin layer or wafer of solid matter which is locally penetrated by a magnetic field. 

For a E C1 , a of compact support, it is easy to see that the magnetic terms 
-i)..(2a . V' + diva) + )..21a12 are a relatively compact perturbation of H; as a 

IOn leave from Math. lnst. der Univ. Miinchen, Theresienstr. 39, D-8000 Miinchen 2 
Address after September 1, 1993: Dep. of Maths., Univ. of Alabama, Birmingham, AL 35294 
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consequence, the essential spectrum does not change as we switch on the magnetic 
field, i. e., we have 

However, as we let>. increase from 0 to 00, discrete eigenvalues may move into 
the gap. As in our previous work ([DH], [ADH], [AADH], [HI]), we now fix some 
"control point" E E (a, b) and ask whether there exist coupling constants>. with 
the property that E E a(H(>.a)). In other words, it is our aim to produce lower 
bounds for the eigenvalue counting function 

N(>.; a, E):= L dim ker(H(p,a) - E). 
O<p,<>' 

In the present brief note, we concentrate on the paradigmatic case where we 
have a constant field inside a cube QR = {x E RV; IXjl < R, j = 1, ... , v} while 
the field is zero outside the cube QR+l, for some R ~ 1. To construct such a 
situation, we choose, for any R ~ 1, a cut-off function 'PR E C~(RV) satisfying 

and we fix a (real-valued) vector potential b on RV which generates a (non-zero) 
constant magnetic field. 

Since our mechanism will basically rely on the "repulsive" effect of the mag­
netic perturbation >. 'P R b on the cube Q R, we need a (rather weak) condition on 
the density of states of H below E: for any self-adjoint operator A, let p( -oo,E) (A) 
denote the associated spectral family, so that dimP(_oo,E) (A) is just the number 
of eigenvalues of A below E, if A has compact resolvent. Letting HR denote the 
operator -~ + V, acting in L2(QR) with Dirichlet boundary conditions, we shall 
assume that there exist constants Co > 0 and Ro ~ 1 such that 

This condition is satisfied for periodic potentials V, for example. Now our main 
result on the eigenvalues of H (>. 'P R b) can be stated as follows: 

Theorem 1.1. Let H, E, band 'PR be as above; in particular, let us suppose 
that (*) holds. Then, given any kEN, there exist R ~ 1 and>' > 0 such that 

A more complete presentation of these and related results will be given in a 
forthcoming paper. In the subsequent remarks, we put the result of Theorem 1.1 
in perspective: 

1. There exist extensive studies ([DH], [ADH] , [HI], [GS], [B]) dealing with 
the situation where a Schrodinger operator H = -~ + V with spectral gap is 
perturbed by a multiplication operator W, W a real-valued function of compact 
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support or with some decay at infinity. While the case where W does not change 
sign allows the application of the Birman-Schwinger-principle, the general case 
W = W + - W _ requires a thorough analysis of the competition between the 
"attractive" potential well versus the "repulsive" barrier created by W + and W _, 
respectively, in H -AW, for A > O. Note that in Theorem 1.1, above, the magnetic 
terms have no definite sign, so we are a priori in deep water. 

2. In a context related to control theory,2 [AADH] have obtained the existence 
of eigenvalues in gaps in situations where the unperturbed operator A is given 
by A = - 'L,8jaij(x)8i, a second order elliptic divergence form operator with 
a spectral gap (examples are constructed in [H2]) , and the perturbation B = 
- 'L,8jbij (x)8i, with (bij ) ~ 0 decays at 00. Again, one asks for eigenvalues of A+ 
AB, for A> O. In this problem, one looses relative compactness of the perturbation 
but, at least, the perturbation does not change sign. 

In the present work, we are now dealing with perturbations given by a first or­
der differential expression where we have relative compactness but no monotonicity 
and, in general, no Dirichlet-Neumann-bracketing. (Note that Birman and Raikov 
[BR] have studied eigenvalues in gaps under the influence of magnetic fields; in 
their work, however, the eigenvalues are still "produced" by a potential W while 
the whole system is "bathed" in a (constant) magnetic field.) 

3. Due to the particular structure of the magnetic terms, the coupling A 
enters in a non-linear way. This seems to rule out any use of Birman-Schwinger­
type arguments. 

2 Sketch of the Proof 

Let us first sketch the basic strategy of our proof: again, we use a sequence of ap­
proximating problems on large cubes Qn with suitable operators Hn and H(A'PRa), 
constructed as in [ADH], [HI]: if Hn denotes the operator -~+V acting in L2(Qn), 
with Dirichlet boundary conditions, one knows that the eigenfunctions of Hn as­
sociated with eigenvalues in the interval [a', b'] (where a < a' < E < b' < b) 
decay exponentially away from the boundary 8Qn. Since, on the other hand, 
dimP[a',b'l(Hn ) :::; cnv , it can be shown that the operators 

fIn := Hn + '¢nP[a',b'l(Hn)'¢n, 

with '¢n E COO(Qn), '¢n(X) = 1, for x E Qn \ Q3n/4, and 'If;n(x) = 0, for x E Qn/2' 
enjoy the following two properties: 1. There exist a < E < f3 such that, for n large 
enough, u(fIn) n [a, f3] = 0. 2. The "non-local" part of fIn vanishes on Qn/2' 

We now compare the number of eigenvalues below E for the operators fIn = 
Hn(O) and 

2Here one asks to which extent localized impurities in periodic microstructures will affect the 
controllability of the wave equation. 
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using Neumann decoupling on the boundaries of QR and of QR+1: 

Proposition 2.1. Let a and 'PR be as in Section 1. Then, for any given kEN, 
we can find Rk ~ 1, Ak > 0 and nk E N such that 

From Proposition 2.1, it is easy to conclude by Kato-Rellich perturbation 
theory that at least k eigenvalues of the family (Hn(,~'PRkb);O < A ~ Ak ) must 

cross the level E. Hence, there exist couplings 0 < Ajn) ~ Ak, j = 1, ... , k, 

such that E is an eigenvalue of Hn(Ajn) 'PRkb), and it follows via a convergence 
argument of [DH], [HI] that there exist at least k coupling constants AI,"" Ak E 

(0, Ak ] such that E is an eigenvalue of H(Aj 'PRk b), j = 1, ... ,k, which proves our 
theorem. We will now try to give an idea of how to obtain Proposition 2.1. 

Proof of Proposition 2.1 We decouple the region Qn into the three pieces 
QR, QR+1 \ QR, and Qn \ QR+1, by adding in a Neumann boundary condition on 
8Q R and on 8Q R+l; this will increase the number of eigenvalues of the operators 
Hn(A'PRb) below E. We introduce the notation HR+1,n;ND, HR,R+1;N(A'PRb), 
H R;N (Ab), to denote, respectively, the parts of the decoupled operator acting in 
L 2(Qn \QR+1), L 2(QR+l \QR), and in L 2(QR), with Dirichlet boundary conditions 
on 8Qn and Neumann b. c. on 8QR+1 and on 8QR. Note that there is no magnetic 
part on Qn \ QR+l, while there is no contribution from 1/Jn p[a' ,b,]1/Jn living on QR+1, 
provided n 2: 2(R + 1); furthermore, 'PRIQR = 1. As a consequence, we obtain 

dimP(_oo,E) (Hn(A'PRb)) < dimP(_oo,E) (HR;N(Ab)) 

+dimP(_oo,E) (HR,R+1;N(A'PRb)) 

+dimP(_oo,E) (HR+1,n;ND) . 

The last term is not contaminated by any magnetic terms and we may employ the 
estimate of [HI] 

dimP(_oo,E) (HR+l,n;ND) :S dimP(_oo,E) (Hn) -dimP(_oo,E) (HR+d +CRv-I, 

with a constant C which is independent of Rand n, as long as R ~ 1 and n ~ 4R. 
By the assumption made in Theorem 1.1, dimP(_oo,E) (HR+d ~ coRvo 

In order to estimate the contribution coming from the dangerous "transition 
region" QR+l \ QR, we employ Lemma 2.2, given below, which is based on a trace 
class estimate of Simon [S]. As may be expected, we find a "surface term", i. e., 
there exists a constant G' such that 



Schrodinger Operators with Strong Local Magnetic Perturbations 17 

where the constant C f is independent of oX and the special choice of the cutoffs <P R • 

For k given, we now first choose Rk large enough to ensure that Co RV - (C + 
C f ) Rv-l ~ k, so that, by the above estimates, 

By adapting the estimates of [AHS] (cf. also [CdV]) to the case of Neumann 
boundary conditions, it follows that the infimum of the spectrum of HR;N(oXb) 
goes to infinity, as oX ---> 00, and the result follows. I 

Lemma 2.2. Let Q C R V denote a cube of sidelength 1, centered at the origin, 
and let HQ;N(a) = (iV' _a)2 acting in £2(Q) with Neumann boundary conditions. 
Then, given E > 0, there exists a constant CE such that 

dimP(_oo,E) (HQ;N(a)) ::::; CE , 

independently of the real-valued vector potential a E C1 (RV)V . 

Proof. We shall only discuss how the corresponding estimate is obtained in 
the case of Dirichlet boundary conditions; the Neumann estimate follows from the 
Dirichlet case by extending the Neumann eigenfunctions to a larger cube, applying 
a cut-off procedure and using min-max arguments. 

Define a sequence of auxiliary potentials Vk(X), kEN, by setting Vk(X) := 0, 
for x E Q, and Vk(X) := k(l + IxI2), for x f{. Q. Then, by a classical estimate due 
to Simon (see [S]), we have ("tr" denoting the trace) 

for any real CI-vector potential a; it is clear that the RHS is finite for all kEN 
and for all t > 0. By standard convergence arguments ([Wj), H(a) + Vk converges 
in norm resolvent sense to HQ;D(a), the operator (iV' - a)2 on Q with Dirichlet 
boundary conditions. We now put t = 1 and conclude that 

independently of a. As each eigenvalue of HQ;D(a) below E will contribute at least 
e-E to the trace on the LHS, our claim follows. I 

Acknowledgements. R. Hempel would like to thank T. Hoffmann-Ostenhof for 
the kind invitation to the Erwin Schrodinger Institute in Vienna and 1. Herbst for 
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Regularity of the nodal sets of 
solutions to Schrodinger equations 

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof 
and N. N adirashvili 

1 Introduction 

Let 0 be an open set in lRn and let V : 0 --+ lR with V E Lfoc(O). We consider real 
valued solutions u -; 0 which satisfy 

~u = Vu in 0 (1.1) 

in the distributional sense. 
In a recent paper two of us [H02] investigated the local behaviour of such 

solutions under rather mild assumptions on the potential V, namely we assumed 
that V E Kn,6(o) for some {) > 0, see e.g. [AS, S], where the class Kn,6 is defined 
by requiring that 

lim sup 1 X lV(y)1 dy = 0 n _ n-2+6 
e!O xElRn Ix-yl<e Ix yl 

(1.2) 

Here Xn denotes the characteristic function of O. 
One of our main results was 

Theorem 1.1. Suppose u -; 0 is a real valued solution of (1.1). Let Xo EO then 
either there is a harmonic homogenous polynomial PM -; 0 of degree M such that 

u(x) = PM(x - xo) + <I>(x) (1.3) 

with 
<I>(x) = O(lx - xoI M+min(l,6'») V{)' < {) for x --+ Xo (1.4) 

or u vanishes at Xo faster than polynomially, that is 

lim Ix - xol-alu(x)1 = 0 
x---tXQ 

for every a > O. 
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It is known [AS, Sj that V E Kn,o(o), b < 1 implies U E CO,O(O) where 
CO,O denotes Holder continuity. Suppose u has a zero of first order at Xo so that 
u = PI (x - xo) + <P in a neighbourhood of Xo according to Theorem 1.1. (1.3) and 
(1.4) implies that for b' < b :::; 1 

1· lu(x) - PI (x - xo)1 0 
1m -

X->Xo Ix - xol l +ol -

so that u is at Xo 'smoother' than at points for which u f:. O. So the question arises 
whether the zero sets of solutions of Schrodinger equations are in fact smoother 
than the corresponding solutions. 

Let us illustrate this with an explicit example. According to the theorem of 
Cauchy and Kowalewski there is a small disk 

such that 
~v = v in Bp 

with 
1 3 1 2 

V = X - Y + - x - - x y + higherorderterms 
6 2 

and with v(O,y) = -y, g~(O,y) = 1. Now let in Bp , u be defined by 

then ~u = Vu with 

for x :::; 0 
for x > 0 

{ Ix> 0 
V = V(x, y) = 0 x:::; 0 

and a simple calculation shows that the nodal line of u is given by 

y=x 
y = x - ~x3 + O(x5 ) 

for x:::; 0 
for x> O. 

Hence y(x) has a second derivative and one sided third derivatives. But u itself 
already has a jump in the second derivative for every (x, y) with x = 0 and IYI f:. O. 

Results on this additional regularity of nodal sets together with some proofs 
will be presented in this announcement, the full paper will appear elsewhere. 

2 Regularity of nodal sets 

Without loss of generality we consider (1.1) in BRo = {x E IRn : Ixl < Ro} and we 
assume V E Kn,o(BRo ). Let 

Nu = {x E BRo : u(x) = O} (2.1) 
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and let N~l) = {x E Nu : u vanishes of first order at x} so that for each Xo E N2) 

there is a pixo )(x - xo) -10 with 

u(X) = pixo )(x - xo) + 1>(x) (2.2) 

for x -+ Xo according to Theorem 1.1. 

Theorem 2.1. Pick Xo E N2) and assume 0 < 8 ::; 1. Then for each 8' < 8 and 
for sufficiently small E > 0, N~l) n Bc(xo) is a C I ,8' -hypersurface. 

Remarks. 
(i) By a C I ,8' hypersurface we mean that N~l) n Bc(xo) can be represented as the 
graph of a C I ,8' - function. 

(ii) Theorem 2.1 is sharp in the sense that 8' > 8 is not possible. We do not 
know whether 8' = 8 might be allowed. 

(iii) We shall later discuss the case of smoother potentials, say V E Kn,8(o) 
for 8 E (1,2) or V E Ck,Q(O). Ck,Q denotes the usual Holder spaces. 

Sketch of the proof. 
We first state a Lemma which is a sharpening of Theorem 1.1. 

Lemma 2.1. Let Xo E Nu n BRl (0) with RI = R o/2 and suppose SUPXEBRo lui = 
CI then for every 8' < 8, there is a C2 such that for Ixi < Ro 

(2.3) 

where 

Remark. The V-dependence can be made explicit via a suitable norm of V. The 
important fact is that C2 does not depend on Xo. If Xo happens to be a higher 
order zero of u then pixo\x - xo) == O. The proof of Lemma 2.1 relies heavily on 
the techniques which have been developed in [H02] in order to prove Theorem 
1.1. Some additional technical complications arise, causing however no entirely 
new problems. Naturally a complete proof is, as already the proof of Theorem 1.1 
somewhat involved. 

Since for xo, Xl E Nu 

(2.4) 

it can be shown via Lemma 2.1 

Lemma 2.2. LetxO,XI E Nu nBR2' R2 = Ro/4 then for 8' < 8 there is a constant 
C3 such that 

8' I(Vu)(xd - (Vu)(x2)1 ::; C3 1xo - xII . (2.5) 

with C3 = C3 (C2), C2 the constant given according to (2.3). 
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For later purposes we prove the following more general statement. 

Lemma 2.2' Suppose pXi) and pli) are polynominals of degree M with 

for Ixi ~ 2lxll· Then for every M -th partial derivative there exists a constant 
C(M, n) such that 

Proof. Let QM(X) = pXi)(x)-pli)(x-xd. In the one-dimensional case IQM(X)I ~ 
CIX1IM+c5' for Ixl ~ 21xli implies via a classical inequality of Chebyshev that 

To obtain the corresponding estimate for the n-dimensional case we consider di­
rectional derivatives of M-th order. There the one-dimensional estimate obviously 
holds. The partial derivatives can then be estimated by linear combinations of the 
directional derivatives [BO]. 

We shall now proceed in the following way: we assume that Xo E N2) and 
that 

(Vu)(xo) = (A, 0, ... ,0) == Ael, A =1= o. (2.6) 

We shall first show that in a neighbourhood of Xo the nodal set u(x) = 0 can be 
represented as the graph of a uniquely determined continuous function 

cp : R/rrxo) c jRn-l -t jR 

such that 

u(cp(y), y) = 0 'Vy E Rlrrxo). (2.7) 

Thereby 7rX:= (X2, ... ,Xn ), for every x = (Xl,X2, ... ,Xn ) and B-y(7rxo) = {y E 
jRn-l : I7rXo - yl < 'Y} with 'Y > 0 small enough. 

Proposition 2.1. For sufficiently small p > 0 

is injective. 
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Proof. We start with some rather obvious observations and definitions. Since 
u(xo) = 0, Xo E aG where G = {x E BR2 : u(x) > a}. Let x E aGo We say ex is 
an n - 1 dimensional affine hyperplane to aG at x if for every sequence of points 
Xi E aG with Xi - x 

dist(xi, ex) = O(IXi - xl) for i - 00. 

Let y E aG and dy(x) := (x - y, (V'u)(y)) then exo = {x E IRn : dxo(x) = a}. Now 

define for x E aG n N2) 
- (V'u) (x) 

(V'u)(x) = I (V'u)(x) I 
then by Lemma 2.2 it is straight forward to show that for small p' 

- - 1 
((V'u)(xo), (V'u)(x)) ~ 2 (2.8) 

for x E Nu n Bpi (xo) with Bpl(XO) = {x E IRn : Ix - xol ::; p'}. Set p = p' in 
Proposition 2.1. 

Now suppose that Proposition 2.1 is wrong. Then there exist x,~ E Bpl(xo)n 
Nu , x "# ~ such that 1I'(x) = 11'(~) := X = (0, X2, X3, ... , xn). Let E = 1I'-1(x) n 
Bp(xo)nNu. E is a closed set with cardinality ~ 2. If E has an accumulation point 
y then 1I'-1(x) C ey, but ey = {x E IRn : (x - y, (V'u)(y)) = o} and this implies 
((Vu)(xo), (Vu)(y)) = 0 contradicting (2.8). So there are Zl, Z2 E E where Zl, Z2 
only differ in the first coordinate such that 

g(Zl' Z2) = {x E IRn : x = tZl + (1- t)Z2' t E (0, I)} 

satisfies g(Zl' Z2) n Nu = 0 implying u(x) "# 0 \Ix E g(Zl, Z2). But 

au au 
((V'u)(xo), (V'u)(Zj)) = -a (xo)-a (Zj) 

Xl Xl 

and 
au au . 

sgn -a (Zl)"# sgn -a (Z2), J = 1,2, 
Xl Xl 

hence sgn ((Vu)(xo), (Vu)(zt})"# sgn ((Vu)(xo), (VU)(Z2)) again contradicting 
(2.8). This proves the proposition. 

Now we have to show that \ly E B"( (1I'Xo) , 'Y small enough, there is atE IR such 
that (t, y) E Bp(xo) n Nu. But this is an immediate consequence of the continuity 
of u: Denote Xo = (XOl, ... , xon), let y E B"( and X± := (XO,l ± e, y) such that 
X± E Bp(xo), Since V'u(xo) = Ael and u(xo) = 0, sgn U(XO,l + e, XO,2 ... XO,n) "# 
sgn U(XO,l - e, XO,2 ... XOn) for e small enough. Since u is continuous we also have 
\ly E B,,(, for'Y sufficiently small, sgn U(XO,l + e, y) "# sgn U(XO,l - e, y). Hence by 
the intermediate value theorem there is a t with It-xO,ll < e such that u(t, y) = O. 
This implies (2.7). 
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Further via [H, Satz 170.1] we conclude that 'P E Cl,o' (B-y) so that N~l) is 
indeed locally the graph of a Cl,o' function. 

We give now a brief discussion of the higher regularity of nodal sets if V is 
assumed to be more regular. 

Theorem 2.2. (i) Suppose (1.1) holds with V E Kn,O(O) with (j E (1,2). Then 

N~l) is locally a C 2,ti' -hypersurface for {j' < (j - 1. 

(ii) Suppose {1.1} holds with V E ck,a(o) with a E (0,1) then N~l) is locally 
a ck+3 ,a -hypersurface. 

The idea of the proof is basically the same as for the proof of Theorem 2.1. 
However we have to replace Theorem 1.1 by a more detailed result. 

Theorem 2.3. (i) Suppose (1.1) holds and V E Kn,ti(O), (j E (1,2). Let Xo E 0 
then either there exist two harmonic homogenous polynomials PM -# 0, PM+l of 
degree M, M + 1 respectively such that 

with 
<I>(x) = O(lx - xoIMH') for x -+ Xo, 

or u vanishes at Xo faster than polynomially. 
(ii) Suppose {1.1} holds and 

V E ck,a(o), a E (0,1). 

't/{j' < (j 

Let Xo E 0, then there is a polynomial of degree M + k + 2 such that p(x) 
PM (x) +PM+1(X) +Pl with PM, PM+l again harmonic and homogenous of degree 
M, M + 1 respectively and PM -# 0, and Pl(X) vanishes at least of order M + 2 at 
zero. We have then 

u(x) = p(x - xo) + <I>(x) 

with 
for x -+ Xo 

Remarks. (a) Under the conditions of part (ii) of this theorem strong unique 
continuation is well known. Also (ii) is related to the classical Schauder estimates, 
see e.g. [GT]. 

(b) The proof of Theorem 2.3 again uses the techniques of [H02] but some 
iterations are necessary. 

( c) For the coulombic case a more detailed version of Theorem 1.1 was re­
cently shown in [H02S1] and [H02S2]. An investigation of the regularity of the 
nodal sets for this important case should be possible along the present lines. 

Starting from Theorem 2.3 the proof of Theorem 2.2 follows the same ideas as 
the proof of Theorem 2.1. So one first proves a suitable analog of Lemma 2.1, uses 
Lemma 2.2' and proceeds essentially as we did above in order to prove Theorem 
2.1. 
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Results in the spectral theory of Schrodinger 

operators with wide potential barriers 

G linter Stolz 

Introduction 

Motivated by the beautiful results but also open problems in the spectral theory of 
Schrodinger operators with random or almost periodic potentials, in recent years 
there was rising interest in spectral properties of deterministic potentials with 
some kind of irregular asymptotics near infinity. Here we consider (rapid enough) 
decay of a potential to zero or (asymptotic) periodicity as regular asymptotics, 
typically leading to isolated eigenvalues and absolute continuity of the rest of the 
spectrum. 

That potentials consisting of an infinite number of suitably placed barriers 
can give rise to completely different types of spectra was first found by Pearson [9], 
who showed that sparsely distributed barriers in dimension d = 1 lead to purely 
singular continuous spectrum. Simon and Spencer [10] showed the absence of ab­
solutely continuous spectrum for (i) high barriers in one-dimensional Schrodinger 
operators and their discrete counterparts (see also [6] and [13]), (ii) wide barriers 
and low energy in the discrete case for arbitrary d. Kirsch, Molchanov and Pastur 
[7], [8] have shown that in some of these situations one actually gets dense pure 
point spectrum. Another interesting result was found in [5], where it is shown 
for d > 1 that operators of the type -,6, + cos Ixl have alternating intervals of 
absolutely continuous spectrum and dense pure point spectrum. 

In the following we present some contributions to the study of Schrodinger 
operators with wide potential barriers. We start with a result on absolute continu­
ity for slowly oscillating perturbations of periodic potentials in d = 1 (Section 1). 
This generalizes results of Behncke [1], who did not consider a periodic background. 

In <Section 2 we give a result on the absence of absolutely continuous spectrum 
for Id-Schrodinger operators, which can be applied to (i) potentials with wide 
barriers, and (ii) perturbations of periodic potentials. The results of Sections 1 
and 2 are illustrated in Section 3 by studying the examples -d2 / dx2 + cos xC> and 
-d2/dx2 + cosx + A cos xC> with a E (0,1) and A > O. 

In Section 4 we give a generalization of the result of Section 2 to arbitrary 
dimension d. This final result is joint work with P. Stollmann. A closely related 
investigation was carried out by Combes and Hislop in [2]. 
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1. Pure absolute continuity in d = 1 

We start with a number of definitions in order to make precise what we mean by 
a slowly oscillating potential. Let 

£+'(Ll) := {f: sup r+1 
If I dx < oo} 

n2:0 In 

and for 1 :S p < 00 

For w > ° let the difference operator ~w be defined by (~w f) (t) = f (t + w) -
f(t) and for k = 1,2, ... let the class vt be defined by 

f E V~ :¢=::} ~Lf E £'1j (Ll), j = 0, ... , k. 

Finally we introduce the class Vw := Uk>1 vt of slowly oscillating functions 
(with respect to w). -

Examples: (i) If V E Ll(O, 00) or V is smooth with V' E L 1(0,w), then V E Vw 
for all w. 

(ii) If V is bounded, Vi E LP(O, 00) for some p < 00 and V(i) E Ll (0,00) 
for some i 2: 2, then V E Vw for all w. This includes the particular examples 
V(x) = cos(xQ), where a E (0,1), explaining the notion slowly oscillating. 

(iii) Let V E Vw and q bounded and w-periodic, then qV E V w' This shows 
that Vw depends on w (in particular: V = 1). 

Theorem 1 Let H = -d2 / dx2 + Vo + V be defined as a self-adjoint operator 
in L2(R), where Vo, V E Lfoc and real valued, Vo is w-periodic, V E V w , V = 
VI + V2, where VI is bounded near +00, and limx-+oo J:+1 1V2(t)1 dt = 0. Define 
VI = liminfx-+oo VI (x) and VI = limsupx-+oo Vl(X). 
- If (a, fJ) is a stability interval of -d2 / dx2 + Vo, then H is purely absolutely 
continuous in (a + VI, fJ + VI). 

Remarks: (i) Note that no condition on the potential is needed near -00 (de­
spite LLc and real). This includes situations, where the self-adjoint realization of 
_d2 / dx2 + Vo + V is not unique (limit circle case at -00). In this case the Theorem 
holds for every self-adjoint realization. It is also true for self-adjoint realizations 
in L2(0, 00) with arbitrary boundary condition at 0. 

(ii) A similar result holds for discrete Schrodinger operators (Jacobi matrices) 
h of the form (hu)(n) = u(n - 1) + u(n + 1) + (Vou)(n) + (Vu)(n) in £2(Z). 

The general method underlying the p'T'Oof of Theorem 1 is the method of 
Subordinacy introduced by Gilbert and Pearson in [4]. By this method the proof 
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of the Theorem can be reduced to showing that all solutions (in o.d.e. sense) of 
H U = AU are bounded near +00 for all A E (a + VI,,B + VI)' Boundedness of 

solutions of Hu = AU follows from the boundedness of jjI1~=1 Tnjj in N. where 

the Tn are the transfer matrices defined by 

( u((n + I)W)) _ 1', (u(nw)) 
u'((n + l)w) - n u'(nw) . 

The result now follows by subjecting the products I1~=1 Tn to an iterative 
diagonalization procedure. Details of this can be found in [14] and [15]. The illus­
trative special case V E V~ was already treated in [12]. 

2. Absence of absolute continuity in d = 1 

Our next result can be used to show that many Schrodinger operators have inter­
vals of essential spectrum, which do not contain any absolutely continuous spec­
trum. 

We consider operators Ho = -d2/dx2 + Vo and H = -d2/dx2 + V in L2(R), 
where we assume Vo E Ltoc to be bounded from below and V E Ltoc such that 
-d2 / dx2 + V is limit point at ±oo. In both cases this gives unique self-adjoint 
operators. 

Theorem 2 Let In C (0,00) and Ln C (-00,0) be intervals for n = 1,2, ... , 
such that IInl-t 00 as Inl-t 00 and V(x) = Vo(x) for x E Un In. 

Then O'ac(H) C O'ess(Ho). 

The proof of this result, which can be found in [15]' uses the same principal 
ideas then the proof in [10] for a similar result in the discrete case: decoupling by 
Dirichlet boundary conditions, trace estimates for resolvent differences and trace 
class methods from scattering theory. In obvious form the Theorem also holds for 
operators in L2(0, (0). 

Applications of this result are as follows: 
(i) Let V(x) ;::: c for x E U In with In as above. Then O'ac(H) n (-00, c) = 0. 

This can be seen by choosing Vo(x) = max{V(x) , c}. 
(ii) Let Vo be periodic with (-y,8) a gap in O'(Ho). If J:+1 1V'(t)1 dt -t 0 as 

Inl -t 00, then V := lim inf Ix 1---700 V(x) and V := limsuPlxl---7oo V(x) are finite and 
Theorem 2 can be used to show that O'ac(H) n (-y + V,8 + V) = 0. 

3. A typical example 

A typical example where the results of both Theorem 1 and Theorem 2 can be 
applied is given by H = -d2/dx2 + COSX + A cos xC> with a E (0,1), A > O. 
Theorem 1 says that the absolutely continuous bands of _d2 / dx2 + cos x shrink 
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by >.. from both sides to give absolutely continuous regions of H. On the other 
hand the spectrum as a set grows by >.. at the ends of every band and Theorem 2 
assures that intervals of length 2>" at all the band edges do not contain absolutely 
continuous spectrum, i.e. are purely singular: 

ac 

d2 

0"( - dx2 + cos x) 

O"(H) 

s 
I 

ac 

ac s 
I 

Similarly one gets that -d2 / dx2 + cos xC< has purely singular spectrum in 
[-1,1) and purely absolutely continuous spectrum in (1,00). 

s ac 
I 

1 

We do not know the nature of the spectrum in the singular intervals, i.e. 
whether there is singular continuous or point spectrum. There are interesting an­
swers to this question for the half line operator corresponding to the last example: 

Let He := _d2 /dx2+cosxc< in L2(0, 00) with boundary condition 1(0) cose-
1'(0) sin e = 0, e E [0,7r). Then for almost every e with respect to Lebesgue 
measure we have that O"(He) n [-1,1) is dense pure point! See [8]. Moreover, a 
result announced in [3] shows that O"(He) n [-1,1) is purely singular continuous for 
eEL, where L C [0,7r) is a dense Go-set, i.e., in particular, locally uncountable!! 

4. Absence of absolute continuity in d> 1 

Let Ho = -~+Vo and H = -~+V be defined as self-adjoint form sums in L2 (Rd ), 

where it is assumed that Vo,+, V+ E Lfoc and Vo,-, V_ E Kd , the d-dimensional 
Kato class. 

A sequence of subsets Sn of Rd, n = 1,2, ... , is called a decomposition of 
{x E Rd : Vo(x) =I=- V(x)}, if (i) Sn is compact with Lebesgue measure ISnl = 0 for 
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all n, (ii) Rd \ Un Sn = Ui Ui (disjoint union), where the Ui are open subsets of 

R d , and (iii) IUil < 00 if Ui n {Vo -I V} -10. 
Finally, we say that some compact S C Rd has generalized measure a(S) > 0, 

if there exists 0: :::; d such that 

I{x: r:::; dist(x, S) :::; r + 1}1 :::; a(S)(rC> + 1) 

for all r 2': 0. 
In the particular example of spheres S = {Ixl = R} one can choose a(S) = 

cd(Rd- 1 + 1), i.e. a(S) is a surface measure for large R, which also holds for much 
more general S. 

Theorem 3 Let (Sn) be a decomposition of {Vo -I V}, 8n .- dist(Sn, {Vo -I 
V}) 2': 80 > ° and an := a(Sn) the generalized area of Sn- If 

n 

then aac(H) n (-oo,infaess(Ho)) = 0. 
If, in addition, (Sn) is a total decomposition, t.e. IUil < 00 for all i, then 

aac(H) c aess(Ho). 

The proof of this Theorem uses similar ideas than the proof of Theorem 2, a 
main step being the successive introduction of Dirichlet boundary conditions on the 
Sn. The most important change is that differences of the corresponding resolvents 
are no longer finite dimensional. A way of getting trace estimates directly is to 
replace resolvents by semigroups, which can be calculated via the Feynman-Kac 
formula. Details are given in [11]. For the trace estimates of semigroups see also 
the contribution of P. Stollmann to this volume. 
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Stark ladders and perturbation theory 

V. Grecchi, M. Maioli and A. Sacchetti 

Abstract 

We consider the Bloch problems with a finite number of open gaps and 
we prove, for any external weak enough electric field, the existence of a 
finite number of Stark ladders, given by complex translation, decoupled band 
approximation and regular perturbation theory. 

Some of the results reported in this lecture have been announced in [6] and given 
with more details in [7]. We don't discuss here other well known rigorous results 
on this field (see for instance [2] and [4]). 

Let us consider a one-dimensional Bloch-Stark problem with Hamiltonian: 

(1) 

where H B is the Bloch operator : 

HB = -~ + V(x), V(x) = V(x + a), F,a> 0, 

in the space 1t = L2(R), with a(HB) = U~IBn, where Bn = [E~,E~] is a band 
and Gn = (E~, E~+1) is the n-th gap. Let k(E) = a-I arccos(D(E)/2), where 
D(E) is the discriminant of the Bloch operator, be the crystal momentum and 
€n{k) the energy functions defined on the torus B = R\b where b = 27r/a. 

A naive approach to the problem was followed in [5]{where the problem is 
extended to the disordered case). Let V(x) = 2:j u(x - ja), where u(x) is both 
translation and dilation analytic, somewhere negative and vanishing fast enough 
at infinity, so that the atomic operators 

HA,j = -~ + u(x - ja) 

have one isolated eigenvalue A. Thus the atomic Stark operators 

HA,j,F = HA,j + Fx 

have one resonance near A + Faj. We expect (and prove [5]!) the existence of a 
ladder of resonances of HF near {A + FajL for F small fixed and the parameter 
a large. 

In order to consider fixed Bloch problems ( a = 27r) for any F small enough 
we must use other intuitions and other techniques. The other intuition we shall 
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consider is more deep and goes back to the Zener tilted bands picture and to 
the more precise Buslaev adiabatic approximation. Near x = Xo and for F small 
enough HF acts locally as the Bloch operator with effective energy Eo = E-Fxo = 
f(xo). Thus if we connect each band to the next one turnig around a branch point 
[3] we have effective (Zener) barriers in the inverse image of the gaps: f-l(Gn ), 

with effective potential U(x) = E + Im[k(f(x))]2. Because of this picture we can 
expect bound states or sharp resonances, but we don't have any suggestion on the 
position of the energy levels. For this purpose we should consider the Wannier [9] 
idea of decoupling the one-band spaces at finite field F. The compression of the 
operator on a one-band space gives a compact resolvent operator with a ladder as 
its spectrum. The prove of the last statement is easy in the Crystal Momentum 
Representation (CMR). Let us define the unitary operator U on a function 1jJ 
belonging to S : 

where 1J = (271")-! and 1jJ~ are the Bloch vectors orthonormalized on X 
L2 ([0,271"], g~). The transformed operator in CMR is given by: 

(2) 

(3) 

where X~ m = i < dk W~, W~ >12, and W~ is the sequence of Fourier coefficients 
of e-ikX1/l~(x), k E B = R\1. 

The Decoupled Band (DB) approximation HJi?B of Wannier has the eigen­
values {An,j}n,j = {< En > +271"FjJ}n,j with eigenvectors 

in L2 (B). Since the spectrum of the DB operator is generically dense in R, it is 
not suitable as a strarting point of perturbation theory. As suggested by A vron 
[1] we restrict ourself to the Bloch operators with a finite number of open gaps, 
which in some sense are a dense subset, and are translation analytic (we now 
assume inversion symmetry x ~ -x). In this case the DB approximation gives 
a finite number of ladders imbedded on a continuous spectrum coming from the 
infinite band. A good starting point is obtained by the same models transformed 
by the complex translation xJ ~ x + a, with IIm(a)1 < 2ao + 8. In order to 
control the spectrum we define the Extended Crystal Momentum Representation 
(ECMR) which is directly applied to the translated operator. Let for simplicity 
to have one finite band and 1/It,a.' k E B, 1/I~,a.' pER be the translated Bloch 
vectors, defined as above .. We define E2 continuous (and analytic) on R, and we 
have e-ipx1jJ~(x) = 1 + O(~). Let 1/1 be a translation analytic vector of class S as 
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well as its translated vectors, we define : 

Ua"p = {al,a,a2,a} 
where 

al,a(k) = 'Tl("p~a'"p), a2,a(P) = 'Tleipa("p~a'"p) , , 

The translated Bloch-Stark operator HF,a in the ECMR becomes 

HF,a = diag(fl(k) + iFdk , f2(P) + iFdp + Fa) + FXa 

on L2(B) EB L 2 (R). The DB approximation gives now the operator 
- DB -

HF,a = HF,a - FXa 
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(4) 

(5) 

with discrete spectrum {AI,j h on the real axis and essential spectrum on all the 
line Fa + R. The coupling operator Xa and Ua , (Ua)-l are bounded analytic on 
a stripe IIm(a)1 < 2ao. 

We now consider the auxiliary perturbative parameter f, with If I ::; F, and 
- -DB 

HF,a(f) = HF,a + fXa (6) 

so that HF,a(F) = HF,a. Let us now fix a and F and drop them from the labels. 
We have: 
Theorem. Let H (f) be as above, we have: 
i) The essential spectrum does not depend on f because of the relative compactness 
of X 
ii) The ladder is stable for small fixed F and any f, If I ::; F, and the resonance 
Al,j(f) is analytic in the disk and given by the perturbation formula: 

Al,j(f) = Jr("pI,j,RI,I(f,Z)"pl,j)zdz (7) 
Jr( "pl,j, RI,1 (f, Z )"pl,j )dz 

where r is a closed path encircling only one point (AI,j) of the unperturbed spec­
trum, and staying at the maximal distance from the unperturbed spectrum. 
RI,I(f, z) is the resolvent of the operator in (6) at parameter z and compressed 
on the space of the first band. 

The proof is based on explicit expressions of the unpertubed components of 
the resolvent, integration by parts, and the estimates of X based on the estimates 
of the vectors W~, n = 1,2. 

A control on the full resolvent shows that there isn't any other sharp reso­
nance. 

If we expand the perturbation coefficients in power series of F, taking f = F, 
we get explicit expression of the coefficients of the asymptotic series studied by 
Nenciu [8]. The second perturbation coefficient gives the width of the resonances 
in the Fermi Golden Rule approximation which coincides with the adiabatic eval­
uation of the full width [3] up to a factor 1f2/9 which seems to be universal in a 
class of semiclassical perturbations [6]. 
Acknowledgments. This work is partially supported by MURST and GNFM. 
One of us (V.G.) thanks the organizers of this Conference for the kind invitation. 
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Singular potentials: Algebraization 

Miloslav Znojil 

Abstract 

Energies of certain spiked oscillators (possessing a singular repulsive core 
in the origin) are shown obtainable as roots of a set of algebraic equations. 
These equations represent an adequate generalization of the so called Hill­
determinant non-variational prescription applicable, under certain assump­
tions, in the regular cases. 
Keywords. Schrodinger equation, strongly singular potentials, binding en­
ergies, algebraic equations 

1 Introduction 

Quantum systems are often described by the differential Schrodinger equation 

[-6+V(r)]~=E~. 

It is numerically solvable, usually without any serious troubles. A few exactly 
solvable models V(r) may also prove useful [1]. 

Sextic oscillator 

represents one of the simplest "unsolvable" examples which have attracted a lot of 
attention in the methodical context. In accord with the proposal of Singh et al [2] 
and its later modifications and proofs [3], it may admit various continued-fraction 
re-summations of the perturbation series. Moreover, its spectrum of binding en­
ergies may coincide with roots of certain (so call Hill) secular determinants with 
non-variational origin [4]. 

All the latter results may be generalized to a broad class of potentials which 
are regular or at most weakly singular in the origin [5]. Here, in the similar me­
thodical setting, we intend to study the challenging, strongly singular counterpart 

(1) 

of the sextic oscillator. 
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The challenge also comes from the needs of physics: The presence of a sin­
gularity at r -+ 0 is a typical feature of phenomenological potentials V (r) in the 
nuclear and molecular physics. At the same time, it is very unpleasant compu­
tationally. Here, we shall describe and recommend its Hill-determinant-like full 
algebraization. 

2 Bound States and Infinite Series 

Let us contemplate our differential Schrodinger equation or rather its ordinary­
equation radial projection 

[ d2 1(1+1) ] 
- dr2 + r2 + V(r) 'ljJ(r) = E'ljJ(r), 1 = 0,1, ... , (2) 

in a variational setting. Then, we usually choose an orthonormalized basis (e.g., 
harmonic oscillators) Xn(r) and decompose 

n 

This, in accord with the standard textbooks, converts our equations into the matrix 
eigenvalue problem 

det {Xml (H - E) IXn} = O. 

This - variational- form of algebraization introduces no problems but the solutions 
remain purely numerical. 

Non-variationally, we may try to search for (or classify) the exactly solvable 
cases via a systematic non-orthogonal and non-normalized, much simpler choice 
of Xn(r)'s. With the weaker pair-of-series Ansatze 

(3) 
n 

only superpositions 

may provide the solutions acceptable as physical. 
Usually, we intend to succeed in an explicit representation of the coefficients 

h~l, 2) (and subsequent use of special functions) in such a context. Indeed, the 
ambiguity in the c/s has to be removed via boundary conditions 

'ljJ(0) = 0, 'ljJ(oo) = 0 (4) 

in such a case and, up to the exaxctly solvable examples, this would amount again 
to a purely numerical prescription. 
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The method of Hill determinants [4] lies somewhere in between the variational 
and special-function extremes. For regular potentials, it starts from non-orthogonal 
Xn(r)'s, e.g., 

Xn(r) = r2n+'Yexp [- f(r)] (5) 

with a quasi-variational parameter "( and with an auxiliary Riccati-like function 
f(r). Nevertheless, it avoids the use of I;'S, basically, by'making all the X's individ­
ually compatible with the physical boundary condition in the origin, Xn(O) = 0, 
and in infinity, Xn(oo) = o. 

The method of Hill determinants shares a number of features with the solu­
tions obtainable in terms of special functions [5]. In particular, its transparency 
and simplicity must be "paid for" by the necessary rigorous proofs of its valid­
ity. In some cases, this price is reasonable. Here, we intend to offer, describe and 
recommend one of the possible extensions of this method to the strongly singular 
forces [6]. 

3 Regular Potentials as a Methodical Guide 

All the forces regular in the origin enable us to choose and classify "(1) = l + 1 as 
physical and "(2) = -l as unphysical. Then, we may choose '/fir) == '¢(1)(r) with 

'¢(1)(r) = ,¢(regular)(r) '" rl+1 + corrections 

and make the first boundary condition redundant (C2 = 0). 
In general, our regular solution is numerically obtainable, e.g., by the Runge­

Kutta algorithm. Of course, after we use a polynomial exponent f(r) and succeed 
in constructing an analytic, Taylor series representation of the wavefunctions, 

00 

,¢(regular)(r) = L Xn(r) h~egular), 
n=O 

energies may also become roots of the related "Hill determinants" (cf. [4] for more 
details). Here, analogous simplifications will be studied for Laurent series and 
oscillators with a strongly repulsive core. 

As a guide, we may just review the separate steps of construction in the 
regular cases: Routinely, we 

(1) convert differential Schrodinger equation (for '¢'s) into its difference, dis­
crete conterpart (for hn's); 

(2) find an explicit special-function-like formula for coefficients, 

where, often, n-dimensional matrices Q[nl(E) have a sparse, Hessenberg structure; 
(3) treat the trivial identities h-1 = h-2 = h-3 = ... = 0 as a counterpart 

of the original r -+ 0 boundary condition in the origin; 



40 Miloslav Znojil 

(4) prove, under certain assumptions, that we may also replace the continu­
ous, r ~ 00 physical boundary condition by its discrete analogue 

hN+1 = 0, N ~ 00 

(5) notice that we may re-write the above discrete asymptotic boundary 
condition in the Hill-determinant language, 

det Q[oo] (E) = o. 
As a consequence, we may also re-express Schrodinger equation in a matrix, 

quasi-variational form 
Q[ool(E) h(physical) = O. 

It may prove suitable for perturbative purposes [7]. 

4 Singular Interactions as a Challenge 

Our example (1) remains fairly simple in the continuous coordinate r. In particular, 
its independent solutions may exhibit the contrasted threshold behaviour 

7jJ(regular)(r) rv exp[-vr-2 + D(Inr)] 

7jJ(irregular)(r) rv r(b-6v)!8v exp[vr-2 + D(r2)] 

or, alternatively, asymptotic behaviour 

7jJ(Jost)(r) rv exp[-J,tr2 + D(Inr)] 

7jJ(non-Jost)(r) rv r-(E+21')!8I'exp[J,tr2 + D(1/r2)]. 

Thus, any Laurent power series 7jJ(1,2)(r) = 7jJ(-rl,'Y2)(r) = L~oo'" (3) with the 
Floquet parameter "( = "(1,2 and exponent f(r) = J,tr2 + vr-2 (5) may routinely 
be decomposed near the origin, 

7jJ(1)(r) = Ctl 7jJ(irregular)(r) + (31 7jJ(regular)(r) 

7jJ(2)(r) = Ct2 7jJ(irregular)(r) + (32 7jJ(regular)(r) 

as well as in infinity, 

7jJ(1)(r) = "(1 7jJ(non-Jost)(r) + 151 7jJ(Jost)(r) 

7jJ(2)(r) = "(2 7jJ(non-Jost)(r) + 152 7jJ(Jost) (r). 

Now, we may re-formulate the analytic physical boundary conditions (4) in 
the form Cl Ctl + C2 Ct2 = 0 and cl "(1 + C2 "(2 = 0, i.e., 

(6) 

Numerical tests confirm reasonable precision of results (energies) obtained from 
this condition [6]. 
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4.1 The Discrete Boundary Conditions 

Unexpectedly, apparent analogues 

of eq. (4) do not reflect any physics at all: These conditions are trivial, responsible 
just for the convergence of our power-series Ansatz. An explanation may be found 
in close analogy with Mathieu functions. Thus, "secular equation" 

detQ[-oo,ool(-y, E) = 0 

with the doubly infinite matrix 

determines just the pair of Floquet parameters "1 = 'Yl(E), 'Y2(E). 
The analogy with the regular case seems to fail completely: The pair of the 

doubly infinite matrix equations 

j = 1, 2 

leaves the problem of boundary conditions unresolved. 

4.2 Main Result: The Determination of Energies 

The suitable n 2: 0 and n < 0 changes of variables 

(2/L)nr(n + A) 
hn = f(n + B(+»)r(n + B(-») Pn 

A = "1/2 - E/8/L + 1/4, B(±) = "1/2 ± D + 3/4, 4d2 = (l + 1/2)2 + 8/Lv 

and 
h = (2v)mr(m + S) 

-m f(m + T(+»)f(m + T(-») qm 

S = -"1/2 + b/8v + 3/4, T(±) = -"1/2 ± D + 5/4, 

respectively, convert our difference Schrodinger equation or recurrences 

Qn,n-l = 2/L(4n + 2"1 - 3) - E, Qn,n+l = b - 2v(4n + 2"1 + 1) 

Qn, n = 8/Lv + l(l + 1) - (2n + 'Y)(2n + "1 - 1) 
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into equations exactly solvable in the JnJ ~ 1 asymptotic region. Thus, we get 

Pn = Poo exp[4Jw/n + O(1/n2)], n ~ 1 

or 

and our main 

Theorem. The fully algebraized secular equation reads 

det ((2P,)-'Yd2poo h'd (2P,)-'Y2I2poo h'2)) - 0 
(2v)'Yd2qoo ('"Y1) (2V)'"Y2/2qooh'2) -

and fixes the energies. 

Proof We shall show that 

(2p,r2)1/4+E/8p,+'Y/2 L hnh')r2n = Pooh') exp[2p,r2 + O(1/r2)], r ~ 1 

(r2/2v)3/4-b/8V+'Y/2 L hnh')r2n = qooh') exp[2vr-2 + O(r2)], r« 1 

For brevity, we take just r ~ 1 - the r « 1 case is fully analogous. 
In the first step, we insert our power-series wavefunctions in the original 

boundary conditions and omit an exponentially small error, 2::- 00 --+ 2::no' no ~ 
1. Then, due to the positivity of all its terms, we may replace the new, simply 
infinite series by an integral, 

00 100 L hnh')r2n+'Y ~ exp g(n) d n. 
n=no no 

In the second step, a technical core of the proof is found in a second-order 
saddle-point method. Indeed, as long as a move of no to - 00 only introduces a 
small error, we approximate 

g(n) ~ g{N) + (n - N) g'{N) + !(n - N)2 g"(N) 

and evaluate the integral. 
In detail, the latter step uses the fact that the integrand 

g(N) = (2N + ')')In r - Nln N + N(In 2p, + 1)-

3 E 
-(h + -4 + -) InN + Inpooh') -ln27r + O{l/N) 

Sp, 

is peaked around such N that g'{N) = O. Hence, we implicitly define N = N{r) 
and/or r = r{N), 

3 E 
N(r) exp[(h + 4 + S)/N(r)] = 2p,r2 + O{1/r2) 

which - after insertions - gives the final result. QED. 
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We may summarize that in the strongly singular cases (r2 V(r) » 1 for 
r « 1), Hill determinants are related to mere convergence of the Laurent series and 
define just the Floquet exponents "( = "((E). Our full algebraization changes the 
representation, ~(1,2)(r) ----* h~1,2), transforms continuous coordinates r E (0,00) 
into their discrete analogue n E ~, and generates the discretized Schri::idinger 
equation for h~l, 2) 's which is asymptotically solvable. This leads to the transpar­
ent, intuitively acceptable and rigorously understood boundary conditions which 
degenerate back to the old HD method for regular potentials. 
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Asymptotic Behavior of the Resolvent of the Dirac 
Operator 

Chris Pladdy, Yoshimi Saito and Tomio Umeda 

1 Introduction 

We consider the Dirac operator 

(1.1) 

which appears in the relativistic quantum mechanics. For the detailed definition 
of the Dirac operator (1.1) see §2. It is well-known that the liming absorption 
principle holds for the Dirac operator (1.1) and, as a result, that the extended 
resolvents R±(.X) exist for any real value A with IAI > 1. The limiting absorption 
principle has a close connection with the spectral and scattering theory for the 
Dirac operator. 

Our aim here is to investigate the asymptotic behavior of R±(A) as IAI ---t 00. 

Our results indicate that the extended resolvents of the Dirac operator decay much 
more slowly, in a certain sense, than those of the Schrodinger operator. (Compare 
Theorems 2.3 and 2.4 with Theorem 3.1.) 

We are introducing the notation which will be used in the note. For x E R 3 , 

Ixl denotes the Euclidean norm of x and 

{x} = Jl + Ix12 . (1.2) 

For s E R, we define the weighted Hilbert spaces L2,s(R3) and H;(R3) by 

(1.3) 

and 
(1.4) 

(1.5) 
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The inner products and norms in L2,8(R3) and H,;(R3) are given by 

and 

{ 
(I,g)s = fR3 (X)28 f(x)g(x) dx, 

[ ] 1/2 Ilflls = (I, J)s , 

(1.6) 

11 (1.7) { 
(I,gh,s = fR3 (x)2S[V'f(x). V'g(x) + f(x)g(x)] dx, 

Ilflks = [(I, fh,s] 1/2, 

respectively. The spaces £2,s and H! are defined by 

(1.8) 

i.e., £2,8 and H! are direct sums of the Hilbert spaces L2,s(R3) and H;(R3), 
respectively. The inner products and norms in £2,s and H! are also denoted by 
( , )s, II lis and ( , h,s, II Ill,s, respectively. When s = 0, we simply write 

(1.9) 

For a pair of Hilbert spaces X and Y, B(X, Y) denotes the Banach space of all 
bounded linear operators from X to Y, equipped with the operator norm 

IITII = sup IITxlly/llxllx, 
xEX\{O} 

where II Ilx and II Ily are the norms in X and Y. 

(1.10) 

This is an expository note. The detailed proofs and discussions will be found 
in a paper to be published elsewhere. 

2 Main results 

We first consider the free Dirac operator 

(2.1) 

where i = Rand x = (X1,X2,X3) E R3. Here CXj,{3 are 4 x 4 Hermitian 
matrices satisfying the anticommutation relations 

(j,k = 1,2,3,4) (2.2) 
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with the convention Q4 = (3, Djk being Kronecker's delta and I being the 4 x 
4 identity matrix. It is known that Ho restricted on [C<f(R3)]4 is essentially self­
adjoint in £2 and its selfadjoint extension, which will be denoted by Ho again, has 
the domain HI. 

We make the following assumption on the potential. 

Assumption 2.1. 
(i) Q(x) = (qjk(X)) is a 4 x 4 Hermitian matrix-valued C1 function on R3; 

(ii) There exist positive constants E and K such that 

for j,k = 1,2,3,4. 

(2.3) 

Under Assumption 2.1 the multiplication operator Q = Q(x)x is a bounded 
selfadjoint operator in £2' Hence, by the Kato-Rellich theorem (Kato[3], p.287), 
H restricted on [C<f(R3)]4 is also essentially selfadjoint in £2 and its selfadjoint 
extension, which will be denoted by H again, has the same domain HI as Ho. We 
write 

(2.4) 

and 
R(z) = (H - Z)-1. (2.5) 

As we mentioned in the Introduction, the limiting absorption principle holds for 
the Dirac operator H. 

Theorem 2.2 (Yamada [7j). 
Suppose that Assumption 2.1 is satisfied and let s> 1/2. 
Then for A E (-00,-1) U (1,00), there exist the extended resolvents R±(A) E 
B(£2,s, H~s) such that 

s-lim R(A ± i17) = R±(A) 
1)10 

. '1./1 zn I L-s • (2.6) 

Moreover, for f E £2,s, R±(A)f is an £2,_s-valued, continuous function on the 
set (-00, -1) U (1,00). We now state the main theorems, which are concerned 

with the asymptotic behavior of the extended resolvents RO±(A) of the free Dirac 
operator. 

Theorem 2.3. Let s > 1/2. Then 

IIRo±(A)11 = 0(1) (lAI -+ 00), (2.7) 

where IIRo±(A)11 denotes the operator norm of RO±(A) in B(£2,s, £2,-s). 
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As we shall see in Remark 2.5, IIRo±('~)11 cannot be small no matter how 
1-\1 is large. In this sense the estimate in Theorem 2.3 is best possible. However, 
Ro±(-\) can become small as 1-\1 -t 00 in a weaker sense than in Theorem 2.3. 

Theorem 2.4. Let s > 1/2. 
Then Ro±(-\) converge strongly to 0 as 1-\1 -t 00, i.e., 

for any f E £2,8' 

lim Ro±(-\)f = 0 
1)..1--->00 

Remark 2.5. Yamada [8] proved the following: 
Let s > 1/2. Then there exists a sequence {fn} in £2,8 such that 

sup Ilfnlls < 00, 
n 

and 

Since 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Yamada's example implies that IIRo+(-\)11 cannot converge to 0 as -\ -t 00. 

Based on Theorems 2.3 and 2.4, the Dirac operator with a small coupling 
constant can be handled; one can use the Neumann series expansion. Let 

(2.12) 

where T is a real number. The extended resolvents of HT will be denoted by 
RT± (-\) . Then we have the following 

Theorem 2.6. 
Suppose that Q(x) satisfies Assumption 2.1 and 1/2 < s < (1 +E)/2. Let RT±(-\) 
be the extended resolvents of H T • Then for sufficiently small T 

(i) The operator norm of RT± (-\) in B(£2,s, £2,-8) is bounded as 1-\1 -t 00; 

(ii) RT±(-\) converge strongly to 0 as 1-\1 -t 00. 

3 A Known result for Schrodinger operator 

The limiting absorption principle for Schrodinger operators has been extensively 
studied. We will use a result due to Saito [5, 6]. For this reason, we make a 
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review. Let T denote the selfadjoint operator which is defined to be the closure of 
-~ + V(x) restricted on Ccf(Rn), where V(x) is a real-valued function satisfying 

IV(x)1 ::; C(x)-l-e (3.1) 

for C > 0 and to > o. Let R(z) = (T - Z)-l. Then it is well-known that the 
limiting absorption principle holds for T, that is, for any >. > 0 , there correspond 
the extended resolvents R±(>') in B(L2,s(Rn), L 2,_s(Rn)) such that 

s-lim R(>' ± i'fl)f = R±(>.)f 
TJ10 

in L 2,-s (3.2) 

for any fin L2,s(Rn). Furthermore, it is known that R±(>.)fare L2,_s(Rn)­
valued continuous functions in (0,00). (Saito [5], Ikebe-Saito [2] and Agmon [1].) 
As for asymptotic behaviors of R± (>.), we have 

Theorem 3.1 (Saito [5, 6]). 
Let IIR±(>')II be the operator norm of R±(>') in B(L2,s(Rn), L 2 ,_s(Rn)). 
Then 

(>. ~ 00). 

More precisely, Saito proved 

Theorem 3.2 (Saito [5, 6]). 

(3.3) 

Let s > 1/2. Then for any a > 0 there exists a positive constant C> 0 such that 

(3.4) 

for all I'\, with IRe 1'\,1 > a and 1m I'\, > 0, where IIR(1'\,2) II is the operator norm of 
R(1'\,2) in B(L2,s(Rn), L 2,_s(Rn)). 

4 Pseudo-differential operators 

The proof of Theorem 2.3 is based on the resolvent estimate for the Schr" odinger 
operator (Theorem 3.2) as well as the theory of pseudo-differential operators. So 
we need to introduce a class of symbols of pseudo-differential operators which are 
suitable to our purpose. 

Definition 4.1. 
A Coo function p(x,~) on R3 x R3 is said to be in the class Soo 0 if for any pair 
a and {3 of multi-indecies there exists a constant Ca {3 2:: 0 such that 

( 4.1) 
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Remark 4.2. 
The class So~o is a Frechet space equipped with the semi-norms 

(£=0,1,2",,), 

A pseudo-differential operator p(x, D) with symbol p(x,~) is defined by 

p(x, D)f(x) = (2n)-3 r eix.t; p(x, ~)j(~) d~ 
JR3 

( 4.2) 

(4.3) 

for f E S(R3 ), the space of all rapidly decreasing functions on R3. Here j(O de­
notes the Fourier transform of f. In connection with the limiting absorption prin­
ciple, pseudo-differential operators which are bounded in L 2,s are important. 

Lemma 4.3. 
Let p(x,~) E 5000 , Then for any s> ° there exist a positive constant C ( = Cs) and 
a positive integ~r £ ( = is) such that 

IIp(x, D)flls ::; Clpl~O) Ilflls ( 4.4) 

We shall omit the proof of Lemma 4.3, which is based on the Calderon-Vaillancourt 
theorem and some techniques in the theory of pseudo-differential operators. Now 
we need to extend Lemma 4.3 to a system of pseudo-differential operators. Let 

be a 4 x 4 matrix-valued symbol. Then we define 

by 

P(x,D)f(x) = (2n)-3 r eix·t;P(x,~)j(~)d~ 
JR3 

( 4.5) 

(4.6) 

(4.7) 

for f E [S(R3)J4. Here an explanation must be needed. For a C4-valued function 

f(x) = (!I(x), h(x),h(x), f4(X)) on R3, the Fourier transform j(O = Ff(O is 
defined by j(~) = (A(~),j2(0, j3(~)' j4(~))' If Pjk(X,~) E sgo, 1::; j, k ::; 4, we 
define 

4 

IPI~O) = { ~ (lpjkl~0))2} 1/2 (4.8) 
j,k=1 

for £ = 0,1,2, ... , where Ipjkl~O) are the semi-norms introduced in Remark 4.2. 
We then have a natural extension of Lemma 4.3. 
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Lemma 4.4. 
Let Pjk(X,~) E SO~O Jor j, k = 1,2,3,4. Then Jor any s > 0 there exist a positive 
constant C ( = Cs) and a positive integer i ( = is) such that 

(4.9) 

5 Outline of the proof of Theorem 2.3 

In view of Theorem 2.2, we see that Theorem 5.1 below implies Theorem 2.3. Note 
that IIR±(A)II are bounded on any compact interval in (-00, -1) U (1, 00). Before 
giving the outline of the proof of Theorem 5.1, we make a few remarks on the free 
Dirac operator Ho. 

For J E [S(R3)]4, 

where 

It is easy to see that 

Using (5.3), we get 

HoJ = ;:-1 io(~);:J, 

3 

io(~) = L O:j~j + (3. 
j=l 

(

A 2 2 
Lo(~)) = (~) I. 

R (z)J = ;:-1 [io(~) + Z];:J 
o (~)2 _ z2 

for J E [S(R3)]4 and z E C\R. 

Theorem 5.1. 
Suppose that s> 1/2. Then 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

sup { IIRo(A ± iry)11 / 2 ~ IAI, 0 < ry < I} < 00, (5.5) 

where IIRo(A ± iry)11 denotes the operator norm of RO(A ± iry) in B(£2,s, £2,-s). 

Outline of the proof. 
Set 

J = {z E C / 2 ~ IRezl, 0 < IImzl < 1}. 
Choose p E Ccf(R) so that 

{ I if It I < 1/2 ; 
p(t) = 0: if It I > 1 

(5.6) 

(5.7) 
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For each z E J, we define a cutoff function IZ(~) on R3 by 

{ P((~)-Rez), if Rez~2; 
IZ(~) = p((~) +Rez), if Rez ~ -2. 

Using (5.4) and IZ(~)' we decompose the resolvent of Ho into three parts: 

(5.8) 

Ro(z) = (-~ + 1 - z2)-1 Az + Bz + z( -~ + 1 - z2)-1 (5.9) 

where 
Az = ;:-1 [/A~)Lo(~)];:, 

B = ;:-1 [l-,z(~) L (C)]F. 
z (~)2 _ z2 0 ~ 

(5.10) 

Applying Lemma 4.4 to Az , we get 

(5.11) 

where C1 is independent of z E J. Combining (5.11) with Theorem 3.2, we see 
that 

(5.12) 

where C2 is independent of z E J. It is easy to see that there exists a constant 
C3 > 0 such that 

1
1 -,Z(~) L (C)I < C 
(~)2 _ z2 0 ~ - 3 (5.13) 

for all z E J. Using (5.13), we have 

(5.14) 

for all z E J. It follows from Theorem 3.2 that 

(5.15) 

where C4 is independent of z E J. Combining (5.15), (5.14) and (5.12), we get 
the desired conclusion. 

6 Outline of the proof of Theorem 2.4 

We use the following two lemmas. 

Lemma 6.1. Define 

(6.1) 

Then Xo is dense in £2,8 for any s E R . 
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Lemma 6.2. For z E C, put 

(6.2) 

Then for any K > 1 and any multi-index 0: there exists a constant GKa > 0 such 
that 

I(;t R(~;z)1 ~ GKa/lzl 

for all ~ and z satisfying (~) ~ K and Izl ;:::: 2K. 

Outline of the proof of Theorem 2.4. 
In view of Theorem 2.2, it is sufficient to show that 

lim Ro±(>\)f = 0 
1>.j--;CXl 

for any f E Xo. Let f E Xo. Choose K> 1 so that 

Then we see that for A E R with IAI ;:::: 2K 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

and that Ro±(A)f E [S(R3)]4. Moreover, for any non-negative integer £, there 
exists a constant Gg > 0 such that 

(6.7) 

for any A E R with IAI 2: 2K, where I· Ie,s are the semi-norms in [S(R3)]4 in­
duced naturally from S(R3). Then (6.7) implies (6.4). This completes the proof. 
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Discrete spectrum of the perturbed Dirac operator 

M. Sh. Birman and A. Laptev 

1. Let 'Y = ('Yl, 'Y2, 'Y3) and 'Yo be (4 x 4) Dirac matrices; let 00 be the unit matrix. 
The Dirac matrices satisfy the equations 

'Ynk + 'Yk'Yj = 2Djk OO , j, k = 0, 1,2,3. 

Let us consider the "free" Dirac operator in L2 (JR3; ([;4) 

Do = 'Y . 'D + 'Yo, 'D = -iV, 

and its pertubation by an operator of multiplication by the electric potential V (x) 

D(a) = Do - aVoo, a> 0, 

(1) 

The spectrum of the operator Do is continuous and covers the complement of the 
interval (gap) (-1, 1). The continuous spectrum of the operator V( a) coincides 
with the continuous spectrum of Do. Besides, the operator D(a) has discrete spec­
trum in the gap. The eigenvalues of D(a) are monotonically moving to the left, 
when a is increasing. 

For a fixed >., 1>'1 ::::; 1, we denote by N(a., >.) the number of eigenvalues of the 
operator D(t) passing the point>' when the coupling constant t is increasing from 
o to the value t = a. We study the asymptotic behaviour of N(a, >.) when a ---+ 00. 

In the case>. = ±1 we need some additional assumptions on V. In particular, 
these assumptions guarantee N(a., 1) to be finite for all a. > o. 

The starting point of our paper is the following result of [3]. 

Theorem 1 ([3]) Let us assume that, as well as (1), we have 

(2) 

Then the following asymptotic formula holds1 

lim a-3N(a,±1) = ~2 JV3 dX. 
0-+00 311" 

(3) 

IThe coefficient in [3] is incorrect and this mistake is repeated in [5]. 
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In this paper we claim the following statements in addition to the result of 
Klaus. 

a) The asymptotic formula (3) holds for N(a, A), IAI < 1, whenever we only have 
condition (1). 

b) The asymptotic formula (3) survives under some weaker (compare with (2)) 
additional restrictions on V. 

c) There are potentials satisfying (1), such that N (a, 1) has an asymptotics of the 
order a q , q> 3. 

d) There are potentials, satisfying (1), such that N(a, 1) "" ca3 , but the coefficient 
c> J, where 

1 J 3 J:= -2 V dx. 
3n 

2. Let us clarify the previous statements. We begin with the necessary notations. 
Before stating the precise results we notice the following: let us consider the (com­
pact) operator 

(4) 

Let n+ (., X (A)) be the counting function ofthe positive spectrum of the operator 
(4). We use the standard relation 

N(a,)..)=n+(s,X()")), as=1, 1)..1:::;l. 

The operator (4) decomposes (see [K]) into the sum 

X(A) = Y(A) + Z(A), IAI:::; 1, 

Y(A) = Wb ·V(-.:l + aI)-l)W, a = 1- A2, 

Z(A) = Wbo + )..00)( -.:l + aI)-lW, a = 1- A2. 

In particular, for A = ± 1 

Y(±I) = Wb .VIVI-2 )W, 

Z(±I) = Wbo ± (0)IVI-2 W 

(5) 

(6) 

(7) 

(8) 

The operators (5), (6) are pseudodifferential operators of order (-1) and (-2) 
respectively. The symbols of the operators (7), (8) are homogeneous. Besides, 
±Z(±I) ;::: o. 

The general results of the paper [1], about the asymptotics for the spectrum 
of pseudodifferential operators of negative order, imply that under condition (1) 
the following (quasiclassical) formula holds 

lim S3n+(s, Y(A)) = J, IAI:::; l. 
s-+o 
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The following study is reduced to the analysis of the contribution of the oper­
ator Z(A) into the asymptotic formula of the spectrum of the operator X(A). 
If A = ±1 then there are different cases depending on some additional (see (1)) 
restrictions on V. 

In what follows we denote by Lp,q(~d), 0 < p < 00, 0 < q ~ 00 the functional 
Lorentz classes (see for example [6]). Recall that Lp,p = Lp. By <[> we denote the 
Fourier operator. 

3. We begin with the case of dominating contribution of the operator Y(A) 

Theorem 2. Let the condition (1) be fulfilled. Then 

lim a-3N(a,A) = J, IAI < 1. 
0--->00 

Theorem 3. Let us assume that together with (1) we have 

V E L3/2,3(~3). 

Then the asymptotic formula (3) holds. 

(9) 

The condition (9) obviously is less restrictive then (2). Futhermore, let 'P E 
L3/ 2,00(lR.3), 'P(x) > OJ in particular we can take 'P(x) = Ixl-2 • Then the asymp­
totic formula (3) holds if, together with (1), the following condition is fulfilled for 
some q 2 J vq'P~-q dx < 00, 3 ~ 2q ~ 6. (10) 

4. Let us now consider the case when the second term dominates in the sum 

X(±I) = Y(±I) + Z(±I). (11) 

Let us introduce the Schrodinger operator with the potential V 

H = -A - aV, a > 0, (12) 

and denote by N H (a) the number of the negative eigenvalues of the operator H. 
The asymptotic behaviour of NH(a) was studied in detail in [2]. 

Theorem 4. Let the condition (1) be satisfied and NH(a) = O(aq), q > 3. 
Then 

lim supa-qN(a, 1) = 2q+l lim supa-qNH(a), 
a~oo a~oo 

lim infa-qN(a,I)=2q+1 lim infa-qNH(a,O), 
0:-+00 0--+00 

(13) 

lim a-qN(a,-I) = O. 
0--->00 

2Regarding conditions of the type (10) see [2]. It follows from the estimates obtained there 
that conditions (10) imply n+(8, Z(±l)) = 0(8-3), 8 -> O. However, it is possible to show that 
any of conditions (10) follows (9). This was varified by T.Weidl. 
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We introduce more special conditions providing the asymptotic formula of 
the type 

N(a,l)rvcaq , a-+oo, q>3. (14) 

Let us consider the potential 

Vr(x) = { Ixl-2 (ln Ixl)-r1l!(e), Ixl > 2, 
0, Ixl :S 2, 

(15) 

where e = x/lxi, 7> 0 and 1l! E Lq(§2), q7 = 1, 2q > 3. 
The asymptotics of NH(a) for the operator (12) with the potential V = Vr 

was obtained in [4] (the case 1l! = 1 earlier was obtained in [2]). On the basis 
of this result and Theorem 4 we can establish (14) for V = Vr . Indeed, let us 
consider in L2(§2) the operator with a parameter s> 0 

(16) 

where t:J.() is the Laplace operator on the unit sphere. Let {vz(r) (s)} be the sequence 
of the eigenvalues of the operator (16) and 

Theorem 5. Let V E L3 ,loc and 

V = Vr (1 + 0(1)), Ixl-+ 00, (17) 

where Vr is the potential (15), 7-1 = q > 3. Then (13) is fulfilled and the asymp­
totic formula (14) holds with c = 2q+1 Mr. 

5. The most interesting case is 

(18) 

Under condition (18) both terms on the right hand side of (11) give the same con­
tribution a 3 into the asymptotic formula for N(a, 1). For a sufficiently large class 
of potentials we succeed in proving that these contributions lead to the summa­
tion of the respective asymptotic coefficients. This is caused by the fact that the 
main contribution of the operator Y(±I) into the spectrum under the condition 
(1) is given by large momenta, but the contribution of the operator Z(±I) (for 
V considered below) is given by small momenta. Let us impose a supplementary 
condition on V; it is convenient to express this condition in terms of the Fourier 
transform W = <I>W, W = V 1/ 2 : 

(3.12) 
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Theorem 6. Let conditions (1), (18) and (19) (for some c > 0) be fulfilled. Then 

lim sup 0:-3 N(o:, 1) = J + 16 lim sup 0:-3 NH(o:), 
a~oo a~oo 

lim inf 0:-3 N(o:, 1) = J + 16 lim inf 0:-3 NH(o:) , 
0--"00 a~oo 

(20) 

lim 0:-3 N(o:, -1) = J. 
a-->oo 

From Theorem 6 it is not difficult to deduce the following analogy of Theorem 5. 

Theorem 7. Let V E L3,loc and (17) be fulfilled with T = 1/3. Then (20) is 
satisfied and the following asymptotic formula holds 

lim 0:-3N(0:, 1) = J + 16M1/ 3 . 
a-->oo 
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The Spectrum of Schrodinger Operators 
in Lp(Rd) and in Co(Rd) * 

Rainer Hempel and Jiirgen Voigt 

Introduction 
The aim of this paper is to present results on the independence of the spectrum 
of Schrodinger operators in different spaces. We treat Schrodinger operators of a 
very general kind, namely -!Ll perturbed by certain measures J-l. 

In Section 1 we recall what measures can be used and we review results stating 
the p-independence of the spectrum of the realizations of -!Ll + J-l in Lp(Rd), 
1 ~p ~ 00. 

In Section 2 we show that the realizations of -! Ll + J-l in spaces of continu­
ous functions, e.g., the bounded uniformly continuous functions or the continuous 
functions vanishing at infinity, again have the same spectrum, for suitable J-l. In 
fact, this is derived in a much more general context, utilizing the semigroup dual 
of a Banach space with respect to a strongly continuous semigroup. 

In Section 3 it is shown thaI Shnol's method of constructing singular se­
quences can also be employed in a proof of the inclusions a(H2,v) c a(Hp,v) and 
a(H2,v) c a(Hco,v), for suitable potentials V. This establishes the connection 
between the spectrum in Lp and Co and the existence of polynomially bounded 
generalized eigenfunctions. 

1. Review of Lp-results. 
In order to state the results we have to recall some notations. Let 

Mo := {fL : B ~ [0,00]; fL a-additive, fL(B) = 0 

for all sets B E B with capacity zero}, 

where B denotes the a-algebra of Borel subsets of Rd. 
For the definition of the extended Kato class S K C Mo of measures and of 

the constant c(J-l) defined for J-l E SK we refer to [StV]. We recall that for fL+ E Mo, 
J-l- E S K with c(J-l-) < 1 a closed form in L2 (R d) is defined by 

(h - J-l- + J-l+)[u, v] := ~ f V'u· V'vdx - f u- v- dJ-l- + f u<i;- dJ-l+, 

'Presented at the meeting by J. Voigt 
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with domain 

(u- denoting a quasi-continuous version of u). The closure of D(h - J1- + J.L+) 
in L 2 (Rd ) is of the form L 2 (Y), for a suitable set Y E B. The operator HJ.t = 

HJ.trJ.t- is the self-adjoint operator in L2 (Y) associated with h - J.L- + J.L+. It is 
shown in [StY; Corollary 4.2] that the semi-group (e- tH",; t ~ 0) on L2(Y) acts 
also as a strongly continuous semigroup Up,J.t(.) on Lp(Y), for all p E [1,00); the 
generators of these semigroups will be denoted by -Hp,w Also, Hoo,J.t := H17w 
The corresponding unperturbed operators (for J.L = 0) will be denoted by Hp. 

1.1. Theorem. With the notations introduced so far, we have 

for all p E [1,00]. 
We are going to give an outline of the proof of this result. In order to do so we 
first collect several facts which are needed in the proof. 

1.2. Remark. (a) Let c > O. There exist constants C, w such that 

Ile~'x e- tHp ,,,, e-~·xllp,q ::; CC'Yewt 

for all t > 0, 1 ::; p ::; q ::; 00, ~ E Rd with I~I ::; c, where'Y = ~(~ - ~). (Here 
11·llp,q) denotes the norm in L(Lp, Lq).) 

The proof of this fact consists in two steps. In both of these steps it is essential 
that there exists a > 1 such that aJ.L is also in the class considered above (in 
particular, c( aJ.L) < 1). 

(i) One shows the inequality for ~ = 0, using Stein interpolation; cf. [StY; 
Theorem 5.1 (b)]. 

(ii) From the fact that the desired statement is true for the unperturbed heat 
semigroup (J.L = 0) one concludes it for the perturbed semigroup, again using Stein 
interpolation; cf. [ScV; Remark 3.4 (b), (c)]. 

(b) Let f > O,w be as in (a). Then there exists C such that 

for all w E R with w < -w, p ::; q with 'Y = ~(~ - ~) < 1, I~I ::; f. Further, 
(-00, -w) c p(Hp,J.t) for all p E [1,00], and 

(Hp,J.t - W)-l = (HJ.t - w)-l 

on Lp(Y) n L2(Y), for w < -w. 
The proof consists in integrating the inequality in (a) after multiplying by 

ewt ; cf. [HV; Proposition 3.7], [BcV; Remark 3.4 (d)]. 
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1.3. Lemma. ([ScV; Corollary 3.3]) Let 1 ::; P ::; q ::; 00, 0 < f' < f". Then 
there exists G ~ 0 such that for each linear operator 

(Loo,c denoting Loo-functions with compact support) satisfying 

one has 
Ilee·x Ae-e,xllrr ::; G , 

for p ::; r ::; q, I~I::; f'. 
The inclusion p(Hp ,/1) C p(H2,/1) in Theorem 1.1 is obtained as in [HV; section 

2], using Remark 1.2 (a) for ~ = O. 

Sketch of the proof of the inclusion p(H2,/1) C p(Hp ,/1) (compare [ScV]). 
It is sufficient to prove the assertion for all p E [1,2]. According to Remark 

1.2 (b) we find w « -w), G such that 

lI ee'X(H/1 - w)-1 e- e,xllp ,q ::; G 

whenever 1::; p::; q::; 2, ~(~ -~)::;!, I~I::; 1. 
o 0 0 

Let K C p(H2,/1) be compact, K connected, K = K, w EK . Then there 
exist f E (0,1] and a constant G' such that K C p(ee·x H2,/1e-e·X) for I~I ::; f, and 

Ilee'X(H2,/1 - z)-1e-e,xll = II(ee·x H2,/1e-e·x - z)-111 
< G' (I~I ::; f, Z E K). 

This follows from perturbation theory and analytic continuation. (Note that the 
equality 

e'X(H _ )-1 -e·x _ (e,xH -e.x _ )-1 e 2,/1 Z e - e 2,/1e Z 

on L2 (Y) n L2,c(Rd ), whose validity for z = w is obtained by Laplace transform, 
has to be extended to K by analytic continuation. The absence of this argument 
in [HV] was pointed out to the authors by W. Arendt.) 

Using the resolvent equation 

together with Lemma 1.3 one concludes the existence of Gil such that 

Ilee'X(H - z)-1e-e,xll < Gil 2,/1 p,q -

for z E K 1 < P < 2 with 4(.! - .!) <.! Icl < ~. , - - 2 P q - 2' ." - 2 
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Iterating this argument one obtains the last inequality for all P E [1,2] and 
small I~I. Using this estimate for ~ = 0 and the fact that 

(H2,p. - w)-l = (Hp,p. - W)-l on Lp n L2(Y) 

one obtains K c p(Hp,p.).1 

1.4. Remarks. (a) A slightly different situation has been treated in [ScV]. In 
this paper the perturbation f..l is the sum of a form small distributional part f..lo 
(cf. [HS]) and f..l+ E Mo. This implies that the semigroup (e-tHl'; t 2: 0) acts as a 
strongly continuous semigroup on Lp(Y) for Po ::; P ::; p~ where Po E [1,2) depends 
on the form bound of f..lo (cf. [BS]). It is then shown that a(Hp,p.) = a(H2,p.) for 
all p E (po,p~). 

(b) The p-independence of the Lp-spectrum of elliptic operators on certain 
Riemannian manifolds was shown in [Stu]. In a similar context the p-independence 
for 1 < p < 00 was shown in [Sh; Proposition 2.6]. 

(c) The p-independence of spectra has been shown in [AI] for perturbations 
of certain translation invariant operators. 

(d) If U(·) is a strongly continuous semigroup on L2(0) (where 0 C Rd) 
satisfying a Gaussian estimate, then it was shown in [Ar] that the spectra of the 
generators of the corresponding semigroups on Lp(O) are p-independent. 

2. The spectrum of -~.6. + JL in spaces of continuous functions 

We want to show that under suitable hypotheses the spectrum of - ~ ~ + f..l in 

(or in other spaces of bounded continuous functions) is the same as the Lp­
spectrum. 

It turns out that the main point which is specific about this situation is 
the question whether (e -tH 1'; t 2: 0) acts as a strongly continuous semigroup on 
Co(Rd ). The fact that then coincidence of spectra can be concluded will follow 
from very general considerations presented next. 

Let X be a Banach space, (U(t); t 2: 0) a strongly continuous semigroup on 
X, and T its generator. The semigroup dual of X is then defined by 

X 8 := {x* E X*; T(t)*x* ~ x* (t ~ O)}; 

see, e.g., [HP; Chap. XIV], [BB; Sec. 1.4] (where X8 is denoted by X o), [Ne]. (We 
use the adjoint space X* of continuous conjugate linear functionals on X in order 
to stay consistent with duality in L2') 

2.1. Theorem. Let Y C X8 be a closed subspace which is invariant under 
U*(t) (t 2: 0). Denote by Uy (.) the part of the semigroup U*(.) in Y, and by Ty 
the generator of Uy(·). 
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(a) Then Ty is the part ofT* in Y, 

D(Ty ) 

Ty 

{x* E Y n D(T*); T*x* E Y}, 

T*ID(Ty). 

67 

(b) Poo(T) c Poo(Ty), and (A - Ty )-1 is the part of ((A - T)-1)* in Y, for 
A E Poo(T). (Here Poo(T) denotes the component of p(T) containing a right half 
plane; and similarly for Ty.) 

(c) If additionally Y is equi-norming for X, i.e., the norm 

Ilxlly:= sup{1 < x*,x > I; x* E Y, Ilx*11 s I} (x E X) 

is equivalent to the original norm in X, then 

Proof. (a) This is known for Y = X0, and the proof carries over to our case (cf. 
[BB; p. 51]' [Ne; Theorem 1.3.3]). 

(b) For A E C with ReA larger than the type of U(·), the resolvents of T 
and Ty are given by the Laplace transform of U(·) and Uy(·), respectively, and 
therefore 

< x*, (A - T)-1 x > = < (A - Ty )-1x*, X > 

for all x EX, x* E Y. Therefore (A - T y ) -1 is the part of ((A - T) -1) * in Y. 
This implies that ((A - T)-1)* maps Y to Y for all A E Poo(T). By uniqueness we 
obtain the claimed assertions. 

(c) The equivalence of 11·11 and 11·lly implies that there exists a constant c 
such that 

II(A - T)-111 S cl1(A - Ty)-111 for all A E Poo(T). 

This implies 8(Poo(T)) C a(Ty), and therefore Poo(T) = p~(TY).1 

2.2. Remark. The assymptions made in the previous theorem are satisfied, in 
particular, for Y = X0. For this case, however, one has p(T0) = p(T); cf. [Ne; 
Theorem 1.4.2]. 

2.3. Corollary. Assume that J.L satisfies the hypotheses of Theorem 1.1. Let 
Y be a closed subspace of Loo which is equi-norming for L1, invariant under 
(e-tH1 ,1')* (t ~ 0) and such that 

for all fEY. Denote by - Hy,J1. the generator of the strongly continuous semigroup 
on Y induced by ((e- tH1 ,1' )*; t ~ 0). Then 

a(Hy,J1.) = a(H2 ,J1.}' 
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2.4. Remarks. (a) The semigroup dual of L1(Rd ) for the unperturbed Schro­
dinger semigroup (e- tH1 ; t 2 0) is 

Cb,u(Rd ) = {J E C(Rd); f bounded and uniformly continuous}. 

The generator is then the part of -Hoo in Cb,u, 

For V E Cb,u(Rd ), the multiplication operator by V is a bounded operator in 
Cb,u(Rd ), and therefore Theorem 2.3 is applicable to H + V with Y = Cb,u(Rd ). 

(b) The space Co(Rd) is invariant under the unperturbed Schrodinger semi­
group, and 

d 1 
D(Hco) = {J E Co(R ); HCof = -2':lf E Co}. 

For bounded V E C(Rd) the multiplication by V is a bounded operator on Co(Rd). 
Therefore Theorem 2.3 is applicable to H + V with Y = Co(Rd). 

(c) For V = V+ - V_, V± 2 0, V_ E Kd, V+ E Kd,loc it is shown in [S; 
Theorem B.3.1] that e-tHv maps Loo-functions to continuous functions, for t > o. 
As a consequence, 

consists of continuous functions, in this case. 

3. An application of Shnol's method. 
In order to establish a connection with the PDE-world, we will now discuss an 
alternative proof of the inclusions 

a(Hco,v) ~ a(H2,v). (3.1) 

To this end, we will produce rather explicit "Weyl sequences" in Lp and also in 
Co which are obtained by applying suitably chosen cut-offs to generalized eigen­
functions associated with the expansion theorem for H2 ,v ([B], [S], [PStW]); this 
requires some mild modifications of Shnol's method (cf. [Shn], [S; Section C.4], and 
[HSt]). Therefore, we learn that properties of the Schrodinger operator in Hilbert 
space L2 fully determine the spectra in Lp and even in Co: while estimates for the 
resolvent kernel (H2,v - z)-l(x, y) give the inclusion e(Hp,v) ~ e(H2,v), the con­
verse inclusion will now be a consequence of the eigenfunction expansion theorem 
for H 2,v. Related ideas are also discussed in [Sh]. 

It should be stressed, however, that the approach proposed here requires 
more restrictive assumptions on the potential V, as compared with the "duality 
and interpolation"-proof described in Section 2. In the following, we will restrict 
the discussion to the case V E Loo(Rd) where it is easy to obtain Lp-bounds for 
the gradient of a generalized eigenfunction. 
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We first collect a few facts (where we always assume that V is bounded): 

(1) For 1 ::; p ::; 00, we have ([HVl]) 

(3.2) 

If, more strongly, V is bounded and continuous, then (cf. Section 2) 

D(Hco,v) = D(Hco) = {u E Co; fl.u E Co}. (3.3) 

(2) From the generalized eigenfunction expansion theorem for H2,v ([B], [S], 
[PStW]), we can draw the following conclusion: for any JL E a(H2,v) and any e > 0, 
there exists a A E (JL-e,JL+e) and a (non-trivial) distributional solution U of the 
PDE 

1 
--fl.u + Vu = AU 

2 ' 
(3.4) 

satisfying a polynomial growth bound 

(3.5) 

with some constants Cl > 0 and KEN. For V bounded, it is also known that U 

is (equivalent to) a continuous function (cf., e.g., [S]). 

(3) To control the cut-off errors, we need an Lp-bound on \7u, for U satisfying 
(3.4), (3.5). Note that there is no Lp-analogue of the L2-gradient bound given in 
[S; Lemma C.2.1]. Here we proceed as in [HVl], using an argument ofL. Schwartz, 
to obtain the following lemma. 

3.1. Lemma. Let p E [1,00], and suppose that 0 C 0' are open sets in Rd with 
the property that dist(O, aO') 2 1. Then there exists a constant C = C(p), which 
is independent of both 0 and 0', such that 

(3.6) 

for all U E Lp(O') with the property that fl.u E Lp(O'). 

Proof. We proceed as in [HVl]: letting T denote the usual fundamental solution 
for -fl., and picking some X E Cg"(Rd) with support in the unit ball and X(x) = 1 
for Ixl ::; 1/2, we have 

\7u = (\7(XT)) * fl.u - \7( * u, (3.7) 

(where ( = (fl.X)T + 2\7x . \7T E Cg"(Rd)), and the required estimate follows 
from Young's inequality ([RS]). Furthermore, it is clear from eq. (3.7) that \7u is 
continuous, provided u and fl.u are continuous functions. I 
Now let u be a (continuous) generalized eigenfunction of H2,v and cP E Cg"(Rd). 
Then it follows from Lemma 3.1 and fl.(cpu) = cpfl.u + 2\7cp\7u + (fl.cp)u that cpU 
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will belong to the domain of Hp, v, for 1 ::; P ::; 00. Similarly, if V is bounded and 
continuous, then 'PU will belong to the domain of Hco,v. 

(4) Central to Shnol's method is the observation that the growth bound (3.5) 
implies that the L 2-norm of u, considered on a suitable sequence of balls, will 
not grow too rapidly (cf. [S]). While the exposition given in [S; Section C.4] can 
directly be carried over to the Lp-case for 1 ::; P < 00, it has to be modified for 
P = 00 and, similarly, also for the space Co. We therefore change the scenario used 
in [S] and consider 

(n EN). (3.8) 

We then have the following lemma. 

3.2. Lemma. Let 1 ::; P ::; 00, and let u be as in {3.5}. Let a > 2 and set 

C2 = C2(p) = aK+g. Then there exists a sequence (nj)jEN C N, nj --t 00, such 
that 

(j EN). (3.9) 

Proof. If the statement of the lemma were not true, there would exist some no 
such that 

(n 2:: no), (3.10) 

so that 
Ilul en lip 2:: IlulFn-11lp 2:: c21Iu!en_lllp (n > no). (3.11) 

This leads to 

Ilul en lip 2:: c~-no Iluleno lip (n 2:: no), 

in contradiction with the polynomial growth bound of u. I 
(3.12) 

With these preparations, it is now easy to prove the inclusions stated in eq. (3.1). 

Proposition 3.3. Let V E Loo(Rd). Then a(Hp,v) :> a(H2,v), for all p E 

[1,00]. If, moreover, V is (bounded and) continuous, then a(Hco,v) :> a(H2,v). 

Proof. We first choose a function 'P E C~( -2,2) with the property that 'P(x) = 
1, for Ixl ::; 4/3, and 'P(x) = 0, for Ixl 2:: 5/3, and we define 

Then On := sUPP(V''Pn) C Fn and dist(Qn,8Fn) 2:: 1, for n 2:: 2. Furthermore, we 
have 11V''Pnlloo ::; C32-n and 11~'Pnlloo ::; C42- 2n . 

Now let J.L E a(H2,v) be given, and let c: > O. By what was said in point (2), 
there exists some A E (J.L - c:, J.L + c:) and a (non-trivial) generalized eigenfunction 
u of H2,v that satisfies (3.4), (3.5). For given p E [1,00]' we will prove that there 
exists a sequence (n j) c N so that 

(3.13) 
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Therefore, Hp,v ->.. does not have a bounded inverse, whence>.. E a(Hp,v). Taking 
c ~ 0 then gives I-l E a(Hp,v). 

Applying Lemma 3.2 to u, we find a constant C2 and a sequence (nj) such that 
(3.9) holds. As i.pnj u E V(Hp,v) and (Hp,v - >")(i.pnj u) = -(V'i.pnj )V'u- ~(Lli.pnj )u, 
we have 

II (Hp,v - >..)(i.pnju) lip < 11V'i.pnj 1100 IIV'ulQnj lip + II Lli.pnj 1100 lIulQnj lip 

< C5 2- nj (lIu'Fnj lip + IILlUIFnj IIJ ' 
by Lemma 3.1. From V E Loo and ~Llu = (V - >..)u we now conclude that 

and the result follows. 
The proof in the case of the space Co is essentially identical with the p = 00 

proof and omitted. I 
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On the spectral properties of generalized 

Schr6dinger operators 

J.F.Brasche 

Let X be a locally compact separable metric space, m a positive Radon 
measure on X such that m(U) > 0 for each open set U C X and H a self-adjoint 
operator in L2(X, m) which is uniquely associated to some regular Dirichlet form 
£ in the sense that 

£(f,g) = (HI,g) VI E D(H) c D(£) Vg E D(£). 

We refer to [1] and [2] for the notions from the theory of Dirichlet forms. 

We are mainly interested in the following 

Example 1: X = R d , dm = dx =Lebesgue measure, H = -~. 

More generally we are interested in the following 

Example 2: Let ¢ E Lfoc(Rd). Suppose that for each compact set K C Rd there 
exists a constant CK > 0 such that ¢ ~ CK on K. Let 

£e/> is closable in L2(Rd, ¢2dx) (cf. [3]) and its closure £e/> is a regular Dirichlet form 
in L2(Rd,¢2dx). Thus we may put X = Rd, dm = ¢2dx and H = He/> where He/> 
is the self-adjoint operator uniquely associated with £e/>' Q 

Let IL+ and IL- be positive Radon measures on X charging no set with £­
capacity zero. We put IL := IL+ - IL- and IILI := IL+ + IL-· We suppose that there 
exist a constant a < 1 and a finite constant b such that 

(1) 

Here j denotes any quasi-continuous representative of I and £b := £ + b (', .). Let 

(£ + IL)(/,g) := £(f,g) + j7[}dIL V/,g E D(£ + IL) := D(£). 
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By the inequality (1) and the KLMN-Theorem, £ + J.l is lower semi-bounded and 
closed in L2(X, m). We shall denote by H + J.l the self-adjoint operator uniquely 
associated with £ + J.l. 

Example 1': If H = -Ll and the measure J.l is supported on some closed set 
r then the operator -Ll + J.l describes the interaction of a quantum mechanical 
particle with a potential which is concentrated on the set r. Q 

Example 2': In the situation of the Example 2 consider the special case that 
¢ = Go; * 1/ for some a > 0 and some positive Radon measure 1/ supported by some 
closed set f. Here Go; (x - y) = (-Ll + a)-l(x, y). Suppose that the measure J.l is 
also supported on r. Then the operator 

in L2(Rd, dx) describes the interaction of a quantum mechanical particle with a 
potential concentrated on r (cf. [4]). It is noteworthy that, in contradistinction to 
the Example 1', the classical capacity of the set r may be equal to zero. Q 

Let 1/, P E {m,IJ.lI}, a > 0 and Iml := m. Let h E L2(X,I/). By (1) and 
Schwarz' inequality, the linear functional g I-t J kg dl/ is bounded on the Hilbert 
space (D(£), £0;). Thus there exists a unique Uo;(hl/) E D(£) such that 

We define the mapping Rvpo; : L2(X, 1/) ---+ L2(X, p) by 

Rvpo;h := Uo;(hl/) rr-a.e. Vh E L2(X, 1/). 

By (1), there exist an a < 1 and an ao > 0 such that for all a 2:: ao and all 
1 E D(£) 

Let a 2:: ao and So; := {J E D(£) : £0;(1'/) = I}. For each hE L2(X, 1/) we have 

J IUo;(hl/)j2 dp 
= asup!ES" 1£0; (Uo;(hl/), 1)12 
< a J Ihl2 dl/ . SUP!ES" J 1/12 dl/ < 
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Thus the operator Rvpa is bounded with operator norm less than one. 

Theorem 1: There exists an ao such that for all a::::: ao the number -a is in the 
resolvent set of the operator H + J-L and we have 

(H +J-L+a)-l- (H +a)-l 

-RiJLima[1 + I'R iJLiiJLiar 1,)RmiJLia. 

Here the function I' is chosen such that I'IJ-LI = J-L. 

Scetch of the proof: Let f E L2(X, m). Let a > 0 be such that IIRiJLiiJLia11 < l. 
We put h := [I + I'RiJLiiJLial-1I'RmiJLiaf. It suffices to show that 

A short computation gives that the expression on the left hand side equals 

We have 

(I, g) + J (H + a)-l jgdJ-L - J hgdlJ-L1 

J Ua(hlJ-Ll)gdJ-L. 

and, since £ is regular, for each 9 E Co(X) there exists a sequence {gn} in 
D(£) n Co(X) converging to 9 uniformly such that supp(gn) C supp(g) for each 
n E N. Thus we have only to show that 

This equality follows from a simple computation. D 

A straightforward computation gives the following lemma which is useful in 
order to derive Birman-Schwinger bounds for the number of negative eigenvalues 
of the operator H + J-L. 

Lemma: Va > 0 : dimker(H + J-L + a) = dimker[1 + I'RiJLiiJLial. 

In the special case that H = - ~ we have that 

(cf. [5]). By this equation and the above theorem one has an explicit representation 
of the resolvent of the operator -~ + J-L. In [5] this explicit representation has 
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been the starting point for a detailed investigation of the spectral properties of 
the operator -~ + JL. In particular, in [5] there have been derived the following 
results: 

Theorem 2: If IJLI(Rd) < 00 then aess( -~ + JL) = [a, 00). 

Scetch of the proof: For sufficiently large a the operators RliLlmo: and [I + 
'YRliLlliLlo:]-l are bounded and the Schur test gives that RmliLlo: is compact. Thus 
by Weyl's essential spectrum theorem and Theorem 1 the operator -~ + JL has 
the same essential spectrum as the operator -~. D 

Theorem 3: If the meaSUT'e JL has compact suppo'T'f and belongs to the K ato class 

then aac(-~ + JL) = [a, 00), asc(-~ + JL) = 0 and the set of positive eigenvalues 
of -~ + JL is disC'T'ete. 

Scetch of the proof: Let v, p E {m, IJLI} and (v, p) # (m, m). Let C+ be the set 
of all complex numbers with positive real part. First one shows that the mapping 
z 1--+ Rvp(z) := Rvp- z from (-00, a) to the Banach space of bounded everywhere 
defined operators from L2(X, v) to L2(X, p) has an analytic continuation to the 
set D := ({z E C : Re(z) :::; a,Im(z) 2: a} u C+) \ {a}, that for each z of the 
extended definition domain D the operator Rvp(z) is compact and that for each z 
in D with Im(z) > a the following equation holds: 

By the analytic Fredholm theorem and Theorem 1, it follows that the mapping 
z 1--+ (-~ + JL - Z)-l from the set {z E C : Im(z) > a} to the Banach space of 
everywhere defined bounded operators on L2(Rd, dx) has an analytic continuation 
to D \ S for some discrete set S. By the limiting absorption principle, the theorem 
is proved. D 

Theorem 4: Let 1 < q :::; 2. TheT'e exist the following bounds foT' the numbeT' 
(counting multiplicities) N( -a) of eigenvalues of the opemtoT' -~ + JL below -a : 

1 

N(~a) <: J '_(X)m(dx{:'il:J Go(x ~ y)',_ (y)m(dY)} H (2) 

Scetch of the proof: One uses the Birman-Schwinger method and the lemma in 
order to show that N( -a) :::; IIRliLlliLlo:ll~ for each 1 :::; p < 00. Here II . lip denotes 
the norm in the trace ideal of order p (with the convention that IIAllp = 00 if the 
operator A does not belong to this ideal). Then estimates on the II· lip-norm of an 
integral operator due to Solom'jak (d. [6]) give the above inequalities. D 

Of course one is mainly interested in the number (counting multiplicities) 
N(a) of negative eigenvalues of the operator -~ + JL. An upper bound for N(a) 
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can be obtained by taking the limit as a tends to zero on the right hand side of 
the inequality (2). This method, however, gives the trivial upper bound +00 in the 
cases d = 1 and d = 2 since then Ga(x) ---t 00, as a ---t 0 for all x E Rd. Fortunately 
the method can be modified in the same way as in [7], [8], [9] because the singularity 
does not depend effectively on the spectral parameter and corresponds therefore 
to just one bound state which can be taken into account separately. 

Theorem 5: Suppose that J 'Y-dm > O. Then we have the following bounds for 
the number N(O) of negative eigenvalues of -a + J.l : 
d= 1: 

N (0) < 1 + -"...! -=-J -=-J -,--Ix_-_y-,;;-I'Y_-....:...,.( x....:...,.h_---:--(Y,c-) m:-('----dY--'-)_m,c-( d---,-x) 
- J 'Y_(x)m(dx) 

d= 2: 

N(O) ::; 1 +{j 'Y-(x)m(dx)} -2 j j j j 'Y-(xh-(yh-(zh-(u) 

In Ix - ylln (:: =~: :~ = ~:) m(dx)m(dy)m(dz)m(du). 
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A Fermi-type rule for contact 

embedded-eigenvalue perturbations 

J-P. Antoine, P. Exner, P.Seba and J.Shabani 

Abstract 

A perturbation theory of embedded eigenvalues is constructed for a class 
of models with a contact interaction which are inspired by heavy-quarkonia 
mesonic decays. 

1 Introduction 

Contact-type interactions have been studied intensively in the last decade - see 
[2, 3, 14, 15] and the papers [5, 7-10, 16-18]; a more complete bibliography can 
be found in a journal version of this paper [4]. Recently they have been shown to 
yield solvable models of some decay and resonance-scattering processes [12, 13]; 
the importance of this observation stems from the fact that there are only a few 
situations where the embedded-eigenvalue perturbation problem can be solved -
see [11], [21, Sec.XII.6] and references therein. 

The aim of this talk is to present another model of this type; in distinction 
to [13] the embedded eigenvalues will correspond here to a potential interaction 
rather than to boundary conditions. On the other hand, comparing to [12J, the 
perturbation-theory parameter will be now contained in the boundary condition 
as the strength of the contact interaction. This allows us to prove a Fermi-type 
rule for the considered class of contact-interaction decays. 

To link the mathematical problem with a physical situation, we shall con­
sider excited states of heavy quarkonia decaying into mesons. In reality, this is 
a complicated process governed by the QCD Lagrangian, however, it is known 
that both the quark-antiquark pair and the mesons resulting from the decay are 
non-relativistic with a reasonable degree of accuracy [6, 19], so we can model this 
unstable system coupling the two dynamics directly. Moreover, we know that the 
transition between the quark and meson states can occur only at small distances. 
Hence it is reasonable to employ a contact-type interaction: we shall suppose that 
the quarks can annihilate when they hit each other giving rise to a meson pair at 
a distance R (this parameter plays essentially no role in the model). 
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2 Description of the model 

For simplicity, we remove the centre-of-mass motion in both the quark and meson 
channels. Moreover, we shall assume that the interaction is rotationally invariant so 
one can perform the partial-wave decomposition. Following the standard contact­
interaction ideology, we construct then the model Hamiltonian as 

00 

H = E9 W- I H(i)W 0 Ie (1) 
e=o 

where If is the unit operator on L2(82 ) , W := WI EB W2 with (Wj'¢j)(r) := 
r¢(r) , and furthermore, H(f) denotes a self-adjoint extension of the operator 

Hdf) := Hdfi EB Hdf~ on L2(RI, 00) EB L2(R2' 00) defined by , , 

(f)._ 1 d2 £(£+1) 2 
HOj .- - - -d 2 + Vjh) + 2 + 2(mj - m2)c (2) 

, mj rj mjrj 

with D( Hd~J) := Co (Rj, 00) . In other words, Hd~J are the partial-wave Hamil­
tonians in the quark and meson channels, j = 1,2, respectively, restricted to 
function supported out of the interaction region; a possible difference of the rest 
energies has been added to the quark potential. 

We set in the following RI = 0 and R2 := R ~ o. Furthermore, we have 
to specify requirements on the potentials. For simplicity, we suppose that (apart 
from the interaction with the quark channel) the mesons are free, i.e., 

(3) 

(this is not quite realistic in case of the decay to charged mesons but the model 
will be easier to solve with this assumption). On the other hand, for the quark 
potential we adopt the rather weak assumption that 

VI is locally integrable and lim VI (r) exists and is finite. 
r-->O+ 

(4) 

With the standard picture of a quarkonium state in mind, we shall also suppose 
that the quarks are confined, 

lim VI(r) = 00, 
r-->oo 

(5) 

even if the model works without this hypothesis as long as the first--channel free 
Hamiltonian has eigenvalues embedded in the continuous spectrum of the other 
channel (in conclusion, we shall mention the case when (4) is modified by adding a 
Coulomb potential in the quark channel). To be able to construct the self-adjoint 
extensions, one has to know first whether it is possible and how many there are. 
Using [21, Thm.X.lO] we check easily 

2.1 Proposition: Under the assumptions (3)-(5), the deficiency indices of the 
operators Hdf ) are: 
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(a) (2,2) if £ = 0, 

(b) (1,1) if £ ~ 1 and R = 0, 

(c) H6t ) is e.s.a. if £ ~ 1 and R = o. 

Thus the two channels can be coupled in the case (a) only, since otherwise at least 

one of the operators H6~] is e.s.a. This means, in particular, that the decay into 
higher partial waves, £ = 1,2, ... , is forbidden, hence we shall put £ = 0 and drop 
the index £ in the following. 

3 Boundary conditions 

The most straightforward way to couple the operators HO,j is to subject them 
to suitable boundary conditions at the points 1'1 = 0 and 1'2 = R. Using the 
standard argument, one can check that the adjoint Ho acts as the same differential 

operator as Ho and its domain consists of all I := ( ~~ ) with Ij, Ii absolutely 

continuous, Ii' E L~oc and Ii' - mjVjfi E L2(Rj, (0) - see, e.g., [21, Appendix 
to Sec.X.l]; the self-adjoint extension are then obtained by suitable restrictions of 
this domain. The most general form of the boundary conditions is 

Choosing appropriate boundary functionals, we find easily 

3.1 Proposition: The conditions (6) specify a self-adjoint extension of HO,j 

iff the coefficients satisfy the relations ajj = ajj , j = 1,2, and m1a21 = m2a12 . 

We choose for our model a subclass among the extensions specified by the 
proposition above. The diagonal coefficients ajj correspond to a point interaction 
in the j-th channel supported by the point l' j = Rj . There is no physical reason 
why such an interaction should be present in the considered system, hence we put 
ajj = O. The channels are coupled through the off-diagonal coefficients, i.e., the 
model boundary conditions read 

h(O) = aI~(R), h(R) = m2 ii I~ (0), 
m1 

(7) 

where a := a12 is the coupling strength; it is a reasonable choice because in the 
non-interacting case, a = 0, we get the Dirichlet boundary condition in both 
channels as expected. The extension corresponding to the boundary conditions (7) 
will be denoted as Ha in the following. 
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4 The resolvent 

In the standard picture [21, Sec.XII.6], [11, Chap.3] the leading behaviour of the 
unstable states is determined by poles in the analytic continuation of the resolvent, 
in fact, the mere existence of decaying modes of the system is usually put into 
correspondence with existence of these resonance states. Hence, in order to solve 
the model, one has to find the resolvent of the Hamiltonian Ha. In view of the 
particular form of this operator, this can be done by means of the Krein formula 
[1, Sec.106]. Denote by cjJ, X the solutions to the equation 

( - ~j ::2 + V1(r) + 2(m1 - m2)c2) f(r) = zf(r) (8) 

for z tf- IR such that cjJ(O) = 0 and X is L2 at infinity; because of the assumptions 
(4) and (5) they are unique up to a constant (the facts from the theory of ordinary 
differential equations we use here are usually formulated for the case of smooth 
coefficients but they hold for locally integrable coefficients as well [20]). They allow 
us to express the free quark-channel resolvent 

G ( ) 1 {cjJ(r; z)X(s; z) 
1 r, s; z = W(cjJ, X) x(r; z)cjJ(s; z) 

r:=;s 
r?s 

(9) 

where W(cjJ,X):= cjJX'- XcjJ' is the Wronskian of the two solutions. On the other 
hand, by the assumption (3) the free meson resolvent can be expressed explicitly 
as 

G (r s· z) = _1_ (eik(r+s-2R) _ eik1r-sl) 
2 , '2ik ' (10) 

where k := .jm2z is the meson momentum with the cut conventionally chosen 
along the positive real axis. Now we have the following result. 

4.1 Theorem: Under the stated assumptions, the resolvent of Ha is given, for z 
outside the two spectra, by the formulae 

2 

(Ha - z)-1 = (Ho - Z)-1 + L )..jk(z)(Ff, .)Ff ' 

where 

Ff(r) := ( x(ci z) ) 

and the coefficient functions are 

- ikm2lal 2 
)..u(z) := 

m1X(0; z)D(X, a; z) , 

ae-ikR 

D(X, a; z) , 

j,k=1 

F;(r) ( 0 ) .-
eikr 

)..21 (z) .- -m2ae-ikR 

m1D(x, a; z) , 

m2IaI2x'(0; z)e-2ikR 

m1D(x,a; z) 

(11) 

(12) 

(13) 
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where 
D(X, a; z) := X(o; z) - iklal2 m2 X'(O; z). 

ml 

83 

(14) 

Proof: The component functions in (12) solve the equations (Ho,j - z)f = 0 for 
j = 1,2, respectively. Furthermore, X is L2 at infinity by definition, and the same 
is true for eikr if z (j. 1R+ as long as k belongs to the upper complex halfplane; 
it remains therefore to find the coefficients Ajk(Z). To this end, we use the fact 
that for any 9 E L2(1R+) EB L2(R, 00), the vector f := (Ha- Z)-lg has to belong 
to D(Ha) , i.e., its components must satisfy the boundary conditions (7). This 
requirement yields a system of four linear equations for the coefficients which is 
solved by (13). • 

Hence we are able to determine the analytic structure of the resolvent, in particular, 
of its projection on the quark-channel discrete spectral subspace which is essential 
for determining the decaying-state poles [11, Sec.3.1]. The behaviour of D(X, a;·) 
plays a decisive role. The first term in this function is zero at the quark bound­
state energies, where the solutions cjJ, X become linearly dependent, however, the 
corresponding singularities are easily seen to cancel with those of G1 (r, s; .) so the 
only poles in the analytically continued resolvent come from the lower-halfplane 
zeros of (14); they are given by the equation 

x(O;z) - iklal2m2 X'(O;z) = 0 
ml 

which has to be solved with respect to z. 

5 The Fermi rule 

(15) 

The equation (15) can be solved for particular potentials; we refer to [4) for the 
examples of square-well, linear and harmonic confinement. The results motivate 
the following general claim. 

5.1 Theorem: Under the assumptions (3)-(5), the quarkonium decay width is 
given for the n-th s-wave state by 

provided En > 0, where En is the bound-state energy (scaled by the differ­
ence of the rest energies - cf. (8)) and 'ljIn(O) is the value of the corresponding 
wavefunction at the origin. 

5.2 Remark: Though it is not the matter of our interest here, the present analysis 
yields also an expression for perturbation of the quarkonium energies in the case 
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where the unperturbed eigenvalues are isolated, En < O. One has 

(17) 

where "'n := J-m1En ; the fourth-order term can be computed easily from the 
formula (18) below. 

Proof of Theorem 5.1: For simplicity, we put ml = 1 and define 9 := m21al2 ; 
the extension to the general case is straightforward. Equation (15) takes then the 
form 

where Xr, Xk2 etc. denote the partial derivatives with respect to the indicated 
variable. One has D(kn,O) = 0 for n = 0,1, ... , so the implicit function theorem 
may be applied provided Dk(kn,O) = 2knXk2 (0, k~J =I- O. It yields 

The higher derivatives can be computed in the same way; we restrict ourselves to 
the second one obtaining 

Hence to prove the formulae (16) and (17), one has to check that 

2i dk (k 0) = 47r1'" (0)12 = (f' (0))2 = Xr(O, k~)2 
d n, 'f'n n roo ( k2)2d ' 9 Jo X S, n S 

where fn is the normalized reduced wavefunction, i.e., to establish the identity 

(19) 

To do that one has realize that the function xC k/2) satisfies the equation 

(20) 

In order to solve this equation, we interpret its lhs as (HN - k 2)f, where HN is 
quark Hamiltonian of the equation (8), but with the Neumann boundary condition 
at the origin. Introducing the corresponding regular solution ¢ which verifies the 



A Fermi-type rule for contact embedded-eigenvalue perturbations 85 

boundary conditions ¢r(O, k2 ) = ° and ¢(O, k2 ) = 1, we may solve the equation 
(20) immediately as 

x(r, k,2) = cI(k,2)x(r, k2) + c2(k'2)¢(r, k2) + (k2 - k,2)g(r, k2), (21) 

with 

(22) 

x(r, k2) i r 
-( 2) (2 ¢(r, k2) 100 2 2 

= (0 k2) if; s,k X s,k )ds + (0 k2) x(s,k) ds. 
Xr, 0 Xr, r 

Since the rhs of (21) is L2 at infinity by definition, it suffices to check that 
g(., k2) is square integrable; indeed, this implies c2(k,2) = ° for any k' and 
limk'--->k CI (k'2) = 1 so that 

(23) 

However, at the points k = k; the solutions X and if; are linearly dependent 
and equal up to a multiplicative factor to the bound-state (reduced) wavefunction 
which satisfies, of course, the Dirichlet boundary condition at the origin. Hence 
(23) gives Xk2 (0, k;) = -g(O, k;) , which is nothing but the identity (19). 

Finally, since X(', k2) belongs to L2(0, (0) for any k, the function g(-, k2) 
is square integrable provided k 2 does not belong to the spectrum of HN. This is 
true, of course, since the free quark Hamiltonian HD corresponds to the Dirichlet 
condition, and therefore a(HD) n a(HN) = 0 (this is a reason why we have 
considered the operator HN)' Notice also that the rhs of (19) is non-zero so 
Xp (0, k;) -# ° ; this justifies the use of the implicit-function theorem. • 

5.3 Remark: In fact the regularity assumption in (4) is not very realistic; since 
quarks are charged particles, they should have in addition to the confining potential 
VI also an attractive Coulomb potential Vc(r) = _'yr-I, , > 0 [19]. Fortunately, 
the above analysis can be easily modified to cover this case. It suffices to replace 
in the boundary conditions (7) the value if (0) which becomes now singular by 

if reg(O):= lim r- I [h (r) - h (0+ )(1 +,r log 1,lr) ] , (24) 
, r--->O+ 

where h (0+) is the boundary value of the function itself, which remains well 
defined. Replacing now VI(r) in (8) by VI(r) -,Ir, we may repeat the discussion 
of Sec.4. First, the particular solutions if; and '¢ are replaced by their Coulombic 
counterparts if;c and Xc with if;c(0) = ° and Xc being L2 at infinity. As before, 
these solutions are unique up to a multiplicative constant. The main difference is 
that (as in the pure Coulombic case, VI = 0), X' has a logarithmic singularity at 
the origin for k -# -ir In. The free quark-channel resolvent reads, of course 

Gc ) 1 {if;c(r; z)xc(s; z) r s'z -
I ( " - W(if;c,xc) xc(r;z)if;c(s;z) 

r'5.s 
r;:::s (25) 
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Thus the analogue of Theorem 4.1 can be proved in exactly the same way; the 
statement is unchanged except that the denominator function D takes the form 

D(XG, a; z) := Xc(O; z) - iklal2 m2 X~ reg(O; z). 
ml ' 

(26) 

As for Theorem 5.1 and Remark 5.2, they remain valid too; we refer to [4] for 
details. 

References 

[1] N.LAkhiezer, LM.Glazman. Theory of Linear Operators in Hilbert space, 
3rd edition, Visa Skola, Kharkov 1978 (in Russian; English translation of 
the 1st ed.: F.Ungar, New York 1963). 

[2] S.Albeverio, J.Fenstad, H. Holden , T.Lindstn'lm, eds.: Ideas and Methods 
in Mathematical Physics, vo1.2, Cambridge University Press 1992. 

[3] S.Albeverio, F.Gesztesy, R.H0egh-Krohn, H.Holden: Solvable Models in 
Quantum Mechanics, Springer, Heidelberg 1988. 

[4] J.-P.Antoine, P. Exner , p.Seba, J.Shabani: A mathematical model of 
heavy-quarkonia mesonic decays, preprint UCL-IPT-93-03, Louvain-Ia­
Neuve. 

[5] J.-P.Antoine, F.Gesztesy, J.Shabani: Exactly solvable models of sphere 
interaction in quantum mechanics, J.Phys. A20 (1987),3627-3712. 

[6] T.Appelquist, H.D.Politzer: Heavy quarks and long-lived hadrons, Phys. 
Rev. D12 (1975), 1404-1414. 

[7] J.Brasche, P.Exner, Yu.A.Kuperin, p.Seba: Schrodinger operators with 
singular interactions, J. Math. Anal.Appl. , to appear 

[8] W.Bulla, T.'I'renckler: The free Dirac operator on compact and non­
compact graphs, J.Math.Phys. 31 (1990), 1157-1163. 

[9] S.E.Cheremshantsev: Hamiltonians with zero-range interactions sup­
ported by a Brownian path, Ann.Inst.H.Poincare: Phys.theor. 56 (1992), 
1-25. 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

J.Dittrich, P.Exner, p.Seba: Dirac operators with a spherically symmetric 
o-shell interaction, J.Math.Phys. 30 (1989), 2875-2882. 
P.Exner: Open Quantum Systems and Feynman Integrals, D.Reidel, Dor­
drecht 1985. 
P.Exner: A model of resonance scattering on curved quantum wires, 
Ann.Physik 47 (1990), 123-138. 
P.Exner: A solvable model of two-channel scattering, Helv.Phys.Acta 64 
(1991), 593-609. 
P. Exner , p.Seba, eds.: Applications of Self-Adjoint Extensions in Quan­
tum PhysicsJ Lecture Notes in Physics, vo1.324, Springer, Heidelberg 1989. 
P. Exner , P.Seba, eds.: Schrodinger Operators, Standard and Non-Stan­
dard, World Scientific, Singapore 1989. 



A Fermi-type rule for contact embedded-eigenvalue perturbations 87 

[16] P.Exner, P.Seba, P.Stovicek: Quantum interference on graphs controlled 
by an external electric field, J.Phys. A21 (1988),4009-4019. 

[17] N.I.Gerasimenko, B.S.Pavlov: Scattering problem on non-compact graphs, 
Teor. Mat. Fiz. 74 (1988), 345-359 (in Russian). 

[18] F.Gesztesy, P.Seba: New exactly solvable models of relativistic point in­
teractions, Lett. Math.Phys. 13 (1987), 345-358. 

[19] W.Lucha, F.Schoberl, D.Gromes: Bound states of quarks, Phys.Rep. 200 
(1991), 127-240. 

[20] M.A.Naimark: Linear Differential Operators, 2nd edition, Nauka, Moscow 
1968 (in Russian; English transl. of the 1st ed.: F.Ungar, New York 1967). 

[21] M.Reed, B.Simon: Methods of Modern Mathematical Physics, I.Func­
tional Analysis, II. Fourier Analysis. Self-Adjointness, III. Scattering 
Theory, IV. Analysis of operators, Academic Press, New York 1972-1979. 

[22] R.Van Royen, V.F.Weiskopf: Hadron decay processes and the quark 
model, N.Cim. 50A (1967), 617-645. 

J-P. AntoineB , Institut de Physique Theorique, Universite Catholique de Louvain, B-1348 
Louvain-la-Neuve, Belgium; 
e-mail antoine@fyma.ucl.ac.be 

P. Exner, P. Seba, Theory Division, Nuclear Physics Institute, AS CR, CZ-25068 Rez 
near Prague, Czechia; 
e-mail exnerandseba@ujf.cas.cz 

J.Shabani, Faculte des Sciences, Universite du Burundi, Bujumbura, Burundi 



Operator Theory: 
Advances and Applications, Vol. 70 
© Birkhauser Verlag Basel 

A Simple Model for Predissociation 

P. Duclos and B. Meller 

Abstract 

We analyse a very simple class of one dimensional two by two matrix 
Schrodinger operators. Their diagonal part has embedded eigenvalues in the 
continuous spectrum which become resonances when the off-diagonal part is 
turned on. Our analysis is semiclassical and contains a regular perturbative 
calculus of these resonances, asymptotics of the Fermi rule contribution to 
the width of these as well as lower bounds on the corresponding life time. 

1 Introduction 

We start directly exposing the model; the discussion about the content of this 
paper is split in several parts which are put at the end of their relevent sections. 

1.1 The Model 

Let 

H := Hd + W, H d := (~1 ~2)' W := (~2'1 6'1,2) 
be a matrix Schrodinger operator acting on L2(JR) EB L2(JR) =: 1i, where 

Hk ._ D2 + V k, k = 1,2, D:= ~ :x' 
V 2 (x) ._ x2 , V 1,2:=1i(tD+Dt)=-V2,1. 

Dilation and translation analyticity of the potentials play here an important role; 
we assume 

VI and it are bounded analytic multiplication operators 
in E/3o,l'/o:= {z E<L',IArgzl < (30 or IImzl < 1]0}, (30,1]0 (Hl) 
being both strictly positive; VI and it are real on JR. 

The images of all operators under the scaling x ........ e(J x will be denoted when 
necessary by a subcript B. With these assumptions we have the following 
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Theorem l. He, H~, i=1,2 are selfadjoint analytic families of type A for all 0 such 

that IImOI < /30 := min{po, H with domains 

V(He) 

V(HJ) 

V(HJ) EB V(H~), 
1{2 (JR) , V(H~) = 1{2 n ie(IR). 

The definition of "type A family" may be found in [Ka, Ch.VII §2.1]. 1{n(JR) 
denotes the usual Sobolev space and iln its Fourier image. The proof of this 
theorem is rather standard. For HJ it is obvious, since Vi is bounded analytic; for 
H~ a detailed proof can be found in [BCD2]. He can be treated perturbatively as 
in [DES]; in the form sense on V(Hg) one has 

which shows that We is Hd-bounded with relative bound zero. 
In order to have a reasonable spectrum for HI we assume 

310 > 0, 3voo < 0, VO < IImOI < Po, Vi = Voo + 
(')(x-I - c ), as Ixl tends to infinity. 

(H2) 

This implies in particular that the essential spectrum of HJ is simply: 
aess(HJ) = Voo + e-2e IR+ 

1.2 Discussion and Further Hypothesis 

H2 has only discrete spectrum, a(H2) = (2JN + 1)1i. When 0 equals zero, these 
eigenvalues are embedded in the continuous spectrum of HI. The effect of the 
perturbation W is usually to couple these bound states to the scattering states 
of HI. If the quantum system is initially prepared in a state 0 EB cp2, cp2 being a 
bound state of H2, it will eventually turn into a scattering state. The mechanism 
behind this effect is very similar to the one which causes the existence of shape 
resonances, viz. tunneling through the potential barrier (see e.g. [CDKS, HeSj]). 

If the two potentials VI and V2 cross one can reduce the problem for the 
lowest energies to a shape resonance situation [K]; the relevent effective potential 
is min{VI, V2} which possesses a well, separated from the escaping regions by a 
potential barrier. 

Here we want to address explicitly the case with no crossing of VI and V2: 
we assume 

max VI < min V2 = O. (H3) 

Now, at first glance, one would say there is no barrier. But classically one can see 
that for the energy eo = (2n + 1)1i (the nth quantum state of H2) the allowed 
momenta for HI and H2 are separated by a gap of size J - max VI for 1i small 
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enough. This gap indicates a classically forbidden region for the hamiltonian Hd 
in the momentum space rather than in the configuration space. So we can speak 
of a dynamical barrier being present and of dynamical tunneling as the reason for 
the escape of the bound state (see [AD] for the same discussion in the case of 
the reflection over a potential barrier). However assumption (H3) is much stronger 
than necessary for this phenomenon to take place. Wilkinson [WI and Martinez 
[Ma2] have remarked that it is sufficient to require that the energy shells do not 
cross: {H~I(q,P) = H~I(q,P) = EP = 0 to get such an effect which they called 
respectively tunneling in phase space and micro local tunneling. 

The dynamical tunneling manifests itself in the so-called resonances of the 
quantum system. According to the standard machinery ([AgC, RS4j) these reso­
nances are recognized as complex eigenvalues of H(J which are the perturbed eigen­
values of Ht. Notice that these eigenvalues do not depend on (J. Since the essential 
spectrum of HJ has turned down in the complex energy plane, the eigenvalues of 
Ht to be perturbed are now isolated provided HJ does not have eigenvalues too 
close. This last requirement is achieved by imposing a nontrapping condition on 
Vi: 

:3 S < 0, 'v' 0 ::; f3 < f30 1m ei2.BV:1 ::; f3S (H4) 

The perturbation W(J being Ht-bounded with relative bound zero our problem 
falls into the category of regular perturbation theory. Section 2 is devoted to this 
perturbation theory. Once the resonances are shown to exist we shall give for a 
restricted model the asymptotics of the Fermi rule contribution to their width in 
section 3 and finally estimate this width in section 4. 

Such a model with Vi = -1 and V i ,2 = V 2,i = ti2 has been proposed 
by J. Asch [A] as a simple model to understand the predissociation phenomenon 
in diatomic molecules. Vi and V2 play the role of the electronic curves, 11,2 the 
inverse of the nucleus mass. We have chosen, here, more realistic coupling terms. 
Reducing the complete molecular hamiltonian to a two by two matrix of this type 
is the purpose of the Born-Oppenheimer approximation, see e.g. [CDS] and [Mal]. 
In these articles the basic algebraic tool is a method bearing numerous names: 
Brilloin-Wigner, Feshbach, Grushin, Schur ... not to forget the Livsic Matrix [Ho]. 
However by "putting" into Hi all the electronic curves except the second one, it is 
conceivable to obtain the same result not using the energy dependent perturbation 
theory, see e.g. [DES]. 

2 Perturbation Expansion of the Resonances 

We first prove that under (HI,4) HJ has no spectrum close to a given eigenvalue 
eo of H2. It will be sufficient to have this property in the closed neighbourhood of 
eo bounded by the contour r:= {z E(J}, Iz - eol = ti}. 

1 H~l denotes the classical Hamiltonian funtion associated to Hi. 
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2.1 Nontrapping Estimates 

Lemma 2. Under hypothesis (Hl,4) one has: 

-2 1 
VO < {3 < {30, 3cb:= {3S' VO < h < cb' V z E r, IIR;{3(z)ll-::; cb· 

Sketch of the proof: Such type of result is now rather standard (cf. [BCDl]). The 
condition on h (stronger than necessary), insures that 

r C l/:= {z E(f}, Imei2{3z ~ {3S}. 

l/ is a set of complex energies that cannot be resonances of HI due to (H4). More 
precisely, since in the form sense on V(HI) one has: 

IHI - zl > Imei2{3(z - HI ) = Imei2{3(z - V?) > Imei2{3z - {3S > -(3~ t{3 - t{3 t{3 - - 2 ' 

which yields the a priori estimate we need to bound R;{3 (z). In the last step we 
have explictely used that z belongs to r and the condition on h .• 

2.2 Stability of the Resolvent Set of Hg 
The previous lemma gives sufficient conditions to insure that r is included in 
p( HJ ), the resolvent set of HJ. Since it is well known (see e.g. [BCD2]) that the 
spectrum of HJ is invariant with respect to B as long as IImBI < :;f, we conclude 
that r is also in p(Hg) under this extra condition on 1mB. Therefore, by standard 
perturbation theory, r will also be in p( H i{3) if in addition 

Ri{3(z) is already estimated by lemma 2. In the next lemma we shall estimate 

v:}/ RT{3(z)V:~/ and other quantities needed in the sequel. As in Kato [Ka, Ch.n 
§2.l]' we use the notation: 

S 2(k) ._ (R'2 ( '))k 'f k d S2(0) _ p2 i{3 .- i{3 eo ,I ~ 1 an i{3 - - i{3 

where RT{3(eo) is the reduced resolvent of Hr{3 at eo and Pi~ the corresponding 
spectral projection. 

Lemma 3. For any 0 < {3 < ~o there exists c~ such that for any h > 0, 

VzEr, 11~~/RT{3(z)~~111 < 

Vk ~ 0, 11~~/S~t)~~111 < 
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Sketch of proof: By the scaling x --t Vhx Vi~2 R;p(z)Vi~/ is unitarily equivalent 
to: 

1'1,2 (tiP(nJ x )ax + c.)( _e-i2P a; + ei2P x2 - ()-1 (axtiP(li~ x) + c.) 

where c. means 'commutated term' and ( belongs to the fixed compact set 1'1,-1 r := 
{( E a:, I ( - (2n + 1) I = I}. The first statement follows easily by the continuity in ( 
of the lhs of the formula above since tiP is bounded and ax relatively bounded to 
_e-i2Pa~ + ei2px2. For the derivation of the second statement we use the Cauchy 
formula and the same scaling trick. • 

Thus we have obtained the stability of the resolvent set: 

(0 < (3 < Po and 0 < 1'1, < c~) ::::} r c p(HiP), cp:= max{c1,c~}. (1) 

2.3 Stability of the Spectrum of H2 and Existence of Reso­
nances for H 

The preceeding analysis proved that for 1'1, small enough PiP, the eigenprojection 
of HiP associated to r, is well defined. This certainly remains true if one replaces 
W by oW with 0 ::; 0 ::; 1 thus defining a continuous family of projections 
interpolating between PiP (0 = 1) and Pi~ (0 = 0). Consequently 

A 1 
VO < (3 < (30, VO < 1'1, < -, dim PiP = l. 

cp 

Standard arguments on resonances ([RS4, Ch. XIII.10]) insure that the imaginary 
part of the eigenvalue associated to PiP cannot be positive. So we have proven the 
existence of a resonance of H close to each eigenvalue of H2; however we cannot 
exclude a vanishing imaginary part of this resonance. 

Remark 1. c1 depends only on (3 and S whereas c~ depends on (3 and the quantum 
number n of the eigenvalue eo of H2. So the range of values of 1'1, for which the 
existence of the resonances is obtained depends on (3, S and n. 

2.4 Convergent Expansion of the Resonances 

We denote by E the resonance obtained by perturbation of eo = (2n + 1)1'1,. With 
the standard formula of regular perturbation theory [Ka, Ch.II§l] and noticing 
that W is off-diagonal we get: 

00 

(2) 
m=O 

m-1 

em = 2~ L LtrV2,1(R1)klV1,2(S2)h ... V 2,1(R1 )kmV 1,2(S2)lm, 
1=0 u 
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where we have dropped the indices i{3; all the resolvents in the above formula are 
evaluated at z = eo. Straightforward combinatorics, lemmas 2 and 3, the definition 
(1) of c(3 and the extra condition hC(3 < 1 to simplify the analysis yield 

leml ~ _1_ (3m -12) (C(3h)2m+1. 
mC(3 m-

Using the d'Alembert criterium we arrive at 

Theorem 4. Under hypothesis (HI,4) and for h small enough each eigenvalue of 
H2 gives rise to a resonance of H of multiplicity one. Furthermore for all (3 in 
(O,~o) let c(3 be defined by (1). If h is in (O,ho), where ho:= 3~C(3-I, then the 

series (2) converges to this resonance. 

2.5 Discussion 

The method of this section follows tightly [DES] with extra niceties due to the 
simple form of H and the fact that the perturbation is off diagonal. Also we 
have been able to give a critical value of h below which the convergence of the 
perturbation series is assured. c1 is easily estimated in terms of VI but for c~ 
we have only an existence result since we do not yet know how to estimate the 
resolvent of the harmonic oscillator scaled with a complex parameter () and for a 
spectral parameter in the numerical range. Thus this critical value of 1i is for the 
moment merely theoretical. We stress that we do not give here expansions of the 
resonances in h; Martinez [Mal] has shown that such expansions are asymptotic, 
see also [CDS]. 

3 Fermi-Rule Contribution to the Width of the 
Resonance 

3.1 Asymptotics of Imel as Ii Tends to Zero 

Heuristic arguments [LL, §90] lead to the conclusion that the width of the reso­
nances of H which we found in section 2 are in fact exponentially small as h tends 
to zero. As an indication of this property we compute below the asymptotics of 
the imaginary part of the first order coefficient in the expansion (2). 

Definition 1. Each point x in E", 1/ which is a root of VI(x) = V 2 (x) is called 
,...,0, 0 

a transition point. 

We shall only consider here the restricted model 
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VI-- voo , Voo < o. (H5) 

We then conclude immediately that there are two transition points 

The other important points are the singularities of V I ,2 or equivalently of t. We 
suppose 

"10 > Ix* I which means that t is analytic beyond the tran­
sition points. 

(H6) 

Theorem 5. Under (Hl,5,6) and for the resonance associated to eo 
1 )Ii, n E IN one has 

where 

d* := -Voo = 11m t* J-V2(y)dyl. 
2 Jo 

.- (2n + 

(3) 

Proof: Under (H5) HI obviously has a pair of generalized eigenvectors at energy 

el which is constant with respect to () may be computed for () = 0 using the 
boundary value of RI at eo + iO. We get [RS4, XII.6] 

Imel = -;k L I(V2,lcpl,v,cp2W, 
v=±l 

where 
2 Cn X _ .,2 1 1 

cp (x):= -1 Pn ( r.;)e 21i, Cn := 7[-"4(2n n!)-2, 
Ii "4 vii 

P n being the nth Hermite polynomial. One derives easily 

Ii I f := 2vkt + --;t . 
z 

Since by (H6) IR+ivk is in Lf3 IJ ' we may take it as the "contour" of integration: 
0, 0 
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It is now easy to compute the asymptotics of the last integral by first scaling x by 
v'fi, then expanding 

f(lIik+vhx)Pn(~ + x)= (t(lIik) + j'(lIik)vhx )(Pn(~) + P~(~)x) 
+ 0 (n-¥-+l(l + Ixln+2)) (as 11, --t 0 and uniformly in x), 

x 2 
and finally integrating with e-""2 .• 

3.2 Discussion 

The idea of looking at the imaginary part of the first non real coefficient of the 
perturbation expansion (2) has a long history, see e.g. [RS4, Ya, GMS, DES] not 
to mention the physics litterature. Methods to compute the aymptotics of 1m el 

using the analyticity of the potential are all based more or less on the stationary 
phase or steepest descent methods. 

However since it is expected that all coefficients of (2) will contribute to 
the imaginary part of the resonance E with the same exponential behavior, the 
prefactor of (3) has not the right asymptotics for ImE. Such a phenomenon is 
discussed for example in [Be]. Below we give a classical interpretation of d*. 

3.2.1 Exponential Decay of ImE and Classical Action of Instantons 

The following interpretation of d* is a well known heuristic fact (see [LL]); we 
would like to illustrate it in detail with our simple model. 

On the complex phase space (J} x (J} we consider the two energy shells 

E(i)(eo) := ((q,p) E (J}, H~I(q,P) = eo}, i = 1,2, 

and their trace on the real phase space EY;1, i = 1,2. The two real energy shells do 
not intersect, but the complex ones do: 

{ p2 + Voo = eo {p = ±Jeo - Voo = ±k 
2 2 {::=} ±. ~ ± p + q = eo q = Zy -Voo = x* 

These points will also be called transition points. 
We want to endow the union of the two complex energy shells E(eo) .­

E(1) (eo) U E(2) (eo) with a (pseudo-) distance 8 as follows. Let A and B be two 
points of E(eo), then 

A,B E E(i)(eo) ~ 8(A,B):= IIms(A,B)I, 

where s(A, B) is the minimal (complex) action to join A and B by a (complex) 
trajectory on the energy shell E(i) (eo): 

s(A, B):= r pdq = r Jeo - Vi(q)dq. 
JA-tB JA-tB 
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Such a complex trajectory is usually called an instanton. Otherwise, 

A E E(i)(eo), BE EU)(eo), i -::J j, =} 

15(A, B) := min{IIms(A, T*) + Ims(T*, B)I, T* E E(I)(eo) n E(2) (eo)}. 

In other words the distance 15(A, B) is the minimal imaginary part of the action 
of all instantons joining A and B. 

We want to compute the distance 15(E~) (eo), E~) (eo)) between the two real 
energy shells. We remark that the distance between two points of the same con­
nected component of EY;i (eo), i = 1,2, of course vanishes. As consequence we may 
take any point in each one and compute their distance. So let A = (0, k) be in 

EW(eo) and B = (O,yte;;") be in E~)(eo). We choose T* = (x*,k) among the 
transition points. Then we have: 

l x • 10 s(A,T*)+s(T*,B) = kdq+ Jeo -q2dq 
o x. 

kx* + ~ [qJ eo - q2 + eo arcsin( )eo) J:. 
id* + O(n In n) 

Performing the analoguous calculations for the other transition points, we see 
that the above result gives indeed the minimal contribution to the definition of 
15(A, B). This shows that the distance between the two real energy shells is d* in 
the limit n tending to zero. But on the other hand this is nothing else than the 
rate of exponential decay of the width of the resonance due to quantum dynamical 
tunneling between the two real energy shells. This tunneling takes place through 

3.2.2 The Dynamical Barrier. 

Looking at the two real energy shells in the real phase space we see three curves. 
E~? (eo) is the circle centered at the origin with radius Fo and E?J (eo) consists of 
the two straight lines p = ±k. As already mentioned the curves do not intersect. 
More precisely their projections in the configuration space do intersect but not 
their projection in the momentum space. The latter are the classically allowed 
regions in the momentum space: {±k} for H~ and [-Fo, veol for H~l. They are 
separated by the classically forbidden region: (-k,-Fo) U (Fo,k). In analogy 
with tunneling in the configuration space we would like to say that associated 
to this classically forbidden region there is a dynamical barrier. And through this 
barrier the bound state of H2 has to tunnel to become a scattering state of HI. The 
strength of this tunneling, as in the configuration space, depends on the diameters 
of the dynamical barriers. These are measured by the length of each component 
of the classically forbidden region in the instanton metric: 

(4) 
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Computing this diameter for the barrier of the positive momenta we obtain 

which is in agreement with the result of theorem 5. The reason why VI does not 
enter in formula (4) is due to the fact that the instanton joining A and T* has a 
constant velocity. 

4 Exponential Bounds on the Resonance Width 

We recall that in section 2 we proved that H possesses a resonance E in the vicinity 
of each eigenvalue eo of H2 for small enough h. In section 3, for the restricted model 
VI = Voo (see H5), we have shown that the imaginary part of the first term el of 
the perturbation expansion (2) of E - eo is actually exponentially small as h tends 
to zero. The purpose of this section is to show that this exponential behavior is 
also true for the full width of the resonance E. 

For technical reasons we have to require the following additional condition 
on the coupling term V I ,2: 

3c > 0, t(z) = O(lzl-e) as z tends to infinity in 

2:,80,7)0 ' 
(H7) 

to state our main 

Theorem 6. Assume (Hl,5,6,7). Then each eigenvalue eo of H2 gives rise for h 
small enough to a resonance E of Hand: 

VI 2: ~ > 0, 

where 

Remark 2. Since the lifetime TE of the resonance E is defined as Ir:; E' the above 
theorem provides a lower bound on TE. 

One can check easily that 

C2he-2n-ld{ = O(C2h-n+(I-W2e-2n-ld*). 

This shows that the exponential behaviour of the bound of theorem 6 is the same 
as the one ofIm e 1 (see (3)). However the exponent in the prefactor differs by the 
quantity -1 - ~. We do not know yet whether the h behavior of the prefactor of 
1m el differs from the one of 1m E or if our upper bound is not optimal. 
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Since the proof is rather involved we only give a synopsis of it. The details of the 
proof will appear somewhere else together with a more general analysis including 
non constant VI,S. 

4.1 Passing to the Fourier Image 

As we explained in §3.2, the exponential behaviour of the width of the resonance E 
is due to tunneling through the barrier of classically forbidden momenta between 
the two energy shells I;~) (eo) and I;~) (eo). 

A Fourier transformation of H causes the exchange of q and p in the classical 
picture. Consequently the tunneling takes now place in the configuration space, a 
situation we are more familiar with. We denote below by the same symbols the 
Fourier image of Hi, i = 1,2 and V I ,2: 

The price to pay is that we have to deal with non local operators as, e.g. t(D) (see 
§4.5 below). We emphasize that this transformation is only for convenience and in 
principle not necessary. 

4.2 Why Exterior Scaling? 

Consider now (E, ¢o) a resonance and its resonance function: Ho¢o = E¢o. Bya 
simple algebraic manipulation one also has 

where ¢~ denotes the ith component of ¢o. Thus 

ImEII¢~112 = (Im(H~ - Bo)¢~,¢~). (5) 

In section 2 we have seen that ¢o and therefore ¢~ "converge" in norm to 'P~, 
the corresponding eigenfunction of HJ. The latter is of course known to decay 
exponentially as x goes to infinity and/or Ii tending to zero. So suppose that the 
operator 1m (HJ - Bo) is localized on !le where 

!li:= (-w,w), !le:= IR\ Oi, w2 = -Voo, 

we would obtain that ImE is roughly IIXe¢~112 f"V e-h - 1w2 which is more or less 
what we are looking for. Xa will denote the sharp characteristic function of !la, a = 
i, e. !li is nothing but the dynamical barrier for Ii = 0 (see §3.2.2). With the usual 
complex scaling 1m (HJ - Bo) is certainly not localized in !le, whereas 1m HJ would 
be with the exterior scaling 

{
X if x E !li 

so(x):= ±w+eO(x=fw) if ±x>w. (6) 
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Thus in this section we choose the above complex exterior scaling to deform all 
our operators; a subscript () will now mean the image under (6). 

It is well known that the resonances of H do not depend on the choice of the 
complex deformation (see e.g. [Hu]). Here they will be considered as eigenvalues 
of He for a certain complex () where, as announced above, He is now obtained by 
(6). Making sense out of all our scaled objects is rather standard (see e.g [CDKS]) 
except for the non local terms Ve1,2 and Be. We shall explain briefly in §4.5 how 
we proceed. We have in particular the analogue of theorem 1: 

Theorem 7. H~, i = 1,2 and He are selfadjoint analytic families for all () such 

that IIm()1 < ~o. HJ is of type A with domain V(HJ) = V(x2 ). The domain of 
HJ is given by 

U E V(HJ) ~ U E H2(n i ) EB H2(ne ) and 
u(±w ± 0) = ee/2u(±w =f 0) 
u'(±w ± 0) = e3e/ 2u'(±w =f 0). 

4.3 Spectral Stability Again 

We shall need in the sequel information on the spectrum of Hg and some bounds 
on its resolvent. Since HJ is a multiplication operator its spectrum is nothing but 
the range of the function x ~ Voo + s~ (x). There are two facts to remark here. 
First the spectrum of HJ consists of the union of the interval [Voo, 0] and a curve 
starting from zero, contained in the sector {IIm()1 < sgn(Im()) arg(z) < 2IImBI}; 
secondly the essential spectrum of HI above zero turns up in the upper half plane, 
if 1m B > O. In order to work with the resonances which have a negative imaginary 
part we shall from now on take only B with negative imaginary part. The spectrum 
of H~ remains (21N + 1)n by standard arguments. So for small enough n the same 
contour r as in §2 is contained in the resolvent set of Hg. To prove that it lies also 
in p(He) we need the 

Lemma 8. For any 0 < 1,81 < ~o and for any z on r one has 
i) 11V;1'2 R;;3(z)V;~/ II = O(n2). 
ii) IIR;;3(z)ll, IlxR;;3(z) II, IlxR;;3(z)xll are all O(n-l); this is also valid for z inside 
r. 

Thus stability of eo is assured for n small enough. 

4.4 Estimate of (1m (H~¢~, ¢~) 

We want to show that (1m (H~¢~, ¢~) is exponentially small using the decay prop­
erties of ¢~ and the localisation of 1m H~. The following estimate is adapted from 
[Agm]. However there is a novelty with respect to the standard situation: the op­
erator HJ - Be contains the non local energy dependent "potential term" Be. Let 
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exp(-n-1p) be the expected decay behavior and let ¢~,p := exp(n-1p)¢~ be the 

boosted eigenfunction; more generally we denote all objects boosted by exp(n -1 p) 
with the subscript p. ¢~,p is a solution of (Hi,p - Bo,p - E)¢~,p = 0 and therefore 

Re((Hi,p - Bo,p - E)¢~,p,¢~) = o. 
To cope with the Bo,p problem we use the following property 

Lemma 9. Assume (H6), then there exists a, b > 0 such that for any 0 < 11m 01 < 
~o and any real Lifschitz function p one has: 

p,2 ::; W2Xi =} -ReBo,p 2 -anRex~ - bn3 . 

From this result we deduce that 

n2l1s~ -!ax¢~)12 + (((1- an)Rex~ - bh3 - ReE - P'2)¢~,p, ¢~,p) ::; o. 

This motivates the choice of p: 

and we obtain the 

Lemma 10. For any 0 < 11m 01 < ~o one has as n tends to zero and for any 
0< { ::; 1: 

We can now estimate 1m (H~</>~, </>~): 

1m (H~¢~, </>~) 

An elementary calculus shows that e-21i - 1p(w) = O(e-21i-ld~) so that this term 
has the announced behavior. It remains to do the 

4.5 Estimate of 1m (B(}¢~, ¢~). 

We start by explaining how we make sense out of Bo. We may write formally 

Bo = -n2(2t(Do)xo + int'(Do))R~(E)(2xot(Do) - int'(Do)). 

The operator Xo is controlled by RME) (see lemma 8) so it is sufficient to show 
that t(Do) and t'(Do) are bounded operators. Do is the image of D under our 
exterior scaling for which we know the 
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Theorem 11. {De, BE O:} is a selfadjoint analytic family of operators and: 
i) the domain of De is defined by 

V(De) 3u ¢=::? uE1{l(Oi) EB 1{l(Oe) and 
u(±w ± 0) = ee/2u(±w =f 0); 

ii) the spectrum of De is just: a-(De) = e-e JR. 
iii) The following resolvent estimate holds: let v := {z E 0:, 1m s~z > 0 or 1m s~z < 
o}; then for every z in v, one has 

To define t( De) we use the Dunford-Taylor integral 

where the contour C is taken in v n L(3 '1 enclosing a( De) and such that we 
0, 0 

have dist(C,v)-l = 0(>\-1) as IAI tends to infinity. The convergence of the above 
integral is due to (H7) and lemma 11 iii). Furthermore we know that 

Lemma 12. t(De),t'(De) are bounded selfadjoint analytic families as long as 

IImBI < ~o. 

We now explain how one can define Be,p' Using the same strategy as for Be and 
the fact that the boost en -1 p commutes with Xe and R~ (E), it suffices to show 
that t(De,p) and t'(De,p) are bounded. One can show the analogue of theorem 11 
and lemma 12 for them. Moreover t(De,p) and t'(De,p) are uniformly bounded 
with respect to p as long as p obeys: p,2 ::; W2Xi. Here one must use assumption 
(H6). By a straightforward though rather involved algebraic calculus one gets a 
reformulation of (5) 

One has the estimate 

(use lemma 8, 12 and 10). Finally one also has 

Inserting this estimate and the one of §4.4 in (7) completes the proof of theorem 
6. 
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4.6 Discussion 

The use of a complex deformation in the momentum space leaving invariant Oi,e := 

{p E JR, Ipi < w - c}, c small, i.e. a region which contains approximately the 
dynamical barrier (see §3.2.2), was brought to our attention by M. Rouleux. In his 
notes [Ro] he combines this idea with the Green's formula 

(8) 

as above ¢ stands here for the Fourier image of the original ¢. 
The last ingredient to get the asymptotics of 1m E would be the knowledge 

of the behavior of the r.h.s. of (8) since obviously the norm of ¢ on Oi,e is 1 + 0(1) 
as 1i tends to zero. 

The idea of using the Green's formula can be traced back to Herring [Her] 
through e.g. [HeSj, AsHa, W]. 

The first idea, the exterior complex deformation, is now rather standard when 
translated to the shape resonance framework (see e.g. [CDKS, HeSj]). 

The choice of Oi,e with a non zero c is a consequence of the use of a smooth 
exterior distortion. Here we hope to get immediately the right exponential decay 
rate by employing an exterior scaling (§4.2). 

Also instead of the Green's formula (8) we use a full L2 calculus (5). With (5) 
we need only L2-exponential decay estimates on ¢ (see §4.4,5) which are simpler 
to derive than the pointwise estimates needed in (8). However by using this L2 
approach we are forced to loose a little bit of the exponential decay rate; the 
correct one being given by d~ with ~ = 0 (see theorem 6). 
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Scattering on Several Solenoids 

Pavel Sfovicek 

Abstract 

The problem is treated in an idealized setup and reduced to a scattering in 
the plane. The Hamiltonian H in L 2 (ll~?) is defined as a self-adjoint extension 
of the symmetric operator X = -~, with D(X) = C~(lR.t) EEl C~(lR.:'), 
determined by boundary conditions on the first coordinate axis. The wave 
operators W±(H, Ho) exist and are complete. Generalized eigen-functions 
of H giving a stationary picture of the scattering are constructed. 

1 Introduction 

The Aharonov-Bohm effect [1] is an exciting problem from the both physical and 
mathematical point of view. Here we are going to consider an idealized setup with 
infinitely thin and parallel solenoids. This means that we can treat this problem 
as a scattering in the plane. While the case of one solenoid enjoys the rotational 
symmetry and is solvable explicitly [1, 2] the case of two and more solenoids 
is considerably more complicated. It is also worth of noting that this problem 
differs from the usual potential scattering. In the gauge we have chosen the given 
Hamiltonian and the free Hamiltonian are not related by an additive potentional 
but, on the other hand, they are self-adjoint extensions of the same symmetric 
operator [3, 4]. This fact enables to apply the Krein's formula and to prove, in 
the framework of the Kato-Birman theory, that the wave operators exist and are 
complete. Using the theory of self-adjoint extensions rather than the Lippman­
Schwinger equation, one can also construct the generalized eigen-functions giving 
a stationary picture of the scattering and thus obtain the S-matrix [5]. This result 
is only of theoretical importance. But in the case of two solenoids and in the 
asymptotic region kd » 1, with k being the length of the wave vector and d the 
distance between the solenoids, one can simplify the formula to allow also numerical 
evaluation [6]. It turns out that, alike the one-solenoid case, the differential cross 
section diverges for the forward scattering. The only exception is the configuration 
with equal but opposite fluxes. This situation is physically most consistent since 
the total flux is zero [7]. 

The aim of this paper is to treat this scattering problem in the framework 
of the regular mathematical theory. It contains only a brief survey of results; the 
complete proofs will appear elsewhere. 



108 Pavel Siovicek 

2 Boundary conditions defining the Hamiltonian 

Suppose we are given a measurable real function v(u) defined on R Let Q" be 
the closed subspace in the orthogonal sum of Sobolev spaces HI (JR~) EEl HI (JR=-) C 

L2(JR2) determined by the boundary condition 

tP(u,O_) = e27ri "(u)tP(u,0+). (1) 

The restriction to Q" of the scalar product in the sum of Sobolev spaces yields 
a closed form q" in L2(JR2) fulfilling q,,(tP, tP) :::::: IltP112. Hence by a standard con­
struction, one can relate to q" a positive self-adjoint operator H". It is easy to see 
that the intersection of D(H,,) with the subspace H2(JR~) EEl H2(JR=-) c L2(JR2) is 
formed by those functions tP which fulfill in addition to (1) also 

(2) 

In this case, H"tP = -D..tP where the generalized derivative on the RHS is taken 
in JR~ UJR=-. In this sense, H" is determined by the boundary conditions on the 
first coordinate axis (1), (2). It is also clear that for v(u) ::::::: ° one obtains the free 
Hamiltonian Ho = -D.. in L2(JR2). 

Proposition 1. The point spectrum of H" is empty. 

In our problem, the function v is piecewise constant with finitely many dis­
continuities. So let aI, a2, ... , aN be a finite sequence of reals ordered increas­
ingly and aI, a2, ... , aN be some numbers from the interval (0,1). Denote 10 = 
(-oo,ad, Ij = (aj,aj+d for j = 1, ... ,N -1, IN = (aN, +00), and set 

k 

v(u) = vk := Laj for u E h. 
j=l 

The Hamiltonian is then denoted simply by H. 

(3) 

The both Hamiltonians Hand Ho are self-adjoint extensions of the same 
symmetric operator X = -D.. with the domain D(X) = Cgo(JR~) EEl Cg"(JR=-). 
The resolvents are related by the Krein's formula. Denote by N(z) the deficiency 
subspace and let P(z) : L2(JR2) -+ N(z) be the orthogonal projector. Furthermore, 
V(z), Vo(z) : N(z) -+ N(z) designate the unitary operators determining these self­
adjoint extensions. The Krein's formula then reads 

(H - Z)-l = (Ho _ z)-l + P(z)* V(z~ - Vo(z) P(z). 
z-z 

(4) 

Denote by A(z) the closed operator in L2(JR, dK:) acting by multiplication 
with (K:2 - z) 1/2, Z E <C \ [0, +00). n stands for an operator in L2 (JR ) defined by 

n"j; := (e27ri"tP)lI. (5) 

So A(z)-l is bouded and n is unitary. 



Scattering on Several Solenoids 109 

Denote by P z, with z ct [0, +00 ), the following strictly m-accreative form in 
L2(JR ), 

and by 3(z) the associated closed operator [8]. One finds easily that for 'Ij; E 
D(3(z)), 

Re ('Ij;, 3(z )'Ij;) 2:: (2(lzl - Re z) )1/2 ('Ij;, 'Ij;) . (6) 

Consequently, 3(z)-1 exists and is bounded. Since p; =pz it holds 3(z)* = 3(z). 
It follows that Ran3(z) = D(3(z)-1) is dense in L2(JR) and so coincides with 
L2(JR). One can show that 3(z) is the closure of the operator A(z) + O-lA(z)!l 
Consequently, Ran (A(z) +O-lA(z)O) is dense in L2(JR) and 3(z)-1 is the closure 
of (A(z) + O-lA(z)O)-l. 

The deficiency subspaces are easy to describe. N(z) is the range of the unitary 
mapping 

defined by 'Ij; = U(z)'P, 

'Ij;(x) = F;;!.Xl <P(~,X2) ,where 

<p(~,u) = (2ReJ~2 - z)1/2 exp(-J~2 - z luI) ('P+(~)'!9(u) + 'P-(~)'!9(-u)) . 

We have ascribed the symbols {e+, e_} to the standard basis in ((:2 and '!9 stands 
for the Heaviside step function. With respect to the chosen basis in ((:2, V(z) := 
U(Z)-l V(z)U(z) splits into a 2 x 2 matrix (Vee(z)), e, {! = ±. 

Proposition 2. It holds 

1+ V++ = (z - z) (2 ReA(z))-1/23(z)-1(2ReA(z))-1/2 , 

V+_ = (z - z) (2 ReA(Z))-1/23(z)-lO-1(2ReA(z))-1/2 , 

V_+ = (z - z) (2ReA(z))-1/203(z)-1(2ReA(z))-1/2, 

1+ V __ = (z - z) (2ReA(z))-1/203(z)-ln-1(2ReA(z))-1/2. 

3 A perturbative formula 

(7) 

Let us relate to the jth solenoid the operator R{j}(z) = (RWke=± in ((:2 0 L2(JR) 
determined by the kernel 

(8) 
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with w = Fz and w(,,;) := argsh(w- l ,,;). This definition makes sense directly 
only for z < 0 and hence w > O. Nevertheless, one can show that R(j)(z) extends 
analytically to the domain z E e \ [0, +00). Clearly, R(j)(z)* = R(j)(z). 

We denote by {EI, ... ,EN} the standard basis in eN. The following formula 
was derived in a form of an infinite series in [4]. It can be also extracted from the 
results given in [9]. 

Theorem 3. For any z E e \ [0, +00), it bolds 

3(Z)-1 = ~ A(z)-l + ~ A(z)-1/2 (ft (9 e~ (I - V:n-IV f (9 c) A(z)-1/2, (9) 

wbere 
v = diag(R(I) (z), ... , R(N)(z)) 

is an operator in eN (9 e2 (9 L2 (lR), 

with K = (~ ~), 

is a 2N x 2N matrix and f = E1 + E2 + ... + EN. 

One can deduce from the following Lemma and from the analytic Fredholm 
theorem [10] that (I - V:n- l exists. For z negative, a perturbative expansion 
into a geometric series is possible if the numbers characterizing the strength of 
the magnetic fluxes, sin 7raj, are small enough or, on the other hand, if Izl is large 
enough. 

Lemma 4. For z < 0, tbe operator (VJ)2N belongs to tbe trace class and its 
norm can be estimated by 

II(VJ)2NII ::::; C (max sin(7raj)) Ko(wd), (10) 
J 

wbere w = Fz> 0, d = minj# laj - akl and KT(X) is tbe Macdonald function. 

4 Wave operators, generalized eigen-functions 

U sing the Krein's formula (4), the explicit expressions (7) and the Kato-Birman 
theory [11] one can prove 



Scattering on Several Solenoids 111 

7 

6 

5 

4 
I: 

3 

2 

1 

0 
-2 -1 0 1 2 

e 

Figure 1: 

Theorem 5. The wave operators W±(.Jf,.Ifo) exist and are complete. 

Assume that k > O. Instead by means of the Lippman-Schwinger equation one 
can gain generalized eigen-functions of the Hamiltonian .If as follows. Suppose that 
one can choose ~(z) E N(z) depending on the spectral parameter z E C \ [0, +00) 
in such a way that the function ,¢+(z) = ~(z) + V(z)~(z) has a limit when z = 
k2 - iO", 0" 1 O. Since H(<p(z) + V(z)<p(z)) = z~(z) + zV(z)~(z) the limiting 
function ,¢+(k2 - iO) is expected to be a generalized eigen-function. 

To proceed more formally, choose h E C:'(( -k, k)) and define 

(11) 

where 

f(z; /'i" u) = (exp( -J /'i,2 - zu) - exp( -J /'i,2 - zu)) h(/'i,) 

+ exp( -J /'i,2 - zu) 3(z)-1(A(z) - A(z)) h(/'i,) , for u > 0, 

= exp( J /'i,2 - zu) n 3(z)-1(A(z) - A(z)) h(/'i,) , for u < o. 

Furthermore, set 



112 Pavel Siovicek 

Theorem 6. The functions 'l/J+(k2 -iO; x) given in (11), with k > ko large enough, 
are generalized eigen-functions of the Hamiltonian if corresponding to the value 
k2 • Moreover, it holds 

(13) 

in the usual sense. 

Finally we note that it is possible to extract from the eigen-function 'l/J+ the 
S-matrix S ((), () 0) [5]. Here () 0 is the angle of the incoming plane wave, () 0 E (11", 211"), 
and () is the angle of the scattered wave. Figure 1 depicts 1: := 211" IS((}, (}oW in the 
case of two solenoids. For the sake of convenience, it depends on e = () - (}o + 11" 
(mod 211"), e E (-11",11"), rather than on (). The values of parameters are O!I 

0.4, 0!2 = 0.6, kd = 10 (d = lal - a2\) and (}o = 1.411". 
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Hall conductance of Riemann surfaces 

Markus Klein 

We shall briefly describe some spectral results on Schrodinger operators with 
a constant magnetic field on Riemann surfaces of finite volume. These essentially 
go back to some old results on automorphic forms of arbitrary real weight [14]. 
Their physical interpretation in the context of magnetic fields, however, is new and 
leads to some natural generalizations. We refer to our joint paper [3]for background 
and results. Detailed proofs shall be presented elsewhere [4]. 

We consider a Riemann surface M of genus g, with r cusps. For simplicity 
we do not consider elliptic points. By the uniformization theorem [7], each such 
surface. can be represented up to conformal equivalence as the quotient of the 
complex upper half plane H, with the Poincare metric ds2 = y-2(dx2 + dy2), by 
some discrete subgroup r of PSL(2, R) , provided X = 2g - 2 + r > o. Thus the 
surface is represented by a geodesic polygon in H (the boundary of a fundamental 
domain) with appropriate identifications of the sides. Recall that the geodesics are 
semicircles centered on the boundary of H, 8H = {y = O} U {oo}, and the sides 
of the polygon can be taken to be circular arcs. Since the group r is isomorphic 
to the fundamental group of M punctured at the r cusps, the canonical polygon 
of r is obtained (topologically) from the canonical polygon of a compact genus 
9 surface by filling in adjoining edges leading to the cusps, and the sidepairing 
Moebius transformations, subject to the obvious circuit relation, generate f. 

If we equip M with a Riemannian metric of constant negative curvature -1 
by pulling back the hyperbolic metric on the upper half plane, it follows from the 
Gauss-Bonnet theorem that vol(M) = vol(H/r) = 21f(2g + r - 2). Because of 
the negative curvature, the geodesic flow on such surfaces is chaotic. The Lapla­
cian associated with compact multihandle tori has been studied in the context 
of chaology [9],[5], [6], [8J. In classical dynamics at low energies, [0, B2), Lorentz 
force dominates and one finds closed orbits, while at high energies, (B2, (0), the 
negative curvature dominates and the dynamic is (presumably) chaotic [1]. For 
our purpose, however, this aspect is of minor importance. Instead we observe that, 
if M is noncompact (the case we are interested in here), it can be deformation 
retracted to a bouquett, and thus its second cohomology group H2(M, G) with 
values in any abelian group G is zero. 

These remarks serve to simplify the introduction of constant magnetic fields 
on M and the corresponding Schrodinger operator. A constant magnetic field on 
M is given by a constant multiple of the Riemannian volume form on M, which 



114 Markus Klein 

in the noncompact case we may write as 

(1) 

where the vector potential A is a globally defined I-form on M. We identify A with 
a f-periodic vector potential on H. Up to gauge equivalence, A is characterized 
by its holonomy around the homology cycles of M: Denoting by (3j(E) loops on M 
shrinking to the cusps (in the sense that the enclosed volume tends to zero as E 

tends to zero), we may prescribe the Aharonov-Bohm fluxes threading the cusps 

¢j = lim [ A, j = 1, ... ,r 
e-+O J(3j(e) 

(2) 

and the 2g handle fluxes 

(3) 

where aI, ... bg are loops based at some arbitrary reference point which generate 
the homology classes associated with the 9 handles of M, provided the magnetic 
field and the fluxes fulfil the Dirac quantization condition 

r 

Bvol(M) = L¢j. 
j=l 

(4) 

In the noncompact case this simply follows by integrating A along a fundamental 
polygon of M. The Dirac quantization condition remains true in the compact case: 
there it restricts the allowed values of B, while in our case it imposes a consistency 
condition on the value of the magnetic field and the fluxes through handles and 
cusps. We remark that by adding an exact I-form to A (corresponding to a gauge 
transformation) we may assume that ¢j E [0,2rr). 

The Schrodinger operator with constant magnetic field B on M (or equiva­
lently on the fundamental domain F c H) is given by 

H(B, ¢) = (-id - A)*( -id - A), (5) 

which is self adjoint on the domain 

V(H) = {f E H2(F, y-2dxdy); 1hz) = 1(z)V'Y E r}, 

where * denotes the Hilbert space adjoint on forms and H2 (F) is the second 
Sobolev space with respect to the hyperbolic measure. Since this f-periodic vector 
potential is not explicit, it is often convenient to work instead with a fixed, not 
f-periodic, connection Ao = By-1dx on the fundamental domain F and put, via 
gauge transformation, all geometric complications in the boundary conditions of 
an appropriate Schrodinger operator. In this form one finds a Hamiltonian with 
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constant magnetic field in the literature on automorphic forms (see in particular 
[16]). More precisely, letting 

U(z, zo) = expi r (A - Ao), 
Jzo 

where Zo is an arbitrary reference point in F, we obtain by conjugation 

acting on functions which satisfy 

,¢(/Z) = u(,)" z)'¢(z), 
_ (cz + d)2B 

u(')',z) = v</>(')') Icz+dI 2B ' (7) 

Here "I = (~ :) E r acts on H as a Mobius transformation, and v</>('Y), a com­

plex number of modulus one, is a multiplier system on r associated to the fluxes. 
The properties of a multiplier system are the consistency conditions ensuring uni­
valuedness of the wave function on the universal covering space and are easily 
computed from the definition of the gauge transformation U(z, zo): 

(8) 

and 
(9) 

Equation (8) is the consistency condition to lift the definition of v from the group 
of Moebius transformations to its lift in 8L(2, R), and equation (9) is a cocycle 
condition on the covering space. 

We remark that the notion of multiplier system is particularly useful in the 
compact case, since it allows to discuss operators on nontrivial bundles on a man­
ifold as long as only they pull back to trivial bundles on the covering space. 

We fix the relation of multipliers to fluxes by setting 

u( 'Yj, Zj) = ei</>i, 1::; j ::; 2g + r, 

where, for 1 ::; j ::; r, Zj is the site of the j-th cusp, and 'Yj generates the subgroup 
of r that leaves Zj fixed. For r + 1 :::; j ::; r + 2g, 'Yj is a transformation identifying 
sides in the fundamental polygon which dissect the 9 handles, and Zj is an arbitrary 
reference point on such a side. (There is no distinguished reference point on the 
2g-dimensional torus of handle fluxes which naturally corresponds to zero flux). 
A piercing flux ¢o at Zo can be added via the usual vector potential, singular at 
Zoo We remark that this discussion in particular proves the existence of multiplier 
systems on r and replaces the arguments in [14] or [10]. 

Note that the fluxes through the handles do not enter this relation, while the 
cusp and piercing fluxes do. 
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The spectral analysis of Schrodinger operators with magnetic fields and flux 
tubes on leaky tori has a very long history in the theory of automorphic forms, 
where it is known as the spectral analysis of the Maass-Selberg Laplacian for non­
classical automorphic forms ofreal weight with multipliers [14]. Below we list some 
key facts; see [16],[14],[8]. Towards the end of this note we shall indicate how they 
can be derived. 

One distinguishes four energy ranges: (-00, B) which is outside the spectrum; 
low energies [B, B2) where the spectrum is reminiscent of the usual Landau levels 
in the plane; intermediate energies (B2, B2 + i) where except for being discrete 
little is known about the spectrum; and high energies (B2 + i,oo) which admit 
scattering states if at least one cusp flux is zero. 

Scattering states: Each cusp which is threaded by a flux tube carrying an 
integer number of flux quanta is an open scattering channel. Each such scattering 
channel contributes the interval of energies [~+ B2, (0), with multiplicity 1, to the 
absolutely continuous spectrum. Cusps that carry fluxes which are not integral are 
in some sense plugged, and a particle can not leak through such cusps to infinity. 
If all the cusps are plugged the spectrum in [~ + B2, (0) is discrete. 

Maass supersymmetry : For B ~ 1 and fixed multiplier system 1/4> b) , the 
spectrum of H(B) coincides with the spectrum of H(B + 1) - (2B + 1) with the 
ground state removed, counting multiplicity. 

Spectrum of Landau levels when CPo = 0 : In the interval of energies [B, B2], 
B ~ 1, for CPo = 0, the spectrum has [B - ~] points at energies: 

En(B, cP, CPo = 0) == B(2n + 1) - n(n + 1), 
3 

n = 0,1, ... , [B - 2], (10) 

where [x] denotes the integer part of x. En depends explicitly on B only, and 
implicitly on the cusp fluxes through the Dirac quantization condition. It is com­
pletely independent of the fluxes through the handles. 

Degeneracy of Landau levels when CPo = 0: Like the Landau levels on the flat 
torus, the energies in equation 10 are in general degenerate. Unlike them their 
degeneracy decreases with energy. Let l x J be the greatest integer strictly smaller 
than x and set {x} == x - l x J E (0, 1]. The degeneracy of the n-th Landau level is 
then given by: 

r cp. 
D(n, CPo = 0) = (B - n)(2g - 2 + r) - '" {--.L} - (g - 1) + 8B 18v 1. (11) ~ 2~ , , 

j=l 

By Dirac quantization, the right hand side of equation (11) is an integer. (11) and 
(4) are invariant under deformations of the leaky torus within the moduli space 
of topologically equivalent Riemann surfaces. Since generically the spectrum and 
degeneracies are sensitive to deformations, this invariance is remarkable, especially 
since the dimension of the moduli space can be large. In particular, it will follow 
from this invariance that the transport properties we shall calculate are constant 
on the moduli space. 
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Adiabatic charge transport: Suppose that initially all cusp fluxes are non­
integer and so are plugged. Now vary two of the cusp fluxes e.g. along the line ¢i + 
<Pj = const i= ° mod 27r by decreasing <Pi by 27r. The initial and final Hamiltonians 
are unitarily equivalent: Up to a gauge transformation, the Schrodinger operator 
underwent a closed cycle. In particular, the initial and final spectra, counting 
multiplicity, coincide. As in Laughlin's original argument, this cycle can transport 
net charge, and indeed it does: As <Pi passes through an integral flux quantum, 
cusp i opens briefly and, according to equation 11, one state per Landau level is 
sucked in from (spatial) infinity. As <Pj passes through an integral flux quantum, 
these additional states disappear at (spatial) infinity via cusp j. We remark that 
these states correspond to classical holomorphic forms with real weight B (or 
2B, depending on the definition of weight) for r and the fixed multiplier system, 
which at the critical value of <Pj just fail an integrability condition in the cusp. If 
N Landau levels are occupied, N charges will be transported. The cycle describes 
a quantum charge pump which transports integer charges. It is noteworthy that it 
gives integral adiabatic charge transport for systems whose area is finite. In the Hall 
effect and in the Niu charge pump [13] precise integers require the thermodynamic 
limit. 

Hall conductance: For the plane Laughlin defines the Hall conductance as the 
charge transported to infinity by increasing the piercing flux by 27r. In the present 
context the charge can be transported to infinity along any of the r cusps, and 
moreover, by Dirac quantization, the piercing flux can not be varied independently. 
We therefore define the j-th Hall conductance as the charge Qj transported to 
infinity along the j-th cusp, increasing <Po by 27r along the path <Po+<Pj = const. All 
these r Hall conductances turn out to be identical. Unfortunately, since equations 
(10, 11) hold for <Po = 0, we can not directly follow the charge transport along the 
path <Po + ¢j = const. To compute the charge transport we therefore deform the 
path: First, the <Po increase is compensated by an increase in B by 27r / area. This 
changes the degeneracy of all Landau levels by one. Then B decreases to its original 
value at the expense of the j-th cusp flux. This sends one particle per Landau level 
to infinity along the j-th cusp, while the Hamiltonian returns to its initial form up 
to unitary equivalence. We see that the Hall conductance of each Landau level (for 
non interacting electrons) is unity, for all leaky tori, if the magnetic field is large 
enough, i.e. B ~ l. 

These results for the Hall conductances generalize what one knows for Landau 
levels in the plane where, interestingly enough, the condition on the strength of B 
does not enter [11]. 

The energy and degeneracies are independent of the fluxes through any of the 
handles, and so is Dirac quantization. It follows that manipulating handle fluxes 
only does not transport any charge from infinity even if the cusps are open. For a 
proof of (10) via supersymmetric arguments we refer to the classical paper of [16]. 
We shall now briefly outline a derivation of (11). 

We remark that both the Dirac quantization condition and the formula for 
the degeneracy are due to Petersson, and go back to 1938! His proof of the degener-
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acy formula is based on the Riemann-Roch theorem. Alternatively the degeneracy 
can be derived from the Atiyah-Patodi- Singer index theorem [2]. The basic tool 
is Maass supersymmetry which identifies the ground state degeneracy with an in­
dex which can be computed from the small time asymptotics of the heat kernel. 
Because of the punctures the manifold is non-compact, and one needs to compute 
corrections to the heat kernel from the boundaries. Like most higher order correc­
tions to the heat kernel, this is a computational effort. The boundary terms lead 
to the flux dependent terms in equation (11) (the handle fluxes drop because they 
are not boundary terms). The fluxes may be thought of as a I-dimensional version 
of the 3-dimensional 7J-invariant for the signature [2]. In this way the degeneracy 
formula can be generalized to operators with a piercing flux CPo at some point 
Zo E M on a manifold of nonconstant negative curvature, as long as the magnetic 
field stays constant (see [15] for the basic idea). 

Finally we remark that there are additional en interesting adiabatic trans­
port coefficients associated with transport of charges around the handles due to the 
fluxes through the handles. Such transport coefficients are related to first Chern 
classes [19]. 

l,From the spectral results in this paper it follows that, since variation of 
the handle fluxes never gives level crossing, all these first Chern classes as well 
as higher Chern classes are constant on the moduli space. Using the Schottky 
uniformization and a deformation argument, they can actually be computed and 
turn out to be 1 (for "intersecting" fluxes) or 0 (for "nonintersecting" fluxes), see 
[4]. 
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Framework and Results of 

Stochastic Spectral Analysis 

Michael Demuth and Jan van Casteren 

Abstract 

The framework of stochastic spectral analysis is explained. The central 
and initial magnitude is the transition density function in a Hausdorff space. 
Free and perturbed Feller operators are introduced. Spectral theoretical re­
sults can be obtained by compactness, continuity in Kato-Feller norms, semi­
classical and large coupling estimates. A collection of results illustrates each 
possibility. 

1 The framework of stochastic spectral analysis 

The centre of this theory is a function 

p: (0,00) x Ex E --+ [0,00) 

(E - second countable locally compact Hausdorff space). This function has differ­
ent names depending on the field of mathematics which is studied. In stochastic 
analysis it is a transition density function of a Markov process, in the theory of 
partial differential equations it is called fundamental solution. In operator theory 
it is an integral kernel of a semigroup. The following scheme shows that p( t, x, y), 
t E (0,00), x, Y E E, is the main link between operator theory and stochastic anal­
ysis. The consequence is that one can use the theory of stochastic processes to 
study the spectral behaviour of large classes of operators. On the other hand it di­
rects the interest in the theory of Markov processes to spectral analytic properties 
of their generators. 

Of course the whole theory is only interesting if p( t, x, y) can not be estimated 
by the Wiener density. On the other hand the assumptions on p(t,x,y) have to 
admit the use of stochastic analysis. For that we (Demuth, van Casteren, 1989 and 
1992) established the following Basic Assumptions on Stochastic Spectral Analysis, 
shortly denoted as BASSA: 

BASSA 

1.Existence and Symmetry 

Let (E, £) be a second countable locally compact Hausdorff space with Borel 
field £. A non-negative Radon measure is assumed on E and denoted by dx. Let p 
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Framework 
Stochastics Operator theory 

Free semigroup Free semi group 

(Tt)t>o (Tt)t>o 

t ~ / ~ 
Generators 

B Tt = e-tKo Generators 
e-tKO(x, y) Tt = e- tKo 

/ 
t 

Markov processes Free resolvents 
(lR+; Ox, F, Pp; wet)) (Ko + a)-l 

t 

Stochastic integrals Kato-Feller potentials 
Feyman-Kac-formulae Obstacles 

t t 

Pertubed semigroups Pertubed resolvents 
e-t(Ko+V)E ((Ko+Vh: + a)-l 

t t 

Stochastic 
Theory of integral representation 

of kernels operators 

(e-t(Ko+V)E )(x, y) 

----.... / 

Spectral theory for 

iKo, (Ko+V), (Ko+Vh: 
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be a continuous function mapping (O, 00) x E x E ---t [0,00) with 

Lp{t,x,Y)dY ::; 1, 

t> O,x E E,A c £ and 

L p{s, x, u) p{t, u, y) du = p{s + t, x, y) 

Moreover p is assumed to be symmetric, i.e. 

p{t,x,y) =p{t,y,x) 

for all t> 0 and all x, y E E. 

2. Continuity 

Let Coo be the set of continuous functions vanishing at infinity. For any f E Coo 
and any 
x EE we assume 

lim J f{y) p{t, x, y) dy = f{x) 
t----tO 

3.Feller property 

For any f E Coo we assume that the function 

x ~ Lf{y)p{t,x,Y)dY E Coo{E) 

Under these assumptions exists a strong Markov process (lR+, Ox, F, P,r-, w{t)) 
with the following properties: 

The one-dimensional distribution is 

PF{w{t) E B) = Lp{t,x,Y)dY 

t> 0, B Borel subset of E. Its sample paths are PF-almost surely right continuous 
and possess PF-almost surely left hand limits in E on their lifetime, and they start 
in w{O) = x. The free Feller operator Ko is then the L2-generator of the Feller 
semigroup determined by p{ t, x, y), i.e. 

(e-tKOJ){x) = Ex{f{w{t))} = J p{t,x,y)f{y)dy 

and the free resolvents are given by 



126 Michael Demuth and Jan van Casteren 

where a is strictly positive. The class of free Feller operators contains a vari­
ety of operators: second order elliptic differential operators with variable un­
bounded coefficients, Laplace Beltrami operators on locally finite Riemannian 
manifolds, pseudo-differential operators, relativistic Hamiltonians of quantum me­
chanics. Feller operators are free Feller operators together with a regular or singular 
perturbation. They can be introduced naturally by studying the properties of 

Ex{e- f:V(w(s»dSf(w(t))} =: (Pv(t)f)(x) 

where V is a real-valued function on E. Pv(t) is a strongly continuous, quasi­
bounded semigroup on L2 (E) with the selfadjoint generator Ko+ V if V is a Kato­
Feller potential, i.e. if V = V+ - V_ satisfies 

lim sup r dsEx{V_(w(s)) + XB(W(S)V+(w(s)))} = 0 
T---+O X Jo 

where B is a compact subset of E. Moreover, Pv(t) is an integr.:al operator and its 
kernel has the explicit representation 

(e-t(Ko+V»)(x,y) = E~,t{e- f:V(W(S»dS} 

where E~,t{} is the conditional Feller expectation. Instead of finite V+ one can 
also include infinitely high parts of V+. Let V+(x) = 1r(x){3 where r is some closed 
subset of Ej {3 is a positive parameter tending to infinity. Let Sr = Sr( w) be the 
penetration time of w in r, i.e. 

Sr := inf{T > 0 : loT lr(w(s)) ds > O} 

Then 

Ex{e-J:v-(W(S»dSX{W: Sr>t}f(w(t))} 

restricted to L2(E), E = E \ r, is a Feller semigroup. Its generator is denoted 
by (Ko+V-h::. Alltogether we have the following integral kernel of regularly and 
singularly perturbed Feller semigroups: 

and 

(e-t(Ko+v-h:)(x,y) = E~,t{e-Jotv-(W(S»dS,Sr > t} 

s- lim e-t(Ko + v_ + 131r) f = e-t(Ko + v-h: f 
13---+00 

f E L2(E). Coming back to our frameworkp(x, t, y), given by BASSA, determines 
the free Feller semigroup, the class of free Feller operators, the corresponding 
Markov process. The expectation of the process provides perturbations of Ko. In 
all the cases the semigroups and resolvents are integral operators. Their kernels 
have explicit representations in terms of conditional Feller measures. 



Framework and Results of Stochastic Spectral Analysis 127 

2 Principle spectral theoretical results 

Assume always BASSA, two Kato-Feller potentials V and W, and the singularity 
region r as described above. Then there are several possibilities to study the 
spectral data of the Feller operators determined by the investigation of resolvent 
or semigroup differences. 

Compactness: It is possible to find conditions on p, V, W or r such that the 
differences 

(Ko + V + a)-l - (Ko + W + a)-l , 

J (Ko + V + a)-l - (Ko + W + a)i;l J 

(where J is defined by J1:= 1 iE, l: = E\r, r singularity region) are trace class, 
Hilbert-Schmidt, or compact operators. The conditions link always the density 
function p(t,x,y) with V, W, or r. In order to verify these conditions one needs 
more information on p. Very often it is sufficient to have L1_Loo smoothing, i.e. 

supp(t,x,y) < 00. 
x,y 

Moreover it is often very useful that the perturbed kernels satisfy 

e-t(Ko+V)(x,y) ~ cect p1/2(t,x,y) sup p1/2(t,x,y) 
x,yEE 

Examples of results are given in the next section. 

Continuity in V: For any Kato-Feller potential the Kato-Feller norm 

IIVIIKF = sup r1 
ds Ex {1V(w(s))I} 

x Jo 
exists. Then the resolvent difference for regular resolvent values a, a large enough, 
can be estimated by this Kato-Feller-norm 

Fot applications it is important that we treat here the operator norm. That can be 
used to study also the behaviour of these resolvents in the limiting absorption case. 
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Let cp be a nonvanishing continuous function mapping E into lR+ with cp-I ::; l. 
For special real positive values A it turns out that 

sup II cp-I[(Ko +V - A + iE)-1 
cE[O,I] 

(Ko +W - A + iE)-I]cp-1 II 

::; c II (V - W)cp21IKF . 

Again the operator norm (in weighted L2-spaces) is studied. That implies conse­
quences for any spectral property depending on the resolvents near the real axis. 

Semiclassical limits: As explained in section lone has explicit representations 
for the kernels of the semigroups e-t(Ko + V). That remains true if we introduce 
a parameter li2 , i.e. if we study generators of the form li2 Ko + V. For certain 
potentials the behaviour of 

for smallli2 can be studied. 

Large coupling behaviour: The singularly perturbed semigroup e-t(Ko + V-h: 
was obtained by limits of semigroups the generators of which have finite potential 
heights 

The operator resolvent norm is 

f((3) is mainly determined by 

where Sr is the penetration time of r. For certain boundaries 6' r the last term 
can be estimated uniformly in x. 

3 Collection of results 

In order to illustrate the kind of conditions typical in stochastic spectral analysis we 
collect some results concerning the principles mentioned in the preceding section. 
We always assume BASSA, Kato-Feller potentials and closed singularity regions 
r. Proofs are omitted. They are given in the articles referred. Hints are not given 
because it seems to be unmodest to mention always our names. 
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Compactness 

Proposition 1 : The semigroup difference 

is a Hilbert-Schmidt-operator if 

sup p(t,x,y) < 00 
X,Y 

and if 

12t
dAA J dx J dylV(x)llV(y)lp()..,x,y) < 00 

Proposition 2 : The resolvent difference 

(Ko + V + a)-l - (Ko + a)-l 

is a trace class operator if 

Proposition 3 : For singular pertubations the difference 

is Hilbert-Schmidt if 

sup p(t,x,y) < 00 
X,Y 

and if 

J dx [Fp{Sr < t; w(O) = xW < 00 

The singular semigroup difference is a trace class operator if 

J dx[Fp{Sr < t,w(O)=X}]1/2 < 00 

(see also Stollmann 1992). 
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Continuity in V 

Proposition 4 : Ko+ V and Ko+ Ware selfadjoint operators in the Hilbert space 
L2(E). Let Ev(.), Ew(.) denote its spectral measures. Let cp be a non-vanishing 
Borel-function (typically 
cp(x) = (1 + IxI2 )O, a> 0). Let 

[(Ko + a)-1IcpI2](x) :S clcp(xW 

for all x E E. For one of the potentials, take V, we assume 

sup IIcp-l(Ko+V + A + iO)-lcp- 1 1l < 00 
AEd 

where.6. = (a,{3) is an interval in 1R+, a, (3 no eigenvalues of Ko+V or Ko+W. 
Let 1I(v - W)cp2I1KF be sufficiently small, such that the last estimate holds also 
for Ko+ W. Then for AO E .6. we get 

II -1 [dEV(A) - dEw(A)] -111 < II(V - W) 211 cp dA dA cp - C(Ao,a) cp KF 
A=AO 

The constant C(AO, a) can be estimated quantitatively. 

Proposition 5 : Let V and W be Kato-Feller potentials in Ll(E). Assume 

roo d,x ,xe-aA supp(,x, x, x) < 00. 
Jo x 

Then the wave operators 

n±(Ko+V, Ko) := s- lim eit(Ko+V)e-itKo Pac (Ko) 
t-±oo 

and n±(Ko+W, Ko) exist. (Pac(Ko)-projection operator onto the absolutely con­
tinuous subspace of Ko). Define the scattering operator by 

Both Sv and Sw commutes with Ko, providing that the corresponding scattering 
matrices SV(A), SW(A) are well defined. Assume that for some AO 

IIVcp-I(Ko+W - Ao - iO)-lcp-1 1l < 1 

Let sUPx Icp(x)V(x)1 < 00 and sUPx Icp(x)W(x)1 < 00. The operator norm of the 
scattering matrices is a norm in the fiber of the spectral resolution of the absolutely 
continuous subspace of Ko. This norm can be estimated as 
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Semiclassical limits 

Proposition 6 : Let B be a compact set in E and (h2 Ko + V)B the Feller operator 
with Dirichlet boundary conditions on 8B. Assume positive V such that 

reB, i.e. V is larger than a constant'Y on r. Let '¢h2 be the ground state of 
(h2Ko + V)B, i.e. 

where Tt,r(w) := meas{s, s ~ t, w(s) E r} is the spending time of the trajectory w 
in r. If we consider x in a subset r c r with dist(r, B\r) ~ r, a uniform estimate 
is possible: 

where B(r) is a ball of radius r with centre in the origin. The right hand side tends 
to zero as h - O. A rate of convergence can be given for special Ko. 

Large coupling limits 

Proposition 7 : Let V == 0 and compare K(3 = Ko + ,Blr with (Koh;, E = E\r 
for large parameters ,B. Denote again J f = f i ~. Then 

IIJe- tK /3 - e-t(KO)E JII ~ sup Ex{ e-(3Tt ,r, Tt,r > O} 
xE~ 

(J't,r is the spending time defined in Proposition 6) 

Remark: To estimate the Laplace transform of the spending time (or occupation 
time) is a difficult problem. If Ko = -~ in L2(JRn) it is done recently by De­
muth, Kirsch, Mc Gillivray (1993)and explained in another contribution of these 
proceedings. 
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Occupation time asymptotics with an application 

to the decay of eigenfunctions 

Michael Demuth, W. Kirsch and I. McGillivray 

1 Main results 

We aim to study the large coupling limit for the difference of Schrodinger semi­
groups with a view to an application in spectral theory, concerning the behaviour 
of eigenfunctions in special Dirichlet problems. 
We start by detailing our set-up. We are interested in perturbed operators HM of 
the positive Laplacian Ho := - ~~ acting in L2 (IRd) , d 2': 2 of the form 

HM := Ho + V + MU 

where V is a uniformly bounded potential and U = lr for r a closed subset of 
IRd , called the singularity region, and M is an arbitrary positive parameter. Hr;, 
~ := IRd - r denotes the operator Ho + V in L2(~, dx) with Dirichlet boundary 
conditions on B~. We study the asymptotic behaviour of the semigroup difference 

as M ----> 00. Here J is restriction J : L2 (IRd;dx) ----> L2(~,dx). It turns out 
that these asymptotics are linked to the geometry of the singularity region r. 
We assume that r is an uniform Lipschitz set, a condition slightly stronger than 
just Lipschitz. An important quantity in our estimates will be the so called cone 
constant. To explain this, a cone C in IRd will be a set of the form 

C := {x E IRd : (x, e1) 2': pllxll} , -1 < p < 1 

where <, > is the inner product in IRd and e1 is the unit vector in the Xl direction. 
Let F be the closed subset of sd-l, the unit sphere centered at the origin, given 
by F := C n Sd-1. The cone constant is defined by 

A = A(C) := __ A_1---,-(F_C---,-)-.,.,.._ 
(v2 + 2A1 (FC))1/2 + V 

where v := ~ - 1 and A1 (FC) is the lowest eigenvalue of the Laplace-Beltrami 
operator -~~ on FC := Sd-1 - F with Dirichlet boundary conditions on BFc . 
Given any uniform Lipschitz set in our sense, there exists C = Cint such that 
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Our main result is 

Michael Demuth, W. Kirsch and 1. McGillivray 

v yEar :3 rigid transformation By of lR.d 

such that By c B(y, r) n rand By(O) = y 

Theorem. Suppose that r is a uniform Lipschitz set and that A = A( C) :::; 
1/2, C = Cint. Then for each 0< "'1< 1, t > 0 there exists a constant c-y(t) such 
that 

We also have upper bounds for the resolvent differences of the same form. Un­
der slightly different assumptions we have obtained similar lower bounds on the 
semigroup and resolvent differences. 

2 Occupation time asymptotics 

The key to these results lies in certain Brownian motion estimates. We have the 
following theorem, interesting in its own right. 

Theorem. Let C be a cone and 

Tt,c := I{s E [0, t] : Xs E C}I 

the total occupation time up to time t in C. Then there exist constants c, c' > 0 
such that 

C'(Mt)-A:::; Eoe-MTt,c :::; c C°Xt~t) A , A = A(C) 

for MT > e. 
This result rests on the next Lemma, whose proof we sketch to give the flavour of 
the methods used in the article. 

Lemma. Let C be as above. Then 

Zogt ( )
A 

Po (Tt,c :::; 1) :::; c -t- ,t~e 

Proof. Let v E Sd-l nint C. Then for each a> 0 there is a cube Qa of side-length 

Aa (A independent of a) centered at the origin such that 

TJ + Qa C C - (2av + C) , V", E av + ac 

Write 

Po (Tt,c :::; 1) = Po (Tt,c :::; 1,0"2a < t) + Po (Tt,c :::; 1,0"2a > t) 
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when aa is the first hitting time of av + C. Since each tajectory in the first RHS 
term leaves XUa + Qa after aa, before aa + 1 

2 2 (a2)A ~ Po (a (Q~) ~ 1) + Po (a2a > t) ~ ce-A a /2 + C t ' 

the last line due to an estimate in [2] and standard Brownian motion estimates. 
Choosing a2 = ~logt leads to the result. 0 

3 Applications to spectral theory 

We are able to get estimates on the limiting absorption principle for the difference 
of Schrodinger and Dirichlet operators, but prefer here to describe an application 
to the decay of eigenfunctions. Let B be an open ball in ]Rd, d 2:: 2 centered at the 
origin and C be a cone. Let HM be the operator HM := -~~ + M1e, M > 0 in 
L2(B) with Dirichlet boundary conditions on aBo Then HM has discrete spectrum. 
If cI>M is a normalized L2 eigenvector of HM we have 

( l M)A IcI>M(O)I~c o~ ,M>e,A=A(C) 
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Holomorphic semigroups and 

Schrodinger equations 

El Maati Ouhabaz 

1 V - holomorphy 

We report on some recent results in lOu] on holomorphy of semigroups. We also 
discuss the application of these results to the study of the general Schrodinger equa-

. {u'(t) = i(~ - V)u ( N) hons of the type u(O) = x on LP (]Rn) 1 ::; p < 00, or Co]R . 

Here V = V+ - V_ is a potential satisfying V+ E Lloc (]RN) and V_ is in the Kato 
class. 
Let 0 be an open set of]RN (with the Lebesgue measure) and consider a self­
adjoint semigroup T = (T(tk~o) on L2(0) with generator A. It is known that T is 
a bounded holomorphic semigroup of angle ~ i.e. T has an extension to the domain 
D = {z;Rez > O} s.t. 
1. T(z + z') = T(z)T(z'), z, z' E D 
2. z --t T(z) is holomorphic from D to I:- (L2(0)). 
3. limz ..... o,zED T(z)f = f for all f E L2(0) 
4. For each () E (0, ~) there exists a constant M (depending on ()) s. t. 

IT(z)I.c(£2(fl)) ::; M 

for all z E ~(O) = {>. E C, largAI < O} 
Assume now that T interpolates on V(O) 1 ::; p < 00, that is, there exists 

for each p , a strongly continuous semigroup Tp on LP(O) with T2 = T and sat­
isfying Tp(t)f = T2(t)f (t 2 0) for f E LP(O) n L2(0). It follows from the Stein 
interpolation theorem that for 1 < p < 00 the semigroup Tp is holomorphic in the 
sector 

However, the case p = 1 is more delicate. The following result is shown in lOu]. 

Theorem 1.1 Assume that T has a Gaussian estimate i.e. there exist positive 
constants M and b s. t. 

(E) IT(t)fl::; MG(bt) If I for 0::; t ::; 1, f E L2(0) 
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where G = (G(t))t>o is the Gaussian semigroup on L2 (]RN). Then there exists 

w ~ 0 s.t. the semigroup e-w·Tp is bounded holomorphic with angle I on LP(n) 
1::; p < 00. 

Using the Gaussian estimates developed recently by Davies [Da](chap 3) for uni­
formly elliptic operators, this result is applicable in the following framework. 

Assume that A is the associated operator with the following symmetric form 

with aij = aji E LOO(n) satisfying the ellipticity condition Eaij(x)~i~j ~ cl~12 
a.e. x E 0. and all ~ = (6, ... , ~N) E eN. The potential V is positive and in Lloc (0.). 
The domain of the form a is given by D(a) = W n \U E L2(n), 10 Vlul2 < oo}, 
where W is a closed subspace of the Sobolev space H (0.) which contains HJ (0.). 
We can apply Theorem 1.1 in the following situations: 

1. W = HJ(n) for 0. any open set of]RN (this corresponds to the Dirichlet 
boundary conditions). 

2. W satisfies the two following properties 

* u E W implies lui E W 

* If 0::; u ::; v, v E W and u E HI(n) then u E W. 

In this case we assume that 0. has the extension property ( W = HI (0.) corresponds 
to the Neumann boundary conditions). 
If the boundary an of 0. is regular, one can take as example of situation 2, W = 
{u E HI(n)j ulr = O}. r is a closed set of an. This corresponds to the mixed 
boundary conditions, Dirichlet on r and Neumann on an\r. We recall that if the 
coefficients aij are smooth, bounded and of class C2 , it was shown by Amann 
[Am] that A generates a holomorphic semigroup on Ll(n). The result has been 
extended by Arendt and Batty [Ar.Ba] to arbitrary open set 0. under the Dirichlet 
boundary conditions. We recall that in these works [Am] and [Ar.Ba] it is shown 
that the holomorphy on LI(n) holds with some "small" angle. More precisely, it 
is shown that the estimate 

IIAR(A, A) 11£(L1(0)) ::; M 

holds for ReA> o. Here R(A,A) is the resolvent of A in LI(n). 
Our result gives that the estimate (1) holds in each sector 
E(O+I):= {zjlargzi <O+I} forallOE (O,I)· 

(1) 
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2 Co-holomorphy 

We denote by Co(O) the space of continuous functions which vanish at infinity of 
O. We suppose that the assumptions of Theoreml.1 are satisfied and T acts as a 
semigroup on Co(O) i.e. there exists a strongly continuous semigroup To on Co(O) 
s.t. To(t)f = T(t)f for t ?: 0 and f E L2(0) n Co(O). We have 

Theorem 2.1 The semigroup e-w·To is bounded holomorphic with angle ~. 

To show this result one has to show that the estimate II-XR(A, Ao)II.c(co(o)) ::; M 
holds in each sector l: (() + ~), for all () E (0, ~). Here Ao is the generator of the 
semigroup e-w·To. The desired estimate follows by a duality argument and the 
result in L1(0). 

Corollary 2.1 Let 0 be any open set of RN and assume that there exists a real­
ization Ao of the Laplacian Ll s.t. Ao is a generator of a semigroup To on Co(O). 
Then To is bounded holomorphic with angle ~. 
Moreover, D (Ao) = {u E Co(O), Llu E Co(O)}. 

This corollary follows immediatly from Theorem 2.1 if we show that 

To(t)f = T(t)f f E L2(0) n Co(O) (t ?: 0) (2) 

where T is the semigroup generated on L2(0) by the Dirichlet Laplacian LlD. The 
equality (2) is easy if 0 is bounded and regular. Now if 0 is arbitrary we take a 

sequence (On)n of bounded and regular open sets s.t. On C On+! and ~On = O. 
We show that if f E COO(O) with compact support, the solution Un of (-X-Ll)u = f 
on On converges to the solution of (-X-Ao)u = f and to the solution of (-X-LlD)V = 
f. This gives (2) 

3 The general Schrodinger equation 

We consider the general Schrodinger equation 

(8E) { u'(t) = i(Ll- V)u 
u(o) = x 

t E R 

on LP (RN) , 1 ::; p < 00. Here V = V+ - V_, V+ E Lloc (RN) and V_ is in the 
Kato class. 
On L2 (RN) th equation (SE) is well-posed for all x E D(Ll- V) by the Stone's 
theorem. But on V (RN) for p i- 2 it is known that iLl is not a generator of a 
strongly continuous semigroup and then the equation (SE) is not easy in these 
spaces. We have the following 
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Theorem 3.1 (see {B.dLJ and (E.MJ) let E be a Banach space. Assume that A 
generates a bounded holomorphic semigroup of angle "i on E. Assume that 

( I I )r IIT(z)II.c(E) :S c R:z (3) 

for all z, Re z > o. Here C and r are positive constants. Then the evolution 
equation 

iAu { u'(t) = 
u(O) = x 

is well posed for x E D(A') for all 'Y > r. 

t E lR 

We apply this result to the operator A = ~ - V on LP (lRN), 1 :S p < 00 (p -=f:. 2). 
It is known by the Feyman-Kac formula that the semigroup genereted by A has 
a Gaussian estimate (E) (see for example [Al.B.M] and [D.Ve]. In [Al.B.M] it is 
shown that Gaussian estimates hold for ~ - J.l with J.l = J.l+ - J.l- is a certain regular 
measure). It follows by theorem 1.1 that a - wI is a generator of a bounded holo­
morphic semigroup with angle "i on LP (lRN), 1 :S p < 00. Moreover, the estimate 
(3) holds in L1 (lRN) with r = N (see[Ou]). By the Riesz-Thorin interpolation 

theorem, the estimate (3) holds in LP (lRN) with r = N (~ - 1), 1 :S p :S 2. 

We then use Theorem 1.1, Theorem 3.1 and these estimates to conclude that 
the equation (SE) has a unique classical solution in LP (lRN) for xED (A;), 
'Y > N (~ - 1), where Ap = ~ - V considered in LP (lRN). For p > 2 we use the 

duality. Finally, these arguments works also in Co (lRN) if we show that ~ - V 
generates a semigroup on Co (lRN ). 
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Some Problems on Submarkovian Semigroups 

v. A. Liskevich*and Yu. A. Semenov 

Abstract 
We present a perturbation result for generators of submarkovian semi­

groups acting on LP. It characterizes the domain of the generator of a sub­
markovian semigroup by means of the domain of the quadratic form. For 
the particular case of submarkovian perturbations the well known KLMN­
theorem is extended to the £P -spaces. 

The object of this note is a generator of a submarkovian semigroup in LP­
space. We characterize the domain of the generator by means of the domain of its 
quadratic form in L2. The main result concerns the non-symmetric form-bounded 
perturbations of the generator of the submarkovian semigroup. Under the assump­
tion of form boundedness the form sum can be correctly defined by virtue of the 
well known KLMN- theorem. It is shown that this operator is the generator of a 
Co-semigroup in LP, where p depends on form bounds only. The domain of the 
perturbed generator is characterized and (LP, Lq)-estimates of the resolvent are 
obtained. 

Let (M, f.-l) be a measurable space with the a-finite measure f.-l. We use 
the following notations: LP == LP(M, f.-l), II· lip is the norm in LV, (/, g) == 
fM f(x)g(x)df.-l(x), C(LP, Lq) is the space of bounded operators acting from 
LP into Lq. 

Let A ~ 0 be the self-adjoint operator acting in L2(M, f.-l) with the domain 
V(A) and the form-domain Q(A) = V(A!). For f E Q(A) define tA[f] := IIA! fll~. 
Definition. We say that A is a generator of a submarkovian semigroup (submarko-

vian generator) if the following conditions are satisfied: 

(i) A is a non-negative self-adjoint operator in L2. 

(ii) lIe- tA flloo :::; Ilflloo, V f E L1 n Loo. 

(iii) 0:::; f E L2 =} e-tA f ~ 0 almost everywhere. 

Now let A be a submarkovian generator. We can define the operator Ap as a 
generator of the contraction semigroup in LP: 

(e- tA nL2 n LPD£,p--+LP = e-tAp (the closure in LP). 

T~ =: (e- tA1 )* (* denotes the adjoint operator). 

-Recipient of a Dov Biegun Postdoctoral Fellowship 
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By - Ap we denote the generator of the semigroup T;, so T; = c tAp , for all t 2 0 
and p E [1,00). Since T; is a contraction the operator Ap is accretive with respect 
to the semi-inner product [u,v] = (u, IvlP-lsgn v)llvll~-P in LP: 

Re [Apu, u]2 0 for all u E V(Ap) and [Apu, u] 20 for all u E V(Ap)nRe LP. 
The following theorem makes more precise this property for submarkovian 

generators. 
p-2 

Theorem 1. Let I E V(Ap) lor some p E (1,00). Then Ip := 11/1-2 E Q(A), 
and 

4P~ 1tA [/p]::; Re (Apl,sgn I I/IP-I)::; x(p)tA[/p] 
p 

(1) 

1 1 1 
where x(p) = sup{(l + sP)(l + s17)(l + s2")-2; s E (0, I)} 

Ip-21 
11m (Apl,sgn I I/IP-I)I ::; 2yp=-rRe (Apl,sgn I I/IP-I) (2) 

II I E V(Ap) n L~, then I~ E Q(A), and 

p-1 E p 

4-2 tA[/2]::; (Api, fP-I) ::; tA[/2"]. 
P 

(3) 

Remark. (3) is the Stroock-Varopoulos inequality [S],[V],[CKS]. (1) with 1= Re I 
has been proved in [LSe]. From (2) the analyticity of the semigroup T; follows (see 
[G]). (2) improves, in particular, the sector of analyticity which can be obtained 
from Stein's interpolation theorem [St]. 

Outline 01 the prool. Let P(t,x,G) := (T~:n.a)(x), GEM, where :n.a is 
the characteristic function of the set G. Then P(t, x,,) is finitely additive on M, 
P(t,x,M) ::; 1 and T~/(x) = J P(t,x,dy)/(y), VI E UJO (see, e.g. [D]). Using 
these properties of P(t, x, G) and the following elementary inequalities 

p-1 p P2 I I p P2 4-2-(s2" - t2") ::; (s - t)(sP- - tP- ) ::; (s2" - t2") 
P 

(s~ +t~)2::; (s+t)(sp-I +tp- I)::; x(p)(s~ +t~)2 
p-1 p 

4-2-[sP + tP + 2b(st)2"] ::; sP + tP + b(stp- I + tsp- I), Vb E [-1,1] 
p 

I sin 0llstP- 1 - tsP-11 ::; 21~(sp + tP -I cosOI(st)~), 
VpE(l,oo), WEIRI 

sP + tP + b(stp- I + tsp- I) ::; x(p)[sP + tP + 2b(st)~], Vp E (1,00), Vb E [-1,1] 

(for all 0 < s, t < 00 and all p E [1,00)) one can prove VI E LP 

p-1 
4-2-((1- Ti)lp, Ip) ::; Re ((1- T;)/, sgn I 'I/IP-I) ::; x(p)((l- Ti)fp, fp), 

p 

4P ~ 1 ((1- Ti)f~, I~) ::; ((1 - T;)f, fP-I) ::; ((1- Ti)f~, I~) Vf E L~ p . 
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Since Q(A) = {g E L2 : SUPt>o t((l - Ti)g, g) < oo} and limno t((l - Ti)g,g) = 
tA[g], \/g E Q(A) the statements (1) and (3) follow from the spectral theorem for 
self-adjoint operators. (2) will follow from the inequality 

11m ((1- T;)f, sgn f ·lfIP- 1)1:::; I~Re ((1- T;)f, sgn f ·lfIP- 1). 
2 p-1 

o 
Definition. We say that operator B is form-bounded relatively to A and write 
BE PKfj(A) if B is a self-adjoint operator in L2, V(IBI~) ~ V(A~) == Q(A) and 

for some (3 E (0,1), CB((3) ~ O. 

Theorem 2. Let A, B, C be submarkovian generators. Suppose that B E P Kfjl (A) 
for some (31 E (0,1) and C E P Kfj2 (A) for some (32 > O. Let hand t2 be the roots of 

the equation ((31 + 21~(32)X(q) = 4~, 1 < q < 00. 1 Let H2 == H = A"':'-B+iC 

be form-sum, i := A. Then for every p E [tl' t2J and t ~ 0 

i) Ile-tH flip:::; e X(p){CB(fjll+ 21~cc(fj2)}tllfllp, f E L2 n LP 

and consequently this defines the family of operators {Hp}h::;p::;t2 which generate 
quasi-contraction Co-semigroups. 

iii) the semigroup e-tHp is holomorphic with respect to t of the angle 

n n 
(h = 2 - arctan11, 0 < (h < 2' p E (h, t2), where 

11 = x(p)[~(l + (3d + (32] 

47 - ((31 + 21~(32)X(P) 

iv) 
p-2 

Vp E (tl,t2), "If E V(Hp) fp = flfl-2 E Q(A) and 

p -1 Ip - 21 1 
Re (Hpf,lfIP-lsgn J) ~ (47 - ((31 + 2JP=l(32)X(p))IIA2fpll~ 

Ip-21 
-X(p){CB((31) + 2JP=lCc((32)}llfll~. 

IThe roots always exist and if h E (1,2) then t2 = t~ E (2,00). This follows from the 

abovementioned properties of x(p) and from I~ll = I~. 
vq-> Vq'-l 
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Proof Let Bn and Cm be the Yosida approximations of Bp and Cpo It is enough 
to prove i) with Bn instead of B and with Cm instead of C, i.e. without loss we 
can assume that B,C E £(L2) n£(LV). Since Re (ftu,uluIP-2) = ~ftllull~, then 

u E V(Ap). (We used consecutively (1) and (2)). To finish the proof of i) it remains 
only to use the conditions B E P Kf31 and C E P K f32 . The proof of ii) is standard. 
In order to prove iii) let us estimate 11m (Hpu,sgn u·luIP-l)1 by Re (Hpu,sgn U· 

luIP- l ), where Hp = Hp + l for an appropriate l which will be chosen below. As 
before we assume Band C to be bounded operators in L2 and in LP. We have 

11m (Hpu, sgn u ·luIP-l)1 ::; KlIIA~upll~ + Aillull~, 

where Kl = x(p)(21~(1 + f3d + 132), Al = x(p)(21~CB(f3d + Cc(f32)) , 

Re (Hpu, sgn u ·luIP-l) 2 KIIA~upll~ + Allull~, 

where K = 4~ - (131 + 21~f32)X(P)' A = l- X(p)(CB(f31) + 21~cC(f32)) == 
l- A2 . 

Setting l = A2 + ~1 AI, we obtain 

In order to complete the proof of iii) it remains only to pass to the limit in 
(4). Let Hp(n, m) := Ap - Bp,n + iCp,m and un,m = exp( -tHp(n, m))j, u = 
exp( -tHp)j, j E L2 n LV. Using the general approximation theorem [K] it is not 

difficult to check that un,m -£; u. 
Furthermore by virtue of (4) the semigroups exp( -tHp(n, m)) are holomorphic and 
uniformly bounded with respect to m, n in the sector Sp = {t; I arg tl ::; (), \:j() E 
(0, ()t)}. By (4) un,m converges pointwise on the positive semiaxis. Consequently 
by the Vitali convergence theorem u is holomorphic in Sp and u(z) = s - LP -
limn,m->oo un,m(z), z ESp. In particular u'(z) = s - LP -limn,m->oo u~,m(z), z E 

Sp, and Hp(n, rn)un,Tn ;p Hpu. Moreover passing to a subsequence if required 

we have gn,m := sgn un,mlun,mlp-l ----t g := sgn ululp- l pointwise /-l-a.e. and 

Ilgn,mllp' = Ilun,mll~-l ----t Ilgllp' = Ilull~-l by virtue of (4). Therefore gn,m i;' g. 
Thus, in (4) we can pass to the limit (n,m) ----t 00. D 
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Theorem 3. Let A and B be submarkovian generators. Suppose that 

1) BE PKf3(A) for some fJ E (0,1). 

2) IIIII~j ~ c tA[I] for some j > 1 and all I E Q(A). 

Let H = A~B and t(f3), t'(fJ) be the corresponding roots of the equation fJx(q) = 
47' 1 < q < 00. Then 

(i) 

for arbitrary p E (t(fJ), t'(fJ)) and q E [p,jt'(fJ)). 
If in addition l/p - 1/ q ~ 1/ j' then 

(ii) 

Moreover if 9 E L2 n Lt '(f3) then 

(iii) J.L( {x: 1([ + H)-lg(x)1 ~ s}) ~ c· s-jt'(f3) . inj s, 'Vs> exp t'(fJ) ~ t(f3)' 

The proof is based on Theorem 2(iv) and on Chebyshev's inequality. 

Remarks. 
1. Assumption 2) of Theorem 3 is an abstract version of Sobolev's imbedding. 
2. Statements (i) and (ii) of Theorem 3 are sharp in the following sense: simple 

examples show thatfor arbitrary BE PKf3(A) the imbedding (l+H)-1[L1nLOO] c 
L1~~(f3), [E p( -H) fails. On the other hand, one can prove that if M = IRd, dJ.L = 

dx, A = -Ll and B = V- E PKf3( -Ll) n L d / 2,oo(IRd ) then 

(l + Hp)-l E £(LP,Lj·t'({3),OO), IE p(-Hp), P E (t(f3),t'(f3)). 

The last leads to the conjecture that the estimate for the distribution function of 
(I + H)-lg obtained in Theorem 3 can be improved (on fnjs). 
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Smoothness Estimates and Uniqueness 
for the Dirichlet Operator 

V.A. Liskevich* 

Abstract 

We study the equation du/dt + Hu = 0, where H is the operator as­
sociated with Dirichlet form in JRd. Estimates of the first and the second 
derivates of the solutions are obtained in LP -spaces with weight. The results 
on strong uniqueness in LP are also given. 

The object of this note is the Dirichlet operator associated with a Dirichlet 
form on IR d. The theory of Dirichlet forms is of increasing interest because of its 
relations to probability theory and quantum field theory (see. e.g. [ABRJ, [BK] and 
references therein). We are interested here in smoothness estimates of solutions of 
the parabolic equation ~~ + H u = 0 in £P, where H is a Dirichlet operator. In fact, 
we obtain the estimates for the first and the second order derivatives of solutions 
in LP for the approximating equations with smooth coefficients. The main feature 
of these estimates is that they do not depend on the smoothness of the coefficients 
and on the dimension of IRd. Moreover, as examples show, they correctly reflect 
the relationship between differential properties of solutions and LP-properties of 
coefficients. We extend here the method and some of the results from [LSI]. The 
results on strong uniqueness in LP are also given. 

Let H be the operator in L2(IRd, pdx) associated with the closure ofthe form 

1 d 8u8v 
h[u,v] = ~ -8 -8 p(x)dx, V(h) = Co· 

IRd L..J x· x· 
i,j=l • J 

H is the generator of a Markov semigroup. 

We use the following notations: LP == LP(IR, pdx) , II· lip is the norm in LP, 

(j,g) == JIRd f(x)g(x)p(x)dx, Li == L~=l' Vi == a~i' Cb is the set of all uni­
formly continuous bounded functions, Cb' is the set of all infinitely differentiable 
bounded functions with all their derivatives. (3 == V pi p is the logarithmic deriva­
tive of the measure pdx. We assume below that p > 0 almost everywhere and 
J pdx = 1, all functions are real-valued. 

-Recipient of a Doy Biegun Postdoctoral Fellowship 
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Theorem 1. Let 1,81 E L2p(IRd , pdx), 3/2 < p < 00, ,8n E Cr, 
An = [-(V' + ,8n)V'rCrlCb--+Cb' Un = c tAn f, f E Cr, t 2: 0. 
Then 

fat 111V'unlll;~ds ~ Cptllfll~(III,8nlll;~ + 111,8111;~) + Cpllfll~lllV' flll~~:::;, 

fat 11(~)V'NjUn)2)1/211~ds ~ Cptllfll~(III,8nlll;~ + 111,8I11;~ + 1) 
',J 

+Cp (l + Ilfll~)IIIV'flll;~:::~,cr 
where q = 2 if p 2: 2 and q = p if 3/2 < p < 2. 

Proof. Let us consider the problem 

(the equality in L2 :J C). Taking the inner product of both sides with -(V'j + 
,8j )Wj Iwl~-l, where W = V'un , Iwi = (~j WJ)1/2, Iwis = max{lwl, s}, s > 
0, v + 3 = 2p after summing we have 

_(,8n . W, Iwl~-l d:tn ) - (v - 1) L (,8n . W, Wj Iwl~-2V'j Iwls) (1) 
j 

+(,8n. w, Iwl~-l(,8n -,8) . w), 

where Is = L:i,j(V'iWj, Iwl~-lV'iWj), Js = L:j(V'jlwls, Iwl~-lV'jlwls). 
From the following equality 

we obtain 

Illwl:;l d;tn II~ = ((,8n _ ,8) . W, Iwl~-l d~n) _ ~ (dl~12 , Iwl~-l) 

-(v -1) L(d;tn wjlwl~-lV'jlwls) 
j 

v-1 I 

By virtue of tho inequality Illwl;r II~~, ~ T" == (lwI2 , Iwl~+l), ~ + ~ = 1, \;/8 > 0 
we have 
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Estimating the terms from the right-hand side of (1) and using (2) we arrive at 

Now using integration by parts and the original equation we have 

Ts = -(un, Iwl~+l d;tn ) - (v+ 1)(un, Iwl~w· Vlwls) - (Un, Iwl~+l(f3- f3n) ·w). (4) 

Let us estimate the terms in the right-hand side of (4). From (2) it follows 

I(un, Iwl~-l d;tn)1 ::; Ilfll~(28Ts + 2Cp61-P IIIf3n - f3111~~ + 4(v - 1)2 Js 

_2(dl: 12 , Iwl~-l)) + ~(Ts + sv+3), 8> o. 

Choosing 8 = 1/161Ifll~ we rewrite the last inequality in the form 

I(un, Iwl~-l d;tn)1 ::; ~Ts + 4(v -1)llfll~Js + Cpllfll~lllf3n - f3111~~ 

+~sV+3 _ 21Ifll~(dl:12, Iwl~-l), Vs ~ o. 

Using HOlder's inequality in the second term of the right-hand side of (4) we arrive 
at 

Note that 

lot (d~12 , Iwl~-l )dT = (lwl2 - : ~ ~ Iwl~, Iwl~-l) - (IV fl2 - : ~ ~ IV fl~, IV' fl~-l) 

and (lwl2 - ~+~ Iwl~, Iwl~-l) ~ O. From (3) and (5) after integration in t we obtain 

lot TsdT::; Cptllfll~(IIIf3II1~~ + 111f3nlll~~) + Ctsv+3 

+Cllfll~(IV'fI2 - ~ ~ ~ lV'fl~, lV'fl~-l). 
(6) 

The last inequality holds Vs > 0 and admits passing to the limit s ! O. This proves 
the first statement of the theorem. To prove the second statement note that for 
o < v < 1 from HOlder's inequality it follows that 

11(~)V'iWj)2)1/211~ ::; ~Is + 2; P (Ts + sv+1). 
i,j 
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Setting s = Ilflloo and using (3) and (6) after integration we obtain the desired 
inequality. For v 2: 1 note that from (3) it follows 

L(V'iWj, V'iWj) :S h :S 7i + Cp(III,BIII~~ + 111,Bnlll~~) _ (dl: 12 , Iwlr- 1). 

i,j 

It remains only to integrate in t and use (6) with s = 1. 0 

Remark. Passing to the limit ,Bn ---? ,B in L2p one can conclude that if,B E L2p 
then V'u E L2p where u is the solution of the equation ~~ + Hu = 0. 

Theorem 1 enables us to prove the following uniqueness result. 

Theorem 2. Let,B E L2P. Then the operator (V'(V' + ,BHCQ"" (IRd)) LP--+LP is the 
generator of a Co-semigroup of contractions on LP. 

Modifying the arguments from [LS2] one can prove the following perturbation 
result. 

Theorem 3. Let,B E L2P. Let V be a measurable function satisfying (V cp2) :S 
'Y11V'cpll~ + C-Yllcpll~, 'Y E (0,1), C-y 2: 0, Vcp E CQ""(IRd) and V E LP with 

p E (1+~' l-~)' Then the operator (V'(V' +,B) - VrCQ""(IRd))LP--+LP is the 
generator of a Co-semigroup of quasicontractions on LP. 
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Trace Ideal Properties of Perturbed 
Dirichlet Semigrou ps 

Peter Stollmann 

Introduction 

We study semigroup differences of the form 

where H is the generator of a regular Dirichlet form and IL and v are suitable 
measures. In the first section the appropriate classes of measures are introduced. 
Moreover, we provide a list of examples which can be treated in the Dirichlet form 
framework. 

In the second section the above semigroup is investigated in terms of Hilbert­
Schmidt and trace class properties. It turns out that if the set on which v "lives", 
the so-called quasi-support, has finite capacity then the above semigroup difference 
is Hilbert-Schmidt. A more restrictive condition on the quasi-support of v is 
exhibited which implies that this difference is trace class. 

1. Dirichlet forms plus measures 

We consider trace ideal properties and their consequences in the framework of 
regular Dirichlet forms, see [10]. In [13] the more general setting of quasi-regular 
Dirichlet forms is described in detail; with minor changes, our results hold true 
in this setting. To begin we briefly recollect some basic material concerning the 
perturbation of Dirichlet forms by measures. Instead of reproducing all the defini­
tions we illustrate the scope of this setting by some examples. In this respect, the 
monograph [6] is a good reference. 

1.1. Examples. (1) On L2(lRd ) the form 

~o[u, v] := J \'u\'vdx, D(~o) = WJ,2(lRd) 

is a regular Dirichlet form. 
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(2) More generally, forms of the type 

I)[u, v] = ~ J aij(x)8iu(x)8j v(x)dx 
t,) 

with domain W~,2(O) are regular Dirichlet forms for suitable aij; see [6], Section 
1.2. 

(3) In the last example also Neumann boundary conditions can be included, 
provided 0 has the extension property, see [1], p. 83f (in order that the form be 
regular, one needs that C(O) is dense in W1,2(O)). 

(4) If p : [0,00) x E x E -+ 1R satisfies the basic assumptions of stochastic 
spetral analysis, "BASSA", then the generator of the associated semigroup corre­
sponds to a regular Dirichlet form on L2(E). Thus our setting incorporates all the 
examples listed in [7]. 

We consider measure perturbations of regular Dirichlet forms and refer the 
reader to [2, 3, 14, 19, 21] where he can find more details as well as more relevant 
literature. A recent investigation of spectral theoretic properties of -Ll + J.L can be 
found in [4]; see also the article of J. Brasche in the present volume. 

Let us mention one point which makes measure perturbations interesting: 
They provide a convenient means of treating potentials and Dirichlet boundary 
conditions simultaneously. 

We recall that a regular Dirichlet form I) with domain D defines a set­
function, the capacity, by 

cap (K) := inf{l)[u, u] + lIull 2 ; u E D, u 2: XK} 

for compact K and regular extension to arbitrary sets. The right class for the 
positive part of our perturbations is 

Mo:= {J.L: ~ -+ [0,00];J.L count ably additive,J.L« cap}, 

the class of measures which do not carge sets of zero capacity. It is wellknown that 

(I) + J.L)[u, v] := I)[u, v] + J uvdJ.L 

defines a closed form, where we write u for the quasi-continuous representative of 
u. 

1.2. Examples. (1) If J.L = V dx then I) + J.L = I) + V is the usual form sum. 
(2) (Cf. [3]) The measure 
ooA(B) := 00· cap(A n B) defines an element of Mo. It is clear that 

D(I) + OOA) = {u E D; u = ° q.e. on A} =: Do(AC). 
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(3) For the classical Dirichlet form 1)0 (see Example 1.1 (1)) and A = A it is 
not hard to check that 

so that 1)0 + 00 A is the form corresponding to the Dirichlet Laplacian on A c. For 
more details on that we refer to [12, 9]. 

As negative parts of perturbations measures which satisfy a Kato condition 
turn out to be especially well suited. This is due to the fact that the corresponding 
semigroups still act on different Lp~spaces. We fix a regular Dirichlet form I) with 
domain D on some L2 (X, m) and denote the corresponding operator by H. Let us 
now briefly recall the extended Kato class, introduced in [19]. We denote 

SK := {tt E Mo; (p,; (H + E)~l.) E L1(X, m)' = Loo(X, m)}, 

CE(p,) := 11(p" (H + E)~l'}lloo, 
c(p,) := inf CE(p,), 

E>O 

which generalizes the Kato class Kd of potentials. More precisely: V E Kd implies 
that V dx E S K with respect to the classical Dirichlet form 1)0' and c(V dx) = O. 
We refer to [2, 19] for details. In [19] it is in particular shown that each p,~ E SK 
is form bunded with respect to I) with bound c(p,) so that p, = p,+ - p,~, p,+ E Mo, 
p,~ E SK'C(P,~) < 1 gives rise to a closed form I) + p,. Due to the fact that p,+ may 
be infinite this form is not necessarily densely defined, but we can associate a self 
adjoint operator H + P, in the Hilbert space D(I) + p,) which is of the form L 2(Y) 
for a subset Y of X. We extend the semigroup e~t(H+J1) by 0 to all of L2(X) and 
recall from [19] that it also acts on the spaces Lp(X). 

A simple way of defining a suitable notion of support for measures in Mo is 
the following: A quasi~closed set L:(I/) is called quasi-support of 1/ if 

I) + 001/ = I) + ooE(lI)' 

This definition from [17J is based on the characterization of closed lattice ideals 
in [15J and extends the notion of quasi~support which was given for the smaller 
class of smooth measures in [11 J. It is easy to see that, for Radon measures, L:( 1/) is 
smaller than the usual support and that these sets need not be equal; the examples 
in [21], Section 9 can be interpreted in this sense. 
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2. Trace ideal properties of semigroup differences 

Throughout this section we assume that I) is a regular Dirichlet form with the 
additional property that e-tH : L1 ~ Loo is bounded. We write II . IIHs for the 
Hilbert-Schmidt norm. 

2.1. Theorem. Let J.L+, /J E Mo and J.L- E SK with c(J.L-) < 1/2. If 
cap(~(/J)) < 00 then 

for all t > O. 

The proof goes essentially along the same lines as the proof of Theorem 1 
in [16] and will be given in [5]. This Theorem can, in particular, be applied to 
J.L = V E Ltoc - Kd and /J = OOr in the setting of "BASSA". As a consequence 
concerning large coupling limits we have (see [17], Corollary 2.4) 

2.2. Corollary. Let J.L, /J be as in the Theorem. Then 

H + J.L + n· /J ~ H + J.L + ooE(v) , 

which means convergence in the norm resolvent sense. 

Our next aim is an estimate of the trace norm 11·lltr of the semigroup difference 
if /J has sufficiently small support. A recent application of such an inequality can 
be found in [18], where H = -~, J.L = V E Ltoc - Kd and /J = oos is considered. 
To formulate the appropriate condition on ~(/J) we have to recall that there exists 
a Markov process which is associated with I) in the sense that 

By TB we denote the first hitting time of B, 

TB(W) = inf{t > 0 : Xt(w) E B} 

for BeE. We have: 

2.3. Theorem. Let If CE(v) := J (1Px [TE(v) :::; t]) 1/2 dx < 00 for some t > 0, 
where J.L, /J are as in Theorem 2.1. Then 

Again, this may be applied to obstacle scattering, setting /J := ooB. The 
slightly simpler case J.L = 0 had been studied in [16]; under the more restrictive 
regime of "BASSA", the corresponding results for J.L = V dx, /J = OOr were obtained 
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in [8]. Let us mention that the above Theorem can also be applied to scattering 
by non-closed obstacles. Of course, the Theorem implies trace class convergence 

In the case of the classical Dirichlet form on ]Rd, the assumption on E(v) 
occuring in the Theorem is satisfied for bounded sets. Related estimates for CE(v) 

can be found in Section 2 of [18]. 

Acknowledgement. It is a pleasure to thank R. Lang for a fruitful discussion 

and for pointing out [20] to me. 
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Quantum Dynamical Semigroups 

Kalyan B. Sinha 

1 Introduction 

Feller [1] and Kato [2] proved the existence of a unique minimal semigroup asso­
ciated with the classical Fokker-Planck equation: 

dp·· ~~ } Tt = L/ikOkj, t 2:: 0 
k , 

with initial condition Pij (0) = Dij 

and subject to the Markov condition: 

Okj 2:: 0 for k =f. j and 2: Okj = -Okk < 00. 

jf.k 

(1.1) 

(1.2) 

By analogy, one can consider the quantum mechanical Fokker-Planck equation in 
V = 8 1 (h) (the real Banach space of selfadjoint trace-class operators in a complex 
separable Hilbert space h): 

dp(t) 
dt 

Y p(t) + p(t)Y* + LLkP(t)L~, 
k~1 

p(O) = p, (1.3) 

where is the generator of a Co contraction semigroup C(t) on h, {Lk } are linear 
operators satisfying 

(i) D(Lk) ;2 D(Y) V k 

(ii) (j, Y g) + (Y j, g) + 2:(Lkj, Lkg) = 0, V j, 9 E D(Y). (1.4) 
k~1 

The condition (1.4) is the quantum mechanical equivalent of the Markov condition 
(1.2). We seek the solution of (1.3) as a strongly continuous semigroup at on V 
such that p(t) = at(p). One can instead look at the dual picture i.e. look for a 
w - * continuous semigroup Tt on 8(h) such that 

dTt(X) = Tt(.C(X)), 
dt 

(1.5) 
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for all X in a suitable subset of 8(h) where the map £ (Lindbladian) is defined as 
a form: . 

(j,£(X)g) == (j,XYg) + (Yj,Xg) + I)Lk/,XLkg) (1.6) 
k 

for all j, 9 E D(Y). Then formally the Markov condition (ii) reads as £(1) = 0, 
but this should be rigorously interpreted only as a form. 

Remark: If Y E 8(h) i.e. if C(t) is a norm-continuous semigroup on h, then 

(1.4) implies that Lk'S are all bounded and the sum LLkLk converges strongly. 
k;:::l 

Then (1.6) actually defines a bounded linear map £ on 8(h). In such a case (1.5) 
obviously has a unique solution Tt as a norm-continuous semigroup of completely 
positive maps on 8(h) [3]. Lindblad [4] infact established the converse, viz. every 
norm continuous semigroup of completely positive maps on 8(h) has its generator 
£ given by (1.6) as operator on 8(h) subject to (1.4). In general, however, the 
relation (1.4) implies that each Lk is Y-bounded with relative bound S 1. 

2 Construction of the minimal semigroup 

We define two maps: V ~ V by St(p) = C(t)pC(T)*, rr(p) = (1- y)-lp(l -
y*)-l, and set V = rr(V). Then it is clear that St is a strongly continuous positive 
contraction semigroup on V with its generator Z given formally as : 

Z(p)=yP+Py*· (2.1) 

The following proposition sums up the results, omitting those parts of the proof 
given in Davies [5]. 

Proposition 2.1 : Let {Lk}, Y be operators in h satisfying (1.4). Then 
(i) V is a core for Z and (2.1) is valid on V. 

(ii) Define .1 on V by .1(p) = 'LLkPLk V p E V. Then .1 has a positive 
k 

extension .1' on D(Z) such that for p E D(Z), 

Tr[Z(p) + .1'(p)] = o. (2.2) 

(iii) For each fixed ,X > 0, .1' (,X - Z)-l is a linear map from V into V and 
has a unique bounded positive extension A.x in V with IIA.xll s 1 and .1'(p) = 
A1[p - Z(p)] V P E D(Z). 

(iv) For any fixed r(O S r < 1), w(r) == Z +r.1' is the generator of a strongly 
continuous positive contraction semigroup O"ir ) on V whose resolvent is given by 

00 

Rr) == (,X - w(r»)-l = (,X - Z)-l'Lrk A~, (2.3) 
k=O 
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where the series converges in trace norm, and 

(v) For each'x > O,Rr) and for each p E V+, t 2: 0, O"~r)(p) are increasing 

with r and converges strongly to R>. == (,X - Z)-l LA~ and O"t(p) respectively. 
k~O 

The family O"t so defined is a strongly continuous positive contraction semigroup 
and R>. = (,X - W)-l, the resolvent of W, the generator of O"t. Also W = Z +.:J 
on V. 

(vi) The semigroup O"t is minimal in the following sense: if there exists a 
positive strongly continuous semigroup O"~ will generator W' extending Wlv, then 
O"~ 2: O"t 'V t 2: o. 

Proof: For (i)-(iv) and part of (v), see Davies [5]. Set Rt~ == ('x_Z)-l L rn A~, 
09::on 

R>.,n == R~~~ and R>. == s-lim Rr) as r i 1 (which exists since Rr) is an increasing 
bounded family of positive maps). Then it is clear that 

But since R>.,n is also increasing with n, R>. == s - lim R>.,n exists and R>. :::; R>.. 
n~oo 

On the other hand, Rr~ :::; R>.,n :::; R>. so that , 

For (vi), we note that W' is a closed extension of Wlv and since D is a core 
for Z, D(W') ;2 D(Z). The resolvent R~ == (,X - W,)-l = Jooo e->'tO"~dt exists for 

sufficiently large'x and is positive. Also by (ii), R~ -Rr) = R~(W'-w(r»)Rr) = 

(1- r)R~.:J'Rr) and therefore R~ - R>. is positive. Thus for 0 < t < OO,p E V+ : 
(1 - W'tjn)-n(p) 2: (1 - Wtjn)-n for n large enough, leading to O"~ 2: O"t for 
0< t < 00. 

Having obtained the minimal semigroup O"t in V associated with (1.3) and 
(1.4), the next natural question that arises is : Is O"t conservative i.e. is TrO"t(p) = 
Tr p V P E V, t 2: O? The next theorem gives some necessary and sufficient 
conditions for this to happen. 

Theorem 2.2 [6] : Let O"t be the minimal semigroup constructed above, Wo = 
WID and let WO' be the adjoint of Woo Then the following are equivalent: 

(i) TrO"t(p) = Tr p'V p E V, t 2: 0; 
(ii) for each fixed ,X > 0, A~ --t 0 strongly as n --t 00; 

(iii) for fixed ,X> 0, (,X - Wo)V is dense in V; 
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(iv) for fixed A > 0, the characteristic equation WO' X = AX has no non-zero 
solution in B(h); 

(v) for any A > 0, 

f3>.. == {X 2 O,X E B(h)I(f,£(X)g) = A(f,Xg),J,g E D(Y)}. 

= {O}. 

The proof of this theorem can be found in [6]. 
There is a dual version of the theorem 2.2. We define for A > 0 a map 

Q>.. : B(h) -) B(h) as : 

(f, Q>..(X)g) == ['XJ e->..t''i)LkC(t)f, XLkC(t)g)dt. (2.4) 
Jo k 

Theorem 2.3 : Let Q>..(X) for X E B(h) be defined as a form on D(Y) x D(Y) 
by (2.4). Then 

(i) Q>..(X) is well-defined and extends to an operator in B(h); 
(ii) Q>.. : B(h) -) B(h) is contractive and completely positive; 
(iii) f3>.. = {X E B(h),O::; X::; IIQ>..(X) = X} 
(iv) Q>.. = A~ 
(v) X>.. == s - lim Q~(I) exists and is the unique maximal element of f3>..; 

n--->oo 

( vi) at is conservative iff X>.. = 0 for some A > O. 
The proof of this can be found in [7,8] and we give here a brief sketch only. 

Proof: The condition (1.4) implies that (f, Q>..(X)g) is well defined and 
l(f, Q>..(X)g) 12 ::; IIXI12(f, Q>..(I)f)(g, Q>..(I)g) 

::; IIX112(f000 e->..tit IIC(t)fIl2)(JoOO e->"titIIC(t)gI12) 
= IIXI1211fl1211g11 2 which proves (i) and (ii), complete positivity being obvious. 
For (iv), we note that for p E V ,Tr [pQ>..(X)] 
= Jooo e->"tdtLTr[pC(t)* LkXLkC(t)] 

k 

= Jooo e->..tdt Tr[J"' (St (p))X] = Tr[J"'(A - Z-l)(p)X] = Tr[A>..(p)X]. 
Clearly Q~ is a positive contraction for all n = 1,2, ... and hence for f E h 

(f, Q~+l(I)f) = (f, Q~(Q>..(I))f) 

::; IIQ>..(I) II (f, Q~(I)f) ::; (f, Q~(I)f) 

showing that Q~(I) is a decreasing family of positive contractions from which (v) 
follows. Thus 0 ::; X>.. ::; I and Q>..(X>..) = X>.. so that X>.. E f3>... Now if X E f3>.., 
then by the positivity of Q>.. one has 0 ::; Q>..(X) = X::; Q>..(I) which on iteration 
gives 0 ::; X ::; X>... 

Since X>.. is the unique maximal element of f3>.. the 'if' part of (vi) follows 
easily. If on the other hand at is conservative, then by Theorem 2.2 (ii) TrA~(p) -) 
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o as n -t 00 V P E V+. But by (iv), Tr [pQ~(I)] = Tr A~(p) -t 0 and therefore 
(j, Q~(I)f) -t 0 V f E h which implies the strong convergence of Q~(I) to 0 as 
n -t 00. • 

Some examples of conservative and non-conservative minimal semigroups 
have been given in [7,9]. In particular, if Lk'S are bounded or if L is normal 
(but possibly unbounded) for k = 1, then the corresponding minimal semigroups 
are conservative. On the other hand, it is shown in [7] that for a very standard 
closed symmetric operator L (for k = 1) with Y = -~L* L, the semigroup is not 
conservative. Thus a natural question arises, viz. if the minimal semigroup at is 
not conservative, then what are its possible conservative extensions? There does 
not seem to exist too much literature dealing with this, but the original article of 
Feller [10] gives some hints, and recently a fresh attempt has been made in [11,12]. 
Next, we discuss briefly some of these results. 

3 Perturbations of the minimal semigroup 

In this section, we study some perturbations of the minimal semigroup at when 
at is not conservative. If we denote by Tt the semigroup on B(h), dual to at, 
then we note that if at is conservative i.e. if Tt(I) = I then there is no other 
contractive positive semigroup on B(h) satisfying (1.5). For if Tf is one such, then 
for 0 ::; X ::; I, 

T;(I) - T;(1- X) ::; 1- Tt(I - X) 

TT(I) - Tt(I - X) = Tt(X) ::; T;(X). 

As in section 2, let R)..,X).. be the resolvent of the minimal semigroup at 
and the maximal element of (3).. (assumed to be non-zero in most of this section) 
respectively. Also we choose and fix a real number m and a state w, i.e. w E V+ 
s.t. Tr w = 1, and set for>.. > 0 

R)..(I + (m + 1- et)..)-l Iw) (X)..j) 

R)..(I + H)..), 

where we have used the Dirac notation 

Iw)(XI : V -t V by Iw)(Xlp:::::: Tr(pX)w, 

(3.1) 

with X E B(h) V p E V and et).. :::::: Tr(wX)..). It is also convenient sometime to 
write the relation dual to (3.1) : 

(1 + (m + 1- et)..)-lIX)..)(wl)P).. 

(I +K)..)p).., 

where P).. and i\ are dual to R).. and R).. respectively. Then we have 

(3.2) 
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Theorem 3.1 : (i) X>. = 1- >'P>.(I) so that Tt(I) = I iff P>.(I) = >.-1. 
(ii) For p, > 0, p, =f >. 

P>.(XIl ) = (p, - >.)-I(X>. - XIl) 

(iii) ?>. satisfy resolvent equation: 

?>. - ?Il = (p, - >')?>'?Il 

and hence by duality so does R>. i.e. 

R>. - Ril = (p, - >')R>.Rw 

(3.3) 

(3.4) 

(iv) The null space of R>. is trivial for each>' > 0 and R>. is the resolvent of 
a closed operator W, called the perturbation of W. 

(v) IIR>.II :s; >.-1 if m 2 0 and hence W is the generator of a positive strongly 
continuous semigroup at, the perturbed semigroup, which is conservative iff m = 0 
in (3.1). 

(vi) D(W) = D(W) and for p E D(W) 

W p W P - (m + 1)-lwTr[X>.(W - >.)p] 

= W P - (m + 1)-lwTr(W p). (3.5) 

If j,g E D(Y), then p == 1J)(gl E V <:;;; D(W) and Tr(XWp) = Tr(XWp) = 
(g,C(X)J) V X E B(h), where C(X) is defined in (1.6). 

Proof (i) By the notation of the proof of Proposition 2.1, (:1' + Z)R)..,nP = -P + 
>.R>.,nP + A~+I(p) and taking the trace, using (2.2) we have for p E V, 

Tr[Q~+I(I)p] = Tr A~+I(p) = Tr([I - >.R>.,n]P). 

Taking limit n -> 00, using Theorem 2.3 (v) and Proposition 2.1 (v), this leads to 
the relation X).. = 1- >'P>.(I). The last part follows easily from Theorem 2.3 (vi). 

(ii) Let>. =f p,. Then by (i) and the fact that P).. satisfies resolvent idenity: 
P>. - Pil = (p, - >')P>.PIl , we have 

P>.(I) - p,P>.PIl(I) = P>.(I) - ---t!'--dP>.(I) - PIl(I)] 
p,-/\ 

p,PIl(I) - >'P>.(I) X>. - Xil 
p,->. p,->. . 

(iii) Note that by (ii), P>.KIl = m+La>. IX>'~~X)(wl and hence 

?>'?Il 
(p, - >')?>'?Il 

(I + K>,)(P>,PIl + P>.K)..PIl ) or 

P).. - Pil + K)..P>. - K)..PIl + 
[(m + 1 - cy)..)(m + 1 - cyll )-1 K).. - KIl]PIl 
+((m + 1 - cy>.)(m + 1 - cyll )-1 K~ - K>.KIl)pw 



Quantum Dynamical Semigroups 

Noting that by the definition of K).. and Q).. in (3.2), K)..Kp, = 
Qp,(m + 1 - Qp,)-l K).. for all J-L and A> 0 we have 

(J-L - A)F)..Fp, = (1 + K)..)P).. - (I + Kp,)Pp, 

167 

+K)..Pp,[-1 + (m + 1- Q)..)(m+ 1- Qp,)-l + Q)..(m + 1- Qp,)-l - Qp,(m+ 1- Qp,)-l] 

= F).. -Pw 
(iv) From the definition of Q).. and HA, it is clear that (I + H)..)-1 = (I -

(m + 1)-1 Iw) (X).. I) which is a bounded linear map in V. Since R).. is one-to-one, 
it follows that R).. is one-to-one. The rest of the conclusion of (iv) follows from a 
standard argument (see page 428 of [13]). 

(v) Since H).. is a positive map, it is clear that R).. is also positive. Let p E V+, 
then 

TrR)..(p) Tr R)..(p) + (m + 1 - Q)..)-I(Tr R)..w)(Tr X)..p) 

Tr R)..(p) + (m + 1 - Q)..)-I A -1(1 - Q)..)[Tr p - A Tr R)..p], 

where we have used (i) to conclude that 

A Tr R)..w = Tr[w(AP)..(I)] = Tr(w(1- X)..)) = 1- Q)... 

Thus 
- m 1- Q).. 1 

TrR)..(p) = TrR)..(p) + A- Trp. (3.6) 
m + 1 - Q).. m + 1 - Q).. 

Since 0 ~ X).. ~ I and since R).. is positive with IIR)..II ~ A-I, it follows that 
1- Q).. 20 and hence for m 2 O,p E V+, Tr R)..(p) ~ A-I Tr p which implies the 
first part of (v). Therefore by Hille-Yoshida theorem [3]' the associated semigroup 
is a positive contraction semigroup with generator W, obtained in (iv). 

n -
l.From the formulae Tt (the dual semigroup of O"t) = s - lim (- Pn/t)n and 

n--->oo t 
P).. = Jooo e -)..t Tt dt, it is clear that Tt (I) = I iff P).. (I) = A-I. On the other hand, 

it follows from (3.2) and Theorem 3.1 (i) that AP)..(I) = 1+ m(m + 1- Q)..)-1 X).. 
which leads to the last part of (v). 

(vi) It follows from the resolvent equation (3.4), the fact that (I - H)..) is 
bounded invertible and standard arguments that Range R>. = Range R>., which 
is independent of A. This implies that D(W) = D(W) = Range R)... Since by (iv) 
R).. is invertible, for p E D(W) 

R~lp (A - W)p = (I + H)..)-1 R~lp 

(I - (m + 1)-1 Iw) (X).. I)(A - W)p 

(A - W)p + (m + l)-lW Tr [X)..(W - A)p] 

which is the first part of (3.5). For the second part, we need only to observe that 

Tr[X)..(W - A)p] Tr[(I - AP)..(I))(W - A)p] 

Tr(W - A)p - A Tr R)..(W - A)p = Tr(W p). 
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Finally, if p == If) (gl with f, 9 E D(Y) then clearly p E Vas defined in section 
1 and since by Proposition 2.1 (v) W = Z +.]' on V, we have 

Tr(XWp) Tr(XW p) - (m + 1)-lTr(wX)(g, [C(X>.) - ,XX>.]!) 
Tr(XW p) = (g, C(X)!). 

Here we have used the fact that X>. E /3>. (Theorem 2.3 (v)). • 
The above thoerem says that W is a sort of rank-one perturbation of W, 

though both are associated with the same Lindblad-form C(X). It is interesting 
to note that W is essentially the same as the "extension" considered by Davies in 
[5] and that the maximal element X>. in the Feller set /3>. (defined in Theorem 2.2 
and 2.3) determines the perturbations written down in (3.1) and (3.2). This has 
some formal similarity to the theory of extensions of a symmetric operator in a 
Hilbert space. If we formally write Y = - ~ L * L + iH (with k = 1), then 

C(X) = ~{[L*,X]L - L*[L,X]} - i[H,X] 

in which we can think of the first term in the R.H.S. as the abstract generalization 
of ~ Laplacian while the second term is a derivation. 
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Limits of Infinite Order, 
Dimensionality or Number of Components 
for Random Finite-Difference Operators 

A.M.Khorunzhy and L.A.Pastur 

Abstract 

We consider random operators that are analogs of the statistical mechan­
ics Hamiltonians with a varying interaction radius R , the dimensionality 
of space d and the number of the field components (orbitals) n. We prove 
that all the moments of the Green functions for nonreal energies of these 
operators converge as R, d, n ---- 00 to the products of the average Green 
functions, just as in the mean field approximation of statistical mechanics. 
We find in particular the selfconsistent equation for the limiting integrated 
density of states and the limiting form of the conductivity, which is nonzero 
on the whole support of the integrated density of states. 

1. INTRODUCTION 
The spectral and related properties of random operators have attracted consid­
erable interest in both physical and mathematical literature. It is believed, in 
particular, that under suitable conditions the spectrum of these operators is pure 
point and dense. This have been proven under various circumstances (in the one­
dimensional case or in any dimension near the edges of the spectrum or for a 
sufficiently large random potential). Therefore, although many important prob­
lems still remain open here (two-dimensional localization, calculation of the low 
frequency conductivity and other physical quantities, etc.), the strong disorder (or 
low energy) regime in the spectral theory of random operators can be regarded as 
rather well understood rigorously, especially in comparison with the weak disor­
der (or high energy) regime. This regime is almost unexplored rigorously despite 
extensive numerical and theoretical physics studies. In particular, the weak local­
ization theory (see e.g. review [15]) allows us to calculate the so-called quantum 
corrections for many important physical quantities and, being supplemented by 
some renormalization group ideas, predicts complete localization in one and two 
dimensions, a mixed spectrum in higher dimensions and, as a result, the metal­
insulator transition. The latter is largely similar to phase transition in statistical 
mechanics. Thus, based on the statistical mechanics experience it is natural to try 
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to develop some versions of the selfconsistent approaches that are widely accepted 
tools of study of difficult phase transition problems. In statistical mechanics the 
most widely accepted selfconsistent schemes, such as numerous versions of the 
molecular field approximation or the spherical model, can be obtained as the lim­
its of the infinite interaction radius, dimensionality of space or the number of field 
components (dimensionality of the spin space). An important feature of these lim­
its is that they are nonperturbative in the sense that the interaction, responsible 
for the phase transition, is not assumed to be small in corresponding models. Small 
(or at least suppressed) in these limits are the fluctuations of the order parameter 
and other important physical quantities. 

In this paper we study some random operators that can be regarded as 
analogs of statistical mechanics models with a large interaction radius R, a large 
dimensionality of space d or a large number of components n . We calculate the 
integrated density of states (IDS) of these operators and the conductivity in the 
limits of infinite R, d and n . In fact, the latter model was introduced and studied 
at the physical level of rigour by Wegner [25] (for some rigorous results on the IDS 
of this model see also [6]). 

We use the method which is analogous to the method of correlation equations 
(or cluster expansion) of statistical mechanics and allows us to calculate the IDS 
and the conductivity (more exactly, the measure which is naturally associated with 
the conductivity) in all the three limits. 

In principle, our method can also be used to construct the respective R-1_ 

, d- 1_ and n- 1 -expansions for which our limit expressions are the leading terms. 
We hope to discuss these expansions in subsequent publications (see however [27] 
where the physical n- 1 -expansion scheme was developed for the conductivity and 
[6] for rigorous n- 1 expansion for the IDS). 

The matherial is organized as follows. In Section 2 we introduce the models 
and formulate the main results, according to which the IDS and the conductiv­
ity are practically the same for all the three models and can be calculated from 
some selfconsistent equation. The former fact should be contrasted with statistical 
mechanics, where the limits R = 00 and d = 00 coincide with the mean field ap­
proximation, while the limit n = 00 coincides with the spherical model. In Section 
3 we derive infinite systems of equations for the moments of the Green functions of 
the respective operators, that are our main technical tools. In Section 4 we solve 
these equations in the limits R, d, n = 00 ,derive a selfconsistent equation 
for the limiting IDS (see equation (2.9) below) and in Section 5 we study some 
properties of the IDS (existence of the bounded density, location of the support, 
the form of singularities at the edges of the support). In Section 6 we calculate 
the conductivity of the respective disordered system in the same limits. Section 7 
is devoted to discussion of our results, in particular their relation to the random 
matrix theory and their possible interpretations. 
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2. MODELS AND RESULTS 
We start from the random operator of varying order. Let HR be the selfadjoint 
operator, acting in €2(Zd) and defined by the matrix 

HR(x,y) = h(x - y) + R-d/2 ¢((x - y)/R) W(x,y). (2.1a) 

Here x,y E Zd, h(-x) = h*(x) ,2:: 1 h(x) 1 < 00, R > 0, ¢(t), t E R d , is 
a piece-wise continuous, nonnegative and such that 1 ¢(t) 1 :::; ¢o < 00, ¢(t) = 
0, 1 t I> 1, J ¢2(t)dt = 1 and W(x, y) = W(y, x) are identically distributed and 
independent (modulo the above symmetry condition) random variables with zero 
mean value and such that for all x, y E Zd 

where 8(x) is the Kronecker symbol in Zd. 
Our second random operator Hd contains explicitly the dimensionality d of 

the space Zd . It acts also in €2(Zd) and is defined by the matrix 

(2.2a) 

where 
d 

hd(X) = d- 1/2 L h1(xj) II 8(xk), h1(0) = 0, (2.2b) 
j=l k#j 

h1(X), x E Zl , satisfies (2.1b), W1(x,y) = W(x,y) 8(lx - yl- 1) and W(x,y) 
are as in (2.1b). The simplest and quite important example of the operator hd is 
the discrete Laplacian for which h1(X) = 0, 1 x 1# l. 

The third operator Hn acts in €2(Zd) @ en and is defined by the matrix 

H(oo,xj(3,y) =h(x-y) 8a,6+n-1/2 8(x-y) Wa,6(x) (2.3a) 

where x, y E Zd, a, /3 = 1, ... , n, h(x) is the same as in (2.1), 8a ,6 is the Kro­
necker symbol, Wa,6(x) = W,6a(x) and Wa,6(x) are identically distributed and 
independent for 1:::; a :::; /3 :::; n random variables with zero mean value and such 
that (cf. (2.1b)) 

E{Wool /31 (xd Woo2/32(x2)} = w2 8(X1 -X2) {8OO1OO2 8/31/32 +8001 /32 8oo2 /31}' (2.3b) 

The random operator (2.3) is a special case of the operator introduced by Wegner 
[25] (the case of the site-diagonal disorder, according to Wegner's terminology). 
It can be regarded as the n-component analog of the discrete Schrodinger oper­
ator (the Anderson model) or as the Hamiltonian of a disordered system in the 
dimensions d + d1, d1 = n , in which the random potential in n "transverse" 
dimensions is considered in the "mean field" approximation. 

All the three families of random matrices (2.1)-(2.3) define the essentially 
selfadjoint metrically transitive operators in the sense of book [21]. Our intention 
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is to study, first of all, the simplest though rather important in several respects 
spectral characteristic of random operators known as the integrated density of 
states (IDS). It is defined as the measure 

(2.4) 

where a is R or d and Ea(d>') is the resolution of identity of the operators 
Ha, a = R, d , and Ea(x, y; d>'), x, y E Zd are the respective matrices. For the 
model (2.3), 

n 

Nn(d>') = E{n- 1 2: En(a,O;a,O;d>')}, (2.5) 
a=l 

where En (a, x; ,8, y; d>.) is the matrix of the resolution of identity of the operator 
Hn. For another definition of the IDS, which is based on a kind of the thermody­
namic limiting transition, and for equivalence of this definitions, see [21]. 

For an arbitrary nonnegative measure f.£(dt) on R, such that J f.£(dt) = 1, we 
define its Stieltjes transform J(z) = J (t - z)-l f.£(dt) , Imz i= o. It is an analytic 
function for 1m z i= 0 such that 

Imf(z) . Imz > 0; J(z) = - z-l + O(Z-l), z ---; 00, (2.6) 

The Stieltjes transform uniquely determines the respective measure, since due to 
the Stieltjes-Perron inversion formula for any interval Ll = (>.1, >'2) whose end­
points are continuity points of f.£(dt) [1] 

(2.7) 

Denote by No(d>') the IDS of the unperturbed operators in (2.1)-(2.3). It is easy 
to show that for this Toeplitz operators, 

No(d>') = meas{h(k) Ed>', k E T d }, (2.8) 

where Td = [O,l]d is d-dimensional torus and h(k) = Eh(x) exp{27l"ikx} is the 
symbol of these operators. 

Our result for the IDS states (see Theorem 5.1 below) that the measures 
Na(d>') , a = R, d, n converge weakly as a ---; 00 to the limit N(d>.) whose Stieltjes 
transform r(z) = J(>. - z)-l N(d>.) can be found as a unique solution in the class 
(2.6) of the equation 

r(z) = ro(z + w2r(z)) (2.9) 

in which ro(z) is the Stieltjes transform of the IDS of the unperturbed (nonran­
dom) operators in (2.1)-(2.3). 

Note that for the operator Hd of (2.2) the unperturbed operator and its IDS 
depend also on the parameter d. Therefore, unlike HR and Hn , in the case of 
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Hd the limiting transition d -t 00 affects No(d>') also. More precisely, in this case 
No (d>.) is 

No(d>') = (21l'h2)-1/2 exp{->.2/2h2} dA, h2 = Lh~(x). (2.10) 

Equation (2.9) was found by Wegner for the ensemble (2.3) in the limit n = 
00 (infinite number of the orbitals in the terminology of Wegner). In fact, this 
equation had appeared before the Wegner's paper as the equation for the limit 
eigenvalue distribution of some n x n random matrices in the limit n = 00 

[20]. This distribution is known as the deformed semicircle law. The situation here 
is similar to that in statistical mechanics, where selfconsistent equations of the 
Curie-Weiss model (the mean field approximation) and the spherical model had 
been proposed long before than it was understood that these are the limits of an 
infinite interaction radius [16] and an infinite number of components [11, 22] of 
the classical Heisenberg (n-vector) model. 

Now we shall outline the strategy of derivation of (2.9). Consider the family 
E{I1~=1 G(Xi' Yin, k 2 1, of the moments of the Green function of the random 
operators (2.1)-(2.3). By using the resolvent identity, we derive for this family an 
infinite system of linear relations (that can be regarded as analogs of the BBGY 
or the Kirkwood-Salzburg equations in statistical mechanics). Some terms in these 
relations contain the small parameter a -1 in front of them. Treating these relations 
as an infinite system of equations for the moments and neglecting the small terms, 
we observe that the truncated system admits the factorized solution I1~=1 f(Xi -
Yi), k 2 1, where f(x - y) is the Green function of the Toeplitz operator which 
is the sum of the nonrandom part of Ha and the effective coordinate-independent 
potential w2 8(x - y) f(O) . This yields equation (2.9) which is in this scheme the 
solvability condition for the truncated system. 

To justify this procedure, we act again as in statistical mechanics. Namely, we 
consider our infinite system as a linear equation in some Banach space containing, 
in particular, our family of moments. We prove that if the imaginary part of 
the energy is large enough, then the nonsmall part of the equation defines the 
contracting linear operator and that the norm of the remainder is small. 

Thus, our central technical result (see Theorem 4.1) says that in the limit 
a = 00 the moments of the Green function of our random operators (2.1)-(2.3) are 
factorized into the products of the first moments, and these first moments are to 
be found selfconsistently, by solving the nonlinear functional equation (2.9). This 
result is fairly similar to the main technical result of the mean field approximation 
(R, d = 00 limit) and the spherical limit (n = 00 limit) in statistical mechanics, 
where the correlation functions of all orders are factorized into products of the 
correlation function of order one (mean field approximation) or of orders one and 
two (spherical model). We refer to the papers [2, 10, 14] for some form of the latter 
results and for references. 

Consider now the conductivity of a disordered system, described by the 
Hamiltonians (2.1)-(2.3). According to the Kubo formula, the conductivity of d-
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dimensional ideal Fermi gas at a temperature T, described by a one-body Hamil­
tonian H and subjected to an external alternating electric field of the frequency 
v, is [17] 

O'ac(v, T) = 2e2 7l'-1 i: v-I [nF(E + v) - nF(E) ] O'(v, E) dE. (2.11) 

Here e is the electron charge, n F (E) = (exp{( E - E F) IT} + 1) -1 is the Fermi dis­
tribution function, EF is the Fermi energy, O'(v, E) = m(E + v, E), and m(>'l, >'2) 
is the density of the measure 

d 

M(d>'l' d>'2) = L E{[vkE(d>.t}vkE(d>'2)](0, On 
k=l 

on R2 in which v = i[H, x] is the velocity operator, x = (Xl, ... , Xd) is the coordinate 
operator and E( d>.) is the resolution of identity of the Hamiltonian H . For T = 0, 
(2.11) has the form 

(2.13) 

and for low frequencies v «: EF , 

O'ac(v, O) = 2e2 7l'-1 m(EF + v, EF) (1 + 0(1)), v ----t ° (2.14) 

i.e. the low frequency conductivity (de conductivity in particular) can be expressed 
through the density m(>'l' >'2) itself. 

Consider first the case of a = R . According to (2.10) and (2.1), 

x 

Thus, to obtain a finite and nontrivial answer in the limit R = 00, we have to 
consider the normalized measure M(R)(d>'l,d>'2) = R-2 M(d>'l,d>'2) and with 
this normalization we can set without loss of generality the nonrandom part of 
(2.1) to be zero (h(x) == 0). Similar arguments show that for a = n, d the 
properly normalized measures are M(d)(d>'l,d>'2) = M(d>'1,d>'2) and 

n d 

M(n)(d>'1,d>'2) = n-1 L LE{ [vj E(n)(d>'1)Vj E(n)(d>'2)](a,0;a,0)}, 
0=1 j=l 

respectively. 
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3. EQUATIONS FOR THE GREEN FUNCTION MOMENTS 
Since derivation of the infinite system of linear relations for the moments of the 
Green functions is rather cumbersome, we divide the problem into two parts. 
First, we consider these relations for the operators (2.1)-(2.3) with the Gaussian­
distributed random variables W's. After that we consider arbitrarily distributed 
W's with finite third moment. However, for a = d we restrict ourselves to the case 
of h(x) == ° in (2.3a). 

Definition. Let f(Xk; Yk) be a complex-valued function of the arguments 
Xk = (XI, ... ,Xk), Yk = (YI, ... ,Yk), Xi,Yi E Zd, i = 1, ... ,k, k:::: 1. Then, 

Proposition 3.1. Let Ha, a = R, d, n be the random operators, defined by 
{2.1}-{2.3} with the Gaussian-distributed random variables W's, 

G(X . z) = { (Ha - Z)-I(X, y) , if a = R, d; 
,Y, n-I~n (H -z)-I(ax'ay) ifa=n L..."o:=::l n , , , , , 

(3.2) 

7] = l1mzl-l- 0, and g(x-y) = (h-Z)-I(X,y) be the Green function of the Toeplitz 
operator h , defined by the nonrandom part in {2.1}-{2.3}. Introduce the moments 

k 

Fk(Xk; Yk) = E{ II G(Xi, Yi) }. (3.3) 
i=1 

Then, 

w 2 2: Xa(s-t) Fk+I(Xk,s;Yk-l,t,S) 9(t-Yk)+s(a)(Xk;Yk), (3.4a) 
s,t 

{ 
R-d c/>2(x/ R), 

Xa(x) = 8(x), 
(2d)-1 8(x - 1), 

if a = R; 
if a = n; 

if a = d, 
(3.4b) 

8(x) is the Kronecker symbol, and for some 7]0 > ° which is independent of a 
and 7] =1 1mz 1 :::: 7]0, 

IIsall~a) ::; C k 7]-k {a-I, if a = R, n; 
a- I / 2 , if a = d. 

(3.5) 

Remark. We use here and below the common symbol C for quantities, in­
dependent of a, k, 7], but dependent, generally speaking, on the moments of 
W(x, Y), the function c/>(x) and 7]0. 
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Proposition 3.2. Let Ha, a = R, n, d be defined in (2.1}-(2.3), where the 
arbitrarily distributed i.i.d. W's satisfy (2.1b) and (2.3b) and, in addition, 

E{I W(x, y) 13} < 00, E{I WQ (3(x) 13} < 00. 

Assume also that h(x) == 0 in (2.3a) . Then, the moments (3.3) satisfy (3.4) , 
where 

sup I Sk(Xk; Yk) I :s; C k a- 1/ 2 TJ- k (3.6) 
Xk,Yk 

with TJ ~ TJo , some TJo and C being independent of k, TJ and a. 

4. ASYMPTOTIC SOLUTION OF THE MOMENT EQUATIONS 
In the previous section we have seen that the moments (3.3) of the Green functions 
of the operators (2.1)-(2.3) satisfy the infinite system of relations (3.4a). In this 
section we treat this system as a linear equation in some Banach space and show 
that for a --+ 00 this equation admits a rather simple solution. As a result, we 
obtain (2.9). 

Theorem 4.1. Let Ga(x, y; z) be defined in (3.2), the respective operators 
Ha satisfy the conditions of Proposition 3.1 in the case of Gaussian W's and the 
conditions of Proposition 3.2 in the general case and 

TJ1 = max{4w, 2h}, ~= {3W/2, 
w, 

where h = 2: Ih(x)l· If a is large enough, then 

k k 

if a = R, n; 
if a = d , 

sup II E{I1Ga(Xi,Yi;Z)}- I1ra(Xi-Yi;Z) II~a) :S;CCk a- 1/ 2. (4.1) 
IImzl2':'11 i=1 i=1 

Here k ~ 1, C is independent of k and a, 

r a(x; z) = r (h(k) - z - w2Xa ra(Z) )-1 exp{27rikx} dk, lTd 
where h(k) is given by (2.8), 

= ~ () _ {J x2¢2(x)dx, 
Xa - ~ Xa X - 1 

x ' 

and r a (z) is a unique solution of the equation 

ifa=R; 
if a = n, d, 

in the class of functions analytic in z for nonreal z and such that 

Imr(z)·Imz ~O, Imz~O, sup TJlr(iTJ)I=1 
'1>0 

and No(dJ-l) is specified by (2.8) for a = R, nand (2.10) for a = d. 

(4.2) 

(4.3) 
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Proof. Let us consider the Banach space B a , a = R, n, d whose elements are 
sequences f = {!k(Xkj Ykj z)}k>l , Xk = (Xl, ... , Xk), Yk = (Yl, ... , Yk), Xi, Yi E Zd 
, and each component fk for fixed k, Xk, Yk is an analytic function of z for 
nonreal z. The norm in Ba is defined as follows: 

( 4.4) 

According to their definition, the moments (3.3) satisfy the inequalities IIFklik ::; 
",-k, k ~ 1. Since' < "'1, the sequence F == {Fklk~l of the moments (3.3) 
belongs to Ba . Now, according to (3.1), the sequence S == {Skh>l for '" ~ "'0 
satisfies the inequality 

IISII(a) ::; C a- 1/ 2 sup C k "'ok. 
k~l 

(4.5) 

Since our bounds in Proposition 3.1 are monotone in "'0, we can assume without 
loss of generality that "'0 = "'1, where "'1 is given by (4.1). Then, ,. "'01 < 1, and 
(4.5) implies that 

(4.6) 

where C1 is independent of a . 
Consider now the linear operator A, defined by the second and the third 

terms of the r.h.s. of (3.4a): 

(Af)k(Xk, Yk) = o(k - 1) L Xa(s - t) h(xl. Sj t, s) g(t - Yk)+ 
8,t 

( 1- o(k - 1) ){!k-1(Xk- 1j Yk- 1) g(Xk - Yk) + 

w 2 L Xa(s-t) fk+1(Xk,Sj Yk-1. t ,S) g(t-Yk)' 
8,t 

It is easy to prove that IIAII ::; 3/4 if a is large enough. Therefore we can regard 
relation (3.4) as a linear relation in Ba: 

F=AF+U+S (4.7) 

where U = {g(Xl, Y1), 0, ... } belongs obviously to Ba . Since, according to (4.5), S 
is small for a ----t 00, it is natural to consider the following linear equation in Ba : 

J=AJ+U. (4.8) 

This equation has a unique solution in Ba . The ansatz 

k 

Jk(Xkj Yk) = II r(Xi - Yi) (4.9) 
i=l 
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reduces the infinite sustem (4.8) to the single equation 

f(x - y) = g(x - y) + w2 I: Xa(s - t) f(O) f(x - t) g(t - y). 
s,t 

The formal solution of this equation is f(x-y) = g(x-y; z+w2Xaf(0; z)), where 
Xa is specified by (3.4b) and the dependence on the complex energy z is indicated 
explicitly. Respective compatibility condition 

f(O; z) = g(O; z + w2Xaf(0; z)) 

can be rewritten in the form (4.5). 
We prove that equation (4.2) has a unique solution in the class of functions 

that are analytic for Imz i- 0 and satisfy (4.3). Therefore formula (4.9) give the 
unique solution of the infinite system (4.8) in our spaces Ba. Subtracting (4.8) 
from (4.7) and iterating the resulting relation, we find that F - J = (I - A) -1 S. 
Thus, in view of (4.6), 

(4.10) 

According to (4.4) and (4.9), the k-th component of (4.10) is (4.1). The theorem 
is proved. 

Corollary 4.1 . For every fixed k ~ I, X k = (Xl, ... , Xk), Yk = (Yl, ... , Yk) 
and uniformly in z belonging to a fixed compact set such that 1m z i- 0 , we have 

k 

lim (Fk(Xk; Yk) - IT r(Xi - Yi)) = O. 
a-->oo 

i=l 

5. THE DEFORMED SEMICIRCLE LAW 
Theorem 5.1 . Let Ha, a = R, n, d be the nonrandom operators de­
fined in (2.1}-(2.3), No(dA) be defined by (2.8) for a = R, n and by (2.10) 
for a = d, Na(dA) be the IDS of Ha given by (2.4) and (2.5) and 
Na(A) == Na(( -00, Al) . Then, for each A E R 

lim Na(A) = N(A) (5.1) 
a-->oo 

where the Stieltjes transform of N(dA) can be found as a unique solution of (2.9) 
in the class (2.6). 

Proof. According to the spectral theorem, (2.4), (2.5) and (3.2), the Stieltjes 
transform of Na(dA) is E{Ga(O,O;z)} and, according to Corollary 4.1, for k = 1 

lim [E{ Ga(O, 0; z)} - ra(z)] = 0 
a-->oo 

where Imz i- 0 and ra(z) is a unique solution of (4.2). By Lemma 4.2, we can 
perform the limiting transition a ----+ 00. Thus, we have proved that the Stieltjes 
transform of Na(dA) converges for Imz i- 0 to the solution of (2.9). Since this 
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convergence implies weak convergence of the respective measures, we have thus 
proved weak convergence of Na(d.\) to N(dA). According to the property (5.4) 
below, N(dA) posesses a bounded density for any No(dA) . This proves pointwise 
convergence in (5.1). The theorem is proved. 

The simplest case of equation (2.9) corresponds to N(dA) = b(A), when the 
unperturbed (nonrandom) part of (2.1)-(2.3) is zero. Then, r = - (z + w2 r)-l 
and 

(5.2) 

where we use the branch of the radical that has a positive imaginary part on the 
upper edge of the cut Imz = 0, IRezl ::; 2w. (5.2) and (2.7) yield N(dA) = 
p(A) dA, where 

p(A) = (21T w 2t 1 {(4 w 2 - A2 )1/2, if I A I::; 2w; 
0, if I A I > 2w. 

(5.3) 

This is the well known Wigner or semcircle law which is the n = 00 limiting 
eigenvalue distribution for the ensemble of n x n symmetric random matrices 
whose entries are independent identically distributed random variables with zero 
mean value and variance w 2 In (this ensemble is called the Wigner ensemble of 
random matrices, see [18,19,26] for the references, the history and numerous related 
results). The limiting eigenvalue distribution defined by equation (2.9) is known as 
the deformed semicircle law. This distribution was found in [20] (see also [12,14]). 

Now we will list some useful properties of the deformed semicircle law, defined 
by equation (2.9). 

(i) For any nonperturbed No (dA) , 

N(dA) = p(A) dA, 0::; p(A) ::; (1TW)-l. (5.4) 

(ii) Let us call suppN and suppNo the spectrum 0- and the unperturbed spec­
trum 0-0 . Then, 0- is contained in the 2w-neighbourhood of (10 . 

(iii) If a and b are the left and right endpoints of the interval containing 
(1 and ao and bo are the same points for (10 ,then a < ao and b > bo . 

(iv) If (10 = (ao,bo) , then (1 = (a,b)(and according to (ii) and (iii), 
(ao, bo) C (a, b) C (ao - 2w, bo + 2w)). 

(v) Consider the intervals that comprise the complement of (10 , find the 
inverse AO (r) to ro (A) for these intervals, locate the intervals on which the 
function Ao(r) - w 2 r is monotonically increases and then determine the set of 
values of this function on these intervals. The spectrum (1 is the complement of 
this set. 

H 0:0 is an endpoint of one of the above mentioned intervals, then we get 
that a = AO( 0:) - w2 0: is the endpoint of one of the components of (1 . Suppose 
that in the neighbourhood of 0:, Ao(r) - w 2 r is analytic. Then simple arguments 
show that the density of states in the neighbourhood of 0: behaves as follows: 

p(A) = const I A - a 11/ 2k (1 + 0(1)), 1 A - a 1-> ° 
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for some k = 1,2, .... Generically, k = 1, and this corresponds to the llondegen­
erated extremum of Ao{r) - w2 r (a maximum if 0: is the right endpoint, or a 
minimum if 0: is the left endpoint of such an interval). 

6. THE CONDUCTIVITY 
As was explained in Section 2, we are going to prove weak convergence of the 
measures M(a), a = R, d ,n for a ~ 00 and calculate the respective limits. 
Therefore it suffices to consider their Stieltjes transforms 

C(a){ ) - J M(a){dAl, dA2) 
~,~ - , 

(AI - Zl) (A2 - Z2) ImZl,2 -=I- ° (6.1) 

and find their limits for a ~ 00 for 1m Zl,2 -=I- o. After that we can apply the 
inversion formula (2.7) to each of the two variables and find the limiting measure. 
We will consider here the simplest case of the Gaussian-distributed randomness in 
(2.1)-{2.3), postponing the proof for an arbitrarily distributed randomness for a 
subsequent publication. 

Theorem 6.1 . Let Ha, a = R, d, n be given by {2.1}-{2.3} in which 

h{x) = h{-x), L I x II h{x) 1< 00 

xEZd 

and W's be the Gaussian-distributed random variables. Then for 1m Zl,2 -=I- 0 

lim c(a) (Zl, Z2) = 
a-too 

(6.2) 

{ 
w2 r(zt} r(Z2) I x2 ¢2(X) dx, if a = R 
w2 r{zl) r{Z2), if a = d 

2 (6.3) 
w4 I I '\lh{k) I dk if a = n, 

(h(k) - Zl - w2r{zl)) (h(k) - Z2 - w2r(z2)) ' 

where r(z) is given by (2.9) and (2.8) for a = R, n and by {2.9} and {2.10} for 
a=d 

Proof. Since the proof of (6.3) is somewhat tedious even for the Gaussian 
Ws in (2.1)-{2.3), we describe in detail the case of a = n that turns out to 
be simplest. Note also that the case a = n was considered for the first time in 
[25] where respective results on the density of states and the conductivity were 
obtained by the perturbation theory arguments. 

The velocity operator in this case is identity with respect to the orbital indices 
0:, f3 and its coordinate-dependent part is defined by the matrix 

v(n){x-y) = i (x-y) h{x-y) 

and is bounded in view of (6.2). Therefore, according to (6.1) and (6.4), 

d 

c(n){Zl,Z2) = LL Vi{y) Vi(t) To(O,y,t;zl,Z2), 
y,t i=l 

(6.4) 

(6.5) 
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where 
n 

To(x, y, tj Zlj Z2) = E{n-1 L Q(x, y, t, Zl, Z2, a, a)} (6.6) 
0=1 

and 
Q(x, y, t, Zl, Z2, a, "() = L G(a, Xj 13, U + tj Zl) G(j3, Uj ,,(, Yj Z2). 

{3,u 

Consider now the infinite sequence of moments containing (6.6) 

Tk(Xkj Ykj Zkj X, y, t, Zl, Z2) = 
k n 

E{II G(Xj,Yjj(j) n-1 LQ(x,y,t,Zl,Z2,a,a)}, k ~ 0 
j=l 0=1 

where G(x, Yj () is specified by (3.2) for a = n and Z = (, I Im(i I~ "." I 
Imz1,2 I~ ".,. By using the resolvent identity for G(j3, Uj a, Yj Z2) and the arguments 
similar to those in the derivation of (3.4), we obtain the system of relations 

Tk(Xkj Ykj Zkj X, y, t, Zl, Z2) 

2:u Fk+1(Xk,XjYk,(u+t)j Zk,Zl) g2(U-Y) + 

w2 2:8 [Tk+1(Xk,XjYk,8jZk,Zlj8,8,t,Zl,Z2) + 
(6.7) 

Tk+1(Xk, 8j Yk, 8j Zk, Z2j X, 8, t, Zl, Z2) 1 g2(8 - y) + Rk 

where g2(X - y) = (h - Z2)-c1(x - y) and 

I Rk I :::; 4n-1 w2 (k + 1) ".,-k-4. (6.8) 

Consider now the Banach space of the sequences 

(6.9) 

with the norm 

IITII = sup ~k sup sup I Tk I . 
k~O IIm(kl,IImzl,21~1'/ Xk,Yk,x,y,t 

If A1 is the linear operator defined by the sum over 8 in (6.7), then it is easy to 
show that IIA111 :::; 4w2 ~-1 ".,-1 and if R is the sequence specified by Rk, then 
in view of (6.8) 

IIRII :::; 4n-1 w2 ".,-4 sup k (~".,-l)k. 
k~O 

Thus, to guarantee a finite norm of T in (6.9), the contractivity property of A1 
and the finiteness of IIRII, it suffices to take 

~ = ".,/2, "., = max{3w, 2h}. (6.1O) 
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Then, IIAl~ ::; i < 1, IIRII ::; Cn-I, where C is independent of n. If, in 
addition, F = {Fkh>o is the sequence defined by the first sum in the r.h.s. of 

(6.7), then liFil ::; 1}..:? SUPk>1 (~ 1}-I)k < 00. Theorem 4.1 and summability of 
g2(X) imply that F = f + En: where limn-->oo liEn II = 0 and f = {rk}~o with 

k 

rk(Xk; Yk; Zk; x, y, t, Zl, Z2) = II r(Xj - Yj; (j) L r(x - u - t; ZI) g(u - Y; Z2) 

j=1 u 

where r(x; z) is defined in Theorem 4.l. 
Now, if T = {Tkl~o is a unique solution of the equation T = f + AIT, then 

. - - k-
hmn-->oo liT-Til = 0 and Tk(Xk; Yk; Zk; x, y, t, Zl, Z2) = I1j =1 r(Xj -Yj; (j) r(x-
y, t; Zl, Z2), where f(x, t; Zl, Z2) is a solution of the equation 

f(x - y, t) = 2.:u f(x - t - u; Zl) g(u - Y; Z2)+ 

w2 2.:8 [r(O; Z2) f(x - s, t) + r(x - s; Z2) f(o, t) ], 
(6.11) 

provided that this equation is uniquely solvable. The latter fact can readily be 
proved in the space with the norm 

IIfil = sup sup 1 f(x, t; Zl, Z2) 1 
1 Imzl,212': 1} x,t 

with 1}1 specified by (6.10). Besides, it is easy to check by direct calculation that 

where r I2 (X-t) is the product of the Toeplitz operators rlz = Zl 2 whose kernel 
is specified by (4.3), i.e. ' 

According to (6.2), h(k) is even. Thus, r 12 (X) has the same property and since 
v(x) specified by (6.4) is odd, the second term of (6.12) gives no contribution to 
(6.5). Besides, since the Fourier transform of v(x) is "Vh(k), the substitution of 
(6.11) into (6.5) yields (6.3) for a = nand 1 Imzl,2 12': 1}. By using the analytic 
continuation arguments it is easy to show that the same limiting relation is true 
for all 1m ZI,2 i- 0 . Thus, we have proved the proposition for a = n. 

7. DISCUSSION 
As we mentioned in Section 5, the deformed semicircle law appeared for the first 
time [20] in a somewhat different problem on the limiting eigenvalue distribution 
of the random matrices, known as the deformed Wigner ensemble. This ensemble 
arose in nuclear physics (see e.g. [18,26]), where it was proposed in order to describe 
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the statistics of low-lying levels of heavy nuclei. Later similar ensembles appeared 
in quantum field theory [4], quantum chaology [9] and statistical mechanics [8]. 

The main difference of the respective random matrices from those modelling 
elementary excitations in disordered condensed matter (in particular, the random 
operators (2.1)-(2.3)) is that the former have all the entries of the same order 
of magnitude (e.g. identically distributed ), while the latter have nonzero entries 
only on the finite number b of diagonals adjacent to the principal diagonal 
(for instance in (2.1) b = (2pR)d + 1 ,where p is the radius of the support 
of ¢(t)). In other words the former random matrices correspond to nonlocally 
interacting disordered systems (the range of the interaction is of the order of the 
size of the system), while the latter correspond to the locally interacting (short 
range) systems. Therefore it is rather natural that we have obtained the deformed 
semicircle law as the result of the limiting transition R, d, n ---+ 00 . 

Let us consider the finite volume version of (2.1), i.e. the restriction HAR ) 

of (2.1) to a finite cube A c Zd centred at the origin and having the side length 
L . Then the Wigner ensemble of random matrices corresponds to (2.1) with 
d = 1, L = 1 = 2m + 1, R = 2m and ¢(t) = Xl(t) ,where Xl(t) is the 
indicator of the interval [-1/2,1/2]. Therefore Theorem 5.1 of this paper and 
the results of [20] (see also [12]) show that the deformed semicircle law is the 

limiting eigenvalue distribution in the two extreme cases of HAR ) : the first one 
corresponds to the two successive limiting transitions L ---+ 00 and then R ---+ 00 

(Theorem 5.1), while the second one corresponds to the simultaneous limits L---+ 
00, R ---+ 00, LR-1 ---+ 1 . In view of these results it is natural to analyse the 
intermediate cases when L ---+ 00 and R ---+ 00 but O:S v == lim L R-1 :s 1 . It 
is the so-called band random matrices, which appear for instance in the studies of 
quantum chaos [5]. In paper [13] it was shown that under fairly general conditions 
(condition (2.1b) in essence) the limiting eigenvalue distribution of these random 
matrices with Ho = 0 is again the semicircle law if v = 0 . The case of 
o < v < 1 is more complicated (for details see [3,13]). 

We have mentioned in Introduction that there exists an analogy between the 
spectral problems which we are studying in this paper and the mean field theories 
in statistical mechanics and solid state theory. Therefore it is natural to compare 
our results with results of mean field type approximations developed in the theory 
of disordered systems (see reviews [4,17,28]). These approximations are known 
also as single-site approximations and are applied mainly to the averaged Green 
function of the respective random operator. 

The most widely accepted approximation of this type is the coherent potential 
approximation (CPA). It was proposed and applied to random operators with a 
diagonal disorder, i.e.the discrete Schrodinger operator 

-h ~disc + q(x), x E Zd (7.1) 

with an i.i.d. random potential first of all. Therefore one cannot expect too much 
similarity between our results obtained for the "opposite" case of the "maxi-
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mum" off-diagonal disorder and results of the CPA. In particular for the Cauchy­
distributed random potential (the Lloyd model), when 

(7.2) 

the basic relations of the CPA [8,21,34] 

E{ G(X,XiZ)} = Go(O,z+Ll(z)), (7.3) 

E{ q(x) + Ll(z) } - 0 
1 + (q(x) + Ll(z)) Go(O, z + Ll(z)) -

(7.4) 

yield the following for the selfenergy Ll(z) 

Ll(A + ic) = iT signc. (7.5) 

Since according to our notation the l.h.s. of (7.3) is r(z), we can write (7.3) and 
(7.5) for Imz i 0 as 

r(z) = ro(z + iT). (7.6) 

This formula is obviously different from our basic equation (2.9) which determines 
the selfenergy 

Ll(z) = w2 r(z) (7.7) 

as the solution of this equation. Nevertheless, as was shown in [25], the equations 
(7.3) and (7.4) yield (2.9) if the probability distribution of q(x) is the semicircle 
law (5.3). 

According to many suggestions and numerical results, the accuracy of the 
CPA increases with increase of the coordination number of a lattice, i.e. its dimen­
sionality in particular (note that no general quantitative criteria for the validity of 
the CPA seem to be available). Consider in this connection the Lloyd model (7.1), 
(7.2) again. It is well known that for this model [17] 

E{G(x, Yi,x + ic)} = Go(x - Yi,x + ic + iT· sign c). (7.8) 

Comparing this relation with (7.3) and (7.5) we conclude that the CPA is exact 
for the Lloyd model. Now, rescaling the translation invariant part of (7.1) in ac­
cordance with (2.2b) h = hd d- 1/ 2 , we find from (7.8) with x = Y and Imz > 0 
that 

r(z) == lim E{G(X,XiZ)} = J(,x - z - Ll(z) )-lNo(dA), 
d--->oo 

where No(dA) is the Gaussian distribution given by (2.10) and Ll(z) is given by 
(7.5). This formula as well as (7.6) is different from equation (2.9) (with the same 
No(d,x)) according to which the selfenergy is given by (7.7). 

Thus, at least in the case of the Lloyd model, the d = 00 limits of the 
exact averaged diagonal element of the Green function and of its CPA form are 
different from the same limit of E{G(x, Xi z)} for the random operator (2.2) with 



Limits of Infinite Order 187 

an off-diagonal disorder satisfying (2.1). This conclusion is supported by recent 
diagrammatic analysis [24], according to which the d = 00 limit of E{G(x,x; z)} 
and of its CPA form coincide for an arbitrary random i.i.d. potential in (7.1). 

To this point we have being discussing the first moment of the Green function 
which determines equilibrium characteristics of disordered systems. However, to 
calculate kinetic characteristics, the conductivity first of all, we need to know the 
second moment of the Green function. It was recognized long ago [7,28] that the 
simple decoupling E{ G G} = E{ G} E{ G} , which is in the spirit of any single-site 
(mean field type) approximation including the CPA, is inconsistent with certain 
physical and mathematical conditions. The most important is the Hilbert identity 
which plays the role of the Ward identity here. It was also found that a modification 
of this decoupling which is free of the above mentioned inconsistencies should only 
take into account the multiple scattering of two particles by the same site [23]. 

As we have mentioned above the infinite R, d and n limits do not coincide with 
the CPA. However these limits have similar properties. In particular, according to 
Theorem 4.1, all the Green function moments decouple into the products of the first 
moments in these limits and, according to Section 6, this fact does not contradict 
the Hilbert identity. The reason is not too fast decay of the respective remainders. 
As a result we cannot perform these limits inside the sums over the whole lattice 
entering into the Hilbert identity or in expression (6.5) for the Stieltjes transform 
of the conductivity. To calculate an expectation containing the mentioned sums 
we are to consider a larger family of quantities including both the products of the 
Green functions and certain infinite sums of some of these products and to derive 
a new infinite system of equations for the expectations of this family. However 
the common feature of this new system and the systems for the expectation of the 
products of the Green functions is that in both cases the solutions of the respective 
limiting systems have a factorized form (see (4.1) and (6.11)) in accordance with 
the spirit of the single-site approximations. 

This should be regarded as the proper mathematical mechanism of these 
approximations. 

It is worth noting that, though the respective corrections (see e.g. (6.12)) are 
neccessary to guarantee the Hilbert identity, they do not contribute to the conduc­
tivity (6.5) due to the antisymmetry of the velocity operator v in (6.4). Thus, we 
can use the simple decoupling E{ G G} = E{ G} E{ G} in the final calculation of 
the conductivity. This fact is also well known in the theory of disordered systems 
(see [7,17,28]). 

Vanishing of the simplest two-body corrections to the conductivity seems 
physically related to vanishing of the backscattering term in a transport equation 
[23]. As is generally accepted (see e.g. review [15]), the absence of the backscat­
tering contribution is in turn closely related to the absence of localization. This 
is in agreement with the absence in our formulae of such well known manifesta­
tions of localization as exponential tails of the IDS, vanishing of the zero frequency 
conductivity for the Fermi energies for which the density of states is nonzero, etc. 

Since for finite R, d and n the localized states should always be present at 
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least at the edges of the spectrum of the operators (2.1)-(2.3), we have to conclude 
that the limiting transitions R, d, n -t 00 "remove" completely the pure point 
spectrum of these operators. In particular, since according to (6.3) in all the three 
limits (as well as in the CPA) the support of the zero-frequency conductivity as 
a function of the Fermi energy coincides with the IDS support , then one may 
speculate that the edges of this support coincide with the R, d, n -t 00 limits of 
the mobility edges of respective operators. 
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Atoms at Finite Density and Temperature 
and 

the Spectra of Reduced Density Matrices* 

N. Macris and Ph. A. Martin 

1 Introduction 

Why is matter constituted with atoms and molecules? Everyone who had a first 
course in quantum mechanics is tempted to answer: because Schroedinger has 
provided us with his equation (~= Laplacian on R 3, V(x) = potential) 

n? 
- 2m~1jJ(x) + V(x)1jJ{x) = E1jJ(x) (1.1) 

If V(x) is sufficiently attractive there exists square integrable bound states 1jJ{x) 
with negative energies E < O. More generally, the Schroedinger equation predicts 
accurately binding energies, so atoms and molecules exist! 

In fact, the situation is not so simple. We observe generally atoms and 
molecules in thermodynamical phases having non vanishing density and tempera­
ture. Consider a quantum particle of mass m in a finite domain A with Hamiltonian 

n? 
HA = --~A + V{x) 

2m 
(1.2) 

with Dirichlet conditions on the boundaries of A. Then, according to the principles 
of statistical mechanics, the probability 

(1.3) 

to find the particle in a bound state of energy E at inverse temperature (3 behaves 
as 

(1.4) 

·work supported by the Fonds National Suisse de la Recherche Scientifique 
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when IAI ----t 00, where )..B = (27r!"2) 1/2 is the de Broglie thermal wave length. This 
is so because the partition function ZA is O(IAI) as a consequence of the fact that 
the number of ionized states (forming the continuous spectrum of Has IAI----t 00) 
is extensive. The quantity (1.4) is vanishingly small, so the particle has no chance 
to bind [1]. The way to solve this apparent paradox is to consider a state with an 
extensive number of particles N = piAl (p > 0 is the density) so that the space 
available per particle remains finite in the thermodynamic limit. The conclusion is 
that atoms may form only if there is a non vanishing density of them, and only if 
they have (at least weak) mutual interactions. Thus understanding the formation 
of an atom requires a study of the many-body situtation. 

This problem has been beautifully treated by Ch. Feffermann in ref [2]. In 
this work, Fefferman considers the quantum mechanical electron-proton gas at 
thermal equilibrium. He shows that provided that the stability of matter bound 
holds with an optimal constant, the system is asymptotic to a perfect gas of hydro­
gen atoms in a suitable low-density low-temperature limit, the" Saha limit" (see 
section II). Conlon, Lieb and Yau have extended the results to a general system 
of nuclei and electrons [3]. We present here a simplified model (a single quantum 
particle interacting with a gas of classical particles by means of short range forces) 
exhibiting the main features of the problem. In section II, we present the model 
and describe the formation of an atom in the low-density, low-temperature limit. 
In section III , we discuss how to formulate the bound and ionized states problem 
at non vanishing density in terms of the spectral properties of the reduced two­
particle density matrix. Section IV is devoted to some aspects of the proofs, and 
concluding remarks can be found in section V. 

2 The Saha limit 

We consider a single quantum particle of mass m (the q-particle) in thermal equi­
librium with a gas of classical particles of mass M (the c-particles). The q-particle 
interacts with each of the c-particle by means of an attractive potential V(x). The 
hamiltonian of the q-particle in presence of a configuration T"l, ... , T"n of c-particles 
IS 

(2.1) 

If there are no c-particles, HO = - ;~ ~ is purely kinetic, where ~ is the Laplacian 

on R3. Moreover, the c-particles may have a mutual potential interaction energy 
U(T"l' ... , T"n). We make the following assumptions: 

(i) V(x) ::::: 0, V(x) is locally square integrable and there exists M > 0 such that 

M 
V(x) ::::: Ixl'?' TJ>3 as Ixl----t 00 (2.2) 
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Under the condition (i) the hamiltonian (2.1) has at most a finite number of bound­
states of finite multiplicities with negative energies and an absolutely continuous 
spectrum on [0,00]. 

(ii) we assume that Hlh = 0] = -;~6. + V(x) has a ground state 'l/Jt(x) with 
energy EI < o. 
(iii) Stability estimate for the total energy: for n 2: 2, there exists a constant K, 
such that 0 < K < lEI I and 

(2.3) 

Because of (ii) the inequality (2.3) is only possible with K strictly less then 
lEI I for n 2: 2. It means that the binding energy per c-particle is the largest when 
the q-particle binds with only one c-particle. 

When all particles (including the q-particle) are in thermal equilibrium at 
inverse temperature (3, the corresponding grand-canonical partition function is 

(2.4) 

In (2.4), H1\h, ... , Tn] is the hamiltonian (2.1) with Dirichlet conditions on the 
boundaries of Aj moreover 

( 
M )3/2 

Z = 27r(31i2 e{3J.t (2.5) 

is the activity and J.L is the chemical potential of the classical gas. 
A quantity of interest is the average energy distribution p 1\ (dE, (3, J.L) of the 

q-particle in the gas, conveniently defined by its Laplace transform 

(2.6) 

where < - >1\ ((3, J.L) denotes the grand-canonical average. 
The following results are obtained in [4] when the classical particles form a 

gas of hard spheres of diameter d. 

Proposition 2.1 Stability with a good constant 
Given a potential V(x) satisfying (i), the stability bound (2.3) holds for d suffi­
ciently large. 

Proposition 2.2 Low-temperature low-density limit 
(a) Fix J.L < 0 and let (3 ---+ 00 (so that the activity (2.5) tends also to zero). Then 

(2.7) 
(2.8) 
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(b) Set JL({3) = E1 + (1{3-1 + O({3-1) for some number (1, -00 < (1 < +00, then 

lim g(>.., (3, JL({3)) = 0: + (1 - 0:)e-AE1 
{3---'>OO 

(2.9) 

with 

(( M)3/2 )-1 
0: = - eU + 1 , 

m 
0<0:<1 

These results have the following interpretation. If JL < E1 (2.7) implies that 
p(E, (3, JL) -; 8(E), {3 -; 00 i.e. the energy distribution of the q-particle is concen­
trated at the edge of the continuous spectrum : the particle does not bind. If JL 
belongs to the (open) interval (Eb -K), (2.8) implies that p(E, (3, JL) -; 8(E - E1), 

(3 -; 00 i.e. the particle binds with probability one. The case (2.9) (JL({3) tends to 
El linearly as the temperature vanishes) interpolates between the two limits (2.7) 
and (2.8): binding occurs with probability 1 - 0:. When JL is sufficiently negative 
(case (2.7)), the density is lowered too fast as {3 -; 00 to permit binding: the en­
tropy effect wins. When the decrease of the density is slower, we find successively 
partial binding (case (2.9), ionization equilibrium phases) and full binding for the 
specific range (E1' - K) of the chemical potential. The situation is described in 
the JL, T phase diagram (fig 1). The same picture is valid in the full quantum me­
chanical electron proton gas (provided that an appropriate form of the stability of 
matter holds) [2], [5]. 

Let us say a few words about the mathematical techniques that are involved 
in the proof of the proposition 2. The proof relies on an analysis of the low activity 
expansion of the quantity 

!((3) r 1 SA({3, JL) ~ nf ((3) 
,z = A:'~ iAT S~\({3, JL) = t:o Z n 

(2.10) 

In (2.10), the partition function (2.4) is normalized by that of the purely classical 
gas SA ({3, JL). Clearly the n-th order Mayer coefficient !n({3) of the series (2.10) 
will involve combinations of the kernels 

k = 0, 1, ... n (2.11) 

integrated on x and the location of the c-particles rl, ... , rk (the explicit expressions 
can be found in [4]). Thus, as (3 -; 00, according to (2.5), the dominant contribution 
to zn !n({3) is of the order 

(2.12) 

where 
En = inf infspectrumHnh, ... ,rn] (2.13) 

Jr;-rjl~d 

If JL is chosen in the open interval (Eb -K) (case (2.8) of proposition 2) the 
stability bound (2.3) implies 

(2.14) 
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So the term zh(f3) corresponding to the presence of a single c-particle dominates 
the low activity series. The ionization equilibrium case (part (b) of proposition 
2) occurs when the two first terms of the series (2.10) (free q-particle and one 
c-particle term) are of the same order as f3 ----> 00. The technical problem is to show 
that the rest of the series is negligible. For this, we establish pointwise bounds on 
the kernels 

(2.15) 

in terms of the free kernel that are uniform with respect to the location of the 
c-particles. The theory of Schroedinger semi-groups developed by B. Simon [6] 
is extensively used in this respect. These estimates in conjunction with standard 
methods to control the Mayer series enable to prove the proposition. We remark 
that the hard core repulsion is essential for the validity of (2.3). For a free gas 
of c-particles, one can show that En is a convex function of n, so there are no 
values of f-l such that the Boltzmann weight of any finite aggregate is dominant as 
f3 ----> 00. 

It is interesting to investigate the behaviour of the correlations in our model. 
They are given by the grand-canonical reduced density matrices defined by 

(2.16) 
PA,k+1 is the density matrix of the q-particle in presence of k c-particles located 
at rl, ... , rk· 
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The low-temperature low-density limit of P2(X, ylr) corresponding to parts 
(a) and (b) of the proposition·2 is 

(a) { ° if I-" < E1 
l~~p2(x,Ylr)= ~i(x-r)'1/J1(y-r) ifE1 <1-"<-K (2.17) 

(b) 1-"((3) = E1 + a(3-1 + 0((3) 

(2.18) 
When I-" E (El, - K), one finds as expected that the correlation between the q­

particle and a c-particle at r is given by the ground state wave function '¢1 (x). In 
the case (b), this correlation is weighted by the probability 1 - a that the atom 
forms. 

3 Spectra of reduced density matrices 

We now come to the study of our model at non vanishing density. If P # 0, 
the notion of individual atoms looses in principle its meaning and we must find 
an alternative description of the system. If the pair density matrix P2(X, ylO) is 
known, it is natural to consider an effective two body Hamiltonian Heff formally 
defined by 

P2(X, ylO) - (I [-(3H ll) - x exp eff Y 
P 

(3.1) 

Heff depends on the density P and the temperature (3-1. As P ---> 0, it should 
approach the Hamiltonian HI [0] of the pair formed by the q-particle with a c­
particle at the origin in empty space. As P increases, He!! progressively embodies 
the effects of the many particle system on this pair. These effects are seen in the 
deformation of the spectrum of He!! as P varies. If P is small, the spectrum of 
Heff is expected to be close to that of H1 [0], i.e. it consists of a continuous part 
with a number of isolated eigenvalues. When P gets larger, the eigenvalues as well 
as the treshold of the continuous spectrum are displaced. It may even happen that 
above a large enough critical density Pc all the eigenvalues have merged into te 
continuum. If this phenomenon occurs, one speaks of pressure induced ionisation, 
or Mott effect, and Pc is the Mott density. In a plasma, the Mott effect results in 
a strong increase of the electrical conductivity. These properties are reflected in 
the spectrum of P2 which is simply the exponential of that of Heff. A qualitative 
picture of the spectrum of P2 as a function of the density when the Mott effect 
occurs is given in fig 2. 

We now state the main results that we obtain for two different models of 
the system of c-particles: a perfect gas (pg) and the "cell model" of a fluid (cm). 
In the perfect gas model we simply set U(r1' ... , rn) equal to zero and p = z. In 
the cell model, one divides the space into cubic lattice cells of volume ~ = a3 (a 
is the lattice spacing). The allowed configurations of the c-particles have at most 
one particle per cell, with uniform distribution in the cell; the probability for the 



Atoms at Finite Density and Temperature 

spectrum 0/ p 2 

speclrluno/ 
txp (} H') ~_­

al p=O 

figure 2. 

MOil 

effecl 

Edge 0/11 .. 

continuous sper.mu7I 

197 

occupation of a cell is 1~Z and the corresponding number density is p = i 1~z. An 
additional average over the lattice translations is performed in order to restore the 
full translational symmetry. The advantage of the cell model in our case is that it 
mimics a short range repulsion between the particles without allowing for phase 
transitions such as cristallisation which would occur in a system of hard spheres 
at high density. Let us note an important difference between the perfect gas and 
the cell model which will lead to different spectral properties of P2 in the two 
models. In a perfect gas, the particle fluctuations grow linearly with the density p, 
which corresponds on a microscopic scale to large variations of the potential seen 
by the q-particle.On the contrary, in the cell model, the particle fluctuations tend 
to zero as full occupancy is approached, leading to a rather uniform potential at 
high density. 

We introduce the Fourier transform 

(3.2) 

which physically represents the momentum distribution of the quantum particle in 
the classical gas. Note that if p = 0 it reduces to the usual Maxwellian distribution 
namelyexp[-,8lkI 2]. 

The propositions 3.1 and 3.2 hold for both models at any values of the density 
and the temperature 

Proposition 3.1 
For any p and,8, P1 has an absolutely continuous spectrum in the interval [0, h (0)]. 
Moreover Ih(k)1 < ,01(0), k i= O. 

Proposition 3.2 
P2 has an absolutely continuous part [0, E], and possibly a finite number of eigen­
values Av, Av > E, with E = P,01 (0). 
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These two propositions validate the general features of fig 2. As far as the 
low density regime is concerned, we have the more precise statement of proposition 
3.3, valid for both models. 

Proposition 3.3 
Let Ev be the eigenvalues of HI [0]. Then P2 has isolated eigenvalues Av satisfying 
limp->o 'i; = exp( -(3Ev) and ~ = O((2Jr(3)3/2p). 

In the high density limit, the perfect gas and the cell model exhibit different 
spectral properties, stated in propositions 3.4 and 3.5. 

Proposition 3.4: perfect gas 
For P large, P2 has at least one eigenvalue A > ~. This holds for arbitrarily weak 
attractive potentials. Moreover ~ = O(pl/4) 

Proposition 3.5 : cell model 
The discrete spectrum of P2 is empty for P large enough and ~ = O(l/4). 

These two propositions show a striking difference between the two models at 
high density. In the cell model the Mott effect indeed occurs as indicated in fig 2. 
On the contrary, in the perfect gas there always remains an eigenvalue of P2 above 
the continuous spectrum. 

4 Proofs of the spectral properties 

In this section we illustrate the basic ideas of the proofs of the results described in 
section III. These are based on a functional integral representation of the kernels of 
P2 and PI and use tools from the spectral analysis of Schroedinger operators such 
as the stability of absolutely continuous spectra under trace-class perturbations, 
regular perturbation theory, the variational principle and the Birman-Schwinger 
principle. 

The functional integral representation of the kernels of the density matrix is 
based on the Feynman-Kac formula 

where 

O:xy(8) = X + 8(Y - x) + ~0:(8) (4.2) 

and 0: is the Gaussian Brownian bridge process 0:(8) = (0:1 (8),0:2 (8),0:3 (8)), 0 < 
8 < 1, 0:(0) = 0:(1) = 0 with zero mean and covariance 8(1 - t)8ij ,8:::; t. XA(O:xy) 
represents the characteristic function of paths O:xy that stay in A for all 8. Inserting 
(4.1) in the definition (2.14) for k = 0 and k = 1 one can derive the following 
formulas (the reader can find a detailed derivation in apppendix A of ref. [1]) for 
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the density matrices of the perfect gas and cell models 

(4.3) 

(x_y)2 

( 1
0) - P e--wr J D G ( ) -(3 f01 dsV(o:xy(s)) 

P2 X, Y - N(p, (3) (27f(3)3/2 a 2 a xy e ( 4.4) 

where N (p, (3) is a normalization factor 

N(p,(3) = (27f(3)-3/2 J DaGI(a) (4.5) 

In (4.3) and (4.4) the functionals GI(axy ) and G 2(axy ) contain the effect of the 
environment and appear when one integrates over the coordinates rj of the clas­
sical particles. Their expression is of course different for the two models under 
consideration. For the perfect gas model (pg) one finds 

whereas for the cell model (cm) of a fluid 

( 4.7) 

(4.8) 

with 
Cj,r(aXY ) = In [1 + p L dr (e -(3 f01 dsV(O:xy(s)-r-ja-r) - 1) ] (4.9) 

Remark that as p --> 0 (4.7) reduces to (4.6). Moreover for p = 0, Gj , j = 1,2 are 
identically 1 and PI(X, y), P2(X, ylO) reduce respectively to the kernels of exp[(3~] 
and exp[-(3( -~ + V)]. In all cases the kernels define positive self-adjoint integral 
operators PI, P2 from L2(R3,dx) to L2(R3,dx). 

Part of our analysis of the spectral properties is based in the introduction of 
the truncated reduced density matrix Pr, 

P2 = PPI + Pr (4.10) 

the kernel of which can easily be deduced from the previous formulas. We con­
sider PPI as the" unperturbed operator" (when P = 0 it becomes proportional to 
exp[(3~]) and Pr as the "perturbation" (when P = 0 it becomes proportional to 
exp[-(3( -~ + V)]- exp[(3~]). 
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Inspection of the kernels of the operators PI, P2, PT leads to useful pointwise 
bounds, which will be needed later and are stated here without proof (see [7]). 
Setting 

(4.11) 

we have 
(x_y)2 (x_y)2 

1 e-~ ePv((3) e-~ 

N (p, (3) (21f (3)3 /2 .s PI (x, y) .s N (p, (3) (21f (3)3 /2 ( 4.12) 

(x_y)2 
e[pv((3)+(3 sup x lV(x)IJ e-~ 

P2(X, ylO) .s N(p, (3) (21f(3)3/2 (4.13) 

These bounds imply that 

kf:::: max [s~p J dy Ip(x, y)l, s~p J dx Ip(x, Y)I] < 00 (4.14) 

and as a consequence [8], PI and P2 are bounded selfadjoint operators on L2(R3). 
For the kernel of the truncated density matrix we have 

_ (x_y)2 1 

e 2(3 J r 2 /2 IPT(X, y)1 .s C(p, (3) (21f(3)3/2 Do: io ds [1 + O:xy(s)1 t'1 (4.15) 

where the constant C(p, (3) depends only on the density and the temperature. This 
estimate is valid for the two models. For the cell model of a fluid we can obtain a 
better estimate for small a (i.e. high density) which turns out to be important for 
the high density results, 

Ip~m(x,Y)I.s Ae[(3supx lV(x)ll(z-1 + a) ~;1f: J Do: fal ds [1 + O:Xy(sWt'1/2 

(4.16) 
This shows that PT can be made arbitrarily small at high densities (large z, small 
a) in the cell model of a fluid. Propositions 3.1 and 4.1 (see below) playa key role. 
We proceed to the proof of proposition 3.1 

Proof of Proposition 3.1 
By (4.12), Pl(X, 0) is in L2(R3) nL1(R3). Moreover, inspection of (4.3) shows that 
Pl(X,y) = Pl(X - y). Thus PI acts as a multiplication operator in the Fourier 
representation, i.e. for ¢ E L2(R3), Pl¢(k) = jii(k)¢(k). Because of the upper 
bound in (4.12) ih(k) is an entire function of the components of k, so it cannot 
be constant on open sets of R3. Thus PI has an absolutely continuous spectrum 
given by the image of the function ih(k). Since ih(k) ~ 0 and limlkl---+oo i51(k) = 0 
the spectrum is [O,SUPlkl i51(k)]. Finally since Pl(X,O) ~ 0 we have 

PI (0) .s sup i5l (k) .s J dx Ipl (x, 0)1 = J dx PI (x, 0) = PI (0) (4.17) 
Ikl 
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Then the continuous spectrum is given by [O,h(O)]. Furthermore since PI(X, 0) = 
PI (-x, 0) and PI (x, 0) is strictly positive (from the lower bound in (4.12)), for any 
k -::j:. 0 the integrand of 

h(k) = J dx cos(k,X)PI(X, 0) (4.18) 

is strictly less than PI (x, 0) on some open set not containing the points k.x E 271'Z. 
Hence h(k) < PI(O). This completes the proof of the proposition. 

Proposition 4.1 
For any P and (3, the truncated reduced density matrix PT = P2 - PPI belongs to 
the Trace-Class. 

Proof of Proposition 4.1 
Let h be the multiplication operator by the function h(x) = 1 for Ixi ::; 1 and 
h(x) = Ixl-(~+e) for Ixl 2: 1, with to > O. One can easily check that the operator 
K = (_~+1)-1 is Hilbert-Schmidt. Since PT = K(K-IPT) it is sufficient to prove 
that K- I PTh is Hilbert-Schmidt, i.e. 

(4.19) 

One can show [7] that I(-~x + I)PT(x,y)1 satisfies a bound similar to (4.15), 
implying that (4.19) holds with our choice of h provided to is small enough and 
17 > 6. 

General Properties of the Spectrum 
Now we have gathered all the preliminary material needed to sketch the proof of 
proposition 3.2. The philosophy of the proof is closely related to the methods used 
for Schroedinger operators as explained after (4.10). 

Proof of proposition 3.2 
First we state immediate consequences of Propositions 3.1 and 4.1. From standard 
theorems [8] on the stability of absolutely continuous spectra P2 = PPI + PT has 
an absolutely continuous part in its spectrum spanning the interval [0, PPI (0)]. 
Moreover by the Weyl-von Neumann theorem, this interval coincides with the es­
sential spectrum. Since P2 is a positive operator, outside this interval the spectrum 
can consist only of isolated eigenvalues all greater than ~ = ph (0) , with finite 
multiplicities. 

Since P2 is bounded it could have an infinity of eigenvalues only if ~ would 
be an accumulation point of the discrete spectrum. Using the Birman-Schwiger 
technique we show that this does not occur, and thus the number of eigenvalues 
is finite as stated in 3.2. For>. > ~ we introduce a Birman-Schwinger operator 

(4.20) 
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which is Hilbert-Schmidt since for A> E, (A-ppt}-l is bounded, and IPr1 1/ 2 (here 
IPrI = J py.Pr )is Hilbert-Schmidt from Proposition 2. By the Birman-Schwinger 
principle [10], [11] 

{Numberofeigenvaluesofp2greaterthanE} ~ lim TrK(A)*K(A) (4.21) 
A->~ 

We will show that the limit in (4.21) is in fact finite. We make the following 
decomposition 

2 1 
Tr K(A)* K(A) = Tr IPrI S(A)lpTI S(A) + )."Tr IPTI S(A) IPTI- A2 Tr IPTI2 (4.22) 

where S(A) = (A - PPl)-l - A-I. As A ---+ E the last term in (4.22) has a finite 
limit. Let us control the limit of the second term. From the proof of Proposition 1 
we see that S ( A) has a kernel defined by the convergent integral 

S(A)(X,y) = Jdkeik.(X- y ) pih~k) 
A - PPl(k) 

(4.23) 

and since IPrI and S(A)IPrI are Hilbert-Schmidt we can represent the trace by 
multiple integrals involving (4.23) and the kernel of IpTI. Then estimating the 
integrals by the integral of the absolute value we arrive at 

Tr IPrI S(A) IPrI ~ {J dz J dy J dx IlpTI(z,x) IPTI(x, y)l} J dk A ~;~~~k) 
(4.24) 

With the help of the estimate (4.15) we can show that the triple integral in 
large braces converges. Here the non-trivial point is that they involve the kernel 
IPTI(x, y) whereas (4.15) gives information on the decay of Pr(x, y). This problem 
is circumvented by the following successive applications of Schwartz inequality 

[ ]
1/2 

J dx J dy J dzIIPrI(x, z)1 PTI(z, y)1 ::; J dx J dzIIPrI(x, z)1 2 

[ ]
1/2 

= J dxh(x)[h(x)t 1 J dzllpTI(x,z)12 

[ ]
1/2 

~ J dxh(x)2 J dx J dzh(x)-21IPTI(x, z)1 2 

(4.25) 
In the last term of (4.25) we recognize the Hilbert-Schmidt norm of h-1IPTI which 
is equal to that of h -1 Pr. One can check that the latter is finite by using the 
bound (4.15). 

It remains to check that 

lim Jdk pih(k) = Jdk ih(k) 
A->~ A - pih(k) p(O) - ih(k) 

(4.26) 

is finite. We remark that: 
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(i) by proposition 1, the integrand has a unique singularity at k = 0, 

(ii) J dXXPi(X,O) = ° because Pi(X,O) = p(-x, O) and 

(iii) ° < J dx IxI2 Pi (x, 0) < 00. 
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Thus the singularity of the integrand is O(lkI 2 ), an integrable one in 3 di­
menSlOns. 

The control of the limit A ---+ ~ for the first term in (4.22) can be achieved 
by the same type of arguments (see [7]). This completes the proof of 3.2. 

Proof of Proposition 3.3 (Low density limit) 
The regime of fixed temperature and low density is easily treated by regular per­
turbation theory. Expanding the functionals (4.6) and (4.8) to first order in the 
density yields 

P2 = P (e-,i3H[Ol + R) 
N(p, (3) 

(4.27) 

where the kernel of R is expressed by a functional integral and the operator norm 
satisfies 

IIRII ::; max [s~p j dy IR(x, y)l, s~p j dx IR(x, Y)I] ::; e[,i3supx !V(x)ll(ePv (,i3) - 1) 

(4.28) 
Thus for the two models under consideration for small p, IIRII = O(p) so for (3 fixed 
and P small enough P2 has isolated eigenvalues Av satisfying limp--.o ~ = e-,i3Ev 

(recall that Ev are the eigenvalues of H[O]). 

Proof of proposition 3.4 (High Density Limit for the Perfect Gas Mode0 
Our proof of the existence of eigenvalues at high density for the perfect gas model 
is based on the variational principle. In view of Propositions 3.1 and 3.2, we know 
that the discrete spectrum is not empty if we can find ¢ E L 2 (R3), 11¢112 = 1 such 
that 

(4.29) 

The asymptotic behaviour of the left hand side in (4.29) can be computed exactly 
as P ---+ 00. For a sufficiently smooth normalized function ¢ one finds 

lim (¢'~2¢) = jdxl¢(xWe-,i3V(X) 
p--.oo 

(4.30) 

Thus if we choose ¢ not vanishing on the support of V (4.29) will hold. We remark 
that it will hold even if V is replaced by A V, ° < A < < 1, thus the perfect gas 
model supports bound states even if V does not. 

The computations involve the application of Laplace method to functional 
integrals of the form 
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for appropriate functionals g(x, a). It can be shown that the functional in the 
bracket of the exponential has a non degenerate absolute maximum at x = a = O. 
Expanding to second order around this maximum leads to the computation of 
Gaussian integrals with the modified brownian bridge measure 

Da exp [-~211 du 11 dv(6(u - v) -l)a(u)a(v)] (4.32) 

where 'Y is proportional to p. It turns out that this measure is intimately connected 
to the Schroedinger operator of a free particle in a uniform magnetic field and 
consequently the covariance can be explicitely calculated. 

Proof of proposition (3.5) (High Density Limit for the Cell Model of a Fluid) 
The proof of the absence of eigenvalue at high density rests on the Birman­
Schwinger principle in the form: P2 has eigenvalue A if and only if K(A) has 
eigenvalues -1. We establish that 

sup IIK(A)II < 1 
A~E 

(4.33) 

where 11.11 denotes the operator norm. The operator norm could be estimated by 
the Hilbert-Schmidt norm and then one could make estimates similarly as in the 
proof of 3.2 but this does not lead to sharp enough inequalities. Instead, we relate 
K(A) to the kernels of the reduced density matrices by the 

Lemma 
Let h(x) be the function used in the proof of Proposition 4.1. Then 

sup IIK(A)II ::::; ma + Ilhll~ max(m1' m2) Jdk pih~k) (4.34) 
A>E E E E - PP1(k) 

where 

ma = s~p J dy IPT(X, y)1 = s~p J dx IPT(X, y)1 

m1 =s~p J dx h(x)-2IPT(X, y)1 

m2 =s~ph(x)-2 J dyIPT(x,y)1 

(4.35a) 

(4.35b) 

(4.35c) 

For the proof of the lemma we refer the reader to [7]. Let us now show why it leads 
to (4.33). From (4.16) and translation invariance, we deduce easily that 

J dy IpT(x, y)1 ::::; A!1e/3sup" W(x)1 (z-1 + a)pjit (0) (4.36) 

Thus we see that 
~a ::::; C(!1)(z-1 + a) 

which can be arbitrarily small for large z and small a. 

(4.37) 
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For max(';;1,m2) we have a similar upper bound. The proof however is more 
complicated. It involves again the inequality (4.16), but also the asymptotic eval­
uation of functional integrals similar to (4.31) with 

(32 J r1 
24a drlJo dsVV(sx+V,Ba(s)-r)12 (4.38) 

replacing the functional in the exponential of (4.31). This comes about by con­
sidering the small a and large z behaviour of (4.7) and (4.8). To leading order 
the sums over the cells j become Riemann integrals and this leads to (4.38). As 
for the case of the perfect gas (4.38) has a non degenerate absolute maximum at 
x = a = 0 and the quadratic fluctuations around this point are governed again by 
the Gaussian measure (4.32). 

The same methods permit also to compute the asymptotics of the momentum 
distribution 

(4.39) 

with (W((3))2 = k J dr l:~=lIV a~i V(y)l2. Note that to leading order the momen­
tum distribution is a Maxwellian renormalized by the effects of the environment. 
This yields 

( 4.40) 

Gathering the bounds on ~i, i = 0,1,2 and (4.40) we obtain (4.33). We see that 
the result holds because for the cell model the density fluctuations are sufficiently 
reduced, as illustrated by (4.16), (4.37), to overcome the divergence in (4.40). 

5 Concluding remarks 

Beyond the Saha low density, low temperature regime, there are no generally 
accepted criteria, to characterize the pressure induced ionization that occurs at 
high densities. Here we have shown that the study of the spectral properties of 
the reduced density matrices can provide a precise formulation of the Mott effect 
at least in some models. This leads to interesting spectral problems which can be 
treated by the mathematical tools existing for Schroedinger operators, combined 
with functional integral techniques. 

The study of sections III and IV clearly shows that the disapearance of the 
discrete part of the spectrum (Mott effect) in the cell model is related to a signif­
icant reduction of particle fluctuations. On the contrary in the perfect gas model 
the variance of the number of particle in a given region of space is proportional 
to the density and for this reason the excess density can take appreciable values 
leading to the binding of the quantum particle to clusters of classical particles. As 
a consequence the discrete spectrum is not empty at high density for the perfect 
gas model. 
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Finally, we mention that the present problematic can be viewed from an 
other angle, namely that of disordered systems. One can consider that the quan­
tum particle is in the presence of annealed disorder, i.e. the disorder (the classi­
cal gas or fluid) adapts itself to the configurations of the quantum particle. The 
spectral properties of reduced density matrices of the annealed system have no 
obvious relationship with those of random Schroedinger operators which model 
systems with quenched (or frozen) disorder. However, a better understanding of 
the connections and differences between these two problems would be interesting. 
Also interesting would be the study of relationships between the spectral analysis 
presented here and the dynamical properties of systems with annealed disorder. 
Dynamical properties have been studied in the framework of the time dependent 
Born-Oppenheimer theory by coupled Schroedinger-Newton algorithms in similar 
models (see for example [12]). 
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Quantum Fluctuations in the Many-Body Problem 

A. Verbeure and V.A. Zagrebnov 

1 From Micro to Macro [1,2] 

1.1 The Micro: Microscopic Dynamical System 

Any microscopic dynamical system is a triplet (A, w, ad where: 

• A = UAA is the quasi-local algebra of observables where A are the bounded 
A 

subsets of IRd or 7Ld , [AN, AAII] = 0 if A' n A" = {0}. 

• w is a state of A. Denote by Tx, X E IRd or 7Ld , the space translation auto­
morphism of the translation over the distance x, i.e., Tx : A E AA -+ Tx(A) E 

AA+x. We assume that the state w is homogeneous: w 0 Tx = w for all x E IRd 

or 7Ld , and clustering: lim (ATxB) = w(A)w(B) for A, BE A. 
Ixl--+co 

• at is the dynamics described by the set of local Hamiltonians {H A} A. As 
usual we consider at as the norm limit of the local dynamics: at (A) = 
limexp(it[HA, ·])(A), A E A, i.e., at : A -+ A-norm-closure of A. The local 

A 
structure is only conserved for mean-field interactions, i.e., at : AA -+ AA· 

One assumes, usually, that the space and time translations commute: Tx(at(-)) = 

at(Tx(-)) and that w . at = w (time invariance). 

1.2 The Macro I: Weak Law of Large Numbers (WLLN) 

Definition: For any A E A, let us consider the local space-mean mA(A) = 
IAI-1 E Tx(A). Define the mapping m : A -+ CC by the w-weak limit 

xEA 

m(A) = weak-lim m(A) , 
A 

and let m(A) = {m(A) : A E A}. 

(1.1) 
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Then for the state homogeneous and clustering (see 1.1) one has: 

• [m{A) , A] = 0, i.e., m{A) is a set of observables at infinity Z~. 

• m{A) is an abelian algebra and m{A) = w{A) . 11, i.e., the algebra Z~ = (U. 11 
and wlm(A) = J.L is a probability measure. 

• The map m : A --+ m{A) is not injective (coarse graining), e.g., m{TaA) = 
m{A). 

• The macro-dynamics citm{A) = m{O:t{A)) induced by the micro-dynamics 
on m{A) is trivial: 
m{O:t{A)) = w{O:t{A)) . 11 = w{A) . 11 = m{A), i.e., cit = id. 

These properties yield that the macro-system I defined by the WLLN (1.1) is the 
triplet (m{A) = (u ·11, J.L = probability measure, cit = id). 

1.3 The Macro II: Quantum Central Limit (QCL) 

Definition: For any A E Asa = {B E A : B = B*} define the local mapping: 

Ft,A{A) = 

IAI1~2+6 ~)Tx{A) - w{A))eikx , k E lRl, 8 E lRl; (1.2) 
xEA 

i.e., the local fluctuation operator for the mode k. If 8 = 0, then this fluctuation 
operator is called normal. 

Central Limit Theorem (CLT) [1,2] 

Let 

{ w{A . B) - w{A)w{B) . , } 
'Yw{d) == ~~f, ]~~t IIAIIIIBII ; d::; dlst (A, A) 

BEAA , 

and 

Then for any A E Asa 

where Sw{A, B) = Re 2: w{{A - w{A)) . Tx{B - w{B))). 
xE71.d 

The result (1.3) establishes the meaning of the QCL: 

lim FA (A) = F{A), 
A 

(1.3) 

(1.4) 
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where F(A) is the normal fluctuation operator (corresponding to the local operator 
A) for the mode k = O. Now, as in probability theory, we face the problem of the 
identification of the right-hand side of (1.4) as a mathematical object. 

The CLT in probability theory says that the limit is again a random variable 
but of canonical nature: a Gaussian random variable. In the QCL the {F(A)}, 
A E Aas can be identified with the algebra of the fluctuation operators which is 
also somehow canonical. 

Let Asa be considered now as a vectorspace with the symplectic form aw(-'·) 
defined by the WLLN: 

Consider the Weyl algebra W(Asa,aw) generated by the Weyl operators W(A) = 
exp(ibw(A)), A E A sa , where 1l'w(bw(A)) is the Boson field operator, acting on the 
representation space 11.w of the quasi-free state w defined by the form Sw(', .): 

(1.5) 

The identification (1.3) with (1.5) yields the identification: F(A) = 1l'w(bw(A)). 
Hence, the QCL gives a transition from the micro system (Asa, w) to the macro 
system of the fluctuation operators (F w (Asa , a w), w), where by F w( A sa , a w) 
{F(A)} AEAsa we denote the CCR-algebra on the symplectic space (Asa , aw). 

The following properties are consequence of the above construction: 

• The map F: Aas ~ Fw(Asa,aw) is not injective for k = 0 (zero-mode coarse 
graining), e.g. Tx(F(A)) == F(Tx(A)) = F(A); Tx = id. 

• The (non-trivial) macro-dynamics Ot(F(A)) == F(at(A)), induced by the 
micro-dynamics, exists for the finite-range interactions. 

• The macro-dynamics Ot is a quasi-free map: 

• The w . at = w implies the ot-invariance of the macro state w. 

• The (at, ,13)-KMS property of the micro state w implies the (Ot, ,13)-KMS 
property of the macro state w. 

These properties yield that the macro-system II defined by the QCL (1.3) is the 
triplet (Fw(Aas, aw), w, Ot). 
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2 Applications: The Luttinger Model 

This model describes a one-dimensional fermion system defined by the local Hamil­
tonian (with the periodic boundary conditions): 

HL = 1L/2 dx [~~(x)~ax7h(x) - ~~(x)~aX~2(X)] 
-L/2 Z Z 

1
L/2 1L/2 

+2>' dx dy ~~(X)~l(X)V(X - Y)~~(Y)~2(Y). 
-L/2 -L/2 

(2.1) 

Here {~r(X)}i=1,2 are creation/annihilation operators corresponding to the two 
species of fermions. As in the paper [3] we suppose that the pair interaction 
between two species of the fermions has a bounded Fourier transform v(k) = 
fIR! dx e-ikxv(x). 
Remark that the free part H£ of (2.1) is defined and essentially self adjoint on the 
dense domain V = P(~;,i = 1,2)0, generated by the polynomials P(·) and the 
cyclic vacuum 0 of the Fock space F, but H£ is not semibounded from below on 
V. 
Denote by the wo,L(·) the finite-volume ground-state of H£, which is known to 
satisfy the inequality [4]: 

wo,L(X*[H£,X]) 20, X E A (CAR-algebra). (2.2) 

Then the solution of (2.2) is uniquely defined by wo,L(ai,L(k)al,k(k)) = B( -k) and 
wo,L(a;,L(k)a2,L(k)) = B(k), 

where ai,L(k) = ~ r dx e-ikx~i(X). With this state one can construct the 
vL J[-~,~J 

GNS representation 'TrO,L : A -- AwO,L in the Hilbert space 1iwO,L with the cyclic 
vector OO,L such that wo,L(A· B) = (OO,L, 'Tro,L(A)'Tro,L(B)OO,L)' A, BE A. Hence, 
'Tro,L(·) is a Fock/anti-Fock representation of CAR, i.e., OO,L is a vacuum for par­
ticles 
'Tro,L(ai,L(k < O))OO,L = 'Tro,L(a2,L(k > O))OO,L = 0 (filled Fermi sea). 

It is this representation which was exploited in [3J to get a "bosonization" of 

the Luttinger model: ['Tro,L(Pi,L(p)), 'TrO,L(P;,L(P'))] = ( - ~:) 8p,p" i = 1,2. These 

commutators say that in the Fock/anti-Fock representation 'TrO,L(·) (filled Fermi 

. {2'Tr } sea) the denszty operators for the modes pEL * = L x 7l.. 

Pi,L(p) = r dx eipx~;(X)~i(X) 
J[-~,~J 

behave as bosons. (Remark that in the original Fock space (F,O) they commute.) 
It is this property, together with the Kroning's Identity for HZ, which makes the 
Luttinger model soluble in the finite volume [3J. 
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For the infinite volume one has to reexamine the model starting on the ground 
state which is unknown on the global algebra A even for L < 00 [5]. 

Theorem 2.1. Let the density fluctuation operators be defined as 

Fl(Ni) = ~11r1 ~ JL
/
2 

dx eiqX(TxNi(J) - WO(Ni(J))) , 
Y ~ vL -L/2 

Ni(J) = ~;(J)~i(J), f E FOR) 

where woO = lirnwo,d·) is the ground-state for the gauge-invariant subalgebra 

Ae C A. Then for all >.., f-l E (C and q > 0 we have (CLT): 

limwo(expi{>..Fl(NI)* + >"Fl(Nd + f-lF'j)N2) + [lFl(N2)*}) 
L 

(2.3) 

By means of the wo-CLT (2.3) we realized a transition from the micro system 
Ae and the micro state Wo to the one-mode macro algebra Aq of the fluctuations 
realizing the representation of CCR generated by the bosons a# (q) == limFl (NI ) # , 

L 

(3#(q) == limFl(N2)# in the state wo : wo(exp i{>..a(q)+>..a* (q)+f-l(3(q)+[l(3*(q)}) = 
L 

exp [_~(1)''12 + 1f-l1 2)]. Unperterbed micro dynamics a~ of the density NI (the 

similar for N2) is defined by the generator 80 : 80(NI (x)) = lirn1ro,d[H£, NI (x)]) = 

1ro (i8x N I (x)). Then the evolution of the fluctuation operator is defined by the 
generator 80 : 80(a*(q)) = limFl(80NI) = qa*(q) and analogously for a(q) and 

L 

for (3#(q). As a consequence of wo 0 a~ = Wo, the macro-state wo is Ii~-invariant, 
where Ii~O = expit80 (')' 80 0 = [Ho,q,'] and Ho,q = q(a*(q)a(q) + (3*(q)(3(q)), 
q ::::: O. Hence, on the macro level of the CCR algebras {Aq}q the free fermion 
Hamiltonian H£ is represented by a free boson one, i.e., we get the Kroning's 
identity in the thermodynamic limit [5]. 

After the wo-QCL lifting to the macro: (Ae,wo,a~) ~ (aq,wo,Ii~), q > 0, 
we can consider the perturbation of Ht by the interaction (2.1): 8(Ni ) = (80 + 
8d(Ni) = lirn1ro,L([HL, Nil). 

Theorem 2.2. The perturbed micro-dynamics atO = expit8(·) induces on the 
CCR Aq>o the macro-dynamics litO generated by 8: 

8a*(q) 

8(3( q) 

lirnFl(1ro,d[HL, NI])) = q (a*(q) + ~v(q)(3(q)) ; 

lirnF1(1ro,d[HL, N2])) = -q ((3(q) + ~v(q)a*(q)) (2.4) 

Hence, 8(·) = [Hq,.J, where Hq = Ho,q + ~v(q)(Ii*(q)ffi*(q) + a(q)(3(q)), defines a 
quasi-free evolution lit on a2. 
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Theorem 2.3. The ground state equation (2.2) for the macro-system (Aq , w, at) 
has the solution w(·) = wo(U . U- 1 ), where U = exp[cp( q)( 0:( q);3( q) - 0:* (q);3* (q))], 
cp(q) = ~arcth (-~ii(q)). The transformation U diagonalizes Hq which leads to 

the well-known spectrum w(q) = Iql {1- (~ii(q))} 1/2 [3]. This spectrum has the 
sense of the collective zero-sound-type excitations in the Fermi-system (2.1) [5]. 
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General Hamiltonians and Model Hamiltonians 

of the Theory of Superconductivity 

and Superfluidity in the Hilbert Space 

of Translation-Invariant Functions 

D. Va. Petrina 

In many exactly solvable models of quantum statistical mechanics, an inter­
action Hamiltonian is equal to an integral of a product of operators of annihilation 
and creation and a potential divided by a volume of a system raised to a certain 
power. For example, the interaction Hamiltonian of the BeS model of supercon­
ductivity has the form 

HI,M = 2~ IIII <I>(XI -X2'X~ -x~)1jJ+(XI)1jJ+(X2)1jJ(xD1jJ(x~)dxldx2dx~dx~, 
(1) 

where integration is carried out over the whole three-dimensional Euclidean space 
]R3, V is the volume of ]R3, 1jJ+ and 1jJ- are operators of creation and annihilation 
of Fermi particles, and <I> is a potential that satisfies the conditions 

<I>(XI - X2'X~ - x~) = <I>(x~ - X~,X2 - Xl), 
<I>(XI - X2, X~ - X~) = -<I>(X2 - Xl, X~ - X~) = <I>(X2 - Xl, X~ - xD 

(2) 

and is a test function with respect to Xl - X2 and xi - x;. The dependence on spin 
is omitted here. 

The interaction Hamiltonian of Bogolyubov's theory of superfiuidity contains 
terms of the following form: 

HI,M = 2~2 I a+(xI)a+(x2)<I>(XI - X2) dX l dX2(1 a(X3)dX3)(1 a(x4)dx4) 

+ 2~2 (I a+(xI)dXJ)(1 a+(x2)dx2) I a(x3)a(x4)<I>(X3 - X4)dx3dx4 +... (3) 

+ ~~j <I>(O)(I a+(xI)dXJ)(1 a+(x2)dX2)(1 a(x3)dX3)(1 a(x4)dx4), 

where a+ and a are operators of creation and annihilation of particles, respectively, 
and <I> is a potential which ensures selfadjoint ness of both general and model (3) 
Hamiltonians and is absolutely integrable. 
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Note that integration in (1) and (3) is carried out over the whole ]R3, V = 
V(]R3) = 00. We shall understand expressions (1) and (3) as limits 

.................................................................. , 

where A is a cube with edge L, V(A) = L3 , centered at the origin of coordinates. 
This paper is devoted to clarifying in what sense these limits exist. 

States of infinite systems for certain densities and temperatures are described 
by sequences of Green's functions which are equal to the statistical average of a 
product of Heisenberg operators of creation and annihilation. Equations for these 
are derived in a standard way; these equations also contain integral operators with 
inverse powers of volume. Thus, the equations for Green's functions of the BCS 
model contain the following term 

2~ fff <P(Xl-Y'Y~ -y~)Gm+ln+l(it,y~,tl,y~,t2,X2, ... ,tm,xm; 

tl, y, tm+l' Xm+l,···, tm+n, xm+n)dydy~dy~. 

The equations for the superfluidity model contain terms of the following form 

:2 J <p(xl-ydGm+ln+l(tl,Y2,tl,Y3,t2,X2, ... ,tm,xm; 

it, Yl, tm+l , Xm+l,···, tm+n' xm+n )dyl dY2 dY3 + ... -5f + V3 Gm+ln+l (tl' Y2, t l , Y3, t2, X2,· .. ,tm, Xm; 

t l , Yl, tm+l' Xm+l, ... ,tm+n, Xm+n)dyl dY2 dY3' 

(5) 

(6) 

Here Gm+ln+l is a Green's function for m + 1 annihilation operators and n + 1 
creation operators. 

If a finite system of N particles is considered in the whole space]R3 (V = (0), 
its state is described by eigenfunctions of the Schrodinger operator, which also 
contain integral operators with inverse powers of volume. Thus, for the BCS model, 
the Schrodinger equation for N particles contains the following term 

N 

L ~ J <p(Xj - Xi, X~ - X~){JN(Xl'"'' XN )IXi=X~,Xj=x~}dx~ dx~, (7) 
i<j=l 
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where IN is a wave function. From the viewpoint of statistical mechanics, IN 
describes a state of a system with density and temperature zero. 

Thus, when investigating states of model systems of quantum statistical 
mechanics, we arrive at the problem of attaching sense to integral operators of 
the form (5)-(7) which contain inverse powers of the volume of a system when 
V = 00 (A = JR3) according to (4). We shall consider these operators in spe­
cific spaces of translation-invariant functions and attach a rigorous mathematical 
meaning to them in these spaces. Let us proceed now to definition of the spaces. 

Consider a translation-invariant function of N variables IN(Xl, ... , XN) = 
IN(XI +a, ... ,xN +a). It depends on N -1 difference variables ~l' ... '~N' We 
assume that IN is square integrable with respect to difference variables. The set 
of these functions forms a Hilbert space; we denote it by hN . The scalar product 
of IN E hN and gN E hN is introduced according to the formula 

(fN,gN) = J IN(6'···'~N-l)gN(6'···'~N-l)d6···d~N-l 
= lim (lA) [ IN(Xb ... , XN )gN(Xb"" XN )dXl ... dXN; V(A)~oo V JAN 

(A/'1R3) 

(8) 

it does not depend on the choice of difference variables. 
Decompose N points into k subsets (clusters) {nIl = {Xill ... , Xin), ... , 

{nd = {Xjll ... , Xjk)' nl + ... + nk = N and denote this decomposition by 
(1k,N' With these subsets, we associate translation-invariant functions I nl (Xil' ... , 

Xinl ) E hnl , ... , Ink (Xjll .. " Xjnk) E hnk , functions IN of the following form 

IN = L Inl (Xill ... ,Xin) ... Ink (Xjl" .. ,Xjnk)' (9) 
CTk,N 

and their linear combinations. By virtue of linear independence of products Inl 
... Ink which correspond to different decompositions (1, the function IN belongs 
to the space 

IN E L ffihnl ® ... ® hnk = ht· (10) 
Uk,N 

Introduce one more space 

(11) 

In this space, we can select subspaces hN,B and hN,F of symmetric and 
antisymmetric functions, respectively. 

For investigation of equations for Green's functions, we need spaces of func­
tions described above but absolutely integrable. 
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Theorem 1. The BCS interaction Hamiltonian acts in the space hfv as follows 

k 

(HI,Mf)N = L L(I ~ ... HIni ~ ... ~ I), (12) 
(Ik.N i=l 

Note that decompositions C1k,N in the BCS model are such that ni 2: 2. In a 
standard Fock space, we have HI = O. 

In the momentum space, general interaction Hamiltonians HI usually con­
tain one b-function, which expresses the momentum conservation law. In all exactly 
solvable models, additional b-functions are inserted in interaction Hamiltonians. 
Here arises the problem in what sense the model BCS Hamiltonian HI,M approxi­
mates the general Hamiltonian H. 

Theorem 2. The space of pairs 

hp,N = h2 ~ ... ~ h2' hp = L (f)hp,N 
N 

is invariant with respect to HI,M; it is not invariant with respect to HI, but the 
following equality holds 

HIhp = PhpHIhp, 

where Php is a projector onto hp . 

For models of superfiuidity, decompositions C1k are such that ni > 1. The 
space 

is called the space of condensates. 

Theorem 3. The space of pairs and condensates he,p = he ~ hp is invariant with 
respect to HI,M; it is not invariant with respect to HI, but the following equality 
holds 

HI,Mhe,p = Phc.pHIhc.p, 

where Phc.P is a projector onto he,p. 

Also, the general Hamiltonian in the space h fv is investigated. 

Theorem 4. The general Hamiltonian is defined on an everywhere dense set 
hfv. It consists of the sum of a selfadjoint operator and a nilpotent one, but its 
spectrum is real and consists of the union with respect to C1k,N of a sum of spectra 
of Hamiltonians in hni . The spectrum is defined by a component of the eigenvector 
which corresponds to the lowest decomposition. 



General Hamiltonians and Model Hamiltonians 217 

It follows from Theorems 2 and 3 that spectra of general and model Hamil­
tonians of BCS and superfluidity models coincide for eigenvectors with lowest 
decompositions in hp and hc,p, respectively. Consequently, the Hamiltonian is a 
model one in the sense that only this spectrum is taken into account. 

Investigating equations for Green's functions in spaces of translation-invari­
ant functions, we obtain the following result. 

Theorem 5. Solutions of equations for Green's functions of BCS and superfiuidity 
models coincide with solutions of equations for Green's functions of systems with 
corresponding approximating Hamiltonian. 
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Poisson Field Representations in the Statistical 
Mechanics of Continuous Systems 

Roman Gielerak* Alexei L. Rebenko t 

Abstract 

The grand canonical Gibbs ensembles describing continuous systems of 
particles are represented as functional integrals with respect to some in­
finitely divisible generalized random fields. Several applications like the con­
vergence of cluster expansions for a wide class of interactions and the exis­
tence of the limiting Gibbs measures are presented. 

1 Introduction 

The statistical mechanics describing continuous systems of particles is still in a very 
incomplete state. Mathematical results treating the low temperature/high density 
behaviour of both classical and quantum continuous systems are very rare. This is 
to be contrasted with the fact that the most important physical phenomena (see i.e. 
[1,2]) take place in such systems. One of the main obstacles in the way to controling 
these systems seems to be the very complicated notions of the corresponding con­
figuration space and Gibbs distributions [3,4). Although the high temperature/low 
density region is reasonably well understood [3,4) for such systems a new formalism 
needs to be worked out in order to study the corresponding low temperature/high 
density phenomena. It is the main aim of the present contribution to present a new 
mathematical formalism based on the use of the generalized random fields of the 
Poisson type of the space of distributions D' (Rd ). The basic objects of the equilib­
rium statistical mechanics of continuous systems are represented as Poisson-like 
integrals on the space D'(Rd ). This creates a uniform picture for both classical and 
quantum systems, see below. The opportunity of using methods of constructive 
quantum field theory arises naturally. We shall present this new formalism below 
and also some preliminary applications. For details and complete proofs we refer 
to our forthcoming paper [5). 

It is worthwihle to mention that Poisson-like integrals appeared in the liter­
ature in the context of quantum dynamics problems. For example they have been 

*Research supported by the Polish National Committee of Science 
tResearch supported by Ukrainian State Committee of Science and Technology 
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used to study Feynman path integrals in [6], to construct examples of nonlinear 
electrodynamic models in [7] and such integrals have been considered by Klauder 
in his search for alternatives to the conventional perturbative scheme in quantum 
field theory [8]. 

2 Poisson integral representation in the 
classical statistical mechanics 

Let us consider a system of classical particles enclosed in the bounded region 
A C Rd and interacting throughout the two-body forces described by the potential 
V. The configuration space for the system is the set C(A) defined as a subset of 
2A consisting of those ~ E Un>o A 0n such that #~ < 00. The natural topology 
Tf in C(A) is defined by component-wise convergence. The corresponding Borel­
a algebra is denoted as B(C(A)). The (normalized) Poisson distribution ITA 0 on 
B(C(A)) (see [3,4]) describes the system without an interaction. Let us denote by 
j A the injection 

n 

C(A) 3 ~ = (Xl, ... ,Xn ) ~ jA(~) = L 8(x - Xi) E D'(A) (1) 
i=l 

It is easy to check that jA is (f3(D'(A)), B(C(A)) measurable, therefore we can 
transport the measure ITA 0 onto the space D'(A) by the formula: 

(2) 

where PA,o == jAITA,o, for any Ll(D'(A)), PA,o function F. 
In particular taking F(q) = ei<q,J>, for f E Co(A) we obtain the character­

istic functional of PA 0 : , 

j dPz ( ) i(q,f) _ zJ dx(ei!(x)-l) 
Aoqe =e A 

D'(A) , 
(3) 

in which we recognize the characteristic functional of some infinitely divisible ran­
dom field on D'(A) [9]. It follows from the very construction of PA 0 that the set 
~(A) = n=~=l 8(x - Xi), n < 00 and Xi of. Xj for i of. j} C D'(A) 'is measurable 
and of measure PA,o equal to one. 

Assume that the two-body V is translation invariant, stable and such that 
V(O) < 00. Then we can define the functionalle-!3I2VA(q,q) I on ~(A) by the formula 

le-!3I2VA(q,q) I = e -(3/2 fA fA dxq(x)V(x-y)q(y) e(3/2V(O)#q (4) 
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Calculating 

we obtain the integral representation for the partition function describing the grand 
canonical Gibbs ensemble. By a similar calculation we obtain the following Poisson 
integral representations for the corresponding (reduced) correlation functions 

(6) 

where 

(7) 

(8) 

Let us denote by Eoo the Borel subset of D'(Rd) consisting of those q E D'(Rd), 
such that q(x) = E:l 8(x - Xi) where Xi i- Xj for i i- j and such that for any 
bounded A C Rd: #{Xi} n A < 00. Any PBC (probabilistic, Borel, cylindric) 
measure P on (D'(Rd), 8(D'(Rd)) such that 
(i) P(Eoo ) = 1 
(ii) Ep 0 Ep(FIE~c) = Ep(F) 
where F E L 1(P) is E(A) measurable and E(A) == a{(q, f)11 E CO'(A), q E Eoo} 
is called a P-Gibbs grand canonical measure describing the system at temperature 
(3 and for the chemical activity z > o. Ep(IEAc) means the following probabilistic 
kernel: 

{ exp (3/2VA(q, qAc)1 exp -(3/2VA(q, q)IF(q) 
JDI(A) 

The set of P-Gibbs measures will be denoted by PQ(z, (3). 

Proposition 2.1 

(9) 

There is a bijection 3 between the set PQ(z, (3) and the set of the corresponding 
grand canonical Gibbs ensembles Q(z, (3) on (C(Rd),8(C(Rd))). Moreover the bi-
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jection 3 restricted to the Martin-Dynkin boundary 8P9(z, (3) of the set P9(z, (3) 
is still a bijection between 8P9 (z, (3) and 89 (z, (3). 

Informally, the bijection 3 is given by transport of the measurable structures in­
duced by the injection joo, 

The unphysical assumption V(O) < 00 can be relaxed. For this goal, let us 
assume that V E Lfoc(Rd) and let (A;,) E C(f(Rd) be a positive mollifier. The 
regularized potential V' is given by V' = (A;, * V). Then it is possible to prove: 

Proposition 2.2 
Let V E Lfoc(Rd), V is stable. Then for any p 2: 1 any bounded A C Rd, the limit 

lim le-f3/2VA(q,q) I == le-f3/2VA(q,q) I 
dO 

(10) 

exists in Lp(dPt. 0) space. Moreover there exists a measure dPt. defined as a weak 
limit of dP~" = 'dPt. (V'). The measure dPt. is locally absolutely continuous with 
respect to dPt.,o In particular the integral formulae (5) and (6) are valid in the 
limit. 

The statistical independence of the field dPt. 0 localized in disjoint regions AI, A2 
significantly simplifies the construction of the cluster expansion for the measure 
dPt. (see [10,11]). Using Proposition (2.2) the following theorem, generalizing 
slighty the main result of [10] is proven in [5]. 

Theorem 2.3 
Let V E Lfoc (Rd) be a stable potential and such that V E L1 (Rd). Then there 
exists a region G c {(z,(3)lz 2: 0, (3 2: O} such that the corresponding cluster 
expansion for pn converges. 

Ideas for the proof. We shall start with the regularized potential V' and supply the 
correspondig cluster expansion in the finite volume. The assumption V E L[oJRd) 
is used to obtain estimates uniform in E (also uniform in A) on the radius of conver­
gence of this expansion. Because of uniform convergence we can pass to the limdO 
term by term thus obtaining the convergent cluster expansion for the limiting 
case V. 

Another application of the Poisson integral representation is given by the 
following Proposition. 

Proposition 2.4 
Let V be a superstable, locally Ll (dx), lower regular, translation invariant poten­
tial. Then the family of measures (dPt.) A is a weakly (pre )-compact set of measures 
on (D'(Rd ), B(D'(Rd ))) for any z 2: 0 and (3. 

Idea for the proof. By simple manipulation we obtain 

(11) 
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Using the estimates of Ruelle [12] we obtain: 

[ e~<q,J>dPA(q)l:::;expl(lz [ leReU(x)-lldx 
JDI(A) JRd 

for some constant (. 

3 Poisson integral representation in the 
Quantum Statistical Mechanics 

223 

(12) 

The by now classical work of Ginibre [13,14] uses the Wiener integral representa­
tion for the basic objects of quantum statistical systems like partition function, 
(reduced)-density matrices and multitime Green functions. We shall present be­
low new integral representations of these objects. The mathematical details of our 
constructions shall be presented in [5]. 

Let n~(A) be the space of continuous maps W : [0,,8] :3 T -+ W(T) E A; A 
being bounded region in Rd. Then we define 3~(A) as a subset of 2°{3(A) consisting 
of those ~ E 2°{3(A) such that #~ < 00. The natural topology Tf in 3~(A) is 

introduced by defining the convergence: ~n ~ ~ iff for all n, #~n = #~ and for 
each i wf ---t Wi uniformly on [0, ,8]. Let us denote by dwf,xlx the conditional 

Wiener measure on n~(A),; we then define a measure dWf(w) by 

dWf(w) = [ dx [ dWf *(w) 
JA JO{3(A) , 

(13) 

on n~(A). With the help of the measure dwf we can define a Poisson-like distri­

bution Pf'~ on (3~(A); ,8(3~(A))) by the formula 

(14) 

for any continuous and bounded F on 3~(A). 
Let e~(A) be the space of continuous maps from [0,,8] into D'(A), i.e. 

e~(A) == {QIQ : [0,,8] :3 T ---t QT E D'(A), Qcontinuous}. As in the classical 
case we define the injection 

n 

JA : 3~(A) :3 ~ = (WI, ... wn ) ---t L 8(x - Wi(T)) E (}~(A). (15) 
j=1 

The image of the Poisson measure Pf'~ in the space (e~(A), B(e~(A)) will 

be denoted by fI~',~. Taking , 

F(Q) = ei<Q,J> = ei J: <QT,f>dT (16) 
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we obtain 

r dPf'~ (~)eJ: dT<JA (~),J> 
JS(3(A) , 

exp(z r dx r dWfxx(w)eiJ:dT!(W(T))) (17) 
JA In(3(A)' I 

Taking V to be a stable and continuous function on Rd and defining 

(18) 

where 

QT(X) = Q(r)(x) E D'(A). (19) 

(20) 

and 

IFvl(Q) = ZA . Fv(Q) (21) 

where 

ZA = exp(3j2#Q' V(O) (22) 

we obtain: 

(23) 

in which we recognize the finite-volume partition function for the system of par­
ticles obeying the Maxwell-Boltzmann statistics. 

To cover the case of quantum statistics we define for E = ±1 the following 
Poisson-like distributions dPf::,o on 2;3(A) : 

(24) 



Poisson Field Representations 225 

Then we transport pf': 0 onto the space 8,a(A) by the injection JA as above 
obtaining , , 

(25) 

In particular we have obtained the following representation for the corre­
sponding quantum statistical partition functions: 

The corresponding correlation functionals can be defined by the following 
formulas 

(27) 

where 

(28) 

Several applications of the representations (26), including the construction of 
the cluster expansion, independence of the limiting correlation functionals of the 
classical boundary conditions etc. will be presented in our forthcoming paper [5]. 
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Exact ground states for quantum spin chains 

M. Fannes 
Bevoegdverklaard Navorser N.F.W.O. Belgium 

It is much harder to construct translation invariant states on a quantum 
spin system than on a system of classical spins. The reason for this is that non­
commutativity greatly complicates positivity conditions. This is already visible 
in the following toy model: let 11. be a finite dimensional Hilbert space and let 
¢ E 11. 0 11. be a normalized vector such that for A E B(li): 

(¢, A 0 11 ¢) = (¢,11 0 A ¢). 

This condition expresses translation invariance for a two-site system. Can one con­
struct a vector ¢123 in 11.011.011. such that (¢123,' ¢123) coincides with (¢12,' ¢12) 
on the first two factors and with (¢23,' ¢23) on the last two? (¢12 and ¢23 are 
copies on sites 12 and 23 of the three spin system.) This is in general impossible. 
Indeed, let P be the orthogonal projection operator in B(li 0 11.) on ¢l... Such an 
extension ¢123 would have the property: 

Generically however P12 0113 and 1110 P23 don't commute and the ground state 
energy of P12 0 113 + 111 0 P23 will be strictly larger than the sum of the ground 
state energies of P12 and P23 , which is O. One can show that a common extension 
of (¢12, . ¢12) and (¢23,' ¢23) only exists in the almost commutative case where ¢ 
is an elementary tensor vector: ¢ = 'l/J 0 'l/J, 'l/J E 11.. 

A more general situation is the following: let K be a subspace of 11. 011.. 
Generically: 

gn = K 0 11. 0 .. . 11. n 11. 0 K 0 .. . 11. n ... 11. 0 11. 0 ... K n factors 

will collapse to the zero vector when n is sufficiently large. For particular choices of 
K however, the dimension of this intersection will stay positive, independently of n. 
We can now consider a two-spin interaction P which is the orthogonal projection 
in B(1i01i) on Kl... Any vector n in gn will be a ground state for the Hamiltonian 

H[l,nj: 

H[l,n] = P 12 + P 23 + ... Pn-1,n. 
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Indeed, H[l,nl is a positive operator and, by construction, H[l,nln = 0. Such ground 
states have a very special property, namely Pk,k+l n = ° for all k = 1, ... n - l. 
n therefore locally minimizes the energy. These features are typical of so-called 
V (alence )B( ond )S( olid)-Hamiltonians. 

It is possible to construct translation-invariant states on a quantum spin chain 
by a transfer-matrix formalism. Let the observables of a single spin be described 
by the d x d matrices Md. The observables of the spins living at the sites [a, b] c Z 
are then A[a,bl = (>9~Md. The observables Az of the entire chain are obtained by 
completing the local observables: 

----,--:----11 II 
Az = U A[a,bl 

[a,blcZ 

A state w of Az, is completely determined by its expectation values of observables 
of the form w(jm(Am) (>9 jm+dAmH ) (>9 •.• jn(An)), m < n and Ai E Md for 
m ::; i ::; n. The map jn is the injection of Md at the n-th site. The prescription 
for computing these expectation values must be compatible with the requirements 
that: 

w(jm(Am) (>9 ••• jn(An) (>9 jn+l(11)) = w(jm(Am) (>9 ••. jn(An)), 

and: 

The state w is translation invariant iff for all choices of m < n E Z and Ai E Md: 

If w is translation invariant, then we can drop the jn. 

A state w will be called finitely correlated if it has the following structure: 

A number of ingredients of this formula have to be specified: 

i) lE is a completely positive, identity preserving map from Md(>9B to B, where 
B is a * -sub algebra of a matrix algebra Mk that contains the identity 11k. 
This means that there are (a finite number of) linear maps Vi : Ck -'t Cd (>9C k , 

such that 
lE(X) = L Vi* XVi. 

As lE is unity preserving L:i Vi*V; = 11k. If A E Md, then lEA denotes the 
mapping B E B ....... lE(A (>9 B) E B. We will also assume that B is minimal 
in the sense that B is the *-subalgebra of Mk generated by elements of the 
form lEAl 0 lEA2 0 ... lEAn (11 k ), n = 0,1,2, ... and Ai E Md. 
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ii) p is a state on B. If p is a density matrix in Mk, we will identify p with the 
functional X E Mk ~ Tr pX. We will assume that p is faithful on B, which 
means that there is no non-zero element B E B with p(B* B) = o. 

iii) For all B E B we have p(E(-nd 0 B)) = p(B). 

We will say that w is generated by the triple (B, E, p). Because E is identity pre­
serving and p satisfies the condition iii) the construction of w is compatible with 
tensoring identity operators to the left and the right of a local observable. It is also 
obvious that w is translation invariant. The positivity can explicitly be checked by 
computing the restriction of w to any finite volume. Due to the complete positivity 
of E and the positivity of p, all such restrictions are given by density matrices and 
are therefore positive. The positivity requirements on E and p can in principle be 
relaxed. Doing so however, leads to intractable problems. 

The map lE = E-n plays~an essential role in understanding the properties of 
the state w. This is because E controls the clustering of w. If T denotes the shift 
by 1 site to the right: 

We will restrict our attention here to the "best" case, where the only eigenvector 
of lE corresponding to an eigenvalue of modulus 1 is the identity -nk of B. In this 
case lE has trivial peripheral spectrum and w will be exponentially clustering. The 
possible cluster rates are completely determined by the spectrum of lE. Because of 
the finite dimensionality of B, only a discrete set of cluster rates can appear. If 
there exist other peripheral eigenvalues than -nk, then w can be decomposed into 
a finite convex combination of exponentially clustering finitely correlated states 
(which could be periodic instead of translation invariant). Suppose that lE is a non­
trivial sum of r maps of the form X ~ \ti* XVi then the maps EA will decompose 
accordingly. For a finite interval of length n, the state w restricted to A[I,n] will 
decompose into a convex decomposition of rn states. Such a decomposition can 
be expected to generate a finite entropy density. This intuitive argument can be 
turned into a rigorous one and it leads to: 

Theorem A: 
A finitely correlated state w is pure if and only if it is generated by a triple 
(Mk,E,p), where V : Ck ~ Cd 0 Ck is an i~.ometry, E(X) = V*XV, lE has 
trivial peripheral spectrum and p, satisfying poE = p, is faithful. 
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Let us compute the reduced density matrices P[I,n] of a pure, finitely corre­
lated state. 

Tr ®ned P[I,n] Al 0 ... An W(AI 0 ... An) 

P (lEAl 0 .. ·lEAJ11k )) 

= Trek P V(n)* (AI 0··· An 011k) v(n) 

Tr ®ned (v(n) P v(n)*) (AI 0 ... An 011k), 

where: 
v(n) = (11d 011d 0 ... V) ... (11d 0 V)V. 

As this holds for all choices of the Ai we must have: 

P[I,n] = Tr ek v(n) P v(n)*. 

Let {el' ... ek} be an orthonormal basis of Ck. It is clear from the computation of 
above that, for m < n, the reduced density matrix matrix P[m,n] will live on the 
subspace of (Cd)®(n-m+I) spanned by the vectors {(/h, ... ¢d, where: 

k 

¢= L¢i 0 ei, 
i=1 

and ¢ runs trough (110···0110 V)··· (110 V)VCk. Therefore P[m,n] is supported 
by a subspace g[m,n] of dimension at most k 2 , independently of m and n. Let r 
be the smallest integer such that dim(g[I,r]) = k2 • The standard VBS interaction 
associated to w is now chosen as the orthogonal projection operator in 0 r+ICd on 
the orthogonal complement of g[l,rH]. The (standard) VBS Hamiltonian is then: 

n-r-I 
H[m,n] = L rj(h). 

j=m-I 

Note that w is a ground state of this Hamiltonian, locally minimizing the energy, 
because w(h) = o. 

Theorem B: 
A pure finitely correlated state w is the unique ground state of its associated stan­
dard VBS Hamiltonian. Moreover the Hamiltonian exhibits a ground state energy 
gap. 

It is now quite easy to construct a large number of Hamiltonians with exactly 
computable ground state. Indeed, fix the dimension k of the auxiliary space Ck and 
choose an isometry V : Ck ---+ Cd 0 Ck. Generically 11k will be the only eigenvector 
of iE, with lE(X) = V* XV, corresponding to an eigenvalue of modulus 1, and the 
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(unique) density matrix p on Mk, which satisfies p = po iE, will be faithful. Using 
Theorems A and B we can then construct the associated VBS Hamiltonian. It is 
also quite easy to construct models that are invariant under a local symmetry. We 
start with two unitary representations U and (; of a group Q on Cd and Ck. If 
there is an isometry V, intertwining (; and U 0 (;, then we can again construct 
a finitely correlated state with this V. Provided the conditions of Theorem A are 
satisfied, we will obtain in this way a Q-invariant VBS Hamiltonian with exactly 
known, unique, Q-symmetric ground state. Probably the simplest example of this 
type is the spin 1 antiferromagnetic chain studied in. In this model d = 3 and 
k = 2. The isometry V is the intertwiner between the spin 1/2 representation of 
SU(2) on C2 and the product of the spin 1 representation on C3 with the spin 1/2 
representation. The finitely correlated state constructed with this V turns out to 
be the ground state of the spin 1 chain with interaction 

Higher, SU(2) invariant, integer spin chains can be constructed in a similar way. 
It can be proven that the ground states of some half-integer antiferromagnets, 
such as the (isotropic) Heisenberg antiferromagnet, are not finitely correlated. It 
is also possible, with suitable care, to incorporate in this scheme spin chains that 
are invariant under a quantum group. Another consequence of the construction is 
that we can approximate an arbitrary translation invariant state by a pure finitely 
correlated state in the w* -sense. This is in sharp contrast with classical systems, 
where the pure translation invariant states coincide with the translation invariant 
configurations, e.g. all spins up or down for an Ising system. 

Theorem C: 
The pure, translation invariant states on Az are w*-dense in the translation in­
variant states. 

There are still a number of interesting open problems in connection with 
these states. 
• The most obvious one is to extend the construction to the case with an infinite 
dimensional auxiliary algebra B. Allowing B to be completely general, will pro­
duce any translation invariant state. We should therefore look at B that are still 
"sufficiently close" to the finite dimensional case. 
• It would also be quite interesting to establish a link with the Bethe Ansatsz. Can 
one efficiently model the correlation functions of the ground state of the spin 1/2 
antiferromagnet with such a transfer matrix like construction? 
• It is possible to construct finitely correlated states on a tree. Can one make 
non-trivial constructions on lattices with closed loops? 
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The spectrum of the spin-boson model 

Matthias Hubner and Herbert Spohn 

Many physical problems can be described as a single (or a few) degrees of 
freedom interacting with a free field, regarded as a bath or reservoir. It is commonly 
assumed that a nontrivial coupling to the field serves as a mechanism for the small 
system to dissipate its energy. This somewhat vague formulation should be made 
precise by mathematical physics and we take here the point of view that it is 
reflected in the spectrum of the coupled Hamiltonian. 

Mathematical theorems assure that quantum states 1'ljI) in the absolutely 
continuous (a.c.) spectral subspace 'Hac of a Hamiltonian H decay weakly to zero 
under the time evolution induced by H, 

as t--+oo V' If) E 'H. (1) 

Of course the Hilbert space norm of 1'ljI(t)) is preserved and we interpret the weak 
convergence as a decay of any excitation measurable in a bounded region of the 
configuration space Rd. In the models which we shall consider, we expect this 
decay to hold for any physical state orthogonal to the ground state. The problem 
is then to prove that for interacting models the Hamiltonian has a unique ground 
state and that the remainder of the spectrum is purely a.c .. Here we would like to 
outline how such a property is proved for the spin-boson Hamiltonian. 

In the spin-boson model the bath is a free Bose field and the small system 
is a localized degree of freedom, which corresponds to a particle in a double well 
potential. If the well is reflection symmetric, then the particle has a symmetric 
ground state and an antisymmetric first excited state. In the spin-boson Hamilto­
nian we take only these two lowest states into account and model the interaction 
with the bath by a linear coupling, 

H = ~O"z ® I + I ® HB + O"X ® (a*(oX) + a(oX)). (2) 

The first term is the energy of the localized degree of freedom with (uncoupled) 
energy separation IL > O. O"x,O"z are Pauli spin matrices and HB is the selfadjoint 
Hamiltonian of noninteracting bosons. In the momentum representation, it is given 
by 

HB = J ddkw(k)a*(k)a(k) = dr(w). (3) 

with domain D(HB) in the standard Fock space F. The annihilation and creation 
operators a(k),a*(k) are defined over Rd and satisfy canonical commutation re-
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lations [a(k), a*(k')] = 8(k - k'). The second quantization functor is denoted by 
dr(·). For example, the boson number NB equals dr(I). The Hilbert space 1t for 
the model is the tensor product C2 ® F of the spin 1/2 representation space and 
Fock space. We also use the shorthand a*('x) = J ddk'x(k)a*(k). 

In general, the dispersion relation wand the coupling ,X are fixed by the 
physics of the problem. Here we consider them as free parameters and would like 
to have a spectral information for a whole class of w, A's. We state our technical 
conditions on w. The dispersion is a real function on momentum space which 
induces by pointwise multiplication a I-particle operator on the Hilbert space 
L2(Rd), whose second quantization is just HB. We require 

i) w : Rd ---+ R is spherically symmetric, i.e. only a function of Ikl, and everywhere 
positive with the possible exception of the origin k = O. w is a.c. as a real function, 
with positive derivative away from the origin 

and lim w(k) = 00. 
k---+oo 

(4) 

These properties are obviously satisfied by the dispersion w(k) = ..jk2 + m2 and 
its limiting cases w(k) = Ikl or w(k) = k2/2m. Condition (4) implies that w is not 
constant on sets of positive measure and is in fact an operator with purely a.c. 
spectrum on the I-particle Hilbert space L2(Rd). Its second quantization dr(w) is 
then purely a.c. as well, apart from the Fock vacuum. Clearly, in order to prove 
a.c. spectrum for the coupled H, we better assume absolute continuity of HB . 

We turn to the technical conditions on 'x. 

ii) ,x should belong to the I-particle Hilbert space, i.e. (>', >.) = J ddkl>'12 < 00. 

If inf w > 0, this is enough to ensure selfadjointness of H on the natural domain 
C2 ® D(HB) by the Kato-Rellich theorem, since a(A), a* (A) are then HB-bounded 
with HE-bound zero. By a unitary multiplication on momentum space, we can 
transform an arbitrary complex coupling function to a real nonnegative one. Thus 
it is no further restriction to assume A ~ O. 

iii) In order that the Hamiltonian be bounded from below, we impose 
J ddk,X2/w < 00. If inf w = 0, this is also the natural condition for selfadjoint­
ness of H on C2 ® D(HB ), which can again be established using the Kato-Rellich 
theorem. 

iv) To ensure the existence and uniqueness of the ground state in Fock space, we 
need the even stronger condition J ddk('x/w)2 < 00. The ground state of the spin­
boson model was thoroughly investigated in [2-5]. Notice that ii) implies iii),iv) if 
infw > O. 

Our technical tools to prove the desired spectral properties are M ourre esti­
mates, which are discussed in the book [6], following the original papers [7,8]. The 
idea is to find a so-called conjugate operator -iA which has a positive commutator 
with the Hamiltonian, up to a compact perturbation, 

[H,iA] ~ of - C, 0> O. (5) 
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We say then that a selfadjoint operator obeys a (global) Mourre estimate. Imagine 
that this conjugate operator shifts the statesII continuously and even differentiably 
to higher energies. Intuitively, this is possible only in the a.c. spectral subspace. 
Mourre proved his theorems for selfadjoint conjugate operators A. The conjugate 
operators we will use have no selfadjoint extensions, but generate strongly con­
tinuous semigroups of isometries. We first give a generalization of Mourre's virial 
theorem. 

Lemma 1: Let H be a selfadjoint operator with domain D(H) and let iA be the 
closed generator of a semigroup of isometries. We assume: 

a) D(A) n D(H) is a core for H. 

b) eiA<> leaves D(H) invariant and for each 7/J E D(H) 

sup I IHeiA<>7/J1 I < 00. 
0<<><1 

(6) 

c) The quadratic form [H,iA] = i(HA-AH) defined on D(A)nD(H) is bounded 
below and closable and the selfadjoint operator associated to its closure is H­
bounded. 

Then for every eigenvector 'lj; E 'Hpp = Ppp'H (the closed subspace generated 
by the eigenvectors) 

(7/JI[H,A]I7/J) = O. (7) 

The proof of the virial theorem follows Mourre's proof with minor modifica­
tions. Whereever Mourre assumes the resolvent set of his selfadjoint A to contain 
the complement of the real line, in our case only the lower complex halfplane be­
longs to the resolvent set of our semigroup generator A. Mourre [6,7] proves that a 

global estimate like (5) implies that H has only finitely many eigenvalues, and each 
eigenvalue has finite multiplicity. In particular, this shows that eigenvalues cannot 
accumulate. Furthermore, he proved absence of singular continuous spectrum. We 
need here an explicit bound on the number of eigenstates. 

Lemma 2: Under the assumptions of Lemma 1, let us suppose that H obeys 
a global Mourre estimate (5), with a > 0 and C a positive operator of trace 
class. Then the following bound on the number of eigenvalues, counted with their 
multiplicity, holds 

dimPpp ~ a- 1trC. (8) 

Proof: We use the virial theorem which states that 

('lj;I[H, iA]I7/J) = 0 (9) 

for every eigenvector of H. Then 

0= trPpp[H, iA] 2:: trPpp(aJ - C) 2:: adimPpp - trC, (10) 

which proves the lemma. We turn to find a suitable conjugate operator for H. On 
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the I-particle level, a conjugate operator for w fulfilling (4) is the radial deriva­
tion on momentum space, properly multiplied with the group velocity, and sym­
metrized, 

1 1 1 
D = 2( IVwl2 Vw· Vk + Vw· Vk IVwI2 )· (11) 

It is easy to see that [D, w] = 1. The obvious guess for a suitable operator conjugate 
to H is then 

-iA = dr(D). (12) 

D and -iA generate semigroups of shifts directed outward to increasing Ikl on 
I-particle momentum space and Fock space, respectively. These semigroups of 
isometries have no extensions to unitary groups. Thus our conjugate operators 
have no selfadjoint extensions. Because of this, Mourre's theorems don't apply 
directly to our choice (12) of A. Nevertheless it should be possible to generalize 
Mourre's theorems to generators of isometric semigroups. 

It is not hard to verify the conditions of the lemmata for H of (2) provided 
inf w > o. If inf w = 0, we compress H to a subspace PNH of maximal boson 
number N. This means that we replace H with PNHPN and PN is the projection 
onto the closed subspace with at most N bosons. Then the conditions in Lemma 
1 and 2 are satisfied and also the technical conditions d),e) in Mourre's theorem 
[7,p.392], which we did not mention explicitly. 

We now observe that, because of reflection symmetry, the Hamiltonian com­
mutes with the parity operator 

and [P,HSB ] = o. (13) 

The Hilbert space H decomposes then into the two eigenspaces H+, H_ of the 
operator P corresponding to the eigenvalues ±1. To obtain H restricted to H± we 
first apply the unitary transformation 

1-0" 
U = exp(i7rT ® NB ) = U* = U- 1 (14) 

with the result 

UO"z ® (-I)NBU = O"z, 

UHsBU = ~O"z ® (_I)NB + I ® HB + I ® (a*(A) + a(A)). 
(15) 

Note that the interaction term contains no explicit spin term anymore. The con­
served parity has changed to -O"z with the eigenvalues ±1. Thus H± is isomorphic 
to F and the Hamiltonians H± on the eigenspaces reducing HSB are unitarily 
equivalent to 

H± = =f~( _l)NB + J ddkw(k)a*(k)a(k) + a*(A) + a(A). (16) 
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Our result on the spectral structure on the even subspace is 

Theorem 1: Let>. E D(D) and (D>', D>.) < ~. The compression PNH+PN of 
H+ to a maximal boson number N has a unique ground state and the rest of the 
spectrum is purely a.coo If inf w > 0, this holds also for H +. Sketch of proof: Let 

us compute the commutator 

[H+, iA] = NB + a*(D>') + a(D>.). (17) 

We displace the harmonic oscillator in the mode D>' and obtain a new boson 
number operator with the old eigenvalues 0, 1,2, ... , however. This will be bounded 
from below as a form as 

[H, iA] = N~ - (D>', D>')! 

~ ! - (D>', D>.) - Ivac'} {vac'l (18) 

~ (1- (D>.,D>'))! -lvac'}{vac'l. 

Here Ivac') denotes a shifted Fock vacuum due to completing the square. Appli­
cation of Lemma 2 leads then to the estimate for the number of eigenvalues, 

(19) 

The 1L sector is more difficult, since we have to make sure that the number of 
eigenvalues is less than one. Here we try a conjugate operator with an undetermined 
function f, 

-iA = df + a(f) - a*(f). (20) 

f will have to be optimized at the end. Of course the commutator is now somewhat 
more complicated 

[H_, iA] = NB + a(D>. + wI) + a*(D>' + wI) 

+ (I, >.) + (>', I) - (-I)NB a(f.lJ) - a*(f.lJ)( _1)NB. 
(21) 

We remark that (I, >'), (>', I) are the good terms which offer a chance that the 
commutator will be positive at all. For the formulation of the next theorem, we 
replace>. by et>. with>' considered to be fixed, and introduce thereby a real coupling 
constant. 

Theorem 2: For every >. in the domains of D and w there exists a coupling 
constant etc depending on J.L and >. such that for ° < et < etc the spectrum of 
PN H _ PN is purely a.coo If inf w > 0, no cutoff in the boson number is needed. 
The odd sector is much harder to treat than the even sector. The strategy is to 

partition the commutator into two summands and to estimate them separately 
from below. Our results in this direction are not completely satisfory yet. More 
details will appear in a future publication [9]. 
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A Survey oh Wigner-Poisson Problems 

Horst Lange, Bruce V.Toomire and Paul F. Zweifel 

1 Introduction 

In 1932, E.Wigner [1] introduced a phase-space method of computing physical 
observables in quantum (statistical) mechanics; some surveys have been published 
recently [2], [3]. See also a review article by Carruthers [4]. Here we give a brief 
synopsis of the method to make this paper self-contained, referring the reader to 
the references for details, including proofs. 

Consider a system of N particles with a hamiltonian given by 

(1.1 ) 

where the ~ are the momentum operators and the Xi the position operators. 
The system is described quantum mechanically by a state vector W E L2(JR.3N ); 
or more generally by a density matrix p [5]. Physical attributes of the system are 
described by the expectation values of certain self-adjoint operators representing 
observables. If A is such an operator, then the expectation value can be written as 

(A) = TrpA. (1.2) 

This equation can be converted to a phase-space representation by defining the 
Wigner transform, Aw(x,p) of the operator A: 

(1.3a) 

where {ud is a basis for L2(JR.3N) and: 

Akl = (Uk, Aud£2(JR3N) . (1.3b) 

One proves [2] for any two operators A and B 

TrAB = (27rn)-3N J Aw(x,p)Bw(x,p)dxdp. (1.3c) 
JR3N xJR3N 
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Here x = Xw and p = Pw are interpreted as the classical phase-space coordinates. 
In particular: 

(A) = (27r11,)-3N J Aw(x,p)Pw(x,p)dxdp. (1.4) 

The function: 
fw(x,p) = (27r11,)-3N Pw(x,p) (1.5) 

is called the "Wigner distribution function" or simply the "Wigner function". In 
most cases, P is given by [5] 

(1.6) 

where Pi is the projection onto 'l/Ji and Ai is the probability of the state i. In such 
a case one computes 

(1.7) 

we observe the Pw is real, but not necessarily positive. 
By tranforming the evolution equation for P [4],given by the following: 

. ap 
Z11,- =Hp-pH at 

one derives the evolution equation for the Wigner distribution function fw: 

afw i at + v . V' xfw - r;8(V)fw(x,p, t) = 0 

where 8(V) is the pseudo-differential operator with symbol: 

11,T 11,T 
8V = V(x + -) - V(x - -) 

2 2 

(1.8) 

(1.9a) 

(1.9b) 

and v is the velocity vector with component !!f;. Equation (1.9) is to be solved 
subject to the initial condition: 

(1.9c) 

where the <Pn are the initial values of the Schrodinger functions 'l/Jn which obey: 

(1.10) 
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The above discussion suggests and has been proved by Markowich [6] that the 
Wigner equation (1.9) is equivalent to a system of Schrodinger equations (1.10), 
the dimension of the system corresponding to the number of terms in the sum (1.6). 
(If the dimension is one, we speak of a "pure state" , otherwise of a "mixture". We 
expect, in general the the system is infinite dimensional.) 

The quantum Vlasov equation is a mean-field approximation to the Wigner 
equation. In this approximation we take N = 1 (after integrating over the co­
ordinates of the N - 1 particles) and approximate V by a "self-consistent" field 
[2]: 

V(x) = J n(y)v(y - x)dy (1.11a) 

1R3N 

where v is the two-body potential and n(y) is the density: 

n(y) = J fw(x,p)dp. (1.11b) 

1R3N 

In this paper, v is taken to be a Coulomb potential, hence V obeys: 

6V=-m (1.12a) 

or alternatively: 

v = - ~ J n(y) dy. 
47r Ix - yl (1.12b) 

1R3N 

In (1.12), E represents the (normalized) electric charge. We consider both the re­
pulsive (E = + 1) and attractive (E = -1) cases. Also, for convenience we set 
mi = 1 (Vi) and, except in Sec. 5 where the classical limit is discussed, we set 
n=1. 

The mean field version of the classical Liouville equation is the classical 
Vlasov equation; with a Coulomb potential, one speaks of the Vlasov-Poisson 
(VP) system. The mean-field version of the Wigner equation is the quantum 
Vlasov equation; with a Coulomb force, one then calls this the Wigner-Poisson 
(WP) system. From its equivalence to the corresponding Schrodinger system -
the Schrodinger-Poisson (SP) system- we see that the (WP) system may also be 
considered a statistical version of Hartree-Fock, i.e. of a single particle mean-field 
Schrodinger equation with a Coulomb force [7]. The analysis described here is, to 
a large extent, applied to the (SP) system, with the results then lifted to the (WP) 
system. This enables one to use many known results for the non-linear Schrodinger 
equation [8] as well as the Hartree-Fock system [9]. 
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For convenience, we repeat the (WP) and (SP) systems which we consider in 
this paper. 

Wigner-Poisson: 

8dw(x,p, t) + v . 'V xfw - i8(V)fw = 0 
T T 

Sym8(V) = V(x +"2) - V(x -"2) 

fw(x,p,O) = fw,I(x,p) 

6.V =-m 

n(x, t) = J fw(x,p, t)dp. 
]R3N 

Schrodinger-Poisson: 

1 
8t \ll(x, t) = -26.\11 + V(\II)\II 

\II = ('¢m)mEN 

\II (x, 0) = <I> = (cPm)mEN 
6.V= -m 

n(x, t) = L Aml'¢m(x, tW 

o ~ '¢m ~ 1, L Am = 1 . 
m 

(1.13a) 

(1.13b) 

(1.13c) 

(1.13d) 

(1.13e) 

(1.14a) 

(1.14b) 

(1.14c) 

(1.14d) 

(1. 14e) 

(1.14£) 

Eq.(1.14e) follows from the relationship between the (WP) and (SP) solutions -
see Eq.(1.7). In dealing with the (SP) system we shall use the following direct sum 
Hilbert Spaces: 

(1.15a) 
m 

(1.15b) 
m 

(1.15c) 
m 

N:= {n E N I An > O}. (1.15d) 

In (1.15) and subsequently, all function spaces are over lR.3 . 

If the (WP) system is considered rather than the (SP), the fw,[ Eq.(1.13c) 
can be chosen arbitrarily but must conform to Eq. (1.9c). That is, the cPn in that 
equation must be chosen to be the eigenvectors of a positive, trace-class operator 
in £2, the Am being the corresponding eigenvalues, guaranteeing that the fw will 
be the Wigner transform of a density matrix. This amounts to requiring that the 
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Fourier transform (with respect to p ) of fw,I(x,p) be the kernel of a trace-class, 
positive operator. 

In Sec. 2 we summarize the existence proof of the Cauchy problem in lR3 

for both E = ±1, and show how to obtain time asymptotics for the case E = 1. 
In Sec.3 we describe the existence proof for both the Cauchy problem and the 
stationary case in a finite domain with periodic boundary conditions. In Sec.4, a 
dissipative version of the (WP)-(SP) system is introduced and in Sec.5 we present 
some remarks on a problem which we believe is yet unsolved, namely the 1i ---+ 0 
limit of the WP system. 

2 Global Existence, Uniqueness and 
Asymptotics for (WP)-(SP) 

The recent work done on the "Wigner-Poisson" problem in ref. [10] is proven by 
first considering a bounded region n c lR~ x lR~ and then taking the formal limit as 
n approachs the whole space. Ref. [11], which this section expounds, starts first by 
considering the problem in the entire space and then through its analysis arrives 
at both the unique global-time existence and the specific time asymptotics of the 
solution, IJ!(x, t) or fw(x,p, t), and its constituent physical quantities. 

The following is a sketch of the existence and uniqueness proof; we refer 
the reader to section 3 of ref. [11] for the details. The first step is to show that 
a mild local-time solution exists for the system (1.14), i.e. that there exists a 
"III E C([O, T]; Z) such that: 

IJ!(t) = ei/["<I> - i lot e~(t-s)[,. J(IJ!(s)) ds (2.1) 

holds; where J(IJ!) = V(IJ!)"III is the nonlinear operator defined by the potential V. 
To proceed we need the following. 

Proposition 2.1. The mapping J Z ---+ Z, whose mth component is J(IJ!)m = 
V(IJ!)1Pm where V is the Coulomb potential satisfying (1.12), is locally Lipschitz in 
Z. 

This proposition is proved by showing for r, r E Z that: 

IIV(r) - v(r) IlL'''' :::; Gllr - rlly 
IIV'V(r) - V'v(r)11£2 :::; Gllr - flly 
116V(r) - 6V(r)ll£2 :::; Gllr - rlly 

(2.2a) 

(2.2b) 

(2.2c) 

where 'C' is some constant which could depend on the X, Y norms of rand r. 
These inequalities are easily shown through the use of the well-known Minkowski, 
Holder, and Gagliardo-Nirenberg inequalities [12]. Moreover, we note that the free 
Hamiltonian associated with the system (1.14) generates a continuous unitary 
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group {e¥L hER. on L2(JR3). From this fact and Proposition 2.1, we have that by 
a classical result on the Cauchy problem [13] there exists aT> ° and unique local 
strong solution W of (1.14) i.e. a function 

WE C([O, T], X) n C1([0, TJ, Z) 

such that (1.14) is satisfied in the L2-sense, and w(x, 0) = <p(x) (for <P E Z). Next 
consider the conservation laws given by: 

Proposition 2.2. For <P E X and W the mild solution in Z we have: 

IIVwll~ + EIIVV(w)lli2 = IIV<pII~ + EIIVV(<p)lli2 
11<p11~ = Ilwll~ (Vt E [0, T]) . 

(2.3a) 

(2.3b) 

Again these are proved in ref. [11]. Clearly from these laws one can show 
that: Ilwlly ~ C, IIV(w)llvX ) ~ C and also IIVVIIL2 ~ C. With these additional 
facts and considering (Eq.2.1) one can show using Gronwall's lemma that: 

Ilw(t)llz ~ CT for every t E [0, T] (2.4) 

where CT is a constant dependent upon T only. Hence another classic result indi­
cates that either the Z-norm of the solution goes to infinity in a finite time, or the 
solution can be continued onto any time interval. Therefore the solution W exists 
globally in time, that is WE C1([0, 00]; X) nC([O, 00]; Z) and solves system (1.14); 
i.e. w(t) is a global strong solution. Formally this gives: 

Theorem 2.3. Let <P E Z, 11<pllx = 1; then the Schrodinger-Poisson system 
(1.14) has a unique, global in time strong solution with the following regularity: 

WE C([O, 00]; Z) n C1([0, 00]; X) 

n,6V E C([O,oo];Z) nC1([O,00];W2,1) 

V E C([O, 00]; Loo ) n Loo([O, 00] x JR3) 

VV E C([O, 00]; L2) n Loo([O, 00]; L2) . 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

Moreover, by the properties of the Wigner transform described in Sec. 1 the 
results of Theorem 2.3 imply the following. 

Theorem 2.4. Assume that Pw,I E L2(JR; x JR~) is the kernel of a real trace 
class operator on L2. Then the Wigner-Poisson system (1.13) has a unique global 
classical solution (Pw, n, V) satisfying: 

Pw E C([O, 001; L2(JR; x JR~» n Loo([O, 00]; £B(JR; x JR~»; 2 ~ s ~ 00 (2.6a) 

8t pw, v· V Pw, 8(V)pw E C([O, 00]; L2(JR~ x JR~». (2.6b) 
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In addition to the existence results,the analysis of ref. [11] finds time asymp­
totics for the solution of (WP)-(SP). Note that due to the nature of conservation 
law (2.3a) asymptotics were only achieved for the replusive case (E = +1) for 
the systems (1.12) and (1.13).These asymptotics are summarized by the following 
theorems. 

Theorem 2.5. For the repulsive case, if Ixlq> E X then IxlW E X, ("It ~ O);also 
Ixle¥~w E X, ("It ~ 0) and the following decay estimates hold: 

IIVV(W)IILP = O(t;-l) for 2::; p::; 00 

3 3 
IIVV(w)IILP = O(C f

) for 2 < p ::; 2 "IE E (0,1- 2p) 

1 2 
IIV(w)IILP = O(tp - a) for 6::; p::; 00 

2 2 
IIV(W)IILP = O(t-f) for 3 < p::; 6 "IE E (0'"3 - :p) 

IIn(t)1I1 = O(t -;3(~)), for 1 ::; q::; 3 

L Am l11Pm(t)lIip = O(t-3(!-;)), for 2 ::; p ::; 6. 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2.9a) 

(2.9b) 

To sketch the proof of Theorem 2.5 we need the following lemma (see also ref. 9). 

Lemma 2.6. Suppose Ixlq> EX. Then the solution W satisfies: 

Ixlw(t) EX ("It ~ 0) 

and 

From this result the first assertion of Theorem 2.5 follows. The estimates of 
(2.7) are then derived from the quantity: 

(2.11) 

where G(t) = e¥~ is the free Hamiltonian group operator. By summing over (Am) 
and after much manipulation one gets the "Quasi-Conformal Conservation Law" 

Hence, by using Gronwall's Lemma, (2.12) gives 

J V(x, t)n(x, t)dx = J IVVI2dx ::; ~ (2.13) 
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and (2.7a) is proved for p = 2. The remaining asymptotics can be derived from 
(2.13) by using standard inequalities (including the Gagliardo-Nirenberg inequality 
[12]). 

Finally, by the Wigner transform, Minkowski, and Hausdorff-Young inequal­
ities Theorem 2.5 gives the following asymptotics of the solution (Pw, n, V). 

Theorem 2.6. Let ~ E X and 2:m AmllV'¢mll~~ < 00; then the following hold: 

Iln(t)IILp = O(t~(~-l)) for 1 ::; p::; 3 

Iln(t)IILp = O(C!{1+%)+E) for 3 < p::; 00, f> ° (small) 
3 

Ilpw(x, t)IILP = O(C2P) for 2 ::; p::; 00 
2 

118(v)pwIILp = O(C:'i) for 2 ::; p::; 00. 

3 Periodic Solutions 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

The problem of the existence of space-periodic solutions (of period 1) to the 
classical Vlasov-Poisson system has been studied by Batt and Rein [14J [15J on lR.3 

whereas the one-dimensional case for (WP) was treated by Arnold and Markowich 
[3J. The physical model in refs. 14 and 15 and also for the periodic (WP) and (SP) 
systems is a plasma of electrons moving in a background of fixed positive charge 
q(x) whereas the overall plasma is charge neutral. Thus the Poisson equation takes 
a different form from that of Refs. 10 and 11: 

6V(x, t) = q(x) - n(x, t). (3.1) 

Here n( x, t) is the density of negative charge and q( x) is the given time independent 
density of positive charge; later on we only consider the normalized case q(x) == 1 
for simplicity; in this case we have the normalization: 

L n(x,t)dx = 1 (3.2) 

where Q = [0,1]3. The density, as usual will be expressed in terms of the wave 
functions 'l/Jm of the (SP) system as 

00 

n(x, t) = L Am I'l/Jm (x, tW (3.3) 
m=l 

where Am ~ 0,2: Am = 1. The Wigner function fw is,in our case, slightly different 
from that of Refs. [lOJ and [l1J because we also have to quantize momentum; we 
set Vn = 21fn, n E Z3. The analysis of Section 1 and Refs. [16] [17] are transferred 
mutatis mutandis to the periodic case where the main differences are that in the 
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definition of the Wigner transform integration is taken over Q, and integration 
over v is replaced by a summation over Vn ; normalization constants are deleted. 
We write fw as the sequence fw,n defined by: 

fw,n(x, t) = fw(x, Vn, t) . 

The Wigner equation itself is basically unchanged: 

8t/w,n + Vn . V' xfw,n - ie(V)fw,n = o. 
Moreover, e(V) is now defined by (where Q' = [-1,1]) 

8(v)fw,k = L r ,[V(x +~, t) - V(x - ~)]fW,k'(X, t)e27ri(k-k') 7J dry 
k' lQ 

'"' r 2 Ok ( Z - ( Z [Z Z = ~.Am lQ~ 7r~ z'¢m X - 2' t)'¢m X + 2' t) V(x + 2' t) - V(x - 2)]dz 

fw,k = L.Am 1 e27rikZ'¢m(X - ~,tY~m(X + ~,t)dz. 
m Q 

The equivalent (SP) system has the form: 

iOt'¢m = -~6'¢m + V(IJt)'¢m 

6. V = 1 - n(x, t) (x E Q, t E ~+) 

(3.4) 

(3.5) 

(3.6a) 

(3.6b) 

(3.7) 

(3.8a) 

(3.8b) 

with n(x, t) defined by (3.3) and IJt = ('¢m). Equation (3.8) should be solved with 
periodic boundary data on Q and a I-periodic initial condition: 

(3.9) 

The q, = (¢m) should be an orthonormal system on L2(Q) satisfying the con­
sistency condition to guarantee a positive trace class operator on L2(Q) with 
eigenvalues (.Am); call this condition (C). 

In this section we state global (in time) existence and uniqueness results for 
strong solutions of the periodic (SP) and (WP) systems. Furthermore, we give 
results on the existence of an infinite number of periodic stationary states of (SP) 
and (WP). Again we only sketch the proofs of these results. 

By a strong solution of the periodic (SP) system (3.8)-(3.9) we mean functions 
(1Jt, V,n) such that (3.8) is satisfied in the L2 sense and: 

IJt E C(8,X2) nC1(8,X) nLOO ( Q) 

V E C(8, H2) n LOO (8, LP), 2::; p ::; 00, 10 V dx = 0 

n E C(8, L2) n LOO (8, Lr ), 1 ::; r ::; 00, Ion dx = 1 
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where S = [0, TJ, T > 0, Q = Q x S and X, X 2 are the analogously defined spaces 
as in Section 1 for the periodic case, e.g. 

where we consider the LP -spaces to be over Q. 

Theorem 3.1. Let <I> E X2; then for any T > ° there is a unique global strong 
solution (<1>, V, n) of Eq.{3.8} on S = [0, T]. 

Remarks on proof. The details may be found in Ref. [18]. We use a Galerkin method 
to get the solutions as limits of the approximating Galerkin sequence 

'ljJ~)(x, t) = L d~k(t)hk(X) (3.10) 
Ikl~N 

(with hk (x) = e27rk .x , k E 1£3); the coefficients d~k (t) are determined in such a 
way that ' 

(i8t'ljJ~) + ~6'ljJ~) - V(N)'ljJ~), hk) = ° (Ikl s N) 

'ljJ~)(x,o)= L (¢>m,hk)hk 
Ikl~N 

are satisfied. Here V(N) is an approximation of V defined by 

(N) 

V(N)(W(N») = 4~2 L nZ2 hk 
O<lkl:9N 

n(N)(x,t) = LAml'ljJ~)(x,tW = L nkN)hk 
m Ikl~2N 

where one can compute the nkN ) to be 

nkN) = LAm L L d~rd~l-k' no = 1. 
III~N II-kl~N 

(3.11a) 

(3.11b) 

From (3.11) one sees that the d~l satisfy the system of nonlinear first-order dif-
ferential equations: ' 

(N) 
d(N)(t) = -27r2il2d(N)(t) - i/47r2 '" ~d(N) (t) m,l m,l L...J k2 m,l-k 

O<lkl:9N 

(3.12a) 

II-kl~N 

dm,I(O) = (¢>m, hi) III s N. (3.12b) 
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(3.12) can be solved globally in time by using the conservation laws 

11\[1(·, t)ll~ = canst., IIV'\[I(·, t)ll~ + IIV'V(-' t)lli2 = canst. (3.13) 

which are also valid for the Galerkin sequence; (3.12) also implies a priori bounds 
for the Galerkin sequence in Xl. For getting a strong solution of (SP) one needs 
an X 2 a priori bound which is provided by looking at the time evolution of 
I 16'if(N) 12 dx and using Sobolev embedding. This also gives Loo-bounds on the 
Galerkin sequence which are needed for the uniqueness proof. The existence proof 
is finished by using further compact Sobolev embeddings. 

Theorem 3.1 transfers to (WP) by defining a strong I-periodic solution of 
(WP) to be a sequence fw = (fw,n) which consists of spatially I-periodic functions 
satisfying (WP) in the sense of the function space W = l2(L2(Q)) such that: 

fw E Cl(S, W), (vn ' V' xfw,n) E C(S, W), 8(V)fw E C(S, W). 

We say that fw,I satisfies condition (C) if 

Pw,I(X,71) = 2: Am¢m(X - ~)¢m(x + ~) 
m 

where ¢m satisfies condition (C) from above; and" A " means the Fourier series 
generated by Pw,I,n. 

Theorem 3.2. Let Pw,I E W satisfy condition (C); then the Wigner-Poisson 
system (3.5) has a unique global strong i-periodic solution such that 

n(x, t) = 2: fw,n(x, t) and 
nEZ3 

By a stationary I-period solution of (SP) we mean a sequence of functions 
\[I = ('ifm) such that \[I solves (SP) and 

\[I (x, t) = eiwt<p(x) 

with I-periodic real <p = (¢m). 

Theorem 3.3. There exist a countably infinite number of stationary i-periodic 
solutions <Pj(x, t) = eiwjt¢j(x) such that ¢j E X 2 n Coo and Wj --- 00 for j --- 00. 

Sketch of proof. (details may be found in Ref.[19]) 

We only consider the case of a pure state. With this assumption one obtains 
the ¢j'S as critical points of the functional 

J(¢) = f {1V'¢12 + B(¢2 - m(¢2)) . (¢2 - m(¢2))}dx 

Q 
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where m(J) = IQf(x)dx is the mean value over Q of any function f, B L~(Q)--7 
HJ(Q) is the solution operator p, = Bf of the Poisson problem 6u = f on Q with 
m( u) = 0, and the index zero on the space means "mean value zero". It can be 
shown that B maps L~(Q) injectively and compactly into itself. The main point 
to prove Theorem 3.3 now is to show that J satisfies a Palais-Smale Condition on 
the set 

which is done by using compact and continuous Sobolev embeddings. 

4 Dissipative Systems 

In this section we consider (SP) and (WP) equations which model dissipation. 
In some approximation, the magneto-fluid dynamics of a quantum plasma can be 
discribed by adjoining to the usual hamiltonian terms representing dissipation (or 
friction, or viscosity). In this case the (SP) system is of Ginzburg-Landau type, 
[20J (SP) namely we introduce as the new Hamiltonian: 

(4.1) 

(4.2) 

here 0:, /3, 'Y E Rj the first term models kinetic friction, the second the loss of energy 
to a reservoir, and the third static friction (see Ref. [21J for similiar models). We 
first derive the Wigner equation (WP) obeyed by the Wigner function when the 
corresponding (SP) system is given by: 

1 
i8t 1/Jm = - 2. 61/Jm + V 1/Jm + iHl1/Jm 

-6V =m (€ = ±1) 

1/Jm(x, 0) =¢m(x) (x E R3 ) 

n(x, t) = L >'ml1/Jm12 . 
m 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Propsition 4.1. The (WP) system for a Hamiltonian given by (4.1) is the evo­
lution equation 
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The proof of Prop.4.1 just uses that 

fw(x, v, t) = 2: Am J e-ix'E~m(v - ~,t)~m(V + ~,t)d~ 
m 

(where the" A" means Fourier transform in the x variable). For proving global 
existence of the solution to (SP) (which also transfers to (WP)) for the Cauchy 
problem in]R3 we need !.he same ~paces X, Y, Z as defined in the introduction, and 
furthermore the space Z = Z n X where 

x = {w = ('Ij!m) I w EX, Ilx2w113c, Ilx 0 V'w113c < oo}; 
3 

here Ilx0V'w113c = 2: Am L Ilxj<'Jxk 'lj!mll1,2. 
j,k=l 

Furthermore, we use the linear operator T D(T) = Z c X -+ X defined by T(w) = 
(( -~L. + iHI)'Ij!m) mEN' One can prove that T is closed, and that 

D(T) = {w E Xl I L.w exists, X· WE X, T(w) EX}; 

this can be done by considering (for "( = 0) 

IITwI13c = (~ + ( 2)IIL.wI13c + ;3211x2w113c + 2;3Re L Am J L.'Ij!m· x2 ;j;mdx 
m 

-;3Im L Am J L.'Ij!m· ;j;mdx 
m 

and using partial integration and duality arguments. From Hille-Yosida's theorem 
one can show that S := -iT generates a contraction semigroup, namely one proves 
that for a ~ 0,;3::::: 0,,,(::::: ° 

by looking at Re L Am ((pI + iT)'Ij!m' 'lj!m) £2 . 

Theorem 4.2. Let <I> = (¢m) E Z and a 2 0,;3 ::::: 0, "( ::::: 0. then the {SP} system 
{4.3}-{4.6} has a unique global strong solution (w, n, V) on [0,00] such that 

WE C([O,oo);Z) nCI([O,oo);X),n,L.V E CI([O,oo);LI) nC([0,00);W2,1), 

V E C([O, 00); Loo (]R3·[0, 00))), V'V E C([O, 00); L2 )nLOO ([0, 00), LP) (2::::: P::::: 00). 
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Sketch of proof. (details may be found in Ref. [22]) 

One first shows that the nonlinear operator J(w)m = V(w)"pm is locally Lipschitz 
on Z which is done along the same lines as in Section 2. This implies local existence 
of strong solutions of (4.3)-(4.6). To get global solutions one proves that for a 2 
0, fl ::; 0, "y ::; ° there is an a priori bound for any local solution w(t) of the form 
Ilw(t)llz ::; C(T) on any time interval [0, TJ, T > 0. The main point when doing 
this is to look at the time evolution of x 0 Vw, x2 W, and 6 W in the X-norm. Then 
one uses the commutation relations [x 0 V, 6] = -2V 0 V, [x· V, x2] = -2x 0 x, 
[L., x2 ] = 61 - 4:t 0 V, and the integral version of (SP) ; i.e. 

x 0 Vw(t) =G(t)(x 0 V<p) + lot G(t - s)[aV 0 Vw(s) 

+2iflx 0 xw(s) - ix 0 V J(w(s))]ds 

where G(t) is the semigroup generated by -iT. We also use the evolution law for 
the "energy" 

E(t) = E(x, w) = r {IVwI2 + IVVI2 + 8lwl2}dx 
J'R.3 

for some positive 8. 

with <P = (<Pm) E Z. Then (4.7) has a global strong solution fw satisfying 

fw E C([O, 00); L2(JR.3 X JR.3)) nLOO ([0,00);£B(JR.3 x JR.3)) ,2::; s::; 00, 

8dw, v . V xfw, 8(V)fw EC([O, 00); L2(JR.3 x JR.3)) 

where fw(x, v, 0) = fw,I(X, v). 

Remark. For "y < 0 we can prove that for the "energy functional" 

there exists a sufficiently large 8 > 0 such that 

F(t) ::; F(O)e-ct ("It 2 0). 
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5 Remarks on the Classical Limit 

There is considerable interest in the n -+ 0 limit of the (WP) system for a num­
ber of reasons. First, the Wigner method was proposed originally [1] as a means 
of obtaining quatum corrections to quasi - classical systems; such an equation 
would presumably be solved by expanding 1 w in a similiar sense, whose leading 
term would obey the classical equation! Second, the existence proofs presented in 
this paper for the (WP) systems are dramatically simpler than the correspond­
ing proof for the Vlasov-Poisson system [23],[24],[25],and there is some hope that 
undoubtedly this limit might lead to simplified analysis of the (VP) system. 

The existence of a classical limit of the Wigner equation has been viewed 
with skepticism by a number of authors for some time. In particular, Heller [26] 
has asserted that a power series expansion of 1 w in n might not be valid due to the 
apparent essential singularity at n = 0 [cf Eq.(1.7)]. However, the situation is far 
from clear, since the singularity appears in the form of an exponential kernel (e.g. 
choosing ¢n = eikn·xln leads to 1w(x,p) = E An6(p - kn), independent of x as 
required by the uncertainty principle). This essential singularity in the integrand 
of 1w Wigner transforms into a delta function in the n -+ 0 limit because of the 
normalization condition 

{ 1w(x,p, t)dpdx = 1; 
lIR3 xIR3 

(5.1) 

that is, 1 w is a delta sequence. While we have not proved this in general, it appears 
plausible, and is certainly true for two cases which can be worked out explicitly. 
For the free particle represented by an intial wave packet of mean Po and variance 
2~ we have [7] 

¢o(x) = (-)2(--2)4 e-<> P-Po e'P'x dp; a 3 1 ~ 1 ( )2. In 
7l" 2a7l"n IR3 

(5.2) 

using the Schrodinger flow e-ifi gives: 

a 3 ( 1 ) ~ 1 ( )2 ;p2t. In 'lj;o(x,t) = (-)2 -- 4 e-<>P-Po e-2mlie'P'X dp. 
7l" 2a7l"n2 IR3 

(5.3) 

Using Eq.(1.7) one computes: 

(5.4) 

and therefore: 

2a 3 P 2 ( )2 lim 1w(X,p, t) = (- )26(x - -t)e- <> P-Po 
n-O 7l" m 

(5.5) 

This limit satisfies the Vlasov equation, viewed as a relation between distributions. 
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For the harmonic oscillator in one dimension in its ground state, Heller [26] 
has calculated f w. With m = 1 he finds 

(5.6) 

where w is the usual angular frequency. Again, the limit is a distribution. In fact 

lim fw = 8(x)8(p) 
n--->O 

(5.7) 

These considerations indicate the probable futility of looking for functions as 
solutions in the n ---t 0 limit. In fact, in ref. 27 the limit is sought in a space of 
measures, which seems eminently reasonable. 

The following proposition could be useful in forming the classical limit. 

Proposition 5.1. 

Proof. Since fw is real 

by (1.4) and (1.5). The result now follows easily from Eqs.(1.2) and (1.6). 

Note that this is now unbounded in the n ---t 0 limit. Sometimes, it is con­
jectured that L Ar contains a factor of n, but this is physically impossible. In 
particular, the (WP) theory and its classical limit should remain valid in the case 
of a pure state, for which Ak = 8kl . 
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Classical d' Alembert field in an 
one-dimensional pulsating region 

J. Dittrich, P. Duclos, P. Seba 

Abstract 

Classical massless scalar field in a finite one-dimensional space interval 
is studied. One end point of the interval is fixed while the second one is 
periodically oscillating. The field satisfies the Dirichlet boundary conditions 
at the end points. Sufficient conditions for the unbounded increase of the 
energy of the field are found. A case with the periodic time evolution of the 
energy is also shown. 

Fermi in 1949 proposed the scattering of charged particles on moving inhomo­
geneities of the magnetic field as a possible mechanism of cosmic rays acceleration 
[1]. To study the possibility of such acceleration a simplified model [2] was pro­
posed: a particle elastically bouncing between the fixed and the oscillating walls. 
The velocity of a classical nonrelativistic particle is increasing with the energy. 
For large energies, the particle is many times bounced within one period of the 
wall motion and the energy gained within one half-period is lost within the sec­
ond half-period. So we expect that the energy of the particle remains bounded 
which was really proved [3]. Similar nonacceleration have been shown for nonrel­
ativistic quantum particle and smooth periodic motion of the wall , however, the 
acceleration have been seen for some nonsmooth wall motions here [4]. 

The waves of a classical field spread with the constant velocity c independent 
of the energy. A ray can be therefore bounced in phase with the wall motion, always 
meeting the wall moving with the same velocity against the ray. The energy of the 
ray thus increases by the same factor at each reflection on the moving mirror 
(moving wall or end point of our interval). If the distance between the walls is x 
at the time of reflection and T is the period of the wall motion then the condition 
of repeating bounces after N periods is 

2x= NTc. (1) 

Taking into account the maximal and minimal wall distances the condition 

N 
Xmin < 2"Tc < Xmax (2) 

is obtained for the increase of energy. We put c = 1 in the following. 
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We are going to demonstrate the validity of these heuristic considerations 
on the simplest field theoretical model with moving boundary. Let us start from 
the formulation of the model. We consider a real massless scalar field (or small 
oscillations of a string) <p satisfying 1+1 dimensional d'Alembert equation 

a2<p(t,x) _ a2<p(t,x) = O. 
at2 ax2 

(3) 

for 
t>O, XE(O,X(t)) (4) 

with the boundary conditions 

<p(t,O) = 0, <p(t,X(t)) = 0 (5) 

for all t 2: O. We assume 

X E C2 (JR), X> 0, X(t + T) = X(t), \X'(t)\ < 1 

for some T > 0 and all t E JR. The field <p is assumed to have continuous second 
derivatives in the domain (4) and to be continuous in its closure. At the time t = 0 
the Cauchy data 

<p(0, x) = fo(x), a<p(O,x) = 11 (x) 
at 

are given. They must satisfy the consistency conditions 

fo E C2 ([0, X (0)]) , h E C1([0, X (0)]) , 

fo(O) = fo(X(O)) = 0, 11(0) = 0, 

h(X(O)) + X'(O)f~(X(O)) = 0, f;(O) = 0, 

f;(X(O)) + X'(O)f~(X(O)) + 1 :;~~~)2 [f~(X(O)) - I1(X(O))] = 0 

The field <p has the form 

<p(t, x) = f(t + x) - f(t - x). (6) 

The function f is expressed with the help of fo and 11 in the interval [-X (0), X (0)] 
and extended to the whole real axis by the relation 

f= foP (7) 

where 

with 
h(t) = t - X(t), k(t) = t + X(t) 

for t E JR. 
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The energy E(t) of the field is 

1 rX(t) [(8)2 (8 )2] 
E(t) = 2 Jo 8~ + 8: dx 

which is rewritten as lk (t) 

E(t) = [!'(y)]2 dy. 
h(t) 

(8) 

The following theorem gives sufficient conditions for the energy unlimited increase. 

Theorem 1: 
Assume that for some 0 < ~ < T, X is nondecreasing in (0, ~), decreasing with 
X'(t) < 0 in (~, T) and 

1 
X(O) < 2T < X(~). (9) 

Assume further more that none of the functions 16 + II and 16 - II vanish identically 
in any open subinterval of (O,X(O)). Then 

lim E(t) = 00. 
t->oo 

(10) 

The detailed proof will be published elsewhere. It is based on the relation (7) 
which together with repeated substitution z = P(y) leads to 

l rn (k(t)) J'(z)2 
E(t) = 1 dz. 

F-n(h(t)) I17~o PI(pj(Z)) 

Under the conditions of Theorem 1, all factors pI (pj (z)) are smaller than 1 in a 
part of the integration interval and we are able to proof relation (10) as t --+ 00 

corresponds to n --+ 00 for suitably chosen n. 
The assumption on supp(f6 ± II) can be weakened but the set where these 

functions should be nonzero is expressed in a rather complicated way. The assump­
tion excludes the trivial case of a field constant in some region for which J' (z) is 
zero in the above mentioned part of the integration interval. 

The assumption (9) corresponds to N = 1 in the heuristic condition (2). In 
fact, Theorem 1 can be extended to the case N > 1 where condition (9) has to 
be replaced by (2). The choice of time t = 0 when X passes its minimum is just 
conventional and can be removed. 

For the special case 

X(t) = Xo + a sin(wt), 0 < a < xo, 0 < aw < 1, 

equation (9) with the corresponding shift of the time zero reads 

1f 1f 
---<w<--­
Xo + a Xo - a 

giving a band of wall frequencies where the energy is unlimited in time. 

(11) 
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Numerical computations indicate that the intervals of wall frequencies given 
by equation (2) are maximal intervals where the energy is unboundedly growing. 
However, we have not an analytical proof of that. We can only show the following 
case of periodic and therefore bounded energies. 

Theorem 2: 
Let X is given by equation (11) with 

Then 

for any t E JR. 

1 n 
w=(N+-)-, N=O,I, ... , 

2 Xo 

E(t + 4xo) = E(t) 

Xo 1 
N< ---. 

no: 2 
(12) 

(13) 

The proof is based on the relation F(F(t)) = t + 4xo which is easily verified 
under the assumption (12). 

The work is partly supported by the ASCR grant No. 14814. 

References 

[1] E. Fermi, Phys. Rev. 75(1949), 1169 

[2] S. Vlam, in Proc. 4th Berkeley Symp. on Math. and Probabil., Berkeley - Los 
Angeles, 1961, v.3, p.315 

[3] L. D. Pustylnikov, Teor. Mat. Fiz. 57(1983), 128; Dokl. AN SSSR 292(1987), 
549 

[4] P. Seba: Phys. Rev. A 41 (1990), 2306 

J. Dittrich, P. Seba, Nuclear Physics Institute, Academy of Sciences of the Czech Repub­
lic, 250 68 Rez near Prague, Czech Republic 

P. Duclos, Centre de Physique Theorique, CNRS, Marseille-Luminy, France and 
PHYMAT, Universite de Toulon et du Var, Toulon, France 



Operator Theory: 
Advances and Applications, Vol. 70 
© Birkhauser Verlag Basel 

Irregular scattering in one-dimensional 

periodically driven systems. 

Petr Seba 

Abstract 

We discuss the irregular scattering in a one dimensional and time periodic 
model. The existence of sharp quantum resonances is demonstrated. We show 
that these resonances appear due to tunneling between the stability island 
and the chaotic layer. 

The irregular scattering is one of the frontiers of the nowadays research on 
the chaotic classical and quantum Hamiltonian systems. In the classical case the 
existence of the irregular scattering has been discussed for instance by J ung and 
Eckhardt [1] as a typical representation of the transient chaotic behavior (see for 
instance [2]). In the quantum case the relevant studies have been initialized by 
Blumel and Smilansky [3]. Using semi classical arguments they were able to show 
that the presence of the classical irregular scattering implies certain fluctuations of 
the corresponding quantum S-matrix which are described by the Dyson ensemble 
of random matrices. 

Today the properties of the classical and quantum irregular scattering have 
been investigated in a number of various models. Their common feature was that 
the classical chaotic repeller (which is responsible for the appearance of the frac­
tally organized singularities of the classical scattering characteristics) was fully 
hyperbolic. The hyperbolicity of the repeller implies among others an exponential 
decrease of the probability density P(t) that a classical trajectory will stay in the 
interaction region for a time longer then t: 

(1) 

with 0: being connected with the Lyapunov exponent of the repeller [4]. The ex­
ponential decay of P(t) has twofold consequence: In the classical case it leads to a 
self similar structure of the scattering singularities (a kind of Cantor set). In the 
quantum case (1) implies the absence of long-living resonances and consequently 
the Ericson fluctuations of the quantum mechanical cross section [3]. 

In the present letter we would like to describe a one-dimensional and time 
periodic (kicked) model for irregular scattering and to investigate its properties. 
Depending on the parameters of the model, the corresponding repeller will be 



264 Petr Seba 

either hyperbolic leading to (1) or it will display a large elliptic island leading to 
an algebraic decay of P(t): 

(2) 

Our aim is to show that the tunneling between the chaotic layer and the stability 
island leads in the quantum case to the existence of long-living resonances. This 
resonance mechanism is (according to our opinion) suited to explain the existence 
of the controversial resonances observed in some ion-ion scattering experiments 
[12]. The very recent classical calculations performed on the ion-ion scattering 
model demonstrated [13] the presence of large stability islands. Its phase space 
structure is therefore quite similar to the phase space of the model presented in 
our letter. 

The system to be investigated consists of a one-dimensional particle moving 
on a line under the influence of a short range time-periodic potential. The classical 
Hamiltonian is given by 

1 
H = 2p2 + V(x) L 8(t - n) 

00 

(3) 
n=-oo 

with a short range potential 

2 
V(x) = -Ae-x ; A> O. (4) 

The dynamics of the system is governed by a classical map 

Pn+l = Pn - V' (xn), Xn+l = Xn + Pn+l (5) 

where Xn , Pn denote the coordinate and the impulse of the particle just after the 
n-th kick. 

The phase space portrait of the above map has in the interaction region all 
the typical features common to the time periodic dynamical systems. The origin is 
a fixed point of the mapping. For A < 2 this fixed point is stable and is surrounded 
by a set of integrable trajectories (KAM curves) defining a stable region (the 
stability island) in which the motion is quasi-periodic. This island is imbedded into 
a chaotic layer interspersed with smaller islands (See the Figure la). For A > 2 
the fixed point becomes unstable and the stability island disappears. Some smaller 
secondary island may, however, still be present. For A big enough the interaction 
region becomes hyperbolic (see Figure Ib). 

The properties of the transport in the phase space depend heavily on its 
structure. In the hyperbolic case the probability that a trajectory will stay in a 
given region of the phase space for a time T is exponentially decaying with T. 
It is, however, well known that the existence of an elliptic domain will spoil this 
behavior leading to an algebraic decay. This change in the transport behavior has 
been observed for the first time in [5]. The theoretical explanation [6] is based on 
the properties of the boundary layer between the stable and the chaotic domain of 
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Fig 1. The phase space portrait of the system. a) A = 1, b) A = 5 
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the phase space. The boundary layer contains invariant Cantor sets (the so called 
Cantori) which are remnants of the KAM curves being destroyed as the coupling 
constant of the nonlinear term increases. It is the flux through the Cantori which 
determines the long time behavior of the transport (the trajectory is "sticking" on 
the boundary where it has to pass through the tiny "holes" in the Cantorus). In the 
case of a well developed stability island the time decay of the stay-in probability 
is given by (2) with Q: roughly equal to 1.5 [7]. 

As already mentioned the character of the transport in the interaction region 
is decisive for the structure of the fractal set of the scattering singularities. Very 
recently Lau, Finn and Ott [8] demonstrated that the customary self similarity of 
the Cantor set of the classical scattering singularities is a direct consequence of 
the exponential decay of the probability P{t). In the case of an algebraic decay 
the situation changes. The authors showed that in this case the fractal dimension 
is equals to one [8]. 

In our model the influence of the elliptic island on the behavior of the scat­
tering singularities can be easily investigated. The probability distribution P{t) 
has been evaluated initializing a large amount of trajectories and inspecting the 
corresponding time delay. The results are plotted on the Fig. 2. In the case with a 
large stability island the algebraic decay of P{t) with Q: ~ 1.5 is clearly apparent. 
The next Figure shows the outgoing impulse Pout as a function of the initial posi­
tion Xin of the trajectory. The calculation have been performed for two different 
coupling constants >.. In both cases the incoming impulse has been fixed and the 
trajectory has been initialized with Xin deep in the asymptotically free domain. In 
the first case (>. = 5) the interaction region is hyperbolic leading to exponentially 
decaying P(t) and to a self-similar structure of the scattering singularities. The 
second case corresponds to >. = 0.5 with a large stability island. The difference in 
the fractal structure is clearly apparent. 

In the quantum case is the scattering process governed by the quantum map 
(Floquet operator) 

where p denotes the standard impulse operator 

A .~ a 
P= -tn­ax 

The operator U is nothing but the quantized version of the classical map (5). 
To define the S - matrix we introduce the M¢ller operators fL, 0+: 

0_ = lim U-nUO', 0+ = lim U-nUO' 
n--->oo 

with Uo being the free evolution over one period 

_.i~ 
Uo = e Ii 2 • 

n-+-oo 

(6) 

(7) 

(8) 

(9) 
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The quantum S-matrix is then defined in a standard way: 

(10) 

It is not difficult to prove that the scattering defined by the above equations is 
complete and the S-matrix is unitary. (This fact can be proved using ideas similar 
to those sketched in [10].) Moreover the S - matrix commutes with the free Floquet 
operator Uo: SUo = UoS. This is the precise mathematical formulation of the fact 
that the free quasi - energy is conserved during the scattering process. 

The conservation of the quasi- energy restricts substantially the energy which 
can be transferred during the quantum scattering. In order to clarify this point let 
us assume that we have prepared an incoming state lin> with kinetic energy E 

(11) 

After the scattering the state becomes lout >= Slin >. The natural question is 
what is the kinetic energy of lout> ? From the commutation relations follows 

Uolout >= UoSlin >= SUo lin >= etESlin >= etElout > (12) 

i.e. the vector lout> has the same quasi- energy as the vector lin >. Inasmuch as 
Uo is a function of the kinetic energy operator we have 

(13) 

with E' such that 
(14) 

In other words 
E' = E + n27rn (15) 

with n = 0, ±1, ±2, .... Consequently the energy transfer is possible only by discrete 
portions of 27rn. 

Let us now say a few word about the structure of the S-matrix defined by 
(10). In consequence of the quasi- energy conservation we can write the operator 
S as an direct integral over quasi- energy 8 

S = J S(8)d8 (16) 

with S(8) referring to the scattering on a given quasi energy shell. Taking into 
account that each quasi-energy state is two times degenerate (the particle can 
move into two different directions) we can naturally divide the S - matrix elements 
into four blocks: 

( S<-'-)(8) S<-'+)(8)) 
S(8) = S<+'-)(8) S<+'+)(8) (17) 
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where S(-,-)(8) refers to states coming from -00 and being finally bounced back 
to -00 (reflection) while S(-'+)(8) describes the situation where the particle com­
ing from -00 moves finally to +00 (transmission). Due to the time reversal sym­
metry of the system we find that 

S(-,+)(8) = S(+,-)(8) (18) 

The matrix elements Sm,n(8) of S(8) are directly related to the kinetic energies 
E, E' of the incoming / outgoing particle respectively. From (12) and (15) it follows 
that one can express E, E' through 8 as 

E = n2;rn + n8, E' = m2;rn + n8. (19) 

with n, m being integers corresponding to the indices of the matrix element 
Sn,m(8) and 8 E (0,2;r). The physical interpretation of the S-matrix elements 

is straightforward: ISt;'-)(8)12 is the probability that a particle incoming from 
left with an energy E = 2;rnn + n8 will be finally reflected back with an energy 
E' = 2;rnm + n8. 

We evaluated the quantum map U using a fast Fourier transform code with 
217 elements. This enabled us to obtain reliable results for n as small as 0.01. The 
evaluated S-matrix has been found to be unitary with high precision. 

In the case of large >. (the interaction domain is nearly hyperbolic) the S­
matrix elements display Ericson fluctuations [3] similar to those described by 
Blumel and Smilansky [3-4]. These fluctuations are characterized by an auto­
correlation function 

C(il) =« S(-,-)(8)S(-'-)(8 + il) »= C(O) n,m n,m 1 _ i.£Z.. 
oJi 

(20) 

with a: referring to the classical probability (1) (see Fig.4.). The situation changes, 
however, if the interaction region contains a well developed stability island. The 
quantum tunneling into the regular island leads in this case to the existence of 
long-living resonances which can be discovered as sharp peaks when plotting the 
reflection probability as ISt;,-l(8W as a function of the quasi- energy 8, see 
Fig. 5. 

In order to demonstrate the connection between the quantum resonances and 
the classical stability island we will suppose for a moment that the outermost KAM 
curve, which sets the boundary of the island and is impenetrable for the classical 
particle, is impenetrable for quantum particle as well. In this case some quantum 
states will be trapped inside the island leading to eigenvalues imbedded into the 
continuous spectrum of the Floquet operator U. (Formally these eigenvalues are 
real poles of the S-matrix S(8)) 

The number N of them is given roughly by the area S of the stability island 
divided by 2;rn: 

(21) 
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Moreover in the semi classical regime are the eigenvalues nearly equidistant. (This 
is a direct consequence of the EBK quantization, see for instance [11].) The distance 
A between the neighboring eigenvalues is easily approximated by 

(22) 

Inserting (21) into (22) we find 

(23) 



274 Petr Seba 

The quantum tunneling through the outermost KAM curve turns the eigen­
values into resonances and the poles on the S-matrix 8(8) will move from the real 
axis. One can find them, however, by continuing 8(8) into the complex plane. The 
real part of the resonance poles will remain nearly equal to the above described 
eigenvalues (assuming the tunneling is not very strong). As a result we have to 
find (for smalln) a ladder of nearly equidistant resonance peaks when plotting the 
quantum transition probabilities as a function of the quasi-energy. The distance 
between the resonance peaks is given by (23). In the case A = 0.5 is S ~ 0.9. This 
leads for n = 0.01 to ~ = 0.43 which is in excellent agreement with the mean 
distance between resonances plotted on Fig.5. 

Summarizing we have demonstrated that the existence of a well developed 
stability island leads in the classical mechanics to a fractal of scattering singu­
larities with fractal dimension equal to one. In the quantum case the tunneling 
through the outermost KAM curve leads to the appearance of sharp resonances. 
It is tempting to speculate that the mechanism responsible for their existence 
(namely the tunneling into the stability domain) can be used to explain some of 
the recently discovered controversial resonance peaks in the ion~ion scattering ex­
periments [12]. The very recent classical calculations have showed [13] that the 
phase space portrait of these systems contains stability islands imbedded in the 
chaotic sea. The quantum tunneling is therefore good candidate for the sought 
resonance mechanism. 
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Relatively Random Unitary Operators 

Karol Zyczkowski 

Consider unitary operators (It and (;2 represented by matrices U1 and U2 of 
size N. We shall call operators (;1 and (;2 relatively random, if 

(1) 

Let (;{ = (;J (;1 (;2 denotes the image of the operator (;1 transformed by the 
unitary operation (;2. It is easy to see that f.L = Re[((;{I(;l)]/N, where (AlB) = 
Tr(At B) is the scalar product in the space of operators. In other words, an operator 
(;2 is relatively random with respect to (;1, if (;1 is orthogonal to its image (;{. 
Moreover, the coefficient f.L might be used as a measure of commutativity between 
(;1 and (;2, since the norm of commutator reads 

(2) 

with the norm IIAI12 = (AlA). Relatively random operators do not commute and 
their eigenbasis are sufficiently different. 

The concept of relatively random operators might be used for analysis of 
quantized chaotic systems. It is well known [1,2] that the statistical properties of 
quantum chaotic systems are described by ensembles of random matrices [3]. Level 
spacing distribution which characterizes spectrum of quantum system possessing 
a generalized time-reversal symmetry is described by the Wigner distribution. 
Furthermore, according to the theory of random matrices the distribution of com­
ponents of eigenvectors Yin = I ('lj;lln) 12 , l = 1, ... ,N of a unitary Floquet operator 
F (or a hermitian Hamiltonian) represented in a suitable basis In), n = 1, ... , N is 
given by the Porter-Thomas distribution [4]. We call such a basis relatively random 
with respect to the operator F. 

The distribution of eigenvector components is closely related to the statistics 
of matrix elements [5,6] of an observable represented in the eigenbasis of the Hamil­
tonian or the Floquet operator F. It has been suggested [7] that the statistics of 
matrix elements of an Hermitian operator A is given by the Porter-Thomas distri­
bution, if A is relatively random with respect to F. In this work we conjecture that 
the statistics of components of eigenvectors of a unitary operator F1 describing a 
chaotic quantum system and represented in the eigenbasis of F2 , complies to the 
predictions of random matrices, provided both operators are relatively random. 
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Above mentioned conjecture is supported by a numerical study of the period­
ically kicked top - a quantum system allowing for chaotic motion [8-10]. Dynamical 
variables of the system are three components JI , l = 1,2,3 of the angular momen­
tum operator 1. They obey the commutation relation [Jk, Jil = iEklnJn. Time 
evolution of the system is governed by by the Floquet operator 

A2 
A -iKJ A 

F(K,p) = exp( 2j X)exp(-ipJz ), (3) 

where p and K are the parameters of the model. The eigenvalue j (j + 1) of the 
operator J2 fixes the dimension of the Hilbert space N as N = 2j + 1. It is 
convenient to analyze the system in the eigenbasis of the operator Jz , Ij, m), m = 
-j, ... ,j. 

The perturbation operator V, quadratic in Jx , does not couple states Ij, m) of 
different parity and the matrix F breaks down into a block diagonal form of size j 
and j + 1. Both subspaces are dynamically independent and numerical calculations 
can be performed separately for each parity. It has been reported [8] that for p = 1.4 
and the kicking strength K > 6 the classical motion is chaotic and the statistical 
properties of the Floquet operator P corresponding to the quantum model can be 
described by circular orthogonal ensemble (COE) [3]. 

We are interested in the statistics of eigenvectors of PI = P(KI,PI) rep­
resented a given orthonormal basis. This basis can be defined as the eigenbasis 
of a reference operator P2 = P(K2,P2). In the standard approach to eigenvector 
statistics one uses the basis of the unperturbed system [11,12]' what corresponds 
to putting K2 = 0 and P2 = Pl. On the other hand, if K2 = KI and P2 = PI, both 
operators are equal, the statistics of eigenvectors of Fl in its eigenbasis is singular 
and does not contain any information. We put P2 = PI and consider arbitrary val­
ues of the parameter K2 determining reference operator P2 and study, how large 
values of the "rotation parameter" ~ = k2 - kl produces COE-like eigenvector 
statistics described by Porter-Thomas distribution. 

Eigenvector statistics may be characterized by the mean entropy of eigenvec­
tors (H) [13] 

1 N N 

(H) = - N L L Yin In(Yln). (4) 
1=1 n=l 

This quantity varies from zero for totally localized eigenvectors (one component 
equal to unity and all others to zero) to In(N) for a delocalized eigenvector with 
all components equal to 1/ N. For random matrices representing a member of the 
orthogonal ensemble the mean entropy can be found analytically [14] and expressed 
by means of the Digamma Function W [15] 

N+2 3 
HOE = IJ!(--) -IJ!( -). 

2 2 
(5) 

For convenience we use the scaled entropy 'Y := (H) / HOE which is equal to unity 
for matrices pertaining to the orthogonal ensemble. 
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Figure 1. Dependence of scaled entropy of eigenvectors 'Y on rotation parameter 
D.K for K = 11.0, p = 1.4 and j = 400(0), j = 100(<», j = 25(6). Numerical 
data are joined by solid lines. Corresponding smaller symbols, connected by dashed 
lines, represent values of the coefficient IL. 

We diagonalized numerically unitary matrices FI for values of parameters 
p = 1.4 and K = 11.0 corresponding to classically chaotic motion. Obtained 
eigenvectors where projected onto eigenbasis of F2 = F(K +D.K,p) and the distri­
bution of eigenvectors was described by the scaled entropy 'Y. Figure 1 presents the 
entropy'Y as a function of the "rotation parameter" D.K (in a logarithmic scale) 
for j = 25, 100 and 400. For small values of D.K the reference basis of F2 is so 
close to the eigenbasis of FI that the entropy is negligible. For D.K larger than 
a critical value D.c the eigenbasis of F2 produces eigenvector statistics typical to 
the orthogonal ensemble and 'Y achieves unity. Critical value D.c is proportional to 
1/j: for larger matrix a smaller value of the rotation parameter D.K is sufficient 
to generate a random basis. 

Smaller symbols joined by dashed lines in Figure 1 denote the coefficient IL 
computed according to equation (1). There are no reasons to expect that for a 
given spin length j the values of'Y and IL would be equal. However, the sudden 
growth of the coefficient IL coincides, for any j, with the critical value of the 
rotation parameter D.c , for which the scaled entropy tends to unity. Relatively 
random operator F2 generates thus eigenbasis random with respect to the Floquet 
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operator Fl. Condition (1) might be therefore considered as a simple criterion 
allowing to select a random basis, in which the eigenvector statistics complies with 
the predictions of ensembles of random matrices. 
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A Trace Formula for Obstacles 

Problems and Applications 

Didier Robert 

Abstract 

We display here a new trace formula in scattering for obstacles problems. 
Applications are given for asymptotics of the scattering phase. In particular 
we prove a Weyl type formula for exterior problems in acoustical scattering 
for any dimension, extending a result proved by R. Melrose in odd dimen­
sion. More generally, we prove that theses results hold for a large class of 
perturbations of operators elliptic at infinity which may be degenerated in a 
bounded set. 

1 Introd uction 

One of the most famous result in spectral theory of partial differential equations 
is the Weyl asymptotic formula for the Laplace-Dirichlet eigenvalues problem on 
a bounded open set 0 eRn. 
In 1911 [32], H.Weyl proved the following result: let {>"j }jEN be the nondecreasing 
serie of eigenvalues for the problem: 

Let us introduce the counting eigenvalues function: 

N(>") := Card{j E:N; >"j :s; >..} 

If n=2 and if 80 is of Lebesgue measure 0 1 then: 

lim N(>..) = Area(O) 
'\/'+00 >.. 41l' 

(1) 

After the pionner result by H.Weyl, the asymptotic result (1) was extended in 
several directions: for any dimension n, for more general boundary value problems, 
with a remainder estimate and with a second term. If 0 eRn is a smooth bounded 
domain then we have for>.. / +00: 

N(>..) = "Yn.VOl(0).>..n/2 + o(>..(n-l)/2) (2) 

lsee Remark 4.2 
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The remainder estimate in (2) was a challenging problem during a long time and 
was proved, in an increasing order of generality, by the following mathematicians: 
R.Seeley [26], Pham The Lai [19], R.Melrose [14], V.Ivrii [9]. 
Here we are concerned with obstacle problems where n = R,n\K, K being a 
compact set ofR,n. Let us denote by P the self-adjoint operator -6 in L2(R,n) with 
the domain D(P) = H2(n) n HJ(n). The spectrum of P is absolutely continuous, 
equal to the semi real axis: [0, +00[. In this case, the analogous of the eigenvalues 
distribution function N(>-') is the scattering phase: 0(>-') which is defined usually 
(see Melrose,[15]) by the scattering theory for the wave equation: 

a2u 
--6u=0 
at2 

\lxEn,u(O,x)=f(x)j Ut(O,x)=g(x)j \Ix E an,u(t,x) =0 (3) 

Using the Lax-Phillips theory we can define the scattering matrix 8(>-') acting as a 
unitary operator in L2(sn-l)j where sn-l is the unit sphere in Rn. It is well known 
that 8(>-') - n has a smooth kernel (the scattering amplitUde) and the scattering 
phase can be defined by the equality: 

det (8(>-')) = exp(2iO(>-')) (4) 

Let us remark here that we can define as well the scattering phase corre­
sponding to the scattering for the Schrodinger equation with an obstacle. Indeed, 
here we prefer, for technical convenience, to consider that frame. 

i a,¢ = P1jJ 
at 

\Ix E n, 1jJ(0, x) = </>(x)j \Ix E an, 1jJ(t,x) = 0 

(5) 

Let us denote by s(>-.) the scattering phase associated with the Schrodinger frame. 
According to the Birman-Krein theory with "two spaces" (see the book [30]) the 
following trace relation holds, for every f E C8"(]O, +oo[): 

f ~~ (>-.)s(>-')d>-' = tr (f(P) - If(Po)I*) (6) 

where I: L2(lRn) ---t L2(n) is the "identification " operator: I(</» = </>In. 
Moreover we have a simple connection between the scattering phases 0 and s, 
namely: s(>-.) = Cn O(>-.1/2) where en is a universal numerical constant. The formula 
6 explains in what sense s(>-.) is the analogous of N(>-'). 

Several mathematicians considered the asymptotic behaviour of 0(>-') as >-. / 
+00 making some geometrical assumption on the shape of the obstacle K (con­
vex, star-shape, non trapping) (Buslaev[6], Jensen-Kato[lO], Majda-Ralston[13]' 
Petkov-Popov[20]. The first general result (without assumption on the shape of 
the obstacle) was obtained by R.Melrose in 1988 [15]: 
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Theorem 1.1 If the dimension n is odd and K is a smooth compact obstacle, 
then the following asymptotic formula holds: 

(7) 

An essential difference between N()..) and O()") is that the first one is mono­
tone and the second one may be not monotone. So it seems not possible, in general, 
to apply Tauberian theorem to deduce the behaviour of O()") from the behaviour 
of some suitable transform of ~~ ()..) (Laplace, Fourier, Stieljes,·· .). The other pos­
sibility is to get a good approximation of the wave equation for very large times: 
this is possible if K is non trapping ([20]). In his proof Melrose overcome this 
difficulty by making a suitable decomposition of O()") using his asymptotic result 
on the number of scattering poles in ball ofradius R (= O(Rn)) 
The aim of this work is to display a method to solve the following problems: 
(*) Is (7) valid for n even ? ( it may be surprising that the Weyl formula for the 
interior problem was proved first for n = 2 whereas it is still unproved for two­
dimensional exterior problems with general obstacles). 
(**) Is (7) valid when 6, is replaced by other elliptic operators, for example for 
the vibrating plates problem ( 6,2)? 

The main point of our method to answer positively to the questions (*), (**), 
is a suitable trace formula which gives us a decomposition of the scattering phase 
into pieces which are monotone hence which can be handled with the usual tools 
of spectral theory for P.D.E. 

2 Assumptions and general results 
in obstacle scattering 

Our general frame work is the following. Let us consider a differential operator of 

order m, p(x, D) = L aa(x)Da where D := -iV'. 
lal::;m 

We assume that aa E Lfoc(O) and the following assumptions: 

(HI) 3Ro > 0 such that K C {x ERn; Ixl < Ro} 
and aa E C1({x E ]Rn; Ixl > Ro}) 

(H2 ) 3Ro > 0, p> n and an elliptic homogeneous polynomial: 

such that: 

Po(~) = L aO,a~a, ao,a E (!, 

lal=m 

la~(aa(x) - ao,a)1 :S ca,{3 < x > -p-I{3I, 't:/x, Ixl > Ro (8) 

where aO,a = 0 for lad < m and < x >:= (1 + IxI2)1/2 

(H3) p(x, D) is symmetric on C8"(O) 
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Let us consider a self-adjoint extension P of p(x, D) in £2(n) with a domain D(P). 
Assume furthermore: 

(H4) 't/( E COOCO); (== 1 in a neighborhood of K, then we have: 
(.D(P) C D(P). 

(H5) :lNo E :IN such that 't/( E COO(O) we have: (.(P + i)-No is a trace-class 
operator in £2(n). 

Remark 2.1 Ellipticity for P is assumed only at infinity. In particular P may be 
degenerate on an (see section 4). 

Let us denote by Po the self-adjoint extension of Po(D) in £2(JRn) (D(Po) = 
Hm (JR n) ). As usual, to compare the Hamiltonians P and Po we can use the iden­
tification operator I defined above. The general properties given below come from 
class trace perturbation theory (see [30]). To apply that theory we state the pre­
liminary result: 

Proposition 2.2 Assume (HI) to (H5) and N > max{No, n/m}. Then't/z E 

<C\JR , we have the following uniform estimate in trace-norm in £2(JRn): 

N 
* -N -N < z > III (P - z) I - (Po - z) Iltr :S CN I~SzI2(N+n) (9) 

Sketch of Proof: We use standard estimates for elliptic operators and arguments 
from perturbation theory • 

Corollary 2.3 (i) f -4 tr (f(P) - I.f(Po).I*) is a Schwartz temperate distribu­
tion on JR. 

(ii) There exists s : JR -4 JR such that l (ll:(tl/)N dA and: 

tr (f(P) - I·f(Po).I*) = 1 S(A) ;{ (A)dA (10) 

Furthermore, for the triplet (P, Po, I), the wave operators: 

W ±:= lim (exp( itP)I exp( -itPo)) 
t->±oo 

(11) 

exist and are complete. The scattering matrix, S(A), is a trace-class perturbation 
of identity on £2 (~), where ~ = {~ E JR n, Po (~) = I} with the Euclidean measure. 
We have: det(S(A)) = exp (-2i1l's(A)) 
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3 A trace formula 

Let us introduce the notations: Q = P - Po; A = !(x.D + D.x). Po being 
homogeneous, we have by the Euler identity: 

1 
-:-[A,Po(D)] = m.po(D) 
z 

(12) 

We fix ( as in (HI), (H2 ) , with Ro large enough. Now we can state our main 
technical result: 

Theorem 3.1 For every f E COO(R\(O)) we have: 

L :{ (A).S(A)dA = tr (nK·f(Po)) + tr ((2.f(p)) 

+tr ( A'[f: P].P-I.f(P)) + tr ((Q - [~~Q])(1 - (2)P- 1.f(P)) (13) 

Outline of the proof: By definition, we have: 

J ddA (A.f(A)).S(A)dA = tr (P·f(P) - IPo·f(Po)I*) (14) 

Let us begin by a formal munipulation. We have first: 

1 1 
P= -. [A,P] +Q- -. [A,Q] 

zm zm 
(15) 

So we get: 

tr (P.(1 - (2).f(P) - IPo.(1- (2).f(Po)I*) = (16) 

tr ((Q - i~[A,Q])(I- (2).f(P)) 

+tr (~[A,P](I- (2)f(P) - I~[A, Po](I- (2)f(Po)I*) 
zm zm 

The first term of the right hand side is in the trace class by our assumptions H 2. 

The second term can be checked formally as follows, using cyclicity of traces: 

tr ([A, P](1 - (2)f(P)) = tr (AP - PA)(1 - (2)f(P)) 

= tr ((A.P(1 - (2) - A(I- (2)P).f(P)) 

= tr(A.[(2,p].f(P)) (17) 

The same computation is valid for Po with ( == 0 which gives: 

tr (IPof(Po).I*) = tr (nKPof(Po)) 

To make rigorous these computations we proceed as follows: 
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Let us consider the differential operators with compact support coefficients: AR = 
x(-fl).A.x(~) where X E COO(R,n) satisfies: X(x) = 1 for Ixl :::; 1 and X(x) = 0 for 
Ixl ~ 2. 
The calculus is clearly rigorous for AR in place of A. To end the proof, it is sufficient 
to apply a uniform trace norm estimate (which will be not proved here) and to 
take R --t +00: 

Lemma 3.2 There exists some C > 0 such that we have: 

II[AR , P](1- (2).f(P) - I[AR, Po](1- (2)f(Po)I*lltr :::; C, VR ~ 1 (18) 

4 Applications 

We shall give here three applications of our trace formula. 
Application I: obstacle problems for second order elliptic operators 
Let us consider the differential operator: 

where we denote: Dj := i-1 a~. 
3 

Let us assume the following conditions: 
(1) p(x, D) is symetric and elliptic: 

3E> 0; L ajk(x)ejek ~ E.lel2 

(2) 3p> n; Va; V(j, k) 

IDO(ajk(x) - b'jk)1 + IDObj(x)1 :::;< x > -p-Iol 

• 

(19) 

(3) P is a self-adjoint extension of p(x, D) in L2(n); n = Rn\K, K being a smooth 
compact obstacle, defined by Dirichlet or Neumann or Robin boundary condition 
on an. 

Theorem 4.1 Under the above conditions, for every dimension n ~ 1, the spec­
tral shift function s('x) for the scattering pair (P, Po), where Po is the self-adjoint 
extension of -6 in L2(Rn), satisfies the following Weyl formula: 

where 

Vol(K) := Vol(K) + r ((det[a(x)])n/2 -1)dx 
JRn\K 

(41r)-n/2 
and "Yn = r(n/2+1) 

(20) 
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Remark 4.2 For n odd and p(x, D) = -6 we recover the Melrose's result[15]. 
Always for n odd and p(x, D) = -6 outside a compact set, our result can also be 
obtained from the estimate of the scattering poles by Vodev, Sjostrand-Zworski 
[27] using Melrose's method. But this method can not be used in even dimension 
or for non compact support perturbations (see also [23, 24, 25]) 

Remark 4.3 As it was pointed to us during the conference by M.S. Birman and 
by M. van den Berg, the first term asymptotic of the Weyl formula for the Laplace­
Dirichet problem is valid for any bounded domain (without any smoothness con­
dition). We can see easily that this remark can be extended for the exterior prob­
lem, using our trace formula and heat kernel techniques to control the boundary 
contribution.([ll, 3, 17]) 

Application II: Exterior problem for the biharmonic operator 
Let us consider Po = 6 2 as a self-adjoint operator in L2(Rn) and K c R,n a 
smooth obstacle as above. Let us consider P a sef-adjoint realization of 6.2 in L2(0) 
(0 = R,n\K)j and s(.\) the scattering phase for the pair (POj P). We assume that 
the domain D(P) of P is determined by elliptic boundary conditions.(in particular 
Shapiro-Lopatinski conditions hold). Using Vasil'ev's technics [28, 29] we get: 

Theorem 4.4 For.\ / +00 we have: 

s(.\) = 'Yn.v ol(K) . .\n/4 + o(.\(n-l)/4) 

Remark 4.5 With less refined but more general and more flexible technics, ([1]) 
we can get the above asymptotic formula with a less acurate remainder term 
o(.\(n-6)/4) for some 8 > o. 

Application III: Elliptic degenerate operators 
Let us consider the second order operators: 

p(x, D) = - LOj(<pajkok) 

the ajk satisfying the assumptions (A) of section 2j <p : R,n -t [0, +oo[ is a smooth 
function such that: 

oK = {x: <p(x) = O}j <p(x) > 0 ¢:} x E 0 

x E oK :::} '\l J<p i- 0 

3p> n suchthatloa (<p(x) - 1) I :::; Ca < X > -p-iai 

For example we could have: <p(x) = (I~I::~~) with k E :lNj k > ~. 

(21) 

Let us consider the realization P of p(x, D) generated by the obvious variationnal 
form in the Hilbert space: 

H;/2(0) := {u E V' (O)j <pl/2oa u E L2(0); lal :::; I} 
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It is known that for every ( E C8"(R.n ) and for k > n, ((P + i)-k is a trace class 
operator in L2(0). 
The Weyl formula for degenerated elliptic operators on bounded domains was 
proved in different contexts by several authors: Baouendi-Goulaouic [2] Nordin 
[18], Pham The Lai [19] BoIley-Camus-Pham The Lai [4], Menikoff-Sjostrand [16]. 
Using their methods and our trace formula we can get the asymptotics for the 
scattering phase of the pair (Po, P) 

Theorem 4.6 We have, for some () > 0: 

lfn > 2; s(..\) = dn..\n-l + 0(..\n-I-8) 

I fn = 2; s(..\) = d2..\ log(..\) + 0(..\1-8) 

(22) 

(23) 

The constant dn is supported by the boundary 8K and is the same as for the Weyl 
asymptotics in bounded domains ([18J) 
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Introduction 

Propagation in 

Irregular Optic Fibres 

F. Bentosela 

In a recent work (see [BJ) we described how to calculate the attenuation in an 
optical fiber which presents random microdefects.We considered defects which can 
be described by functions depending only on the longitudinal coordinate, z. For 
instance, it can be a fiber whose core radius is given by one random process: Pw(z) 
or it can be a fiber which has constant core radius but presents microbends, in this 
case one considers that its axis coordinates are given by two random processes: 
x~(z) and y~(z). 

In this conference we propose a resume of that work. We showed that the 
system of coupled differential equations which describe the behavior of the mode 
amplitudes can be, up to a small error, converted in a system of N decoupled 
differntial equations plus a coupled system (we call this process, the diagonalisation 
process). 

Each of these second order differential equations gives rise to two symetric 
Lyapunov exponents. The largest negative one, which correspnds to the solution 
with slower exponential decrease, can be considered as the attenuation coefficient 
of general signals propagating in the fiber. We will indicate rapidly the way how 
to deduce the Lyapunov from the fiber caracteristics and in particular from the 
distribution of the defects. 

One of the problems which arises comes from the fact that our "diagonali­
sation process" needs differentiability for the coefficients entering the differential 
system. This means that we have to suppose that the functions which describe 
the defects are not simply described by ramdom processes of diffusion type but by 
differentiable processes. Then we cannot directly use the previous results [APW 
or PFj on Lyapunov estimates which use the former hypothesis. 

Diagonalisation 

Field components, ,¢, satisfy inside the fiber, Helmholtz type equations: 

27l" 2 2 
H'¢ = -b.'¢(x, y, z) - (AO) n(x, y, z) '¢(x, y, z) = 0 (1) 
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AO, represents the wavelength in the air, it is a small quantity of the order of 10-6 , 

so, it will play the role of a small parameter, n(x,y,z) is the refraction index at 
point (x,y,z). We have some boundary condition at the fiber surface. 

Call 8z, the fiber section at z and Hz, the restriction of H to 8z acting on 
the Hilbert space L2(8z). Let us denote by ¢j(x,y) and EJ resp. its eigenvectors 
and corresponding eigenvalues: 

Hz¢j(x, y) = Ej¢j(x, y) (2) 

EJ are proportional to A02, then they will be written as A02€j(z). The ¢j(x,y) 
form a basis for L2(8z), so, we can express on this basis, a function 'IjJ defined in 
the volume of the fiber: 

00 

'IjJ(x, y, z) = I>j(z)¢j(x, y) 
j=l 

Plugging this expression in equation (1) and using equation (2), we get an infinite 
set of differential equations: 

(3) 

m = 1,2 ... where am(z) is the amplitude of the mth mode at distance z from the 
origin and the K are coupling random variables given by: 

(1) ( ) _ ( z 8¢j) 
Kmj z - ¢j' 8z ' 

where (*,*) means scalar product in L2(8z ). 

Multiplying the left hand side by A~ and writing this system as a first order 
differential system we obtain: 

0 
€l(Z) + A~Kg){z) 

0 
>,2 K(2) 

- 0 21 

1 

d 
AO­

dz 

-2AoKg) 
0 

a1 
A~ o dz 

a2 
A da2 

Odz 

0 
>,2 K(2) 

- 0 12 

0 
-2>'oK~~) €2{Z) + A~K~;) 

0 

1 
a1 

-2AoKg) A~ o dz 

1 a2 

-2>'oK~~) A~ o dz 
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Let us call this differential system, "system A" and write it in the form: 

(4) 

where Di are "diagonal" matrices i.e constituted of 2x2 blocks on the diagonal. 
and Vi are off "diagonal". For instance, 

Do= 

Let us write: 

1 0 
o 0 
o 0 
o €2(Z) 

o 
o 
1 
o 

and call it, "system C". Each of the decoupled second order differential equations 
of "system C" gives rise to a pair of symetric Lyapunov exponents whih can be 
ordered. In general, positive Lyapunov increase as E increases so the smallest 
positive Lyapunov exponent would correspond to the first mode. If not, we shall 
select the mode which gives the smallest one and write it at the first place. 

We gave an algorithm which constructs a transform A ---+ B in such a way the 
two first components of the new function B are partially decoupled (up to order 
n), i.e. B satisfies: 

~o ~~ ~ (t. ~D. ) B + ~~+1 R(!.o)B (5) 

where the D s are of the form 

* * 0 0 0 0 0 

* 0 0 0 0 0 
0 0 * * * * * 
0 0 * * * * * 

Ds= 
0 0 * * * * * 
0 0 * * * * * 
0 0 * * * * * 
0 0 * * * * * 

We shall call this differential system, "system B". 
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The transform A -t B will be such that its inverse, T, is expressed as T = 
n 
L AoTr with To = 1 and TTl r:l 0 are of the form 

r=O 

Plugging A = c~o AoTr) B in (4) and using (5) we get the following com­

mutator equations for the unknowns: Tr and D s 

0__ 

[T2' Dol = -Tl - TIDI (-ToD2) + (Dl + VdTl + (D2 + V2)To (5.2) 

o __ 

[Tn' Dol = -Tn-l - Tn-1D1 ... ToDn + (Dl + VdTn- 1 

+ (D2 + V2)Tn- 2 + ... + (Dn + Vn)To 

The rest is given by: 

2 n -1 [0 ( - - ) R(AO) = (1 + AoTl + AoT2 + ... + AoTn) . -Tn - Tn Dl + ... + T1Dn 

+ (Dl + VdTn + (D2 + V2)Tn- 1 + ... + (Dn + Vn)Tl 

- Ao(TnD2 + ... + T2Dn) + Ao(D2 + V2)Tn + ... + (Dn + Vn)T2 

Commutator equati~ns can be solved step by step.We are mainly interested 
in the upper left part of Ds. For instance if, 

Dii = ( ~ ~ ) , Dl = 0 , Dii ( K~2) ~ ) 0 2 
tt 

v,ij ( ~ 1 ) 1 -2K(I) , V2 = 0 
'J 



Propagation in Irregular Optic Fibres 297 

Then expressions for the upper left part of jj s, denoted jj s 11 are: 

( ) ( 
(1) (1) ) 

jj I = 0 0 . '"'4K1i Kil K2 
2 (1) 1 0 L + 11 

. 1"1 - Ei 
t 

jj3h has a long expression containing the first derivatives of Ki~), Kg), 1"1 and Ei. 

Lyapunov calculus 

To study the smallest positive Lyapunov exponent of "system A" we use general 
theorems on stability of Lyapunov spectra, (see [DK]): 
- 'Ifansform T and its inverse are bounded, then "systems A and B" are said to be 
kinematicaly similar and as a consequence they have the same Lyapunov spectra. 
- "System B" has a Lyapunov spectrum which is close to the Lyapunov spectrum 
of the partially diagonalised system (obtained from system B neglecting the rest 
and called Bb), the distance between the two is proportional to the norm of the 
rest, so, it is of order n in Ao. 

To study the Lyapunov spectrum of A we have first to study the Lyapunov 
spectrum of Bb. It is composed of two parts: there are two symetric Lyapunov 
')'1 and -')'1 coming from the decoupled second order differential equation and the 
second part which is coming from the remaining coupled equations. Is the smallest 
positive Lyapunov coming from the second order differential equation? To answer, 
we have to control the Lyapunov spectrum of the remaining coupled equations. 
To do that, we neglect in it the off diagonal terms, estimate the Lyapunov of the 
obtained diagonal system and the corrections introduced by the off diagonal. If the 
Lyapunov spectrum of the remaining coupled equations is contained in an interval 
upper than ')'1, then, the answer is YES. If not, we start the diagonalisation pro­
cedure as many times as necessary, to know with certitude from what differential 
equations are coming the first two smallest positive Lyapunov exponants. Suppose 
we do it N times and call Bfj the system obtained, it is composed of N decoupled 
differential equations and of a coupled system. Two decoupled equations will give 
us the first two positive Lyapunov exponents ')'i" and ')'fj for system Bfj. 

Now it is necessary to compare ')'fj - ')'i" and the rests. The smallest positive 
Lyapunov of "system A" will be well approximated by ')'i" only if the rests are 
much smaller than ')'fj - ')'i" . 
Remark. Rests are of order n in Ao, and to be small it is necessary that El(Z) is 
not to close to 1"2 (z). This condition is not sufficient since in the rests enter also 
the derivatives. 

In conclusion, if El(Z) differs from E2(Z) and if we add artificially a small 
multiplicative parameter r;, in front of the Vs , for small r;, it exists a second order 
differential equation which will give us an approximation of the smallest positive 
Lyapunov up to order n in Ao. Is it true for r;, = 1 ? This will depend on the 
concrete fiber we are considering. 
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The problem is now reduced to the calculus of the Lyapunov exponents of an 
equation of type: 

d2a 
--21 + [El(Z) + W(z)] al(z) = 0 

dz 
where W(z) is a small random term which can be expressed as a finite series,whose 
number of terms depend on the order of derivability of the random variables de­
scribing the imperfections. If they are Cr : 

W(z) = Wo(z) + AOW1 (Z) + A~W2(Z) + ... + A~-IWr_l(Z) 
For instance if the random has two derivatives 

Expressions for the Lyapunov were given (see [PF] or [APW]) supposing W(z) 
of the form F(Yw(z)), where F is a continuous function from a compact manifold, 
M, to Rand Yw (z) a diffusion process on M (the role of time being played by the 
space coordinate). 

In our case, except for the last one, terms in the series have derivatives, 
so they cannot be expressed in terms of functions of diffusion process. In [B] is 
developped an other kind of Lyapunov calculus which can be applied to this case, 
for instance to the case the process is the convolution of the previous process by a 
Cr function. It is seen that all Wi with i < r - 2 dont appear in the expression for 
the Lyapunov,and as a consequence it appears A~(r-2)in front of it. In particular 
if the random variables describing the imperfections are C 2 we recover the usual 
situation, the Lyapunov has no AO in front and in this case it is given by expression: 

/1 ~ - b(z)cos2~zdx 1 100 

47f 0 

where b(z) = E [Wo(O)Wo(z)]. 
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Singular perturbations, regularization 

and extension theory 

H. Neidhardt 
V.A. Zagrebnov 

For nonpositive singular potentials in quantum mechanics it can happen that 
the Schrodinger operator is not essentially self-adjoint on a natural domain of 
definition or not semibounded from below. In this case we have a lot of self­
adjoint extensions each of them is a candidate for the right physical Hamiltonian 
of the system. Hence the problem arises to single out the right physical self-adjoint 
extension. Usually this problem is solved as follows. At first one has to approximate 
the singular potential by a sequence of bounded potentials (cut-off approximation). 
After that one has to show that the arising sequence of Schrodinger operators 
converges in the strong resolvent sense to one of the self-adjoint extensions if 
the cut-off approximation tends to the singular potential. The so determined self­
adjoint extensions is regarded as the right physical Hamiltoninan. Very often the 
right physical Hamiltonian coincides with the Friedrichs extension. 

With respect to the Schrodinger operator in L2(R2) this problem was dis­
cussed by [3], [4], [5], [9] and [10]. An operator-theoretical investigation of this 
problem was started by Nenciu in [8] and continued by the authors in [7]. In 
the following we continue those abstract investigations. We assume that a semi­
bounded symmetric operator admits a monotonously decreasing sequence of semi­
bounded symmetric operators such that the corresponding sequence of Friedrichs 
extensions converges in the strong resolvent sense to the Friedrichs extension of 
the symmetric operator with which we have started. The problem will be to find 
necessary and sufficient conditions that any other sequence of semibounded self­
adjoint extensions of the decreasing sequence of symmetric operators converges to 
this Friedrichs extension too. Unfortunately, we are unable to solve ths problem 
in full generality. This means we have found a necessary condition which must 
be satisfied in order to have the desired convergence. However, we can prove the 
converse only for special sequences of self-adjoint extensions but not for all. 

In more detail the problem can be described as follows. Let A and V be two 
nonnegative self-adjoint operators on the separable Hilbert space 'H. Further, let 
V ~ dom(A) n dom(V) a dense subset of'H such that 

(V f, f) :::; a(Af, f) + bllfl1 2 , fEV, 0< a,b. (1) 
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We introduce the abstract operator Ha 

HaJ = AJ - aVJ, J E dom(Ha) = D, a> O. (2) 

If the coupling constant a, a> 0, obeys a < l/a, then the operator Ha is sym­
metric, closable and semibounded with lower bound -abo However, the operator 
Ha is in general not esssentially self-adjoint. 

Example 1 Let 1i = L2(Rl) and let A be the usual Laplace operator on L2(Rl), 
i.e. A = _d2 / dx2 . By V we denote the multiplication operator arising from the 
real potential V (x), 

1 1 
V(x) = 4A; Ixl f3 ' A; > o. (3) 

Let D = CO' (R 1 \ {O} ). If 1 :S {3 < 2, then for every A; > 0 there are real numbers 
a < 1 and b 2:: 0 such that 

(4) 

for A; > o. If (3 = 2, then this is only true for A; > l. 

Example 2 Let 1i = L2(R2) and let A be the usual Laplace operator on L2(R2), 
i.e. A = -~. Further, let r be a smooth curve in R2 which is parameterized by 

r = {(x,y) E R2: x = p(<p)cos<p,y = p(<p)sin<p,O:S <p < 27r} (5) 

where p( <p) > 0 is a smooth function. Again V is the multiplication operator arising 
from 

V(x) = ~ 1 , 
5A; Ilxl- p(<p)If1 

(6) 

We set D = CO' (R 2 \ r). If 1 :S {3 < 2, then for every A; > 0 there are real numbers 
a < 1 and b 2:: 0 such that 

For (3 = 2 this is true only for A; > 1. 

Let us assume that the Ha is not essentially self-adjoint. Since Ha is semibounded 
the Friedrichs extension fIa exists. Moreover, denoting by A the Friedrichs exten­
sion of A = AID it is not hard to see that fIa coincides with the form sum of A 
and -a V, i.e. 

fIa = A+( -aV). (8) 

In the above examples the Friedrichs extension corresponds to the Dirichlet bound­
ary condition at x = 0 for the first example and on r for the second one. 

Next let us introduce a regularizing sequence for the singular perturbation. 
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Definition 3 A sequence {Vn}n:;:':1 of bounded non-negative self-adjoint operators 
is called a regularizing sequence of V if 

(i) VI ::; V2 ::; .•. ::; Vn ::; ... ::; V 

(ii) limn-->oo(Vnf, j) = (V f, j), f E V ~ dom(V). 

Example 4 In the Examples 1 and 2 the sequence Vn is given as multiplication 
operators with the cut-off potentials 

Vn(X) = inf {n, V(x)}, 
xERI 

l = 1,2. (9) 

With the regularizing sequence {Vn}~=1 we associate the following sequence of 
self-adjoint operators Ha,n, 

n= 1,2, .... (10) 

The problem is now to find conditions which guarantee that the approximating 
sequence {Ha,n}~=1 tends to the Friedrichs extension Ha, i.e., 

~m(z) =1= 0 (11) 

However, from the mathematical point of view this setup seems to be unnat­
ural. To explain this we remark that for any n = 1,2, ... the operator Ha,n is a 
self-adjoint extension of the semibounded symmetric operator Ha,n = Ha,nlV = 

A - aVn, i.e. Ha,n ~ Ha,n. Taking another semibounded self-adjoint extension A 
of A we get another sequence Ha,n, 

n= 1,2, ... , (12) 

which naturally implies the question: why we should to investigate the convergence 
for Ha,n and why not for Ha,n? So in the following we shall search for conditions 
which guarantee that 

~m(z) =1= o. (13) 

for any semibounded self-adjoint extension A of A. In particular, this would be 
clarified the uniqueness problem of the limit (13) for the two" extreme cases": the 
sequence of Friedrichs extension Ha,n, 

n = 1,2, ... , (14) 

where A is the Friedrichs extension of A, and of the sequence of Krein extensions 
Ha,n 

n= 1,2, ... , (15) 
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where A is the Krein extension (soft extension) [1], [2], [6] of A with respect to a 
given lower bound"., < 0, i.e. A ~ ".,1. 

In general we cannot expect that the sequence Ho.,n tends to Ho. assuming 
only that {Vn}n~1 is a regularizing sequence. Actually we need a little bit more. 
Only if A is the Friedrichs extension A of A, i.e. A = A, then we obtain 

s - lim (Ho.,n - Z)-1 = (Ho. - z)-1, 
n-too 

~m(z) # 0, (16) 

without any additional assumptions [7]. How to find this additional assumptions? 
An essential hint comes from the following proposition. 

Proposition 5 Let {Vn}n~1 be a regularizing sequence of v. If for every self­

adjoint extension A of A = AID obeying A ~ "." "., < 0, the convergence (13) takes 
place, then 

sUP(Vnh, h) = +00 
n~1 

for every nontrivial h of NTf = ker(A* - ".,). 

(17) 

By this proposition it seems to be natural to introduce the following notation. 

Definition 6 Let {Vn}n~1 be a regularizing sequence of V. The sequence is called 
admissible with respect to A = AID if there is a"., < ° such that for every nontrivial 
hE NTf = ker(A* -".,) the condition (17) is satisfied. 

Remark 7 It can be shown that if (17) is satisfied for one 'TJ < 0, then it holds 
for every ".,' < o. So the property (17) is independent on 'TJ < o. 

Example 8 It can be shown that the regularizing sequences of Example 4 for the 
Examples 1 and 2 are admisssible with respect to A = -ibIC8"(R1 \ {a}) and 

A = -~IC8"(R2 \ r). 

Hence, the optimal way to solve our problem would be to show that the converse 
to Proposition 5 is true, i.e., if {Vn}n~1 is an admissible regularizing sequence of 
V with respect to A = AID, then for every semibounded self-adjoint extension A 
of A we have that the convergence (13) is valid. Till now we cannot prove this 
conjecture in full generality. However, if we restrict the set of semibounded self­
adjoint extensions A of A, then we can do it. To describe these restrictions we 
use a description of all semibounded self-adjoint extensions which goes back to [1]. 
Let A be any semibounded self-adjoint extension of A = AID with lower bound 
greater than "., < 0, i.e. A ~ ".,. By iI ~ "., we denote the closed quadratic form 
which corresponds to A, i.e. 

iI(I, I) = ((A - ".,)1/2 f, (A - 'TJ)1/2 I) + ".,(1, I), (18) 
f E dom(iI) dom((A _ ".,)1/2). 
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In particular, by f) ~ 0 we denote the closed quadratic form which corresponds 
to the Friedrichs extension A of A. In accordance with [IJ we have an one-to-one 
correspondence between the set of all semibounded self-adjoint extensions A of A 
obeying A ~ 'T/ and all non-negative closed quadratic forms ij on the deficiency 
subspace NTJ = ker(A* - 'T/), where the form ij is not necessarily densely defined 
on NT/" The correspondence is given by the formulas 

dom(ii) = dom(f))+dom(ij), (19) 

where + means dom(f)) n dom(ij) = {O}, and 

ii(g + h, g + h) = f)(g, g) + ij(h, h) + 2'T/'iR(g, h) + 'T/(h, h), (20) 

9 E dom(f)), hE dom(ij) ~ NT/" Therefore, starting with extension A which obeys 

A ~ 'T/ we can find a unique non-negative closed quadratic form ij on NTJ such that 
(19) and (20) holds. Conversely, if we have a non-negative closed quadratic from 
ij on NTJ , then we can define by (19) and (20) a semibounded extension A of A 
obeying A ~ 'T/. The domain of ij may be a closed subspace of NTJ or not. The 

Friedrichs extension A corresponds to the trivial form ij, i.e., dom(ij) = {O}. Very 
often this is expressed by ij = +00. The Krein extension (soft extension) [1], [2], 
[6J A with respect to the lower bound 'T/ < 0, i.e. A ~ 'T/I, is given by the form ij 
which is zero on the whole deficiency subspace NTJ , i.e., ij = O. All other forms ii 

are between iJ and f) which yields A ~ A ~ A. 
Of course the description is only unique if we fix some 'T/ < O. Changing 'T/ we 

get different quadratic forms ijTJ for the same semibounded self-adjoint extension A 
of A. However, there are some invariants which do not depent on 'T/. For instance, if 
dom(ijTJ) is a closed subspace in N TJ , then dom(ijTJI) is a closed subspace for 'T/'( < 0), 
too. 

Using this description our main theorem can be formulated now as follows. 

Theorem 9 Let {Vn}n~l be an admissible regularizing sequence of V with respect 
to A and let A be a self-adjoint extension of A obeying A ~ 'T/ for some 'T/ < O. If 
A corresponds to a closed quadratic form ij on NTJ = ker( A * - 'T/) and the domain 
dom(ij) is a closed subspace of N TJ , then for sufficiently small coupling constants 
0: > 0 we have 

~m(z) -=I- 0, (21) 

where HOI. is the Friedrichs extension of HOI. = (A - o:V)IV. 
In particular, if A denotes the Krein extension of A with respect to the lower 

bound 'T/ < 0, then for sufficiently small 0: > 0 we have 

~m(z) -=I- O. (22) 

If the deficieny indices are finite, then the theorem admits a strengthening. 
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Theorem 10 If the deficieny indices of A are finite, then for any self-adjoint 
extension A of A and any coupling constant a < l/a we have (21). 

The Theorem 10 improves the results of Section 3 of [7]. Moreover, the theorem 
can be slightly generalized. 

Corollary 11 If A is a semibounded self-adjoint extension of A such that 

dim(dom(ii)/dom(ii)) < +00, (23) 

then for a < l/a (21) is valid. 

The theorems and corollary admit an application to our examples. 

Example 12 Since in Example 1 the deficiency indices of A = -~IC<f(Rl\{O}) 
are finite by Corollary 10 we always have the desired convergence (21). 

In Example 2 we have the desired convergence (21) only for a special set of 
self-adjoint extensions of A = -~IC<f(R2 \ r). The set includes the Krein exten­
sion (the corresponding boundary condition can be found in [1]) and extensions 
which are characterized by Corollary 11. However, it remains an open question: 
whether the sequence of usual Schrodinger operatos Ho.,n = -~ - aVn, where 
-~ denotes the usual Laplace operator in L2(R2) convergences to the Friedrichs 
extension of the symmetric operator (-~ - aV)IC<f(R2)? The problem is that 
the domain of the closed quadratic form, which by (18) - (20) corresponds to 
the usual Laplace operator -~ in L2(R2) regarded as a self-adjoint extension of 
-LlIC8"(R2), is not a closed subspace in NTJ. 

Remark 13 If the deficiency indices are finite, then the strong resolvent conver­
gence (21) can be replaced by the operator-norm convergence [7]. However, if the 
deficiency indices are infinite this is not true in general. For instance, let in Ex­
ample 2 the curve r be the unite circle. Then one can show that for any interval 
8 ~ (-00,0) and any integer N there is a greater integer n 2: N such that Ho.,n 
has an eigenvalue in 8. Consequently, this excludes the operator-norm convergence 
for the operators {Ho.,n}n~l' 
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Adiabatic Reduction Theory. 

Semiclassical S-matrix for N-state 

one-dimensional systems. 

G. Nenciu 

Abstract 
The reduction scheme, which is the standard tool of the analytic theory of 

perturbations [Ka], has been recently extended to the time time dependent 
case; for the case when the small parameter lies in the front of the time 
derivative (the adiabatic case) [Ne4] and also for the case H(t) = Ho +cV(t) 
[MNl]. 

In what follows, we shall first review, following [Ne4] , [Ne5] the main 
facts about adiabatic reduction theory, and then apply it to obtain [MN2] 
the semi-classical (Born-Oppenheimer) behaviour of the S matrix for the n­
state one-dimensional Schrodinger operator. On the way a rigorous derivation 
of the so-called "trajectory model" is given. 

1 Adiabatic Reduction Theory 

1.1 Invariant Subspace Problem: Heuristics 

Consider the evolution equation 

in a Hilbert (or more general Banach) space 1t, in the limit € ~ 0, € > o. 
(1.1) 

The first step in building up the reduction theory for (1.1) is to find (without 
integrating it ) subspaces which are (aproximately ) invariant under the evolu­
tion U. Let us remind that in the time independent case, the invariant subspaces 
are provided by the spectral subspaces of H, so that the problem of finding the 
invariant subspaces is reduced to the spectral analysis of H. 

Let us describe more precisely the problem: one has to find decompositions 

such that 

1t = £(s) + M(s) 

UE:(s, so)£(so) ~ £(s) 

UE:(s, so)M(so) ~ M(s). 

(1.2) 

(1.3) 
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If the decomposition (1.2) is given in terms of the projection operator 

Pc(s) = pc(s)2 

i.e. £(s) = Pc(s)1l , then (1.3) can be written as 

Pc(s) ~ Uc(s, so)Pc(so)Uc(s, sO)-l. 

or in differential form 

ic: :s Pc(s) ~ [H(s), Pc(s)]. 

Supposing (at the formal series level) 

00 

Pc(s) = LEj(s)c:j 
j=O 

and inserting (1.6) into (1.4) and (1.5) one obtains 

j 

Ej(s) = L Em(s)Ej-m(s), 
m=O 

The technical problems to be solved are: 
i. Find the solutions of (1.7), (1.8). 

G. Nenciu 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

ii.If the series in (1.6) is not convergent, construct out of Ej(s) a projection 
Pc(s) satisfying (1.5). 

1.2 Invariant subspace problem: the setting and the results 

For the sake of simplicity we assume 1l to be a Hilbert space and H(s) to be 
bounded (in the unbounded case one has to consider H(s) defined on V c 1l and 
to formulate the smoothness condition Sa below in the graph norm topology, or 
alternatively in terms of the resolvent of H(s); see e.g. [Ne4],[JP1]). 

Let s E (a, b) c R and suppose that H (s) is a family of bounded operators 
in a separable Hilbert space satisfying: 

G 

Sa; a ~ 0 

u(H(s)) = uo(s) U U1(S), 

dist(uo(s), U1(S)) = d(s) > O. 

H ( s) is infinitely norm differentiable and 

II:kH(s)ll::; h(s)c(s)k(k!)Ha, 

with h(s), c(s) < 00 

(1.9) 
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In what follows G and Sa will be assumed to hold true. 
Remarks: 
i. If ( a, b) = Rand 

s~c(s) < 00, i: h(s)ds < 00 

then H(s) has limits H± as s ---- ±oo. 
ii. The case a = 0 corresponds to the case when H(s) is holomorphic in a 

neighbourhood of the real axis, and a > 0 correspond to Gevrey clases which 
"interpolate" between the Coo case and the holomorphic case. 

Let res) be the contour enclosing O"o(s) such that for all z E r(s) 

dist(z,O"o(s)) = d(s)/2. 

Denote 

res) = sUPzH(s) II R(s; z) II 
where 

R(s; z) = (H(s) - Z)-1 

Remark: If H(s) is self-adjoint, then by the spectral theorem res) = 2/d(s). 
Although, in general res) > 2/d(s), in what follows we shall take res) as the 
parameter describing the gap. 

In what follows we shall use the standard notation for the derivatives e.g. 

The answer to the problem i. stated at the end of Section 1.1. is given by the 
following basic result, proved in [Ne4J. 

Theorem 1 Let 

Po(s) = (211"i)-1 1 R(s; z)dz 
Jr(s) 

and E j (s) be given by the following recurrent relations 

Eo(s) = Po(s) 

Ej(s) = (211")-1 1 R(s;z){Qo(s)E]~1(s)Po(s) - Po(S)E]~1(S)QO(s)} 
Jr(s) 

R(s; z)dz + Sj(S) - 2Po(s)Sj(s)Po(s) 

where 
Qo(s) = 1- Po(s) 
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j-l 

Sj(s) = L Em(s)Ej_m(s). 
m=l 

Then Ej(s), j = 0,1, ... , are the unique solution of 

j 

Ej(s) = L Em(s)Ej-m(s), 
m=O 

satisfying 
Eo(s) = Po(s). 

In order to go beyond the formal series level one needs a good control on IIEj(s)ll. 
The main technical estimate is contained in the following lemma [Ne4],[Ne5J. 

Lemma 1 For k = 0, 1,2, ... j j = 1,2, ... 

with 

where 

IIE(k)(s)11 < h(s) A(s)ja(s)j+k ((j + k)!)Ha 
J - M(s) (1 + j)2(1 + k)2 

M(s) = ~( ) + f 2h(s) + 2f4q(s)2 H(s)2h(s), 
4q s 

A(s) = 16r(s)f4q(s)4H(s)4M(s) 

a(s) = 4c(s)max{h(s)j h(s)r(s)j 2}, 

H(s) = 1 + h(s) 2: 1 

() ( )lengthf(s) 1 
q s =rs > 271' -

and f is the (absolute) constant appearing in the inequality 

We are now ready to construct Pe(s) satisfying (1.4) and 

where b(sj e) depends upon s via h(s), c(s), r(s), and q(s). More exactly, let 

g(s) = A(s)a(s) 
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Then Pe(s) is given by: 

N. 

Te(s) = LEj(s)cj . 
j=O 

Using Lemma 1, one obtains the following result [Ne4],[Ne5] : 
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Theorem 2 There exist constants: co(s) > 0 depending upon h(s), c(s), q(s), 
r(s); and k1(s) < 00, k2(S) > 0 depending upon h(s), q(s), r(s) such that for 
0< c < co(s), Pe(s) is well defined, 

and in the sense of asymptotic series 

00 

Pe(s) = LEj(s)cj . 
j=O 

Let us discuss now in more detail the self-adjoint case. Since Ue(s, so) is 
unitary, one obtains at once 

II (1- Pe(s))Ue(s, SO)Pe(SO) II::; c-11s 6(u; c)du (1.10) 
So 

which contains as particular cases all variants of the adiabatic theorem of Quantum 
Mechanics. In particular if a = 0, (a, b) = R and uniformly for s E R, h(s) ::; h < 
00; c(s) ::; c < 00; q(s) ::; q < 00; d(s) 2: d> 0 and moreover 

i: h(s)ds < 00 

one obtains 

Corollary 1 There exist: co> 0; kl < 00; k2 > 0 depending upon h, c, q, d such 
that for 0 ::; c ::; cO: 

(1.11) 
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Remarks: L Without going into the details of the history of Corollary 1 (see 
[JS],[JP1], [Ma] and references therein) let us point out that the best control to 
date on the constant k2 in (1.12) was obtained recently by Martinez [Ma], using a 
priori rnicrolocal exponential weighted estimates. The problem of a sharp estimate 
on k2 is still open. 
ii. Families of projections Pe,k(S) satisfying (1.10) with c5(€, s) of order €k; k = 
1,2, ... have been constructed for the first time (to our best knowledge) at the 
formal level and for H(s) with discrete nondegenerate spectrum by Garrido [Gal 
(see also [SaD,and later on, independently, in the general case by Nenciu [Nell. 
Recently the same procedure has been rediscovered by Berry [Bel] for the case 
when the underlying Hilbert space is two-dimensional. Let us stress that in [Ga], 
[Ne1] Pe,ds) were constructed via some auxiliary (nonsingular) evolution equa­
tions, so that it was not clear whether they are "local" quantities Le. depend only 
upon H(s) and a finite number of its derivatives at the point s. That this is the 
case was first proved in [Ne2] where a "local" iterative scheme has been given 
(see [NR] and also [Ne3] for a review; for a related "local" iterative scheme see 
[JP2D. While the constructions in [Ga],[Nel-4],[JP2], seem different at the first 
sight, due to Theorem 1, they are equivalent in the sense that irrespective of the 
method of construction, if Pe,k(S) has an asymptotic expansion in €, then the first 
k coefficients must coincide with Ej(s). 

1.3 Intertwining evolutions 

We shall start with some generalities concerning the intertwining of families of 
projections. Let Q(s) be a norm differentiable family of bounded projections, s E 

(a, b) cR. The problem is to find families, V(s, so), of bounded with bounded 
inverse operators intertwining Q(s) i. e. 

Q(s) = V(s, so)Q(so)V-1(s, so) (1.12) 

We shall call V(s, so) an intertwining evolution for Q(s). We shall give two methods 
of constructing intertwining evolutions. The first one is a (mild) generalisation, 
[Ne4] of the well known Krein-Kato lemma [Ka], [Kr]. 

Lemma 2 Suppose: i. Q(s) is a norm differentiable family of bounded projections 
in a Hilbert space ?t. 
ii. N(s) is a strongly continuous family of uniformly bounded operators. 

Then if 

KN(S) = N(s) + (1 - 2Q(S))(i! Q(s) - [N(s), Q(s)]) (1.13) 

AN(S, so) given by 

.d 
z ds AN(S, so) = KN(S)AN(S, so); AN(SO, so) = 1 (1.14) 

is an intertwining evolution for Q(s). 
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Remark: 
The Krein-Kato lemma corresponds to N (s) = 0 and gives the parallel trans­

port for Q(s). 
The second method goes back (via Kato [Ka]) to Sz-Nagy. 

Lemma 3 Suppose P, Q are (not necessarily self-adjoint) bounded projections sat­
isfying 

II P- Q 11< 1. 

Then 
v = (1 - (P - Q)2)-1/2(PQ + (1- P)(1 - Q)) 

has a bounded inverse 

V-I = (QP + (1- Q)(1 - P))(1- (P _ Q)2)-1/2 

and 
P= VQV- I . 

If P, Q are self-adjoint then V is unitary. 

Remark: 
See [ASS] for related topics. 
Applying Lemma 2 to the family PE(s), given by Theorem 2 with c- I H(s) 

as N (s) one obtains: 

Theorem 3 Let U:(s, so) given by 

with 
(1.16) 

where 

B,;(s) = -(1 - 2PE(S))(ic :s Pe(s) - [H(s), Pe(s)]). (1.17) 

Then without any error 

(1.18) 

i. e. U: (s, so) is an intertwining operator for Pe (s). If OE (s, so) is defined by 

(1.19) 

then 
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Remark: 
If H{s) is self-adjoint then Uc{s, so) is unitary and then 

II Oc{s, so) - 1 II:::; ells II Bc{u) II du :::; e-lls 
8{u; e)du. (1.21) 

So So 

Let now Vc{s, so) be any intertwining evolution for Pc{s). If <I>c,v{s, so) is 
defined by 

(1.22) 

then 
[<I>c,V{s, so), Pc{so)] = 0 

i.e. <I>c,v{s, so) has a block diagonal structure. Moreover one can compute the 
equation of motion for <I>c,v{s, so). In particular: 

Corollary 2 

ie ! Pc(so)<I>c,v{s, so)Pc{so) = Heff{s, so)Pc {so)<I>c,v {s, sO)Pc{so) (1.23) 

where 
d 

Heff{s,so) = Pc{so){ie{ds ~-l{s,sO)Vc{s,so)) 

+ ~-l{s,so)HA{s;e)Vc{s,so)}Pc{so). (1.24) 

Theorem 3 and Corollary 2 contain the basic facts of the adiabatic reduction the­
ory. It reduces (up the exponentially small errors) the problem of integrating (1.1) 
to the problem of integrating (1.23) in Pc{so)1t {and the corresponding equation 
in (1- Pc {so))1t. Let us consider in more detail the formula (1.24) for the effective 
hamiltonian. As in the time independent case, since the intertwining evolution for 
Pc{s) is not unique. One "distinguished" choice is to take as Vc(s, so), the parallel 
transport, Ao(s, so), for Pc(s) [Ne4] and then 

Heff(s, so) = Pc(sO)AOl(s, SO)HA(S; e)Ao(s, so)Pc(so). 

The unpleasent feature of this choice is that Heff(s, so) is not a "local" object: it 
depends upon the values of H(s) in the whole interval [so, s]. If 

SUPsE(a,b) II Pc(s) - Pc(so) 11< 1 (1.25) 

then one can use the Sz-Nagy formula (see Lemma 3) for the intertwining evolution. 
Notice that in this case, HA(S; e) is a local object. It is this choice which has been 
used in the case of the regular perturbation theory for time dependent hamiltonians 
[MN1J, as well as (in a slightly modified form) in the application in the next 
section. 

Remark: 
In the self-adjoint case, it follows that 

II U/,(s, so) - Uc(s, so) II::; e-118 8(u; e)du. 
80 

We shall follow Berry [Be2] and call U/,(s, so) "the superadiabatic evolution". 
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2 Semiclassical S-matrix for one dimensional 
N -state systems 

2.1 Reduction theory 

Consider the scattering theory for the hamiltonian (in L2(R)n) 

n2 d2 

- 2M dx2 + v(x) 

315 

(2.1) 

in the limit c2 == n2/2M ----7 0 (either semiclassical or Born-Oppenheimer limit). In 
(2.1), v(x) is a self-adjoint operator in en satisfying 

(2.2) 

a, c < 00,7] > 0; k = 1,2, ... 

Let S(c, E) be the scattering matrix at energy E. We shall consider only energies 
above the barrier: 

E - v(x) == w(x) 2 ~ > 0 all x E R. (2.3) 

In what follows: 
v± = lim v(x);w± = E - v±. 

x--t±oo 

As in the n = 1 case the scattering matrix can be extracted from the asymptotic 
behaviour of the generalised eigenfunctions. If 

() 1 -1/4 ( (. -1 1/2 ) (. -1 1/2 ) 'l/JE X ~ 2I/2W+ exp z€ w+ x ain + -Z€ w+ x aout 

() 1 -1/4 ( (. -1 1/2 ) (. -1 1/2 ) 'l/JE X ~ 21/2w- exp U:: w_ x bout + -Zc w_ X bin 

as x ----7 00 and x ----7 -00 respectively (notice that ain, aout, bin, bout E en) then as 
an operator in en E9 en, S (€, E) is given by 

S(c, E) ( ~:: ) = (~~: ~~=) ( ~:: ) = ( !::: ) . 
The various matrix elements of S(c, E) have the same meaning as in the 

n = 1, for example S++ describes the transmission from the left to the right, S_+ 
the reflection to the left, etc. While the literature for n = 1 is more than extensive 
, the only results we are aware of for n > 1 are due to Fedorjuk, who considered 
the case when v(x) has, for all x n nondegenerate eigenvalues Vj(x) 

inf 1 Vi(X) - Vj(x) 1= d > 0 
i#j;xER 

(2.4) 
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In particular for the analytic case (a = 0) he proved that 

(2.5) 

The condition (2.4) is very restrictive from the physical point of view; in fact the 
most interesting situations are those when the eigenvalues of v(x) have crossings 
or quasicrossings. 

Concerning S++, on intuitive grounds, one expects (2.5) to hold true without 
the nondegeneracy condition. 

Concerning S++, the theoretical chemists derived so called" trajectory mod­
els" to compute it (approximately). Let us describe the simplest example. If: 

n=2 

and 

( ) _ (Vl(X) bU(X)) 
v x - 15U(x) V2(X) 

where 15 is a positive small parameter, define: 

Pj(X) = [2M(E - Vj(xW/2 - the classical momenta, 

Pm(x) = (Pl(X) + P2 (x))/2 - the mean momentum 

and the "mean trajectory" x(t) from the Newton's law: 

Then it is argued that if S is the scattering matrix corresponding to the following 
time dependent effective Schrodinger equation 

in :tcfJ(t) = v(x(t))cfJ(t); cfJ E C 2 

one has 

S _ i<pSA = ""'( 152 I P1 - P2 I) ++ eVe, 'p P 
1 + 2 

(2.6) 

where 'P is an overall phase factor. Notice that this is exactly a "reduction scheme" 
result: one computes some matrix elements of S(c, E) via some effective evolutions. 

Under the conditions (2.2), (2.3), our result [MN2] is contained in the follow-
ing: 

Theorem 4 There exist co > 0, kl < 00, k2 , A, C < 00 depending upon~, a, c 

such that for 0 ~ c ~ co 

i. 

22. 
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There exist a family of self-adjoint operators in en, Hc,eff(x) with the prop­
erties: a. 

II d~kHc,eff(X) II::; (1+ I: I)H1)Ck (k!)HO: 

b. Hc,eff(x) has an (uniform in x) asymptotic expansion 

/ it: d / / Hc,eff(x) = _WI 2(x) + i[dx WI 4(x),w- 1 4(x)] + O(e2 ) 

c. If 

then 

2.2 A refined Landau-Zener-Friedrichs formula 

By Theorem 3 the computation of 8 (E, e) was reduced (up to exponentially small 
errors) to an effective adiabatic problem, for which the theory is much more de­
veloped. In particular, in some simple cases one can compute (at least partially) 
8 in the limit e - O. In what follows we shall describe results of that sort in the 
simplest setting. Take n = 2, a = 0, and disregard the dependence of Hc,eff(x) 
upon e taking 

Hc,eff(x) = vo(x) + 8u(x). 

Let vJ(x), nJ(x) be the eigenvalues and eigenvectors (chosen to be smooth as 
functions of x ) of vo(x) respectively. Suppose that the eigenvalues vJ(x) have a 
linear crossing at x = 0 and no other crossings. Let us stress that the labelling 
of vJ(x) is the one making vJ(x) analytic in a neighbourhood of the origin (via 
Rellich theorem ). Notice that for 8 -# 0 but small, 

vo(x) + 8u(x). 

has a quasicrossing at O. 
Let 811 (e, 8) be the matrix element of 8 describing the transitions from the 

state corresponding to v~( -00) to the state corresponding to v~( 00). Then one has 
[MN2]: 

Theorem 5 For e, 8 small enough 

I - ( 12 [271' 2 811 e,8) = exp -- 18uI 2 - ieh i 2 I (1 + O((e + 8))] ae ' , (2.7) 

where 
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and 

a = lim v~(x) - vg(x) > o. 
X---'O X 

Formula (2.7) contains as particular cases the recent results of Joye and 
Pfister [J] (see also [HI]) as well as the result of Hagedorn [H2]. We end up by re­
marking that, while the proofs in [J], [HI], [H2] are completely different and rather 
technical, our proof is rather" cheap"; in the proper setting the computations and 
the estimations are very similar to the usual perturbation theory. 
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1 Introduction 

1.1 Harper's equation 

In this paper we continue our investigation of Harper's equation: 

'l/J(x + h) + 'l/J(x - h) .1,( ) _ E.I,( ) 2 +cosx<px- <pX. (1.1) 

Here h is a fixed positive parameter and x E JR. or x E C. This equation appeared 
as a model for Bloch electron in a weak constant magnetic field [Ho]. The structure 
of the spectrum ah of Harper's equation on L2 (JR.) appeared to be very rich and 
Harper's equation attracted the attention of both physicists and mathematicians, 
see, for example, [C-F-K-S]. 

Formally, Harper's equation can be rewritten in the form 

and so, the analysis of its spectrum for small h is a typical semi-classical problem. 
The investigation of this problem was begun by physicists; see the papers of Azbel 

*The work was supported by the Russian Foundation of Fundamental Research 



322 Vladimir Bushev and Alexander Fedotov 

[Az] and Wilkinson [Wi]. The main rigorous results were obtained by B.Helffer and 
J.Sjostrand; see, for example, [H-S]. Using the methods of the pseudo-differential 
operator theory these authors obtained very subtle estimates describing the geo­
metrical structure of ah. [H-K-S]. The papers of B.Helffer and J.Sjostrand contain 
an exhaustive review and a full list of literature devoted to the problem. 

The most interesting asymptotic characteristics of the spectrum of Harper's 
equation are connected with the quantities which are exponentially small with 
respect to h as h ---- O. In the case of ordinary differential equations such exponen­
tially small quantities can be controlled by means of the complex WKB method 
[Fe], [Si]. In that method one constructs analytic solutions of the equation on the 
complex plane x = z E C and describes their asymptotic behavior as h ---- O. In 
[B-F] we develop the complex WKB method version for Harper's equation. Here 
we use these results to continue our analysis. 

1.2 The monodromy matrix notion 

Consider the set of meromorphic solutions of Harper's equation. We denote it by M. 
It is clear that M is invariant with respect to the translations 'ljJ( z) f-t 'ljJ( Z + 27r). 
Furthermore, in [B-F] we have shown that the set M a two-dimensional linear 
space over the field of meromorphic h-periodic functions. These two properties of 
M allow to introduce the notion of a monodromy matrix. 

Let \11 ± (z) be two linearly independent meromorphic solutions of Harper's 
equation. Since \11 ± (z + 27r) are also its solutions one can write 

qi(z + 27r) = M(z) qi(z), 

where 

and M(z) is a 2 x 2-matrix having meromorphic h-periodic coefficients. We call 
this matrix a monodromy matrix. 

1.3 The results of the paper 

In [B-F] we have proved that there is a positive constant ho such that for 0 < 
h ~ ho Harper's equation has two linearly independent entire solutions having 
standard asymptotic behavior on a given canonical domain, i.e. a domain chosen 
in the complex plane in accord with the special rules. We have also begun the 
investigation of the monodromy matrix corresponding to these solutions. 

The main result of this paper is the following statement. 
Theorem Let 0 < c < E < 2 - c, where c is a fixed positive constant. For 
o < h ~ ho(c) Harper's equation has two linearly independent entire solutions 
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such that the corresponding monodromy matrix has the form 

( 
1 1 (271" ) -+=+w-2cos TZ 

M(z) = w w 
. Jw . c::;:; 2,,; tv ~ - tywweTZ 

The square roots in this formula satisfy the relations: 

~vww = w, vww> O. 

The coefficient w = w(E, h) is independent of z. This coefficient is a continuous 
function of h and depends analytically on E on some vicinity of the interval 0 < 
c < E < 2 -c. 
Remarks 

• The spectrum of Harper's equation lies on the interval [-2,2] and is symmet­
ric with respect to O. Thus, for spectral applications it suffices to consider 
the case 0 ::; E ::; 2. In this paper we do not investigate small vicinities of 
the ends of this interval. 

• The monodromy matrix coefficients have to be h-periodic. As it is seen from 
the Theorem, the Fourier series for the coefficients of the matrix M consist 
only of few terms! 

• In [B-F] we got the asymptotic formula for M 22 : 

where 

and 

M22 = t(E) u(E)(1 + O(h)), 

t(E) = exp ( -~S(E)) , 

u(E) = exp (*iP(E)) 

S(E) = J arccosh(E - cos x) dx, 
-1r<X<7r 
E-c~s ;-;:::1 

(1.2) 

iP(E) = J arccos (E - cos x) dx, arccos: [-1,1] ---+ [0,11']. (1.3) 
-11'" <X<1r 
E-c~s ;:51 

Note that the coefficients t(E) and iP(E) have a direct semi-classical inter­
pretation. Let 0 < E < 2. Consider the real isoenergetic curve 

cos p + cos x = E, x E R. (1.4) 
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The main semi-classical objects associated with an isoenergetic curve in 
quantum mechanics are the phase integral and the tunneling coefficient. In 
the case of Harper's equation, i.e. for the isoenergetic curve (1.4), the tun­
neling coefficient and the phase integral can be described by the formulae 
(1.2) and (1.3), see [Wi] . 

• Since S{E) > 0, the tunneling coefficient t{E) is exponentially small for 
small h. 

1.4 The structure of the paper 

In section 2 we investigate the set of meromorphic solutions of the one- dimensional 
difference Schrodinger equations. There we introduce the notion of a monodromy 
matrix. 

In section 3 we formulate one of the main results of [B-F]: the theorem about 
existence of the entire solutions having standard behavior on the complex plane; 
we describe also the main geometrical objects related to this theorem. 

In section 4 we investigate in detail behavior of the above solutions for large 
1m z. It allows to describe the functional structure of the corresponding mon­
odromy matrix. 

In Section 5 we find out the relations between the monodromy matrix co­
efficients. The space of meromorphic solutions of Harper's equation is invariant 
with respect to the certain transformations. These invariance properties allow to 
describe the coefficients of the monodromy matrix in terms of only one coefficient 
and to prove the above Theorem. 

2 Monodromy matrices for the one-dimensional 
difference Schrodinger equations 

We shall discuss here the one-dimensional difference Schrodinger equation 

'!j;{z + h); '!j;{z - h) + v{z)'!j;{z) = E'!j;{z), z E C, (2.1) 

where v{z) is a meromorphic function and h is a fixed real parameter. 

2.1 Wronskians 

Let '!j;{z) and ¢(z) be two solutions of (2.1). We call the expression 

('!j;, ¢) == '!j;{z + h)¢(z) - '!j;(z)¢(z + h) (2.2) 

the Wronskian of the solutions '!j; and ¢. 
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Lemma 2.1 The Wronskian of two solutions of (2.1) is an h-periodic function. 
The proof follows from the equalities 

7/;(z) (¢(z + h) + ¢(z - h)) = 2(E - v(z))7/;(z)¢(z) = ¢(z) (7/;(z + h) + 7/;(z - h)). 

D 

2.2 The set of meromorphic solutions 

In this section we assume that there exist two meromorphic solutions of equation 
(2.1), 7/;(z) and ¢(z), and 

(7/;, ¢) ¢ o. (2.3) 

Lemma 2.2 Any meromorphic solution of (2.1) can be represented in the form: 

(g, ¢) (7/;, g) 
g(z) = (7/;, ¢) 7/;(z) + (7/;, ¢/(z). 

Proof. Let 9 be a meromorphic solution of equation (2.1). Consider the function 

It satisfies (2.1) and 

- __ (g,¢) .1._ ('l/J,g),J, 
g-g ('l/J,¢)'f' ('l/J,¢)'f" 

(g,7/;) = 0, 

(g,¢) = O. 

Let us represent 9 in the form 

g(z) = C(z)'l/J(z). 

Substituting this formula in (2.4) we get that C(z + h) = C(z). Hence 

0= (g,¢) = C· ('l/J,¢) 

and thus 9 = o. 
Denote by M the set of meromorphic solutions of equation (2.1). 

(2.4) 

D 

Theorem 2.3 M is a two-dimensional linear space over the field of meromorphic 
h-periodic functions. 

Proof. We should prove that g(z) is a meromorphic solution of (2.1) if and only 
if it can be represented in the form 

g(z) = a(z)'l/J(z) + b(z)¢(z), (2.5) 

where a and b are meromorphic h-periodic functions. Substituting (2.5) into (2.1) 
we see that gEM. Therefore the proof of the theorem follows from lemma 2.2. D 
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The pair of meromorphic solutions 7jJ and ¢ satisfying condition (2.3) forms 
the basis of the space of solutions. 

2.3 Transition matrices 

Let 7jJ, ¢ and ,(f, ¢ be two basises. Then we can write 

,(f(z) = a(z)7jJ(z) + b(z)¢(z), 

¢(z) = c(z)7jJ(z) + d(z)¢(z). 

In accordance with Lemma 2.1 the coefficients a, b, c, d can be expressed in terms 
of the wronskians of the solutions 7jJ, ¢,,(f and ¢. We call the matrix 

T(z) = (a(z) b(Z)) 
c(z) d(z) 

the transition matrix from the basis 7jJ, ¢ to the basis ,(f, ¢. 
The transition matrix possesses the following important properties: 

T(z + h) = T(z), 

(;f, ¢) 
detT(z) = (7jJ,¢)" 

2.4 Monodromy matrices 

(2.6) 

(2.7) 

Let the potential of Schrodinger equation (2.1) be periodic, v(z + 211") = v(z). In 
this case the space M is invariant with respect to the translations J(z) f--+ J(z+211"). 

Let 7jJ(z), ¢(z) be a basis and 

(7jJ, ¢) = Const"l o. (2.8) 

The pair of solutions 7jJ(z + 211"), ¢(z + 211") is also a basis. We call the transition 
matrix from the basis 7jJ(z), ¢(z) to the basis 7jJ(z + 211"), ¢(z + 211") the monodromy 
matrix corresponding to the basis 7jJ(z), ¢(z). 

In view of (2.7) and (2.8) the monodromy matrix, M(z), is unimodular: 

detM(z) = 1, (2.9) 

Due to (2.6) M(z) is h-periodic. 
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2.5 The trace formula 

Equation (2.1) is equivalent to the system: 

~(z) = A(z - h)~(z - h), 

where 

A(z) = (2(E ~ v(z)) ~1). (2.10) 

Theorem 2.4 (The trace formula) Let h = 2:m, m, n E N. Then 

Tr (A(z + (n - l)h) ... A(z + h)A(z)) = 

= Tr (M(z + (m - 1)211") ... M(z + 211") M(z)) , 
(2.11) 

where M(z) is a monodromy matrix. 

Proof. Let 'IjJ(z) and ¢(z) be the solutions corresponding to the monodromy matrix 
M(z). Let 

( 'IjJ(z) ¢(z)) 
S(z)= 'IjJ(z-h) ¢(z-h) . 

It is evident that 
S(z + h) = A(z) S(z) 

and 
S(z + 211") = S(z) Mt(z), 

where the symbol t denotes the transposition. Since det S (z) = ('IjJ, ¢) ¢. 0 and 
nh = 211"m we can write 

Tr (M(z + (m - 1)211") ... M(z + 211") M(z)) = 

= Tr (st(z + 211"m) st-1(z)) = 

= Tr (S(z + 211"m) S-l(Z)) = 

= Tr (S(z + nh) S-l(z)) = 
= Tr (A(z + (n - l)h) ... A(z + h)A(z)). 

3 The analytic solutions of Harper's equation 

o 

In this section we formulate one of the results of [B-F]: the existence theorem 
for the entire solutions having standard asymptotic behavior. We begin with the 
description of the geometrical constructions related to this Theorem. 
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3.1 The complex momentum 

All the geometric objects we use can be described in terms of the complex mo­
mentum P (z), 

cosp(z) + cosz = E. (3.1) 

The equation (3.1) can be solved explicitly 

1 
P (z) = -:-In(v(z) + Jv2 (z) - 1), 

z 
(3.2) 

where 

v(z) = E - cos z. 

The finite branching points (square root branching points) of the function p (z) 
satisfy the equation 

v(z) = ±l. 

There is also an infinite branching point (logarithm branching point). As it was 
said in Introduction we assume that 

0< E < 2. 

In this case in the domain -7r < Re z < 7r there are two real branching points 
z = a and z = -a, a = arccos(E - 1), and two complex branching points z = ib 
and z = -ib, b = arccosh( E + 1). All other finite branching points can be obtained 
from these by the translations z f--t z + 27rk, k E Z. 

Let K be a simply connected domain, K c C, and let it do not contain any 
branching point. Denote by Po{z) some branch of the momentum continuous on 
this domain. All the other branches continuous on K are connected with Po by the 
relations: 

p;(z) = ±po{z) + 27rn, n E Z. (3.3) 

Consider the behavior of the momentum for large II m zI. The following lemma 
implies from the formula (3.2). 

Lemma 3.1 Let y = Imz. Then 

Po(z) = ±(z - 7r) + 27rk + O(e- 1yl ) aslyl---; 00. 

The signs ± and the integer constant k depend on the choice of the branch Po. 
The "error" estimate is uniform with respect to Re z. 

3.2 The action and Stokes lines 

The action integral JZ p dz is a many-valued function. It has the same branching 
points as the momentum. 
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Figure 1: 

Consider the curves described by the equation 

(3.4) 

where z* is a finite branching point. We call these curves Stokes lines beginning at 
z*. In view of (3.3) the Stokes line definition does not depend on the choice of the 
branch p(z) in (3.4). 

Three Stokes lines begin at every branching point. The angles between them 
at this point are equal to 237r. 

Some of the Stokes lines are finite: they are connecting two finite branching 
points; some of the Stokes lines are infinite: they are going from finite branching 
points to the infinity. The asymptotes of the infinite lines can be investigated by 
means of Lemma 3.l. 

Let P be some branching point. The point P + 21f is also a branching point. 
The Stokes lines beginning at it can be obtained from the Stokes lines beginning 
at P by the translation z f--+ z + 21f. 

The character of the Stokes lines in the strip -1f < Re z < 1f corresponds to 
fig.3.l. 

Consider the branching point a in fig.3.1 and the corresponding Stokes lines. 
Two of them are infinite. They are going to ±ioo and have the asymptote Re z = 1f. 
One of these Stokes lines is finite. It goes along the real axis. The Stokes lines 
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beginning at the complex branching points are infinite. Consider the branching 
point ib. One of the corresponding Stokes lines goes along the imaginary axis. 

3.3 Canonical domains 

The canonical domain notion is the most important and the most complicated 
geometrical notion we use in our analysis. Its origin lies far beyond the geometry 
of the Riemann surface of the complex momentum and is connected with the 
construction of the analytic solutions having standard asymptotic behavior. 

Let 'Y be a smooth curve, 'Y C <C. We call 'Y vertical if it intersects any of the 
lines 1m z = C onst at an non-zero angle. We orient vertical lines from -ioo to 
ioo. 

Consider a vertical curve 'Y. Fix on 'Y a continuous branch of the momentum. 
We call 'Y canonical if along it the value 

monotonically decreases and 

monotonically increases. 
Let K be a simply connecting domain containing no finite branching points. 

Fix on K a continuous branch of the momentum. We call K canonical if for any 
z E K there exists a canonical curve 'Yz such that z E 'Yz C K. 

In this paper we are not going to describe the asymptotics of the every 
meromorphic solution of (1.1) on the whole complex plane. Our aim is just to 
construct the specific entire solutions for which the monodromy matrix possesses 
the properties described in our main Theorem. For this purpose it suffices to 
consider only one canonical domain. In the sequel we always denote this domain 
by K. The "portrait" of the domain K is shown in fig. 3.2. 

The boundaries of K consist of segments of Stokes lines. We fix on K a 
continuous branch of the momentum by the condition 

p(z)=z-7r+o(l), z--+-ioo, zEK. (3.5) 

The proof that the domain K is canonical follows from the investigation of the fam­
ilies of the lines Re JZ pdz = Const and Re JZ (p+7r) dz = Const, the Antistokes-

Zo Zo 

type lines, in this domain; see [B-F]. 
In the sequel we consider only the above canonical domain K. Working with 

K and its sub domains we always denote by p (zY the branch fixed in (3.5). 
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Figure 2: 

3.4 Admissible domains 

Let oK be the boundary of the canonical domain K and let 8 be a positive con­
stant. We call the sub domain 

K{j = {z E K Idist(z,oK) ~ 8} 

admissible. 

In the sequel we always assume that h is sufficiently small for Harper's equa­
tion to make sense on K{j. 

3.5 The analytic solutions 

In [B-F] we prove a theorem about the existence of analytic solutions of Harper's 
equation. It can be formulated as follows. 

Theorem 3.2 Let E be a fixed positive constant and let 0 < E < E < 2 - E. Let 
K{j be an admissible subdomain and let Zo be a point in K{j. There exists a positive 
constant ho(8, E) such that for 0 < h < ho Harper's equation has two solutions, 
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7/J±, which are analytic on K8 and have the representations 

±* JZ pdz 
e Zo 

7/J±(z) = .. (1 + O(h)), z E K/5. 
y'2z smp (z) 

(3.6) 

The" error" estimate is uniform with respect to z. 

The solutions described in this theorem continuously depend on h. Moreover, 
they are analytic functions of E in some vicinity of the interval 0 < f < E < 2 - f. 

The size of this vicinity depends on f and 8. We didn't notice these two properties 
in [B-F] but they follow directly from the proofs of that paper. 

In the sequel we call the solutions '1jJ± possessing the properties described in 
the Theorem 3.2 "the solutions having standard behavior". 

4 The solutions' estimates and the monodromy 
matrix 

In the sequel C l , C2 , .. . denote positive constants. 

4.1 The solutions' estimates on an admissible domain 

Lemma 4.1 Let K6 be an admissible subdornain of the canonical domain K and 
let 7/J± be analytic solutions having standard behavior on K 8 . Then 

( 4.1) 

In these formulae x = Re z, y = 1m z. 

Proo]. The proofs of these estimates are quite similar. We prove (4.1) for 17/J+ (z) I 
in case y < O. 

The solution 7/J+ has the asymptotic representation (3.6). The function 
sin p (z) is equal to zero only at the branching points of the momentum p. In­
side the admissible domain sinp(z) 2': C2 . Moreover, using Lemma 3.1 we get 

( 4.2) 

Taking into account the choise of the branch p (z), see (3.5), we deduce from 
Lemma 3.1: 
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and therefore 

I * r p dz I-I * r (p + 7r - z) dz * r (z - 7r) dz I < e Zo - e Zo e Zo _ 

~ c4 le* J:o (z - 7r) dzl ~ C5e 7r-';xy, Z E K{j, y < O. 
(4.3) 

Taking into account (3.6) and estimates (4.2) and (4.3) we prove inequality (4.1) 
for 1~+(z)1 in case y < O. D 

4.2 The basis of the space of meromorphic solutions 

Let us calculate the wronskian of the solutions having standard behavior on K{j. 
Proposition 4.2 The wronskian of the solutions ~_ and ~+ is constant and 

(4.4) 

Proof. Using the wronskian definition and Lemma 4.1 we get 

But the wronskian is an h-periodic function and so it is uniformly bounded on 
C. And then, as an analytic function, it has to be constant. Let us calculate it in 
some finite point z E K{j. Obviously, 

1 
(~+,~-) = 2iv'sinp(z) sinp(z+h) 

. eh Z p - e h Z P = ( i JZ+h dz + O(h) _i JZ+h dz + O(h)) 

eip(z) + e-ip(z) + O(h) 
-::-:-r======;=;====;:=::=;= = 1 + O( h). 
2iJsinp(z) sinp(z + h) 

D 

This lemma means, in particular, that the solutions ~± form a basis of the 
space of the meromorphic solutions of Harper's equation. Without loss of generality 
we assume in the sequel that 

We call this basis standard. 
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4.3 The solutions outside the admissible domain 

Analytic properties of solutions outside the admissible domain. In the 
previous part of the paper we have described solutions analytic on a given ad­
missible domain. These solutions are entire functions of z. Really, for the analytic 
continuation we can use Harper's equation itself: by means of the formulae 

'lj;(z + h) = -'lj;(z - h) + 2(E - cosz)'lj;(z) 

and 
'lj;(z - h) = -'lj;(z + h) + 2(E - cosz)'lj;(z) 

we can continue the solutions 'lj;± into the h-vicinity of the admissible domain, 
then into the 2h-vicinity and so on. The result of the next subsection allows to get 
the estimates of 'lj;± outside the admissible domain. 
A Priori estimates for smooth solutions. In this subsection we call a segment 
of a line 1m z = canst a horizontal path. We orient the horizontal path (z', Zll) 
from z' to Z". 

We denote by Va the 8-vicinity of the finite branching points. 
Lemma 4.3 Let 'lj;(z) be a smooth solution of Harper's equation and let d 

and 8 be some positive constants. Assume that the horizontal path (z', Zll) satisfies 
the conditions 

(z', Zll) n V6 = 0 
and 

Iz' - zlll ~ d. 

Then 'lj;(z) satisfies the estimate 

1 lZ - IImpdzl 
I'lj;(z) I :<:; C(8, d) eh z JI'lj;(z)12 + I'lj;(z - ah))I2, 

z,z E(Z',Z"), z=z-hk, kEZ, 

a = + 1 if Re z > Re z and a = -1 if Re z < Re z. 
The coefficient C (8, d) depends only on 8 and d. 

Proof. Consider the case when k > O. Let 

- ('lj;(z)) 'lj;(z)= 'lj;(z-h) , 

Evidently, 

ii¢'(z)iic2 ~ IIA(z - h)llii¢'(z - h)iic2 . 
The eigenvalues of the matrix A (z) are equal to e±ip (z). Therefore 

k-l 
I: IImp(z+hl)1 

ii¢'(z)iic2 ~ el=o 11¢'(z)llc2' z = Z - hk. 

(4.5) 
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Let z, z E (Z',ZIl). We get 

k-l z 

"fa IImp(z + lh)l- * fz IImpdzl :::; :~~ Ip'(z)llz' - zlll· 

Outside V6 the value Ip'(z)1 is bounded and thus 

In the case when k < 0 the proof is quite similar. o 
The estimates of the solutions outside the admissible domain. We shall use 
the following statement to investigate the functional structure of the monodromy 
matrix. 

Lemma 4.4 Let z be to the left from the domain K6. The solutions 'l/J± 
satisfy the estimates: 

1'l/J+(z)1 :::; C7 e 7r+~-Xy + ~, y > 0, 

1'l/J+(z)1 :::; C7 e -7r+~6-x Iyl + I~I, y < 0, 

7r-X I I Iyl 
I'l/J-(z) I :::; C7 e-h- y - ""2, 

where x = Rez and y = Imz. 

(4.6) 

(4.7) 

(4.8) 

Proof. To prove the estimates for 1'l/J+(z)1 we use estimate (4.1) and the a priori 
estimate of Lemma 4.2: 

1'l/J+(z)1 :::; C(8, d) ek J: IImpdz I vl'l/J+(z)12 + I'l/J+(z + h))12 :::; 

! I Z II d I (Hh)-7r I I - l1Ll ::; Cs e h z m p z e h y 2 , 

i = z + hk E K 6, X = Rei. 

To estimate the integral J: IImpdzl we use the inequality 

IImp(z)I::;Cg+iyi, z=x+iy, 

which is a direct consequence of Lemma 3.1. It leads to the result 

1'l/J~(z)l::; ClOe XhXlyi + Xh7rlyi + ¥. 

(4.9) 

(4.10) 

Now let us concentrate on the case y > O. Since the solution 'l/J+ is entire it 
suffices to prove (4.6) only for y ~ C11 . We remind that the boundary of K6 
consists of segments of Stokes lines. The line Re z = 7r is one of its asymptotes for 
1m z -t +ioo, see fig. 3.2. Therefore there exists a C11 such that we can choose 
z E K6 satisfying the conditions y > C11 and 7r < X < 7r + 28. It leads from (4.10) 
to the estimate (4.6). 

The estimates (4.7) and (4.8) can be proved in the similar way. 0 



336 Vladimir Buslaev and Alexander Fedotov 

4.4 The functional structure of the monodromy matrix 

In this subsection we begin to investigate the monodromy matrix M(z) corre­
sponding to the basis 'l/J±. 

Proposition 4.5 The monodromy matrix M(z) has the following functional 
structure: 

2rri Z ) bo + L 1e- h , 

do 

(4.11) 

where a, b, c and d with subscripts denote coefficients independent of z. 

Proof. We remind that the coefficients of the monodromy matrix can be expressed 
in terms of the wronskians of the basis solutions. Evidently, 

Taking into account these formulae, we obtain from the definiton of the mon­
odromy matrix: 

M () _ (tP+(Z+27r),1,L(z)) 
11 z - ('l/J+(z),'l/J-(z)) , 

M12(Z) = ('l/J+(z), 'l/J+(z + 27r)) 
('l/J+(z), 'l/J-(z)) , 

( 4.12) 

M ( ) _ ('l/J-(z + 27r), 'l/J-(z)) 
21 z - ('l/J+(z), 'l/J-(z)) , 

M ( ) _ ('l/J+(z), 'l/J-(z + 27r)) 
22 Z - ('l/J+(z),'l/J-(z)) . ( 4.13) 

Together with ('l/J+, 'l/J-) = Canst, see Lemma 4.2, thcformulae (4.12)-(4.13) mean, 
in particular, that the coefficients of the matrix M(z) are entire h-periodic func­
tions. To prove the Proposition it suffices to get the estimates of these functions 
for large IYI, Y = Imz. It can be done by means of the inequalities obtained in 
Lemma 4.1 and Lemma 4.4. In result we get for z + 27r E K6: 

IM11(Z)1 :::;C12e2:lyl, 
2rr+46+h 

IM12 (Z)1 :::; C12 e h Y, Y > 0; 

4b+h I I 
IM12 (Z)1 :::; C12 e-'-' Y, Y < 0; 

IM21 (Z)I:::; C12 e -~xIYI. 

Here C12 is a positive constant. These estimates together with the analyticity 
and the h-periodicity of the monodromy matrix coefficients lead to representation 
(4.11). Really, consider the coefficient M11(Z). Since it is h-periodic and entire, 
the above estimate means that 
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The analogous arguments lead to the representations 

and 

The formula 
M 22 (Z) = do 

follows from the equality det M = 1. 

5 The relations between the monodromy matrix 
coefficients 

5.1 The reflection invariance 

The space of meromorphic solutions of Harper's equation is invariant with re­
spect to the reflections: 'ljJ(z) f---+ 'ljJ( -z). It leads to a certain relations between the 
coefficients of the monodromy matrix M. 

Remind that in [B-F] we show that the solutions 'ljJ± described in Theorem 
3.2 can be constructed so that 

where Zo is the same parameter as in (3.6). In the sequal we choose Zo = 7r. In this 
case 

(5.1) 

This formula implies the following statement. 
Lemma 5.1 The monodromy matrix M(z) can be represented in the form 

(
ao + al cos (2;: z) -bo - bl e-2~iZ) , 

M(z) = 
b b 2,.-i Z d 
o + 1 e"-- 0 

where the letters a, band d denote coefficients independent of z. 

Proof. Let 

It is evident that 
w(z + 27r) = M(z) w(z) 

and 

w (27r - z) = a . W (z), a = (~ ~). 

(5.2) 
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It allows to write: 

1I1(z + 27r) = a· 1I1(-z) = a· M- 1(-z). 111(27r - z) = a· M- 1(-z). a· 1I1(z). 

Therefore 
M(z) = a· M-1( -z) . a. 

This formula together with Proposition 4.5 and the formula det M(z) = 1 implies 
representation (5.2). D 

5.2 The trace formula and the coefficient al 

Proposition 5.2 The coefficient a1 of the monodromy matrix is equal to -2, 

(5.3) 

The proof of this proposition is based on the trace formula (2.11) and the 
following lemma. 

Lemma 5.3 Let h = 27r~, where m and n are relatevely prime natural 
numbers, and let /1( z) be a matrix of the form 

(
0:0 + 0:1 cos z /30 + /31 e-iz ) 

/1~)= , 
'Yo + 'Y1 eiz 80 

(5.4) 

where the Greek letters denote coefficients independent of z. Then 

( 0:1 ) n Tr (/1(z + (n - l)h) ... /1(z + h) /1(z)) = Ft(h) - 2 -2 cos(nz), 

where Ft is a coefficient independent of z. 

Proof. Obviously, Tr (/1(z + (n - l)h) ... /1(z + h) /1(z)) is an h-periodic function 
of z. Therefore 

Tr (/1(z + (n - l)h) ... /1(z + h) /1(z)) = 

k=N k=N 
_ " FIl 27rik z _ " FIl nik Z 
- ~ k eli:"'" - ~ k em, 

(5.5) 

k=-N k=-N 

where N is a finite integer number and F!: are coefficients independent of z. Taking 
into account formula (5.4) we see that, in fact, 

Tr (/1(z + (n - l)h) ... /1(z + h) /1(z)) = Ft + F!:t einz + F!:.m e-inz . 

Therefore 

Tr (einZ /1(z + (n - l)h) ... /1(z + h) /1(z)) = Ft einz + F!:t e2inz + F!:.m· 
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Both, the left-hand side and the right-hand side in this formula are continuous 
functions of w = eiz . Putting w = 0 we get 

F~m = Tr (e-ih(n-l) (11 ~1) ..... e-ih (11 ~1). (~ ~1)) = 

= (~1 r e-ihn(n2-1) = (~1 r e-i7rm(n -1) = - (- ~1 r 
Therefore F~m = - ( - ~1 ) n. In the analogous way one can see that Ff:, 

- ( - ~1 ) n. It proves the lemma. 0 

Proof of Proposition 5.2. Let h = 2:m and A(z) be the matrix defined by (2.10) 
with v(z) = cos(z). It follows from Lemma 5.3 that 

Tr (A(z + (n - l)h) ... A(z + h)A(z)) = Ft(h) - 2 cos(nz). 

Analogously, we get for the monodromy matrix M(z) 

But it follows from (2.11) that the right-hand sides in these formulae are equal. 
Therefore for 2: E Q we have a1 = -21 ~. At the same time the coefficients of the 
monodromy matrix M are the wronskians of the solutions which are continuous 
functions of h. Hence, the coefficient a1 is a continuous function of h. And then 
a1 = -2. This formula is valid also for irrational 2:' 0 

5.3 The invariance 'ljJ(z) I---t 'ljJ(z) and the final formula for the 
monodromy matrix 

The space of solutions of Harper's equation is invariant with respect to the trans­
formation 'ljJ(z) f---+ 'ljJ(z). It leads to additional relations between the coefficients of 
the monodromy matrix. 
Theorem 5.4 The monodromy matrix M(z) has the form 

M(z) = 
; + TIJ + ill - 2 cos .h z 

( 

1 1 (27r ) 

. fW . c:;:; 2", Zy TIJ - zy will e""hZ 

where the roots' branches are defined by the relations 

~Vwfil=w 

(5.6) 

(5.7) 
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and 
Vww> 0; 

the coefficient w = w(E, h) is independent of z. 

Proof. Since 1jj±(z) are entire solutions of Harper's equation then 

where J is a 2 x 2-matrix having h-periodic meromorphic coefficients. 
Lemma 5.5 The coefficients of the matrix J are constant, 

J=(~ iB) z(3 0 ' 

0, (3 E JR, 

and 

Proof. Note that 

It means, in particular, that 
det J = 1. 

Obviously, 
J11 = (1jj+(z),1jJ_(z)) , 

J21 = (1jj_Cz), 1jJ_(z)) , 

J12 = (1jJ+(z),1jj+(z)) , 

h2 = (1jJ+(z), 1jj_(:z)) . 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The last four formulae mean that the coefficients of the matrix J are entire h­
periodic functions. These formulae allow to obtain the estimates of the coefficients 
Jjk : by means (4.1) and the estimates of Lemma 4.4 we get 

IJ111 :s C, y > 0, 

IJll l :s C e 2"-~X+48IYI, Y < 0, 

h+46 I I IJ12 1 :s C e-h- Y , 

IJ21 1 :s C e 2";;-2x IYI, 

when 8 < x < 7r - 8. In these formulae z = x + iy and 8 is a constant from the 
definition of the admissible domain K6. Recall that 8 is a fixed positive constant 
which could be chosen arbitrarily small. It follows from the estimates for the 
·coefficients J ll , J12 and hI that they, as entire h-periodic functions of z, have to 
be constant; the formula h2 = Canst follows from (5.13). 
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Let us check the relations between the coefficients of the matrix J. Obviously, 

J11 = (~+(z),~-Cz)) = (~+(z),1jJ_(:z)) = J22 

and J12 = (~+(z),~+(z)) = - (~+(z),1jJ+(z)) = -J12 . 

Analogously, 
J21 = -J21 · 

Therefore the matrix J has the form 

J = (~ if!). 
z"( a 

To complete the proof of (5.10)-(5.11) we recall that 

(~~g;=~D=~·(~~~~D, ~=(~ ~). 
Since the same relation is valid for (*:~~~) we have~· J . ~ = J. 

It proves (5.10)-(5.11). Formula (5.12) follows from (5.13). 

Since 

We have 
M(z) . J = J. M(z). 

o 

(5.14) 

Remind that the monodromy matrix M(z) has the representation (5.2). Taking 
into account the formula a1 = - 2 and equating the coefficients of the trigonometric 
polynomials in the left-hand and right-hand sides of (5.14) we come to the relations: 

a 2ao - 2iaf3bo + f32do = ao; 

iaf3ao + (132 - ( 2)bo - iaf3do = -bo; 

f32ao + 2iaf3bo + a2do = do; 

a 2 + iaf3b1 = 1; 

132 b1 - iaf3 = -b1 ; 

iaf3 + a 2b1 = 0; 
2 --13 + iaf3b1 = o. 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

From relations (5.18) we get a,f3 i- 0 and b1 = i~. The last formula means that 

(5.19) 

Summing relations (5.16) and (5.17) and taking into account (5.12) we get 

ao + do = ao + do· (5.20) 
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Remind that detM(z) = 1. It means that 

aodo + bo2 + b12 = 1 (5.21) 

and 
-do + bob1 = O. (5.22) 

Relations (5.19)-(5.22) imply formulae (5.6) and (5.7). We omit the elementary 
calculations proving this implication. The reation (5.8) follows from the asymptotic 
formula for M 12 , see [B-F]. D 
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Eigenfunction expansion of right definite 
multiparameter problems 

A. Yu.Konstantinov* 

Abstract 

We extend expansion results of [2,3] on nonuniformly right definite multi­
parameter problems. We also obtain an abstract approximation criterion for 
the existence of commuting self-adjoint extensions of a family of symmetric 
operators. 

Let Hj be a separable Hilbert space, Aj be a densely defined symmetric 
operator in Hj , Bjk be a bounded self-adjoint operator in Hj (j, k = 1, ... , n). 
Consider in the tensor product H = ®j=l Hj symmetric operators 

(Aj in the jth place) and similarly defined bounded self-adjoint operators BJk. 
Denote V = span ({Ul 0 ... ® unluj E V(Aj )}). Here V(A) is the domain of A, 
span (M) is the linear span of a set M. We shall say that 0 f. 'P = 'P(A) E V is 
the eigenvector corresponding to eigenvalue A = (At, ... ,An) E Rn if 

n 

At 'P = L AkBJic'P (j = 1, ... , n) (1) 
k=l 

We define 
~ = det [BJkl 

and ~jk as the corresponding (j, k) cofactor. These operators are bounded self­
adjoint on H. We shall assume that the problem (1) is right definite, i.e., the 
operator ~ is positive ( (~u, U)H > 0 for all nonzero U E H). Let HD, be a 
completion of H in the inner product < .,. >= (~., ·)H. Consider the rigged 
Hilbert space 

H_ :J H :J H+ :J D, 

where D is a separable linear topological space, densely and continuously embed­
ded into H+. We assume that D c V and Vj, k At E .c(D, H+), BJic E .c(H+). 

*Research supported in part by the FFR of Ukraine Grant 1/238 "Operator" 
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Here C(K, G) is the class of linear continuous operators from K into G, C(K) = 
C(K, K). We suppose that H+ c V(,!l-1/2) and hence one can extend ,!l-l to a 
bounded operator from H+ into HD,. We retain notation ,!l-l for this extension. 
Define on D operators 

n 

Xk = ,!l-l L ,!ljkAj (k = 1, ... ,n). 
j=l 

It is easy to see that Xk is a symmetric operator in HD,. Now we state the 
main result of this paper. 

Theorem 1. (Xk)k=l admits an extension to a family of commuting self­
adjoint operators in a Hilbert space 1t containing HD, as a closed subspace, and 
VuED 

n 

L BjkXku = Aju (k = 1, ... , n). 
k=l 

We remark that if ,!l is strongly positive (the problem (1) is uniformly right 
definite), then X k are essentially self-adjoint in HD, and their closures commute 
[7]. 

The proof of theorem 1 is based on the approximation of the problem (1) 
by finite-dimensional multiparameter problems and the following abstract propo­
sition. 

Theorem 2. Let (Tk)k=l be a family of symmetric operators in a separable 
Hilbert space H. Suppose that D = nk=l V(Tk) is a dense set in H and suppose that 
there exists a sequence of families of commuting self-adjoint operators (Tk,s)k=l 
such that 

D C U~l n~l nk=l V(Tk,s) 

andVu E D Tk,sU converges to TkU. Then (Tk)k=l admits an extension to a family 
of commuting self-adjoint operators in a Hilbert space 1t containing H as a closed 
subspace. 

The proof of theorem 2 is based on the following lemma. 

Lemma 1. Let Em be the joint resolution of the identity of (Tk,m)k=l' Then 
there exists a subsequnce Em(k) and a nonnegative C(H)-valued Borel measure F 
on Rn such that Vf E Co(Rn) Vu,v E H 

J f(A)d(Em(k) (A) U,V)H ~ J f(A)d(F(A) U,V)H, k ~ 00. 

Rn Rn 
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Next, one can show that F is a generalized resolution of the identity of (TkH~=l 
(see [1]) and it is enough to prove theorem 2. 

Now it is easy to obtain the abstract expansion result for the problem (1); 
cf. [2,3]. Define a generalized eigenvector for the problem (1) as a vector 0 -# 'P = 
'P(>') E H_ such that 'iu ED 

n 

(cp, Aj U)H = L >'k('P, Bjk U)H (j = 1, ... , n). (2) 
k=l 

Let 0 be the imbedding operator of H+ into H. 

Theorem 3. Let ~ -1/20 be the Hilbert-Schmidt operator from H+ into H, 
Bjk E 'c(D). Then there exists a finite Borel measure p in Rn such that for p-

almost all >. E Rn we can construct a family ('PoJ>.))~l~) of generalized eigenvec­
tors for problem (1), and a corresponding Fourier transform: 

such that the Parseval equality holds: 

< u, v >= J (,u(>.), v(>\))z2(N().))dp(>.) (u, v E H+). 

Rn 

Here l2(00) = l2, b(N) = eN (N < 00). 
We note that H6. C H_ and consider the new rigged Hilbert space 

where G+ is conjugate to H_ with respect to < .,. >. G+ can be constructed as a 
completion of H+ in the inner product (~" ~')H+' A generalized joint eigenvector 
of the family (Xk)'k=l is defined as a vector 0 -# 'P = 'P(>') E H _ such that 'iu E D 

< 'P,Xk u >= >'k < 'P,U > (k = 1, ... ,n). 

It is easy to see that a joint generalized eigenvector 'P(>') of (Xk)k=l satis­
fies (2). Next, Xk E 'c(D, H+) and the imbedding operator G+ C H6. is of the 
Hilbert-Schmidt class. Now theorem 3 follows from the general theory of general­
ized eigenvector expansions [1]. 

Finally, note that theorem 3 can be immediately applied to multiparameter 
problems for partial differential operators ( see [2,3] ). For ordinary differential 
operators of even order such expansions have been obtained in [5,6]. Expansion 
results for nonuniformly right definite problems with discrete spectrum can be 
found in [4,8]. 
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Singularly Perturbed Operators 

V.Koshmanenko 

Let A = A * ~ 1 be a self-adjoint unbounded operator in a separable complex 
Hilbert space 1-l. 

Definition 1 A self-adjoint operator A =1= A in H is called singularly perturbed 
with respect to A if the linear set 

D := {J E D(A) n D(A)IAf = AI} (1) 

is dense in H, where D(·) denotes an operator domain. 

If in addition the range R(A) = H then we write A E As(A). Thus a self-adjoint 
operator A in H belongs to the class As(A) if it is boundedly invertible and the 
pair A, A has a common symmetric part, i.e. 

A := AID = AID (2) 

is a densely defined symmetric and closed operator in H. We write A E A~(A) if 
A is positive. 

Define the A-scale of the Hilbert spaces 

... H-o. :J ... Ho == H :J ... Ho. :J ... (3) 

where Ho. = D(Ao./2) with the norm 11·110. = IIAo./2 ·11 and H-o. is the completion 
of H in the norm 11·11-0. = IIA-0./2 11. The duality between Ho., H-o. is denoted by 
< .,. >. 

Definition 2 A linear closed operator T : Ho. ----> H-o. is called a singular per­
turbation of A if the linear set 

Fo,T:= KerT (4) 

is dense in H. 

If in addition T is symmetric , i.e. 

< T<p, 'lj; >=< <p, T'lj; >, <p, 'lj; E D(T) (5) 

and the range R(T) is a closed subspace in H-o. then we write T E Ts(A). In such 
case (see [14]) 

R(T) n H = {O}. 
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Thus an operator T : 1ta ~ 1t-a belongs to the class Ts(A) iff it has the 
following representation : 

T = D_,+V, D_,+ = D_,oDo,+ : 1ta ~ 1t-a (6) 

D = Aa/2 . 'l.J ~ 'l.J D = (Aa/2)cl . 'l.J ~ 'l.J 0,+ . fLa fLO, -,0 . fLO fL-a 

(cl denotes the closure), where V is a self-adjoint operator in 1ta such that the 
subspace KerV = KerT = Fo,T is dense in 1t and the range R(V) coincides with 
1ta e Fo,T = F. 

We write T E TS{3,ra == 7/3, a , 0 ~ (3 < 0: if T E Ts(A) and Fo,T is dense in 
1t{3,i.e. T is regular in 1ta and singular in 1t{3. 

For the bilinear form IT(CP, 'Ij;) =< Tcp, 'Ij; > which is generated by T in the 
A-scale we also write IT E 7/3,a. It is clear that in 1ta the form IT is closed and 
V is its associated operator. 

Theorem 1 Under the condition, that V is dense in 1tl , there is a one to one 
correspondence between A E As(A) and T E 1i,2(A). Namely for each A E As(A) 
the difference 

(7) 

defines an operator TB E Ts(A), 

(8) 

where B acts in No = M;, M o = AV = AV, it is self-adgoint and boundedly 
invertible operator. Conversely each T E 1i,2(A) defines in No = AF an operator 

BT = A(VIF)A-l (9) 

which gives A by (7) if we put 

B-1 = { (10) 

In the above case the Friedrichs extent ion of A coincides with A. Under the as­
sumption that operators A, A, T are positive the above result has a formulation in 
terms of the bilinear forms. 

Put 1t2 == 1t+, 1tl = Q(rA) in the norm IIcpll b cp E Q(rA) where IA is the 
bilinear form generated by A. 

Definition 3 A densely defined positive bilinear form I in 1t with domain Q( I) C 
1t+ is called singular and belongs to class T,s+ r (A) if it is closed in 1t+ and Ker I 

1, 2 

is dense in 1t 1. We write I E Ts+ r (A) if I is closed in 1t 1 and K er I is dense in 
0, 1 

1t. 
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Theorem 2 Under the condition, that V is dense in H there is a one to one 
correspondence between A E A~(A) and'Y E Ts+ r (A) which is fixed by the direct 

1, 2 

sum 
(11) 

where 'YB is defined as the restriction on No = M;, Mo == R( A) of the bilinear 
form 'Y(A-1cp, A-11/J). 

Note that in case 'Y E Tl r (A) the usual form-sum 
0, 1 

i = 'YA + 'Y (12) 

defines the closed bilinear form in H. 
In (11) the direct sum is correctly defined because No n Q("(A) = {o}. The 

equality (11) follows from Theorem 1 if the operator T = D_,+ V where V is the 
operator associated with 'Y in H+. 

The domain V(A) has the following description 

V(A) = {g E Hig = f + B-1PNoAf,f E V(A)} 

Ag=Af 

(13) 

where PNo is the orthogonal projector on No and the operator B is connected 

with A, A and T by (7)-(10). 
The resolvent Hz of A is expressed by the M.Krein formula 

B-1 
z 

R +B-1 
z z 

{ 
B;l on N z, N z = Ker (A* - z) 

o on M z , Mz = Nt 

Uz,o(BT - zGz,o)-l PNz 

(14) 

(15) 

where Uz,o = ARz, Gz,o = P:N z (1- zA-1) and PNz is the orthogonal projection 
on N z . 

Thus we have two abstract procedures for construction of the singularly per­
turbed operator A with respect to A by the given singular operator T : H+ --* 

1L = H-2 if T-1 on R(T) is bounded or by the singular bilinear form 'Y if it is 
positive. Note that both T, 'Y play roles of the abstract boundary conditions for 
construction of the self-adjoint extension of A, v(A) = V where V coincides with 
Ker T = Ker "(. It is for this reason why we call the presented procedures a the 
self-adjoint extension method in singular perturbation theory. 

The various applications of the above presented general approach can be 
found in the publications [1 - 18]. 

Now let T E ~,o., ex > 2. Then the set Ker T is dense in H2 and the restric­
tion AIKer T is an essentially self-adjoint operator. It means that T is a trivial 
perturbatiion for A. What can one do in such case? 
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We propose to introduce the auxiliary intermediate perturbation 'Y which 
is singular and non-trivial for A h E To,2(A)) and such that 7 is a non-trivial 
perturbation for 'Y. Then it is possible to give the non-trivial sense to the formal 
expression A + 'Y + 7 and define A = AI'+T' 

Namely, let Fo = Ker 'Y C Ker 7. Consider in F = 'H2 8 Fo the operator 
Al = V + 1 where V is the operator associated with 'Y in F. Assume that 7 E 
To,2(A 1 ) in the AI-scale of Hilbert spaces. Then we can construct A in two steps. 
In the first step we define the operator AT from Al and 7 using Theorem 1 or 2. 
In the second step we define A = AI'+T from A and AT using again Theorem 1 or 
2. Note that the bilinear form 'YT generated by AT in 'H2 belongs to To,2(A). Thus 
we have 

Theorem 3 Let A = A* :::: 1 in'H and T E To,2(A). Suppose moreover that the 
positive bilinear form 7 E To,2(A 1), where Al = V + 1 in F = 'H2 8 Ker 'YT 

('YT = 'Y)' Then the singular perturbed operator A = AI'+T exists and is defined by 
the self-adojoint extension method. 

We now consider an application. Let'H = L2(Rn ,dx),n > 1,A = -~ + 1,'Y = 
'Y1'117 = 'Y1'2,'YI'JCP,'lj;) = JCP(x)'lj;(X)d/1i(X),i = 1,2,cp,'lj; E Co(Rn) where /1i is a 
positive Radon measure, SUPP/1i = Ni , with Lebesgue measure INil = O. Assume 
'Y1'1 E To,2(A), i.e. cap2(Nd > 0 and 'Y1'1 E 12,o:(A),o: > 2, i.e. 0 = cap2(N2) < 
capo:(N2) where cap denotes the capacity [6]. For example, take n = 4, Nl a circle, 
/11 the Lebesque measure on Nl and /12 is corresponds to a sum of 8Yk -functions 
for points Yk E N 1 . Then the above presented approach gives sense to the formal 
expression -~ + /11 + /12. Moreover the same method gives sense to the formal 
expression -~ + 'Y-flIN1 + LkEN1 8Yk where the second term corresponds to the 
restriction of the Laplace operator on the circle N1 . 
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Some Mathematical Problems 
of p-adic Quantum Theory 

A.N. Kochubei 

Abstract 

We study pseudo-differential equations over the field of p-adic numbers with 
properties similar to those of classical Laplace and Schrodinger equations. 

1. Recent activity in p- adic models of quantum mechanics and quantum field 
theory has given a considerable impetus to the development of p-adic mathematics. 
We shall concentrate on pseudo-differential operators acting on complex-valued 
functions defined over Q~ = Qp x ... x Qp (n times) where p i= 2 is a prime 
number, Qp is a field of p-adic numbers, n 2: 1. Our aim is to identify and study 
p-adic counterparts of elliptic and evolution partial differential equations. The 
role of such equations in p-adic physics may happen to be similar to the role of 
the Laplace and Schrodinger equations in the conventional quantum theory. 

This contribution is a brief review of some recent results. The detailed treat­
ment will be published elsewhere. 

2. Let us consider a self-adjoint pseudo-differential operator 

(1) 

in the Hilbert space L2 (Q;) constructed with the use of the Haar measure on the 
additive group of Qp .Here Ma,o. is an operator of multiplication by la(6, ... '~n) I~, 
a(6, ... , ~n) is a quadratic form with coefficients from Qp , a> 0, 

X is a canonical additive character on Qp. 
The study of the operator (1) is stimulated by the prospect (outlined in [1]) 

of constructing a p-adic version of the Euclidean quantum field theory. It is natural 
to take the Green function G(x - y, ..\), the integral kernel of (A + ..\1)-1,..\ > 0, as 
a kernel of the free covariance operator. Of course such a function G (z, ..\) should 
be non-negative; it is expected also to be continuous for z i= o. 

The simplest example ( n = 2, a = 1, a(6, ~2) = ~? + ~~ ) was considered in 
[2]. It was shown that the properties listed above take place only if p == 3( mod 4) 
or ,equivalently, if ~? + ~~ i= 0 for 161p + 161p i= o. 
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Theorem 1. If 

for (2) 

then G(z, >.) is continuous for z i- 0, non-negative, locally integrable, and 
G(z, >.) ---+ ° when maxj IZjlp ---+ 00. 

Note that quadratic forms satisfying the condition (2) exist only for n ~ 4, 
and for the "physical" dimension n = 4 such a form is unique (see [3]) up to a 
linear isomorphism. 

The proof of the theorem is based on a complete classification of quadratic 
forms satisfying (2) and a procedure of reduction to one-dimensional pseudo­
differential operators over local fields (extensions of Qp; in the case n = 4 it is 
convenient to use a non-commutative quaternion algebra over Qp). 

The asymptotics of G(z, >.) for maxj IZj Ip ---+ 00 and estimates of its behaviour 
near the point Z = ° have also been found. 

Another interesting example of a pseudo-differential operator over Q; corre­
sponds to the symbol 

All the assertions of Theorem 1 remain valid in this case for any n ~ 1. 

3. The formalism of p-adic quantum mechanics proposed in [1,4] is based on the 
direct construction of the unitary propagator U(t) in the Hilbert space L2(Qp) 
related to the classical dynamics via the representation of the Heizenberg-Weyl 
group. Both time and spatial variables are assumed to be p-adic while values of 
the wave function are complex. 

The standard Hamiltonian approach fails in the p-adic situation since Qp is 
totally disconnected which excludes any possibility to define infinitessimal gener­
ators of space or time translations. Nevertheless there is a natural desire to find 
some equation for the wave function,at least in the free particle case. Such an 
equation was found in [5]. However,it turns out that the solution of the Cauchy 
problem for the equation from [5] is not unique even in the Bruhat test-function 
space V of locally constant functions with compact supports (see [6]) which is in 
fact too narrow to include the wave function whose support with respect to t is 
not compact. 

Let us consider the Cauchy problem 

(Bu)(x, t) = f(x, t), (3) 

u(x, 0) = uo(x), (4) 
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where n ~ 1 , f E V(Q;+1) , Uo E V(Q;). The operator B is defined initially 
on V(Q;+l) as 

(Bu)(x, t) = F(e,~)-.(x,t) [Ir - (bl~; + ... + bn~~)I;F(y,9)-'({'T)U] , 

o:>O,O#-bjEQp (j=l, ... ,n). 
The operator B can be expressed as a hyper-singular integral operator 

1 a 1 (Bu)(x, t) = 1 - -=a-l F;;':'x Irl;a-l [x( -r(b1y; + ... 
- p Qp (5) 

... + bnY~))v(y, t - r) - v(y, t)]dr 

where v(y, t) = Fx-.yu(x, t) , u E V(Q;+l). 
The expression (5) makes sense for a wider functional class Ba consisting of 

those functions u(x,t) , x E Q; , t E Qp belonging to L2 (Q;) for each t which 
satisfy the following conditions. There exist N, I E Z and a positive function c(t) 
(depending on u) such that 

v(y, t) = ° 
Iv(y,t)1 ~ c(t), Y E Q;,t E Qp; r c(t)ltl;a-1dt < 00; 

J1tlp>1 

v(y, t + t') = v(y, t) for all y E Q; , t E Qp , if It'l p ~ pl. 

Note that the free wave function from [1,4] belongs to Ba and satisfies (3) 
with n = 1 and some b1 E Qp where the operator B is understood in the sense 
of (5). 

The following uniqueness result is based on the properties [6] of the fractional 
differentiation operator on Qp. 

Theorem 2. If u E Ba , Bu = ° , u(x,O) == ° then u(x, t) == 0. 
The explicit formulas for the solution of the Cauchy problem (3),(4) are too 

long to be presented here. The solution possesses some additional properties mak­
ing it possible to eliminate the Fourier transform from the action of the operator 
B which is thus represented as a hyper-singular integral operator with respect to 
all the variables. 
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