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v

One of the most important purposes that philosophy of science can serve 
is bridging the gap between scientific inquiries and philosophical specula-
tions. Nowhere is the need for building such bridges more pressing than 
in the case of metaphysical analysis on the one hand and fundamental 
physical theories on the other hand. If modern metaphysics aspires to be 
more than a mere footnote to the Great Old Masters, it must receive a 
generous influx of new ideas and concepts from the rapidly developing 
field of fundamental physical sciences. However, such an approach to 
metaphysics places a heavy burden on the practitioners of this ancient art 
of theoretical reflection. It requires that they enter the maze of highly 
abstract mathematical concepts that abound in modern theoretical phys-
ics. Even more treacherous territory is the issue of a proper physical (and 
metaphysical) interpretation of the mathematical formalisms of physical 
theories. Here even seasoned mathematical physicists admit that the task 
of actually reading physics off the mathematical equations, let alone the 
challenge of deriving useful metaphysical lessons, is not at all trivial.

This book is an attempt to distill some metaphysical contents from the 
quantum theory of many particles. The metaphysical problems that we 
will try to sort out with the help of modern quantum theory are old and 
venerated. They are questions about the most fundamental ontological 
concepts of identity, individuality and discernibility. Philosophers of dif-
ferent stripes have proposed numerous conceptions of what it is to be an 

Preface and Acknowledgments



vi  Preface and Acknowledgments

individual object, how we manage to carve reality into separate entities of 
various kinds, what numerical identity and distinctness is, and how it 
relates to possessing differentiating qualitative properties and relations. A 
particularly popular view insists that numerical diversity and qualitative 
discernibility are intimately connected in that the former guarantees (as a 
matter of metaphysical necessity) the latter. Yet there are arguments that 
quantum mechanics may cast serious doubts on the validity of this view. 
This has something to do with the way quantum mechanics describes 
systems of many particles that belong to the same category (so-called 
indistinguishable particles). Given some mathematical restrictions placed 
on the available states and measurable properties of such systems, it may 
be argued that quantum particles of the same type are totally indiscern-
ible with respect to their physical attributes.

However, this conclusion is by no means unquestionable. It relies on a 
number of tacit interpretational presuppositions which are open to 
debate. In this book I will carefully scrutinize the mathematical formal-
ism of standard, non-relativistic quantum mechanics, and I will show 
that there is actually substantial freedom in choosing the right interpreta-
tion of some parts of this formalism. Even more importantly, depending 
on which interpretation to follow, the consequences related to the above-
mentioned metaphysical issues may vary dramatically. I will give a broad 
presentation of two alternative readings of the mathematical apparatus 
used in the quantum theory of many particles (I refer to these readings as 
“orthodoxy” and “heterodoxy”) that give rise to two distinct metaphysical 
conclusions regarding the fundamental characteristics of quantum 
objects, their identities and individualities. In order to fulfill this task 
properly, some degree of technicality turns out to be necessary. Thus at 
places this book may read like a textbook in quantum mechanics, with 
some mathematical theorems and proofs (all rather elementary, to be 
sure). However, all these technical issues should not obscure the fact that 
we are ultimately interested in the general lessons that quantum mechan-
ics can teach us regarding the nature of the fundamental building blocks 
of the universe.

Allow me to briefly retrace my personal journey leading to the comple-
tion of this book, during which I received invaluable help from many 
people and incurred numerous debts. I got seriously involved in the topic 
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of the identity and individuality of quantum objects back in 2009 when 
visiting the University of Bristol as a Marie Curie fellow, thanks to James 
Ladyman. Out of our discussions grew our joint paper on the Principle 
of the Identity of Indiscernibles in quantum mechanics in which we criti-
cized the role of so-called weak discernibility in restoring the objecthood 
and individuality of quantum particles. At that time I was leaning towards 
the orthodoxy in the form developed, among others, by Michael Redhead, 
Paul Teller, Steven French and Decio Krause, with its insistence on the 
lack of discernibility and individuality of quantum particles. Then, 
around the year 2010, Marek Kuś from the Center of Theoretical Physics 
in Warsaw pointed me towards a series of publications by GianCarlo 
Ghirardi with collaborators on the notion of entanglement applied to 
“indistinguishable” particles. These papers were a revelation to me. I real-
ized that there is a clear formal sense in which electrons, photons and so 
on can be said to literally possess distinct and differentiating properties. I 
presented my take on Ghirardi et al. at a workshop in Bristol organized 
by James Ladyman in June of 2011, and later that year at the 14th 
Congress of Logic, Methodology and Philosophy of Science in Nancy, 
France. In attendance of these events were Simon Saunders, Fred Muller 
and Adam Caulton, whose helpful comments prevented me from making 
numerous embarrassing mistakes. As a result I prepared a paper com-
menting on the role of symmetric projectors in individuating quantum 
objects, which came out in print in 2015 as part of the CLMPS proceed-
ings issue of Philosophia Scientiae. (I should also mention here the related 
work on the notion of entanglement with James Ladyman and Øystein 
Linnebo.) In the meantime, Simon Saunders and Adam Caulton wrote a 
number of excellent articles which essentially pointed in the same direc-
tion, developing an approach which Caulton calls “heterodoxy”. 
Especially one beautiful paper of his, available on arXive, became a bible 
for me. I cannot fathom why this comprehensive 50-page-long formal 
analysis hasn’t been published in any of the leading journals in philoso-
phy of physics. In a sense the current book may be seen as a long and 
slightly verbose commentary to Adam’s phenomenal paper.

I spent two extremely productive years from 2013 to 2015 at the 
University of California, San Diego, where I benefitted enormously from 
discussions with the Philosophy Department members and visiting 
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guests, including Chris Wüthrich, Craig Callender, John Dougherty, 
Kerry McKenzie, Nick Huggett, Josh Norton and Holger Lyre. Monthly 
meetings of the Southern California Philosophy of Physics group at UC 
Irvine were yet another source of inspiration for me. After that, one more 
year in Bristol gave me the opportunity to talk further about my develop-
ing ideas with James Ladyman, Karim Thébault and other faculty and 
visitors. In 2018 I was kindly invited by Kian Salimkhani and Tina 
Wachter to participate in a Bonn workshop on quantum individuality 
and entanglement, where again I had constructive exchanges with Simon 
Saunders, Adam Caulton, James Ladyman, Fred Muller as well as Cord 
Friebe, Dennis Dieks, Andrea Lubberdink and Jeremy Butterfield. In 
2019 I was a visiting fellow at the Center for Philosophy of Science in 
Pittsburgh, where I presented and discussed my work. I am particularly 
grateful to John Norton, Naftali Weinberger and Chungyoung Lee for 
their incisive comments. I should also thank audiences in Lausanne, 
Pasadena, Chicago, Helsinki, Leeds, Barcelona, Warsaw, Cracow, Lublin 
and Santiago de Chile, where I gave presentations on various topics 
related to this book. To Steven French I extend my thanks for encourag-
ing me to submit my work to the series New Directions in Philosophy of 
Science. Last but not least I would like to thank Ewa Bigaj for her linguis-
tic corrections to the manuscript.

The writing of this book was supported by grant No. 2017/25/B/
HS1/00620 from the National Science Centre, Poland.

Warsaw, Poland� Tomasz Bigaj
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1
Introduction

In a nutshell, this book is about whether fundamental objects described 
by quantum mechanics can be distinguished from one another with the 
help of their physical properties. But why should we be even remotely 
interested in answering such a trifle question, let alone devote an entire 
book to its anatomization? And isn’t it clear as day that we can and do 
differentiate quantum particles using various physical attributes? Surely, 
quantum mechanics breaks away from many firm beliefs about reality 
that we hold as self-evident. In classical physics bodies are assumed to be 
impenetrable, and thus each particle possesses its unique trajectory that 
differentiates it from any other particle. Quantum mechanics disposes 
with the idea of a well-defined spatial location, replacing it with a 
“smeared” presence encoded in a spatially extended wave function. 
Consequently, two quantum objects may temporarily share the same 
extended location; they may pass through each other like ghosts, or 
seemingly disappear and then reappear at the end of their interaction. 
But it is still perfectly possible for these quantum ghosts to be separated 
by huge spatial intervals, with virtually no overlap of their respective wave 
functions. Doesn’t this prove that two electrons, photons or Higgs bosons 
can be distinguished even in a world governed by the bizarre quantum laws?

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74870-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-74870-8_1#DOI


2

Well, not so fast. Quantum theory has a special way of characterizing 
states of ensembles consisting of many particles that belong to the same 
type. Given that electrons (photons, neutrinos, etc.) do not differ from 
each other with respect to their uniquely identifying features, such as 
mass or electric charge, the quantum theory of many particles imposes 
the requirement of permutation invariance on the states these particles 
can jointly occupy. That is, the joint state of same-type particles should 
remain unchanged under any arbitrary permutation of these particles 
(this is the essence of what is typically referred to as the symmetrization 
postulate). And, on the face of it, it looks like attributing distinct 
properties to separate particles cannot be reconciled with the permutation 
symmetry of their joint states. Thus enter the Indiscernibility Thesis 
which proclaims that particles of the same type are indistinguishable with 
respect to all their properties. This means specifically that if you take, for 
example, two electrons, then whatever observable characterizing one of 
them you wish to consider (whether it is position, momentum, energy or 
spin), the expectation value of this observable should be the same for 
both electrons. The venerated Leibnizian Principle of the Identity of 
Indiscernibles seems to be universally violated in the quantum world.

Philosophers get all fired up at the prospect of the complete indis-
cernibility of quantum particles. Discernibility seems to be a condition 
sine qua non for individuating objects, selecting and naming them, mak-
ing reference to one and not the other. Indiscernible entities, lacking 
the important feature of individuality, are objects only in the thinnest, 
Quinean sense of the word. A group of indiscernibles forms a whole that 
is often referred to as an aggregate rather than a collection. Some philoso-
phers insist that for groups of indiscernible entities it is only possible to 
count them, but not to order them. Aggregates have a mere cardinality 
but no ordinality. For that reason perhaps the term “electron” should 
properly function as a mass term, referring to the whole electron mass of 
the universe. Alternatively, the individuality of the indiscernible quantum 
particles may be rescued by introducing non-qualitative prinicipia indi-
viduationis, such as haecceities (properties of being a particular object). 
From these remarks we can see that the issue of quantum (in)discernibil-
ity can acquire a strong metaphysical flavor. Now it looks more plausible 

  T. Bigaj
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that the question of whether quantum objects can be differentiated by 
properties could merit thorough philosophical scrutiny.

Characteristically, the majority of working physicists remain rather 
unimpressed by the metaphysical ramifications of the symmetrization 
postulate.1 True, they admit that the postulate is very important from an 
empirical and practical point of view, especially when we are interested in 
describing the behavior of large collections of particles, for the statistical 
predictions regarding indiscernible quantum particles differ significantly 
from analogous predictions concerning classical, discernible particles. 
Generally speaking, quantum particles are divided into two categories—
bosons and fermions—depending on the mathematical transformation 
their joint states undergo under the permutations of objects. Statistical 
behavior of bosons differs from that of classical particles in that the 
probability of finding a group of bosons occupying same states is higher 
than in the classical case (as if bosons “attracted” each other slightly). On 
the other hand, same-type fermions never occupy the same state (they 
“repel” each other strongly).2

However, when dealing with small numbers of same-type fermions or 
bosons, physicists often ignore the symmetrization postulate and write 
their states in a non-permutation-invariant form, as if they characterized 
distinguishable particles. Here is an interesting quote on that issue from 
a well-known textbook on quantum mechanics (Cohen-Tannoudji et al. 
1978, p. 1406):

If application of the symmetrization postulate were always indispensable, it 
would be impossible to study the properties of a system containing a 
restricted number of particles, because it would be necessary to take into 
account all the particles in the universe which are identical to those in the 
system. We shall see […] that this is not the case. In fact, under certain 
special conditions, identical particles behave as if they were actually 

1 Of course, there are some notable exceptions—famously including Erwin Schrödinger and Henry 
Margenau—but these are physicists who are already influenced by a philosophical way of thinking. 
See, for example, Schrödinger (1952); Margenau (1944, 1950).
2 A careful reader may notice a strange inconsistency between this general characteristic of fermi-
onic behavior (whose more precise expression bears the name of Pauli’s exclusion principle) and the 
Indiscernibility Thesis mentioned earlier. Much of the subsequent discussions in this book will try 
to explain away this inconsistency.
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different, and it is not necessary to take the symmetrization postulate into 
account in order to obtain correct physical predictions.

The quoted fragment is baffling. How can indiscernible objects 
“behave” as if they were discernible, even under “certain special 
conditions”? If the symmetrization postulate is a universal, exceptionless 
law of nature, and if its validity implies that whatever measurable property 
is possessed by one component of a system of “identical” particles, it is 
also possessed by any other component, then it becomes utterly mysterious 
how such particles could ever be treated “as if they were actually different”.

It is difficult to make sense of a situation in which entirely indistin-
guishable objects behave as if they were distinguishable, unless we make 
some crucial changes in the way we identify these objects. And it turns 
out that this may be the key to understanding the above-mentioned 
quote: perhaps what justifies the suspension of the symmetrization 
postulate is an alternative method of “carving up” the totality of the 
composite system into smaller components, so that these new components 
not only behave “as if ” they were distinguishable, but really are. Following 
this lead, in this book I will argue that there are actually two rival methods 
of individuating quantum particles that compose larger systems. For lack 
of a better term, I will refer to one of these methods as “orthodoxy”, and 
the other as “heterodoxy” (I shamelessly borrow this terminology from 
Adam Caulton). The “orthodox” approach to individuality treats certain 
parts of the mathematical formalism, namely indices that are attached to 
the factors in the tensor products of Hilbert spaces, as referring to the 
components of the composite system under consideration. For the 
unorthodox approach, on the other hand, the task of individuating the 
components of a composite system is performed not by unphysical labels 
used to identify identical copies of a single-particle Hilbert space, but 
rather by physically meaningful symmetric operators of a certain kind. 
When this new individuating procedure is executed, it turns out that 
fermions occupying antisymmetric states are always discernible from each 
other by some properties, while bosons are not guaranteed to be 
discernible in that way. However, it is definitely possible to put two (or 
more) bosons in a state in which they will differ from each other with 
respect to their possessed properties.

  T. Bigaj
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This book is devoted to a systematic analysis (both formal and philo-
sophical) and comparison of the two competing methods of individuat-
ing particles in quantum mechanics. In Chap. 2 I will lay out the formal 
and conceptual fundamentals of the orthodox approach to this problem, 
together with the ensuing Indiscernibility Thesis regarding quantum par-
ticles of the same type. Chapter 3 delves deeper into the problem of the 
justification of the symmetrization postulate. It also contains a brief for-
mal description of the types of symmetry other than bosonic and fermi-
onic, known collectively as parastatistics. Chapter 4 makes a small detour 
in order to discuss the logic and metaphysics of distinguishability. We 
identify and formalize three types of discernibility using the standard 
model-theoretical framework, and we connect them with the issue of 
symmetry. This chapter also includes a critical analysis of the weak dis-
cernibility program, which hopes to provide some semblance of quantum 
objecthood in the light of the apparent breakage of absolute discernibility. 
In Chap. 5 we will make first steps towards a non-standard conception 
of how to individuate quantum particles. The starting point will be an 
analysis of the physical meaning of certain symmetric projection opera-
tors acting in an appropriate tensor-product Hilbert space. Arguments 
will be presented to the effect that particular symmetric combinations of 
projectors should be interpreted as representing situations in which the 
components of a composite quantum system are discernible by their mea-
surable properties. As it turns out, there are some serious objections to 
this interpretation, involving the concept of quantum measurement. The 
way to repel these objections will be to properly introduce spatial degrees 
of freedom into our general description of measurement processes.

Chapter 6, which is probably the most technical of all chapters in the 
book, contains proofs of several facts regarding the absolute discernibility 
of fermions and bosons under the unorthodox approach, and regarding a 
new concept of entanglement applicable to the case of same-type particles. 
One section of this chapter also addresses the more general question of 
whether it is logically possible to formulate symmetric sentences stating 
facts of absolute discernibility. The main goal of Chap. 7 is to present 
various pros and cons with respect to the two approaches to quantum 
individuation developed earlier in the book. In particular, we will discuss 
a serious problem affecting the unorthodox approach which is caused by 
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the non-uniqueness (ambiguity) of individuation by symmetric operators. 
Chapter 8 adds the issue of diachronic and counterfactual identity of 
quantum objects to the discussion. In the closing section of this chapter, 
we will stress the non-classical character of the metaphysics emerging 
from the unorthodox approach to individuation. Even though the 
heterodoxy restores the validity of the Principle of the Identity of 
Indiscernibles in the majority of cases involving same-type particles, this 
does not lead to the rehabilitation of the classical picture of the quantum 
world. Particles of the same type may be individuated synchronically, but 
they are not full-blown classical individuals, since they typically fail to 
keep their identities over time and across possible scenarios, and their 
synchronic individualities suffer from unavoidable ambiguity.

I should mention here some presuppositions and limitations of this 
book. First off, for the most part I restrict myself to standard, non-
relativistic quantum mechanics. I make some inroads into quantum field 
theory in Chap. 7, where I briefly present the Fock space formalism 
which enables us to talk about variable numbers of particles. However, I 
do not venture to discuss the ontological problem of identity and 
individuality in full-blown interacting QFT. One obvious reason for that 
reservation is that in spite of the tremendous effort of numerous 
philosophical commentators, the jury is still out whether QFT should be 
based on the fundamental ontology of particles or fields.3 Another 
important limitation of the book is that it tries to stay clear of the 
notorious measurement problem and the ensuing question of the proper 
interpretation of quantum mechanics. The idea is to present the problem 
of identity and individuality within the confines of so-called textbook 
quantum mechanics, which is hopefully neutral with respect to the fun-
damental differences between various interpretations of QM.4 Where ref-
erence to measurements becomes unavoidable, such as at the end of 
Chap. 5, I try to use a “unitary” account of measurement interactions as 
an alternative to the standard but philosophically controversial “collapse” 
account. Finally, I should warn the readers that they won’t find a complete 

3 For an overview of this problem, see Kuhlmann (2020).
4 Of course I am perfectly aware that adopting some specific interpretive variants of QM, such as 
Bohm’s theory, may change radically our perspective on the issue of the discernibility of quantum 
objects. See, for example, Brown et al. (1999).
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metaphysical conception of quantum objects in the book. While I con-
sider myself a philosopher/metaphysician, the aim of this book is primar-
ily to gather together some rather elementary facts, provable in the 
quantum-mechanical formalism, which appear salient with respect to the 
problem of identity, and raise the question of their proper physical and 
philosophical interpretation. Thus it is clearly a preparatory work. I do 
hope that someone may find this work useful while developing some 
more comprehensive proposals of quantum ontology.
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2
Indiscernibility of Quantum Particles: 

A Road to Orthodoxy

It is impossible to constructively engage in a metaphysical discussion 
inspired by quantum mechanics without possessing rudimentary knowl-
edge of the mathematical formalism of this theory. The first chapter of 
this book is meant primarily as a brief overview of the basics of the quan-
tum formalism necessary to understand the debates on the problem of 
identity and individuality (further definitions and proofs are provided in 
the Appendix, albeit they are limited to a bare minimum). Obviously, 
this hasty presentation cannot be treated as a substitute for a thorough, 
step-by-step introduction to quantum theory, for which I can only refer 
the reader to one of many excellent textbooks on the market.1 In what 
follows we will merely touch upon the standard mathematical representa-
tion of states and properties of composite systems, that is, physical sys-
tems consisting of many smaller components, with its primary tool of the 

1 Cohen-Tannoudji et  al. (1978), Peres (2003) and Sakurai and Napolitano (2011) are recom-
mended comprehensive physical textbooks on quantum mechanics. An elegant introduction to the 
quantum-mechanical formalism with an eye on the foundational issues is (Griffiths 2002), while 
the extensive compendium (Greenberger et  al. 2009) offers an encyclopedic collection of short 
articles covering all fundamental concepts and results of quantum theory. My personal favorite 
among mathematically rigorous yet accessible introductions to philosophical issues in quantum 
mechanics is Hughes (1989).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74870-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-74870-8_2#DOI
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tensor product of vector spaces. We will see that it is not at all trivial to 
extend the single-system formalism of states and measurable properties to 
represent states and properties of composite systems. The key question 
here is how to express a given property of a particular quantum object in 
a framework which treats this object as part of a broader system consist-
ing of many entities. The standard quantum-mechanical way to do this 
turns out to contain certain loopholes which will later prove to be crucial 
in the controversy regarding the proper method of individuating quan-
tum particles of the same type.

Using the formal notion of a permutation operator, in the next step we 
will articulate the Indistinguishability Postulate which imposes an impor-
tant restriction on joint states and properties of so-called indistinguish-
able particles (particles belonging to the same type). From this assumption 
a metaphysical consequence in the form of the Indiscernibility Thesis is 
usually derived. We will analyze typical arguments in favor of this claim, 
noting the indispensable role of the tacit assumption referred to as 
Factorism in these derivations. Finally, we will briefly discuss the meta-
physical role of discernibility by properties in clarifying the notion of 
individuality, as well as its relation to numerical diversity.

2.1	 �Composite Systems and Their States

Let us start with a sketch of how the standard quantum-mechanical for-
malism describes states of composite systems, that is, systems consisting 
of smaller components, each of which can possess its own states. The 
mathematical representations of the states of any quantum system form a 
structure known as a vector space. More specifically, vector spaces used in 
quantum mechanics are spaces over the field of complex numbers, which 
bear the name of Hilbert spaces (see Appendix for a complete definition). 
Suppose that we have two quantum systems (e.g. two particles—an elec-
tron and a proton), whose states are represented in their respective indi-
vidual Hilbert spaces ℋ1 and ℋ2. In order to describe states of the 
composite system consisting of the two particles (in our example this 
complex system can be a hydrogen atom, which is composed of one 
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electron and one proton), we have to build a new Hilbert space. The 
standard mathematical recipe for doing this employs the concept of a ten-
sor product of Hilbert spaces. The tensor product of spaces ℋ1 and ℋ2, 
symbolized as ℋ1 ⊗ ℋ2, is a vector space consisting of all pairs of vectors 
from ℋ1 and ℋ2 and their linear combinations. More precisely, the defi-
nition of ℋ1 ⊗ ℋ2 can be given as follows. Let the set of vectors | ei

1〉  be 
an orthonormal basis for ℋ1, and { }� ej

2�  be an orthonormal basis for ℋ2 
(the definition of a basis is given in the Appendix). The tensor product 
ℋ1 ⊗ ℋ2 is a vector space spanned by the combinations � �e ei j

1 2�� �,  that 
is, the space of all linear combinations of the form.

	 ij
ij i jc e e� �� �� �1 2 ,

	

(2.1)

where cij are complex numbers.2
The key difference between classical and quantum composite systems 

lies in the fact that the state spaces of quantum compositions are in a 
sense much larger than in the classical case. In addition to the factorizable 
combinations of states of the form |φ〉 ⊗ |ψ〉, where |φ〉 ∈ ℋ1, |ψ〉 ∈ ℋ2, 
space ℋ1 ⊗ ℋ2 includes vectors that cannot be presented as a product of 
two vectors. These non-factorizable combinations are also known as 
entangled. An example of an entangled state can be the combination 
� � � �e e e e1

1
1
2

2
1

2
2�� �� �� � , where � ei

1� , � ej
2�  are, as before, some basis vec-

tors of spaces ℋ1 and ℋ2. It is an elementary fact from linear algebra that 
the above vector cannot be represented in the factorized form |φ〉 ⊗ |ψ〉.3 
Thus if the composite system occupies such a non-factorizable, entangled 
state, its components cannot be assigned any individual states in the form 
of vectors in their respective Hilbert spaces (states given in the form of 
vectors are typically referred to as pure). This does not imply that the 

2 To avoid clutter, sometimes the symbol ⊗ representing the operation of tensor product is omitted. 
That is, instead of writing |φ〉 ⊗ |ψ〉 we can simply write |φ〉|ψ〉.
3 Given that each vector |φ〉, |ψ〉 has a unique decomposition in respective bases { }� ei

1�  and 
{| }ei

2 〉  (see Appendix for details), it follows that if these decompositions contain vectors
 
� e1

1� , 
� e2

1 �  and � e1
2� , � e2

2 � , the product |φ〉 ⊗ |ψ〉 has to contain “cross terms” � �e e1
1

2
2�� �  and 

� �e e2
1

1
2�� �  in its decomposition and hence cannot be written as � � � �e e e e1

1
1
2

2
1

2
2�� �� �� �.
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components of the system cannot be characterized by any quantum-
mechanical states whatsoever, but in the case of entanglement, these 
states will belong to a different category of mixed states, represented not 
by vectors but by density operators (see Appendix for further explana-
tions). Regardless of these technical details, it is important to know that 
entangled states cannot be fully reduced to the “conjunction” of the 
(mixed) states of the individual components. That is, while knowing that 
one particle is in a pure state |φ〉 while the other particle occupies pure 
state |ψ〉 is sufficient to deduce that the joint state will be the product |φ〉 
⊗ |ψ〉, in the case of entangled states, determining the (mixed) states of 
the components does not uniquely determine the state of the entire system.

How do the Hilbert spaces ℋ1 and ℋ2 relate to each other? It is an 
elementary mathematical fact that all Hilbert spaces over complex fields 
of the same dimensionality are isomorphic. The dimensionality of a state 
space in quantum mechanics is determined by the number of distinct 
values that can be possessed by a quantity (or quantities) taken to define 
states of systems. Thus spaces of states given in terms of position or 
momentum will be typically infinitely dimensional. On the other hand, 
spaces of the components of angular momentum (e.g. spin), which are 
discrete quantities, may have a finite number of dimensions. If we limit 
ourselves to either position/momentum spaces (spaces of wave func-
tions), or to the cases of particles with the same total spin (e.g. spin 1

2
),  

we may assume that ℋ1 and ℋ2 have the same number of dimensions 
and therefore are isomorphic. Consequently, we may stipulate that both 
ℋ1 and ℋ2 include “the same” vectors, and thus it is possible to drop the 
superscripts in the basis vectors written above. Henceforth, we will 
assume that ℋ1 and ℋ2 are two copies of the same Hilbert space spanned 
by some orthonormal vectors {|ei〉}. The only difference between them is 
that they are labeled with different numbers 1 and 2 (this labeling is often 
omitted for the sake of brevity, in which case the labels are assumed to be 
determined by the place a given vector occupies in the tensor product). 
However, this does not mean that the mere formal difference in labels 
does not reflect a deeper physical distinction. For instance, if we consider 
a system of two particles belonging to different kinds (such as a proton 
and an electron), the labels used to differentiate identical copies of one 
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Hilbert space are underlain by different state-independent properties 
defining appropriate kinds (e.g. rest mass).

Once we equate basis vectors spanning spaces ℋ1 and ℋ2, it is possi-
ble to formally introduce the operation of permutation. The permutation 
P12 is an operation that acts on the basis vectors of ℋ1 ⊗ ℋ2 in the fol-
lowing way:

	
P e e e ei j j i12 ( ) .� � � ��� � � �� �

	
(2.2)

By linear extension, this operation applies to any vector in ℋ1 ⊗ ℋ2. 
Clearly, P12 applied to any product state |φ〉 ⊗ |ψ〉 yields its “reverse” |ψ〉 
⊗ |φ〉. The most natural physical interpretation of the permutation oper-
ation is that it results in the situation in which particles swap their states, 
that is, particle 1 now occupies the state initially occupied by particle 2, 
and vice versa. However, we will have to look carefully at this interpreta-
tion later when we discuss the case of so-called indistinguishable particles 
(see Sect. 3.1 in Chap. 3).

2.2	 �Properties of Composite Systems

Measurable properties of a quantum system are represented by a particu-
lar type of linear operators, known as Hermitian (or self-adjoint), acting 
in the state space for this system. If the system is in a pure state |φ〉, the 
expectation value for the observable corresponding to a Hermitian opera-
tor A is given by the inner product 〈φ|A|φ〉.4 Suppose now that we know 
the state |ψ(1,2)〉 of an entire composite system consisting of two subsys-
tems. State |ψ(1,2)〉 may or may not be factorizable into the product of 
the states of the components, so we can’t assume that the pure states of 
these components taken separately are well defined. How, in that case, 
can we calculate the expectation value for an observable limited to one 
particle? The answer is given in terms of the tensor products of linear 
operators. Generally, if A is a linear operator in space ℋ1, and B is a linear 

4 See a rationale behind this definition in Hughes (1989, pp. 70–71).
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operator in ℋ2, we can define a new operator A ⊗ B acting in the tensor 
product ℋ1 ⊗ ℋ2 as follows:

	
A B e e A e B ei j i j� �� � � � � �( ) .� � � �

	
(2.3)

Any linear combination of the products of the form Ak ⊗ Bl is also a lin-
ear operator acting in ℋ1 ⊗ ℋ2.

Consider now the product A ⊗ I, where I is the identity operator, that 
is, such that I |φ〉 = |φ〉 for all vectors |φ〉. We can calculate its expecta-
tion value in the state |ei〉 ⊗ |ej〉 as follows5:

� � � � � �� � � � � � � �e e A I e e e A e e e e A e e ei j i j i i j j i i j j, , ,� � � � � � � �since 11.
	

(2.4)

Thus the expectation value of A ⊗ I in |ei〉 ⊗ |ej〉 turns out to be identical 
to the expectation value of A in state |ei〉. This gives us a reason to suspect 
that A ⊗ I in the product space ℋ1 ⊗ ℋ2 represents the very same prop-
erty as A in ℋ1. As it is sometimes put, A ⊗ I represents an observable of 
the composite system which corresponds to the measurement procedure 
consisting of measuring A on the first component of the system and leav-
ing the second component alone (this “leaving alone” is represented by 
the identity operator which does nothing to any state).

Another possible argument for the identification of the physical inter-
pretations of operators A ∈ ℋ1 and A ⊗ I ∈ ℋ1 ⊗ ℋ2 uses the standard 
notions of eigenstates and eigenvalues. The physical meaning of a given 
Hermitian operator is typically expressed by reference to mathematical 
eigenequations:

	
A aa a| | ,� �� � �

	
(2.5)

where a is a number. Number a, known as an eigenvalue of A (which for 
Hermitian operators is always a real number—see Appendix), represents 
a particular value of observable A, while |λa〉 is a corresponding state, 
called an eigenstate. According to the interpretational rule called the 

5 The inner product 〈φ⊗ψ|λ⊗χ〉 in the tensor product space ℋ1 ⊗ ℋ2 is defined as 〈φ|λ〉〈ψ|χ〉 
(see Appendix).
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eigenstate-eigenvalue link (the e/e link),6 a system objectively possesses a 
given value a of an observable A, iff the system is in an eigenstate |λa〉 
corresponding to this value. Now, it can be easily shown that if a vector 
|λa〉 ∈ ℋ1 is an eigenstate for A with a value a, any vector of the form |λa〉 
⊗ |φ〉, where |φ〉 ∈ ℋ2, is an eigenvector for A ⊗ I with the same value 
a. The implication holds in the opposite direction too, which proves the 
following equivalence:

(2.6)	 Particle 1 possesses an objective value a of the observable 
represented by operator A iff the system of particles 1 and 2 
possesses an objective value a of the observable represented 
by operator A ⊗ I.

However, we should not forget the fact that operator A ⊗ I, since it 
acts in a broader Hilbert space, is applicable in some cases which are not 
immediately covered by the one-particle operator A. That is, we can cal-
culate the expectation value for A ⊗ I in entangled two-particle states, for 
which no pure state of individual particles exists, and thus the standard 
formula 〈φ|A|φ〉 for the expectation value of A cannot be applied. This 
fact may be seen as undermining the perfect physical equivalence between 
mathematical operators A ⊗ I and A. True, it may be pointed out that the 
full equivalence is restored by introducing the concept of a mixed state 
represented by density operators mentioned earlier, together with a new 
recipe of how to calculate the expectation values of operators when sys-
tems are assigned mixed states (the relevant formula is Tr(Aρ), where Tr is 
the trace operation, and ρ – a density matrix, see Appendix). However, in 
response we may observe that the assignment of a reduced mixed state ρ 
to an individual component of an entangled system is motivated precisely 
by the desire to keep the identity of the expectation values of A ⊗ I and 
A (the reduced state of a component is defined as the state which attri-
butes to A the same expectation value as the expectation value assigned by 
the total state to A ⊗ I—see Hughes 1989, pp. 149–150). Hence we can 

6 The term “eigenstate-eigenvalue link” is admittedly misleading, as observed, for example, in 
Muller and Leegwater (2020, ft. 18), since it suggests a purely mathematical relation rather than an 
interpretative rule that may or may not be accepted. I noticed this terminological problem in my 
Bigaj (2006, p. 375 ft. 1). Nevertheless, I will continue using this nomenclature which has become 
standard in the literature.
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hardly use the identity between the expectation value of A ⊗ I calculated 
for the state of the entire system and the expectation value of A for the 
reduced mixed state, as an argument that A ⊗ I and A are physically 
equivalent in all scenarios. The only argument we can rely on is an “induc-
tive” one: since the expectation values of A ⊗ I and A coincide in the 
special cases when the components possess their own pure states (alterna-
tively, since A ⊗ I possesses a given definite value iff A possesses the very 
same value), we stipulate that the expectation values should also coincide 
in the remaining cases, and therefore we assume that operators A ⊗ I and 
A represent the same physical quantity. We will see later in the book 
(Chap. 5) that analogous inductive arguments may be questioned in 
some other contexts.

In the previous section we have considered an important type of per-
mutation operation, which was defined as a map on the total Hilbert 
space, transforming vectors into vectors. It turns out that permutations 
can also be applied to operators acting on Hilbert spaces rather than to 
vectors. The general method of how to turn a transformation on a given 
space ℋ into the corresponding transformation on the set of operators 
on ℋ can be presented as follows. Let P be any linear transformation on 
ℋ which has an inverse (thus P must be one-to-one). We will seek a 
transformation corresponding to P that sends any operator A into its 
counterpart A′ while satisfying the following requirement:

	 For any vectors and iff .| | , | | | |� � � � � �� � � � � � � ��A AP P 	 (2.7)

Expressing this condition informally: the transformed operator A′ acts in 
the original space ℋ the same way as the original operator A acts in the 
transformed space P[ℋ]. From this we can easily derive the form of the 
operator A′ in terms of A and P. By applying the inverse operation P−1 to 
both sides of the eq. AP|φ〉 = P|ψ〉, we get P−1AP|φ〉 = |ψ〉, from which it 
follows (given that |φ〉 and |ψ〉 are selected completely arbitrarily) that A′ 
= P−1AP (see Fig. 2.1).

We can now return to the case of permutation transformation. What 
is the result of applying permutation P12 to the operator A ⊗ I? In order 
to calculate the outcome of the transformation P12

−1(A ⊗ I  ) P12, we have 
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| ñ
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P|u
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P

Fig. 2.1  The action of transformation P on operator A yields operator A′. Note 
that the action of A′ on vector |u〉 is equivalent to the composition of transforma-
tions P, A and P-1. Thus A′ = P-1AP (operators are always put in reverse order—the 
last in sequence is the first to be applied)

to apply this transformed operator to an arbitrary basis vector |ei〉 ⊗ |ej〉, 
which yields the following:

	

P A I P e e P A I e e

P A e

i j j i

j

12
1

12 12
1

12
1

� �

�

� �� � � � �� �

� �

( ) ( ) ( ) ( )

(

� � � �

� �� � � � � �� � �e e A ei i j) .
	

(2.8)

Thus, the transformed operator P12
−1(A ⊗ I) P12 acts in the same way on 

the basis vectors as I ⊗ A, and hence these operators are identical. It 
should not come as a surprise that applying permutation P12 to the opera-
tor A ⊗ I yields the reversed-order variant I ⊗ A which, as we already 
know, represents the property A possessed by the second component of 
the composite system.

Of particular importance are operators acting on ℋ1 ⊗ ℋ2 whose 
permutation doesn’t change anything, that is, such that P12

−1ΩP12 = 
Ω. Operators invariant under permutations in this sense are called “sym-
metric”. A simple example of such an operator is the product A ⊗ A, 
whose physical interpretation is obvious: it represents the same observ-
able assigned to both components of the system. A slightly more complex 
example of a symmetric operator is provided by the following sum of 
appropriate operators: A ⊗ B + B ⊗ A. Here the issue of a proper physical 
interpretation is a bit trickier than in the previous example—we will 
return to it later in Chap. 5. For now, we will only mention that it would 
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be inaccurate to interpret the operator A ⊗ B + B ⊗ A as a representation 
of the disjunctive property “either A for particle 1 and B for particle 2 or 
B for particle 1 and A for particle 2”.

2.3	 �Projection Operators

An important category of Hermitian operators are so-called orthogonal 
projection operators (or projectors, for short). While projectors can be inter-
preted as observables analogous to spin, position, momentum and so on, 
that is, as quantities capable of receiving different values from the admis-
sible range, it is more typical to use them as representations of specific 
properties of quantum systems that may or may not be possessed in a 
given state. Formally, projection operators stand in one-to-one corre-
spondence to subspaces of a given Hilbert space ℋ (including ℋ itself 
and the zero-subspace containing only the 0-vector). That is, to every 
subspace S of ℋ, there corresponds a unique projector ES, and each pro-
jector defines a subspace of ℋ onto which it projects. Speaking loosely, 
the projector onto a subspace S acts on an arbitrary vector |φ〉 in such a 
way that it decomposes |φ〉 into the component |φ〉S lying in S and the 
component |φ〉S′ perpendicular (orthogonal) to it, and then it selects |φ〉S 
as the outcome: ES|φ〉 = |φ〉S (see Fig. 2.2). From this loose characteriza-
tion, it follows immediately that ES restricted to S is the identity operator 
and that applying ES twice to any vector is equivalent to applying it only 
once (this property is called idempotence: ES

2 = ES).

|v

|v S

|v S ES

S

ñ ¢
ñ

ñ

Fig. 2.2  The orthogonal projection onto subspace S
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The physical interpretation of a projector ES is rather straightforward: 
ES is an observable with two possible values 1 and 0 that “measures” 
whether the state of a given system lies within the corresponding sub-
space S.7 If the state vector |φ〉 belongs to subspace S, the observable 
represented by ES assumes the eigenvalue 1 (since in that case ES|φ〉 = 
|φ〉). On the other hand, if the state vector is orthogonal to S, the value 
assumed by ES is 0 (projecting an orthogonal vector onto S gives the zero 
vector). Any other vector (neither in S nor perpendicular to it) is a non-
eigenvector of ES, and hence there is some probability that the value will 
be 1 and some probability that it will be 0. Projectors are quantum equiv-
alents of the characteristic functions of certain sets of values and therefore 
can be interpreted as representations of the property of possessing one of 
the set of values associated with a given subspace. A special case of projec-
tion operators is one-dimensional projectors, whose corresponding sub-
space is a ray (one-dimensional subspace). If the ray signifies a state with 
a particular value of some measurable property (e.g. spin-up in a given 
spatial direction), the corresponding projector onto this ray can be 
assumed to represent this specific property (in the sense that the eigen-
value 1 of this projector corresponds to the system’s possession of this 
property, for instance, spin-up). A standard way to write the projector 
onto a ray containing a normalized vector |φ〉 is in the form of the so-
called dyad |φ〉〈φ| (see Appendix for an explanation of this notation).

Projection operators acting in separate one-particle Hilbert spaces can 
be used to create new projectors acting in the tensor products of these 
spaces. Exactly as in the general case of Hermitian operators, we can con-
sider projectors of the kind E ⊗ I and I ⊗ E, where E acts, respectively, 
in ℋ1 or ℋ2. If E projects onto the subspace S of, let’s say, ℋ1, the sub-
space corresponding to E ⊗ I will be S ⊗ ℋ2. However, not all combina-
tions of tensor products of one-particle projectors are themselves 
projectors. Consider, for instance, the following symmetric operator:  
E ⊗ F + F ⊗ E, where E and F are any projectors in ℋ1 (ℋ2). It turns out 
that this new operator will generally not be idempotent and therefore will 
not belong to the category of projectors in the tensor product ℋ1 ⊗ ℋ2. 

7 Alternatively, projectors are interpreted as representing “yes” or “no” questions regarding whether 
the state of the system lies in a particular subspace.
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Only when E and F are orthogonal to each other (i.e. they project onto 
orthogonal subspaces) is the above combination idempotent. This can be 
verified by direct calculation:

	

E F F E E F F E E F F E

EF FE FE EF

� � �� � � � �� � � � � �
� � � �

2 2 2 2

. 	
(2.9)

Thanks to the orthogonality assumption EF = FE = 0, and using the 
idempotence conditions E2 = E and F2 = F, we arrive at the required out-
come E ⊗ F + F ⊗ E. But if E and F are not orthogonal, this result is not 
guaranteed.

2.4	 �Systems of “Indistinguishable” Particles

Virtually all current discussions regarding the notions of the identity, 
individuality and discernibility of quantum particles center around the 
concept of “indistinguishable” particles. As is well known, fundamental 
particles of modern physics are categorized into kinds depending on their 
basic physical properties. The classification of particles used in particle 
physics is rather complex and the details need not concern us (see, e.g. 
Griffiths 2008 for a complete categorization). Suffice it to say that current 
physics distinguishes three broad types of truly elementary particles (i.e. 
particles with no proper components): leptons, quarks and mediators. 
Among leptons we classify electrons, muons and tau particles (plus their 
antiparticles) with three corresponding types of neutrinos. There are six 
types of quarks distinguishable by their flavors (up, down, strange, charm, 
bottom, top) and six corresponding antiquarks. Mediators (or mediating 
particles) carry forces: electromagnetic (photons), strong (gluons) and 
weak (particles W± and Z0). In addition to genuinely elementary parti-
cles, there is a garden variety of particles composed of smaller elements 
(quarks), of which the best known and certainly most ubiquitous are 
protons and neutrons.

When physicists talk of indistinguishable, or identical particles, they 
usually mean particles belonging to the narrowest categories described 
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above: electrons, muons, photons, strange quarks and so on. Their indis-
tinguishability, or identity, does not involve all their properties, but rather 
a special kind of properties, the so-called state-independent ones. These are 
properties that do not and cannot change over time. For instance, every 
electron, no matter what state it occupies, is characterized by the same 
rest mass (0.511 MeV), the same electric charge (−1.6 × 10−19 C) and the 
same spin (½ℏ). No electron can lose these properties without ceasing to 
be an electron.8 Thus identical, or indistinguishable, particles are those 
that share all of their state-independent properties. This of course does 
not exclude the possibility that, for instance, two electrons may differ 
with respect to their state-dependent features: position, momentum, 
energy, the spin component in a given direction and so on. For that rea-
son, I will try to avoid using the potentially confusing terms “indistin-
guishable particles” and “identical particles” (if, for purely stylistic 
reasons, I occasionally revert to this terminology, I’ll use scare quotes to 
indicate the metaphorical character of the terms), replacing them with 
the slightly more cumbersome phrase “particles of the same type”, where 
type is meant as described above.9

Suppose that we are considering a system consisting of particles of the 
same type (e.g. a group of electrons). How does the fact that these parti-
cles share their state-independent properties bear on the way we should 
describe their joint state? The standard way of approaching this problem 

8 However, we have to admit that the issue of whether properties such as rest mass are always state 
independent is a bit tricky. For instance, in the well-known phenomenon of neutrino oscillations, 
the state of a neutrino is a superposition of states with different rest masses, corresponding to dif-
ferent types of neutrinos (electron neutrino and muon neutrino). Hence the term “mass eigen-
states” is introduced, which clearly suggests that mass becomes part of the state description that can 
change over time (for details, see Griffiths 2008, pp. 390–392). In response to that one may observe 
that mass is treated as a state-dependent property if we describe the process in terms of an “unspe-
cific” neutrino that may manifest itself as an electron or muon type (in other words what we have 
here is a superposition of two types of particles). Once we limit ourselves to the states of a specific 
type of neutrino, mass can no longer vary over time.
9 The fact that the terms “indistinguishability” and “identity” used in the above-mentioned contexts 
are most certainly misnomers has been noted by many authors (cf. van Fraassen 1991, p. 376; 
Butterfield 1993, p. 453). Another potential source of terminological confusion is the practice of 
referring to state-independent properties as “intrinsic”, which is common in physical literature. 
This unfortunately interferes with the philosophical sense of the term, which roughly means “non-
relational” (see Chap. 4, Sect. 4.1, for a more precise characterization of intrinsic properties). For 
the rest of the book, I will use the term “intrinsic” in the philosophical sense only.

2  Indiscernibility of Quantum Particles: A Road to Orthodoxy 



22

is through the concept of permutation invariance. Limiting ourselves to 
the simplest case of two particles of the same type, we may postulate that 
the states which differ only by the permutation of these particles should 
not be empirically distinguishable. Switching one electron for another 
should not create any observable, or measurable, difference in the total 
state of the system, since all electrons are “alike” (i.e. all electrons possess 
the same set of state-independent properties). This stands in contrast to 
the case of particles belonging to different types, such as an electron and 
a proton. If the electron initially occupies the state “spin-up” in a given 
direction, and the proton occupies the state “spin-down”, then swapping 
them creates a new physical situation that may be experimentally distin-
guished from the previous one (we may, for instance, use a mass spec-
trometer to first select the electron, and then measure its spin, receiving 
different outcomes in two different scenarios before and after 
permutation).

The empirical indistinguishability of permuted states can be expressed 
in the form of the following principle, known as the Indistinguishability 
Postulate (IP)10:

(IP)	 Let |φ〉 be any available state of a system of N particles of the 
same type, and P – a permutation of the set of these particles. 
Then 〈Pφ|Ω|Pφ〉 = 〈φ|Ω|φ〉 for any physically meaningful 
Hermitian operator Ω.

Condition (IP) stipulates that the expectation values for physically mean-
ingful operators be the same for all permuted states. This ensures that the 
permuted states will be indistinguishable by means of experimental pro-
cedures. There are two general ways to satisfy the equation in (IP). We 
can interpret it as a condition imposed on the states available to systems 
of particles of the same type, or as a condition on the set of admissible 

10 This terminology is used, for example, in Saunders (2009), while Bas van Fraassen calls IP 
“Permutation Invariance” (van Fraassen 1991, p.  382). On the other hand, Nick Huggett and 
Thomas Imbo in Huggett and Imbo (2009) use the term “Indistinguishability Postulate” slightly 
ambiguously—once as equivalent to our IP and once as the postulate limiting the set of observables 
to the symmetric ones. It may be true that IP, as defined above, is equivalent to the assumption of 
the symmetry of observables, but still conceptually these are two distinct postulates.
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observables (cf. Messiah and Greenberg 1964). The second method of 
making (IP) true follows from a simple transformation of the formal con-
dition of the permutation-invariance of expectation values (the transfor-
mation is based on the fact that permutation operators are unitary—see 
Appendix for an explanation):

	 � � � � � � � ��P P P P� � � � � � � � �� � � � � �1 . 	 (2.10)

The last two terms are guaranteed to be identical for all states |φ〉, if only 
the identity P−1ΩP = Ω holds. We immediately recognize this equality as 
the condition that observables be symmetric. However, it is much more 
common to interpret IP as applying not to observables (at least not 
directly) but to states.

When N = 2, there are two simple ways to make IP true by limiting the 
set of available states of two same-type particles. One way is to assume 
that permutation P12 does not change the state of the system, that is, for 
all |φ〉, P12|φ〉 = |φ〉. An alternative option is to change the sign of the 
permuted state: P12|φ〉 = − |φ〉. In both cases the expectation value 
〈P12φ|Ω|P12φ〉 is guaranteed to be identical to 〈φ|Ω|φ〉 for all operators 
Ω. Vectors that remain the same under the permutation of two particles 
are called symmetric, while vectors that change their sign are referred to as 
antisymmetric. The definitions of symmetric and antisymmetric states can 
be easily extended for the cases when N > 2. Symmetric states of N par-
ticles are such that any permutation of the set of particles leaves them 
unchanged. On the other hand, the case of antisymmetric states is a bit 
more complicated. We start with the assumption that an antisymmetric 
state will change its sign under the permutation of any two particles (the 
permutation swapping two objects is also known as a transposition). 
However, when we apply an even number of transpositions to a particu-
lar antisymmetric state, the result will be the same state. Thus, for anti-
symmetric states, odd permutations (i.e. permutations decomposable 
into an odd number of transpositions) change the sign of the state, while 
even permutations (consisting of an even number of transpositions) do 
not alter the initial state.
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2.5	 �The Symmetrization Postulate

Now we are ready to formulate the thesis which has become the corner-
stone of the modern debates on the metaphysics of quantum objects: the 
Symmetrization Postulate (SP).

(SP)	 For any system of particles of the same type, its states are 
either exclusively symmetric, or exclusively antisymmetric.

The Symmetrization Postulate effectively divides up all particles into two 
categories: those that form groups jointly described by symmetric states 
and those whose systems are described by antisymmetric states (and for 
that reason it is referred to as Dichotomy by van Fraassen, 1991, p. 383). 
Famously, particles of the first category are known as bosons, while the 
“antisymmetric” particles are referred to as fermions. While other types of 
symmetry are mathematically possible (and we will discuss them briefly 
in Chap. 3), so far there is no compelling evidence that particles other 
than bosons or fermions exist in nature.

From a formal point of view, SP amounts to the restriction of the ini-
tial N-fold tensor product of one-particle Hilbert spaces to appropriate 
subspaces (sections) containing only symmetric, or only antisymmetric, 
vectors. In the case when N = 2, the entire space ℋ1 ⊗ ℋ2 can be decom-
posed into two disjoint subspaces: the subspace 𝒜(ℋ1 ⊗ ℋ2) of anti-
symmetric states and the subspace 𝒮(ℋ1 ⊗ ℋ2) of symmetric states. 
Subspace 𝒜(ℋ1 ⊗ ℋ2) is spanned by antisymmetric vectors of the form 
1

2
( )� � � �e e e ei j j i� �� � � , where i ≠ j, whereas the basis for the symmetric 

subspace 𝒮(ℋ1 ⊗ ℋ2) can be given in the form of vectors 
1

2
( )� � � �e e e ei j j i� �� � �  plus symmetric products |ei⟩|ei⟩. Note that all 

these vectors are orthogonal to each other due to the orthogonality rela-
tions ⟨ei| ej⟩ = δij, where δij – Kronecker’s delta.11

11 It can be easily verified that if the dimensionality of the one-particle Hilbert space ℋ equals n 
(and thus the tensor product ℋ ⊗ ℋ has n2 dimensions), then the dimensionality of the antisym-

metric subspace 𝒜(ℋ ⊗ ℋ) will be �
�

�

i

n

i
1

1 , while the dimensionality of 𝒮(ℋ ⊗ ℋ) equals �
�i

n

i
1

. The 
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Adopting SP ensures that the Indistinguishability Postulate will be 
true regardless of any restrictions on the admissible observables. On the 
other hand, limiting the set of observables to those represented by sym-
metric Hermitian operators has the same desired consequence even with-
out accepting SP. Thus it seems that there are two independent ways to 
satisfy IP. However, these ways are in fact not entirely independent. It 
turns out that the requirement of symmetry for observables follows from 
the Symmetrization Postulate. This is so because the symmetric and anti-
symmetric subspaces of the tensor product are not invariant under the 
action of non-symmetric operators. In other words, it is possible to trans-
form a symmetric/antisymmetric vector into one that is neither by acting 
upon it with a non-symmetric operator. This can be proven as follows (as 
before, we limit ourselves to the case of N = 2). Let |φS〉 be an arbitrary 
symmetric vector (i.e. such that P12|φS〉 = |φS〉), and let Ω be a non-
symmetric operator in ℋ1 ⊗ ℋ2. Given the assumption of the symmetry 
of state |φS〉, we have that Ω|φS〉 = ΩP12|φS〉. If vector ΩP12|φS〉 was guar-
anteed to be symmetric, this would imply that P12ΩP12|φS〉 = ΩP12|φS〉, 
which entails that Ω is a symmetric operator when limited to the sym-
metric subspace (taking into account that P12

−1 = P12). An analogous 
argument can be produced for the case of antisymmetric states, which 
shows, given that in the case when N = 2 the entire tensor product space 
is spanned by the symmetric and antisymmetric sections, that Ω is a sym-
metric operator on the whole space ℋ1 ⊗ ℋ2. Since this contradicts our 
assumption, Ω has to take us outside either the symmetric or antisym-
metric subspaces.

Why is the formal requirement that physically meaningful operators 
should not take us outside the space of available states so important? 
According to the spectral decomposition theorem, every Hermitian oper-
ator in a finitely dimensional vector space can be presented as a linear 
combination of mutually orthogonal projectors Ei (see Hughes 
1989, p. 50):

sum of these two expressions is n2. In particular, if ℋ is two-dimensional, the antisymmetric sub-
space will be one-dimensional, while the symmetric subspace will have three dimensions. It is 
important to keep in mind that in the case of three or more particles (N > 2), the antisymmetric 
and symmetric subspaces do not span the entire tensor product space (see Sect. 3.3 for more details 
on that).
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The standard interpretation of this formula is that ai represents a possible 
value of observable A, while Ei projects onto the corresponding eigens-
pace, that is, the space consisting of states for which observable A is well 
defined and possesses value ai. If an operator A, when applied to a vector 
|φ〉 from a subspace V, produces a vector A|φ〉 lying outside V, this means 
that there must be a projector in A’s spectral decomposition that projects 
onto a space which is neither a subspace of V nor orthogonal to V. But 
this, in turn, means that some eigenstates of A (states with well-defined 
values of A) are neither in V nor orthogonal to V. Thus if a particular 
system occupies a state described by a vector lying in V, there is a non-
zero probability that a measurement of A will put the system in a state 
outside of V (by the standard projection postulate). But SP precludes the 
possibility that a group of same-type fermions (or bosons) could ever 
occupy a state that is not antisymmetric (or symmetric). Hence no non-
symmetric operators should be allowed to represent physically meaning-
ful observables.

We have a curious situation now. Typically, the Symmetrization 
Postulate is argued for by reference to the Indistinguishability Postulate: 
the argument is that SP makes IP true, and this gives us a reason to adopt 
SP as a way to ensure the permutation-invariance of expectation values.12 
But now we know that SP necessitates the symmetry of admissible observ-
ables, and we also know that the condition that observables be symmetric 
is by itself sufficient to make IP true, regardless of whether we impose any 
additional restrictions on the available states of same-type particles. So, 
what additional reasons can we have for adopting SP? Surely, it would be 
much more cost-effective in terms of the number of extra assumptions to 
simply accept the symmetry postulate with respect to observables and 

12 There are some arguments for SP in the literature that seem to be independent from IP and yet 
under closer scrutiny turn out to be based on some unwarranted premises. For instance, van 
Fraassen in his van Fraassen (1991, pp. 389–392) analyzes a simple proof of SP due to Blokhintsev 
(1964, p. 399ff), which is based on the assumption that all operators on the tensor product are 
admissible. It is no surprise that if we do not place any restriction on available observables, the only 
way to satisfy IP is via the superselection rule in the form of SP applied to the available states.
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forgo a similar postulate with respect to states. That is, unless we can give 
independent reasons for holding on to SP. We will return to the problem 
of independent justification for SP in Chap. 3. For now, following the 
standard approach, we will continue to accept SP as an extra rule govern-
ing the behavior of systems of same-type particles.13

2.6	 �The Indiscernibility Thesis

As we have pointed out, the “indistinguishability” of particles of the same 
type is limited to their state-independent properties. That is, two elec-
trons possess the same rest mass and electric charge, but in principle may 
differ wildly with respect to their state-dependent properties, such as 
energy, position, spin components and so forth. However, this last state-
ment has been challenged in what is known as the Indiscernibility Thesis. 
It has become part of orthodoxy in the philosophical foundations of 
quantum mechanics to argue that the Symmetrization Postulate implies 
that quantum particles of the same type possess the exact same physical 
properties and therefore cannot be discerned by any physical means. In 
this section we will discuss typical arguments in favor of this claim, and 
we will find them wanting.

The modern standards for an approach to the problem of the indis-
cernibility of same-type quantum particles have been set by Steven French 
and Michael Redhead (French and Redhead 1988). They start their dis-
cussion with formulating the Indistinguishability Postulate and then 
observing, as we did, that there are two ways of satisfying IP. French and 
Redhead’s main goal is to argue that given IP, particles of the same type 

13 It should be pointed out that the symmetrization of admissible observables (operators) actually 
yields a principle very similar to SP, at least in the case of systems of two particles. If we limit 
observables (including Hamiltonians) to the symmetric ones, then it follows that no physical pro-
cess (whether a Schrödinger evolution governed by an appropriate Hamiltonian or a measurement-
induced collapse) can get us from a symmetric (antisymmetric) state to a non-symmetric 
(non-antisymmetric) one. This is a simple consequence of the fact that the symmetric/antisym-
metric sectors are invariant under the action of symmetric observables. However, this does not 
mean that a certain type of particles must occupy a given type of state; only that once they start out 
in a state of a given symmetry type, they can never leave the particular section of states of this type. 
But restricting ourselves to symmetric operators does not exclude the possibility that a group of 
fermions could from the outset occupy a state that is not antisymmetric. This may be summarized 
by saying that SP limits the availability of the states of same-type particles, while the symmetriza-
tion of observables merely limits their accessibility (see French and Redhead 1988, p. 239).
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must possess the same state-dependent quantum properties. In spite of 
the fact that IP can be interpreted as placing a restriction on observables 
only, they nevertheless use in their argument the assumption that fermi-
onic and bosonic states must be antisymmetric/symmetric. The key 
premise of their argument is the assumption that monadic (i.e. non-rela-
tional, or intrinsic) properties of a particular component of a system of 
same-type particles are exhausted in statements regarding the probabili-
ties of obtaining particular outcomes of measurements for each particle. 
The way they formalize these probabilistic properties is with the help of 
the tensor products of observables of the form A ⊗ B. They first calculate, 
using the standard Born rule, the probability that a joint measurement of 
observable A on particle 1 and observable B on particle 2 will yield par-
ticular outcomes (a, b). The appropriate formula for this probability is 
the square of the inner product |〈λa ⊗ χb|φ〉|2, where |λa〉 and |χb〉 are 
eigenvectors of A and B, respectively, corresponding to values a and b, 
and |φ〉 is the state of the two-particle system. Using the assumption that 
|φ〉 is antisymmetric or symmetric, they calculate the probabilities of 
revealing a given value on particle 1 and on particle 2 given that A = B, 
and they find these probabilities identical, which supports the claim that 
two fermions (or bosons) of the same type are never discerned by their 
properties.

French and Redhead’s calculations are slightly complicated due to the 
necessity of going through the procedure of summing the probabilities of 
one outcome over all possible outcomes on the other particle. However, 
this can be significantly simplified by resorting to expectation values 
rather than probabilities (see Huggett 2003; Dieks and Versteegh 2008).14 
Let A1 = A ⊗ I and A2 = I ⊗ A represent observables associated, respec-
tively, with the first and the second particles. Then, given the assumption 
that either P12|φ〉 = |φ〉 (for bosons), or P12|φ〉 = − |φ〉 (for fermions), we 
arrive at the following sequence of equations:

14 In spite of appearances, there is no loss of generality in moving from probabilities to expectation 
values. This is so, because the probability of obtaining any outcome of any observable can be recov-
ered as the expectation value of the projector onto the subspace corresponding to this outcome (cf. 
Hughes 1989, p. 71). Thus, fixing the expectation values of all projectors in a given Hilbert space 
automatically fixes all the probabilities of outcomes for any observable. This proves once again how 
flexible a tool projection operators are.
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Thus the expectation values for all observables pertaining to either parti-
cle are identical, and this is what the Indiscernibility Thesis amounts to.

The crucial premise in the above argument is the assumption that the 
operators A ⊗ I and I ⊗ A are indeed formally accurate representations 
of observable A pertaining, respectively, to the first and second particles. 
But here we encounter an immediate stumbling block. Operators A ⊗ I 
and I ⊗ A are clearly not symmetric, so they should be disallowed on the 
basis of our earlier considerations. Since SP implies that only symmetric 
operators can have physical meaning when applied to systems of same-
type bosons or fermions, it seems that we should not use the non-sym-
metric products in formalizing the argument for the Indiscernibility 
Thesis. French and Redhead are aware of that difficulty, but they are 
strangely dismissive about it. First, they interpret the symmetry postulate 
with respect to observables not as delimiting physically meaningful opera-
tors but operators that can be observed.15 Having done this, they announce 
that “from the point of view of discussing PII [the Principle of the Identity 
of Indiscernibles – TB] it seems clear that we should not restrict the dis-
cussion to attributes which can actually be observed” (ibid. p. 239).

French and Redhead’s response to the problem raises several questions. 
Firstly, interpreting the requirement of symmetry as applying to opera-
tors that can be observed misses the point of the permutation-invariance 
problem. Suppose that we have a non-symmetric operator Ω which, even 
though it cannot be observed, is still admissible as a representation of a 
particular objective property of the system. This means that an “actualiza-
tion” of a given value of this operator (French and Redhead speak about 

15 Cf. (French and Redhead 1988, p. 239). We hasten to explain to logical purists that the phrase 
“operators that can be observed” is not supposed to be taken literally (operators, being mathemati-
cal objects, are never observable), but is a mere shorthand for the longer “operators representing 
observable properties”. Another minor linguistic issue that may or may not be necessary to clarify 
here is that while the standard physical counterparts of mathematical operators are usually called 
observables, in the current context this terminology is not particularly felicitous (vide the term 
“unobservable observables”).

2  Indiscernibility of Quantum Particles: A Road to Orthodoxy 



30

actualizations rather than obtaining measurement outcomes, since we are 
dealing here with unobservable properties) can put the system into a state 
that is neither symmetric nor antisymmetric, thus violating the 
Symmetrization Postulate. The claim that we can’t observe this transition 
does not nullify the fact that SP is made false by its existence. Secondly, 
and more importantly, the contention that the operator representing a 
measurable and observable property of one particle gets classified as unob-
servable when this particle is taken as part of a broader system together 
with another particle should be viewed with high suspicion. One possible 
reply in defense of French and Redhead could be that the reason for the 
unobservability of operators of the form A ⊗ I and I ⊗ A has nothing to 
do with the A-property per se, but rather comes from the fact that we 
don’t have any empirical means to distinguish particle 1 from particle 2, 
so we don’t know on which particle we are supposed to perform an appro-
priate measurement. This seems right, but the moral from this example 
should be to reevaluate the way we can make reference to individual par-
ticles, rather than blindly accept that the attributes of these particles rep-
resented by non-symmetric operators “can never be observed” (for more 
on that see Chap. 5).

Is there any other way to represent properties of individual particles 
without infringing upon the symmetrization requirement with respect to 
observables? Nick Huggett in (Huggett 2003) has suggested how to 
approach this problem in a more general fashion. His proposal is to for-
mulate a set of minimal conditions that should be met by any operators 
in the tensor product space that can lay claim to representing attributes 
of individual particles. Let {O1, O2, … ON} be a set of operators acting in 
the N-fold tensor product of one-particle Hilbert spaces ℋ1 ⊗ … ⊗ 
ℋN. Each operator Oi is supposed to represent a particular observable O 
attributed to the i-th particle. In order to be able to do that, the operators 
should satisfy two postulates, which Huggett dubs the conjugation con-
dition (CC) and independence condition (IC). These conditions are as 
follows:

(CC)	 Pij
−1Oi Pij = Oj

(IC)	 Pij
−1Ok Pij = Ok, when k ≠ i and k ≠ j.
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The meaning of these requirements should be clear: the conjugation 
condition ensures that the permutation of two particles will swap their 
properties, whereas the independence condition guarantees that permut-
ing two particles will not affect the properties of a third one distinct from 
the two.

Huggett then shows that conditions (CC) and (IC) are sufficient to 
obtain French and Redhead’s indiscernibility result. In the case of 
monadic properties, the proof is immediate and requires only the conju-
gation condition (the case of relational properties will be evaluated in the 
next section).
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Conditions (CC) and (IC) are obviously satisfied by operators of the 
form Oi = I ⊗ …⊗ A ⊗ …⊗ I, where A occupies the i-th place in the 
product. However, other operators can also be shown to conform to (CC) 
and (IC). Is it possible to find operators that would satisfy (CC) and (IC) 
and at the same time be symmetric? Generally, the answer is “yes”, but 
the success turns out to be somewhat limited in scope. If the operators Oi 
were to be symmetric, this would mean that Pij

−1Oi Pij = Oi which, 
together with the conjugation condition Pij

−1Oi Pij = Oj, implies that Oi = 
Oj for all i, j. Thus the only symmetric operators that could possibly rep-
resent properties of individual particles would be identical with each 
other. This obviously trivializes the question of whether particles of the 
same type can be discerned by their properties. It is hardly an exciting 
result proving that the expectation values of operators that are identical 
turn out to be identical too (we don’t even need to rely on the 
Symmetrization Postulate with respect to states to prove that).

French and Redhead’s proposal of how to formally represent properties 
of individual particles, as well as the general approach advocated by 
Huggett, both rely on the same implicit assumption, which is so basic 
that up to a certain point in the history of the debate no one even 
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bothered to make it explicit. And yet this assumption, which is constitu-
tive of the approach to the individuation of particles that may be called 
“orthodoxy”, deserves to be seen in broad daylight. This claim, which 
some refer to as “Factorism”,16 may be spelled out as follows:

(F)	 In the N-fold tensor product of Hilbert spaces ℋ1 ⊗ … ⊗ 
ℋN that is meant to represent states and properties of sys-
tems of N particles of the same type, and whose symmetric 
and antisymmetric sectors are assumed to contain all the 
admissible states of N bosons and N fermions respectively, 
each Hilbert space ℋi represents states and properties of one 
individual particle.

Factorism seems to be presupposed by the way we defined tensor prod-
ucts of Hilbert spaces as representations of states of composite systems 
consisting of a number of component systems. Thus it may be claimed 
that Factorism is an essential part of the tensor product formalism17 and 
as such cannot be called into question without abandoning the entire 
formalism. And yet on a certain level of abstraction this conclusion can 
be resisted. It is at least conceivable that we could treat the mathematical 
structure of the N-fold tensor product of Hilbert spaces purely formally, 
without attaching any physical interpretation to the individual factors in 
the product. Then, after imposing certain additional restrictions on the 
admissible states in this product space (e.g. in the form of the 

16 I follow the interpretation of Factorism as spelled out in Caulton (2014 p. 11). On the other 
hand, F.A. Muller and Gijs Leegwater in Muller and Leegwater (2020) introduce a broader reading 
of Factorism. They consider the general problem of how to factorize a given Hilbert space ℋ into 
a tensor product of N spaces, and they observe that typically there is more than one way to achieve 
such a factorization. Consequently they distinguish two general versions of Factorism: ∀-Factorism, 
stating that for all available factorizations the labels associated with the factors refer to the compo-
nents of the system, and ∃-Factorism, asserting that some such factorizations play the referential 
role. Their main point is that ∃-Factorism may be preserved even for “indistinguishable” particles 
(see Sect. 4.3 for more on that). However, this conclusion does not invalidate the fact that Factorism 
as stated above is open to refutation. The variant of Factorism defined above involves one specific 
factorization—namely the factorization with respect to which we impose the requirement of per-
mutation invariance, as explained in Sect. 2.4.
17 Redhead and Teller (1991, 1992) use a longer term Labeled Tensor Product Hilbert Space 
Formalism.
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symmetrization or antisymmetrization requirement), we may ask the 
question of how to identify in our formalism parts that could represent 
states and properties of individual components of the considered system. 
And it is by no means a foregone conclusion that the only way to do that 
is by interpreting the factors in the tensor product ℋ1 ⊗ … ⊗ ℋN as 
corresponding to the individual components of the system. We will 
return to this problem in later parts of the book.

2.7	 �Relational Properties 
of Individual Particles

For the time being we will remain within the framework adopted by 
French and Redhead and extended by Huggett, with its commitment to 
Factorism. So far the Indiscernibility Thesis has been proven with respect 
to monadic properties interpreted with the help of the expectation values 
of individual operators (or, equivalently, the probabilities of obtaining 
particular outcomes of measurements). However, it is a well-known fact 
that monadic properties do not exhaust all the attributes that can differ-
entiate between objects. Another important category is relational proper-
ties that characterize objects by reference to other entities. To illustrate 
this with a standard example: if we had two iron spheres identical in every 
respect (same size, mass, chemical makeup, etc.), it would still be possible 
to differentiate between them if we placed a third object (e.g. a pointer) 
in a way that breaks the overall symmetry. In that case we could say that 
one sphere differs from the other in that it is located closer to the pointer. 
Being at a certain distance from a pointer is a relational property of one 
sphere that differentiates it from the other sphere.

It is not immediately clear how to interpret relational properties within 
the standard quantum-mechanical formalism. French and Redhead pro-
pose to use conditional probabilities of obtaining particular outcomes as 
a representation of relations between quantum particles. They prove that 
the probability of obtaining outcome a when measuring observable A1 = 
A ⊗ I conditional on obtaining outcome b of observable A2 = I ⊗ A is 
equal to the “switched” probability of outcome a of observable A2 
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conditional on obtaining outcome b on A1. Jeremy Butterfield extended 
this result in several directions (Butterfield 1993). First off, he considers 
the case when N can be any number. Moreover, in the above result he 
replaces the second occurrence of observable A with a different observ-
able B. And, thirdly, he introduces a new case in which he conditionalizes 
the probability of a given outcome obtained on a third, arbitrarily selected 
particle, on probabilities of some outcome obtained on one of the two 
particles occupying the joint symmetric/antisymmetric state. As this case 
is probably the most interesting, we will have a closer look at it in the 
following paragraph.

Among the N considered particles, we select three particles labeled i, j 
and k. Interestingly, we don’t have to assume that all three particles are of 
the same type, only that two of them (the i-th and j-th) are. Consequently, 
we assume that the joint state |φ〉 of the N particles has the required sym-
metry property only with respect to the permutation Pij, and not Pik or 
Pjk. Now, consider the probability that a particular observable Ak has 
some value a, conditional on the fact that observable Bi assumes value b. 
This probability can be calculated as follows:

	

Pr
Pr

Pr
A a B b

A a B b

B bk i
k i

i

� �� � � � �� �
�� �

�
&

	

(2.14)

In order to calculate the probabilities in the numerator and denomina-
tor of the above expression, we can resort again to projectors. Let Ak

a  and 
Bi

b  be appropriate projectors corresponding to outcomes a and b. Then 
Pr &A a B b A Bk i k

a
i
b� �� � � � �  and Pr B b Bi i

b�� � � � � . With 
respect to the second probability, it can be easily argued that 
Pr(Bi = b) =  Pr (Bj = b), essentially by repeating the derivation from the 
previous section. Regarding the first probability, we can proceed as 
follows:
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This proves that the probabilistic relation that the i-th particle stands 
in to the k-th particle is exactly the same as the probabilistic relation that 
the same-type j-th particle stands to the k-th particle. Given the fact that 
all three particles and their properties have been selected completely arbi-
trarily, we may conclude that quantum particles of the same type cannot 
differ with respect to their relational properties. Whatever relation holds 
between particle number i and the rest of the world should hold between 
the same-type particle number j and the world.

The final conclusion from the last paragraph can be argued for in a 
much simpler and perhaps more elegant way, following Dieks and 
Versteegh (2008, p.  933). We can again consider two particles of the 
same type labeled by numbers i and j which are parts of a broader system 
of same-type particles, and in addition to that we consider a third particle 
labeled k which may or may not be of the same type as particles i and j. 
Let A(i, k) be any Hermitian operator representing a measurable property 
of the system of two particles i and k (any Hermitian operator acting in 
the tensor product ℋi ⊗ ℋk). Operators of the form A(i, k) provide us 
with the most general way of expressing all physical relations between 
particles i and k, since the expectation values of such operators contain all 
the information necessary to calculate the probabilities of outcomes, con-
ditional and unconditional. Formally, we can always extend the operator 
A(i, k) to any tensor product of an arbitrary number of additional Hilbert 
spaces by adding a required number of the identity operators acting in all 
spaces except ℋi and ℋk. For the sake of simplicity, we will refer to this 
extended operator using the same symbol A(i, k). We can now stipulate, 
as Huggett did with respect to the operators representing monadic prop-
erties of individual particles, that A(i, k) should satisfy the following joint 
conjugation and independence condition:
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P A i k P A j k k i jij ij, , where .� � � � � �, ,

	
(2.16)

Actually, given that all operators in the tensor product ℋi ⊗ ℋk can be 
presented as linear combinations of operators acting, respectively, in ℋi 
and ℋk, our new condition follows from Huggett’s original conjugation 
and independence conditions. Now, if |φ〉 represents the joint state of a 
system containing particles i, j and k, and particle number i belongs to 
the same type as particle number j, we can derive the following:

� � � � � � � �A i k P A i k P P A i k P A j kij ij ij ij, , , , .� � � � � � � � � � �
	

(2.17)

This confirms that relations which connect each of the two same-type 
particles with a third one are identical and cannot discern these particles.

2.8	 �Indiscernibility and Individuality

The above formal results point unambiguously towards the rejection of 
the Leibnizian Principle of the Identity of Indiscernibles (PII) when 
applied to particles of the same type.18 In its most basic form, PII asserts 
that if an object a possesses the exact same properties as an object b, a and 
b are numerically identical. When expressed contrapositively, the princi-
ple states that for every two distinct objects there is a property possessed 
by one and not the other. Of course, the exact meaning and validity of 
this principle depends on how broadly we understand the term “prop-
erty”. It is easy to observe that PII can be made trivially (i.e. logically) true 
if, for each object, we include among its attributes the property of being 
this very object. However, it is standard practice to exclude from the range 
of PII’s quantifier so-called impure properties, that is, properties that 
somehow involve reference to individual objects.19 It is also common to 

18 For a recent historical analysis of the role of the Principle of the Identity of Indiscernibles in 
Leibniz’s philosophy, see Rodriguez-Pereyra (2014).
19 More precisely, we should exclude properties that involve individual objects and the relation of 
numerical identity. Only those properties make PII trivially true. It turns out that properties whose 

  T. Bigaj



37

distinguish two versions of PII: the stronger PII that limits properties to 
intrinsic (non-relational, monadic) ones and the weaker PII that includes 
extrinsic (relational, polyadic) attributes as well. We have already seen 
that the indiscernibility arguments from the permutation-invariance of 
the states of same-type particles involve both intrinsic and extrinsic prop-
erties, and thus the quantum case seems to invalidate PII in its weaker 
form as well.

Why is PII such an important principle that its apparent violation in 
quantum mechanics stirs up so much controversy among philosophers of 
science? One reason may be the connection with the question of the 
metaphysical status of quantum objects, and in particular whether they 
deserve to be categorized as individuals. The notion of an individual is yet 
another buzzword in the contemporary metaphysics of science (see, e.g. 
the recent collection Guay and Pradeau 2016). Individuals are supposed 
to form a special subcategory of objects, sharply distinguished from non-
individuals. One way of characterizing individuals is related precisely to 
the concept of discernibility: an individual is said to be an object that can 
be discerned from the rest of the universe (that possesses some unique 
combinations of properties which no other entity in the universe pos-
sesses). A minor problem with this definition is that it makes the property 
of being an individual extrinsic, as being discernible from other objects is 
a relational property. Thus, a perfect duplicate of an individual in our 
world may not be an individual in another possible world, if only in this 
alternative world there are two indiscernible copies of the original object 
(see Cortes 1976, p. 492; French 2019).

Setting this problem aside, we may conclude that PII is important 
because its truth guarantees the existence of a principium individuationis 
for every object in the universe. If PII fails, as described in previous sec-
tions, quantum particles of the same type are relegated to the shadowy 
category of non-individual entities. Alternatively, we may want to look 
for their principia individuationis in something other than physical, 
observable properties. This puts us on the treacherous path to the non-
empirical notions of primitive thisness, haecceity, bare substratum and so 

canonical linguistic representations contain proper names but exclude the identity symbol do not 
automatically make all distinct objects discernible. We will return to this issue in Chap. 4.
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on, broadly described as transcendental individualities.20 However, it 
seems that this “solution” of the problem of individuality in light of the 
possible demise of PII is just the old ploy to make PII trivially true in a 
new disguise. We can keep PII true by expanding the range of admissible 
properties to include haecceities and the like, or we can formally give up 
PII and still use these dubious attributes as a basis of the “transcendental 
individuality” of quantum particles. There is no substantial difference 
between the two strategies apart from the difference in terminology. So if 
we balk at the above-mentioned method of trivializing PII, we should 
similarly react with aversion to the idea of transcendental individuation, 
which involves precisely the same metaphysically suspicious “properties”.

So far, we have considered the possibility of individuating objects even 
without PII, thus questioning the assumption that the satisfaction of PII 
is necessary for objects to be individuals. But the complementary ques-
tion can also be posed, whether satisfying PII is sufficient for objects to 
achieve the status of individuals. And I believe that the answer to this 
question may be negative. In order to discuss this problem further, we 
may use the standard example in the context of which the issue of indi-
viduality in quantum mechanics has arisen in the first place, that is, the 
case of quantum statistics. In the simplest possible case involving two 
particles labeled 1 and 2, and two possible states S and T, the problem is 
how probable various distributions of the particles among the available 
states are, given the assumption that the assignment is done purely ran-
domly.21 Generally speaking, there are four logical possibilities of how to 
distribute the particles among the available states: S(1)T(2), S(2)T(1), 
S(1)S(2) and T(1)T(2) (see Fig. 2.3). Under the assumption of the equi-
probability of the basic arrangements (on the basis of what van Fraassen 
calls the Principle of Indifference), we arrive at the classical, Maxwell-
Boltzmann distribution:

20 The term “transcendental individuality” entered wide circulation thanks to Redhead and Teller 
(1991, 1992), who credit Heinz Post with introducing it in the context of quantum theory.
21 This example, which originated from Reichenbach (1971, pp. 233–235), has been discussed in 
virtually all publications concerning the notion of identity and individuality in quantum mechan-
ics. See, for example, French and Redhead (1988, pp.  236–238; van Fraassen 1991, p.  378; 
Redhead and Teller 1992, p. 204; French and Krause 2006, pp. 144–145, French 2019, Sect. 2).
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from which it follows that the probability that the particles will occupy 
different states S and T (without saying which particle is in which state), 
given by:

	
Pr Pr , Pr ,ST , S T S T12 1 2 2 1� �� � � � � � �� � � � � � �� � 	

(2.19)

equals 1
2

. But quantum particles do not obey this statistics. In the case of 
bosons, the probability Pr(ST(1,2)) equals 1/3, whereas for fermions this 
number goes up to 1 (these are, respectively, Bose-Einstein and Fermi-
Dirac statistics). This discrepancy is often explained by noting that bosons 
and fermions are indistinguishable particles, and therefore cases S(1)T(2) 
and S(2)T(1) should be treated as one possibility ST(1, 2). Given the 
additional assumption that for fermions cases S(1)S(2) and T(1)T(2) are 

S T

1 2

12

1 2

1 2

Fig. 2.3  Four possible arrangements of two particles 1 and 2 among two 
states S and T
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forbidden due to the Pauli exclusion principle, we arrive at the required 
probabilistic distribution:22

	

Pr , Pr , Pr , / ,

Pr

ST S S T T for bosons and1 2 1 2 1 2 1 3� �� � � � � � �� � � � � � �� � �
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(2.20)

The identification of the distributions S(1)T(2) and S(2)T(1) is some-
times interpreted as a sign of the loss of individuality for particles 1 and 
2. But note that this has little to do with whether PII is valid for these 
particles or not. Suppose that particles 1 and 2 are photons (and thus 
they obey Bose-Einstein statistics). There is nothing inconsistent in the 
assumption that photons occupying the joint state ST are discernible 
thanks to the fact that one of them is in state S while the other is in T. We 
could even introduce labels that would reflect this discernibility (labeling 
the S-photon as 1 and the T-photon as 2). The only thing we can’t do is 
to insist that photon labeled 1 could actually occupy state T (while pho-
ton 2 would assume state S) and that this would create a new situation, 
distinct from the original one. The loss of individuality is seen in the fact 
that we can’t make an unambiguous counterfactual identification of a 
particular object, and not in the fact that this object could not be differ-
entiated from the other entities in the actual scenario.23

22 One may ask the basic question: what does the statistical behavior described above have to do 
with the way we defined bosons and fermions as occupying, respectively, symmetric and antisym-
metric states? In response we can observe that Bose-Einstein and Fermi-Dirac statistics can be 
recovered when we redescribe the entire situation properly in terms of symmetric or antisymmetric 
states. The four available distributions are represented by one antisymmetric state |S〉|T〉 – |T〉|S〉 
and three symmetric states |S〉|T〉 + |T〉|S〉, |S〉|S〉 and |T〉|T〉, from which it follows that bosons 
can occupy three states with equal probabilities 1/3, while fermions have only one option available, 
and therefore its probability must be 1. Observe that in this analysis the states |S〉|T〉 – |T〉|S〉 and 
|S〉|T〉 + |T〉|S〉 correspond to situations that we would informally describe as cases in which one 
particle is in state S while the other in T, but we don’t know which one is where.
23 There is one more aspect of this commonly used example that merits closer inspection, as it is 
typically missing from standard presentations. We assumed, without much justification, that in the 
case of indistinguishable quantum particles the reduced number of distinct arrangements will nev-
ertheless continue to be equiprobable. But it is instructive to observe that this assumption is most 
certainly violated for classical indistinguishable bodies. Suppose, for the sake of simplicity, that the 
precise state of each of two classical particles is represented by a continuous parameter in the form 
of a real number (“position” in a one-dimensional space). States S and T can be interpreted with the 
help of equal intervals of the position parameter—for instance, S can correspond to any value of 
position in the interval [−1, 0] and T in the interval [0, 1]. This reflects the fact that, classically 
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Thus it may be suggested that we should tie the concept of individual-
ity to the possibility of the unambiguous identification of objects across 
different temporary instances and across different possible scenarios (dif-
ferent possible worlds). An individual is an object for which it is settled 
whether or not it is identical with any object at any moments in the 
actual world, and it is settled whether or not it is identical with any object 
in possible worlds.24 One way of ensuring that some objects are individu-
als is to assume that every one of them is equipped with its unique essence, 
that is, the set of qualitative properties that unambiguously identify this 
object at any time and in any possible scenario. Another option, as always, 
is to insist that objects possess their unique non-qualitative haecceities, 
which unfortunately may not be empirically accessible to us. But the 
mere fact that an object is momentarily discernible from the rest of the 
universe by some of its accidental properties does not immediately 

speaking, particles can occupy different precise locations within macroscopic “boxes” S and T. In 
the case of distinguishable particles, arrangements S(1)T(2), S(2)T(1), S(1)S(2) and T(1)T(2) will 
correspond to regions of equal volume in the phase space (a two-dimensional space of “positions” 
for both particles). These regions are, respectively, Cartesian products [−1, 0] × [0, 1], [0, 1] × [−1, 
0], [−1, 0] × [−1, 0] and [0, 1] × [0, 1], which are equal squares. When we assume that particles 1 
and 2 are indistinguishable, arrangements S(1)T(2), S(2)T(1) are to be identified. However, the 
corresponding region in phase space will be twice as big as the regions representing arrangements 
S(1)S(2) and T(1)T(2)! In the phase space for indistinguishable particles, we have to identify “per-
muted” points (x, y) and (y, x), as they represent one and the same state. This can be achieved by 
considering only half of the original space containing points for which x ≥ y (points lying below the 
diagonal x = y). In that case the region corresponding to the “amalgam” arrangement ST(1, 2) will 
be the square [0, 1] × [−1, 0], while the remaining two arrangements give rise to triangular regions 
half the volume of the square. (For instance, the region in phase space corresponding to arrange-
ment S(1)S(2) will be the triangle defined by straight lines x = 0, y = −1 and x = y.) Consequently, 
the probability of state ST(1, 2) should be twice as big as the probability of state S(1)S(2), exactly 
as in the Maxwell-Boltzmann distribution. We may argue for the quantum statistics only if we 
assume that states S and T do not consist of more precise states. See Huggett (1999) and Albert 
(2000, pp. 45–47) for more on that.
24 There is yet another notion of individuality that should be mentioned here, which I prefer to call 
“esoteric”, since its meaning is rather difficult to grasp for me. Under this approach to individuality, 
an individual is an object identical with itself; hence by negation non-individuals are entities such 
that the notion of self-identity does not apply to them. Of course the esoteric conception of indi-
viduality requires that we modify classical logic, since classically it is a logical truth that every object 
in the universe is identical with itself. A lifelong promoter of this esoteric conception of individual-
ity, who also insists that the quantum theory of many particles implies that quantum objects are 
non-individuals in this sense, is Decio Krause (see, e.g. Krause 1992, 2010; Krause and Arenhart 
2016; Arenhart 2017; for some criticism, see Bueno 2014, pp. 329–330). Needless to say, one of 
the main upshots of this book will be that in fact quantum mechanics does not force us to adopt 
such a radical view.
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guarantee that this object will be an individual. And I believe that the 
case of particles of the same type falls precisely into the category of non-
individual objects that can in principle obey PII. As any two electrons 
possess the same set of state-independent properties (rest mass, electric 
charge, etc.), it is very implausible that they could have distinct essences. 
Thus it does not make sense to permute a group of electrons and expect 
that the resulting situation will be ontologically distinct from the original 
one. But still electrons could in principle differ from one another by their 
state-dependent properties; however, these properties cannot be used to 
identify them in different, alternative situations, precisely because state-
dependent properties are accidental only.

Given that the link between PII and the individuality of objects is 
questionable, how else can we motivate the need for such a principle? 
There are two possible uses that PII can be put to, both rather critical 
from the perspective of an empiricist.25 First of all, the validity of PII in 
one of its forms presented above guarantees the possibility of making 
reference to, naming, or generally selecting a particular object. Here we 
can quote a famous passage in the classic text on PII by Max Black, in 
which one of the disputants in a debate regarding two indistinguishable 
spheres in an otherwise empty universe starts off with saying “consider 
one of the spheres, a…”, to which his opponent immediately retorts 
“How can I, since there is no way of telling them apart?” (Black 1952, 
p.  156). This highlights the fact that without qualitative differences 
between objects, making reference to one of them seems virtually impos-
sible. Every act of referring to an object involves either using a description 
that uniquely identifies this object, or pointing at it (or making any other 
gesture unambiguously associated with the considered object), or—most 
typically—both. But in the case of genuinely indiscernible objects 

25 Jonas Arenhart distinguishes three possible reasons for accepting PII (Arenhart 2013). One is 
upholding the bundle theory of particulars, the second is enabling the possibility of counting 
objects, and the third is accepting a broad empirical stance which excludes the existence of facts 
that cannot be in principle empirically verified. I ignore the first reason, since I don’t think we 
should be unconditionally committed to the bundle theory. As for the remaining two reasons, it 
seems to me that they both can be subsumed under my requirement to ground numerical diversity 
in qualitative facts. Counting obviously presupposes numerical diversity, while the postulate of 
empiricism is in line with the expectation that the non-empirical bare identity/diversity of objects 
should be grounded in an in-principle empirically accessible state of affairs.
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(whether by intrinsic or extrinsic properties), none of this seems to be 
doable. As we remember, quantum particles of the same type possess the 
exact same intrinsic (i.e. non-relational) properties, so no description 
involving these properties can do the job. Introducing a third object (e.g. 
my finger) won’t help either, since we have proven that the joint state of 
any other object and one particle of the group of same-type particles is 
exactly the same as for any other particle in the group. So when I point at 
any “single” electron, I am actually pointing at all the electrons in the 
universe!

The second use of PII has to do with the relations of numerical identity 
and its opposite, numerical distinctness. Numerical identity is one of the 
most fundamental notions without which we could not properly describe 
even the simplest empirical situations. Suffice it to say that without 
numerical identity we couldn’t talk about the exact number of groups of 
things, for instance, pencils on my desk. And yet “bare” numerical iden-
tity/distinctness seems to be a non-empirical, non-qualitative notion. 
How, then, can we gain knowledge about which objects are numerically 
distinct from which objects? Here PII supplies one possible answer: we 
know that object a is distinct from object b, because we have found out 
that a possesses a qualitative, empirically accessible property that b does 
not possess. Now, to avoid possible misunderstandings, we have to stress 
that the inference from the existence of differentiating qualities to the 
numerical distinctness of the objects does not require PII; it is based 
entirely on the logical law known as the Leibniz law. However, PII gives 
us an assurance that such derivations could be made in every instance of 
numerical distinctness. To put it differently, if PII fails, there are cases in 
which the numerical distinctness of some objects could not be inferred 
from the facts about what properties are exemplified by these objects. 
Thus some facts of numerical distinctness/identity would seem to be in 
principle not accessible to us (vide the famous example of five identical 
hands used by Max Black in his classic article Black 1952). This of course 
raises further questions regarding systems of quantum particles: how do 
we know that a particular system of electrons consists of five, ten or 1012 
electrons? How can we count them, if we cannot distinguish them in 
any way?
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The problem of empirical justifications for statements regarding 
numerical identity/distinctness can be alternatively presented in a meth-
odological or metaphysical guise. On the methodological level, we can 
ask whether the identity relation can be defined in an appropriate quali-
tative language. It is well known that identity can be easily defined in a 
second-order language, but such a definition has no practical use, since it 
is impossible (and perhaps also circular) to identify all the sets that an 
object belongs to. On the other hand, possible first-order definitions of 
identity require for their material adequacy that an appropriate form of 
PII is satisfied. The metaphysical counterpart of definability could be the 
notion of grounding (see Bliss and Trogdon 2016). Thus we can ask 
whether facts of numerical identity/distinctness are grounded in qualita-
tive facts that do not involve the identity relation. Again, a positive answer 
to this question requires some form of PII; otherwise numerical identity 
cannot be fully reduced to qualitative first-order facts.

From what has been said, it should be clear that given the apparent 
plight of PII in the realm of quantum objects, some alternatives may be 
sought that could achieve goals similar to the two mentioned above: (1) 
to secure the possibility of making reference to individual objects and (2) 
to ground the relation of numerical identity in qualitative facts not 
involving identity. As it turns out, one way to do that is through extend-
ing the notion of discernibility beyond discernibility by intrinsic and 
extrinsic properties, towards relation-based types of discernibility. In 
order to see clearly how this might work, some preparatory work on ter-
minology and logic needs to be done. This is what Chap. 4 will be about. 
But before that we will look closer at the Symmetrization Postulate and 
its possible alternative justifications.
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3
The Source of the Symmetrization 

Postulate

We have noted in the previous chapter that the main source of the appar-
ent breakage of the classical notions of individuality and identity in quan-
tum mechanics is the requirement of permutation invariance imposed on 
the states and (or) properties of systems of same-type particles.1 The key 
assumption leading to these restrictions is the Indistinguishability 
Postulate (IP), which demands that the expectation values of all mean-
ingful (or at least empirically accessible) observables be invariant under 
permutations of the indices of particles. The logical options that the truth 
of IP leaves us with are the following. First, we may opt for an uncondi-
tional restriction on admissible observables in the form of the require-
ment of the symmetry of corresponding operators, without imposing any 
restrictions on the available states. One consequence of this approach is 
that if the system already occupies a state in a sector with a particular type 
of symmetry (i.e. symmetric, antisymmetric or higher-order paraparticle 
symmetries, of which we’ll talk later in the chapter), it will never be able 

1 For a comprehensive formal and philosophical analysis of the notion of permutation symmetry in 
QM, see French and Rickles (2003).
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to leave this sector by means of physical interactions. Admittedly, it is still 
logically possible that particles could occupy states that do not possess 
any symmetry properties (e.g. states that are products of distinct one-
particle vectors). But once a physical process pushes them into a given 
permutation-invariant sector, there is no way back for such a group of 
particles.2

The second broad option is to impose the condition of symmetry on 
the available states of particles of the same type, without paying attention 
to their properties. Two main methods of realizing this strategy to make 
IP true are: to limit available states to the symmetric subspace and to 
limit them to the antisymmetric subspace of the tensor product. These 
options must be applied exclusively, since admitting the possibility of 
particles that could occupy both symmetric and antisymmetric states 
implies that states with no symmetry properties will also be available, 
thanks to the principle of superposition. A third broad option is to con-
sider possible particles with states of a different type of symmetry—so-
called paraparticles. We will discuss this option later in the chapter, for 
now limiting ourselves to the standard symmetric/antisymmetric dichot-
omy. As we have already observed in Chap. 2, the adoption of the 
Symmetrization Postulate with respect to states forces us to restrict admis-
sible operators to the symmetric ones too, since the action of non-
symmetric operators does not preserve the symmetry/antisymmetry of 
vectors. Thus the second option leads to the same thesis on which the first 
option relied—that only symmetric (i.e. permutation-invariant) opera-
tors are admissible.

The permutation-invariance restriction on operators seems an inevita-
ble consequence of the Indistinguishability Postulate, since it follows 

2 If among the physical processes we include measurements under the collapse interpretation, then 
it is straightforward to give a physical process that can transform a product state into a symmetric/
antisymmetric one. Suppose we start with a product state |φ〉|ψ〉 where |φ〉 and |ψ〉 are orthogonal. 
Let us define the following vectors: |χ〉 = 1

2

� � � � �� � � �� �  and |η〉 = 1

2

� � � �� � � ��� � . 

Then it can be easily verified that the symmetric projectors Eχ ⊗ Eη + Eη ⊗ Eχ and Eχ ⊗ Eχ (where 
Eχ = |χ〉〈χ| and Eη = |η〉〈η|) project the original state |φ〉|ψ〉 onto, respectively, the antisymmetric 
and symmetric sectors of the total Hilbert space. And since these projectors represent possible 
outcomes of measurements for admissible observables, it is physically possible to put the system 
into an antisymmetric/symmetric state by means of measurement procedures.
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from both strategies described above; however, its exact implementation 
remains open to interpretation. Under the reading that Michael Redhead 
and Paul Teller (Redhead and Teller 1992, p. 208) call weak, the require-
ment of symmetry applies to observable properties, which means that 
non-symmetric operators may be meaningful but not observable. The 
strong interpretation, on the other hand, eliminates all non-symmetric 
operators as devoid of meaning. Choosing between the two interpreta-
tions is rather important, as this choice affects the way we can represent 
properties of individual components of larger collections of particles. If 
we insist that non-symmetric operators are meaningless, this blocks the 
standard representation of individual properties in the form of 
N-argument tensor products of one Hermitian operator and N-1 identity 
operators: I ⊗ I ⊗ … ⊗ A ⊗ … ⊗ I, since such products are clearly not 
permutation-invariant. The only way to retain this representation is to 
insist that the non-symmetric operators are meaningful but not empirical.

One question that we posed in Chap. 2 is why we should insist on 
introducing the restrictions on available states in the form of the 
Symmetrization Postulate, given that the Indistinguishability Postulate 
can be satisfied by imposing restrictions on admissible operators. In this 
chapter we will look closer at some alternative justifications that SP 
receives in the literature. We will also dig deeper into the underside of the 
Indistinguishability Postulate itself, paying particular attention to the 
notion of the permutation of particles and its various possible interpreta-
tions. As it turns out, these issues cannot be properly approached without 
some philosophical insight into the problems of reference, labeling, 
modality de re and the like.

3.1	 �Indistinguishability Postulate 
and Permutations

What could be simpler and more straightforward than the mathematical 
concept of permutation? Formally, a permutation of an n-element set X is 
a bijection σ mapping this set onto itself σ: X → X. In the formalism of 
quantum theory, the set to which we apply permutations typically 
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consists not of physical objects, but of indices, or labels. Thus, if we have 
a formula Ψ(1,2, … n) containing n indices, the result of applying a per-
mutation σ to this formula will be a new formula Ψ′ defined as follows: 
Ψ′ = Ψ(σ(1), σ(2), ..., σ(n)). Now, depending on the mathematical inter-
pretation of formula Ψ (on what mathematical objects Ψ is supposed to 
represent), the transformation Ψ → Ψ′ may turn out to be the identity 
that changes nothing. To give a simple example: if formula Ψ is defined 
as Ψ(1, 2) = a(1) + a(2) + b (1) + b (2), where a(1), a(2), b (1) and b (2) 
are stipulated to be real numbers, and symbol “+” represents ordinary 
addition, then the “permuted” formula Ψ′(2, 1) = a(2) + a(1) + b (2) + b 
(1), even though distinct from Ψ when interpreted as a string of symbols, 
represents one and the same mathematical object due to the commutativ-
ity of addition. On the other hand, formula Φ(1, 2) = a (1) - a (2) + b (1) 
+ b (2) does not possess the property of being permutation-invariant, 
unless a(1) = a(2).

However, things get a bit complicated when we move from mathemat-
ical formulas and mathematical objects to their physical interpretations. 
We have to know how to physically interpret the permuted formula Ψ′, 
given that we already possess an interpretation for Ψ. In the quantum-
mechanical context, indices, or labels, serve primarily as names for indi-
vidual particles (as spelled out in the assumption of Factorism, Sect. 2.6); 
hence a natural counterpart of a permutation of indices is the physical 
process of “swapping” particles corresponding to these indices against the 
background of the situation described by the whole formula. But we 
must be a bit more explicit about how to interpret this “swapping” pro-
cedure. What does it mean, precisely, to exchange two objects (two elec-
trons, chairs or galaxies)? The most natural way to think about this 
procedure is in terms of spatiotemporal location. If I asked you to swap 
this chair with that chair over there, you would most probably move one 
chair to the place where the other one stood while simultaneously bring-
ing the other chair to the location previously occupied by the first one. 
All physical properties of one chair, except its location, would be taken 
with it, as it were. However, in physics in general, and in quantum 
mechanics in particular, the notion of a permutation of objects is intro-
duced in the context of the joint state of these objects, and the spatiotem-
poral location of individual objects at best constitutes only part of this 
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state. In classical physics, the other component characterizing the state of 
objects consists of their velocities (or momenta). Thus swapping two clas-
sical bodies amounts not only to changing their spatiotemporal positions 
but also velocities. In the quantum case, the state of a system is encom-
passed in a vector, a ray or, more generally, a density operator that repre-
sents the maximal information about all the available values of relevant 
observables. Characteristically, properties such as rest mass, charge, total 
spin, belong to the category of state-independent properties (which phys-
icists call “intrinsic properties”), and thus do not get swapped during the 
permutation of objects. Thus, for instance, if the state of two particles is 
given as |φ〉1|ψ〉2, then the permuted state |ψ〉1|φ〉2 will represent a situa-
tion in which particle 1, with all its state-independent properties intact, 
occupies state |ψ〉 rather than |φ〉, and particle 2 takes up state |φ〉 instead 
of |ψ〉, retaining all its state-independent properties. Hence the permuta-
tion |φ〉1|ψ〉2 → |ψ〉1|φ〉2 does not make particles 1 and 2 swap their state-
independent properties.

This observation is important in the case of particles of different types, 
since we have to know that when we perform the formal exchange opera-
tion |φ〉1|ψ〉2 → |ψ〉1|φ〉2, the particle referred to as 1 (or 2) after the 
permutation will retain its uniquely identifying state-independent prop-
erties, thus creating a situation empirically distinct from the original one. 
If we decided to permute objects with respect to all their properties, the 
result would be different—the final state would be empirically indistin-
guishable from the original one. For instance, if the initial situation 
involved a proton labeled 1 in state |φ〉 and an electron labeled 2 in state 
|ψ〉, the final, permuted state would be described as follows: particle 1 
would become an electron in state |ψ〉, and particle 2 a proton in state 
|φ〉. This change would amount to nothing more than a simple relabeling 
of the original scenario. So it is paramount to exclude this understanding 
of permutation, if we want to insist that permuting particles of different 
types gives rise to empirically distinguishable situations.

On the other hand, when it comes to same-type particles, the distinc-
tion introduced above collapses. “Dragging” the state-dependent proper-
ties alongside the state-independent ones does not make any difference, 
since both particles possess the exact same state-independent properties. 
Still, we should keep in mind that the intention is to tie a given label with 
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the actually possessed state-independent properties that define a given 
type of particle. Introducing some philosophical terminology, we may say 
that state-independent properties constitute the essence of a given parti-
cle, in that they identify this particle in a counterfactual scenario after the 
permutation (more on that will come in Chap. 8, Sect. 8.5). More pre-
cisely, the essence of an object a is a set of its properties ℘ such that pos-
sessing properties from ℘ is a necessary condition for any object to be 
identical with a (see Mackie 2006, pp. 4–6 for some formalizations of the 
notion of essential properties). Putting this in terms of possible worlds, 
for every possible world w in which a exists (or, in which a counterpart of 
a exists, if we follow David Lewis’s conception of possible worlds and 
modality de re—see Lewis 1986; Beebee and MacBride 2015 for a recent 
critical analysis), a (or its counterpart) possesses ℘ in w. If by essentialism 
we understand the claim that all fundamental objects of a given theory 
(such as elementary particles) possess a set of essential properties, then 
essentialism seems to be an indispensable part of our interpretation of 
permutations in quantum mechanics.

Another possible view regarding modality de re (i.e. identification of 
objects in counterfactual scenarios) is known as haecceitism. It is basically 
the view that an object can acquire or lose any qualitative property while 
still remaining the same object, so the identity of an object is not tied to 
any of its qualitative characteristic. Metaphysicians sympathetic to this 
position (they are few and far between, to be sure) often add that the ele-
ment responsible for retaining the identity of an object is its non-
qualitative haecceity, that is, the property of being this very object 
(sometimes also called “primitive identity” or “primitive thisness”, since 
it is not reducible to any more fundamental attributes).3 Needless to say, 
haecceitism is at odds with empiricism, since haecceities are not empiri-
cally accessible to us. In addition to that problem, we should observe that 
haecceitism leads to an incorrect interpretation of permutations with 
respect to particles of different types, as explained above. Thus it seems 
that the quantum-mechanical formalism is more closely tied to the posi-
tion of essentialism than haecceitism.

3 The classical defense of the concepts of primitive thisness and primitive identity is Adams (1979). 
Among the proponents of haecceitism, one can count Gary Rosenkrantz—see his comprehensive 
book (Rosenkrantz 1993).
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As we remember, permutations of labels in the quantum-mechanical 
formalism can be applied to states (vectors), or to operators. The latter 
application is less problematic from a philosophical point of view, since 
permuted operators do not refer to counterfactual, merely possible states 
of affairs, but instead represent different properties of the very same, 
actual objects. To give an example: if we apply permutation P12 to opera-
tor A ⊗ I, which represents a particular observable (measurable property) 
of particle number 1, the result will be P12

−1 (A ⊗ I) P12 = I ⊗ A, which 
is a mathematical representation of the same observable attributed to par-
ticle number 2. There is no need to decide how to identify permuted 
objects in a counterfactual scenario, since we do not create one—we just 
consider abstract properties attributed to different actual objects. To 
make things entirely clear—when we talk about attribution, we do not 
mean that the particle actually possesses a certain value of the considered 
parameter, but rather we say “whose” property a given operator repre-
sents. Operators A ⊗ I or I ⊗ A do not describe particular states of affairs 
of which only one can be realized; instead, they represent abstract mea-
surable properties (spin, position, momentum, etc.) that are attributable 
to particle 1 and particle 2, respectively. In contrast to that, the permuted 
states of the form |φ〉1|ψ〉2 and |ψ〉1|φ〉2 are supposed to represent certain 
states of affairs that cannot occur “simultaneously”. If the first vector cor-
rectly describes the actual state of particles 1 and 2, the permuted vector 
can be interpreted only as a representation of another, possible state of 
affairs that does not take place in actuality. And for that reason we have 
to be careful to specify what possible and not actual objects the labels in 
the second vector refer to.

3.2	 �The Argument from Exchange  
Degeneracy4

In this section we will analyze yet another argument in favor of the 
Symmetrization Postulate (distinct from the argument using the 
Indistinguishability Postulate) that appears in textbooks on quantum 

4 This is a shorter version of a more detailed analysis presented in Bigaj (2020).

3  The Source of the Symmetrization Postulate 



54

mechanics (see, e.g. Cohen-Tannoudji et al. 1978, pp. 1375–1377). The 
argument from exchange degeneracy has the well-known form of a reduc-
tio ad absurdum. Suppose that indeed it is possible for a two-element 
system of same-type particles to occupy states that are neither symmetric 
nor antisymmetric, in particular states that are products of two non-
identical (orthogonal) vectors. Let us select one such state of the form 
|φ〉1|ψ〉2. As we already know, the Hilbert space ℋ ⊗ ℋ also contains a 
permuted vector |ψ〉1|φ〉2 which, by assumption, represents a state that is 
empirically indistinguishable from |φ〉1|ψ〉2. Thus we have a case of what 
is known as representational redundancy: our mathematical framework 
contains distinct representations of the same physical, or empirical, 
situation.

Representational redundancy is a common occurrence in mathemati-
cal physics, thanks in part to the richness and flexibility of mathematical 
formalism (which implies in the majority of cases the existence of so-
called surplus structures, in Redhead’s terminology, see Redhead 2002). A 
well-known case of redundancy present in quantum mechanics is caused 
by the fact that two vectors that differ by a phase represent the same 
physical state. This redundancy can be eliminated by changing the 
domain of mathematical objects from vectors to rays, but the resulting 
mathematical structure loses certain nice formal features (e.g. the set of 
rays is no longer a vector space). In classical mechanics we encounter a 
case of representational redundancy related to permutation invariance 
very similar to the one considered above. When we consider the phase 
space for two indistinguishable classical particles, any physical state of 
these particles that is not singular can be represented by any of the two 
distinct points: 〈q1, p1; q2, p2〉 and 〈q2, p2; q1, p1〉, where qi represents the 
position of the i-th particle and pi its momentum.5 The standard solution 
for this type of degeneracy is to identify the permuted points (to consider 
the reduced phase space with the permutation group “quotiented out”). 
Again, there is a mathematical price to be paid for this elimination of 
redundancy in the form of admitting a phase space that possesses some 
non-standard topological features (see Leinaas and Myrheim 1977).

5 The same applies in the case when the particles are distinguishable, but their identifying properties 
are dynamically irrelevant. See Saunders (2015, p. 176ff) for a discussion of the classical case of 
permutation invariance.
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The quantum case of permutation-based redundancy is different from 
the classical one in several respects. First of all, what makes the quantum 
case more difficult is that not only are the kets |φ〉1|ψ〉2 and |ψ〉1|φ〉2 dis-
tinct; they are also orthogonal, which means—according to the standard 
interpretational rule known as the Born rule—that the probability of 
finding the system in one state given that it occupies the other one should 
be zero. So it seems that the inclusion of both kets in our representational 
framework leads to a logical contradiction.6 Moreover, in the quantum 
case, as opposed to the classical one, distinct states can be superposed to 
create new states, typically distinguishable from the original ones. The 
permuted kets |φ〉1|ψ〉2 and |ψ〉1|φ〉2 span an entire two-dimensional sub-
space 𝒱φψ that contains all linear combinations of the form a|φ〉1|ψ〉2 + 
b|ψ〉1|φ〉2. The Born rule dictates that if a physical system is in a superpo-
sition of two orthogonal states, the probability of finding the system in 
any of the component states equals the squared modulus of the coeffi-
cient of this component. Thus if the system’s state is the above linear 
combination, the probability that the system will be found in the state 
described by the first ket |φ〉1|ψ〉2 equals |a|2, while the probability of the 
other option represented by |ψ〉1|φ〉2 equals |b|2. But both kets are sup-
posed to represent the same empirical situation; hence the probability of 
obtaining this situation should equal |a|2 + |b|2 = 1 (given the normaliza-
tion of the linear combination above). It seems that every linear (normal-
ized) combination a|φ〉1|ψ〉2 + b|ψ〉1|φ〉2 should represent precisely the 
same empirical state as kets |φ〉1|ψ〉2 and |ψ〉1|φ〉2.

Now the stage is set for the argument from exchange degeneracy, which 
is indeed very simple. Let us consider a Hermitian operator A acting in 
the one-particle Hilbert space ℋ, whose eigenvectors are orthogonal kets 
1

2

� ��� �  and 1

2

� ��� �.  It is easy to calculate that when we 

6 This contradiction can be avoided by limiting admissible observables to the symmetric ones, 
though, since in that case there will be no experimental procedure that could differentiate between 
permuted states. Thus the conditional statement regarding the zero probability of finding the sys-
tem in state |ψ〉1|φ〉2 given that it occupies state |φ〉1|ψ〉2 would be vacuously true, since the ante-
cedent (“If we performed such-and-such measurement, then…”) would be necessarily false. Still, 
as a matter of formal elegance, it is better not to have both permuted states |φ〉1|ψ〉2 and |ψ〉1|φ〉2 in 
one representational framework.
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perform a measurement of the same observable A on each of the two 
particles (thus we are measuring the observable represented by the sym-
metric product A ⊗ A) whose joint state is the superposition a|φ〉1|ψ〉2 + 

b|ψ〉1|φ〉2, the probability of finding both particles in state 1

2
( )� �� � �  

will equal 1
2

2

a b�� � .7 Hence this probability will be generally different 

for different values of a and b. It looks like some elements of the sub-
space 𝒱φψ can be differentiated by means of physically meaningful 
experiments, and therefore they can’t possibly represent the same 
physical state.

The argument from exchange degeneracy shows that even if the 
Indistinguishability Postulate is satisfied, that is, there is no way to empir-
ically discern permuted states, this does not exclude the possibility that 
there may be other unacceptable cases of apparent empirical differences 
where there shouldn’t be any. The satisfaction of IP is ensured by the fact 
that the operator A ⊗ A used in the argument is symmetric, hence does 
not differentiate between any state |Φ(1,2)〉 and its permuted variant 
|Φ(2,1)〉, since 〈Φ(1,2)|A ⊗ A|Φ(1,2)〉 = 〈Φ(2,1)|A ⊗ A|Φ(2,1)〉. Still, 
operator A ⊗ A differentiates between various combinations of the form 
a |φ〉1|ψ〉2 + b |ψ〉1|φ〉2, and this seems to be as bad as differentiating 
between permuted states. The key premise on which the argument relies, 
which I will refer to as Ontic Conservativeness of Superpositions (OCS), 
can be spelled out as follows:

(OCS) 	 If vectors |η〉 and |χ〉 represent the same physical state, then 
any linear combination a|η〉 + b|χ〉 represents the very 
same state.

7 This probability can be equivalently presented as the expectation value for the projector onto the 

ray spanned by the ket 1

2

1

2
� � � �� � � ��� �� �� �� �� � .
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As we have indicated earlier, OCS can be supported by reference to the 
Born rule, even though OCS does not seem to follow from it logically.8 
OCS, together with the assumption that vectors |φ〉1|ψ〉2 and |ψ〉1|φ〉2 
represent the same physical state, leads to the absurd conclusion that one 
and the same physical state produces different expectation values of an 
admissible operator, merely because this state is mathematically repre-
sented by distinct vectors.

The proponents of a haecceitistic interpretation of permutations will 
want a premise slightly different from OCS, since they disagree with the 
assumption that kets |φ〉1|ψ〉2 and |ψ〉1|φ〉2 represent the same ontological 
state of affairs. They can only concede that |φ〉1|ψ〉2 and |ψ〉1|φ〉2 refer to 
physical facts which are empirically indistinguishable even though onto-
logically distinct; hence they need the following premise (called, for obvi-
ous reasons, Epistemic Conservativeness of Superpositions):

(ECS) 	 If vectors |η〉 and |χ〉 represent physical states that are empiri-
cally indistinguishable, then any linear combination a|η〉 + 
b|χ〉 represents a state that is also empirically indistinguishable 
from them.

Either way, the conservativeness of superpositions ensures that all super-
positions of the form a|φ〉1|ψ〉2 + b |ψ〉1|φ〉2 should be empirically indis-
tinguishable, which contradicts the result obtained above. Consequently, 
the initial assumption that both states |φ〉1|ψ〉2 and |ψ〉1|φ〉2 are available 
to the particles turns out to be unsustainable. However, this result by 
itself does not prove that the only available states in this case are symmet-
ric or antisymmetric. Actually, there is an alternative way to deal with the 
challenge created by the argument from exchange degeneracy which 
seems to be prima facie acceptable. The idea is simply to eliminate the 
permutation-based redundancy by “brute force”, as it were, that is, by 

8 The main obstacle on a path leading from the Born rule to OCS is the notorious gap between prob-
ability one and pre-measurement reality. The Born rule guarantees that it is certain that upon measure-
ment the system will find itself in a particular physical state described as either |φ〉 or |ψ〉, but from 
this it does not logically follow that the system already occupies this state before measurement. We have 
to be wary of this type of reasoning, lest we are forced to accept the logical transition from the fact that 
it is guaranteed (with probability one) that a certain definite value of an observable will be revealed to 
the conclusion that a certain definite value of this observable is possessed before measurement.
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stipulating that of any pair of permuted vectors |φ(1, 2)〉 and |φ(2, 1)〉, 
only one is admissible. A systematic way to do that is to select a subspace 
ℛ(ℋ ⊗ ℋ) of the entire tensor product ℋ ⊗ ℋ spanned by the follow-
ing selection of basis vectors:

	
| | : ,e e i ji j� � �� �

	

where |ei〉 are basis vectors for ℋ. Thus out of n2 dimensions of space ℋ 
⊗ ℋ, we consider only k dimensions, where:9

	
k i

n n

i

n

� �
�� �

�
�

1

1

2
.

	

It is easy to observe that for any vector |Φ (1, 2)〉 ∈ ℛ (ℋ ⊗ ℋ), |Φ (2, 
1)〉 ∈ ℛ(ℋ ⊗ ℋ) iff |Φ(1, 2)〉 = |Φ(2, 1)〉. This follows from the fact 
that each vector |Φ(1, 2)〉 in ℛ(ℋ ⊗ ℋ) has a unique decomposition in 
terms of the basis vectors: |Φ(1, 2)〉 = 

i j
ij i jc e e

�
� � � , and the permuted 

vector |Φ(2, 1)〉 = 
i j

ij j ic e e
�
� � �  belongs to ℛ(ℋ ⊗ ℋ) only when cij = 0 

for all i ≠ j.

The restriction of the tensor product space to subspace ℛ(ℋ ⊗ ℋ), 
coupled together with the limitation of admissible operators to the sym-
metric ones, necessary in order to guarantee the satisfaction of the 
Indistinguishability Postulates, seems to do the job. And yet there is one 
serious problem with this solution. As can be quickly verified, symmetric 
projectors of the form Eφ ⊗ Eψ + Eψ ⊗ Eφ can take us outside subspace 
ℛ(ℋ ⊗ ℋ) when applied to certain vectors. This happens, for 
instance, when:

	
� �� � � � � � � � � �

1

2

1

2
1 2 1 2

( ) ( ),e e e eand

	

9 This method generalizes to the case of N particles as follows: for the subspace of ℋN, we select the 
basis vectors from the set {|i1, i2, …, iN〉: i1 ≤ i2 ≤ … ≤ N and ik = 1, 2, …, n}. Thus we take all non-
descending N-element sequences of numbers from 1 to n to form the required basis.
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in which case:

	
E E E E e e e e e e� � � �� � �� � � � � � � � � �� �1 2 1 2 2 1

1

2
.

	

This is both formally and physically unacceptable. Formally, the set of 
operators on any given subspace V must be limited to those operators A 
acting in the entire space for which A[V] ⊆ V. Physically, the projector Eφ 
⊗ Eψ + Eψ ⊗ Eφ represents a certain possible outcome of an admissible 
measurement that, if obtained, will inevitably leave the system in a state 
that no longer belongs to ℛ(ℋ ⊗ ℋ), which violates the assumption 
that only vectors in ℛ(ℋ ⊗ ℋ) are admissible as representations of 
physically possible states of affairs. Thus we cannot simply eliminate the 
permutation-based redundancy by hand in the way described above, and 
the only other solution is to adopt the Symmetrization Postulate, that is, 
to limit available states to either the symmetric ones or the antisymmet-
ric ones.

It is elementary to observe that with the states limited to either sym-
metric or antisymmetric, we avoid the problem with exchange degener-
acy, since the combinations of the form a |φ〉1|ψ〉2 + b |φ〉1|ψ〉2, where a ≠ 
b, are no longer admissible. Thus we have managed to form an argument 
in favor of SP that is quite independent from the need to keep the 
Indistinguishability Postulate true, even though it is still closely 
related to it.

3.3	 �Parastatistics

The discussion given in the previous section has been done under the 
simplifying assumption that the number of same-type particles equals 
two. Typically, generalizations for higher numbers of particles present 
problems that are little more than technical. Not this time, though. It 
turns out that there is a substantial difference between bipartite systems 
and systems of more than two particles in that only with respect to the 
former can we actually prove a dichotomy of two exclusive types of 
symmetry-preserving particles: bosons (symmetric) and fermions (anti-
symmetric). When the number of particles is larger than two, new types 
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of symmetries become available. In this section we will show how to iden-
tify permutation-invariant subspaces containing vectors that display sym-
metries of types different than bosonic and fermionic in the case of 
three-particle systems (hypothetical particles obeying these new symme-
tries are called paraparticles). We will also see that there are some funda-
mental theoretical and conceptual difficulties with these new types of 
symmetries, which make the existence of paraparticles rather improbable, 
quite independently of the lack of strong empirical evidence supporting 
the paraparticle hypothesis.

To keep the level of formal complexity as low as possible, we will 
assume that each one-particle Hilbert space is three-dimensional and 
hence is spanned by three orthonormal vectors |α〉, |β〉 and |γ〉. Thus the 
entire product ℋ3 = ℋ ⊗ ℋ ⊗ ℋ will be 27-dimensional, spanned by 
the triples |ijk〉, where each index i, j, k can assume any value α, β or γ. 
For every basis vector |ijk〉, we can define its antisymmetrization and 
symmetrization as follows:

	
Sym� �ijk i j k

S
� � � � � � � ����1

6 3�
� � �, , ,

	

(3.1)

	
Anti� �ijk i j k

S
� � � � � � � ����1

6 3
sgn , , ,� � � �

�
	

(3.2)

where S3 is the permutation group of a three-element set, and sgnσ is the 
sign of permutation σ (1 for permutations consisting of an even number 
of transpositions, and −1 for odd permutations). The operations of sym-
metrization and antisymmetrization are not one-to-one, that is, we can 
get the same result out of different initial vectors.10 Thus the number of 
distinct (and orthonormal) symmetric and antisymmetric vectors will be 
less than 27.

Starting with the case of antisymmetric vectors, we can notice that 
there is only one possible non-zero result of the operation Anti  ∣  ijk〉. 
When any of the indices i, j, k are identical, the result will be zero, since 

10 Formally, operations Sym and Anti can be treated as projection operators, projecting onto sym-
metric and antisymmetric subspaces of ℋ 3.
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the odd permutation swapping two identical elements cannot possibly 
produce the minus sign, as required by (3.2). On the other hand, any 
vector |ijk〉, where i, j and k are non-identical, will produce the same 
(modulo the sign) antisymmetric vector, whose full form is as follows:

	

1

6

��� ��� ��� ��� ��� ���� � � � �� �.
	

Thus the antisymmetric subspace is just one-dimensional.11 However, the 
symmetric subspace is much larger. It consists, first, of a symmetric coun-
terpart of the above-written antisymmetric vector:

	
Sym ��� ��� ��� ��� ��� ��� ���� � � �1

6

� � � � � .

	

Then we have six vectors arising as a result of the symmetrization of tri-
ples with two repeated elements, as follows:

	 Sym  Sym  Sym  Sym  Sym  Sym| | | | | |, , , , ,��� ��� ��� ��� ��� ���� � � � � �.. 	

For instance, the first vector on the list will have the following full form: 
1

3

| | | .��� ��� ����� � � �� �  Note that the exact same vector will be 

obtained by symmetrizing the triples |αβα〉 and |βαα〉, which shows that 
the six symmetric vectors written above correspond to 18 basis vectors. 
Finally, we have three symmetric states which are the result of symmetriz-
ing already symmetric triples:

	 Sym� ���� ���� � � 	

11 This is just a coincidence caused by the fact that the number of dimensions of ℋ and the number 
of factors in the product of Hilbert spaces happen to be identical. In the general case when the 
number of particles is N and the dimensionality of each Hilbert space is K (K > N), there will be 
K

N

�

�
�

�

�
�

 
orthogonal antisymmetric vectors (the number of N-element combinations out of K distinct

 

elements).
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	 Sym� ���� ���� � � 	

	 Sym� ���� ���� � �. 	

All in all, the symmetric subspace will have 10 dimensions, which 
leaves 16 dimensions of the product space ℋ3 that are neither symmetric 
nor antisymmetric (27 = 10 + 1 + 16). Instead of working with this rather 
large 16-dimensional space, we will limit ourselves to the subspace of ℋ3 
spanned by six permutations of the triple |αβγ〉. In that case both sym-
metric and antisymmetric subspaces are one-dimensional, which leaves 
us with four dimensions unaccounted for. Our task now will be to find 
within this four-dimensional space some subspaces that remain invariant 
under permutations and thus can possibly house states of particles with 
different types of symmetries (paraparticles).12 Let us try to identify four 
vectors orthogonal to Sym|αβγ〉 and Anti|αβγ〉, that could span such 
permutation-invariant subspaces. Of course there is a substantial degree 
of freedom in selecting vectors orthogonal to the two above-mentioned, 
so we can start with some arbitrary choices. One vector orthogonal to 
Sym|αβγ〉 and Anti|αβγ〉 may be stipulated to have the following form:

	

1

3

a b c��� ��� ���� �� �.
	

(3.3)

As can be clearly seen, vector (3.3) consists of elements which are cyclic 
permutations of the initial triple |αβγ〉. Given that (3.3) is supposed to be 
normalized, we may achieve that by putting |a |2 = |b |2 = |c |2 = 1 (remem-
ber that a, b and c are complex numbers, so we take the squared modulus 
here). Moreover, we do not lose generality by laying a = 1, since multiply-
ing (3.3) by any number whose norm equals one is irrelevant. Given the 
assumption that |b|2 = |c|2 = 1, the numbers we are searching for have the 
form b = eiθ1  and c = eiθ2 . Next, thanks to the assumption that vector 
(3.3) must be orthogonal to Sym|αβγ〉 and Anti|αβγ〉, it follows that 1 + 
b + c = 0.13 From this, the following must hold: cosθ1 + cosθ2 = −1, sinθ1 

12 The approach used below is closely modeled on Peres (2002, p. 131ff).
13 To see that, take the inner product of (3.3) and Sym|αβγ〉 (Anti|αβγ〉).
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= −sinθ2 (using the Euler formula eiθ = cosθ + isinθ). The second equation 
implies that θ1 = 2π - θ2, and taking into account that cos(2π – θ) = cosθ, 
we get from the first equation cosθ1 = cosθ2 = −½. Hence the solution is 
θ1 = ��

3
 and θ2 =

 

��
3

, which gives us the following form of the 

required vector:

	

1

3

2 3 4 3��� ��� ���� �� �� �e ei i/ /
.

	
(3.4)

Now we can ask how the vector given in (3.4) will behave under per-
mutations. It is easy to observe that cyclic permutations will produce 
multiples of (3.4), thanks to simple algebraic relations between the three 
roots of 1: 1, e2πi/3 and e4πi/3. As a matter of fact, these roots, which can be 
conveniently symbolized as 1, ω, and ω2, where ω = e2πi/3, form a multi-
plicative group which is precisely the cyclic group Z3, that is, the group 
of cyclic permutations of a three-element set (cf. Penrose 2005, 
pp. 98–99). Thus any cyclic permutation of particles (labels) applied to 
(3.4) will exactly correspond to a multiplication of the coefficients by a 
constant.14 It can be verified by direct calculation that, for instance, 
applying the permutation 123 → 231 will yield the following multiple 
of (3.4):

	

e e e
i

i i
4 3

2 3 4 3

3

�
� ���� ��� ���

/

/ /
.� �� �
	

(3.5)

However, applying transpositions to (3.4) will yield new vectors, 
orthogonal to (3.4). For instance, the transposition 123 → 213 will have 
the following effect:

14 The fact that the nth roots of unity form a cyclic group Zn may be used as an explanation of why 
there are no one-dimensional permutation-invariant subspaces other than Sym|αβγ〉 and Anti|αβγ〉. 
Suppose that we consider an analogue of vector (3.4) containing all permuted triples |ijk〉 and thus 
potentially permutation-invariant. In order to make this new vector orthogonal to Sym|αβγ〉 and 
Anti|αβγ〉, the coefficients of its six components have to form the sixth roots of unity: 1, ω, ω2, ω3, 
ω4, ω5, where ω = eπi/3. But this set forms the cyclic group Z6 which is not isomorphic with the 
permutation group S3; hence permutations applied to the new vector will generally not produce the 
same vector.
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1

3

2 3 4 3��� ��� ���� �� �� �e ei i/ /
.

	
(3.6)

The remaining two transpositions will produce multiples of (3.6). Thus 
we have found a two-dimensional space spanned by vectors (3.4) and 
(3.6) which is orthogonal to symmetric and antisymmetric subspaces and 
remains invariant under permutations. We can write them down in an 
abbreviated form as follows:

	

�

�

1

2

2

2

1

3

1

3

� � � � � �� �

� � � � � �� �

��� � ��� � ���

��� � ��� � ���

|

|

	

(3.7)

Now we only need to find two more orthogonal vectors with similar 
symmetry properties. Without going through tedious derivations on the 
basis of the orthogonality assumptions, we’ll simply present the final result:

	

�

�

1

2

2

2

1

3

1

3

� � � � � �� �
� � � � � �� �

��� � ��� � ���

��� � ��� � ���

|

|

	

(3.8)

The orthogonality relation between Ψ1 and Φ2 and between Ψ2 and Φ1 
can be established using the following algebraic equalities (asterisk * indi-
cates the operation of complex conjugate): 1 + (ω2)*ω + ω*ω2 = 1 + ωω 
+ ω2ω2 = 1 + ω2 + ω, and we have already proven earlier that this last 
formula equals zero. Vectors Ψ1 and Φ1, as well as Ψ2 and Φ2, are trivially 
orthogonal. Vectors Φ1 and Φ2 span yet another two-dimensional sub-
space that does not change under the action of permutations of particles.

The transformation properties of vectors in (3.7) can be synthetically 
presented as follows (the formulas for vectors (3.8) will be identical except 
Φ replaces Ψ):
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� �
� �
�
� �
� �

231 1

2

1

312 1 1

213 1 2

132 1 2

321 1

2

2

� �
� �
� �
� �
� �

�
�
�
�
� 	

(3.9)

	

� �
� �
�
� �
� �

231 2 2

312 2

2

2

213 2 1

132 2 1

321 2

2

1

� �
� �
� �
� �
� �

�
�
�
�
� 	

(3.10)

The above transformations can also be presented in matrix form, assum-
ing that each permutation operator acts on a column vector with compo-
nents Ψ1 and Ψ2 (Φ1 and Φ2). That way we can represent any permutation 
as a 2×2 matrix as follows:

	

�
�

�

�
�

�

�

�
�

�

231

2

312 2
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132 2

0

0

0

0

0 1

1 0
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�
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�
�

�
�

�
�
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�
��

�
�321

2
0

0
	

(3.11)

Incidentally, we have arrived at what is known as an irreducible representa-
tion of the group S3 of permutations of a three-element set. The 
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representation given above is two-dimensional, as opposed to one-
dimensional representations associated with boson and fermions.

It may be interesting to observe that the choice of subspaces spanned 
by Ψ1 and Ψ2 and by Φ1 and Φ2 is by no means unique. An alternative 
decomposition (one of an infinite number) of the four-dimensional space 
into two two-dimensional permutation-invariant spaces can be given, for 
instance, by the following combinations15:

	

� � �

� � �

1 1 1

2 2 2

1

2

3

2

1

2

3

2

� �

� �
	

(3.12)

	

� � �

� � �

1 1 1

2 2 2

3

2

1

2

3

2

1

2

� �

� �
	

(3.13)

It can be easily verified that all vectors in (3.12) and (3.13) are mutually 
orthogonal. Also, given the transformation properties of vectors Ψ1 and 
Ψ2 presented in (3.9) and (3.10), as well as the mirror-image properties 
of Φ1 and Φ2, we can quickly check that spaces spanned by Λ1 and Λ2, 
and by Ξ1 and Ξ2, are permutation-invariant. In other words, permuta-
tions of particles turn vectors Λ1 and Λ2 into each other’s multiples, and 
the same for Ξ1 and Ξ2.

It is rather curious that the choice of permutation-invariant subspaces 
of the remaining four-dimensional space turns out to be so heavily under-
determined. Since these subspaces are supposed to correspond to new 
types of particles whose states are assumed to reside exclusively within a 
particular subspace, this means that potentially we have an infinite num-
ber of types of such hypothetical particles, and it is difficult to see which 
ones would be selected in nature. However, ignoring this issue, let us 

15 A more general formula covering cases (5.12) and (5.13) can be found in Peres (2002, p. 134), 
however with an error (switched symbols Φ± and Ψ± in (5.59)).
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focus on the subspaces spanned by vectors Ψ1 and Ψ2 and by Φ1 and Φ2, 
and let us ask the question of what the properties of hypothetical particles 
occupying these spaces would be. In particular, we are interested in the 
problem of the indiscernibility of such particles. And it seems that because 
Ψ1, Ψ2, Φ1, Φ2 are themselves not permutation-invariant, it should be in 
principle possible to discern, by means of experimental procedures, par-
ticles occupying spaces spanned by these vectors. Take Ψ1 and Ψ2, for 
instance. Since Ψ1 and Ψ2 are orthogonal, we can find a Hermitian opera-
tor A whose eigenvectors are precisely Ψ1 and Ψ2, and whose eigenvalues 
corresponding to these eigenvectors are distinct, therefore enabling us to 
differentiate between states that belong to the same permutation-invariant 
subspace of states for a given category of paraparticles.16

This argument can be countered by pointing out that we should limit 
ourselves to symmetric operators, since particles of the same type should 
not be discernible under permutations, no matter whether they are 
bosons, fermions or paraparticles. As we have already seen in Sect. 2.4, 
restricting operators to those that commute with all permutations has the 
effect of automatically guaranteeing the validity of the Indistinguishability 
Postulate (the assumption that the expectation values for all admissible 
observables in permuted states should be identical) without any restric-
tions on the available states. Seen in this perspective, the division of the 
entire product space into subspaces of paraparticle states (plus two sub-
spaces for bosons and fermions) has the sole purpose of delineating spaces 
that remain invariant under the action of admissible, that is, symmetric 
operators. Here, again, we encounter the distinction between available 
and accessible states (see ft. 13 in Chap. 2): with only symmetric operators 
representing physically meaningful observables, states in any paraparticle 
subspace are the only ones physically accessible for particles that already 
occupy this subspace, but this does not mean that other states are not avail-
able for them, if only they could start their existence outside of the 

16 For Huggett the existence of non-permutation-invariant observables acting in spaces of states for 
a given type of paraparticles is proof that paraparticles can be discerned by properties. He insists 
that operators acting on allowed spaces (i.e. such that they do not take us outside a given allowed 
space) are perfectly admissible as representations of physical properties, even when they are not 
symmetric (Huggett 2003, p. 245ff). However, Peres disagrees with that, maintaining that all oper-
ators pertaining to “indistinguishable” particles, whether bosons, fermions or paraparticles, should 
be invariant under relabeling of particles (Peres 2002, p. 135).
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considered subspace. But in that case paraparticles would still differ in 
one respect from bosons and fermions: while the latter occupy states such 
that they guarantee the satisfaction of IP without the need of the sym-
metrization postulate with respect to observables, paraparticles need the 
restriction on operators in order to be truly indiscernible. Needless to say, 
the restriction which limits operators to symmetric ones makes all parti-
cles “trivially” indiscernible (at least according to orthodoxy), regardless 
of what type they belong to and what states they occupy.

We will close this section with an observation, made in Peres (2002, 
pp. 136–137), which reveals another type of peculiarity affecting parapar-
ticle states. Peres refers to this peculiarity as “cluster inseparability”. In the 
case of bosons and fermions, it can be proven that they satisfy the condi-
tion of cluster separability, which ensures that smaller components of a 
bigger whole can be treated as a separate system provided these compo-
nents are sufficiently remote from the rest of the system (Peres 2002, 
pp. 128–129). For instance, if we consider a system of three fermions or 
bosons whose states are initially (i.e. before the symmetrization/antisym-
metrization) represented by |φ〉, |ψ〉 and |η〉, and if we take any operator 
A representing a local measurement of the subsystem of the first two 
components and such that A|η〉 is vanishingly small (the condition of 
remoteness), then the expectation value of A calculated for the state of the 
three particles will be the same as the expectation value for the state of the 
first two particles with the third particle ignored. However, it turns out 
that this result does not generalize to paraparticles. As we know, the state 
of two particles can display only two types of symmetry: bosonic or fer-
mionic. Consequently, when considering a system of three paraparticles, 
the expectation values of observables limited to two of them will depend 
on whether we take the third one into account. It is as if “observable 
properties of the particles in our laboratory were affected by the possible 
existence on the Moon of another particle of the same species” (Peres 
2002, p.  137).17 Peres concludes that this consequence makes the 

17 Observe, incidentally, that Peres, like virtually all physicists, continues talking about distinguish-
able properties of particles of the same type (such as the location on the Moon versus the location 
in a lab), in spite of the symmetry of the joint state of these particles and the ensuing Indiscernibility 
Thesis. We will propose a firm theoretical foundation for this practice in Chap. 5 and subsequent 
chapters.
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existence of paraparticles extremely unlikely. While we may have doubts 
regarding arguments that are ultimately based on some pretheoretical, 
pre-quantum intuitions (such as the intuition of separability), for the 
reminder of the book we will ignore the theoretical possibility of 
paraparticles.
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4
Logic and Metaphysics of Discernibility

Chapter 2 has ended with a brief venture into the metaphysics of discern-
ibility. In particular, we have posed several questions regarding the con-
nection between the validity of the Principle of the Identity of 
Indiscernibles (PII) and the status of objects to which PII is applicable. Is 
the validity of PII a necessary condition for objects to achieve the meta-
physical status of individuals? Is it sufficient? What other metaphysical 
uses can PII be put to? Can PII serve as an assurance that facts of numeri-
cal identity and distinctness will be reducible to (or grounded in) qualita-
tive facts involving empirically accessible properties and/or relations? All 
these questions presuppose that we have a good grasp of the fundamental 
concept of discernibility. Yet it turns out that the notion itself admits 
various and inequivalent interpretations. In this chapter we will offer a 
formal analysis of three most popular variants of discernibility—abso-
lute, relative and weak—together with some basic facts regarding their 
mutual logical connections. This analysis will be done in the framework 
of standard, first-order logic, which is a useful tool for that sort of consid-
erations. We will point out that the answer to the question of whether 
some objects can be discerned may depend on the expressive power of the 
language in which this discernibility is to be formulated (in particular, on 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74870-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-74870-8_4#DOI
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whether this language admits the predicate of numerical identity, or the 
individual names for all objects in the domain).

The requirement of permutation invariance, which plays the central 
role in the quantum theory of many particles, can be easily formalized in 
first-order logic. Given this formalization, it can be quickly shown that 
permutation-invariant languages do not admit expressions with the help 
of which we could discern objects in the domain either absolutely or rela-
tively. The only type of discernibility available in permutation-invariant 
languages is weak discernibility. This logical fact underlies an attempt to 
build a new metaphysics of quantum particles based entirely on the rela-
tions of weak discernibility. We will critically evaluate this approach, 
pointing at the serious limitations of weakly discerning relations in their 
intended role as a metaphysical foundation for identity and individuality. 
Mere weak discernibility does not provide us with sufficient means to 
distinguish objects in a way that makes it possible to make reference to 
individual entities. Even the potentially viable goal of providing a qualita-
tive ground for non-qualitative facts of numerical distinctness encounters 
serious obstacles, since it may be argued that the weakly discerning rela-
tions which can be realistically used in quantum mechanics implicitly 
involve the relation of numerical identity/distinctness.

4.1	 �From Absolute to Weak Discernibility

As we have already seen in Chap. 2, the most natural way (as some would 
even say, the only way) to interpret the concept of qualitative discernibil-
ity is in terms of properties and their possession. We qualitatively discern 
object a from object b if we can identify a property P such that a possesses 
P while b lacks it. Metaphysicians further inquire what type of property 
P has to be in order to speak about genuine qualitative discernibility and 
not some mere “formal” discernibility (e.g. discernibility with the help of 
haecceities, or the properties of being this or that particular object). 
However, we will not attempt here to make an ontological distinction 
between genuine qualitative properties and “impure” properties. Instead, 
we will simply assume that we have at our disposal a first-order language 
ℒ whose primitive non-logical predicates denote admissible physical 
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properties and relations. The assumption of the admissibility of corre-
sponding properties and relations is part of a scientific theory formulated 
in language ℒ and therefore cannot be argued for on the basis of some 
high-level metaphysical considerations. On top of that, we will not 
include among the non-logical expressions of language ℒ the identity 
symbol =, nor will we admit any individual constants corresponding to 
the objects of the domain. The reason for these restrictions, which are 
commonly adopted in the literature, is that both the identity predicate 
and individual constants are usually considered non-qualitative, and 
therefore potentially inappropriate as representations of properties (rela-
tions) used to discern objects. However, later we will address the question 
of how discernibility in a language is affected by adding these expressions 
to its vocabulary.

A semantic interpretation of a first-order language ℒ is typically given 
in the form of a relational structure ℜ = 〈D, R1, …, Rn〉, where D is a 
non-empty set (domain) and R1, …, Rn are relations of various arities on 
D, corresponding to the primitive predicates of ℒ. Any well-formed for-
mula Φ of ℒ can receive an interpretation in ℜ using the standard pro-
cedure. In particular, formulas with k free variables will correspond to 
k-argument relations in ℜ definable in terms of relations R1, …, Rn and 
set-theoretical operations. Once we introduce the notion of satisfaction of 
formulas in model ℜ, we can give a formal definition of what it means 
for two objects to be discerned by properties. Following standard prac-
tice, we will call this type of discernibility absolute, and we will relativize 
it to language ℒ (with its intended interpretation in the form of struc-
ture ℜ):1

(4.1)	 Objects a, b ∈ D are absolutely discernible in language ℒ 
with its intended interpretation ℜ iff there is an open for-
mula Φ(x) in one variable in ℒ such that ℜ ⊨ Φ(a) and 
ℜ ⊭ Φ(b).

1 In my presentation of the logical analysis of discernibility, I follow closely Ladyman et al. (2012). 
This comprehensive overview of the logic of discernibility draws heavily on earlier works, including 
Ketland (2006, 2011), Caulton and Butterfield (2012). A formal introduction to the logical 
notions I am using in my exposition can be found in any textbook on model theory, for example, 
Hodges (1997).
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Symbol ⊨ represents the relation of satisfaction in a model, whereas 
the metalogical expression ℜ ⊨ Φ(a) is an abbreviation of the more com-
mon but a bit cumbersome notation ℜ ⊨ Φ(x)[a]. The latter formula 
highlights the fact that symbol a does not belong to language ℒ but to 
its metalanguage. The relation of satisfaction connects formula Φ(x), 
which belongs to ℒ, with a particular object a in the domain of ℜ.

We may want to further distinguish two subtypes of absolute discern-
ibility: intrinsic and extrinsic. As we remember from Sects. 2.6 and 2.7, 
the Indiscernibility Thesis with respect to quantum particles is often split 
into two parts: one concerning non-relational properties and the other 
the relational ones. We will now make precise what counts as a relational 
property (“extrinsic” in our terminology). Speaking loosely, a relational 
(extrinsic) property of an object a is a property that involves objects other 
than a. In our language ℒ, which does not contain individual constants 
in its vocabulary, the only way to “involve” other objects in a one-variable 
formula Φ(x) satisfied by a is to use quantifiers to bind variables other 
than x. Thus, for instance, formula ∃y Ψ(x, y) contains hidden reference 
to objects that can be distinct from a, since it states that any object satis-
fying it must stand in the relation denoted by Ψ to some entity.2 Following 
this intuition, we will define the concept of absolute intrinsic 
discernibility:

(4.2)	 Objects a, b ∈ D are absolutely intrinsically discernible in lan-
guage ℒ with its intended interpretation ℜ iff there is an 
open formula Φ(x) in one variable in ℒ such that Φ(x) does 
not contain any quantifiers, and ℜ ⊨ Φ(a) and ℜ ⊭ Φ(b).

We will call two objects merely extrinsically discernible, if they are abso-
lutely discernible but not absolutely intrinsically discernible (but see the 
caveat in ft. 2).

2 Strictly speaking, the satisfaction of formula ∃y Ψ(x, y) by element a does not necessitate the fact 
that a stands in the corresponding relation to a distinct object (it may be the case that a stands in 
this relation to itself ). In order to ensure that distinct objects are involved, we would have to use 
the identity predicate, which by assumption is not available in language ℒ. I will ignore this com-
plication, noting only that because of it the definition of intrinsic absolute discernibility given in the 
main text may be too restrictive. This, however, does not have any detrimental consequences for 
our future discussions.
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Even though this may be seen as unnecessarily repetitive, we will nev-
ertheless specify what it means for a particular formula to discern two 
objects in the domain:

(4.3)	 A one-variable formula Φ(x) in language ℒ with its intended 
interpretation ℜ absolutely discerns objects a and b iff either 
ℜ ⊨ Φ(a) and ℜ ⊭ Φ(b) or ℜ ⊨ Φ(b) and ℜ ⊭ Φ(a).

From definition (4.3) it follows immediately that if formula Φ(x) abso-
lutely discerns a from b, so does its negation ¬Φ(x). Also, the relation of 
absolute discernibility by a formula is symmetric, that is, if a formula 
discerns a from b, it also discerns b from a.

Once we have defined the logical concept of absolute discernibility, we 
may note two simple facts which can illustrate the metaphysical use this 
concept can be put to. First, if we assume that all objects in a given finite 
domain are absolutely discernible from each other, this immediately 
implies that for any object a there is a formula that is uniquely satisfied by 
a. This formula is simply the conjunction of all one-variable formulas 
that absolutely discern a from any other object.3 Such a uniquely identi-
fying formula can serve as a basis for naming the corresponding object, or 
making unambiguous reference to it. Second, it is an elementary logical 
fact that if objects a and b are absolutely discernible, they must be numer-
ically distinct (a ≠ b). Clearly, if a = b, then the existence of an absolutely 
discerning formula Φ(x) would be contradictory: Φ(a) ∧ ¬Φ(a). Thus it 
may be claimed that in a domain in which all objects are absolutely dis-
cernible, all facts regarding their numerical distinctness can be inferred 
from (or grounded in) some qualitative facts regarding possession of par-
ticular properties.

As it turns out, absolute discernibility is not the only concept of dis-
cernibility available. W.v.O. Quine distinguished two further notions of 

3 If we drop the assumption of the finiteness of the domain, there may be no formula in language ℒ 
that uniquely picks out a given object (since ℒ admits only finite conjunctions), but we may still 
consider a property that corresponds to an infinite set of formulas from ℒ. Possession of such a 
property will uniquely differentiate a given object from any other object in the universe.
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discernibility which are today known as relative and weak (Quine 1976).4 
Relative discernibility can be defined as follows:

(4.4)	 Objects a, b ∈ D are relatively discernible in language ℒ with 
its intended interpretation ℜ iff there is an open formula 
Φ(x, y) in two variables in ℒ such that ℜ ⊨ Φ(a, b) and ℜ 
⊭ Φ(b, a).

Thus relative discernibility means that there is a formula which is satis-
fied by two objects in one order but is not satisfied in the opposite order. 
An example of such a situation is provided by numbers ordered by the 
“greater than” relation: x > y. Accordingly, we can talk about a formula 
relatively discerning two objects:

(4.5)	 A two-variable formula Φ(x, y) in language ℒ with its 
intended interpretation ℜ relatively discerns objects a and b 
iff either ℜ ⊨ Φ(a, b) and ℜ ⊭ Φ(b, a), or ℜ ⊨ Φ(b, a) and 
ℜ ⊭ Φ(a, b).

Again, relative discernibility by a given formula is symmetric in the 
sense that if a formula discerns a from b, it likewise discerns b from a. 
Moreover, if a formula Φ(x, y) relatively discerns a from b, then its con-
verse Φ(y, x) discerns them too.

The appropriate definitions in the case of weak discernibility will be as 
follows:

(4.6)	 Objects a, b ∈ D are weakly discernible in language ℒ with 
its intended interpretation ℜ iff there is an open formula 
Φ(x, y) in two variables in ℒ such that ℜ ⊨ Φ(a, b) and ℜ 
⊭ Φ(a, a).

4 Quine in his book (1960) uses the terms “absolute discernibility” and “relative discernibility”, but 
in the later article (Quine 1976) that we are referring to in the main text, these terms are replaced 
by “strong discriminability” and “moderate discriminability”, with weak discriminability being a 
third concept.
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(4.7)	 A two-variable formula Φ(x, y) in language ℒ with its 
intended interpretation ℜ weakly discerns objects a and b iff 
ℜ ⊨ Φ(a, b), ℜ ⊨ Φ(b, a), ℜ ⊭ Φ(a, a) and ℜ ⊭ Φ(b, b).5

It is often said informally that two objects are weakly discerned by a 
relation that is symmetric and irreflexive on the set of objects that it dis-
cerns. This does not seem to be guaranteed by def. 4.6, but as a matter of 
fact it is implied by it. If a formula Φ(x, y) satisfies def. 4.6, we can define 
a new one as follows:

	
� � � � �x y x y y x x x y y, , , , ,

df� � � � � � � ��� �� � � � �� � � ��� �� . 	

It can be quickly verified that ℜ ⊨ Ψ(a, b), ℜ ⊨ Ψ(b, a), ℜ ⊭ Ψ(a, a) 
and ℜ ⊭ Ψ(b, b).6 Thus we can accept the definition of weak discern-
ibility based on a symmetric and irreflexive relation as an equivalent 
of (4.6).

4.2	 �The Meaning of Weak Discernibility

The notion of relative discernibility plays a minimal role in the discussion 
on the identity and individuality of quantum particles, so we mention it 
only for the sake of completeness.7 However, weak discernibility has 
received an incomparably larger amount of attention from both logicians 

5 Logically, it is possible to introduce further subdivisions into intrinsic (“monadic”) and extrinsic 
(“relational”) relative discernibility, and into intrinsic and extrinsic weak discernibility, analogously 
to the case of absolute discernibility. However, such distinctions are absent from the literature. The 
reason for that is most probably that relative and weak discernibilities are already based on rela-
tions; hence an introduction of the intrinsic variants of these grades of discernibility lacks a clear 
ontological motivation.
6 Note that Ψ(x, y) by definition denotes a symmetric and irreflexive relation, since Ψ(x, y) is logi-
cally equivalent to Ψ(y, x), and Ψ(x, x) is equivalent to the logically contradictory formula Φ(x, x) 
∧ ¬Φ(x, x).
7 The relative unimportance of the relation of relative discernibility may have something to do with 
the fact, noted in Ladyman et al. (2012, p. 183) that—in contrast to the two remaining types of 
discernibility—its complement is not an equivalence relation. It can be proven that the relation of 
not being relatively discernible is not transitive, which is rather odd, since indiscernibility is some 
sort of identity (identity with respect to some qualitative facts).
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and metaphysicians interested in the foundations of physical theories. We 
will discuss its possible applications to the case of quantum particles later, 
but for now let us look a bit closer at some logical features of weak dis-
cernibility. First of all, it may be asked what this rather odd-looking rela-
tion has got to do with the general idea of discerning, or distinguishing 
objects. Why does a symmetric and irreflexive relation holding between 
two entities enable us to say that we have somehow distinguished them 
qualitatively? In order to better see that weak discernibility indeed 
expresses a legitimate intuition associated with the notion of distinguish-
ability, let us first introduce the concept of utter indiscernibility as follows:8

(4.8)	 Two elements a and b of the domain D are utterly indiscern-
ible in structure ℜ corresponding to language ℒ iff for every 
formula Φ with n + 1 free variables in ℒ (where n can be any 
natural number, including 0), ℜ ⊨ ∀x1…∀xn [Φ(a, x1, …, xn) 
↔ Φ(b, x1, …, xn)].

Utter indiscernibility means essentially that objects a and b are 
exchangeable salva veritate (preserving the truth) in all sentential con-
texts. Alternatively, we may express this concept by saying that a and b 
stand in the same relations to the same objects in structure ℜ. It is worth 
emphasizing that objects to which both a and b stand in those relations 
may include, among others, a and b themselves. Thus if a happens to 
stand in some relation R to itself, and if b is utterly indiscernible from a, 
then b has to stand in the same relation R to a.

Now, it can be easily proven that the condition of utter indiscernibility, 
as specified in def. 4.8, is equivalent to the negation of weak 
discernibility:

(4.9)	 Two objects a and b are utterly indiscernible iff a and b are 
not weakly discernible.

Proof (from left to right). Suppose that a and b are weakly discernible, 
that is, there is a formula Φ(x, y) such that ℜ ⊨ Φ(a, b) and ℜ ⊭ Φ(a, a). 

8 Definition (4.8) is just a variant of Quine’s definition of utter indiscriminability as given in Quine 
(1976, p. 114). It is also equivalent to the negation of what is sometimes called “Hilbert-Bernays 
discernibility” (Ladyman et al. 2012, pp. 175–176).
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This straightforwardly implies that formula ∀z[Φ(z, x) ↔ Φ(z, y)] cannot 
be satisfied by (a, b), which shows that a and b are not utterly 
indiscernible.

Right to left. Suppose that a and b are not utterly indiscernible. This 
means that there is a formula Φ such that ℜ ⊨ ¬∀x1…∀xn [Φ(a, x1, …, 
xn) ↔ Φ(b, x1, …, xn)], and thus ℜ ⊨ ∃x1…∃xn ¬ [Φ(a, x1, …, xn) ↔ Φ(b, 
x1, …, xn)]. Hence, formula ∃x1…∃xn ¬ [Φ(x, x1, …, xn) ↔ Φ(y, x1, …, 
xn)] weakly discerns a from b, since ∃x1…∃xn ¬ [Φ(a, x1, …, xn) ↔ Φ(a, 
x1, …, xn)] is logically contradictory.

We can conclude that the weak discernibility of objects a and b ensures 
that there are some objects to which a stands but b does not stand in 
some relation R, and this justifies the assessment that a and b are some-
how differentiated from each other. However, it would be too quick to 
jump to the conclusion that the weak discernibility of objects enables us 
to uniquely characterize each one of them in a way that would make it 
possible to refer to them individually. Suppose we wanted to make refer-
ence to object a and not to a numerically distinct object b merely on the 
basis of the fact that a stands in relation R to some object c, while b does 
not stand in R to c. It should be clear that this procedure may be executed 
successfully only on the condition that object c has been already singled 
out and uniquely referred to. However, in the case when a and b are 
weakly discernible, the only guaranteed way to differentiate a from b is by 
saying that a stands in some relation to b, while b does not stand in this 
relation to b. But this is of no help, unless we have already distinguished 
b from a. There is clearly some sort of circularity here that prevents us 
from making a definite separation between objects on the basis of their 
weak discernibility.

In order to make this argument more precise, Ladyman and Bigaj 
(2010) introduced the notion of witness discernibility,9 by which they 
understand discernibility based on the fact that object a stands in some 
relation to object c (which may be called a witness), while b does not 
stand in this relation to c, with an additional requirement that all objects 
absolutely indiscernible from c should remain standing in the same rela-
tions to a and b. This additional requirement, which I consider intuitive, 

9 This term was not originally used in Ladyman and Bigaj (2010) but was coined in a later critical 
analysis (Linnebo and Muller 2013). See also a response to Linnebo and Muller in (Bigaj 2015a).
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excludes the possibility that there could be two absolutely indiscernible 
witnesses c and d that would stand in “opposite” relations to a and b (i.e. 
c stands in R to a and not to b, while d stands in R to b and not to a). In 
the case when a and b are weakly but not absolutely discernible, the above 
requirement is not satisfied, since a potential witness in the form of object 
b has an absolutely indistinguishable “counterpart” in object a, and its 
relations to a and b are reversed in the sense explained above. Øystein 
Linnebo and F.A. Muller in their (2013) critique have proven that wit-
ness discernibility is extensionally equivalent to absolute discernibility in 
finite domains. This result in my opinion shows two things. One minor 
thing is that witness discernibility and absolute discernibility are not 
intensionally equivalent, since they diverge in infinite domains, as Linnebo 
and Muller show. The other, more important consequence is that only 
absolute discernibility can guarantee that reference can be made to one 
and not the other object.

Given the above conclusion, the only metaphysical use that weak dis-
cernibility can be put to is to secure that non-qualitative facts of numeri-
cal distinctness will be grounded in qualitative relational facts. Indeed, if 
a weakly discerning relation connects objects a and b, we can logically 
infer from this that a and b are numerically distinct. However, we have to 
keep in mind that the relation used to weakly discern objects cannot 
involve numerical identity, since in that case the grounding could not 
occur. We will see in Sect. 4.6 that this assumption may not be satisfied 
in the most interesting case of relations that weakly discern quantum 
particles of the same type.

4.3	 �Grades of Discernibility 
in Extended Languages

The three grades of discernibility introduced above are connected by sim-
ple logical relations. It is straightforward to observe that absolute discern-
ibility implies relative discernibility, which in turn implies weak 
discernibility. We will abbreviate these implications as follows:
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(4.10)	 Absℒ(a, b) ⇒ Relℒ(a, b) ⇒ Weakℒ(a, b).

Proof. Let a and b be absolutely discerned by a formula Φ(x), i.e. ℜ ⊨ 
Φ(a) and ℜ ⊨ ¬Φ(b). In that case the two-argument formula Φ(x) ∧ 
¬Φ(y) relatively discerns a and b. Next, suppose that ℜ ⊨ Φ(a, b) and ℜ 
⊨ ¬Φ(b, a) for some formula Φ(x, y). From this it follows that Φ(x, y) ∧ 
¬Φ(y, x) is satisfied by (a, b) and not by (a, a), which is sufficient to prove 
that a and b are weakly discernible.

It is worth pointing out that implications in the opposite directions 
don’t hold. That is, there are cases of objects that are weakly but not rela-
tively discernible (and therefore not absolutely discernible), and cases of 
objects relatively but not absolutely discernible. Examples of these cases 
are usually depicted in the form of graphs, where vertices (nodes) repre-
sent objects, and connecting arrows represent binary relations (see 
Fig. 4.1).

In order to gain a better understanding of the introduced concepts of 
discernibility and their dependence on the expressive power of the lan-
guage, it may be useful to briefly discuss languages whose vocabulary was 
expanded by adding either the symbol of identity, or individual constants 
for all elements of the domain (which, for that purpose, will be consid-
ered to be finite). Let ℒ= symbolize the extension of language ℒ obtained 
by adding the identity symbol to its vocabulary, and let ℒ* stand for the 
language obtained from ℒ by introducing individual constants for all 
objects in the domain. Obviously, all three grades of discernibility in lan-
guages ℒ= and ℒ* will be weaker than the corresponding grades in ℒ (if 

Fig. 4.1  Structures whose elements are weakly but not relatively discernible 
(upper diagram) and relatively but not absolutely discernible (lower diagram)
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two objects are discerned in ℒ, they’ll be discerned in a language that has 
a larger vocabulary). What is more interesting is the logical relations 
between appropriate grades of discernibility in language ℒ= and in ℒ*. 
As it turns out, absolute, relative and weak discernibility in ℒ= retain 
their mutual logical dependence known from language ℒ:

(4.11) 	 Absℒ=(a, b) ⇒ Relℒ=(a, b) ⇒ Weakℒ=(a, b) ⇔ ≠,

with the same absence of opposite implications as before. However, 
one important novelty is that weak discernibility in ℒ= collapses into 
numerical distinctness ≠, since obviously ≠ is a relation that is symmetric 
and irreflexive. Thus weak discernibility is not an interesting concept in a 
language equipped with the symbol of identity.

As for language ℒ*, here all three grades of discernibility become logi-
cally equivalent, while weak discernibility in ℒ* turns out to be equiva-
lent to weak discernibility in ℒ:

(4.12)	 Absℒ*(a, b) ⇔ Relℒ*(a, b) ⇔ Weakℒ*(a, b) ⇔ Weakℒ(a, b).

Here is a quick proof. Implications Absℒ*(a, b) ⇒ Relℒ*(a, b) ⇒ 
Weakℒ*(a, b) are proven analogously to the proof of (4.10) above. 
Implication Weakℒ*(a, b) ⇒ Weakℒ(a, b): let formula Φ(x, y, c1, …, ck) 
weakly discerns a from b, where c1, …, ck are all individual constants in 
the formula. In that case formula ∃z1…∃zk [Φ(x, y, z1, …, zk) ∧ ¬Φ(x, x, 
z1, …, zk)], obtained by replacing all constants with variables bound by 
existential quantifiers, weakly discerns a and b. And obviously this for-
mula belongs to language ℒ.

Implication Weakℒ(a, b) ⇒ Absℒ*(a, b) can be proven as follows: let 
Φ(x, y) be such that ℜ ⊨ Φ(a, b) and ℜ ⊭ Φ(a, a). In that case the one-
variable formula Φ(a, x), where a is the constant denoting object a, abso-
lutely discerns a from b. This concludes proof of the equivalences 
in (4.12).

Let us note an interesting fact about discernibility in language ℒ*. 
While it may seem that adding names for all elements of the domain 
should enable us to differentiate between any two distinct objects using 
their unique names, as a matter of fact this is technically incorrect. The 
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reason for that is rather simple: in order to attribute a proper name to an 
object, we need the identity symbol. In language ℒ=* equipped both with 
individual constants and identity, for each object a in the domain, we can 
produce the expression of the form x = a which is satisfied uniquely by a 
(this expression can be said to represent a’s haecceity). Thus all grades of 
discernibility in ℒ=* collapse into numerical distinctness (which makes 
PII trivially true, exactly as observed earlier in Sect. 2.8). However, lan-
guage ℒ* does not have the means to express haecceities for all elements 
of the domain. On the other hand, the presence of individual constants 
denoting all objects in the domain is sufficient to turn the negation of 
utter indiscernibility (4.8) into a “legitimate” absolute discernibility by 
monadic formulas. This is so, because now the fact that an object a stands 
in relation R to some c while b does not stand in R to c can be expressed 
using formula ΦR(x, c), where ΦR denotes relation R, and c is the 
name for c.

Similarly, the mere presence of the identity symbol in ℒ= does not 
“spoil” absolute and relative discernibility in the sense of making them 
trivially satisfied by all distinct objects.10 Adding identity to our vocabu-
lary makes it possible to perform more fine-grained distinctions between 
objects, taking, for instance, into account the number of related entities. 
In language ℒ= it is possible to discern a from b entirely on the basis of 
the fact that a stands in some relation R to a greater number of objects 
than b. I will not debate here whether counting the number of objects 

10 Claims to the contrary crop up in the literature even after the analysis in Ladyman et al. (2012). 
For instance, Muller writes “if identity were permitted in the sufficient condition of PII, then […] 
the truth of PII would become as trivial as any tautology” (Muller 2015, p. 8). Unfortunately, he is 
not careful enough to specify which variant of PII he has in mind. This is however crucial, 
because—as can be seen from (4.11)—while weak discernibility with identity reduces trivially to 
numerical distinctness, neither absolute nor relative discernibility suffers a similar fate. Thus PII 
based on absolute discernibility is not tautologous, even if we include identity in absolutely discern-
ing formulas. Note that later in his article Muller repeats an ill-conceived restriction on the admis-
sible predicates that can be used in discerning formulas, when he says that predicates containing 
“=” are forbidden to discern because they express “trivializing properties” (Muller 2015, p. 19). A 
similar error was made by Bas van Fraassen and Isabelle Peschard (van Fraassen and Peschard 2008, 
pp. 23–24). They claim that it is possible to absolutely discern all numerically distinct objects using 
a predicate built only out of the identity symbol (Argument 3). However, their way of presenting 
this alleged predicate with the help of the expression “x = …” (with the intention that when this 
“predicate” is applied to any variable y, the ellipsis … is replaced by y) is rather non-standard. 
Again, we stress that including the identity predicate in absolutely discerning formulas does not 
trivialize PII, unless we also have proper names for all objects!
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presupposes their absolute discernibility or not (most probably it doesn’t). 
However, let us note that if we wanted to use the validity of PII as the 
basis for grounding facts of numerical distinctness in qualitative facts, 
then absolute (or relative) discernibility in ℒ= does not seem appropriate 
for the job, since the relation of numerical identity may be already 
involved in appropriate discerning formulas. In conclusion, while for 
some purposes discernibility in extended languages ℒ= and ℒ* seems 
legitimate, in the context of the problem of identity and individuation in 
quantum mechanics, it is better to limit ourselves to purely “qualitative” 
language ℒ.

4.4	 �Discernibility and Symmetry

The next important logical step is an analysis of the relation between vari-
ous grades of discernibility in language ℒ and the condition of permuta-
tion invariance, or symmetry. Let us start with formulating a precise 
definition of what it means for a language (with its specific interpretation 
ℜ) to be symmetric:

(4.13)	 ℒ is symmetric (resp. permutation-invariant) with respect  
to its intended interpretation ℜ iff for every open formula 
Φ(x1, x2, … xn) in ℒ and any permutation σ: D → D, ℜ ⊨ 
Φ(a1, a2, … an) iff ℜ ⊨ Φ(σ(a1), σ(a2), … σ(an)).

It is relatively easy to show that condition (4.13) is equivalent to an 
analogous requirement imposed on structure ℜ:

(4.14)	 Relational structure ℜ is symmetric iff for any k-element rela-
tion R in ℜ, any elements a1, …, ak ∈ D and any permuta-
tion σ: D → D, R(a1…ak) iff R(σ(a1)…σ(ak)).

The equivalence of (4.13) and (4.14) can be established by using 
induction over the complexity of formulas in ℒ.

Now we should explore the connection between the condition of sym-
metry imposed on language ℒ (or structure ℜ) and the availability of 

  T. Bigaj



85

discerning formulas in ℒ. As a matter of fact, it is easy to observe that 
both absolutely and relatively discerning formulas are excluded from 
symmetric languages, as stated in the following theorem:

(4.15)	 If language ℒ is symmetric, then no two objects in D are 
absolutely or relatively discerned in ℒ.

Proof. Suppose that a and b are relatively discernible in ℒ, that is, for 
some Φ(x, y) in ℒ, ℜ ⊨ Φ(a, b) and ℜ ⊭ Φ(b, a). Taking any permuta-
tion σ such that σ(a) = b and σ(b) = a, we immediately see that the condi-
tion of symmetry in (4.13) is violated. And given (4.10) this also means 
that there can be no formula in ℒ that absolutely discerns a and b. (This 
fact can be also proven directly, by pointing out that the symmetry of ℒ 
requires that if a one-variable formula Φ(x) is satisfied by a, it must be 
satisfied by any other object in the domain.)

In contrast to absolute and relative discernibility, it can be shown that 
weak discernibility is not excluded in symmetric languages. The case 
depicted in Fig. 4.1 (upper diagram) shows a symmetric structure whose 
two elements are nevertheless weakly discerned by the relation repre-
sented by the double arrow. Indeed, if it is the case that ℜ ⊨ Φ(a, b) but 
ℜ ⊭ Φ(a, a), as required when a and b are weakly discernible, this fact by 
itself does not violate the symmetry condition, since no permutation can 
map objects a and b onto the same element a.

The main conclusion from our elementary logical analysis is that weak 
discernibility appears to be the only type of discernibility that can be 
achieved in languages which satisfy the condition of permutation invari-
ance. This result is of crucial importance to the metaphysical problem of 
identity and individuality in quantum mechanics. Given that the lan-
guage in which we describe states and properties of systems of same-type 
particles should obey the condition of symmetry, as explained in Chaps. 2 
and 3, we can conclude that in this language it is impossible to build a 
formula that would discern particles either absolutely or relatively. This 
consequence seems to be perfectly in line with the Indiscernibility Thesis 
as presented and discussed in Sects. 2.6 and 2.7. If the PII based on the 
absolute grade of discernibility fails, we may either give up entirely on the 
idea of quantum particles as individuals, or try to use weak discernibility 
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for the purpose of restoring some elements of quantum individuality. The 
second option is precisely the strategy that we will analyze in detail in the 
next sections.

However, in anticipation of an unexpected turnaround that is coming 
up in later parts of the book, I would like to point out that the argument 
against discernibility in permutation-invariant languages contains an 
intriguing loophole. While it is unquestionable that such languages can-
not host direct linguistic representations of absolutely (or relatively) dis-
cerning properties (or relations), this does not automatically exclude the 
possibility that such properties (relations) may objectively exist and that 
the existence of such properties may be expressible even in symmetric sentences. 
A more detailed analysis of this possibility will have to wait until Sect. 6.1. 
For now our attention will turn to the concept of weak discernibility.

4.5	 �Weak Discernibility 
in Quantum Mechanics

The notion of weak discernibility was fished out of the vast archives of 
logic and dusted off by Simon Saunders, who first noticed its potential to 
resolve (or at least alleviate) the metaphysical problem of quantum indis-
cernible particles. Saunders, in his article (2003), reported the equiva-
lence between weak discernibility and the Hilbert-Bernays discernibility 
(see ft. 8). He also noted that while PII based on weak discernibility is 
itself a pretty weak principle, it is by no means so weak as to be logically 
trivial, since there are possible situations in which distinct objects are not 
even weakly discernible. While Saunders admits, as we did earlier, that 
the weak discernibility of objects does not guarantee that individual refer-
ence can be made to each of them, still its potential role in grounding the 
“bare” numerical distinctness of objects in empirical facts should not be 
ignored.

The success of the new strategy based on weak discernibility depends 
of course on whether quantum particles of the same type are indeed guar-
anteed to be distinguishable with the help of physically admissible rela-
tions that are symmetric and irreflexive. Saunders, in his articles (2003, 
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2006), makes the claim that all same-type fermions can be weakly dis-
cerned, citing as an example the relation of having opposite spins that 
connects two fermions in the singlet spin state. While this example of a 
weakly discerning relation cannot be straightforwardly generalized to all 
fermionic states, it may nevertheless be instructive to see in greater detail 
how this special case works, before we move on to a more universal argu-
ment. Let us, then, consider a system of two spin-half fermions (e.g. two 
electrons), focusing on its spin state. Each individual spin-state space is a 
two-dimensional space ℋ spanned by vectors |↑z〉 and |↓z〉, representing 
values “up” and “down” of spin in an arbitrary direction z. Thus the state 
space of the two-particle system will be the tensor product ℋ ⊗ ℋ of 
two two-dimensional spaces, which is a space spanned by four vectors: 
|↑z〉|↑z〉, |↑z〉|↓z〉, |↓z〉|↑z〉 and |↓z〉|↓z〉.

The spin component of an individual particle is represented by a 
Hermitian operator sz whose action on the basis vectors is defined as 
follows:

	
s sz z z zz z↑ ↑〉= 〉 ↓ 〉=− ↓ 〉½ ½ .and 

	

Thus vectors |↑z〉 and |↓z〉 are eigenvectors of sz with the corresponding 
eigenvalues ½ and –½. Now, it can be easily checked that the operator 
sz ⊗ I + I ⊗ sz acting in the tensor product ℋ ⊗ ℋ represents the sum 
of the spin components for both particles. We can verify by direct calcu-
lation that vectors |↑z〉|↑z〉 and |↓z〉|↓z〉 are eigenvectors for sz ⊗ I + I ⊗ sz 
with the corresponding eigenvalues equal, respectively, 1 and −1, while 
both |↑z〉|↓z〉 and |↓z〉|↑z〉 are eigenvectors corresponding to the same 
eigenvalue 0. This confirms that sz ⊗ I + I ⊗ sz indeed represents the sum 
of the z-components of spin for both particles. Note that we have a case 
of degeneracy here, which is precisely the familiar exchange degeneracy 
discussed in Chap. 3.

The situation when two particles have opposite spins obviously cor-
responds to the eigenvalue 0 of the operator sz ⊗ I + I ⊗ sz. However, in 
order to argue that the particles are connected by a weakly discerning 
relation, we have to prove formally that the opposite-spin relation does 
not connect a particle with itself. What is the quantum-mechanical 
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representation of the self-contradictory situation of having one’s spin 
opposite to itself? The most natural way to present this impossible sce-
nario is again with the help of the sum of spin sz and itself. Because we are 
considering a system of two particles, we have to use operators defined 
on the product ℋ ⊗ ℋ, which leaves us with the choice of sz ⊗ I + 
sz ⊗ I = 2(sz ⊗ I) for the first particle and analogously 2(I ⊗ sz) for the 
second particle. If the system were in an eigenstate for any of these oper-
ators with the eigenvalue 0 (which is impossible), we would say that the 
spin of one particle is opposite to itself.

All this can be concisely presented as follows. Let sz
x� � , where variable 

x ranges over the set of numbers {1, 2}, denote the tensor product of the 
single-particle operator sz and the identity operator, where sz occupies the 
x-th slot in the product. Then we can define the following binary 
relation R:

	
R x y s sz

x
z
y

, iff� � �� � � �� � � � � 0,
	

(4.16)

where |ψ〉 is the state of both particles. Now, when the state |ψ〉 is the 
singlet state:

	

1

2

↑ 〉 ↓ − ↓ 〉 ↑ 〉( )z z z z
	

it can be quickly verified that R(1, 2), as well as R(2, 1), is true, but R(1, 
1) and R(2, 2) are false. Thus formula R(x, y) weakly discerns particles 1 
and 2, as long as they occupy the singlet state.

The task of finding a more universal weakly discerning formula appli-
cable to all fermionic states has been taken on by Muller and Saunders in 
2008. Here is a brief summary of their proposal. They start with selecting 
a complete set of orthogonal one-dimensional projectors Pi in a single-

particle Hilbert space ℋ, that is, such that 
i

d

iP I
�
� �

1

, where d is the 

dimension of ℋ. Then they define Pij = Pi – Pj, and subsequently build 
the following operators (not projectors!), acting in the tensor prod-
uct ℋ ⊗ ℋ:
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P P I P I Pij ij ij ij

1 2� � � �� � � �, .
	

Finally, they pick the following Hermitian operators in ℋ ⊗ ℋ:

	 i j

d

ij ij
i j

d

ijP P P I
, ,

,
�

� � � �

�
� �� �

1

1 1

1

2

	

	 i j

d

ij ij
i j

d

ij ijP P P P
, ,

.
�

� � � �

�
� �� �

1

1 2

1 	

Muller and Saunders then prove that the following eigenequations 
hold for any antisymmetric state |ψA〉:11

	

i j

d

ij ij A A

i j

d

ij ij A

P P d

P P

,

,

| |

|

�

� � � �

�

� � � �

�

�

� �

�

� �� �

�

1

1 1

1

1 2

2 1� �

� �� �2 |� A

	

(4.17)

Now, the key element of their strategy is the definition of a binary rela-
tion R−2 that can be argued to weakly discern particles 1 and 2 (again, 
variables x and y range over the set of values {1, 2}):

	

R x y P P
i j

d

ij
x

ij
y

�
�

� � � �� � � � � ��2
1

2, iff
,

| | .� �
	

(4.18)

On the basis of Eq. (4.17), we can conclude that if particles 1 and 2 
occupy any antisymmetric state, relation R−2 connects 1 and 2 but does 
not connect 1 with 1. Hence, formula R−2 (x, y) weakly discerns fermions 
in any state. Moreover, as Muller and Saunders are keen to emphasize, the 
weakly discerning relation R−2 involves facts they call “categorical”, that 
is, facts expressible in terms of the possession of definite values by certain 
observables. Notice that thanks to the eigenequations (4.17) both 

11 As a matter of fact, the first equation in (4.17) holds for any state whatsoever.
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relational propositions symbolized as R−2(1, 2) and ¬R−2(1, 1) are made 
true by the possession of a definite value (either −2 or 2(d – 1)) by some 

observable (
i j

d

ij ijP P
, �

� � � ��
1

1 2  or 
i j

d

ij ijP P
, �

� � � ��
1

1 1

). This is important, because thanks 

to that feature the statement of weak discernibility does not depend on 
possible alternative interpretations of quantum mechanics that question 
the full eigenstate-eigenvalue link. As is well known, the fact that the 
quantum-mechanical state is not an eigenstate for a particular operator, 
under certain hidden variables hypotheses, does not imply that the 
observable does not objectively possess a definite value. On the other 
hand, virtually all interpretations accept the implication from being in an 
eigenstate to possessing the corresponding eigenvalue.

Thus, we have proven that fermions of the same type can be weakly 
discerned in any state. How about bosons? Here we have a problem. The 
method proposed above won’t work in general, since the second equation 
in (4.17) is guaranteed to hold only in fermionic states. It may be instruc-
tive to see more closely where the problem lies. In order to do that, let us 
transform a bit the operator used in this equation:

	

i j

d

ij ij
i j

d

i j i j

i j

d

i i j

P P P P P P

P P P

, ,

,

�

� � � �

�

�

� �

�

� �� �� �� �

� � �

1

1 2

1

1

�� � � � ��� ��

� � � �� � � � � �
� �
� �

P P P P P

P P P P P P P

j i j j i

i j

d

i i j j
i j

d

i j j
, ,1 1

PPi� �.
	

It can be easily checked that the following algebraic equality holds: 

i j

d

i j
i

d

i
i

d

iA B d A B
, � � �
� � ��� � � �

�

�
�

�

�
�

1 1 1

, from which it follows that the above 

expression can be further expanded into the following formula:

	

2
1 1

d P P P P P P
i

d

i i
i j

d

i j j i
� �
� �� � � � �� �

,

,
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while the second summand can be rewritten as below:

	

i j

d

i j j i
i j

d

i j
i j

d

j i

i

d

i
j

P P P P P P P P

P

, , ,� � �

� �

� � �

�

� � �� � � � � �

� �

1 1 1

1 1

dd

j
j

d

j
i

d

iP P P I I I I I I� � �� � � � � � � �
� �1 1

2 ,

	

given that 
i

d

i
j

d

jP P I
� �
� �� �

1 1

.  As a result, the original operator has the fol-

lowing form:

	 i j

d

ij ij
i

d

i iP P d P P I I
,

.
�

� � � �

�
� �� � � �

1

1 2

1

2 2

	

(4.19)

Observe that operator 2
1

d P P
i

d

i i
�
� �  in (4.19) gives zero on all antisym-

metric states (in order to see that, we have to write the selected antisym-
metric state |ψA〉 in the orthogonal basis created by the eigenvectors |φi〉 
of projectors Pi). Thus we have proven the second equation in (4.17). But 
we can also see that (4.17) is not guaranteed to hold for all bosonic states, 
since these states written in the basis |φi〉 may possess “diagonal” elements 
of the form |φi〉 ⊗ |φi〉. Only symmetric states that are obtained from the 
antisymmetric ones by replacing minus signs with pluses will satisfy the 
second equation in (4.17). But consider the symmetric state |φi〉 ⊗ |φi〉. 
When we apply to it the operator from (4.19), we can immediately see 
that the result will be 2(d – 1)|φi〉 ⊗ |φi〉. This means that for the bosons 
occupying this state both R−2(1, 2) and R−2(1, 1) hold, hence they are not 
weakly discerned by relation R−2.

Drawing this conclusion, Muller and Saunders then proceed to argue 
that even in totally symmetric product states, it is still possible to weakly 
discern individual particles, albeit only probabilistically. This means that 
the expectation value of an operator representing a given relation holding 
between particles 1 and 2 may be different from the expectation value of 
an operator representing the same relation holding between one particle 
and itself. A simple example can illustrate this situation: let A be any 
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single-particle Hermitian operator. Let us stipulate that the expression 
A(x)A(y) denote the product A ⊗ A when x = 1 and y = 2 (or x = 2 and 
y = 1), while it equals A2 ⊗ I when x = y = 1 (and analogously for x = y = 2). 
Now we can define the following, probabilistic relation Rt:

(4.20)	 Rt(x, y) iff 〈ψ| A(x)A(y)|ψ〉 =  t, where |ψ〉 is the state of both 
particles.

If |ψ〉  =  |φ〉 ⊗ |φ〉, then from the above it follows that Rt(1, 2) iff 
〈φ|A|φ〉2 = t, and Rt(1, 1) iff 〈φ|A2|φ〉 = t. Now, the difference 〈φ|A|φ〉2 – 
〈φ|A2|φ〉 is the standard measure of what is known as the dispersion (or 
variance) of variable A, and it is well known that if |φ〉 is not an eigenvec-
tor of A, its dispersion is non-zero. Hence we can always find a meaning-
ful observable A such that for a certain number t, Rt(1, 2) but not Rt(1, 
1). The bosons occupying the product state |φ〉 ⊗ |φ〉 are weakly proba-
bilistically discernible.

In a surprising twist, Muller and Seevinck (2009) strengthen this claim 
by arguing that even categorical weak discernibility (i.e. discernibility 
with the help of possessing specific eigenvalues) is available in bosonic 
states. Their example is indeed very simple and is applicable to any state 
written in the position space. Let P be the momentum operator for a 
single particle and Q – position. Then we can introduce the usual nota-
tion P(1) = P ⊗ I, P(2) = I ⊗ P, Q(1) = Q ⊗ I, Q(2) = I ⊗ Q, and we can 
consider the familiar notion of the commutator: [A, B] =df AB – BA. As 
can be easily established, the commutator of the momentum of one par-
ticle and the position of the other equals zero: [P(1), Q(2)] = [P ⊗ I, I ⊗ 
Q] = 0. However, it is a well-known fact that the position and momen-
tum of one particle do not commute. As a matter of fact, their commuta-
tor equals [P(1), Q(1)] = −iℏ. This leads to the definition of the following, 
weakly discerning relation:

	
C x y P Qx y

, iff ,� � �
�

�
� �

� � � �
0.

	
(4.21)

Given the equality [P(1), Q(1)] = −iℏ, it may be argued that particles 1 
and 2 are categorically weakly discerned in any state |ψ〉, since C(1, 2) is 
equivalent to saying that |ψ〉 is an eigenstate for the commutator [P(1), 
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Q(2)] with the eigenvalue equal 0, while ¬C(1, 1) is made true by the fact 
that |ψ〉 is an eigenstate of the commutator [P(1), Q(1)] with the different 
value –iℏ.

Alternative weakly discerning relations have been proposed by other 
authors as well (Caulton 2013; Huggett and Norton 2014; for an over-
view see Bigaj 2015b). However, we will not discuss them here. Instead, 
we will proceed directly to the question of what the existence of weakly 
discerning relations tells us about the metaphysics of quantum particles. 
As a result of analyzing this problem, it will be argued that the usefulness 
of these particular relations for restoring some of the metaphysical uses of 
PII may be legitimately called into question.

4.6	 �Quantum Weak Discernibility 
and Identity

The weak discernibility program in quantum mechanics, as it may be 
called, has the ambition of reversing the dominating trend in the meta-
physics of quantum objects, which centers around the Indiscernibility 
Thesis and its negative consequences for the individuality of these enti-
ties. Saunders in his article (2006) stresses that in the light of the weak 
discernibility of quantum particles, we may safely say that these particles 
are objects (presumably as opposed to less object-like entities such as dol-
lars in a bank account). However, he stops short of categorizing them as 
individuals, noting only that the notion of an individual itself is in need 
of further clarifications. Muller and Saunders subsequently supply such a 
clarification, when they stipulate that “we call objects that are absolutely 
discernible from all other objects individuals; those that are only relation-
ally discernible from all other objects we call relationals” (Muller and 
Saunders 2008, p. 504). In that way they introduce a new category of 
entities called relationals, in which they include all objects that are not 
absolutely but merely weakly discernible from each other.

In spite of later efforts by Muller to promote the introduction of the 
new category of relationals as a breakthrough in the metaphysics of sci-
ence (in Muller 2011, 2015), to my best knowledge this concept has 
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never entered the mainstream of scientifically informed metaphysics. 
Regardless of whether we agree with the metaphysical importance of the 
new distinction between individuals and relationals, still the fact that 
quantum objects turn out to be (merely) weakly discernible from each 
other deserves to be closely evaluated from the metaphysical perspective. 
Muller touts the discovery of the weak discernibility of quanta as a great 
success of “naturalistic” metaphysics, based on science rather than arm-
chair speculations (Muller 2015, p. 24). He stresses that PII, instead of 
being undermined by the development of modern physics, receives a 
strong boost and therefore is vindicated as “a metaphysical crown on our 
most fundamental knowledge of the universe”. Be that as it may, one can 
still ask what is so precious about this piece of the most fundamental 
knowledge to deserve such glowing praise. Again, we should recall the 
two fundamental uses of different variants of PII: one in supporting the 
possibility of making reference to separate objects in the domain, and the 
other in securing the grounding of numerical identity/distinctness in 
qualitative facts. Since the first use is excluded in the case of weak discern-
ibility, as noted in Sect. 4.2, we have to turn to the second one.

A successful grounding of numerical identity in qualitative facts about 
objects is definitely something to strive for. It directly responds to the 
worry of empiricists, from John Locke to Max Black, that “bare” identity 
is not directly accessible to us. Here is how this is supposed to work in the 
case of weak discernibility. If one asks, as Black did in his seminal article 
(Black 1952), how do we know that there are two distinct objects and not 
one, even though they possess the exact same properties, one answer may 
be “because they are connected by a weakly discerning relation, for 
instance being spatially separated by one meter”. Since weakly discerning 
relations can never connect an object with itself, we have an assurance 
that the number of objects is indeed two and not one. However, this 
explanation relies on the assumption that facts of numerical diversity are 
not in some form “smuggled” into the weakly discerning relations. And 
some authors claim that this is precisely the case.

The circularity charge against weak discernibility can be found, for 
example, in French and Krause (2006; Hawley 2006, 2009; Wüthrich 
2009). French and Krause (pp.  169–171), followed by Christian 
Wüthrich (p.  1048), insist that the numerical diversity of objects is 
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presupposed by the relation that weakly discern them. However, it is not 
clear what sense of presupposition they have in mind. If presuppositions 
are simply identified with logical consequences, then they are right that 
weak discernibility “presupposes” numerical diversity, since it logically 
entails it. However, in the same manner numerical diversity is implied by 
absolute discernibility (discernibility by monadic properties), and yet to 
my knowledge nobody charges absolute discernibility with circularity. 
French and Krause probably have an epistemic rather than logical notion 
of presupposition in mind when they write in (2006, p. 175) that “to 
know that a relation is irreflexive presupposes that one knows that the 
relata are diverse”. If presupposition implies here a temporal order (i.e. in 
order to know that an irreflexive relation connects objects a and b, I have 
to know beforehand that a is distinct from b), then it seems to me that this 
statement is plainly wrong. I can clearly learn that a is distinct from b on 
the basis of the information that an irreflexive relation connects a and b, 
not vice versa (I discuss a straightforward example of such a situation 
later in this section).

Katherine Hawley offers a slightly different take on the circularity 
problem. She claims that if objects a and b are connected by a weakly 
discerning relation R, then a and b differ with respect to possessing prop-
erties “standing in R to a” and “standing in R to b” (Hawley 2009, p. 109). 
But then Hawley observes that the distinctness of these two properties is 
grounded in the fact that a is numerically distinct from b. Hence the 
distinction between a and b based on weak discernibility is grounded in 
the fact that a ≠ b and therefore cannot ground it. This argument is incor-
rect on several counts. First of all, we don’t need to use the properties 
“standing in R to a” and “standing in R to b” to make a qualitative dis-
tinction between a and b—to establish their absolute discernibility it is 
perfectly sufficient to show that one object exemplifies the property 
“standing in R to a”, while the second does not exemplify it. But even 
more fundamentally, we don’t need (as a matter of fact, we are not even 
allowed) to invoke discernibility by dubious “impure” properties involv-
ing direct reference to a and b. Weak discernibility by relation R is a dif-
ferent type of discernibility that does not rely on possessing distinct 
properties. We discern objects a and b weakly by verifying that they stand 
in an irreflexive relation to each other, not by attributing distinct and 
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incompatible monadic properties to each of them. So Hawley’s argument 
falls short of proving that the fact that a and b are connected by an irre-
flexive relation R must be grounded in the numerical distinctness of 
a and b.

I don’t know of any strong arguments showing that all weakly discern-
ing relations necessarily suffer from the circularity problem. However, it 
is rather clear that circularity may be present if the weakly discerning 
relation used in a particular case contains an indispensable reference to the 
fact of the numerical distinctness of discerned objects. For in that case we 
cannot justify the claim that there are two numerically distinct objects by 
relying on their weak discernibility, since this discernibility in turn relies 
on their being distinct objects.

Let us delve deeper into what should count as an indispensable use of 
identity, and what use can be seen as dispensable. The starting point is 
that, unless a particular weakly discerning formula is considered to be 
primitive, it should be reducible to, or definable in terms of more funda-
mental predicates. An obvious suggestion seems to be that in a proper 
definition no use of the identity symbol should be allowed. However, 
there are some uses of identity that are clearly harmless, for instance, 
when we apply the following equivalence:

	
R x y x y R x y x y R x x, iff , ,� � � � � ��� �� � � � � ��� �� . 	 (4.22)

Apart from the fact that the above statement can hardly be seen as a 
proper definition of formula R(x, y), since symbol R is present on both 
sides of the equivalence, the rhs contains a totally harmless occurrence of 
the identity symbol. This can be seen in the fact that both sides are logi-
cally equivalent, so the use of symbol “=” can be eliminated without any 
loss of meaning. However, let us consider the following characteriza-
tion of R:

	
R x y x y T x y F, iff� � � �� �� � �� �, 	

(4.23)

where T is any true sentence, while F – a false sentence. Clearly, R is a 
weakly discerning relation, since it is both symmetric and irreflexive (it 
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follows from (4.23) that R holds between all and only distinct objects). 
However, it should be obvious that the use of the identity symbol is 
essential here. As a matter of fact, the presence of sentences T and F is in 
a sense a red herring, since the main job of weak discernibility is done by 
formulas x ≠ y and x = y. In order to decide whether particular objects a 
and b satisfy R(x, y), we have to verify first whether a ≠ b or a = b, and this 
defeats the purpose for which weak discernibility was introduced in the 
first place.

Incidentally, the weakly discerning formula introduced by Huggett 
and Norton (2014) as a corrected variant of Muller and Saunders’s origi-
nal proposal, with an intention of avoiding some of the formal shortcom-
ings of the latter,12 falls precisely under the category (4.23). Thus in this 
case the cure turns out to be worse than the disease (for more details on 
that, see Bigaj 2015b, pp.  48–49). However, this does not mean that 
Muller and Saunders’s relation is free from an analogous problem. In 
order to better see a potential issue with their definition (4.18), let us 
consider yet another possible form a definition of a weakly discerning 
formula might take:

	
R x y x y T x y x y F x x, iff , ,� � � � � ��� �� � � � � ��� �� , 	

(4.24)

where it is assumed that T(x, y) is satisfied by any pair of distinct objects, 
whereas F(x, y) is irreflexive (i.e. ℜ ⊭ F(a, a) for any a). Again, under 
these assumptions R is guaranteed to be symmetric and reflexive in the 
entire domain, and thus it weakly discerns all its elements. But, as in the 
previous example, the use of the identity symbol is essential and 
indispensable, since without it there is no possibility to connect formulas 
T(x, y) and F(x, x) in a way which ensures that formula R(x, y) will be 
weakly discerning. The key difference between cases (4.22) and (4.24) lies 
in the fact that formulas T(x, y) and F(x, y) denote distinct relations 
which are juxtaposed in order to create a new, “gerrymandered” relation 

12 These shortcomings, in a nutshell, are that operators used in (4.17) are not symmetric when the 
number of particles is greater than 2. Huggett and Norton propose to use the totally symmetrized 
variants of these operators, but in that way they lose one crucial element of the original definition, 
namely the presence of variables x and y, and this is why their definition of a relation weakly dis-
cerning same-type fermions has to take the form of (4.23).
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R, while in (4.22) we have the same relation R that is artificially split into 
two cases: one when its arguments are identical, and the other when they 
are distinct. Let us stress that the problem with formula (4.24) is not 
simply that relation R is a combination of two other relations T and F, 
but rather that in order to create R out of T and F, we have to resort to 
the notion of numerical identity, in order to apply T when two objects 
are distinct, and F when there is one and the same object.

Let us now present the weakly discerning relation proposed by Muller 
and Saunders in a similar fashion:

	

R x y x y P P

x y

i j

d

ij
x

ij
y

i j

d

�
�

� � � �

�

� � � � � � � �
�

�
�

�

�
�

� � �

�2

1

1

2, iff
,

,

� �

�� � � � � � � � �
�

�
�

�

�
�P Pij

x
ij
x � �2 .

	

(4.25)

At first sight it looks like formula (4.25) is of the type (4.22), and 
therefore the use of the identity symbol in the rhs is dispensable. However, 
this optimistic conclusion may be too hasty. The notation used by Muller 

and Saunders suggests that expression 
i j

d

ij
x

ij
yP P

,

| |
�

� � � �� � � � �
1

2� �  denotes 

the “same” relation regardless of whether x = y or x ≠ y. But let us look 
closer at the components of the above formula in the form of operators 
P Pij

x
ij
y� � � � . It should be clear that the meaning of the operation of taking 

the product of two projectors Pij
x� �  and Pij

y� �  strongly depends on whether 
variables x and y denote two different objects or one object. When x ≠ y, 
operator P Pij

x
ij
y� � � �  has the form of (Pij ⊗ I)(I ⊗ Pij) = Pij ⊗ Pij (given that 

the number of particles is 2). On the other hand, in the case of x = y, the 
product operation yields either PijPij ⊗ I or I ⊗ PijPij.

It is worth stressing that the problem we are identifying is not merely 
that the outcome of a given procedure varies depending on whether we 
are dealing with the same object or two different objects. This is to be 
expected from a weakly discerning relation, which is supposed to differen-
tiate between cases when a  = b and cases when a ≠ b. The problem is 
though that we don’t know how to execute the procedure necessary to 
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produce the definite outcome, unless we know which one is the case, since 
ultimately we have two procedures and not one. To repeat: in order to 

verify whether the relation expressed in formula
 i j

d

ij
x

ij
yP P

,

| |
�

� � � �� � � � �
1

2� �
 

holds for some objects a and b, we have to be able to multiply operators 
Pij

a� �  and Pij
b� � . But this can’t be done until we verify whether a is the same 

as b, or different.
Thus I submit that formula (4.25) is closer in spirit to the general case 

described in (4.24) than to the “innocuous” use of identity in (4.22). And 
the same problem affects all other relations that are supposed to weakly 
discern quantum particles, including relations (4.16), (4.20) and (4.21) 
discussed in Sect. 4.5. To consider just one more example: in order to 
check whether the categorical weakly discerning relation C defined in 
(4.21) holds between two bosons a and b, we have to compute the com-
mutator of the operators we denote as P(a) and Q(b). But again, in order to 
multiply two operators P(a) and Q(b) we have to know their exact form 
(whether they have the single-particle operators P and Q in the same slot 
or in different slots of appropriate tensor products). And this in turn 
requires that we know in advance whether or not a = b.

It is instructive to observe that the problem we have just described does 
not necessarily affect all weakly discerning relations. Consider the stan-
dard case of the Euclidean spatial distance between points. Regardless of 
whether points a and b are distinct or identical, the procedure of weak 
discernment is the same: we select any Cartesian coordinate system, 
assign to a and b their particular coordinates (xa, ya, za) and (xb, yb, zb) and 
calculate the value of the expression:

	
x x y y z za b a b a b�� � � �� � � �� �2 2 2

.
	

If the value is non-zero, we have weakly discerned points a and b.13 
There is no reason to distinguish two independent relations (or two pro-
cedures): one applicable when a ≠ b, and the other when a = b.

13 It may be objected that once we have assigned the coordinates to points a and b, the rest of the 
procedure is moot: we already know that if the coordinates are different, a must be distinct from b. 
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It may be argued that the flaw in the quantum-mechanical weakly 
discerning relations that we have just uncovered is an artifact of the 
tensor-product formalism, which works on the condition of the distinct-
ness of the particles whose joint state is represented in the N-fold tensor 
product of Hilbert spaces.14 It is true that vectors representing joint states, 
as well as operators representing properties of composite systems, are 
defined under the assumption that we know the exact number of the 
components in a given system, and thus that we have already numerically 
differentiated between these components. No wonder, then, that when 
we try to define in such a formalism a weakly discerning relation that is 
supposed to ground numerical distinctness, we run into the circularity 
problem. Perhaps it is possible to come up with an alternative formalism 
that could treat systems with different numbers of particles in a uniform 
way without prejudging their identity/diversity. Actually, such a formal-
ism may be already available in the form of the so-called Fock spaces. We 
will talk more about this in Sect. 7.2. But the lesson from the currently 
discussed cases seems to be that if we take the standard formalism at face 
value, there is a serious problem with all relations that are supposed to 
weakly discern individual particles. As these relations, when defined 
within the formalism, presuppose an indispensable use of numerical 
identity, we cannot use them to ground numerical distinctness.

As we remember from Chap. 2, taking the tensor-product formalism 
at face value is an essential part of the orthodoxy with its thesis of the 
complete indiscernibility of quantum particles of the same type. Now, we 
have seen that the same literal interpretation of the formalism prevents us 
from using weak discernibility as a way to restore some meaningful form 
of PII. In the light of this fact we may choose to slip back into the revi-
sionary metaphysics of non-individuals, but we may also reconsider our 
commitment to the literal interpretation of the formalism. Perhaps we 

That may be true, but again the assignment of coordinates to any points does not presuppose that 
we should know in advance whether these points are identical or not. And, besides, possessing any 
coordinates by a point is not its genuine property, since it depends on the choice of the framework 
of reference, whereas the Euclidean distance between points is invariant. An alternative weakly 
discerning relation whose application does not require making a choice of particular coordinates 
may be given in the form of the length of the shortest continuous curve connecting a and b.
14 This has been noted in Arenhart (2013, p. 476).
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were too hasty in associating each factor in the product of Hilbert spaces 
with an individual component (Factorism). In the next chapters, we will 
see how this suggestion may be turned into a working alternative to 
orthodoxy.
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5
Qualitative Individuation of Same-Type 

Particles: Beyond Orthodoxy

One of the pillars of the orthodox approach to quantum individuation is 
the Indiscernibility Thesis that we have formulated and discussed in 
Chap. 2 (Sect. 2.6). Yet, as we remember, proofs of this thesis rely on one 
dubious assumption: that properties of individual particles composing a 
larger physical system are represented by non-symmetric operators (prod-
ucts of a number of identity operators and one non-identity Hermitian 
operator representing a given property). Operators that are not 
permutation-invariant should be disallowed on the basis of the 
Indistinguishability Postulate, as we have observed at the beginning of 
Chap. 3, and yet they seem indispensable as representations of “individu-
alized” properties. In the following sections, we will try to question this 
apparent indispensability of non-symmetric operators by considering an 
alternative way to represent such individuating properties with the help 
of totally symmetric operators. In that way we will challenge the claim, 
put forward, for example, by French and Redhead (1988, p. 239) that 
“from the point of discussing PII we should not restrict the discussion 
[…] to symmetric combinations such as Q1 + Q2” (where Q1 = Q ⊗ I and 
Q2 = I ⊗ Q). Actually, it is quite possible to fruitfully discuss the validity 
of PII using only symmetric operators, but the conclusions from such a 
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discussion will markedly depart from orthodoxy. It will turn out that 
there is a way to individuate particles of the same type, in the sense of 
attributing to them distinct properties, using only symmetric operators 
applied to the whole system. But before we can show how to do that, we 
have to ask what is the correct physical interpretation of a certain kind of 
symmetric operators.

5.1	 �Symmetric Operators and Their Meaning

We will begin this section with identifying and correcting a surprisingly 
persistent confusion regarding the meaning of certain symmetrized 
Hermitian operators acting in tensor products of Hilbert spaces vis-à-vis 
their components acting in the individual spaces (factors). Suppose that 
we have a one-particle Hermitian operator A defined on ℋ (for simplic-
ity we’ll assume that A is non-degenerate). Let |λa〉 be an eigenstate of A 
corresponding to some eigenvalue a. Now, we already know that the ten-
sor product A ⊗ I acting in ℋ ⊗ ℋ is interpreted as representing the 
observable corresponding to A attributed to particle number one, while 
particle number two is left to its own devices. But we also know that 
A ⊗ I does not satisfy the requirement of permutation invariance and 
therefore is inappropriate as a mathematical representation of observables 
for systems of same-type particles. Is there any way to symmetrize this 
product operator in order to avoid the aforementioned difficulty while 
retaining its intended meaning (which is that it should represent observ-
able A attributed to one component of the system)? One possible answer 
to this question, tacitly presupposed by many authors without much 
explanation, is that the correct symmetrized variant of A should be 
A ⊗  I  +  I ⊗ A, or—as some authors insist—its “normalized” version 
1

2
A I I A� � �� � .1 This solution certainly “looks” right, given its close 

1 For instance, Peres in his well-known textbook writes “The operator A [equal A ⊗ I – T.B.], which 
was used to refer to the ‘first’ system, must now be replaced by a new operator, namely 
A ⊗ I + I ⊗ A” (Peres 2003, p. 129). Huggett and Norton follow this lead, except that they main-
tain that the correct symmetrized version of A ⊗ I should be normalized (see formula 17 in Huggett 
and Norton 2014, p. 49). F.A. Muller and Gijs Leegwater in their recent paper present a general 
argument in favor of this interpretation, which is nevertheless questionable (Muller and Leegwater 
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similarity to the standard way of symmetrizing/antisymmetrizing states 
of same-type particles. And yet a simple calculation can immediately con-
vince us that the above symmetrized operators cannot possibly represent 
observable A attributed to one of the two particles (without saying which 
particle it is).

If the correct interpretation of the operator A ⊗ I + I ⊗ A was as it is 
commonly suggested, the product vectors of the form |λa〉|φ〉 and |φ〉|λa〉, 
where |φ〉 is any vector in ℋ, would have to be its eigenvectors with the 
corresponding value a, since these vectors clearly reflect situations in 
which one particle assumes value a for observable A. But the algebra does 
not confirm this supposition. Applying the operator to the first vector 
yields this:

	
A I I A a Aa a a� � �� � � � � � � � � �� � �� � � .

	

Because vector |φ〉 has been selected completely arbitrarily, the result 
of the operation A|φ〉 can be any vector in ℋ, which shows that |λa〉|φ〉 
is generally not an eigenvector of A ⊗ I + I ⊗ A with the corresponding 
value equal a.

It may be quickly verified that products of the form |λa〉|λa′〉, where 
|λa〉 and |λa′〉 are eigenvectors of A corresponding to eigenvalues a and a′, 
are eigenvectors for A ⊗ I + I ⊗ A:

	
A I I A a a a aa a a a a a a a� � �� � � � � � � � � � � �� � � �� �� � � �� � � � � � � � .

	

2020, p. 5). They observe that the expectation value of any single-particle operator Ai in the reduced 
state represented by density operator ρi is equal to the expectation value of the symmetric operator 

A � � � �
1

2 1 2( )A I I A  in the joint state ρ of the entire system (formula 5). However, the equality 

Tr(Aiρi) = Tr(Αρ) holds only for symmetric/antisymmetric states ρ. According to the definition of 
the reduced state (see def. A.16 in Appendix), Tr(A1ρ1) = Tr[(A1⊗ I)ρ] and Tr(A2ρ2) = Tr[(I ⊗ A2)ρ]. 
But because for symmetric/antisymmetric states all reduced single-particle states are identical 
(ρ1 = ρ2), it follows that Tr(A1ρ1) = Tr(A2ρ2) = Tr(Αρ). Yet this equality fails for other joint states (e.g. 
products of orthogonal states); hence it cannot be used as a general argument in favor of interpret-

ing the symmetric normalized operator A A I I A� � � �
1

2 1 2( )  as representing property A associ-

ated with one of the components. As Caulton (2013, p.  61) correctly observes, operator Α 
represents the statistical mean of A taken over the two particles, and not A attributed to one 
of them.
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From this it follows that the considered symmetrized operator actually 
corresponds to the following experimental procedure: we perform mea-
surements of A on both particles and add the obtained results. In other 
words, the corresponding observable is in fact the sum of the values of 
observable A on both particles (or the average value, in the case of the 

normalized operator 1
2
( )A I I A� � � ). So, if, for instance, A is spin sz 

in a given direction z, the operator sz ⊗ I + I ⊗ sz is just the total spin in 
this direction for the entire system. But it definitely does not represent 
spin sz attributed to one of the two particles (as we have already noted in 
Sect. 4.5).

It may be interesting to observe that in spite of the fact that A is assumed 
to be non-degenerate, operator A ⊗ I + I ⊗ A suffers from an inevitable 
degeneracy related to the permutation-induced freedom of choice. For 
instance, both vector |λa〉|λa′〉 and its permuted variant |λa′〉|λa〉 represent 
the same value a + a′. The permutation-induced degeneracy disappears 
though when we limit ourselves to the symmetric or antisymmetric sec-
tors of the product ℋ ⊗ ℋ (as we have already observed in Chap. 3, the 
elimination of this degeneracy is one of the main reasons why we introduce 
the Symmetrization Postulate with respect to states). For instance, the 
antisymmetric subspace 𝒜(ℋ ⊗ ℋ) is spanned by the mutually orthog-

onal vectors of the form 1

2
( )� � � � � � � �� �� �� ��� � � � , and in principle 

all eigenvalues a + a′ associated with these vectors could be distinct (it is 
definitely possible to find a set of numbers such that every two of them 
add up to a different number—for example, the numbers 1, 2, 3). On 
the other hand, it is also possible that some degeneracy will remain, since 
the sum can be the same while its summands differ. An example of such a 
scenario is the case with four eigenvalues 1, 2, 3, 4, in which case the eigen-

vectors 1

2
1 4 4 1( )� � � � � � � �� �� � �  and 1

2
2 3 3 2( )� � � � � � � �� �� � �  will 

correspond to the same eigenvalue 5. Thus the operator A ⊗ I + I ⊗ A is  
“unable” to differentiate the case in which one measurement reveals out-
come 1 and the other 4 from the case in which one measurement reveals 
2 and the other 3. This further confirms the already established fact that 
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A ⊗ I + I ⊗ A has nothing to do with measuring A separately on one or 
the other particle.

Generalizing a bit further, we may observe that by analogy it would be 
incorrect to interpret the symmetric operator A ⊗ B + B ⊗ A as encoding 
the “disjunctive” property of A applied to one particle and B applied to 
the other. For starters, if A and B are incompatible, that is, they do not 
share all their eigenvectors, this creates an immediate difficulty in that the 
products of the form |λa〉|χb〉 will generally not be eigenvectors for the 
entire operator, even though |λa〉 and |χb〉 are eigenvectors, respectively, 
for A and B. But even if A and B are compatible, the action of the opera-
tor on the vector |λa〉|χb〉 will yield a not-so-straightforward algebraic 
combination of values of A and B as the corresponding eigenvalue: 
aa′ + bb′, where a′ is the value A assumes when a particle is in state |χb〉 
(which, by assumption, is an eigenvector for A), and b′ is the value attrib-
uted to B when the state is |λa〉.

Does this mean that the quantum-mechanical formalism has no means 
to express the intuitively acceptable disjunctive properties of many-
particle systems? The answer is that we should not accept defeat just yet. 
We haven’t exhausted all the weaponry in the arsenal of quantum theory, 
including projection operators. And it turns out that projectors may be 
just what we need to solve the problem at hand. Suppose, then, that Ea is 
the projector onto a one-dimensional space spanned by vector |λa〉 (i.e. Ea 
is the dyad |λa〉〈λa|). In other words, Ea represents the specific property of 
A = a possessed by a single particle. Now, what would be the correct inter-
pretation of the sum Ea ⊗ I + I ⊗ Ea? Again, as before, it does not repre-
sent what we want it to, that is, the property of either particle one or 
particle two possessing the value a of observable A (one reason for that is 
that it is not even a projection operator anymore, since it is not idempo-
tent, as can be quickly checked by multiplying it by itself ). But now let 
us consider a small correction to the above formula in the form of the 
following operator:

	
� E E I I E E Ea a a a a� � � � � � �– .

	
(5.1)
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Its action on vectors of the form |λa〉|φ〉 and |φ〉|λa〉 reveals that we 
may be onto something:

	
� � � � � �� � � � � � � � � �E E Ea a a a a a a a� � � � � � � � � � � � � � �� � � � �– ,

	

and similarly:

	
� � � � � � � � � � � � � � � � �E E Ea a a a a a a a� � � � � � � � � � � � � � �� � � � � .

	

It is not difficult to verify that indeed Ω(Ea) is a projector in ℋ ⊗ ℋ 
whose image is spanned by vectors |λa〉|φ〉 and |φ〉|λa〉 (formally:  
Ω(Ea)[ℋ ⊗ ℋ] = {Ea[ℋ] ⊗ ℋ} ⊕ {ℋ ⊗ Ea[ℋ]}. Thus it can be claimed 
that Ω(Ea) represents the required property of one particle (we don’t 
know which) possessing the value A = a.2

It turns out, then, that there may be a way to express in the quantum-
mechanical formalism facts regarding possession of measurable proper-
ties by unspecified components of composite systems. The proper method 
to do that, as it seems, is to use symmetrized projection operators of the 
form Ω(E) given in (5.1). In the next section we will indicate some pos-
sible objections to that method of encoding appropriate properties of 
composite systems, but for now let us briefly address one more technical 
question of whether (and why) it is really the case that the proposed 
method of symmetrizing operators in ℋ ⊗ ℋ works only for projectors, 
while it fails in the general case of any Hermitian operators. In particular, 
one may ask why we can’t rely on the spectral decomposition theorem 
and build an appropriate symmetric counterpart of A acting in ℋ ⊗ ℋ 
using projectors of the form Ω(Ea). As we recall (Sect. 2.5), the spectral 
decomposition theorem guarantees that operator A can be presented in 
the form of the sum �

��a
aaE , where Δ is the range of values of A. It seems 

natural, then, that the sum � � �
��a

aa E�  acting in ℋ  ⊗  ℋ should  

2 It is interesting to observe that an analogous trick won’t work for general Hermitian operators, 
that is, it is not the case that the operator A ⊗ I + I ⊗ A – A ⊗ A represents observable A associated 
with one of the two particles (the reader is invited to do the required calculations confirming this 
negative result). The key fact responsible for this difference between projectors and any Hermitian 
operators is that projectors have only the numbers 0 and 1 as their eigenvalues.
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represent the required observable A applied to any of the two compo-
nents of the system.

Yet this method won’t work, for the simple reason that projectors Ω(Ea) 
are not mutually orthogonal (or even disjoint, for that matter). In the 
spectral decomposition of a given Hermitian operator, all projection 
operators corresponding to different eigenvalues must be orthogonal and 
therefore also disjoint (in the sense that the only common subspace for 
corresponding eigenspaces is the zero space). However, in the case of pro-
jectors Ω(Ea) and Ω(Eb), where a ≠ b, their corresponding subspaces have 
non-zero vectors in common. The product vector |λa〉|λb〉 lies both in the 
subspace projected onto by Ω(Ea) and in the subspace corresponding to 
Ω(Eb). Even if we restrict ourselves to symmetric/antisymmetric sectors 
of the product ℋ  ⊗  ℋ, the problem remains, since vector 
1

2
�� � � � � � � �a b b b� � � �� )  still belongs to both subspaces. This is to be 

expected: after all, while one particle cannot simultaneously possess two 
unequal values of a given operator, it is perfectly possible that one of the 
two particles possesses value a of A and one of the particles (not the 
same!) possesses a different value b of the same operator A. But this means 
that we can’t hope to build a new Hermitian operator out of projectors 
corresponding to such non-exclusive properties of the entire system.3

5.2	 �Symmetric Projectors 
and Disjunctive Properties

It might seem that we have stumbled on the projectors of the form Ω(Ea) 
presented in (5.1) entirely by accident. Actually, this accidental discovery 
can be put on a firmer footing by approaching the problem more gener-
ally. The question we will consider now is what formal requirements have 
to be imposed on operators acting in ℋ ⊗ ℋ in order for them to be 
able to represent some symmetric combinations of one-particle 

3 However, as we will see in Sect. 5.3, there is a way to find a symmetric “counterpart” to non-
symmetric product operators A ⊗ I and I ⊗ A which will recover the appropriate expectation val-
ues in some special cases (formula 5.11).
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properties. Let us start generally with any projection operator E acting in 
ℋ and therefore representing some property ΠE of a single particle. Given 
that we would like to consider a system of two such particles, what are the 
formal restrictions to be placed on any linear operator Ω(E) in ℋ ⊗ ℋ 
that could possibly represent the very same property ΠE applied to one 
component of the composite system? It is relatively straightforward to 
notice that such an operator Ω(E) should satisfy the following desiderata:4

(5.2) 	 (i) Ω(E) should be Hermitian,
		  (ii) Ω(E) should be symmetric,
		  (iii) Ω(E) should be a projector (and therefore idempotent),
		  (iv) Ω(E) should be the sum of tensor products of one-parti-

cle operators involving only E and I (the identity).

Requirements (5.2) are self-explanatory and don’t need any extensive 
comments. From conditions (ii) and (iv), it follows that the most general 
form Ω(E) can have is the following:

	
� E aE I aI E bE E� � � � � � � � .

	

Given that Ω(E) is assumed to be Hermitian, coefficients a and b have 
to be real. Now we can apply requirement (iii):

	
� �E E� � � � �2

.
	

Let us calculate the square of Ω(E) (using the fact that E2 = E):

	
� E a E I a I E a ab b E E� � � � � � � � �� � �

2 2 2 2 22 4 .
	

Comparing formulas for Ω(E) and Ω(E)2, we can first derive a2 = a. 
This equation obviously has two solutions in real numbers (0 and 1), but 
we can discard the value 0, as the operator E ⊗ E clearly represents the 
situation in which both particles have the same property ΠE. If we put 
a = 1, we can easily solve the quadratic equation in b which arises as the 

4 The following analysis is based on my Bigaj (2015).
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result of equating the coefficients of the component E ⊗ E in the expan-
sions of Ω(E) and Ω(E)2: b = 2 + 4b + b2. This equation has two solutions 
b = −1, −2, from which it follows that there are two operators satisfy-
ing (5.2):

	

�
�

1

2 2

E E I I E E E

E E I I E E E

� � � � � � � �

� � � � � � � � .
	

(5.3)

We can immediately recognize that Ω1(E) is the same as the operator 
(5.1) discussed in the previous section, which, as we have agreed, repre-
sents the situation in which one particle has property ΠE, while the other 
is in any state whatsoever (including the possibility that it can also be in 
a state with property ΠE, which justifies the proposal to interpret Ω1(E) 
as stating that at least one particle possesses property ΠE). In order to 
interpret the second operator Ω2(E), we may first present it in an equiva-
lent form:

	
�2 E E I E I E E� � � � �� � � �� �� .

	

It can be easily verified that E  = I – E is a projector that projects onto 
the subspace orthogonal to the subspace E[ℋ] and complementing it to 
the entire Hilbert space (i.e. each vector in ℋ can be presented as a sum 
of vectors from E[ℋ] and E [ℋ]). This follows from the fact that for any 
vector |φ〉 orthogonal to E[ℋ],

	
I E E E– – ,� � � � � � � � � �� �� � � � �� � � � �since 0

	

plus the observation that if |ψ〉 is not orthogonal to E[ℋ], E|ψ〉 ≠ 0. 
Thus it is to be expected that Ω2(E) represents the situation in which one 
particle has property ΠE, while the other particle definitely does not have 
property ΠE (in the sense that it possesses a property inconsistent with 
ΠE—for instance, a different value of the same observable). This can be 
confirmed by calculating the action of Ω2(E) on vectors � � � �E E� �  and 
� � � �E E� �,  where E|λE⟩ = |λE⟩ and E E E� � � �� �� .  Clearly, these vectors 
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are eigenvectors of Ω2(E) with 1 as the eigenvalue; hence it may be 
inferred that Ω2(E) indeed has the above-stated meaning, sometimes 
expressed in the statement that exactly one particle possesses property ΠE.5

However, an argument can be put forward questioning the proposed 
interpretation of operators Ω1(E) and Ω2(E). In order to better see which 
elements of this interpretation are objectionable, let us again consider the 
case of a non-degenerate one-particle observable A and a one-dimensional 
projector Ea corresponding to the value a of A. While it is true that prod-
uct vectors |λa〉| φ〉 and | φ〉|λa〉 are eigenvectors of Ω1(Ea) with the eigen-
value 1, so is their superposition |λa〉| φ〉 ± |φ〉|λa〉. And the standard 
interpretation of states like this one is that individual particles occupying 
it do not possess definite states |λa〉 or | φ〉. The state is entangled, and the 
components are characterized by identical mixed states. Consequently, 
the argument goes, projector Ω1(Ea) cannot represent the situation in 
which one particle definitely possesses property A = a, since some of the 
states in the subspace onto which Ω1(Ea) projects clearly do not describe 
such a situation, but rather are entangled states that are not reducible to 
the products of pure states. An analogous argument can be presented in 
the case of the second operator Ω2(Ea), except now the eigenvectors will 
be of the form |λa〉|λb 〉, |λb 〉|λa〉 and, most importantly, |λa〉|λb〉 ± |λb〉|λa〉. 
Again, if the system is in the latter state, no definite value a or b of observ-
able A should be attributed to any component of the system. This argu-
ment seems especially damaging in the case of particles of the same type, 
since the antisymmetric and symmetric subspaces contain primarily 
entangled states (with an exception of bosonic product states consisting 
of identical component states). Thus the asymmetric product states 
|λa〉|φ〉 and |λa〉|λb〉, which we used to argue for a particular interpreta-
tion of the operators Ω1(E) and Ω2(E), are not even admissible in the case 
of same-type particles.

5 Observe that the arguments in support of the proposed readings of operators Ω1(E) and Ω2(E) are 
analogous to the “inductive” argument in favor of the empirical equivalence between an observable 
A acting in a single-particle Hilbert space ℋ and the tensor-product operator A ⊗  I acting in 
ℋ ⊗ ℋ that we considered in Sect. 2.2. In both cases we derive the required conclusions from 
analyzing how appropriate operators act on selected, special case vectors while ignoring the remain-
ing cases.
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This is a serious interpretive issue, and we will have to give it full atten-
tion (for a comprehensive treatment of this problem, we will have to wait 
until Sects. 5.4 and 5.5). The issue of the physical interpretation of the 
projection operators Ω1(E) and Ω2(E) is the crossroads at which two 
competing approaches to the problem of the individuation of quantum 
particles start to part ways. The orthodox interpretation insists that pro-
jectors Ω1(E) and Ω2(E) cannot possibly be taken as representing the 
properties discussed above, while the emerging heterodox approach will 
question that. Observe, further, that if we follow the orthodox approach, 
which rejects the proposed interpretations of the discussed projectors, 
then immediately two questions arise. One question is: what is the correct 
interpretation of operators Ω1(E) and Ω2(E) as opposed to the rejected 
one? The second question complements the first one: how can we, within 
the formalism of quantum mechanics, alternatively represent the physical 
propositions incorrectly associated with Ω1(E) and Ω2(E)? We will take 
up these questions in turn, starting with the second one.

To remind ourselves: the heterodox approach associates with the pro-
jectors Ω1(Ea) and Ω2(Ea) the following propositions:6

(5.4)	 “At least one of the two particles possesses property A = a”,

(5.5)	 “Exactly one of the two particles possesses property A = a”,

respectively (with the proviso that the phrase “exactly one” is to be inter-
preted as stating that the other particle possesses the property A = b for 
some b ≠ a). Now, given that the orthodoxy questions that association, 
what other formal representations for (5.4) and (5.5), which are clearly 
intelligible, well-defined propositions, can we find? As seen in the formal 
argument presented earlier, there is no other projector on ℋ ⊗ ℋ that 
could do the job. The only option left is to split these propositions into 
disjunctions of more specific statements, as follows:

6 We may note that this interpretation is assumed without hesitation (and without even noting that 
there may be something unorthodox about it) in the comprehensive paper (Ghirardi et al. 2002) as 
well as follow-up papers (Ghirardi and Marinatto 2003, 2004).
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(5.6)	� “Either particle 1 possesses property A = a, or particle 2 pos-
sesses property A = a”

(5.7)	� “For some b such that a ≠ b, either particle 1 possesses property 
A = a and particle 2 possesses property A = b, or particle 1 pos-
sesses property A = b and particle 2 possesses property A = a”.

Each disjunct in the above propositions can be given its representation 
in the form of an appropriate projection operator as follows: Ea ⊗ I for 
the first disjunct in (5.6) and I ⊗ Ea for the second disjunct in (5.6); 
Ea ⊗ Eb for the first disjunct in (5.7) and Eb ⊗ Ea for the second disjunct 
in (5.7). Thus the entire propositions would be translated into the follow-
ing, classical disjunctions:

(5.8)	� “The state of the system lies either in subspace Ea[ℋ] ⊗ ℋ or in 
subspace ℋ ⊗ Ea[ℋ]”

(5.9)	� “For some b such that a ≠ b, the state of the system lies either in 
subspace Ea[ℋ] ⊗ Eb[ℋ] or in subspace Eb[ℋ] ⊗ Ea[ℋ]”.

But observe now that none of these statements are literally available in 
the case of particles of the same type, since joint states of these particles 
can never occupy subspaces outside of the antisymmetric/symmetric sec-
tors. One possible reaction to that may be that this simply confirms the 
Indiscernibility Thesis, but I think there is more to it than that. Statements 
(5.8) and (5.9) are not just false—they are devoid of physical meaning, 
since they use parts of the formalism (such as non-symmetric projectors 
given above) that are not allowed to be used in descriptions of the states 
of same-type particles. I admit that the distinction between falsity and 
meaninglessness is a controversial issue, but it is at least possible to argue 
that no fully adequate representations of the propositions (5.4) and (5.5) 
exist under the orthodox approach to individuation.

The other question posed above was how to properly interpret opera-
tors Ω1(E) and Ω2(E), which are formally admissible and therefore should 
possess well-defined empirical meaning. The orthodox approach ques-
tions their connection with propositions (5.4) and (5.5), but the only 
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other option seems to be to treat the eigenstates of Ω1(Ea) and Ω2(Ea) as 
characterizing the system’s dispositions to reveal particular values of an 
observable under measurement. Thus if the system’s state resides in the 
subspace corresponding to Ω1(Ea), it is guaranteed that when simultane-
ous measurements of observable A are performed on both particles, at 
least one measurement will show value a. If the state of the system is, for 
instance, represented by the ket |λa〉|φ〉, in addition it is guaranteed that 
it will be particle 1 and not particle 2 that will reveal value a. However, 
the superposition |λa〉 |φ〉 ± |φ〉 |λa〉 only ensures that one particle will 
produce outcome a, not that any specific particle will. Similarly, in the 
case of projector Ω2(Ea), it is certain that the A-measurements will reveal 
two distinct values, exactly one of which must be a.

The main problem with this “conditional” (or “dispositional”) inter-
pretation of  Ω1(E) and Ω2(E) is that it presupposes that the A-measurements 
must reveal determinate outcomes on particles 1 and 2. But given the 
ordinary projection postulate (or, alternatively, given the eigenstate-
eigenvalue link), this means that after measurement the system must find 
itself in one of the states |λa〉|φ〉 or |φ〉|λa〉. However, this is impossible 
for systems of same-type particles! No matter what type of interaction a 
system of such particles participates in—whether measurement-induced 
or not—both before and after interaction the system’s state must reside in 
one of the two sectors: symmetric or antisymmetric, according to the 
Symmetrization Postulate. Thus it is inappropriate to insist that the sys-
tem characterized by the projection operators Ω1(Ea) or Ω2(Ea) has the 
dispositions to reveal particular outcomes under measurement, since lit-
erally these dispositions can never be actualized. Moreover, we are facing 
another, closely related problem: how can we perform measurements on 
particle 1 and particle 2, given that there is no way to tell them apart? The 
dispositional account of the meaning of operators Ω1(Ea) and Ω2(Ea) thus 
stumbles over two problems: the purported dispositions can never be 
manifested, because such a manifestation would apparently violate SP, 
and because the triggering event (separate measurements on particles 1 
and 2) can never be made to happen.

The last statement may be countered by the proponents of orthodoxy 
in the following way: while it is impossible to select for measurement the 
particle that bears label 1, we can still select one particle of the 
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two-particle system without knowing whether it is particle 1 or 2. So 
perhaps the double measurement of observable A on the system of two 
same-type particles is possible after all; only we can’t identify the labels of 
the particles undergoing individual measurements.7 But this solution is 
short-lived. The problem returns when we consider possible outcomes of 
such experiments. Suppose that the initial state of the system was the 
antisymmetric combination:

	

1

2
� � � �a b b b�� �,

	

in which case it is guaranteed that one outcome of the joint measurement 
will be a and the other b. But after measurement we have two particles 
associated with two mutually exclusive outcomes a and b, of which we 
know that they can’t possibly be particles 1 and 2, since this would mean 
that the system is in one of the forbidden states |λa⟩|λb⟩ or |λb⟩|λb⟩. So 
what are they? The supporters of orthodoxy are in a bind here. They have 
to assume either that the outcomes are not associated with any particles 
(free-floating outcomes?), or that we have managed to discover and select 
new particles that can’t be identified with any of the particles 1 or 2. 
There is also a third option possible, which unfortunately is not available 
to the followers of orthodoxy, because it would imply abandoning one of 
the pillars on which the orthodoxy rests. Namely, we could simply say 
that labels 1 and 2 never referred to any individual particles to begin with, 
but served merely as parts of the formalism with no independent mean-
ing (in philosophical parlance we often call such elements of language 
“syncategorematic”). In order to make reference to individual elements of 
a composite system, we have to rely on parts of the formalism other than 
the labels—parts that carry clear physical meanings, reflected in legiti-
mate experimental procedures. This is precisely what the heterodox con-
ception attempts to do, and the key to doing it are the symmetric 
operators of the type described above as Ω1(E) and Ω2(E).

7 This solution has definitely a haecceitistic feel about it, as it implicitly acknowledges that particles 
do possess different non-qualitative features corresponding to the distinct labels, only we cannot 
know them. John Locke would be very unhappy about it.
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5.3	 �Qualitative Individuation via 
Symmetric Projectors

Let us suppose again that we have two particles of the same type, whose 
states are represented by vectors in the symmetric or antisymmetric sector 
of the tensor product ℋ ⊗ ℋ. The orthodox approach to individuation 
in this case prescribes that the first and second factors in the product cor-
respond to individual particles, in accordance with the assumption we 
have dubbed Factorism (see Sect. 2.6). However, let us adopt a different 
approach—instead of stipulating upfront which parts of the formalism 
represent individual components of the system, let us try to figure this 
out for ourselves. Thus the starting point will be that the two-particle 
system occupies a joint state |ψ(1,2)〉, which possesses the required sym-
metry properties with respect to the permutation of formal indices (not 
particles!) 1 and 2, but we don’t know yet how to make reference to indi-
vidual components occupying this state. On the basis of the analysis of 
the symmetric projectors Ω1(E) and Ω2(E) given in the previous section, 
we may suggest that the right way to individuate the particles comprising 
the entire system is through the possession of the joint property corre-
sponding to one of these projectors. Since successful reference arguably 
requires the uniqueness of the intended referent (we don’t want to make 
reference to an object using a property that may be possessed by more 
than one entity), it should be clear that the best option is to use operator 
Ω2(E) with its assumed interpretation (5.5). Thus the proposed criterion 
of reference (individuation) would be such that if the system occupies a 
state which is an eigenstate for Ω2(E) with the corresponding eigenvalue 
equal 1, then we can make reference to one particle using the property 
corresponding to projector E.

Analogously, we can make reference to the other component of the 
two-particle system any time we can find a projector F which is orthogo-
nal to E and such that the state |ψ(1,2)〉 is also an eigenvector for Ω2(F). 
The condition of orthogonality is necessary in order to exclude the pos-
sibility that one and the same particle could have a non-zero probability 
of possessing E and of possessing F. Projector F may be the orthogonal 
complement of E: F = I – E, but it may also be a more specific projector 
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corresponding to any subspace of ℋ orthogonal to E[ℋ]. Instead of two 
conditions of reference formulated separately for each of the two orthog-
onal one-particle projectors, we may actually use one condition as follows:

(5.10)	 System s consists of two particles such that one particle pos-
sesses property associated with projector Ea, while the other 
particle possesses property associated with projector Eb, 
where Ea is orthogonal to Eb, iff the state of s is an eigenstate 
of the projector Ea ⊗ Eb + Eb ⊗ Ea with the corresponding 
eigenvalue equal 1.

It can be easily verified that the above condition is equivalent to the 
requirement that the state of s be a common value-one eigenvector for 
projectors Ω2(Ea) and Ω2(Eb)—this follows from the fact that Ω2(Ea)
Ω2(Eb) = Ω2(Eb) Ω2(Ea) = Ea ⊗ Eb + Eb ⊗ Ea. The criterion of individua-
tion given in (5.10) can be generalized to N particles by introducing the 
set of N mutually orthogonal projectors Eai

 i = 1, …, N, and by stipulat-
ing that the state of the system must be an eigenstate of the symmetric 
projector � � �

� � � � �� � �
S

a a
N

N
E E

1
 . 8

In the proposed approach, reference to the individual particles is made 
not with the help of the factors in the tensor product ℋ ⊗ ℋ, but quali-
tatively, using selected properties. However, it is possible to redescribe the 
symmetric/antisymmetric states satisfying (5.10) in such a way that indi-
vidual particles referred to by projectors Ea and Eb will actually corre-
spond to factors in a new tensor product of appropriately selected 
subspaces of ℋ. Caulton (2014a) has shown how to do that, using the 
notion of unitary equivalence. Following his approach, let us first identify 
appropriate subspaces of ℋ ⊗ ℋ that can “host” states of same-type 
particles which satisfy condition (5.10). Let 𝒜 be the antisymmetric 

8 In the case of N particles where N > 2, it is also possible to make less specific individuations that 
pick out not single particles but their assemblies. For instance, we can individuate k particles out of 
N when we apply the projector that is the permutation-invariant sum of all tensor products con-
taining k identical single-particle projectors E and N  – k complementary projectors I  – E. See 
Caulton (2016) and Bigaj (2016) for more on that.
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sector of ℋ  ⊗  ℋ, 𝒮, the symmetric sector of ℋ  ⊗  ℋ, and let 
ℇ = Ea ⊗ Eb + Eb ⊗ Ea. Then, the considered subspaces for fermions and 
bosons, respectively, are ℇ[𝒜] and ℇ[𝒮]. Now, it can be shown that states 
and properties of systems occupying these subspaces can be equivalently 
represented in the tensor product Ea[ℋ] ⊗ Eb[ℋ].9 The mapping that 
secures the equivalence between ℇ[𝒜] and ℇ[𝒮] on the one hand and 
Ea[ℋ] ⊗ Eb[ℋ] on the other is given by the operator:

	
U E Eab a b� �2 .

	

It is elementary to observe that Uab applied to any vector from either 
ℇ[𝒜] or ℇ[𝒮] will yield a vector in Ea[ℋ] ⊗ Eb[ℋ]. Moreover, operator 
Uab limited to subspaces ℇ[𝒜] and ℇ[𝒮] is unitary, that is, it preserves the 
length of the transformed vectors. Here is a proof of this fact. Let |v〉 be 
any vector from ℇ[𝒜] or ℇ[𝒮]. We want to prove that the transformed 
vector Uab|v〉 will have the same length as |v〉, which can be shown as 
follows:

|Uab|v〉|2  =  〈v|Uab
†Uab|v〉

=  2〈v|(Ea ⊗ Eb)(Ea ⊗ Eb)|v〉 (the hermiticity of Ea and Eb)
=  2〈v|Ea ⊗ Eb|v〉 (the idempotence of Ea and Eb)
=  〈v|Ea ⊗ Eb|v〉 + 〈v|Eb ⊗ Ea|v〉 (the (anti-)symmetry of |v〉)
=  〈v|ℇ|v〉 (definition of ℇ)
=  〈v|v〉 (because |v〉 ∈ ℇ[𝒜] or ℇ[𝒮])

The existence of unitary transformation Uab connecting ℇ[𝒜] and 
Ea[ℋ] ⊗ Eb[ℋ], as well as ℇ[𝒮] and Ea[ℋ] ⊗ Eb[ℋ], shows that the 
algebras of operators defined on these spaces are unitarily equivalent, that 
is, they may be considered two different representations of the same 
physical observables. That is, if we have a Hermitian operator Α acting in 
the product space Ea[ℋ] ⊗ Eb[ℋ], it can be interpreted as representing 
the same observable as the operator Uab

−1ΑUab acting in ℇ(𝒜) and in 
ℇ(𝒮). Even though operator U E Eab a b� �2  does not have an inverse 
in the whole range ℋ  ⊗  ℋ, it does have inverses when restricted to 

9 Caulton calls the product Ea[ℋ] ⊗ Eb[ℋ] an “individuation block”.
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subspaces ℇ(𝒜) and ℇ(𝒮), and these inverses are antisymmetrization/
symmetrization operators 1

2
12I P�� �  and 1

2
12I P�� � , respectively.10 

Thus, operators with the same physical meaning as Α that belong to the 
algebras of operators in ℇ[𝒜] and ℇ[𝒮] will have the following forms:

	
I P E Ea b�� � �� � � �12 � in � 

	

	
I P E Ea b�� � �� � � �12 � in �  .

	

Let us now apply the above transformation rules in order to determine 
the operators that can represent properties of particles individuated by 
projectors Ea and Eb. In the representation given by the algebra of the 
operators acting in the tensor product Ea[ℋ] ⊗ Eb[ℋ], the Hermitian 
operators A ⊗ I and I ⊗ A should naturally represent measurable proper-
ties of the Ea-individuated particle and the Eb-individuated particle, 
respectively. But we can transform these operators back to the “original” 
representation in the symmetric and antisymmetric sectors of the total 
Hilbert space, using the above expressions. The result of these transfor-
mations will be the following symmetric operators:

	

�
�

a a b a b

b a b a b

AE E P AE E

E AE P E AE

� � � �� �
� � � �� �

12

12 .
	

Given that for all vectors |v〉 in ℇ[𝒜] and ℇ[𝒮] the following holds—
P12|v〉 = ±|v〉, we may simplify the above formulas:

	

�
�

a a b b a

b a b b a

AE E E AE

E AE AE E

� � � �
� � � � . 	

(5.11)

10 This can be easily verified as follows. Let |v〉 ∈ ℇ(𝒜) or ℇ(𝒮). Then, 
1

2
212I P E E va b�� � � |  

= (Ea ⊗ Eb) ∣ v⟩ ± P12(Ea ⊗ Eb) ± P12 ∣ v⟩ = (Ea ⊗ Eb + Eb ⊗ Ea) ∣ v⟩ = ∣v⟩.
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Thus, if we have a system of two same-type fermions or bosons occu-
pying a joint state |v〉 in which they are individuated by properties Ea and 
Eb in the above-defined sense (5.10), and if we are asked to calculate the 
expectation value of any single-particle Hermitian operator A attributed 
to the Ea (or Eb) particle, the answer will be given in terms of the usual 
formula for the expectation value of operators Αa and Αb in state |v〉 as 
follows:

(5.12)		  〈v|Αa|v〉 = 〈v|AEa ⊗ Eb|v〉 + 〈v|Eb ⊗ AEa|v〉
			   〈v|Αb|v〉 = 〈v|Ea ⊗ AEb|v〉 + 〈v|AEb ⊗ Ea|v〉.11

Let us illustrate these considerations with a simple example. Suppose 
that the joint state of a system of two fermions (bosons) is the well-known 
combination:

	
� � � � �ab a b b a� �� �1

2
,
	

where |λa〉 and |λb〉 are orthogonal. In that case the particles are individu-
ated by one-dimensional projectors Ea = |λa〉〈λa| and Eb = |λb〉〈λb|. That is, 
the state |φab〉 lies in the subspace projected onto by the symmetric opera-
tor Ea ⊗ Eb + Eb ⊗ Ea. An alternative representation of state |φab〉 in the 
tensor product Ea[ℋ]  ⊗  Eb[ℋ] will be the result of the following 
transformation:

11 Caulton (2014a) develops a slightly different approach to the problem of how to calculate the 
expectation values of single-particle Hermitian operators in connection with the individuation by 
projectors Ea and Eb. First of all, he does not assume that the projector Ea individuates exactly one 
particle, leaving the possibility open that both particles may be individuated by the same projector 
Ea. Further, he proposes to use the symmetric operator EaAEa ⊗ I + I ⊗ EaAEa in order to calculate 
the expectation value of the single-particle observable A attributed to one of the Ea-individuated 
particles. In spite of the superficial difference between Caulton’s operator and my suggested opera-
tor given in (5.11), it actually turns out that they both produce the same expectation values, as long 
as the state |v〉 of the system belongs to the subspace projected onto by Ea ⊗ Eb + Eb ⊗ Ea. This can 
be proven as follows: 〈v|AEa ⊗ Eb + Eb ⊗ AEa |v〉 = 〈v|(Ea ⊗ Eb + Eb ⊗ Ea)†(AEa ⊗ Eb + Eb ⊗ AEa) 
|v〉 = 〈v| EaAEa ⊗ Eb + Eb ⊗ EaA Ea|v〉 = 〈v|(EaAEa ⊗ I + I ⊗ EaAEa) (Ea ⊗ Eb + Eb ⊗ Ea)|v〉 = 
〈v|(EaAEa ⊗ I + I ⊗ Ea AEa)|v〉. In the derivation we have used, as always, the following facts: 
Ea

† = Ea, Eb
† = Eb, EaEb = EbEa = 0, Ea

2 = Ea, Eb
2 = Eb.
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2 E Ea b ab a b�� � �� � � � �� �� �� ,

	

whereas the symmetrizator 1

2
12I P�� �  or antisymmetrizator 

1

2
12I P�� �  will recover back the original state ∣φab⟩. If we are interested 

in calculating the expectation value for any single-particle Hermitian 
operator A attributed to the particle individuated by Ea, all we have to do 
is apply the first formula in (5.12) to the state ∣φab⟩, which in our case will 
produce the result 〈λa|A|λa〉 which coincides with the standard way of 
calculating expectation values for systems in state |λa〉. In the special case 
when A  = Ea, the expectation value equals 1, which confirms that the  
Ea-individuated particle indeed possesses the property associated with Ea. 
It should be clear, then, that the proposed method of individuation leads 
to the conclusion that systems possessing states of the form ∣φab⟩ behave 
as if consisting of two particles, each of which occupies its own pure state 
(|λa〉 or |λb〉).12

We have to remember, however, that the new method of qualitative 
individuation described above has its limitations. A pair of particles can 
be individuated using certain projectors Ea and Eb as long as the assembly 
occupies a joint state that lies in the subspace projected onto by 
Ea ⊗ Eb + Eb ⊗ Ea. If the evolution of the system takes it outside this 
subspace, as may very well happen, the individuation done previously no 
longer applies, and we have to use different sets of projectors to individu-
ate the particles. Thus the representation of states and properties in par-
ticular individuating blocks cannot be guaranteed to be available 
throughout the entire evolution of the system, and it may be even sur-
mised that its availability is usually very short-lived (momentary). In 

12 Muller and Leegwater argue in their paper (Muller and Leegwater 2020) that the possibility of 
representing symmetric/antisymmetric states in the tensor product Ea[ℋ] ⊗ Eb[ℋ] amounts to the 
rehabilitation of the thesis of Factorism, since the factors in this product host states of individual 
particles. However, as I explained in Chap. 2 ft. 16, Factorism presupposed by orthodoxy (and 
required for the Indiscernibility Thesis) contains the additional assumption that the factor Hilbert 
spaces corresponding to individual particles must figure in the original Symmetrization Postulate 
restricting the available states to symmetric/antisymmetric sectors of the whole product. Thus the 
rewriting of the states of same-type particles in the tensor product of individuating blocks 
Ea[ℋ] ⊗ Eb[ℋ] does not reinstate this interpretation of Factorism.
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consequence, while we may be able to distinguish and individuate parti-
cles synchronically, their diachronic identification across different tempo-
ral instants poses a separate challenge that needs to be addressed 
independently (see Chap. 8).

Another problem that should be looked into is whether qualitative 
individuation done with the help of symmetric projection operators 
Ea ⊗ Eb + Eb ⊗ Ea is guaranteed to be attainable in all available states of 
fermionic and bosonic systems. As it turns out, the answer in the case of 
fermions is positive, that is, for every antisymmetric state of two fermi-
ons, there are non-trivial orthogonal projectors Ea and Eb (possibly more 
than one-dimensional, though) such that the state lies in the subspace 
projected onto by Ea ⊗ Eb + Eb ⊗ Ea. However, this result does not carry 
over to the case of bosons. This can be clearly seen when we consider 
totally symmetric product states of the form |φ〉|φ〉, which can never be 
eigenstates of any non-trivial projector of the form Ea ⊗ Eb + Eb ⊗ Ea.13 
Thus bosons are not guaranteed to be always discerned in the way 
described above. We will return to this issue in Chap. 6, where all the 
relevant facts will be stated and proven.

5.4	 �Singlet-Spin State 
and Qualitative Individuation

As it stands, the concept of qualitative individuation introduced in the 
previous section is open to a serious objection that we have already hinted 
at in Sect. 5.2. The proposed method of individuation based on symmet-
ric projectors may be accused of being at odds with well-known and 
widely discussed facts regarding entangled systems and the measurable 
properties of their components. To see where the problem may lie, let us 
consider one of the most famous examples of quantum states that has 
entered wide circulation in philosophical literature: the singlet state of 
two spin-half particles (e.g. two electrons). Let |↑z〉 denote the state of 

13 Here is a quick proof of this fact. The result of the action of the projector Ea ⊗ Eb + Eb ⊗ Ea on 
the state |φ〉 |φ〉 is either zero (when |φ〉 is orthogonal to one of the subspaces associated with Ea or 
Eb), or has the form of |μ〉|χ〉 + |χ〉|μ〉 where 〈μ|χ〉 = 0. Thus it can never produce back the sym-
metric product vector |φ〉|φ〉.
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one particle possessing the definite value “up” of its z-spin, and |↓z〉 the 
state corresponding to the value “down”. Then, the singlet state is the 
state of two particles which has the following form:

	

1

2

↑ ⊗ ↓ − ↓ ⊗ ↑( )z z z z| | .

	
(5.13)

The singlet state is a standard example of an entangled state, that is, a 
state that cannot be written as a product of two pure states. It features 
prominently in the foundational debates on quantum mechanics related 
to the EPR argument, Bell’s inequalities, non-locality, holism and the 
like. The key property of state (5.13), responsible for all the non-classical 
phenomena mentioned above, is the fact that individual particles occu-
pying it do not possess well-defined spins of their own, and yet the total 
spin of the system is determinate and equals zero. Thus it is guaranteed 
that simultaneous measurements performed on both particles will reveal 
that spins are anticorrelated, even though no measurement taken sepa-
rately has its outcome predetermined. The standard interpretation of 
state (5.13) implies that individual particles occupying it possess the 
exact same reduced state which prescribes that the probability of obtain-
ing any value of spin in any direction equals 1/2. Needless to say, these 
predictions are unambiguously confirmed in experiments.

However, when we apply the method of individuation introduced in 
the previous section, the results seem to contradict the above-mentioned 
analysis. Clearly, state (5.13) is an eigenstate for the operator 
E↑z ⊗ E↓z + E↓z ⊗ E↑z, where E↑z = |↑z〉〈↑z| and E↓z = |↓z〉〈↓z|. Consequently, 
following the suggestion of Sect. 5.3, we should conclude that within the 
system characterized by state (5.13), there is one particle possessing spin 
“up” and one particle possessing spin “down”. An alternative, unitarily 
equivalent representation of state (5.13) in the individuation block 
E↑z[ℋ]  ⊗  E↓z[ℋ] discussed earlier is just the separable product state 
|↑z〉 ⊗ |↓z〉; hence no real entanglement is present here. This also implies 
that there shouldn’t be any non-local correlations present, nor should 
there be any violations of Bell’s inequality. It seems that the heterodox 
conception of qualitative individuation leads to unacceptable 
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consequences that are in disagreement with the empirically well-con-
firmed facts regarding particles occupying states of the form (5.13).14

Before we discuss possible responses to the above-revealed challenge, 
let us notice that the orthodox account of the singlet state is not free from 
conceptual difficulties either. The main question, which relates to the 
problem considered at the end of Sect. 5.2, is whether the actualization 
of particular outcomes of spin-measurements can be reconciled with the 
Symmetrization Postulate. Under the assumption that the singlet state 
(5.13) characterizes a system of two “indistinguishable” fermions, we 
have to make sure that the state of these fermions is properly antisym-
metrized, before and after measurement. The singlet state itself is obvi-
ously antisymmetric; however, the measurement of spin on both particles 
presumably leaves the system in one of the two following product states: 
|↑z〉 ⊗ |↓z〉 or |↓z〉 ⊗ |↑z〉. But these states are patently not permutation-
invariant, and when we apply the necessary antisymmetrization, we end 
up with the same singlet state that characterized the system before the 
measurement. In consequence, the orthodox approach leads to the fol-
lowing dilemma: either the post-measurement state of two fermions vio-
lates the Symmetrization Postulate, or the measurement does not affect 
the state of the system. The second horn of the dilemma is unacceptable 
for the proponent of orthodoxy, because under the standard collapse 
interpretation, the only case in which a measurement of a given quantity 
A does not change the initial state of the system is when observable A 
already possesses a well-defined value in this state. But, as we pointed out, 
it is part of orthodoxy that particles occupying the singlet state do not 
have their spins well defined.

There is some confusion surrounding the proper interpretation of the 
singlet-spin state, and it may be worthwhile to try clearing it up before we 
move any further. This state is antisymmetric, but its antisymmetry is not 
a consequence of the Symmetrization Postulate applied to fermions of 
the same type. In fact, the singlet state can be occupied by pairs of “dis-
tinguishable” particles, such as an electron and a proton, as long as both 
particles possess the same total spin number (1/2 in the case of electrons 

14 Caulton (2014b, p. 7) notes this problem as well. His response to it is essentially the same as the 
one developed in this section.
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and protons). And yet even if we attribute the singlet state to a proton 
and an electron, it does not lose its antisymmetric property. The singlet 
state is usually introduced in the context of the well-known problem of 
how to add two spins (or, more generally, two angular momenta).15 The 
spin state of any individual particle can be completely characterized by 
determining the values of two commuting operators: the square of the 
total spin S2 and the component of S in an arbitrary direction z: Sz. Given 
that the total spin of a specific particle is state-independent (does not 
change in time), the operator S2 is just a multiple of the identity operator, 
whereas Sz can assume different values (e.g. –½ and ½ for spin-half 
particles).

When we consider two particles with their respective spins S1 and S2, 
their joint spin state may be characterized again by determining the val-
ues of S2 = (S1 + S2)2 and Sz = S1z + S2z. In the case of two spin-half par-
ticles, the four-dimensional spin-state space can be proven to be spanned 
by the common eigenvectors for S2 and Sz. As it turns out, the singlet 
state (5.13) is one such common eigenvector which corresponds to the 
value 0 of the total spin and the value 0 for spin in the z-direction. The 
three remaining vectors represent the situation when the total spin equals 
1, which splits into three possibilities regarding the z component Sz: −1, 
0, 1. These three states are known as triplet states, and their exact forms in 
the basis created by vectors |↑z〉 and |↓z〉 are as follows:

	

↑ ↑
↓ ↓

↑ ⊗ ↓ + ↑ ⊗ ↓( )

⊗
⊗

z z

z z

z z z z
1

2 	

(5.14)

All triplet vectors are symmetric, and yet they are supposed to repre-
sent spin states of two fermions. This clearly shows that the symmetry/
antisymmetry of the common eigenvectors for operators S2 and Sz has 
little if anything to do with the Symmetrization Postulate and is an 

15 See, for example, Cohen-Tannoudji et al. (1978, 1003–1008) for a standard treatment of this 
problem.
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accidental feature possessed by the singlet and triplet states regardless of 
whether they are applied to “distinguishable” or “indistinguishable” par-
ticles. However, the question remains how to properly antisymmetrize 
the available spin states (5.13) and (5.14) of two fermions of the same 
type. Naturally, with respect to the triplet states, this can’t be done directly, 
since the antisymmetrization of a symmetric state yields the zero vector. 
In order to achieve the proper antisymmetrization, we have to rewrite 
states (5.13) and (5.14) taking into account not only internal but also 
spatial degrees of freedom.

A complete state of a spin-half particle has to be written in the tensor 
product of two Hilbert spaces: the spin state space ℋs = ℂ2 and the posi-
tion state space ℋr = ℒ2( R3 ) (consisting of square-integrable functions 
on R3). Let |L 〉 and |R 〉 indicate states in ℋr (wave functions), whose 
support is limited to two well-localized and non-overlapping regions in 
space L and R (thus |L 〉 and |R 〉 are orthogonal to each other). Then 
vectors |↑z〉|L〉, |↓z〉|R 〉 and so on will represent states of a particle that 
possesses an appropriate value of z-spin and is located in a particular 
region of space. Now, let us consider the following antisymmetric combi-
nation of vectors (labels 1 and 2 are added for greater clarity):16

	

1

2
1 1 2 2 1 1 2 2

↑ ⊗ ↓ − ↓ ⊗ ↑( )z z z zL R R L
	

(5.15)

In spite of its superficial similarity with state (5.13), vector (5.15) is 
not the singlet-spin state. For instance, (5.15) lacks an important feature 
of the singlet state which is known as spherical symmetry. Vector (5.13) 
can be rewritten in a basis consisting of the states representing spin com-
ponents in any arbitrary direction—instead of values “up” and “down” in 
a given direction z, we could choose values of spin in any direction n, and 

16 As Muller and Leegwater correctly observe (Muller and Leegwater 2020, Sect.  4), the tensor 
product in this context plays two different roles. The product may connect the Hilbert spaces asso-
ciated with distinct particles or with distinct degrees of freedom for one particle. In order to keep 
these two roles separate, for the rest of this chapter I will use the symbol ⊗ to indicate the product 
of states and operators which refer to distinct particles, while the products of states and operators 
associated with distinct degrees of freedom of the same particle will be simply symbolized by 
concatenation.
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the resulting vector would be mathematically identical with (5.13). 
However, inserting the eigenstates of spin along a different spatial direc-
tion into formula (5.15) will yield a different vector. Consequently, state 
(5.15) does not guarantee that spins measured in various directions will 
always be anticorrelated—the anticorrelation is only secured for the 
direction chosen to write particular states |↑z〉 and |↓z〉 used in (5.15). 
One—perhaps slightly biased—way of reading the state given in (5.15) is 
such that it describes a superposition of two situations that differ from 
one another only with respect to their assignment of conventional labels: 
one component of state (5.15) ascribes label 1 to the left particle with 
spin up and label 2 to the right particle with spin down, while the other 
component switches the labels. The proper version of the singlet state 
with spatial degrees of freedom has to contain different combinations of 
spins and positions, as in the following vector:

	

1

2 1 1 2 2 1 1 2 2
↑ ⊗ ↓ − ↓ ⊗ ↑( )z z z zL R L R .

	
(5.16)

In state (5.16) we have a superposition of the situation in which the 
“left” particle has spin up and the “right” particle has spin down with the 
physically distinct situation where the left particle has spin down and the 
right particle spin up. However, state (5.16) is not antisymmetric, as can 
be easily verified by permuting indices 1 and 2. In order to use (5.16) as 
a representation of the state of two indistinguishable fermions, we have 
to antisymmetrize it, which produces the following, rather compli-
cated vector:

	

1

2
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

↑ ⊗ ↓ − ↓ ⊗ ↑

−↓ ⊗ ↑ + ↑ ⊗ ↓











z z z z

z z z z

L R L R
R L R L


,

	

(5.17)

which can be simplified as follows:

	

1

2 1 2 1 2 1 2 1 2
↑ ⊗ ↓ − ↓ ⊗ ↑( ) ⊗ + ⊗( )z z z z L R R L .

	
(5.18)
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The form of vector (5.18) immediately reveals that this state is spheri-
cally symmetric with respect to spin (since the first component of the 
tensor product is just the standard singlet-spin state with no positions). 
Hence this is the right variant of the singlet-spin state (5.13) in the case 
when the spatial degrees of freedom and the symmetrization postulate are 
taken into account.

5.5	 �Measurements for “Indistinguishable”  
Particles

Now we can tackle the problem of how to account for measurements and 
their outcomes under the inevitable symmetrization postulate. In the first 
part of this section, we will assume the validity of the Projection Postulate, 
which prescribes that the act of measurement of an observable A on a 
system prepared in state |φ〉 “collapses” the initial state |φ〉 onto one of 
the eigenstates |λa〉 of A corresponding to the revealed value a (see 
Goldstein 2009). In order to formally calculate the final, reduced state 
|λa〉, we may apply the projection operator Ea (such that Ea[ℋ] is the 
eigenspace of A with the corresponding value a) to the initial state:

	

�
� � �

��
� �

�a

a

a
E

E� �
�

�
1

,

	

where 
1

ϕ ϕEa

 is the normalization constant. In the orthodox 

approach to quantum individuation based on Factorism, measurements 
on individual components of the composite system are associated with 
labels identifying separate factors in the tensor product of Hilbert spaces. 
That is, we could talk about measuring the spin of the particle labeled 1, 
and the projector corresponding to a particular outcome a of this mea-
surement would have the form of:

	
E I I Ia r s r

1 1 2 2� � � � � � � �� ,
	

(5.19)
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where Ir
1� � , Is

2� �  and Ir
2� �  are the identity operators acting, respectively,  

in the position space 1
rℋ  of the first particle, the spin space 2

sℋ  of the 
second particle and the position space r

2ℋ  of the second particle.
However, in the case of indistinguishable particles this representation 

seems inappropriate for the following reasons. First of all, projectors of 
the form (5.19) are not symmetric, so when applied to antisymmetric 
states of fermions, they will not produce states of the required type of 
symmetry (we have already witnessed this feature in Sect. 5.4 when we 
have discussed measurements done on singlet-spin states without the spa-
tial degrees of freedom). Moreover, when we consider particles of the 
same type, individual labels that are supposed to identify particular com-
ponents of the composite system lose their clear physical meaning, since 
they cannot be associated with any physically differentiating properties. 
Electron number one does not differ in any empirically verifiable way 
from electron number two, so it is unclear how we can select one and not 
the other for measurement.

An alternative proposal is to use again qualitative properties in order to 
pick out one particle for measurement. It is rather uncontroversial to 
observe that in the majority of cases the role of such a selection property 
is played by spatial location. Measurements are localized affairs due to the 
use of macroscopic instruments whose position in space is well defined. 
Thus if we are dealing with a system consisting of “indistinguishable” 
particles, then instead of asking what the spin of the particle number 1 
(or 2) is, it is better to ask about the spin of the particle that we locate in 
region L (R), since we can simply place our spin-measuring device in an 
appropriate location. And the aforementioned experimental question has 
to be formulated in a symmetric way, in order to preserve the permuta-
tion invariance of the description of the system. Thus the projector that 
corresponds to the spin-outcome “up” obtained on the particle located in 
region L will look as follows:

E E I I I I E E E E
z L s r s r z L z L�

� � � � � � � � � � � �
�
� � � �

�
� � � �� � � � �1 1 2 2 1 1 2 2 1 1 EE E

z L�
� � � �2 2

	
(5.20)

Note that the operator in (5.20) has the general form of projector Ω1 
from formula (5.3). This projector, according to the heterodoxy, repre-
sents the property of the system expressed in the sentence “At least one 
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component (either 1 or 2 or both) possesses spin “up” and is located in 
L”. Thus when we apply projector (5.20) to the initial state of the system, 
we should obtain the state in which the system will be found after under-
going spin-measurement in location L which revealed value “up”.

It can be easily confirmed that when we act with the projector (5.20) 
on states (5.15) or (5.17), the result will be the same in both cases, namely 
the state (5.15). We can use this fact to show how the unorthodox 
approach to quantum individuation avoids the problem with the singlet 
state described in Sect. 5.4. The “pseudo” singlet state (5.15) does not 
change under measurements whose outcome is spin “up” in location L, 
which is consistent with the contention that this state corresponds to a 
situation in which one particle is already located in L and possesses spin 
“up” (while the other particle is located in R and has spin “down”). 
Indeed, the fact that state (5.15) is an eigenstate of the projector (5.20) 
shows that under the heterodox approach to individuation laid out in 
Sect. 5.3, the system contains a particle in location L and possessing spin 
“up”.17 On the other hand, the genuine singlet state (5.17) changes under 
an appropriate measurement. This shows that before measurement the 
system occupying state (5.17) does not contain particles with well-defined 
positions and spins. The intuition that the singlet state does not deter-
mine spins of separate components of the system is preserved under the 
proposed approach, if only we write the singlet state in the correct 
form (5.17).

The discussion done so far in this section may be accused of relying too 
heavily on the controversial account of quantum measurements in terms 
of the projection postulate (collapse of the wave function). As is well 
known, the issue of a proper interpretation of measurements is one of the 
most hotly debated topics in the foundational analysis of quantum 
mechanics. Apart from the collapse interpretations (whether in the 

17 Of course, when we consider a measurement of spin in any arbitrary direction n, as a result the 
original state (5.15) will change. However, observe that in this case the components of state (5.15) 
corresponding to the R-particle will remain unchanged, as the total state will now be either 
1

2
1 1 2 2 1 1 2 2| | | | | | |↑ 〉 ⊗ ↓ 〉 − ↓ 〉 ⊗ ↑ 〉( )〉 〉 〉 〉n z z nL R R L

 
or 

1

2
1 1 2 2 1 1 2 2| | | | | | | |↓ 〉 ⊗ ↓ 〉 −↓ 〉 ⊗ ↓ 〉( )〉 〉 〉 〉n z z nL R R L .

 

Hence the system behaves as if it consisted of two independent subsystems, L and R. See Muller 
and Leegwater (2020, Sect. 5) for a discussion.
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standard, much-vilified Copenhagen version, or in the newest, spontane-
ous localization or GRW form), there are famous alternatives, such as the 
many-worlds interpretation, that dispense with the suspicious non-
unitary reductions of the wave function upon measurements. I do not 
wish to commit myself to any specific proposal of how to deal with the 
measurement problem. Fortunately, it is possible to restate virtually all 
the above results in a neutral framework that is arguably presupposed by 
all interpretations of the quantum theory. This neutral framework is pro-
vided by a well-known unitary description of the measurement process 
understood as a physical interaction between the quantum system and 
the measuring device, subject to certain natural constraints (see Albert 
1992, pp. 73–79, Barrett 1999, p. 28ff).

We will assume that the measuring device in the case of spin-half is any 
physical system that can be in one of the three states: the neutral state 
“ready” |r〉m, the state associated with the recorded outcome “up” |u〉m and 
the state associated with the outcome “down” |d〉m. Given the assumption 
that the measuring device functions properly (faithfully represents the 
states of the measured system), we stipulate that the unitary evolution of 
the entire composite system consisting of a measuring device m and a 
measured system s should obey the following constraints:

	

| | | |
| | | |
↑〉 ⊗ 〉 →↑〉 ⊗ 〉
↓〉 ⊗ 〉 →↓〉 ⊗ 〉

s s

s s m

r u
r d

m m

m . 	
(5.21)

That is, if the measured system already possesses a determinate value of 
spin, the interaction between this system and the measurement apparatus 
should put the latter in the state corresponding to this possessed value. 
The transformation rules (5.21) can be extended to any states of system s 
by linearity, from which it follows that if the initial state of s is a superpo-
sition of states with well-defined values of the measured observable, the 
entire composite system after measurement will occupy an entangled 
state, and therefore only mixed states can be attributed to the individual 
components.

The difficulty caused by the orthodox analysis of measurements on the 
singlet state (5.13) reappears in this new approach. Using the rules (5.21) 
we can predict the final state of the measuring device together with the 
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two-particle system, assuming that the measurement is done on particle 
number 1:

	

1

2
1

2

1 2 1 2

1 2 1 2

↑ ⊗ ↓ − ↓ ⊗ ↑( )⊗ →

↑ ⊗ ↓ ⊗ − ↓ ⊗ ↑ ⊗( )

r

u d

m

m m
.
	

(5.22)

As can be easily verified, the final state in (5.22) is not invariant with 
respect to the permutation of “indistinguishable” particles 1 and 2. Thus 
the general unitary approach to measurement cannot be reconciled with 
the universal validity of the Symmetrization Postulate, exactly as in the 
case of measurements with collapse. But now let us specify the constraints 
on the unitary evolution in the case of spin-measurements associated not 
with particles’ labels but with specific locations. Suppose, as before, that 
the measurement of spin is performed in location L. The conditions on 
the evolution that ensure the faithfulness of measurement can be written 
as follows:

	

| | | | | | | | | |
| | |
x L y R r x L y R x
x R y

m m〉 〉 ⊗ 〉 〉 ⊗ 〉 → 〉 〉 ⊗ 〉 〉 ⊗ 〉
〉 〉 ⊗ 〉
1 1 2 2 1 1 2 2

1 1 2
|| | | | | | |L r x R y L ym m〉 ⊗ 〉 → 〉 〉 ⊗ 〉 〉 ⊗ 〉

2 1 1 2 2
, 	

(5.23)

where x = ↑ or ↓ and y = ↑ or ↓. We don’t have to specify the evolution of 
the system 1 + 2 + m in the case when both particles occupy the same 
region (both in R or both in L), since such states are absent from the 
considered superpositions (5.15) and (5.17). However, for completeness 
we may stipulate that in this case the measuring device will remain in the 
neutral state “ready”.

Applying the rules of evolution (5.23) to states (5.15) and (5.17), we 
will get the following final states:

	

1

2
1 1 2 2 1 1 2 2↑ ⊗ ↓ − ↓ ⊗ ↑( )⊗� � � � � � � � � �L R R L u m

	
(5.24)
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1

2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

↑ ↓ ↓ ↑

↑ ↓ ↓ ↑

⊗ − ⊗( )⊗


+ ⊗ − ⊗( )⊗ 


L R R L u

R L L R d
m

m
.
	

(5.25)

Both states (5.24) and (5.25) are antisymmetric with respect to the 
permutation of labels 1 and 2. The state in (5.24) is a product of the 
pseudo singlet state (5.17) and the state of the measuring device indicat-
ing the outcome “up”. Thus in this case the measured system 1 + 2 does 
not get entangled with the measuring device and retains its original state, 
as expected. On the other hand, (5.25) is a genuinely entangled state of 
the system 1  +  2  +  m. Seen from the perspective of the many-worlds 
interpretation, (5.25) describes two branches (“worlds”) that the world 
splits into as a result of the interaction between systems m and 1 + 2. The 
branch corresponding to the outcome “up” associates with the two-
particle system the state which is an antisymmetric representation of the 
situation described as “particle in L has spin “up” while particle in R has 
spin “down””, while the other branch contains the alternative scenario 
corresponding to the outcome “down” in region L. Taken together, the 
state (5.25) attributes to the measured system a mixed state which is a 
symmetric combination of the projectors projecting onto the rays associ-
ated with the separate branches “up” and “down”. What is important 
from our perspective is that the unitary, non-collapse interpretation of 
measurement produces essentially the same consequences regarding 
singlet-spin states with spatial degrees of freedom as the collapse 
interpretation.
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6
The Heterodox Approach to Absolute 

Discernibility and Entanglement

We have already witnessed that it is possible to introduce a new, unortho-
dox method of individuating same-type particles which relies on qualita-
tive properties rather than on unphysical labels. Qualitative individuation 
of that kind is expressed in terms of symmetric combinations of orthogo-
nal single-particle projection operators. We have argued that if a system 
of same-type bosons or fermions occupies a state which lies in the range 
of an appropriate symmetric operator Ω, we may individuate the compo-
nents of this system by attributing to them properties represented by the 
single-particle projectors composing Ω. Given that these single-particle 
projectors are assumed to be orthogonal, we can already draw the conclu-
sion that the particles individuated in such a way possess distinct and 
mutually exclusive properties and thus are absolutely discernible by their 
intrinsic (i.e. non-relational) properties.

In this chapter we will probe deeper the issue of the absolute discern-
ibility of same-type particles under the considered unorthodox approach 
to individuation. In particular, we will address the question of whether 
the absolute discernibility claim regarding two same-type particles is 
guaranteed to hold true in all available states. Given that a particular state 
occupied by these particles indeed ensures that they possess discerning 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74870-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-74870-8_6#DOI


138

properties, we may also ask whether they are maximally specific proper-
ties, such as possessing precise values of certain observables, or less-spe-
cific properties defined by broader ranges of admissible values. Related to 
these issues are questions regarding the notion of entanglement and its 
connection with the possession of maximally specific properties by the 
individual components of a composite system. As it turns out, the new 
approach to individuation strongly suggests abandoning the standard 
definition of entanglement in terms of non-factorizability. It may be 
argued that we should use a different notion of entanglement applicable 
to the states of same-type particles. This concept, which we refer to as 
GMW-entanglement, meshes well with the adopted conception of indi-
viduation and measurement presented in the previous chapter. In par-
ticular, it may be shown that only GMW-entangled systems display 
well-known features such as non-local correlations between experimental 
outcomes and violation of Bell’s inequalities. But before we get to these 
problems, we will begin with a brief logical prelude that can cast new 
light on the thesis, argued for in Chap. 4, that absolute discernment is 
unattainable in symmetric languages.

6.1	 �Absolute Discernibility 
in Symmetric Languages

In Chap. 4 Sect. 4.4, we have reported a simple logical fact regarding 
languages whose intended interpretations (in the form of relational struc-
tures) are invariant with respect to permutations of objects. As we recall, 
in such languages (we call them symmetric, for short), it is impossible to 
construct formulas that would discern objects absolutely or relatively. 
Obviously, any formula Φ(x) in one variable such that Φ(x) is satisfied in 
a structure ℜ by some object a but not by an object b violates the sym-
metry of the language ℒ under the interpretation ℜ. This is so, because 
for ℒ to be symmetric, all its predicates must receive set-theoretical 
interpretations in ℜ which remain invariant under permutations of 
objects, and in the case of one-argument predicates (or formulas), this 
means that their interpretation has to be either the empty set or the 
full set.
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It may seem that this result proves once and for all that symmetry (i.e. 
permutation invariance) and absolute discernibility are irreconcilable, as 
suggested in Chap. 4. However, a more thorough analysis of this problem 
reveals that this pessimistic conclusion (pessimistic at least from the per-
spective of a proponent of the absolute discernibility of quanta) may be 
resisted. First of all, we have to distinguish two related but distinct ques-
tions. One question is whether in a particular language ℒ there is a for-
mula Φ that absolutely distinguishes some objects in the domain of ℒ, 
while another question is whether in ℒ it is possible to formulate a sen-
tence which states that some (or all) objects in the domain are discernible 
by their properties. As it turns out, these two questions are not identical, 
which means that a negative answer to one of them does not necessarily 
imply an analogous response to the other one. To be sure, if ℒ contains 
an absolutely discerning formula Φ, it is to be expected that a sentence 
stating the fact of absolute discernibility (i.e. a sentence true if and only 
if some objects are indeed absolutely discernible) will be expressible in 
ℒ. But the opposite implication is by no means a foregone conclusion. 
In what follows we will present a formal argument showing that indeed 
we may build a fully symmetric sentence which states that all objects in 
the domain are discerned from each other by their properties.

The starting point will be the following theorem due to Simon Saunders 
(Saunders 2006, 2013).

(6.1)	 Let ℒ = be a first-order language without proper names but 
with the identity symbol. Then for every sentence T in ℒ = 
and every natural number N, there is a sentence S in ℒ = of 
the form S = ∃x1…∃xN G(x1, …, xN) such that open formula 
G is symmetric, and S is equivalent to T in all models of 
cardinality N.

The sketch of a proof for this theorem is as follows (for details see Saunders 
2006, pp. 209–210). Every sentence T can be presented in the standard 
prenex form as Q1, …, Qn F(x1, …, xn), where Qi is either ∃xi or ∀xi. In 
order to construct the corresponding symmetric sentence S, we eliminate 
every quantifier Qi step by step, starting with Qn, while simultaneously 
replacing formula F(x1, …, xn) with either a conjunction (when Qi is the 
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universal quantifier) or a disjunction (when Qi is the existential quanti-
fier) of formulas F(…a1…), …, F(…aN…), where all occurrences of the 
variable xi are replaced with unique names a1, …, aN of all elements in the 
domain. For instance, the first step in the procedure in the case when Qn 
is universal will give us formula:

	
Q Q F x x a F x x a F x x an n n n N1 1 1 1 1 1 1 2 1 1� �� �� �� � ��� �� ��� � � �, , , , , , , , ,�� �� . 	

After finishing this procedure, we end up with a formula with no quanti-
fiers but instead containing constants a1, …, aN. Finally, we replace every 
occurrence of ai with a variable xi bound by an existential quantifier, and 
we add to the entire sentence an expression stating that all xi’s are distinct 
and that they exhaust the entire domain (every object in the domain is 
identical with some xi). The sentence S obtained during this procedure is 
symmetric by design, and it is also not difficult to observe that it must be 
equivalent to T in all models of cardinality N.

One consequence of theorem (6.1) is that if we have a language ℒ= in 
which all objects in its finite domain are absolutely discernible by monadic 
formulas, then the sentence in ℒ= expressing this fact can be equivalently 
formulated in a language built out of symmetric combinations of predi-
cates in ℒ=. Let us show explicitly how this can be done. Suppose, then, 
that the domain of ℒ= consists of N elements a1, …, aN. In addition, we 
assume that for all ai and aj, where i ≠ j, there is a formula Φij in ℒ= that 
absolutely discerns ai and aj, that is, it is the case that:

	
� ���

�
�
� � ��� � � � � � � ��

�
�
� � � � �ij i ij j ij j ij ia a a a .
	

If we take the disjunction of all of the above formulas over all possible  
i ≠ j, it is clear that the resulting expression must be satisfied by every pair 
of distinct objects, and that the truth of the universal generalization of 
this expression is equivalent to the statement that all distinct objects are 
absolutely discernible:

� � � � � � � �� � ��� �� � � � �� � ��� ��� ��x y x y x y y xi j
N

ij ij ij ij� � � � .
	
(6.2)
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Now, theorem (6.1) guarantees that there must exist a sentence which 
is equivalent to (6.2) in all domains of cardinality N, and which is built 
out of a totally symmetric combination of predicates from ℒ=. Applying 
the procedure described above in the sketch of proof for (6.1), we arrive 
at the following symmetric equivalent of (6.2):

� ��
�� � � � � � � �� � ��� ��

� � � ��
� �x x

x x x x

xN
N k l

N
i j
N

ij k ij l

ij l
1

1� , , � �

� ��ij kx� ��� ��

�
�
�

��



�
�

��
,

	

(6.3)

where ρ(x1, …, xN) abbreviates the following: � � �� � �� �i j
N

i j k
N

kx x x x x1 ,  
that is, the formula ensuring that there are exactly N objects in the 
domain. The formula:

	

� � �

� �

x x x x

x x
N k l

N
i j
N

ij k ij l

ij l ij k

1, ,�� � � � � � � �� � ��� ��
� � � �� � �

� �

��� �� 	
(6.4)

is totally symmetric in that if Ψ(x1, …, xN) is satisfied by the sequence 
(a1, …, aN), it is satisfied by any permuted sequence (σ(a1), …, σ(aN)).1 
(Note also that Ψ(x1, …, xN) can never be satisfied by a sequence contain-
ing repeated elements, since in that case one of the conjuncts in (6.4) is 
guaranteed to be logically false.) Now, it is true that the expression in 
(6.4) contains open formulas Φij(xk) that are not symmetric; hence it is 
still part of a non-symmetric language. But we can formally consider a 
new language ℒsym in which Ψ(x1, …, xN) is a primitive predicate with 
the same intended interpretation as the original expression (6.4). In such 
a symmetric language, there is no formula that would absolutely discern 

1 There is a certain subtlety that we are glossing over here. A formula can happen to be symmetric 
under a particular semantic interpretation, or it can be necessarily symmetric, that is, symmetric 
under any possible interpretation, in virtue of its logical form. Formula Ψ defined in (6.4) belongs 
to the second category, that is, its symmetry (in models of cardinality N, to be precise) is guaranteed 
by its logical form. On the other hand, the two-variable formula in the consequent of the implica-
tion in (6.2) is symmetric under the assumption that all objects in the domain are absolutely dis-
cernible by formulas Φij. Saunders’s theorem ensures that the discernibility statements can be 
expressed with the help of logically symmetric formulas, and not only formulas that happen to have 
permutation-invariant interpretations.
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objects in the domain; however we can still express the statement that all 
objects in the domain are absolutely discernible.2

In the simplest case when N = 2, the symmetric formula Ψ(x1, x2) has 
the following form:

� � � � �x x x x x x1 2 12 1 12 2 12 2 12 1,� � � � � �� � ��� �� � � � �� � ��� �� , 	
(6.5)

where Φ12 absolutely discerns elements a1 and a2 of the domain. We may 
observe that there is a striking formal similarity between the logical struc-
ture of formula Ψ(x1, x2) written in terms of Φ12 and the way the com-
pound symmetric projector Ω2(E) introduced in Sect. 5.3 (formula 5.3) 
is built with the help of a single-particle projector E. As we recall, Ω2(E) 
can be written as follows:

	
�2 E E E E E� � � � � � ,

	
(6.6)

where E  = I – E is the orthogonal complement of E. Given that E repre-
sents a particular property ΠE (i.e. when a system’s state is an eigenstate of 
E corresponding to the eigenvalue 1, the system possesses property ΠE), 
the standard interpretation of E  is that it represents the negation of 
property ΠE. Similarly, the sum of two orthogonal projectors E + F is 
typically associated with the disjunctive property “either ΠE or ΠF”. This 
interpretation may be argued for as follows: if a system’s state lies in the 
subspace (E + F)[ℋ] = E[ℋ] ⊕ F[ℋ], this implies that upon a measure-
ment aiming at revealing properties associated with E (or F), the system 
will be found occupying a state lying either in E[ℋ] or in F[ℋ].3 Finally, 
the system’s state being an eigenvector of the tensor product of two 

2 It is unclear to me though whether we have to go to such lengths with respect to the permutation-
invariance requirement in quantum mechanics. This requirement imposes the symmetry restriction 
on physically meaningful formulas representing states and properties of systems, but it does not 
demand that we eliminate any expressions from our language that do not satisfy the permutation-
invariance requirement. Thus the symmetry requirement admits as meaningful operators of the 
form A ⊗ I + I ⊗ A, even though their constitutive elements A ⊗ I and I ⊗ A are patently non-
symmetric. I am grateful to Joanna Luc and Tomasz Placek for a recent discussion which helped me 
rethink this issue.
3 This argument belongs to the category of “inductive” arguments that I have already mentioned on 
two occasions: once in Chap. 2 when explaining why the product A ⊗ I represents property A 
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projectors E ⊗ F clearly represents the situation in which the first particle 
has property ΠE and the second particle has property ΠF.4

Given the formal analogy between (6.5) and (6.6), we may argue that 
the symmetric sentence (6.4) expressing the fact of the absolute discern-
ibility of objects can be translated (limiting ourselves to the case when N 
= 2) into the following quantum-mechanical statement:

	
E E E E� � �� � � �� � � ��� � � �12 12, , ,

	
(6.7)

where |ψ(1,2)〉 is the state occupied by the system of two particles, and E 
is the projector representing the same property as the monadic formula 
Φ12. Thus, reasoning from analogy, we have come to the conclusion that 
the quantum-mechanical sentence (6.7) states the fact that the two par-
ticles are discerned by the property ΠE corresponding to the projector 
E. This further confirms the unorthodox interpretation of symmetric 
projectors of the form Ω2(E) and the ensuing heterodox approach to indi-
viduation and discernibility. At the very least, we have cleared an impor-
tant logical obstacle on the path to absolute discernibility in languages 
obeying the postulate of permutation invariance.

However, we have to keep in mind that the argument given above may 
be criticized on the grounds of weak analogy. The correspondence 
between the classical logical connectives of negation and disjunction on 
the one hand, and their quantum counterparts of the orthogonal comple-
ment and the sum of projectors on the other, no matter how striking, 
may be questioned by the proponents of orthodoxy. Suppose, for instance, 

associated with particle 1, and later in Chap. 5 (ft. 5), discussing the meaning of operators Ω1(E) 
and Ω2(E). As such, the argument is open to similar objections as the previous ones.
4 The general case when N > 2 is a bit more complicated and requires a slightly different approach 
in order to draw the required analogy with the quantum case. Instead of pairwise discerning for-
mulas Φij, it is now more useful to introduce N formulas Φi such that each formula uniquely char-
acterizes one object ai, that is, it is the case that 𝒜 ⊨ Φi(ai) ∧ ¬Φi(aj) for all i ≠ j. Then it can be 
argued that the symmetric sentence stating the fact that all N objects in the domain are mutually 
discernible can be presented in the following form: � �� � �� �� � � �x x x x xN N S i

N
i iN1 1 1[ ( )]( ) .� � �, , �  

The operator corresponding to the formula � �� � � �� �S i
N

i iN
x1� ( )  will have the easily recognizable 

form of the symmetrized tensor product of N mutually orthogonal projectors  
Ei: � � � �

� � � � � � �� � � �
S

N
N

E E E1 2  .
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that the state of a two-particle system is a superposition of an eigenstate 
for the operator E E⊗  and an eigenstate for its permuted variant E E⊗ :

	

1

2
� � � �E E E E�� �,

	
(6.8)

where ∣λE⟩∈ E(ℋ) and � �E E� � (ℋ). Vector (6.8) clearly satisfies condi-
tion (6.7), but this will hardly convince the follower of the orthodoxy 
that in this state it is true that either particle 1 has property ΠE while 
particle 2 doesn’t have ΠE, or vice versa. This disjunction, taken classically, 
is true only if the system is in one of the product states: � � � �E E� �  or 
� � � �E E� � , not when the state is a superposition of both. Thus while it is 
indeed possible to speak about absolute discernibility in symmetric lan-
guages using sentences of the form (6.3), this does not prove that the 
same strategy is applicable in the case of quantum particles of the 
same type.

Indeed, there is some sleight of hand in the transition from the general 
logical formula (6.5) to the quantum-mechanical analogue (6.7). Observe 
first that the non-symmetric absolutely discerning formulas Φij and the 
symmetric predicates of the form (6.4) are defined on the same set of 
objects constituting the fixed domain of the language. Arguably, this is 
not so in the quantum case. When we move from the non-permutation-
invariant language describing a system of two “distinguishable” particles 
to the symmetric language of a theory of “indistinguishable” particles, we 
apparently change the interpretation of the referring parts of the formal-
ism, at least according to the heterodox approach. If a system of two 
particles admits the product vector � � � �E E� �  as representing one of its 
available states, we agree that it is the particle bearing label “1” and not 
“2” that possesses property ΠE associated with projector E. But if we con-
sider a system of two “indistinguishable” particles occupying the sym-
metric state (6.8), it is no longer the case that the domain contains two 
particles, one bearing label “1”, the other label “2”. If we followed such 
an approach to individuation, we would have to conclude, in line with 
the orthodoxy, that both particles are entirely indiscernible with respect 
to their properties, and thus sentence (6.4) would come out false of them. 
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The heterodox approach changes the way the permutation-invariant for-
malism refers to individual objects in the domain in comparison to the 
non-symmetric formalism, so it is unclear if we can still rely on the 
method of “symmetrizing” absolute discernibility statements with the 
help of the general theorem (6.1).5 We will conclude this section with a 
remark that the logical result expressed in theorem (6.1) can at best serve 
as a motivation based on analogy for accepting the heterodox approach to 
individuation, not as a watertight argument in favor of it.

6.2	 �The Scope of Absolute Discernibility 
for Fermions and Bosons

As we have already pointed out, the new approach to quantum individu-
ation implies that particles of the same type can differ from each other 
with respect to their possessed properties. However, the question remains 
whether absolute discernibility is guaranteed to hold in all available states 
of such particles, or only in some of them. This question is crucial to the 
philosophical analysis of the universal validity of the Principle of the 
Identity of Indiscernibles that we have discussed in Chaps. 2 and 4. If it 
could be proven that quantum particles of the same type are discernible 
by their properties in all of their available states, this would vindicate PII 
in its entirety. On the other hand, a weaker result showing that only some 
states enable us to differentiate particles by their properties while some 
other states do not does not rescue PII as an exceptionless metaphysical 
principle. Still, even such a weaker result would go against the orthodox 
Indiscernibility Thesis which claims that the violation of PII is 

5 Indeed, it may be claimed that the argument from Chap. 4 against the possibility of absolute 
discernment in symmetric languages does not even apply to the heterodox approach to individua-
tion, since in this approach permutation invariance involving labels in the formalism no longer 
reflects permutation invariance involving objects. If we adopt this stance, then the entire exercise 
involving theorem (6.1) turns out to be unnecessary. Nevertheless, the logical possibility of absolute 
discernment in symmetric languages is an interesting formal result worth mentioning quite inde-
pendently from its applicability to the quantum case. For a more detailed analysis of this logical 
result, see Bigaj (2020).
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necessitated by all symmetric and antisymmetric states.6 Logically, there 
are three options here: either PII fails in all available states for systems of 
same-type particles, or is true in all available states, or else it fails in some 
states and remains valid in some other states. We will have to make our 
choice on the basis of the proposed approach to individuation.

We will start our analysis with the case of same-type fermions, limiting 
ourselves to systems of two particles. At the beginning we will quote a 
technical result from matrix theory which is directly relevant to the prob-
lem at hand. It can be proven that all antisymmetric n × n matrices (i.e. 
matrices such that for each of their elements cij, cij = − cji) can be unitarily 
transformed into the following, block-diagonal form:

	
Z Z Z Zm� �� � diag  1 0, , , ,

	

where:

	

Z
z

z
ii

i

i

�
�

�

�
�

�

�
� �

0

0
0for ,
	

and Z0 is a (n – 2m) × (n – 2m) matrix consisting entirely of zeros. The 
operation diag results in placing all m matrices Zi diagonally one after 
another with all the remaining entries filled by zeros.7

6 I don’t have space here to acknowledge numerous commentaries to the apparent violation of PII 
in quantum mechanics that have been made in the literature. Let me only mention one particular 
response by Michela Massimi in Massimi (2001). She attempts to defend PII in its stronger version 
(involving monadic properties) by pointing out that PII is not applicable to the case of same-type 
fermions, since the components of fermionic systems do not possess individual pure states. 
Consequently, no well-defined values of measurable quantities (observables) can be attributed to 
the components. My objection to this argument is twofold. First, I don’t see a reason why monadic 
properties should be limited to possessing well-defined values of observables, since probabilistic 
attributions seem equally legitimate. Second, even if we agreed to this restriction on admissible 
properties, still PII would be violated if we presented it in the form of the implication “if a is dis-
tinct from b, then there is a property possessed by a and not by b”, since the consequent would be 
guaranteed to be false.
7 See Schliemann et al. (2001, p. 022303–2; Eckert et al. 2002, p. 94).
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This result is relevant to the issue of how to conveniently represent 
antisymmetric states of two particles, since all antisymmetric vectors in 
the product ℋ ⊗ ℋ, where dimℋ = n, have the form of:

	
cij i ji j

n
� �� �

�� ,
, 1 	

where |φi〉 |φi〉 are orthonormal vectors (basis vectors) in ℋ, and cij = −cji. 
Given that a unitary transformation represents a change of basis, it may 
be concluded from the above result regarding antisymmetric matrices 
that every antisymmetric vector can be presented in the following form 
(we will call this representation the Schmidt-Slater decomposition)8:

	
zi i i i ii

m
� � � �2 1 2 2 2 11 � ��

�� �� ,
	 (6.9)

where 2 m ≤ n and |ηi〉 are some orthonormal vectors in ℋ. Now, it can 
be easily proven that vector (6.9) lies in the range of the symmetric pro-
jector E ⊗ F + F ⊗ E, where E projects on the subspace of ℋ spanned by 
“odd” vectors |η2i - 1〉, and F projects on the orthogonal subspace spanned 
by “even” vectors |η2i〉.9 Thus, according to the heterodox interpretation, 
the composite system occupying state (6.9) can be individuated into two 
components, one possessing the property associated with projector E and 
the other equipped with the property corresponding to projector F. In 
consequence, it is guaranteed that two fermions of the same type will 
always be discerned by their mutually exclusive properties ΠE and 
ΠF. However, their discerning properties will usually not be maximally 
specific, that is, will not be represented by one-dimensional projectors. 
The maximally specific discernibility only happens if the number of non-
zero coefficients zi in the Schmidt-Slater decomposition (6.9) equals one.

8 We have to note that the Schmidt-Slater decomposition of antisymmetric states is not unique, 
which will become rather important later. However, what is unique is the number of non-zero coef-
ficients zi in the decomposition (6.9).
9 We should observe that projectors E and F defined above are by no means the only choice avail-
able. We could have taken any projector E′ whose range is spanned by any set of vectors S such that 
out of the pair |η2i - 1〉 and |η2i〉 exactly one belongs to S, and the result would be the same. The 
resulting arbitrariness of the choice of discerning properties will be the subject of intensive scrutiny 
in the next chapter.
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In conclusion, we have proven that fermions occupying antisymmetric 
states are always discerned by some properties; hence they always obey 
PII. However, an analogous result does not obtain in the case of bosons. 
In order to deal with this case, we will formulate a general criterion of 
discernibility applicable to symmetric states, in the form of the following 
equivalence10:

(6.10) 	 For every normalized symmetric vector |ψ〉 in ℋ ⊗ ℋ,  
there are orthogonal projectors E and F such that (E ⊗ F +  
F ⊗ E)|ψ〉 = |ψ〉, iff |ψ〉 = � � � �� � �� � �i

k
j k
n

ij i j j ic1 1 ( )� � � �� � � � ,  
for some orthogonal ∣φi〉.

Proof. From right to left. Let E project on the subspace of ℋ spanned by 
vectors { } ,��i i

k� �1  and let F project on the subspace spanned by vectors 
{ }�� j j k

n� � �1
 (obviously these subspaces are orthogonal). It is easy to verify that 

(E ⊗ F + F ⊗ E) c cij i j j i ij i j j ij k

n

i

k

j k

n

i
� � � � � � � �� � � � � � � � � �� � � � �� ��� � ��� .

111���� 1

k

From left to right. This time we select any orthogonal vectors ���i i
k� �} 1  

spanning the subspace E[ℋ] and any orthogonal vectors ��� j j k
n� � �} 1  

spanning F[ℋ]. Every symmetric vector |ψ〉 can be written as the sum 
� � � �� �i

d
j
d

ij i jc1 1 � �� � ,  where cij = cji and d – the dimensionality of ℋ.  
When we act upon this vector with the projector E ⊗ F + F ⊗ E, the 
result will be:

	
c cij i j ij i jj

k

i k

n

j k

n

i

k
� � � �� � � � � �

�� �� � ���� 111=1 	

10 An analogous equivalence holds for fermionic antisymmetric states, with the plus sign replaced 
by the minus sign in the rhs of the equivalence. Since we know that all fermionic states can be writ-
ten in the form of the minus-sign combination in the rhs of (6.10), this proves immediately that 
fermions are always discerned by some properties.
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c cij i j ji j ij k

n

i

k
� � � �� � � �� � ��

� �� �� 11 	

	
cij i j j ij k

n

i

k
� � � �� � � �� ��

� ��� 1=1
.
	

Given this fact, we infer that the eigenequation (E ⊗ F + F ⊗ E)|ψ〉 = |ψ〉 
holds true only if |ψ〉 = � � � �� � �� �i

k
j k
n

ij i j j ic=1 1 ( )� � � �� � � � ; hence we 
have proven the rhs of the equivalence in (6.10).

The equivalence in (6.10) gives us a convenient positive criterion of 
absolute discernibility for same-type bosons. It immediately identifies 
symmetric states whose occupation by a composite system guarantees 
that its components will be absolutely discerned by appropriate proper-
ties. The “discerning” states are those that can be divided into symmetric 
blocks |φi〉|φj〉 +  ∣ φj〉 ∣ φi〉 such that vectors |φi〉 and |φj〉 are taken from 
two orthogonal spaces U and V, same for each block. This already pro-
vides us with an easy way to identify projectors E and F that discern the 
particles: they are, namely, projectors whose ranges are orthogonal spaces 
U and V. However, (6.10) is not a particularly useful criterion for the 
indiscernibility of same-type bosons. This is so, because it is typically more 
difficult to prove that a given vector cannot be written in a particular 
mathematical form, than to prove that it can be written in this form.

One straightforward example of a bosonic state in which no  
absolute discernibility is possible is the symmetric product of two  
identical vectors: |φ〉|φ〉. It is rather obvious to observe that such a  
vector can never be presented in the form of the combination 
� � � �� � �� �i

k
j k
n

ij i j j ic=1 .1 �� � � �� � � � )  No matter what basis vectors we 
decide to write vector |φ〉|φ〉 in, symmetric combinations of the form 
|φi〉|φi〉 will always be present in the expansion. However, we have to be 
careful not to jump to conclusions in more complex cases. For instance, 
it may feel intuitive to expect that linear combinations of symmetric 
products |φi〉|φi〉 should also prevent absolute discernibility. After all, it 
seems plausible that superpositions of entirely indiscernible states should 
themselves be indiscernible. But this contention is completely wrong. As 
a matter of fact, it can be proven that all symmetric states are expressible 
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in the form of the sum � � ��i
k

i i ic1 � �� �  for some orthogonal vectors ∣φi〉. 
Among these vectors there must be states that enable absolute discern-
ibility. Thus we should not be deceived by a particular form a given vector 
takes in some basis, since this form can be radically altered when we select 
an alternative basis.

To illustrate this further, let us consider any symmetric binary combi-
nation of the form:

	
�� � � � � � �c c1 1 1 2 2 2

� � � �
	

(6.11)

and let us ask the question of when (if at all) such a state enables us to 
discern the components of the composite system occupying it. Given the 
criterion (6.10), this question is equivalent to asking whether there are 
two orthogonal vectors |χ1〉 and |χ2〉 such that the state |Ψ〉 can be pre-
sented as a combination:

	
�� � � � � � �� �1

2
1 2 2 1� � � � .

	
(6.12)

Obviously, vectors |χ1〉 and |χ2〉 must belong to the two-dimensional 
space spanned by |φ1〉 and |φ2〉; hence their most general form is:

	

� � �

� � �
1 1 2

2 1 2

� � � � �

� � � �� �

a b

b a–
	

(6.13)

Inserting these into formula (6.12) and working out the appropriate 
products, we can immediately see that the resulting formula will have the 
form (6.11) only if the following holds:

	
a b

2 2
= ,

	

which, given the normalization |a|2 + |b|2 = 1, leads to the following 
determination of the coefficients a and b:

T. Bigaj



151

	
a ei�

1

2
�

	

	
b ei�

1

2
� ,
	

for any α, β ∈ [0, 2π]. Again, inserting this into (6.13) and (6.12), we 
obtain the following expression for the state |Ψ〉, under the assumption 
that particles are absolutely discerned when occupying it (where γ = α – β 
and δ = β – α):

	
�� � �� � � � �

1

2
1 1 2 2e ei i� �� � � � ).

	
(6.14)

Formula (6.14) covers all the cases in which absolute discernibility is 
attainable, given that the state is as in (6.11). All the other combinations 
of type (6.11) with the coefficients of unequal moduli will describe a situ-
ation in which no property can discern one particle from the other.

To conclude this section: the question of the universality of absolute 
discernibility and the validity of the Principle of the Identity of 
Indiscernibles depends on whether we consider fermions or bosons. 
Fermions occupying antisymmetric states are always discerned by some 
properties. These properties may be maximally specific (represented by 
one-dimensional projectors) or less than maximally specific (represented 
by many-dimensional projectors, whose dimensionality is however no 
larger than half of the dimensionality of the single-particle space in the 
case of two particles). The dimensionality of the discerning projectors is 
determined by the number of non-zero coefficient in the Schmidt-Slater 
decomposition (6.9) of the state vector. Regardless of these fine details, 
the philosophical moral is that under the heterodox approach to quan-
tum individuation, all fermions satisfy the PII.

On the other hand, bosonic states may be divided into those that attri-
bute mutually exclusive properties to individual components and those 
that do not. In some admissible states of same-type bosons, no property 
is definitely possessed by one particle while definitely not being possessed 
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by the other. Apart from the general if somewhat abstract criterion (6.10) 
of the (in-)discernibility of bosons that we have proposed, we have identi-
fied two specific types of symmetric states in which the components of 
the system are not discernible by their properties. These are symmetric 
products of individual states, and superpositions consisting of two such 
products with coefficients of uneven moduli. Thus bosons generally do 
not obey the Principle of the Identity of Indiscernibles, even though the 
cases of its violation are not as ubiquitous as one might expect on the 
basis of the orthodox approach.

Our analysis provided us with an answer to the question posed at the 
end of Sect. 5.3 regarding the scope of the proposed method of individu-
ation of same-type particles. The unorthodox method of individuating 
“indistinguishable” quantum particles is guaranteed to work in the case 
of fermions; however, not all bosonic states admit such an 
individuation.

6.3	 �Entanglement and Properties

If we were to choose just one concept unique to quantum mechanics that 
epitomizes its non-classical, intuition-defying character, it would most 
probably be the concept of entanglement.11 Entangled systems of many 
particles display astonishing features such as non-local correlations that 
do not depend on the spatial separation of the components, and the irre-
ducibility of the properties of a whole to the (intrinsic) properties of its 
components. Because of the intimate connection between entanglement 
and the possession of properties by the components of a composite, 
entangled system, we should expect that a new proposal of how to indi-
viduate same-type particles will have an impact on our understanding of 
the notion of entanglement applied to these particles. And indeed this is 
what all the proponents of the heterodox approach to quantum individu-
ation agree upon: we have to modify the standard concept of entangle-
ment in order to apply it to the case of “indistinguishable” particles.

11 See the recent special issue “The metaphysics of entanglement” of Synthese, Vol. 197 No 10, 2020 
for a multifaceted philosophical analysis of the concept of entanglement.

T. Bigaj



153

The standard definition of entangled states, which we have already 
encountered in Sect. 2.1, is purely formal. An entangled state of N par-
ticles is a state represented by a vector in the N-fold tensor product of 
Hilbert spaces which cannot be written as a product of N vectors, each 
from one single-particle Hilbert space. Given this well-known definition, 
an immediate consequence regarding systems of same-type particles is 
that the vast majority of their admissible states will have to be classified as 
entangled. More precisely, all fermionic states are formally entangled, 
since no antisymmetric state can be written in the form of a product of 
vectors. As far as bosons are concerned, the only states that would be clas-
sified as non-entangled would be symmetric products of identical vectors: 
|φ〉 ⊗ |φ〉 ⊗ … ⊗ |φ〉. However, this apparent prevalence of entangle-
ment has no support in experimental facts. For instance, we do not 
observe non-local correlations connecting all electrons in the universe. 
Thus there is a need to come up with a new concept of entanglement that 
would be better suited to the task of describing systems of same-type 
particles.

Such a new concept of entangled states has been proposed and thor-
oughly discussed in an extensive paper by Giancarlo Ghirardi, Luca 
Marinatto and Tullio Weber (Ghirardi et al. 2002), followed by (Ghirardi 
and Marinatto 2003, 2004). In order to distinguish it from the old, stan-
dard notion of entanglement, I will use the term “GMW-entanglement”, 
which has already gained currency in the literature. The authors of the 
mentioned paper take their cue from one of the features of “ordinary” 
entanglement, which is the fact that the components of entangled sys-
tems are not characterized by precise values of any observables (since no 
pure state can be attributed to the components of entangled systems). By 
negation, we may define a non-entangled state of two particles as such in 
which both components are characterized by precise values of a complete 
set of commuting observables (or, equivalently, of a maximal, non-degen-
erate observable).

So far, this definition can be taken as being in perfect agreement with 
the standard characterization of non-entangled states as product states, as 
long as we accept the formal representation of observables attributed to 
individual components in terms of direct, non-symmetric tensor prod-
ucts of operators, containing identity operators (to remind ourselves: in 
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the case of two particles, an observable A attributed to particle number 
one is represented by the product of operators A ⊗ I). It can be formally 
proven that the state of a two-particle system s(1, 2) can be presented in 
the form of a product of two vectors if and only if there are single-particle 
non-degenerate observables A and B such that the system s(1, 2) is in an 
eigenstate of the operator A ⊗ I and I ⊗ B.12 But now we can try to sub-
stitute a new, unorthodox understanding of what it means for both com-
ponents to be characterized by a precise value of an observable, for the 
old one. As we remember, in the case of two same-type particles, we have 
argued that the only way to represent their individual properties while 
respecting the symmetry restriction is with the help of operators Ω1(E) 
and Ω2(E) (formula 5.3 in Sect. 5.2). To that we will add a third, straight-
forward operator Ω3(E) representing the case in which both particles pos-
sess the same precise values of commuting observables, which we excluded 
in Sect. 5.2, since now we are less interested in the issue of discernibility 
and more in the problem of entanglement:

	
�1 E E I I E E E� � � � � � � �

	

	
�2 2E E I I E E E E E E E� � � � � � � � � � � �

	

	
�3 E E E� � � �

	

The idea is to use some of these operators to define a new concept of 
GMW-entanglement. However, it is not immediately obvious to decide 
which ones are the right choice (and in what combination). The least 
controversial case is when the system’s state is an eigenstate of operator 
Ω3(E) for some one-dimensional projector E, since in that case clearly 
both particles possess the corresponding maximally specific property 
ΠE. Operator Ω2(E) in turn represents a situation in which one particle 

12 Proof of this equivalence is indeed very simple. If the state of a two-particle system is given as 
|φ〉|ψ〉, this state is an eigenstate of the operators |φ〉〈φ| ⊗ I and I ⊗ |ψ〉〈ψ|; hence the required 
non-degenerate observables A and B are based on the projectors |φ〉〈φ| and |ψ〉〈ψ|. On the other 
hand, let us assume that the state of the system is an eigenstate for some A ⊗ I. Selecting eigenvec-
tors |λi〉 for A as a basis, we can write the state of the system generally as ∑ijcij|λi〉|λj〉. Given that 
there is no degeneracy, vector ∑ijcij|λi〉|λj〉 can be an eigenvector for A ⊗ I only if it has the form 
∑jcij|λi〉|λj〉 for some i, which can be rewritten as the product |λi〉 ⊗ ∑jcij|λj〉.
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definitely possesses the property associated with E, while the other parti-
cle definitely does not possess E. Hence if the system’s state lies in the 
subspace projected onto by Ω2(E), where E is one-dimensional, this 
implies that both particles possess precise values of some maximal, non-
degenerate observable, and thus the state should be classified as non-
entangled. In order to make sure that this is indeed the case, let us 
formulate and prove the following theorem.

(6.15)	 If the state |ψ(1,2)〉 of two same-type particles is an eigen-
state of projector Ω2(E) where E is one-dimensional, then 
there is a one-dimensional projector E⊥ orthogonal to E such 
that |ψ(1,2)〉 is an eigenstate of Ω2(E⊥).

Theorem (6.15) effectively says that if exactly one component of a sys-
tem of same-type particles possesses a precise value for a given non-
degenerate observable, the other component must also possess a precise 
value for some non-degenerate observable. In order to prove this, let us 
present generally the state |ψ(1,2)〉 as the combination � � ��ij

n
ij i jc0 � �� � ,  

where |φ0〉 is selected as a vector lying in the ray projected onto by E (i.e. 
E = |φ0〉〈φ0|). In that case we have:

	

E E E E c c c
ij

n

ij i j i

n

i i i

n

i i� � �� � � � � � � � �� � � � �
� � �� � �0 1 0 0 1 0 0� � � � � � ��� �

� � � � � � � �
� �� �� � � �0 1 0 1 0 0

n

i

n

i i i i ic c .
	

Hence the state |ψ(1,2)〉 must have the form 
� � �� � � �0 1 0 1 0 0� � � ��� � � �� �i

n
i i i

n
i ic c  (given that cij = ±cji). From this 

it follows that |ψ(1,2)〉 is an eigenvector of Ω2(E⊥), where E⊥ is a one-
dimensional projector whose range is the ray spanned by vector 
� ��i

n
i ic1 0 � � . Since � ��i

n
i ic1 0 � �  is orthogonal to ∣φ0〉, projectors E and 

E⊥ must be orthogonal too.
In conclusion, we have established that both operators Ω2(E) and Ω3(E) 

can serve as a criterion of non-entanglement in the case of particles of the 
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same type. However, it may be argued that there is a third case of non-
entanglement not covered by these operators. In the case of “distinguish-
able” particles, the product state |φ〉|χ〉, where |φ〉 is neither orthogonal 
to |χ〉 nor parallel to it, is still considered non-entangled, since particle 
number one possesses the definite value 1 of the projector |φ〉〈φ|, and 
particle two possesses the value 1 of the projector |χ〉〈χ|. Yet these projec-
tors are neither identical nor orthogonal; hence their possession cannot 
be expressed by Ω2(E) or Ω3(E) in the case of “indistinguishable” particles. 
It may seem, then, that we will need a third case covered by the projector 
Ω1(E). The suggested criterion could be as follows: if there are two one-
dimensional projectors E and F (not necessarily orthogonal!) such that 
Ω1(E)|ψ〉 = |ψ〉 and Ω1(F)|ψ〉 = |ψ〉, then the state |ψ〉 is classified as 
non-entangled.

Surprisingly, GMW explicitly reject this third criterion of non-entan-
glement (Ghirardi et al. 2002, p. 78). Their argument against it is that 
when a state |ψ〉 is a joint eigenstate for Ω1(E) and Ω1(F) with E not being 
orthogonal to F, there is still a non-zero probability that both particles 
will be found in the same state (e.g. in the state corresponding to E).13 
But this is baffling. Take, for example, an unquestionably non-entangled 
product state |φ〉|χ〉. We can observe that when |φ〉 is not orthogonal to 
|χ〉, there is also a non-vanishing probability that measurement of the 
observable represented by |φ〉〈φ| will find both particles in state |φ〉, 
since by assumption |〈χ|φ〉|2 > 0. But this does not invalidate the fact that 
before measurement both particles possessed definite values of the projec-
tors |φ〉〈φ| and |χ〉〈χ|, and it similarly should not affect the assessment 
that |φ〉|χ〉 is non-entangled. The only serious argument against the con-
sidered criterion of non-entanglement could be that somehow being in 
an eigenstate of both Ω1(E) and Ω1(F) does not exclude the possibility 
that one and the same particle will have both properties represented by E 
and by F. After all, the condition that Ω1(E)|ψ〉 = |ψ〉 and Ω1(F)|ψ〉 = |ψ〉 
only guarantees that (at least) one particle has property ΠE, and (at least) 
one particle has property ΠF, without saying which particle possesses 
which property. Thus it is at least logically possible that both properties 
will be attributed to one and the same particle.

13 This argument is also repeated in Caulton (2014a).
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But is this a real quantum-mechanical possibility? The only way to 
express the statement that one of the two particles possesses a certain 
property is again with the help of the operator Ω1(E) applied to the sin-
gle-particle projector E representing this property. But there is no single-
particle projector representing the joint possession of two incompatible 
properties! The operator EF is not a projector, since E and F do not com-
mute. So, if the quantum-mechanical formalism cannot even represent 
the situation in which one particle possesses both property ΠE and ΠF, 
shouldn’t we conclude that such a possibility is excluded by our best the-
ory? And if we agree with this conclusion, then the only option is to 
admit that if the condition Ω1(E)|ψ〉 = |ψ〉 and Ω1(F)|ψ〉 = |ψ〉 is satisfied, 
it must be the case that one particle possesses a definite value of E while 
the other possesses a definite value of F.

6.4	 �Fermionic Entanglement Versus 
Bosonic Entanglement

The above-mentioned controversy does not affect the case of fermions, 
since the symmetric operator E⊗E, where E is a one-dimensional projec-
tor, is equal to zero on the space of antisymmetric vectors.14 Thus in this 
case operators Ω1(E) and Ω2(E) become identical, while Ω3(E) turns out 
to be zero. Consequently, if there are two non-orthogonal one-dimensional 
projectors E and F such that Ω1(E)|ψ〉 = |ψ〉 and Ω1(F)|ψ〉 = |ψ〉, it is also 
guaranteed that there are two orthogonal one-dimensional projectors E 
and E⊥ such that Ω2(E)|ψ〉 = |ψ〉 and Ω2(E⊥)|ψ〉 = |ψ〉, and the state |ψ〉 
turns out to be non-entangled on the basis of the uncontroversial crite-
rion involving projectors of the type Ω2. As a result, in the case of fermi-
ons of the same type, we can formulate the following definition of 
GMW-non-entanglement:

14 Here is a quick proof of this fact. We can decompose any antisymmetric vector in an orthogonal 
basis |φi〉 i = 0, ..,, n, such that E = |φ0〉〈φ0|. Given that the decomposition has the form 
∑i ≠ jcij ∣ φi〉 ∣ φj〉, we can immediately see that the action of E ⊗ E on this vector produces zero, since 
every component of the sum contains at least one vector |φi〉 where i ≠ 0.
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(6.16)	 The normalized state |ψ(1,2)〉 of two same-type fermions is 
GMW-non-entangled iff ( ) ( ) ( )E E E E� � � � � �� �� �12 12, ,  
for some one-dimensional projector E.

There is a particularly elegant and intuitive alternative way to define 
the notion of fermionic GMW-(non-)entanglement which relies directly 
on the form of vector |ψ(1,2)〉, as stated in the following theorem.

(6.17)	 The normalized state |ψ(1,2)〉 of two same-type fermions  
is GMW-non-entangled iff |ψ(1,2)〉 has the form of 
1

2
( )� � � �� � � �� �� � �  for some orthogonal vectors |φ〉 and |χ〉.

Proof of this biconditional is straightforward. From right to left:  
we can select E = |φ〉〈φ|, and it immediately follows that 
( ) ( ) ( )E E E E� � � � � �� �� �12 12, , . From left to right: we have  
already proven when establishing the truth of (6.15) that if 
( ) ( ) ( )E E E E� � � � � �� �� �12 12, , , then state |ψ(1,2)〉 can be repre-
sented as:

	
� � � �

0 1 0 1 0 0� � � � � � �
� �� �i

n

i i i

n

i ic c ,
	

which, after normalization, is exactly of the required form  
1

2
( )�� � � ��� � � �� � � � � .

As a matter of fact, the condition of orthogonality in (6.17) can be 
dropped without affecting the equivalence, thanks to a simple fact regard-
ing antisymmetric states. That is, the following biconditional can be 
proven to hold:

(6.18) 	 The (normalized) state |ψ(1,2)〉 of two same-type fermions is 
GMW-non-entangled iff |ψ(1,2)〉 has the form of 

1

2 1 2( )
( )

� � �
� �� � �

� � �
� � � �

� �
� � � �  for some vectors |φ〉 

and |χ〉.
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Proof from right to left (left to right follows obviously from (6.17)). 
Suppose that vectors |φ〉 and |χ〉 are not orthogonal. In that case we can 
write |χ〉 as the sum a|φ〉 + b|φ⊥〉, where |φ⊥〉 is a normalized vector 
orthogonal to |φ〉, and reformulate vector |ψ(1,2)〉 as follows (taking into 
account that 〈φ|χ〉 = a and |a|2 + |b|2 = 1):

	

1

2 1

1

2 1

1

2

2 2
�� �

�� � �
�� �

� � �� ��
�

�
� � ��� � � �

a a

a b a b

� �

� � � � � � � � � � � �

� �

��.
	

Given (6.17), we can now infer that the state |ψ(1,2)〉 is indeed GMW-
non-entangled. Note that the above derivation does not work for bosons, 
since the plus sign makes it impossible for the symmetric components 
|φ〉|φ〉 to cancel each other out. Only antisymmetric states are guaran-
teed to be expressed with the help of the combinations of orthogonal 
vectors (vide the Schmidt-Slater decomposition discussed in Sect. 6.2).

Yet another compelling characteristic of GMW-(non-)entanglement 
can be given in terms of individuation blocks discussed in Sect. 5.3. To 
remind ourselves: if there are two orthogonal single-particle projectors Ea 
and Eb such that the state |ψ(1,2)〉 of a system of same-type particles lies 
in the subspace projected onto by ℇ = Ea ⊗ Eb + Eb ⊗ Ea, then |ψ(1,2)〉 
can be equivalently represented as a vector in the individuation block 
Ea[ℋ] ⊗ Eb[ℋ]. Each factor in this tensor product is supposed to host 
states of one component of the total system, which is considered to con-
sist of a particle possessing the property corresponding to Ea, and another 
particle characterized by the property associated with Eb. The “old” repre-
sentations of states in the subspaces ℇ[𝒜] and ℇ[𝒮], where 𝒜 and 𝒮 are 
the antisymmetric and symmetric sectors of ℋ, are connected to the 
“new” representations in the individuation block Ea[ℋ] ⊗ Eb[ℋ] via the 
mapping given by the operator U E Eab a b� �2  and its inverses: 

1

2
12( )I P−  onto ℇ[𝒜] and 1

2
12( )I P+  onto ℇ[𝒮].
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The criterion of entanglement for fermions individuated by orthogo-
nal projectors Ea and Eb is indeed very simple:

(6.19)	 If a system of two fermions occupies a state |ψ(1,2)〉 such 
that (Ea  ⊗  Eb  +  Eb  ⊗  Ea)∣ψ(1, 2)〉  =  ∣ψ(1, 2)〉 for some  
orthogonal projectors Ea and Eb, then |ψ(1,2)〉 is GMW-
non-entangled iff the representation of |ψ(1,2)〉 in the indi-
viduation block Ea[ℋ] ⊗ Eb[ℋ] is a product vector |φ〉|χ〉, 
where |φ〉 is orthogonal to |χ〉.

Proof from right to left. The unitarily equivalent counterpart of |φ〉|χ〉 ∈ 

Ea[ℋ] ⊗ Eb[ℋ] in ℇ[𝒜] is given by 
1

2
12( )I P� � �� �� �  = 

1

2
( )� � � �� � � �� � � � � ,  which is a GMW-non-entangled state accord-

ing to (6.17).
Left to right. On the basis of (6.17) we know that |ψ(1,2)〉 can be  

presented as 
1

2
( )� � � �� � � �� � � � �  for some orthogonal vectors |φ〉  

and |χ〉. Let us select a basis |e1〉, |e2〉, …, |en〉 of ℋ, such that |e1〉, … |ek〉 
span the subspace Ea[ℋ], and |ek+1〉, …, |el〉 span the subspace Eb[ℋ].  

Let |φ〉 = � ��i
n

i ic e1 �  and |χ〉 = � ��i
n

i id e1 � . Given these assumptions, the 

result of the action of Ea ⊗ Eb + Eb ⊗ Ea on |ψ(1,2)〉 can be written as 
follows:

	

i

k

i i j k

l

j j j k

l

j i

k

i i

i k

l

i i j

jc e d e d e c e

c e
� � � � � �

� � �

� � � �
�

� � �

� �
1 1 1 1

1 11 1 1

k

j j j

k

j i k

l

i ijd e d e c e� � �� �
� � �

This vector has to be identical to |ψ(1,2)〉, that is to:

	 i

n

i i j

n

j j j

n

j j i

n

i ic e d e d e c e
� � � �� � � �� ��
1 1 1 1

.
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By inspection we can verify that the identity between these two expres-
sions can hold only in two cases: (a) when for all i > k ci = 0, and  
therefore also for all j ≤ k, dj = 0, or (b) when for all i ≤ k, ci = 0, and  
therefore also for all j > k, dj = 0 (plus clearly for all i > l, ci = 0 and di = 
0). This means that either |φ〉 = � ��i

k
i ic e1 �  and |χ〉 = � �� �i k

l
i id e1 � , or 

|φ〉 = � �� �i k
l

i ic e1 �  and |χ〉 = � ��i
k

i id e1 � . Consequently, the action of the 

operator 2E Ea b⊗  on 
1

2
( )� � � �� � � �� �� � �  will produce either 

|φ〉|χ〉 or –|χ〉|φ〉, which proves the required implication.

It is worth noting that criterion (6.19) implies that non-entangled 
product states in the representation based on the individuation blocks 
must consist of orthogonal states rather than any states. Indeed, there can 
be no product states consisting of non-orthogonal vectors in the indi-
viduation block Ea[ℋ] ⊗ Eb[ℋ] for the simple reason that Ea and Eb 
themselves are orthogonal to each other. Thus no vector of the form 
|φ〉|χ〉, where 〈φ|χ〉 ≠ 0, can ever represent a (non-entangled) state of two 
fermions of the same type.15

Moving on to the case of bosons, we will first follow the proposal put 
forward by GMW.  They essentially repeat the definition of fermionic 
entanglement given in (6.16), adding to it a condition which covers the 
case of products of identical states. This leads to the following 
definition:

(6.20)	 The normalized state |ψ(1,2)〉 of two same-type bosons is 
GMW-non-entangled iff E E E E� � �� � � � � � �� �12 12, ,  or 
E  ⊗  E  ∣ψ(1, 2)〉  =  ∣ψ(1, 2)〉 for some one-dimensional  
projector E.

It is easy to observe that (6.20) can be equivalently written in the form of 
an equivalence analogous to (6.17):

15 Ladyman et al. (2013) give yet another analysis of non-entangled fermionic states in terms of the 
Grassman (“wedge”) antisymmetric product ∧, according to which a state is entangled iff it has the 
product form |φ〉 ∧ |ψ〉 for some orthogonal states |φ〉and |ψ〉.
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(6.21)	 The normalized state |ψ(1,2)〉 of two same-type bosons  
is GMW-non-entangled iff |ψ(1,2)〉 has the form of 
1

2
�� � � �� � � �� �� � �)

 for some orthogonal vectors |φ〉 and 

|χ〉, or |ψ(1,2)〉 has the form of |φ〉|φ〉.

However, there is no bosonic analogue of theorem (6.18). As a matter of 
fact, the following theorem can be proven:

(6.22)	 If the normalized state |ψ(1,2)〉 of two same-type bosons  
has the form of 1

2 1 2( )
( ),

� � �
� �� � �

� � �
� � � �

� �
� � � �  where 

|〈φ|χ〉|2 > 0, then |ψ(1,2)〉 is GMW-entangled.

We can prove (6.22) by showing that vector 
1

2 1 2( )
( )

� � �
� �� � �

� � �
� � � �

� �
� � � �  cannot be alternatively written as a 

combination 1

2
( ),� � � �� � � �� �� � �  where 〈μ|η〉 = 0. Presenting gener-

ally vectors |η〉 and |μ〉 as:

	 � � �� � �� � � � �a b 	

	 � � �� � �� � � � �c d 	

we can reformulate the expression 1

2
( )� � � �� � � �� �� � �  as follows:

	

1

2
2 2ac bd ad cb� � � �� � �� � �� ��
�

�
�� � � � .
	

This expression is identical to 
1

2 1 2(
( )

� � �
� �� � �

� � �
� � � �

� �
� � � � , only 

if either a = 0 or c = 0 and either b = 0 or d = 0. Either way, this implies 
that 〈μ|η〉 = 〈φ|χ〉, which violates the assumption that |〈φ|χ〉|2 > 0.
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Regarding the bosonic counterpart of criterion (6.19), surprisingly 
it can be repeated with no amendments in the case of systems of two 
bosons. However, its meaning will be slightly different. In the case of 
fermionic states, the antecedent of (6.19) is always guaranteed to be 
satisfied (this is an immediate consequence of the existence of the 
Schmidt-Slater decomposition (6.9) and the ensuing absolute dis-
cernibility of fermions). But this is not so in the case of bosons. The 
condition (6.19) does not cover the situation in which bosons occupy 
product states of the form |φ〉|φ〉, since there are no individuation 
blocks that could provide us with an alternative representation of 
such states. Similarly, (6.19) cannot apply to the controversial case of 

vectors of the form 1

2 1
2

�� �
�� �

� �
� � � � ,

 where |〈φ|χ〉|2 > 0. 

Thus we cannot obtain an independent justification of the claim that this 
vector represents an entangled state.

At the end of Sect. 6.3, we have voiced our doubts regarding the clas-
sification of “skewed” combinations of the form used in (6.22) as entan-
gled. The argument given by GMW falls short of proving that particles 
occupying such states do not possess well-defined values of maximal, 
non-degenerate observables. Given that there are no additional plausibil-
ity arguments, for instance, in terms of some alternative criteria of entan-
glement, in favor of GMW’s classification (and, as we will see later, there 
may be indirect arguments supporting the opposite classification), I will 
suggest an alternative approach. In order to distinguish it from GMW’s 
original concept, I’ll call the extended notion of entanglement, perhaps 
somewhat immodestly, GMWB-entanglement:

(6.23)	 A normalized state |ψ(1,2)〉 of two same-type bosons is 
GMWB-non-entangled iff Ω1(E)|ψ(1,2)〉 = |ψ(1,2)〉 and 
Ω1(F)|ψ(1,2)〉 = |ψ(1,2)〉 for some one-dimensional distinct 
projectors E and F, or (E ⊗ E)|ψ(1,2)〉 = |ψ(1,2)〉 for some 
one-dimensional projector E.
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According to the definition (6.23), bosonic states of the form 
1

2 1
2

�� �
�� �

� �
� � � �

 are GMWB-non-entangled, since 

the above vector lies in the subspace projected onto by Ω1(|φ〉〈φ|) and in 
the subspace projected onto by Ω1(|χ〉〈χ|). In the absence of arguments to 
the contrary, we take it that in this case it makes sense to speak of the 
system as consisting of two particles such that one of them possesses the 
property represented by |φ〉〈φ|, and the other possesses the property asso-
ciated with |χ〉〈χ|.

6.5	 �Entanglement and Non-local Correlations

A surefire method to confirm the presence of quantum entanglement is via 
detecting the occurrence of non-local correlations, that is, statistical corre-
lations between outcomes of measurements obtained at arbitrary spatial 
separations from each other. The correlations are present if the probability 
of obtaining some joint outcomes of measurements does not factorize, that 
is, cannot be written as the product of two probabilities, each associated 
with a separate outcome. Another way to express this is in terms of expecta-
tion values: we will say that there are non-local correlations between subsys-
tems 1 and 2, if there are some observables O1 and O2 pertaining to spatially 
separated systems 1 and 2, such that 〈O1O2〉 ≠ 〈O1〉〈O2〉, where brackets 
〈…〉 denote expectation values (averages). A well-known example of non-
local correlations in the case of “distinguishable” particles can be based on 
the singlet-spin state (see formula 5.13 in Chap. 5):

	
ψ

s z z z z
〉= ↑ 〉⊗ ↓ 〉− ↓ 〉⊗ ↑ 〉( )1

2
.

	

Let O1 = |↑z〉〈↑z| ⊗ I and O2 = I ⊗ |↑z〉〈↑z|. Thus O1 represents some 
measurable property of the first particle (possessing a definite spin “up”), 
while O2 represents the same property attributed to the second particle. 
The operator O12 = |↑z〉〈↑z| ⊗ |↑z〉〈↑z| on the other hand denotes the 
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property “spin up” attributed to both particles. It can be quickly veri-
fied that:

	
� � � � � �O O

s s s1 1

1

2� � �
	

	
� � � � � �O O

s s 2 s2

1

2� � �
	

	
� � � � � �O O

s s s12 12 0� � � ,
	

and thus:

	
� � � � � � �O O O

s s s12 1 2� � � .
	

This confirms that state |ψs〉 is indeed entangled. On the other hand, if we 
take a non-entangled product state |φ〉|χ〉 and any observable A ⊗ B, it 
immediately follows that:

	
� � � � � � � �� �� � � � � � � �A B A B ,

	

thus the expectation values factorize.
Now, let us apply a similar test to GMW-non-entangled states of 

“indiscernible” particles, to see that there are no detectable non-local cor-
relations in these cases.16 In order to do it properly, we have to rely on the 
account of measurements presented in Sect. 5.5. The central idea of this 
approach is to tie measurements done on separate particles to specific 
locations rather than to unphysical labels. In order to be able to do that 
formally, we have to consider both internal and spatial degrees of free-
dom. Thus, the single-particle state space has to be decomposable into 

16 Caulton (2014b) proves generally that antisymmetric GMW-non-entangled states do not violate 
any Bell inequality (see in particular his Theorem 4.1 and Corollary 4.4.). In his proof he general-
izes a theorem from Gisin (1991) which deals with “distinguishable” particles. Caulton defines a 
symmetric variant of the “local” operations which uses the idea of individuation blocks given by 
orthogonal projectors Ea and Eb, as explained in Sect. 4.3. Local operations in Caulton’s sense can-
not transform the initial state into a GMW-entangled state, and hence it can be shown that the 
appropriate expectation values of spin-like observables (represented by Pauli matrices) factorize.
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the product of two Hilbert spaces: ℋ = ℋs ⊗ ℋr, where ℋs contains 
states describing internal degrees of freedom (e.g. spin), and ℋr is the 
space of positions. The operator that represents the situation in which a 
particle located in a region L possesses the property associated with some 
projector Es has the following form:

	

�1 2 1 21
E L L E L L I I I I E L L

E LL
s s s r s r s

s

�� �� �� � � � � � ���� ��
��

� � � �� ��
�

(

��� �� � � ���� ��1 2
E LLs ,

	

and analogously for the operator representing a property Fs of a particle 
located in a region R non-overlapping with L:

	

�1 2 1 21
F R F R R I I I I F R

F R

R R

R
s s s r s r s

s

�� �� � � � ���� ��
� ���

� � � �� �� � � � �
�� �� � � ���� ��1 2

F R Rs .
	

Calculating the product Ω1(Es |L〉〈L|)Ω1(Fs |R〉〈R|), we will obtain the 
following operator (the operators Ω1(E) and Ω1(F) commute if E and F 
are orthogonal, which is the case, given that |L〉 is orthogonal to |R〉):

	
E L F R F R E L LL R Rs s s s�� � ���� �� � ���� �� � ���� ���� ��1 2 1 2

.
	

This projector represents the situation in which the “left” particle pos-
sesses property Es while the “right” particle possesses Fs. Now, let us 
assume that the state of the system is a GMW-non-entangled state of 
the form17:

	
� � �12

1

2
,� � � �� � � � � � � � � � �L R R L� � ),

	

where |φ〉 and |χ〉 are any normalized vectors in the internal degrees space 
ℋs, and |L〉 and |R〉 are normalized orthogonal vectors in ℋr associated 

17 We call this state “pseudo singlet state” in the case when |φ〉 and |χ〉 are orthogonal spin states 
(e.g. |↑〉 and |↓〉). See formula (5.15) and the subsequent discussion in Chap. 5.
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with space regions L and R. Computing the expectation value of the 
operator Ω1(Es ⊗ |L〉〈L|)Ω1(Fs ⊗ |R〉〈R|) in state |ψ(1,2)〉, we get the 
following:

� �� � �� � �� �
�

� �
�� � ��

�
�

1 2

1 2
1 2 1

2

,

,

[ ] [( ] [( ]

[ ]

  E L L F R R F R R

E L L
s s s

s �� � �� �� � � �E Fs s .
	

(6.24)

This result proves that no statistical correlations between the outcomes of 
measurement of observables Es and Fs are present, as long as measure-
ments are performed in separate locations. Thus, systems occupying 
GMW-non-entangled states indeed behave as if consisting of separate, 
statistically independent components.18

Interestingly, we can apply an analogous procedure of checking the 
existence of non-local correlations to the controversial case of GMW-
entangled but GMWB-non-entangled states (see definition 6.23). 
Suppose, then, that a system of two bosons occupies the following state:

	
� 1 2, ,( | )� �� � � � � � � � � � � � �N S T T S� � � � 

	

where |S〉 and |T〉 are wave functions whose supports are limited, respec-
tively, to spatial region S and T such that S and T overlap; |φ〉 and |χ〉 are 

18 F.A. Muller and Gijs Leegwater give an example of a GMW-non-entangled antisymmetric state 
(“tangled” in their terminology) which they claim violates a Bell inequality and hence gives rise to 
non-local correlations (Muller and Leegwater 2020, Sect. 7). The proposed state has the following 

form: 1
2

1

2
1 1 2 2 1 2 1 2

L R L R+( )⊗ +( ) ↑ ⊗ ↓ − ↓ ⊗ ↑( ) . However, particles described by 

this state cannot be individuated by separate locations, as both have identical states in the spatial 

degrees of freedom: 1

2
L R�� � . In order to perform joint measurements aimed at verifying 

Bell’s inequalities, we have to first locate one particle in region L and the other in R. This can be done 
by means of a pre-measurement of position in which we will discard all pairs of particles whose loca-
tions turned out to be identical (either |L〉|L〉 or |R〉|R〉), leaving only pairs with distinct locations 
|L〉|R〉 or |R〉|L〉 (note that this pre-measurement is not a local operation in Caulton’s sense—see ft. 16). 
 But the state of such an ensemble will no longer be given by the above formula, but will be a GMW- 

entangled combination of the form 
1

2

1

2
1 2 2 1 1 2 2 1

L R R L⊗ + ⊗( ) ↑ ⊗ ↓ − ↓ ⊗ ↑( ).
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non-orthogonal vectors in the space of internal degrees of freedom; and 

N = 
1

2 1
2

�� �� � S T
 is the normalization constant. Now, let us 

select the following projection operator:

	
� � � � �� � � � � �� �E X F X F X E Xs L s R s R s L1 2 1 2

.
	

Projectors Es and Fs act in the space of internal degrees of freedom (they 
may or may not be orthogonal), while XL and XR are projectors in space 
ℋr that project onto the subspaces containing all wave functions whose 
support is limited, respectively, to regions L and R that do not overlap.19 
Furthermore, we assume that region L does not overlap with T but L is 
included in S, and R does not overlap with S but is included in T. The 
spatial relations between regions L, R, S and T are depicted on Fig. 6.1. 
The idea behind these stipulations should be clear: L and R are regions in 
which we will place our measuring devices, and we want to be sure that 
each device will interact with only one “branch” of the state |Φ(1,2)〉. 
Formally, this means that XL|T〉 = 0 and XR|S〉 = 0.

Given these stipulations, we can calculate the expectation value of the 
projector Ξ in state |Φ(1,2)〉:

� � � � �

� �

� � � � � � � � � �
� � � �

� � � �

�

1 2 1 2 1 2

1
1 2

1 2

, , ,

,

E X F X

F X E X

s L s R

s R s L 22 2 2� �� � � �� �� �� �N E S X S F T X Ts L s R� � � � .
	

(6.25)

As can be seen from the above result, the expectation value for the joint 
outcome of measurements of property Es in region L and property Fs in 
region R can be presented in the factorizable form as the product of inde-
pendent expectation values for Es ⊗ XL and for Fs ⊗ XR. The reason why 
expressions 〈S|XL|S〉 and 〈T|XR|T〉 were absent from the previous case of 
GMW-entangled states is that now it is not guaranteed that a particle will 
be found in region L (R), so these expectation values are no longer equal 

19 The action of the projector XL (XR) on a given wave function ψ will produce a wave function ψ′ 
which is zero outside L (R) and coincides with ψ inside L (R). See Griffiths (2002, p. 52).
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to 1. Another difference between formulas (6.24) and (6.25) is the  

presence of the factor 2N2 = 1

1
2

� � � S T
. This can be explained by 

pointing out that the formula 1 −  ∣ 〈φ| χ〉〈S|T〉|2 represents the probabil-
ity that the system occupying state |φ〉|S〉 will not be found in the state 
|χ〉|T〉, which was equal 1 in the case of orthogonal components. Anyway, 
the presence of this constant factor, which is independent of the selection 
of operators Es, Fs, XL and XR, amounts merely to a rescaling of probabili-
ties, and does not affect the conclusion that the probabilities factorize, 
and hence there is no clear sign of statistical correlations between spatially 
separated outcomes that are typical for entangled systems.

The above-mentioned result points towards the suggested classification 
of bosonic states of the form written in (6.22) as non-entangled (GMWB-
non-entangled). This is not to say that states which result from the sym-
metrization of the products of non-orthogonal states do not differ in any 
significant ways from the states resulting from the symmetrization of 
orthogonal states (e.g. in the latter particles are discernible by “orthogo-
nal” properties, while in the former they are not), but there is no clear 
indication that it is the presence or absence of entanglement that is 
responsible for these differences.

S T

L R

Fig. 6.1  Spatial regions used in an example of a GMWB-non-entangled state. 
Regions L and R represent the locations of measuring devices
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6.6	 �Entanglement 
and Discernibility: Summary

At the end of this chapter, we will put together all its main results regard-
ing discernibility and entanglement of systems of two particles of the 
same type (fermions and bosons). As we have found out, the relation 
between these two important concepts is not at all straightforward. In 
particular, it is not the case that entanglement prevents discernibility, but 
it is also not the case that non-entanglement guarantees it. The details of 
the relations between these concepts depend on whether we are dealing 
with fermions or bosons. As before, we will start with the case of fermi-
ons, which is less controversial. The table below contains characteristics 
of the types of fermionic states discussed earlier with respect to whether 
these states are entangled and whether they enable discernibility by 
properties.

The first two cases distinguished in Table 6.1 are actually identical, as 
we know from the proof of theorem (6.18), but we keep them separate in 
order to facilitate quick comparisons with the bosonic case. It can be 
clearly seen that fermions are always discernible by their properties 
regardless of whether they are entangled or not; however, non-entangled 
states ensure that their discernibility will be of the maximally specific type.

The case of two bosons is more complicated, not only because it 
includes a larger number of genuinely distinct possibilities but also 

Table 6.1  Comparison of entanglement and discernibility for fermions

Fermionic states GMW-entanglement Discernibility

1

2

� � � ��� �,
where 〈φ|χ〉 = 0

No Yes, by maximally 
specific properties

1

2 1
2

�� �
�� �

� �
� � � � ,

where 〈φ|χ〉 ≠ 0

No Yes, by maximally 
specific properties

All the remaining states Yes Yes, by less than 
maximally specific 
properties
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because some cases turn out to be rather controversial, as the above-men-
tioned distinction between GMW-entanglement and GMWB-
entanglement attests. Actually, the problems with the correct classifications 
of bosonic states are not limited to the issue of entanglement, since the 
very same case that led us to question the GMW classification of entan-
glement can also cast some doubts on the issue of discernibility. We have 
so far ignored the fact that there may be a second, weaker concept of 
absolute discernibility by properties that may be applicable to the case of 
bosonic states that arise by symmetrizing products of two non-orthogo-
nal vectors. Thus before we can write a bosonic variant of Table 6.1, we 
should address this issue in greater detail.

The concept of discernibility used by us so far (as expressed, e.g. in 
Eq. 6.7) is based on the assumption that for two quantum objects to be 
discerned by state-dependent properties, one of them has to possess the 
property corresponding to a certain projector E, while the other possesses 
the property represented by the orthogonal complement of E, that is, E  = 
I – E. This looks like a natural way of interpreting quantum mechanically 
the logical concept of absolute discernibility, which requires—as we 
recall—that for any two absolutely discerned objects one has to definitely 
possess a property that the other one definitely does not possess. But such 
an interpretation may seem to be unnecessarily strict, as it excludes cases 
which arguably do not deserve to be classified as straightforward exam-
ples of indiscernibility. Consider a simple product state |φ〉|χ〉 where 
〈φ|χ〉 ≠ 0. In that case there is clearly no projector E such that 〈φ|E|φ〉 = 
1 and 〈χ|E |χ〉 = 1, and yet we have a strong intuition that particles 1 and 
2 differ somehow with respect to their state-dependent properties. For 
instance, they are assigned different probabilities of obtaining the same 
outcomes of particular measurements. In order to include such cases in 
the broad concept of discernibility, we may want to introduce a distinc-
tion between two senses of discerning same-type particles by their prop-
erties. For the purpose of bookkeeping, the notion of discernibility used 
in earlier sections can be called “categorical”:

(6.26)	 Two particles of the same type are categorically discerned  
by their properties in a state |ψ(1,2)〉 iff there is a non- 
trivial single-particle projector E such that 
 E E E E� � �� � � �� � � ��� �12 12, , .
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Categorical discernibility can be further divided into maximally spe-
cific discernibility (when E is one-dimensional) or non-maximally spe-
cific discernibility (when E is more than one-dimensional). On the other 
hand, a new, broader concept of discernibility can be introduced as 
follows:

(6.27)	 Two particles of the same type are broadly discerned by their 
properties in a state |ψ(1,2)〉 iff there are two distinct one-
dimensional projectors E and F such that Ω1(E)|ψ(1,2)〉 = 
|ψ(1,2)〉 and Ω1(F)|ψ(1,2)〉 = |ψ(1,2)〉.

Broad discernibility defined in (6.27) may be seen as somewhat peculiar, 
since it includes maximally specific categorical discernibility as a special 
case (when E and F are orthogonal), but excludes non-maximally specific 
categorical discernibility. This looks like a downside, but I see no easy way 
to avoid this consequence. It won’t do to stipulate that E and F not be 
orthogonal, for in the case of fermionic states condition (6.26) will be 
still satisfied for E (and for F), so maximally specific categorical discern-
ibility is guaranteed.20 On the other hand, in the case of bosons, we may 
have states in which particles are broadly discerned without being cate-
gorically discerned.

In order to probe deeper the concept of broad discernibility applied to 
bosonic states, let us consider an arbitrary one-dimensional projector E = 
|φ0〉〈φ0|. Selecting orthogonal vectors |φi〉, i = 0, …, n as a basis, we can 
expand any ket |ψ(1,2)〉 as follows:

	
� � �12

0
,� �� � � �

�� cij i ji j

n

, 	

and then we calculate the action of Ω1(E) on |ψ(1,2)〉 (given that cij = cji):

20 However, it has to be stressed that the maximally specific categorical discernibility in this case 
is not by E and F jointly. We may discern fermions that satisfy (6.27) either by E and its comple-
ment E,  or by F and its complement F. The choice of a particular projector to individuate fermi-
ons is arbitrary—we will return to this problem in Chap. 7.
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�1 0 00 0 0 00 0 00

0
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� � �
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n
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n
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�� ��
	

(6.28)

In order for |ψ(1,2)〉 to be in the range of Ω1(E), it has to be of the form 
(6.28) written above (modulo normalization). Given this assumption, we 
can consider the following cases.

	1.	 c00 = 0. In that case |ψ(1,2)〉 = � �
0 01
� � �

�� c j jj

n  + c j jj

n

0 01
� �� � �

�� ,  

thus it is of the form |φ〉|χ〉 + |χ〉|φ〉, where 〈φ|χ〉 = 0. Thus bosons 
occupying such a state are discerned categorically by maximally spe-
cific properties.

	2.	 c00 ≠ 0 and c0i = 0 for all i = 1,…, n. In that case |ψ(1,2)〉 = |φ0〉|φ0〉 
(after normalization), and thus the bosons are indiscernible.

	3.	 c00 ≠ 0 and c0i ≠ 0 for some i = 1,…, n. Then we can rewrite the vector 
|ψ(1,2)〉 as follows:

� � � � � �1 2
1

2

1

20 0 00 0 0 00 00 0
,� �� � � � � � ��

�
�

�
�
� � � �

� �� �c c c cj j j jj

n

j

n
���

�
�

�
�
�� ��

0
.

Since vector |χ〉 = c cj jj

n

0 00 00

1

2
� �� � �

��  is neither orthogonal nor 

parallel to |φ0〉, this is the case when |ψ(1,2)〉 is the result of the symme-
trization of the product of two “skewed” vectors. Thus in that scenario 
the two bosons are merely broadly discernible by non-orthogonal projec-
tors E and F = |χ〉〈χ|, but they are not categorically discernible.

The conclusion from the above is that the condition in (6.27) applied 
to bosons is satisfied if and only if the state is of the form |φ〉|χ〉 + |χ〉|φ〉 
for distinct kets |φ〉 and |χ〉. Moreover, if |φ〉 and |χ〉 are orthogonal, the 
discernibility is categorical, whereas when they are not orthogonal (but 
not parallel either), we have a case of mere broad discernibility. All facts 
that we have established regarding the discernibility and entanglement of 
bosons are put together in Table  6.2. The general form of symmetric 
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vectors used in the fourth row of the table is taken from theorem (6.10) 
which expressed the necessary and sufficient condition for categorical dis-
cernment of bosons.
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7
Two Views on Quantum Individuation: 

A Comparison

Having established that there are two alternative and incongruous ways 
to identify and individuate quantum particles of the same type, we should 
now address the issue of which one ought to be preferred. As often hap-
pens with interpretive questions of that sort, there is no simple answer to 
be had. Each approach has its own advantages and disadvantages, and it 
is hard to find decisive arguments (empirical or theoretical) that could 
break this impasse. Still, some arguments can be seen as stronger, or more 
compelling, than the others. In this chapter we will task ourselves with 
discussing some of the most important problems that each of the two 
approaches to quantum individuation runs into. While I try to remain 
impartial and objective in my assessments, I will not hide the fact that in 
my view the orthodox approach faces more severe challenges than its 
rival, heterodox conception. My preferences lie squarely with the new 
conception and its insistence on the distinguishability of elementary par-
ticles in the majority of cases. It has to be noted though that the appeal of 
heterodoxy does not necessarily result from the mere fact that it rehabili-
tates the classical Principle of the Identity of Indiscernibles. By introduc-
ing the concept of qualitative individuation in terms of appropriate 
projectors, we uncover a new and unexpected feature of quantum reality: 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74870-8_7&domain=pdf
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178

the possible relativization of the very existence of individual particles com-
posing greater wholes to the experimental choices of what sets of param-
eters to measure. And while this fact may be used as an argument against 
heterodoxy, it may also be seen as a chance to develop a new and exciting 
metaphysics of objects in the quantum regime. We will talk more about 
this in the last section of this chapter, as well as in the next chapter. For 
now, let us focus on the fundamental shortcomings of the orthodox inter-
pretation of quantum individuation.

7.1	 �The Troubles with Orthodoxy

As we remember from Chap. 2, the orthodox approach to individuation 
is rooted in the standard interpretation of the tensor-product formalism 
used to describe systems of multiple particles. Admittedly, this fact counts 
as a clear advantage of the orthodoxy—after all, the tensor-product for-
malism has been designed specifically to represent states of the compo-
nents of a composite system within the factor Hilbert spaces. Any atypical 
way of reading the formalism may be accused of being a misinterpreta-
tion. However, when coupled with the Symmetrization Postulate, the 
standard reading of the formalism leads to rather troubling consequences, 
famously including the Indiscernibility Thesis. From the literal treatment 
of formalism, a revisionary metaphysics of quantum objects follows.

There is a growing body of works devoted to the formal analysis of the 
concept of non-individual objects—objects which not only can’t be dif-
ferentiated from each other, but to which it is even impossible to apply 
the notion of self-identity.1 I will not attempt to give a survey of these 
logical considerations, which are interesting in their own right. Instead, I 
would like to point out that from the perspective of a working scientist 
the idea of the complete indistinguishability of fundamental objects of a 
certain kind is hard to accept. Any experimental procedures involving 
those fundamental objects are based on the implicit assumption of sepa-
rability, which ensures that the objects undergoing scientific scrutiny can 

1 We have already mentioned some works that develop this conception in Chap. 2, ft. 24. See also 
French and Krause (2006, Chap. 7).
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be somehow set apart from the rest of the universe. The most natural way 
of separating the objects of experimental inquiry from the rest of the 
world is in terms of their spatial location: electrons used in an experiment 
are in the lab, and not in the Andromeda Galaxy. And yet in the orthodox 
approach to individuation, this separation is impossible to achieve: all 
electrons in the universe have the precise same reduced state, including 
their spatial location. In fact, no single electron can ever occupy a particu-
lar location, because this would immediately differentiate it from the rest 
of the electrons, in violation of the Indiscernibility Thesis. Every spatial 
region seemingly occupied by an electron is occupied by all of them, albeit 
in a tiny proportion, so to speak.

I should stress that when I say all of them, I really mean all electrons in 
the universe with no exceptions. This is yet another example of the pecu-
liarity of the metaphysical picture emerging from the orthodox approach: 
the state of a single electron appears to depend on what system of indis-
tinguishable electrons it is considered a member of. This can be seen 
using a simple example. Suppose we pick out three same-type fermions 
initially described as occupying some orthogonal states |φ〉, |χ〉 and |η〉. 
Taking into account only the first two fermions, we have to properly 
antisymmetrize their joint state, which produces the combination 
|φ〉|χ〉 – |χ〉|φ〉 (the normalization constant omitted). As is well known, 
the (identical) reduced states for both particles in this case will be given 

by the density operator 
1

2

1

2
� � � ��  (see Appendix). But when 

we consider the antisymmetric state of the three particles, consisting of 
six permutations of the sequence |φ〉|χ〉|η〉 with appropriate signs, the 

reduced state of each fermion will be 1
3

1

3

1

3
� � � � � �� � ,

 

which is markedly different from the previous one. Consequently, if we 
want to write down the actual state of any electron, we have to take into 
account the joint state of all electrons in the universe and then reduce it. 
Considering any system of electrons smaller than the universal one as the 
starting point will produce a different result with respect to the states 
attributed to individual electrons, and this result has to be seen as strictly 
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speaking incorrect.2 This reveals a radically holistic and non-local nature of 
composite systems of same-type particles under the orthodox approach.

In contrast to that, the unorthodox conception of individuality does 
not imply any holism of that sort. The particles composing the binary 
system in state |φ〉|χ〉 – |χ〉|φ〉 are individuated by the projectors |φ〉〈φ| 
and |χ〉〈χ|, while the individuation of the three-particle system produces 
particles with properties represented by |φ〉〈φ|, |χ〉〈χ| and |η〉〈η|. Thus 
we simply have a system which can be seen as consisting of two particles 
occupying states |φ〉 and |χ〉, with the third one being in state |η〉. The 
states of the first two particles do not depend on whether or not we take 
into account the third one. Consequently, we can limit ourselves to con-
sidering relatively small systems of particles without running the risk of 
attributing incorrect properties to single particles.

The fact that under the orthodox interpretation all particles of the 
same type possess identical reduced (mixed) states has other, difficult to 
accept consequences. One of the theoretical requirements regarding 
quantum mechanics is that in the classical limit, when we consider mac-
roscopic objects consisting of a huge number of elementary particles, the 
theory should reproduce the observable phenomena that we all are famil-
iar with (and that are predicted by classical mechanics which predates the 
quantum revolution). In particular, quantum theory should explain the 
fact that we perceive macroscopic bodies as possessing well-defined and 
distinguishing physical properties: spatiotemporal location, momentum, 
kinetic energy and so forth. For all we know, the Leibnizian Principle of 
the Identity of Indiscernibles works well when applied to the objects of 
our experience. And yet the orthodox interpretation of the quantum for-
malism spectacularly fails to achieve the goal of recovering the classical 
predictions when taken in the macroscopic limit. Any macroscopic body 
consists of an enormous number of fermions: mostly electrons, protons 

2 In fact, given that any system s of electrons that we may want to discuss in scientific practice is a 
subsystem of the universal one, attributing to s any pure state as we did above is always wrong, since 
a reduced state of any antisymmetric state is always mixed. So the situation in a sense is even 
worse – we can never know the exact state of any system of electrons unless we first find out the 
state of the total system. As a result, we can never properly do any physics that we routinely do in 
a lab, when we for instance calculate the energy levels of a single hydrogen atom, or verify experi-
mentally the non-local correlations between two electrons in the EPR state.

  T. Bigaj



181

and neutrons. If these particles occupy a mixed state comprising, for 
instance, a gigantic number of various positions (i.e. all locations in the 
universe in which a particle of a certain kind is present), then their mac-
roscopic collection will “inherit” a similar mixed state. In consequence, 
no macroscopic object should have a well-defined position (even approxi-
mately). Instead, all bodies consisting of electrons (protons, neutrons) 
ought to appear “smeared” over all locations in the universe containing 
some electrons (protons, neutrons). This is as far from what we actually 
observe as it gets.3

In fact, even the application of the Indiscernibility Thesis to micro-
scopic, unobservable entities can raise justified doubts as to its real “meta-
physical” meaning. As Dieks and Lubberdink (2011) point out, the 
Indiscernibility Thesis regarding quantum particles can be reproduced in 
the case of classical particles obeying the laws of Newtonian mechanics. 
The states of N classical particles are represented in a 6N-dimensional 
phase space whose points are identified by three position coordinates and 
three momentum components for each particle. In the case when N = 3, 
a particular state can be written as a sequence of numbers (x, p; y, q; z, r), 
where (x, p), (y, q) and (z, r) represent the positions and momenta of, 
respectively, the first, second and third particles. However, if the particles 
do not differ with respect to their state-independent properties, the state 
of the entire system can be equivalently written using permuted sequences 
(y, q; x, p; z, r), (z, r; x, p; y, q) and so forth. Thus we have a case of rep-
resentational redundancy, perfectly analogous to the quantum-mechani-
cal redundancy. And it is possible to deal with this classical redundancy 
in an analogous way by introducing a “symmetrization postulate” which 
stipulates that the state of the three-particle system is represented by the 
set Λ of all permuted sequences. Under this interpretation it is natural to 
define a “reduced” state of the first (second, third) particle as the set of all 
sequences (x, p) that occur in the first (second, third) place in some 
sequence belonging to Λ. And it is easy to observe that in this case the 
reduced state for all three particles will be identical: {(x, p), (y, q), (z, r)}. 

3 This argument has been developed by Dennis Dieks and Andrea Lubberdink in Dieks and 
Lubberdink (2011, 2020). Adam Caulton (2014) reports the fact of the incorrect predictions in the 
classical limit as one of the most convincing arguments against orthodoxy.
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Consequently, the classical particles become indiscernible with respect to 
their physical properties.

This consequence should alert us to the fact that we might have 
attached too much importance to the quantum version of the 
Indiscernibility Thesis. The proponents of the metaphysical conception 
of quantum objects as non-individuals want us to believe that the pecu-
liar character of these objects is a unique feature of quantum theory that 
sets it apart from the classical worldview which assumes the individuation 
of bodies by their spatiotemporal trajectories. And yet, as we have seen 
above, the exact same indiscernibility claim that led to the development 
of the non-classical logic of non-individuals can be recovered in the case 
of Newtonian mechanics. Thus either the phenomenon of non-
individuality is much more ubiquitous than we initially suspected, or 
there is something wrong with our assessment of the quantum version of 
indiscernibility. And there are good reasons to believe that the second 
option is closer to the truth. When we look more carefully at the classical 
indiscernibility argument given in the previous paragraph, we should 
notice that the objects to which we apply permutations and which as a 
result become totally indiscernible are not ordinary bodies equipped with 
properties as we experience them, but rather something akin to “bare 
substrata” with no qualitative characteristics attached to them (with an 
exception perhaps of the properties that classical particles of a particular 
type may share with each other, such as mass). There is nothing surprising 
in the claim that if we strip any objects of their state-dependent qualita-
tive characteristics (such as position and momentum), then what will be 
left (if anything at all) may be qualitatively indistinguishable from each 
other. The only difference between them that remains is their bare numer-
ical distinctness.

And it seems that something very much like that happens in the quan-
tum case. Strictly speaking, the referents of labels in the tensor product 
formalism retain some rudimentary qualitative attributes in the form of 
state-independent properties (rest mass, charge, total spin). But because 
all particles of a given type possess the same state-independent properties, 
the indiscernibility claim follows immediately. However, it has to be 
stressed that this type of indiscernibility concerns not “ordinary” elec-
trons (photons, neutrinos), but electrons stripped of all their properties 
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except state-independent ones. Putting this in terms of the bundle theory 
of objects: while ordinary particles can be seen as bundles of all proper-
ties, both state-dependent and state-independent, co-instantiated at a 
given moment, the referents of labels in the orthodox approach are 
smaller bundles consisting only of the latter kind properties.4 Thus, the 
orthodox conception of individuation can be accused of picking the 
wrong objects as the referents of labels. The unorthodox approach, on the 
other hand, offers us a method of making reference to full-blown quan-
tum objects with all their applicable attributes, whether state-depen-
dent or not.

Another powerful objection raised against orthodoxy considers a dif-
ferent sort of inter-theoretical correspondence relation of quantum the-
ory (for details see Caulton 2014). It is well known that quantum field 
theory (QFT), which is a more universal theory of matter and its interac-
tions, should turn into elementary quantum mechanics when the total 
number of particles is conserved. However, this creates an immediate 
difficulty, since the states of QFT-quanta, built out of the vacuum state 
by applying to it a number of creation operators, are pure states and not 
statistical mixtures. Thus the required correspondence between QFT and 
the quantum theory of many particles under the orthodox cannot be 
achieved, since according to the latter, particles of the same type always 
occupy mixed states. In the next section we will discuss in greater detail 
the formalism which constitutes the basis for QFT, known as the Fock 
space formalism, and its relations to the problem of how to individuate 
quantum particles.

7.2	 �The Fock Space Formalism

It is often claimed that the Fock space formalism, which marks the transi-
tion from non-relativistic quantum mechanics to quantum field theory, 
supports the “revisionary” ontology of quanta as indiscernible non-indi-
viduals that seemingly follows from the orthodox approach to quantum 
individuation. As Paul Teller writes:

4 This statement is not to be construed as expressing my commitment to the bundle theory of 
quantum objects. I give some arguments against the bundle-based approach in Sect. 8.6.
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(…) Fock space realizes the idea of quanta understood as entities that can 
be (merely) aggregated, as opposed to particles, which can be labeled, 
counted and thought of as switched. (Teller 1995, p. 37)

The Fock space formalism – or, as I will call it, the occupation number 
formalism  – invites us to think about the subject matter of quantum 
mechanics as free of haecceities, free from things that support labels or 
admit of counterfactual switching. There are only amounts, or “heaps” of 
stuff, coming in discrete units, thought of in analogy to dollars in a bank 
account, with no this one or that one about ones with the same properties 
(ones in the same bank account), and no sense to a different case arising if 
they could somehow be switched. (Teller 1998, p. 128)

In this section we will have a closer look at the occupation number for-
malism, and we will argue that it actually gives more support to the het-
erodox approach to quantum individuation than to the orthodox one 
with its touted qualitative indiscernibility of quanta. This is not to say 
that Teller’s observations are completely off the mark—in particular, he 
may be right about the issue of the counterfactual switching of quanta 
and the abandonment of haecceities. However, the impossibility of a sub-
stantial counterfactual switching of quanta is perfectly compatible with 
the approach to quantum individuation that allows for the absolute dis-
cernibility of quantum particles, in contrast to the “dollars in a bank 
account” picture.5 We will return to this problem in the final chapter.

We can begin by introducing a seemingly innocuous alternative nota-
tion that can be used to describe possible states of a fixed number of 
particles. Let us first consider a single-particle Hilbert space ℋ, and let us 
select a complete set of orthogonal vectors |λ1〉, |λ2〉, … ∈ ℋ, which can 
be thought of as the eigenvectors of some maximal, non-degenerate 
observable A corresponding to distinct eigenvalues k1, k2, …. Now, 
instead of using “single” kets |λ1〉, |λ2〉, …, to represent possible eigen-
states of A, we may suggest the following notation. Let the infinitely long 
sequence of zeros and one |1, 0, 0, …〉 represent the situation in which 
the particle occupies state |λ1〉, and let |0, 1, 0, 0, …〉 represent state |λ2〉, 
and so on. The underlying interpretational rule is that the i-th slot in a 

5 The analogy with money in a bank account was probably used for the first time in Teller (1983, 
p. 317).
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sequence of numbers constituting a new ket corresponds to a particular 
state |λi〉, and the presence of the number 1 in this slot indicates that the 
particle occupies precisely this state. So far this is just a fancy way of writ-
ing the old single-particle states, as there is a one-to-one correspondence 
between the old vectors and the new ones, consisting of sequences of 
zeros with exactly one number 1 among them.

But now let us move to the case of multiple particles, where things get 
a bit more interesting. When N = 2, there is an obvious correspondence 
between the tensor product kets in ℋ ⊗ ℋ and the occupation number 
kets (the cases of N > 2 are easy generalizations of this case):

	 � � � � �
1 1

2 0 0�� � � ��, , , , 	

	 | | , , , ,|� �
2 2

0 2 0�� � � �� 	

	 | | , , ,| ,� �
1 2

1 1 0�� � � �� 	

and so on. However, this time the correspondence is not one-to-one. 
Clearly, permuted kets are represented by the same occupation number 
sequences and so are superpositions of permuted states:

	 | | , , , ,|� �
2 1

1 1 0�� � � �� 	

	 � � � � � � � � �
1 2 2 1

1 1 0� �� �� �� � ��, , , . 	

Thus the new occupation number notation does not seem to be particu-
larly useful in the general case of multiple particle systems, as it identifies 
states that may not be identical after all. However, the situation changes 
when we consider particles of the same type. Suppose we limit ourselves 
to the symmetric sector (ℋ ⊗ ℋ) of the tensor product ℋ ⊗ ℋ. In that 
case the correspondence between the old and new notations is guaranteed 
to be one-to-one (up to the choice of the multiplicative constant):

	 | | , , , ,|� �
1 1

2 0 0�� � � �� 	

	 | | , , , ,|� �
2 2

0 2 0�� � � �� 	

	 | | | | | , , , , .� � � �
1 2 2 1

1 1 0�� �� �� � � �� and so on 	
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Same applies to the antisymmetric sector (ℋ ⊗ ℋ) housing fermi-
onic states:

	 | | | | | , , ,� � � �
1 2 2 1

1 1 0�� � �� � � ��� 	

	
| | | | | , , , , , .� � � �

1 3 3 1
1 0 1 0�� � �� � � ��� and so on

	

Observe that the fermionic occupation number kets can never contain 
in their slots any numbers greater than 1, since it is impossible to have an 
antisymmetric state in which two or more particles will be assigned the 
same pure state. Now, one unquestionable advantage of the new notation 
is that it enables us to represent states with various numbers of particles 
in the same framework. For instance, we can write down the following 
bosonic states: |2, 0, 3, 5, 0, …〉 (two particles in state |λ1〉, three in |λ3〉 
and five in |λ4〉) and |1, 1, 0, 0, 4, 0, 0…〉 (one particle in state |λ1〉, one 
in |λ2〉 and four in |λ5〉), which do not belong to the same tensor product 
of Hilbert spaces. We can even consider their superpositions, indicating 
states with no well-defined number of particles. A mathematically rigor-
ous way to do all that is by introducing the concept of a Fock space ℱ 
built out of a single-particle Hilbert space ℋ:

	 F n
n

0 ,ℋ 	

where ℋ0 = ℂ (a zero-dimensional Hilbert space), ℋ1 = ℋ, and ℋn for 
n > 1 is the n-fold tensor product of spaces ℋ. Symbol ⊕ represents the 
direct sum of vector spaces (see Appendix for a formal definition). Of 
particular interest to us are symmetric and antisymmetric Fock spaces:

	 F Sn
n

0 ( )ℋ 	

	 F An
n

0 ( )ℋ , 	

where, as always, symbols n( )ℋS  and n( )ℋA  represent, respectively, 
symmetric and antisymmetric subspaces of appropriate tensor products 
of spaces. From the above definitions it follows immediately that +  is 
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spanned by kets of the form |n(1), n(2), …, n(k), …〉, where n(i) are any 
natural numbers, whereas the basis for −  can be constructed out of 
sequences |p(1), p(2), …, p(k), …〉, where p(i) = 0 or 1.

To complete this whirlwind exposition of the Fock space formalism, 
we should note that the basis vectors for ℱ+ and ℱ− can be alternatively 
written using only the “vacuum” state with zero particles 0 = |0, 0, 0, …〉 
and certain operators. In the case of the bosonic Fock space ℱ+, these 
operators are defined as follows ( ˆ†ai  is called a creation or raising operator, 
while âi  is an annihilation or lowering operator):

	
ˆ | ( ), , ( ) ( ) | ( ), , ( ) ,†a n n i n i n n ii 1 1 1 1� �� � � � � ��

	

	
ˆ | ( ), , ( ) ( ) | ( ), , ( ) , ( ) ,a n n i n i n n i n ii 1 1 1 0� �� � � � �� �when

	

	
ˆ | ( ), , ( ) , ( ) .a n n i n ii 1 0� �� � �0 when

	

As can be quickly verified, the commutation relations of the above-
defined operators are as follows:

	
ˆ ˆ ˆ ˆ ˆ ˆ† † † † † †a a a a a ai j i j j i, df

�� �� � � � 0
	

	
ˆ ˆ ˆ ˆ ˆ ˆ ,a a a a a ai j i j j i, df�� �� � � � 0

	

thus bosonic creation and annihilation operators commute. On the other 
hand, fermionic counterparts of the above-defined operators obey differ-
ent commutation relations. First off, this is how they are usually defined:

	
ˆ | ( ), , ( ) | ( ), , ( ) , ( ) ,†c p p i p p i p ii 1 1 1 0� �� � � � � �� �when 

	

	
ˆ | ( ), , ( ) , ( ) ,†c p p i p ii 1 1� �� � �0 when

	

	
ˆ | |( ), , ( ) ( ), , ( ) , ( ) ,c p p i p p i p ii 1 1 1 1� �� � � � � �� �when

	

	
ˆ | ( ), , ( ) , ( ) .c p p i p ii 1 0� �� � �0 when
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The choice of sign + or – depends on the specific form of the vector acted 
upon by ˆ†ci  or ĉi . The sign convention has to be chosen properly, so that 
the following anticommutation relations will hold:

	
ˆ ˆ ˆ ˆ ˆ ˆ .† † † † † †c c c c c ci j i j j i, df� � � � � 0

	

	
ˆ ˆ ˆ ˆ ˆ ˆ .c c c c c ci j i j j i, df� � � � � 0

	

Using creation operators ˆ†ai  and ˆ†ci , we can construct any basis vector 
in ℱ+ and ℱ− by acting with these operators an appropriate number of 
times on the vacuum state. Moreover, we can introduce new and rather 
useful operators, known as number operators, as follows:

	
ˆ ˆ ˆ†N a ai i i= for bosons

	

	
ˆ ˆ ˆ .†N c ci i i= for fermions

	

As can be easily verified, the result of an action of N̂i  on a given occupa-
tion number ket is the following:

	
ˆ | ( ), , ( ) ( ) | ( ), , ( ) ,N n n i n i n n ii 1 1� �� � � ��

	

which means that N̂i  “measures” the number of particles occupying the 
i-th slot (possessing property ki).

The main formal feature of the Fock space formalism which virtually 
all philosophical commentators jump on is the conspicuous absence of 
labels attached to individual particles. An occupation number ket con-
tains the information of how many particles occupy various states, but 
does not refer to these particles by their individual labels. Supposedly, this 
fact makes it impossible to even formally introduce the concept of a per-
mutation of particles, since permutations conceived as mathematical 
operations act on labels. But in fact the Fock space formalism does enable 
us to find a mathematical representation for the permutations of parti-
cles, if we build vectors in ℱ+ and ℱ− by applying sequentially a number 
of creation operators to the vacuum state. In that case permutations of 
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particles are represented by permutations of creation operators occurring 
in an appropriate sequence (see Sakurai & Napolitano 2011, p.  462). 
Given the (anti)commutation relations for bosonic and fermionic cre-
ation operators presented above, the result of such permutations is iden-
tity in the case of bosons, while for fermions the odd permutations result 
in the change of sign, as expected.

Still, for some philosophers the absence of labels in the occupation 
number formalism indicates a transition from the ontology of particles 
equipped with primitive thisnesses (or haecceities) to the ontology of 
quanta, which act not as individual objects but as units of something (as 
the analogy with dollars in a bank account suggest).6 Teller (2001, p. 383) 
goes so far as to use yet another analogy with a continuous substance that 
comes in variable amounts, even though he admits that in contrast to this 
case, the quanta stuff comes only in discrete units, but he insists, some-
what mysteriously, that these units are nevertheless measures of amounts, 
not numbers. I believe that even the analogy with money in a bank 
account is not entirely accurate, since amounts of money can be mea-
sured in different units (cents, pounds, euros) which leads to using vari-
ous non-integer numbers representing the same amount, while in the 
case of the “amounts” of quanta only specific natural numbers are 
employed in that role. However, I will not mount an extensive critique of 
Teller’s suggested ontology of quanta, moving instead to my main point 
of this section.

6 We should mention here that it is debatable whether the occupation number formalism is indeed 
entirely free of the commitment to labels. Given that a symmetric/antisymmetric Fock space is 
defined as the direct sum of “ordinary” symmetric/antisymmetric subspaces of tensor products, it 
may be surmised that the occupation number formalism only “masks” the commitments of the 
more fundamental tensor-product formalism. French and Krause (2006, p.  390) argue, for 
instance, that in order to maintain the label-free interpretation of the occupation number formal-
ism, we would have to be able to build an entire Fock space “from scratch”, without relying on the 
interpretational rule connecting the occupation number sequences with symmetric or antisym-
metric vectors in an appropriate tensor product of spaces. But, as they observe, it is mathematically 
impossible to impose the structure of a vector space on sequences of natural numbers, since the 
product of a vector by a scalar is not a sequence of natural numbers. In a similar vein van Fraassen 
(1991, p. 443) warns not to interpret occupation numbers too literally, since ultimately the inter-
pretation of the Fock space kets relies on symmetric/antisymmetric vectors in tensor-product 
spaces. Thus, according to van Frasseen, |1, 1, 0…〉 does not denote the state in which two fermi-
ons occupy distinct pure states, since it corresponds to the antisymmetric state of two fermions 
which attributes identical reduced mixed states to both fermions. Clearly, van Fraassen follows here 
the orthodox interpretation of quantum individuation.
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What we have so far overlooked regarding the occupation number for-
malism is that its most natural reading supports the view that quantum 
particles are discernible by properties in many situations (see Bigaj 2018, 
pp. 152–153). Take any fermionic ket, for instance, |1, 1, 0, 1, 0…〉. The 
standard reading of this ket is that it describes three fermions which pos-
sess distinct properties A = k1, A = k2 and A = k4, and therefore are clearly 
discernible entities. In the case of bosons we may have numerically dis-
tinct particles occupying the same physical state, as in |2, 0, 0,…〉; never-
theless qualitative discernibility of bosons is still very much possible. 
This, if anything, points towards the unorthodox conception of qualita-
tive individuation. The lack of labels in the Fock formalism is no obstacle 
to the qualitative discernibility of particles. Actually, given the role of 
labels in the assumption of Factorism and in the proofs of the 
Indiscernibility Thesis presented in Chap. 2, we may come to the conclu-
sion that the elimination of labels from the formalism only helps bring to 
the surface the fact that quantum particles often differ with respect to 
their properties.7

It has to be admitted that Teller acknowledges, albeit in a footnote, 
that “there is a sense in which fermions are individuated by their proper-
ties” (Teller 1998, p. 140, ft. 25). Yet he somehow ignores the fact that 
such individuation stands in contrast to his preferred ontological view of 
“quantum stuff”. Clearly, it doesn’t make much sense to try to individu-
ate dollars in a bank account by their properties, since they do not possess 
any distinguishing features (these may be possessed by dollar bills, but 
not by dollars written in a bank ledger). My guess is that Teller’s way of 
picturing the Fock space formalism is in terms of “boxes”—represented 
by distinct slots in an occupation number sequence—and qualitatively 
identical, “bare” entities that can be “sprinkled” over these boxes. Thus 
the fermionic state |1, 1, 0…〉 does not represent two physically different 
electrons, but rather two physically identical electron-like entities 

7 Teller mentions in various places the possibility of interpreting labels used in the standard tensor-
product formalism as mere “cogs” in the mathematical machinery with no direct physical meaning 
(Teller 1995, p. 27; 1998, p. 131). This is precisely an interpretation adopted in the heterodox 
approach to individuation.
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occupying distinct boxes (or, better yet, the amount of electron-stuff 
whose measure equals two units, equally spread over two distinct boxes). 
And, in a sense, the occupation number formalism is conducive to that 
sort of mental imagery. But the main problem with such a picture is that 
it portrays state-dependent physical properties, such as spin components, 
energy, momentum and so on, as if they were “external” with respect to 
the objects possessing them (we have already encountered this problem in 
Sect. 7.1, where we have noted that the orthodox approach picks the 
“impoverished” bundles of properties as the bearers of quantum proper-
ties). Only state-independent properties truly belong to a given object, 
and for that reason we must treat all electrons as fundamentally indistin-
guishable. But I see no reason why the mass of an electron should be 
ontologically unlike its spin component or momentum. An electron can 
be distinguished from a proton by its mass in the same way as it can be 
distinguished from another electron by its momentum. The only genuine 
difference between these two cases is that the first distinction is perma-
nent (as electrons and protons can’t change their rest masses), while the 
other is temporary only.

7.3	 �The Ambiguity of Qualitative 
Individuation: Fermions and Bosons

Let us now switch gears and begin a critical analysis of the heterodox 
approach. In this and the following sections, we will discuss in detail 
what can be considered the greatest challenge to the unorthodox concep-
tion of quantum individuation by properties. The problem, in a nutshell, 
is that the criterion of individuation presented in Chap. 5 (formula 5.10) 
admits the possibility of the existence of alternative and even incompati-
ble individuations with respect to a given multiparticle system. That is, 
criterion (5.10) may be satisfied in some states of a two-particle system  
by various pairs of projectors: Ea1

 and Eb1
,  Ea2

 and Eb2
,  and so on, 

where projectors Eai
,  Ebi

 are distinct from E Ea bj j
,  for i ≠ j, and in 

some cases are even incompatible. This feature of qualitative 
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individuation is variously referred to in the literature as “conventionality” 
(Caulton 2014, p. 47) or “arbitrariness” (Ghirardi et al. 2002, p. 84), but 
I prefer to use the slightly stronger term “ambiguity”. I will distinguish 
two types of ambiguity that may affect qualitative individuation. One 
type occurs when we individuate particles with the help of many-dimen-
sional projectors (individuation by less than maximally specific proper-
ties). This ambiguity affects both fermionic and bosonic states. In contrast 
to that, the second type of ambiguity afflicts only fermions and is appli-
cable to the case when they are discerned by one-dimensional projectors. 
We will talk about this case in the next section.

Let us start by recalling the general form in which every fermionic state 
of two particles can be written (the Schmidt-Slater decomposition—see 
formula 6.9):

	
zi i i i ii

m
� � � �2 1 2 2 2 11 � ��

�� � � � ��� ,
	

(7.1)

where all |φi〉 are mutually orthogonal. This essentially means that every 
bipartite fermionic state can be written as the sum of m blocks, each of 
which consists of an antisymmetric combination of two orthogonal vec-
tors, and in addition no vector occurs in more than one block. As we have 
observed in Sect. 6.2, if we select the following subspaces:

	
E i i m

� �� � � �
Span |

, ,
�2 1 1� 	

	
F i i m

� �� � � �
Span |

, ,
�2 1 	

then the corresponding orthogonal projectors E and F qualitatively discern 
particles in the sense that state (7.1) lies in the subspace projected onto 
by E ⊗ F + F ⊗ E. However, we have also noted (see ft. 9 in Chap. 6)  
that the choice of the subspaces with the above-mentioned property is 
generally not unique. Basically, we can choose any two subspaces of the 
space spanned by all 2m vectors |φi〉 in such a way that for each antisym-
metric block in (7.1) one vector from the block is picked to span one 
subspace and the other vector to span the other subspace (see Fig. 7.1).  
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It can be quickly verified that there are exactly 2m-1 distinct pairs of  
single-particle projectors Ei and Fi such that state (7.1) is an eigenstate of 
Ei ⊗ Fi + Fi ⊗ Ei.8 Thus, there are 2m-1 distinct methods of selecting and 
individuating the components of the system occupying state (7.1).

Notice that the same problem affects bosonic counterparts of states of 
the form (7.1), where all minus signs are replaced by pluses. A similar 
kind of ambiguity can be found in more general, discernibility-enabling 
bosonic states of the form given in criterion (6.10), which is as follows:

	
cij i j j ij k

n

i

k
� � � ��� � � � ��� �� �� 11 	

(7.2)

as long as some specific coefficients cij vanish. For instance, if the consid-
ered bosonic state is of the form:

	

c c
c

13 1 3 3 1 14 1 4 4 1

25 2 5

| | | | | | | |
| |

� � � � � � � �
� �

� �� � �� � � � �� � �� �
� � �� || | ,� �5 2� �� � 	

(7.3)

then there are two ways of differentiating between the components of the 
system; one given by the pair of subspaces Span{|φ1〉, |φ5〉} and Span{|φ2〉, 

8 There are exactly 2m ways of selecting m vectors by taking exactly one vector out of each pair in the 
i-th antisymmetric block in (7.1), but selecting a particular set of vectors in that way and selecting 
its complement should count as the same individuation; hence the number of distinct individua-
tions equals 2m/2 = 2m-1. From this it follows that in the case when m = 1 the number of distinct 
individuations is 1, and therefore there is no ambiguity (at least not of the type we are currently 
considering).

Fig. 7.1  One particular partition of the set {|φi〉}. There are exactly 2m-1 such 
partitions
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|φ3〉, |φ4〉}, and the other by Span{|φ1〉, |φ2〉}, Span{|φ3〉, |φ4〉, |φ5〉}. 
(Observe that vectors which span together a given subspace can never 
occur together in the same block.) See Fig. 7.2 for an explanation. On the 
other hand, if all coefficients cij figuring in (7.2) are non-zero, there is 
only one individuation available (as identified in the proof of theorem 
6.10 given in Sect. 6.2).

How bad is the aforementioned ambiguity? At first glance it looks like 
it doesn’t have to be fatal to the unorthodox conception of individuation. 
In everyday life we often individuate macroscopic objects using various 
alternative properties—we may distinguish them using their colors, or 
their shapes, or sizes, and so on. However, the crucial thing is that all 
these qualitative individuations lead to the selection of the same indi-
viduals, thanks to the fact that one and the same entity can simultane-
ously possess various types of properties (a given color, shape and size). 
But the question is: does the quantum mechanical formalism allow us to 
attribute properties represented by different projectors to the same indi-
vidual objects? Generally, the answer is “no”, since the projectors corre-
sponding to different properties may be incompatible, and therefore may 
not have any eigenvectors in common. But in the case currently under 
consideration, the alternative projectors are compatible with each other. 
A well-known criterion of compatibility for subspaces of a Hilbert space, 
and consequently for the projectors corresponding to these subspaces, is 
that compatible subspaces 𝒱1 and 𝒱2 should be presentable as 𝒱1 =  
𝒱a ⊕ 𝒱c and 𝒱1 = 𝒱b ⊕ 𝒱c, where 𝒱a, 𝒱b and 𝒱c are mutually 
orthogonal (and possibly zero) subspaces (cf. Hughes 1989, p.  103). 
Since in the above-considered cases all the subspaces involved are spanned 
by combinations of mutually orthogonal vectors, they clearly satisfy the 
criterion of compatibility.

Thus it is not formally prohibited that the alternative individuations 
by various distinct pairs of projectors could ultimately pick out unique 

Fig. 7.2  Two ways of grouping vectors from the combination (7.3). Vectors in one 
column are taken from the same symmetric block
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objects. But does this solve the problem of ambiguity? Consider as an 
example the specific bosonic state written in (7.3). In order for the two 
above-given alternative individuations to pick out the same components 
of the system, we have to join together the properties used in these indi-
viduations, so that each component could possess one property from 
each alternative individuation. In our case this means that the individuat-
ing properties will be represented by either subspaces:

	

Span Span and
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1 2 1 5

3 4 5 2 3
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Consequently, we have two options: either one particle possesses the 
property associated with subspace Span{|φ1〉}, while the other particle 
possesses the property represented by Span{|φ3〉, |φ4〉}, or the individuat-
ing properties are represented by Span{|φ2〉} and Span{|φ5〉}, respectively. 
Clearly these options are exclusive, since one particle cannot simultane-
ously possess properties represented by vectors |φ1〉 and |φ2〉 (or |φ5〉). 
Hence, in spite of our effort, the ambiguity of individuation is still pres-
ent. This time the ambiguity comes from the fact that there are many 
ways to connect properties figuring in alternative individuations in the 
sense of attributing them to the same underlying object.

The problem of the ambiguity of attribution, as it may be called to 
distinguish it from the ambiguity of individuation, gets even worse in the 
case of fermionic states of the form (7.1). The way of grouping the prop-
erties taken from the 2m-1 alternative individuations in such a way that 
each group of properties could be attributed to one and the same object 
(i.e. that all the subspaces representing these properties have a non-zero 
subspace in common) is by selecting a particular vector |φi〉 and choosing 
all the subspaces containing this vector. It is not difficult to see that in this 
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case all the selected subspaces from the alternative individuating pairs will 
only have the one-dimensional subspace spanned by |φi〉 in common, 
whereas for the remaining subspaces the common subspace will be 
spanned by the vector (let’s symbolize it as |φi±1〉) which figures in the 
same antisymmetric block as |φi〉 in the Schmidt-Slater decomposition 
(7.1). Therefore, if we wanted to insist that all the alternative individua-
tions by properties ultimately pick out the same objects, we would have 
to conclude that the components of the system are individuated by some 
pure states |φi〉 and |φi±1〉. But clearly the choice of the state |φi〉 was 
completely arbitrary—we might have chosen any other pure state |φj〉 
and group together all the subspaces containing this vector. Thus, there 
are m alternative individuations of objects composing the entire system.9

But an even more serious problem is that the conclusion that the par-
ticles composing the system in state (7.1) actually possess pure states |φi〉 
and |φi±1〉 has no backing in the quantum-mechanical formalism whatso-
ever. As a matter of fact, the formalism unambiguously speaks against 
such an interpretation. Clearly, if the composite system occupies state 
(7.1), then for any pure state |φj〉 there is a non-vanishing probability 
that an appropriate measurement will find one particle precisely in this 
state. This is incompatible with the assumption that before measurements 
particles occupy specific pure states |φi〉 and |φi±1〉.10 Consequently, we 
cannot claim that the alternative individuations of the components of the 
system in state (7.1) pick out the same particles. The ambiguity of indi-
viduation runs deeper than the level of properties—it affects our ontol-
ogy of property-bearing objects as well. To each potential way of 
qualitatively individuating objects, there corresponds a distinct set of 
possible objects composing the system.

9 The reason why the number of alternative individuations is m and not 2 m is that selecting a vector 
and selecting its “partner” occupying the same antisymmetric block in (7.1) leads to the same 
individuation.
10 One rather desperate attempt to overcome this objection could be to insist that the actual state of 
the system is an appropriate mixture of pure states |φ2i − 1〉|φ2i〉, interpreted along the lines of the 
ignorance interpretation. This solution could reproduce the correct probabilities of revealing par-
ticles in various states |φi〉. However, mixed states are never fully empirically equivalent to pure 
states; hence, there will always be some formally admissible measurements that could tell us that 
the system actually occupies state (7.1) and not the corresponding mixture.
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In order to explain this further, let us use a specific physical example 
instead of the universal fermionic state as written in (7.1). We will use the 
toy model already discussed in Sect. 5.4, that is, two fermions that may 
be characterized by two spin states |↑〉 and |↓〉 (in some specified direc-
tion) and two position states |L〉 and |R〉. Thus the total state space of an 
individual particle composing such a system is spanned by the four 
orthogonal vectors |↑〉|L〉, |↑〉|R〉, |↓〉|L〉 and |↓〉|R〉. Let us now consider 
the (genuine) singlet-spin state of the two fermions (see formula 5.17):

	

1

2

1 1 2 2 1 1 2 2

1 1 2 2

| | | | | | | |
| | | | |

↑〉 〉 ⊗ ↓〉 〉 − ↓〉 〉 ⊗ ↑〉 〉
− ↓〉 〉 ⊗ ↑〉 〉 + ↑

L R L R
R L 〉〉 〉 ⊗ ↓〉 〉









1 1 2 2
| | |R L ,

	
(7.4)

which can be rewritten in the form corresponding to the general struc-
ture of formula (7.1) as follows:

	

1

2

1

2

1 1 2 2 1 1 2 2

1 1 2

| | | | | | | |

| | | |

↑〉 〉 ⊗ ↓〉 〉 − ↓〉 〉 ⊗ ↑〉 〉( )

+ ↑〉 〉 ⊗ ↓〉 〉

L R R L

R L
22 1 1 2 2
− ↓〉 〉 ⊗ ↑〉 〉( )| | | |L R .

	
(7.5)

On the basis of our previous analysis, we can immediately distinguish 
two ways of individuating the components of the system (since m = 2 in 
this case, the number 2m-1 of distinct individuations equals 2 as well). 
One individuation can be done using subspaces Span{|↑〉|L〉, |↑〉|R〉} and 
Span{|↓〉|R〉, |↓〉|L〉}, while the alternative individuation is based on sub-
spaces Span{|↑〉|L〉, |↓〉|L〉} and Span{|↑〉|R〉, |↓〉|R〉}. Now, these formal 
individuations have a clear physical meaning. The first individuation cor-
responds to selecting particles with well-defined spin whose position is 
characterized only as some unspecified superposition of two distinct loca-
tions L and R (a quantum-mechanical disjunction of being in L and 
being in R). If we followed this method of individuation, we would have 
to admit that the system consists of a particle having spin “up” in a given 
direction whose location is undetermined between L and R, and a 
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particle with determined spin “down” and similarly located “partially” in 
L and “partially” in R, so to speak. An alternative individuation leaves us 
with one particle located in L but with no well-defined spin, and one 
particle located in R whose spin is not well-defined either. It should be 
clear now that in both approaches we talk about different possible com-
ponents of the entire system. These may be either localized particles with 
no spin determined, or “un-localized” particles possessing definite spins.

Before we discuss possible ways of dealing with the above-discussed 
ambiguity of individuation, let us turn to the second type of ambiguity 
that affects only fermionic states.

7.4	 �Ambiguity for Fermions

The non-uniqueness of the type discussed so far applies exclusively to the 
cases in which individuation is done by projectors of dimensionality 
greater than one, hence is not maximally specific. If the Schmidt-Slater 
decomposition of a fermionic state consists of only one antisymmetric 
block, then, as we have explained in ft. 8, there is no ambiguity resulting 
from the alternative selections of vectors |φi〉 spanning multidimensional 
subspaces used to individuate particles (the same applies to the bosonic 
versions of such single-block states). However, an even more acute type of 
ambiguity is still present in the fermionic case. As it turns out, there are 
an infinite number of alternative and mutually incompatible ways of per-
forming individuation in the case of fermionic states. In order to identify 
the source of this radical form of ambiguity, let us consider the following, 
GMW-non-entangled state of two fermions (see def. 6.17):

	

1

2
1 2 2 1� � � �� �� � � �).

	
(7.6)

As we have stated numerous times, under the unorthodox interpretation 
of individuation, particles occupying this state can be said to possess  
the individuating properties corresponding to orthogonal projectors 
E� � �

1 1 1� ��  and E� � �
2 2 2� �� . However, it can be easily verified that 
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vector (7.6) can be equivalently written using any pair of orthogonal vec-
tors from the two-dimensional subspace spanned by |φ1〉 and |φ2〉. To see 
that, let us write down the general form of any two orthogonal vectors 
|λ1〉 and |λ2〉 in subspace Span{|φ1〉, |φ2〉}:

	
| | |� � �1 1 2� � � � �a b

	

	
| | | ,� � �2 1 2� � � � � �� �b a

	

where |a|2 + |b|2 = 1. It is elementary to calculate that the following vector:

	

1

2
1 2 2 1� � � ��� � � � �)

	
(7.7)

is identical to (7.6). In conclusion, we have to admit that the components 
of the system occupying state (7.6) can be alternatively individuated 
using projectors E� � �

1 1 1� ��  and E� � �
2 2 2� �� .11

Since complex numbers a and b have been selected completely arbi-
trarily, there are an infinite number of alternative individuating projec-
tors Eλ1

 and Eλ2
. Even more worrisome is the fact that the projectors 

corresponding to different choices of orthogonal vectors |λ1〉, |λ2〉 are 
mutually incompatible. This means that standard quantum mechanics 
does not permit to attribute the properties corresponding to these projec-
tors to a single particle. This can be clearly seen when we use spin-half as 
an example. If vectors |φ1〉 and |φ2〉 used in (7.6) are identified as repre-
senting the values of spin in a certain direction, then particular linear 

11 A more general analysis of the fermionic type of ambiguity discussed here can be found in 
Caulton (2016). Caulton’s analysis applies to the case of N fermions occupying a GMW-non-
entangled state and takes into account all possible individuations of the subsystems not limited to 
single particles. He proves a theorem that can be roughly summarized as follows. Let the state of 
the N-particle system be the result of the antisymmetrization of N orthogonal vectors |φ1〉, …, 
|φN〉, and let 𝒱N = Span{|φ1〉, …, |φN〉}. Then there is a one-to-one correspondence between all 
subspaces of 𝒱N and the subsystems of the system that can be individuated using these subspaces. 
Consequently, to each subspace 𝒱k ⊆ 𝒱N of dimensionality k there corresponds a possible separa-
tion of the N-particle system into a k-element subsystem and the complementing (N–k)-element 
subsystem, such that the k-element system consists of all particles possessing the property repre-
sented by 𝒱k. It is easy to observe that the ambiguity discussed above constitutes a special case of 
Caulton’s theorem when N = 2, since Span{|λ1〉} and Span{|λ2〉}are subspaces of Span{|φ1〉, |φ2〉}.
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combinations |λ1〉, |λ2〉 will be eigenvectors of spin in a different spatial 
direction. But it is well known that according to standard quantum 
mechanics, no particle can possess determined values of spin in different 
directions (i.e. if spin is determined in a particular direction, all the other 
spatial components of spin are undetermined). And yet, the heterodox 
approach seems to suggest that when the system of two spin-half fermi-
ons is in state (7.6), we are justified in saying that there is one particle 
with spin “up” in the z direction and one particle with spin “down” in the 
z direction, but also that there is one particle with spin “up” in the x 
direction and one particle with spin “down” in the x direction, and analo-
gously for any spatial direction n. In order not to infringe upon the prin-
ciples of standard quantum mechanics, we would have to admit that 
particles possessing various spin components are actually numerically 
distinct, but this leads to an even more troublesome conclusion that the 
system that we have initially described as consisting of two particles actu-
ally includes an infinite number of components.12

The problem described above cannot be easily brushed aside as just 
another example of quantum-mechanical “weirdness”. The consequences 
of the dramatic freedom of choice with respect to the individuating pro-
jectors are far-reaching and troubling, as they come dangerously close to 
internal inconsistency, or even logical contradiction.13 Recall that in Sect. 
5.3 we have introduced formulas (5.12) that enable us to calculate the 

12 Caulton (2016) observes that in addition to this inflation of the number of existing components 
of a given system, it can be proved that their structure violates some basic rules of mereology (the 
part-whole theory).
13 Thus I do not share the optimism of the authors of Ghirardi et al. (2002) when they write that 
“there are at least two reasons for which one can ignore this, at first sight, puzzling situation, one of 
formal and physical nature, the second having more to do with the laboratory practice” (p. 85). The 
formal reason to dismiss the ambiguity problem they offer is that the quantum-mechanical formal-
ism allows for the situations in which incompatible observables have some (but not all) eigenvec-
tors in common. And indeed, in the case considered above projectors E E E E� � � �1 2 2 1

� � � and 

E E E E� � � �1 2 2 1
� � � ,  in spite of being incompatible, possess common eigenvectors (vector 7.6 

being an example). But the problem runs deeper than that, since according to the unorthodox 
approach, we are allowed to attribute to the individuated components of the system properties 
associated with selected single-particle projectors E

iλ
,  and these projectors do not share any eigen-

vectors. Regarding the second reason mentioned in Ghirardi et al. (2002), we’ll discuss it in ft. 14.
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expectation values of any single-particle observable A associated with the 
components individuated by specific projectors Ea and Eb:

	

v A v v AE E v v E AE v

v A v v E E v v E E vA A
a a b b a

b a b b a

| | | | | |

| | | | | |

� �

� �

� �

� �
	

(7.8)

It is straightforward to notice that different choices of individuating pro-
jectors Ea and Eb will lead to different expectation values for the same 
observables according to (7.8). This effectively thwarts any attempt to 
identify particles individuated by alternative projectors, since in that case 
one and the same particle would admit different numerical values of the 
expectation values for the same observables. But this is a conceptual 
impossibility. Thus we cannot claim that the particle individuated by, let’s 
say, spin “up” in the z-direction is the same object as the particle indi-
viduated by spin “down” in the x direction, since in that case the expecta-
tion values for any other components of spin would receive inconsistent 
values. But the alternative seems to be no less disconcerting: the existence 
of an infinity of distinct particles within the two-particle system is as 
close to logical contradiction as it gets.

One conceivable way to tackle the problem of the ambiguity of quali-
tative individuation is to try to eliminate all but one of the alternative 
individuations on the basis of their unphysicality. A natural strategy to do 
that could be to use the spatial degrees of freedom as the preferred method 
of individuating objects. Let us illustrate this method with some exam-
ples. We start with the specific antisymmetric state (5.15) from Chap. 5 
which is of the general form written in (7.6):

	

1

2
1 1 2 2 1 1 2 2

| | | | | | | | .↑ ⊗ ↓ − ↓ ⊗ ↑( )L R R L
	

(7.9)

One straightforward way to individuate particles occupying this state 
is with the help of the following projectors:
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E
E

L L
R R

uL

dR

=
=

↑ ↑
↓ ↓

 

 

| |

| |,
	

(7.10)

which means that we can distinguish one particle occupying region L and 
possessing spin “up”, and one particle located in R with spin “down”.

However, as we have already seen, we can introduce new single-particle 
vectors:

	

| | | | |

| | | | | ,
* *

�
�

= +
=− +

↑ ↓
↑ ↓

a b
b a

L R
L R

	
(7.11)

and we can show that the following vector is identical with (7.9):

	

1

2
� � � ��� � � � �).

	
(7.12)

This means that alternative individuations are given by projectors corre-
sponding to rays spanned by vectors |Λ〉 and |Γ〉. But observe that these 
vectors are non-trivial superpositions of states with different positions 
and spin components (given that coefficients a and b are non-zero). Thus 
if we introduced a rule which prescribes that only subspaces which factor-
ize into an internal state subspace and a spatial state subspace are physi-
cally acceptable as a means to individuate particles, we could eliminate all 
the individuations except the one in terms of the projectors written in 
(7.10).14

14 Ghirardi et al. (2002, p. 86) justify eliminating the individuations done with the help of vectors 
|Λ〉 and |Γ〉 by observing that “measurements involving states like [these] are extremely difficult to 
perform and of no practical interest”. This is obviously a legitimate pragmatic reason for disregard-
ing such individuations, but we should give a more substantial argument if we wanted to make the 
metaphysical claim that nothing in reality corresponds to the individuations excised on such prag-
matic grounds.
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7.5	 �Two Solutions of the Problem 
of Ambiguity

Such a rule, when appropriately formulated, will also hopefully help 
resolve some cases of the ambiguity of the first kind, presented in the 
previous section. Consider again state (7.4). We have noted that there are 
two alternative ways of individuating particles occupying this state: one 
with the help of the projectors onto subspaces Span{|↑〉|L〉, |↑〉|R〉} and 
Span{|↓〉|R〉, |↓〉|L〉}, and the other using subspaces Span{|↑〉|L〉, |↓〉|L〉} 
and Span{|↑〉|R〉, |↓〉|R〉}. These two pairs of subspaces can be alterna-
tively presented as the following products:

	
Span Span Span Span| |, ; , .↑〉 ⊗ 〉 〉 ↓〉 ⊗ 〉 〉{ } { } { } { }L R L R

	

	
Span Span Span Span↑〉 ↓〉 ⊗ 〉 ↑〉 ↓〉 ⊗ 〉{ } { } { } { }, ; , .| |L R

	

Only the second method of individuation ascribes to the individuated 
particles definite position states; the first individuation implies merely 
that the position state of each single particle is a vector in the two-dimen-
sional subspace Span{|L〉, |R〉} without specifying which vector it is.15 
Hence we can propose the following rule that will eliminate the first 
individuation as unphysical:

(7.13)	 Projectors Ea and Eb used to individuate particles of the same 
type should be such that Ea[ℋ] =  s

a
r
a⊗  and Eb[ℋ] = 

 s
b

r
b⊗ , where s

a , s
b   – any subspaces in the internal 

state space, and r
a , r

b  – one-dimensional subspaces in the 
position state space.

15 Observe that the requirement that particles be individuated by states with well-defined positions 
also eliminates the ambiguity of the second kind present in the case of state (7.4), since all the 
alternative individuations will be in terms of subspaces that cannot be factorized into internal and 
spatial degrees of freedom.
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Thus, according to the condition expressed in (7.13), the only accept-
able method of individuation is when the individuating subspaces factor-
ize into a product of the internal and position subspaces, with the 
additional requirement that the position subspace be one-dimensional. 
This essentially means that we should individuate the components of the 
system with the help of well-defined position states (specific wave func-
tions) rather than multidimensional subspaces spanned by orthogonal 
wave functions.

While restriction (7.13) solves the problem of ambiguity in many 
cases, it is far from being a panacea. First off, the requirement of the one-
dimensionality of the position subspaces may be argued to eliminate too 
many cases of non-maximally specific individuation. In order to see that, 
let us consider the following fermionic state:

	

1

2

1

2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

↑〉 〉 ⊗ ↓〉 〉 − ↓〉 〉 ⊗ ↑〉 〉( )

+ ↑〉 〉 ⊗ ↓〉 〉 − ↓〉 〉 ⊗ ↑〉

L R R L

T TS SS〉( )
2
,

	
(7.14)

where |L〉, |R〉, |S〉, |T〉 are mutually orthogonal vectors in the position 
space (e.g. wave functions whose supports are non-overlapping). The 
state written in (7.14) makes it possible to individuate the two particles 
occupying it, albeit only with the help of the less then maximally specific 
properties represented by two-dimensional projectors/subspaces. Thus 
one individuation is given by the subspaces Span{|↑〉|L〉, |↑〉|S〉} and 
Span{|↓〉|R〉, |↓〉|T〉}, and the other by Span{|↑〉|L〉, |↓〉|T〉} and 
Span{|↓〉|R〉, |↑〉|S〉}.16 None of these subspaces can be presented in the 
product form required by condition (7.13) with a well-defined spatial 
component; hence both individuations should be treated as non-physical. 
In other words, particles occupying (7.14) cannot be individuated in a 
physically meaningful way. Hence, the criterion of physicality presented 

16 I am ignoring the fact that each antisymmetric block in (7.14) can be alternatively rewritten in 
the way explained with respect to state (7.9). These additional alternative individuations only make 
the considered problem worse, since none of them involve well-defined position states as required 
by condition (7.13).
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in (7.13) appears to be too strong, as it excludes all alternative individua-
tions available in this case, rather than picking up exactly one of them.

On the other hand, criterion (7.13) can also be proved to be too weak. 
Some cases of ambiguity remain even after applying the condition for-
mulated in (7.13). Consider the following, antisymmetric state of two 
electrons:

	

1

2

1

2

1 1 2 2 1 1 2 2

1 2 1 2 1 2

↑〉 〉 ↓〉 〉 − ↓〉 〉 ↑〉 〉( )

= ↑〉 ↓〉 − ↓〉 ↑〉( ) 〉 〉

⊗ ⊗

⊗ ⊗ ⊗

L L L L

L L(( ).
	

(7.15)

This is the state of two electrons that occupy the same spatial region L 
(they have the exact same spinless wave functions), while their spins are 
anticorrelated (a standard example of such a situation is provided by two 
electrons in a helium atom which occupy the lowest energy level, and 
thus are characterized by the same spatial wave function, while at the 
same time the total spin of the electrons equals zero). In that case there 
are an infinite number of individuating pairs of projectors which differ 
only with respect to the spin state. That is, each pair of projectors 
E L L

n n n↑ = ↑ ↑ �  and E L L
n n n↓ = ↓ ↓ � , where |↑n〉 and |↓n〉 are 

states “up” and “down” for spin in an arbitrary direction n, individuates 
the two electrons. But it is straightforward to observe that all pairs of the 
form E E

n n↑ ↓,  satisfy (7.13), and therefore the ambiguity is still present.

The above-described case of ambiguity can be dismissed on pragmatic 
grounds, since no experimental procedure can determine what the spin 
state of the individual electrons occupying (7.15) is, as long as they are 
not spatially separated. In order to experimentally verify the hypothesis 
that each electron possesses well-defined spin in multiple directions, we 
would have to separate them spatially in order to perform individual mea-
surements. But this preparatory procedure would change the total state of 
the system which would no longer have the form given in (7.15), but 
instead would be described by formula (7.4). And, as we have seen, in this 
case criterion (7.13) does eliminate the existing ambiguity, since the only 
individuation admissible in the light of this criterion is the one defined by 
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subspaces Span{|↑〉, |↓〉} ⊗ Span{|L〉} and Span{|↑〉, |↓〉} ⊗ Span{|R〉}. 
However, this argument does not show that there is no ambiguity in the 
initial state (7.14), only that its existence should have no empirically veri-
fiable consequences that would be inconsistent with standard quantum-
mechanical predictions. The irreducible ambiguity that remains in this 
case comes from the fact that there is no answer to the question of how to 
“distribute” definite values of spin in various directions among the two 
particles, given that the only constraint on the “true” values of spin in a 
particular direction is that they have to be opposite for both particles.

A more fundamental objection can be raised against the proposed, posi-
tion-based method of dealing with the ambiguity challenge to the hederodox 
approach. It may be asked what justifies the choice of position as the key 
parameter in the criterion that draws the line between legitimate and illegiti-
mate individuations. What makes properties that involve intricate combina-
tions of position and internal states less appropriate as a means of identifying 
the components of a system? As we have already stressed, there are good 
pragmatic reasons to choose the criteria of individuation that rely on rela-
tively well-defined localizations, since measurements are localized states of 
affairs. But why should nature choose properties that are useful to us as objec-
tively possessed by observer-independent objects?17 It is true that there are 
interpretations of quantum mechanics which elevate the ontological status of 
position in comparison to other measurable parameters. The most famous of 
such interpretations is Bohmian mechanics, which assumes that all particles 
possess well-defined trajectories and that measurements of various observ-
ables ultimately reduce to measurements of the location of an object within 
its guiding pilot wave. Another interpretation which recognizes the privileged 
ontological status of position is the GRW theory (the spontaneous localiza-
tion theory). This theory supplements the ordinary laws of quantum mechan-
ics with a probabilistic rule that describes a fundamentally indeterministic 
transition (“jump”) from an unlocalized state to a state with (almost) perfect 
localization. Given these two prominent interpretations, it may be less con-
troversial to admit that spatial localization plays the key role in an objective 
selection of the components of a composite system.

17 There is one important way of answering this question within the so-called Everettian interpreta-
tion of quantum mechanics. Namely, the physical process responsible for selecting a basis with 
(approximately) well-defined positions is via decoherence, arising as a result of an interaction of the 
quantum system with its environment. I am grateful to Simon Saunders for pointing this out to me.
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Still, there are alternative interpretations of quantum mechanics which 
do not accord a special ontological status to position (at least not directly). 
And taking into account the serious limitations of the position-based strat-
egy described earlier in this section, we may want to look for alternatives. 
A second option is simply to accept the irreducibly ambiguous character of 
individuations done with the help of qualitative properties. More specifi-
cally, we may introduce the concept of a relative individuation, where indi-
viduations are relativized to a particular complete set of orthonormal 
vectors in the single-particle Hilbert space. Alternatively, and equivalently, 
we may select any maximal set of compatible observables, and with respect 
to this set we may admit the existence of particular components with cer-
tain properties as specified by appropriate projectors/subspaces.

Let us then choose any orthogonal basis ℬ = {|e1〉, |e2〉, …, |en〉} for the 
n-dimensional Hilbert space ℋ. Let |φ(1,2)〉 be the state of a two-parti-
cle system S of “indistinguishable” fermions or bosons, and let Ea and Eb 
be some orthogonal projectors that individuate this system (i.e. |φ(1,2)〉 
is assumed to lie in the range of projector Ea ⊗ Eb + Eb ⊗ Ea). Then we 
will say that:

(7.16) 	 The components of system S individuated by projectors Ea 
and Eb exist with respect to ℬ, if Ea[ℋ] = Span{|ei〉}i = 1, …, k 
and Eb[ℋ] = Span{|ej〉}j = 1, …, l, where |ei〉, |ej〉 ∈ ℬ for all i, j.

The condition expressed in (7.16) can be stated equivalently by saying 
that the components of the system exist with respect to a maximal set of 
compatible observables, if Ea and Eb belong to that set. Thus we abandon 
the notion of the “absolute” existence of the components of a given system 
in favor of the notion that ties the existence of particularly individuated 
components to the preselection of a “perspective” in the form of a maxi-
mal set of observables whose precise values may be known simultaneously. 
In that way we defuse the danger posed by the existence of a multitude of 
alternative and incompatible individuations, since we no longer claim 
that these individuations pick out objects that exist “together”, indepen-
dently of anything else. On the contrary, alternative sets of components 
exist only conditionally on the choice of a particular orthogonal basis.

This proposal, which may be referred to as perspectivalism, is particu-
larly suited to deal with the second kind of ambiguity, affecting fermionic 
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states. Let us consider again state (7.6). The alternative individuations 
available in this state are all given in terms of orthogonal projectors 
E� � �

1 1 1� ��  and E� � �
2 2 2� �� , where |λ1〉 and |λ2〉 are any orthogonal 

vectors spanning the two-dimensional subspace Span{|φ1〉, |φ2〉}. Each 
pair of individuating projectors correspond to a different selection of an 
orthogonal basis, and consequently of a different maximal set of compat-
ible observables. Thus we may say that for a given pair of projectors Eλ1

 
and Eλ2

, the components of the system identified by these projectors 
exist only relative to the choice of vectors |λ1〉 and |λ2〉 as elements of an 
orthogonal basis. If the initial vectors |φ1〉, |φ2〉 are identified, for instance, 
as eigenvectors of spin in some direction z, this means that we are no 
longer obliged to admit that the components of the bipartite systems pos-
sess various incompatible properties (well-defined spins in different direc-
tions). Rather, we should say that depending on which spin direction we 
select, the system is certain to contain particles with opposite values of 
this particular spin component with respect to this selection.

How are we supposed to understand the above-formulated relativiza-
tion of existence, which in philosophy is typically considered an absolute, 
objective concept? And doesn’t this relativization reduce an ontological 
notion to an epistemological one? The most natural way to explain the 
proposed relativization is of course in terms of future measurements and 
their outcomes. It is a well-known and perhaps even overstated feature of 
quantum mechanics that measurements can reveal precise values of only a 
handful of physical quantities. We have to decide in advance which 
observable we want to measure, and in that way we limit our ability to 
learn the exact values of properties to the set of observables compatible 
with the selected one. This experimental choice corresponds precisely to 
the selection of an orthogonal basis to which we relativize the existence of 
particular components of the composite system. Thus it may be said that 
the components exist relative to a future choice of observables to measure. 
Or, to put it differently and perhaps in a more philosophical language, the 
existence of particular components becomes a dispositional property of the 
total system. The system of two electrons with anticorrelated spins pos-
sesses the dispositional property that it will reveal well-defined and oppo-
site spins in any direction given an appropriately selected spatial orientation 
of the measuring apparatus. We interpret these dispositional properties as 
expressing the relative existence of particles with well-defined spins even 
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before measurement. Yet another way to express this idea may be in terms 
of potential existence, where again potentiality can be actualized only via a 
selection of a particular direction of spin to measure.18

Unfortunately, perspectivalism does not offer a solution to the first 
kind of ambiguity, due to the fact that all alternative individuations in 
this case are based on mutually compatible projectors. Since all single-
particle vectors |φi〉 constituting fermionic states (7.1) or bosonic states 
(7.2) form (a part of ) an orthogonal basis, and since vectors |φi〉 are 
directly used to build alternative individuating subspaces, all the alterna-
tively individuated components of the system are relativized to the same 
orthogonal basis, and therefore must be assumed to exist “simultane-
ously”. At this point I have no suggestion of how to further deal with this 
problem. More fine-grained relativization to some subsets of the set of 
vectors |φi〉 won’t do, since this would effectively mean that any admis-
sible individuation picks out existing components relative to itself, and 
this would obviously trivialize the perspectivalist solution. As a stopgap 
measure, we may revert in this case to using position as the privileged 
parameter, with all its limitations that we have discussed earlier.19

18 It may be worth reminding ourselves that the actualization mentioned here does not necessarily 
involve any change in the quantum-mechanical state of the entire system. As we have already 
stressed (see Sect. 5.4), due to the Symmetrization Postulate, the final state of the two fermions can 
never be a product of two states. Thus it may happen that a particular measurement does not “col-
lapse” the initial state of the form (7.6), and yet this measurement may still be seen as actualizing 
the existence of particles with well-defined values of the measured observable.
19 In my Bigaj (2016, Sect. 5) I opted for a solution of the ambiguity problem which I called “mixed 
view”. This is a combination of the preferred basis approach (based on the privileged role of posi-
tion) and the “incompatible properties” view, according to which each component of a fermionic 
systems may possess properties represented by incompatible observables (such as spin components 
in different directions). The incompatibility analysis is applicable when the components cannot be 
individuated by separate locations (as in the case of two electrons occupying the same energy level 
in an atom), and hence no conflict with the predictions of standard quantum mechanics can be 
revealed by means of spatially separated measurements. On the other hand, when the particles 
become separable by their spatial locations, the preferred basis approach dictates that only one of 
the infinite numbers of alternative and incompatible individuations represents reality. Since in my 
2016 article I concentrated only on the ambiguity of the second kind (affecting fermions not 
bosons), I did not discuss the problems, indicated above, which this approach may encounter when 
considering less than maximally specific individuations (individuations by many-dimensional pro-
jectors). Regardless of the viability of the “mixed view” solution, I think that the perspectivalist 
approach deserves to be taken into account as a serious alternative due to its (mostly) uniform 
analysis of all cases of ambiguity, and its intriguing similarities to some interpretations of quantum 
mechanics, such as the Everettian relative state interpretation and Rovelli’s relational quantum 
mechanics (cf. Barrett 2018; Laudisa and Rovelli 2019).
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8
The Metaphysics of Quantum Objects: 

Transtemporal and Transworld Identities

The last two sections of the previous chapter strongly suggest that the 
heterodox approach to quantum individuation departs from the classical 
views on identity and individuality no less dramatically than the ortho-
doxy. In the final chapter of the book, we will further explore the non-
classical character of the emerging metaphysical conception of quantum 
objects, taking into account two so far relatively neglected aspects of their 
identities: one related to their identifications over time and the other 
present in counterfactual scenarios. We will argue that it is fundamentally 
impossible to uniquely identify a given quantum particle in an alterna-
tive, merely possible situation. Regarding the transtemporal identifica-
tion of quantum objects, the situation appears to be more subtle. The 
heterodox approach, in contrast to the orthodox one, enables us in cer-
tain circumstances to make definite identifications of quantum objects 
across extended periods of time. However, in the majority of cases trans-
temporal identifications fail, and this means that the components of a 
complex system identified at different temporal moments will generally 
not be connected by the relation of genidentity, even though the system 
as a whole retains its identity. At the end of the chapter, we will try to 
sketch a future metaphysical theory of objects that could account for the 
revealed facts regarding various types of identity in the quantum regime.
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8.1	 �Synchronic Versus Diachronic Identity

Discussions about the validity of the PII and the relations between 
numerical distinctness and qualitative discernibility are typically con-
ducted under the tacit assumption of synchrony. That is, we stipulate that 
at a given moment t there exist two numerically distinct objects, and we 
ask the question of whether these objects can be differentiated using 
properties and relations exemplified by them at moment t. In the context 
of quantum mechanics, this question is considered by taking into account 
the instantaneous state of the composite system at the very same moment 
t. Thus the perspective that is adopted here may be called synchronic. 
However, for objects that persist in time a different type of perspective 
may be taken: the diachronic one. Diachronic (transtemporal) consider-
ations involve distinct moments t1 and t2 at which certain objects exist. 
Interestingly, with the change of perspective from synchronic to dia-
chronic, the type of identity-related questions that are usually raised 
changes too. We are no longer interested in the issue of discernibility at 
different temporal points, since even one and the same object can possess 
distinct and mutually exclusive properties at various moments of its exis-
tence. Thus diachronic qualitative identity is not a necessary condition of 
numerical identity over time. Instead, the main question regarding dia-
chronic identity is how to decide the truth of numerical identifications 
over time. How do we answer the question whether an object character-
ized at t1 is the same as (or distinct from) an object characterized at t2? 
And is such a question always guaranteed to have a unique and unam-
biguous answer? In other words, are facts of diachronic identity/distinct-
ness objectively determined, regardless of the practical issue of how we 
can know them?

Let us start with some preliminary assumptions and terminological 
distinctions. The notion of diachronic identity can be conceptualized in 
many different ways. Hans Reichenbach introduced the relation of gen-
identity which, strictly speaking, is not identity at all, since it connects 
events occurring on a particular object at different moments (Reichenbach 
1971, p.  38). And clearly events taking place at different times are 
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numerically distinct.1 However, what underlies the relation of geniden-
tity connecting distinct events is precisely the numerical identity of the 
object on which these events occur. Consequently, we will adopt the con-
vention according to which diachronic identity is not a new type of iden-
tity, but rather numerical identity considered in the context of separate 
moments of time. More precisely, we will not think of diachronic and 
synchronic identity as genera of the relation of identity, but instead we 
will talk about diachronic identity statements and synchronic identity state-
ments. A synchronic identity statement is a proposition that connects two 
descriptions taken at the same time with the symbol of identity: Φ at 
t = Ψ at t (e.g. “The blue object on my desk at t is identical with the pen 
on my desk at t”). A diachronic identity statement, on the other hand, 
involves descriptions taken at different times: Φ at t1 = Ψ at t2 (e.g. “The 
man I met yesterday at the park is the same as the man that stole my 
bicycle today”). However, in both sentences the symbol “=” denotes the 
same fundamental relation of the numerical identity between any object 
and itself.

Formulating appropriate criteria for statements of transtemporal iden-
tity is one of the core problems in the metaphysics of persistence. 
Common answers include spatiotemporal continuity (continuous trajec-
tories) and transmission of certain identifying marks (see Reichenbach 
1971, pp. 224–227, and for an overview see Gallois 2016). These criteria 
can be criticized on many grounds, and it may also be argued that they 
provide no solution to the most egregious cases, such as the celebrated 
example of the ship of Theseus. Yet we will not discuss cases involving 
macroscopic referents of terms from everyday language with their 
unavoidable vagueness and ambiguity. Instead, we will focus on funda-
mental entities, whether taken as classical particles or quantum-
mechanical objects. In the case of classical bodies, they are guaranteed to 
have well-defined spatiotemporal trajectories throughout their existence, 
and this can lay ground for the facts of diachronic identity. Thus we can 
identify objects picked out at two different times if they are connected by 

1 Compare the standard analysis of events by Jaegwon Kim in Kim (1976), where events are defined 
as triples consisting of an object, a property and a temporal point at which the object possesses the 
property.
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a continuous curve in spacetime whose points are occupied by successive 
stages of some material entity. Observe that this criterion relies on the 
assumption of impenetrability, that is, the claim that no two material 
bodies can occupy the exact same spatial location (i.e. trajectories of dis-
tinct bodies can never cross).

Still, there are possible scenarios when even in the case of classical 
objects the continuity criterion may be insufficient. Suppose that a par-
ticle splits in half at a certain point of its existence and that the products 
of the splitting fly off in opposite directions. According to the criterion of 
continuity, each half should be seen as identical with the original particle, 
and yet this seems impossible given that the halves are clearly numerically 
distinct.2 In this case the criterion of mark transmission may help. It may 
be claimed that some identifying features of the original particle (e.g. its 
mass) are not preserved after the split, and thus the products are not iden-
tical with their source particle. However, given that many properties of a 
body change throughout its existence, we have to be careful to distin-
guish attributes that must be preserved from the remaining ones. The 
choice of properties that may be called essential to the continuation of 
existence depends on the presupposed conception of objects of interest 
(to use a well-worn example: a statue would have a different set of essen-
tial attributes than the lump of clay it is made of ). Or, to put it differ-
ently, by selecting a particular set of essential properties, we clarify what 
type of objects we have in mind when we refer to a given entity. The 
specification of essences gives us an insight into the “conditions of sur-
vival” of a particular entity, and hence it provides us with a general char-
acterization of the temporal boundaries of this entity.

According to a widely accepted view, the criterion of diachronic iden-
tity based on spatiotemporal continuity is not applicable to the case of 
quantum particles. Reichenbach puts this failure of continuity down to 
quantum indeterminacy and the related wave-particle duality 
(Reichenbach 1971, p.  228). Steven French and Decio Krause offer a 

2 A more sophisticated variant of this problem is known as the “amputation case” (van Inwagen 
1981; Heller 1984). If the particle in question is genuinely elementary, that is, does not possess any 
parts smaller than itself, then the “splitting” is better thought of as a process of decay where new 
particles are created. Sill, from the classical perspective the condition of temporal continuity is 
satisfied.
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similar evaluation, citing Erwin Schrödinger’s observation that quantum 
particles cannot be attributed definite spatiotemporal trajectories (French 
and Krause 2006, p. 123). And yet Simon Saunders points out that the 
criterion of continuity does not have to be entirely abandoned (Saunders 
2015, p. 169). In quantum mechanics, instead of spatiotemporal trajec-
tories, we can talk about orbits, that is, continuous evolutions of an initial 
state vector under the action of a particular unitary evolution operator 
U.3 Given the Schrödinger equation, the temporary evolution of a system 
whose initial state is |ψ(t1)〉 can be presented as follows:

	
� �� �t U t t t2 2 1 1� �� � �� � � ��,

	

where the unitary time-dependent evolution operator U(t) is a function 
of the Hamiltonian H of the system:

	
U t e

itH

� � �
�
 .

	

Consequently, it is possible to introduce the following continuity cri-
terion of transtemporal identity applicable to the case of quantum parti-
cles. An object a characterized by its quantum-mechanical state |ψ(t1)〉 at 
time t1 is identical with an object b occupying state |ψ(t2)〉 at t2, if there is 
a continuous curve in the appropriate Hilbert space parametrized by a 
real-valued function t which connects vectors |ψ(t1)〉 and |ψ(t2)〉, and 
such that for each t ∈ [t1, t2], vector |ψ(t)〉 represents the physical state of 
some actual system. However, we may have justified doubts as to the 
practicality of this criterion, given the well-known fact that we cannot 
monitor quantum-mechanical states of any given system over an extended 
period of time. So it seems that in practice we must rely on some other 

3 As Nick Huggett and Tom Imbo (Huggett and Imbo 2009) point out, the non-existence of con-
tinuous spatiotemporal trajectories in quantum mechanics follows precisely from the fact that the 
Schrödinger evolution of quantum systems is continuous in Hilbert spaces. Since classical trajecto-
ries in space consist of points corresponding to eigenstates of the position operator, and since dis-
tinct eigenvectors are orthogonal to each other, it follows that the continuous evolution of a 
quantum system from one eigenvector to another must take the system through states with no 
well-defined position.
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criteria of transtemporal identity, and only when we establish that we are 
dealing with the same physical system at two different moments of time, 
we can try to introduce an appropriate Hamiltonian which will enable us 
to theoretically calculate an orbit representing the evolution of the sys-
tem. This epistemological issue raises the question of which fact is onto-
logically more fundamental: the continuity of a given orbit, or the 
diachronic identity connecting various stages of a particular system.

Is it feasible to use instead the criterion of mark transmission in the 
quantum regime? Generally, the answer is “yes”, as long as we are dealing 
with “distinguishable” particles. Considering a system of a proton and an 
electron, we have no problems connecting appropriate temporal stages by 
genidentity thanks to the unique features of the particles involved (elec-
tric charge, rest mass). Thus state-independent properties can definitely 
be used as marks. However, this criterion is of no use when we consider 
systems of “indistinguishable” particles, such as a pair of electrons, since 
they share all their state-independent, identifying marks. But perhaps we 
could make transtemporal identifications on the basis of state-dependent 
properties. If a particular evolution of a system does not affect certain 
magnitudes, we may use the value of such a magnitude to trace back the 
history of this system, even though the quantity in question is not gener-
ally time-independent and hence may depend on the state of the system. 
However, that sort of identification presents us with a fundamental 
obstacle in the form of the synchronic Indiscernibility Thesis.

If we follow the orthodox conception of individuation, we have to 
accept that particles of the same type are never discernible synchronically 
by their physical properties, and this prevents us from making definite 
qualitative identifications across time. Clearly, if we have two objects a 
and b which at time t1 share all their properties, and objects c and d that 
are similarly indiscernible with respect to their properties at t2, then 
whatever argument based on properties we will come up with for the 
identification of, let’s say, c at t2 with b at t1, will also apply to c at t2 and 
a at t1. Observe, further, that this situation does not change even if we 
assume that pairs a, b and c, d are weakly discernible at respective moments 
t1 and t2. No wonder, then, that the main proponent of the weak discern-
ibility approach to orthodoxy, F.A. Muller, states authoritatively (Muller 
2015, p. 23, emphasis original):
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[w]hen I have a physical system composed of N absolutely indiscernible 
particles at time t, then not a single particle can be re-identified at a later 
time t′ > t because it cannot be identified at all: they are not individuals but 
relationals. Elementary particles have no genidentity, as Reichenbach […] 
put it. The relations I have employed to discern particles weakly use the 
quantum-mechanical state at a time and therefore discern them synchronic-
ally. Relations to discern particles diachronically are not forthcoming in 
QM. There are no persistence conditions for single particles.

In what follows we will see that under the unorthodox approach to 
individuation the situation with respect to diachronic identification is 
not as dire as portrayed above.

8.2	 �Diachronic Identity of Same-Type Particles

On the basis of our current analysis, we can distinguish three general 
types of criteria of diachronic identity that can be potentially used for 
quantum objects. Diachronic identity statements regarding quantum 
objects can be based on the continuity of orbits, on the identity of state-
independent properties, or on the identity of state-dependent properties 
(given the assumption that these properties are not affected by the inter-
actions at the intervening moments). In the case of quantum particles of 
the same type, the second criterion is of no use, since such particles share 
all their state-independent properties. Hence the only hope for a working 
criterion of transtemporal identity is either continuity of orbits or preser-
vation of selected state-dependent properties.

As we have seen above, both criteria fail under the orthodox approach 
to quantum individuation. The orthodox approach implies that the com-
ponents of an ensemble of “indistinguishable” particles are assigned the 
exact same reduced (mixed) states, so the criterion of continuity obvi-
ously breaks here (each particle will have an identical temporal evolu-
tion). The same applies to the criterion based on state-dependent 
properties, since the Indiscernibility Thesis proves that all measurable 
properties will be identical among the components of the ensemble. The 
only possibility left for those who want to admit objective facts regarding 
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transtemporal identifications is that these facts are primitive and thus not 
grounded in more fundamental qualitative facts. One could, for instance, 
insist that the labels used in the description of a joint state actually trace 
individual but qualitatively indistinguishable particles. The particle 
labeled 1 at time t1 is in fact identical with the particle labeled 1 at time 
t2, even though there is no physical way to separate this particle from the 
rest of the ensemble. Needless to say, this approach should not please 
empirically oriented philosophers and scientists.

The unorthodox conception, on the other hand, is more conducive to 
the idea of the preservation of numerical identity across temporal 
moments. Given that qualitative individuation with the help of measur-
able properties is available in the majority of states, we may hope for a 
successful application of one of the two admissible criteria of diachronic 
identity in some cases involving same-type particles. And indeed, 
Saunders observes that the criterion of the continuity of orbits can be 
applied to assemblies of “indistinguishable” particles which occupy 
GMW-non-entangled states (Saunders 2015, pp. 169–170). Here is how 
this might work (as usual, we will limit ourselves to the case of two par-
ticles). Suppose that a system of two same-type fermions occupy the fol-
lowing antisymmetric state at t1:

	
� � � � �� � � � �( ) ( ),t a b b a1
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2
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(8.1)

where |λa〉 and |λb〉 are orthogonal. In that case, according to the hetero-
dox approach, we can treat this assembly as consisting of two particles, 
one of which occupies state |λa〉 and the other state |λb〉. Now, let us sup-
pose that the unitary evolution operator has the form U(t) ⊗ U(t), where 
U(t) acts in the single-particle Hilbert space and t = t2 – t1. When applied 
to the initial state ∣ψ(t1)〉, this operator produces the following:
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Given that U(t) is unitary, vectors U(t)|λa〉 and U(t)|λb〉 are orthogonal;4 
thus again we can individuate the particles occupying the evolved state 
∣ψ(t2)〉 using the properties associated with states U(t)|λa〉 and U(t)|λb〉. 
Consequently, we can connect state |λa〉 with U(t)|λa〉 and |λb〉 with 
U(t)|λb〉 by continuous orbits. Using the representation in terms of indi-
viduation blocks, as explained in Chap. 5, we can treat the evolution of 
the system as if it was described in terms of factorizable states, from |λa〉 
⊗ |λb〉 to U(t)|λa〉 ⊗ U(t)|λa〉, where each particle traces its own trajec-
tory in a respective Hilbert space.

However, there are some serious limitations of the above-described 
method of transtemporal identification based on the continuity of orbits. 
First of all, we should not forget that in the case of fermionic states there 
are a multitude of alternative synchronic individuations. Thus at any 
moment t of the continuous evolution of the system, we might have 
selected a different pair of orthogonal one-dimensional projectors to 
individuate the particles, and there is no way to connect thus individu-
ated particles with the initial states |λa〉 and |λb〉 by continuous orbits. 
The method of transtemporal identification described above amounts to 
a selection of a privileged basis which consists of orthogonal vectors |λa〉 
and |λb〉 evolved in time by the action of unitary operator U(t). With 
respect to this continuously evolving basis, we can state the existence of 
the components of the entire system that indeed retain their identity over 
time (recall the concept of the relative existence of the components of a 
given fermionic system outlined in Sect. 7.5, formula 7.16). However, 
now the argument in support of the transtemporal identity of these par-
ticles looks dangerously close to being circular. Surely the selected com-
ponents retain their identity thanks to the continuity of orbits, since we 
have selected these components using the continuously evolving basis 
vectors. But select some other bases, and the continuity goes out 
the window.

Another problem is more general, as it equally affects states of distin-
guishable particles. The continuity criterion obviously works with respect 
to unitary evolutions of systems, but when we consider non-unitary, 

4 Here is a quick proof: 〈Uλa|Uλb〉 = 〈λa|U†U|λb〉 = 〈λa|λb〉 = 0, since U† = U−1 for unitary operators.
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discontinuous processes, such as measurements, this criterion is no lon-
ger applicable. If we want to talk about diachronic identity of particles 
undergoing measurement-like processes (including the  Copenhagen-
school collapses of the wave function, or spontaneous localizations pro-
pounded in the GRW theory), we have to rely on the preservation of 
selected state-dependent properties as the only available criterion. And in 
principle it seems that this method may work under the heterodox 
approach to individuation, since state-dependent properties are what we 
use in this approach to differentiate synchronically between same-type 
particles. If a particular (unitary or not) evolution of a system of same-
type particles preserves certain quantities, we may use the values of these 
quantities to identify specific particles taken at different moments, even 
if the total state of the system is not preserved. Of course this method of 
diachronic identification presupposes that the particles differ from one 
another synchronically with respect to the value of the quantities in ques-
tion, so that we can trace the evolution of each individual particle by 
following its uniquely identifying value at every moment. This presup-
position has a chance of coming true only under the heterodox concep-
tion of individuation and discernibility.

In the next sections we will probe deeper the possibility of diachronic 
identifications by properties using a standard quantum-mechanical 
example of scattering experiments. These experiments involve a pair of 
interacting particles, whose identities pre- and post-interaction may be 
put into question. As it turns out, in some of these scattering interac-
tions, the diachronic identities of participating particles are “lost”, while 
in others they may be seen as preserved. We will see that quantum 
mechanics provides us with a simple empirical criterion that can distin-
guish between identity-preserving interactions and identity-erasing inter-
actions. This criterion refers to the presence or absence of interference 
effects in the angular distribution of scattered particles. Subsequently we 
will have a closer look at this interference-based criterion.

  T. Bigaj
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8.3	 �Scattering Experiments

Scattering events are one of the most ubiquitous occurrences in particle 
physics. As David Griffiths points out, virtually all experimental informa-
tion in particle physics comes from three sources: decays, bound states 
and scattering (Griffiths 2008, p.  2). The simplest type of scattering 
events involves two incoming particles that collide and then fly off in 
opposite directions (in the center of mass frame of reference).5 The main 
parameter characterizing a given interaction is the differential cross section, 
which roughly represents the proportion of the incident particles regis-
tered at a selected angle after scattering. In the current context we are not 
interested in particular methods and techniques to calculate the cross 
sections for a given potential,6 but instead we will focus on more general 
descriptions of scattering processes that may give us clues regarding how 
to identify particles pre- and post-interaction. Thus our approach will be 
broadly schematic, ignoring the fine details of concrete interactions 
between particles.

At the beginning we will discuss the case of elastic scattering involving 
two “distinguishable” particles (e.g. a proton and an electron).7 The rea-
son for this choice is that later on we will be able to compare appropriate 
formulas for so-called transition amplitudes derived in the case of “indis-
tinguishable” particles with the currently obtained formulas. This com-
parison will enable us to discern cases in which diachronic identities of 
“indistinguishable” particles are preserved from cases in which these 
identities are lost. So let us assume that the incoming particles are char-
acterized by respective wave functions |ψL〉 (“coming from the left”) and 
|ψR〉 (“coming from the right”). Thus the state of the entire system of 
particles before the interaction will be the product of two wave functions:

	
� � �� � �( )t a

L
b
R1 � � �� �

	
(8.3)

5 More general processes, such as rearrangement collisions, lead to the creation of new particles and 
thus belong to the category of reactions (see Cohen-Tannoudji et al. 1978, pp. 903–904).
6 For more details on that, see, for example, Cohen-Tannoudji et al. (1978, p. 903ff).
7 The subsequent analysis is based on Cohen-Tannoudji et  al. (1978, pp. 1403–1408). See also 
Bigaj (2020).
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where particles characterized by wave packets |ψa
L〉 and |ψb

R〉 are identifi-
able and therefore discernible by their state-independent properties 
(hence the distinct superscripts a and b). The interaction between the 
particles can be most generally presented with the help of a unitary evolu-
tion operator U(t), where t =  t2 −  t1. Acting with this operator on the 
initial state, we can calculate the state of the entire system at any time 
t2 > t1 as follows:

	
� � �� � �( ) ( )( )t U tab a

L
b
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(8.4)

The total wave function |ψ(t2)〉 after the interaction (i.e. at such a time 
t2 when the part of the Hamiltonian describing the interaction between 
the particles becomes negligible) will typically take the form of spherical 
waves spreading in all directions. In order to calculate the probability that 
the particles will be detected at a selected angle, we have to take the inner 
product of the final state |ψ(t2)〉 and the state describing the particles after 
the detection. Suppose that the detectors are located at places A and B, as 
depicted on Fig.  8.1. The final state after the detection should be the 
product of the wave function |ψA〉 detected at A and the wave function 
|ψB〉 detected at B. However, we have to keep in mind the physical differ-
ence between the two particles. Therefore, there are actually two ways of 
realizing the final scenario of detection, described by the following prod-
uct states:
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(8.5)

The first state obviously corresponds to the situation in which particle 
a was detected as coming in the direction of detector A and particle b in 
the direction of B, while the second state describes the “reversed” distri-
bution (particle a in B and particle b in A). The probabilities of finding 
the system in the appropriate states above are given as follows:
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Supposing that the unitary evolution operator Uab(t) factorizes into the 
product of the components governing the evolution of particle a and 
particle b separately8 (i.e. that Uab(t)  = Ua(t) ⊗ Ub(t)), we can rewrite 
these formulas in the following way:
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(8.7)

Numbers 〈ψa
A|Ua(t)|ψa

L〉 〈ψb
B|Ub(t)|ψb

R〉 and 〈ψa
B|Ua(t)|ψa

L〉 
〈ψb

A|Ub(t)|ψb
R〉 are called “probability amplitudes” or “transition ampli-

tudes”. The first amplitude obviously corresponds to the transition of 
particle a from L to A and the simultaneous transition of particle b from 
R to B, while the second amplitude describes the transitions from L to B 
and from R to A. If we are not interested in identifying particles a and b 
detected in appropriate locations A and B, then in order to calculate the 
probability that one particle will be detected in A and the other in B, 

8 This assumption is not necessary for the subsequent discussion, but it simplifies appropriate 
formulas.

Fig. 8.1  Two scenarios involving scatterings of distinguishable particles a and b
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without telling which particles we have detected, we should add the prob-
abilities in an entirely classical fashion:
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(8.8)

Suppose now that the interacting particles belong to the same type—
they are, for instance, two electrons. In that case the initial and the final 
states must be properly antisymmetrized, since these are states of two 
“indistinguishable” fermions. Thus the appropriate formulas will be as 
follows:
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(8.9)

For the state after detecting particles in A and B, the correct formula is:
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(8.10)

Assuming, as before, that the unitary evolution operator factorizes 
(U12(t) = U(t) ⊗ U(t); note that the operator has to be symmetric; thus 
we omit superscripts), we can calculate the transition amplitude from the 
initial state at t1 to the final state after the detection to be the following:
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(8.11)

Note that this time, in contrast to the case of distinguishable particles, 
there is no separation into two physical processes with two distinct ampli-
tudes. This possibility of distinguishing the scattering when the L-particles 
ends up deflected in the A direction from the scattering in which the 
L-particle is detected at B is excluded from the outset by the 
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antisymmetrization of the initial and final states. In particular we can’t 
distinguish two possible final states after detection |ψA〉 ⊗ |ψB〉 and |ψB〉 
⊗ |ψA〉, since these kets are not permutation-invariant. Taking this into 
account, we can write directly the probability of detecting any particles in 
A and B as the square of the modulus of the probability amplitude 
in (8.11):
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(8.12)

This formula is markedly different from expression (8.8) derived in the 
case of distinguishable particles. Instead of adding the squared moduli of 
appropriate amplitudes, we add (or, in the case of fermions, subtract) the 
amplitudes and then square them. As a result, expression (8.12) contains 
the so-called interference term (the third term in the sum below), absent 
from the previous formula:
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(8.13)

The interference term, as the name suggests, is responsible for the 
interference effects, that is, the variation in the angular distribution of the 
probabilities for detecting the scattered particles (at some angles the 
probabilities are higher than in the “classical” case, and at some other 
angles the probabilities are lower). The presence of interference effects is 
a clear indication that we are dealing with same-type particles rather than 
particles which can in principle be discerned.9

Finally, we will consider the case of scattering that again involves same-
type particles (electrons), but this time we will take into account their 

9 See Liu et al. (1998) for a detailed description of a real collision experiment involving electrons 
that gives rise to interference effects.
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internal, that is, spin degrees of freedom. Moreover, one crucial assump-
tion will be that the interaction does not affect their spins. Suppose, then, 
that the initial state of two incoming electrons is as follows:
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(8.14)

where, as always, |↑〉 and |↓〉 are spin states corresponding to values 
“up” and “down” in a particular direction. This state describes a situation 
in which one electron coming from the left has spin “up” in a given direc-
tion (perpendicular to the direction of motion), while the other electron 
coming from the right has the opposite spin “down” in the same direc-
tion. Provided that the magnetic forces during the interaction are not 
strong enough to “flip” the spins of the particles,10 we assume that the 
evolution operator in the spin space of both electrons is the identity 
I. This means that after the interaction the state of the pair will be the 
following:
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(8.15)

Since now there are two experimentally distinguishable ways of detect-
ing scattered particles (one with spin “up” at location A and spin “down” 
at B and the other with the spins switched), we have to write down two 
final states and calculate two probabilities:
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(8.16)

10 See the discussion of this assumption in Feynman et al. (1965, chap. 3). As I point out in Bigaj 
(2020, p. 14), this assumption does not have to be realistic for the argument to go through.
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Given the orthonormality relations between spin states |↑〉 and |↓〉, the 
corresponding transition amplitudes between the initial state and each of 
the above states will turn out to be as follows:
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from which we can calculate the total probability of registering any par-
ticles coming in the A and B directions while disregarding their spins:
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(8.18)

Observe that this formula is identical to the probability formula (8.8) 
derived in the case of “distinguishable” particles (barring the insignificant 
absence of superscripts referring to individual particles). That is, there is 
no interference term in this expression, in contrast to formula (8.13). 
Consequently, no interference effects can be experimentally observed in 
this case. It seems that the presence of spins which in principle enable us 
to identify the direction from which a detected particle has arrived has 
the effect of erasing the interference pattern that would otherwise charac-
terize the scattering of two same-type particles.

8.4	 �Diachronic Identity in Scatterings: 
Orthodoxy Versus Heterodoxy

Let us now analyze the mathematical results laid out in the previous sec-
tion, taking into account the two competing approaches to quantum 
individuation. We will focus our discussion on the possibility of making 
definite diachronic identifications between particles pre- and post-
interaction in each of the above-analyzed scenarios. Recall that we have 
formally described three cases of scattering interactions: one involving 
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“distinguishable” particles and two concerning particles of the same type. 
The derived formulas for transition amplitudes, and consequently for the 
probabilities of detecting particles scattered at a certain angle, show that 
in the case of distinguishable particles there are no interference effects, 
and the total probability equals the sum of the probabilities describing 
alternative “trajectories”. On the other hand, scatterings involving same-
type particles with no identifying features clearly show the presence of 
interference effects, since the total probability is not equal the sum of the 
squared moduli of appropriate amplitudes. Finally, the formal analysis of 
the case of same-type particles equipped with identifying properties (dis-
tinguishable properties that are preserved during the particles’ interac-
tion) implies that the interference effects disappear, and the resulting 
probability formula is structurally identical to the formula derived in the 
case of distinguishable particles.

The case of distinguishable particles does not present us with any major 
difficulty regarding the in-principle possibility of identifying particles 
before and after interaction, due to the existence of state-independent 
properties that uniquely characterize the interacting particles. The prob-
lem arises when we consider same-type particles. Let us first assume the 
orthodox approach to quantum individuation. In that case the indices 1 
and 2 occurring in formulas (8.9), (8.10), (8.14), (8.15) and (8.16) play 
the referential role, picking out totally indiscernible elements of the com-
posite system of interacting particles. Thus the question of diachronic 
identity can be formulated as follows: “Is particle 1 (or 2), which consti-
tutes an element of the system after interaction and detection, identical 
with particle 1 (or 2) before interaction?”. And it should be clear that 
because of the symmetry of the initial and final states, any conceivable 
argument in favor of one particular identification can be turned into an 
argument for an alternative identification. We have already seen at the 
end of Sect. 8.1 that orthodoxy relinquishes diachronic identifications en 
bloc, regardless of the details of the temporal evolution of the system. 
Thus for the proponent of orthodoxy cases of “indistinguishable” 
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particles with and without identifying features are treated equally as 
instances where transtemporal identities fail.11

The unorthodox approach, on the other hand, differentiates between 
the two considered cases of same-type particles’ scattering. In the first 
discussed scenario, the initial state of two electrons given in (8.9) enables 
us to individuate synchronically the particles thanks to the fact that this 
state is an eigenstate for the projector EL ⊗ ER + ER ⊗ EL, where EL proj-
ects onto the ray spanned by |ψL〉 and ER onto the ray spanned by |ψR〉. 
To put it simply, we are allowed to distinguish here one particle that is 
coming from the left (associated with the wave packet |ψL〉), and one 
coming from the right (described by |ψR〉). Similarly, the final state (8.10) 
after detection describes two particles individuated by their respective 
wave packets |ψA〉 and |ψB〉 (“coming towards A” and “coming towards 
B”). But now the question arises whether we have sufficient grounds to 
connect particles individuated qualitatively after detection with particles 
from before interaction. And it seems clear that no such grounds could be 
given. It is equally plausible (or implausible) to insist that the particle 
associated with the wave packet |ψA〉 came from the left, as to claim that 
it came from the right.

More specifically, we can notice that no criterion of transtemporal 
identity listed at the beginning of Sect. 8.2 can be applied in the current 
scenario. No state-dependent property can connect particles described by 
wave packets |ψA〉 and |ψB〉 with particles whose initial states are |ψL〉 and 
|ψR〉. As for the criterion based on the continuity of orbits, it can be 
employed in the current case as long as we are limiting ourselves to the 
unitary evolution of the system. That is, we can easily link the particles 
occupying state |ψ(t1)〉 with those jointly characterized by state |ψ(t2)〉 as 
given in (8.9): the particle individuated at t2 as occupying state U(t)|ψL〉 
will be diachronically identified with the particle associated with |ψL〉 at 
t1, and analogously for the second particle whose orbit connects |ψR〉 and 
U(t)|ψR〉. However, after detection, the wave functions U(t)|ψL〉 and 
U(t)|ψR〉 (which typically will have the form of spherical waves spreading 

11 This argument against the possibility of diachronic identifications for objects that are synchronic-
ally indistinguishable is similar to the argument against the possibility of history-based individua-
tion of objects that share their momentary properties, as presented in Cortes (1976, pp. 503–504).
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in all directions from the point of collision) will collapse onto wave pack-
ets |ψA〉 and |ψB〉 describing particles propagating in specific directions 
where the detectors have been placed. From this moment on the possibil-
ity of identifying the detected particles with the original ones is lost—no 
continuity is preserved. It is fundamentally impossible to find out whether 
the particle associated with the wave packet ψA after detection came from 
the particle individuated before measurement as occupying U(t)|ψL〉 or 
U(t)|ψR〉.

The situation is different with respect to the second scenario involving 
“indistinguishable” particles. Here we can resort to the criterion of trans-
temporal identity that is based on the preservation of some state-
dependent properties. Recall, first, that there are two possibilities with 
respect to the final state of the scattered particles after they have been 
detected at locations A and B, as written in formulas (8.16). According to 
the heterodox approach, these two possibilities can be described as fol-
lows. After measurement we can have either one particle with spin “up” 
scattered in the direction of A and one particle with spin “down” moving 
towards B, or one particle with spin “down” at A and one with spin “up” 
at B. Given that the interaction does not affect spins, it is most natural to 
identify particles according to their spin. That is, in the first case the par-
ticle detected at A (with spin up) should be identified with the one com-
ing from the left, while the B-particle (with spin down) can be traced 
back to the one coming from the right. Similarly in the second case, 
except now the identifications will be switched. Note that the appropriate 
diachronic identities can be assumed to hold even if for any reasons we 
are not able to verify which scenario has been actualized. If we do not 
measure the spin of the outgoing particles, we lose the ability to tell 
whether the measured particles came from the left or the right, but this is 
purely an epistemic issue, not an ontological one.

The key experimentally verifiable difference between the two cases of 
same-type particles’ scattering is the presence or absence of interference 
patterns. The heterodox approach to individuation offers a simple and 
convincing explanation of this difference: interference occurs only when 
particles lose their diachronic identity, and consequently the total transi-
tion amplitude (8.11) is the sum of transition amplitudes associated with 
separate channels. On the other hand, the absence of interference effects 
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in scatterings with identifying features is accounted for by assuming that 
particles retain their identities throughout the entire process, including 
detection, and that consequently there are two ways the scatterings can 
develop, described by independent probabilities which must be added to 
obtain the total probability formula (8.18). No explanation of this kind 
is available to the proponent of orthodoxy, though. In both cases, whether 
with or without identifying features, the particles lack diachronic identi-
ties, so the presence or absence of interference effects must be treated as 
brute facts, following from the formalism but not connected with some 
deeper ontological features of the involved processes. I believe that this 
inability to account for the clearly visible patterns in scattering processes 
gives an additional argument against orthodoxy and in favor of the het-
erodox approach to individuality. Moreover, orthodoxy has nothing to 
say regarding the conspicuous formal correspondence between formula 
(8.8) derived in the case of “distinguishable” particles and formula (8.18) 
describing same-type particles with identifying features. The heterodox 
approach, on the other hand, takes this close formal analogy as a clear 
indication that diachronic identities are preserved in both scenarios.

8.5	 �Identity Across Possible Worlds

We have already considered two types of identity statements: synchronic 
and diachronic. With respect to these statements, the heterodox approach 
to quantum individuation departs from the orthodoxy in that in some 
cases it enables us to distinguish qualitatively objects that are synchronic-
ally distinct and to make definite diachronic identifications. However, 
there is a third category of identity statements that we have not yet dis-
cussed, namely counterfactual identity statements. Counterfactual iden-
tity connects objects described in alternative scenarios, where those 
scenarios often bear the name “possible worlds” (hence other optional 
terms for counterfactual identity are “transworld identity” or “identity 
across possible worlds”). For an individual object it generally should 
make sense to formulate statements that ascribe to it possible but not 
actually possessed properties. For instance, we may wonder whether it 
was possible for Niels Bohr to be a pianist rather than a physicist. The 
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intelligibility of such a question presupposes that there are possible worlds 
containing someone who stands in the relation of counterfactual identity 
to the actual Bohr.

The exact nature of the relation of transworld identity is hotly debated 
by philosophers. Some, following Saul Kripke, insist that transworld 
identity is just numerical identity (Kripke 1980). Others, like David 
Lewis, question the very idea of objects that occupy more than one world. 
To emphasize that counterfactual identity is not numerical identity, 
Lewis uses the neutral term “counterpart” (Lewis 1968, 1986). What is 
important in Lewis’s analysis is that the counterpart relation need not 
have the formal features of numerical identity. In particular, an actual 
object can have more than one counterpart in a given possible world, and 
several actual objects can share their otherworldly counterparts.

The question we would like to consider now is whether the two com-
peting conceptions of individuation make it possible to speak intelligibly 
about quantum objects remaining the same in counterfactual scenarios. 
Since we have two broad philosophical conceptions of counterfactual 
identity, generally there are four possibilities regarding the conceptual 
framework in which we can ask the aforementioned question (below we 
will add to that two more options). Suppose, first, that we follow Kripke 
and his conception based on stipulating which actual objects exist in the 
counterfactual scenarios under consideration. For Kripke it is perfectly 
admissible to characterize possible worlds not merely qualitatively, but 
individualistically as well. That is, we can take any actual object o possess-
ing some property P and consider an alternative scenario described as 
containing the very same object o possessing some other property Q 
rather than P. The only limitation of such a procedure adopted by Kripke 
is that the selected object cannot “lose” any of its essential properties. For 
instance, an alternative scenario in which Niels Bohr is a tree is a meta-
physical (or conceptual) impossibility, since plausibly one of his essential 
properties is being a human. In the case of quantum particles, we will 
assume, as seems natural, that their essences are constituted by state-
independent properties characterizing a particular type of particles (rest 
mass, electric charge, total spin, etc.). Thus it is conceptually impossible 
to consider, for example, a counterfactual scenario in which an electron 
has a positive charge.
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Now, let us consider an example involving two fermions (e.g. elec-
trons) occupying jointly some antisymmetric state, such as the well-
known state:

	

1

2
1 2 1 2� � � �a b b a� � � � �� �.

	
(8.19)

According to the orthodoxy, labels “1” and “2” refer to two otherwise 
qualitatively indiscernible electrons. Our testing ground for the possibil-
ity of definitive counterfactual identifications will be the thought experi-
ment of switching the electrons (so-called counterfactual switching in 
Paul Teller’s terminology—see Teller 2001). Is it intelligible to consider 
the case in which the two electrons, bearing their respective labels, have 
been swapped? Does that lead to the creation of a new scenario distinct 
from the original one?12 In Kripke’s approach, we are generally allowed to 
consider an alternative scenario (a possible world) whose description con-
tains individual names (rigid designators) “1” and “2”. However, the 
physical description of the electrons occupying state (8.19) after the sup-
posed switching will be identical with the original one, both qualitatively 
and individualistically. Since before the switching both particles 1 and 2 
occupy the same reduced state, the switching does not change this a bit. 
We are still in the same possible world, so to speak. A real alternative may 
be, for instance, the situation in which both electrons occupy a different 
antisymmetric state, but the difference will be “global” (with respect to 
the entire joint state) and not specifically between particle number 1 and 
particle number 2. Thus in the orthodox approach the counterfactual 
identification of separate particles becomes an impossibility. The particles 
are truly non-individuals.

In the heterodox approach the outcome of the counterfactual switch-
ing is different. Here in the actual world the particles can be differenti-
ated not by their labels but by their qualitative properties represented by 
orthogonal projectors Ea and Eb. In other words, we can individuate the 

12 Recall that we have already encountered a similar question in Sect. 2.8, when we discussed quan-
tum statistics and the problem of how to count distinct distributions of particles over available 
states. See also Sect. 3.1 and the analysis of the notion of permutation therein.
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particles using qualitative descriptions. Each description can subse-
quently serve as a rigid designator, picking out in any possible world the 
object that in the actual world satisfies the description. For the purpose 
of keeping track of the actually discerned particles, we can introduce new 
labels “a” and “b” such that each label refers to the same particle across all 
possible worlds. In the actual world the following statements are true: 
“Particle a possesses the property corresponding to Ea” and “Particle b 
possesses the property corresponding to Eb”. But in a “switched” world, 
the opposite holds: it is particle b that possesses property Ea and particle 
a that is characterized by Eb. Thus the switching creates a new possible 
world, distinct from the original one. However, the difference is purely 
individualistic, not qualitative. Both the actual world and the switched 
world are qualitatively indistinguishable, meaning that all true statements 
that do not contain labels “a” and “b” are identical in both worlds. 
Consequently, in Kripke’s approach to modality de re, we have to admit 
so-called haecceitistic differences, not grounded in any qualitative facts. 
This is a high price to be paid for the possibility of speaking intelligibly 
about the counterfactual switching of quantum particles.

On the other hand, Lewis famously renounces haecceitistic differences 
between possible worlds. In his approach possible worlds are to be char-
acterized purely qualitatively, and hence the relation of transworld iden-
tity must be determined qualitatively as well. A counterpart of a given 
actual object is any object that is “sufficiently similar” to it (Lewis 1968). 
This vague specification is not particularly helpful in the current context; 
however, we can make it more precise. Again, we can resort to the notion 
of essential properties and our adopted interpretation of essences in terms 
of state-independent quantities. Hence a counterpart of a given actual 
electron in a possible world is any particle that possesses all its state-
independent properties—in short, any electron. Note that under this 
interpretation the counterpart relation becomes many-to-many, rather 
than one-to-one, as is the case with numerical identity. All actual elec-
trons in the universe share all their counterparts in the form of all elec-
trons in any possible universe. Any attempt to avoid this consequence by 
expanding the set of essential properties for individual electrons will 
inevitably lead to unintuitive consequences. If we insisted that some 
state-dependent properties (such as spin components in particular 
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directions) should be counted among the essential properties of a given 
electron, this would imply that this electron cannot change its current 
state without losing its identity.

Given the above-mentioned assumptions of Lewis’s original counter-
part theory, we can now evaluate the counterfactual switching experi-
ment under both approaches to quantum individuation. The orthodoxy 
clearly implies the impossibility of substantial counterfactual switching 
(in the sense of creating a new, numerically distinct scenario), since the 
two electrons occupying an antisymmetric state are totally indiscernible 
with respect to all their properties.13 How about the heterodox concep-
tion of individuation? While electrons occupying the initial state (8.19) 
are qualitatively discernible, the properties enabling us to discern them in 
the actual world (represented by projectors Ea and Eb) are not sufficient to 
identify them in alternative scenarios, since these properties are state-
dependent. With respect to their essences, both electrons are identical. 
Thus the switched electrons scenario is qualitatively indiscernible from 
the original one, and since Lewis does not admit haecceististic (individu-
alistic) differences between possible worlds, the switching does not pro-
duce a new possibility.

It has to be added, though, that Lewis in his later variant of the coun-
terpart theory (known as “cheap haecceitism”) makes room for admitting 
possibilities that do not give rise to any qualitative difference (Lewis 
1986, pp. 230–235). The way to do that is through the assumption that 
objects can have counterparts other than themselves in the actual world. 
Thus, for any given electron, all other electrons in our universe are its 
counterparts. The motivation behind this stipulation is that actual coun-
terparts can represent the possibility of counterfactual switching even if 
this switching does not produce any qualitative differences. According to 
cheap haecceitism, there are two ways to represent alternative, possible 
scenarios. One is the standard interpretation in the form of possible 
worlds, which have to be qualitatively distinct from the actual world. But 
another option is to represent the possibility of the counterfactual 

13 Matteo Morganti argues for the impossibility of counterfactual switching on the basis of quan-
tum holism. See Morganti (2009, 2013, pp. 55–56).
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switching of two actual objects a and b in the form of the pair (a, b), as 
long as a is a counterpart of b.

I will not discuss here the merits and demerits of cheap haecceitism 
(but see Fara 2009 for some criticism). This view strikes me though as 
slightly disingenuous, since it admits distinct possibilities that do not dif-
fer qualitatively while refusing to do the same with respect to possible 
worlds. Moreover, it seems that in this approach the distinctness of pos-
sibilities is ultimately grounded in the numerical distinctness of counter-
parts a and b, and this violates the idea that the fundamental facts about 
physical reality should be qualitative. It is true that for Lewis the counter-
part relation is qualitative, but this should not obscure the fact that 
according to cheap haecceitism, non-qualitative numerical diversity plays 
part in distinguishing various possibilities.

Another reason for being skeptical regarding the assumption of cheap 
haecceitism in the context of the counterfactual switching of elementary 
particles is that this approach turns out to be even more problematic 
from an empirical point of view than Kripke’s stipulation-based essential-
ism. For Kripke the counterfactual switching of two completely indis-
cernible objects is an impossibility, since the result will be both qualitatively 
and individualistically indistinguishable from the original one.14 But 
Lewisian cheap haecceitism admits the possibility of counterfactual 
switching even in the case of completely indiscernible objects, since this 
possibility is grounded in the fact of numerical distinctness of these 
objects. Consequently, cheap haecceitism turns out to be in a sense even 
more extremely haecceitistic than Kripke’s variant of haecceitistic 
essentialism.

The options discussed above are concisely summarized in Table 8.1. In 
conclusion, we can say that while the heterodox approach to individual-
ity makes it possible to admit that counterfactual switching creates a new, 
distinct possibility, this requires an introduction of decidedly unempiri-
cal elements (haecceities, bare numerical diversity). In my opinion the 
most attractive option for a scientifically and naturalistically oriented 
metaphysician is to accept essentialism in the version associated with 

14 That is, any sentence expressed with the help of individual constants (names) true in the original 
world will remain true in the “switched” world.
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Lewis’s original counterpart theory. Once we adopt this metaphysical 
stance, the inevitable consequence is that counterfactual identity is not 
well defined (i.e. unique) for quantum particles. There is no scientifically 
justified way to pick out any electron in an alternative scenario as the 
electron that we have singled out in the actual world using a legitimate 
experimental procedure. Even though according to the heterodoxy all 
electrons are synchronically discernible by some of their actually and con-
tingently possessed properties, electrons are modally indiscernible in the 
sense that everything that is possible about one electron is possible about 
any other electron. Electrons are not individuals in a deeper, modal sense.

8.6	 �Towards the Metaphysics 
of Quantum Objects

Where does all this leave us? Let us take stock first. Limiting ourselves to 
fermions, we have established the following facts, given the heterodox 
approach to individuation. For any system of many fermions of the same 
type, it is always possible to decompose it at any moment into separate 
particles with distinguishing measurable properties represented by 
orthogonal projectors. However, as we have noted in the previous chap-
ter, this decomposition is relativized to a choice of an orthogonal basis 
(or, equivalently, a maximal set of compatible observables). In the major-
ity of cases, some of these choices can be seen as “better” or more “natu-
ral” than others, but it is unclear whether this pragmatic preference 

Kripke’s theory

Lewis’s counterpart theory

Original Cheap haecceitism

Orthodoxy No counterfactual 
switching

No counterfactual 
switching

Counterfactual 
switching possible

Heterodoxy Counterfactual 
switching 
possible

No counterfactual 
switching

Counterfactual 
switching possible

Table 8.1  The possibility of counterfactual switching in various approaches to 
quantum individuation and modality de re
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(typically based on the privileged status of position) is underlain by a 
genuine ontological difference.

Setting the relativization problem aside, the next question is whether 
the components of a fermionic system individuated synchronically can 
retain their unique identities throughout time and in counterfactual sce-
narios. With respect to transtemporal (diachronic) identity, the situation 
is not entirely clear-cut. Generally, particles individuated at different 
times lose their specific identities in that it is fundamentally impossible to 
connect them via an empirically accessible relation of continuation. 
However, in some special cases such identifications across temporal 
moments seem possible—these cases involve interactions of particles 
which preserve some of their state-dependent properties. Moreover, there 
is an empirical criterion which enables us to distinguish between cases 
with and without transtemporal identity. This criterion relies on the 
interference effects, which disappear when particles retain their dia-
chronic identities. As for the notion of counterfactual identity, under the 
most natural philosophical analysis of modality de re, quantum particles 
of the same type do not appear to possess their unique identities which 
could single them out in possible scenarios. Consequently, the possibility 
of a substantial counterfactual switching is excluded, regardless of the 
issue of contingent synchronic discernibility in the actual world.

Is it possible to develop a metaphysics of quantum objects which 
would account for the above-mentioned features of quantum particles? 
But what do we mean by a metaphysics of objects (whether quantum or 
not)? One possible idea is to give a characterization of a particular cate-
gory of objects using standard concepts and tools from the toolbox of 
analytic metaphysics, so that the resulting metaphysical theory of objects 
will have the required consequences. An example of such a theory can be 
provided by the conception of quantum objects proposed and developed 
by Olimpia Lombardi, Newton da Costa and others (see Lombardi and 
Castagnino 2008; da Costa et al. 2013; da Costa and Lombardi 2014; 
Lombardi and Dieks 2016). This conception takes its cue from the bun-
dle theory of objects which reduces objects to bundles of properties. It 
has to be noted that this proposal is developed within the orthodox 
approach to quantum individuation with its central thesis of absolute 
indiscernibility and the ensuing collapse of the notion of an individual. 
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Given that, it may come as a slight surprise that Lombardi et al. decided 
to turn to the metaphysical conception of objects as bundles of proper-
ties, since one of the widely discussed objections to this conception is that 
it makes the Principle of the Identity of Indiscernibles trivially true.15 
Clearly, two sets containing the same elements (in this case properties) 
are identical thanks to the principle of extensionality. This seems to 
exclude the possibility of identifying quantum particles with the sets of 
appropriate properties, even in the heterodox approach (let alone the 
orthodox one).

In fact, the proposed ontology is not exactly the bundle theory in its 
original version. Rather, it is a property-based ontology in which the fun-
damental objects are properties (divided into type-properties and case-
properties), and the fundamental facts about these properties involve 
their instantiations. The cases of two or more particles occupying sym-
metric or antisymmetric states are described as cases of multiple instan-
tiations of the same properties (this situation is also alternatively described 
as an “aggregation” or “merging” of bundles). Since Lombardi et al. insist 
that bundles are not individuals (and therefore the PII does not apply to 
them, instead of being simply false), it seems to me that ultimately the 
proposed ontology is not so much the ontology of objects as bundles of 
properties but of properties themselves. The fundamental objects are just 
properties, and their “bundling” together plays a secondary role. 
Consequently, the issue of the reidentification of particles over periods of 
time does not arise in this approach, since properties are not temporal 
objects, and their instantiations at particular moments belong to the cat-
egory of “occurrents”, that is, momentary objects which do not persist.16

My proposed approach to the construction of an appropriate meta-
physics of quantum objects is more conservative. I suggest keeping the 
concept of a quantum object central in the theory, whether considered 

15 See, for example, van Cleve (1985). However, see an argument that the bundle theory can be 
reconciled with the falsity of PII in Rodriguez-Pereyra (2004).
16 Another proposal for an ontological theory of quantum particles as bundles of properties is out-
lined in Friebe (2014). It is notable that Friebe formulates his proposal in the context of the GMW 
conception of entanglement (as presented in Chap. 6), and thus broadly in terms of what we call 
the heterodox approach (even though he does not make the distinction between two alternative 
conceptions of individuation in the quantum theory of many particles). A detailed critical analysis 
of Friebe’s approach has to be left for another occasion.
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primitive or reducible to some constructs of other entities (properties, 
etc.). That is, I do not seek an eliminative conception which gets rid alto-
gether of objects and interprets the ordinary object-based discourse in an 
alternative language with a different underlying ontology.17 The postulate 
of “conservatism within limits” is one of the desiderata that I propose to 
impose on any quantum metaphysics. Other desiderata follow from the 
established facts regarding various types of identity (synchronic, dia-
chronic, counterfactual) and (in)discernibility applied to quantum 
objects. Thus, we need a metaphysical theory of objects that makes it 
possible to speak about distinct entities possessing differentiating proper-
ties at the same moment, but also leaves room for cases in which distinct 
particles (i.e. bosons) become entirely indiscernible. The sought-after 
theory should also account for the loss of counterfactual identity, that is, 
it should explain why it is so that counterfactual switching is not a genu-
ine possibility. The final, and probably the hardest to satisfy, desideratum 
concerns diachronic identity. The metaphysical conception of objects we 
are after should be capable of admitting that in some cases transtemporal 
identity of objects is preserved, while in other cases it is lost. Moreover, as 
we have pointed out, the loss of diachronic identity is often associated 
with a peculiar merger (or confluence) of the identities of objects involved 
in mutual interactions. Thus we need to be able to explicate in basic 
ontological terms a scenario in which we have a composite system con-
sisting of a number of individual components, such that the system as a 
whole retains its identity over a period of time, whereas each individual 
element of the system at a later moment is somehow genetically con-
nected but not fully and uniquely identical with the components at an 
earlier time.

I have to admit that at this point I am unable to offer a fully developed 
metaphysical conception that would satisfy the desiderata listed above. 
My impression is that no standard approach known from the philosophi-
cal literature can do the required job. In particular, straightforward vari-
ants of the bundle theory of objects seem inadequate, since from the 

17 Thus I am not a proponent of one of many eliminative ontologies of the physical world that 
dispense with the concept of a physical object as a fundamental entity, replacing it, for instance, 
with more fundamental abstract structures. See French (1998), French and Ladyman (2003, 2011) 
and Rickles and Bloom (2016).
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outset they struggle with the issue of persistence in the light of the quali-
tative changes that temporal objects undergo. We need a new and fresh 
approach that can perhaps begin in the form of a set of axioms (formal 
characteristics). It may turn out to be necessary to expand the list of 
primitive predicates to include, for instance, a relation of “partial gen-
identity” that can connect different stages of the components of the same 
composite system. Contrary to what we have stipulated in Sect. 8.1, dia-
chronic identity may turn out not to be numerical identity after all. 
Instead, it may be advisable to resort to the ontology of momentary 
objects, or more specifically momentary decompositions of a persisting 
composite system, which can be connected by various transtemporal rela-
tions similar but not fully equivalent to genidentity.

Let us try to take a few tentative steps in the direction suggested above. 
Let variables a, b, c… range over the set of objects persisting in time, and 
let variables x, y, z, … range over momentary objects (objects existing at 
precise moments). The set of primitive binary predicates St(x, a) indexed 
by temporal moments t will denote the relation of being a temporary slice 
of an object (x is a temporal slice of a at t). Another primitive predicate 
will be Pt(x, a), which denotes the relation of being a part of a at a given 
moment t (being a component of a at t). The binary predicate GI(x, y) 
will refer to the relation of “full” genidentity between two momentary 
entities. A straightforward postulate connects predicates GI and St:

	
GI x y a S x a S y at t, , ,� �� � � � � � ��� ��1 2 ,

	
(8.20)

which means that if momentary objects are linked by the relation of gen-
identity, they are temporal slices of the same persisting entity.18 Another 
important predicate represents the uniquely quantum relation of “par-
tial” genidentity that we can symbolize as PI(x, y). Partial genidentity 
becomes full genidentity if the following uniqueness condition is satisfied:

18 It is quite possible that we could use equivalence here instead of implication, which would mean 
that the relation denoted by GI is actually definable in terms of St.
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PI x y E y z E z PI x z z y GI x yt t, , ,� � � � � �� � � � � �� �� �� �� � �
	

(8.21)

where Et(x) means that x exists at time t. In other words, if an object x is 
partially genidentical with exactly one object y, they are genidentical 
simpliciter.

The case of two-particle interactions with a loss of identity presented 
in Sect. 8.3 can be formally described in our language as follows:

P x a P y a x y z P z a z x z y

P x a

t t t
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1 1 1
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1 1 1 1 1 1
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� � � � ��� �� �
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, ,� � � � ��� �� . 	

(8.22)

The first two formulas in (8.22) indicate that a persisting object a 
(intuitively, the composite system of same-type particles) consists of 
exactly two “momentary” objects at two times,19 while the third formula 
expresses the fact that each particle at one moment can be “partially” 
traced back to either particle at an earlier moment. In the final formula, 
we stress that there are no persistent components of the entire system that 
retain their identities in the period between t1 and t2.

Much more needs to be done in order to come up with a complete 
metaphysical theory of objects implied by quantum mechanics. In par-
ticular, the issue of counterfactual identity, presumably cast in terms of 
essential properties, has to be introduced into the formalism.20 This task 

19 In a fully developed metaphysical theory of quantum particles, we would have to find a way to 
indicate that the existence of momentary objects xi and yi composing system a at a time ti is relativ-
ized to the choice of an orthogonal basis.
20 Apart from that we have to solve the following conceptual conundrum: how is it possible that 
object a (the system of two particles) retains its identity while its components do not? The whole 
temporal slices of a at times t1 and t2 should be connected by the relation of full genidentity GI, and 
yet the spatial parts of these slices are linked by mere partial genidentities PI. Clearly, some intu-
itions regarding the relations between components and their diachronic identities must be aban-
doned. It is advisable to spell out these intuitions and show precisely why they fail.
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must be left for another occasion. However, I would like to stress that 
even though the metaphysical conception that emerges from the above 
preliminary formalizations looks decisively non-classical (due to the 
introduction of the relation of partial genidentity), the whole theory is 
cast in perfectly classical logic with no need to abandon the fundamental 
logical laws such as the law of self-identity ∀x x = x. It seems to me that 
this is the right way to do things in the context of quantum mechanics. 
While quantum particles are definitely not individuals in the classical 
sense, their non-individuality can hopefully be expressed without sacri-
ficing classical logic that has served us well for two millennia.

References

Bigaj, T. 2020. Synchronic and Diachronic Identity for Elementary Particles. 
European Journal for Philosophy of Science, online first. https://doi.
org/10.1007/s13194-020-00298-6.

Cohen-Tannoudji, C., B. Diu, and F. Laloë. 1978. Quantum Mechanics. Vol. 2. 
New York: Wiley.

Cortes, A. 1976. Leibniz’s Principle of the Identity of Indiscernibles: A False 
Principle. Philosophy of Science 43: 491–505.

da Costa, N., and O. Lombardi. 2014. Quantum Mechanics: Ontology Without 
Individuals. Foundations of Physics 44: 1246–1257.

da Costa, N., O.  Lombardi, and M.  Lastiri. 2013. A Modal Ontology of 
Properties for Quantum Mechanics. Synthese 190: 3671–3693.

Fara, D.G. 2009. Dear Haecceitism. Erkenntnis 70: 285–297.
Feynman, R., Leighton, R., and Sands, M. 1965. The Feynman Lectures on 

Physics, Vol. III. Reading: Addison-Wesley, available online at https://www.
feynmanlectures.caltech.edu/

French, S. 1998. On the Withering Away of Physical Objects. In Interpreting 
Bodies: Classical and Quantum Objects in Modern Physics, ed. E. Castellani, 
93–113. Princeton: Princeton University Press.

French, S., and D. Krause. 2006. Identity and Physics: A Historical, Philosophical 
and Formal Analysis. Oxford: Clarendon Press.

French, S., and J. Ladyman. 2003. Remodelling Structural Realism: Quantum 
Physics and the Metaphysics of Structure. Synthese 136: 31–56.

8  The Metaphysics of Quantum Objects: Transtemporal… 

https://doi.org/10.1007/s13194-020-00298-6
https://doi.org/10.1007/s13194-020-00298-6
https://www.feynmanlectures.caltech.edu/
https://www.feynmanlectures.caltech.edu/


246

———. 2011. In Defence of Ontic Structural Realism. In Scientific Structuralism, 
Boston Studies in the Philosophy of Science, ed. A. Bokulich and P. Bokulich, 
vol. 281, 25–42. Dordrecht: Springer.

Friebe, C. 2014. Individuality, Distinguishability and (Non-)entanglement: A 
Defense of Leibniz’s Principle. Studies in History and Philosophy of Modern 
Physics 48: 89–98.

Gallois, A. 2016. Identity Over Time. In The Stanford Encyclopedia of Philosophy, 
ed. Edward N.  Zalta, winter 2016 edition. https://plato.stanford.edu/
archives/win2016/entries/identity-time/

Griffiths, D. 2008. Introduction to Elementary Particles. New York: Wiley-VCH.
Heller, M. 1984. Temporal Parts of Four-Dimensional Objects. Philosophical 

Studies 46: 323–334.
Huggett, N., and T.  Imbo. 2009. Indistinguishability. In Compendium of 

Quantum Physics: Concepts, Experiments, History and Philosophy, ed. 
D.  Greenberger, K.  Hentschel, and F.  Weinert, 311–317. Berlin: 
Springer-Verlag.

Kim, J. 1976. Events as Property Exemplifications. In Action Theory, ed. 
M. Brand and D. Walton, 159–177. Dordrecht: Reidel.

Kripke, S. 1980. Naming and Necessity. Oxford: Blackwell.
Lewis, D. 1968. Counterpart Theory and Quantified Modal Logic. The Journal 

of Philosophy 65: 113–126.
———. 1986. On the Plurality of Worlds. Oxford: Blackwell.
Liu, R.C., B. Odom, Y. Yamamoto, and S. Tarucha. 1998. Quantum Interference 

in Electron Collision. Nature 391: 263–265.
Lombardi, O., and M. Castagnino. 2008. A modal-Hamiltonian Interpretation 

of Quantum Mechanics. Studies in History and Philosophy of Modern Physics 
39: 380–443.

Lombardi, O., and D.  Dieks. 2016. Particles in a Quantum Ontology of 
Properties. In Metaphysics in Contemporary Physics, ed. T.  Bigaj and 
C. Wüthrich, 123–143. Leiden: Brill-Rodopi.

Morganti, M. 2009. Inherent Properties and Statistics with Individual Particles 
in Quantum Mechanics. Studies in History and Philosophy of Modern Physics 
40: 223–231.

———. 2013. Combining Science and Metaphysics. Basingstoke: Pallgrave 
Macmillan.

Muller, F.A. 2015. The Rise of Relationals. Mind 124: 201–237.
Reichenbach, H. 1971. The Direction of Time. Berkeley/Los Angeles/London: 

University of California Press.

  T. Bigaj

https://plato.stanford.edu/archives/win2016/entries/identity-time/
https://plato.stanford.edu/archives/win2016/entries/identity-time/


247

Rickles, D., and J. Bloom. 2016. Things Ain’t What They Used to Be. Physics 
Without Objects. In Metaphysics in Contemporary Physics, Poznań Studies in 
the Philosophy of the Sciences and the Humanities, ed. T.  Bigaj and 
C. Wüthrich, 101–122. Leiden/Boston: Brill/Rodopi.

Rodriguez-Pereyra, G. 2004. The Bundle Theory Is Compatible with Distinct 
but Indiscernible Particulars. Analysis 64 (1): 81–84.

Saunders, S. 2015. On the Emergence of Individuals in Physics. In Individuals 
Across Sciences, ed. A.  Guay and T.  Pradeau, 165–190. Oxford: Oxford 
University Press.

Teller, P. 2001. The Ins and Outs of Counterfactual Switching. Nous 35: 365–393.
van Cleve, J. 1985. Three Versions of the Bundle Theory. Philosophical Studies 

47: 95–107.
van Inwagen, P. 1981. The Doctrine of Arbitrary Undetached Parts. Pacific 

Philosophical Quarterly 62: 123–137.

8  The Metaphysics of Quantum Objects: Transtemporal… 



249© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Bigaj, Identity and Indiscernibility in Quantum Mechanics, New Directions in the 
Philosophy of Science, https://doi.org/10.1007/978-3-030-74870-8

The fundamental notion used in the mathematical formalism of quan-
tum mechanics is that of a vector space.

(A.1)	 𝒱 is a vector space over a field ℱ (a set of scalars) if 𝒱 = 〈V, +, ⋅, 0〉,  
where V – a non-empty set, +: V × V → V, ⋅: ℱ × V → V, 0 ∈ V  
such that for all u, v, w ∈ V and a, b ∈ ℱ,

	 u + (v + w) = (u + v) + w
	 u + v = v + u
	 u + 0 = u
	 (ab)⋅u = a⋅(b⋅u)
	 a⋅(u + v) = a⋅u + a⋅v
	 (a + b)⋅u = a⋅u + b⋅u
	 0⋅u = 0
	 1⋅u = u

In quantum-mechanical applications, ℱ is assumed to be the field of 
complex numbers ℂ. On space 𝒱 we can define an important operation 
of the inner product of vectors. The result of the inner product of two vec-
tors u and w, written as 〈u|v〉, is a complex number: 〈u|v〉 ∈ ℂ. The 
inner product satisfies the following conditions:

� Appendix: Basic Concepts 
of the Quantum-Mechanical Formalism
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v v| positivity≥ 0 ( )

	
(A.2)

	
v v v| iff= =0 0

	 (A.3)

	
u v u v| | linearity in second argumenta a= ( )

	
(A.4)

	
u v w u v u w| | | linearity in second argument.� � � ( )

	
(A.5)

	 u w w u| |=
*

	 (A.6)

The asterisk indicates the operation of taking the complex conjugate, 
which transforms any complex number a + ib into (a + ib)* = a – ib. From 
conditions (A.4), (A.5) and (A.6), it follows that the inner product is 
antilinear in the first argument, meaning that 〈u + v|w〉 = 〈u|w〉 + 〈v|w〉 
and that 〈au|v〉 = a*〈u|v〉. Vector spaces equipped with the above-defined 
inner product and satisfying the condition of completeness (any converg-
ing set of vectors has a limit) are called Hilbert spaces.

Vector space 𝒱 is said to be spanned by vectors e1, …, en, if every vec-
tor u in 𝒱 can be presented as a linear combination u = c1e1 + … + cnen. 
The set e1, …, en spanning 𝒱 forms an orthonormal basis for 𝒱 if 〈ei|ej〉 
= 0 when i ≠ j and 〈ei|ej〉 = 1 when i = j. In that case every vector u has 
a unique decomposition in the basis e1, …, en of the form 〈e1|u〉 e1 + … 
+ 〈en|u〉 en. Number n is called the dimensionality of 𝒱.

Let us take two vector spaces: 𝒱 with an orthonormal basis e1, …, en 
and 𝒲 with an orthonormal basis f1, …, fm. The direct (tensor) product 
of 𝒱 and 𝒲 (written 𝒱 ⊗ 𝒲) is formally defined as a n × m dimen-
sional vector space spanned by ordered pairs (ei, fj). In addition, it is 
stipulated that the pair (u, v), where u = ∑iciei and v = ∑jdjfj, represents 
the “multiplicative” combination ∑ijcidj(ei, fj). The inner product of two 
vectors (u, v) and (w, z) in 𝒱 ⊗ 𝒲 equals 〈u|w〉〈v|z〉. The direct sum of 
𝒱 and 𝒲 (written 𝒱 ⊕ 𝒲) is a n + m dimensional vector space spanned 
by pairs (ei, 0) and (0, fj). The pair (u, v) represents the “additive” combi-
nation ∑ici(ei, 0) + ∑jdj(0, fj). The inner product of (u, v) and (w, z) in 
𝒱 ⊕ 𝒲 is defined as 〈u|w〉 + 〈v|z〉.

In quantum mechanics it is standard to adopt Dirac’s notation, where 
vectors are written in the form of kets: |φ〉, |ψ〉 and so on. The inner  
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product of kets |φ〉 and |ψ〉 will continue to be symbolized as 〈φ|ψ〉.  
The flexibility of Dirac’s notation allows us to “split” the bracket symbol 
〈φ|ψ〉 and introduce a new kind of objects: bras of the form 〈φ|. Formally, 
a bra is a linear functional, that is, a function from 𝒱 to ℂ whose action 
on vectors (kets) is defined as follows: 〈φ|(|ψ〉):= 〈φ|ψ〉. It can be easily 
proven that the set of all bras satisfies all the conditions of a vector space; 
moreover the resulting vector space 𝒱* (which is called a space dual to 
𝒱) is provably isomorphic to 𝒱, with the natural isomorphism given by 
the map |φ〉 → 〈φ| combined with the complex conjugate transforma-
tion a → a* on the field of scalars.

An important category of objects comprises linear operators acting on 
𝒱. A: 𝒱 → 𝒱 is a linear operator, if A(a|φ〉 + b|ψ〉) = aA|φ〉 + bA|ψ〉 for 
any a, b ∈ ℂ and |φ〉, |ψ〉 ∈ 𝒱. An operator A is called self-adjoined (or 
Hermitian), if 〈φ|A|ψ〉 = 〈Aφ|ψ〉 for all |φ〉, |ψ〉 ∈ 𝒱.1 This definition 
(together with condition (A.6) satisfied by the inner product) implies 
that if A is self-adjoined, 〈φ|A|ψ〉 = 〈ψ|A|φ〉* for all |φ〉, |ψ〉. Defining the 
operation of adjoint (“dagger”) as follows:

	

A
A A

†

†
 is the operator satisfying the equality

� � � � �� � � �� � � � ** , ,for all � �� �� � 	 (A.7)

we can succinctly categorize self-adjoint operators as those for which A† 
= A.Using the dagger operation, we can “move” an operator acting on the 
first argument of the inner product to the second argument as follows:

	 � � � � � � � �A A A� � � � � �� � � �* .†

	 (A.8)

This formal transformation is particularly useful when we consider 
unitary operators, that is, operators for which the adjoint is their inverse: 
U† = U−1. Unitary operators preserve the inner product of vectors: 
〈Uφ|Uψ〉 = 〈φ|U†U|ψ〉 = 〈φ|U−1U|ψ〉 = 〈φ|ψ〉. From this it follows that 
both the length of vectors and the “angles” between vectors remain 

1 The so-called matrix element 〈φ|A|ψ〉 is defined as the inner product of |φ〉 and A|ψ〉. Analogously, 
〈Aφ|ψ〉 is the product of A|φ〉 times |ψ〉.
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unchanged under unitary transformations. Thus a unitary transforma-
tion of a given orthonormal basis produces an alternative orthonormal 
basis. Two structures consisting of a vector space, a selected basis and a set 
of operators are called “unitarily equivalent” if there is a unitary transfor-
mation connecting both. It is typically assumed that two unitarily equiv-
alent structures may represent the same physical reality. In particular, the 
expectation values of operators (which encompass the complete physical 
information about the probabilities of outcomes) are preserved under 
unitary transformations, as can be seen from the following:

	 � � � � � � � ��U A U U AU U AU� � � � � �� � � � � �† .1

	 (A.9)

An arbitrary permutation operator acting on the n-fold tensor product 
of identical vector spaces is unitary. A permutation operator P acts  
on any basis vector � � �e e ea a an1 2� � ��  by “shuffling” the vectors as  
follows: � � �� � �e e e

a a a n1 2� � � � � �� � �� , where σ is a permutation of n numbers. By 
definition, � � � � �� � � �� � �P P† .  If � � � ��� � �� � �e e ea a an1 2  and 
� � � �� � � �� � �e e eb b bn1 2 , then the result of the last product will be: 
� �� ��� �� � � � � �e e e e e e

a b a b a bn n� � �� � �1 1 2 2 . A quick reflection reveals that this  
product can be equivalently written as � ��� ���

� � � � � � � � �e e e e e ea
b

a
b

a
b

n n1
1 1 2

1 2 1

� � �� � � ,  
which shows that � � � � ��P P� � � �� � 1 ,  and ultimately P† = P−1.

Next we define the notions of an eigenvector and eigenvalues for a given 
linear operator. A vector |λa〉 is an eigenvector for operator A iff:

	
A aa a� �� �� � �,

	
(A.10)

where number a is the corresponding eigenvalue. It can be easily verified 
that all eigenvalues for Hermitian operators must be real numbers (since 
〈λa|A|λa〉 = 〈λa|A|λa〉* for Hermitian operators, it follows that a* = a). This 
justifies interpreting eigenvalues as the results of measurements for the 
observable represented by a given Hermitian operator.
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An orthogonal projection operator (projector) E is defined as a Hermitian 
operator which is idempotent, meaning that E2 = E. From this definition 
it follows that projectors have only two eigenvalues: 0 and 1. Let us write 
down an eigenequation of the form (A.10) for a particular projector E: 
E|λa〉 = a|λa〉. From idempotence we have E2|λa〉 = E|λa〉, and since E2|λa〉 
= a2|λa〉, we get the equation a = a2 which has only two solutions in real 
numbers: 1 and 0. The set of vectors E[𝒱] (containing all vectors of the 
form E|ψ〉) form a subspace SE of 𝒱 onto which E projects. It immedi-
ately follows that all vectors in SE are eigenvectors of E with the eigen-
value equal 1. Eigenvectors of E corresponding to the zero eigenvalue 
form a space orthogonal to SE.

For a given normalized vector |φ〉 (i.e. a vector whose length is 1), we 
can define an operator (a dyad) |φ〉〈φ| whose action on any vector |ψ〉 
gives 〈φ|ψ〉 |φ〉. A dyad is obviously a projector, since when applied twice 
to |ψ〉 it gives the same vector 〈φ|ψ〉 |φ〉 (provided that 〈φ|φ〉 = 1). It is 
also elementary to prove that dyads are self-adjoint. The dyad |φ〉〈φ| 
projects onto the one-dimensional space (called a ray) spanned by 
vector |φ〉.

Vectors in a Hilbert space represent so-called pure states of physical 
systems. In addition to that, there are states which cannot be represented 
by vectors, but instead are encoded in more general mathematical objects, 
called density operators (alternatively, statistical operators). In order to 
introduce density operators, we have to first define the concept of a trace. 
Let A be a linear operator, and let |ei〉 be any orthonormal basis of 𝒱. Then 
the trace of A is defined as follows:

	
Tr .( )A e A e

i i i�� 	
(A.11)

It can be proven that the value of Tr(A) does not depend on the choice of 
the basis. Given that, we define density operators as positive operators 
(i.e. such that 〈φ|A|φ〉 ≥ 0 for all |φ〉) whose trace equals 1. All one-
dimensional projectors are density operators, but not all density opera-
tors are projectors. However, it is the case that every density operator can 
be presented as a convex sum of one-dimensional orthogonal projectors 
Ei, that is, the sum ∑ipiEi, where pi ≥ 0 and ∑ipi = 1.
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One of the main interpretational rules of QM prescribes that if the 
system is in a pure state |φ〉, the expectation value of a given observable 
A is calculated using formula 〈φ|A|φ〉. The generalization of this rule 
with respect to mixed states represented by density operators is as follows: 
the expectation value for A is given by Tr(Aρ), where ρ is the density 
operator representing the state of the system. Given that ρ can be 
expressed as the convex sum ∑ipiEi, it can be easily proven that Tr(Aρ) = 
∑ipi⟨ei| A| ei⟩, where |ei〉 is a normalized vector spanning the ray onto 
which Ei projects. The proof of this fact is as follows. Let us select as a 
basis the set {|ei〉} of normalized vectors corresponding to the projectors 
Ei in the decomposition of ρ (i.e. Ei = |ei〉〈ei|). Then the following holds:

Tr A e A e p e A e e e p e A e
i i i i j j i j j i i i i i�� � � � �� �� �� . 	 (A.12)

Thus the expectation value for A is a weighted sum of the expectation 
values of A in states |ei〉. This fact justifies an interpretation of the opera-
tor ρ = ∑ipiEi as representing a statistical mixture of pure states |ei〉. In 
addition, observe that when ρ = Ei, formula Tr(Aρ) reduces to 〈ei|A|ei〉, 
which is the standard expectation value of A in pure state |ei〉. Thus it may 
be claimed that using density operators as representations of physical 
states is more general than using vectors. Pure states are special cases of 
states that are represented by density operators which are also projectors.

Suppose now that we have a system of two particles, and that their 
state is most generally represented by a density operator ρ12 acting in the 
tensor product of two Hilbert spaces. Then the expectation value of any 
operator Ω in state ρ12 is calculated as follows:

	 Tr �� �12 12� � � � �� ij i j j ie f f e� , 	 (A.13)

where |ei〉 are basis vectors for the first Hilbert space, and |fj〉 for the sec-
ond. Now let us assume that operator Ω has the form A ⊗ I, and let us 
rewrite appropriately the expression above:

Tr A I e f A I f e

e A f f e
ij i j j i

i i j j j i

�� � � � �� � �

�

�� �� �
� �

� �

�
12 12

12 . 	 (A.14)
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The formula:

	

Tr2 12 12( )� ��� f fj jj

	

(A.15)

is called a partial trace over the state space for system 2. Observe that the 
object denoted by Tr2(ρ12) is not a number but an operator acting in the 
first Hilbert space. Moreover, obviously this operator is a density matrix, 
since its trace must be 1. Let us symbolize it by ρ1 = Tr2(ρ12). Going back 
to formula (A.14), we can now rewrite the last expression as follows:

	
Tr Tr Tr Tr[( ) .] [ ( )] ( )A I A A� � �� � �12 1 2 12 1 1 	

(A.16)

The last expression in (A.16) is identical to the general formula for 
calculating the expectation value of operator A in state ρ1. This justifies 
calling ρ1 the reduced state of the first system. However, observe that the 
claim that ρ1 can represent the state of system 1 “in isolation” from the 
second system is based on the assumption that A ⊗ I should represent the 
property A associated with particle number 1. Thus we cannot use the 
fact that the expectation value of A when system 1 is in state ρ1 is equal 
to Tr[(A ⊗ I    ) ρ12] as an argument that A ⊗ I is the correct representation 
of A attributed to first particle. We simply assume that this is the case, 
and on this basis we define the reduced states of individual components.

Let us illustrate the concept of a reduced state using as an example the 
singlet spin of two fermions:

	

1

2
1 2 1 2

| | | |↑〉 ↓〉 − ↓〉 ↑〉( ).
	

(A.17)

This state can be equivalently presented with the help of a projector (and 
thus a density operator):

	
�12 1 2 1 2 1 2 1 2

1

2
= ↑〉 ↓〉 − ↓〉 ↑〉( ) 〈↑ 〈↓ − 〈↓ 〈↑ )(� � � � � � � � .

	
(A.18)
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The reduced state ρ1 is obtained by calculating the partial trace of (A.18) 
over the space of the second particle. Selecting a basis that consists of vec-
tors |↑〉 and |↓〉, we can obtain the following (using the orthonormality 
relations 〈↑|↑〉 = 〈↓|↓〉 = 1, 〈↑|↓〉 = 〈↓|↑〉 = 0):

Tr
2 12 2 12 2 2 12 2

1 2 1 2

1

2

� � �( )= 〈↑ ↑〉 + 〈↓ ↓〉 =

= ↑〉 〈↑↓〉 − ↓〉 〈↑↑〉(

� � � �

� � � � )) 〈↑ 〈↓↑〉 − 〈↓ 〈↑↑〉( )+

↑〉 〈↓↓〉 − ↓〉 〈↓↑〉( ) 〈↑ 〈↓

1 2 1 2

1 2 1 2 1

1

2

� � � �

� � � � � �↓↓〉 − 〈↓ 〈↑↓〉( )=

↓〉〈↓ + ↑〉〈↑

2 1 2

1

2

1

2

� �

� � � �
	

(A.19)

Thus the reduced state of particle 1 (and, analogously, of particle 2) is 
an equal mixture of states spin down and spin up.
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