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PREFACE 

The 1976 Cargese Summer Institute was devoted to the study of 
certain exciting developments in quantum field theory and critical 
phenomena. Its genesis occurred in 1974 as an outgrowth of many 
scientific discussions amongst the undersigned, who decided to form 
a scientific committee for the organization of the school. 

On the one hand, various workers in quantum field theory were 
continuing to make startling progress in different directions. On 
the other hand, many new problems were arising from these various 
domains. Thus we feIt that 1976 might be an appropriate occasion 
both to review recent developments and to encourage interactions 
between researchers from different backgrounds working on a common 
set of unsolved problems. An important aspect of the school, as it 
took place, was the participation of and stimulating interaction 
between such a broad spectrum of theorists. 

The central topics of the school were chosen from the areas of 
solitons, phase transitions, critical behavior, the renormalization 
group, gauge fields and the analysis of nonrenormalizable field 
theories. A noteworthy feature of these topics is the interpene
tration of ideas from quantum field theory and statistical mechanics 
whose inherent unity is seen in the functional integral formulation 
of quantum field theory. The actual lectures were partly in the 
form of tutorials designed to familiarize the participants with re
cent progress on the main topics of the school. Others were in the 
form of more specialized seminars reporting on recent research. 

We hope that the cross fertilization of Cargese 1976 will leave 
a more than temporary imprint on the scientific research discussed. 

We wish to express our gratitude to NATO whose generous finan
cial help made it possible to organize Cargese 1976, as in past 
years. We are equally grateful to the C.N.R.S., D.G.R.S.T., C.E.A. 
and N.S.F. for making available travel grants. Thanks are due to 
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the Universite de Nice for making available the facilities of the 
Institut d'Etudes Scientifiques de Carg~se. Last but not least we 
wish to thank MeIle Marie-France HanseIer for her excellent organ
izational work before, during and after the school. 

E. Brezin 
A. Jaffe 
H. Lehmann 
M. Levy 
P. K. Mitter 
R. Stora 
K. Symanzik 



In addition to the lectures published in this volume two lec
ture courses by Professors L. Kadanoff and E. Brezin and seminars 
by Professors H. Lehmann and A. Luther formed an integral part of 
Cargese 1976. The content of these lectures have appeared elsewhere, 
and are thus not reproduced in this volume. For the reader's con
venience we give the title of these lectures/seminars and the nec
essary references. 

FIELD THEORETIC APPROACH TO CRITICAL PHENOMENA 
E. Brezin 
DPhT., C.E.N. de Saclay 
B.P. n02, 91190 Gif sur Yvette, France 

The content of the lectures can be found in: 
E. Brezin, J.C. Le Guillou, and J. Zinn-Justin, PHASE TRANSITION 

AND CRITICAL PHENOMENA, Vol. 6 (C. Domb and M.S. Green, eds.), 
Academic Press, N. Y., 1976 

APPLICATION OF RENORMALIZATION GROUP TECHNIQUES TO QUARKS AND STRINGS 
Leo P. Kadanoff 
Department of Physics 
Brown University, Providence, R.I. 

The lectures were based on material in: 
"Lectures on the application of renormalization group techniques 

to quarks and strings," to be published in Reviews of Modern 
Physics. 

BOSE FIELD STRUCTURE ASSOCIATED WITH A FREE MASSIVE DIRAC FIELD 
IN l-SPACE DIMENSION 

H. Lehmann 
DESY, Hamburg 

The lecture was based on the article of the same title (co-authored 
by J. Stehr), D.E.S.Y. preprint, 1976. 

SOLUTION OF THE MASSIVE THIRRING MODEL ON A LATTICE, AND THE SU(2) 
MASSLESS THIRRING MODEL 

A. Luther 
Nordita, Copenhagen, Denmark 

The lectures were based on material published in: 
Phys. Rev. ~, 14, 2153 (1976), and 
Phys. Rev. ~, 15, 403 (1977). 
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2 JAMES GLIMM AND ARTHUR JAFFE 

1. 1 INTRODUCTION 

Prior to 1970, the major focus of constructive field 
theory was the mathematical framework required to establish 
the existence of quantum fields [1, 2 J. Since 1970, the em
phasis has gradually shifted, first toward verifying physical 
properties of the known models, and more recently toward 
bringing constructive field theory closer to the mainstream of 
physics [3 J. In fact, by 1973 it had become more or less 
clear that the mathematical framework developed to give the 
first examples in d = 2,3 space-time dimensions would be ade
quate to study d = 4. However, it was also clear that to 
solve the ultraviolet problem in d = 4, it would be necessary 
to incorporate into mathematical physics a deeper physical 
understanding of the questions being studied. In particular 
ideas of scaling and of critical behavior may be useful to 
select and analyze a suitable nontrivial critical point as the 
fir st step in dealing with the d = 4 ultraviolet problem. An 
infinite scaling transformation connects the problem of remov
ing the ultraviolet cutoff w~th the problem of existence of 
scaling behavior at the cri1:ical point. 

In these lectures we describe some results for boson 
(generally ep4) fields. For d = 4, scaling arguments (e. g. the 
renormalization group) indicate that the ep4 theory is not free 
at high energy. Thus the stUdy of the epl theory is a strong 
coupling problem which must be approached independent of 
perturbation theory. See, e. g. [4, 5J for a discussion of the 
mathematical aspects of this program. On the other hand, 
asymptotic freedom suggests that d = 4, nonabelian gauge 
field theories may be free at high energy and thus amenable 
to perturbation theory. For this reason gauge fields should 
play an important role in the future of the mathematical stUdy 
of field theory, and the lecture of Osterwalder provides an 
introduction to that topic. 

1. 2 e -tH AS A FUNCTIONAL INTEGRAL 

It is now easy to formulate the connection between Eucli
dean field theory (functional integrals) and quantum mechanics 
(Hilbert space and Hamiltonians). We give a complete mathe
matical presentation of this connection for boson fields in the 
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accompanying article, "Functional Integral Methods in Quantum 
Field Theory" [6J. Here we give a brief summary. 

Assume we are given a functional integral dj.l.(cp) , i. e. a 
measure dj.l.(cp) on generalized functions cp E J' (R d). Here cp is 
a classical field, and given a functional F(cp), we define the 
expectation (F) by 

(1. 1) 

We require the normalization condition 

(1. 2) ( 1) = S dj.l.(cp) = 1 , 

i. e. dj.l.(cp) is a probability measure. 
is the choice F(cp) = exp(icp(f», which 
transform of dj.l.(cp) , which we denote 

Of particular interest 
leads to the Fourier 

S[ f} is also known as the generating functional. 

We now wish to define a Hilbert space J{ of quantum 
mechanics in d - 1 space dimensions, associated with dj.l.(cp). 
In order to define J{, the measure dj.l. must satisfy three sim
ple requirements, which we expect from every such functional 
integral which arises in physicso The vectors in 1C (at least 
a dense set of vectors) will be functionals A = A(cp), for 
example A = cp(f) or A = exp(icp(f», and for certain f E J. 
The fundamental formula which relate s the Hamiltonian H to 
functional integrals is 

(1.4) -tH' r.;A I 
L-_(_A_'_e ____ A_)_J{ __ =_J_v~_~A __ ,A_t_dj.l._(_cp_)~' 

where ~ denotes time inversion, Adenotes complex conjuga
tion and At denotes time translation. In (1. 4) A plays a dual 
role. On the left side, A is a vector in the Hilbert space of 
quantum mechanics J{, while on the right side A(cp) is a func
tional of the clas s ical field. The importance of (1. 4) is that 
any question about H can be reduced to a question about a 
functional integral. For example: Does H have a unique 
vacuum? Does H have a mass gap? Does H have bound 
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states and what are their masses? 
span Je (asymptotic completeness)? 
brief explanation of (1.4), see [6 ] 

JAMES GLIMM AND ARTHUR JAFFE 

Do the asymptotic states 
etc. We start with a 
for details. 

Let us start by mentioning the three requirements on 
S(f} or dflo needed to obtain Je. (The generalization to include 
spinor or tensor fields poses no fundamental difficulty.) The 
conditions are 

(1) Invariance 
(2) Reflection Positivity 
(3) Regularity 

(1) We require invariance of S(fl under a one parameter 
group of time translations f(i, s) -+ f'r(x, t - 'r) where 'r E R 
(or 'r = n 0, n = 0 , I- 1, ±2, ••• , i, e, lattice translations) and 
also invariance under time inversion f(~, t) -+ hH)(~, t) = f(~, -t). 
Then S[f'r} = S[~f} = S[f}. 

(2) Let f(j), j = 1, 2, ••• , r be any sequence of real 
functions which vanish unless t > O. Then reflection positivity 
is the requirement S( fi - ~fj} = M ij is a positive matrix. In 

other words, if A = E c. exp(iq)(f(j))), then 
j=l J 

(1. 5) J~A Adflo ~ o. 

This condition was discovered by Osterwalder and Schrader 

[7 J. 

(3) The regularity assumption is important for a continu
ous time translation group, in which case S[f'r} -+ Srf} as 
'r -+ O. 

From (1-3) we obtain Je and e -tH (in the case of a con
tinuous time translation group). In the case of discrete time 
translations we obtain ~ and a transfer matrix K, with Kt 
playing the role of e -t. In [6J we assume· invariance under 
the fuH Euclidean group on R d (rotations, translations and 
reflections in hyperplanes) and we obtain a stronger result, 
namely the construction of a full relativistic field theory. 

In fact, as suming (2), we may define a scalar product on 
functionals A(cp) at positive time, e. g. functionals of the form 
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A(cp) in (1. 5)0 

(1. 6) 

We let 

(A, B) == S-bA Bdf.l(cp) • 
:IC 

5 

The Hilbert space :IC is the completion of these positive time 
A(cp) in the scalar product (1. 6), and it is these positive time 
functionals A(cp) which are allowed in (1.4). Time translation 
is defined by 

(1. 7) 
( .) 

= 0 c j exp(icp(f J »t = 

so for t ~ 0, At is also a positive time functional. Thus the 
formula 

(1. 8) 

defines an operator R(t) on:l{. As a consequence of (1) - (2), 
it follows that 

(1. 9) o :::; R (t) = R (t)~' :::; I, R (t + s) = R (t) R ( s) , 

see for example [6J. For t = 1, R(I) = K is the self adjoint 
transfer matrix, and R (t) ::;: Kt. In case that time is continu
ous, then (3) ensures that R(t) = e-tH, where H is a positive, 
self adjoint Hamiltonian, 0:::; H = H':'. Furthermore, since 
the functional A(cp) = 1 satisfies At = A = 1, it follows that 
R (t) 1 = 1 and 1 is a ground state for H, Hl = O. The vector 
1 in:l{ is generally denoted by 0, so HO = O. 

1. 3 EXAMPLES 

A. Gaussian Examples 

Consider the case of full Euclidean syrnmetry. The sim
plest example is the Ga'!ssian measure df.lO corresponding to 
the free field of mass 0-2 

(1. 10) SoU} = J eiCP(f)df.lO(CP) = e -~(f, (-lHOr 1f). 

In other words, df.lO(cp) is the unique Gaussian measure with 
mean zero and covariance (-t. + cr)-l. The only question to 
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verify is whether (I. 10) satisfies reflection positivity. This 
fact follows from 

(1.11) 

~ 0, 

where f vanishes unless t ~ 0 and where 112 
~ . ~ 

~2 = -(V) + (J, where 
v is the gradient in the x directions. 

We can approximate R d by a lattice Zd, in which case 
we obtain 

(I. 12) 

In (I. 12), Adenotes a finite subset of 
tice spacing ö. The sum and product 
lattice sites in A, while the sum. ~ 

(n, n) 

the lattice Z~ with lat
over i extend over 
extends over nearest 

neighbor lattice sites in A. The measure dcp(i) is Lebesgue 
meas ure, and N (ö, A) is chosen so J dllO ö = I. The limit 
A ,I' Zd exists in the sense of convergence of SO, ö, A[ f}. 

We can rewrite (1.12) as 
13 ~ cp(i)cp(i ' ) 

e (n, n) I]1v (cp(i» , 
. 0 
1 

(I. 13) = lim 

A,I'Z~ 

h A d-2 ( ) . . h . w ere I'" = ö and dvO cp lS a Gausslan. T us dllO ö lS a 
ferromagnetic, nearest neighbor spin system with inverse 
temperature 13 and a single' spin distribution function dVO(cp). 
The ferromagnetic coupling arises from the off-diagonal part 
of the gradient term in (1.12). 

The limit ö ~ 0 for (I. 12) - (1.13) exists and is (I. 10). 
(This limit, however, must be taken in the form 
So ö[ f} ~ S[ f}, since the measures dllO, ö do not converge in 
the usual sense of convergence of measures on a finite dimen
sional space.) Thus formally 
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(1. 14) 

but the mathematically meaningful form of (1.14) is (1.10). 

B. Non-Gaussian Examples 

In the case of invariance of d)J. under continuous time 
translations, we obtain non-Gaussian examples from non-rela
tivistic quantum mechanics (d = 1) and nonlinear quantum 
fields (d = 2,3). In the case of nonrelativistic quantum 
mechanics with one degree of freedom, the measure 

111) 

1 -1 V(q(t»dt 
(1.15) d)J.(q) = - e 111) d)J. (q) 

N 0 

formally satisfies (1-3). The quantum mechanics Hamiltonian 
is just 

(1. 16) 

= HO + V - E, 

i. e., the perturbation of the harmonie oscillator Hamiltonian 
HO by the potential V. Here E is a constant chosen so H ~ 0, 
HO = O. The formula (1.15) is exactly the Feynman-Kac 
functional integral representation of the ground state of H. 
In fact integration of A(q(O» over d)J.(q) is expectation of A in 
the state 0: 

(1.17) 
1 - _~V(q(t»dt 

= lim NS e A(q(O»d)J.O(q) 
T-+= T 

= lim 
T-+= 

-TH -TH 
(e 00, A e 00') 

11 e -THOoIl 2 

= (0, AO) • 

Here 0 0 is the ground state of HO and 0 is the ground state of H. 
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In quantum. field theory, 
arise from. interaction energy 
polynom.ials P. For instance 

the known exarn.ple s for d = 2, 3 
densities P(cp(x» = V(x) for 
the ACPi m.odel has the m.easure 

(1.18) 
1 -~V(x)dx 

--e dfl 
N 0 

A 

The Wick ordering of V is necessary since for d > 1, the 
m.easure dflO is concentrated on certain distributions, rather 
than on continuous functions as in the case of d = 1 (e. g. 
Wiener m.easure). The m.ain work in this approach to proving 
existence of nonlinear quantum. fields lies in establishing the 
existence of m.easures such as (1.18). 

On a lattice, the local interaction V(x) in (1.18) does 
not effect the nearest neighbor term. of the rneasure (1. 12)-
(1. 13). Rather, V(x) contributes to the distribution of a single 
spin d\J(cp). Thus a lattice P(CP)d m.odel has a m.easure 

(1. 19) = lim. 

A"'Z~ 
with 

d-2 
o( 0 ) cp( i)cp( i') 

e n, n n d\J(cp( i» , 
i 

Here N is an appropriate norm.alization constant. For exam.
pIe, the lattice ACP~ m.odel has 

(1. 20) 

where 

is the Wick ordering constant. 
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1. 4 APPLICATIONS OF THE FUNCTIONAL INTEGRAL 
R EPR ESENT A TION 

The usefulness of formula (1.4) is that it provides a 
computational framework to answer questions concerning the 
spectrum of H. For instance consider the question: Is the 
ground state 0 unique? In other words, we ask whether 
e-tH9 - P 0 9 converges to zero as t -+ 00. Here Po is the 
projection onto 0, 

(1. n) 

Equivalently, is there a dense set of positive time functionals 
9(co) such that 

converges to zero as t -+ +oo? If so, then 0 is the unique 
ground state of H. On the other hand if there is a positive 
time functional 9 for which F e(t) ;. 0, then 0 is degenerate. 
In terms of the measure df.L(cp), the uniqueness of the vacuum 
\l is equivalent to ergodicity of df.L(cp) under the group of time 
translations o 

If, more generally, there are exactly r normalized, 
orthogonal vacuum states 0., i = 1,2,···, r, then the function 

1 

would converge to zero as t -+ +00, rather than (1. 22). 

9 

We see later that in the case of x.cpi or x.cpj quantum field 
mOdels, the vacuum 0 is unique for X. «1. However, \l is 
degenerate for X. »1. The construction of df.L(cp) outlined 
above, yieldt:! for X. » 1 an even mixture of vacuum states 
and (cp) = O. By introducing boundary conditions to select a 
particular vacuum, we may obtain solutions breaking the 
cp -+ -cp symmetry, (cp) " 0, and with a unique vacuum. See 
the lectures of Fröhlich and Spencer for further discussion of 
phase transitions, and in particular a discussion of continuous 
symmetry breaking. 
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A second question concerning H is the existence of a 
mass gap, i.e. a gap in the spectrum corresponding to mas
sive partic1es. The occurrence of a gap (0, m) in the spectrum 
is equivalent to 

(1. 23) 

where the constant 0(1) depends on e. Thus again the spec
tral properties of H are reduced to asyrnptotic decay rates of 
certain functional integrals. The proof of such decay rates in 
models has been established by expansion methods or by using 
correlation inequalities as described below. 

In a theory which is even (e. g. a ep4 model in which 
the syrnmetry ep .... -ep is not broken) we can decompose the 
Hilbert space X = Xe + Xc into subspaces even or odd under 
the transformation ep .... -ep. The vacuum lies in Xe, while the 
one partic1e states lie in Xc. Let m denote the bottom of the 
spectrurn on Xc. On Xe' we thus expect a mass gap of mag
nitude m', where m < m' :s;; 2m. (Since two partic1e scatter
ing states occur in Xe' the Hamiltonian will always have spec
trum throughout the interval [2m, co). ) The statement m' = 2m 
is the statement that two partic1e bound states do not occur in 
Xe. This is equivalent to 

(1. 24) I F (t) 1 :s;; 0(1)e -2mt 
e 

as e ranges over a dense set of:!Ce. We discuss this further 
in the next section. 

Finally, in order to analyze the bound states or s·cat
tering of several partic1es, it is useful to study kerneis (e. g. 
exact Bethe-Salpeter kernels) which characterize the Hamil
tonian for n-body processes. Such kerneis have a functional 
integral representation, and a detailed stUdy has been made by 
Spencer and Zirilli [ 7, 8 J in the case n = 2. (See also 
[2,3,9J 

1. 5 ISING, GAUSSIAN AND SCALING LIMITS 

We briefly mention the qualitative structure of the epd 
lattice quantum field model of §1.3, in its dependence on the 
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parameters 0, x., (J. In particular, we discuss the measures 
diJ. o defined in (1. 19)-(1. 20); an analogous discussion could" be 
given for P(cp) mOdels. See [4, 5, 10J. 

To begin with, consider the (X., 0) parameter space with 
fixed (J. For 0 fixed, we stUd)f X. -+ 0 and X. -+ CD, the minimum 
and maximum coupling. It is clear that the X. -+ 0 limit of 
(1.19)-(1. 20) is Gaussian, in fact diJ. o -+ diJ.O o. (In every 
ca se we define convergence as convergence ' 

the 
of generating functionals.) On the other hand, for X. -+ co, 

with 0 fixed, the me~sure dV(cp) become s concentrated at 
points where lcp I = c~, i. e. cp = ±c," Since the integral of 
diJ.o is normalized to one, in this limit 

(1.26) 

(3 E cp(i)cp(i') 
e(n, n) TI dv(cp.) 

• 1 
1 

1 ~ .1. 
where dV(cp) = N(o(cp - c~ + o(cp + c 2 )). In other words, diJ. o 
is an Ising model wit.,h lattice spacing 0 and spin cp normalized 
to take the values ict . The mathematical existence of this 
Ising limit was established [11 J. Furthermore, for d = 2 
(or with d = 3 and the proper choice (J = (J(o) = OCtno- 1) to 
ensure massrrenormalization, the 0 -+ 0 limit can be taken 
with X. fixed. This continuum limit yields the Euclidean cp 4 

model. 

A = <X> ,-------r------..... 

CONTINUUM 
LIMIT 

ISING 
LIMIT 

GAUSSIAN 
LIMIT 

8 

A = 0 "--____ L...-____ ...... 8 

We next mOdify this picture slightly by fixing the mass 
gap m. On the lattice, m is defined as the gap in the spec
trum of -.R,nK (K is the transfer matrix); if 0 = 0, m is defined 
as the gap in the spectrum of H. Since m = m(X., 0, (J), we 
achieve this by choosing (J in such a way that we remain in 
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the single phase region and such that m = const. The re
quired continuity of m follows by 0.2, 13 J. We now plot the 
projection of such a 0 = 0(>", ö) surface in the (>.., ö) plane. 

One can now ask whether the ö -+ 0 limit of Ising models 
exist, and whether the >.. -+ GO limit of continuum models exists. 
The first is a scaling limit of the Ising mOdel, the second is 
a scaling limit of the >..cp4 model. In the continuum theory 
(d = 2,3), increasing >.. with 0 fixed would result in a phase 
transition and m -+ O. Thus in the scaling limit, with m 
fixed, it follows that 0(>", ö = 0) -+ co as >.. -+ GO, i. e. there is an 
infinite change of scale. Also the scaling limit is formally 
an infinite scaling of a m = 0 (critical) theory. We conjecture 
that both the >.. -+ co and the Ö -+ 0 scaling limits exist, and 
that they agree. (See ~ 1. 5.) 

In studying this limit, it is also useful to consider curves 
in the (>.., ö) plane with constant unrenormalized, dimensionless 
charge go == >.. ö4 - d • For d < 4 (the superrenormalizable case) 
these curves lead to the scaling limit (>.. = co, ö = 0) discussed 
above, i. e. strong coupling. For d > 4 (the nonrenormalizable 
case) these curves lead to A = ö = 0, i. e. weak coupling. 

scalifJg 
limit 
of cp4 

8 
--------------------- --Scaling limit of 

Ising mOdel 
const.; d <4 

q t m const.; d> 4 

8 

This picture leads us to conjecture that for d > 4, the ö -+ 0 
limit for go bounded is Gaussian (trivial), but a nontrivial 
theory could result with go -+ co as Ö -+ 0 (charge renormaliza
tion). See ;2.5 for further discus s ion. and also [20, 1 OJ. 
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1. 6 MAIN RESULTS 

We sketch the m.ain results for the cp 4 m.odel, cp4 lattice 
fields and Ising m.odels, som.e of which we discuss in detail 
in the next two chapters. There are two m.ain m.ethods to 
derive these results: correlation inequalities (discussed in 
Chapter 2) and expansion techniques (discussed in Chapter 3). 
The correlation inequalities for the cp4 m.odel express in part 
the repulsive character of the forces in these m.odels (in the 
single phase region). We obtain m.athem.atical proofs for 
portions of the critical behavior in these m.odels, as weH as 
an initial analysis of the elem.entary particle and bound state 
problem.s. 

A. The critical point has a conventional cp4 structure. 
For a » 0, there is a unique phase, independent of boundary 
conditions, and for a « 0 and d :<! 2, there are at least two 
pure phases, depending on the boundary conditions [14,15,16J 
The critical value a c = ac(A., &) is defined as the largest (and 
presum.ably the only) value of a for which m. = m.(a) -+ 0 as 
a '" a c. This cr itical ac exi sts [13 J and m.( a) is m.onotonic 
increasing for a :<! a [17J. For d :<! 3 (and presum.ably 

c 
for d = 2 also) m.(a ) = 0, and for a = a there is a unique c c 
phase and zero m.agnetization r 13 J. For a :<! a c' the physical 
charge g (defined as the am.putated connected four point func
tion evaluated at zero m.om.e nt um.) is finite and bounded, uni
form.ly as a '" ac ' and A. -+ 00. (See § 2.3. ) Furtherm.ore the 
n-point Schwinger functions S(n) satisfy a Gaussian upper 
bound 

o ~ S(n) (x ••• x ) ~ 
1 n 

(2) 
6 n S (x.x.,) , 

. 1 1 

see [18,19 J. 
the form. 

pairing pairs 

Closely related are critical exponent bounds of 

Gaussian exponent ~ tp-exponent 2 cp -exponent. 

For exam.ple with Tl the anom.alous dim.ension of the field cp 
and Tl E the anom.alous dim.ension of the field :cp2(x): , 

See [20,21,22J for other recent exponent inequalities. 
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B. Particles do not form even bound states, for 
cr ~ cr c • In the single phase region, particles exist for a.e. 
m > 0 [21 J. (Presumably they exist for all m > 0, but at 
least for d = 2,3, the particles should not exist for m = 0, 
i. e. cr = cr • ) Here particles are poles in the two point func-

c 
tion at Minkowsky momenta, or eS-functions in a Källen-
Lehm.ann representation for the two point function or (at least 
in the Euclidean invariant case of a continuum field) an 
Ornstein-Zernike decay rate 

(l-d)/2 -mr 
(cp (x)cp (y) ) ...., Zr e 

as r = Ix - YI -+ 110. These particles do not form even bound 
states (with energies below the two particle continuum) [23,24 J 
and there are indications that they do not form odd bound 
state s (with ener gie s below the three particle continuum) 
[23,24 J. 

C. A heuristic interchange of the eS -+ 0 (continuum) 
limit and the >.. -+ 110 (Ising) limit "shows" the identical critical 
point behavior[25,19]. Combining this idea with the known spec
tral properties of the d = 2 Ising suggests that for cp~ con
tinuum or lattice fields, with cr < crc ' the elementary partic1e 
is actually a two soliton bound state. Furthermore in this 
picture the binding energy goes to zero (relative to the soliton 
mass) as cr ~ crc and the field strength renormalization Z -+ 0, 
and it probably vanishes faster than the strength of the two 
soliton continuum, thus suggesting that because of the solitons, 
the intermediate renormalization is correct, but the mass 
shell renormalization is incorrect, for cr ~ crc ' d = 2, unless 
the mass shell renormalization includes all sectors, with the 
soliton as elementary particle. Introducing a small external 
field -jJCp(x) in the action, we have argued [26 J that for d = 2 
and cr < crc ' but cr FIS crc ' the limit f.L -+ 0 introduces many 
bound states which coalesce to form a two soliton continuum 
at f.L = O. For cr « crc the same reasoning suggests many 
resonances coalescing to form continuous sp'ectrum. 

D. Within its region of convergence, the cluster expan
sion allows a nearly complete analysis of the field theory. 
To begin with, one can prove convergence of the infinite 
volume limit and uniqueness of the vacuum. (In a two phase 
region, suitable boundary conditions are required to select a 
pure phase.) The convergence is valid for >.. complex in a 



CONSTRUCTIVE FIELD THEORY 15 

sector about A = 0 and it follows that the correlation functions 
are also analytic in A and other parameters, for A '" O. For 
the case of a ACPi interaction in the region A « 1, the per
turbation series about A = 0 is Borel su:mmable to the exact 
solution [27 J. For general P(CP)2 interactions in the region 
(5.1), the perturbation series about A = 0 for the Euclidean 
and Minkowsky correlation functions and for the S-matrix is 
also asy:mptotic [28,29, 30J. The particles (whose scatter-
ing is described by the S-matrix) are also constructed from 
the cluster expansion [I5J. Criteria (in terms of P) for 
existence or nonexistence of weak coupling P(CP)2 bound states 
are given in [ 31 J following earlier work of [ 8 J. Here 
the cluster expansion permits the stUdy of the exact Bethe
Salpeter equation, and shows that the low order terms (ladder 
approximation + ••• ) give the dominant effects. Up to some 
energy level, this analysis of the Bethe-Salpeter equation also 
shows asy:mptotic completene s s [8 J. Unfortunately, the 
energies allowed by present techniques apparently do not reach 
up to the two soliton threshold, in the two phase region. 

2.1 CORRELATION INEQUALITIES 

In this section we derive some basic correlation inequali
ties and state some others. In the following section we derive 
some consequences of these inequalities, and finally we con
sider the conjectured inequality r(6) :s: O. 

For positive integers aI'···' an define 

(2. 1) 
al a 

cP = cp(x) •••• cp(x ) n 
A 1 n· 

Theorem 2.1: For a lattice (Acp4 - flep)d quantu:m field 
with A, fJ. ~ 0, 

These are the first and second Griffiths (Griffiths, Kelly, 
Sherman) inequalities. Since they say that certain quantities 
are positive, they are preserved under limits, e. g. 0 -+ 0 or 
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\. .... GO, whenever such limits exist. The solution of the P(CP)2 
ultraviolet problem [ I J was extended by Guerra, Rosen and 
Simon to lattice cutoffs [17J in order to prove GKS and re
lated inequalities for these models. See [32 J for cpj. 

(2.4) 

(2. 5) 

Proof of GKS 1: We write on a finite lattice 

(cp ) = fcp d~ = Jcp e f3L:CP(i)cp(i ' )+~cp(i) 11 d\J(cp(i» 
A JA ö Ai· 

= {O if ui odd 

positive if ui even 

The basic idea of the proof is to expand the exponentials in 
(2.4) in power series and then factor the resulting integrals 
over lattice sites. Using (2.5), we obtain a sum of products 
of positive terms, and hence (2.4) is positive. We then take 
the limit as the finite lattice increase s to Zd. 

Proof of GKS 2: The basic idea is to use the tech-
nique of duplicate variables. Let cp, ljr be independent, lattice 
fields. Define an expectation of functionals A = A(cp, ljr) by 

(2. 6) 

Here 

d~(cp) ö = e f3L:CP( i)cp( i I)n d\J(cp( i» 

i 

and for simplicity we let ~ = O. Define 

(2.7) t = cp + ljr, q = cp - ljr 

as the even and odd combinations of cp, ljr, under inter change of 
cp and ljr. Note 
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(2.8) (t) = (cp) + 0) = 2(cp) , 

(q)=O, 

() ( ,Ir) _ ~ßL:(t(i)t(it)+q(i)q(it) (t(i)+q(i)) (t(i)-q(i)) 
df.L cp ödf.L 'I' ö - e ~ d\) 2 d\) 2 

l 

First we remark that d.Jt + q)d\)(t - q) is even under the 
transformation t -+ -t and also under q -+ -q. Thus 

= SO if U or ß odd 

(positive if u, ß both even • 

Following the proof of GKS 1, and using (2.9), we find that 
for all A, B, 

(2.10) o ~ (q t ). 
AB 

To complete the proof of GKS 2, we write 

But (t + q) (t - q) is a polynomial in t, q with positive coeffi-
cients. r?ence f3z..10) shows that (2.11) is positive. 

The proof above follows the presentation of Sylvester 
[33J, which we recommend for proofs of other correlation 
inequalities. We now state three inequalities: 

4 Theorem 2.2: For a lattice (X.cp - f.Lcp)d quantum field 
theorie s with x., f.L ;;:: 0, 

(2. 12) 

(2.13) 

17 
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(2.14) 

The inequalities (2.14) were first proved for the Ising model 
by Lebowitz [34J, and have a nUIllber of interesting eonse
quenees. We remark that two special eases of (2. 14) are 

(2. 15) 

(2. 16) 

Here ( 
values, 

(2. 17) 

)T denotes the truneated (eonneeted) expeetation 
defined by 

and extended to (cp(f1)" 'cp(fn»T by multilinearity. We obtain 
(2.15), the Griffiths-Hearst-Sherman inequality, by expanding 
(tl q2q3) - (tl )(q2q3) ~ O. The inequality (2.16) follows 
from evaluating (tlt2q3q4) - (tlt2)(q3q4) ~ 0 in ease fJ. = O. 

2.2 ABSENCE OF EVEN BOUND STATES 

In a single phase, even cp4 model, i. e. for 0 > oe' we 
now show that the Hamiltonian, restricted to lC , has no 

~ven 
speetrUIll in the interval (0, 2m), i. e. two partlcle bound 
states do not exist. We remark that :Heven is spanned by 
veetors 0, cp(f1 )" 'cp(fn)O, n = 2,4, ••• , where suppt fj is 
eontained in t > O. 

Theorem 2.3: Consider a cp 4 field or Ising model with 
zero external field and ° > Oe' and let A and B have an even 
nUIllber of elements. Then 

~ (CPA 1CPB1 )(CPA-A CPB-B ) 
A 1cA,A 1 odd 1 1 

BlcB, BI odd 

Corollary 2.4: Under the hypotbesis of Theorem 3.3, 
there are no even bound states with energy below the two 
particle thre shold. 
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Proof: Let (2 be the vacuum state, unique since it is 
assumed that 0 > 0c' We write x = xl"", x d as 

-+ 
X = (t. x) 

with ~ E R d-I • In particular if 

-+ -+ 
A + s = [(t + s, x): t, x E A} , 

then the equation (1. 4), namely 

-sR 
(CfJA e CfJB) = (~CfJACfJB+s)' 

is valid when the times in A precede the times in B. In 
particular we choose A to have only negative times t ~ 0, 
and B, chosen as 

-+ -+ 
B = [(-t,x):(t,Ji) E A} 

then has only positive times. With this choice of A and B, 
and with Po the projection onto the vacuum state, we recog
nize 

so that the Theorem 2.3 gives abound on the decay rates 
which occur in 

19 

For Al odd, CfJ A 0 is perpendicular to the vacuum 
((0, CfJA ' 0) = (CfJA ~ = 0), and so (CfJA -sCfJB +s) has as its slowest 

I I 1 
exponential decay rate, m, by definition the mass of the theory. 
Thus by definition of m. 

for some constant CA B depending on Aland BI' The 
I' I 

same bound holds for (cttA-AI)-sCfJ(B-BI)+s)' and so by 

Theorem 2.3, 
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-sH 2 -2ms 
l\e (I - P O)CPA 011 :;; const.e 

Thus there are no even states, except 0, with energy below 
2m, hence in particular no even bound states in this energy 
range. 

Proof of Theorem 2.3: 

We drop zero terms from the right hand side (A 2 or B2 Odd), 

and from the left hand side (only one of A 2, B 2 Odd). For the 
terms with B 2 even and the partition nontrivial, we combine 
r ight and left s ide sand elim inate from the ineq uality, us ing 
Theorem 2. 2. The terms remaining yield Theorem 2.3. 

2. 3 BOUND ON g 

where 

By GKS 1, X ~ O. For a massive, single phase, even cp4 
interaction g ~ 0 by (2.16). We now assume in addition that 
the proper Held strength renormalization has been performed; 



CONSTRUCTIVE FIELD THEORY 

in the case of an isolated partic1e of mass m, this means 
dp(a) = o(a - m 2)da + da(a), where inf suppt da > m 2• We 
then prove an upper bound on g. 

Theorem 2.5 [35J: Under the above assumptions, 

o s: g s: const. , 

where the dimensionless constant is independent of all para
meters (e. g. A, a). 

We outline the proof. For details, see the original 
paper. We use the basic inequality GKS 2 to derive (writing 
1 for C:P(xl)' etc.) 

(2.18) 0 s: (1234) - (12)(34) = (1234)T + (13)(24) + (14)(23) • 

By (2.16), (1234)T s: 0 and 

o s: -(1234)T s: (13)(24) + (14)(23) • 

After symmetrization over the choices of variables, 
1 l 

(2.19) -(1234)T s: «13)(24)+ (14X23»3«12)(34) + (13)(24»3 

l 

X«14)(23) + (12X34»3 • 

From elementary properties of the Green' s function for the 
Poisson operator (i.e. ker(-fl+a)-I(x,y» we find 

co 1 
(xy) = Iker(-fl + a)- (x, y)dp(a) 

o 

-d 
s: const.xlx - YI exp(-mlx - YI/2). 

Inserting this in our bound (2.19) for -( 1234)T gives 

-4 2 
g s: const. m X • 

21 
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Since 
GO 

X = S 
m 2 

dp(a) 
a 
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-2 
~m 

we obtain g ~ const. as c1aimed. 

Observe that the final bound does not depend on m, and 
hence also holds in the limit m -+ O. Hence the critical point 
(which for d < 4 should be an infrared stable fixed point of 
the renormalization group) occurs for finite g. 

(i. e. 

(2.20) 

2.4 BOUND ON dm2 /da AND PARTICLES 

Here we consider a canonical, single phase cp4 model 
without field strength renormalization). We establish 

dm2 (a) ~ Z(a) 
da 

from which our next result follows by approximation methods: 

Theorem 2.6: (See [21 J.) For almost every value of 
m, partic1es exist, i. e. Z f; O. 

-1 
Proof of (2.20): Consider r(p) = -S(p) , where S(p) is 

the Fourier transform of (cp(x)cp(O». Note 

S() - Z +Jd~(a) 
p - pl + m l p + a ' 

and 

(2.21) 
-1 2 

Z = -(dI'/dp ) 2- 2. P --rn 

Since r = 0 on the one partic1e curve p2 = _m2(a), Vr must 
be orthogonal to the vector (drn2/da, l) in the _p2, aspace. 
Thus for p2 = _m2, 

= ar dm2 ar = Z-1 dm2 ar 
o -Bpl d;- + Ba da + Ba· 

The desired inequality follows from 
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Theorem 2.7: Under the above as sumptions, 

(2.22) 

Proof: Let X(p) = J (cp(x)cp(O)e -pxdX• Then 

- ~~P) = tJ J[ (xozz) - (XO)( zz) Jdze -pxdx 

by (2.16), (2.18), 

2 
= X(p) • 

Thus 
-1 

o ~ dy(p) ~ 1 • 
da 

However X(p) = -r(p) lp2=_m2 , so (2.22) is proved. 

2.5 THE CONJECTURE r(6) ~ 0 

The unamputated six point vertex function is defined by 

The conjecture 

(2. 24) 

has a number of interesting consequences: e. g., the absence 
of three particle bound states in the propagator, the existence 
of the scaling limit, and certain bounds on critical exponents, 
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see [25, 5, 20J. 

There is some evidence for (2.24) in single phase, even 
cp 4 mOdels. For example it is true in perturbation theory 
(i. e. for a » 0 or high temperature). It holds in the one 
dimensional Ising model [36 J and numerical studies indicate 
thai! it holds for the anharmonic oscillator [37 J. There is a 
heuristic argument that it holds near ac• However, some 
good new idea is needed to prove (2.24). 

In this section we illustrate some uses of (2.24). For 
example, we have 

Theorem 2.8: If (2.24) holds, then 

(2.25) -3m\x\ o s; f(x) s; e ,Ix I -. 0:> • 

Remark: The bound (2.25) excludes spectrum in f(x) 
in the interval (0,3m), and hence spectrum in da(a) in the 
interval (m,3m). Thus no three particle bound states occur 
in the propagator, i. e. in the states spanned by cp(x)O. 

Outline of Proof: We use the integration by parts 
formula [25 J 

(2.26) S cp(x)A(cp)dj-L(cp) = (cp(x)A) 

= S dyS(x - y)[ (~ty» - (ltl (y)(I - P1)A) J 

Here lt = >..:cp4: is the interaction, 
P1A = Icp(z)f(z - Z')(cp(Z')A)clzdz ' • 
that for x f. 0, 

and 
From (2.26), it follows 

2 3 3 
(2. 27)r(x - y) = (ltl(x)(I - P1)lt'(y) = >.. (cp (x)(I - P1)cp (y» , 

see [25 J. Expanding (2.27), and using (2. Z3), 

,.2. 3 
(2.28) A. f(x - y) = 6( xy) + 9( xXYY)T( xy) 

J (6) 
- 9 (xxYZ)oyf(ZZ')(Z'XYY)TdZdZ' +r (xxxyyy 
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The first term in (2.28) is o(e -m Ix- Y I)3, for Ix - y\ ... "". 
The second term is negative. The third term, also has a 
three particle decay, which can be established using the 
absence of two particle bound states in (xxyz)T' see [25J. 
Thus (2.24) results in 

r(x - y) s: - 3m lx-y\ e , Ix - YI ... "" . 

25 

The positivity of f(x - y) follows from the fact that it is the 
Fourier transform of a Herglotz function. This completes the 
outline of the proof. 

We finish this section with the statement of another con
sequence of (2.24), and an Ornstein-Zernicke upper bound 

(2. 29) 
-1 -(d-2+11) -mlxl 

(cp(x)cp(O» s:Kmin(\x\,m ) e • 

Theorem 2.8 [20J: Assume (2.24), (2..29) and)., <00. 
Then 

{"4 
d = 4 

11 s: .8 d = 3 

1.2 d = 2 

-1 
for d ~ 5. Z <"" Also 11 = 0, 

Corollary 2.9 [20 J: Assume (2.24). If the ö ... 0 limit 
of the }..cpj lattice field theory is Euclidean invariant for 
gO( ö) = }.. ö4 - d s: const. (finite charge renormalization), then 
the limit is a free field for d ~ 6. 

3. CLUSTER EXPANSIONS 

3.1 THE REGION OF CONVERGENCE 

The cluster expansion, in field theory as in statistical 
mechanics, provides almost complete information for para
meter values away from critical, and it provides only limited 
information for parameter values near critical. In statistical 
mechanics, this expansion is a variant of the virial, high 
temperature and low temperature (Peierls' contour) expansions. 
These names distinguish various regions of the coupling 
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constants, and expansion parameters. In field theory, con
vergence of the cluster expansion is known for the correspond
ing parameter values. In particular, for a two dimensional 
P(cp) field theory, the cluster expansion is convergent in the 
following asymptotic regions [14,15,38,26, 39J. 

(3. 1) 
2 

P(cp) = X,:PO(Cp): + ocp, X, .. 0 

(3. 2) P(cp) = X,:PO(CP): - \JCP, 

(3.3) P(cp) = X,:cp 4: + ocp2 , er .. _CD or X, .. +co , 

or more generally, whenever P, expanded about a suitable 
global minimum CPc of P(cp) has a dominant quadratic term. 
For the Yukawa2 and cpj interactions, convergence of the 
expansion is known in the high temperature region (X, .. 0 as 
in (3. 1» [40 - 43 J • 

3.2 THE ZEROTH ORDER EXPANSION 

The expansion is adapted from the virial expansion of 
statistical mechanics. In the zeroth order, all couplings are 
removed. We divide Euclidean space time into cells (lattice 
cubes) and then remove the coupling between distinct cells. 
In the zeroth approximation, all correlations factor, 

(CP(xl)·· ·cp(xn»O = n (n cp(xj»O· 
6=cell XjE6 

Consequently the long distance behavior is trivial and all 
states have infinite energy in the zeroth approximation. 

To define the zeroth approximation, let a6 be the boun
dary of the cell 6.. Then formally 

(3.4) 

is the action defining the zeroth approximation, if G is the 
action of the full theory. To rewrite this expression in 
mathematical language, we combine the a6 term in GO with 
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the gradient term in G, 

(3. 5) co:B J cp2dX + J vcp 2(X)dX = (cp - tlDCP) , 

6 FM 

where -6D is the Laplace operator with zero Dirichlet boun
dary conditions on all cube face s 06. 

3.3 THE PRIMITIVE EXPANSION 

Graphical expans ions in statistical me chanics are gen
erated by the identity 

(3. 6) 
-V(r·-r·) TI e 1 J = n [I - e-V(ri-rj) - I)J 

i<,j kj 

= ~ n (e -V(ri-rj) - I) • 

sets of pairs pairs in set 

Now a pair [r i, r j } is represented by the Hne segment con
necting ri to rj' so that a set of pairs is a graph. Thus 
(3.6) is a graph expansion. Before adapting (3.6) to field 
theory, we mOdify it sHghtly. Let V(s) be a one parameter 
family of potentials, 0 :s; s :s; I, with 

V(O) = 0, v(l) = V • 

Then 

-V 
e - I 

I 

= J d~ 
_V(s) 

e ds , 

o 
and introducing a parameter Sij for each pair [ri' r j }, we 
have 

(3.7) 
-V(r·-r·) d _V(sij) 

TI e 1 J = ~r J TI -- e ds .. 
i <j [ij} Er ds ij 1J 

where r is a graph constructed from pairs [i, j}. 
the Sij for [i, j} not in rare evaluated at s = O. 

In (3.7), 
Writing 

27 
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r 
s = [s .. : p, j} ~ r} 

lJ 

lC = [s .. :{i, j} f. f} , 
lJ 

this formula can be expressed in the compact notation 

-V(r·-r·) r _V(Sij) r I 
(3.8) TI e 1 J = 6 J as TI e ds 

kj r [i,nEr src=o 

To adapt this formula to field theory, we only need to 
choose a multiparameter family sr = [sY:y E f} interpolating 
between the totally decoupled Laplacian ßD and the ordinary 
Laplacian ß. This can easily be done, and we only mention 
that it is convenient to choose the s -dependence to be linear 
in the inverse operators (-6 + m5)-1. In field theory, (3.8) 
becomes 

(3.9) r r\ (F(cp) = '0S as (F(cp)sdS c • 
r sr =0 

Here F(cp) is some function of cp and ( )s is the expectation 
defined by the interpolating "Laplacian" 6(s). Observe that 
s Y = 0 corresponds to Dirichlet data on y, and no coupling, 
while s Y > 0 allows coupling acros sr. Thus the hypercube 
faces Y E r transmit coupling from one cube to its neighbors, 
while the face s Y E r C do not. 

3.4 FACTORIZATION AND PARTIAL RESUMMATION 

In graphical language, we are concerned here with the 
cancellation of disconnected vacuum contributions. In (3.9), 
the expectation (.) is normalized so that (1) = 1, while (.) s 
is normalized by the same denominator, so that 

1 - S -JP(cp)dX / J -!P(cp)dX 
( ) s - e dCPO s e dcpO , 

= Z(s)/Z 
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where dCPO s is the interpolating Gaussian m.easure defined by 
the param.~ter s. It follows that the expansion (3.9) defines 
disconnected graphs. 

Suppose F(cp) depends on cp(x) only for x in som.e set 
S eRd. In (3.9), we consider the term. with r fixed. Be
cause of the Dirichlet data on r C , this term. decouples across 
r C • More precisely suppose r C divides R d into a certa in nurn.
ber of connected com.ponents. Let Y be the closure of the 
union of the com.ponents which m.eet S; graphically, Y is the 
region connected to S by r. Then the expectation (F(cp» si c 

sr =0 
factors across 8Y, allowing us to write it as a product of an 
"inside" expectation associated with Y tim.es an "outside" ex
pectation associated with R d "" Y. 

Now let us fix Y in place of 1" and surn. over all r which 
yield this fixed Y. This sum. factorizes into independent surn.s 
over 1" n Y and r "" Y. The sum. over r ~ Y of the outside 
expectations has no constraints, and sum.s to a partition func
tion Z(""Y) for the region ""Y, defined with Dirichlet data on 
8Y. (This resurn.m.ation is just the reverse of the expansion 
(3.9), but for the region ,...Y in place of Rd.) In a sim.i1ar 
fashion we define Z(Y), the partition function for the region Y, 
with Dir ichlet data on 8Y. Let 

(F(cp»y Z(Y)/ Z 

denote the surn. over 1" n Y of the inside expectations (including 
the overall norm.alization denom.inator Z). Then (3.9) becom.es 

(3.10) (F(cp» = '0 (F(cp»y Z(Y)~(""Y) • 

Y 

In this expression, all disconnected vacuurn. com.ponents have 
been resurn.rn.ed into the single factor Z(Y)Z(,...Y)/ Z. Som.ewhat 
lengthy estim.ates, including a Kirkwood-Salzburg equation, 
prove the convergence of (3.10) for the param.eters and inter
actions indicated in 33.1. 
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3.5 TYPICAL APPLICATIONS 

To prove exponential decay of correlations, i. e. 
tive mass, we use the method of duplicate variables. 
we write 

a posi
Thus 

-1 
\ (F(q»G(q» > - (F(q»G(q» > I = 2 \ ([F(q» - F(ljI)] [G(q» - G( ljI)] > \ 

s::E \( [F(q» - F(ljI)] [G(q» - G(ljI)] >yl 
Y 

Z(Y)Z(""y) 
X Z 

Here we choose Y to be the closure of the union of the con
nected components containing the support of F alone. How
every YI s which do not also meet the support of G then vanish, 
by the q> ~ ljI symmetry. The convergence proof shows that 
the remaining terms have the desired exponential decay rate. 

To establish the upper mass gap and the isolated one 
particle hyperboloid, the cluster expansion can be applied to 
the vertex functions r(n) in place of the Schwinger functions 
considered above. Similarly a cluster expansion in the Bethe
Salpeter kernel K defined graphically by 

(3.11) =0= = + 

shows that K has three particle (and for even theories four 
particle) decay. In Minkowski momentum space, this means 
that K has an analytic continuation up to a neighborhood of 
the three or four particle threshold. Returning to (3.11), 
the only singularities of the four point function up to these 
energies come from the two particle cut. Hence asymptotic 
completeness up to these energies follows. 

To extend these methods to the two phase region (3.3), 
we choose a length L » 1 and write 

q; = L -d f q>(X)dx 
L-cube 

a(q;) = sgn cp • 
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Then er is an Ising variable, defined on the lattiee (LZ)d. 
An expansion in Peierls eontours isolates large regions of R d 

in whieh er is a eonstant o In these regions, the field cp is 
eoneentrated within a single well of the W - shaped potential, 
and a Gaussian approximation to this well is possible. This 
Gaussian approximation is eontrolled by a cluster expansion. 
Thus the final expansion is a double expansion, first in Peierls 
eontours and then Diriehlet eontours, as in (3.10). 
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We give a special form of the Osterwalder-Schrader 
axioms in terms of conditions on a functional integral 
Stf} = reicp(f)df.L. This yields a simple, self-contained con
structi~n of a Hamiltonian H, a relativistic, local boson quan
tum field t, and a Feynman-Kac formula to study perturbations 
H + t of H. 

1. Functional Integrals 
2. R econstruction of Quantum Mechanics 
3. Reconstruction of Fields 
4. The Feynrnan-Kac Formula 
5. Commutators and. Self Adjoint Field Operators 
6. Lorentz Covariance 
7. Locality 
8. Uniqueness of the Vacuum 

1. FUNCTIONAL INTEGRALS 

Functional integral methods have a long history in quan
tum mechanics and in quantum field theory [1]. They date 
from the original proposal by Feynman for writing solutions 
e- itHljI to the Schrödinger equation, as integrals over classical 
particle trajectories. Kac, in the case of quantum mechanics, 
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and Syrnanzik, in the case of quantum field theory, realized 
that the analytic continuations t -+ - it of Feynrn.an' s integrals 
have a probabilistic interpretation, now known as the Feyn
rn.an-Kac forrn.ula. In the construction of quanturn. fields by 
the authors and others (see [2J for original references) this 
Feynrn.an-Kac probability rn.ethod was an irn.portant tool for 
proving estirn.ates, e. g. on the spectrum of the Harn.iltonian 
or properties of fields. Its suitability as a conceptual frarn.e
work was later reern.phasized by Nelson, who gave sufficient 
conditions for· the inver se analytic continuation - it -+ t frorn. 
probability theory back to quanturn. rn.echanics. Another ver
sion of this analytic continuation was given by Osterwalder 
and Schrader, allowing for ferrn.ions, and with an easily veri
fied condition, reflection positivity, replacing an as yet un
proved Markov property. Functional integral reforrn.ulations 
of the axiorn.s have been extens ively studied [3 J. Here we 
present a sirn.ple version of the connection between functional 
integrals and boson quantum field theory, including a proof 
of the Feynrn.an-Kac forrn.ula and an illustration of its use to 
construct local quantum fields. Our treatrn.cnt is seH containec 
except for the use of sorn.e standard results frorn. functional 
analys is, functional integrals, and the theory of functions of a 
corn.plex variable. 

A functional integral is defined by a rn.easure df.L(cp) on 
sorn.e space of (generalized) functions. Equivalently, one can 
give the Fourier transforrn. (or characteristic function in the 
language of probability theory) 

(1. 1) 

For quanturn. field theory applications, it is convenient to inte
grate over "'~eal' the space of real, tern.pered distributions. 
Thus we consider (1.1) in the case that cp E .,P'(Rd)real and f is 
an elern.ent of the real Schwartz space ",(Rd)real. The exis
tence of a regular probability rn.easure df.L(cp) on "''real is equi
valent to the existence of a functional S{ f} satisfying three 
properties: (i) S{f} is continuous; (ii) S{O} = 1; (iii) S{f} is 
positive definite, i. e. S{ fi - fj} = Mij are the entries of a 
positive rn.atrix. We here assume the existence of S{f} satis
fying (i) - (iii). See, for instance, [4 J for properties of 
function space integrals. 
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In order to recover relativistic quantum field theory in 
d space-time dimensions, we now make three further assump
tions on S[f}, f E d'(Rd)real. In case d = 1, the construction 
can be interpreted as a functional integral formulation of non
relativistic quantum mechanics. If the continuous space Rd is 
replaced by a lattice, the construction yields the transfer 
matrix of lattice statistical mechanics. We now restriet atten
tion to characteristic functions S[ f} which are suitable for the 
construction of scalar, boson quantum fields, and give our 
form of the Osterwalder-Schrader axioms. 

Let y denote an element of the Euclidean group Cl on R d 
(rotations, translations and reflections in hyperplanes). We 
single out a particular coordinate direction t which we call 
"time, " and we write x = (~, t), ~ E R d - 1• Let T(t) E Cl 
denote the subgroup of time translations, and let l} E Cl denote 
reflection in the t = 0 hyperplane 

(1. 2) 
~ ~ ~ ~ 

(T( s)f)(x, t) = f(x, t + s), (l}f)(x, t) = f(x, -t) 

Let d'(a, b) denote the subspace of d'(R d ) of functions f supported 
in the time interval (a, b), i. e. suppt f c [(3t, t): a < t < b}. 
Let ,,1'+ == ,,1'(0, <Xl) be the positive time subspace of ,,1'. 

Assumptions: (i) - (iii) above, and 

(1) Euclidean invariance: S[f} = S[yf}, Y E Cl. 

(2) Reflection positivity: 
for any sequence f. E ,,1'+ 1. J , rea 

S[fi - ~.} is a positive matrix 
J 

(3) Regularity and Boundedness: S[f} is continuous on 
"I' real and extends to an entire analytic functional of f in the 
complex Schwartz space d'(R d ). There exists a Schwartz 
space norm \hl.i on .i(R d - 1) and a p < c:IO, so that 

(1. 3 a) 

where 

Furthermore, for some , with 1 ::;; , < 2 and , < p, and for 

f = h ® Xo t' , 
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(1. 3b) IS[f} I ~ exp<\fl i + Ifl~)· 

The interpretation of (1) - (3) is the following: We de

fine the Euclidean Hilbert space e as the completion in LZ(df.L) 
of the finite linear span of exponentials exp(i.cp(f», for 
f E ~(Rd)real. The inner product on e is 

(1. 4) (A,B) = rA-Bdf.L. 
e J 

Let e+ c e denote the positive time subspace of e. obtained by 
restricting f to aI+, real. More generally, let e(a, b) be the 
subspace generated by f E ..Aa, b)real. 

Assurnption (1) states that y E q is represented on e by 
a unitary transformation (which we also denote by y), or that 
df.L is Q-invariant. Continuity of the representation follows by 
continuity of S[ f}. A s sumption (Z) states that the bilinear form 

b(A, B) == (~A, B)e 

is positive on e+, namely 

(1. 5) b(A, A) = (~A, A)e ~ 0, A E e+ • 

Assurnption (3) yields the required regularity. 

Remark: We may replace (1. 3b) by the assurnption that 
the two point function (second moment of df.L) exist sand has a 
convergent spectral repre sentation 

J Z J Z fOC> -1 cp{f) df.L - (cp(f)df.L) = (f, (-/). + a) f)dp(a), 

o 
where dp(a) is a positive measure. In particular (1.3b) is used 
to exclude a ö-function singularity in the two point function. 

Theorem 1. 1 (Reconstruction of Quantum Mechanics): 
Assume (1) - (Z). Then there exists a Hilbert space Je, a 
canonical map w:e+ ... J{ and a self adjoint Hamiltonian operator 
on J{ such that for A E P4 and t ~ 0, 

(1. 6) 
-tH 

(WA, e WA)J{ = (~A, T(t)A)e = b(T(t/Z)A,T(t/Z)A) • 
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Furthermore, 0 Ei WI is a vacuu:rn vector for H, 

H ~ 0, HO = 0 • 

Theorem 1. 2: (Reconstruction of Quantum Fields): A s
su:rne (1) - (3). For f E J(Rd)real' there is a self adjoint 

operator ~(f) on 3C such that ~(f), H, 0 satisfy all the Wight
man axioms with the possible exception of uniqueness of the 
vacuu:rn. The vacuum 0 is unique if and only if dfl is ergodic 
under time translations. If suppt f, suppt gare space-like 
separated, then exp(i~(f)) and exp(i~(g)) commute. 

Formally, ~(it)W = Wcp(t). In more detail, the connection 
between ~ and cp is given by ~(f) = J ~(x)f(x)dx, where 

(1. 7) ;;.Ix) itH (-+ 0) - itH 
~ = e ~ x, e 

and where for t ~ 0, 

-+ -+ 
(I. 8) ~(x, it)W = Wcp(x, t) 

Alternatively, the Wightman distributions W n(xI' •• " x n) Ei 

(0, ~(xJ)'" ~(xn)O), analytically continued to Euclidean points 
2j = (31j , itj)' are the moments of dfl (Schwinger functions): 

AAr (I. 9) W (xl'···' x ) = S (xl'···' X ) = q:(x I )" 'cp(x )dfl • n n n n. n 

We make these connections precise in what follows. 

Central to our method is the ~ bound 

(1. 10) 

established in Theorem 5.1 and the relation 

(1.11) [iH,~(f)J = -~(af/at). 

Our proof of (1. 10) leads to the stUdy of the perturbed Hamil
tonian H + Hh), where ~(h) Ei ~(h, t = 0) is the time zero field. 
The main technical part of our proof of (1. 10) concerns the 
proof of the Feynman-Kac formula 
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(1.12) 
-t(H+~(h» 

e W = 
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-!ep(h, s)ds 
o 

We T(t) , 

see Theorem 4.1. Our analysis of (1. 12) is accomplished 
through a gradual increase in contro1 over the domain of ~(h), 
and its definition as a bilinear form perturbation of H. 

In final sections we establish the locality and covariance 
of ~; we also discuss the equivalence of ergodicity of dtJ.(ep) 
under the time translation subgroup T(t) c q, with the unique
ness of the vacullnl vector (1 for H. 

2. RECONSTRUCTION OF QUANTUM MECHANICS 

In this section we construct the Hilbert space :K: of 
quantllnl mechanics and study the transformation W from e... 
(the positive time Euclidean space) to lC. We begin with the 
remark that (1. 5) defines a seminorm b(A, A)t on e+. Let h 
denote the null space of b(A, A), so b(A, A)! defines a norm 
on e+/h. Let lC be the Hilbert space obtained by completing 
e+/h in this norm. We let W denote the canonical map from 
e+/h to Je, and we denote the scalar product on lC by 

(2. 1) (WA,WB) = ({}A,B) = b(A,B). 
jC e 

By the Schwarz inequality and assllnlption (1) , 

(2. 2) 

so W is a contraction. 

We now consider an operator S on e+ with domain ~(S), 
and we assllnle that S transforms ~(S) n h into h, i. e. 

(2.3) S:~(S) .. e+, S~(S) n h .. h • 

" We can then define an operator S on:I-C with domain W~(S), by 
the equation 

" ("2.4) SW = WS • 
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For the remainder of this section we study the general defin
ing equation (2.4). The simplest example arises from choos
ing S = T(t), t:2: 0, ~(S) = e t . We obtain the foHowing result, 
which proves Theorem 1. 1. 

Theorem 2.1: Assurne (1) - (2). Then for t :2: 0, T(t) 
satisfies (2.3) and T(t)" = e-tt--I, where H = H':< :2: 0, and 
o = Wl satisfies HO = O. 

Proof: Clearly T(t):e t .... e t. If A E h, then 

( 2. 5) b ( T (t) A, T (t) A) = (!? T (t) A, T (t) A > = (T ( - t)!? A, T (t) A > 
e e 

= (!?A, T(2t)A > = b(A, T(2t)A) e 

1, 1, 
~ b(A, A)2b(T(2t)A, T(2t)A)2 = 0 • 

Here we have used the Schwarz inequality for the positive 
form b(A, B). Hence T(t):h .... hand T(t)" is weH defined. 
For convenience, write R (t) = T(t('. We now verify four 
properties of R(t): 

(i) semigroup law: R(t)R(s) = R(t t s), s, t :2: O. 
(ii) R (t) is hermitian. 

(iii) R (t) is a contraction: IIR (t)11 ~ 1. 
(iv) strong continuity: R (t) .... I a~ t .... O. 

These properties say that R (t) is a strongly continuous, self 
adjoint, contraction semigroup. Thus there exists a positive, 
self adjoint operator H such that R (t) = e- tH• Furthermore 
T(t)l = 1. Thus for 0 ;: W1, 

-tH 
e 0 = WT(t)l = 0 , 

or HO = O. 

Property (i) follows from the multiplication law for T(t), 
namely 

R(t)R(s)W = WT(t)T(s) - WT(t t s) = R(t + s)W • 
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Property (ii) follows since for A E e+, 

(R(t)WA,WA) = (WT(t).A,WA)'J(= (IT(t)A,A)e = (T(-t)IA,A)e 

= (lA, T(t)A) = (WA, WT(t)A'> = (WA, R(t)WA) 
~ X 'J( 

Property (iii) is established as follows: By the Schwarz 
inequality and (i), (ii), for A E e+ we have 

~ ~ 

IJR(t)WAII = (R(t)WA,R(t)WA)2 = (WA,R(2t)WA)2 
'J( 'J( 'J( 

.J,. .J,. 
~ II WAI1 2 1I R (2t)WAI1 2 • 

'J( Je 

Continuing to apply the Schwarz inequality in this fashion, we 
obtain after n steps 

1-2-n 2- n 
IJR(t)WAII ~ IIWAII IIR(Z~)WAII 

Je 'J( Je 

l_Z- n n Z-n 
= IIWAII IIWT(2 t)AII 

Je Je 

l_Z-n 2- n 
~ IIWAII IIAII , 

'J( e 

using (2. Z) and the unitarity of T(t). Letting n -+ co gives 
IIR(t)WAIIl( ~ IIWAII'J(" Since the WA are dense in Je, this 
proves (iu). 

To establish property (iv), we note that T(t) is strongly 
continuous on e+ and W is a contraction froIn e+ to X. Thus 

R(t) is strongly continuous on the dense subset of 'J( of vectors 
WA, A E e+. Since IIR(t)11 ~ 1, it follows that R(t) is strongly 
continuous on the entire Hilbert space Je, and the proof is 
cOInplete. 

1\ We now generalize these Inethods to construct operators 
S on ~ froIn functions k E e(O, t). Since k E LZ(dj.l), Inultipli
cation by k defines an operator on e+ with dOInain e+ n L m • 
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To construct~, we restrict the domain of k. 

Proposition 2.2: Consider k E e(O, t), t > 0, 
plication operator on e+ with domain T(t)(e+ n L co• 
defined by (2.4) is (densely) defined on je. 
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as a multi-
..... 

Then k 

Proof: We verify (2.3), namely if A E -'lek) n 'r\, then 
b(kA, kA) = O. First we assume that k is bounded, and we 
write A = T(t)B, B E (e+ n LJ, so as in (2.5), B E 'r\. Then 

b(kA, kA) = (~kT(t)B, kT(t)B)e 

= beB, T(t)(~k) -kT(t)B) 

~ ~ 

s; beB, B)2b(C, C)2 = 0 , 

where C = T(t)(~k) -kT(t)B E e+, so we may apply the Schwarz 
inequality for the form b. 

In general, k is not bounded, but we replace k by 

Then Ilk - kjll e ... 0 as j ... =. and by (2.2) and kjA E 'r\, 

b(kA, kA) = b(k - kj)A, (k - kj)A) s; 11 (k - kj)A\I; 

" to complete the proof that k is defined. Since 
" A -'lek) = WT(t)(e+ n L.), 8(k) is dense. 

" -tH We next give a sufficient condition on k so that ke 
is bounded. Define k s as the time translate of k, k s = 
T(s)kT(s)-l. Define 

(2. 6) M 
n 
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(Z. 7) 

Theorem. Z.3: Let k E e(O, t), t > O. Then 

1\ -tH 
Ilk e II s: lim. sup M • 

:K n-+ao n 

P f Let 0 -- e -tH.I\~'k!\e -tH and A n L roo : -""k E e+ 10. 

t- -tH ~ ~ ~ 
Ilke WAll = (WA, OWA)2 s: IIWA\12110WA112 • 

:K :K j( j( 

Then 

We continue to apply the Schwarz inequality and after n appli
cations obtain 

1\ -tH l_Z- n Zn-l Z-n 
Ilke WAll s: IIWAII 110 WAll • j( j( j( 

(Z. 8) 

1\ -tH"- --By definition (ke ) .... W = WT(t)~k = W(~k )t T(t), so 

Zn Zn _ n+l 
110 WAIIj( = IIWj~I(~k )(Zj_l)tk (Zj_l)t)T(Z t)AI~ 

Zr 
s: M IlAIiL 

r = 
Here we have set Zn = rand used the fact that tim.e transla
tion is a contraction on LQO. Substituting in (Z.8), we obtain 

to com.plete the proof. 

s: IIWAIIj( lim. sup M r / Z 
r-+co 
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We now deHne 
-öH 

1<:ö == e J{ • 

Corollary 2. 4: Let ö > 0, 0 ~ 'T < 6/4, ö' > t + ö/2, 
lim sup Mn < "". Then (k'j"t as a bilinear form on J{ö X J{ö' 
is analytic in 'T and extends analytically to the circle ''T \ < ö/8. 
Also 

(2. 9) 
- 6H d n A - ö' H n.c... -(t+ö/4)H 

I\e --n(k'T) e \\ ~ (81 ö) n~ \\k.e \\ • d'T 

Proof: Since 

-öHd '" -ö'H 
e -(k'j") e 

d'T 
-(cS+'T)H (:.. -(6'-'T)H 

= e [k,HJe 

we use the relations 

m - öHI 4 m 
c = I\H e \\ ~ (4/ö) m~ , m 

n 
c c ~ (41 ö) n~ , 

m n-m 

, 

and the theorem to establish (2.9). The s tated analyticity 
then follows. 

3. RECONSTRUCTION OF FIELDS 

In this section we apply the construction of the previous 
section to the case S = qJ(f). Then SI\W = WS defines the 
(analytically continued) field operator qJ(f)". From qJ(f)" we 
obtain the sharp time field iJ?(h) as a densely deHned bilinear 
form on J{, and such that 

" S -sH sH qJ(h ® a) = e iJ?(h)e a( s)ds • 

Proposition 3.1: Assume (3). Then the measure dfJ. has 
moments of all orders, and the nth moment has a density 

Sn(xl,···, x n ) E J'(R nd), 

(3. 1) fs (xl'···' X ) TI f.(X.)dx • 
. n n i=l l l 



46 JAMES GLIMM AND ARTHUR JAFFE 

Proof: The operators U(t) = exp(itcp(f». f E J l' form rea 
a unitary group on e. Their infinitesiInal generator is the 
multiplication operator q:(f). The statement that the function I 
is in the domain of q:>(f)n. for all such f. is equivalent to the 
statement that the moments of dIJ. of degree 2n exist. (The 
moments of odd degree are bounded by a Schwarz inequality by 
those of even degree.) To show that I is in the domain of 
q:>(f)n. we use the definition (6/ 6t )nU(t) of the nth difference 
quotient of U(t). Then 

Hence strong convergence of the nth difference quotient for 
U(t)l follows from the analyticity (and hence differentiability) 
of S. Let f lie in a bounded. finite dimensional set of J. 
By continuity. \S[ f}! is bounded on the set. We then use the 
Cauchy integral formula. 

n dZ') S (fI.···.f) = !C::[g}IT (2. 1 • 
n n r j=I 1T1Zj 

n 
where g = L:: Z .f. and the integrals extend over I Zj I = 1. 

j=I J J 
This 

provides abound on Sn establishing continuity on J x,J X ••• X,J. 
The extension of Sn to J' (R nd) then follows from the nuclear 
theorem, to complete the proof. Observe that we have now 
also shown S[ f} = J eiq:>(f)dIJ.(q:» for complex f E J(R d ). 

Let Y denote the Banach space obtained by completing 
J(R d) in the norm 

(3. 2) 

where 

Proposition 3.2: Assume (3). Then S[f} extends by 
continuity to an entire function on Y, and the moments Sn of dIJ. 
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extend to continuous, multilinear functionals on Y X ••• X Y. 

Proof: We use Vitali' s theorem to establish analyticity 
of S[ f} for f E Y: .A sequence of functions on a compact set 
K c ([;n which is uniformly bounded and pointwise convergent, 
converges to a function analytic on K. The continuity of Sn 
on Y X ••• X Y follows as above from the Cauchy integral 
theorem. 
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Remark: The Schwinger functions Sn are also continuous 
in the norm ~11 + lfl" by (1.3b). 

We now define Y(O, t) c Y as the subset of functions 
f E Y supported in the interval (0, t). Let M(f) == Ifl1 + Ifl~. 

Proposition 3.3: .Assume (I) - (3) and let f E Y(O, t)real. 
Then W maps the functions cp(f)r and exp(cp(f)) into operators 
on :K with domain e-tI-ic. Furthermore, 

(3. 3) 

(3.4) 
rA -tH r q 

11 (cp(f) ) e 11 ~ K(c\fP r~ , 

where K. c < GO and q = (p - l)/p. 

Remark: .As a special case of (3.4), 

~cp(f{djJ.1 = \<0, (cp(f{)"O> I ~ K(C Ifpr r~ q. 

Proof: The operators (cpr)" and (exp cpr are densely de
fined by Propositions 2.2 and 3.1. To establish (3.3), let 
k = exp(cp(f)) and calculate Mn defined in (2.6). Since the 
supports of a(2j_1)t and (~a)(2j_1)t are all disjoint (for fixed 
t and j = I, 2, ••• ) it follows by (1. 3) that Mn ~ exp(M( U) / 2). 
Then (3.3) is a consequence of Theorem 2.3. 

To prove (3.4), we define for Wj' Zj E et, 
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Then 

(3. 5) 

We bound (3.5) using the Cauchy integral form.ula, 

4n 2nf (n dWi M = (2rH I 21Ti) S( g} n 2rH 
n j=l wj 

dz· 
lr+~ ), 

Zj 

with each integral taken over a circle of radius 4E -1 centered 
at the origin. The upper bound for M(g) on this circle is 
2nM(4C 1f), since the term.s in g arising from. different (or 
tim.e reflected) value s of j have disjoint supports. Thus 

M ~ exp(M(4E -l f )/2)(EI 4{(2rH)-t 
n 

-1 r 
~ exp(M(4e f)/2)e r~ 

To m.mlm.ize Mn' fir st replace f by fl I f ~ yielding 
Mn ~ exp(cE-p)(E\fprr~ Then choose e = (cp/r)l/p, to obtain 
(3. 4). 

Proposition 3.4: There exists a unique bilinear form. 
t(h) defined on the dom.ain :!-Co X :!-Co (for any 0 > 0) and satis
fying (for f = h ® a), 

t 

(3. 6) 
1\ -tH ~ -sH -(t-s)H 

cp(h ® a) e = Je <,p(h)e a(s)ds 

o 
on :!-Co X X o• Furtherm.ore 

-oH -oH -oH A -(t+o)H 
(3.7) lIe t(h)e 11 ~ K:o\hl"" lIe c,o(f) e 11 ~ K:olf11· 

Proof: By Corollary 2.4, q,(h ® a,.) is a form. on 
:!-C X :!-Co' which is C ao in ,. for 0 ~ ,. < 0/4, 0' :<!: t + 0/2. By 
(f.9) and (3.4), 

-oH dn A -o'H 
(3.8) lI e c,o(h® d,.n a,.) e 11 ~ K: olhlJllall L + Ilail L ). 

~ 1 P 
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We appeal to the fact that a distribution in s, all of whose 
derivatives have a fixed order, must be a CCO function of s. 
Thus on 3<:6 X 3<:6' there exists a bilinear form ip(h) which satis
fies 

t " J -sH sH cp(h ® 0.) = e ~(h)e o.(S)ds 

o 

and such that 

F(s) 

is a CCO function. 

We now improve (3.8) to eliminate 1I0011L. With n = 1 
and 0. = X(t I , t 2) the characteristic function of p (tl' t 2 ) c (0, t), 

t s: I, we bound 

We integrate t 2 from sI to s 2 = 

we have 

sI + 0(6). Since 
s2 

+ J (6t - 6t )dt2 ' 
1 2 

Ile -6Hrn(hiO. 6t )"e- 6'H11 s: ( (6- 1) + 2K ) Ihl 
'1"' '01 1 KO,6° 1,6 J. 

Now integration over t l shows that 

-6H A -6'H 
lIe cp(h® 0.) e 11 s: K61hl 1I001I L • 

J 1 

Proposition 3.5: Assume (1) - (3) and let f = h ® Xo t' 
where h E J(R d- I) is real and where Xo t is the charactertstic , 
function of (0, t). Then 

(3.9) J cp(f) 2d f.L = o(t), t -+ 0 • 
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Proof: We use the continuity of s2 in the norm IflI + 
Iflc (cf. (1. 3b» to conc1ude that 

IJcp(f)2dtJ.1 s; const.Il'X.O.tll~, = const. t 2/ , 

= o(t). t -+ 0 • 

since , < 2 by hypothesis. 

If instead we assurne 

(3. 10) r, 2 J 2 J -1 JCP(f) dtJ. - (cp(f)dtJ.) = (f. (-6 + a) f)dp(a). 

then (3.10) is o(t) and IJcp(f)dtJ.\2 = O(t2). 

4. THE FEYNMAN-KAC FORMULA 

In this section we derive the Feynman-Kac formula on X. 
suitable to study perturbations of H by the bilinear form cp(h). 
for h E .cI(R d - 1)real. We find that 

(4. 1) ( -cp(b8'X.Ot»1\ -tH _ -tH(h) 
e e - e • 

Here H(h) is a self adjoint operator. bounded from below. whicl 
satisfies 

(4.2) H(h) = H + cp(h) 

as an equation for bilinear forms. Also for h real. we find 
that 

±cp(h) s; Ihl (H+ I) • 
.cl 

Theorem 4.1: Let S(f1 satisfy (1) - (3). Then the left 
side of (4. 1) is a semigroup S(t) with a self adjoint generator 
H(h) satisfying 

(4.3) 



FUNCTIONAL INTEGRAL METHODS IN QUANTUM FIELD THEORY 

Furthermore, (4.2) is satisfied on the domain :Ko X :Ko ' for 
any 0 > o. 

Proof: Let S(t) denote the left side of (4.1). By Pro
position 3.3, S(t) is a bounded operator, and IIS(t)11 :::; 
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exp(t( Ihl..; + 2P - 1 IhIB)). Also S(t + s) = S(t)S(s) and the 
S(t) = S(t)':' follow from the definition (4.1). We next establish 
weak differentiability of S(t) at t = 0, on the dense domain 
X X X, where X = e - oHW(e+ n L ao ). Weak (and strong) con
tinuity of S(t) follow, and hence the existence of a self adjoint 
generator H(g) satisfying (4.3). Write f = -h ® Xo t' so that 
on :Jt: X X, , 

The fir st term on the right of (4.4) tends to -H. By Proposi
tion 3.4, the second term converges to -~(h). The third term 
converges to zero, which we see as follows: Let A E e+ n L co • 

co 2· 
Then using lex - 1 - x I :::; const. [(x2 + xN ) + ~ x J/(2j)~ J, 

j>N/2 

-1 2 [J 2 S N :::; const.t IIAll Lao cp(f) df.L + cp(f) df.L 

co I 2j ] 
+ ~ (2J·)' f cp(f) df.L , 

j>N/2 • 

for any even N ~ 2. The first term on the right of (4. 5) 
tends to zero (as t ~ 0) by Proposition 3.5. Choose N > p, 
so the remaining terms in (4.5) tend to zero (as t ~ 0) by 
(3.4), and the fact that Ifl = \hl..;(t + t 1 / p ) :::; O(t1 !p). This 
complete s the proof of weak differentiability, and the identity 
(4.2) on X X X. By Corollary 3. 4, e-oH~(h)e-oH is bounded. 
Hence (4.2) extends by continuity to :Ko X :Ko• 
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Corollary 4. 2: The forms ~(h) and H(h) extend by con
tinuity to the domain D(Ht ) X D(H), and they satisfy (4.2) -
(4.3). Also 

(4.6) 
-~ -Ä 

11 (H + I) ~~(h)(H + I) 211 ~ Ih 1.1 • 

Proof: On:tCö X Jeö we infer from (4.2) - (4.3) that 

±~(h) ~ (\h 1 + 2P - I lh IP)(H + I) , 
.I .I 

or for any constant c f; 0, 

Taking c -+ 00 gives 

±~(h) ~ \h I)H + I) • 

This bound now extende by continuity, as claimed. 

5. COMMUTATORS AND SELF ADJOINT FIELDS 

We define real time field operators ~(f) and establish 
their properties as operators on Je. On D(Ht) X D(Ht ) the 
bilinear form 

(5.1) ~(h,t) = eitH~(h)e-itH 

is continuous in t. Thus we define 

(5.2) t(f) = It(it),t)dt 

(t) -+ -+ d-I d 
where f (x) == fex, t) E .I(R ) for f E .I(R ). 

Theorem 5.1: Assume S[fJ satisfies (1) - (3). Then 
for f E ..I(Rd)real' the bilinear form (5.2) uniquely determines 
a sel! adjoint operator t(f) on:Kr which is essentially sel! 
adjoint on any core for H. Moreover 
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(5.4) 

and 

(5. 5) 

n n-I 
qi(f):D(H ) -. D(H ), 

2 
[iH,qi(f)] = -qi(8f/8t) on D(H). 
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Proof: The bound (5. 3) for Mf) as a bilinear form fol
lows by Corollary 4.2. The relation (5.5) for qi(f) as a bi
linear form follows from (5.3). The remaining assertions 
follow by the commutator Theorems 5.4 - 5.6 below. 

Corollary 5.2: The Wightman functions 

(5. 6) 

exist and are tempered distributions in r;/' (R nd). 

Let IY C Je denote the finite linear span of vector s of the 
form qi(fI )·· 0 qi(fn)O, f. E r;/(Rd)real. w.e establish in Theorem 
5.3 that IY is dense iJ Je. Note that e1tH:1Y -. IY, and 

IY c (n IY (Hn » by (5. 4). Thus IY is a core for Hand, by 
n 

Theorem 5.1, a core for Hf). 

Theorem 5.3: iJ is dense in Je. 

Proof: 
Wexp(i.q)(f» = 
it is no loss 

R ecall that Je is spanned by vector s of the form 
(exp(i.q)(f»)"O, for fE r;/+. Using Proposition 3.3, 
of generality to re strict attention to f = .f: hJ. ® uJ·, 

J=I 

with h j ® Uj E r;/(O, t). We first choose Uj such that 
o < t l < t 2 < ••• < t n < t for t j E suppt u j ' and define for 
real s, 

J istIH -is(t -t2 )H 
(5.7) e( s) = e qi(hI)e 1 qi( s2)·· • qi(hn)O E IY • 

By Corollary 2.4, e( s) is the boundary value of a function of 
s, analytic for Im s > O. If X is orthogonal to IY, then 
<X, e( s» = 0 for s real, and hence <X, e(i» = 0, i. e. 

(5.8) 0 = J<X' We -tl Hcp(hI , O)e -\t I -t2 \ Hcp(h, 0)·· • ) TI u.(t.)dt .• 
. 1 J J J J= 
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By the continuity of (5.8) in aj which follows by Proposition 
3.3, (5.8) remains valid if we translate the supports of aj to 
overlap. Thus 

n nl\ 
<X, WqJ(f) ) = 0 = <X, (qJ(f) ) 0). 

Again using (3.4), we may suro the exponential series to es
tablish <x,(exp(iqJ(f»)"O) = O. Thus X = 0, and ~ is dense. 

We now prove four technical results concerning commu
tators and self adjointness of operators. The first three are 
weIl known, see [SJ for references. A result similar to 
Theorem 5.7 was proved independently by Driessler and 
Fröhlich [6J. 

We start with some notation used in Theorems 
Let H = H~~ :<!: 0 be a positive, self adjoint operator, 
~ c (n ~(Hn» be a core of C CD vector s for H. Let 
R(X-) ~ (H + (X- +1)I)-1, so that R == R(O) = (H + I)-l. 
abilinear form defined on the domain ~ X ~ and let 
again be abilinear form on ~ X ~. 

5.4 - 5.7. 
let 

Let A be 
oA = [iH,AJ, 

Theorem 5. 4 : Let Rtf1A)Rt be bounded. Then for any 
positive integer n, R n/2 AR n is bounded if and only if AR n 

is bounded. Also IIRn/2ARn/2 - ARnl1 ~ nliRt O(A)Rt 11. 

Assuming the theorem, then by the Riesz representation 
theorem we have 

t ~ n/2 n/2 
Corollary 5.5: If R o(A)R2 and R AR are bounded, 

then A uniquely determines an operator (also denoted A) with 
domain~. The operator A is symmetrie if the form A is 
real. 

Proof: It is sufficient to stUdy the difference 

ARn _ R n/2 ARn/2 = [A, Rn/2JRn/2 

= n;1 R j/2 [A, R*JR(2n- j -1)/2 • 

j=O 

"/2 (2n-j-I)/2 
The factors R J and R are bounded by 1, whUe the 
commutator is studied through the Cauchy integral formula [7J, 
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• 
Ri = 1T- 1 J}.. -iR (}..)d}.. • 

o 

Thus 
CD 

[A, R~J = -hr -1 JR(}")Ö(A)R(}..)}.. -id}.. , 

whieh is bounded in norm by 

1T -1 j (}.. + 1) -I}.. - \,,}.. = 1. 

o 

o 

using 
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Theorem 5.6: Let A be a symmetrie operator defined 
on iI) and suppose that Rt ö(A)Rt and AR n are bounded for some 
n ;;:: 1. Then A is essentially self adjoint on any eore for If1. 

- n Proof: Sinee AR n is bounded, iI)(A ) ::> iI)(H ) and prove 
essential self adjointness on iI)(Hn ). Let e E iI)(A *), X E iI)(Hn ). 
Then R(}..)ne E ~Hn) c iI)(A), and 

n n n n 
(5.9) (X, A}.. R(}") e) = }.. (R(}") AX, e) 

n n * n n = (X,}.. R(}") A e) + ([}.. R(}..) ,AJX' e). 

We take the limit }.. -+ CD. Sinee}.. n R (}..)n -+ I strongly, we 
evaluate the first term using 

The eommutator in the seeond term is bounded uniformly as 
}.. -+ CD beeause 
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n n n-l n n n r 1 
11 [A, \ R(\) JII ~ ~ \ IIR(\) [A, R(\)]R(\) - - 11 

r=O 

n-l 
~ ~ \nIIR(\{+l ö(A)R(\)n-r\\ 

r=O 

~ 0(1) • 

Thus by (5.9) 

(5. 10) lim A\ nR(\)e 
\ 

= A~' e + lim [ \ n R (\ ) n, A ] ~,< e 
\ 

We complete the proof by showing that the last term in (5. 10) 
has a limit equal to zero. Thus e E D(A -) and A is self 
adjoint. 

Because of the uniform bound on the norm above, it is 
sufficient to prove that [A, \ n R (\)n] converges to zero on the 
dense set ;6)(Hn). Let I\r E ;6)(Hn ). Then 

The second term on right converges to -A I\r. The first term, 
written as 

converges to A I\r. This completes the proof. 

Theorem 5.7: Let A, B, ö(A), ö(B) all satisfy the hypo
theses of Theorem 5.6 with n = 1. Let AB and BA be de
fined on ;6) and [A, B];6) = O. Then A and B commute. 

Proof: Define the bounded, self adjoint approximation 
A\ = \R(\)-!-AR(\)!. Then for e E;6), A\S -+ AS. By Theorem 
5.5, ;6) is a core for A, so exp(iA\) -+ exp(iA -), strongly. 
We now show [exp(iA\), exp(iB\}J -+ O. 
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First we establish the identity 

The calculations used to derive this identity are performed on 
the domain R(A)-t~. This domain is dense because ~ is a 
core for R(A)-t (e. g. by Theorem 5.6 with A = R(A)-t and 
n = 1). On this ,domain, we use the identity 
R(A)3 2[A, BJR(AF = O. From (5.11), and the boundedness 
of Rt c5(A)R~, AR, etc., we infer that 

(5. 12) 

Next we claim that 

(5. 13) 

where K is a constant independent of A. To establish (5.13), 
we integrate the differential inequality 

(5. 14) 

where 

2 -itA, 2 itAA F(t;fJ.):; fJ. Re I\.R(fJ.)(H+I) R(fJ.)e R. 

The inequality (5.14) follows from the assumption 
11 c5(A)Rll :5:; const., and K does not depend on A, fJ., t. This 
yields on integration 

(5. 15) 

Since fJ.R(fJ.) is monotone increasing in fJ., also F(t; fJ.) is mono
tone increasing in fJ., and the limit F(t;fJ.) /' F(t) exists [8 J. 
Thus the range of exp(itAA)R lies in the domain of (H + I) and 
(5.13) holds. Similar estimates hold with B replacing A. 

Finally, we study the identity between bounded operators: 

1 1 
(5. 16)R[e iAx., eiBAJR = JdSJdtRQ(s,t)~'[AA' BAJQ(l- s, 1 -t)R , 

o 0 
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where Q(s, t) = exp(it~>..)exp,<isB}.) is unit~ry. By (5.12), 
(5.13), we infer IIR[eIA>..,eIB>"]R\\ ~O(>..-tt. Tl].e).eft side of 
(5.16) converges strongly as >.. ..... co to R[e IA -, e lB JR, while 
the right side converges to zero. Thus A - and B- conunute. 

Note (5.16) follows from the following identity for 
bounded C, D: 

1 1 
C D J (d sC D (I-S)C) J sC[C D] (l-s)C [e ,e ] = ds -e e e = ds e , e e , 

ds 

so 

o 0 

C D 
[e ,e J 

1 1 J J t sC tDrc D] (l-t)D (l-s)C = - ds d e e _' e e • 

o 0 

6. LORENTZ COVARIANCE 

The main result of this section is Lorentz covariance of 
, and Lorentz invariance of O. We also prove analyticity of 
the Schwinger functions at noncoinciding points. 

Theorem 6. 1: Let dj.L sati sfy (1) - (3). Then there exi sts 
a strongly continuous, unitary representation U(g) of the in
homogeneous Lorentz group S, on X such that 

(6. 1) U(g)O = 0 

-1 -1 
u(g),(f)U(g) = ,(g f) 

for all g E s,. In terms of ,(x) , 

(6.2) 
-1 

U(g),(x)U(g) = ,(gx) • 

Remark: We ask whether the assumptions (1) - (2) are 
sufficient for the existence of U(g). We use (3) in our proof 
that 0 is invariant under Lorentz boosts (Lorentz rotations in 
a (t, x) plane). 

Proposition 6.2: Let dj.L satisfy (1) - (2) and let g ..... V(g) 
be a strongly continuous unitary representation of a group 
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Ci o on e such that 

(6.3) V(g)l = I, V(g)e+ c e+, ",V(g) = V(g)"" T(t)V(g) = V(g)T(t) • 

Then U(g) defined by 

WV(g) = U(g)W, g E Ci O ' 

is a continuous unitary representation of Cio on j{ such that 

(6.4) 
itH itH 

U(g)n = n, e U(g) = U(g)e • 

Proof: A s in the proof of Theorem 2. I, V(g) maps e+ 
and h into themselves, so U(g) is defined on the domain we+. 
Furthermore, U(g) is unitary since V(g) commutes with "'. 
In fact 

-1 -1 = (WA, WV(g )B)'lI' = (WA, U(g )WB) , 
.n. j{ 

* -1 -1 so U(g) = U(g) = U(g ). Thus U(g) extends to a represen-
tation of Cio on all of j{. Since V(g) com~utes with T(t), 
U(g) commutes with e-tH and hence with e ltH• Strong con
tinuity of U(g) follows from strong continuity of V(g), while 
U (g)n = ('2 follows from V( g) 1 = 1. 

We now study the distributions 

(6. 5) 

which are densities of the Wightman functions (5.6). Here 
for brevity we use the notation.!! = [hI ,···, h n }. 
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Proposition 6.3: The Wn(~;t) are boundary values in 
J'(R n ) of analytic functions Wn(~;z). Here Zj = td + is j , and 
the W(~;z) are analytic in the region Sj+l - Sj > , 
j = I, 2, ••• , n-1. Furtherm.ore, for t j = 0, and sI< s2 < ••• < 

sn' 

(6. 6) W (h;is) = S (h, s) = Icp(h1, sI)·· ·cp(h ,s )df-L • n- n- n n 

Proof: The bound of Corollary 4.2 shows that W n(~;z) 
is analytic for Sj+l - Sj > 0, j = I, 2, ••• , n-1. The bound of 
Theorem. 5.1 shows that W n(.!:!:;z) -+ W n(.!:!:;t) in JI (Rn) as 
Sj+l - Sj '\I O. For t j = 0 and Sj+l - Sj > 0, the Wn(~;z) agree 
with the Schwinger functions, by the definitions of g2.3. Note 
the Schwinger functions are already known to be analytic in 
Sj+l - Sj by Corollary 2.4. 

Proof of Theorem. 6. 1: The space-tim.e translations 
and space rotations follow from. Pr opos ition 6. 2. The field <P 

transform.s covariantly by definition. To com.plete the proof 
we construct the Lorentz boost transform.ations. Let us con
sider a pure Lorentz rotation An by hyperbolic angle n in the 
(t, ~1) ;: (t, x) plane. The infinitesim.al operator for this rota
tion on the Wightm.an functions is 

L 
n 

n (0 0 ) = :0 t.- + - . 
. 1 J ox. otJ. J= J 

We show W n(LnF) = 0 for all F E J(R nd). In particular 

d 
- W (A F) = W (L A F) = 0 , 
dn n n n n n 

so each W n is Lorentz invariant. It follows that there exists 
a unitary group U (An) on Je which im.plem.ents An. The Lorentz 
group m.ultiplication laws for the U(An ) follows from. the 
Lorentz group m.ultiplication laws for the An. 

The Euclidean invariance of the Schwinger function Sn' 
in infinitesim.al form., states that 

(6.7) n( 0 0)-+ o = :0 s.-,,- - x.-,,- S (x;s) • 
j= 1 J uXj J uS j n 
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We analytically continue (6.7) to cOIllplex Sj = Ej - itj with 
E-+l - Ej > 0, i. e. within the dOIllain of analytictty of Sn' For 
JOIllpiex s we rewrite (6. 7) as 

(6. 8) O ~ [ -t) a a -+ = Li (I;- - 1 -- - x_ a(--lt-) JSn(x, E - it) • 
j= 1 J j aX j J J 

We now take Ej+l - E- -+ 0 and find Ln Wn = O. With test 
functions, this state~ Wn(LnF) = 0, as desired. 

Corollary 6.4: The energy IllOIllentuIll spectrUIll lies in 
the forward cone, I PI::; B. Bere P is the IlloIllentuIll opera-
tor, the generator of space translation on J{. 

TheoreIll 6.5: ASSUIlle (1) - (3). Let 0 > O. There 
exists abilinear forIll iji(x) on Ko X Ko such that 

(6. 9) 
- oB - oB 

e iji(x)e 

is a bounded operator, 
that 

analytic in x for I Im x I < 0, and such 

(6. 10) iji(f) = J iji(x)f(x)dx • 

-+ 
Proof: Since P and B cOIllIllute, we infer froIll Corol-

lary 6.4 that the series 

itB-i~P-oB 
e = 

CI) (itB)n (_i~p)Ill -oB 
'6 n' Ill~ e 

n, Ill=O • 

converges in nO~Ill for Itl + 
that for \t \ + Ix I < 0, 

e -oBiji(ft -+)e -oB = 
,x 

lS areal analytic function, with 

(6. 11) 

Using (5.3), it follows 

F(x) 

for E < 0 and x, t real but otherwise unrestricted. Thus as 
in (3.8), F(O) is the integral of a bounded C'" function G(x), 
F(O) = fG(x)f(x)dX, where G(x) = e-oBiji(x)e- oB defines iji(x). 
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R epeating the argument leading to (6. 11), we obtain 

(6. 12) Iinne -öH~(x)e -öHII ~ K(E, ö)E-\nln~ , 
x 

where 

K(~, ö) = lIe -(ö-E)H~(x)e -(ö-E)HII • 

Since K(E, ö) is independent of x (for x real), the claimed 
analyticity follows by (6.12). 

Corollary 6. 6: The Schwinger functions Sn(x I '· .. ·, x n ) 
are real analytic functions of xl' ••• ,xn at non-coinciding 
points (i. e. xi 1: Xj for all i 1: j). 

Proof: Since the Sn are symmetrie under permutation 
of xl' •• " x n ' we may assume that t l ~ t 2 ~ ••• ~ t n • If 
some times are equal, but no two points coincide, then a 
small Euclidean rotation produces all unequal times. The 
corollary now follows from the analyticity of (6.9). 

Proposition 6.7: Let x, y be given, with ~ - y 1: 0. Let 
B be a subset of Rd of points (zO, i~ such that i projected on 
the line ~ - y doe s not lie between X and y. Let f I , ••• , fn E J 
be supported in B. Then Sn+2(f" ••• , f n, x, y) is analytic in ... ... ° ° ...... X - Y for X - Y real and Ix - y < Ix - y\. 

Proof: Perform a Euclidean rotation so that ~ - y is 
the new time axis. By construction, B contains no points in 
the time interval between ~ and y. The proof now follows the 
proof of the theorem. 

Note that in the S = xO - yO plane, the proposition allows 
us to connect the half planes Re S > ° and Re S < ° of analy
ticity by a slit I Im si< I~ - y I on the imaginary S axis. 

7. LOCALITY 

Theorem 7.1: Assurne (1) - (3) and let f, g E Jreal have 
space-like separated supports. Then three forms of locality 
hold: 
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(i) [exp(i~(f)), exp(i~(g))J = 0 • 

(ii) [~(f), ~(g)J& = 0 • 

( iii) W (f· •• f g ••• f) 
n+2 I' ", , n 

for all n and all f. E "/. 
J 

. -+ -+ d-I -+ 
GLVen T> 0 and z I: 0, zER , let B = B(T, z) be the 

d -+ -+ -+ -+2 subset of R of points (t, x) with t ~ T, x· z ~ z. Let 

n 
& B = span{ Wcp(f) :f E ..I( B)} • 

Proposition 7.2: & B is a core of cC:C vectors for H. 

Proof: Every vector in &B is in the range of e- TH• 
Thus we need only show that &B is dense. Let X l. &B and 
define 

-+ F(t, x) 

where g E J+ n co. For t and ~. i s~ficiently large~ . 
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* E & B' and F(t, x) = O. Clearly F lS real analyttc tu 

t for t > 0, and by Corollary 6. 4, F is real analytic in ~. 
Thus F ;:; 0, and in particular F(O,O) = O. But the estimates 
(3.4) allow summation. of the exponential series ecp(g) and thus 
ensure X l. Wexp(cp(g)). However the vectors Wexp(cp(g)) span 
:1(. Thus X = 0 and &B is dense. 

Proposition 7.3: Let f, g E Cö have space-like separated 
supports. Then for some B as above, 

[~(f),~(g)J&B = O. 

Proof: Study the Schwinger functions 

(7. 3) Sn+2(~fI'··· ,~fr,x,y,fr+l'···' fn) = Sn+2(~fl'···' ~fr,y,x,fr+l,···,fJ. 

with f j supported in B(T,'i). Choose T, i sufficiently large so 
that no point in B U ~B lies in the strip bounded by two 
hyperplanes normal to ~ - y and passing through x and y 
respectively. Then Corollary 6.7 applies and (7.3) is analy-
tic in x - y for ~ - y real and \xO - yO \ < \~ - y \. We 
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evaluate (7.3) at pure imaginary x O = it, yO = iso (Note we 
may choose one B for all x ~ suppt f, Y E suppt g.) Then 
multiply by f(x)g(y) and integrate over x, y. Thus the analytic 
continuation of (7.3) is the statement 

where 91,9 2 E 9B. Note the restriction It - s\ < l;t - t\ is 
just the condition that f, g have space-like separated supports. 

Proof of Theorem 7. 1: By Proposition 7. 2 and Theorems 
5.4, 5.6, 9 B is a core for ~(f), ~(g) and in the domain of their 
product. We let f, g E Cö real' and apply Proposition 7.3. 
By Theorem 5.7, (with 9i the cLomain of definition) part (i) 
of Theorem 7. 1 holds. Since the vectors in 9 are C.., for all 
products of field operators, parts (ii) and (iii) hold. Parts 
(ii) and (iii) extend by continuity from f, g E Cö to f, g E J, 
from which part (i) follows by a second application of Theorem 
5.7. 

8. UNIQUENESS OF THE VACUUM 

We consider the following condition on dlJ.(cp): 

(4) Ergodicity: The time translation subgroup T(t) of Ci 
acts ergodically on the measure space [,.,pI (Rd)real' dlJ.}. 

Theorem 8.1: Let S[f} satisfy (1) - (3). Then (4) is 
satisfied if and only if (1 is the unique vector (up to scalar 
multiples) in lC wh ich is invariant under time translation 
exp(itH). 

Remark: Ergodicity of dlJ. is equivalent to the statement 
that 1 is the unique invariant vector for the unitary group T(t) 
acting on the Hilbert space e = L 2("'p', dlJ.). This in turn is 
equivalent to the cluster property 

_l t 
(8.1) 0 = limt S[(AT(S)B) - (A)(B)Jds, 

t-.= 0 

for A, B in a dense subspace of e. Here (.) denotes J. dlJ.. 
In particular, exponential c1ustering of the Schwinger functions 
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ensures ergodicity of df!. 

-tH 
Proof: For a seH adjoint contraction se:migroup e 

acting on a Hilbert space }{, 

st.li:m 
t-+.., 

t -lS -sH teds = 
o 

P. 
Lnv 
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is the projection onto the subspace of invariant vectors. 
(Si:milarly, for a unitary group T(t), Pinv = st.li:m t- 1 l'T(S)dS.) 
Thus (8.1) is equivalent to the state:ment that 1 spans the 
invariant subspace of T(t) in e. Let A, B in (8. 1) be finite 
linear co:mbinations of functions exp(icp(f)), with f E C~ e 1" 
It is no loss in generality to require A E e_, B E e+,' t;e~ause 
of the ti:me translation T(s) in (8.1). Then (8.1) is equivalent 
to the cluster property 

t 

(8.2) 0 = li:mt- 1SC(WtYA,e-tHWB'> - <WtY A , 0) <O,WB) Jds, 
t-+.., 0 1C :J{ :J{ 

and thus to the uniquene s s of 0 as a ground state for H. 

We re:mark that the proof of Theore:m 1.2 is now co:m
plete. We also state without proof the following: 

Theore:m 8.2: Let df! satisfy (1) - (3). Then df! is 
ergodie under T(t) if and only if df! is ergodie under the full 
Euclidean group. 

Theore:m 8.3: (Deco:mposition into pure phases) Let df! 
satisfy (1) - (3) but not (4). Let Z denote the subspace of 
L..,( df!) which is invariant under T(t). Then there exists a 
positive probability :measure d~ on the spectru:m of Z and a 
deco:mposition 

with the property that the :measure df!~ satisfies (1) - (4) for 
al:most every ~. 
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HOW TO PARAMETRIZE THE SOLUTIONS OF LAGRANGIAN FIELD THEORIES: 

SYMMETRY BREAKING, AND DIMENSIONAL INTERPOLATION AND RENORMALIZA

TION in the ($4) MODEL 
n 

A. S. Wightman 

Princeton University 
Princeton, New Jersey 

1. INTRODUCTION 

At the present stage of deve10pment of Lagrangian quantum 
fie1d theory, information about model theories is avai1ab1e from 
severa1 sources with quite different levels of mathematica1 com
p1eteness. For examp1e, there is constructive quantum field 
theory, the resu1ts of which are typical1y mathematical theorems; 
it undertakes to construct solutions of specific models and then 
to estab1ish their main properties with complete mathematical 
rigor. A second example is the analysis of high-energy and low
energy behavior using the method of the renorma1ization group. 
This analysis assumes that the models studied have solutions and 
deduces properties of those solutions from further assumptions 
(e.g. differentiability in parameters and the equivalence of a 
redefinition of the normalization of Green's functions to a 
multiplicative renormalization) about the functions controlling 
high energy behavior. There are other sources of information; a 
complete list will not be given here. 

The present survey is an attempt at an overview of the 
solutions of the Lagrangian theory of a quartically self-coupled 
neutral sca1ar field in n space-time dimensions, customarily 
denoted the ($4)n model. From a logical point of view, the 
outlook arrived at is based on a patchwork of rigorous results 
and more or less plausible inferences. It is to be hoped that 
eventual1y all its statements will be incorporated into construc
tive fie1d theory as theorems. In fact, the main point of the 
present survey is to focus attention on what appear to be the 
key obstacles in the way of such a program. 
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2. SOME RESULTS OF CONSTRUCTIVE FIELD THEORY [1] ••. [6] 

Consider first the P(~)2 model. Here the Hami1tonian is 

where (forma11y) 

and 

Ho = f~: (n2+ (V'~)2 + mo2 ~2): dx 

Hl = f :P(~(x»: dx - Eo m1 

The Wiek ordering in Ho is so defined that 

Ho(mo) = f Im~+k2 dk a*(k)a(k) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

a(k) and a*(k) being the annihilation and creation operators 
of momentum k. On the other hand, for the sake of genera1ity 
the Wiek ordering in H1 is defined relative to the vacuum state, 
~O(ml)' of Ho(m1 ) : 

(2.5) 

The fie1d operator ~ is norma1ized so that 

(2.6) 

where f o is the ground state of H 
so that 

EO is a constant chosen 

(2.7) 

P is a po1ynomia1 bounded be10w. The constant term in P is 
of no significance since it is cance11ed by Eo • Thus, P will 
be regarded as defined modu10 constants. In constructive fie1d 
theory, the fie1d ~ is usual1y normalized by the canonica1 
commutation relations 

[Hx),n(y)] = iO(x-y), rr(x) = ~ (2.8) 
dXo 

and that norma1ization will be assumed here un1ess an exp1icit 
to the contrary is made. (The above description is not precise 
because it does not take into ac count the delicacies arising in 
the thermodynamic limit from the fact that one must use a non
Fock representation of the commutation relations. See [1] for 
further information.) 

The theories just described may be 1abe1ed by the symbols 

(2.9) 
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However, this is a redundant parametrization because there are 
severa1 groups acting on the fie1ds and Hami1tonians which 
estab1ish relations between solutions. 

i) The Wiek Reordering Group 

These operations R(mI 2 + m12) re1ate the theory with P 
Wick-ordered with respect to <Po (m/) to a theory in which the 
interaction is Wick~rdered with respect to <Po (m12 ) 

(2.10) 

where is defined first for monomials 

[k/2] R. n! R. k-2R. I (-1) --='---- [oC(mi + m1)] I; 
R.=o (n-2R.)!2R.R.! 

(2.11) 

and then by linearity for polynomials. The relation (2.10) 
permits one to chose at one's convenience an arbitrary mass mi 2 

with respect to which the interaction polynomial is Wick-ordered, 
at the cost of reshuff1ing coefficients of P of degree < 2N , 
the degree of P 

ii) The Orthogonal Group of the Fie1ds 

This is the group genera ted by translation 

({C,l}~)(x) = ~(x) + C 

and reflection 
({O,-l}$) (x) 

The first yields the relation 

{~+c;mo2,m12,p,n} 

with 
{C,l}P(t;) 

-Hx) . 

P(I;+C) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Translation of the field permits one to reduce the problem of 
solving the theory with the interaction P to one in which the 
term of degree 2N - 1 is absent at the cost of introducing 
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interactions of lower degree. The reflection operation yields 

(2.16) 

These transformations leave the canonical commutation relations 
invariant. 

iii) Bare Mass Dependence 

This group invariance just says that the theory depends on 
mo2 + 2A2 rather than on mo 2 and A2 separately. Here A2 
is the coefficient of the second degree term in P 

(2.17) 

The symbol {~;mo2,mI2,p,<~>} contains 2N + 2 continuous 
parameters: 2 masses mo 2 and m12, 2N coefficients in P and 
one-order parameter <~> The bare mass relation (2.17) reduces 
these by one, the re Wick-ordering by another, and the order 
parameter <~> ought to be fixed by the rest of the parameters 
at least up to a discrete set of possibilities. (These are the 
possible pure theories which will be discussed shortly.) Thus 
there is a 2N-l parameter family of theories. For the simplest 
non-trivial case N = 2 , these parameters may be taken as the 
bare mass parameter mo 2 + 2A2 , the coefficient, A4, of ~4 and 
the coefficient, Al' .of the linear term ~ • 

There is one other group action in which a scaling transfor
mation of lengths and masses is combined with an appropriately 
chosen scaling of fields. In n dimensions of space-time it is 

({ph)(x) (2.18) 

and consequently for n 2 

mo 2 2 1 } 
{CP(p • ) ; 2' ~l '""""2 P, n 

p p 
(2.19) 

Using an appropriate choice of p one can display the dependence 
of the theory on its coupling constants in terms of dimensionless 
bare coupling constants 

j=l, ••• 2N where P(~) 
2N 
L A.~j 

j=l J 
(2.20) 
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The qualitative behavior of the physical mass, m, of the one 
particle state is plotted for N = 2 and n = 0 in Figures 1 
and 2. 

1 ) 

Figure 1 [4] The physical mass is monotonie in the bare mass. 
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It vanishes at some critical value in space-time dimensions 2 and 3. 

Figure 2 [5] The different curves correspond to different values 
of the bare mass. All curves come to zero at the critical value 

(4) 
gOc 

The striking feature of these curves is the occurrence of 
the parameters where the physical mass vanishes. This suggests 
that a phase transition has taken place and indeed one of the 
most remarkable recent results of constructive field theory is the 
proof thato for sufficiently large go (4) and g(1) = 0 there are 
two phases differing from one another by the sign of the order 
parameter <$>, which is non-vanishing [7]. The asymptotic be
havior of m as a function of gJ4) has been determined rigor
ously; it increases. The most plausible behavior in the neighbor
hood of the critical point is a go (4) is a cusp, but that has not 
yet been proved. The fact that th~ critical value, go (4) , is 
independent of the bare mass, m02+2 A2 , is a consequen~e of the 
scaling law (2.19): zero physical mass is characterized by power 
law rather than exponential decay of the two-point function. By 
choosing p2 = m02+ 2A2 in (2.19) one sees that the theory may 
be regarded aS.a theory of the field $(px) with bare mass 1, and 
interaction gO(4):$4(px):ml. 
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Equa11y striking is the corresponding behavior of the renor
ma1ized coup1ing constant, g(4), shown in Figure 3. It corresponds 
to what Glimm and Jaffe have ca11ed critica1 point dominance. 

(4) 
g +-one 

phase 
regioI" 

(4) 
goc 

Figure 3 [3][8] The renorma1ized coup1ing constant g(4) as a 
function of unrenorma1ized coup1ing constant g(4) is defined by 

g(4) = _m- 2 r(4)(0) 

where r(4)(p) is the one partic1e irreducib1e four vertex. 

Figures 2 and 3 bring out two qualitative features of the 
solutions when they are regarded as parametrized by the physica1 
one partic1e mass, m, and the renorma1ized coup1ing constant, g(4). 
For arbitrari1y sma11 g(4) there exist both a symmetrica1 
solution, having an asymptotic series at g(4) = 0 given by 
perturbation theory, and two broken symmetry solutions with asymp
totic series at g(4) = 0 given not by perturbation theory but 
by [9]. (The expansion begins with inverse powers of g.) The 
two va1ues of gO(4) corresponding to a single va1ue of g(4) 
are indicated by the interactions of the horizontal dashed 1ine 
with the curve in Figure 3. The second remarkab1e feature is 
indicated by the horizontal dashed 1ine in Figure 2: In order 
to hold the physica1 one-partic1e mass constant as go(4) + goc(4) 
from be1ow,one is forced to make m0 2 + +00 and ,,(4) + +00 
Thus, the 1imiting theory obtained in this way has an infinite 
mass and charge renorma1ization. There is a one-parameter fami1y 
of such theories 1abe1ed by m, which sca1e into each other. The 
1imiting theory when m + 0 is a sca1e invariant theory much dis
cussed in the theory of the renorma1ization group. On the other 
hand, for the same critica1 va1ue, goc(4), of the bare coup1ing 
constant there is a one parameter fami1y of superrenorma1izab1e 
solutions, 1abe1ed by mo ' all having physica1 mass zero. It is 
conjectured that the limit of these theories as mo + 0 is the 
same sca1ing limit theory. 

The qualitative features of the solutions of ($4)2 disp1ayed 
in Figures 1-3 persist in ($4)3 with one exception. In ($4)2 
one can take ,,(2) = ,,(I) = 0 and with A(4)/m02 sufficient1y1arge 
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a phase transition takes place. This comes about because changes 
in the definition of Wick-ordering of :~4: give rise to quadra
tic terms with negative coefficients that can be made arbitrarily 
large and negative. On the other hand, in three space-time 
dimensions the analogous terms are infinite and have to be mass 
renormalized away. Thus, in three space-time dimensions it is a 
A(4):~4: + A(2):~2: + mass counterterms theory with A(2) 
sufficiently negative that has the phase transition [10]. 

The final result of constructive field theory that will be 
mentioned is the Gli~Jaffe bound on g(4). It says that for a 
solution of (~4)n theory for which the ~ field two-point 
Schwinger function requires no subtractions 

< 00 

and for which ~ + -~ is a symmetry 

(4) 
g ~ 

c 

where C is a numerical constant independent of all parameters of 
the theory excep~ n. When the field ~ is normalized so that 
the residue of S(2)(p) at the single-particle pole is 1 

m2 f (~) dp(a) ~ 1 

so g(4) ~ c. This result is extraordinary not only in the 
simplicity of its proof but also in its consequences for the theory 
of the renormalization group, as will be discussed below. 

3. RENORMALIZATION GROUP ANALYSIS OF (~4) 
n 

The crucial quantity for the asymptotic high and low energy 
behavior of Schwinger functions is the function ß. It has 
several possible definitions depending on the definition of the 
renormalization procedure. However, all of them yield the same 
qualitative behavior displayed in Figure 4 

space-time dimension n < 4 

gCX: 
(4) 

g 

Figure 4 The zeros g(4)= 0, goo are ultraviolet stable, the zeros 
gwand g! are infrared stable. The subscript w stands for Wilson[ll]. 
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As far as the existjng analysis based 011 the renormalization group 
go es , gw' ~, ~. could all be infinite. However, from construc
tive field theory the evidence is that gw < 00 ; it is in fact 
believed to be the maximum of the curve of Figure 3. All the 
superrenormalizable solutions of ($4)n obtained in con~tructive 
field theory have coupling constants satisfying 0 ~ g{~) ~ ~ 
and have free field ultraviolet behavior. On the other hand, 
if there are solutions with gw < g(4) and if ~,~. < 00 ,then 
the solutions with gw < g(4) < ~ will have an ultraviolet 
behavior determined by the theory at the ultraviolet stable zero 
g(4) = ~. Drastic changes in ultraviolet behavior may be 
expected when g(4) crosses gw and ~ ,while drastic changes 
in infrared behavior are expected when g(4) crosses ~ 

Glimm and Jaffe's study of the scaling limit theories with 
m > 0 and g{~) = gw is an indication that ~ < 00 and that the 
ultraviolet behavior of the theory with g(4) = goo is renormaliza
ble in the sense that it requires only infinite charge mass and 
field strength renormalization. (There are other definitions 
according to which these theories are non-renormalizable.) However, 
to make this indication completely convincing. two additional 
results would be necessary. First, their discussion assumes the 
celebrated inequality r(6) ~ 0 which has not yet been proved. 
Second, one needs the existence of a solution not only exactly 
at g(4) = gw but for some g(4) strictly greater than g in 
order to conclude that all theories in the interval gw < g(4) < g~ 
are renormalizable in the above sense. 

The renormalization group analysis throws light on another 
aspect of this situation: its dependence on space-time dimension, 
n. It suggests that there are interpolations of the basic 
functions of ($4)n for non-integral n whose behavior is sum
marized in Figure 5. The e-expansions yield the asymptotic 
behavior of the curve gw{n) near n = 4, g(4) = o. If one takes 
Fi~ure 5 seriously, one comes to regard the problems of solving 
{$)3 and ($4)2 with ~ < g(4) <~' as related to that of 
($4)4 with 0 < g(4) < ~. This provides further support for 
the idea that these solutions should be renormalizable but not 
superrenormalizable. 

It is natural to ask how the Glimm-Jaffe bound fits into this 
picture. The simplest plausible conjecture is that theories for 

g(4) > goo' violate the assumption f dP!~2) < 00 and therefore 

that the Glimm-Jaffe bound is essentially an upper bound for g!. 

Of course, pessimists who believe that {$4)4 has no non
trivial solutions will note that the argument that the Glimm-Jaffe 
bound is an estimate for ~' {namely, that only at an infrared 
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stable zero can a drastic change in ultraviolet behavior occur) 
would apply equally weIl to gw. Then there would be no solutions 
of (~4)n except superrenormalizable ones and the isolated family 
constructed by Glimm and Jaffe at g(4) = gw • 

n 

(<j>4) 3 

(<j>4h ___ -

(<j>4) 1 

g 
(4) 

Figure 5. Diagram illustrating the solutions of (~4)n in their 
dependence on space-time dimension n and renormalized coupling 
constant g(4). The superrenormalizable solutions obtained in 
constructive field theory are indicated by the heavy horizontal 
lines, their putative dimensional interpolations by ~,,~. The 
expected renormalizable but not superrenormalizable solutions are 
indicated by ////. 

The above discussion has all been carried out in terms of the 
symmetrical solutions of (<j>4)n Presumably there are also broken-
symmetry solutions running over the same range of m and g(4) • 

It seems to me that the conjectures summarized in Figure 5 
provide a reasonable set of working hypotheses in the present 
state of knowledge. I have nothing to offer as a guess about what 
happens to the infrared behavior at g(4) = g ~ g(4) = g ... 

4. PARAMETRIZATION OF (~4)n THEORIES 

If the conjectures about the behavior of the solutions of 
(<j>4)n described above are accepted, one can see that there is a 
strong analogy between the phase diagrams of macroscopic systems 
in satistical mechanics and the parametrization of the solutions 
of (~4)n, an incomplete analogy however. 

The superrenormalizable solutions are parametrized by 
{<j>,mo2,m12,Lj~1 Äj~j,<~>} which we say could be taken without loss 
of generality as {~o;m02+ 2Ä2,m12,Lj~1 gO(j) ~j,<~>}. The use 

j 1=2,3 
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of these parameters has the advantage that the one and two phase 
regions are smoothly parametrized. The analogue of the bare 
(dimensional) coupling constant A(4) is l/kT and the analogue 
of A(l) is B~/kT where B is a magnetic field and ~ a 
magnetic moment. One has a unique phase for weak coupling (high 
temperature) and multiple phases for strong coupling (low tempera
ture). However, the bare parameters do not provide a satisfactory 
parametrization in the neighborhood of the critical point and they 
are, of course, totally useless for the non-superrenormalizable 
solutions. 

The replacement of the bare coupling constant, g~4), by the 
renormalized coupling constant, g(4) , improves the description 
in the meighborhood of the critical point and properly labels the 
non-superrenormalizable solutions. However, it does not distin
guish between the one and two phase regions. There is, therefore, 
not a good analogy between (m2g(4» and l/kT. 
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PHASE TRANSITIONS IN STATISTICAL 

MECHANICS AND QUANTUM FIELD THEORY 
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Department of Mathematics 
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Princeton, N. J. 08540 

1. Introduetion 

*+ 
T. Spencer 

Department of Mathematics 
RockefeIler University 
New York, N. Y. 10021 

These leetures are a survey of some mathematieally rigor
ous results eoneerning phase transitions and symmetry breaking 
in statistieal meehanies and quantum field theory. This subjeet 
has a rather long history: The first results on phase transi
tions were obtained by R. Peierls in 1936, [Pe]. He showed that 
the Ising model in two or more dimensions has spontaneous mag
netization at low temperatures. His argument was later reformu
lated in various ways and applied to many model systems. See the 
referenees in [Gr]. We shall apply a variant of the Peierls 
argument [GJS3] to prove that there is a phase transition in the 
two dimensional, anisotropie C~' ~)2 quantum field model in two 
dimensions and we explain how, in this model, a phase transition 
gives rise to soliton seetors. We show that the mass gap on the 
soliton see tor is bounded below by the "surfaee tension" of this 
model. 

In two dimensional models with eontinuous internal symme
tries and short range interaetions, Ce.g. the elassieal or 
quantum Heisenberg model) there is no spontaneous magnetization 
and no symmetry breaking; see [MW, DS]. It seems to be very 
diffieult to sueeessfully apply the Peierls argument to models 
with eontinuous internal symmetries. However a seeond teehnique 
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whieh is related to spin wave analysis enables us to prove exis
tenee of phase transitions and symmetry breaking for such models 
in three of more dimensions. We apply this method [FSS] to the 
elassieal Heisenberg - and the isotropie ("$ • "$) ~ quantum field 
model as weIl as to models with no internal symmetry whatsoever. 
Our leetures will eoneentrate only on these two methods. 

The basic estimate for this seeond teehnique is an upper 
bound on the two point eorrelation funetion in momentum spaee 
(denoted F(p» 

2 -1 o ~ p F(p) ~ Const. ß , (l.l) 

-1 
where ß is proportional to the temperature. We prove this 
estimate for elassieal systems on a eubie lattiee with nearest 
neighbor ferromagnetie pair interactions and for eanonieal Bose 
quantum field theories. An analogue of this estimate -- with 
F replaeed by the Bogoliubov two point funetion -- has been 
established for the quantum Heisenberg model in [DLS]. This to
gether with other estimates enables them to prove a phas~ t~ansi
tion for this model. For the N-eomponent, isotropie (<p. <p)~
model in the multiple phase region one ean eonelude the existenee 
of N-l Goldstone bosons (zero mass one partiele states) [ES]. 
As another important eorollary of estimate (1.1) and of eorrela
tion inequalities we obtain the existenee of massless (<p4)3field 
theories without long range order (i.e. without broken symmetries); 
this is based on [MR, GJl]. The existenee of a sealing limit for 
these theories is an open problem; but see [GJ2] and the eontri~ 
butions of Glimm and Jaffe to these proeeedings for some rigorous 
results eoneerning this question. 

Note that in quantum field theory inequality (1.1) (with 
ß = 1) follows from the Källen-Lehmann representation and the 
eanonieal eommutation relations whieh are generally valid in 
theories in two or three spaee-time dimensions. Finally we re
mark that (1.1) immediately implies abound on the eritieal ex
ponent n: 

If 
Const. 

Ix ld- 2+n 
, as I x I -+ 00 (l. 2) 

then n > O. Here Fe is the eonneeted two point funetion. 
(For some new results in v = 2 dimensions see Section 6). 

2. Infrared bounds 

We eonsider models of elassieal statistieal meehanies with 
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7fV. ferromagnetic nearestvneighbor interactions on a lattice ~ 
With eac~ site j € Z. we associate a spin vector aj = 
(aj, ... aj) and we assign a (single spin) distribution d~(a.) 
which is a positive, finite measure with the property that J 

(2.1) 

for all a. The interaction in a periodic box A is defined by 

A Ri a ) = - L a i · 

li-jl=l 

a.+ L h·a. 
J j €A J 

(2.2) 

i,j € A 

with spinsAat opposite faces of the box A identified. Note 
that in L each nearest neighbor pair only occurs once. For 
a function A(a) of the spins in A we define 

<A(a)~ (ß,h) (2.3) 

where 

(2.4) 

is the partition function. For 

(2.5) 

equation (2.3) defines the finite volume expectation of the Ising 
model (N = 1) or the classical Reise.nberg model (N = 3) • In 
the case where 

(2.6) 

we obtain the lattice approximation of the (;.;) 2_Eucl i dean 
field theory, [GRS]. The continuum field theory can be con
structed by taking the lattice spacing to zero, [GRS, Pa]. 

We shall study the infinite volume expectations obtained by 
taking the limit in (2.3) as A -+Zv. Such a limit can be taken 

81 
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by passing to subsequences and using a standard compactness argu
ment. For the case where Ihl >0 and N=1.2,3 alllimiting 
expectations of the models defined by (2.2) -- (2.4) and (2.5) or 
(2.6) constructed by this procedure coincide, [Fl]. For suitable 
boundary conditions and N = 1 or 2 the expectations of products 
of 0i's can be shown, for these models, to converge, as A + ~v 
(by inclusion), by using correlation inequalities; see [DN). 

To formulate the principal result of this section one con
siders the two point correlation <0 • 0 >(ß) in momentum space. 
Let 0 x 

F(p) L v 
ix p[<o ·0 >(ß, h)) e 

XE: :z. o x 
(2.7) 

and let 
v 

ll(p) 2 L (l-cosp.) 
i=l 1 

(2.8) 

which is the momentum 
difference Laplacean. 
1Pi l ~ 7T. 

space representation for minus the finite 
The vector p lies in the Brillouin zone 

Theorem 2.1, [FSS). 
is a constant er> 0 

Suppose d~ satisfies (2.1). Then there 
(depending on d~, ß, h) such that 

-1 o ~ F(p) - c'o(p)~N[ßll(p)) . 

We shall sketch the proof of this result in §5. 
p + 0 the right side of (2.9) is independent of 
three or more dimensions 

v 
d p < 00 

hence (by the Riemann-Lebesgue lemma) 

f ix·p v 
(F(p)-c'o(p))e dp 

I PJ:s.7T 

+ 0, 

(2.9) 

Note that for 
~ and h. In 

(2.10) 

(2.11) 

as This means that <0 ·0 > + c _ (27T)-VC' • 
o x 
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If 

(2.12) 

we say the system has 10ng range order. 

3. Phase transitions in three or more dimensions 

In this section we app1y Theorem 2.1 and (2.10)-(2.12) to 
prove the existence of phase transitions for the models introduced 
in Section 2 in v > 3 dimensions. 

Theorem 3.1,[FSS]. If 

S > So = (2n)-vN f ~(p)-ldvp, (3.1) 

v ~ 3, then the 
distribution d~ 

For N = 1,2,3 

N-component c1assica1 rotator with single spin 
given by (2.5) has 10ng range order at h = O. 

there is spontaneous magnetization, i.e. 

Proof. By Theorem 2.1 

1 
<0 >(S,h) + 0 

o 

1 - c = (2n)-v J(F(P) - c'6(p»dvp 

(3.2) 

(3.3) 

< ß-1(2TI)-VNJ~(p)-ldVp = ß-1 ßo • 

Now if S > So c + O. But <0> = U, tor h = U, so our first 
assertion fo110ws. When N = 1,2,3 the Lee-Yang Theorem ho1ds 
and imp1ies the absence of 10ng range order, for h * O. Hence 
c = <01>(S,h 1)2 and 0< (1- S / S) < c = <01>(ß,h 1)2, provided 
00- 0 

h 1 + O. Thus (3.2) fo110ws for S > ß . 
Theorem 3.1 states that ß- 1 is a010wer bound for the criti

ca1 temperature. This 10wer b08nd agrees with that obtained by 
high temperature expansions to with:in 14% for the 3 dimensional 
Ising model and 9% for the c1assica1 Heisenberg model. As 
N + 00 the partition function for the N- component model (with 
S sca1ed to SN) approaches that of the spherica1 model [K, St]. 
Since S (N=l) is the critica1 temperature for the spherica1 
model weo expect our 10wer bound to be asymptotic ~or 1arge N. 
Theorem 3.1 has been extended to quantum mechanica1 (x-y)-and 
Heisenberg models by Dyson, Lieb and Simon, [DLS]. Let 
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(t) L " o. 0 0 

li-j 1=1 1 j 

be the Hamiltonian of the isotropic quantummechanical Heisenberg 
(anti-) ferromagnet in a finite, periodic box Ac. Z v. Here 
LAis the sum over all nearest neighbor pairs in A, and 0 = 
(ox,aY,oz) are a representation of the Pauli spin matrices. Note 
that 0 0 0 = S (S + 1), where Stakes the values 1/2, 1, 3/2,... • 
The two point correlation function is defined by 

lim (tr e-ßHA)-l tr[e-ßHAo 00 ] 

AtZ v 0 x 
Dyson, Lieb and Simon have recently proven -- among other inter
esting results on quantum lattice systems -- the following 

Theorem 3.2,[DLS]. 
(1) For the isotropie Heisenberg ferromagnet in v ~ 3 dimen
sions there exists a finite constant ß (S) > 0 such that, for all 
ß> ß (S), there is spontaneous magneti~ation, for all S ~ 1/2. 

c 
(2) For the anti-ferromagnet long range order occurs, provided 
S .<:. l. 

The main ideas of the proof of (1) are as follows: Let 

(0 , 0 )/\ o x 
(Tr e -ßHA) -1 Tr( r dt e -ßt HAa 0 

o 

-ß(l- t)HA ) 
x e 0 

x 

denote the Bogoliubov (or Duhamel) two point function for the 
system in the box A, and let (0, 0) denote some infinite 
volume limit of {(oo' 0 )A}. ThenOusi~g a quantum analogue of 
the grad 0 -bounds diseussed in Section 5, one can show that the 
Fourier transform ~(p) of (0, 0) satisfies 

o x 

~(p) <e'o (p) + 3(ßL'l(p»-1. 
- 0 

(3.4) 

On the other hand one can derive a lower bound 

c f(~<:e)S2 ) , (3.5) ~(p) ..::. F (p) 
2Fc (p) 

where Fe(p) is the Fourier transform of the eonneeted two point 
eorrelation funetion, and f is the convex, deereasing 
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function defined on R + by the equation 

f(x tanh x) = ! tanh x. 
x 

From inequa1ities (3.4) and (3.5) one obtains the upper 
bound 

hence 

v f3 r21 
F(p) ~ (2~) coo(p) + ~i S coth(ßS ~32 ~(p» 

v 3 
~ (2~) coo(p) + ßMp) 

(3.6) 

for sma11 Ipl. (Note that, for sma11 Ipl, the upper bound 
agrees with the one found for the c1assica1 ferromagnet). Hence 

S(S + 1) -v J v = <0 °0 > = (2~) F(p)d P 
o 0 (3.7) 
f3 -vI r2 1 v ~ c +~2 S(2~) coth(ßSi-) 2 Mp»d p. 

One now defines ßc(S) as the 1argest va1ue for which c = 0 
on the r.h.s. of (3.7) is consistent with the 10wer bound S(S+l). 
Then ß (S) is obvious1y the solution of the equation 

c 

One can show that 

1im 
S-+oo 

ß (S) 
c 

S2 

is the transition temperature of the spherica1 model. 

(3.8) 

Even though the basic ideas of the proofs of inequa1ities 
(3.4)-(3.7) are quite simple and the strategy is simi1ar to the 
one emp10yed in the c1assica1 case the details are 1engthy. We 
therefore refer the reader to [DLS]. (We thank F. Dyson, E. Lieb 
and B. Simon for informing us about their resu1ts and proofs prior 
to pub1ication). 



86 J. FRÖLlCH AND T. SPENCER 

4. Phase transitions in models without internal 
symmetries 

Phase transitions need not arise from symmetry breaking. To 
illustrate this fact consider an arbitrary measure d~ on ~. 1 
such that 

o r: d~ > 0 and I~ d~ > 0 (4.1) 

• Theorem 4,[FSS]. For v > 2 there exists a ßo such that for 
all ß > ß the magnetization 

o 

M(h, ß) = <cr ::(ß,h) 
o 

is discontinuous in h. 

Proof. We make two sim~~ifying assumptions: 

(a) v > 3 and (b) J d~ = O. The case v = 2 requires differ

-e:: 
ent techniques; see [F3]. Assumption (b) tmmediately assures us 
that 

Now suppose M(h) is continuous. By condition (4.1) it is easy 
to see that 

lim M(h) > e:: and 
h-+<>o 

lim M(h) < -e:: 
h-+-<><> 

Thus by the continuity of M there is a value of h for which 
M(h) = o. Since there can be.no long range order when M is 
continuous [Gu] we have M(h)2 = c. But, for large ß, c I 0, 
because 

e:: - c< <cr2>(ß) - c < ß-lß • 
- 0 - 0 

Thus we conclude M(h) is discontinuous. 

Remarks: 1) Work on related questions has previously been done 
by Pirogov and Sinai [PSI] who have used Peierls-type arguments. 

2) Theorem 4.1 extends to multiple component spin - and lattice 
gas models in v > 2 dimensions. Infrared bounds (Theorem 1), 
the Peierls argument (see Section 7) and low temperature expan
sions supplytoolsthat are powerful enough to give detailed in
formation on systems with very complicated phase diagrams. See 
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e. g. [PS2]. 

5. Gradient a - bounds and pressure bounds 

In this section we exp1ain two key estimates which under1y 
our resu1ts. 

Let 

where 
\! * L Cl 

CI. = 1 CI. 

e 
CI. 

Cl . 
CI. 

a(h) = 

(Cl h) (j) 
CI. 

* (Cl h)(j) 
CI. 

is the vector 

La. ·h(j) 
J 

h(j + e )-h(j) 
CI. 

h(j - e )-h(j) 
CI. 

(eCl.) CI. , = öCl. CI. , • , Notice that 

Theorem 5.1. Let h take va1ues in geN. Then 
CI. 

\! 1 
<exp L c1( Cl h h .2 exp [(2ß) - L 11 h 11 2 ], 

CI. = 1 CI. CI. CI. CI. 2 

-I:!, 

(5.1) 

where 
we set 

To re cover the infrared bound (2.9) 

o f Const. 

If we subtract 1 from both sides of (5.1) and sca1e h we 
obtain 

\! 

<[a( L Cl h )]2>=<a(f) afl:!,f) > 
CI.=l CI. CI. A A 

and, for f(x) 

< ß-1 L If(j) 1 2 

j 

e ix·PIAI-1/2, 1\ (5.2) implies 

l:!,(p)F(p).2 ß-1 N. 

(5.2) 

87 

which immediate1y yie1ds (2.9). Another coro11ary of Theorem 5.1 is 
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1 -1 
o(f) - <o(f» -2ß <f,ll f> 

<e ><e (5.3) 

which ho1ds whenever <. > is a pure (Le. a c1ustering) state. 

The second main estimate bounds expectations in terms of 
pressures. The pressure is defined by 

p(ß,h) = Um ~ log I e -HI\ (0) .n" dlJ(o.). 
A-+Zv lAI JE J 

Consider a function A(o) which depends on1y on the variables 
{ 0 • : j ES}, where 

J 

Assume that A 
about {j = O}, 

Cl 

r/2. Cl= 1, ... ,v} • 

is real and invariant under the ref1ections e 
for all Cl = 1 ••..• v. (Here e is defined byCl 

Cl 

e (.) 
N. J (jl,···,-j , ... ,j ». Cl v 

For the purposes of this section it is important to define our 
1attice to be 1: + (1/2 •.•. ,1/2), 

A = {j EZV+ (1/2, .•. ,1/2): Ij I < .t }. 
Cl Cl 

Let 
by 

T-+ be translation by n 
-+ 
n and define a generalized pressure 

Theorem 5.2. 
10calized in 
Cl = 1, ... ,v. 

(5.4) 

x .n dlJ(o.) I 
JE" J 

-+ -+ ....JJ 
Let {A-+: n Er 4-} be 
Sand ninvariant under 
Then 

a fami1y of real functions 
the reflections e , 

Cl 

(5.5) 
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The proof of this theorem re1ies on the Schwarz inequa1ity and 
Osterwa1der-Schrader positivity: 

«8 B)B> > 0, 
a - (5.6) 

whenever B depends on1y on the variables {cr.:j > O}, (for some 
a = 1, ... ,v). By (5.6) <~B2> defines Janainner product 
on the space of such functiong. The Schwarz inequa1ity with 
respect to this inner product then states that if Bland B 2 
depend on1y on {cr.: j > O} then 

J a 

For examp1e if 
then 

<0 
-x 

B = 0 
1 x 

B = 0 3 
2 x 

0 3 > < <0 
x -x 

o 
x 

with x 

We now verify (5.6). We may set a = 1 and define 

+ 
0 

0 

+ s 

± 
t 

{o. : 
J 

{Oj: 

{o. : 
J 

{o. : 
J 

1< j 1 < .t1 } 

-.tl< j 1 < -l} 

j1 ±1/2}, and 

j 1 ±.t1 }· 

The fo11owing diagram these definitions. _ ....... ~"'--

I 
I 

s+ 

(5.7) 

(lai ,1/2,1/2) 

89 

Fig. 1: Cross section of periodic box A (viewed as a torus); 81 
ref1ects about the dashed 1ine. By translation invariance the 
dashed 1ine can be p1aced arbitrari1y, i.e. rotated. 
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-H--If we integrate e A(e B)B over the + a and a variables we 
obtain a function a 

+ - + -
ß (s • s + t • t ) F (+ +) F* (- -) e s ,t s ,t , 

with F*(s,t) = ~ 

The expectation (5.6) then takes the form 

where 

II + 
a. e: s 

J 

The above integral 1S positive as a+co~sequence_of_the 
following lemma when we set x = (s ,t ),y = (s ,t ). 

U~mma 5.3. 

and, for all real vectors h, 

(5.8) 

(5.9) 

IfF(X) e-ß/ 2(X- Y+h)2G(y)dll(X)dll(y) 1 2.IIF II ß IIG II ß 

Proof. First let dll(x) 
side of (5.9) equals 

ll(x)dx. By Fourier trans form the left 

J _L p2 
(~)(p)(~)(p) e 2ß e iph dp (5.10) 

Ifweset h=O and G=F, (5.10) ispositiveand (5.8) follows. 
For hio, we use lexp(ihp)1 = 1; then (5.9) follows from the 
Schwarz inequality. The general case follows by a limiting argu
ment. 

Proof of Theorem 5.1. The proof relies on the preceeding lemma 
and the identity 

-ß/2(x-y-h/ß)2 -h2/2ß -ß/2 (x_y)2 (x-y)· h 
e =e e e • 
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Let 
+ --h • (s - s ) 

e +-

91 

II -h1 (j) (cr. - cr.) 
e J-e J 

{j:j1=1/2} 1 

-h (j)(cr. - crj ) 
e 1 J-e1 

+ If we integrate out the cr and cr variables we see that 

where 

\I \I 

Lcr(3 h » = Z <exp L (3*cr)(h » 
a aa"" Cl a a,A 

e1/2ß( IIh+_"2 + IIh';'" 11 2) 

E E + + - -df.1(s )df.1(t ) F1 (s ,t)K ,(s,t)F2(s ,t ) 
h,h 

(5.11) 

We can e1iminate the h+-, h~ gradient terms by app1ying Lemma 

5.3 which proves that (5.11) is bounded by 

(5.12) 

The norm 11 Fill~ ,i = 1,2, aga in has the form 

v 

Z <exPLcr( 3 h ) > 
1\ CI. a a .A 

with the h+-, h~ coup1ing set equa1 to zero. Next we note 
that 

Ilh 11 2 +lIh'11 2 =L Ih(j)1 2 
+- 2 +- 2 { . •. =1/2 -l} 1 

J .J 1 '1 

We now rotate the axis of ref1ection, (the dashed 1ine in fig. 1) 
by ±1, i.e. we shift the origin in the torus A. We may then 
app1y the previous estimate to both factors on the r.h.s. of (5.12). 
Continuing in this manner and app1ying then the same procedure in 
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the 2-, 3-, ••• , v-direction we finally obtain (5.1) 

Remarks: The above proof of Theorem 5.1 resembles an elementary 
proof of the Hölder inequality 

2n 
ITr(Al , ••• ,A2 )I~ TI {Tr(Aj* A.) n}1/2n 

n j=l J 
(5.13) 

without use of complex interpolation. A different proof of Theorem 
5.1 based on the transfer matrix formalism and the H6lder inequali
ty (of the form (5.13)) has been given in [FSS). 

Proof of Theorem 5.2: For simplicity we only prove an upper bound 
on <A~ , where A is localized i~ Sand is real and reflec
tion invariant. Let B = T-+ (A), n1 = (r/2,O, ••• ,0) , so that B 

{ O}nl depends only on crj : j l ~. Then by (5.6) with B =B and 
B = 1 we have 1 

2 

<A> = <B> < «8l B)B>1/2 = <A(T2+ A» 
1\ 1\ - A n l A 

We translate A(T2-+ A), so we can again apply the Schwarz in-n • 
.L 

equality. By iteration we see that 

-+ 
where the product TI' ranges over vectors n (nrl,O, ••• ,O), 
Inrll ~ !. By applying the inequality in the other directions 
we obtain the bound 

<A~ < < TI 
T+SC/\ 

n 

The proof follows by taking the limit .1\ t 7L v. 
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6. Absence of long range order in two dimensional 
systems and the Goldstone theorem 

93 

In two dimensions the integral f ~(p)-ld2p is infinite, and 
so we can not conclude the existence of long range order or 
spontaneous magnetization by the methods discussed so far. For 
models with continuous internal symmetries this is no accident. 
The following result is related to a theorem of Mermin and Wagner 
[MW] (see also [Me, DS]) which excludes spontaneous magneti
zation for the quantum and classical Heisenberg model (more gen
erally for models with continuous internal symmetries) in two 
dimensions. 

Theorem 6.1, [McS]. For ß sufficiently large the two point func
tion of the two dimensional plane rota tor model satisfies 

-1 
o < <0 • 0 > (ß) < C Ix 1_[ (2Tf+ E) ß] 

(6.1) 
o x 

where E-+O,as ßi oo • 

Remark: By correlation inequalities the two point correlation 
function for the classical Heisenberg model is domina ted by the 
one of the plane rotator; see [D, KPV]. The proof of the theorem 
is motivated by the calculation 

-f<x>ß 
-1 1 zo~o i(o - 0 ) 

Z e e 0 x do 
00 

e 

1 
- - log lxi 

ß2TI 

Proof. We write the expectation in terms of angle variables 
defined so that o. = (cos e , sin e.). The two point func-
tion then takes th~ form i 1 

-1 f+TI i ( e - e ) \' 
Z e 0 x exp [ß . L . cos (e i - e.)] -rrde .. 

_TI 11-JI=1 J 1 

The bound follows by a complex translation o. -+ o. + ia. ,where 
J J J 

{e.} 
1 

This means we deform the paths of integration and use the periodi
city of the cos to cancel the contribution from the latteral con
tours. From the fundamental solution of the two dimensional 
Laplacean -1 

ß 
(a - a ) > - log I x I , o x - 7T 
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for large lxi, but la. - a.I 1:5.. Const. ß-l, provided Ij - j I 1= l. 
If we make the above sub~titdtions and use the identity 
cos(9 + ia) = cos 9cosh a- i sin 9 sinh a we get the upper bound 

z-lfexp [ß L cos(9. - 9. )cosh(a. - a.) ]1rd9. 
11" li-jl=l 1. J 1 J J 

We express the above sum in the form 

-(a - a ) e 0 x. 

L cos ( 9 i - 9.) + 
li-jl=l J 

cos(9 i - 9j ) [cosh(ai - aj ) - 1] 

_ )2 
(ai a. 

I cos ('9. - 9 .) + 
li-j 1=1 1 J 

I J 

I· ·1-1 2 - e: 1-J -

where e: can be chosen small for large ß. Since 

we see that 

( a. - a.)2 -ß 
1 J <a~a> 
2-e: = 2-e: 

a - a 
o x 
2 - e: 

<cos(9 - 9 »(ß) 
o CI. 

-(a -a )/(2-e:) 
< e 0 x 

which completes the proof. 

Next we prove a lower bound on the two point function of 
the classical Heisenberg models. More precisely we derive an 
upper bound on the exponential decay rate (mass gap) of the two 
point function. 

Theorem 6.2. Let dJ,l(er) = o(lerl-l)dNer , N> 2, v 2 and h = O. 
Then there is a constant c> 0 independent of ß and N such 
that, for ß sufficiently large, 

_JL 
<er • er >(ß) > Const. {exp -e cNlxl}. 

o x -

Proof. Let F(p) be the Fourier transform of the two point func
tion and set p = (Pl,P2). Then, by using a transfer matrix 
formalism and the spectral theorem, one sees that 
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00 

J 
dp(a,P2) 

F (p) = c 00 (p) + --:---'::"--.,..--
2(I-cosPI)+a 

m 

95 

(6.2) 

for some m > O. Since N > 2, the previous result gives 
so that m is the exponential decay rate of <0 °0 >(ß). 
a transfer matrix in the 2-direction and settingO P~ = 0 
that 

c = 0, 
Using 

we see 

J dp(a,O) ~ J dp(a,P2) 

One then shows that fdp(a,O) is expressible as a double com
mutator of 0 with the transfer matrix T; (the argument is sim
i~ar to the one used to bound the spectral measure dp(a) in the 
Kallen-Lehmann representation of the two point function: 

00 

-<[q,(x) ,[q,(y) ,H]]> = o(x-y) J dp(a), 
m 

where H is the Hamiltonian). This double commutator is bounded 
in Section 2 and the appendix of [FSS]. We obtain 

J d ( = 0) Cons t. N 
p a,p2 .::. ß (6.3) 

Next we use the symmetry of 
PI+P2' P2+ PI' apply (6.2) and 

Funder the substitution 
(6.3) and use Pf+P~ < 2pf' for 

Ipll ~ Ip21. This yields 

Const. N o .::. F(p) < ß 
I 

Since (2~)-VJF(P)d2p =<0 °0 >=l,integration of (6.4) yields 
o 0 

for some constant c and ß sufficiently largeo Hence 
~ 

(6.4) 

m < e-cN. Since m is the exponential decay rate of the two point 
function, the proof is complete. 

Remarks: This result indicates that the decay rate m is monotone 
increasing in N and monotone decreasing in ß which is in 
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agreement with heuristic predictions. Lower bounds on <0 • 0 > 
established in [FSS] can be used to extend Theorem 6.2 toOver~ 
general, classical ferromagnetic spin systems that satisfy 
Osterwalder-Schrader fositivity. Moreover the result also holds 
in O(N)-invariant (~.$)2 - field theories, where 

and y is minus the bare mass squared; see [KL]. 

The last result of this section concerns a lattice version 
of the Euclidean form [Sy] of the Goldstone theorem [G] which is 
useful, since it does not require the full structure of relati
vistic quantum field theory. Let Q be some finite region in 
Zv containing 0, and a Q all sites in Q with a nearest 
neighbor in Q c Let ~ denote the finite difference gradient. 
We define a "current density" 

-+CI. l-+CI. CI.-+l 
J = 0 (Vo) - 0 (Vo ) , 

x x x x x 
(6.5) 

CI. = 2 •••.• N. The interaction H .. (o) is as in (2.2). and (-') == 

<---) (ß,h) denotes an infinite volume limit of the expectations 
defined in (2.3). 

Theorem 6.3. Let d~ be some O(N)-invariant single spin dis
tribution and suppose that 

Then 

for all CI. > 1. (6.6) 

Remarks: Using Osterwalder-Schrader positivity and a Schwarz in
equality one shows 

-ta. CI. -ta. -ta. 1/2 CI. CI. 1/2 
I<Jx 00 >1 ~ <Jx " Jo> <ox" 00 > " 

where Ix' I I x" I = O( I x I) • Taking Q -+ ZV we conclude that 

1-+ -ta. CI. CI. I I 1-2d + 2 <J • J ><0 0 > > 0 ( x ) , 
x 0 x 0 -
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as lxi +00, and, as a consequence that <aotJa"'> 
b 1 b 1 d h M i.- O.x 0 
~ y a power aw ecay, w enever T 

is bounded 

If the lattice spacing can be taken to 0 and yields a 
Euclidean invariant limit (convergence of the lattice approxima
tion to a Euclidean field theory) then Theorem 6.3 yields the 
Euclidean version of the Goldstone theorem [Sy] and, for M + 0, 
proves the existence of N-l Goldstone bosons; (see also [ES]). 
In the case of a two dimensional field theory it proves M = 0, 
and a slightly more general version of Theorem 6.3 yields the 
absence of symmetry breaking for such theories, (e.g. for the 
isotropie (7$. 7$ )~ -theory; see also [ES, Co]). 

Proof of Theorem 6.3: This theorem is an easy corollary of (the 
finite difference version of) Green's theorem and the following 

Lemma. If d~ is O(N)-invariant then 

for all a> 1. 

Proof: By (6.5) 

\' +-±a 
L < ('V • J ) 

XE D x 

a 
a > 

o 

We temporarily assume that 

\' +-±a -6 L < ('V • J ) 
XE D x 

L 
XE D 

d () -6va2 - v(a)dN 
~ a = e a, 

a 
a > 

o 

(6.7) 

(6.8) 

97 

where V is so~ O(N)-i~variant,once continuously differentiable 
function on 0( ,and e V is dNa-integrable. In this case 
we may apply the standard integration by parts formula ("field 
equation") in the variables {aal {al} to derive an expression 
for the r.h.s. of (6.7): x x 

and 

a a > 
o 

a av 
<ax aal ag>, 

x 
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Since V is o (n)-invariant 

so that 

1 CL CL 1 CL <{cr (l1cr) - cr (l1cr ) }cr > 
x x x x 0 

This proves the lemma under the assumption (6.8). The general 
case then follows from a limiting argument. 

7. Phase Transitions and Solitons in the 

Anisotropie 
-)- -)- 2 

A(</> • </» 
2 

- Field Theory 

In this section we consider a relativistic quantum field 
model in two space-time dimensions which exhibits a phase trans i
~10n ana a aegenera~e vacuum, as some coup~1ng conSLallL ~s var~~ri. 
The vacuum degeneracy is accompanied by the spontaneous breaking 
of a discrete symmetry and implies existence of quantum solitons 
(states with non-zero topological charge). 

-)-

The model describes a neutral, scalar Bose field </> = (</> ,</> ) 

with a quartic self-interaction. The 0(2)-symmetry is ex- 1 2 
plicitly broken by assigning different bare masses to </>1 and 
</>2. (An 0(2) - symmetry is of course not broken in two 
space-time dimensions; see Theorem 6.3). 

In Subsection 7.1 we establish the existence of a phase tran
sition for this model by constructing a vacuum state which vio
lates the cluster decomposition properties. In Subsection 7.2 we 
outline the construction of soliton states and derive a lower bound 
for the mass gap in the soliton sectors. 

In the following ; denotes the relativistic or the 
Euclidean field. The free Euclidean field with bare mass 1 is 
determined by its Euclidean two point function (Euclidean propa
gator): 

This is the kernel of the operator 

(7.1) 

-1 
<'I •• (-11 + 1) , where 11 is 

1J 
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the Laplacean. 

We also consider the free Euclidean field in a periodic box 
A = E-Ll ,Ll ]x[-L2 ,L2]. ~is two point function is the kern~l of 

the operator ö .. ( -61\ + 1) , where 6" is the Laplacean w1th 
periodic boundaf1 conditions at aA. The Euclidean vacuum ex
pectation value for fhe free field in the box A is denoted by 
<.. _>0 ; ö .. (-ß .. + 1) - is called i ts covariance. 

/\ 1J ,"-

An interaction in the region A is introduced by means of 
a Euclidean action 

(7.2) 

99 

Here :-: indicates normal ordering which, for convenience, is done 
with respect to bare mass 1; the coupling constant A of the 
quartic term is positive; the coupling constants 01 and 02 
satisfy 0 ~ 02 < 01. The interacting Euclidean fie d in the box 
/I. is determined by cutoff Euclidean Green' s functions: 

(7.3) 

-+ 
where ° = (01'02)' and fl, ... ,f are arbitrary functions in 
Coo(A). The cutoff vacuum energy d~nsity ("pressure") for the 

o 
system in the box A is given by 

1 
-lI\T 

- V (/I) 0 
log <e >A (7.4) 

It has been shown in [GRS2] that 

-+ -+ 
p(A,O) = lim p (A,O) exists. 

/I. -+ IR 2 " 

(7.5) 

In [ Fl] a Lee-Yang theorem and correlation inequalities due 
to Dunlop and Newrnan [DN] have been combined with the (large ex
ternal field) cluster expansion of [Spl] to construct Euclidean 
invariant infinite volume limits of the cutoff Green's functions 
defined in (7.3). 

For all n and arbitrary 
00 

C 
o 

functions 
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n -+ 
<TI~. (f.»(A,O) 
i=l J i 1 

=" 1 im" 
A-+IR 2 

n 
< TI >~. (f. ) > 
i=l J i 1 

J. FRÖLlCH AND T. SPENCER 

-+ (A,a) (7.6) 

exists. (The quotation marks indicate that there are really two 
limits to be taken; see [F 1] for more details). 

-+ 
USing standard estimates (exponential ~-bounds; see Theorem 

5.2) and the Osterwalder-Schrader reconstruction theorem [OS] one 
can show that the distributions {<.Nl~' (X.»(A.cr)}n~=O are the 

1= J. 1 

EuclideanGreen's functions of a quantum 1field theory satisfying 
all Wightman axioms, with the possible exception of uniqueness 
of the vacuum; (i.e. these distributions are the analytic con-

n -+ 00 

tinuations of the Wightman distributions, {w(.TI1~' (x.))(A,O)} -0' 
1- J i 1 n-

to the Euclidean region). 

7.1 Existence of phase transitions 
-+ 

Let W = W(A,O) denote the physical vacuum state of the theory. 
The following result ass~rts that, for a certain choice of the 
bare couplings A and 0, W is degenerate (i.e. violates the 
cluster properties). 

Theorem 1.1. G iven A > 0 and a > 0 (arbitrari!.y small), there 
exists a finite constant a such that, with o=(a(l + a) ,0), 
the vacuum W is at least Ctwo fold degenerate, for all a> a , 
and there are at least two clustering (pure phase) vacuum stat~s 
W + and W which break the ~ 1 -+ -~ 1 symmetry of the dynamics. 

Remarks. 
1. It follows from the cluster expansion [GJS1] that, for 0 
sufficiently small, the physical vacuum W(A,&) is unique, and 
the theory has a positive mass gap (and one particle states, 
[GJS2. Sp2]). 
2. Using renormal ordering and scaling one can show that Theorem 
7.1 may be reformulated as follows: 

Given a>O, choose 0<1 such that l<o(l+a) < 2; 0 is then 
kept fixed. 

Theorem 7.1'. For this choice of 
-+ 

that, for all 0< A < A, w(A,a) 
c 

t there exists A > 0 such 
is at least two-fold degenerate. 

Th~s form of Theorem 7.1 is technical~y more convenien~. 
Since a is now kept fixed we set <"> (A,a) = <"> (A), p(A,a) = p(A). 
The proof of Theorem 7.l'-which occupies the remainder of Section 
7.1 - is based on aversion of the Peierls argument due to [GJS3]. 

Step 1: Reduction of the problem 
( , ) 

litom [OS] and [ F4 ] we know that Theorem 7.1 holds if we 
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can show that the Euclidean expectation ~)(A) has long range 
order (i.e. violates the Euclidean version of the cluster proper
ties). This problem, which is solved below, is similar to proving 
long range order for the symmetrie state of the two dimensional 
Ising model at sufficiently low temperatures. We now make this 
analogy more precise. 

Step 2: Spin variables and the Peierls argument 

In order to formulate the Peierls argument in a field theoretic 
context we must introduce what corresponds to the spin variables 
{o.}. ~ of the Ising model. We cover n<2 with a grid of mesh 
1 1(~frällel to the coordinate axes). A unit square of this grid 
is specified by the coordinates j = (jl,j2) E 7L 2 of its center; 
~(j) denotes the integral of ~l(x) over the square centered 
at j. Let X+ be the eharaeter1stie funetion of the intervals 
[0,00), (-oo,o]~ respeetively. We define 

(7.7) 

Sinee o. takes the values ±l and o? = 1, it is the 
analogue of a~ Ising spin. The symmetrie statJ of the Ising model 
has the property that <0.> = 0. Therefore this state has long 
range order if e. g. <0. 6 > + 0, as 1 j 1 -+ 00. By eonstruetion 
- see (7.3) and (7.6) -Jth~ expeetation ~---) (A) has the pro
perty that 

<x (i»(A) = <X (i»(A) = 1/2, 
+ 

henee <O.>(A) = 0, for all i. 
1 

(7.8) 

llir j (j ,0), j E ~ , it follows from Osterwalder-Schrader 
positivity °that ~O.O >(A) is positive and monotone decreasing 
in Ij I. ThereforeJ 0 long range order is equivalent to showing 

o 

<0.0 >(A) > 02 >0, for all jo. 
J 0 -

(7.9) 

Osterwalder-Sehrader positivity implies that, for j = (jo'O), 

<x±(j)x± (O»(A) ~<X±(0»(A)2 = 1/4 

ßing (7.7) we therefore eonelude that (7.9) holds if 

(7.10) 
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for all jo' or (by translation invariance) 

(7.12) 

for all j > O. By results of [ F 4], (7.9) implies that there 
exist at 19ast two c1ustering (pure phase) states ~~+(A) and 
some 0 < p < 1/2 such that -

and 

M == <0.>+ (A) = -<0.> (A) > l'i , 
~ ~ - -

<-> (A) = P'(-~(A) + P<,,-~(A); 

+ positive. 

M corresponds to the spontaneous magnetization. 

,.. We are 1eft with proving (7.12). G iven some j 
" C Z 2 be a 1arge square containing ±j. Since 

1, for all k E Z Z, we have 

<~(-j)X_(j»(A) 

<k~7\ [X+ (k) + X_ (k) h+ (-j >x_ (j) >(A) 

kf±j 

We now expand the product on the r.h.s. of (7.14). ,.... 

(7.13) 

(jQ'O), let 
x. \k) + X (k) 

(7.14) 

Defintion: A configuration c is a function on 1\ with va1ues 
in {+,-}; 4A denotes a sum over all configurations c such 
that c(-j) ~ +, c(j) = - Then, by (7.14) 

<~(-j)X_(j»(A) = LA <k~A XC(k)(k»(A) (7.15) 
c 

Since 0 ~ X+ (k) ~ 1, all terms on the r.h.s. of (7.15) are posi
tive and are-increased by omitting some of the factors in k~~ 

Definition: A contour y is a connected 1ine in I? 2 consisting 
of sides of unit squares in the gr~d covering n(2 which has 
the property that it decomposes IR into precise1y two disjoint 
subsets 01 == 01 (y),a -j and ° == g(2 \ 01 a j. G iven a con
tour y, N(Y) denotes the c011ection of coordinates of all 
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Y n 'fint. 
unit squares with one side in y. We set y~ = H 

ca11 it a truncated contour. /I. 
and 

Since 
figuration 

c(-j) = +, c(j) = -, we may as~~ciate with each con
c a truncated contour y(c) ~ A with the property 

that 
(1) for all (k,k') EN(y(c» with kEn1 , k'E n2 , c(k) = +, 

c(k') = , (7.16) 
(2) there exists a connected set n cn1 (y(c» such that 

-j En , c(k) = +, for all kEr{ and an :> y(c). (7.17) 
c c c 

We now do aresummation on the r.h.s. of (7.15) which gives 

<x (-j)X (j»(A) + -

= LI< TI X k (k) > (A) 
y'k, {c:y(c) = Yk} kEk c() 

(7.18) 

.::. r < TI X (k)x (k') > (A) 
y/i. (k,k') E N(Y'i + -

(7.19) 

(7.19) f0110ws from (7.18) by omitting the restrietion that 
c(-j) = +, c(j) = - and using that X+(k) + X_(k) = 1. 

Lemma 7.2: ("Peier1s argument") Assume that 

(7.20) 

for some K> log 3; (here I y I denotes the 1ength of y and is 
equa1 to the number of pairs in N(y». Then 

<x (-j)X (j»(A) + -
00 

< r r < TI ~ (k)X (k'»(A) 
-n=2 {y: lyl=2n} (k,k') E N(y) + -

00 .::. r 2n 32n- 2 e-2nK 
n=2 

(7.21) 

Proof: By a rather straightforward 1imiting argument based on 
(7.20) (see e.g. [ F3]) it can be shown that inequa1ity (7.19) 
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remains true in the limit where and 

lim 
2 

'k.-*Z 

If Y is a contour of finite length it must be closed and hence 
its length is even. The smallest closed contours (two in number) 
have length 4.~erefore 

1. < TI X+(k)X (k'»(A) 
{y : h 1 <oo} (k, k ') E N (y) -

00 

I I < II X (k)x (k'»(A). 
n=2 {y: hl=2n} (k,k') E N(y) + -

Next, the number of contours of length 2n separating j from-j 
is bounded above by 

card {y:1 y F2n} < 2n 32n- 2 (7.22) 

Thls is a weIl known estimate which follows from a standard 
argument; (see e. g. [G JS3, F 3 ]) • The lemma now follows from 
(7.19), (7.20) and (7.22). 

Remark: Lemma 7.2 shows that 

as K = K(A) -*00 , uniformly in j. Therefore there exists some 
K such that if inequality (7.20) is true for some K> K then 

o 0 

(7.23) 

for some ö(K) > O. We are thus left with proving that 
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K = K(>..) > K, if 0< t.. < t.. . 
o c 

(7.24) 

We sha11 show that K(t..) -+ "", as t.. \i o. 
Step 3: Estimating the statistica1 weight of contours 

We now turn to the proof of (7.20) and (7.24) and show that 
K(t..) -+ "" , as t.. ~ O. The basic idea behind this proof is to re
duce (7.20) and (7.24) to a "thermodynamic estimate", name1y 
estimates on pressures. 

lOS 

Let NJ(Y) be some maximal subset of N(y) with the property 
that if (k,R') and (t,t') are two different pairs in N1 (y) 
then k f t and k' f t' Obvious1y 

card(N1 (y)) ~ i card(N(y)) = Ir l (7.25) 

Since 0 ~ X± ~ 1, 

< TI x+(k)x_(k'»(t..) 
(k,k') E N(y) 

< < TI x+(k)X_(k'»(t..). 
(k,k') EN1 (y) 

(7.26) 

Let X: (x) be the characteristic function of the set {x:±~ ~ J}, 
for some finite, positive J (chosen 1ater) and x+_2 = X+_ - x: 
Then ± 

1 1 1 2 
X+ (kh_ (k') + X+ (kh_ (k') (7.27) 

+ x!(kh=(k') + x!(kh:(k') 

We insert this identity into the r.h.s. of (7.26) and expand. The 
resu1ting expectations are then bounded above by means of the 
fo11owing e1ementary 

Lemma 7.3: 

F1 (k) := e -2J e Hk) - Hk') 

ßJ2 (1- .!2<t>Ck'/) 
< F2 (k) :=e-Z- J 
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for arbitrary ß > 0; (here cp:: ,CPI). 

Proof: One verifies easily that, when x and y are real 
variables, 

1 1 -2J x- y 
Xt(x)X_(y) < e e , 

ßJ2 1 2 
(1- -2 y ) 

2 J 
< e 

etc •• The lemma now follows from the selfadjointness of cp(k) 
and Hk'). We define I :: {k:(k,k') ENl(y)} and note that 
card (I) 2. lyl/4 • FtomYO.26), (7.27) and Lemma 7.3 we then 
obtain Y 

< rr X+(k)X_(k'»(A) 
(k,k') E N(y) 

(7.28) 

L < rr F (k)(k»(A). 
{p(k)=l, •.• ,4} k E 1y P 

< 

The r.h.s. of (7.28) can be estimated by means of (a continuum 
limit version of) Theorems 5.1 and 5.2. 

Definition: Let A = [-Ll,Ll ] X[-L2 ,L2], where LI and L2 
are positive integers. We define 

p (ß) (A) 
A 

One can show that 

-ß L 2:CP(j)2: 
__ 1 1 j EA nzz. - V (A) 0 
-- og<e e >A 
lAI 

, ß > 0 

P(ß)(A) == !im 

Ll ,L2--
exists; see [ F 3]. Next 

we define "weights" 
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1 ßJ2 ß 2 0 
W1 :: 2J - 4/3, W = W = - W = - - + - < <jl (0) > 2 3 2 4 2 2 

Lemma 7.4. 

< TI Fp (k) (k) > 0,) 
kEI 

Y 

Proof. First we note that 

+ p(>") _ p (ß) (>..) 

-I W 
kEI p(k) 

< e y 

(7.29) 

(7.30) 

Cl = Cl(k,k') is the direction of ±(k- k'), h is a function 
supported in thi union of the unit squares cen~ered at k and 
and Ilhall ~ = "3. Next 

ßJ2 1 <jl(k) 2) 
ßJ2 ß 2 0 --<<jl(k » (1--2 2 2 2 J = e e 

(7.31) 
(L 2 
2 : Hk) : 

e 

2 0 2 0 
(and, of course, <<jl(k) > =<<jl(0) ». We insert (7.30) and 

k' 

(7.31) into the r.h.s. of (7.28) and app1y the Schwarz inequa1ity. 
This gives 

< TI X (k)X (k'»(>..) 
(k,k') E N(y) + -

.::. I 
{p(k)=l, ... ,4} 

x < TI 
kEI 
p(k)X2,3,4 

< TI -4J 
e 

2 1/2 
Fp(k) (k) > • 

To the first factor on the r.h.s. we app1y Theorem 5.1, to the 
second factor (7.31) and Theorem 5.2. This comp1etes the proof. 
More details concerning Lemma 7.4 may be found in [ F3 ]. 

, 
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Rnally we must choose J and ß. A convenient choice for 
ß is 

ß = a(l +c&) /2. (7.32) 

We claim that p (a(l + a) n) (~) is 
interval of the form [0, ~ ], (0 < 

o 

bounded uniformly in ~ on any 
~ < 00), whereas (7.33) 

o 

p(~) -+ + 00, as ~~ o. (7.34) 

This shows that, for any J < 00 , 

Wi -+ + 00, as A\tO, i 2,3,4. 

Therefore, given an arbitrary K e: (0,00), there exists ~(K) > 0 
such that 

< TI y (k)y (k'»(A) < e-K1yl . 
(k,k') e: N(y) T 

for all 0 trt ~ ~ (K). By Lemma 7.2 and (7.23) the proof of 
Theorem 7.1 is now complete, up to the verification of (7.33) 
and (7.34). 

Step 4: Pressure estimates 
Lemma 7.5. Estimates (7.33) and (7.34) hold,and 

as ~.\t 0 • 

Proof. We start with proving (7.34), as this estimate is some
what simpler. Let <---~~ denote the expectation constructed in 
(7.6) in2the case where al = a2 = O. Let n be a large square 
in ~ and set 

By Theorem 5.2, 
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F (n) A 
<e a > < Inl[p(A,~)-p(A,O)] • 

e 

Standard estimates show that p(A,O) is bounded uniformly in A 
on any interval [O,A ], A < ~. Therefore (7.34) follows if we 
ean show that 0 0 

Now 
F (n) A 

<e a > 

Fa(n) A 
<e > + + ~ ,as A \L ° . 

= 2<eos h[F (n)]>~ 
a 

A > 2<eos h[F (n)]> 
- a 

-F (n) A 
<e a > 

109 

and the inequality follows from Theorem 5.2. Again, p(A,-~) is 
bounded uniformly in A on any interval [O,A ] , for fixed a > 0, 
a > a. Henee it suffiees to show that 0 

~ 
<eos h F (n» 

a 

tends to + 00 ,as A_ \ 0. But 

(7.36) 

as A \ a ; for aU n < ~ ; (see [GJS IJ). Sinee a(l+a) > 1 :: 
bare mass in the eovarianee of the Gaussian expeetation <_>0 , 

N Ja (2!)I <Fa (n)2n>0 diverges, as N-+- 00 ,provided Inl is 

large enough; (see also [FSS]). Sinee all terms in (7.35) are 
positive and by (7.36), the proof of (7.34) is noweomplete. 

++2 
Remark. These estimates also hold for A(~'~) interaetions in 
three spaee-time dimensions and will be used again in Seetion 8. 
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To prove (7.33) recall that 

p(a(l+a)/2)(>..) 

% : +~ : (A) -V(A) 
Since a < 1 , the factor e i8 e may be 
absorbed into the Gaussian expectation <->A' We then apply the 

Schwarz inequality to the r.h.s. of (7.37). This yields the 
inequality 

where 

-a(l+a){ I :+(j)2: -

and 
a 

1 2' 
P2 = lim TAT log<e 

A+lR 2 

.tEAnZ2 

2 
:+l:(A)} \0 

/A 
(7.38) 

Since a < 1 (= bare mass in the covariance of <->~), 
p(2)'', (O,a» is bounded uniformly in >.. on any interval [0,>.. ]. 
The r.h.s. of (7.38) are Gaussian expectations that can be est~
mated explicitly: Standard formulas show that, for a < 1 , 
a(l+a) ~ 2 ,Pl and P2 are finite. 

Q.E.D. 

Lemma 7.5 completes the proof of Theorem 7.1('). 

Remarks. The following additional results on phase transitions in 
two dimensional models have been proven (or a proof has·been 
outlined) in [F3]: 
Existence of phase transitions for the P(+)2-models, where P is 
an "almost even", positive polynomial; for tlie pseudo-scalar 
Yukawa - and the massive sine-Gardon model in two space-time di
mensions. The phase transition in the pseudo-scalar Yukawa model 
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is of interest because it is accampanied by the breaking of a 
space-time symmetry, namely parity. 

7.2 Soliton sectors in the anisotropie A(l·l)~ - theory. 

In this subseetion we review results showing that the spon
taneous breaking of a discrete internal s~etry in two dimension
al theories such as the anisotropie A(1·~)2 - model gives rise to 
soliton sectors. These are Poincare-invariant eigenspaees of the 
conserved, topological charge 

CI -+ -+ 
(-::; cJ>)(x, t ) 

Clx 

corresponding to a non-zero eigenvalue; (see [Fl, F3] for a mathe
matical theory of soliton sectors, and [Co~ for a general review 
and references). We derive a lower bound on the mass gap in the 
energy-momentum spectrum on the soliton sectors in terms of a 
"surface tension"; (this is a result of [F2']; an estimate on the 
"surface tension" appears in [BFG]). The analysis of soliton 
sectors is important for scattering theory. 

By Theor~ 7.1 we know that. for a proper choice of the bare 
couplings (A,cr), there are two clustering (pure phase) vacuum 
states 00+ + 00_ which break the cJ>1 --+-cJ>1 symmetry. Let Pw 

be defined by the equation 

= p(-cJ> ,-cJ> ) 1 2 
(7.40) 

where P is an arbitrary polynomial20f the identity 1 and the 
fields {cJ>1(f),cJ>2(g) : f.g inl (IR )}. Then 00+,00 may be 

constructed such that 

o P , 00 = 00 0 P • 
11" - + W 

If (A,;) is chosen such that the Gaussian expansion about mean 
.field. theory developed in [GJS4] converges then 

00 (cp ) = -00 (cp ) = cJ> > 0 
+ 1 - 1 c 

(7.42) 

(In general (7.13) need however not imply (7.42), although this is 
expected). 
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The basic idea behind our construction of soliton sectors is 
to find states Ws and 00_ that interpolate between 00+ and 00 

s 
such that in space-time regions very far to the left ws(s) 

resembles 00_(+) and in regions far to the right it resembles 

00+(_) ; ws(w_) is then called a soliton (anti-soliton) state. 
s 

The precise definition of such states is somewhat more compli
cated. The following remarks summarize some standard terminology 
and some facts used in the construction of ws (;)' (They are 

formulated in a somewhat cavalier way but can easily be made 
precise). Let J7 denote the alge~ra generated by 
{l, 4>l(f), 4>2(g) : f,g in ~(JR )}. Let p be some state on 

17, (i.e. a positive, linear function81 on JD with p(l) = 1) • 
With the pair (p,JO) there is associated a Hilbert space ~ 
and a uni t vector rl ~ r;ff such that p 

p p 

p (p) = (rl , Prl ) , for all 
p p 

P f P, and 

~ = norm closure of {Prl_:P E p} 

Given some te:t function f in J (~)2 and a proper Poincare 

transformation ~ = (A,a) , we set f~(X) = f(A-l(x_a)). We define 

a mapping T~: p--".""f' (a "* automorphism of the *algebra Pli) 

by the equations 

i = 1,2 • 

Definition C: 

Astate p on the algebra j7 is said to be Poincare-covariant 
iff there exists a continous, unitary representation ~ of the 

proper Poincare group on the Hilbert space ~ such that, on 
R 

same camman (Poincare-invariant) dense domain Jj C 'l/ß dl. p 

for 811 P e:? . 
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We say that p satisfies the relativistic spectrum condition 
iff the joint spectrum of the gen2rators of the space-time trans
lation subgroup {U (l.a):a E IR} is contained in the forward 

- p 
light cone V+. 

Let (J be some ~:e.en region in IR2 

be the sub algebra of f/ generated by 
We define 'fl ( rJ ) to 

A diamond ~ is defined as the intersection of an o~en 
forward and an open backward light cone. Given a diamond ~ we 

let '" () denote its causal complement (all space-time points 

space-like separated from (J). In two dimensions ",er is the 

union of two wedge regions: '" (j = Ö'L U C7'R • where &L 

opens to the left and ~ to the right. 

We are now prepared for apreeise definition of soliton 
states. 

Definition S: 

(SI) 

(S2) 

Astate w on 'P is ealled a soliton state iff 
s 

there is a diamond (J such that 

(Al (p) = w_(p) for all Pe lf(5L) s 

(Als(p) = w+(p) • for all pEY(O R) 

(Al 
s 

is Poinear6-eovariant and satisfies the relativistic 
speetrum eondition. 

The definition of w ~s obtained by interchanging + and 
s 

in (SI). 

The Hilbert space and the cyelie veetor associated with a 
soliton state (Al and the algebra -p are denoted by 11/{ and 

s s 
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Os' respectively. In the same way ~_ and ° are defined. 
s s 

From (7.42), (81) and (82) we conclude that 

+ {'Rs Q]!. = ± 2 (, ,0) ]!. , for all ~ , 
c t;If-

s 

+ 
where Q is the charge introduced in (7.39). A special case of 
this is 

00 ('1 (~, t» = ±, , s c 

for arbitary t. Thus the function WS('l(~' t» resembles the 

soliton solution of the classical field equation (exp1aining the 
nomenclature) • 

8tarting from the vacuum state 00+ we now construct explicitly 
soliton states Ws and 00_ satisfying (81) and (82). This is 

s 
achieved by composing 00+ with a suitab~e automorp~!.~m of !? _ ~of 
~ne vype OI a DOgO~~UDOV vranSIor.mav~onJ. ~ev ~i\xJ = ~i\X,vJ 

+ _ Cl + . 
~i(x) = (a-r 'i)(x,t=O), ~ = 1,2 , denote the time O-fields and 

their conjugate momenta. It has been shown in [F2] that the 
following equations uniquely define a mapping Pe: ~-t> J:7 ; 
(a *automorphism of "? ): 

Pe ('1 (~» = cos e (~).fl (~) + sin e (~}cjl2 (~) 

Pe ('2 (~» = -sin e (~}'l (~) + cos e (~)ocp2 (~) 
(7.44) 

+ identical e~uations wdth 'i replaced by ~ .• i = 1,2. Here 
e is some C function on IR (a space-d~p~ndent angle) 
satisfying 

e(~) = 0 • +lim e(~) = ~ 
x+ -co 

} 
d + 

suppe-=; a)(x) is compact, and 
dx 

(this is called the "soliton condition"). 
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We set e(;r) == e (-;r) . 

We then define wand w_ by 
s s 

w_ = w+ 0 p , where 
s e 

for all P eP , etc. 

Let # denote s or s. 

Theorem 7.6, [F2, F3J. 

115 

(1) w# is an (anti-) soliton state on]? ,i.e. w# satisfies 
properties (Sl) and (S2). 

(2) The Hilbert space ;If # and the representation LI.. # of the 

proper Poincare group on ~ are independent of the choice 
of 6(8) as long as 6 satisfies the soliton condition 
(7.45). 

(3) The spectrum of the energy-momentum operator (H#, p#) 
(defined as the infinitesima12generator of ehe space-time 
translations {~(a) : a E IR } is purely continuous, i.e. 
~ does not contain any vacuum state. 

~ 

'i. 61\ (4 ) Q'i.. = 2(~c'O)'i.. , for all 

....:p 

'i.. f.. if._ . 'l 'i.. = -2(~c'O)'i.. , for all 
s 

We refer the reader to [F2, F3] for the proof. 

Next we propose to analyze the spectrum of (H#, P#). We 
intend to show that, under suitable conditions on (A,&), the 
mass gap on ~ is strictly positive. Since space-reflections 

intertwine the theories on tt/f and on rff_, it suffices to do 
s 

s 
this analysis for (H , P ). 

s s 

Let <--~ - <--~ (A,&) be the Euclidean expectation + + 
corresponding to the vacuum state w . We assume now that 
<-> is constructed by means of the+Gaussian expansion about mean 
fie!d theory developed in [GJS4]. This assumption can be verified 
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-+ 
for a suitable range of (A,a). Let L x T denote (the charac-

L L T T 
teristie funetion of) the rectangle [- 2 ' 2] x [- 2 '2J and 

V(L x T) the Euclidean action of the anisotropie A(l·l)2 -
theory introdueed in (7.2). 2 

Let X+~ be the characteristic funetion of the reet angle 
L ~ T T ~ 1 T T [2 ' 2] x [- 2 ' 2J ,and x_~ the one of [- 2 ,- 2J x [- 2 ' 2]' 

with 0 < L < ~ < ~ 

Finally, <_>0 
~xT 

denotes the free field Euelidean (Gaussian) 

expectation with periodic b.c. 
T T 

~ ~ 
at the boundary of [- 2 ' 2J x 

[- 2 '2J introdueed in 7.1. 

Definition: 

Choose ~ > 0 such that ~l = 4~ is the value at which the 

classieal Goldstone potential V (~~ - 0) takes a class. 't'l' 't'2 -
minimum. Let 

::!:. log 
T 

(7.47 ) 

,(T,L) - lim ,(T,L,~) , and 
~~ 

,(L) - lim ,(T,~) 
~ 

(and the limits can be shown to exist b~ standard arguments; 
[Si, GJS4J). 

Obviously ,(L) is the analogue of the surfaee tension 

ferromagnetle system in the strip 
L -+ L --<x<-' 2- -2' (+ boundary 

of a 

-+ L -+ L eonditions at x=- , and - boundary eonditions at x = - 2)' 2 

We set ,= lim ,(L) 
L~ 

, is the surfaee tension in the thermodyn~ic limit; presumably 
, = lim ,(L) exists. We shall see that L is always non-negative. 
~ 
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Let m 
s 

denote the mass gap on the soliton sector .~ • 
s 

Theorem 7.7, [F2']. 

Remarks. 

m > T 
S 
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1) Pr es umably m = T = lim T(L) , but we have at present no proof 
s L--

for this equation. The surface tension is given purely in terms of 
Euclidean path space integrals; (see (7.47)-(7.49)). It is not 
hard to see that it is a rigorous version of formal expressions for 
the mass ofthe quantum soliton that one finds in the physics 
literature; ([Co 2] and refs. given there). Theorem 7.7 connects 
our rigorous ("C* algebra"-) construction of soliton sectors with 
Euclidean techniques; (Euclidean path integrals). 

2) Heuristic considerations, based on (7.47)-(7.49) give 

- -1 
T = O(A ), for small A, 

-+ 
(with cr kept fixed, such that [GJS4] applies). This estimate, 
as weIl as details of the proof of Theorem 7.7 appear in [BFG]. 

3) Fairly convincing heuristic arguments indicate that the mass 
spectrum on ~ has an upper gap equal to the mass gap m of 

s 
the vacuum sector, i.e. the spectrum of the mass operator 

(H; - p;)1/2 on ~s is as follows: 

Fig. 2 

o 

(!!2. spectrum at 0) • 

m > T 
S 

\... continuUDl 
m + m 

s 

If these arguments are correct there are one partiale states 
in the (anti-) soliton sector, the quantum (~nti-) solitons. These 
are identical partiales, but have opposite Q-charge. Aspace 
reflection transforms a soliton into an anti-soliton and conversely; 
[F2]. By (7.51) these particles are very heavy, for small A 

One can now do Haag-Ruelle scattering theory; (see §4 of [F2]). 
The total number of quantum solitons and anti-solitons in any 
scattering state in a vacuum sector is even, and in a scattering 
state in a soliton sector it is odd; ([F2], §4). 
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Proof of Theorem 7. 7. 

We first derive an expressjon for the mass gap m 
s 

Lemma 7.8. 

Note that, by [F2], m i3 independent of the choice of the s 
angle e in (7.44) as long as e satisfies the soliton condition 
(7.45). For the r.h.s. of Lemma 7.8 this is apriori not obvious. 
Before we prove Lemma 7.8 we state a second result that we shall 
need. 

Definition: Let ~ = (a(l+a) !a) , a = : 
ax 

c5V[O,t] = J d1 J:ds{-(al)(i)jl (i,s) 

1 2+ ++ + + i (ae) (x) : ••• : (x,s) 

where 

Lemma 7.9, [F2']. 

-tH 
( 1"\ Sn ' •• ,e .. 

s s' 

-c5V[O tJ = <e '> 

We define (formally) 

(ts) ] 

(7.52) 

(7.53) 

+ 

+ where <-> = <-> (A,a) is the Euclidean expectation corresponding 
to the vactum state w+. 

Remarks. As they stand the ~bove definition and Lemma 7.9 are 
somewhat formal, because jl is ultraviolet singular. Apreeise 
version of Lemma 7.9 involves removing an ultraviolet and a space
time cutoff; (see [BFG]). 

A heuristie proof of LEmma 7.9 follows easily from an explieit 
(though formal)ealeulali~n2(f Pe(H) - with H the formal 
Hamiltonian of the A(~·.)2 - theory - and the Feynman-Kac formula. 
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Proof of Lemma 7.8. given Lemma 7.9: 
The main idea is as folIows: Let G be s~me bounded 

(continuous) functional of the Euclidean field ~, G:t. the trans
late of G by the vector (O,t), (i.e. Gt(~) = G(lt' , where 

ltcts) - l(~, s+t)) and G~l) == G(l~ , where 

lJ~'s) = l(t-s). Let 

Clearly 
1 -tH 

inf spec Hs < - lim t lOg(ns ' e sn) 
t~ s 

lim 
t~ 

1 -oV[o t] 
- log<e '> 
t + 

by the spectral theorem and Lemma 7.9. Using the Osterwalder
Schrader reconstruction theorem [OS] one shows that 

inf spec H 
s 

= inf 
{G: 11 GI! co <co} 

1 -OV [ ] 
> inf - lim - log {<e O,t > 
- {G: 11 G 11 co <co} t~ t + 

1 -OV[] 
lim - log< O,t > t e + 
t~ 

== -

and the last e~uation follows from the fact that 
11 G.,.ll co = 11 Gt 11 co = 11 G Il co ; (see [F4] for related results). This 

completes the proof of Lemma 7.8. 

Proof of Theorem 7.7. continued. 

Estimatel: From the spectral theorem and H81der's ine~uality we 
-tH 

conclude that -tl log(n ,e sn) is monotone increasing in t • s s 
This combined with Lemmas 7.9 and 7.8 shows that, given E > 0, 
there is some t o < co such that 
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for all t > t 
- 0 

1 -öV] 
m + E > - - log <e [O,t > 

s t + 

In order to estimate the r.h.s. of (7.54) we need some more 
detailed information about the Euclidean expectation <-> • Such 
information is supplied by the expansion of [GJS4]. Let +A be 
some polynomial in {l, ~l(f), ~2(g) : f, g in c:} . We define 

-V(LXT) ~~l(X+~ + x_J 0 
<A e e > 

( ~xT 
<A> + T, L, ~) - -_-V,"",(r-L-x--T""') -j.I-~-l-r'( X-+-~-+-X-_-~-;:)-o::""":" 

<e e >~XT 

where ~ is as in (7.47). 

The proof of the following three facts are simple; (see e.g. 
[Si]): 

<A> (L,~) + - Um <A>+(T,L,~) (7.56) 
.L-'-

<A> (T,L) - Um <A>+(T,L,~) (7.57) + 
~--

<A> (L) - lim <A> (L,~) (7.58) + 
~--

+ 

exist, for arbitrary A. 

From the strong results of [GJS4] one obtains that, for a 
suitable choice of A and t , 

<A>+ - Um <A> (L) 
L-- + 

exists, for arbitrary A , and the expectation <->+ is Euclidean 
invariant, satisfies exponential clustering (from which one infers 
positivity of the mass gap m on the vacuum sector; [GJS4]) and 

(7.60) 
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By a limiting argument 

-oV [0, t ] 
<e 0 > = 

+ 

-oV [0 t ] 
, 0 

lim<e > (L). 
+ L--

Estimate 2: 

From Estimate 1, (7.54) and (7.61) we conclude that, given 
e: > 0 , there exists L < 00 such that 

0 
-oV[O,t ] 

1 
m + 2e: > - -log <e 0 >+ + e: s - t 

0 
(7.62) 

for all L > L 
- 0 

-oV[o t ] 
1 ' 0 > - t log <e > +(L) , 
o 

Since 
direction, 

<-> (L) 
+ 

is invariant under translations in the time 

-OV[o t ] -oV [-toh ,toh] 
, 0 

<e > (L) 
+ = <e >+(L) . 

Using Osterwalder-Schrader positivity cf <->+(L) in the time 
direction and the Schwarz inequality one shows, (see Section 5, 
proof of Theorem 5.2), 

1 
~ log <e 
t 

o 

1 
< lim 2t 

t--

-OV[ t t] 
log <e -, > (L) 

+ 

A simple transfer matrix argument, (see [Si]; also [F3J), 
shows that 
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Next 

(7.64) 

We now replace the Euclidean~ield ; in the numerator on 
the r.h.s. of (7.64) by a field ~ • defined by the equatians 

where - T /2 < t ~ T 12 • and e is the angle introduced in 
(7.44). (7.45T. We then obtain the equation 

~ -V(LxT) 1J~1 {X+R,-X_R.>a 
-öV TI TI e e 

<e [- 2. 2]> (T L) = lim R.xT 
+' R.~ /e-V(LXT)e1J~l(X+R.+X_R.~ 0 

~ (7.66) I R.xT 

To prove this equation. note that the transformation (7.65) 
is the inverse of (7.44). applied to Euclidean fields. (seT (7.52). 
Lemma 7.9) and that there are na boundary terms at t = ± /2. 
because we have introduced periodic boundary conditions at 

t = ± T/2 ; (in the proof "free b.c." at ~ = ± R./2 are more 
convenient ) • 

Combining now the definition (7.48) of T(L) with Estimate 
2. (7.62) and with (7.63). (7.64) and (7.66) we obtain 
Estimate 3: öV 

1 - [O.t J 
ms + 2& > - ~ log <e 0 >+(L) 

o 
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1 -oV[ t t] 
> lim - 2t log <e -, >+(L) 

t+oo 

= lim T(T,L) = T(L) , for all 
T+oo 

L > L 
- 0 

If we now let L + ~ in (7.67) and use that ~ > 0 may be 
chosen arbitrarily small we obtain the assertion of Theorem 7.7. 

123 

Q.E.D. 

Further details concerning this proof and (7.51) and a com
parison with more heuristic proposals may be found in [BFG]. (In 
principle our methods extend to more interesting models, such as 
scalar QED in three space-time dimensions, onee these models are 
construct i ble). 

8. Symmetry Breaking in (+ +)2 
~.~ 

3 
Quantum Field Theories. 

In this section we establish symmetry breaking for N-eomponent, 
4 (N = 1,2,3),~ field theories in three spaee-time dimensions. We 

consider the interaction in a region A c R3 defined by 

V(A) = 
cr 
2 

(8.1 ) 

- ~~l(x)]dx + c.t. 

It is technically convenient to normal order :-: in (8.1) 
with respect to zero bare mass. The symbol c.t. denotes an O(N)
symmetrie mass counter term whieh depends only on A plus a vacuum 
energy counterterm. 

Theorem 8.1. 
length ~ 1 . 

Let A > 0 and let A be a cube whose sides are of 
There is a constant K such that 

<e-V(A»o < eKJAJ • (8.2) 
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Moreover if ~ ~ 0 

m 

lim 3 
MIR -V(A) 0 <e > 

< }T 4>j. (fi ) > (1.,0 ,l.t) 
1= 1 ~ 

exists and satisfies the Osterwalder-Schrader axioms including 
clustering. Recall that <_>0 denotes the free field expectation 
of bare mass 1. 

The theorem is based on the pnase space cell expansion of 
Glimm and Jaffe [GJ4] who established (8.2). For small I. and 
o Feldman-Osterwalder [FO] and Magnen-S~n~or [MS] showed that the 
limit (8.3) exists and defines a quantum field model with a mass 
gap. Feldman-Osterwalder [F02] have also established this for 
large ~. If N = 1, 2 one can then construct a theory for all 
I. > 0, o,~ using correlation inequalities. Fröblich [Fl] has 
established the theorem for N = 3 using Lee-Yang methods. 
provided ~ ~ O. The limits ~ t 0 and ~ ~ 0 are denoted by 
< • > (I.. 0, O±) respectively. The main result of this section 
is 

Theorem 8.2, [FSS]. Fix 0 > 1 and N = 1, 2, or 3. Then 

lim <4>1> (I., 0, 0+) = ~ 
HO 

(8.4) 

which implies the presence+of s~tery breaking. 
state (~=O; N=1,2) lim <4>(O)·cj>(x» (1.,0,0) = c 

Ixl~ 

For an even 
> 0, for all 

I. € (0,1. ) • 
c 

Remarks. 1. The restrietion on N is needed only to construct 
Euclidean invariant states. 

2. By scaling and renormal ordering wa obtain (8.4) in 
other regions of the coupling constant space, e.g. fixed I. 
and 0 t ~ . 

3. For N = 2, Dunlop and Newman [DN] have shown 

2 2 
<4>2(0)4>2(x» ,S,Const·{<4>l(O)4>l(x» - <4>1(0» },lxl~oo,(8.5) 

which means that the transverse two point function decays at least 
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as fast as the square root of the parallel, truneated two point 
funetion. Thus ~l eouples the vaeuum to two Goldstone Bosons 

in the regime where <~l>(A,a,O+) > 0 • 

The proof of Theorem 4.2 follows from the KRllen-Lehmann 
representation and the following lemma. 

Lemma 8.3. Fix a > 1 Then, for small ~ , 

= ~ f <:$'$:(x» dx > b(A) jrlj rl -, 
(8.6) 

where b(A) + 00 ,as A~O, uniformly in ~ ~ (-1,1) . 

125 

Proof of Theorem 8.2. The proof is similar to that of 3.1. By a 
Lee-Yang argument,[Sl, DNJ, 

lim <~. (O)rp. (x» (A,a,~) - <rp. (0»2(A,a,~) -> 0 , 
JxJ+oo 1 1 1 

for ~ ~ O. The KKllen-Lehmann representation shows that 

<:rp. (O)rp. (x):> _ <rp. (0»2 
1 1 1 

= 

where f dai(m) = 1. Note that c = 0, for ~ ~ O. As 

Jxl + 0 , we see that 

(8.8) 

for all ~ ~ O. Equation (8.4) now follows by letting ~ tend 
to zero and then letting A ~ 0 + To establish long range 
order for the symmetrie state «~>=O), w~ ~ote that in (8.7) the 
integrand is always negative. Henee <:rp·~:(O» > 0 implies 
e > 0 This completes the proof of the theorem. 

Proof of Lemma 8.3. Let 

:rp2:(rl) 

expfp (A,a,~)} = 

= 

rl be a large cube and define 

f + + 
rl : rp • ~;(x) d x • 

[<e-V(A»OJl/JAJ 
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By Theorem 5.2 (generalized by taking the lattiee spaeing to zero) 

2 
(0/2):$ :(n) (, 0 ) <e > 1\, ,IJ 

(8.10) 

~ exp[p(A,O,IJ) - p(A,O,IJ) + p(A,O,IJ) - p(A,o,IJ)Jlnl = 1 • 

By Jensen's inequalityand (8.10), 

2 
o ~ exp[-(0/2) <:$2:(n}> (A,O,IJ)J ~ <e-{0/2):$ :(0» (A,O,IJ) 

+(<1/2) :4>2: (n) 
< [<e > (A,O,IJ)J-1 • 

By Lemma 7.4 the right hand side tends to O. as A ~ O. To 
eomplete the proof, take logarithms. 

Next we prove the existence of a eritical (p4)3 theory, 

(N=l), i. e. 
Let us fix 

a fie1d theory with zero mass and no 10ng range order. 
A small and set IJ = 0. We define 

m (0) = - !im 
10g<4>(0)'p(x»(A,o) 

Ixl~ lxi 

whieh is the mass in the single phase region, see [Si]. The 
eritieal bare mass is defined by 

o = sup{olm(o) > O} • 
c 

By Theorem 8.2 we know that 
theory by 

o < 00 • 
e 

We define the eritieal 

!im 
oto 

e 

< TT <jJ (x.) > (A,O) 
~ 

< TT <jJ(x.) > 
. ~ e 

i ~ 

Theorem 8.4 [GJ 3, Ba, McR]. The state <. > is a 
elustering state of zero mass. The mass m(o) isca continuous, 
monotone deereasing function of 0 on the interval (_00, oe) . 

Sketch of the proof. 
tone funetion of o. 

By Griffiths inequality the mass is a mono
The eontinuity of m(o) re1ies on the 
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estimate 

2 
~(a) Ida < Z < 1 (8.11) 

where Z is the residue of the one particle pole, and mv is the 
finite volume, periodic mass. 

As explained in the lectures of Glimm and Jaffe, the bound 
follows from correlation inequalities. Since the finite volume 
masses ~(a) are easily shown to be smooth in a , the physical 
mass m(a) , which can be shown to be = limmy(a), is continuous 

and a 
c 

v--is the first point at which it vanishes. To show that 

there is no long range order we 
sentation to note that, for all 

use the KHllen-Lehmann repre
a < a 

c 

(8.12) 

hence the bound holds in the limit. The bound (8.12) implies 
uniform upper bounds on all the n-point Euclidean Green's functions, 
(a consequence of GHS inequalities). 

Note that this argument is special to three or more dimensions 
(because in one or two dimensions there is no uniform upper bound 
of the form (8.12)). 

As discussed in the lefitures of Glimm and Jaffe, inequality 
(8.11) implies that, for ~2 ~ in the single phase region, there 
exist stable one particle s~ä~es for all values of a for which 

> o 

One can use the Lee-YaHg theorem to prove that the physical mass 
++2 

of the A(~'~) + ~~l theory in two or three space-time dimensions 
is strictly positive, for ~ # 0 and N = 1,2 or 3 components; 
see [GRSJ (N=l) and [Fl] (N=2,3). 

Similar results hold for the Ising model in three or more 
dimensions: The Ising equilibrium state at the critical tempera
ture has no 10ng range order (in fact is clustering), but corre
lations do not decay exponetially. This follows easily from the 
results of [McR], the fact that <a.a.>tß) > 0 is increasing in 

~ J -
ß and the FS5 uniform upper bound on its Fourier transform 
(for ß < ß). See also [McR]. 

c 
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CONTINUOUS SYMMETRY BREAKDOWN IN 2+ E: DIMENSION 

MODEL 

J. Zinn-Justin 

Centre d'Etudes Nucleaires 
Saclay, France 

I. INTRODUCTION 

THE NON-LINEAR cr 

In these lectures we shall briefly discuss the existence 
and structure of spontaneous symmetry breaking and phase transitions 
at low dimensions. Around four dimensions and above, these questions 
can be understood, as we have learned from K.G. Wilson[l] through the 
use of renormalization group techniques, applied to an expansion 
around mean field theory. The solutions to the renormalization group 
equations have be~n genera ted under the form of the Wilson-Fisher[2J 
E: = 4-d expansion L3 ] 

At lower dimensions the situation was until recently not so 
clear. In one euclidean dimension (quantum mechanics with a finite 
number of degrees of freedom) it was known that spontaneous symmetry 
breaking (S.S.B) was impossible. It should be remarked that neverthe
less the situation of discrete symmetries and continuous symmetries 
is somewhat different. For continous symmetries, S.S.B. is forbidden 
by the would be Goldstone bosons which express that even classically 
when the ground state is degenerated, it costs no energy to go from 
one ground state to another. Therefore perturbation theory in the 
broken phase, breaks down at first order in ~. In the case of 
discrete symmetries the situation is more subtle. In the ca se of 
degenerate classical minima, perturbation theory around one classical 
minimum exists. It is the tunnellingbetween the different vacua, 
which is an effect of order exp -a/~, which is responsible of the 
absence of phase transition. A way of characterizing this tunneling 
is to calculate the quantity exp-tH, where H is the hamiltonian of 
the system. For t large,exp-tH is a projector on the ground state. 
In the configuration representation, matrix elements of exp-tH 

131 
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can be written under the form of a path integral 

q(t)=x' 

<xlexp-tHlx'> f [dq(T)] exp -~[q(T)] 
q(o)=x 

where d; is the euclidean action 

~ [q(T)] = ft [ ± q2(T)+ V(q(T»] dT 
o 

(I) 

(2) 

If we calculate the path integral through the steepest descent 
method, the integral is dominated for t large, by classical trajec
tories qcl(T) going from one classical minimum to another . 

Taking the standard example : 

I AZ 
V(q) = q2+ _ q" 

2 4 
(3) 

we see that the classical solutions are 

qCl(T) 
~ + 

A 

1 
(T-T ) 

± th 0' 
qc1 (T) I -y 

(5) 

2 
1 

The fact that the asymptotic valu~of qcl (T) are ~nly ± I ' 
corresponds to the fact that, for t large, exp-tH proJects onto 
two states 1+> and 1- > for which the wave functions are concentra
ted around x = + ± . The solution qcl (;:) = ±.{ gives the matrix 

elements <+ 1 exp-Q,H t +> anel <-l exp-ZHj -> which are equal. The 
(T-,o> 

solution qcl(T) ~ ! tth ~ contributes to the transition matrix 

element <+lexp-tHI->. At leading order one has 

<+lexp-tHI-> = <+lexp-J/,HI+>exp _ 212" 
31.. 2 

The fact that,in the large t limit,the ratio 

(6) 

<+lexp-tHI-> {..I.. 1 1 I T } ; _exp [clli.[qc1 (T)= ± I ]-oIP1qc1 (T)= ± I th -] (7) 
<+lexp-tHI+> 12 

has a finite limit, shows 1+> and 1-> are not eigenstates of H, and 
that the 2x2 matrix <±IHI±> has to be diagonalized, so that the 
symmetry is not broken. The solution q l(T)=± + th ~ which has 

c 1\'/2 

a finite euclidean action, is the simplest example of an instanton[~] 
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Now in higher dimensions, the problem of S.S.B. has been first 
solved approximatively by A.M. Polyakov[S] using approximate 
renormalization group equations, and A.A. Migdal [6J using approxi
mate recursion formulae on a lattice. We are not going to repeat 
their arguments here, but rather look for generalized instantons, 
which will give us a qualitative idea of what is happening, and 
then study a field Jheory with a continuous O(n) the symmetry; the 
non linear o-model[7 

The use of low temperature series expansion, renormalization 
groupequations, and of a E = d-2 expansion, will allow us [8] to 
describe quantitatively the structure of phase transitions for 
continuous symmetries, around dimension two. 

11. SPONTANEOUS SYMMETRY BREAKING AT LOW DIMENSIONS: 
QUALITATIVE ARGUMENTS 

We shall now give some arguments which will indicate when,in 
low dimensions, in field theoretical models for example, spontaneous 
symmetry breaking is possible. We shall study an arbitrary dimension 
d, d being the total number of dimensio~ space + time. 

A - Discrete Symmetries 

We shall discuss the problem on the path integral represen
tation for exp-~H. The matrix elements are expressed in terms of 
classical fields W(~), where ~ is a vector in (d-I) dimensions 

J lP(X,~)=lPl (x) 
<lP(~)lexp-~HllP'(~» ~ ~ [d(,'>(~,t)]exp-trlP] (8) 

lP(~, 0) =lP(~) 

J~ { I 2 1 2 A 2 4 .. 
o d, d~ 2 [3~ lP(~,,)] - 2 lP (x,t)+ ~ lP (~,,) J 

(9) 

Because, in the lA.rgc ~ limit, exp-~H becomes a projector on a 
1 or 2 dimensional space (depending on the fact that the symmetry 
is spontaneously broken or not) ~t is not necessary to calculate 
all matrix elements of exp-~H. It is sufficient to calculate the 
matrix elements of this operator in a 2-dimensional subspace inva
riant under the symmetry lP in ~. 
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We shall take ~(~) and ~'(~) constant and equal to ±I/\. 

We shall also calculate in a finite volume of linear s~ze 9.-. 
The leading saddle points are : 

+ .!. IP(~. T) 
I (T-To) 

( 10) 
IP(:t"T) ± I th--- \ 

12 

The calculation is almost identical to the calculation of the 
I-dimensional case. The only difference comes from the integration 
on x, which gives an additional factor 9.-d- I . 

<+lexp-9.-HI+> 

<+lexp-9.-HI-> 

<-lexp-9.-HI-> 

<+lexp-9.-HI+> 

_exp-9.-dE(\2) 

exp 212 9.-d- I 
3\2 

Therefcre, for d > I, in the large 9.- limit, the 2x2 matrix 
becomes diagonal, and the ground state is degenerate. 

(11 ) 

(12) 

It is easy to verify that this is a general feature of models 
with discrete symmetries. The symmetry can be spontaneously broken 
in any dimension larger than one, ~.e. for systems with an infinite 
number of dogrooc of froodom ro1 

B - Continuous Symmetries 

We have already seen in one dimension that it appeared more 
difficult to break the continuous symmetries than the discrete one. 
This will be confirmed in higher dimensions. For simplicity we shall 
take the example of the O(n) symmetry. 

<<.p. (x) lexp-9.-HIIP~ (x» 
1 rv l.ro.J 

[d~(x,T)]exp-A 

f r I\" 2 2 \ 2 'I 2 2} 
dT dx 1 2 t [(d~~i~x,T» ~i(X,T)]+ ~ [1 IPi(X,T)] 

We shall take here the boundary conditions 

IP. (x) 
~ ~ 

S. 
~ 

S~ 
~ 

(13) 

(14) 
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with 

(15) 

We shall call e the angle between S and ~'. 

(~, ~') = 8 ( 1 6) 

The solution which minimizes the action, corresponds to a 
vector ~(X,T) belonging to the plane (~, ~')of length *. If a 1S 
the angle between ~ and ~ 

Then we have 

a=S.!. 
9-

(17) 

(18) 

Because the symmetry is 
the action, has a derivative 

2 2 

continuous, the solution which minimizes 
of order 1/9- . So (d ~)2 is of order 

l-l"'" e /~ . As a consequence : 

d-2 
9- . 

(19) 

A spontaneous symmetry breaking is only possible for a dimension 
d larger then2 Dohn dimension 2, the solution (18) is an instanton 
which corresponds to the tunnelling effect between wave functions 
concentrated around vectors pointing towards different directions. 
As mentioned in the introduction, these features about phase tran
sitions have first pointed out by A.M. Polyakov [5] , using 
approximate renormalization group equations, and A.A. Migdal [6] 
using approximate recursion formulae on a lattice. 

Through its recursion formulae, Migdal has also pointed out 
an intringuing similarity between global symmetries in d dimension, 
and gauge symmetries in 2d dimension. 

111. A FIELD THEORETICAL MODEL 
THE NON-LINEAR o-MODEL 

In order to study in a more detailed way the structure of 
S.S.B. in the case of continuous symmetrie~ we shall examine a 
field theoretical model, the non-linear o-model. It is easy to 
show [8] that this model is also the continuous limit, at low 
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temperature, of a lattice model of Statistical Mechanics, a spin 
model with short range positive interaction and continuous O(n) 
symmetry whose partition function is given by : 

Z = J II 0 <.~: -1) dR,i exp - f ~ (S) 

~(S) = L V 
ij ij 

S .• S. 
"""'1 "'J 

(20) 

The potential V .. is short range (for instance nearest neighbor 
coupling) and positi~~. The indices i, j label lattice sites. 

The spin correlation functions are defined by 

where ak are the component indices of the vectors S .. 
1 k 

A - The non linear cr-model 

(21 ) 

If one is only interested in long range correlatio~ i.e, all 
the lattice sites i l , ••• i N are largely separated, and at low 
temperature, it is equivalent to calculate the euclidean (with 
imaginary time) Green functions of the continuous model whose 
euclidean action reads : 

() I [ " S ( )] 2 . h \' [ Sa (x) ] 2 A S = 2 o~ ~ x W1t L (22) 

The generating function of the euclidean Green's functions is 
given by the path integral : 

Z'(K)= J '[dR,(x) o[R,2(x)-I] ] exp- - A(S)+ - K(x)S(x)dx I I J 
t t ,...., ,...., (23) 

We shall be interested by the euclidean dimension 2 and the 
neighborhood of dimension 2. We shall calculate integral (23) again 
by the steepest descent method as apower series in t. A set of 
saddle points is given by S(x) constant and pointing towards a fixed 
direction. But we have al~eady seen that we cannot expand around 
one of these saddle points only, but we have to consider all of 
them. Furthermore we have to put the system in a large but finite 
box. Indeed it is easy to see that the naive perturbation expansion 
around one of these saddle points lead to I.R. divergences of the 
form : 
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for d ~ 2 

Infortunately the correct calculation in a box is not very 
simple. So we shall do something somewhat perverse and break 
explicitly but in a soft way, the symmetry by adding a source 
I~(x)dx to the lagrangian, ~ being some constant vector. In the 
magnetic language, h is a uniform magnetic field. In presence of 
this source, S(x) has a vacuum expectation value in thE direction 
of ~, and the~Goldstone modes disappear. 

We shall call o(x) the component 
component of S(x) orthogonal to h. In 
l(x) the comp~nent of !(x) orthogonal 

f 2 -1/2 I 
Z(J) [d,'[(x)(I-2! (x» ]exp- t 

- f l{x)E(x)dx } 

') 

of S(x) along hand TI(x) the 
th~same way w~ shall call 
to h. 

~ 

(24) 

We have used [he constraint S·(x)=l. So that o(x) just means 
v'1-E2 (x). The action A thus reads~: 

A(E,o)= ± f {[~flE(x) ]2+[dflO(X)]2} dx 

2 
I r { 2 [TI (x) . dfl~ (x) ] 

= 2 J dx [dflE(x)] + 
I-TI 2 (x) 

} (25) 

We shall now study the zero h limit. If this limit exists in 
perturbation theory, in the small t power series expansion, thenfue 
symmetry is spontaneously broken at low t. At the value t (which 
depends on d) at which the perturbation series breaks dOwfi, the 
symmetry is restored. To explore this quest ion we shall use a set 
of renormalization group equations (R.G.E.) that we shall derive 
now. 

B - Renormalization and Renormalization group Equations 

It is easy to see that the action (25) is renormalizable in 
two dimension. The n-field has canonical dimension zero and therefore 
the interaction has canonical dimension 2 as the free part. In 
dimension d higher than 2, the TI field has dimension d;2 and the 
theory is no longer renormalizable. In 2+E dimension we shall 
therefore use a trick which we cannot justify here [8]: We shall 
perform a double series expansion in t and E, and then the theory 
becomes again renormalizable. üf course we shall have then, using 
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R.G.E., to argue about the resummation in s. 

Because the theory is renormalizable, He can in the usual 
way derive R.G.E. We shall first render the theory finite by an 
O(n) invariant regularization : we can use for example lattice or 
dimensional regularization. It is easy to show th~t the theory can 
be renormalized by two renormalization constants LII J , a wave 
function renormalization Z for the field TI and a coupling constant 
renormalization Zt. 

The renormalized theory is defined by renormalization conditione 
or by a minimal substraction procedure. The scale parameter of the 
renormalized theory will be called ~, and the dimensionless 
renormalized coupling constant T. 

Therefore : 

t s 
Z;t(Th ~ (26a) 

TI = Z(T)~Ren. (26b) 

h hR ll€ ITIz 
t (260::) 

Equation (26c) is a consequence of Ward-Takahashi ident~t~es Wlucn 
express the O(n) symmetry of the model. 

The renormalized Green's functions G(N) are related to the 
R bare one by the equation : 

(27) 

We now differentiate equation (28) with respect to ~ at bare 
parameters t, h (an the cut-off if the bare theory has been defined 
in this way) fixed. We obtain the R.G.E. 

(28) 

where we have defined 
-1 

ß(T) = ~...!.T It h 
s[~tn(TZt(T)] 

(29) 
d~ , dT 

Y(T) d tn zi t h ß(T) 
dtnZ(T) 

(30) ~-

8~ 
, 

dT 

In order to explore the consequences of these equations,we 
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shall calculate at one-loop order the renormalization group functions 
SeT) and y(')' 

1 l · d [8] C - One Loop Ca cu at~on an Consequences 

At one loop order the two functions S(T) and y(,) are 
2 

Cr 3) SeT) = E: , - (n-2) .L + 0 (31 ) 
2Tf 

y(ü = ('1-1) , + 0(T 2) (32) 

I) The case of dimension two . Let us first consider the case 
of the dimension 2, E: -0. Then for n larger than 2, the coefficient 
of T2 is negative and the theory is asyrnptotically free. On the 
other hand the origin is a I.R. repulsive fixed point for the cou
pling constant and therefore the spectrum of the theory ~s not 
given by perturbation theory for h=O. The special case n = 2 is 
the abelian case for which it is easy to show that the non linear 
o-model is equivalent to a free field theory, and SeT) vanishes 
identically in two dimensions. 

In the non-abelian case the field theoretical analysis confirms 
therefore that the syrnrnetry is not spontaneously broken for any 
value of the coupling constant. Further confirmation of this fact 
can be found in the large n expansion for this model. In perturba
tion theory, the spectrum of the theory is given by the (n-I) 
massless TI particles. The resurnrned theory is O(n) invariant, and the 
particles of the theory are (n-I) massive TI and a massive 0 
degenerated in mass with the TI L12] 

The integration of equation (28) for h = 0 leads to 

(N)( ) N() [m(T'J]dCl-N),,(N)\:( Pi) G p.,]l,T =0 T 'f' 

'" ~ (T) 

where (O(T) and meT) a~e 

0(,) = exp - l J' Y(T') 
2 ß(T') 

]l exp - JT 

gi.ven by 

(33) 

(34) 

(35) 

From equation (33) we see that meT) is proportional to the mass 
of TI and o. It behaves for small T as : 

2TI 
(36) 

(n-2)T 
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It has an exponential singularity in the coupling constant • 

2) The dimension 2+E. For E small positive the function ß(T) 
has an U.V. stable zero T 

c 
2rrE 2 

Tc = - + O(E ) . 
n-2 (37) 

Therefore for T smaller than T the field a has a vacuum 
c expectation value given by 

< II-rr2 {x) > = a(T) (38) 

and the theory is spontaneously broken. At Tc' a(T) vanishes, and 
the symmetry is restored : 

a(T) - (Tc-T) for T < T 
C 

Y(T ) n-I b c + O(E) 
2 ß' (T ) 2 (n-2) c 

The quantity b corresponds to the critical exponent ß of 
statistical mechanics. 

On the other hand, because T is an U.V. fixed point, the 
large momentum behavior of Green'~ functions is not given by 
perturbation theory, but by this fixed point. 

d- !! (d+2-n) 
(N)( ) _' 2 G AP • , T , II -- 1\ 

-~ 

where n is given by: 

E --+ 
n-2 

(39) 

(40) 

(41 ) 

(42) 

Therefore the non linear a model which, in perturbation theory, 
is not renormal{zable for d > 2, can be defined in higher dimension 
The large n expansion and various arguments seem to indicate that 
the model can actually be defined for dimension d between two and 
four. 

Before presenting the results for the various critical 
exponents at two loop order a last comment is in order. This propert 
of asymptotic freedom is shared by non abelian color gauge theories 
in dimension four. The results explained here for the non linear 
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o model contirm the analogies found by A.A. Migdal[6] between this 
model and gauge theories, and makes even more plausible that the 
spectrum of color gauge theories is qualitatively given by ~trong 
coupling expansions on a lattice which lead to confinement l13] 

D - Results for Critical Expanents 

For n larger than 2, various critical exponents have been 
calculated up to two loap order, and therefore at order E2 . 70r 
completeness we shall give here same results : 

h d f · d· h . ... b [8] T e exponent n e ~ne ~n t e prev~ous sect~on ~s g~ven y 

n = (d-2) _ (n-IL (d-2)2 + O(d-2)3 
n-2 (n-2) 2 

If we define the exponent v by the behaviour of m(T) near T : 
c 

meT) _ (T _T)V . 
c . [8] 

Then v ~s g~ven by : 

= (d-2) + (d-2)2 + O( (d-2)3) 
v n-2 

Other critical exponents can be abtained fram V and n by sca
ling relations. 

Some exponents which govern corrections to scaling laws have 
also been calculated [13] like w which is defined near four dimen
sion as w = ß'(g*) where g is ~4 coupling constant 

w = 4 - d - 2 (d-2) + O(d-2)2 
(n-2) 

Effect of longe range forces have also been explored [14] 
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QUANTUM CHROMODYNAMICS ON A LATTICE 
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INTRODUCTION 

The phenomenological description of hadrons in terms of quarks 
continues to be successful; the most recent advance was the des
cription of the new particles as built from charmed quarks. Mean
while theoretical advances have led to the formulation of a specific 
field theory of quarks, namely "quantum chromodynamics 1." In quantum 
chromodynamics, the standard quarks of the quark model are each 
xeroxed twice to make three different "colors" of quarks, say red, 
yellow and blue quarks. The three colors form the basis for an 
SU(3) group (this group is a second SU(3) group, in addition to the 
Gell-Mann-Ne'eman SU(3).) The quarks interact with an octet of 
colored vector mesons called gluons. The theory is renormalizable 
and in some ways is similar to quantum electrodynamics. There is 
one very crucial difference however: in quantum chromodynamics the 
gluons interact with themselves. A consequence of this interaction 
is "asymptotic freedom2 ... Asymptotic freedom arises as foliows. 
The fundamental interactions of quarks and gluons are modified by 
"radiative" corrections of higher order in the quark-gluon coupling 
constant. These radiative corrections depend on the quark and gluon 
momenta. A careful analysis shows that the cumulative effect of 
radiative corrections to all orders can be characterized by a 
momentum-dependent effective coupling constant. The effective 
coupling is found to vanish in the limit of large momenta (to be 
precise, large moment um transfers between the quarks and gluons). 
This is called asymptotic freedom. As a result of asymptotic 
freedom the quarks can behave as nearly free particles at short 
distances; this is required to explain the high energy electron 
scattering experiments 3• Meanwhile the interactions of quarks at 
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10ng distances can be strong enough to bind the quarks into the 
observed bound states; protons, mesons, etc. 

Unfortunate1y, it is not known yet whether the quarks in 
quantum chromodynamics actua11y form the required bound states. To 
estab1ish whether these bound states exist one must solve a strong 
coup1ing problem and present methods for solving fie1d theories don't 
work for strong coup1ing. The on1y way known at present to solve 
quantum chromodynamics is to use renorma1ized fie1d theory, and at 
10w momenta one gets infrared divergent 10garithms to each order in 
perturbation theory. the sum to all orders of these 10garithms is 
not known4 • 

In order to make avai1ab1e a wider range of methods for solving 
the quark theory, it has been formu1ated on a discrete space-time 
1atticeS• The u1timate aim is to let the 1attice spacing go to zero. 
The 1attice is to be understood as an aid to solving the theory much 
as a discrete mesh is used when a partial differential equation is 
solved numerica11y. The continuum limit of the 1attice theory shou1d 
give back the continuum asymptotica11y free theory. 

One of the methods which is avai1ab1e to solve 1attice theories 
but not continuum theories is the block spin method borrowed from 
statistica1 mechanics 6• I am current1y trying to carry out a block 
spin ca1cu1ation for the 1attice version of quantum chromodynamics: 
I have no resu1ts yet. 

The 1attice gauge theory has a1 ready been discussed in the 
Erice Lecture notes 7• In addition, various versions of the 1attice 
theory are being investigated by Kogut and Susskind8 et a1. 
Bardeen et a1. 9 , and others. 

In these 1ectures three specific topics will be discussed. 
First, the detai1ed definition of the space-time 1attice theory 
will be given inc1uding the arguments showing that the theory has 
a Hermitian Hami1tonian in a Hi1bert space with positive metric lO • 
Second1y, a qualitative discussion of quark confinement will be 
given. The emphasis will be on how quark confinement might arise 
due to specific properties of the gauge theory, inc1uding asymptotic 
freedom. Fina11y, the block spin method will be formu1ated and the 
reasons for pursuing this method exp1ained. 

An important feature of the 1attice theory is that gauge 
invariance is an exact symmetry of the 1attice action. This means 
the 1attice action is invariant to separate SU(3) color groups at 
each space-time 1attice point. The ro1e of this symmetry in quark 
confinement is exp1ained in the Erice 1ecture notes 7 and will not 
be reviewed here. 
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I. EUCLIDEAN LATTICE THEORY 

In this 1ecture the space-time version of the 1attice theory 
will be considered. The time 1attice is a 1attice in imaginary 
time. It is not obvious that normal quantum mechanics can be deve1-
oped on an imaginary time 1attice, so in this 1ecture it will be 
shown that a normal quantum mechanics can be defined from the 
Euc1idean space-time 1attice theory. However, there is a restriction 
on the nearest neighbor quark coup1ing constant in order to have 
positive energies and a positive metric. This restriction, fortu
nate1y, is satisfied by the asymptotica11y free continuum limit of 
the gauge theory. 

The action of the space-time 1attice gauge theory is 7 

n n J.l 

+ + Tr U U A U A U 
nJ.l n+J.l,v n+v,J.l nv 

(1) 

where go is the gauge fie1d coup1ing constant. (The norma1ization 
of the Last term is different from Ref. 7; it is now consistent with 
the definition of go in Ref. 2. 

~n is the quark fie1d; 

U is the exponentia1 of the gauge fie1d; U is a 
nJ.l unitary 3 x 3 color SU(3) matrix. nJ.l 

K is the nearest neighbor quark coup1ing; to be precise 
there are three separate coup1ings for the nonstrange, 
strange, and charmed quarks but in this lecture on1y 
a single quark coup1ing will be used. 

For a positive definite metric and real energies (see be10w) 
one must have 0 < K < 1/6. 
theory invo1ve integrals of 
variables. For examp1e the 
spin) is 

D (m) 
TI 

where 
z 

Vacuum expectation va1ues in the 1attice 
eA over all the quark and gauge fie1d 
TI meson propagator (ignoring isotopic 

A 
e 

(2) 

(3) 

JU means invariant group integration over all SU(3) matrices 
nJ.l 
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U and f(", J.) is fermion integration11 over pure anticommuting 
nll 'f'n''f'n 

variables ljI and $ (to be precise, one integrates over all spin, 
n n 

flavor, and color components of ljI and ~ ). n n 

The quantum mechanical definition of D (m) is 
1T 

where 10) is the vacuum state and $ , 
m Due to the lattice being in imaginary 

$ is defined with H replacing iH: 
m 

Hmoa _ -Hm a 
e ~ e 0 

m 

etc., are quark operators. 
time the Heisenberg field 

(4) 

(5) 

where a is the lattice spacing (for both the space and time axes) , 
H is the Hamiltonian of the theory and ~ is the Schr6dinger quark 
field operator. Thus, for mO > 0 the time ordering gives 

HmOa -HmOa 
D1T (m) = (Oie $~Y5~ e $oY5lj1oI0) (6) 

Assume (as usual) that H is defined so that the vacuum has energy 
zero; then (still for mO > 0) 

D (m) = (01~5~ 
1T m m 

-Hm a o e (7) 

The problem now is to extract from the path integral formula 
for D1T (m) adefinition of the Hamiltonian H, adefinition of the 
Hilbert space on which H acts, and adefinition of the operators 
~ and ljIO' such that the path integral form for D (m) is equivalent m 1T 

to the quantum mechanical form (4). To show how this problem is 
solved we shall first discuss a very much simpler version of the 
action A. Throw out the gauge field, the spatial lattice and all 
but one component of the quark field. Let YO be +1 for the re
maining component. Then the simplified action reads 

A 

where n is a single integer measuring location on the imaginary 
time axis and ljI is a single component anticommuting field. 

n 

(8) 

It is convenient to introduce now the Hilbert space that will 
be used in the simplified model. Astate If) is defined by a wave 
function f($). ~ is a single anticommuting variable; this means 
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that ~2 is O. The most general such function f(~) is 

f(~) b + c~ 

where band c are numerical coefficients (commuting, not anti
commuting). The conjugate state (fl is defined by the conjugate 
wave function 

* * * f (1jJ)= b + c 1jJ 

- * (since YO = +1, (1jJ) is the same as 1jJ). 

The scalar product (flf) is defined to be Ibl 2 + Ic 1
2 • 

formula can be obtained from a fermion integral: 

(flf) = J(1jJ,~)f*(1jJ)e-~1jJf(~) 

This 

The fermion integral has been defined elsewhere 11 • We review it 
briefly. It is defined by the rules that 

o 
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(9) 

(10) 

(11) 

(13) 

where ~, ß, and y are arbitrary constants. The conditions that de
fine this integral are (1) it must be translationally invariant, 
namely, 

where n and n are other anticommuting variables, and(2) a normali
zation condition which is arbitrary and is contained in eq.(12). The 
normalization chosen is the convenient one for the present purposes. 
Given the formulae (12) and (13), the integral (11) becomes 

where we have expanded exp(-~1jJ) obtaining only 1 - 1jJ1jJ because 
(~1jJ)(~1jJ) = _ ~21jJ2 = 0 

The integral (14) simplifies to 

J * * - *- * *-(1jJ,~)(a a - a a 1jJ1jJ + a b1jJ + b a1jJ + b b 1jJ1jJ) 

(14) 

(15) 
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Hence it reproduces the metric. 

It will be useful later on to consider a more general form for 
the metric, namely the metric 

(16) 

This integral gives 

(17 ) 

This metric is positive definite if and only if r is positive. This 
simple constraint on r will be the origin of the restriction K ~ 1/6 
in the full action in order to have a positive metric. 

Consider the quark propagator (for simplicity we study the quarK 
propagator rather than the meson propagator) in the simplified model: 

(18) 

To be specific consider S(l) 

(19) 

The path integral formula for S(l), written out, is 

S(l) = i TI J(". ~ )'" 
n "'n' n 

(20) 

where 

z (21) 

It is not necessary to form the complete product of exponentials 
in eq. (20) before doing any integrals. One can perform the integras 
over (1/1-1' ~-l)' (1/1-2' ~-2)' etc., keeping only the terms to the rigt 

of ~O in eq. (20)~ The result of these integrals (over 1/1-1 , ~-1' etc) 
is a function f(1/I0) which (as will be shown) is Ehe vacuum_staEe 
wave function. Likewise the integrals over (1/12' 1/12)' (1/13' 1/13)' etc. 

can be performed keeping only the exponentials to the left of 1/11' the 
result being a function g(1/Il) which will be the wave function 
for (ni. To be specific 
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(22) 

(23) 

Now 

S(l) 

The multiplication ~f f(~O) by ~O defines the operator ~ it takes 
the wavefunction f(~O) into the new wavefunction ~Of(~O)' 

The integration over ~O and ~O results in a function of ~l; this 
operation defines the operator exp(-Ha). To be specific, suppose 

where hO(~) and hl (~) are two wavefunctions. Then the definition 

of exp(-Ha) gives 

(25) 

Finally, in eq. (24) the exponential exp(- ~l~l) and the integral 

over (~l' ~l) define the scalar product of (gl~ and the state 

exp(-Ha)~lf). So in operator notation eq. (24) becomes 

S(l) = (g ~e-Ha ij;1f)/Z (26) 

In the simplified model being discussed, the operator exp(-Ha) 
can be diagonalized explicitly. To start with, the action of 
exp(-Ha) on the general wavefunction hO(ij;) = b + cij; will be computed. 
The exponentials in eq. (25) can be expanded (dropping terms which 
are due to ~2= 0, etc.) giving 

f(~o,ij;O) {b + 2K ij;1~0 b - bij;O~O + cij;O + 2Kc ij;1~0ij;0} • 

(27) 
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Using the rules for the fermion integral,this gives 

From this it is clear that exp(-Ha) has two eigenfunctions and 
eigenvalues : 

1) eigenfunction 1, 
2) eigenfunction ~, 

eigenvalue 1 
eigenvalue 2K 

The eigenfunctions of exp(-Ha) are also the eigenfunctions of H 
itself. The eigenvalues of H are obtained from 

-1 -Ha H = -a ~(e ) 

(28) 

(29) 

so the two energy eigenvalues are 0 and [~(2K)]/a respectively. 
In order that the second eigenvalue be real, K must be positive 
(this is the reason for the restriction K > 0 in the full lattice 
theoryaction). If, more precisely, 0 < 2K < 1, then the ground 
state of H is the state with eigenfunction 1. Only this case will 
be discussed here. 

Consider the state If) in eq. (22). The exact definition of 
If) depends on the boundary condition one imposes on the path 
integral at large negative time. For simplicity, suppose one stops 
the path integral at the lattice site -N, where N is large. Then 
the definition of If) is 

2K~_N+11/l_N 
e 

This formula for the wavefunction f(~O) involves the operator 
exp(-Ha) multiplied N timesand acting on the wavefunction 1: 

Since the state 11) is the ground state In) of H, we obtain 

(30) 

(31) 

If) = In) (32) 

Likewise one finds (gi = (ni. 

Finally, the "partition function" Z can be calculated: it is 
the same as the numerator in eq. (26) except that 1/1 and ~ are 
removed: 
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1 (33) 

The results If) = In) and Z 1 are special to the simplified 
model. In the full lattice theory eq. (31) still holds but 11) 
is no longer an eigenstate of H. In the limit of large N, exp{-NHa} 
acting on 11) projects out the vacuum component of 11): 

-EONa (34) I f) = c ein) 

where 

c = (n 11) (35) 

and E is the ground state energy of H. Likewise Ig) is propor
tiona2 to In). The first equality of eq. (33) for Z also holds for 
the full theory. The division by Z in eq. (26) ensures that the 
normalization of the states If) and Ig) is cancelled out, leaving 

S(l) = (nl~e-(H-EO)a ~In) (36) 

Thus one is left with a vacuum expectation value with the ground 
state energy of H automatically subtracted away. 

So far only the upper components of ~ and ~ have been discussed. 
There is a clear analogy between the wavefunction ~ and the one 
quark state created by the operator~. Thus the energy - [~1 (2K)]/a 
of the state ~ is the quark mass in the model discussed above. In 
the full theory one also has antiquark states. In ordinary Dirac 
theory the antiquark states are created by ~, not~. In the lattice 
theory antiquark states are created using the lower components of ~. 
To illustrate this consider the simplified theory but with ~ and 
~ being one of the lower components for which yo = -1. In this 
case the action is 

A = - \ J. ,1, + 2K \ J. ,1, 
L 'l'n'l'n L 'l'n'l'n+l (37) 
n n 

In particular the K term involves ~ +1 rather than ~ +1. This means 
the wavefunction f in eq. (22) willnnow depend on ~On instead of 
~O. A general wavefunction is b + c ~O. The conjugate wavefunction 

* * * * * is b + c ~O which (~ecause yo = -1) is b - c ~O. The metric 
factor is still exp(-~O~O);one finds that 

- c* ~O) e-~O~O (b + c ~O) = Ibl 2 + Icl 2 . (38) 

The operator exp(-Ha) can be constructed as before. 
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To illustrate the role of the gauge field and local gauge 
symmetry, a somewhat more complicated model will not be discussed. 
The new model includes one upper component $ and one lower com-

- u 
ponent ~t (also ~u and ~t) and the time component UnO of the gauge 
field. The gauge field will be simplified to be a phase factor 
exp{iAuo)' not a color matrix. The action is 

-iA iA 

A = - I $ ~ + 2K I {~+l e nO ~nu + ~nie nO ~n+l,i} n n n n n ,u 
(39) 

The Hilbert space consists of the functions f{~u,~t). The transfer 
matrix exp{-Ha) is defined by Ihl > = exp{-Ha) Iho> with 

(40) 

The variable AOO is not included in the definition of the Hilbert 
space; instead the integration over Aoo is included in the definitio 
of exp{-Ha). This is possible because there are no coupling terms 
coupling AOO to AlO or A_lO • (lf there were AOOAlO and AoOA_lO terms 
present the Aoo integration would result in a function of AlO and 
A_lO : one could not avoid an A dependence in the wave functions 
hl and hO.) 

The most general wavefunction is 

(4l) 

When exp{-Ha) is applied to this state and all the fermion integrals 
are performed (in this case 

1 

and all integrals of lower order polynomials vanish) one obtains 
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2 - } + (2K) ~lu~l~ e 
2 -

b + (2K) ~lu~l~ e • (42) 

The eigenfunctions and eigenvalues of H are summarized in the table 
below: 

Eigenfunction Eigenvalue Type of State 

1 0 vacuum 

~lu co one quark 

~H co one antiquark 

i)!lu~H 2{- 1. 01t2K} quark + antiquark a 

The presence of the gauge field in this simplified example has 
a remarkable effect. The single quark states have infinite energy 
(exp(-Ha) has eigenvalue 0 for the single quark states, hence H 
has eigenvalue co). The operator exp(-Ha) has eigenvalue 0 due to 
the AOO integral giving O. However, the energy of the quark
antiquark state is finite, and moreover is the sum of the energies 
the single quark and the single antiquark would have had in the 
absence of the gauge field. 

The reason exp(-Ha) gives 0 for the single quark states is 
local gauge invariance. A quark cannot propagate in time because 
that would violate the conservation of SU(3) separately at each time 
(see the Erice Lecture notes 7). Hence exp(-Ha) applied to the single 
quark state gives O. (To be precise a quark cannot propagate in 
imaginary time; for real time the question of propagation is more 
ambiguous.) 

This completes the discussion of simplified models. 

For the full action, eq. (1), we can only define the metric and 
the Hamiltonian. The eigenvectors and eigenvalues are not known. 
The definitions are as folIows. A wave function is a function 
h(~+ , ~+n' U+., u+.) where U+. (1 ~ i ~ 3) are the spacelike nu n", n1 n1 n1 

components of the gauge field. h depends on these variables for 
all n and i. There are of course two upper components for ~ and 
two lower components for ~~~; in addition these variables nu 
have ordinary SU(3) and color SU(3) indices. The metric is defined 
to be 
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3 
exp -{I ~-+l/J? + K I 

n n n rt 
I [ ~-+ U-+ n nll 

]J=l 

lji-+ ] } 
n 

h (:i---. ,1---. U-+., U-+ -:) 
'f'nu''f'ni' n1 n1 (43) 

The exponential contains a sub set of those terms from the action 
which involve fermion fields at a single time, e.g., ~ lji-++A 
terms are included for spacelike but not timelike ll. n n II 
It is somewhat strange to find that the metric depends on the 
dynamics (through the parameter K), but this is necessary in order 
to have a Hermitian Hamiltonian (see below) and there is no physical 
reason to forbid a metric with this dependence. The metric is 
positive definite if and only if IKI < 1/6; one proves this by 
diagonalizing the quadratic form in the fermion variables holding 
the U-+. and U-+: fixed. Positivity requires the eigenvalues all be 

n1 n1 
negative (see eqs. (16) and (17». Since the Uni are unitary 
matrices, they are bounded by 1 and sim~le upper bounds show that 
the eigenvalues are all negative for IKI < 1/6 (the factor 6 comes 
from the 6 nearest neighbor terms). If IKI > 1/6 one can construct 
explicitly astate with negative metric using astate which is non
zero only for Uni ~ 1 for all n and i. Asymptotic freedom gives 
K = 1/8 which is OK. 

The operator exp(-Ha) is defined so that Ihl > = exp(-Ha) IhO> 

if (note: Yll(ll ". 0) connects u to i components and vice versa only) 
-' , ,+ ' 

hl (ljiriu' Wrii' Uni' Uni) 

f ' -' + IT-+ f - IT-+ fu exp K I [~(l-YO)U-+ol/J? + l/J?n (l+YO)U-+O~l n {l/J?,l/J?} n,ll -+ -+ n n n n 'fI'" 
n n nll n 

I , , '+ ' 
+K I [- ljiriu Yll U-+ Wri+vi - Wrii Y U-+ lji-+A +lji-+A YllUOllWri i 

-+ nll II nll n+llU n+llu 
n ll=l 

U-++ +1:-
3 

~+ U-++ +l/J?A Yll Wriu] I I Tr[U-+ U+ A U-+ 
n+lli nll 2 nll tttll,O nll nO 

go -+ 
n ll=l 

, + U +] +-L 
3 3 

U-+ + U + + U-+ U-+ U-+ A I I I Tr[U-+ U-+ A 
nO nll n+ll,O oll 2 nll n+ll,v n+v,ll nv 2g0 -+ 

n ll=l v=l 
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+ U U ~ U ~ U " '+ '+~ n~ n+~,v n+v,~ nv] 

3 

L [~nU;in+~ 
~=l 

(44) 

This definition was arrived at using the following requirements. 

(1) The path integral (3) must be interpretable as an infinite 
product of exp(-Ha) operators, i.e., the terms in the 
action (1) must all be reproduced when one forms exp(-NHa) 
for large N by iterating eq. (44). 

(2) The operator exp(-Ha) must be Hermitian, so that H is 
Hermitian. This re~uirement is verified by considering 
matrix elements (h2Iexp(-Ha) !hO> = (h2 !hl > and making 
sure that 

Now 

_" 3", I ~; ~; + K I L [~; Un~~+~ + 
n n ~=l 

-' , '+' 
h ("'+ ,I~ U+. U+.) 1 o/nu'o/n~' n1' n1 

(45) 

(46) 

When this formula is combined with eq. (44) for hl' one can verify 
explicitly the requirement (45). The metric plays a crucial role 
in this verification: it ensures that the expression for 
(h2!exp(-Ha)!hO> is symmetrie when the primed and unprimed variables 

* are interchanged (apart from the functions h2 and hO themselves), 
-' , 

in particular the exponential in ~ and ~ coming from the metric 
(43) balances the last exponential in eq. (46). 
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The final requirement on exp(-Ha) is that its eigenvalues shoulo 
be positive or O. The proof of this is complicated and will not be 
given (see Ref. 10); the result is that exp(-Ha) has positive or 0 
eigenvalues only if K > 0, exactly as in the first two simplified 
examples. 

11. QUALITATIVE PICTURE OF QUARK CONFINEMENT 

The central paradox in the phenomenological quark picture is 
that for short times and short distances the quarks must behave like 
free particles, while they must be completely trapped on longer time 
and length scales. The trapping is necessary because no quarks have 
been seen experimentally. 

We know, from continuum perturbation theory, that the coupling 
strength of quarks to gluons is large for low energy quarks and 
gluons. This however, does not guarantee confinement. In this 
lecture I shall present a qualitative discussion of how quark con
finement might come about in the asymptotically free gauge theory. 
The argument shows that confinement is a reasonable possibility but 
not certain; whether it occurs can only be settled by a detailed 
calculation. The argument was developed in conversations with 
V. Gribov and A. Casher and is based on earlier work of Kogut and 
Susskind 12 • This lecture is concerned with the continuum gauge 
theory but will provide a physical motivation for the "block spin" 
approach discussed in Lecture 111. 

Kogut and Susskind have offered a simple picture of quark 
confinement making use of a "lines of force" picture. They propose 
that the gauge field generated by two quarks (to be precise, one 
quark and one antiquark) can be characterized by lines of force 
similar to the lines of force of classical electrodynamics. For 
weakly coupled quarks, e.g., quarks sufficiently close to each 
other, the lines of force have the same distribution as for the 
Coulomb field of two point charges (see Fig. 1). 

q q 

Fig. 1. Lines of force between a quark and an antiquark: weak 
coupling case. 
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In this case the potential energy of two quarks has the usual 
Coulomb form g2/r where g is the coupling constant and r is the 
quark-antiquark separation. However, when the quarks are far apart, 
Kogut and Susskind suggest that the lines of force are trapped into 
a sausage-like region connecting the two quarks (see Fig. 2). The 
energy density of the gluon field (in the central region where the 
lines of force are parallel) is constant along each line of force, 
by translational invariance. Hence the total field energy is 
linearly proportional to distance. This means the potential energy 
of the two quarks is proportional to r, and becomes infinite for 
infinite separation r. (There is also a constant term in the energy 
for each end of the sausage.) 

What does one mean by lines of force? Why are the lines of 
force confined to a tube? The purpose of this lecture is to propose 
answers to these questions. 

The fundamental question is: what is the m~n~mum energy con
figuration of two quarks in the limit of large separation? If the 
minimum energy is finite and bounded, then quarks are free. If the 
minimum energy goes to infinity as the separation goes to infinity, 
then the quarks are confined. This suggests that one use a 
variational approach. A set of two quark states will be constructed 
corresponding to various arrangements of the lines of force between 
the quarks. The minimum energy configuration will then be found. 
The variational calculation given below will be very qualitative and 
incomplete but hopefully can distinguish infinity from a finite 
bound. 

We should include in the variational calculation quark states 
which would naively be expected to have a finite energy for large 
separation. The simplest such state is simply ~(x)~(O) In. The 
field W(x) (with Xo = 0) creates a quark at the point x, while 
~(o) creates an antiquark at the ori~in. 

q@_:_@q 
Fig. 2. Lines of force between a quark and antiquark: strong 

coupling case. 
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The analysis given below depends crucially on manifest gauge 
invariance. The state $(x)~(O) In) is certainly not manifestly gauge 
invariant. The typical procedure for making the product ~(x)~(O) 
gauge invariant is to insert an exponential of the gauge field 
between ~(x) and ~(O), namely to consider the product 

(47) 

where A~(x) is the color gauge field (a is the color octet index 
and is summed over). LF is a path from x to O. LF will be called 
a line of force. Ta is the 3 x 3 Hermitian SU(3) matrix generator 
for octet index a. P is a path-ordering symbol(necessary because 
the matrices Ta do not commute). The exponential of A is a quantum 
operator, since A is an operator. It will be called astring 
operator, LF being the location of the string. 

To set up the variational calculation the single term (47) 
will be replaced by an arbitrary sum over many lines of force 
connecting x to O. Using the pictures (1) and (2) as a guide, 
imagine a central plane bisecting the line from ~ to O. Then any 
line of force can be labelIed by the point Yl where it intersects 
the central plane: Yl is a two-dimensional vector in the central 
plane. To completely specify a line of force one must specify 
the complete line LF(Yl). Each line of force has a weight factor 
P(Yl). The resulting state is 

~(x) fd2Y1P(Yl) P exp {ig fLF(Yl) A:(Z)Ta • dz)J}~(o) In). (48) 

The variational procedure is to vary the weight function P(Yl) and 
the locations of the lines LF(Yl) (subject to the constraints that 
the line LF(Yl) begins at x, passes through the point Yl on the 
central plane, and ends at 0). 

How do the string operators affect the energy of astate? A 
string operator creates particles (since any operator in a quantum 
field theory creates particles). Because a single string operator 
is infinitely thin, the particles it creates will have infinite 
momentum in the directions perpendicular to the string, which means 
infinite energy. If a sum of strings of finite width can act 
coherently, they can create particles with finite momentum and hence 
finite energy. Thus the lines of force want to be spread out in 
order to minimize the energy of the particles they create. In the 
weak coupling case the particles created are zero mass gluons. For 
two quarks of separation L the lines of force can easily be spread 
out over a region of transverse size L, so that the energy of the 
gluons in the central region between the two quarks is of order l/L 
When the quarks are pulled away further, the lines of force spread 
out further, thus reducing the energy created in the central region 
The total energy of the two quarks clearly would be finite out to 
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infinite separation, if this picture is correct. 

An obvious way to spoi1 this picture is to e1iminate the 
coherence between strings. In particu1ar, suppose there is a finite 
coherence 1ength ~ beyond which the string operators are uncorre1ated. 

If the strings are spread out over a region of size L, but the 
coherence 1ength ~ is on1y L/2, then we can write the sum of strings 
as two operators 01 and 02' each representing the sum of strings in 
a region of size L/2. The lack of coherence means the energy of the 
sum is the average of the energy of each term: if each term has 
energy 2/L (corresponding to the size L/2) then so does the sumo 
(Mathematica11y, the energy of astate created by 01 + 02 is 

E 
(nl(ü1 + 02)+ R(Ol + 02) In) 

(ni (01 + 02)+ (01 + 02) In) 
(49) 

If 01 and 02 are operators in different regions of space separated 
by more than a coherence 1ength, then one can simp1ify eq. (40) 
using the standard cluster decomposition ru1es. The resu1t is that 
all terms invo1ving both 01 and O2 vanish, giving 

(50) 

which is an average of the energies of 01 and 02 separate1y. It is 
assumed here that the vacuum expectation va1ues of 01 and 02 have 
been subtracted from 01 and 02.) Thus if there is a finite coherence 
1ength there is no energy gained if the 1ines of force spread out 
indefinite1y: the Coulomb-type distribution does not have a 10wer 
energy than the sausage type. 

We must determine the coherence (or corre1ation) 1ength of 
the gauge fie1d. To discuss this question consider a set of 1ines 
of force forming c10sed 100ps (see Fig. 3). 

Fig. 3. C10sed 100ps of 1ines of force 
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A closed line of force on a line LF corresponds to a trace of a 
string operator: 

where the trace is over the color SU(3) indices. A sum of lines of 
force is considered in order to produce an operator with a single 
size scale (L). This means its qualitative behavior is determined 
by the effective coupling constant for the size scale L. 

To discuss coherence we shall think of the sum of closed loop 
strings as a product of two halves, the halves being operators 
A and B (see Fig. 4). Strictly speaking one must have all lines 
of A connected to all lines of B at the joints between the two in 
order that one have a strict product; this problem will be ignored 
here. 

The question is, are there correlations between the two 
operators A and B. To determine this, the fluctuations in A, B 
and the gauge invariant product Tr AB will be considered. For 
weak effective coupling the string operators have the value 
(Tr 1) + O(g ff)' as can be seen by expanding the exponential. 
That is, thee expectation value of Tr AB is of order 1 plus a 
small correction and the fluctuations of Tr AB about its expectation 
value are also small (of size geff)' At first sight this would also 
be true of A and B separately. However, A and B are not gauge 
invariant. A gauge transformation can change A or B by a large 
phase factor. Physics must be invariant to gauge transformations; 
therefore the fluctuations in A or Bare of order 1, not of order 
g ff' (The fluctuations in A and B can be artificially reduced 
b~ using gauge fixing, but by reducing the strength of the gauge 
fixing term one can increase the fluctuations in A and B so that 
they are larger than geff in size.) Since the fluctuations in the 
product Tr AB are much smaller than for the factors A and B 
separately, there must be strong correlations between the two. 
Hence if the effective coupling constant for size L is weak, any 
finite coherence length must be larger than L. 

A B 

Fig. 4. Closed loops as a product of two operators 
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If the effective coupling constant for size scale L is large, 
the situation is different. The fluctuations in the product Tr AB 
are as large as the gauge-generated fluctuations of A and B separately. 
Hence it is possible that A and Bare uncorrelated operators. It 
is not certain that A and Bare uncorrelated. It is perfectly 
possible for the fluctuations of Tr AB to be large and yet not of 
the precise form they would have if A and B are independent. 

Thus the existence of a strong effective coupling for large 
distances in the color gauge theory makes it possible that the 
correlation length for the gauge field is finite, but this is not 
guaranteed to happen. If the correlation length is finite then 
there is no advantage to spreading out the lines of force to a 
width larger than the correlation length. In this case there is a 
finite energy per unit length in the strings connecting the two 
quarks. In fact the strings connecting the two quarks (see Fig. 2) 
can be thought of roughly as a product of unit lengths of string, 
the unit of length being the correlation length. Each unit length 
of string defines an independent operator uncorrelated with other 
lengths of string; each unit length of string creates particles 
with an average energy, ~,say. The total energy for the whole 
length of strings connecting the quarks is ~ times the separation 
of the quarks measured in units of the correlation length. 

This analysis is qualitative and incomplete. A more quanti
tative analysis depends on completion of the "block spin" calcu
lations described in Section 111. However, the analysis of this 
Section should provide a pictorial framework for understanding the 
block spin approach and its relation to confinement. 

111. BLOCK SPIN FORMALISM 

One would like to be able to solve quantum chromodynamics. One 
would like to compute particle masses (pion, K, proton, etc.) (in 
terms of the fundamental parameters of the theory). One would like 
to find out whether quarks are confined in quantum chromodynamics. 
The block spin formalism provides a basis which may allow all these 
quest ions to be answered. However, very lengthy numerical calcu
lations are required and these have not been performed as yet. In 
this Section the basic ideas of the block spin approach will be 
described. 

The continuum gauge theory will be assumed to be the zero lattice 
spacing limit of the lattice gauge theory; the block spin method will 
be used to solve the lattice theory with an arbitrarily small lattice 
spacing. 

The block spin approach originated with L. Kadanoff's paper on 
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scaling in statistical mechanics 13 • The first quantitative block 
spin formalism was developed by Niemeijer and Van Leeuwen14 , for 
the Ising model. The first block spin calculations for the gauge 
theory were developed by Migdal 1S and extended by Kadanoff 16 • 
Unfortunately the Migdal-Kadanoff procedures involve very rough 
approximations. The approach defined here is an exact formalism 
which may be calculable with more controllable approximations. 

The Feynman path integral of Section I is the starting point 
for the block spin calculation. To be precise we shall discuss 
the calculation of the generating functional for vacuum expectation 
values of a current, say the ~ meson field ~Y5r~. The path integral 
is 

Z(h) (52) 

where h.(n) is an arbitrary external source and i is an isotopic 
spin inaex. Vacuum expectation values are generated by differen
tiating Z(h) with respect to h. 

It is not possible to compute Z(h) directly from eq. (52) be
cause there are too many integrations to do. The block spin method 
is designed to reduce the number of integrations to a manageable 
size. Even after this reduction there will be thousands of inte
grations to perform but this may be feasible using Monte Carlo 
integration methods. 

In the block spin approach one computes Z(h) in a sequence of 
steps. Each step consists in replacing the lattice of integration 
variables by a new lattice of integration variables. The new 
lattice has twice the spacing of the old lattice. In consequence, 
in a given volume, say I fermi on a side, there are many fewer sites 
of the new lattice (and hence fewer integration variables) than for 
the old lattice. The procedure for doubling the lattice spacing is 
to introduce a kernel into the formula for Z(h). The kerne I K 
depends on both the new lattice variables and the old lattice 
variables. Let Um~ and ~ be the new lattice variables, with m 
labelling the new lattic~ sites. Let Vn~ and ~~ be the old lattice 
variables. One then defines an action functional for the new lattic, 
by 

exp {AI(~,U,h)} II 
n~ 

, " 
x exp {A(~ ,V) + l h.(n)$ Y5Ti~ } 

1 n n 
n 

(53) 
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The new action Al depends on the variables Um~ and Wm of the new 
lattice. Al also depends on the source function hi(n) for the old 
lattice. 

The fundamental requirement on the kernel (discovered by 
Kadanoff) is that the integral of the kernelover the new variables 
be 1: 

II 
m 

II 
m 

, 
J{", J.} K(U,W;V,W ) 

'i'm''i'm 
1 

(this must be true for all values of the old variables Vn~ and 
W'). As long as Kadanoff's condition is satisfied, one has 

n 

(54) 

(55) 

This means that Al is an effective action on the new lattice: it 
is the integrand for a path integral just as A is the integrand for 
the original path integral. This means that the same method can be 
used to define subsequent steps in the calculation: the s~cond step 
is obtained by using eq. (53) over aga in except that Al(W ,V,h) is 
substituted for A(W' ,V,h) and on the left-hand side a new action 
A2 (W,U,h) replaces Al' 

The new lattice sites mare related to 2x2x2x2 blocks of 
lattice sites of the old lattice. This relation is made explicit 
through the form of the kernel K. The first step in defining the 
kernel is to define "block fields" on the old lattice. For example, 
a simple block quark field is 

n (56) 
nEm 

where "nErn" means all old sites n which are in the block m. It is 
convenient to define the block m = (mI' m2, m3' m4) to consist of 
the sites n for which n~ = 2m or 2m~ - 1. The constant n can be 
adjusted; see below. The qua~k part of the kernel K can now be a 
simple function of the new quark field Wm and the block field Xm; 
for example 

, 
K k(W,W) = exp{-~ L (~ - y )(w. - y )} quar m "m m 'lil 

m 
(57) 

(The constant ~ is adjustable.) 
However, for practical calculations a generalization of this form 
is used: see below. Because the fernel depends only on the difference 
W -y , the integral of K k(W,W) over the new variables W gives 
m"lIl ~~ 
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a constant independent of the old variables ~ ; one then divides the 
exponential by this constant to give a kernel satisfying the 
Kadanoff condition. 

The gauge field part of the kerne 1 is more complicated. First 
of all, it is desirable to maintain gauge invariance. A gauge trans
formation among the new variables has the form 

~ + ~ ~m (58) m m 

~ + ~m 
~+ (59) m m 

U + ~ U ~ ~+ (60) m]..l m m]..l m+]..I 

where ~ is an arbitrary SU(3) matrix for each site m. To ensure 
that Alm is invariant to these gauge transformations it is necessary 
to know how the old variables trans form. The logical rule is that 
~m is the gauge transformation for every site n in the block m. 
Thus 

~n + ~ ~n (for n E block m) (61) m 
A 

~ 't V + ~ V (if n E block m and n+]..I E block m+]..I) 
n]..l m n]..l m+]..I 

(62) 

However ifn 2m -1 then n and n+]..I are both in the block m and 
in this 

]..I 
case 

]..I 

V +~ V ~+ 
n]..l m n]..l m 

This is ca lIed a block gauge transformation. We 
field defined to transform the same way as Um]..l. 
not only) choice is to define the block field W m]..l 

W m]..l A A 

nEm, n+]..I E m+]..I 
V n]..l 

(63) 

need a block gauge 
The simplest (but 

to be 

(64) 

That is, the block field Wm]..l is a sum over t~e links (n, n+]..I) which 
connect the block m to the adjacent block m+]..I. A relatively simple 
kerne 1 is 

(65) 

To ensure that this kernel satisfies the Kadanoff criterion, one 
must divide it by the integral 
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'+ 
TImp fu ' exp{ß I Tr(Um wm 

mp IIlll p P 
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(66) 

The constant ß is adjustable. The complete kerne 1 is the product of 
the gauge kernel times the quark kerneI. 

The effective actions Al' A2' etc., contain, in principle, 
every possible interaction that is gauge invariant and invariant 
to the symmetries of the four-dimensional lattice. One cannot 
calculate the coefficient of all possible interactions in practice. 
Hence it is essential to the calculation of Al' etc., that only a 
finite number of interactions be important. 

There are several hypotheses one can use to limit the number 
of interactions that are important. The first is locality. The 
locality hypothesis is that the most important interactions are 
those which involve the fewest and closest lattice sites. For 
example the term ~ ~m+A should be more important than the term 
~m~m+2~' although m p both will be present17 • The justification 

for the locality hypothesis is that, 
neighbor coupling on the new lattice 
nearest neighbor coupling (w '~'+4A) 

n n p 

for example, a second nearest 
is roughly analogous to a fourth 
on the original lattice, due 

to the factor 2 change in the lattice spacing from the old to the 
new lattice. Thus unless one has appreciable fourth nearest neighbor 
coupling on the original lattice, one will not get much second 
nearest neighbor coupling on the new lattice. Unfortunately, there 
is another way to generate .second nearest neighbor coupling on the 
new lattice: the product of four separate nearest neighbor couplings 
on the old lattice can simulate a single fourth nearest neighbor 
coupling on the old lattice. To partially prevent this one tries to 
adjust the kernel to re du ce the strength of the nearest neighbor 
coupling. For example, in the original action (eq. 1) the coupling 
term ~' ~ +A' (without Y ) has a positive coefficient K. The 

n n P].l 2, 

kerne 1 Kquark (~,~') a!so has nearest neighbor terms -~n ~n ~n+~' 
provided that n and n+p are in the same block m. Since 
these terms are of opposite sign, (negative) to the original nearest 
neighbor term, they weaken the effects due to products of several 
nearest neighbor terms and hence reduce the strength of nonlocal 
terms in the effective acti~n Al. This argument suggests that one 
should also like to have W y ~ +A terms in the kerneI, again of 
opposite sign from those n p n].l in the original action. This 
can be achieved by redefining ~ and ~ in eq. (56) to be 

n, , 
[1 - (-1) p ] n y].l ~n n (67) 

ne:m 

n I 
, n 

~ [1 + (-1) p n 
n 

(68) 
ne:m 
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w~ere n is another adjustable constant. (The sign change for the 
n term between Xm and Xm is necessary and contradicts no funda
mental requirements, even though it means that 

- ' , + 
1/In '" (1/In ) YO (69) 

, , 
In the Euclidean metric $ 

n 
and 1/1 are independent integration 

n 
'+ variables and the Hermitian conjugate 1/1 has no meaning.) 
n 

In practice one selects a few nonlocal interactions to compute 
such as the coefficients of 

1/1 U U A 1/Im+Z~ or Tr U U A U ZA U A A +U A +U + 
m mll m+ll, ll... mll m+ll, II m+ ll," m+ll+V, II m+", II m" 

, 
and then the adjustable parameters (~,n,n ,ß) in the kernel are 
adjusted to minimize these coefficients. If the minimization is 
successful enough the nonlocal interactions are discarded. 

The next simplification has to do with complicated functions 
of variables from a few (or even only one) lattice 
one can have products of four or more quark fields at one site or 
two nearest neighbor sites; these cannot be ruled out by locality. 
However, since phenomenologically the systems of two or three 
quarks seem to be the important ones, it is hoped that higher powers 
of the quark fields will also not be important. There is no theo
retical evidence either for or against this hypothesis at present. 
Secondly, for the gauge field one can have an interaction which is 
an arbitrary function of the simplest trace of U's. Here the aim 
will be to construct a polynomial fit to this function using only a 
few parameters; this should be feasible since the trace of unitary 
matrices is bounded. Thus the argument of the function has a bounded 
range. 

The above hypotheses, if correct, allow the construction of 
effective actions with a reasonable set of parameters, say 50 - 100. 

To determine the parameters of a new action (Al' AZ' etc.) one 
" . must compute the Vnll' 1/In , and $n integrations 1n eq. (53). These 

computations are carried out for specific sets of values of the new 
variables {Umll , 1/Im, ~m}. One must pick (essentially at random), 
say, ZOO sets of these values, which means ZOO separate calculations , 
of the integrations over Vnll' 1/In etc. The result will be ZOO values 
of Al, which are to be fitted by 50 - 100 parameters. The redundancy 
can be used to check whether these parameters are sufficient. 
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It is not possible to do the integrations in eq. (53) exactly. 
One has to truncate the number of lattice sites involved to a 
manageable level and then approximate the integrals that are left. 
For example, to compute the term in Al involving the trace of four 
U's around an elementary square on the new lattice involves at a 
minimum the four blocks (on the old lattice) corresponding to the 
four corners of the square. Since each block contains sixteen old 
lattice sites, one has a minimum total of sixty-four lattice sites. 
One mayaIso want to include other nearby blocks in the calculation, 
but hopefully these will be less important, especially if the 
kerneIs have been successfully chosen to minimize the coherent 
effects of many nearest neighbor interactions. Between sixty-four 
lattice sites there are 198 links - giving 198 simultaneous gauge 
field integrations. These integrals must be computed either by Monte 
Carlo methods or by weak or strong coupling methods. At the present 
time it appears that the Monte Carlo calculations may be feasible, 
which would avoid the necessity of expansions. 

There are several attractive features of the block spin approach. 
One is that each effective action in the sequence Al' A2' etc. is 
associated with adefinite length scale, namely the associated 
lattice spacing. If the initial lattice spacing is athen the scale 
for A~ is 2~ times a. For each such scale there is a different 
effective coupling geff' which can be determined from the coefficient 
of the trace of the elementary gauge loop square in A~. (A~ will 
have a term identical to the last term in eq.(l) except that geff 
replaces gO') This means the behavior of the coupling constant vs. 
distance can be determined even in the infrared region where per
turbation theory breaks down, assuming the Monte Carlo calculations 
are feasible. 

Secondly, the gauge field variables of A~ are very similar in 
spirit to the sums of string operations discussed in Sec. 11, more 
precisely to the sum over strings in a box of size 2~a. Thus the 
physical question of whether the string variables are correlated 
over distances ~ 2~a becomes the question of whether the Um~ are 
correlated in A~. The simplest way to avoid such correlations at 
large distances is for A~ to become independent of the Um~ for 
large ~, which means in particular that the effective coupling geff 
must go to 00 for ~ ~ 00. Thus the confinement problem translates 
into a precise statement about the limit of A~ for large~. Migdal 1S 

and Baaquie18 have already verified the existence of confinement in 
the SU(2) pure gauge theory of color using Migdal's approximate 
recursion formula, but one awaits confirmation of this result in 
more accurate approximations. 

The effective action A~ is a function of the original external 
field hn on the original lattice. It complicates matters if one has 
to compute the dependence of A~ on the external field. Fortunately 
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the S matrix can be computed without reference to any external fields. 
The reason for this is the following: To compute the S matrix what 
is required is the vacuum expectation values of fields for large 
separations. This means that the generating functlonal Z(h) is 
required to be known only to linear order in the field hu from any 
particular region of space of nuclear size. Terms of order h2 and 
higher are needed only for products of weIl separated external fields. 
Now if one considers only the actions Al for effective lattice spac
ing of order the nuclear size or smaller, these actions, due to 
locality, will not contain any products of weIl separated h fields. 
Hence one needs to compute Al only to linear order in h. To linear 
order Al has to have the form 

A1 (U,W,h) = I hn On (U,w) + A1 (U,w, h=O) 
n 

(70) 

for some function On depending on the fields U, w. The fields U, W 
are labelIed by lattice sites with separation 21a while n labels 
lattice sites of the original lattice; by locality, therefore, On 
will depend primarily on Um~ and Wm for m ~ 2-1n. Now suppose 
Z(h) were computed directly from the action Al' using eq. (55). 
Then Z(h) would simply be the generator of vacuum expectation values 
of the composite field On' at least for weIl separated products of 
the 0n's. But since the S-matrix is independent of the interpolating 
fields used to generate it, one does not have to use the complicated 
composite field On; it is equally valid to use simple fields like 
$mY5~Wm instead. In other words one ca? calculate the S matrix for 
the effective action Al with h=O just as if it were itself the fun
damental action. The idea that an action on a lattice with spacing 
of order the nuclear size can have the same S matrix as a continuum 
theory seems strange at first glance but involves no fundamental 
contradictions: see Ref. 19. 

In order to compute the S matrix or Z(h) one must stop iterating 
the equation for Al at some finite value of 1. Fortunately if con
finement occurs one expects the effective coupling to become very 
large for sufficiently large 1, in which case the strong coupling 
methods discussed in Ref. 7 can be used to solve Al directly and one 
can stop iterating. Hence the block spin calculations would be 
repeated only until the effective coupling is large enough to use 
the strong coupling expansions. 

There is one further complication to be discussed, namely gauge 
fixing. No gauge fixing is required in principle. But in practice 
the block spin calculations cannot be carried out when the effective 
coupling is weak except by using gauge fixing. When the effective 
coupling is weak, the action Al is numerically very large and rapidly 
varying. In consequence, only a small range of values of a particular 
integration variable Vny are important in the block spin integration. 
However, without gauge fixing, entire surfaces generated by gauge 
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transformations are important. It is very difficult to integrate 
over these entire surfaces when the integrand varies rapidly in 
directions perpendicular to the surface. Hence one uses gauge 
fixing to shrink the region where A~ is a maximum down to a 
manageable size. 

One cannot use complete gauge fixing in the block spin integral 
because this would spoil the gauge invariance of the new effective 
action. To preserve the gauge invariance of the block spin action 
one must preserve block gauge invariance on the original lattice. 

Only one of many possible forms of gauge fixing will be mentioned 
here. A procedure which is very simple but unfortunately destroys 
the lattice symmetry is to set some of the integration variables Vn~ 
equal to the unit matrix. In each block there are sixteen sites n, 
hence sixteen gauge matrices to be fixed. However, one of these 
gauge matrices must be identified with a block transformation; thus 
only fifteen remain to be fixed. This can be done by setting fifteen 
separate Vn~ matrices equal to one in each block. One mu~t insist 
that each Vn~ be within a single block, that is, n and n+~ must be 
in the same block m. This ensures that setting Vn~ equal to one 
is invariant to block gauge transformations (63). There is no way 
to choose fifteen links within a block symmetrically distributed in 
direction along four coordinate axes. Hence one will break manifest 
hypercubic symmetry. However one can still show that gauge invariant 
vacuum expectation values are unchanged by the presence of the gauge 
fixing so no symmetries of these vacuum expectation values are des
troyed. For each action A~ one first introduces gauge fixing and 
secondly carries out the block spin calculation using the gauge 
fixed action; neither of these changes Z(h) in any way if hn is 
the external source for a gauge invariant field (~nY5Ti~n summed 
over colors to make a color singlet is a gauge invariant field). 

One problem caused by gauge fixing is that the 
effective actions A~ may have extra ghost particles 
gauge invariant states of the original theory. One 
able to separate ghost states from physical states. 
arises only when one replaces the correct composite 
simple fields on the effective lattice. 

S matrix of the 
which are not 
will have to be 

This problem 
fields On by 

Using computers it is practical to iterate the block spin cal
culation hundreds of times; this means the initial lattice spacing 
can be as small as 10-40 cm or smaller, and one can iterate until the 
effective lattice spacing is of order 1 fermi or larger, where strong 
coupling expansions should be applicable. Thus one can easily de
termine whether one is solving a continuum theory: one simply asks 
whether the physical results (masses, etc.) are independent of the 
initial lattice spacing. If the same results are obtained for, say, 
initial lattice spacings of 10-20 , 10- 30 , and 10-40 cm there is no 
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doubt that one is solving a continuum theory. In Ref. 6, Sec. IV 
there is a more thorough discussion of the continuum limit of latticE 
theories and its relation to block spin calculations, using the 
concept of the "triangle of renormalization." 

One aim of the block spin approach is to lay the basis for 
understanding whether quantum chromodynamics has confined quarks, 
and if so whether the bound state spectrum is recognizable as the 
observed spectrum of mesons and baryons. The author fully recog
nizes that a table of masses produced by hours of computer Monte 
Carlo calculations does not represent understanding. To obtain 
understanding one has to go through the calculation step by step, 
finding out what the crucial terms in each action At are and why. 
One has to extract from each Monte Carlo integration a few impor
tant configurations which can then be checked by hand and try to 
understand from this the qualitative results of the integral. 
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I. INTRODUCTION 

In 1954 Yang and Mills first introduced a non-Abelian 
generalization of the gauge symrnetry of electrodynarnics [ I ]. 
They studied a Lagrangian that was invariant under arbitrary 
space-tirne dependent rotations in isospin space. In the twen
ty years that followed, rnuch of the progress in the under
standing of elernentary particle physics was connected in one 
way or anotner with the rich structure of quantum field 
theorie s involving non-A belian gauge fields. The connection 
between broken symrnetries. Goldstone particles and gauge 
fields [2 J, the unification of weak, electrornagnetic and strang 
interactions [3 ]. the renorrnalization of Yang Mills fields 
[ 4], asymptotic freedorn [ 5] and the recent progress in the 
understanding of quark trapping [ 6] are same of the mile
stones in the developrnents of that period. 

tWork supported in part by the National Science Foundation 
under Grant PHY 75-21212. 
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[J Everything that is original in this lecture describes work 
that was carried out in collaboration with Erhard Seiler. 
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On a formal level, gauge fields seem to be very natural 
objects, beeause they force adefinite interaction upon us and 
leave not much freedom exeept for the choice of a coupling 
eonstant. It is also this feature that makes gauge theories so 
difficult to deal with. While we feel that we understand or
dinary boson and fermi fields quite weIl - see e. g. the eon
tributions of Fröhlich, Glimm, Jaffe and Speneer to these 
proceedings - our knowledge of Yang-Mills fields is still on 
a rath~r rUdim.entary level. The purpose of this talk is to 
discuss some ideas that might eventually lead to a rigorous 
definition and discussion of quantum field theories involving 
non-Abelian gauge fields. 

A rigorous approach usually involves a regularization of 
the theory through the introduction of cutoffs and a subsequent 
diseussion of the limits as the cutoffs are removed. The 
eutoffs always destroy some of the sym.metries of the models 
whieh then have to be recovered in the I im. it. Also, some 
cutoffs destroy the positivity of the metric of the Hilbert space 
of physieal states. This should be avoided because it seems 
to be rather complicated to exhibit positivity as a property 
that holds in the no cutoff limit only. We conclude that a 
good eutoff should preserve positivity and most of the sym
metries. In particular it should preserve gauge invariance. 
The lattice approximation first introduced by Wilson [6 J and 
by Polyakov has these properties. 

In Seetion U we introduee lattiee approximations for 
Euclidean Yang-Mills fields [ 6 J and for fermion fields [7 J 
and show that the physieal Hilbert space has a positive metrie. 
We follow closely the general methods set up in [8 ] and in 
[ 9 J. In Seetion UI we discuss a simplified version of a pure 
Yang-Mills theory on the lattiee with arbitrary coupling and 
discuss the mass as a function of the eoupling strength. In 
Seetion IV we construct Yang-Mills models for strong coupling; 
to prove the existence of an infinite volume limit we use a 
cluster expansion. This expansion also allows us to get a 
lower bound for the maSs and to verify Wilson' s "confinement 
bound" [6 J. In Section V finally we discuss the duality 
transformation as a possible approach to the weak eoupling 
region, see [10J. 
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II. EUCLIDEAN FIELD THEORIES ON THE LATTICE 

Euc1idean Green' s functions of an arbitrary fermion-boson 
model uniquely define a relativistic quantum field theory if they 
satisfy the conditions of physical positivity, (anti)symmetry, 
Euc1idean covariance and a regularity condition [9]. 

In this section we introduce a lattice approximation for 
Euc1idean quantum field theories and show that it satisfies the 
physical positivity condition (i. e. positive metric for the Hil
bert space of physical states). This condition will continue to 
hold in the continuum limit, i. e. as the lattice spacing tends 
to zero. 

We will always assurne that we have a hypercubical lat
tice A in :R d with lattice spacing a. For technical reasons 
(see Ir. 3) we choose I\. to be symmetrie with re spect to the 
coordinate axes with no points on these axes. A general point 
in A is thus of the form 

1 d· I i I x = (x , ••• x ), xl = a(~ + n), n integer, x! < Li • 

The values of Li determine the size of 1\.. Furthermore we 
let ef.L be the vector of length a parallel to the f.L'th coordinate 
axis. If x, y E I\. and Ix - y I = a, we write xy for the directed 
lattice bond from x to y. For simplicity we assume a = 1 
unless specified otherwise. 

Ir. 1 Lattice Yang-Mills Fields [6] 

Let Cl be a compact gauge group, X a character on 0" and 
g. a map from directed lattice bonds into Cl such that 

An elementary square of the lattice is called a plaquette and 
we associate with every plaquette P = x,. OlC. the expression 

", )C2. 

= ~(X(gx x gx x gx x g x) + complex conj.) 
1 2 2 3 3 4 x 4 1 

Notice that A p is independent of the orientation and of the 
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starting point of the path around the plaquette P. More 
generally with a closed path C = (xl' x 2' ••• , xn=xI) on the 
lattice, lXi - xi+l\ = a, we associate the expression 
X(C) = X(gx X ••• gx x), where X is again some 

I 2 n-l n 
character on Q. 

The Yang-Mills action on the lattice A is now defined by 

where go is the YM coupling constant and the sum 6 runs 
p 

over all plaquettes P in P (= set of pI. in 1\). For;; an 
arbitrary function of the bond variables gxy we define the 
average 

= Je Ap n dg • 
A xy 

Here dgxy denotes Haar measure on Q. The product n runs 
A 

over all bonds xy in A. Let h. be a map from lattke points 
into the group Q. Then a gauge transformation associated 
with h is a change of variables 

=hg h- l • 
X xy y 

(2. I) 

Both the action Ap and the measure TI dgxv are invariant under 
such transformations because for any closed path 

C = (xl' x 2,··· x n =x l ) 

and because Haar measure is invariant under left and right 
translations. A s in the continuum ca se we may use local 
gauge transformations to eliminate redundant degrees of 
freedom. E. g. we can eliminate the variable grs from the 
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action. Postponing integration over grs we choose a local 
gauge transformation 

h 
x 

for x "# s 
for x = s 

177 

The substitution (2.1) eliminates grs from the action (and 
from :1 if it is a gauge invariant function) and integration over 
grs can now be carried out easily. In effect this procedure 
amounts to fixing the bond variable grs to 1 (for gauge in
variant :1). Obviously we cannot fix all the bond variables. 
It is straightforward to show that b~ppropriate gauge trans
formations 

you can fix to ]. the variables of as many bonds 
as you can draw without ever c10sing a loop. 

Example 1: 

Radiation gauge: Pick a "time axis" parallel to one of the 
lattice generators. Fix to 1 all the variables of bonds par
allel to this direction. 

Example 2: 

..:;T~w~O_-..:;d:..;;i.:.;m:..:;,..::.e,;.:n..:;s..:;i..:;.o,;.:n:..;.a..:;l--!iig~a;...:u.;.sgl...e;...-t:..;;h.:;.e:..o.:;.r::...=..ie.:....;:..;s : He re the "plaq uette var ia ble s " 
p can be introduced as independent variables and the measure 

_1-6~(X<P)+c. c.) 
2g5 r 

TI d gxy -. e TI dp 

factorizes. Here, given a plaquette P , the 
plaquette variable p is defined to be 

see Figure 1. This means that the two dimensional model is 
exactly solvable, the infinite volume limit is trivial, there 
is zero correlation, i. e. infinite mass, and there is not 
very much that can be learned from the study of the case 
d = 2. 
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- -- ---- ----
~ ~ b ~ 

--- -- -
~ ~ ~ ~ 

---- --- ---
~ ~ ~ ~ 

Figure 1. The variables belonging to bonds have 
been fixed to 1. The variables belonging to - --- bonds 
are the remaining independent variables, which in turn can 
be replaced by the plaquette variables -' 

II. 2 Euclidean Fermion Fields on the Lattice 

Free Euclidean fermion fields 'fk were introduced in 
[ 8 ]. They were defined such that f.L 

1 2 -+ t -+ 
('fa(x)'fß(y) = (T$a(ixO,x)$ß(iyO'y) 

(2.2) 

E Co -:J E 
iYk {:k croj· k = 1, 2, 3 • YO = YO = Yk = = 

$ and $t = YO$~' are free relativistic fermion fields. 

To define a lattice approximation of this theory we in
terpret 'fk(x), k = 1,2; a = 0, ••• ,3, x E A, as generators of a -
a Grassmann algebra uA' see [Il]. On uA we define a 
linear functional, written as an "integral", by first setting 
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,f. (mOnOmial in. 'I'~(x), not containing ) = 
J all the varlables 'I'K(x') 0 • 

a 
A 

Then we extend f to all of G. A by linearity. The symbol 1\ 
A 

means exterior multiplication and will be dropped in the 
following. 

Now we define the Gibbs density fJ. A by 

JA [m'l' l(x)'I'2(x) -~'I' 1 (X)Y;('I'2(x_ efJ.) - ~(x+efJ.)) ] 
fJ.i\ = e (2.3) 

This is a lattice version of the formal expression 

eS'I' 1 (x)(m-y!F °11 )'1' 2(X)d4 x 
r- r- which formally gives (2.2). Terms 

with x ± efJ. ~ i\ are to be left out in the sum in the exponent 
of (2.3). Notice that m can be any real nurnber, including 
zero. In a theory coupling fermions to gauge fields, we 
have to pick a finite dimensional unitary representation U(·) 
of the gauge group Q.. For g E Q., U(g) is then a unitary 
operator on some finite dimensional Hilbert space. The 
fermion variables 'I'~(x) are now vectors in that space. The 
fermion action is 

1 Z 1 E 2 
:0[m.'I' (x)'I' (x) -~'I' (x)y [U(g )'1' (x-e ) -

11 x,x-e ll fJ. 
xEi\ r- r-

2 
- U(g + )'1' (x+e )}] • (2.4) 

x, x ejJ. fJ. 

Then, for 3' an element in the Grassmann algebra G. whose 
coefficients may be functions of the bond variables A gxy' we 
define the expectation by 

(3') = _1_Jndg eA~f3'eAF 
~ Z . xy 

~ i\ i\ 

(2. 5) 
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A local gauge transformation now consists in (2.1) plus a 
substitution 

1 l' 
1f (x) ... 1f (x) 

a a 

2 2' 2 
1f (x) ... 1f (x) = U(h )1f (x) • 

a a x a 
(2. 5) 

The action A = Ap + A F is invariant under (2.1/5). We 
leave it as an exercise to verify that the functional f, too, 
is invariant under (2.5), see [11 J. A 

II.3 Physical Positivity 

In this seetion we show how to use the expectation < • ) 
to define a (positive metric) Hilbert space :K.) the Hilbert 
space of physical states. On:K we will then construct the 
"transfer matrix" e- H, where H is the Hamiltonian. For 
simplicity we assume that we have already constructed the 
infinite volume limit A ... Zd. 

We call the ed-direction the "time direction". The set 
a+ of functions at positive times is defined to be the Grass
mann algebra generated by [1fk (x), x d > O} with coefficients 
which are functions f( ••• gxy ••• ) of the bond variables gxy' 
x d > 0, yd > O. Correspondingly we define a -. An antilinear 
map 8: a+ ... a- is defined as follows: 

where f}x 

E 3-kn E 3-kl = f(···gf}x,f}y···)('Y0 1f )(f}xn )···C'V0 1f )(f}X 1) 

1 2 d 
= (x J X J ••• ' -x ) and k. = 

l 
1 or 2. 

The main result of this section is contained in the 
following theorem [7 J. 

Theorem: With < • ) defined as in (2.5) and ;; a gauge 
invariant function in a+, 
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Postponing the proof of this theorem we now define jC to be 
the Hilbert space completion of Gt i.' the gauge invariant 
part of G+, equipped with the scalar product 

(:1, a') == (ea· a') • 
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+ 
Define T to be the operator on Gg • i. that shifts everything by 
two lattice units in time direction. This determines an opera
tor T:K on jC by 

A s suming that (a:, T~a:') grows at most like apower of n 
(this is usually very easy to show) one readily proves that 
TjC is a positive self-adjoint operator of norm less than 1. 
Hence we can write 

T 
jC 

= e 
-2H 

where H is the Hamiltonian and H = H* ~ o. 
transfer matrix, see [ 9 J. 

-H 
e is the 

Remark: We define T as shift by 2 lattice units, be
cause that makes it easy to prove that TjC is positive. The 
operator "shift by one lattice unit" is of course a square root 
of T but it isn't necessarily positive. This is a peculiarity 
of the lattice approximation. 

The proof of the theorem goes in four easy steps: 
1) Pass to the radiation gauge where all the variables belong

ing to bonds parallel to the time direction are fixed to I. 
2) Show that for a: 1,···, a: n in G+ (but not necessarily gauge 

invariant) 

(exercise) A +A 
3) Using 2) show that e P F is 

a:k E G+ and Qk > O. 

This is evident except for the part of Ap that come s from 
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plaquettes which intersect the x d = 0 plane. It suffices to 
consider one factor of the form 

_1_('V(g_a ... Q • g )+compl. conj.) 
2 2 I\. V l"X xy 

P = e gO 

d d 
with x = Y = i. 

xtl. 
)( y 

___ -----r----- ______ -.! t - 0 plana n 

(Remember that we are in the radiation gauge, hence 
gx, "x = gy, "y = 1.) By the theorem of Peter and Weyl [12J 
we can (Fourier) expand 

(2.6) 

where (Xa} are the characters of a complete system of inequi
valent representations D(a) of the group Ci. The coefficients 
).,a(go) are all nonnegative because p is a function of positive 
type, see [13, p.253 J. Finally we observe that 

(2.7) 

Combining (2.6) and (2.7) we find the desired result. 

+ 4) To prove the theorem it now suffices to show that for ~ E G. , 
in the radiation gauge, 
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J n d gxy f ((8) :;: • :;:) 

is nonnegative. But this expression equals 

+ + 2 IJ TIdgxy f :;: \ 
where the + indicates that we integrate only over "positive 
time" variable s. 
This concludes the proof of the theorem. 
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Remarks: 1. Sections II.2/3 were not part of the ori
ginal talk. They are motivated by Wilson' s remarks on lat
tice fermions, see his contribution to these proceedings. 
2. The construction proposed here is a straightforward dis
cretization of a construction in [8 J. It is different from 
Wilson' s in the following respects: our lattice has no t = 0 
plane where one easily runs into troubles, because Euclidean 
fermion operators always anticommute, while the relativistic 
~+(O,~) and ~(O,~) don't; we have no restrictions on the al
lowed values of the parameters in the action (except for some 
s igns). A s long as A is of the form (8)A + A + our construction 
works. Of course we could also replace Y~ by Y~ ± 1 (a 
method to project out half the number of degrees of freedom). 
3. Recently M. Lüscher has informed us that he has con
structed lattice fermions along the lines proposed by Wilson. 

III. SIMPLIFIED YANG-MILLS MODEL 

Our idea is to study the mas se s m i of phys ical objects 
in the lattice theory as functions of the coupling constants gi 
and of the lattice spacing a. Then we would like to pas s to 
the continuum limit while keeping the physical masses fixed. 
This should determine the values of the (bare) coupling con
stants as functions of the lattice spacing. Scaling arguments 
show that 

m. 
1 

= fi(g) 
a 

hence we can fix a = 1 and study the functions f i • For 
example, for a non-abelian Yang-Mills theory, one expects a 
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picture of the following type 

with lim f = CD, lim f = 0, while the abelian ca se should look 
g~ g-+O 

different, e. g. 

Little is known about the true behaviour of f(g), except for g 
sufficiently small; that case will be ditgcqssed in the next 
section. If we fix m and solve m = ~ we find that 

a 
go = gO(a) has to go to zero in the continuurn limit (from 
asyrnptotic freedom one expects go ,.. -II1,n a as a .... 0). To 
get a better idea of what might happen, we first consider a 
simplified Yang-Mills model which is obta ined from the full 
model by elimination from the action of all the plaquettes 
wh ich are perpendicular to the time axis. Furthermore, we 
want to work in the radiation gauge, where all the bonds in 
time äirection have their variables fixed to 1. What remains 
in the action is of the form 

A. l'f' slmp 1 led 

X" 
p 

9p 

(3. 1) 

The transfer matrix T corresponding to (3.1) is the tensor 
product of copies of the operator t, given by the kernel 

I 
4 2 (X(hg-I)+c. c. )+a 

t(h, g) = e go 

where a is a normalization factor, chosen such that the largest 
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eigenvalue of t is 1. As in (2.6) we use the theoreIn of Peter 
and vreyl [12J to expand 

where 

A 
t(h) = '0 A (gO)X (h) 

0 00 

and {Xd are the character s of a cOInplete systeIn of inequi
valent, irreducible, unitary representations Da of the group 'l. 
Let da be the diInension of the representation Da, then 

~ AO 
I\. = are the eigenvalues of t 

o da 

A 
and all eigenvectors of t with eigenvalue AO are linear COIn-
binations of the Inatrix eleInents of Da. Because l' is a func-
tion of positive type [13J, its Fourier coefficients AO are all 
nonnegative. vre order the paraIneters 0 such that 

Interpreting T as e -H we find that H has eigenvalues of the 
forIn -L;n ,tnt o ' no nonnegative integers. The sIna1lest non

o 0 
zero eigenvalue of H is therefore 

1\ 
In = -,tnA = ,tnA - ,tnA 02 • 

02 01 

If we restrict the action of the HaIniltonian to gauge invariant 
states, then lt can be shown that 

I:!. 
In . = -4,tnX o g.l. 2 

(3. 2) 

For exatnple, let'l = U(I) and choose X(cp) = e i.cp , then for 
o = 0, ±1, ±2,... 1 

1 Z:Zcoscp. 
A (g ) = -re go e 1CJCPdcp 

o 0 j2;J 
_ '2" ~ (_1_ )0+2k 1 = 
- II/ G 1T L1 4 2 k' ( +k)' k=O go • 0 • 

o . 
= J2;"(-i) J (~), see [14, p. 15J. 

o 4go 

(3.3) 
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This gives 
for go » 1 

for go « 1 

Replacing U(l) by SU(2) we get essentially the same answers. 
As we will see in the next section, the large go-result of the 
simplified model comes close to what we find for an exact 
mOdel; the expression we found for small go would be exact 
in two dimensions, in four dimensions the predictions from 
asyrnptotic freedom are that m ,..., exp( -const. / gO). This dis
crepancy is not particularly surprising, because our simpli
fied model is essentially two-dimensional. 

IV. PURE YANG-MILLS THEORY WITH LARGE COUPLING: 
The Infinite Volume Limit and the Mas s Gap [7 J 

In this section we construct the infinite volurne limit of 
a pure Yang-Mills theory with arbitrary (compact) gauge group 
Ci and large coupling go and prove a lower bound on the mass 
gap. We use a cluster expansion which is a well-known tech
nique both in statistical mechanics [15 J and in constructive 
quantum field theory [16 J. We follow closely the methods of 
[16J. The basic idea of the expansion is that for large go 

1 
2g7 Ap 

e 0 ,...,1 

because \A p \ ~ D, where D is the dimension of the repre
sentation of which X is the character (see Section H. 1). Hence 
we write 

= 6 TI p (P) (4. 1) 
Q PEQ 

p (P) 

1 22 (Ap+D) 
- e go - 1 

Here 
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is small, 

1 o S; p (P) s; const."2 (4.2) 
go 

and the sum 6 runs over all subsets Q of r. (Remember 
Q 

that P stands for the set of all plaquettes in the lattice M. 

Now let 3' be a function of finitely many bond variables 
gxy and let ~ be the set of plaquettes which have bond vari
ables occuring in 3'. Then the expectation of 3' is given by 

(4.3) 

is the partition function. Let 

Us consider a single term in the sum of (4.3). Q is a collec
tion of plaquettes in P and can therefore be written as the 
union of connected components: 

Some of these components, Q~, ••• , Q~, say, have bonds in 
common with Po while the others, Q~+l' ••• ' Q~ don't. We 
now fix Q' == Qf U ••• U ~ and resum over all terms in 
(4. 3) with Q~+l' ••• ' Q~ having no bond in common with PO. 
lf we carry out the integration over variables belonging 
to bonds not in Q' U Po then we just get the partition function 
Z Q U ' where P\Q'UPO is the set of plaquettes in P which 

P\. ' Po 
have no bond in common with Q' U PO. We thus obtain from 
(4. 3) 

(4.4) 
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This is called the cluster expansion. We will show below that 
(4.4) converges absolutely, the rate of convergence being 
governed by the size of Po and of gO. 

Lenuna I: For go sufficiently large, there are constants 
a, ß depending on 3', d, Ci and X only such that 

~ IJ3' n P 
Q' PEQ' 

(4.5) 

IQ'I>K 

Here I Q' I is the nurnber of plaquettes in Q'. 

For a proof of this lemma we need three estimates: 

( a) 

This follows immediately if we write both numerator and de
nominator as integrals over all the bond variables and observe 
that 

o ::;; (integrand) t::;; (integrand) . t • 
numera or denomlna or 

It was because of this inequality that we added D to Ap in 
(4. I), thus making (4. I) a function which is always larger or 
equal to 1. 

(b) Let k be the nurnber of plaquettes in Q'. Then 

.t cl )k 
0::;; 11 p (P) ::;; \2" 

PEQ' go 

where cl is a constant that depends on the group and the choice 
of the cnaracter X only. This follows from (4.2). 

(c) Denote the number of possible choices of Q' with IQ' I = k, 
all components of Q' connected with PO' by N(k). Then 

k 
N(k) ::;; c2· c 3 • 

Here c 2 depends on the size of Po while c 3 is a function of 
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the dimension of space time only. This bound is purely com
binatorial and will not be proven here, see however [16 J and 
[7 J. 

Combining (a), (b), and (c) we find that the left hand 
s ide of (4. 5) is bounded by 

This proves the lemma. It is crucial that the bound in (4.5) 
holds uniformly in the size of the lattice A. The next step is 
to prove clustering. Let:1 be as before and v a lattice vec
tor of length Iv I. (We are assuming here that the lattice 
constant is one.) Then we define the translate function :1v by 

a;:v( •••• g .... ) = 3i( •••• g .•.. ). 
xy x+vy+v 

Lemma 2: Let:1 1 and :12 be functions of finitely many 
lattice bond variables. Suppose go is sufficiently large. 
Then there is a constant c = c(:11,32) such that 

uniformly in the 
fying 

size 
d 

of A as A ~ ~ • 

(4.6) 

m is a constant satis-

2 
4( ..e n go - ..e n (3 ) (4.7) 

with (3 as in Lemma 1. 

To prove this lemma we follow Ginibre [17], see also [16J, 
and introduce an artificial symmetry. Let giy denote a second 
variable corresponding to the bond xy, let ~~ be the function 

1 
:1i but depending on the giy variables rather than on gxy and 
associate with every plaquette P the function Ap = Ap + A~ • 
Define a new expectation by 
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Notice t"~at 2'p = (Zp)2. The theory is now symmetrie under 
gxy'" g;y. We can rewrite the left hand side of (4.6) as 

(4.8) 

Next we apply the cluster expansion (4.4) to (4.8). For v 
sufficiently large, Po now consists in two widely separated 
components; the supports of:J 1 and :JZ, denoted by POl and 
P02 resp. Consider a term in (4.4). If Q' consists in 
connected components Qf all of which have bonds in common 
with only one of the components of PO, then we can apply the 
symmetry gxy ... g; in POl and in all the Q~' s connected 
with it (but not in the rest). Because:J I - :Jll' is odd under 
this symmetry, but all the Ap are even, terms with such Q' 

must vanish. The nonvanishing terms in (4. 4) thus have a Q' 

that connects POl and P02. Such a Q' contains at least 
K = (Iv \ - r) plaquettes, where r is a fixed number depending 
on the size of POl and f-b2. Applying Lemma I we find 

I«(:J I - :J;')(:J2 - :J~»I ~ a(13 2)\v\-r 
go 

This proves Lemma 2 except for the factor 4 in (4.7). We 
leave it as an exercise to show that Q' must actually contain 
at least 4( Iv \ - r) plaquettes in order to give a nonvanishing 
contribution to (4.4), see also [7 J. 

Inequality (4.7) gives a lower bound for the mass gap of 
the mOdel, which is independent of the gauge group and in 
agreement with the exact result of the simplified mOdel, see 
(3.2). We now show that the infinite volume limit (/I. -+ Zd) 
exists for expectations (:J). Let:J be a function of finitely 
many plaquette variables and define Po as before. We order 
all the plaquettes P in zd '" fb such that the distance of Pi 
from Po is a nondecreasing function of i. Finally set 

Pk = Po U [P I' ••• , P k } and study 
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Set 

then 

~k = 

1 
ZZ(A p +D) 

e go k+1 = 

(:J • dk+l >PIe 

@k+1 'f-Ik 

-I 
= (:1k +l >f-Ik [(:1. :1k +l >f-Ik - (:1 >f-Ik@k+l >f-IkJ 

-I 
The factor \ (:1k+1 ~k \ is always s:maller than 1 and the ex-

pression in the square brackets decreases exponentially with 
the distance between f-IO and Pk+l. It follows that 
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( 4.9) 

is well defined; the su:m over k converges absolutely. 

We su:m:marize our results in a theore:m. 

Theore:m: For go sufficiently large, the infinite volu:me 
li:mit of the Yang-Mills lattice gauge theories exists, has a 
:mass gap given by (4.7), satisfies physical positivity, and is 
invariant under translations by lattice vectors. 

Re:mark: Translational invariance follows fro:m unique
ness of the infinite volu:me li:mit (4.9). 

The cluster expansion and Le:m:ma 1 can be used to give 
a rigorous proof of Wilson' s "confine:ment bound" [6 ] which 
we state as follows: 

Theore:m: Let C be a closed, rectangular path on the 
lattice and X a character of SU(3), belonging to an irreducible 
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representation of triality different fro:m O. Then in an SU(3) 
Yang-Mills theory with sufficiently strong coupling 

/\ -:m'. area( C) 
\<X(C»\ ~ const.e • (4.10) 

Here :m' = .t,ngÖ - .t,nl3, see Le:m:ma I, and (4.7). Area (C) 
is the area of the rectangle spanned by C. 

For a proof one si:mply has to show that in the cluster expan
sion (4.4), Q' has to contain a set of plaquettes which span 
a hypersurface whose boundary is exactly C; ter:ms with Q' 
not satisfying this condition vanish. A detailed de:monstration 
is contained in [7 J; for the cases Cl = U(I) and Ci = 2'2' see 
[6 J and [JOJ resp., for weak coupling and Ci = U(I), see [2IJ. 

Re:marks: I) The condition on the triality of X appears 
to be crucial. (Triality can be defined as ~(# of squares in 
the Young diagra:m, characterizing the representation, :mod 3}.) 
2) It is not clai:med here that, as a consequence of this 
theore:m, quarks would be confined. In [ 6 J Wilson indicates 
a pos s ible linkage between bounds of the type (4.10) and confine
:ment, but a rigorous treat:ment of this question cannot exclude 
the fer:mions fro:m the discussion and is probably :more co:mpli
cated than the proof of this theore:m. 

V. THE WEAK COUPLING REGION; THE DUALITY 
TRANSFORMATION 

The duality transfor:mation relates a two di:mensional 
Ising :model at high te:mperature to a dual Ising :model at low 
te:mperature, see [18 J, [19 J and references given there. 
There is a generalization of this duality transfor:mation to 
gauge theories in d di:mensions with abelian or nonabelian 
gauge groups: it turns out to be a Fourier transfor:mation on 
the group, see e. g. [20]. A s in the Is ing :model, the duality trans
for:mation relates weak coupling proble:ms to strong coupling 
proble:ms. In the case of discrete gauge groups (~), such as 
Zn' it appears to be a powerful tool to control the weak 
coupling region, by applying the :methods of chapter IV to the 
duality transfor:med :model [10]. In :more realistic case s 
(U( 1), SU(n» however, the :method hasn't led to rigorous re
sults for the weak coupling region yet, it probably has to be 
co:mbined with other ideas before it can beco:me effective. 
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Here we content ourselves with a brief sketch of the :method 
and of the difficulties. The interested reader is referred to 
[10], [ZO] and to references given there. 

We consider th;e case of Ci = 9(1). Let P be a plaquette 
)(4\rI)(3 g - Lq:>1 g - 1epz - - Lq:>3 . L..J 'Xl Xz - e , x Zx 3 - e ,gx3X4 - e , 
X, Xa. 

= - Lq:>4 e • We choose 

A p = cosCPp' CPp = ~ + CPz - CP3 - CP4· 

1 
-Ap 
Zgo . 

Then for s:mall go' e devlates considerably fro:m 1 for 
so:me values of "Pp, hence the cluster expansion of Chapter IV 
will fail. In fact, for go sufficiently s:mall, that factor will 
be close to zero unless CPp = 0, i. e. it will approach a 5 
function 5(cpp). This suggests to consider the Fourier trans-
for:m, 

1 
--Z coscp 
ZgO 

e 

Z 
_I_(I-~) 
Z Z Z 

e go 

= Fourier transfor:m of 

1 
-Z Z Z 
ZgO -gox e • e 

The Fourier transfor:m thus relates the weak coupling proble:m 
to a strong coupling proble:m, as expected. More precisely 

1 
~ coscp 

e go = (5. 1) 

- n i 
where A (gO) = JZrr(-i) J (-:--7) as in (3.3). For s:mall go 

n n 4g 
-gZonZ 0 

we have An(gO) '" e • For the partition function we find 

1 

Z = J e zg5 
:0 cos CPP 

P TI dcp. 
L 

(5. Z) 
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The t'pi -integrations can be carried out explicitly and yield 
6-functions. Consider a bond b with bond variable t'pb. The 
bond b occur s in Zk = Z( d - 1) plaquette s, PI' P z ••• PZk say. 
Hence the t'pb integration in (5. Z) gives 0 unless 

n 1 + .•• + ~ - ~+l - ••• - n Zk = 0 • (5. 3) 

P, Example: d = 3: 

The arrows ~ indicate that 
the choice of the sign of t'pP 
associates adefinite orienta
tion with each plaquette. 

The constraints (5.3) on the pos sible value s of ni can be 
expressed very easily in terms of a dual lattice. E. g., for 
d = 3, we associate with every (oriented) plaquette t'pi a directed 
bond b i orthogonal to the plaquette with its middle at the cen
ter of the plaquette and directed according to the orientation 
of the plaquette. 

With b. we as sociate the "dual lattice bond variable" ni' the 
1 

dual lattice being generated by all the bio The restriction 
(5.3) on the variables ni can now be formulated as follows: 

if we sum up ±ni along any closed path on the dual 
lattice, we obtain O. The sign in front of ni has 
to be chosen depending on whether the path runs 
parallel or antiparallel with the (directed) bond bio 

This means that the nil s are the components of a (discrete) 
curl free vector field and hence they are the "gradient" of a 
potential. In other words we can introduce spins xk at the 
lattice s ite s k of the dual lattice and set 
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where k and k' are the endpoints of the bond b i 

k b. 
1 

k' 

If we keep ~ of the spins, xl say, at a fixed value and 
allow all the other xk' s to vary over all integers, then the 
nil s will vary exact1y over all the value s cons istent with the 
constraints (5.3). We define a dual action by 

'" A = 6 in A.( )(gO) 
(k, k') nearest xk-xk' 

neighbors 

2 
",-go 6 (xk 

(k, k') neare st 
neighbors 

The partition function become s 

z = 

2 
- xk ') , for small go • 

A 
e 
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and correspondingly one can express the expectation of func
tions of the lattice bond variables as expectations of functions 
on the dual lattice. 

We have thus transformed the (weakly coupled) gauge 
theory into a lattice spin system with nearest neighbor inter
action at high temperature. 

In d = 4 dimensions the duality transformation maps the 
gauge theory into another gauge theory (for d = 4 the dual 
object of a plaquette is a plaquette), again replacing weak 
coupling by strong coupling. 

In the non-abelian case the Fourier expansion (5. I) be-
comes 
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(compare with (2.6», and the constraint (5.3) is now that 

must contain the trivial representation. (0. labels the repre
sentation that is associated with the plaquetle Pi in an in
dividual term in (5.2).) On the dual lattice however we ob
tain a rather complicated theory, because the dual a of a 
non-abelian group q is not a group. 

There are troubles in the abelian case already. The 
character group a of U(I) is discrete but not compact. Com
pactness, on the other hand, was important in the construc
tion of Section IV. 

In order to conclude this lecture on an optimistic note, 
let me look at an example where the duality transformation 
works. We choose d = 4, q = 22. (q = Zn wou~ work 
equally well, see [IOJ.) Here the dual group is q = Z2 and 
the model is self-dual, as we will see. The group var iable 
h takes just two values h = ± 1, and for P = 1'\'t~ Y'\'1. 

1\1. 

(5.4) 

The two characters on q are defined by 

The Fourier expansion (5.1) yields (with ß = 1 /2g~) 

With a plaquette on the dual lattice we have to associate a 
variable h = ±I with a weight Coshß for'ft = +l and Sinhß 
for 11 = -1. This weight factor can be rewritten as 

I~~ Cosh ß + 1 ;~ Sinh ß = c(ß)eß':'fl (5. 5) 

where ß~' is given by 
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Tgh ß~' = e 
-2ß 

The constraint for the allowed value s of ~ is that 

TI 'ti. = 1 
surface 
of cube 

(replacing (5.3)). This is guaranteed if we introduce bond 
variables on the dual lattice and define ~ of a plaquette as 
the product of the corresponding bond variables. Hence de
fining Ap as we had defined Ap, (5.4), but replacing all the 

l\ 
h i by dual lattice bond variables h i we find the "action" of 
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the duality transfor:med :model. The Gibbs factor is now 
eß':'A', by (5.5). Notice that the constant c(ß) can be neglected 
because it drops out if we nor:malize the Gibbs :measure. 
We have found that 

the 2 2 gauge theory in d = 4 di:mensions is self
dual with coupling constants related by 

If there is 
it :must be 

(see [10J). 

1 ( ~')-2 
Tgh- = e - go • 

2g~ 

a phase transition in this :model, 
for the coupling gc satisfying 

1 
Tgh:-z 

2g 
c 

-2 
= e- gc 

then 

This is analogous to the Kra:mers - Wannier duality for the 
Ising :model in two di:mensions [18 J. 
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I. INTRODUCTION 

Maxwell's theory of electromagnetism as well as Einstein's 
theory of gravitation are without any doubt among the most beautiful 
classical theories and also the most fundamental since they have to 
do with the description of elementary interactions. It is remarkable 
that l1axwell' s theory has its quantum counterpart, thanks to the 
success of renormalization theory, at least in the restricted formal 
power series sense. Whereas the quantum counterpart of Einstein's 
theory is yet to be found, quantum electrodynamics has repeatedly 
served as a model for interactions at the elementary level, in the 
realm of weak interactions as well as in the realm of strong inter
actions. Whereas the idea has been put forward that gauge theories 
are most aesthetical, it has taken a number of theoretical steps 
before those could be put to work in a way formally at least as 
satisfactory as quantum electrodynamics. 

The proposal by A. Salam and S. Weinberg of a model unifying 
electromagnetic and weak interactions has taken its full importance 
through the proof of renormalizability of a whole class of models, 
on the basis of the Feynman de Witt Faddeev Popov trick. 

The subsequent discovery of the "asymptotic freedom" exhibited 
by some models of this class suggested an elegant explanation of 
some of the scaling properties of strong interactions. 

Whereas these last two pieces of theoretical understanding can 
be reasonably believed to be correct on the basis of perturbation 
theory, strong coupling phenomena associated with e.g. quark confine
ment have been so far mostly attacked through the lattice approach 
which is infinitely better founded than the continuum perturbative 
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theory in all respects, including geometrical aspects. Actually 
the mathematical structure of what is known of the continuum 
theory is at present very loosely grounded, as we shall see, and 
it is quite likely that even including the smooth classical confi
gurations of the gauge fields which have been so far discovered 
will only yield part of the correct theory, whether or not it can 
be reached from the lattice theory. 

Since even in the construction of the renormalized perturba
tion theory most mathematical problems are of a classical nature 
much of these notes will be devoted to somehow disconnected remarks 
on the mathematics of gauge fields, which will hopefully belong to 
a more definite overall picture. 

Section 11 is devoted to abrief discussion of connections on 
principal fiber bundles pointing to the impression that our present 
formulation of continuum theories is incomplete. 

Section 111 is devoted to a description of the main ingredients 
used through the construction of the renormalized perturbation 
series : 

- The Faddeev Popov argument, and the Faddeev Popov Lagrangian 
- The Slavnov symmetry and the nature of the Faddeev Popov ghost 

fields 
- The Slavnov identity. An obstruction : the Adler Bardeen anomaly, 

and its generalizations : the local cohomology of the gauge Lie 
algebra. 

It is concluded by a listing of a number of results and open 
problems in the framework of renormalized perturbation theory. 

Section IV, closer in spirit to Section 11, reviews some smooth 
classical configurations of gauge fields which ought to play a pro
minent role in the evaluation of the functional integral describing 
the theory, when it is constructed. 

11. GAUGE FIELDS AND RELATED CONCEPTS 

a) Yang Mills Fields [1] 
Yang Mills potentials Q~(.) carry a four vector index 

related to Minkowski (or Euclidean) space 'R"; z. "" ,and 
an index oe labelling a basis \ e.} of the Lie algebra ~ 
of an internal compact symmetry Lie group Ci . One mayas well 
consider the form 

0.= 

with value in ~ 
Under a gauge transformation 

according to 

(1) 

{ 3 (ac). ~ lQ transforms 
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"a. = <&-"0. ~ + 3·"d.~ 
= a.cL. 8- Cl. + 8- .. CU 

Ö.4=. 

In this formula i i (x.) &. ~} is denoted 
Rat to ~ ; '''ta) is the reciprocal image 

the Maurer Car tan form [2) CU on ~ ,wi th 
fulfills the structure equation 

8-
under 

In components 

where 

dU) + i [w,cu] = 0 

CU: L. cu· e. 
t\,( 

value 

dc.)" + ~ f~ Oll( UJ~" CJJ't = 0 

are the structure constants of Ci-: 
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(2) 

, a map from 
this map of 
in So ' which 

(3) 

(4 ) 

(5) 

(6) 

and Adenotes the exterior product of differential forms. The 
corresponding Yang Mills field 

-c'CIC. ~ 0( ~ c( f e( ,. t 
'/'"'11: 0,. Oll - OVQ", + ~ ~ af' Gy (7) 

defines the curvature (2-) form [2] 

F = I FI"'~ eot d'X"'" dx." (8) 

:: da + t [ 0., Q] 
which transforms under a gauge transformation according to 

3 r = a.d.~ F . 
F fulfills the Bianchi identity [2] 

(9) 

d'F + [a, 1='] = V'f = 0 (10) 

which summarizes the second set of Maxwell's equations 

Vlt' Fy )} 
(11) 

where V~ denotes the covariant 
adj oint representa tion of Cä- . 

derivative associated with the 
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In mathematical terms [2], Cl. is a connection on the trivial 
principal bundle "P. R"K(ii ,and r the corresponding curvature. 

b) Connections on Principal. G-Bundles [2] 
A more general situation described in the mathematical lite

rature is the following: ~ is replaced by a connected manifold 
~ , called the base, which admits a locally finite open covering 
tU· }; 1? is replaced by a manifold "P(8.G), such that there 
1S a" continuous projection 1t : 

1\': "P(B,G)--..s _4 (12) 

"P (B,ei) is only locally trivial, i. e. "Ir rU".:) is homeomor
phic to V,)( ~ . Ci acts on l»ca.G) from the right : leaving 
the base pointwise invariant (in local charts, 

(X.9) ~ = (X, I-r) -xeB J ,.ye~) 
The globalization is given by a set of transition functions 

Jij: u. n Uj s U,~ .-. G (13) 

which allow to compare the coordinates of a..,point of 'P(S,<;) 
above 'tT,~ in the local charts 't1, Je ~ and VJ "Gi 
if.l~.r;} , (lC,~") are the two sets of coordinates of such a 
p01nt, J 

(14) 

The transition functions fulfill the cocycle condition 

Classes of transition functions are defined by combining refinements 
of covering and gauge transformations 

S'~- h, 8tl ~ .. 
Differenciating EQ.(lS)[3] we get 

W" = - OQ3'1 CUk~ + CUkJ 
where 

CU'd :I S~ C&J 
(the reciprocal image of the Maurer-Cartan form 
U"j U, Gt ). 

Introducing a partition of unity ci, related 
and defining 

a. . = r. c(" c..) "J' in l ,.X ' , 

(16) 

(17) 

(18) 

Ci,) of Ga under 

to the covering 11:. 

U· (19) 
Co 
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we get 

a.j = C1d..ca~j Q~ +CUij in 1.5':i (20) 

The s~t of i-forms Cl,with values in ~ , with the transition 
laws Eq. (20) define a connection on 'Pe BiGa). There are many 
connections on P(B,G), and if Q., is a connection deduced 

from S~i ' 
b • 
U; = ad..h.· Q, + h, Ca.) (2i) 

is a connection deduced from (h.· ~ .. ' tiJ1) 
From the transition laws of the Cl~'s ~ne can show the existence of 
a global form a. on "PCB,G) whose expression in local coordinates 
above 11~ is 

Cl. J -1 = a.d. a Q, + Ca.) (22) 
11' (U,') 

The curvature forms locally defined by 

"F.:. cl Q-: + r [Q,', a l,) (23) 

are of course such that 

on U·nU. .. J (24) 

One can then define on "P(8 ,~) the curvature 2-form 

where eS 
"F:: Sa + i [a, a.] 

is the exterior derivative on 

(25) 

"P(&, G) . Above ~, 
(26) 

c) Associated Vector Bundles 

Associated vector bundles are similarly defined by replacing 
each fiber 'R' .... (X) IV ~ , above each point '.IC: of.B by a 
vector space V on which acts a representation D of G . 
If ('X, Cf.» , (X, 'J') are the coordinates of a point above 't.T~ , ~ 
respectively (x& 11':1)' then 

"P, = D (S'1) ~ j in "U:)' (27) 

If i. X .. Cf.(X) I xatT.·l is a set of coherent local sections 
(i.e. fulfilling Eq.(27) for each ~ ) the covariant differential 
of ~ .. ' 

~~, = d ~L' - clQ.:) 4>" (28) 

fulfills the transition law 

in u· . 'J 
(29) 
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Here t is the differential of D 

t:.e)() = D(S·4) sl D (3 e'l"Jt) I, xeCj (30) 
eit t=o 

d) Gauge Invariant Forms 

Consider a loeal form :1('F'':'~'/~.''''') whieh is invariant 
under gauge transformation 

-,::, -. Qd 1,,; 'F.' 

Then, elearly 

c:I>.' -. DCh.') q", 
Q)~ ... D(h .. ) ~~~ 

=s (F-:., ""/&P,~= ~('Pj.,~j '~J~ 
'=':/' ::J ("F, c$ I &:P-~ 

is globally defined on B 
Example. 

Let ~ be endowed with a Riemannian strueture sueh that 
dual forms may be defined : e.g. 

(31 ) 

(32) 

, 

,', .. , .. '-.. a le_, ... cl X 'r.'. t 

If i I J is an invariant symmetrie quadratie form on <i 
lr-, 'fit} 

Similarly if (,) 

is globally defined. 

is abilinear invariant form on y 
(<I>, cp"), (~.~) (ct>,~)" , (a~, mq,.) 

are globally defined. 

These are the main ingredients for eoupled gauge fields and matter 
fields loeal aetions : 

~ -{'f~ F} ... <. •• , A4f) - [~oj» -llcll.oj>J+ [CMJ \ (33) 

where the various quadratie forms symbolized by various types of 
braekets are parametrized in terms of eoupling eonstants masses ete. 

Of eourse the solutions of the eorresponding Euler Lagrange 
equations on a given ~(~,~) must be defined loeally in eaeh tTl 
and fit with the transition laws Eqs.(31). This point o~ view has 
only been reeently advoeated by C.N. Yang and T.T. Wu L4] in the 
formulation of the quantum meehanies of a non relativistie eleetron 
in a Dirae monopole field - without strings, and of the elassieal 
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mechanics of a relativistic electron interacting with a moving 
relativistic monopole. 
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In order to investigate such generalized solutions, it is 
necessary to classify all possible "P(S,ei)' S • This is partially 
answered by the following : 

e) Characteristic Classes. [5] 
There is an enormous mathematical literature on the classifi

cation of vector bundles which is however not very accessible with 
elementary knowledge. Somehow one of the first question which comes 
up is how large the 1.1.. I S can be taken and how they communicate : 
if one could choose ~.=~ one would deal with the trivial prin
cipal bundle "P(6,G;)= 6,,~ on which there exist global sections 

Bsx ..... ~l~) E. ~ 
For vector bundles there always exist global continuous sections 
but the question is whether one can find it. continuously varying 
vectors in V which stay linearly independent. 

Some answers to such problems are provided by the study of globally 
defined differential forms which are expressible in terms of connec
tions on -P(6,(q): 

Let 'P., ('~, .. ,1 .. ) be a symmetric multilinear form on ~ 
invariant under the adjoint representation : 

which is 

(34) f "P .. (X", '" [~/X.:), •. , X,,) :: 0 
Then substitute in )( ,- ... :: XIL • r::. and replace the ordinary 
product by exterior product (which is meaningful since the ~. ' s 
being 2-forms, commute). Consider the 2n-form 

.o.aR,,' = "P" ( 'F.,', .. r,) 
Because of invariance under the adjoint representation and the 
transition laws for the ~ ' s 

in U"'i 
globally defined on ~ 

(35) 

(36) 

Furthermore, from the Bianchi identity and the invariance of ~Il' 
one finds 

d nStl. = 0 (37) 

i.e. nall is closed. 

Now, re~mber there are lots of connections on 
fact, if t Qii)} , i a~'! are connections, so are 

t ( .. , ~) 
Q, : t:ac: +(..f.l:)t.r, 

'P(S, Ci). In 

(38) 
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~ ( .. ,,1. ~ "Gt~'J which continuously interpolate Z. Q~ l' l. "4. 

The associated curvature is denoted 

"F .. t: = d Q,~ + 1 (Q,1r ,a~] (39) 

One can easily prove that 

n ("" n~) _ d '" ... a. 
.an. - ~, ... - ~~n.-" 

(40) 

where 1 

~;~& = n.l dt: ~ (~"~a~! 'F~ •.. 'FI:') (41) 
o ( .. , .-Ca) 

is also globally defined since a - c;.(.... transforms under the 
adjoint representation. 

Thus, the cohomology class of.n. does not depend on 
the connection and consequently is attached to the class of 1'(a,~ 
(recall that if Q~ is a connection attached to 3~ , 
tie' Q, h, + hrcu is attached to 9') 1II h,· CJI)· hl ) . 

This cohomology class is called aChern Weil characteristic 
class for ~(e,~) . 

Formulae (40), (41) can be lifted to ~(~,~) , namely, 
in particular, one may consider the form 

15.."" : ~'" ('F', .. "F J (42) 

Then - ~ .n. C' '" (43) ~~::' <:> ~.t"'-, 
~ ('" ~ 1:-) 
Q~h-l = n. J 'f" (a. 'F, .. 'F d I: 

~ 0 

Restricting Q.. to any 1r.~ ~ Gi yields a form on GI 
defined by a to~ly antis~etric invariant ~b-4 form of 
degree art.'" on <31\2..... ,which is associated with :! .. 
The correspondence 

"p.. -. ~ra-.. 
is called the Cartan map. One can construct inverses to this map. 
Such inverses are called transgressions. One can prove that both 
I\~'" and '1/ Cj* (resp. the exterior algebra on Cj'" and the 
synnnetric tensor algebra of S") are generated by "primitive" 
(i.e. non factorizable) elements whose number is given by the 
rank of G [6] . 
Example. 

<.1 = SU3 
V~· is genera ted by the Killing form 3.r~ and the d 4t 
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Gell Hann tensor. .". 
Correspondingly " ~ is generated by 'F, D 

Tl X, 'f. c)= ~I(" X" [y, i.)~ 
D(x.'f.9., T,U)= V'! dot~r)(e( ('i.i.]~ [T.1J]tY ,y_ru ,-

These basic technical facts will be used in section 111 and 
section IV in support of the thesis that Yang Mills fields are 
to be considered as connections on some principal fiber bundle. 
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If so, as supported by the recent ideas of Polyakov and followers, 
the conventional Yang Mills action, to be hopefully incorporated 
into the definition of a functional integral defining a vacuum 
state, is incomplete and misses somehow a measure on classes of 
fiber bundles, provided such a measure can be defined at all, as 
it has been possible on some smooth configuration& Since the known 
measures of euclidean field theory are concentrated on non smooth 
configurations, the present point of view meets difficulties out 
of reach which the lattice approach might be able to bypass if 
the continuum limit comes under control. 

111. TRE RENORMALIZED PERTURBATION SERIES [7) 
We now come back to conventional gauge theories: 

"P(t..Gt)= P(H",Cit) -M .. xG, I with a gauge invariant action as given 
in Eq.(33). Because of the degeneracy of the quadratic part due 
to gauge invariance, this action does not lead directly to the 
construction of a renormalized perturbation series, as is familiar 
in quantum electrodynamics. The proper action ipc~uding a gauge 
term has been constructed by Faddeev and Popov L7J on the basis 
of a formal manipulation of the supposedly existing Feynman inte
gral. Further manipulations allowed Slavnov [71 to write some 
identities formally fulfilled by the Green's ~nctional, whose 
generalization allowed Becchi and Rouet [7] to discover that at 
the classical level, the Faddeev Popov act~on possesses an intri
guing symmetry : the Slavnov symmetry. The fulfillment of that 
symmetry at the quantum level then allows for a reasonable physical 
interpretation of the theory. 

a) The Faddeev Popov Construction 

The Faddeev Popov argument consists in replacing the functional 
integral based on a gauge invariant action of the type given in 
Eq.(33) by another one such that formally the expectation values 
of gauge invariant operators be unchanged [8] . Besides, the new 
action is suited to a perturbative treatment, namely, it is local, 
it breaks the degeneracy of the quadratic part of the initial 
action, it is of the renormalizable type. 

Such a construction is based on the formal identity [9] 
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(44) 

where ~ n is the "volume element" of the "gauge group", &Dn 
~(4,.) is a gauge function (typically, ~=3Q.+." ), Am: fj1 

Besides its formal character, this identiti assumes that ~ 
there is one and only one n. such that q -C.O . In general 
the integrand must be divided by 't)-(&) , thf' volume of the stabi
lity group of ~ ,which is of course gauge invariant but usually 
omitted. Eq.(44) is rewritten 

)1&11. ~C;;~Co) ~y e' (Ci) "rm CI) + lI'rCA-C} ) ~ <I. (45) 

where ~ belongs to the exterior algebra of the gauge Lie 
algebra, Gi :_ts dual. After simplifying the functional so 
obtained by the "volume" of the "gauge group" which provides an 
overall normalization factor cancelling in the expectation values, 
yields for ello the modified action 

~u{ Q,~, &J,(;i,~. r;'"" (4,.) .. lf 9 ... Ci) 'nt", (46) 

pertaining to a Landau type gau~e. F(c) 
Integrating Eq.(44) through .\ e t!'c yields 

t (ClI4>,c.)'~):1 T'"", (Cl,<t» + r(Q) + CA) 'mW (47) . ., .... " ~ 
pertaining to a Feynman type gauge (usually one chooses 'FC,)-(J.C) 
for reasons which have to do with power counting). 

A 
Note the formal definition of rn : 

SA~ = Am 0:; (48) 

where g is the exterior differenciation on the gauge group, 
~ the corresponding Maurer Cartan form which fulfills the 

structure equation 

(49) 

so that 

(50) 

This partly explains .. the Slavnov symmetry [7} . The difference 
in nature between CI) and ~ has to be stressed : CU is of 
a geometrie nature comparable to that of the Maurer Cartan form 
of the gauge group whereas c.;; - just as r - serves as a Lagrange 
multiplier. 
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b) The Slavnov Symmetry [7] 

Define on the Grassmann algebra generated by CU the anti
derivation 

--6eü: -1 [~,CAl1 (51) 

(-i4 .. 0) 
This antiderivation extends to the algebra generated by Cl ,~ , 
according to 

...!Q,. fh\ CU ~ &0 CU .n. Q. = ,·cftft ~'f) l!i. 

~~ = ~9?\ CU -:t ~ ~ 
eS.Cl. S1 ... c&.~h·~ ~.n 

Then Becchi and Rouet [7] made the observation that 
is invariant under the extension of ~ , including 
and "t 

So that 

_r Land au 
Co\) 

Similarly, in the Feynman gauge Eq.(53) is replaced by 

(52) 

(53) 

(54) 

(55) 

as can be obtained from Eq.(53) byexpressing 1= in terms of its 
Legendre transform with respect to ar 

This Slavnov symmetry can be extended if one includes in the 
action r terms of the form 

~. & + ~-dc9- (56) 

where ~ is a local operator, with 

-d~ =-;T (57) 

--dJ=O 
For instance, denoting now collectively by ct> both the matter 
field and gauge field, let 
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rt cp,W,W, YJ, t<. R..) = ~"t c:p) -
_ (\~) + c.;;'mCAl) + ~ '.14> + "R~ + K-dCü 

The Slavnov symmetry reads 

5 
Putting 

"'" -r = 1"'_ i (R.R) 
Eq. (58) becomes 

S~ il "" ~ '" "" '-.r cil'+ c&'r + ~ - 0 o. ,~ ~Ct.l lK ~ .§'~ 

with the Slavnov invariance defined by 

-!+= ~CU ,.n. 
~ c.J = - i [CrJ,W) 
-d~ = - ( 8- R) 

This is the form of the Slavnov symmetry proposed by J. Zinn 
Justin [7] . 

c) Construction of the Renormalized Perturbation Series 

(58) 

(59) 

(60) 

(61) 

Let us consider a vertex - one particle irreducible - ~ 

functional 1"( .,W, C;; • rt, 1<. R. ) a formal series in '" 

t!- .. ,.,Cl'J't, - (62) 1"(+,,,,,&).'1' t<. R)= La 1\ \.ct:>,W,W, ~, 1<, R) 
where -re:.) coincides wi~h the previously defined classical 
action, higher terms being given as usual in terms of renormalized 
Feynman graEhs, based on a Lagrangian with counterterms formal 
series in 1L . The question is whether this Lagrangian can be 
so defined that the Slavnov identity Eq.(60) holds in the formal 
power series sense. This turns out to be a purely algebraic 
problem thanks to 

- The renormalized quantr action principle of Y.M.P. Lam [7] 
and J.H. Lowenstein [7 . 

- The implicit function theorem for formal power series. 
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The action principle is mostly needed in a weak form which ascer
tains that quantum corrections to its naive form are limited by 
power countin~ {7] . For instance, consider the connected Green 
functional 'Z ( 'J ... ) the Legendre transform of "(~, ••• ) ,;;f 
the Lagrangian used to construct them, ~ a parameter of the 
theory, TA. a renormalized chronological product. 

Then, 

~~ (d,··· ). < TR "J H dx ~ ~P; Jft'''!" lcp){2)rJ9<63) 

with 

\\f iJ~ d "- x-
dA 

(64) 

In Eq.(64) the naive part involves an assignment of power 
counting for ~/~). under the 7it symbol; Q is not specified 
but its power counting index does not exceed that of the naive 
part. 

Similar results hold upon performing field variations. 
Consequently, up to 0(*) the algebraic prob lems at hand are 
of a purely classical nature - in the present case, geometrical, 
and quantum corrections are controlled by the implicit function 
theorem (7] : 
TH. Let r:. (XI' :. X".'· y" .•. y_ ), ,; • -I ••• I'L 

without 
the 

be formal power ser1es 1n "If" •• ll ... Y •.. y"". 
constant coefficients; Lx F,. (x,' .. i",: y., ... 'I,") 
parts of the 'F.: 's linear in M, ••• ~.. • Then, if the matrix 

~ LJ 1=:' ('I" .. y"".) 
i})( • 

. J.. \J is 1nvertible as a formal power ser1es 1n y, ... ~... ,the system 
of equations 

r:·(x, ... X .. ; 'i,···Y",)=O (65) 

has a unique solution 

(66) 

where the ~,;' s are formal power series in j, ... '::1",. 
Thus, determining ;t so that the Slavnov identity will hold 

amounts to investigating the stability of some classical algebraic 
problems, under quantum perturbations. 

Applying the action principle to a Slavnov variation of the 
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fields at the quantum level, given a Lagrangian 

(67) 

yields 

-i Z-C (;l, ... ) = (ll. ~ Co) (31 ... ) (68) 

by 
of 

-4 is now a functional linear differential operator obtained 
Legendre transforming Eq.(60) ; ~. is an insertion operator 
dimension 5 I CU number + 1 of the form 

= (69) 

which obeys a generalized Wess Zumino consistency condition[7] 
obtained from the algebraic relation 

(70) 

Roughly speaking, if 

-.J S f2e1..: =: 0 (71 ) 

implies 

J Qd..: = -d f ~'.e d7C (72) 

altering At: by .. A'~will produce the desired result. So, the 
problem to be solved is of a cohomological nature. A complete 
solution has not yet been given. It is however worthwhile mention
ing one completely solved subproblem, that concerning the part of 
the classical Slavnov operator which is the coboundary operator 
of the gauge Lie algebra : 

d) An Obstruction : the Adler Bardeen Anomaly Uo] 
The question is to solve the equation 

Sl1(a.<p,CAl)!! S [~4fo. + ~4J4 -(\-"Jl i ]~lQ.4>,c.l) (73) 

=0 
where 

6 (a.4>.c.u)= J 6" lQ .• ,w) (74) 

with 6" (Q.4»,CAl) a 4 form (proportional to d+x ), with 
coefficient a local polynomial in G,9/~ and their derivatives. 
Clearly ~ is defined flIIocf dA,. Forms A(Q..q.~) are graded 
both by their order " and their ~ -number , • Their total 
gradation is n=It"3. A component of 6 with such degrees will 
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be denoted· 

i.e. 

(") A __ " A" 
~ ~11. r (75) 

and we consider the algebra of the Ll 's to be the antisymmetrie 
tensor product of the 6: and A~ algebras so that it is 
totally anticommutative. We furthermore define ~ by arh (~h) = d~ ~t»h + (-)~ (~ d(~ 

"" 0 0 d ~p = d I:l.~ 
(76) 

a cu: dcu 
The main lemmas and theorems proved by J. Dixon [10] are the follow
ing, where all forms are local. 

Lemma I. 

If d A~=o then D.p:: d 6p•, ,,,, X., (77) 

p~ 4 XI» = constant form. 

Ap, ~p., local forms , A_ .. iiO 

In all that follows c$ is assumed to trans form under a fully 
reducible representation of the compact group ~ . 

Lemma 2. 4 

If (d .... i» t16 (a,~,CIJ):O (78) 

then 'ct3~(Q,~,"')= (d .... g)'6tr(Q.~,w)+ L Ttw) L.(Cl,~) 
L:.4tJ. T 

+ B B(a.w) (79) 

S Tlc.aJ): 0 T~",) involves no derivative. 

~ I,. (Q,CU)=O (80) 

ca + S)"·i3la,<J.J) = 0 

Lemma 3. 

If (d+S)~"B {Q,~)=O (81 ) 
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where :B, .. V is defined 

LeIlDllB. 4 • 

in LeIlDllB. 4. 

't: 
Gi ven a Tcw), 

be factorized there is 
~~6»).o, which is primitive i.e. cannot 
a t:'B~J.SUCh that 

~:ao (Q,,,,) = "'T~) 
r-"'M 

If ~,~) is a product of primitive factors, the corres
ponding v-0,,, factors out into the corresponding :S~. 
These results ~e conspicuously similar to, but different fro~ 
those pertaining to the cohomology of principal fiber bundles L6]. 
For ,.~ , they yield the conventional Adler Bardeen anomaly : 
going back to Eq .• 73)~ (74) yields, through LeIlDllB. I, the existence 
of A:. ' 6~, A .. , A,,~such that 

Le. 

~ (Q. q"CU) = S A~ (~,<PI~) 
& A! + a ll~ -= 0 

g~~+ d A:=o 
eS l1! .. d ~~ =-0 

g ~~ +a ~=o 
~ 6!:' = 0 

(S+a)~~ = 0 

wi th (~: A: + 6~ + l:l: .. A~ ... ll! 
Since for all non abelian groups Ttw) , Lemma 2 indicates 
that the only further obstructions to 

are provided by 

based on 

f :r ., 
A4.fIer. 8u~_,.:1 8,.., .. ,,, (a,6J) 

ToS'= D( CaJ, Cru,wJ, C4J,CAJ) ) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 
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where D is an invariant third rank tensor in V ~~ usually 
non vanishing for many groups of rank larger than 1 [6]. 

The most expedient way to carry out in this case the construc
tion indicated in Lemma 4 is to start in six dimensional space, 
and later on restrict oneself to four dimensions. 

Consider the characteristic class t 5J 

~o = D(F, F, 'F): d r;. (89) 

(90) 

"F~: I:: da.+ i-z, [Q.aJ (91) 

= ~F+ ~[Q,o.] 
Because of .Ji..he invariance of n2., dT; has only I:erms propor
tional to efeu, and since 

c5 T;:o cf & T;'=o 
.. 

There is a -r;. such that 

dA '" &T}~ Tc. 
Up to d (. ) ,T~<1 can be written 

14" = cu T: 
Going back to Eq.(93) 

But we know that ("T! d 6 ~ is proportional to CU 

dT: =0 
hence 

The Adler Bardeen anomaly ~s 

(92) 

(93) 

(94) 

(95) 

. Thus 

(96) 

(97) 

(98) 
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Continuing this chain down would lead to ~Er in the last step. 
The calculation is n~ straightforward and considerably simpler 
than previous ones (7J : 

Selecting the coefficient of deü yields 

The coefficient of the D(cu,[Q.oJ, [Cl,q]) term vanishes as it should 
and one finds 

with 

w~ -= D{w, o..da )+ t; D(cu, ~ ,l.O.a.)) (101 ) 

In the case where abelian components occur this construction 
collapses and many more anomalies of the form QJANI. L.la,<t» 
are expected, most of which are hoped to be harmless for renorma
lization. Formula (101) survives in the form 

c.uG.b.tCi T; = CUQ.M'. T: = Q.)o.loel(F, F) ~ (102) 

= (Ä)cabeL d i (Q,da.) + g ((:1, ~,oJ)} 
where (,) is made up with Killing forms of the simple parts 
and is arbitrary for abelian parts. The fully abelian case was 
the first one discovered by S. Adler J. Bell R. Jackiw. In that 
case "f' is by itself a characteristic class and ("F, P) is 
the relevant object. 

e) Discussion and Results 

When linear gauges are used, the Slavnov identity simplifies 
and the Adler Bardeen anomaly is the only obstruction that 
creates difficulties. When it is absent e.g. in the abelian or 
SU2 Riggs Kibble model or in the case of quarks coupled to Yang 
MiIIs fields, in the absence of pseudo scalar couplings, the 
Slavnov identity can be proved. In the Riggs Kibble case where 
a complete particle analysis can be made, and physical degrees 
of freedom separated out, physical scattering processes can be 
shown to be gauge independent and obey perturbative unitarity [7]. 
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When massless Yang Mills fields are involved physics has to 
be defined through gauge invariant local operators. H. Stern and 
B. Zuber ~ave obtained partial answers, usin~ the background 
gauge [12J ' and S. D.Joglekar and B.W. Lee Lll1 have proposed 
a complete solution for pure non abelian Yang ~ills fields in 
the Feynman gauge. In both cases, the dimensional scheme of 
G. 't Hooft, H. Veltman has been used. The work of J. Dixon [ja] 
part of which has been exhibited in the previous section consi
derably streamlines the very involved treatment of S.D. Joglekar 
and B.W. Lee. 

The "academic" problem of non linear renormalizable gauges 
has so far only found partial answers [I~ . The fact which in 
my opinion has received least attention from a rigorous point 
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of view is the nonrenormalizability theorem for the Adler Bardeen 
anomaly which states that if the classical Lagrangian is so 
arranged that this anomaly vanishes at the one loop level, then 
it vanishes to all orders of perturbation theory. Whereas in elec
trodynamics compact ~roofs have been given by A. Zee, J. H. Lowen
stein, B. Schroer [7J combining gauge invariance with the known 
lack of dilatation invariance described by the Callan Symanzik 
equation, the present version of this theorem, due to W. Bardeen, 
relies on the mixed use of dimensional and Pauli Villars regula
rizations at the level of Feynman graphs. Similar proofs also 
ought to be constructed to cope with possible anomalies associated 
with abelian p-arts of the gauge group, in the case of general 
gauges [7] 02J . 

Asymptotic freedom which is one of the most attractive 
features of sufficiently pure Yang Mills theories will be discussed 
in the lectures by P.K. ~1itter. 

The necessary elimination of the Adler Bardeen anomaly is 
conceptually fundamental in the construction of models and has 
already led to a number of interesting theoretical ideas : unified 
models of electromagnetic and weak interactions such as the Salam 
Weinberg model cannot be made consistent unless either heavy leptons 
are introduced together with Riggs fields or if they are embedded 
in a single scheme together with strong interactions, quarks provid
ing the necessary cancellation. 

IV. SaME CLASSICAL CONFIGURATIONS OF GAUG~ FIELDS 

Common experience being based on the repeatedly checked idea 
that quantum effects act as perturbations on stable classical 
situations, some efforts have been spent in a search for stable 
configurations involving gauge fields. The oldest of all is: 
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a) The Dirac Monopole [4] 

It is a connection over a U(I) principal bundle over 1t~\\O}, 
classified by its first Chern class [2] 'F/:t1f'. f 1)" c:t~}fA.dX" 
whose integral on a sphere around 0 is ~ 
an integer ~ , which, in terms of the monopole charge at the 
origin provides the Dirac quantization rule : 

(103) 

This has been recently put on a geometrical basis by T.T. Wu and 
C.N. Yang [41 who have also investigated the motion of a quantized 
electron in a Dirac monopole field, and the classical theory of 
interacting relativistic charge and monopole, and by J. ~Iadore (13]. 

b) The 't Hooft Polyakov Monopoles [1~ Dil 
One looks for finite energy static solutions of the Riggs 

Kibble model, with Q...O (Generalizations to ao~O have also 
been found). The fiel~ equations, in the radiation gauge are 
elliptic non linear. It is not known whether the Dirichlet problem 
is (uniquely) soluble for arbitrary data of the Higgs field 

(104) 

For some boundary values at infinity, solutions have been construc
ted, by G. 't Hooft, A.M. Polyakov, and followers. Finiteness of 
the energy implies that 

~ (~)=O 
where ~ is the potential of the Higgs field, and 

vct.>~o 
Ix .... oo 

where '\I is the covariant gradient. 

Thus 

and if 

where ~:, is aspace independent minimum of V , Eq. (104) 
sums up to 

(105) 

(106) 

(107) 

(108) 

(109) 



CONTINUUM GAUGE THEORIES 221 

Interesting solutions occur when cI:>.o is not homotopic to 
the identity on its image. Then, one cannot write Eq.(108) for 
a continuous .n . Also the stabi1J:.t;y group '-4» of ~ cannot 
stay isomorphic to itself all over ~. Wherever this is so 
(for known solutions, except at the origin), L.~ defines a sub
bundle of the trivial bundle over 'Ra on which Q is a connec
tion. This subbundle is in general not trivial. Its first Chern 
class, in particular, can be expressed in terms of the projected 
connection deduced from Q. , and defines a ()(04) magnetic monopole 
provided 1.+ contains a "U(~) subgrou12.. This geometrical inter
pretation has been given by J. Madore [I:J who has made a detailed 
geometrical study of both the SU2 and SU3 cases. 

c) Euclidean Configurations and Classical Vacua (A.A. Belavin, 
A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin ; G. 't Hooft ; 
C.G. Callan, R. Dashen, D. Gross ; R. Jackiw, C. Rebbi.) [15] 

Classically, a vacuum configuration corresponds to a vanish
ing field, i.e. a potential which is a gauge 

We shall look at fixed time configurations and assume that the 
time evolution is smooth. For those configurations which are 

(110) 

infinite volume limits with prescribed boundary conditions on ~ 

some large sphere S~ (F~,.oo), i.e. such that 80C.I:')r.: ~(~ t:) 
we mayas weIl assume that 3-0 .. e since I 1.,..0 a- is homotopic to the ident~ty map, which can be reached by 
a gauge transformation belonging to the connected component of 
the identity. 

3Ct.l::) thus belongs for a~l t to some homotopy class of 
mappings from .s $"-1 'R'u l- J to ~ • These c1asses 
are indexed by integers rL for simple groups. Two ~ ' s 
belonging to the same homotopy class can be transformect into 
each other by a gauge transformation connected to the identity 
and, so, describe equivalent vacua. This is not so any more for 
two g's belonging to different homotopy classes. Since the convex 
combination of two connections is a connection, two inequivalent 
vacua will be separated by a potential barrier E(f't) in field 
configuration space : if 

F~= t:~t: 
T [ a-C- Qa J Q.,- a .. ] 

E (Ft-) ~ (t:z_C)a E(rf:) >0 
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It is then argued that at the quantum level, tunnelling will 
occur between inequivalent vacua, the tunelling amplitude over 
infinite time being estimated via the Euclidean action of a 
Euclidean configuration which interpolates between the two vacua 
at :tGD Euclidean time. Such a configuration, which minimizes 
the Euclidean action and interpolates between two hamotopy classes 
differing by one unit has been found by A.A. Belavin, A.M. Polyakov, 
A.S. Schwartz, Y.S. Tyupkin. The corresponding characteristic class 

~a5 ~11F) is unity. It is then conjectured on the basis of 

these semiclassical arguments that there is a family of gauge 
invariant vacua parametrized by an angle 0.$ e (zr (the dual 
of Z. 11 'Ia ((t) which labels the classical vacua), and that 
these vacua are inequivalent if massive fermions are introduced 
so that chiral symmetry is broken, a situation analogous to that 
found in the analysis of the massive Schwinger Thirring model 
in two dimensions mathematically analyzed by J. Fröhlich. 

CONCLUSION 

The reader may complain that little physics can be extracted 
from these notes. Since very little is firmly established within 
a rapidly changing overall picture which definitely lies outside 
the framework of formal perturbation theories, the author has 
found it safer, were it be dull, to compile some type of an 
algebraic appendix on gauge theories. The conventional perturbative 
approach is yet crowded with happy coincidences which, in spite 
of some efforts, have not been given good explanations, and re cent 
ideas show that adefinition of the gauge group, (and eventually 
of its Lie algebra), which exists in the framework of lattice 
theories, is just missing in the continuum case. Besides, most 
studies on the renormalized perturbation theory rely on the dimen
sional scheme of G. 't Hooft and M. Veltman, whereas mathematicians 
will only feel like relying on the fairly re cent analysis of 
E.R. Speer Ozl which does not yet fill in all details. It was 
thus essentially impossible to make an exhaustive list of every
thing that is weil known orfand proved by all specialists in 
this field, to whom I apologize. 
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MASSLESS RENORMALIZABLE FIELD THEORIES AND 

THE YANG-MILLS FIELD 

P.K. MITTER 

Laboratoire de Physique Theorique et Hautes Energies 

Universite Pierre et Marie Curie, Paris 

O. There has been considerable interest in this school in the 
structure of the massless Yang-Mills field (Y-M)4 especially in 
the interplay of ultraviolet (U-V) asymptotic freedom, infrared (I-R) 
instability and quark confinement. In these notes (which are in 
the form of remarks) I shall summarise certain results 
in the renormalised perturbation theory (R.P.T.) of massless (Y-M)4 
and more generally any renormalisable purely massless four-dimen
sional theory with only dimension 4 terms in the Lagrangian. It is 
evident that the unsolved problem of central interest is true I.R. 
behaviour in (Y-M)4. This is amenable only to non-perturbative 
analysis, of which lattice methods Milson) appear to be cf considerable 
interest. However it is a reasonable hypothesis that the knowledge 
of short distance behaviour (asymptotic freedom) extracted from 
R.P.T. via formally consistent renormalisation groups sums will be 
stable under ma:e constructive analysis. Non-perturbative methods 
designed for I.R. behaviour, must then be consistent with such 
knowledge. This justifies our continued interest in results 
of R.P.T., and related developments in renormalisation group theory 
which constitute the material of these notes. 

These notes are divided into the following sections : 

)- I review, informally, rigorous results in I.R. power counting 
which leads to the proof that the renormalised Feynman integrals 
(corresponding to each graphical contribution to Green's functions) 
are tempered distributions. These results, (Lowenstein, Speer) 
apply to massless (Y-M)4 and more generally (see above). 
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2- We review the known structure of massless (Y-M)4 and the main 
results of R.P.T. To tie up with section 1 and also for simplicity 
we focus on dimensional renormalisation, (Speer, Breitenlohner-MaisoI 
For the BPHZ recursive construction of counter-terms to employment 
Slavnov invariance (Lowenstein), see Stora (these proceedings). 

3- The main problem of massless (Y-M)4 is non-perturbative I.R. 
behaviour ; it would be useful to disentangle U.V. and I.R. contri
butions consistent with asymptotic freedom. 
(i) We summarise arecent development (Lowenstein-Mitter) in the 
renormalisation theory of massless fields designed to facilitate 
the separation of U.V. and I.R. field fluctuations at the renormalisE 
level by separating renormalised Feynman integrals into "hard" and 
"soft" components. Such decompositions, and the 4-dimensional renor
malisation schemes tied to them, lead to renormalisation groups whicl 
probe directly regions of integration. 
(ii) We give the structure of a hard-soft split of massless (Y-M)4 
IMitter,Valent/. Hard-soft symmetry is a super-symmetry, inter
twined with Slavnov transformations which remain a symmetry of the 
Lagrangian. Its possible relevance to the problem of reconciling 
U.V. asymptotic freedom with lattice methods (the idea is due to 
K.G. Wilson) is pointed out. The material of Section 3 was devel
oped immediately after the Cargese School. I have included it 
because of its relevance to the subject under discussion. 

I. INFRA-RED POWERCOUNTING AND THE EXISTENCE OF GREEN FUNCTIONS 
AS DISTRIBUTIONS 

~ We consider, to begin with, an un-renormalised Feynman integral 
lr,) [" = I-vertex irreducible (J VI) graph without l.o.g. r is 
as~umed to have either at least one massive line QL not less than 
2 external vertices. The propagators are of the form , 

~t (~t) (p/- m.i l' j i (;\ 7taf1.) )-
(see 1 1,2/), with Z~ a spin polynomial, and m~ the mass of 
the line 't'. We allow both massive and massless lines, but later 
we shall consider only the purely massless case. 

We explain informally the I.R. power counting (Speer 1 3 I), 
assuming that 1111 i. is written in parametric (CI() space. For the 
moment um space analysis both at the unrenormalised and renormalised 
level, see Lowenstein 1 1 I. The analysis of U.V. divergences is 
wellknown. 

Let us ~mark, that the iE prescription is such that if me 
I', 'l ... i , ~e 1. vani shes when P.t --> O. If we can prove tha t 
eil' ,1S free of I.R. singularities, then' --t 0+ pointwise 

limit can1 0e taken for generic Euclidean external momenta. 
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Consider any subgraph SeI' such that 
::jI 

i) in S 
of r 

there exists a path wich connects all external vertices 

ii) S contains all the massive lines of 
iii) S is minimal in the sense that if S 

removing any component of S destroys 

f' 
is not I.V.I, then 
(i) or (ii). 

Such subgraphs in S are called links. We now form the st of all 
quotients 

Theorem 
The Feynman integral '~,is free of I.R. singularities (for 

generic Euclidean external momenta). 
Iff : 

01. (li) > 0) " ~ E ~ 
Here cl (l() is the naive powercounting dimension of Q considered 
as a graph. As an immediate application, we consider any purely 
massless renormalisable theory e.g. to be concrete, massless (Y-~1)4' 
and consider its Green's functions. 

Then oI(~)= ~(f')-d(s)= (lI-S(p))-(4-S{S)) 
= e{s)- 6(f') 

where B (t) is the number of external lines (bosons) of r . 
Since ~~ r , and moreover S contains all the external vertices, 
it follo~s that B(S) > B( 1"). Thus d( Q ) > 0 and Green functions 
of massless (Y-M)4 has no I.R. divergences. Moreover, this result 
is stable under suitable renormalisation e.g. for the schemes of 
Section 2,3. Henceforth we assume such a renormalisation has been 
carried out e.g. dimensionally Isection 2/. The renormalised 
Feynman integral will be devoted R~ ,(P). We turn to the problem 
of taking E ~ 0+ in the sense of d~stributions. Thef~O+limit in 
the Euclidean region with generic momenta exists trivially. 

- B - g~~~~~li~~~_!~~~~~_!~~~~E~l~_~~_!~~e~E~~_~i~~Ei~~Ei~~~ 
We restrict ourselves to the purely massless case with (Y-M)4 

as a concrete example. We have to prove that 

i. ... jiTJ."'. R.1'.f(R-.. fJ ... )cp!J',·-k.) (B.I) 

.... 0· :v -' (~"WI.) 
exists, where 9J E d '" (space of tempered test 
functions). The discussion is carried out in two steps, of which 
the first is to prove (Lowenstein 1 I I) 

J T! ~";~ ; (t) R r~fi (l.) exists (B.2) 
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with ~ ) o. This convergence theorem is crucial, and non-trivial 
since the inverse propagators (p2 + i" 12) vanish when the Pi = o. 
The limit Er~O+ follows (second step) , although the discuss10n is 
delicate (Lowenstein and Speer / 2 I). 

We shall sketch the essential idea of the proof of (B2) by 
reducing it to the basic theorem of Case A. 

Corresponding to r , we consider an "augmented" vacuum graph 
~ obtained by adding to f' a new vertex V. and joining all externa 

lines at this vertex. No external momentum flows into Vo ' hence ~O 
is a vacuum graph. The old external line.e ,which is now an interna 
line.t flowing into V" , is assigned a propagator 

(~ ... - M" +i, (rL .. M"'))-~ 
where ~ is a pos~ive integer as large as desired and M + 0, 
real, and otherwise arbitrary. Lowenstein / I / observed that the 
absolute integrability of RI'.~E eil) Le. 

I V J."~~ ~~i (f1. ... ~ 1' ... ) eJl i."5 (B.3) 

implies the existence of (B .2). Here Rn. fis the renormalised 
Feynman integral corresponding to Po (n~)new u.v. divergences 
arises in extending ,,~~ since l')O may be chosen as large as 
necessary). That( S.l)~ eQ.)follows from the topology of the space 
-f .' where (/1,'_ M1+iE ('~M"))" act legitimatelyas 

~u,. t1pliers. 

The proof of (B.3) is immediate. ~ is a vacuum graph but it ha 
at least 2 massive lines (since M + 0), and it remains I VI. Hence 
it falls under case (A), and the I.R. powercounting can be used. Now 
any link S must contain all massive lines. Hence no new quotients 
Q are generated in a, besides those already considered for ,.,. But 
for those we already have shown 01 (fi)O for massless (Y-M)4' and 
indeed for any purely massless theory with anly dimension 4 terms in 
the Lagrangian. This shows that the integral (B.3), and hence (B.2), 
with the renormalised parametric representation insert,ed for RI\ E
are absolutely convergent. The existence of the E -+0 limit then 
follows from theorem 2 of / 2 /. The discussion at this stage is 
purely technical (no new graph theoretical powercounting is necessary 
and the reader is refered to / 2 / for details. 

REMARK 
We have seen that renormalised Feynman integrals corresponding 

to each graphical contributions(l to Greens functions are tempered 
distributions. This implies that the absorptive parts exist (graph
wise), and in particular are free of I.R. singularities. In particula: 
the validity of the cutting rules / 4 / in the renormalised theory 
(axiomatic structure / 5 /) implies that the absorptive part may 
be expressed as a generalised unitarity sum, which is seen to be free 
of I.R. singularities. 
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2. MASSLESS (Y-M) 4 

- A 
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For the structure of gauge theories the reader is referred to 
the lectures of Stora 1 6 I. Here I shall concentrate on purely 
massless (Y-M)4. As is weIl known the formal Lagrangian is 

;[= _.L C . ;? - L /..!..~)& A"\\ 1>. c ~ a"c) (2.1) 4 ~,.., (J ".., -' ~i ,- J ,.. 
where we have included the gauge fixing term ,+ ~ C are 
spinless anticommuting Faddeev-Popov ghosts and, as usual 

..... ~ ~ ... ~ JI'-1 = ~Ai-~,,++J ArAA p (2.2) 

~=,.+c1+" 
We restrict ourselves to SU(2) for simplicity. The Feynman rules 
are read off from (2.1). We proceed at first forma11y. A very impor
tant property is the invariance of the corresponding action under 
global Slavnov formations 171 discovered by Becchi-Rouet and Stora: 

'Df' c + ,,. 

ldA) S~ 
0/2 c. ... " ,+ ,~ (2.3) 

where b ~ is a !pace-time independent anticommuting c-number. 
The corresponding Noether current is the conserved Slavnov current 

(2.4) 

whose conservation leads to the Ward-Slavnov-Taylor identity. 
(The Slavnov current has dimension 4 and many more renormalisation 
parts than usual, which leads to complications in application of 
renorma1isation theory). 

If we denote by X the formal product : 

x --- TI All. ('Xi )7fc (':J.j) i! c-l-(I.;) 
• r..J oJ 

(2.5) 

with formal Green functions <T X > , then integrated 

Slavnov identity can be written as 

l' (T X> =0 (2.6) 
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Where 

and formal functional derivatives are meant. 

An important property of the Slavnov transformation ~ is : 

11=_ J"(,,. ~I' YC c+(a).L = 0 
See,) 

by virtue of the ghost field equation 

_+ ~ J) J4 C. f (,.):: c,--L-
~ I ~e{.,.) 

in the sense of insert ions in Green functions. 

(2.8) 

(2.9) 

The main problem of renormalisation (in perturbation theory) 
is to construct Green functions (i) as tempered distributions which 
satisfy (ii) axiomatic structure 1 5 1 which implies counterterm 
structure and Lorentz invariance and (iii) the Slavnov identity (2.6) 
Related to it is the construction of guage invariant composite fields 

- B -

These problems (i) - (iii) are solved at one stroke if we adopt 
dimensional renormalisation in the formulation given by Speer 1 8 I. 
See also 1 9 I. From the purely perturbative point of view, we 
shall therefore first expose the consequences of dimensional regulari 
tion and renormalisation. Dimensional regularisation is wellknown and 
precise formulations have been given in 18,9 I. A length scale 
(t'Hooft) is intrOduced by defining the coupling constant 
9= r 11- ~'o, 'o;s dimensionless. 

Speer 1 3 1 has given the complete singularity structure in ~ 
(space time dimension complexified) of dimensionally continued 
parametrie ~-space) Feynman integrals. For purely massless (Y-M)4' 
for any I V 1 graph P the U.V. and I.R. singularities are poles on 
hyperplanes 

«tu) = L, " ~ .:L 
(2.10) 

where k 1, K2 are non negative integers. The subgraphs He" 
are IP% generalised vertices and moreover "saturated" Le. 
fl'H is I V 1. The quotients Q are precisely those encountered 
1n section 1. Finally cl",) is the minimal U.V. powercounting 
dimension of 1 in ~ -dimensions. and is obviously linear in ~ • 
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In section 1 we saw that for i = 4, d(Q) ') o. It follows that 
for any given order n of perturbation theory we can find a 
neighborhood N ft of ~= '* in the ., plane, such that ~ lfi»D 
However this neighborhood shrinks to zero as n~, so that dimen
sional regularisation is not a non-perturbative regularisation for 
massless renormalisable theories. 

It remains to subtract the U.V. singularities. This is done 
/8,9/ in the spirit of BPH recursive subtractions / 10/ with the 
following differences, of which (i) is weIl known and (ii) crucial. 

(i) The basic subtraction operation (acting resursively is that 
of removing the total singular part of the Laurent expansion around 
Y=~ which is represented by a Cauchy integral replacing the truncated 
Taylor operator in external momenta of BPH. 

(ii) The recursion on divergent generalised vertices is replaced 
byrecursion on divergent I P 1 subgraphs, as in BPH Z / 11 /. 

Actually this is equivalent to subtractions with recursion 
on generalised vertices upto fixed (automatically choosen by 
virture of (i) and (ii» finite renormalisation /8,9/. Thus 
dimension renormalisation, so formulated, has counter-term structure. 
The above formulation of dimensional renormalisation has the following 
remarkable consequence : Theorem ( 5.3 ) of / 8 /) I 9 /. 

Let P ~ ~ L represent monomials in elementary fields + 
(and space-time derivatives) with;. any elementary field (c .. ' ;# A .. ) 
then J 

<T;a (::. - a~ ~~~i )tJ) Plflcl&) Y fi.: i!} (~~» 
_ ~ C, '" . _ x) < T Pb) ~ti, (';1~) _11. fi . ~~ Jt:A;) \ (2. 11 ) - ~ "l.,.. R S~. ..fJ· , 

~ ~~ 

Here T~ is the renormalised time ordering i.e. graphwise imple
mentation of the above subtraction procedure. This means that renor-· 
malised equations of motion retain canonical structure even when 
P is a composite field. 

We apply this result to the divergenffiof the Slavnov current 
J~ (2.4) inserted into a Green function with 1R ordering. dtt 
and Ta commute / 8 I. Applying (2.11) we immediately obtain in the 
renormalised theory the local Slavnov identity whose integratea 
form is (2.6, 2.7). Another way of stating this is that (2.11) 
implies that the Schwinger action principle in its classical form 
remains valid in the renormalised theory for variations (2.3) en
gendering (2.6) /9/. 
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Thus Dimensional renormalisation, as formulated above, is 
characterised by 

(i) Existence of Green functions in R.P.T. as tempered dis tri-
butions 

(ii) Slavnov invariance 
(iii) counter-term structure. 
(iv) no specific normalisation conditions e.g. at Euclidean 

symmetry points ad-hoc (the vanishing of 2-point proper 
functions at zero momentum is an automatic consequence). 
Of course, the renormalised Green functions can be computed 
as functions in the Euclidean region. 

(i), (ii), (iii) justify the usual procedure renormalising 
multiplatively using dimensional regularisation and preserving Slavnl 
invariance. Several well known consequences follow. Thus one can 
derive renormalisation group equation with Ji<fJindependent of the 
gauge parameter ~. (See e.g. /12 /) Locai asymptotic freedom 
is well known / 13 /. It has been shown / 14 /, as a consequence 
of the definitions of parametric functions and asymptotic freedom 
that remorma1isation constants (as functions of (4 - €» 
are computable i.e. they can be expressed as formal asymptotic 
series. This fact should play some role in future constructive 
approaches to (Y-M)4' 

- c -
We have so far discussed dimensional renormalisations. Purely 

4-dimensional graphwise renormalisation e.g. Lowenstein / 15 / 
requires, in general, recursive construction of finite counter
terms (Stora - these proceedings) to implement Slavnov invariance. 
The main reason is that (2.11) gets modified (when P is a com
posite fie1d ) if one subtracts in external momenta. The modificatio 
is simply that individual terms in (2.11) have coefficients which 
differ from tree graph values. This also implies that the Schwinger 
action principle acquires non-classical correction terms. This is 
compensated via finite counter terms usi~~ (2.8). Moreover the 
renormalisation group function is now ~(~tA) depending on 0( beyon 
the lowest order. Actually a reparametrisation is necessary, exchang 
g for l' ,the invariant of the guage parameter differential opera 

0( ~~ .,. .,.~) ~/I" ,in order to achieve a gauge invaria: 
coupling strength. 

See also Zinn Justin / 16 / and remarks of Symanzik / 17 / for 
other approaches. It is clear that the main outstanding problem of 
massless (Y-M)4 is not renromalisability and U.V. behaviour but non
perturbative I.R. behaviour. Here an intelligent 4-dimensional 
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renormalisation might have a role to playas we discuss in the 
next section. 

3. HARD SOFT RENORMALISATION 

233 

-A. We now turn to a simple 4-dimensional renormalisation scheme 
for (renormalisable) massless theories : hard-soft renormalisation, 
/18 /. We shall sketch the basic idea on the basis of the 
simplest example : massless (~ )4' The real reason for developing 
this scheme is for massless (Y-M)4 and the motivation will become 
clearer later. We begin with the formal Lagrangian 

(3.1 ) 

and the generating functional of Greens functions is given formally 
by the path integral 

113"} :: f,f}f f',/J, [f.L\ (ttrf)l,.) +J6)f{~3.Z) 
We add to this an independent Gaussian, without changing anything 

with 4' a scalar field. We now make a change of variables : 

(3.4) 

obtaining : 

113 J :.(UM~)' JhP,.~~ex~ L [IJ". (th_$+ 1b)cpb.)] (3.5) 

with 

1. = -Jtf (a +,,,~)~ - f'P.s a (tt E;)~ -~t tp't (3.6) 
~~ ~ ~ ~ A~. 

with Cf ::. cp", .. CPr, . Here h, s refer to hard and soft 
fields, for obvious reasons. The hard propagator is massive but 
behaves as (pZ)-1 when pZ ~oO. The soft propagator has the zero
masspole but behaves as (pZ)-Z as pZ ~ ~. 

The construction of renormalised Greens functions is simple. 
We consider the Feynman rules from (3.6) in terms of hard and 
soft fields and use the propagators provided by the bilinear part 
of (3.6). Then all Feynman integrals can be renormalised by performing 
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minimal. U.V. at zero-momenta, without encountering I.R. divergences. 
The reason is that any (sub)graph which is superficially divergent 
has at most one soft line, in which case subtraction at zero-momenta 
is harm1ess. As in all graphwise renorma1isation schemes the contri
butions to proper functions, superficia11y U.V. convergent or not, 
require additional subtractions at zero-momenta /18/ to preserve the 
zero-mass condition and I.R. convergence. A2 sets the renorma1isation 
mass scale ; it separates infra-red and ultra-violet fluctuations. 
A convenient way to keep track of the/ower-counting is to use 
propagators , (p .... I\"Y· ,and ~ 6 1\"(,1)-1 (,,1._ p"yl 
where we have introduced a real parameter, . Then all U.V. 
subtractions are performed at p = s = 0, using the U.V. degree of 
divergence formula '(r) = ~ - n .J'~ (independent 
of field species), and setting s = 1 in the end. This automatically 
enforces the above minimal U.V. renormalisation I 18 I. 
In contrast the I.R. subtractions for contributions to the two-point 
proper function are at p = 0, s = 1 • The renormalised theory is 
free of I.R. and U.V. divergences, the Green's functions existing as 
tempered distributions. Anormal product algorithm is given in /18 I. 

An important question is the consistency of the renormalised 
theory : one has to show that "'. indefinite metric ghost has 
crept in. This follows on observing that the insertion of the field 

fP Ca) -= Cf", - 0/1\&' tf~ , in the Greens functions 
of (3.5) gives zero in the renormalised theory I 18 I. This 
provides us with the necessary "gauge invariance" (hard-soft 
invariance) criterion for the physical theory. Finally we consider the 
variation Al. 'il~l\1. of 1 ~ .Tl . In the unrenormalised 
theory it is formally zero. However in the renormalised theory it 
can be proved I 18 I that one obtains the anticipated renorma1isa
tion group equation : 

(3.4) is the simplest of a "family of transformations, which after 
renormalisation gives rise to a family of renormalisation groups. 

Instead of doing all the integrations in (3.5) in R.P.T., as above, 
we may choose to do at first only the 1>4 integration in R.P. T. 
We immediately derive the effective action ; 
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C'tt) 1.) 
Here Gk ('I .... "t.,., ~ /\ ~ ~ are renormalised, connected 
Green functions (according to previous 
obtained from the Labrangian 

rules) <T'P,. t_, ) .... Cfi"'.,. » 
""tt 

:th = - i Cf" {QtA"")CP" - aA! ('f''!. fs't) (3.9) 

r c"', 
with 'PS treated as an external field. The \,f'h can be proved 
to obey Callan-Symanzik equations for 1\& variation. The 
propagatoffi in (3.8) are highly damped U.V. leading, on the whole, 
to convergent V. V.) graphs. Only a (U. V.) logarithmic divengence 
remaining (by a sharper hard-soft split this too could have been 
eliminated) in S.E. graphs. The price is all the extra-terms in 
(3.8). Of course the previous I.R. subtractions at p = 0, s = 1 
for 2-point functions corresponding to "zero-mass" condition are 
still necessary. 

What was the purpose of this exercise? It was to show that 
the renormalisation scale could be built into the Lagrangian of 
an U.V. softer but completely equivalent theory, an idea due to 
K.G. Wilson / 19/. This would permit a smoother introduction of a 
lattice than ~ the bare theory, at least for weak coupling. For 
massless (;")14 ,which is I.R. asymptotic free ,Symanzik/ 20 /, 
one can obtain the necessary I.R. behaviour directly from (3.7) 
without going to (3.8). But this is precisely not the case for mass
less (Y-M)4, to which we turn. 

I shall now point out a possible approach to transforming 
the orginal massless (Y-M)4 to an equivalent softer theory where 
the hard fluctuations have been eliminated. It is based on work 
with G. Valertt / 21 /. 

We start with the (Y-M)4 Slavnov invariant Lagrangian (-1. I 
of section 11 to which we add an independent Gaussian, in the 
sense of path integrals as in part (A). Thus we have : 

(3.10) 

with 

~~ is an independent field, and, as ~n part (A), this does not 
change the Y-M theory. 

We now make the field transformation 
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superscript s, means only soft fields involved. In contrast to 
part (A) we have chosen a non-linear field transformation. Ofcourse 
we could have used a linear transformation with all covariant deri
vations DS in (3.12) replaced byd. But then the guage structure of 
the equivalent soft theory, which we are really after, would be spoi 
Instead (3.12) has remarkable consequences. Being a non-linear field 
transformation, the Jacobian determinant in the path integral measur 
is non-trivial. However, it can be put back into the Lagrangian 
via new ghosts. We thus obtain : 

1 .... $ = ~l (A. c.;')+,f tp,.1 + "'(I).~ S}), Sr (3.13) 

where d n + are anti~uting vector ghosts, and 
r.Jr ~ Ur 

I( (L - ..L '\ t IJ (J.) 
. JA~ :. $AP"'I) SA:tw' v,. 

(3.14 ) 

The fields AJA ' '1'" are now defined by (3.12). We could have 
split the F.P ghosts c, c+ also, but for the moment we do not 
do that. Formally, the Lagrangian (3.13) engenders the same theory 
as (3.10), so long as external sources are coupled to A , c, C 
(the physical sector-). From the bilinear part of (3.13), the 
propagators are obtained : the AI'" B propagators are massive 
(U.V. hard) the AS propagator is U.V. soft, but has zero-mass 
pole. (3.13) has the following interesting feature: the 
purely soft gauge field part (obtained by neglecting ghosts and 
A h couplings) is 

(3. 15) 

which is the gauge invariant Slavnov-regularisation / 23 / of 
Y-M theory. However in our approach 1\ is not a regulator mass 
but a renormalisation scale ! 

As in part A we need a symmetry to identify the physical 
i.e. hard-soft independent sector. Not surprisingly the following 
nonlinear infinitesimal transformation leaves the Lagrangian invar
iant: 
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~ h -t 5 + 
T Ar : S,. ~,., aT Ar = er ~,., 

I 

ST 8J' = - 4J.. ~,., (3.16) 

~T ~+ = ~T C. - ~T Co + - 0 - -
~ t,J ~s an anti-commuting c-number. 

We have : 

(3.17) 
2 
~= 0 on all fields except B~, and there by field equation. 

The resulting integrated Ward identity enables us to select the 
physical sector. 

a 
The 1\ variation gives formally zero in the physical 

sector, as is seen using the ~-Ward identity. This will no 
longer be true in the renormalised theory, where, as in part (A) 
we will obtain the (hard-soft) renormalisation group. 

We now turn to the Slavnov transformations. These may be 
extended to the hard-soft level as follows : 

L' S -n' fC' ~ .. Ar -::. ~ G (I}t. 

S,. A; = - ~ c +~A 
~( = ~A ,.:>. 

A ~ 
A r 

~ c. + = '/1 c. ... AG" '}t. 
~ 8", = - a G""~ 1\ 8~ 

'" ., "" ~ ~ = - ac. ~). 1\ Sr 

(3.18) 

HereS'l is an infinitesimal constant, anticommuting with all ghosts. 

~;= 0 
on all fields exept C. There it vanishes, as usual, only by virtue 
of equations of motion. Note that the essential gauge content is 
in A~ . orS' is obviously invariant under (3.18). Moreover~,. 
is Slavnov covariant except for gauge dependent term. A simple calcu
lation shows 

-- ~T' U (3.19) 
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Where 

U· (3.20) 

Remarkably enough, 

(3.21) 

(3.19 immediately shows that Slavnov invariance is recovered in 
the h-s independent sector, on using the hard-soft Ward identity. 

One can pose the question is there a splitting of the gauge fields 
such that Slavnov invariance (in a generelised form) holds ~n 
general (and not only in the h-s independent sector) ? 

By a modified Gaussian transformation (with ~ derivatives in 
(3.12) replaces by D ) and adding F.P. ghosts to the soft 
gauge fixing one can~show (P.K. Mitter and G. Valent (unpublished» 
that both hard-soft and generalised Slavnov invariance can be 
simultaneously maintained. 

However, in the ~ transformation law (3.16) there arrises 
an additive contribution corresponding to these F.P. ghosts 
and the $, C transformation (3.18) also changes. Moreover 
the S .. ~ S T symmetries will be preserved on renormalisatio 
The simplest way to see this is via dimensional renormalisation 
/22/ with 1\ as coupling constant scale. The two symmetries 

S T ~ S<r forbid mass-counter terms. As a consequence of 
/22/, the renormalised action principle has the connonical form 
i.e. non-symmetric radiative corrections add up to zero in 
Green functions. 

As in part A, ,,'" o/~I\'" variation leads to the R.G. ~ 
Let us note that the renormalised hard integration (i.e. of A~ 
is gauge invariant because of (3.18). The analogous steps as in 
part (A) will lead to the Slavnov invariant softened theory which 
has the form of (3.15) plus correction t~ 

In connection with the lattice gauge theory we note the following. 
The term - f C;;,.~ G,.~ has its string variable counterpart 

in wilson's basis square, of which it is the leading contribution 
in the classical continuum limit. Our first correction term is 

_ -1-" (~S G!, )1. which too has its string variable 
.21\ 

representation. It is an important task for the future to construct 
the full lattice gauge representation. Such a lattice gauge theory 
will have much better U.V. properties consistent with asymptotic 
freedom. 
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CONFORMAL INVARIANT QUANTUM FIELD THEORY 

G. MACK 

Institut für Theoretische Physik 

der Universität Hamburg 

We shall present here some attempts to analyze quantum 
field theory (QFT) nonperturbatively. The main tool in this 
is a partially summed up and supposedly convergent version 
of i-lilson operator product expansions on the vacuum. For 
realistic quantum field theory with mass and without con
formal symmetry we conjecture that they are true. For con
formal invariant theories we are able to prove that they hold, 
given only the existence of Wilson expansions as asymptotic 
expansions at short distances. Given these vacuum expansions 
(as we shall call them),arbitrary n-point Wightman functions 
can also be expanded; the expansion is completely fixed if 
all the two and three point functions of all the fields 
(including composite ones) in the theory are known. Given 
that these two and three point functions satisfy the axioms 
themselves, the expansion formula provides an Ansatz which 
satisfies all the Wightman axioms automatically if it con
verges, except locality. The locality constraint amounts to 
a crossing relation for the four point functions. 

All this discussion is in Minkowski space and makes no 
reference to a specific Lagrangean. Lagrangean integral 
equations for conformal invariant Euclidean Green functions 
can also be analyzed nonperturbatively and a dynamical 
derivation of Wilson expansions at short distances can be 
given. This was explained elsewhere[I-3]. In the last lecture 
of this series we will discuss the connection of some of 
these results and the Minkowski space approach described 
before. It turns out that the analytic continuation to Eu
clidean space requires some care. 

241 
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1. CONVERGENT OPERATOR PRODUCT EXPANSIONS ON THE VACUUM. 

. According to Wilson [4] , the product of two local fields 
q,4CX ) anal q,JCy) should admit an asymptotic expansion at abort 
distances of the form 

(1.1) 

Herein 4>" are local fields t and C lIIi.i are singular c-number 
functions. In ascale invariant theory, they are homogeneoua 
functions of x • The expansion is presumably valid on all 
states fl in the field theoretic domain ~ which is created 
out of the vacuum by polynomials in smeared field operators. 
We shall however only consider the special case 

n = vacuum 

Studies in perturbation theory [51 indicate that expansion 
(1.1) is then valid as an asymptotic expansion to arbitrary 
accuracy for matrix elements (~, q,L(x) q,i ey)..n ) , ~ Ln. Z>. 

Among the fields ~- in expansion (1.1) there are deri
vatives in other local fields. In general there appears 
-a""", etc. together with any non-derivative field cl> • 

Example [6]: massless scalar free field <P i.. .. .p , <pi.. <I> Wo • 

• 

Then the fields "'- appearing in expansion (1.1) are_the unit 
operator, q,0. 1. t and normal products q," - : <p ... ~ •... -;)"n cl> : , 
and derivatives thereof, CI" 4>" etc. In perturbation theory 
the situation is similar due to the normal product formalism[5] 

According to Ferrara et al. [7], the terms involving 
derivatives of on. and the same field <1>" can be formally 
summed in conformal invariant theories with the result 

(1.2 ) 

Herein the sum is only over nonderivative fields, and 
integration is over Minkowski space. :B"i.j (Z..i x y) are 
singular c-number functions. Becauae of the spectrum condit
ion for states ~"(z)Jl , the Fourier transformed kernel 

.:B"'-.i(-p;)(y) _ ~dz. eLpz;s"'':i(zjxy) 
(1.3) 

is only physically relevant for momenta p in the spectrum 
of the theory, p E sptr. C ~ • (\1+ = closed forward cone). 
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Bypothesis: Expansion (1.1) is valid as a convergent 
expansionfor (1Jt,ep'(X)ct>J(y)I1) ,~in2), after 
smearing with a test funetion !(xy). 

In the seeond leeture we shall prove that the hypothesis 
is true in eonformal invariant QFT. Therefore all the eon
sequences derived from it in the following are true there. 
However, we eonjeeture that the hypothesis is also true in 
realistic theories with mass and without eonformal symmetry[8]. 
For massive free field theory this was cheeked by Sehroer, 
Swieea and Völkel [9J • 

Let us diseuss the eonneetion with Wilson expansions (1.1). 
In conformal invariant QFT one proves that kerneIs ji can 
be analytieally eontinued to entire functions of p , 

:BkLje .!. _~) = L C bi.j,1'" (X)pOl, ... -pO(r (1.4) p-, 2..1. .. OC, ••• 01, 

Let us insert this into (1.2). Writing ~k(p) for the Fourier 
transform of </>"(z) one has 

<p~(f) <pJ (-i)I1 .. f ~dp ~ COl~~~'::r (x)poc f ••• pcx r $k(p).fl 
(1.5) 

... 1: L i." C~:~:.~r(X) V Olf ••• Vo/r q,"(O)I1. 
Ir .. 

i.e. an expansion of the form (1.1). We have proeeeded form
ally; the argument ean however be made preeise, and the re
sult is valid as an asymptotic expansion as )( _ 0 • 

Let us next diseuss how the kerneIs j3 ean be deter
mined. We will assume for simplicity that all our fields 
are hermitean. Consider the Wightman two- and three-point 
functions 

and 

(.n.)</>~(x)cPi(y).fl). ,/j(x-y}. Jdp e-i.p(x-Y'Eij(p) 

sptr. 
(1.6) 

(n , </>"ez') cfo L(X >t/i(y).fl) .. \J Itij(z xy). J dp e -LPZ W ltijC'PJ xy) . (1. 7) 

iptr. 

Integration i6 over the energy moment um speetrum of the 
theory, in it -po ~ l:ll . 

Let us take the sealar product of the state6 in (1.2) 
with ;PICp).n • In view of definitions (1.6), (1.7) the 
result reads 
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Ci.tLj(p.; "y) ,. 1: .1.t"<p),:BkLj(poi X Y) 

" 
(1.8) 

Becauae of the spectrum condition for land 'vi, both sides 
of this equation vanish if "P f: sptr.; on the other hand the 
va1ue of ~ for such p is physica11y irrelevant. For 
1> E: sptr., the two-point matrix Z (p») 0 and Eq. (1.8) de
termines the kerne1s jB to the extent that they are physic
a11y relevant. We see that they are a kind of amputated 
Wightman 3-point_~unctions. In conforma1. QFT , t~e two-
point function A&'jep) vanishes un1ess 4>" and ~3 have the 
same Lorentz spin -l and dimension cf • Taking s';!.:i:1:ab1e li
near combinations of fie1ds one may assume that A"l (p) oe 8'j J 

moreover it is a homogeneous function of p ; exp1icit1y [101 

., "X I-i -S-t-1 
ÄLJex). con$t. S~j 4+()() , A+{x),. 11.(,,>:0 (LX)(-X +LUO) • a (1. 9) 

~~e·) is the representation matrix of the representation 
-! .. (..t, ,.l2.) of SL(2 ,e), mu1tispinor indices are suppressed. 
:ot (ix> is a homogeneous po1ynomia1 of degree ..l. + ..t, in 
coordinates x)4 ,and;a x011 -X·(7 '2:" (aof,(J"&,(J"J) 

Fau1i matrices. ~(X) is a norma1ization factor which is not 
important at present. 'X. [-t, eS]. , 

Next we turn to expansion formu1ae for Wightman functions, 
Conside~ finite.seßuences of test functions 
-/ .. /o.I."'e1(1)···I:""· t(xW··X,). According to the princip1es of 
QFT D.l] , states " 

~ (f) .. ~ ~clx" ... clx1 1~~"'L'(l(t\"'X') 1Ic~11"'':'ex~''')(1) (1.10) 

with 
. . . 

'l,rL ..... L,(X"' ... Xt )· <} '-"'(Xn> ••• <1>"2. (1C2,) c:pL'(x.)n 

form a dense subset of the Hi1bert space ~ of physica1 
states. The Wightman functions are . . 

'W .. I1 .. · .. , (x" ... x1) • (.0, cpL"eX.,> ... <b"1(x.)fl) 

( """~tn+1"'~"( ) '1"~",,,.i.,( )) 
":L x",+,'" xn , :r; x ln ".X, • 

independent of 111. • 0 ( m., I"\. 

. . 

(1.11) 

(1.12 ) 

We can expand the "state" 4>"2.(xa ><I>"'(x,>[)' in (1.11) accord
ing to our hypothesis to obtain 
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'lr ~" ... ~1(X" ••• X.) • f IdZ c#>~" (x .. ) ... </Ji,3(Xi) </>JCZ),n :sJ i.&L·(Z. X&)I'1) • 

The expansion process may now be repeated. Hext one expands 
tf> '3 (x.) <pi (%. ) .n. , and so on. As a final resu1 tone 
obtains 

.:.. ... i.. ( r~, ..L.lt( "'"'D Ir~ ..... "- ( '!r "" ... x,) cf }QZ 'f" Z).ll...o Z j X" ... x. ) (1.13) 

with 

If .. ~ ..... ~.( ) ~ r Cd -' "Dle .. ~"It" .• ( ) :s ZOl,X I1 ."X1 = L.... ••• L. J z" ••... az.l.'O %"jX"Z" ••• 
'-' .... 1 If.l. 

.B R3':3~1( ).BIe:&i.1L,( ) 
••• ZJjXoaZa. z,a ,)1'1."1 • (1.14) 

This is an expansion in terms of states q,1t(z)n which are 
obtained by app1ying on1y the first power of some fie1d to 
the vacuum. 

Thus our hlPothesis amounts to the statement that states 
4>1t(1),fi 2 Sdz f(z>cPltCz).ll (-:f. = test functions) span the 
Hi1bert space of physica1 states. 
From (1.14) we obtain an expansion for Wightman functions 
(1.12), viZe (1.15) 

vi"···i.· (x" ... x.) • 1: ~dZa'Z/i"~m+""':n(%jxlII+l ... )(,,)Altl(z.z'):Bti..n ... i.1(Z)Ktn···~) 
Il,t 

independent of rTL , 0 ( m.' n ; wi th kerne1s (1.14). 

By Fourier transformation in the integration variables, 
the r.h.s. of (1.15) can also be expressed in terms of ker-
ne1s .i ... ("p • lC Y ) • Formu1a (1.15) is valid for all 
"'} 0' m.$ n. , if one interprets 

.:B 1ft (P; x) .. e i.px Sltt ' ;8 i. (p) ~ 6io ' cl> 0 
.. .11 (unH opera tor). 

In the expansions (1.15), (1.13) there are terms coming from 
the unit operator. The corresponding 2-and 3-point functions 
are 

- oj (' ; ... OLJ· i.j A (-p) - O(-p) <4>. > l:a (p~ xy) .. A (x-y). (1.16) 

ODe may assume that the vac.uum expectation va1ue <t/>j"> 
vanishes for all fie1ds c:pJ except the unit operator 4>0 .. .f. 

Let us introduce a graphica1 notation 

.B.It~a.~·f(Z.X x) .. ~ 2. 
I &t ~·~1; 

(1.17) 

• 
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Reversing all arrows will mean complex conjugation. 

In this language, expansion (1.15) combined with (1.14) 
reads 

• 

tl-i ",+1 

E ... Z:p ... 
11. .. _. ka Je 

"-I 
~ 

(1.18 ) 

m 

Integration over all internal coordinates is understood; 
summation is over field labels Ra. ... k "-1 , and m. is 
arbitrary. 

Let us now change our point of view and consider ex
pansion (1.18) as an Ansatz for arbitrary n-poini functions 
in a local QFT • Let us ask to what extent it satisfies 
the Wightman axioms automatically, and what further con
ditions will have to be imposed. 

Let us first remember the axiomatic properties of Wight
man two- and three-point functions. (We assume throughout that 
all our fields are hermitean). They are [lI} 

i) Lorentz invariance 
ii) Positivitl.~nd spectrum conditio~ of the two-point 

matrix ~ ~J Cp) = 0 for Pt. V+ (outside for-
w2x:d ligh~e) ... 
.A LJ (p) ... A (p) and I: ~.j z.~ KIoJ (p)zJ ~ 0 . 
for all sequences of complex numbers {z,) and all p • 

iii) The three-pojn~ functions ""leLj resp. Fourier 
transforms WItIJ satisf;y. _ .. 
hermitici ty condition \V .~~ (z )C y) ~ w JiJ& (yx z) 
spectrum conqi.t:i,on W l"j (f.- x y). 0 fol' P f. V 
locality W~"'"11.1 (X'3" x ) _ "'La i.1i.a. (x x x ) 'f ( 7)3. 

1 1 .3 • 1 L X, x~ < 0 . 

In addition, WIt~j('PlXY) must be a measure in 'P • 

• l:i..l'N z:i. Ki.jcp)zj is allowed to diverge to + 00 as 
t( - 00 for infinite sequences. 
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It turns out that it is also necessary to impose a 
crossing condition on the 4-point function in order to have 
locality. Because of locality 

(11., q,i."(x .. )<I>~3(.x3)~~"(X1.)cPa:.(.xt)n) 
-:t (n, 4>~"(x .. )cP~a.(X1.)cPi.3(Xa)CP~f(Xf)J1) 

1.! (x-x.>"< 0 ) 
I 1 ... 

with :t depending on the statistics of the fields cP~a, <PLi. 
Inserting expansion (1.18) this becomes a crossing relation 

247 

(1.19) 
1 

Some attempts at solving such crossing equations in 
conformal QFT were made by Polyakov [20] • The possible 
relevance of expansions (1.18) to constructive QFT arises 
from the following 

Assertion: _~~ppose that one can find a set of two
p~i~t functions ~~Cp) and amputated three point functions 
.13IiaLJ Cop; "y) such that axiomatic properties i), ii), iii) 
of two- and three-point functions listed above are satisfied 
when Wlai.j are defined by Eqs. (1.8), and such that ex
pansions (1.18) converge and crossing relations (1.19) are 
satisfied. Then Eqs. (1.18) define a set of Wightman functions 
with all the axiomatic properties: Lorentz invariance, spec
trum condition, positivity and locality. 

Let us verify the assertion. First we must be sure that 
the Ansatz (1.18) is meaningful, i.e. independent of m. 
This requires merely reshuffling some amputations, and can 
be verified by straightforward computation, using hermiticity 
conditions in ii) and iii). 

Lorentz invariance is obvious, and 50 is the spectrum 
condition, since the prcpagator between the bubbles with legs 
m and m + 1 can only transmit positive energy, and m is 
arbitrary • 

. Fositiv.ity, is also readily verified. Let 
I .ß L, ~ ." ••• LfC ) b' t f·· t f To ,1' (x.) ••• TN J(H···)(f an ar J. rary l.nl. e sequence 0 test 
functions. Define 
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as required by axiomatic positivity. 

Locality requires that 

We distinguish two cases. If ,..:r 1 or"" rt- 1 , validi ty of 
(1.22) follows from locality properties of the three-point 
functions, W RLj ('P; x y ) ... ± W ~j" (p j Y x) for (x-y )2.< 0, which 
carry over to the kerneIs .:a"1.j(pjxy)by (1.8). If r-l ... I1.-l. , 
we put m..... in expansion (1.18). Validity of (1.22) follows 
then by inserting crossing relation (1.19) for the center 
piece of the diagram (1.18). 

The expansions (1.18) are particularly useful in con
formal invariant QfT because in this case all two- and 
three-point functions are determined up to some constants by 
conformal symmetry. 

2. CONFORMAL INVAR IANC E IN HINKOWSKI SPACE 

We conjectured that the hypothesis of our first lecture 
is true for any realistic QFT, and so are therefore all 
its consequences which we have discussed. From now on we 
will however restrict ourselves to conformal invariant 
theories. 

Let us first explain what is conformal symmetry. The 
conformal group is a group of transformations of space
time, and is compounded from the following subgroups 

N: translations ny : 
M: Lorentz transformations m : 
A: dilatations a 
N: special conf. transform. nc;: 

xJA ,..x1' ... y}4. (2.1) 
x'" _ 1\ (rn)"'" x", 
x'" ,.. I" I x}4 I I a.\ '> 0 , 
XJA_oo(xy' (x}4-c}4x"") 

with oo(x) .. '1-2C·x+c2.·x:L, 
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The special conformal transformations form an abelian four 
parameter group parametrized by '.(c~} . The transformation 
law of the line element GI,a. is dfi&_ I"I-.i.ds& resp. ds& .... crfl<r~dft .... 
under dilatations and special conformal transformations. 

There is a special transformation which is not in the 
conformal group itself but is a reflection, viz. the reci
procal radius transformation R 

(2.2 ) 

If R is multiplied with a time reflection, it becomes an 
element of the identity component of the conformal group. 

Formulae (2.1) can be used both in Hinkowski space and 
in Euclidean space. In Minkowski space, infinitesimal trans
formations (2.1) form a Lie algebra ,* . .. o(~,2.) in 4 dimens
ions, resp. sO(D,2) in D dimensions. In Euclidean space 
the Lie algebra is If 2'''0(5,1) resp. so (D + 1,1). Of course, 
c,JA is a Hinkowskian resp. Euclidean 4-vector in the two 
cases, and the scalar products c·~ etc. have to be read 
with the appropriate metric (+---) resp. (++++). Also, the 
Lorentz group in Minkowski space is SO(3,1)(or SL(2,C» 
while in Euclidean space it is SO(4) (or Spin(4». 
Special conformal transformations can be generated from trans
lations and the R -operation, 

There are some problems associated with the transform
ation law (2.1) when one considers global transformations. 
They come firstly from the fact that cr(~)may vanish. That 
means that the conformal group can take some points to infi
nity. In the Euclidean domain this is harmless, one simply 
compactifies the space by adding the point at infinity. The 
Euclidean conformal group G acts as a group of transform
ations on the resulting space. 

In Minkowski space something like this could also be 
done. However it is not appropriate because there is a second 
trouble: One sees by inspecting the transformation law (2.1) 
that relatively spacelike distances can be transformed into 
relatively timelike distances. So there seems to be trouble 
with causality. We will come back to this, because it will 
be essential later on that we have global conformal symmetry. 

Because of this problem, it is costumary to formulate 
the hypothesis of conformal symmetry in terms of the Eucli
dean theory. So let us consider the Euclidean Green functions. 
They have been introduced already in Arthur Jaffe's first 
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lecture; let us remember how it goes. One can make an analytic 
continuation from Minkowski space to Euclidean space because 
of the spectrum condition. In fact this analytic continuation 
can even be done on the states [12] 

(2.4) 

We assume here for simplicity of writing that there exists in 
the theory a scalar field ~~)which is irreducible. One knows 
that states (2.4) can be analytically continued in x to 
complex arguments Zj. )(j"'~Yi ; such that all Yj ~ v+ and (zrl.Ie)& 
are not positive real for j +" . The Euclidean points have 
pure imaginary time components and real space components of 
all arguments Zj. The Euclidean Green functions are* 

G(~1···t .. ) • (.0''\'(%1···'''''»' zJ.(i.x~It'!i),iJ·()(:'~i).(2.5) 
Because of translation invariance the Euclidean Green functions 
depend only on differences -:j -il" , and so they are defined 
for all mutually distinct n-tuples of arguments. 

We will assume that the Euclidean Green functions are 
invariant under the Euclidean conformal group. The transtorm
ation law of the Euclidean Greens functions is most easily 
stated in terms of Euclidean fields. Let us therefore assume 
for a moment that there are Euclidean fields ~(;) with cor
relation functions <YC~) .. · <lexn)· 6 (x. ... xn) , cp. A. Jatfe's 
lectures [131. Their transformation law (tor scalar tielda) 
i6 

tor dilatations a 
(2.6) 

and 

under R- inversion 

d is called the dimension of the field; tor free scalar 
fields d = 1 , but in the interacting case it is dynamically 
determined and not apriori known L4]. We aasume invariance 
under time reflection; conformal invariance implies then in
variance under the R-operation. Since all contormal trans
formation can be generated trom Poincare transtormations, 
dilatations, and the R-operation it suttices to know the 
Lorentz transformation law and (2.6). It tollows that under a 
general conformal transformation ~ E <.1 , 

*Throughout these notes we write ~ tor Euclidean space 
arguments and x for Minkowski space arguments. 
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This is also valid for fields with spin ~ , in this case the 
multiplier ,s(~,x) is a matrix *; for Lorentz transformations 
it has the usual form and is independent of x. 

Conformal invariance of Green functions reads now 

G(x .... x ... ). S(~I~} ... S(~I)(")G(fx: .. ·f~ .. ) Ioro äEG , (2.8) 

A conformal invariant quantum field theory is a QFT which 
satisfies all the Wightman axioms, locality, spectrum con-
di tion and Lorentz invariance., and in addition the Euclidean 
Green functions of the theory have the symmetry property (2.8) 
under the Euclidean conformal group G * .sO(S',1) • 

There are several reasons for studying conformal invariant 
QFT. 

1. The short distance behavior of more realistic QFT's is 
described by a conformal invariant QFT if certain 
conditions are fulfilled (existence of an UV-stable 
renormalization group fix point, cp. [11 ). 

2. The long distance behavior of correlation functions 
in statistical mechanical systems with short range 
interactions at a critical point (where the correlation 
length is infinite) can be expected to be described 
by a conformal invariant Euclidean QFT, assuming that 
the socalIed scaling hypothesis holds true. 

3. It can serve as a laboratory for nonperturbative 
quantum field theory. 

In these notes I will skip further discussion of the 
motivation for studying conformal QFT, it can be found else
where (e.g. [1] ). Let us turn to the proof of convergence 
of operator product expansions on the vacuum in conformal 
QFT instead [14]. (Two dimensional models were studied in(15]). 

The essential point in this is the global conforma1 in
variance in Minkowski space. We have assumed that the Euc1i
dean Green functions are invariant under the Euc1idean con
formal group; how does this carry over to Minkowski space? 

~ Exp1icitly, let MAN the subgroup defined in (2.1) and let 
~ trans form under Lorentz transformations m according to 

the representation -e by matrices J)t in the vector space Vt • 
Define a representation of MAN in Vtby 'J)lC(mQI'I). ICll-d.;u'Cm). 
X • [t I 01] • Then oS (, I x) • :J)X ( ;:a;r ~ ;L~,) l)t' w ~ - t ~ 
This formu1a is on1y valid in Euc1idean space. 
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The answer is given by a theorem due to Lüscher and the 
author; it asserts the following [161 • 

Let G* the simply connected group with Lie algebra 
,*-SO(4,1) , it is an infinite sheeted covering of the group 
SO(4,2). Suppose that the theory satisfies the Wightman axioms 
and Euclidean conformal invariance as stated above. Then the 
Hilbert space ~ of physical states carries a unitary repre
sentation of the group G it • 

(There is no suggestion implied that one has a ray re
presentation of a factor group of G* like SO(4,2). On the 
contrary, this is probably not true in nontrivial theories 
in more than two space time dimensions [161 ). 

Because of the theorem we are sure that we have global 
conformal invariance in Hinkowski space in this sense. 

Let me also mention briefly how the causality problem is 
solved by the group G* , for this is quite amusing. 

It turns out that one can analytically continue the Eu
clidean Green functions hack to r·dnkowski space; in fact they 
can be analytically continued into a complex domain which has 
as areal boundary not just Minkowski space M~ , hut a 
larger space M which is an infinite sheeted covering of 
Minkowski space. So it looks as pictured in Fig. 1 

· 

} 
· · 

-J'P 
" many spheres of heaven 

" our native Minkowski space 

} ~ many circles of hell 

... 
Fig. 1 . Superworld M. 

Therefore, by uniqueness of analytic continuation, the Wight
man functions on Ninkowski space determine the vlightman 
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functions on all of superworld Pi • The group G* can act as a 
group of transformations on Mo .The causality problem is solv
ed by the fact that M admits a globally GlI'-invariant causal 
ordering which agrees with the usual one on M~'M . Thus there 
is a conformal invariant notion of relatively spacelike, po
sitive timelike etc. onM • Note however, that in general, 
a transformation g in G * can take a point"? in Ninkowski 
space ~ It into an arbi trary point 3 P on any sheet of super
world M • 

Global conformal invariance will enter into our argument 
in the following way. We shall show that the vac~um e~pans
ions (1.2) effect the decomposition of states ~~'X)~J(y)!L 
into states which trans form irreducibly under the conformal 
group G* ; so it is just a partial wave decomposition. Now 
every Hilbert space carrying a unitary representation of a 
group G* can of course be decomposed into irreducible sub
spaces, and if one decomposes any state into the components 
in these irreducible subspace. aseries obtained in this way 
is of course strongly convergent. This is the basic reason 
why expansions (1.2) are convergent. 

Before we can proceed we need a list of all unitary 
irreducible representations (UIR's) of G* with positive 
energy. This group theoretical problem has been solved com
pletely [171 • The answer is as folIows. 

The UIR's of G*with positive energy can be labelIed by 
a pair X ~ [1. S] ,where ..e fixes a finite dimensional 
irreducible representation of the Lorentz group M~ SL(l() , 
acting in a vector space VI , and 8 is areal number, called 
the dimension, with Ö ~ Stn;" Cl) • Finite dimensional irre
ducible representations ~ of M can be labelled by a pair of 
halfintegers -t .. (1f.ll.) in a standard way. If i," ja. then { 
is a completely symmetrie tensor representation. In this 
language,.6"'i,,(O=-if+ia.+ 1 if 3.-0 ",. ja."o ,and 
Stni" (l). 31 + Ja. + 2. otherwise, except for the trivial I-dimens
ional representation which has S~ 0 J f.. (0,0) • All this is for 
four space time dimensions. 

The representation space Cx consists of finite component 
wave functions rp(x) on Minkowski space with values in VI. • 
Under Lorentz transformations they transform in the standard 
way (p (X) - J)t (m) cp (m-fx) , while under general conformal 
transformations, the transformation law is that of an induced 
representation like (2.7). Its infinitesimal form was known 
for a long time [181. Let us denote the scalar product in 
V t by <, > ,we choose it so that J)t (,.,,*) ,. J)t (tn)"" 

The scalar pro duc t in c)( is then 
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where A" is the two point function defined in (1.9) • ... 
i . . A" Let ~ the image of ~" under the ntertw1n1ng map .... 

It consist: of vector valued distributions of the form 
ICx)" Sdl('A"(x-X/) "ex') , CI' in E" • Th. space r" carries a 
UIR of G* whtoh is unitarily equivalent to that on e.'J( • 
Functions I in Tx satisfy a speetrum eondition beoause the 
t~o point funetion does. Thus their Fourier transforms 
f Cp) - 0 /0,. P;' V... • If 8 .. S mi .. (0 th~re ar~ fur~her 
oonstraints. In particular, the representat10ns w1th 1,· 0 
or Ja .• 0 and 1> .. '2,+11.+ 1 a~e zero mass r~presentations. The 
soealled "eanonieal dimens1ons" are prec1sely 1;. Smi", • This 
eompletes our diseussion of the UIR's. 

We will also need information on eonformal invariant 
two- and three-point funetions. We shall first diseuss the 
Euclidean ease whieh is simpler. One finds that eonformal 
symmetry alone determines the two- and three-point functions 
(almost) uniquely. The reason is simple. From Eq. (2.8) we 
see that the Green function Ci CX: .. , x'" ) (n=2,3) at any one 
point C~ .. , x .. ) '(xi, :lax, /or i+j) determines i.t for all arguments 
of the form lS? .. ·Sl .. ) wlth g in the Euelidean conformal group 
G • But it is easy to show that G aets transitivelyon pairs 
and triples of noneoineiding arguments t L • Thus, the two 
resp. three point functions are uniquely determined by their 
value at any one point cil, .. ·x ... ) , n=2,3. In the sealar ease 
this me ans that they are determined up to normalization. The 
same eonsideration applies to the ease with spin. In this 
ease, the values of the two resp. three point funetions at 
fixed arguments are matriees. They are however further eon
strained because they have to be invariant under the sub
group of stabilit~ of the pair resp. triple of arguments 
(~,xa.) resp. (Xi X"a,x3 ) in question. As a result one finds that 
the two-point funetion is always unique, while there is in 
general a finite number of linearly independent three-point 
funetions. When at most one field has spin there is just one 
at most (none if the spinning field is not a eompletely 
symmetrie tensor field). 

Two- and three-point funetions in Minkowski spaee whieh 
satisfy the speetrum eondition ean be found from the Euclide
an result by analytic continuation in time. The result for 
the two-point funetion is given in Eq. (1.9). We give an 
example for the three-point function. (The general result 
can be found in [141 ). Let ~M·(X) a completely symmetrie 
traeeless ~-th rank tensor field with dimension S , and ~(X) 
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a scalar !ield of dimension ~ • Then 

• ()(~)e( = xiM - Xja/ 

and 
I 01 [ Z. , (. .)]0( 

(-Xlj) • -(Xi-Xj)'tI& X,-"j , ' 

Let us next consider s ta tes q:, , (t ) n .. J cl" je( Cx ) <p~ (x)n 
which are obtained by applying a smeared field operator (o! 
any spin) to the vacuum. We claim that such states transform 
irreducibly under the conformal group G*. Indeed we may con
sider , as an element of, c'J( with X- [I, & 1 given by spin and 
dimension of the field 4>' • The map 

/ _ 4>' (f)11 

is conforma1 invariant and maps the irreducible representation 
space!'l( into the Hilbert space of physica1 states. Its image 
is therefore also an irreducib1e representation space, and it 
coincides with the spape of states which we consider. In con
c1usion, the states <pL(f)Sl with ~ ranging over all test 
functions -:I in Co" , form a UIR equivalent to X • C:X con
tains all Schwartz test functions. 

We will now come to the argument why operator produet 
expansions (1.2) on the vacuum are valid and strongly conver
gent. We recognize the individual terms on the RHS as states 
which transform according to unitary irreducible represent
ations of G*. Therefore (1.2) is a partial wave decompos
ition. 

The strategy of its proof is as fo110ws. First one writes 
down a partia~ wave decomposition, i.e. one decomposes the 
states <I> '(X) <i"(y)'o, smeared with a test function, into a di
reet sum or integral of states which transform irredueibly. 

Then one notes that this expansion is at the same time 
an asymptotic expansion as x-+ y in homogeneous functions of 
x - y • This is unusua1 for harmonie analysis on noncompaet 
groups iI ; it comes about because only representations with 

* Usua11y one has to decompose into representation functions 
of the second kind first and shift the path of integration 
over a representation label into the complex plane [191 • 
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positive energy are invo1ved here. Their representation funct
ions have good high energy behavior, in contrast with the 
principa1 series. 

Fina11y one compares this asymptotic expansion with the 
Wi1son expansion (1.1). Since asymptotic expansions in homo
geneous functions are unique, there must be a term by term 
correspondence. This a110ws to identify the states in the 
partial wave decomposition with states that are obtained by 
app1ying a smeared loca1 fie1d operator to the vacuum. 

Let us go through some of the details of these steps. 
Let ~ an arbitrary state in the Hilbert space 1t of physical 
states. We may decompose Z into subspaces which carry copies 
of one UIR X of G * . 

whence (2.11) 

Let us simp1ify the argument by assuming that 7(X are actually 
irreducib1e. This need not a1ways be true, but we 1eave it to 
the reader to work out the necessary genera1ization for him
se1f. Since 1t X carries a UIR which is equiva1ent to that on 
T~ ,there is a (unique) isometrie intertwining map 

(2.12 ) 

~x commutes with the action of the group and preserves the 
norm. Furthermore ,1X is a function space and;SX is linear. 
Therefore 

for 'P in ~. 

Using this we may rewrite the decomposition (3.1) as 

(2.13) 

z-integration is over Minkowski space. 
. . 

Let c:I>' and ~ J two loca1 fie1ds, and define the kernel 

Then, from (2.13) 

(1l::. 4> i(><) 4>i(y)n) - J c1p(~) Jdz CP'X(Z)*13'X(z;xy) 

with ep'X in ~ 

(2.14 ) 

(2.15) 

cpX(z)and ;:BX(z; xy) both take va1ues in the vector space Vl • 
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The scalar product of vectors u,v in Vi is written as v~u 

Eq. (2.15) is valid for arbitrary states ~ , of course 
rpX depend on '!f- • This completes the first step. Eq. (2.15) is 
the partial wave decomposition we sought. 

Because the map;SX is conformal invariant, i.e. commutes 
with the action of the group, the kernel J3X(z; xy) is a con
formal invariant three-point function in Minkowski space. 
(It does not satisfy a spectrum condition in z, though ). 
It can be determined by a method similar to that described 
before for Euclidean three-point functions. It is more com
plicated though in the fol1owing points. For global conformal 
invariance, arguments x, y must be considered as elements 
of superworld M , of which MI; is apart, while z is in 
(compactified) Minkowski space M~"M/r, r= center ofG*. 
The group G* does not act transitivelyon triples of points 
(z; xy). It suffices to consider relatively spacelike x , y 
because of analyticity. Then there are three open orbits 
under G"lt • The values of the kernels ~X(%jxy) on these three 
orbits are apriori independent. 

There is however a furt her constraint. From the scalar 
product (2.9) we see that the dual of 1rX is the (Hilbert 
space) c" . Therefore J.:sxCOjxy).j<xy)a><dy must be 
in eX • It turns out that this fixes the Fourier trans form 
:aXtp j )( Y ) for pE Y.r • One verifies by inspection that it 
can be analytically continued in p to an entire function 
of ~ • Therefore it admits apower series expansion in p 
as in Eq. (1.4), vize 

(2.16) 

Because of dilatation symmetry 

1')(,. ( '\ - cl. - cli ~ S' T.... C x .. (x ) C ol ).x)=r J\ ce: (2.17) 

C(i the dimensions of cj.") 4>' j X= [/,S]. One inserts (2.16) 
into (2.15) and rewrites the result as after (1.4). Because 
of (2.17) the result is an asymptotic expansion as x _ 0 

for ('!l-, q:,'{fx)cpi (-±x).n) in homogeneous functions of x, vize 

Herein f 5+(x> .. ~ f J r'C'x)d8 
.h~l1Ii .. (l) 

and the summation over ~ and integration over S is supposed 
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arranged in order of increasing 8.r • This completes the 
second step. 

Lastly we compare the asymptotic expansion (2.18)with 
Wilson expansion (1.1). There must be a term by term corres
pondence, which is only possible it the measure )4(x) is dis
crete so that 

and 

(~ I <pi (x>4>1(y )n) .. L ~oIz c;o XII(z)*.:B XII (z) xy ) 
k 

Cf XIt (z ) * - ('M:- I <P" (z) n ) 

(2.19) 

where ~k is a nonderivative field appearing in the Vilson 
expansion. Since this is valid for all states ~ , we have 
completed the derivation of (1.2). 

Ve may look at the argument in another way which makes 
clear what is involved in the general case. 

Let ';/eil be the subspace of the Hilbert space 'Jl of physi-
cal states which is spanned by states of the form tj>1&(!>.Q. , 
when <p Je runs over all local fields in the theory, and I runs 
over all test functions. Write 'lf.L. for the orthogonal comple
ment ot ~u • At a heurist~c level it is easy to show that the 
component ot the state 4>'()(> <pJ (y >.n in 71 11 ia giyen by 
the right hand side ot (1.2). The problem is to show that 
dtJ.· (0) • Let E the projection operator on '3(J.. and ~ aB 
arbitrary state. Consider 

l="()(,Y). (E'!J:- I cpL(X) cpj(y)n) 

It we insert the Vilson expansion (1.1) on the right hand 
side, we see that ':f"(x, y) talls otf taster than any power of 
x - y as l(...., Y , because all the terms in the Wilson expansion 
(1.1) are orthogonal to 1eJ... In contormal QrT we were able 
to show that it tollows. trom. this that ':f'"(l(, Y )!! 0 , tor arbi
trary ~. Therefore <I>'(x)<p1ly>Sl is in 'Jt.,(atter smearing 
with a test tunetion) ••• 

3. CONnX:TION VITH EUCLIDEAN APPROACH 

Our discussion so tar has been in Minkowski space. Eu
clidean Green tunetions were only considered at some inter
mediate steps and mainly tor pedagogical purposes. There is 
however also a group theoretical approach to Euclidean con
tormal invariant QrT. The results of this approach were pre
sented at our earlier lectures in Capri and Bonn which are 
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already published [1,2], they will therefore not be repeated. 
We will now describe the connection with the Minkowskian va
cuum expansions, which are at the same time partial wave ex
pansions on the Minkowskian conformal group G* as we have 
seen. A conjecture concerning this connection was stated in 
our Bonn lectures [21, we will see that it is correct. 

Let ~~ a symmetric traceless tensor field with Lorentz 
spin ..e and dimension S , and q,(>C) a scalar field with di
mension d as in Eq. (2.10). Write X = U, d] and consider 
the Euclidean three-point function (3.1 ) 

'X (-+ -'t ,-'> ) 1 t' t . t . (r'\ J.. ( ) J..(: ) ..J./'v)"" ) ro( X, )(2.' x3 = ana y J.C con J.nua J.on of ~ ~,~ )(3 'f')(, 'n"t .1 1. 

Its explicit form is obtained from Eq. (2.10) by analytic con
tinuation to Euclidean space, viz. (/x, -Xj /') 0(. should be 
substituted for (_xlj)O{ • 

The socalled elementary representations of the Euc1idean 
conformal group G contain all unitary irreducible ones as 
subrepresentations and may also be labelled by X- [l.Sl. The 
label 8 may be complex and -e labels a finite dimensional 
representation of spin (4) or, equivalently (because of Weyls 
unitary trick) of SL(2t). r X is at the same time a Clebsch 
Gordan kernel for such representations, assuming the field 
is normalized in a special way. 

In our Bann 1ectures (2] we introduced Clebsch Gordan 
kernels Q~ of the second kind as solutions of the integral 
equations 

for 

Q: (x3 x .. I x) + Jdx' .6!/.\ (x,x') Q~" (~x~ Ix') 

with Q±X(- ·Ix) & 0 if xiI< 0 . 

Here and in the following we wri te - X = [.(, I.f - S ] when?( • [l. $] • 
.6 X is the Euclidean two-point function which is obtained 
from.4; defined in (1. 9). The normalization factor n (X) is 
assumed to be chosen so that ..1-')(' is the inverse in the con
volution sense of ..1 ')(' • The ;( '- integration is over Euclidean 
spacei because of the support properties of G-~ it suffices 
to extend it over the half space x~~o. 

In [2] it was argued that Eq. (3.2) could be solved by 
partial wave expansion on the subgroup sO(4,1) of G. 
Actually there is a simpler way; one can do with the know
ledge of the Laplace transfor~ Eq. (3.7) below, of QX which 
is related to our old kerne1 ~~ by analytic continuation as 
we shall see. 
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A main result in our Bonn leetures was a eonvergent ex
pansion, Eq. (5.7) of ref.[2J,for the diseonneeted Euelidean 
four-point Green funetion. It reads 

Summation is over all poles of the Euelidean eonformal partial 
wave amplitude ~(X) at 'X" X" • Beeause of the results of ref. [11 
on tensor fields this is the same as a sum over spin and di
mension PA I dA] : XA. of all symmetrie tensor fields c/:>: in 
the theory for whieh the three-point funetion r X does not 
vanish identieally. The Clebseh Gordan kernel r X i6 identi
fied with the (Euelidean) three-point funetion of physieal 
fields through these same resul ts. '.[,he eoefficients 

"et. ... Jl~ * [1 + ~ (~)] 
')(" X Cl. 

0.4) 

are, up to a faetor, equal to the residue of the Euelidean 
partial wave amplitude f + ~ (.t" ,8) at G'", Set. • 

Let UB temporarily assume that there exist Euelidean 
fields (see Jaffe' s talk (13 ] ) q I 'PO/.... eorresponding to the 
quantum fields <P, <PO(." • Then expansion (3.3) reads 

<~(x:) ... <P(x,,)';> = f Jt" S di! < cp (~ ) Cf (x,) CP: Ci<).., Q~'X"(Xa~Ij.IK) 
K" ,. 0 

valid and eonvergent for x: I x: > 0; x.". xl." < 0, 0.3') 

with some eonstants -'LA. • The restrietion on the arguments is 
very important. In view of Euclidean invarianee it amounts to 
requiring that it must be possible to separate the arguments 
.... -. ... -t 

Je .. I xl. from)(3 • X If. by a hyperplane ! 

We will now show that expansion (3.3) is equal to the 
analytie continuation of (and follows from) the expansion of 
Seet. 1 ror the Wightman four-point funetion in Minkowski 
spaee. It can be written as 

\J (x, ... xlf. ) - (D. cl> (x, ) ... 4> (xlf )n ) 

with 

~ \ x. Xl ; p) • 5 d" e - ':px (.n , cl> (x, ) cf:. (x z.) cP: ()( ) 11. ) 

Herein jBX is the kernel deseribed in Seet. 2. Integration is 
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now over Minkowskian momenta, while in Eq. (3.3) it was over 
half of Euclidean space. 

....~ 

Consider the Fourier transform V of the Wightman three-
point function which was defined in Eq. (3.6). It admits ana
lytic continuation to complex arguments %1" )(1- i.Y1 'Z:o. =X2, -iya. , 
Y1 ) Y2. in V;. • The Euclidean three-point function is related 
to it by 

For arguments one has instead 

x ~-.. ~ "(' J EXIt+L-gX .... q, 
ro( -"'(X3 )(:.!X) '" Ji dEd-e e - Vo(. (Z1%2, .ip) 

E:~ 'EI 

where V'" D..(-p j .x 3 x It ) '" ~ oI.x e i.px (.0., 4>: (X) 4> (x3 ) <p(x,..)!l) 

and Zj are as before. Vo("(p;x.rl(lj.) admits analytic continuation 
to Z,) .. x.3+LY3 etc., Y~E v+ • 

We insert Eq. (3.7a) into (3.3) and define 

~cJxe-Exlt+i.2~ Q:."'Cx.;j;(,.I"i<) oe B"(Pj Z 3 Z /t) 

x"'> 0 
with Zj = (~)(l)~j) (j"=3,4) and -p= (E/~). 

Eq. (3.3) reads then 

for with 

(3.8 ) 

(3.9) 

This looks indeed identical to the conformal partial wave 
expansion (3.5) of the four-point Wightman function, analy
tical~ continued term by term. It only remains to verify 
that 13"'(-Pj z.3z .. ) defined bl' Bq. (3.8) is the analytic conti
nuation of our old kernel :EX (p J X3 )(4-) in X3 , xlt- • We show 
that this follows from the defining equation (3.2) of QX. 

Let 'l;(p) the Fourier transform of the (Wightman) two
point function (1.9). The Euclidean two-point function is 
related to it by 
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for y'+> O>x. 

.. HdE"de ~+tr)expl-&"(ylt-xlt)+':~(:x.-~)J 
,~ le' 

It follows from this and definition (3.8) that 

i cl; Ä~ (7, y) Q~'X. (x~ Xv. I Y ) • JdEde e Ex'+_ ':2~E+(p~J&B;('PjZJZ4) 
for ""<0, Zj as before. 

Consider now Eq. (3.2) for x lf<, 0 • 'l'he first term on its 
right hand side vanishes then. Because of Eqs. (3.7b) and 
(3.9) and uniqueness of analytic continuation in x~,~. the 
equation can be read as X. x.-. 

V4('PjX~X".) - Idp.1+Cp)E (PjXlX.) 

in vector notation. V+ 

Thus Eq. (3.8) is equivalent to defining .:sX as an 
amputated three-point function as we did earlier, compare 
Eq. (1.8). 

In conclusion, Eq. (3.3), and (3.3') if Euclidean fields 
exist, are the correct analytic continuation of the vacuum 
expansion for the conformal invariant Wightman four-point 
function to Euclidean space. 

Remark: We mayaIso conclude from this result that the 
Euclidean partial wave amplitude 8(X> is completely determined 
by the location of its poles and their residues. This is so 
because they determine the Euclidean four-point function by 
Eqs. (3.3), (3.4) and uniqueness of analytic continuation 
(The Euclidean Green functioDB are real analytic except at 
coinciding arguments). Conversely, the Euclidean four-point 
Green function determines SeX) • 
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REGULARIZED QUANTUM FIELD THEORY 

K. Symanzik 

Deutsches Elektronen-Synchrotron DESY 

Hamburg, Germany 

Although there are several "axiomatic" formulations of QFT 
(Wightman, LSZ, Haag-Kastler), most of our ideas about QFT and in 
particular all successful constructions of examples of such theories 
derive from working with particular Lagrangian theories. Nontrivial 
such theories require interaction terms of higher order than qua
dratic, and even to formulate the Lagrangian is then a nontrivial 
problem. The possibilities are: A) Choose a finite formulation of 
the theory (Valatin, Wilson, Brandt) e.g. by writing the field 
equations in terms of normal products (Zimmermann). The difficulty 
here is that the theory must essentially already have been "solved" 
in order to define such normal products adequately by certain 
(mathematically inconvenient) limiting processes. B) Mutilate the 
theory (as little as possible) on the Lagrangian level already, 
and defer the limiting processes that res tore the original theory 
to the level of Green's functions. This method, regularization and 
its removal, allows a relatively simple analysis of some aspects 
of also the limiting theory. In fact, the perturbation theoretical 
proofs of non-renormalization theorems (Adler [1]) and of can
cellation of anomalies to all orders (cp. sect. 2) are given simp
lest in this way. 

Since we have in mind a non-perturbation theoretical analysis 
of Lagrangian theories, we must use a regularization that is not re
stricted to perturbation theory or difficult to abstract therefrom. 

265 
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This rules out dimensional (Bollini-Giamhiagi, 't 'Hooft-Veltman) 
and analytical (Speer) regularization and suggests closer con
sideration of lattice regularization and of the Pauli-Villars 
method: See Iable 1. Remark thereto: a Hamiltonian lattice regula
rization using space smearing of the interaction has some features 
similar to Hamiltonian lattice regularization, but loss of locality; 
a Hamiltonian formulation of Pauli-Villars regularization (higher 
space derivatives only) preserves unitarity under loss of covariance. 
The balance of table 1 lies clearly on the side of lattice regulari
zation, but since this was studied in great depths (see e.g. B. Simon 
["2]), we will later consider only P.V. regularization in any detail. 

Table 1 

lattice 

Characteristics continuous space, or space 
+ imaginary time, replaced 
by lattice 

Unitarity holds, via Hamiltonian act-
(Spectrum con- ing on Hilbert space, or, 
dition and pos. via Osterwalder-Schrader 
metric) positivity condition in the 

limit theory, respectively 

Poincare in
variance 

absent, hoped to be re
covered in limit latLice 
constant a ... O 

Pauli-Vi 11 ars 

higher derivatives in 
kinetic part of Lagran
gian (e.g. (2.1», in
volving regulator mass 

energy spectrum positive 
but metric indefinite, 
positive metric hoped to 
be recovered if /.1 .... ., 

manifest 

locality 
(commutativity 
in spacelike 
distances in 
real-time 
theory) 

holds in noncovariant sense manifest 
in Hamiltonian lattice 

tools avai
lable 

theory, in Euclidean 
lattice theory hoped to be 
obtained in a -1'0 limit from 
covariance, spectrum con-
dition, and symmetry of 
Green's functions via Jost 
theorem 

only (formally summed) 
do perturbation theory and 

abstractions therefrom 

In the Euclidean case: 
correlation inequalities 
allow numerous rigorous 
proofs, and high-tempera
ture expansions are heuris
tic non-perturbation-theo
retical method 
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To have a concrete regularization in mind, we select the P.V. 
on~ and, mainly for notational simplicity, exhibit it for (Euclidean) 
<$4 theory: 

(2. I) 

with c such that 
r 

R 2 2 ~ Z CI" (-.Cl + A crr)- =:-
,.~ 

R 
r_A)-'1 77 (I_A- 2otr- 2A)-'1 

r~1 R 
wi th A the 4-dimensional Laplacian, and ~ .... g ~ , Q~ = 0, 

a<#.- 1 . The ~ can also be expressed by!68r~a"cted on by diffe
rential operators. ".,~ =./.1'i.f'{~.9) is the bare mass squared of 
the massless theory (we suppress nere and later the dependence on 
the a 2 •.• aR). We take'e>,Oand, except for aremark in sect. 3, 
wi 11 consiaer A M1>;- 0 only. 

We consider the Green's functions ~ 
~-.e<~.9('~) .. ~o fKf.h) <Pa (Y.,I Cl .. ~ (y~) > and the 

corresponding vertex functions (connected, and amputated and one
particle irreducible w.r.t. the ~-lines) 
1.4er.x:,···X"jtl1'Y"'· .. YL ° 7/i>/ aHt,l) Their Fourier transforms 

(with a factor (I.".)'f cl' (2" -f- ..f9') taken out) have for the model 
(2. I) the formal large- A expansions [3J 

whereby an L-loop graph contributes only to the F 0k wi th k~ L 
(k~L-I unless n + I! = 2; we do not consider n = ß, .t= 0 or I). 
The structure of the r.h.s. of (2.2) can best be elucidated by 
writing an effective local Lagrangian [3} that generates that r.h.s. 
upon integration with finiteness-preserving rules; here e.g. Zimmer
mann's integration rules (if 4,,"': >-0 )[4] or rules involving 
minimal subtraction at Euclidean symmetry points (if AI'f4: = 0 ) 
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~5] could be employed. 

For other regularizations than P.V., only the j = 0 terms in 
(2.2) will remain of the same structure that they can be generated 
by a local effective Lagrangian. j >0 terms will be replaced by ex
pansions of rather more involved structure; e.g., nonconvariance of 
the regularization expresses itself only here. As an example, con
sider 

00 '. 

= er t"" (At. /.PI-i) + Z »i A- 1 ~/d + C 
i6'f 

involving a sharp moment um cutoff: the presence of ~-powers not 
occurring in (2.2) implies that large-/.1expansions in this regula
rization cannot be genera ted by a local effective Lagrangian, mak
ing the nonlocality of this regularization manifest. For general 
regularization, then we will write, tentatively, 

(2.3) 11~ (' ('in), (~); ~e, AlM]'") = 

Od 

=- r ('t'"A)K ~ (' (1H~ (~). ~., I A~42.)+ 
Kir" I 

+ Or(ZNA)-'-) 
meaning the remainder term to vanish for A .... ePOmore strongly than 
any negative power of t"..4 . 

The gauge-invariant P.V. regularization of gauge theories has 
been described by A.A. Slavnov I6J. It involves higher covariant 
derivatives rather than higher ordinary derivatives. This generates 
new interaction vertices. Their effect is that one-loop graphs al
ways remain unregularized and require a counter term in the Lagran
gian with, however,precisely known coefficient. This coefficient 
can be defined, e.g., by using temporarily in addition dimensional 
regularization until the appropriate cancellation has been effect
ed. A consequence hereof is [7] that cancellation of 15-anomalies 
1:8], that would inhibit renormalizability of gauge theories, on the 
one-loop level by choosing appropriate Fermion multiplets suffices 
to establish renormalizability at also all higher-loop levels. 
Chiral invariance is hereby effected by parity doublets. Slavnov 
has also discussed 1"9} P.V. regularization of the nonlinear sigma
model. 
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When gauge theories are lattice-regularized in the Hamiltonian 
(i.e., with still continuous time) formulation fiol, the naive "re
gularized" Hamiltonian appears not to lead to a large-/.!(Le. 
small-a, where a is the lattice constant) expansion (2.3) with co
variant functions Fk , but that an extra counter term must be supplied 
[IOJ that may be inferpreted as a renormalization of the speed of 
light. For a gauge invariant regularization of the Hamiltonian of 
QED employing spaCe smearing (in terms of a cutoff on three-momen
tum) this effect was observed by Dirac [11] 

3. Renormalization 

We define, for the time being somewhat formally, renormalized 
vertex functions by omitting the remainder term in (2.3) and sett
ing thenA~, kept finite, i.e. by 

(3.1) rrc!l4J., (..t'); ?'/' JMi-) = 

#ItI K 
=- $ (t'~) ~ {('2H)" {.e'J; ?" ~ ~ ) 

~Jt:"" 

The "renormalization convention" involved here depends on the manner 
of regularization employed. The present justification for (3.1) lies 
in the fact that in all structural relations for vertex functions 
(like generalized unitary equations) the remainder te~ in (2.3) 
cannot interfere with the simply logarithmic terms. (m is not the 
physical mass, cp. (4.9).) 

It can be proven (this is a main result of renormalization 
theory [12 J) that 

(3.2) lAe (' C~H), (~)i ?,.9/ .A1+',tL)-= 

= A (3p', A~)n 19(7'4') A~)~ 
. r ('~H I, ('.t' ~ T~.,,/.4?-~ 4~u;l6'(~,,4PJ~)+ 

+c!;D~L t9{;JP~A~)I.C('3"~,.dP.)+ O(l&'..dj-' 
where A,B,f, and C are double power series in gB and IH4Ju . 
(3.2) is a consequence of the existence of a local Lagrangian, as 
discussed before, that generates the r.h.s. of (2.3) apart from 
the remainder term, and will be further commented upon later. Con
sistency of (3.2) with (3.1) requires 
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The relation expressed by (3.2) can be inverted (at least in the 
sense of formal power series in gB and g) to the more usual form 

(3.4) r(et,,), (~J,. 7'J// 1'ktJ..)-= 
:= 2~ (~J .4.//,)" Z,. f?~/.L0),I· 

. (;8 (Cfll ), (~J,. ~~(;J .4.,/-M)J IM ~ Z 2 t7J 4?)) 

- ~o ~I. 29.. (:I)A~)f.k("" A~J+ O({~Al)-/ 

where Z2' Z3' gB' and K and double power series in g and /,,~~, 
with, corresponaing to (3.3) 

From (3.4) with (3.5) and (2.3), (3.1) is reobtained. 

That the renormalized functions are the A .... e;d limit of the 
regularized ones with appropriate substitutions for the parameters, 
and factors supplied, means in terms of (3.4): The explicitLH~~ 
occurrence cancels all logarithmic terms stennning from the 4-de
pendence of the propagators; only terms O('"fZIIAJ-/remain un
accounted for and are discarded in the limit. 

The two-masses form (3.2) may be less familiar than the one
mass form obtained by setting in (3.1~-Htand in (3.2)/"lcon
strained such that ~'l-=AIft" 19('#.4',4/""')' The validity of (3.2) 
for general~can be proven by starting from this special case, and 
then changing A~': at fixed4 and g , and computing the change 
using the Schwinger action principle, formulae of sect. 4, and a 
simple argument resting on regularity in ~. - The l.h.s. of (3.4) 
is not expandible in a powers series in m , but the logarithmic 
terms encountered can all be "computed" (an example being formula 
(III. 9) of ref4 f13]) on the basis of "asymptotic freedom in the 
infrared" in ~4 theory. 

So far we kept AJ":~02' Formula (3.4) applies, in asense, 
also for A."':~O such that m<O. In this case one must, however, 
use the Lagrangian with fields shifted: One can prove ["147 that the 
shift fI>.- ~ + r- 6' w 2 :7-'i"h determined by the "classical" (or 
"tree graph") Lagrangian rand the corresponding shift for 

rPJ9 = Z,"/2 ~) leads to a Lagrangian in SV of Y'f'+ JV3type with 
precisely those counter terms necessary to effect cancellation of 
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all divergences as A -f' oD. (3.3) remains unchanged (apart from re
placement of 2n by an arbitrary positive integer) if ~= 0, while 
for L> ° the precise form depends on a convention. 

(3. I) leads to a simple integral representation for the re
normaliz~d functions if we use P.V. regularization. For simplicity, 
we set m = ° and ~!= '" -cr~~I. DeHne 7(i(Cß*t), (~)'~/';I;Z" .• :l~) 
as the contribution to the ver tex function from an L-lini~raPh G ~ 
computed 't~ th the Feynman rules: propagator r,1+Ai 0 'I1't'J-~)-"-;.l 
for the j line, vertex -go Then the renormalized contribution is 

L-1 
with the constraintAt.':=4, - ~ ~ .... ' . Hereby the A -integration 
path encircles A..::rO wi th AI~: ~ . The A -integrand is to be obtain
ed by evaluating the L-I fold integral for Re:/.?t:J and analyti
cally continuing from there; it is a meromorphic function of A 
with poles only at the real integers. The L-I fold integral is here
by to be evaluated wi th 0 < R~ 4/ ~ I, 1/.::: -1. -. L- • Furthermore , 
whenever the lines ,~_, • .es constitute a self-energy part, Z Rtz. A' <: 1 is to be observed in the L-I fold integration. 
~~ e~ (3.6) follows from (3.1) by use 

of the integral representation 

= f;:; 
f 

O~Re..2< R 

T'r7+ ,:;. ) p ~:J. 

0'2.)1-1-4. 

The subtraction of self energy parts at zero momenta, implied by 
the term prop. ~4! in (2. I), is secured by the evaluation pre
scription given: the self energy parts then vanish at zero momenta 
for homogeneity reasons. (3.6) displays one particular evaluator in 
the sense of Speer fIS]. - Replacing in the propagators for (3.6) 
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2 2 20 0 h f 0 °h h P by p + m Y1elds a mas~1ve-t eory unct10n W1t, owever, 
different convention for m than the one implied by (3.1). 

From (3.4), us ing the independence of GD o~ for fixed AI 
gB' and ..tt:l~ one derives (see, e.g., ['3]) 

(4.1a) ~f",,-t' r({~h~ (.e); ~~~~ p"i) + 

where + ~~ ~1 IC r;..).- (/ 

(4.lb) q.e,!/"'~ -/' t -I- ,ßr;t) ij. - 2,.. ;-,;» -I

-f~~/,) + ?r;)#k 2 i,2 
with 

(4.2a) ß r;) = .60 ~ ~ + "" ~ '3 -f- •.. h" .-
~ 

'16tr 2 

(4.2b) r{~)-- Co~ 2. + ._. /o;r-=- 1;Z 
~lIj1r~ 

(4.2c) 'ZI,)- ; ~o? + .,. "1 
Ct!J =-

2 -10 3 rr i' (4.2d) K (;).:r ; ,6~ ~ --. 

The coefficients written out are independent of the manner of 
regularization. (4.1) is complemented by 

(4.3) ;:"2 r ((~#'t)" ('..e); ~)~" /'H2.).=-

Define ::::::- - r((~H), rL)~. $l'0"~'i.) 
~ 

(4.4) 9(',)~ r oI~(/3~'/-". 
Then in (3.4) 

(4.5a) 

(4.5b) 
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(4.5d) K(OJ,40)#: 
~ 3"1 

= [~~~(11)-'K~tJex/J['i fol~"~~''l-t{/~/t)] 
:10 -:4> 

wherefrom expansions in tl1 /.10 are obtained using for any F(') 

F(~o) -= ek;<JLthA~ . /3(;));;] Fr;r). 
Differentiating (3.4) w.r.t.Akeeping g, m2,~fixed gives, using 
(4.5), the Zinn-Jus tin PDE for regularized unrenormalized vertex 
functions 

(4.6a) Op9.IfJ~e 7;;0 ({2~~ (.e~. ~t91 A;.-r;)-t-

where -I- c/;,,, c1~ k' (:1;»= O(("'~#..4/---) 

(4.6b) o,:;'iIf,~6' = ~i:t 7"~(~e);L - ~nrt:q)+ 
0>,,"0 0'41 

(4.3) is -I- ~~f'..&>JLP)+ ~& )4 ".22-
(f~ ( . e/~/' ~d4,",-f 

!JO (' C2h)/ (',e~. ~i>" AIH;-) -= ~ 
.=- - ~LP( (~~J" (.e)~. ~~, 4~:) 

The analog to 

d 
(4.7) _t') cz. 

d .• ::vc.(g 

The functions appearing in (3.2) are trivially related to those in 
(3.4) given in (4.5), whereby 

F~)= F~f'-f(9(pLY} - tH A~))=- c:J 
= ~kP f~ t ~A~ .,ßt:OJ~~ ~7 Ft;t4l) 

In equs. (4.1) and (4.6) one can let m2 )1 0 resp.A_J~O at non
exceptional momenta f16J, since at these the r.h. sides of (4.3) 
resp. (4.7) have only (due to "asymptotic freedom in2 the infrared", 
even computable ["13]) logarithmic singularities in m resp. AIHt;)'1. 

At ~ -=1'11, (4. I) with (4.3) becomes the inhomogeneous PDE[i7J 

(4.8) [m ~ +~(~)~-~nTf?)+...t''1~)J' 
. r (,2~~ (~1;-, IH, H-1!l) + cl;.t? ~2 ;.t{,..)~ 

::: - (~-?/"J) r((~.H~ (~Jtli ?,,"", 114-). 
In (3.1) the physical mass is defined by the vanishing of 

r(/J('-~~i 1",,,,u, 14-19.) at /fJ2.=-""};,,,; Inserting 
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r (""~ ('"-~~ i ~,1 /"" I'M "-) -= 

:::- - 2 (g" I'ff~) t/J~ I+f~) + 0(" ('"~21'-1!W~) 1-) 
i~to (4. I) gives ~~~;H ~~nd t:J,!tIl.('JZ=-(/, with the solu
t10ns 

where 

(4.9b) 

with 

(4. ge) 

and1e( ) is a (in perturbation theory regular) funetion definable 
by fI1~~t.=IH")= 1H9. ~r;,.} =- h1fl.(1+ ".,,+.) , and 

(4.10) Z (~I """~).=-

= €X~[2. r:'~(,I}1-(d')] 2 (§I"~" IU~)) 
() 

with Z(.) a regular funetion in the same sense. For m2~O, (4.9) 
gives I""t~ ;o~",. lUi /in /U/-"'/'3 (ep. Seet. 5). 

The vertex funetions as defined in (3.1) ean be related to the 
funetions eharaeterized by some more usual type of renormalization 
eonditions (e.g., by preseriptions at zero momenta or on the mass 
shell, or some Euelidean symmetry points) via reparametrization 
formulae that are straightforward to derive; only the,4, r; " It 
funetions of the two renormalization eonventions are needed (apart 
from an easily determined eonstant). The relevant formulae are a 
straightforward extension of those e.g. in~13~seet. 11.3. The 
determination outside of perturbation theory of the parametrie 
funetions for any partieular manner of regularization will be dis
eussed in seet. 5. 

Of the equations (4.5) we only diseuss (4.5a) from the speeu
lative point of view. Assuming~~)to be a eontinuous funetion 
eonneeting smoothly with the behaviour near g = + 0 indieated by 
(4.2a), eonsider the seetion of the g axis adjoining the origin 
where ,/J13)is positive. There f't#)of (4.4) is monotonieally in
ereasing, and thus ~~~,,~~)is monotonieally inereasing in both 
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g and /./.j.;Ic. Ais allowed to increase indefinitely if p~)in
creases indefinitely with g in that section. If 91"9'! does not do 
so, we have a "Landau catastrophe" where A. cannot increase inde
finitely wi thout forcing g .\tO, as Landau r18J observed using effec
tively the approximation /'31";).- b~,.~ The behaviour of gB for 

/.l /'t:JO , fixed g, depends on assumptions ; e. g., ifj)I';)has a first 
posi ti ve zero at ~IIO and -fJ~"; >'(), then f19J 

(4.11) /'0 (7" 40) ~ 7.,,-

- ?u/A.)-/J't7tN) (?~ -;r). 
~-

. ekl'{-/'~ .. ) {"';Iß~~!J - {9~?~)I"'t> .. )j 
Thus, g depends on how fast one lets {Ja /':J,. when A /,pO. For 
further discussions, seeL\9]. - Note that the behaviour of 
~tp (:/,/ 4,?1-t)as described before applies only to the fictitious gB 
of (4.5a) and not to the true bare coupling constant, since the 
remainder term in (3.4) is neglected and thus (4.5a) approximates 
the true bare coupling constant only if ./.i/Ais large. Also, ~PO 
will depend on the manner of regularization! 

Formulae (4.1), (4.3) have been derived from (3.4), and (3.4) 
in turn is an abstraction from perturbation theory. One must not, 
however, consider these equations as so restricted. E.g., (4.8) 
with seme more "physical" renormalization convention [17J is simply 
a response equation: it is the infinitesimal form of the statement 
that change of the bare mass (defined in the regularized theory) in 
the Lagrangian leaves the Lagrangian in the family of regularized 
ones renormalizable, as A~ (fItJ, by mass-, coupling constant-, and 
amplitude renormalization, and from (4.8), (4.1) is derived by in
tegrating (4.8) along the characteristic and change of notation. 
That the parametric functions in (4.1) have a certain behaviour, in 
particular that they connect smoothly with the behaviour at small 
g as suggested by the formulae (4.2), is where speculation comes in. 

If in (3.2) in 

(5.1) f'{;IP"A~)=- 9-1(9(~D»-th4~) 

~becemes large, f can be computed accurately provided gB lies in 
the section of the g-axis from to origin to~ in (4.11). Using 
(4.2a) we write .. 



276 K. SYMANZIK 

such that 

9(3') -=- - Ia~ -.,~ -f - .,60 -~ /0., /Pt c? ~ P ~) 
and for A. large 

(5.2) 9-"(tj'r,:-)-c",:J)-= 
l/-~ 

.:::-f~o/n~ +10;""1 t", {,6~ 1f1" 1,) + r-"- ~eo ? Itf-/J -+ 
+ O{tZr~)-')~~{~:J.). 

For brevity, we discuss only the simplest cases of (3.2): 

I) 4mi = 0, n = 2,..(= 0, PI" .P4 nonexceptional: 

(5.3) 7;;,9 (/.;.,···j<J'f)i ~QJ/ ()).:: 

~..9 

= ex;of~ t ota/1t# 'J-"T~')J r(/o.,· .. ~.y/i f'f';4',4~~q/'l' 
+ O((/~A)-OG)== 

~'p 

=exl"Ptj 01; 'f3f3'Fj-(3 'J).! -r{7"",4~/+ 
-(- r(3b>/ A~)Y"-6.:tJ;,,;!~ ~+~.)2. J7J 

1I'.&:'2, /" J,. -+ C f 

+ O(T&~"A~)'3) 
where the constant c is regularization-manner-dependent, and the 
r.h.s. is independent of~. From (5.1-3) we learn:~(PI"'P4,;gB'C 
for large~, with gB fixed in the range described, possesses an _ 
"asymptotic expa~sion", of which the first two terms prop.(t~A) 
and prop.(2,,4,J- Ln 1,,4 are known up to the first factor on the 
r.h.s. of (5.3); the coefficient ofa"AJ-i.involves in addition the 
function jJ(g ). Thus, one obtains both functionsj3(gB) and tr(gB) 
(which depenH on the manner of regularization) if that "asymptotic 
expansion" could (necessarily nonperturbatively) be constructed. 

2)~mi.>0 fixed, n = 2,.f= 0, zero momenta: 
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(5.4) ~B (' tJt?~~ i '7." AM; )-= 
~# 

277 

= eKftJ [If .;,: 01,. ~(3'J-" rf".:J]· 
7 

. r (t9~~~ i f ('7'~ I /.I.~ ~ AIIf: ekjIJ r ~ 0/; ~ 1';')-"f /11~~) r 

+ O(r/~A)-"):= 

'..9 
- eK;o[f rd3(JfI')-1-r(~'J].!-r(~b'IAp.)-r 

-{- Tf;'/.9' .4~)2. [-A. ('" ;:;,. + t Po (:; ~t; ')-'11';-) ---C:7} + 

+O(r(~~"A0)3 ) 

wherefrom now also ~(gB) could be determined as described before. 
Cl is another regularization-manner-dependent constant. 

1) m2 >0 fixed, n = 2,L = 0, zero momenta: 
FromP~4), (4.9), (3.2), and (4.5c) we find 

(5.5) 1;u; ( tJ(!)t!Jt?; i ~ 6' ~ I!!l "'" e'L )1. 2 

':JIP IU ~ f!,..".",t' 

= eX"L?' [d~'jJt;i)-?r(r;'1].! - T(~.6'/A/M)+ 

+f{~4'14~)f.[-J,,, (n ~~ + Cl] j + Ot?~..d~/;J 

The formulae (5.1), (5.4-5) rest on rather weaker assumptions 
than e.g. those discussed in connection with (4.11), and their 
verification would not imply the existence of a renormalized theory. 
However, the weaker assumptions are formally related to those on 
which the idea of "asymptotic freedom" for gauge theories [201 rests. 
The analoga of the formulae in sect. 5 in that case, however, concern 
the large-momenta behaviour in the deep-Euclidean region of the 
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renorma1ized theory, or the manner in whieh the bare eoup1ing 
eonstant has to go to zero in order to have a nontrivial "eom
putab1e"effeet when the eutoff beeomes 1arge, and these situations 
might not be easi1y aeeessible eonstruetive1y. Fai1ure of (5.3) or 
(5.4) or (5.5) even for sma11 g , on the other hand, wou1d indieate 
that the regu1arization emp10ye~ is not a suitab1e one for possib1y 
arriving at a renorma1ized theory. 

Cons ideration of <;6: theory as the limit theory of ~!-E as ~ ~ t3 
eertain high-temperature-expansion resu1ts (diseussed in seet. 13 
of~21~, and in partieu1ar the trend of reeent rigorous work ky 
R. Sehrader 1:22] shed doubt on the existenee of renorma1ized~4 
theory, and this desease might befall also other non-asymptotiea11y
free forma11y renorma1izab1e theories, with QED having possib1y 
the eseape route of being imbedded in a nonabe1ian gauge theory. -
I am unab1e to eomment on the reeurring idea that gravity be a uni
versal regulator (also for itself) [23] • 
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ON NON-RENORMALIZABLE INTERACTIONS 

G. PARISI 

(I.H.E.S. - BURES-sur-YVETTE) 

I. Introduction 

Nonrenormalizable interactions have always beeil the black 

sheep of field theory. Long time ago (1) it was supposed that non

renormalizable interactions are characterized by having Green func

tions which are not C~ in the coupling constant : if this inter

pretation is correct, the ultraviolet divergences found in the 

perturbative expansion arise from the non existence of the quan

tities which are computed in the standard approach (i.e., the coef

ficients of the Taylor expansion for zero coupling constant). 

The first attempts in this direction were done using or the 

s-limiting procedure (2) or the peratization technique (3). However 

they were mainly inconclusive ; the full understanding of the pro

blem required a better non perturbative knowledge of quantum field 

theory which is now given by the modern theory of second order pha

se transitions (4). 

The purpose of these lectures is to study the existence and 

the properties of non-renormalizable interactions at the light of 

the knowledge gathered in the study of critical phenomena. We do 

281 
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not prove any rigorous theorem and we are able to control our 

results only in favorable cases where a divergence-free pertur

bative expansion can be used. We also do serious attempts to un

derstand the general case which is outside the range of perturba

tion theory. Our interest is more concentrated on general struc

tural properties than on specific numerical computations. 

These lectures are divided in nine sections : 

In section 11 we explain the relation between critical phe

nomena and non-renormalizable interactions and we present a gene

ral method for computing the Green functions of a non-renormali

zable theory. 

In section 111 we study two different concrete applications 

of the methods described in the previous section. 

In section IV we discuss an explicit example of a non-renor

malizable interaction for which a new divergence-free perturbative 

expansion has been constructed. 

In section V we show that the Green functions constructed in 

the previous section are not C= in the coupling constant at the 

origin. The general structure of the irregular terms is found. 

In section VI we write the C.S. <Callan Symanzik) equation 

and we use the properties of its solutions to recover the general 

structure of zero coupling singularities found in the previous 

section. 

In section VII we see how the C.S. equation can be used as a 

self consistency requirement, to compute the values of the coun

ter-terms which are arbitrary in the standard perturbative approach. 
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In section VIII we show how the C.S. equation may be used as 

a substitute of the equations of motion. 

Finally in section IX we present our conclusions. 

11. The Relation with Critical Phenomena 

It is not well known that non-renormalizable interactions can 

be regarded as superrenormalizable interactions with infinite bare 

coupling constant (S). Although this statement may sound very deep 

it is trivial ; its only utility is due to the fact that changing 

the language we trans form an unsolved problem (the infinite cutoff 

limit in non-renormalizable interaction) in a solved problem (the 

infinite bare coupling limit in superrenormalizable interactions). 

The reader must realise that contrary to the appearence there are 

many theories in which the infinite coupling limit can be control

led. Indeed the celebrated Kadanoff scaling law for critical phe

nomena (6) (which it is considered to be well understood) is equi

valent to the existence of the renormalized Green functions of a 

superrenormalizable interaction in the infinite coupling limit (7). 

The connection between critical phenomena (massless theory) 

and infinite coupling theories is quite simple : if the coupling 

constant has positive mass dimension, the dimensionless coupling 

constant (on which dimensionless quantities do depend) goes to 

infinity when the mass goes to zero. 

Let us now see some example of NRI (non-renormalized interac

tions) which are obtained as infinite coupling limit of SRI (su

perrenormalizable interactions), some of them are well known. Let 

us consider a vector field of mass m interacting with a conser

ved current with a coupling constant, A ,the space time dimen

sion D being less than 4 • When we send the mass and the coupling 

constant to infinity at fixed A2/m2 ,we recover the local 

Fermi current-current interaction. Similarly the A~4 interaction 
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in the infinite coupling limit becomes the non linear 0 model 

(8) which is characterized by the measure ö(~2_l) This last 

result can be formally proved using the identity 

(2.1) tim exp_A(~2_l)2~ö(~2_l) 
)..-+co 

A perturbative check of the identity of the two theories can be 

found in ref.(8) and in Zinn-Justin's lectures atthis school. 

These results are not surprising ; indeed the coupling cons

tant of the SRI plays the same rOle of the cutoff of the NRI. The 

familiar divergences in the infinite cutoff limit of NRI are traded 

with the more familiar divergences of the standard perturbative 

expansion when ).. -+ co • (The value at infinity of a non trivial 

polynomial is always infinity!) However, the modern theory of 

second order phase transitions teaches us that these divergences 

are spurious the renormalized coupling constant (g) acquires 

a finite value gc when the bare coupling becomes infinite ; the 

renormalized Green functions can be computed in this limit : one 

uses their expansion in powers of the renormalized coupling cons

ta nt to evaluate them at g =g (7). (the so called infrared c 
stable fixed point). 

Using these definitions the statement at the beginning of 

this chapter reads "non-renormalized interactions are superrenor

malizable interactions computed at the infrared stable fixed point". 

It is now clear which is the general procedure which we can follow 

to construct a NRI : we put a cutoff in the interaction, we in

terpret the cutoffed theory as a SRI and we find its infrared 

stable fixed point : this can be done looking for the zeros of a 

weIl defined function (9) (ß(gc)=O) . The renormalized Green 

functions of the SRI at the infrared unstable fixed point are also 

the renormalized Green functions of the NRI. 
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The weak point of this approach is that the infrared stable 

fixed point may not exist (e.g. the system undergoes always a first 

order and never a second order transition) or if it exists, it 

cannot be easyly found . A general classification of NRI can be 

done using as a criterion the control that we have on the position 

and on the existence of the zero. There are essentially three dif

ferent cases: 

a) gc is very small ; it rnay be of order 8 in 4-8 (4) or 

2+8 (8) dimensions or it may be of order l/N in the theories 

invariant under the O(N) group (10). In this case the value of 

gc is quite .:);yell known there are asymptotic expansions in l/N 

or 8 for small values of l/N of 8 which allow the evaluation 

of gc with very great accuracy. 

b) is of order one however the function ß(g) has a zero 

also if one includes only the contributions coming from one loop 

diagrams. Taking ca re of higher order diagrams the zero does not 

disappear and its position can be extirnated with improved accuracy. 

This situation is realized in the three dimensional ~~4 theory 

(7), (11). Also in this case very precise results may be obtained. 

c) The function ß(g) does not have any non trivial zero in the 

one loop approximation and no one has computed the contribution 

from a number of loops to high enough to see if improving the 

approximation, a stable zero appears. 

In this last case no conclusions can be drawn ; unfortunately 

this is the situation for a local current-current interaction in 

4 dimensions ; consequently the problem of constructing a finite 

non renormalizable realistic model for weak interaction will not 

be solved in these lectures. (My personal opinion is that such a 

construction can hardly be obtained without giving up the unifi

cation among weak and electrornagnetic interactions, which may be 
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a too high price to pay). 

At this stage the reader which is not too familiar with the 

theory of critical phenomena will be amazed by the existence of 

case a. He would think that the author must have done a terrific 

trick to trans form an infinite coupling theory in a theory with 

infinitesimal coupling and maybe he will doubt on the ability of 

the author to cope with such difficult problems. Consequently it 

may be useful to spend some words to explain the origin of case a 

the existence of a computable expansion for the critical exponents 

in powers of e has a similar origin. 

Let us consider a X~4 interaction in 4-e dimension, e 

being a small but non zero number. Given an expansion for a quan

tity in powers of the bare or the renormalized coupling, we will 

call it "good" or "bad" if the coefficients of the Mc Laurin ex

pansion have respectively a finite or an infinite limit when ~O 

It is clear that although the differente between a "good" and a 

"bad" expansion is defined only in the limit ~O this distinc-

tion will playa crucial rOle also for small e The renormali-

zability of the theory in 4-e dimensions implies that the expan

sion of the Green functions in powers of the bare coupling constant 

is "bad", while the expansion of the renormalized Green functions 

in powers of the renormalized coupling constant is "good". The 

function A(g) which gives the bare coupling X as function of 

the renormalized one (g) has also a "bad" expansion. It is a 

crucial observation to note that the function X(g) has the re

presentation (7), (9). 

(2.2) X(g) • g exp ~[-e/ß(g')-l/g']dg' 

where the ß(g) has a "good" expansion' Moreover the point )..-+a:I 

corresponds to the point gc such that ß(gc) - 0 At the one 

loop level we find 
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(2.3) 
2 3 ß(g) = -e+g +O(g ) 

For small e the high order terms are negligible when g = O(e) 

(the expansion for ß is "good"). We finally get g =e+O(e2 ) c 
which is the first term of a systematical expansion of gc in 

powers of e 

287 

Roughly speaking the physical picture is that for small e 

the ultraviolet divergences nearly shield the interaction so that 

a theory with a large bare coupling constant is always reduced to 

a theory with a renormalized coupling constant of order e 

Having explained the general ideas laying behind our approach 

to the study of NRI, we think that it is better to consider some 

specific applications of them. This will be the subject of the next 

section. 

111. !Wo Examples 

In the first part of this section we study a current-current 

interaction among Fermions in dimension D(2 < D < 4) ; the 

Lagrangian density is : 

(3.1) N - 1 P 
~.y.(a+m)Y.+2-GJ J ; J 
11 1 1 P P 

where Yi is a N component spin 1/2 field. 

This interaction is non-renormalizable : the expansion in 

powers of G can be defined only after the introduction of a cut

off and at any finite order in G ,divergent results are obtained 

in the infinite cutoff limit. Our goal is to show that these di

vergences disappear using non pertubative techniques (12). 

We will use the following cutoffed Lagrangian density 

(3.2) 
N 1 2 

~c = ~.f.(~tm)y.+uA J P+2- A (u -ZD)AP 
11 1 1 P P 
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Where 
2 2 G = u /~ and Z p1ays the r01e of the inverse of the 

cutoff ; in the limit Z ~ 0 we recover the loca1 Lagrangian 

A (3.1) : this fact can be easi1y proved integrating over the 
P 

fie1d. The dimension1ess bare parameters which are invariant under 

aredefinition of the A fie1d are : 
p 

(3.3) /[ (4-D)/2 Z(D-2)/2] 2 (D-2)/ 2 gB=u ~ • ; r = u m ~ 

When Z goest to zero, the coup1ing constant gB goes to infi

nity if D > 2 ; consequent1y the limit ~o can be contro11ed 

direct1y on1y when the interaction is renorma1izab1e. 

Renorma1ized fie1ds, masses and coup1ing constant can be 

defined in the usua1 way (e.g. the propagator of the A fie1d is 

1/(p2~2)+o(p4) • The bare quantities can be computed as functions 

of the renorma1ized ones ; using the es equation and the Ward iden

tities, we find : 

(3.4) ~R=~; ~=u ; Z(g)=exp ~[(D-4)/(2ß(g'))-1/g']dg' 
o 

where ß(g) ~ (D_4).g/2+Ag3+O(g5) (A>O) and g is the dimension-
(4-D)/2 . 1ess renorma1ized coup1ing constant (g~u/~ ). When D 1S 

near to 4 , the function ß has a zero at gc=[(4-D)/2A]1/2+Q(4-D). 

At g = gc ; Z = 0 the Green functions of the NRI (3.1) con-

cede with those of the SRI (3.2) computed at a particu1ar va1ue of 

the coup1ing constant, which is sma11 and where perturbation theo

ry can be successfu11y app1ied. The non-renorma1izab1e Fermi in

teraction turns out to be an intermediate boson theory in which 

the va1ue of the dimension1ess renorma1ized coup1ing constant is 

fixed by the condition ß(gc)=O the Fermi coup1ing is propor-

tiona1 to the inverse of the mass (~) of the Bose fie1d : the 

weak coup1ing limit is obtained when ~ goes to ·infinity. 

If 4-D is not sma11 (e.g. D = 3) ,gc = 0(1) : it is not 

c1ear if we can get sensible resu1ts using the perturbative 
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expansion in powers of g . We do not know the answer in the case 

of the Lagrangian (3.1), however we will show that in a different 

ca se using a similar procedure one can estimate the Green functions 

of the NRI with a few per cent accuracy also when gc is not 

small. 

As we have discussed in the previous section, the non linear 

a-model can be regarded as an infinite coupling A~4 theory 

consequently its Green functions coincide with those of the A~4 
theory computed at the infrared stable fixed point in particular 

the off shell scattering amplitude at zero momenta in the single 

phase region «~>=O) is equal to the renormalized coupling cons-

tant satisfying the condition ß(g ) = 0 c 
One can try to 

estimate the position of the zero of the function ß(g) using 

perturbation theory in g (the renormalized coupling constant of 

the A~4 interaction). An explicit computation shows that (7), 

(3.5) 
2 3 4 5 6 7 

-g+g -.42g +.35g -.38g +.50g +O(g ) 

We know from general theorems that the expansion of ß in powers 

of g has zero radius of convergence (13) and it is an asymptotic 

expansion (14). If the series is summed using the powerful Pad~

Borel technique (15), ta king as input only the first 2,3,4,5,6 

terms we find (11) respectively gc=1,1.60,1.42,1.43,1.42 . There 

are few doubts that the true value of gc is 1.42 with an error 

of a few per cent (the precise amount of the error may be a matter 

of debate). 

This example shows that, if an enough high number of diagrams 

is computed, the approach we propose may be able to produce accu

rate results for a NRI also when the coupling constant is not 

small. Having succeeded to construst non trivial NRI's, we would 

like to understand some structural properties (e.g. the nature of 
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the singularities at zero coupling constant, the validity of the 

standard divergent pertubative expansion). In principle this can 

be done without changing the technique, however for simplicity 

we prefer to study these problems using an explicit renormali

zable expansion in which general properties can be verified or

der by orber. The construction of such an expansion will be the 

subject of the next section. 

IV. The Large N Expansion 

We are now going to see that in some non-renormalizable in

teractions the l/N expansion is renormalizable (16). More pre

cisely there are NRI's, symmetrie under the action of the O(N) 

group, in which the Green functions can be exactly computed in 

the limit N+= and a systematic expansion in powers of l/N can 

be constructed. At each order in l/N the only divergences pre

sent can be absorbed by mass, wave function and coupling constant 

renormalization. The l/N expansion may not be suited for pra

tical computations, however each order can be written in a closed 

form ; this technique is therefore quite useful to derive general 

properties. 

For example let us consider the quadrilinear interaction of 

a scalar field in a D dimensional space (4 < D < 6) ; similar 

considerations can be extended to a quadrilinear interaction of 

Fermions for 2 < D < 4 . The theory is non-renormalizable ; its 

Lagrangian density is : 

(4.1) 

where 

field 

N N 
~ =1/2 ~.(o ~.)+1/2(m2+(g/N)1/2cr)~.~:+1/2cr2 

11. \J. 1. 11. 1. 

~i is an N component scalar field ; cr is an auxiliary 

which can be eliminated reproducing the usual A~4 ; the 

Lagrangian is invariant under the group O(N) Notice that our 

definition of coupling constant has the opposite sign of the 
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conventional one : in our notations, if the coupling constant (g) 

is positive, the hamiltonian is formally unbounded from below 

the theory is weIl defined only for negative g ,however the 

l/N expansion can be constructed only for positive g. This con

tradiction is peculiar of this model and it is absent in the sligh

tly more complicated l/N expansion for a current-current inte

raction or for the nonlinear cr-model. For simplicity we disregard 

the pr.oblem and we consider here only the Lagrangian (4.1) ; we 

think that the study of the essentially selfadjointness of the 

hamiltonian and the construction of a formal perturbative expansion 

are disconnected at this level of sophistication. 

In the limit ~ the Green functions are those of the free 

field theory, the only exception being the renormalized propagator 

of the cr field, which is equal to : 

D(p2) = 1/(1-gn(p2») 

(4.2) 

n(p2) =~[q2+m2)-1«q+p)2+m2)-1_(q2+m2)-2JdDq 

Standard dimensional arguments imply that n(p2) is finite 

for D < 6 The lack of convergence of the integral (4.2) for-

bids the application of the l/N 

large p region one finds that 

expansion for D > 6 . In the 

n(p2) ~ Ap(D-4) (~< 0) For 

negative g the D(p2) propagator has a pole in the Euclidean 

region (p2 > 0) ; to avoid the presence of this unwanted sin-

gularity we are bound to take g positive. 

At the first order in l/N the elastic scattering amplitude 

for the process i+ ~ j+m \I i i t, j , and m are indexes which 

refer to the internal degrees of freedom) is 

(4 . 3) A .•. (s, t,u)= (ö . • ö . D(s)+ö., Ö.~D( t)+ö . Ö . • D(u)/N 
~,'V;Jm ~'V Jm ~ 'Ir" ~m J'V 
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s,t and u being the Mandestam variables. Elastic unitarity is 

satisfied at the order llN . At high energies s-wave amplitude 

goes to a constant and the differential cross section 

da/dt- at wide angles scales like s(D-2)/2F(e) ,as suggested 

by naive scale invariance (17). There is a striking difference 

among these results and those obtained from the first order in 

pertubation theory, where the unitarity bounds and asymptotic 

scaling invariance are both violated. At the first non trivial 

order in llN all the Green functions are asymptotically scale 

and conformal invariant. The field ~ has canonical dimension 

(D-2)/2 while the dimension of the field a has jumped from its 

canonical value (D-2) to 2 The behaviour in the large mo-

mentum region is g independent, the only dependence from the 

coupling constant is in the point where asymptotics set in. 

The diagrammatic rules for constructing the llN expansion 

are very simple and they will not described here (10). The main 

difference with standard perturbation theory consists in the sys

tematic use of the renormalized a-propagator D(p2) . Using 

simple power counting arguments one can show that the llN expan

sion is renormalizable in the usual sense (16) : only a finite 

number of superficial divergent diagrams are present. All the di

vergences disappear after mass, wave function and coupling cons

tant renormalization. As far as ultraviolet divergences are con

cerned we find the same situation as in quantum electrodynamics. 

This result is not unaspected. Using general arguments it 

can be shown that in an asymptotically scale invariant theory, if 

the dimensions of the fields are not too small or too high, the 

number of superficially divergent diagrams is finite and the theo

ry can be consequently renorma1izab1e (18). Notice that the shift 

in the dimensions of the field a makes the effective dimensions 

of the interaction Lagrangian equal to the space time dimensions 
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D . The effective coup1ing constant in the 1arge momentum region 

is dimension1ess as in the standard renorma1izab1e theories, its 

va1ue is not arbitraty but fixed (it is g independent). Each 

order of the 11N expansion is no more a po1ynomia1 in the cou

p1ing constant, indeed one finds a very comp1icated structure at 

g = 0 . The study of this structure will be the main subject of 

the remaining part of these 1ectures. 

v.- The Structure around g = 0 

The presence of ultraviolet divergences in the standard 

perturbative approach and the absence of these divergences in the 

llN expansion suggest that the Green functions are not C~ in 

the coupling constant. We will prove that at each order in llN 

terms proportional to non-integer powers of gare present their 

origin is clear : as suggested by unitarity something like an ef-
1/(D-4) 

fective cutoff is present at momenta of order g A term 

which in the cutoffed perturbation theory is proportional to 

gnA\J b gn+\J/(D-4) h' f 
1\ ecomes ; t e conJecture 0 T.D . Lee (2) 

done in the framework of the s-limiting procedure finds here its 

explicit realization. 

A greater insight on the structure of the irregular terms 

maybe given by studying in detail a simple example ; we consider 

the contribution to the six points function at zero momentum 

coming from on1y one diagram (i.e. the one looking like a hexagon) 

(16) ; it can be written as : 

6 3 3( D 2 2 -3 2-3 
(5.1) r (g)=g I(g)=g Jd k(k +m) [l-gIT(k)] 

This integral exists for any positive value of g ,however a di

vergent integral is obtained if we perform enough derivatives res-

pect to g at the point g=O In order to understand the pre-

cise nature of the singularities of the function I(g) at g=O 
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we study the positions of the pOles of its Mellin trans form (16, 

19-21) 

[
CO s-l 

M(s) z dg g I(g) 

(5.2) 

One easily finds : 

The pOles of M(s) have two different origines : some arise from 

the pOles of the r funetions in front of the integral, others 

are produeed by divergenees in the integral itself. If the theory 

is superrenormalizable (D < 4) the integral is a regular fune-

tion in the negative s plane; there are pOles on the positive 

s plane but they are not interesting for small g : the inte

gration path ean always be shifted to the left. When the theory 

beeomes non-renormalizable (D > 4) ,these pOles migrate via 

the point at infinity from the positive to the negative s plane 

and they beeome relevant in determining the expansion of I(g) 

in broken powers of g • These extra pOles are loeated at 

s = 2i/(4-D)-j (i,j E Z+) For irrational dimensions none of 

these pOles eollides and one obtains the following double expan

sion : 

(5.4) 

This analysis ean be extended to any Feynman diagram of the llN 

expansion; a distinetion must be done between the pOles that eome 

form the last integration and pOles of the integrand itself the 

differenee between the two eases is similar to that between only 

superfieial divergent diagrams and divergent subdiagrams. In the 

general ease one obtains a double expansion similar to (5.4). 
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The functions fand h have pOles when two or more of 

them multiply the same power of g (D must be rational) ; finite 

results are obtained : the divergences cancel out, and integer 

powers of ln(g) appear. In other words when two or more pOles 

of the Mellin transform collide, a higher order pOle is produced. 

If D is irrational, dimensional regularization maybe 

used to define the divergent integrals of the standard perturba

tive expansion; it is not difficult to check (16) that this pro

cedure gives correctly the functions f(D) (the functions h(D) 

are obviously missing). This fact implies that the functions 

f(D) have a closed representation for fixed N; such a repre

sentation does not exist for the functions h(D) ,which must be 

considered as the substitutes of the divergent counter terms of the 

old perturbative expansion. Information on their behaviour at fi

nite N can be obtained imposing the cancellation of their sin

gularities with those of the functions f(D) .(This situation 

has many points in common with the one described by Symanzik) 

(22). 

If we want to use the expansion (5.4) for small values of 

the coupling constant and not small l/N (e.g. N=l) , it is 

imperative to get information on the irregular terms independently 

from the l/N expansion. This cannot be done unless we have under 

control the large momenta behaviour of the theory : the functions 

h(D) comes from the integration region where the momenta are of 

order gl/(4-D) . Although we can cope with this problem using 

the techniques described in sections 11 and 111, it would be nice 

to get direct estimates in the infinite cutoff limit. The rest 

of these lectures will be devoted to the study of this problem. 
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VI. - The Solution of the Ca11an Symanzik Equation 

The proof of the va1idity of CS (Ca11an Symanzik) equation 

(9), (23) can be extended to NRI, provided that the renorma1ized 

Green functions depend on1y on the renorma1ized mass and coupling 

constant. For examp1e in the case of the ~~4 interaction for 

D<6 

(6.1) 

we find 

002 
[-~ + ß(g)~ + d -ny(g)]r (wP,g)=~ (wP,g)=m r x2(wp,g) --ow og n n n n''!'R 

2 3 2 ß(g)=(D-4)g-(g +O(g );C=(N+8)/Nr(3-D/2),y(g)=O(g ) 

d =2D-n(D-2) 
n 

where g is the renorma1ized coup1ing constant (we use the same 

sign convention as in section IV), rn are the one partic1e ir-

r 2 is the zero momentum insern x reducib1e Green functions and 

tion of the renorma1ized ~2 ''i'R 
fie1d. If the higher order terms 

are neg1ected ß(g) has a zero at g = (D-4)/C ; the corrections 
u 

to the position of the zero are sma11 if l/N or D-6 are sma11. 

Let us consider eq.(6.1) as a differential equation in r 

(~r is supposed to be known) ; a fami1y of solutions can be found 

using the method of the characteristic curves (24) (the solution 

of a first order differential equation is not unique if we do not 

specific the boundary conditions). However, if ~gu such that 

ß(gu)=O,ß'(gu) < ° (gu is the u1travio1et stab1e fixed point), 

there is on1y one solution which remains finite at p = 0 when 

g -. gu ; it is given by (25) : 

(6.2) r (p,g) = [g dg'/ß(g').F (g)/F (g')N' (R(g)/R(g')p,g') n n n n 

u 19 
R(g) = gl/(D-4)exp [1/ß(g')-(D-4)-lg ,-l Jdg , 

g ° 
Z(g) = exp~ y(g')/ß(g')dg' ( -d n F g) = R(g) nZ(g) 

n 



NON·RENORMALIZABLE INTERACTIONS 297 

If the interaction is superrenorma1izab1e or renorma1izab1e but 

asymptotiea11y free (26), g =0 ; if the interaction is non renor-
u 

ma1izab1e or renorma1izab1e but not asymptotiea11y free, gu ~ 0 

There are no doubts that in the first ease the Green funetions are 

regular near gu ,however the eondition of regu1arity near gu 

seems very plausible also in the seeond ease (24). The integrated 

form (eq. 6.2) of the CS equation may be used to investigate the 

1arge momentum behaviour of the Green funetions : if 

tim ßr(Ap,g)/r(Ap,g) = 0 as it happens at any order of perturbation 

lli~ory, after some manipulations whieh are deseribed in ref.(25), 

we find that asymptotie sea1e invarianee is satisfied : 

(6.3) 
n -[dn-ny(gu)]l= [dn-ny(gu)-l] 

r (AP,g)--7 a (g})., dx x ßl (xp,g ). 
n ),~= 0 n u 

An interesting feature of eq.6.2 in the ease of NRlis that 

is not C= at g=O also if the funetions ßln, ß and y are 

ana1ytie around g=O For sake of simp1ieity let us eondiser the 

ease p=O eq.(6.2) ean be written 

(6"4) rn(g)' ,("dg'/ß(g') "Fn(g)/Fn(g')ß[n(g') + 

o 
+ F(g)I dg'/[ß(g')F (g')ßr (g') 

n n 
gu 

After the sp1it both integrals in eq. 6.4 are divergent, however, 

if D is irrational, they ean be defined using ana1ytie regu1a-

rization ; the first term is C= in g (a1ways for irrational 

dimension) while the seeond term is proportional to g -dnb-4) 

(16), (25) . Comparing eq. 6.4 with eq. 5.5 we see that we have 

obtained an exp1ieit representation for the funetions h(D) as 

integrals from 0 to g • This fact exp1ains why the eomputation 
u 

of h(D) is not simple (it invo1ves the know1edge of the Green 

funetions up to g = g ) , however it may be used to give rough 
u 

estimates of h(D) • If the same argument is used to estimate the 
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singularities at g=O of the function I'n ~2 ,assuming that 
, R AI' __ g(-d n+2)/D-4)+ t:.I' ;1;2 is regular, we find that ... n 

n,'t'R 
regular terms, i.e. the power of the irregular term of t:.I' is 

greater than the power of the irregular term of I' 

In conclusions, if the functions ß,y and ~ are reaso

nable, eq. 6.2 has the virtue to implement automatically asymp

totic scale invariance and to genera te functions which are not 

e~ starting from a e~ input. 

VII. - The Counter terms 

In the standard perturbative approach to NRI finite results 

are obtained adding counter terms to the Lagrangian, whose number 

increase with the order of perturbation theory ; the infinite part 

of the counter terms is fixed but their finite part is arbitrary : 

for a given value of the coupling constant we obtain an infinite 

class of theories. We will argue that the true NRI (which is un

iquely defined by the l/N expansion) belongs to this class and 

it is the only one in which the es equation is satisfied and 

the Green functions are finite at the ultraviolet stable fixed 

point. 

As discussed in Symanzik's lectures the introduction of coun

terterms corresponds to the use of the Lagrangian : 

(7.1) 

where ~O is the Lagrangian without counter terms for NRI the 

sum runs over all possible local operators O. the functions 
1. 

F have singularities at rational dimensions which cancel out 

with those coming from the perturbative expansion of ~O 

Improving the analysis of section V on the structure of sin

gular terms in the framework of the l/N expansion, we find that 



NON-RENORMALIZABLE INTERACTIONS 299 

the irregular terms h(D) can be generated by a suitable form 

of the counterterms_ Indeed the singularities of the Mellin trans

form of the Green functions arise either from the superficial di

vergence of a diagram, or from the divergence of a subdiagram in 

the large momenta region ; the divergent term is a polynomial in 

the external momenta and corresponds to the insertion of a local 

operator. The final result is : 

F ( D) = -di/(D-4)f ( (D-4) 2 2/(D-4) D) i g, m, g i gm ,m g , 

where d. is the mass dimension of the operator O. and for ir-
l. l. 

rational dimension the functions f. are eCXl in both variables 
l. 

they can explici tly be computed in the l/N expansion. 

Let us see now how we can fix the functions f. without 
l. 

using the l/N expansion. If extra counter terms are introduced, 

we can compute in perturbation theory the Green function of the 

renormalized ~ and ~2 fields. A es equation can be written 

for these Green functions : it will be satisfied in the correct 

theory but it will not be satisfied for an arbitrary choice of the 

counterterms. At a finite order (k) in g only a finite number 

<'0 of counter terms is needed. The finite part of the t coun

terterms can be reconstructed from the knowledge of the value of 

t different Green functions (usually computed at zero external 

momenta). Let us concentrate our attention on these t Green 

functions. In the conventional approach their values are arbitrary 

and can be treated as t independent parameters ; however they 

can be computed using the integrated form of the es equation (6.2). 

As far as we are not using the exact form of the Green functions, 

but only an approximated one, we cannot pretend that eq.(6.2) is 

exactly satisfied ; a reasonable requirement is that the discre-
k+1 pance among the l.h.s. and the r.h.s. must be of order g 

It easy to check that this will not happen for an arbitrary choice 

of the counter terms , imposing such a requirement we find a set of 
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t coupled non linear equation, whose solution fix the value of 

all the t Green functions and consequently of the counterterms. 

The simplest case is realized when no counter terms are needed to 

define 6r and the counter terms appear only in r : eq. 6.4 

gives the correct values of the counterms and there is no system 

of non linear equations to be solved. In the general case also the 

function 6r will depend on the counterterms. 

Unfortunately this technique to find the counter terms is not 

stable respect to the increase in the order in perturbation theory, 

in the sense that the value we obtain for a fixed counter term de

pends on the order k of perturbation and it is not at all clear 

what happens when k goes to infinity. (We are also unable to 

prove the existence of a solution for large k). We think however 

that these results are interesting because the counter terms are 

computed using a procedure which remain internal to the theory : 

it does not involve the introduction of any specific cutoff (we 

can use dimensional regularization) ; moreover asymptotically ASI is 

satisfied at any stage : we pick that particular solution of the 

CS equation (eq. 6.2) which remains finite at the ultraviolet 

stable fixed point. 

VIII. - The Callan Symanzik Equation as a Substitute of the 

Equations of Motion 

It is weIl known that the equations of motion for the field 

~ (let us restriet to the case of a scalar interaction) are equi

valent to an infinite system of coupled integral non-linear equa

tions for all the connected Green functions. Performing formal 

manipulations one obtains a system of a finite number of equations 

for only the low degree Green functions (27) (the so-called Dyson 

equations). The standard perturbative expansion can be generated 

by the iterative solution of these equations. Although there are 

solutions of the Dyson equations which are asymptotically scale 
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invariant, (28) (29), ASI (asymptotic-scale invariance) is not au

tomatically implemented : if we try to solve the Dyson equations 

by iteration and we start from a zero order approximation which 

violates ASI, the amount of violations of ASI increases after 

each iteration up to the point where ultraviolet divergences 

appear. This is the origin of the divergence present in the stan

dard treatment of NRI interactions ; it also explains the lack 

of convergence of the perturbative expansion in the large momenta 

region for a renormalizable interaction. 

Longtime ago it was noticed that in the case of SRI the es 
equation can be used as a substitute of the equations of motion 

(24), (30), ßrn can be written as an integral over the first 

n+2 r functions; if both sides of eq. 6.1 are expanded in 
n 

powers of g, we obtain the k-order of perturbative theory for 

r n as function of the first (k-l)-orders of perturbation theory 

for r.(i=2,N+2). If we write the es equation at the infrared 
1 

stable fixed point g (ß(g )=0 ,i.e. the bare coupling constant 
c c 

is infinite), we obtain a system of integral equations for the 

Green functions (6) which is the equivalent of Wilson's fixed 

point condition for the Hamiltonian (4). 

In the same spirit we can consider eq. 6.2 as an infinite set 

of non-linear equations for the r n functions ; the requirement 

that in the limit ~O we recover the first non zero order of 

perturbative theory must be imposed as boundary condition. This 

boundary condition is automatically satisfied if we solve eq. 6.2 

by iterations using as a zero order approximation the first order 

of perturbation theory. This approach becomes particulary inte

resting when the interaction is no more superrenormalizable, 

because ASI is built in the formalism. If we apply the same pro

cedure to NRI we discover that no ultraviolet divergence is pre

sent and that terms no e~ in the coupling constant appear in 

the Green functions (eq. 6.4). 
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Although also in the ease of SRI it is not known if the so

lution of this kind of infinite eoupled non linear equations 

ean be found by iteration (i.e. if the iterative solution eon

verges)we think that the methods deseribed in this seetion maybe 

used to perform approximated eomputations of the Green funetions 

and, perhaps, to obtain non formal results on non-renormalizable 

and renormalizable interactions (the ease of asymptotieally free 

interactions seems to be the most promising). 

In this diseussion we have been eavalier with two major points; 

the definition of the renormalized ~2 field (~2) and the exis-
R 

tenee of a zero of the ß(g) funetions. 

The first problem is due to the divergenee of the Green 

funetions of the renormalized field (~R) at two eoineiding 

points, the remedy is weIl known and eonsistes in the introdue-
2 2 

tion of the field ~R = Z2(~R) (Z2 is an infinite eonstant). 

Divergenee free equations ean written (23), (24), at the priee 

of introdueing the whole maehinery of Beth-Salpeter kerneis, two 

partiele irredueible Green funetions ... However this is only a 

teehnieal eomplieation. The seeond problem may give us serious 

troubles : eq. 6.2 makes sense only if 

teraetion is asymptotieally free, g =0 
u 

exists. If the in-

however if the inte-

raetion is not asymptotieally free or it is not renormalizable, 

is the first zero of the funetion. If we start from 

a zero order approximation in whieh the ß(g) does not have a 

zero, eq. 6.2 eannot be written for absence of a candida te for 

gu If the ß(g) does not have a zero at the one loop level, 

it is not elear whieh should be the starting points of our ite

rative proeedure (maybe the methods deseribed in the previous see

tion ean be useful in this ease). This diffieulty is mueh more 

serious and goes to the heart of the eonstruetion of NRI. In this 

framework there is praetieally no differenee between renormali

zable non asymptotieally free and non-renormalizable interaetions: 
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if we would be able to construct in this way a A~4 interaction 

in 4 dimensions with the good sign of the coupling constant, we 

should have no serious problems to construct the nearby NRI in 

4+8 dimensions). We note en passant that the conformal invariant 

self consistency conditions for the propagator and the vertex 

(29) do not show any pathology (31) when we go from a renorma

lizable to a non-renormalizable interaction provided that a 

non-trivial solution exists in the renormalizable case : the 

values of the coupling constant and of the anomalous dimensions 

seem to be regular functions of the dimension of the space (5). 

IX.- Conclusions 

We hope to have convinced the hypothetical reader of all the 

previous sections that the concept of a finite non-renormalizable 

interaction is not contradictory and that using an appropriate 

perturbative expansion accurate results maybe obtained. We con

sider quite gratifying the validity of asymptotic scale inva

riance. We stress that our results are valid only for a limited 

class of interactions and there are many interesting cases which 

have not been the object of systematic investigations (e.g. a 

non abelian current-current interaction and the Einstein theory 

of gravity), however we think that we have settled a general 

scheme in which the properties of a particular non-renormalizable 

interaction can be investigated. 
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THE CLASSICAL SINE GORDON THEORY 

K. POHLMEYER 

INSTITUT FUR THEORETISCHE PHYSIK 

DER UNIVERSITÄT HEIDELBERG 

I. INTRODUCTION 

The organizing committee of this school had invited 
Ludwig Fadeevas one of the lecturers for the tutorials. 
Unfortunately, Fadeev was prevented from coming. Thus 
I was asked to step into his place. I do not know the 
programme which Fadeev had planned to follow. Since in 
the seminars by M. Lüscher, A. Luther, and A. Neveu the 
quantum sine Gordon theory (or, equivalently, the mas
sive Thirring model) will playa central role, I finally 
decided to give an introduction to the classical sine 
Gordon theory. The classical theory instructs us about 
the elementary excitations of which the system is capab
le. Moreover, it pro~ides a variety of explicit analytic 
results used in the WKB approximation for the mass spec
trum of the corresponding quantum theory. 

The sine Gordon theory is a theory of a single sca
lar field ~(tl~) in one time and one space dimension. Its 
dynamics is determined by the local Lagrangian density 

i .. i(-l,x) = ~<\>tl-l,)(.)~- i~}(li;,x)t.- ~1f[-1-Ctn(~~(-b~))1 (1.1) 

Here the subscripts t and x stand for partial derivatives 
with respect to t and x. The velocity of light as weIl as 
an action quantity, say~ , have been set equal to one. 
The remaining parameters m and A play the role of a mass 
and a coupling constant. 

We pass to the new dimensionless space, time and 
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field coordinates 

X' • 'm. ~ 1 t,' - 'Wl. -l , ~ Lt.' I Y\ ') • ~ ~ (t-:. I x) 

in terms of which the Lagrangian density reads 

1-, - ~ '(t', x') - ;i [ ii..~(-t',~')"" - ~Ilt',.,:t + t(~ii..l-t:.'\lt') - A)1 
where 

'("=-

Once and forever we treat the theory in these new co
ordinates and drop primes 

-;l • Ir [ ~~ - iA.~ + '-.(~-ü.-A)1. (1.2) 

The corresponding equation of motion - the sine Gordon 
equation - is 

Oi4.. + ~~ = 0 ( 1 • 3) 

where the symboladenotes the d'Alembertian 

(l .4) 

This equation is invariant under Lorentz transformations 

L~: (t.,1(}-(~+d.._X,otJ:.+ ct.+X) «t,= \i~-" " ~ t,; it' .... \0\ 
Under Lt;. a solution \i.<'t,lC) transforms into another so
lu t ion 'li.t~)(t, x)- 1tl"4t-CIl...lC, -Cl_i:+CII..-". 
The solutions of the sine Gordon equation with minimal 
energy. the vacuum solutions. are constant in space and 
time. The values of these constants coincide with the 
positions of the minima of (1-Col1Ä..) • Le. 

Whereas the Lagrangian (1.2) is invariant under the dis
crete symmetry operations 

"" .., .... '" . 
"-'- ~ - 'l.L. , 'tA... ~ 'lA. +1\'{1' l' = O,"L 1, t 1.,.. . (1.6) 

the vacuum solutions are not. Thus. these discrete sym
metries are spontaneously broken. The mass of the "ordi
nary" vacuum excitations is equal to 1. 

Before we discuss the structure of the classical 
sine Gordon theory. let me briefly mention that there 
are other branches of physics besides relativistic local 
field theory and elementary particle physics(\ 1. where 
this non-linear theory plays a major role. e.g. Solid 
State Physics (Frenkel theory of dislocations in crystals 
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[l ]; propagation of Bloch wallsin magnetic crystals [~]), 
Superconductivity (macroscopic theory of Josephson junc
tions (lt ]), Optics (propagation of ul tra-short optical 
pulses)[S]. 

The sine Gordon theory can be realized by first 
taking the infinite "volume" limit L~ I ~L _ti 4• ~ 
and then the continuum limit (1.~O of the following me
chanical model: 
N identical masses are fixed at the ends of N identical, 
practically massless rigid sticks. These sticks are at
tached in equal distances (a) to a straight rod of lengthL 
such that they point perpendicular to the axis of the 
rod and run parallel to each other. The rod is assumed 
to be inflexible, but to possess ideal torsional proper
ties. The whole arrangement is placed into the gravita
tional field of the earth in such a way that the rod lies 
in the horizontal plane. 

In mathematics, more precisely in differential geo
metry, the sine Gordon equation (1.3) was studied in con
nection with the two-dimensional Riemannian surfaces of 
constant negative curvature['1. The fact that the diffe
rential geometers contented themselves with particular 
solutions may be taken as an indication that the. say, 
Cauchy initial value problem of the sine Gordon equation 
cannot be solved in a closed form l~] . 

In 1973 Ablowitz, Kaup, Newell and Segur "solved" 
the characteristic initial value problem(81. In 1974 Fa
deev and Takhtadzhyan handled the Cauchy initial value 
problem. They showed that the sine Gordon theory defines 
a completely integrable Hamil tonian system (' 1. The work 
of either group relies on the inverse scattering method 
for the "solution" of certain non-linear partial diffe
rential equations. This method was developed by Gardner, 
Green, Kruskal and Miura in 1967 in the context of the 
Korteweg-de Vries equation, a non-relativistic equation 
which describes in a certain approximation the propaga
tion of wave fronts in shallow watert~Ol. 

The idea of the inverse scattering method will be 
explained at the end of this section. 

Turning back to the sine Gordon equation, we realize 
that in light-cone variables, i.e. in characteristic co
ordinates 
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in which the d'Alembertian factorizes 

(1' o =~\~.,. 
it takes the simple form 
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( 1 • 7) 

( 1 .8) 

( 1 .9) 

Let us now enumerate some of the remarkable features of 
the sine Gordon theory. 

1) Finite energy solutions must adopt integer multi
ples of J.'\(: ""' •• :2.« and ~.:'-~ as their values at ". +00 
and IC. -00 respectively (""+ not necessarily equal to '"'_ ). 
An infinitely high energy barrier lies between solutions 
with different values of 'r\.. and ~_, in particular with 
different values of N-'n.+-~_. 
There exists a non-trivial topological conserved charge 
Q which has the meaning of a winding number 

Q. .. J~cix 1.lt,x) (1. 10) 

with 

i.e. 

(1.12) 

Note that the charge density i.t~,x) does not contain 
the momentum canonically conjugate to the field ~t~,,,) . 
Hence the Poisson bracket of Q and u vanishes; Q is not 
the infinitesimal generator of a continuous symmetry 
group of the theory. 

2) The sine Gordon system has non-trivial (indif
ferencl equilibrium configurations, i.e. the sine Gordon 
equation possesses stable static solutions of finite 
energy "solitons"/"antisolitons" with their center of 
gravity Xo at rest with respect to the chosen frame of 
reference 

tLs l)(.·l 0, X.) = L\ CUt..~ l e. )(-Xo ) + 1l\t -n._ 

'Ü.A (" ; 0 .X.) = 1.\ 1lJt..~ (i"Jt-x.\) ~ 1."«: ~+ 

'\1.._, ~+ • 0) t. ", t 1., ••• 

(1.13) 
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e.g. for '\'\. ... -aO,"o,.,O 
Us 

'Mo. - 0 ,X. - 0 
UA 
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231------ ------ ------21t 

x x 
These solutions correspond to loca1 minima of the po
tential energy in the chosen frame of reference or ra
ther to va11eys of the potential energy which stretch in 
one direction at constant elevation. The energy of the 
solitons/antiso1itons at rest is loca1ized in space and 
amounts to M· t'r. The charge Q of the soliton is equa1 
+1. that of the antisoliton equa1 to -1. The soliton 
(antisoliton) is the lowest energy state in the Q = +1 
(Q - -1) sector. lf the center of gravity of the soli
ton ~ntiso1iton) is pushed very far to the 1eft (right), 
the state of the system loca11y looks 1ike one of the 
(physica11y equiva1ent) ground states described by . .. .. 
'U. ~ 'LL ... - ~'t('\'I,., 

From now on we identify all solutions with each other 
which differ by an additive integer multiple of ~w on1y. 

3) There exist periodic 
(in c10sed form) of per iod ~ 

time-dependent solutions 
and energy 

M .. , J~"-1' .. - e 
t r t (1.14) 

so-ca11ed breathers, with their center of gravity xp at 
res t and wi th "phase" , at time 0 

.. I t' 4 n tr'~(~--L ,~(~~g) ~ 
"'-f» \."=-, ~; t' ,() ,0, x.) - -4'\'t ~. ~(~(Ic-ke~ ~ 1 • 15) 

These breather solutions can be thought of as bound states 
of one soliton and one antisoliton with binding energy 

A~ ~, i 
~ = Y "'/t"':"'(. ~;! .... -J'JIIP;IIP_""'4'"'i 

Their charge Q is equa1 to zero. 

Lorentz boosts provide solitons, antisolitons 
breathers, whose center of gravity - at position 
time 0 - moves with constant velocity v 

iA., l"=-, X ; "'" I X.) = It ~ä (e lx;\n) ;Jt. ) 
l,,'"",>-,I:) 

~ L~,~·, \7'", l(..) -= 4 ~ (e.- "J4-1tL 

(1.16) 

and 
x. at 

(1.17) 
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4) There exist solutions (in closed form) which 
both in the remote past and distant future can be in
terpreted in terms of freely moving solitons, antisoli
tons and breathers. The charge Q being conserved guaran
tees that the difference of the number of solitons and 
the number of antisolitons in the remote past and di
stant future are the same. 

Actually, the number of solitons, the number of 
antisolitons and the number of breathers of a given 
binding energy are separately conserved; there is no 
soliton-antisoliton pair creation, there is neither 
creation nor excitation of breathers. 

Moreover, the set of momenta of the incoming soli
tons (antisolitons, breathers of a given type) is the 
same as the set of momenta of the outgoing solitons 
(antisolitons, breathers of a given type): no creation 
of new momenta! The classical scattering can be described 
as a sequence of subsequent two-body collisions ('111, in 
which in particular solitons and antisolitons attract 
and penetrate each other while solitons repel and re
flect their likes, which is true for the antisolitons 
as well. The whole effect of the interaction is to give 
the solitons, antisolitons and breathers a certain time 
delay. 

As an example consider the time asymptotics of the 
soliton-antisoliton scattering solution with center of 
gravity at rest at x = 0, with soliton velocity with re
spect to the center of gravity -v and with hypothetical 
positon of the soliton -~~ at time 0 if the free mo
tion of the soliton at ~--oo is freely extrapolated to 
-t,-O: 

\4.u. t~I~'I -"., "',-""'\.,,,.\) • Lt ~ (~<tb) \ . '--a '\P"c;(x vl-..... ' .J 
A. .. 1. .J .. ~'\t .. i ~". <,0 • 

In the remote past 

(1.18) 

u." l~~ \ '\t, ".t) + 'Ü., Lt ,K·, -". I-V t) 
(1.19 ) 
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Antisoliton 
t::. x=v(t+'2) 

Soliton 
A x=-v(t+"2) 
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x 

___________ .~~~.!P'II!!~-=_:-____________ _ 
-2n 

In the distant future 

iL$A(~'x')' .. ) ~ ~<t,X~-\t,+1tt)",ii.~t~.x; v;-u-i) (1.20) 

USA 
2n 

- - - --- - - - - --::..;;;.;-----.-....... .;:;:,,:- - - - - - - - - --

A 
X =-v (t- 2 ) 

Soliton 
A. has the meaning of a time "del ay". 

A 
X= v(t-T} 
Antisoliton 

x 

At the bottom of this extreme stability of the sine 
Gordon solitons and breathers is a denumerably infinite 
set of local covariant (explicitly known) conservation 
laws and their associated conserved charges. e.g. 
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4) There exists a non-linear Bäcklund transforma
tion rt'1 of the set of finite energy solutions onto it
self defined (modulo boundary conditions) by the two 
ordinary differential equations 

(1Ä.(.j~)~.t;..)'f. : ~\ii..lo,,~-;;,,) 

(1Ä.to .. ~ -1A.1,. :& - ~( ~<,o;~t +1;..) 

with the consistency requirements 

(1.22) 

(1.23) 

The Bäcklund transformation ~ does not commute with 
the Lorentz transformations L~. Hence by forming 

\~ l) l" [~.. ,,~ 
rr :: lr"fl -it(t;.<'··)5)1,+ ~) : ~-4~( ~(o;E-Y..) 

~l·;'St~1L: -'s ~(1Ä.<'-)~-\-ir.) 
(1.24) 

we obtain a whole one-parameter family of Bäcklund trans
formations. 

If we expand the Bäcklund transformed solutions 
~~;;) around ~ in an asymptotic series in powers of 
~ and insert this expansion into the conservation law 

~ t ~(Ü.l·i\;t~~ )~'i + ~-1{ Co-l( 1A..y it)-1Ä..) }"t.- 0 (1.25)1 

collect terms of the same power in ~ and equate their 
sums separately to zero, we find the expressions for all 
the conserved currents in terms of the field ~<'t,j(.) and 
its derivatives. Thus, ~~ serves as a generating functio
nal for the conserved currents. 

Actually, the 'foc;s commute and have an inverse 

for appropriate boundary 
conditions 

(1.26) 

(1.27) 
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However, the product 1r~ 1r~ is not equa1 to a Bäck-
1und transformation rr... . H;nce, the family \'T!; I~ER4,ton 
does not form a group.30n1y after extending it to 

(1.28) 

it does so. It yie1ds an infinite parameter abe1ian 
group which can be decomposed into abe1ian one-parameter 
subgroups. 

In the fo110wing 1ectures extensive use will be 
made of the inverse scattering method for solving cer
tain non-linear partial differential equations, e.g. the 
sine Gordon equation. This method reduces the non-linear, 
say, characteristic initial va1ue problem to a chain of 
linear problems. It on1y works if one can find a one
parameter fami1y of linear differential operators, say, 
Ll~) into which the characteristic initial data for 
fixed coordinate"t. - t 1Ä.\l"'l.I~) -- <~o._} , '!t(l.,--)-O 
by virtue of finite energy momentum - enter as potentials 
such that the spectra of all operators L<"{) coincide 
on ac count of the non-linear differential equation. The 
"linear" chain consists of the fo110wing steps: 

1) Determine the potential of the linear differen
tial operator L(o) from the characteristic initial data. 

2) Compute the scattering data s(O) of the operator 
L(O) (direct scattering problem). They consist of the 
ref1ection coefficient T(.K.O) -<~<4000 and the discrete 
eigenva1ues ~ä together lv-ith comp1ex numbers 'm.ilO) which 
for the corresponding bound state wave functions deter
mine the ratio of the coefficients in front of the ex
ponen tia1 damping f ac tor s for ~ ~ .. - and ~-r--

4('0) • t ""(,)(..0) --UC.<40Oe· lIt,. ~.(D) "":c ~ "" toI t ';a' ~ • • ,J" 

3) Integrate exp1icit1y the equations for the ~
evolution of the scattering data using the finiteness 
of the energy of the characteristic data and the iso
spectra1ity of the operators L(~) 

4) Construct the potential of the linear differen
tial operator Lt~) from the scattering data 

4(,.) .. t 'f"Uc.,'t) -00<: K.<+oo i ~ 1 'WL~ ("'t) j .. "',"", N } 

by means of the Ge1fand-Levitan-Marchenko equation (in
verse scattering problem). 
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5) Finally, extract the characteristic initial da ta 
".,l.,/~) -00 <. 't< ... ., from the potential of the operator ll'''l.) 

The linear eigenvalue problems 

(1.29) 

need not be self-adjoint. It is, however, essential that 
the spectrum of the operators L<'1) is "'l. -independent. 

The isospectrality of the operators Ll~) is equi
valent to the existence of an operator Mt1(> - which 
also involves the characteristic initial data for fixed 
"t - such that 

}b = [L M1 "O"t 1 

To see this, define the operator M by 

(1.30) 

f;. 't(. ·,K,1. ) - - M'4- ( .. ) ~,'t ') (1.31) 

and differentiate the eigenvalue equation once with 
respect to 'Z. • 

To derive the isospectral family of linear differ
ential operators for the sine Gordon theory, we start 
from the first of the two differential equations defin
ing 'r,; 

('ii (,0 ., r -t ii.. ), ,. \;-1 ~ ( .\Ä. (. i 1) - '1Ä.) 

and reduce its transcendental non-linearity 
tic one by substituting for ~(.·i;) 

r .. ~ ('ll(: 1;) -1Ä.) 

~ + ~\ "1+ rJ.) - ~-1 r . 

to a quadra-

(1.32) 

These Riccati equations can be linearized by the follow-
ing ansatz: 

r = (1.33) 

The resulting differential equation is satisfied if ~4 
and ~L solve the following linear system of first order 
differential equations 
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• 
- .i.1.h.\ + i 1:' 'Y ..... k lt ,;y 1 I\,ft.. 

(J .34) 

This is a linear eigenvalue problem for each value of~ 

where 

and 

l( "l) 1.\' = l<.1\' 

'l\' = C~~) 
L('~Ü:: ~ \6 ~~) ~ 

. 
~= ~ 

'-"S 

(J .35) 

(1.36) 

The ~ -evolution of ~ can be determined from the 
second of the two differential equations defining T~ . 
The result is 

(J .31) 

with 

(1.37) 

One can check that the family of linear eigenvalue pro
blems (1.36) with the deformation parameter~ is iso
spectral: 

~~ -lL,M1 . 
We want to show that the evolution equation for the 

scattering data can be integrated explicitly. 

The main point is the following: The -,.-evolution 
of the scattering data involves only the asymptotic form 
of M. Since we are interested in solutions with finite 
energy momentum: c#)~<''lI~)I,a:9t 1 ,44M.'1Ä.{"t..\' I ~t O. 
Thus, for the solutions of interest the'asymptotic form 
of the operator M is known 

(1.38) 
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although Mitself is not known. After all, it involves 
the unknown function ü,,(-,.,,\ which we set out to deter
mine. Inserting the asymptotic forms of M and~ 

,\,L't; ~\i> ~_ cu.~,,,O e,4lt.\ t~) + k'-~''l)i.lM.t (~ ) 

~~_ Q.--lC.\ l~) (1. 39) 

~\(. ) "'\'t't-, ~i\"t) ~ __ ~t~) e: \1:, 
!; e.~l( 0) 
t~+oe \0\ 

into the equation (1.31) and taking the normalization 
for~ into account, we find the following 1L-evolution 
for the scattering data: 

"-l~\'V« ~ \:~~ ~ 1""Uc.,O) - - < ~< -\-00 

~.l')=-}(.1l0)-Xi l ~tl,) ... ~t~\~(O) " .. I ( 1 • 40) 
A,-"\" '" 4 'I 

Here we have used the expression for r in terms of a 
and b, and the expression for "'"'i in terms of 4, and a: 

tm,.:: ..&.. .. 
a Ä, 'kcWU/k.~ • (1.41) 

Multi-soliton, multi-antisoliton scattering solu
tions correspond to reflectionless potentials: '1"(x,"O.O 

N 

a..l~() :(l.l~O)-TIC:_:~) (1.42) ,,-4 , 
~. purely imaginary. 
~ 

The sign of l44i). decides whether the eigenvalue 
~ corresponds to a soliton or an antisoliton. The ei

genvalue ~t itself specifies the soliton or antisoliton 
momentum. 

Multi-breather solutions also correspond to reflec
tionless potentials. Here the zeros of CUIIC.'''l.)- t:l.Ut.,O) 
lie symmetrically about, but off the imaginary axis. 

There is a 1:1 correspondence between multi-soliton, 
multi-antisoliton, and multi-breather solutions on the 
one hand and reflectionless potentials on the other hand. 
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11. THE SINE GORDON THEORY AS A COMPLETELY INTEGRABLE 
HAMILTONIAN SYSTEM 
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The remaining lectures shall be used to explain the 
work by Fadeev and Takhtadzhyan on the integrability of 
the sine Gordon theory[91. In the framework of Hamil
tonian mechanics the authors have shown that the inverse 
scattering method provides a canonical transformation 
to action-angle variables. In these variables the ele
mentary excitations of the system are readily determined 
and the equations of motion easily integrated. 

We take ii.. and f.iLi; as the generalized coordinateS to 
start with. The Hamiltonian (energy) of the system in 
these coordinates is 

'Po ... it+r c-M t iv! -+ 1A.~ + 2. ( .{ - CO'31Ä.) t ( 2 • I ) 
-"-

the momentum .... 

'P" - - 1- ~ ~~K~t --
and the symplectic form 

-tGD 

SL - Y ~ ~ \. d~-t. tlC.) A cL1l.(K\ 1 -
(2.2) 

(2.3) 

Canonical transformations are by definition those 
transformations which leave the external differential 
formjl invariant. In order to establish the integrability 
of the system we have to find a complete set of constants 
of motion which are in involution, i.e., whose Poisson 
brackets vanish. Moreover, we would like to determine the 
canonical transformation which maps the old variables 
into those new ones whose generalized momenta are just 
the above constants of motion or certain functions of 
them. 

Actually, we shall proceed the other way round, 
namely as follows. In a first section we shall derive 
an isospectral family of linear differential operators 
L(t) - with the time t as the deformation parameter -
adequate for the solution of the Cauchy initial value 
problem. In~ second section we shall express the symp
lectic form~~ in terms of the scattering da ta of L(t). 
This gives us an idea which combinations of the scatter
ing da ta could be introduced as new canonical variables 
Then we deduce so-called trace identities which furnish 
a complete set of constants of motion in involution, and 
which allow in particular to express Po and PI in terms 
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of the new canonical variables. These expressions for 
P and PI' finally, suggest an interpretation of the 
f~eld theory in terms of particles. 

11.1. The "Solution" of the Cauchy Initial Value Problem 

In order to apply the inverse scattering method to 
the Cauchy initial value problem for the sine Gordon 
equation we must find an isospectral family of linear 
differential operators L(t) whose "potentials" are in 
a one-to-one correspondence to the Cauchy da ta at time t. 
In addition we must determine how the Cauchy data enter 
into the operator M which describes the time evolution 
of the bound state and continuum wave functions. 

We start from equations (1.36) and (1.31) supple
mented by equation (1.37). By taking appropriate linear 
combinations and changing the basis according to 

1L .. I'" ,-,z,) 
I - ~ \-.t , '" " 

(2.4) 

we arrive at the linear eigenvalue problem 

-'('6"~i 1!: ~ \ ~'l4-E)1 ... ~~ l"tt = Ä "t (2.5) 

and the corresponding time evolution equation 

~ "t - tx 1! + lA.CJ'~.f 1l: . (2.6) 

Here we have introduced the following notation: 
" .. 

~: tA..i: ~'lL1C •• 

1) 1. ( e.40l:, ~-) 
..D - 't O,e. t (2.7) 

A=-t 
e- L 4.- ",1,~(.'t) the 3 Pauli (2x2 unit) matrices. 

Equation (2.5) is equivalent to the following family of 
degenerate linear eigenvalue problems 

L(t)(}) .. ~(1) 

L -ll-\;) - (-~~:~ );h+ (~~"': ~) 
(2.8) 

(2.9) 
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equation (2.6) equivalent to the time evolution 

(2.10) -fttl) =-Ml}) 
(-5''' 0 \J. 

M = Mlt) = \ 0 :6'''~ + 
( 

0 ,-1;'6"" B) 
-tL'&G'~) 0 .(2.11) 

It is an easy exercise to verify the relation 

~tl = LL,M1 (2.12) 

which guarantees the isospectrality of the family of 
operators L(t). 

We consider the eigenvalue prob\ems (2.8) in 
Hilbert space of vector functions ('tJ with 

+.. .Ao 

the 

S cll( t 1: t(x)"f~) + xtX)xex) } < 00 • (2.13) 
-GO 
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Here the dagger denotes the Hermitian adjoint. We impose 
the following condition on the Cauchy data 

+--
_~ b t \~)\ -\- l"'-",()l.)\-\- \~~) \ 1< oa. (2. 14) 

Still, the operators L(t) are neither self-adjoint nor 
Her~itian with respect to the scalar product 

~ 

~ tL.l1f(.l.>t~) 1{tt)(,r.) + X~\t)X'Atlt) 1 . (2.15) --
However, they are Hermitian with respect to 
scalar ~roduct 

~ .. ~'" l ~)'1(x' 1fl'(x.)+~YI(~) X(-h,~) 1 -. 
the following 

(2.16) 

where the letter T denotes transposition. This scalar 
product leads to an indefinite "norm". For solutions of 
the eigenvalue equation (2.8) the scalar product (2.16) 
reads 

(2.17) 

Though we shall work in the Hilbert space equipped with 
the scalar product (2.15), in the orthonormality rela
tions below we shall recognize the scalar product (2.16) 
(or (2.17». 

The Cauchy initial value problem for the sine Gor
don equation consists of determining the Cauchy data at 
time t':. t 14. l+. ,)I..) , ii..i;lt.,x) -oo<x <+ Qo } from the Cauchy da ta 
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at time zero :tiL(o,x) ,'"Ü.t,\.O,x) -OO<X<+CXI ~ With the he1p 
of the inverse scattering method and the isospectra1 fa
mi1y of associated linear eigenva1ue problems (2.8)-(2.12) 
this non-linear problem can be decomposed into the fo1-
10wing chain of linear problems: 

• " 'i2 1) Determine the "potential s" t1b"(O,I()6"" and u(O,,I() 
the linear differential operator Lto) from the 
chy initial va1ues t I\Ä..(O,x),Ü-i;lO,x) -oo<J« .... -}. 

of 
Cau-

2) Compute the scattering data -:1(0) of the operator l(O) 
(direct scattering prob1em~ 

3) Integrate the time evolution equations for the scat
tering data, i.e. determine the function 'j=~(t). 

. " 4) Construct the "potentials" ~tJlt.)C.) 6" and 
of the linear differential operator Llt) 
scattering data -:jL~) (inverse scattering 

l>l~,~) 
from the 

problem). 

5) Extract the Cauchy data at time t..~ tii..l-t,)C.),~l-t:;,x) -ao<)«~1 
from the "potentials" of the operator Ll-t:) . 

Steps 1) and 5) are immediate1y carried out. Steps 2), 
3) and 4) need some explanation. 

The scattering data 

In this subsection we sha11 consider the eigenva1ue 
equations (2.8) or equiva1ent1y (2.5) separate1y for each 
fixed va1ue of t. Thus, for the time being, we suppress 
all t-dependence in our notation. 

We assurne that the Cauchy data satisfy condition 
(2.14). We set 

Ä-~ =V. (2.18) 

Note that ~).")O imp1ies ~~>O and vice versa. For real 
)..+0 the eigenva1ue equation (2.5) has two 1inear1y in
dependent solutions ,,,(X,A) and t,..cx,Ä) norma1ized at 

x=-+oO : 

} .. (X, A) l( ~ t- :VX \ '1 ) + Ct ( 1)) '2. (K, A) X-i i ;'.Jl~) +~~) (2 • 1 9) 

and two 1inear1y independent solutions ~,,(XIA) 
~'-()(.'?.) norma1ized at ")(--00: 

and 
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(2.20) 

The two linearly independent solutions of the free equa-
tion 

(2.21) 

are 

and (2.22) 

We comprise the respective pairs of solutions to matrix 
solutions 

The Wronski determinants coincide with the usual deter
minants 

(2.24) 

The differential equation (2.5) and the respective nor
malizations can be converted into integral equations of 
Volterra type 

r -~.,)6"1x'-lCl . 1 1:J1~)-t 
r(x,~) ~ E()(.,A)+.Ä. ~d.x'S2".e. {~~N)~ + A. '\ }f(x',:l.'(2. 25) 

Gt(~~) = [(Y..,')..)-Ä.. \eix' ~2.i4.lltrlo(It'-")t ~ w-<.~'()\ -g-~~tr}G<r:,l):.2. 26) --
These integral equations can be solved by the method of 
successive approximations which always converges. In par
ticular, it follows that ~ ... (')I.,'>..) and \ .. (x.,)..) are holo
morphic in the upper half Ä-plane and continuous in the 
closed upper half A-plane minus the origin )..-0. For 
,,)OO()«O) ,t .. (')I.,~) l~,..()(,~)) is continuous in the entire 
closed upper half X-plane. 
The following bounds hold 

(' -~\Jx _ ( 1 ) ) 
j .. ()l, Ä) e -:s...... ').. ~ 0 \,t -\- tt- (~ (2.27) 

;''t)1( l ~l ~ 00 ( 1 ) ( ~) 
~L.6t,,,,)e. ~Ä~O \-'" +- ~\; (2.28) 

'Al -,>00 
h{)l.,:\.) and \ ... (lC.,'A) have analogous properties in the 
lower half ?.-plane. 

The f-solutions can be expressed in terms of the g-solu
tions and vice versa: 
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rr~) is ca11ed the transition matrix. 
cld:. f' an d (M,J.(i. im p 1i e s 

cld:. '1' (Ä) - ~ 

K. POHLMEYER 

The equa1ity of 

(2.30) 

The symmetries of the integral equations (2.25) and (2.26) 

-A. er10 F'(x,Ä)l\'Er" s F'(lt,A) , "-6''' F(x,-). )oJi.~ ,. t(X,A) (2.31) 

-l.fS'" G(~,?tc?'- Gb.~) \ .t6'''&Uc,).)~6''a_G(x,~) (2.32) 

ensure the unitarity of the transition matrix. Moreover, 
together with equation (2.30) the symmetries imp1y the 
fo110wing form for rr~),~ real: 

(2.33) 

with 

In terms of the f- and g-solutions the coefficients 4~) 
and ,,~) are given by 

o..U,) - i: ~(t.(x,l),\,,~,~)) 
J,.~) - -t tiaL(~ .. (,XI).) ,i,,~,').)\ . (2.35) 

It fo110ws that ~\ can be ana1ytica11y continued to 
a ho10morphic function in the upper half ~-p1ane which 
is continuous in the c10sed upper half a-p1ane inc1u
ding the point ~.o (see be10w). At infinity Q.(l.\ be
haves 1ike 

(l.~) ';:"' .. 0 -1 ... e-(A) . (2.36) 

'~'-9-a * Actua11y, with 4(,1.) also o..(,-Ä*') is a ho10morphic 
(continuous) function in the (c10sed) upper half A-p1ane 
On the real axis both functions coincide. Hence they co
incide everywhere in the c10sed upper half plane. From 
this we infer that ~~) is real on the imaginary axis 
and that the zeros of ~(,l.' \ ~ - ~i 1ie symmetrica11y with 
respect to the imaginary axis. 

We sha11 assume that ~~) does not have zeros on 
the real axis. This restrietion guarantees that there 
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is on1y a finite number of zeros of ~~, in the upper 
half ~-p1ane, whieh, moreover, are all of finite order. 
The zeros of a(.i\.) for ~~'O ean on1y aeeumu1ate to points 
of the eontinuous speetrum t 12·1! 

In addition, for the sake of transpareney, we sha11 
assume that all zeros of Q.(.l) ;~= ~t t~,,)"·",N are simple 

Q.~,\ - ci.(~")<'').-';-i)-+OnA-~*''')) d.u;.t-,+O (2.37) 

For ~.~. ,the solutions ~" and tl~ beeome 1inear1y de-
pendent" <I 

(2.38) 

The solution ~"(X'~i' decreases exponentia11y at both 
ends of the x-axis. Thus the zeros l;,. of 0.(.).) in the up
per half l\.,-p1ane eorrespond to boun~ states, ~i iC",··,N 
are the diserete eigenva1ues of the operator L. 

We enumerate first the zeros on the imaginary axis 

1..-,-\ ... ..... , ,~ .... "" (2.39) 

and then the zeros off the imaginary axis whieh eome in 
pairs 

~""""+1."'-" ::. ~ ..... ) ~-.. .. ,,"-ta. - - ),! ~."" . " 'na. (2.40) 

o < ~ ~""" .: Ti ,"'-,,+ 1'\'\.~ :: N • 
The scattering data of the operator L eonsist 
ref lee tion eoeff ieient -r(A) -_ < ~< +-_ 

""t (" '\ .. ..(.(). ) 
tA.L'k) , 

the diserete eigenva1ues ~~ and the quotients 

~. 

'Moi - ,Li~.) 
~ 

. . 
~= t 1"tl.) --<. Ä<+oo· \-. 'WI,." t c 1\,,'. ,t-J). ) '>~ \ a-

The coefficients Q.()..) and J.CA\ ean be eomp1ete1y 

f::,the ;;:.tted{n~ ~t.~ ;':~:;:;~li~( _)_ . 
1& ,~O .Il.ttf lw"-l"T' Q..+-'t.) - f'4 - J.~~(.\.~~L)-

a 
J,.CÄ)- ..,.."', • 0--"') 

of the 

(2.41) 

(2.42) 

(2.43) 

recovered 

(2.44) 
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Next, let me sketch how to solve the direct scat
tering problem and the inverse scattering problemB~s 
a by-product we shall obtain the continuity of a(~) from 
the upper half Ä-plane at '-.=0. 

The direct scattering problem 

Expand the solutions ~4(.,A) , 
in terms of the eigenfunc tions .. <. IC , A) 
the free eigenvalue equation (2.21) .. -

, ""(JI,:l) 
e. .. <'IC, A. ') of 

F'lx\~) .. E (~Ä) + ~ tLa-Ot,,(lC,'t) EL1,A)'" ~ ~tLfI b.~it.1N(2. 45) 

• A~ 
G (~,,,) c ~()t,').)+ ~~!..tl',"t)E.L1tl~t ~~~liL~.2. 46) -- -~ 
Formally, 
~"Ut, ~) 

normality 

one arrives at the representation for, say, 
in the following way: One inserts the ortho
relation 

~~-X). (A+ ~)~~e,11-~)e."L,.\;t) (2.47) 

into the identity 
.."... 

~ .. l~, Ä) - e. .. ~,~)« lrl.r (t~,f'-) -~(Jt"'))~y..-).) 
interchanges the order of integrations and converts the 
analyticity and growth property of (~ .. (",i\) - e,.t)(,).l) 
in A. into support properties of Ot,.l"A l l') and O'ta.(.y.'1t) 
(Paley-Wiener theorem). The "transformation operators" 
Ot"l.,.\~) and ~L",,1t) satisfy a system of coupled inte

gro-differential equations of "Volterra type", the ker
nels of which are determined by the Cauchy data. The 
same is true for the pair of transformation operators *' ()t,,.) and ~UI')' e. g. 

o = [6"", ~(~,~)] -~1At(~)G''' ... j ~ 1 q-)[6"~(/. 
·4().'~+1-.)(?]+~b~[6"~'"t.(ß~)-~ ~(~)Jt~-l-)1} . (2.48) 

'it.~,Jt) and ~~,~) are related to the potentials 
-tV()tl ~1 and 'ß~) through the equations 

(2.49) 

and 
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The integro-differential equations in question are 
derived by inserting the above representations for rex).) 
and Gn(x,~} into the integral equations (2.25) and (2.26). 
They ean be solved by the method of sueeessive approxi
mations whieh always eonverges for potentials satisfy-
ing eondition (2.14). It ean be shown that the behaviour 
of re",).) and G"',;\.) in the appropriate half planes 
near the point A-O is eontrolled by the behaviour of 
E(~,~) (eomp~re the representations (2.45) and (2.46». 

Henee Q..L>-)- tdak.L~,,(x,~) 1'J-r.elC-IA)) varies eontinuously 
as the point A-O is approaehed from the upper half Ä
plane. 

The expressions for the eoeffieients a..0..) and 
in terms of the transformation operators ~~ and ~~ 

a.(').) = A + k ~[Cct.l~)-Al ti~i"~ ("I~)[~ ~(x)· 
are: 

.( 1J:.(~, ,,+~) + -t ~~(Y.Il(+L'4') 1 c..~) (2.51) 

!o.'*"= -i .hiw'4,-~)t-v;. (~)+l!~ \{(X)(~~'1~)tt'tpI~~J 
1-

where 2.. .. 

-v: &.)... "- U-(~)6"1 + 'ßlX) - it ,.. Lf ~ (2.52) 

In order to find the initial seattering da ta 

-deO) .. t T(;t,O) -60<:Ä<:+OO) ~-äl 'WLa(O) ~=~"'IN} 
we eompute 1J.:.(X 1"a-) and ~()c.I":1--) from the integro-dif
ferential equations eorrespon~ing to the Cauehy initial 
data. We then insert the result of the eomputation into 
the expressions (2.51) for ~(~ and A~), whenee we 
determine the refleetion eoeffieients ,.,.~,O) --<:Ä<-"- , 
the zeros ~-:i of o..~) in the upper half Ä-plane together 
with the quotients 'Wlj(.O) • 

Time evolution of the seattering data 

The fune t ion ~ = -i (t) i s eas i ly de termined (eompare 
the end of the Introduetion). The seattering data evolve 
in time like 
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The inverse scattering problem 

• "-'w ~" Cl., .. ) How do we recover the potentl.als ~U')Q and~-
from the scattering dara s1 
We w~ite the equations defining the coefficients ~l~) 
and .... ~) in the following modified form 

\ic:').) - -11t4(x,l) - --r(Ä)[~"',).'-~~.).)l+'Y'())~(x,l) 
'\ +[~A~IA )-~(.)L,).\l- [tUt,~)~6t,~ll (2.54) 

[~ -~1t .. ",,~) - · . · ~ :r (A) ) 
multiply the first .-&quatioq~y e.:t1-tÄV .. tt (.ea. ,. ~ 
the second one by ~~''''r \ ~ ",.,.}<...). ), integra te bo th 
sides of the two equations for )(>2 over the real 1\,
axis and evaluate the l.h.s. by the residue theorem in 
the upper and lower ~-half plane, respectively. Final
ly, we take the sum, note that for ~>~ as a consequence 
of the analyticity and growth properties of t~t:J.,~) and 

~"('" 1.) 

~[f.(x,). )-4..0<.). Ü eIl'l'~ \ & 0 • J,b.[;'b,\\-e..w.\\ ~(~~ 
and insert the representation (2.46) for tic..-,A) 14.1. In 
this way we arrive at the linear Gelfand- evitan-Kar
chenko integral equations 

X 7"1 ~ 0 • \{,,(~\~) ~ ~~'4)+~c1,J("CJ.,'IAl\(~l)+~d.u.~(J.~t&,..}) -- --
Os ~(r.~)+'t(l',l)1d...\/"er..w\~~1L~~\~~\ (2.55) 
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rt.u 1-4 " l6' I ~At~\X).1 - 't ~(~)~ (2.49) 

-Ä.~2.k.l.Ot\~) -\- 1bL 'ß~) ~""",)er2..+ 'tel') -f:.o (2.50) 

• -1 
Thus, in order to recover the potential s ~ü-Ut)6" and 
'BOt> from the scattering da ta s, we compute \("(,,,~) 
and ~z."',1t) from the GLH equations for sand apply the 
last two relations. 

11.2. Transformation to Action Angle Variables 

As a first goal we aim at expressing the symplectic 
form-n. in terms of the scattering data. For that we 
need a formula which relates the infinitesimal changes 
of the Cauchy data to the infinitesimal changes of the 
corresponding scattering data. We start by comparing two 
scattering problems (not necessarily infinitesimally 
close to each other) described by the respective linear 
differential operators L!41 and lUoI or, equivalently, by 
the respective scattering da ta ~C.4) and SUo). 

According to ref.(11l the solutions of problem (2): 
~ .. ('->(x,').). • •• • ••• \~ ... )(x~) can be expanded in terms of 
the solutions of problem (I): t~)C.lCl?.)' ••• ,Ii~~()(,'>..). 
Thus ,~here exis t transformation opera tors ~ (\~ "t), • 
. " "'~"'I"t) such that the following integral represen

tations hold 

rt) Formally, the integral representation for, say, 
.,.. "Cx,Ä) is obtained by inserting the orthonormality 
relation 
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A The pro~rties of the transformation operato~ 
Ol"lX,"i.}, .. • , lJi,(It,"t) - in part:ic.ular relation4.~f ~.(x,Il) 
and 'StUc,x) to the potentials \",.\i(X)~1 and ~ ()()~.4,1 
- can be J&..ferred ~m the integ~diffe~tial equations 
of which -U(.~(lt,".3\, l~,"a-) and ·"tt-4(~~) , u';'(~\~) are so-
lutions, respectively. In their turn the integro-differen
tial equations are derived by inserting the above represen
tations into the integral equations of Volterra type 

F' l~x,~) = F l"bL, ~) - i r l!~' \rt,,~~)(, A)t~-ttc)t"Ä)t~~~'~'~i 
~ ~)-u'2Y!fi'\ [1,'1~)1· - [~t~'ü2. 11 F~I,Ä) 

~ (2.60) 

G lt.t~l") -= 

Next we derive appropriate generalized Gelfand-Levi
tan-Marchenko equations. For X~~ , we integrate the fol
lowing combinations of the equations defining the coef
ficients 0..,<1) (?.) , •. , ..(,.(.1,) (X) over the entire real.\.-
axis: 

t [~(~(~) - "1t"l't.,.,~)-[Q.t)o.) - ~1~t)(,~)1~l:~1').YIriOO (2.61) 

Tlta:~). -~1~b(,').)-\i~)"1--11~b"A\\ $nc1~'l:().)=· • 
We evaluate the l.h.s. with the help of the residue theo
rem and insert the representations for q.l-.)(X,i\) in terms 
of ~t){"},~) 1 c ~,IJ., (compare eq. (2. 51fT). In this man-
ner we lrrive at linear integral equations of the same 
form as the GLM equations (2.55). The kerneIs are diffe
rent, though: 

bt'1..,3.(2. 62) 
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Again, the solutions \{. .... ll(,") and \(J,lL'''t) are ~sential1y 
~entica1 with the transformation operators ~jjr~c..,~\ and 
~~(.'''a) respectively. Consequently, 

[~"I \ol"Ut,X) 1 : ~ (tt..)'li,,>_WC.4)Cll))6"-1 (2.63) 

-Ä. f)'lI K,.(x,X)-T",r..'ßC.'&.~)I.)11,,\<~~,~)(,~~"btu-'6-\[t~~:l~:.o.(2. 64) 

Specializing to scattering problems which are inifinite
sima1ly c10se to each other 

I'/'"(A)(~) - ~(~) I NA: N ,~) .. 't;~ \ ~~") =- '\M.1 

--t('J.} C,. , .... .., ~ )+d..-t"l'A) N'Z. = N , ~:). ~t ...J..~i , ~)::: llA.\.a+ ci~ 
we note that \l.(x,~) and tlx t1-) ic-i,!. .L"'-111,~ are of 
first order in1 inilinitesima1 changes of the scattering 
data. Thus, by keeping on1y first order terms in the ge
nera1ized GLM equations, we find 

)(?1-~ K"'("'d)·-l:()I.''}),~()('l) .. -r..Ut'd) (2.65) 
and further 

l6"~~()(t~)1--~~1Al6c.)~·:1 (2.66) 

cl~~)ol = -()~(~,).)['ß&.[\.[1'~U~((}t,X)~2,. (2.67) 

Thereby, we have estab1ished the relation of the infini
tesimal changes of the Cauchy da ta and the infinitesimal 
changes of the corresponding scattering data: 

(2.70) 
and 

t~l""): [W-'lt)r) 1~-l~~I\()l\r-)1L 
'''I; 1 &.4,,,, being the j th component of the solution 
vec tor "2. . 
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We insert this result into the expression (2.3) forSL 
and evaluate the remaining x-integration with the help 
of the differential equation (2.5). The integrand turns 
out to be a total x-derivative of products of ~~(~I~) 
and 4~(X,r-) components, of !..a,(Il,l.) and 'a.()tl~') com
ponenls and the like. Thus th~ integral immediltely can 
be expressed in terms of the asymptotics of ~~("I~) , 
i.e. in terms of the scattering data. However, in terms 
of the differentials ciTU) , <i~. and cl'"'{ ,.n. does not 
have the canonical sym~lectic ~orm. In particular, in 
..fl.a the differentials ~"..o.) and cl..,.c.-~) which are not in
dependent occur side by side. 

However,!L does have the canonical symplectic form 
in the variables 

~('A) w -1t'}1. Jm.\Cl(}.)\ ) ~<.A),. - ~~) A ~ 0 

~L _!. L.,.,~.L ,\1..= gJ-\C~\ R."~I··''n. ... ; Ce. .. -~·e(.'a'ft1.~CÜ~) \-, -r- , (2.71) 

~_ .. -? k\ 'A ... \ \ ,.'" = 4L \ci.~\ ~ L. ,I . • I" ,... '\ .K J JI(.-.. ,.·,,;~~Q.V\.4) 
i~~" ~~ .. ,~",,-- 7~~~ 

.Q • ~<AA~(;twilp(?}l-Z <I.f,."~~t~1~U~~F . 7 2) 

Hence, the above variables are canonical. They arise from 
the original variables t'l.(-.) and~~LIC.) by a canonical trans
formation. As we shall see shortly, they are of the type 
of action angle variables. 

Under spatial translations of the system by a di
stance a: 

(2.73) 

the scattering data change according to 

-0. <.A < ~ 
(2.74) 

A'''-1 .. N . " . 
Combining this result with the time evolution for the 
scattering da ta (2.53) and the "equations of motion" 

(2.75) 
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we infer that the Poisson brackets t~(~),t>o \ )\~().);t>.J .... 
\9.:po} ,\9 ... ' .. \ all vanish whereas the remaining Poisson 
brackets have the values: 

~l).) ,'Po \ :: 1.( '). "" m ') ) t 4'(').) \1>" 1 = -1. (Ä -,ta) 
. . . . . . . 

t ~~,"Po 1 = ~ Ccne~ ( 1 '-",,\ + ;{:,~\) 
(2.76) 

{ \9~,~) = -% ~G~ (\ Ä-It.\ - ~t"'-~ 
From these relations we obtain the following expressions 
for Po and PI in terms of the above generalized coordi
nates 

where 

-p~) 

" Clearly, P and 
• , ~.... • T h u s ~ t h e 
scattering data 

(2.77) 

(2.78) 

P 1 are c y c 1i c in t he va r i abI e s 't ().), . . 
generalized coordinates formed from the 
are indeed of action-angle type. 

The expressions (2.78) are special cases of the so
called trace identities. 

11.3. Trace Identities 

The values of the action variables completely deter
mine the submanifold of phase space on which the motion of 
the system takes place globally. On the other hand, the 
action variables are in a one to one correspondence to 
the time-independent analytic function Q(Ä) . In its 
turn - just because of its analyticity - the function 
Q.(~) is fixed by a countable set of numbers, say, the 
coefficients of its Taylor series around the point ~ •• ~ 
These coefficients would provide a complete set of con
stants of motion in involution defined for all Cauchy 
data satisfying condition (2.14). 

If we suppose - as we shall do - that iW'"u.) and 
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(eZt..(J')_,\) are test functions from the class 'i , then 
in the upper half ~ -plane the function ..e".a.~) possesses 
an asymptotic expansion in odd inverse powers of ~ 
around Ä-oo , and an asymptotic expansion in - apart 
from a constant - odd powers of Ä around ~·O . The 
coefficients of these asymptotic expansions are inde
pendent in view of the essential singularity of ~(~) 
at 1. ... 00 and at l.-O . Thus for a restricted class of 
Cauchy data they can serve as a complete set of constants 
of motion in involution. This set is essentially identi
cal to the system of charges of those infinitely conserve 
currents mentioned in the Introduction (compare the dis
cussion around equation (1.25) and remember that A.LA~). 

With the help of the eigenvalue equation (2.5), 
these same coefficients can be expressed in terms of 
the Cauchy data. The resulting relations are called trace 
identities [·Pt). 

To see that under the above mentioned restriction 
on the Cauchy data the function ~(X) can be expanded 
around Ä-oo and 1-0 as claimed, we note that now the re
flection coefficient TVl) belongs to the testfunction 
class ':f (compa\.e ref. [:13J ), and that the same is true 
for ,.,. (y,(.(_~},,~ . The latter statement follows from the 
fact that ~\/~,~~)) ist equal to the reflection co-
e~ficient tor ei~envalue problem (2.5) with potentials 
kl'W""')-~'lA.I((y.))~ and ~ß-tJ(). Hence TC'A) is infinite 

differentiable and vani~es with all derivatives faster 
than any inverse power of Ä at Ä.-t.oo, and faster than 
any power of A at .\-0 . From eq. (2.44) we obtain 

kli}O:-~)ao.)) 
::.___ f' f::-' I cL)' /".t... [ 1+\-<-~)\'1 
~~?oY 
~ -~ ,t'':'' r ritz. k[ 1+ \..-~W] 
\A\~O L 11C~ _ J.\. 
r"h-~~O 0 00/ 

or 

(2.79) 
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Next we shall sketch how to establish the functional 
dependence of the coefficients 1 .......... 1\.-0.1:.1,12,.··on the 
Cauchy data, i.e. the trace identities. 

First, with the help of the eigenvalue equation (2.5) 
we derive a Riccati equation for 

(2.82) 

(\ '.' .th . T",i ",-4, .. be1ng the J component of the solut10n vec-
tor ~" • We solve this equation in an asymptotic sense 
by inserting suceessively the ansätze . ~ 

? '&7"') ~ '\"" W(J',X) = ~ .~)_ for \,\ \ ~oo, CJ Oc;A) = ~(J(.~" f or \;U~O\ 

collecting terms of the same power in .:l-" ("-) and equa
ting their respective sums to zero. This yields recur-
sion relations for the C.)(~.!(\o,')('n.~) as well as for the 
6"'(.1\)S (e'" ... ,S, ,the coefficient functions of the asymp-
totic expansions for 

(5' (X • 'A.) = l ~ - e,\~~c.-)P()( .A) - (~" i""'6r.~ 1 -+ ~ ""(1.)) 

- -t=x .em.t,~ (x ,1) - .i (1\ - m. ) (2.83) 

- C(.~(") ~ ~ for \1\ ---9 00 (2.84) 1...t "-)"'" 
1 

~ ~ ß"(._)~)).. "'" for IA\""" 0 (2.85) 
0 

For the last equality, again equation (2.5) has been used. 

On the other hand, up to asymptotically vanishing 
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terms (for lM...- and \a' ...... o respectively) • .kQ.('A) 
and e'(x,:l) are rela ted by 

+.~ 

im. Q.(~) - J d..)C.G'(X,~) (2.86) 
..-. 

When the asymptotic expansions (2.84) and (2.85) are in
serted. the trace identities can be read off. 

11.4. Interpretation of the Field in Terms of Particles 

Equations (2.77) and (2.78) for the energy and the 
momentum of the system suggest a simple interpretation 
of the field in terms of particles. 

1) For fixed real value of ~ • the action variable ~(Ä) 
takes non-negative values. whereas the angle variable 
(f(~' takes values in the interval (O,2.Ul with the end
points identified. i.e. on a circle. Thus the variable 
Q(~) and ~(~) form a pair of canonical variables of 
the type "particle number" and "phase". Hence we inter 
pret 9~) as the particle density. 

\3(').) .. Ir -1" as the momentum • 

....k~\a.ti:+\.'A as the energy. and 

..J "'-'"().)- f(~.)' .. ~ as the mass 

of the particles associated with the ordinary exci
tations. Thus l~" and 1:" is the contribution of t-hese 
particles of mass 1. 

2 ) 'Doc..,l "i:)tao) 
f, and ~ are already written in the form of a sum 
over particles with 

momentum -f. ( ~ - A'x .. ) 
energy T (-RL + ~CaX .. ) 
mass M • .J (}( ~ +ACaH.tl11.- [+-, ~ -,",~n"i .. ~ 
the solitons (C ... ?O) and antisolitons (C.&~O). 

3) "!') and 'P!" are sums of contributions from particles 
with an internal degree of freedom: the corresponding 
phase spaces are four-dimensional. Their 

momentum is -ft ~e .... (\i~, -ACa\Ä~\)~ 
energy is -t ~~(i'Ät..'+~'- \Ä-4L\) and 

mass is M-k,- ~~e",- < 1.M,O<.Q .... = ~ 1 .. <1f • 
We identify these third particles with the soliton-
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antisoliton bound states, the breathers. 

In this way, we have determined the elementary excita
tions of the classical sine Gordon system in terms of 
which the possible trajectories of the system are most 
conveniently described. 
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INTERACTIONS VIA QUADRATIC CONSTRAINTS 

K. POHLHEYER 

INSTITUT FUR THEORETISCHE PHYSIK 

DER UNIVERSITÄT HEIDELBERG 

I. INTRODUCTION 

Completely integrable Hamiltonian systems quite na
turally lend themselves to semi-classical quantization 
methods. This is one of the reasons why the pioneers of 
the semi-classical approach to local quantum field theo
ry have chosen the completely integrable sine Gordon mo
del as the testing ground for their respective formalisms 
[1] . Certainly, the importance of this model does not 
end with that. The sine Gordon equation makes its appear
ance in many different branches of physics. As a Boson 
quantum field theory in one-time and one-space dimension 
the sine Gordon model received great attention because 
of its close relation to the massive Thirring model, which 
is a Fermion theory [11 . 

In this seminar we shall hear about another remarkable 
relationship. this time on the classical level: The "re
duction" of the chiral 0 3 (chiral 0 ) model involving on
ly scalar fields to the sine Gordonnsystem (its generali
zations). The interaction of the chiral model arises sole
ly from a quadratic constraint, namely that the values 
of the field functions vary on the surface of a fixed 
sphere. The sine Gordon theory is seen to be but the first 
member of an infinite sequence of inequivalent relativi
stically invariant integrable field theories. Of particular 
interest is the second member since it is the one-space
dimensional version of the non-linear ~-model correspon
ding to the group o..a S'(.Ut.)xSUU,) (31 . For the gene
ralizations of the sine Gordon theory corresponding to 

339 
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groups O~~,~ we are able to set up the isospectral linear 
eigenvalue problems, which are the key to the inverse 
scattering method (~1. We determine the time evolution 
of the scattering data and thereby "solve" the Cauchy 
initial value problem for the respective equations of 
motion. In order to "solve" the Cauchy initial value 
problem for the equations of motion of the corresponding 
chiral 0 models, we only need to master one more linear 
differen~ial equation. 

For the 0 invariant chiral models we construct a 
one-parameter family of Bäcklund transformations and an 
infinite number of integrals of motion. The latter ones 
are associated with covariant local currents for which 
the family of Bäcklund transformations serves as a ge
nerating functional. 

The 0 -invariant classical chiral theories do not 
possess soYiton solutions on account of their scale in
variance. This invariance gets broken as we pass to the 
sine Gordon theory and its generalizations. There exist 
static solutions of finite energy. In the general ca se 
they are nontopological solitons. Their stability rests 
on dynamical symmetries e.g. shifts of fields by constants 

II. NORHALIZATION OF COORDINATES 

We start from a classical relativistic theory of a 
real n-component scalar or pseudoscalar field ~( ...... ' 

T 
'<'~I~) • t\.l-l,ll),· .. , 9_lJ:.,)f.\) 

subject to the constraint (dimensionless units!) 

"" ,,\~\)f.) -, ,L~,")'''· ~ q1~,)f.) - ~ . 
With the help of a Lagrangian multiplier llt.,)/.) its 
dynamics is described by the Lagrangian density 

~l4,\x) - t \ \t.(t,l')1.- \"l~\"'", Al~x)(~\t\)() -~) 
Indices t and/or x denote differentiation with respect 
to t and/or x. The surface of constraint, i.e. the sur-
f S ... •• f h " h " d" . ace i 0 t e un1t sp ere 1n n- 1menS10nal space pro-
vides a homogeneous space for the rotation group 0 . In 
fact, the above Lagrangian is invariant under the ~ction 
of the internal symmetry group 0 : n 

~l~,)L) ~ -"R 9p.l~,)f.) ,""R E. 0 .... 
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The equations of motion are 

<4~" - \". ~ t ~ - ~ 1.) ~ = 0 

( 'A. - -l<4;- ~~) ) 

I. 
l ~ 'I! 1 

We introduce the characteristic coordinates 

~:.t .... x~ .~ 

341 

~ -,;-) "'l,).. ~ C)&. 

in which the d' Alem~ertian 0 .. ~t" -1i" factorizes: 

o -...L-- ~~(t" 
Employing the short-hand notation ~ : ~ l\,,) - ~ (.t.\x) , 

\" .. -a\ ,\l\,"t) ) "-,,, = ;"t ~ l\,~) I 

r 
<\,(l =~ jt~l'il ). . · 

.\? • '" - ~ ~.;. <i.:. 
the equations of motion read 

~(.,. + t<4i~)~ - 0) ~1,"1 . 
These equations are forminvariant under general coordi
nate transformations which map the light cone onto it
self. i.e. under the local scale transformations 

(~,"l) ~ (~I,'i) 

with 
cl~' - \ Hl~)\<i.~) cL,,- \\(L,)\c1, 

\-\l~) + 0 + \{(ttz.). 
Note that ~\ and \~ are orthogonal to ~ in virtue of 
,." - ~ , and tha t q,''''L is parallel to ~ • The sum and 

d1fference of the energy and momentum densities of the 
fields are given by(I/2\l\~ and ~/2\~\1. • respectively, 
and the energy momentum conservation is expressed by the 
equations 

t1i~~} 1. :. 0 \ t t ~~l~= 0 . 
~;nce ~ and ~: are functions of 't and ~ • respective-
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~\\. = "l~(~) , <h" - .kl.(:~) . 
For a Cauchy initial va1ue problem these functions are 
a1 ready determined by the initial data. 

If -kl\) and ""I) are different from zero every
where,we may choose 

\H l\)\- ",-l,\)') ll-\ L'V\ = l-ll"'t)\ . 
This amounts to resca1ing the coordinates such that in 
the new system of "norma1ized" coordinates the momentum 
density vanishes identica11y and the energy density is 
equa1 to 1/2 everywhere. Cauchy initial data with ""'-~).O 
for some ,-\. and/or ..... "1)-0 for some 't.~. are to 
be approximated by initial data for which .(l\) and ..kt"Z.> 
are different from zero everywhere. Without 10ss of 
generality we may assume the coordinates as being nor
ma1ized and omit the identifying primes. Then 

We set 

) ~~= 1 ) ~~ == -1 
- 1 , ~\ ~'"l '+ 4 • 

• 

III. THE CRIRAL 0 3 HODEL AND TRE SINE GORDON TREORY 

Together with its first \ - and .,.-derivatives. the 
solution vector <4. \<'~'l) of the equations of motion 

~\"'L~(~,.,.,)~=O 1 '-\z=~ 
f 3 . .-m3 
or n = 1n general spans the ent1re space W' • Thus it 

must be possib1e for n = 3 to express the second deri
vatives \\, and \"""as linear combinations of '4-1 ~k and 
~: "" ~ 

'\" - - ~ + o{, ~c(. ~\ - c(\ (~o(,)-1 ~ 

~"l't • -~ - ot,. (~o(,y1~\ -t ~ ~ol l4"t · 
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Now we ean eompute the mixed seeond derivative of 

J.. = <l..('C Ctn (\t" \"L) O. 

<ll\,- = - (~olr"· [o(\~ Ccr.lo(. - Co-l2." +(~n·'h"L)l 
-= - ~o(. 

Le. the angle d. - ~(\"'+"l) satisfies the sine Gordon 
equation whieh ean be derived from the Lagrangian densi
ty 

Llt.,~) - !:rl~l~,~)t.-oLx(-b,)&.)"'~ l.(CoJoC.~x)-~)\ 0 

Conversely, to every solution cl of the sine Gordon equa
tion there exists a solution of the equations of motion 

t \,' \,,) 9r = 0 , '" I. = 1. 
with 

It is just the solution of the Cauehy initial value pro
blem for the linear differential equation 

~~t. - ~ x~ + Ga'lol. '4 = 0 
with initial data 

o 

q, lO, ~) = ~ ~ ) ) ~ (0, )(.) :: ~ c,. ) 
s a t i s f Y in g ~ t~) !!. i , 

~~lI.) = 0 \ 4r\"') + l4-~tx)'Z. - A) 9,.(,1.). ~xUt)=O, ~ br.'~(lI.t = 

• • 
.. ~ cLLo,)C.) ,9r (]I.).9r,..~ t~)- Q,x t~)~X()(.)2- t~(.O\X~(OI)t). 
The above linear differential equation reproduees the 
quadratie eonstraints \- t" .. -1Iq!' .. ~, \.~... onee those ini
tial eonditions hold for a pa~tieular time. 

The sine Gordon equation is known to possess a one
parameter family of non-linear Bäeklund transformations 

where ~l~~~) is again a solution of the sine Gordon equa
tion. Up to boundary eonditions ~~ is given by the two 
ordinary differential equations 
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~ being a constant independent of ~ and ~ (51. As was 
explained in the tutorials. this family of Bäcklund trans
formations provides a generating functional for an infi
nite number of conservation laws (~l. 

It is easy to prove that along with a solution 

'\ - ~t~,"'l) of ~I"+ (\f\")q.=O, \"_1 with "~"!l4=~, 
l \\0 ~) • C4'::loL , the vector 

<4(-)A) - Co-l(oL(i-t»)(\'t\at.) -+ ~(oL(;!ll)(i'i~ 
is a solution with ~ (oi 1)2.!!-1 , \ {o ;A)'" it 1 and 
(~\(.'j-i)0'i,l-;"))= ~ckl·.\l). «(.',-1) bJing the image of Cl(. 
under the Bäcklund transformation 1! . The vectors q. and 
'~;fl are orthogonal to each other. The requirement that 

tlie component ~(. jÜ,"I in the direction of \ vanishes. is 
equivalent to the con~ervation law 

\. ~(O(.l. "i)+al )~~+ l~(o(.(- .. :!-ol)1.,,"40o 
For general values of the parameter, there exists 

along with the solution vector C\ also a solution \ l" i~) 
of the equation of motion with 

'4\ (. ; t;)'2.I:l ~ l ~l· i ~) ... :: 1) (~'" l- ; ~)'l:\.,. c.. ; ;)) = Ccr:\o( (. i)) 
~~,~'being the image of ~ under the Bäcklund transfor
mation~. However. the geometrical relation between , 
and ~~i~) is not so simple any more. After the geometr1cal 
mean1ng of the parameter ~ has been clarified in section 
V. we shall present the resolution of this point in sec
tion VI. 

IV. GOALS AND STRATEGY 

We aim at associating a one-parameter family of iso
spectral linear eigenvalue equations (first with the ~
coordinate. later with the time coordinate as the defor
mation parameter) to the equations of motion for the in-
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variants of the general chi ra I group 0 in normalized 
coordinates. So far, this task is accoMplished for ~~~ 
only. A less ambitious but attainable goal is the con
struction of a generating functional for an infinite 
number of covariant local conserved currents. We shall 
proceed as foliows: We 

1 ) introduce ~ as group parameter for "outer" Lorentz 
transformations, i.e. transformations which leave the 
form ~"'- f" invariant, 

2) adjoin one discrete Bäcklund transformation for the 
chiral fields. 

After these first two steps we shall dispose of a 
one-parameter continuum of Bäcklund transformations ~~ 
for the chiral fields which serves as a generating func
tional for the infinite number of conservation laws. We 
then 

3) pass from the chiral fields to the 0 -invariants, 
n 

4) derive a one-parameter family of systems of (n-2) 
coupled non-linear (at most quadratic) first-order 
ordinary differential equations, 

5) formulate it as a one-parameter family of genuine 
Riccati equations (if possible) 

6) linearize these Riccati equations to obtain the de
sired isospectral linear eigenvalue equations for 
characteristic coordinates 

7) derive the corresponding isospectral linear eigen
value equations for time and space coordinates. 

V. THE GEOMETRICAL MEANING OF THE PARAMETER 

We claim that for every solution' of the equa
tions of motion (in a general system of coordinates) 

9rtt. - ~lI.lI. + l ~~ - ~~ ) ~ : 0 \ 9w-t.. = 1 
there exists a one-parameter family uE solutions ~~), 
'S € 1\\"- tOl wi th 

~~ ~ - ~(';l~ = ~ - ~~ 
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To prove this, we note that ~(~\ and ,~'» are re
lated to ~t; and '-ll by an outer Lore'Rtz transformation. 

We make the ansatz that they are related by the following 
special transformation ~~ 

~) :: ~-4 ~l~)~, \ ~~ & l; 1R(~)9r"l 

where lR.'~) s 1R.(')(l'''t.·, \) is an orthogonal-ma trix va lued 
function, and that in addition ~~) and \ are related 
by 

lf this ansatz is consistent, the parameter ~ may be 
interpreted as describing expansions or contractions of 
the respective sum and difference of the energy and mo
mentum densities of the chiral field vector ~: 

1. '\-~-'1: ~l~2J == ~~( ~~) 
\. '4~ ----. ! q,(~~ - ~-~( 1: \~) 

without at the same time changing the angle between \, 
and \". • 

The exi~tence of such coordinate-dependent rotation 
matrices ~(~ follows from the consistency of the compa
tibility equations 

1R.") 
l 

... ( ,,- ~ --i) 7Rl~) H (+) 

1R."'i,) - ( ,,- t;) '(RL'Cä) Ml -\ 
l. 

<R.l~\ ~le;)T & ~(~)"\'. o:tt-.) = .1\.. 
where 

M(t) - (Met) (~J \\(,~)).() = ~ 8 ~~)- ~8 <+'1' 
and where the symbol'l' denotes transposition. ~ "L' 

M{%) -IL.t are the sum and difference, respectively, of 
the zero and one components of the current densities for 
the chiral field vector " corresponding to a rotation in 
the (k,.e. )-plane. 
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Thc rotation matrices lt~) are given in the form of 
"time"-ordered exponentials by 

T .e.ry t ~ ,i!l: ( ~ (1-\;-A)I-\'1 + i?(~-I;)M(-\li'i,"llot"k.,.) 
which for fixed end points do not depend on t}:"l.~rticu
lar differentiable curve E,- ~ (,"1::) ) :? =1(,\::) ~ '1;(0) = ~.) 
-rtlO)s-"o !,(-1):.',"?(")""l: tR."U{\.,"7.T s a constant 
orthogonai matrix. ~oreover, the forlowing transitivity 
equation holds 

.) ~) =- ~ l'Sa.) ( • 

• O<.(t;A) ( • 

; ~<''SA) (. \ ~) ~ ) • 

j ~ ) • 

VI. BÄCKLU~D TRANSFORHATIONS AND CONSERVATION LAWS 

For a general system of coordinates there exists a 
non-linear transformation B which maps the solutions ~ 
of the equations of motion tor the chiral fields to new 
solutions ~ of the same equations. As opposed to the 
transformations ~~ previously considered, B changes 

... (I + • 
the angle between the vectors ~\ and ~~and leaves the1r 
lengths unchanged: 

B+ is defined up to some coordinate-independent rotations 
by the four compatible relations 

oe. 

1 

(,+'-~) 
(~I+ ~) 

l~'· '+ ) = 0 
This transformation corresponds to the Bäcklund transfor
mation ol.~<ll<:i1)of the sine Gordon theory. Along with B+ 
goes the conservation law: 

(<?rl • ~~)i.. +- ( ~I. ~,)~ = 0 • 

We obtain a one-parameter family of Bicklund trans
formations rr~ for the chiral fields - to be compared 
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to the maps oc. ..... ~t· je;) of the sine Gordon theory - by 
noting that the transformations B+ and R~ do not com
mute, and by combining B+ and R~ to form 

'T~+ .. ~~"'B+ '"R~ ~ ~ 1R~, \.01 : 

<+ ~ ~(. ;'c;+) - (\(t;»)')~t;) 
or schematically 

Q Q'15l 
T. ____________ ~----------~ .. ~. ~ 

"R~ 

~ ,~ lf" 
~N'" < !; " \l~)1 

The diagram is not commutative, the angle between ~l~i~+) 
and ~ l' 'I~+) depends on t; . 
Along~with rp~+ goes the conservation law 

(~(t;)I. ~~)~ -t \ '4t t;)I. ct(~), = 

:: ~-1 (~l· ; ~~:o''4~)l. + ~ l ~(. ; ~+ ).O'~"t. l( = 0 
with 

l)' = cRYW;) ( •. ) ,\-l' ., ~ + ))'1' . (R (,; ) ( · ~ ~) . 
(P)' 'R(~)(."\)" 

By expanding a."~ near the asymptote of ICl . .II 
for t;'" 0 into"tn asymptotic series in '; , inser't"tng this 
expansion into the above conservation law, collecting all 
terms of the same power in ~ and setting their respective 
sums separately equal to zero, we obtain an infinite num
ber of covariant local non-polynomial conservation laws 
leading to independent integrals of motion which are in 
involution [.'tl. 

Obviously, instead of the discrete non-linear trans
formation B+ we could have taken the transformation 

'ß_ = 'ß+ "P 
where the symbol P stands for the symmetrJl,operation: 
~~-g,., the reflection at the origin of IK"""" 'P~ 0",," 

To B we associate a one-parameter family of Bäcklund 
tran;formations 
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Going through a similar routine as before, we obtain an 
infinite number of new covariant local non-polynomial 
conservation laws arising from the previous ones by the 
replacement ~ ~ ~ • 

VII. DIFFERENTIAL EQUATIONS FOR TRE 0 -INVARIANTS 
n 

We choose an arbitrary solution tl- 9rl '\"l) of the 
equations of motion for the chiral fie\ds. Along with 
we consider all its Bäcklund-transformed solutions 

a ( • , t;. t) = ~ +0 Q T) l;- .,. 
'\ and \l· i~t) have common normal ized coordinates. In the 
sequel we shall always work with these special coordinates. 

From the solution vector , we construct a basis in 
1R~ with the first three basis vectors specified 

h - Q .e.:: Q .ß.: = <.b - ~ Gl q., , ..ß.~ '" = .. , ... ,'l'l-l. 
~ T l.-J!. 't'E, ') ~ ~ -

such as to give M(+) a simple matrix form with constant 
entries _ (_i~: _ 0 _) 

0: 0 . 
In this basis also M(_) takes a simple form 

o QnCll~' 
-(.o,d. 0 0 I 0 

H {_) - _0_1 

0 1 0 
1R,''I;)( .',\-) transforms this basisl into a new one .!.... 
~.-~,O~~, .. ,~-~. With respect to this basis the solu
tion vector <\-'11;)1 has components X ... 

X ... - (\(t;)I. J,.~») 

which are 0 -invariant. X-~ vanishes identically because 
of the orthRgonal i ty of q}-a;) and 4(~)1 • Moreover, the 
components X~ satisfy a c\osed system of bilinear ordi
nary differential equations involving derivatives with 
respec t to ~ 
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The components X~ are still subject to the constrain 

1 , 
deriving from the fact that ~(-;) is a unit vector. We 
eliminate the constraint with the help of the stereo
graphic projection 

Y 1, Xi -i. = ", .. ,~-2, 
i - '" -\- Xo 6 

and arrive at two systems of (n-2) coupled bilinear first 
order ordinary differential equations 

'(i\ = t;-~Y1 .... ~ t~'t·~)'Y'M. -t(~~·~)1'~)Yi t 
fJ "'-2" .,., \ 

+ t (:~!.. -44 \) ( " - f y~ I 1 : -1, •• ,~-1,) 
'(. .... . . . . 
~'t 

to be compared to the Riccati equations of the sine Gor-
don theory l~J. 

VIII. LINEARIZATION 

Having in mind the application of the inverse scat
tering method to our models, we set out to derive a one
parameter family of isospectral linear eigenvalue pro
blems. The equations obtained so far need to be linearizE 
in order to serve for that purpose. We know how to go 
about the linearization only if each system can be cast 
into a single equation for a single unknown function witl 
values in some finite dimensional algebra. This is the 
case for '\1.." if we comprise the four unknown functions 
y", •.• , 'C.. to one quaternion-valued function X = Xt~."'t.) 

'X. - '(. + "''CL + -1 '(~ "'" -l '( .. 
where I, i, j, k is the conventional basis for the qua
ternions: 
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x.". = -~ C«loL. X - ~ tö,t"X - ix fI:',! -+ i ~a(. (1- Xl.}. 
~l !Ir 

The symbo1s~) and ~;~denote certain quaternions invo1-
ving the sca1ar products 

( 4 •. 4-_) 1 + ~ ,i ,'YlIt. .. ., ••• ,'t (~o~,) 'W\.-",' 0," 
respective1y. Linearization is achieved by the ansatz 

X. = tGl~)(.4'4-)-" 
with suitab1y chosen quaternions a and b. In this ~ay, 
we arrive at the desired fami1y of isospectra1 linear 
eigenva1ue problems. 

We sha11 continue to discuss on1y the special case 
n = 4 which is also the most interesting one because of 
its relation to the non-linear (I" -model. 

The SU(2)xSU(2)-invariants in norma1ized coordi
nates are 

0/. = cue ~ (~l' ~,) 

.. Q • [§,l\I\at) '\t = Q • [\)~l""t) 
't~\ 4\M,o(. ... "t"..,. ~c(. 

The equations of motion for these invariants are 

=0 

'lL"1. = .!l.at '\)'" , 'lt"\ = ~OL 1A. 0 

The last two equations possess~~ and ~1 as integra
ting factors. Thus we set 

i) 

ii) 

\ '\t .. - ~"L l:ti 
• '\t:: ~"ehrt 

and obtain two hyperbo1ic equations for the sca1ar fie1ds 
OL. and ~ 

1 ) 
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derivable from the Lagrangian density 

2) 

L~l \.,) - ! «,oe.,. + ! ~2.t~lf"L + C&.1oL-! 

~,,+ ~+ ~t (\h=o 
R..., _ "lot... +al,~ , .. -.,. 4k..«." 

derivable from the Lagrangian density 

~l~,~) - i~cl..a, + i ~Z.fP.~+ cm«.-1.. 
Whereas the dynamics associated with the Lagrangian den
sity LI does not admit new static solutions of finite 
energy (besides the soliton and antisoliton solutions of 
the sine Gordon theory), the dynamics associated with thE 
Lagrangian density L2 does. 

d. -1 <Uc ~[J-1-~~AiM.(L~~"~)1 

~)C ,. )., A tit ) Ä - ~: \A \ ~ 1 . 
The above differential equations can be interpreted as 
embedding equations for a two-dimensional surface in a 
three-dimensional sphere which is itself embedded in a 
four-dimensional Euclidean space C~l. 

For the formulation of the family of linear iso
spectral eigenvalue problems associated with the first 
pair of differential equations we go back to the equa
tions for 't'" and '{2o which now read 

'(", ,. ~-t '1'" -+ tii ~ol'(,. - ~("'~- y1.a.): 'lI.. '1'" y~ -~ " 
'(a:~ = C;-iy,. - ~~o(. y~ -~ "'(2, + ~ (Y,."- '(,.1.) - ~ 

We can comprise the real functions ~ and V,. to a compleJ 
function W· 'Y .. +'\''(20 and the two differential equations 
reduce to a single one: 

W\ -Z;-tW - 4.iÄ. ~W - el'"iA..~ W2l+ ~\A..":' • 
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Define W= t.l(\,"Z..) by the compatible equations 

W~ = ~~o(, 
and set 

'vJ= 
The differential equation for W is satisfied if 

't,,~ + al. l.:.r~ e,i.(.)-q.,~ = 1 ~- "'4--" 

_ 1'!1.! + ~ -~ü. -A,c..) -1 >--'I 
l"~ -", e '4A'" ,. "'? '4'l.I 

Le. if 

where 

. 
A,. 

= 1.t; 

The '1-evolution of the wave function"" is given by 

- M 1\-. 

It is easy to verify the relation 

~ s lL,Ml 
which guarantees the isospectrality of the family Llt). 

We take appropriate linear combinations of the eigen
value and ~-evolution equations and change the basis ac-

cord ing to ('<.) .~ 
't -1.. e.-4.'l; - ~ e.1.i: 

= ,rr- • _~l .ue 1L 
"4 -A.. -':. 'Z.) ~ T 
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Thus we arrive at the linear eigenvalue problem 

- Ä.~2. t 1} + A(~) 1±. + ~~) ~ :: i\.1f 
and the corresponding time-evolution equation 

~1f-: -i1:1f +"-~E)~{~) + QtqWJC\'I' . 
Here we have used the following notation 

• 
"'" 

6' ..... i = 1, 2, 3 ( 4) are the three Pauli (2x2 unit) 
trices. 

The time evolution of the scattering data is 

..,. (Ä,-t) ::& ~ i JA ~ 1 ~~,O) -00:. < Ä< +00 

ma-

-c;~ l:C) = ~~ } '"n-\.1 Lt) =- ~ 1 ~!'S~ t 1~1 (0) 1 =1 /°o,N [bJ 
Thereby we have~solve~ the Cauchy initial value problem 
for the equations 

./-a~ 
OeL + A-\AAci -~ W~1) == 0 

O~+1~) = 0 
(Ool+~oL+~~ (~~~~)=O\ D~-l (~~) =- 0 ) 
which arise in the context of the one-space-dimensional 
version of the non-linear ~-model. 
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SEMICLASSICAL METHODS IN FIELD THEORY 

Andre Neveu 

The Institute for Advanced Study 

Princeton, New Jersey 08540 

This is an introduction to some of the methods used in the 
last two years to exploit at the quantum level part of the know
ledge one may have on a classical field theory. 

The interest of classical equations of motion in quantum 
mechanics is already manifest for one degree of freedom: the WKB 
approximation for bound states is in general excellent, even for 
the ground state in the extreme strong coupling limit (for 
numerical results in the anharmonic oscillator, see [1]). When 
there are many degrees of freedom, one tries to separate them. 
If one can, the WKB method is applied to each of them separately. 
If one cannot, whether for fundamental or practical reasons, the 
problem is more complicated, and, the knowledge of the classical 
system being more restricted, so will be the validity of semi
classical quantization. In practice, for such non-separable 
systems, one knows only a very special set of simple classical 
motions (rather than all the motions). It is still possible to 
extract useful quantum mechanical information. Examination of 
simple systems leads to the general heuristic feeling that the 
results of semiclassical quantization will be good at least when 
the quantum fluctuations (around the classical motion which is 
quantized) remain small enough that the effect of nonlinearities 
is small. A general quantitative statement is difficult to form
ulate. Each system has to be examined separately. For field 
theory, it turns out that the region of validity includes the weak 
coupling region. This has the advantage that one can compare with 
the results of ordinary perturbation theory. Of course, in field 
theory, one has to deal with divergences and renormalization. 
This is rather straight forward , and the result is that all 

357 
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divergences are handled by the ordinary one-loop counterterms. 
All this fits with the widespread and rather vague belief that 
"WKB = trees (classical) + one loop". Actually, semiclassical 
results cut across the whole perturbations expansion, picking 
in each order diagrams or pieces of diagrams that cannot be identi
fied in any simple fashion. 

The approach to semiclassical quantization used in ref [2] 
involves the trace of the re solvent operator: 

G(E) = tr 1 
H-E = 

1 
L E -E 
n n 

G(E) has poles for E En , nth eigenvalue of the quantum-mechanical 
hamiltonian H. We do not worry here ab out the convergence of the 
series in (1); subtractions could be necessary, but would not 
affect the location of the poles. The next step involves writing 
G(E) as 

G(E) = i tr r 
o 

dT h exp i (E-H) ~ 

Here again, we do not worry ab out possible divergences in the T 
integration. In principle, an iE provides convergence. Let us 
only remark that one is not restricted to an integration along 
the real Taxis, but that complex values of T can be considered, 
as long as they are compatible with the iE prescription. Allowing 
T to be complex would correspond to including possible tunnelling 
phenomena, for which we do not yet know the general formal i sm. 
We now outline the general method for the calculation of the right
hand side of eq.(2), referring the reader to the original papers 
for the details. The strategy by which classical solutions appear 
naturally involves using Feynman path integrals: 

T .2 
S =! [i x - V(x)] dT 

o 
(4) 

where S is the action computed along the path x(~). Here X(T) is 
only a generic name for all the degrees of freedom of the theory: 
in the simplest case, it is just the position of a particle in a 
one-dimensional potential V(x), but it can have many components, 
for a motion in a multidimensional potential; and for field theory 
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it has an infinite number of components, namely the values of the 
fields at each point in space. In this case, V(x) contains both 
space derivatives of the field and interaction terms. Finally, 
the functional integration in (3) is to be done on periodic paths 
only: x(O) = x(T). This condition is just the translation in 
position space language of the trace operation of the left-hand
side. 

The connection with classical mechanics is now evident: the 
semiclassical (= small h) approximation consists in computing 
the functional integral of eq. (3) by stationary phase around 
classical periodic orbits of period T. 

By examining separable systems, one can see that there are in 
general many periodic orbits with the same period. In such a case, 
it can be shown [2] that including all of them in the stationary 
phase calculation of (3) leads to the same result as first separ
ating the variables and then quantizing each of them a la WKB. 
In field theory, one cannot hope to retain all possible periodic 
classical motions, but only a limited set. The larger the set, 
the more information one will get on the quantum system. Here, 
we will restrict the discussion to one set of period orbits with 
the period being the only varying parameter; a typical example of 
such a set of motions is the doublet of the sine-Gordon theory: 
the classical energy varies continuously with the period, and 
quantization will restrict it to discrete values. 

The stationary phase calculation of eq. (3) is no different 
in principle from ordinary stationary phase calculation of a simple 
definite integral: shifting the integration variable to the station
ary phase point and expanding the exponent to second order makes the 
integration gaussian: 

where 

-iHT/1i tr e 

S is the 
ct 

T 
'" s = 10 

classical action around one orbit, 

[i ~2_ ix V" (xd, (T) )x]dt 

x ct being the classical trajectory. 

and 

(6) 

The x integration is now gaussian. Performing this integra
tion gives the inverse of the square root of the product of the 
eigenvalues of the differential operator a2 + V"(x t(T)). This eigen 
product is computed in reL [4] in terms ofTthe sta-6l1ity angles 
of the classical trajectory x (T). The stability anglesv are 

ct a 
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defined by the solutions of 

such that 
-iv 

CI. =e y(or) 
CI. 

(8) 

The classical trajectory is stable if all the v's are real. We 
will assume that this is the case: quantum fluctuations remain 
small, and do not take the system to regions of phase space far 
from the classical trajectory. 

Zero stability angles require a special treatment: any cont
inuous symmetry of the classical system generates a corresponding 
zero stability angle. In practice, for field theory, it will be 
space-time translation and internal symmetries. The integration 
over the corresponding modes is not gaussian, and formula (5) has 
to be modified to take this into account. We refer the reader to 
the literature on this delicate subject (ref.[5] ). 

Finally, one should take into account the fact that if a 
trajectory with period T is known, traversing it n times trivially 
defines a trajectory with period n T: one has to sum over n. 
After which, the approximate form of G(E) turns out to be 

G(E) = 
00 00 

10 dT ~=l L 
{qCl.} 

e 

i -* {(Sd,+ET) - L (qCl.+ i) vCl.-ir} 
CI. 

{q } being any set of positive integers (or zero). 
CI. 

The remaining integration over T is also done by stationary 
phase. The stationary phase point is 

dv 
( 1 CI. 

E = EcR. + 11 L qCl. + 2) dT 
CI. 

and the summation over n in eq. (9) gives poles at 

L (q + i) 
CI. CI. 

dv 
(T dT CI. - v ) = 2mrh 

CI. 

(10) 

(ll) 

This is the generalization of the ordinary WKB formula 
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to many degrees of freedom. The "main" quantum number n quantizes 
motions along the classical trajectory. The integers qa (in number 
equal to the number of degrees of freedom minus one, in general) 
quantize the oscillations around that classical orbit. Since 
these have been treated in the linear approximation, the validity 
range of (11) is large n but small~. In practice, in field 
theory, one will be looking for bounds states, and most of the 
v~s correspond to travelling waves, for which qa will be taken 
equal to zero. In field theory, because of the infinite number 
of degrees of freedom, the sums in (10) and (11) diverge and have 
to be renormalized: it turns out that for a renormalizable theory, 
(10) and (11) are made finite by simply subtracting from E the 
vacuum energy in the one loop approximation and using in the func
tional integral (3) the Lagrangian with the ordinary one-loop counter
terms included. 

A time independent solution is a particular ease to which 
formula (10) ean apply. In that ease, va = wa T, where wa's are 
the frequeneies of the small oscillations around that solution, 
treated in the harmonie approximation. 

Examples of these methods have been worked out in some detail 
for two-dimensional model field theories where caleulations eould 
be done analytieally, and eompared with exaet results. Both statie 
and time-dependent solutions have been eonsidered. 

The first and most remarkable example is the sine-Gordon 
theory, defined by the Lagrangian 

1 ( ) 2 m4 I t0. 2 a ~ + -:;- eos -~-l] 
fl /\ Ir 

In (12), the variables have been defined so that the small ~ 
expansion 

ct = - 1 ",,2" 2 + ~ '" 4 2""'1' 4!'f' + ... (13) 

eorresponds to a field theory of a boson of mass m with a weakly 
attraetive eontaet interaction. On the other hand, the resealing 

,x+ x 
m 

brings the Lagrangian (12) under the form 

[ - t (a ~) 2 + eos ~ -1] 
fl 

(14) 
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The classical behavior of the sine-Gordon theory is completely 
known. See ref. [6]. From (15), we see that the dimensionless 
coupling constant A/m2 will play in the functional integral (3) 
the role of h. Hence, the results of semiclassical calculations 
overlap with the validity range of perturbation theory. This is 
a completely general feature, independant of the space-time dim
ension and of the specific lagrangian. 

From the work of ref. [6] on the classical sine-Gordon theory, 
we learn that there are two types of solutions that, when quantized, 
will give particles and bound states. In their rest frame, these 
are the soliton: 

</> = 4 Arctan eX (16) 

and the doublet (or breather), which is a soliton-anti-soliton 
bound state: 

1 

4 Arctan 
E sin[t(1+E2)-~] 

cosh [EX( HE 2 ) - 2J 

(E is any real positive number). 

The theory being Lorentz invariant, solutions (16) and (17) 
can be boosted to arbitrary velocities. By putting the system 
in a periodic box, there results further periodic motions. 
Quantization of these motions can be done [4]: this is actually 
a case of separation of variables, with the center of mass position 
being one of the variables. One then just gets the expected quanti
zation of moment um in the box. 

Application of eq. (10-11) to the solutions (16-17) is describe 
in ref. [4]. All calculations can be done analytically, thanks to 
the fact that the classical sine-Gordon system is integrable: in 
particular, one can find analytically the solutions of eq. (7-8). 
The final results are: the mass of the soliton is 

M( soliton) = (18) 

The first term on the right hand side of eq. (18) is the classical 
mass. The second is the contribution of small oscillations around 
the static solution. It turns out in the course of the calculation 
of the first quantum correction that the only non-zero stability 
angles are part of the continuum: there is no soliton-meson bound 
state. This is in contrast with A</>4 (see below). For weak 
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coupling (A/m2 « 1), the soliton is a very heavy particle. It 
cannot decay into ordinary particles because of its topological 
properties. The topological conservation laws of static field 
theory classical solutions is discussed in ref. [7]. 

The doublet (17) produces the remaining series of states 
at masses 

n 
= 16m sin !!l.' 

y' 16 n = 1,2,3,--- <8TT/Y' M 

with y' 

The original "elementary particle" of the theory is the 
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n = 1 state in eq. (19), as can be seen in the small coupling limit 
A «m2 . The other n>l states can be considered as bound states 
(at least in weak coupling) of the elementary particle. It is 
interesting that one can either consider $ as the fundamental field, 
of which the soliton is a complicated collective excitation or 
the soliton as the fundamental object, other states, including the 
elementary particle, being soliton-antisoliton bound states. 
Indeed, Coleman has shown that the sine-Gardon theory is equivalent 
to the massive Thirring model, the fermion field being identified 
as the field of the soliton. Thanks to that equivalence, one can 
show that the mass ratios as given by eq. (19) are exact to all 
orders in A/m2 : see A. Luther's lectures at this school. This is 
of course an accident, analogous to the non-relativistic hydrogen 
atom. 

The other model field theory considered in ref. [4] is 
A$4 in the two-phase region: 

eZ = - i(d ll$)2 + im2$2 - t A$4 

which, after the rescaling (14) becomes 

(20) 

(21) 

Ordinary perturbation theory of (21) involves first shifting 
the field to its vacuum value + 1 (it could also be -1), thus 
spontaneously breaking the $~-$ discrete symmetry. The first state 
above the vacuum is a particle state, with mass ~in lowest order 
of perturbation theory. Here again, perturbation theory is made 
in powers of A/m2. 

There is a static space dependent solution of (21), the 
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kink, analogous to the sine-Gordon soliton: 

1 
</> = tanh /2 x 

ANDRE NEVEU 

(22) 

This solution connects the two vacua + 1. It is stable, both 
classically and quantum-mechanically [7]. The computation of the 
first quantum mechanical correction to the mass of the solution 
(22) is performed in ref. [8]. Contrary to the case of sine
Gordon, there is one isolated non-zero stability angle, which 
means that there can be bound states of a kink and an ordinary 
particle, labeled by an integer q ~ O. 

The mass of such states is 

3 
M = ~ 12 ~ + m (- _3_ + ~) + m 1f2 q 

q 3 A 7ft,! 2(0 
(23) 

where the first term on the right hand side is the classical mass 
of the kink, the second the first quantum mechanical correction. 
The state q = 0 is the unexcited kink. The state q = 1 is a 
kink-meson bound state, and is stable because of energy conserva
tion. States with q > 1 can decay into an unexcited kink and a 
meson; they would gain a width in higher order of perturbation 
theory. 

Non-trivial time-dependant solutions of the </> 4 theory are 
not known analytically. However, one can find them in perturba
tion by analogy with eq. (17), in which E is considered a small 
parameter. The strategy is to expand simultaneously in harmonics 
of the fUndamental frequency and in powers of E. This is 
explained in detail in ref.[4]. The result is a classical motion 
qualitatively analogous to the doublet [17], which, when quantized, 
gives a set of bound states built out of n(n ~ 1) elementary 
particles. This solution also seems to be a kink-antikink bound 
state [4]. States with n > 2 are not expected to retain their 
stability in higher orders: </>4 does not have all the higher conser
vation laws of sine-Gordon which stabilize all the states of eq. 
(19). 

The non-linear Schroedinger equation [9], which is the non
relativistic limit of the sine-Gordon theory can also be quantized 
semiclassically with this method. There too, the semi-classical 
results are exact. See ref.[lO] for details. 

The introduction of fermions in semi-classical methods is 
delicate: the only way one can reach a classical limit (= large 
quantum numbers) is by the introduction of a large number of 
fermion species, so that there can be many fermions in the same 
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state. A two-dimensional model of this type has been considered 
in ref. [11] and gives a remarkably rich spectrum of bound states; 
it could also be a new system with an infinite number of conserva
tion laws; it also has the advantage of being renormalizable and 
asymptotically free, rather than superrenormalizable; it also 
exhibits dynamical symmetry breaking. 

In higher space-time dimensions, all known particle-like solu
tions of classical field theory are static or have a rather 
trivial time-dependence; thus, so far, there has been few applica
tions of the semiclassical method to higher dimensions. 

Finally, we mention the new developments on semi-classical 
tunnelling in field theory. They make use of imaginary time 
(euclidean) finite action solutions which connect topologically 
distinct classical vacua. This gives rise to a new class of 
phenomena, which are being investigated, and I can only refer the 
reader to the recent literature [12]. 
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Suppose one suspected that a non-linear system in 1+1 dimensions 
was perfect (completely integrable)1, but did not know all the classi
cal static or time-dependent solutions. If one wished to consider 
such a system as a field theory and apply functional WKB methods 2 
to compute quasi-classical quantities, it is generally assumed that 
one would have to know all these solutions to the original non-
linear system. The reason is that they determine the saddle point 
of the functional integral defining the energy spectrum and the 
accuracy of the WKB is in direct proportion to control over the 
saddle points. If one had the complete set of classical solutions, 
then a strong coupling approximation is possible, since one is no 
longer doing perturbation theory in some small parameter, but rather 
a functional expansion in solution space. However, the complete 
spectrum of classical solutions to non-linear systems is notorious 
for the analytic effort required to find it. 

There is a way around this difficulty which is very powerful, 
but requires the use of notions unfamiliar to most field theorists. 
There exists a method which fixes the quasi-classical energy spectrum 
directly and simultaneously generates all of the classical solutions 
to the original non-linear system. It hinges on the existence of 
certain sum rules connected to the non-linear system,called trace 
identities. Of course it works in 1+1 dimensions only if the system 
is perfect, but has a natural extension to higher dimensions which 
is the definition of the higher dimensional analog to perfection 
in 1+1. 

For example, certain non-abelian gauge models in 3+1 dimensions, 
that support monopole solitons 3 and others which in the euclidean 
sector support pseudoparticles~, or instantons look suspiciously 
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like perfect systems. By that one means that a one-loop WKB calcu
lation, done over all the saddle points of the system is exact 5. 
There would be no further quantum corrections. Such a situation 
could occur in systems with dynamically generated, conserved topo
logical quantum number,connected to the solitons. 

This is of course a conjecture, but if it is true, the method 
of trace identities should in principle be powerful enough to show 
it. If it is false, they would give no statement. The next 
sections will be a general introduction to trace identity sum rules 
and the inverse scattering method. Since this is supposed to be 
tutorial in nature,I will go into a minimum of analytic detail, 
which can be found in the references, but rather motivate concepts 
as we go along, and sketch their use. 

THE INVERSE SCATTERING METHODI 

The inverse scattering method arose in the study of certain 
classes of one-dimensional non-linear fields. Its essence consists 
of associating with the classical field under study,a certain linear 
differential operator, with coefficients from this field, whose 
spectral characteristics change with time in a known way. The 
Cauchy problem for the original non-linear system is reduced to the 
known problem for the direct and inverse spectral problem for a 
linear operator. The main linear operators used are the Schrödinger 
and modified Dirac. This description is somewhat compact. In out
line the steps are as follows. 

We want to study a general non-linear wave equation $ =k($) 
where k($) denotes a suitably defined non-linear operator. t If we 
can find linear operators Land B which are functions of $ so that 
iL t = [B,L], then if B is self-adjoint, the eigenvalues E of L i.e., 
solutions of LW= EW, are time independent, even though L depends 
on time through $. Further, the eigenfunctions W of L evolve in 
time according to iWt= BW. In such a case it is possible to assoc
iate a scattering problem with the linear operator L, and given the 
initial data $(x,O), we can construct $(x,t). The steps are: 

a) Calculate asymptotic data for W (reflection coefficients and 
bound state eigenvalues for L) at Ixl=ooand t=O, from a knowledge 
of $(x,O) or by other means. 

b) Using the evolution equation iWt= Bw,compute the time evolution 
of the scattering data. 

c) The inverse problem: knowing the scattering data as a function 
of time,reconstruct the potential $(x,t). 

The reconstruction is done with the Gel'fand-Levitan-Marchenko equa
tion. For the Schrödinger kernel L, this procedure is as follows: 
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The integral equation 

tC'IC,'j) t k("&/~) t f-K.("äT"')'J(lC,~IJJ~1 -=0 :, 1'>>< 
)l 

is solved for g(x,y), where the kernel K is given by 
M 

kex+\t) - R.(~"'l:1) 1- L '7Y1N ll~p (-~.,..ClC+~J) 
"""I 

R.. (1(+~) _ ttr J '1-110 I? t~ ) L 7&/, ( i It e 1(. +d-) ) J.Ic. 
-... 
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(1.1) 

(1.2) 

(1. 3) 

where R(k) is the reflection coefficient, M the number of bound 
states with eigenvalues~. The factors mN are certain functions 
fixed by the evolution equation. The potential $(x,t) is then 
reconstructed by 

$(x) = -2 d/dx g(x,x) (1.4) 
(we have suppressed the t dependence for simplicity) 

So, a non-linear wave equation has been replaced by the linear GLM 
integral equation, which in many cases are easier to solve. These 
equations have been generalized to 3+1 dimensions by Faddeev and 
Newton6• Schematica11y we have: 

Inverse GLM Equation Scattering data x =~; t) 

t Evolution equatioD 

Scattering data x ~ 

$(x,t) ~ ( 

+ $(x,O) ) 

Direct problem 5('1'1'11.); ~"" ,1fI-:, ... ,..,)t = ° 
For our purposes we do not know $(x,O), but in static cases want to 
find it and the evolution equation is unnecessary. Our problem will 
be schematica11y 

$(x,O) 
Functiona1 sadd1e points 

+ r"'~ F [4>clC/oll :::. 0 
0"1"(1<,0) 

Functional sadd1e point 
condition 

( Inverse GLM Equation ~ [-r(-l) ,~~ ] 

1 
------4) $; S ) 

Trace Identities of ft=ttl) Sie F(r) ft. ~ 0 

Associated L 
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Again {r(k),k~} are ref1ection coefficients and bound state data. 

TRACE IDENTITIES IN ONE AND HIGHER DIMENSIONS 

Let me show you a trace identity in 1+1 for the SchrBdinger 
equation7 

which has the asymptotic scattering data: 

S{r(k), k1 , 1=1, ••• ,m}. There are an infinite fami1y of them. 

The first is 

f"''' U(X} ~ 
-". (2.1) 

This is aremarkable formu1a, since it expresses an unknown poten
tial U(x) direct1y as functions over separate pieces of the asymp
totic data. In other word~ it is a function of comp1ete1y factor
ized S matrix data. From the previous section we know that if we 
can fix the scattering data, we can reconstruct the potential 
by GLM. If the original equation that U(x) obeyed is perfect, it 
will be possib1e to fix the r(k) and k1 comp1ete1y. If not, one 
will simp1y not get enough constraints on these parameters to re
construct solutions. This is a very efficient method for finding 
the sadd1e points of functiona1 integrals. 

Before proceeding to sketch how such formulas are used in 
quasi-c1assica1 ca1cu1ations, I will give a loose derivation, first 
due to Faddeev and Bus1aev8 , on how such sum ru1es come about in 
arbitrary dimensions and what assumptions on L go into them. 

Genera1ized Trace Identities 

This is all for the Schr6dinger kerne1 in up to three space 
dimensions. We will need some theorems. 

(1) d tr(R -R ) = - -- ~n M(IX) A 0 dA (2.2) 

where M(IX) is essentia11y the S matrix, R is the reso1vent kerne1 
for the Schrödinger operator and RO is the reso1vent in the absence 
of a potential. 

(2) Consider the properties of the auxi1iary function 

2z d g(s) = s -- ~n M(s), z comp1ex, in the comp1ex Aplane ds 

We will assume on1y very loose restrictions on locations of poles and 
cuts,so as to fit the argument to the widest c1ass of kernels. By 
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definition,tn H(s) = i n(s) + tnA(s), which by partial integration 

f: f 2)' d. f &~-, d z~-, ) 
~ q.(5)dS;. 5 r 1.,.,.Mts) = -2.) (i. s "l.(s) s +t:J R?l.A.rs)Js 

q ~ (2.3) 

Do the LHS by contour integration on the lower half plane of A. 
Since s = IX (s = the energy), d/ds tn m(s) = 2 IX d/dA tn m(tA) = 
- 2 IX tr l/H-A (by (1» = - 2 IX ~l/Eh-A. Now in the spectrum 
of H, assume only poles along neg A naxis , excluding the point A = 0, 
and that all integrals vanish over contours at 00 and 0 

tnA 

'VA = 0 

etc. 

POLES AT ;r- = s = ike ' BOUND STATE ENERGIES 

(2.4) 

Equating imaginary parts in eq. (2.4) 

~ L -f.e.2"f :: - ~ Co:l1t"~ r: 'll~'nz{-II) J':) - i' S~'It., 
~ 0 (2.5) 

To go further we need an asymptotic expansion for n(s) 

~ + "CA) ) hI,f,.) 'V t1({~) 
(2.6) 
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Then analytically continue eq. (2.5) by observing the action of the 
poles. 

so for z 1/2 we get a sum rule 

(2.7) 

ao is the first trace coefficient, or first term in the asymptotic 
expansion for the phase shift, k1 are the bound state data and 
lnA(s) are S matrix elements,which in 1+1 dimension become the 
reflection coefficients. 

The sum rule can be extended to higher coefficients in the 
asymptotic expansion. The point is that the ai's are just moments 
of the potential and its derivatives and one needs efficient ways 
of generating such expansions in higher dimensions. Also one clearly 
needs some factorization conditions on Re M(s) 

APPLICATION TO A QUASI-CLASSICAL CALCULATION, THE GROSS-NEVEU MODEL 

The Gross-Neveu mode19 was the first ca se in which trace iden
tities were used to evaluate the quasi-classica1 energy spectrum. 
We don't need to know very much about it,since it is used here on1y 
as an examp1e of what we've been discussing. 

The Lagrangian for this system is 

(3.1) 

, g is a dimension1ess 
parameter 

y's being the usua1 Dirac matrices. 

Examine the ordinary vacuum functiona1 for this system. 

(3.2) 

By introducing an auxi1iary sca1ar fie1d a(x), this may be rewritten as 
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.(0'0) = f lUIj) J)(lf) ~(tT) t,"p [; r (--i 0"'2-t :y Ci ~-~rr)..,.) ] 
(3.3) 

One could integrate the fermions out of the system at this point, 
since everything is quadratic to get 

(3.4) 

The integrand of this equation is a perfect system of a type not 
studied in the literature. To see how trace identities enter we are 
going to do the functional fermion integration in another way for 
the representation of tr exp [iHT] , the fundamental object of the 
WKB method. 

where f ,.llC.i. ) 0 S n~ ~ Z,.; N = number of fermion flavors, over all 

o(x,t) such that o(x,t+T) = o(x,t) and lo(x,t) I + 1001 as lxi + 00, 
C{N,{n}} are some binomial coefficients and the a. are the 
Floquet indices for the Dirac problem (ia - gO)$j1= 0 where 
$J-(x,t+T) = exp(-ia.)$.(x,t). The problem is to find the stationary 

J J 

phase points of eq. (3.5). To simplify matters we will look only for 
time independent ones, which means we have to consider the simpler 
problem 

~~C\<l 2-f; (a'~)C')-.-;.l)dx'+ Nt-rS: -twocr).,.,G"o -1').Wocv) 11 - 0 (3.6) 

($;~ 
where ~ ~ expresses the phase shift experienced on putting the 

system in a box with periodic b.c. and carefully counting modes. 
For our purposes we can write this even more schematically as -~ f - J ~ (o-~,.,) - C"o'-).h' ~ ~ [atlC) ) 11"'01 S - 0 

'iiq>CIt) 7.. _ .. 
(3.7) 
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with the same assumed b.c. as above. To solve an equation 1ike 
eq. (3.7), consider a(x) as a time independent potential of a Dirac 
equation, whose solution will be a functiona1 of a(x). So 
(ia -ga)~ = 0 and setting ai = oo~ premu1tip1ying by (ia +ga) gives 
the SchrBdinger form 

C;" - [,... (0' .... - ro 1.) ~,. ~ I J 'f -= - (1"/'- 'j ""r;, ") i 
(3.8) 

where we have just added and subtracted a constant fie1d aO' Make 
the obvious identification k2 == (oo2_g2a02) and u(x) == [g2(a2-a02)±ga'] 
with b.c. a(x) + aO lxi + ~. 

Using the trace identity eq. (2.1),we can immediate1y write 
fu(x)dx as a function of the ref1ection coefficients and bound state 
eigenva1ues of this associated scattering problem, in a factorized 
form. This a110ws the variation ö/öa(x) to become independent 
variations on (S;tl'"tiJ) ;s.~4!) Q:I, .... _). 

If one writes out everything comp1ete1y and carefu11y performs 
the variation9, the sadd1e point conditions are: (1) r(k) = 0, 
(2) a1gebraic relations from the k t variation~which imp1y the energy 
spectrum f" .. -= '2.hr i 11"0 N sw.,un / e = Trh. .... /N. The resu1t (1) says 

that u(x) is a ref1ection1ess potentia~which is characteristic of 
1+1 dimensional perfect systems, the reason for which emerges in its 
c1earest form here. By using GLM equations and the va1ue for e and 
r(k) =O,one recon~tructs a(x) as 

.1 ( .L ((~~) 
0'" ''') -= tr. .,.. 0'"0 1 7" o.,J... , Ir. "it)C - "t 4.. (I - 'f) 

11",. 7 Jo",J.. ()1I"0'1)( +~ -'- (/~!.j) ) ) ,"=4 .... (&) (3.9) 

which is a soliton-antiso1iton pair. 

RESULTS AND PROBLEMS IN HIGHER DIMENSIONS 

In summary,let us list some general features of the trace 
identity method. In 1+1 dimensions it is: 

(1) a method that is deductive, for 
the c1assica1 sadd1e points, it 
of a clever scattering problem. 
are generated as output. 

rather than guessing all 
invo1ves on1y the choice 
The c1assica1 solutions 

(2) It avoids having to separate out the various zero symmetry 
modes in the functiona1 measure. 

(3) Generates ana1ytic conditions on the energy spectrum, in 
many cases a simple a1gebraic equation. 
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How much of this generalizes to higher dimensions? The solid results 
are 

(a) There is a generalization of the inverse scattering 
reconstruction procedure in 3+1 dimensions, for many 
kernels, due to Faddeev and Newton6 . 

(b) The existence of trace identities and their explicit 
form, for a wide variety of kernels, is known in 3+1, 
mainly due to Buslaev10 • 

This was part of the reason for going through the rather arcane 
demonstration of sec. (2). It makes no reference to dimension and 
a variant of the argument can be made as tight as one pleases. The 
problems with higher dimensional versions are the following: 

(a) The potentials genera ted by 3+1 inverse scattering 
methods are not unique. This is not fatal: Quantum 
considerations may put on enough constraints to pick 
out one of the set. This is already a salient feature 
of 1+1 dimensional problems. 

(b) While there are strong factorization theorems for the 
S matrix in higher dimensions (e.g., triangularzation), 
the explicit implementation of them has not been worked 
out and is strongly dependent on the particular scattering 
problem one picks. 

(c) Methods for efficiently generating asymptotic expansions 
for n(k), for any kernel, simply don't exist in the 
literature. There exist methods10,11, but theyare 
very cumbersome to operate. 

This last point has been overcome in the last year by Neveu and 
myself 12 • We have managed to develop very fast ways of computing 
the coefficients in n (k) =!:'''' 0.., by using either 

.. :, """ 
functional integral representations for the partition function and 
doing a high temperature expansion, giving the a(k) directly, or 
using a contour representation of the partition function coupled 
with a Feynman diagram technique, that is good even for gauge 
theories and in many dimensions. We do not know how to handle the 
factorization of the S matrix (i.e., what are the·independent 
scattering data) for models with gauge fields, but feel that this 
problem can eventually be overcome. The development of such methods 
would open up the practical possibility of doing strong coupling 
approximations in non-abelian gauge models. 
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DYNAMICAL CONSERVATION LAWS IN TRE QUANTIZED MASSIVE THIRRING 

MODEL + 

M. Lüscher 

11. Institut für Theoretische Physik 

der Universität Hamburg, Hamburg, Germany 

It has been shown recently by A. Luther [1] that the 
quantized, renormalized massive Thirring model can be considered 
as the continuum limit of a tractable lattice quantum field theory. 
This latter model lives on a one dimensional lattice with spacing 
a (time remains continuous). Its Hamiltonian is given by 

Here, +"" denotes a (one component) fermi operator at si te n, Gr is 
a renormalized coupling constant, m is the bare mass, v (G) is a 
finite renormalization constant kee8ing the speed of light equal 
to one and E makes the ground state energy vanish. 

o 
The low-lying spectrum of H can be calculated explicitly. 

This is due to the fact that H is essentially a logarithmic deriva
tive (with respect to a certain coupling constant V) of the 
transfer matrix T(V) of the Baxter model. The largest resp. second 
largest eigenvalues of T(V) have been evaluated by Baxter [3] resp. 
Johnson, Krinsky and McCoy [4]. As expected from the Coleman 
equivalence theorem [5] one finds soliton, antisoliton and breather 
states. 

+ 
This is a brief summary of results that emerged from an 

analysis of the lattice massive Thirring model as proposed by 
A. Luther [t] . Full details are given in reference [2] . 
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The relationship between the lattice massive Thirring model 
and the Baxter model also makes it possib1e to exp1icit1y construct 
an infinite set of local, conserved charges Q for the fermion 
model. They correspond to higher logarithmic äerivatives of the 
transfer matrix T(V). Since the transfer matrices commute for 
different values of the parameter V [3] so do all the charges Q 
(because H is equal to the lowest charge Q this implies especiRlly 
that the Q 's are conserved). 0 

n 
The one particle states with momentum q and energy E(q) are 

simultaneous eigenstates of all charges. The corresponding eigen
values are: 

Consider now a general scattering process involving solitons, 
antisolitons and breathers. Assume that there are m incoming 
particles with momenta ql"'" qm and m' outgoing particles with 
momenta qj, ... , q' ,. S~nce the charges Q are local theyare 
asymptotically addi~ive, i.e. n 

This infinite set of conservation laws restricts the possible 
scattering processes severely. In fact, one finds that 

a) the total number of fermions (solitons, antisolitons) and the 
number of breather modes with internal quantum number n are 
conserved separately, 

b) the sets of momenta q. (q!) of incoming and outgoing fermions 
~ ~ are equal, 

c) the same as b) holds for each type of breather mode separately. 

These statements are independent of the cut off (i.e. the lattice 
constant a ) and are therefore true for the continuum, renormalized 
massive Thirring ~del as weIl. 
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HIGHER CONSERVATION LAWS IN THE MASSIVE THIRRING MODEL 
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A. 

Among field theories in two space-time dimensions the 
massive Thirring model (MTM) and the Sine-Gordon theory (SGT) 
playaprominent role in the recent discussion about the so
called soliton phenomenon. 

The SGT considered as a classical field theory is an in
tegrable system 1). This fact makes this model an ideal test 
ground fo~ the application of semi-classical approximation 
methods 2). A by-product of the integrability of the SGT is 
the existence of an infinite number of non-trivial local con
servation laws. 

The MTM on the other hand has been discussed extensively 
under the aspect of a correspondence with the SGT 3). We will 
deal here with an additional characteristic feature of the MTM 
displaying some analogies to the SGT, namely the existence of 
an infinite number of non-trivial conservation laws. We do not 
know at present whether these conservation laws (and their ana
logues in the SGT) can be brought into connection with the cor
respondence mentioned above. The material presented in this 
contribution is compared to the oral version of the seminar 
given at the Cargese summer school supplemented by some results 
not yet known at that time. 

B. 

The MTM is defined through the formal equation of 
motion 
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for an anticommuting spinor field W in two space-time dimen
sions. To start with we derive from Eq. (1) the simplest 
higher conservation law where all terms carry canonical dimen
sions not higher than five. By use of the equation of motion 
one easily verifies the identity 

~14' ( ~rrf J"tj'.3a. + IA..'.):; ") ... ( .... ) 

- 6 ~ 'YJ C4 r po 'fJ 14. a ~ ( r t J4 '1') ) 
~+x -t-.x ( ~'t\. ) 

c.c. == -r ) 11" ., --r-, \.. "I ~u.. := Gt.\. f . 
Rewriting the second term on the right-hand side of (2) in 
spinor components and applying the equations of motion in 
characteristic co-ordinates 

In the last equality use has been made of the Grassman algebra 
property of the W field: terms with two or more equal spinor 
components vanish identically. By the same recipes (equation 
of motion and Fermi statistics) one realizes that the right
hand side of Eq. (3) can be rewritten as a total derivative 

The information of Eqs. (2)-(4) can now be summarized in the 
conservation law 
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(5) 

By use of the equation of motion and exploitation of the 
Grassman property of the spinor fields in the spirit of the 
procedure demonstrated above several conservation laws were 
found in Refs. 4) and 5) 

The dots denote those terms in the conservation laws which are 
more than bilinear in the spinor fields. In Ref. 4) also the 
conservation law with nine u derivatives has been calculated. 
A compact recursion formula generating all conservation laws 

has been given by Kulish and Nissimov 6). 
formula can be most conveniently quoted in 
ting relation 7) 

(6) 

This recursion 
terms of a genera-

d '" ~::= !!': I( r -7 r.. ;, 1 'f'1T cy.. X. -
;, ~ X, t)(. '1'.. ) 

(7a) 
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where X denotes a generic function to be developed in powers 
of the real parameter y. The integrability condition of Eqs. 
(7a) and (7b) being satisfied in virtue of the equation of mo
tion (1) for , renders if developed in powers of y the 
conservation laws (6). Using the gene~ating relation (7) one 
can derive a B~cklund transformation 8) for the MTM 7). For 
the SGT a neat connection has been established between its 
B~cklund transformation and an associated linear eigenvalue 
problem, which supplies v:t-a the inverse scattering method a 
proof for integrability 8). Having this in mind one might spe
culate that the MTM considered as a classical Grassman number 
system is integrable. 

We turn now to the meaning of the conservation laws (6) 
for the quantized MTM. It has been observed by Polyakov ~) 
that, provided conservation laws of the form of Eq. (6) are 
respected by the quantum corrections to the classical (tree 
graph) approximation, the S matrix will be a pure phase, i.e., 
there will be no particle production and no non-trivial multi
particle scatteri~. The renormalization of the first higher 
conservation law j1:q. (5 [] has been carried out in Ref. 10). 
It was found that the possible anomalies in the integrated Ward 
identities can be absorbed multiplicatively. It seems rather 
plausible that all conservation laws (6) can be renormalized 
with the same result found for the renormalized version of 
Eq. (5). From the conservation law, Eq. (5), alone one can 
infer the following consequences for the S matrix : 

(a) particle production 2 ~ 2n, n ~ 2 is absent 11) 

(b) the connected three-particle scatterin~ amplitude 
factorizes into two-body amplitudes 12). 

(a) can be easily verified if one restricts the integra
ted Ward identity to the mass shell which gives 

=0 
(8 ) 

PjU,(in,out) denotes the momentum of an incoming resp. out
going particle conjugate to the variable u. A simple calcu
lation 11) shows that for no kinematical situation of particle 
production 2 ~ 2n, n > 2 the polynomial on the left-hand 
side of (8) vanishes. -(b) can be derived using results of . 
analytic S matrix theory taking into account the vanishing 
of production amplitudes 2 ~ 2n 12). 
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I. BRIEF OUTLINE OF CONTENT 

After a short glossary of classical kink-aspects in the second 

section we will discuss the relation between the Thirring-model 

and the sine-Gordon-model (section 3). Our presentation is based 

on short distance properties of the massive Thirring modell). We 

obtain the Coleman equivalence 2) only for ~2C4Jf(using Cole

man's termino!ogy). For the free massive Dirac equationf52= 4T 

and for Inr=s p C.lrthe equivalence relations are modified due to 

the occurrence of nonleading short-distance singularitle~). These 

short distance problems also slightly modify the "bosonization" 

picture of the massive Thirring-Schwinger model as well as 

generalizations to models involving several fermions. In the fourth 

section we will comment brieflyon quantum field theoretical 

aspects of "soliton" properties (i. e. an infinite number of non

topological conservation laws). These properties seem to be most 

specific for two-dimensional field theories and will probably lead 

to the explicit solubility of such models. In the subsequent sec

tion 5 we will demonstrate that the sine-Gordon kinks are statistic

al "schizons". If one asks for local fields which carry the sine

Gordon topological charge one finds two local fields which generate 

the same big Hilbert-space: The massive Thirring fermion field 

and a noncanonical (with dimension ~ if the associated Thirring 

field has canonical dimension) bosonic field. This ambiguity in 

statistics persists to other nonlocal two-dimensional kinks as we 

explain in section 6 for the A 4 -kink. This section also contains 

some remarks on the still incomplete picture of D > 2 quantum 

kinks (i. e. monopoles and vortices). 

11. GLOSSARY OF CLASSICAL ASPECTS 

The physical interest and relevance concerning topological concept 
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in relativistic field theory has been discussed in several recent 

publications 4). Usually the investigation of these phenomena on the 

quantum level starts from the reinterpretation of the classical 

"kink" - solutions as the lowest step of some quasiclassical approxi

mation scheme 5, 6, 7, 8). In the following we will not make use of 

quasiclassical methods because the existence and properties of 

quantum kinks is a basic issue of general quantum field theory 

which should not be burdened with approximation methods which in 

most cases have only an asymptotic validity for small (suitably 

chosen) coupling parameter 5,6,7,8). So the main reason for start-

ing with classical field equations is(as in reference 4) historical and 

pedagogical. Consider first the A~ theory in the broken mode: 

:t. -= ± ~ A ()'-A U(A) (1) 

with u (It) = ~ CA '-c.')'" 
&, • 

Q. =;X i. e. r = coefficient of mass term 

This Lagrangian leads to spontaneous symmetry-breaking of 

A(x) --. - A(x). 

The requirement of finite energies 

and the continuity of temporal development leads immediately to 

the following asymptotic statement 1): 

(3) 

The asymptotes are independent of t and hence define four in

equivalent classes of solution; an element of one class for example 

A (t, :; .. ) = .. cannot be continuously deformed into another class 

for instance A(t, +00) =;a. without penetrating an "infinite energy 

barrier" 5) Keeping an eye on the corresponding quantum field 
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theory which is built on one vacuum state, it is customary to work 

only with two classes: 

1(. = { A; A(t, .-) :"1 
1<, =- { Ai I,(t/;;IIO) ::t-.1 (4) 

Using the invariance: A(x)-...A( -x) we then identify the class 

A(t, +_) =.; ... with K l ; in constructing asymptotic "two kink" 

solutions Al 2 (necessarily time dependent solutions) we thus 

follow Cole~an 4) and compose the Al (x) function which we assume 

to be localized to the far left of the origin with the A2( -x) function 

so that the resulting function looks as Al (x) far to the left and as 

A 2( -x) to the far right. This situation of a vacuum class and a one

kink class is typical of a broken finite symmetry group which leads 

always to a kink number module the order of the group 4). 

The generalization of this topological idea to classical field theorie 

with more space-dimensions leads to vortices and monopoles 9,10,1 

The common feature of all generalizations is that relativistic 

classical fields A at spatial infinity define a mapping 4) of mani

folds: 

A : M (space at infinity)-.N (internal symmetry manifold) 

which has an integer degree: deg A 

These mappings may be divided into homotopy classes of fields 

which cannot be continuously deformed into each other without 

going through infinite energy barriers. 

(5) 

A physically slightly different but mathematically similar situation 
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is provided by the classical sine-Gordon equation: 

- (1 - COS!) ( 6) 

Here the classical observables e. g the energy density 

..,., 1 2 2 
C1l (x) = 2" (1f' + grad.1) + (1 - cos.1) ( 7) 

ha ve the periodicity : 

Therefore we may consider as our field manifold 

mod 2 'n' } 

which then leads to the mapping: 

1> f S' J : " (space) ~ (field values) ( 8) 

Without loss of generality (because of the structure of the 

observable field manifold) we may restrict ourselves to solutions 

with f( -GO) = O. Since the finite energy condition requires 

.J (+ .. ) = 2,,11" we therefore have: 

y: , S' .s (compactified space) ---> (field manifold) 

Such mappings are characterized by winding numbers n: 

K 
n 

( 9) 

(10) 

The generalization of this idea to higher dimensions leads to field 

theories with an intrinsically nonlinear field manifold. A prototype 

of these theories is the nonlinear fS" -model: 

D=4 

( 11) 
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The vacuum remains unbroken and without loss of generality ... 
the ~ at spatial infinity may be assumed to approach a universal 

value, for .:amPle: i.!~ f; (-:) = 1;,. One then may 

interpret f as a mapping: 

1 S..J(compactified space) .... ~"internal sphere") 
(12) 

For reasons of brevity we will say that the field "winds" and the 

degree function will be referred to as the "winding number". We 

are aware of the fact that in the case of A: this constitutes a 

slight misuse of terminology. Classical solutions with nontrivial 

winding numbers will be called "kinks". So our kinks are in 

Coleman' s language 4) topological "lumps". The name soliton we 

reserve for solutions of Lagrangians which have additional (i. e. in 

addition to pure topological considerations) infinitely many con

served currents 12,13), as the sine-Gordon Lagrangians. The dis

cussion of nonrelativistic models show that a soliton situation can 

arise independently of "winding". 

The first type of kinks for which the symmetry breaking of vacuum 

states is important and which in higher dimension leads to Landau

Ginsberg-Abrikosov-Nielsen-Olsen 8) vortices and 't Hooft-Polyakov 

monopoles 9,10) will be called a "vacuum-kink", whereas the sine

Gordon and the fr-model kink are examples of a "nonlinear field 

kink". The study of the latter has been advocated by Fadejev 14) 

and the main reason why (except the sine-Gordon model) they do 

not enjoy the same amount of popularity as the vacuum kinks is 

that the corresponding quantum Lagrangians are perturbatively 

nonrenormalizable. 
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A quantum field theory of kinks has to answer the following 

questions: 

1. Is there a local conserved current whose charges count 

winding numbers? 

391 

2. Are their interpolating kink fields whose repeated applications 

to the vacuum generate all the higher "winding" -charge sectors? 

3. What are the locality properties of interpolating kink operators, 

in particular is it possible to find a local representative for an 

interpolating field? What are their transformation properties and 

the commutation relations for large space-like separations? 

4. What particle statistics does the LSZ scattering theory (in the 

case of local interpolating fields) or in the general case the Haag

Huelle scattering theory lead to? 

For all questions one is very far away from being able to give 

satisfactory and general answers. The first question only makes 

sense if the winding numbers consist of the set of all integers. A 
4 

topological class number mod 2 as for the A 2 theory should be 

interpreted as a multiplicative quantum number, as for example 

the multiplicative univalence rule (or C-parity) of a Majorana 

spinor field. In the sine-Gordon case, the winding number 

current is 

• 
( 13) 

and for the 't Hooft-Polyakov monopoles such a current is given by 

the monopole density: 

= r r "Ar" Fi 
"- tI " ~r (l4) 
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with FAd" being the inner product of the nonabelian field 

strength GU with the Riggs field ; : 

-I ....... 

~ .. = ;~ +~A" J 
( 15) 

The renormalization aspects of these currents are apart of the 

renormalization of the composite fields of the Lagrangian theory. 

For the nonlinear field kinks in D .> 2 Fadejev 14) has given 

examples of topological conserved currents, however, their 

quantum field theoretical aspects are still obscure due to the 

lack of renormalizability. 

The second question concerning interpolating kink operators is of 

a more subtle nature. One may have for example classical kinks 

arising from topological considerations which do not have quantum 

counter-parts. This happens if the theory lacks symmetry. An 

illustration of this is provided by a D=2 scalar field Lagrangian 

which maintains the classical vacuum degeneracy of the (Riggs 
4 

mode) A 2 theory but lacks the A ~ - A symmetry. There are no 

quantum kinks because of infinite energy fluctuations 15) even 

though the classical kinks still exist [section 6]. 

Even if the requirements of topology and symmetry are met, the 

interpolating field must still be chosen with great care in order to 

avoid infinite energy fluctuations. For example interpolating 

fields of the type used for coherent states will (with the exception 

of the sine-Gordon theory for dim cos p f < 1 ) produce in

finite energy fluctuations 16). Experience with two-dimensional 

models suggest that interpolating kink fields in that case involve 
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at least bilinear exponential functions of the basic fields 17). 

A discussion of the problem of commutation relations for asymp

totically space-like separated interpolating kink fields clearly 

depends on ones ability to solve the previous problem of their 

explicit construction. Up to now this has not been possible for 

D > 2, but in D = 2 models the picture is fairly clear and will 

be explained in sections 5 and 6. The last problem, namely the 

spin and statistics of kink particles via a Haag-Ruelle scattering 

theory 18) of the interpolating field is simple if these fields act 

in a Hilbert-space of positive metric and without zero mass 

states. For the interesting case of the 't Hooft-Polyakov monopoles 

the scattering theory, i. e. the structure of multiparticle states 

is troubled by precisely these problems. 

IH. SHOR T DISTANCE BE HA VIOR IN THE MASSIVE THIRRING
MODEL AND CORRESPONDENCE WITH THE SINE-GORDON
MODEL 

The quantum field theory of the sine-Gordon kinks can be studied 

in a remarkable explicit fashion thanks to S. Coleman's observ

ation that this field theory may be embedded into the massive 

Thirring model. 

We will briefly analyse this correspondence by using the short

distance behavior of the massive Thirring-model 1). This model 

belongs to the Lagrangian: 

( 16) 
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Our starting point is the statement that a pseudo-current which 

has an affiliated conserved current always leads to a local pseudo

potential 1): 

(),. c .;" a () 
T"" r 

which satisfies the equation 

..L. ~I.~ 
fi T 

This field has the following Källel'l-Lehmann representation: 

(17) 

(18) 

(19) 

< 11M) ;t.J> = I f(~) ,. 4:: (.) ./.r~ (20) 

with 

• (1-) 
, .1 "'$ (l( ) (21) 

J(S·) • e (0$ .. ) .... ;, for (22) 

Q. ::: rI.':"" t t 
Only in this asymptotic statement for the Lehmann-Källen 

spectral function we used for the first time a specific property of 

the model: the massive Thirring-model is for &. C 2 asymptotically 

scale-invariant for short distances. In the framework of Callan

Symanzik equations 19.20) this means that p:: 0 21) and the 

validity of the homogeneous differential equations for short distan

ces (or nonexceptional scaled up euclidean momenta). These 

properties of the theory are also sufficient 1) in order to prove: 

(23) 
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where the double dot denotes Wick-ordering in the sense of two

point function subtractions. In other words. the short-distance 

behaviour of t1 is that of a free field as a result of asymptotic 

scale invariance. Note. however. that the canonical conjugate 
• 

7(' = f develops a more singular short-distance behaviour than 

that of a free field as soon as the coupling , ... 0 so that 

dim ft~ I (in Coleman's terminology ~2 • 4,,) . 

.,. 3""'~. tCrIItI (24) 

Clearly the short distance behaviour of the first term is: 

(25) 

The logarithmically ultraviolet-divergent integral in front of the 

log which one obtains for ca. = I indicates potential short-distance 

trouble although the canonical formalism (which requires that the 

space- smeared 7t is a well-defined operator) only breaks down 

for .. ~ 3/2. 

We will return to the regime dim tt~ I of the model after we 

obtained a good insight into its dim t t < I regime. 

The local pseudopotential, is only determined by (18) up to a 

multiple of the charge operator. We make the choice:' 
A 

• r:;r J J~ (A') J. A' 

-~ 

(26) 
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which leads to the space-like commutation relations 

i:- [ ~l.) , t (1)] :: - S( 11. '''1 t) 'f ()} (27) 

[: il:fi),i"iII':,ffJJ1 = S(rc·.J·)(el"'··~-I). 

( -~: 1i..4 '"'tA) . t )J : e T: (28) 

Formula (28) is of a formal nature; although the Wick-products 

for polynomials are defined (23) we still need the finiteness of the 

exponentials. 

Let us now study the linear combinations of two local operators: 

(29) 

where the constant c will be chosen appropriately. The operator B , 
is not only local with respect to itself but also relatively to the t ~ -, 
and f oS. The scale dimension of the exponential of tI is determ-

ined by the Schwinger term b 

-- -A - (30) 

namely 

In order to understand the equality of b with a let us look at 

th "b . t· " f f· 22.23) A e osomza lon 0 zero mass ermlons . zero mass 
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Thirring spinor field can be written as 1) . 

~ ,. ", fi t .. J .,,'.1..1" (v) 
flt"',") = 'i;; : e : 

(31) 

I 

in terms of "light cone" Bose-fields 

(32) 

(33) 

Exponentials of Bose-fields have a built-in charge selection rule 

(in our case Q:t Q5). The only aspect in which (31) differs from 

the massless Thirring field is in the relative commutation proper

ty of the two components. If one wants to convert this into an 

anticommutation relation by a Klein-transformation, one just adds , 
charges in the exponent (i. e . .1,'" at infinity) and thus obtains the 

M d I . 24) 
an e stam representatlOn 

OQ 

e.""f {- " tI.,!J. .. (rf -,. f[(,;.J.. J j(l&~ dlej: (34) 

Je. 

with 

The axial current is obtained from a split point limit 25) as: 

N {1"rr,rt] =' - .t~.,.:. "} 1 (35) 

which leads to the identification 

(36) 
for the zero mass limit. 
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(31) or (34) gives directly the identity 

in the massless theory (here m is just a normalization mass 

from (32), (33), (34) ). 

(37) 

On the basis of the inhomogeneous Callan-Symanzik differential 

equations the zero mass bosonic description (37) hold for the 

leading short-distance part of the massive correlation function up 

to a multiplicative normalization constant c (g) which accounts for 

how we renormalized our massive theory 26). Therefore the two

point function of (29) for a ~ 2 has cancelling leading parts: 

= non leading singularity (38) 

The Callan-Symanzik analysis also allows to make precise state-

b nl d ' , 1 " 27,28,29) A I' ments a out no ea Ing slngu arltles . pp led to the case 

at hand one obtains a nonleading singularity which is by a factor 

(J"".,.&)2-a less singular than the leading one 30). So for dim 

there will be ~ nonleading short distance singularity: Hence we call 

apply the following theorem which replaces Schur's Lemma for 

canonical fields: 

Theorem: If local field B which is local relative to some basis 

fields (generating the Hilbert-space from the vacuum) has a finite 

two-point function at short distances. it must be a multiple of the 

identity operator, 

Proof: from the Lehmann-KällEm spectral representation one con

cludes J '0>:. l/o> and from spacelike Iocality with respect 

to the complete set of basis fields (in our case t and t ) follows 
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that B = ~ 1. 

Therefore by making an additive adjustment we finally obtain the 

desired identity: 

+ {: -1.; t'i f1i1ll 
N [ t, '1' .. ] (I, ) = c "" : e : ( 39) 

valid for dim 'f f <. l 

For dim tt ~ 1 not only does our proof breaks down, but also 

the exponential series of Wick-ordered polynomnial ceases to make 

sense. The origin is a very subtle "cumulative mass effect" which 

manifests itself as a insufficient decrease of the numbers (23) for 

large n. Note that in case of a zero mass theory all terms with 

n 2 in (23) would be zero. For the pseudo-potential of a free 

massive Dirac field they turn out to lead to a unit convergence 

radius 1) in ~ for : e -2i~fi;: This cumulative mass effect 

precisely sets in at dim 1'1' = 1 where according to the CaIlan

Symanzik picture the spinor correlation functions exhibit for the 

first time non-Ieading singularities which are weIl known for the 

massive free field: 

(40) 

What really happens in the regime dim "'f f ~ I ? Is the relation 
+ (39) between normal ordered 'h '14 and "appropriately" ordered 

exponentials of the pseudo-potential completely lost? For the case 

of the free field theory Lehmann and Stehr 31) have shown by an 

explicit computation based on "tripIe ordered" exponentials in 

which all vacuum expectation values (not just the two point 

function) have been removed, that a relation of the form: 

= • • • ( 41) 
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still holds. (41) would lead to a modified sine-Gordon equation 

which lacks the classical periodicity property. It turns out that the 

tripie ordering has some unusual properties which restore the in

trinsic periodicity on the operator level 31). In order to recover 

the classical relations it is helpful to introduce yet another normal 

product 1) via an operator short distance expansion of exponentials 

with half the ,\ -value (inside the convergence radius of the cumula

tive mass effect) : 

-; fi ;11&) .. i ~ '1(1) : e : :e : • < .... > :1 

T C Cf) ~ le-1:titj 
(42) 

.,. ..... 
For this normal product N the correspondence (39) continues to 

hold for a = 1 1) and we expect its validity in the whole range 

1~a<2. 

The same short-distance problem as in the massive Thirring 

model also occurs in the massive Schwinger- Thirring model for 

dim t'f.). 1 i. e. in particular for the massive Schwinger model 

dim \f t = 1 One has to pay particular attention to the break-

down of the simple Wick-ordering (used by Coleman) in writing 

down spinor bilocals in terms of Bose fields. Cumulative mass 

effects are also relevant for certain generalizations with internal 

symmetries for example the QED2-interaction on a massive SU 2 

fermion field as recently studied by Coleman 32). As an even 

simpler example consider the hamiltonian of a free SU 2 massive 

Dirac field: 

--
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According to the general theorem on vector-potentials the commu

ting pseudocurrents have a local potential 

- rf I 1"\ • ~. Y' r .: = - - fI •• · T',r· ~ r T' 
(44) 

If one lets electromagnetism act on such a field, it is convenient 

to work with 

--
In terms of the se fields the kinetic part is still diagonal, however, 

the mass term will be: 

( 45) 

Each single factor can be just ordered with double dots (the 

coefficient inside the cos has only half the "critical" value), 

however, for the ordering of the total product the Wick-ordering 

will be insufficient due to cumulative mass effects. If one wants to 

keep the periodic form one has to use our normal products defined 

by a split point limiting procedure similar to (42). 

IV. SOLITON-CONSERVATION LAWS AND S-MATRIX 

Two-dimensional models of relativistic field theories with non

vanishing masses often show a remarkable, often unexpected sim

plicity of their S-matrix. Consider for example two massive free 

Dirac-fields 1,2) which are coupled by an interaction 33): 

-- ( 46) 

This model is simpler than the massive Thirring model. It leads to 
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a "semitrivial" S-matrix: 

-- ( 47) 

The higher particle sector S-matrices being products of this 

two particle S. The sign of the energy-independent phase depends 

on whether species (1) enters of the right or left of species (2). 

This S-matrix cannot be transformed to .L by multiplying it with 

functions of the charges Q( 1,2) and it is for this reason that we do 

not caH it "trivial" 34). 

The loeal operator solution for (46) is: 

'f {I J - ;' ,- \ (&J 
- t.-tr - 2 : ,.". " tf ; (48a 

t {&J _- ".. 1 ('J 
i ~-t'p 2. .. '11""; ; (48b 

Generalising the algorithm of fermion ordered exponentials of Leh

mann and Stehr 31), one ean evaluate the eorrelation funetions to a 

remarkable explicit degree 34). The semi-trivality of the S-matrix 

is a direet result of (48). For the massive Thirring model the 

eorrelation functions are unknown and one expeets them to be mueh 

more eomplieated. How then ean one see anything of the structure 

of the S-matrix of this model? The answer is hidden in a new set of 

higher eonservation laws. Additional eonservation laws to the con

vential energy-momentum conservations have been extensively stu

died for the classical sine-Gordon equation and related equation 35} 

These" soliton" conservation laws, if valid in the quantum theory, 

lead to an S-matrix which describes purely elastic processes 36). 

Perturbative S-matrix computations for the sine-Gordon 37) as 

weH as the massive Thirring equation 38) have demonstrated the 

absence of creation of particles up to the level of one-Ioop 
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diagrams. On the classicallevel it was subsequently shown that 

the massive Thirring Lagrangian supplemented by a Grassmann 

structure for the classical t also has an infinite set of conserv

ation laws 39,40). The absence of anomalies in the Ward identities 

of these conserved currents has been recently shown for the lowest 

nontrivial current. The pure elastic nature of ~)is already a re

sult of the lowest proven quantum conservation law 41). Macro

causality restricts the elastic n-particle S-matrix to be products 

of just the two particle matrix. Let us look for simplicity at the 

n-particle S-matrix of the sine-Gordon model. From the product 

structure 

with 
"".1( = p,' Pie ..... = ~ f},""C 

one immediately concludes 42,43). 

Statement: Abound state in S (.,) induces abound state in the 

n-particle S-matrix (49). This family of bound states lie on the 

quasiclassical sine-Gordon trajectory 

( 49) 

(50) 

Here rand (J are constants which have been adjusted such that 

m 1 and m 2 are the elementary respectively first bound state. 

This result is somewhat puzzling since it gives a spectrum which 

never stops. The quasiclassical result, however 5,36), has an 

n. corresponding to the last state below the lowest two 
max 

particle continuum. The relevant point here is, that the above 

statement does not take into account that higher poles in S may 

be compensated by CDD zeros 44) accompanying CCD poles in S(~) 
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So the existence of an Yl. should actually be interpreted as a 
max 

consistency requirement on the function which appears in the 
. .. S (2) crosslng symmetrlC umtary : 

(51) 

There is the justified hope that the sine-Gordon field theory respec

tively the Thirring model via their simple S-matrix structure lead 

to the explicit construction of their Heisenberg fields 42). In this 

context it is interesting that A. Luther 45) recently succeeded to 

relate a suitably defined massive Thirring lattice model with the 

XYZ model. On the latter a considerable amount of rigorous work 

. . h b . d t 46) Th . concermng 11s spectrum as een carrle ou . e quasl-

classical sine-Gordon spectrum emerges from the known part of 

the two point function spectrum in a suitable limit. 

It is also very encouraging to see that the soliton conservation laws 

have a lattice counterpart in that model 47). It is our hope that the 

lattice point of view as weIl as the direct continuous approach 

complement each other in such a way as to make an explicit 

solution possible. 

V. SPIN AND STATISTICS FOR THE SINE-GORDON KINKS 

Particle states in a D=2 dimensional worM transform according 

to 

( 52) 

under Lorentz transformations. There is no physical spin in the 

sense of Wigner 48). However, one may want to introduce states 

: (53) 
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and corresponding free fields: which transform with the 

"Lorentz - spin": 

It is evident that the choice of this s is a matter of convention. 

It is somewhat less trivial to see that particle statistics is also 

a matter of convention 49). Assume for example that a(p) and 

a + (p) are canonical boson annihilation and creation operators 

in a Fock-space and consider the line-integrals 
00 

(54) 

4{f) I!-Jrf -i1f j n{/')", ' ( 55) 

J-
with 11.(,) = 

the particle number momentum density. One immediately checks 
+ 

that band b form a covariant canonical fermion system: 

-- (56) 

Although in higher dimension such lme integrals can still be used 

to change the statistics, the lack of Lorentz-covariance (and 

causality for the suitably Fourier transformed operators) renders 

such a construction uninteresting. 

In the case of particles which arise from topological kinks, one can 

go further and change the statistics of interpolating fields. If local 

interpolating fields as for the sine-Gordon equation can be found, 

th.en the field with the changed statistics can also be chosen local. 

Let us explain this using the language developped in seetion 3. We 

already have a fermionic interpolating field t for the sine-Gordon 

kink. Let us now construct a bosonic field 49) with the help of the 



B.SCHROER 

short-distance expansion: 

Here c is a directional dependent most singular 

coefficient function and B are zero Lorentz - spin Bose

fields of dimension: 

rJ.:.,. 'BL = t J.:... tf (58) 

Although this can be demonstrated on the basis of the short

distance behaviour similar to the discussions in seetion 3. let us 

here be satisfied with an explicit understanding of the case 

dim + t = I . where we can replace the general normal product by 

the "tripie" ordered expression: 

• • • -- (59) 

The "st ar-ordering" on the right hand side is the ordering in terms 

of free fermion which one may always use 31) when the underlying 

fermions are free. 
,.. 

L - [f -. '1 ... JA ... . ~)a ~( .. ) - + 1.; e. (e·,....., A+J,.,.e &, )" .. ,fQ. (60) 
c.",,' , , ., , "-1 

b 1 e -I ('NM : .. .\ ... "~1J- .:.~ .,.) ~ 
... . (I. e. e "fa, +e. e. b' 1.111. 

"S"",, •• ,) ,/ } 

where A .LI, e = ~ \6,"',) 
It is now very easy to determine the singular coefficient function 

and the operator B, just by Fermion-contracti ons 42). The 
10 
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result is: 

C. 
a. 

and 

: CO"',1. (fO .... It; I. )Z~ /<, (t-1/=j1~ 
,-"/'+:' Y .. 
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(61) 

( 62) 

The dimension i and the vanishing spin of B is consistent 

with the dimensional balance and the Lorentz-transformation 

properties of both sides in (57). The space-like local commuta

tivity of B follows from the locality properties of the left hand 

side of (57) with the help of (28). 

As a curious side aspect we mention that the two operators B 1 

should actually be equal if the Mandelstam-representation 24) (34) 

would hold for 'f. However, this representation seems to break 

down for dim tt ~, . 
VI. THE A 4 -KINK, SPIN AND STATISTICS 

All relativistic topological kinks for D = 2 are generalizations 

(coupled systems) of either the sine-Gordon kink or the A 4 -kink. 

The understanding of the former was greatly facilitated by its rela

tion to the massive Thirring model. The quantum field theory of 

the A 4 kink is much more difficult. 

How can we assert that there is any interpolating kink field with its 

affiliated new particle for a finite coupling constant, i. e. outside 

the quasiclassical considerations which only have asymptotic valid

ity for 1-) 0 ? 
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In order to develop some intuition for the difference between 

quasiclassical kinks and genuine quantum kinks let us elaborate the 

remarks made at the end of section 2. Imagine a Riggs potential 

of the A~ type with a small unsymmetric perturbation which is 

suitably chosen in order not to destroy the classical vacuum 

degeneracy. For the quasi classical kink it is only this degeneracy 

of the vacuum which counts. Rowever, in the quantum field 

theoretical treatment one also has to pay attention to the energy 

fluctuation in "would be" kink states. Let I (); >, .. = 1,2 be the 

two vacua which have an energy degeneracy. Due to the asymmetry 

of the theory these vacua lead to different correlation functions 

(phase-transitions without symmetry!). The energy density 

correlation functions in a "would be" kink state /.s> has the 

following asymptotic behaviour: 

~sl:r{,()K{:J)I.f) =a (0, J '1t1;cJ '1(f}JID,) ( 63) 

.... &(c)9(,)«O&I"(ICJ)(~JIt)I.)- (OI/~~J~fJ)/~ 

+ F(It'J) 
where the g can be taken as some smothered step function in the 

spatial coordinates and F(x, y) goes to zero if either Xl or yl 

approach infinity. The second term in (63) will cause infinite ener

gy fluctuations if one integrates over space and uses the re

presentation of the two point function for the energy momentum 

tensor. Even if topological and symmetry prerequisites are 

met, one still must avoid choosing unsuitable interpolating kink 

fields with infinite energy fluctuations. As was pointed out recent-
16) 

ly, interpolating fields of the form used to create coherent states 
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(with ff:" on one side of space): 

exp. ;lu /-",") I (Je),J1t ( 64) 

are not suited to describe A 4 -kinks because they generate infinite 

energy fluctuations. So even when the short-distance behaviour is 

favourable and Coleman' s criticism 2) on the use of coherent 

states for kinks does not apply, these states may still be rendered 

useless by their pathological large distance fluctuations. 

A reasonable way to think about an interpolating kink field for this 

model is the following 49): imagine a continuous rotation of A 

into - A as x sweeps over space. With a one component field 

as ours such a rotation must necessarily be thought of as a phase 

space rotation 

-- (65 ) 

where Q is some function with 

{; 
Formally: -~p J'L J 9(" J : 1T\(~J + Jl (A' : «Je --

( 66) 

would implement such a rotation, however, this expression has an 

uncurable short distance disease in that (even for free fieIds!) 

the quadratic exp.onential has an infinite norm. In sophisticated 

language this failure of (66) means that a local rotation in phase 

space does not define ar:. automorphism 50) of the field algebra. 

One may, however, obtain a non-Iocal (but still quasi-Iocal) 
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49)51) 
automorphism whieh at spatial infinity does the required job 

oe 

V = ~Jrf J 9(JeJ "+(6} A(IC) ~JC 
( 67) 

-.0 

( 68) 

i. e. 

( 69) 

Sinee I eannot envisage any loeal automorphism whieh eontinuou:Sly 
4 

links A with - A, I believe that the A 2 -kink is intrinsieally non-

loeal and that the best kink operator is a quasi-Ioeal kink operator 

of the type (67). This operator ean be thought of as a quasi-Ioeal 

objeet 18) eentered around x = O. Defining: 

V(.) = "(a) V utra) 

U. (. J -= translation 

we obtain 

= " (70) ...... -
Note that (67) has the eorreet multiplieative eomposition property 

mentioned in the 2nd section: the produet of two kink operators is 

equivalent to zero kink. Again one may construct an antieommuting 

operator: 

'1(") = V (.) J .4(III I(II).lA ( 71) 

with J say a test function of eompact support. 

Sinee V aets on the far right localized A as a rotation into - A 
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whereas a far left loealized A is left uneffeeted, we obtain 

= 0 

Both fields Vand f are expeeted to have nonvanishing matrix

elements with a kink state : 

411 

( 72) 

( 73) 

and therefore either field may be used for the eonstruetion of Haag

Ruelle seattering states 18). Henee for the Ai -kink one again ob

tains a statisties ambiguity. 

VII. SOME REMARKS ON KINKS FOR D > 2 

From the previous experienee with the A 4 -kinks one expects that 

quantum vortiees for D = 3 and 't Hooft-Polyakov quantum mono

poles for D = 4 should be deseribed in terms of interpolating fields 

involving bilinear operators in the exponentials, the latter represent

ing spaee-dependent internal rotations. We will make no attempt 

to write down sueh expressions sinee we have been unable to under

stand their short-distanee properties. Perhaps their relation to 

eonserved eurrents (in eontrast to the phase-spaee rotations in 

the previous seetion) will faeilitate the understanding of the short 

distanee problem even if the fields in the exponential are non

eanonieal. 

Eneountering thus the road via interpolating kink fields bloeked by 

nasty teehnieal problems (ineluding the infrared problems mention

ed at the end of the 2nd seetion) , we may want to look at other 

indieations and hints for the kink-statisties. The present wisdom 

ab out this problem based on the semiclassieal form of the 
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52 53) 
conserved angular momentum operator ' and on quantum 

mechanical consistency considerations 54) is the following: 

It Hooft-Polyakov monopoles or dyons (monopoles with non

vanishing electric charge) in a theory involving only fields with 

integer spin and iso-spin lead to a conserved angular momentum 

with integer eigenvalues. Therefore one would hope on the basis 

of the spin and statistics theorem in local quantum field theory 

(i. e. a situation which is not quite applicable to kinks) that the 

affiliated particles turn out to have Bose-statistics. For dyons 

in a theory involving fields of half-integer isospin and integer 

space-spin there is the possibility of conversion of half-integer 
. .. t h lf . d· . 52, 53) I h lso-spln ln 0 a -lnteger or lnary spln . nt at case one 

would hope for Fermi- statistics. Indeed, by making suitable 

technical assumptions on the coordinate permutation properties 

of wave functions in a particular gauge, one may obtain con

sistency with Fermi- statistics 54,55). 

The very subtle nature of the kink statistics problem becomes 

evident if one looks at statistical mechanics systems where the 

difference between bosons and fermions whould show up most 

clearly. If we take the usual computation procedure 

for canonical or grand canonical ensembles at face value, then we 

are in a somewhat awkward position: enclosing vacuum-type kinks 

(see section 2) into a box takes away their topological "raison 

d1etre" . 
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PROBABILISTIC APPROACH TO CRITICAL BEHAVIOR 

G.Jona-Lasinio 

Istituto di Fisica and Gruppo GNSM 

Universita - Roma 

1. - Motivation 

The aim of these lectures is to give an introduction to some 
recent developments in probability theory which, besides having 
an independent interest, seem to provide a very effective tool in 
view of a mathematically rigorous description of critical phenome
na. What is involved is the construction of a systematic theory of 
limit distributions for sumb of "strongly dependent" random varia
bles. The notion of strong dependence will be made precise later. 
For the moment, as a working definition, we take it to mean that 
the central limit theorem is not valid. 

On the side of physics, the problem may be described as the con
struction of non trivial large scale (or small scale. See Sec.5) 
observables for systems with an infinite number of degrees of free
dom such as thermodynamic systems undergoing a second order phase 
cransition. Let us try to be more explicit. Let )(i be zero expec
tat ion random variables referring to the subsystems of a homoge
neous macroscopic object; then any sum of the form 

~~ Xl 
ßM 

if the normalization factor ~M is properly chosen, may be expec
ted to have for large~ a smooth distribution i.e. something which 
does not involve 6 functions. If this is the case we shall say 

419 
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that l is a good "1 arge scale" or "collective" variable. However 
in many physical situations the dynamical content of such a varia
ble will be rather trivial. In fact, if the forces acting at the 
microscopic level are short range the Xi, in the sum (1) as n ~ 00 

will tend to become independent of each other and~ will fluctua
te as if the )(lwere actually independent variables. Mathematical
ly this usually amounts to the validity of the central limit theo-
rem, i.e. to the statement that 

Cl.. Xl. \ S -- I - e. 2. ax 
J~1\ (2) 

-00 

together with 

(3) 

(*) 
which represents the weIl known square root law of fluctuations. 

There are situations in wbich the above argument does not apply. 
The critical point of a second order phase transitions so far re
presents in physics the most important instance where the central 
limit theorem breaks down. This may happen in the simplest cases, 
e.g. mean field theories, through the appearance of normalization 
factors of the form ß~ IV ,.,,/lh.J f* I, still retaining the Gaus
sian distribution. More generally also new types of distributions 
can appear. Situations of this kind provide a very important moti
vation for the search of new regularities or universality proper
ties associated with the limit distributions of "strongly dependent" 
random variables, i.e. with their collective behavior. 

One should mention at this point that phase transitions are not 
the only situations where strongly dependent random variables are 
involved. Geophysics seems to offer a wealth of phenomena exhibit
ing strong correlations.(20) Furthermore as a specially important 
case we should consider turbulence where some of the concepts that 

~) ~ 
The reader should not confuse a variable like l: with the quan-
tities involved in the thermodynamic limit. For example the ex
pression z,'" )(~/" is expected to have a ~ function distribu
tion according to the law of large numbers. 
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we shall discuss later were introduced for the first time.(18)(25) 

We may remark however that the recent spectacular developments in 
the theory of phase transitions seem to be entirely independent of 
the previous history of stochastic processes. The work in the sta
tistical mechanics of phase transitions made originally no special 
reference to probaility theory and was based on the idea of renorma
lization group in its various realizations.(24)(4) Then it appear-
ed a very technical paper by Bleher and Sinai(2) which discussed 
a special case, the hierarchical model, in probabilistic terms. 
This work provided much inspiration for aseries of articles by 
Cassandro, Gallavotti, Knops/Martin Ltlf(5) (9) (10) and the author(16) 
in which the general connection of the renormalization group with 
the problem of limit theorems in probability theory gradually emer
ged. In particular in the author's paper was suggested the n.otion 
of stable random field (in the terminology adopted in the present 
lectures) as a generalization of the usual stable distributions in 
the sense of Levy.(12) This notion corresponds to the fixed point 
in the renormalization group language. The first mathematically ri
gorous formulation of this concept for lattice systems has been gi
ven independently by Gallavotti and JOna-Lasinio(ll) and by Sinai.(22) 
The ca se of continuous random fields is more complicated. Using 
however the language of generalized random fields recently Dobru
shin(7) has developed a systematic approach to limit theorems which 
seems wide enough to include all cases of physical interest, in par
ticular the critical behavior of both continuous and lattice sy~ 
sterns. A considerable part of these notes will be devoted in fact 
to a simplified exposition of Dobrushin's ideas. 

It was the translation of renormalization group ideas into pro
babilistic language to stimulate a more precise characterization 
of the strong dependence of random variables encountered at the 
critical point. In an article by the author(17) it was conjectured 
that violation of strong mixing (see the next section) could pro
vide a useful demarcation line between critical and non critical 
behavior. This has been substantiated in the work by Cassandro and 
the author(6) and by Hegerfeldt and Nappi.(13) 

On the whole the probabilistic approach to critical behavior 
seems powerful enough to provide a basis for a comprehensive and 
rational treatment of the rich heuristics which characterizes much 
recent work in statistical mechanics and field theory. It seems to 
constitute also a new way of thinking about several problems, a 
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circumstance which may have quite unexpected consequences. Finally 
it runs parallel to (and presumably will rejoin) the constructive 
approach in field theory where probability has al ready a substan
tial role. 

The plan of the notes is as foliows. In Section 2 we make pr~
cise the not ion of strong dependence of random variables and brie!
ly review some recent results together with some standard facts. 
In Section 3, we consider the so called Rosenblatt process which 
provides a method for constructing a rather general class of strona
ly dependent random processes. We then introduce the notion of st!!
ble random field on a multidimensional lattice (Section 4) as a 
natural generalization of limit distributions to the case of stro~
gly dependent variables. Sections5, 6, 7, 8 which are based on the 
recent work by Dobrushin, introduce generalized stable random 
fields and discuss their relationship with the lattice &ase toge
ther with several other properties. Sections 9 and 10, finally re
view some constructive rigorous results due to Sinai. 

- Acknowledgements 
I wish to express my gratitude to Professors Dobrushin and Si

nai for communicating to me their recent work and to Prof.B.Tiro~
zi for several discussions on the results of the "Russian School". 
During the preparation of these notes I profi ted from my continuous 
interaction with Prof.M.Cassandro and from stimulating conversa
tions with Profs. G.Hegerfeldt and C.Nappi. 

2. - Weak Dependence and Strong Dependence 

There is not a unique natural way to introduce a demarcation 
line between strong dependence and weak dependence and one has to 
take into account the nature of the problem considered. For our 
purposes the interesting concept seems to be "strong mixing" and 
the reasons will be explained in amoment. To define strong mixing 
(s.m.) we need some notation. Consider a lattice ~d and a variable 
)(i associated to each site i. In the product space of the varia

bles )(i ' the cylinders are sets of the form 

· . A L, , _ .. I 11/1. E 
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J 
where A is an arbitrary finite set in Z and the Ai. are mea-
surable in the space of the variable)Ci • We denote with~~ the 
(j -algebra generated by such sets. We say that the variables X, 

with distribution ~ are weakly dependent or that they represent 
a strong mixing random field if the following condition holds. Gi
ven two finite regions AI and .1\.2. define the distance between 
A, and A2. by 

I • 

~\i.N\ • ''-2.- LI I 
'I~I\'I "1 ~ /\2. 

where is for example the Euclidean distance. Set 

Then 

where «( r ) ~ 0 as f~ CO. 0( is called the mixing coefficient. 

Intuitively the s.m. idea is that you cannot compensate for 
the weakening of the dependence of the variables due to an increa
se of their spacial distance, by increasing the size of the sets. 

This situation is typical when one has exponential decay of 
correlations. This has been proved in arecent paper by Hegerfeldt 
and Nappi(13) for a wide class of random fields which includes 
ferromagnetic non critical spin systems. 

The situation is entirely different at the critical point whe
re one expects that correlations decay according to apower law. 
In this connection the following result has been proved by Cassan
dro and Jona-Lasinio.(6) 

Theorem 2.1 - A ferromagnetic translational invariant system 
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with pair interactions(*) for which the autocorrelation function 

R (l) 

is such that 

L R(j) 
L{SK_\)~jIo(.L L lS'<-+I} o (2) 

~ RCD 
O~ jo<, L 

does not satisfy the s.m. condition. S is an arbitrary lattice vec
tor with components SK • 

This theorem implies in particular that a critical 2-dimensio
nal Ising model violates s.m. Therefore violation of s.m. seems 
to provide a reasonable characterization of the type of strong de
pendence that one encounters in critical phenomena. 

So far our discussion has made no reference to the central 
limit theorem. Actually the s.m. condition was first introduced 
in probability theory in connection with limit theorems.(21) For 
one dimensional stochastic processes the following result is weIl 
known(14) 

Theorem 2.2 - Assume that the seguence X~ is s.m. and E(X,:'= 
=0. Let Eo (~ ) be the distribution function of 

2J~ X~ 

ßM 

If F. (~) converges weakly to a limit F(~), then F(i;) is necessa
rily stable. If thehtter distribution has exponent Gl then 

ß M =- h\ Va( l\ (M) 

(*) 
For apreeise definition of ferromagnetie system with pair in-
teractions see(6) and references given there. 
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where h (1\\) is a slowly varying function. 

425 

We recall that a stable distribution is a distribution which 
satisfies (12) 

- F (~~) 

where a 1, a 2, a are positive numbers and * is the convolution • 
A slowly varying function iS, roughly speaking, a function which 
increases at most logarithmically. 

The generalization of this theorem to multidimensional random 
fields is straightforward and is discussed in ref.(13). Actually 
among the stable distributions only the Gaussian seems relevant in 
physics as all the others have infinite second moment. Therefore 
in our context s.m. implies the central limit theorem. 

The failure of s.m. at the critical point allows for the ap
pearance of new limit distributions. Their description is an extre
mely important but difficult problem. For ferromagnetic systems it 
has been shown in(6) that in general, except for the gaussian, the
these distributions cannot be infinitely divisible. (12) Their 
characteristic functions are entire functions with zeros on the 
imaginary axis. 

3. - The Rosenblatt Process 

In this section we discuss a standard procedure to construct 
examples of strongly dependent random fields. It may be considered 
also as an introduction to the more general problems discussed in 
the subsequent sections. 

We start from a sequence y~ of independent, random variables 
normally distributed with unit variance. Let 

(1) 
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with a to be properly chosen. Xi. is a stationafY,Gaussian process 
characterized by the correlation function R (l - J) = E (X,' Xj) 
which can be explicitely computed fram (1). R(t) has the asymp
totic scaling form 

\-24-
I el (2) 

For \ <: a<: 1 R( e) decays at infinity, is not integrable, i.e. 
E OO R (e ~ = 00 ,and the sequence (1) is critical in the 
se~se of physicists and strongly dependent in the sense of our 
previous definition. Violation of strong mixing follows in fact 
from a weIl known theorem of Kolmogorov and Rozanov.(14) (15) The 
limit distribution of a block variable of the form (1.1) is Gaus
sian but the normalization ~M is anomalous 

j-2.c:L 
M 

Consider now the new process (Rosenblatt process) 

(3) 

(4) 

This is clearly non Gaussian. From (2) it follows that its corre
lation function R2(t) is non integrable for a~ 3~. Therefore for 
\ <: a ~~~the sequence (4) is critical. The limit distribution 
of a block variable can be computed explicitely and it turns out 
to be non Gaussian and non stable. Strong mixing i8 therefore vio
lated. We now outline the calculation. The distribution function 
of 

2:- 5, 
I L 

(5) 

is completely deternined by the characteristic function which can 
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be obtained as follow. We first calculate the truncated characte-

ristic function (' ~ 2. A4 )( ,~ 

~ (t-) = EM (e I l) = 
't'~ JI< I 

4i -.1.( A4. a·2~y.t -1 L )(,'R{I'-j)Xj' 
(Zltf"IIRAII Z. J~ dx~ e'e 2.l,)=/ 

where I R~' is the determinant of the Nt)t At matrix obtained from 
the corl'elation function by restricting i~ t~j ~ '" . This is a 
Gaussian integral so that 

where the 

we have 

It can now be shown that(14) 

exists. Therefore 

(6) 

Since 4' (t) is analytic at the ongJ.n it cannot be stable. As 'tl 
increases it develops singularities on the imaginary axis and pre
sumably it becomes very different from the ferromagnetic characte
ristic functions mentioned at the end of the previous section. 

We may now ask: what happens if we consider more complicated 
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functions of the original Gaussian process? Interesting results in 
this direction have been obtained by Taqqu but only part of them 
has been published.(23) In the present context it is worth mention
ing a theorem which determines classes of functions leading to the 
Same limit distributions. Let G(~~) be an arbitrary function with 
E( GCY,') ) = 0, E( G(YLj2..) ~ 00 • We are interested in the 
limit distributions of 

EP! G(Y;) 
I 

(7) 

Define the Hermite rank of G as foliows. Let 

(8) 

where H, is the Hermite polynomial of order q. Then 

converges to G in the sense of quadratic expectations. Call 

9 
(~ I (9) 

, 
_ .VM.t~ 

the Hermite rank of G. We have then the following theorem(23) 

Theorem 3.1 - Suppose G has Hermite rank m and 2: R.f{IA {eJ=oO 
Then the limit distribution of (7) is the same as that of 

For details we refer to the paper of Taqqu. 
So far we have limited our considerations to a single block varia
ble of the form (5) or (7). 
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From now on we generalize our point of view and consider li

mit distributions also for joint probabilities of 2 or more block 
variables. Of course in order for this problem to be meaningful 
one has to let the distances among the blocks to become infinite 
together with the size of the block. This leads quite naturally 
to the not ion of stable random field or automodel distribution in
troduced in the next section. 

4. - Stable Random Fields - Discrete Case 

The rigorous not ion of stable random field, as discussed in 
the present section, was introduced independently by Gallavotti 
and Jona-Lasinio(ll) and by Sinai(22)in the attempt of construct
ing for the case of strongly dependent random variables, the ana
log of the stable distributions and a proper setting for limit theo
rems. The physical motivation was the need of a mathematically pre
eise definition of the renormalization group in the sense of Kada
noff and Wilson and of its connection with the usual field theore
tic approach. (l6) 

J 
As in Section 2 let 2. be a l!lttice i,n d dimensi0I!s and j 

a generic point of 7LJ. ) J = (j'))~ .. ,) J4) ,with J I( inte
gers. )(j is the random variable associated with site j. We defi
ne a new random field 

x·'" =- ( RItM X)· 
J J 

M \I. is the cube 
J 

and 1 ~ ol L.. 2. )( 
The transformation (1) on i induces a transformation 
lity measures according to the following equation 

(1) 

(2) 

on probabi-

(3) 
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where A is a measurable set. RalM has the semigroup property 

(4) 

A measure ~ will be called stable if 

(5) 

and the corresponding field will be called a stable random field.(*) 
We briefly discuss the choice of the parameter c{. It is natural 
to take ~ < 2. In fact the expectation of eq.(l) gives 

E(IXjl) .::::: - 4.5 _ ~ z.. 

d- tld. 
CM T 

Therefore if 0{ > 2 and E:. ( I ){sf)LtO we have E (ne70 ~ ~ ~O 
This is not surprising as ~ =2 corresponds to the law of large 
numbers and the block variable is expected to tend to a sharp va
lue. The condition 0{ ~ 1 means that we are considering systems 
which fluctuate stronger than a collection of independent varia
bles (0{ = 1 corresponds to the central limit theorem). As remar
ked by Dobrushin,(7) mathematically the latter condition is not 
natural. However it may be considered natural as long as our main 
concern is critical behavior of ferromagnetic lsing like systems. 
We ahall come back to thia later. 

We are now ready to introduce the not ion of limit dist~bu
tion for a random field on a lattice. We say that a measure ~ , 
admits a certain stable measure~ (in the sense of (5» as limit , 
distribution if for some ~ 

(*) Sinai and Dobrushin have suggested the name "automodel " distri
bution for a measure satisfying (5) in order to avoid the word 
"stable" which in mathematics has already several meanings. 
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(6) 

The convergence has to be interpreted as weak convergence of joint 
distributions i.e. given an arbitrary continuous function of co~ 
pact support 

~ ('ti, r' .. ) X,~) 
. J 

l.(, E Z 

~.~ ~ ~ ~ JFM = ) ~ Jr 
,.., 

The set of~ satisfying (6) is called the domain of attraction of 

1'. 
Clearly the above definition includes the usual limit theorems 

'\; 

as a particular case. It is easy to see that if)UL and}t are 
products of identical one dimensional distributions (5) reduces to 
the usual definition of a stable distribution and (6) to the usual 
notion of limit theorem. The interesting fact is that strongly de
pendent variables, like those occurring in critical behavior give 
rise to limit measures which are not products. 

So far only special solutions of eq.(5) have been calculated. 
For gaussian measures satisfying (5) one sees already the beginning 
of a general theory. Some details will be given in a later section 
where we shall also consider some solutions which are "close" to 
a gaussian measure and can be obtained by a kind of perturbation 
method (bifurcation theory or € -expansion in the physicist's 
language). Here we point out that a class of non Gaussian solutions 
of (5) can be constructed along the lines discussed in section 3. 
The general idea consists in taking functions of a gaussian field, 
applying the transformation R~"", with ot determined by the va
riance of the sum of n factors, and then taking the limit n~ 00 • 

What one actually calculates are the moments of the limit process. 
The possibility of this construction for the Rosenblatt process 
was indicated in (11). A systematic approach has been developed by 
Dobrushin(8) within the wider context of generalized random fields. 
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5. - Stable Random Fields - Continuous Case(7) 

A natural approach to limit theorems in the case of continuous 
random fields is based on the idea of scaling transformation. We 
need some preliminaries. Let Qtd a linear topological space of 
real functionq over R~ ,the d-dimensional Euclidean space. In 
most cases (itd will be the Schwartz space J)(Rd) of infinitely 
differentiable functions with bounded support. A generalized ran
dom field over (Rd is a system of random variables {cp" ) <f6-(jldJ 
defined in a probability space (.Jl J ~ jMrt ). ~ are the Borel sets 
in Jl. and 4\t a measure. A random field must satisfy the linearity 
condition 

Q.I ~'f, + dl..ffl. - ~4'fi+ctl.fJ- (1) 

4 
where Cf. J 12. 6 (j{ , al,a2 are real numbers. 

A probability measure J'" 
one-dimensional distributions 

can be specified by a collection of 

}"- =- {r Cf I Cf ~ Ol d J defined by 

rcr(ßJ = NIl {WtiJ2..! 1~(W)6ßJ (2) 

~ is a Borel set on the real line. It is easy to see that because 
of the linearity condition (1), the finite dimensional joint distri
butions )Aq. 'ft." <fll( are also determined. Convergence of probabi
lity measures is weak convergence of joint distributions. 

J 
Define now for any Cf b eR.. the scale transformation 

_ de{ ( _I ) 
Sol }. ce &.J == ~ -"i:'" Cf ).)( (3) 

where 1 ~ 0( L. 2 as in the previous section. Se( ~ induces a tran
sformation on probability measures according to 

(4) 
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In ana10gy with (4.5) a measure ~ will be ea11ed stab1e if , 
433 

(5) 

We shall sa - ~) has a limit "in the 1ar e" if for some CI( 

(6) 

If )UL exists is e1ear1y stab1e in the sense of (5). Dobrushin eon
siders also a limit over short distanees, ft~ S:>. jA. 
if this exists for some 0{ • This is essentially a limit "in the 
1arge" in momentum spaee. In the following we shall always refer 
to limits "in the 1arge". 

We now eome to an interesting point whieh exp1ains why in the 
eontinuous ease one has to eonsider genera1ized random fie1ds ra
ther than ordinary random fie1ds. In the 1atter ease ~r ean be 
represented as an ordinary integral 

(7) 

Jf. 

Then if JA is the di:tribution of X ('Jl) ,5cl.)'},- will be the di
stribution of )t d(1 ~J X (}.X) • If JA-- is stab1e they eoin
eide. But then we have the following eone1usion: if X (xJ is a 
stationary and stab1e ordinary random fie1d, it is trivial. 

In fact from stationarity it fo110ws that the distributions 
of X 6d and ~d{t-Gt/L) X ().)() may eoineide only if XM:o. Or

dinary (non stationary) stable random process were first consi
dered by Lamperti.(19) 

(*)We shou1d remark, and this app1ies also to (4.6), that for the 
limit (6l.to exist, more general mu1tip1ieative faetors of the 
form ).- 'l h. ()o.) , where k (M is a slow1y varying fune-
tion, may have to be eonsidered. The definition of stab1e mea
sure however ine1udes on1y the )-~ faetor. In the fo11owing 
we sha11 ignore this comp1ieation. 
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The approach in terms of generalized random fields is also 
very powerful because, as we shall discuss in the next section, 
permits to connect explicitely the not ions of stable random fields 
in the discrete and the continuous case. 

6. - Relationship between the discrete and the continuous case(7) 

J 
We need some auxiliary concepts. We say that the space at 

can be discretized if the following conditions are fulfilled 
i) (li contains all the indicators X b/'- of d-dimensional pa

rallelepipeds 

V CIC)-O 
I !'e/'- -

ii) the linear space of functions of the form 

d.J. Y o-c • r "I' J 

where bj, CJ J 
have rational components, is dense in OC • 

An important example of such aspace in the present contex:J 
is the following M (QdJ• This is given by the finite ~e LZ(Jt) 
such that 

~ -~ ~ 
1l~1I= [~ ,~o.)l2. V(I + 1~I(IJ(~(e+ \~'<I» d)] 2.L60 (1) 

~, 

lp (}.J is the Fourier transform of 0/ 
The topology in M (R.") is defined as follows. Let M (Sr) 

the set of functions in J1 er) with support in the sphere Sr 
of radius r contained in R . We introducl in N (SrJ the to-
pology of the form (1). The topology in M (R ) is then the induc
tive limit topology(*). The following theorem has been proved by 

(*) 
This means the 
subset V such 
for all r . 

following: a neighborhood of 0 in M (R~) is any 
that V fl M (S r) is a neighborhood of 0 in M (SI 
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Dobrushin. 

dense 
stron er 

It is obvious that the functions Y.h" belong to M( R~ ). 
In fact their Fourier transform is 

and satisfies (1). We do not give the proof of the theorem. We 
only mention that it is done in two steps 

a»)J( RJJ is dense in M( R d ) 
-d 

b) J)CRcl) S: M (R) closure of the space of functions 

0/= 2. a..j Vb- C· 
i II I ) 

Consider now a probability measure ~ of a generalized random 
field in J?(Rdj . We shall say that )-I- admits an extension in 
M( R,d ) if we can find a JA' describing a random field in M( Rd ) 
such that 

(2) 

It is clear that such an extension is unique, although of course 
it may not exist.~e then call discretization of JUL (thrOug~/) 
the distribution ~ of the discrete random field 

(3) 

where 9 has distribution JU~ J{j is the indicator of the cube 

( 4) 



436 G. JONA·LASINIO 
A 

We note that every discrete distribution ~ arises from the di-
scretization of some fie1d over $CRclj. In fact from the discrete 
fie1d )C. we can construct 

J 

~ =- ~ Xj) 'f&JJ)( ) 'f e J)(R~ (5) 

i'f Jf:Zd A' 
J J 

(5) defines 

is Xj with 
also a random fie1d over M( R ) whose discretization 

A 
distribution JA 

We now have the important theorem 
Theorem 6.2 - Given two distributions 
extensions over M( RA ) of random fie1ds 
that for some 0( 

1"1.. :: 

their discretizations satisfy 

n=1,2, ••• (6) 

(7) 

The operation of discretization transforms stab1e random fie1ds 
with parameter (){ into stab1e random fiel ds with the same parameter 

The situation can be 

D means discretization. 

visualized with ...,. 
SatM 

_---'~ ~2.. 

t o 
> 

the he1p of the diagram 

A final remark. The 1anguage of genera1ized random fie1ds 
appears as a suitab1e too1 to ana1yze also the relationship between 
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limit theorems and the multiplicative renormalization groups used 
with considerable success in field theory(4) (groups a la Gell
-Mann and Low). Their special multiplicative structure can be in
troduced quite naturally following the scheme of ref.(l) based on 
the not ion of multiplicative cocycle. 

7. - Structure of the set of stable random fields(7) 

We have already mentioned that the problem of constructing 
stable random fields is a very difficult one and that only a limi
ted number of explicit examples is available so far. It is then 
natural to examine the possibility of constructing new stable ran
dom fields out of the known ones. There are some general proper
ties of stable fields which are interesting in this context. 

Sr 
We denote with A cl the class of stationary generalized sta-

ble random fields over ~(Rd). In the sense explained in the pre
vious section this contains also the random fields over a d-dimen
sional lattice. We now list some operations which trans form j\S~ 
into itself. ol 

a) Multiplication by a constant 

Let Tc. f:=. C. <f 
is stable. 

, then (T; r)7 = JAcf is stable ifr 
b) Convex linear combination 
If J.J.I ).Al. G AS~ 

~ I + ~1 .I":~ 'I cl 
, then for 

c) Con, volution ASciI-
IfjA'jA2- e 

I Z. 
, then t = ~ itJA defined by 

A~}
G 0< 

I ~ 

fAt == JA'f >tl)Ay ) 

d) Closure in the sense of weak convergence 

e) Differentiation 

We denote by I~ the set of multi indices i = 
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~ 'J 
I< " '2.. • J t· ( "l (A \ I 

i = 0, 1, 2, ••• , I i I = t ~ l -t • -t L • Let 0:: D J - -' 0 J whe re 
D~ is differentiation with respect to the k-th coordinate. The 

derivative of order i of the field [4 CJ (; :t)(R:JJ] is de-
fined by f J I 

Of course operation e) has no-mealling for random fields over 
a lattice. 

We can now formulate in a precise way the problem r~sed at 
the begin!!!.ng of this section. Cons.!2er a set ß ~ A~ . We 
say that ß is generated by B if ß is the sma1lest c10sed con
vex set containi~ Band such that if )1t I/jA-2.6 ß also T: ~ 
and jJ.'*,..1 6- ß . Question: is it possible that AS:: be gene
rated by some snnple set (possibly finite) of distributions? So 

far the answer is not known. 

(7) 
8. - Local Mutual Singularity of Stable Random Fields 

In this section we discuss a fundamental property of stable 
random fields which gives additional insight into the difficul
ties of the subject. We will show following Dobrushin, that any 
two non coinciding stationary stable random fields have distribu
tions which are locally orthogonal. 

For V =- R d we denote with J)" the functions e 01) ((~.~ 
which have their support in V and with (By the smallest subalge

bra of (A with respect to which the functions ~"J Cf G tl)" are 
measurable. We say that two distributions JA' , (}Al. are locally 
mutually singular or orthogonal if for evefy V ~ Rd the restric
tion of the corresponding measures ~f, M11. to CSyon the common 
probability space.n. (see section 5 for the relevant definitions) 
are mutuall y singular. This means that there exists a ß e CBv 
such that 

, 
m (ß) = 0 (1) 
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I 2. 
Theorem 8.1 - Let JA I JA be non coinciding stationary er, 

godic stable random fields. Then they are locally mutually singular. 

We sketch the idea of the proof which shows very clearly the 
role of scale invariance. It is obviously sufficient to show that 

for every V f: R d and every E 'J 0 there exists a ß e (ßV such 
that 

~2.LßJ > \ - 6 (2) 

Since JA I and JA z.. are stationary we may take a V containing the ori
gin of the coordinates. Let us assume that}A' and JA Z. are characte
rized by the same O{. Since they do not coincide, there will exist 

functions lf 6~ for which JA 't I JA- 'l..'f • Then for some conti
nuous funct~on j- the averages 

MI = 5 f( ~f(W))Ntt/{JIdJ , 
..n.. 

will be such that 

(3) 

-\ ' 
Let us now denote by L (M'\ t.J, i=1,,2 the space of measurable func
tions integrable with respect to ~t • If \Ir is the cube 

_ T ~ X (. ~ T ) t '=.1,2, .. cl ] 

by applying the ergodic theorem we have that in the sense of the 
convergence of L! lN1.t) 

~'pA. ..L- I f (~ (w)) da. = ML 

r~oo VI VT E4 'f ( 4) 
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where E~ is the translation operator defined by EQ.16'}:,ce(~-Y 
Then for any 6- '") 0 there exists a To such that for the set 

In general however ~ will not be 
can use the fact that }.AI and JA 1-
set I 

has meaSures 

• .-
V-10 

(5) 

~~(ß)' 1- G (6) 

contained in (B 1/ • But now we 
are stable random fields. The 

(7) 

Since Cf is of bounded support there will exists a cube \{ such 
that ~ vanishes outside it. The support of Sot~ Eo..Jf will be con-
tainetl in the cube V(s -t 141J ~ • By chosing A small enough we 
can bring any Vts ~ 141)~ inside" and therefore ß). inside iB". 
The theorem is proved for JA '/)-\L having the same exponent 0( • If 

cl ' -F '" 1. the proof can be carried out along similar lines and it 
is only slightly more involved. 

(22) 
9. - Gaussian Stable Random Fields 

We come again to the crucial question of the explicit con
struction of stable random fields. I~ this and the subsequent sec
tion we shall review some results of Sinai which provide the first 
systematic approach to some cases of physical interest. The case of 
Gaussian processes is very simple as they are completely determined 
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by the eorrelation funetion. In physies they appear for example in 
mean field theories of phase transition. Everything will be restric
ted to the lattiee ease. In one dimension the following theorem eom
pletely charaeterizes the unique stationary Gaussian stable random 
field. 

Theorem 9.1 - The stationary Gaussian distribution)Ul in d=l 
is stable Hits speetral function has the form 

00 

I ZIt"I'~ 12. E _~I_-2 ()t.) -= ce-I ,."..=_~ \ ~ + ~ I ol + I 

C is a constant > 0 

From (1) it follows that 1 

_ r Z- e z~t'~ r P CA) J). 
GCd=E(YoXr) J (,) 

-.1. 

has the asymptotic behavior 

I~II-ol 

z. 

-ll-oi) 
I V" I 

(1) 

sinee 

We make a side remark. As the reader will remember 1~« L 2 
and this rest riet ion was motivated in Section 4. It is elear how
ever that the above formulas have a meaning also for 0":::: D( '- 1. 
In this interval (;6,) is integrable, aetually Z. (;(r) = 0, and 
the process is not eritieal in the sense of us~l ferromagnetie 
systems. However it still describes a sequenee of strongly depen
dent variables. Strong mixing is violated as it follows from theo
rem 2.1 which of course applies to gaussian processes. The diffe
rence with respeet to a critieal Ising model is that in eq.2.2 
numerator and denominator now vanish. Violation of strong mlxlng 
follows also from general theorems due to the zero of non integral 
order of the spectral funetion when ~~ 0.(15) 

For d)7 1 there are many more possibilities due to the eir
eumstanee that we ean have different asymptotic behavior in diffe
rent directions. A complete description of Gaussian stable random 
fields for d)1 is still missinl. A partieular class ean be construe
ted as follows. Let ~ (')./, .,/ A J a positive homogeneous funetion 
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of degree r- d {,l i9 ' i.e. 

r·( t dJ _ lr r (\I _" .,\tlJ J c. >-) ~,- J CA - \ C T I' J. J (2) 

Then the series 

Cl. ().) = L d o NA eZ, 
(3) 

converges for A f."lL d and defines aperiodie function which can 
he considered as a function on a d-dimensional torus. Let 

d 1 l~, ~~ II ( f (~) = 1':. e - , 8).) (4) 

Theorem 9.2 - The Gaussian process with spectral function JP~. 
is stahle. 

In the isotropie 

10. - Non Gaussian Stahle Random Fields(22) 

The construction starts from a study of the linearization of 
the operator R~M around a Gaussian fixed point, i.e. around one 
of the processes just calculated. Then one studies the spectrum 
of such a linearization and looks for those values of~ for which 
it contains1. These are the values for which a non Gaussian solu
tion hifurcates. The new solution is calculated hy means of a for
mal expansion in € = cL - «c where Clc. is the hifurcation point. 

CI( 
Let f'" a gaussian stahle measure with exponent a over a 

d-dimensional lattice. We consider a perturbed measure 
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(1) 

and apply the transformation R;M . We have 

R~M JA ~.f~ + R~M )A~k (2) 

",. 

From the definition of FlJM it follows easily that 

d R~M)A~ h = E (; C ~ I )t~\ ) (3) 

M dß~ I. 
EG-(h I'/. }is the conditional expectation of V\ with respect tojAt 
for fixed values of the block variables )(Mdefined by eq.(4.1). 

Eq. (3) defines the differential 0 R:IM of R:Mat the fixed point 
}A1 . Sinai has studied in detail the linear operator 0 \~:;N\ 

and has calculated its eigenvalues and eigenvectors. We summarize 
the results of his analysis. 

He starts by considering polynomial expressions of the form 

(I.() 
a... = L ct el , - fl{ Xe, ' .. X el{ 

a" --, elt( 
( 4) 

From any choice of Oe, .. el(. we can obtain a translational inva
riant form by taking new coefficients 

(5) 

bC,<) 
We denote by the corresponding polynomial form. It is then 
convenient to decompose the space of forms b{/I() into Wick products 
as follows. Define 

· Xe. -" Xe~ ~ :: Xe, . - Xel( -?-&- C t, ." r't-z.)(t; ... Xtl<_~-
'I .- 'K-1. 

_ c::;"' (6) 

L- er ." ~-4 V ~ ... X t: -f-:._.t I I' I '<-4 
I K-~ 
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where the coefficients 
sion (6) be orthogonal 
product X, --_. X I 

are determined by the condition that expres-
11( -

with respect to the measure ~, to every 
~ <: K.. The space of forms 

J' J~ 

2:.. (7) 

will be called }-{ &<.: 

Theorem 10.1 - 1) Every space }{~ is invariant under the 
tion of D~., i.e. 0&"0(. X" :. J-<IIC. for n'»- 1, k ~ 1. 

ac-

2) In every space XK there exists an element h.c which is 
an eigenvector of DA.".cM ,Le. D~Ao\ hl( = I\\r~ kll{ 

't~ = d (~ -K+~ with 

From this theorem there follows aseries of consequences. 
We restrict our considerations to the case of even k. For k=2, 

Y2. = 0( -1 ,. 0 and the space of quadratic forms is always unsta
ble in the sense that D~Mdrives away from the fixed point~~ • 
If 1 < ot ,I~ I YK L:. 0, k=4,6, ••• and in the spaces J<&( we 
have a stable spectrum. For «I( = 2 - ~ I ~ = 0 and the corre
sponding eigenvalue is equal to 1. Atthese points, in analogy with 
the finite dimensional case, it is natural to expect the appearan

ce of new solutions of the equation R.""'/ = J4' . 
For 0{ near 3/2 the new solution is calculated by expanding 

the perturbation term in (1) in powers of 6:. ti. - 3/z. starting 
with a term IV G t\4 and solving I~~~ fi =-r self-consisten
tly. This has been done by Sinai for n=2. More complete results 
have been obtained by Bleher and Sinai for the hierarchical model.(3) 
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1. Introduction 

If one looks back at the recent developments in the 
theory of critical phenomena, the Kondo problem and gauge 
theories, one notices that the same word "renormalization 
group" appears in connection with approaches which at 
first sight look very different. In view of the subsequent 
discussion, it is expedient to introduce some preliminary 
classification of the various trends. 

There are approaches which are called field theoretic 
in the sense that they use the standard apparatus of 
quantum field theory based on the formalism of Green's 
fucntions. However within that context one usually refers 
to a renormalization group method in the strict sense(l), 
which is related to certain invariance properties of the 
theory, or to the so called Callan-Symanzik equations(2). 
The two points of view lead to very similar formalisms 
but their conceptual relationship is not immediately 
apparent. 

Another main line of thought, which in many respects 
has been dominant in the past few years, is known as the 

The content of this report was presented in a seminar 
by A.L. Stella. 

~7 
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Kadanoff-wilson approach or sometimes, as the "modern 
version" of the renormalization group(3). Its relevant 
feature has been the introduction of a whole series of 
concepts and calculational schemes which were unknown 
to the previous tradition of both field theory and sta
tistical mechanics. However, when applied to the same 
problems, the field theoretic and the Kadanoff-Wilson 
(K-W) methods give exactly the same results. Actually 
also within the K-W method several variants are possible, 
a fact which was recognised rather early. 

More recently the zoology of renormalization groups 
has been enriched by the so-called "non linear" groups 
(4)(5), the possibility of which had been ~stablished on 
the basis of rather general arguments(6)(7J. Non linear 
groups do not appear so simple for a systematic study 
but they seem to constitute a promising lead. 

The existence of so many different "schools" in r~ 
normalization group theory, has sometimes created confu~ 
ion and misunderstandinw in the sense that some authors, 
rather than stressing the very important fact that the 
different methods, at least as far as they have been d~ 
veloped, give exactly the same results, emphasize their 
formal difference. In this way one gets easily the im
pression that the cOhincidence of the results, obtained 
in different ways, is almost accidental and not related 
to the deep conceptual unity which underlies the various 
interpretations of the renormalization group idea. 

TOday, after the success of the different points of 
view has become an established fact, it is a relevant 
theoretical and pedagogical problem to make their connec~ 
ions explicit. 

At the general level it is not too difficult to e~ 
tract a leading idea which is common to all renormaliza~ 
ion groups. This can be formulated as folIows. Given a 
model of a physical system which is of interest to us for 
a certain property, try to reduce it by aseries of vari 
able transformations to a new model which exhibits this 
property as the dominant, in such a way, that it can be 
studied in its simplest possible form. All this can be 
illustrated with the help of an analogy. In celestial 
mechanics it is not immediately obvious that a system of 
planets in interaction exhibits periodic motions. However 
by performing aseries of canonical transformations, one 
can reduce in some cases the very complicated original 
equations to a form in which they represent quasi-periodic 
motions on a torus. 
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The property which was relevant in the physical 
systems studied in the recent years, was critical scal
ing, and in the sense of the example indicated above, 
scaling may be viewed as corresponding to the classical 
periodic motions. 

It is clear however that the difficult part of the 
problem consists in making explicit the detailed connec~ 
ion among the different renormalization group methods. 
This paper represents a contribution in this direction 
because it makes explicit the analytic connections be
tween some of the schemes mentioned at the beginning. 

We think hOvTever that the most interesting outcome 
of the discussion which follows is of a general charac~ 
er. In fact we will show that a multiplicative structure 
similar to that characteristic of field theoretic renorma~ 
ization groups can be associated essentially to any re
normalization transformation, provided some smoothness 
conditions of a general nature are satisfied. 

2. Field Theoretic Renormalization Groups 

The basic ideas of the renormalization group concept 
in field theory are much older than the recent applicat
ions to critical phenomena. What is new is the attempt to 
construct a systematic theory of scaling starting from the 
R-G. In view of this circumstance, it is convenient to 
formulate the problem and introduce the notation having 
this goal in mind. We begin therefore with one of the main 
results of phenomenological analysis of critical behaviour: 
the inverqe of the Fourier transform of the two-point 
correlation function has the form 

( 2 .1) 

valid when k, t+O. The meaning of the symbols is as 
follows: k is the wave vector, t=T-T c measures the de
viation from the critical temperature and A is a natu·ral 
length of the problem which may be taken of the order of 
the inverse lattice spacing for Ising like systems. 

The asymptotic correlations therefore can be charac~ 
erized by the simple scaling property. 
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(2) = r (k,t,A) 
as 

S n (2) ( r k,t 
as 

s 

1 
--2 
v ll) 

s 
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(2.2) 

The field theoretic R-G can be viewed as a generaliza 
tion of (2) valid for all k and t, which reduces to (2) -
asymptotically. However one has to be careful because in 
the exact equations derived from field theory the role 
of A is played by a parameter with a different meaning. 
If one deals, as it is customary, with a model characteL 
ized by an interaction of the form u~4 (u is the coupling 
constant and <P the fieldamplitude), the exact equation 
satisfied byfue renormalized two-point correlation is: 

- (2) - 1 - (2) r (k,t,u,\,A) = Z (\',u,A,A)r (k,t',u',\',A) 

where 

-1 
t' = t Zt (\',u,\,A) Z (\',u,>--,A) 

( 2 • 4 ) 
-1 

U' = U Z (\',u,\,A) Z2 (\',u,\,A) 
u 

and Z, Zt' Zu are appropriate functions. 

We shall discuss later how these functions can be 
determined when we clarify the meaning of the new vari
able A. 

The scaling properties emerge from field theory by 
letting \'= Als, s~~ and by assuming that in this limit 
the dependence of f(~ on u and A disappears, while 
Z-l"'sn, Zt 1 "'s1/ v -!+n. 

In this way (2.3) becomes identical with (2.2) pr~ 
vided we identifx the roles of A and \. If we had dealt 
directly with r(~ and had written an equation of the form 

r (2) ( k , t , u , A) = Z - 1 r (2) (k, t ' , u ' , A ' ) 

with t' and u', related multiplicatively to t and u,this 
would not hold with Z's independent of k and t. The useful 
ness of equation (2.3) resides precisely in the possibili 
ty of choosing the \ dependence in such a way that the -
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ZI S do not depend on the variables k and t ln which ve 
are interested. 

Actually (2.3) can be further simplified by taking 
from the start the limit A=oo when justified by the re
normalizability of the theory. 

It is now time to recall how (2.3) is constructed. 
The structure of eq. (2.3) follows from two facts. The 
first is a trivial invariance property of the diagrammatic 
expansion of correlation functions. The second, a little 
less trivial, is connected with the invertibility of f(~ 
with respect to some of its arguments. 

This will be apparent in amoment. Here we only r~ 
mark that the parameterization in terms of A and AI 
indicated in (2.3) and (2.4) depends just on this second 
property. The steps leading to the determination of the 
functions Z,Zt,Zu are the following. 

_ (2) 

° h t t o ° ar ne c oses hree correla lon functlons ---2--
ak 

- (2) ar 
at 

and f(~, where f(~ is the one-particle irreducible four
point function, and requires that the normalization 
conditions be satisfied 

- (2) 
2I- (k 2 ,t ' ,u ' ,A ' )1 = 1 
"k 2 
o k2=O,tl=AI2 

f (4) Cko, t I ,u ' ,A I ) I = U I 
1 k~=O, t'=A,2 

1 

From (2.3) and a similar eq. for f(~ one then finds 
the implicit expressions for the ZI S 

-1 
- (2) 

-1 
Z = ~ (k2,tlZtZ ,u,A)1 

ak 2 k 2=O,t l =A I2 

-1 
- (2) 

-1 
Zt = ~ (k 2 ,t'Zt Z ,u,A)1 ( 2 • 6) 

at k 2=O,t'=A I2 
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- 1 - ( .. ) -+ -1 I uZ = r (k.,t'ZtZ ,U,A) 
u 1 k~=0,t'=A,2 

1 

Here one sees clearly where invertibility comes in. 
In this way, having expressed the Z's in terms of cor
relation functions, we obtain a set of non linear equat-

ions 

The meaning of A is clarified by eqs. (2.5) and 
(2.6). It can also be connected with the subtraction 
point of standard renormalization theory. For a detailed 
derivation of the above formulas, we refer the reader for 
example to (1) where one finds also indications on how 
to perform practical calculations. 

For the purpose of the present paper it is sufficien 
to explain briefly under which conditions scaling is 
implied by our scheme. 

We first introduce the differential form of eq.(2.3) 
by taking the derivative with respect to A' and then se~ 
ting A'=A (we omit the A dependence) 

where 

[A 'O'OA -<1~ t 'O'Ot + 'I'~ u'o~ - 2<1°] f(2)(k,t,U,A) =0 (2.7) 

(Z Z~~) 
s=l 

-1 
'1'0=_....2.... (Z Z ) 

u '0 s u 
s=l 

(2.8) 

A simple dimensional analysis now shows that (2.7) 
can be rewritten 

[ -k....2.... - <1 t,,'Ot + 'I' (u )_'0_ - 2<1°+2}r(2)(k,t,u"A)=0 
3k tau A 3uA 1\ 

with 

<1 =2+<1° 
t t 

(2.9) 

(2.10) 

d is the dimensional~r~ of the system. Similar equations 

can be 'tt f ar and r("). wr1 en or ~ 
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If there exists a u* for which ~ (u*)=O 
u the asymptotic solutions 

ar (2) 

at 

k=O 

- 20 +0 ° 
t 

= t 

1 
-(n+ v - 2)v 
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we obt ain 

(2.11) 

( *) o( * 1 with the identification 20° u =n and 0t u )= V - 2. 

(2.11) implies for Z and Zt the asymptotic scaling 
form 

_1 
Z '\, sn , 

s+co s+co 

1 - - 2+n 
SV (2.12) 

Linearizing the function ~U(UA) around the fixed 
point, one may also introduce an exponent measuring the 
speed of approach to the asymptotic region as follows 

* -~, * u A' - u '\, S (u A - u ) 

with (2.13) 

which allows for the evaluation of the correction terms 
to the asymptotic expression. 

3. Kadanoff-Wilson Linear Transformations 

For the purposes of the present paper it is suffi
cient to describe the usual K-W groups in terms of the 
following requirements. Consider a family of transformat
ions Rs depending on the real parameter s, acting on the 
Hamiltonian of a many-body system and satisfying: 
a) R_(H)=H' where Hand H' belong to some preassigned 

space of Hamiltonians I, 
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b) Rs(Rsi(H))=Rss,(H) (composition law). 

c) The two particle inverse correlation function trans
forms in momentum space according to 

(2) :2 -Tl (2) 
r (ks~ Rs(H)) = s r (k~H) 

d) There exists at least one fixed point H~ satisfying 
for any s 

e) For T small enough 

Rs(H+TAH) = R (H)+TL (H)AH s s 

where Ls(H) is a linear operator which depends on H. This 
condition will be called following ref. (8) the smooth
ness postulate. L (H) is the tangent mapping~ which trans 
forms vectors in Sthe tangent space at H into vectors of 
the tangent space at Rs(H). 

A condition which is usually imposed on the set of 
Hamiltonians considered is that they should contain only 
momenta below a certain cut-off A. In such a case c) is 
meaningful only if ks<A. One can in principle consider 
much more general cases but for simplicity we shall assum 
a sharp cut-off A which provides a natural unit in terms 
of which any dimensional quantity can be expressed. We 
shall call critical any H which satisfies 

provided the theory corresponding to H~ is not a free 
theory. 

Critical Hamiltonians form a subset I c of I~ which 
is usually assumed to have the structure of a differen~ 
iable manifold. 

~ . 
For H=H ~ Ls(H ) becomes a linear operator acting 

on the tangent space at H-. 

From b) and e) we obtain easily (9) 

L (R ,(H))L ,(H) = L ,(H) s s s ss 

For H=H- therefore the linear operators L (H~) have 
s 
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the group property 

L (HIt)L ,(H*) = L ,(H*) 
s s ss 

If' we assume, as 
ized, beeause of' (3). 

usual. that L (H-) ean be diagonal-.. s J.ts eJ.genvalues have the f'orm 
It Y· 

L(s) = s J. 
J. 

i = 1.2 ..... 

In applieation one of'ten deals with situations J.n 
whieh Yl>O and Yi<O (i~l). The eorresponding set of' eigen
veetors h! provides a natural basis f'or the tangent spaee 
at H*:h! J.(i~l) def'ine the tangent plane to the eritieal 
surf'aee I e at H*, while h! represents the direetion of' 
eseape f'rom I e at the same point. 

For a general diseussion of sealing properties 
related to eritieal hamiltonians H belonging to I e but 
different from H* and in partieular for the diseussion 
of the subsequent seetion. we need further assumptions 
for Ls(H) whieh eome out as a natural extension of those 
given above. The rieh and interesting strueture whieh 
emerges is the main justifieation of our assumptions. 

f) For any HEl e we assume the existenee of' a set h.(H) 
of basis veetors normalized in some natural metrIe 
in the tangent spaee at H satisfying: 

L (H)h.(H) = A.(H.s)h.(R (H» s J. J. J. S 

With the following eontinuity requirement 

lim hi(Rs(H» = lim 
s~oo s~oo 

L (H)h.(H) 
s J. 
A. (H,s) J. 

* = h. J. 

(3.5») f'or H=H*, reduees to the eigenvalue equation f'or * y· Ls(H* • with A. (H*.s)=L (s)= s J.. J. J. 

From (3.2) and (3.5) it immediately f'ollows 

A.(Rs(H).S)A.(H.S') = A.(H,ss') J. J. J. 

whieh has the multiplieative eharaeter of the f'ield 
theoretie transf'ormation for the eorrelation funetions. 

If' we diff'erentiate equation (3.7) with respeet to 
s' and put s'=l we obtain: 
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- cr.(H)- L ~k(H) -1-1 
1 k aUkJ 
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L(H,s) = 0 
1 

(3.8) 

where: Uk,k=1,2, •.. is a set of parameters specif~ 
ing the Hamiltonian in some preassigned basis, 

and 

where (Rs)~(H) represents the component of Rs(H) in 
the k-th direct10n. 

and 

It is evident that: 

• cr.(H) = y. 
1 1 

Equation (3.8) has the same structure as the field
theoretic renormalization group equations with the only 
difference that the ~k's here depend on a large number 
of parameters. 

In order to give an idea of the physical interpretai 
ion of the quantities Ai(H,s), we remark that if the 
transformation Rs(H)is the Kadanoff block-spin trans
formation, the Ai are expressible in terms of conditional 
correlation functions where the conditioning variable is 
the block-spin. 

Due to the fact that for H€Ic,H~ is an attractive 
fixed point,equation (3.8) also implies that asymptotica~ 
ly, for large s, one has 

A.(H,s) ~ P1o (H)SY1' 
1 s~co 

The asymptotic form (3.9) will be used in the folloK 
ing section in order to clarify the connection between 
the K-W and the field theoretic approach. 
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Here we want to discuss the representation of Ls(H) 
in the basis {h~}, which is the one used for practical 
computations. 

. * . Due to the non-orthogonal1ty of the vectors hk , lt 
is convenient to introduce contravariant vectors h i * 
satisfying 

(3.10) 

We can then put 

(3.11 ) 

where 

(3.12) 

Thus (5) can be written as 

I L (H) a . k ( H ) h k* k s 1 
= L(H,s) I a .. (R (H))h~ 

1 j lJ S J 

Defining 

(3.14) 

we immediately obtain 

I AJ/,k (H.s)ak~ (H) = A.(H,s)a·n(R (H)) 
k 1 1 lN S 

From (3.15), if we consider the fact that 
aik(Rs(H))~Öik for s+oo, and take into account the inverti
bility of aT(H), which follows from our assumptions,we 
obtain the following form for A .. 

lJ 

Yi 
1 im A .. ( H, s) '" sC .. ( H) 
s+oo lJ lJ 

(3.16) 

The previous assumptions are not sufficient to give 
an explicit determination of the matrix Cij(H), which 
provides the transformation between the scaling direct
ions at Hand the scaling directions at H*. 

There is a simple connection between the matrix Cij 
and the Wegner (10) scaling fields. In fact if we write 
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asymptotically 

* Yi + H. + C.(H)s + 
s+oo 1 1 

aCi(H) 
i t is obvious that Cij= a H. . Let us check that the 

J 
Ci(H) are scaling fields. From the above equation we may 
wri te: 

[ *, -y' C.(H) = lim R (H)- H .. 's 1. 
1 S 1 

s+oo 

dCi 
Compute now the total derivative dl 

. 0 s 

where 

dC. 
_.1 __ 

d In s 

ac. [y a(R ,(H)). = L ___ 1 H.= lim (s')- i s 1 

J. aH. J , a H. 
J s +00 J 

a H. 
H.= -~ = 

J a 10 s 
G. (H) • 

J 

On the other hand, from the composition law b) 

L 
j 

a(R (H)). 
s 1 

a H· 
J 

a(R (H)). 
s 1 

a in s 

From the last two equations it follows 

dC. 
_-::--=l."-'~;;;'" - C 
d 10 s - Yi i 

i. e. 

As a final remark we notice that the possibility of 
associating the multiplicative structure (3.7) to a trans 
formation Rs(H) does not depend on this being multiplica
tive on the correlation functions. The argument is valid 
also for any group transformation defined by all the pre
vious conditions except condition C. This has to be re-(6) 
placed by the invariance of the thermodynamic potential , 
which was trivially satisfied in the cases previously 
considered. Examples of transformations non-multiplicative 
on the correlation functions will be given in section 6. 
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4. Formal Equivalence of Field Theoretic and 
Kadanoff-Wilson Renormalization Groups 

459 

In this section we shall compare the field theoretic 
point of view with the K-W transformations described in 
section 3. 

From the asymptotic expressions (2.12),for the Z's 
and eq. (2.3), for A'= ~ +0 and using after differentiat

s 
ion dimensionless quantities, we find 

1 

sV t 
--2-' 

A 
(4.1 ) 

Where, in the hypothesis that the theory is renormal
izable~ the A+oo limit has been taken. 

By bringing the s dependence on the left hand side, 
a consequence of (1) is that the limit 

- (2) -2 1 

(k 2s 
-V-

u~ lim -" ar s t ( 4.2) s --
s+oo <lk 2 A2 A2 

is finite and independent of u. 

On the basis of the results of the previous section, 
which are not confined to critical Hamiltonians near the 
fixed point, we shall now derive a similar equation from 
the Kadanoff-Wilson linear transformations. 

We start from a critical Hamiltonian H (e.g. the 
U~4 model with the mass term corresponding to the critic
al temperature) and we add a small perturbing term of 
the form 

From (3.c), (3.e) and (3.f) we obtain: 

s-2+ n r~2)(ks,Rs(H) + T Ls(H) h l (H)) = 

= s-2+n r(2)(ks,R s (H) + T Al(H,s)hl(Rs(H)) = 

= r (2) ( k , H + T h l ( H) ) 

( 4 • 3 ) 
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We now consider the limit s+oo in (4.3) with k'=ks<A 
and T ' = T Al(H,s)« 1. 11 we now take all the s dependence 
on the right hand side and drop for simplicity the primes, 
we obtain that 

lim 
s+oo 

is finite and independent of H. 

If we take the explicit asymptotic expression 
for Al(H,s), (4.4) implies that 

. Z- n T'(2)(k Ts-Yl ] 11m s • -;, H + ( H) h 1 ( H) 
s+oo Pl 

lS finite and independent of H. 

( 4 • 4 ) 

Let us analyze the meaning of this equation. Formal
ly it is very similar to eq. (4.2), provided we indentify 

1 
Yl= V ' and in particular it expresses the asymptotic u-
independence of the theory if H is the one for u~~ model. 
However the unit of length in (4.5) is the natural unit 
of the theory, i.e. the cut-off A. Formally therefore 
the roles of A and Aare asymptotically the same. This 
is interesting because it suggests quite naturally a way 
of looking at the renormalization problem in field theory, 
different from the usual one based on subtractions. We 
are referring to what Wilson calls "unconventional re
normalization"(ll). This consists in giving the parameters 
of the theory, e.g. the mass term and the coupling u in 
the ~~ theory, a cut-off dependence which is asymptotical
ly the anomalous dimension of the fixed point scaling 
behaviour of that parameter. This should produce accord
ing to eq.s (4.2) or (4.5) the cancellations necessary 
for the existence of the theory in the limit of infinite 
cut-off, apart from overall multiplicative factors. 

5. The Callan-Symanzik Equation 

One of the most widely used formulations of the 
field-theoretical renormalization transformations is the 
Callan-Symanzik equation for the correlation functions. 

The equation for the two point vertex function for 
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instance looks slightly different from eq. (2.7) since 
an inhomogeneous term appears on the right hand side; 

461 

it is then argued on the basis of perturbation theory 
that this inhomogeneous term is irrelevant in the neigh
bourhood of the critical point. 

We shall see here how the C-S equation fits our 
formulation by simplifying the derivation given in (1). 
In this context the origin of the inhomogeneous term 
will become clear. 

Any group equation like (2.7) can be transformed 
into an equation of the Callan-Symanzik type with an 
inhomogeneous term by specifying it on a submanifold 
with a reduced number of variables: 

- (2) _ (2) 
A = A(t); r c (k.t.u) = r (k.t.u.A(t)) (5.1) 

The derivative of f(~ with respect to A is now made 
of two terms: 

- (2) 
~ 

dA 
= [d f ~) 

dt 
df(2)] dt - --- --
at dA 

One of them br_~;omes the inhomogeneous term of the 
new equation for l) 

[A 
dt d - (J0 t _d_ + 1f10 d 

- 2(JO] 
_ (2) ) 

u r (k.t.u = dA dt t dt u dU c 

= A II 
d f (2) 

(k.t.u. A=A(t)) ( 5 . 3 ) 
dA at 

In the actual C-S equation the internal length scale 
is given at any temperature by the coherence distance of 
the fluctuations of the system which is defined as 

The model is given as a function of mitself instead 
of t and satisfies the fOllowing normalization conditions 
at any temperature and therefore for any m 
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_ (2) !_ 2 (5.5a) r C (k,m,um) k=O- m 

_ (2) 
ar 

(k,m,um)!k=O 
__ C_ 

= I (5.5b) 
ak2 

- (2) 
ar 

(k,m,um)lk=O = 
__ C_ 

l (5.5c) 
at 

where we have reminded by the subscript c the new normal
ization conditions imposed on the vertex functions. To 
avoid complications we maintain in the following the 
same notation for the vertex functions in terms of m 
instead of t and use, as it is customary, the renormalizec 
dimensionless coupling constant. 

To make the connection with section 2, it is useful 
to rephrase the field theoretical renormalization group 
in a slightly different way, so that mappears explicitly 
as a variable. m is an invariant of the group as it is 
easily checked from its expre~sion (5.4) and the trans
formation equation (2.3) for r(~. Therefore, if the model 
is parameterized as a function of_m instead of t, the 
same transformation equation for r(~ now reads 

2 _1 
Z Z ,A') 

u 

Instead of choosing the N.P. at t'= A,2 as in (2.5), 
it is now natural to take as normalization point that 
value t of t' for which 

which leads to 

and 

-1 
Z 
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[ A.1.- + qt _d_ - 2<1 0 ] r(2)(k,m,U"A) = 0 
dA u dU A 1\ 

instead of eq.s (2.6) and (2.7). 

- ( .. ) 
Similarly the equations for r 

-1 

d r (2) 
and ~ and the 

related expressions for Z are obtained. 
u 

The present scheme is conceptually entirely equi
valent to the one discussed in section 2. 

The Callan-Symanzik normalization conditions (5.5) 
are now recovered by enforcing A=m for any m. 

We are therefore in the situation discussed at the 
beginning of this section. Since 

- (2) (2) r (k m U ) = r- (k m u A=m) 
" "" c m 1\ 

- (2) 
the equation for r c can now be obtained by specifying eq. 
(5.7) on the submanifold A=m where it reads 

r (2) (k m u ) =m 
c "m 

Eq. (5.8) is the same as the Callan-Symanzik equation, 
with the inhomogeneous term in an unusual form. It is a 
technical point to reduce this inhomogeneous term to its 
standard form(l). 

The same results are obtained starting from the group 
equation in its integral form (5.6). This sheds some 
further light on the origin of this inhomogeneous term. 

We may use eq. (5.6) to relate r (2) (k ,m' ,u ,)= 
- (2) C m 

= r (k,m' ,um,m') with a given value cf the mass m' to 

r(~(k,m' ,u~,m) Rt a fixed normalization point A=m 

- (2) -1 (m' ) r (k,m' ,u ,m)=Z -, u m m m 
- (2) r (k,m',u ,) 

c m 



where 

If 

u 
m 

= (m~) ~-d 

we now take the 

-1 
Z 

U 

derivative of eq. 
respect to m' and set m'=m, we onee again 
( 5 .8) 

with 

[m 
..l... _d_ 

20 0J - (,) ) 
+ ljI - r (k,m,u 

dm u dU c m m 

= m' _d_ r(2)(k,m' ,um,m)1 dm' 

0 0 = -

ljI = m' 
u 

_d_ m' dm' 

d 
dm' 

Z 
_l 

2 

u 
m 

(~ 
m ' 

(m~) ~-d 

m'=m 

Um) Im'=m 

m'=m 

= 
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( 5 . 9 ) with 
obtain equation 

(5.11) 

We see that the origin of the inhomog€neous term may 
be traced back through eq. (5.9) to the necessity of 
changing the temperature when changing the normalization 
scale, once normalization conditions such as (5.5) are 
introduced. In our previous formulation of section 2 the 
differential equation (2.7) is obtained by differentiat
tion of eq. (5.6) with respect to A', which actually 
does not act on the left hand side of the equation. 

6. Non-linear transformations 

In the Kadanoff-Wilson approach,"non linear" renorma~ 
ization groups were introduced by releasing one of the 
conditions specifying the transformation(5J. Specifically 
the condition c of section 3, which relates the transform· 
ed vertex functions to the original ones, is no more valid 

We now discuss some non linear generalizations of 
the field-theoretic approach described in section 2. 

In the group that we shall now introduce the simple 
multiplicative transformation property of the correlation 



EQUIVALENCE OF DIFFERENT RENORMALIZATION GROUPS 465 

functions is partially lost. 

We may for instance allow for an additional explicit 
t-dependence of the renormalization factors Z's, so that 
aO,a t and ~u are functio~s of bo~h u and t, not only of u. 
The group equations for r(z) and r(4) then remai!!-(Qf the 
same form as (2.9), whereas the equation for or Z) is much 
more complicated. ot 

In order to analyse this case, it is convenient to 
use the Fourier transform of the three point vertex funct
ion öf(Z) , where t(x) is considered as a local source 

öt(x) 
and eventually its constant limit is taken. 

As a consequence of the fact that the parameters of 
the transformation depend in an essential way on t, if (1 
we take the functional derivative of the equation for r -
with respect to t(x)~ we obtain the following equation 
for f t Z)(k,q)=F.T.ör(2j 

öt(x) 

[-k _0_ _ q 0 -at t _0_ + ~ 
ok oq ot u 

where 

(2) (ör(Z)) r u (k,q)=F.T. ~ 

and in the limit q+O 

o~ 
u = ~, 

( 6.1 ) 

(6.2) 

( 6.3 ) 



G. BENETTIN ET AL 

The second line of equation (6.1) reflects the non 
multiplicative character of the transformation. 

Our transformation cannot be anymore completely 
specified by simple normalization conditions similar to 
(2.5) • 

However we can still construct satisfactory field
theoretic schemes where the transformation maintains a 
certain degree of arbitrariness in its definition. 

This arbitrariness could be for example exploited 
to simplify the study of cross-over effects by varying 
the flow diagrams in the Hamiltonian parameter space. 

We now indicate two possible examples asymptotical
ly equivalent, i.e. in the scaling region, to the multi
plicative case. 

If we look at the structure of (6.1) a natural kind 
of imposition is the requirement that aO,at and f u be 
chosen in such a way that we obtain the standard multi
plicative structure for some fixed temperature, e.g. 
the critical temperature. To this purpose, it is sufficie 
to impose 

3: 0 ( 6.4) 

so that the second line of eq. (6.1) vanishes at t=O. 

We are now in a position to determine aO,at and f u 
at t=O by requiring in analogy with the multiplicative 
case that for k=q=A and t=O 

r (2) I =1 
t ' k=q=A ,t=O 

=1, 
k=A,t=O 

=u A 
s.p. ,t=O 

( 6.5) 

In this way ao,a~ and f t at t=O coincide with those 
appropriate to a multlplicative group, while their t
dependence is still compatible with various specificat
ions. The critical indices therefore coincide with those 
of section 2, while flow diagrams in the Hamiltonian spac 
can be very different. 
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We may realize a different version of our non linear 
groups by trying to impose the normalization conditions 

a f (2) 
=1, 

ak k=X k. =X s.,. 
1. 

( 6.6) 

which are of the same type as those originally used by 
Gell-Mann and Low. 

For a constant t(x)=t indipendent of x, ~u and crO 
are fully specified and depend explicitely on t. Equation 
(6.1) is therefore in order also in this case in its full 
generality. It can be shown that infrared divergences 
arise in crtt,crt and ~ut at t=O. We can take care of them 
by imposing that the second line of eq. (6.1) vanishes 
at q=k=O for any t. 

If we now assv~e that this happens also for q=k=X 
the equation for f~ at this point reduces to the simple 
form of the multiplicative case, and we can therefore 
determine crt(u,t=O) by imposing the normalization condition 

f(2) I =1 
t k=q=X,t=O 

acr t 
crt(u,t) is also determined since its derivative crtt(O)=~ 

is known for all t. crtt(q) is still arbitrary as a func~ 
ion of q except at q=o and q=X, where it is determined 
by the vanishing of the second line of eq. (6.1). This 
makes clear that the extension of the original Gell-Mann 
and Low transformation to include the temperature behaviour 
is not a trivial problem. 
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