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FOREWORD 

At the end of the workshop on "New Theoretical Concepts in Physical 
Chemistry", one of the participants made an attempt to present a first 
impression of its achievements from his own personal standpoint. Appar­
ently his views reflected a general feeling, so that the organizers 
thought they would be suitable as a presentation of the proceedings for 
future readers. That is the background from which this foreword was born. 

The scope of the workshop is a very broad one. There are contribu­
tions from mathematics, physics, crystallography, chemistry and biology; 
the problems are approached either by means of axiomatic and rigorous 
methods, or at an empirical phenomenological level. This same diversifi­
cation can be found in the new basic concepts presented. Some arise from 
pure theoretical investigation in C*-algebra or in quantum probability 
theory; others from an analysis of very complex experimental data like 
nuclear energy levels, or processes on the frontier between classical 
and quantum physics; others again have their origin in the discovery of 
new ordered structures like the icosahedral crystal phases, or the knots 
of DNA molecules; others follow from the application of ideas like frac­
tals or chaos to new fields like spectral theory or chemical reactions. 

It is to be expected that readers will have to face the same sort 
of difficulties as did the participants in understanding such diverse 
languages, in applying themselves to subjects possibly far from their 
own experience, and in grasping highly sophisticated new concepts. 

The risk inherent to a workshop like the present one is to be too 
broad, and to stick at the level of piecing problems together without 
intercommunication and synthesis. The organizers were fully aware of 
these dangers, but they nevertheless took up the challenge. 

In my view, the goals of this workshop have been well realized. 
This despite the fact that I really could follow only parts of the con­
tributions. I expect that this will also be the case for most of the 
readers of these proceedings, and which part of the book they find the 
more accessible will of course depend on their scientific background. 

The reason why I consider the workshop successful is because it has 
revealed a number of guiding principles at the roots of the new concepts 
presented, which are fruitful in other and very different areas. Let me 
give some examples : 
1. Data anaLysis. A fairly complex data set (like spectral energy levels, 
a geometrical atomic arrangement, the time/energy dependency of a dynam­
ical system, or a non-trivial set of classical/quantum mechanical observ­
ables, or a family of chemical reactions, or a set of knots, and so on) 
permits, in general, more than one meaningful approach. Each different 
way of analyzing the data allows one to extract some of the rich infor-
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mation contained in the system. The theoretical (and experimental) data 
are often so sophisticated that only by adopting different points of 
view can their structure be made explicit. 
2. Highexo/l.ObJexo dimensional. desanption. A concretisation of the pre­
vious principle is realized in some cases by plotting the data in higher 
dimensional spaces (in terms either of suitable parameters, and/or co­
ordinates). This is an "unfolding principle". Typical examples are 3-
-dimensional crystal structures described in a 6-dimensiona1 space. 
Other examples are u1trametric spaces in random walk problems. 
3. Sel.f-simil.aPity. The deep-rooted experience that one has of euclidean 
space had as consequence that metrical relations (and symmetries) were 
the first to be developed. More recently the relevance of natural and 
mathematical structures with a fractal character has become clearer. 
Self-similarity seems to be a general invariance principle of these 
structures. Interesting is the fact that self-similarity also appears 
in non-fractal structures (like quasi-crystals). 
4. Mul.til.evel. appxooaah. A more fundamental approach does not eliminate 
the value of a phenomenological, or empirical one, and vice versa. One 
example can be found in spontaneous symmetry breaking, another in chir­
ality, another in chaotic behaviour, and so on. Communication between 
these different theoretical levels appears often to be extremely diffi­
cult, especially when dealing with the concepts involved (which can be 
of very different natures). More effective than a communication based 
directly on the concepts themselves seems to be one focussing attention 
rather on the consequences they have. 

These ideas reflect personal views and are not exhaustive. Onewi11 
certainly recognize in the papers of this workshop other frontiercross­
ing principles as well. Searching for these will frequently lead to 
deeper insight, even on the basis of a partial understanding. And this 
will be by no means the only fruitful approach to this text. Other read­
ers can also simply enjoy the beauty of the mathematical theory of 
knots, and admire the results of genetic engineering where knots are 
tied and undone or learn a lot about chaos and fractals in natural 
phenomena. 

The heartfelt thanks of all participants are due to the organizers 
of this workshop and the editors of the present proceedings. Thanks are 
also due to the NATO Scientific Affairs Division for their financial 
support. 

Nijmegen, December 1987 A. Janner 



PREFACE 

The Advanced Research Workshop "New Theoretical Concepts in Physical 
Chemistry" was actually an experiment: instead of dealing with a single 
field of research, it was devoted to five different and at first sight 
disconnected topics which we consider to play an important role in the 
future. Our motivation for the workshop was twofold. First, researchers 
are usually specialists in their individual fields and a meeting of work­
shop character provides a good opportunity to learn about methods and 
problems in relevant neighbouring fields. Second, the workshop provided 
an excellent forum for discussing similarities and common features pres­
ent in the five topics chosen: 

FraetaZs: relevant for heterogeneous catalysis on rough surfaces, 
transport and chemical reactions in amorphous materials. 

QuasierystaZs: connected with the study of alloys. 

Chaotie motion: relevant for the description of spectral proper­
ties of complicated nuclei, atoms and molecules. 

Knot theory: is important for the investigation of macromolecules 
such as coiled DNA. 

AZgebraie quantum meehanies: permits to describe systems with 
quantum and classical properties and relates classical properties 
to broken symmetries of a system. 

The articles presented here contain a general introduction, not at text­
book level, but rather appealing to researchers with a keen interest in 
natural sciences. So the reader should get an idea of the subject even 
if he/she is lacking part of the background. During the workshop connec­
tions among the various fields showed up in particular due to the pres­
ence of scientists with broad interests. Two round table discussions on 
'Fractals in Chemistry' and 'Chaotic Motion in Quantum Systems' were 
also helpful in this respect. 

We thank the NATO Scientific Affairs Division for providing a generous 
grant to an unusual interdisciplinary workshop. It is also a pleasure to 
thank our secretary Mrs.M.Schiessl whose help in preparing the workshop 
and the proceedings volume was indispensible. 

Zurich, December 1987 

Anton Amann Lenz Cederbaum 

~ 

Werner Gans 
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FRACTAL PATTERNS IN CHEMISTRY 

G. Zumofen$, A. Blumen& and J. Klafter * 
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CH-8092 ZUrich, Switzerland 

&physics Institute and BIMF, University of Bayreuth, 
D-8580 Bayreuth, West Germany • 

*School of Chemistry, Tel-Aviv University, Ramat-Aviv, 
69978 Israel 

ABSTRACT. Many structures in nature are fractal, i.e. are similar to 
themselves on different length-scales of observation. This geometrical 
property has been studied for a great variety of irregular shapes, many 
of which result from growth processes. In this paper various growth 
models are considered and discussed in terms of their scaling proper­
ties. Deterministic fractals are introduced to demonstrate the exact 
relationship between geometry and scaling. Several experimental tech­
niques applied to measure the fractal dimension on various scales are 
reviewed. The method based on the energy-transfer process is described 
in more detail. 

1. INTRODUCTION 

In a now classical work B.B. Mandelbrot pointed out to the general 
public that many structures in nature ranging from coastlines, trees, 
ri vers, clouds, to Brownian motion exhibit self similar behavior [1]. He 
also coined the term fractal which he took from the Latin term 'fractus' 
and which accounts for two interpretations, fragmented and irregular. 
Discussions of such objects, now called fractals, were given already 
long before b,y mathematicians who realized that wide classes of patterns 
display scale-invariance; their structures remain unchanged under 
dila(ta)tion operations. The fractal approach has now developed in many 
scientific disciplines such as physics, chemistry and biology. 

Scaling properties have been studied extensively for percolation 
models [2-5]. Percolation theory deals with clusters formed when the 
probability of randomly occupying a lattice site with a particle is p. 
Increasing the probability p there is a threshold where a cluster 
spanning the entire lattice (infinite cluster for an infinite lattice) 
appears. This threshold constitutes a sharp transition in the concen­
tration dependence of various properties which are related to the long-

A. Amann et al. (eds.), 
Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, 1-20. 
© 1988 by Kluwer Academic Publishers. 
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range connectivity. One of the important results is that the infinite 
cluster is a fractal object [4,5]. Percolation ideas have been applied 
to different physical and chemical situations for which transitions have 
been observed, for instance: the flow of liquids in porous media, the 
electric conductivity in mixed conductor-insulator materials, exciton 
transport in mixed molecular crystals, polymer gelation and vulcani­
zation processes. In this paper we do not discuss further the perco­
lation model, the reader being referred to another contribution in this 
book. 

In chemistry the analysis of chemical properties often relies on 
the spatial configuration of atoms and molecules. For large assemblies, 
however, the arrangements are often complicated and irregular, such that 
the configurational data are not anymore meaningful. Therefore, other 
methods are needed to quantifY the properties related to irregular 
structures. The fractal concept provides an elegant tool to describe the 
degree of irregularity: irregularity then turns out to be a symmetry 
property and structure functions can often be identified by simple power 
laws [6,7]. 

Gelation processes are very important in chemistry. They are 
related to the percolation problem because they show a sol-gel tran­
sition which marks the situation where in a polymerization process for 
the first time a macromolecule appears which spans the whole space 
available [6,8,9]. This transition is accompanied by an abrupt change of 
material properties. For instance, below the transition point the 
material behaves like a liquid, at the transition elastic properties 
become observable. Gels and aerogels [10] attract the attention of 
material scientists, the hope being to invent new materials with 
entirely new properties. 

Glasses show the full complexity of disordered systems [11]. They 
not only lack long-range spatial order but they are also characterized 
by non-equilibrium states. These give rise to relaxation processes which 
occur on different time scales, even at low temperatures. Hence, geome­
trical disorder also implies temporal and energetic disorder and hence, 
fractal concepts have to be combined with those of continuous time 
[12,13] and of (hierarchical) energy structures [13]. 

Many irregular patterns observed in nature are the result of some 
kind of growth process [8,9,14,15]. Flocculation, aggregation, polymeri­
zation, and gelation may produce complicated patterns. In order to 
obtain a basic understanding of the relationship between growth and 
irregular structures, growth models have been developed. Most of the 
growth models are very simple and can be easily implemented on a 
computer. In several cases the patterns obtained by simulation calcu­
lations are in striking agreement with those observed experimentally. 

In Section 2 we report on random and deterministic fractals. In 
Section 3 experimental techniques are reviewed, the direct energy 
transfer is outlined and its experimental relevance is demonstrated. The 
paper terminates with conclusions in Section 4. 
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2. MODELLING OF STRUCTURES 

In this section we present several ways of obtaining geometrical 
patterns which scale with distance. Common to all objects is their 
underlying s~lfsimilarity, which is most easily visualized in terms of 
the fractal concepts. We start thus by introducing fractals and continue 
by describing the stochastic and deterministic means of creating fractal 
shapes. 

Perhaps the simplest fractal is the Sierpinski gasket [1,16] 
embedded in the two-dimensional space, as displayed in Figure 1. The 
structure can be generated qy a prescription which renders clear the 
underlying symmetry. One starts from a triangle of side-length 2, which 
includes three smaller, upwards-pointing triangles of side-length 1. 
This basic pattern is called generator in the nomenclature introduced by 
Mandelbrot [1]. A dilatation qy a factor of 2 from the upper corner 

Figure 1. The Sierpinski gasket at the 6th iteration stage. 
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transforms the upper small triangle into the large one, and creates two 
additional, larger triangles. The procedure is then iterated n times, 
and leads to the nth stage structure. Thus, the portion of the Sier­
pinski gasket depicted in Figure 1 is at the 6th stage. 

Sierpinski gaskets can be generated in embedding spaces of arbi­
trary dimension d, by starting with the corresponding hypertetrahedrons 
[17,18]. Also more general patterns can be constructed along the same 
lines of reasoning, as we will demonstrate towards the end of the 
Section. 

The properties of fractal objects, related to physical quantities, 
such as mass distribution, density of vibrational states, conductivity 
and .elasticity are describable through several non-integer parameters. 
These parameters play roles similar to that of the spatial_dimension. 
Here we mainly consider the fractal (Hausdorff) dimension d, being the 
parameter of the mass-density distribution. Denoting by N the number of 
lattice points inside a sphere of radius R, N scales as 

N - Rd. (1) 

where d is defined b,y d = limR~ RnN/RnR. Hence, for a Sierpinski gasket 
embedded in a d-dimensional space one has [1,19] 

Rn(rp dS = Rn 2 (2) 

The spectral (fracton) dimension d is another important parameter 
appearing in connection with dynamical properties such as diffusion 
controlled reactions and heat conduction. Using a scaling argument 
Alexander and Orbach [19] have found that for the Sierpinski gasket 

-d = S 

Iherefore, for the Sierpinski gasket 2f Figure 1, dS = 1.584 and 
dS = 1.365. In general,_the relation d ~ d ~ d holds; furthermore, for 
S~erpinski gaskets 1 < dS < 2, as may be seen from Eq. (2). 

Not all fractal systems display the strong symmetry of the Sier­
pinski gaskets, which are 'deterministic' fractals [17,18], designated 
as such since for each point in space it is unambiguously clear whether 
it belongs to the structure or not. The distribution of points in a 
fractal pattern may be random, as exemplified in percolation clusters or 
diffusion-limited aggregates. Nevertheless, even for ~uch structures one 

has scaling with distance according to Eq. (2), N - Rd. One calls such 
random, scaling patterns 'stochastic' or 'statistic' fractals [17,18, 
20]. As pointed out above, stochastic fractals are often obtained 
through growth processes, on which we now focus. 

The interest in growth and form has developed rapidly in the last 
few years because of the increase in computer ability and because of the 
recent realization that the shape of such structures can be understood 
in terms of scaling ideas. 

A large number of growth models have been studied [8,14,15] so that 



Figure 2. The trail of a random walk on a square lattice. The different 
shading shows the situations at different times. 
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we must restrict ourselves to a few representative examples. Here one of 
the simplest is that of the random walk. We consider a two dimensional 
lattice and a walker which at each step chooses randomly one of the 
nearest neighbor sites. After many steps the set of points visited b,y 
1he walker becomes plane-filling and hence has the fractal dimension 
d = 2. Interestingly, the boundary of the set of visited sites is also 
found to be fractal [1], in fact these related patterns can be used to 
mimic the shape of landscapes and islands as demonstrated in Figure 2. 

A famous variant of random walk models are self avoiding random 
walks (SAW) [6,8]. Here one imposes the restriction that each lattice 
site may be visited only once during the walk. SAW are important, since 
they have been successfully used to depict the geometrical properties of 
linear polymers [6]. F~r SAW as for simple random walks the mean squared 
end-do-end distance <R > scales as a function of the number of steps N: 

The parameter at plays the role of a critical exponent. One has at = 1 for 
simple random walks, whereas for SAW at is in general different from 
unity, and depends on the dimension d of the embedding space for the 
walk. 

A further model is that of epidemic growth [8,21]. Here one regards 
the lattice sites as cells, which may get infected or become immune. The 
infection starts with one cell (seed). The growth proceeds b,y choosing 
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at random at each growth step a fresh cell adjacent to the boundary of 
the cluster. This cell either gets infected with probability p (and 
hence joins the cluster) or becomes immune. The problem is identical to 
percolation [4]; for p smaller than the critical concentration Pc the 
growth ot the cluster always terminates, while for p ~ Pc infinite 
clusters may appear. In Figure 3 an example is shown for a square 
lattice and for p = 0.60, which is close to the critical concentration 
Pc = 0.593. Models similar to that of epidemics have been developed to 
study the spread of forest fires [4,22,23]. 

Figure 3. Cluster on a square latlice grown b,y the epidemic model for 
p = 0.6. The situation after 2x10 steps is shown. 

We proceed our discussion of growth by considering a new element: 
the growth should result from having particles diffuse to a cluster and 
getting attached to it. This new element leads to diffusion limited 
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aggregation. 
Starting with the pioneering work of Smoluchowski [24], the role of 

diffusion (Brownian motion) in colloidal aggregation has been a subject 
of continuous interest. However, only recently large scale computer 
simulations have allowed in-depth investigations of growth processes. 
Thus Witten and Sander [25] showed that a simple diffusion limited 
growth model leads to complex patterns for the aggregates. In their 
model a particle seed is placed at the origin. Then further particles 
are added, one by one; these are released far from the seed, and join 
the aggregate by performing a random walk. The walk terminates when the 
particle reaches a site nearest neighbor to the already-formed, diffu­
sion-limited aggregate (DLA). The number of particles in such DLAs 
sctles with the distance from the seeg. Thus, for medium-si~ed DLA (103-
10 ) one finds as fractal dimensions d = 1.7 for d = 2 and d = 2.5 for 
d = 3 [26]. Typical is the appearance of a tree-like shape which is due 
to the fact that later arriving particles are less prone to reach the 
central region and thus attach themselves rather at the periphery of the 
cluster as maS be seen £rom Figure 4. Only for very large scale patterns 
(more than 10 particles) deviations £rom universality (e.g. a depen­
dence of d on the lattice type) appear [27,28]. 

Several different versions of DLA models have been considered. One 
extension consists in introducing a sticking probability p, i.e. a new 

Figure 4. Diffusion limited aggregate (DLA) on a 600x600 lattice. The 
different shading shows stages in the evolution of the DLA. 
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partiole, in a nearest-neighbor position to the aggregate, joins it only 
with probability p (p < 1). With deoreasing p the DLAs beoome more 
oompaot [26]. In the lim! ting case, p'" 0, all surfaoe sites get 
oooupied with uniform probability. This is then akin to the Eden model 
[29] in whioh the aggregate grows by adding randomly any of the empty 
neighboring sites to it. The fraot~l dimension of the Eden model is 
equal to the Euclidean dimension, d = d. 

Experimentally, DLAs are oreated in several ways: eleotrodeposition 
[30,31], disoharge patterns (Liohtenberg figures) in dieleotrio break­
down [32,33], and branohed fingers formed when a low visoosity fluid 
penetrates a high visoosity one (visoous fingering) [34]. Such patterns 
oan be obtained from a oonstruotion based on the Laplaoe equation. The 
oorresponding potential t is taken to be zero at the surfaoe of the 
growing objeot and one at infinity. In between, t obeys the Laplaoe 
equation dt = O. The growth ooours at the surfaoe as a random prooess 

weighted by (vt)~, ~ being a parameter. Simulation caloulations show 
that the fraotal dimension depends on ~ [33]; for ~ = 1 the ordinary DLA 
is reoovered. 

Up to now we oonsidered growth of one oluster only. However, many 
aggregation prooesses rely on oluster-oluster aggregation. Here the 
modelling is more involved beoause the struoture of the aggregates 
depends on how the diffusion ooeffioient is related to the mass of the 
olusters. Generally one takes an algebraio dependenoe Dj ~ j~, where Dj 

is the diffusion ooeffioient for a oluster oonsisting of j unit masses 
and ~ is a parameter. However, for ~<O, i.e. when large olusters diffuse 
more slowly than small clusters (as is to be expeoted intuitively) the 
fraotal dimeBsion of the aggregat! is found not to depend on ~. The 
results are d = 1.42 (d = 2) and d = 1.78 (d = 3) [35]; the latter value 
is in good agreement with the experimental finding for metal partiole 
aggregates [36,37]. 

Finally we mention kinetio gelation [8,9,38]. Here one has for 
instanoe the following model, whioh is similar to peroolation: tetra­
funotional, bifunotional and zerofunotional monomers are randomly 
distributed on a lattioe. The funotionality gives the number of bonds a 
monomer can form with its nearest neighbors. The growth prooess is 
initiated by aotivating several monomers. Aotivated monomers oan link 
themselves to their nearest neighbors provided that both monomers can 
funotionally undergo a bond. The prooess oontinues by having the newly 
bonded monomers aotivated. Here we remark that olusters formed by 
gelation may soale, but in general with other exponents than those found 
in peroolation. 

After this short review of stoohastio fraotals we now turn to the 
deterministio ones. In these the distribution of sites is determined by 
an unambiguous, non-random presoription. Examples for suoh struotures 
are the Sierpinski gaskets, as shown above, and extensions [17,18,39] 
some of whioh will be disoussed in the following. Evidently, deter­
ministio presoriptions standardize the fraotals and make them very 
useful as model systems. Henoe many reoent analyses have oentered on 
Sierpinski type fraotals [13,40]. 



Figure 5. Various symmetric tetrahedral generators for d = 2. 

As ,alreaQy mentioned, fractal~ .are described by (at least) three 
distinct dimensions: the spat!al dimension d of the embedd!ng Euclidean 
space, the fractal !!imension d and the spectral dimension d. It should 
be emphasized that d and d are amenable to experimental observation 
[13,19,39-41]. For modelling purposes it is therefore d~sirable to 
construct deterministic fractals with prescribed d and d values. L~t us 
thus consider Sierpinski-type structures. The spectral dimensiQns d for 
these structures lie between that of a 2-d Sierpinski gasket, dS = 1.J6 
and the value 2. In Refs. [17,18] one took as ~enerators d-dimensional 
hypertetrahedrons (HT) of side length b. A particular generator 

9 

G = G(b,d) is obtained by filling such a HT with smaller HTs of unit 
side length. From G the fractal is iteratively constructed: the struc­
ture at stage n+1 is obtained by enlarging G by bn and then filling all 
upward pointing HTs with the stage-n structure. More general symmetrical 
fractals are produced through generators which are only partially filled 
with HTs. Several connected graphs with tetrahedral symmetry were used 
for this purpose [17,18]. Examples are displayed in Figure 5 while in 
Figure 6 the iterative construction of a fractal is demonstrated. Let N 
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Figure 6. One step in the iterative construction of a fractal. 

be the number of small HTs inside G. Then 

d = In N/In b 

-On the other hand d can be obtained from the probability to be at the 
origin at long times (see Refs. [17,18] for details) and lies between 1 
and 2. Hence such symmetric fractals are a wide class of lattices which 
generalize the Sierpinski gaskets. 

Finally one can extend such fractals b,y direct set multiplication. 
As an example we show in Figure 7 the stage 2 result of multiplying a 
Sierpinski-gasket with a one-dimensional lattice. We call this following 
Ref. [13] and [18] the nTobleronen-lattice. Its spectral dimension can 
Re obtained from the low-frequency behavior of its eigen-modes: 
d = 1 + dS_ = 2.36._On the other hand one realizes b,y direct inspection 
that here d = 1 + dS = 2.58. 

3. MEASUREMENT TECHNIQUES FOR DISORDER 

According to the previous Section, the main idea which allows to 
mathematically describe disordered systems as objects sui generis is 
their scale invariance. Most of the techniques probe the geometry of the 
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samples; it should be clear that dynamical processes also lead to 
scaling, but this aspect has received much less attention, probably 
because geometry is more easily visualized than the temporal deve­
lopment. We have in previous works [13,42] also indicated means to 
investigate dtnamics, but we will concentrate here mainly on the 
geometrical aspect. Several experimental techniques have been applied to 
monitor the geometry of complex random objects in order to assert 
whether they are self-similar. 

Consider first the transmission electron microscopy (TEM). it has 
been used by Forrest and Witten [43] to analyze the structures of 
aerosol particles which have complicated structures. These investi­
gations show that the density of the particles scales with a power law 
of the distance. Then TEM has been employed in the study of various 
silica [44] and gold [36,45-47] aggregates. These aggregates, up to 
several hundred nanometers in extent, consist of spherical particles of 
almost constant diameters, e. g. around 15 nm in the case of gold 
colloids [45]. Again scaling is found. 

Figure 7. Toblerone fractal, the direct (set-) product of a two-dimen­
sional Sierpinski ~asket with a linear chain. 
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The standard TEM techniques run into difficulties when the indivi­
dual particles overlap or are of different sizes. A more sophisticated 
method has been chosen b,y Tence et ale [37] by which they have investi­
gated aggregates of iron particles of variable size. 

We note that more flexible ways to determine scaling in small 
objects are the scattering techniques. Here either light, X-ray or 
neutron scattering are applied, the choice being determined b,y the 
characteristic length-scale to be observed and by the material which 
forms the aggregate. Because of its wave length, light scattering 
monitors distances of 0.2-100 ~m. Most aggregates investigated are, 
however, smaller, and thus neutron and X-ray scattering (which cover the 
range 0.05-500 nm) are used preferentially [48]. The basic idea is that 
the scattering intensity I is proportional to the Fourier transform of 
the density-density correlation function. For large scattering angles 
one sees the short-range structure. For small angles the scattering 
intensity I is determined b,y tBe density-density correlation function, 
which for fractals depends on d. If the object itself is fractal, then, 
according to Refs. [44,49-51]: 

(6) 

where e is the scattering angle. On the other hand, when the object is 
three dimensional, but its surface is fractal, the scattering intensity 
should follow [52] 

d -6 
I - e s (7) 

where ds is now the fractal dimension of the surface. 
Another method to probe irregular surfaces is the adsorption 

technique. It consists in determining the minimal number N(R) of 
adsorbed molecules of radius R required to cover the entire surface. If 
their radius is varied, one should have for a fractal surface [53]: 

-d 
N(R) - R s (8) 

This behavior was reported by Avnir an Pfeifer [54] in their study of 
crashed glass, carbon black, charcoal and of other porous materials. The 
adsorbates which they use include N2, ~es and polycyclic aromatics 
(which probe lengths of around 4 to 8 A). For.polymer adsorbates the 
lengths to be measured extend from 25 to 300 A [54-56]. 

We also mention the electrodeposition of metal aggregates as 
another technique. This is a growth process limited b,y the diffusion of 
metal ions. Following Brady and Ball [30] one records the electric 
current, which is related to the deposited mass. In this way copper 
aggregates were found fractal over the range of 20-300 ~m [30]. 

Another method to determine the fractal dimension of self-similar 
objects centers on the direct transfer of electronic excitations. 
This method, proposed by us [40,42], is now of widespread use. We 
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consider the energy transfer to take place from donor molecules to 
acceptor molecules and assume that donors and acceptors occuP.f substitu­
tionally sites on a regular lattice. In this classical problem [57,58] 
one considers an exited donor molecule, at position r., surrounded b,y 
acceptors whiCh occupy some of the sites ri of a given structure. The 
transfer rates w(r) depend on the mutual distance r between each donor­
acceptor pair. Neglecting back-transfer, the probability of the decay of 
the donor due to the presence of an acceptor at ri is thus 

(9) 

One assumes the acceptors to act independently, which means that they 
contribute multiplicatively to the decay. Let g(j) be the probability of 
having j acceptors at one site. The decay of the donor, averaged over 
all possible distributions of acceptors around it, is given b,y 

. (10) 

where the product extends over all structure sites with the exception of 
rl' Thus, for a binomial distribution, g(j) = (1-p)60 j + p61 j (6i . 
being the Kronecker delta), one has '" J 

t(t,ro) = fll { 1 - p + P exp[-tw(ri-r.)]} (11) 
ri 

Eq. (11) is exact, and thus theoretically very valuable. For a small 
acceptor concentration, p« 1, one may replace Eq. (11) b,y 

i(t,ro) = exp [ -p II { 1 - exp[-tw(ri-r.)] }] (12) 
ri 

which is, in fact, the exact decay of Eq. (10) under the Poisson law, 
g(j) = e-PpJ/j!. 

Usually, in 1iI:eating energy transfer on infinite, regular lattices 
the dependence of t(t,rl) on ro is irrelevant, since there all sites are 
equivalent. The situation is different in confined geometries and for 
irregular objects such as fractals, in which cases the dependence on ro 
may be important. Staying in the general case and introducing a site­
density function per) we can transform the sum in Eq. (12) to the usual 
integral form. We set 

po(r) = II 6(r-ri)' 
ri 

(13) 

where the index 0 in PI(r) acts as a reminder that r. is excluded from 
the sum of the right-hand side. With p.(r) one obtains 

i(t,r.) = exp [-p I dr PI(r) { 1 - exp[-tw(ri-r.)] } ] (14) 
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For regular geometries in Euclidean spaces one arrives at the Forster­
type decays by taking PI(r) = P = const and extending the integration 
over the whole space: 

i(t) = exp [-p P I dr { 1 - exp[-tw(r)] } ] (15) 

To obtain decay patterns it is now only necessary to specify the 
interaction w(r) and to perform the integration in Eq. (15). An often 
encountered form for w(r) is 

w(r) = ar-s (16) 

which holds for isotropic multipolar interactions [57]. The parameter 
equals 6 for dipole, 8 for dipole-quadrupole and 10 for quadrupole­
quadrupole interactions. Inserting Eq. (16) into Eq. (15), one obtains 

i(t) = exp(_Atd~s) (17) 

Here d is the spatial dimension of the underlying lattice and A is a 
time independent constant 

A = Vd P P r(1-d/s) ad/ s (18) 

where Vd is the volume of the unit sphere in d dimensions and r(z) is 
the Euler-gamma function. 

Let us now focus on optical properties related to fractals. From 
Eq. (17) we see that the Forster-type decays are determined by the 
spatial dimension d of the region accessible to acceptors. The natural 
starting point for the extension is Eq. (11) since it is exact and 
depends only on combinatorial arguments. For small acceptor concen­
trations the continuum approximation again leads to Eq. (14) for which 
the density p,er) has to be specified. Now, in determining the density 
we should remark that: first, a fractal structure is not translationally 
symmetric, so that the decay may depend on the location of the donor. 
For relatively homogenous fractals, such as the Sierpinski gaskets, this 
is not a very serious matter, since on such objects the local densities 
around the sites are quite similar. Second, p. (r), being a density, must 
fulfill 

N = I per) dr 
V 

(19) 

where N is the number of lattice sites in the volume V. Combining Eq. 
(19) with Eq. (1), one sees that for homogeneous fractals one has to a 
good approximation 

d-d PI(r) ~ ~ r , (20) 

where d is the fractal dimension and ~ is a proportionality constant. 
Now Eq. (20) no longer depends on the origin. Inserting it into Eq. (14) 
one obtains 



i(t) = exp[ -p ~ I dr rd-d {1 - exp[-tw(r)]} ] (21) 

For isotropic multipolar interactions, the integration is immediate 
[42]. One obtains as long-time behavior 

(22) 
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with A time independent and ~ = dis. This simple form, Eq. (22), is very 
useful in the interpretation of observeg data and it enables for 
fractals an efficient determination of d. Experimentally this is usually 
achieved as follows: the donor molecules are excited with a short light 
pulse and the radiative emission is used to measure the excitation 
decay. From this procedure we learn that not only the energy transfer 
(ET) limits the excitation's lifetime; inherently, radiation also 
shortens the excitation's lifetime. Since the two processes, radiation 
and ET, are independent, they contribute multiplicatively to the 
survival probability 

i(t) = exp( - At~ - tiT ) (23) 

with T for the radiative lifetime. Since ~ < 1 the decay is governed by 
radiation at long times. This, on the other hand, also limits the 
spatial range for which the ET method can probe the structure of tge 
underlying material. Typically, this range is of the order of 100 A, 
which is also the region amenable to the small angle X-ray scattering 
technique. Hence, in this region these two methods give complementary 
information. 

The ET technique, proposed in 1984 [42], has first been applied by 
Even et al. [59] in the investigation of the porosity of Vycor glass. 
They studied the kinetics of the ET between rhodamine B and malachite 
green in solution inside the glass. Using Eq. (23) the authors of Ref. 
[59] found d = 1.74. This result has recently been interrogated with 
respect to its compatibility with light and X-ray scattering data 
[60,61]. The~e data and those of neutron scattering [62] give indi­
cations for d ~ 2, but the experiments do not allow to make definitive 
statements about the roughness of the internal surfaces. This roughness 
has also been invoked in the discussion of the spectral and photo-

physical properties of RU(bP.Y)~+ adsorbed onto Vycor glass [63]. 
Rojanski et al. [64] have measured the fractal dimension of 

mesoporous silica gel by three independent different techniques: 
adsorption of probe molecules, X-ray scattering and ET. All techniques 
indicate that_the internal surface is very irregular with a fractal 
dimension of d ~ 3. This is an important achievement since these inde­
pendent measurement~ show that the techniques are equivalent when it 
comes to determine d. In a more recent paper Pines-Rojanski et al. [65] 
have reestablished their result by an improved ET method. A fractal 
structure has also been envisaged by Brundage and Yen [66] to explain 

the small ~ exponent, they have obtained for the ET among Yb3++ions 
diluted in silicate glass. However, for spin recoveries in Yb3 ion 
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doped lead phosphate glasses, the interpretation in terms of fractals is 
not yet settled [67]. 

On the other hand it is difficult to unambiguously state that a 
structure is fractal based only on results compatible with Eq. (23). 
Yang et al. [68,69] have considered deterministic fractals and have 
shown that the direct transfer may lead to decays which, on a logarith­
mic scale, deviate from straight lines and exhibit wavy patterns. They 
point out that this waviness might render difficult the determination of 
a fractal exponent. Wavy patterns have also been observed for relaxation 
processes in hierarchical systems [70]. However, it may well happen that 
the waviness calculated for deterministic fractals is wiped out b,y the 
randomness which appears in statistical assemblies. Yang et al. [71] 
also simulated on a computer the ET among particles located on pores of 
spherical or cylindrical shapes with radii of the order of the typical 
transfer distance; the calculated kinetics shows fractal-like decays. 
Similar geometrical restrictions for ET have been studied by Baumann and 
Fayer [72] and b,y ourselves [73,74]. Levitz and Drake [75] have inter­
preted their measurements of ET processes for various porous silicas in 
terms of a cylindrical pore model. 

ET processes have been studied for polymeric systems. Singlet ET 
mechanisms in anthracene-loaded copolymers of vinylnaphthalene show 
complicated temporal behaviors which are thought to be partly due to 
fractal-like distributions of naphthalene and anthracene molecules [76]. 
Triplet ET kinetics has been studied b,y Lin, Nelson and Hanson [77] for 
doped polymer films. The data fit their model better when fractal 
structures are taken into account. Further discussions of polymeric 
systems in terms of fractals are given in Refs. [78] and [79]. 

We close this section b,y mentioning other cases in which the ET 
model has initiated new ideas for the interpretation of related pro­
cesses. Fractals have been considered in the discussion of the energy 
migration and trapping among cationic porphyrins adsorbed on anionic 
vesicle surfaces [80]. A scaling model has been developed for desorption 
processes from molecular-sieve materials, in which stretched exponential 
behavior is found [81]. Furthermore, a stretched exponential modulation 
model has been proposed for simulating vibrational dephasing in locally 
amorphous media [82]. Finally, hierarchical and fractal concepts have 
been used in the analysis of time resolved spectra taken from mixed 
crystals of dichlorobenzene and dibromobenzene [83]. 

4. CONCLUSIONS 

In this paper we have pointed out the importance of fractals in chemist­
ry. The discussion is of course incomplete since only a few of the many 
facets of fractals in chemistry could be considered. Thus we did not 
mention the role played by strange attractors in complicated chemical 
reaction systems and in coupled biochemical processes [84]; also we did 
not treat the fractal aspect in fully developed turbulence, an important 
modern problem [85,86]. For reaction qynamics on fractals which are 
fundamental for the understanding of the catalytic reaction processes in 
porous solids we refer to our companion article in this book [87]. 
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Here we have centered on random patterns resulting from growth 
processes and have compared them to deterministic fractals. Furthermore, 
we have outlined several experimental techniques which are used to 
investigate the spatial mass distribution in disordered systems. In 
particular, we have derived the equations needed to analyze the fractal 
dimensions by means of time-resolved spectroscopy and we have presented 
several successful applications to glassy and polymeric systems. Also we 
have shown that the techniques have to be used carefully in order to 
obtain unambiguous results and insights. 

There is no doubt that fractals have entered into almost all scien­
tific disciplines. Fractal and scaling concepts have become standard for 
physicists and chemists. It has, however, to be emphasized that not all 
irregular structures are ultimately fractals or, switching to a time 
scale, not all non-exponential evolutions indicate scaling. Furthermore, 
selfsimilarity is generally bounded b,y lower and upper cut-offs, a fact 
that renders delicate the interpretation of experimental data. Therefore 
care is required in order to attain a sound physical understanding. 
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ABSTRACT. This paper focusses on the kinetics of the A + A ~ 0 and the 
A + B ~ 0 diffusion-limited reactions b,y modelling the dynamics through 
random walks. The disorder aspect is introduced through hierarchical 
structures: geometrical, temporal and energetical disorder are consi­
dered. While the geometrical disorder is analyzed using deterministic 
fractals, the temporal disorder is accounted for through continuous-time 
random walks (CTRW), whose waiting-time distribution displays long-time 
tails. Energetic disorder is modelled using ultrametric spaces (UMS) , 
systems with hierarchically distributed energy barriers. Results for the 
three models are present~d and deviations from the Smoluchowski-type 
behavior are explained. Combinations of two distinct disorder aspects 
are also considered and discussed in terms of subordination. 

1. INTRODUCTION 

Reaction dynamics under diffusion-limited conditions are a classical 
topic of physical chemistry [1,2] but only recently, due to the emer­
gence of new approaches for treating randomness analytically and due to 
enhancements in computing capacity, extensive work on the role of 
disorder and fluctuations on reaction kinetics has become feasible 
[3-7] • 

These investigations have revealed many qualitative deviations from 
the accepted Smoluchowski-type decay laws, when reactions in confined 
geometries, such as obtain for limited dimensionalities or for porous 
media, are studied. 

Let us start b,y recalling several facets of randomness. Thus, 
transport properties of spatially random systems (mixed crystals, 
alloys) are triggered b,y a distribution of microscopic (site-to-site) 
transfer rates (temporal disorder) and by different interactions with 
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the surroundings (energetic disorder). Treating the full microscopic 
problem is a hard task, which calls for large-scale numerical calcu­
lations. 

Let us note from the beginning that there is little hope in 
describing such a complexity in terms of perturbations from ideal, non­
random patterns. This point has been forcefully stressed b,y P.W. 
Anderson in the Les-Houches lectures on ill-condensed matter [8J. He 
remarked that multiple scattering theories (effective-medium or cohe­
rent-potential approximations) are paradigms [9J of an old attitude, 
which tries to model random systems through regular ones; the new 
attitude is exemplified by localization and percolation, which typify 
disordered situations as genuinely distinct problems [8J. 

In this contribution we adopt this line of thought and present 
several classes of models for disorder, which have come into close 
scrutiny only during the last decade. Each class may be viewed as 
arising due to a particular aspect of randomness. Thus fractals [10,11J 
exemplify the spatial disorder, continuous-time processes [12-16J the 
temporal and ultrametric structures [17-20J the energetic disorder. 

Basic to our understanding of disorder is the temporal evolution of 
the systems under investigation. A comparison of relaxation patterns 
reveals that the decays which are observed in disordered materials 
seldom have kinetical chemical counterparts, the reason being the 
implicit underlying assumption in the kinetic scheme of a 'well-stirred' 
reactor. The lack of such a homogenization for disordered media leads 
then to interesting deviations from the kinetic picture. 

The structure of this paper is as follows: we first introduce in 
the next sections the concepts of fractals and of ultrametric spaces and 
exemplify the dynamics using random walks; at this point the ideas 
behind the continuous-time random walks (CTRW) and their temporal­
scaling behavior will also become clear. Then we center on bimolecular­
kinetics of the A + A ~ 0 and A + B ~ 0 type, which we model through 
random walks. The disorder aspect is depicted through the hierarchical 
(self-similar) structures already discussed. First-of-all, however, we 
start by presenting the standard chemical-kinetics scheme. 

2. THE BASIC KINETIC APPROACH 

In this section we recall the basic kinetic scheme. As will turn out, 
the decay laws which follow from the kinetic formalism are not adequate 
for describing the intriguing relaxation forms found in disordered 
systems. 

General irreversible reactions have the form: 

n 

A1 + A2 + ••• + ~ = ~ Ai £.. 0 
i=1 

(1 ) 

to which in the kinetic scheme corresponds the system of (in general) 
nonlinear differential equations 
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(2) 

Here the Ai(t) are the concentrations of the i-th molecular species, and 
we will denote their initial values by AiO• 

The simplest case of (1) is the unimolecular reaction 

A ~ P (n=1), whose solution is exponential: 

Bimolecular reactions A + B ...k... 0 (n=2) have, following Eq. (2), the 
kinetic set of equations: 

dA(t) = k A(t)B(t) = dB(t) 
dt - dt 

whose general solution, setting C = BO - AO ' is: 

1 + C/A(t) 
1 + CIAO 

= e Ckt 

(4) 

(5) 

From Eq. (5) we infer for BO » AO ' that C ~ BO and thus C/A(t) » 1: 

(6) 

Thus the decay of the minority species is quasiexponential. 
On the other hand, if AO = BO then C = 0 in Eq. (5). An expansion 

in small C leads to the decay 

(7) 

from which at longer times, t» (Aok)-1, an algebraic time dependence 
emerges: 

1 A(t)... kt (8) 

We pause to note that a very similar behavior also obtains for the 
A + A ~ 0 reaction, with the kinetic equation: 
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Separation of the variables and integration lead to: 

AO 
A{t) = 1 + 2AOkt (10) 

a form very akin to Eq. (7). The long-time behavior obeys here 

A{t) 
_ 1 

2kt • (11) 

Thus, from unimolecular and from bimolecular reactions one has as long­
time decays either exponential or 1/t algebraic dependencies. 

What is the reason behind this simple finding? The basic assumption 
underlying the general kinetic scheme of Eq. (2) is the 'well-stirred 
reactor' model in which all spatial dependencies due to the positions of 
discrete particles are neglected. Thus the use of Eq. (2) implies a 
homogeneous spatial distribution of particles during the whole course of 
the reaction. That such an assumption is untenable in general was 
discussed qy us in previous works [7,21-23]. There we pointed out that 
non-homogeneous conditions are widespread. Furthermore, even under 
homogeneous initial conditions, the microscopic reactions create b,y 
themselves non-homogeneities and enhance already existing density 
fluctuations. Diffusion can only partly wipe out such effects [3, 
6,7,22,23] but only when the diffusion length is large compared to the 
mean interparticle distance. At low particle densities, diffusion (or 
stirring) cannot create a homogeneous background. 

When analyzing random materials one is confronted with richer decay 
patterns. Thus, exemplarily, one finds: 

I) The stretched-exponential, Kohlrausch-Williams-Watts [24-26] 
law 

(12) 

This form was found in measurements by optical bleaching of the rever­
sible transformation of spiropyran into merocyanine in polymers [27]. 
The same form is also present when monitoring abstraction reactions of 
hydrogen atoms from matrix molecules [28,29]. Reactions of trapped 
hydrogen atoms in T-irradiated sulfuric acid glasses have been shown 
[30] to be1describable via time dependent rate coefficients of the form 
k{t) - t&- , which correspond to Eq. (12). 

II) The exponential-logarithmic relaxation pattern 

which is of considerable use in describing electron scavenging and 
electron-hole recombination, and which also appears in the analysis of 
relaxation phenomena related to hole-burning in glasses [31,32]. 



III) General algebraic decays 

t(t) ... (t/T)-l! (14) 
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as for instanee reported for the relaxation processes of photogenerated 
carriers, which occur after electron-hole-pair creation in amorphous 
Si:H [33]. A different application concerns the effect of chromato­
graphic tailing, in which dissimilar chemical species display different 
trapping-release patterns during their hindered diffusion through 
chromatographic columns [34]. 

3. RANDOM WALKS AND FRACTALS 

In order to show deviations from the chemical kinetic scheme we turn our 
attention to relaxation mechanisms, for which a series of steps (mostly 
randomly taken) is necessary for the completion of a reaction. Typical 
for such behavior are generalized diffusion models, under which random 
walks over discrete geometrical structures are very prominent [35-38]. 
We begin in the framework of the pseudo-unimolecular reactions, in which 
we have a minority and a majority species, and we monitor deviations of 
the relaxation pattern from exponentiality. In the simplest models one 
has one A and several B particles, and the A particle is annihilated at 
the encounter of a B particle. Depending on which of the species 
performs the motion one distinguishes between the trapping model [36-43] 
(only the A moves), the target (scavenging) model [7,21-23,44-47] (only 
the B moves) and the moving targets [48] (both species move). We monitor 
the survival probability of the A particle averaged over all possible 
realizations of particle distributions and motions. We consider first 
random walks on regular lattices and extend then our treatment to 
fractals. 

For simplicity, we discuss here only the target model explicitly 
and we follow the development of Ref. [22]. Interestingly, this model 
can be solved explicitly, both for regular lattices [47] and also for 
ultrametric spaces [49]. We focus on the fate of an immobile A molecule 
which gets annihilated b,y the mobile B species. At start the non­
interacting B molecules are distributed randomly, with probability p 
over the structure. For a finite, relatively large system of NT sites 
one has p ~ BO/NT • At each step we move the B-molecules to neighboring 

sites, the different directions occurring with equal probability. The 
reaction is assumed to happen instantaneously when the first B-molecule 
lands on the site occupied by the A-particle. The survival law obtains 
b,y averaging over all possible initial distributions and over all 
realizations of the random walks for the B-particles. Several possibi­
lities may now be envisaged in creating the initial distribution of B 
particles on the remaining lattice sites. In [21J and [47] we have 
presented the survival probabilities for B particles which follow 
binomial and Poisson distributions. Here we will exemplifY the procedure 
using the last one, for which the occupancy of a site is taken to be 
distributed as 
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g{j) = 
pj 

e-P -
j! (15) 

where g{j) is the normalized probability of having j B particles at one 
site and p is their average number density. 

We now denote b,y Fm{r) the probability that a random walker 
starting from r reaches the origin 0 (assumed to be the site at which 
the A-particle is located) for the first time in the mth step. For 
regular lattices, because of the symmetry of the walk Fm{r) is also the 
first-passage time from 0 to r, as defined b,y Montroll and Weiss [50]. 
In general, we call ~(r) the probability that a first passage from r to 
o occurred in the first n steps and have: 

n 

H (r) 5 ~ F (r) 
n m=1 m 

(16) 

The probability therefore that a walker from r did not reach 0 in the 
first n steps is thus -

(17) 

Using Eq. (17) we obtain the survival probability of the A molecule by 
appropriately weighting products of the tn{r) functions: 

(18) 

Here the product extends over all structure sites, with the exception of 
the origin. Inserting now Eq. (15) and (17) into Eq. (18) leads to 

= n'exp[-p + ptn{r)] = exp[ -p ~'~{r)] (19) 
r r 

For regular lattices Eq. (19) may be further simplified since, according 
to Eq. (III.2) and (III.3) of Ref. [50], one has 

~'F (r) = 8 - 8 1 L m m m- (m ~ 1) • (20) 
r 

Here 8m denotes the mean number of distinct sites visited b,y a random 
walker in m steps, with 80 = 1. Eq. (20) may also be derived directly, 
b,y noting that the increase of 8m is given b,y the total number of new 



sites visited in the mth step. Introduoing now Eqs. (16) and (20) into 
(19), one has exaotly 

(21 ) 

Now, for regular lattioes one has for not too small n [36,51]: 

d = 1 Sn = a1 1n + a2/1n + ••• (22) 

d = 2 S 
a1n 

(23) = Rn(a2n) + n 

d = 3 S = n a1 n + a21n + ••• (24) 
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where the ai are oonstants whioh depend on the lattioe struoture. 
We now note that the long-time behavior of Eq. (21) stays expo­

nential in three dimensions, but beoomes nonexponential for d = 1 and d 
= 2. It is interesting to see that for d = 1 a Williams-Watts relaxation 
pattern, Eq. (12) emerges, with ~ = Y2. This result is identioal to 
former findings for the target problem, whioh used the Glarum model of 
dipolar relaxation in glasses as experimental applioation [45,46,52-55]. 
As long as only random walks on regular lattioes are envisaged, it is 
not obvious how to extend the target model to obtain non-trivial 
Williams-Watts forms with other ~ values (~ F Y2, ~ F 1). In the 
following we will show that general ~ values are the rule when fraotals, 
CTRW or ultrametrio struotures are oonsidered. 

Thus, let us now turn our attention to fraotals. The term fraotal 
was ooined by Mandelbrot [56] to desoribe a wide olass of objeots whioh 
display soale-invarianoe: The patterns are self-similar, i.e. basioally 
unohanged under dila(ta)tion operations. As topologioal objeots, some 
fraotals have oome into mathematioal sorutiny already early in this 
oentury [57,58]. It is, undoubtedly, the merit of Mandelbrot, to have 
pointed out the ubiquitous presenoe of fraotal patterns in nature [10]. 
On physioal grounds, the dynamioal aspeots of fraotals have turned out 
to be very important, as stressed b,y Alexander and Orbaoh [59]. These 
aspeots are oonneoted to soaling and renormalization-group ideas. 
Examples for fraotals are linear and branohed polymers, amorphous and 
porous materials, epoxy resins, diffusion-limited aggregates (DLA), and 
peroolation olusters at oritioality. Sinoe the role of fraotals in 
ohemistry is disoussed by us in our oompanion artiole in this book, we 
refer the interested reader to it [60]. 

As we have seen, the random walk properties for regular lattioes 
depend on their dimension d. For fraotals there are several, mostly non­
integer parameters whioh play roles similar to the dimension. For us 
here two ~jor parameters are of oonoern: the fraotal [10] (Hausdorff) 
dimension d, whioh is rel~ted to the density of sites, and the speotral 
(fraoton [59]) dimension d, whioh appears in oonneotion with dynamioal 
properties (suoh as heat oonduotion, wave propagation and also reaotion 
and diffusion) on fraotals. Thus denoting b,y N the number of lattioe 
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points inside a sphere of radius R, one defines d as being 
limR ~ • (Rn N/Rn R), i.e. one requires 

N ... Rd. (25) 

Hence for Sierpinski gaskets (for the explanation, see [60]) embedded in 
d-dimensional spaces [10] one has: 

d = 
Rn(d + 1) 

Rn2 

and furthermore, based on a scaling argument [59]: 

(26) 

(27) 

Iherefore, for the Sierpinski gasket_emb~dded in d = 2, d = 1.584 and 
d = 1.365. In general, ~e relation d , d , d holds: furthermore, for 
Sierpinski gaskets 1 < d < 2, as may be seen from Eq. (27). 

In [61] and [62] we have simulated a series of random walks on 
Sierpinski gaskets embedded in Euclidean spaces of dimensions d = 2, 3, 
4 and 6, the spectral dimensions being thus from Eq. (27), d = 1.36, 
1.55, 1.65 and 1.77, respectively. For the first2two moments of the 
distribution of distinct sites visited, Sn and an ' we found that the 
relations 

Sn =- and/2 (d < 2) (29) 

and 

~ =- bnd (d < 2) (30) 

were well obeyed in the range investigated (see Figures 1 and 2 of 
reference [62]). The relations: 

_ ~ :dJ2 (d < 2) (31a) 
Sn (d > 2) (31 b) 

were previously inferred from arguments which used the probability of 
returning to the origin and the compact or non-compact nature of the 
underlying lattice [59]. 

We now turn to the target problem on fractals. One can show that 
the solution has again the structure of Eq. (21), but that, due to the 
fact that different sites on a fractal are not equivalent, one has also 
to average over all possible locations for the A-molecule. For Sier­
pinski gaskets, averaging over the positions is a minor problem, and one 
has, to a very good approximation, 
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(d < 2) (.32) 

and 
(d > 2) (.3.3 ) 

One may note the Williams-Watts form of Eq. (.32) and the fact that 
now ~ may be varied from Y2 to unity qy a judicious choice of the 
Sierpinski (or Sierpinski-type) gasket [6.3] underlying a walk. Hence 
fractals admit a straightforward extension~of the Glarum model [52], 
discussed in the previous subsection. For d < 2, Eq. (.32) also provides 
a way of experimentally determining the spectral dimension of fractal 
objects, by monitoring the relaxation due to multiple-step mechanisms in 
such materials [47]. 

Summarizing this section, we have shown that random walks on 
regular lattices can lead to stretched-exponential decays. These 
findings are even more pronounced for random walks on fractals, which 
extend in a natural way former results to continuously varying dimen­
sions. 

4. CONTINUOUS-TIME RANDOM WALKS (CTRW) 

In continuous-time processes one relaxes the condition that changes, 
such as the steps of a walker, may occur only at preassigned times. In 
the CTRW formalism one has thus to introduce a waiting-time distribution 
'(t), which gives the probability density that the time between steps 
equals t. This method has been implemented in a classic work by Montroll 
and Weiss [50], who used it to include '( t) in the generating-function 
formalisms for random walks. 

Let us begin qy listing a few '(t) forms of wide use. The simplest 
situation obtains for a memoryless process in which the probability of 
remaining at a given site during the time interval from 0 to t is 
exponential: 

'(t) = e -bt 

If now '(t) is the probability density that an event occurs at time t 
after the previous event has taken place, then obviously 

'(t) d 
= - dt '(t) (.35) 

and Eq. (5.1) leads to the Poisson process 

,P{t) = q exp{-qt). (.36) 

Slightly more complex forms obtain by using for '(t) expressions 
due to multipolar or exchange interactions in the presence of substi­
tutional disorder [64]. These forms are well-behaved in that, for the, 
the first moment T1 : 
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T1 = I; t'(t)dt (37) 

is finite. Much more interesting are distributions for which the 
integral in Eq. (37) is divergent. Thus Scher and Montroll [14] have 
modeled transport in amorphous media through a '(t) which displays a 
long-time tail: 

'(t) ... t-1- Y (38) 

Interestingly, such an expression is intimately related to a fractal set 
of event times [16,65,66]. From the Poisson process, Eq. (36), one 
constructs readily a dilatationally symmetric distribution, by taking 
into account events on all time scales, in the following way: 

'(t) (39) 

where N < 1. As is evident, the distribution (39) is a normalized sum of 
Poisson terms and 

'(qt) = lli.l _ (1 - N) 
\NV N 

exp(-tq) (40) 

For later applications we need q < N, so that q < 1 and thus at longer 
times '(qt) = '(t)/Nq. The last expression is equivalent to Eq. (38) 
when Y = Rn N/Rn q is set. Eq. (38) shows directly the temporal scaling 
of '(t), i.e. its fractal nature in time. 

We now remark that for algebraic '(t) forms, scaling carries over 
to other quantities related to '(t). Let Xn(t) denote the probability 

that exactly n events occurred in time t. This basic quantity of the 
CTRW formalism is connected to '(t) via its Laplace transform: 

= ['(u)]n [1 - '(u)] 
u (41 ) 

where '(u) = l['(t)]. 
As shown in Ref. [22], for '(t) whose first moment T1 is infinite, 

the Xn(t) coalesce at long times. For a given time t the set of curves 
:!~!O~i;:~:l;han a certain parameter nmax(t) scales, i.e. one has 

for n < nmax(t) 

otherwise. 
(42) 

On the other hand, for distributions whose first moments exist, scaling 
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does not hold. 
We now evaluate Set), the mean number of sites visited qy a walker 

in continuous time. Qualitatively one expects in situations in which 
T1 < • the pattern to follow Eq. (22) to (24), with n replaced qy t/T1 • 
This result is indeed well-fulfilled, as backed by extensive studies on 
(small) deviations due to higher order terms [64]. On the other hand, 
when T1 is infinite and '(t) scales, t/T1 is meaningless. Then another 
argument may be used. From the additional temporal averaging required, 
Set) is nothing but 

• 
Set) = I Sn~(t) • 

n=O 

We know now that in general in the long-time domain S has a power-law 
dependence on n, both for regular lattices (d = 2 exciuded), and for 
fractals. 

Setting Sn ~ nE and using Eq. (42) it follows that 

n max 

~ I nEXo(t) ~ Xo(t) 
n=O 

Set) (44) 

Now the Xn(t) are normalized, a fact which determines the time depen­
dence of nmax(t), [66] 

• 
1 = I ~(t) 

n=O 

For XO(t) ~ t-T it follows that n ~ t T and hence, from Eq. (44), 
TE max 

Set) ~ t , or in fractal notation 

Set) 
for d < 2 

for d > 2. 

In Eq. (46) the two fractal exponents (T for the temporal and d/2 
for the spatial aspect) combine multiplicatively, i.e. the two processes 
subordinate [10,62,67]. 

We now consider the relaxation pattern of pseudo-unimolecular 
A + B ~ 0, AO« BO reactions under continuous-time conditions. Starting 
with the target problem, which again turns out to be simpler than 
trapping, we have to extend the formalism to the CTRW situation. From 
Eq. (16) we now obtain the probability H(t;r) of a visit from r to 0 in 
time t: 
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• 

H(t;r) = I Xn(t)~(r) , 
n=O 

(47) 

where the ~(t) are defined as in Eq. (41). The average over times in 
Eq. (47) parallels, of course, that of Eq. (43). Since from Eq. (16) and 
(20) it follows that 

one has, in fact, using Eq. (43) 

I'H(t;r) = Set) - 1 • 
r 

(48) 

(49) 

Under the assumed independence of motion of the walkers in the 
target problem, the CTRW transformation of Eq. (18) and (19) carries 
through, and one obtains for the relaxation of the target: 

t(t) ~ exp[-pS(t)] , (50) 

where Set) is given by Eq. (46). 
We stop to note the appearance of a Williams-Watts stretched­

exponential form in Eq. (50). Now the parameter & in Eq. (12) may take 
any value between 0 and 1, if one chooses Y accordingly. This is true 
even for regular lattices in arbitrary dimensions, so that the CTRW 
provides an adequate extension for the Glarum model of spin relaxation 
in glasses [52], as pointed out b,y Shlesinger and Montroll [45,25]. 

Notice that due to the multiplicative connection of Y and d/2 in 
Eq. (46), which stems from subordination, a measure!! Williams-Watts 
parameter & may be explained by an infinity of (Y, d/2) pairs. Monito­
ring the target annihilation one cannot distinguish the separate roles 

played by the spatial disorder exemplified by d/2, and by the temporal 
disorder given by Y. This distinction may be drawn in the trapping 
problem, since here the CTRW forms lead to quite different decay 
patterns [22,67]. 

We proceed to consider the energetic disorder and the ultrametric 
spaces (UMS). 

5. RANDOM WALKS ON ULTRAMETRIC SPACES 

In general, sites in a disordered material are separated b,y energy bar­
riers, whose height is random [23]. Thus, a reacting particle positioned 
on a certain site needs thermal energy to surmount the surrounding bar­
riers. A given activation energy lets the particle visit only a subset 
(cluster) of sites around the starting point. One may then classify the 
sites through the energy required to reach them [18]: To such a classi­
fication corresponds an ultrametric space (UMS)[17-19,23,68-70]. As 
examples, Fig. 1 shows the regularly multifurcating UMS ~ and Z3 • Note 
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that only the points on the baseline belong to the UMS and that the 
structure above the baseline documents barrier heights and intersite 
connections. The height d(x,y) of the barrier between sites x and y may 
be used as a generalized "distance": It may be easily verified that 

d(x,y) , max(d(x,w), d(y,w» (51 ) 

holds for all UMS sites. Eq. (51) is the "strong" triangle inequality 
which leads to the name "ultra" metric. ~ and Z3 have branching ratios 
b = 2 resp. b = 3, and, for simplicity, we have taken the barrier 
heights to be hierarchically arranged, so that all consecutive energy 
levels differ b,y A, the energies E being E = mA, mE •• 

We now consider a simple qualitative argument for the temporal 
dependence of S(t), the mean number of sites visited during t, when the 
particles are thermally activated, so that the intersite transition 
rates are proportional to R = exp(-E/kT). 

Let us focus on the time interval 

mA/kT 'wt , (m+1)A/kT e me. (52) 

During this time interval bm points of the UMS ~ are accessible to the 
walker, and one has 

where we set 

6 = kT 
II 

= 

Rnb 

Figure 1. The ultrametric spaces (UMS) Z2 and Z3. 

(53) 
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For 6 < 1, bm increases more slowly than tm ' and the walker 
explores practically all accessible points. We are in the case of 
compact exploration. Therefore, 

(55) 

On the other hand, for 6 > 1, bm increases more rapidly than tm ' 
and the mean number of distinct sites visited stays proportional to tm 
hence 

Set) ... t (6 > 1) • (56) 

From this simple qualitative argument we have obtained a result 
which parallels our findings for fractals and for CTRW, Eq. (31) and 
(46). Eq. (55) and (56) can also be obtained rigorously, as we proceed 
to show following the lines developed in Ref. [49]. 

The basic idea of Ref. [49] is that many results valid for regular 
lattices carryover exactly to regularly multifurcating UMS. Thus, let 
Po be the probability of being at the origin of the walk at the n-th ,n 
step and p(z) the corresponding generating function. 

~ Po zn 
n=O ,n 

p(z) = (57) 

Similarly, let S(z) be the generating function of the mean number of 
distinct sites visited, Sn : 

S(z) = ~ (58) 
n=O 

For regular lattices, and also for regularly multifurcating UMS 
[49] (but not for fractals!) the following relation holds: 

S(z) = 
1 
2 (l-z) P(z) 

(59) 

The proof proceeds as in Ref. [49]. Starting point is the relation: 

n 

P. = J.,n ~ 
m=1 

P F. + 6 6 ii,n-m J.,m iO nO (60) 

where F. is the probability to reach site i for the first time in the 
m-th st§~~ Eq. (60) states (beside the obvious initial condition) that 
in order to be in the n-th step at i one has to arrive there either at 
the n-th step or earlier, at m, followed by a return to i in n-m steps 
(whose probability is P. i ). Eq. (60) holds since the random walk is J. J.n-m a homogeneous Markov prOCeSS, invariant with respect to time trans-
lation, and since event spaces corresponding to different first-time 
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arrivals are disjoint sets. Due to translational invariance, for Bravais 
lattices one has Pii = Pi i = Po • The same relation holds ,n-m - ,n-m ,n-m 
also for regularly multifurcating OMS, since all sites are equivalent. 
(On the other hand, in general for fractals the relation Pii = 

) ,n-m Po is only approximate. Hence also for UMS: ,n-m 

P. l.,n 

n 

I 
m=1 

P F + 6 6 O,n-m i,m iO nO (61 ) 

The course to Eq. (59) is now straightforward [50]. The increment ~ in 
newly visited sites at the m-th step is 

"'m = t F. 
L. l.,m (62) 

i#=O 

with 60 = 1. Then Sn ' the mean number of distinct sites visited in n 
steps is: 

S = n 

n 

I "'m 
m=O 

Eqs. (61) and (62) give by summing over i #= 0: 

n 

I 
m=O 

P A = 1 O,n-m 111 

(63) 

(64) 

where the requirement of conservation of probability was used. Switching 
over to generating functions one has 

p{z) 6{z) = (65) 

Furthermore, from Eq. (63): 

(1-z) S{z) = 6{z) = [(1-z)P{z) ]-1 (66) 

which is Eq. (59). 
The second ingredient of Ref. [49] is the interplay between random 

walks and CTRW. Let us exemplifY the basic idea using the Po • Re-,n 
calling that Xn{t) is the probability of having performed exactly n 
steps during t, Eq. (41), one has in CTRW: 

• 
= I ~(t) Po 

n=O ,n 
(67) 

which in Laplace-transformed form is 
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Po(u) = 1-U'(U) ~ ['(u)]n Po 
n=O ,n 

(68) 

This, apart from the factor [1-'(u)]/u is nothing else but the gene­
rating function p(z), evaluated at z = '(n). 

Hence, one may switch from PO,n to P(z) to poet), if only one of 

them is known. Furthermore, due to Eq. (59), then also Sn ' S(z) and 
Set) follow. 

Now, following former works on UMS [71-73], Bachas and Huberman 
[74] have succeeded in exactly solving the master equation for regularly 
multifurcating trees. They obtain: 

n 

poet) = b-n + (b-1) I b-m exp(-Am tiT) (69) 
m=1 

(70) 

with R = exp(-l1!kT). For b=2 and T = 1/b the solution is that of Ref. 
[72]. For an infinite tree, n ~ ., Eq. (69) takes the form of a Weier­
strass-series [16, 22,65,66]: 

• 
poet) = (b-1) I b-m exp[-CRm(t/T)] 

m=1 
(71 ) 

see Eq. (39), with q replaced b,y R and N by 1/b. In Eq. (71) 6 
C = (b-R)/(b-bR). Note that PO(Rt) ~ bPO(t), from which poet) ~ t- with 
6 = (In b)kT/6, i.e. Eq. (54) follows. 

As discussed in Ref. [49], the solution (69) corresponds to the 
CTRW-process with a Poisson-distributed '(t), Eq. (36). It then follows 
exactly: 

• 
Po n = (b-1) I b-m exp(-nC'Rm) 

, m=1 
(72) 

with C' = (b-R)/(bR-R). By Laplace-transformation of Eq. (71) one has 

~ 6-1 

~ :onst 
for 6 < 1 

(73) 
for 6 > 1 

and then for the Poisson process: 



S(u) ... { 
u-6-1 

-2 u 

for 6 < 1 

for 6 >1 

from which in the time domain follows: 

{ :6 S(t) ... 
for 6 < 1 

for 6 > 1 

(74) 

(75) 

Since the random walk has a Poisson distribution of waiting times, 

n'" At, and hence Sn ... n6 for 6 < 1 and S ... n for 6 > 1. This agrees 
with our previous analysis for random w~s on UMS. One may note that 
for 6 < 1 also the relation 

S(t) ... 1/PO(t) (76) 

holds, which is the hallmark of compact exploration [59,67,69,70]. 
Furthermore, now we are in the position of considering CTRW with 

broad waiting time distributions, Eq. (3S). Starting point, as in Ref. 
[49] is the Laplace-transform of Eq. (71), together with Eqs. (59) and 
(6S). One obtains 

1 
for 6 < 1 

(77) 
for 6 > 1 
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For T < 1 and 6 < 1 the two coefficients combine multiplicatively in 
PO(t), i.e. the two processes subordinate [67]. Remarkable is also the 
fact that for 6 > 1 the long-time behavior is dictated by the temporal 
disorder and that the energetic disorder is no longer impor~ant. This is 
similar to the previous finding for CTRW on fractals, with d > 2, where 
for T < 1 the spectral dimension becomes an irrelevant parameter. 

Let us now turn to the mean number of distinct sites visited. From 
Eq. (43) together with Eq. (41) one has: 

S(u) = 1-'(u) I [.(u)]n S (7S) 
u n=O n 

The Sn are as given after Eq. (44), Sn'" nf, with f = min(1,6). Now 
[67] 

• • In -f L nfzn ~ I xf eX z dx = r(f+1) (-In z) -1 (79) 
n=O 0 

so that, for 1- '(u) ... uT 

S(u) ... uT- 1 u-T(f+1) = -Tf-1 u (SO) 
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i.e. S(u) -T6-1 "'u for 6 < 1 and S(u) ... u-T- 1 for 6 > 1. Hence 

I t T6 for 6 < 1 
Set) 

t T 
(81) 

for 6 > 1 

Thus emerges the central result of this section, that CTRW on UMS 
subordinate. Note furthermore that relation (76) Set) ... 1/PO(t) is now 
obeyed for ~ 6 (i.e. for all temperatures). 

From these results we proceed to show the findings for relaxation 
phenomena on UMS. As in the previous sections we restrict ourselves to 
the target problem, and refer the reader interested in the trapping 
problem to our former publications [22,23,68-70]. 

Let us start by again noting that all sites of our regularly multi­
furcating UMS (fixed branching ratio b and equidistant barriers) are 
equivalent. We again denote the site on which the target sits as the 
origin, r=D, and assign integer number r E If, by counting, to the other 
sites. Eqs. (16) to (19) hold also for UMS, when the position of the 
site (r in Section 3) is reinterpreted to be the ordinal integer r. 
Furthermore, Eq. (20) holds on UMS since E Fm(r) = Er F gives the 

,r ~ r,m 

200 400 

n 

Figure 2. Decay law due to the annihilation of targets by random 
walkers on the UMS Z2 • The concentration of walkers in p = 0.2 and the 
decays are monitored as a function of the temperature 6 = (In 2)kT/6, 
for the values 6/kT = 0.5, 1, 1.25, 1.5 and 2. The full lines are the 
exact solution, Eq. (82), whereas the dots are the results of simulation 
calculations. 
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increase in the total number of visited sites in the mth step, see Eqs. 
(62) and (63), and thus equals Sm - Sm_1 • Consequently, we rederive for 

UMS, as in Eq. (21), the exact decay law of A particles annihilated by 
moving B species: 

(82) 

where the B molecules were initially Poisson distributed, Eq. (15). 
From Eqs. (75) and (81) one has: 

(83) 

which for ~ < 1 shows a stretched-exponential form, Eq. (12). 
In Figure 2 we present the decay in the target problem on the UMS 

Z2 . The full lines give the decay obtained from Sn in conjunction with 

Eq. (82) whereas the dots indicate the direct simulation of the target 
annihilation. We have taken the density of the walkers to be p = 0.2, 
and the dynamics take place over the UMS Z2 • As expected, in every case 
the agreement between the two forms is excellent. Note that depending on 
the temperature one has a crossover from exponential decays for ~ ~ 1, 
i.e. at higher temperatures (kT Rn b > 6), to stretched-exponential 
decays at lower temperatures (kT Rn b < 6). These aspects stress the 
point that, in the range of parameters of the figure, random ~alks on 
UMS parallel findings for lattices with a spectral dimension d = 26 
[71]. Interestingly, one may therefore switch through the marginal 

behavior at 6 = 1 (d = 2) through a simple temperature change. Such a 
phase transition should be experimentally observable through the 
qualitative pattern (exponential vs. stretched exponential) of the 
corresponding relaxation behavior. 

To summarize this section, we have analyzed dynamical relaxation 
behaviors on UMS, and have pointed out the analogies to previous results 
for random walks and CTRW on regular lattices and on fractals. This 
section concludes our exposition on pseudo-unimolecular decays which 
obtain in disordered systems, when fractals, CTRW or ultrametric spaces 
are used as models. In the next section we present an overview of 
bimolecular relaxation patterns. 

6. THE BIMOLECULAR REACTIONS A + A ~ 0 AND A + B ~ 0 (AO = BO) 

As stressed in Section 2, in which we investigated the chemical kinetic 
scheme for the A + A ~ 0 and for the strictly bimolecular A + B ~ 0 (AO 
= BO) reactions, in both cases the decay follows the 1ft dependence 
under 'well-stirred' conditions. Our findings, Eqs. (8) and (11), were 
the consequence of a spatially homogeneous situation. In this section we 
determine the decay laws which apply in the presence of disorder, which 
will again be modeled through fractals, CTRW and UMS. The main type of 
relaxation pattern which will emerge from our studies is algebraic, 

t( t) ... t-l!, Eq. (14), where E! may take any value between zero and one. 
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Here we start with the A + A ... 0 reaction, since it will turn out to be 
less influenced b,y fluctuations than the strictly bimolecular A + B ... 0, 
AO = BO ' reaction. This reaction is of importance in energy transfer 
problems, where it describes exciton up-conversion and annihilation 
process~s [22,75-78]. From the previous study of pseudo-nnimolecular 
reactions, we found that the kinetic exponential was modified by the 
appearance of S(t). Thus one may expect that the A + A ... 0 decay will 
follow a 1/S(t) law at longer times [21,75] and thus, one may find as an 
approximation to the decay, 

In [21] we have established through numerical simulations that Eq. (84) 
correctly describes the decay behavior both on regular lattices and on 
fractals (Sierpinsk! gaskets). For the dynamical processes periodic 
boundary conditions were used, so that the systems appeared infinite. 
The particles were placed randomly on the lattice, following a binomial 
(yes-no) distribution. At each step the walkers moved one b,y one to 
neighboring sites. Any two particles that during this process happened 
to occupy the same site were immediately removed. 

n 

Figure 3. Decays due to the bimolecular reaction A + A ... O. The full 
lines are the simulation results for the linear chain (d = 1), for the 
square (d =2), for the simple ~bic lattice (d = 3) and for a two­
dimensional Sierpinsk! gasket (d = 1.365). The dashed lines are Smolu­
chowski-type approximations, Eq. (84). 
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In Fig. 3 we display the results for the decay following the 
A + A ~ 0 reaction on the linear chain, the square, the simple cubic 
lattice and for the two-dimensional Sierpinski gasket. The full lines 
give the simulation results obtained b,y averaging over 100 distinct 
initial conditions and walks each, whereas the iished lines are the 
approximation, Eq. (84). We choose to plot In. vs In n. In these 
scales, at long times the decays should turn in¥o straight lines. From 
the figure this behavior is clearly apparent. Moreover, it turns out 
that Eq. (84) is almost quantitative in the range investigated [21,22]. 

The same behavior obtains also for fractals, as we have exemplified 
in [21], by analyzing the deviations of the Smoluchowski-type approxi­
mation, Eq. (84) from the simulated decays. An exact solution to the 
many-body problem involved in the A + A ~ 0 reaction was found b,y Torney 
and McConnell for d = 1 in the continuum, diffusion-equation limit [78]. 
In the range of Fig. 3 their expression is hardly distinguishable from 
the discrete, rando~walk result. Hence, in all cases investigated, the 

long-time decay ~ follows an algebraic form .~ ~ n-e (with e = d/2 
for d < 2 and e = 1 for d > 2). Heuristically one may view Eq. (84), the 

, , 
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Figure 4. Decay laws .AA for the A + A ~ 0 reaction on a simple cubic 
lattice, both for simple RW and for CTRW with y = 1/2. The initial 
particle density is p = 0.1. The full lines are the simulation results 
averaged over 100 runs. The theoretical long-time slopes are indicated 
by dashed lines. 
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solution of a many-body problem, as being related to the probability of 
encounter of two particles, which itself is expressible, via Sn ' b,y the 
volume visited by each. 

We now turn to the A + A ~ ° reaction under CTRW-conditions. The 
previous discussion for regular lattices and for fractals has lead to 

l~ -1 n 

From our viewing Sn as a measure 
tempting to envisage that in the 
(84) by S(t), and therefore, for 

tAA(t) I ~ t-Y 

for d < 2 

for d > 2. 
(85) 

of explored volume it is therefore 
CTRW scheme Sn gets replaced in Eq. 
CTRW one shOULd find: 

for d < 2, Y < 1 

- (86) 
for d > 2, Y < 1. 

Eq. (86) is then another example of subordination [10,62,67]. 
Our numerical simulations support Eq. (86) well [66]. In Fig. 4 we 

present the decay of the A + A ~ ° reaction under CTRW conditions. We 
start from walkers on a simple cubic lattice, d = 3, and use for '(t) a 
form with Y = 1/2. In the figure we present the corresponding decay law 
and contrast it with the simple RW results. Whereas at longer times the 
random walk decay follows 1/t, for the CTRW we find at longer times a 

t-1/ 2 dependence, as may be verified b,y inspection of Fig. 4, in which 
these asymptotic slopes are also indicated. As a further example we have 
performed simulations on several Sierpinski gaskets and on the line~ 

chain [66]. The long-time decay be~vior indeed follows the form t-d/4 

for CTRW with Y = 1/2 instead of t-d/2 for the simple RW decay. All 

findings are consistent with tAA(t) - [S(t)]-1, i.e. with Eq. (86). 
To conclude our study of the A + A ~ ° reaction we also consider 

the influence of energetic randomness, as displayed by ultrametric 
spaces (UMS). At longer times, we expect, paralleling the previous 
discussion, the relaxation pattern 

I :~: for 6 = (kT/6) in b < 1 
(87) 

else. 

The results of a typical calculation are presented in Fig. 5. The 
reaction depicted again takes place on the UMS Z? at a somewhat low 
temperature, so that 6 = 0.347. IRe initial dens1ty of particles is 
PA = 0.2. The overall decay of tn at longer times (larger n) is quite 

well described b,y 1/nO.35 , as indicated by the slope parallel to the 
decay. Thus, on UMS til trend found for regular lattices !ii for 
fractals continues: tn may be well approximated through tn - S~1 • 
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Figure 5. Decay pattern for the A + A ~ 0 reaction on the UMS Z2 • The 
upper section shows the decay for ~/kT = 2 and for an initial particle 
density PA = 0.2. Also indicated is the slope of the decay for n large. 
In the lower section the variations of the slopes are given by dots, the 
full line is the result of a smoothing procedure. The arrows mark 
theoretically predicted minima. 

Superimposed on this algebraic decay one finds, however, slight 
fluctuations. To present them in a magnifiii form we have plotted in the 
lower part of Fig. 5 the derivative d(Rn. )/d(Rn n). The dots are the 
numerically evaluated slopes taken from the simulation, and the full 
line is the result of a smoothing procedure. The arrows indicate the 
estimates for the locations of the minima determined by a detailed 
analysis; in fact the minima may be again related to the cluster 
structure of Z2 • 

Increasing the temperature so as to have 6 > 1 again leads to a 1/t 
pattern, as also expected from Eq. (87), together with Eq. (75). As 
before, an increase in temperature leads one to the kinetic result. 

We now turn our attention to the strictly bimolecular reaction 
A + B ~ 0, AO = BO • We note from the start that the simplicity of the 
A + A ~ 0 reaction does not carryover; the long-time regime is diffe­
rent from that of Eq. (84) to (87). The difference results from spatial 
fluctuations, which get enhanced by the chemical A + B ~ 0 reaction. The 
reason for this effect is that at longer times, due to the progress of 
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the reaction, large regions containing only A or only B molecules 
appear. Then the diffusion no longer provides an efficient stirring, and 
the reactions proceed more slowly since mainly only molecules at the 
boundaries of the A and B regions are prone to react. The expected decay 
at longer times then follows [4,6,7,21-23]: 

n..:J./4 

-1 n 

for d < 4 

for d > 4. 
(88) 

The marginal dimension for the A + B ~ 0, AO = BO reaction is thus four 
[4,6]. 

In Fig. 6 we Present a snapshot of a ~imulation calculation on a 
Sierpinski gasket (d = 1.36), after53 x 10 steps have elapsed. In the 
calculation we started with some 10 particles, placed such that the 
initial concentrations PA = PB were 0.05. The separation of the A and B 

.. :. 
·N. - . . , . . ... ~~ 

~/ ... • , "a..!. • 
0'1 

Figure 6. Snapshot of the strictly bimolec~ar reaction A + B ~ 0, AO = 
BO on a two-dimensional ~ierpinski gasket (d = 1.365) at the 12th 
iteration stage (some 10 lattice sites); The initial concentrations are 
AO = BO = 0.05 and corres~nd to some 10 particles. The picture shows 
the situation after 3 x 10 steps. The remaining A and B particles 
(around 700 each) are indicated by circles and dots. (Reproduced from 
Ref. [48]). 
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species into distinct regions is clearly evident. This picture of 
particle segregation, taken from Ref. [48], (the work reporting our 
previous results being [79]) finds its parallel also under steady-state 
conditions, where one has a different marginal dimension, see Ref. [80]. 

In this time regime the decay law ~ has crossed over from the 
Smoluchowski-type pattern, Eq. (84) and Y85), valid for smaller n, to 
the decay behavior of Eq. (88). As we have demonstrated in [7] and [21], 
see Fig. 7, a similar behavior obtains also for other Sierpinski 
gaskets, imbedded in spaces of higher Euclidean dimensions; we have 
considered Sierpinski gaskets with spectral dimension d = 1.55, 1.65 and 
1.77. Similar findings were also reported for strictly bimolecular ~ 
reactions on stochastic fractals [81]. We remark that with increasing d 
the Smoluchowski-type region of Eq. (84) increases. Hence, an increase 
in the spectral dimension pushes to later times the crossover to the 
form given by Eq. (88). 
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Figure 7. Decay laws due to reactions on fractals (Sierpinski gaskets) 
of different spectral dimensions d. Full lines for the reaction A + B ~ 
0, AO = BO with expected slopes at longer times denoted b,y dash-dotted 
lines. Dashed lines for the reaction A + A ~ O. For both types of 
reactions the initial concentrations were p = 0.1. 
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To conclude let us summarize our comparison of the bimolecular 
reactions A + A ~ 0, A + B ~ 0 (AO = BO) on regular lattices and on 

fractals. For the first we find agreement with the Smoluchowski-type 
form, Eq. (84), for the whole decay range studied, whereas the second 
obeys such a f2rm only in the initial time domain and crosses over to a 

lower decay t-d/4 (d < 4) at longer times. Thus, bimolecular reactions 
display a richer behavior than that predicted by the standard kinetic 
approach. 

Now the role of the CTRW remains to be assessed. As in previous 
cases, we expect the decay form to subordinate through the time variable 
to '(t), and expect hence: 

(for d < 4, Y < 1). (89) 

Simulation calculations [66] for particles moving on a linear chain 
under the influence of a waiting-time distribution with Y = 1/2 support 
the conjectured subordination displayed by Eq. (89) as we show in Fig. 
8. 

We now address the question of the A + B ~ 0, AO = BO reaction on 
OMS. One expects here, based on our previous knowledge of this reaction 
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AB Figure 8. Decay law. (t) for the strictly bimolecular A + B ~ 0, A(O) 
= B(O), with particles moving according to CTRW for a '(t) with Y = 1/2 
on the linear chain. The long-time slopes are also indicated. 
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and on the relation d = 26, 

~ ~ 
t-6/ 2 for 6 < 1 - (90) 
t-1 for 6 > 2 

with a orossover region for 6 between 1 and 2. Simulation caloulations 
[23] show, indeed, that Eq. (90) offers a very reasonable desoription of 
the long-time behavior for 6 < 1 and for 6 > ?~ 

In Fig. 9 we display the deoay pattern ~ whioh obtains for Z3 and 
PA = PB = 0.1 [23]. Here we averaged over five different realizations of 
initial oonditions and walks. We take ~/kT to be 0.5; 1; 1.5 and 2 so 
that 6 varies between 0.55 and 2.2. AB 

To monitor the algebraio forms we plot in logarithmio soales In • 
vs. In n. In Fig. 9 we have indioated through dashed lines the best 
fitted slopes to the deoays as dashed lines. It is now evident by 
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Figure 9. Deoay pattern of the A + B .... 0, AO = BO reaotion on the UMS 
Z3. The initial number densities are PA = PB = 0.1. The temperature 
parameter ~kT varies from 0.55 to 2.2. The slopes for large n are 
indioated b,y dash-dashed lines. (Reproduoed from Ref. [23]) 
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inspection that for 6 = 0.55 and for 6 = 0.73 the fitted exponent to the 
algebraic decay is around 6/2, i.e. 6 is only one half of its value for 
the A + A ~ 0 reaction. On the other hand, for quite large 6, such as 
6 = 2.2, we again recover the 1/t kinetic form. 

The findings of Fig. 9 can again be understood from the fact that 
in the strictly bimolecular scheme in the course of the reaction large 
regions containing only A- or only B-molecules appear. At long times the 
decay proceeds more slowly, since only molecules at the boundary between 
the A- and the B-regions can react. We document this for UMS in Fig. 10. 
In this Figure we present the course of a A + B ~ 0, AO = BO reaction on 

Z3 ' where the five patterns are snapshots after n = 1, 50, 9.102, 3.104 
and 2 0 105 steps. The UMS sites are arranged horizontally; shown is a 
fifth of the Z3 structure at the 12th hierarchical stage, as in Fig. 9. 
Initially, the A and B particles are randomly distributed with PA = PH = 
0.1. The course of the reaction magnifies the fluctuations; from a 
rather homogeneous initial situation one has at later stages well­
separated A- and B-domains. 

To conclude this section devoted to bimolecular reactions on 
regular lattices, fractals and UMS, also under continuous-time condi­
tions, we note that several microscopic models of bimolecular type lead 
to power-law forms, Eq. (84) to (90). In general, such decays may be 
well distinguished from other relaxation behaviors, such as stretched 
exponentials, by a sufficiently large dynamical range of measurements. 

A · 8 ..... 0, Z3' MkT = 2 

.1 I I II I I I II 1 ' A 
B t I I. I "I I I I 'I I • 

sleps parlicles 

95 103 

A ,,~ -"" ..... - .. 

B 50 

A DU, oW n l If Ylf L I II [ , 3104 1210 3 B Iii 

A 1Ill.t I II mil L.JL J...~1llDIl'r I LJ ,L 2 105 9 .103 
B I IT 'If ~ -

0 5 10 15 
siles / 104 

Figure 10. Evolution of the A + B ~ 0, AO = BO reaction on the UMS __ Z3 • 
The snapshots are taken after the number of steps n indicated. The UMS 
is arranged horizontally and the A and B positions are indicated as up 
and down dashes, respectively. Displayed is one-fifth of the Z3 struc­
ture at the twelfth stage. (Reproduced from Ref. [23) 
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However, distinguishing between different power-law decays may not be 
easy. Thus, additional experimental information such as concentration 
and temperature dependence may be necessary in order to pinpoint the 
microscopic relaxation behavior of a specific material which displays a 
power-law form. 

7. CONCLUSIONS 

In this work we have emphasized the fractal description of dis­
order. Randomness as found in glasses, displays not only spatial but 
also temporal and energetic facets. We have found it advisable to use 
models tailored to disorder. Thus spatial randomness may be modeled 
through fractal structures, temporal randomness through waiting-time 
distributions in the framework of continuous-time random walks (CTRW) 
and energetic randomness through ultrametric spaces (UMS). The advantage 
of these models is that they are very flexible and mathematically 
tractable. 

The dynamics were exemplified through pseudo-unimolecular and 
bimolecular chemical reactions. The ordered state in chemical kinetic 
schemes is the one given b,y the 'well-stirred reactor' in which the 
spatial distribution of reactants is completely homogeneous. To such a 
distribution correspond clear-cut, simple relaxation patterns: the 
exponential decay for pseudo-unimolecular, the 1/t form for bimolecular 
reactions. 

As we have shown, deviations from such relaxation behaviors are 
widespread, and extend from stretched-exponential to algebraic decays. 
Moreover, one may readily obtain such decay forms from theoretical 
approaches which include randomness. In all cases considered we were 
able to show the decay laws for the pseudo-unimolecular and for the 
bimolecular reactions investigated, either in analytically closed form 
or as a result of computer simulations. Disorder helps to differentiate 
between several reactions schemes, whose decays are similar under 'well­
stirred' conditions. Thus the target problem, in which the minority 
species is stationary, has a more rapid decay than the trapping problem, 
in which only the minority species moves. The A + A ~ 0 reaction has a 
marginal dimension of 2, whereas the marginal dimension of the A + B ~ 
0, AO = BO strictly bimolecular reaction is 4. 

Underlying the basic models for disorder are scaling (fractal) 
symmetries, which lead to unexpected connections. Thus, the 6 parameter 
which relates the temperature, the activation energies and the branching 
ratio of a UMS has connotations of an effective spectral dimension, 6 = 
d/2 for a related fractal space. The same parameter 6 is immediately 
reinterpretable as determining a waiting-time distribution in the CTRW 
picture. Furthermore, CTRW processes may be applied to fra2tals and UMS; 
generally the CTRW parameter Y and the spectral dimension d (or, 
equivalently, the UMS parameter 6) combine multiplicatively in the 
relaxation patterns: the processes subordinate. 

In our opinion, the main challenge, the open frontier, is the 
judicious application of these findings to experiments. For this a close 
cooperation between theory and experiment is absolutely mandatory. 
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FRACTAL CHARACTER OF CHEMICAL REACTIONS IN DISORDERED MEDIA 

Panos Argyrakis 
Department of Physics 313-1 
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GR-54006 Thessaloniki, Greece 

ABSTRACT. The concept of fractals, as it is applied to 
problems in physical chemistry, is presented. A short 
discussion is given to identify these structures, then a 
short review of the work pertaining to fractal transport 
mechanisms of single particle diff~sion. The more recent 
problem of chemical reactions on fractals is dealt more at 
depth. We discuss bimolecular reactions of the A+A and A+B 
types. We show how the diffusion-limited mechanism affects 
normal reactions on regular and on fractal lattices. 
Stirring of such reactions seems to provide a quantitative 
way for controlling their rate, and in a sense provide a new 
approach to catalysis. Finally, some related applications 
to fractal chaotic motion in polyatomic molecules, and 
entropy functions as a measure of disorder are also briefly 
discussed. 

1. INTRODUCTION 

Fractals have provided practically all natural sciences with 
insight for solutions to problems that up to recently were 
considered to be too complex to be solved. Problems in 
physical chemistry certainly have not lagged behind in this 
curious endeavor. Some areas of interest that are discussed 
here include: Energy transfer in mixed crystals, 
intramolecular energy redistribution in polyatomic 
molecules, exciton-exciton annihilation events, and more 
recently, mechanisms of chemical reactions. This list is by 
no means exhaustive, but makes only a small fraction of the 
reported applications. 

1.1. Fractals 

What is a fractal? A fractal is a geometrical structure that 
at first look seems to be too complicated, irregular, and 
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random. When carefully viewed one begins to realize the 
presence of tractable properties that are inherent in it, 
and help us to systematically study them. There have been 
several introductions and/or reviews on this subject [1-4], 
where one could find a plethora of fractal figures, shapes, 
clusters, aggregations, etc. There are two categories of 
fractals, both well studied: The deterministic fractals, 
which are exact and repeatable structures, such as the 
Sierpinski gasket [for a figure see Ref. 2] and the random 
fractals, such as a percolation cluster (made of a lattice 
with randomly placed open and closed sites) or an aggregated 
structure (made by repeated addition of identical units to a 
core), etc. The common feature that all these structures 
possess is that they do not occupy the entire underbedding 
space (such as, for example, a molecular crystal), but 
leave a large number of blanks. However, the amount and 
arrangement of occupied and blank space obey some relations 
that make fractals useful. The most important is that of 
self-similarity, i.e. a fractal "looks alike" under any 
scale of magnification, the only limit being the size of the 
unit cell that makes this structure. For random fractals 
this is true only in the statistical sense (average of many 
realizations). The result is that a fractal structure that 
"sits" on a 2-dim space will have a dimension D that is less 
than 2. The Sierpinski gasket (a structure made of three 
equilateral triangles stacked together to make a larger 
equilateral triangle) has a fractal dimension of D=ln3/ln2 = 
1.58. For a percolation cluster at the critical point the 
fractal dimension is found by considering several sections 
of the lattice with a different linear size A each time, and 
then by calculating the number of sites M that belong to 
this cluster in each section. The fractal (Hausdorff) 
dimension Df comes in the relation: 

M _ ADf 

and thus: Df - In(M(A))/ln(A) 

(1) 

(2) 

Df =1.89 for a 2-dim lattice, while Df =2.5 for a 3-dim simple 
cubic lattice [5,7]. We see that the dimensionality now has 
a non-integer value. This does not agree with our intuitive 
notion of dimensions, but we become accustomed to it when we 
see their physical significance and implications in the 
following sections. 

1.2. Diffusion via random walks 

The diffusion 
most studied, 

of a single particle in space is one of the 
interesting and intriguing problems in 
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physics. A pertinent model that has been heavily used is 
that of the random walk, sometimes called the ant-in-the­
labyrinth, or the drunk man's walk. One uses mathematical 
properties, such as the number of distinct sites visited at 
least once in a t-step walk, St' the mean-square 
displacement, R~, to monitor such a process. Up to 1982 
these models provided satisfactory answers [6], but only for 
homogeneous space, as for example is a perfect crystal 
lattice. It was then recognized [7] that even in an 
inhomogeneous space a relation may be found, if this space 
has a fractal dimension. The conjecture originally proposed 
[7] was that St scales as: 

whi le R2 scales as: t 

(3 ) 

DS is a new dimension called the spectral dimension, while 
(2+8) is the diffusion constant dimension. These laws were 
studied in detail [8,9 and references therein], and showed 
that Ds =1.30±O.02 (d=2) and Ds =1.33±O.02 (d~3). The 8 
exponent was shown to be 8=O.89±O.05. All details of this 
work have already been reported in the past, and will not be 
presented here. The important point ot remember is that 
diffusion properties behave predictably on fractals, and the 
large volume of work reported provides very accurate answers 
to all these questions. 

1.3. Fractal Entropy 

The quantities St or R~ described above give the overall 
range of the random walk, while it makes no difference how 
many times has a particle visited the same site. An 
additional piece of information can come, however, from the 
occupational frequency for each site. We introduce the 
quantity i k , which is the number of times that each site k 
has been visited in the random walk. The probability Pk of 
visiting the kth site is: Pk=ik/t. Then: 

(5) 
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Figure 1. Plot of the 
(a)square lattice, 
model), (c)percolation 
size: 300x300, average 

111111'. ! I I I 1 I I 

time (t) 

I(t) as a function of time for 
(b) percolation cluster (myopic ant 
cluster (blind ant model). Lattice 
after 1000 realizations. 

is the function containing this new information, which due 
to the form PlnP bears out an entropy-like character 
[10]. It is conjectured that for a random walk this function 
shows scaling properties in the same spirit as the St 
scaling law. We now define DI : 

DI = It/lnt (6) 
as the information dimension, in parallel with the fractal 
and spectral dimensions discussed above. The value of this 
new exponent is derived from a plot of It as a function of 
time t, given in Figure 1. In this plot It is first 
calculated from the i k function. Then it is plotted as a 
function of time. For comparison purposes the perfect 
lattice case is also included (line a). For the fractal 
lattice the calculation is done using the myopic ant [11] 
model (line b), and the blind ant model (line c). The least­
squares values of the slopes of the straight lines give: 
DI =0.89±O.02 (perfect lattice) and DI =O.62±O.02 (fractal 
lattice). For the perfect lattice the dimension D=0.89, 
instead of the expected D=l.OO, due to the well known 
logarithmic and other correction terms [12]. For the 
fractal lattice, as given above, the exponent is Ds /2, 
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is in close agreement with this new 
information dimension presents an 
to the well-known sets of fractal 

walk problems. 

1.4. Fractals and chaos 

The scaling-law-type relation that gives the dimension of a 
process, as discussed above, may be applied to the complex 
problem of intramolecular vibrational energy redistribution 
in a polyatomic molecule. It is well known [10] that given 
certain initial conditions the associated atomic motion may 
well lead (using classical mechanics methods) to periodic or 
chaotic behavior, or anywhere in-between these two extremes. 
Preliminary work [13] shows that a fractal exponent 
resulting from such a scaling law is quite appropriate in 
quantitatively describing the onset of chaos. As with 
previous examples this exponent has non-integer values in 
the crossover region, while it is an integer in the 
completely periodic and chaotic regimes. However, this is 
not the focus of this paper, and this subject will not be 
further discussed here. Several other papers in this volume 
deal primarily with this area. 

1.5. Chemical Kinetics 

The usual laws in chemical kinetics equations make the 
implied assumption that the reactants are free to move in a 
homogeneous 3-dim space. The main two questions are now 
addressed in the following way: Suppose that in a reaction 
the motion of the reacting species is constrained in,a space 
that has lower dimensionality than usual, as i's the case 
with fractal structures. (I)How are, then, these laws 
modified to properly describe the new reaction rate? 
(2)What, if anything, can one do to influence this new 
behavior? Since the reaction in these cases is severely 
limited by the diffusion process we call such reactions 
Diffusion-Limited Reactions (DLR). 

This effect has easily been observed in the following 
equations. For the simple A+A reaction the rate equation is: 
-dp/dt=kp2, and its solution is: p-l - R- l =kt, w~ere ~ is 
the initial density at t=O. For this s~e react10n on a 
percolating cluster at the critical threshold point 
calculations have shown [14] that the solution is: p-l 
_p;l=(k/f)t f , where f~0.65, i.e. f=Ds/2. This result 
immediately hints that one-particle motion shows the same 
space exploration characteristics as multiple reacti~g 
particles. This is shown in Figure 2 where time 1S 
eliminated, and one plots the single particle property St 
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Figure 2. Single particle 
S(t} vs. reacting particles 
(l/p l/~) for 2-dim 
lattices. Fil~ed circles: 
C=0.60, x: C=0.65, cicles: 
C=0.70, squares: 
C=0.80. Only the larest 
cluster is used. Several 
time intervals are 
considered up to t=2000 
steps. 

vs. the reacting particle density function (p-l - p,-l) for a 
range of cluster concentrations. This plot is af1er 2000 
steps, but the same characteristics are seen for any t we 
tried. The straight line confirms the above assumption [15]. 

2. METHOD OF CALCULATION 

The techniques for computer simulations for a single 
particle diffusion have been previously discussed in detail 
[8,9]. The most complicated part is that of the generation 
of the percolating cluster, which has been well described in 
the past. The random walk is a rather easy process to 
simulate, even with a personal microcomputer. In the 
reaction kinetics the same original method is utilized as 
with a single particle. The difference is that at time t=O a 
certain initial density of particles is placed on the 
lattice and all particles move (one at 'a time) one step 
before an overall time-step is consumed. Only one particle 
is allowed to occupy each site. Upon encounter, if two 
particles occupy the same coordinates both are immediately 
removed from the lattice. Cyclic boundary conditions are 
employed. Usually the initial density is 0.05 particles/ 
site. The results reported here pertain to transient 
kinetics [14], since the only participating reactants are 
gererated at t=O. Also of interest is the case of steady­
state kinetics [16], where a steady source of particles 
keeps replenishing the reactants so that the rate of 
reaction is constant, and the reaction is at equilibrium. It 
seems that the transient and steady-state cases have certain 
differences that are quite intriguing [16]. 
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3. RESULTS 

3.1. Kinetics via Diffusion 

The effect of dimensionality on the reaction rate is shown 
in a plot of (lip - l/R) as a function of time, for several 
dimensionalities, as s~own in Figure 3 (a and b). Here, in a 
log-log plot we derive the f values from the slopes of the 
straight lines as: 

~ 
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Figure 3. (a)Top part (b)Bottom part. 



60 

Table 1 
f values 

d=3 
d=2 
d=1.3 
d=l 

A + A 

0.98 
0.89 
0.74 
0.57 

A + B 

1. 00 
0.72 
0.42 
0.38 

These slopes are for early time behavior (t goes to 2000 
steps here). It is expected that in the asymptotic limit of 
long times these f values may be somewhat different. One, of 
course, runs here to the finite-size-lattice problem, i.e. 
there are too few particles left in the long time limit for 
good statistics. To improve this one needs to go to 
extremely large lattices, but again this becomes impractical 
for calculations, and thus there is a compromise between 
these two trends. 

We notice here that in these plots the lip factor is 
included, unlike some recent work where the simple p­
function was plotted [17,18]. We observe in Table 1 the 
dramatic drop from the classical value of f~l (d=3) as we go 
down to d=l, as both regular and fractal lattices are 
examined. The d=1,2,3 correspond to dimensions of regular 
lattices, while the d=l.3 corresponds to a 2-dim percolation 
cluster at the critical point, which is C=0.60 (C being the 
open site occupational probability). From this trend we 
conclude that the dimensionality of the reactant space plays 
the most important role for the reaction rate. The same 
trend is seen if we plot the "rate constant" K as a function 
of time, Figure 4. The rate constant is simply the function 
K=(l/p - l/R)/t, and it is seen in this figure that only for 
the cubic Pattice K is faily constant. For the percolating 
lattices we clearly see the decrease as a function of ti~e. 

cubic 
....... + •••••••••••••••••• 

! ••.. square 
• • • • • • • • • • • • •• • •••• e 8 

Figure 4. Rate constant 
for DLR A+A for 2-dim and 
3-dim lattices as shown. 

:.. p=O.60 
• .6 ..... 

•• •••• =~C=AAt •••••••••• p=O.32 
.~----~-----,-----+,------,----~, 
." II1II 2IXII JOQQ .000 5000 
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Thus, the conclusion is that for fractal lattices there does 
not exist any diffusion constant for a reaction. 

Also of interest for the A+B reaction is the question 
of segregation of the A from the B species during the course 
of the reaction, something that does not show in the f 
exponent. There are some very good pictorials showing this 
trend [16,17]. Even though this segregation is quite 
natural, it has not been explained yet quantitatively. It is 
nevertheless important in our understanding of the reaction 
mechanism, and some effort is placed in this 
direction. Establishing certain universal quantitative 
criteria for segregation is not an obvious process. 

3.2. Kinetics with stirring 

Mixing of reactants during the course of a reaction is not a 
new idea. It has espesially been useful in continuous flow 
systems [19]. In most reactions mixing occurs internally 
with the course of time, and this constitutes a homogeneous 
reaction. This is not the case, however, for the reactions 
described in the previous section (DLR), which due to the 
effective lower dimensionality show more pronounced 
clustering properties, segregation of reactants, and reduced 
reaction rates. One realizes that these effects are due to 
the spatial and temporal correlations that are continuously 
been built in the reaction system. Such correlations are a 
product of -the constraints imposed by the space 
heterogeneity. It is natural, therefore, to attempt to break 
up such effects, and hopefully be able to control a reaction 
and make it more homogeneous. Such a break-up is attained 
by fully stirring (mixing) all reactants during the course 
of reaction. All particles rerandomize their positions on 
the lattice without any knowledge of their previous 
position. We call this the well stirred case. We observe as 
a result in Figure 5 that the nrate constants n of Figure 4 
are indeed constant now that full stirring takes place, even 
for lattices of lower dimensionality. The f values of a 
well-stirred reaction is f~l, regardless of dimensionality, 
for normal and fractal lattices [20]. 
~ 

•••• •••• 'i.i •• t:lf::ii;·i 
• :Ie lit • X X 

~~----~------~------~------------N 

Figure 5. Rate constant 
for well-stirred reaction 
A+A for 2-dim and 3-dim 
lattices as shown. 
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More interesting is the case of partial stirring that 
bridges the two extremes of the diffusion-limited and the 
well-stirred reactions. Figure 6 shows the effect of 
partial stirring for a I-dim A+A reaction. Here only a 
certain small percentage of all remalnlng particles is 
stirred continously. When this percentage is small (1%) the 
case is similar to the diffusion-limited reaction. As it 
goes up we approach the case of a well-stirred reaction. 
This crossover can be followed by the change in the slopes 
of these lines. In Figure 7 we present the case of local 
stirring. Here all particles are stirred continously, but 
only close to their previous positions, say ±S sites 

4 
1 0 A+A 

1-dim reaction 

10% 
3 5% 10 

~3% p ~ ~;x::g 10 2 

10 1 2 

10 time 10 3 10 ~ 

Figure 6 
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away. As this number increases to ±200 sites we approach the 
case of well-stirred reactions. 

4. CONCLUSIONS 

Fractals have provided a new tool in studies of disordered 
chemical systems. They re-define the concept of 
dimensionality of a system by making it more general. They 
bring out an "inherent symmetry" that random inhomogeneous 
systems possess, albeit not apparent, and in a way they 
bridge the gap between crystalline and amorphous 
materials. Chemical reactions on fractals depend on the 
diffusion-limited process of particle motion, which is a 
dimensionality-dependent process. The new equations that 
pertain now have a fractal dimension dependence. The 
diffusion-limited process can, however, be controlled with 
external mixing. By carefuly choosing a mixing mechanism one 
can determine at will the rate of reaction (between the two 
limits of DLR anf total mixing). Thus, this may offer a new 
way of catalyzing chemical reactions in constrained spaces. 
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REACTION KINETICS FOR DIFFUSION CONTROLLED AGGREGATION 
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ABSTRACT. Irreversible coagulation (or aggregation) processes are described first by 
rate equations, for which a scaling theory is described. It is then argued that the 
range of validity of this description does not necessarily include the case where 
diffusion is the rate-limiting step. A simplified model to silllUlate this latter case is 
then described and shown to deviate from the predictions of the rate equations if the 
space dimension d (or the spectral dimension d. for fractal substrates) is less than or 
equal to two. Finally, some open problems in the treatment of more realistic models are 
discusseel. 

1. INTRODUCTION 

Irreversible growth phenomena have attracted considerable interest in recent years 1 , 

both due to their quite common occurrence in the most varied fields of physics and to 
the wealth of remarkable and often unexpected behavior they display. Among these, 
irreversible coagulation, i. e. growth of clusters by bonding of two smaller clusters, 
has been thoroughly investigated. The reaction scheme can be given as follows: 

(1) 

where the At denote clusters of mass i: or i-mers, and the K(i,j) denote size-dependent 
reaction rates. This type of reaction is of central importance in various fields of 
physics: 
-cloud physics', where coalescence of droplets plays an important role. 
-colloid and aerosol sciences, since it is well-known that such particles, when coming 
in very close contact, usually form a bond due to van der Waals interaction, that is 
frequently strong enough to be considered irreversible. 
-chemistry, in the study of polymerization·, in particular gelation. 
Furthermore, it has come up in such fields as astrophysics' (coalescence of gas 
clouds), dairy research (milk curdling), coagulation of bloodG as well as numerous 
other applications. 

The study of coagulation is itself divided in two rather distinct parts: the study 
of the cluster size distribution and the study of the morphology of the individual 
clustera. In the following, we shall be primarily concerned with the former. It should 

6S 
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be pointed out, however, that there are faecinating problema cODnected with the 
latter: in particular, if the shape of the cluster is not allowed to relax after the 
reaction, it has been found by computer simulations that the clusters thus generated 
are fractals', and that their fractal dimension differs depending on the nature of the 
cluster Bize distributions. Such findings have alao been reported experimentally9. 

In the following, we will study the time-dependent cluster Bize distribution, in 
particular for large times, where the behavior is independent of the initial 
conditions. In Sec. 2, we will review what is known about the rate equations describing 
the coagulation process. In Sec. 3, we introduce a model due to Kang and ielinerlo for 
diffusion-limited coagulation that lends itself well to computer simulations and can 
also be analyzed rather thoroughly in one dimension. This will show deviations from the 
predictions of the rate equations. Finally, in Sec. 6, we analyze some open problems 
associated with more realistic models. 

2. TIlE RATE EqUATIONS AND SCALING 

In order to describe the complex phenomena mentioned above, the simplest approach is to 
use rate equations, that is, we assume that there are no spatial correlations in the 
system and that the reactions occur with a frequency determined by the concentration of 
the reactants only. Hence we have, if ci(t) is the concentration of Ai at time t: 

~1 ~ 

c; = ~ EK(k,j - k)cr.ci-r. - c; EK(j,k)cr. 
r.=1 r.=1 

(2) 

Clearly, an exact solution of these equations for general K(i, j) is beyond our reach. 
However, it has turned out to be possible to analyze the behavior of eq. (2) in the 
limit of both large cluster sizes and large times. In this case, it is presumed that the 
system has forgotten the initial conditions and that its behavior is therefore only 
dictated by the large-scale behavior of the K(i, j). lIore precisely, it has been 
assumed12,lS that in this limit the cluster size distribution Ci(t) reduces to a function 
of a single variable j / s· (t), where •• (t) is some measure of the typical cluster size, 
that is: 

(3) 

where the prefactor 8·(t)-2 is necessary to ensure that the total mass in the system does 
indeed remain of order one as t -+ 00 • 

This is known as the scaling Anaatz and has been extremely fruitful in discussing 
the large-time behavior of eq. (2). Put in eq. (2), the Ansatz yields an 
integro-differential equation for ~(:I:) 11,12, which can then, in principle, be solved 
numerically. The crucial advantage of this formulation, however, lies in the fact that 
the small- and large-:I: behavior of the function ~(:I:) can be described in considerable 
detail under very general assumptions on the rate constants K(i, j). This has been done 
by van Dongen and E1'Jlstll , who show that two exponents describing the K(i,j) are 
sufficient for this purpose: 

K(i,j) ~ j>' 

K(i,j) ~ j" 

for i ~ j -+ 00 

for i < j -+ 00 
(4) 
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Summarizing their results, they obtain for '\, v $ I-which is necessary to exclude 
,elation singularities at finite timesU - Ie , which do not concern us here-the following 
growth law for the typical size: 

s·(t)!::!t· 
1 

%=1_,\ 

Further, if ,\ > v, ~(:r:) has a power-law behavior for .mall z, indicating a very 
polydisp.r.e clust.r siz. dietribution. On. has in this ca.e: 

(z -+ 0) 

On the oth.r hend, if ,\ < v, ~(z) has a quasi-exponential behavior for s_ll :r:, i.e. 
small cluat.rs are strongly suppr •••• d and the clust.r size distribution i. cl.arly 
p.ak.d around a w.ll-d.fined typical size. Mor. pr.cis.ly: 

(:r: -+ 0) 

(5) 

(6) 

(7) 

Th. cas. ,\ = v is far more intricat., and for the d.tails w. refer to van Dongen and 
Ernstll . OIle cas., however, is simple enough and should be m.ntioned. If K(i,.i) = K is 
independent of i and:i, the model has been solved .xactly by Smoluchowskil1 for 
monodisp.rse initial conditions, yielding: 

4 (Kt )i- I 

ci(t) = (Kt + 2)2 Kt + 2 

which can be rewritten as: 

thus implying % = 1 and r = O. This also is found to extend to arbitrary initial 
conditions, if th.y decay sufficiently fast for large :i. 

(8) 

(9) 

Two other expon.nts are also frequ.ntly studied, as they are easily defined and 
observed: 

(t -+ 00) 
00 

LCIe(t) !::!ra (t -+ 00) 
(10) 

1e=1 

Thus, the exponent w describes the long-time d.cay of v.ry small clusters (compar.d to 
the typical size) and a describes the behavior of the total number of clusters. Thes. 
are related to r and % by the following relations IS 

(2 - r)% = w 

a=% if r $1 

= w if r ~ 1 

as is r.adily seen from the scaling Ansatz. 
Qualitativ.ly, this amounts to saying that a power-law polydispers. siz. 

distribution is generat.d by any aggr.gation mechanism wh.re coal.scenc.s betw.en 

(11) 
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large clusters occur at a faster rate than between large and small clusters. If the 
opposite is the case, a well-peaked size-distribution ensues. This observation has 
been qualitatively confimed by computer simulations18•U , as well as experimentallyD 
on various systems. Thus fast (i.e. diffusion-limited) aggregation in colloids is 
usually described in tems of the expression for the rates originally derived by 
Smoluchowski 17 

K(i,j) = (D(il + D(j))(R(i) + R(j))d-2 (d> 2) (12) 

where D(., is the diffusion constant of an i-mer, R(i) is ita radius and d the spatial 
dimension. For this expression, if D(i) .... R(i)-l, one has ~ < II and hence a well-peaked 
distribution. On the other hand, if coalescence is the rate-limiting step. it is found 
that large cluaters are about as likely to react among each other as with small 
clusters20 and a power-law polydisperse cluster size distribution is indeed observedu 

3. DIFFUSION CONTROLLED REACTIONS: A SIMPLE MODEL 

Despite the impressive successes of rate equations in predicting the qualitative 
features of aggregating systems, the reason for their applicability is often obscure. 
Indeed, the crucial assumption involved is that no spatial correlations exist in the 
system. If it is thoroughly stirred on a time scale far less than the typical time 
needed for two clusters to aggregate, this aBBumption is quite sensible and the 
validity of the rate equations can in fact be derived by standard methods. In the case 
where diffusion is the rate-limiting step, however, this is clearly untenable. Indeed, 
the reaction generates a void around each growing cluster, which itself will 
eventually affect the growth. To take these effects into account, Kens and RednerlO 
developed the following model, which they called the particle coalescence modal (PCII): 
point particles are put at random on a lattice and perform independent random walks. 
Each particle originally has mass one. Whenever two particles meet at one lattice 
point, they combine wi th probability p to fom a particle (still a poiDt) with a mass 
equal to the sum of the masses of the reacting particles. Clearly, in this model, the 
rates K(i,j) should be chosen to be size-independent (K(i,j) = p). Thus, the exponents 
predicted by the rate equations are: 

z=1 w=2 a=1 (13) 

This model has been extensively studied both numerically and analyticallylO.111.22. The 
result is that, in three dimensions, the exponents predicted by the rate equations are 
indeed correct, but the exact solution given by eq. (8) does not apply. In particular 
the rate constant K 'CaDllot be determined unambiguously from palone. Rather. it also 
depends on the structure of the underlying lattice. 

In two dimensions, the exponents are agaiu as predicted by the rate equations, 'but 
with logarithmic corrections strongly suggesting that d = 2 is in fact the upper 
critical dimension for this model, a fact later proved by Peliti21 • For d = I, on the 
other hand, many surprising things occur: the exponents are given by 

r= -1 
1 

z= -
2 

3 
w=-

2 
1 

a=-
2 

(14) 



Further. it is .. en that the asymptotic behavior of the various qUaDtities involved 
does not depend on the probabi:aty of reaction p. Thus. in particular. for the total 
number of clusters. one observes 

co E c,,(t) ex (Dt)-1/1 

"=1 
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(15) 

where D is the diffusion constaDt of the clusters (assumed in this model to be size 
independent). This behavior CaD be understood intuitively by noticiDg that. in time t. 
a one dimensional random walk visits on the order of Vi distinct sit ... It therefore 
presumably visits each of them on the order of Vi times. Thus. if two particles come in 
close contact. they will do so aD infinite number of times as time goes on. so that they 
eventually coalesce irrespective of the value of p. 

Analytically. the model has alao been studied. in particular in the limitiDg case 
where p is equal to one. The main result proved therein concerns the qUaDtity 
E:"1 c,,(t). for which it is shown that. for arbitrary d 

where S(t) is the average number of distinct sites visited by a raDdom walk in d 
dimensions. This implies. if 1" ~ 1. which in this case applies: 

(16) 

(17) 

which. on aD intuitive level. is quite satisfactory: it meaDS that a particle. having 
visited S(t) sites. has grown as much as if it had been the only growing particle. all 
the others remaining stationary. These rigorous results are also in agreement with the 
value of the exponent II obtained by a combination of numerical work aDd plausible 
arguments. 

A generalization of the above model to arbitrary mass dependent reaction rates 
was also performedu . If the particles are to remain point like duriDg the growth 
process. thsre are essentially two ways of effecting such a mass-dependence of the 
reaction ratea: 
i) the probability p for the two reactants to coalesce is made to depend in the required 
way on the masses i aDd i of the reactaDts. This. however. encounters a slight problem: 
since p clearly must remain less thaD one. and since the K(i,i) usually grow to infinity 
a. i" i -+ 00. it is necessary to mult.iply the K(i,i) by an appropriate (system size 
dependent) constant. leadiDg to aD increase in computation time aDd a corresponding 
difficulty in attainiDg the asymptotic long-time regime. 
ii) for K(i,i) = Di) + D(i). a much simpler method consists in mBkiDg i-mers diffuse 
witb a size-dependent diffusion constaDt D(i). 

Using the first technique led to the following results: in three dimensions. the 
exponents predicted by the rate equations were indeed re"covered: the rates used were 
K(i.i) = (ii)"/2. so that these exponents were 

1"=1+~ 
1 

11=--
1-~ (18) 

a=w=1 
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siDee, in this case u = >./2. On the other haDd, in one dimension, the result appeared 
not to differ from the exponents for Iue-independent reactions, given in eq. (14). Thb 
presumably reflects the ,,-independence of the one dimensional aggregation procs .. , as 
was mentioned above. Since the basic time scale is not influenced at all by the value of 
", it should perhaps not come as a surprise that mass-dependent reaction rates fail to 
modify the exponents, which are primarily determined by the properties of 
one-dimensional diffusion. 

If the diffusion properties are of such overrriding importance in the 
one-dimensional problem, we would expect the second method described above (changing 
the diffusion coefficients) to give different results. Humerically, the following 
value for:ll was obtained for K(i,i) = i" + i" 

1 
:11=--

2->' 
(19) 

which is indeed a new result, different from both the rate equation prediction as well 
as from the constant case. Eq. (19) has the following plausible derivation: let us 
assume that a generalization of equation (17) holds also in this case. In one 
dimension, one has 

S(t) =..fi5i (20) 

But, in our case, D is mass-dependent, and hence also time-dependent. We have, for a 
typical particle, i. e. one which is always the typical size: 

D(t) = (,*(t))" oc t·" (21) 

and hence 
(22) 

from which eq. (19) follows. This shows clearly that in one dimension the two 
apparently equivalent ways of generating size dependent rates are, in fact, profoundly 
different: an ad hoc modification of reaction probabilities does not affect the 
exponents, whereas a modification in the mechanism of diffusion affects them 
strikingly. This is in marked contrast to the three dimensional case, where the 
exponents predicted by the rate equations are routinely recovered aDd no difference 
between the two methods of inducing mass-dependent rates is noticed. 

4. OPEH PROBLEMS 

From the foregoing, it would at first appear that in three dimensions-the physically 
usual case-the rate equations describe everything correctly except for a rescaling of 
the reaction rates. While such a result would be very pleasing, it is subject to 
several qualifications: 
i) the reactions need not always occur in three dimensional space: they may occur, for 
example, in a disordered medium" which may be well modelled by a fractal. Under such 
circumstances it can be shown (numerically and by plauaible arguments2I,:,,) that if d. 
ia the apectral dimension of the fractal one haa 

00 E c/o(t) oc C d,!2 (t -+ 00) (23) 
/0=1 
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if d. < 2. The behavior of the other exponent. h .. not yet been .tuclied to my mow ledge . 
ii) the PCN doe. not take into account the fact that clu.ter. arow ill .iz. a. they 
coale.ca. Thu •• it i. applicable a. lone a. the clu.ter radiu. i. much le .. than the 
tJPical cli.tance between clu.ter •. A •• oon a. thi. limitation i. dropped. however. 
thins. become con.iderably more complex. Fir.t. it i. not allowable to neglect 
..ny-body colliaion. at large time.: thi. come. from the fact that the probability of 
(.ay) a three-body colliaion ia of the order of ;2. wh.r. ; ia the volume fraction of 
aggregate •• if tho.e are compact. But the volume fraction remaill. con.tant ill time. so 
that neglect ins many-body effects is never justified. If. on the other hand. the 
clusters are fractal. ; now means an effective volume fraction. which actually arows 
with time. But it is well-mown that at this stage. the clusters stop growing 
fractally'. 

Second. it ia not at all clear that ill thia c ... the limiting dimension will be 
two. Ihe following argument may show the problem: in the PCM. as time goes on. the 
clistance r between nearest neighbors increases with time. But the probability for two 
nearest neighbors to coalesce then goes as r-(d-2). i... it goes to zero in the case 
where rate equations apply and not otherwise. This is indeed the physical origin of the 
nlidityof the rate equations. since systematic coalescmce with nearest neighbors 
clearly induces strong correlations. But. ill the case we are considering now. both the 
clistance between nearest neighbors and the diameters of the reacting particles 
increase. If the growth ia compact. and if the diffusion constant is a88umed to be 
proportional to the inverse radius. one can calculate that the probability of reacting 
rith a nearest neighbor remains bounded for all times in any dimension. 

Thus. it does not appear warranted to believe that rate equations will still be 
nlid in three dimensions if the cluster sizes are assumed to arow. Again. if the 
arowth is fractal. the situation is even worse. 
iii) a further limitation of the above remarks is given by the fact that we have only 
considered diffusive dynamics. In many real systems convective effects must be taken 
:i:ato account. introducins many new effects. For the question of the valiclity of the 
rate equations. however. these mechanisms are generally more likely to be well 
described by them. as they mix clusters more efficiently than diffusion. 

Summarizins. we have described the rate equations approach to aggregation 
processes and seen that its qualitative predictions are in good agreement with 
observed facts (much as the Curie-Weiss theory of a ferromapet correctly predicts the 
existence of exponents. scaling. etc ... ). The Cluestion then arises as to whether it was 
quantitatively reliable (1. e. if the exponents had the right values) particularly in 
the diffusion-limited case. where the basic assumptions of the model do not seem to 
hold. A simple model (PClol) showed that we could expect rate equations to be correct 
above two dimensions. but not below. The mechanism leadins to the discrepancies in one 
dimension was discu88ed and the question. as to whether rate equations may rightly be 
applied to more complex models remains open. 
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QUASICRYSTALS: FROM PERIODIC TO NON-PERIODIC ORDER IN SOLIDS 
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ABSTRACT. Experiments on metal alloys as A14 Mn since 1984 enforce the 
concept of non-periodic long-range order in condensed matter. Theoreti­
cal principles for this order are formulated. Orientational order with 
non-crystallographic point symmetry can be obtained by lifting the symr 
metry group from E3 to En, n > 3. The cells of a lattice Y in En form 
a Euclidean cell complex with a metrical dual y*. A rearrangement of Y 
into klBtze yields on a subspace Em, m < n an in general non-periodic 
quasilattice and tiling. In a quasicrystal model, these tiles become the 
cells of the long-range order. The Fourier theory for the quasicrystal 
model allows one to express the transform through integrals over the new 
cells. 

INTRODUCTION 

In the present contribution we describe new theoretical tools for the 
physics of non-periodic long-range order. In the ideal non-periodic 
order to be described, condensed matter is well organized by the broken 
periodic symmetry of a lattice in En, n> 3. In section 1 it is explained 
how orientational order forces us to embed Em, m = 2,3, into En. 
Given a lattice Y in En, one now needs a geometric prescription for 
the embedding of E3 with broken periodic symmetry. The clue to this 
problem is formulated in section 3 with the topological concepts of 
Euclidean cell complexes in En, their skeletons of dimension m, n - m, 
metrical duality and klotz constructions. A survey of applications and 
additional results is given in section 4. 
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1 • GROUPS, REPRESENTATIONS, AND ORIENTATIONAL ORDER 

The notions of group action and group representation are useful for the 
description of orientational order in condensed matter. 

1 • 1 Group action 

Let G be a group and X a set, called the space X, with elements xe X 
called points. The set of all bij ections X -+- X forms a group Gx. The 
group G is called a transformation group on X if it is (isomorphic to) a 
subgroup of GX' G < GX' We call the map 

GxX-+-X 

the group action and consider it in more detail. Given a point x e X, the 
orbit at x under G is the subset 

Gx = {x' I x' = gx for some gaG} 

G is easily seen to link any pair of points from Gx. We say that G acts 
transitively on Gx, and that Gx is a homogeneous space under G. The pro­
perty of points to be on the same orbit is an equivalence relation on X, 
and so X is partitioned into disjoint orbits. The inner properties of an 
orbit are characterized by its stability group. The stability group Go 
of a point Xc a X on the orbit GXc is the subgroup Go < G, 

Go = {h I hxo = Xc, h e G} 

The stability groups of different points on the same orbit turn out to 
be conjugate subgroups. Consider the set G/H of all left cosets of a 
subgroup H < G, 

The map G x (G/H) -+- G/H given by 

(g, g'H) -+- g g'H 

is an action of G on the coset space G/H, and, since all cosets can be 
reached by this action, it is a transitive action. 

1.1 Prop. Any homogeneous space X under a transformation group G is in 
one-to-one correspondence to a coset space G/H. The map X-+- G/H is compa­
tible with the group action. Proof: Let H be the stability group of the 
point Xo e X and construct the function 

f: X-+-G/H, f(x) = g'H if x=g'xo 

Then f is bijective and we get the commutative diagram 



75 

f 
x g'R 

gx g g' R 
f 

So, any concrete orbit Gx on X has an abstract counterpart of the form 
G/R, and, more important, all homogeneous spaces under G can be classi­
fied by group/subgroup pairs G/R. 

Return to the full space X. Orbits on X with conjugate stability 
group have the same abstract form G/R and form strata. The reconstruc­
tion of X from the orbits can be done with the help of a transversal or 
fundamental domain FD, 

U G~ = X} • (l 

So the transversal contains exactly one point from each orbit, and X is 
reconstructed by letting G act on all points of FD. 

1.2 Group representations 

A linear representation of a group G is a homomorphism of G into the 
group of all linear invertible operators on a linear space E. The repre­
sentation is irreducible if it leaves no proper subspace of E invariant. 
We shall deal exclusively with finite or with infinite discrete groups. 
Representations we denote by 

D: g "* D(g) , 

and their character by 

x(g) = trace (D(g», x(e) = dim(D) 

We turn to the group/subgroup analysis of representations. The restric­
tion of a representation D of G to a subgroup R < G is called the sub­
duced representation D'" R. Let Da and D(l denote irreducible representa­
tions of G and R. Then 

and 

x '" R = l1 m(a'" ex) xex 

where m(a'" ex) is the multiplicity of Dex in Da '" R. The converse construc­
tion of representations of G from those of R is called induction. 
1.2 Def. Let cl =e, c2, ••• , cr denote generators of the cosets of G/R, 
and let D be a representation of R. The matrix elements of the induced 
representation D t G are 
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D + (g)ij = D(h) o(cf l g Cj, he H) i,j = I, ... ,r 

To understand the construction note that, for given g e G and Cj' the 
equation gCj = cih has a unique solution ci,h. The homomorphism property 
is easily verified, and we have in terms of the orders of G and H 

dim (D+G) = dim (D) \G\/\H\. 

Subduction and induction are linked by Frobenius reciprocity. For Da and 
DO. as given above, consider the mUltiplicity m(o. + a) of the irreducible 
representation Da of G in the induced representation DO. + G. Reciprocity 
states that 

m(o. + a) = m(a.j. a.) 

and moreover allows one to construct most of the properties of induction 
from those of subduction. 

1.3 Orientational order 

We turn to the action of translation and point groups on a Euclidean 
space lEn. We shall work with the cyclic group of order n, the dihedral 
group D(n) of order 2n, the symmetric group S(n) of order n!, and with 
the hyperoctahedral group O(n): 
1.3 De£. For the elements feO(n), assign a sign Ei(f) = ±I and a per­
mutation i -+ f(i), i = ] ,2, ••• ,no Then the defining representation of 
O(n) is 

D· • (f) = E· (f) 
1.J 1. 

The hyperoctahedral group O(n) is the holohedry of the hypercubic lattice 
spanned by n orthonormal vectors. We denote the hypercubic space group 
by (T,O(n» where T is the translation group. 

We consider now the non-periodic familiar Penrose pattern in E2 
Its orientational order is characterized by the action of the cyclic 
group C(5) given by 

[ c -s] c = cos (2rr/5) 
D(g5) = s c s = sin (2rr/5) 

This action on lE2 is non-crystallographic, Le. it cannot be an element 
of a space group in E2. Now clearly C(5) can act crystallographically 
on :JE5. To see this consider the representation of g5 of the form 

[
0000]] ] 000 0 
o ] 000 
o 0 100 
000 ] 0 

Clearly this is a special element of the group 0(5) and hence we have 
the subgroup relation C(5) < 0(5). Moreover, it is easy to construct a 
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matrix m with the property 

d(.,)m-I • [ ~ -s 0 00] c = cos (21f/s) 
cOO 0 s = sin(21f/s) 
o c I -s '0 , 
o s' c ' 0 c ' = cos(41f/s) 
000 1 s' = sin(41f/s) 

so that D is reduced to real irreducible form. This similarity transfor­
mation applied ot Es provides a subspace E2 where C(S) acts through 
its non-crystallographic matrix representation given above. So this ac­
tion of C(s) can, through the embedding 

C(s) < Sl(s) < (T, Sl (5», 

be interpreted as the action of a subgroup of the point group on an ir­
reducible subspace E2 in:mS. Through this excursion, we have found a 
hypercubic lattice Y in Es. No translation vector of Y can be in the 
subspace E2, but we shall see that the lattice Y produces a quasilattice 
in E2 which organizes the non-periodic long-range order seen in the Pen­
rose pattern. 

We can now formulate a way to associate non-crystallographic orien­
tational order with a lattice Y and a space group (T,G) in En as pro­
posed by Kramer and Neri [1]: 
(I) Consider for a lattice Y in En the holohedry group (T,G) where T 
is the translation group and G the point group. For the hypercubic latt­
ice in En, the point group is the hyperoctahedral group Sl (n) described 
in section 4, and the space group is the semidirect product 

T II Sl(n) 

where T is the translation group. The point group transforms En into 
En by a linear representation Dn of dimension n. 
(II) Choose a subgroup H < G such that 
(a) the subduction from G to H of Dn has the real orthogonal form 

Dn .j. H = Dm + Dn- m , I" m < n , 

and decompose En in correspondence to this subduction as 

En .... Em + E n- m 

so that Em and En- m are invariant under the action of G. 
(b) No translation vector of T leaves Em invariant. So what we require 
is a subgroup chain 

H < G < (T,G) 

such that the representation om of H does not admit the embedding into 
a space group of Em, i. e. H acting in mm is non-crys tallographic. The 
technical problem in implementing this program is the insufficient in-
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formation on crystallography in ]En. This problem can be partially sol­
ved by induced representation theory, compare Haase, Kramer, Kramer and 
La1vani [2]: 
Consider a non-crystallographic group H of Em (m= 2,\3) with a represen­
tation ,DB of dimension m, and a subgroup K < H. If DP 4- K contains the 
representation DQ of K, we can induce DB from DQ. For. simplicity assume 
that na be real, and one-dimensional. Then the induced representation 
DQ t H has dimension r = IHI / IKI. Looking at the explicit form, it is 
easy to see that we get for any he H a signed permutation matrix. Com­
parison with the hyperoctahedra1 group yields the embedding 

K < H < Sl(r) 

which can be extended to the hypercubic space group in lE r , so 
that now 

K < H < Sl(r) < T A Sl(r) 

So we have found, starting from H, the construction required. 
As the first example we choose the cyclic group H = C(S), generated 

by an element gs of order 5. The one-dimensional complex irreducible re­
presentations are 

k = O,±I,±2 1;; = exp(21fi/S) 

We need the real orthogonal representations which for the element gs are 

DO(gS) : [~ ~] , (D1+D- 1) c = cos (21f/S), s = sin(21f/S) 

(D2 + D-2) [C' ~~ , c' = cos (41f/S), s' = sin(41f/S) -+- s' 

The only subgroup of C(S) is the trivial group K = 1. Induction from I 
yields the regular representation of C(S), 

(I t C(S»ij (gS) = o(cil gs cj ' e) 

Choosing cj = (gS)j one finds the condition 

(gS)-i+l+j = e, j - i:: I mod 5 

so that gs is represented by a cyclic matrix of dimension 5. The chain 
now reads 

I < C (5) < Sl(S) < (T,ll(S» 

Now we subduce the defining representation of Sl(S) of dimension 5 deno-
ted by DS to C(S). But uS is just the induced representation, and 
so by use of reciprocity for the regular representation one finds 
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where m is the reducing matrix of dimension 5 and the brackets refer to 
the orthogonal representations. In the corresponding decomposition of 
E5 we have 

and we choose the subspace E2 which carries the natural non-crystallo­
graphic representation (DI + D-I) of C(5). 

1.4 Non-periodic quasi1attices associated with the icosahedral group A(5) 

The icosahedral group as an abstract group is isomorphic to the subgroup 
A(5) of even permutations of the symmetric group 5(5). The irreducible 
representation of 5(5) are characterized by the partitions [5], [41], 
[32], [31], [221], [21 3], [1 5]. Under restriction to A~5), the represen­
tations for associate partitions become equivalent, [I ] - [5~, [21 3] -
[41], [221] - [32], but for the self-associate partition [31 ] we get 
two irreducible representations of dimension 3 which we denote by [31~] 
and [31~]. The representation [31;] is the one which contains the sym­
metry operations of the regular dodecahedron and icosahedron, it con­
tains 6 5-fo1d, 10 3-fo1d and 15 2-fo1d rotation axes and is non-cryst­
allographic. 

As subgroups K of the icosahedral group H = A(5) consider the dihe­
dral subgroups [2] V(l), I =5,3,2 obtained by combining a 2-fo1d rota­
tion axis with C(I). Analysis of the subduction from the non-crystallo­
graphic representations [31~] of A(5) shows that [31~] + D(I) contains 
the non-trivial one-dimensional representations of V(I). The representa­
tions Da + A(5) induced from these representation of the dihedral groups 
are of dimension r = I A(5) III V( I ) I = 601 (21 ), and they also have the form 
of permutation matrices with signs Da(k) = ±I. This allows for the em­
bedding into hyperoctahedra1 groups and corresponding hypercubic space 
groups according to 

D(I) < A(5) < n(60/(21» < (T,n(60/(21») 

in a hypercubic lattice of ]En, n=60/(21) = 6,10,15. If now we subduce 
the representation on of n(n) to A(5), we obtain always by reciprocity 

Dn + A(5) = m-I(D[31~]+ Dn- 3)m 

where Dn- 3 always contains the irreducible representation D[31*~ along 
with other irreducible representation for 1= 10,15. The corresponding 
decomposi tion of En is 

En + E3 + En- 3 

where E3 carries the representation [31;] of A(5). 
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2. LATTICES. DUAL CELL COMPLEXES. AND NON-PERIODIC LONG-RANGE ORDER 

Starting from the action of a translation group T on En. we shall use 
the concept of a Euclidean cell complex and its metrical dual to re­
arrnage the lattice Y in En in a way which displays non-periodic long­
range order in a subspace Em. m< n. 

2.1 Translations. Lattices. Euclidean cell complex 

Let the translation group T act on En. This action is not transitive 
and we shall consider the orbits. The transversal or fundamental domain 
FD is the crystallographic unit cell. For the hypercubic translation 
group the unit cell is the hypercube. For n orthogonal unit vectors 
bl ••••• bn. it is given by 

I 1 1 
h(n) = {y -'2' y • b i ''2 • i = 1 ••••• n} 

The p-boundaries of h(n) are defined as the p-dimensional polytopes 

{ II 1 
h(p; a(l) ••• a(p» = YI-2~y· ba(i) ~ 2:' i= 1 ••••• p 

b +1 J" + ~ } y. a(i) = -2 • • 
where k ~ a(k) is a permutation of S(n). Now we introduce the notion of 
an Euclidean cell complex taken from algebraic topology. compare 
Munkres [3]. 
2.1 Def. An n-dimensional Eucliden cell complex is a collection K of 
convex polytopes in En such that 
(1) Every face of a polytope from K is in K. 
(2) The intersection of any two polytopes from K is a face of each of 

them. 
Now consider the translated copies of the hypercube along with its trans­
lated p-boundaries. 
2.2 Prop. The action of the hypercubic translation group T on the hyper­
cubic and its p-boundaries. p = 0 ••••• n-l yields in En a Euclidean 
complex which we denote by Y. 
We use one more concept: 
2.3 Def. The p-skeletonK(P) of a Euclidean cell complex is the subcom­
plex of all faces with dimension r' p < n. 
So we can speak of the p-skeleton y(p) of the hypercubic cell complex Y. 

The subdivision of En into hypercubes and boundaries is signifi­
cant with respect to the action of T: It is easy to see that the inte­
rior points of h(n) all form part of a fundamental domain. Points on 
boundaries are always translated into points on boundaries, but one must 
introduce additional restrictions to select a fundamental domain for 
points on boundaries. 
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2.2 Metrical Duality 

There are several notions of duality in algebraic topology. We shall 
need a specialized concept of duality which we call metrical duality. 
2.4 Def. Two Euclidean cell complexes Y, y* in En are called the metri­
cal dual to one another if for p = O, ••. ,n the cells of the p-skeleton 
of Y and of the (n-p)-skeleton of y* always appear as local pairs of 
polytopes h(p;), h*(n-p;) with the properties 
(I) h(p;) and h*(n-p;) intersect in a single point q, 
(2) h(p;) and h*(n-p;) are spanned, with respect to q, by mutually or­
thogonal sets of vectors in En. 
It is not hard to construct the metrical dual y* for the hypercubic cell 
complex Y: Construct a second hypercubic lattice whose origin is shifte~ 
with respect ot Y, to a vertex of the hypercube h(n). This new lattice 
with its p-boundaries h*(n-p;) provides the metrical dual y* to Y. In 
Fig.1 we show for n = 2 the square lattice Y and its metrical dual y*. In 
Fig.2 we show for n= 2 a second lattice Y with cells and boundaries. Its 
metrical dual y* is different from Y. 

2.3 Klotz Constructions 

We shall consider in particular the hypercubic lattices Y and their met­
rical duals y*. Consider a hyperplane in En perpendicular to a unit 
vector e. Then En may be decomposed into orthogonal subspaces 

parallel or perpendicular 
for linear spaces and for 
topes. Now lie s ta te 
2.5 Def. For any pair of 
from Y and y*, define the 

kl«n-1)+ I;i) 

to the hyperplane. We use the subscripts 1,2 
the orthogonal projection of vectors and poly-

matrical dual boundaries h(n-I;i) and h*(lji) 
klotz 

as the n-dimensional polytope 

kl«n-I) + 1 ;i) = {y I Y =YI + Y2 ' 
Y 1 e hI (n- 1 ; i ) , Y 2 c h2 * (J ; i) } 

Since the center qi = ~ ki of a klotz is on the boundary, this polytope 
in general has points inside and outside of h(n). We call hl(n-I;i) and 
h2*(I;i) the 1- and 2- chart of the klotz. 
2.6 Prop. Select n klotze from h(n) such that their centers are not re­
lated by translation vectors from T. Then these klotze intersect at most 
in boundaries of dimension n-I and form a new fundamental domain FD 
under the translation group T. 

Examples of the klotz construction are given in Figs. 3,4. Note 
that the klotze are never in face-to-face position, a condition required 
for Euclidean cell complexes. The key properties of the klOtze are that 
their boundaries are parallel or perpendicular to the intersecting hy­
perplane. For the proof of Prop. 2.6 compare [4,5,6]. Since the klotze 
form a fundamental domain, their translated copies provide a periodic 



Fig.1 The cell of the square lattice Y is indicated with 
heavy lines. The second square is the cell of the metrical 
dual lattice Y*. 

Fig.2 The cell of the hexagonal lattice Y is indicated 
with heavy lines. The triangle is a cell of the metrical 
dual lattice Y*. 
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/' ~, / ~ 

Fig.3 The square lattice has two klotze which in the qua­
sicrystal model provide two tiles or cells. The klotze sup­
port the densities f1. f 2 . The lower part of the figure 
shows the tiling by the klotze and an intersecting line. 



Fig. 4 The cubic lattice has three klotze which in the 
plane provide three quasicrystal cells. Each klotz has a 
parallelogram base. The three klotze tile 3-space perio­
dically as indicated in the lower part of the figure. 
The tiling in a plane is in general non-periodic. 
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space filling of En. Consider now the intersection of a plane for n = 3 
or a line for n = 2 with the periodic klotz tiling. If the intersection 
hits a klotz, it has the form of the 1- chart hl(n-I;i), and one finds 
in general 
2.7 Prop. The intersection of a hyperplane with the periodic klotz 
tiling of En provides a tiling of the hyperplane Ey-I. 'f!.\e n tiles 
have the form of the I-charts hI (n-I ;i). The tiling of E~- is non-peri­
odic if no translation vector of T is parallel to the hyperplane. 

For the Penrose quasilattice in E2 and for the icosahedral quasi­
lattice in E3 one needs the following generalization of Def. 2.5 for a 
decomposition 

n m n-m 
E -+- EI + E2 

2.8 Def. For any pair of metrical dual boundaries h(m;) and h*(n-m;) 
from Y and Y*, define the klotz kl(m + (n-m);) as the n-dimensional poly­
tope 

In the Penrose case one needs n = 5, p = 2 and in the icosahedral case 
n= 6, p = 3. In the latter case it is shown in [7] that 20 k16tze 
kl(3+ 3;) form a new fundamental domain for the hypercubic lattice in 
E6. The corresponding proof for the Penrose case is much simpler. 

2.4 Non-periodic Long-range Order 

So far, the construction described in the last subsection allows one to 
construct, at least for hypercubic lattices in En, a kl.otz tiling of 
En adapted to the splitting En -+- Ey + E~-m. In Em, this klotz tiling 
provides an in general non-periodic tiling which reflects the broken 
periodic sYDDlletry of En. The number of tiles equals the number of 
k16tze which form the new fundamental domain in En. We inquire now 
about the significance of the tiles in Em with res~ect to atomic posi­
tions. If in En we introduce a periodic function f , its domain can be 
chosen as the collection of k16tze. The atomic density supported on the 
intersection of a klotz with Em would not be stable since the inter­
section with translated copies of a given klotz occur at different val­
ues of the coordinates perpendicular to Em. We restrict the periodic 
function fP to obtain the quasicrystal model: 
2.9 DeL A quasicrystal model in Em is defined by restricting the per­
iodic function fi on the klotz i by 

P P 
fi (x l ,x2) = fi (XI) • 

This definition has the consequence that the density fP supported on the 
intersection of Em with the k16tze becomes stable on each type of tile. 
So the result of the construction is a non-periodic long-range order 
with several cells. Each cell or tile supports a fixed atomic density. 
The Fourier transform is discussed in the next section. 
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3. FOURIER THEORY, ALMOST PERIODICITY, AND QUASICRYSTAL MODELS 

The Fourier transform of a periodic in En reduces to the Fourier series. 
On an intersection with the periodic lattice one finds the conditions of 
almost periodicity, of which the quasicrysta1 model is a special case. 

3.1 The Fourier Transform and Series 

We give here a general derivation of the Fourier transform for an urdiur 
ensiona1 linear cut through a lattice in En which supports a periodic 
function. 

The Fourier transform of a function f supported on En we define by 

Fn(f) (k): = f(k) 
= (21T)-n f dnyf(y)exp(-ikoy), 

and its inverse by 

Let 

En -+ E~ + lE~-m 

be an orthogonal decomposition and denote the orthogonal projections of 
all vectors or polytopes by the subscripts 1,2 respectively. 

To describe the intersection of objects in En with Em introduces 
for a fixed vector c2 the aut funation 

n-m 
v: v(y) = IS (Y2-c2) 

with the Fourier transform 

For the Fourier transform of a function f on the intersection one 
gets by convolution 

Now one can express the Fourier transform of the function f with 
respect to the subspace Em in the form 

Fm(f(,C2)(k l ) 

= (21T)n-mFn (fV)(kl'0) 

f urm ~ 

d 12 f(k1,-12) exp 
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Consider a translation group T acting on En, the lattice Y genera­
ted by T, a function tp periodic with respect to T supported on the fun­
damental domain FD, and denote by TR the translation group of the reci­
procal lattice. Then the Fourier integral of fP collapses to the Fourier 
series which can be expressed in the form 

r(k) (vol(FD»-l I ISn(k-kR)a(kR) 
kcTR 

a(kR) = fFD dnx/(x)exp(-ikR.x) 

This result can also be obtained from the orthogonality relation for the 
irreducible representations of the translation group. 

Let k be a vector form the first Brillouin zone BZ of the recipro­
cal lattice yR. The volumes of the Brillouin zone and of the unit cell 
FD of Yare related by 

(vol(BZ»-l = (2~)-n vol(FD) 

The irreducible representations of the translation group T are given by 

Dk(b) = exp(-i k· b) k e BZ 

3.1 Prop. The orthogonality and completeness relations of these repre­
sentations are 

-n 
(2~) vol(FD) 

-n 
(h) vol (FD) 

I Dk'(b) Dk(b) = ISn(k'-k), 
bcT 

f d~ Dk(b') Dk(b) = lS(b',b) 
BZ 

3.2 Prop. Let k be a general vector in Fourier space, and TR the trans­
lation group of yR, then 

I exp(-i k,' b) 
beT 1 
= (2~)n(vol(FD»-

Proof: Suppose that k has the decomposition k=~R+k, ~ReTR, keBZ. 
Now the orthogonality relation yields 

I exp(-ik.·b) = I exp(-i k'b) 
bcT bcT 

= (2~)n(vol(FD»-1 ISn(k._~R) 

which agrees with the term kR = ~R of the sum given above. The result 
must hold for any reciprocal lattice vector, and so we get the result. 
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If a general point y in En is decomposed as 

y = b + x, beT, xe FD, 

then Prop. 3.Z yields the collapse from the Fourier integral to the Fou­
rier series. 

3.Z Almost Periodicity 

Now we combine the results on a cut in En of dimension m with the col­
lapse for a periodic function fP to obtain 
3.3 Prop. The Fourier transform of a periodic function fP on the sub­
space Em is given by 

m P F (f (,cZ» 
= (vol(FD»-1 RI R Om(kl-kf)exp(i k~. cZ)a(k~ ,k~) 

(k!l ,~)c T 

This Fourier transform has its amplitudes on the discrete set of points 
kl = kf. The class of functions with Fourier amplitudes f(k) supported on 
a discret set of points was studied by H. Bohr [8]. Bohr showed that, in 
position space, the corresponding functions have a relatively dense set 
of translation vectors and so are almost periodic. 

Consider now the application of this Fourier theory to the models 
developed in section Z.3. Upon introduction of the klotze kl(~(ri-m);i) 
as the fundamental domain, the periodic function fP can be specified in 
parts f~ defined on a klotz. But, since the intersection of lEm varies 
with th~ position of the klotz in En, a repeated tile in Em does not 
support a stable set of values fl' Only if the intersection of a klotz 
occurs at almost the same relative position x2 there is an almost re­
petition of the density. We restrict the dens1ty to the quasicrystal mo­
del by requiring for all i inside a klotz 

fi (xl'xZ) = ii (Xl) 

Now of course we get stable values of the density on each tile, and we 
obtain 
3.3 Prop. For a quasicrystal with 1 klotze, the Fourier transform is 
given according to Prop. 3.4 with the Fourier series coefficients 

J 
hI (m;i) 

x 
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The Fourier coefficients for each klotz factorize into an integral over 
the density on the tile and a kinematical factor which is the character­
istic function of a polytope in En-m. The result can be extended to 
the boundary points of the k18tze. Among these boundaries there are the 
vertices which provide the model of a single point atom per quasicrysal 
cell. 

4. SURVEY OF APPLICATIONS 

We mention here some applications and recent progress made in the field 
of quasicrystals 

4.1 From Non-periodic to Periodic Order 

If the intersecting plane Em in]En contains translation vectors from 
T, a periodic structure is expected in Em. For the cubic primitive lat­
tice in E3 -+]E2 the quasicrystal model in a plane perpendicular t~ a 
3-fold axis reduces to the periodic standard model [5]. For E6 -+ E , 
there is a choice of E3 which yields the face-centered cubic periodic 
lattice as a cut through the primitive hypercubic lattice in E6 [9]. By 
a continuous rotation, the subspace E3 can be transformed into the re­
presentation space of the icosahedral non-crystallographie quasi lattice. 
This rotation preserves the full tetrahedral subgroup of both the cubic 
and icosahedral groups. 

4.2 Thermodynamics, Landau Theory 

The phenomenological Landau theory of phase transitions in periodically 
ordered matter employs group/subgroup relations, compare Birman [10]. 
With the embedding of non-periodic lattices into periodic lattices in 
En, one can try to implement the group/subgroup scheme for non-periodic 
quasicrystals. 

4.3 Electron States in Quasicrystals 

In periodic order, the Bloch states of electrons are characterized by 
the unitary irreducible representations of the translation group. An an­
alysis of electron propagation in a discretized non-periodic potential 
is given by Kohmoto [11]. 

4.4 Icosahedral Quasilattices 

A variety of icosahedral quasi lattices can be constructed by induction. 
The quasilattices in E3 obtained from hypercubic lattices in E 10 and 
E 15 have a rather complex cell structure [2]. The full diffraction 
theory of the icosahedral quasilattice obtained from E6-+E3 is derived 
in [6 ]. 

For a review from the crystallographic point of view compare Mackay 
[12]. Atomic models for the icosahedral phase were proposed by Guyot and 
Audier [24,25]. Large icosahedral quasicrystals have been prepared by 



Dubost, Lang, Tanaka, Sainfort and Audier [26]. Some additional papers 
on theory and experiment are included in the list of references. 
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CRYSTALLOGRAPHY OF QUASI CRYSTALS 

A. Janner 
Institute for Theoretical Physics, University of Nijmegen 
Toernooiveld 
6525 ED Nijmegen, The Netherlands 

ABSTRACT. A working definition is adopted which makes quasicrystals a 
special case of incommensurate crystal structures and includes the case 
of Penrose-like tilings. Embedding of quasicrystals in a higher­
dimensional space allows to recover lattice periodicity and thus a 
crystallographic symmetry group. Natural is to attach to the space an 
Euclidean metrics. One then gets space groups of corresponding 
dimension. It is also possible to embed the same quasicrystal in a 
space having indefinite metrics. The symmetry is then given by what one 
could call Minkowskian crystallographic groups, allowing lattices with 
a point group symmetry of infinite order. The corresponding generators 
induce self-similarity transformations on the quasicrystal lying in the 
pseudo light cone. 

1. INTRODUCTION 

A generally accepted definition of quasicrystals is still missing. The 
good one will eventually follow from experimental and/or theoretical 
investigations. Here a working definition is adopted which makes 
quasicrystals a special case of incommensurate crystal structures and 
includes the case of the Penrose-like tiling [1]. Embedding of 
quasicrystals in a higher dimensional space allows to recover lattice 
periodicity and to treat them as classical crystal structures [2]. It 
is, however, essential to realize that embedding of a n-dimensional 
quasicrystal in a (n+d)-dimensional space does not mean that one can 
simply apply the laws of (n+d)-dimensional crystallography. This 
because of the restrictions imposed by the existence of the crystal­
like object in the "real" n-dimensional space. In particular, two 
crystallographic descriptions of the same object have to be declared 
equivalent. For example the oblique and the rectangular lattices are 
inequivalent in two dimensions because they belong to different Bravais 
classes. Their distinction make no much sense when considered from the 
embedding of a i-dimensional quasicrystal lattice, because both 
represent possible embeddings of a same quasicrystal. 

Furthermore, the recovery of crystallography by embedding on a 
lattice, does not imply that the higher dimensional space is Euclidean. 
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The aim of the present paper is to show that alternative embedding in a 
space with indefinite metrics is not only possible, but that the 
crystallography one gets is essential for a proper characterization of 
quasicrystals. This is a surprising result which underlines the view 
that quasicrystal structures are conceptually important. As a by­
product one gets an insight in unexpected relations between Euclidean 
and non-Euclidean crystallography. Having said that, it should be clear 
why most of the present paper is restricted to i-dimensional 
quasicrystals embedded in a 2-dimensional plane. This does not mean, 
that the validity of the concepts reported is necessarily limited to 
this low-dimensional case, but simply that the crystallography of 3-
dimensional quasicrystals is so rich that, at present, it cannot be 
treated properly. 

2. SUPERSPACE APPROACH 

The geometry of quasicrystal structures has been approached in many 
different ways and it is not the aim of the present paper to expose and 
to compare these descriptions [3]. Relevant is a general consensus that 
the Fourier wave vectors of a quasicrystal are expressible as integral 
linear combination of a finite number of given ones: 

n+d 
h = I h.~*. 

i=l J. J. 
h. integers. 

J. 
(1) 

The full set of allowed Fourier wave vectors generates a Z-module M* of 
dimension n, which is the dimension of the space spanned by 
{!*l' •.• '~*n+d}' i.e. the dimension of the reciprocal space, and of 
rank g+Q, which is the number of free generators of M*, normally the 
smallest number of linearly independent ones on the rationals, so that 
M* is isomorphic with Zn+d. Accordingly d ~ 0 and for d > 0 the 
quasicrystal is an incommensurate crystal, whereas for d = 0 it is 
commensurate and M* is a (reciprocal) lattice. Considered here is the 
case d > O. 

The Fourier transform of a quasicrystal density p(~) can be written 
as 

PFT(n) (k) = 

and p(r) as 

A(h h) 2nihr I Pi' ..• , +d e 
htM* n 

The basic idea of the superspace approach is that the structure is 
uniquely characterized by the set of complex numbers ~(hl, •.. ,hn+d) 
defined on Zn+d, allowing thus an embedding on a (n+d)-dimensional 
lattice I*: 

(2) 

(3) 
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i=1,2, •.• ,n+d (4) 

in a so-called superspace Vs = V i VI' direct sum of the original space 
V (called external) and an additional d-dimensional one VI (called 
internal). In the incommensurate case each li of M* can uniquely be 
embedded as hs of I* by 

li = I h.a* 
i 1 i 

h s given integers hi. 

Then a (n+d)-dimensional crystal density ps(rs ) is defined by Fourier 

transformation in (n+d) dimensions 

giving 
2nih r 

p (r ) = I p(h1 , ... ,hn+d)e s s 
s s h tI* 

s 

(5) 

(6) 

As Fourier transforms are invertible, the structural information of the 
original quasicrystal p and that of the crystal embedded Ps is the 
same. That is the strength of the superspace approach, which formally 
can be characterized by: 

Note that 

p (r )I~ = p(~) 
s s r I 

i.e. the quasicrystal appears as section of p , a consequence of the 
s 

(8) 

(9) 

fact that the Z-module M* is the projection of the reciprocal lattice 
I*. The l-to-l correspondence between p and Ps does not mean that the 
latter is uniquely defined by the former. There is a freedom in 
embedding expressed in eq. (4) by the choice of the internal components 
a*iI' which is a kind of gauge. The relation between Ps and p recalls 
that between potentials and fields. Fixing the embedding corresponds to 
fix the gauge. A given p imposes restrictions on the possible Ps' and 
that becomes apparent when one considers among all possible Ps the most 
symmetrical ones (again a well known fact for potentials). 

So far, what has been said is common to all incommensurate 
crystals. Characteristic for a quasicrystal is the existence of a 
quasicrystal lattice in direct space which can be embedded on the 
lattice I dual to the reciprocal I* one. From I the quasicrystal 
lattice can then be recovered by the so-called cut-projection method. 
In order to get the corresponding superspace version, consider instead 
of the general case as in eqs. (6) and (7), densities defined on a 
lattice only: 
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(10) 

n+d 
with m I m.a. , for mi integers and basis vectors a. 

s i=1 1 1S 1S 

(11) 

A characteristic function C (the window) is now defined on I taking the 
value 1 if the lattice point ms is inside the window and the value 0 
otherwise. Suppose, furthermore, that the window contains the space V 
and satisfies the requirement of a smallest non-zero distance between 
points of the quasicrystal lattice. The latter is defined by the 
density 

(12) 

n+d 
with i = I m.! .• Note that the admissible its generate in V a Z-

i=1 1 1 

module M of dimension n and rank n+d. Note also that the function C, 
and thus the quasicrystal lattice, depends on the choice of the origin 
in Vs ' a fact not explicit apparent from eqs. (10) and (12). The 
Fourier transform of p(r) takes the form ( compare with eq. (2» 

( ~) C· ( ) (n) (:t :t) PFI'()'" = I h1 , ••• ,h+d c5 n-K 
n htM* n 

(13) 

with C the Fourier transform of the window. It is the explicit presence 
of a Z-module structure in both the direct and the reciprocal space 
which makes incommensurate quasicrystals so similar to crystals and 
thus fundamental objects. Extension of the above expressions to the 
general case of a quasicrystal density leads to a structure factor S as 
well. In superspace one then has: 

PsFI'(n+d)(ks ) = S(ks)Ls(ks ) 

with L (k ) the lattice factor: s s 

L (k ) = I c5(n+d)(k - h ). 
s s h tI* s s 

s 

The general quasicrystal density is expressible as product of 
structure- lattice- and window-factor 

(14) 

(15) 
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(16) 

with 

S(h ) s for ~ t M* 

(16a) 

(16b) 

and C as above. One can equally well avoid to introduce a window (or 
equivalently one can reduce the window to V itself) and include the 
factor C(~) in the definition of the structure factor S(~). In the 
superspace instead of a lattice of points one then gets the typical 
pattern of (discontinuous) modulation (hyper)lines [2], which by 
intersection with V produce the same effect as the cut-projection 
operation considered in the next section. 

3. EUCLIDEAN EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS 

3.1 Cut-projection method 

The superspace phraseology is here applied to the cut-projection method 
of Duneau and Katz [4,5,6], based on concepts developed by de Bruijn 
[7] (see also ref. [8]). Consider the 2-dimensional plane defining the 
superspace Vs with orthonormal basis e1 , e2 , identifying the space 
generated by e1 with the external space V of the quasicrystal, and that 
by e2 with the internal space VI. Correspondingly one has the 
decomposition: 

(17) 

for any rs in Vs. The elements of a 2-dimensional lattice I with basis 

m s 

(18) 

(19) 

The actual positions r of a 1-dimensional quasicrystal are selected by m 
cutting Vs according to a window, i.e. a strip containing the line V, 
taking the values which defines a characteristic function C(m1,m2) i.e. 
as already said, 1 for m inside the strip and 0 for m outside. In 
particular for a strip of width D limited by lines parallel to V one 
has: 
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(20) 

Accordingly, the quasicrystal lattice can be described by the density 
function 

p (r) (21) 

The magnitude of D fixes the minimal distance between two points of the 
quasicrystal lattice. A natural choice is to take all + a21 for D, i.e. 
the projection of the lattice unit cellon VI. If one takes D = a21 
(for a~I ~ all)' then the projection on V of a2s = (0,1) defines a 
"short interval S = la2 1 and that of a1s + a2s = (1,1) a "long" one L 
= la1 + a21, so that the quasicrystal represents a tiling of the line 
in short and long intervals. The Fourier transform of p(r) as in eq. 
(21) is given by: 

(22) 

where a*l and a*2 are the components along V of the basis reciprocal to 
that given in (18): 

and 

a* ls = (a\ ,a* 1I) 

-2ni(zla*lI+z2a*2I)t 
/dt e . 
D 

In particular, for a symmetric strip centered on V one gets 

(23) 

(24) 

(25) 

One sees that from the intensities of the diffraction spots following 
from eq. (25) one can get information on the window and on the internal 
components; from the position of these spots information can be 
obtained on the external components. In eqs. (21) and (22) one 
recognizes the Z-module structure of M and M* generated by the 
quasicrystal atomic positions and by the Bragg spots, respectively. 

Two cases arise: 
(a) V is parallel to a line through two lattice points (rational line) 
(b) V is parallel to a line through one lattice point only (irrational 
line) . 
The line can be expressed by a + al + ~a2s. In the case (a) ~ is 
rational and the quasicrystal perio~ic (commensurate), whereas in case 
(b) ~ is irrational and the quasicrystal aperiodic, i.e. 



incommensurate. 

3.2 Canonical parametrization 

It is convenient to adopt the following parametrization (denoted as 
canonical) of the dual lattice basis sets (18) and (23) in terms of 
real parameters a, a*, x, 9 and a (with aa* = 1) 

a = a(l,x) ls 

a* 9 a* = --(a -) 
ls 9+0 ' x 

a2s = a(9,-Xa) 

a* -1 a* = -(1 -). 
2s 9+0 ' X 
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(26a) 

(26b) 

In terms of these parameters and for appropriate D value (e.g. D = a21 
for a21 > all) the quasicrystal lattice positions are given by 

r m + ~ I 
0-

= a1 (a + m + 91 ~ + ~ I) 
o - a 0 -

with m integer, a and ~ real and 1 .•.. 1 the greatest integer 
o 0 --

(27) 

function. As shown by Levine, Socolar and Steinhardt [9,10] the ratio 
of the two intervals S = al and L = a1+a2 between neighbouring 
positions is given by 1+9 and the corresponding relative frequency 
nS/nL by 0-1. The parameters ao and ~o represent initial conditions (or 
a choice of the origin in the superspace) and leave the local 
isomorphism class of the quasicrystal invariant. For that reason, the 
influence of the choice of the origin will be disregarded in what 
follow (taking a and ~ both zero). o 0 

3.3 Two-dimensional Bravais lattices 

In two dimensions there are five Bravais classes of lattices: oblique, 
rectangular, rhombic (or diamond), square and hexagonal. Embedding on 
a oblique lattice imposes no conditions; on a rectangular it requires 
with als.a2s = 0 

9 (28) 
C1 

Now X can be chosen freely (what matters is the projection) and by an 
appropriate choice of the orientation, eq. (28) can always be 
satisfied. Embedding on a diamond lattice implies la1s 1 = la2s 1 i.e. 
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(29) 

We may suppose 0 < 9 < 1 and 0 < a < 1 by an appropriate choice of a1 
and of a*l. Replacing then a2s by a'2s = a1s+a2s leads to 9' = 1+9 and 
a' = 0-1, i.e. 19' I > 1 and 10'1 < 1. Therefore embedding a 
quasicrystal on a diamond lattice is also always possible. As 9 and a 
do have structural meaning even after identifying locally isomorphic 
quasicrystals, the available parameters appearing in eq. (26) are fixed 
by the choice of a rectangular or of a rhombic embedding. Embedding on 
a square lattice, or on an hexagonal one, implies additional relations. 
As both these lattices are isometric (i.e. such that with la1s1 = 
la2sl) we can adopt without restriction of generality an isometric 
embedding. We then have for the metrical tensor of the lattice having 
chosen basis vectors a1s and a2s and , the angle between them 

implying 
(a - 9) cos, = 90 - 1. 

Accordingly one gets: 

Square lattice (cos'=O): 

Hexagonal lattice (cos'=1/2): 

or equivalently: 

90 = 1 

a = 

9 

2 - 9 
29 - 1 

2 + a 
20 + 1 

The dual basis for the same hexagonal lattice has cos, = -1/2 and 
generates what we may call the trigonal lattice. One finds 

Trigonal lattice (cos'=-1/2): a 
2 + 9 
29 + 1 

(30) 

(31) 

(32a) 

(32b) 

(32c) 

(32d) 

and correspondingly for 9 as a function of o. The role of these two 
parameters is interchanged with respect to the first hexagonal lattice 
case. 

We can conclude that the Euclidean embedding of a 1-dimensional 
quasicrystal lattice leads to three classes: the rhombic (equivalent to 
the oblique and to the rectangular), the square and the hexagonal ones 
[11]. 

Let us remark that the two Z-modules 

(33) 

of dimension 1 and rank 2 become identical in the square case after an 
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appropriate choice of the units of length. In the hexagonal case, a 
trigonal M implies an hexagonal M* and vice versa. Furthermore, the Z­
modules generated by the internal components behave in the same way. In 
both cases, a irrational implies 9 irrational. 

3.4 Lattice basis transformations 

As the hexagonal versus the trigonal case show, different choices of 
the lattice basis for a same lattice can lead to structurally different 
quasicrystals (relative size and relative frequency have structurally 
quite different meaning). Let us, therefore, consider more closely the 
arithmetic equivalency, i.e. the lattice basis transformations by 
elements of the arithmetic group Gl(2,Z) (the group of the integral 
two-by-two matrices with determinant ± 1). To 

A = t Gl(2,Z) 

we associate a lattice basis transformation 
, 

a1s n12a1s + n12a2s a'(l,X') (34) 

, 
a2s = n21a1s + n22a2s = a'(9',-X'0') 

implying the linear fractional transformations: 

9 ' 
n21 + n229 

0' 
n21 - n220 

= = n11 + n129 -n11 + n120 

x' 
n11 - n120 

X and a' (n11 + n129) = a. 
n11 + n129 

Let us now consider a matrix A leaving a invariant. From 0' = a one 
gets the equation 

0, 

having solutions 

a = 
(n11 - n22 ) ± \ITr2 - 4 Det 

2 n12 

(35) 

(36) 

(37) 

where Tr = n11 + n22 denotes the trace of A and Det its determinant. In 
the same way, the invariance condition for 9 leads to the expression 
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9 = 
(-n11 + n22 ) ± \ITr2 - 4 Det 

2 n12 
(38) 

For such a and 9 the transformation A is a symmetry. Both a and 9 
belong to the same real quadratic field Q(d), with discriminant d Tr2 
- 4 Det, and are conjugated elements. One has 

a9 = a - 9 (39) 

after the choice the same (positive) square root sign. In particular 
choosing n12 = 1 and nll = 1 in the case of a square lattice, as a9 = 1 
n21 = 1 and n22 = 0, one gets a = (1+15)/2 and 9 = (-1+15)/2" the 
generators of the Fibonacci chain. The matrix A expresses the 
corresponding enflation rule: 

1 1 
A = 1 a 

4. SELF-SIMILARITY AND ENFLATION RULES 

If A is a symmetry for 9 and/or for a, then so also the group K 
generated by A which contains elements A+ with determinant +1. 
Irrational a implies trace of A+ > 2, and accordingly the group K is of 
infinite order. Therefore A is not an Euclidean symmetry transformation 
and the distances are not conserved. Inspection of eq. (35) shows that 
a symmetry for 9 leaves the Z-module M invariant, i.e. self-similar, 
and K is its self-similarity group. The same can be said for a with 
respect to M*. 

The situation is slightly different for the quasicrystal lattice. 
Due to the window function C(ml,m2) and the associated existence of a 
minimal interval, the symmetry is reduced to the semigroup generated by 
enflations. The inverse operation, the deflation, is beyond the minimal 
distance no more an allowed transformation. Without claiming 
completeness, let us now look at the square, hexagonal and trigonal 
cases. 

4.1 The square lattice case 

The necessary and sufficient condition for being in this case is 
n12 = n21' By total inversion, one can always get n12 > 0; the case 
n12 = a being excluded because leading to Tr = 0, and a (and 9) either 
rational or not real. The lowest possible value is n12 = n21 = 1 
implying n11n22 = 0 in the Det = -1 case (the Det = +1 case is then 
also generated). Choosing n22 = a and denoting nll by v, we have: 
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" 1 
A = 1 0 

integer " ~ 1 ,,- (40) 
and correspondingly ____ 

a "f~ 1,,2+4 9 -"f ~ 1 ,,2+4 

" 2 " 2 
(41) 

The enflation rule defined by A,,_ is associated with the characteristic 
equation det (A - x) = 0, which leads precisely to the invariance ,,-
equation for a (and 9 respectively) [12]: 

x2 - "X - 1 = 0 

and to the enflation rule in terms of 

One gets 

C = An a 
n " 

c" C 1 0 

for a 

as one verifies: Co a, C1 
the group K has the form: 

fk+2 fk+1 

fk+1 fk_1 

1 
o b 

with fk obeying the recursion relation 

o 
1 

(42) 

(43a) 

(43b) 

(44) 

(45) 

with initial values fo = fl = O. For" = 1 one obtains the Fibonacci 
numbers. 

4.2 The hexagonal lattice case 

The hexagonal case is more difficult. Again the value n12 = 0 (or n21) 
is excluded. We may suppose n12 > 0, consider n12 = 1 and parametrize 
n21 = A + 1. The Det = -1 case implies A(A+l) = n2 , which does not has 
integral solutions. Det = +1 leads to the Diophantine equation 

(46) 

whose integral solutions build up a matrix AA+: 

A + n 1 
AA+ = A + 1 -A + n 

which is a symmetry for 
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A particular solution is A = 1 and n = 2 leading to 

3 1 
2 1 and a = 1±/3 , 9 = -1±/3 , 

(47) 

(48) 

another solution A = -2 and n = 2 being arithmetically equivalent. The 
corresponding characteristic equation 

x2 - 4 x + 1 = 0 

leads to the enflation rule Aa = a3b2 and Ab = ab, thus to 

C C 3b2 C2 = C41Co- 1 • o = a, 1 = a , (49) 

4.3 The trigonal lattice case 

As above, we may choose n12 = 1 and n21 = A + 1 leading to 
n22 - n11 = 2 A. Again the Det = -1 case is excluded and the self­
similarity symmetry transformation is as above, after interchanging n11 
and n22' i.e. also aA with 9A• A particular solution is given by 

1 1 
A1+ = 2 3 a = -1 ± /3, 9 1 ±.[3. 

5. MINKOWSKIAN EMBEDDING OF 1-DIMENSIONAL QUASICRYSTALS 

(50) 

The self-similarity symmetries with determinant +1 leave lattices of an 
indefinite metric plane invariant. Furthermore, as one verifies, the 
invariance condition (36) for a implies invariance of the axis e1' i.e. 
of the external space V. The same can be said, mutatits mutandi, for 
9, e2 and the internal space VI' Accordingly, a self-similarity 
symmetry leaving 9 and a invariant is a crystallographic Lorentz 
transformation of a plane where V and VI are the isotropic subspaces 
leaving invariant the lattice I generated by a1~ and a2s' The group K+ 
of the proper transformations is then the relatlvistic point group, 
symmetry (holohedry) of I. The self-similarities which are symmetries 
with negative determinant, if they exist, transform the metric tensor 
into its negative and are called negautomorphs [13,14]. 

Let us verify analytically these results by introducing in the 
plane an indefinite metrics with orthonormal basis vectors ~o and ~1 
having scalar products ~i = -~~ = 1, ~0~1 = O. The embedding of V and 
VI being on the light cone we put 



Accordingly the basis vectors of I become 

1 + x) & + (1 - x) &1] als - [a (1 
ff 0 

1 - Xa) & + a (9 + Xa) &1 ] . a2s - [a (9 
.[2 0 

The corresponding Minkowskian metric tensor is 

whereas the Euclidean metric tensor for the same basis is 

g. • .2 (1 + X2) [ 0: ~ " ~' : -; ] 
The invariance of the Minkowskian metrics with respect to the 
transformation A is expressed by the condition: 

A g At = g M M 
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(51) 

(52) 

(53) 

(54) 

(55) 

(note that components transform contravariantly with respect to the 
basis vectors). Substituting in eq. (55) the corresponding expressions 
(53) and (39), one verifies the relations 

t 
A+ gM A+ gM if det A+ = +1 (56) 

and 
A g At 

- M - = -gM if det A = - -1. (57) 

The surprising result one gets from a crystallographic analysis of 
l-dimensional quasi crystal lattices is that square and hexagonal 
lattices, if adequately embedded in a Minkowskian plane, do have a 
relativistic holohedry of infinite order. 

6. BRAVAIS CLASSES FOR l-DIMENSIONAL QUASICRYSTAL LATTICES 

Euclidean embedding of quasicrystal lattices leads to three Euclidean 
Bravais lattices, which after identification of local isomorphic 
quasicrystals represent, on the Z-module level for M and for M*, the 
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natural generalization of the basic properties of the corresponding 2-
dimensional Bravais lattices (think at the situation e.g. for I and I* 
square dual lattices). These properties, however, do not reflect 
enflation rules, if present. This non-trivial structural property of 
incommensurate quasicrystal lattices is taken into account by Bravais 
classes of 2-dimensional relativistic lattices. It seems, therefore, 
natural to associate to a given quasicrystal lattice both the Euclidean 
as well as the Minkowskian holohedries of the same 2-dimensional 
lattice (for the most symmetric embedding of the quasicrystal). This 
allows a formal definition of Bravais classes for quasicrystal lattices 
by a joint arithmetical equivalence of both types of holohedries, 
respectively. Testing the validity of these ideas requires, of course, 
a more detailed investigation of the rhombic lattice case as well. At 
the present stage of knowledge it is already interesting to mention 
that the hexagonal and the trigonal lattice cases, which from the 
Euclidean point of view are arithmetically equivalent, are no more so 
from the Minkowskian metrical point of view. The trigonal lattice leads 
to the_r~lativistic Bravais class M4 characterized by the quadratic 
form [1,2,2], whereas the hexagonal lattice leads to the Bravais class 
[1,2,2] denoted as M4• In the square lattice case (labeled by v) there 
is only one relativistic Bravais class for each v ~ 1, the 
corresponding Bravais lattice being noted as N and characterized by _ v 
the quadratic form [l,v,l]. This if one disregards possible centering 
[14]. The notation [a,b,c] stands for the metric tensor gll = a, 

g22 = c and g12 = b/2. 

7. RECIPROCAL SPACE ASPECTS 

Given a lattice I, its dual or reciprocal one I* depends on the 
metrics. Quite in general, for the identification of the superspace Vs 
with its reciprocal V* a specific (non-singular) metrics is required. s 
The phase of the Fourier coefficients of a crystal structure represents 
an Euclidean scalar product of the type k·~. Its extension to a scalar 
product in superspace, which is of the type 

(58) 

plays an essential role in the conditions imposed by superspace group 
symmetry on the crystal structure and leads to selection rules for 
physical properties, like systematic extinction rules in X-ray 
diffraction patterns [15,16,17,18]. 

In the Euclidean case, the lattice basis a*ls,a*2s' reciprocal to 
a1s ,a2s ' has been explicitly given in eq. (26b). It is straightforward 

to derive the corresponding reciprocal basis a*ls,a*2s for the 
Minkowskian metric case. Indeed, from the orientation of the light cone 
with respect to el and e2 follows ei = e~ = 0 and e1e2 = -1. So 



instead of eq. (26b) one gets 

a* 1s 

a* 2s 

~ 
0+9 
~ 
0+9 

9 
(x' 0) 

( -:' 1) 
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(59) 

spanning the lattice I*M' Comparing the two expressions, one sees that 

to a reciprocal lattice vector kE of the lattice I*E it corresponds kM s s 
of I*M with components (-kI , -k). In the embedding (both Euclidean 
and/or Minkowskian) .the basis is changed according to the increased 
dimensionality, but the components h. of the elements, the Z-module and 

l. 

of the lattice are correspondingly the same 

n+d 
k = I hia*. 

i=l l. 
(60) 

in the present case n and d being 1. Therefore, the value of the scalar 
product is independent of the embedding's metrics adopted. For 

r s = 

one has in both cases 

r .kM = s s 

8. AN EXAMPLE: THE SQUARE LA'ITICE CASE 

(61) 

In this last section we simply collect the relevant expressions for the 
case of a quasicrystal lattice which can be embedded on a 2-dimensional 
square lattice. We know that, disregarding centring aspects, a positive 
integer v label the possibilities. The canonical parameters are 

Indeed 

v + \lv2 + 0 v 2 
9 

x2 v thus = v 0 v 

90 =1 and v v 
cos ~ 0, v 

4 

X v 

9 -v + 
= v 

= ± 9 v 

- 9 = v v 
= 9 v 

\ Iv2 + 4 (62) 
2 

(63) 

(64) 
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with .v the angle between a1s and a2s' and $v that between a1s and e1 
(the external space axis). The Euclidean metric tensor is that of a 
square lattice 

gE(v) = a2 (1 + a~) [~ ~] (65) 

whereas the Minkowskian metric tensor is that of the lattice denoted Nv 

g (v) = 2 a2a r 1 v /21 
M v v/2 1 

- -
The Euclidean holohedry is 

with 
1 0 

~ = 01' 

The Minkowskian holohedry (including negautomorphs) is 

with 
KM = {NR, Av_} 

o 1 
NR = 10' 
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Abstract: 
X-ray powder diffraction spectra of a well characterized Al73Mn21 Si6 icosa­

hedral structure are analyzed using the 6-dimensional space description. The self­
correlation function shows essentially two extrema at the nodes and at the body 
centers of the 6D unit cell. This results rules out models based on simple decoration 
of a Penrose tll1ng and strongly suggest that at least two orbits have to be considered 
in the modelisation. 

Diffraction experiments in temperature show a clear change in the thermal 
expension coeffiCient at 130K which could be associated with a antlferro magnetic 
transition. 

1 Introduction 

Icosahedral phases in aluminium based alloys have been extensively studied 
by means of X-ray, neutron and electron diffraction1. Many spectra have been col­
lected, but no fully satisfying crystallographic model that matches properly the ob­
served diffracted intensities has been proposed. The structural characterization of 
quasiperiodic phases is a fOnnidable task owing to the numerous parameters which 
have to be determined in addition to those of standard 3D crystallographr. 

The present paper reports experiments carried out on a reproducibly created 
and well characterized icosahedral Al73Mn21 Si6 ternary alloy which has been in-
vestigated by X-ray 3and neutron diffraction 4. The crystallographic analysis is 
based on the following heuristic hypotheses: 

i- Non-redundant indexing requires only 6 indices; the 6D space description 
has therefore been used. (This, however, does not necessarily imply that the actual 
structure in 6D would fit with atomic 3D surfaces depending only on the perpendicu­
lar space variable, Z .i); 

11- The powder diffraction patterns have been indexed using the scheme pro­
posed by Cahn, Shechtman & Gratlas5 assuming a primitive 6D hypercubic lattice; 
actually, two other equivalent lattices with same multiplicity could have been con­
sidered as well: the D6+ and D6- Cdual to each other) lattices defined by, 

J±) 11 1 1 1 .1 
Dt) = F(2A)~'2'2'2'2'~ FC2A), 

where FC2A) deSignates the face-centered hypercubic 6D lattice with parameter 2A, 
are consistent with both the icosahedral symmetry and the extinction rules observed 
in single domain electron diffraction. These lattices lead to projected quasilattlces 't 
times smaller Cfor D6+)or largerCfor D6-) than the one obtained for the primitive 
6Dlattice. 

iii - the 6D point group of the structure has been assumed to be m35. It is obvi­
ous, even from powder diffraction patterns, that the 6D point group is m35 and not a 
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supergroup of m35 (Intensities of equivalent reflections in the BS holohedral POint 
group are clearly dJfl'erent). Although the hem1bedral non- centrosymmetrlc 235 
group could have been chosen as well, convergent beam electron dJffract10nS and re­
cent neutron contrast experiments 7 have shown that the motif is most likely to be 
centrosymmetrlc. 

2 -Experimental 

A well homogenized master alloy was prepared from ultra pure sllicon, 99.99% 
aluminium and 99.9% manganese by levitation melting in a controlled helium 
atmosphere. TIle subsequent rapid quenching was carded out by planar flow casting 
on a copper wheel under a hellum atmosphere. TIle quenching temperature was 
1100°C and the tangential wheel speed 25m.s-1. TIle samples obtained were flakes of 
a few milllmeters in size and 30 J.lID thick. 

TIle X-ray data were obtained using several experimental conditions. TIle 
peak intensity measurements at room temperature were carded out using Co Ka ra­
diation on a d1ffractometer equipped with a graphite monochromator placed in the 
d1ffracted beam. To measure the angular positions of the peaks, data were obtained 
using a Cu Kf3 beam off a curved LiF monochromator, in order to avoid the broaden­
ing due to the usual Ka doublet. ExperJments at low temperatures were carried out on 
a special high precision diffractometer bunt by Berar et al.8 at the Ecole Centrale 
(Chatenay-France). 

TIle stOichiometry chosen leads to nearly single-phase icosahedral samples; 
traces of fcc aluminium (1%) and p-crystalline hexagonal phase (2%) were detected. 
Upon heating to 700 °C the as-quenched alloy transforms nearly completely into p 
phase ( 98% p, 2% fcc). TIle cubic a-phase was prepared from a Al73Mn lSSi11 alloy 
by annealing at 500°C (98% a, 2% fcc). 

A good fit was found between the observed and theoretical icosahedral posi­
tions of the peaks. TIle largest differences reach 10-3 A-1 for two reflections close to 
the fcc or p phase peaks (see figure 1). No asymmetry of the X-ray lines was observed. 
TIle peak width dependence with (qll ,q.l)has been found to follow quite well a 
quadratic law &!II 2= a ql12 + p~ 2 (with a = 0.247 and p = 13.9) shown on figure 2. 
as expected from the frozen-in phason strain model studied by Hom et a19. whereas 
no agreement is found with the icosahedral glass model. 

dq (A-I) 
O,OOI1S 

0,0010 

O,C:XXXS 

0,0000 

-o,OOOIS 

-0,0010 

-0,00 liS 

-0,0020 

-: 

0,00 0,20 

Qexp (A-I) 
I , 

0,40 0,60 0,80 1,00 1,20 1,40 

Figure 1 : DJfI'erences between the experimental and theoretical icosahedral 
positions 9f the reflections; the icosahedralindexl.ng fits better within 10-3 A-1 . 
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X-ray measurements at low temperature (from 294 to 80K) show an isotropic con­
traction of all samples. The integrated intensities of the icosahedral phase as well as 
the proffie of the reflections are remarkably const.ant with temperature which im­
plies an unusually small Debye-Waller factor. This could be related to the observed 
weak variation with temperature of the reSistivity measured in a similar alloy by C. 

(FWHM/Gpar)**2 
80C 

600 

400 

200 

to to (Gperp/Gpar)**2 
o~'-~~~~~~~~~mr-T~~ 

1cr 4 10. 3 10. 2 10. 1 100 

Figure 2 : Variation of the peak width as a function of (q//.QJ.); a reasonnable 
fit is obtained with a variation aq/ ;2 = a q/ ;2 + P ql. 2 corresponding to the frozen-in 
phason strain type of disorder with a = 0.247 and P = 13.9. This invalidates the 
icosahedral glass model. 

A (A) 

6,51 

6,50 

6,49 

6,48 

6,4 7 -h-T'T'T'.,.....,..,......rrrT'T"T"TT"I""I"T' ......... T> 

50 150 250 

Figure 3 : Variation of the 6D lattice parameter with temperature for the icosa­
hedral and the cubic a phases (see text). 
Berger 10. A possible explanation has been proposed recently by Cyrot & Cyrot­
Laclanan 11 based on an avalanche effect on electronic coherency loss due to long 
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N M nln2n3n4 n 5 na J.1 q(A-l) IfI(e/A::S) Corresp. a phase 
0 0 00000 0 1 0.0 1.0316 000 1.0256 
4 4 o 0 1 0 0 1 30 0.1852 0.00752 200 -0.0201 

2 1 1 0.0036 
6 5 0 1 1 o -1 0 60 0.2146 0.00836 
6 9 0 1 1 o 0 1 20 0.2591 0.07794 3 1 0 0.1046 

2 2 2 0.0767 
8 12 0 1 1 o -1 1 30 0.2989 0.03240 3 2 1 0.0444 

4 0 0 0.0313 
12 16 1 1 1 1 -1 1 12 0.3512 0.00957 
12 16 0 1 2 o 0 1 60 0.3512 0.00949 
14 17 0 2 1 o -1 1 60 0.3676 0.00816 
14 17 0 1 2 1 0 1 60 0.3676 0.00816 
14 21 0 1 2 o -1 1 60 0.3967 0.02944 1 5 0 -0.0727 

4 3 1 -0.0346 
4 2 2 -0.0291 

16 24 1 1 2 o -1 1 60 0.4236 0.04729 3 4 1 -0.0568 
2 5 1 -0.0926 
4 4 0 -0.0919 

18 29 1 1 2 1 -1 1 12 0.4610 0.31898 3 5 0 0.3409 
20 32 0 1 2 o -1 2 30 0.4849 0.26392 5 3 2 0.3217 

6 0 0 0.3325 
24 36 1 1 2 1 -1 2 60 0.5181 0.03663 
24 36 0 2 2 o 0 2 20 0.5181 0.03663 
28 44 1 2 2 o -1 2 60 0.5692 0.03694 
28 44 1 1 3 1 -1 1 12 0.5692 0.03694 
38 61 1 2 3 o -1 2 60 0.6689 0.09126 
40 64 1 2 3 1 -1 2 60 0.6954 0.04012 
48 76 1 2 3 o -1 3 120 0.7483 0.02692 
52 84 0 2 3 o -2 3 30 0.7843 0.25291 8 5 3 0.3408 

10 0 0 0.3529 
56 88 1 2 3 1 -2 3 60 0.8059 0.01668 
56 88 0 3 3 o -1 3 60 0.8059 0.01668 
58 93 1 3 3 0-1 3 60 0.8267 0.02892 
60 96 1 3 3 -1 -1 3 20 0.8394 0.02855 
60 96 1 2 4 1 -2 2 60 0.8394 0.02855 
70 113 1 2 4 1 -2 3 60 0.9099 0.10689 
72 116 2 2 4 2-2 2 12 0.9218 0.09148 
72 116 1 3 4 0-1 3 60 0.9218 0.09148 

102 165 1 4 4 -1 -1 4 20 1.0996 0.13533 
104 168 2 3 5 1 -2 3 60 1.1095 0.07798 
136 220 0 3 5 0-3 5 30 1.2694 0.08538 

Table 1: X-ray absolute scattering factors I fI of the principal reflections of the 
icosahedral phase and corresponding reflections of the a phase. 
wave length defects (static phasons). The variation with temperature of the 6D lattice 
parameter. A('n. for both the icosahedral and cubic phases are shown on figure 2. 
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The cubic phase has an isotropic thermal expansion coeffi.cent a=12.75 10-6 K-1 ; the 
icosahedral phase exhibits a clear change in the slope of A(11 around 130}{' from 
a =13.66 1O-61{"1 (similar to the a-phase) above 130K, to a ... 2.3 1O-~-1 below 130}{' 
which is an unusually small value for metallic alloys. The powder spectra show nei­
ther additional peaks nor intensity changes after crossing this temperature. This 
change in slope could be possibly associated with a second-order antiferromagnetic 
transition. 

The integrated intensities lTable 1) have been nonnallzed in absolute units by 
using a standard Ni3Fe powder. Five reflections of the standard specimen were care­
fully measured on the same diffractometer under the same experimental conditions 
in order to determine the diffractometer proportionality constant. The X-ray nor­
malization is given in units of electron units/ Angstrom3, instead of per unit cell, for 
the obvious reason of the absence of periodicity in the quasicrystalline samples. 
Once the normalization is performed, it is easy to calculate the zero term of the table 
from the concentration and the density of the sample. Assuming a density of 
3.62g/cm3, a 50 lattice parameter of 6.495A. the zero term is found to be 1.0316 e/A3 
for the icosahedral phase with composition Al73Mn21 8i6 which is very close to the 
value of 1.025 e/ A3 found for the cubic a structure. The list of the absolute values of 
the measured structure factors of the icosahedral phase is given in Table I, where N 
and M are the powder indices defined in ref. 4, and n l,n2,n3,~,n5,na are the 50 in­
dices of one representative of the orbits considered and ~ is its multiplicity. The cor­
responding structure factors of the a phase are also given for some of the strongest 
non-degenerate peaks. These structure factors have been calculated with the model of 
Cooper & Robinson12. The a cubic reflections corresponding to a given icosahedral 
reflection are found from the cut and projection technique applied for a rational 

cut13,14 where the golden mean 't = ~1 +..J5) is approximated by ~= -t. In this 
scheme, H,K,L, cubic reflections are obtained from the six indices h/h', k/k', 1/1' 
icosahedral indices by the simple relation: 

H = q h + P h' (and cyclic permutations) /1/ 
where p and q are successive integers of the FibonaCCi series; the cubic lattice param­
eter A is given by : 

A = 2Ao (P't+q) 

" 2( 2 + 't) 
/2/ 

with Ao as the 6D lattice parameter of the icosahedral phase. The breaking of sym-
metry from m35 to m3 generally splits single icosahedral orbits into several 
nonequivalent cubic orbits (a com tete description of the cubic/icosahedral phase 
relation-ships is to be found in 1 ). Orbits of medium range q wave vectors with 
strong intenSity in the icosahedral phase correspond to short Cl.L and are easily 
identified in the a phase with comparable peak positions and intenSities. This sug­
gests, as shown in the next section, that the chemical short range order is similar in 
both phases, as can be expected from a rational approximant of a quasiperiodic 
structure. 

3 -6D Patterson (self-correlation) function 

One of the specific problems in inconunensurate phases and quasicrystals is 
the presence of an inOnite set of pseudo-translations which result in a partial over­
lap of the structure with itself. The interatomic distances corresponding to motif 
atomic distances are not easily distinguishable from those due to the pseudo-trans­
lations. 3D Patterson maps show all translations, and can be readily created by a 
Fourier transform of the indexed intensity data. The decision about which Patterson 
peaks are due to pseudo-translations and which are true signatures of the elementary 
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(al 

(b) 
Figure 4 : Self-correlatlon functlon of Cal the icosahedral phase perpendicular 

to a 2-fold axis, (b) the a-phase in the fIratlonal plane [t,I,t2] perpendicular to a 
pseudo-2-fold axis. The 3-fold and 5-fold cllrectlon are shown as full lines with their 

corresponding pseudo-axes in the a-phase. 
Fourier calculatlon has been directly performed 16,17 in the 6D space where full pe­
riodicity is recovered : 
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IP(R)= LH(h,h',k,k'J.I1 e2bt K.R /3/ 
(h,h' ,k,k' ,1,1') 

where :It and R are the reciprocal and direct 6D variables. Th1s yields a 6D periodic 
mapping of the standard 3D Patterson function that for these alloys is quasiperi­
odic. The 6D calculation can be displayed in either parallel or orthogonal spaces as 
well as along rational subspaces of the 6D embedding space. 

Figure 5 : Self-correlation function of the icosahedral phase displayed on a ra­
tional plane of the 6D space (spanned by (1,0,0.0.0.0] and (0.1.1.1,1,-1)) that contains 
the 5-fold axis in 3D. The full6D periodicity is recovered. The unit cell is outlined 

and the traces of the parallel and perpendicular spaces are drawn in fullllnes. 
The 3D pseudo-translation peaks arise from cuts of the fundamental peaks 

elongated along the orthogonal space and attached periodically to all 6D lattice 
nodes. When displayed in the 3D physical space. the self-correlation function of the 
icosahedral phase closely resembles the function obtained from the cubIc a phase: 
both phases have simllar short-range atomic order. The typical peaks associated 
with the double icosahedron of Al-Mn called the Mackay icosahedron (MI) are 
clearly identified in the quasicIystal because they so closely match those in the 
crystal. This result experimentally conftnns the O~1nalidea of Guyot and Audier18 
and the decoration proposed by Elser and Henleyl . An additional peak is found in 
the 2-fold projection of the quasicrystal (FIgure 4-a) which is not observed in the 2-
fold axis map of the crystal, but turns out to be in the irrational (1:.1.1:2] plane which 
is the pseudo 2-fold plane of the crystal (Figure 4-b). This additional peak is the 
sIgnature of a stacking of the basIc MI's along all the ten 3-fold axes in the qua­
sicrystal. whereas the stacking is only along the four cubic 3-fold axes in the crystal. 
The dis~lay in the perpendicular space shows extended peaks as expected in the 6D 
models 0 in which the atoms are represented by 3D volumes. This elongated shape 
is however not surprising since the calculation uses intensIties corresponding to 
short qj, values and therefore long wave variations in the perpendicular space. A 
plot along rational 2D planes of the 6D space of course shows exact periodicIty. A 
careful examln!;!.tlon within the 6D unit cell revealed no peaks other than the fun-
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damental peak located at the lattiCe nodes and a secondmy peak at the body center of 
the unit cell(FIgure 5). All peaks observed in the phystcal3D space are entirely due to 
these sale two peaks giving a surprisingly simple self-correlation function in 6D 
space; a 6D "CsCI" structure. 

The peak at the body centered peak is a little shorter than the one at the origin. 
This irldicates that the window functions (or atomic 3D surfaces) are probably 
c:lifferent not just for the c:lifferent kinds of atoms, but also for dffIerent orbits of the 
same species. Not much chemical order can be seen in the X-ray self-correlation 
function (not enough contrast between AI, Mn and Si) but the corresponding neutron 
studies show a strong shortening of the Patterson peak associated with the lattice 
node which suggests that there could be, in perpendicular space, a spherical shell of 
heteroatomic distances (which, in neutrons, gives a negative self-correlation func­
tion) surrounding an internal sphere of homoatomic distances. The body centered 
peak corresponds mostly to heteroatomlc distances. 

4 -conclusion 

A good quality quasicrystalline phase can be made from a rapidly solidified ternary 
Al73Mn21Si6 alloy. Absolute X-ray powder measurements permit accurate com­
parisons with the related stable crystalline phases. The peak locations in reciprocal 
space fit well with the theoretical positions expected from the icosahedral indexing 
with an average peak width corresponding to some 40 DIn correlation length. In or­
der to take full advantage of both the radial and directional information contained 
in the dffIraction spectra, a Patterson analysis was performed (instead of the usual 
radial distribution function) which exhibits a surprisingly simple internal structure 
when displayed in the 6D space. All peaks observed in the 3D self-correlation map 
result from only two peaks of the 6D unit cell, one centered on the origin and the 
other at the (1/2,1/2,1/2,1/2,1/2,1/2) body center. The comparison between neutron 
and X-ray spectra shows that the body centered peak is mainly due to heteroatomlc 
Al-Mn distances and that the central peak results from the superimposition of an 
homoatomic distance surrounded by a spherical shell, in orthogonal space, of het­
eroatom1c distances. The same distances are also identified in the stable crystalline 
a phase : the short range chemical order of the icosahedral phase is essentlally the 
same as in the crystalline a phase. The basic c:lifference between the two structures is 
the stacking of the basic atomic clusters periodically connected in the a phase 
through four among the ten possible icosahedral three-fold axes, and equally con­
nected in average through all the ten three fold axes in the quasiperiodic phase. 

Measurements at low temperature show no detectable variations in intensity 
which implies a very small value of the Debye-Waller term. 

Probably the most striking result of the present study is the change in the slope 
of the 6D lattice parameter versus temperature around 130K ; the cause of this effect 
is yet unknown. It could be the Signature of a second-order magnetic phase transition 
which would generate no detectable additional peaks and no discontinuities in the 
intenSities. Additional experiments are in progress. 
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THE GROWTH OF ICOSAHEDRAL PHASE 
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ABSTRACT. A simple model for the growth of icosahedral phase based on 
structural information obtained from crystalline phases is defined and 
simulation results are presented. Growth velocities in the splat-cooling range 
and 400A system sizes are attained. The resulting structures are neither 
crystalline nor quasiperiodic but resemble a glass. Long-range correlations 
indicate a linear peak width vs. / G 1 / relationship with a slope that is within 
a factor of two of experimental values. 

1. INTRODUCTION 

Although it has already been three years since the publication of 
Shechtman's discovery of the icosahedral phase,1 the question of its structure 
- when asked in even the most basic terms - remains unanswered.2 A 
number of experiments have ruled out proposals based on twinning3 so that 
currently two principal contenders remain: (1) the "quasiperiodic" model4 

and (2) the "glass" mode1.5- 7 Model (1) maintains that the atomic density is 
a quasiperiodic function consistent with icosahedral symmetry. An 
icosahedral rotation applied at any point of the structure, when combined 
with a suitable translation, will bring the whole structure into near incidence 
with itself. In contrast, model (2) does not invoke quasiperiodicity but merely 
assumes that atomic clusters with icosahedral symmetry are linked together 
in a way which propagates a fixed set of icosahedral axes throughout the 
structure. Although there exist crystalline structures that share this 
property,8-10 model (2) requires further that the set of linkages along the 
various icosahedral axes occur with equal frequency. The term "glass"6 
derives from the use of randomness to achieve this end. 

Superficially models (1) and (2) appear to have very little in common. 
Previously, however, it has been emphasized that from a geometrical point of 
view these models represent just the extremes of a continuous spectrum.ll 
The first step is to consider comparable abstractions of the two models, say, 
the set of points formed in (1) by the vertices of a quasiperiodic 
rhombohedral tiling and in (2) by the cluster centers. In both cases the set of 
points is simply described as the projection of a subset of points forming a six 
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dimensional (6D) lattice. Furthermore, in both cases the subset of 6D lattice 
points is sufficiently connected (in the sense of near-neighbor bonds) to form 
a 3D hypersurface. Finally, the orientation of the embedded 3D hypersurface 
on a macroscopic scale is the same and is uniquely determined by icosahedral 
symmetry. What sets the two models apart, at least geometrically, is the 
smoothness property of the 3D hypersurface. At one extreme is the 
quasiperiodic model which assumes the hypersurface is maximally smooth, 
resembling the perfect order of "atomically smooth" crystal facets. The glass 
model, at the other extreme, uses random processes to generate very rough 
hypersurfaces. While the details of the diffraction properties of either 
extreme do not agree with experiment, it is likely that an intermediate level 
of roughness does. In spite of the existence of a geometrical reconciliation of 
models (1) and (2), the debate has remained as lively as ever. This stems 
almost certainly from the differing physical underpinnings of the two models. 

The principal physical difference between the "quasiperiodic" (1) and 
"glass" (2) models is the relative importance of energy and entropy. Model 
(1) asserts that the ground state (at zero temperature) is quasiperiodic. That 
this is possible is demonstrated by the existence of "matching rules" for 
Penrose tiles.12 The nature of these rules is quite complex so that the 
qUl::stion of their implementation by realistic interactions among atoms has 
not even been addressed. A naive translation of matching rules into physical 
terms suggests a level of specificity in the local chemical order observed only 
in organic or strongly covalent materials. The known icosahedral phases 
occur among the intermetallic compounds which do not share this property. 
Model (2) on the other hand, was inspired to some extent by the actual 
atomic arrangements in crystalline intermetallic compounds with known 
structures.8- 10 There it was observed that icosahedral symmetry is already 
exhibited by the structure of certain atomic clusters. It is then only 
necessary to arrange an alternative linkage of these clusters with the property 
(in the context of the geometrical discussion above) that the 3D hypersurface 
formed by the cluster centers has an icosahedral orientation with respect to 
the 6D lattice. To produce this result, model (2) relies heavily on entropy 
rather than energy. This may be understood in two regimes. First, we may 
imagine a growing aggregate of linked icosahedral clusters. If clusters are 
added at the surface such that linkages along the various icosahedral axes are 
used with equal frequency, then the icosahedral orientation of the 
hypersurface follows (although it may be very rough). Alternatively, we may 
imagine a completely formed hypersurface of linked clusters that fluctuates 
thermally in 6D space. By this we mean that linkages between clusters are 
broken and reformed differently, all the time maintaining the connectivity of 
a 3D hypersurface. The directions along which this hypersurface is 
fluctuating in 6D are orthogonal to the three (physical) dimensions into which 
it is finally projected. Long-wavelength fluctuations resemble the capillary 
waves present at the crystalline-solid/vapor interface above the roughening 
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temperature. Due to their similarity with the modes of modulated crystals, 
they are also referred to as "phasons". 2 The importance of these 
fluctuations, in the context of model (2), is that they provide an entropic 
selection mechanism for the orientation of the hypersurface. Whereas energy 
minimization applied to the set of all possible cluster linkages might result in 
a periodic crystalline structure (corresponding to a hypersurface with non­
icosahedral orientation), it is possible that at higher temperatures the free 
energy minimum occurs at the icosahedral orientation. According to either 
view of model (2), i.e. as random aggregation or as stabilization by thermal 
"phason" fluctuations, the icosahedral phase is understood as a metastable 
phase at low temperatures. Thus model (2) predicts a residual 
configurational entropy that is absent in model (1). 

The aim of the present paper is to present the results of computer 
simulations of the glass model. In Section 2 the structure and linkage of 
icosahedral atomic clusters is briefly described. In Section 3 a growth model 
involving clusters is defined and computer simulation results are compared 
with experiment. The successes of the glass model are summarized in Section 
4. 

2. STRUCTURE AND LINKAGE OF ICOSAHEDRAL ATOMIC 
CLUSTERS 

A striking pattern in the structure of the large-unit-cell intermetallic 
phase a(AlMnSi) is the rather large atomic icosahedron shown in Figure 
Ia.8- 9 Similarly, the Frank-Kasper or tetrahedrally-close-packed phases 
R(AlCuLi)13 and (Al,Zn)49Mg3210 contain in their structure the equally large 
but different icosahedron shown in Figure lb. Although many structural 
features of aluminum transition-metal compounds and Frank-Kasper 
compounds are different, such as the' degree of close packing, the above 
instances share some remarkable similarities: (1) both contain large 
icosahedral clusters; (2) the clusters are centered on the vertices of a bcc 
lattice and (3) are similarly oriented. But perhaps the most significant 
similarity is the fact that both form icosahedral phases under conditions of 
rapid cooling or slightly modified composition. 

One way to describe the orientations of the clusters is to relate the 
directions of their symmetry axes with the symmetry axes of the cubic unit 
cell. Thus three of the 15 icosahedral 2-fold axes are aligned with <001 > 
while four of the 10 3-fold axes are aligned with < 111 >. A different 
approach which immediately suggests the possibility of alternative structures 
avoids all reference to the cubic unit cell and instead expresses cluster-cluster 
relationships entirely in terms of a set of icosahedral basis vectors, e~, ... , e~, 
intrinsic to each cluster. These are vectors of length aR that point from the 
center to the six vertices on one hemisphere of the icosahedron. In the actual 
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Figure 1: 
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Icosahedral atomic clusters taken from the structures of (a) 
a(AlMnSi) and (b) R(AlCuLi). Only the second shell of atoms is 
shown. Each cluster also contains an internal icosahedron of (a) 
Al/Si and (b) Al/Cu. In addition, (b) contains a central Al/Cu 
atom whereas the center of (a) is vacant. 

clusters they correspond to the directions of the Mn atoms (Fig. Ia) and 
AI/Cu atoms (Fig. Ib). The relationships of adjacent clusters are shown in 
Figure 2. Sums of icosahedral basis vectors originating at the center of one 
cluster arrive at the center of a neighboring cluster. Figure 2a shows how the 
cubic lattice constant a is related to the length of a sum of four basis vectors: 

a== le~ + eU + e~ + e~ I == (4+8/v's)~aR . (1) 

Similarly, the sum of three basis vectors and the cube corner-to-body-center 
distance are also simply related (see Fig. 2b) since 

le~ + eM + eU I == (3 + 6/v's)~aR == ¥.av3a . 

The two cluster-cluster relationships, along 2-fold axes (Fig. 2a) and 3-fold 
axes (Fig. 2b) will be referred to as 2-fold and 3-fold "linkages". The 
possibility of a high multiplicity of alternate structures (formed by clusters) is 
a consequence of the large number of possible linkages per cluster, only a few 
of which are used in the crystalline bcc compounds. The set of points 
generated by arbitrary and repeated application of these linkages to a given 
point automatically form a subset of projected 6D lattice points.2 Physical 
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(0 ) ( b) 

Linkage of icosahedral atomic clusters in the bcc structure 
expressed in terms of icosahedral basis vectors. (a) 2-fold linkage 
(b) 3-fold linkage. 

considerations greatly constrain this subset. For example, combinations of 
linkages should not be chosen which result in overlapping clusters. Since 
these linkages are definitely not chemical bonds, the physical or "mechanical" 
integrity of a structure also requires that several linkages are impingent on 
anyone cluster. Finally, the necessary presence of atoms filling the space 
between clusters is not an insurmountable problem. It is always possible to 
return to a description with space filling tiles whose vertices correspond to 
cluster centers.14 Due to the physical considerations above, the number of 
kinds of tiles is small (perhaps four suffice) and their" decoration" with atoms 
is largely determined by the structure of the clusters themselves. 

There are local and global experimental probes that give strong evidence 
that the structural modification described above is a good model of 
icosahedral phase. EXAFS measurements show that the local atomic 
environments in the crystalline phases a(AlMnSi)15 and R(AlCuLi)16 are very 
similar to their counter-parts in corresponding icosahedral phases - and that 
this similarity does not extend to other, simpler crystalline phases without 
clusters. Diffraction, on the other hand, can in principle discover the spatial 
ordering of clusters if indeed this description applies to icosahedral phase. 
The scale of the 6D hypercubic lattice can be obtained by indexing the 
icosahedral phase diffraction pattern. When this scale is expressed in terms 
of the length of icosahedral basis vectors, one finds aR==4.60A17 and 
aR==5.05A18 for AlMnSi and AlCuLi icosa~edral phases, re!,pectively. These 
values should be compared with aR==4.61A9 and aR==5.05A18 obtained from 
equation (1) and the known cubic lattice constants. 
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3. COMPUTER SIMULATIONS OF THE GROWTH OF 
ICOSAHEDRAL PHASE 

3.1 Definition of the Model 

The growth algorithm described below is similar to the one applied 
previously to the study of decagon packings in the plane.ll There are some 
important differences, however. In particular, the number of parameters in 
the model has been reduced to three: the interfacial thermal gradient h, the 
growth velocity v, and a ratio of cohesive energies f2/f3. As before, the two 
concerns which motivate the form of the model are (I) the desire ability of 
generating a highly connected, homogeneous network of linked clusters and 
(2) the inclusion of thermal fluctuations in the formation process. 

The growth geometry is a cone with the nucleus, a single cluster, placed 
at its apex. Using cylindrical coordinates (z,p,t/J), the cone interior is given by 
z>2p. Growth proceeds in the z-.direction and is implemented by a linear 
temperature field T{z)=h{z-zo) where the zero temperature isotherm at Zo 
moves at a constant velocity zo=v. In the region z<zo there are No clusters 
which are "frozen" while in the region of active growth, z>zo, there are NT 
clusters. The number NT fluctuates and grows linearly with the area of the 
circular interface at Z= Zo. 

In order to promote the formation of highly connected structures, 
negative cohesive energies are assigned to the cluster-cluster linkages. Since 
there are two kinds of linkages, along 2-fold and 3-fold axes, the ratio of the 
two cohesive energies, f2/f3' constitute a third parameter in the model. In 
general, the assignment of cohesive energies is somewhat arbitrary since it is 
only required to parametrize the total energy of a small number of local 
cluster environments. Before actual total energy calculations are performed 
(a formidable task considering the number of atoms) it is impossible to know 
how well a parametrization by f2 and f3 works and what the true values of 
these cohesive energies are. The approach adopted here was to let f2 and f3 
define the scale of energy (relative to which h is measured) according to 
f2+f3=-2. Then the ratio f2/f3 was varied until well-connected cluster 
networks already appeared at relatively large values of the growth velocity v. 
The optimal value obtained in this way was f2/f3=2. This value was used in 
all subsequent simulations. 

The elementary growth and thermalization processes involve two 
operations. (I) A new cluster may be linked to an already existing cluster in 
the region z>zo if (i) it is linked to at least one other cluster, and (ii) if its 
distance from clusters to which it is not linked is greater than the length of 
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the 2-fold linkage. (2) A cluster in the region z>zo is removed 
probabilistically according to the Metropolis criterion: a random number r, 
uniform in (0, 1), is chosen and if r<exp(-E/T) the cluster is removed. In 
the above expression, T- T(z) is the local temperature at the cluster center 
and E-: n2 + : n3 is the (positive) change in cohesive energy upon 
breaking n2 2-fold linkages and n3 3-fold linkages. An elementary process is 
defined to be the application of both (1) and (2) to a single cluster chosen at 
random from the NT clusters in the region z- zoo 

Mter each elementary process, the isotherms are advanced according to 
zo-zo+v/NT. The unit of time T, implicit in this definition of v is the time 
required for one elementary process. A rough estimate of T goes as follows. 
In order for a cluster to "dissolve" and perhaps reappear somewhere else 
nearby, it is necessary for the 12 atoms at the icosahedral vertices to diffuse a 
distance on the order of aR. This estimate uses the minimum number of 
atoms required to form an icosahedral object since the likelihood of short 
range chemical order suggests that not all the atoms are diffusing 
independently. Alternatively, the Mn atoms in Fig. la and the AI/Cu atoms 
in Fig. Ib constitute a kind of backbone for their respective clusters. Thus 
T '" 12a~/D where D is the liquid-phasll. diffusion constant. Using the 
typical value D",10-4 cm2 /sec, and aR-SA, we have T'" 3XlO-lOsec. It is 
useful to express experimental growth velocities19 in terms of the 
characteristic velocity vo- aR/T '" 200 cm/sec. The highest velocities, 
attained by splat cooling, are typically v",(0.02)vo. For chill-cast samples of 
AlCuLi icosahedral phase, v",(SXlO- 5)vo. Finally, for controlled growth of 
large AlCuLi single quasicrystals using the Bridgman technique, v can be as 
small as (SXlO- 7 )vo. For comparison, velocities on the order of (O.OOI)vo 
appear to be a practical lower limit for computer simulations such as 
described here. 

The remaining parameter of the model, the interfacial thermal gradient h, 
is much less accessible to experimental measurement. The term "interfacial" 
is included to express the fact that h does not measure the externally imposed 
temperature gradient, say in a Bridgman apparatus. Rather, h is interpreted 
as a variable which couples directly to the diffusivity or thickness of the 
interface. For the situation we are mostly interested in, namely the 
formation of well-connected cluster networks under even high growth 
velocities, the interface should be thick (small h). A thick interface allows 
sufficient time for a well-connected network to develop even when the zero 
temperature isotherm is rapidly advancing. Although the interface becomes 
quite thick as h vanishes, it is also truly diffuse in the sense that the high 
connectivity develops gradually as a function of z. One measure of this is the 
average coordination c (by linkages to other clusters) of a cluster as a 
function of its distance beyond the zero temperature isotherm, Z-Zo. With 
2-fold and 3-fold linkages treated equally, the variation of c for h-O.S and 
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Figure 3: 

121:::-------- v = 0 .001 
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Z-Zo 

Total coordination per cluster, c, as a function of the distance, 
z- zo, beyond the zero temperature isotherm. The unit of 
length is aR' 

the two velocities v /vo=O.01, 0.001 is shown in Figure 3. For both velocities 
the decay of c from its large value at z-zO-2aR to c-2 occurs gradually 
over a distance 8ar or roughly 40A. An interfacial width of this magnitude, 
although not ruled out by experiment, is at variance with the results of 
microscopic growth simulations of one-component, Lennard-Jones systems.20 

It should be remarked, however, that the intermetallic phases being 
considered here are considerably more complex. Since representative Frank­
Kasper crystal structures have unit cell sizes nearly one order of magnitude 
larger than simple monatomic systems, it is quite conceivable that interfacial 
widths are also larger by about the same factor. 

Apart from the observation that well-connected cluster networks are 
easily formed when h is small, there is an additional reason for believing that 
a small h describes the correct physics. A characteristic property of 
icosahedral phases is their ability to nucleate and grow at rates much faster 
than crystalline phases of similar composition. This property has been 
ascribed to an anomalously low value of the solid/liquid surface tension.21 A 
possible microscopic explanation of the low surface tension is simply that the 
structure of the interface is diffuse, so that thermal fluctuations may easily 
transform significant amounts of material from one phase to the other. On 
the other hand, the interface should not be too diffuse since then it is 
unlikely that the effects of anisotropy would manifest themselves in dendritic 
growth22 and faceting.23•24 The value h-0.5 which gives an interfacial width 
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of roughly 3-4 cluster diameters is probably a good compromise. No attempt 
was made to measure the effect of anisotropy; in all simulations the 
icosahedral 5-fold axis was aligned with the growth direction. 

Two types of measurement, local and global, were performed on each 
conical sample generated by the growth algorithm. The local measurements 
include the density of clusters and the coordination number distribution of 
2-fold and 3-fold linkages. A convenient dimensionless expression for the 
density is the equivalent packing fraction of spheres having diameters equal 
to the length of the 3-fold linkage. 

Global measurements investigate the nature of the embedding of the 
abstract 3D hypersurface in 6D space. The correlation function of the 
hypersurface relates directly to diffraction line shapes and shifts. For each 
cluster center coordinate x", the growth algorithm also generates the 
corresponding 3D coordinate xl; the pair (x",r) form a 6D lattice point in 
the usual way.2 A complete description of diffraction properties is provided 
by the distribution of 

where xl(O) and xl(R) are xl coordinates of two clusters separated in 
physical space by R. For technical reasons relating to the form of the 
computer code, only the first and second moments of Llxl(R), effectively 
summed over R, were obtained. Specifically, the procedure used was to 
assume the ansatz 

3 
x~ = 6x~ + EA~x~ + her 

fJ-l 

where A~ and her are constants and 6x~ varies from cluster to cluster. A~ 
and her are then varied so that the sum 

(Llxl)2 = -l-E 16rl 2 
No 

is minimized (No is the total number of clusters). The matrix A~ and vector 
her then have the interpretation of giving respectively the orientation and 
position of the best (least squares) approximating hyperplane. Nonzero 
values of A~ correspond to departures from icosahedral symmetry. The 
variance, Llxl, measures the roughness of the hypersurface. Values of the 
physically relevant quantities A~ and LlXl were tabulated at four stages of 
growth: zO/aR= 20, 40, 60, 80 (zo .... O corresponds to the apex of the cone 
geometry). Consequently, the scaling of Llxl(R) with I R I can be 
investigated by comparing these measurements. 
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(a) n2l n3 3 4 5 6 7 8 

3 0 0 0 0 1 0 

4 0 1 1 3 3 0 

5 1 2 5 10 12 0 

6 1 3 9 20 12 0 

7 0 2 7 5 0 0 

( b) n2 \ n3 3 4 5 6 7 8 

3 0 0 0 0 0 0 

4 0 0 0 1 1 0 

5 0 1 2 6 14 0 

6 0 1 5 23 27 1 

7 0 1 6 9 0 0 

Table 1: Distribution of cluster coordinations, (n2,n3), by 2-fold and 3-fold 
linkages, (a) v=O.Ol (b) v=O.OOl. All values are rounded to the 
nearest percent. 

3.2 Results 

The results described below were obtained from measurements of 10 
samples at each of the two growth velocities, v=O.(X)1 and v=O.OOl (the unit 
of velocity, vo, is. understood). Each sample had a conical geometry with 
height 80aR ...... 400A and contained roughly 14000 clusters. Approximately 25 
hours of cpu time was required to grow one sample at the low velocity. 

An examination of the distribution of coordinations (n2,n3) of clusters by 
n2 2-fold and n3 3-fold linkages shows that the structures generated by our 
growth process are indeed highly connected. The frequencies of 
coordinations, rounded to the nearest percent, are given in Tables la 
(v=O.Ol) and Ib (v=O.OOI). The most frequently occurring coordination is 
(n2,n3)=(6,6) for v=O.OI and (6,7) for v=O.OOl. The predominant effect of 
decreasing the growth velocity is an increase in the amount of 3-fold 
coordination. This is reflected in the values of the average coordinations: 

(n2,n3) = (5.62,5.82), v=O.Ol 

(n2,n3) = (5.86,6.25), v=O.OOl 
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Cross-section of a cluster network grown at low velocity, 
v=O.OOl. A tear has formed in the lower right hand corner. 

A comparison of the packing fractions /=0.590 for v=O.01 and /=0.615 
for v=O.OOl with the packing fraction of "random loose packings" ,25 

/RLP=0.60 j-0.02, suggests that our cluster packings are close to being 
mechanically stable even when only the shorter 3-fold linkages are 
considered. A "random loose packing" describes the situation of ball bearings 
dumped into a container which is not shaken. Random close packings, 
produced by shaking the container, have fRcp"'" 0.64. The maximum 
packing fraction that utilizes only the icosahedral 3-fold contacts is the value 
attained by the bcc lattice packing, /bcc ~ 0.68. Using a construction 
involving a complicated "acceptance domain" for the xl coordinates, Henley26 

has shown how in principle a deterministic, quasiperiodic cluster packing may 
be generated. Unfortunately, his packing fraction / ~ .5535 is rather low. 
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Although the average and local connectedness of our cluster packings is 
quite good, it is also necessary to check the degree of global connectedness 
since large scale properties are crucially dependent on this.u In particular, 
the average coordination is not much affected if the structure contains a low 
density of internal surfaces across which no linkages are present. In the 6D 
geometry, such defects correspond to "tears"ll in the 3D hypersurface: 
opposite sides of the tear, although near in physical space, are widely 
separated in the x.l coordinate. To check for tears, circular slices of the 
packing were periodically examined during the simulation. An example of 
the final slice at Zo= 80aR is shown in Figure 4. The thickness of the slice is 
(1+3/Vs)aR; vertices and edges correspond to clusters and linkages, 

Figure 5: Same as Fig. 4 but with v=O.Ol. Two short tears have formed 
at the surface. 
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respectively. Of the 10 samples generated at the low velocity (v-O.OOl), two 
developed long tears such as the one in Fig. 4. Of the remaining eight 
samples, five did not develop tears at all and three had very short tears that 
may have &rown in length had the simulation been continued. In all cases 
the tears originated at the surface of the cone. Essentially the same statistics 
apply to the structures grown at the higher velocity (v=O.Ol), although three 
samples developed long tears. The final slice of a rapidly grown sample 
containing a short tear is shown in Figure 5. Occasionally, a short tear 
present in an earlier slice was found to have mended in a later slice. The 
observation that tears do not originate spontaneously in the bulk of the 
sample suggests that their density is controlled by boundary effects. 

The departure from planarity of the hypersurface, Axl, for various system 
sizes L=zO/aR is shown in Figure 6. The apparent linear rise in Axl with L, 
although unexpected, is a welcome result. An equilibrium model of 
fluctuating hypersurfaces2 predicts that the second moment of the Ar(R) 
distribution is finite in the limit 1 R 1-00. Since this would imply that 
Axl(L) approaches a constant for large L, the data seems to rule out the 
equilibrium model. The mechanism responsible for the increase in Axl is not 
understood at present. 
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Figure 6: Root-mean-square fluctuation of the hypersurface, Axl, as a 

function of system size, L. 
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A linear increase in ~x.i with system size suggests that fluctuations in the 
hypersurface's average orientation, A, are very important. A reliable estimate 
of the sample average, <A>, required as many as 10 samples and showed 
that, except for <Ag >, all matrix elements are consistent with zero. The 
index 3 denotes the growth direction so that the small values 

<Ag >=0.011 :±-0.001, 11=0.01 

<Ag >=0.010 :±-0.002, 11=0.001 

represent a growth induced anisotropy. Although a nonzero average for A 
does shift the positions of Bragg peaks (GII,G.i) by GII-GII+oG where 
c5G=A trG.i,27,28 the fluctuating part of A is just as important. The 
magnitude of the shift produced by fluctuations is 

< loG 12 > = (G.i )tr M G.i 

where 

M= <Atr A> - <Atr><A> . 

Averaging over 10 samples showed that within statistical errors the matrix M 
was a multiple of the identity so that 

where 

c5Grms=- [< loG 12>1~::::::~A I G.il (2) 

1 
(~A)2 = - TrM 3 . 

Values of ~A at the four system sizes and two growth velocities are given in 
Figure 7. This data conveys three interesting results: (1) ~A is considerably 
larger than <Ag >; (2) the decay of ~A with L is rather slow; (3) a lower 
growth velocity increases ~A. The last two remarks are consistent with the 
behavior of ~x.i. Unfortunately, their explication is likewise a subject of 
speculation. 

If equation (2) is to serve as an explanation of peak broadening, it is 
necessary to establish the length scale L for which ~A is to be evaluated. 
Two effects that restrict the translational correlation length are (1) tears and 
(2) strain in the relaxation of the rigid linked structure. Either of these 
effects, or a combination,29 will decompose a macroscopic sample into regions 
which contribute incoherently to the diffracted intensity. This is the sense in 
which the average in equation (2) is to be understood. Since tearing appears 
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to be associated with the boundary in these simulations, one expects that a 
correlation length determined by tears is close to the length scale of 
inhomogeneities during growth. Thus for melt-spun samples having 
morphological features as small as -400A. in size,30 a reasonable guess is 
L-80. Slowly cooled AlCuLi samples exhibit extended defects separated by 
roughly twice this length.3! Consequently, the tearing phenomenon alone 
suggests that L ~ 160. 

Comparison with experimental peak widths is further complicated by 
considerable asymmetry in the peak shapes. It has been argued that 
asymmetry is the result of a superposition of peaks from regions having 
different average phason amplitude <A>.27 To the extent that these effects 
are small, experiments have extracted the half-width-at-half-maximum 
(HWHM) of diffraction peaks, oGHWHM, using fits to symmetric gaussians. 
Horn et al.32 were the first to notice the approximate constancy of 
oGHWHM/ I G11. Their data from furnace-annealed AlMnSi films gives a 
value AAexp =:.: 0.044.33 Probably the strongest evidence for the linear 
oGHWHM vs. I G11 behavior is the data of Heiney et al. 34 obtained from 
single dendrites of chill-cast AlCuLi. Their two samples gave different slopes 
corresponding to AA exp =:.:0.067, 0.051. These values are about a factor of 
two larger than the simulation results at L-80. Although the agreement is 
improved if the effective length scale is smaller, say L-40, a change in the 
experimentally inaccessible parameters hand f2/f3 may also produce the 
desired result. Chen et al.!9 also report measurements of AlCuLi peak 
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widths. Chill-cast and Bridgman grown samples appear to give essentially 
the same value, ~Aexp::::::0.059 in agreement with Heiney et al. Interestingly, 
however, their melt-spun samples appear to give a smaller value, 
~Aexp::::::0.022. A change in this direction as a function of growth velucity is 
consistent with the simulation results. Budai et al.28 have been able to 
extract <A> for AlMn icosahedral phase formed by implanting Mn in an Al 
matrix. Although the symmetry of the anisotropy is different, the magnitude 
of the largest matrix element, 0.0065, is comparable with the simulation 
result <A~ >::::::0.01. Moreover, the measurements of Budai et al. also show 
that if the peak widths are interpreted as random shifts, then their 
magnitude, i.e. ~A, is significantly larger than the average shift, <A>. 

4. CONCLUSIONS 

There are two independent arguments that form the basis of all hopes 
that a glassy structure of linked atomic clusters is the correct model of 
icosahedral phase: 

(1) Complementary evidence from EXAFS and diffraction shows that the 
icosahedral phase in both the aluminum transition-metal and Frank-Kasper 
systems is a subtle modification of particular crystalline structures. A 
natural choice for what such a modification might involve is provided by the 
only structural element common to both systems: icosahedral atomic 
clusters. 

(2) Randomness is intrinsic to the glass model and as such can potentially 
account for the large peak widths and metastability of icosahedral phases in a 
natural way. 

In the present study, computer simulations of a growth model based on 
(1) were used to make the expectations of (2) more explicit. These 
simulations are more realistic than previous work5,6 in that the construction 
of the linked cluster network involves a fair amount of annealing. A diffuse 
growth interface provided the means of producing a highly connected 
network at even high growth velocities. Essentially the same mechanism was 
invoked by Bendersky and Ridder21 to explain the high (homogeneous) 
nucleation rate of icosahedral phase. The principal result of the simulations 
was the observation of large phason fluctuations that persisted for large 
system sizes. The random excitation of long-wavelength phasons produces a 
peak broadening linear in I G11 as proposed phenomenologically by Lubensky 
et a1.27 The simulation gives a slope for this relationship that is within a 
factor of two of experimental values. The growth induced, average phason 
amplitude was also measured. Again, there is rough agreement with the peak 
shift data of Budai et a1.28 
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In spite of the simplicity of the model, the occurrence of long-wavelength 
phason fluctuations that seem to evade self-averaging is mysterious and 
suggestive of glassy behavior. The elucidation of this phenomenon in the 
context of the present growth model (or a simpler one) would be most 
welcome. 

Correspondence and discussions with J. Cahn, H. S. Chen, C. Henley, and 
F. Spaepen are gratefully acknowledged. 
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ON THE ELECTRONIC STRUCTURE OF CALAVERITE 
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The Netherlands 

ABSTRACT. The problem of the electronic structure of calaverite is 
exposed and the current state of research is pointed out. 

The gold mineral calaverite (Au1_~gxTe2) attracted attention 
of mineralogists and crystallographers already from at least 1878 [1]. 
In a paper of G. van Tendeloo e.a. [2] it was finally understood to 
be an incommensurate modulated structure. Very accurate X-ray diffrac­
tion data were obtained in the summer of 1986 by W. Schutte e.a. [3]. 
From these data, with the help of the superspace refinement program 
REMOS by Yamamoto [4], the crystal structure could be identified: 
The basisstructure has spacegroup C2/m (figure 1). The material is 
displacively modulated with wave vector q = -0.4076~* + 0.4479t*, a 
direction of polarisation along the b-axis and an amplitude of 0.36 R. 
The displacements are roughly on the Te-sites only. The superspace 
group is C2/m (-1/2,0,1/2) (18). 

An interesting feature is the fact that the refinement relia­
bility factor could be improved significantly by allowing for 
silver substitution. The result is a substitution modulation with 
the same q-vector as for the displacive modulation. This can be 
explained with simple chemical arguments [5] and may be verified 
by an appropriate band structure calculation and suitable experiments. 
The driving force for the modulation is Te-Te bonding. (Compare with 
[S2]2- and [Se2]2- pair formation in 3D transition metal pyrites [6].) 
The Au-atoms are forced into a mixed valence situation (Au+,Au3+). 

The crystal structure itself is consistent with this picture. 
The Au-Te distances show linear (Au+) and square (Au3+) coordination 
of gold atoms (figure 2). The silver substitution is found to be 
maximal on Au+-sites and vanishes at Au3+-sites. The substitution 
stabilises and pins the modulation wave. 

A verification through simulation with a band structure 
calculation is in progress. This band structure calculation should be 
fully relativistic since preliminary crystal field calculations showed 
that spin-orbit coupling is essential for the effect of the driving 
mechanism mentioned above. For this purpose a version of the ASW 
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formalism [6] based on the Dirac equation has been implemented. The 
results for a fourfold supercell approximation will be published in 
the near future. 

Figure 1. The basisstructure of calaverite. The large spheres 
represent Te-, the small spheres Au-atoms. The a- and c-axis are in 
the plane of the paper along the horizontal and vertical direction 
respectively. The b-axis is perpendicular to the paper. Note the 
Te-chains along the b-axis (bold connections). The Au-atoms are on 
the edges of the nearly orthorombic conventional cell (y = 90.03°) 
and on the face centered positions in the ab-planes. In the real 
structure the Te-Te distances in each chain are modulated. 
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3.25 

3.00 

2.75 

Figure 2. The distances (in R) of a Au-atom to its 6 neighbouring 
Te-atoms as a function of the phase of the modulation wave. 
Region I shows linear (Au+) and region II square (Au3+) coordination. 
The silver substitution modulation has a vanishing amplitude in 
region II and is maximal in region I. 

REFERENCES 

[1] Schrauf, Zeit. Krist. £ (1878), 211. 
[2] Tendeloo, G.v. et al.,-J. SoZ. Stat. Chern. 50 (1983), 321. 
[3] Schutte, W., Boer, J. de, to be published i~=Acta CPyst. B. 
[4] Yamamoto, A., Acta Cryst. ~~ (1982), 87 (REMOS version 82.0). 
[5] Groot, R. de, private communIcation. 
[6] Folkerts, W. et al., J. Phys. C fQ (1987), 4135. 
[7] Williams, A. et al., Phys. Rev. I2 (1979), 6094. 



Chaotic Behavior of Classical Hamiltonian Systems 
H.-D. Meyer 
Theoretische Chemie, Physikalisch-Chemisches Institut 
Universitat Heidelberg 
1m Neuenheimer Feld 253 
D-{)900 Heidelberg, West-Germany 

ABSTRACT. The characterization of regular and irregular motion in classical 
Hamiltonian systems is briefly reviewed. It is shown that the investigation of the 
Liapunov exponents yields the most detailed information on the irregular (i.e. 
chaotic) behavior. Comments on the corresponding quantalsystems are provided. 

1. INTRODUCTION 

In this article I want to review on what is known of the chaotic behavior in 
classical systems, or - more precisely - what distinguishes chaotic from regular 
motion. After that I shall present some numerical results to illustrate the concepts. 

We shall see that the notion chaos is well defined in classical mechanics. In 
the field of quantum mechanics, on the other hand, there are indications of 
irre~lar behavior [1] but a precise definition of the notion quantum chaos is 
lackmg. We feel that it is helpful to precisely know what is meant by "chaos" in 
classical systems if one wants to investigate irregular behavior in quantal systems. 

The paper is restricted to the discussion of classical systems but from time 
to time I will comment on the corresponding quanta! ones. The paper is limited to 
the study of Hamiltonian systems which are conservative, obey time-reversibility 
and for which the motion can take place only in a bounded region of phase-space. 
The consideration of time-independent Hamiltonians only is not a restriction. Any 
timHependent Hamiltonian H can be replaced by a time-independent one, HI, by 
just adding one artificial degree of freedom, i.e. 

H(xl' ... , XI' PI' ... , PN,t) -+ 

HI(xl , ... , x1Hl' PI' ... , PN+l) 

= H(xl'''''xN, PI'''' PN' xN+l) + Pw+l . (1.1) 

To simplify the discussion we shall further assume that the Hamiltonian is analytic 
in all coordinates and momenta. This excludes the popular billiard systems. 

One may define "irregular" or "chaotic" as not bein~ regular. Hence I shall 
start with discussing regular systems. The third section 18 tlien devoted to the 
discussion of the celebrated KAM-theorem. After that we introduce the stability 
matrix and the Liapunov exponents and finally s,how some numerical results on the 
determination of the irregular part of the phase-space of a model system. 
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2. REGULAR SYSTEMS 

The well known Hamilton equations of motion read 

Xi = iJH/Bpi 
Pi = -iJH/ axi i = 1, ... , N (2.1) 

where we have assumed that the system has N degrees of freedom. Introducing the 
phase-space point 1 

(2.2) 

where T denotes the transpose and introducing the symplectic matrix J 

(2.3) 

where 1 and 0 denote the n x n unit and zero matrices, respectively, one may write 
the equations of motion very compactly as 

(2.4) 

Let G( 1) be a single valued analytic function. One calls G a constant of motion if 
G( 1) remains constant along each trajectory. G is a constant of motion if and only 
if Its Poisson bracket with the Hamiltonian vanishes identically, i.e. 

0= {G, H} 

N 
~ [00 iJH 00 iJH] = L. Oxi Opi - Opi Ox'i . 1 1 1 1 J 

J= 

[oo]T iJH 
= 0:; J 0:; (2.5) 

where we have given the definition of the Poisson bracket for the convenience of 
the reader. The Poisson bracket is a canonical invariant, i.e. its value is 
independent of the particular set of generalized coordinates and momenta used to 
evaluate it. We now can define integrable systems. 
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Definition 

A Hamiltonian is called to be inte,rable if there exist H single 
valued analytic functions, Gt , ... , GN , which are 

i) functional independent, 

independent vectors a.e. 

. a;, 
1.e. 711' 

ii) constants of motion, Le. {Gn , H} = 0 

iii) in involution, i.e. {Gn , Gm} = 0 

a; ... , 7f:f are linearly 

The Hamiltonian itself is usually included in the set of constants of motion {Gn}. 
The requirement ii) is hence usually included in iii). In order to interpret tlie 
condition iii) let us assume that the system is invariant under rotations in physical 
space. The angular momenta Lx, Ly and Lz are then constants of motion. They are, 
however, not in involution because 

(2.6) 

and similar for the other Poisson brackets. The rotational symmetry gives raise to 
only two constants of motion which are in involution. These two constants are e.g. 
L2 and Lz. 

The above Definition leads to the following Theorem. 

Theorem (Liouville) 

If a Hamiltonian system is integrable then the equations of motion 
can be solved by quadratures. 

We shall demonstrate this property for a system of one degree of freedom. (Systems 
of one degree of freedom are always integrable since the total energy, H, is always a 
constant of motion). Assume that H is of the standard form 

H(x,p) = p2/2m + Vex). (2.7) 

Invoking H(x,p) = E and x = p/m one arrives at * = ../2 ( E-V ( x ) ) 7 m (2.8) 

or 

t(x) = r [2(E-V(x'»/m]-1/2 dx' 
Xo 

(2.9) 

which yields the desired trajectory x(t) by inverting t(x). Integrable Hamiltonian 
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systems are the prototypes of regular systems. 
In classical mechanics one is, of course, not restricted to rerform the 

calculations in cartesian coordinates. One may choose any conical set 0 generalized 
coordinates and momenta. Of particular importance are the so called action-a.n,le 
variablEls. This set of coordinates is characterized by the fact that the generalized 
momenta, the actions Ij, are constants of motion. Hence a Hamiltonian in 
action-angle variables is integrable. The other direction also holds. 

Theorem (Liouville-Arnold) 

If a system is integrable, then there exists a canonical 
transformation to action angle variables 

(xl' ... , Xli' Pl' .... , Pli) ~ (<pl ' ... , <Pli , I l , ... , I li ) 

such that the Hamiltonian, expressed in the new variables, depends 
only on the actions 

H(x, p) ~ H(I). 

The canonical transformation is periodic in the angles </>j with a 
periodicity of 2-x, i.e. 

')( tP, I) = ')( tP + 2d, I) (2.10) 

Assume that the Hamiltonian has been transformed to action-angle variables. The 
time evolution is then given by 

Ij = -iJHlo</>j = 0 

?>i = iJH I iII p= Wj 

(2.11) 

(2.12) 

The frequencies ~ = Wj(I) are constant along the trajectorYi the integration of the 
equations of motion becomes trivial 

Ij(t) = Ij(O) 

</>jet) = </>j(O) + Wjt . 

(2.13) 

(2.14) 

Hence we have solved the time~volution once for all! At this point I would like to 
make a comment on quantum mechanics. Transforming the classical Hamiltonian 
to action-angle variables correspond to diagonalizing the quantal Hamiltonian. If 
one has diagonalized the quantal Hamiltonian then the time evolution of the 
wavefunction is given by 

00 

tJ.( t) = I Gj f/Jj exp (-iEjt Itt) 
j=l 

(2.15) 
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where 

~ = (tfr.i It/{O» (2.16) 

and 

(2.17) 

Similar to the classical case, after findin~ the eigenbasis the time evolution becomes 
trivial! There are again constant of motion and phases which vary linearly in time. 
A closer analysis gives the following correspondence 

hl~12 
tlog (aj laj 1-1) 

Ej/h 

1-+ 

1-+ 

Ii 
</>j(O) 

Wj 

(2.18) 
(2.19) 
(2.20) 

The correspondence between transforming the classical Hamiltonian to 
action-'a.ngle variables and diagonalizing the quantal Hamiltonian becomes even 
more apparent if one recalls that the generator for the transformation to 
action-'a.ngle variables is the action integral Sex, I). From the equations 

(2.21) 
(2.22) 

one may determine the canonical transformation (x, p) -+ (,p, I). The action integral 
satisfies the Hamilton-Jacobi equation 

(2.23) 

This partial-differential equation is of great formal similarity to the 
time-independent Schrodinger equation 

H1/!= E1/! (2.24) 

For instance, employing the WKB ansatz for the wavefundion 

t/{x) = exp [~So(x) + hSI(x) + ... )] (2.25) 

and requiring that t/J satisfied (2.24) one finds that So has to obey the 
Hamilton-Jacobi equation. 

Since an integrable system has N constants of motion, the trajectory cannot 
wander allover phase-6pace but is restricted to remain on an 2N-N=N 
dimensional hypersurface. This hypersurface has the topology of a torus r2]. The 
torus is called an "invariant torus" because it remains invariant under the time 
evolution of the system. For a system of two degrees of freedom a torus is depicted 
in Fig. 1. 
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Figure 1 Invariant torus of a system with two degrees of freedom. 
Different tori are specified by different actions II and 12 which can be 
visualized as the radii of the torus. The angle tPl and tP2 define a point on 
the torus. A traj ectory winding around the torus is indicated. 

The torus is characterized by the actions which are the radii and it is 
parameterized by the angles. One must not forget that the torus of Fig. 1 lies in a 
4-dimensional euclidian space rather than in the 3-dimensional worM. Different 
tori do not intersect similar as different trajectory do not cross in pha.se-flpace. I 
finally remark that it is the invariant torus which corresponds to the wavefunction 
and not the trajectory, i.e. 

(2.26) 

The torus T and the wavefunction "" are specified by a set of N action variables I or 
quantum numbers m, respectively. Both quantities depend on a set of N 
coordinates, t/I or x, respectively. 

Since we know that the phase-space point 1 depends periodically on the 
angle t/I we may expand the transformation 1 = i t/I, I) into a Fourier series 

i t/I,I) = 11m(I) eim . t/I (2.27) 

m 

where m denotes a vector of N integers. The trajectory it) is hence given by 

it) = 11m(I) exp(i(m·w)t + im·f(O). (2.28) 

m 

The Fourier transform of any function of the trajectory f( it)) - e.g. f( 1) = XI -
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(2 = m'w 
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(2.29) 

We have now completed our discussion of regular systems and it is useful to 
compile our fmdings: 

Regular systems 

The system is integrable. There exist N independent constants of 
motion which are in involution. 
The classical motion is restricted to an N-dimensional 
hypersurface. 
The transformation to action-angle variables is possible; the 
Hamilton-Jacobi equation has a solution. 
The invariant tori exist. 
The Fourier spectrum of f( 7< t» is discrete. 
All Liapunov exponents are zero. 

The last point, the vanishing of all Liapunov exponents, will be discussed in section 
4. Defming irregular systems as not bemg regular we arrive at the following list. 

Irregular systems 

The system is non-integrable. There exist only nc constants of 
motion with 1 ~ nc < N. 
The classical motion is restricted to an 2N-nc dimensional 
hypersurface. 
The transformation to action-angle variables is not possible; the 
Hamilton-Jacobi equation has no solution. 
Invariant tori do not exist. 
The Fourier spectrum of f( 7<t» is continuous for almost all 
functions f. 
There are nL = N - nc positive Liapunov exponents. 

If the number of constants of motion, nc) is equal to one (the Hamiltonian itself is 
always a constant of motion) then one speaks of IIfull dimensional chaosll • 

Otherwise, if 1 < nc < N one speaks of IIlow dimensional chaosll• Quantum 
mechanical measures of chaos as the statistical properties of energy levels [1,6,9] 
can only detect full dimensional chaos. If the constants of motion are known from 
the outset then one may proceed as in the following example. Assume that the 
total angular momentum J is a constant of motion. One then investigates the 
statistical properties of the energy levels for each fixed value of (J2, Jz) separately. 
If the constants of motion are not known from the outset then one may not be able 
to detect low dimensional chaos quantum mechanically. By investigating the 
spectrum of Liapunov exponents, on the other hand, there is no l>roblem in 
studying low dimensional chaos classically. The subtlety of low dimenSIOnal chaos 
does not exist for systems with two degrees of freedom. 



150 

3. THE KAM THEOREM 

Is a classical system either regular or chaotic or do there exist mixed forms? This 
question was answered by the celebrated KAM Theorem [3,4] named after 
Kolmogorov, Arnol'd and Moser. Moser and Arnol'd proved the theorem in 1962 on 
the basis of suggestions by Kolmogorov in 1954. 

Assume that one starts with an integrable Hamiltonian and adds some 
perturbation to it 

H( q" I) = Ho(l) + f V( q" I) (3.1) 

What happens if we turn on f? Fermi, for instance, assumed that all tori are 
immediately destroyed and that the motion becomes completely chaotic. The 
situation is not that bad. Kolmosorov, Arnol'd and Moser have shown that if one 
turns on f then the invariant ton are deformed but almost all tori still exist if f is 
smaller than some critical value fO. If f surpasses fO then a some of the tori are 
destroyed but others remain. When f becomes sufficiently large then eventually 
almost all tori are destroyed and the motion becomes completely chaotic. Hence 
the typical situation is that there exist regions in phase space which a.re filled with 
invariant tori and other regions in which no tori exist. We therefore may 
decompose the phase space r as 

r = r R U rl , r R n rl = 0 (3.2) 

where r R and r I denote the regular and irregular parts of the phase space. A 

similar decomposition holds for the energy surface r E 

r E= r E R U rEI' r ERn rEI = 0 . , , , , (3.3) 

A convenient measure of the degree of irregularity is the relative weight of the 
irregular part of the energy shell. . 

q(E) = V (rE I) I v(rE) , 
= Jd1 X( 1) 8(H<1) - E) I Jd18(H<1) - E) (3.4) 

Here V denotes the volume (Liouville measure) and its precise meaning is given in 
the second line of eq. (3.4). x( 1) is the characteristic function on the irregular part 
of the phase space 

(3.5) 

The quantity q(E) ha8Jroven to be very important in the correlation of classical 
chaos with the statistic properties of the distribution of energy levels [lb,5-91. 

It is important to note that a system may be neither regular nor irregufar, a 
trajectory, however, is always either regular or chaotic. If a trajectory is on a torus 
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then it has to stay on it for all times. If a trajectory is not on a torus then it cannot 
jump onto one because time reversibility would otherwise require that this 
trajectory can leave a torus. By running trajectories one therefore can decide for 
each point 1 out of the phase space r whether it belongs to r R. or to rr If the 

trajectory which is started at the phase space point 1 is regular then X( 1) = 0 and 
1 f r R.' otherwise X( 1) = 1 and 1 E r f The task is now to distinguish regular from 

irregular trajectories. How to do this is discussed in the following section. 

4. LIAPUNOV EXPONENTS 

Regular and irre~lar trajectories show different stability properties. As we shall 
see, these stabihty properties can be characterized by the Liapunov exponents 
(LE). The full set of LE gives, in fact, the most detailed information on the chaotic 
behavior of a trajectory. The theory of LE was developed by Oseledec [10]. We use 
here, however, a different approach. The first extensive use of die LE in a 
numerical study is due to Benettin et al [11,12]. 

The stability of a trajectory with respect to changes in the initial conditions 
is expressed by the stability matrix M 

Q-riill [M( ,)(O),t)hi = ~. (4.1) 

The stability matrix M depends on the time t and on the phase space point ')( 0) 
which specifies the initial conditions of the trajectory ,(t). Each phase space point 
1 has its own stability matrix and hence its own set of LE. The matrix M maps the 
infinitesimal changes of the initial conditions onto the thereby produced changes in 
the final conditions. To visualize the meaning of M( t) we place an infinitesimal 
droplet on the phase space and let it evolve in time. Because we assume the droplet 
to be infinitesimal it can be deformed only by a linear transformation, i.e. it can be 
deformed only into an ellipsoid. (see Fig. 2). 

t=o 

Figure 2 Time evolution of an infinitesimal droplet in phase spa.ce. As 
time increa.ses the length of N principal axes of the ellipsoids shrinks 
and the other N a.xes grows. 
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We decompose the stability matrix M into a product of a diagonal matrix D and 
two orthogonal matrices U and V. 

M=VDUT . (4.2) 

This so called "singular value decomposition" [13] can be performed for any real 
matrix. By construction we find 

dj Vj = M Uj ( 4.3) 

where Vj and ui denote the column vectors of V and U and where dj are the 
elements of the diagonal matrix D. The figure 2 is just a graphical representation of 
the above equation. The principal axes of the ellipsoid have lengths dj and 
directions Vj. 

The matrix M is symplectic because the transformation ,( 0) -+ ,( t) is 
canonical [14,15]. From this follows that the eigenvalues dj and the vectors Uj and 
Vj can be arranged such that 

( 4.4a) 

( 4.4b) 

(4.4c) 

(4.4d) 

holds for j = 1, ... , N. In particular one finds det (M) = 1 which is just Liouville's 
theorem. The differential equation for M follows via the chain rule from eqs. (2.4, 
4.1). 

with the initial condition 

M(O) = 1. 

The differential equations for U, V and Dread [12] 

where 

h ( T ()2H 
ij = V J o:yr V hi 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 
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From eq. (4.7) we observe that the eigenvalues dj have the tendency to behave 
exponentially in time. This suggest the following definitions of the Liapunov 
functions (LF) and Liapunov exponents 

~j(t) = t-1 log dj(t) 

Aj = lim ~j(t) 
t-+ 00 

( 4.11) 
( 4.12) 

The limes, i.e. the LE Aj = ~(7), can be shown to exist almost everywhere [10,15]. 
From eqs. (4.7,4.11) now follows 

Hence the LE Aj is the time average of the bounded function hjj(t). 
The set of LE is not independent. Because of eq. (4.4) we find 

X' > 0 J -

( 4.13) 

(4.14a) 

(4.14b) 

for j = 1, ... , N. Hence the first N LE determine the spectrum of the LE. If one is 
interested in the maximal LE only then one can avoid finding the eigenvalues dj. 
The consideration of the eudidian norm of M is sufficient. We define 

and 

A(t): = C 1 log ( (2N)-1/2I1M(t)1I ) 

2N 
= (2t )-1 log «2N)-1 2 d~( t» 

j= i 

A: = lim A(t) = max {Aj} , 
t .... 00 j 

( 4.15) 

( 4.16) 

Inspecting eq. (4.13) one supposes the LE to be non zero. Why should the 
time average of hjj vanish? I will now show that the regular systems impose 
conditions on the motion such that all LE vanish! Using action angle variables one 
may immediately integrate the stability matrix yielding [15] 
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Filure 3 Liapunov function A(t) [eq. (4.15)] of a regu1a.r trajectory. 
The smooth interpolating line represents the function (4.18) with some 
best fit value for lIaw/OIIi. The function c(t) (see eq. (4.19», which is 
given by the difference between the two curves multiplied by t, is shown 
in the inset. 
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Fipre 4 Liapunov function of a. irregular trajectory. 
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Q2H [1 alii t ] M(t) = exp(J Q1T t) = 0 or . ( 4.17) 

The LF (4.15) takes the appearance 

( 4.18) 

which has a vanishing limes. Hence for integrable systems all LE vanish! The 
chaotic systems, on the other hand, are characterized by non-vanishing LE. There 
are generically as many positive LE as there are missing constants of motion, i.e. 
nL = N - nc where nL and nc denote the numbers of positive LE and constants of 

motion, respectively. The investigation of the spectrum of LE yields the most 
detailed information on the chaotic behavior of a trajectory. The number of 
positive LE gives the dimensionality of the chaos. This allows for the identification 
and characterization of low dimensional chaos. 

We now discuss numerically calculated LF. Fig. 3 shows the LF of a regular 
trajectory. The calculation was performed in cartesian variables rather than in 
action angle variables. Hence one does not follow the analytic form (4.18) exactly 
but one follows it in the mean. In fact, one can show [15] that 

( 4.19) 

holds where ).(1) and ).(2) denote the LF of the same trajectory computed in 
different sets of generalized coordinates and momenta. The function c( t) is bounded 
and hence 

i 1) = i 2). ( 4.20) 

The LE is independent of the particular coordinate system used. 
The LF depicted in Fig. 3 was calculated for a Hamiltonian which consists 

of two harmonic oscillators coupled by a quartic term in the coordinates [16]. 

H = ~(pi + P~ + x2 + y2) + 4kx2y2 ( 4.21) 

This Hamiltonian has the scaling property that the trajectories essentially depend 
on kE only rather than on k an E separately [15]. The LF shown in Fig. 4 was 
computed for the same Hamiltonian and the same coupling (kE = 0.2) but for a 
different trajectory as in Fig. 3. Obviously the LF does not vanish for t -+ 00, the 
trajectory is chaotic. Even if one follows the trajectory only a finite time (for about 
150 oscillations in the examples given above) one can quite safely distinguishes 
regular from irregular trajectories. 

Following these ideas one may compute q(kE), the relative volume of the 
energy shell filled with irregular trajectories. The energy shell is divided into a 
large number of small cells. Within each cell a trajectory is started and according 
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to its LE it is decided whether the cell belongs to rEB. or rEI' The details are , , 
given on ref. (15). For the model Hamiltonian (4.21) the final result is shown in 
Fig. 5. For weak coupling (kE ~ 0.05) the system remains regular. Then the 
transition region begins and for kE ~ 1.2 one arrives at an essentially totally 
chaotic system. 

1.0 

q 

0.5 

0.5 kE 

Filure 5 The stars (*) represent the computed values of qCkE). the full 
line is a fit to these numbers. The dashed line depicts '\avCkE). the 
average value of all nonvanishing LE. 
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Statistical Properties of Energy Levels 
and Connection to Classical Mechanics 

L. S. Cederbaum, Th. Zimmermann, H. Koppel, and H.-D. Meyer 
Theoretische Chemie, Physikalisch-Chemisches Institut 
1m Neuenheimer Feld 253 
D-6900 Heidelberg 
Federal Republic of Germany 

ABSTRAC'r. Basic ideas and methods of the statistical analysis of energy spectra 
are reviewea. Complex nuclear, atomic and molecular spectra show typical 
fluctuation patterns which can be modeled with the aid of random matrices. 
Calculations on model svstems and theoretical results show the existence of two 
universality classes of spectral fluctuations which depend on whether there are 
strong or only weak couplings between the various degrees of freedom. This 
correspondence also provides a link between quantum spectral statistics and 
classical dynamics. We illustrate statistical methods by analyzing model spectra of 
coupled oscillators paying particular attention to the connection between quantum 
and classical results. 

1. INTRODUCTION 

Traditionally, a spectrum of energy levels is given an interpretation by assigning to 
each energy level a set of quantum numbers. In doing this one assumes, e.g., that 
all couplines between the various degrees of freedom can be neglected. This 
approximahon has turned out to be olten very useful, and many experimental 
spectra can be understood quite well in terms of these approximate quantum 
numbers, in particular, when considering only low excitations. For reasons to 
become more obvious later such spectra will be called regular. However, it is clear 
that there will be regimes where these approximations fail owing to a stronger 
interaction among the various degrees of freedom. In such cases the spectrum will 
lose its simple structure. Due to strong mixing of zeroth-order states the only 
(trivial) remaining good quantum numoer will be the energy itself. Such spectra 
will be called irregular. 

The first example has been encountered some 30 years ago in nuclear 
physics. With the aid of shell model calculations one could achieve a detailed 
line-by-line understandin~ of low lying excitations of nuclei. With increasing 
energy, however, the density of states swells enormously. Clearly these spectral 
regimes cannot be fully reproduced by simple model calculations, and it became 
obvious, that a characterization of individual lines then was not useful anymore 1. 
Instead, a statistical description of such complicated spectra becomes more 
appropriate. Wigner was the first to consider the statistical distribution of spacings 
between adjacent energy levels2• He gave arguments that for a given spectrum one 
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can distinguish between the average behaviour of the level density, which is system 
dependent, and fluctuations around the mean, which should not depend on specific 
properties of the system. This was confirmed by the analysis of a number of 
suitable experimental spectra which gave very similar level spacing distributions, 
the spadngs being given in units of local mean spacing3J 4. In particular it was 
found that energy levels of irregular spectra seem to repel each other, i.e. the 
spacing distribution always peaked at non-zero spacings and vanished for very 
small ones5• Assuming a deflIee of level repulsion proportional to the spacing, 
Wigner derived a simple heurIStic distribution which agrees with empirical spacing 
histograms, but this gave no hint how to explain the observed universality. The 
phenomenon of level repulsion, however, can be understood within the context of 
the 'non-crossing rule '6• 

The next important step in order to arrive at a better understandinl{ of 
spectral fluctuations was the idea to make statistical assumptions about a typical 
Hamiltonian that gives rise to an irregular spectrum. Taking an arbitrary basis set 
to represent a Hamiltonian, one arrives at a hermitian matrix. If the systems is 
'complex' enough, one may assume that the matrix elements will exhibit some kind 
of random behaviour. This led to the construction of ensembles of random matrices, 
first proposed by Wigner7, with the aim to calculate spectral fluctuation measures 
by averaging over all members of the ensemble instead of performing a spectral 
average. Random matrix ensembles were defined using very few assumptions, 
namely the incorporation of basic space-time symmetries, invariance under change 
of basis and independence of the matrix elements. The most simple and successful 
ensemble became the Gaussian orthogonal ensemble, GOE8. It consists of real 
symmetric matrices whose elements are independent and identically distributed 
Gaussian random variables. The GOE is uniquely defined by requiring 
independence of the matrix elements and invariance of the ensemble under 
orthogonal transformations. This mathematical simplicity allows to obtain 
analytical results not only for the (ensemble averaged) level spacing distribution, 
but also for other statistics, e.g. the spectral rigidity (see below)8. The comparison 
with statistical properties of experimental (irregular) nuclear spectra showed a 
remarkably good agreement between empirical and random matrix 
fluctuations3,4,9-11. The conclusion is that random matrix theory provides suitable 
models to describe spectral fluctuations. However, it does not constitute a proof for 
the observed universality of spectral statistical properties, since beyond symmetry 
requirements no further ph.ysical considerations have entered the construction of 
the ensembles. The class of systems that this universality pertains to is not defined, 
in other words, the notion of a I complex I system remains unclarified. Further 
experimental evidence for the universality of spectral fluctuations in complex 
spectra has been given by, mostly more recent, statistical investigations of 
atomic l2 ,13 and molecularl4-21 spectra, where also random matrix-type fluctuations 
have been found. 

In this article we want to report about new progress that has been made in 
the field of statistical analysis of energy spectra. The investigation of experimental 
spectra is limited by the relatively small samples of reliable spectral data and is 
always subject to 'impurities' like missing or spurious lines. In the last years there 
has thus been increasmg interest in the study of simple theoretical model systems 
where large sequences of energy levels become available for a thorough statistical 
analysis. This gave new insiJdtt into the problem of characterizing 'complexity' and 
of giving a theoretical founaation for the application of random matrix theory. In 
particular the inspection of the semiclassical limit uncovered an intimate 
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connection between classical dynamics and quantum spectral statistics22-26. 
Another important subject became the question of how a given system evolves from 
a regular-type spectrum (the statistics of which will be discussed below) to an 
irregular, 'complex' spectrum as energy and/or coupling strength are increasing. It 
was found that there is a continuous transition between the two universal regimes 
of regular- and irregular-type spectral fluctuations and that intermediate spectra 
reflect properties that are specific to the system under consideration. 

2. BASIC STATISTICAL MEASURES 

A number of statistical measures has been developed to characterize a spectral 
sequence. In the following we shall introduce the most important ones. A 
convenient and easy to calculate measure is the frequency distribution I1S) of 
spacings S between neighbourin.g eneFP levels. P(S)dS gives the probabihty of 
finding a spacing in the range [S, S+~]. For GOE sequences P(S) 18 very closely 
approximated by the Wigner distribution, (see, e.g., ref. 8) 

(1) 

where S is given in mean spacing units. It is instructive to compare this with the 
result for an uncorrelated level sequence, which may be constructed, e.g., by 
ordering a set of random numbers generated from a uniform probability 
distribution. For this case one finds a Poisson distribution, 

P( S) = exp(-S) (2) 

Interestingly, this distribution peaks for vanishing S, i.e., uncorrelated levels tend 
to cluster. The Wigner distribution, in contrast, vanishes for S=O, a situation, 
which is commonly characterized as level repulsion. It is an indication of 
corr~lations between GOE levels at a scale length of approximately one mean 
SpaclDg. 

To account for level correlations on larger scales (often denoted as 'spectral 
rigidity') the so-called ~s-statistic was introduced. It is defined by27: 

A:/..L) 

= (lminA,B {J:+L[1\{E') -AE' - By dE'} )i (3) 

N..E) is the number of levels below energy E and ( .. ) E denotes averaging over a 

suitable ener~ ran~e. AiL) gives the average least-squares deviation of N(E) from 
the best str&ght hne fittin~ it over an interval of len~h L. A3(L) and P(S) are 
independent statistics and gIve complementary informatIon in the sense that they 
are mainly sensitive to long and short range spectral correlations, respectively. The 
GOE ensemble average of A3(L) can be calculated analytically and is for L ) 1 
given by 
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3iL) = 'II"-2 ln L -0.007. (4) 

The result for an uncorrelated level sequence is given by 

3iL) = L/15. (5) 

The linear behaviour in the latter case merely reflects the rule that the variance of 
the number of uncorrelated random events is proportional to the expected mean 
number of events. The logarithmic dependence of 33(L) on L in the GOE case 
demonstrates the presence of strong long-range level correlations. It implies for 
instance that statistical deviations from the expected mean number of levels 
contained in a fixed energy range of length L are very small. Therefore one speaks 
of strong spectral rigidity or of a Isemicrystalline nature l of GOE spectra. 

Before proceeding, we have to mention here a somewhat technical, but very 
important point. In dealing with statistical properties one is only interested in 
fluctuations around mean values. In our case this means that we are not interested 
in the average variation esecular behaviour I) of the spectral density with respect to 
energy, but only in denSity fluctuations. The mean level density is strictly system 
dependent and can often be calculated by, e.g., semiclassical methods. Before 
performing any statistical analysis one therefore scales the spectrum to have 
constant mean level density. This procedure is commonly termed deconvolution. 
Technically this can be done by using fit formulas to the integrated level density 
/l(E) (which is a staircase), e.g. cubic splines, see, e.g. refs. 4 and 14. Usually one 
fmds a quite sharp distinction between spectral fluctuations and the secular 
behaviour, so statistical results do not depend on details of the deconvolution. Note 
that N(E) for the deconvoluted sequence fluctuates around a straight line. 

As a further statistical measure we mention the frequency distribution Ii. 1) 
of line intensities 1, where Ii. l)dl gives the probability to find an intensity in' the 
range [~ l+dl]. For the aOE one finds a Gaussian distribution for transition 
amplitUdes, for the corresponding squares this gives the Porter-Thomas 
distribution:4,28 

(6) 

I is in mean intensity units. 

3. EXPERlMENTAL SPECTRA 

The validity of the GOE as a model for spectral fluctuations has of course to be 
checked by comparison with spectra from physical systems. So far this has been 
done for a number of experimental spectra9-21, as well as for many numerically 
obtained spectra of model systems25,29-48. GOE fluctuations have first been found 
for resonances in neutron scattering cross sections of various nuclei, and by now all 
three statistics introduced above, as well as higher correlation properties, have been 
shown to agree there very well with the corresponding GOE predictions9-lI. Similar 
findings, though not with the same precision, have been reported for atomic 
spectra12,13, In molecular spectra the first signatures of GOE fluctuations have 
been found in the optical absorption spectrum of N0214,21, later also in stimulated 
emission pumping spectra of acetylenel5-20 and in spectra of methylglyoxal18. 



163 

The statistical analysis of experimental spectra faces severe difficulties. Due 
to the large number of dynamical degrees of freedom, these spectra often exhibit 
very high level densities. It is thus very difficult to extract a level sequence which 
is suitable for a statistical analysis. Besides the demands on spectral resolution, 
such a sequence has to be comElete and pure. Complete means that no lines should 
be missing. Pure means that all lines have to be of the same symmetry species. The 
reason for the latter is that different symmetries defme different eigenvalue 
problems, so the corresponding sequences are independent and their superposition 
leads to an effective loss of correlations between levels. Experimentally these 
requirements are difficult to fulfill. For a review of these topics see, e.g., ref. 49. 

4. LEVEL STATISTICS AND SEMICLASSICAL MECHANICS 

In the following we shall concentrate on the statistical analysis of numerically 
obtained model spectra. The above mentioned quality requirements for spectra are 
of course now easy to fulfill, and the number of levels available can now be lar~e 
enough to allow for good statistical significance. The study of model systems has m 
recent years particularly enlightened the relevance and interpretation of spectral 
fluctuation properties. Before we proceed with the discussion of a model in the 
context of molecular dynamics, we, therefore, briefly report the basic findings of 
these investigations. (For a more detailed review of this topic see, e.g., refs. 6 and 
26.) 

The basic insight obtained from the study of model systems is the finding of 
an intimate connection between level statistics and characteristics of the 
corresponding classical dynamics (if the system has a classical analogue). To 
explain this in some more detail, we make a short excursion into basic results from 
classical and semiclassical mechanics. For a more detailed discussion of classical 
mechanics we also refer to another contribution to this workshop by Meyer50. 
Semiclassical quantization is an important tool for both interpretation and 
approximate calculation of quantum properties of Hamiltonian systems. In its 
standard formulation, however, it is only applicable, when the classical system is 
inteqrable. These systems are distinguished by the existence of j constants of 
motIon (for jdegrees of freedom). All trajectories then are quasiperiodic and wind 
around }-dimensional tori in 2f-dimensional phase space5t. The constants of 
motion m~y be chosen in a coordmate independent manner as action integrals over 
topolo~cally different closed paths on those tori. As already recognized by 
Einstem52, this has the important consequence that it is just this class of systems 
that can easily be quantized semiclassically by requiring the j actions to be mteger 
multiples of Ji. (plus some constant); this is referred to as EBK-quantization13. 
Using this quantIzation scheme Berry and Tabor26 were able to prove that for such 
systems in the semiclassical limit energy levels locally appear to be uncorrelated, 
giving for the spacin~ statistic a Poisson distribution, Eq. (2). Less formally, this 
follows by recognizmg that at high energies successive energy levels are 
characterized by very different values of their quantum numbers (nl, ... , 1If), and 
hence are effectively uncorrelated. We mention that harmonic oscillators form an 
important exception from that rule, because their oscillator frequencies do not 
depend on energy and this leads to strong level correlations over the entire 
spectrum26. ClassIcal motion of integrable systems is often called regular, which is 
the motivation to use the same expression also for the corresponding quantum 
spectra. 
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Irregular motion, on the other side, occurs when, e.g. adding a sufficient I! 
strong nonintegrable perturbation to an integrable Hamilton function. All 
constants of motion apart from ener~ then are destroyed and trajectories cover 
densely the whole accessible (2J-l)-<hmensional energy shell in phase space. It has 
been conjectured22 ,2S that the quantum counterparts of these systems should 
exhibit random matrix type spectral fluctuations. This conjecture has been made 
more precise21i and has been verified numerically for a considerable number of 
systems21i ,29-48. Also theoretical arguments support thisli4-li6 (esyecially for the 
Lls-fitatistic which for regular and irregular systems has been shown to behave 
asymptotic;ily as given by eqs. 5 and 4, respectivelyIi6), although there is still no 
complete and rigorous formal proof and the precise conditions of this 
correspondence are not known yet. 

To summarize, we now have that regular spectra, i.e. those which allow 
complete line assignments by quantum numbers, are locally uncorrelated. Irregular 
spectra, i.e. those which do not possess any good quantum numbers apart from 
energy, exhibit GOE-type spectral statistics. So, interestingly, the basic two types 
of spectral fluctuations introduced in the beginning are both realized in nature. 
Furthermore, we now can give the notion of a 'complex' spectrum a more precise 
meaning, namely by the association with an irregular behaviour of the classical 
analog. 

Of course there are also intermediate systems, where, e.g., the nonintegrable 
perturbation is only weak. Herel there is a mathematical theorem, namely the 
KAM theoremlil, which states that some tori of the integrable system persist 
though slightly deformed. The energy shell in phase space then conslSts of 
subdomains containing regular trajectories and others filled with irregular ones. 
(For f ~ 3 degrees of freedom the latter are all connected.) For an increasingly 
strong perturbation an increasing number of tori is destroyed until eventually the 
whole motion is irregular. One may now argueli7 that for the regular domains 
semiclassical (torus-) quantization is still applicable, giving a set of locally 
uncon:elated energy levels (regular spectrum). Irregular subdomains, on the other 
hand, give energy levels with random matrix-type spectral fluctuations (irregular 
spectrum). Semiclassically these sequences will be independent and their 
superposition gives the total spectrum. 

The level statistics of such intermediate systems can now simply be 
calculated by a weighted superposition of GOE- and Poisson-type statistics. The 
weights are given by the classical volumes of the corresponding phase space 
domains on the energy shell. For the most simple case of one irregular region with 
relative weight q and a regular one with weight l-g, for the level spacing 
distribution one obtainsli8: 

P(g;S) = exp [-(l-q)S - i q'ZSl]x 

x Il - q'Z + ~ gIIS - (l-g)2 R{gS)] 

R{z) = 1 - exp(riJ/4) erfc(.[i z/2), 

(7) 

where 'erfc denotes the well known complementary error function. For S=O this 
spacin~ distribution gives ~ q; 0) = l-q'Z, i.e. for all finite values of g there is level 
clustenng. The Lls""'iltatistic IS gIven byli9: 



A:/..ff,L) = A3(regular)«1-q)L) + 
+ Aprregular)(qL), 
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(8) 

As ~ varies between zero and one, these formulas interpolate between regular (eqs. 
2, 5) and irregular (Eqs. 1, 4) spectral fluctuations. If classically there are several 
distmct irregular phase space domains, semiclassically one has to mix a 
corresponding number of inoependent spectra. The resulting spectrum then will 
appear more regular. 

The validity of this approach has been investigated for a number of model 
systems and the semiclassical approach discussed above is quite successful in 
explaining spectral statistics. In the next section this will be discussed in detail for 
two examples of coupled oscillators. 

5. LEVEL STATISTICS IN MODEL SYSTEMS 

The connection between quantum energy level statistics and corresponding classical 
dynamics has been studied for a considerable number of model systems. In all cases 
the study of the quantum spectra confirms the association of regular and irregular 
classical motion with regular and irreelar quantum spectral statistics, 
resp,ectively. In particular, the classical transition from regular to irregular motion 
is likewise reflected by a transition of the corresponding spectral fluctuations from 
Poisson- to GOE-type statistics. 

Prototype systems which have been studied extensively are the so-<alled 
'quantum billiards', i.e. a free particle enclosed by hard walls25 ,29-3I,34,36,41, and 
nonlinearly coupled oscillators32 , 33, 36-4C, 42-44. By introducing a system parameter 
that controls the shape of the walls or the coupling strength, respectively, usually a 
whole system family is considered. Classically, these families typically comprise 
systems with regular dynamics (e.g. for hi~hly symmetric walls or zero coupling 
stren~th) and others with irregular dynamICS (irregularly shaped walls or strong 
couphng). For fIXed system parameter both types of behaviour may also occur in 
different ener~ ranges. On variation of the parameter values or energies between 
these two regunes one fmds a corresponding continuous transition 01 dynamical 
properties between regular and irregular beliaviour. We remark here that billiard 
systems deserve some caution because of the nonanalytic potential energy, which, 
e.g., has the consequence that the KAM theorem is not valid. Coupled oscillators 
are much more representative for realistic physical systems. 

In the following we want to discuss these observations in some detail for two 
model systems of coupled harmonic and quartic oscillators, respectively. The 
Hamiltonians are 

1 
1(1 = 2' (Pi + 11 + :JfJ + y2) + 4bfl1P (9) 

and 

(10) 
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We first turn to the quantum spectra. For several values of the coupling 
parameters k we calculated energy level sequences by expanding 'Xt or 'X2 in a basis 
of optimum harmonic oscillator states and subsequently diagonalizing the 
truncated matrix. By exploiting the geometrical symmetries of 'Xt and 'X2 one 
obtains level sequences of definite symmetry. For all technical details we refer to 
refs. 36, 38 ('Xt) and 43 ('X2). 

Let us first discuss the level spacing distribution. Taking all levels within 
suitable energy intervals we calculated spacing histograms to which we fitted the 

distribution P( ~S), 
.. Eq. (7). This gIves 
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Figure 1. Level spacing histograms 
for the Hamiltonian, Eq. 10. (a) k = 0, 
constructed from 1142 levels. The 
dashed line gives the Poisson 
distribution, Eq.2. (b) I. = 0.3, 
constructed from 4014 levels. The full 
line gives the best-fit distribution, 
Eq.1, with qqm = 0.12. (c) k = 0.6, 
constructed from 2028 levels. The 
dashed line indicates the Wigner 
distribution, Eq. 1. 

that, in general, wlll 
depend on the coupling 
parameter I. and on the 
energy range the levels are 
taken from. Figs. 1, a--c, 
show typical spacing histo­
grams for the Hamiltonian 
'X2, Eq. (10), with I. = 0, 
0.3, 0.6, respectively. For 
increasing coupling 
strength I. the emplIical 
spacing distribution 
evolves from a Poisson to a 
Wigner distribution, shown 
as dashed lines in Figs. 1a 
and c, respectively. The 
full line in Fig. 1 b is the 
best-fit distribution 
P( q;S), Eq. (7), with ~ = 
0.72. Fig. 1 shows that 
there is a transition from 
regularity to irregularity as 
the coupling of the two 
degrees of freedom in­
creases. 

In Fig. 2 the symbols 
give the fitted qqn values 
for the first Hamiltonian 
1ft, Eq. (9); different 
symbols denote different 
coupling parameters k. For 
this system the spacing 
distribution for fixed I. 
varies continuously with 
respect to energy. 
Choosing I.E as abscissa, 
where E is the center of 
the energy interval used to 

calculate qqm, the qqm values for all coupling parameters I. fit together to a smooth 
curve. These data again indicate a transition from Poisson- to GOE-statistic for 
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increasingly strong coupling. 
Tile choice of kE as a measure for the coupling strength is motivated by a 

scaling property of the classical Hamilton function l" Eq. (9), 

k ll( 1; Px, Py, .t; y) 
= ll(1; .fi Px, .fi Py, .fi.t; .fi y). (11) 

This means that the classical dynamics, apart from a simple scaling of the 
coordinates and momenta, depends solely on kE. Fig. 2 demonstrates, that this 

1 

q 

. 5 

.+. + .+. 0 0 ; •• ......... , ... 
~- .. /" . 

.5 1 kE 

Figure 2. Classical irregular fraction ~l (full line) and quantal 
best-fit values f/cpI for the Hamiltonian. Eq. 9. Different symbols 
represent different coupling para..ters k: *. 0.001. x 0.003. + 0.005; 
00.01. respectively. 

classical property is reflected by the corresponding quantum system, in the sense 
that the spacing distribution essentially depends on kE. The analogous statement 
also holds for l2, Eq. (10). There, the potential enerp- is a homogeneous function 
in the coordinates, and by the principle of mechamcal similarity60 the classical 
dynamics then (apart from scaling) is independent of energy and only depends on 
k. Due to the finite value of J\ such classical scaling properties strictly cannot be 
translated into the quantum system. However, from the correspondence principle 
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one expects that classical properties come into playas tt. becomes small, i.e. in the 
semiclassical limit. (For scaling systems~ like 12, Eq. (10), this is equivalent to the 
high energ)' limit.) The above results demonstrate that the spacing distribution 
reflects scalin~ properties of the classical dynamics, even in the quantum regime 
where the semIclasSIcal limit is not fully reached. 

1'0 analyze the connection between quantum statistics and classical 
dynamics more deeply, the classical relative fractions ~l of irregular subdomains 
on the ener~ shelllS shown in Fig. 2 as a solid line for the first example50,6t. Due 
to the clasSICal scalin~ properties, ~ depends solely on kE. The result for ~ (an 
analogous one is obtamed for the second example43) illustrates that these systems 
classically undergo a transition from regular to fully irregular motion. For both 
systems the quantal fitted values qqm tend to follow the corresponding classical 

. 8 

.6 

.4 .: 

.2 

o 
o .2 .4 .6 .8 

Figure 3. Fitted quantal values llqm 
vs. corresponding classical irregular 
fractions gel. Circles. crosses and 
stars represent different systems; 
see text. 

curves for ~. There are 
however systematic devia­
tions, namely ~ > ~l for 
weak and the reverse tend­
ency for strong coupling . 
For a better comparison 
fig. 3 shows the collected 
data, together with the 
results of a similar 
investigation of a billiard 
system4t, by displaying qce 
with respect to ~l. All 
data points fit well 
together in the tendencies 
just stated. 

In order to under­
stand the deviations 
towards larger values qqm 
> ~l for weak coupling, we 
analyzed very long level 
sequences of the uncoupled 
system 12, Eq. (10), k = O. 

The spectrum shows an extremely slow degree of convergence to the semiclassically 
expected Poisson limit43. Fitting .R q,S), Eq. (7), to such level spacing histograms 
gives values b > ~l = O. This win of course still hold for weakly coupled systems 
that classically are dominated by regular motion. 

For stronger coupling one lias to regard that in case of two degrees of 
freedom, as in our examples, the energy shell consists of several unconnected 
irregular subdomains of considerable weights5o,5t,6t, and each of them 
independently contributes a GOE-type level se9uence. The total spectrum then is 
a mIXture of more than two sequences and will appear more regular due to an 
effective decrease of level correlations. Fittin~ the spacing distribution by .R q,S), 
Eq. (7), which assumes only one irregular region, thus gives values fcIn which are 
smaller than the corresponding classical irregular fraction qcl. This is indeed 
observed in Fig~. 3. 

We now turn to the spectral riRidity. For numerical calculations of!3l L) we 
consider only the system 12, Eq. (10), for which we have the largest number of 
eigenvalues and which, due to its classical scaling property, allows a better 
comparison with semiclassical predictions. Fig. 4a and b show !s(L) for the 
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integrable system, k = 0, and for the completely irregular system, k = 0.6, 
respectively. The full lines give the theoretical results for uncorrelated and GOE 
spectra. The findings agree very well with the theoretical curves for not too large 
values of L. The saturation of the empirical 33(L) for large L has been explained oy 
a semiclassical theory for the spectral rigidity56. It is an effect of additional long 
ran~ level correlations that are still present for finite h. The value Lmax up to 
which 33(L) approximately lies on the theoretical curves can be calculated 
semiclassically56. 

63 " (el '; .. 11 
......:: .11 
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Figure 4. (a) 33(L) for the Hamiltonian. Eq. 10. and k= O. Full lines are 
L/15 and GOE prediction (cf. Fig. 2). circleB give 33(L)' (b) Same as (a) 
for k = 0.6. (c.) :Same as (a) for k = 0.2. The dotted line gives the 
semiclassical prediction with one irregular fraction qcl; the dashed line 
the same with three irregular fractions; see text. (d) Level spacing 
histogram for the same system as in (c). Full line. best-fit distribution 
PCqqm; 5>. qqJl! = 0.50. Dotted and dashed line. semiclassical predictions 
analogous to (c); see text 

The results for an intermediate system, k = 0.2, are shown in Fig. 4c. As one 
expects, the data points lie in between the two limiting universal curves (full lines). 
Taking Eq. (8) for 33(L) of mixed sequences and setting.,g = qcI = 0.64, one arrives 
at the dotted curve. However, the actual behaviour of !3(L) for ULmax. is clearly 
different. In order to achieve better agreement one has to regard the classical phase 
space structure in more detail. The classical calculations for k = 0.2 revealed 
several distinct irregular regions50, 61, each of which independently contributes a 
GOE-type level sequence. Taking into account the three most important irregular 
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subdomains of weights 0.26, 0.19, and 0.19, one arrives at the dashed curve (using 
Eq. (8) extended accordingly43). This now gives a remarkable agreement between a 
pure semiclassical prediction and a corresponding quantum calculation (for 
U~u). . 

In the same way, of course, one can also extend Eq. (7) to account for the 
influence of the partitioning of the classical irregular fraction on the level spacing 
distributions8• The result (lor k = 0.2) is presented in Fig. 4d, where the full line 
gives the best-fit of Eq. (7) to the histogram with q = ~ = 0.50, the dotted line 
~ves the same with q = ~l = 0.64, and the dashed line accounts for the three 
mdependent irregular regions (in analogy to Fig. 4c). The latter curve agrees best 
with the spacing histogram for S> 0.5, but does not reproduce the actual degree of 
level repulsion. The dotted line clearly fails, and the fit curve lies in between the 
two classical predictions trying to match the small- and large-S behaviour of the 
histogram. 

In summary we find for long range spectral correlations, namely P( 5), 
S> 0.5, and A3(L), that semiclassical theories well describe spectral fluctuations. 
P(S) for small S shows deviations, namely- the probability for very small spacings is 
smaller than expected. To explain thIS finding we first observe that by the 
uncertainty relation 

one can associate spectral long and short range correlations with short and long 
time behaviour, respectively. If one considers for instance the time evolution of a 
wave packet, one has from the Ehrenfest theorem (see, e.g. ref. 62), that for short 
times it will follow a classical trajectory. For longer times this relahon breaks down 
due to the spreading of the wave packet. Together, it becomes obvious that 
semiclassical ar~ments are valid on large spectral scales, but fail on small ones. In 
this picture it 18 clear that for longer times the wave packet will tunnel through 
dynamical barriers that separate the different irregular phase space domains. The 
details of the classical phase space structure thus will not be reflected by short 
range spectral correlations. Level repulsion, as observed e.g. in Fig. 4d in terms of 
finding fewer small spacings than expected for h ~ 0 (dashed line), can be 
interpreted in terms of level interactions due to such tunneling. In the spirit of this 
discussion we argue that the spacin~ distribution effectively probes the total 
irregular fraction, whereas AsCL) sensItively responds to the partitioning of the 
energy shell into several independent subregions. For a more rigorous discussion of 
the above arguments see refs. 6, 43, 56 and 63. 

6. DISCUSSION 

The study of simple model systems has confirmed the usefulness of a statistical 
description of energy levels and has contributed to a deeper understanding of its 
physical meaning. Theoretical and numerical statistical investigations indicate two 
universal prototypes of spectral fluctuations. There are locally uncorrelated spectra 
where levels tend to cluster, and which are called regular. On the other hand there 
are irregular random matrix type spectra., where the levels are highly correlated 
and show level repulsion. Remarkably, by looking at the semiclassical limit h ~ 0, 
these two types of fluctuations can be associated with two basic types of classical 
(bound) motion, namely regular and irregular motion, respectively. Regular motion 
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is quasiperiodic and can be quantized semiclassically by standard methods53. 
Corresponding regular quantum spectra thus can be characterized by a set of 
quantum numbers. Irregular trajectories are only constrained by energy 
conservation. They have the specific property that small perturbations grow 
exponentially in time. Irregular motion is therefore also called chaotic. The study 
of classical chaotic systems has attained much attention in the past decades (see, 
e.g. refs. 51, 64 and 65), and the inspection of the corresponding quantum systems 
is of relevance, see, e.g. refs. 24, 66 and 67. We have shown here that there is an 
intimate connection oetween classical chaos and statistics of quantum energy 
levels. 

It is now possible to state more clearly what is meant by a I complicated I 
spectrum or by a complex system, namely by associating these notions with a 
classically chaotic counterpart. In contrary to what one might tend to believe, even 
two degrees of freedom are sufficient to produce these phenomena. The connection 
between level statistics and classical dynamics also provides insight into how 
quantum spectral fluctuations evolve from regular to irregular behaviour for 
increasing coupling strength between zeroth~rder states. In the classical transition 
from regular to fully chaotic motion an increasing fraction of the energy shell is 
covered by irre~ular trajectories. In the semiclassical picture the corresponding 
quantum transitIon from regular to irregular spectral statistics proceeds in a very 
similar way, namely an increasing fraction of levels becomes distributed irregularly. 
The spectral statistics then follow from an independent superposition of regular 
and irregular sequences that are associated with classical regular and irregular 
phase space domains, respectively. 

The specific way in which statistical properties evolve between the two 
universal regunes of fluctuations depends of course on the given system. It is the 
route from regular to irregular behaviour which contains the most specific 
information on the system. For instance we have demonstrated, that this transition 
reflects classical scaling properties of the Hamiltonian. The study of the transition 
deserves further interest concerning such questions as, e.g., whether different 
coupling mechanisms between zeroth~rder states manifest themselves differently 
in spectral statistics. As an example from molecular spectroscopy one may think of 
underlying couplings between vibrational modes alone or vibronic coupling between 
electronic states. The models discussed in this work are related to the former 
coupling case. Vibronic models, which do not possess an obvious classical analogue, 
are investigated elsewhere68• 

The arguments which link spectral statistics and classical dynamics, apply 
strictly only in the semiclassical limit. Only then it is really possible to define a 
local level statistic, since the level density then tends to infinity. Actual spectra 
usually cover a regime where this limit is not fully reached and where genuine 
quantum effects come into play. These effects, such as tunneling between separate 
irregular phase space domains, have the consequence that the classical phase space 
structure is not reflected in all details br, short range spectral fluctuations. In 
particular it is found that the spacing distnbution mainly probes the total classical 
irregular phase space fraction. The simple one-parameter family of distributions 
P( q;S), Eq. (7), is therefore a suitable working tool to characterize the degree of 
irregularity of a spectrum. The spectral rigidity !3( L)l on the other hand, mainly 
accounts for long range fluctuations and reflects rather sensitively the classical 
phase space structure. 
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QUANTLI1 SlJDPRESSION OF CLASSICAL CHAOS AND MICROWAVE 
IONIZATION OF HYDROGEN ATOM 

Giulio Casati 
Dipartimento di Fisica dell'Universita' 
Via Celoria 16, 
20133 Milano, Italy 

ABSTRACT. We discuss the problem of excitation and ionization of an 
hydrogen atom under a linearly polarized, monochromatic, microwave 
field. We show that, in spite of the suppression of classical chaotic 
diffusion produced by quantum interference effects, strong excitation 
and ionization may talee place. This result, which is a quantum 
manifestation of classical chaos, leads to new unexpected results and 
explains the presence of a large ionization peale at frequencies much 
below those required for the conventional one-photon photoelectric 
effect. 

I. In the early seventies, experimental results [I] on ionization of 
highly excited hydrogen atoms (principal quantum number n ,.. 60) in 

microwave fields of frequency CJ)l2rc'" IOGHz and peak intensity e-

10V/cm revealed a surprising high ionization probability given that, in 
such a situation, ionization would require absorption of about 100 
photons. 

Already in 1978 Delone et 211. [2] suggested a diffusive ionization 
mechanism in order to explain the high ionization probability 
experimentally observed. In the same year Leopold and Percival [3], in 
consideration of the high quantum numbers involved in the experiments, 
suggested that classical mechanics could give an accurate description 
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and indeed they showed that a rnmerical solution of classical equations 
of motion gives a quite good agreement with experimental data. More 
recent experimental results [4] with microwave frequency roo=ron3< 1 
(wl2n'" 10 GHz, 30< n < 70) were also shown to be in quite good 

agreement with classical mechanics. 

On the other hand it is quite obvious that a real understanding of 
the experimental results can be provided only by a quantum theory. At 
the same time, this theory must be able to assess the validity and the 
limits of the classical descriptioo. In this report we will briefly present 
a quantum theory of hydrogen atom excitation which already appeared in 
several papers [5 - 11 J. We refer the interested reader to these papers. 

From a general physical viewpoint, this problem lies at the 
intersection of several lines of contemporary research. First of all, 
transitioo to chaotic motion in the corresponding classical model plays 
an important role in the excitation process. However, the hydrogen atom 
is a quantum object and therefore it is necessary to study in detai I the 
modifications introduced by quantum mechanics. This leads us directly to 
the question of manifestations of chaos in quantum mechanics or, as 
commooly termed, Hquantum chaosH

• Quite often this question has been 
indicated as controversial. As already stressed in several occasions we 
would like to repeat once more that the question of quantum chaos is not 
controversial at all. As a matter of fact, classical ergodic theory 
provides a fairly complete classification of statistical properties of 
classical dynamical systems. Among these, algorithmic complexity 
theory [14] shows that systems with positive metric entropy possess 
the property that almost all orbits are random, unpredictable, 
uncomputable. These systems are referred as deterministically chaotic 
despite the seeming contradiction of these terms. The subject of 
Nquantum chaos" is the investigation of the quantum dynamics Of such 
systems. This is a quite exciting, well defined and important problem 
both for the foundations of quantum statistical mechanics as well as for 
ma"d applications. For example, as it is well known, a necessary (not 
sufficient) condition for chaotic motion in classical systems is 
contirnous spectrum of the Liouville operator 00 the energy surface. On 
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the other hand, bounded, conservative, finite particle systems possess 
discrete spectrum no matter whether the corresponding classical 
systems are chaotic or not. As a consequence the quantum motion is 
always almost periOdic and there IS no room for any statistical 
behaviour beyond ergodicity. This do not implies that classical chaos is 
irrelevant for such systems; actually the contrary is true: for example 
the energy levels distribution of classically chaotic systems belongs to 
different universality classes depending on whether the dynamics 
possesses the t ime-reversa I property or not[23]. 

Even more interesting is the stUdy of quantum systems under 
time-periOdiC perturbations Since, for these systems, the spectrum of 
the quantum motion may be, in principle, continuous. The hydrogen atom 
under a microwave field provides a physical example for which real 
laboratory experiments are feasible which may unveil the manifestations 
of classical chaos on the quantum evolution of such a fundamental 
obJect. In particular, the important phenomenon of quantum suppression 
of classical chaos discussed in the previous talk by Guarneri ( which is 
essential for the understanding of the present analysis) may find here 
its first experimental verification. At the same time we will gain new 
insight on multiphoton processes and collisionless ionization of atoms 
and molecules in laser fields. 

2. Let us consider the Hamiltonian 

H=p212 - I/r + fZ cosoot (I) 

where e and 00 are the field strength and frequency, and the z-coordinate 
is measured along the direction of the external field. Here and in the 
following, we use atomic units. To facilitate conversion to physical 
units, we recall that for principal quantum number no = 100 the 
frequency u=ool21t' = 1 OGHz corresponds to 000 =oono3 = 1.51998 and EO = 
eno" =0.1 corresponds to e= 5.14485 V fcm. According to this choice of 
units, fI = I. 

An essential step for the Understanding of this prOOlem has been the 
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consideration of the one-dimensional model. Indeed this model gives a 
good approximate description of excitation of atoms "initially prepared in 
very extended states along the field direction (parabolic Quantum 
numbers n,»~, n, »m)[12]; such states can be prepared in laboratory 
experiments (13,21]. Even more important is the fact that the simpl ified 
one-dimensional model turns out to reproduce the essential Qualitative 
features of the real problem as has been theoretically shown and 
numerically verified [10,11]. 
We would like also to remark that in building up our theory we were 
mainly guided by numerical experiments on modern supercomputers which 
played a more important role than real laboratory experiments. In this 
respect the one-dimensional model can be much more easi Iy, and 
therefore more precisely, numerically handled. 

Let us consider therefore the one-dimensional Hamiltonian 

H= p212 - liz + EZ coswt, Z>o (2) 

A Simplified description of the classical evolution which, however, 
retains all the essential features of the problem has been given in the 
previous talk by Guarneri. The classical motion can be approximately 
described by the area preserving map 

N= N + k sin + 
.. = + + 211' w (- 2wN}-3/2 (3) 

which gives the variation of the Quantities N=E/w =-1/(2n2w) and + = wt 
- sa after each unperturbed Kepler period and where k = O.822n'e/w5/3. 
If we linearize this map around the initial value No = - 1/(2no2w) we 
obtain the well-known standard map or kicked rotator map 

N= N + k sin + 
+ = + +TN (4) 



179 

As it is well known [151, the qualitative behaviour of map (4) 
crucially depends on the value of parameter K=kT= 49 EO (1)0'/3. If K<I 
the N motion is bounded by invariant curves and I ~N I < K 1/2. Viceversa 
if K> 1, namely for Eo >Ec where 

(5) 

a diffusion process will take place in N-space leading to the unlimited 
average I inear growth 

(6) 

and to the Gaussian distribution 

(7) 

In eqs. (6) and (7), t is time measured in number of orbital periods and 
O=k212 is the diffusion coefficient. 

As a consequence, under condition (5), strong excitation and 
ionization takes place in the hydrogen atom. As explained in ref. [111. the 
approximation involved in deriving mapping (3) is good for 000> 1. 
However,it is possible to generalize mapping (3) to frequencies 000 <1 
[11]. We wiI I not enter in these detai Is here. For the purpose of the 
present paper it is sufficient to remark that expression (5) is valid for 
000> J and that a correction to this formula can be obtained which is 
valid down to <00 ~ 0.5. For still smaller frequencies <00, we are not able 
to compute the critical classical chaos border; however this border will 
approach the critical value for ionization in static field (dotted line in 
Fig. (3». 

3. The analysis of the quantum version of map (4) shows that quantum 
mechanics suppresses the classical diffusive process [16,171 and leads 
to the exponential localization of diffusive excitation [18-20). This is a 
dynamical version of Anderson localization which is very well known in 
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solid state physics [18]. According to analytical estimates [19.20] and 
to numerical data [19] the quantum excitation process reaches a 
steady-state distribution which can be satisfactory described by the 
formula 

f(N)~ (1121) (1 +21 N 1/1) exp (- 2N/1) (8) 

where I is the localization length which, in semiclassical conditions, is 
[19.201 

I ~ D ~ k212 = 3.33 f2/0) 10/3 (9) 

Notice that exponential localization takes place in the variable N, 
namely in the number of absorbed photons; only in the vicinity of the 
initially excited level there may be appropriate exponential localization 
on unperturbed levels also. 

The above theoretical predictions have been numerically checked 
[9.111 for different values of 0)0, fo. no. For each case we numerically 
determined the photonic localization length I and plotted it in Fig. 1 
versus the field intensity f. As is clearly seen from the figure, the 
numerical data are in good agreement with the theoretical expression (9) 
for a wide range of f. 

4. The phenomenon of photonic localization described above shows that 
actual suppression of strong excitation and ionization in the hydrogen 
atom takes place if the localization length is small. Instead if the 
localization length I is larger than the number of photons required for 
ionization NJ= 1/(20020) then probability will flow into the continuous 

part of the spectrum ancl strong excitation will take place as In the 
classical case [5,8,9,11]. Therefore the condition I=NI leads to the 

critical threshold value 

( 10) 
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Fig. t The rescaled photonic localization length as a function of the field 
strength in logarithmic scale. The dots are obtained from quantum 
numerical integration with different parameter values while the straight 
line is drawn according to the theoretical expression (9). 

This is the critical delocalization border described in refs. 15.8). In order 
to have strong ionization in the hydrogen atom one needs a field 
intensity larger than both the threshold value Ec for transition to 

classical cMos al1(J tne tnresnold value Eq for transition to quantum 

delocatization. 

The two critical borders. classical and quantum. are reported in Fig. 
2 in the EO. (&)0 plane for a fixed frequency (&)12'J'C ~ 9.9 GHz. The dots are 
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experimental results [4] and give the threshold field value EO for 10~ 
ionization. The EO values for 10~ ionization must be very close to the 
critical border for ionization and therefore our theory predicts that 
expert menta I POints must be close to the ionization border evidentJated 
by the dashed area in Fig. 2 . 
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Fig. 2 - Ionization tnresnold as a function of tne initially excited 
unperturbed state no at fixed frequency £Jl~9.9GHz. The dots are 
experimental data obtained in ref. [4] for the threshold field value for 
1 O~ ionization. The thin curve is the classical border for transition to 
chaos given by expression (5). As explained in the text the dotted line is 
.iust a smooth continuation of the curve from £Jlo~0.5 up to the value 
0.13 ror ionization in static field. The gross I ine is the quantum 
delocalization border (10) which for fixed £Jl=9.9 GHz writes 
Eq ~ (£Jl1/6//6.6). £Jlo = 0.0417 £Jlo. 
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Notice that for Wo < 1 the ionization border is determined by the 
classical chaos border. This is the reason why good agreement has been 
found between experimental data and the result of numerical 
computations on the claSSical mOClel. The most interesting region lies 10 

the frequency range Wo > 1 where according to our theoretical 
predictions one should observe the effect of quantum suppression of 
classical chaos and of diffusive excitation. This can be done either by 
increasing the initially excited state no, which appears to be difficult, 
or by increasing the microwave frequency w. Experiments with larger w 
are now under preparation [22J. 

It IS necessary to mention that the experimental data reported 10 

Fig. 2 were obtained on full three-dimensional atoms, which are actually 
two-dimensional since, due to axial symmetry, the z-component m of 
the angular momentum is an integral of the motion. On the other hand, 
our theoretical predictions refer to a one-dimensional mode\. However, 
as we have recently shown [10], the energy excitation process in the 
two-dimensional atom can be well described by the one-dimensional 
model. The main reason of this fact is that the I-motion is very slow 
and does not significantly influence the N-motion which is therefore 
again described by the approximate map (3). 

5. From the previous discussion it appears that the quantum excitation 
process is determined by a sort of competition between to opposite 
mechanisms: the diffusion process that would be predicted on classical 
grounds and the "Iocalizing" effect produced by quantum interference. 
This picture allows to predict new interesting effects suCh as the strong 
ionization peal< at frequencies much below the conventional one-photon 
threshold, shown in fig. 3. Here we plot the quantum ionization 
probability as a function of microwave frequency wo=wnol for a given 
initially excited state with principal quantum number no and for a fixed 
peal< microwave intensity fo=mo". Here we chose no=66, fO = 0.05 and the 
ionization probability, which is defined as the total probability above the 
level n=99, WI= 2: I cnl2, is plotted after t'=40wo microwave periods, 

i.e., after 40 orb1t~ periods of the electron with n=66. 
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Fig. 3. Classical (0) and quantum (") ionization probability WI = L I cnl2 

versus field frequency Wo after 40 orbital periods corresPondi~'o the 
initially excited level no=66. Here EO = Eno4 = 0.05. Due to our definition 
of ionization probability, w+ is slightly less than nol2. The values Wc 

and wI are the critical frequencies (at fixed EO and no) for transition to 

classical chaos and to quantum localization, respectively. Notice that the 
ionization probability reaches its maximum at a frequency Wo ~ 0.7 
which is less than the frequency for one-photon transition from level 66 
to 67. 
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Notice that the frequency axis is in logarithmic scale. The frequency rot 

is the critical threshold frequency for one-photon ionization: for ro>rot 

the numerical data are in excellent agreement with the theoretical 
expression for the ionization rate ift- 1.67 E02no2jro013/3 (ionization 

probability In one periOd of the external field). For ro < rot the 

ionization probability drops to negligible values since the field strength 
is small. As expected there are two or three photon resonant narrow 
peakS for some partIcular frequency value. What it IS completely 
unexpected is the large peak at much lower frequencies in the range roc < 

Wo < WI· 

As a matter of fact the presence of this peal< is a consequence of the 
two phenomena described above: the transition to chaotic motion in the 
classical system and the quantum localization of classical chaos. Indeed 
roc is given by (5) with EO the applied field, Eo= 0.05 while rol is gIven 

by (10) with EO =0.05 and no = 66. For ro> roc the classical motion is 

chaotic while for ro> rol quantum localization takes place. 

In conclusion, we would like to remark that even though in this 
paper we have limited our discussion to the interaction of microwave 
fields with highly excited states, the phenomena we have described are 
of a quite general nature and should also be observed in the interaction 
of laser fields with initially excited lower levels. It is our belief that 
the study of the manifestations Of classical chaos in Quantum mechanics 
will open new excitIng possibilities for our Understanding of the 
radiation matter interaction. 
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QUANTUM LIMITATION OF CHAOTIC DIFFUSION AND UNDERTHRESHOLD IONIZATION 
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ABSTRACT. The Kicked Rotator is a prototype of the Quantum Localiza­
tion phenomenon that strongly inhibits the possibility of chaotic 
excitation in systems subjected to time periodic perturbations. Its 
dynamics yields a key to the analysis of a simple model for microwave 
ionization of highly excited Hydrogen atoms. 

1. This talk and Casati's are meant to report about extensive investi­
gations by B.V. Chirikov, D.L. Shepelyansky and ourselves on the 
problem of microwave ionization of highly excited hydrogen atoms. 
Leaving to Casati the presentation of specific results, I shall here 
illustrate those aspects of our work that have a direct bearing on the 
general problem of Quantum Chaos. 
The ionization of highly excited H-atoms by microwave fields can be 
studied both in a quantum and in a classical framework; the latter 
approach has a definite interest because of the large quantum numbers 
involved. The subject of this talk will be the most important conclu­
sion that can be drawn from the comparison of classical and quantum 
predictions, namely: 
- Chaos plays an essential role in the classical ionization process; 
- Quantization has an inhibitory effect on classical chaotic motion, 
that must be overcome in order to get strong ionization. 

2. The simplest mathematical model for a H-atom in a microwave field 
is that of a particle moving along a line, subject to a Coulomb 
potential and to a perturbing monochromatic electric field Ill. 
Since we are here interested more in methods than in specific results 
there will be no need to describe this model in full detail; a 
discussion of its general qualitative features should be sufficient to 
illustrate the basic ideas that, in our opinion, have a potentially 
wider applicability. 

The model is described by an Hamiltonian of the type: 
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H(x,p,t) = Ho(x,p) + EV(X)COS wt 

where Ho is the Hamiltonian of the unperturbed system. The phase plane 
(x,p) can be divided into two regions according to the nature of the 
unperturbed motion defined by Ho. Whereas in the region Ho>O the 
motion is unbounded, the region Ho<O corresponds to bound, strictly 
periodic orbits. Here the motion is integrable, and action-angle 
variables (I,e) can be introduced, so that Ho(x(I,e),p(I,e» is a 
function of I alone. Then the angular frequency of bound motion is 
n(I)=dHo/dI. The two regions are divided by a curve ("separatrix"), 
defined by Ho·O, which is an orbit itself. As the separatrix is ap­
proached from within the bound state region, n(I)~O. 

When the monochromatic perturbation EV(X)cos wt is added, chaos 
is generated in the proximity of the separatrix. Specifically, a 
"stochastic layer" appears near the separatrix; orbits which leave 
from states within the layer wander erratically and eventually diffuse 
into the region Ho>O, i.e., ionize. The width of the layer depends on 
the perturbation parameters E, w. For a given w, the value of E which 
is required in order to bring the border of the layer down to include 
a given initial state defines the threshold field E for stochastic 
ionization in that state; E can be quantitatively estimated 11/. c 

3. The complexity of the motion in the chaotic regime demands a stati­
stical description, that is usually obtained via some Markovian appro­
ximation. Since the onset of chaos is determined by resonances between 
the external frequency and high harmonics of the unperturbed motion, 
the 'diffusive time scale' - i.e., the scale on which the loss of 
memory due to chaos justifies a Markovian approximation - is of the 
order of the unperturbed orbital period. Because the latter increases 
as the orbits move out towards continuum, the diffusive scale is not 
uniform. This difficulty can be circumvented, and a simple statistical 
description of the chaotic motion near the separatrix can be obtained, 
by constructing an appropriate Poincare's section, as follows. 

First, we cast the time-dependent problem into Hamiltonian con­
servative form, by introducing a new pair of conjugate variables (N,$) 
and then considering the Floquet Hamiltonian 14/: 

(2) 

The motion described by (2) develops over hypersurfaces HF=const •• 
On such a surface HF=A, pOints with e=o ('perihelion states') define a 
2-dim. variety n, that can be parametrized by just Nand $. The orbit 
leaving from any such point (N,$) at a time to will return to n, i.e., 
to perihelion (unless ionization occurs meanwhile) at some other point 
(N,~). The map (N,$)~(N,~) is canonical, and in the proximity of the 
separatrix it can be easily given an approximate explicit form. In­
deed, from (2) we see that 5N=N-N is the change in energy divided by 
w, and 6$-~$ is w times the time between two subsequent passages at 
perihelion. Then, at 1st order in E 
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-1 
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E J V'x(x(t»t(t)coswt dt 
to 
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which is ju~t the work d09r by the perturbation along the unperturbed 
orbit x(t) (of period 21£0 ) divided by w. Notice that, since 0 is a 
function of the unperturbed energy Ho' "at the lowest perturbative 
order it is a function of A-wN, that will be denoted by O(N). 

In the proximity of the separatrix, for x(t) we can take the 
unperturbed separatrix motion itself, for which 0=0. Then, after some 
rearrangement of variables we get 

N = N - -1 
EW 

+CD 

J V'x(x(t»cos(wt++)x(t)dt 
-CD 

and, taking into account a simmetry of the separatrix, 

N N + k sin+ k 
-1 

EW J V'x(x(t»t(t)sin wt dt 
-CD 

(4) 

where the "Arnol'd-Melnikov integral" k can be explicitly evaluated as 
a function of E, w /2/. It follows that the sought for canonical map 
is, at 1st order in E, 

N N + k sin+ 

- -1 -+ = + + 21£wO (N) 

Notice that this map is defined for all bound states (A-wN(O) 
carries some of them to A-wN)O, and thus it explicitly accounts 
ionization. 

but 
for 

4. Upon i9yroducing a fictitious Hamiltonian K(N) in such a way that 
K'(N)=21£wO "(N), (5) is recognized to describe the evolution over one 
period of a system with the time-periodic Hamiltonian: 

+CD 

K(N) + k cos+ L d(t-n) (6) 
n=-CD 

which can be depicted as an integrable system (K(N» periodically 
subjected to a kick of strength k cos+. Here, K(N) is uniquely defined 
by the form of Ho(I) and by the value A. The class of periodically 
kicked systems that are obtained from (6) under different choices of 
K(N) ~as a distinguished member: the kicked rotator, defined by 
K(N)=N /2. The map (5) associated with the kicked rotator is the 
Standard (or Chirikov's) Map, and provides a useful local approxima­
tion also for generic maps of the type (6) /2/. 

The essentials of the dynamics (6) are that, if K"(N»O. then for 
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k above some (computable) chaotic threshold $ changes at random and N 
grows diffusively in time: 

oN2 ;; Dt D ;; 
2 

(t = number of iterations). The classical picture emerging from the 
above analysis is therefore the following: close to the separatrix, 
the electron moves along an almost unperturbed orbit; the effect of 
the perturbation is concentrated near the perihelion, and can be 
approximately depicted as a 'kick' which throws the electron on a new 
orbit, or directly into continuum. In the chaotic regime, these kicks 
come at random, in the sense that the sequence of jumps from one orbit 
to another is similar to a random walk, and this leads to ionization. 

5. Now we come to the quantum part, and specifically ask what the 
quantum version of the map (5) may be. In that the discrete-time 
dynamical system (5) is a subsystem of te Hamiltonian system (2), its 
quantum counterpart must in principle be deduced from the quantization 
of (2). Nevertheless, a valuable insight on the effect of quantization 
can be obtained from a direct quantization of (6). According to a 
general prescription of the quantum Floquet theory, we should repre­
sent N by N = -i a/a$, OS$S2~ (~-1) with periodic boundary conditions 
14/. Then we easily get the following "quantum map" that defines the 
evolution in one period of a quantum system with the Hamiltonian (6): 

T = S1jJ .. e-iIt P e-ik cos$ 1jJ (8) 

where It = K(N) is defined only in the 'bound space' A-wN<O, and P is 
the projector onto this bound space. 

Our present understanding of the nature of the quantum dynamics 
(7) is essentially based on our knowledge of the properties of the 
quantum2 kicked rotator that would be obtained from (8) by taking 
K=1/2 N and dropping the projector P. 
The kicked rotator has been attracting a great interest since the very 
beginning of investigations on Quantum Chaos. Even though its mathema­
tical theory is still wanting, its essential properties are by now 
fairly well understood, and will be summarized below. 

6. Let us consider the quantum and the classical dynamics of the 
kicked rotator. On the classical side, we choose an ensemble of ini­
tial data with a given N=No and randomly distributed phases $. We 
shall compare the evolution of this ensemble with the quantum evolu­
tion of a wave packet, initially concentrated on the No-th imperturbed 
eigenstate (of It). The evolution of the packet in N-space can be 
studied by expanding the wave function in eigenvectors of N, i.e., by 
a Fourier expansion of 1jJ($), in (O,2~). The integer eigenvalues of N 
then label sites of a l-d lattice and we shall study how the wave 
packet spreads on this lattice. 
Suppose that the perturbation parameter k is so chosen, that the 
classical motion is fully chaoti~Then. f~llowing the evolution of 
the classical ensemble, the spread oN =(N-No) grows linearly in time, 
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according to (7). 
Instead, the quantum packet spreads on the N-Iattice only up to a 
"break-time" T*, after which a steady-state oscillatory regime is 
entered. The different dynamical possibilities represented in the 
classical microcanonical ensemble, that in the classical case develop 
independently along wildly different chaotic orbits, in the quantum 
case strongly interfere and cause the diffusion to stop. Exceptions to 
this typical behaviour occur, when the frequency of the kicks is 
resonant with the internal frequencies of the rotator, or when it is 
very close to resonant values; there are, however, strong indications 
that the set of all resonant and quasi-resonant frequencies has zero 
measure 13/. 

This phenomenon, that the quantum wave packet remains localized 
in N-space in spite of the classical unbounded diffusion is known as 
"Quantum Localization of Classical Chaos". This denomination is 
deliberately reminiscent of the Anderson Localization in solid state 
physics; indeed, a formal connection between the rotator and a 
"disordered-lattice" problem can be established 15/. In both cases the 
localization appears to be due to a complicated interference effect, 
and the connection can be carried so far as to predict that the 
average steady state distribution is exponential (though, of course, 
in the Anderson case it would be exponentially localized in space and 
not in momentum, as in the rotator case). 

In the semiclassical regime, the width I of this distribution, 
i.e., the maximum spread attainable by the wave packet, can be 
estimated by a deep argument devised by the Novosibirsk group. 
According to that argument, I:D, i.e., the localization length is 
approximately given by the classical diffusion coefficient (7) 16/. 

7. Both the classical map (5) and its quantum version (8) have a 
definite similarity with the kicked rotator problem. Again, the 
quantum motion is conveniently studied on the N lattice; moreover, 
since changes in N are just changes in energy, divided by w, a jump 
from the N-th to the N+k-th site will correspond to the emission of k 
photons. However, (8) differs from the kicked rotator, due to the form 
of K(N) and to the projector P. The first difference should not modify 
the above described localization picture, even though there is no room 
here for an explicit justification. On the other hand, P should not 
affect the evolution of wave packets as long as these do not 
Significantly invade the 'continuum'. 
Suppose that we start with a packet concentrated on some site No in 
the bound state region (A-wNo<O), and with a value of the perturbation 
parameter k well above the classical chaotic threshold. In the classi­
cal case, as we know, all orbits would eventually ionize: but in the 
quantum case a rotator-like picture would apply, at least in the early 
stages of the evolution, when the packet does not yet appreciably leak 
into continuum-i.e., when its spread on the N-Iattice is still small 
compared to the number of photons needed to reach the continuum from 
No. But then, if the localization length is small enough, the packet 
will never have a chance to reach the continuum, and the only route to 
ionization will be the small tail in the final (quasi) stationary 
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distribution, that will be exponential in the number of absorbed 
photons. 
This picture was fully confirmed by numerical simulation of the 
quantum model (1) 11/2/. 

In this situation, the strong ionization produced in the 
classical case by the onset of chaos would be suppressed by quantum 
localization. 

In other words, the classical condition for chaotic ionization is 
not sufficient in order to get strong ionization in the quantum 
system. Some additional condition should be met, in order that the 
quantum localization becomes ineffective. This condition can be ob­
tained, by estimating the localization length via the classical diffu­
sion coefficient and by requiring that it becomes comparable with the 
number of photons for ionization. The mechanism of quantum 'diffusive' 
ionization that will be activated under this condition, and its physi­
cal implications, will be illustrated in Casati's talk. 
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ABSTRACT. Classical and quantum mechanical rotational - vibrational calculations have 
been performed for the bound states of the van der Waals system CO-Ar. From the nodal 
patterns of the eigenfunctions and the predominant coefficients in the basis set expansion, it 

is shown that the regular/irregular classical and quantum behaviour are in qualitative 
agreement. Regular/localized states are associated with those states which have one, two and 
three quanta in the bending mode but no excitation in the stretching mode. For the present 
system it is found that the projection of the total angular momentum on the body fIXed 
z-axis is an almost good quantum number. Thus mixing among the zero order basis 
functions occur through the potential part of the hamiltonian. 

1. Introduction 

Non-linear mechanics has made considerable advances, during the last twenty years in 

understanding the regular/chaotic motion of dynamical systems [1]. This has influenced 

chemical physics to a great extent [2]. Although most of the work in this area is theoretical 

a few intriguing experiments have also been performed [3,4]. The basic problem is one of 
understanding the quantum behaviour of a molecule when its classical dynamics show a 
transition from regular to chaotic motion. Regular excited states are important in developing 

a state specific chemistry [5]. 
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An explicit comparison of classical to quantum dynamics would require the solution of 
the time dependent Schrodinger equation. However, for the conservative hamiltonians the 
wavefunctions, at any instant of time, can be written as a linear combination of the 
eigenfunctions. Therefore conclusions can be drawn by studying the behaviour of the 
time-independent eigenvalues and eigenfunctions of the molecule. Thus it has been found that 
the nodal structure of the eigenfunctions has a regular pattern at energies where the phase 
space is occupied by quasiperiodic trajectories and irregular patterns for the chaotic regions 

of phase space [2]. Hose and Taylor [6] demonstrated that if an eigenstate I1Pm> has a 

projection on a basis function 1'Pi> greater than 0.7CT1 i.e. 

1 < 'Pi I1Pm > 12 > 0.5 

then the quantum numbers which are used to assign 'Pi are almost good quantum numbers 

for 'ljJm. Such a state can be characterized as regular. As far as the eigenvalues are 

concerned it has been shown that the distribution of the spacing of neighboring levels is 

Poisson-like for regular states [7] and Wigner-like [8] for chaotic states. 

The above criteria, and a few others proposed in the literature [2] are not exact definitions 
of quantum chaos since there are limitations in their application. However, after the plethora 

of studies on model [9] and realistic potentials [10], a general conclusion can be drawn: 
when the regular/irregular regions of phase space are large enough compared to ii, then the 
corresponding eigenstates also show regular/irregular behaviour. It turns out that generally 
there is a ·slaggishness· in the transition to molecular quantum chaos. Nevertheless it is not 
an overstatement to say that the phase space structure, particularly at high excitation 
energies where quantum calculations are difficult, is a good diagnostic for tracing regular 
localized or resonant states. These regular regions, which are usually embedded in the 
chaatic sea, may have a significant effect in dynamical processes. An example is a 

recent study on the isomerization process of HCN - HNC [11]. It has been shown that a 
multiple resonance among the vibrational modes, located at the top of the barrier to 
isomerization, inhibits the reaction. 

Van der Waals (vdW) complexes seem most appropriate to further investigate the 
regular/chaotic correspondence between classical and quantum molecular mechanics. This is 
because of the relatively small number of bound states, which vdW species can support, 
and therefore small density of states which implies that the differences between classical and 

quantum mechanics will be more pronounced. A recent study on the rotationless HCl-Ar [12] 
has shown that classical chaos appears at very low energies, lower than the zero point 
energy. In quantum mechanics chaos is reflected in the complexity of the nodal patterns 
found in the eigenfunctions of the complex. 
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In this article we report results on the Co-Ar c:omplex. We study the role of rotational 
excitation in the quantum chaotic behaviour of the system. There are, c:ompared to 

vibrational studies, only a few investigations of irregular behaviour induced by rotational 

excitation [13]. 

Experimentally the breakdown of regular rotational structure through Coriolls 
interactions is a promising area of study. For example stimulation emission pumping 
experiments on formaldehyde have demonstrated the Importance of Coriolis coupling in 

mixing vibrational states [4]. CO-Ar is also amenable to experimental observations [14]. 

2. Computational methods 

A pairwise additive interaction potential was used [15]. This c:onsists of two 6-exp 
Buckingham functions which describe the C-Ar and O-Ar interactions and an extended 

Rydberg type function for the diatomic CO [16]. The potential has a triangular minimum 
below the Ar-CO dissociation limit of lOS cm-1. The potential barriers to the linear 
c:onfJgurations Ar-o-C and Ar-C-O are 30 em-I and SO em-I respectively. The potential 

is steeper for Ar approaching C than 0 which, as we shall see, has an infiuence on the first 

excited bending states. 

The classical trajectories were integrated in a six dimensional configuration space 
described by L the distance of 0 from C, and R, the distance of Ar from the center of 

mass of CO. The details are given in ref. [17]. The aim of this study was to investigate the 
effect of the chaotic motion of Ar on the CO oscillator and the flow of rotational energy 
initially put on CO to the other degrees of freedom. The characterization of the trajectories 
as regular/chaotic was made by studying the autoc:orrelation function of the diatomic 
frequency fluctuations; 

1 T T 
Coo ('t).. lim - f Aw (t+'t) Aw (t) dt/ f Ac02(t)dt 

T-oo TOO 
(2) 

Regular motion of Ar relative to CO results in an oscillatory autocorrelation function 

whereas chaotic motion gives a decaying, usually multiexponential, curve. 

The quantum calculations involve the solution of the time independent Schrodinger 

equation in a fJody fixed coordinate system (R,r,S). Where c:osS C I.R/II.R.I. The z-axis 

was 
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embedded along the R coordinate [19]. In a given body fixed system the vibrational and 

rotational coordinates can be identified along with the Coriolis coupling terms. The 

ro-vibrational hamiltonian is generally written [20]; 

H - KV + KVR + V(r,R,O) (3) 

KV is the vibrational hamiltonian 

oh2 a2 -k2 a2 
KV = --- --R--- -r-

2/LR aR2 21lcf all 
ii2 1 1 1 a a 

(- + --) - (sinO-) 
2 /LR2 Ilr sinO ao ao 

(4) 

where Il and Ild are the CO-Ar and CO reduced masses respectively. KVR describes the 

rotation of the system together with the coupling of rotation to vibration. It is a null 

operator for J=O states. Its explicit form is given in ref. [20]. 

The calculations, which are variational in nature, used the angular basis functions which 

are products of spherical harmonics and the rotation matrix; 

JM J* 
CII j,~ - Yj,k (O,y) ~,k (a,~,O) (5) 

where a, ~ and y are the three Euler angles for the rotation of the body fIXed to space 

fixed system. These basis functions ensure the correct quantum number of the total angular 

momentem J, and its projection M, on the z-spaced fixed axis. k is the projection of the 

total angular momentum on the body fixed z-axis and j the CO angular momentum. These 

functions are symmetrised to the total parity of the system [20]. 

Assuming a polynomial Legendre expansion for the potential 

V(r,R,O) - l: V).,(r,R) P)., (cosO) 
)., 

(6) 

it can be shown that coupling of different j states occurs only through the potential function; 



< j,k I v 11',k' > - 6n' 1: glO,1' ,1) Vl (r,R) 
1 

(7) 
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where gl are the Gaunt coefficients [19]. On the other hand coupling between different k 

states is obtamed only through the Jdnetic operator KVR• 

J,M J,M 

<ell I KVRI ell > = 
j,k l' ,k' 

where 

J(J+l) - 2](2 

[----] 6tk,6j1' -
2J.IR2 

-ti2 
6jj' - [cJ.k Cji 6t'(k+1) + CJ:i Q;i6t'(k-1)] (8) 

2J.IR2 

c; = [ JO+1) - k (k±I)]112 (9) 

The maximum coupling is for k .. O. For van der Waals systems this coupling is often 
neglected meaning that k is a good quantum number. 

To identHy the regular character of the eigenstates we examine the magnitude of the 
expansion coefficients according to Hose-Taylor c1iterion and we inspect the nodal structure 
of the projections of wavefunctions on (R,S) plane. In these calculations r is frozen to its 
equilibrium value. Nevertheless we have another three variables of the wavefunction to 
define. These are the three Euler angles which are taken equal to zero. In this case the 
body fixed and space fixed axes coincide. Plots of the (R,S) coordinate with a=~=y .. O have 
the effect of projecting out the M-k=O components of the wavefunctions. 

3. Results and Discussion 

The classical dynamics of the rotationless CO-Ar shows an early transition to chaotic 
behaviour as was found for HO-Ar [12]. Chaos is associated with the R-stretching and 
8-bending modes whereas the diatomic vibrational action variable is adiabatically conserved. 
The chaotic motion of Ar results in a randomization of the phase of CO oscillator as can be 
deduced from the decaying autocorrelation function of frequency fluctuations in fig.l. Only for 
energies as low as 0.001 eV above the minimum of the CO-Ar interaction potential, does 
Coo shows an oscillatory behaviour. Further excitation of the R-stretching mode results in 
strong mixing with the bending mode [11]. 

On rotationally exciting the CO the opposite trends are observed. For low j excitation 
there is strong mixing of j with the bending mode and finally with the R-stretching mode as 
well. At appropriate energies rotational predissociation can be seen. For higher j values 
0>10) large variations of j occur only during a hard collision of Ar with CO. As J increases 
further it gradually becomes an adiabatic invariant. At this situation we have decoupling of 
the R-coordinate from the bending mode and the motion of the system becomes regular. The 
dynamics is maJnly governed by the repulsive part of the potential and the changes of j can 
be desc1ibed by a kicked rotor model [17]. 
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Figure 1 

The vibrational CO frequency auto­
correlation function at different 
interaction energies and for 
initial j .. v-o. 
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Fig.2 shows the time variation of j along with other dynamical variables for a trajectory 
at 0.001 eV and initially j=10. It can be seen that significant variations of j happen each 
time R reaches its smallest turning point. That the trajectory behaves regularly can be 
deduced from the regular oscillations of Coo. 

How does the system behaves quantum mechanically? For J-O we obtained 21 bound 
states. These states were computed by performing variational calculations using a basis set 
comprising all Legendre polynomials with j<10 for the e coordinate and all Morse 
oscillator-like functions (Re=8ao' De-O.OO5 Eh' C1)e-6xI0-S ~ [19]) with n<16 [18]. This 
basis is sufficient to converge the lower states to very higli accuracy. Although with a 
variational calculation we cannot dismiss the possibility of there being further bound states, 
these are likely to be very diffuse and weakly bound if they exist at all. 

Apart from the ground state the only states which show regularity in their nodal 
patterns and localization in the configuration space are those shown in figures 3a, 3b and 3c. 
They have no R-stretching excitation and can be assigned 1,2 and 3 quanta in the bending 
mode respectively. States with stretching excitation, apart from the first one, show relatively 
complex nodal patterns and they tend to occupy the whole available configuration space 
(flg.4). 
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1>0 calculations were performed using a two-step variational procedure [20]. The 80 
lowest solutions of each problem for which k was assumed to be a good quantum number, 
were used to solve the full problem. This number of functions is much larger than is 
required for convergence, but was chosen to insure that we obtained most of the bound 
states of the system. 

Results were obtained with k treated as a ,good quantum number (no Corlolis coupling) 
together with the fully coupled calculations. Results for the first twenty even 'Parity states for 
1=10 are given in table 1. Figures 3d, 3e and 3f are the results of ctilculations with no 
Coriolis coupling and 3g, 3h and 31 results from fully coupled calculations projected along 
«-/3=y-0. As can be seen these two sets of figures show only minor changes compared to 
those of 1-0. 
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Table 1 

Lowest 20 levels of the Ar-CO van der Waals complex with J-I0 • Frequendes are relatIve 

to dissotiation of the complex. k is the quantum number of the projection of the total 

angular momentum on the body fixed z-axis. I describes the ordering of the levels within a 

given k manifold, which is obtained during the first variational step with k treated as a good 

quantum number. 

Level Frequendes Icm-1 Assignment 

No Coriolis Full k i coeft. k weft. 

1 -77.0 -77.1 0 1 0.99 

2 -74.3 -74.5 1 1 0.98 

3 -67.3 -67.5 2 1 0.98 

4 -63.4 -63.4 0 2 0.98 

5 -56.6 -57.0 1 2 0.90 

6 -56.3 -56.6 3 1 0.97 

7 -54.0 -53.8 0 3 0.95 

8 -50.5 -51.0 1 3 0.96 

9 -46.8 -46.8 0 4 0.95 

10 -46.2 -46.3 2 2 0.94-

11 -44.1 -43.9 0 5 0.96 

12 -42.9 -43.3 2 3 0.96 

13 -41.5 -41.8 4 0 0.98 

14 -38.1 -39.3 0 6 0.77 1 4 0.54 

15 -37.8 -37.0 1 4 0.65 1 5 0.56 

16 -36.2 -35.7 0 6 -0.51 1 5 0.73 

17 -32.1 -32.7 1 6 -0.59 3 2 0.67 

18 -31.6 -32.3 1 6 0.67 3 2 0.64 

19 -31.5 -31.8 3 3 0.96 

20 -30.3 -29.8 0 7 0.95 
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Figure 3 

Nodal structure for bending excited states. Contours link points where the wavefunction has 
4%, 8%, 16%, 32% and 64% of the maximum amplitude. Solid (Dashed) curves are for 
positive (negative) amplitude. 3a, 3b and 3c are for J-O states. 3d, 3e and 3f are for J-I0 
but t=O treated as a good quantum number. 3g, 3h and 3i are for fully coupled J-I0 
states (see text). 

The fact that the projections of the eigenfunctions on the (R,e) plane are independent of 
the rotational motion, is considered an indication of the conservation of t. Similar results 
were obtaIned in the 3-d vibrational calculation of HCl-Ar [12]. In that case, the projections 
of the wavefunctions on the (R,e) plane did not change when the vibration of HCl was 
included in the calculations. 
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Figure 4 

As figure 3 but for states with 
stretching excitation a) J=O, 
b) J=10, k=O, and c) J=10, 
fully coupled calculations. 
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Inspection of the coefficients in the basis set expansion of the second variational step 
indeed show that most of the eigenfunctions are' characterized by a predominant coefficient 
(with a particular value of k) which satisfies Hose-Taylor criterion (see table 1). However 
the highest levels in the fully coupled calculations show differences compared to the highest 
states of J=O and J= 10 with the Coriolis coupling turned off. Figure 5 shows states close to 
the dissociation limit. The state from the fully coupled calculations (flg.Sc) show smaller 
complexity in its nodal structure. 
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From the above results the following conclusions can be drawn: 
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1. The vibrational states with one, two, and three quanta in the bending mode but 
none in the stretching are regular and localized. R-stretching excitations produce irregular 
eigenstates. These trends are in qualitative agreement with the classical dynamics. Regularity 
in the trajectories is observed only at low interaction energies and by increasing the rotation 
of CO (fig.2). 

2. k is an almost good quantum number for CO-Ar. Since coupling among zero order 
states of different k occurs through the Coriolis term (Eq.(S», it is concluded that this part 
of the hamiltonian does not contribute to the mJxing of the basis functions. 

3. The irregular character of wavefunctions should be attributed to the potential coupling 
of states with different j (Eq.(7». The classical dynamics has shown that by increasing j the 
system becomes more regular. This is reflected in the highest quantum states of CQ-Ar for 
which terms with large j values in equation (7) make a significant contribution. 

4. In the classical calculations it was shown that the fluctuation in j are mainly due to 
the hard collisions of Ar to CO. Therefore, we consider the repulsive part of the potential 
as the case for erratic behaviour of the wavefunctions. It is the portion of the potential 
which has the greatest anisotropy in a Legendre expansion, Eq.(7), and hence causes the 
greatest mJxing between r s. 
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Analysis of DNA knots and catenanes allows to deduce the mechanism of 
action of enzymes which cut and join DNA strands 
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ABSTRACT. The topological analysis of DNA knots and catenanes produced 
by different enzymes acting on DNA molecules becomes possible by an 
electron microscopical technique in which the DNA molecules are covered 
with recA protein (1,2). The recA covering of the DNA increases the 
thickness of the filaments from 2 nm to 10 nm and by this allows to 
distinguish between underlying and overlying segments in knoted or 
catenated DNA molecules adsorbed to support films used for electron 
microscopy. 

Different enzymes acting on DNA produce specific sets of knots 
and catenanes. Analysis of such molecules with the help of recA coating 
allowed to conclude about the mechanism of action of two enzymes 
studied and about the possible three dimensional shape of DNA molecules 
in solution. 

INTRODUCTION 

DNA molecules are thin and flexible linear heteropolymers composed of 
two intertwined strands forming a right handed helix. DNA molecules 
have 2 nm in diameter and a length which is proportional to the amount 
of the stored genetic information ranging from 1.5 um in simple viruses 
up to about 2 meters in each human cell. In a number of processes in 
living cells segments from the same or different DNA molecules pass 
through each other, get exchanged, inverted, excised or joined. When 
these processes mediated by specialized enzymes occur in vitro on 
circular DNA molecules like bacterial plasmids, knots and catenanes can 
be formed. In living cells, however, DNA knots and catenanes are rather 
rare and short lived. DNA knoting and mUltipe catenation would 
interfere with such vital processes like DNA replication or 
transcription. Therefore, there is a general tendency of enzymes in the 
cell to avoid DNA knoting and catenation or to unknot and decatenate 
entangled DNA molecules. However, under in vitro conditions working 
with just one kind of purified enzyme and starting with unknoted 
circular DNA molecules, it is possible to accumulate knoted or 
catenated DNA molecules (2-8). 

207 

A. Amann et al. (eds.), 
Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, 207-219. 
© 1988 by Kluwer Academic Publishers. 



208 

By analysing DNA knots and catenanes one can deduce the way they 
were formed. This can provide important information about the mechanism 
of enzyme action. Analysis of formed DNA knots and catenanes was 
hampered in the past by the methodological inability to determine the 
type of knots produced. Although naked DNA molecules are well visible 
in the electron microscope after standard low angle heavy metal 
shadowing, their small thickness does not allow trustworthy assignment 
of underlying and overlying DNA segments on crossover points of knoted 
DNA molecules brought to two dimensions by adsorption to the supporting 
film. The recA coating technique developed by us is based on the 
property of recA protein monomers to bind to DNA in a cooperative way 
forming a 10 nm thick complex with a very regular right-handed helical 
structure (l). DNA molecules, knoted or catenated, are completely 
covered with recA and subsequently are adsorbed to supporting films 
used for electron microscopy (2). The increased thickness of the 
complexes compared to naked DNA allows on clean metal shadowed 
preparations to indicate underlying and overlying DNA segments on 
crossover points and thus to assign a certain type of knot or catenane. 
In addition the right-handed helical structure of recA-DNA complexes 
serves as an internal standard of the handedness and allows to avoid 
the wrong assignement of the handedness of knots and catenanes which 
can arise by inversion of negatives for photographic enlargements. Also 
other proteins than recA with similar properties were used successfully 
for vizualization of knoted DNA molecules (3). 

In this paper we review some of the results obtained with DNA 
knots and catenanes produced by bacteriophage ~ integrase (Int) and 
transposon 3 resolvase (Tn3 res). 

MATRIALS AND METHODS 

Purified recA protein was kindly provided by Dr.E.DiCapua (this 
laboratory). Knoted and catenated DNA molecules were prepared in 
Dr.N.Cozzarelli's laboratory (University of California, Berkeley) in 
the context of a collaborative project (2, 4-8). 

RESULTS 

I. The recA coating technique 

Figure 1 demonstrates the advantages of the recA coating of DNA as 
opposed to the spreading of naked DNA. The micrograph shows three 
initially identical and unlinked with each other circular DNA 
molecules. Two of them are completely covered with recA forming two 
thick circular filaments partially intertwined with each other while 
the third DNA molecule remained uncovered and is visible as a thin 
circular filament with two cross-over points. It is clear from this 
micrograph that the covered DNA filament is much thicker and longer 
than the naked DNA molecule. On shadowed preparations showing only the 
upper side of adsorbed filaments where the heavy metal is deposited, 



Figure 1: F.lp.ctron micrograph showing difference of appearance of 
cross-over points in two intertwined recA covered circular DNA 
molecules and in naked circular DNA molecule. 

2® 

the right-handed helical structure of recA-DNA complexes is visible as 
parallel striations along the filament running from left-down to 
right-up. RecA coated molecules formed under high magnesium conditions 
(5 roM magnesium acetate) tend to align side by side (9). In case of 
recA covered linear DNA molecules such an alignment leads to a regular 
left-handed wrapping of two filaments with one turn per about 30 
striations (9). In case of two unlinked circular filaments an 
unperturbed left-handed wrapping cannot occur along the entire length 
of the aligned molecules. Compensation must occur in form of an equal 
number of right-handed turns. Indeed a close inspection of the 
intertwined circles in Figure 1 reveales that there is the same number 
of left- and right-handed crossings of the two circular filaments 
indicating that the molecules are topologically unlinked. All these 
crossings are in fact reducible crossings, i.e. which can be removed 
without breaking of the recA-DNA filaments, in this case simply by 
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unwrapping of the two molecules. Figure 1 shows also crossover points 
in a naked DNA molecule where the underlying and overlying segments 
cannot be distinguished. 

II. Knots and catenanes formed by bacteriophage ~ integrase (Int) 

The biological function of A integrase (Int) is to catalyze the 
integration of one circular DNA molecule (DNA of bacteriophage ) into 
a second circular DNA molecule (DNA molecule forming bacterial 
chromosome). For this process to occur Int requires a specific 
recognition site to be present in one DNA molecule and a second similar 
but significantly different site to be the present in the other DNA 
molecule. Specific sites are determined by specific sequences of the 
nucleotides which are the building blocks of DNA strands. In a 
simplified description of the integration reaction integrase brings two 
recognition sites (schematically depicted as arrows in Fig. 2) in close 
proximity and after cleaving the DNA within each recognition site, 
joins the front half of one site to the rear half of the other site. As 
a result two DNA circles are joined. Since the original sequence of 
nucleotides in both recognition sites is different, after joining the 
front half of one site to the rear half of the other, the newly formed 
sites are so much changed that integrase does not recognize them and 
therefore cannot use them again for a second round of the reaction. 

8-8-8-0 
Figure 2: Schematic representation of integration reaction. 

In the natural in vivo reaction of integrase only the joining of 
two circles like shown in Fig. 2 occurs. However, by means of genetic 
engineering techniques it is possible to place both Int recognition 
sites within the same circular DNA molecule and to provide an 
artificial substrate for the integrase reaction. There are two possible 
relative orientations of the Int recognition sites within a circular 
DNA molecule: in the head to tail orientation the two recognition sites 
(depicted as arrows) are placed in the same direction along the DNA 
molecule and in the head to head orientation the sites are placed in 
opposite directions (Fig.3). Depending on the relative orientation of 
the Int sites, the integrase reaction could lead to relative inversion 
of the DNA segments flanked by the Int sites (Fig. 3a) or to resolution 
of the original circle into two smaller circles (Fig. 3b). 



o-(X)-oo-o 
a 

0-8 e 
b 

a a 
Figure 3: Schematic representation of intramolecular integrase 
reaction. 
a. Integrase recognition sites in head to head orientation lead 

reaction resulting in relative inversion of segments flanked 
recognition sites. 

b. Integrase recognition sites in head to tail orientation lead 
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to 
resolution of one circular DNA molecule in two smaller DNA circles. 

In order to occur, the Int reaction requires that the DNA is 
negatively supercoiled as it is the case in naturally existing DNA 
within or isolated from bacterial cells. The notion of supercoiling can 
be conveniently explained by comparing the mechanical properties of DNA 
to those of a rubber tubing. A linear long piece of elastic tubing can 
be brought into the form of a perfect circle just by uniform bending of 
the tube in one plane. However, if the tubing in addition to bending is 
also twisted by some external force before sealing its ends and 
subsequently the twisting force is released, then the tubing which 
tends to return to its untwisted form brings the whole circle into a 
supercoiled nonplanar shape. Negative supercoiling is defined as 
arising due to left-handed twisting before sealing the ends. 

The three dimensional shape of negatively supercoiled DNA 
molecules in solution is not yet well characterized since it depends on 
the torsional and axial flexibility of the DNA which can vary 
significantly under different conditions. Two different shapes have 
been proposed so far for supercoiled DNA: namely the plectonemic and 
the solenoidal shape (Fig. 4a,b). Using rubber tUbing it is easy to 
demonstrate that solenoidal supercoiling and plectonemic supercoiling 
are interconvertible and that negatively supercoiled molecules show a 
left-handed direction of solenoidal supercoils and a right-handed 
direction of plectonemic supercoils. Theoretically the integrase 
reaction occuring between the recognition sites placed on the same 
molecule of solenoidal or plectonemic supercoiled DNA could produce 
quite different products (Fig.4). However the knoted and catenated DNA 
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Figure 4: Schematic representation of intramolecular integrase 
reaction occurring with supercoiled DNA (Adapted from ref. 5). 
a. Plectonemically supercoiled DNA molecule can lead to multiply 

catenated circles when reaction occurs between head to tail oriented 
Int recognition sites (al ) and to torus type of knot when Int 
recognition sites are orlented head to head (a2). 

b. Solenoidally supercoiled DNA molecule can lead to unknoted 
solenoidally supercoiled circles just with inverted segments when 
reaction occurs between head to head oriented Int recognition sites. 
(Reaction between head to tail oriented Int sites (not shown here) 
could lead to formation of two uncatenated solenoidally supercoiled 
smaller circles.) 

molecules observed in vitro experiments are consistent only with the 
possibility that supercoiled DNA in solution exists in the plectonemic 
form (6,7). The product molecules obtained from a reaction in which the 
Int recognition sequences were placed in head to head orientation on 
the same supercoiled DNA molecule belonged to the torus type of knots 
with right-handed unreducible crossings (Fig.5a,b). This is exactly the 
type of knots one would expect starting from a right-handed 
plectonemically coiled molecule (see Fig.4a2). Also the catenanes 
arising from supercoiled DNA molecules having head to tail oriented Int 



213 

sites were torus type of catenanes with right-handed unreducible 
crossing (Fig.5 c,d) precizely as expected for plectonemically coiled 
molecules (Fig.4al ). 

Figure 5: Knots and catenanes obtained after intramolecular Int 
reaction occurring with supercoiled DNA. Note that originally 
supercoiled DNA appears relaxed after recA-coating (for details see 
ref. 2). 
a,b. Torus type of knots resulting from head to head orientation of Int 
recognition sites. a. Knot with 13 right-handed irreducible cross-over 
points (nodes). b. Knot with 7 right-handed nodes. 
c,d. Torus type of catenanes resulting from head to tail orientation of 
Int recognition sites. In this case, the Int recognition sites were 
located asymmatrically on the circle, whereby the two spacings between 
the two recognition sites differed by a factor of 5. Therefore the 
resulting circles differ by a factor of 5 in length. c. Catenane with 6 
right-handed nodes. d. Catenane with 4 right-handed nodes. The bar 
indicates 0,1 urn. 

It is characteristic for such Int reactions that although all 
substrate DNA molecules were supercoiled to the same extent the 
produced knots and catenanes varied considerably in the number of 
nonreducible crossings ranging from knots with just 3 crossings 
(trefoils) up to knots with 23 crossings (7). Figure 6 explains how 
molecules with the same number of plectonemic supercoils and with the 
same separation distance of the Int recognition sites along the DNA 
molecule can give rise to catenanes with different numbers of 
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nonreducible crossings. In plectonemically supercoiled DNA random 
movements of DNA can lead to "slithering" of facing segments by a 
conveyor-belt type of movement of the whole molecule. As a result 
sequences separated by a long distance along the DNA molecule can get 
very c~ose within the 3-dimensional structure (as measu£ed along the 
axis of plectonemic supercoiling). Integrase mediated reactions 
occuring between such differently "slithered" recognition sites will 
produce catenanes with different numbers of nonreducible crossings. 

a b c 

- -

00 
Figure 6: Conveyor-belt type of movement of plectonemically 
supercoiled DNA molecules. When differently "slithered" DNA molecules 
(a,b,c) get bent to allow reaction to occur then products differ in the 
number of nonreducible crossings. 



Interestingly there is even the possibility that reaction within 
plectonemically supercoiled DNA molecules will lead to unknoted or 
unlinked molecules (Fig. 6c). On the other hand (see below for 
transposon 3 resolvase) if an enzyme could only work when the two 
recognition sites are in a defined, fixed position within the 
3-dimensional shape of the molecule (fixed distance along the 
plectonemically coiled molecule), then only one type of product 
molecules are to be expected. 
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As already mentioned, the natural function of integrase is to join 
two circular DNA molecules. The joining reaction results in the 
formation of an unknoted circle irrespective whether the two circles 
are plectonemically or solenoidally supercoiled or even if they are not 
supercoiled. Only when the enzyme acts on two sites within the same DNA 
molecule then the three dimensional shape of DNA is important. As 
already discussed in the Introduction, enzymes acting on DNA tend to 
keep the DNA in an unknoted form, but since under natural conditions 
integrase never works on two sites within the same circular molecule, 
its action does not have to be associated with a safeguarding mechanism 
preventing DNA from getting knoted or multiply catenated. 

III. Knots and catenanes formed by transposon 3 resolvase 

The biological function of transposon 3 resolvase (Tn3 res) is the 
resolution of one circular supercoiled DNA molecule into two circular 
molecules. To a certain extent the Tn3 resolvase action is opposite to 
that of ~ integrase. One significant difference is that the two Tn3 res 
recognition sequences are identical, thus after joining of the front 
half of one site to the rear half of the other site, functional 
recognition sequences are restored and this can lead to an iteration of 
the reaction. 

When Tn3 res acts on negatively supercoiled DNA molecules 
containing two repeated Tn3 res recognition sites then in 95% of the 
cases singly interlinked catenanes are produced (5,8). Coming back to 
the mechanism proposed in the previous Section, the fact that in the 
case of Tn3 res mostly only one type of catenane is produced suggests 
that the enzyme has to stabilize the recognition sites in close 
proximity prior to cutting, end switching and rejoining. Fig. 6 and 7 
show how starting with plectonemically supercoiled DNA molecules it is 
possible to obtain singly linked catenanes by at least two ways. In one 
way the position of the recognition sites will be such that the enzyme 
stabilizes one right-handed supercoil between the recognition sites. 
Cutting, end switching and rejoining reactions in such molecules can 
lead to complete separation of circles or to singly interlinked 
catenanes depending on the way the switched ends will cross with each 
other (Fig.7a,b). In the second way the recognition sites will be 
brought to a distance allowing stabilization of three plectonemic 
supercoils between recognition sites. Cutting, end switching and 
rejoining reactions in such molecules can lead to singly interlinked or 
doubly interlinked catenanes depending on the way the exchanged ends 
will cross with each other (Fig.7c,d,). Therefore knowing that the 
resolvase reaction produces singly linked catenanes does not allow to 
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Figure 7: Tn3 resolvase reaction can generate singly interlinked 
catenanes by at least two different ways. Three-dimensional shape of 
DNA molecules during reaction and direction of crossing by exchanged 
ends determine the type of product. 

deduce the molecular mechanism of action of this enzyme. To answer 
question how many supercoils are trapped by the enzyme between the 
recognition sites and how the switched ends cross, it is necessary to 
analyze further products of resolvase reaction. As already mentioned 
Tn3 resolvase can mediate an iterative reaction. Under in vitro 
reaction conditions in about 5% of the cases the enzyme is able to 
proceed to further rounds of reaction. As a result 4-noded knots and 
figure-B-catenanes are formed (Fig.B). 

The product molecules observed after the iterative reaction are 
consistent with a model in which three negative plectonemic supercoils 
are stabilized between the two Tn3 res recognition sites and the 
exchanged ends cross in the way percepted as right handed (Fig.9). 
Iteration of the first reaction would lead to formation of a 4-noded 
knot and subsequently to a figure-B-catenane (Fig.B). One could even 
predict what type of 6-noded knot would be the product of another round 
of reaction (Fig.9). In fact such knots as a result of resolvase action 
have been observed (B). 
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Figure 8: Catenanes and knots obtained during three sequential Tn3 
resolvase reactions occurring intramolecularly with a supercoiled DNA 
molecule. a. Singly interlinked catenane. b. 4-noded knot. c. Figure-
8-catenane. 
The bar indicates 0.1 urn. 

o 
1 

Figure 9: Representation of four sequential Tn3 resolvase reactions 
and their product knots and catenanes (adapted from ref. 8). 
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CONCLUSIONS 

The analysis of knots and catenanes produced by different enzymes 
acting on DNA allowed to determine the three dimensional shape of 
superooiled DNA in solution and helped also to elucidate mechanisms 
which allow resolving enzymes to avoid mUltiple catenation of the 
produced circular DNA molecules. The mechanism proposed is based on the 
stabilization of the recognition sites in a strictly defined relative 
position to each other. This stabilization is a necessary preliminary 
stage for the cleavage, end switching and rejoining reactions to occur. 
There are good reasons to assume that enzymes do not actively "slither" 
or reshape DNA molecules to achieve the required relative positions of 
the recognition sites, but only stabilize a particular arrangement 
produced by random motion. Therefore the three-dimensional shape of the 
DNA molecules in solution will influence the speed and efficiency of 
such reactions. In case of Tn3 resolvase for example, stabilization of 
three negative supercoils between the recognition sites is facilitated 
when the molecule is already negatively supercoiled, but also 
non-supercoiled DNA can get locally interwound leading to the proper 
arrangement of the sites. Since the enzyme only selects one of many 
possible DNA arrangements, this mechanism in which the specific shape 
of DNA molecules (given by supercoiling or other topological 
constraint) interplays with the specific binding geometry of an acting 
enzyme, was called a topological filter (10,11). 
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USING KNOT THEORY TO ANALYZE DNA EXPERIMENTS 

D.W. Sumners 
Department of Mathematics 
Florida State University 
Tallahassee, Fla. 32306 

ABSTRACT. There exist naturally occurring enzymes(topoisomerases and 
recombinases), which, in order to mediate the vital life processes of replication, 
transcription and recombination, manipulate cellular DNA in topologically interesting and 
nontrivial ways. These enzyme actions include promoting writhing(coiling up) of the 
DNA molecules, passing one strand of DNA through another via and enzyme-bridged 
transient break in one of the strands, and breaking a pair of strands and recombining to 
different ends. If one regards DNA as very thin string, these enzyme activities are the stuff 
of which modem knot theory is made! In order to describe and understand these enzyme 
mechanisms, knot theory is an essential tool. When reacted with unknotted closed circular 
DNA, each enzyme produces a characteristic family of knots and catenanes. A new 
experimental technique(rec A coating) produces high-resolution electron micrographs of 
these reaction products. By analyzing these reaction products, one can discover facts 
about enzyme mechanism. A new topological model(the tangle model) for enzyme 
mechanism will be discussed, and used to analyze experiments on the recombinant enzyme 
Tn3 resolvase. 

1. INTRODUCTION 

Within the last 4 years[1], a new experimental technique(rec A coating of DNA 
molecules) has been perfected which makes possible the unambiguous determination of 
crossovers in electron micrographs of DNA. This coating thickens the DNA strands from 
about 10 angstroms to about 100 angstroms, making it much easier to decide which strand 
is uppermost in a crossing of two strands in an electron micrograph. This new resolution 
ability can be exploited in a topological approach to enzymology--one performs 
experiments in which topoisomerases(enzymes producing topological isomers) are reacted 
with (usually unknotted) closed circular DNA[2,3]. The reaction products are families of 
DNA knots and catenanes, each enzyme producing its own characteristic family of knotted 
and catenated DNA circles. The reason that circular DNA is chosen as the reaction 
substrate is that the circular form of the DNA substrate traps some of the complicated 
topological changes caused by enzyme action. One wishes ultimately to understand the 
action of these enzymes on DNA in the cell(in vivo). One begins this process by 
analyzing enzyme action on circular DNA in the laboratory(in vitro). The use of circular 
DNA as a reaction substrate can be regarded as an amplifier--the sub-microscopic action of 
an enzyme is amplified until it is experimentally observable--in the form of an electron 
micrograph of a DNA knot or catenanel 
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The application of knot theory to molecular biology occurs at two levels. 
Descriptive: Resolution and enumeration of reaction products. The product of an enzyme 
reaction is an enzyme-specific family of DNA knots and catenanes. The classification 
results of knot theory must be used to resolve these products into their various 
knot(catenane) types. Given electron micrographs of DNA, one compares these pictures to 
tables of knots and catenanes. Predictive:Building mathematical models to calculate and 
predict enzyme action. It is this latter interaction of mathematics and molecular biology 
which is the subject of this paper. 

This paper deals with a topological model for enzyme mechanism[4,5,6]. The 
action of many enzymes involve local(near the enzyme) interactions of a pair of DNA 
strands. The mathematics which can be used to model this local 2-strand interaction is that 
of the 2-string tangle. Enzyme action on circular DNA can be viewed as tangle surgery. 
At synapsis, the enzyme naturally separates the circular DNA molecule into two 
complimentary tangles. The enzyme action is to delete one of the tangles, replacing it by 
another(tangle surgery). One regards these tangles as enzyme mechanism variables, and 
experimental results pose equations relating these variables. One wishes to solve these 
experimentally posed equations. In full generality, this can be a difficult task. The job is 
made easier by the realization that most DNA reactiop. products lie in a completely 
understood class of knots and 2-component catenanes, the class of 4-plats(2-bridge knots 
and catenanes)[7]. Moreover, a great deal can be said about the factorization of 4-plats into 
tangle summands. The summands of interest are rational tangles[8]. Rational tangles are 
closely related to 4-plats, and likewise form a completely understood class of topological 
objects. Moreover, they are formed by twisting pairs of strands about each other, and look 
like electron micrographs! One uses the theory of 3-manifolds[9,10] to prove that most of 
the tangles of interest which occur in the analysis of a particular DNA enzyme experiment 
are rational. Once the summands are known to be rational tangles, the a..'1alysis becomes a 
matter of solving tangle equations posed by experiment This is where the rational tangle 
calculus[ll] is employed. 

2. KNOTS, CATENANES AND TANGLES 

Topology is that branch of mathematics which studies those properties of objects 
which do not change when the object is elastically deformed. Topological considerations 
are important in the analysis of macromolecular configuration. A macromolecule does not 
usually maintain a fixed 3-dimensional configuration. Such a molecule can assume a 
variety of configurations, driven from one to another by thermal motion, solvent effects, 
experimental manipulation, etc. Knot theory is the branch of topology concerned with the 
properties of flexible graphs embedded in 3-space. 

We will be concerned with the configurations of flexible circles in 3-space. Two 
topological spaces are homeomorphic if there exists a function f:X ~ Y such that f is 1-1 
and onto, and both f and II are continuous. We avoid all local pathology by insisting that 
all functions are smooth(infinitely differentiable). A knot (K) is a placement of the circle 
in 3-space; it is a subspace of 3-dimensional Euclidean space(R3) which is homeomorphic 
to the unit circle (Sl) in 2-space (R2). At an intuitive level, we wish to regard two knots 
{K,K'} as equivalent if it is possible to elastically deform one(without breaking it or 
passing one strand through another) until it can be superimposed upon the other. A 
homeomorphism H:R3~R3 is orientation preserving if the determinant of its Jacobian 
matrix(evaluated at the origin) is positive, and orientation reversing if this determinant is 
negative. Unless otherwise specified, all homeomorphisms will be orientation preserving. 
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Two knots K, K' are equivalent if there is a homeomorphism.(H) of R3 to itself 
which takes K homeomorphic ally to K'; that is, H is a homeomorphism of pairs 
H:(R3,K) -+(R3,K'). This mathematical definition of equivalence of knots agrees with 
the above intuitive idea of elastic conversion of one configuration to another. A knot, then, 
is an equivalence class (knot type) of placements of the circle in 3-space. The symbol K 
will denote either a specific representative of the equivalence class, or the equivalence class 
itself, depending upon context. A catenane(of 2 circular components) is a pair of circles in 
R3 with the property that they cannot be separated(elastically deformed so that one 
component lies inside the unit 2-sphere in 3-space, and the other component lies outside 
the 2-sphere). Chemically, a catenane represents circular molecules bound together by 
topological bonds instead of chemical bonds. A configuration of 2 or more circles in R3 is 
usually called a link in mathematics. 

The knot K is usually represented by drawing a projection of one of its 
representatives. A projection is a shadow of the knot cast upon a plane in 3-space. By a 
small rotation of the knot in 3-space, it can be arranged so that no more than 2 strings cross 
at any point in the projection. At such a 2-stringcrossover, the strand on the bottom is 
drawn with a break in it. Figure I shows some knot projections. Figure l(a) shows the 
unknot, the unit circle in 2-space(XY space), sitting in 3-space(XYZ space). Figure l(b) 
shows the "+" trefoil, l(c) the "_,, trefoil, and led) the "figure 8" knot. The two trefoils of 
Fig. I are mirror images of each other, and are inequivalent knots[7]. Such a pair of 
inequivalent mirror images forms a chiral pair of knots. 

(b) (c) 
(d) 

(a) 

FIG. 1 Knot Projections 

Any given knot type clearly admits infinitely many "different" projections, and 
recognizing that two completely different projections in fact represent the same knot type 
can be exceedingly difficult. For any knot type, one usually wishes a projection of 
minimal complexity--that is, with the minimum number of crossovers. For any given knot 
type, the number of crossings found in a minimal projection of that knot is the 
crossing(crossover) number for that knot. The knot projections of Fig. I are minimal. 
The problem of resolving knot types is one of the central problems in knot theory[7]. In 
order to distinguish knots, one devises topological invariants for knot types. These 
invariants are groups, polynomials, numbers, etc. which can unambiguously be attached to 
a knot type. If K and K' are of the same knot type, then all their topological invariants 
must be identical. If a given invariant differs for K and K', we can then be sure that they 
are inequivalent knots. In general, if all known invariants are identical for K and K', we 
cannot be sure about their resolution. We must either devise a new invariant which 
distinguishes them, or prove that they are the same knot by direct geometric manipulation. 
Sometimes, however, it is possible to completely classify specific subfamilies of knots. 
That is, we can devise a system of topological invariants such that two knots in the 
subfamily are equivalent if and only if their invariant(s) are identical. We now consider 
such a subfamily, the family of 4-plats(viergejlechte). 
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(a) {1,3,2} (b) {2,3,2} 

Fig.2 4-Plats 

Fig. 2(a) shows the 4-plat knot {I ,3,2}, and Fig. 2(b) shows the 4-plat catenane 
{2,3,2}. These configurations of circles, manufactured by platting 4 strands as shown, 
are classified by their Conway symbols, the vectors {1,3,2} and {2,3,2}. In the Conway 
symbol {l,3,2}, the integer entries code for the number of positive(right-handed) 
half-twists between strands as shown. Note that if one rotates one of the projections of 
Fig. 2 through 180 degrees about an axis in the plane of the paper and perpendicular to the 
plat, one obtains an equivalent 4-plat whose Conway symbol is the reverse of the one we 
started with. It turns out that this is the only ambiguity--two 4-plats are equivalent if and 
only if their Conway symbols are either identical or become identical if one is reversed[7]. 

4-plats have other nice properties. A knot is composite if it admits a projection in 
which a circle can be drawn on the plane of projection which intersects the knot projection 
in two points, and such that the drawn circle separates the projection into two knotted arcs. 
Fig. 3 shows a composite knot. Intuitively, a composite knot is obtained by tying one 
knot in a string, then another, then glueing the ends of the string together. A knot is prime 
iff it is neither unknotted nor composite. 4-plats are prime[12], and projections like those 
of Fig. 2 are minimal[13]. 

Fig. 3 A Composite Knot 

Consider now the unit ball B3 in R3_-the set of all vectors oflength ~ 1 in R3. The 
boundary ofB3 is S2, the unit 2-sphere--the set of all vectors oflength 1 in R3. Thinking 
ofR3 as XYZ-space, the equator of S2 is the intersection of S2 with the XY-plane in R:f. 
Orient the equator of S2(put an arrow on it). Select 4 points on the equator(called NW, 
SW, SE, NE), cyclically arranged so that one encounters them in the order named upon 
traversing the equator in the chosen direction. This copy of S2 with 4 distinguished 
equatorial points will be called the standard tangle boundary. A 2-smng tangle, or just 
tangle for short, will denote any configuration of 2 arcs in a 3-ball, satisfying the following 
conditions: (i) the arcs meet the boundary of the 3-ball in endpoints only, and all 4 
endpoints are in the boundary, and (ii) there is a flXed homeomorphism from the 3-ball to 
the unit 3-ball B3 which takes the 4 arc endpoints to the 4 distinguished points 
{NW,NE,SE,NE}. This fixed homeomorphism is called a boundary 
parametrization[13,14]. By means of this boundary parametrization, we can regard 
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any two tangles as lying inside B3, and having identical boundaries. Two tangles are 
isomorphic if it is possible to superimpose the arcs of one upon the arcs of the other by 
means of moving the elastic arcs around in the interior of B3, leaving the common 
boundary pointwise fixed. Mathematically, there is a well-understood class of tangles 
which look like DNA micrographs, and which(like 4-plats) are created by twisting pairs of 
strands about each other. These tangles are called rational tangles, and have been 
completely classified up to tangle isomorphism by Conway[8]. Like 4-plats, there is a 
canonical form for tangles, and when written in canonical form, these tangles are classified 
by a vector with integer entries, each entry corresponding to a number of half-twists. The 
entries of the classifying vector determine via a continued fraction calculation a rational 
number which itself classifies the tangle(hence the terminology). Fig. 4 shows some 
rational tangles, and their classifying vectors and rational numbers. Topologically, a tangle 
is rational iff it is homeomorphic to the trivial tangle(the tangle {OJ of Fig. 4)[8,15]--the 
homeomorphism to the trivial tangle will in general move the boundary points. A tangle is 
rational iff it can be "undone" by rotating pairs of boundary points about each other. 

sw 

(0) <-;> 0 

(1) <-~ 1 

Fig. 4 Some Rational Tangles 

NE 

SE 

(a) (b) 

Fig. 5 Locally Knotted and Prime Tangles 

(0,0) <~ 00 

(2,1,3) <- > 1113 

3 + 11(1+112) = 11/3 
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Not all tangles are rational. Analogous to the terminology for knots, we say a tangle 
is locally knotted iff it has a local knot in either of its strands(Fig. S(a». A tangle is 
prime[IS] iff it is neither rational nor locally knotted(Fig. S(b ». 

Given a pair of tangles(A and B), there are two constructions which can be 
performed on them. One is tangle addition, in which the NE point of A is jointd to the NW 
point of B, and the SE point of A is joined to the SW point of B, forming A#B(Fig. 6(a». 
In general, the operation of tangle addition is not commutative, and, even if A and B are 
rational tangles, A#B may not be a rational tangle. The other operation is the numerator 
construction, in which the NW point of tangle A is joined to the NE point of A, and the 
SW point of A is joined to the SE point of A, forming N(A), which is either a knot or a 
link(catenane) of two circular components(Fig. 6(b». 

(a) A#B 

Fig.6 Tangle Operations 

3. SITE-SPECIFIC RECOMBINATION 

(b) N(A) 

We will now consider the situation of site-specific recombination enzymes operating 
on covalently closed circular duplex DNA. Duplex DNA consists of two linear backbones 
of sugar and phosphorus. Attached to each sugar is one of the four bases:A=Adenine, 
T=Thymine, C=Cytosine, G=Guanine. A ladder is formed by hydrogen bonding between 
base pairs, where A binds with T, and C binds with G. In the classical Crick-Watson 
model for DNA, the ladder is twisted in a right-handed helical fashion, with a relaxed-state 
pitch of approximately 10.S base pairs per full helical twist. Duplex DNA can exist in 
closed circular form, where the rungs of the ladder form a twisted cylinder(instead of a 
twisted Mobius band). In certain closed circular duplex DNA molecules, there exist two 
short identical sequences of base pairs, called recombination sites for a recombinant 
enzyme. Because of the base pair sequencing, the recombination sites can be locally 
oriented (reading the sequence from right to left is different from reading it left to right). H 
one then orients the circular DNA(puts an arrow on it), there is induced a local orientation 
on each site. H the local orientations agree, this is the case of direct repeats, and if the 
local orientations disagree, this is the case of inverted repeats. The recombinase 
nonspecifically attaches to the molecule, and then the sites are aligned(brought close 
together), either through enzyme manipulation or random thermal motion(or both), and 
both sites are then bound by the enzyme. This stage of the reaction is called synapsis, and 
the complex formed by the substrate together with the bound enzyme is called the synaptic 
complex. In a single recombination event, the enzyme then performs two double-stranded 
breaks at the sites, and recombines the ends in an enzyme-specific manner(Fig. 7). In the 
following figures, double-stranded DNA is represented by a single strand, and 
supercoiling is omitted. 
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Fig. 7 A SINGLE RECOMBINATION EVENT 

We call the unbound DNA molecule before recombination takes place the substrate, 
and after recombination takes place, the product. If the substrate is a single circle with 
direct repeats, the product is a pair of circles, and can form a DNA catenane(Fig. 8). If the 
substrate is a pair of circles with one site each, the product is a single circle (Fig. 8 read in 
reverse). If the substrate is a single circle with inverted repeats, the product is a single 
circle, and can form a DNA knot(Fig. 9). 

Substrate Synaptic Complex 
Product 

Fig. 8 Hypothetical Recombination Catenane Synthesis 

4. THE TANGLE MODEL 

In site-specific recombination, two kinds of geometric manipulation of the DNA 
occur. The fIrst is a global move, in which the sites are juxtaposed, either through enzyme 
action or random collision(or a combination of these two processes). After synapsis is 
achieved,the next move is local, and entirely due to enzyme action. Within the region 
controlled(bound) by the enzyme, the molecule is broken in two places, and the ends 
recombined. We will model this local move. We model the enzyme itself( or, if necessary, 
its sphere of influence) as being homeomorphic to the unit ball in 3-space(B3). The two 
recombination sites(and some contiguous DNA) form a tangle of two arcs in the enzyme 
ball. During the local phase of recombination, we assume that the action takes place 
entirely within the interior of the enzyme ball, and that the substrate confIguration outside 
the ball remains fixed while the strands are being broken and recombined. 

For symmetry of mathematical exposition, we take the point of view that the reaction 
is taking place in the 3-sphere S3(the unit sphere in 4-space), because the boundary of the 
recombination ball is homeomorphic to S2, and this enzyme S2 functions as an equator in 
S3, dividing S3 into two complimentary 3-balls, glued together along their common 
boundary. If two tangles(A and B) are identifted along their common boundaries, the 
resulting knot(catenane) can be thought of as N(A#B). In Fig. 9, the dotted circle 
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represents an equatorial circle on the enzyme S2. The enzyme S2 in fact divides the 
substrate into two complementary tangles, the substrate tangle S ,and the site tangle T. 
The local effect of recombination is to perform tangle surgery, that is, to delete tangle T 
from the synaptic complex, and replace it with the recombinant tangle R. As in Fig. 9, 
the knot t,ype of the substrate and product each yield an equation in the variables S, T and 
R. Specifically, an enzyme reaction produces two equations: 

SUBSTRATE EQUATION: N(S#T) = SUBSTRATE 

PRODUCT EQUATION: N(S#R) = PRODUCT 

S 

'0- -_.' 
r y' -- -: . -: -&-,.: -
t_ L • -: . " J 

T 

N(S#T) = Substrate 

rx"- ~ : la: I _~ .. 

R 

N(S#R) = Product 

Fig. 9 The Substrate and Product Equations 

Substrate 

Product 

Ideally, we would like to treat each of S,T and R as recombination variables, and to 
solve the equations posed by experiment for these unknowns. Since a single recombinant 
event yields only two equations involving three unknowns, the best we can hope for, 
given only this information, is to solve for any two in terms of a third. The analysis is 
greatly simplified at this point by making the following biologically reasonable assumption: 

BIOLOGICAL ASSUMPTION: T and R are enzyme-determined constants, 
independent of the variable geometry of the substrate. 

In some experiments, the substrate may be a large number of circular molecules, all 
the same knot type, but equipped with different amounts of supercoiling(writhing). 
Recombination can trap some of this "trivial" geometry, producing a distribution of 
product knot(catenane) types from a single substrate knot(catenane) type. In such an 
experiment, then, the substrate tangle S can vary over a number of configurations, but the 
tangles T and R are enzyme-specific constants, and appear in a number of of pairs of 
equations, one for <each different product. In the experiment discussed in this paper, 
iterated recombination occurs. This means that one can often obtain enough information 
about S, T and R to determine them uniquely. 
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5. Tn3 RESOL VASE 

Tn3 Resolvase is a site-specific recombinase which reacts with certain closed 
circular duplex DNA substrate with directly repeated recombination sites[16,17]. One 
begins with unknotted DNA substrate, and treats it with resolvase. The principal 
product[16] of this reaction is known to be the simply-linked catenane of Fig. 8, the 4-plat 
[2](called the Hopf Link in mathematics). Moreover, when endowed with orientation 
inherited from the parent unknotted substrate, this recombination product has linking 
number -1. Resolvase is known to act dispersively in this situation--to bind to the circular 
DNA, to mediate a single recombination event, and then to release the linked product. It is 
also known that resolvase and free(unbound) DNA catenanes do not react. However, in 
one in 20 encounters, resolvase acts processively--additional recombinant strand 
exchanges are promoted prior to the release of the product, with yield decreasing 
exponentially with increasing number of strand exchanges at a single binding encounter 
with the enzyme. Two succesive rounds of recombination produces the figure 8 knot(the 
4-plat [2,1,1]); three succesive rounds of recombination produces the figure 8 catenane(the 
4-plat [2,1,2]); four successive rounds of recombination produces a 6-crossing knot(the 
4-plat [2,1,3]), called 62 in the knot tables[7]. The discovery of the DNA 4-plat [2,1,3] 
substantiated a model for Tn3 resolvase mechanism[17]. Figure 10 shows the DNA 4-plat 
[2,1,3](from[17]). 

Fig. 10 The DNA 4-plat [2,1,3] 

Using the theory of 3-manifolds and the rational tangle calculus, we prove that the 
experimental results of the ftrst two rounds of recombination uniquely determine the 
tangles S and R, hence the result of three or more successive rounds of recombination. 
This theorem is a mathematical proof that the model of [17] is the only explanation for the 
observed products of Tn3 recombination. 

THEOREM: Suppose tangles S , T and R satisfy the following equations: 

N(S#T) 
N(S#R) 
N(S#R#R) 

=[IJ 
= [2J (with linking number = -1) 
= [2,1,IJ 

Then S = (3,O), R' = (-I), N(S#R#R#R) = [2,1,2J and N(S#R#R#R#R) = [2,I,3J. 
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R 

Fig. 11 S = {3,O} and R = {-I} 

Proof: The first step in the proof is to argue that R must be a rational tangle. Now R is 
locally unknotted, because N(S#R) is the 4-plat [2], a catenane with two unknotted 
components. Any local knot in R would have to tum up in one of the two components of 
N(S#R). Likewise, The tangles S and T are locally unknotted, because N(S#T) is the 
unknot.We will use the following tangle facts from [15]: (i) If A is a prime tangle, then the 
2-fold branched cyclic cover(A') of A, branched along the two arcs of the tangle, is an 
irreducible, boundary-irreducible 3-manifold. This means that the inclusion-induced 
homomorphism on the fundamental group of the torus (S lxS 1) boundary of A' is injective. 
(ii) The tangle A is rational iffits 2-fold branched cyclic cover A' is a solid torus(SlxB2). 
(iii) If both A and B are prime tangles, then N(A#B) is a prime knot(catenane), and the 
2-fold branched cyclic cover N(A#B)' contains an incompressible torus--the common 
boundary of A and B. In this case the fundamental group of the torus injects into the 
fundamental group of N(A#B)', and hence the fundamental group of N(A#B), must be 
infInite. However, the 2-fold branched cover of a 4-plat is a lens space[7], with fInite 
cyclic fundamental group. This means that if N(A#B) is a 4-plat, then at most one of A 
and B is a prime tangle. Moreover, if A is a prime tangle, and B is any prime or rational 
tangle, then (A#B) is likewise a prime tangle[15]. So if R is a prime tangle, then so is 
(S#R). But N«S#R)#R) is the 4-plat [2,1,1], so R cannot be a prime tangle. This means 
that R is a rational tangle. 

The next step is to show that S is a rational tangle. Suppose that S is a prime tangle. 
Then T must be a rational tangle, because N(S#T) is the unknot. Taking 2-fold branched 
cyclic coverings, we have that N(S#T)' = S3, and so it is possible to obtain the 3-sphere 
from S' by adding on a solid torus along the boundary of S'. This means that S' is a knot 
complement. Now R is a rational tangle, and one can show that R#R is locally 
unknotted[II]. Since N(S#(R#R» = [2,1,1], we conclude that (R#R) is a rational tangle. 
Since both R and R#R are rational tangles, this means that R must be an integral tangle(a 
single horizontal row of half-twists). Taking the 2-fold branched cyclic cover, we have 
that N(S#R)' = L(2,1), and N(S#R#R) = L(5,3). Since both R and R#R are rational 
tangles, this means that we can add a solid torus to S' in two ways to obtain the Lens 
spaces shown. This operation of adding a solid torus is known mathematically as Dehn 
Surgery. The Cyclic Surgery Theorem[9], however, asserts that the only way this can 
happen is for S'to be a Seifert Fiber Space(SFS)[10]. The results of surgery on Seifert 
Fiber Spaces[18] can then be applied to show that S' must be a solid torus, and hence that 
S must be a rational tangle. 

Once we know that both S and R are rational tangles, we can use the rational tangle 
calculus[ll] to solve the iterated product tangle equations of the hypothesis for the answers 
shown in the statement of the theorem. Since the unoriented 4-plats [2] and [2,1,1] are 
achiral, the linking number information is crucial in ruling out S = {-3,O} and R = {I} as 
solutions. The mathematical[ll] and biological[19] details of this(and similar arguments 
for other enzymes) will appear elsewhere. 
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INTRODUCTION TO KNOT AND LINK POLYNOMIALS 

P. de la Harpe 
Section de Mathematiques 
Universite de Geneve 
C.P. 240 
1211 Geneve 24 
Switzerland 

ABSTRACT. The mathematical study of knots and links began around 1870. 
Now it is a chapter of topology having connections with several other 
domains including singularities of functions, dynamical systems, and 
the study of various enzymes acting on DNA molecules. Basic definitions 
are given, which are in particular intended to make existing knot tables 
intelligible, and various examples are described .• 

In 1928. J.W. Alexander first introduced a polynomial invariant for 
knots which now bears his name. In 1985. V.F.R. Jones defined another 
one variable polynomial. This has inspired a two variable link poly­
nomial and. later, several other polynomial invariants. The notes offer 
an introduction to some of these recent ideas. 

1. KNOTS AND LINKS FROM A TOPOLOGICAL POINT OF VIEW 

Knots have long been used by sailors or drawn for decorative purposes. 
For example. Figure 1 is the picture of a roman bas relief from about 
the third century A.D •• copied from the cover of the issue of the jour­
nal Science where the report [wnC] appeared. 

Figure 1. A roman diagram of the knot 62. 
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C.F. Gauss and J.B. Listing had some thoughts on knots and links in 
the first half of the last century, and so did J.C. Maxwell in his study 
of electricity and magnetism. But the first mathematical paper on knots 
is one by the physicist P.G. Tait [Ta] in 1877. 

To put a long story short, Tait came to knots as follows (we quote 
from [Kn]). He was greatly impressed with Helmholtz's famous paper on 
vortex motion (1858). Early in 1867 he devised a simple but effective 
method of producing smoke rings. At this time, Sir William Thomson (lat­
er Lord Kelvin) was paying frequent visits to Tait in Edinburgh. The 
displays of smoke rings that Thomson witnessed in Tait's lecture room 
had an influence on Thomson's theory of vortex atoms [Tho]. In turn 
Thomson's theory was Tait's motivation to understand the structure of 
knots, as shown by the following quotation from the introduction of [Ta]. 

"I was led to the consideration of the forms of knots by Sir W. 
Thomson's Theory of Vortex Atoms, and consequently the point of view 
which, at least at first, I adopted was that of classifying knots by the 
number of their crossings ( ••• ). The enormous numbers of lines in the 
spectra of certain elementary substances show that, if Thomson's sugges­
tion be correct, the form of the corresponding atoms cannot be regarded 
as very simple. For though there is, of course, an infinite number of 
possible modes of vibration for every vortex, the number of modes whose 
period is within a few octaves of the fundamental mode is small unless 
the form of the atom be very complex. ( ••• ) Are there after all very 
many different forms of knots with any given small number of crossings? 
This is the main question treated in the following paper, and it seems, 
so far as I can ascertain, to be an entirely novel one." 

Today - or rather between 1900 and 1985 - knot theory is essential­
ly a chapter of topology. There are many introductions to or reviews of 
knots, among which we wish to quote [Go]. [MW2] and [Thl]. 

Let us review some of the basic definitions. A knot is a simple 
closed curve in the usual space R3 or in the 3-sphere S3 = R3U{oo}. We 
understand here that curves are smooth, namely that knots are tame, not 
wild. (It would be equivalent for what follows to ask that curves-are 
polygonal.) A knot is often viewed as being oriented. 

Two knots K and K' are ambient isotopic if there exists an orienta­
tion preserving homeomorphism h of R3 (or of S3) such that h(K) = K'. 
(By a theorem of Moise [Moi], the same notion is obtained if one requires 
more regularity for h. For example, one may ask h to be a diffeomor­
phism.) If K and K' are oriented, it is moreover required that h is com­
patible with these orientations. 

For example, the basic theorems of Jordan and Schonflies (or easier 
particular cases of them for smooth curves. see Theorems 9.2.1 and 9.4.8 
in [BG]) imply that two plane knots are ambient isotopic. A knot is triv­
ial if it is equivalent to a plane knot. The (equivalence class of a) 
plane knot is also called the unknot. 

A plane curve is generic if its only singular points are double 
points with transverse tangents. (See [DT] for a discussion of these 
curves.) A regular projection of a knot K is an orthogonal projection p 
of R3 onto some plane E such that the knot projection p(K) is generic. 
Suppose E is oriented, so that it makes sense to define "over" and "un­
der" with respect to E (because R3 is oriented). The corresponding knot 
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diagram is the knot projection together with an indication of which 
branch is over and which branch is under at each crossing. Figure 2 rep­
resents one knot projection and two of the eight associated knot dia­
grams (see which one represents the unknot) . 

Figure 2. A knot projection and two knot diagrams. 
Given a knot K in 1R3 , it is a fact that "almost all" projections of 

1R3 onto planes are regular with respect to K. Given a knot diagram D in 
some oriented plane E, it is obvious that D represents some knot K, well 
defined up to ambient isotopy - for example K can be viewed as being 
"almost" in E, but for points near the crossings of D. 

In general, it is quite hard to recognize whether two diagrams de­
fine ambient isotopic knots. For example H. Tietze [Ti] has constructed 
the two diagrams in Figure 4 and Figure 5. One represents a trefoil knot 
(equivalent to the second picture of Figure 2) and the other the unknot, 
but it could take some time to the reader to discover which is which. An 
easier exercise is to check that the two diagrams of Figure 3 represent 
the same knot. 

Figure 3. Two diagrams for the same knot. 
The crossing number of a knot K is the minimum number of double 

points of a projection of a knot ambient isotopic to K. The diagram of 
Figure 6, copied from the cover of [Ro], is one of the eight glorious 
emblems of Tibetan Buddhism. This diagram has 9 crossings, but it is ob­
vious that the crossing number of the corresponding knot is not more 
than 7. In fact, it is precisely 7. 
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Figure 4. One of the Tietze's diagram.



Figure 5 ~ . The other " T1etze's d" 1agrarn 
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Figure 6. A Tibetan diagram of the knot 7~. 

Let K be a knot with crossing number n. If n $ 2, then n = 0 and K 
is the unknot. If n = 3 then K is one of the two trefoil knots of Figure 
7. If n = 4 then K is the so-called bretzel knot, or figure eight knot, 
of Figure 8. If n = 5 then K is either one of the two knots of Figure 9 
or one of their mirror images (with diagrams obtained by changing all 
crossings). 

The number a(n) of ambient isotopy classes of nonoriented knots 
with crossing number n seems to be given for small n by the following 
table. 

n 
a(n) 

o 
1 

123 
002 

456 
148 

7 
16 

8 
51 

9 
116 

Little is known about the asymptotic behaviour of a(n); see [ES]. How­
ever, usual tables of knots up to 9 crossings do not show these 199 
knots, but have 84 entries only. See [Ro1] and [BZ], as well as [Th1] 
for an excellent guide to older tables. The reading of tables requires 
a few more notions. 

We define first the connected sum Kl#K2 of two oriented knots Kl 
and K2 which is well defined on oriented ambient isotopy classes. 
Choose a plane E dividing R3 in two closed half spaces R! and ~. Up to 
ambient isotopy, one may assume that Kl is in R!, with one small straight 
arc 11 in E and with Kl-ll in R!-E. Similarly one may assume that K2 is 
in R_ with one small straight arc 12 in E and with K2-12 in R:. One may 
moreover assume that 11 and 12 are the same arc with its two opposite 
orientations. Then (Kl-ll) U (K2-1 2) is again an oriented knot, which is 
K1#K2' It is true and important that Kl#K2 does not depend on any of the 
choices described above. The operation # is commutative, associative, 
and has a neutral element which is the unknot. Figure 10 shows a diagram 
of a connected sum of two knots with 3 crossings (one of the two so­
-called granny knots). 
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Figure 7. The trefoil knots. 

Figure 8. The bretzel knot. 

Figure 9. The knots 51 and 52. 
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Figure 10. A composite knot. 

A non trivial knot is prime if, whenever it is oriented and if it 
is written as a connected sum Kl#K2, one of the Kj'S is the unknot. It 
is composite otherwise. By convention, the unknot is not prime. (Recall 
that, similarly, the number 1 is not prime.) A theorem of Schubert (1949) 
shows unique factorization of knots : any oriented knot can be written as 
a connected sum K1W ... WKn of oriented prime knots, with the Kj'S well 
defined up to a permutation. In view of this, most tables list prime 
knots only (unfortunately!). 

Let K be an oriented knot. The knot obtained by inverting the ori­
entation is the reverse knot -K. The knot obtained by reflection in a 
plane is the mirrored knot (or obverse) K*. The knot (-K)* =-(K*) is the 
inverse knot. A knot K is said to be 

One says also 

reversible if 
amphl.cheual if 
involutive if 

K -K 
K = K* 
K = -K*. 

chiral for "not amphicheiral" (K ,. K*) 

Chirality seems to be a crucial property of knots from (among others) a 
chemist's point of view [Wa]. 

Caution': When discussing nonoriented knots, some writers use "am­
phicheiral" to mean "amphicheiral or involutive" as defined above. For 
these authors, the knot 8 11 is amphicheiral, but it is not below, where 
we follow Conway [Co]. 

Usual tables list only one of the four knots K, -K, K*, -K*, whether 
they are ambient isotopic or not. The five logical possibilities are 
illustrated as follows. 

(i) The trefoil knot 31 is reversible (easy) and chiral (Dehn, 



1914) - hence it is not involutive. 
(ii) The bretzel knot 41 is reversible and amphicheiral - hence 

also involutive. 
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(iii) The knot 8 17 is chiral and involutive - hence it is not re­
versible. 

(iv) The knot 9 32 is chiral and not involutive and not reversible. 
(v) If K denotes one of the 4 oriented 9 32 's, the connected sum 

K#K* is amphicheiral and not involutive - hence it is not re­
versible. 

Following Thistlethwaite, we say that two unoriented knots K, K' 
are equivalent if K' is ambient isotopic to one of K, K*. The number 
b(n) of equivalence classes of unoriented prime knots with crossingnum­
ber n is ~iven by the following table ([Th1])! whose author expresses in 
[Th2] a w1sh for independent verification, wh1ch seems to be missing for 
n = 12 and n = 13). 

n 
b(n) 

3 4 
1 

5 6 
2 3 

7 
7 

8 9 
21 49 

10 11 
165 552 

12 
2176 

13 
9988 

Links are a natural generalization of knots. A link with r compo­
nents (r = 1,2,3, ••• ) is a subset of ~3 (or S3) consisting of r disjoint 
simple closed curves, called the components of the link. In particular, 
a knot is a link with one component. One defines as above ambient iso­
topy for (oriented) links, link projections, crossing numbers, link dia­
grams, •••• The unique factorization theorem has been extended from 
knots to links by Hashizame (1958). Figure 11 shows five examples of 
link diagrams. 

Figure 11. Five link diagrams with 2 and 3 components. 
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There are many more diagrams in Rolfsen's book [Rol]. 
Note about the vocabulary in chemistry: A link is called a catenane. 

A chiral pair (K,K*) with K ~ K* is a pair of enantiomers (it seems that 
K ~ -K* is also required, but this is not always clear). 

2. EXAMPLES 

Knots and links appear at many places in topology. 
As a first example, there is a result going back to Alexander (1920) 

which has attracted a lot of interest and which can be quoted (imprecise­
ly) as follows. For any orientable connected compact 3-dimensional mani­
fold M without boundary, there exists a link L c S3 and a smooth map f 
of M onto S3 with the following properties: 

(i) 
(H) 

(Hi) 

f-1(L) is a finite set of disjoint simple closed curves in M. 
The restriction M-f-1(L) -+ S3 -L of f is a finite covering, 
say with n sheets. 
Over each component Lj of L, the restriction f-1(Lj) -+ Lj of 
f is a finite covering, with nj < n sheets. 

More precisely, f is a ramified covering [Lin], ramified over L and with 
ramification set f-1(L). One may moreover require one of the following 
conditions 

(iv) n ~ 3 and L is a knot (Hilden and Montesinos (1974-1976». 
(iv') L is the figure eight knot [HLM]. 

There are other deep connections between the theory of links and 
that of 3-manifolds, such as the theorem of Lickorish and Wallace: any 
3-manifold as above may be obtained from the sphere S3 by "surgery on a 
link" (take out a small tubular neighbourhood of the link, and put it 
back with appropriate twisting). 

Given an oriented link L in R3, it has proved quite useful to study 
Seifert surfaces for L, namely oriented connected compact surfaces smooth­
ly embedded in R3 with (oriented) boundary L. It is easy to show that 
each link has such a Seifert surface (indeed several of them), the mini­
mum of their genus being the genus of the link. We shall restrict our­
selves on this subject to showing two pictures in Figures 12 and 13. 

Figure 12. A Seifert surface of genus 1 for the trefoil knot. 
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Figure 13. A Seifert surface of genus 2 for the granny knot. 

But we would like now to mention sources of examples which relate 
knot theory to problems outside topology. 

2.1. Links and singularities 

Last century mathematicians met great successes in studying complex 
curves (which have in particular two real dimensions), and considered 
then as one of their main challenges the understanding of complex sur­
faces (four real dimensions). Now surfaces may be studied via ramified 
coverings of the complex plane C2, and this point of view draws atten­
tion to singular plane curves (the discriminants). Thus much attention 
has been given to singular points of analytic functions f(Zl,Z2) de­
scribing plane curves. Then knot theory entered the scene via a con­
struction described below, used by K. Brauner (1928), K. Kahler (1929), 
W. Bureau (1934) and many others later. Historically, this was of deci­
sive importance for the mathematical growth of knot theory. 

Let f(Zl,Z2) be an analytic function of two complex variables de­
fined in a neighbourhood of the origin 0 €C2• Assume that f ~ 0 and that 
f(O) = O. For technical reasons, assume also that f is reduced, namely 
that one cannot find analytic functions g,h with g(O) - 0 - h(O) such 
that f = gh2 or f = g2 near the origin. Then V = f- 1 (O) is a (possibly 
singular) complex curve in a neighbourhood of the origin of C2, and V 
contains the origin. 

If the origin is a regular point for f, namely if 

then V is smooth, and there are indeed holomorphic local coordinates 
(Wl,W2) around the origin such that V is locally defined by the equation 

W2 = O. Otherwise the origin is a singular point for f and for V, and 
the first question is that of understanding the local topology. 

For r > 0, let Lr be the intersection of V with the sphere Sr of 
equationlzlI2+lz212=r2. For r small enough, Lr is a link whose ambient 
isotopy class does not depend on r, and which is simply denoted by L. 
For example the link associated to f(Zl,Z2) = Z12+Z2 is the trefoil 
knot of Figure 3, and that associated to f(Zl,Z2) = Z13 +z~is the link 
of Figure 14. 

The relationship between f and L is quite interesting, as partly 
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shown by the following results (listed in order of increasing difficul­
ty). 

(i) 

(H) 

(Hi) 

(iv) 

Figure 14. The link associated to the singular 
surface of equation Z13+Z~ = 0 • 

The link L is a knot if and only if f is irreducible, namely 
if and only if one cannot find analytic functions g,h with 
g(O) = h(O) = 0 and f = gh near the origin. 
Let fl,f2 be two functions as above. Let Vl ,V2 be the corre­
sponding surfaces and let Ll ,L2 be the corresponding links. 
Then Ll and L2 are equivalent if and only if there exists a 
local homeomorphism h (not a diffeomorphism in general!) such 
that h(V l ) = V2• 
The links one may obtain by the construction above are known: 
they are some of the so-called iterated torus links [MW2] 
The link L is the trivial knot if and only if the origin is 
a regular point for f. 

More about this in [Mi], [BK], [MW2]. See also [BW]. 

2.2. Trajectories of vector fields 

Let (p,q) be a pair of coprime integers. Consider the autonomous system 
of ordinary differential equations (a vector field) on R~ 

Xl = pX2 X3 = qx~ 

X2 =-PXl x~ =-qx 3 

The corresponding flow is found by a straightforward integration: 

Xl (t) = X1COS(pt) + x2sin(pt) Xl (0) Xl 
X2(t) =-xlsin(pt) + X2COS(pt) X2(0) X2 
X3(t) = X3COS(qt) + x~sin(qt) X3(0) X3 
X~(t) =-X3 sin(qt) + x~cos(qt) x~(O) X~ 
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We are interested here in the vector field induced by the one a­
bove on the sphere 53 of equation X12 +xl +X32 +X,.2 = 1. In 53. each 
orbit is periodic and defines a knot. The orbit with Xl = x2 = 0 and the 
orbit with X3 = X,. = 0 are both unknots, and constitute together a link 
equivalent to the fourth link of Figure 11. Any other orbit is a so­
called torus knot of type (p,q), and is in particular a trefoil knot 
if (p,q) is (2,3) or (3,2). 

A study of knots and links appearing as orbits of vector fields 
has been made by R.F. Williams and co-workers [BW1], [BW2] , [FW]. Given 
a flow defined by a vector field in R3 or 53, the following questions 
are natural: 

Is there any closed orbit? 
If yes, is there any knotted closed orbit? 
If yes, are there infinitely many knot types appearing? 

In 1972, P. Schweitzer created a surprise when he showed that the first 
answer, for 53, may be no [Ros]. But the three questions have positive 
answers for flows with positive entropy [FW]. There are also very pre­
cise theorems and (observed but not yet proved (!» facts for the quite 
specific example of Lorenz's equation [BW1]. 

This direction of research may help to understand chaotic dynamic­
al systems. But a lot of work has yet to be done there. 

2.3. Knots in physics? 

The movement of a fluid in R3 is described by a time dependent vector 
field, the fluid velocity v. Since Helmholtz (1858), one is also inter­
ested in the field curl v, the integral lines of which are called vortex 
lines (see e.g. [So], Chapter IV). A smoke ring is a popular materiali­
zation of a closed vortex line. I am not aware of any work trying to 
decide whether knotted vortex lines may exist. Has anybody studied the 
equations or taken a picture of a knotted smoke ring? 

One of the crucial ingredients in the understanding of condensed 
matter is that of lines of defect. These lines contribute to make metals 
hard, because in a perfect crystal the crystalline planes may softly 
slide on each other. Does one know if and how these lines are closed? 
knotted? linked? As the theory of defects has already a rich interaction 
with algebraic topology [Mer], it would not be surprising if knot theory 
was also of interest for the physics of ordered media. 

There has been some speculation about molecules in polymers being 
knotted. We do not know much on this, except that it has motivated the 
following very natural question: how often is a random closed curve 
knotted? Part of the answer would be to make the question precise. 
Computer simulations suggest that long curves are almost surely knotted 
[MW], [Su1]. 

Let us conclude this section by qoting a nice result of Conway 
and Gordon [CG], even if it has little to do with physics. Choose at 
random seven distinct points in R3, and join each pair of these points 
by an arbitrary simple smooth curve, these 21 curves being disjoint 
(outside the seven nodes). The resulting figure is an embedding in R3 
of the complete graph K7. In this graph there are ~ 6! Hamiltonian cy­
cles, namely 360 simple closed curves going through each of the 7 nodes. 
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Theorem: at least one of these 360 curves is knotted. 

2.4. Knots and DNA molecules 

Linked molecules seem to have been discussed as early as 1912, and syn­
thesized in the 1960's [Si], [Wa]. The synthesis of molecules which are 
actually knotted is discussed by Walba (1985) as an interesting chal­
lenge, not yet as an experimental fact. 

But we would like to report here on recent investigations on DNA 
molecules. See [nSKC], [WDC] , [Su4], as well as the advertisement [Ko], 
and the reviews [Su2], [Su3], [WC]. 

Living cells contain chromosomes, and each of these contains a 
long double stranded DNA molecule. The simplest cells are bacteria, such 
as Escherichia Coli, and are known as prokaryotes. Their DNA molecules 
are usually circular (in both chromosomes and plasmids), and may then 
be described by knots. (In eukaryote cells, nuclear DNA is often linear, 
not closed. But these cells have also mitochondria and chloroplasts, 
where genetic material is shaped into circles which may be linked in a 
very spectacular way.) The knot model is of course an approximation, as 
the Crick-Watson DNA double helix consists of two strands, and consti­
tutes a ribbon rather than a curve - but still, this model fits with 
pictures and has proven useful. 

During replication and recombination, various enzymes act on the 
DNA molecule. Some, during this action, change the topological configu­
ration of the molecule, and are called topoisomerases. Their topological 
effect can be observed as electron micrographs have been taken (at least 
in vitro), and these show actual knots and links. We have stated above 
that there are 6 

I a(n) = 15 
n=3 

ambient isotopy classes of nontrivial unoriented knots with at most 6 
crossings. All have been observed, as well as several knots with n ~ 7 
crossings. 

Moreover, biologists have learned to deduce enzymatic mechanism 
from the analysis of which knots are observed, depending on which enzyme 
works. (For example, the trefoil knots produced by some enzymes are all 
right handed, while other enzymes produce both kinds of trefoil knots.) 
More on this in [Su3] and [Su4]. 

3. POLYNOMIAL INVARIANTS 

We shall denote by L the set of ambient isotopy classes of oriented 
links in the 3-sphere S3. A link invariant is a map I defined on L such 
that if Ll and L2 are two links with I(Ll) + I(L2) then Ll and L2 cannot 
be ambient isotopic. (Of course, I(L1 ) = I(L2) does not show that Ll and 
L2 are ambient isotopic !!!) 

The most important link invariant is the group of a link: I(L) is 
the fundamental group (or first homotopy group)-or-the link complement 
S3_L• Given a diagram of L, there is a standard procedure (Wirtinger 
1905) to write down a presentation of the group of L. The group of a 
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link L is the same as that of -L, L* or -L*. But otherwise the group is 
a very strong invariant. For example 

(i) A knot is trivial if and only if its group is infinite cy­
clic (Dehn 1910 and Papakyriakopoulos 1957). 

(ii) Given a group G, there are at most two unorientedequivalence 
classes of prime knots with group G [CGLS], [Wh]. 

(iii) We do not know any example of a pair K, K' of unoriented 
prime knots which are inequivalent and have isomorphic groups. 

However, there are known examples of unequivalent composite knots which 
have the same group (the square knot and the granny knot). 

There are excellent introductions to link groups, and we shall not 
duplicate them. See among many others [Rh1], [Th1], or the usual text­
books [Rol], [BZ]. 

Other link invariants take their values in integers, such as the 
crossing number and the genus discussed above. But we shall center what 
follows on polynomial invariants, for which I(L) is a Laurent polynomial 
in one or two variables with integral coefficients. 

3.1. The Alexander-Conway polynomial 

Historically, the first polynomial invariants are the Alexander polyno­
mials, defined for knots by Alexander in 1928. We shall give below a 
definition of the first of these polynomials which can be taught to a 
computer, and we shall refer to the literature for the usual Alexander's 
definition (and mention a variant due to de Rham [Rh2]). To be more pre­
cise, Alexander's definition provides a Laurent polynomial in Z[t,t-1] 
which is only defined up to a multiplication by some +tn. Tables such as 
those of [BZ] show a polynomial 

N 
I a t n 

n=O n 
normalized by aN > 0 and aO ~ O. It is much later (1969) that J.H. Con­
way formulated his coherent choice for the normalizations, so that the 
Alexander-Conway polynomial is really a polynomial invariant [Co]. 

The (first) Alexander polynomial is quite powerful to distinguish 
unoriented equivalence classes of knots 

(i) 

(ii) 

(iii) 

A_prime knot with Alexander polynomial 1 has at least 11 
crossings (see [Co], and the diagram on page 173 of [Rol]). 
Among the 84 unoriented equivalence classes of prime knots 
with at most 9 crossings, there are only five pairs which 
are not distinguished by this invariant : (61,9~6)' (7~,92)' 
(81~,98)' (818,92~) and (9 28 ,9 29 ). The 12965 classes up to 
13 crossings yield 5639 different polynomials. 
Any polynomial f(t) EZ[t,t-1] with f(1) = 1 and f(t) =f(t- 1 ) 

is the Alexander polynomial of some knot. 

However, there are known examples of infinite families of prime knots 
defining a single Alexander polynomial. See for example [QW]. 
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Now we give Conway's definition of the Alexander polynomial. Say 
that three oriented links L+, L-, La are skein related if they can be 
represented by three diagrams which are identical outside of a small 
neighbourhood of one crossing point where they look as in Figure 15 (see 
also Figure 16). 

X L ,,+ x-
Figure 15. Skein related links. 

Now the Alexander-Conway polynomial of an oriented link L is the 
Laurent polynomial aL(t) in a formal variable t l / 2 with coefficients in 
Z defined by 

l'.OCt) = 1 
if 0 is the unknot and by 1 1 

l'.L+(t) - l'.L_(t) + (t'2:- t -'2:)l'.La(t) = 0 

whenever L+, L_, La are skein related. Of course, one has to prove that 
this definition makes sense, and this is not quite a trivial step, but 
we refer to [Ka1] or [LM] for this. Let us illustrate the definition by 
a computation of l'.T where T denotes the right-handed trefoil knot. Con-

00 co 00 
L1 L1 L1 

+ 0 

CID CQ) (Q) 
L2 L2 L2 

+ 0 

cg; CgJ CGJ 
L3 

+ 
L3 L3 a 

Figure 16. Three skein related triples. 
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sider three triples of skein related links as in Figure 16. 
Denote by 0 [respectively 00, L, T] the unknot [resp. the trivial 

link with two components, the linked pair of unknots, the trefoild knot] 
appearing in Figure 16. From the first triple one has 

lIo(t) - lIo(t) + (t! - t -!)lIoo(t) = 0 
and lIaa(t) = O. From the second triple 

lIL(t) - lIoo(t) + (ti -t-~)lIo(t) 0 

and lIL(t) -t! +t-i because lIo(t) = 1. And finally 

lIT(t) = 1 + (tt _t-i )2 = t -1 +t-1 

in agreement with tables, which show [BZ] 

lIB,f(t) = tllT(t) = t 2 - t + 1 • 

Let us mention three more properties of the invariant L ~ lIL(t). 

(i) If L has an odd number of components, and in particular if 
L is a knot (one component), then lIL(t) is a Laurent poly­
nomial in t (an even polynomial in t 1/ 2 !). If L has an 
even number of components, then t 1/ 2l1L(t) is a Laurent poly­
nomial in t. 

(ii) The invariant is multiplicative under connected sums: 
L\j;L (t) = L\(t)~ (t). 

(iii) The invariant does not distinguish reverse links : 
lIL(t) = lI_L(t). For-an actual knot K, the invariant does 
not distinguish it from its mirror image: lIK*(t) = lIK(t). 

(For a link L and for L*, see Proposition 5.3 in [Ka2]). 

3.2. The Jones polynomial 

In the early 1980's, V. Jones was working on finding invariants for sub­
factors, a problem in the theory of von Neumann algebras [Jo2]. This 
research had a spectacular offspring [Jo1] in producing a completely 
new Laurent polynomial invariant L ~ VL(t) EZ[tl/2,t-172] for oriented 
links. 

One may now define this invariant in several (equivalent) ways, 
independently of the theory of operator algebras. Here is one, in the 
same spirit as that of lIL(t) above: 

Vo(t) = 1 
if 0 is the unknot and i ! 

t-1VL+ (t) - tVL_ (t) - (t - t - )VLo (t) = 0 

if L+, L_ and La are skein related. (The sign convention is that of 
[Jo3], not that of [Jo1] !) The reader should find it easy to compute 
this invariant for the right-handed trefoil knot T : 

VT(t) = t + t 3 - t4. 
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Properties (i) and (ii) of t ~ ~L(t) mentioned at the end of Section 
3.1 hold again for t ~ VL(t), but property (iii) has to be changed in a 
very important way: 

VL*(t) = VL(C 1 ) 

In particular, if L is a link such that VL(t- 1 ) + VL(t), then L* and L 
are not ambient isotopic, so that L is chiral. For example, the computa­
tion above shows that the trefoil knot is chiral. (But this invariant is 
not complete: the table of [J03J shows 1n part1cular chiral knots L with 
VL(t- 1 ) = VL(t).) 

For another very nice computational definition of VL(t) due to L. 
Kauffmann, see [Ka3] or the Section 8 of [HKW]. 

To illustrate the use of the Jones' polynomial, let us describe one 
of the so-called Tait conjectures. Say that a link is alternating if it 
has a diagram showing, along each of its components, crossings which are 
alternatively over and under. Of course, an alternating link, which has 
by definition one alternating diagram, may have another diagram which is 
not alternating, as Figure 8 and Figure 17 show. 

Figure 17. A non alternating diagram of the alternating 
figure eight knot. 

It is known that any knot with crossing number at most 7 is alter­
nating (see Figures 1, 3 and 6 to 10), but it can be shown that the knot 
819 is not alternating (see § 10 of [HKW]). Thistlethwaite has computed 
that, among the 12965 unoriented prime knots of up to 13 crossings, pre­
cisely 6236 are nonalternating [Th2]. 
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Figure 18. The knot 819 is not alternating. 

Say that a link diagram is reduced if "there is no clearly redun­
dant crossing ", or more precisely if there is no simple closed curve in 
the plane of the diagram which intersects the diagram in exactly two 
points which lie near a crossing point. Diagrams which are not reduced, 
as those of Figures 17 and 19, are easy to recognize and easy to simpli­
fy, namely to replace by diagrams having less crossings. 

The following fact was used by Tait a century ago and has been known 
later as one of "Tait conjectures". Since 1986, it is a theorem of Kauff­
mann and Murasugi. (See [HKW] and [Tu1].) We state only a particular case, 
and refer to [Tu1] for more general results. 

, 
I 

, 

--- ... 

'"- .. __ .. 
Figure 19. A diagram which is not reduced. 
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Theorem. 
(i) 

(ii) 

(iii) 

Let K be an alternating prime knot. 
Two reduced alternating diagrams of K have the same number of 
double points, say n. 
Any diagram of K which is not alternating has at least n+1 
double points. 
If K is moreover amphicheiral or involutive, then n is even. 

It follows from (i) and (ii) that the crossing number of an alter­
nating prime knot K is exactly the number n of double points of any re­
duced alternating diagram for K (see the definition of the crossing num­
ber after Figure 5). It follows from (iii) that the trefoil knot or the 
knots of Figure 9, for which n = 3 or n = 5, are chiral. 

We shall also describe another result proved by Kauffmann and Mura­
sugi with the aid of the Jones' polynomial, because it provides a nice 
case study for the history of mathematics. Let D be an oriented link 
diagram. The plane of D being oriented, each double point is locally of 
one of two possible types, according to the sign of the rotation which 
brings the over branch to the under branch, as in Figure 20. 

Figure 20. The two types of crossings. 

The Tait number of D is the sum T(D) of these signs over all double 
points of D. (It is mistakenly called the writhe number in many papers, 
including [HKW], but the writhe number is something else [Po].) The Tait 
number does not change if the orientation is reversed on each component 
of D. Consequently T(D) is well defined if D is a diagram for an unori-
ented knot. --

During the twenty last years of the XIXth century, C.N. Little has 
been a frantic table maker for knots (references in [Th2]). In [Lit], he 
states (and proves!) the following as a theorem: Let K be a knot with 
crossing number n, and let D1,D2 be two diagrams for K with n double 
points; then T(D1) = T(D2). But this is not true as discovered by K.Per­
ko in 1974. More precisely, the two diagrams listed as 10 161 and 10162 
in Rolfsen's tables [Rol], which have distinct Tait numbers and which 
were consequently thought to represent non equivalent knots, do indeed 
represent the same knot. This explains why Table I in [BZ] stops with 
10165 , while Appendix C in [Rol] and earlier tables list knots up to 
10 166 , 

However Little was not that wrong, because it is now a theorem that 
he was right for alternating knots, so that the Tait number T(K) is well 
defined for an alternating knot K, but not for an arbitrary knot. If K 
is an alternating knot, it is obvious that T(K*) = -T(K). In particular, 
if T(K) + 0, then K is chiral. The converse does not hold, because the 
knot 8~, which is alternating and has Tait number zero, is chiral. This 
should bring some light to the interesting discussion of D.M. Walba 
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(part V in [Wa]). 
(First proof of the claim about 8~: If ~ is the Alexander polynomial 

of 8~, then the "determinant" ~(-1) = 19 is a prime number of the form 
4k+3, and this implies chirality by the result of § 9 in [Re]. Second 
proof: If V is the Jones polynomial of 8~, then 

V(t) t- 3 - t-2 + 2t-1 - 3 + 3t - 3t2 + 3t 3 - 2t~ + t 5 ~ V(t-1) 
so that 8~ is chira1.) 

3.3. Other polynomial invariants 

The work of V. Jones got a new subject started. Very soon after [Jo1], 
at least 5 groups of authors have independently proposed a two variable 
polynomial invariant for oriented links [FYHLMO] , [PT], [LM], [Hos]. One 
may define this invariant 

L - PL(l,m) EZ[l,l-1,m,m-1] 

as before by Po(l,m) = 1 and by 

(*) 1PL+ (l,m) + 1-1PL_ (l,m) + mPLo(l,m) 0 

whenever L+, L_, Lo are skein related. This invariant is sometimes called 
the Fyhlmo polynomial, or the Jones-Conway polynomial; it contains the 
invariants of Sections 3.1 and 3.2 

PL (i,i(t~ - t -i» 
_.1 .1. 

PL (it-1,i(t "2: - t2» 

but is strictly more powerful than these two specializations [LM]. 
(Caution: one should not believe that any odd relation in the style of 
(*) will work! Only very special relations produce link invariants.) 

Slightly later, another one variable polynomial 

L - QL (x) EZ[x,x-1] 

for unoriented links has been discovered [BLM], [Ho]. This has been gen­
eralized by Kauffman as a two variable polynomial 

L - FL (a,x) EZ[a,a-1 ,x,x -1] • 

See [Ka4] and [Lie]. There are further interesting polynomial invariants 
studied by Murakami [Mu] and others. 

All these invariants - VL' PL, QL, FL - are puzzling, in part be­
cause they lack good interpretations in terms of algebraic topology. But 
some coherence could well come back from the theory of quantum groups, 
itself motivated by quantum statistical mechanics and the "quantum in­
verse scattering problem". See [Dr], [Man], [Tu2], [Vel. Though we can 
hardly enter this circle of ideas here, we want to end this report by 
discussing one part of the necessary background, namely the connection 
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between braids and links. 

4. BRAIDS 

4.1. Braid groups 

Consider an integer n ~ 1 and n points PI , ••• , Pn in the horizontal 
x-y-plane R2 of R3. A braid with n strings is a family of nnonintersect­
ing descending oriented smooth curves w~th origins (P1,zi) , ••• , (Pn,zi) 
in some horizontal plane and with ends (Pl,zf) , ••• , (Pn,Zf) in some 
other parallel plane, with zf < zi. Two braids are ambient isotopic if 
one is the image of the other by an homeomorphism of R3 which is the i­
dentity if Z is either very large or very small, namely if Z » zi or if 
Z « zf. In mathematics, braids seem to go back to Gauss. 

In 1925, E. Artin realized that (ambient isotopy classes of) braids 
with n strings can be composed in the evident way. as Figure 21 shows, 
and constitute the n-string braid group Bn. Of course Bl has only one 
element and B2 is isomor~hic to the group Z of all integers, but the 
Bnls for n ~ 3 are very ~nteresting groups. The inverse of a braid is 
given by a mirror image and the braid with straight strings is the neu­
tral braid: see Figure 22. 

/ 

Xl 
Figure 21. A composition of two braids with three strings. 
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Figure 22. A diagram to illustrate ee-1 = 1 in B3 • 

255 

For j E {1 , • •• ,n-1} ,we denote by oJ the braid of Figure 23. It is 
easy to check that the braids crl , ••• ,crn-l generate Bn and that they 
satisfy 

1 j - 1 j j +1 , j +2 

• • • • • • 

Figure 23. The jth generator of Bn' 

if U-kl 1 

if jj-kl ~ 2 

n 

It is a result of E. Artin that the relations above constitute a pres­
entation of the group Bn' 

Any braid e E Bn can be closed and produces this way a well defined 
(ambient isotopy class of) or~ented link ~, as in Figure 24. An early 
(and now easy) theorem of J.W. Alexander (1923) shows that any oriented 
link is a closed braid. (In fact, E. Artin [Ar1] quotes much earlier 
proofs.) But the Figure 25 shows that several braids may close up to the 
same knot. 

A Markov move of type one is an operation on the disjoint union of 
the braid groups which replaces a braid e in Bn for some n by a conjugate 
yey-l, with y e: Bn. A Markov move of type two replaces e E Bn by ecrn E Bn+ 1 
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or by aoii l EBn+ lo or replaces one of aOn, f3crii l by a EBn. 
A theorem of A.A. Markov (1936) shows that two braids aEBm and 

a E Bn close up to the same oriented link ii = ~ if and only if there exists 
a finite number of Markov moves Yj ~ Yj+l of one of the two types defined 
above such that 

a = Y 0 ~ Y 1 ~ ... ~ Yk-l ~ Yk = a . 
See [Mor] for a proof. One has to be careful that some Yj may have to 
lie in Bp for some p much larger than max(m,n). 

Figure 24. A closed braid is a link. 

More about braids in [Bi] and [Mag], and also in Section III.C of 
[Wa]. See also [Ar2] for an exposition by the Master himself. 



1 

--
Figure 25. The two braids a. = cr 2cr 1 cr 2cr 1 E B 3 and 

f3 = cr13 EB2 close up to a trefoil 
knot a = ~. 

4.2. Towards some recent work 
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Let V be a vector space of dimension k, say with basis el, ••• ,ek. The 
tensor products V ®V and ®3V = V ®V ®V have dimensions k2 and k 3 respec­
tively, and typical basis elements ea ®eb and ea ®eb ®ec • We denote by 
End(V) the algebra of all linear endomorphisms of V (or of all k-by-k 
matrices), which is of dimension k2• Similarly, End(V®V) and 
End (V ®V ®V) have dimensions k4 and k 6 • 

Consider R E End (V ®V). Then R defines naturally an endomorphism 
Rl ,2 = R®idVEEnd(V®V®V) which acts identically on the third V. Sim­
ilarly R defines endomorphisms Rl ,3 and R2,S in End (®sV). Several prob­
lems in scattering theory (the Yang side) and in statistical mechanics 
(the Baxter side) have focused attention to (one form of) the so-called 
quantum Yang-Baxter equation 

(QYB) 

which is an equality in End(®3V) and in which the unknown is R (or more 
precisely a one parameter family R(S), but we shall ignore this here). 
What we shall remark is that several solutions of (QYB) have been worked 
out, some using an advanced theory of "deformations" of Lie algebras and 
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representations [Ji]. 
Suppose now that R EEnd(V ®V) is invertible and is a solution to 

(QYB). For each n ~ 1, we may define a representation of the n-string 
braid group Bn as follows. For each j E{1, •• h,n-1}, denote by Rj the 
endomorphism of ®PV which acts as R on the jt and (j+1)th copies of V 
and as the identity on the others. Then, because of the formal analogy 
between (QYB) and the relations among the generators al • •.• ,an-l of Bn , 
the assignment aj + Rj defines a representation 

TIR : Bn ~ Aut(®~) 

of Bn on the space ®~. It follows that the assignment S + trace(TIR(S» 
defines a scalar valued mapping on the disjoint union of all braid 
groups. If parameters are suitably introduced, the values of this mapping 
are not scalars any more, but rather functions, and in interesting cases 
Laurent polynomials. 

Variations on this theme provide mappings from the union of the 
Bn's to Laurent polynomials which take the same values on two braids re­
lated by a Markov move, namely mappings from ambient isotopy classes of 
oriented links to Laurent polynomials. It has been found that all poly­
nomial invariants discussed in Section 3 above fit in this setting. The 
full story is only currently being worked out. To our present knowledge, 
the most precise written account of these ideas is, for the time being, 
that of Turaev [Tu2]. 

* * * * * * * * * * * * * * 

Many thanks to Claude Weber, without the help of whom I wouldn't have 
written this report. I am also grateful to Bernard Dudez, Dale Husemol­
ler, Vaughan Jones, Jean-David Rochaix, Fran~ois Rothen and Hans Wenzl 
for their generous help and sharing of ideas. 
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ABSTRACT. The algebraic approach to quantum mechanics is used to describe 
the quantum properties of many-body systems, in particular when the dy­
namics involves long range interactions. In contrast with the short range 
case, in the presence of long range interactions the time evolution of 
essentially localized observables involves variables at infinity; this 
means that infinitely delocalized "classical-like" observables have to 
be introduced for a complete description of the system. They playa cru­
cial role in the phenomenon of spontaneous symmetry breaking (generalized 
Goldstone's theorem). In particular, the occurrence of an energy gap (at 
zero momentum) for the generalized Goldstone's boson spectrum is related 
to a non-trivial "classical" motion of the variables at infinity, induced 
by the effective dynamics (in a factorial representation). As explicit 
examples we discuss the Heisenberg model in the molecular field approxi­
mation, the BCS model for superconductivity, and the electron gas in uni­
form background as a model of metals. 

1. QUANTUM MECHANICS OF INFINITE SYSTEMS. ALGEBRAIC STRUCTURE AND b'l'A'rES 

Quantum Mechanics (QM) was invented to describe atomic physics i.e. sys­
tems with a finite number of degrees of freedom, and this is the field 
where the theory proved so successful. Later, it turned out that QM could 
be used also for other branches of physics, like quantum theory of elec­
tromagnetic radiation, quantum optics, solid state physics, nuclear matter, 
phase transitions etc., i.e. for physical systems which are conveniently 
described by infinite degrees of freedom. The point is that for (macro­
scopic) systems consisting of a large number N of constituents a simple 
description of their bulk behaviour suggests to neglect effects of order 
l/N and ~ = N (n being the density), and to consider the so-called "thermo­
dynamical limit" N + "', V + "', n = N/V fixed. {This means that the at ten-

265 

A. Amann et al. (eds.), 
Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, 265-285. 
© 1988 by Kluwer Academic Publishers. 



266 

tion is focused on "intensive" quantities like mean energy per particle, 
pressure, density correlations, mean electromagnetic properties etc.). 
The quantum theory of such systems requires then an extension of the or­
dinary QM to the case of infinite degrees of freedom (N + =) , briefly 
QM=. According to the fields to which it has been applied, such an ex­
tension of QM goes under the names of Second Quantization, Quantum Field 
Theory, Many-Body Theory, Quantum Statistics etc. and its success has 
proved so remarkable in the last twenty years, much beyond the theoretical 
expectations that the physical relevance of such theory is not less than 
that of ordinary QM. Actually, many of the newly emerging theoretical 
structures associated to the infinite degrees of freedom turned out to 
be crucial for understanding fundamental phenomena like collective effects, 
condensation, spontaneous symmetry breaking, phase transitions etc. and 
they provide a common unifying framework for apparently different physi­
cal situationsl ). 

A fruitful approach to QMM' pioneered in particular by segal2 ) and 
Haag3 ), distinguishes two different structures at the basis of QM: 

i) the algebra of canonical variables* ~ and 

ii) their representations as operators in a Hilbert space Je of 
states of the system. 

Such a distinction is not so crucial in the case of finite degrees of 
freedom, since in this caseJby the Von Neumann theoremJall the irreduc­
ible representations of the Weyl algebra generated by the canonical vari­
ables are unitary equivalentl )4) and therefore the choice of one instead 
of another is purely a matter of convenience, devoid of any physical im­
plication. The situation changes drastically in the case of infinite de­
grees of freedom, where the existence of inequivalent representations is 
at the basis of relevant physical phenomena like phase transitions, spon­
taneous symmetry breaking, collective effects etc. and the choice of the 
representation is strictly related to the physical properties of the sys­
tem. 

The first step is therefore that of identifying the algebra C1 of 
canonical variables or of the observables, if the emphasis is on the ob­
servable character of the basic variables. For technical reasons it is 
convenient to consider CL as a C*-algebra namely i) closed under the * 
operation (corresponding to taking the adjoint: e.g. (exp iaiqi)* = 
exp(-iaiqi), ai real etc.), and ii) normed,i.e. such that every element 

* For concreteness one may think of the algebra generated by the qi,Pi's 
or better by their Weyl exponentials exp iaiqi, exp iaiPi' which are 
bounded operators. 
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AE Ct is provided with a norm IIAII > 0, (1IAII=o iff A=O) , such that 

IIA*AII 

iii) norm closed (i.e. complete in the norm topology). A representation 
1T of d.t is a homomorphic mapping 

1T: A ... 1T(A) ) 

into the (bounded) operators of a Hilbert space le 1T • Isomorphic mappings 
define faithful representations and in this case the Hilbert space norm 
111T(A) IIX coincides with IIAII. A vector'!' E 'le 1T is cyclic for the repre­
sentation 1T if ']e1T = 1T «!t. )'1' (the bar denoting the strong closure). Two 
representations 1Tl' 1T2 are equivalent if there is a unitary mapping from 
1el to Je2 such that 1T2(A) = U 1Tl(A)U-l, !JAr. C!L. Clearly. every (normal­
ized) vector'!' E 1t defines a (normalized) linear functional Ol'I'(A)=('l',A'I') 
on d , Ol'I'(l)=l, which is positive, ('l',A*A'I')=IIA 'l'I12~0. This is also 
true for expectation values defined by density matrices 

Ol(A)-Tr(pA), p=I:A.p., 
p 1 1 

p. = one-dim. projector 
1 

Quite generally a state on ~is a (normalized) positive linear functional 
Ol and it is called pure if it cannot be decomposed as a convex sum 
A1Oll+A2Ol2' Ai~O, Al+A2=1 of two different states Oll,Ol2. 

Every state Ol defines through the GNS construction a representation 
~w with a cyclic vector OE~ such that 

1TOl 

Ol(A) = (O,AO), !JA E 6L 

(for details see Ref. 4, vol. II). Thus, in particular the ground state 
correlation functions completely determine the representation and there­
fore the (corresponding) Hilbert space of states. 

It is not difficult to recognize in the above definitions the pre­
cise algebraic formulation of familiar concepts of QM (with the basic 
advantage that the so obtained framework is rich enough to allow a smooth 
transition to QM=). Along the same lines, one can define a symmetry 
transformation e on the canonical variables (or on the observables) as 
a *-automorphism of 6l (i.e. an invertible mapping which preserves the 
algebraic structure including the *). As an example one may consider the 
time translations at and the space translations ax' with the simple physi­
cal interpretation that at(A) describes the time evolution of A and 
ax(A)=Ax ' the observable A translated by x. In the following, we will 
always assume that the space translations (or at least some discrete sub-
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group of them) define *-automorphisms of Cl. As we will see below the 
defini tion of at on <..Q., is a deep dynamical problem. 

A symmetry is unbroken in a representation ~ if there is a (anti) 
uni tary operator on de. 1T such that 

-1 /(\ 1T(Il(A)) = U 1T(A) U , lj. A Eo \.::.t.-

Clearly in this case the physical description of the system by the states 
of 1e 1T is symmetric under ~ i.e. there exists a mapping of the states 
which preserves the transition probabilities. Otherwise, the symmetry 
is said to be broken; this means that the symmetry exists at the algebraic 
level (in particular at the level of commutation relations and of 
Heisenberg equations of motion), but it is not a symmetry of the expec­
tation values in the sense that one cannot find a one-to-one mapping 
'I'+'I'1l of the states of X 1T which preserves the transition probabilities 
(by Wigner's theorem such correspondence would be described by a unitary 
or an antiunitary operator). 

It is not the point to emphasise here the tremendous impact that the 
above ideas of spontaneously broken symmetries had on the recent develop­
ments in theoretical physics both at the level of Elementary Particle 
physics as well as for Solid State physics and Statistical Mechanics. 
(For a brief account see e.g. Ref. 1). 

2. LOCAL ALGEBRA. NON-RELATIVISTIC DELOCALIZATION. ESSENTIALLY LOCALIZED 
OBSERVABLES. 

A further important idea for the quantum description of infinitely ex­
tended systems is the realization5 ) that only measurements which are 
localized in space can actually be performed and therefore the local pro­
perties of an infinitely extended system have a prominent status. It is 
therefore convenient to consider the algebra 6L as generated by elements 
which have localization properties. More precisely, to any bounded region 
V one associates the (Von Neumann) algebra ctv of variables localized 
in V (or of observables which can be measured in the volume V); one then 
considers the local algebra 

In _u& 
Vlo = V V 

(2.1) 

In II II 
and its norm closure ~ = ~ (called quasi-local algebra). 

o 
A crucial property to be required for an acceptable physical inter-

pretation of the theory is that the measurements of any two localized 
elements A, B £~ do not interfere in the limit of infinite space separ-
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ation (asymptotic abelianess in space): 

norm-lim [A+,B] = O. 
\x\+co X 

(2.2) 

This property is obviously satisfied in the case of relativistic systems 
as a consequence of Einstein's causality. In the above language the solu­
tion of the dynamical problem is the determination of the time evolution 
A + At for any element of ct. From a constructive point of view the 
theory is defined in terms of finite volume or infrared cutoffed 
Hamiltonians HV and the generated finite volume dynamics at, which define 
one parameter groups of automorphisms of {2.0 (more generally of (Q.. ). 
One has then to remove the infrared cutoff, V + co to obtain the al­
gebraic dynamics on & o' 

In the case of dynamics with finite propagation speed, for any 
Ae ~o' at becomes independent of V, for V large enough, and therefore 
one easily gets the algebraic dynamics at = l~m at as an automorphism of 
Cio ' More generally, in the case of "short range" dynamics, for any 
A e dlo ' at(A) converges in the norm topology to an automorphism group of 
~. (This has been proved6 ), e.g., for spin systems with two-body in­

teractions decaying faster than \x\-3). In this case, the dynamical pro­
blem is conceptually under control and the corresponding theory is well 
developed4 )7). In particular, one may select the physically relevant 
representations of ~ as those characterized by a time translation in­
variant state (ground state). This guarantees that the spectrum of the 
Hamiltonian is well defined. 

It is worthwhile to stress that the existence of the dynamics at the 
algebraic level, namely as an automorphism group of ~ , independent of 
the choice of the representation, implies that different phases have the 
same dynamics and that their different physical behaviour is solely due 
to the different properties of the ground states,i.e. of their correlation 
functions yielding inequivalent representations of the ~ algebra. 

The local structure plays also a relevant r8le in the breaking of 
continuous symmetries (Goldstone's theorem)8)1). A one parameter group 
of automorphisms aA, A€m, is generated by a local charge QR (affiliated 
to some ~V) if ¥A € ~o 

(2.2) 

Modulo technical assumptions (like the limit (2.2) being uniform in A 
together with its derivative) the above equation implies 

d A 
M = dA a (A) I = i lim [Q ,A] • 

A=O R+co R 
(2.3) 
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In most of the applications QR can be written as the integral of a charge 
density 

(2.4) 

+ 
and the charge density commutations [jo(x,t), A] are (absolutely) integra-
ble in x (charge integrability property*, see Refs; 9) for more details) 

.. . 8-10) 
THEOREM (Non-relat~v~st~c Goldstone's theorem) 
Let 
1) aA be a one par. group of aut. of eto ' [aA,ax]=O' generated by a 

local charge QR' on ~o 

2) 

¥A €& o 

(andlimit is uniform in A together with its derivative). 

A t a a 
V 

(symmetry of Hv) , 

t t 
3) aV converge in norm to a ("short range" dynamics). 

If) " 1/ Then i) aA has unique extension to the algebra VL= £[0 ~ stable under 
time evolution, generated by a local charge; ii) aAat = ataA . Hence, if 

'I' 0 is a translationally invariant state and 

4) lim <[Q ,B]> -# 0 B E (Q., 
R+oo R 'Po 

5) 
Ilxl< 

3 
density commutators ([P(X,t),A])o Q = R d x p(x) and the charge R 

are absolutely integrable in x, 

then: iii) aA is spontaneously broken in the representation TI defined by 
'Po; iv) there exist quasi particle excitations (Goldstone bosons) with 
infinite lifetime as k + 0 and energy w(k) + 0 as k + 0 (no energy gap). 
Property 5) is crucial for the derivation of the point spectrum at k + O. 
It generalizes the causality condition of relativistic quantum field 
theory. When a~ does not converge in norm, as in the case of long range 
interactions, properties i) and ii) become problematic and their failure 
is at the root of the evasion of Goldstone's theorem. The relevance of 

* This property plays a crucial role for a derivation of the Goldstone 
boson spectrum9). For the applications,it is enough to have eq.(2.3) and 
the integrability property satisfied as expectation values on the ground state. 
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the theorem is that from symmetry considerations one may get exact, non­
perturbative information on the energy spectrum at k + 0; for significant 
applications we mention the theory of ferromagnetism (spin waves), super­
fluidity (Landau phonons), crystals (phonons) etc. l1 ). 

It is worthwhile to mention that for non-relativistic systems like e.g. 
the free bose gas (and also for relativistic systems involving unobserv­

able field algebras) the above framework requires some technical modifi­
cation namely an enlargement of the quasi-local algebra to get a well­
defined algebraic dynamics (see e.g. Refs. 12). The reason is that for 
non-relativistic systems the speed of propagation is infinite and there­
fore some delocalization is unavoidable in the time evolution; the norm 
convergence of a~ has then to be replaced by the convergence of the ex­
pectation values of a~ on a family JF of "physically relevant" represen­
tations of ~o' More precisely, the algebraic dynamics has to be defined 
as the weak limit of a~ with respect to the weak topology 1JF of the states 
of JF. Consequently, the algebraic dynamics is naturally defined on the 
1JF closure M of ~o' rather than on C1.9,10,12) (Additional technical 
conditions are also needed in order that at defines a one parameter group 
of automorphisms of M. 9,10,12». However, as it appears in several 
models under control, when the interaction is of short range, the algebraic 
dynamics leaves stable a weakly dense sub algebra ell of M, with trivial 
center which to all effects can be considered as the algebra of~les 
for such non-relativistic systems. Typically, (in particular in the 
simple models), the enlargement from d to &1 corresponds to the in­
clusion of field variables smeared with test functions of non-compact 
support, suitably decreasing at infinity (for example test functions in 
~(R3) or more generally in L2(R3» 12)(nonrelativistic delocalization). 
The emerging structure is that the dynamics leaves stable an algebra Cll ' 
which still has some kind of localization (algebra of essential localiz­
ation)9), so that the modification of the Haag-Kastler local structure 
appears more technical than substantial. The crucial point, which can be 
taken as a characterization of these cases, is that the algebraic dynamics 
leaves stable an algebra r!ll:::> & 0' with trivial center (essentially 
local structure)9J. 

In this framework, under general conditions (realized, e.g., in 
simple models), one parameter groups eA, A E m, of Cl 0' generated by a 
local charge QR on c!l 0' can be extended to & 1 with the property that 
they are still generated by QR on ell' The basic ingredient of the 
Goldstone's theorem, as discussed in the previous section, is then re­
covered and the conclusions of the theorem hold as in the standard case. 
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3. LONG RANGE INTERACTIONS AND VARIABLES AT INFINITY. MODIFIED HAAG­
KASTLER LOCAL STRUCTURE. 

The general algebraic structure of QM~ discussed in the previous section 
requires some modification in the presence of long range interactions, an 
unavoidable feature of most many-body systems, since the Coulomb force is 
at the basis of the structure of matter. The crucial point is that in the 
case of long interaction the commutator [HV,A], with HV the finite volume 
Hamiltonian and A a localized variable, in general involves in a substan­
tial way variables localized on or near the boundary of V, which in the 
limit V • ~ become variables localized outside any bounded region, i.e. 
the so-called variables at infinityB). As a consequence of the asymptotic 
abelianess in space, the variables at infinity commute with all local 
variables. 13) Typical examples are the ergodic means 

~ f 
3 

lim d x A. A 
V+~ x 

V 
(3.1) 

or the V . ~ limit of averages around the boundary, like 

lim fd3X f (x)A. , 
R·~ R x 

(3.2) 

with fR(x) a regular function different from zero only in the region 
R < I~I < R(l+a) and suitably normalized (ffR(X)d3X=1). 

It is a technical relevant feature of the above limits (and more 
generally of the convergence to variables at infinity) that they do not 
exist in the norm topology but only in a weak topology defined by states 
which must be sufficiently regular at infinity. We meet here what we 
consider to be a basic feature of long range interactions; the infrared 
behaviour of the dynamics requires a careful handling of the thermody­
namical limit. To get an algebraic definition of the dynamics, starting 
from an infrared regularized one, one has to make reference to infrared 
regular states to remove the infrared cutoff9 ,12). We will denote by ~ 
a family of such "physically relevant" states and by ,~ the correspond­
ing weak topology. One can specify conditions9 ) which guarantee that the 
,~-weak limit of a~ define an algebraic dynamics at as an automorphism 
group of M = the ,~-weak closure of dt. The relevant mathematical and 
physical property, which distinguishes the long range case with respect 
to the short range case, is that the quasi-local algebra ct is not stable 
under at and that the time evolution of local variables involves variables 
at infinity. Thus, the local framework of Sect. 2 appears too narrow (in 
a much more substantial way than that mentioned at the end of sect. 2) 
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and global infinitely delocalized variables have to be added to ~ (or 
more generally to a 1) for a complete algebraic description of systems 
with long range interactions. (For the mathematical structures involved 
we refer to Ref. 9). The above phenomena can be explicitly checked to 
occur in spin models like the BCS mode19 ), in simple gauge models with 
Coulomb-like interaction15 ) and in realistic many-body models like the 
Coulomb gas with uniform background16). 

For the discussion of symmetries and their breaking it is convenient 
(and always possible9 » to choose the family of states F stable under 
the * automorphisms a of & and their inverse 13-1 , so that (the condition 
is necessary and sufficient9 » they can be uniquely extended to auto­
morphisms of M. Furthermore one can show9 ) that the symmetries of the 
finite volume dynamics a~ are also the symmetries of the algebraic dy­
namics at (more generally the covariance properties of a~ are shared by 
at) • 

On the basis of the above general considerations and of the experi­
ence with explicit models one is led to the following: 

Modified Haag-Kastler structure: There exists a weakly dense subalgebra 
&1 of M , dtl:J &0 with the properties that 

i) a 1 has a trivial center 

ii) (1 1 is faithfully represented in each factorial representation of F 

iii) the algebraic dynamics at leaves stable the algebra generated by 
ell and by the algebra at infinity el~ 

Remarks. In relativistic theories based on the observable algebra, ell 
can be taken as the local observable algebra; clearly the occurrence of 
variables at infinity in the time evolution of local variables is com­
patible with Einstein causality. In the case of mean field lattice 
models, like e.g. the BCS model, ell can be taken as the quasi-local 
algebra CL. In general a delocalization is needed for non-relativistic 
systems where the propagation speed is not finite, and in these cases 
CL l ;) &. 

If follows from the above structure that in each factorial represen­
tation 11 of ct l' defined by states of F, since the variables at infinity 
get frozen to their ground state expectation values, the algebraic dy­
namics at defines an effective dynamics a; as an automorphism of CL I • 
This can be interpreted as an effective essential localization of the dy­
namics in each factorial representation 11 of F. Symbolically~if 

(3.3) 
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then 

(3.4) 

This can be regarded as the rigorous formulation and clarification of the 
so-called seizing of the vacuum, euristically advocated for gauge theories 
on the basis of two dimensional models. For more details on the above 
structure see Refs. 9. 

From a pragmatic point of view one could take the position that ell 
is the physically relevant algebra and that the algebraic dynamics is 
given by ai, so that no variable at infinity ever occurs. The drawback 
of this point of view is however that in so doing one makes reference in 
an essential way to a given representation TI so that a) the algebraic 
properties of the time evolution are essentially lost, since a~ is in 
general implementable only in the representation TI, b) there is no unify­
ing algebraic treatment of the dynamics of different phases, since they 
are described by different algebraic structures (~l,a~.) c) the symmetry 
properties of the dynamics are lost at the algebraic le~el and in particu­
lar phases related by automorphisms of CL l , e.g. defined by the states w 
and W 0 a, are no longer on equal footing as far as the algebraic dynamics 
is concerned. 

In our opinion, the introduction of variables at infinity appears as 
a non-dramatic modification of the standard structure and a technical 
price worth paying to keep the formulation as algebraic as possible. The 
occurrence of variables at infinity is not only compatible with the basic 
physical principles, but it also has a physical meaning since it allows 
to establish links between "phases" with different effective dynamics. 
In some way, the variables at infinity parametrize at the algebraic level 
the "infrared" structure of the dynamics and in some sense they trivialize 
the dependence on the boundary conditions (vacuum seizing) in terms of 
classical-like quantities, in situations in which, as the results of the 
long range interactions, the coupling with the boundary gives rise to 
volume effects in the dynamics. 

4. GENERALIZED GOLDSTONE'S THEOREM9 ,lO FOR DYNAMICS WITH LONG RANGE 
INTERACTIONS 

From the discussion of the previous section, it follows that the sym­
metries of the finite volume dynamics a~ are no longer shared by the 
effective dynamics at, (the property of being symmetric is peculiar to 

TI 
at and actually one of the main motivations for its definition), whenever 
the variables at infinity involved in tire time evolution of ell are not 
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pointwise invariant (see eq. (3.4». This provides a new mechanism of 
symmetry breaking9 ,10) substantially different from the standard 
Goldstone's mechanism, the latter being characterized by symmetric 
equations of motion and by non-symmetric ground state. In particular, 
the spectrum of the elementary excitations associated to this new mech­
anism of symmetry breaking is no longer constrained to be trivial, namely 
w(k) + 0 as k + 0 (no mass gap). 

More precisely, the point is that in each factorial representation, 
defined by a translationally invariant ground state $0' the energy spec­
trum associated to the breaking of a one parameter group of symmetries 
a A, A EO lR, generated by a local charge QR, is related to the Fourier 
transform of the charge density commutator, (a crucial role is played by 
the charge integrability condition9 », 

<[Q ,A ]> 
R t $ 

o 

t f 3 t <[Q ,a (A)]> = d x <[j (x) ,a (A)]> (4.1) 
R 1f $ 0 1f $ o Ixl~R 0 

and, since a; is not symmetric, the above expectation value is in general 
not independent of t, in the limit R +~. Actually one has9 ) 

d t 
=-<a(A»'1 ' dA 1f $" 

o A=O 

.. 0 QA 
"'0 ... 

and, if aA commutes with the space translations (more generally if 
[aA,a+] is "unbroken"), the right hand side can be written as 

x 

(4.2) 

(4.3) 

The energy spectrum is therefore the same as that of the motion defined 
t on the variables at infinity A~ by the effective dynamics a1f , linearized 

around the stable point 

< A > 
$ 
o 

(4.4) 

Since the (effective) time evolution of A~ takes place in an abelian 
algebra (identified by a family of states stable under a~ and aA ) one 
is led to the study of a "classical" dynamical system. If such motion 
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is finite dimensional, as is the case in the applications so far under 
contro19 ,15,16) and as can be guaranteed by general conditions, then the 
spectrum is quasi periodic and its frequencies Wj give a discrete non­
trivial energy spectrum at k + 0, corresponding to excitations with in­
finite lifetime in the limit k + 0, (quasi particle spectrum of the 
generalized Goldstone's bosons). For the mathematical details see Ref.9. 

5. EXAMPLES 

5.1. BCS model of superconductivity 

The BCS model of superconductivity in the spin version suggested by 
Anderson17 is described by the following finite volume Hamiltonian 

1 i' 
H = --- E E 0 A oJ + E E 
V Ivi i,jeV a,a a aa a ieV a 

C 
a 

i 
o 

a 
(5.1) 

where i,j are lattice site indices, a,a denote the spin components, 

A 
aa 

C 
a 

- di 
a,3 

(5.2) 

It is mostly this form of the ~odel which has been discussed in the text­
books of quantum solid state18 and in the mathematical physics litera­
ture19 ). However, in the past treatments the general algebraic features 
discussed in the previous sections were not pointed out. As a matter of 
fact, this model together with other mean spin models like the Heisenberg 
model (see 5.2 below) provide the most clear and simple realization of 
the general structures discussed so far9 ). 

The algebra of quasi local observables Cl is the standard spin al­
gebra on a lattice20 ). The finite volume dynamics a~ generated by HV 
defines a one-parameter group of automorphisms of eL determined by the 
following equations of motion 

where 

d t i 
dt av(o~) = -2 E [A 

u a6y aa 
tit V 

a (0 )a (0 ) + 
V y V a 

t V tit i 
+ A a (0) (o)j - 2C E a (0 ) J 

aa V a V y a a6y V y 
(5.3) 
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(5.4) 

As a family IF of physically relevant states one can take the largest set 
of states on which the averages (5.4) converge ultrastrongly as V~ = to 
the ergodic means 

= 
a 

a 
lim 
V+= 

V 
a 
a 

(5.5) 

This is the condition of sufficient regularity of the states at large 
distances needed to guarantee the ultrastrong convergence of a~ to a one 
parameter group of automorphisms at of the Von Neumann algebra M _ weak 
closure of <9, with respect to IF (see Ref. 9; see also Ref. 21 for a 
different approach). To be more concrete we further specify IF as the 
set of product states $ with the property 

t = 
$(a (a» 

a 
(5.6) 

The algebraic dynamics at then satisfies the equations (5.3) with . 
a~(aX) + ai, Le. it corresponds to a rotation R~=(t) of the spin a ~ 
"around" the vector 0=. It is then obvious that the time evolution of 
the local variable oi involves the variable at infinity 0=. Moreover, 
the algebraic dynamics leaves stable the algebra generated by ct and 
the algebra at infinity CL= generated by a=. It also follows that there 
is no dense subalgebra of M· with trivial center stable under at (quan­
tum bifurcation). 

Furthermore, in each factorial representation n of IF, the algebraic 
dynamics gets essentially localized with Cl as the algebra of essential 
localization, so that the generalized Haag-Kastler locality holds with~ 
as the algebra of essentially localized variables. Here, due to the 
lattice formulation and the simplicity of the interaction no delocaliz­
ation is involved (Qll = el), as in relativistic local quantum field 
theory. 

Given a pure product state 
with 

+ 
invariant under space translations $g, 

1 1 (5.7) 

the invariance under time translations requires either na = (O,O±l) or 
na = (n1 ,n2' &/Tc )· For each factorial representation nn determined by 
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such states the effective dynamics a; is obtained by freezing the vari­
ables at infinity in at to their groURd state expectation value n 

i 
(Rn(t)cr ) a (5.8) 

Clearly, the effective dynamics leaves stable the algebra of essentially 
localized observables a 1 = a , i. e. the stability under time evolution 
is regained once the boundary conditions are fixed and the effective dy­
namics depends on the boundary conditions (seizing of the vacuum). Thus, 
different phases are described by different effective dynamics in con­
trast with the standard local case. 

The space rotations around the z axis, define a one parameter group 
of automorphisms aA , A € JR, of & , which extend to automorphisms of 

by weak continuity as a consequence of the stability of F under 
(a A)*. Furthermore, while the algebraic dynamics at is aA symmetric 
(as is the finite volume dynamics), the effective dynamics a~ is not 

n 
symmetric if n is not aligned to the z direction. In fact, variables at 
infinity which are not invariant under aA are involved in the algebraic 
dynamics at (non-symmetric quantum bifurcation9 ) and therefore their 
getting frozen to c-numbers spoils the symmetry (spontaneous symmetry 
breaking induced by non-symmetric bifurcation). 

The group G of kinematical symmetries of DL , here the rotations 
around the z axis, and the effective dynamics a; generate a larger group 
S of automorphisms of Q (dynamical group of ~ymmetries), here the 

group generated by rotations around the z axis and around~. The group 
S is not a symmetry of the finite volume dynamics for ft not aligned to 

the z axis. Finally, the effective dynamics commutes with rotations 
around n (dynamical symmetries). 

Under the effective dynamics the variables at infinity are not 
pointwise stable and since the algebra at infinity is abelian (as a con­
sequence of asymptotic abelianess) one has a "classical" dynamical system 
whose time evolution is given by 

t _ a 
11 

n 

(5.9) 

i.e. by rotations around n with frequency w = 2T. The generalized 
c 

Goldstone theorem predicts the existence of generalized Goldstone exci-
tations with energy spectrum at k .,' 0, given by the classical motion of 
the variables at infinity. Here, one has a periodic motion of frequency 
w = 2Tc and therefore the Goldstone bosons are quasi particles, i.e. 
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excitations with in~inite li~e time in the limit k + 0, with energy 
spectrum characterized by a gap ~ = 2Tc, as k + o. 

5.2 Heisenberg model in the molecular ~ield approximation 

The Heisenberg model o~ ~erromagnetism is not soluble and as a simplify­
ing approximation one may consider its molecular ~ield version. It is 
de~ined by replacing the local spin-spin interaction 

_ 1: 

i,jeV 
J .. 

l.J 
(5.10) 

with J ij a ~inite range potential by the (long range) interaction o~ 
the spin at the i-th site with the operator average o~ the spin inside 
the volume V 

1: ~ j + J 
1: a.1 

jEV 
J ij Ivi jEV 

so that 

J +i +j (5.11) H + HV - - TVT 1: a a V i,jEV 

From the algebraic point o~ view such approximation is slightly better 
than the crude mean ~ield approximation, by which, in eq. (5.10), ~j is 
replaced by its expectation value <d .b.. In ~act HV still does not make 
re~erence to the choice o~ a representation and ~thermore the space 
rotational symmetry is preserved. 

The model, as well as other simple spin models in the molecular 
~ield approximation, can be treated exactly9 as the BCS model above. The 
di~~erent ~eatures concern the symmetry properties o~ the model (which 
corresponds to Aaa = -J 6aa , Ca = 0 in eq. (5.1». In particular there 
is no restriction on n ~or the time translation invariance o~ the pure 
product states;g (eq.(5.7». 

The symmetries o~ the ~inite volume dynamics are the space rotations 
art; they are also symmetries o~ at but not o~ ex;. The dynamical group 
generated by a; and an here coincides with origi~al group rotations 
( ~ = G). The l::otion o~ the variables at innnity ~CD is the group o~ 
rotations around h, with ~requency 4J. This is the energy gap at k + 0 
o~ the generalized Goldstone bosons associated to the spontaneous break­
ing o~ rotations by the mechanism o~ non-symmetric bi~rcation, in each 
representation de~ined by the states ,~. 
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6. COULOMB FERMI GAS IN UNIFORM BACKGROUND 

From the many-body point of view a relevant question is the possible 
relation between the plasmon energy gap and the energy gap in the BCS 
theory of superconductivity and more generally the relation between energy 
spectrum at k + 0 and spontaneous symmetry breaking. This is also one of 
the deep questions in the gauge theory of elementary particles, in parti­
cular at the grand unified scale and for the so-called U(1) problem. As 
we shall see, the framework discussed so far provides a general under­
standing16 of the mechanism which underlies the above phenomenon of mass/ 
energy gap generation in the electron gas. In particular, we will show 
that the dynamics of the electron gas is characterized by the occurrence 
of variables at infinity. 

To clearly display these features we will consider the Coulomb Fermi 
gas in uniform background commonly regarded as a model of the theory of 
metals. The model is obtained by neglecting the ion dynamics and by 
approximating the ions with a uniform background of charge density PB. 
Roughly the model can be regarded as the zero order expansion of the full 
theory in the ratio m/M between the electron and the ion mass. 

6.1 The infrared regularization and the removal of the infrared cutoff 

The model is defined by the formal Hamiltonian 

1f 3 3 +"2 1/I*(x)1Jl*(y)V(x-y)jJ (y)1/I(x)d xd y • (6.1) 

2 
where V(x-y) = e /Ix-yl and 1/1*,1/1 are the electron creation and annihil-
ation operators. Clearly, an infrared regularization is needed to give 
a meaning to the above Hamiltonian and we will choose16 to cut the 
Coulomb potential 

Vex) + vex) fL (x) , 

with fLex) = f(lil/L) and f a regular function which is one inside a 
sphere of radius one and vanishes outside a sphere of radius 1+£; (as 
will be clear in the following the results are independent of the particu­
lar form of f). 

The so-obtained infrared cutoffed Hamiltonian HL generates an infra­
red cutoffed dynamics at on the (quasi) local gauge invariant algebra 
CL generated by 1/1, 1/1* at t = 0 and the problem is the removal of such 
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cutoff. As a family of physically relevant states F we consider those 
states ~ which are sufficiently regular at infinity such that 

A) The correlation functions 

+ -1 
Ixl ~(A( p(x)-PB)B) 

with A,B ~ Qt, are absolutely integrable in x. This means that the elec­
tion density at large distances approaches the background density PB 
faster than lil-2 • 

This condition guarantees the existence of the correlation functions 
of the electric field 

E(x,t) = - J d3y VV(x-y)(p(y,t)-PB), (6.2) 

i.e. the weak convergence of a£(E), as L + ~. To get the group law for 
the dynamics in the limit L+ m one should actually have the ultrastrong 
convergence of ai. For example, for the two-point function of the elec­
tric field one should have the integrability in the x,y variables of the 
correlation functions 

Ix+I-2 Iy+I-2 )( ( ) «p(x,t)-~ py,t)-PB >0' 

Thus, in the following we will slightly strengthen condition A on the 
infrared regularity of the physical states ~ by requiring that 

A') The correlation functions 

+ -2 ~{} 
Ixl ~ (A(p(x,t)-Pa)B), A,B E: V'V • 

are absolutely integrable. 
By exploiting this condition one can discuss the removal)of the 

infrared cutoff at each order of the Taylor expansion in t 22 . 
The cova~iance group of the infrared cutoffed dynamics a( is the 

Galilei group. At arbitrary times, in particular at each order in t of 
a Taylor expansion around t=O, the local generation of the Galilei group 
by local charges can be taken as a basic feature in the characterization 
of the algebra ell of essentially localized observables. This can 
actually be used as an algebraic tool to identify elements of eLl' 

One can then show that variables at infinity occur in the time evolu­
tion of local observables16 ,22). More specifically one can show22 ) that 
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2 long 00 

-00 : p (j. -j. ) : (x) 
p l. l. 

(6.3) 

where the dots : denote Wick ordering, T. k is a local gauge invariant 
flIDction of 1jI, IjI * and Ei, j tong describes Me longitudinal current be­
longing to (ll' (since it satisfies the above criterium), and j1 is the 
variable at infinity corresponding to the ergodic mean of the current. 

Furthermore, the effective dynamics at gives rise to the following 
11 

equations of motion 

2 t long 
-411e a (j. (x» 

11 l. 
(6.4) 

(6.5) 

(6.6) 

Clearly, all the above equations involve only elements of CLI and 
provide the equation of motions for the effective dynamics. 

For the Coulomb Fermi gas with uniform background the non-vanishing 
background density implies that the Galilei boosts aV are spontaneously 
broken. In fact, given a pure ground state ~o' invariant under space 
translations we have 

< d 
dv. 

l. 

> 
o 

(6.7) 

As a result of the generalized Goldstone theorem, the energy spec­
trum at k + 0 of the generalized Goldstone bosons is given by the classi­
cal motion of the variables at infinity associated to the symmetry break­
ing order parameter. In the case of the breaking of the Galilei boosts 
we have to consider the classical motion of ji, induced by the effective 
dynamics a;'. This can be done by using the equations of motion (6.4) 
(6.5) and the equation of motion for j~ong 22 

l. 
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d t ,long t 
m-a J, =a (1I-lim a,a V * (:pE: + as», 

dt 11 ~ 11 L+O> ~ k L k n nk 
(6.S) 

The important fact is that the equation of motion for the variables at 
infinity, which can be obtained by taking the ergodic means of the above 
equations, are much more simple. Since a~ commutes with the space trans­
lations one has a~akA = akatA, for any AG ell' and the ergodic_me~ of a 
space derivative of an element of ell' vanishes on $0 and on $v=(Bv)*$o 
since both are translationally invariant as states on the gauge invari­
ant algebra (Q.. 1 . 

give 

Furthermore the Maxwell equations 

a,E,(x) 
~ ~ 

2 
411e : pE, : 

~ 

and therefore 

2 
+ 411e 

(6.9) 

(6.10) 

i.e. an automatic linearization takes place. Thus, eqs. (6.4)(6.5) 
yield 

22) Similarly, from eq. (6.S) one gets 

0> 

The solution for ji is a periodic motion with frequency wp: 

This implies that 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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i) the plasmons are the generalized Goldstone bosons associated to the 
spontaneous breaking of the Galilei boosts; 

ii) the plasmon spectrum at k + 0 can be calculated exactly and it con­
sists of a single point w = Wp' i.e. the plasmons are excitations 
with a lifetime which goes to infinity when k + 0, namely the 
plasmons are quasi particles; 

iii) the plasmon energy gap is generated by a phenomenon of non-symmetric 
quantum bifurcation and it is related to the non trivial classical 
motion of the variable at infinity ji. 
The plasmon energy spectrum at k + 0 can also be derived, more gen­

erally (without using the equations of motion for the effective dynamics 
eqs. (6.4) (6.5) (6.8». In fact, one can directly show16 ) that 

ilim <[G. (t), j.(O)]> = p cosw t 
R+= 1,R 1 0 B P 

(6.16) 

where G. is the local charge generating the Galilei boosts, and, by 
1,R 

the connection between charge density commutators and energy spectrum, 
one gets the plasmon spectrum at k + O. It is worthwhile to stress that 
again the proof of eq. (6.16) requires a careful handling of the limit 
L + =, required to define the time evolution of the Galilei charge 
starting from the infrared cutoffed dynamics ai, and the limit R + =, to 
be performed last. 
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THEORETICAL CONCEPTS IN QUANTUM PROBABILITY; 
QUANTUM MARKOV PROCESSES 

Hans Maassen 
Institute for Theoretical Physics 
University of Nijmegen, Toernooiveld 
6525 ED Nijmegen, The Netherlands 

ABSTRACT. An introduction is given to some fundamental concepts in 
quantum probability, such as (quantum) probability spaces and (quantum) 
stochastic processes. Recent results are described relating to the 
question, what transition probabilities for an n-Ievel quantum system 
are theoretically possible in a quantum Markov process. 

Quantum probability theory is an attempt to generalise ordinary 
mathematical probability theory in such a way that it becomes a tool 
with which to discuss quantum mechanics. The theory was developed when 
the study of operator algebras for statistical mechanics and for field 
theory, made the parallels between probability theory and quantum 
mechanics stand out. In their fundamental paper [AFL] , Accardi, 
Frigerio and Lewis formulated the concept of a quantum stochastic 
process: a small quantummechanical system, embedded in a large 
quantummechanical environment which evolves in a reversible way. If one 
wishes to satisfy the "fluctuation regression hypothesis" for the small 
system, the coupling to the environment must be singular, and the 
environment has to carry away to infinity all influences it feels from 
the system. This "Markov property" can only be realized in an 
environment with an infinite number of degrees of freedom, and the only 
way to deal with that theoretically is to use the formalism of von 
Neumann algebras and normal states. It is then wise to use this 
formalism from the very beginning and to pay attention to the 
surprising structure discovered by Tomita. This decision pays off, so 
it turns out. Certain puzzling difficulties, such as the problem, how 
to impose an initial condition on the small system without effecting 
the environment, are better dealt with in this language. Once the 
concept of a Markov process has been established, the "dilation 
problem" can be posed: what irreversible evolutions (or "fluctuation 
regressions") can be realised in these Markov processes? This problem 
has been a focus of study over recent years [Klim 1], [Klim 2], [EvLJ, 
[EAEJ, [Maa] , [FrOJ, [LiMJ. The present paper is structured as 
follows. In sections 1-6 the basic theory of quantum probability spaces 
and random variables is introduced. In sections 7, 8 and 9 quantum 
stochastic processes are introduced, and some recent results are 
described in section 10. 
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1. QUANTUM PROBABILITY SPACES 

The fundamental concept in quantum probability theory is that of a 
quantum probability space. This is a pair 

where 

(A, III) , 

A is a von Neumann algebra; 
III is a normal state on A, i.e.: 

1II(:n.) = 1. 

III : A ~ ~ linear and weak-* continuous; 
lII(a*a) ~ a for all a E A; 

If III is faithful, i.e. 

III (a*a) = a only for a = 0, 

then the quantum probability space (A,III) is called nondegenerate. We 
shall only consider nondegenerate quantum probability spaces in this 
paper. 
This concept of a quantum probability space generalises the idea of an 
ordinary probability space (called classical in this context). As is 
well known, this is a triple 

(Q,I,F) , 

where 

Q is a set (to be thought of as a tableau on which Chance will 
choose a point). 

I is a subdivision of Q, a a-algebra of subsets of Q, called the 
events of the theory. At least two events are in I: the impossible 
event 9 and the sure event Q. 

F : I ~ [0,1] associates to every event a probability in a a­
additive way and such that F(9) = a and F(Q) = 1. 

Because F is defined on I, the elements of I are also called the 
measurable subsets of Q. A function f : Q ~ ~ is called measurable if 
all the sets {we Qla ~ f(W) ~ b}, (a,b E E) are measurable. 

(A) A classical probability space (Q,I,F) yields an example of a 
quantum probability space (A,III) if we put: 

A = Lco(Q,I,F). 
This is the *-algebra of all bounded and measurable 
functions f : Q ~ ~, two such functions being 
identified if they differ only on a set of measure 
zero. 

III A ~ ~ : III (f) = f f(w)F(dw). 
lIIef) is th~ expectation of f with respect to F. 
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This abstract form (A,~) still contains all the information essential 
for the structure (C,I,F): the events are regained from (A,~) by 
considering all the elements p of A with p = p2 (= p*) (the 
projections). Indeed, p2 = p E Lm(C,I,F) implies that p = lS for some 
S E I. The probability measure F is then found back by defining 
F(S) = ~(lS). Only the concrete representation of the points of Q is 

lost in the transition from (Q,I,F) to (Lm(C,I,P), J·dF). 
Note that Lm(C,I,F) is a commutative algebra. In the converse 
direction, every quantum probability space (A,~) with A commutative can 
be written in the form (Lm(C,I,F) ,J·dP) for some classical probability 
space (C,I,F). In this sense we may say that a quantum probability 
space (A,~) is classical if and only if A is commutative. Thus the 
classical is a special case of the quantummechanical. 
Our main interest, of course, will be the non-classical quantum 
probability spaces. These group into different types according to the 
type of the von Neumann algebra A. 
We give two examples: 

(B) An n-level system, (type I ). 
n 

A = M , (the nxn-matrices); 
n 

~(a) = tr(pa), (p € M ,p > O,trp 1). 
n 

In order that (A,~) be non-degenerate, p is only allowed to have 
strictly positive eigenvalues. In particular, vector states 
~ : a ~ <tjJ,atjJ>, (tjJ~ en) are excluded. 

(e) A free Bose field, (type III). 

We shall describe this example below. 

2. THE STANDARD FORM 

Quantum probability spaces can be cast in standard form using the so­
called Gel'fand-Naimark-Segal cyclic representation-:---

Here 

H is a suitably chosen Hilbert space; 

n : A ~ £ (H) is a representation of A as bounded operators on H. 

t € H is a cyclic vector for n, inducing the state ~ on A, i.e. 
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n(A}t is dense in H; 

q;,n(a}p = .(a), (a E A). 

This is a standard form in the sense that any two cyclic 
representations of (A,.) must be unitarily equivalent. 
For a nondegenerate quantum probability space the standard form can be 
obtained in the following way. Since .(a*a) = 0 only for a = 0, an 
inner product on A is defined by <a,b> := .(a*b). Then let H be the 
completion of A in the norm a ~ lIall = <a,a>1/2. Define n(a} on H by 
continuous extension of multiplication from the left: n(a}b = ab, and 
put t = :n.. 
In our examples the standard forms are the following: 

(A) A classical probability space: 
H = L2 (Q,I,lP}; 
n(a} : 1Jl~ a·1Jl, (ae A, ljJ e H); 
t = 1. 

(B) The n-Ievel system: 
H = M with inner product <a,b> 

n 
n(a}b = ab; 
t = :n.. 

(B') Alternatively: 

tr(pa*b}; 

H = ct n9 c;n (with ordinary inner product) 
n(a} = a9:n. 

n 
I p~/2e: .9e: . 

j=l J J J 
if p = 

n 
I p.Ie:.><e:.I. 

j=l J J J 

(C) A free Bose field in a universally invariant state. 

* n(Af } = A Af 9:n. + ~ :n.9Ar , (A,~ '" O). 

t = C9Q. 

Here, F(K} is the symmetric Fock space @ "'" ]N(K9n} t' over the * n.. symme rl.C 
Hilbert space K, and Af and Af are the annihilation and creation 

operators of a particle with wave function f E L2(E3}. The Fock vacuum 
vector Q is given by Q = l@O@O@O ...• 

3. TOMITA-TAKESAKI THEORY 

Instead of the representation n of multiplication from the left, 
together~ith the inner product <a,b> = .(a*b) on A, one could have 
chosen to represent A by multiplication from the right by the adjoint: 
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ft(a) : b ~ ba*. This map ft becomes an (antilinear) *-homomorphism if 
one provides A with the inner product <a,b>- = ~(ba*). By 
associativity, the two representations commute with one another: 

n(a)ft(b)c = a(cb*) = (ac)b* = ft(b)n(a)c. 

The presence of two commuting representations of A on itself and two 
natural inner products on A leads to the Tomita-Takesaki structure 
[ToT], which is always there on a nondegenerate quantum probability 
space in standard form. We give a brief sketch of this structure. 

The two inner products are connected by a - generally unbounded -
positive operator A on H(or A): 

<a,b>- = <a,Ab>, 

or, in a technically more correct formulation: 

It was proved by Tomita that the automorphisms of £(H) given by 
X ~ A-itXAit , (t E E) leave the algebra n(A) invariant. They therefore 
define a group of automorphisms of A: 

called the modular group of (A,~). 
For a classical probability space the modular group is trivial: 

o~ = idA' since the two inner products coincide. 
For the n-level system on the other hand, we find that the choice 

p = exp(-h) with h = h* E M leads to the modular group 
n 

So in this case the state ~ : a ~ tr(pa) and the modular group o~ are 
related as a Gibbs state to the time evolution for which it describes 
thermal equilibrium. We shall return to this point in section 8. 

The modular group of a quantum probability space has a nice 
characterisation, known as the Kubo-Martin-Schwinger (KMS) boundary 
condition [HHW]. An automorphism group at' (t E E) of (A,~) is said to 

satisfy the KMS condition if for all a,b E A the functions 
E ~!C : tt-+ ~(aot(b» and E.+i ~!C : t+io.+ ~(ot(b)a) can be 
interpolated by a continuous function on the strip E+i[O,l] which is 
analytic on its interior E+i(O,l). 

L 

12. o 

Cf{ trl:lJ..) 0. ) 

f cp( ct 0'"1:(.Rr )) 
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The other important element in the standard form (H,n,~) of (A,~) is 
the presence of a second, antilinear representation n' of A on H, such 
that every operator n'(a) commutes with all the operators n(b). The 
representation n' is basically the representation ff of multiplication 
from the right, mentioned above. If S denotes the operator on H or A 
coming from the involution a ~ a* on A, then ff can be written as 

ff(a) : b ... ba* = (ab*)* = Sn(a)Sb, 
so 

ff(a) = Sn(a)S. 

However, in the inner product <.,.> on H, the map ff is not a *­
homomorphism, since ff(a)* ~ ff(a*). In order to have the commutant 
representation n' in the same Hilbert space H as n, one must define 
instead: 

n' (a) = J n(a)J, 

where J = Al/2S, the star operator S adapted to the "wrong" inner 
product and made isometric. 

It was proved by Tomita that not only does n'(A) commute with n(A), 
but it actually fills up its whole commutant: 

n' (A) = n (A)' :-= {X E £(H) j[X,n(a)] = o'v'a E- A}. 

Examples 

(A) In classical probability J is complex conjugation and n(A) equals 
its own commutant. a~ idA for all t Eo E. 

(B) The n-Ievel system (H M • 
n' <a,b> = tr(pa*b) ) 

a~(a) pitap-it; 

n(a)b = ab n' (a)b bpl/2a*p-l/2; 

(B') Alternatively (H = ~nQ~n with ordinary inner product) 

n(a) = aan; n' (a) = n9a*; 

(C) The free Bose field. 
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(J.l/J\)2it Af ; 

J.l A;a:n. + .UQAr; J 1jJ9X 

4. MORPHISMS 

In classical probability theory most objects of interest (random 
variables, conditional expectations, evolution in time) can ultimately 
be reduced to maps between probability spaces. The same can be done in 
this field. One considers the category of quantum probability spaces, 
and one studies mOrphi'sms between them [KUm 1]: 

T : (A,') -+ (B,1jJ). 

This is a normal linear map T : A -+ B with the properties: 
T is completely positive; 

this means that for all n &~, T maps positive nxn 
matrices with entries in A to positive matrices with 
entries in B (when acting on the entries individually); 

T ( :n. A) = :n.B ; 

1jJoT = ,. 

These properties guarantee that the adjoint T* : B* -+ A* maps states to 

states, in particular 1jJ to ,. (Complete positivity would not be needed 
for this, but turns out to be mathematically and physically natural to 
require. ) 

Examples. 

A morphism whose inverse is also a morphism is an isomorphism. 
Isomorphisms preserve all the structure, and isomorphic probability 
spaces may be identified. An automorphism of (A,') is an isomorphism 
(A,') -+ (A,')' The time evolution (in the Heisenberg picture) is a 
group of automorphisms. An embedding is a morphism j : (A,') -+ (B,1jJ) 
such that j(ab) = j(a}j(b} and lIj{a) II = Iiali. If such an embedding is 
given, (A,') may be considered part of (B,'). (However, in quantum 
probability; "the rest of (B,1jJ)" is not always well-defined: systems 
cannot always be disentangled from their surroundings. See section 5). 
A conditional expectation is a morphism E which is also a projection: 
E2 = E. See also section 5. 
A transition operator on (A,') is any morphism T : (A,') -+ (A,'). Such 
an operator has an adjoint which acts on states X on A by 

(T*x}(a) = X(Ta}. 

If T is not an automorphism, then T* "smears out" the probability 
distribution defined by X, as the picture suggests. 
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5. QUANTUM RANDOM VARIABLES 

By a quantum random variable we shall mean an embedding of one quantum 
probability space into another. 

This is our generalisation of a classical random variable, which is a 
measurable function X : Q ~ JR on a probability space (Q, I , P) . 

LCD(R,J.l) 
:. j 

L CD(Q,F) 

Such a function naturally determines an embedding 
j : LCD (JR, J.l) ~ LCD (Q, P) via 

j(f) = fOX. 

Here, J.l is the induced measure J.l = ]poX-i. 
Generalising LCD(JR,J.l) to (A,~) and LCD(Q,F) to (B,$), one obtains the 
above broad concept of a quantum random variable. If one only makes 
LCD(Q,]P) non-commutative, changing it to a general (B,$), but keeping 
LCD (JR,J.l), one obtains a projection-valued measure P on JR via 

(S e R measurable) • 

This i~ its turn defines a self-adjoint operator X via 

X = J AP(dA). 
R 

Conversely, every self-adjoint operator in the standard representation 
of (B,$) determines a projection-valued measure P on JR via the spectral 
theorem. If all its projection operators P(S) are in B, it determines 
an embedding of LCD(JR,J.l) into (B,$). Hence a self-adjoint operator, 
affiliated to B, determines a quantum random variable in a narrow 
sense. 
To summarise: Position and momentum are quantum random variables in the 
narrow sense, but spin (in any direction) is a quantum random variable 
in the broad sense, since it is an embedding of the non-commutative 
space (M2'~) into some (B,$). 
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6. CONDITIONAL EXPECTATIONS 

A quantum random variable j : (A •• ) ~ (B.~) is said to be conditionable 
if there exists a morphism E : (B.~) ~ (A •• ) such that EOj = idA. In 
this case one has 

(jOE)2 = jO(EOj)oE = JOE. 

so JOE is a conditional expectation. projecting onto j(A). (Identifying 
j(A) c: B with A itself. we also call E a conditional expectation). 
If b = b*e B is a random variable (narrow sense). then E(b) e A is its 
expectation. given j. 
In contrast to the classical situation. conditional expectations do not 
always exist: 

Theorem (Takesaki ([Tak] 1972». The random variable j 
is conditionable if and only if for all tEE: 

a%Oj(A) C j(A). 

7. QUANTUM STOCHASTIC PROCESSES 

A quantum stochastic process is a family of quantum random variables 
indexed by time: 

(t e T). 

Here. the time T may be E. ~. E+ or ~+. Such a process determines 

correlation functions F : ~xAn ~ ~ of all orders n E ~ by 
n -

The converse also holds: 

Reconstruction theorem (Accardi. Frigerio. Lewis ([AFL]. 1981». 

Given (A •• ) and all the correlation functions F • the quantum 
n 

stochastic process jt : (A •• ) ~ (B.~) is determined up to 
isomorphism (provided that B is chosen in the minimal way). 

A drawback on this result is the fact that in physical practice only 
the "pyramidal" correlation functions 

with t1 ~ t2'~ ... ~ tn and a1 .···.an • b1 •..•• bn A can be actually 
measured. 
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8. STATIONARITY AND THERMAL EQUILIBRIUM 

A quantum stochastic process jt : (A,.) ~ (B,~) is called stationary if 

T is a group (Le. T = E or T = Z) and there is a representation t ~ 't 

of T in the automorphisms of (B,~) such that jt = 'tOjo for all te T: 

j (=:j) 
o 

Physically, the natural way to think of a stationary quantum stochastic 
process is to consider (A,~) as a small quantum system, embedded (by j) 
in an environment (B,~), on which a reversible dynamics 't is acting. 

This image, and the interpretation of the modular group 0% given in 

section 3, leads to the following definition: A stationary quantum 
stochastic process is said to occur in thermal equilibrium at inverse 
temperature ~ if 

(t £ T). 

We note that this concept of thermal equilibrium is purely 
quantummechanical. Let us now consider such a process jt = 'tOj and 
suppose that it is conditionable: EOj = idA for some E : (B,~) ~ (A,.). 

It then follows from Takesaki's theorem that for all t E T: 

, OJ(A} = a~ OJ(A) 
t t/~ 

j (A) • 

Hence the minimal choice for (B,~) is just (j(A},.oE), and the process 
collapses to a reversible evolution EO't Oj on (A,.). Therefore, apart 

from this trivial possibility, the properties of being conditionable 
and occurring in thermal equilibrium exclude one another for stationary 
processes. In particular, (non-trivial) Markov processes, being 
conditionable by definition, cannot occur in thermal equilibrium. A 
disappointing conclusion which has been emphasised by several authors 
(e.g. [AFL] , [SJG]). However, the situation for thermal equilibrium is 
even worse then this, as appears from the following theorem. 

Theorem (Frigerio, Lindblad, Maassen (1986}) 

Stationary quantum stochastic processes in thermal equilibrium are 
deterministic in the sense that 

A( ] = A( ) • -0),0 -CO,Q) 

Here, for an interval ICE, AI denotes the von Neumann algebra 

generated by UtEI jt(A). 
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For deterministic processes, the future stochastic variables can be 
approximated by those from the past. 

9. QUANTUM MARKOV PROCESSES 

In what follows we shall only consider stationary conditionable 
processes. Barring reversible processes these are never in thermal 
equilibrium. We may now draw the diagram 

Tt 
(A, Ill) ) (A,IIl) 

j 1 r E 

't 
(B,ljI) > (B,ljI). 

This diagram shows how the existence of E naturally leads to a family 
Tt = EO'tO j , (t E T), of morphisms on (A,IIl). These morphisms are not 
invertible in general, and hence may be said to form an irreversible 
evolution. In general there is no reason to expect even the semigroup 
property 

(t,s ~ 0), 

because of memory effects: the past behaviour of the quantum system 
(A,IIl) may influence its future via perturbations of the environment. 
Such influences are excluded in the following definition: A stationary 
conditionable quantum stochastic process will be called a quantum 
Markov process if 

(The existence of a conditional expectation EI onto AI follows from the 
existence of E.) This Markov property is quite the opposite of the 
deterministic property mentioned in section 8: the future A[O,~)' far 
from being determined by the past, is independent of it, except for a 
correlation through the present. A consequence of this lack of memory 
is the above-mentioned semigroup property. We may then write 

T = e tL 
t ' 

(t ~ 0). 

Such a semigroup of morphisms on a quantum probability space is called 
a dynamical semigroup in the literature. A markov process in which it 
occurs is called a (Markov) dilation of the dynamical semigroup [EvLJ, 
[EAEJ, [RUm 1]. 
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10. MARKOV DILATIONS, RESULTS 

In classical probability all dynamical semigroups possess a unique 
Markov dilation. Due to this close correspondence, the term "Markov 
process" is sometimes used to indicate the semigroup of transition 
operators, as described by the Fokker-Planck equation, and sometimes 
for the whole process, described by the Langevin equation. In quantum 
probability these concept should be clearly distinguished, since Markov 
dilations of dynamical semigroups need not be unique, neither do they 
always exist. This is due to the fact that the semigroup Tt (t ~ 0) 
only determines the pyramidal correlations: 

$(jt1 (al)··jtn(an)jtn(bn)··jtl (b1» 

~(alTt -t (a2 ··Tt -t (anbn)··b2 )b1), 
2 1 n n-l 

In this section we shall take (A,~) = (M ,tr(p·», as in example B of 
n 

section 1. By a theorem of Lindblad [Lin] every dynamical semigroup on 
(A,~) is of the form Tt e tL with 

where hEM is self-adjoint and v. eM arbitrary (j = 1, ... ,k), 
n J n 

(k E :N). We use the notation {a,b} := ab+ba. 
Which of these semigroups admit a Markov dilation? This question 

(the dilation problem for M ) is still open, but we shall see several 
n 

results below. A first requirement on L is, of course, that ~·L = O. 
It can furthermore be shown [KUm 1] that one must have 

(t E E). 

All dilations in continuous time, known up to now, are of the form 

Here (N,\I) is a quantum white noise or noise, Le. a quantum 
probability space with independent subspaces (N[s,t],\I) for all time 

intervals [t,s], (N(_~,~) = N), and a group of automorphisms St : N ~ N 



mapping N[s,u] into N[s+t,u+t]' The noise is used as input for a 
Langevin equation whose solution is a family Ut (t ~ 0) of unitary 

operators on the standard Hilbert space of (M RN,'9v): 
n 

dUt = (d(noise))Ut :n.. 
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Physically, Ut is the evolution operator in the interaction picture 
between system and environment. The classical noises are white noise 
and the Poisson processes of different intensities (also called "shot 
noise" by physicists). In quantum probability theory the list has been 
extended to include the following noises. Bose noise or quantum 
Brownian motion [CoH] is generated by At = A(l[O,t])' the integrated 
Bose field on the real line, as described in section 2. Fermi noise Ft 
is constructed in very much the same way, replacing commutation 
relations by anticommutation relations [ApH]. Clifford noise Ct is 

* given by Ct = Ft+Ft [BSW]. The quantum Poisson process Pt over an 
arbitrary measure space (M,~) (unnormalized quantum probability space) 
is constructed on the Fock space over the standard representation 
(H,ll,t) of L"'(JR,dt)9(M,~) as followsCTr-M]: 

Here, W(n) is the Weyl operator associated to the vector n E H, and dr 
is the second quantisation map. We now briefly list recent results as 
to what semi groups can be dilated using these noises. 

Theorem 10.1 (KUmmerer, Maassen (1985) [KUM]) 
A dyn~ical semigroup e tL on (M ,') admits a Markov dilation in a 

n 
classical environment if and only if L is of the form 

k 1 2 Q * 
L(x) = i[h,x] + I (aJ.xaJ.---2 {aJ.,x}) + I K.(U.XU.-x), 

j=l i=l 1 1 1 

where h, al""'~ & Mn are self-adjoint, K1, ... ,KQ > 0 and 
u1 ' ... ,uQ e Mn are unitary. 

1 Note that tr(L(x)) = 0 for all x, so that we may always take' = --tr in 

this classical case. The dilations employ Brownian motion Bt and 

Poisson processes Pt of various intensities. They can be found by 

solving the Langevin equations 

for the u-terms, and 

n 
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for the a-terms. 

Theorem 10.g (Frigerio, Gorini ([FrG], 1984». 

The semigroup e tL on (M ,') admits a Markov dilation using Bose 
n 

noise if and only if L is of the form 

with h h* € Mn such that a~(h) 
, i~jt 

at(vj ) e vj ' (j = 1, •.• ,k). 

h and v. IE M such that 
J n 

For the v-terms one solves the Langevin equation 

Theorem 10.3 (Frigerio, Maassen (FrM] 1986». 

The 

The semigroup e tL on (M ,') admits a Markov dilation using the 
n 

quantum Poisson process if and only if L is of the form 

* L(x) = i[h,x] + (idQ~)(u (xQ~)u) 

for some quantum measure 

satisfying a~Q~(u) = u. 

dilation is based on the 

space (M,~) and some unitary u ~ M QM 
n 

Langevin equation 

We note that, although the semi groups to be dilated using Brownian 
motion or Bose noise, satisfy detailed balance, this is by no means a 
condition for dilatibility. Indeed, the "Poisson terms" (containing u) 
in 10.1 and 10.3 do not satisfy the detailed balance condition. 
Moreover, as a word of warning, it should be said that the necessity to 
use any noise at all has never been proved. The final theorem which we 
mention does not presuppose the use of a noise (neither in fact did the 
first). It can be used to derive theorem 10.3 in a simple way, and it 
reduces the analysis of dilations in continuous time to that in 
discrete'time. We cite its restriction to M : 

n 
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Theorem 10.4. (KUmmerer ([KUm 2] 1986)) 

Let Tt (t ~ 0) denote a dynamical semigroup on (Mn ,')' Then the 
following are equivalent. 

(i) Tt admits a Markov dilation; 

(ii) For each to > 0 the discrete time semi group m~ (Tt )m has a 

(iii) 

Markov dilation; 

'h.(T.-id)t 
T =lime J J 

t ' J+<D 

o 

where for all j eN the semigroup m ~ T.m admits a Markov 
J 

dilation, and h j > O. 
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THE LARGE DEVIATION PRINCIPLE IN STATISTICAL MECHANICS 

J.T. Lewis 
School of Theoretical Physics 
Dublin Institute for Advanced Studies 
10 Burlington Road 
Dublin 4 
Ireland 

The ''method of the largest term" or "Laplace's method", as it is various­
ly called, is at the heart of statistical mechanics but making it comr 
pletely convincing can be a tedious business. Varadhan's Large Deviation 
Principle is a highly efficient way of organizing such arguments which 
is attracting growing interest in the field of statistical mechanics.It 
not only furnishes new, clearer proofs of old results but it provides 
the means for solving problems which other methods have not touched. 

A survey of applications to classical statistical mechanics is to 
be found in the book of Ellis [5] together with a comprehensive treatment 
of the Large Deviation Principle. The serious student cannot do better 
than study §3 of Varadhan's original paper on the subject [10]. A short 
expository account of the Large Deviation Principle is given in [6] and 
a review of applications to the Boson gas in [2]. Varadhan's Theorem is 
an essential ingredient in the treatment of the Huang-Yang-Luttinger 
model of a boson gas interacting via a repulsive hard-core which is given 
in [1]. It is proved in [2] that the grand canonical distribution of the 
particle number density in the free boson gas satisfies the Large Devia­
tion Principle; this proof makes use of the existence in the thermodyna­
mic limit of the grand canonical pressure for the free boson gas. An al­
ternative proof, based on the existence of the canonical free energy den­
sity, is given in [7]. 

In [3], a quantum system of n identical spins of magnitude j is 
considered; we introduce an integrated density of states of definite 
total spin angular momentum. The underlying sequence of probability 
measures is proved to satisfy the Large Deviation Principle. The Berezin­
-Lieb inequalities are used to obtain upper and lower bounds for the 
limiting specific free-energy of the spins interacting with a second 
quantum system. The method is illustrated by applications to the strong­
-coupling BCS model and to the Dicke maser model. In [8], the method is 
applied to a detailed study of the phase-transition in the Dicke maser 
model. Duffield and Pule [4] have supplemented the method with techniques 
from convex analysis to obtain an expression for the free-energy density 
of the full BCS model. Raggio [9] has used similar ideas to solve the 
heterogeneous Dicke maser model. 
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CHIRALITY AS A CLASSICAL OBSERVABLE IN ALGEBRAIC QUANTUM MECHANICS 

Anton Amann 
Laboratory of Physical Chemistry 
ETH-Zentrum 
CH-S092 Zurich 
Switzerland 

ABSTRACT. Ordinary Hilbert-space quantum mechanics leads to a wrong 
prediction for the ground state of chiral molecules such as alanine. 
This does not mean that quantum mechanics is incorrect but only that 
it is not applied properly. A detailed analysis shows that chirality 
corresponds to a aZassiaaZ observabZe (a superselection rule) which is 
generated by the envi~ment, i.e. by the influence of an infinite sys­
tem. For both, classical observables and infinite systems, Hilbert space 
quantum mechanics is inappropriate and has to be replaced by algebraic 
quantum mechanics. 

Two models for chirality are discussed: 
The spin-boson modeZ, where the single (eventually chiral) molecule 
is described by a two-level system. The infinitely many bosons of 
the model mimick the radiation field (the environment) which is in­
separably coupled to the molecule. 
The Ising modez with a transverse fieZd, which is built up of in­
finitely many spins representing, e.g., an infinite crystal. 

Chiral KMS-states (thermodynamic states) arise only in the latter model. 
It is shown that this result fits nicely into a more subtle discussion 
of the different notions of states and their interpretation in algebraic 
quantum mechanics. For single individual molecules chirality may only be 
described on the level of pure states of the system. The possibility of 
a phase transition in the spin-boson model is discussed. 

1. INTRODUCTION 

In 1927, F. Hund ([1]) was the first to recognize that the existence of 
optical isomers (chiral molecules) is not easily reconciled with the 
first principles of quantum mechanics. Consider, for example, the mole­
cule alanine with the chemical formula CH3CH(NH2)COOH. For this molecule 
the Hilbert-space formalism of traditional quantum mechanics predicts a 
nondegenemte spaae-refieation invar>iant ground state. This prediction 
contradicts all experimental results : Space-reflection invariant pure 
states for alanine do not exist. The experimentally observed states of 
lowest energy are energetically degenerated and chiral, that is, the 
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molecules exist only in a 1eft- or righthanded form: 

COOH 
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Figure 1: The 1eft- and right-handed forms of alanine 
are transformed into one another by a space­
-reflection U. 

If HA1a is the Hamiltonian for alanine and ~o (~l) the state vector 
for the ground state (first excited state) with energy Eo (E 1 ) 

(1) 

handed state vectors (which are not eigenfunctions of HA1a) are easily 
constructed as follows 

(2) 

A 

If the unitary operator U represents space reflection, one has 

A 

U ~o (3) 

whereas the handed state vectors ~+ and ~_ are transformed into one an­
other: 

(4) 

The 'paradox of optical isomers' (F. Hund) may then be posed in a 
different way: Supposing the handed state vectors ~± to exist, why is 
it impossible to generate the proper ground state vector ~o as a coher­
ent superposition ~o =A (~+ +~_) ? The interesting aspect of chirality 
is thus not only the existence of handed states but also the break­
down of the universal validity of the superposition principle. 

If the phenomenon of chirality disturbs the quantum physicist, the 
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chemist on the other hand is disturbed by the fact that handed states 
may not arise even if a center of chirality is there. The typical exam­
ple of this situation is NHDT, a derivate of ammonia NH3 

H D D 
u 

Figure 2: Handed forms of NHDT, which do 
not exist as stationary states. 

H 

In NHDT (and NH 3) the experimentally observed ground state is space-re­
flection invariant and stationary handed states (Fig.2) do not exist. 

The explanation of the phenomenon of chirality which was given by 
Hund may be paraphrased as follows : "If the molecule alanine is in a 
handed state, then it will remain in this state for a very long time." 
This explanation relies on the fact that the difference between the en­
ergies El and Eo of the first excited state and the ground state of RA1n 
is very small, El -Eo ~ 10-7o a.u. (atomic units, 1 a.u. ~ 628 kca1/mo1). 
Comparatively, the same difference for NH3 is at about 10-6 a.u. ([2]). 

Hund's explanation may be criticized for various reasons (cf.[2]): 
It is not clear, how handed configurations arise. 
Arbitrary small interactions between the molecule and its environ­
ment may perturb the handed states. A decay of W± to the ground 
state Wo by radiation interaction may take place. 
There exist chira1 molecules for which it is impossible to prepare 
reflection-invariant pure states. Why? 
The discussion of the 'paradox of optical isomers' in the last 60 

years (cf. [2] for references) made clear the following aspects of the 
problem : 

Chirality of a single molecule corresponds to a classicaZ observ­
able (i.e., an observable which in every physical state has a dis­
persion~free value: +1 or -1 in our example). 
This classical observable is generated by the influence of the 
environment, i.e. by the influence of an infinite system. 
There is a sort of phase transition arising in the problem to the 
extent that the molecule is chira1 if (El -Eo) exceeds a certain 
critical value. 
For both, classical observab1es and infinite systems, ordinary Hi1-

bertspace quantum mechanics is inappropriate (cf.[3]) and has to be re­
placed by the slightly generalized formalism of algebraic quantum me­
chanics. 
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2. ALGEBRAIC QUANTUM MECHANICS 

2.1. The formalism 

In W*-algebraic quantum mechanics (cf.[3,4]) a physical system is de­
scribed by 

a W*-algebra of observables M 
[M may be viewed as a *-subalgebra of the *-algebra of all bounded 
linear operators B(H) on a Hilbertspace H with the property : 
M = (M')' where S' = {xEB(H)lxy=yx, "lyE S} is the commutant of 
a subset S of B(H). A W*-algebra represented in this way on a 
Hilbertspace is called a von Neumann algebra] 

an action of a kinematical group G (e.g., space reflection Z2) 
a dynamical group {at It E IR}, where at is an automorphism of M for 
every t EIR with atlO at2 = atl+t2 ' tl,t2 EIR. 

Examples for W*-algebras are 
the algebras of nxn-matrices, n = 1,2, ••• , 
algebras of essentially bounded measurable functions on a phase 
space (describing, e.g., a point particle of classical mechanics). 
A C*-algebra is a *-algebra which is *-isomorphic to a nOPm-cZosed 

*-subalgebra of operators on a Hilbertspace H. The norm of an operator 
x EB(H) is given by Ilxll = sup{llx~lI}. Every W*-algebra is a C*-algebra 
but not conversely. ~ E H 

11~11=1 
A state ~ on the *-algebra M is a linear positive normalized 

functional ~ : M -- C : 
(i) ~(X+Ay) ~(X)+A~(Y) 
(ii) ~(x*x) ~ 0 , V xE M (5) 
(iii) ~(1) = 1 , where 1 EM is the unit operator. 

A state ~ is called pure, if every convex decomposition ~ =A~1+(1-A)~2' 
0<11. < 1, into states ~l and ~2 is trivial: ~ = ~l = ~2. If M';;: B(H) is 
the algebra of all bounded linear operators on a Hilbertspace H, every 
pure state ~ on M is a vector state, Le., given by ~(x) = <~Ix~), xE M, 
for a suitable vector ~ EH. 

Classical obsepvables of the system described by a W*-algebra M 
are nontrivial selfadjoint elements of the center Z(M) d~f {xEMlxy=yx, 
"lyE M}. For every pure state '¥ : M -- C an arbitrary element x = x* (x* 
is the adjoint of x EM) has a dispersion-free value '¥(x) : ,¥(x2) = (,¥(x» 2. 

2.2. Infinite systems in algebraic quantum mechanics 

The algebra C which describes an infinite system is built up of 'local' 
subalgebras Cn ,nEI, where I is an index set, e.g., I {1,2.3 •••• }. 
The algebras Cn refer to 'finite' systems (e.g. systems of finitely many 
degrees of freedom or of finite volume). The union (n~I Cn ) contains all 
'local' observables. The closure in norm 

...".----:- norm 

{n~I Cn} -- = {n~I Cn} C 
can be done in a unique way. The C*-algebra C is not yet an observable 
algebra (a W*-algebra). To find the relevant W*-algebra. say M, C ~ M. 
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one has to select a faithful representation TI:C ~ B(H) of C by bounded 
linear operators on a Hilbertspace H and takes M as the smallest W*-al­
gebra containing TI(C), M = TI(C)". If C refers to a system of finitely 
many degrees of freedom there is a unique completion to a W*-algebra M 
(as asserted by the Stone - von Neumann theorem (cf.[5]». If C refers 
to a system of infinitely many degrees of freedom, there exist infinite­
ly many disjoint representations TIj:C ~ B(Hj), j EJ. Accordingly in­
finitely many different observable algebras can be found, corresponding 
to different physicaL situations (cf.[3]). , 

Two representations TIl and TI2 with generated W*-algebras Ml and M2 
are called disjoint, if the W*-algebra M generated by the direct sum 
representation TIl $ TI2 : C:3 x ~ TIl (x) $TI2 (x) on 

def 
Hl$H = {(t;,n)It;EH1, nEH2 ; «t;lonl)I(t;2,n2» = 

is given as 

(t;11t;2)H l +(n l ln2)H2} 

(6) 

M (7) 

In particular, M then contains the central observables c1 1 $d12 , c,d E C, 
where 1j is the unit operator in Mj ,j = 1,2. Thus disjoint representa­
tions (arising onLy with systems of infiniteLy many deg~es of f~edom) 
offer the opportunity to introduce an observabLe aLgebra M with cLassic­
aL observabLes ([6,7,8]). The above example just refers to chirality 
where the corresponding two-valued classical observable is of the form 
11 $(-1 2 ). 

Suitable representations of a C*-algebra C are often constructed 
as Gelfand -Naimark - Segal (in short GNS-) representations (TI<f>,Hcf"Q<P) 
with respect to a certain state $ on C. In such a representation 
TI<p:C ~ B(H<p) the state ~ is implemented by a vector Q<p: 

~ (x) V xE C. 

Furthermore the smallest sub-Hilbert space of H<p containing the vectors 
TI<p(x)Q<p ' x EC, coincides with H<f>. By these conditions (TI<p,H<p,Q<p) is 
fixed uniquely up to unitary equivalence. 

Two states ~l and ~2 are called disjoint, if the respective GNS­
-representations TI<p and TI<p are disjoint. 

A typical exam~le for 2 a quasi local C*-algebra is the CCR-algebra 
('canonical 'commutation relations') &(Ho) describing a system of in­
finitely many bosons ([9]). Here Ho is a pre-Hilbert space (i.e. not 
necessarily complete with respect to the norm of the scalar product) 
and &(Ho) is the C*-algebra generated by the operators W(f), f EHo, 
fulfilling the relation 

W(fdW(f2) = e-iIm(fllf2)W(fl+f2) f1of2 EHo • (8) 

The Weyl operators W(f), f EHo, are related to the annihilation and 
creation operators af and a~ by 
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W(f) exp U(a(f) +a(f)*)} 

3. THE SPIN-BOSON MODEL 

3.1. Description of the model 

The spin-boson model ([2,10]) consists of a single two-level system 
(spin 1/2) coupled to a reservoir of infinitely many bosons. The spin 
is described by 2x2-matrices and mimicks the two lowest lying energy 
levels of the eventually chira1 molecule. The bosons represent the ra­
diation field. ~ idea behind the spin-boson modeL is that the chiraLity 
of the moLecuLe is generated by the radiation ~eLd ~hich is inseparabLy 
coupLed to it. The Hamiltonian 

+00 * 
H = 1l(0'1®1) + 1 ®.I ~.ak.ak' 

J=-OO J J J 

molecule radiation field coupling between 
the molecule and 
the radiation field 

(9) 

of the spin-boson model (h=l) acts on the infinite tensor product Hil­
bert space K = H 2 ®Hoo ®Hoo ® ••• ® Hoo ® • •• where H 2 is a two-dimensional 
and Hoo a separable infinite-dimensional Hilbert space. The wave vectors 
{kn = ( 21Th>n1 n EZ 3,{0}} depend on the size L of the box in which the 
raaiation field is described. For L ~ 00 H will contain integrals of 
operators instead of sums. The Wk's are the angular frequencies of the 
bosons with wave vectors k (Wk = clkl is proportional to Ikl). The Ak'S 
are the coupling constants between the molecule and the mode with wave 
vector k of the radiation field. The operators ak and a~ are annihila­
tion and creation operators, respectively. The quasi local C*-a1gebra B 
is here generated by the spin operators 0'0 = (6 ~), 0'1 = (~ 0)' 
0'2 = (~ -6)' 0'3 = (6 _£) and operators of the type 

0'0 ® 1 ® 1 ® 1 ® ••• 1 ® Y ® 1 ® ••• ® 1 ® 1 , y E B(Hoo)' Define 
def IAkj 12 

A = I­
j ~j 

(10) 

where A is supposed to be finite and r is supposed to diverge (see [2]). 
The infrared divergence r = 00 mU be the reLevant condition to generate 
chiraLity! This divergence will not arise for finite box size L but only 
in the limit L ~ 00 (cf. the discussion in chapter 5). 
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3.2. A phase transition in the spin-boson model 

The following (well founded) conjecture was made by P. Pfeifer in his 
thesis ([2]) : The ground state of the spin-boson model with r = co,1!. <co 
is non-degenerate and totally symmetric for ~~2A and twofold degenerate 
(with disjoint chira1 state vectors ~+ and ~_) for ~ <211.. In the latter 
case ~+ and ~_ have vanishing interference terms <~+Ix ~_) = 0, where 
x EB (or x EB") is an arbitrary observable of the system. ~+ and ~_ lie 
in different sectors of the Hilbert space K and generate a classical 
observable. A superposition c+~+ + c_~_ of ~+ and ~_ (c+,c_ E C) leads to 
a statistical mixed state in the sense of 

3.3 An algebraic version of the spin-boson model 

The infinite tensor product Hilbert space K of the spin-boson model is 
nonseparable and somewhat artificial. It is more convenient to introduce 
a reasonable quasi local algebra C for the joint system (molecule and ra­
diation field) and to study the W*-c10sure of C in suitable representa­
tions. Recall that for a given representation n of C on a Hilbert space 
H this W*-c10sure is given by {n(C)}". The particular Hilbert space H is 
not important. If nj are representations of C on Hj, j = 1,2, then nl 
and n2 are called quasiequiva1ent if an *-isomorph1sm K : nl (C)" -n2 (C)" 
exists with K(nl (x» = n2(x) , V xE C. Quasiequiva1ent representations 
describe the same physical situation (with the same proper observable 
algebra nl(C)" Q' n2 (C)") and will be identified. 

As quasi10ca1 C*-a1gebra for the spin-boson model consider 

A d~f M2 ® MHo) 

{f E L 2 (R) 1 J 1 f f~ ~ 12 dk < co} 
IR 

def 

where L2(1R) is the usual Hilbert space of square integrable comp1ex­
-valued functions on IR. The condition 

J If(k)12 dk < co 
\k\ 

IR 

(11) 

is particularly adapted to the infrared divergence r = co. The dimension 
of the configuration space is reduced from 3 to 1 (IRa is replaced by IR). 
The algebra M2 of 2x2-matrices mimicks the molecule whereas the CCR­
-algebra ~(Ho) describes the radiation field. Every operator ~EA may 
be written in the form 

of a 2x2-matrix with entries from ~(Ho)' the algebraic operations being 
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done in the obvious way just as for matrices. By definition, A is gener­
ated by elements of the form 

W(f) d;f (W(f l ) W(f2 ») , f. €H o j 1,2,3,4. 
-- W(fs) W(f~) J 

The space-reflection symmetry T is given by 

T(W(f» d~f (W(-f~) We-fa») , f €H 
-- W(-f2 ) W(-f l ) j 0 

(12) 

The dynamics {a~lt €R} corresponding to the Hamiltonian 

Ho = 1 ® J Ikl ~~ dk + O'a ® J A(k) (a~+ak) dk (13) 

R R 
for ~ = 0 is given by ([10,11]) 

a~ {~<.~)} d;f 

( itlklf 2· A (itlkl 1») We a+l.-e -Ikl 

f. €H o ' j = 1, •.. ,4 
J 

(14) 

Here eitlklf , f €H o , stands for the element {R3k --+ eitlklf(k)} of 
Ho, whereas 

Re <I~I (e-itlkl_1) If) 

is the real part of the complex number 

J t~~) (e+itlkl_1) f(k) dk 

IR 
o If Y denotes the quasifree dynamics 

y~ (W(f» d~f W(eilkltf) 

on A(Ho), a O is given by 

where St , t €R, is defined to be the unitary operator 

(15) 



W(-i ~ {e+ilklt_l}) 0 
Ikl 

o W(+i I~I {e+ilklt_l}) 
• t EIR • 

Remark 1: Every state $ on A corresponds to four linear functionals 
$j .j = 1.2.3.4. on ~(He) with 
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The linear functionals $j will always be supposed to be ~egulaP. which 
means that for arbitrary f.g EHe the map 

IR :3 z -. <i>j (W(f+zg») j = 1 •..•• 4. 

is analytic. This condition implies the existence of correlation func-
tions $I $I 

$j(a (fd ••• a (fn») fkEHe • 

where a$l stands for a or a*. Furthermore the correlation functions will 
be supposed to be continuous with respect to the scalar product 

(fig) ..... d~f J (1 + I~I) f(k)*g(k) dk • 

IR 
i.e. for j = 1 and j = 4 we suppose 

k = l •••.• n ; t = l •••.• m. 

3.4. Perturbation of dynamical systems (cf.[9]) 

Let (B.IR.a) be a C*- or W*-system. Then a dynamics lR:3t ~ et is called 
a loaal pe~tUI'bation of the dynamics 1R:3 t ~ at. if the derivation 

o (x) d~f d (at 1 et (x») I . x E B 
dt t=O 

is of the form o(x) = i[V.x]. where V = V* EB. This corresponds to a 
change of the Hamiltonian He which generates a to H = He +V. 

Perturbation theory permits to define a dynamics {a~lt EIR} for 
II * 0 in the spin-boson model : 
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Hemar'k 2: Note that the dynamics a O of the spin-boson model is not 
pointwise norm-continuous, that is, the mappings R3t ~ a~(x), are not 
continuous for all xEA with respect to the norm on A. As a consequence, 
the perturbation of a O has to be done in an appropriate representation. 
A representation ~ is 'appropriate' if there exists a a-weak1y continuous 
automorphism group ao of ~(A)" such that ~(~(x» .. ~(a~(x» , V xE A. 
The dynamics rfJ on ~A)" EB(H) is called a-weak1y cont1nuous if the 
mappings R 3 t --+ <I>(a (x» , x E ~(A)", are continuous for all normal 
states on ~(A)". This is equivalent to the continuity of the mappings 

1R3t --+ <~I~(x)~) EIR V ~ E H , V x E ~ (A) " 

In simpler models (such as the transverse Ising model to follow) conti­
nuity of the C*-system is fulfilled. 

3.5. ~-KMS-states in algebraic quantum mechanics (cf.[9]) 

The ~KMS-states (with ~ = k~ the inverse temperature) generalize Gibbs 
states (given by a density operator e-SH/ T { -SH}) to general systems 
in algebraic quantum mechanics. The precise redefinition runs as 
follows : Let <I> : C - C be a state on a C*-a1gebra C. Consider a dynam­
ical group {Ytlt EIR} on C. Then <I> is called a ~-KMS-state on C if for 
every pair of elements x,y EC there is a function Gxy : C --+ C which is 
ho10morphic in the open strip 0 < Im(z) < ~ , z E C. and bounded and 
continuous on the closed strip 0 s Im(z) s ~ • such that 

Gxy(t) = <I> {x at (y)} 
(18) 

G (t+i~) = <I> {at(y)x} xy VtEIR 

KMS-states are stable in the sense that for each small local perturbation 
of the dynamics there is another state close to the original one which 
is a KMS-state with respect to the perturbed dynamics. 

4. WHEN DOES CHIRALITY ARISE ? 

4.1. Chirality and thermodynamic states 

Consider a singte molecule described by the algebra M2 of 2x2-matrices 
and coupled to an environment with C*-a1gebra C. The full (not necessari­
ly quasi10ca1) C*-a1gebra of the system is given by the tensor product 
B = M2 ®C. Let the space-reflection symmetry be given by an automorphism 
T of B and the dynamics of the system by a (pointwise norm-continuous) 
automorphism group {y~ I t E IR} of B with the properties 

(i) 
(19) 

These properties were of course fulfilled in all our previous consider-
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ations: (i) corresponds to the invariance of the Hamiltonian HA1a under 
space-reflection and (ii) corresponds to the invariance of the ground 
state (Vol-Vo) and the first-excited state (VII-VI) under space-reflec­
tions (fi~o = ~o , Uv 1 = -~1). 

Theor'em 1 
Consider a C*-a1gebra B = M2®C, an automorphism T of B and a drnamica1 
group {y~ It €IR} fulfilling the conditions (i) and (ii). Let {y~ It € IR} be 
the perturbed dynamical groups with 

= i [11(<11 ®1), -] 

t=O 
for l1€R. Let e be a fixed inverse temperature, 0 < e <~. Assume that 
all e-KMS-states with respect to yO are T-invariant. Then all e-KMS­
-states with respect to {y~lt €IR} are T-invariant. 

Proof 
The proof is an immediate consequence of ([9] : Corollary 5.4.5). 

Of course, theorem 1 can be formulated on the W*-leve1 if yO does 
not fulfill continuity properties. In plain words, it says that on the 
level of ther'fT/odynamic states (e-KMS-states, e <~) a phase transition 
with respect to 11 does not exist. The situation is all the same irrespec­
tive of the special value of 11: Ther'efor'e the specific expectations ex­
plained in the intr'oduction (11 small .. chir'ality ar>ises) cannot be ful­
fUled with any ther'fT/al envir'onment (temperotUr'e T * 0) of the single 
individual molecule whatsoever'! In the spin-boson model, this result 
can even be sharpened: 

Theor'em 2 ([10]) 
Consider the full spin-boson model (A,a.ll , T). For every 11 € IR and 0 < e < ~ 
there is exactly one e-KMS-state wf with respect to the dynamics a.ll • In 
particular, w~ 0 T = w~ , i.e. the space reflection symmetry remains un­
broken and chira1 e-KMS-states do not exist. 

4.2. A simple model with chira1 e-KMS-states (the transverse Ising model) 

The situation described in the theorems 1 and 2 is changed immediately, 
if one does not consider a single molecule but infinitely many molecules 
(a crystal, e.g.) instead. A simple model with chira1 e-KMS-states is 
given by the- 'Ising model with a transverse field' ([12,13,14,15]) : Let 
~ c Z3 be an arbitrary finite sub lattice of the infinite lattice Z3 in 
3-dimensiona1 space and define the Hamiltonian 

All, A def '\' a + '\' a b 
H" = L 11<11 L A <13 ®<13 

- a€E la-bl=l 
, l1,A€IR. (20) 

a,b€E 

element of the local C*-a1gebra 
def M a a 

CE = a~E 2 , M2 ~ M2 V a€ ~ (21) 
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The operators oj,,, jA= 1,2,3, are the Pauli matrices in Mi , aEZ3. The 
Hamiltonians H~' take into account only nearest neighbor inter-
actions. The terms 1l0~, a E E, stand for the level splitting between 
ground state and first excited state of the molecule sitting at aEZ3 • 

The quasi local algebra, the space-reflection symmetry and the dynamics 
of the model are defined by 

C 
----norm 
u . C 

3c:::z3 

131<00 

( ® O~) x ( ® o~) 
aE3 aE3 

."~,A 
1 • (+l.H_ t 

l.m e ::! 

A~,A 
-H_ t) 

x e ::: 
131-+00 

x EC 

x EB t EIR • 

TheoX'em 3 
There is a constant C > 0, such that for ll/A < C and large enough S 
chira1 S-KMS-states with respect to y~,A do exist. 

&>oof 

(22) 

The proof is a consequence of the results in ([16]). The existence of a 
phase transition with respect to II (i.e. non-existence of chira1 states 
for II large) is always assumed in papers with a more heuristic approach. 
The best exact result in this direction seems to be given in ([15]). 

Existence of 'chira1' S-KMS-states simply means that there is a 
S-KMS-s£ate cpS with cpS 0 T '* cpS. Due to the commutation properties 
T 0 y~' = y~,A 0 T , t EIR, the state cpS 0 T is again S-KMS with respect 
to y~,A. Therefore cpS 0 T and cpS = (cpS 0 T) 0 T may be regarded as (left­
and right-) handed states of the system. 

The transverse Ising model gives an explanation for the chirality 
of large systems (an alanine-crystal, for example). Since the existence 
of singZe chira1 molecules (e.g. pheromones) is well established, this 
is not fully satisfactory. 

4.3. Ground states of the spin-boson model 

Def.: A ground state cp of a C*-system (C,IR,y) is an ~KMS-state with 
respect to y: This means that for every pair x,yEC there exists a func­
tion Gxy : C --+ C which is continuous for 1m z ~ 0 and analytic and 
bounded in 1m z > 0 such that 

G ( t ) = cp (x y (y» 
xy t 

VtEIR 

An equivalent condition ([9] : Proposition 5.3.19) runs as follows :cjJ is 
y-invariant, and if 

itH,j, def 
e .,.. 1T,j, (x)S"2,j, = 1T (y (x»S"2 

.,.. .,.. 4> t 4> 
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is the corresponding unitary representation of R on the GNS-Hilbert-space 
H~, then H¢ ~ o. Here a~ays this Zatter characterization wiZZ be used 
(in fact slightly adapted due to reasons given in remark 2). 

The set Kro of ground states of a C*-system (C,R,y) is a convex 
compact face ([9] : Theorem 5.3.37). Therefore ~ is generated by its 
extremal points, i.e. the elements ~ of ~ which do not admit a non­
trivial convex decomposition ~ = A ~l + (1-A)~2 , 0 < A < 1 , ~1>~2 EKoo. 
The e:x:(;remaZ ground states are pure states on C. 

Theorem 4 ([11]) 
Consider the spin-boson model (A,R,ao) for ~ o and assume that 

r d;f IA(~~12 dk 

diverges (see section 3.1). Then there exist exactly two extremal (pure) 
ground states w+ and W- : 

W(f2») d;f e-2iRe(I~llfl) e-tllflll2 

W(f,,) 

W(f 2»)d;f e+2iRe(I~llf,,) e-!lIf "W 
W(f ,,) 

The states w+ and w_ are disjoint and chiral with w+ W-0T and 
w- = W+OT. The limit state d f 

w ; lim WO 

B-- B 
respect to the dynamics aO is given by 

(23) 

of the S-KMS-states with 
w = t (w+ + w_). 

Up to now, there is no contradiction at all between the conjecture 
of Pfeifer (see section 3.2) and the results of the theorems 1 and 2. 
Nevertheless, even if this conjecture (whose proof would be a generaliza­
tion of theorem 4 to ~*O, which has not yet been done) is correct, a 
reasonable argument could be given which devalues this conjecture and 
any other results on ground states of the spin-boson model: 
'Even if the absoZute temperature of a reaZ system is Zow, it is never 
zero. ConsequentZy, one has to consider S-KMS-states with Zarge S in­
stead of groUnd states. Thus for aZZ practicaZ purposes the space-re­
fZection symmetry remains unbroken and chiraZ states do not exist. ' 

Of course, this argument does not apply to the transverse Ising 
model since there the space-reflection symmetry is broken for large S 
(if ~/A < C) and therefore chiral ground states are an acceptable cari­
cature to S-KMS-states with large S. 

To clarify the situation of the spin-boson model and in fact all 
models describing a singZe molecule and its environment (see theorem I), 
a closer look at the concept of a 'state' in algebraic quantum mechanics 
is necessary. 
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4.4. States in algebraic quantum mechanics 

In algebraic quantum mechanics individuaZ systems (such as single mole­
cules) are always described by pure states. Non-pure states (such as 
(3-KMS-st,ates, (3 EIR) may be used for different reasons : 

The algebra under discussion does not describe an individual 
system but a statistical ensemble. 
Pure states may be unstable under perturbations and, as a con­
sequence, not be determinable experimentally. This forces the 
experimentalist to introduce statistical states which describe 
the measurable quantities properly but do not describe a single 
individual system in all details. 

PostuZate : An individuaZ system (even UJith infiniteZy many degrees of 
freedom) is a7:ways in a pUl'e state (af.[3,1?]). Therefore the question 
of ahiraZity of a singZe moZeauZe has to be treated on this ZeveZ. 

The problem of chirality may be also regarded from a more dynamic­
al point of view. Pure states of the single molecule may be coupled to 
pure states (e.g. the Fock vacuum ~o or, more generally, any coherent 
state) of the radiation field. If this is done for two states, saY(6) 
and (~) of the molecule, the states ~+ = (6) ®~o and ~_ = (~) ®~o may 
develop under the time evolution to states which finally get disjoint 
in the limit t + ~ and generate different supers election sectors. In the 
following case, these limit states are again ground states of the system 
(which is not necessarily the case). 

Theorem 5 def -111f1l 2 

Let ~o be the Fock state on ~(Ho)' ~o(W(f) = e , f EHo' Consider 
the pure product states 

~+ d~f (~) ® ~o and ~_ d;f (~) ® ~o 

on the quasilocal C*-algebra A = M2 ® ~(Ho)' Then the limit states 

lim ~ + 0 o.~ 
t+~ 

and 

are the disjoint ground states wand w of the system with respect to 
the dynamics 0.0 (see section 3.3r. That-is, they lie in different sec­
tors and generate a classical chirality-observable. 

Proof 
• A -itlkl I .L 2 

~+(o.~(~(!») = e-21Re(m (e -1) f 1) e-211f111 • 

lim ( I~I (e-itlkl_l) If 1) = ( lim J ~~~) eitlklf1(k)dk) - (1~llfl) 
t +~ t +~ IR 

A = - (mlfl) by use of the Riemann-Lebesgue lemma ([18] : Theorem IX.7). 



Therefore lim ~ °ao 
+ t 

+-+ 00 

Remarks: 
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w+. The proof for ~_ can be done similarly. 

Theorem S holds as well if ~o is replaced by an arbitrary coherent 
state 

. ll!l12 

~ (W(f») d~f e~«flfo>-(folf»e- 2 
fo 

where foEHo is an arbitrary fixed vector. 

For finite time t, the states ~+oa~ and ~_oa~ get 'more and more 
disjoint' : 
Let l; E Hand l; E H be vector states implementing ~ + and ~ _ in a 
repre~entation :rr : A ---+ B(H) : 

~ (x) 
+ 

(l; 11f(x)l; > 
+ + 

(l;_I1f(x)l;_) x EA • 

Then the transition probabilities (l; 11f(ao(x»)l; ) converge to zero 
for t -+ 00. + t -

4.S. How to understand the uniqueness-result of Fannes et al. 

Altering the chirality of a single molecule (e.g. in a chemical reaction) 
means that the radiation field coupled to this molecule is radically 
changed. If the experimentalist would indeed observe the system (that is, 
the molecule and its radiation field) on the level of individual (pure) 
states, he could detect such an alteration of chirality by just looking 
at the radiation field alone. 

Of course, the determination of the precise individual pure state 
of a system with infinitely many degrees of freedom is impossible. Due 
to their extremely non-robust nature, pure states of infinite systems 
are never experimentally detectable. For the purpose of experiments, one 
has to change to a statistical (nonindividual) view and there (as the 
result of Fannes et al. asserts) the alteration of chirality should 
(and does) not change the superselection sector of the radiation field. 
This is perfectly in order and reflected in the counterpart to theoremS 
below. If experimentally accessible (e.g. thermodynamic) chiral states 
of the radiation field would exist in our model which change sign if the 
molecule's chirality is changed, we had to consider the model as being 
somewhat doubtful. 

Nevertheless,looking at the molecule as a single individual entity 
enforces an individual interpretation of the whole system. This joint 
system then is in a pure state even if this state cannot be determined 
by experiments. The same phenomenon arises in classical mechanics where 
a point particle sits at a position qE~3 even if this position can 
never be determined: It is, for example, impossible to measure if q has 
rational or irrational coordinates. A measurement only gives some prob­
ability distribution on the phase space Q. 
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~eopem 6 1 0 
Consider product states (0) ®4>S and (1) ®4>S on A = M2 ®/).(Ho)' where 

4>S(W(f) d~f eXP{-!(flcoth(SI:I)f)} fEHo 

is the S-KMS-state on /).(Ho) with respect to the free evolution of the 
boson .system. Then the limit states 

4>+ d~f lim {(~) ® 4> } 0 a~ 
t+oo S 

4>_ d~f lim {(~) ® 4>a} 0 a O 

t+ oo I-' t 

4> (W(f) +--

.1 S Ikl --z(f .. lcoth -2- f .. > 
e 

are quasiequivalent. 

Frooof 
See ([10] : Lemma 3.3). 

4.6. Outlook 

The problem of generalizing theorems 4 and 5 to the case of ~ * 0 and 
the derivation of an eventually existing phase transition has not yet 
been ~oived. It seems to be mo~e difficult than expected by P. Pfeifer 
in his thesis : There ([2] : Postulate 2, p.86; p.56) the restriction 
of all ground states (even for ~ * 0) to the two-level systemareassumed 
to be p~ states. This expectation is not unreasonable at all, but, un­
fortunately, it is only true for ~ = O. For ~*O the restriction of a 
ground state to the two-level system is always a mixed state. 

~opem 7 
Let 4> be a state on the spin-boson algebra A = M2 ®/).(Ho) and assume that 
the restriction 4>1 of 4> to M2 

4>1 M2 3x --+ 4> (x ®1) 
is a pupe state on M2 • Then 4> cannot be invariant with respect to the 
dynamics all, ~ * 0, on A. 

The proof of theorem 7 is given in section 4.7. 
Assume chiral ground states 4>+ and 4>- to exist for ~ *0 and co~­

sider the algebra M2 of the 'dressed' two-level system. The al~ebra M2 
is isomorphic to the algebra of all 2x2-matrices. The restrict10ns of 
the chiral states 4>+ and 4>- are implemented by the vectors (5) and (~) 
in appropriate coordinates. In fact ~2 is characterized by the latter 
property •. Theorem 7 now states that M2 and M2 - though being isomorphic­
do not coincide. Generally, M2 cannot even be expected to be a subalgebra 



321 

of the spin-boson algebra A, but only a suba1gebra of an observable (W*-) 
algebra generated by A. 

RemaI'k: Some work in the direction of nonvanishing level splitting has 
been done ([19,20,21]) : Leggett et a1. ([19]) use a perturbation ex­
pansion up to second order (cf.[22]). Their results do not coincide with 
Pfeifer's conjecture and should certainly be used as a source of inspira­
tion for an exact treatment. The approach ([20]) of Spohn et a1. gives 
rigorous results and leads to even more fascinating conjectures (differ­
ing again from what Pfeifer proposed). Its connection with algebraic 
methods is not yet entirely clear to the present author. 

4.7. Proof of theorem 7 

Consider the dynamical groups a+ and a- on ~(Ho) defined by 
• (A -itlkl 

+ def ±21Re TkT(e -l)lf) itlkl 
at(W(f») .. e W(e f) f EHo. (24) 

Note that a+ and a- enter into the definition of the dynamics a O (14) on 
the spin-boson algebra A = M2 ® ~(Ho). 

Lerruna 1 
There is no a+- and a -invariant regular state on ~(Ho). 

~~ + -
Suppose the state $ on ~(Ho) to be a - and a -invariant. 

• $(W(eilkltf») exp {-2iRe(I~1 (e-ilklt_1)!f)} 

ilklt {. A -ilklt ! } cp(W(e f») exp +21Re(TkT (e -1) f) , V f E Ho • 

( A -ilklto !) . Let fo EHo be such ~hat Re lKT (e -1) fo = d *0 for sU1tab1e 
to EIR. Then cp(W(c.e1Ik l tOfo}) can be nonzero only for c = ~~ , n EZ. 
Consequently the function 1R3c ~ $(W(c.e1Ikltofo») is not continuous 
and $ is not regular. Q.E.D. 

Lerruna 2 
Let cp be a state on A = M2 ®~(Ho) with restrictions CP1 and CP2 to M2 and 
~(Ho)' respectively. Assume CP1 to be a p~e state on M2• Then $ is of 
product form, cP = $1 ®cp 2· 

~of def 
CP1(X) = $(x®1) 

$2(y) d~f $(1®y) 

Let p be the support projection ([23] : III.3.6) of the p~e state CPIo 
Then p is an atomic projection and pxp = $1 (x).p , X EM2 , holds. 
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<I> (x ®y) (~) <I> { (p ®1)(x ®y)(p ®1)} = <j>{ (pxp) ®y} = 

<I>{(<I>l(x)p)®y} = <l>l(X) • <I>{p®y} (~) <l>l(X) .<I>{1®y} 

The Cauchy-Schwarz inequality is used at (#). 

Proof of theorem ? 

Q.E.D. 

Taking into account lemma 2, it has to be proven that a product state 
<I> = <1>1 ®<I>2 on A = M2 ®lI(Ho) (<1>1 a pure state on M2, <1>2 regular on lI(Ho» 
cannot be invariant under the dynamics a~, ~*O. Assume to the contrary 
that <1>1 ®<I>2 is a~-invariant (a~ exists only on the W*-leve1!). 
Let (H$ , ~$ , np ) be the GNS-representation of ~(Ho) with respect to 
<1>2' Let2(H,~!m b~ the GNS-representation of M2 ®lI(Ho) with respect to 
<I> = <1>1 ®<I>2' Since <I> is assumed to be a~-invariant, there exists a unitary 
one-parameter group IR 3 t ---+ u~ E B(H) implementing a~ by 

t EIR yE~(A)", 

and with u~n = n,VtEIR. Due to ([9] : Corollary 5.4.2) aD is implement­
ed by a unitary group, too : ~(at (x») = U~~(x)(u~)*, t EIR. If HO is the 
infinitesimal generator of UO and H is the infinitesimal generator of 
U~, the following holds: ° 

H = H +~~(crl®1) 

Let <1>1 be implemented by the vector (~i) EH2• Then the following rela­
tions hold (unitary equivalence) : 

H ;: H$2 ~H$2 

j 1,2,3,4, 

n ;: Cln~ ~ c2n 
't'2 $2 

HO commutes with 1 0 
~(cr3®1) = (0 -1)' and therefore has the form 

HO = (~+ ~) 
where H+ implements {a;ltEIR} and H_ implements {a~ltEIR} via ~$2' 

H n = 0 ~ (~+ ~) (~~g::) = (~) 



[If cl = 0, one has ~C2n$ = 0 and consequently C2 

diction. For C2 0 one c~n argue similarly.] 

itH+ -i ~ ~t 
.. e n$ 2 = e c 1 nej> 2 
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o which is a contra-

.. ~2 is a+- and a--invariant and regular which 
contradicts lemma 1. Q.E.D. 

5. DO DISJOINT STATES EXIST? 

The infrared divergence 

r J 1 A(k) 12 dk = co 

Ikl 2 

IR 

does only arise in the limit L ~ co, where L is the size of the box of 
the radiation field (see section 3.1). Since r = co is a r.ecessary condi­
tion for the disjointness of the ground states in theorem 4, it might be 
doubtful if disjoint states really exist. A cosmological argument sup­
porting this doubt is the "finiteness of the universe". 

Some principal objections can be made to such an argumentation : 
If the size L has to be kept finite, the 'problem of optical isomers' 
depends strongly on L and cannot be given a clear solution. The limit 
L ~ co~ on the contrary~ may be considered as a regul~ization of this 
problem. Furthermore the ground states 00+ and w- (see section 4.3) get 
more and more disjoint if L goes to infinity. Approximate disjointness 
may be measured by the vanishing of the transition probabilities between 
00+ and 00_ or by the vanishing of a Hellinger type integral. Thus dis­
jointness of 00+ and w- for L = co is a reasonable caricature for the sit­
uation where L is l~ge but finite. The argumentation here is similar to 
that one needed for finite time t instead of the limit t ~ co in the 
remarks after theorem 5. 
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