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Preface
It is surprising that only classical mechanics is required in the design and operation
of numerous charged particle beam devices, from electron microscopes to particle
accelerators, though the microscopic particles of the beam should be obeying quan-
tum mechanics. First, such a success of the classical charged particle beam optics
needs an explanation from the point of view of quantum mechanics. Then, it is cer-
tain that though the classical charged particle beam optics is extremely successful in
the present-day beam devices, future developments in charged particle beam tech-
nology would require quantum theory. With this in mind, we present in this book
the formalism of quantum charged particle beam optics. Though the formalism of
quantum charged particle beam optics presented in this book needs a lot of further
development for it to be a complete theory, we hope that it would be the basis for
the theory of any future charged particle beam device that would require quantum
mechanics for the design and operation of its optical elements.

In a series of papers starting in 1983, Professors N. Mukunda, R. Simon, and
E. C. G. Sudarshan had established, using a group theoretical approach, the Fourier
optics for the Maxwell Field, which generalizes the paraxial scalar wave optics to
paraxial Maxwell wave optics, consistently taking into account polarization. Around
1987, when Professor Sudarshan was the director of The Institute of Mathematical
Sciences (IMSc), Chennai, India, he suggested to me, then a junior faculty member
of the institute, to study the group theoretical aspects of electron optics based on the
Dirac equation, with the aim to extend the traditional nonrelativistic scalar wave the-
ory of electron optics to the Dirac spinor wave theory, taking into account the spin
of the electron analogous to the way they had extended the Helmholtz scalar light
optics to the Maxwell vector optics, taking into account the polarization of light.
Searching the literature on electron optics led to a surprise: electron optics, or in
general, charged particle optics, used in beam devices from electron microscopes
to particle accelerators, was based essentially on classical mechanics. Of course, in
electron microscopy, the image formation was understood on the basis of the nonrel-
ativistic Schrödinger equation, ignoring completely the electron spin and the Dirac
equation. In accelerator physics, topics like quantum fluctuations of the classical par-
ticle trajectories were treated using quantum mechanical concepts, but the design and
operation of the accelerator beam elements were based only on classical mechanics.
So, we had to start from scratch to understand the quantum mechanics of electron
optics based on the Dirac equation. The first result of this study was a paper by Pro-
fessors Simon, Sudarshan, and Mukunda, and me, in which we derived the focusing
action of the round magnetic lens, the central part of any electron microscope, using
the Dirac equation ab initio. Professor Sudarshan encouraged me to continue the
study further in this direction, and in a subsequent paper, I used the quantum elec-
tron beam optics based on the Dirac equation to study other types of electromagnetic
lenses. The PhD work of Sameen Ahmed Khan with me, during 1992–1997 at IMSc,

xi
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led to the formulation of a more general framework of quantum theory of charged
particle beam optics using the Heisenberg picture, Ehrenfest’s theorem, and quan-
tum transfer maps. Sameen and I are fortunate to have had a collaboration in 1996
with Professors M. Conte and M. Pusterla. This collaboration helped us to extend
our theory to accelerator optics. Later work has led to a comprehensive formalism
of quantum charged particle beam optics applicable to any charged particle beam
device.

We remember Professor Sudarshan with gratitude for initiating our study of quan-
tum charged particle beam optics, and would like to thank Professors Mukunda,
Simon, Conte, and Pusterla for fruitful discussions and collaboration in the early
stages of our work. I thank the IMSc for support throughout my academic career.
We thank the library of IMSc for its excellent resources, and we also thank Dr Paul
Pandian, the librarian, and his colleagues, in particular, Dr P. Usha Devi, for timely
help in getting the references required during the writing of this book.

I worked on my contribution to the writing of this book during my tenure at
the Chennai Mathematical Institute (CMI) as adjunct professor, and I wish to thank
CMI for supporting me after retirement from IMSc. I have enjoyed working on the
book mostly from the comfort of my home and my daughters’ homes and with the
kind support of everyone in my family. It gives me great pleasure to thank Malathy
(my wife), Subadhra & Sandeep, and Anisha & Ajay (my elder daughter & son-
in-law, and granddaughter & grandson), and Sujatha & Srinivas, and Aditi (my
younger daughter & son-in-law, and granddaughter). And, I wish to thank my friend
Kuppuswamy, friend from my school days, who has been encouraging me constantly
throughout my life and, in a way, was responsible for me joining IMSc in 1971 as a
PhD student.

Sameen adds: I wish to acknowledge IMSc, where the work on this topic orig-
inated, for the support I received as a PhD student (and subsequent visits) and its
excellent research environment. During my doctoral study at IMSc, the Internet had
just begun to take roots. It was during this time that there was a long-distance collab-
oration with Professors Conte and Pusterla in Italy, exclusively by e-mail (thanks to
the excellent Internet resources at IMSc), leading to the Conte-Jagannathan-Khan-
Pusterla paper without a single face-to-face meeting! This collaboration was fol-
lowed by my postdoctoral work at Istituto Nazionale di Fisica Nucleare (INFN) with
Professor Pusterla when some more work was done on accelerator optics. I would
also like to acknowledge Professor K. B. Wolf for a fruitful stay as a Consejo
Nacional de Ciencia y Tecnologia (CONACyT) postdoctoral fellow at the Univer-
sidad Nacional Autnoma de Mxico (UNAM), Cuernavaca, Mxico. I would like to
profusely thank my current workplace, Dhofar University, for constant encourage-
ment to pursue research. My contributions to the book would not have been possible
without the support of my family. My wife Noama Khan and daughter Hajira Khan
always take a keen interest in my writing endeavors. I wish to acknowledge my elder
brothers Mohammed Ahmed Khan and Farooq Ahmed Khan, and remember my
parents thankfully, for the academic environment in which I grew up. And, I have
to thank my sisters, Ayesha Khan and Bushra Khan, who have been very supportive
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throughout my life. I also wish to thank my friend Azher Majid Siddiqui from my
college days for continuous encouragement.

We are grateful to Professor Vasudevan Lakshminarayanan for urging us con-
stantly for a long time to write a book on our work, and the book is here finally!

Ramaswamy Jagannathan,
with

Sameen Ahmed Khan,
November 2018.



http://www.taylorandfrancis.com


Authors
Professor Ramaswamy Jagannathan retired in 2009 as a senior professor of
physics from The Institute of Mathematical Sciences (IMSc), Chennai, India. He
is currently an adjunct professor of physics at the Chennai Mathematical Institute
(CMI), Chennai. He got his PhD (Theor. Phys.) from the University of Madras,
Chennai, India, in 1976, working at IMSc. His PhD work on generalized Clif-
ford algebras was done under the guidance of Professor Alladi Ramakrishnan, the
founder director of IMSc known popularly as MATSCIENCE at that time. He
has authored/coauthored about 80 research papers in various branches of Physi-
cal Mathematics, like Generalized Clifford Algebras and Their Physical Applica-
tions, Finite-Dimensional Quantum Mechanics, Applications of Classical Groups,
Quantum Groups, Nonlinear Dynamics, Deformed Special Functions, and Quantum
Theory of Charged Particle Beam Optics with Applications to Electron Microscopy
and Accelerator Optics. In particular, his paper with Professors R. Simon, E. C. G.
Sudarshan, and N. Mukunda (1989) on the quantum theory of magnetic electron
lenses based on the Dirac equation initiated a systematic study of the Quantum
Theory of Charged Particle Beam Optics. This theory was subsequently developed
vastly by him and his collaborators (in particular, his PhD student Dr Sameen Ahmed
Khan).

Dr Sameen Ahmed Khan is an associate professor at the Department of Math-
ematics and Sciences, College of Arts and Applied Sciences, Dhofar University,
Salalah, Sultanate of Oman (http://du.edu.om/). He got his PhD (Theor. Phys.) at
the University of Madras, Chennai, India, in 1997. His PhD thesis, done at The
Institute of Mathematical Sciences (IMSc), Chennai, under the supervision of Pro-
fessor Ramaswamy Jagannathan, was on the quantum theory of charged particle
beam optics. He did postdoctoral research at INFN, Padova, Italy, and Universidad
Nacional Autonoma de Mexico, Cuernavaca, Mexico. He has 16 years of teaching
experience in Oman. He has developed a unified treatment of light beam optics and
light polarization using quantum methodologies. This formalism describes the beam
optics and light polarization from a parent Hamiltonian which is exact and derived
from Maxwell’s equations. He has authored three books, fifteen book chapters, and
about 75 technical publications in journals and proceedings of repute. He has more
than 250 publications on science popularization. Dr Sameen is one of the found-
ing members of the Ibn al Haytham LHiSA Light: History, Science, and Applica-
tions (LHiSA) International Society set up during the International Year of Light and
Light-based Technologies. He is a signatory to six of the reports on the upcoming
International Linear Collider.

xv

http://du.edu.om


http://www.taylorandfrancis.com


1 Introduction
This book essentially addresses a question of curiosity: How is Classical Charged
Particle Beam Optics, entirely based on classical mechanics, so successful in prac-
tice in numerous devices from low-energy electron microscopes to high-energy par-
ticle accelerators though the microscopic particles of the beam should be obeying
quantum mechanics? To get a detailed answer to this question, this book explores
Quantum Charged Particle Beam Optics.

A charged particle beam is a collection of charged particles of the same type
(electrons, protons, same type of ions, etc.), with the same mass, charge, etc.,
moving almost in the same direction with almost the same momentum. For any
beam device, there is a design trajectory, straight or curved, defining its optic axis
along which the beam particle is supposed to move with a specific momentum, say
~p0 = p0~s, where~s is the unit vector along the tangent to the design trajectory at any
point on it. A charged particle moving along this design trajectory with the spec-
ified momentum ~p0, the design momentum, is called the reference particle. If all
the particles of a beam propagating through the device along its optic axis have
momenta very close to the design momentum, i.e., for any particle of the beam
~p ≈ ~p0, then all the particles of the beam would move in almost the same direc-
tion. Such a beam is called a paraxial beam. Let p0~s be the design momentum of a
beam device. If ~p ∦~s is the momentum of a particle of a beam propagating through
the device, and |~p| = p0, then its longitudinal and perpendicular components are
~p‖ = (~s ·~p)~s = p‖~s and ~p⊥ = ~p− p‖~s, respectively, and p2

‖ = |~p|
2−|~p⊥|2 = p2

0− p2
⊥.

Any particle of a paraxial beam will satisfy the condition |~p⊥| � p0, and it will

have p‖ =
√

p2
0− p2

⊥ ≈ p0−
(

p2
⊥/2p0

)
. At times, for a paraxial beam, we may even

take p‖ ≈ p0. If the paraxial condition is not satisfied strictly, and we can write only
p‖ ≈ p0−

(
p2
⊥/2p0

)
−
(

p4
⊥/8p3

0
)

then the beam can be called a quasiparaxial beam.

If more terms in the Taylor series of
√

p2
0− p2

⊥ are required to get an approximate
expression for p‖ in terms of p0 and |~p⊥|, then the beam has to be called nonparaxial.
Any beam violating the paraxial condition is nonparaxial, and hence a quasiparaxial
beam may also be classified as nonparaxial.

A charged particle beam, an ordered flow of charged particles in nearly the same
direction, is a complex dynamical system. The dynamics of the particles depends
on both the external electric and magnetic fields guiding the beam propagation and
the internal fields contributed by the beam particles themselves. There will also be
collisions between the particles. Even a low-current beam may contain more than
1010 particles. So, any exact description of the dynamical behavior of the system is
impossible. We can have only approximate theories of the collective behavior of the
beam. Such theories have to be built by averaging over the behaviors of the large
number of individual charged particles of the beam.

1



2 Quantum Mechanics of Charged Particle Beam Optics

It is clear that the first step in the study of charged particle beam physics is the
study of the dynamics of a single charged particle of the beam, ignoring all the inter-
particle and collective, or statistical, interactions. This single particle dynamics is the
basis for the design of any charged particle beam device, i.e., designing the required
trajectory of the reference particle. Study of the dynamics of a single charged parti-
cle under the influence of electric and magnetic fields, and consequent designs of the
beam devices, like electron microscopes, electron beam lithography systems, elec-
tron beam welding machines, and particle accelerators, is called charged particle
beam optics. The basis of design and operation of any device using charged parti-
cle beam technology is classical mechanics, and it has been very successful so far
without any exception. This is where one becomes curious to know how and why
classical mechanics works so well in this context, though the microscopic particles
of the beam, like electrons, protons, and ions, should be obeying quantum mechanics.

Any electron microscope is designed and operated using electron optics based
entirely on classical mechanics. Quantum mechanics, or wave mechanics, is being
used for understanding the image formation and resolution in electron microscopes
since Glaser initiated the work in this direction (see Glaser [62] and references
therein; see the encyclopedic three-volume text book of Hawkes and Kasper ([70,
71, 72]) for a comprehensive account of historical aspects and any technical aspect
of geometrical electron optics and electron wave optics). In understanding the image
formation in electron microscopy, mostly the nonrelativistic Schrödinger equation
is used. In high-energy electron microscopy, one starts with the relativistic Klein–
Gordon equation and soon approximates it to the nonrelativistic Schrödinger equa-
tion, often with a relativistic correction essentially based on replacing the rest mass
m of the particle by the so-called relativistic mass γm = m/

√
1− (v2/c2). It is con-

sidered that under the conditions obtained in high-energy electron microscopy, use of
the Klein–Gordon equation, as approximation of the Dirac equation, is adequate (see,
e.g., Ferwerda, Hoenders, and Slump [48, 49], Hawkes and Kasper [72], Groves [68],
Lubk [129], and Pozzi [150]).

In accelerator physics, there are several quantum effects, like quantum fluctua-
tions in high-energy electron beams due to synchrotron radiation, which are stud-
ied using quantum mechanics (see, e.g., Sokolov and Ternov [173], Ternov [181],
Bell and Leinass [9], Hand and Skuja [69], Chao, Mess, Tigner, and Zimmer-
mann [20], Chen [22, 23] and Chen and Reil [24] and references therein). The
required quantum effects are treated usually as perturbations to the classical trajecto-
ries. Accelerator optics, the basic theory for the design and operation of accelerators,
itself is based only on classical mechanics (see, e.g., Berz, Makino, and Wan [12],
Conte and MacKay [27], Lee [127], Reiser [158], Rosenzweig [159], Seryi [168],
Weidemann [187], Wolski [192], Chao, Mess, Tigner, and Zimmermann [20] and
references therein).

To understand the remarkable effectiveness of classical mechanics in charged
particle beam optics, we explore in this book the quantum mechanics of charged
particle beam optics at the level of single particle dynamics, using the appro-
priate basic equations, namely, the Klein–Gordon equation for spin-0 particles
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or high-energy particles without spin, (i.e., when the spin is ignored), the Dirac
equation for spin- 1

2 particles, the nonrelativistic Schrödinger equation for low-
energy particles without spin, and the nonrelativistic Schrödinger–Pauli equation
for low-energy spin- 1

2 particles. To this end, we closely follow Jagannathan, Simon,
Sudarshan, and Mukunda [79], Jagannathan [80], Khan and Jagannathan [90], Jagan-
nathan and Khan [82], Conte, Jagannathan, Khan, and Pusterla [26], Khan [91],
Jagannathan [83, 84, 85], Khan [92, 99], and references therein. This chapter, Intro-
duction, gives a brief overview of what to expect in each of the later chapters.

Chapter 2, An Introductory Review of Classical Mechanics, presents a summary
of the basic concepts of classical mechanics required essentially for classical charged
particle beam optics. We recall the Lagrangian and the Hamiltonian formalisms of
classical mechanics of a single particle. We discuss the Hamiltonian dynamics in
terms of the Poisson brackets, changing the independent variable, canonical trans-
formations, and the symplecticity of canonical transformations. The transfer maps
for the observables across the system with respect to the coordinate along the optic
axis are described in terms of the Lie transfer operator. The dynamics of a charged
particle moving in a constant magnetic field serves as an example for the discussions.
When time is the independent variable with respect to which we study the dynam-
ical evolution of a given system, the generator of time evolution, the Hamiltonian,
corresponds to the energy of the system. When we change the independent variable
from time to, say s, the coordinate along the optic axis of the system, the correspond-
ing Hamiltonian generating evolution of the system along the forward s-direction,
the optical Hamiltonian, corresponds to−ps, negative of the momentum canonically
conjugate to s. We derive the classical optical Hamiltonian of a relativistic charged
particle moving through an electromagnetic optical element with a straight optic
axis. Though we are concerned only with single particle dynamics, in this chapter,
we also give a brief introduction to the formalism of multiparticle dynamics for the
sake of completeness. For more details on classical mechanics, see, e.g., Corben and
Stehle [28], Goldstein, Poole, and Safko [63], and Sudarshan and Mukunda [174].
Classical charged particle beam optics is based on classical electrodynamics, besides
classical mechanics. We have not given any account of classical electrodynamics.
Books on electron optics, charged particle optics, accelerator physics, and beam
physics, mentioned earlier contain adequate details of classical electrodynamics. For
more details on classical electrodynamics, see, e.g., Griffiths [66] and Jackson [78].
For any mathematical details required, see, e.g., Arfken, Weber, and Harris [3] and
Byron and Fuller [18]. The Lie transfer operator method of studying the classical
dynamical evolution of the observables of the system introduced in this chapter plays
a central role in the modern approach to classical charged particle beam optics and
has a straightforward generalization in the formalism of quantum charged particle
beam optics. Dragt et al. have developed extensive techniques for applying the Lie
transfer operator methods to light optics, classical charged particle beam optics, and
accelerator optics (see Dragt [34], Dragt and Forest [35], Dragt et al. [36], Forest,
Berz, and Irwin [54], Rangarajan, Dragt, and Neri [156], Forest and Hirata [55],
Forest [56], Radlic̆ka [154], and references therein; see also Berz [11], Mondragón
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and Wolf [135], Wolf [191], Rangarajan and Sachidanand [157], Lakshminarayanan,
Sridhar, and Jagannathan [124], and Wolski [192]).

Chapter 3, An Introductory Review of Quantum Mechanics, recalls the basic con-
cepts of quantum mechanics required essentially for quantum charged particle beam
optics. First, the fundamental principles of quantum mechanics like the wave func-
tion, probability interpretation, Hermitian operator representations of observables
like position, linear momentum, angular momentum, and energy or Hamiltonian,
eigenstates of observables, time-dependent Schrödinger equation for the dynam-
ical evolution of a quantum system, measurement of an observable, average (or
expectation) values, and the uncertainty principle are recalled. The Schrödinger and
Heisenberg pictures of quantum dynamics and the Heisenberg equation of motion
for observables are introduced. Ehrenfest’s theorem, basic to the formalism of quan-
tum charged particle beam optics, is derived. Time-dependent perturbation theory
and the role of interaction picture are explained. The Dyson expression for the
time-evolution operator as a time-ordered exponential is given, and its Magnus
form as an ordinary exponential, particularly suitable for quantum charged par-
ticle beam optics, is presented. As examples of nonrelativistic quantum mechan-
ics, free particle, harmonic oscillator in one and two dimensions, charged particle
in a constant magnetic field, Laundau levels, and scattering of a particle by one-
dimensional potential well and barrier are treated. Concept of spin as a nonclassical
property of a particle is introduced using the angular momentum algebra, and the
two-component spinor wave function of a spin- 1

2 particle is introduced. The non-
relativistic Schrödinger–Pauli equation for the electron, or any spin- 1

2 particle, is
formulated, and the magnetic moment of electron is discussed. Concepts of pure
and mixed states are explained, and the formalism of quantum mechanics in terms
of density operator is discussed. The scalar relativistic wave equation, the Klein–
Gordon equation, and the problems with its interpretation as a single particle theory
are analysed. Examples of free particle and a charged particle in a constant magnetic
field are treated. The Feshbach–Villars form of the Klein–Gordon equation and the
passage from the Klein–Gordon equation to its nonrelativistic limit, the nonrelativis-
tic Schrödinger equation, are discussed. The Dirac equation with four-component
spinor wave function is formulated. As examples, free particle and a charged parti-
cle in a constant magnetic field are treated. It is shown how a particle obeying the
Dirac equation, or a Dirac particle, possesses naturally an intrinsic angular momen-
tum, or spin, with value 1

2 h̄. The Dirac–Pauli equation incorporating an anoma-
lous magnetic moment is written down. The Foldy–Wouthuysen transformation of
the Dirac equation is presented in detail. This transformation leads to a systematic
procedure for approximating the Dirac Hamiltonian as a sum of the nonrelativis-
tic Hamiltonian plus higher order relativistic corrections. In the Foldy–Wouthuysen
representation, the four-component wave function has large upper pair of compo-
nents compared to the vanishingly small lower pair of components when the parti-
cle has positive energy, and the Hamiltonian becomes approximately a direct sum
of two parts such that it is possible to build an effective two-component theory for
the positive energy particle. A Foldy–Wouthuysen-like transformation is applied to
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the Feshbach–Villars form of the Klein–Gordon equation, leading to a systematic
procedure for approximating it as the nonrelativistic part plus higher order rela-
tivistic corrections. A Foldy–Wouthuysen-like transformation is central to the for-
malism of quantum charged particle beam optics, in which we study the quantum
beam optical Hamiltonian as the sum of a paraxial part plus nonparaxial correc-
tions. For more details on quantum mechanics, see, e.g., Cohen-Tannoudji, Diu,
and Loloë [25], Esposito, Marmo, Miele, and Sudarshan [39], Greiner [64], Grif-
fiths and Schroetter [67], Sakurai and Napolitano [166], Shankar [169], Bjorken and
Drell [13], Greiner [65], and Parthasarathy [142].

Chapter 4, An Introduction to Classical Charged Particle Beam Optics, gives a
brief account of the classical theory of optical behaviors of a few magnetic and elec-
trostatic optical elements which will serve as examples for the formalism of quantum
charged particle beam optics. The systems we study are monoenergetic paraxial or
quasiparaxial charged particle beams propagating in the forward direction through
the optical elements comprising time-independent electromagnetic fields. Starting
with the general form of the optical Hamiltonian of a relativistic charged particle
moving through an electromagnetic optical element with a straight optic axis, derived
in Chapter 2, the relativistic classical charged particle beam optical Hamiltonian, or
simply, the classical beam optical Hamiltonian, for any electromagnetic optical ele-
ment with a straight optic axis is derived. Starting with this classical beam optical
Hamiltonian, first we study the propagation of the beam through free space. Then, we
study a few optical systems with straight optic axis, namely, axially symmetric mag-
netic and electrostatic lenses, and magnetic and electrostatic quadrupoles. We derive
the well-known results on their optical behaviors by computing the transfer maps
for the transverse position coordinates (x,y) and the transverse momentum compo-
nents (px, py). These optical systems are studied in the lowest order, the paraxial,
approximation. Study of the axially symmetric magnetic lens leads to the under-
standing of the classical theory of image formation in an electron microscope. Study
of the magnetic quadrupole explains its central role in guiding the accelerator beams.
Transforming the optical Hamiltonian to a curvilinear coordinate system adapted to
the geometry of the design orbit, bending of a charged particle beam by a magnetic
dipole element, the simplest optical element with a curved optic axis, is studied in
paraxial approximation, and the well-known classical results are obtained. It is found
that one can obtain the relativistic results by extending the nonrelativistic results
through the replacement of the rest mass m by the so-called relativistic mass γm as
is the common practice in classical charged particle beam optics. For more details
on classical charged particle beam optics, see, e.g., the references on electron optics,
charged particle optics, charged particle beam physics, and accelerator physics, men-
tioned earlier (Hawkes and Kasper [70, 71], Orloff [141], Groves [68], Lubk [129],
Pozzi [150], Berz, Makino, and Wan [12], Conte and MacKay [27], Lee [127],
Reiser [158], Rosenzweig [159], Seryi [168], Weidemann [187], Wolski [192], Chao,
Mess, Tigner, and Zimmermann [20] and references therein).

Chapter 5, Quantum Charged Particle Beam Optics: Scalar Theory for Spin-0 and
Spinless Particles, spells out the general framework of the formalism of quantum
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charged particle beam optics and develops the scalar theory applicable to spin-0 and
spinless particles. Let a monoenergetic paraxial or quasiparaxial charged particle
beam be propagating in the forward direction along the optic axis of an optical system
comprising a time-independent electromagnetic field. Let s be coordinate along the
optic axis of the system and |ψ(s)〉 represent the quantum state of the beam in the
vertical plane at the point s on the optic axis. Since we are interested in studying
the evolution of the beam along the optic axis of the system, the quantum charged
particle beam optical evolution equation should have the general form:

ih̄
∂ |ψ(s)〉

∂ s
= Ĥo|ψ(s)〉, (1.1)

where Ĥo is the quantum charged particle beam optical Hamiltonian of the system.
In quantum charged particle beam optics, Equation (1.1) replaces the Schrödinger
equation:

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ |Ψ(t)〉. (1.2)

The quantum systems we are studying are the scattering states corresponding to the
beams propagating through optical elements comprising time-independent electro-
magnetic fields. Once the proper basic quantum mechanical time-evolution equation
(nonrelativistic Schrödinger equation, Klein–Gordon equation, Dirac equation, . . .)
appropriate for the given system is rewritten in the form of (1.1), the quantum
charged particle beam optical Schrödinger equation, or in short, the quantum beam
optical Schrödinger equation, all the optical behaviors of system can be deduced
using the standard rules of quantum mechanics. This chapter presents the scalar
theory of quantum charged particle beam optics, which is applicable to spin-0 and
spinless (i.e., spin-ignored) particles. It is based on the relativistic Klein–Gordon
equation for relativistic particles and the nonrelativistic Schrödinger equation for
nonrelativistic particles. In the scalar theory, the wave function has a single com-
ponent, ψ (x,y,s) = 〈x,y |ψ(s) 〉, where x and y are the coordinates in the vertical
plane, or the transverse coordinates, at the point s on the optic axis. The optic axis
can be straight or curved. Except for the example of the dipole magnet, or the bend-
ing magnet, which has a curved optic axis, the systems we study will have straight
optic axis. The coordinate s along a straight optic axis will be taken as z. Starting
with the chosen basic time-evolution equation, Klein–Gordon, or the nonrelativis-
tic Schrödinger, equation in the case of the scalar theory, and the Dirac equation
in the case of the spinor theory, we shall first write down the beam optical evolu-
tion equation for a general electromagnetic optical system as an z-evolution equa-
tion. In case the system to be studied has a curved optic axis, we shall transform
the z-evolution equation into an s-evolution equation adapted to the geometry of
optic axis of the system. Writing the time-independent Klein–Gordon equation in
the Feshbach–Villars-like form and using a Foldy–Wouthuysen-like transformation
lead to the scalar quantum beam optical Schrödinger equation for a monoenergetic
quasiparaxial beam propagating in the forward direction along the optic axis with the
quantum beam optical Hamiltonian as the sum of the paraxial part and nonparaxial
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approximations up to any desired level of accuracy. Using this quantum beam optical
Schrödinger equation, the transfer maps for quantum averages of the transverse posi-
tion coordinates (〈x〉,〈y〉) and the transverse momentum components

(
〈p̂x〉 ,

〈
p̂y
〉)

across the optical elements are obtained in the paraxial approximation. Propagation
through free space explains diffraction. Propagation through an axially symmetric
magnetic lens explains image formation in an electron microscope. In the classical
limit (h̄−→ 0), the results coincide exactly with the classical results. There are quan-
tum corrections which are very small compared to the classical results and vanish in
the classical limit. This explains the success of classical mechanics in charged par-
ticle beam optics. Image aberrations due to the deviation of the beam from paraxial
conditions are also studied, leading to the quantum versions of the aberration coef-
ficients which correspond to the well-known classical expressions plus some tiny
quantum corrections. Similarly, the quantum theory for other optical elements con-
sidered, namely, the axially symmetric electrostatic lens, the magnetic and electro-
static quadrupoles, and the bending magnet, leads to quantum beam optical Hamilto-
nians corresponding to the exact classical beam optical Hamiltonians plus correction
terms, which vanish in the classical limit. The nonrelativistic quantum charged parti-
cle beam optics based on the nonrelativistic Schrödinger equation is obtained as the
nonrelativistic approximation of the theory based on the Klein–Gordon equation. It
is found that the common practice of replacing the rest mass m by γm to get the rela-
tivistic results from the corresponding nonrelativistic results is justified in the scalar
quantum beam optics. However, as we shall see in the next chapter, this is not true in
the spinor theory when the spin of the particle is taken into account.

Chapter 6, Quantum Charged Particle Beam Optics: Spinor Theory for Spin- 1
2

Particles, presents the spinor theory of quantum charged particle beam optics applica-
ble to spin- 1

2 particles. For the relativistic spin- 1
2 particles, the Dirac equation and the

Dirac–Pauli equation are the fundamental equations on which the quantum charged
particle beam optics should be based. For nonrelativistic spin- 1

2 particles, the quan-
tum charged particle beam optics can be based on the Schrödinger–Pauli equation.
The Dirac equation for a charged particle in an electromagnetic field being linear
in ∂/∂ z it is straightforward to write down the z-evolution equation in the time-
independent case. Then, using a Foldy–Wouthuysen-like transformation, we build
the spinor quantum beam optics for optical elements with straight optic axis. For a
monoenergetic quasiparaxial beam propagating in the forward direction along the
straight optic axis of an optical element comprising time-independent electromag-
netic field, the quantum beam optical spinor, four-component, wave function has the
upper pair of components large compared to the vanishingly small lower pair of com-
ponents. We study the free propagation to understand diffraction. Study of axially
symmetric magnetic lens shows that the paraxial part of the spinor quantum beam
optical Hamiltonian is same as in the scalar theory, whereas the nonparaxial, aberra-
tion parts depend on the spin of the particle. Besides the presence of matrix terms,
as is to be expected, the scalar terms in the aberration part of the spinor quantum
beam optical Hamiltonian differ from the corresponding terms in the scalar quantum
beam optical Hamiltonian. In high-energy electron microscopy, use of the Klein–
Gordon equation, as approximation of the Dirac equation, is considered adequate.
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However, we find that a scalar approximation of the quantum beam optics based
on the Dirac equation by keeping only the scalar terms in the quantum beam opti-
cal Hamiltonian and dropping the matrix terms is not the same as the quantum beam
optics based on the Klein–Gordon equation. Propagation of a monoenergetic paraxial
charged Dirac particle beam through a bending magnet is studied adopting the for-
malism of general relativity to transform the z-evolution equation into the appropri-
ate s-evolution equation. Quantum beam optics of propagation of a forward-moving
monoenergetic paraxial beam of Dirac particles with anomalous magnetic moment
through an optical element with straight optic axis is formulated using the accelerator
optics framework. Magnetic quadrupoles are studied as examples. This study shows
how the spinor quantum beam optics gives a unified treatment of orbital motion,
or the Lorentz force, effect of the Stern–Gerlach force, and the Thomas–Frenkel–
Bargmann–Michel–Telegdi spin motion. Finally, the two-component spinor theory
of quantum beam optics based on the nonrelativistic Schrödinger–Pauli equation is
given. We find that while it is possible to approximate the quantum beam optical
Dirac Hamiltonian to get the nonrelativistic quantum beam optical Schrödinger–
Pauli Hamiltonian by taking the limit γ −→ 1, it would be misleading to extend
the nonrelativistic results to the corresponding relativistic results when the spin of
the particle is also taken into account.

Chapter 7, Concluding Remarks and Outlook on Further Development of Quan-
tum Theory of Charged Particle Beam Optics, lists remarks on certain developments
in light optics inspired by the quantum charged particle beam optics, the necessity
for the use of quantum charged particle beam optics in future charged particle beam
devices and particle accelerators, and the main problems to be addressed in the future
development of quantum charged particle beam optics. We hope that the formalism
of quantum charged particle beam optics presented here would be the basis for the
development of the quantum theory of future charged particle beam devices.



2 An Introductory Review of
Classical Mechanics

2.1 SINGLE PARTICLE DYNAMICS
2.1.1 LAGRANGIAN FORMALISM

2.1.1.1 Basic Theory
All charged particle beam devices, from low-energy electron microscopes to high-
energy particle accelerators, are designed and operated very successfully on the basis
of classical mechanics though the beams propagating through them are beams of
microscopic particles, like electrons, protons, and ions, which should be obeying
quantum mechanics. To understand in depth, we study the quantum mechanics of
charged particle beam optics in detail in this book. In this chapter, we give an intro-
ductory review of classical mechanics just at the level necessary for understanding
the classical charged particle beam optics. For more details on any topic in classical
mechanics and advanced perspectives, see, e.g., Goldstein, Poole, and Safko [63],
Corben and Stehle [28], and Sudarshan and Mukunda [174].

Classical mechanics of Newton and its relativistic extension by Einstein follow
from a principle of stationary action. Let x(t) =

{
x j(t) | j = 1,2,3

}
be the set of

components of the position vector of a particle at time t, in any chosen Cartesian or
curvilinear coordinate system, and ẋ(t) =

{
ẋ j(t) = dx j(t)/dt | j = 1,2,3

}
be the set

of corresponding components of the velocity of the particle at that time. Time t is
the independent variable with respect to which we are studying the evolution of the
system. An action functional

S [x(t)] =
∫ t f

ti
dtL(x(t), ẋ(t), t) (2.1)

is associated with any trajectory of the particle, x(t), from an initial time ti to a final
time t f , where L is called the Lagrangian of the particle. There can be several equiv-
alent Lagrangians leading to the same description of the dynamics of the particle.
Hamilton’s principle of stationary action says that the actual trajectory of the particle
from ti to t f is along a path for which the action is stationary: i.e., the actual path x(t)
is such that

δS = S [x(t)+δx(t)]−S [x(t)] = 0, (2.2)

to first order in δx(t), any arbitrary small deviation in the path between the fixed
initial and final points, x(ti) and x

(
t f
)
, respectively. Usually, along the actual path,

the action takes the least value, and hence Hamilton’s principle is often called the
principle of least action. Nature seems to have chosen such variational principles in
formulating its basic laws.

9
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Expanding δS, the variation in action, to first order in δx, we have

δS =
∫ t f

ti
dt

{
3

∑
j=1

[
∂L
∂x j

δx j +
∂L
∂ ẋ j

δ ẋ j

]}

=
∫ t f

ti
dt

{
3

∑
j=1

[
∂L
∂x j

δx j +
∂L
∂ ẋ j

d
dt
(δx j)

]}
. (2.3)

Using integration by parts, and the boundary conditions δx(ti) = 0 and δx
(
t f
)
= 0,

in the second term, we get

δS =
∫ t f

ti
dt

{
3

∑
j=1

[
∂L
∂x j

δx j−
d
dt

(
∂L
∂ ẋ j

)
δx j

]}
+

[
3

∑
j=1

∂L
∂ ẋ j

δx j

]t f

ti

=
∫ t f

ti
dt

{
3

∑
j=1

[
∂L
∂x j
− d

dt

(
∂L
∂ ẋ j

)]
δx j

}
. (2.4)

Then, the principle of stationary action (2.2) leads to the set of Euler–Lagrange equa-
tions,

d
dt

(
∂L
∂ ẋ j

)
=

∂L
∂x j

, j = 1,2,3, (2.5)

the solutions of which determine the actual paths, given the appropriate initial condi-
tions. The derivation of the Euler–Lagrange equations from the principle of station-
ary action shows that if we have a different, equivalent Lagrangian, say L̄, which also
leads to the same Euler–Lagrange equations, then we should have

L̄ = L+
dF (x, ẋ, t)

dt
. (2.6)

We can write (2.5), Lagrange’s equations of motion for the particle, as

d
dt

(
∂L
∂ ẋ

)
=

∂L
∂x

. (2.7)

2.1.1.2 Example: Motion of a Charged Particle in an
Electromagnetic Field

As an example of the Lagrangian formalism, let us consider the motion of a par-
ticle of mass m and electric charge q in an electromagnetic field. Let us denote
x=~r = x~i+y~j+z~k, the position vector of the particle, and ẋ=~̇r = vx~i+vy~j+vz~k =~v,
the velocity of the particle in a right-handed Cartesian coordinate system with (~i,~j,~k)
as the unit vectors along the x-, y-, and z-axes, respectively. Let the electromagnetic
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field, electric field ~E(~r, t), and magnetic field ~B(~r, t) be specified by the scalar poten-
tial φ(~r, t) and the vector potential ~A(~r, t), such that1

~E(~r, t) =−~∇φ(~r, t)− ∂~A(~r, t)
∂ t

,

~B(~r, t) = ~∇×~A(~r, t). (2.8)

Now, Lagrange’s equations of motion become

d
dt

(
∂L
∂~v

)
=

∂L
∂~r

= ~∇L. (2.9)

The relativistic Lagrangian of the particle is

L(~r,~v, t) =−mc2
√

1−β 2−q(φ −~v ·~A), (2.10)

where c is the speed of light in vacuum and β = |~v|/c = v/c. Then, the x component
of (2.9) is

d
dt

(
mvx√
1−β 2

)
+q

dAx

dt
= q

(
−∂φ

∂x
+

∂

∂x
(~v ·~A)

)
. (2.11)

Similar equations follow for y and z components. These three equations are the com-
ponents of the following equation:

d(γm~v)
dt

+q
d~A
dt

= q
(
−~∇φ +~∇(~v ·~A)

)
, (2.12)

where γ = 1/
√

1−β 2. Substituting the well-known expressions

d (· · ·)
dt

=
∂ (· · ·)

dt
+(~v ·~∇)(· · ·) , (2.13)

and
~∇(~v ·~A) = (~v ·~∇)~A+~v× (~∇×~A), (2.14)

we get
d(γm~v)

dt
= q

(
−~∇φ − ∂~A

∂ t
+~v× (~∇×~A)

)
, (2.15)

or
d(γm~v)

dt
= q(~E +~v×~B), (2.16)

1Hereafter, in general, we shall denote the electric field ~E(~r, t), magnetic field ~B(~r, t), scalar potential
φ(~r, t), and the vector potential ~A(~r, t), respectively, as ~E, ~B, φ , and ~A suppressing their dependence on~r
and t unless it is required to mention it explicitly.
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which is the relativistic equation of motion for the charged particle in an electromag-
netic field under the Lorentz force. For details on classical electrodynamics, see, e.g.,
Griffiths [66], and Jackson [78].

In the nonrelativistic case with β � 1, we have γ ≈ 1, and the equation (2.16)
becomes,

d(m~v)
dt

= q(~E +~v×~B), (2.17)

Newton’s equation of motion for the charged particle in an electromagnetic field
under the Lorentz force. The Lagrangian of the nonrelativistic particle is2

L =
1
2

mv2−q(φ −~v ·~A), (2.18)

obtained by taking
√

1−β 2 ≈ 1 − β 2/2 in view of the relation β � 1, in
approximating the relativistic Lagrangian (2.10), and dropping the constant rest
energy term mc2.

2.1.2 HAMILTONIAN FORMALISM

2.1.2.1 Basic Theory
Hamiltonian formalism is an equivalent reformulation of the Lagrangian formalism.
Let us now define

p j =
∂L
∂ ẋ j

, j = 1,2,3, (2.19)

and

H =
3

∑
j=1

ẋ j p j−L, (2.20)

where p js are called the components of the canonical momentum conjugate to the
coordinates x js and H is called the Hamiltonian of the particle. The pair (x j, p j) is
known as a pair of canonically conjugate variables. The total differential of H is
given by

dH =
3

∑
j=1

ẋ jd p j +
3

∑
j=1

p jdẋ j−
3

∑
j=1

∂L
∂x j

dx j−
3

∑
j=1

∂L
∂ ẋ j

dẋ j−
∂L
∂ t

dt

=
3

∑
j=1

ẋ jd p j−
3

∑
j=1

∂L
∂x j

dx j−
∂L
∂ t

dt +
3

∑
j=1

(
p j−

∂L
∂ ẋ j

)
dẋ j. (2.21)

In view of the definition (2.19), Lagrange’s equations of motion (2.7) can be written
as

ṗ =
∂L
∂x

, (2.22)

2In general, for any vector quantity, say ~V , we shall denote ~V ·~V by ~V 2, or V 2, to be understood as
~V ·~V from the context.
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and consequently we get

dH =
3

∑
j=1

ẋ jd p j−
3

∑
j=1

ṗ jdx j−
∂L
∂ t

dt. (2.23)

Note that the definition of p js in (2.19) allows us to solve for any ẋ j in terms of all
x js, p js, and t. Thus, the Hamiltonian H defined in (2.20) becomes a function of only
x js, p js, and t when ẋ js are expressed in terms of x js, p js, and t. Hence, writing

dH
(
x, p, t

)
=

3

∑
j=1

∂H
∂x j

dx j +
3

∑
j=1

∂H
∂ p j

d p j +
∂H
∂ t

dt, (2.24)

and comparing with (2.23), we get

ẋ j =
∂H
∂ p j

, ṗ j =−
∂H
∂x j

, j = 1,2,3, (2.25)

and
∂H
∂ t

=−∂L
∂ t

. (2.26)

The equations in (2.25) are Hamilton’s equations of motion for the particle, which
can be written as

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

. (2.27)

The 6-dimensional space formed by the set of coordinates, {x}, and the set of com-
ponents of the canonically conjugate momentum, {p}, is called the phase space of
the particle. Hamilton’s equations of motion (2.27), or the canonical equations of
motion, are completely equivalent to Lagrange’s equations of motion (2.7). How-
ever, Hamiltonian formalism has certain advantages over the Lagrangian formalism
as we shall see later.

Let us now introduce a 6-dimensional column vector ϕ in phase space with com-
ponents

ϕ j = x j, j = 1,2,3, ϕ3+ j = p j, j = 1,2,3. (2.28)

Then, it is obvious that we can write Hamilton’s equations of motion (2.27) as

ϕ̇ = J
∂H
∂ϕ

, (2.29)

where ∂H/∂ϕ is the 6-dimensional column vector with components(
∂H
∂ϕ

)
j

=
∂H
∂x j

, j = 1,2,3,

(
∂H
∂ϕ

)
3+ j

=
∂H
∂ p j

, j = 1,2,3, (2.30)

and J is the 6×6 antisymmetric matrix given by

J =

(
O I
−I O

)
, (2.31)

with I and O as 3×3 identity and null matrices, respectively. In (2.29), we have the
symplectic form of the canonical equations of motion.
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2.1.2.2 Example: Motion of a Charged Particle in an
Electromagnetic Field

Let us now use the Hamiltonian formalism to study the motion of a charged particle
in an electromagnetic field. As we have seen earlier, the relativistic Lagrangian of
the particle is

L(~r,~v, t) =−mc2
√

1−β 2−q(φ −~v ·~A). (2.32)

The canonical momentum vector conjugate to the position vector is given by

~p =
∂L
∂~v

= γm~v+q~A. (2.33)

This shows that
~p−q~A = γm~v (2.34)

is actually the kinetic, or mechanical, linear momentum of the particle. Hereafter, in
general, we shall write

~p−q~A = ~π, (2.35)

as a shorthand notation for the kinetic momentum of a particle. Solving for~v in terms
of~r and ~p, we have

~v =
~π√

m2 + 1
c2~π

2
. (2.36)

Then, the relativistic Hamiltonian is

H(~r,~p, t) =~v ·~p−L

=~v ·~p+mc2
√

1−β 2 +q(φ −~v ·~A)

=~v ·~π +mc2
√

1−β 2 +qφ

=
√

m2c4 + c2~π2 +qφ . (2.37)

In the absence of the electromagnetic field, the particle is free and its Hamiltonian
becomes

HF =
√

m2c4 + c2 p2. (2.38)

Then, note that the Hamiltonian in the presence of the electromagnetic field is
obtained from the free particle Hamiltonian by the replacement HF −→ H−qφ and
~p−→~π , known as the principle of minimal electromagnetic coupling. In the nonrel-
ativistic case, since ~π2� m2c2, the Hamiltonian becomes

H =
~π2

2m
+qφ , (2.39)

taking
√

m2c4 + c2~π2≈mc2
[
1+
(
~π2/2m2c2

)]
and dropping the constant rest energy

term mc2. It is clear that the Hamiltonian represents the total energy of the particle.



A Review of Classical Mechanics 15

Now, Hamilton’s equations of motion for the particle are

~̇r =~v =
∂H
∂~p

,

~̇p =−∂H
∂~r

=−~∇H. (2.40)

It is straightforward to check the first part of this equation:

∂

∂ px

(√
m2c4 + c2~π2 +qφ

)
=

πx√
m2 + 1

c2~π
2
= vx, (2.41)

and similar equations follow for y and z components. To understand the second part
of the equation, we proceed as follows. For the left-hand side, we have

d px

dt
=

d
dt

(γmvx +qAx)

=
d(γmvx)

dt
+q
(

∂Ax

∂ t
+(~v ·~∇)Ax

)
, (2.42)

and similar equations for y and z components. For the right-hand side, we have

−∂H
∂x

=− ∂

∂x

(√
m2c4 + c2~π2 +qφ

)
= q

(
∂

∂x
(~v ·~A)− ∂φ

∂x

)
, (2.43)

and similar equations for y and z components. Equating the left- and right-hand sides,
we get

d(γm~v)
dt

= q

[(
−~∇φ − ∂~A

∂ t

)
+
(
~∇(~v ·~A)− (~v ·~∇)~A

)]

= q
(
~E +~v× (~∇×~A)

)
= q

(
~E +~v×~B

)
, (2.44)

the relativistic equation of motion for the charged particle in an electromagnetic field
under the Lorentz force (2.16).
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2.1.3 HAMILTONIAN FORMALISM IN TERMS OF THE
POISSON BRACKETS

2.1.3.1 Basic Theory
Let O

(
x, p, t

)
be an observable, or dynamical variable, of a particle with the Hamil-

tonian H
(
x, p, t

)
. The time evolution of O is given by

dO
dt

=
3

∑
j=1

(
∂O
∂x j

ẋ j +
∂O
∂ p j

ṗ j

)
+

∂O
∂ t

=
3

∑
j=1

(
∂O
∂x j

∂H
∂ p j
− ∂O

∂ p j

∂H
∂x j

)
+

∂O
∂ t

, (2.45)

because of Hamilton’s equations of motion. Defining the Poisson bracket between
any two functions f

(
x, p
)

and g
(
x, p
)

by

{ f ,g}=
3

∑
j=1

(
∂ f
∂x j

∂g
∂ p j
− ∂ f

∂ p j

∂g
∂x j

)
, (2.46)

we can write (2.45) as
dO
dt

= {O,H}+ ∂O
∂ t

, (2.47)

which gives Hamilton’s equation of motion for any observable of the particle.
Observe that we can write

{ f ,g}= ∂̃ f
∂ϕ

J
∂g
∂ϕ

, (2.48)

where ∂̃ f/∂ϕ is the row vector obtained by taking the transpose of the column vector
∂ f/∂ϕ , and

{ϕk,ϕl}= Jkl , k, l = 1,2, . . . ,6. (2.49)

Note that the Poisson bracket is antisymmetric:

{ f ,g}=−{g, f}. (2.50)

Also, note that
−{g, f}= {−g, f}. (2.51)

Thus, we can write (2.47) as

dO
dt

= {−H,O}+ ∂O
∂ t

. (2.52)

If an observable O is not explicitly time-dependent, ∂O/∂ t = 0, and hence

dO
(
x, p
)

dt
= {−H,O}. (2.53)
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Thus, the basic Hamilton’s equations of motion (2.27) can be written as

ẋ = {−H,x}, ṗ = {−H, p}. (2.54)

The Poisson brackets,

{x j, pk}= δ jk, {x j,xk}= 0, {p j, pk}= 0, j,k = 1,2,3, (2.55)

are the fundamental Poisson brackets. In calculating the various Poisson brackets,
the following basic relations will be often useful:

{ f ,c}= 0,
{a f ,bg+ ch}= ab{ f ,g}+ac{ f ,h}
{ f ,gh}= { f ,g}h+g{ f ,h},
{ f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0, (2.56)

where f , g, and h are functions of x and p, and a, b, and c are constants. The last
relation in (2.56) is known as the Jacobi identity. Note that using the antisymmetry
of the Poisson bracket (2.50), the Jacobi identity can be rewritten as

{ f ,{g,h}}−{g,{ f ,h}}= {{ f ,g},h}. (2.57)

If an observable of the particle O
(
x, p
)

is not explicitly time-dependent and has
vanishing Poisson bracket with the Hamiltonian, then it will be a constant of motion,
i.e., it will be conserved. Thus, for a particle with a Hamiltonian that is not explicitly
time-dependent, the energy will be conserved, as one can also verify directly. With
∂H/∂ t = 0, it follows from Hamilton’s equations that

dH
(
x, p
)

dt
=

3

∑
j=1

(
∂H
∂x j

ẋ j +
∂H
∂ p j

ṗ j

)

=
3

∑
j=1

(
∂H
∂x j

∂H
∂ p j
− ∂H

∂ p j

∂H
∂x j

)
= 0. (2.58)

For a particle with a Hamiltonian not dependent explicitly on time, the equation
of motion (2.53) for any time-independent observable O

(
x, p
)

can be directly inte-
grated. To this end, define the Lie operator

: f : =
3

∑
j=1

(
∂ f
∂x j

∂

∂ p j
− ∂ f

∂ p j

∂

∂x j

)
. (2.59)

Then, one can write

: f :0 g = g, : f : g = { f ,g} : f :2 g = { f ,{ f ,g}},
: f :3 g = { f ,{ f ,{ f ,g}}}, . . . . (2.60)
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Thus, Hamilton’s equations of motion are

ẋ = :−H : x, ṗ = :−H : p. (2.61)

Now, for a time-independent observable O, we get on integrating (2.53) or (2.61)
directly,

O(t) =
[
e{(t−ti):−H:}O

]
(ti)

=

[
∞

∑
n=0

(t− ti)
n

n!
:−H :n O

]
(ti) , (2.62)

where ti and t are the initial and final instants of time, respectively. Here, [· · · ] (ti)
means that after the expression [· · · ] has been found, it should be evaluated by sub-
stituting the values of the observables in it at the initial time ti. This equation (2.62)
defines the Lie transfer operator generated by the Hamiltonian H, relating the initial
and final values of any observable of the particle. For the basic phase space variables,
in terms of which any observable of the particle can be written, we get the transfer
map, for any t ≥ ti, as

ϕ (t) =
[
e{(t−ti):−H:}

ϕ

]
(ti) . (2.63)

We shall see later how this map can be generalized when the Hamiltonian depends
on the independent variable. Often, for the sake of notational convenience, we will
write the transfer map (2.63) as

ϕ (t) = e{(t−ti):−H:}
ϕ (ti) . (2.64)

2.1.3.2 Example: Dynamics of a Charged Particle in a
Constant Magnetic Field

As an example of how the Poisson bracket formalism works, let us consider the
motion of a particle of mass m and charge q in a constant magnetic field. By constant
magnetic field, we mean that the magnetic field does not vary in space and time.
Without loss of generality, we shall take the magnetic field to be in the z-direction,
~B = B~k, and the corresponding vector potential to be ~A = 1

2 (
~B×~r). The relativistic

Hamiltonian of the particle is

H(~r,~p) =
√

m2c4 + c2~π2 (2.65)

=

{
m2c4 + c2

[(
px +

1
2

qBy
)2

+

(
py−

1
2

qBx
)2

+ p2
z

]}1/2

,

and is time-independent. Thus, the total energy of the particle is a constant of motion.
From (2.36), we know that the velocity of the particle is given by

~v =
~π√

m2 + 1
c2~π

2
. (2.66)
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Noting that √
m2 +

1
c2
~π2 =

H
c2 , (2.67)

we can write, in this case,

vx =
c2

H

(
px +

1
2

qBy
)
,

vy =
c2

H

(
py−

1
2

qBx
)
,

vz =
c2 pz

H
, (2.68)

where the components of~v are to be treated as functions of~r and ~p. Note that

:−H :~r =~v. (2.69)

If any f (~r,~p) is a constant of motion, i.e., : −H : f = 0, then f−1 is also a constant
of motion. This follows from the observation

:−H :
(

f f−1)= 0

= f
(
:−H : f−1)+(:−H : f ) f−1

= f
(
:−H : f−1) , (2.70)

where the relations in (2.56) have been used. Then, we find

:−H : vz =:−H :
c2 pz

H
=

c2

H
:−H : pz = 0,

:−H : vx =:−H :
[

c2

H

(
px +

1
2

qBy
)]

=
c2

H

[
:−H :

(
px +

1
2

qBy
)]

=

(
c2qB

H

)
vy,

:−H : vy =:−H :
[

c2

H

(
py−

1
2

qBx
)]

=
c2

H

[
:−H :

(
py−

1
2

qBx
)]

=−
(

c2qB
H

)
vx. (2.71)

It follows that

:−H : (vx + ivy) =−i
(

c2qB
H

)
(vx + ivy) , (2.72)

and

:−H :n (vx + ivy) =

(
−i

c2qB
H

)n

(vx + ivy) , n = 0,1,2,3, . . . . (2.73)
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Let us take ti = 0 as the time when the particle enters the magnetic field, and t as the
time of observation. From (2.62), (2.69), (2.71), and (2.73), it follows that

[x(t)+ iy(t)] =
[
et:−H:(x+ iy)

]
(0)

= [x(0)+ iy(0)]+

[
∞

∑
n=1

(−iωc)
n−1 tn

n!

]
[vx + ivy] (0)

= [x(0)+ iy(0)]+
i

ωc

[
e−iωct −1

]
[vx(0)+ ivy(0)] .

z(t) =
[
et:−H:z

]
(0) = z(0)+ vz(0)t, (2.74)

where ωc = c2qB/H(0). Let us now take, without loss of generality, that the particle
enters the magnetic field at t = 0 in the yz-plane: vx(0) = 0,vy(0) = v⊥,vz(0) = v‖.
Then, the position of the particle at any later time t is given by

x(t) = (x(0)+ρL)−ρL cos(ωct) ,

y(t) = y(0)+ρL sin(ωct) ,

z(t) = z(0)+ v‖t, (2.75)

where ρL = v⊥/ωc. From this, we get

vx(t) =−v⊥ sin(ωct) , vy(t) = v⊥ cos(ωct) , vz(t) = v‖. (2.76)

Since the particle enters the field at t = 0 as a free particle with velocity ~v(0) =(
0,v⊥,v‖

)
, we know that its total energy, or Hamiltonian, at the initial time to be

H(0) =
√

m2c4 + c2 p(0)2 =
mc2√

1−β (0)2
= γ(0)mc2. (2.77)

where β (0) = v(0)/c. From (2.76), it is clear that

v⊥(t)2 = vx(t)2 + vy(t)2 = vx(0)2 + vy(0)2 = v⊥(0)2,

v‖(t) = vz(t) = vz(0) = v‖(0), (2.78)

and hence v(t)2 = v‖(t)2 + v⊥(t)2 has at any time t the same value as at the initial
time, namely v(0)2. So, γ is a constant of motion for the particle and c2/H(0) =
1/γm. Thus, we have

ωc =
qB
γm

(2.79)

known as the cyclotron frequency or the frequency of gyration. Equation (2.75)
shows that the particle moves in a helical trajectory of radius ρL = v⊥/ωc, the radius
of gyration called the Larmor radius, and pitch ℘= 2πv‖/ωc. The central axis of the
helix cuts the xy-plane at the point (x0,y0) = (x(0)+ ρL,y(0)), the guiding center,
where (x(0),y(0),z(0)) is the point at which the particle enters the magnetic field at
the initial time.
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2.1.4 CHANGING THE INDEPENDENT VARIABLE

2.1.4.1 Basic Theory
Let us rederive Hamilton’s equations of motion by formulating the principle of sta-
tionary action in phase space. We can write (2.2) in phase space as

δS = δ

{∫ t f

ti
dt

[
3

∑
j=1

p j ẋ j−H
(
x, p, t

)]}
= 0, (2.80)

where the Lagrangian has been substituted in terms of the Hamiltonian. Expanding
(2.80), we get

δS =
∫ t f

ti
dt

[
3

∑
j=1

(
p jδ ẋ j + ẋ jδ p j−

∂H
∂x j

δx j−
∂H
∂ p j

δ p j

)]

=
∫ t f

ti
dt

[
3

∑
j=1

(
−ṗ jδx j + ẋ jδ p j−

∂H
∂x j

δx j−
∂H
∂ p j

δ p j

)]

+

[
3

∑
j=1

p jδx j

]t f

ti

=
∫ t f

ti
dt

{
3

∑
j=1

[
−
(

ṗ j +
∂H
∂x j

)
δx j +

(
ẋ j−

∂H
∂ p j

)
δ p j

]}
= 0, (2.81)

where in the second step, integration by parts has been used and the boundary con-
ditions at ti and t f make the last term vanish. Now, for the action to be stationary for
arbitrary variations in the phase space trajectory

(
δx,δ p

)
, we must have

ṗ j =−
∂H
∂x j

, ẋ j =
∂H
∂ p j

, j = 1,2,3, (2.82)

which are Hamilton’s equations of motion.
Let us now write the principle of stationary action in phase space (2.80) as

δS = δ

{∫ t f

ti

[
3

∑
j=1

p jdx j +H
(
x, p, t

)
d(−t)

]}
= 0. (2.83)

It is clear from this that we can regard (−t,H) as a canonically conjugate pair, and
all the canonically conjugate pairs

{
(−t,H),(x j, p j) | j = 1,2,3

}
have equal status.

This shows that instead of time, we can choose any other coordinate as the indepen-
dent variable, and the corresponding Hamilton’s equations will give the evolution of
the state of the particle in terms of that variable. If we choose, say, xk as the indepen-
dent variable, then we can write the variational principle (2.80) as

δS = δ

{∫ xk(t)

xk(ti)
dxk

[
3

∑
j=1,6=k

(
p j

dx j

dxk
+E

d(−t)
dxk

−H

)]}
= 0, (2.84)
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with the new Hamiltonian

H =−pk (x, p1, p2, . . . , pk−1, pk+1, . . . , pn,E, t) , (2.85)

where pk has been obtained by solving the equation H(x, p, t) = E, and the old
Hamiltonian H has been denoted by E, representing the total energy of the parti-
cle. Equation (2.84) has the same form as (2.80), except for the difference in the
independent variable, and hence this will lead to Hamilton’s equations of motion

dx j

dxk
=

∂H

∂ p j
=−∂ pk

∂ p j
,

d p j

dxk
=−∂H

∂x j
=

∂ pk

∂x j
, j(6= k) = 1,2,3,

− dt
dxk

=
∂H

∂E
=−∂ pk

∂E
,

dE
dxk

=
∂H

∂ t
=−∂ pk

∂ t
. (2.86)

Introducing the notations x0 =−t and p0 = E, we can define a Poisson bracket

{ f ,g}xk =
3

∑
j=0,6=k

(
∂ f
∂x j

∂g
∂ p j
− ∂ f

∂ p j

∂g
∂x j

)
, (2.87)

and write the equations of motion (2.86) as

dx j

dxk
= {−H ,x j}xk = {pk,x j}xk ,

d p j

dxk
= {−H , p j}xk = {pk, p j}xk ,

j(6= k) = 0,1,2,3. (2.88)

It is straightforward to write down the equations analogous to (2.52) and (2.64) in
this case.

2.1.4.2 Example: Dynamics of a Charged Particle in a
Constant Magnetic Field

As an example of changing the independent variable, we shall consider the case of a
charged particle moving in a constant magnetic field. We shall write x =~r = (~r⊥,z)
and p = ~p = (~p⊥, pz). We can write the principle of stationary action as

δS = δ

[∫ t f

ti
dt (pxẋ+ pyẏ+ pzż−H(~r,~p, t))

]
= 0. (2.89)

If we now choose z as the independent variable, instead of t, we can write (2.89) as
follows: with zi = z(ti), z f = z

(
t f
)
,

δS = δ

{∫ z f

zi

dz
[

px
dx
dz

+ py
dy
dz
−E

dt
dz
−H

]}
= 0, (2.90)

where
H =−pz (~r⊥,~p⊥,E, t,z) , (2.91)
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with pz obtained by solving the equation H(~r,~p, t) = E and E denoting the total
energy of the particle. The new Hamiltonian is H , and the corresponding Hamilton’s
equations of motion are

dx
dz

=
∂H

∂ px
=−∂ pz

∂ px
,

dy
dz

=
∂H

∂ py
=−∂ pz

∂ py
,

d px

dz
=−∂H

∂x
=

∂ pz

∂x
,

d py

dz
=−∂H

∂y
=

∂ pz

∂y
,

− dt
dz

=
∂H

∂E
=−∂ pz

∂E
,

dE
dz

=
∂H

∂ t
=−∂ pz

∂ t
. (2.92)

Note that the evolution of a system from a time ti to a time t f through Hamilton’s
equations of motion with a Hamiltonian H corresponds to t f > ti, i.e., in the forward
time direction. Similarly, the z-evolution of a system with −pz as the Hamiltonian
would correspond to the propagation of the system in the forward z, or +z, direction.

For a charged particle moving in a constant magnetic field ~B = B~k, the Hamilto-
nian is time-independent and is given by

H(~r,~p) =

{
m2c4 + c2

[(
px +

1
2

qBy
)2

+

(
py−

1
2

qBx
)2

+ p2
z

]}1/2

, (2.93)

representing the total energy E of the particle. Solving for pz, we can write the Hamil-
tonian for z-evolution as

H =−pz

=−1
c

{
E2−m2c4− c2

[(
px +

1
2

qBy
)2

+

(
py−

1
2

qBx
)2
]}1/2

. (2.94)

The corresponding canonical equations of motion (2.92) for z-evolution become

dx
dz

=−∂ pz

∂ px
=

1
pz

(
px +

1
2

qBy
)
=

vx

vz
,

dy
dz

=−∂ pz

∂ py
=

1
pz

(
py−

1
2

qBx
)
=

vy

vz
,

d px

dz
=

∂ pz

∂x
=

qB
2pz

(
py−

1
2

qBx
)
=

qBvy

2vz
,

d py

dz
=

∂ pz

∂y
=− qB

2pz

(
px +

1
2

qBy
)
=−qBvx

2vz
,

− dt
dz

=−∂ pz

∂E
=− E

c2 pz
=− 1

vz
,

dE
dz

=−∂ pz

∂ t
= 0. (2.95)
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These equations can be easily verified with the help of the earlier discussions on the
dynamics of a charged particle in an electromagnetic field and a constant magnetic
field (see (2.42), (2.44, (2.68)). The last equation expresses the constancy of the total
energy of the particle along the trajectory.

For any observable of the charged particle moving in the constant magnetic field,
O(~r⊥,~p⊥, t,E,z), we can write

dO
dz

= {−H ,O}z +
∂O
∂ z

= {pz,O}z +
∂O
∂ z

, (2.96)

where

{ f ,g}z =

[(
∂ f
∂x

∂g
∂ px
− ∂ f

∂ px

∂g
∂x

)
+

(
∂ f
∂y

∂g
∂ py
− ∂ f

∂ py

∂g
∂y

)
−
(

∂ f
∂ t

∂g
∂E
− ∂ f

∂E
∂g
∂ t

)]
. (2.97)

For an observable O not explicitly dependent on z,

dO
dz

= {−H ,O}z = {pz,O}z. (2.98)

Introducing the notation
{ f ,g}z =: f :z g, (2.99)

we would have, on integrating (2.98),

O(z) =
[
e(z−zi):−H :zO

]
(zi)

=
[
e(z−zi):pz:z O

]
(zi)

=

[
∞

∑
n=0

(z− zi)
n

n!
: pz :nz O

]
(zi) , (2.100)

where zi is the initial point of the trajectory, and z is any point of observation on the
trajectory.

Applying the relation (2.100) to O = x+ iy, we have, with zi = 0, and with the
help of (2.95),

[x(z)+ iy(z)] = [ez:pz:z(x+ iy)] (0)
= [x(0)+ iy(0)]

+

[
∞

∑
n=1

(−iωc)
n−1 zn

n!vn
z

]
[vx + ivy] (0)

= [x(0)+ iy(0)]

+
i

ωc

[
e(−iωcz/vz)−1

]
[vx(0)+ ivy(0)] . (2.101)
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Similarly, we get
E(z) = [ez:pz:z E] (0) = E(0), (2.102)

showing that the total energy of the particle is a constant of motion, and

t(z) = [ez:pz:zt] (0) = t(0)+ z
(

E
c2 pz

)
(0) =

z
vz(0)

, (2.103)

where t(z) refers to the time when the particle reaches the position at z if it starts at
z = 0 at t = 0. From (2.101) and (2.103), we have

x(z) = (x(0)+ρL)−ρL cos
(

ωcz
v‖

)
,

y(z) = y(0)+ρL sin
(

ωcz
v‖

)
,

t(z) =
z
v‖
, (2.104)

where we have taken vx(0) = 0,vy(0) = v⊥,vz(0) = v‖ as earlier. The trajectory is
seen to be a helix of radius ρL = v⊥/ωc and pitch℘= 2πv‖/ωc such that x(z+℘) =
x(z), y(z+℘) = y(z).

2.1.5 CANONICAL TRANSFORMATIONS

2.1.5.1 Basic Theory
Once we have a Hamiltonian of a particle with a set of phase space variables and
an independent variable, it is sometimes desirable to change the set of phase space
variables to suit a particular description of the evolution of the state of the particle
preserving the form of Hamilton’s equations of motion. Such a transformation of
the phase space variables is called a canonical transformation. We shall denote the
independent variable as t generally; it can be z or any other independent variable of
the particle.

For a particle with the Hamiltonian H
(
x, p, t

)
, and the equations of motion

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

, (2.105)

let us consider a change of phase space coordinates given by

x j −→ X j
(
x, p, t

)
, p j −→ Pj

(
x, p, t

)
, j = 1,2,3. (2.106)

If there exists a corresponding Hamiltonian, say K (X ,P, t), such that the resulting
Hamilton’s equations of motion are in the canonical form, i.e.,

Ẋ =
∂K
∂P

, Ṗ =−∂K
∂X

, (2.107)
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then the transformation (2.106) is said to be a canonical transformation. As a simple
example, let us consider the following scale transformation:

x j −→ X j =
x j

µx
, p j −→ Pj =

p j

µp
, for all j = 1,2,3. (2.108)

If we take the corresponding Hamiltonian to be given by

K (X ,P, t) =
1

µxµp
H (µxX ,µpP, t) , (2.109)

then the equations in (2.107) are obviously satisfied in view of (2.105). This implies
that we must have

δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K (X ,P, t)

]}
= 0, (2.110)

where δX (ti)= 0, δP(ti)= 0, δX
(
t f
)
= 0, δP

(
t f
)
= 0, since δx(ti)= 0, δ p(ti)= 0,

δx
(
t f
)
= 0, δ p

(
t f
)
= 0. This is seen to happen because

[
3

∑
j=1

PjẊ j−K (X ,P, t)

]
=

1
µxµp

[
3

∑
j=1

p j ẋ j−H
(
x, p, t

)]
. (2.111)

Now, let us consider a nonsimple example. Let a function of the old coordinates and
new coordinates, and possibly time, F1 (x,X , t), be such that

p j =
∂F1

∂x j
, Pj =−

∂F1

∂X j
, j = 1,2,3. (2.112)

Define

K(X ,P, t) = H(x, p, t)+
∂F1

∂ t
, (2.113)

where x and p have been substituted in terms of X and P on the right-hand side.
Note that from the first part of the equation (2.112), it is possible to solve for all X js
in terms of all x js and p js, and from the second part of the equation (2.112), it is
possible to solve for all Pjs. Now, observe that
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3

∑
j=1

PjẊ j−K +
dF1

dt
=

3

∑
j=1

PjẊ j−
(

H +
∂F1

∂ t

)

+

(
3

∑
j=1

∂F1

∂x j
ẋ j +

3

∑
j=1

∂F1

∂X j
Ẋ j +

∂F1

∂ t

)

=
3

∑
j=1

∂F1

∂x j
ẋ j−H

− ∂F1

∂ t
+

[
∂F1

∂ t
+

3

∑
j=1

(
PjẊ j +

∂F1

∂X j
Ẋ j

)]

=
3

∑
j=1

p j ẋ j−H. (2.114)

Thus, we have

δ

{∫ t f

ti
dt

[
3

∑
j=1

p j ẋ j−H

]}
= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K +
dF1

dt

]}

= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K

]}
+ δF1|tti

= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K

]}
= 0, (2.115)

leading to the canonical equations of motion (2.107) in terms of the new phase space
coordinates X and P. Here, δF1|

t f
ti vanishes because δx(ti)= 0, and δX (ti)= 0, since

we also have δ p(ti) = 0. The function F1 (x,X , t) is called a generating function of a
canonical transformation.

Let us see another example of a generating function of a canonical transformation.
Let F2 (x,P, t) be such that

p j =
∂F2

∂x j
, X j =

∂F2

∂Pj
, j = 1,2,3, (2.116)

and define

K (X ,P, t) = H
(
x, p, t

)
+

∂F2

∂ t
. (2.117)

Now, observe
3

∑
j=1

PjẊ j−K +
dF
dt

=
3

∑
j=1

p j ẋ j−H, (2.118)

where

F = F2 (x,P, t)−
3

∑
j=1

X jPj. (2.119)
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Thus,

δ

{∫ t f

ti
dt

[
3

∑
j=1

p j ẋ j−H

]}
= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K +
dF
dt

]}

= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K

]}
+ δF |t f

ti

= δ

{∫ t f

ti
dt

[
3

∑
j=1

PjẊ j−K

]}
= 0, (2.120)

leading to the canonical equations of motion (2.107). In this case, F2 is the generating
function. Note that if we take the generating function to be

F2 (x,P, t) =
3

∑
j=1

x jPj (2.121)

then it leads to a canonical transformation

p j =
∂F2

∂x j
= Pj, X j =

∂F2

∂Pj
= x j, j = 1,2,3, (2.122)

i.e., X = x and P = p, which is the identity transformation.
There are other choices for the generating functions. One can choose

F = F3
(

p,X , t
)
+

3

∑
j=1

x j p j, (2.123)

with

x j =−
∂F3

∂ p j
, Pj =−

∂F3

∂X j
, j = 1,2,3, (2.124)

and

K = H +
∂F3

∂ t
. (2.125)

Another choice is

F = F4
(

p,P, t
)
+

3

∑
j=1

x j p j−
3

∑
j=1

X jPj, (2.126)

with

x j =−
∂F4

∂ p j
, X j =−

∂F4

∂Pj
, j = 1,2,3 (2.127)

and

K = H +
∂F4

∂ t
. (2.128)
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The aforementioned four types do not exhaust all the possibilities. One may also
choose a mixture of the four types. For example, for a particle moving in a plane,
one can choose F = F ′ (x1,X2,P1, p2, t)−X1P1 + x2 p2. Then, to have

P1Ẋ1 +P2Ẋ2−K +
dF
dt

= p1ẋ1 + p2ẋ2−H, (2.129)

we must have

p1 =
∂F ′

∂x1
, x2 =−

∂F ′

∂ p2
,

X1 =
∂F ′

∂P1
, P2 =−

∂F ′

∂X2
,

K = H +
∂F ′

∂ t
. (2.130)

2.1.5.2 Optical Hamiltonian of a Charged Particle Moving Through an
Electromagnetic Optical Element with a Straight Axis

As we have seen earlier, the Hamiltonian of a charged particle moving in an electro-
magnetic field is given by

H =
√

m2c4 + c2~π2 +qφ . (2.131)

Let us consider an optical element of a charged particle beam optical system com-
prising a time-independent electromagnetic field and having its optic axis along the
z-direction. If we now change the independent variable from t to z and replace H by
E, as discussed earlier, the z-evolution Hamiltonian for a particle of a charged parti-
cle beam propagating through the optical element in the forward z-direction will be

H =−pz =−
1
c

√
(E−qφ)2−m2c4− c2~π2

⊥−qAz. (2.132)

This H is the basic Hamiltonian, the classical charged particle beam optical Hamil-
tonian, for studying the optical behavior of any electromagnetic optical element with
a straight optic axis along the z-direction. Often one makes further transformations
for convenience. If we make a scale transformation as

~̄p =
~p
p0

, ~a =
q~A
p0

, (2.133)

where p0 is the magnitude of the design momentum, the corresponding z-evolution
Hamiltonian, or the beam optical Hamiltonian, will become

H̄ =−

√
(E−qφ)2−m2c4

c2 p2
0

−
[
(p̄x−ax)

2 +(p̄y−ay)
2
]
−az. (2.134)
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Note that E = pt and −t are canonically conjugate variables. A further change of
phase space variables is made usually in accelerator beam dynamics:

x−→ x, y−→ y, −t −→ ζ = z− v0t

p̄x −→ p̄x, p̄y −→ p̄y, p̄t −→ pζ =
E−E0

v0 p0
, (2.135)

where E0 is the energy of the reference particle with momentum p0 and velocity v0.
This transformation is effected through the generating function

F2
(
x,y,−t, p̄x, p̄y, pζ ,z

)
= xp̄x + yp̄y +(z− v0t)

(
pζ +

E0

v0 p0

)
, (2.136)

such that

∂F2

∂x
= p̄x,

∂F2

∂y
= p̄y,

∂F2

∂ (−t)
= p̄t =

E
p0

,

∂F2

∂ p̄x
= x,

∂F2

∂ p̄y
= y,

∂F2

∂ pζ

= ζ . (2.137)

The resulting z-evolution Hamiltonian becomes

H̃
(
x,y,ζ , p̄x, p̄y, pζ ,z

)
= H̄ +

∂F2

∂ z

= pζ −az−

√
(E−qφ)2−m2c4

c2 p2
0

−
[
(p̄x−ax)

2 +(p̄y−ay)
2
]
, (2.138)

after dropping the constant additional term E0/v0 p0. The longitudinal position coor-
dinate ζ = z−v0t is a measure of delay in the arrival time of the tracked particle rel-
ative to the reference particle at the position z of the optics axis, namely, the z-axis.
The longitudinal momentum coordinate pζ is a measure of deviation in the energy
of the tracked particle relative to the reference particle, i.e., v0 p0 pζ = ∆E = E−E0.

In what follows, we shall consider only the propagation of monoenergetic charged
particle beams through optical elements comprising constant electromagnetic fields.
In such systems, the energy will be conserved, and the beam optics is concerned
only with the transfer maps across the optical elements for the 4-dimensional phase
space comprising the transverse position coordinates and momentum components.
For studying the beam dynamics of systems in which the energy of the particle
changes during the propagation of the beam, like in an accelerating cavity, we will
have to consider the transfer maps for the 6-dimensional phase space, including the
longitudinal position coordinate ζ and the longitudinal momentum coordinate pζ .
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2.1.6 SYMPLECTICITY OF CANONICAL TRANSFORMATIONS

2.1.6.1 Time-Independent Canonical Transformations
Let us now analyse the conditions which a phase space coordinate transformation
has to satisfy in order to be canonical. First, we shall consider a transformation(

x, p
)
−→

(
X
(
x, p
)
,P
(
x, p
))

or, ϕ −→Φ

(
ϕ

)
(2.139)

which does not involve time, or the independent variable, which we will generally
denote by t. The transformation is independent of the particle Hamiltonian. If the
dynamics of a particle is described in terms of the phase space variables ϕ and the
Hamiltonian H(ϕ, t), then its canonical equations of motion are given by

ϕ̇ = J
∂H
∂ϕ

. (2.140)

Let the Hamiltonian of the particle become K (Φ , t) under the given transformation
(2.139). For this transformation to be canonical, we should have

Φ̇ = J
∂K
∂Φ

. (2.141)

From the transformation relations (2.139), and the equations of motion (2.140) for
ϕ , we can write

Φ̇ j =
6

∑
k=1

∂Φ j

∂ϕk
ϕ̇k =

6

∑
k=1

6

∑
l=1

∂Φ j

∂ϕk
Jkl

∂H
∂ϕl

, (2.142)

or

Φ̇ = MJ
∂H
∂ϕ

, (2.143)

where the elements of the 6×6 matrix M, the Jacobian matrix of the transformation,
are given by

M jk =
∂Φ j

∂ϕk
, j,k = 1,2, . . . ,6. (2.144)

Observing that

∂H
∂ϕ j

=
6

∑
k=1

∂H
∂Φk

∂Φk

∂ϕ j
=

6

∑
k=1

Mk j
∂H
∂Φk

, (2.145)

or
∂H
∂ϕ

= M̃
∂H
∂Φ

, (2.146)

we get

Φ̇ = MJM̃
∂H
∂Φ

. (2.147)
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From the discussion on canonical transformations in terms of generating functions,
we know already that for any time-independent transformation, the new Hamiltonian
is the same as the old Hamiltonian expressed in terms of the new variables, using the
inverse of the transformation (2.139), i.e. K (Φ) = H

(
ϕ (Φ)

)
. Thus, the equation

(2.147) becomes

Φ̇ = MJM̃
∂K
∂Φ

. (2.148)

Comparison of this equation with (2.141) shows that for any time-independent trans-
formation of the phase space coordinates to be canonical, the corresponding Jacobian
matrix M should satisfy the condition

MJM̃ = J, (2.149)

known as the symplectic condition. Any matrix M satisfying the condition (2.149) is
called a symplectic matrix. Note that in view of the relations(

MJM̃
)−1

= M̃−1J−1M−1 = J−1, J−1 =−J, (2.150)

the symplectic condition (2.149) can also be written as

M̃JM = J. (2.151)

As we shall see later, this is the condition also for time-dependent transformations.
We have taken K (Φ) = H

(
ϕ (Φ)

)
in the above discussion. In case the transfor-

mation involves a scale transformation, we should take K (Φ) = λH
(

ϕ (Φ)
)

where
λ is a constant (see (2.109), where λ = 1/µxµp). Then, the condition for canon-
ical transformation (2.149) becomes, obviously, MJM̃ = λJ, or M̃JM = λJ. If a
canonical transformation corresponds to λ 6= 1, it is called an extended canonical
transformation.

2.1.6.2 Time-Dependent Canonical Transformations:
Hamiltonian Evolution

Let us now consider a phase space coordinate transformation

ϕ =
(
x, p
)
−→Φ

(
ϕ, t
)
=
(
X
(
x, p, t

)
,P
(
x, p, t

))
(2.152)

which depends continuously on t, representing time or the chosen independent vari-
able. In the transformation, Φ(t)−→Φ(t +δ t) during an infinitesimal time interval
δ t the change in Φ , namely δΦ , should result from a transformation close to identity.
So, we shall take the generating function of this transformation to be

F2 =
3

∑
j=1

x jPj +δ tG(x,P, t), (2.153)
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differing only infinitesimally from the identity transformation. Then, the relation
between the old and the new coordinates is given by

X j = x j(t +δ t) =
∂F2

∂Pj
= x j +δ t

∂G
∂Pj

, j = 1,2,3,

p j(t) =
∂F2

∂x j
= Pj +δ t

∂G
∂x j

= p j(t +δ t)+δ t
∂G
∂x j

,

j = 1,2,3. (2.154)

In other words,

δx j = x j(t +δ t)− x j = δ t
∂G
∂Pj

, j = 1,2,3,

δ p j = p j (t +δ t)− p j =−δ t
∂G
∂x j

, j = 1,2,3. (2.155)

Since Pj differs from p j only infinitesimally, we can take G(x,P, t) = G
(
x, p, t

)
, and

∂G/∂Pj = ∂G/∂ p j for all j = 1,2,3. The function G
(
x, p, t

)
is called the generating

function of the infinitesimal canonical transformation. Then, we can write (2.155) as

δϕ = δ tJ
∂G
∂ϕ

. (2.156)

It is clear that

Φ = ϕ(t +δ t) = ϕ +δϕ = ϕ +δ tJ
∂G
∂ϕ

. (2.157)

Thus, the Jacobian matrix of the transformation is

M =
∂Φ

∂ϕ
= I +

∂δϕ

∂ϕ
= I +δ tJ

∂ 2G
∂ϕ∂ϕ

, (2.158)

where I is the 6 × 6 identity matrix. Since J is an antisymmetric matrix and
∂ 2G/∂ϕ∂ϕ , with elements ∂ 2G/∂ϕ j∂ϕk, is a symmetric matrix, we have

M̃ = I−δ t
∂ 2G

∂ϕ∂ϕ
J. (2.159)

As a result we have, upto first order in δ t,

MJM̃ =

(
I +δ tJ

∂ 2G
∂ϕ∂ϕ

)
J

(
I−δ t

∂ 2G
∂ϕ∂ϕ

J

)

≈ J+δ tJ
∂ 2G

∂ϕ∂ϕ
J−δ tJ

∂ 2G
∂ϕ∂ϕ

J

= J, (2.160)
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which is the symplectic condition for the transformation to be canonical. Thus, a
canonical transformation during an infinitesimal time interval δ t satisfies the sym-
plectic condition, i.e., MJM̃ = J. Let M1 and M2 be two symplectic matrices, i.e.,
M1JM̃1 = J and M2JM̃2 = J. Note that M2M1JM̃2M1 = M2M1JM̃1M̃2 = J, and simi-
larly M1M2JM̃1M2 = J, i.e., any product of symplectic matrices is also a symplectic
matrix. From this, it follows that since a succession of infinitesimal transformations
leads to a finite transformation, with the Jacobian matrix of the finite transformation
being equal to the product of the symplectic Jacobian matrices of the individual trans-
formations, any time-dependent canonical transformation ϕ (ti) −→ Φ

(
ϕ, ti + t

)
will satisfy the symplectic condition.

Let us now take the Hamiltonian of the particle H
(
x, p, t

)
to be the generating

function of an infinitesimal canonical transformation depending on time continu-
ously. Then, for a time interval δ t, we have, as seen from (2.156),

δϕ = δ tJ
∂H
∂ϕ

, (2.161)

which implies
δϕ

δ t
= J

∂H
∂ϕ

. (2.162)

On taking the limit δ t −→ 0, these equations become just Hamilton’s equations of
motion:

ϕ̇ = J
∂H
∂ϕ

. (2.163)

This shows that the Hamiltonian evolution of the state of a particle, i.e., time evo-
lution of the trajectory of the particle following Hamilton’s equations of motion,
is a continuous canonical transformation generated by the Hamiltonian. Thus, if
the phase space variables of a particle have values

(
x(ti) , p(ti)

)
at time ti, and

values
(
x(ti + t) , p(ti + t)

)
at time ti + t, then the time evolution in phase space,(

x(ti) , p(ti)
)
−→

(
x(ti + t) , p(ti + t)

)
, is a canonical transformation obeying the

symplectic condition. This makes the transfer map (2.64), a symplectic map.
While deriving the optical Hamiltonian of a charged particle moving through an

electromagnetic optical element with a straight optic axis, we have made two trans-
formations of the corresponding phase space. Let us check how these transformations
satisfy the conditions for being canonical. The first is a scale transformation:

ϕ = (x,y,z, px, py, pz)−→Φ =

(
x,y,z,

px

p0
,

py

p0
,

pz

p0

)
. (2.164)

The Jacobian matrix of this transformation has the elements

M jk =

{
δ jk j = 1,2,3 k = 1,2, . . . ,6,
δ jk
p0

j = 4,5,6 k = 1,2, . . . ,6.
(2.165)
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satisfying the condition MJM̃ = λJ with λ = 1/p0, i.e., it is an extended canonical
transformation. The second is the transformation:

ϕ =

(
x,y,−t,

px

p0
,

py

p0
,

E
p0

)
−→Φ =

(
x,y,z− v0t,

px

p0
,

py

p0
,

E−E0

v0 p0

)
. (2.166)

The corresponding Jacobian matrix has the elements

M jk =


δ jk j = 1,2,4,5 k = 1,2, . . . ,6,
v0δ jk j = 3 k = 1,2, . . . ,6,
δ jk
v0

j = 6 k = 1,2, . . . ,6,
(2.167)

and satisfies the symplectic condition for a canonical transformation, namely,
MJM̃ = J.

2.1.6.3 Canonical Invariants: Poisson Brackets
As we have seen earlier, the Poisson bracket of two functions of the phase space
variables of a particle, say f and g, representing two observables of the particle, is
given by

{ f ,g}ϕ =
∂̃ f
∂ϕ

J
∂g
∂ϕ

, (2.168)

where the subscript indicates that the Poisson bracket is evaluated with respect to the
set of phase space variables ϕ . If we make a canonical transformation ϕ −→Φ

(
ϕ

)
,

then the Poisson bracket of f and g with respect to Φ is given by

{ f ,g}Φ =
∂̃ f
∂Φ

J
∂g
∂Φ

. (2.169)

If M is the Jacobian matrix of the transformation, i.e., M jk = ∂Φ j/∂ϕk, then

∂̃ f
∂ϕ

=
∂̃ f
∂Φ

M,
∂ f
∂ϕ

= M̃
∂ f
∂Φ

, (2.170)

and M obeys the symplectic condition MJM̃ = J since the transformation is canoni-
cal. In view of these relations, Equation (2.168) becomes

{ f ,g}ϕ =
∂̃ f
∂Φ

MJM̃
∂g
∂Φ

=
∂̃ f
∂Φ

J
∂g
∂Φ

= { f ,g}Φ , (2.171)

showing that the Poisson bracket of any two functions of the phase space variables is
an invariant under canonical transformations, i.e., it has the same value irrespective
of with respect to which set of phase space variables it is calculated if the sets of
variables are related to each other by canonical transformations.
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For example, let us calculate the fundamental Poisson brackets between the new
phase space variables Φ with respect to the old phase space variables ϕ . We have

{Φk,Φl}ϕ
=

∂̃Φk

∂ϕ
J

∂Φl

∂ϕ
=

6

∑
r=1

6

∑
s=1

MkrJrsMls =
(

MJM̃
)

kl

= Jkl = {Φk,Φl}Φ
, k, l = 1,2, . . . ,6, (2.172)

showing the invariance of the fundamental Poisson brackets under canonical trans-
formations. This fact can also be used to test whether a given transformation of the
phase space coordinates is canonical. For example, for the canonical transformation
(2.166), it is easy to verify that

{Φk,Φl}ϕ
= {Φk,Φl}Φ

= Jkl , k, l = 1,2, . . . ,6. (2.173)

2.2 DYNAMICS OF A SYSTEM OF PARTICLES
Though we shall be dealing only with single particle dynamics, for the sake of com-
pleteness, let us see how to extend the Lagrangian and the Hamiltonian formalisms of
single particle dynamics to a system of particles like a charged particle beam, which
is a system of identical particles. In classical mechanics, identical particles can be
distinguished, labeled, and tracked individually.

Let us consider a system of N particles. The Lagrangian of the system will be a
function of 3N configuration space coordinates x=

{
x(i)j | i = 1,2, . . . ,N; j = 1,2,3

}
and their time derivatives ẋ =

{
ẋ(i)j

}
where the subscript j corresponds to the posi-

tion coordinates of a particle and the superscript (i) corresponds to the labeling of
the particles. The trajectories of all the particles of the system will follow the same
principle of stationary action where the action has the same definition

S [x(t)] =
∫ t f

ti
dtL(x(t), ẋ(t), t) , (2.174)

as in the single particle case, except that now x and ẋ have 3N components. Conse-
quently, the Euler–Lagrange equations of motion for the system become

d
dt

 ∂L

∂ ẋ(i)j

=
∂L

∂x(i)j

, i = 1,2, . . . ,N; j = 1,2,3, (2.175)

or
d
dt

(
∂L
∂ ẋ

)
=

∂L
∂x

. (2.176)

Defining the canonically conjugate momentum coordinates by

p(i)j =
∂L

∂ ẋ(i)j

, i = 1,2, . . . ,N; j = 1,2,3, (2.177)
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the Hamiltonian of the system is given by

H
(
x, p
)
=

N

∑
i=1

3

∑
j=1

ẋ(i)j p(i)j −L(x, ẋ) , (2.178)

where p =
{

p(i)j | i = 1,2, . . . ,N; j = 1,2,3
}

. As a consequence of Hamilton’s prin-
ciple of stationary action in phase space, the canonical equations of motion for the
system become

ẋ(i)j =
∂H

∂ p(i)j

, ṗ(i)j =− ∂H

∂x(i)j

, i = 1,2, . . . ,N; j = 1,2,3, (2.179)

or

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

. (2.180)

Now, the phase space of the system is 6N-dimensional. Let us represent a point in
the phase space by

ϕ =
(
x, p
)
, (2.181)

where

x ={x1,x2, . . . ,x3N} , x3(i−1)+ j = x(i)j ,

i =1,2, . . . ,N; j = 1,2,3,

p ={p1, p1, . . . , p3N} , p3(i−1)+ j = p(i)j ,

i =1,2, . . . ,N; j = 1,2,3. (2.182)

Then,

ϕ j = x j, j = 1,2, . . . ,3N, ϕ3N+ j = p j, j = 1,2, . . . ,3N. (2.183)

Hamilton’s equations of motion can be written as

ϕ̇ = J
∂H
∂ϕ

, (2.184)

where J is the antisymmetric matrix

J =

(
O I
−I O

)
, (2.185)

with O as the 3N×3N null matrix and I as the 3N×3N identity matrix.
A coordinate transformation in the phase space,

ϕ =
(
x, p
)
−→Φ

(
ϕ, t
)
=
(
X
(
x, p, t

)
,P
(
x, p, t

))
, (2.186)
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will be a canonical transformation, i.e., will preserve the form of Hamilton’s equa-
tions of motion (2.184), if the symplectic condition is satisfied:

MJM̃ = J, (2.187)

where M is the 6N-dimensional Jacobian matrix of the transformation with elements

Mkl =
∂Φk

∂ϕl
, k, l = 1,2, . . . ,6N. (2.188)

For any two functions f
(
x, p
)

and g
(
x, p
)
, the Poisson bracket is defined by

{ f ,g}
ϕ
=

∂̃ f
∂ϕ

J
∂g
∂ϕ

=
3N

∑
j=1

{
∂ f
∂x j

∂g
∂ p j
− ∂ f

∂ p j

∂g
∂x j

}

=
N

∑
i=1

3

∑
j=1

 ∂ f

∂x(i)j

∂g

∂ p(i)j

− ∂ f

∂ p(i)j

∂g

∂x(i)j

 . (2.189)

The Poisson bracket is a canonical invariant, i.e., its value is the same whether it is
calculated with respect to a set of phase space variables ϕ or with respect to a set
of phase space variables Φ related to ϕ by a canonical transformation. Time evolu-
tion of the system under Hamilton’s equations of motion is a continuous canonical
transformation. The transfer map,

ϕ (t) =
[
e(t−ti):−H:

ϕ

]
(ti)

=

[
∞

∑
n=0

(t− ti)
n

n!
:−H :n ϕ

]
(ti) , (2.190)

with :−H : f = {−H, f}, is a symplectic map.
Besides the Poisson brackets, there are several other canonical invariants. Let us

look at one more such canonical invariant, namely, the magnitude of a volume ele-
ment in the phase space of the system of particles. When we make a canonical trans-
formation, ϕ =

(
x, p
)
−→Φ

(
ϕ, t
)
=
(
X
(
x, p, t

)
,P
(
x, p, t

))
the volume element

(dϕ) = dx1dx2 . . .dx3Nd p1d p2 . . .d p3N (2.191)

transforms into
(dΦ) = dX1dX2 . . .dX3NdP1dP2 . . .dP3N . (2.192)

As is well known from the rule for change of variables in multivariate calculus, these
volume elements are related:

(dΦ) = |det(M)|(dϕ), (2.193)

where M is the Jacobian matrix of the transformation, det(M) is the determinant of
M, and |det(M)| is the absolute value of det(M). From the relation (2.187), we get

det
(

MJM̃
)
= det(M)det(J)det

(
M̃
)
= det(M)2det(J) = det(J), (2.194)
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and hence we find that |det(M)|= 1. Thus, (dΦ) = (dϕ), or

dx1dx2 . . .dx3Nd p1d p2 . . .d p3N = dX1dX2 . . .dX3NdP1dP2 . . .dP3N . (2.195)

This proves the canonical invariance of the volume element in phase space for an
N-particle system evolving in time according to Hamilton’s equations. It follows
that the volume of any arbitrary region in phase space

∫
· · ·
∫
(dϕ) occupied by an

N-particle system evolving in time according to Hamilton’s equations is a canonical
invariant.
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3 An Introductory Review of
Quantum Mechanics

3.1 INTRODUCTION

All physical phenomena are quantum mechanical at the fundamental level. Classi-
cal mechanics we observe in the macroscopic world is an approximation. That is
why it raises a curiosity when we find classical mechanics to be very successful
at a microscopic level in the design and operation of beam devices like an elec-
tron microscope or a particle accelerator. In this chapter, we give an introductory
review of quantum mechanics just at the level necessary for presenting the for-
malism of quantum charged particle beam optics. For more details on any topic in
quantum mechanics at introductory and advanced levels, see, e.g., Cohen-Tannoudji,
Diu, and Loloë [25], Esposito, Marmo, Miele, and Sudarshan [39], Greiner [64],
Griffiths and Schroetter [67], Sakurai and Napolitano [166], Shankar [169], Bjorken
and Drell [13], Greiner [65], and Parthasarathy [142].

In classical mechanics, we specify the state of a particle by its position and veloc-
ity vectors in configuration space (Lagrangian description), or by its position and
canonical momentum vectors in phase space (Hamiltonian description). This classi-
cal description, based on experience in the macroscopic domain, breaks down in the
microscopic—molecular, atomic, nuclear, and subnuclear—domains. Experimental
realization of the failure of classical mechanics in the atomic domain led to the dis-
covery of quantum mechanics, which shows that it is not possible to know, or deter-
mine precisely, both the position and momentum of a particle like a single electron
or even a single atom in a molecule. Of course, quantum mechanics approaches clas-
sical mechanics, as should be, in the macroscopic domain. With the impossibility of
knowing precisely both the position ~r and canonical momentum ~p of a particle, at
any time t, it has been only possible to specify the state of the particle by a function,
Ψ(~r, t), which is in general a complex function of~r and t. We shall be using the right-
handed Cartesian coordinate system unless stated otherwise. This function Ψ(~r, t) is
called the wave function of the particle. It does not represent any time-dependent
physical wave in space but represents the amplitude of a probability wave. It has
been found that Ψ(~r, t) is the probability amplitude for the particle to have its posi-
tion at~r, at time t, if its position is determined, i.e., |Ψ(~r, t)|2 = Ψ∗(~r, t)Ψ(~r, t) gives
the probability of finding the particle at~r if its position is determined at time t. Since
the particle has to be found somewhere in the entire space the wave function Ψ(~r, t)
of a particle has to satisfy, at any time t, the normalization condition

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

dxdydz |Ψ(~r, t)|2 = 1. (3.1)

41
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Since |Ψ(~r, t)|2 dxdydz can be interpreted as the probability of finding the particle
within an infinitesimal volume element dxdydz around the point at ~r, the expres-
sion |Ψ(~r, t)|2 is called the position probability density. If there are N particles
with the same wave function Ψ(~r, t), then we can say that the number of parti-
cles found at time t in an infinitesimal volume dxdydz around the point ~r will be
N|Ψ(~r, t)|2dxdydz. Thus, when dealing with a beam of particles, we can identify
|ψ(~r, t)|2 with the intensity of the beam at the position~r at time t. Hereafter, we shall
write ∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

dxdydz { }=
∫

d3r { }, (3.2)

with d3r = dxdydz, without specifying the limits whenever the integral is over the
entire space. We shall now see how the quantum mechanics of a particle is described
in terms of the wave function Ψ(~r, t). Quantum theory is essentially based on a set of
postulates, supported by experimental verifications of their consequences, without
any indication of any violation so far. First, we shall summarize the principles of
quantum kinematics and then consider the quantum dynamics.

3.2 GENERAL FORMALISM OF QUANTUM MECHANICS
3.2.1 SINGLE PARTICLE QUANTUM MECHANICS: FOUNDATIONAL

PRINCIPLES

3.2.1.1 Quantum Kinematics

I Any observable of a particle, taking real values on measurement, is to be repre-
sented by a Hermitian operator, say Ô. Time t is a parameter as in classical physics.

Notes:
The Hermitian conjugate, or adjoint, of an operator Ô, denoted by Ô†, is defined

by the relation ∫
d3r f ∗(~r)Ôg(~r) =

∫
d3r

(
Ô† f (~r)

)∗
g(~r), (3.3)

for any arbitrary f (~r) and g(~r). Here ∗ denotes the complex conjugate. It is under-
stood that the integral is over the entire space, as in (3.2), if the limits are not specified
explicitly. Taking complex conjugate of both sides of this equation (3.3), we have∫

d3r
(

Ôg(~r)
)∗

f (~r) =
∫

d3r g(~r)∗Ô† f (~r)

=
∫

d3r
((

Ô†
)†

g(~r)
)∗

f (~r), (3.4)

implying that
(

Ô†
)†

= Ô. A Hermitian operator Ĥ is defined by the condition

Ĥ† = Ĥ, (3.5)
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or ∫
d3r f ∗(~r)Ĥg(~r) =

{∫
d3r g∗(~r)Ĥ f (~r)

}∗
(3.6)

for any arbitrary f (~r) and g(~r). This implies that for a Hermitian operator Ĥ,∫
d3r f ∗(~r)Ĥ f (~r) is real. Such Hermitian operators have only real eigenvalues, i.e.,

the equation
Ĥϕn(~r) = λnϕn(~r) (3.7)

admits only real eigenvalues λn. Further, the eigenfunctions ϕn(~r) and ϕn′(~r) corre-
sponding to two distinct eigenvalues λn and λn′ , respectively, are orthogonal in the
sense that ∫

d3r ϕ
∗
n (~r)ϕn′(~r) = 0. (3.8)

A nondegenerate eigenvalue λn will have only one eigenfunction ϕn(~r). A degener-
ate eigenvalue has more than one eigenfunctions, and all those degenerate eigenfunc-
tions can be chosen to be orthogonal to each other. Thus, all the eigenfunctions of a
Hermitian operator can be chosen to be orthonormal:∫

d3r ϕ
∗
n (~r)ϕn′(~r) = δnn′ . (3.9)

Also, the set of all orthonormal eigenfunctions of a Hermitian operator form a com-
plete set, such that

∑
n

ϕn(~r)ϕ∗n (~r
′) = δ

(
~r−~r′

)
, (3.10)

where δ (~r−~r′) is the three-dimensional Dirac delta function given by the definition

ψ(~r) =
∫

d3r′ δ
(
~r−~r′

)
ψ(~r′), (3.11)

for any ψ(~r). As a result, any function ψ(~r) can be expanded in terms of the complete
set of orthonormal eigenfunctions of a Hermitian operator, {ϕn(~r)}, as

ψ(~r) = ∑
n

anϕn(~r), (3.12)

with
an =

∫
d3r ϕn(~r)∗ψ(~r). (3.13)

This is seen to follow from (3.10) and (3.11). If ψ(~r) is a zero function, then all ans
are zero, showing the linear independence of the basis functions {ϕn(~r)}. For more
details on Hermitian operators, see e.g., Arfken, Weber, and Harris [3], and Byron
and Fuller [18].

The set of all real eigenvalues {λn} of the Hermitian operator Ô corresponding
to an observable O is called the spectrum of the observable O. The spectrum of an
observable can be completely discrete or continuous or mixed. If the wave function
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Ψ(~r, t) of a particle is expanded in terms of {ϕn(~r)}, the complete set of orthonormal
eigenfunctions of an observable, we have

Ψ(~r, t) = ∑
n

an(t)ϕn(~r), (3.14)

with

an(t) =
∫

d3r ϕn(~r)∗Ψ(~r, t). (3.15)

Now, the normalization condition (3.1) becomes, in view of (3.9),∫
d3r Ψ

∗(~r, t)Ψ(~r, t) = ∑
n

∑
n′

a∗n(t)an′(t)
∫

d3rϕ
∗
n (~r)ϕn′(~r)

= ∑
n
|an(t)|2 = ∑

n

∣∣∣∣∫ d3r ϕ
∗
n (~r)Ψ(~r, t)

∣∣∣∣2 = 1. (3.16)

I The operators corresponding to the Cartesian position coordinates of a particle
(x,y,z) are just multiplication by (x,y,z), respectively, i.e.,

x̂ = x×, ŷ = y×, ẑ = z×, (3.17)

or
x̂ψ(~r) = xψ(~r), ŷψ(~r) = yψ(~r), ẑψ(~r) = zψ(~r), (3.18)

for any arbitrary ψ(~r). The operators corresponding to the Cartesian components of
linear momentum of the particle, canonically conjugate to the respective Cartesian
position coordinates, are

p̂x =−ih̄
∂

∂x
, p̂y =−ih̄

∂

∂y
, p̂z =−ih̄

∂

∂ z
, (3.19)

or

p̂xψ(~r) =−ih̄
∂ψ(~r)

∂x
, p̂yψ(~r) =−ih̄

∂ψ(~r)
∂y

, p̂zψ(~r) =−ih̄
∂ψ(~r)

∂ z
, (3.20)

where h̄ = h/2π , and h = 6.62607004×10−34 J· s is Planck’s constant. We can write
~̂rψ(~r) =~rψ(~r) and ~̂pψ(~r) =−ih̄~∇ψ(~r).

Notes:
Hermiticity of position operators is obvious. For x̂, we have∫

dx f ∗(x)x̂g(x) =
∫

dx f ∗(x)xg(x)

=

(∫
dx g∗(x)x f (x)

)∗
=

(∫
dx g∗(x)x̂ f (x)

)∗
, (3.21)
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and we get similar results for ŷ and ẑ. Hermiticity of p̂x is seen as follows:∫
dx f ∗(x)p̂xg(x) =

∫
dx f ∗(x)

(
−ih̄

∂g(x)
∂x

)
=
∫

dx
(
−ih̄

∂

∂x

)
( f ∗(x)g(x))+

∫
dx
(

ih̄
∂ f ∗(x)

∂x

)
g(x)

= f ∗(x)g(x)|∞−∞
+
∫

dx
(

ih̄
∂ f ∗(x)

∂x

)
g(x)

=

[∫
dx g∗(x)

(
−ih̄

∂ f (x)
∂x

)]∗
=

(∫
dx g∗(x)p̂x f (x)

)∗
, (3.22)

where we have assumed that f (x)−→ 0 and g(x)−→ 0 when x−→±∞ as required
of functions normalizable in the sense of (3.1). Similar results for p̂y and p̂z prove
their Hermiticity. Representing~̂r by~r and ~̂p by −ih̄~∇ is known as the position repre-
sentation. It is seen that the operators x̂ and p̂x do not commute with each other, i.e.,
x̂ p̂xψ(~r) 6= p̂xx̂ψ(~r) for any arbitrary ψ(~r). Similarly, ŷ and ẑ do not commute with
p̂y and p̂z, respectively. The precise commutation relation between x̂ and p̂x is seen
to be

(x̂ p̂x− p̂xx̂)ψ(~r) = x̂ p̂xψ(~r)− p̂xx̂ψ(~r)

=−ih̄
[

x
∂ψ(~r)

∂x
− ∂

∂x
(xψ(~r))

]
= ih̄ψ(~r). (3.23)

Since this relation is valid for any arbitrary ψ(~r), we write

x̂ p̂x− p̂xx̂ = [x̂, p̂x] = ih̄, (3.24)

which is known as the Heisenberg canonical commutation relation. The expression[
Ô1, Ô2

]
= Ô1Ô2− Ô2Ô1 (3.25)

is known as the commutator of Ô1 and Ô2. Similarly, we have

[ŷ, p̂y] = ih̄, [ẑ, p̂z] = ih̄. (3.26)

The commutators [x̂, p̂y], [ŷ, p̂x], etc., vanish. If we write (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3) and
(p̂x, p̂y, p̂z) = (p̂1, p̂2, p̂3), then we have

[x̂i, x̂ j] = 0, [p̂i, p̂ j] = 0, [x̂i, p̂ j] = ih̄δi j, i, j = 1,2,3. (3.27)

To evaluate
[
Ô1, Ô2

]
, one has to find

(
Ô1Ô2− Ô2Ô1

)
ψ (~r) for an arbitrary ψ (~r). If

we replace the minus (−) sign in the commutator bracket by the plus (+) sign, we
get the anticommutator bracket:{

Ô1 , Ô2

}
= Ô1Ô2 + Ô2Ô1. (3.28)
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If Ô1 and Ô2 are two operators
(

Ô1Ô2

)†
= Ô†

2Ô†
1. So, if two Hermitian operators Ô1

and Ô2 commute with eath other, the product operator Ô1Ô2 is a Hermitian operator:(
Ô1Ô2

)†
= Ô†

2Ô†
1 = Ô2Ô1 = Ô1Ô2. If the two Hermitian operators Ô1 and Ô2 do

not commute with each other, the product operator Ô1Ô2 is not Hermitian operator.
This has to be taken into account while forming the quantum mechanical operators
corresponding to classical observables. If an operator, say Ô, is not Hermitian, it can
be written as the sum of a Hermitian and an anti-Hermitian operator:

Ô = ÔH + ÔA, ÔH =
1
2

(
Ô+ Ô†

)
, ÔA =

1
2

(
Ô− Ô†

)
,

Ô†
H = ÔH , Ô†

A =−ÔA. (3.29)

We shall call ÔH and ÔA as the Hermitian and anti-Hermitian parts of Ô, respectively.
For example, corresponding to the classical observable xpx, the quantum operator
cannot be x̂ p̂x, since x̂ and p̂x do not commute and hence x̂ p̂x is not Hermitian.
We can take the corresponding quantum operator to be the symmetrical combina-
tion 1

2

(
x̂ p̂x +(x̂ p̂x)

†
)
= 1

2 (x̂ p̂x + p̂xx̂) = 1
2 {x̂ , p̂x}. Note that the antisymmetrical

combination, 1
2

(
x̂ p̂x− (x̂ p̂x)

†
)
= 1

2 (x̂ p̂x− p̂xx̂) = 1
2 [x̂ , p̂x] =

1
2 ih̄ is anti-Hermitian.

In general, the ‘Classical −→ Quantum’ correspondence rule used for getting the
Hermitian quantum operator corresponding to any classical observable O(~r,~p, t) is:
Replace ~r and ~p by ~̂r and ~̂p, respectively, and make the resulting expression Her-
mitian, if it is not already Hermitian. To make an operator Hermitian, one may
use the result that 1

2

(
Ô+ Ô†

)
is Hermitian, or some ordering rule like the Weyl

ordering rule:

classical xm pn
x −→ quantum

1
2m

m

∑
j=0

(
m
j

)
x̂m− j p̂n

x x̂ j. (3.30)

The algebra of commutators is exactly similar to the algebra of the Poisson brackets
(2.56). We have

[Â, B̂] =−[B̂, Â],

[Â, B̂Ĉ] = [Â, B̂]Ĉ+ B̂[Â,Ĉ],

[aÂ,bB̂+ cĈ] = ab[Â, B̂]+ac[Â,Ĉ],

[Â, [B̂,Ĉ]]+ [B̂, [Ĉ, Â]]+ [Ĉ, [Â, B̂]] = 0, (3.31)

where a, b, and c are constants, and the last relation is the Jacobi identity for com-
mutators. Note that, using the antisymmetry of the commutator, we can rewrite the
Jacobi identity as

[Â, [B̂,Ĉ]]− [B̂, [Â,Ĉ]] = [[Â, B̂],Ĉ]. (3.32)

It may be noted that while the commutator of any two Hermitian operators is anti-
Hermitian, the anticommutator of any two Hermitian operators is Hermitian.
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Besides the position representation, we can have other equivalent representations
too. For example, we have the momentum representation in which, with ψ̃(~p) as any
momentum space function, we have

p̂xψ̃(~p) = pxψ̃(~p), p̂yψ̃(~p) = pyψ̃(~p), p̂zψ̃(~p) = pzψ̃(~p), (3.33)

and

x̂ψ̃(~p) = ih̄
∂ψ̃(~p)

∂ px
, ŷψ̃(~p) = ih̄

∂ψ̃(~p)
∂ py

, ẑψ̃(~p) = ih̄
∂ψ̃(~p)

∂ pz
. (3.34)

Thus, in momentum representation

~̂r = ih̄~∇~p, ~̂p = ~p×, (3.35)

acting on functions in ~p-space. Note that the Heisenberg commutation relations are
valid in the same form (3.27) in this representation also. One can work in any rep-
resentation of the operators which preserves the Heisenberg canonical commutation
relations. In the momentum representation, the wave function would be a function of

momentum of the particle, say Ψ̃(~p, t), such that
∣∣∣Ψ̃(~p, t)

∣∣∣2 gives the probability of
finding the particle to have the momentum ~p, at time t, if its momentum is measured.

It would be useful to note down the following commutation relations:

[p̂x, f (~r)] =−ih̄
∂ f (~r)

∂x
, [p̂y, f (~r)] =−ih̄

∂ f (~r)
∂y

, [p̂z, f (~r)] =−ih̄
∂ f (~r)

∂ z
,

[
x̂, f
(
~̂p
)]

= ih̄
∂

(
f
(
~̂p
))

∂ p̂x
,
[
ŷ, f
(
~̂p
)]

= ih̄
∂

(
f
(
~̂p
))

∂ p̂y
,
[
ẑ, f
(
~̂p
)]

= ih̄
∂

(
f
(
~̂p
))

∂ p̂z
.

(3.36)

The first set of relations follow by finding (p̂x f (~r)− f (~r) p̂x)ψ (~r), etc., for an arbi-
trary ψ (~r). The second set of relations follow from the observation that in the
momentum representation f

(
~̂p
)
= f (~p) and x̂ = ih̄(∂/∂ px), etc. Thus, the sec-

ond set of relations are got by calculating them first in the momentum represen-
tation and then converting the results to the position representation. Another way
to obtain the second set of relations is to use, repeatedly, the relation [x̂, p̂n

x ] =
ih̄p̂n−1

x + p̂x
[
x̂, p̂n−1

x
]
, got using the second of the relations in (3.31), and note that

the final result can be written as [x̂, p̂n
x ] = ih̄(∂ p̂n

x/∂ p̂x).1

I If a particle has the wave function Ψ(~r, t), at time t, and an observable O of
the particle is measured, then O will be found to have only one of the eigenvalues,
{λn}, of the corresponding Hermitian operator Ô. Let us assume that the eigenvalues
{λn} are all distinct and nondegenerate, i.e., to each eigenvalue λn, there is only one

1Since x̂, ŷ, and ẑ are simply multiplications by x, y, and z, respectively, we shall hereafter write them
simply as x, y, and z, and write~̂r as~r, unless it is necessary to use the operator (̂) notation.
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eigenfunction ϕn(~r) such that Ôϕn(~r) = λnϕn(~r). The probability that O is found to
have a value λn is given by

P(O = λn) =

∣∣∣∣∫ d3r ϕ
∗
n (~r)Ψ(~r, t)

∣∣∣∣2 . (3.37)

If the eigenvalue λn is dn-fold degenerate, there would be dn eigenfunctions, say{
ϕn j(~r) | j = 1,2, . . . ,dn

}
, such that Ôϕn j(~r) = λnϕn j(~r), for all j = 1,2, . . . ,dn. In

that case, the probability that O is found to have a value λn is given by

P(O = λn) =
dn

∑
j=1

∣∣∣∣∫ d3r ϕ
∗
n j(~r)Ψ(~r, t)

∣∣∣∣2 . (3.38)

Note that
∑
n

P(O = λn) = 1, (3.39)

as should be, in view of the normalization of the wave function (3.16).

Notes:
For the position operator x̂, the eigenvalue equation x̂ξ (x′,x) = x′ξ (x′,x) has the

solution ξ (x′,x) = δ (x− x′), i.e., xδ (x− x′) = x′δ (x− x′), −∞ < x′ < ∞, where
δ (x− x′) is the one-dimensional Dirac delta function defined by∫

∞

−∞

dx′ δ (x− x′)ψ
(
x′
)
= ψ(x). (3.40)

Taking ψ (x′) = 1, we see that ∫
∞

−∞

dx′ δ (x− x′) = 1. (3.41)

Effectively,

δ
(
x− x′

)
=

{
−→ ∞ at x = x′,
0 for x 6= x′. (3.42)

The Dirac delta function is a generalization of the Kronecker delta symbol δnn′ and
the defining relation (3.11), or (3.40), is analogous to ∑n′ δnn′ψn′ = ψn. Note that
δ ∗(x− x′) = δ (x− x′). Also, δ (x− x′) = δ (x′− x), and hence we can write (3.40)
also as ∫

∞

−∞

dx′ δ (x′− x)ψ(x′) = ψ(x). (3.43)

The Dirac delta function can arise in several ways. For example,

δ
(
x− x′

)
=

1
2π

∫
∞

−∞

dk eik(x−x′),

δ
(
x− x′

)
= lim

σ→0

1√
2π σ

e−
(x−x′)2

2σ2 . (3.44)
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Further, the orthonormality relation for these position eigenfunctions takes the form∫
∞

−∞

dx δ
∗(x− x′)δ (x− x′′) = δ (x′− x′′). (3.45)

The eigenfunctions of ŷ and ẑ will be similarly given by {δ (y− y′) |−∞ < y′ < ∞}
and {δ (z− z′) |−∞ < z′ < ∞}, respectively, with similar orthonormality properties.
With

δ (~r−~r′) = δ (x− x′)δ (y− y′)δ (z− z′), (3.46)

we have the orthonormality relation∫
d3r δ

∗(~r−~r′)δ (~r−~r′′) = δ (~r′−~r′′). (3.47)

Note that the position eigenfunction δ (~r−~r′) cannot be normalized in the sense
of (3.1) since the position eigenvalues {~r′} span the entire continuous space and∫

d3r |δ (~r−~r′)|2 −→ ∞ for any~r′. This is because if a particle has the wave func-
tion δ (~r−~r′), at any time t, it is localized at the position~r′ at that instant, and the
probability of finding it at that position becomes ∞ (!), and the probability of finding
it elsewhere is zero. This happens whenever we have continuous eigenvalues for any
observable, and the normalization of corresponding eigenfunctions has to be done
in the sense of (3.47). It is to be observed that the three position coordinates of any
particle are still assumed to take all continuous values from−∞ to ∞, like in classical
physics, without any quantization. May be the space itself is quantized at a deeper
level (see, e.g., Singh and Carroll [172]).

Let Ô1 and Ô2 be two Hermitian operators with a complete set of
common orthonormal eigenfunctions ϕ

λ
(1)
n ,λ

(2)
m
(~r) such that Ô1ϕ

λ
(1)
n ,λ

(2)
m
(~r) =

λ
(1)
n ϕ

λ
(1)
n ,λ

(2)
m
(~r) and Ô2ϕ

λ
(1)
n ,λ

(2)
m
(~r) = λ

(2)
m ϕ

λ
(1)
n ,λ

(2)
m
(~r). Then, Ô1Ô2ϕ

λ
(1)
n ,λ

(2)
m
(~r) =

λ
(1)
n λ

(2)
m ϕ

λ
(1)
n ,λ

(2)
m
(~r) and Ô2Ô1ϕ

λ
(1)
n ,λ

(2)
m
(~r) = λ

(2)
m λ

(1)
n ϕ

λ
(1)
n ,λ

(2)
m
(~r) for any λ

(1)
n and

λ
(2)
m . Or, for any ϕ

λ
(1)
n ,λ

(2)
m
(~r), Ô1Ô2ϕ

λ
(1)
n ,λ

(2)
m
(~r) = Ô2Ô1ϕ

λ
(1)
n ,λ

(2)
m
(~r). Consequently,

for any arbitrary ψ(~r) =∑n,m C
λ
(1)
n ,λ

(2)
m

ϕ
λ
(1)
n ,λ

(2)
m
(~r), we have Ô1Ô2ψ(~r) = Ô2Ô1ψ(~r).

In other words, Ô1 and Ô2 must commute with each other. So, only commuting
Hermitian operators can have a complete set of simultaneous orthonormal eigen-
functions.

The three components of the position operator ~̂r commute with each other and
have {δ (~r−~r′)} as their simultaneous eigenfunctions. We can write the three eigen-
value equations

x̂δ (~r−~r′) = x′δ (~r−~r′), ŷδ (~r−~r′) = y′δ (~r−~r′), ẑδ (~r−~r′) = z′δ (~r−~r′),
(3.48)

as
~̂rδ (~r−~r′) =~r′δ (~r−~r′). (3.49)
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Taking Ô =~̂r and λn =~r′ in (3.37), we see that the probability of finding the particle
at the position~r′ is given by

P
(
~r =~r′

)
=

∣∣∣∣∫ d3r δ
∗ (~r−~r′)Ψ(~r, t)

∣∣∣∣2 = ∣∣Ψ(~r′, t)
∣∣2 , (3.50)

as stated in the beginning.
The three components of the momentum operator p̂ commute with each other.

Their common eigenfunction is given by

φ~p(~r) =
1

(2π h̄)3/2 e
i
h̄~p·~r, (3.51)

such that

p̂xφ~p(~r) = pxφ~p(~r), p̂yφ~p(~r) = pyφ~p(~r), p̂zφ~p(~r) = pzφ~p(~r), (3.52)

where the eigenvalues of the momentum components, (px, py, pz), take all real values
from −∞ to ∞. We can write

~̂pφ~p(~r) = ~pφ~p(~r). (3.53)

These momentum eigenfunctions
{

φ~p(~r)
}

corresponding to a continuous spectrum
of momentum eigenvalues, like the position eigenfunctions, cannot be normalized
in the sense of (3.1) and are to be normalized only in the sense of (3.47). They are
orthonormal in the sense ∫

d3r φ
∗
~p(~r)φ~p′(~r) = δ (~p−~p′). (3.54)

They form a complete set such that any ψ(~r) can be expanded in terms of
{

φ~p(~r)
}

as

ψ(~r) =
∫

d3 p ψ̃(~p)φ~p(~r), (3.55)

where d3 p = d pxd pyd pz, the integral is over the entire momentum space, and

ψ̃(~p) =
∫

d3r φ
∗
~p(~r)ψ(~r) =

1
(2π h̄)3/2

∫
d3r e−

i
h̄~p·~rψ(~r). (3.56)

This shows that for a particle with the wave function Ψ(~r, t), which can be expanded
in terms of the momentum eigenfunctions as

Ψ(~r, t) =
∫

d3 p Ψ̃(~p, t)φ~p(~r), (3.57)

the probability of finding it with momentum ~p′ is given by

P(~p = ~p′) =
∣∣∣Ψ̃(~p′, t)

∣∣∣2 = ∣∣∣∣∫ d3r φ
∗
~p′(~r)Ψ(~r, t)

∣∣∣∣2
=

∣∣∣∣ 1
(2π h̄)3/2

∫
d3r e−

i
h̄~p
′·~r

Ψ(~r, t)
∣∣∣∣2 . (3.58)

Note that Ψ̃(~p, t) is the Fourier transform of the wave function Ψ(~r, t) and represents
the state in the momentum representation.
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3.2.1.2 Quantum Dynamics

I The wave function Ψ(~r, t) evolves in time according to the Schrödinger equation

ih̄
∂

∂ t
Ψ(~r, t) = Ĥ(~r,~̂p, t)Ψ(~r, t), (3.59)

where Ĥ(~r,~̂p, t) is the Hamiltonian operator corresponding to the energy of the sys-
tem, when the system is left undisturbed by any action on the system like a mea-
surement of an observable of the system. When an observable O of the system is
measured, the wave function collapses, immediately after the measurement, to an
eigenfunction of the observable corresponding to the observed eigenvalue. From
that moment onwards, the wave function evolves deterministically according to the
Schrödinger equation (3.59) until a further measurement.

Notes:
The quantum Hamiltonian operator Ĥ(~r,~̂p.t) is derived from the classical Hamil-

tonian function H(~r,~p, t) by the Classical −→ Quantum transition, or correspon-
dence, rule mentioned earlier, for getting the Hermitian quantum operator corre-
sponding to any classical observable. This procedure works well for nonrelativistic
quantum mechanics. But, in the case of relativistic quantum mechanics, the quantum
Hamiltonian is to be obtained by a different approach as we shall see later. Also,
the quantum operators are to be expressed first in Cartesian coordinates and then
transformed to curvilinear coordinates if needed.

If a particle has the wave function Ψ(~r, t) and its position is determined to be
~r =~r′, at time t, then immediately after the observation, its wave function collapses to
δ (~r−~r′). If at that instant the momentum of the particle is measured, the probability
for it to be ~p′ is given by

P(~p = ~p′) =
∣∣∣∣ 1
(2π h̄)3/2

∫
d3r e−

i
h̄~p
′·~r

δ (~r−~r′)
∣∣∣∣2

=

∣∣∣∣ 1
(2π h̄)3/2 e−

i
h̄~p
′·~r′
∣∣∣∣2 = 1

(2π h̄)3 , (3.60)

showing that the probability of finding it to be any value ~p′ is the same (ignoring
the value of probability given by this equation since the position eigenfunction is not
normalized in the sense of (3.1)). In other words, if we try to locate the particle pre-
cisely at a particular position, its momentum will be spread over its infinite spectrum
of values with equal probability. Similarly, if a particle is found to have a definite
momentum, say ~p′, after a momentum measurement, it will have its wave function
collapsed to 1

(2π h̄)3/2 e
i
h̄~p
′·~r immediately after the measurement. If at that instant the

position of the particle is measured, the probability of finding it to be~r′ is given by
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P(~r =~r′) =
∣∣∣∣ 1
(2π h̄)3/2

∫
d3r δ (~r−~r′)e

i
h̄~p
′·~r
∣∣∣∣2

=

∣∣∣∣ 1
(2π h̄)3/2 e

i
h̄~p
′·~r′
∣∣∣∣2 = 1

(2π h̄)3 , (3.61)

showing that the probability of finding it at any position~r′ is the same (again, ignor-
ing the value of probability given by this equation since the momentum eigenfunction
is not normalized in the sense of (3.1)). This means that a particle with a well-defined
value of momentum is likely to be found at any position with equal probability. In
general, it is impossible to say that a particle has well-defined values for position and
momentum both, or for any two observables associated with noncommuting Her-
mitian operators that cannot have a complete set of simultaneous eigenfunctions.
When the value of one of them is determined, the state of the particle collapses to
the eigenfunction corresponding to the eigenvalue obtained for that observable. Since
this eigenfunction is not an eigenfunction of the other observable for any of its eigen-
values, it cannot take a definite value on a measurement of the other observable. This
is the essence of Heisenberg’s uncertainty principle.

To proceed further, we have to recall some basic concepts of finite-dimensional
vector spaces. An N-dimensional vector

|v〉=
N

∑
j=1

v j| j〉, (3.62)

where {| j〉| j = 1,2, . . . ,N} are N linearly independent vectors forming a basis, can
be represented as

|v〉=


v1
v2
...

vN

 . (3.63)

Following Dirac, |v〉 or its representative column vector |v〉 is called a ket vector, and
its adjoint, or the transpose conjugate, row vector

|v〉† = (v∗1 v∗2 · · · v∗N) , (3.64)

is called a bra vector and represents

〈v|=
N

∑
j=1

v∗j〈 j|. (3.65)

The inner product of two vectors, say |u〉 and |v〉, is given by

〈u|v〉=
N

∑
j=1

u∗jv j, (3.66)
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and the norm of any vector is

‖ |v〉 ‖2= 〈v|v〉=
N

∑
j=1

∣∣v j
∣∣2 . (3.67)

It follows that
〈v|v〉= 0 =⇒ |v〉= 0, (3.68)

where |v〉= 0 means v j = 0, for j = 1,2, . . . ,N. Note that

〈v|u〉= 〈u|v〉∗. (3.69)

The basis vectors {| j〉| j = 1,2, . . . ,N} are orthonormal:

〈 j|k〉= δ jk, j,k = 1,2, . . . ,N. (3.70)

Such a basis is called a unitary basis. The basis bra vectors {〈 j|} are said to be dual
to the basis ket vectors {| j〉} in the sense of (3.70). From this, it follows that for any
vector |v〉,

v j = 〈 j|v〉, j = 1,2, . . . ,N, (3.71)

and hence

|v〉=
N

∑
j=1
| j〉〈 j|v〉=

(
N

∑
j=1
| j〉〈 j|

)
|v〉. (3.72)

Thus, the completeness of the basis vectors {| j〉| j = 1,2, . . . ,N} is expressed as

N

∑
j=1
| j〉〈 j|= I, (3.73)

where I is the identity operator, or N×N identity matrix in this case. This relation
(3.73) is known as the resolution of identity. Note that | j〉〈 j| is the projection operator
that projects out of |v〉 its j-th component v j| j〉.

We can change the unitary basis from the given set of complete orthonormal
vectors {| j〉| j = 1,2, . . . ,N} to another set of complete orthonormal vectors, say,{
|ϕ j〉| j = 1,2, . . . ,N

}
. We can write

∣∣ϕ j
〉
=

N

∑
k=1

ϕk j|k〉=
N

∑
k=1
|k〉
〈
k | ϕ j

〉
, j = 1,2, . . . ,

〈
ϕ j
∣∣= N

∑
k=1

ϕ
∗
k j〈k|=

N

∑
k=1

〈
ϕ j |k

〉
〈k|, j = 1,2, . . . ,

〈ϕm | ϕn〉=
N

∑
j=1
〈ϕm | j〉〈 j | ϕn〉=

N

∑
j=1

ϕ
∗
jmϕ jn = δmn,

m,n = 1,2, . . . ,N. (3.74)
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The completeness of the new basis vectors means, we have

I =
N

∑
j=1
|ϕ j〉〈ϕ j|. (3.75)

To see this, let us observe
N

∑
j=1

ϕ
∗
jmϕ jn = δmn =⇒

N

∑
j=1

ϕ
∗
jnϕ jm = δmn

=⇒
N

∑
j=1

ϕn jϕ
∗
m j = δmn =⇒

N

∑
j=1

〈
n | ϕ j

〉〈
ϕ j | m

〉
= δmn

=⇒
N

∑
j=1
|ϕ j〉〈ϕ j|= I. (3.76)

Then, for any vector |v〉, we have

|v〉=
N

∑
j=1
|ϕ j〉〈ϕ j|v〉, 〈v|=

N

∑
j=1
〈v|ϕ j〉〈ϕ j|, (3.77)

and the inner product of |u〉 and |v〉 becomes

〈u|v〉=
N

∑
j=1
〈u|ϕ j〉〈ϕ j|v〉= 〈u|

(
N

∑
j=1
|ϕ j〉〈ϕ j|

)
|v〉. (3.78)

Note that if we form an N×N matrix U with the N orthonormal basis vectors as its
columns, i.e.,

U =
(
|ϕ1〉, |ϕ2〉, . . . , |ϕN〉

)
,

=


ϕ11 ϕ12 . . . ϕ1N
ϕ21 ϕ22 . . . ϕ2N
. . . . . .
. . . . . .

ϕN1 ϕN2 . . . ϕNN

 , (3.79)

then, it is a unitary matrix:

N

∑
j=1

ϕ
∗
jmϕ jn = δmn =⇒ U†U = I,

N

∑
j=1

ϕn jϕ
∗
m j = δmn =⇒ UU† = I. (3.80)

If M is an N×N matrix with elements
{

M jk| j,k = 1,2, . . . ,N
}

, we can write

M =
N

∑
j=1

N

∑
k=1

M jk| j〉〈k|, (3.81)
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and
M jk = 〈 j|M|k〉, j,k = 1,2, . . . ,N. (3.82)

For any vector |v〉, we have

M|v〉=
N

∑
j=1

N

∑
k=1
| j〉M jk〈k|v〉=

N

∑
j=1

(
N

∑
k=1

M jkvk

)
| j〉, (3.83)

as expected. If the basis is changed from the old basis to any other unitary basis,{
|ϕ j〉| j = 1,2, . . . ,N

}
, then for any vector |v〉 represented in the new basis as

|v〉=
N

∑
k=1
|ϕk〉〈ϕk|v〉 (3.84)

the action of M becomes

M|v〉=
N

∑
j=1

N

∑
k=1
|ϕ j〉〈ϕ j|M|ϕk〉〈ϕk|v〉. (3.85)

Thus, the matrix elements of the linear operator M in the new basis become

〈ϕ j|M|ϕk〉=
N

∑
l=1

N

∑
m=1
〈ϕ j|l〉〈l|M|m〉〈m|ϕk〉, j,k = 1,2, . . . ,N., (3.86)

where {〈l|M|m〉= Mlm|l,m = 1,2, . . . ,N} are the matrix elements of M in the old
basis. If we denote the matrix in the old basis as M, and in the new basis as Mϕ , then
it follows from (3.86) that

Mϕ =U†MU. (3.87)

For a Hermitian matrix H, one should have in any basis H† = H, or

H†
jk = H∗k j = H jk. (3.88)

If H −→Hϕ under the change to the new unitary basis, then its hermiticity is seen to
be preserved:

H†
ϕ =

(
U†HU

)†
=U†HU = Hϕ . (3.89)

An arbitrary vector |v〉 can be written as

|v〉=
N

∑
j=1

N

∑
k=1

∣∣ϕ j
〉〈

ϕ j |k
〉
〈k|v〉. (3.90)

This equation becomes, in terms of the components of |v〉 in the old and new bases,

〈
ϕ j |v

〉
=

N

∑
k=1

〈
ϕ j |k

〉
〈k|v〉=

N

∑
k=1

ϕ
∗
k j〈k|v〉, j = 1,2, . . . ,N., (3.91)
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or ∣∣∣vϕ

〉
=U†|v〉, (3.92)

where U is the unitary matrix defined in (3.79). The inverse of this relation

|v〉=U
∣∣∣vϕ

〉
, (3.93)

gives the components of |v〉 in the old basis in terms of its components in the new
basis. The two equations (3.92) and (3.93) imply that if all the vectors of the vector
space are transformed by premultiplication by a unitary matrix U (in the above case
U=U†), the resulting vectors represent the same vectors in a new basis consisting of
the columns of the unitary matrix U† (in the above case U† =U). Correspondingly,
any linear transformation matrix M acting on the vector space gets transformed into
UMU† in the new representation. In fact, one can generalize this result to nonunitary
transformations. Let us make a linear transformation of an arbitrary vector |v〉 by a
nonsingular matrix, say T , as∣∣v′〉= T |v〉, det(T ) 6= 0, (3.94)

or

v′j =
N

∑
k=1

Tjkv j, j = 1,2, . . . ,N. (3.95)

The inverse relation,
|v〉= T−1 ∣∣v′〉 , (3.96)

or

v j =
N

∑
k=1

(
T−1)

jk v′k, j = 1,2, . . . ,N, (3.97)

implies that the components of the new vector |v′〉 are the components of the original
vector |v〉 in a new representation in which the columns of T−1 are the basis vectors.
Since T−1 is not unitary, its columns will not be orthonormal, and hence the linear
transformation effected by T changes the original basis to a nonorthogonal basis. If
M is a linear transformation acting on the vector space, it will become T MT−1 in the
new representation, since∣∣(Mv)′

〉
= T (M|v〉) = T MT−1 ∣∣v′〉 . (3.98)

For a nonorthonormal basis, with a set of basis vectors
{∣∣ξ j

〉}
, it is possible to con-

struct a dual, or reciprocal, basis with the set of dual basis vectors
{〈

ξ̃ j
∣∣}, such that〈

ξ̃ j | ξk

〉
= ∑

`

ξ̃
∗
j`ξ`k = δ jk,

∑
j

∣∣ξ j
〉〈

ξ̃ j

∣∣∣= I. (3.99)
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Hence, any vector |v〉 can the expanded in the nonorthonormal basis

|v〉= ∑
j

v j
∣∣ξ j
〉
, (3.100)

in which
v j =

〈
ξ̃ j | v

〉
. (3.101)

Let us now extend the above discussion to the space of functions of ~r, which
can be regarded as an infinite-dimensional vector space, i.e., N −→ ∞ which can be
discrete or continuous. In the finite-dimensional vector space, the canonical basis
vector | j〉 has its components as 〈k| j〉 = δ jk. In the function space we can take the
canonical basis vectors as {|~r〉} with 〈~r′|~r〉= δ (~r′−~r). Then, identifying f (~r′) with
〈~r′| f 〉, the relation

f (~r′) =
∫

d3r δ (~r′−~r) f (~r) (3.102)

translates to the representation

| f 〉=
∫

d3r |~r〉〈~r| f 〉, (3.103)

with the completeness relation reading∫
d3r |~r〉〈~r|= I. (3.104)

Corresponding to the ket | f 〉, we can write the dual bra vector as

〈 f |=
∫

d3r〈 f |~r〉〈~r| (3.105)

where 〈 f |~r〉= 〈~r| f 〉∗. Now, the inner product of two functions f (~r) and g(~r) can be
written as ∫

d3r f ∗(~r)g(~r) = 〈 f |g〉. (3.106)

Note that 〈 f |g〉 = 〈g| f 〉∗. The norm of a function f (~r), ‖ f ‖, is given by ‖ f ‖2=
〈 f | f 〉, and 〈 f | f 〉= 0 implies that f (~r) = 0. The normalization condition for the wave
function of a particle (3.1) now reads

〈Ψ(t)|Ψ(t)〉= 1, (3.107)

where
Ψ(~r, t) = 〈~r|Ψ(t)〉, Ψ

∗(~r, t) = 〈Ψ(t)|~r〉, (3.108)

and |ψ(t)〉 is called the state vector of the particle. Sometimes, we will be using the
terms state vector and wave function interchangeably.

If we now change the basis to another complete set of orthonormal functions,{
ϕ j(~r) = 〈~r|ϕ j〉

}
, which can be the eigenfunctions of a Hermitian operator repre-

senting some observable of a particle, we can write any arbitrary |ψ〉, with 〈~r|ψ〉 =
ψ(~r), as

|ψ〉= ∑
j
|ϕ j〉〈ϕ j|ψ〉, (3.109)
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with the completeness relation, or the resolution of identity, for the new basis, say
ϕ-basis, reading

∑
j
|ϕ j〉〈ϕ j|= I. (3.110)

In the position representation, the resolution of identity reads

∑
j

〈
~r | ϕ j

〉〈
ϕ j |~r′

〉
= ∑

j
ϕ j (~r)ϕ j

(
~r′
)∗

=
〈
~r |~r′

〉
= δ

(
~r−~r′

)
. (3.111)

Here, ∑ j runs over all the infinite values of j, discrete, continuous, or mixed; it will
become an integral over ranges where j is continuous. A basis with a complete set
of orthonormal functions is called a unitary basis for the same reason as in the finite-
dimensional case. If Ô is a linear operator, we shall write

〈~r|Ô f 〉= 〈~r|Ô| f 〉, (3.112)

or, independent of representation,

|Ô f 〉= Ô| f 〉. (3.113)

In the ϕ-basis, we can write this as

〈ϕ j|Ô f 〉= ∑
k
〈ϕ j|Ô|ϕk〉〈ϕk| f 〉, (3.114)

where
{
〈ϕ j|Ô|ϕk〉

}
are the matrix elements of Ô in the ϕ-basis. For any Hermitian

operator Ĥ, we should have

〈ϕ j|Ĥ|ϕk〉= 〈ϕk|Ĥ|ϕ j〉∗, (3.115)

for all j and k, such that for any arbitrary | f 〉=∑ j |ϕ j〉〈ϕ j| f 〉 and |g〉=∑k |ϕk〉〈ϕk|g〉
we will have

〈 f |Ĥ|g〉= 〈g|Ĥ| f 〉∗, (3.116)

as demanded in (3.6). This implies that for any Hermitian operator Ĥ, 〈 f |Ĥ| f 〉 is
real.

When we change the basis from one complete orthonormal set
{

ϕ j(~r)
}

to another

complete orthonormal set
{

ϕ ′j(~r)
}

, we go from the representation

| f 〉= ∑
j
|ϕ j〉〈ϕ j| f 〉, (3.117)

to the representation
| f 〉= ∑

j
|ϕ ′j〉〈ϕ ′j| f 〉. (3.118)

The components of | f 〉 in the two representations are related by

〈ϕ ′j| f 〉= ∑
k
〈ϕ ′j|ϕk〉〈ϕk| f 〉. (3.119)
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Observe that the connection coefficients between the two representations, i.e.,{
〈ϕ ′j|ϕk〉

}
satisfy the relation

∑
k
〈ϕ ′j|ϕk〉〈ϕk|ϕ ′m〉= δ jm, (3.120)

since both the bases are complete orthonormal bases. Writing 〈ϕ ′j|ϕk〉 = U jk, the
jk-th element of a matrix U , the above relation becomes

∑
k

U jkU∗mk =
(
UU†)

jm = δ jm, (3.121)

showing that U is a unitary matrix. In other words, the change of basis effected is a
unitary transformation. The matrix elements of a Hermitian operator Ô, correspond-
ing to an observable O, given in the two bases by

{
〈ϕ j|Ô|ϕk

}
and

{
〈ϕ ′j|Ô|ϕ ′k

}
are

related by
〈ϕ ′j|Ô|ϕ ′k〉= ∑

l
∑
m
〈ϕ ′j|ϕl〉〈ϕl |Ô|ϕm〉〈ϕm|ϕ ′k〉. (3.122)

This shows that if we call the matrices representing Ô in ϕ-basis and ϕ ′-basis as [O]
and [O′], respectively, then the two matrices are related by a unitary transformation[

O′
]
=U [O]U†. (3.123)

It is seen that under such unitary transformations the commutator relations
between the operators remain invariant, i.e., if [[O1] , [O2]] = [O3] in ϕ-basis, then
[[O′1] , [O

′
2]] = [O′3] in ϕ ′-basis. Thus on change of basis, the commutation relations

like [x̂, p̂x] = ih̄ remain invariant. In other words, classical canonical transformations,
under which the Poisson bracket relations are invariant, become in quantum mechan-
ics unitary transformations under which the corresponding commutator bracket rela-
tions remain invariant.

In the position representation, or the canonical basis, we can write the matrix
elements of any operator Ô(~r,~p, t) as

〈~r|Ô(~̂r,~̂p, t)|~r′〉= Ô(~̂r,~̂p, t)δ (~r−~r′). (3.124)

In the ϕ-basis, we get

〈ϕ j|Ô(~̂r,~̂p, t)|ϕk〉=
∫ ∫

d3rd3r′ 〈ϕ j|~r〉〈~r|Ô(~̂r,~̂p, t)|~r′〉〈~r′|ϕk〉

=
∫ ∫

d3rd3r′ ϕ
∗
j (~r)Ô(~̂r,~̂p, t)δ (~r−~r′)ϕk(~r′)

=
∫

d3r ϕ
∗
j (~r)Ô(~̂r,~̂p, t)ϕk(~r). (3.125)

Let us make a unitary transformation of the function space such that any vector |ψ〉
in it gets transformed as ∣∣ψ ′〉= Û|ψ〉. (3.126)
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In a representation with
{∣∣φ j

〉}
as the complete set of orthonormal basis kets, we

have
|ψ〉= ∑

j

∣∣φ j
〉〈

φ j |ψ
〉
,

∣∣ψ ′〉= ∑
j

∣∣φ j
〉〈

φ j
∣∣ψ ′ 〉 . (3.127)

Inverting the relation (3.126), we get

|ψ〉= Û† ∣∣ψ ′〉 , (3.128)

which can be written as
|ψ〉= ∑

j
Û† ∣∣φ j

〉〈
φ j
∣∣ψ ′ 〉 , (3.129)

showing that |ψ ′〉 in the old representation represents the vector |ψ〉 in a new repre-
sentation for which the complete set of orthonormal basis kets is given by

{
Û†
∣∣φ j
〉}

.

If a linear operator is represented by Ô in the old representation, with
{∣∣φ j

〉}
as the

basis kets, in the new representation with
{
Û†
∣∣φ j
〉}

as the basis kets, it will be

represented by ÛÔÛ†. This is seen as follows:∣∣∣∣(Ôψ

)′〉
= Û

(
Ô|ψ〉

)
= ÛÔÛ† ∣∣ψ ′〉= Ô′

∣∣ψ ′〉 . (3.130)

Analogous to what we found in the finite-dimensional case, we can also effect a
linear transformation of the function space using any invertible operator. Let such a
transformation in the function space lead to the transformation of any vector in it as∣∣ψ ′〉= T̂ |ψ〉, (3.131)

where T̂ has an inverse T̂−1 such that T̂−1T̂ = I. Then, we can write

|ψ〉= T̂−1 ∣∣ψ ′〉 , (3.132)

or, in any orthonormal basis
{∣∣φ j

〉}
,

|ψ〉= ∑
j

(
T̂−1 ∣∣φ j

〉)〈
φ j
∣∣ ψ
′〉 , (3.133)

showing that |ψ ′〉 represents |ψ〉 in a new representation with a nonorthonormal basis
given by

{
T̂−1

∣∣φ j
〉}

. In this case, the relation between the expressions for any linear

operator in the old representation (Ô), and the new representation (Ô′) becomes

Ô′ = T̂ ÔT̂−1. (3.134)

This is seen as follows:∣∣∣∣(Ôψ

)′〉
= T̂

(
Ô|ψ〉

)
= T̂ ÔT̂−1 ∣∣ψ ′〉= Ô′

∣∣ψ ′〉 . (3.135)
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As in the finite-dimensional case, it is possible to construct a dual basis for a
nonorthonormal basis. If a set of functions

{
ξ j(x)

}
form a nonorthonormal basis,

then a set of dual basis functions
{

ξ̃ j(x)
}

can be defined such that〈
ξ̃ j | ξk

〉
=
∫

dx ξ̃ j(x)∗ξk(x) = δ jk, ∑
j

ξ j(x)ξ̃ j
(
x′
)∗

= δ
(
x− x′

)
. (3.136)

Then, any function φ(x) can be expanded as

φ(x) = ∑
j

f jξ j(x), f j =
∫

dx ξ̃ j(x)∗φ(x). (3.137)

In connection with unitary and nonunitary transformations, it is useful to recall
here an operator identity. For any pair of operators Â and B̂,

eÂB̂e−Â = B̂+
[
Â, B̂

]
+

1
2!

[
Â,
[
Â, B̂

]]
+

1
3!

[
Â,
[
Â,
[
Â, B̂

]]]
+ · · · . (3.138)

This can be proved as follows. Let

f̂ (λ ) = eλ ÂB̂e−λ Â = f̂ (0)+λ
d f̂
dλ

∣∣∣∣∣
λ=0

+
λ 2

2!
d2 f̂
dλ 2

∣∣∣∣∣
λ=0

+
λ 3

3!
d3 f̂
dλ 3

∣∣∣∣∣
λ=0

+ · · · ,

(3.139)
where the infinite series represents the Taylor series expansion of f̂ (λ ). Observe that

d f̂
dλ

∣∣∣∣∣
λ=0

=
(

Aeλ ÂB̂e−λ Â− eλ ÂB̂e−λ ÂA
)∣∣∣

λ=0

=
[
Â , f̂ (λ )

]∣∣∣
λ=0

=
[
Â , B̂

]
,

d2 f̂
dλ 2

∣∣∣∣∣
λ=0

=
[
Â ,
[
Â , B̂

]]
, and so on. (3.140)

Substituting these results in the Taylor series for f̂ (λ ) and setting λ = 1, we get the
identity (3.138). Introducing the notation

: Â : B̂ =
[
Â, , B̂

]
, (3.141)

analogous to the case of the Poisson bracket, we can write the identity (3.138) as

eÂB̂e−Â =

(
I+ : Â : +

1
2!

: Â :2 +
1
3!

: Â :3 + · · ·
)

B̂ = e:Â:B̂. (3.142)

Also note that for any constant a

e:aÂ: = ea:Â:. (3.143)
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Using the Dirac 〈bra|c|ket〉 notation, we can write the Schrödinger quantum
dynamical time-evolution equation (3.59) in a representation-independent way2 as

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ|Ψ(t)〉. (3.144)

Taking the adjoint of the above equation on both sides, we get the time-evolution
equation for 〈Ψ(t)| as

ih̄
∂ 〈Ψ(t)|

∂ t
=−〈Ψ(t)|Ĥ. (3.145)

If we choose to work in a ϕ-representation, with an orthonormal basis, then multi-
plying both sides of (3.144) from left by I =∑ j |ϕ j〉〈ϕ j| and equating the coefficients
of the linearly independent basis vectors |ϕ j〉 on both sides, we get

ih̄
∂

∂ t
〈ϕ j|Ψ(t)〉= 〈ϕ j|Ĥ|Ψ(t)〉= ∑

k
〈ϕ j|Ĥ|ϕk〉〈ϕk|Ψ(t)〉. (3.146)

Or, with Ψ j(t) = 〈ϕ j|Ψ(t)〉 and H jk = 〈ϕ j|Ĥ|ϕk〉, we have

ih̄
∂

∂ t



...
Ψ j−1(t)
Ψ j(t)

Ψ j+1(t)
...



=



· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · H j−1 j−1 H j−1 j H j−1 j+1 · · ·
· · · H j j−1 H j j H j j+1 · · ·
· · · H j+1 j−1 H j+1 j H j+1 j+1 · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·





...
Ψ j−1(t)
Ψ j(t)

Ψ j+1(t)
...

 .

(3.147)

2Hereafter we will write, in general, Ĥ(~̂r,~̂p, t) and other observables, such as Ô(~̂r,~̂p, t), simply as Ĥ
and Ô, respectively, without mentioning their dependence on~̂r,~̂p and t whenever such dependence is clear
from the context. Similarly, we shall write Ψ(~r, t) and ψ(~r) simply as Ψ and ψ , respectively, unless for
the sake of better clarity, we have to indicate their dependence on space, and time, explicitly.
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Note that in the position representation, with

〈ϕ j|Ψ(t)〉 −→ 〈~r|Ψ(t)〉= Ψ(~r, t)

H jk = 〈ϕ j|Ĥ|ϕk〉 −→ 〈~r|Ĥ|~r′〉= Ĥδ (~r−~r′)

∑
k
〈ϕ j|Ĥ|ϕk〉〈ϕk|Ψ(t)〉 −→

∫
d3r′ 〈~r|Ĥ(~̂r,~̂p, t)|~r′〉〈~r′|Ψ(t)〉

=
∫

d3r′ Ĥ(~̂r,~̂p, t)δ (~r−~r′)Ψ(~r′, t)

= Ĥ(~̂r,~̂p, t)Ψ(~r, t), (3.148)

the equation (3.147) becomes the differential equation of Schrödinger (3.59).
For a particle in a state |Ψ(t)〉, the average (or expectation, or mean) value for any

observable O, at time t, can be defined as

〈O〉Ψ(t) = 〈Ψ(t)|Ô|Ψ(t)〉. (3.149)

Sometimes, we shall write 〈O〉Ψ also as 〈Ô〉Ψ. The definition (3.149) can be
understood as follows. Let the Hermitian quantum operator Ô corresponding to the
observable O have real eigenvalues {λn}, where λn is dn-fold degenerate. Let the
corresponding eigenvectors be

{
|ϕn j〉| j = 1,2, . . . ,dn

}
such that Ô|ϕn j〉 = λn|ϕn j〉

for all j = 1,2, . . . ,dn These eigenvectors would form a complete orthonormal set,
such that

〈ϕn j|ϕmk〉= δnmδ jk, j = 1,2, . . . ,dn, k = 1,2, . . . ,dm, (3.150)

with the resolution of identity

∑
n

dn

∑
j=1
|ϕn j〉〈ϕn j|= I. (3.151)

From this we get the spectral decomposition of Ô as

Ô = ÔI = Ô∑
n

dn

∑
j=1
|ϕn j〉〈ϕn j|= ∑

n

dn

∑
j=1

λn|ϕn j〉〈ϕn j|. (3.152)

Substituting this expression for Ô in the right-hand side of (3.149), we get

〈O〉Ψ(t) = 〈Ψ(t)|∑
n

dn

∑
j=1

λn|ϕn j〉〈ϕn j|Ψ(t)〉

= ∑
n

λn

{
dn

∑
j=1
|〈ϕn j|Ψ(t)〉|2

}
= ∑

n
λnP(O = λn) , (3.153)

as claimed.
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3.2.1.3 Different Pictures of Quantum Dynamics
We can formally integrate the Schrödinger equation (3.144) as

|Ψ(t)〉= Û (t, ti) |Ψ(ti)〉, t ≥ ti, (3.154)

where ti is the initial time at which the system starts evolving with the initial state
vector given as |Ψ(ti)〉, and Û (t, ti) is the time-evolution operator depending on the
Hamiltonian Ĥ of the system. The Hamiltonian may or may not depend explicitly on
time. The adjoint of (3.154) is seen to be

〈Ψ(t)|= 〈Ψ(ti) |Û† (t, ti) . (3.155)

Obviously, we should have
Û (ti, ti) = I, (3.156)

as the initial condition for Û (ti, ti). From the normalization condition for the state
vector, namely 〈Ψ(t)|Ψ(t)〉 = 1 at any time t, or the conservation of probability,
we get

〈Ψ(t)|Ψ(t)〉= 〈Ψ(ti) |Û† (t, ti)Û (t, ti) |Ψ(ti)〉= 〈Ψ(ti) |Ψ(ti)〉= 1. (3.157)

This shows that Û (t, ti) must be a unitary operator such that

Û† (t, ti)Û (t, ti) = I. (3.158)

Then, note that the relations

Û† (t, ti) |Ψ(t)〉= |Ψ(ti)〉,
Û (t, ti)Û† (t, ti) |Ψ(t)〉= Û (t, ti) |Ψ(ti)〉= |Ψ(t)〉, (3.159)

for any |Ψ(t)〉, imply that
Û (t, ti)Û† (t, ti) = I. (3.160)

Substituting the solution (3.154) for |Ψ(t)〉 in the Schrödinger equation (3.144), we
have

ih̄
∂

∂ t

(
Û (t, ti) |Ψ(ti)〉

)
=

(
ih̄

∂

∂ t
Û (t, ti)

)
|Ψ(ti)〉

= ĤÛ (t, ti) |Ψ(ti)〉. (3.161)

This implies that Û (t, ti) must satisfy the differential equation

ih̄
∂

∂ t
Û (t, ti) = ĤÛ (t, ti) , (3.162)

with the initial condition
Û (ti, ti) = I. (3.163)
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Taking the adjoint of both sides of (3.162) implies that

ih̄
∂Û† (t, ti)

∂ t
=−Û† (t, ti) Ĥ. (3.164)

Multiplying both sides of this equation from left by 〈Ψ(ti)|, we get the Schrödinger
equation for 〈Ψ(t)| as given in (3.145). Another important property of the time-
evolution operator is to be noted. Let t > t ′ > ti. From

|Ψ(t)〉= Û
(
t, t ′
)∣∣Ψ(t ′)〉 , ∣∣Ψ(t ′)〉= Û

(
t ′, ti
)
|Ψ(ti)〉 ,

|Ψ(t)〉= Û (t, ti) |Ψ(ti)〉 , (3.165)

it is clear that
Û (t, ti) = Û

(
t, t ′
)

Û
(
t ′, ti
)
. (3.166)

In general, for t > tn > tn−1 > · · ·> t2 > t1 > ti, we have

Û (t, ti) = Û (t, tn)Û (tn, tn−1) . . .Û (t2, t1)Û (t1, ti) . (3.167)

This property of the time-evolution operator is referred to as semigroup property.
For a system with a time-independent Hamiltonian Ĥ, we can integrate (3.162)

directly to get
Û (t, ti) = e−

i
h̄ (t−ti)Ĥ , (3.168)

which obviously satisfies the initial condition (3.163). The Hamiltonian can be writ-
ten, using the spectral decomposition, as

Ĥ = ∑
n

En|n〉〈n|, (3.169)

in terms of its eigenvalues {En} and the corresponding eigenkets {|n〉} and bras
{〈n|}. Note that the projection operators {Pn = |n〉〈n|} satisfy the relation

PnPn′ = δnn′Pn. (3.170)

Using the expression (3.169) for Ĥ, and the relation (3.170), we get

Û (t, ti) = e−
i
h̄ (t−ti)∑n En|n〉〈n| = ∑

n
e−

i
h̄ (t−ti)En |n〉〈n|, (3.171)

an expression for the time-evolution operator, Û (t, ti), in terms of the eigenvalues and
eigenvectors of the time-independent Hamiltonian. We shall see later how Û (t, ti)
can be calculated when the Hamiltonian depends explicitly on time.

In position representation, we can write (3.154) as

〈~r|Ψ(t)〉=
∫

d3ri

〈
~r
∣∣∣Û (t, ti)

∣∣∣~ri

〉
〈~ri |Ψ(ti)〉 , (3.172)

or
Ψ(~r, t) =

∫
d3ri K (~r, t;~ri, ti)Ψ(~ri, ti) , (3.173)
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where the kernel of propagation

K (~r, t;~ri, ti) = 〈~r|Û (t, ti) |~ri〉 (3.174)

is called the propagator. From (3.173), it is clear that

K (~r, t;~ri, ti) = Û (t, ti)δ (~r−~ri), t ≥ ti, (3.175)

which means that K (~r, t;~ri, ti) would be the wave function of a particle with the
Hamiltonian Ĥ at time t if at an earlier time ti it was localized at~ri with the wave
function δ (~r−~ri). This means that the propagator K (~r, t;~ri, ti) can be interpreted as
the probability amplitude for finding the particle at~r at time t if it was found at~ri at
time ti. In position representation, the equation (3.162) becomes(

ih̄
∂

∂ t
− Ĥ

)
K (~r, t;~ri, ti) = 0. (3.176)

as can be seen by taking
〈
~r
∣∣∣Ĥ∣∣∣~ri

〉
= Ĥ

(
~̂r,~̂p, t

)
δ (~r−~ri). In other words,

K (~r, t;~ri, ti) satisfies the Schrödinger equation. The initial condition Û (ti, ti) = I
implies that

K (~r, ti;~ri, ti) = δ (~r−~ri) . (3.177)

When the Hamiltonian is time-independent, we have explicitly, using (3.171),

K (~r, t;~ri, ti) = ∑
n

e−
i
h̄ (t−ti)En〈~r|n〉〈n|~ri〉

= ∑
n

e−
i
h̄ (t−ti)Enψn(~r)ψ∗n (~ri), (3.178)

where ψn(~r) is the n-th eigenfunction of Ĥ corresponding to the eigenvalue En. The
validity of equations (3.176) and (3.177) can be directly checked in this case.

One can absorb the condition t ≥ ti in the definition of the propagator and write

G(~r, t;~ri, ti) = θ (t− ti)K (~r, t;~ri, ti) , (3.179)

where θ (t− ti) is the Heaviside step function defined by

θ (t− ti) =
{

0 for t < ti,
1 for t ≥ ti.

(3.180)

The step function satisfies the differential equation

dθ (t− ti)
dt

= δ (t− ti) . (3.181)

Then, (
ih̄

∂

∂ t
− Ĥ

)
G(~r, t;~ri, ti) = ih̄δ (t− ti)K (~r, t;~ri, ti)

+θ (t− ti)
(

ih̄
∂

∂ t
− Ĥ

)
K (~r, t;~ri, ti)

= ih̄δ (t− ti)δ (~r−~ri) , (3.182)
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where, in the last step, we have used equations (3.176) and (3.181), and the fact
that δ (t− ti)K (~r, t;~ri, ti) vanishes for t 6= ti and becomes δ (t− ti)δ (~r−~ri) as
t −→ ti. The function G(~r, t;~ri, ti) is known as Green’s function for the operator
[(ih̄∂/∂ t)− Ĥ].

Substituting the formal solution (3.154) of the Schrödinger equation in the expres-
sion (3.149) for the average of an observable, we get

〈O〉Ψ(t) = 〈Ψ(ti) |Û† (t, ti) ÔÛ (t, ti) |Ψ(ti)〉. (3.183)

This expression (3.183) for the average of O can be reinterpreted as the average of
the time-dependent operator

ÔH(t) = Û† (t, ti) ÔÛ (t, ti) , (3.184)

in the fixed state of the system at the initial time ti, namely |Ψ(ti)〉. Note that

ih̄
dÔH(t)

dt
= ih̄

{(
∂

∂ t
Û† (t, ti)

)
ÔÛ (t, ti)+Û† (t, ti)

(
∂ Ô
∂ t

)
Û (t, ti)

+Û† (t, ti) Ô
(

∂

∂ t
Û (t, ti)

)}
=
{
−Û† (t, ti) ĤÔÛ (t, ti)+Û† (t, ti) ÔĤÛ (t, ti)

}
+ ih̄Û† (t, ti)

∂ Ô
∂ t

Û (t, ti) (3.185)

It is easy to see that we can rewrite this equation as

dÔH(t)
dt

=
i
h̄

([
Ĥ, Ô

])
H
+

(
∂ Ô
∂ t

)
H

, (3.186)

or
dÔH(t)

dt
=

i
h̄

[
ĤH, ÔH

]
+

(
∂ Ô
∂ t

)
H

, (3.187)

since (O1O2)H = (O1)H (O2)H. Note that a time-dependent Ĥ need not commute with
Û (t, ti) and hence ĤH 6= Ĥ, unless Ĥ is time-independent. For any Hermitian opera-

tor Ô, the operator ÔH defined by (3.184) is Hermitian
((

Û†ÔÛ
)†

= Û†ÔÛ
)

and

is called the Heisenberg operator corresponding to the observable O. The equation
(3.187) is the Heisenberg equation of motion for the quantum observables. This is
the Heisenberg picture of quantum dynamics. From this picture, it follows that an
observable without an explicit time dependence will be a conserved quantity if its
operator commutes with the Hamiltonian. In that case, ÔH(t) = Û† (t, ti) ÔÛ (t, ti) =
Ô independent of time.

In the Schrödinger picture, the state vector |Ψ(t)〉 evolves in time according to
the Schrödinger equation (3.144), and the quantum observables do not change with
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time unless they have an explicit time dependence. In the Heisenberg picture the state
vector is fixed at the initial time, say ti, as |Ψ(ti)〉, and the observables evolve in time
according to the Heisenberg equation of motion (3.187). Rewriting the Heisenberg
equation of motion (3.187) as

dÔH(t)
dt

=
1
ih̄

[
−ĤH, ÔH

]
+

(
∂ Ô
∂ t

)
H

, (3.188)

we see its striking resemblance to the classical Hamilton’s equation of motion in the
Poisson bracket formalism (2.52),

dO
dt

= {−H,O}+ ∂O
∂ t

. (3.189)

Dirac’s rule of correspondence between classical and quantum mechanics is

quantum
1
ih̄

[
Ô1, Ô2

]
−→ classical {O1,O2} . (3.190)

It is seen that the passage from the Heisenberg equation of motion for the observ-
ables (3.188) to the classical Hamilton’s equation of motion for the observables in
the Poisson bracket formalism (3.189) is in accordance with Dirac’s rule of corre-
spondence between classical and quantum mechanics (3.190). Writing the Heisen-
berg equation of motion (3.188) for observables in matrix form, with the matrix
elements of the operators calculated in some orthonormal basis, takes us to Heisen-
berg’s matrix mechanics discovered earlier to Schrödinger’s wave mechanics based
on differential equations. Anyway, it was soon realized that the two forms of quan-
tum mechanics were the same. Heisenberg’s matrix mechanics was the closest to
classical mechanics in form because of the correspondence (3.190).

Besides the Schrödinger and the Heisenberg pictures, there is an important third
picture, namely, the Dirac picture or the interaction picture. In this picture, interme-
diate between the Schrödinger and the Heisenberg pictures, both the state and the
observables change with time. We shall consider this picture later.

3.2.1.4 Ehrenfest’s Theorem

Let us now find the equation of motion for the quantum average of an observable. To
this end, let us start with the Heisenberg equation of motion written as

dÔH(t)
dt

=
i
h̄

(
[Ĥ, Ô]

)
H
+

(
∂ Ô
∂ t

)
H

. (3.191)
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Taking averages on both sides of this equation in the state |Ψ(ti)〉, we get〈
Ψ(ti)

∣∣∣∣ d
dt

ÔH

∣∣∣∣Ψ(ti)
〉
=

d
dt

〈
Ψ(ti)

∣∣∣ÔH

∣∣∣Ψ(ti)
〉

=
i
h̄

〈
Ψ(ti)

∣∣∣([Ĥ, Ô]
)

H

∣∣∣Ψ(ti)
〉

+

〈
Ψ(ti)

∣∣∣∣∣
(

∂ Ô
∂ t

)
H

∣∣∣∣∣Ψ(ti)

〉
, (3.192)

where d/dt has been pulled out of the term in the left-hand side since 〈Ψ(ti) | and
|Ψ(ti)〉 are time-independent vectors. Since〈

Ψ(ti) |ÔH|Ψ(ti)
〉
=
〈

Ψ(ti) |Û† (t, ti) ÔÛ (t, ti) |Ψ(ti)
〉

= 〈Ψ(t)|Ô|Ψ(t)〉= 〈O〉Ψ(t), (3.193)

the average of the observable O in the Schrödinger picture, we can write (3.192) as

d
dt
〈O〉Ψ(t) =

i
h̄
〈[Ĥ, Ô]〉Ψ(t)+

〈
∂O
∂ t

〉
Ψ(t)

. (3.194)

This is the equation of motion for the average of a quantum observable, representing
the general form of the Ehrenfest theorem.

To see what the equation (3.194) implies, let us take O = x and

Ĥ =
p̂2

x

2m
+V (x), (3.195)

the quantum Hamiltonian of a particle of mass m moving nonrelativistically in one
dimension (x-direction) in the field of a potential V (x). Then, from (3.194), we find

d〈x〉Ψ(t)

dt
=

i
h̄

〈[
p̂2

x

2m
+V (x) , x

]〉
Ψ(t)

=
i
h̄

〈[
p̂2

x

2m
, x
]〉

Ψ(t)
=

1
m
〈px〉Ψ(t) , (3.196)

where we have used the fact that x is time-independent, and the commutation rela-
tions [

p̂2
x

2m
, x
]
=−ih̄

p̂x

m
, [V (x) , x] = 0, (3.197)

derived with the help of (3.31). For the same system, if we take O = px, we find

d 〈px〉Ψ(t)

dt
=

i
h̄

〈[
p̂2

x

2m
+V (x) , p̂x

]〉
Ψ(t)

=
i
h̄
〈[V (x) , p̂x]〉Ψ(t) =

〈
−∂V (x)

∂x

〉
Ψ(t)

= 〈F(x)〉Ψ(t), (3.198)
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where F(x) is the force experienced by the particle. Equations (3.196) and (3.198)
are the classical Newton’s equations if we replace the quantum averages 〈x〉Ψ(t),
〈px〉Ψ(t), and 〈F(x)〉Ψ(t), for position of the particle, momentum of the particle, and
the force acting on the particle, respectively, by the corresponding classical observ-
ables. Thus, the Ehrenfest theorem suggests that since classical mechanics is only an
approximation of quantum mechanics, classical observables are the averages of the
corresponding quantum operators.

3.2.1.5 Spin

In classical mechanics, the orbital angular momentum of a particle is given by

~L =~r×~p. (3.199)

Explicitly writing, the components of~L are

Lx = ypz− zpy, Ly = zpx− xpz, Lz = xpy− ypx, (3.200)

with the Poisson bracket relations,

{
Lx , Ly

}
= Lz,

{
Ly , Lz

}
= Lx, {Lz , Lx}= Ly. (3.201)

In quantum mechanics, the components of the orbital angular momentum are repre-
sented by Hermitian operators

L̂x = yp̂z− zp̂y =−ih̄
(

y
∂

∂ z
− z

∂

∂y

)
,

L̂y = zp̂x− xp̂z =−ih̄
(

z
∂

∂x
− x

∂

∂ z

)
,

L̂z = xp̂y− yp̂x =−ih̄
(

x
∂

∂y
− y

∂

∂x

)
, (3.202)

as obtained by the classical −→ quantum transition rule. We can write

~̂L =~r×~̂p =−ih̄~r×~∇. (3.203)

The commutation relations between the components of the angular momentum oper-
ator become[

L̂x , L̂y

]
= i h̄L̂z,

[
L̂y , L̂z

]
= i h̄L̂x,

[
L̂z , L̂x

]
= i h̄L̂y. (3.204)
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Let us collect here, for later use, the commutation relations between the components
of the angular momentum operator and the components of the position and momen-
tum operators:[

L̂x , x
]
= 0,

[
L̂x , y

]
= ih̄ z,

[
L̂x , z

]
=−ih̄ y,[

L̂y , x
]
=−ih̄ z,

[
L̂y , y

]
= 0,

[
L̂y , z

]
= ih̄ x,[

L̂z , x
]
= ih̄ y,

[
L̂z , y

]
=−ih̄ x,

[
L̂z , z

]
= 0,[

L̂x , p̂x

]
= 0,

[
L̂x , p̂y

]
= ih̄ p̂z,

[
L̂x , p̂z

]
=−ih̄ p̂y,[

L̂y , p̂x

]
=−ih̄ p̂z,

[
L̂y , p̂y

]
= 0,

[
L̂y , p̂z

]
= ih̄ p̂x,[

L̂z , p̂x

]
= ih̄ p̂y,

[
L̂z , p̂y

]
=−ih̄ p̂x,

[
L̂z , p̂z

]
= 0,[

~̂L , r2
]
= 0,

[
~̂L , p̂2

]
= 0. (3.205)

In deriving these relations, we have to use the commutator algebra (3.31).
Since L̂x, L̂y, and L̂z do not commute with each other, they are incompatible

observables, i.e., it is not possible to measure more than one of them simultane-
ously and they cannot have simultaneous eigenstates. There exists an operator that
commutes with all of them: the square of the total angular momentum

L̂2 = L̂2
x + L̂2

y + L̂2
z . (3.206)

Using the commutation relations (3.204) and the commutator algebra (3.31), it is
straightforward to verify that[

L̂2 , L̂x

]
= 0,

[
L̂2 , L̂y

]
= 0,

[
L̂2 , L̂z

]
= 0. (3.207)

Thus, it is possible to have simultaneous eigenstates for L̂2 and any one of the angular
momentum components

(
L̂x, L̂y, L̂z

)
. The traditional choice is to use the simultane-

ous eigenstates of L̂2 and L̂z. Let us denote a simultaneous eigenket of L̂2 and L̂z by
|λmλ 〉 which satisfies the eigenvalue equations

L̂2|λmλ 〉= λ h̄2|λmλ 〉, L̂z|λmλ 〉= mλ h̄|λmλ 〉. (3.208)

We have taken the eigenvalues of L̂z and L̂2 in units of h̄ and h̄2, respectively, since
the angular momentum has the same dimensions as h̄, as seen from (3.202). Now,
define

L̂± = L̂x± iL̂y. (3.209)

Note that
(

L̂±
)†

= L̂∓. Observe that[
L̂z, L̂±

]
=±h̄L̂±,

[
L̂2, L̂±

]
= 0. (3.210)
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As a consequence of these relations, we get

L̂2
(

L̂±|λmλ 〉
)
= L̂±L̂2|λmλ 〉= λ h̄2

(
L̂±|λmλ 〉

)
,

L̂z

(
L̂±|λmλ 〉

)
= L̂±

((
L̂z± h̄

)
|λmλ 〉

)
= (mλ ±1) h̄

(
L̂±|λmλ 〉

)
. (3.211)

This shows that L̂+|λmλ 〉 and L̂−|λmλ 〉 are simultaneous eigenkets of L̂2 and L̂z
corresponding to the same eigenvalue λ h̄2 for L̂2 and eigenvalues (mλ + 1)h̄ and
(mλ −1)h̄, respectively, for L̂z. For this reason L̂+ and L̂− are, respectively, called the

raising and lowering operators. L̂z being a component of ~̂L, its value cannot become
greater than the total value of angular momentum. Hence, for some maximum value
of mλ , say `, we should have

L̂2|λ`〉= λ h̄2|λ`〉, L̂z|λ`〉= `h̄|λ`〉, L̂+|λ`〉= 0. (3.212)

Now, from the identity

L̂2 = L̂−L̂++ L̂z

(
L̂z + h̄

)
, (3.213)

it follows that
L̂2|λ`〉= `(`+1)h̄2|λ`〉. (3.214)

Hence,
λ = `(`+1). (3.215)

When the lowering operator L̂− acts repeatedly on any eigenket |λmλ 〉, the eigen-
value mλ h̄ is reduced by h̄ at each step. This process also cannot go on and should
stop for some minimum value of mλ , say `, such that

L̂2|λ`〉= λ h̄2|λ`〉, L̂z|λ`〉= `h̄|λ`〉, L̂−|λ`〉= 0. (3.216)

Now, from the identity

L̂2 = L̂+L̂−+ L̂z

(
L̂z− h̄

)
, (3.217)

it follows that
L̂2|λ`〉= `(`−1) h̄2|λ`〉. (3.218)

Hence,
λ = `(`−1) . (3.219)

For this result to be consistent with (3.215), it must be that either `= `+1 or `=−`.
The first choice is obviously absurd, and so we have ` = −`. Then, we get `(`+
1)h̄2 as the eigenvalue of L̂2 in terms of the maximum value of mλ , namely, `. The
minimum value of mλ is −`. Thus, mλ takes all values from −` to ` in integer steps.
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If the number of integer steps from −` to ` is N, then 2` = N. Thus, relabeling the
eigenket |λmλ 〉 as |`m`〉, we have

L̂2|`m`〉= `(`+1)h̄2|`m〉, L̂z|`m`〉= m`h̄|`m`〉,
`= 0,1/2,1,3/2, . . . ,

m` = − `,−(`−1), . . . ,(`−1), `. (3.220)

Being eigenkets of Hermitian operators, {|`m`〉 | ` = 0,1/2,1, . . . , m` = −`, . . . , `}
are orthonormal:

〈`′m`′ |`m`〉= δ``′δm`m`′ . (3.221)

Thus, we have solved completely the eigenvalue problem of quantum angular
momentum algebraically.

From the identity (3.213), we get

〈`m`|L̂−L̂+|`m`〉= 〈`m`|L̂2− L̂z

(
L̂z + h̄

)
|`m`〉

= h̄2(`(`+1)−m`(m`+1)). (3.222)

This shows that we can take

L̂+|`m`〉= h̄
√

`(`+1)−m`(m`+1)|`(m`+1)〉,

L̂−|`m`〉= h̄
√

`(`+1)−m`(m`−1)|`(m`−1)〉. (3.223)

From this, we can write down the matrix elements of L̂2 and L̂± between the various
eigenkets as

〈`′m`′ |L̂2|`m`〉= `(`+1)h̄2
δ``′δm`m`′ ,

〈`′m`′ |L̂+|`m`〉= h̄
√
`(`+1)−m`(m`+1)δ``′δm`′ (m`+1),

〈`′m`′ |L̂−|`m`〉= h̄
√
`(`+1)−m`(m`−1)δ``′δm`′ (m`−1),

〈`′m`′ |L̂z|`m`〉= mh̄δ``′δm`m`′ . (3.224)

Note that, for any `, L̂2 and L̂z matrices are Hermitian and L̂+ and L̂− matrices

are such that
(

L̂+

)†
= L̂−. It is clear from these matrix elements that the action

of L̂± and L̂z on any linear combination of the 2`+ 1 degenerate eigenkets of
L̂2 corresponding to the eigenvalue `(`+ 1)h̄2, namely {|`m〉}, takes it to another
linear combination of the same 2`+ 1 eigenkets. Thus, the (2`+ 1)-dimensional
vector space spanned by the kets {|`m`〉} is invariant under the action of angu-
lar momentum operators. Hence, the vector space spanned by {|`m`〉} carries a
(2`+ 1)-dimensional representation of the angular momentum operators

(
L̂±, L̂z

)
,

or
{

L̂x =
(

L̂+− L̂−
)
/2, L̂y = i

(
L̂−− L̂+

)
/2, L̂z

}
. Let us spell out these angular

momentum matrices
{

L(`)
x ,L(`)

y ,L(`)
z

}
and

(
L(`)
)2

explicitly for `= 0,1/2,1. :
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`= 0 : In this case, there is only one basis vector |00〉. In the corresponding one-
dimensional representation,

L(0)
x = 0, L(0)

y = 0, L(0)
z = 0, (3.225)

and (
L(0)
)2

= 0. (3.226)

Note that, though this representation satisfies the algebra (3.204) trivially, it is not a
faithful representation.
`= 1

2 : In this case, there are two basis vectors | 12
1
2 〉 and | 12 −

1
2 〉, which can be

represented by
(

1
0

)
and

(
0
1

)
, respectively. The corresponding 2-dimensional

representation can be worked out from (3.224) to be

L
( 1

2 )
x =

h̄
2

(
0 1
1 0

)
, L

( 1
2 )

y =
h̄
2

(
0 −i
i 0

)
, L

( 1
2 )

z =
h̄
2

(
1 0
0 −1

)
,

(3.227)
and (

L( 1
2 )
)2

=
3
4

h̄2
(

1 0
0 1

)
. (3.228)

Note that all the above 2×2 matrices are Hermitian. This representation satisfies the
algebra (3.204) exactly and is a faithful representation.
`= 1 : In this case, there are three basis vectors, namely |1 1〉, |1 0〉, and |1 − 1〉,

which can be represented by

 1
0
0

,

 0
1
0

, and

 0
0
1

, respectively. Now the

corresponding 3-dimensional representation becomes

L(1)
x =

h̄√
2

 0 1 0
1 0 1
0 1 0

 , L(1)
y =

ih̄√
2

 0 −1 0
1 0 −1
0 1 0

 ,

L(1)
z = h̄

 1 0 0
0 0 0
0 0 −1

 ,
(

L(1)
)2

= 2h̄2

 1 0 0
0 1 0
0 0 1

 . (3.229)

Note that all the above 3×3 matrices are Hermitian. This representation is a faithful
representation of the algebra (3.204).

Let us now look at the angular momentum eigenvalue equations (3.220) as par-
tial differential equations in position representation. To this end, let us transform
the angular momentum operators in Cartesian coordinates (3.202) to spherical polar
coordinates defined by

x = r sinθ cosφ , y = r sinθ sinφ , z = r cosθ . (3.230)
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where 0≤ θ ≤ π and 0≤ φ ≤ 2π . The result is

L̂x =−ih̄
(
−sinφ

∂

∂θ
− cosφ cotθ

∂

∂φ

)
,

L̂x =−ih̄
(

cosφ
∂

∂θ
− sinφ cotθ

∂

∂φ

)
,

L̂z =−ih̄
∂

∂φ
, (3.231)

and

L̂2 =−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

]
. (3.232)

Note that the angular momentum operators in spherical polar coordinates depend
only on θ and φ and not on r. The eigenvalue equations for L̂2 and L̂z can now be
written as

− h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

]
〈θφ |`m`〉

= `(`+1)h̄2〈θφ |`m`〉,

− ih̄
∂

∂φ
〈θφ |`m`〉= m`h̄〈θφ |`m`〉. (3.233)

The solution for 〈θφ |`m`〉 is given by

〈θφ |`m`〉= Y m`
` (θ ,φ)

= ε

√
(2`+1)(`−|m`|)!

4π(`+ |m`|)!
Pm`
` (cosθ)eim`φ (3.234)

where

Pm`
` (x) =

(
1− x2)|m`|/2

(
d
dx

)|m`|
P̀ (x),

P̀ (x) =
1

2``!

(
d
dx

)` (
x2−1

)`
, (3.235)

ε is equal to (−1)m` for m` ≥ 0, and 1 for m` ≤ 0. Y m`
` (θ ,φ) is called a spherical har-

monic, Pm`
` (x) is the associated Legendre function, and P̀ (x) is the Legendre poly-

nomial (for the details on these special functions and polynomials, see, e.g., Arfken,
Weber, and Harris [3], Byron and Fuller [18], and the book of Lakshminarayanan
and Varadharajan [126], which is an excellent source for all important special func-
tions from a practical point of view with computational codes in Python). Now, it is
to be seen that when φ increases by 2π we return to the same point in space so that
we have to require

〈θ ,φ +2π|`m`〉= 〈θφ |`m`〉. (3.236)
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This implies that we must have

eim`(φ+2π) = eim`φ (3.237)

In other words, e2πim` = 1, i.e.,

m` = 0,±1,±2, . . . . (3.238)

This means that `, called the orbital angular momentum quantum number, can take
only nonnegative integer values. Also, only for nonnegative integer values of `, the
definition of P̀ (x) in the solution (3.234) makes sense. The orbital angular momen-
tum of the particle is given by

√
`(`+1)h̄, the square root of the eigenvalue of L̂2.

If the orbital angular momentum quantum number can take only nonnegative inte-

ger values, is there any physical significance for the matrix representations of ~̂L for

half integer values of `? The answer is that there is an intrinsic~̂L-like dynamical vari-
able associated with particles, called the spin, which can take any one of the allowed
values of ` = 0, 1

2 ,1,
3
2 , . . . . While the orbital angular momentum quantum number

of a particle ` can take all nonnegative integer values, the spin quantum number of
a particle takes only a fixed value. Let us relabel ` as s to refer to the spin quantum
number and relabel the corresponding matrices (Lx,Ly,Lz) as (Sx,Sy,Sz). Then, for
any particle the spin quantum number s has a fixed value 0, or 1

2 , or 1, or 3
2 , or . . ..

For a particle with spin s = 0 there is only one spin state, and so we can consider
it simply as a spectator variable. In other words, we can continue to use the single-
component state vector |Ψ(t)〉 in single particle dynamical problems, ignoring the
presence of spin. However, in dealing with the physics of multiple identical spin-0
particles, one has to consider them as bosons obeying the Bose–Einstein statistics.
Any number of identical bosons can occupy a single quantum state. All integer spin
particles, i.e., particles with s = 0,1,2, . . ., are bosons.

For a spin- 1
2 particle spin is an observable vector quantity ~S with three compo-

nents (Sx,Sy,Sz). Since spin has no classical analog, we have to only postulate the
corresponding Hermitian operators. Since the z-component of the spin of electron
is found, experimentally, to have two values, namely ± 1

2 , and to get coupled to the
orbital angular momentum in atomic systems, the components of ~S are taken to obey
the same algebra as the components of~L. Thus, for a spin- 1

2 particle, we take

Sx =
h̄
2

(
0 1
1 0

)
, Sy =

h̄
2

(
0 −i
i 0

)
, Sz =

h̄
2

(
1 0
0 −1

)
, (3.239)

following the two-dimensional matrix representation of the angular momentum alge-
bra corresponding to `= 1/2 as given in (3.227). In terms of the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.240)

we write
Sx =

h̄
2

σx, Sy =
h̄
2

σy, Sz =
h̄
2

σz. (3.241)
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Hence for a spin- 1
2 particle, there are two spin states:

∣∣ 1
2

1
2

〉
and

∣∣ 1
2 −

1
2

〉
. Since s

has a fixed value 1
2 , we can drop it in the specification of states and write simply∣∣ 1

2
1
2

〉
=
∣∣ 1

2

〉
and

∣∣ 1
2 −

1
2

〉
=
∣∣− 1

2

〉
. Physically, when a magnetic field is switched on

in the z-direction, a charged spin- 1
2 particle aligns its spin either in the z-direction,

i.e., parallel to the field, or in the −z-direction, i.e., antiparallel to the field. When
its spin is aligned parallel to the field, its spin state is

∣∣ 1
2

〉
and Sz =

h̄
2 , and when it

is aligned antiparallel to the field, its spin state is
∣∣− 1

2

〉
and Sz = − h̄

2 . So the states∣∣ 1
2

〉
and

∣∣− 1
2

〉
are also referred to as up and down states and written as | ↑〉 and | ↓〉,

respectively. We can also write | ↑〉=
(

1
0

)
and | ↓〉=

(
0
1

)
. Then, we have

Sz| ↑〉=
h̄
2
| ↑〉, Sz| ↓〉=−

h̄
2
| ↓〉,

S2| ↑〉= 3
4

h̄2| ↑〉, S2| ↓〉= 3
4

h̄2| ↓〉. (3.242)

The state vector of a spin- 1
2 particle can be represented as

|Ψ(t)〉= |Ψ1(t)〉| ↑〉+ |Ψ2(t)〉| ↓〉=
(
|Ψ1(t)〉
|Ψ2(t)〉

)
. (3.243)

Note that the quantum operator of any classical observable O commutes with all
the components of spin, ~S, and so any one component of ~S can be measured pre-
cisely along with O. If position and spin of the particle are measured simultaneously
in the above state |Ψ(t)〉, the probability for the result {position =~r, spin =↑} is
|〈~r|Ψ1(t)〉|2 and the probability for the result {position=~r, spin =↓} is |〈~r|Ψ2(t)〉|2.
Hence, the normalization condition now becomes∫

d3r
(
|〈~r|Ψ1(t)〉|2 + |〈~r|Ψ2(t)〉|2

)
=
∫

d3r (〈Ψ1(t)|~r〉〈~r|Ψ1(t)〉+ 〈Ψ2(t)|~r〉〈~r|Ψ2(t)〉)

= 〈Ψ1(t)|Ψ1(t)〉+ 〈Ψ2(t)|Ψ2(t)〉

= (〈Ψ1(t)|〈Ψ2(t)|)
(
|Ψ1(t)〉
|Ψ2(t)〉

)
= 〈Ψ(t)|Ψ(t)〉= 1. (3.244)

Note that |〈~r|Ψ1(t)〉|2 + |〈~r|Ψ2(t)〉|2 is the probability for finding the particle at ~r
with its spin up or down. The probability for finding the particle with its spin up,
independent of its position, is 〈Ψ1(t)|Ψ1(t)〉 and the probability for finding the par-
ticle with its spin down, independent of its position, is 〈Ψ2(t)|Ψ2(t)〉.

Particles with half odd integer spin, i.e., s = 1
2 ,

3
2 , . . ., are fermions that obey the

Fermi–Dirac statistics. They obey the Pauli exclusion principle according to which
two identical fermions cannot be in the same quantum state.



78 Quantum Mechanics of Charged Particle Beam Optics

3.3 NONRELATIVISTIC QUANTUM MECHANICS
All physical systems are basically quantum mechanical, and the classical behavior
of macroscopic bodies is an approximation. Similarly, basic physics is relativistic,
and nonrelativistic phenomena are approximations. The classical Hamiltonian of a
particle of mass m and charge q moving in an electromagnetic field and the field of a
potential V is given by

H =
√

m2c4 + c2~π2 +qφ +V, (3.245)

where φ and ~A are the scalar and vector potentials of the electromagnetic field,
respectively, and the potential V gives rise to the force −~∇V (~r, t) acting on the
particle. The Hamiltonian H represents the total energy of the particle. When the
motion of the particle is nonrelativistic (|~v| � c), such that its kinetic energy(√

m2c4 + c2~π2−mc2
)

is very small compared to its rest energy mc2, we can
approximate the classical Hamiltonian as

H ≈ mc2 +
~π2

2m
+qφ +V. (3.246)

Since the rest energy term mc2 is a constant, we can set it as the zero of the energy
scale and take H−mc2 as the nonrelativistic Hamiltonian of the particle. Hence, we
take the classical nonrelativistic Hamiltonian of the particle to be

H =
~π2

2m
+qφ +V. (3.247)

To study the quantum mechanics of the system, we have to get the quantum Hamil-
tonian operator Ĥ from the classical Hamiltonian H(~r,~p, t) by replacing in it ~p by
~̂p and making the resulting expression Hermitian by suitable symmetrization proce-
dure. Thus, we get the quantum Hamiltonian of a particle of mass m and charge q
moving nonrelativistically in the field of a potential V and an electromagnetic field
with φ and ~A as the scalar and vector potentials to be

Ĥ =
~̂π

2

2m
+qφ +V. (3.248)

Note that in expanding ~̂π
2
= (~̂p− q~A) · (~̂p− q~A), one has to be careful, since the

components of~r and ~̂p do not commute. We shall now look at how nonrelativistic
quantum mechanics works.

3.3.1 NONRELATIVISTIC SINGLE PARTICLE QUANTUM MECHANICS

3.3.1.1 Free Particle
Single free particle is the simplest physical system. For a particle moving in free
space, with ~A = 0, φ = 0, and V = 0, the Hamiltonian (3.248) becomes

Ĥ =
p̂2

2m
. (3.249)
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The dynamics is given by the Schrödinger equation

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ|Ψ(t)〉. (3.250)

Since the Hamiltonian is time-independent, we can integrate this equation immedi-
ately to get

|Ψ(t)〉= Û (t, ti) |Ψ(ti)〉= e−
i
h̄ (t−ti)Ĥ |Ψ(ti)〉. (3.251)

Now, we have to choose a representation. Let us choose the energy representation in
which the eigenvectors of the Hamiltonian form the complete orthonormal basis. To
this end, let us look at the eigenvalue equation for the Hamiltonian

Ĥ|ψ〉= p̂2

2m
|ψ〉= E|ψ〉. (3.252)

We have already solved the eigenvalue equation for the momentum operator. We
know that

~̂p
∣∣φ~p〉= ~p

∣∣φ~p〉 , (3.253)

with 〈
φ~p|φ~p′

〉
= δ

(
~p−~p′

)
. (3.254)

It is obvious that
p̂2

2m

∣∣φ~p〉= p2

2m

∣∣φ~p〉 , with p2 = |~p|2. (3.255)

Hence, we find that the free-particle Hamiltonian Ĥ has a continuous eigenvalue
spectrum

{
E(p) = p2/2m | 0≤ p≤ ∞

}
.

In position representation〈
~r |φ~p

〉
= φ~p(~r) =

1
(2π h̄)3/2 e

i
h̄~p·~r. (3.256)

The free-particle wave function, corresponding to a particle of momentum ~p and
energy p2/2m, is

Ψ(~r, t) =
1

(2π h̄)3/2 e
i
h̄

(
~p·~r− p2

2m t
)
. (3.257)

In one dimension, a particle of momentum p moving along the +x-direction has the
wave function

Ψ(x, t) =
1

(2π h̄)1/2 e
i
h̄

(
px− p2

2m t
)
, (3.258)

and the wave function

Ψ(x, t) =
1

(2π h̄)1/2 e
− i

h̄

(
px+ p2

2m t
)

(3.259)

represents a particle of momentum p moving along the −x-direction.
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Note that each eigenvalue E(p) is infinitely degenerate with the set of eigenvectors{∣∣φ~p〉 | |~p|= p
}

belonging to the same eigenvalue E(p). This means that a ket vector
defined by

|ψp〉=
∫
|~p|=p

d3 p C(~p)
∣∣φ~p〉 , (3.260)

with arbitrary coefficients {C(~p)}, subject to normalization of |ψp〉, will be an eigen-
vector of Ĥ corresponding to the eigenvalue E(p) = p2/2m. If we specify the eigen-
values of both Ĥ and~̂p, then the degeneracy is lifted, and we get a unique eigenvector∣∣φ~p〉.

Now, let us take ti = 0 in (3.251) and consider

|Ψ(0)〉=
∫

d3 p C(~p,0)
∣∣φ~p〉 , (3.261)

with the coefficients {C(~p,0) = 〈φ~p|Ψ(0)〉} satisfying the relation∫
d3 p |C(~p,0)|2 = 1, (3.262)

as required by the normalization condition

〈Ψ(0)|Ψ(0)〉=
∫ ∫

d3 p′d3 p C∗(~p′,0)C(~p,0)〈φ~p′ |φ~p〉

=
∫ ∫

d3 p′d3 p C∗(~p′,0)C(~p,0)δ
(
~p−~p′

)
=
∫

d3 p |C(~p,0)|2 = 1. (3.263)

Then, we have

|Ψ(t)〉=
∫

d3 p e−
ip2t
2mh̄ C(~p,0)

∣∣φ~p〉= ∫ d3 p C(~p, t)
∣∣φ~p〉 . (3.264)

If we represent the state vectors |Ψ(t)〉 and |Ψ(0)〉 by the column vectors of the
coefficients, then the above equation becomes

...
C(~p, t)

...

=


...

...
...

...
...

· · e−ip2t/2mh̄ · ·
...

...
...

...
...




...
C(~p,0)

...

 , (3.265)

showing that the matrix representing the unitary time-evolution operator Û(t,0) =
e−itĤ/h̄ is diagonal in the energy representation. In other words, the Hamiltonian is
diagonal in the energy representation.

In the position representation, corresponding to (3.261), we have

〈~r|Ψ(0)〉=
∫

d3 p C(~p,0)
〈
~r
∣∣φ~p 〉 , (3.266)
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or

Ψ(~r,0) =
∫

d3 p C(~p,0)φ~p(~r)

=
1

(2π h̄)3/2

∫
d3 p C(~p,0)e

i
h̄~p·~r. (3.267)

For the particle with this initial wave function Ψ(~r,0) at time 0, the wavefunction at
a later time t will be, following (3.264),

Ψ(~r, t) =
1

(2π h̄)3/2

∫
d3 p C(~p,0)e

i
h̄ (~p·~r−E(p)t), (3.268)

where E(p) = p2/2m. This represents a wave packet solution of the time-dependent
Schrödinger equation (3.250) in the position representation. This wave packet is not
an eigenstate of the Hamiltonian, since it is a linear superposition of several eigen-
states with different energy eigenvalues. It has an average energy

〈E〉Ψ(t) = 〈Ψ(t)|Ĥ|Ψ(t)〉

=
1

2m

∫
d3r Ψ

∗(~r, t)p̂2
Ψ(~r, t)

=
1

2m

∫
d3 p |C(~p,0)|2 p2 =

1
2m
〈p2〉Ψ(0). (3.269)

Note that the average energy is a constant of motion, in accordance with (3.194),
since the quantum operator for energy, the time-independent Hamiltonian, Ĥ, com-
mutes with itself. Similarly, the averages of the momentum components will also be
constants of motion for this state, since the momentum operator commutes with the
Hamiltonian, i.e., 〈~p〉Ψ(t) = 〈~p〉Ψ(0). For the average position of the particle, repre-
sented by the above wave packet, the equation of motion (3.194) shows that

d〈~r〉Ψ(t)

dt
=

1
m
〈~p〉Ψ(t), (3.270)

in accordance with the classical relation between the velocity and momentum,
d~r/dt = ~p/m, (á la Ehrenfest’s theorem).

In the Heisenberg picture, we can write the time-evolution, or transfer, map of(
~̂r,~̂p

)
as

(
~̂r(t)
~̂p(t)

)
=

 e
it p̂2
2mh̄~̂re

−it p̂2
2mh̄

e
it p̂2
2mh̄~̂pe

−it p̂2
2mh̄


=

(
~̂r(0)+ t

m
~̂p(0)

~̂p(0)

)
=

(
1 t

m
0 1

)(
~̂r(0)
~̂p(0)

)
. (3.271)
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Note that eit p̂2/2mh̄~̂re−it p̂2/2mh̄ and eit p̂2/2mh̄~̂pe−it p̂2/2mh̄ are of the form eÂB̂e−Â, which
can be calculated using the identity (3.142)

eÂB̂e−Â = e:Â:B̂ =

(
I+ : Â : +

1
2!

: Â :2 +
1
3!

: Â :3 + · · ·
)

B̂, (3.272)

by substituting it p̂2/2mh̄ for Â, and r̂ and p̂ for B̂. If the series terminates because
of the vanishing of a commutator at any step, we get an exact expression as in the
present case.

Let us now have a closer look at the Heisenberg uncertainty principle in the case
of the conjugate pair of dynamical variables x and px. For any observable O, the
uncertainty in a state |Ψ〉 is defined by

(∆O)
Ψ
=

√〈(
Ô−〈O〉Ψ

)2
〉

Ψ

, (3.273)

which is a measure of the spread, or dispersion, of its values about the average, or
the mean value, and (∆O)2

Ψ
is known as variance, second moment about the mean,

or the second-order central moment. Note that〈(
Ô−〈O〉Ψ

)〉
Ψ

= 0. (3.274)

Since 〈(
Ô−〈O〉Ψ

)2
〉

Ψ

=
〈

Ô2 + 〈O〉2Ψ−2Ô〈O〉Ψ
〉

Ψ

=
〈

Ô2 + 〈O〉2Ψ−2〈O〉2Ψ
〉

Ψ

=
〈
O2〉

Ψ
−〈O〉2Ψ, (3.275)

we can also write

(∆O)
Ψ
=
√
〈O2〉

Ψ
−〈O〉2

Ψ
. (3.276)

When |Ψ〉 is an eigenstate of Ô, (∆O)
Ψ
= 0.

Let O1 and O2 be two incompatible observables (i.e., Ô1Ô2 6= Ô2Ô1) with uncer-
tainties (∆O1)Ψ

and (∆O2)Ψ
in a state |Ψ〉. We shall drop the subscript Ψ to be

understood from the context. Let

δ̂O1 = Ô1−〈O1〉 , δ̂O2 = Ô2−〈O2〉 , (3.277)

which are Hermitian operators. Now, we can write

(∆O1)
2 =

(〈
Ψ

∣∣∣δ̂O1

)(
δ̂O1

∣∣∣Ψ〉) , (∆O2)
2 =

(〈
Ψ

∣∣∣δ̂O2

)(
δ̂O2

∣∣∣Ψ〉) .
(3.278)
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According to the Cauchy–Schwarz inequality, or the Schwarz inequality (see, e.g.,
Arfken, Weber, and Harris [3], and Byron and Fuller [18]), for any two functions
f and g,

〈 f | f 〉〈g|g〉 ≥ |〈 f |g〉|2. (3.279)

Taking | f 〉= δ̂O1|Ψ〉 and |g〉= δ̂O2|Ψ〉, we get

(∆O1)
2 (∆O2)

2 ≥ |〈Ψ|δ̂O1δ̂O2|Ψ〉|2. (3.280)

Note that 〈Ψ|δ̂O1δ̂O2|Ψ〉 is a complex number and recall that 〈 f |g〉∗ = 〈g| f 〉. For
any complex number z = x+ iy, |z|2 = x2 + y2 ≥ y2 = [(z− z∗)/2i]2. Thus, we have

(∆O1)
2 (∆O2)

2 ≥
(

1
2i

[〈
Ψ

∣∣∣δ̂O1δ̂O2

∣∣∣Ψ〉−〈Ψ

∣∣∣δ̂O2δ̂O1

∣∣∣Ψ〉])2

=

(
1
2i

[〈
Ψ

∣∣∣[δ̂O1, δ̂O2

]∣∣∣Ψ〉])2

. (3.281)

Since [
δ̂O1, δ̂O2

]
=
[
Ô1−〈O1〉 , Ô2−〈O2〉

]
=
[
Ô1, Ô2

]
, (3.282)

we get

(∆O1)
2 (∆O2)

2 ≥
(〈

1
2i

[
Ô1, Ô2

]〉)2

, (3.283)

or

(∆O1)(∆O2)≥
∣∣∣∣〈 1

2i

[
Ô1, Ô2

]〉∣∣∣∣ . (3.284)

Note that for any two Hermitian operators Ô1 and Ô2,
([

Ô1, Ô2

]
/2i
)

is a Hermitian
operator.

If we now take O1 = x and O2 = px in (3.284), we get the Heisenberg uncertainty
relation

(∆x)(∆px)≥
h̄
2
. (3.285)

The free-particle eigenstate with specific momentum and energy eigenvalues, ~p and
E(~p) = |~p|2/2m, given in position representation by,

Ψ(~r, t) =
1

(2π h̄)3/2 e
i
h̄ (~p·~r−E(~p)t), (3.286)

has ∆px = ∆py = ∆pz = 0 and ∆x = ∆y = ∆z−→∞. Note that this free-particle wave
function represents a plane wave

Ψ(~r, t) =
1

(2π h̄)3/2 ei(~k·~r−ω(~k)t), (3.287)

with

h̄~k = ~p, h̄ω(~k) = E(~p) =
h̄2k2

2m
. (3.288)
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This takes us to the beginning of wave mechanics, or the early quantum mechanics,
when de Broglie associated this plane wave with a free particle. The wavelength of
this wave λ = 2π/|~k| = 2π h̄/|~p| = h/p is called the de Broglie wavelength of the
particle, and the frequency of the wave is ν = ω/2π in accordance with the relation
E = hν postulated by Planck for a harmonic oscillator in the context of blackbody
radiation, and adopted by Einstein and Bohr in their theories of light and atomic spec-
tra, respectively. History of quantum mechanics starts with Planck’s relation E = hν .
In case the motion of the particle is not nonrelativistic, the associated de Broglie wave
will have the same plane waveform (3.287) with h̄ω(~k) =

√
m2c4 + c2 p2 and will

obey a relativistic generalization of the nonrelativistic Schrödinger equation known
as the Klein–Gordon equation, which we shall study later. Association of a physical
wave with a particle was abandoned later when Born’s interpretation of |Ψ(~r, t)|2 as
the position probability density was established.

As an example of the Heisenberg uncertainty principle, let us consider the dynam-
ics of a free-particle wave packet in one dimension (x-direction). Let the particle be,
at t = 0, in the state

|Ψ(0)〉=
∫

∞

−∞

d px C (px,0) |φpx〉, (3.289)

where

C (px,0) =
(

2
π

)1/4√ (∆x)0

h̄
e−

(∆x)20(px−p0)
2

h̄2 , (3.290)

a Gaussian function such that∫
∞

−∞

d px |C (px,0) |2 = 1. (3.291)

To verify (3.291), use the well-known result on the Fourier transform of the Gaussian
function, (see e.g., Arfken, Weber, and Harris [3], and Byron and Fuller [18])

∫
∞

−∞

dχ e−aχ2+iχη =

√
π

a
e−

η2
4a , (3.292)

with the assumption that a has a positive real part and its square root
√

a is also
chosen to have a positive real part. In position representation, the wave function of
the particle is, with p̄ = px− p0,

Ψ(x,0) =
1√
2π h̄

(
2
π

)1/4√ (∆x)0

h̄

∫
∞

−∞

d px e−
(∆x)20(px−p0)

2

h̄2 + i
h̄ pxx

=

√
(∆x)0

2π h̄2

(
2
π

)1/4

e
i
h̄ p0x

∫
∞

−∞

d p̄ e−
(∆x)20 p̄2

h̄2 + i
h̄ p̄x

=
1(√

2π(∆x)0
)1/2 e

− x2

4(∆x)20
+ i

h̄ p0x
, (3.293)
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where we have used again (3.292). Using (3.268), the wave function of the wave
packet at t > 0 is found to be given by

Ψ(x, t) =
(

2
π

)1/4√ (∆x)0

h̄
1√
2π h̄

∫
∞

−∞

d px e−
(∆x)20(px−p0)

2

h̄2 e
i
h̄

(
pxx− p2

x
2m t
)

=

(
2
π

)1/4√ (∆x)0

h̄
1√
2π h̄

e
i
h̄

(
p0x−

p2
0

2m t
)

×
∫

∞

−∞

d p̄ e−
(∆x)20 p̄2

h̄2 e
i
h̄

[
− p̄2

2m t+p̄(x− p0
m t)

]

=

(
2
π

)1/4
√

(∆x)0

2π h̄2 e
i
h̄

(
p0x−

p2
0

2m t
)

×
∫

∞

−∞

d p̄ e
−

p̄2(∆x)20
h̄2

(
1+ ih̄t

2m(∆x)20

)
ei p̄

h̄ (x− p0
m t)

=
1(√

2π(∆x)0(1+ iδ )
)1/2 e

− x̄2

4(∆x)20(1+iδ )
+ i

h̄

(
p0x−

p2
0

2m t
)
, (3.294)

with
δ =

h̄t
2m(∆x)2

0
, x̄ = x− p0

m
t. (3.295)

The last step can be verified again using (3.292). Note that as t −→ 0, Ψ(x, t) −→
Ψ(x,0).

For the initial wave packet Ψ(x,0), the average value of x is given by

〈x〉(0) =
∫

∞

−∞

dx Ψ(x,0)∗xΨ(x,0) =
∫

∞

−∞

dx x|Ψ(x,0)|2

=
1√

2π(∆x)0

∫
∞

−∞

dx xe
− x2

2(∆x)20 = 0, (3.296)

where the integral vanishes since the integrand is an odd function of x. This result
shows that initially, at t = 0, the wave packet is centered at x = 0. The average of x2

for Ψ(x,0) is given by

〈x2〉(0) =
∫

∞

−∞

dx Ψ(x,0)∗x2
Ψ(x,0) =

∫
∞

−∞

dx x2|Ψ(x,0)|2

=
1√

2π(∆x)0

∫
∞

−∞

dx x2e
− x2

2(∆x)20 = (∆x)2
0, (3.297)

where we have used the integral∫
∞

−∞

dχ χ
2e−aχ2

=

√
π

4a3 , (3.298)
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which follows by differentiating the integral in (3.292), with η = 0, with respect to
a. Thus, the uncertainty in x for the wave packet Ψ(x,0) is

(∆x)(0) =
√
〈x2〉(0)−〈x〉(0)2 = (∆x)0. (3.299)

The average value of px for Ψ(x,0) is

〈px〉(0) =
∫

∞

−∞

dx Ψ
∗(x,0)p̂xΨ(x,0)

=
∫

∞

−∞

dx Ψ
∗(x,0)

(
−ih̄

∂

∂x
Ψ(x,0)

)
=

1√
2π(∆x)0

∫
∞

−∞

dx e
− x2

4(∆x)20
− i

h̄ p0x

×

[
−ih̄

∂

∂x

(
e
− x2

4(∆x)20
+ i

h̄ p0x
)]

=
1√

2π(∆x)0

∫
∞

−∞

dx
(

ih̄x
2(∆x)2

0
+ p0

)
e
− x2

2(∆x)20

= p0. (3.300)

Calculating the average of p2
x for Ψ(x,0), we get〈

p2
x
〉
(0) =

∫
∞

−∞

dx Ψ
∗(x,0)p̂2

xΨ(x,0)

=
∫

∞

−∞

dx Ψ
∗(x,0)

(
−h̄2 ∂ 2

∂x2 Ψ(x,0)
)

=
1√

2π(∆x)0

∫
∞

−∞

dx e
− x2

4(∆x)20
− i

h̄ p0x

×

[
−h̄2 ∂ 2

∂x2

(
e
− x2

4(∆x)20
+ i

h̄ p0x
)]

=
1√

2π(∆x)0

∫
∞

−∞

dx
[

h̄2

2(∆x)2
0
− h̄2x2

4(∆x)4
0
+

ih̄p0x
(∆x)2

0
+ p2

0

]
× e
− x2

2(∆x)20

= p2
0 +

h̄2

4(∆x)2
0
. (3.301)

Thus the uncertainty in px for the wave packet Ψ(x,0) is

(∆px)(0) =
√
〈p2

x〉(0)−〈px〉(0)2 =
h̄

2(∆x)0
. (3.302)
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This shows that for the initial wave packet Ψ(x,0), the uncertainty product is

(∆x∆px)(0) = (∆x)0
h̄

2(∆x)0
=

h̄
2
, (3.303)

i.e., Ψ(x,0) is a minimum uncertainty wave packet.
Calculating the average value of x for the wave packet Ψ(x, t), we find

〈x〉(t) =
∫

∞

−∞

dx Ψ(x, t)∗xΨ(x, t) =
∫

∞

−∞

dx x|Ψ(x, t)|2

=
1√

2π(∆x)t

∫
∞

−∞

dx̄
(

x̄+
p0

m
t
)

e
− x̄2

2(∆x)2t

=
p0

m
t, (3.304)

where

(∆x)t = (∆x)0

√
(1+δ 2). (3.305)

The result (3.304) shows that the center of the wave packet is moving with the veloc-
ity p0/m as if it corresponds to the position of a classical free particle of mass m mov-
ing with momentum p0. This is Ehrenfest’s theorem. The average of x2 for Ψ(x, t) is

〈x2〉(t) =
∫

∞

−∞

dx Ψ(x, t)∗x2
Ψ(x, t) =

∫
∞

−∞

dx x2|Ψ(x, t)|2

=
1√

2π(∆x)t

∫
∞

−∞

dx̄
(

x̄+
p0

m
t
)2

e
− x̄2

2(∆x)2t

=
1√

2π(∆x)t

∫
∞

−∞

dx̄
[

x̄2 +
( p0

m
t
)2

+
2p0x̄

m
t
]

e
− x̄2

2(∆x)2t

= (∆x)2
t +
( p0

m
t
)2

. (3.306)

Thus, the uncertainty in x for Ψ(x, t) is

(∆x)(t) =
√
〈x2〉(t)−〈x〉(t)2 = (∆x)t

= (∆x)(0)

[
1+
(

h̄t
2m(∆x)(0)2

)2
]1/2

, (3.307)

showing that the wave packet is spreading or dissipating. This spreading of the free-
particle wave packet implies that we cannot think of the de Broglie waves as real
physical waves as we don’t observe any such dissipation of a free particle.
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The average of px for Ψ(x, t) is given by

〈px〉(t) =
∫

∞

−∞

dx Ψ
∗(x, t)p̂xΨ(x, t)

=
∫

∞

−∞

dx Ψ
∗(x, t)

(
−ih̄

∂

∂x
Ψ(x, t)

)

=
1√

2π(∆x)t

∫
∞

−∞

dx e
− x̄2

4(∆x)20(1−iδ )
− i

h̄

(
p0x−

p2
0

2m t
)

×

−ih̄
∂

∂x

e
− x̄2

4(∆x)20(1+iδ )
+ i

h̄

(
p0x−

p2
0

2m t
)

=
1√

2π(∆x)t

∫
∞

−∞

dx̄
[

p0 +
ih̄x̄

2(∆x)2
0(1+ iδ )

]
e
− x̄2

2(∆x)2t

= p0, (3.308)

as should be, since the momentum is conserved for a free particle. This is also in
accordance with Ehrenfest’s theorem. Similarly, we can find the average of p2

x for
Ψ(x, t):

〈
p2

x
〉
(t) =

∫
∞

−∞

dx Ψ
∗(x, t)p̂2

xΨ(x, t)

=
∫

∞

−∞

dx Ψ
∗(x, t)

(
−h̄2 ∂ 2

∂x2 Ψ(x, t)
)

=
1√

2π(∆x)t

∫
∞

−∞

dx e
− x̄2

4(∆x)20(1−iδ )
− i

h̄

(
p0x−

p2
0

2m t
)

×

−h̄2 ∂ 2

∂x2

e
− x̄2

4(∆x)20(1+iδ )
+ i

h̄

(
p0x−

p2
0

2m t
)

=
1√

2π(∆x)t

∫
∞

−∞

dx̄
[

p2
0 +

1
(∆x)2

0(1+ iδ )

(
h̄2

2
+ ih̄p0x̄

− h̄2x̄2

4(∆x)2
0(1+ iδ )

)]
e
− x̄2

2(∆x)2t

= p2
0 +

h̄2

4(∆x)2
0
, (3.309)

same as for the initial wave packet Ψ(x,0). This is again due to conservation of
momentum for the free particle. Thus, for Ψ(x, t) the uncertainty in px is

(∆px)(t) =
√
〈p2

x〉(t)−〈px〉(t)2 =
h̄

2(∆x)0
, (3.310)
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same as for the initial wave packet Ψ(x,0). The uncertainty product for Ψ(x, t) is

(∆x∆px)(t) = (∆x)(0)

[
1+
(

h̄t
2m(∆x)(0)2

)2
]1/2

h̄
2(∆x)(0)

=
h̄
2

[
1+
(

h̄t
2m(∆x)(0)2

)2
]1/2

>
h̄
2
, for t > 0, (3.311)

showing that as the minimum uncertainty free-particle wave packet evolves in time,
it does not remain a minimum uncertainty wave packet. The uncertainty principle
implies that we cannot assign definite values for both the position and the momentum
of particle at any time. Thus, the concept of trajectory loses its meaning since we can
only specify the probability of finding the particle at any position at any time.

Let us now look at the propagator for a free particle. From (3.178), we have

Kfree (~r, t;~ri, ti) = ∑
n

e−
i
h̄ (t−ti)En〈~r|n〉〈n|~ri〉

=
∫

d3 p e−
ip2(t−ti)

2mh̄ φ~p(~r)φ
∗
~p(~ri)

=
1

(2π h̄)3

∫
d3 p e

i
h̄

[
~p·(~r−~ri)−

p2(t−ti)
2m

]
. (3.312)

The integral in the last step can be performed exactly using the integral in (3.292).
The result is

Kfree (~r, t;~ri, ti) =
[

m
2πih̄(t− ti)

]3/2

e
im|~r−~ri|2
2h̄(t−ti) . (3.313)

As an example, let us find Ψ(x, t) when Ψ(x,0) is the free-particle minimum uncer-
tainty wave packet (3.293):

Ψ(x, t) =
∫

∞

−∞

dx′ Kfree
(
x, t;x′,0

)
Ψ
(
x′,0

)
=

(
m

(2π)3/2ih̄t(∆x)0

)1/2 ∫ ∞

−∞

dx′ e
im(x−x′)2

2h̄t e
− x′2

4(∆x)20
+ i

h̄ p0x′

=

(
m

(2π)3/2ih̄t(∆x)0

)1/2

e
im
2h̄t x2

∫
∞

−∞

dx′ e
−
(

1
4(∆x)20

− im
2h̄t

)
x′2− im

h̄t

(
x− p0t

m

)
x′

=
1(√

2π(∆x)0

(
1+ ih̄t

2m(∆x)2
0

))1/2 e

− (x− p0
m t)

2

4(∆x)20

(
1+ ih̄t

2m(∆x)20

)+ i
h̄

(
p0x−

p2
0

2m t
)
, (3.314)
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where, in the last step, we have to use the integral (3.292) and some algebraic manip-
ulations. Thus, using the propagator, we have arrived at the same result for Ψ(x, t) as
in (3.294) starting with Ψ(x,0).

3.3.1.2 Linear Harmonic Oscillator
Before considering the quantum mechanics of a nonrelativistic linear harmonic oscil-
lator, let us recall its classical mechanics. Consider a particle of mass m moving along
the x-axis under the influence of a restoring force F(x) =−κx, where κ is the spring
constant. The classical Hamiltonian of the particle is

H =
p2

2m
+

1
2

κx2, (3.315)

where p2/2m is the kinetic energy and V (x) = κx2/2 is the potential energy of the
particle at the position x. Since the particle is moving only along the x-direction, we
have denoted px simply by p. Hamilton’s equations of motion are

dx
dt

=:−H : x =
{
−
(

p2

2m
+

1
2

κx2
)

, x
}

=

{
− p2

2m
, x
}
=

p
m
,

d p
dt

=:−H : p =

{
−
(

p2

2m
+

1
2

κx2
)

, p
}

=

{
−1

2
κx2 , p

}
=−κx. (3.316)

Defining κ = mω2, we can rewrite these equations as

d
dt

(
x
p

mω

)
= ω

(
0 1
−1 0

)(
x
p

mω

)
. (3.317)

This equation can be readily integrated to give the classical phase space transfer map

(
x(t)
p(t)
mω

)
= e

ωt

(
0 1
−1 0

)(
x(0)
p(0)
mω

)
=

(
cosωt sinωt
−sinωt cosωt

)(
x(0)
p(0)
mω

)
, (3.318)

where (x(0), p(0)) and (x(t), p(t)) are the values of x and p at times 0 and t, respec-
tively.

Since the Hamiltonian is time-independent, the energy of the oscillator is a con-
stant of motion, say E. When the particle is at the extreme position of oscillation
x = A, the amplitude of motion, its energy is completely potential energy, and the
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kinetic energy is zero since p = 0. Thus, E = mω2A2/2. When the particle is at any
other position x, between 0 and A, its energy will be distributed between the kinetic
and potential energies such that

p2

2m
+

1
2

mω
2x2 =

1
2

mω
2A2. (3.319)

Dividing both sides of this equation by mω2/2, we get( p
mω

)2
+ x2 = A2, (3.320)

a relation to be satisfied at any position of the particle. Thus, at any position, we
can write x = Acosϕ , and p/mω = ±Asinϕ depending on whether the particle is
moving in the +x-direction or −x-direction. Let us now choose the initial conditions
at t = 0 as x(0) = Acosϕ , with 0 ≤ ϕ ≤ π/2, and p(0)/mω = Asinϕ , without loss
of generality. Then, we get

x(t) = Acos(ωt−ϕ), p(t) =−mωAsin(ωt−ϕ), (3.321)

as the general solution for the position and momentum of the oscillating particle.
Note that p(t) = mẋ(t). The constant ϕ is the initial phase of the oscillator, fixed by
the initial conditions at t = 0, and the circular frequency ω gives the frequency with
which the phase changes, i.e., ωT = 2π , where T is the period of the oscillator such
that x(t +T ) = x(t), p(t +T ) = p(t). The energy of the oscillator is, at any time,

H(t) =
p(t)2

2m
+

1
2

mω
2x(t)2 =

1
2

mω
2A2, (3.322)

constant, equal to the potential energy of the particle at its extreme positions, or the
turning points, where the kinetic energy vanishes. Let us observe that we can write
H(t) in a factorized form as

H(t) =
(

mωx(t)+ ip(t)√
2m

)(
mωx(t)− ip(t)√

2m

)
= a(t)a∗(t). (3.323)

Substituting the solutions for x(t) and p(t), we have

a(t) =
√

m
2

ωAe−i(ωt−ϕ) = a(0)e−iωt ,

a∗(t) =
√

m
2

ωAei(ωt−ϕ) = a∗(0)eiωt , (3.324)

such that the relation (3.323) is consistent with (3.322). Since the amplitude of oscil-
lation A can take continuous values, we see that the energy of the classical harmonic
oscillator can vary continuously. Any oscillatory motion is approximately a linear
harmonic motion as long as the amplitude is small and that is what makes the linear
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harmonic oscillator a basic paradigm for understanding a wide variety of physical
phenomena.

Let us now look at the quantum mechanics of the linear harmonic oscillator. The
quantum Hamiltonian of the nonrelativistic linear harmonic oscillator of mass m and
circular frequency ω along the x-axis is given by

Ĥ =
p̂2

2m
+

1
2

mω
2x2. (3.325)

Let us work in the position representation. Then, the Schrödinger equation for Ψ(x, t)
reads

ih̄
∂Ψ

∂ t
=

(
− h̄2

2m
∂ 2

∂x2 +
1
2

mω
2x2
)

Ψ. (3.326)

This partial differential equation can be solved by the method of separation of vari-
ables. To this end, let Ψ(x, t) = T (t)ψ(x). This turns (3.326) into

ih̄
T

dT
dt

=
1
ψ

(
− h̄2

2m
d2

dx2 +
1
2

mω
2x2
)

ψ. (3.327)

Since the left-hand side of this equation is a function of only t and the right-hand
side is a function of only x, both sides should be equal to some constant, say E.
Thus, we get

ih̄
dT
dt

= ET, (3.328)(
− h̄2

2m
d2

dx2 +
1
2

mω
2x2
)

ψ = Eψ. (3.329)

The first equation is solved immediately: T (t) = e−iEt/h̄. The second equation is the
eigenvalue equation for the Hamiltonian of the oscillator. Hence, we identify the
constant E with the energy eigenvalue. The equation (3.329) is called the time-
independent Schrödinger equation for the harmonic oscillator. In general, the eigen-
value equation for the Hamiltonian is known as the time-independent Schrödinger
equation of the system. Let {En} be the set of all eigenvalues and let {ψn(x)} be
the respective eigenfunctions allowed by (3.329). In this case, we will find that the
eigenvalues are discrete, nondegenerate, and can be labeled as n = 0,1,2, . . . ,. Since
the Hamiltonian operator is Hermitian, these eigenvalues will be real, and the corre-
sponding eigenfunctions will form a complete orthonormal set. Note that the Hamil-
tonian of any nonrelativistic system, of the type p̂2/2m+V (~̂r, t), will be Hermitian.
Thus, the particular solutions of (3.326) are given by

Ψn(x, t) = e−
i
h̄ Ent

ψn(x), n = 0,1,2, . . . . (3.330)

These wave functions correspond to stationary states in which the position probabil-
ity density, |Ψn(x, t)|2, is independent of time since the time dependence cancels out.
Similarly, the mean value of any time-independent observable 〈O〉Ψn(t) is also seen to
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be time independent. The general solution of the time-dependent Schrödinger equa-
tion (3.326), Ψ(x, t), is any linear combination of the particular solutions, subject to
the only condition of normalization 〈Ψ(t)|Ψ(t)〉= 1. Thus, the general solution is

Ψ(x, t) = ∑
n

CnΨn(x, t), with ∑
n
|Cn|2 = 1. (3.331)

Let us now look at the solutions ψn(x) of the time-independent Schrödinger equation
(3.329), the eigenvalue equation for the time-independent Hamiltonian of the system.
To this end, we have to solve the differential equation(

− h̄2

2m
d2

dx2 +
1
2

mω
2x2
)

ψ(x) = Eψ(x). (3.332)

Now, introducing the dimensionless variable ξ =
√

mω/h̄ x, this equation becomes(
− d2

dξ 2 +ξ
2
)

ψ(ξ ) = Kψ(ξ ), (3.333)

where K = 2E/h̄ω is the energy in units of h̄ω/2. Normalizable solutions for ψ(x)
exist only when K = 2n+ 1, with n = 0,1,2, . . . ,. Thus, the quantized energy spec-
trum of the oscillator consists of eigenvalues

En =

(
n+

1
2

)
h̄ω, n = 0,1,2, . . . . (3.334)

All these energy eigenvalues are nondegenerate. Note that except for the addition of
the extra energy hν/2 to each energy level, and the zero-point energy E0 = hν/2, the
formula for the energy spectrum of the harmonic oscillator (3.334) coincides exactly
with the postulate of Planck that the energy of oscillators in a black body is quantized
as E = nhν , with n = 1,2,3, . . .. The origin of quantum mechanics in 1900 lies in this
postulate of Planck. When the oscillator makes a transition, or jumps down, from the
(n+ 1)-th energy level to the n-th energy level, it emits a quantum of energy hν

(photon) and by absorbing a quantum of energy hν it can move, or jump up, from a
lower energy level to the next higher energy level.

The normalized eigenfunctions, corresponding to the energy eigenvalues En,
orthogonal to each other, are

ψn(x) =
(mω

π h̄

)1/4 1√
2nn!

Hn(ξ )e−
1
2 ξ 2

, n = 0,1,2, . . . , (3.335)

where Hn(ξ ) are called the Hermite polynomials given by the Rodrigues formula
(for details, see, e.g., Arfken, Weber, and Harris [3], and Byron and Fuller [18], and
Lakshminarayanan and Varadharajan [126]):

Hn(ξ ) = (−1)neξ 2
(

d
dξ

)n

e−ξ 2
. (3.336)
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The first few Hermite polynomials are

H0(ξ ) = 1, H1(ξ ) = 2ξ , H2(ξ ) = 4ξ
2−2, H3(ξ ) = 8ξ

3−12ξ . (3.337)

The time-dependent energy eigenstates, the stationary states, are given by

Ψn(x, t) = e−
i
h̄ Ent

ψn(x) = e−i(n+ 1
2 )ωt

ψn(x). (3.338)

The general solution (3.331) for the time-dependent Schrödinger equation (3.326)
can now be written explicitly as

Ψ(x, t) = ∑
n

Cne−i(n+ 1
2 )ωt

ψn(x)

= e−
i
h̄ tĤ

∑
n

Cnψn(x) = e−
i
h̄ tĤ

Ψ(x,0), (3.339)

where ∑n |Cn|2 = 1. The lowest eigenstate, the ground state (n = 0), corresponding
to energy E0 = h̄ω/2, has the wave function

Ψ0(x, t) =
(mω

π h̄

)1/4
e−

1
2 (

mω

h̄ x2+iωt). (3.340)

The nonclassical nature of the quantum oscillator, besides the quantization of energy,
is evident now. If we think classically, for the oscillator in its ground state with energy
E0 = h̄ω/2, the amplitude of oscillation would be A=

√
2E0/mω2 =

√
h̄/mω . Clas-

sically, for the oscillating particle, x = ±A are the turning points beyond which the
particle cannot go. But, for the quantum oscillator in the ground state, we have

|Ψ0(x, t)|2 =
(mω

π h̄

)1/2
e−

mω

h̄ x2
, (3.341)

a Gaussian function, showing that there is a definite probability for the particle to
be found beyond the classical turning points, in principle up to x = ±∞. Higher
(n > 0), excited, states of the oscillator also have this property. Further, it is seen that
the wave function of n-th excited level, with energy En =

(
n+ 1

2

)
h̄ω , vanishes at n

points, called nodes, where the probability of finding the particle is zero! We have
found that all the wave functions of the linear harmonic oscillator corresponding to
discrete energy eigenvalues are normalizable in the sense

∫
dx |Ψ(x, t)|2 = 1 and

Ψ(x, t) −→ 0 as x −→ ±∞. Such states are known as bound states. Note that free-
particle eigenstates are not bound states.

There is an alternative way of finding the energy spectrum and the corresponding
eigenstates of the harmonic oscillator, the algebraic method, similar to the case of
angular momentum we have already seen. To this end, let us define the quantum
operators corresponding to the complex classical dynamical variables a and a∗ in
(3.323) as follows:

â =
mωx+ ip̂√

2mh̄ω
, â† =

mωx− ip̂√
2mh̄ω

. (3.342)
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Since â and â† correspond to the classical complex a and a∗, they are not Hermitian
operators. Note that â and â† are dimensionless, â†â is Hermitian, and in terms of
them the Hamiltonian Ĥ becomes

Ĥ =

(
â†â+

1
2

)
h̄ω, (3.343)

as can be verified directly. Further, we have the following commutation relations:[
â , â†]= 1, (3.344)

and [
â†â , â†]= â†,

[
â†â , â

]
=−â. (3.345)

An operator for which the expectation value in any state is nonnegative is called a
positive operator. Now, â†â is seen to be a positive operator because

〈ϕ|â†â|ϕ〉= 〈âϕ|âϕ〉 ≥ 0, (3.346)

and
〈ϕ|â†â|ϕ〉= 0 implies â|ϕ〉= 0. (3.347)

Let P̂ be a positive operator and |ϕλ 〉 be its normalized eigenvector corresponding
to an eigenvalue λ . Then, we have 〈ϕλ |P̂|ϕλ 〉= λ ≥ 0. Thus, all the eigenvalues of
any positive operator are ≥ 0. Now, from (3.343), it follows that the eigenvalues of
Ĥ should be ≥ h̄ω/2 since the lowest eigenvalue of the positive operator â†â should
be ≥ 0. From (3.343) and (3.345), it follows that

Ĥâ† = â†(Ĥ + h̄ω), Ĥâ = â(Ĥ− h̄ω). (3.348)

These relations imply that if |n〉 is an eigenstate of Ĥ with the eigenvalue En, i.e.,
Ĥ|n〉= En|n〉, then

Ĥ
(
â†|n〉

)
= (En + h̄ω)

(
â†|n〉

)
, Ĥ (â|n〉) = (En− h̄ω)(â|n〉) . (3.349)

For this reason â† and â, called the raising and lowering operators, respectively, are
known as the ladder operators. Since the eigenvalue of Ĥ cannot become negative,
the action of the lowering operator must stop at some stage. Let |0〉 be the ground
state corresponding to this lowest eigenvalue E0, such that

â|0〉= 0. (3.350)

If â|0〉 were nonzero, then it has to be an eigenstate with the eigenvalue E0− h̄ω

contradicting the assumption that E0 is the lowest eigenvalue. Then, it is obvious
that E0 = h̄ω/2 since

Ĥ|0〉= h̄ω

(
â†â+

1
2

)
|0〉= h̄

2
ω|0〉. (3.351)
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Now, applying the raising operator repeatedly on the ground state, we get the com-
plete spectrum and the eigenstates of Ĥ. Thus, we have

Ĥ|n〉=
(

n+
1
2

)
h̄ω|n〉, |n〉= Nn

(
â†)n |0〉, n = 0,1,2, . . . , (3.352)

where Nn is the normalization constant that can be found by assuming that the ground
state is normalized, i.e., 〈0|0〉 = 1. The normalization constant Nn can be found as
follows. First, let us observe that

â†â|n〉=

(
Ĥ
h̄ω
− 1

2

)
|n〉= n|n〉, n = 0,1,2, . . . . (3.353)

Thus, the spectrum of â†â consists of all integers ≥ 0. Hence, â†â, denoted by N̂, is
called the number operator. Let |n〉 be the normalized eigenvector of Ĥ, or â†â. The
normalized eigenvector |n+1〉 can be written as

|n+1〉= Nn+1
(
â†)n+1 |0〉= Nn+1â† (â†)n |0〉= Nn+1

Nn
â†|n〉. (3.354)

Now, with 〈n|â†â|n〉= n, the normalization condition for |n+1〉 becomes

〈n+1|n+1〉=
(

Nn+1

Nn

)2

〈n|â â†|n〉

=

(
Nn+1

Nn

)2

〈n|
(
1+ â†â

)
|n〉

=

(
Nn+1

Nn

)2

(n+1) = 1, (3.355)

where we have used the relation â â† = 1+ â†â, following from the commutation
relation (3.344). This implies that Nn+1 = Nn/

√
n+1. By definition N0 = 1. Hence,

we get

Nn =
1√
n!
, n = 0,1,2, . . . . (3.356)

Thus, the normalized eigenstates of Ĥ can be written as

|n〉= 1√
n!

(
â†)n |0〉, with â|0〉= 0. (3.357)
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Since Ĥ is Hermitian, its eigenvectors {|n〉} are orthogonal. In the orthonormal basis
{|n〉} we find, from (3.357),

â†|n〉= 1√
n!

(
â†)n+1 |0〉

=
√

n+1

[
1√

(n+1)!

(
â†)n+1 |0〉

]
=
√

n+1 |n+1〉. (3.358)

Similarly,

â|n〉= â
[

1√
n!

(
â†)n |0〉

]
=

â â†
√

n

[
1√

(n−1)!

(
â†)n−1 |0〉

]

=

(
1+ â†â

)
√

n
|n−1〉=

√
n |n−1〉, (3.359)

where we have used the relation â†â|n− 1〉 = (n− 1)|n− 1〉. The eigenfunctions
of Ĥ, namely ψn(x) = 〈x|n〉, can be obtained from the above formalism as follows.
In the position representation, the defining equation for the ground state, â|0〉 = 0,
becomes the simple equation(

mωx+ h̄
d
dx

)
ψ0(x) = 0, (3.360)

with the solution
ψ0(x) = N0e−

mω

2h̄ x2
, (3.361)

where N0 is the normalization constant such that∫
dx |ψ0(x)|2 = N 2

0

∫
dx e−

mω

h̄ x2
= N 2

0

√
π h̄
mω

= 1, (3.362)

using the result on the Gaussian integral we have already seen (3.292). Thus, N0 =

(mω/π h̄)1/4 and the ground state eigenfunction of Ĥ is

ψ0(x) =
(mω

π h̄

)1/4
e−

mω

2h̄ x2
. (3.363)

The excited state eigenfunctions can be obtained from (3.357), which becomes in
position representation

ψn(x) =
1√
n!

(√
mω

2h̄
x−
√

h̄
2mω

d
dx

)n

ψ0(x). (3.364)
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Using the dimensionless variable ξ = (
√

mω/h̄)x, we have

ψn(x) =
(mω

π h̄

)1/4 1√
2nn!

(
ξ − d

dξ

)n

e−
1
2 ξ 2

. (3.365)

Using the identity (
ξ − d

dξ

)n

e−
1
2 ξ 2

= (−1)ne
1
2 ξ 2
(

d
dξ

)n

e−ξ 2
, (3.366)

easily proved by induction, we can rewrite

ψn(x) =
(mω

π h̄

)1/4 1√
2nn!

e−
1
2 ξ 2

Hn(ξ ), (3.367)

where

Hn(ξ ) = (−1)neξ 2
(

d
dξ

)n

e−ξ 2
. (3.368)

Thus, we have reconstructed the earlier result (3.335).
The existence of a nonzero ground state energy, so-called zero-point energy, can

be understood intuitively in terms of the uncertainty principle. As seen in (3.363),
the ground state wave function is a Gaussian with a finite width. It is not localized
means that the position of the oscillating particle is fluctuating around the equilib-
rium even in the ground state unlike the classical oscillator which will be at rest in
the equilibrium position in the ground state. As a consequence of this uncertainty in
position, say ∆x, there will be a finite uncertainty in the momentum of the particle,
∼ h̄/∆x, as dictated by the Heisenberg uncertainty principle. This intrinsic ground
state motion implies the existence of a minimum energy.

Let us make a precise calculation of the uncertainty product ∆x∆p for the har-
monic oscillator eigenstates. From the definitions of â and â† in (3.342), we have

x =

√
h̄

2mω

(
â† + â

)
, p̂ = i

√
mh̄ω

2
(
â†− â

)
. (3.369)

Calculating the averages of x and p in the n-th eigenstate, we get

〈x〉n = 〈n|x|n〉=
√

h̄
2mω

〈
n
∣∣(â† + â

)∣∣n〉= 0,

〈p〉n = 〈n|p̂|n〉= i

√
mh̄ω

2
〈
n
∣∣(â†− â

)∣∣n〉= 0, (3.370)

where we have used the relations (3.358) and (3.359) and the orthogonality of the
eigenstates {|n〉}. Averages of x2 and p2 can be calculated as follows:

〈x2〉n = 〈n|x2|n〉

=
h̄

2mω

〈
n
∣∣∣(â† + â

)2
∣∣∣n〉
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=
h̄

2mω

〈
n
∣∣∣[(â†)2

+ â2 + â†â+ â â†
]∣∣∣n〉

=
h̄

2mω

〈
n
∣∣(â†â+ â â†)∣∣n〉

=
h̄

mω

(
n+

1
2

)
, (3.371)

〈p2〉n = 〈n|p̂2|n〉

=
mh̄ω

2

〈
n
∣∣∣[−(â†− â

)2
]∣∣∣n〉

=
mh̄ω

2

〈
n
∣∣∣[−(â†)2− â2 + â†â+ â â†

]∣∣∣n〉
=

mh̄ω

2
〈
n
∣∣(â†â+ â â†)∣∣n〉

= mh̄ω

(
n+

1
2

)
, (3.372)

where we have used the relations (3.358) and (3.359) and the orthonormality of the
eigenstates {|n〉}. From (3.276), we find that the uncertainties in x and p in the n-th
eigenstate are given by

(∆x)n =
√
〈x2〉n−〈x〉2n =

√
〈x2〉n =

√
h̄

mω

(
n+

1
2

)

(∆p)n =
√
〈p2〉n−〈p〉2n =

√
〈p2〉n =

√
mh̄ω

(
n+

1
2

)
. (3.373)

Now, for the n-th eigenstate |n〉, the uncertainty product ∆x∆p becomes

(∆x)n (∆p)n =

(
n+

1
2

)
h̄. (3.374)

For the ground state |0〉

(∆x)0 (∆p)0 =
h̄
2
. (3.375)

Thus, the ground state is a minimum uncertainty state. It should be noted that, unlike
in the case of a minimum uncertainty free-particle wave packet, the ground state
of the harmonic oscillator is a minimum uncertainty state at any time since it is a
stationary state and hence ∆x and ∆p do not depend on time.

The propagator for the linear harmonic oscillator (lho), for t ≥ ti, is given by

Klho
(
x, t;x′, ti

)
=

∞

∑
n=0

e−
i
h̄ En(t−ti)ψn(x)ψ∗n (x

′)

=

√
mω

π h̄

∞

∑
n=0

1
2nn!

e−i(n+ 1
2 )ω(t−ti)Hn(ξ )Hn(ξ

′) e−
1
2

(
ξ 2+ξ ′2

)
,

(3.376)
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where ξ =
√

mω/h̄ x and ξ ′ =
√

mω/h̄ x′. Now, it is possible to sum the series
in the above expression exactly, using the Mehler formula (for a derivation of this
formula, see, e.g., Lakshminarayanan and Varadharajan [126]),

∞

∑
n=0

1
2nn!

Hn(z)Hn(z′)ζ ne−
1
2

(
z2+z′2

)
=

1√
1−ζ 2

e
−
(1+ζ 2)

(
z2+z′2

)
−4ζ zz′

2(1−ζ 2) , (3.377)

taking z = ξ , z′ = ξ ′, and ζ = e−iω(t−ti). Thus, we get

Klho
(
x, t;x′, ti

)
=

(
mω

2πih̄sinω (t− ti)

)1/2

e
imω

2h̄sinω(t−ti)

[(
x2+x′2

)
cosω(t−ti)−2xx′

]
.

(3.378)
When ω −→ 0, the linear harmonic oscillator becomes a free particle in one dimen-
sion. Note that when ω −→ 0, Klho (x, t;x′, ti)−→ Kfree (x, t;x′, ti) as should be.

3.3.1.3 Two-Dimensional Isotropic Harmonic Oscillator
A classical two-dimensional isotropic harmonic oscillator in the xy-plane has the
Hamiltonian

H (x,y, px, py) =
1

2m

(
p2

x + p2
y
)
+

1
2

mω
2 (x2 + y2) . (3.379)

Hamilton’s equations are given by

d
dt


x
px

mω

y
py

mω

= ω


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0




x
px

mω

y
py

mω

 , (3.380)

showing the independence of motions in the x- and y-directions. From the treatment
of the linear harmonic oscillator, we can write down the solution of (3.380) as

x(t) = Ax cos(ωt−ϕx) , px(t) =−Axmω sin(ωt−ϕx) ,

y(t) = Ay cos(ωt−ϕy) , py(t) =−Aymω sin(ωt−ϕy) , (3.381)

where Ax and Ay are the amplitudes of motion in the x- and y-directions, respec-
tively, and ϕx and ϕy are the corresponding initial phases. If there is no rela-
tive phase between the x and y motions initially, i.e., ϕx = ϕy, then at all times
y(t) = (Ay/Ax)x(t) and so the motion of the particle will be a straight line. If the ini-
tial phase difference ϕx−ϕy is ±π/2, then at all times (x(t)/Ax)

2 +(y(t)/Ay)
2 = 1,

and hence the trajectory of the particle will be an ellipse with its axes parallel to
the x and y axes; if Ax = Ay, the motion will be circular. In general, the particle will
have an elliptical orbit with the orientation of its axes depending on the initial phase
difference ϕx−ϕy.
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The two-dimensional isotropic quantum harmonic oscillator in the xy-plane has
the Hamiltonian

Ĥ =
1

2m

(
p̂2

x + p̂2
y
)
+

1
2

mω
2 (x2 + y2)

=− h̄2

2m

(
∂ 2

∂x2 +
∂ 2

∂y2

)
+

1
2

mω
2 (x2 + y2) . (3.382)

We can write this as
Ĥ = Ĥx + Ĥy, (3.383)

where

Ĥx =
p̂2

x

2m
+

1
2

mω
2x2, Ĥy =

p̂2
y

2m
+

1
2

mω
2y2. (3.384)

Note that Ĥx and Ĥy, Hamiltonians of linear oscillators along x and y axes, respec-
tively, commute with eath other. Hence, the complete set of orthonormal solutions of
the eigenvalue equation for Ĥ,

Ĥψ(x,y) = Eψ(x,y), (3.385)

the time-independent Schrödinger equation of the system, are given by

ψnxny(x,y) = ψnx(x)ψny(y), Enxny = (nx +ny +1) h̄ω, (3.386)

where

Ĥxψnx(x) =
(

nx +
1
2

)
h̄ω, Ĥyψny(y) =

(
ny +

1
2

)
h̄ω. (3.387)

Explicitly,

ψnxny(x,y) =
(

mω

π h̄2nx+nynx!ny!

)1/2

e−
mω

2h̄ (x2+y2)

×Hnx

(√
mω

h̄
x
)

Hny

(√
mω

h̄
y
)
. (3.388)

The energy eigenvalue Enxny is seen to be (nx +ny +1)-fold degenerate since nx +
ny = n can be partitioned into an ordered pair of nonnegative integers in (n+ 1)
ways.

One can define the lowering and raising operators

âx =
mωx+ ip̂x√

2mh̄ω
, â†

x =
mωx− ip̂x√

2mh̄ω

ây =
mωy+ ip̂y√

2mh̄ω
, â†

y =
mωy− ip̂y√

2mh̄ω
(3.389)
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which obey the commutation relations[
â j , â†

k

]
= δ jk, [â j , âk] = 0,

[
â†

j , â†
k

]
= 0, j,k = x,y. (3.390)

Then, the Hamiltonian can be written as

Ĥ =
(
â†

x âx + â†
y ây +1

)
h̄ω, (3.391)

so that the energy eigenvalues are given by (nx +ny +1) h̄ω . The corresponding
eigenstates can be written as

|nx,ny〉=
1√

nx!ny!

(
â†

x
)nx (â†

y
)ny |0,0〉, (3.392)

where the ground state is defined by

âx|0,0〉= 0, ây|0,0〉= 0. (3.393)

The Hamiltonian Ĥ is seen to have rotational symmetry, i.e., if the coordinates x
and y are replaced by xcosφ + ysinφ and −xsinφ + ycosφ , respectively, it remains
invariant. This suggests using plane polar coordinates for solving the differential
equation to get the eigenvalues and eigenfunctions of Ĥ. Changing from (x,y) to the
plane polar coordinates (r,φ), defined by x = r cosφ and y = r sinφ , we have

Ĥ =− h̄2

2m

[
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂φ 2

]
+

1
2

mω
2r2 (3.394)

and the time-independent Schrödinger equation (3.385) becomes{
− h̄2

2m

[
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂φ 2

]
+

1
2

mω
2r2
}

ψ(r,φ) = Eψ(r,φ). (3.395)

The complete set of orthonormal eigenfunctions of this equation are given by

ψnr ,mφ
(r,φ)∼ r|mφ |e−

mωr2
2h̄ L

|mφ |
nr

(
mωr2

h̄

)
eimφ φ ,

nr = 0,1,2, . . . , mφ = 0,±1,±2, . . . , (3.396)

apart from normalization factors, where

Lα
n (x) =

x−α ex

n!
dn

dxn

(
e−xxn+α

)
, (3.397)

is called an associated Laguerre polynomial (see, e.g., Arfken, Weber, and Harris [3],
Byron and Fuller [18], and Lakshminarayanan and Varadharajan [126]). The respec-
tive energy eigenvalues are

Enr ,mφ
=
(
2nr + |mφ |+1

)
h̄ω, (3.398)
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where nr is the radial quantum number and mφ is the two-dimensional angular
momentum quantum number, with mφ h̄ being the eigenvalue of L̂z = xp̂y− yp̂x =

−ih̄∂/∂φ corresponding to the eigenfunction eimφ φ . We can write Enr ,mφ
=(n+1)h̄ω

with n =
(
2nr + |mφ |

)
. It is seen that for a fixed value of n, there are n + 1

choices for the pair
(
nr,mφ

)
: e.g., n = 0 corresponds to

(
nr = 0,mφ = 0

)
, n = 1

corresponds to
(
nr = 0,mφ =±1

)
, n = 2 corresponds to

(
nr = 0,mφ =±2

)
and(

nr = 1,mφ = 0
)
, n = 3 corresponds to

(
nr = 0,mφ =±3

)
and

(
nr = 1,mφ =±1

)
,

n = 4 corresponds to
(
nr = 0,mφ =±4

)
,
(
nr = 1,mφ =±2

)
, and

(
nr = 2,mφ = 0

)
,

etc. Thus, the energy eigenvalues of the two-dimensional isotropic oscillator are
given by En = (n+ 1)h̄ω , with n = 0,1,2, . . ., and the eigenvalue En is (n+ 1)-fold
degenerate, as we already found earlier in the treatment using the Cartesian coor-

dinates. Note that the position probability distribution,
∣∣∣ψnr ,mφ

(r,φ)
∣∣∣2, has rotational

symmetry in the xy-plane with only r-dependence and no φ -dependence for any state
|nrmφ 〉. This is to be compared with the classical mechanics where the particle has,
in general, elliptical orbits.

3.3.1.4 Charged Particle in a Constant Magnetic Field
We have found that, according to classical mechanics, a charged particle moving in
a constant magnetic field has, in general, a helical trajectory with the direction of the
magnetic field as its axis and its conserved energy can take any nonzero value. Such
a helical trajectory is a superposition of free-particle motion along the axis of the
magnetic field and a circular motion in the plane perpendicular to the axis. Now, we
shall see how a charged particle moving in a constant magnetic field behaves when
it obeys quantum mechanics.

For a particle of mass m and charge q moving in an electromagnetic field with φ

and ~A as the scalar and vector potentials, the nonrelativistic Schrödinger equation is

ih̄
∂Ψ

∂ t
=

(
1

2m
~̂π

2
+qφ

)
Ψ (3.399)

related to the free-particle equation through the principle of minimal electromagnetic
coupling, i.e., ih̄∂/∂ t −→ (ih̄∂/∂ t)−qφ , ~̂p −→ ~̂π = ~̂p−q~A. For a charged particle
moving in a constant magnetic field ~B, there is no scalar potential, and the time-
independent vector potential can be taken in the symmetric gauge as ~A(~r) = 1

2
~B×

~r, which is such that ~∇ ·~A = 0. The corresponding time-independent Schrödinger
equation is

Ĥψ(~r) =
1

2m

(
~̂p−q~A

)2
ψ(~r)

=
1

2m

[
p̂2 +q2A2−q

(
~A ·~̂p+~̂p ·~A

)]
ψ(~r)

=

(
p̂2

2m
+

q2

2m
A2− q

m
~A ·~̂p

)
ψ(~r)
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=

(
p̂2

2m
+

q2

8m

[
B2r2− (~B ·~r)2

]
− q

2m
~B ·~̂L

)
ψ(~r)

= Eψ(~r), (3.400)

where L̂ =~r×~̂p is the angular momentum operator, and we have used the identity
(~A×~B)2 = A2B2− (~A ·~B)2, and the relation

(
~A ·~∇+~∇ ·~A

)
ψ(~r) = 2~A ·~∇ψ(~r) since

~∇ ·~A = 0. This shows that the Hamiltonian of the particle is

Ĥ =

(
p̂2

2m
+

q2

8m

[
B2r2− (~B ·~r)2

]
− q

2m
~B ·~̂L

)
, (3.401)

in which the third term represents the potential energy due to the interaction of the
orbital magnetic dipole moment, or simply called the orbital magnetic moment, of
the charged particle,

~̂µ =
q

2m
~̂L, (3.402)

with the magnetic field. Note that ~̂µ is the quantum operator corresponding to the
classical magnetic moment of a charged particle~µ =(q/2m)~L, where~L is the angular
momentum, and recall that a magnetic moment ~µ placed in a magnetic field ~B has
the interaction energy −~µ ·~B.

Let us now take the magnetic field to be in the z-direction: ~B = B~k. The corre-
sponding vector potential in the symmetric gauge is given by ~A = (−By/2,Bx/2,0).
Then, the Hamiltonian is

Ĥ =
1

2m

[(
p̂x +

1
2

qBy
)2

+

(
p̂y−

1
2

qBx
)2

+ p̂2
z

]

=
1

2m
p̂2

z +
1

2m

(
p̂2

x + p̂2
y
)
+

1
2

m
(

qB
2m

)2 (
x2 + y2)− qB

2m
L̂z, (3.403)

which, apart from the last magnetic interaction term, represents a free particle mov-
ing along the z-direction, the direction of the magnetic field, and a two-dimensional
isotropic harmonic oscillator in the perpendicular xy-plane with a frequency qB/2m.
Let us write

Ĥ = Ĥz + Ĥxy, (3.404)

with

Ĥz =
1

2m
p̂2

z ,

Ĥxy =
1

2m

(
p̂2

x + p̂2
y
)
+

1
2

mω
2
L
(
x2 + y2)−ωL (xp̂y− yp̂x) , (3.405)

where ωL = qB/2m, called the Larmor frequency, is half of the nonrelativis-
tic cyclotron frequency ωc. Since Ĥz and Ĥxy commute with each other, the
eigenfunctions of Ĥ can be chosen to be simultaneous eigenfunctions of Ĥz and
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Ĥxy, and the eigenvalues of Ĥ can be expressed as the sum of the eigenval-
ues of Ĥz and Ĥxy. The eigenvalues of Ĥz form a continuous spectrum given by{

p2
z/2m|−∞ < pz < ∞

}
corresponding to the free-particle eigenfunctions in the

z-direction
{

eipzz/h̄/
√

2π h̄|−∞ < pz < ∞
}

. The spectrum of Ĥxy can be found by
applying the algebraic method used earlier for the linear harmonic oscillator and the
two-dimensional isotropic oscillator. To this end, let us define

âx =
mωLx+ ip̂x√

2mh̄ωL
, â†

x =
mωLx− ip̂x√

2mh̄ωL

ây =
mωLy+ ip̂y√

2mh̄ωL
, â†

y =
mωLy− ip̂y√

2mh̄ωL
(3.406)

which obey the commutation relations[
â j , â†

k

]
= δ jk, [â j , âk] = 0,

[
â†

j , â†
k

]
= 0, j,k = x,y. (3.407)

In terms of these operators, we have

Ĥxy = h̄ωL
[
â†

x âx + â†
y ây +1+ i

(
â†

x ây− â†
y âx
)]
. (3.408)

Let us introduce the operators

Â =
1√
2
(âx + iây) , Â† =

1√
2

(
â†

x− iâ†
y
)
, (3.409)

which obey the commutation relation[
Â , Â†

]
= 1. (3.410)

Now, it is found that

Ĥxy = 2h̄ωL

(
Â†Â+

1
2

)
= h̄ωc

(
Â†Â+

1
2

)
, (3.411)

with ωc as the nonrelativistic cyclotron frequency. Then, the eigenvalues of Ĥxy are
seen to be {(n+(1/2))h̄ωc | n = 0,1,2, . . .}. Thus, the eigenvalues of Ĥ are

En,pz =

(
n+

1
2

)
h̄ωc +

p2
z

2m
, n = 0,1,2, . . . , −∞ < pz < ∞. (3.412)

The story of the spectrum of Ĥ is not over. Let us solve the equation

Âψ(x,y)∼ [mωL(x+ iy)+(ip̂x− p̂y)]ψ(x,y)

=

[
mωc

2h̄
(x+ iy)+

(
∂

∂x
+ i

∂

∂y

)]
ψ(x,y) = 0. (3.413)
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If we transform this equation to plane polar coordinates (r,φ), such that x = r cosφ

and y = r sinφ , we get

eiφ
[

mωc

2h̄
r+
(

∂

∂ r
+

i
r

∂

∂φ

)]
ψ(r,φ) = 0. (3.414)

Writing ψ(r,φ) = R(r)Φ(φ) leads to separate equations for R(r) and Φ(φ). Solving
these equations, we find that

ψ0,mφ
(r,φ) =

(
reiφ)mφ e−

mωc
4h̄ r2

, mφ = 0,1,2, . . . . (3.415)

The value of mφ is restricted to nonnegative integers since solution is to be single
valued for any φ and φ +2π and should be regular at the origin r = 0. Note that mφ h̄
is the eigenvalue of the angular momentum operator L̂z = (xp̂y− yp̂x) =−ih̄(∂/∂φ).
In terms of Cartesian coordinates these ground state wave functions are

ψ0,mφ
(x,y) = N (x+ iy)mφ e−

mωc
4h̄ (x2+y2), mφ = 0,1,2, . . . , (3.416)

where N is the normalization constant. It is seen that we have an infinity of degen-
erate ground states for Ĥxy all with the same energy E0,mφ

= h̄ωc/2 independent of
mφ , which labels the angular momentum state (for two-dimensional motion, there is
only one angular momentum (xp̂y− yp̂x)). The excited states of Ĥxy are obtained by
the repeated action of Â† on each of the ground states. We get

ψn,mφ
(x,y) =

1√
n!

(
Â†
)n

ψ0,mφ
(x,y), n = 0,1,2, . . . , mφ = 0,1,2, . . . . (3.417)

Thus, for a particle of charge q and mass m moving in a constant magnetic field
~B = B~k, the complete set of orthonormal eigenstates are given by

ψn,mφ ,pz(x,y,z) =
1√

2π h̄n!
e

i
h̄ pzz
(

Â†
)n

ψ0,mφ
(x,y),

ψ0,mφ
(x,y) = N (x+ iy)mφ e−

mωc
4h̄ (x2+y2),

n = 0,1,2, . . . , mφ = 0,1,2, . . . , −∞ < pz < ∞,

(3.418)

corresponding to the energy spectrum, called the Landau levels,

En,mφ ,pz =

(
n+

1
2

)
h̄ωc +

p2
z

2m
, (3.419)

where N is the normalization constant and ωc = qB/m is the nonrelativistic
cyclotron frequency. Each eigenvalue is infinitely degenerate, and each degener-
ate eigenstate has distinct angular momentum eigenvalue mφ h̄ on which the energy
eigenvalue does not depend.
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3.3.1.5 Scattering States
Let us now consider a particle of mass m moving along the x-axis in which it experi-
ences a potential well

V (x) =

 0 for −∞ < x <−L region I
−V for −L≤ x≤ L region II

0 for L < x < ∞ region III
(3.420)

where V is a positive constant. Since the corresponding Hamiltonian is time-
independent, let us look at the time-independent Schrödinger equation for the energy
eigenvalues of the system:

− h̄2

2m
d2ψ(x)

dx2 = Eψ(x), in region I(
− h̄2

2m
d2

dx2 −V
)

ψ(x) = Eψ(x), in region II

− h̄2

2m
d2ψ(x)

dx2 = Eψ(x), in region III (3.421)

First, let us take −V < E < 0. Classically, in region II, the particle will have positive
kinetic energy and will move as a free particle between the turning points x = −L
and x = L, and it cannot enter the regions I and III since it cannot have positive
kinetic energy in these regions. Let us look at the quantum mechanics in this case.
The physically acceptable solution of the Schrödinger equation (3.421) is

Region I : ψ(x) = ψI(x) = Aeκx, with h̄κ =
√

2m|E|,
Region II : ψ(x) = ψII(x) =Ceikx +De−ikx,

with h̄k =
√

2m(V −|E|),

Region III : ψ(x) = ψIII(x) = Ge−κx, with h̄κ =
√

2m|E|, (3.422)

where A, C, D, and G are constants, and positive values of the square roots are
taken. A solution Be−κx, with B as a constant, has been dropped for region I since
limx→−∞ e−κx −→ ∞, and similarly a solution Feκx, with F as a constant, has been
dropped for region III as physically unacceptable since limx→∞ eκx −→ ∞.

The constants A, C, D, and G have to be fixed using the normalization condi-
tion, and the boundary conditions on ψ(x) at x = −L and x = L where the potential
changes discontinuously. The first condition on ψ(x) is that it should be continuous
at the boundary. By this condition, we ensure that the position probability |ψ(x)|2
is continuous, as should be. The second condition on ψ(x) is that its first derivative
dψ/dx should be continuous at the boundary. The reason for this condition is as
follows. If we integrate the Schrödinger equation (3.421) from L−ε to L+ε , we get

− h̄2

2m

∫ L+ε

L−ε

dx
(

d2ψ(x)
dx2

)
=
∫ L+ε

L−ε

dx (E−V (x))ψ(x). (3.423)
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As ε −→ 0, the integral on the right is zero so that

lim
ε→0

(
dψ(x)

dx

∣∣∣∣
L+ε

− dψ(x)
dx

∣∣∣∣
L−ε

)
−→ 0, (3.424)

showing that dψ(x)/dx is continuous at the boundary x = L. Similarly, we have that
dψ(x)/dx is continuous at the boundary x =−L.

Before applying the above boundary conditions, let us rewrite the solution in
region II as

ψII(x) = C̄ sin(kx)+ D̄cos(kx) , (3.425)

with C̄ = i(C−D) and D̄ =C+D. Now, applying the boundary conditions, we have

Ae−κL =−C̄ sin(kL)+ D̄cos(kL) ,

Aκe−κL = k
[
C̄ cos(kL)+ D̄sin(kL)

]
,

Ge−κL = C̄ sin(kL)+ D̄cos(kL) ,

−Gκe−κL = k
[
C̄ cos(kL)− D̄sin(kL)

]
. (3.426)

Dividing the first equation by the second, on both sides, one gets an expression for
1/κ and dividing the third equation by the fourth, on both sides, one gets an expres-
sion for −1/κ . These two expressions are seen to be consistent only if either C̄ = 0
and D̄ 6= 0, or C̄ 6= 0 and D̄ = 0. For the solution corresponding to the first case, C̄ = 0
and D̄ 6= 0, we find that κ and k, which are functions of E, must satisfy a relation

κ = k tan(kL) . (3.427)

For the second case, C̄ 6= 0 and D̄ = 0, the corresponding relation is

κ =−k cot(kL) . (3.428)

By solving these relations for E, numerically or graphically, one gets the discrete
set of allowed energy eigenvalues for the case −V < E < 0. For a chosen energy
eigenvalue, the constants C̄, D̄, and G can be fixed in terms of A, using the relations
in (3.426). Then, the normalization of ψ(x), namely,∫

∞

−∞

dx |ψ(x)|2 =
∫ −L

−∞

dx |ψI(x)|
2 +

∫ L

−L
dx |ψII(x)|

2

+
∫

∞

L
dx |ψIII(x)|

2 = 1, (3.429)

fixes A, and the time-dependent wave function is given by Ψ(x, t) = ψ(x)e−iEt/h̄.
Note that classically the motion of the particle with energy in the range (−V,0) will
be within the two walls of the potential well, at x = −L and x = L, and any value
of energy varying continuously in the range from −V to 0 will be allowed. But,
the quantum mechanics of the particle allows its energy to be only an eigenvalue
from a discrete energy spectrum in the range (−V,0), and allows it to tunnel through
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the potential walls into the classically forbidden regions I and III, as seen from the
exponentially decaying parts of the solution ψ(x) in these regions.

Let us consider E > 0. Now, the solution of the Schrödinger equation (3.421) is

Region I : ψ(x) = ψI(x) = Aeiκx +Be−iκx, with h̄κ =
√

2mE,

Region II : ψ(x) = ψII(x) =Ceikx +De−ikx, with h̄k =
√

2m(E +V ),

Region III : ψ(x) = ψIII(x) = Feiκx, with h̄κ =
√

2mE, (3.430)

where A, B, C, D, and F , are constants. Here, in region I the time-dependent wave
function

(
Aeiκx +Be−iκx

)
e−iEt/h̄ is a linear combination of wave functions of the

incoming (from −∞) particle of momentum h̄κ in the +x-direction and the reflected
(from x =−L) particle of momentum h̄κ in the −x-direction. Similarly, in region II
the time-dependent wave function

(
Ceikx +De−ikx

)
e−iEt/h̄ is a linear combination of

wave functions of the incoming (from x =−L, or transmitted at x =−L) particle of
momentum h̄k and the reflected (from x = L) particle of momentum −h̄k. In region
III, the time-dependent wave function Fei[κx−(Et/h̄)] is the wave function of the out-
going, or the transmitted, particle (from x = L) of momentum h̄κ . Since the particle
is not expected to be reflected from +∞, there is no component of wave function
∼ e−i[κx+(Et/h̄)] in region III.

To fix the constants we have to apply the boundary conditions at x =−L and x = L
as earlier. Before that, let us rewrite the solution in region II as

ψII(x) = C̄ sin(kx)+ D̄cos(kx) . (3.431)

Then, the boundary conditions lead to the relations

Ae−iκL +BeiκL =−C̄ sin(kL)+ D̄cos(kL) ,

iκ
(
Ae−iκL−BeiκL)= k

[
C̄ cos(kL)+ D̄sin(kL)

]
,

FeiκL = C̄ sin(kL)+ D̄cos(kL) ,

iκFeiκkL = k
[
C̄ cos(kL)− D̄sin(kL)

]
. (3.432)

We are interested in solving for B and F in terms of A since A is the amplitude of
the incident wave, and B and F are the amplitudes of the reflected and transmitted
waves. To this end, we shall first solve for C and D in terms of F using the last pair
of equations and then substitute these values of C and D in the first pair of equations
to get B and F in terms of A. The algebra is straightforward, and the result is

B = i
sin(2kL)

2κk

(
k2−κ

2)F,

F =
e−2iκL

cos(2kL)− i (
κ2+k2)

2κk sin(2kL)
A. (3.433)

A particle obeying classical mechanics would pass through the potential well region
without any reflection at any point since, with E > 0, its kinetic energy is positive
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throughout. The above result implies that this is not so for a particle obeying quan-
tum mechanics. It can get reflected from the boundaries where the potential energy
changes abruptly.

This example presents a quantum system for which there are both discrete and
continuous energy eigenvalues. The discrete energy levels correspond to bound states
with normalizable wave functions that vanish at ±∞. The eigenstates belonging to
the continuous energy spectrum correspond to the particle incident on the potential
well from, say, −∞ and getting scattered (reflected/transmitted) to ∓∞. The eigen-
functions of these states are not normalizable and do not vanish at ±∞. Such states
are called scattering states.

Let us now consider a particle of mass m moving along the x-axis in which it
encounters a potential barrier

V (x) =

 0 for −∞ < x <−L region I
V > 0 for −L≤ x≤ L region II
0 for L < x < ∞ region III

(3.434)

Since the corresponding Hamiltonian is time-independent let us look at the time-
independent Schrödinger equation for the energy eigenvalues of the system:

− h̄2

2m
d2ψ(x)

dx2 = Eψ(x), in region I(
− h̄2

2m
d2

dx2 +V
)

ψ(x) = Eψ(x), in region II

− h̄2

2m
d2ψ(x)

dx2 = Eψ(x), in region III (3.435)

First, let us take E <V . Classically, the particle hitting the barrier from region I with
energy E ≤ V will be reflected back since it cannot enter region II without positive
kinetic energy. Let us look at the quantum mechanics of the particle. The solution for
the wave function in this case is

Region I : ψ(x) = ψI(x) = Aeikx +Be−ikx, with h̄k =
√

2mE,

Region II : ψ(x) = ψII(x) =Ceκx +De−κx, with h̄κ =
√

2m(V −E),

Region III : ψ(x) = ψIII(x) = Feikx, with h̄k =
√

2mE, (3.436)

where the constants A, B, C, D, and F are to be determined using the same boundary
conditions as earlier at the barrier walls at x =−L and x = L. The result for F is

F =
2kκe−2ika

2kκ cosh(2κa)− i(k2−κ2)sinh(2κa)
A. (3.437)

In this case, the presence of B, amplitude for reflection, is natural. The surpris-
ing aspect of quantum mechanics is the presence of F , amplitude for transmission
through the barrier. This quantum mechanical tunneling effect is the basic principle
of scanning tunneling microscopy (see e.g., Chen [21]).
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When E >V , the solution for the wave function is

Region I : ψ(x) = ψI(x) = Aeikx +Be−ikx, with h̄k =
√

2mE,

Region II : ψ(x) = ψII(x) =Ceiκx +De−iκx, with h̄κ =
√

2m(E−V ),

Region III : ψ(x) = ψIII(x) = Feikx, with h̄k =
√

2mE. (3.438)

Applying the boundary conditions at x =−L and x = L, we can determine the coef-
ficients A, B, C, D, and F . In this case, what is surprising is the presence of B and D
which represent the amplitudes for reflections from the boundaries x=−L and x= L.
Classically, the particle with E >V will go through the potential barrier region with
reduced momentum, but it will not be reflected from anywhere since it has positive
kinetic energy everywhere. The particle obeying quantum mechanics is seen to be
reflected from the boundaries of the potential barrier where the potential changes
abruptly.

3.3.1.6 Approximation Methods, Time-Dependent Systems, and the
Interaction Picture

There are very few quantum systems, like free particle, harmonic oscillator, and
hydrogen-like atoms, for which the Schrödinger equation can be solved exactly.
Therefore, approximation methods become necessary for many practical applica-
tions. For example, to study the one-dimensional anharmonic oscillator with the
Hamiltonian Ĥ =

(
p̂2/2m

)
+
(
kx2/2

)
+ εx4, where ε > 0 is a small parameter,

time-independent perturbation theory is used treating εx4 as a small perturbation
to the harmonic oscillator Hamiltonian. Time-independent perturbation theory is
a systematic procedure of getting approximate solutions to the perturbed prob-
lem in terms of the known exact solutions to the unperturbed problem. Variational
method can be used to obtain approximately the bound-state energies and wave func-
tions of a time-independent Hamiltonian. The Jeffreys–Wentzel–Kramers–Brillouin
(JWKB) approximation technique is useful in analyzing any one-dimensional time-
independent Schrödinger equation with a slowly varying potential. We will not be
concerned here with these time-independent perturbation theory techniques.

We shall now consider time-dependent systems. The time evolution of a system
with the time-dependent Hamiltonian Ĥ(t) is given by the Schrödinger equation

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ(t)|Ψ(t)〉. (3.439)

Equivalently, we can write, as seen already (3.154–3.163),

|Ψ(t)〉= Û (t, ti) |Ψ(ti)〉 , t ≥ ti, (3.440)

with ti as the initial time and the time-evolution operator Û (t, ti) satisfying the rela-
tions

ih̄
∂

∂ t
Û (t, ti) = Ĥ(t)Û (t, ti) , (3.441)
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Û (t, ti)
† Û (t, ti) = I, Û (ti, ti) = I. (3.442)

If the Hamiltonian is time-independent, we can integrate (3.441) exactly to write
Û (t, ti) = e−iĤ(t−ti)/h̄. But, when Ĥ(t) is time-dependent, this cannot be done. This
can be seen as follows. Let t − ti = N∆t, where N is a large number and ∆t is an
infinitesimally small time interval. We can assume that the Hamiltonian does not
change within the time interval ∆t. Then, we can write

|Ψ(t)〉= lim
N→∞

lim
∆t→0

{
e−

i
h̄ ∆tĤ(ti+N∆t)e−

i
h̄ ∆tĤ(ti+(N−1)∆t)e−

i
h̄ ∆tĤ(ti+(N−2)∆t) · · ·

· · · e−
i
h̄ ∆tĤ(ti+2∆t)e−

i
h̄ ∆tĤ(ti+∆t)

}
|Ψ(ti)〉. (3.443)

If Ĥ(t) is time-independent, then we have Ĥ (ti +N∆t) = Ĥ (ti +(N−1)∆t) =
Ĥ (ti +(N−2)∆t) = · · ·= Ĥ (ti +2∆t) = Ĥ (ti +∆t) = Ĥ and hence the above equa-
tion can be written as

|Ψ(t)〉= lim
∆t→0

e−
i
h̄ ∑∆tĤ |Ψ(ti)〉= e−

i
h̄
∫ t
ti

dtĤ |Ψ(ti)〉

= e−
i
h̄ Ĥ(t−ti)|Ψ(ti)〉= Û (t, ti) |Ψ(ti)〉. (3.444)

When the Hamiltonian is time-dependent, Ĥ(t)s at different times do not commute
with each other and the exponents cannot be added, as done earlier, in taking the
product of the exponentials since eÂeB̂ 6= eÂ+B̂ if ÂB̂ 6= B̂Â. The Baker–Campbell–
Hausdorff (BCH) formula for the product eÂeB̂, when ÂB̂ 6= B̂Â, is

eÂeB̂ = eÂ+B̂+ 1
2 [Â , B̂]+ 1

12 ([Â ,[Â , B̂]]+[[Â , B̂] , B̂])+···. (3.445)

For a proof of the BCH formula, and for more operator techniques useful in physics,
see, e.g., Bellman and Vasudevan [10], and Wilcox [188].

When the Hamiltonian is time-dependent, we can proceed as follows to find
Û (t, ti). From (3.441), we have

∫ t

ti
dt
(

∂

∂ t
Û (t, ti)

)
=− i

h̄

∫ t

ti
dt1Ĥ(t1)Û (t1, ti) , (3.446)

or

Û (t, ti)
∣∣∣t
ti
= Û (t, ti)− I =− i

h̄

∫ t

ti
dt1Ĥ(t1)Û (t1, ti) , (3.447)

leading to the formal solution

Û (t, ti) = I− i
h̄

∫ t

ti
dt1Ĥ(t1)Û (t1, ti) . (3.448)
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Iterating this formal solution, we get

Û (t, ti) = I− i
h̄

∫ t

ti
dt1Ĥ (t1)+

(
− i

h̄

)2 ∫ t

ti
dt2
∫ t2

ti
dt1Ĥ (t2) Ĥ (t1)

+

(
− i

h̄

)3 ∫ t

ti
dt3
∫ t3

ti
dt2
∫ t2

ti
dt1Ĥ (t3) Ĥ (t2) Ĥ (t1)

+ · · · ,

= I +
∞

∑
n=1

(
− i

h̄

)n ∫
· · ·
∫

t>tn>tn−1>···>t2>t1>ti

dtndtn−1 · · ·dt2dt1

× Ĥ (tn) Ĥ (tn−1) · · · Ĥ (t1) . (3.449)

This series expression can be written in a compact form, symbolically, by introducing
the time ordering operator:

T [A(t1)B(t2)] =
{

A(t1)B(t2) , if t1 > t2
B(t2)A(t1) , if t2 > t1

(3.450)

Now, note that

T

[(∫ t

ti
dt A(t)

)2
]
= T

[(∫ t

ti
dt2 A(t2)

)(∫ t

ti
dt1 A(t1)

)]
=
∫ t

ti
dt2
∫ t

ti
dt1 T [A(t2)A(t1)]

=
∫∫

t>t2>t1>ti

dt2dt1 A(t2)A(t1)

+
∫∫

t>t1>t2>ti

dt2dt1 A(t1)A(t2) . (3.451)

The t1←→ t2 symmetry between the two integrals on the right-hand side shows that
the two integrals must be equal. Hence, we have

∫∫
t>t2>t1>ti

dt2dt1 A(t2)A(t1) =
1
2
T

[(∫ t

ti
dt A(t)

)2
]
. (3.452)

Extending this argument leads easily to the result that∫
· · ·
∫

t>tn>tn−1>···>t2>t1>ti

dtndtn−1 · · ·dt2dt1 A(tn)A(tn−1) · · ·A(t1)

=
1
n!
T

[(∫ t

ti
dt A(t)

)n]
. (3.453)
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Thus, we can write (3.449) as

Û (t, ti) = I +
∞

∑
n=1

1
n!

(
− i

h̄

)n

T

[(∫ t

ti
dt Ĥ(t)

)n]

= T

[
∞

∑
n=0

1
n!

(
− i

h̄

)n(∫ t

ti
dt Ĥ(t)

)n
]

= T
(

e−
i
h̄
∫ t
ti

dt Ĥ(t)
)
, (3.454)

where the expression on the right-hand side is known as the Dyson time-ordered
exponential. It should be noted that the time-ordered exponential is not a true expo-
nential and is only a notation for the series that has to be computed by truncating it
up to any desired order.

An alternate expression for the time-evolution operator Û (t, ti) is the Magnus
formula (Magnus [130]):

Û (t, ti) = e−
i
h̄ T̂ (t,ti), (3.455)

where T̂ (t, ti) is an infinite series with the first few terms given by

T̂ (t, ti) =
∫ t

ti
dt1 Ĥ (t1)+

1
2

(
− i

h̄

)∫ t

ti
dt2
∫ t2

ti
dt1
[
Ĥ (t2) , Ĥ (t1)

]
+

1
6

(
− i

h̄

)2 ∫ t

ti
dt3
∫ t3

ti
dt2
∫ t2

ti
dt1

{[[
Ĥ (t3) , Ĥ (t2)

]
, Ĥ (t1)

]
+
[[

Ĥ (t1) , Ĥ (t2)
]
, Ĥ (t3)

]}
+ · · · . (3.456)

Note that T̂ (t, ti) is Hermitian such that Û (t, ti) is unitary. In the Magnus formula
(3.455 and 3.456), Û (t, ti) is a true exponential (see the Appendix at the end of this
chapter for derivation). The Magnus formula is completely equivalent to the Dyson
time-ordered exponential formula.

Let us now consider a system for which the Hamiltonian is time-dependent and
can be written as

Ĥ(t) = Ĥ0 + Ĥ ′(t), (3.457)

where Ĥ0 is the unperturbed Hamiltonian and Ĥ ′(t) is a time-dependent perturbation
Hamiltonian. Usually Ĥ0 is chosen to be time-independent. With

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ(t)|Ψ(t)〉, (3.458)

define ∣∣Ψi(t)
〉
= Û†

Ĥ0
(t, ti) |Ψ(t)〉, (3.459)

where ÛĤ0
(t, ti) is the unitary time-evolution operator corresponding to the unper-

turbed Hamiltonian Ĥ0 such that

ih̄
∂ÛĤ0

(t, ti)

∂ t
= Ĥ0ÛĤ0

(t, ti) , ih̄
∂Û†

Ĥ0
(t, ti)

∂ t
=−Û†

Ĥ0
(t, ti) Ĥ0. (3.460)
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For the Hermitian operator Ô corresponding to an observable O, define

Ôi(t) = Û†
Ĥ0

(t, ti) ÔÛĤ0
(t, ti) . (3.461)

From (3.459–3.461) we have

ih̄
∂
∣∣Ψi(t)

〉
∂ t

= ih̄
∂Û†

Ĥ0
(t, ti)

∂ t
|Ψ(t)〉+Û†

Ĥ0
(t, ti) Ĥ(t)|Ψ(t)〉

=−Û†
Ĥ0

(t, ti) Ĥ0|Ψ(t)〉+Û†
Ĥ0

(t, ti) Ĥ(t)|Ψ(t)〉

= Û†
Ĥ0

(t, ti)
(

Ĥ(t)− Ĥ0

)
|Ψ(t)〉= Û†

Ĥ0
(t, ti) Ĥ ′(t)|Ψ(t)〉

= Û†
Ĥ0

(t, ti) Ĥ ′(t)ÛĤ0
(t, ti)Û†

Ĥ0
(t, ti) |Ψ(t)〉

= Ĥ ′i(t)
∣∣Ψi(t)

〉
. (3.462)

From (3.460) and (3.461) we have

ih̄
dÔi
dt

=

ih̄
∂Û†

Ĥ0
(t, ti)

∂ t

 ÔÛĤ0
(t, ti)+Û†

Ĥ0
(t, ti)

(
ih̄

∂ Ô
∂ t

)
ÛĤ0

(t, ti)

+Û†
Ĥ0

(t, ti) Ô

(
ih̄

∂ÛĤ0
(t, ti)

∂ t

)

=−Û†
Ĥ0

(t, ti) Ĥ0ÔÛĤ0
(t, ti)+Û†

Ĥ0
(t, ti)

(
ih̄

∂ Ô
∂ t

)
ÛĤ0

(t, ti)

+Û†
Ĥ0

(t, ti) ÔĤ0ÛĤ0
(t, ti)

= ih̄

(
∂ Ô
∂ t

)
i
+
(

Û†
Ĥ0

(t, ti) ÔÛĤ0
(t, ti)

)(
Û†

Ĥ0
(t, ti) Ĥ0ÛĤ0

(t, ti)
)

−
(

Û†
Ĥ0

(t, ti) Ĥ0ÛĤ0
(t, ti)

)(
Û†

Ĥ0
(t, ti) ÔÛĤ0

(t, ti)
)

=
[
Ôi ,

(
Ĥ0

)
i

]
+ ih̄

(
∂ Ô
∂ t

)
i

=
[
−
(

Ĥ0

)
i
, Ôi

]
+ ih̄

(
∂ Ô
∂ t

)
i
, (3.463)

or
dÔi
dt

=
1
ih̄

[
−
(

Ĥ0

)
i
, Ôi

]
+

(
∂ Ô
∂ t

)
i
. (3.464)

Equations (3.462) and (3.464) constitute the interaction picture, introduced by Dirac.
It is seen to be intermediate between the Schrödinger and the Heisenberg pictures.
It becomes the Schrödinger picture when Ĥ0 −→ 0 and Ĥ ′(t) −→ Ĥ(t). It becomes
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the Heisenberg picture when Ĥ0 −→ Ĥ(t) and Ĥ ′(t)−→ 0. Note that the equation of
motion for the interaction picture observables (3.464) is exactly like the equation of
motion for the Heisenberg picture observables (3.188).

The interaction picture is designed for use in time-dependent perturbation theory,
where the goal is to study the time evolution of a system with a small time-dependent
perturbation Hamiltonian. The time-evolution equation for

∣∣Ψi(t)
〉
, (3.462), can be

formally integrated to give ∣∣Ψi(t)
〉
= ÛĤ ′i

(t, ti)
∣∣Ψi (ti)

〉
, (3.465)

where

ÛĤ ′i
(t, ti) = T

(
e
− i

h̄
∫ t
ti

dt Ĥ ′i(t)
)
. (3.466)

From the definition of
∣∣Ψi(t)

〉
, (3.459), we get

|Ψ(t)〉= ÛĤ0
(t, ti)

∣∣Ψi(t)
〉
= ÛĤ0

(t, ti)ÛĤ ′i
(t, ti)

∣∣Ψi (ti)
〉

= ÛĤ0
(t, ti)ÛĤ ′i

(t, ti) |Ψ(ti)〉

= Û (t, ti) |Ψ(ti)〉 , (3.467)

relating the state of the system at t to its initial state at ti. In the second step above,
we have used the relation

∣∣Ψi (ti)
〉
= |Ψ(ti)〉 following directly from the definition

(3.459). When the unperturbed Hamiltonian Ĥ0 is chosen to be time-independent
ÛĤ0

(t, ti) = e−
i
h̄ Ĥ0(t−ti) and, when the time-dependent perturbation Hamiltonian

Ĥ ′(t) is small, to compute ÛĤ ′i
(t, ti) only the first few terms of the infinite series

in the Dyson, or the Magnus, formula need to be taken. We can directly ver-
ify that ÛĤ0

(t, ti)ÛĤ ′i
(t, ti) = Û (t, ti), the time-evolution operator corresponding to

Ĥ(t) = Ĥ0 + Ĥ ′(t):

ih̄
∂

∂ t

(
ÛĤ0

(t, ti)ÛĤ ′i
(t, ti)

)
=

[
ih̄

∂

∂ t

(
ÛĤ0

(t, ti)
)]

ÛĤ ′i
(t, ti)+ÛĤ0

(t, ti)
[

ih̄
∂

∂ t

(
ÛĤ ′i

(t, ti)
)]

= Ĥ0ÛĤ0
(t, ti)ÛĤ ′i

(t, ti)+ÛĤ0
(t, ti) Ĥ ′i(t)ÛĤ ′i

(t, ti)

= Ĥ0ÛĤ0
(t, ti)ÛĤ ′i

(t, ti)+ÛĤ0
(t, ti)Û†

Ĥ0
(t, ti) Ĥ ′(t)ÛĤ0

(t, ti)ÛĤ ′i
(t, ti)

=
(

Ĥ0 + Ĥ ′(t)
)(

ÛĤ0
(t, ti)ÛĤ ′i

(t, ti)
)

= Ĥ(t)
(

ÛĤ0
(t, ti)ÛĤ ′i

(t, ti)
)
. (3.468)
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3.3.1.7 Schrödinger–Pauli Equation for the Electron
Electron has the nonclassical property, spin, the intrinsic angular momentum, with
two values, ±h̄/2, for its z-component. In the presence of a magnetic field, it aligns
itself either parallel or antiparallel to the field. As already discussed, the spin- 1

2
operators, components of the vector ~S, are to be represented in terms of the Pauli
matrices as

Sx =
h̄
2

σx, Sy =
h̄
2

σy, Sz =
h̄
2

σz. (3.469)

The spin magnetic dipole moment, or simply called the spin magnetic moment, of
the electron, with charge −e, is found to be

~µe =−µB~σ =− eh̄
2me

~σ =− e~S
me

, (3.470)

where µB = eh̄/2me is the Bohr magneton, the unit of magnetic moment, and me is
the mass of the electron. It is seen that ~µe is twice the value of the magnetic moment
it would have if the spin ~S is like a classical orbital angular momentum (see (3.402)).
This factor of 2, known as the Landé g-factor, will be seen to be a direct consequence
of Dirac’s relativistic equation for the electron to be discussed later. Actually, the
electron is observed to have an anomalous magnetic moment corresponding to a
value of g slightly higher than 2, and the successful explanation of this g− 2 ≈
0.00232 is provided by quantum electrodynamics.

The nonrelativistic Hamiltonian of an electron in an electromagnetic field associ-
ated with the vector and scalar potentials ~A and φ , respectively, is, including spin,

Ĥ =

 ~̂π
2

2me
− eφ

 I +µB~σ ·~B, with ~̂π = ~̂p+ e~A, (3.471)

where the last term, the Pauli term, is the interaction energy of the electron spin
magnetic moment in the magnetic field and I is the 2× 2 unit matrix inserted to be
consistent with the last 2×2 matrix term. The Schrödinger equation now becomes

ih̄
∂ |Ψ(t)〉

∂ t
=


 ~̂π

2

2me
− eφ

 I +µB~σ ·~B

 |Ψ(t)〉, (3.472)

the Schrödinger–Pauli equation, or the Pauli equation, for the electron, where the
state vector is a two-component column vector,

|Ψ(t)〉=
(
|Ψ1(t)〉
|Ψ2(t)〉

)
, (3.473)

since the 2× 2 matrix Hamiltonian has to act on a two-component column vector.
The nonrelativistic electron state vector |Ψ(t)〉 is called a two-component spinor.
Note that we can write the Pauli equation (3.472) also as

ih̄
∂ |Ψ(t)〉

∂ t
=

{
1

2me

(
~σ ·~̂π

)2
− eφ I

}
|Ψ(t)〉 (3.474)
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To derive (3.472) from (3.474), one has to proceed as follows. First, use the algebra
of the Pauli matrices

σ
2
x = I, σ

2
y = I, σ

2
z = I,

σxσy =−σyσx, σyσz = −σzσy, σzσx = −σxσz, (3.475)

to observe that(
~σ ·~̂π

)2
= ~̂π

2
+σxσy [π̂x , π̂y]+σyσz [π̂y , π̂z]+σzσx [π̂z , π̂x] . (3.476)

Then, use the relations between the Pauli matrices

σxσy = iσz, σyσz = iσx, σzσx = iσy, (3.477)

and the commutation relations

[π̂x , π̂y] =−ieh̄Bz, [π̂y , π̂z] =−ieh̄Bx, [π̂z , π̂x] =−ieh̄By. (3.478)

We can now write

|Ψ(t)〉= |Ψ1(t)〉
(

1
0

)
+ |Ψ2(t)〉

(
0
1

)
= |Ψ1(t)〉 | ↑〉+ |Ψ2(t)〉 | ↓〉. (3.479)

As already discussed, |〈~r|Ψ1(t)〉|2 gives the probability for the electron to be found
at~r with spin up and |〈~r|Ψ2(t)〉|2 gives the probability for the electron to be found at
~r with spin down.

For an electron in a constant magnetic field ~B = B~k, the Schrödinger–Pauli equa-
tion is

ih̄
∂ |Ψ(t)〉

∂ t
=

{
1

2me

[(
p̂x−

1
2

eBy
)2

+

(
p̂y +

1
2

eBx
)2

+ p̂2
z

]
I +µBBσz

}
|Ψ(t)〉.

(3.480)
For the stationary states, we can write |Ψ(t)〉 = e−iEt/h̄|ψ〉, where |ψ〉 satisfies the
time-independent Pauli equation{

1
2me

[(
p̂x−

1
2

eBy
)2

+

(
p̂y +

1
2

eBx
)2

+ p̂2
z

]
I +µBBσz

}
|ψ〉= E|ψ〉. (3.481)

From the earlier discussion on the stationary states of a particle of mass m and charge
q moving in a constant magnetic field, without considering spin, we know that the
Hamiltonian

ĤNRL =
1

2m

[(
p̂x +

1
2

qBy
)2

+

(
p̂y−

1
2

qBx
)2

+ p̂2
z

]
(3.482)
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has the energy spectrum En,pz = [n+(1/2)]h̄ωc, where ωc = |q|B/m, n = 0,1,2, . . . ,

and −∞ < pz < ∞. The corresponding eigenfunctions are given by
{

ψn,mφ ,pz(~r)
}

,
as in (3.418), where mφ (= 0,1,2, . . . ,) represents an angular momentum quantum
number with respect to which each energy level is infinitely degenerate. The sub-
script NRL in this Hamiltonian is to indicate that its energy spectrum corresponds to
nonrelativistic Landau levels. Now, it is clear that equation (3.481) can be written as(

ĤNRL+µBB 0
0 ĤNRLI−µBB

)(
ψ1(~r)
ψ2(~r)

)
= E

(
ψ1(~r)
ψ2(~r)

)
. (3.483)

The general solution of this equation is〈
~r
∣∣∣ψ 〉= ψ(~r) =

(
ψ1(~r)
ψ2(~r)

)
=

(
c1ψn−1,mφ ,pz(~r)
c2ψn,mφ ,pz(~r)

)
, (3.484)

with |c1|2 + |c2|2 = 1 and n = 1,2, . . .. The energy eigenvalue is, with ωc = eB/me,

En,pz =
p2

z

2me
+

[
(n−1)+

1
2

]
h̄ωc +

h̄eB
2me

=
p2

z

2me
+

[
n+

1
2

]
h̄ωc−

h̄eB
2me

=
p2

z

2me
+nh̄ωc, (3.485)

with infinite degeneracy due to the angular momentum quantum number mφ =
0,1,2, . . .. Note that in the energy spectrum (3.485) all levels are shifted up by h̄ωc/2
compared to the Landau level spectrum (3.419) obtained ignoring spin. The proba-
bility for the particle to be found at ~r with spin up is given by |c1ψn−1,mφ ,pz(~r)|2,
and the probability for the particle to be found at ~r with spin down is given by
|c2ψn,mφ ,pz(~r)|2. Note that∫

d3r
(
|c1ψn−1,mφ ,pz(~r)|2 + |c2ψn,mφ ,pz(~r)|2

)
=
∫

d3r ψ
†(~r)ψ(~r) = |c1|2 + |c2|2 = 1. (3.486)

3.3.2 QUANTUM MECHANICS OF A SYSTEM OF IDENTICAL PARTICLES

When we have a quantum system of several, say N, particles moving in a common
external field of force and interacting with each other, the Hamiltonian of the system
and the state vectors will be functions of the dynamical variables of all the particles.
We take the quantum operators of the corresponding observables belonging to two
different particles to be commuting with each other. For example, the position opera-
tor of j-th particle (~̂r j) will commute with the momentum operator of the k-th particle
(~̂pk =−ih̄~∇~rk ), and any component of the spin operator of the j-th particle (say S( j)

x )



120 Quantum Mechanics of Charged Particle Beam Optics

will commute with any component of the spin operator of the k-th particle (say S(k)y ).
Just to fix the notations, let us consider the Hamiltonian of two electrons moving in
the electromagnetic field of vector potential ~A and scalar potential φ given by

Ĥ
((

~r1,~̂p1,~S
(1)
)
,
(
~r2,~̂p2,~S

(2)
)
, t
)
=

[
1

2me

(
~̂p1 + e~A(~r1, t)

)2
− eφ(~r1, t)

+
1

2me

(
~̂p2 + e~A(~r2, t)

)2
− eφ(~r2, t)

]
I

+µB~σ
(1) ·~B(~r1, t)+µB~σ

(2) ·~B(~r2, t),
(3.487)

where we have ignored completely the electron–electron interaction. The corre-
sponding Schrödinger equation will be

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ

((
~r1,~̂p1,~S

(1)
)
,
(
~r2,~̂p2,~S

(2)
)
, t
)
|Ψ(t)〉. (3.488)

The components of spin matrix operators ~σ (1) and ~σ (2) commute with each other.
Hence, their matrix representations have to be

σ
(1)
x = σx⊗ I, σ

(1)
y = σy⊗ I, σ

(1)
z = σz⊗ I,

σ
(2)
x = I⊗σx, σ

(2)
x = I⊗σy, σ

(2)
x = I⊗σz, (3.489)

where I is the 2×2 identity matrix and ⊗ denotes the direct product.
The direct product of two 2× 2 matrices, say A and B, is the 4× 4 matrix

defined by

A⊗B =

(
a11 a12
a21 a22

)
⊗
(

b11 b12
b21 b22

)

=

(
a11B a12B
a21B a22B

)

=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 . (3.490)

In general, the direct product of two n× n matrices, A and B, is the n2× n2 matrix
with the matrix elements given by

(A⊗B) jk,lm = A jkBlm, j,k, l,m = 1,2, . . . ,n. (3.491)
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The direct product of matrices has the property

(A⊗B)(C⊗D) = AC⊗BD. (3.492)

Hence, if AC =CA and BD = DB, then (A⊗B)(C⊗D) = (C⊗D)(A⊗B). From this,
it follows that

σ
(1)
j σ

(2)
k = σ

(2)
k σ

(1)
j , j,k = x,y,z, (3.493)

as required. The direct product of two 2-dimensional vectors is the 4-dimensional
vector defined by

∣∣∣V (1)
〉
⊗
∣∣∣V (2)

〉
=

(
V (1)

1

V (1)
2

)
⊗

 V (2)
1

V (2)
2

=


V (1)

1 V (2)
1

V (1)
1 V (2)

2

V (1)
2 V (2)

1

V (1)
2 V (2)

2

 . (3.494)

Similarly, the direct product of two n-dimensional vectors will be an n2-dimensional
vector with the components(∣∣∣V (1)

〉
⊗
∣∣∣V (2)

〉)
jk
=V (1)

j V (2)
k , j,k = 1,2, . . . ,n. (3.495)

Now, if A and B are two n× n matrices and V (1) and V (2) are two n-dimensional
vectors, then

(A⊗B)
(∣∣∣V (1)

〉
⊗
∣∣∣V (2)

〉)
= A

∣∣∣V (1)
〉
⊗B

∣∣∣V (2)
〉
. (3.496)

For more details on the direct product, or the Kronecker product, see, e.g., Arfken,
Weber, and Harris [3], and Byron and Fuller [18].

Let us now consider the direct products of two spin- 1
2 vectors:

| ↑〉⊗ | ↑〉=
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 ,

| ↑〉⊗ | ↓〉=
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 ,

| ↓〉⊗ | ↑〉=
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

 ,

| ↓〉⊗ | ↓〉=
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

 . (3.497)
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Then, it follows from (3.496) that

S(1)z (| ↑〉⊗ | ↑〉) = h̄
2

σ
(1)
z (| ↑〉⊗ | ↑〉) = h̄

2
(σz⊗ I)(| ↑〉⊗ | ↑〉)

=
h̄
2
(| ↑〉⊗ | ↑〉) ,

S(2)z (| ↑〉⊗ | ↑〉) = h̄
2

σ
(2)
z (| ↑〉⊗ | ↑〉) = h̄

2
(I⊗σz)(| ↑〉⊗ | ↑〉)

=
h̄
2
(| ↑〉⊗ | ↑〉) , (3.498)

Similarly, one can verify that

S(1)z (| ↑〉⊗ | ↓〉) = h̄
2
(| ↑〉⊗ | ↓〉) , S(2)z (| ↑〉⊗ | ↓〉) =− h̄

2
(| ↑〉⊗ | ↓〉) ,

S(1)z (| ↓〉⊗ | ↑〉) =− h̄
2
(| ↓〉⊗ | ↑〉) , S(2)z (| ↓〉⊗ | ↑〉) = h̄

2
(| ↓〉⊗ | ↑〉) ,

S(1)z (| ↓〉⊗ | ↓〉) =− h̄
2
(| ↓〉⊗ | ↓〉) , S(2)z (| ↓〉⊗ | ↓〉) =− h̄

2
(| ↓〉⊗ | ↓〉) .

(3.499)

This means that the spin state of a system of two spin- 1
2 particles will be represented

by |↑〉⊗ |↑〉 if both the particles have their spins up. If the first particle has its spin
up and the second particle has its spin down, then the state is |↑〉⊗ |↓〉. If the first
particle has its spin down and the second particle has its spin up, then the state is
|↓〉⊗ |↑〉. If both the particles have their spins down, then the state is |↓〉⊗ |↓〉. We
shall write

∣∣∣V (1)
〉
⊗
∣∣∣V (2)

〉
simply as

∣∣∣V (1)
〉∣∣∣V (2)

〉
, as if

∣∣∣V (1)
〉

and
∣∣∣V (2)

〉
are one

dimensional, to be understood as a direct product from the context.
It is now clear that the Hamiltonian in (3.487) is a 4-dimensional matrix with

operators as elements. Hence, the state vector |Ψ(t)〉 in the Schrödinger equation
(3.488) should be a 4-dimensional vector. Let

|Ψ(t)〉=


|Ψ11(t)〉
|Ψ12(t)〉
|Ψ21(t)〉
|Ψ22(t)〉

 . (3.500)

From (3.497), we have

|Ψ(t)〉= |Ψ11(t)〉 | ↑〉| ↑〉+ |Ψ12(t)〉 | ↑〉| ↓〉
+ |Ψ21(t)〉 | ↓〉| ↑〉+ |Ψ22(t)〉 | ↓〉| ↓〉. (3.501)

Thus, |〈~r1,~r2 |Ψ11(t) 〉|2 = |Ψ11 (~r1,~r2, t)|2 gives the probability for the two particles
to be found at positions~r1 and~r2 with both their spins up. Similarly, the other com-
ponents of |Ψ(t)〉 can be interpreted. It is straightforward to extend this formalism
to a system of several particles. When the spin of the particle is ignored, |Ψ(t)〉 is
treated only as a single-component state vector.
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When we have a system of identical particles, the Hamiltonian of the system
should not change under the interchange of position coordinates, and other variables
like spin, of any pair of particles. Let ξ̂ j denote the set of operators

(
~̂r j,~̂p j,~S

( j)
)

belonging to the j-th particle. Then, the invariance of the Hamiltonian under the
interchange of any pair of particles means

PjkĤ
(

ξ̂1, ξ̂2, . . . , ξ̂ j, . . . , ξ̂k, . . . , ξ̂N , t
)
= Ĥ

(
ξ̂1, ξ̂2, . . . , ξ̂k, . . . , ξ̂ j, . . . , ξ̂N , t

)
= Ĥ

(
ξ̂1, ξ̂2, . . . , ξ̂ j, . . . , ξ̂k, . . . , ξ̂N , t

)
,

(3.502)

where Pjk is the exchange operator that interchanges the particles j and k. Let
|1,2, . . . ,N〉 be an eigenstate of a time-independent Hamiltonian of a system
of N particles, say Ĥ

(
ξ̂1, ξ̂2, . . . , ξ̂N

)
. Since the Hamiltonian Ĥ

(
ξ̂1, ξ̂2, . . . , ξ̂N

)
is invariant under the interchange of any pair of particles, it is found that
Pjk|1,2, . . . , j, . . . ,k, . . . ,N〉 = |1,2, . . . ,k, . . . , j, . . . ,N〉 differs only by a multiplica-
tive factor ±1 from |1,2, . . . , j, . . . ,k, . . . ,N〉. This multiplicative factor is ±1 since
P2

jk = I, the identity operator. Since the particles are indistinguishable, the multiplica-
tive factor, +1 or −1, cannot depend on which pair of particles are interchanged. In
other words, the eigenstate |1,2, . . . ,N〉 must be either totally symmetric or totally
antisymmetric under the interchange of any pair of particles. This should be true for
all eigenstates of any time-independent Hamiltonian of the system. Since any state
vector |Ψ(t)〉 of the system evolving under a time-dependent or time-independent
Hamiltonian can be expressed as a linear combination of eigenstates of a time-
independent Hamiltonian of the system, the state vector of the system has to be
either totally symmetric or totally antisymmetric. It is found that for integer spin
particles, bosons, the state vector is totally symmetric and for half integer spin parti-
cles, fermions, the state vector is totally antisymmetric.

Let us look at an example. Consider a system of N identical particles with the
time-independent Hamiltonian

Ĥ
(

ξ̂1, ξ̂2, . . . , ξ̂N

)
=

N

∑
j=1

Ĥ
(

ξ̂ j

)
, (3.503)

where the single-particle Hamiltonians
{

Ĥ
(

ξ̂ j

)∣∣∣ j = 1,2, . . . ,N
}

are all identical,
except for the labeling of the variables. The N-particle Hamiltonian H is obviously
invariant under any permutation of the particles. The form of H shows that the sys-
tem is such that each of the N particles may be in a common external force field
and the interparticle interactions have been ignored. For example, take the electronic
Hamiltonian of an Z-electron atom,

ĤA =
Z

∑
j=1

 ~̂p
2
j

2me
− Ze2

4πε0|~r j|

+
Z

∑
j<k=1

e2

4πε0
∣∣~r j−~rk

∣∣2 , (3.504)
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where~r j is the position vector of the j-th electron with respect to the nucleus. Since
the corresponding time-independent Schrödinger equation can be solved only by
approximation methods, one takes

ĤA = ĤC + Ĥ ′, (3.505)

with

ĤC =
Z

∑
j=1

 ~̂p
2
j

2me
+V (|~r j|)

 ,

Ĥ ′ =
Z

∑
j<k=1

e2

4πε0
∣∣~r j−~rk

∣∣2 − Z

∑
j=1

(
Ze2

4πε0|~r j|
+V (|~r j|)

)
, (3.506)

where V (|~r j|) is an effective central potential representing the attraction of the
nucleus and the average effect of the repulsive interactions between the j-th elec-
tron and the other electrons. Then, the electronic structure of the atom is understood
in terms of time-independent perturbation theory with ĤC as the unperturbed Hamil-
tonian and Ĥ ′ as the perturbation. In this perturbation theory, the eigenstates of ĤC
form the basis states. Note that ĤC is of the same type as Ĥ in (3.503). Hence, we
shall analyse the general structure of the eigenstates of Ĥ.

Let {| j〉} be the complete set of orthonormal eigenstates of the single particle
Hamiltonian Ĥ

(
ξ̂

)
corresponding to the energy eigenvalues

{
ε j
}

, respectively, such
that

Ĥ
(

ξ̂

)
| j〉= ε j| j〉. (3.507)

Let the N particles of the system occupy the single particle eigenstates
{| j1〉 , | j2〉 , · · · , | jN〉} where

Ĥ | jk〉= ε jk | jk〉 . (3.508)

If we label the particle in the state | j1〉 as 1, the particle in the state | j2〉 as 2, . . . , and
the particle in the state | jN〉 as N, we can represent the state of the N-particle system
as | j1〉1 | j2〉2 · · · | jN〉N . Then, it is easy to see that

Ĥ(| j1〉1 | j2〉2 · · · | jN〉N) =

(
N

∑
k=1

ε jk

)
(| j1〉1 | j2〉2 · · · | jN〉N) . (3.509)

But, the indistinguishability of the particles does not allow us to label the particles
as 1, 2, . . . , and hence any eigenfunction of Ĥ should be symmetrized in such a way
that it is totally symmetric for bosons and totally antisymmetric for fermions under
the interchange of any pair of particles. We can construct such totally symmetric or
antisymmetric wave functions starting with | j1〉1 | j2〉2 · · · | jN〉N .
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First, let us consider the case of fermions. Let

|1,2, . . . ,N; j1, j2, . . . , jN〉A =
1√
N!

det

∣∣∣∣∣∣∣∣∣∣
| j1〉1 | j2〉1 . . | jN〉1
| j1〉2 | j2〉2 . . | jN〉2
. . . . .
. . . . .
| j1〉N | j2〉N . . | jN〉N

∣∣∣∣∣∣∣∣∣∣
,

(3.510)

where det stands for determinant. This expression is known as the Slater determinant.
It can be verified directly that

Ĥ |1,2, . . . ,N; j1, j2, . . . , jN〉A =

(
N

∑
k=1

ε jk

)
|1,2, . . . ,N; j1, j2, . . . , jN〉A . (3.511)

The eigenfunction |1,2, . . . ,N; j1, j2, . . . , jN〉A gets multiplied by −1 when any pair
of particles is exchanged, as required for total antisymmetry, since the corresponding
rows of the above determinant are interchanged. It represents the state of the system
of N identical fermions in which one particle is in the state | j1〉, one particle is in the
state | j2〉, . . . , and one particle is in the state | jN〉, and the factor 1/

√
N! ensures its

normalization. Note that more than one fermion cannot occupy any state, i.e, in the
eigenfunction |1,2, . . . ,N; j1, j2, . . . , jN〉A more than one of { j1, j2, . . . , jN} cannot
have the same value. If two or more of { j1, j2, . . . , jN} have the same value, then the
corresponding columns of the determinant become identical making it vanish. Thus,
the Pauli exclusion principle for fermions is built into the antisymmetry of the wave
functions.

Let us now consider the case of bosons. Let a permutation of {1,2, . . . ,N}
give {p(1), p(2), · · · p(N)}. We shall write this symbolically as P{1,2, . . . ,N} =
{p(1), p(2), · · · p(N)}. Now, let

|1,2, . . . ,N; j1, j2, . . . , jN〉S =
1√
N! ∑

P

| j1〉p(1) | j2〉p(2) · · · | jN〉p(N) , (3.512)

where ∑P stands for sum over all N! permutations of {1,2, . . . ,N}. It is seen that

Ĥ |1,2, . . . ,N; j1, j2, . . . , jN〉S =

(
N

∑
k=1

ε jk

)
|1,2, . . . ,N; j1, j2, . . . , jN〉S . (3.513)

The eigenfunction |1,2, . . . ,N; j1, j2, . . . , jN〉S is, by construction, totally symmetric
under the exchange of any pair of particles, as required for bosons, and the factor
1/
√

N! ensures its normalization. It represents the state of the system of N identical
bosons in which one particle is in the state | j1〉, one particle is in the state | j2〉, . . . ,
and one particle is in the state | jN〉. Note that more than one boson can occupy any
state, i.e, the eigenfunction |1,2, . . . ,N; j1, j2, . . . , jN〉S exists when more than one of
{ j1, j2, . . . , jN} have the same value, unlike in the case of fermions.
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3.3.3 PURE AND MIXED STATES: DENSITY OPERATOR

It is not always possible to associate a state vector |Ψ〉 with a quantum system. If
a state vector can be associated with a system, then it is said to be a pure state. In
general, the state of a system can be a statistical mixture of pure states with classical
probability weights representing our ignorance about the exact state in which the
system is. In order to describe such mixed states, the concept of density operator, or
density matrix, is introduced.

A pure state |Ψ(t)〉 is associated with the density operator

ρ̂(t) = |Ψ(t)〉〈Ψ(t)|, (3.514)

which is a Hermitian operator. In a basis with
{∣∣ϕ j

〉}
as the basis vectors, the matrix

elements of ρ̂(t) are

〈 j|ρ̂(t)|k〉=
〈
ϕ j |Ψ(t)

〉
〈Ψ(t)|ϕk〉 . (3.515)

In the position representation

〈~r|ρ̂(t)|~r′〉= Ψ(~r, t)Ψ
∗ (~r′, t) . (3.516)

Note that the trace of this density matrix is

Tr(ρ̂(t)) = ∑
j
〈 j|ρ̂(t)| j〉= ∑

j

〈
ϕ j |Ψ(t)

〉〈
Ψ(t)|ϕ j

〉
= ∑

j

〈
Ψ(t)|ϕ j

〉〈
ϕ j |Ψ(t)

〉
= 〈Ψ(t)|Ψ(t)〉= 1. (3.517)

Further, a pure state density operator has the property

ρ̂(t)2 = (|Ψ(t)〉〈Ψ(t)|)(|Ψ(t)〉〈Ψ(t)|) = |Ψ(t)〉〈Ψ(t)|= ρ̂(t). (3.518)

The time-evolution equation for the density operator, the von Neumann equation,
follows from the Schrödinger equation (3.144) and its adjoint (3.145):

ih̄
∂ ρ̂(t)

∂ t
= ih̄

∂

∂ t
(|Ψ(t)〉〈Ψ(t)|)

= Ĥ(t)|Ψ(t)〉〈Ψ(t)|− |Ψ(t)〉〈Ψ(t)|Ĥ(t)

=
[
Ĥ(t), ρ̂(t)

]
. (3.519)

For any observable of the system, associated with the quantum Hermitian operator
Ô, the average can be written as〈

Ô
〉
|Ψ(t)〉

= 〈Ψ(t)|Ô|Ψ(t)〉

= ∑
j
∑
k

〈
Ψ(t)

∣∣ϕ j
〉〈

ϕ j

∣∣∣Ô∣∣∣ϕk

〉
〈ϕk|Ψ(t)

〉
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= ∑
j
∑
k

〈
ϕk |Ψ(t)〉〈Ψ(t)|ϕ j

〉〈
ϕ j

∣∣∣Ô∣∣∣ϕk

〉
= ∑

k

〈
ϕk

∣∣∣(|Ψ(t)〉〈Ψ(t)|) Ô
∣∣∣ϕk

〉
= ∑

k

〈
ϕk

∣∣∣ρ̂(t)Ô∣∣∣ϕk

〉
= Tr

(
ρ̂(t)Ô

)
. (3.520)

Using the time-evolution equation for ρ̂(t) (3.519), the equation of motion for the
average (3.194) follows

d
〈

Ô
〉

Ψ(t)

dt
=

d
dt

Tr
(

ρ̂(t)Ô
)

= Tr

(
∂ ρ̂(t)

∂ t
Ô+ ρ̂(t)

∂ Ô
∂ t

)

= Tr

(
− i

h̄

[
Ĥ(t), ρ̂(t)

]
Ô+ ρ̂(t)

∂ Ô
∂ t

)

=
i
h̄

Tr
(

ρ̂(t)
[
Ĥ(t), Ô

])
+Tr

(
ρ̂(t)

∂ Ô
∂ t

)

=
i
h̄

〈[
Ĥ, Ô

]〉
(t)+

〈
∂ Ô
∂ t

〉
(t). (3.521)

In this derivation, we have used the cyclic property of the trace operator, namely,

Tr
(

Ô1Ô2

)
= Tr

(
Ô2Ô1

)
. (3.522)

This follows from the observation that

Tr
(

Ô1Ô2

)
= ∑

j
∑
k

〈
ϕ j|Ô1|ϕk

〉〈
ϕk|Ô2|ϕ j

〉
= ∑

k
∑

j

〈
ϕk|Ô2|ϕ j

〉〈
ϕ j|Ô1|ϕk

〉
= Tr

(
Ô2Ô1

)
. (3.523)

The specification of the pure state by a time-dependent density operator as ρ̂(t) =
|Ψ(t)〉〈Ψ(t)| corresponds to the Schrdinger picture. In the Heisenberg picture, the
system will be associated with the constant, initial, density operator

ρ̂ (ti) = |Ψ(ti)〉〈Ψ(ti) |= Û† (t, ti) |Ψ(t)〉〈Ψ(t)|Û (t, ti)

= Û† (t, ti) ρ̂(t)Û (t, ti) . (3.524)
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Average of any observable will be given by〈
Ô
〉
|Ψ〉

(t) = Tr
(

ρ̂(t)Ô
)
= Tr

(
Û (t, ti) ρ̂ (ti)Û† (t, ti) Ô

)
= Tr

(
ρ̂ (ti)Û† (t, ti) ÔÛ (t, ti)

)
= Tr

(
ρ̂ (ti) ÔH(t)

)
. (3.525)

The equation of motion for the average (3.194) follows from this:

d
〈

Ô
〉
(t)

dt
=

d
dt

{
Tr
(

ρ̂ (ti) ÔH(t)
)}

=
d
dt

{
∑

j

〈
ϕ j

∣∣∣ρ̂ (ti) ÔH(t)
∣∣∣ϕ j

〉}

= ∑
j

〈
ϕ j

∣∣∣∣ρ̂ (ti)
(

d
dt

ÔH(t)
)∣∣∣∣ϕ j

〉

= ∑
j

〈
ϕ j

∣∣∣∣∣ρ̂ (ti)

{
i
h̄

([
Ĥ, Ô

])
H
+

(
∂ Ô
∂ t

)
H

}∣∣∣∣∣ϕ j

〉

=
i
h̄

Tr
[
ρ̂ (ti)

([
Ĥ, Ô

])
H

]
+Tr

[
ρ̂ (ti)

(
∂ Ô
∂ t

)
H

]

=
i
h̄

〈[
Ĥ, Ô

]〉
(t)+

〈
∂ Ô
∂ t

〉
(t). (3.526)

In general, the state of a quantum system can be represented, in the Schrödinger
picture, by the density operator

ρ̂(t) =
N

∑
j=1

p j
∣∣Ψ j(t)

〉〈
Ψ j(t)

∣∣ , (3.527)

where p j is the classical probability for the system to be in the pure state∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣. Thus, the positive probability weight factors must satisfy the condi-

tion
N

∑
j=1

p j = 1. (3.528)

Note that
{∣∣Ψ j(t)

〉
| j = 1,2, . . . ,N

}
need not be orthogonal to each other. A pure

state corresponds to N = 1. As for the pure state, we find

Tr(ρ̂(t)) =
N

∑
j=1

p jTr
(∣∣Ψ j(t)

〉〈
Ψ j(t)

∣∣)= N

∑
j=1

p j = 1. (3.529)
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As seen in (3.518), for a pure state ρ̂(t)2 = ρ̂(t). But, in the case of a mixed state we
have

ρ̂(t)2 =

(
N

∑
j=1

p j
∣∣Ψ j(t)

〉〈
Ψ j(t)

∣∣)2

6= ρ̂(t). (3.530)

This is what distinguishes a mixed state from a pure state. Since each pure state
component

∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣ of the mixed state (3.527) evolves in time under the same

Hamiltonian Ĥ(t), the time evolution of ρ̂(t), the von Neumann equation, becomes

ih̄
∂ ρ̂(t)

∂ t
=

N

∑
j=1

p jih̄
∂

∂ t

(∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣)

=
N

∑
j=1

p j

[
Ĥ(t),

∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣]

=
[
Ĥ(t), ρ̂(t)

]
, (3.531)

same as in the case of pure state. Further, since∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣= Û (t, ti)

∣∣Ψ j (ti)
〉〈

Ψ j (ti)
∣∣Û† (t, ti) , (3.532)

we have
ρ̂(t) = Û (t, ti) ρ̂ (ti)Û† (t, ti) , (3.533)

which is the integral version of the equation of motion (3.531), as can be seen by
direct differentiation,

ih̄
∂ ρ̂(t)

∂ t
=

(
ih̄

∂

∂ t
Û (t, ti)

)
ρ̂ (ti)Û† (t, ti)+Û (t, ti) ρ̂ (ti)

(
ih̄

∂

∂ t
Û† (t, ti)

)
= Ĥ(t)Û (t, ti) ρ̂ (ti)Û† (t, ti)−Û (t, ti) ρ̂ (ti)Û† (t, ti) Ĥ(t)

=
[
Ĥ(t), ρ̂(t)

]
. (3.534)

Now, for any observable O, the expression for the average is

〈
Ô
〉

ρ̂(t)
=

N

∑
j=1

p j

〈
Ô
〉
|Ψ j(t)〉

=
N

∑
j=1

p jTr
(∣∣Ψ j(t)

〉〈
Ψ j(t)

∣∣ Ô)
= Tr

(
ρ̂(t)Ô

)
, (3.535)

same as in the case of pure state. Exactly as in the case of pure state, we can derive
the equation of motion for the average (3.194) by following the derivation of (3.521)
starting from (3.519).
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As in the case of a pure state, the density operator of a mixed state in the
Heisenberg picture is given by the constant initial time density operator

ρ̂ (ti) =
N

∑
j=1

p j
∣∣Ψ j (ti)

〉〈
Ψ j (ti)

∣∣
=

N

∑
j=1

p jÛ† (t, ti)
∣∣Ψ j(t)

〉〈
Ψ j(t)

∣∣Û (t, ti)

= Û† (t, ti) ρ̂(t)Û (t, ti) . (3.536)

Then, as can be easily verified, the average value of any observable can be written as〈
Ô
〉
(t) = Tr

(
ρ̂ (ti) ÔH(t)

)
, (3.537)

where ÔH(t) is the Heisenberg picture operator for the observable O.
When the wave function of a system has multiple components, the definition of

the density operator is easily extended. For example, a nonrelativistic spin- 1
2 particle

obeying the Schrödinger–Pauli equation has a two-component wave function and a
relativistic spin- 1

2 particle obeying the Dirac equation has a four-component wave
function. In the case of a system with two-component wave function, the pure state
density operator is given by

ρ̂(t) = |Ψ(t)〉〈Ψ(t)|

=

(
|Ψ1(t)〉
|Ψ2(t)〉

)(
〈Ψ1(t)| 〈Ψ2(t)|

)
=

(
|Ψ1(t)〉〈Ψ1(t)| |Ψ1(t)〉〈Ψ2(t)|
|Ψ2(t)〉〈Ψ1(t)| |Ψ2(t)〉〈Ψ2(t)|

)
=

(
ρ̂11(t) ρ̂12(t)
ρ̂21(t) ρ̂22(t)

)
. (3.538)

The two-component wave function is normalized as

〈Ψ(t)|Ψ(t)〉=
2

∑
i=1
〈Ψi(t)|Ψi(t)〉=

2

∑
i=1

∫
d3r |Ψi (~r, t)|2 = 1. (3.539)

Thus, the density operator is normalized as

Tr(ρ̂(t)) =
2

∑
i=1

∫
d3r 〈~r |ρ̂ii(t)|~r〉= 1. (3.540)

For a mixed state, the density operator in the case of a system with two-component
wave function will become
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ρ̂(t) =
N

∑
j=1

p j
∣∣Ψ j(t)

〉〈
Ψ

j(t)
∣∣

=
N

∑
j=1

p j


∣∣∣Ψ j

1(t)
〉〈

Ψ
j
1(t)
∣∣∣ ∣∣∣Ψ j

1(t)
〉〈

Ψ
j
2(t)
∣∣∣∣∣∣Ψ j

2(t)
〉〈

Ψ
j
1(t)
∣∣∣ ∣∣∣Ψ j

2(t)
〉〈

Ψ
j
2(t)
∣∣∣


=
N

∑
j=1

p j

(
ρ̂

j
11(t) ρ̂

j
12(t)

ρ̂
j

21(t) ρ̂
j

22(t)

)

=
N

∑
j=1

p jρ̂
j(t) =

(
ρ̂11(t) ρ̂12(t)
ρ̂21(t) ρ̂22(t)

)
,

with
N

∑
j=1

p j = 1. (3.541)

For the mixed state, the normalization condition is

N

∑
j=1

p j

(
2

∑
i=1

∫
d3r

∣∣∣Ψ j
i (~r, t)

∣∣∣2)= 1. (3.542)

Then, the normalization for the mixed state density operator becomes

N

∑
j=1

p j

(
2

∑
i=1

∫
d3r

∣∣∣Ψ j
i (~r, t)

∣∣∣2)=
N

∑
j=1

p jTr
(
ρ̂

j(t)
)

= Tr(ρ̂(t)) = 1. (3.543)

It is straightforward to extend the equations of motion for the density operator and the
average of an observable to the case of systems with multicomponent wave functions.
The results are the same:

ih̄
∂ ρ̂(t)

∂ t
=
[
Ĥ(t), ρ̂(t)

]
,

d
〈

Ô
〉
(t)

dt
=

i
h̄

〈[
Ĥ, Ô

]〉
(t)+

〈
∂ Ô
∂ t

〉
(t). (3.544)

Let Ô be a Hermitian 2× 2 matrix operator associated with some observable of a
system with a two-component wave function. For example, ~σ ·~̂p is such an operator
associated with a spin- 1

2 particle. An observable like p̂2/2m can also be considered
as a 2×2 matrix operator

(
p̂2/2m

)
I. For such an observable, the average value in a

pure state is
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〈
Ô
〉
(t) =

〈
Ψ(t)

∣∣∣Ô∣∣∣Ψ(t)
〉
=

2

∑
i, j=1

〈
Ψi(t)

∣∣∣Ôi j

∣∣∣Ψ j(t)
〉

=
2

∑
i, j=1

∫ ∫
d3rd3r′ 〈Ψi(t) |~r 〉

〈
~r
∣∣∣Ôi j

∣∣∣~r′〉〈~r′ ∣∣Ψ j(t)
〉

=
2

∑
i, j=1

∫ ∫
d3rd3r′

〈
~r′
∣∣Ψ j(t)

〉
〈Ψi(t) |~r 〉

〈
~r
∣∣∣Ôi j

∣∣∣~r′〉
=

2

∑
i, j=1

∫ ∫
d3rd3r′

〈
~r′
∣∣ρ̂ ji
∣∣~r〉〈~r ∣∣∣Ôi j

∣∣∣~r′〉
= Tr

(
ρ̂(t)Ô

)
. (3.545)

In the case of the mixed state, we have〈
Ô
〉
(t) =

N

∑
j=1

p j

〈
Ψ

j(t)
∣∣∣Ô∣∣∣Ψ j(t)

〉
=

N

∑
j=1

p jTr
(

ρ̂
j(t)Ô

)
= Tr

[(
N

∑
j=1

p jρ̂
j(t)

)
Ô

]
= Tr

(
ρ̂(t)Ô

)
. (3.546)

For a system of N identical particles, we can define the density matrix as

ρ̂N(t) = ∑
j

p j
∣∣Ψ j(1,2, . . . ,N, t)

〉〈
Ψ j(1,2, . . . ,N, t)

∣∣ , (3.547)

by generalizing (3.527), where the classical probability weight factors
{

p j
}

satisfy
the condition ∑ j p j = 1, and the N-particle state vectors

{∣∣Ψ j(1,2, . . . ,N, t)
〉}

are
properly symmetrized (totally symmetric for bosons and totally antisymmetric for
fermions under the exchange of any pair of particles). In the application of the density
matrix formalism for many-particle systems, one further introduces reduced density
matrices of different orders. We shall not pursue this topic further.

3.4 RELATIVISTIC QUANTUM MECHANICS
3.4.1 KLEIN–GORDON EQUATION

3.4.1.1 Free-Particle Equation and Difficulties in Interpretation
To generalize the nonrelativistic Schrödinger equation for a free particle of mass m,
the starting point is, naturally, to convert the classical relativistic Hamiltonian

H =
√

m2c4 + c2 p2, (3.548)

to a quantum Hamiltonian Ĥ by replacing ~p by ~̂p, and write down

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ|Ψ(t)〉. (3.549)
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The resulting equation,

ih̄
∂ |Ψ(t)〉

∂ t
=
√

m2c4 + c2 p̂2 |Ψ(t)〉, (3.550)

involves the obvious difficulty of taking the square root of the differential operator.
A Taylor series expansion of the square root would lead to an infinite series of spatial
derivatives, and time and space would not occur symmetrically contrary to what is
expected in a basic relativistic equation. In (3.550) if we expand the square root and
retain only the first two terms, we get

ih̄
∂ |Ψ(t)〉

∂ t
≈
[

mc2
(

1+
p̂2

2m2c2

)]
|Ψ(t)〉

=

(
mc2 +

p̂2

2m

)
|Ψ(t)〉, (3.551)

which becomes the nonrelativistic free-particle Schrödinger equation when the con-
stant rest energy term, mc2, is dropped inconsequentially.

Instead of this approach in which the square root creates a problem, let us note
that for a time-independent Ĥ, we get, from (3.549),(

ih̄
∂

∂ t

)2

|Ψ(t)〉= Ĥ2|Ψ(t)〉. (3.552)

Now, substituting m2c4 + c2 p̂2 for Ĥ2 leads to the equation(
−h̄2 ∂ 2

∂ t2 − c2 p̂2
)
|Ψ(t)〉= m2c4|Ψ(t)〉, (3.553)

the Klein–Gordon equation for the free particle. It is also sometimes called
the Klein–Gordon–Fock equation. In position representation, we can write this
equation as (

∇
2− 1

c2
∂ 2

∂ t2

)
Ψ(~r, t) =

(mc
h̄

)2
Ψ(~r, t). (3.554)

Schrödinger also had considered this equation and rejected it as unsatisfactory before
proposing his nonrelativistic equation. A plane wave,

Ψ~p(~r, t)∼ e
i
h̄ (~p·~r−Et), (3.555)

apart from a normalization constant, is seen to be a solution of the free-particle
Klein–Gordon equation (3.554) when the momentum ~p (note ~̂pΨ~p(~r, t) = ~pΨ~p(~r, t))
is related to E by the relation E2 =

(
m2c4 + c2 p2

)
. It should be noted that the parti-

cle associated with the plane wave Ψ~p(~r, t) can have its energy as ±
(
m2c4 + c2 p2

)
.

Thus, the free-particle energy spectrum has two branches, a positive-energy branch
(E ≥ mc2) and a negative-energy branch (E ≤ −mc2) with a gap of energy 2mc2.
Unlike in the classical case, one cannot discard the negative-energy solutions as



134 Quantum Mechanics of Charged Particle Beam Optics

unphysical since all the solutions form a complete set and are needed for representing
a general state of the particle.

Let us recall the nonrelativistic free-particle Schrödinger equation:

ih̄
∂ΨNR

∂ t
=− h̄2

2m
∇

2
ΨNR. (3.556)

The complex conjugate of this equation is

−ih̄
∂Ψ∗NR

∂ t
=− h̄2

2m
∇

2
Ψ
∗
NR. (3.557)

Multiplying both sides of the first equation (3.556) on the left by Ψ∗NR, the second
equation (3.557) by ΨNR, and subtracting the second from the first, we get

ih̄
(

Ψ
∗
NR

∂ΨNR

∂ t
+ΨNR

∂Ψ∗NR

∂ t

)
=− h̄2

2m

[
Ψ
∗
NR∇

2
ΨNR−ΨNR∇

2
Ψ
∗
NR

]
=− h̄2

2m

[
~∇ ·
(

Ψ
∗
NR

~∇ΨNR−ΨNR
~∇Ψ

∗
NR

)]
.

(3.558)

We can rewrite this equation as

∂ρNR

∂ t
+~∇ ·~jNR = 0, (3.559)

where
ρNR(~r, t) = Ψ

∗
NR(~r, t)ΨNR(~r, t) = |ΨNR(~r, t)|2 (3.560)

can be identified with the nonrelativistic probability density and

~jNR(~r, t) =
h̄

2mi

(
Ψ
∗
NR(~r, t)~∇ΨNR(~r, t)−ΨNR(~r, t)~∇Ψ

∗
NR(~r, t)

)
=

1
2m

(
Ψ
∗
NR(~r, t)~̂pΨNR(~r, t)−ΨNR(~r, t)~̂pΨ

∗
NR(~r, t)

)
, (3.561)

defines the nonrelativistic probability current density. Equation (3.559) is the con-
tinuity equation for the probability density. As we know,

∫
V d3r ρNR(~r, t) gives the

probability of finding the particle within a specified volume V . The rate of change of
this probability is given by

∂

∂ t

∫
V

d3r ρNR =
∫

V
d3r

∂ρNR

∂ t
=−

∫
V

d3r ~∇ ·~jNR =−
∫

S
~jNR · ~dS, (3.562)

where S denotes the closed surface boundary of the volume V , and we have used
the continuity equation (3.559) and the Gauss theorem of vector calculus. This result
shows that the rate at which the probability of finding the particle within a specified
volume changes is equal to the flux of the probability current through the surface
boundary of the volume. In other words, the continuity equation (3.559) represents
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the conservation of probability. When the volume considered is the entire space,
the probability current density and the surface integral vanish since ΨNR(~r, t)−→ 0
as |~r| −→ ∞. This leads to the result that the normalization of ΨNR(~r, t), i.e.,∫

d3r |ΨNR(~r, t)|2 = 1, with integration over the whole space, is preserved in time.
We know already that this is implied by the unitary time evolution of |Ψ(t)〉. Let
us note that for a free particle of mass m with momentum ~p associated with the
plane wave

Ψ(~r, t) =
1

(2π h̄)3/2 e
i
h̄

(
~p·~r− p2

2m t
)
, (3.563)

the nonrelativistic probability density and the probability current density satisfy the
relation

~jNR =
1

2m

(
Ψ
∗~̂pΨ−Ψ~̂pΨ

∗
)

=
~p

(2π h̄)3m
= Ψ

∗
Ψ~v = ρ~v, (3.564)

as expected.
Let us now return to the free-particle Klein–Gordon equation (3.554). Its complex

conjugate equation is(
∇

2− 1
c2

∂ 2

∂ t2

)
Ψ
∗(~r, t) =

(mc
h̄

)2
Ψ
∗(~r, t). (3.565)

Multiplying both sides of (3.554) on the left by Ψ∗, both sides of (3.565) on the left
by Ψ, and subtracting we get

− 1
c2

(
Ψ
∗ ∂ 2Ψ

∂ t2 −Ψ
∂ 2Ψ∗

∂ t2

)
+
(
Ψ
∗
∇

2
Ψ−Ψ∇

2
Ψ
∗)= 0. (3.566)

Multiplying throughout by h̄/2mi, we can rewrite this equation as a continuity
equation

∂ρKG

∂ t
+~∇ ·~jKG = 0, (3.567)

in which we can take

ρKG(~r, t) =
ih̄

2mc2

(
Ψ
∗(~r, t)

∂Ψ(~r, t)
∂ t

−Ψ(~r, t)
∂Ψ∗(~r, t)

∂ t

)
(3.568)

as the Klein–Gordon probability density and

~jKG(~r, t) =
h̄

2mi

(
Ψ
∗(~r, t)~∇Ψ(~r, t)−Ψ(~r, t)~∇Ψ

∗(~r, t)
)

(3.569)

as the Klein–Gordon probability current density. It is clear from (3.567) that∫
d3r ρKG(~r, t) is preserved in time.
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Let us look at the nonrelativistic limit of the free-particle Klein–Gordon equation.
In the nonrelativistic limit, we can consider to take

Ψ(~r, t) = ΨNR(~r, t)e−
i
h̄ mc2t , (3.570)

with
∂ΨNR(~r, t)

∂ t
≈
(

ε

ih̄

)
ΨNR(~r, t), 0 < ε � mc2, (3.571)

where (mc2 + ε) is the total energy of the nonrelativistic particle including its rest
energy. Substituting this ansatz in (3.554), and considering ε/h̄c� mc/h̄, we arrive
at (mc

h̄

)2
ΨNRe−

i
h̄ mc2t

=
(
∇

2
ΨNR

)
e−

i
h̄ mc2t − 1

c2
∂ 2

∂ t2

(
ΨNRe−

i
h̄ mc2t

)
=

[
∇

2
ΨNR−

1
c2

∂ 2ΨNR

∂ t2 +

(
2im
h̄

)
∂ΨNR

∂ t
+
(mc

h̄

)2
ΨNR

]
e−

i
h̄ mc2t

≈
[

∇
2
ΨNR+

(
ε

h̄c

)2
ΨNR+

(
2im
h̄

)
∂ΨNR

∂ t
+
(mc

h̄

)2
ΨNR

]
e−

i
h̄ mc2t

≈
[

∇
2
ΨNR+

(
2im
h̄

)
∂ΨNR

∂ t
+
(mc

h̄

)2
ΨNR

]
e−

i
h̄ mc2t . (3.572)

From this, we have

∇
2
ΨNR+

(
2im
h̄

)
∂ΨNR

∂ t
≈ 0. (3.573)

Multiplying by −h̄2/2m, we can rewrite this equation as

ih̄
∂ΨNR

∂ t
≈− h̄2

2m
∇

2
ΨNR. (3.574)

Thus, we see that, in the nonrelativistic limit, the free-particle nonrelativis-
tic Schrödinger equation is the approximation of the free-particle Klein–Gordon
equation.

In the nonrelativistic limit, taking Ψ(~r, t) = ΨNR(~r, t)e−imc2t/h̄,

ρKG =
ih̄

2mc2

(
Ψ
∗ ∂Ψ

∂ t
−Ψ

∂Ψ∗

∂ t

)
=

ih̄
2mc2

(
Ψ
∗
NR

∂ΨNR

∂ t
−ΨNR

∂Ψ∗NR
∂ t

)
+Ψ

∗
NRΨNR

≈
(

1+
ε

mc2

)
Ψ
∗
NRΨNR ≈ |ΨNR|2 = ρNR, (3.575)

where we have used (3.571) to make the approximations. For the nonrelativistic limit
of the Klein–Gordon probability current density, we have
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~jKG =
h̄

2mi

(
Ψ
∗~∇Ψ−Ψ~∇Ψ

∗
)

=
h̄

2mi

(
Ψ
∗
NR

~∇ΨNR−ΨNR
~∇Ψ

∗
NR

)
= ~jNR. (3.576)

Thus, in the nonrelativistic limit, ρKG and ~jKG become the corresponding nonrel-
ativistic probability density and probability current density. However, ρKG is not
acceptable as a probability density. A probability density ρ(~r, t) has to be nonegative
for all~r and t. When Ψ(~r, t) is real, ρKG(~r, t) vanishes identically at any position and
time, meaning that the particle exists nowhere. When Ψ(~r, t) is complex ρKG(~r, t)
can become negative for some choice of ∂Ψ/∂ t. Note that since the Klein–Gordon
equation (3.554) is of second order in time derivative, both Ψ and ∂Ψ/∂ t have to be
specified independently at the initial time for studying the time evolution.

It is only to be expected that in relativistic quantum mechanics there should be no
one-particle time-evolution equation, or wave equation, since in relativistic mechan-
ics, particle number is not necessarily conserved. Relativistic quantum theory should
be able to describe processes in which particles are created and annihilated. This is
achieved in the relativistic quantum field theory where Ψ(~r, t) becomes a quantum
field operator Ψ̂(~r, t) in which both the space coordinates~r and time t are parame-
ters with equal status, unlike in nonrelativistic quantum mechanics where the space
coordinates are dynamical variables and time is a parameter. Then, Ψ̂(~r, t) satisfying
the Klein–Gordon equation is associated with spin-0 particles. The negative-energy
states of a Klein–Gordon particle are the positive-energy states of the corresponding
antiparticle.

3.4.1.2 Feshbach–Villars Representation
Now, let us look at a two-component representation of the Klein–Gordon equation
introduced by Feshbach and Villars [50]. To this end, let us write

ih̄
∂Ψ

∂ t
= mc2

(
ih̄

mc2
∂Ψ

∂ t

)
,

ih̄
∂

∂ t

(
ih̄

mc2
∂Ψ

∂ t

)
=− h̄2

m

(
1
c2

∂ 2Ψ

∂ t2

)
=− h̄2

m

[
∇

2−
(mc

h̄

)2
]

Ψ

=

(
− h̄2

m
∇

2 +mc2
)

Ψ, (3.577)

and define

Ψ+ =
1
2

[
Ψ+

1
mc2

(
ih̄

∂Ψ

∂ t

)]
,

Ψ− =
1
2

[
Ψ− 1

mc2

(
ih̄

∂Ψ

∂ t

)]
. (3.578)
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Adding and subtracting both sides of the two equations of (3.577), and multiplying
the resulting equations by 1/2 on both sides, we get

ih̄
∂Ψ+

∂ t
=− h̄2

2m
∇

2 (Ψ++Ψ−)+mc2
Ψ+,

ih̄
∂Ψ−

∂ t
=

h̄2

2m
∇

2 (Ψ++Ψ−)−mc2
Ψ−. (3.579)

We shall rewrite this set of coupled equations for Ψ+ and Ψ− as

ih̄
∂Ψ

∂ t
= ĤFVΨ, (3.580)

where

Ψ =

(
Ψ+

Ψ−

)
, (3.581)

and

ĤFV =

(
mc2− h̄2

∇2

2m − h̄2
∇2

2m
h̄2

∇2

2m −mc2 + h̄2
∇2

2m

)

=

(
mc2 +

p̂2

2m

)
σz +

p̂2

2m
(iσy)

= mc2
σz +

p̂2

2m
(σz + iσy) (3.582)

is the Feshbach–Villars Hamiltonian. Since σ2
z = I, (iσy)

2 = −I, σzσy +σyσz = 0,
and the constant mc2 commutes with p̂2/2m, we get

Ĥ2
FV =

[(
mc2 +

p̂2

2m

)
σz +

p̂2

2m
(iσy)

]2

=

(
mc2 +

p̂2

2m

)2

−
(

p̂2

2m

)2

= m2c4 + c2 p̂2, (3.583)

as if ĤFV is the desired square root of m2c4 + c2 p̂2. However, the time and space
derivatives occur differently in the Feshbach–Villars representation of the Klein–
Gordon equation, which is not acceptable in a relativistic theory. Further, ĤFV is
seen to be non-Hermitian. The reason for this is as follows.

In the Feshbach–Villars representation, we find

ρKG =
ih̄

2mc2

(
Ψ
∗ ∂Ψ

∂ t
−Ψ

∂Ψ∗

∂ t

)
=

ih̄
2mc2

{(
Ψ
∗
++Ψ

∗
−
)[mc2

ih̄
(Ψ+−Ψ−)

]
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−(Ψ++Ψ−)

[
−mc2

ih̄

(
Ψ
∗
+−Ψ

∗
−
)]}

= |Ψ+|2−|Ψ−|2 . (3.584)

We saw earlier that
∫

d3r ρKG is conserved in time, i.e.,
∫

d3r
(
|Ψ+|2−|Ψ−|2

)
is

conserved in time. This means that the Feshbach–Villars state Ψ does not have a
unitary evolution with a Hermitian Hamiltonian. For unitary evolution of Ψ, we
should have

∫
d3r Ψ(~r, t)†Ψ(~r, t) =

∫
d3r

(
|Ψ+(~r, t)|2 + |Ψ−(~r, t)|2

)
conserved in

time. Anyhow, one can use the Feshbach–Villars equation (3.580) to study the time
evolution of Ψ(~r, t).

3.4.1.3 Charged Klein–Gordon Particle in a Constant Magnetic Field
For a particle of mass m and charge q moving in an electromagnetic field, the rela-
tivistic classical Hamiltonian is, as we know,

H(~r,~p, t) =
√

m2c4 + c2~π2 +qφ , (3.585)

where φ and ~A are, respectively, the scalar and vector potentials of the field. Now,
the Klein–Gordon equation for the particle becomes(

ih̄
∂

∂ t
−qφ

)2

Ψ =

(
m2c4 + c2~̂π

2
)

Ψ, (3.586)

or [(
ih̄

∂

∂ t
−qφ

)2

− c2(−ih̄~∇−q~A)2

]
Ψ = m2c4

Ψ. (3.587)

We can rewrite this equation as[(
~∇− i

h̄
q~A
)2

− 1
c2

(
∂

∂ t
+

i
h̄

qφ

)2
]

Ψ =
(mc

h̄

)2
Ψ, (3.588)

which becomes the free-particle Klein–Gordon equation (3.554) in the absence of
electromagnetic field. Note that equation (3.586) is related to the free-particle equa-
tion through minimal electromagnetic coupling.

The Feshbach–Villars equation corresponding to (3.587) is given by

ih̄
∂Ψ

∂ t
=

mc2
σz +

~̂π
2

2m
(σz + iσy)+qφ

Ψ, (3.589)

with

Ψ =


1
2

[
Ψ+ 1

mc2

(
ih̄ ∂

∂ t −qφ

)
Ψ

]
1
2

[
Ψ− 1

mc2

(
ih̄ ∂

∂ t −qφ

)
Ψ

]
 . (3.590)
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To see this, let us write(
ih̄

∂

∂ t
−qφ

)
Ψ = mc2

[
1

mc2

(
ih̄

∂

∂ t
−qφ

)
Ψ

]
, (3.591)

and (
ih̄

∂

∂ t
−qφ

)[
1

mc2

(
ih̄

∂

∂ t
−qφ

)
Ψ

]
=

1
mc2

(
ih̄

∂

∂ t
−qφ

)2

Ψ

=
1

mc2

(
m2c4 + c2~̂π

2
)

Ψ =

mc2 +
~̂π

2

m

Ψ. (3.592)

Adding and subtracting both sides of these two equations, and multiplying the result-
ing equations by 1/2 on both sides, we get

(
ih̄

∂

∂ t
−qφ

)
Ψ =

mc2
σz +

~̂π
2

2m
(σz + iσy)

Ψ, (3.593)

which can be rewritten as (3.589).
When we are dealing with spin-0 particles with positive energy and the processes

studied do not involve any particle creation and annihilation, it should be appropriate
to use the Klein–Gordon equation as if it is a one-particle relativistic equation. It can
also be used in this way for treating the relativistic quantum mechanics of spinless
particles, i.e., when the spin is ignored, or treated as a spectator variable. As an
example, let us consider a spinless, or spin-0, Klein–Gordon particle of mass m and
charge q moving in a constant magnetic field in the z-direction. It will obey the
equation(

ih̄
∂

∂ t

)2

Ψ =

{
m2c4 + c2

[(
p̂x +

1
2

qBy
)2

+

(
p̂y−

1
2

qBx
)2

+ p̂2
z

]}
Ψ, (3.594)

obtained by taking in (3.586) φ = 0 and ~A = (−By/2,Bx/2,0) corresponding to the
magnetic field ~B = B~k. Let us now write this equation as(

ih̄
∂

∂ t

)2

Ψ =
(

m2c4 +2mc2ĤNRL

)
Ψ, (3.595)

where

ĤNRL =
1

2m

[(
p̂x +

1
2

qBy
)2

+

(
p̂y−

1
2

qBx
)2

+ p̂2
z

]
(3.596)

is the Hamiltonian of a nonrelativistic particle of mass m and charge q moving in
the field ~B = B~k which has the Landau levels (3.419) as its spectrum. Since the
system is time-independent, there will be stationary eigenstates for which we can
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take Ψ(~r, t) = ψ(~r)e−iEt/h̄, where E is the energy of the eigenstate. Substituting this
Ψ in (3.594), we get

E2
ψe−iEt/h̄ =

(
m2c4 +2mc2ĤNRL

)
ψe−iEt/h̄, (3.597)

leading to the eigenvalue equation(
m2c4 +2mc2ĤNRL

)
ψ = E2

ψ. (3.598)

Let us take ψ(~r) as ψn,mφ ,pz(~r), defined in (3.418), which is an eigenfunction of
ĤNRL corresponding to the eigenvalue En,mφ ,pz = (2n+ 1)h̄qB/2m+ p2

z/2m. Then,
we find that(

m2c4 +2mc2ĤNRL

)
ψn,mφ ,pz(~r) =

[
m2c4 +(2n+1)c2h̄qB+ c2 p2

z
]

ψn,mφ ,pz(~r)

= E2
ψn,mφ ,pz(~r), (3.599)

showing that the energy eigenvalues of the system are given by

En,mφ ,pz =
√

m2c4 +(2n+1)c2h̄qB+ c2 p2
z

= mc2

√
1+
( pz

mc

)2
+(2n+1)

h̄qB
m2c2 , n = 0,1,2, . . . , (3.600)

where we are considering only the positive square root. As in the nonrelativistic
case, each energy eigenvalue has infinite degeneracy characterized by the angular
momentum quantum number mφ = 0,1,2, . . .. In the nonrelativistic limit, when the
rest energy of the particle is larger than other energies of the particle, we have

En,mφ ,pz ≈ mc2
[

1+
1
2

( pz

mc

)2
+

(
n+

1
2

)
h̄qB
m2c2

]
= mc2 +

p2
z

2m
+

(
n+

1
2

)
h̄qB
m

, n = 0,1,2, . . . , (3.601)

which gives the nonrelativistic Landau energy spectrum of spinless particle added to
the rest energy.

3.4.2 DIRAC EQUATION

3.4.2.1 Free-Particle Equation
The correct relativistic equation with all the desired properties (linear in time,
nonnegative probability density, etc.) was discovered by Dirac. It describes the elec-
tron, or any spin- 1

2 particle, in a natural way. He wrote down, for a free particle of
mass m,

Ĥ =
√

m2c4 + c2 p̂2 = βmc2 + c(αx p̂x +αy p̂y +αz p̂z) , (3.602)
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and demanded that

Ĥ2 =
[
βmc2 + c(αx p̂x +αy p̂y +αz p̂z)

]2
= m2c4 + c2 p̂2. (3.603)

This implies, with mc2, p̂x, p̂y, and p̂z commuting with each other,

β
2 = α

2
x = α

2
y = α

2
z = 1,

βαx =−αxβ , βαy =−αyβ , βαz =−αzβ ,

αxαy =−αyαx, αyαz =−αzαy, αzαx =−αxαz. (3.604)

It is obvious that β , αx, αy, and αz cannot be ordinary, real or complex, num-
bers. The relations β 2 = 1, α2

x = 1, etc., show that, if we represent them by square
matrices, all their eigenvalues must be ±1. The relations βαx = −αxβ and α2

x = 1
imply that αxβαx =−β . Since Tr(ABC) = Tr(BCA), we get Tr(αxβαx) = Tr(β ) =
Tr(−β ) = −Tr(β ). Thus, Tr(β ) = 0. By the same argument, we get Tr(αx) =
Tr(αy) = Tr(αz) = 0. Recall that for any finite-dimensional matrix, the sum of its
eigenvalues is equal to its trace. This means that for each of the matrices β , αx, αy,
and αz, the spectrum of eigenvalues should contain an equal number of +1s and
−1s such that the trace is zero. This leads to the result that the dimension of these
matrices β , αx, αy, and αz must be even. We know already that the set of three
two-dimensional Pauli matrices, (σx,σy,σz), obey the same algebra as the αs and
β obey (3.604), i.e.,

σ
2
x = σ

2
y = σ

2
z = 1,

σxσy =−σyσz, σxσy =−σyσz, σxσy =−σyσz. (3.605)

Now, one may try to construct a fourth two-dimensional matrix, say M, which anti-
commutes with all the three Pauli matrices by taking it to be

M =

(
M11 M12
M21 M22

)
(3.606)

and demanding it to satisfy the relations

Mσx =−σxM, Mσy =−σyM, Mσz =−σzM. (3.607)

The result will be that M has to be O, the 2× 2 null matrix. Thus, there does not
exist a fourth two-dimensional matrix that anticommutes with all the three Pauli
matrices. Hence, the matrices β , αx, αy, and αz have to be of minimum dimension
four. Further, using group theory it can be shown that the Dirac algebra (3.604) has
only one inequivalent irreducible faithful representation of dimension four, i.e., all
four-dimensional representations of the Dirac algebra would be equivalent to each
other related by similarity transformations. In other words, if (β ,αx,αy,αz) and(
β ′,α ′x,α

′
y,α

′
z
)

are two sets of four-dimensional matrices obeying the Dirac algebra,
then there will exist a nonsingular matrix S such that

β
′ = S βS −1, α

′
x = S αxS

−1, α
′
y = S αyS

−1, α
′
z = S αzS

−1. (3.608)
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The Pauli algebra and the Dirac algebra are the lowest order special cases of the
Clifford algebra (for more details, see, e.g., Ramakrishnan [155], Jagannathan [86]
and references therein).

Dirac constructed the required four-dimensional matrices as

β = σz⊗ I =
(

1 0
0 −1

)
⊗
(

1 0
0 1

)
=

(
I 0
0 −I

)

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

αx = σx⊗σx =

(
0 1
1 0

)
⊗
(

0 1
1 0

)
=

(
0 σx
σx 0

)

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

αy = σx⊗σy =

(
0 1
1 0

)
⊗
(

0 −i
i 0

)
=

(
0 σy
σy 0

)

=


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

αz = σx⊗σz =

(
0 1
1 0

)
⊗
(

1 0
0 −1

)
=

(
0 σz
σz 0

)

=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 . (3.609)

As mentioned earlier, any other four-dimensional representation of the Dirac alge-
bra (3.604) would be equivalent to the standard Dirac representation (3.609). It is
straightforward to verify, using (3.492) or directly, that these matrices satisfy the
relations (3.604) as required. They are all Hermitian. Let us call the Hamiltonian Ĥ
defined by (3.602) and (3.609) as the free-particle Dirac Hamiltonian ĤD:

ĤD = mc2
β + c~α ·~̂p =

(
mc2I c~σ ·~̂p
c~σ ·~̂p −mc2I

)

=


mc2 0 cp̂z c(p̂x− ip̂y)

0 mc2 c(p̂x + ip̂y) −cp̂z
cp̂z c(p̂x− ip̂y) −mc2 0

c(p̂x + ip̂y) −cp̂z 0 −mc2

 . (3.610)
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Then, the time-dependent Dirac equation

ih̄
∂ |Ψ(t)〉

∂ t
= ĤD |Ψ(t)〉 (3.611)

represents the time evolution of a relativistic free particle of mass m. Note that ĤD

is Hermitian: Ĥ†
D = ĤD. Since ĤD is a four-dimensional matrix operator, the state

vector |Ψ(t)〉 has to be a four-dimensional column vector, say,

|Ψ(t)〉=


|Ψ1(t)〉
|Ψ2(t)〉
|Ψ3(t)〉
|Ψ4(t)〉

 , (3.612)

known as the Dirac spinor.
In position representation, the Dirac equation (3.611) becomes

ih̄
∂Ψ(~r, t)

∂ t
=
(

mc2
β − ih̄c~α ·~∇

)
Ψ(~r, t), (3.613)

where

Ψ(~r, t) =


Ψ1(~r, t)
Ψ2(~r, t)
Ψ3(~r, t)
Ψ4(~r, t)

 . (3.614)

Correspondingly,

Ψ
†(~r, t) = (Ψ∗1(~r, t) Ψ

∗
2(~r, t) Ψ

∗
3(~r, t) Ψ

∗
4(~r, t)) = 〈Ψ(t) |~r〉 . (3.615)

Hermiticity of ĤD implies that the time evolution of |Ψ(t)〉 is unitary, i.e.,
〈Ψ(t)|Ψ(t)〉 = ∑

4
j=1
〈
Ψ j(t)

∣∣Ψ j(t)
〉
=
∫

d3r
(

∑
4
j=1
∣∣Ψ j(~r, t)

∣∣2) is conserved in

time. This suggests that ∑
4
j=1
∣∣Ψ j(~r, t)

∣∣2 = Ψ
†(~r, t)Ψ(~r, t) should be the probability

density for the Dirac particle. Let us look for the corresponding probability current
density and the continuity equation. To this end, we proceed as follows. Let us write
(3.613) as

ih̄
∂Ψ

∂ t
= mc2

βΨ− ih̄c~α ·~∇Ψ. (3.616)

The Hermitian conjugate of this equation is

−ih̄
∂Ψ

†

∂ t
= mc2

βΨ
† + ih̄c~∇Ψ

† ·~α. (3.617)

From these two equations, we get
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∂

∂ t

(
Ψ

†
Ψ
)
=

∂Ψ
†

∂ t
Ψ+Ψ

† ∂Ψ

∂ t

=

(
imc2

h̄
βΨ

†− c~∇Ψ
† ·~α

)
Ψ+Ψ

†
(
− imc2

h̄
βΨ− c~α ·~∇Ψ

)
=−c

(
~∇Ψ

† ·~αΨ+Ψ
†~α ·~∇Ψ

)
=−c~∇ ·

(
Ψ

†~αΨ
)
. (3.618)

Thus, we get the continuity equation

∂ρD

∂ t
+~∇ ·~jD = 0, (3.619)

where the Dirac probability density and the Dirac probability current density are
given, respectively, by

ρD(~r, t) = Ψ
†(~r, t)Ψ(~r, t),

~jD(~r, t) = cΨ
†(~r, t)~αΨ(~r, t). (3.620)

Note that ρD(~r, t) is nonnegative for all~̂r and t.
Note that starting with (3.613), and noting that ĤD is time-independent, we can

write (
ih̄

∂

∂ t

)2

Ψ(~r, t) =
(

mc2
β − ih̄c~α ·~∇

)(
ih̄

∂

∂ t

)
Ψ(~r, t)

=
(

mc2
β − ih̄c~α ·~∇

)2
Ψ(~r, t), (3.621)

which, after dividing by h̄2c2 and rearranging, simplifies to(
∇

2− 1
c2

∂ 2

∂ t2

)
Ψ(~r, t) =

(mc
h̄

)2
Ψ(~r, t), (3.622)

the free-particle Klein–Gordon equation for each component of the free-particle
Dirac spinor. This shows that the solutions of the free-particle Dirac equation sat-
isfy the free-particle Klein–Gordon equation. But, the converse is not true.

Let us now find the solutions of the free-particle Dirac equation. For a free particle
of mass m with momentum ~p, let us take

Ψ(~r, t) = ψe
i
h̄ (~p·~r−Et) =


ψ1
ψ2
ψ3
ψ4

e
i
h̄ (~p·~r−Et) (3.623)

as the general form of the Dirac plane wave spinor. Substituting this solution in
(3.613), we get (

mc2
β + c~α ·~p

)
ψe

i
h̄ (~p·~r−Et) = Eψe

i
h̄ (~p·~r−Et). (3.624)
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This leads to the eigenvalue equation

Hψ = Eψ, where H =
(
mc2

β + c~α ·~p
)
, (3.625)

which is the time-independent Dirac equation for the free particle. Let us now take

ψ =

(
ψ

u
ψ

`

)
, (3.626)

where

ψ
u
=

(
ψ1
ψ2

)
, ψ

`
=

(
ψ3
ψ4

)
. (3.627)

are the upper and lower pairs of components of ψ . Now, the equation (3.625)
becomes (

mc2 c~σ ·~p
c~σ ·~p −mc2

)(
ψ

u
ψ

`

)
= E

(
ψ

u
ψ

`

)
, (3.628)

or (
E−mc2)

ψ
u
= c~σ ·~pψ

`(
E +mc2)

ψ
`
= c~σ ·~pψ

u
. (3.629)

Solving these equations, one can express ψ
`

or ψ
u

in terms of the other:

ψ
`
=

c
E +mc2

~σ ·~pψ
u

ψ
u
=

c
E−mc2

~σ ·~pψ
`
. (3.630)

Substituting the above expression for ψ
`

in terms of ψ
u

on the right-hand side of
the first equation of (3.629), we get(

E2−m2c4)
ψ

u
= c2 p2

ψ
u
. (3.631)

Note that (~σ ·~p)2 = p2. Similarly, substituting the above expression for ψ
u

in terms
of ψ

`
on the right-hand side of the second equation of (3.629), we get(

E2−m2c4)
ψ

`
= c2 p2

ψ
`
. (3.632)

This shows that we must have

E =±
√

m2c4 + c2 p2 (3.633)

as the eigenvalues of H in (3.625). Since H is a four-dimensional Hermitian trace-
less matrix, its four real eigenvalues should be {E(p),E(p),−E(p),−E(p)}, where
E(p) = +

√
m2c4 + c2 p2, the positive square root of m2c4 + c2 p2.
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Now, following the first equation of (3.630) and taking E = E(p), let us write

ψ
E(p)

=

(
ψ

u
c

E(p)+mc2 ~σ ·~pψ
u

)
, (3.634)

where ψ
u

is arbitrary. It can be verified directly, with simple algebra, that ψ
E(p)

is
an eigenvector of H corresponding to the energy eigenvalue E(p) for any nontrivial
choice of ψ

u
, i.e.,

(
mc2 c~σ ·~p

c~σ ·~p −mc2

)(
ψ

u
c

E(p)+mc2 ~σ ·~pψ
u

)
= E(p)

(
ψ

u
c

E(p)+mc2 ~σ ·~pψ
u

)
.

(3.635)

To construct the positive-energy eigenvector, we have chosen the first equation of
(3.630) since the second equation becomes indeterminate when the particle is at its
rest frame, i.e., when p = 0 and hence E(p) = mc2. There are two linearly indepen-
dent choices for ψ

u
. Let us choose

ψ
(1)
u
=

(
1
0

)
, ψ

(2)
u
=

(
0
1

)
, (3.636)

in terms of which any two-dimensional column vector can be written as a linear
combination. Substituting these two choices for ψ

u
in (3.634), we write the two

linearly independent positive-energy eigenvectors of H, apart from normalization
factors, as

ψ
(+)
(E(p)) =


1
0

cpz
E(p)+mc2

cp+
E(p)+mc2

 , ψ
(−)
(E(p)) =


0
1

cp−
E(p)+mc2
−cpz

E(p)+mc2

 , (3.637)

where p+ = px+ ipy and p− = px− ipy. When the particle moves nonrelativistically,
i.e., p� mc, the lower pair of components of ψ

(±)
(E(p)) are seen to be much smaller

than the upper pair of components.
Similarly, starting from the second equation of (3.630) and substituting E =

−E(p), we can construct the negative-energy eigenvectors of H. It can be verified
directly that

(
mc2 c~σ ·~p

c~σ ·~p −mc2

)( −c
E(p)+mc2 ~σ ·~pψ

`

ψ
`

)
=−E(p)

(
−c

E(p)+mc2 ~σ ·~pψ
`

ψ
`

)
.

(3.638)
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From this it follows that, taking ψ
`

to be
(

1
0

)
and

(
0
1

)
, we can write down

the two linearly independent negative energy eigenvectors of H, apart from normal-
ization factors, as

ψ
(+)
(−E(p)) =


−cpz

E(p)+mc2
−cp+

E(p)+mc2

1
0

 , ψ
(−)
(−E(p)) =


−cp−

E(p)+mc2
cpz

E(p)+mc2

0
1

 . (3.639)

Note that the two negative-energy eigenvectors are linearly independent of the two
positive-energy eigenvectors since a negative-energy eigenvector cannot be a linear
combination of positive-energy eigenvectors. It is seen that when the particle moves
nonrelativistically the upper pair of components of the aforementioned negative-
energy eigenvectors are much smaller than the lower pair of components.

Let us write

ψ
(+)
(E(p)) = ψ

(1), ψ
(−)
(E(p)) = ψ

(2),

ψ
(+)
(−E(p)) = ψ

(3), ψ
(−)
(−E(p)) = ψ

(4). (3.640)

It can be verified that they are orthogonal to each other, i.e.,
(

ψ( j)
)†

ψ(k) = 0, for
j 6= k. Then, the four linearly independent orthonormal eigensolutions of the time-
dependent Dirac equation for a free particle can be written as

Ψ
1
~p(~r, t) = Nψ

(1)e
i
h̄ (~p·~r−E(p)t),

Ψ
2
~p(~r, t) = Nψ

(2)e
i
h̄ (~p·~r−E(p)t),

Ψ
3
~p(~r, t) = Nψ

(3)e
i
h̄ (~p·~r+E(p)t),

Ψ
4
~p(~r, t) = Nψ

(4)e
i
h̄ (~p·~r+E(p)t), (3.641)

where N is a normalization factor. Note that N is common for all the four solutions
since

(
ψ( j)

)†
ψ( j) =

(
2E(p)/E(p)+mc2

)
, for all j = 1,2,3,4.

It can be checked that for both the positive-energy eigenstates Ψ
1
~p and Ψ

2
~p the

probability density ρD = Ψ
†
Ψ is 2|N|2E(p)/

(
E(p)+mc2

)
and the probability cur-

rent density ~jD = cΨ
†~αΨ is ρD

(
c2~p/E(p)

)
= ρD~v, where ~v is the velocity of the

particle. For the negative-energy eigenstates, Ψ
3
~p and Ψ

4
~p, the probability density is

2|N|2E(p)/
(
E(p)+mc2

)
and the current density turns out to be −ρD

(
c2~p/E(p)

)
.

Since for a relativistic negative-energy particle, with −m as the rest mass, the
momentum is ~p = −m~v/

√
1− (v2/c2) = −E(p)~v/c2, the current density is ρD~v as

expected.
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3.4.2.2 Zitterbewegung
In the Heisenberg picture, we have

~̂p(t) = e
it
h̄ ĤD~̂pe−

it
h̄ ĤD = ~̂p(0), (3.642)

since
[
ĤD,~̂p

]
= 0. In other words, momentum is conserved for a free Dirac particle.

For position, we get

~r(t) = e
it
h̄ ĤD~re−

it
h̄ ĤD

=~r(0)+
it
h̄

[
ĤD,~r

]
+

1
2!

(
it
h̄

)2 [
ĤD,

[
ĤD,~r

]]
+

1
3!

(
it
h̄

)3 [
ĤD,

[
ĤD,

[
ĤD,~r

]]]
+ · · ·

=~r(0)+ ct~α +
c2t2

h̄

(
imcβ~α +~̂p×~Σ

)
+ · · · , (3.643)

where
~Σ = I⊗~σ =

(
~σ 0
0 ~σ

)
, (3.644)

a very complicated result. So, we have to follow a different approach as is usually
done. In the Heisenberg picture, we have for the time-independent free particle,

d~r(t)
dt

=
i
h̄

[
ĤD,~r(t)

]
=

i
h̄

e
it
h̄ ĤD

[
ĤD,~r

]
e−

it
h̄ ĤD

= ce
it
h̄ ĤD~αe−

it
h̄ ĤD = c~α(t). (3.645)

Then,

d2~r(t)
dt2 = c

d~α(t)
dt

=
ic
h̄

[
ĤD,~α(t)

]
=

ic
h̄

e
it
h̄ ĤD

[
ĤD,~α

]
e−

it
h̄ ĤD

=
ic
h̄

e
it
h̄ ĤD

[(
ĤD~α +~αĤD

)
−2~αĤD

]
e−

it
h̄ ĤD

=
ic
h̄

e
it
h̄ ĤD

[
2
(

c~̂p−~αĤD

)]
e−

it
h̄ ĤD

=
2ic
h̄

(
c~̂p(0)−~α(t)ĤD

)
(3.646)

Taking the Hermitian conjugate of this equation and dividing throughout by c, we
get

d~α(t)
dt

=
2i
h̄

(
ĤD~α(t)− c~̂p(0)

)
. (3.647)
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From this, we find

d
dt

(
e−

2it
h̄ ĤD~α(t)

)
=−2ic

h̄
e−

2it
h̄ ĤD~̂p(0). (3.648)

It is straightforward to integrate this equation to get

e−
2it
h̄ ĤD~α(t)−~α =

(
e−

2it
h̄ ĤD −1

) c~̂p(0)

ĤD

. (3.649)

Solving for ~α(t) and substituting in (3.645), we get

d~r(t)
dt

=
c2~̂p(0)

ĤD

+ e
2it
h̄ ĤD

(
c~α− c2~̂p(0)

ĤD

)
. (3.650)

Integrating this equation, we have

~r(t) =~r(0)+
c2~̂p(0)

ĤD

t− ih̄c

2ĤD

e
2it
h̄ ĤD

(
~α− c~̂p(0)

ĤD

)
. (3.651)

The first term gives the initial value of~r. The second term gives correctly the position
at time t corresponding to the constant velocity c2~̂p(0)/ĤD, or c2~p(0)/E(p). The last
term indicates a complicated oscillatory motion with an extremely small amplitude
h̄c/2E∼ h̄/2mc and extremely high frequency 2E/h̄∼ 2mc2/h̄. This rapid oscillation
is called Zitterbewegung (German word meaning trembling motion). The amplitude
of this oscillation is ∼ h/mc, the Compton wavelength of the electron, and hence
it is meaningless to specify the position of an electron to an accuracy less than its
Compton wavelength.

3.4.2.3 Spin and Helicity of the Dirac Particle
We have found already that all the components of the orbital angular momentum

operator~̂L commute with p̂2 (see (3.205)). Hence,~̂L commutes with the nonrelativis-
tic free-particle Hamiltonian p̂2/2m. Then, from the Heisenberg equation of motion,
it follows that the orbital angular momentum is conserved for a nonrelativistic free

particle. Let us check whether ~̂L is conserved for a free Dirac particle. To this end,

we find the commutator of the free-particle Dirac Hamiltonian with ~̂L:[
ĤD , L̂z

]
=
[
mc2

β + c~α ·~̂p , L̂z

]
= c
[
αx p̂x +αy p̂y , L̂z

]
=−ih̄c(αx p̂y−αy p̂x) ,

(3.652)
using the commutation relations (3.205). Similarly, we have[

ĤD , L̂x

]
=−ih̄c(αy p̂z−αz p̂y) ,

[
ĤD , L̂y

]
=−ih̄c(αz p̂x−αx p̂z) . (3.653)

These three commutation relations, which can be written compactly as[
ĤD , ~̂L

]
=−ih̄c~α×~̂p, (3.654)
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show that the orbital angular momentum is not conserved for the free Dirac particle.
Now, define

~S=
h̄
2
~Σ. (3.655)

It is straightforward to see, using the Pauli algebra (3.475), that[
ĤD,~S

]
=

h̄
2

[(
mc2I c~σ ·~̂p
c~σ ·~̂p −mc2I

)
,

(
~σ 0
0 ~σ

)]
= ih̄c~α×~̂p, (3.656)

exactly opposite of
[
ĤD ,

~̂L
]
! Thus,[

ĤD ,
~̂L+~S

]
= 0. (3.657)

So, we can take
~JD =~̂L+~S=

(
~̂r×~̂p

)
+

h̄
2
~Σ (3.658)

as the conserved total angular momentum of the Dirac particle and recognize ~S as
its intrinsic angular momentum, or spin. Since Sz has eigenvalues ± h̄

2 and S2 = S2
x +

S2
y +S2

z =
3
4 h̄2 I = 1

2

(
( 1

2 +1
)

h̄2I, we find that the Dirac particle has spin h̄
2 .

From (3.637) to (3.641), it is seen that when the Dirac particle is at rest E =±mc2

and its eigenstates are

Ψ
1
0(~r, t) = N


1
0
0
0

e−imc2t/h̄,

Ψ
2
0(~r, t) = N


0
1
0
0

e−imc2t/h̄,

Ψ
3
0(~r, t) = N


0
0
1
0

eimc2t/h̄,

Ψ
4
0(~r, t) = N


0
0
0
1

eimc2t/h̄. (3.659)

Eigenstates Ψ
1
0 and Ψ

2
0 correspond to positive energy mc2, and Ψ

3
0 and Ψ

4
0 correspond

to negative energy−mc2. The first two states are also eigenstates of Sz corresponding
to eigenvalues h̄

2 and − h̄
2 , respectively:
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Sz Ψ
1
0 =

h̄
2

Σz Ψ
1
0 =

h̄
2

Ψ
1
0,

Sz Ψ
2
0 =

h̄
2

Σz Ψ
2
0 =−

h̄
2

Ψ
2
0. (3.660)

Similarly, the last two states are seen to be eigenstates of Sz corresponding to eigen-
values h̄

2 and − h̄
2 , respectively:

Sz Ψ
3
0 =

h̄
2

Σz Ψ
3
0 =

h̄
2

Ψ
3
0,

Sz Ψ
4
0 =

h̄
2

Σz Ψ
4
0 =−

h̄
2

Ψ
4
0. (3.661)

All the four states Ψ
j
0, j = 1,2,3,4, have S2 = 3

4 h̄2. Thus, when the particle is at rest,
the two degenerate energy (positive or negative) eigenstates correspond to the two
eigenstates of the z-component of spin, Sz, namely, + and −, or up and down.

In general, when the particle is moving, the four eigenstates (3.641) are not eigen-
states of spin. To understand what distinguishes the two degenerate energy (positive
or negative) eigenstates corresponding to the particle in motion, let us introduce the
helicity operator

ĥ=


~σ ·~̂p∣∣∣~̂p∣∣∣ O

O ~σ ·~̂p∣∣∣~̂p∣∣∣

=
~Σ ·~̂p∣∣∣~̂p∣∣∣ . (3.662)

Helicity gives the component of spin in the direction of the momentum of the particle
in units of h̄

2 and has eigenvalues ±1 since ĥ2 = I. Note that the helicity operator
commutes with the free-particle Dirac Hamiltonian, i.e.,

[
ĤD, ĥ

]
=


(

mc2I c~σ ·~̂p
c~σ ·~̂p −mc2I

)
,


~σ ·~̂p∣∣∣~̂p∣∣∣ O

O ~σ ·~̂p∣∣∣~̂p∣∣∣


= 0. (3.663)

For a free Dirac particle, the momentum is a constant of motion since ~̂p commutes
with ĤD. When the particle is moving with a constant momentum ~p, if the z-axis is
aligned with the direction of motion of the particle, the two positive-energy eigen-
states (3.641) become, with p = |~p|,

Ψ
1
~p =


1
0
cp

E(p)+mc2

0

e
i
h̄ (pz−E(p)t),

Ψ
2
~p =


0
1
0
−cp

E(p)+mc2

e
i
h̄ (pz−E(p)t), (3.664)
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and they are eigenstates of helicity:

ĥ Ψ
1
~p = Ψ

1
~p, ĥ Ψ

2
~p =− Ψ

2
~p. (3.665)

In other words, while in the case of the particle being at rest, a measurement of the
component of spin in any direction will give a definite result±h̄/2, and in the case of
the particle in motion, the component of spin in the direction of its momentum will
give a definite result ±h̄/2. If the helicity is +1, the particle is called right handed,
and if the helicity is −1, the particle is said to be left handed. In a similar way we
can construct the two helicity eigenstates corresponding to negative energy. With the
z-axis aligned in the direction of the momentum ~p, the negative-energy eigenstates
Ψ

3
~p and Ψ

4
~p are eigenstates of helicity with eigenvalues +1 and −1, respectively.

Negative-energy states of a Dirac particle are actually positive-energy states of the
corresponding antiparticle. The Dirac equation is also not a single particle equation.
However, when we are dealing with the dynamics of a spin- 1

2 particle with positive
energy and the process studied does not involve any particle creation and annihi-
lation, it should be appropriate to use the Dirac equation as if it is a one-particle
relativistic equation.

3.4.2.4 Spin Magnetic Moment of the Electron
and the Dirac–Pauli Equation

In presence of an electromagnetic field, with φ and ~A as the scalar and vector poten-
tials, the Dirac equation for the electron is(

ih̄
∂

∂ t
+ eφ

)
Ψ(~r, t) =

(
mec2

β + c~α ·~̂π
)

Ψ(~r, t), with ~̂π = ~̂p+ e~A, (3.666)

obtained from the free-particle equation by the replacement ih̄∂/∂ t −→ (ih̄∂/∂ t)+
eφ and ~̂p−→ ~̂π following the principle of minimal electromagnetic coupling. Let us
now consider the state of a positive-energy electron to be given by

Ψ =

(
Ψ u
Ψ `

)
= e−imec2t/h̄

(
Ψ u

Ψ l

)
. (3.667)

Now, the time-dependent Dirac equation (3.666) becomes(
mec2 + ih̄

∂

∂ t

)(
Ψ u

Ψ l

)
=

( (
mec2− eφ

)
I c~σ ·~̂π

c~σ ·~̂π −
(
mec2 + eφ

)
I

)(
Ψ u

Ψ l

)
. (3.668)

Rewriting this as a pair of coupled equations for Ψ u and Ψ l, we have

ih̄
∂Ψ u

∂ t
= c~σ ·~̂πΨ l− eφΨ u

ih̄
∂Ψ l

∂ t
= c~σ ·~̂πΨ u−

(
2mec2 + eφ

)
Ψ l. (3.669)
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Let us now consider the electron to be nonrelativistic such that the rest energy mec2

is very much larger than its kinetic and potential energies. Because of this in the sec-
ond of the above pair of equations, we can replace

(
2mec2 + eφ

)
by 2mec2. Further,

we can take ih̄∂Ψ l/∂ t to be negligible compared to the term 2mec2Ψ l, since the for-
mer term will be ∼ (kinetic energy)Ψ l after having pulled out the factor e−imec2t/h̄

from Ψ `. With this approximation, the second of the above pair of equations can be
written as

2mec2
Ψ l = c~σ ·~̂πΨ u. (3.670)

This shows that in the nonrelativistic limit the upper pair of components are large
compared to the lower pair of components in the positive-energy Dirac spinors even
in the presence of an electromagnetic field. We saw this behavior in the case of free-
particle solutions (3.641) earlier. Using the relation (3.670) to replace Ψ l in the first
of the pair of equations (3.669), and renaming Ψ u as ΨNRP, we get

ih̄
∂ΨNRP

∂ t
=

[
1

2me

(
~σ ·~̂π

)2
− eφ

]
ΨNRP, (3.671)

which is same as the nonrelativistic equation for the electron including spin (3.474).

As seen already, on expanding
(
~σ ·~̂π

)2
, this equation becomes

ih̄
∂ΨNRP

∂ t
=

 ~̂π
2

2me
− eφ

 I +µB~σ ·~B

ΨNRP, (3.672)

where the last term represents the interaction energy of the electron spin magnetic
moment with the magnetic field. While in the Schrödinger–Pauli equation (3.472)
this last term was added by hand, of course necessitated by experimental results, the
Dirac equation leads to it, the correct spin magnetic moment term, naturally.

As already noted, electron has a magnetic moment slightly greater than the mag-
netic moment predicted by the Dirac equation. When this anomalous magnetic
moment µa is taken into account, the time-evolution equation for the electron in
an electromagnetic field becomes

ih̄
∂Ψ

∂ t
=
(

mec2
β + c~α ·~̂π− eφ −µaβ~Σ ·~B

)
Ψ, (3.673)

the Pauli–Dirac equation in which the Pauli term, the last term, has been added to
the Dirac Hamiltonian.

3.4.2.5 Electron in a Constant Magnetic Field
Let us consider an electron moving in a constant magnetic field ~B. We can take φ = 0
and ~A = ~A(~r) independent of time. Let us ignore the anomalous magnetic moment.
Then, the time-independent Dirac equation for the stationary state is(

mec2
β + c~α ·~̂π

)
ψ(~r) = Eψ(~r), (3.674)
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obtained by taking Ψ(~r, t) = e−iEt/h̄ψ(~r) in (3.666). Taking ψ =

(
ψ

u
ψ

`

)
, we have

(
mec2I c~σ ·~̂π
c~σ ·~̂π −mec2I

)(
ψ

u
ψ

`

)
= E

(
ψ

u
ψ

`

)
. (3.675)

This leads to

c~σ ·~̂πψ
`
=
(
E−mec2)

ψ
u
,

c~σ ·~̂πψ
u
=
(
E +mec2)

ψ
`
. (3.676)

Solving for ψ
`

from the second equation and substituting it in the first equation,
we get

c2
(
~σ ·~̂π

)2
ψ

u
=
(
E2−m2

ec4)
ψ

u
(3.677)

leading to an eigenvalue equation for E2[
m2

ec4 + c2
(
~σ ·~̂π

)2
]

ψ
u
= E2

ψ
u
. (3.678)

If we solve for ψ
u

from the first equation and substitute it in the second, it will lead
to the same eigenvalue equation for E2 with just ψ

u
replaced by ψ

`
. Expanding the

above equation, we get(
m2

ec4 + c2~̂π
2
+ c2eh̄~σ ·~B

)
ψ

u
= E2

ψ
u
. (3.679)

For the magnetic field ~B = B~k, we can take ~A = ~B×~r/2 so that{
c2

[(
p̂x−

1
2

eBy
)2

+

(
p̂y +

1
2

eBx
)2

+ p̂2
z

]
+m2

ec4 + c2eh̄σzB

}
ψ

u
= E2

ψ
u
.

(3.680)
Following what we did in the case of the Klein–Gordon equation, we shall write the
above equation as(

2mec2ĤNRL+m2c4 + c2eh̄σzB
)

ψ
u

=


2mec2ĤNRL+m2

ec4 0
+c2h̄eB

2mec2ĤNRL+m2
ec4

0 −c2h̄eB




ψ1

ψ2


= E2

(
ψ1
ψ2

)
. (3.681)
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The general solution of this equation is

Ψ u(~r) =
(

ψ1(~r)
ψ2(~r)

)
=

(
c1ψn−1,mφ ,pz(~r)
c2ψn,mφ ,pz(~r)

)
, (3.682)

and

E2
n,pz = 2mec2

[
p2

z

2me
+

(
n− 1

2

)
h̄eB
me

]
+m2

ec4 + c2h̄eB

= 2mec2
[

p2
z

2me
+

(
n+

1
2

)
h̄eB
me

]
+m2

ec4− c2h̄eB

= m2
ec4 + c2 p2

z +2mec2
[(

n∓ 1
2

)
h̄eB
me

]
± c2h̄eB

= m2
ec4 + c2 p2

z +2nc2h̄eB

= m2
ec4

[
1+
(

pz

mec

)2

+
2nh̄eB
m2

ec2

]
, (3.683)

with infinite degeneracy due to the angular momentum quantum number mφ =
0,1,2, . . .. We shall consider the positive square root and write

En,pz = mec2

√√√√[1+
(

pz

mec

)2

+
2nh̄eB
m2

ec2

]
. (3.684)

In the nonrelativistic limit, when pz� mec and h̄eB� m2
ec2, we get

En,pz ≈ mec2

[
1+

1
2

(
pz

mec

)2

+
nh̄eB
m2

ec2

]

= mec2 +
p2

z

2me
+n
(

h̄eB
me

)
, n = 1,2,3, . . . , (3.685)

which coincides with the Landau energy levels (3.485) for a nonrelativistic electron
obeying the Schrödinger–Pauli equation. Once Ψ u is known, Ψ ` can be found from
the second equation in (3.676) (For more details on the problem of Dirac electron in
a constant magnetic field, see, e.g., Johnson and Lippmann [88]).

3.4.3 FOLDY–WOUTHUYSEN TRANSFORMATION

3.4.3.1 Foldy–Wouthuysen Representation of the Dirac Equation
We obtained the Schrödinger–Pauli equation by taking the nonrelativistic limit of the
Dirac equation. In this approximation we found the upper pair of components to be
larger than the lower pair of components in the positive-energy Dirac spinors. We
have seen already that, in the negative-energy free-particle spinors, the lower pair of
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components are large compared to the upper pair of components. This indicates that
if we could somehow transform the Hamiltonian to a direct sum of two-dimensional
blocks, then we would have separate equations for two-component positive-energy
and negative-energy spinors. It is not possible to achieve this through a similarity
transformation using a unitary operator, because the minimum dimension of irre-
ducible faithful representation of the algebra of β and α matrices is four. So, at best,
what we can hope for is to transform to a new representation in which the Hamil-
tonian has the off-diagonal two-dimensional blocks as small as we desire, in terms
of some order parameter, compared to the diagonal blocks. Then, the new Hamil-
tonian can be approximated by its block diagonal form dropping the off-diagonal
blocks. This is achieved through a transformation technique, the Foldy–Wouthuysen
transformation technique (Foldy and Wouthuysen [53]). Pryce [151] and Tani [177]
had also anticipated this transformation, and hence it is sometimes called the Pryce–
Tani–Foldy–Wouthuysen transformation (see, e.g., Bell [8]; see Acharya and Sudar-
shan [1] for a general discussion of the role of Foldy–Wouthuysen-type transforma-
tions in particle interpretation of relativistic wave equations).

In general, if we make a unitary transformation of the state vector evolving in time
according to a Hamiltonian Ĥ, i.e.,

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ|Ψ(t)〉, (3.686)

then the transformed state vector, say |Ψ′(t)〉= eiŜ(t)|Ψ(t)〉, obeys the equation

ih̄
∂

∂ t

(
e−iŜ(t)|Ψ′(t)〉

)
= ih̄

(
∂e−iŜ(t)

∂ t

)
|Ψ′(t)〉+ ih̄e−iŜ(t) ∂ |Ψ′(t)〉

∂ t

= Ĥe−iŜ(t)|Ψ′(t)〉. (3.687)

Operating from left by eiŜ(t) and rearranging the terms, this equation becomes

ih̄
∂ |Ψ′(t)〉

∂ t
=

[
eiŜ(t)Ĥe−iŜ(t)− ih̄

(
eiŜ(t) ∂e−iŜ(t)

∂ t

)]
|Ψ′(t)〉. (3.688)

In other words, the transformed state vector |Ψ′(t)〉 evolves in time according to the
equation

ih̄
∂ |Ψ′(t)〉

∂ t
= Ĥ ′|Ψ′(t)〉,

Ĥ ′ = eiŜ(t)Ĥe−iŜ(t)− ih̄

(
eiŜ(t) ∂e−iŜ(t)

∂ t

)
, (3.689)

with Ĥ ′ as the transformed Hamiltonian. To calculate Ĥ ′ from Ĥ and Ŝ(t), we will
need, besides (3.138), the following identity:
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eÂ(t) ∂

∂ t

(
e−Â(t)

)
=

(
I + Â(t)+

1
2!

Â(t)2 + · · ·
)

× ∂

∂ t

(
I− Â(t)+

1
2!

Â(t)2−·· ·
)

=

(
I + Â(t)+

1
2!

Â(t)2 + · · ·
)(
−∂ Â(t)

∂ t

+
1
2!

{
∂ Â(t)

∂ t
Â(t)+ Â(t)

∂ Â(t)
∂ t

}
−·· ·

)

=−∂ Â(t)
∂ t
− 1

2!

[
Â(t),

∂ Â(t)
∂ t

]

− 1
3!

[
Â(t),

[
Â(t),

∂ Â(t)
∂ t

]]

− 1
4!

[
Â(t),

[
Â(t),

[
Â(t),

∂ Â(t)
∂ t

]]]
−·· · . (3.690)

For a guidance to arrive at a new representation in which the Dirac Hamiltonian
in the presence of an electromagnetic field would be block diagonalized to a desired
order of approximation, let us look at the free-particle Hamiltonian for which we
have found the exact eigenvectors, or in other words, the exact diagonalizing trans-
formation. For the free-particle Hamiltonian matrix H = mc2β + c~α ·~p in (3.625),
we have found four eigenvectors

{
ψ( j) | j = 1,2,3,4

}
such that

Hψ
( j) = E(p)ψ( j), for j = 1,2,

Hψ
( j) =−E(p)ψ( j), for j = 3,4, (3.691)

which obey the orthogonality relations

ψ
( j)†

ψ
(k) =

2E(p)
E(p)+mc2 δ jk, j,k = 1,2,3,4. (3.692)

Let us form the matrix

U =

√
E(p)+mc2

2E(p)


ψ(1)†

ψ(2)†

ψ(3)†

ψ(4)†

 . (3.693)

It follows that, with
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U† =
1√

2E(p)(E(p)+mc2)

(
ψ

(1)
ψ

(2)
ψ

(3)
ψ

(4)
)

=
1√

2E(p)(E(p)+mc2)
×

E(p)+mc2 0 −cpz −cp−
0 E(p)+mc2 −cp+ cpz

cpz cp− E(p)+mc2 0
cp+ −cpz 0 E(p)+mc2


=

√
E(p)+mc2

2E(p)
I− cp√

2E(p)(E(p)+mc2)
β

c~α ·~p
cp

, (3.694)

we have

UHU† = E(p)β , (3.695)

where E(p)β is the diagonal form of H. Note that

(√
E(p)+mc2

2E(p)

)2

+

(
cp√

2E(p)(E(p)+mc2)

)2

= 1. (3.696)

Hence, taking√
E(p)+mc2

2E(p)
= cos(cpθ),

cp√
2E(p)(E(p)+mc2)

= sin(cpθ), (3.697)

let us write

U† = cos(cpθ)I− sin(cpθ)β
c~α ·~p

cp
, (3.698)

and note that

UU† =

(
cos(cpθ)I− sin(cpθ)

c~α ·~p
cp

β

)(
cos(cpθ)I− sin(cpθ)β

c~α ·~p
cp

)
= cos2(cpθ)I− cos(cpθ)sin(cpθ)

(
β

c~α ·~p
cp

+
c~α ·~p

cp
β

)
+ sin2(cpθ)

(
c~α ·~p

cp
β

2 c~α ·~p
cp

)
=
(
cos2(cp)θ)+ sin2(cpθ)

)
I = I, (3.699)

where we have used the hermiticity of β and αs and their anticommutation relations
(3.604). It can be checked from (3.697) that tan(2cpθ) = p/mc. Since (βc~α ·~p)2 =
−c2 p2I, we have
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e−i(−iθβc~α·~p) = e−θβc~α·~p

= I−θβc~α ·~p− (cpθ)2

2!
I +

(cp)2θ 3

3!
βc~α ·~p+ · · ·

=

(
1− (cpθ)2

2!
+

(cpθ)4

4!
−·· ·

)
I

−
(

cpθ − (cpθ)3

3!
+

(cpθ)5

5!
−·· ·

)
β

c~α ·~p
cp

= cos(cpθ)I− sin(cpθ)β
c~α ·~p

cp
=U†. (3.700)

Now, if we take
S =−iθβc~α ·~p, (3.701)

then
S† = S, U† = e−iS, U = eiS. (3.702)

Thus, we can write (3.695) as

eiS(mc2
β + c~α ·~p)e−iS =

√
m2c4 + c2 p2 β ,

with S =−iθβc~α ·~p, and tan(2cpθ) =
p

mc
. (3.703)

Since the components of ~̂p commute with each other, we can replace ~p in the above
equation by ~̂p so that we have

eiŜ(mc2
β + c~α ·~̂p)e−iŜ =

√
m2c4 + c2 p̂2 β ,

with Ŝ =−iθβc~α ·~̂p, and 2c|~̂p|θ = tan−1
(
|~̂p|/mc

)
. (3.704)

Now, it is clear from the above discussion that under the change of representa-
tion |Ψ〉 −→ |Ψ′〉 = eiŜ|Ψ〉 = eθβc~α·~̂p|Ψ〉 the free-particle Dirac Hamiltonian ĤD =

mc2β + c~α ·~̂p is reduced to its diagonal form Ĥ ′ = eiŜĤe−iŜ =
√

m2c4 + c2 p2 β .
Note that in this case of the Foldy–Wouthuysen transformation for the free particle,
eiŜ is time-independent, and hence the resulting transformation of the Hamiltonian
(3.689) becomes Ĥ ′ = eiŜĤe−iŜ. Now, note that we can write U† in (3.694) as

U† = (H +E(p)β )β . (3.705)

Thus, the eigenvectors of the free-particle Dirac Hamiltonian matrix H are given
simply by the columns of (H +E(p)β )β , or (H +E(p)β ) apart from an overall
minus sign for the negative-energy eigenvectors (see Ramakrishnan [155]). Further,
we note that in the free-particle case, the Foldy–Wouthuysen transformation matrix is
given simply by U = β (H+E(p)β ) with its row vectors as the Hermitian conjugates
of the eigenvectors of H apart from an overall minus sign for the negative-energy
eigenvectors (see Tekumalla [178]), and Tekumalla and Santhanam [179] for related
work).
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To develop the Foldy–Wouthuysen transformation technique for the case of the
Dirac particle in the presence of an electromagnetic field, we shall proceed as fol-
lows. First let us have a closer look at the free-particle case. Using the identities
(3.138) and (3.690), in general, for Ĥ ′ in (3.689), we have

Ĥ ′ = eiŜĤe−iŜ− ih̄

(
eiŜ ∂e−iŜ

∂ t

)

= Ĥ + i
[
Ŝ, Ĥ

]
+

i2

2!

[
Ŝ,
[
Ŝ, Ĥ

]]
+

i3

3!

[
Ŝ,
[
Ŝ,
[
Ŝ, Ĥ

]]]
+

i4

4!

[
Ŝ,
[
Ŝ,
[
Ŝ,
[
Ŝ, Ĥ

]]]]
+ · · ·

− ih̄

(
−i

∂ Ŝ
∂ t
− i2

2!

[
Ŝ,

∂ Ŝ
∂ t

]
− i3

3!

[
Ŝ,

[
Ŝ,

∂ Ŝ
∂ t

]]

− i4

4!

[
Ŝ,

[
Ŝ,

[
Ŝ,

∂ Ŝ
∂ t

]]]
+ · · · .

)

= Ĥ− h̄
∂ Ŝ
∂ t

+ i

[
Ŝ, Ĥ− h̄

2
∂ Ŝ
∂ t

]
+

i2

2!

[
Ŝ,

[
Ŝ, Ĥ− h̄

3
∂ Ŝ
∂ t

]]

+
i3

3!

[
Ŝ,

[
Ŝ,

[
Ŝ, Ĥ− h̄

4
∂ Ŝ
∂ t

]]]
+ · · · . (3.706)

In the case of the free particle, Ĥ = mc2β +c~α ·~̂p and Ŝ =−iθβc~α ·~̂p with 2c|~̂p|θ =

tan−1
(
|~̂p|/mc

)
. Noting that Ŝ is independent of time, we have

Ĥ ′ = mc2
β + c~α ·~̂p−2θmc3~α ·~̂p+2θc2~̂p

2
β

−2θ
2mc4~̂p

2
β −2θ

2c3~̂p
2
~α ·~̂p+ · · · . (3.707)

Let us consider the nonrelativistic case when |~̂p|/mc� 1. Then, θ ≈ 1/2mc2 and we
get

Ĥ ′ ≈ mc2
β + c~α ·~̂p− c~α ·~̂p+

~̂p
2

m
β −

~̂p
2

2m
β −

~̂p
2

2m2c2 c~α ·~̂p

=

(
mc2 +

~̂p
2

2m

)
β − 1

2

(
~̂p
mc

)2

c~α ·~̂p. (3.708)

In this expression for Ĥ ′, the first two terms are the first two terms of the nonrelativis-

tic approximation of
√

m2c4 + c2~̂p
2
β , representing the rest energy and the nonrela-

tivistic kinetic energy, respectively. This term, like mc2β in Ĥ, containing nonzero
2× 2 matrix blocks only along the diagonal, is known as an even term that does
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not couple the upper and lower pairs of the Dirac spinor, or the larger and smaller
components of the Dirac spinor in the nonrelativistic case. The third, last, term of Ĥ ′

is like the second, last, term of Ĥ, an odd term that contains nonzero 2× 2 matrix
blocks only along the off-diagonal and hence couples the upper and lower pairs of
the Dirac spinor. It should be noted that the odd term of Ĥ ′ is much weaker, being
of second order in |~̂p|/mc (� 1), compared to the odd term of Ĥ which is of zeroth
order in |~̂p|/mc.

It is clear from the derivation of Ĥ ′ from Ĥ that the weakening of the odd term in
Ĥ ′ is the result of the anticommutation relation between β and the odd term c~α ·~̂p.
In general, one can see that β anticommutes with any odd term:(

I O
O −I

)(
O A
B O

)
=−

(
O A
B O

)(
I O
O −I

)
, (3.709)

where A and B are arbitrary nonzero 2×2 matrices, i.e., if Ô is an odd term in a Dirac
Hamiltonian, with nonzero 2×2 block matrices only along the off-diagonal, then

β Ô =−Ôβ . (3.710)

Any even term having nonzero 2× 2 block matrices only along the diagonal com-
mutes with β . This relation between β and the odd and even terms is the basis for
the systematic approximation of the Dirac equation using the Foldy–Wouthuysen
transformation.

Let us now consider the Dirac equation for a particle of mass m and charge q in
an electromagnetic field:

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ|Ψ(t)〉,

Ĥ = mc2
β + Ê + Ô,

Ê = qφ I = qφ

(
I O
O I

)
,

Ô = c~α ·~̂π = c

(
O ~σ ·~̂π

~σ ·~̂π O

)
, (3.711)

where ~̂π = ~̂p− q~A, and Ê and Ô are even and odd terms, respectively. Let us now
make the transformation ∣∣∣Ψ(1)(t)

〉
= eiŜ1 |Ψ(t)〉 , (3.712)

with
Ŝ1 =−

i
2mc2 β Ô. (3.713)

This will transform (3.711) into

ih̄
∂

∂ t

∣∣∣Ψ(1)(t)
〉
= Ĥ(1)

∣∣∣Ψ(1)(t)
〉
, (3.714)
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where

Ĥ(1) = eiŜ1Ĥe−iŜ1 − ih̄

(
eiŜ1

∂e−iŜ1

∂ t

)
. (3.715)

It is straightforward to calculate Ĥ(1) using (3.706), (3.713), and the relations β Ô =

−Ôβ and β Ê = Ê β . The result is independent of the particular forms of Ê and Ô .
The result is

Ĥ(1) ≈ mc2
β + Ê (1)+ Ô(1), (3.716)

where

Ê (1) = Ê +
1

2mc2 β Ô2− 1
8m2c4

[
Ô,

([
Ô, Ê

]
+ ih̄

∂ Ô

∂ t

)]
− 1

8m3c6 β Ô4,

Ô(1) =
1

2mc2 β

([
Ô, Ê

]
+ ih̄

∂ Ô

∂ t

)
− 1

3m2c4 Ô3. (3.717)

The even and odd terms of Ĥ(1), namely Ê (1) and Ô(1), obey the same relations with
β like Ê and Ô of Ĥ, i.e.,

β Ê (1) = Ê (1)
β , β Ô(1) =−Ô(1)

β . (3.718)

Note that we can regard 1/mc2 as an expansion parameter for the expression (3.716
and 3.717) for Ĥ(1). It is seen that while the odd term Ô in Ĥ is of order zero with
respect to 1/mc2 the odd term in Ĥ(1), Ô(1), contains only terms of order 1/mc2 and
higher powers of 1/mc2.

Let us now apply another transformation with the same prescription:∣∣∣Ψ(2)(t)
〉
= eiŜ2

∣∣∣Ψ(1)(t)
〉
, (3.719)

with

Ŝ2 =−
i

2mc2 β Ô(1)

=− i
2mc2 β

{
1

2mc2 β

([
Ô, Ê

]
+ ih̄

∂ Ô

∂ t

)
− 1

3m2c4 Ô3

}
. (3.720)

After this transformation, we have

ih̄
∂

∂ t

∣∣∣Ψ(2)(t)
〉
= Ĥ(2)

∣∣∣Ψ(2)(t)
〉
, (3.721)

with
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Ĥ(2) = mc2
β + Ê (2)+ Ô(2), (3.722)

where

Ê (2) ≈ Ê (1),

Ô(2) ≈ 1
2mc2 β

([
Ô(1), Ê (1)

]
+ ih̄

∂ Ô(1)

∂ t

)
. (3.723)

Note that Ô(2) is of order
(
1/mc2

)2.
A third transformation ∣∣∣Ψ(3)(t)

〉
= eiŜ3

∣∣∣Ψ(2)(t)
〉
, (3.724)

with

Ŝ3 =−
i

2mc2 β Ô(2)

=− i
2mc2 β

{
1

2mc2 β

([
Ô(1), Ê (1)

]
+ ih̄

∂ Ô(1)

∂ t

)}
, (3.725)

takes us to

ih̄
∂

∂ t

∣∣∣Ψ(3)(t)
〉
= Ĥ(3)

∣∣∣Ψ(3)(t)
〉
, (3.726)

with
Ĥ(3) = mc2

β + Ê (3)+ Ô(3), (3.727)

where

Ê (3) ≈ Ê (2) ≈ Ê (1)

Ô(3) ≈ 1
2mc2 β

([
Ô(2), Ê (2)

]
+ ih̄

∂ Ô(2)

∂ t

)
. (3.728)

Note that Ô(3) is of order
(
1/mc2

)3. Further, it may be noted that starting with the
second transformation successive even and odd terms can be obtained recursively
using the rule

Ê ( j) = Ê (1)
(
Ê −→ Ê ( j−1),Ô −→ Ô( j−1)

)
,

Ô( j) = Ô(1)
(
Ê −→ Ê ( j−1),Ô −→ Ô( j−1)

)
, j ≥ 2, (3.729)

and retaining only the relevant terms of required order at each step.
Stopping with the third transformation and neglecting Ô(3), we have
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Ĥ(3) = mc2
β + Ê +

1
2mc2 β Ô2

− 1
8m2c4

[
Ô,

([
Ô, Ê

]
+ ih̄

∂ Ô

∂ t

)]
− 1

8m3c6 β Ô4. (3.730)

Let us call
∣∣∣Ψ(3)(t)

〉
as |ΨFW(t)〉 and Ĥ(3) as ĤFW. We can calculate ĤFW by sub-

stituting Ê = qφ and Ô = c~α ·~π in (3.730). The resulting Dirac equation in the
Foldy–Wouthuysen representation is

ih̄
∂

∂ t
|ΨFW(t)〉= ĤFW |ΨFW(t)〉 , (3.731)

with

ĤFW ≈

mc2 +
~̂π

2

2m
−

~̂π
4

8m3c2

β +qφ − qh̄
2mc

β~Σ ·~B

− iqh̄2

8m2c2
~Σ ·
(
~∇×~E

)
− qh̄

4m2c2
~Σ ·
(
~E×~̂p

)
− qh̄2

8m2c2
~∇ ·~E. (3.732)

In this Foldy–Wouthuysen representation of the Dirac Hamiltonian, ĤFW, the three
terms in the first parenthesis, corresponding to the rest energy, nonrelativistic kinetic
energy, and the lowest order relativistic correction to the kinetic energy, result from

the binomial expansion of
√

m2c4 + c2~̂π
2
. The second and the third terms are the

electrostatic energy and the magnetic dipole energy, respectively. The next two
terms, taken together (for hermiticity), contain the spin-orbit interaction. The last
term, called the Darwin term, is attributed to the zitterbewegung, resulting in the
particle being under the influence of a somewhat smeared-out electrical potential.
Thus, it is clear that the Foldy–Wouthuysen transformation technique expands the
Dirac Hamiltonian as a power series in the parameter 1/mc2, leading to a systematic
approximation procedure for studying the deviations from the nonrelativistic situa-
tion. Further, with ĤFW having nonzero 2×2 blocks only along its diagonal, we have
actually two uncoupled equations for the two two-component spinors, one for posi-
tive energy and the other for negative energy. In (3.731), the upper two-component
spinor corresponds to positive energy and the lower two-component spinor corre-
sponds to negative energy. This can be seen by noting that, in the field-free case, the

upper two-component spinor evolves with the Hamiltonian
√

m2c4 + c2~̂p
2

and the

lower two-component spinor evolves with the Hamiltonian −
√

m2c4 + c2~̂p
2
. Thus,

we can use the Foldy–Wouthuysen representation to develop a two-component spinor
theory for positive-energy spin- 1

2 particles.
We have found that for the Dirac particle, the position operator, ~r, undergoes a

complicated motion, zitterbewegung, as found in the Heisenberg picture. Following



166 Quantum Mechanics of Charged Particle Beam Optics

the discussion on change of representation (see (3.130)), in the Foldy–Wouthuysen
representation, the corresponding position operator would be

~rFW = ÛFW~rÛ
†
FW, (3.733)

where ÛFW is the transformation relating the Foldy–Wouthuysen and the Dirac rep-
resentations as

|ΨFW〉= ÛFW |ΨD〉 . (3.734)

with
ÛFW = eiŜ3eiŜ2eiŜ1 , (3.735)

and Ŝ1, Ŝ2, and Ŝ3, given, respectively, by (3.713), (3.720), and (3.725). Let us con-
sider the case of the free particle with the Hamiltonian

ĤD = mc2
β + c~α ·~̂p. (3.736)

We know that
ÛFWĤDÛ†

FW = ĤFW =
√

m2c4 + c2 p̂2 β , (3.737)

where

ÛFW = eθcβ~α·~̂p, with tan
(

2cθ

∣∣∣~̂p∣∣∣)=
∣∣∣~̂p∣∣∣
mc

. (3.738)

Since unitary transformations do not change the commutation relations, in the
Foldy–Wouthuysen representation the position operator r̂FW would exhibit the
zitterbewegung phenomenon. However, if we take ~r itself as the position operator
in the Foldy–Wouthuysen representation, then we get, with

~r(t) = e
it
h̄ ĤFW~re−

it
h̄ ĤFW , (3.739)

in the Heisenberg picture,

d~r
dt

=
i
h̄

[
ĤFW,~r(t)

]
=

i
h̄

e
it
h̄ ĤFW

[
ĤFW,~r

]
e−

it
h̄ ĤFW . (3.740)

For the free particle, we have

d~r
dt

=
i
h̄

e
it
h̄ ĤFW

 c2~̂p√
m2c4 + c2~̂p

2
β

e−
it
h̄ ĤFW =

c2~̂p

ĤFW

. (3.741)

We shall take the canonical momentum operator in the Foldy–Wouthuysen repre-
sentation to be ~̂p = −ih̄~∇. For a free particle, there is no difference between the
canonical momentum and the kinetic momentum. Then, we can interpret c2~̂p/ĤFW

as the operator for the velocity of the particle since c2~p/E(~p) is the velocity of a
relativistic particle. Thus, there is no zitterbewegung for the operator~r in the Foldy–
Wouthuysen representation. Following Foldy and Wouthuysen [53], we can call~r as
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the mean position operator in the Foldy–Wouthuysen representation. It would corre-
spond to the operator

~rNW = Û†
FW~rÛFW

=~r+
iβ

2E(~̂p)

c~α− c3

E(~̂p)
(
E(~̂p)+mc2

) (~α ·~p)~p


− c2h̄

2E(~̂p)
(
E(~̂p)+mc2

)~Σ×~p (3.742)

representing the mean position in the Dirac representation which would not have
zitterbewegung. The notation~rNW is because of the fact that precisely this operator
was introduced, prior to the Foldy–Wouthuysen work, by Newton and Wigner [139]
as the position operator for the Dirac particle from general considerations of localiz-
ability. We have taken the canonical momentum operator in the Foldy–Wouthuysen
representation to be ~̂p. In the case of the free particle, the corresponding operator
for the canonical momentum in the Dirac representation is seen to be the same, as
we have

Û†
FW

~̂pÛFW = ~̂p, (3.743)

since ÛFW commutes with ~̂p. Thus, for a free particle, we can take~r and ~̂p = −ih̄~∇
as the operators corresponding to the mean position and momentum in the Foldy–
Wouthuysen representation.

Now, it may be noted that for the free particle

[
ĤFW ,~̂L

]
=

[√
m2c4 + c2~̂p

2
β ,~̂L

]
= 0,[

ĤFW ,~Σ
]
=

[√
m2c4 + c2~̂p

2
β ,~Σ

]
= 0, (3.744)

where~̂L =~r×~̂p. This means that in the Foldy–Wouthuysen representation the orbital

angular momentum ~̂L and the spin ~S = h̄
2
~Σ are conserved separately, unlike in the

case of the Dirac representation, in which only their sum is conserved. As the

position operator, we have to regard ~̂L and ~S as mean orbital angular momentum
and mean spin operators in the Foldy–Wouthuysen representation. It should be that
the experimentally measured values of these observables (position, orbital angular
momentum, spin, etc.) correspond to these mean operators in the Foldy–Wouthuysen
representation.
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3.4.3.2 Foldy–Wouthuysen Representation of the Feshbach–Villars
form of the Klein–Gordon Equation

We have found that the Feshbach–Villars form of the Klein–Gordon equation (3.589)
is given by

ih̄
∂ |Ψ(t)〉

∂ t
=

mc2
σz +

~̂π
2

2m
(σz + iσy)+qφ

 |Ψ(t)〉 , (3.745)

where |Ψ〉 is a two-component state vector. This equation is in the Schrödinger form
with the Hamiltonian, the Feshbach–Villars Hamiltonian, given by

ĤFV = mc2
σz +

~̂π
2

2m
(σz + iσy)+qφ . (3.746)

Let us note that ĤFV has the same structure as the Dirac Hamiltonian:

ĤFV = mc2
σz + Ê + Ô, (3.747)

where σz is the two-dimensional β , and

Ê =
~̂π

2

2m
σz +qφ , Ô =

~̂π
2

2m
iσy, (3.748)

are, respectively, even and odd operators such that

σzÊ = Ê σz, σzÔ =−Ôσz. (3.749)

This suggests exploring the application of the Foldy–Wouthuysen transformation.
Let us consider the case of static fields, i.e., the potentials φ and ~A are time-
independent. When we make the first Foldy–Wouthuysen transformation

Ĥ(1) = eiŜ1ĤFVe−iŜ1 , with Ŝ1 =−
i

2mc2 σzÔ, (3.750)

we get
Ĥ(1) ≈ mc2

σz + Ê (1)+ Ô(1), (3.751)

where

Ê (1) = Ê +
1

2mc2 σzÔ
2− 1

8m2c4

[
Ô,
[
Ô, Ê

]]
− 1

8m3c6 σzÔ
4,

Ô(1) =
1

2mc2 σz

[
Ô, Ê

]
− 1

3m2c4 Ô3. (3.752)

The second transformation

Ĥ(2) = eiŜ2Ĥ(1)e−iŜ2 , with Ŝ2 =−
i

2mc2 σzÔ
(1), (3.753)
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leads to
Ĥ(2) = mc2

σz + Ê (2)+ Ô(2), (3.754)

where

Ê (2) ≈ Ê (1),

Ô(2) ≈ 1
2mc2 σz

[
Ô(1), Ê (1)

]
. (3.755)

Stopping with the third transformation

Ĥ(3) = eiŜ3Ĥ(2)e−iŜ3 , with Ŝ3 =−
i

2mc2 σzÔ
(2), (3.756)

we arrive at
Ĥ(3) = mc2

σz + Ê (3)+ Ô(3), (3.757)

where

Ê (3) ≈ Ê (2) ≈ Ê (1),

Ô(3) ≈ 1
2mc2 σz

[
Ô(2), Ê (2)

]
. (3.758)

Let us call Ĥ(3), after dropping Ô(3) from it, as ĤKGFW. Then, we have

ĤKGFW = mc2
σz + Ê +

1
2mc2 σzÔ

2

− 1
8m2c4

[
Ô,
[
Ô, Ê

]]
− 1

8m3c6 σzÔ
4. (3.759)

Substituting Ê =

(
~̂π

2
/2m

)
σz +qφ and Ô =

(
~̂π

2
/2m

)
iσy, we have

ĤKGFW ≈

mc2 +
~̂π

2

2m
−

~̂π
4

8m3c2

σz

+qφ +
1

32m4c4

[
~̂π

2
,

[
~̂π

2
, qφ

]]
. (3.760)

For the free particle, we would have

ĤKGFW ≈

(
mc2 +

~̂p
2

2m
−

~̂p
4

8m3c2

)
σz, (3.761)

resulting from the binomial expansion of
√

m2c4 + c2~̂p
2
σz. In this Foldy–

Wouthuysen representation of the Feshbach–Villars equation, the two components
of the state vector have been decoupled, with the upper component representing
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the positive-energy state and the lower component representing the negative-energy
state. This is clear from the fact that in the free-particle case the Hamiltonian ĤKGFW

in (3.761) is diagonal such that the upper component of the state vector evolves with

the Hamiltonian
√

m2c4 + c2~̂p
2

and the lower component of the state vector evolves

with the Hamiltonian −
√

m2c4 + c2~̂p
2
. Note that the operator~r has the equation of

motion,
d~r
dt

=
c2~̂p

ĤKGFW

, (3.762)

in the Heisenberg picture of the Foldy–Wouthuysen representation, as expected for a
free relativistic particle. Thus, the position operator can be taken as~r, in the Foldy–
Wouthuysen representation of the Feshbach–Villars formalism of the Klein-Gordon
equation, corresponding to experimental observation. Similarly, the operators corre-
sponding to linear momentum and angular momentum are given, respectively, by ~̂p

and ~̂L.

3.5 APPENDIX: THE MAGNUS FORMULA FOR THE EXPONENTIAL
SOLUTION OF A LINEAR DIFFERENTIAL EQUATION

Suppose we have to solve the differential equation

∂ψ(t)
∂ t

= L (t)ψ(t), (3.763)

to get ψ(t) for any t > t0, where L (t) is a linear operator and ψ (t0) is given. For an
infinitesimal ∆t, we can write

ψ (t0 +∆t) = e∆tL (t0)ψ (t0) . (3.764)

Iterating this solution, we get

ψ (t0 +2∆t) = e∆tL (t0+∆t)e∆tL (t0)ψ (t0) ,

ψ (t0 +3∆t) = e∆tL (t0+2∆t)e∆tL (t0+∆t)e∆tL (t0)ψ (t0) ,

and so on. (3.765)

Let t = t0 +N∆t. Then, we have

ψ(t) =
(

Π
N−1
n=0 e∆tL (t0+n∆t)

)
ψ (t0) . (3.766)

Thus, ψ(t) is given by computing the product in (3.766) using successively the BCH
formula (3.445),

eÂeB̂ = eÂ+B̂+ 1
2 [Â , B̂]+ 1

12 ([Â ,[Â , B̂]]+[[Â , B̂] , B̂])+···, (3.767)
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and considering the limit ∆t −→ 0, N −→ ∞, such that N∆t = t− t0. The resulting
expression is the Magnus formula (see Magnus [130]):

ψ(t) = T(t, t0)ψ (t0) ,

T(t, t0) = exp
{∫ t

t0
dt1 L (t1)+

1
2

∫ t

t0
dt2
∫ t2

t0
dt1 [L (t2) , L (t1)]

+
1
6

∫ t

t0
dt3
∫ t3

t0
dt2
∫ t2

t0
dt1

(
[[L (t3) , L (t2)] , L (t1)]

+ [[L (t1) , L (t2)] , L (t3)]
)
+ · · ·

}
. (3.768)

To see how the Magnus formula (3.768) is obtained, let us substitute the solution
ψ(t) = T(t, t0)ψ (t0) in (3.763). Then, we find that the t-evolution, or t-transfer,
operator T(t, t0) has to satisfy the equation

∂T(t, t0)
∂ t

= L (t)T(t, t0) , T(t0, t0) = I, (3.769)

where I is the identity operator. Introducing an iteration parameter λ , let us write

∂T(t, t0;λ )

∂ t
= λL (t)T(t, t0;λ ) ,

T(t0, t0;λ ) = I, T(t, t0;1) = T(t, t0) . (3.770)

Assume a solution of the form

T(t, t0;λ ) = eτ(t,t0;λ ), (3.771)

with

τ (t, t0;λ ) =
∞

∑
n=0

λ
n
∆n (t, t0) , ∆n (t0, t0) = 0, for all n. (3.772)

Now, using the identity (see Wilcox [188])

∂

∂ t
eτ(t,t0;λ ) =

(∫ 1

0
ds esτ(t,t0;λ ) ∂

∂ t
τ (t, t0;λ )e−sτ(t,t0;λ )

)
eτ(t,t0;λ ), (3.773)

one has (∫ 1

0
ds esτ(t,t0;λ ) ∂

∂ t
τ (t, t0;λ )e−sτ(t,t0;λ )

)
= λL (t). (3.774)

Substituting the series expression for τ (t, t0;λ ), expanding the left-hand side using
(3.138), integrating, and equating the coefficients of powers of λ on both sides, we
get, recursively, the equations for ∆1 (t, t0), ∆2 (t, t0), etc. For the coefficients of λ ,
we have

∂∆1 (t, t0)
∂ t

= L (t), ∆1 (t0, t0) = 0, (3.775)
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and hence
∆1 (t, t0) =

∫ t

t0
dt1L (t1) . (3.776)

For the coefficients of λ 2, we have

∂∆2 (t, t0)
∂ t

+
1
2

[
∆1 (t, t0) ,

∂∆1 (t, t0)
∂ t

]
= 0, ∆1 (t0, t0) = 0, (3.777)

and hence
∆2 (t0, t0) =

1
2

∫ t

t0
dt2
∫ t2

t0
dt1 [L (t2) , L (t1)] . (3.778)

Similarly, we get

∆3 (t, t0) =
1
6

∫ t

t0
dt3
∫ t3

t0
dt2
∫ t2

t0
dt1

(
[[L (t3) , L (t2)] , L (t1)]

+ [[L (t1) , L (t2)] , L (t3)]
)
. (3.779)

Then, the Magnus formula (3.768) follows from (3.771) and (3.772) with λ = 1.
In the time-evolution problems of quantum mechanics, the linear operator L is

the Hamiltonian of the system. As we shall see later, in the z-evolution problems of
classical charged particle beam optics, L is :−Ho :z, the Poisson bracket operation,
and in the z-evolution problems of quantum charged particle beam optics, L is the
quantum beam optical Hamiltonian Ĥo in the case of the Schrödinger picture, and is
1
ih̄ :−Ĥo :, the commutator bracket operation, in the case of the Heisenberg picture.
The Magnus formula is applicable to any form of the linear operator L . For more
details on the exponential solutions of linear differential equations, related operator
techniques, and applications to physical problems, see, e.g., Wilcox [188], Bellman
and Vasudevan [10], Dattoli, Reneiri, and Torre [31], and Blanes, Casas, Oteo, and
Ros [14], and references therein.



4 An Introduction to
Classical Charged Particle
Beam Optics

4.1 INTRODUCTION: RELATIVISTIC CLASSICAL CHARGED
PARTICLE BEAM OPTICS

Charged particle beam optics is the study of transport of charged particle beams
through electromagnetic optical systems. Such systems, like different types of
electromagnetic lenses used for focusing or defocusing the beams, bending mag-
nets, etc., are the main components of charged particle beam devices—low-energy
electron microscopes to high-energy particle accelerators. In this chapter, we shall
consider the classical mechanics of a few examples of such optical elements with
a view to demonstrate how we can understand, in later chapters, the quantum
mechanics underlying their behaviors. We are not concerned about the technical
aspects of these optical elements. We shall consider only the theoretical aspects
of the perfect, or idealized, versions of these optical elements. We are consider-
ing the beam particles to be noninteracting and independent, and hence we are
treating the beam propagation on the basis of single particle dynamics. For more
details on any aspect of classical charged particle beam optics, see e.g., Hawkes
and Kasper [70, 71], Orloff [141], Groves [68], Lubk [129], Pozzi [150], Berz,
Makino, and Wan [12], Conte and MacKay [27], Lee [127], Reiser [158], Rosen-
zweig [159], Seryi [168], Weidemann [187], Wolski [192], Chao, Mess, Tigner, and
Zimmermann [20], and references therein.

Any charged particle beam device has an optic axis. The trajectory of the charged
particle along this axis is the design, or reference, trajectory. This optic axis can be
straight or curved depending on the purpose of the device. For example, an axially
symmetric, or round, magnetic lens used in an electron microscope to focus the beam
will have a straight optic axis, and a dipole magnet used in devices for bending
the beam will have a curved optic axis. First, we shall consider optical elements
with straight optic axis chosen to be along the z-direction. We shall always take
the beam to be moving forward along the +z-direction. We have already derived,
in (2.132), the z-evolution Hamiltonian for a particle moving relativistically in an
electromagnetic field as

H =−1
c

√
(E−qφ)2−m2c4− c2π2

⊥−qAz, (4.1)
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where π2
⊥ = π2

x + π2
y , m is the rest mass of the particle with charge q. We shall

consider the electromagnetic fields of the optical elements to be static, i.e., time-
independent. Hence, the total energy of the particle, E, is always conserved along
its trajectory. In the free space outside the optical system, from where the particle

enters the system, E =
√

m2c4 + c2 p2
0, where p0 is the design momentum, and this

E is the total conserved energy of the particle throughout its trajectory. Further, for
the optical elements, we consider E� qφ . Thus, for the propagation of a paraxial, or
quasiparaxial, beam through any electromagnetic optical system along its optic axis,
we can take the classical charged particle beam optical Hamiltonian, or simply, the
classical beam optical Hamiltonian, as

Ho =−
1
c

√
(E−qφ)2−m2c4− c2π2

⊥−qAz

=−1
c

√
E2 +q2φ 2−2Eqφ −m2c4− c2π2

⊥−qAz

=−1
c

√
E2−m2c4 +q2φ 2−2Eqφ − c2π2

⊥−qAz

=−1
c

√
c2 p2

0−2Eqφ

(
1− qφ

2E

)
− c2π2

⊥−qAz

≈−1
c

√
c2
(

p2
0−π2

⊥
)
−2Eqφ −qAz

=−
√

p2
0−π2

⊥−
2Eqφ

c2 −qAz. (4.2)

This is the relativistic classical beam optical Hamiltonian. We shall first study some
examples of the optical elements based on this relativistic Hamiltonian and consider
later the nonrelativistic classical charged particle beam optics as an approximation.
Note that Ho is the optical Hamiltonian of the beam propagating through the opti-
cal element: it contains the parameters of both the beam (E, p0, . . .) and the optical
element (φ ,~A, . . .). However, often we will refer to Ho simply as the optical Hamilto-
nian of that particular optical element. For example, the paraxial optical Hamiltonian
of a magnetic quadrupole will mean the optical Hamiltonian for the propagation of a
paraxial beam through the magnetic quadrupole along its optic axis.

4.2 FREE PROPAGATION
When a beam propagates in free space, for example, between two optical elements
of a device, motion of the beam particle is governed by the free-space optical
Hamiltonian

Ho =−
√

p2
0− p2

⊥, (4.3)
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as seen by taking φ = 0 and ~A=(0,0,0) in (4.2). Let us now consider the propagation
of the beam entering the xy-plane, the plane perpendicular to the optic axis, at z(in) =
zi and exiting the xy-plane at z. Let a particle of the beam have x(zi) and y(zi) as its
x and y coordinates, and px (zi) and py (zi) as its x and y components of momentum,
in the xy-plane at zi. Let it have x(z) and y(z) as its x and y coordinates, and px(z)
and py(z) as its x and y components of momentum, when it arrives at the xy-plane at
z. Hamilton’s equations of motion for (x(z),y(z)) and (px(z), py(z)), the components
of position and momentum of the particle in the plane perpendicular to the optic axis
at the point z, become

dx
dz

=:−Ho :z x =:
√

p2
0− p2

⊥ :z x

=
px√

p2
0− p2

⊥

=
px

pz
,

dy
dz

=:−Ho :z y =:
√

p2
0− p2

⊥ :z y

=
py√

p2
0− p2

⊥

=
py

pz
,

d px

dz
=:−Ho :z px =:

√
p2

0− p2
⊥ :z px = 0,

d py

dz
=:−Ho :z py =:

√
p2

0− p2
⊥ :z py = 0, (4.4)

where we have used the definitions in (2.97) and (2.99). Note that when the z-
evolution Hamiltonian Ho and any observable O are time-independent

:−Ho :z O = −
{(

∂Ho

∂x
∂O
∂ px
− ∂Ho

∂ px

∂O
∂x

)

+

(
∂Ho

∂y
∂O
∂ py
− ∂Ho

∂ py

∂O
∂y

)}
. (4.5)

We can write the equation (4.4) as

d
dz


x(z)
y(z)
px(z)

pz
py(z)

pz

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




x(z)
y(z)
px(z)

pz
py(z)

pz

= µ


x(z)
y(z)
px(z)

pz
py(z)

pz

 . (4.6)
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Since µ is z-independent, we can readily integrate this equation to get
x(z)
y(z)
px(z)

pz
py(z)

pz

= e
∫ z

zi
dz µ


x(zi)
y(zi)
px(zi)

pz
py(zi)

pz



=


1 0 z− zi 0
0 1 0 z− zi
0 0 1 0
0 0 0 1




x(zi)
y(zi)
px(zi)

pz
py(zi)

pz

 ,

= MD (z,zi)


x(zi)
y(zi)
px(zi)

pz
py(zi)

pz

= MD(∆z)


x(zi)
y(zi)
px(zi)

pz
py(zi)

pz

 , (4.7)

where ∆z = z− zi, and the subscript D stands for drift or free propagation.
Instead of the above derivation of (4.7), we can use (2.100) directly to get,

x(z) =
[
e{∆z:−Ho:z}x

]
(zi) =

[
e
{

∆z:
√

p2
0−p2

⊥:z
}

x
]
(zi)

=

[
∞

∑
n=0

(∆z)n

n!

(
:
√

p2
0− p2

⊥ :z

)n

x

]
(zi)

= x(zi)+∆z
px√

p2
0− p2

⊥

= x(zi)+∆z
px (zi)

pz
. (4.8)

For px we have

px(z) =
[
e{∆z:−Ho:z}px

]
(zi) =

[
e
{

∆z:
√

p2
0−p2

⊥:z
}

px

]
(zi)

=

[
∞

∑
n=0

(∆z)n

n!

(
:
√

p2
0− p2

⊥ :z

)n

px

]
(zi) = px (zi) , (4.9)

showing that px is conserved, as should be for a free particle. Similarly, for y and py,
we get

y(z) = y(zi)+∆z
py (zi)

pz
, py(z) = py (zi) . (4.10)

Since |~p⊥|< p0, we have

Ho =−p0

√
1−

p2
⊥

p2
0
=−p0 +

p2
⊥

2p0
+

p4
⊥

8p3
0
+ · · · . (4.11)
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When |~p⊥| � pz, we have a paraxial beam in which all the particles move along and
very close to the +z-direction. Then, we have pz ≈ p0 and |~p⊥| � p0 so that we can
make the paraxial approximation

Ho ≈−p0 +
p2
⊥

2p0
, (4.12)

and get the same results (4.8–4.10). For example,

x(z) =
[
e{∆z:−Ho:z}x

]
(zi) =

[
e
{

∆z:
√

p2
0−p2

⊥:z
}

x
]
(zi)

≈
[(

1+∆z : p0−
p2
⊥

2p0
:z

)
x
]
(zi)

= x(zi)+∆z
px (zi)

p0
≈ x(zi)+∆z

px (zi)

pz
. (4.13)

If the beam is quasiparaxial, it would be required to take into account more terms,
nonparaxial terms, in the Hamiltonian like

Ho ≈−p0 +
p2
⊥

2p0
+

p4
⊥

8p3
0
, (4.14)

to get the same results (4.8–4.10). For example,

x(z) =
[
e{∆z:−Ho:z}x

]
(zi) =

[
e
{

∆z:
√

p2
0−p2

⊥:z
}

x
]
(zi)

≈
[(

1+∆z : p0−
p2
⊥

2p0
−

p4
⊥

8p3
0

:z

)
x
]
(zi)

= x(zi)+∆z
px

p0

(
1+

p2
⊥

2p2
0

)
≈ x(zi)+∆z

px (zi)

p0

√
1− p2

⊥
p2

0

= x(zi)+∆z
px (zi)√
p2

0− p2
⊥

= x(zi)+∆z
px (zi)

pz
. (4.15)

Since we will be dealing only with paraxial or quasiparaxial beams with pz ≈ p0, we
can write the transverse phase space maps (4.8–4.10) across the free space between
the xy-planes at zi and z as(

~r⊥
~p⊥
p0

)
z

=

(
1 ∆z
0 1

)(
~r⊥
~p⊥
p0

)
zi

= MD(∆z)

(
~r⊥
~p⊥
p0

)
zi

. (4.16)

Note that MD(∆z) = MD(∆z)⊗ I, where I is the 2×2 identity matrix. Observe that
for a particle of paraxial or quasiparaxial beam

~p⊥
p0
≈ ~p⊥

pz
=

d~r⊥
dt
dz
dt

=
d~r⊥
dz

=~r′⊥. (4.17)
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Thus, the map (4.16) is usually written as(
~r⊥
~r′⊥

)
z
= MD(∆z)

(
~r⊥
~r′⊥

)
zi

, (4.18)

in geometrical charged particle optics, or charged particle ray optics, and ~r⊥ and
~r′⊥ are called the ray coordinates representing the position and the slope of the ray
intersecting the xy-plane at z. The beam is paraxial when

∣∣~r′⊥∣∣� 1.

4.3 OPTICAL ELEMENTS WITH STRAIGHT OPTIC AXIS
4.3.1 AXIALLY SYMMETRIC MAGNETIC LENS: IMAGING

IN ELECTRON MICROSCOPY

Let us now consider a round magnetic lens symmetric about its straight optic axis.
This is the central component of any electron microscope. It comprises an axially
symmetric magnetic field. There is no electric field, i.e., φ (~r) = 0. Taking the z-axis
as the optic axis, the vector potential can be taken, in general, as

~A(~r) =
(
−1

2
yΠ(~r⊥,z) ,

1
2

xΠ(~r⊥,z) ,0
)
, (4.19)

with

Π(~r⊥,z) =
∞

∑
n=0

1
n!(n+1)!

(
−

r2
⊥
4

)n

B(2n)(z)

= B(z)− 1
8

r2
⊥B′′(z)+

1
192

r4
⊥B′′′′(z)−·· · , (4.20)

where r2
⊥ = x2+y2, B(0)(z) = B(z), B′(z) = dB(z)/dz, B′′(z) = d2B(z)/dz2, B′′′(z) =

d3B(z)/dz3, B′′′′(z)= d4B(z)/dz4, . . ., and B(2n)(z)= d2nB(z)/dz2n. The correspond-
ing magnetic field, ~∇×~A, is given by

~B⊥ =−1
2

(
B′(z)− 1

8
B′′′(z)r2

⊥+ · · ·
)
~r⊥,

Bz = B(z)− 1
4

B′′(z)r2
⊥+

1
64

B′′′′(z)r4
⊥−·· · . (4.21)

The field ~B, characterized completely by the function B(z), is seen to be rotationally
symmetric about the z-axis, the optic axis of the system. The practical boundaries
of the lens, say z` and zr, are determined by where B(z) becomes negligible, i.e.,
B(z < z`)≈ 0 and B(z > zr)≈ 0.

We are concerned with a monoenergetic paraxial beam with design momentum
p0 such that |~p|= p0 ≈ pz for all its constituent particles. For a paraxial beam prop-
agating through the round magnetic lens, along the optic axis, the vector potential ~A
can be taken as

~A≈ ~A0 =

(
−1

2
B(z)y,

1
2

B(z)x,0
)
, (4.22)
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corresponding to the field

~B≈ ~B0 =

(
−1

2
B′(z)x,−1

2
B′(z)y,B(z)

)
. (4.23)

In the paraxial approximation, only the lowest order terms in ~r⊥ are considered to
contribute to the effective field felt by the particles moving close to the optic axis.
Further, it entails approximating the z-evolution, or optical, Hamiltonian by dropping
from it the terms of order higher than second in |~p⊥|/p0 in view of the condition
|~p⊥|/p0 � 1. Thus, from (4.2) and (4.22), we can write down the classical beam
optical Hamiltonian of the system as

Ho =−
√

p2
0−π2

⊥−qAz

≈−p0 +
π2
⊥

2p0

=−p0 +
1

2p0

[
(px−qAx)

2 +(py−qAy)
2
]

=−p0 +
1

2p0

[(
px +

1
2

qB(z)y
)2

+

(
py−

1
2

qB(z)x
)2
]

=−p0 +
1

2p0

(
p2
⊥+

1
4

q2B(z)2r2
⊥−qB(z)(xpy− ypx)

)
=−p0 +

1
2p0

(
p2
⊥+

1
4

q2B(z)2r2
⊥−qB(z)Lz

)
, (4.24)

where

B(z)
{
6= 0 in the lens region (z` ≤ z≤ zr)
= 0 outside the lens region (z < z`, z > zr) ,

(4.25)

and Lz is the z-component of the orbital angular momentum of the particle. With the
notation

α(z) =
qB(z)
2p0

, (4.26)

we shall write

Ho =−p0 +
1

2p0
p2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)Lz. (4.27)

Hamilton’s equations of motion are

d
dz


x(z)
y(z)
px(z)

p0
py(z)

p0

=


0 α(z) 1 0

−α(z) 0 0 1
−α2(z) 0 0 α(z)

0 −α2(z) −α(z) 0




x(z)
y(z)
px(z)

p0
py(z)

p0

 . (4.28)
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It is seen that in the regions outside the lens, where α(z) = 0, this equation of motion
becomes (4.6) with p0 ≈ pz for a paraxial beam. Let us write (4.28) as

d
dz


x(z)
y(z)
px(z)

p0
py(z)

p0

= [µ(z)⊗ I + I⊗ρ(z)]


x(z)
y(z)
px(z)

p0
py(z)

p0

 , (4.29)

where

µ(z) =
(

0 1
−α2(z) 0

)
, (4.30)

and

ρ(z) = α(z)
(

0 1
−1 0

)
. (4.31)

We shall now integrate (4.29). Note that µ(z)⊗ I and I⊗ρ(z) commute with each
other. Let

x(z)
y(z)
px(z)

p0
py(z)

p0

= M (z,zi)R (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

 , for any z≥ zi, (4.32)

where

dM (z,zi)

dz
= (µ(z)⊗ I)M (z,zi) , M (zi,zi) = I, (4.33)

dR (z,zi)

dz
= (I×ρ(z))R (z,zi) , R (zi,zi) = I. (4.34)

It is clear that we can write

M (z,zi) = M (z,zi)⊗ I,
dM (z,zi)

dz
=

dM (z,zi)

dz
⊗ I, (4.35)

with
dM (z,zi)

dz
= µ(z)M (z,zi) , (4.36)

and

R (z,zi) = I⊗R(z,zi) ,
dR (z,zi)

dz
= I⊗ dR(z,zi)

dz
, (4.37)

with
dR(z,zi)

dz
= ρ(z)R(z,zi) . (4.38)
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Note that M (z,zi) and R (z,zi) commute with each other, dM (z,zi)/dz commutes
with R (z,zi), and dR (z,zi)/dz commutes with M (z,zi). Then,

d
dz


x(z)
y(z)
px(z)

p0
py(z)

p0

=

(
dM (z,zi)

dz
R (z,zi)+M (z,zi)

dR (z,zi)

dz

)
x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= [µ(z)⊗ I + I⊗ρ(z)]M (z,zi)R (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= [µ(z)⊗ I + I⊗ρ(z)]


x(z)
y(z)
px(z)

p0
py(z)

p0

 , (4.39)

as required by (4.29).
The equation for R (z,zi), (4.34), can be readily integrated by ordinary exponen-

tiation since [ρ (z′) ,ρ (z′′)] = 0 for any z′ and z′′. Thus, we have

R (z,zi) = e
∫ z

zi
dz ρ(z)

= exp
{

I⊗
[

θ (z,zi)

(
0 1
−1 0

)]}
= I⊗

(
cosθ (z,zi) sinθ (z,zi)
−sinθ (z,zi) cosθ (z,zi)

)
= I⊗R(z,zi) , (4.40)

with
θ (z,zi) =

∫ z

zi

dz α(z) =
q

2p0

∫ z

zi

dz B(z). (4.41)

Let us now introduce an XY z-coordinate system with its X and Y axes rotating along
the z-axis at the rate dθ(z)/dz = α(z) = qB(z)/2p0, such that we can write(

x(z)
y(z)

)
= R(z,zi)

(
X(z)
Y (z)

)
. (4.42)

or (
X(z)
Y (z)

)
= R−1 (z,zi)

(
x(z)
y(z)

)
=

(
cosθ (z,zi) −sinθ (z,zi)
sinθ (z,zi) cosθ (z,zi)

)(
x(z)
y(z)

)
. (4.43)
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Then, we have (
px(z)
py(z)

)
= R(z,zi)

(
PX (z)
PY (z)

)
, (4.44)

or (
PX (z)
PY (z)

)
=

 cosθ (z,zi) −sinθ (z,zi)

sinθ (z,zi) cosθ (z,zi)

( px(z)
py(z)

)
, (4.45)

where PX and PY are the components of momentum in the rotating coordinate sys-
tem. Note that in the vertical plane at z = zi, where the particle enters the system,
XY z coordinate system coincides with the xyz coordinate system. Thus, we can write
(4.32) as, for any z≥ zi,

R (z,zi)


X(z)
Y (z)
PX (z)

p0
PY (z)

p0

= M (z,zi)R (z,zi)


X (zi)
Y (zi)
PX (zi)

p0
PY (zi)

p0



= R (z,zi)M (z,zi)


X (zi)
Y (zi)
PX (zi)

p0
PY (zi)

p0

 . (4.46)

In other words, the position and momentum of the particle with reference to the
rotating coordinate system evolve along the optic axis according to

X(z)
Y (z)
PX (z)

p0
PY (z)

p0

= M (z,zi)


X (zi)
Y (zi)
PX (zi)

p0
PY (zi)

p0

 , for any z≥ zi. (4.47)

From (4.30) and (4.33), the corresponding equations of motion follow:

d
dz

(
~R⊥(z)
~P⊥(z)

p0

)
= µ(z)

(
~R⊥(z)
~P⊥(z)

p0

)
=

(
0 1

−α2(z) 0

)( ~R⊥(z)
~P⊥(z)

p0

)
, (4.48)

with

~R⊥(z) =
(

X(z)
Y (z)

)
, ~P⊥(z) =

(
PX (z)
PY (z)

)
. (4.49)

From this, it follows that

d2

dz2

(
~R⊥(z)
~P⊥(z)

p0

)
=

(
−α2(z) 0

−2α(z)α ′(z) −α2(z)

)( ~R⊥(z)
~P⊥(z)

p0

)
, (4.50)
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or

~R′′⊥(z)+α
2(z)~R⊥ = 0, (4.51)

1
p0

~P′′⊥(z)+2α(z)α ′(z)~R⊥(z)+
1
p0

α
2(z)~P⊥(z) = 0. (4.52)

The first of the above equations (4.51) is the paraxial equation of motion in the rotat-
ing coordinate system. The second equation is not independent of the first equation
since it is just a consequence of the relation ~P⊥(z)/p0 = d~R⊥(z)/dz.

Equation (4.48) cannot be integrated by ordinary exponentiation since µ (z′) and
µ (z′′) do not commute when z′ 6= z′′ if α2 (z′) 6= α2 (z′′). So, to integrate (4.48) we
have to follow the same method used to integrate the time-dependent Schrödinger
equation (3.439) as in (3.440) with Û (t, t0) given by the series expression in (3.449).
Thus, replacing t by z, and −iĤ(t)/h̄ by µ(z), we get(

~R⊥(z)
~P⊥(z)

p0

)
=

(
g(z,zi) h(z,zi)
g′ (z,zi) h′ (z,zi)

)( ~R⊥ (zi)
~P⊥(zi)

p0

)

= M (z,zi)

(
~R⊥ (zi)
~P⊥(zi)

p0

)
, (4.53)

where

M (z,zi) = I +
∫ z

zi

dz1µ (z1)+
∫ z

zi

dz2

∫ z2

zi

dz1µ (z2)µ (z1)

+
∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1µ (z3)µ (z2)µ (z1)

+ · · · . (4.54)

Note that g(z,zi) and h(z,zi) are two linearly independent solutions of the paraxial
equation of motion (4.51) corresponding to the initial conditions(

~R⊥ (zi)
~P⊥(zi)

p0

)
=

(
1
0

)
,

(
~R⊥ (zi)
~P⊥(zi)

p0

)
=

(
0
1

)
. (4.55)

It can be directly verified that

dM (z,zi)

dz
= µ(z)M (z,zi) , (4.56)

and hence

d
dz

(
~R⊥(z)
~P⊥(z)

p0

)
=

dM (z,zi)

dz

(
~R⊥ (zi)
~P⊥(zi)

p0

)
= µ(z)

(
~R⊥ (zi)
~P⊥(zi)

p0

)
, (4.57)
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as required in (4.48). Explicit expressions for the elements of M can be written down
from (4.54) as follows:

g(z,zi) = 1−
∫ z

zi

dz2

∫ z2

zi

dz1 α
2 (z1)

+
∫ z

zi

dz4

∫ z4

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)−·· · ,

h(z,zi) = (z− zi)−
∫ z

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)

+
∫ z

zi

dz4

∫ z4

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)−·· · ,

g′ (z,zi) =−
∫ z

zi

dz1 α
2 (z1)+

∫ z

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)−·· · ,

h′ (z,zi) = 1−
∫ z

zi

dz1 α
2 (z1)(z1− zi)

+
∫ z

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)−·· · . (4.58)

Note that
dg(z,zi)

dz
= g′ (z,zi) ,

dh(z,zi)

dz
= h′ (z,zi) , (4.59)

consistent with the relation d~R⊥(z)/dz = ~P⊥(z)/p0. From the differential equation,
(4.56) for M we know that we can write

M (z,zi) = lim
N→∞

lim
∆z→0

{
e∆zµ(zi+N∆z)e∆zµ(zi+(N−1)∆z)e∆zµ(zi+(N−2)∆z) · · ·

· · · e∆zµ(zi+2∆z)e∆zµ(zi+∆z)
}
, (4.60)

with N∆z = (z− zi). Since the trace of µ(z) is zero, each of the factors in the above
product expression, of the type e∆zµ(zi+ j∆z), has unit determinant. Thus, the matrix M
has an unit determinant, i.e.,

g(z,zi)h′ (z,zi)−h(z,zi)g′ (z,zi) = 1, (4.61)

for any (z,zi).
In a simplified picture of an electron microscope, let us consider the monoener-

getic paraxial beam comprising of electrons scattered elastically from the specimen
(the object to be imaged) being illuminated. The beam transmitted by the specimen
carries the information about the structure of the specimen. This beam going through
the magnetic lens gets magnified and is recorded at the image plane. Let us take the



Classical Charged Particle Beam Optics 185

positions of the object plane and the image plane in the z-axis, the optic axis, as zob j
and zimg, respectively. As already mentioned, we shall take the practical boundaries
of the lens to be at z` and zr. The magnetic field of the lens is practically confined
to the region between z` and zr and zob j < z` < zr < zimg. The region between zob j
and z` and the region between zr and zimg are free spaces. Thus, the electron beam
transmitted by the specimen (object) travels first through the free space between zob j
and z`, then the lens between z` and zr, and finally the free space between zr and zimg
where it is recorded (image). Hence, the z-evolution matrix, or the transfer matrix,
M
(
zimg,zob j

)
can be written as

M
(
zimg,zob j

)
= MD (zimg,zr)ML (zr,z`)MD

(
z`,zob j

)
, (4.62)

where subscript D indicates the drift region and L indicates the lens region. Since
α2(z) = 0 in the free space regions, or drift regions, we get from (4.58)

MD (zimg,zr) =

(
1 (zimg− zr)
0 1

)
, MD

(
z`,zob j

)
=

(
1
(
z`− zob j

)
0 1

)
.

(4.63)
For the lens region, we have from (4.58)

ML (zr,z`) =
(

g(zr,z`) h(zr,z`)
g′ (zr,z`) h′ (zr,z`)

)
=

(
gL hL
g′L h′L

)
. (4.64)

Thus, we get

M
(
zimg,zob j

)
=

(
1 (zimg− zr)
0 1

)(
gL hL
g′L h′L

)(
1
(
z`− zob j

)
0 1

)

=


gL +g′L (zimg− zr)

[
gL
(
z`− zob j

)
+hL

+g′L (zimg− zr)
(
z`− zob j

)
+ h′L (zimg− zr)]

g′L g′L
(
z`− zob j

)
+h′L


=

(
g
(
zimg,zob j

)
h
(
zimg,zob j

)
g′
(
zimg,zob j

)
h′
(
zimg,zob j

) ) . (4.65)

Note that MD
(
z`,zob j

)
and MD (zimg,zr) have unit determinant. From the general

theory, we know that ML (zr,z`) should also have unit determinant, i.e.,

gLh′L−hLg′L = 1. (4.66)

Since zimg is the position of the image plane h
(
zimg,zob j

)
, the 12-element of the

matrix M
(
zimg,zob j

)
, should vanish such that

~R⊥ (zimg) ∝ ~R⊥
(
zob j
)
. (4.67)
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This means that we should have

gL
(
z`− zob j

)
+hL +g′L (zimg− zr)

(
z`− zob j

)
+h′L (zimg− zr) = 0. (4.68)

Now, let

u =
(
z`− zob j

)
+

h′L−1
g′L

, v = (zimg−zr)+
gL−1

g′L
, (4.69)

and

f =− 1
g′L

. (4.70)

We are to interpret u as the object distance, v as the image distance, and f as the
focal length of the lens. Using straightforward algebra, and the relation (4.66), one
can verify that the familiar lens equation,

1
u
+

1
v
=

1
f
, (4.71)

implies (4.68). From (4.69) it is seen that the principal planes from which u and v are
to be measured in the case of a thick lens are situated at

zPob j = z`+
h′L−1

g′L
= z`+ f

(
1−h′L

)
,

zPimg = zr−
gL−1

g′L
= zr− f (1−gL) , (4.72)

such that
u = zPob j − zob j, v = zimg− zPimg . (4.73)

The explicit expression for the focal length f follows from (4.70) and (4.58):

1
f
=
∫ zr

z`
dz α

2(z)−
∫ zr

z`
dz2 α

2 (z2)
∫ z2

z`
dz1

∫ z1

z`
dz α

2(z)+ · · ·

=
q2

4p2
0

∫ zr

z`
dz B2(z)− q4

16p4
0

∫ zr

z`
dz2 B2 (z2)

∫ z2

z`
dz1

∫ z1

z`
dz B2(z)+ · · · . (4.74)

To understand the behavior of the lens, let us consider the idealized model in which
B(z) = B is a constant in the lens region and zero outside. Then, we get

1
f
=

qB
2p0

sin
(

qBw
2p0

)
, (4.75)

where w = (zr− z`) is the width, or thickness, of the lens. This shows that the focal
length is always positive to start with and is then periodic with respect to the variation
of the field strength. Thus, the round magnetic lens is convergent up to a certain
strength of the field. Round magnetic lenses commonly used in electron microscopy
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are always convergent. Note that
∫ zr

z`
dz α2(z) has the dimension of reciprocal length.

The round magnetic lens is considered weak when

∫ zr

z`
dz α

2(z)� 1
w
. (4.76)

For such a weak lens, the expression for the focal length (4.74) can be approxi-
mated as

1
f
≈
∫ zr

z`
dz α

2(z) =
q2

4p2
0

∫ zr

z`
dz B2(z) =

q2

4p2
0

∫
∞

−∞

dz B2(z). (4.77)

A weak lens is said to be thin since in this case 1/ f � 1/w, or f � w. The formula
(4.77), known as the Busch formula, for the focal length of a thin axially symmetric
magnetic lens was derived in 1927 by Busch [17].

The paraxial z-evolution matrix from the object plane to the image plane (4.65)
becomes, taking into account (4.68),

M(zimg,zob j) =

(
gL−

zimg−zr
f 0

− 1
f h′L−

z`−zob j
f

)

=

 gL− v+ f (gL−1)
f 0

− 1
f h′L−

u+ f(h′L−1)
f


=

(
1− v

f 0
− 1

f 1− u
f

)
=

(
− v

u 0
− 1

f − u
v

)
=

(
M 0
− 1

f
1
M

)
, (4.78)

where M denotes the magnification. In our notation, both u and v are positive, and
hence M is negative, showing the inverted nature of the image, as should be in the
case of imaging by a convergent lens.

For a thin lens with f � w, we can take w ≈ 0, and the two principal planes
collapse into a single plane at the center of the lens, i.e., we can take zP = (z`+ zr)/2.
Then, from (4.58), it is clear that for the thin lens we can make the approximation

MT L (zr,z`)≈
(

1 0
− 1

f 1

)
, (4.79)
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where the subscript T L stands for thin lens. Thus, corresponding to (4.65), we have
for the thin lens

M
(
zimg,zob j

)
≈
(

1 (zimg− zP)
0 1

)(
1 0
− 1

f 1

)(
1
(
zP− zob j

)
0 1

)

=


1− 1

f (zimg− zP)

[(
zP− zob j

)
− 1

f (zimg− zP)
(
zP− zob j

)
+ (zimg− zP)]

− 1
f 1− 1

f

(
zP− zob j

)

 .

(4.80)

Since
(
zP− zob j

)
= u and (zimg− zP) = v, and 1/u+1/v = 1/ f , we get

M
(
zimg,zob j

)
=

(
1− v

f u− uv
f + v

− 1
f 1− u

f

)

=

(
− v

u 0
− 1

f − u
v

)
=

(
M 0
− 1

f
1
M

)
, (4.81)

where M=−v/u is the magnification.
So far, we have been describing the behavior of the lens in the rotated XY z-

coordinate system. Now, if we return to the original xyz-coordinate system, we would
have, as seen from (4.32), (4.35), and (4.37),(

~r⊥ (zimg)
~p⊥
p0

(zimg)

)
= M

(
zimg,zob j

)
⊗R

(
zimg,zob j

)( ~r⊥
(
zob j
)

~p⊥
p0

(
zob j
) ) . (4.82)

Since the rotation of the image is the effect of only the lens magnetic field

R
(
zimg,zob j

)
= R(z`,zr) =

(
cosθL sinθL
−sinθL cosθL

)
, (4.83)

where
θL = θ (z`,zr) =

q
2p0

∫ zr

z`
dz B(z). (4.84)

From (4.80) and (4.82), it is clear that apart from rotation and drifts through field-
free regions in the front and back of the lens, the effect of a thin convergent lens

is essentially described by the transfer matrix
(

1 0
−1/ f 1

)
. This can also be seen

simply as follows. If a particle of a paraxial beam enters a thin lens in the transverse
xy-plane with the coordinates (x,0) and momenta (0,0), i.e., in the xz-plane and
parallel to the optic (z) axis, then we have(

1 f
0 1

)(
1 0
− 1

f 1

)(
x
0

)
=

(
0
− x

f

)
. (4.85)
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This means that all the particles of the paraxial beam hitting the lens parallel to the
optic axis in the xz-plane meet the optic axis at a distance f from the lens indepen-
dent of the x coordinate at which it enters the lens. This implies that the lens is a
convergent lens with the focal length f . If the lens is a thin divergent lens of focal
length − f , then correspondingly we would have(

1 − f
0 1

)(
1 0
1
f 1

)(
x
0

)
=

(
0
x
f

)
, (4.86)

implying that the particles appear virtually to meet behind the lens at a distance
f . Thus, the effect of a thin divergent lens is essentially described by the transfer

matrix
(

1 0
1/ f 1

)
. Note that, in general, if the transfer matrix of a lens system

is
(

A B
C D

)
, then it will be focusing or defocusing depending on whether C is

negative or positive, respectively. This is so because if C is negative, then px/p0
decreases proportional to the x coordinate of the beam particle driving it towards the
optic axis, and if C is positive, then px/p0 increases proportional to the x coordinate
of the beam particle driving it away from the optic axis.

In this discussion, we have considered the beam to be paraxial and approximated
the optical Hamiltonian by keeping only terms up to second order in~r⊥ and ~p⊥. This
paraxial, or Gaussian, approximation has resulted in perfect imaging in which there
is a one-to-one relationship between the object points and the image points. When the
beam deviates from the ideal paraxial condition, as is usually the case in practice, we
have to go beyond the paraxial approximation and retain in the Hamiltonian terms of
order higher than second in~r⊥ and ~p⊥. The resulting theory accounts for the image
aberrations. We shall not deal with the classical theory of aberrations here. We shall
treat aberrations in the quantum theory of electron optical imaging, and the classical
theory of aberrations will emerge in the classical limit of the quantum theory.

The discussion so far is based on Hamilton’s equations of motion. Let us now
understand the results based on the Lie transfer operator method. Extensive tech-
niques for applying the Lie transfer operator methods to light optics, charged par-
ticle beam optics, and accelerator optics have been developed by Dragt et al.
(see Dragt [34], Dragt and Forest [35], Dragt et al. [36], Forest, Berz, and
Irwin [54], Rangarajan, Dragt, and Neri [156], Forest and Hirata [55], Forest
[56], Radlic̆ka [154], and references therein; see also Berz [11], Mondragon and
Wolf [135], Wolf [191], Rangarajan and Sachidanand [157], Lakshminarayanan,
Sridhar, and Jagannathan [124], and Wolski [192]). In general, from Hamilton’s
equations, we have

d
dz

(
~r⊥(z)
~p⊥(z)

p0

)
=:−Ho(z) :z

(
~r⊥(z)
~p⊥(z)

p0

)
. (4.87)

We shall now follow the treatment of the Schrödinger equation with time-dependent
Hamiltonian in quantum mechanics. Let us write the solution of the above
equation as
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~r⊥(z)
~p⊥(z)

p0

)
= T (z,zi)

(
~r⊥ (zi)
~p⊥(zi)

p0

)
, z≥ zi, (4.88)

where it is understood that

T (z,zi)

(
~r⊥ (zi)
~p⊥(zi)

p0

)
=

(
T (z,zi)

(
~r⊥(z)
~p⊥(z)

p0

))∣∣∣∣∣
z=zi

. (4.89)

Then, we should have

∂

∂ z
T (z,zi) =:−Ho(z) :z T (z,zi) , T (zi,zi) = 1. (4.90)

Writing ∫ z

zi

dz
(

∂

∂ z
T (z,zi)

)
=
∫ z

zi

dz1 :−Ho (z1) :z T (z1,zi) , (4.91)

and integrating, we get

T (z,zi)|zzi
= T (z,zi)−1 =

∫ z

zi

dz1 :−Ho (z1) :z T (z1,zi) . (4.92)

This leads to the formal solution

T (z,zi) = 1−
∫ z

zi

dz1 :−Ho (z1) :z T (z1,zi) . (4.93)

Iterating this formal solution, we get

T (z,zi) = 1+
∫ z

zi

dz1 :−Ho (z1) :z

+
∫ z

zi

dz2

∫ z2

zi

dz1 :−Ho (z2) :z:−Ho (z1) :z

+
∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1 :−Ho (z3) :z:−Ho (z2) :z:−Ho (z1) :z

+ · · · . (4.94)

Introducing an z-ordering operator, analogous to the time-ordering operator (3.450)
in quantum mechanics, we can write

T (z,zi) = 1+
∞

∑
n=1

1
n!
P

[(∫ z

zi

dz :−Ho(z) :z

)n]

= P

[
∞

∑
n=0

1
n!

(∫ z

zi

dz :−Ho(z) :z

)n
]

= P
(

e
∫ z

zi
dz :−Ho(z):z

)
, (4.95)
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which may be called the z-ordered, or path ordered, exponential of : −Ho(z) :z. In
exact analogy with (3.455 and 3.456) T (z,zi) can also be written in the Magnus
form as

T (z,zi) = eT (z,zi), (4.96)

where T (z,zi) is an infinite series with the first few terms given by

T (z,zi) =
∫ z

zi

dz :−Ho :z (z)

+
1
2

∫ z

zi

dz2

∫ z2

zi

dz1 [:−Ho :z (z2) , :−Ho :z (z1)]

+
1
6

∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1

{[[:−Ho :z (z3) , :−Ho :z (z2)] , :−Ho :z (z1)]

+[[:−Ho :z (z1) , :−Ho :z (z2)] , :−Ho :z (z3)]}
+ · · · , (4.97)

with

[:−Ho :z (z1) , :−Ho :z (z2)]

= :−Ho :z (z1) :−Ho :z (z2)− :−Ho :z (z2) :−Ho :z (z1)

= : {−Ho (z1) ,−Ho (z2)}z :, (4.98)

as follows from (2.57). When Ho is z-independent, the commutators in (4.97) vanish
making T (z,zi) an ordinary exponential:

T (z,zi) = e
∫ z

zi
dz :−Ho(z):z . (4.99)

Note that we can write

T (z,zi) = P
(

e
∫ z

zi
dz :−Ho(z):z

)
= eT (z,zi). (4.100)

In general, for any observable O, we would have

O(z) = eT (z,zi)O(zi) . (4.101)

Analogous to the semigroup property of the time-evolution operator in quantum
mechanics (3.167), the Lie transfer operator T (z,zi) has the semigroup property,

T (z,zi) = T
(
z,z′
)
T
(
z′,zi

)
, (4.102)
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which follows from the observation(
~r⊥(z)
~p⊥(z)

p0

)
= T (z,zi)

(
~r⊥ (zi)
~p⊥(zi)

p0

)
,(

~r⊥(z)
~p⊥(z)

p0

)
= T

(
z,z′
)( ~r⊥ (z′)

~p⊥(z′)
p0

)
,(

~r⊥ (z′)
~p⊥(z′)

p0

)
= T

(
z′,zi

)( ~r⊥ (zi)
~p⊥(zi)

p0

)
, (4.103)

In general, we have, for z > zn > zn−1 > · · ·> z2 > z1 > zi,

T (z,zi) = T (z,zn)T (zn,zn−1) . . .T (z2,z1)T (z1,zi) , (4.104)

For the round magnetic lens, we have

Ho = Ho,L +Ho,R, (4.105)

where

Ho,L =−p0 +
1

2p0
p2
⊥+

1
2

p0α
2(z)r2

⊥,

Ho,R =−α(z)Lz. (4.106)

Let us now note the following: {
r2
⊥,Lz

}
z = 0, (4.107)

where for any two time-independent f and g

{ f ,g}z =

(
∂ f
∂x

∂g
∂ px
− ∂ f

∂ px

∂g
∂x

)
+

(
∂ f
∂y

∂g
∂ py
− ∂ f

∂ py

∂g
∂y

)
. (4.108)

Proof of (4.107) is as follows:{
r2
⊥,Lz

}
z =
{

x2 + y2,xpy− ypx
}

z

=
{

x2,xpy
}

z−
{

x2,ypx
}

z +
{

y2,xpy
}

z−
{

y2,ypx
}

z

=−y
{

x2, px
}

z + x
{

y2, py
}

z

=−2yx+2xy = 0. (4.109)

Similarly we have {
p2
⊥,Lz

}
z = 0, (4.110)

as follows:{
p2
⊥,Lz

}
z =
{

p2
x + p2

y ,xpy− ypx
}

z

=
{

p2
x ,xpy

}
z−
{

p2
x ,ypx

}
z +
{

p2
y ,xpy

}
z−
{

p2
y ,ypx

}
z

=
{

p2
x ,x
}

z py−
{

p2
y ,y
}

z px

=−2px py +2py px = 0. (4.111)
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In view of (4.107) and (4.110), we have

{Ho,L,Ho,R}z = 0. (4.112)

Then, the commutator terms between Ho,L and Ho,R in (4.97) vanish, leading to the
result that for the round magnetic lens

T (z,zi) = M (z,zi)R (z,zi) (4.113)

with

M (z,zi) = P
(

e
∫ z

zi
dz :−Ho,L(z):z

)
, R (z,zi) = P

(
e
∫ z

zi
dz :−Ho,R(z):z

)
. (4.114)

It is easy to see that :−Ho,R (z′) :z commutes with :−Ho,R (z′′) :z for any two z′ and
z′′, and hence we can write

R (z,zi) = e
∫ z

zi
dz :−Ho,R(z):z = e

q
2p0

(∫ z
zi

dzB(z)
)

:Lz:z = eθ(z,zi):Lz:z . (4.115)

Note that{
Ho,L

(
z′
)
,Ho,L

(
z′′
)}

z

=

{(
1

2p0
p2
⊥+

1
2

p0α
2 (z′)r2

⊥

)
,

(
1

2p0
p2
⊥+

1
2

p0α
2 (z′′)r2

⊥

)}
z

=
(
α

2 (z′)−α
2 (z′′))(~r⊥ ·~p⊥) , (4.116)

showing that : −Ho,L (z′) :z does not commute with : −Ho,L (z′′) :z if α2 (z′) 6=
α2 (z′′). Thus, the expression for M (z,zi) cannot be simplified further.

Let us first consider the effect of R (z,zi) on~r⊥ and ~p⊥
p0

. To this end, we proceed
as follows:

eθ :Lz:zx =
(

1+θ : Lz :z +
θ 2

2!
: Lz :2z +

θ 3

3!
: Lz :3z + · · ·

)
x

= x+θ {Lz,x}z +
θ 2

2!
{

Lz,{Lz,x}z
}

z +
θ 3

3!

{
Lz,
{

Lz,{Lz,x}z
}

z

}
z
· · ·

= x
(

1− θ 2

2!
+

θ 4

4!
−·· ·

)
+ y
(

θ − θ 3

3!
+

θ 5

5!
−·· ·

)
= cosθx+ sinθy. (4.117)

Similarly, it is seen that

eθ :Lz:zy =−sinθx+ cosθy,

eθ :Lz:z px

p0
= cosθ

px

p0
+ sinθ

py

p0
,

eθ :Lz:z py

p0
=−sinθ

px

p0
+ cosθ

py

p0
. (4.118)
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This shows that we can write

R (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



=


cosθ (z,zi) sinθ (z,zi) 0 0
−sinθ (z,zi) cosθ (z,zi) 0 0

0 0 cosθ (z,zi) sinθ (z,zi)
0 0 −sinθ (z,zi) cosθ (z,zi)




x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= [I⊗R(z,zi)]


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

 . (4.119)

We can derive this result in the following way also. Observe that

: Lz :z


x
y
px
p0py
p0

=


{Lz,x}z
{Lz,y}z{
Lz,

px
p0

}
z{

Lz,
py
p0

}
z

= L


x
y
px
p0py
p0

 , (4.120)

where

L=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (4.121)

It can be verified directly that

: L :2z


x
y
px
p0py
p0

= L2


x
y
px
p0py
p0

 , : L :3z


x
y
px
p0py
p0

= L3


x
y
px
p0py
p0

 , . . . . (4.122)

Hence we can write

R (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

= eθ(z,zi):Lz:z


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



=
∞

∑
n=0

1
n!

θ (z,zi)
n : Lz :nz


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0
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=
∞

∑
n=0

1
n!

θ (z,zi)
n Ln


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= [I⊗R(z,zi)]


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

 , (4.123)

as found already in (4.119).
To find the effect of M (z,zi) on (x,y, px/p0, py/p0), let us proceed as follows.

Observe that

:−Ho,L (z) :z x = {−Ho,L (z) ,x}z

=

{
−
(

1
2p0

p2
⊥+

1
2

p0α
2(z)r2

⊥

)
,x
}

z

=

{
− p2

x

2p0
,x
}

z
=

px

p0
, (4.124)

and

:−Ho,L (z) :z
px

p0
=

{
−Ho,L (z) ,

px

p0

}
z

=

{
−
(

1
2p0

p2
⊥+

1
2

p0α
2(z)r2

⊥

)
,

px

p0

}
z

=

{
−1

2
p0α

2(z)x2,
px

p0

}
z
=−α

2(z)x. (4.125)

Similar equations follow for the Poisson brackets of −Ho,L (z) with y and py/p0.
Thus, we get

:−Ho,L (z) :z


x
y
px
p0py
p0

=


0 0 1 0
0 0 0 1

−α2(z) 0 0 0
0 −α2(z) 0 0




x
y
px
p0py
p0



=

[(
0 1

−α2(z 0

)
⊗ I
]

x
y
px
p0py
p0



= (µ(z)⊗ I)


x
y
px
p0py
p0

 . (4.126)
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It can be verified directly that

:−Ho,L (z2) :z:−Ho,L (z1) :z


x
y
px
p0py
p0



= (µ (z2)⊗ I)(µ (z1)⊗ I)


x
y
px
p0py
p0



= (µ (z2)µ (z1)⊗ I)


x
y
px
p0py
p0

 . (4.127)

From this, it follows that we can write

M (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

= P
(

e
∫ z

zi
dz:−Ho,L(z):z

)
x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= P
(

e
∫ z

zi
dz µ(z)⊗I

)
x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



=
[
P
(

e
∫ z

zi
dz µ(z)

)
⊗ I
]

x(zi)
y(zi)
px(zi)

p0
py(zi)

p0



= (M (z,zi)⊗ I)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

 , (4.128)

where M (z,zI) is given by (4.54). Now, from (4.113), we get the full phase space
transfer map as

x(z)
y(z)
px(z)

p0
py(z)

p0

= T (z,zi)


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

= (M (z,zi)⊗R(z,zi))


x(zi)
y(zi)
px(zi)

p0
py(zi)

p0

 . (4.129)
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Thus, we have analyzed the performance of an axially symmetric magnetic lens using
direct integration of Hamilton’s equations and also using the Lie transfer operator
method. The paraxial approximation is seen to lead to a linear relationship between
the initial transverse coordinates and momenta to the final coordinates and momenta
for a particle of a paraxial beam traveling through the system close to the optic axis.
If the beam deviates from the ideal paraxial condition, the transfer map from the ini-
tial to the final transverse coordinates and momenta will become nonlinear leading to
aberrations in the imaging systems. Then, one has to go beyond the paraxial approxi-
mation and use perturbation techniques to understand the performance of the system.
As already mentioned, we shall not deal with the classical theory of aberrations here,
and later we shall see that the classical theory of aberrations can be understood as an
approximation of the quantum theory.

4.3.2 NORMAL MAGNETIC QUADRUPOLE

Let us now consider a paraxial beam propagating through a normal magnetic
quadrupole lens. Let the optic axis be along the z-direction and the practical bound-
aries of the quadrupole be at z` and zr with z` < zr. The field of the normal magnetic
quadrupole is

~B(~r) = (−Qny,−Qnx,0) , (4.130)

where

Qn =

{
constant in the lens region (z` ≤ z≤ zr)
0 outside the lens region (z < z`,z > zr)

(4.131)

There is no electric field and hence φ(~r) = 0. The vector potential of the magnetic
field can be taken as

~A(~r) =
(

0,0,
1
2

Qn
(
x2− y2)) . (4.132)

Now, from (4.2), the classical beam optical Hamiltonian is seen to be, with Kn =
qQn/p0,

Ho =−
√

p2
0−π2

⊥−qAz ≈−p0 +
p2
⊥

2p0
−qAz

=−p0 +
p2
⊥

2p0
− 1

2
p0Kn

(
x2− y2) . (4.133)

Let us consider the propagation of the beam from the transverse xy-plane at z = zi <
z` to the transverse plane at z > zr. The beam propagates in free space from zi to z`,
passes through the lens from z` to zr, and propagates through free space again from
zr to z. Let us specify the transfer map for the transverse coordinates and momenta
of a beam particle by 

x(z)
px(z)

p0
y(z)
py(z)

p0

= T (z,zi)


x(zi)
px(zi)

p0
y(zi)
py(zi)

p0

 . (4.134)
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In view of the semigroup property of the transfer operator (4.104), we can write

T (z,zi) = T (z,zr)T (zr,z`)T (z`,zi)

= TD (z,zr)TL (zr,z`)TD (z`,zi)

= e
∫ z

zr dz :−
p2
⊥

2p0
:z e
∫ zr

z`
dz :−

(
p2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:z
e
∫ z`

zi dz :−
p2
⊥

2p0
:z

= e(z−zr):−
p2
⊥

2p0
:z e

(zr−z`):−
(

p2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:z
e(z`−zi):−

p2
⊥

2p0
:z , (4.135)

where the subscripts D and L denote drift and propagation through the lens. Note that
TD and TL are expressible as ordinary exponentials since Ho is z-independent in the
free and lens regions. Note that we have dropped the additive constant term −p0
from Ho in the transfer operators, since its Poisson brackets with the coordinates
and momenta vanish. As we already know, we have

:−
p2
⊥

2p0
:z


x
px
p0
y
py
p0

=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




x
px
p0
y
py
p0

 , (4.136)

and hence 
x(z)
px(z)

p0
y(z)
py(z)

p0

= TD (z,zr)


x(zr)
px(zr)

p0
y(zr)
py(zr)

p0



=


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1




x(zr)
px(zr)

p0
y(zr)
py(zr)

p0

 .

(4.137)

Similarly, we have
x(z`)
px(z`)

p0
y(z`)
py(z`)

p0

= TD (z`,zi)


x(zi)
px(zi)

p0
y(zi)
py(zi)

p0



=


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1




x(zi)
px(zi)

p0
y(zi)
py(zi)

p0

 . (4.138)
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To get TL (zr,z`), let us observe that

:−
(

p2
⊥

2p0
− 1

2
p0Kn

(
x2− y2)) :z


x
px
p0
y
py
p0

=


0 1 0 0

Kn 0 0 0
0 0 0 1
0 0 −Kn 0




x
px
p0
y
py
p0

 .

(4.139)
Then, we get

x(zr)
px(zr)

p0
y(zr)
py(zr)

p0

= TL (zr,z`)


x(z`)
px(z`)

p0
y(z`)
py(z`)

p0



= exp

w


0 1 0 0

Kn 0 0 0
0 0 0 1
0 0 −Kn 0





x(z`)
px(z`)

p0
y(z`)
py(z`)

p0


=

((
cosh

(
w
√

Kn
) 1√

Kn
sinh

(
w
√

Kn
)

√
Kn sinh

(
w
√

Kn
)

cosh
(
w
√

Kn
) )

⊕

(
cos
(
w
√

Kn
) 1√

Kn
sin
(
w
√

Kn
)

−
√

Kn sin
(
w
√

Kn
)

cos
(
w
√

Kn
) ))

x(z`)
px(z`)

p0
y(z`)
py(z`)

p0

 ,

with w = (zr− z`) . (4.140)

Here,

(A⊕B) =
(

A O
O B

)
(4.141)

is the direct sum of the matrices A and B with O as the 2×2 null matrix with all its
entries as zero. Thus, we have

x(z)
px(z)

p0
y(z)
py(z)

p0

= TD (z,zr)TL (zr,z`)TD (z`,zi)


x(zi)
px(zi)

p0
y(zi)
py(zi)

p0

 ,

TD (z,zr) =


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1

 ,

TL (zr,z`) =

((
cosh

(
w
√

Kn
) 1√

Kn
sinh

(
w
√

Kn
)

√
Kn sinh

(
w
√

Kn
)

cosh
(
w
√

Kn
) )

⊕
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cos
(
w
√

Kn
) 1√

Kn
sin
(
w
√

Kn
)

−
√

Kn sin
(
w
√

Kn
)

cos
(
w
√

Kn
) ))

TD (z`,zi) =


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1

 . (4.142)

It is readily seen from this map that when Kn > 0 the lens is divergent in the xz-plane
and convergent in the yz-plane. In other words, the normal magnetic quadrupole lens
produces a line focus. When Kn < 0 the lens is convergent in the xz-plane and diver-
gent in the yz-plane. Note that Kn has the dimensions of length−2. In the weak field
case, when w

√
|Kn| � 1, the aforementioned transfer map becomes

x(z)
px(z)

p0
y(z)
py(z)

p0

≈


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1

×


1 0 0 0
wKn 1 0 0

0 0 1 0
0 0 −wKn 1

×


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1




x(zi)
px(zi)

p0
y(zi)
py(zi)

p0

 , (4.143)

showing that the lens can be considered a thin lens (w≈ 0) with the focal lengths

1
f (x)

=−wKn,
1

f (y)
= wKn. (4.144)

When the beam is not ideally paraxial, more terms will have to be included in the
optical Hamiltonian, and this will lead to nonlinearities in the transfer map.

Let us consider two thin lenses of focal lengths f1 and f2 kept separated by a
distance d. The transfer matrix from the entrance of the lens with focal length f1 to
the exit of the lens with focal length f2 will be(

1 0
− 1

f2
1

)(
1 d
0 1

)(
1 0
− 1

f1
1

)
=

(
1− d

f1
d

−
(

1
f1
+ 1

f2
− d

f1 f2

)
1− d

f2

)
,

(4.145)
showing that the combination has the equivalent focal length given by

1
f
=

1
f1
+

1
f2
− d

f1 f2
. (4.146)
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This shows that a lens of focal length ± f can be considered effectively to be two
lenses of focal length±2 f , respectively, joined together, i.e., f1 = f2 =±2 f , and d =
0 in the formula (4.146). This also shows that a doublet of focusing and defocusing
lenses of focal lengths f and − f with a distance d between them would have the
effective focal length f 2/d > 0, and hence would behave as a focusing lens.

Let us consider a triplet of identical quadrupoles, with focal lengths f and − f in
the two transverse planes, arranged as follows. The first and the third quadrupoles,
situated symmetrically about the middle quadrupole at a distance d from them, are
focusing in the xz-plane and defocusing in the yz-plane. The middle quadrupole is
rotated by 90◦ with respect to first (and the third) so that it is defocusing in the xz-
plane and focusing in the yz-plane. The transfer matrix from the center of the first
lens to the center of the third lens is given by


1 0 0 0
− 1

2 f 1 0 0
0 0 1 0
0 0 1

2 f 1




1 d 0 0
0 1 0 0
0 0 1 d
0 0 0 1




1 0 0 0
1
f 1 0 0
0 0 1 0
0 0 − 1

f 1

×

×


1 d 0 0
0 1 0 0
0 0 1 d
0 0 0 1




1 0 0 0
− 1

2 f 1 0 0
0 0 1 0
0 0 1

2 f 1



=


1− d

2 f 2 2d
(

1+ d
2 f

)
0 0

− d
2 f 2

(
1− d

2 f

)
1− d

2 f 2 0 0

0 0 1− d
2 f 2 2d

(
1− d

2 f

)
0 0 − d

2 f 2

(
1+ d

2 f

)
1− d

2 f 2

 , (4.147)

corresponding to net focusing effect in both the transverse planes when d < 2 f .
In electron optical technology, for electron energies in the range of tens or hun-

dreds of kilovolts to a few megavolts, magnetic quadrupole lenses are used, if at
all, as components in aberration-correcting units for round lenses and in devices
required to produce a line focus. It is mainly at higher energies, where round
lenses are too weak, quadrupole lenses are utilized to provide the principal focus-
ing field. As seen above, a triplet of quadrupoles can be arranged to have net
focusing effect in both the transverse planes. Series of such quadrupole triplets
are the main design elements of long beam transport lines or circular accelera-
tors to provide a periodic focusing structure called a FODO-channel. FODO stands
for F(ocusing)O(nonfocusing)D(efocusing)O(nonfocusing), where O can be a drift
space or a bending magnet.
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4.3.3 SKEW MAGNETIC QUADRUPOLE

A magnetic quadrupole associated with the magnetic field

~B(~r) = (−Qsx,Qsy,0) , (4.148)

corresponding to the vector potential

~A(~r) = (0,0,−Qsxy) , (4.149)

is known as a skew magnetic quadrupole. If z` and zr > z` are the boundaries of
the quadrupole, then Qs is a nonzero constant for z` ≤ z≤ zr and Qs = 0 outside the
quadrupole (z < z`, z > zr). For a paraxial beam propagating through this skew mag-
netic quadrupole along its optic axis, z-axis, the classical beam optical Hamiltonian
will be

Ho =

 −p0 +
p2
⊥

2p0
, for z < z`, z > zr,

−p0 +
p2
⊥

2p0
+ p0Ksxy, for z` ≤ z≤ zr,

(4.150)

where Ks = qQs/p0. Now, if we make the transformation
x
px
y
py

=
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 1




x′

p′x
y′

p′y

= R


x′

p′x
y′

p′y

 , (4.151)

the Hamiltonian is seen to become

H ′
o =

 −p0 +
p′⊥

2

2p0
, for z < z`, z > zr,

−p0 +
p′⊥

2

2p0
− 1

2 p0Ks

(
x′2− y′2

)
, for z` ≤ z≤ zr,

(4.152)

same as for the propagation of the paraxial beam through a normal magnetic
quadrupole (4.133) in the new (x′,y′) coordinate system, with Kn replaced by Ks. The
above transformation corresponds to a clockwise rotation of the (x,y) coordinate axes
by π

4 about the optic axis. Hence, the transfer map for the skew magnetic quadrupole
can be obtained from the transfer map for the normal magnetic quadrupole as

Tsq = RTnqR−1, (4.153)

where the subscripts sq and nq stand for the skew magnetic quadrupole and the nor-
mal magnetic quadrupole, respectively. The beam optical Hamiltonian for propa-
gation through free space is axially symmetric. Thus, the free space transfer map
through any distance, say z′ to z′′, TD (z′′,z′), is seen to satisfy the relation

R(θ)TD
(
z′′,z′

)
R(θ)−1 = TD

(
z′′,z′

)
, for any θ , (4.154)
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where

R(θ) =


cosθ 0 sinθ 0

0 cosθ 0 sinθ

−sinθ 0 cosθ 0
0 −sinθ 0 cosθ

 ,

TD
(
z′′,z′

)
=


1 z′′− z′ 0 0
0 1 0 0
0 0 1 z′′− z′

0 0 0 1

 . (4.155)

Note that R(θ)−1 = R(−θ) and R in (4.151) is R
(

π

4

)
. Then, from the relations

(4.153) and (4.154), we get

Tsq (z,zi) = TD (z,zr)Tsq,L (zr,z`)TD (z`,zi)

= TD (z,zr)RTnq,L (zr,z`)R−1TD (z`,zi) , (4.156)

where R is as in (4.151), and Tnq,L (zr,z`) is the same as TL (zr,z`) in (4.142) with
Kn replaced by Ks. One can get Tsq,L (zr,z`) directly as follows. Observe that

:−
(

p2
⊥

2p0
+ p0Ksxy

)
:z


x
px
p0
y
py
p0

=


0 1 0 0
0 0 −Ks 0
0 0 0 1
−Ks 0 0 0




x
px
p0
y
py
p0

 . (4.157)

Then, one gets
x(zr)
px(zr)

p0
y(zr)
py(zr)

p0

= Tsq,L (zr,z`)


x(z`)
px(z`)

p0
y(z`)
py(z`)

p0



= exp

w


0 1 0 0
0 0 −Ks 0
0 0 0 1
−Ks 0 0 0





x(z`)
px(z`)

p0
y(z`)
py(z`)

p0



=
1
2


C+ 1√

Ks
S+ C− 1√

Ks
S−

−
√

KsS− C+ −
√

KsS+ C−

C− 1√
Ks

S− C+ 1√
Ks

S+

−
√

KsS+ C− −
√

KsS− C+




x(z`)
px(z`)

p0
y(z`)
py(z`)

p0

 ,

with w = (zr− z`) . (4.158)
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where

C± = cos(w
√

Ks)± cosh(w
√

Ks),

S± = sin(w
√

Ks)± sinh(w
√

Ks). (4.159)

It can be verified that Tsq,L = RTnq,L (zr,z`)R−1.

4.3.4 AXIALLY SYMMETRIC ELECTROSTATIC LENS

An axially symmetric, round, electrostatic lens with the axis along the z-direction
consists of the electric field corresponding to the potential

φ (~r⊥,z) =
∞

∑
n=0

(−1)n

(n!)24n φ
(2n)(z)r2n

⊥

= φ(z)− 1
4

φ
′′(z)r2

⊥+
1
64

φ
′′′′(z)r4

⊥−·· · , (4.160)

inside the lens region (z` < z < zr). Outside the lens, i.e., (z < z`, z > zr), φ(z) = 0.
And, there is no magnetic field, i.e., ~A(~r) = (0,0,0).

Starting with (4.2), the classical paraxial beam optical Hamiltonian of a general
electrostatic lens, in the lens region, is obtained as follows:

Ho =−
√

p2
0−π2

⊥−
1
c2 2qEφ −qAz

=−
√

p2
0− p2

⊥−
1
c2 2qEφ

=−p0

√
1−
(

p2
⊥

p2
0
+

2qEφ

c2 p2
0

)

≈−p0

{
1− 1

2

(
p2
⊥

p2
0
+

2qEφ

c2 p2
0

)
− 1

8

(
p2
⊥

p2
0
+

2qEφ

c2 p2
0

)2}

≈−p0 +
p2
⊥

2p0
+

qEφ

c2 p0
+

qEφ p2
⊥

2c2 p3
0

+
q2E2φ 2

2c4 p3
0
. (4.161)

For the round electrostatic lens, we get the classical beam optical Hamiltonian in the
lens region, in the paraxial approximation, by using (4.160) in (4.161) as follows:

Ho ≈−p0 +
p2
⊥

2p0
+

qE
c2 p0

(
φ(z)− 1

4
φ
′′(z)r2

⊥

)
+

qE p2
⊥

2c2 p3
0

(
φ(z)− 1

4
φ
′′(z)r2

⊥

)
+

q2E2

2c4 p3
0

(
φ(z)2− 1

2
φ(z)φ ′′(z)r2

⊥

)
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≈−
(

1− qE
c2 p2

0
φ(z)− q2E2

2c4 p4
0

φ
2(z)

)
p0 +

(
1+

qE
c2 p2

0
φ(z)

)
p2
⊥

2p0

− qE
4c2 p0

(
1+

qE
c2 p2

0
φ(z)

)
φ
′′(z)r2

⊥. (4.162)

In the field-free regions outside the lens, the optical Hamiltonian will be −p0 +(
p2
⊥/2p0

)
.

The aforementioned optical Hamiltonian of the round electrostatic lens is seen to
be similar to the optical Hamiltonian of the round magnetic lens (4.24), except for
the absence of the rotation term and the presence of an z-dependent coefficient for
the drift term p2

⊥/2p0. The first constant term, though z-dependent, can be ignored
as before, since it has vanishing Poisson bracket with the transverse coordinates and
momenta. The paraxial Hamiltonian in (4.162), being quadratic in r⊥ and p⊥, leads
to a linear transfer map for the transverse coordinates and momenta, and it is straight-
forward to calculate the map following the same procedure used in the case of the
round magnetic lens. When the beam is not paraxial, there will be aberrations. We
shall not pursue the performance of this lens further. Some uses of electrostatic lenses
are in the extraction, preparation, and initial acceleration of electron and ion beams
in a variety of applications.

4.3.5 ELECTROSTATIC QUADRUPOLE

The electric field of an ideal electrostatic quadrupole lens with the optic axis along
the z-direction corresponds to the potential

φ (~r⊥,z) =
{ 1

2 Qe
(
x2− y2

)
in the lens region (z` < z < zr) ,

0 outside the lens (z < z`,z > zr) ,
(4.163)

where Qe is a constant and zr − z` = w is the width of the lens. Substituting this
expression for φ and ~A = (0,0,0), since there is no magnetic field, in the general
form of the optical Hamiltonian of an electrostatic lens (4.161), we get

Ho ≈−p0 +
p2
⊥

2p0
+

qEQe

2c2 p0

(
x2− y2) , (4.164)

as the classical beam optical Hamiltonian of the electrostatic quadrupole lens in the
paraxial approximation.

Simply by comparing the Hamiltonian of the normal magnetic quadrupole lens
(4.133) with the Hamiltonian of the electrostatic quadrupole lens (4.164), it is readily
seen that the electrostatic quadrupole lens is convergent in the xz-plane and divergent
in the yz-plane when

Ke =
qEQe

c2 p2
0
> 0. (4.165)
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When Ke < 0, this lens is divergent in the xz-plane and convergent in the yz-plane.
Note that Ke has the dimension of length−2. In the weak field case, when w2 �
1/ |Ke|, the lens can be considered as thin and has focal lengths

1
f (x)

= wKe,
1

f (y)
=−wKe. (4.166)

Deviations from the ideal behavior result from nonparaxial conditions of the beam.
We shall not pursue the performance of this lens further here.

4.4 BENDING MAGNET: AN OPTICAL ELEMENT WITH
A CURVED OPTIC AXIS

Circular accelerators and storage rings require dipole magnets for bending the beams
to guide them along the desired curved paths. By applying a constant magnetic field
in the vertical direction using a dipole magnet, the beam is bent along a circular arc in
the horizontal plane. The circular arc of radius of curvature ρ , the design trajectory of
the particle, is the optic axis of the bending magnet. It is natural to use the arclength,
say S, measured along the optic axis from some reference point as the independent
coordinate, instead of z. Let the reference particle moving along the design trajec-
tory carry an orthonormal XY -coordinate frame with it. The X-axis is taken to be
perpendicular to the tangent to the design orbit and in the same horizontal plane as
the trajectory, and the Y -axis is taken to be in the vertical direction perpendicular to
both the X-axis and the trajectory. The curved S-axis is along the design trajectory
and perpendicular to both the X and Y axes at any point on the design trajectory. The
instantaneous position of the reference particle in the design trajectory at an arclength
S from the reference point corresponds to X = 0 and Y = 0. Let any particle of the
beam have coordinates (x,y,z) with respect to a fixed right-handed Cartesian coordi-
nate frame, with its origin at the reference point on the design trajectory from which
the arclength S is measured. Then, the two sets of coordinates of any particle of the
beam, (X ,Y,S) and (x,y,z), will be related as follows:

x = (ρ +X)cos
(

S
ρ

)
−ρ, z = (ρ +X)sin

(
S
ρ

)
, y = Y (4.167)

To study the motion of the beam particles through the dipole magnet with a circular
arc as the optic axis, we have to transform the optical Hamiltonian to the (X ,Y,S)-
coordinate system. This can be done through a canonical transformation with the
generating function chosen as

F3 (px, py, pz,X ,Y,S) =−
[
(ρ +X)cos

(
(

S
ρ

)
−ρ

]
px

−
[
(ρ +X)sin

(
S
ρ

)]
pz−Y py, (4.168)

such that

x j =−
∂F3

∂ p j
, Pj =−

∂F3

∂X j
. (4.169)
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The first part of the above equation just reproduces (4.167) giving the relation
between (x,y,z) and (X ,Y,S). The second part gives the new momentum compo-
nents conjugate to (X ,Y,S): with 1/ρ = κ , the curvature, and ζ = 1+κX , PX

1
ζ

PS

PY

=

 cos(κS) sin(κS) 0
−sin(κS) cos(κS) 0

0 0 1

 px
pz
py

 (4.170)

Since X and S axes are rotated clockwise through the angle S/ρ relative to the x and
z axes, the components of the vector potential in the two frames are related as AX

AS
AY

=

 cos(κS) sin(κS) 0
−sin(κS) cos(κS) 0

0 0 1

 Ax
Az
Ay

 . (4.171)

For more details, see, e.g., Wolski [192].
The general Hamiltonian of the particle in an electromagnetic field (2.37) is

H (x,y,z, px, py, pz, t) =
√

m2c4 + c2(~p−q~A)2 +qφ , (4.172)

in the Cartesian coordinate system. If we change it to (X ,Y,S) coordinate system
using the relations (4.170) and (4.171), we get

H (X ,Y,S,PX ,PY ,PS, t)

=
{

m2c4 + c2
[
(PX −qAX )

2 +(PY −qAY )
2

+
1

ζ 2 (PS−qζ AS)
2
]}1/2

+qφ , (4.173)

in which (x,y,z) are expressed in terms of (X ,Y,S) using (4.167). Now, we have to
change the independent variable in the above Hamiltonian from t to S, and the desired
classical beam optical Hamiltonian in the chosen curvilinear coordinate system is
given as the solution for −PS:

H̃o =−PS

=−1
c

ζ

(√
(E−qφ)2−m2c4− c2

(
~P⊥−q~A⊥

)2
)
−ζ qAS. (4.174)

From (4.167), we find that ds, the distance between two infinitesimally close points,
is given by

ds2 = dx2 +dy2 +dz2 = dX2 +dY 2 +ζ
2dS2. (4.175)

In general, in an orthogonal curvilinear (u,v,w)-coordinate system with the line ele-
ment ds given by

ds2 = h2
udu2 +h2

vdv2 +h2
wdw2, (4.176)
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the curl of any vector ~A has the following expression (see, e.g., Arfken, Weber, and
Harris [3]):

(~∇×~A)u =
1

hvhw

(
∂ (hwAw)

∂v
− ∂ (hvAv)

∂w

)
,

(~∇×~A)v =
1

hwhu

(
∂ (huAu)

∂w
− ∂ (hwAw)

∂u

)
,

(~∇×~A)w =
1

huhv

(
∂ (hvAv)

∂u
− ∂ (huAu)

∂v

)
. (4.177)

Thus, in the (X ,Y,S)-coordinate system, we have

BX = (~∇×~A)X =
1
ζ

(
∂ (ζ AS)

∂Y
− ∂AY

∂S

)
,

BY = (~∇×~A)Y =
1
ζ

(
∂AX

∂S
− ∂ (ζ AS)

∂X

)
,

BS = (~∇×~A)S =
∂AY

∂X
− ∂AX

∂Y
. (4.178)

The dipole magnetic field is a uniform field perpendicular to the design trajectory
such that the beam particle is bent along the design trajectory. So, we should have

BX = 0, BY = B0, BS = 0. (4.179)

Using (4.178), we find that the corresponding vector potential in the curved coordi-
nate system can be taken as

AX = 0, AY = 0, AS =−B0

(
X− κX2

2ζ

)
. (4.180)

Let us now find the optical Hamiltonian obtained by substituting in (4.174) φ = 0
and choosing the vector potential as in (4.180). The resulting classical beam optical
Hamiltonian for the dipole magnet, in the paraxial approximation, is

H̃o =−
1
c

ζ

√
E2−m2c4− c2P2

⊥+ζ qB0

(
X− κX2

2ζ

)
=−ζ

√
p2

0−P2
⊥+qB0

(
Xζ − 1

2
κX2

)
≈ ζ

(
−p0 +

P2
⊥

2p0

)
+qB0

(
X +

1
2

κX2
)

≈−p0 +
P2
⊥

2p0
+(qB0−κ p0)X +

1
2

qB0κX2. (4.181)



Classical Charged Particle Beam Optics 209

Let us now find what would be the effect of the term ∝ X in the above Hamiltonian:
with ∆S = S−Si,

e
∫ S

Si
ds :−(qB0−κ p0)X :S


X (Si)
PX (Si)

p0
Y (Si)
PY (Si)



= e:−∆S(qB0−κ p0)X :S


X (Si)
PX (Si)

p0
Y (Si)
PY (Si)



=
∞

∑
0

1
n!

:−∆S (qB0−κ p0)X :nS


X (Si)
PX (Si)

p0
Y (Si)
PY (Si)



=


X (Si)

1
p0
(PX (Si)+∆S (qB0−κ p0))

Y (Si)
PY (Si)

 , (4.182)

where Si and S > Si are two points on the curved S-axis or the design trajectory. This
shows that the presence of the term ∝ X in the Hamiltonian causes a change in PX
and hence a deflection of the particle in the horizontal plane perpendicular to the
design trajectory. If the curvature of the design trajectory is properly matched to the
dipole magnetic field, i.e.,

qB0 = κ p0 or, B0ρ =
p0

q
, (4.183)

then the term (qB0−κ p0)X in the Hamiltonian vanishes, and if a particle is initially
on the design trajectory, it will remain on the design trajectory through the dipole.
The condition (4.183) follows simply from the fact that if a constant magnetic field
of magnitude B bends the path of a particle of charge q moving with a speed v per-
pendicular to it in a circular arc of radius ρ , then we must have

γmv2

ρ
= qBv, or,

γmv
q

=
p
q
= Bρ. (4.184)

The quantity Bρ is called magnetic rigidity. Thus, if a beam of design momentum
p0 is to be bent by a circular arc of radius ρ by a dipole magnet, the magnetic field
should have the magnitude B0 = p0/(qρ). With the condition (4.183) satisfied, the
classical beam optical Hamiltonian of the dipole magnet becomes
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H̃o,d =−p0 +
P2
⊥

2p0
+

1
2

p0κ
2X2

=−p0 +

(
P2

X
2p0

+
1
2

p0κ
2X2
)
+

P2
Y

2p0
. (4.185)

which is independent of S. Then, the transfer map for the dipole is seen to be
X(S)
PX (S)

p0
Y (S)
PY (S)

p0

= e
∫ S

Si
ds :−H̃o,d(s):S


X (Si)
PX (Si)

p0
Y (Si)
PY (Si)

p0



= exp

∆S


0 1 0 0
−κ2 0 0 0

0 0 0 1
0 0 0 0





X (Si)
PX (Si)

p0
Y (Si)
PY (Si)

p0



=


cos(κ∆S) 1

κ
sin(κ∆S) 0 0

−κ sin(κ∆S) cos(κ∆S) 0 0
0 0 1 ∆S
0 0 0 1




X (Si)
PX (Si)

p0
Y (Si)
PY (Si)

p0

 .

(4.186)

This shows that a particle entering the dipole magnet along the design trajectory
(X = 0,Y = 0,PX = 0,PY = 0) will follow exactly the curved design trajectory. Such
a steering of the beam is the purpose of the dipole magnet. Any other particle of the
paraxial beam making a small angle with the design trajectory will have a small oscil-
lation in the X-direction about the design trajectory and will have free propagation
along the Y -direction.

4.5 NONRELATIVISTIC CLASSICAL CHARGED
PARTICLE BEAM OPTICS

We shall now see how the nonrelativistic classical charged particle beam optics
becomes an approximation of the relativistic classical charged particle beam optics.
We have been so far using the exact relativistic expression for the energy of a charged
particle in an electromagnetic field,

E =
√

m2c4 + c2~π2 +qφ , (4.187)

in deriving the classical beam optical Hamiltonians for the various charged particle
optical elements. The expression (4.187) for energy is exact and valid for all values of
particle momentum irrespective of its velocity. In high-energy particle accelerators,
the velocities of the particles being accelerated are very high, and so one has to use
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the relativistic expression (4.187). However, in applications like the common elec-
tron microscopy, or some ion accelerators, where the velocities of the beam particles
are not so high it would be appropriate to use the nonrelativistic approximation. So,
let us try to understand the nonrelativistic approximation of the above formalism.

In nonrelativistic situations when the velocities involved are� c, the expression
for energy can be approximated as

E= mc2

√
1+

~π2

m2c2 +qφ

≈ mc2
(

1+
~π2

2m2c2

)
+qφ (∵ |~π| � mc)

= mc2 +
~π2

2m
+qφ , (4.188)

which is the sum of rest energy, kinetic energy, and potential energy of the parti-
cle. Since the rest energy is not involved in any nonrelativistic interactions, one can
consider the sum of kinetic energy and potential energy as the total energy of the
particle. Thus, we take

E=
~π2

2m
+qφ (4.189)

as the total nonrelativistic energy of a particle. Correspondingly, the nonrelativistic
Hamiltonian of the particle becomes

HNR =
~π2

2m
+qφ . (4.190)

Now, if we use the procedure of changing the independent variable from time t to z,
the variable along the straight optic axis of a system, starting with this Hamiltonian,
we obtain

Ho,NR =−pz =−
√

2m(E−qφ)−~π2
⊥−qAz

=−
√
p2

0−~π2
⊥−2mqφ −qAz, (4.191)

taking p0 as the design momentum such that E= p2
0

2m is the total conserved energy of
the beam particle in the system. Taking the nonrelativistic expression for the momen-
tum p0 = mv0, we can write

Ho,NR =−
√

m2v2
0−~π2

⊥−2mqφ −qAz. (4.192)

We have found in (4.2) the relativistic classical beam optical Hamiltonian of a general
electromagnetic optical element to be

Ho =−
√

p2
0−π2

⊥−
2Eqφ

c2 −qAz, (4.193)
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derived under the condition E � qφ as is usually the case in optical elements and
which is anyway true for purely magnetic optical elements with φ = 0. In (4.193),

E is the total conserved energy of the particle given by
√

m2c4 + c2 p2
0 = γmc2, with

p0 = γmv0. Thus, we can write

Ho =−
√

γ2m2v2
0−π2

⊥−2γmqφ −qAz. (4.194)

Now, comparing (4.192) and (4.194), it is clear that the relativistic optical
Hamiltonian can be obtained from the nonrelativistic optical Hamiltonian by the
replacement

m−→ γm. (4.195)

Thus, we find that one can extend the results based on the nonrelativistic optical
Hamiltonian to get the corresponding relativistic results by replacing the rest mass
m of the particle by γm (the so-called relativistic mass) under the condition E �
qφ . This is a practice often used in classical charged particle optics. Similarly, one
can make nonrelativistic approximations of the results derived from the relativistic
optical Hamiltonian by using the limit γ −→ 1 carefully.



5 Quantum Charged Particle
Beam Optics
Scalar Theory for Spin-0
and Spinless Particles

5.1 GENERAL FORMALISM OF QUANTUM CHARGED PARTICLE
BEAM OPTICS

In the classical theory of charged particle beam optics, our interest is to study the evo-
lution of the state (position and momentum) of the beam particle along the optic axis
of an optical system through which the beam is propagating. Such a study leads to an
understanding of the performance of the concerned optical system based on classical
mechanics. In the quantum theory of charged particle beam optics, our interest is to
study the evolution of the state (wave function, or density operator) of the beam par-
ticle along the optic axis of an optical system through which the beam is propagating.
This study should lead to an understanding of the performance of the concerned opti-
cal system based on quantum mechanics, and the understanding based on classical
mechanics should emerge as an approximation. As we have seen already, the fun-
damental equations of quantum mechanics prescribe the time evolution of the state
of a particle through a Hamiltonian operator governing the system. Exactly like the
independent variable was changed from time to the coordinate along the optic axis of
the concerned system in the classical Hamiltonian theory of charged particle beam
optics, we have to rewrite the basic quantum mechanical equations as equations for
the evolution of the quantum state of the particle along the coordinate, say z, of the
optic axis of the concerned system, i.e., we have to cast the concerned evolution
equations in the form

ih̄
∂ψ (~r⊥,z)

∂ z
= Ĥoψ (~r⊥,z) . (5.1)

Note that ih̄(∂/∂ z) =−p̂z corresponds to the quantum charged particle beam optical
Hamiltonian operator Ĥo.

In this chapter, we shall consider the scalar quantum theory of charged particle
beam optics based on the relativistic Klein–Gordon equation and the nonrelativistic
Schrödinger equation. The Klein–Gordon equation can be used for spin-0 particles,
and all spinless relativistic particles, (i.e., particles for which we can ignore the spin).
The nonrelativistic Schrödinger equation can be used for any nonrelativistic parti-
cle for which we can ignore the spin. Since the nonrelativistic Schrödinger equa-
tion is an approximation of the Klein–Gordon equation, we shall consider first the
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Klein–Gordon equation. This chapter is essentially based on the work of Jagannathan
and Khan [82], Khan and Jagannathan [90], and Khan [91], on the nonrelativistic
scalar theory of quantum charged particle beam optics based on the nonrelativistic
Schrödinger equation, and the relativistic scalar theory of quantum charged parti-
cle beam optics based on the Klein–Gordon equation, following the earlier work
by Jagannathan, Simon, Sudarshan, and Mukunda [79] and Jagannathan [80] on the
spinor theory of quantum charged particle beam optics based on the Dirac equation.
Spinor theory of quantum charged particle beam optics based on the Dirac–Pauli
equation was developed later by Conte, Jagannathan, Khan, and Pusterla [26]. In the
formulation of the relativistic quantum charged particle beam optics, we shall follow
the philosophy of Hawkes and Kasper [72]: There is no need for a Lorentz-covariant
formulation, and in practically all situations, the description in the laboratory frame
is perfectly adequate.

5.2 RELATIVISTIC QUANTUM CHARGED PARTICLE BEAM OPTICS
BASED ON THE KLEIN–GORDON EQUATION

5.2.1 GENERAL FORMALISM

We are concerned with a beam of identical particles of charge q and rest mass m
propagating through a stationary electromagnetic field, constituting a charged par-
ticle optical system, such as a round magnetic lens in an electron microscope or a
magnetic quadrupole in a particle accelerator. Let us ignore the spin of the parti-
cle and hence consider the Klein–Gordon equation as the appropriate equation for
treating the quantum dynamics of the particle when its motion is relativistic. We
consider the optical system to be, in practice, localized in a definite region of space
so that the regions outside the system can be considered field-free or free space. We
shall assume, throughout, the beam to be monoenergetic, paraxial or quasiparaxial,
and forward moving along the optic axis of the system. All the beam particles are

assumed to have the same positive energy E =
√

m2c4 + c2 p2
0, where p0 is magni-

tude of the design momentum. We assume that all the particles of the beam enter the
optical system from the free space outside the system with this constant energy. Let
φ(~r) and ~A(~r) be the electric scalar potential and the magnetic vector potential of the
time-independent electromagnetic field of the optical system. In passing through the
system or in the process of scattering of the particle by the system, the total energy
of the particle E will be conserved, and hence it is time-independent. After passing
through the system, the particle will emerge outside in the free space with the same
energy E it had when entering the system. In general, we shall consider the system
to have a straight optic axis along the z-direction, except in the case of the bending
magnet.

The scalar Klein–Gordon equation governing the quantum mechanics of the par-
ticle in an electromagnetic field is(

ih̄
∂

∂ t
−qφ(~r, t)

)2

Ψ(~r, t) =
[

m2c4 + c2
(
~̂p−q~A(~r, t)

)2
]

Ψ(~r, t), (5.2)
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as we have already seen (3.586). Since we are dealing with a time-independent sys-
tem, we can take the wave function of the beam particle to be

Ψ(~r, t) = e−iEt/h̄
ψ(~r). (5.3)

Then, the equation (5.2) becomes

e−iEt/h̄(E−qφ)2
ψ(~r) = e−iEt/h̄ (m2c4 + c2

π̂
2)

ψ(~r), (5.4)

or [
(E−qφ)2−m2c4− c2

π̂
2
⊥− c2

π̂
2
z
]

ψ(~r) = 0. (5.5)

We can rewrite this equation as

c2
π̂

2
z ψ(~r) =

[
E2−m2c4−qφ(2E−qφ)− c2

π̂
2
⊥
]

ψ(~r). (5.6)

Dividing throughout by c2, noting that E2−m2c4 = c2 p2
0, and introducing the nota-

tion qφ(2E−qφ) = c2 p̃2, we get

π̂
2
z ψ(~r) =

(
p2

0− p̃2− π̂
2
⊥
)

ψ(~r). (5.7)

Getting the clue from the Feshbach–Villars formalism of the Klein–Gordon equation,
let us introduce a two-component wave function(

ψ1
ψ2

)
=

(
ψ

π̂z
p0

ψ

)
. (5.8)

Then, we can write (5.7) equivalently as

π̂z

p0

(
ψ1
ψ2

)
=

(
0 1

1
p2

0

(
p2

0− p̃2− π̂2
⊥
)

0

)(
ψ1
ψ2

)
. (5.9)

Now, let (
ψ+

ψ−

)
= M

(
ψ1
ψ2

)
=

1
2

(
1 1
1 −1

)(
ψ1
ψ2

)
=

1
2

(
ψ + π̂z

p0
ψ

ψ− π̂z
p0

ψ

)
. (5.10)

Then,

π̂z

p0

(
ψ+

ψ−

)
=

1
p0

(
−ih̄

∂

∂ z
−qAz

)(
ψ+

ψ−

)
= M

(
0 1

1
p2

0

(
p2

0− p̃2− π̂2
⊥
)

0

)
M−1

(
ψ+

ψ−

)

=

(
1− 1

2p2
0

(
π̂2
⊥+ p̃2

)
− 1

2p2
0

(
π̂2
⊥+ p̃2

)
1

2p2
0

(
π̂2
⊥+ p̃2

)
−1+ 1

2p2
0

(
π̂2
⊥+ p̃2

) )( ψ+

ψ−

)
. (5.11)
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Rearranging this equation, we get

ih̄
∂

∂ z

(
ψ+

ψ−

)
= Ĥ

(
ψ+

ψ−

)
,

Ĥ=−p0σz + Ê + Ô,

Ê =−qAzI +
1

2p0

(
π̂

2
⊥+ p̃2)

σz,

Ô =
i

2p0

(
π̂

2
⊥+ p̃2)

σy. (5.12)

Note that Ĥ has been partitioned, apart from the leading term −p0σz, into an even
term Ê that does not couple ψ+ and ψ− and an odd term Ô that couples ψ+ and ψ−.

To understand (5.12) better, let us see what it implies in the case of propagation
of the beam in free space. In free space, with φ = 0 and ~A = (0,0,0), we have

ih̄
∂

∂ z

(
ψ+

ψ−

)
= Ĥ

(
ψ+

ψ−

)
Ĥ=−p0σz + Ê + Ô

=−p0σz +
1

2p0
p̂2
⊥σz +

i
2p0

p̂2
⊥σy

=

 −p0 +
p̂2
⊥

2p0
+

p̂2
⊥

2p0

− p̂2
⊥

2p0
p0−

p̂2
⊥

2p0

 . (5.13)

If we take
ψ(~r) = φ~p0(~r) =

1
(2π h̄)3/2 e

i
h̄~p0·~r, (5.14)

a plane wave of momentum ~p0 = (p0x, p0y, p0z), we have

 ψ+

ψ−

=
1
2

 φ~p0 −
ih̄
p0

∂φ~p0
∂ z

φ~p0 +
ih̄
p0

∂φ~p0
∂ z

=
1
2


(

1+ p0z
p0

)
φ~p0(

1− p0z
p0

)
φ~p0

 . (5.15)

It can be easily checked that this
(

ψ+

ψ−

)
satisfies (5.13). For a particle of a quasi-

paraxial beam moving along and close to the +z-direction, associated with the plane
wave φ~p0(~r) with p0z > 0 and p0z ≈ p0, it is clear from the above equation that
ψ+� ψ−. By extending this observation, it is easy to see that for any wave packet
of the form

ψ(~r) =
∫

d3 p0 C (~p0)φ~p0(~r), with
∫

d3 p0 |C (~p0)|2 = 1,

|~p0|= p0, p0z ≈ p0, p0z > 0, (5.16)
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representing a monochromatic quasiparaxial beam moving forward in the z-direction,

(
ψ+(~r)
ψ−(~r)

)
=

1
2

 ∫
d3 p0 C (p0)

(
1+ p0z

p0

)
φ~p0(~r)∫

d3 p0 C (p0)
(

1− p0z
p0

)
φ~p0(~r)

 ,

with |~p0|= p0, p0z ≈ p0, p0z > 0, (5.17)

is such that ψ+(~r)� ψ−(~r). Thus, in general, in the representation of (5.12), ψ+ is
large compared to ψ− for any monochromatic quasiparaxial beam passing along and
close to the +z-direction through any system supporting beam propagation.

The purpose of casting (5.6) in the form of (5.12) is obvious when we compare
the latter with the form of the Dirac equation in (3.711). Let us recall briefly. The
Dirac equation for a spin- 1

2 particle of charge q and mass m in an electromagnetic
field is

ih̄
∂

∂ t

(
Ψu(~r, t)
Ψ`(~r, t)

)
= Ĥ

(
Ψu(~r, t)
Ψ`(~r, t)

)
, (5.18)

where

Ψu =

(
Ψ1
Ψ2

)
, Ψ` =

(
Ψ3
Ψ4

)
,

Ĥ = mc2
β + Ê + Ô,

Ê = qφ

(
I 0
0 I

)
, Ô = c

(
0 ~σ ·~̂π

~σ ·~̂π I

)
. (5.19)

For any positive energy Dirac Ψ in the nonrelativistic situation (|c~π| � mc2), the
upper components (Ψu) are larger compared to the lower components (Ψ`). The even
operator (Ê ) does not couple the large and small components and the odd operator
(Ô) does couple them. Using mainly the algebraic property β Ô =−Ôβ , the Foldy–
Wouthuysen technique expands the Dirac Hamiltonian in a series with 1/mc2 as
the expansion parameter. This leads to a good understanding of the nonrelativistic
limit of the Dirac equation by showing how the Dirac Hamiltonian can be seen as
consisting of a nonrelativistic part and a systematic series of relativistic correction
terms. We have also seen that the Foldy–Wouthuysen transformation technique can
be used to expand the Feshbach–Villars Hamiltonian of the Klein–Gordon equation
in a series of nonrelativistic and relativistic correction terms.

The analogy between (5.12) and the Dirac equation is clear now. There is a corre-
spondence as follows:

Forward propagation of −→ Positive energy Dirac particle
the beam close to the z-direction

Paraxial beam (|~π⊥| � p0) −→ Nonrelativistic motion (|~π| � mc)

Deviation from paraxial −→ Deviation from nonrelativistic
condition (aberrating system) situation (relativistic motion)
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Also, it should be noted that in (5.12) σz plays the role of β in the Dirac Hamil-
tonian and Ô in (5.12) and σz obey the relation σzÔ =−Ôσz analogous to the rela-
tion β Ô =−Ôβ obtained in the case of the Dirac Hamiltonian. Hence, by applying
a Foldy–Wouthuysen-like technique to (5.12), it should be possible to analyse the
beam propagation through an electromagnetic optical system in a systematic way up
to any desired order of approximation starting with the paraxial approximation.

In the Foldy–Wouthuysen theory, a series of transformations are used to make the
odd terms in the Hamiltonian as small as desired. We shall apply this technique to
(5.12) to arrive at a representation in which the odd term will be as small as we desire.
In this case, 1/p0 can be taken as the expansion parameter. The order of smallness
of an odd term can be labeled by the lowest power of 1/p0 in it and higher order
smallness will correspond to higher power. Thus, the odd term in (5.12) is of first
order in 1/p0. Following the Foldy–Wouthuysen theory, let us define(

ψ
(1)
+

ψ
(1)
−

)
= eiŜ1

(
ψ+

ψ−

)
, with Ŝ1 =

i
2p0

σzÔ. (5.20)

The equation (5.12) is now transformed, as follows from (3.689), into

ih̄
∂

∂ z

(
ψ

(1)
+

ψ
(1)
−

)
=

[
eiŜ1 Ĥe−iŜ1 − ih̄eiŜ1

∂

∂ z

(
e−iŜ1

)](
ψ

(1)
+

ψ
(1)
−

)

= Ĥ(1)

(
ψ

(1)
+

ψ
(1)
−

)
, (5.21)

where Ĥ(1) is to be calculated using (3.706), with Ĥ replaced by Ĥ, Ŝ replaced by Ŝ1,
and t replaced by z. The result is

Ĥ(1) =−p0σz + Ê (1)+ Ô(1),

Ê (1) =−qAzI +
[

1
2p0

(
π̂

2
⊥+ p̃2)+ 1

8p3
0

(
π̂

2
⊥+ p̃2)2

]
σz

− 1
32p4

0

{[(
π̂

2
⊥+ p̃2) ,[π̂2

⊥,qAz
]

+ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]

−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]} I,

Ô(1) =− 1
2p2

0

{[
π̂

2
⊥,qAz

]
+ ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)

+ ih̄
∂

∂ z

(
q2A2

⊥+ p̃2)} iσy, (5.22)
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with the odd term Ô(1) of order 1/p2
0. By another transformation of the same type

as in (5.20) with Ŝ2 = (i/2p0)σzÔ(1), we can transform Ĥ(1) into a Ĥ(2) with an Ô(2)

of order 1/p3
0. Since Ê (1), the even part of Ĥ(1), itself is a sufficiently good approxi-

mation for our purpose, we shall not continue the process of transformations further.
Hence, we write

ih̄
∂

∂ z

(
ψ

(1)
+

ψ
(1)
−

)
= Ĥ(1)

(
ψ

(1)
+

ψ
(1)
−

)
,

Ĥ(1) =−p0σz + Ê (1), (5.23)

dropping the odd term.

Let us now look at

(
ψ
(1)
+

ψ
(1)
−

)
corresponding to ψ(~r) = φ~p0(~r), the plane wave, in

free space. We get, using (5.15)

(
ψ

(1)
+

ψ
(1)
−

)
= eiŜ1

(
ψ+

ψ−

)
= e
−

p̂2
⊥

4p2
0

σx
(

ψ+

ψ−

)

≈ 1
2


1 − p̂2

⊥
4p2

0

− p̂2
⊥

4p2
0

1



(

1+ p0z
p0

)
φ~p0(

1− p0z
p0

)
φ~p0



=
1
2


{

1+ p0z
p0
−
(

1− p0z
p0

)
p2

0⊥
4p2

0

}
φ~p0{

1− p0z
p0
−
(

1+ p0z
p0

)
p2

0⊥
4p2

0

}
φ~p0

 , (5.24)

showing that ψ
(1)
+ � ψ

(1)
− for a quasiparaxial beam. The result easily extends to any

wave packet of the form in (5.16). Thus, in general, we can take ψ
(1)
+ � ψ

(1)
− in

(5.23) for the beam wave functions of interest to us. We can express this property
that ψ

(1)
+ � ψ

(1)
− , or essentially ψ

(1)
− ≈ 0 compared to ψ

(1)
+ , as

σz

(
ψ

(1)
+

ψ
(1)
−

)
≈ I

(
ψ

(1)
+

ψ
(1)
−

)
, (5.25)
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where I is the 2×2 identity matrix. Then, we can approximate (5.23) further to read

ih̄
∂

∂ z

(
ψ

(1)
+

ψ
(1)
−

)
= Ĥ(1)

(
ψ

(1)
+

ψ
(1)
−

)
,

Ĥ(1) ≈
(
−p0−qAz +

1
2p0

(
π̂

2
⊥+ p̃2)+ 1

8p3
0

(
π̂

2
⊥+ p̃2)2

− 1
32p4

0

{[(
π̂

2
⊥+ p̃2) ,[π̂2

⊥,qAz
]
+ ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]

−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]}) I. (5.26)

Now, we have two choices to proceed. If we want to study the z-evolution of the wave
function of a system, we can specify it in the original representation as ψ(~r⊥,z), get
it transformed to the representation(

ψ
(1)
+

ψ
(1)
−

)
= eiŜ1 M

(
ψ

π̂z
p0

ψ

)
, (5.27)

and study its z-evolution according to (5.26) with Ĥ(1) as the optical Hamiltonian. In
other words, we can model the wave function of the system directly in the represen-
tation (5.27). The Hermitian operators for the observables of interest, like~r⊥ and ~̂p⊥,
also need to be changed to the representation (5.27) as

Ô(1) = eiŜ1MÔIM−1e−iŜ1 , (5.28)

where I is the 2×2 identity matrix.
The other choice, which we shall follow for the scalar theory, is to get the z-

evolution equation for the original wave function ψ(~r⊥,z) by retracing the transfor-

mations and rewriting (5.26) in terms of
(

ψ1
ψ2

)
in which ψ1 = ψ . In this case,

we can use the usual Hermitian operators for the observables. It may look like that
retracing the transformations will get us only back to the original evolution equation
with the old Hamiltonian. This is not so. Of course, we will get back to the original
representation for the wave function. But, due to the transformation and truncation
of the resulting series, what we get will be the series of paraxial and nonparaxial
approximations of the optical Hamiltonian in the original representation. With this
understanding, let us proceed as follows. Substituting in (5.26),

(
ψ1
ψ2

)
= M−1

(
ψ+

ψ−

)
= M−1e−iŜ1

(
ψ

(1)
+

ψ
(1)
−

)
, (5.29)
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we get

ih̄
∂

∂ z

(
ψ1
ψ2

)
= ih̄

∂

∂ z

[
M−1e−iŜ1

(
ψ

(1)
+

ψ
(1)
−

)]

= M−1ih̄
∂

∂ z

[
e−iŜ1

(
ψ

(1)
+

ψ
(1)
−

)]

= M−1
[

ih̄
(

∂

∂ z
e−iŜ1

)
+ e−iŜ1 Ĥ(1)

](
ψ

(1)
+

ψ
(1)
−

)

= M−1
[

ih̄
(

∂

∂ z
e−iŜ1

)
+ e−iŜ1 Ĥ(1)

]
eiŜ1M

(
ψ1
ψ2

)
=

{
M−1

[
ih̄
(

∂

∂ z
e−iŜ1

)
eiŜ1 + e−iŜ1 Ĥ(1)eiŜ1

]
M
}(

ψ1
ψ2

)
=

{
M−1

[
−ih̄e−iŜ1

(
∂

∂ z
eiŜ1

)
+ e−iŜ1 Ĥ(1)eiŜ1

]
M
}(

ψ1
ψ2

)
= Ĥo

(
ψ1
ψ2

)
, (5.30)

where Ĥo becomes

Ĥo ≈
(
−p0−qAz +

1
2p0

(
π̂

2
⊥+ p̃2)) I− 1

4p2
0

([
π̂

2
⊥,qAz

]
+

{
ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)
− ih̄q2 ∂A2

⊥
∂ z

})
σz

+

(
1

8p3
0

(
π̂

2
⊥+ p̃2)2− 1

16p4
0

{[(
π̂

2
⊥+ p̃2)) ,[π̂2

⊥,qAz
]

+ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]
−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]}) I.

(5.31)

Since Ĥo is diagonal, the equation (5.30) describes the z-evolution of ψ1 and ψ2
separately. We are interested in the z-evolution of ψ = ψ1, and hence we write

ih̄
∂ψ (~r⊥,z)

∂ z
= Ĥoψ (~r⊥,z) ,

Ĥo ≈−p0−qAz +
1

2p0

(
π̂

2
⊥+ p̃2)− 1

4p2
0

([
π̂

2
⊥,qAz

]
+

{
ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)
− ih̄q2 ∂A2

⊥
∂ z

})
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+
1

8p3
0

(
π̂

2
⊥+ p̃2)2− 1

16p4
0

{[(
π̂

2
⊥+ p̃2) ,[π̂2

⊥,qAz
]

+ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]

−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]} . (5.32)

We have derived the above z-evolution equation for ψ (~r⊥,z) starting from the Klein–
Gordon equation which, as we have seen, does not have a proper probability interpre-
tation. However, let us look at the case of free space in which φ = 0 and ~A = (0,0,0).
Then, the equation (5.32) reduces to

ih̄
∂ψ (~r⊥,z)

∂ z
= Ĥoψ (~r⊥,z) , Ĥo =

(
−p0 +

p̂2
⊥

2p0

)
, (5.33)

which has a Hermitian Hamiltonian. It is analogous to the nonrelativistic two dimen-
sional Schrödinger equation for a free particle in which z is taken as time, p0 is taken
as the mass of the particle, and the constant potential-like term −p0 is ignorable. In
this case, the z-evolution of ψ (~r⊥,z) is unitary,

∫ ∫
dxdy |ψ (~r⊥,z)|2 is conserved,

and hence |ψ (~r⊥,z)|2 can be taken as the probability of finding the particle at the
position (x,y) in the vertical xy-plane at the point z on the z-axis (optic axis). How-
ever, in general, it is clear that

∫ ∫
dxdy |ψ (~r⊥,z)|2 need not be conserved. Only∫ ∫ ∫

dxdydz |ψ (~r⊥,z)|2 = 1 has to be conserved as it represents the probability of
finding the particle somewhere in space. Hence, it is not surprising that the Hamil-
tonian in (5.32) is not Hermitian and the corresponding z-evolution is not unitary.
In fact, one should expect a loss of intensity of the forward propagating beam along
the optic axis, since there will, in general, be reflections at the boundaries of the
system as we have seen in the case of scattering by potential well and potential bar-
rier. Actually, we are dealing with the scattering states of the beam particle. Thus,
it is natural that there are non-Hermitian terms in Ho (terms ∝ 1/p2

0). In the above
expansion scheme, in general, among the terms ∝ (even powers of 1/p0), alternate
terms will be non-Hermitian. Of course, the effect of these non-Hermitian terms can
be expected to be quite small and negligible. Hence, we can approximate Ĥo, further,
by Hermitianizing it, i.e., writing it as the sum of its Hermitian part 1

2

(
Ĥo + Ĥ†

o

)
and the anti-Hermitian part 1

2

(
Ĥo− Ĥ†

o

)
and dropping the anti-Hermitian part. This

leads to

ih̄
∂ψ (~r⊥,z)

∂ z
= Ĥoψ (~r⊥,z) or, ih̄

∂

∂ z
|ψ(z)〉= Ĥo|ψ(z)〉,

Ĥo =−p0−qAz +
1

2p0

(
π̂

2
⊥+ p̃2)+ 1

8p3
0

(
π̂

2
⊥+ p̃2)2

− 1
16p4

0

{[(
π̂

2
⊥+ p̃2) ,[π̂2

⊥,qAz
]
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+ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]
−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]} ,

with p2
0 =

1
c2

(
E2−m2c4) , p̃2 =

2qEφ

c2

(
1− qφ

2E

)
, (5.34)

Thus, Ĥo is the basic Hamiltonian of the scalar theory of quantum charged particle
beam optics applicable when the spin of the particle is zero or ignored. With the
quantum charged particle beam optical Hamiltonian, or simply the quantum beam
optical Hamiltonian, Ĥo, being Hermitian we can take ψ(~r⊥,z) to be normalized
over the xy-plane at any z, i.e., for any z, we shall take

〈ψ(z)|ψ(z)〉=
∫ ∫

dxdy |ψ (~r⊥,z) |2 = 1. (5.35)

Hereafter, we shall write
∫

d2r⊥ for
∫ ∫

dxdy. It may be noted that we have obtained
from the Kelin–Gordon a one-way propagation equation, along the +z-direction,
for the wave function representing the charged particle beam using the Feshbach–
Villars-like formalism and the Foldy–Wouthuysen-like transformation technique.
Detailed and rigorous studies on one-way wave equation modeling in two-way wave
propagation problems have been made by Fishman et al. (see Fishman, de Hoop, and
van Stralen [51], Fishman [52], and references therein).

Having obtained the basic quantum beam optical Hamiltonian operator, we can
proceed to get the relation between ψ (~r⊥,zi), wave function in the plane vertical
to the optic axis at the point zi where the beam enters the system, and ψ (~r⊥,z)
wave function in the plane vertical to the optical axis at any other point of interest
(z). By formal integration of (5.34), using the analogous result (3.449) for the time-
dependent Schrödinger equation, we can write

|ψ(z)〉= Û (z,zi) |ψ (zi)〉 ,

Û (z,zi) = P

(
e−

i
h̄
∫ z

zi
dz Ĥo(z)

)
= I− i

h̄

∫ z

zi

dz1 Ĥo (z1)+

(
− i

h̄

)2 ∫ z

zi

dz2

∫ z2

zi

dz1Ĥo (z2)Ĥo (z1)

+

(
− i

h̄

)3 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1Ĥo (z3)Ĥo (z2)Ĥo (z1)+ · · · ,

(5.36)

with I as the identity operator. The z-evolution operator Û (z,zi) is seen to satisfy the
relations

ih̄
∂

∂ z
Û (z,zi) = ĤoÛ (z,zi) ,

ih̄
∂

∂ z
Û† (z,zi) =−Û (z,zi)

† Ĥo,

Û (z,zi)
† Û (z,zi) = I, Û (zi,zi) = I. (5.37)
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We can write the z-evolution operator Û (z,zi) in the Dyson form (3.454), i.e., as an
z-ordered exponential. For our purpose, the most convenient form of expression for
Û (z,zi) is the equivalent Magnus form

Û (z,zi) = e−
i
h̄ T̂ (z,zi),

T̂ (z,zi) =
∫ z

zi

dz1 Ĥo (z1)

+
1
2

(
− i

h̄

)∫ z

zi

dz2

∫ z2

zi

dz1

[
Ĥo (z2) ,Ĥo (z1)

]
+

1
6

(
− i

h̄

)2 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1

{[[
Ĥo (z3) ,Ĥo (z2)

]
,

Ĥo (z1)
]
+
[[

Ĥo (z1) ,Ĥo (z2)
]
,Ĥo (z3)

]}
+ · · · . (5.38)

Note that T̂ (z,zi) is Hermitian, when Ĥo(z) is Hermitian, such that Û (z,zi) is uni-
tary. Analogous to the semigroup property (3.167) of the time-evolution operator, we
have the semigroup property for the z-evolution operator: for z > zn > zn−1 > · · · >
z2 > z1 > zi,

Û (z,zi) = Û (z,zn)Û (zn,zn−1) . . .Û (z2,z1)Û (z1,zi) . (5.39)

This follows from the observation that, for z > z′ > zi,

|ψ(z)〉= Û
(
z,z′
)∣∣ψ (z′)〉 , ∣∣ψ (z′)〉= Û

(
z′,zi

)
|ψ (zi)〉 ,

|ψ(z)〉= Û (z,zi) |ψ (zi)〉 , (5.40)

The integral form of the scalar quantum charged particle beam optical Schrödinger
equation (5.34) becomes

ψ (~r⊥,z) =
∫

d2r⊥iK (~r⊥,z;~r⊥i,zi)ψ (~r⊥i,zi) , (5.41)

where the kernel of z-propagation, or the z-propagator, is given by

K (~r⊥,z;~r⊥i,zi) = 〈~r⊥|Û (z,zi) |~r⊥i〉

=
∫

d2r′⊥δ
2 (~r′⊥−~r⊥)Û (z,zi)δ

2 (~r′⊥−~r⊥i
)
. (5.42)

We have seen from Ehrenfest’s theorem that quantum averages, or the expectation
values, of observables behave like the corresponding classical observables. Hence, to
study the quantum corrections to the classical transfer maps of the optical elements,
we have to find the transfer maps for the corresponding quantum averages. When
we want to relate the values of the quantum averages of the beam at two different
points along the optic axis of the system, we can use the Heisenberg picture. For an
observable O associated with the Hermitian quantum operator Ô, the average for the
state |ψ(z)〉 at the xy-plane at the point z is given by

〈O〉(z) = 〈ψ(z)|Ô|ψ(z)〉=
∫

d2r⊥ψ
∗ (~r⊥,z) Ôψ (~r⊥,z) , (5.43)
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with 〈ψ(z)|ψ(z)〉= 1. Sometimes we may denote 〈O〉(z) by 〈Ô〉(z) also. Now, from
(5.36), we have

〈O〉(z) = 〈ψ(z)|Ô|ψ(z)〉

=
〈

ψ (zi) |Û† (z,zi) ÔÛ (z,zi) |ψ (zi)
〉

=
〈

Û† (z,zi) ÔÛ (z,zi)
〉
(zi) , (5.44)

leading to the required transfer map giving the expectation values of the observables
in the plane at z in terms of their values in the plane at zi.

We are considering only the single particle theory and assuming that all the par-
ticles of the beam are in the same quantum state, pure or mixed. If a particle of the
monoenergetic quasiparaxial beam entering the optical system, from the free space
outside it, is associated with a wave function as we have assumed above, then a rep-
resentation for the wave function is

Ψ(~r, t) = e−iEt/h̄
ψ (~r⊥,z) , E =

√
m2c4 + c2 p2

0,

ψ (~r⊥,z) =
1

(2π h̄)3/2

∫ ∫
d pxd py C (px, py)e

i
h̄ (~p⊥·~r⊥+pzz),

p2
⊥+ p2

z = p2
0, |~p⊥| � pz ≈ p0,∫ ∫

d pxd py
∣∣C (px, py)

∣∣2 = 1. (5.45)

When the particle is not in a pure state representable by a wave function as above, it
has to be represented by a mixed state density operator

ρ̂(z, t) = ∑
j

p je−iEt/h̄ ∣∣ψ j(z)
〉〈

ψ j(z)
∣∣eiEt/h̄ = ∑

j
p j
∣∣ψ j(z)

〉〈
ψ j(z)

∣∣ ,
∑

j
p j = 1,

〈
ψ j(z)

∣∣ ψ j(z)
〉
= 1, (5.46)

where for each j〈
~r⊥
∣∣ψ j(z)

〉
= ψ j (~r⊥,z) =

1
(2π h̄)3/2

∫ ∫
d pxd py C j (px, py)e

i
h̄ (~p⊥·~r⊥+pzz),

p2
⊥+ p2

z = p2
0, |~p⊥| � pz ≈ p0,∫ ∫

d pxd py
∣∣C j (px, py)

∣∣2 = 1. (5.47)

Note that ρ̂(z, t) is independent of time when the beam is monoenergetic which, of
course, is an ideal situation never realized in practice. However, we shall assume the
beam to be monoenergetic. In the position representation, the matrix elements of ρ̂

in the xy-plane at z are given by

〈~r⊥| ρ̂(z)
∣∣~r′⊥〉= ∑

j
p jψ j (~r⊥,z)ψ

∗
j
(
~r′⊥,z

)
. (5.48)
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Note that at any z we have

Tr(ρ̂(z)) = ∑
j

p jTr
(∣∣ψ j(z)

〉〈
ψ j(z)

∣∣)
= ∑

j
p j
〈
ψ j(z)

∣∣ ψ j(z)
〉
= ∑

j
p j = 1, (5.49)

as required. If we are representing the beam particle by such a density matrix, then
the average of an observable in the xy-plane at z will be given by

〈O〉(z) = Tr
(

ρ̂(z)Ô
)
. (5.50)

It follows from (5.36) that the z-evolution of the density matrix will be given by

ρ̂(z) = Û (z,zi) ρ̂ (zi)Û† (z,zi) . (5.51)

This leads to the transfer map

〈O〉(z) = Tr
(

Û (z,zi) ρ̂ (zi)Û† (z,zi) Ô
)

= Tr
(

ρ̂ (zi)Û† (z,zi) ÔÛ (z,zi)
)
. (5.52)

Note that, as follows from (5.44) and (5.52), this transfer map depends essentially on
Û (z,zi).

The z-dependent operator

ÔH(z) = Û† (z,zi) ÔÛ (z,zi) (5.53)

represents the observable O in the beam optical Heisenberg picture in which the
initial state of the particle |ψ (zi)〉, or ρ̂ (zi), remains constant and the observables
evolve along the optic axis of the system. From (5.44) we have〈

Ô
〉
(z) =

〈
ψ (zi)

∣∣∣ÔH

∣∣∣ψ (zi)
〉
=
〈

ÔH

〉
(zi) (5.54)

From (5.37), it follows that

ih̄
dÔH

dz
= ih̄

{(
∂

∂ z
Û† (z,zi)

)
ÔÛ (z,zi)+Û† (z,zi) Ô

(
∂

∂ z
Û (z,zi)

)}
+ ih̄

(
Û† (z,zi)

∂ Ô
∂ z

Û (z,zi)

)
=
{
−Û† (z,zi)ĤoÔÛ (z,zi)+Û† (z,zi) ÔĤoÛ (z,zi)

}
+ ih̄

(
Û† (z,zi)

∂ Ô
∂ z

Û (z,zi)

)
=
{
−Û† (z,zi)ĤoÛ (z,zi)Û† (z,zi) ÔÛ (z,zi)
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+Û† (z,zi) ÔĤoÛ (z,zi)Û† (z,zi)Û (z,zi)
}

+ ih̄

(
Û† (z,zi)

∂ Ô
∂ z

Û (z,zi)

)

=
[
−Ĥo,H, ÔH

]
+ ih̄

(
∂ Ô
∂ z

)
H

. (5.55)

or
dÔH

dz
=

1
ih̄

[
−Ĥo,H, ÔH

]
+

(
∂ Ô
∂ z

)
H

. (5.56)

This equation is the quantum beam optical equation of motion for observables and
in the classical limit, with the correspondence

[
Â, B̂

]
/ih̄−→ {A,B}, it becomes the

classical beam optical equation of motion (2.96). Note that a z-dependent Ĥo need
not commute with Û (z,zi), and hence Ĥo,H 6= Ĥo, unless Ĥo is z-independent. The
equation (5.53) is the integral version of (5.56). Since[

−Ĥo,H, ÔH

]
=
[
−Ĥo, Ô

]
H

(5.57)

we can also write
dÔH

dz
=

1
ih̄

[
−Ĥo, Ô

]
H
+

(
∂ Ô
∂ z

)
H

. (5.58)

Correspondingly, from (5.54), we get the quantum beam optical equation of motion
for the average

〈
Ô
〉
(z) as

d
〈

Ô
〉
(z)

dz
=

d
dz

〈
ψ (zi)

∣∣∣ÔH

∣∣∣ψ (zi)
〉
=

〈
ψ (zi)

∣∣∣∣∣dÔH

dz

∣∣∣∣∣ψ (zi)

〉

=

〈
ψ (zi)

∣∣∣∣∣ 1
ih̄

[
−Ĥo, Ô

]
H
+

(
∂ Ô
∂ z

)
H

∣∣∣∣∣ψ (zi)

〉

=
1
ih̄

〈[
−Ĥo, Ô

]〉
(z)+

〈
∂ Ô
∂ z

〉
(z). (5.59)

When Ô does not have an explicit z-dependence, the equations of motion become

dÔH

dz
=

1
ih̄

[
−Ĥo, Ô

]
H
, (5.60)

and
d
〈

Ô
〉
(z)

dz
=

1
ih̄

〈[
−Ĥo, Ô

]〉
(z). (5.61)
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Particularly, for~r⊥ and ~̂p⊥/p0, in which we shall be primarily interested, we have

d~r⊥,H
dz

=
1
ih̄

[
−Ĥo,~r⊥

]
H
=

i
h̄

[
Ĥo,~r⊥

]
H
,

1
p0

d~̂p⊥,H
dz

=
1

ih̄p0

[
−Ĥo,~̂p⊥

]
H
=

i
h̄p0

[
Ĥo,~̂p⊥

]
H
, (5.62)

and

d 〈~r⊥〉(z)
dz

=
1
ih̄

〈[
−Ĥo,~r⊥

]〉
(z) =

i
h̄

〈[
Ĥo,~r⊥

]〉
(z),

1
p0

d
〈
~̂p⊥
〉
(z)

dz
=

1
ih̄p0

〈[
−Ĥo,~̂p⊥

]〉
(z) =

i
h̄p0

〈[
Ĥo,~̂p⊥

]〉
(z). (5.63)

To find the transfer maps for 〈~r⊥〉 and
〈
~̂p⊥
〉

, we can use, depending on convenience,
either (5.63) or

〈~r⊥〉(z) =
〈
~r⊥,H

〉
(zi)

=
〈

ψ (zi)
∣∣∣Û† (z,zi)~r⊥Û (z,zi)

∣∣∣ψ (zi)
〉

=
〈

ψ (zi)
∣∣∣e i

h̄ T̂ (z,zi)~r⊥e−
i
h̄ T̂ (z,zi)

∣∣∣ψ (zi)
〉

1
p0

〈
~̂p⊥
〉
(z) =

1
p0

〈
~̂p⊥,H

〉
(zi)

=
1
p0

〈
ψ (zi)

∣∣∣Û† (z,zi)~̂p⊥Û (z,zi)
∣∣∣ψ (zi)

〉
=

1
p0

〈
ψ (zi)

∣∣∣e i
h̄ T̂ (z,zi)~̂p⊥e−

i
h̄ T̂ (z,zi)

∣∣∣ψ (zi)
〉
. (5.64)

Let us now recall the identities (3.142 and 3.143): with : Â : B̂ =
[
Â , B̂

]
,

eÂB̂e−Â =

(
I+ : Â : +

1
2!

: Â :2 +
1
3!

: Â :3 + · · ·
)

B̂ = e:Â:B̂, (5.65)

and
e:aÂ: = ea:Â:. (5.66)

Using these identities in (5.64), with Â = iT̂/h̄ and B̂ =~r⊥, and ~p⊥, we have

〈~r⊥〉(z) = 〈ψ (zi)|e
i
h̄ :T̂ (z,zi):~r⊥ |ψ (zi)〉 ,

=

〈
ψ (zi)

∣∣∣∣∣
{(

I +
i
h̄

: T̂ (z,zi) : +
1
2!

(
i
h̄

)2

: T̂ (z,zi) :2

+
1
3!

(
i
h̄

)3

: T̂ (z,zi) :3 + · · ·

)
~r⊥

}∣∣∣∣∣ψ (zi)

〉
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1
p0

〈
~̂p⊥
〉
(z) =

1
p0

〈
ψ (zi)

∣∣∣∣∣
{(

I +
i
h̄

: T̂ (z,zi) : +
1
2!

(
i
h̄

)2

: T̂ (z,zi) :2

+
1
3!

(
i
h̄

)3

: T̂ (z,zi) :3 + · · ·

)
~̂p⊥

}∣∣∣∣∣ψ (zi)

〉
. (5.67)

In general, for any observable O, with the quantum operator Ô, we will have〈
Ô
〉
(z) =

〈
ψ (zi)

∣∣∣e i
h̄ :T̂ (z,zi):Ô

∣∣∣ψ (zi)
〉

(5.68)

Note that

e
i
h̄ :T̂ (z,zi):Ô = e

i
h̄ T̂ (z,zi)Ôe−

i
h̄ T̂ (z,zi) = Û† (z,zi) ÔÛ (z,zi) = ÔH (5.69)

The beam optical Heisenberg equation of motion for any Ô with no explicit z-
dependence is

dÔH

dz
=

1
ih̄

[
−Ĥo , ÔH

]
. (5.70)

Directly integrating this equation, á la Magnus (see the Appendix at the end of Chap-
ter 3), with ÔH (zi) = Ô, we get an expression for ÔH(z) equivalent to the one given
in (5.69):

ÔH(z) = eT̂(z,zi)Ô, (5.71)

where

T̂(z,zi) =
1
ih̄

∫ z

zi

dz :−Ĥo :

+

(
1
ih̄

)2 1
2

∫ z

zi

dz2

∫ z2

zi

dz1

[
:−Ĥo : (z2) , :−Ĥo : (z1)

]
+

1
6

(
1
ih̄

)3 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1{[[
:−Ĥo : (z3) , :−Ĥo : (z2)

]
, :−Ĥo : (z1)

]
+
[[

:−Ĥo : (z1) , :−Ĥo : (z2)
]
, :−Ĥo : (z3)

]}
+ · · · , (5.72)

where [
:−Ĥo : (z1) , :−Ĥo : (z2)

]
= :−Ĥo : (z1) :−Ĥo : (z2)− :−Ĥo : (z2) :−Ĥo : (z1)

= :
[
−Ĥo (z1) ,−Ĥo (z2)

]
:, (5.73)
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as follows from (3.32). In the classical limit

1
ih̄

:−Ĥo : Ô−→:−Ho : O, (5.74)

the equation (5.72) is seen to become the classical equation

O(z) = eT (z,zi)O(zi) , (5.75)

with T (z,zi) given by (4.97). This shows that in the classical limit, the quantum
equation (5.68), which we shall be using throughout in the quantum beam optics for
getting the transfer maps, becomes the classical equation (5.75), which is the basis
for the Lie transfer operator method for getting the transfer maps in classical beam
optics.

5.2.2 FREE PROPAGATION: DIFFRACTION

Let us now consider the propagation of a quasiparaxial beam through free space, or
between two optical elements, around the z-axis. The corresponding quantum beam
optical Hamiltonian is

Ĥo ≈−p0 +
1

2p0
p̂2
⊥+

1
8p3

0
p̂4
⊥, (5.76)

obtained from (5.34) by putting φ = 0 and ~A = (0,0,0), and consequently taking
π̂2
⊥ = p̂2

⊥ and p̃2 = 0. For an ideal paraxial beam, we can take

Ĥo =−p0 +
1

2p0
p̂2
⊥, (5.77)

retaining only terms up to second order in ~̂p⊥ in view of the paraxiality condition∣∣∣~̂p⊥∣∣∣ � p0 assumed to be valid for all particles of the beam. Actually, the free
propagation can be treated exactly. The expression for the quantum beam optical

Hamiltonian Ĥo in (5.76) is an approximation for the exact result −
√

p2
0− p̂2

⊥, cor-
responding to −pz, which will be obtained in the infinite series form if we con-
tinue the Foldy–Wouthuysen-like transformation process up to all orders starting
with (5.13) corresponding to free propagation.

First, let us look at free propagation of a paraxial beam in the Schrödinger pic-
ture. With the corresponding optical Hamiltonian given by (5.77), the Schrödinger
equation for free propagation of a paraxial beam along the z-direction becomes

ih̄
∂

∂ z
|ψ(z)〉= Ĥo|ψ(z)〉=

(
−p0 +

p̂2
⊥

2p0

)
|ψ(z)〉. (5.78)

On integration, we have

|ψ(z)〉= e
− i∆z

h̄

(
−p0+

p̂2
⊥

2p0

)
|ψ (zi)〉 , ∆z = z− zi. (5.79)



Scalar Theory: Spin-0 and Spinless Particles 231

In position representation, we can write

ψ (~r⊥,z) =
∫

d2r⊥i K (~r⊥,z;~r⊥i,zi)ψ (~r⊥i,zi) ,

K (~r⊥,z;~r⊥i,zi) =

〈
~r⊥

∣∣∣∣∣∣e−
i∆z
h̄

(
−p0+

p̂2
⊥

2p0

)∣∣∣∣∣∣~r⊥i

〉
. (5.80)

The Schrödinger equation for free propagation of a paraxial beam (5.78), with z
replaced by t, is the same as the nonrelativistic Schrödinger equation of a free particle
of mass p0 moving in the xy-plane, in a constant potential −p0. We can ignore the
constant potential. We have already calculated in (3.313) the propagator for a free
particle of mass m. It is straightforward to use (3.313) to derive the desired result:

K (~r⊥,z;~r⊥i,zi) =

(
p0

2πih̄∆z

)
e
{

i
h̄ p0∆z+ ip0

2h̄∆z |~r⊥−~r⊥i|2
}
. (5.81)

Now, the equation (5.80) becomes

ψ (~r⊥,z) =
(

p0

2πih̄∆z

)
e

i
h̄ p0∆z

∫
d2r⊥i e

ip0
2h̄∆z |~r⊥−~r⊥i|2ψ (~r⊥i,zi) . (5.82)

Substituting 2π h̄/p0 = λ0, the de Broglie wavelength of the particle, we get

ψ(x,y,z) =
(

1
iλ0 (z− zi)

)
e

i2π

λ0
(z−zi)

×
∫ ∫

dxidyi e
iπ

λ0(z−zi)
[(x−xi)

2+(y−yi)
2]

ψ (xi,yi,zi) , (5.83)

which is the well-known Fresnel diffraction formula. Here, the xy-plane at zi is the
plane of the diffracting object and the plane at z is the observation plane. The wave
function on the exit side of the diffracting object is ψ (~r⊥,zi), and |ψ (~r⊥,z)|2 gives
the intensity distribution of the diffraction pattern (probability distribution for the
particle) at the observation plane. It is clear that the paraxial approximation used
in deriving (5.77), dropping terms of order higher than second in ~̂p⊥, essentially
corresponds to the traditional approximation used in deriving the Fresnel diffraction
formula from the general Kirchchoff’s result. Equations (5.34), (5.36), (5.41), and
(5.42), represent, in operator form, the general theory of charged particle diffraction
in the presence of electromagnetic fields (for more details of the wave theory of
electron diffraction, see Hawkes and Kasper [72]).

Next, let us work out the transfer maps for the expectation values of~r⊥ and ~̂p⊥.
From (5.36) and (5.38),

|ψ(z)〉= Û (z,zi) |ψ (zi)〉 ,

Û (z,zi) = e
{
− i

h̄
∫ z

zi
dz Ĥo

}
= e−

i
h̄ T̂ (z,zi),

T̂ (z,zi) = ∆zĤo = ∆z
(
−p0 +

1
2p0

p̂2
⊥

)
, ∆z = (z− zi) . (5.84)
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Note that Û (z,zi) is an ordinary exponential since Ĥo is z-independent. Now, from
(5.67), with

: T̂ (z,zi) :~r⊥ =
[
T̂ (z,zi) ,~r⊥

]
=

[
∆z
(
−p0 +

1
2p0

p̂2
⊥

)
,~r⊥

]
=

[
∆z
(

1
2p0

p̂2
⊥

)
,~r⊥

]
=−ih̄∆z

p̂⊥
p0

,

: T̂ (z,zi) : ~̂p⊥ =
[
T̂ (z,zi) ,~̂p⊥

]
=

[
∆z
(
−p0 +

1
2p0

p̂2
⊥

)
,~p⊥

]
=

[
∆z
(

1
2p0

p̂2
⊥

)
,~̂p⊥

]
= 0,

: T̂ (z,zi) :2~r⊥ =
[
T̂ (z,zi) ,

[
T̂ (z,zi) ,~r⊥

]]
=−ih̄

∆z
p0

[
T̂ (z,zi) ,~̂p⊥

]
= 0, (5.85)

we get

〈~r⊥〉(z) =
〈

ψ (zi)

∣∣∣∣(~r⊥+∆z
p̂⊥
p0

)∣∣∣∣ψ (zi)

〉
,

= 〈~r⊥〉(zi)+
∆z
p0

〈
~̂p⊥
〉
(zi) ,〈

~̂p⊥
〉
(z) =

〈
ψ (zi)

∣∣∣~̂p⊥∣∣∣ψ (zi)
〉
=
〈
~̂p⊥
〉
(zi) . (5.86)

Thus, the resulting transfer map,(
〈~r⊥〉(z)

1
p0

〈
~̂p⊥
〉
(z)

)
=

(
1 ∆z
0 1

)( 〈~r⊥〉(zi)
1
p0

〈
~̂p⊥
〉
(zi)

)
, (5.87)

is exactly the same as the transfer map (4.16) for the classical~r⊥ and ~p⊥ in accor-
dance with Ehrenfest’s theorem.

5.2.3 AXIALLY SYMMETRIC MAGNETIC LENS: ELECTRON OPTICAL
IMAGING

5.2.3.1 Paraxial Approximation: Point-to-Point Imaging

Let us now consider a round magnetic lens. Let us recall that it comprises an axially
symmetric magnetic field, and there is no electric field, i.e., φ = 0. Taking the z-axis
as the optic axis, the vector potential can be taken, in general, as

~A =

(
−1

2
yΠ(~r⊥,z) ,

1
2

xΠ(~r⊥,z) ,0
)
, (5.88)
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with

Π(~r⊥,z) =
∞

∑
n=0

1
n!(n+1)!

(
−

r2
⊥
4

)n

B(2n)(z)

= B(z)− 1
8

r2
⊥B′′(z)+

1
192

r4
⊥B′′′′(z)−·· · , (5.89)

where r2
⊥ = x2+y2, B(0)(z) = B(z), B′(z) = dB(z)/dz, B′′(z) = d2B(z)/dz2, B′′′(z) =

d3B(z)/dz3, B′′′′(z)= d4B(z)/dz4, . . ., and B(2n)(z)= d2nB(z)/dz2n. The correspond-
ing magnetic field is given by

~B⊥ =−1
2

(
B′(z)− 1

8
B′′′(z)r2

⊥+ · · ·
)
~r⊥,

Bz = B(z)− 1
4

B′′(z)r2
⊥+

1
64

B′′′′(z)r4
⊥−·· · . (5.90)

The practical boundaries of the lens, say z` and zr, are determined by where B(z)
becomes negligible, i.e., B(z < z`)≈ 0 and B(z > zr)≈ 0.

First, we are concerned with the propagation of a monoenergetic paraxial beam
with design momentum p0 such that |~p| = p0 ≈ pz for all its constituent particles.
For a paraxial beam propagating through the round magnetic lens, along the optic
axis, the vector potential ~A can be taken as

~A≈ ~A0 =

(
−1

2
B(z)y,

1
2

B(z)x,0
)
, (5.91)

corresponding to the field

~B≈ ~B0 =

(
−1

2
B′(z)x,−1

2
B′(z)y,B(z)

)
. (5.92)

In the paraxial approximation, only the lowest order terms in ~r⊥ are considered to
contribute to the effective field felt by the particles moving close to the optic axis.
Further, it entails approximating the quantum beam optical Hamiltonian by dropping
from it the terms of order higher than second in

∣∣∣~̂p⊥∣∣∣/p0 in view of the condition
|~p⊥|/p0 � 1. Thus, the quantum beam optical Hamiltonian of the round magnetic
lens derived from (5.34) in the paraxial approximation is

Ĥo ≈−p0 +
1

2p0
p̂2
⊥+

q2B(z)2

8p0
r2
⊥−

qB(z)
2p0

L̂z

+
h̄2q2

16p4
0

B(z)B′(z)
(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
, (5.93)

where

B(z)
{
6= 0 in the lens region (z` ≤ z≤ zr)
= 0 outside the lens region (z < z`, z > zr) ,

(5.94)
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and L̂z = (xp̂y− yp̂x) is the z-component of the orbital angular momentum operator.
In the above Ĥo, the last term is proportional to h̄2 and is very small compared to
the other terms. We will call the terms proportional to powers of h̄ as h̄-dependent
since they contain h̄ explicitly such that their quantum averages, being proportional
to powers of h̄, would vanish in the classical limit h̄−→ 0. Note that the components
of ~̂p =−ih̄~∇ also contain h̄, but we are able to identify their quantum averages with
the components of the classical momentum vector ~p. For the present, we shall omit
the last h̄-dependent term from the above Ĥo and take the optical Hamiltonian of the
round magnetic lens as

Ĥo =−p0 +
1

2p0
p̂2
⊥+

q2B(z)2

8p0
r2
⊥−

qB(z)
2p0

L̂z. (5.95)

Note that the replacement of the quantum operators
(
~r⊥,~̂p⊥

)
by the classical vari-

ables (~r⊥,~p⊥) takes Ĥo exactly to the classical Ho in (4.24). As a result, without the
h̄-dependent term, the paraxial Ĥo leads exactly to the same performance of the lens
as in the classical paraxial theory, except for the replacement of the classical (~r⊥,~p⊥)
by their quantum averages. Later we shall see the effect of the h̄-dependent nonclas-
sical term at the paraxial level which, of course, will be very small. Introducing the
notation

α(z) =
qB(z)
2p0

, (5.96)

we shall write

Ĥo = Ĥo,L +Ĥo,R,

Ĥo,L =−p0 +
1

2p0
p̂2
⊥+

1
2

p0α
2(z)r2

⊥,

Ĥo,R =−α(z)L̂z. (5.97)

Let us consider the propagation of a paraxial beam from the xy-plane at zi < z` to the
xy-plane at z > zr. We have from (5.36) and (5.38)

|ψ(z)〉= Ûp (z,zi) |ψ (zi)〉 ,

Ûp (z,zi) = P

(
e−

i
h̄
∫ z

zi
dz Ĥo

)
= e−

i
h̄ T̂ (z,zi), (5.98)

where it has to be noted that Ĥo is z-dependent. Now, using (5.38), we have

T̂ (z,zi) =
∫ z

zi

dz1

(
Ĥo,L (z1)+Ĥo,R (z1)

)
+

1
2

(
− i

h̄

)∫ z

zi

dz2

∫ z2

zi

dz1

[(
Ĥo,L (z2)+Ĥo,R (z2)

)
,(

Ĥo,L (z1)+Ĥo,R (z1)
)]

+
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1
6

(
− i

h̄

)2 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1

{[[(
Ĥo,L (z3)+Ĥo,R (z3)

)
,(

Ĥo,L (z2)+Ĥo,R (z2)
)]

,
(
Ĥo,L (z1)+Ĥo,R (z1)

)]
+[[(

Ĥo,L (z1)+Ĥo,R (z1)
)
,
(
Ĥo,L (z2)+Ĥo,R (z2)

)]
,(

Ĥo,L (z3)+Ĥo,R (z3)
)]}

+ · · · . (5.99)

Note that [
p0, L̂z

]
= 0, since p0 = constant,[

r2
⊥, L̂z

]
=
[
x2 + y2,(xp̂y− yp̂x)

]
=
[
y2,xp̂y

]
−
[
x2,yp̂x

]
= 2ih̄(xy− yx) = 0,[

p̂2
⊥, L̂z

]
=
[
p̂2

x + p̂2
y ,(xp̂y− yp̂x)

]
=
[
p̂2

x ,xp̂y
]
−
[
p̂2

y ,yp̂x
]

= 2ih̄(p̂x p̂y− p̂y p̂x) = 0. (5.100)

This makes[
Ĥo,L

(
z′
)
,Ĥo,R

(
z′′
)]

=

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2 (z′)r2

⊥,α
(
z′′
)

L̂z

]
= 0, for all z′,z′′,[

Ĥo,R
(
z′
)
,Ĥo,R

(
z′′
)]

=
[
α
(
z′
)

L̂z,α
(
z′′
)

L̂z

]
= 0, for all z′,z′′,[

Ĥo,L
(
z′
)
,Ĥo,L

(
z′′
)]

=

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2 (z′)r2

⊥,

−p0 +
1

2p0
p̂2
⊥+

1
2

p0α
2 (z′′)r2

⊥

]
=

ih̄
2
(
α

2 (z′)−α
2 (z′′))(~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
6= 0, in general. (5.101)

As a result, we get
T̂ (z,zi) = T̂R (z,zi)+ T̂L (z,zi) , (5.102)

with

T̂R (z,zi) =
∫ z

zi

dz Ĥo,L(z) =−θ (z,zi) L̂z,

θ (z,zi) =
∫ z

zi

dz α(z) =
q

2p0

∫ z

zi

dz B(z), (5.103)
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and

T̂L (z,zi) =
∫ z

zi

dz Ĥo,L(z)+
1
2

(
− i

h̄

)∫ z

zi

dz2

∫ z2

zi

dz1

[
Ĥo,L (z2) ,Ĥo,L (z1)

]
+

1
6

(
− i

h̄

)2 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1

{[[(
Ĥo,L (z3)

)
,
(
Ĥo,L (z2)

)]
,(

Ĥo,L (z1)
)]

+
[[(

Ĥo,L (z1)
)
,
(
Ĥo,L (z2)

)]
,
(
Ĥo,L (z3)

)]}
+ · · · .
(5.104)

Since [
T̂R (z,zi) , T̂L (z,zi)

]
= 0, (5.105)

we have

Ûp (z,zi) = e−
i
h̄ T̂ (z,zi) = e−

i
h̄ (T̂R(z,zi)+T̂L(z,zi))

= e−
i
h̄ T̂R(z,zi)e−

i
h̄ T̂L(z,zi) = e−

i
h̄ T̂L(z,zi)e−

i
h̄ T̂R(z,zi)

= ÛR (z,zi)ÛL (z,zi) = ÛL (z,zi)ÛR (z,zi) . (5.106)

Thus, in the Schrödinger picture, we have

ψ (~r⊥,z) =
∫

d2r⊥,i K
(
~r⊥,z;~r⊥,i,zi

)
ψ
(
~r⊥,i,zi

)
=
∫

d2r⊥,i
〈
~r⊥,z

∣∣∣Ûp (z,zi)
∣∣∣~r⊥,i,zi

〉
ψ
(
~r⊥,i,zi

)
=
∫

d2r⊥,i
∫

d2r′⊥
〈
~r⊥
∣∣∣ÛR (z,zi)

∣∣∣~r′⊥〉〈~r′⊥ ∣∣∣ÛL (z,zi)
∣∣∣~r⊥,i〉ψ

(
~r⊥,i,zi

)
.

(5.107)

Let us first compute the required matrix element of the rotation operator ÛR through
an angle θ around the z-axis. To this end, let us choose the cylindrical coordinate
system: x = ρ cosϑ ,y = ρ sinϑ ,z = z. Then,

e
i
h̄ θ L̂zψ(x,y,z) = e

i
h̄ θ(xp̂y−yp̂x)ψ(x,y,z)

= eθ(∂/∂ϑ)
ψ(ρ,ϑ ,z) = ψ(ρ,ϑ +θ ,z)

= ψ(x(θ),y(θ),z),

with
(

x(θ)
y(θ)

)
=

(
cosθ −sinθ

sinθ cosθ

)(
x
y

)
. (5.108)

Using this result, we get〈
~r′⊥
∣∣∣ÛR (z,zi)

∣∣∣~r′′⊥〉=
〈
~r′⊥
∣∣∣e i

h̄ θ(z,zi)L̂z
∣∣∣~r′′⊥〉

=
∫

d2r⊥ δ
2 (~r⊥−~r′⊥)e

i
h̄ θ(z,zi)L̂zδ

2 (~r⊥−~r′′⊥)
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=
∫

d2r⊥ δ
2 (~r⊥−~r′⊥)δ

2 (~r⊥ (θ (z,zi))−~r′′⊥
)

= δ
2 (~r′⊥ (θ (z,zi))−~r′′⊥

)
, (5.109)

where~r′⊥ (θ (z,zi)) is~r⊥ (θ (z,zi)) with (x,y) replaced by (x′,y′) (see (5.108)). Thus,
substituting the required matrix element,

〈
~r⊥
∣∣∣ÛR (z,zi)

∣∣∣~r′⊥〉= δ
2 (~r⊥ (θ (z,zi))−~r′⊥

)
, (5.110)

in (5.107), we get

ψ (~r⊥,z) =
∫

d2r⊥,i
∫

d2r′⊥ δ
2 (~r⊥ (θ (z,zi))−~r′⊥

)
×
〈
~r′⊥
∣∣∣ÛL (z,zi)

∣∣∣~r⊥,i〉ψ
(
~r⊥,i,zi

)
=
∫

d2r⊥,i
〈
~r⊥ (θ (z,zi))

∣∣∣ÛL (z,zi)
∣∣∣~r⊥,i〉ψ

(
~r⊥,i,zi

)
=
∫

d2r⊥,i KL
(
~r⊥
(
θ (z,zi) ,z;~r⊥,i,zi

))
ψ
(
~r⊥,i,zi

)
. (5.111)

The exact expression for the propagator KL
(
~r⊥
(
θ (z,zi) ,z;~r⊥,i,zi

))
can be written

down. Note that Ĥo,L, except for the additive constant−p0, is exactly like the Hamil-
tonian of a two-dimensional isotropic harmonic oscillator with time-dependent fre-
quency. Such a connection between optics and harmonic oscillator is of course well
known (see, e.g., Agarwal and Simon [2] in the context of light optics and Dattoli,
Renieri, and Torre [31] in the context of charged particle optics). For such quantum
systems with time-dependent Hamiltonians quadratic in~r and ~̂p, the exact propaga-
tors have been found using the Feynman path integral method (see, e.g., Khandekar
and Lawande [121], and Kleinert [122]). We shall closely follow Wolf [190] who
has given a method, using techniques of canonical transformations and Lie algebra,
to get the propagator for any quantum system with a time-dependent Hamiltonian
quadratic in~r and ~̂p (see the Appendix at the end of this chapter for an outline of the
method applied in our case). The resulting expression for KL is

KL
(
~r⊥
(
θ (z,zi) ,z;~r⊥,i,zi

))
=

p0

i2π h̄h(z,zi)
exp
{

i
h̄

p0∆z

+
ip0

2h̄h(z,zi)

[
g(z,zi)r2

⊥,i−2~r⊥,i ·~r⊥ (θ (z,zi))+h′ (z,zi)r2
⊥
]}

,

if h(z,zi) 6= 0, (5.112)
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and

KL
(
~r⊥
(
θ (z,zi) ,z;~r⊥,i,zi

))
=

1
g(z,zi)

exp
(

i
h̄

p0∆z+
ip0g′ (z,zi)

2h̄g(z,zi)
r2
⊥

)
δ

2
(
~r⊥,i−

~r⊥ (θ (z,zi))

g(z,zi)

)
,

if h(z,zi) = 0, (5.113)

where g(z,zi), h(z,zi), g′ (z,zi), and h′ (z,zi) are the elements of the classical trans-
fer matrix (4.53) for

(
~r⊥ (zi) ,~P⊥ (zi)/p0

)
−→

(
~r⊥(z),~P⊥(z)/p0

)
, the two linearly

independent solutions of the classical paraxial equation (4.51), satisfying the initial
conditions

g(zi,zi) = h′ (zi,zi) = 1, h(zi,zi) = g′ (zi,zi) = 0, (5.114)

and the relation

g(z,zi)h′ (z,zi)−h(z,zi)g′ (z,zi) = 1, for any z≥ zi. (5.115)

Note that when z = zi, KL = δ 2
(
~r⊥,i−~r⊥

)
as required. Now, from (5.111)–(5.113),

it follows that

ψ (~r⊥,z) =
1

iλ0h(z,zi)
exp
(

i2π

λ0

[
(z− zi)+

h′ (z,zi)

2h(z,zi)
r2
⊥

])
×
∫

d2r⊥,i exp
{

iπ
λ0h(z,zi)

[
g(z,zi)r2

⊥,i−2~r⊥,i ·~r⊥ (θ (z,zi))
]}

,

if h(z,zi) 6= 0,

ψ (~r⊥,z) =
1

g(z,zi)
exp
(

i2π

λ0

[
(z− zi)+

g′ (z,zi)

2g(z,zi)
r2
⊥

])
×ψ

(
~r⊥ (θ (z,zi))

g(z,zi)
,zi

)
,

if h(z,zi) = 0. (5.116)

This equation represents the well-known general law of propagation of the parax-
ial wave function in the case of a round magnetic lens (see Glaser [59, 62]),
Glaser and Schiske [60, 61], and Hawkes and Kasper [72]). The phase factor
exp{i2π (z− zi)/λ0} would not be there if we drop the constant term −p0 in the
optical Hamiltonian. Usually, a rotated coordinate frame is introduced, as we have
done in the classical treatment, to avoid the rotation factor θ (z,zi) in the final z-plane.
Equation (5.116) is the basis for the development of Fourier transform methods in
the electron optical imaging techniques (for details, see Hawkes and Kasper [72]).

Let us take zi = zob j < z`, where the object plane is, and z = zimg > zr, where the
image of the object is formed. As is clear from (5.116), if h

(
zimg,zob j

)
= 0, then we

have, with M= g
(
zimg,zob j

)
and θL = θ (z`,zr) = θ

(
zimg,zob j

)
,
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ψ
(
~r⊥,img,zimg

)
=

1
M

exp

(
i2π

λ0

[(
zimg− zob j

)
+

g′
(
zimg,zob j

)
2M

r2
⊥,img

])

×ψ

(
1
M
~r⊥,img (θL) ,zob j

)
,

∣∣ψ (~r⊥,img,zimg
)∣∣2 = 1

M2

∣∣∣∣ψ( 1
M
~r⊥,img (θL) ,zob j

)∣∣∣∣2 . (5.117)

This equation shows that at the image plane at z = zimg, where h
(
zimg,zob j

)
= 0, the

intensity distribution at the object plane is reproduced exactly, point-to-point, with
the magnification M= g

(
zimg,zob j

)
and a rotation through the angle

θL = θ
(
zob j,zimg

)
=
∫ zimg

zob j

dz α(z)

=
q

2p0

∫ zimg

zob j

dz B(z) =
q

2p0

∫ zr

z`
dz B(z). (5.118)

Note that B(z) = 0 outside the lens region (z < z`,z > zr). This image rotation in
a single-stage electron optical imaging using a round magnetic lens is the effect of
Larmor rotation of any charged particle in a magnetic field. Let us observe that, as
should be, the total intensity is conserved:∫

d2r⊥,img
∣∣ψ (~r⊥,img,zimg

)∣∣2 = 1
M2

∫
d2r⊥,img

∣∣∣∣ψ( 1
M
~r⊥,img (θL) ,zob j

)∣∣∣∣2
=

1
M2

∫
d2r⊥,img (θL)

∣∣∣∣ψ( 1
M
~r⊥,img (θL) ,zob j

)∣∣∣∣2
=
∫ 1

M2 d2r⊥,ob j

∣∣∣∣ψ( 1
M
~r⊥,ob j,zob j

)∣∣∣∣2
=
∫

d2r⊥,ob j
∣∣ψ (~r⊥,ob j,zob j

)∣∣2 . (5.119)

Let us now understand the Gaussian, point-to-point, or stigmatic imaging of an object
by the round magnetic lens through the transfer maps for 〈~r⊥〉 and

〈
~̂p⊥
〉
/p0. To this

end, we shall use the z-evolution equations in (5.63) for 〈~r⊥〉 and
〈
~̂p⊥
〉
/p0. We get

d
dz
〈x〉(z) = i

h̄

〈[
Ĥo , x

]〉
(z)

=

〈
i
h̄

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z , x
]〉

(z)

=
1
p0
〈p̂x〉(z)+α(z)〈y〉(z),

d
dz
〈y〉(z) = i

h̄

〈[
Ĥo , y

]〉
(z)
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=

〈
i
h̄

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z , y
]〉

(z)

=
1
p0

〈
p̂y
〉
(z)−α(z)〈x〉(z),

1
p0

d
dz
〈p̂x〉(z) =

i
h̄p0

〈[
Ĥo , p̂x

]〉
(z)

=

〈
i

h̄p0

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z , p̂x

]〉
(z)

=−α
2(z)〈x〉(z)+ 1

p0
α(z)〈p̂y〉(z)

1
p0

d
dz

〈
p̂y
〉
(z) =

i
h̄p0

〈[
Ĥo , p̂y

]〉
(z)

=

〈
i

h̄p0

[
−p0 +

1
2p0

p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z , p̂y

]〉
(z)

=−α
2(z)〈y〉(z)− 1

p0
α(z)〈p̂x〉(z). (5.120)

We can write these equations of motion as

d
dz


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

=


0 α(z) 1 0

−α(z) 0 0 1
−α2(z) 0 0 α(z)

0 −α2(z) −α(z) 0

 i


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

 .

(5.121)
Let us write this as

d
dz


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

= [µ(z)⊗ I + I⊗ρ(z)]


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

 , (5.122)

with

µ(z) =
(

0 1
−α2(z) 0

)
, (5.123)

and

ρ(z) = α(z)
(

0 1
−1 0

)
. (5.124)

It may be noted that these equations are exactly the same as in the classical theory,
except for the replacement of the classical~r⊥ and ~p⊥ by their corresponding quantum
averages 〈~r⊥〉(z) and

〈
~̂p⊥
〉
(z). So, to make the present chapter on quantum theory

self-contained, we shall be essentially repeating the same equations and statements
in the chapter on classical theory.
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Let us now integrate (5.122). Noting that µ(z)⊗ I and I⊗ ρ(z) commute with
each other, let

〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

= M (z,zi)R (z,zi)


〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0

〈
p̂y
〉
(zi)


for any z≥ zi, (5.125)

where

dM (z,zi)

dz
= (µ(z)⊗ I)M (z,zi) , M (zi,zi) = I, (5.126)

dR (z,zi)

dz
= (I×ρ(z))R (z,zi) , R (zi,zi) = I. (5.127)

It is clear that we can write

M (z,zi) = M (z,zi)⊗ I,
dM (z,zi)

dz
=

dM (z,zi)

dz
⊗ I, (5.128)

with
dM (z,zi)

dz
= µ(z)M (z,zi) , (5.129)

and

R((z,zi)) = I⊗R(z,zi) ,
dR (z,zi)

dz
= I⊗ dR(z,zi)

dz
, (5.130)

with
dR(z,zi)

dz
= ρ(z)R(z,zi) . (5.131)

Note that M (z,zi) and R (z,zi) commute with each other, dM (z,zi)/dz commutes
with R((z,zi)), and dR (z,zi)/dz commutes with M ((z,zi)). Then,

d
dz


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)



=

(
dM (z,zi)

dz
R (z,zi)+M (z,zi)

dR (z,zi)

dz

)
〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0

〈
p̂y
〉
(zi)
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= [µ(z)⊗ I + I⊗ρ(z)]M (z,zi)R (z,zi)


〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0

〈
p̂y
〉
(zi)



= [µ(z)⊗ I + I⊗ρ(z)]


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)

 , (5.132)

as required by (5.122).
The equation for R (z,zi), (5.127), can be readily integrated by ordinary exponen-

tiation, since [ρ (z′) ,ρ (z′′)] = 0 for any z′ and z′′. Thus, we have

R (z,zi) = e
∫ z

zi
dz ρ(z)

= exp
{

I⊗
[

θ (zi,z)
(

0 1
−1 0

)]}
= I⊗

(
cosθ (zi,z) sinθ (zi,z)
−sinθ (zi,z) cosθ (zi,z)

)
= I⊗R(z,zi) , (5.133)

with
θ (zi,z) =

∫ z

zi

dz α(z) =
q

2p0

∫ z

zi

dz B(z). (5.134)

Let us now introduce an XY z-coordinate system with its X and Y axes rotating along
the z-axis at the rate dθ(z)/dz = α(z) = qB(z)/2p0, such that we can write(

x(z)
y(z)

)
= R(z,zi)

(
X(z)
Y (z)

)
, (5.135)

or (
X(z)
Y (z)

)
= R−1 (z,zi)

(
x(z)
y(z)

)
=

(
cosθ (zi,z) −sinθ (zi,z)
sinθ (zi,z) cosθ (zi,z)

)(
x(z)
y(z)

)
. (5.136)

Then, we have (
px(z)
py(z)

)
= R(z,zi)

(
PX (z)
PY (z)

)
, (5.137)

or (
PX (z)
PY (z)

)
=

(
cosθ (zi,z) −sinθ (zi,z)
sinθ (zi,z) cosθ (zi,z)

)(
px(z)
py(z)

)
. (5.138)

where PX and PY are the components of momentum in the rotating coordinate sys-
tem. Note that in the vertical plane at z = zi, where the particle enters the system,
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XY z coordinate system coincides with the xyz coordinate system. Thus, we can write
(5.125) as, for any z≥ zi,

R (z,zi)


〈X〉(z)
〈Y 〉(z)

1
p0

〈
P̂X

〉
(z)

1
p0

〈
P̂Y

〉
(z)

= M (z,zi)R (z,zi)


〈X〉(zi)
〈Y 〉(zi)

1
p0

〈
P̂X

〉
(zi)

1
p0

〈
P̂Y

〉
(zi)



= R (z,zi)M (z,zi)


〈X〉(zi)
〈Y 〉(zi)

1
p0

〈
P̂X

〉
(zi)

1
p0

〈
P̂Y

〉
(zi)

 .

(5.139)

In other words, the quantum averages of position and momentum of the particle with
reference to the rotating coordinate system evolve along the optic axis according to

〈X〉(z)
〈Y 〉(z)

1
p0

〈
P̂X

〉
(z)

1
p0

〈
P̂Y

〉
(z)

= M (z,zi)


〈X〉(zi)
〈Y 〉(zi)

1
p0

〈
P̂X

〉
(zi)

1
p0

〈
P̂Y

〉
(zi)

 , for any z≥ zi. (5.140)

From (5.123) and (5.126), the corresponding equations of motion follow:

d
dz

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

= µ(z)

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)


=

(
0 1

−α2(z) 0

) 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

 , (5.141)

with

〈
~R⊥
〉
(z) =

(
〈X〉(z)
〈Y 〉(z)

)
,

〈
~̂P⊥
〉
(z) =

 〈
P̂X

〉
(z)〈

P̂Y

〉
(z)

 . (5.142)

From this, it follows that

d2

dz2

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

=

(
−α2(z) 0

−2α(z)α ′(z) −α2(z)

) 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

 ,

(5.143)
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or,

〈
~R⊥
〉′′

(z)+α
2(z)

〈
~R⊥
〉
(z) = 0,

1
p0

〈
~̂P⊥
〉′′

(z)+2α(z)α ′(z)
〈
~R⊥
〉
(z)+

1
p0

α
2(z)

〈
~̂P⊥
〉
(z) = 0. (5.144)

First of the equations (5.144) is the quantum paraxial equation of motion in the rotat-
ing coordinate system. The second equation is not independent of (5.144), since it is
just the consequence of the relation ~P⊥(z)/p0 = d~R⊥(z)/dz.

Equation (5.141) cannot be integrated by ordinary exponentiation since µ (z′) and
µ (z′′) do not commute when z′ 6= z′′ if α2 (z′) 6= α2 (z′′). So, to integrate (5.141), we
have to follow the same method used to integrate the time-dependent Schrödinger
equation (3.439) as in (3.440) with Û (t, t0) given by the series expression in (3.449).
Thus, replacing t by z, and −iĤ(t)/h̄ by µ(z), we get

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

=

(
g(z,zi) h(z,zi)
g′ (z,zi) h′ (z,zi)

) 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)


= M (z,zi)

 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)

 , (5.145)

where

M (z,zi) = I +
∫ z

zi

dz1µ (z1)+
∫ z

zi

dz2

∫ z2

zi

dz1µ (z2)µ (z1)

+
∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1µ (z3)µ (z2)µ (z1)

+ · · · . (5.146)

It can be directly verified that

dM (z,zi)

dz
= µ(z)M (z,zi) , (5.147)

and hence

d
dz

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

=
dM (z,zi)

dz

 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)

= µ(z)

 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)

 ,

(5.148)
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as required in (5.141). Explicit expressions for the elements of M can be written
down from (5.146) as follows:

g(z,zi) = 1−
∫ z

zi

dz2

∫ z2

zi

dz1 α
2 (z1)

+
∫ z

zi

dz4

∫ z4

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)−·· · ,

h(z,zi) = (z− zi)−
∫ z

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)

+
∫ z

zi

dz4

∫ z4

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)−·· · ,

g′ (z,zi) =−
∫ z

zi

dz1 α
2 (z1)+

∫ z

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)−·· · ,

h′ (z,zi) = 1−
∫ z

zi

dz1 α
2 (z1)(z1− zi)

+
∫ z

zi

dz3 α
2 (z3)

∫ z3

zi

dz2

∫ z2

zi

dz1 α
2 (z1)(z1− zi)−·· · . (5.149)

Note that
dg(z,zi)

dz
= g′ (z,zi) ,

dh(z,zi)

dz
= h′ (z,zi) , (5.150)

consistent with the relation d
〈
~R⊥
〉
(z)/dz =

〈
~̂P⊥
〉
(z)/p0. From the differential

equation (5.147) for M, we know that we can write

M (z,zi) = lim
N→∞

lim
∆z→0

{
e∆zµ(zi+N∆z)e∆zµ(zi+(N−1)∆z)e∆zµ(zi+(N−2)∆z) · · ·

· · · e∆zµ(zi+2∆z)e∆zµ(zi+∆z)
}
, (5.151)

with N∆z = (z− zi). Since the trace of µ(z) is zero, each of the factors in the above
product expression, of the type e∆zµ(zi+ j∆z), has unit determinant. Thus, the matrix M
has unit determinant, i.e.,

g(z,zi)h′ (z,zi)−h(z,zi)g′ (z,zi) = 1, (5.152)

for any (z,zi). Note that the solution for the transfer matrix for the quantum averages
of
(
~r⊥,~̂p⊥/p0

)
is exactly same as the transfer matrix for the corresponding classi-

cal variables, since the quantum paraxial equation of motion (5.144) is same as the
classical paraxial equation of motion (4.51), except for the replacement of classical
(~r⊥,~p⊥/p0) by their quantum averages.

In a simplified picture of electron microscope, let us consider the monoenergetic
paraxial beam comprising of electrons scattered elastically from the specimen (the
object to be imaged) being illuminated. The beam transmitted by the specimen car-
ries the information about the structure of the specimen. This beam going through
the magnetic lens gets magnified and is recorded at the image plane. Let us take the
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positions of the object plane and the image plane in the z-axis, the optic axis, as zob j
and zimg respectively. As already mentioned, we shall take the practical boundaries
of the lens to be at z` and zr. The magnetic field of the lens is practically confined
to the region between z` and zr and zob j < z` < zr < zimg. The region between zob j
and z` and the region between zr and zimg are free spaces. Thus, the electron beam
transmitted by the specimen (object) travels first through the free space between zob j
and z`, then the lens between z` and zr, and finally, the free space between zr and zimg
where it is recorded (image). Hence, the z-evolution matrix, or the transfer matrix,
M
(
zimg,zob j

)
can be written as

M
(
zimg,zob j

)
= MD (zimg,zr)ML (zr,z`)MD

(
z`,zob j

)
, (5.153)

where subscript D indicates the drift region and L indicates the lens region. Since
α2(z) = 0 in the free space regions, or drift regions, we get from (5.149)

MD (zimg,zr) =

(
1 (zimg− zr)
0 1

)
, MD

(
z`,zob j

)
=

(
1
(
z`− zob j

)
0 1

)
.

(5.154)
For the lens region, we have from (5.149)

ML (zr,z`) =
(

g(zr,z`) h(zr,z`)
g′ (zr,z`) h′ (zr,z`)

)
=

(
gL hL
g′L h′L

)
. (5.155)

Thus, we get

M
(
zimg,zob j

)
=

(
1 (zimg− zr)
0 1

)(
gL hL
g′L h′L

)(
1
(
z`− zob j

)
0 1

)

=


gL +g′L (zimg− zr)

[
gL
(
z`− zob j

)
+hL

+g′L (zimg− zr)
(
z`− zob j

)
+ h′L (zimg− zr)]

g′L g′L
(
z`− zob j

)
+h′L


=

(
g
(
zimg,zob j

)
h
(
zimg,zob j

)
g′
(
zimg,zob j

)
h′
(
zimg,zob j

) ) (5.156)

Note that MD
(
z`,zob j

)
and MD (zimg,zr) are of unit determinant. From the general

theory, we know that ML (zr,z`) should also be of unit determinant, i.e.,

gLh′L−hLg′L = 1. (5.157)

Since zimg is the position of the image plane h
(
zimg,zob j

)
, the 12-element of the

matrix M
(
zimg,zob j

)
should vanish such that〈

~R⊥
〉
(zimg) ∝

〈
~R⊥
〉(

zob j
)
. (5.158)
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This means that we should have

gL
(
z`− zob j

)
+hL +g′L (zimg− zr)

(
z`− zob j

)
+h′L (zimg− zr) = 0. (5.159)

Now, let

u =
(
z`− zob j

)
+

h′L−1
g′L

, v = (zimg−zr)+
gL−1

g′L
, (5.160)

and
f =− 1

g′L
. (5.161)

We are to interpret u as the object distance, v as the image distance, and f as the
focal length of the lens. Using straightforward algebra, and the relation (5.157), one
can verify that the familiar lens equation,

1
u
+

1
v
=

1
f
, (5.162)

implies (5.159). From (5.160) it is seen that the principal planes from which u and v
are to be measured in the case of a thick lens are situated at

zPob j = z`+
h′L−1

g′L
= z`+ f

(
1−h′L

)
,

zPimg = zr−
gL−1

g′L
= zr− f (1−gL) , (5.163)

such that
u = zPob j − zob j, v = zimg− zPimg . (5.164)

The explicit expression for the focal length f follows from (5.161) and (5.149):

1
f
=
∫ zr

z`
dz α

2(z)−
∫ zr

z`
dz2 α

2 (z2)
∫ z2

z`
dz1

∫ z1

z`
dz α

2(z)+ · · ·

=
q2

4p2
0

∫ zr

z`
dz B2(z)− q4

16p4
0

∫ zr

z`
dz2 B2 (z2)

∫ z2

z`
dz1

∫ z1

z`
dz B2(z)+ · · · .

(5.165)

To understand the behavior of the lens, let us consider the idealized model in which
B(z) = B is a constant in the lens region and zero outside. Then,

1
f
=

qB
2p0

sin
(

qBw
2p0

)
, (5.166)

where w = (zr− z`) is the width, or thickness, of the lens. This shows that the focal
length is always positive to start with and is then periodic with respect to the variation
of the field strength. Thus, the round magnetic lens is convergent up to a certain
strength of the field. Round magnetic lenses commonly used in electron microscopy
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are always convergent. Note that
∫ zr

z`
dz α2(z) has the dimension of reciprocal length.

The round magnetic lens is considered weak when∫ zr

z`
dz α

2(z)� 1
w
. (5.167)

For such a weak lens, the expression for the focal length (4.74) can be approxi-
mated by

1
f
≈
∫ zr

z`
dz α

2(z) =
q2

4p2
0

∫ zr

z`
dz B2(z) =

q2

4p2
0

∫
∞

−∞

dz B2(z), (5.168)

the Busch formula (Busch [17]). A weak lens is said to be thin, since in this case
1/ f � 1/w, or f � w. Thus, we now understand how quantum mechanics leads to
the classical Busch formula for an axially symmetric thin magnetic lens.

The paraxial z-evolution matrix from the object plane to the image plane (5.156)
becomes, taking into account (5.159),

M(zimg,zob j) =

(
gL−

zimg−zr
f 0

− 1
f h′L−

z`−zob j
f

)

=

 gL− v+ f (gL−1)
f 0

− 1
f h′L−

u+ f(h′L−1)
f


=

(
1− v

f 0
− 1

f 1− u
f

)
=

(
− v

u 0
− 1

f − u
v

)
=

(
M 0
− 1

f
1
M

)
=

(
g
(
zimg,zob j

)
0

g′
(
zimg,zob j

)
1/g

(
zimg,zob j

) ) (5.169)

where g
(
zimg,zob j

)
= M is the magnification, as we have identified (see (5.117))

while understanding imaging in the Schrödinger picture. Further, we find that
g′
(
zimg,zob j

)
=−1/ f , and hence we can write, from (5.117),

ψ
(
~r⊥,img,zimg

)
=

1
M

exp
(

i2π

λ0

[(
zimg− zob j

)
− 1

2 fM
r2
⊥,img

])
×ψ

(
1
M
~r⊥,img (θL) ,zob j

)
. (5.170)

In our notation, both u and v are positive and hence M = −v/u is negative, show-
ing the inverted nature of the image, as should be in the case of imaging by a
convergent lens.

For a thin lens with f � w, we can take w ≈ 0, and the two principal planes
collapse into a single plane at the center of the lens, i.e., we can take zP = (z`+ zr)/2.
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Then, from (5.149) it is clear that for the thin lens, we can make the approximation

MT L (zr,z`)≈
(

1 0
− 1

f 1

)
, (5.171)

where the subscript TL stands for thin lens. Thus, corresponding to (5.156), we have
for the thin lens

M
(
zimg,zob j

)
≈
(

1 (zimg− zP)
0 1

)(
1 0
− 1

f 1

)(
1
(
zP− zob j

)
0 1

)

=


1− 1

f (zimg− zP)

[(
zP− zob j

)
− 1

f (zimg− zP)
(
zP− zob j

)
+ (zimg− zP)]

− 1
f 1− 1

f

(
zP− zob j

)

 .

(5.172)

Since
(
zP− zob j

)
= u and (zimg− zP) = v, and 1/u+1/v = 1/ f , we get

M
(
zimg,zob j

)
=

(
1− v

f u− uv
f + v

− 1
f 1− u

f

)

=

(
− v

u 0
− 1

f − u
v

)
=

(
M 0
− 1

f
1
M

)
, (5.173)

where M=−v/u is the magnification. Note that the effect of passage through a thin

lens of negligible width with the transfer matrix
(

1 0
−1/ f 1

)
on the wave function

will be to have
ψ
(
~r⊥,zr ,zr

)
= e
− iπ

λ0 f r2
⊥,zr ψ

(
~r⊥,zr (θL) ,z`

)
, (5.174)

i.e., multiplication of the wave function by the phase factor exp
(
− iπ

λ0 f r2
⊥

)
, as is well

known (see Hawkes and Kasper [72] for more details of electron optical imaging).
So far, we have been describing the behavior of the lens in the rotated XY z-

coordinate system. Now, if we return to the original xyz-coordinate system, we would
have, as seen from (5.125), (5.128), and (5.130),(

〈~r⊥〉(zimg)
1
p0

〈
~̂p⊥
〉
(zimg)

)
= M

(
zimg,zob j

)
⊗R

(
zimg,zob j

)( 〈~r⊥〉
(
zob j
)

1
p0

〈
~̂p⊥
〉(

zob j
) ) ,

(5.175)

with 〈~r⊥〉=
(
〈x〉
〈y〉

)
and

〈
~̂p⊥
〉
=

(
〈p̂x〉〈
p̂y
〉 ). Since the rotation of the image is the

effect of only the magnetic field of the lens

R
(
zimg,zob j

)
= R(z`,zr) =

(
cosθL sinθL
−sinθL cosθL

)
, (5.176)
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where
θL = θ (z`,zr) =

q
2p0

∫ zr

z`
dz B(z). (5.177)

From (5.172) and (5.175), it is clear that apart from rotation and drifts through field-
free regions in the front and back of the lens, the effect of a thin convergent lens

is essentially described by the transfer matrix
(

1 0
−1/ f 1

)
. This can also be seen

simply as follows. If a particle of a paraxial beam enters a thin lens in the transverse
xy-plane with (〈x〉,〈y〉) = (〈x〉,0) and

(
〈p̂x〉 ,

〈
p̂y
〉)

= (0,0), i.e., in the xz-plane and
parallel to the optic (z) axis, then we have(

1 f
0 1

)(
1 0
− 1

f 1

)(
〈x〉
0

)
=

(
0
− 〈x〉f

)
. (5.178)

This means that all the particles of the paraxial beam hitting the lens parallel to the
optic axis in the xz-plane meet the optic axis at a distance f from the lens independent
of the 〈x〉 with which it enters the lens. This implies that the lens is a convergent lens
with the focal length f . If the lens is a thin divergent lens of focal length − f , then
correspondingly we would have(

1 − f
0 1

)(
1 0
1
f 1

)(
〈x〉
0

)
=

(
0
〈x〉
f

)
, (5.179)

implying that the particles appear virtually to meet behind the lens at a distance
f . Thus, the effect of a thin divergent lens is essentially described by the transfer

matrix
(

1 0
1/ f 1

)
. Note that, in general, if the transfer matrix of a lens system

is
(

g h
g′ h′

)
, then it will be focusing or defocusing depending on whether g′ is

negative or positive, respectively. This is so because if g′ is negative then 〈p̂x〉/p0
decreases proportional to the 〈x〉 of the beam particle driving it towards the optic
axis, and if g′ is positive then 〈p̂x〉/p0 increases proportional to the 〈x〉 of the beam
particle driving it away from the optic axis.

5.2.3.2 Going Beyond the Paraxial Approximation: Aberrations
Paraxial beam is an idealization. Let us now turn to the realistic case of quasiparax-
ial beam that would lead to aberrations due to the necessity to include terms of order
higher than quadratic in

(
~r⊥,~̂p⊥

)
in the quantum beam optical Hamiltonian Ĥo.

We have to treat the nonparaxial terms in Ĥo, which will be anyway small com-
pared to the paraxial terms, as perturbations and use the well-known techniques of
time-dependent perturbation theory of quantum mechanics utilizing the interaction
picture approach. In the classical limit, the formalism of quantum theory of paraxial
and aberrating charged particle optical systems presented here tends to the simi-
lar approach to the classical theory of charged particle optics, including accelerator
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optics, based on Lie transfer operator methods developed extensively by Dragt
et al. (see Dragt [34], Dragt and Forest [35], Dragt et al. [36], Forest, Berz,
and Irwin [54], Rangarajan, Dragt, and Neri [156], Forest and Hirata [55], Forest
[56], Radlic̆ka [154], and references therein; see also Berz [11], Mondragon and
Wolf [135], Wolf [191], Rangarajan and Sachidanand [157], Lakshminarayanan,
Sridhar, and Jagannathan [124], and Wolski [192]).

When the beam deviates from the ideal paraxial condition, as is always the case
in practice, going beyond the paraxial approximation, the next approximation entails
retaining in Ĥo terms of order up to fourth in

(
~r⊥,~̂p⊥

)
. To this end, we substitute in

Ĥo obtained in (5.34)

φ(~r) = 0,

~A =

(
−1

2
yΠ(~r⊥,z) ,

1
2

xΠ(~r⊥,z) ,0
)
,

with Π(~r⊥,z) = B(z)− 1
8

r2
⊥B′′(z), (5.180)

expand, and approximate as desired. Then, we get, with α(z) = qB(z)/2p0,

Ĥo = Ĥo,p +Ĥ ′
o

Ĥo,p =
1

2p0
p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z

Ĥ ′
o =

1
8p3

0
p̂4
⊥−

α(z)
2p2

0
p̂2
⊥L̂z−

α2(z)
8p0

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)2

+
3α2(z)

8p0

(
r2
⊥ p̂2
⊥+ p̂2

⊥r2
⊥
)
+

1
8
(
α
′′(z)−4α

3(z)
)

L̂zr2
⊥

+
p0

8
(
α

4(z)−α(z)α ′′(z)
)

r4
⊥, (5.181)

in which we have dropped unimportant constant terms, giving rise only to multi-
plicative phase factors, and retained only the Hermitian part without the h̄-dependent
Hermitian terms. In Ĥo, Ĥo,p is the paraxial term, same as in (5.97) except for the
additive constant term −p0, and Ĥ ′

o represents the lowest order nonparaxial, or per-
turbation, term. Note that Ĥo,p is a homogeneous quadratic polynomial in

(
~r⊥,~̂p⊥

)
and Ĥ ′

o is a homogeneous fourth-degree polynomial in
(
~r⊥,~̂p⊥

)
. Since the system

is rotationally symmetric about the z-axis, the optical Hamiltonian does not contain
any odd-degree polynomial in

(
~r⊥,~̂p⊥

)
.

Now the z-evolution equation for the system is

ih̄
∂ |ψ(z)〉

∂ z
= Ĥo|ψ(z)〉. (5.182)

Following the time-dependent perturbation theory, let∣∣ψi(z)
〉
= Û†

p (z,zi) |ψ(z)〉, Ûp (z,zi) = P

(
e−

i
h̄
∫ z

zi
dz Ĥo,p

)
. (5.183)
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Note that ∣∣ψi (zi)
〉
= Û†

p (zi,zi) |ψ (zi)〉= |ψ (zi)〉 . (5.184)

Then, we have

ih̄
∂

∂ z

∣∣ψi(z)
〉
= ih̄

∂

∂ z
Û†

p (z,zi) |ψ(z)〉+Û†
p (z,zi) ih̄

∂

∂ z
|ψ(z)〉

=−Û†
p (z,zi)Ĥo,p|ψ(z)〉+Û†

p (z,zi)Ĥo|ψ〉

=−Û†
p (z,zi)Ĥo,pÛp (z,zi)

∣∣ψi(z)
〉
+Û†

p (z,zi)ĤoÛp (z,zi)
∣∣ψi(z)

〉
= Û†

p (z,zi)
(
Ĥo−Ĥo,p

)
Ûp (z,zi)

∣∣ψi(z)
〉

= Û†
p (z,zi)Ĥ

′
o Ûp (z,zi)

∣∣ψi(z)
〉
. (5.185)

Defining

Ĥ ′
o,i = Û†

p (z,zi)Ĥ
′

o Ûp (z,zi) , (5.186)

we have

ih̄
∂

∂ z

∣∣ψi(z)
〉
= Ĥ ′

o,i
∣∣ψi(z)

〉
, (5.187)

where the subscript i denotes the interaction picture. Integrating (5.187), we get∣∣ψi(z)
〉
= Ûi (z,zi)

∣∣ψi (zi)
〉
= Ûi (z,zi) |ψ (zi)〉 ,

Ûi (z,zi)≈ e−
i
h̄ T̂i(z,zi),

T̂i (z,zi) =
∫ z

zi

dz Ĥ ′
o,i =

∫ z

zi

dz Û†
p (z,zi)Ĥ

′
o Ûp (z,zi) , (5.188)

where we have approximated Ûi (z,zi) by an ordinary integral disregarding all the
commutator terms in (5.38), since they lead to polynomials of degree higher than
four in

(
~r⊥,~̂p⊥

)
.

From the paraxial theory, we know


〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0
〈p̂y〉(z)

= M (z,zi)⊗R(θ (z,zi))


〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0
〈p̂y〉(zi)


M (z,zi) =

(
g(z,zi) h(z,zi)
g′ (z,zi) h′ (z,zi)

)
R(θ (z,zi)) =

(
cosθ (z,zi) sinθ (z,zi)
−sinθ (z,zi) cosθ (z,zi)

)
. (5.189)
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Since 
〈x〉(z)
〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0
〈p̂y〉(z)

=


〈ψ(z)|x|ψ(z)〉
〈ψ(z)|y|ψ(z)〉

1
p0
〈ψ(z)|p̂x|ψ(z)〉

1
p0
〈ψ(z)|p̂y|ψ(z)〉



=


〈ψ (zi) |Û†

p (z,zi)xÛp (z,zi) |ψ (zi)〉
〈ψ (zi) |Û†

p (z,zi)yÛp (z,zi) |ψ (zi)〉
1
p0
〈ψ (zi) |Û†

p (z,zi) p̂xÛp (z,zi) |ψ (zi)〉
1
p0
〈ψ (zi) |Û†

p (z,zi) p̂yÛp (z,zi) |ψ (zi)〉

 ,


〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0
〈p̂y〉(zi)

=


〈ψ (zi) |x|ψ (zi)〉
〈ψ (zi) |y|ψ (zi)〉

1
p0
〈ψ (zi) |p̂x|ψ (zi)〉

1
p0
〈ψ (zi) |p̂y|ψ (zi)〉

 , (5.190)

we have
Û†

p (z,zi)xÛp (z,zi)

Û†
p (z,zi)yÛp (z,zi)

1
p0

Û†
p (z,zi) p̂xÛp (z,zi)

1
p0

Û†
p (z,zi) p̂yÛp (z,zi)

= M (z,zi)⊗R(θ (z,zi))


x
y

1
p0

p̂x
1
p0

p̂y

 .

(5.191)

Using this result, we can compute Ĥ ′
o,i, T̂i (z,zi), and Ûi (z,zi). Note that for any Ô

Û†
p (z,zi) ÔnÛp (z,zi) =

(
Û†

p (z,zi) ÔÛp (z,zi)
)n

. After a considerable, but straightfor-
ward algebra, we obtain

Ûi (z,zi) = e−
i
h̄ T̂i(z,zi)

= exp
{
− i

h̄

[
1

4p3
0
C (z,zi) p̂4

⊥+
1

4p2
0

K (z,zi)
{

p̂2
⊥ ,

~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥
}

+
1
p2

0
k (z,zi) p̂2

⊥L̂z +
1

4p0
A(z,zi)

(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)2

+
1

2p0
a(z,zi)

(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)
L̂z +

1
4p0

F (z,zi)
(

p̂2
⊥r2
⊥+ r2

⊥ p̂2
⊥
)

+
1
4

D(z,zi)
{
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥ , r2

⊥

}
+d (z,zi)r2

⊥L̂z

+
p0

4
E (z,zi)r4

⊥

]}
, (5.192)
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where
{

Â , B̂
}
= ÂB̂+ B̂Â and

C (z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)h4 +2α
2h2h′2 +h′4

}
,

K (z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)gh3 +α
2(gh)′hh′+g′h′3

}
,

k (z,zi) =
∫ z

zi

dz
{(

1
8

α
′′− 1

2
α

3
)

h2− 1
2

αh′2
}
,

A(z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)g2h2 +2α
2gg′hh′+g′2h′2−α

2
}
,

a(z,zi) =
∫ z

zi

dz
{(

1
4

α
′′−α

3
)

gh−αg′h′
}
,

F (z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)g2h2

+α
2
(

g2h′2 +g′2h2
)
+g′2h′2 +2α

2
}
,

D(z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)g3h+α
2gg′(gh)′+g′3h′

}
,

d (z,zi) =
∫ z

zi

dz
{(

1
8

α
′′− 1

2
α

3
)

g2− 1
2

αg′2
}
,

E (z,zi) =
1
2

∫ z

zi

dz
{(

α
4−αα

′′)g4 +2αg2g′2 +g′4
}
, (5.193)

with g = g(z,zi), h = h(z,zi), g′ = g′ (z,zi), and h′ = h′ (z,zi).
From (5.183) and (5.188), we have

|ψ(z)〉= Ûp (z,zi)Ûi (z,zi) |ψ (zi)〉 , (5.194)

representing the generalization of the paraxial propagation law (5.116) including the
lowest order aberrations. Now, the transfer map becomes

〈~r⊥〉(z) =
〈

Û†
i U†

p~r⊥ÛpÛi
〉
(zi) ,〈

~̂p⊥
〉
(z) =

〈
Û†

i U†
p
~̂p⊥ÛpÛi

〉
(zi) , (5.195)

with Ûp = Ûp (z,zi) and Ûi = Ûi (z,zi). Explicitly writing,



〈x〉(z)

〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)


= (M (z,zi)⊗R(θ (z,zi))



〈
Û†

i xÛi
〉
(zi)〈

Û†
i yÛi

〉
(zi)

1
p0

〈
Û†

i p̂xÛi
〉
(zi)

1
p0

〈
Û†

i p̂yÛi
〉
(zi)


. (5.196)
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We shall write, with T̂i = T̂i (z,zi),



〈
Û†

i xÛi
〉
(zi)〈

Û†
i yÛi

〉
(zi)

1
p0

〈
Û†

i p̂xÛi
〉
(zi)

1
p0

〈
Û†

i p̂yÛi
〉
(zi)


=



〈
e

i
h̄ T̂ixe−

i
h̄ T̂i
〉
(zi)〈

e
i
h̄ T̂iye−

i
h̄ T̂i
〉
(zi)

1
p0

〈
e

i
h̄ T̂i p̂xe−

i
h̄ T̂i
〉
(zi)

1
p0

〈
e

i
h̄ T̂i p̂ye−

i
h̄ T̂i
〉
(zi)


=



〈
e

i
h̄ :T̂i:x

〉
(zi)〈

e
i
h̄ :T̂i:y

〉
(zi)

1
p0

〈
e

i
h̄ :T̂i: p̂x

〉
(zi)

1
p0

〈
e

i
h̄ :T̂i: p̂y

〉
(zi)


.

(5.197)

Now, let us make the approximation

e
i
h̄ :T̂i: ≈ I +

i
h̄

: T̂i :, (5.198)

such that we retain only the single commutator terms since the remaining multiple
commutator terms lead to polynomials of degree ≥5 in

(
~r⊥,~̂p⊥

)
, which are to be

ignored consistent with the approximation we are considering. Then, we have



〈x〉(z)

〈y〉(z)

1
p0
〈p̂x〉(z)

1
p0

〈
p̂y
〉
(z)


≈ (M (z,zi)⊗R(θ (z,zi))

×





〈x〉(zi)

〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0
〈p̂y〉(zi)


+



〈
i
h̄

[
T̂i , x

]〉
(zi)〈

i
h̄

[
T̂i , y

]〉
(zi)

1
p0

〈
i
h̄

[
T̂i , p̂x

]〉
(zi)

1
p0

〈
i
h̄

[
T̂i , p̂y

]〉
(zi)
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= (M (z,zi)⊗R(θ (z,zi))

×




〈x〉(zi)
〈y〉(zi)

1
p0
〈p̂x〉(zi)

1
p0
〈p̂y〉(zi)

+


(δx)(zi)
(δy)(zi)

1
p0
(δ px)(zi)

1
p0
(δ py)(zi)




=




〈x〉p(z)
〈y〉p(z)

1
p0
〈p̂x〉p (z)

1
p0

〈
p̂y
〉

p (z)

+


(∆x)(z)
(∆y)(z)

1
p0
(∆px)(z)

1
p0
(∆py)(z)


 , (5.199)

where (∆x)(z), (∆y)(z), 1
p0
(∆px)(z), and 1

p0
(∆py)(z) are third-order aberrations,

deviations from the paraxial results involving the averages of third-order polyno-
mials in

(
~r⊥,~̂p⊥

)
.

Obviously, the plane at which the influence of aberrations is to be known is the
image plane at z = zimg:

〈x〉(zimg)
〈y〉(zimg)

1
p0
〈p̂x〉(zimg)

1
p0

〈
p̂y
〉
(zimg)

=

((
M 0
− 1

f
1
M

)
⊗R(θL)

)
×




〈x〉
(
zob j
)

〈y〉
(
zob j
)

1
p0
〈p̂x〉

(
zob j
)

1
p0

〈
p̂y
〉(

zob j
)
+


(δx)

(
zob j
)

(δy)
(
zob j
)

1
p0
(δ px)

(
zob j
)

1
p0
(δ py)

(
zob j
)



=


〈x〉p (zimg)
〈y〉p (zimg)

1
p0
〈p̂x〉p (zimg)

1
p0

〈
p̂y
〉

p (zimg)



+

((
M 0
− 1

f
1
M

)
⊗R(θL)

)
×


(δx)

(
zob j
)

(δy)
(
zob j
)

1
p0
(δ px)

(
zob j
)

1
p0
(δ py)

(
zob j
)
 ,

(5.200)

with

(δx)
(
zob j
)
=

Cs

p3
0

〈
p̂x p̂2
⊥
〉(

zob j
)

+
K

2p2
0

〈{
p̂x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}
+
{

x , p̂2
⊥
}〉(

zob j
)

+
k
p2

0

〈{
p̂x , L̂z

}
− 1

2
{

y , p̂2
⊥
}〉(

zob j
)
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+
A

2p0

〈{
x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

+
a

2p0

〈{
x , L̂z

}
−
{

y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

+
F

2p0

〈{
p̂x , r2

⊥
}〉(

zob j
)
+D

〈
xr2
⊥
〉(

zob j
)
−d
〈
yr2
⊥
〉(

zob j
)
, (5.201)

(δy)
(
zob j
)
=

Cs

p3
0

〈
p̂y p̂2
⊥
〉(

zob j
)

+
K

2p2
0

〈{
p̂y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}
+
{

y , p̂2
⊥
}〉(

zob j
)

+
k
p2

0

〈{
p̂y , L̂z

}
+

1
2
{

x , p̂2
⊥
}〉(

zob j
)

+
A

2p0

〈{
y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

+
a

2p0

〈{
y , L̂z

}
−
{

x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

+
F

2p0

〈{
p̂y , r2

⊥
}〉(

zob j
)
+D

〈
yr2
⊥
〉(

zob j
)
+d
〈
xr2
⊥
〉(

zob j
)
, (5.202)

(δ px)
(
zob j
)
=− K

p2
0

〈
p̂x p̂2
⊥
〉(

zob j
)

− k
p2

0

〈
p̂y p̂2
⊥
〉(

zob j
)

− A
2p0

〈{
p̂x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

− a
2p0

〈{
p̂x , L̂z

}
+
{

p̂y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

− F
2p0

〈{
x , p̂2

⊥
}〉(

zob j
)

− D
2

〈{
p̂x ,r2

⊥
}
+
{

x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

−d
〈{

x , L̂z

}
+

1
2
{

p̂y , r2
⊥
}〉(

zob j
)
−E p0

〈
xr2
⊥
〉(

zob j
)
, (5.203)

(δ py)
(
zob j
)
=− K

p2
0

〈
p̂y p̂2
⊥
〉(

zob j
)

+
k
p2

0

〈
p̂x p̂2
⊥
〉(

zob j
)

− A
2p0

〈{
p̂y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)
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− a
2p0

〈{
p̂y , L̂z

}
+
{

p̂x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

− F
2p0

〈{
y , p̂2

⊥
}〉(

zob j
)

− D
2

〈{
p̂y ,r2

⊥
}
+
{

y ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉(
zob j
)

−d
〈{

y , L̂z

}
− 1

2
{

p̂x , r2
⊥
}〉(

zob j
)
−E p0

〈
yr2
⊥
〉(

zob j
)
, (5.204)

with

Cs =C
(
zimg,zob j

)
, K = K

(
zimg,zob j

)
, k = k

(
zimg,zob j

)
,

A = A
(
zimg,zob j

)
, a = a

(
zimg,zob j

)
, F = F

(
zimg,zob j

)
,

D = D
(
zimg,zob j

)
, d = d

(
zimg,zob j

)
, E = E

(
zimg,zob j

)
. (5.205)

With reference to the aberrations of position, (5.201) and (5.202), the constants Cs,
K, k, A, a, F , D, and d, respectively, are known as the aberration coefficients corre-
sponding to spherical aberration, coma, anisotropic coma, astigmatism, anisotropic
astigmatism, curvature of field, distortion, and anisotropic distortion. The gradient
aberrations, (5.203) and (5.204), do not affect the single-stage image, but should
be taken into account as the input to the next stage when the lens forms a part of
a complex imaging system. It should be noted that the expressions for the various
aberration coefficients obtained above are exactly same as the classical expressions
for them. For a detailed picture of the effects of these aberrations on the quality of the
image and the classical methods of computation of these aberrations, see Hawkes and
Kasper [70]. Ximen [194] has given a treatment of the classical theory of aberrations
using position, momentum, and Hamilton’s equations of motion.

Introducing the notations

u = x+ iy, υ =
1
p0

(p̂x + ip̂y) , (5.206)

the transfer map including the third-order aberrations, (5.200–5.204) can be written
in a compact matrix form (see Hawkes and Kasper [70] for details) as follows:

(
〈u〉(zimg)
〈υ〉(zimg)

)
= e−iθL

(
M 0
− 1

f
1
M

)
×
(

1 0 Cs 2K 2k F
0 1 ik−K ia−2A −a id−D

D+ id 2A+ ia −a K + ik
−E −2D 2d −F

)
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×



〈u〉
(
zob j
)

〈υ〉
(
zob j
)〈

υυ†υ
〉(

zob j
)

1
4

〈{
υ , u†υ +υ†u

}〉(
zob j
)

1
4i

〈{
υ , u†υ−υ†u

}〉(
zob j
)

1
2

〈{
υ , u†u

}〉(
zob j
)〈

uu†u
〉(

zob j
)

1
4

〈{
u , υ†u+u†υ

}〉(
zob j
)

1
4i

〈{
u , υ†u−u†υ

}〉(
zob j
)

1
2

〈{
u , υ†υ

}〉(
zob j
)


. (5.207)

The wave function at the image plane is

ψ
(
~r⊥,img,zimg

)
=
∫

d2r⊥,zob j

∫
d2r⊥

〈
~r⊥,zimg

∣∣∣Ûp
(
zimg,zob j

)∣∣∣~r⊥〉
×
〈
~r⊥
∣∣∣Ûi
(
zimg,zob j

)∣∣∣~r⊥,zob j

〉
ψ

(
~r⊥,zob j ,zob j

)
∼ 1

M
exp

(
−

iπr2
⊥,zimg

λ0 f

)

×
∫

d2r⊥,zob j

∫
d2r⊥δ

2
(
~r⊥−

1
M
~r⊥,zimg (θL)

)
×
〈
~r⊥
∣∣∣Ûi
(
zimg,zob j

)∣∣∣~r⊥,zob j

〉
ψ

(
~r⊥,zob j ,zob j

)
=

1
M

exp

(
−

iπr2
⊥,zimg

λ0 f

)
×
∫

d2r⊥,zob j

〈
~r⊥,zimg (θL)/M

∣∣∣Ûi
(
zimg,zob j

)∣∣∣~r⊥,zob j

〉
×ψ

(
~r⊥,zob j ,zob j

)
. (5.208)

When there are no aberrations

〈
~r⊥,zimg (θL)/M

∣∣∣Ûi
(
zimg,zob j

)∣∣∣~r⊥,zob j

〉
= δ

2
(
~r⊥,zob j −

1
M
~r⊥,zimg (θL)

)
, (5.209)

and hence one obtains the point-to-point imaging as seen earlier. It is clear from
(5.208) that, when aberrations are present, the intensity distribution in the image
plane will represent only a blurred and distorted version of the image. Note that in
Ûi
(
zimg,zob j

)
the most dominant aberration term is the spherical aberration term that

is independent of the position of the object point, as seen from (5.201) and (5.202)
(for details on the practical aspects of electron optical imaging, see Hawkes and
Kasper [70, 71, 72]).
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5.2.3.3 Quantum Corrections to the Classical Results
Before closing the discussion on the quantum mechanics of round magnetic lens,
comments on the effects of h̄-dependent Hermitian and anti-Hermitian terms, which
have been dropped in deriving the final quantum charged particle beam optical
Hamiltonian for the axially symmetric magnetic lens (5.181) are in order.

Let us first consider, for example, the h̄-dependent anti-Hermitian term:

Â=
ih̄

2p2
0

(
α(z)α ′(z)r2

⊥− p0α
′(z)L̂z

)
, (5.210)

that has got dropped in (5.181) in the process of making the quantum beam opti-
cal Hamiltonian Hermitian. This term is a paraxial term, since it is quadratic in(
~r⊥,~̂p⊥

)
. If we retain any such anti-Hermitian term in the paraxial Hamiltonian,

the resultant z-evolution operator will be nonunitary and will have the form

T̂p (z,zi) = exp
{
− i

h̄

(
T̂ (z,zi)+ t̂h (z,zi)+ t̂a (z,zi)

)}
≈ exp

(
− i

h̄
T̂ (z,zi)

)
exp
(
− i

h̄
t̂h (z,zi)

)
exp
(
− i

h̄
t̂a (z,zi)

)
, (5.211)

where t̂h (z,zi) and t̂a (z,zi) are, respectively, the Hermitian and anti-Hermitian cor-
rection terms to the main part T̂ (z,zi). It may be noted that any term of the type
i
[
Â , B̂

]
/h̄ is Hermitian when both Â and B̂ are Hermitian or anti-Hermitian, and

such a term is anti-Hermitian if one of the two operators
(

Â, B̂
)

is Hermitian and the

other is anti-Hermitian. We can use T̂p (z,zi) to calculate the transfer maps as

〈~r⊥〉(zi)−→ 〈~r⊥〉(z)

=
〈ψ(z) |~r⊥|ψ(z)〉
〈ψ(z)|ψ(z)〉

=

〈
ψ (zi)

∣∣T̂†
p (z,zi)~r⊥T̂p (z,zi)

∣∣ψ (zi)
〉〈

ψ (zi)
∣∣∣T̂†

p (z,zi) T̂p (z,zi)
∣∣∣ψ (zi)

〉 ,

〈
~̂p⊥
〉
(zi)−→

〈
~̂p⊥
〉
(z)

=

〈
ψ(z)

∣∣∣~̂p⊥∣∣∣ψ(z)
〉

〈ψ(z)|ψ(z)〉

=

〈
ψ (zi)

∣∣∣T̂†
p (z,zi)~̂p⊥T̂p (z,zi)

∣∣∣ψ (zi)
〉

〈
ψ (zi)

∣∣∣T̂†
p (z,zi) T̂p (z,zi)

∣∣∣ψ (zi)
〉 . (5.212)
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Note that since the z-evolution of |ψ(z)〉 is not unitary, for calculating the aver-
age values, we have to take the normalized state at the plane at any z as
|ψ(z)〉/

√
〈ψ(z)|ψ(z)〉, where |ψ(z)〉 = T̂p (z,zi) |ψ (zi)〉. It is seen that the Hermi-

tian correction term modifies the paraxial map while the anti-Hermitian term leads
to an overall real scaling factor ∼ 1/

〈
ψ
(
zob j
)∣∣exp

(
−2îta/h̄

)∣∣ψ (zob j
)〉

, affect-
ing the image magnification as a consequence of nonconservation of intensity, and
contributes to aberrations since the terms like exp

(
−îta/h̄

)†
~r⊥ exp

(
−îta/h̄

)
and

exp
(
−îta/h̄

)†~̂p⊥ exp
(
−îta/h̄

)
lead on expansion, respectively, to Hermitian terms

of the form~r⊥+ nonlinear terms in
(
~r⊥,~̂p⊥

)
and ~̂p⊥+ nonlinear terms in

(
~r⊥,~̂p⊥

)
only. In this present case, the anti-Hermitian term Â in (5.210) does not lead to any
Hermitian correction term (note that

[
Â(z′) , Â(z′′)

]
= 0 for any z′ and z′′), and its

contribution to the functioning of the lens is only through the anti-Hermitian correc-
tion term affecting the conservation of intensity and adding to the aberrations.

Let us now turn to the h̄-dependent Hermitian terms

Ĥp =
h̄2

4p2
0

α(z)α ′(z)
(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)

Ĥ′ =
h̄2

32p3
0

{
α
′′′(z)L̂z

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
−p0

(
α
′(z)α ′′(z)+α(z)α ′′′(z)

){
r2
⊥ ,
(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)}}
. (5.213)

which have also been dropped in (5.181). Taking into account the influence of these
terms is straightforward. Note that Ĥp is a paraxial term and should be added to Ĥo,L
while studying the functioning of the lens in the paraxial approximation. The rotation
does not get affected by the addition of the term Ĥp. In the rotated coordinate system,
the equation of motion (5.141) gets replaced by

d
dz

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

= µ̄(z)

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)



=

 h̄2

2p2
0
α(z)α ′(z) 1

−α2(z) − h̄2

2p2
0
α(z)α ′(z)



×

 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

 , (5.214)
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This equation can be integrated to give the transfer map 〈
~R⊥
〉
(z)

1
p0

〈
~̂P⊥
〉
(z)

= M̄ (z,zi)

 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)


=

(
ḡ(z,zi) h̄(z,zi)
ḡ′ (z,zi) h̄′ (z,zi)

) 〈
~R⊥
〉
(zi)

1
p0

〈
~̂P⊥
〉
(zi)

 ,

(5.215)

where the matrix elements of M̄ (z,zi) can be obtained from (5.146) by replacing
µ(z) by µ̄(z). The resulting expression for ḡ′ (z,zi) shows that the focal length gets an
additive contribution ∼ h̄2 vanishing in the classical limit. The other Hermitian term
mentioned above, Ĥ′, has to be added to the perturbation term Ĥ ′

o in the quantum
beam optical Hamiltonian (5.181). The corresponding computation of the transfer
maps, using the z-dependent perturbation theory in terms of the interaction picture,
leads to the modification of aberration coefficients. For example, the modified spher-
ical aberration coefficient turns out to be

C̄s =
1
2

∫ zimg

zob j

dz
{[(

α
4−αα

′′)
+

h̄4

2p4
0

(
α

4
α
′2 +αα

′2
α
′′+α

2
α
′
α
′′′
)]

h̄4

+

[
h̄2

p2
0

(
2αα

′−α
′
α
′′−αα

′′′)− h̄4

p4
0

α
4
α
′2
]

h̄3h̄′

+

[
2α

2 +
3h̄4

2p4
0

α
2
α
′2
]

h̄2h̄′2

+

[
h̄2

p2
0

(
2αα

′−α
′
α
′′−αα

′′′)] h̄h̄′3 + h̄′4
}
, (5.216)

where h̄ = h̄(z,zi) and h̄′ = h̄′ (z,zi) in (5.215). Again, the tiny h̄-dependent con-
tributions to Cs, and similarly to other aberrations, vanish in the classical limit.
The positivity of the spherical aberration coefficient Cs is a celebrated theorem of
Scherzer [167], and the quantum corrections do not affect this result. This is why the
classical theory of charged particle optics is working so well!

5.2.4 NORMAL MAGNETIC QUADRUPOLE

Let us now look at the quantum mechanics of a normal magnetic quadrupole lens.
Let a quasiparaxial beam of particles of charge q and rest mass m be propagating
through a normal magnetic quadrupole lens. We shall take the optic axis of the lens
to be along the z-direction and the practical boundaries of the lens to be at z` and zr
with z` < zr. The field of the normal magnetic quadrupole is

~B(~r) = (−Qny,−Qnx,0) , (5.217)
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where

Qn =

{
constant in the lens region (z` < z < zr)
0 outside the lens region (z < z`,z > zr)

(5.218)

There is no electric field and hence φ(~r) = 0. The vector potential of the field can be
taken as

~A(~r) =
(

0,0,
1
2

Qn
(
x2− y2)) . (5.219)

Now, from (5.34), the quantum beam optical Hamiltonian operator is seen to be,
keeping terms up to fourth power in

(
~r⊥,~̂p⊥

)
,

Ĥo = Ĥo,p +Ĥ ′
o + Ĥp + Â

Ĥo,p =−p0 +
p̂2
⊥

2p0
− 1

2
p0Kn

(
x2− y2) , Ĥ ′

o =
1

8p3
0

p̂4
⊥,

Ĥp =
h̄2Kn

4p3
0

(
p̂2

x− p̂2
y
)
, Â=

ih̄Kn

2p0
(xp̂x− yp̂y) , (5.220)

where Kn = qQn/p0.
Let us consider the propagation of a paraxial beam from the transverse xy-plane at

z = zi < z` to the transverse plane at z > zr. The z-evolution of the beam is governed
by the paraxial quantum beam optical Hamiltonian

Ĥo,p =−p0 +
p̂2
⊥

2p0
− 1

2
p0Kn

(
x2− y2) , (5.221)

obtained from Ĥo by dropping the nonparaxial perturbation term Ĥ ′
o , h̄-

dependent paraxial Hermitian term Ĥp, and the h̄-dependent anti-Hermitian term
Â. The beam propagates in free space from zi to z`, passes through the lens from
z` to zr, and propagates through free space again from zr to z. Following (5.44), the
transfer map for the quantum averages of transverse coordinates and momenta of a
beam particle is given by


〈x〉(z)

1
p0
〈p̂x〉(z)
〈y〉(z)

1
p0

〈
p̂y
〉
(z)

=



〈
Û† (z,zi)xÛ (z,zi)

〉
(zi)

1
p0

〈
Û† (z,zi) p̂xÛ (z,zi)

〉
(zi)〈

Û† (z,zi)yÛ (z,zi)
〉
(zi)

1
p0

〈
Û† (z,zi) p̂yÛ (z,zi)

〉
(zi)

 (5.222)

where Û (z,zi) is the z-evolution operator corresponding to the Hamiltonian Ĥo,p.
Using the semigroup property of the z-evolution operator (5.39), we can write

Û (z,zi) = Û (z,zr)Û (zr,z`)Û (z`,zi)

= ÛD (z,zr)ÛL (zr,z`)ÛD (z`,zi) , (5.223)
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where the subscripts D and L stand for drift and propagation through the lens, respec-
tively, and the intervals (zi,z`), (z`,zr), and (zr,z) correspond to free space, lens, and
free space, respectively. Since within each of these regions Ĥo,p is independent of z,
we get

ÛD (z,zr) = exp
{
− i

h̄
(z− zr)

[
−p0 +

p̂2
⊥

2p0

]}
,

ÛL (zr,z`) = exp
{
− i

h̄
(zr− z`)

[
−p0 +

p̂2
⊥

2p0
− 1

2
p0Kn

(
x2− y2)]} ,

ÛD (z`,zi) = exp
{
− i

h̄
(z`− zi)

[
−p0 +

p̂2
⊥

2p0

]}
. (5.224)

Substituting the above expression for Û (z,zi) in (5.222), we can write

〈x〉(z) =

〈
e

i
h̄ (z−zr):

p̂2
⊥

2p0
:e

i
h̄ (zr−z`):

(
p̂2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:
e

i
h̄ (z`−zi):

p̂2
⊥

2p0
:x

〉
(zi) ,

1
p0
〈p̂x〉(z) =

1
p0

〈
e

i
h̄ (z−zr):

p̂2
⊥

2p0
:e

i
h̄ (zr−z`):

(
p̂2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:
e

i
h̄ (z`−zi):

p̂2
⊥

2p0
: p̂x

〉
(zi) ,

〈y〉(z) =

〈
e

i
h̄ (z−zr):

p̂2
⊥

2p0
:e

i
h̄ (zr−z`):

(
p̂2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:
e

i
h̄ (z`−zi):

p̂2
⊥

2p0
:y

〉
(zi) ,

1
p0

〈
p̂y
〉
(z) =

1
p0

〈
e

i
h̄ (z−zr):

p̂2
⊥

2p0
:e

i
h̄ (zr−z`):

(
p̂2
⊥

2p0
− 1

2 p0Kn(x2−y2)
)

:
e

i
h̄ (z`−zi):

p̂2
⊥

2p0
: p̂y

〉
(zi) .

(5.225)

From the results

i
h̄

:
p̂2
⊥

2p0
:


x
p̂x
p0
y
p̂y
p0

=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




x
p̂x
p0
y
p̂y
p0

 , (5.226)

and

i
h̄

:
(

p̂2
⊥

2p0
− 1

2
p0Kn

(
x2− y2)) :


x
p̂x
p0
y
p̂y
p0

=


0 1 0 0

Kn 0 0 0
0 0 0 1
0 0 −Kn 0




x
p̂x
p0
y
p̂y
p0

 ,

(5.227)
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we get
〈x〉(z)

1
p0
〈p̂x〉(z)
〈y〉(z)

1
p0

〈
p̂y
〉
(z)

= TD (z,zr)TL (zr,z`)TD (z`,zi)


〈x〉(zi)

1
p0
〈p̂x〉(zi)

〈y〉(zi)
1
p0

〈
p̂y
〉
(zi)

,

TD (z,zr) =


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1


TL (zr,z`) =

((
cosh

(
w
√

Kn
) 1√

Kn
sinh

(
w
√

Kn
)

√
Kn sinh

(
w
√

Kn
)

cosh
(
w
√

Kn
) )

⊕(
cos
(
w
√

Kn
) 1√

Kn
sin
(
w
√

Kn
)

−
√

Kn sin
(
w
√

Kn
)

cos
(
w
√

Kn
) ))

TD (z`,zi) =


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1


with w = (zr− z`) . (5.228)

This transfer map for the quantum averages (〈x〉(z) , 〈p̂x〉(z)/p0, 〈y〉(z),
〈

p̂y
〉
(z)/p0

)
is seen to be exactly the same as the transfer map (4.142) for the classical variables
(x(z), px(z)/p0,y(z), py(z)/p0) in the paraxial approximation. Thus, the properties
of the normal magnetic quadrupole lens we have derived earlier, in the context of the
classical transfer map (4.142), are valid in the present context of the quantum trans-
fer map (5.228). Let us recall. When Kn > 0, the lens is divergent in the xz-plane
and convergent in the yz-plane. In other words, the normal magnetic quadrupole lens
produces a line focus. When Kn < 0, the lens is convergent in the xz-plane and diver-
gent in the yz-plane. It is seen that Kn has the dimensions of length−2. In the weak
field case, when w

√
|Kn| � 1, the lens can be considered as a thin lens with the focal

lengths
1

f (x)
=−wKn,

1
f (y)

= wKn. (5.229)

A lens of focal length ± f can be considered effectively to be two lenses of focal
length ±2 f , respectively, joined together without any gap between them. A dou-
blet of focusing and defocusing lenses of focal lengths f and − f with a distance
d between them would have the effective focal length f 2/d > 0 and hence would
behave as a focusing lens. A triplet of quadrupoles can be arranged in such a way
to get net focusing effect in both the transverse planes. Series of such quadrupole
triplets are the main design elements of long beam transport lines or circular acceler-
ators to provide a periodic focusing structure called a FODO-channel. FODO stands
for F(ocusing)O(nonfocusing)D(efocusing)O(nonfocusing), where O can be a drift
space or a bending magnet.
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Now, if we retain the h̄-dependent Hermitian term Ĥp, we have the paraxial quan-
tum beam optical Hamiltonian as

Ĥo,p =−p0 +
1

2p0

(
1+

h̄2Kn

2p2
0

)
p̂2

x +
1

2p0

(
1− h̄2Kn

2p2
0

)
p̂2

y−
1
2

p0Kn
(
x2− y2) .

(5.230)
This modifies the equation (5.227) as

i
h̄

:
(

1
2p0

(
1+

h̄2Kn

2p2
0

)
p̂2

x +
1

2p0

(
1− h̄2Kn

2p2
0

)
p̂2

y

−1
2

p0Kn
(
x2− y2)) :


x
p̂x
p0
y
p̂y
p0



=


0 1+ h̄2Kn

2p2
0

0 0

Kn 0 0 0
0 0 0 1− h̄2Kn

2p2
0

0 0 −Kn 0




x
p̂x
p0
y
p̂y
p0

 , (5.231)

leading to the transfer map
〈x〉(z)

1
p0
〈p̂x〉(z)
〈y〉(z)

1
p0

〈
p̂y
〉
(z)

= TD (z,zr)TL (zr,z`)TD (z`,zi)


〈x〉(zi)

1
p0
〈p̂x〉(zi)

〈y〉(zi)
1
p0

〈
p̂y
〉
(zi)

 ,

TD (z,zr) =


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1


TL (zr,z`) =

 cosh
(
w
√

Kn1+
) √

1+
Kn

sinh
(
w
√

Kn1+
)√

Kn
1+ sinh

(
w
√

Kn1+
)

cosh
(
w
√

Kn1+
)


⊕

 cos
(
w
√

Kn1−
) √

1−
Kn

sin
(
w
√

Kn1−
)

−
√

Kn
1− sin

(
w
√

Kn1−
)

cos
(
w
√

Kn1−
)

 ,

with 1+ = 1+
h̄2Kn

2p2
0
, 1− = 1− h̄2Kn

2p2
0
,

TD (z`,zi) =


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1

 . (5.232)
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For a thin lens, with w
√
|Kn| � 1 and w≈ 0, the above transfer map reduces to

〈x〉(z)
1
p0
〈p̂x〉(z)
〈y〉(z)

1
p0

〈
p̂y
〉
(z)

= TD (z,zr)TL (zr,z`)TD (z`,zi)


〈x〉(zi)

1
p0
〈p̂x〉(zi)

〈y〉(zi)
1
p0

〈
p̂y
〉
(zi)

 ,

TD (z,zr) =


1 (z− zr) 0 0
0 1 0 0
0 0 1 (z− zr)
0 0 0 1

 ,

TL (zr,z`)≈
((

1+ 1
2 w2Kn1+ w1++ 1

3! w3Kn (1+)
2

wKn +w3K2
n 1+ 1+ 1

2 w2Kn1+

)
⊕
(

1− 1
2 w2Kn1− w1−− 1

3! w3Kn (1−)
2

−wKn +w3K2
n 1− 1− 1

2 w2Kn1−

))
,

≈


1 0 0 0

wKn 1 0 0
0 0 1 0
0 0 −wKn 1

 ,

TD (z`,zi) =


1 (z`− zi) 0 0
0 1 0 0
0 0 1 (z`− zi)
0 0 0 1

 , (5.233)

showing that the two focal lengths of the thin normal magnetic quadrupole lens
remain the same,

1
f (x)

=−wKn,
1

f (y)
= wKn, (5.234)

without any appreciable change due to the h̄-dependent Hermitian term in the optical
Hamiltonian. As we have already mentioned, the h̄-dependent anti-Hermitian term
in the optical Hamiltonian also does not affect the lens properties in any apprecia-
ble way. This is why accelerator optics works so well without any need to consider
quantum mechanics in its design and operation.

5.2.5 SKEW MAGNETIC QUADRUPOLE

Quantum mechanics of the skew magnetic quadrupole can be analysed in a similar
way. As seen in the classical theory, the skew magnetic quadrupole will be equivalent
to the normal magnetic quadrupole rotated by an angle π

4 about the optic axis. A skew
magnetic quadrupole is associated with the magnetic field

~B(~r) = (−Qsx,Qsy,0) , (5.235)

corresponding to the vector potential

~A(~r) = (0,0,−Qsxy) . (5.236)
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Let z` and zr > z` be the boundaries of the quadrupole. Then, Qs is a nonzero constant
for z`≤ z≤ zr and Qs = 0 outside the quadrupole (z < z`, z > zr). For a paraxial beam
propagating through this skew magnetic quadrupole along its optic axis, z-axis, the
quantum beam optical Hamiltonian will be

Ĥo =

 −p0 +
p̂2
⊥

2p0
, for z < z`, z > zr,

−p0 +
p̂2
⊥

2p0
+ p0Ksxy, for z` ≤ z≤ zr,

(5.237)

where Ks = qQs/p0. Now, if we make the transformation
x
p̂x
y
p̂y

=
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 1




x′

p̂′x
y′

p̂′y

= R


x′

p̂′x
y′

p̂′y

 , (5.238)

the Hamiltonian is transformed to

Ĥ ′
o =

 −p0 +
p̂′2⊥
2p0

, for z < z`, z > zr,

−p0 +
p̂′2⊥
2p0
− 1

2 p0Ks

(
x′2− y′2

)
, for z` ≤ z≤ zr,

(5.239)

which is same as for the propagation of the paraxial beam through a normal magnetic
quadrupole (5.220) in the new (x′,y′) coordinate system, with Kn replaced by Ks. The
above transformation corresponds to a clockwise rotation of the (x,y) coordinate axes
by π

4 about the optic axis. Hence, the transfer map for the skew magnetic quadrupole
can be obtained from the transfer map for the normal magnetic quadrupole as

Tsq = RTnqR−1, (5.240)

where the subscripts sq and nq stand for the skew magnetic quadrupole and the nor-
mal magnetic quadrupole, respectively. Using the same arguments as in the classical
theory of the skew magnetic quadrupole, we find that we can write

Tsq (z,zi) = TD (z,zr)Tsq,L (zr,z`)TD (z`,zi)

= TD (z,zr)RTnq,L (zr,z`)R−1TD (z`,zi) , (5.241)

where R is as in (5.238), TD (z,zr) and TD (z`,zi) are the same as in (5.228), and
Tnq,L (zr,z`) is the same as TL (zr,z`) in (5.228), with Kn replaced by Ks. One can
get Tsq,L (zr,z`) directly as follows. Observe that

i
h̄

:
(

p̂2
⊥

2p0
+ p0Ksxy

)
:


x
p̂x
p0
y
p̂y
p0

=


0 1 0 0
0 0 −Ks 0
0 0 0 1
−Ks 0 0 0




x
p̂x
p0
y
p̂y
p0

 . (5.242)
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Then, one gets
〈x〉(zr)
〈p̂x〉(zr)

p0
〈y〉(zr)
〈p̂y〉(zr)

p0

= Tsq,L (zr,z`)


〈x〉(z`)
〈p̂x〉(z`)

p0
〈y〉(z`)
〈p̂y〉(z`)

p0



= exp

w


0 1 0 0
0 0 −Ks 0
0 0 0 1
−Ks 0 0 0




〈x〉(z`)
〈p̂x〉(z`)

p0
〈y〉(z`)
〈p̂y〉(z`)

p0



=
1
2


C+ 1√

Ks
S+ C− 1√

Ks
S−

−
√

KsS− C+ −
√

KsS+ C−

C− 1√
Ks

S− C+ 1√
Ks

S+

−
√

KsS+ C− −
√

KsS− C+



×


〈x〉(z`)
〈p̂x〉(z`)

p0
〈y〉(z`)
〈p̂y〉(z`)

p0

 ,

with w(zr− z`) , (5.243)

where

C± = cos(w
√

Ks)± cosh(w
√

Ks),

S± = sin(w
√

Ks)± sinh(w
√

Ks). (5.244)

It can be verified that Tsq,L = RTnq,L (zr,z`)R−1.

5.2.6 AXIALLY SYMMETRIC ELECTROSTATIC LENS

An axially symmetric electrostatic lens, or a round electrostatic lens, with the axis
along the z-direction consists of the electric field corresponding to the potential

φ (~r⊥,z) =
∞

∑
n=0

(−1)n

(n!)24n φ
(2n)(z)r2n

⊥

= φ(z)− 1
4

φ
′′(z)r2

⊥+
1

64
φ
′′′′(z)r4

⊥−·· · , (5.245)

inside the lens region (z` < z < zr). Outside the lens, i.e., (z < z`, z > zr), φ(z) = 0.
And, there is no magnetic field, i.e., ~A(~r) = (0,0,0).

To get the paraxial quantum beam optical Hamiltonian of the round electrostatic
lens, we have to start with (5.34) and make the paraxial approximation by dropping
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terms of order higher than quadratic in
(
~r⊥,~̂p⊥

)
. We also drop the h̄-dependent

terms. Then, we get

Ĥo =−
(

1− qE
c2 p2

0
φ(z)− q2E2

2c4 p4
0

φ
2(z)

)
p0 +

(
1+

qE
c2 p2

0
φ(z)

)
p̂2
⊥

2p0

− qE
4c2 p0

(
1+

qE
c2 p2

0
φ(z)

)
φ
′′(z)r2

⊥. (5.246)

This quantum beam optical Hamiltonian of the round electrostatic lens is seen to
be very similar to the quantum beam optical Hamiltonian of the round magnetic lens
(5.95), except for the absence of the rotation term and the presence of an z-dependent
coefficient for the drift term p̂2

⊥/2p0. The first constant term, though z-dependent,

can be ignored as before since it has vanishing commutators with
(
~r⊥,~̂p⊥

)
. The

above paraxial quantum beam optical Hamiltonian, being quadratic in ~r⊥ and ~̂p⊥,
leads to a linear transfer map for the quantum averages of

(
~r⊥,~̂p⊥

)
, and it is straight-

forward to calculate the map following the same procedure used in the case of round
magnetic lens. When the beam is not paraxial, there will be aberrations and we have
to go beyond the paraxial approximation. We shall not pursue the quantum mechan-
ics of this lens further. As already mentioned, electrostatic lenses are used in the
extraction, preparation, and initial acceleration of electron and ion beams in a variety
of applications.

5.2.7 ELECTROSTATIC QUADRUPOLE LENS

The electric field of an ideal electrostatic quadrupole lens with the optic axis along
the z-direction corresponds to the potential

φ (~r⊥,z) =
{ 1

2 Qe
(
x2− y2

)
in the lens region (z` < z < zr) ,

0 outside the lens (z < z`,z > zr) ,
(5.247)

where Qe is a constant and zr− z` = w is the width of the lens. Starting with (5.34),
using (5.247) and ~A= (0,0,0) since there is no magnetic field, and making the parax-
ial approximation by dropping terms of order higher than quadratic in

(
~r⊥,~̂p⊥

)
,

we get

Ĥo ≈−p0 +
p̂2
⊥

2p0
+

1
2

p0Ke
(
x2− y2) , with Ke =

qEQe

c2 p2
0
, (5.248)

as the paraxial quantum beam optical Hamiltonian operator for the electrostatic
quadrupole lens. Actually, no h̄-dependent terms appear up to this approximation.

Simply by comparing the quantum beam optical Hamiltonian of the normal
magnetic quadrupole lens (5.220) with the quantum beam optical Hamiltonian of
the electrostatic quadrupole lens (5.248), it is readily seen that the electrostatic
quadrupole lens is convergent in the xz-plane and divergent in the yz-plane when
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Ke > 0. When Ke < 0, this lens is divergent in the xz-plane and convergent in the
yz-plane. At the paraxial level, there is no difference between the classical and quan-
tum theories of the electrostatic quadrupole lens, except for the replacement of the
classical variables by their quantum averages. Let us recall from the earlier discus-
sion of the classical theory of electrostatic quadrupole lens. Ke has the dimension of
length−2. In the weak field case, when w2 � 1/ |Ke|, the lens can be considered as
thin and has focal lengths

1
f (x)

= wKe,
1

f (y)
=−wKe. (5.249)

Deviations from the ideal behavior result from nonparaxial conditions, and to treat
these deviations, we have to go beyond the paraxial approximation. We shall not
pursue the quantum mechanics of this lens further here.

5.2.8 BENDING MAGNET

We have already discussed the classical mechanics of bending the charged particle
beam by a dipole magnet. A constant magnetic field in the vertical direction produced
by a dipole magnet bends the beam along a circular arc in the horizontal plane. The
circular arc of radius of curvature ρ , the design trajectory of the particle, is the optic
axis of the bending magnet. It is natural to use the arclength, say S, measured along
the optic axis from some reference point as the independent coordinate, instead of z.
Let the reference particle moving along the design trajectory carry an orthonormal
XY -coordinate frame with it. The X-axis is taken to be perpendicular to the tangent
to the design orbit and in the same horizontal plane as the trajectory, and the Y -axis
is taken to be in the vertical direction perpendicular to both the X-axis and the tra-
jectory. The curved S-axis is along the design trajectory and perpendicular to both
the X and Y axes at any point on the design trajectory. The instantaneous position
of the reference particle in the design trajectory at an arclength S from the reference
point corresponds to X = 0 and Y = 0. Let any particle of the beam have coordi-
nates (x,y,z) with respect to a fixed right-handed Cartesian coordinate frame, with
its origin at the reference point on the design trajectory from which the arclength S
is measured. Then, the two sets of coordinates of any particle of the beam, (X ,Y,S)
and (x,y,z), will be related as follows:

x = (ρ +X)cos
(

S
ρ

)
−ρ, z = (ρ +X)sin

(
S
ρ

)
, y = Y. (5.250)

To understand the quantum mechanics of bending of the beam particle by the dipole
magnet, we have to change the corresponding Klein–Gordon equation to the curved
(X ,Y,S)-coordinate system and find the quantum beam optical Hamiltonian govern-
ing the S-evolution of the beam variables. To this end, we proceed as follows.

The free particle Klein–Gordon equation is(
∇

2− 1
c2

∂ 2

∂ t2

)
Ψ(~r, t) =

(mc
h̄

)2
Ψ(~r, t). (5.251)
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Multiplying throughout by c2h̄2, we can write this equation as

−h̄2 ∂ 2Ψ(~r, t)
∂ t2 =

(
−c2h̄2

∇
2 +m2c4)

Ψ(~r, t). (5.252)

In the curved (X ,Y,S) coordinate frame, the line element ds, distance between two
infinitesimally close points (X ,Y,S) and (X +dX ,Y +dY,S+dS), is given by

ds2 = dx2 +dy2 +dz2 = dX2 +dY 2 +ζ
2dS2, (5.253)

where ζ = 1+κX and κ = 1/ρ is the curvature of the design orbit. Correspondingly,
we know (see e.g., Arfken, Weber, and Harris [3]) that the Laplacian ∇2 in terms of
(X ,Y,S) coordinates is given by

∇
2 =

1
ζ

∂

∂X

(
ζ

∂

∂X

)
+

∂ 2

∂Y 2 +
1

ζ 2
∂ 2

∂S2

=
∂ 2

∂X2 +
∂ 2

∂Y 2 +
1

ζ 2
∂ 2

∂S2 +
κ

ζ

∂

∂X
. (5.254)

If we substitute this expression for ∇2 in (5.252) and change Ψ(~r, t) to Ψ

(
~R⊥,S, t

)
,

we get

−h̄2
∂ 2Ψ

(
~R⊥,S, t

)
∂ t2 =

{
−c2h̄2

[
∂ 2

∂X2 +
∂ 2

∂Y 2 +
1

ζ 2
∂ 2

∂S2

+
κ

ζ

∂

∂X

]
+m2c4

}
Ψ

(
~R⊥,S, t

)
. (5.255)

where ~R⊥=(X ,Y ). While on the left-hand side−h̄2 (
∂ 2/∂ t2

)
is Hermitian, the right-

hand side is not Hermitian because of the last term in the expression for ∇2 in (5.254).
So, let us replace this term by the Hermitian term

1
2

[(
κ

ζ

∂

∂X

)
+

(
κ

ζ

∂

∂X

)†
]
=

1
2

(
κ

ζ

∂

∂X
− ∂

∂X
κ

ζ

)
=

1
2

[
κ

ζ
,

∂

∂X

]
=

κ2

2ζ 2 , (5.256)

where we have to remember that ζ is a function of X . Thus, we shall take the free
particle Klein–Gordon equation in the curved (X ,Y,S) coordinate system to be

−h̄2
∂ 2Ψ

(
~R⊥,S, t

)
∂ t2 =

{
−c2h̄2

[
∂ 2

∂X2 +
∂ 2

∂Y 2 +
1

ζ 2
∂ 2

∂S2

+
κ2

2ζ 2

]
+m2c4

}
Ψ

(
~R⊥,S, t

)
. (5.257)
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Let us now rewrite this equation as

(
ih̄

∂

∂ t

)2

Ψ

(
~R⊥,S, t

)
=

{
c2

[(
−ih̄

∂

∂X

)2

+

(
−ih̄

∂

∂Y

)2

+
1

ζ 2

(
−ih̄

∂

∂S

)2
]

−c2h̄2
κ2

2ζ 2 +m2c4
}

Ψ

(
~R⊥,S, t

)
. (5.258)

This suggests that in the (X ,Y,S) coordinate system, we can take the Klein–Gordon
equation for a charged particle in an electromagnetic field as

(
ih̄

∂

∂ t
−qφ

)2

Ψ(~R⊥,S, t)

=

{
c2

[(
−ih̄

∂

∂X
−qAX

)2

+

(
−ih̄

∂

∂Y
−qAY

)2

+
1

ζ 2

(
−ih̄

∂

∂S
−qζ AS

)2
]
− c2h̄2

κ2

2ζ 2 +m2c4

}
Ψ

(
~R⊥,S, t

)
,

(5.259)

where (AX ,AY ,AS) are the magnetic vector potentials and φ is the electric scalar
potential, and using the principle of minimal coupling, we have made the replace-
ments

−ih̄
∂

∂X
−→−ih̄

∂

∂X
−qAX ,

−ih̄
∂

∂Y
−→−ih̄

∂

∂Y
−qAY ,

1
ζ

(
−ih̄

∂

∂S

)
−→ 1

ζ

(
−ih̄

∂

∂S

)
−qAS

=
1
ζ

(
−ih̄

∂

∂S
−qζ AS

)
. (5.260)

Let us now consider the beam to be monoenergetic and a beam particle to be associ-
ated with the wave function

Ψ

(
~R⊥,S, t

)
= e−iEt/h̄

ψ

(
~R⊥,S

)
, with E =

√
m2c4 + c2 p2

0, (5.261)

where p0 is the design momentum with which the particle enters the bending magnet
from the free space outside. The time-independent Klein–Gordon equation becomes
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(E−qφ)2
ψ

(
~R⊥,S

)
=

{
c2

[(
−ih̄

∂

∂X
−qAX

)2

+

(
−ih̄

∂

∂Y
−qAY

)2

+

(
−ih̄
ζ

∂

∂S
−qAS

)2
]
− c2h̄2

κ2

2ζ 2 +m2c4

}
ψ

(
~R⊥,S

)
,

(5.262)

Let (
−ih̄

∂

∂X
−qAX

)
= P̂X −qAX = π̂X ,(

−ih̄
∂

∂Y
−qAY

)
= P̂Y −qAY = π̂Y ,(

−ih̄
ζ

∂

∂S
−qAS

)
= P̂S−qAS = π̂S, (5.263)

Then, by dividing throughout by c2 and rearranging the terms in (5.262), we can
rewrite the time-independent Klein–Gordon equation as

π̂
2
S ψ

(
~R⊥,S

)
=
(

p2
0− π̂

2
X − π̂

2
Y −p2)

ψ

(
~R⊥,S

)
, (5.264)

where

p2 =
2qEφ

c2

(
1− qφ

2E

)
− h̄2

κ2

2ζ 2 . (5.265)

For the dipole magnet, we have to take

φ = 0, AX = 0, AY = 0, AS =−B0

(
X− κX2

2ζ

)
, (5.266)

so that the magnetic field is

BX = 0, BY = B0, BS = 0, (5.267)

as we have already seen in the classical theory of bending magnet. Then, we have

π̂
2
S ψ

(
~R⊥,S

)
=
(

p2
0− P̂2

⊥+ p̃2
)

ψ

(
~R⊥,S

)
, (5.268)

with

p̃2 =
h̄2

κ2

2ζ 2 (5.269)

This equation can be equivalently written as

π̂S

p0

(
ψ

π̂S
p0

ψ

)
=

(
0 1

1
p2

0

(
p2

0− P̂2
⊥+ p̃2

)
0

)(
ψ

π̂S
p0

ψ

)
. (5.270)
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Let us introduce the two-component wave function(
ψ+

ψ−

)
= M

(
ψ

π̂S
p0

ψ

)
=

1
2

(
1 1
1 −1

)(
ψ

π̂S
p0

ψ

)

=
1
2

(
ψ + π̂S

p0
ψ

ψ− π̂S
p0

ψ

)
. (5.271)

Now,

π̂S

p0

(
ψ+

ψ−

)
=

1
p0

(
−ih̄
ζ

∂

∂S
−qAS

)(
ψ+

ψ−

)
= M

(
0 1

1
p2

0

(
p2

0− P̂2
⊥+ p̃2

)
0

)
M−1

(
ψ+

ψ−

)

=

 1− 1
2p2

0

(
P̂2
⊥− p̃2

)
− 1

2p2
0

(
P̂2
⊥− p̃2

)
1

2p2
0

(
P̂2
⊥− p̃2

)
−1+ 1

2p2
0

(
P̂2
⊥− p̃2

) ( ψ+

ψ−

)
.

(5.272)

Rearranging this equation, we get

ih̄
∂

∂S

(
ψ+

ψ−

)
= Ĥ

(
ψ+

ψ−

)
,

Ĥ=−p0σz + Ê + Ô,

Ê =−qζ ASI +
(

ζ

2p0

(
P̂2
⊥− p̃2

)
− p0κX

)
σz,

Ô =
iζ

2p0

(
P̂2
⊥− p̃2

)
σy. (5.273)

Let us now apply a Foldy–Wouthuysen-like transformation(
ψ

(1)
+

ψ
(1)
−

)
= eiŜ1

(
ψ+

ψ−

)
, with Ŝ1 =

i
2p0

σzÔ. (5.274)

The result is

ih̄
∂

∂S

(
ψ

(1)
+

ψ
(1)
−

)
=

[
eiŜ1 Ĥe−iŜ1 − ih̄eiŜ1

∂

∂S

(
e−iŜ1

)](
ψ

(1)
+

ψ
(1)
−

)

= eiŜ1 Ĥe−iŜ1

(
ψ

(1)
+

ψ
(1)
−

)
= H(1)

(
ψ

(1)
+

ψ
(1)
−

)
, (5.275)

since Ŝ1 is independent of the coordinate S. Calculating H(1) we have, up to the parax-
ial approximation required for our purpose,

H(1) ≈−qζ ASI +
[

1
2p0

P̂2
⊥−ζ

(
p0 + p̃2)]

σz. (5.276)
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As we have done previously for deriving the general quantum beam optical Hamilto-
nian (5.34) for any system with a straight optic axis, we can retrace the above trans-
formation and identify the upper component of the resulting two-component wave
function with the wave function of the particle moving forward along the curved
path. Then, we get the required S-evolution equation for the wave function as

ih̄
∂

∂S
ψ

(
~R⊥,S

)
=

[
−
(

p0 +
h̄2

κ2

4p0

)
+

1
2p0

P̂2
⊥+

1
2

qB0κX2

+

(
qB0−κ p0−

h̄2
κ3

4p0

)
X
]

ψ

(
~R⊥,S

)
, (5.277)

where we have taken κX � 1, reasonably, and hence 1/ζ ≈ (1− κX). With the
curvature of the design trajectory matched to the dipole magnetic field as

B0ρ =
p0

q
, or, (qB0−κ p0) = 0, (5.278)

we have

ih̄
∂

∂S
ψ

(
~R⊥,S

)
=
˜̂
H o,dψ

(
~R⊥,S

)
,

˜̂
H o,d =

(
−p0 +

1
2p0

P̂2
⊥+

1
2

p0κ
2X2− h̄2

κ2

4p0
(1+κX)

)
ψ

(
~R⊥,S

)
.

(5.279)

Note that ˜̂H o,d reproduces the classical beam optical Hamiltonian of the dipole

magnet H̃o,d in (4.185) when ~̂P⊥ and ~R⊥ are taken as the corresponding classical
variables, and the h̄-dependent term is dropped.

The quantum beam optical Hamiltonian for the dipole, ˜̂H o,d , does not depend on
S. Thus, the quantum transfer map for the dipole becomes, with ∆S = S−Si,


〈X〉(S)

1
p0

〈
P̂X

〉
(S)

〈Y 〉(S)
1
p0

〈
P̂Y

〉
(S)

=



〈
e

i
h̄ ∆S:˜̂H o,d :X

〉
(Si)

1
p0

〈
e

i
h̄ ∆S:˜̂H o,d :P̂X

〉
(Si)〈

e
i
h̄ ∆S:˜̂H o,d :Y

〉
(Si)

1
p0

〈
e

i
h̄ ∆S:˜̂H o,d :P̂Y

〉
(Si)


. (5.280)

With

i
h̄

: ˜̂H o,d : X =
i
h̄

[
1

2p0
P̂2
⊥+

1
2

p0κ
2X2− h̄2

κ3

4p0
X , X

]
=

P̂X

p0
,

i
h̄

: ˜̂H o,d :
P̂X

p0
=

i
h̄

[
1

2p0
P̂2
⊥+

1
2

p0κ
2X2− h̄2

κ3

4p0
X ,

P̂X

p0

]
=−κ

2X +
h̄2

κ3

4p2
0
,
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i
h̄

: ˜̂H o,d : Y =
i
h̄

[
1

2p0
P̂2
⊥+

1
2

p0κ
2X2− h̄2

κ3

4p0
X , Y

]
=

P̂Y

p0
,

i
h̄

: ˜̂H o,d :
P̂Y

p0
=

i
h̄

[
1

2p0
P̂2
⊥+

1
2

p0κ
2X2− h̄2

κ3

4p0
X ,

P̂Y

p0

]
= 0, (5.281)

we get 
〈X〉(S)

1
p0

〈
P̂X

〉
(S)

〈Y 〉(S)
1
p0

〈
P̂Y

〉
(S)

=




cos(κ∆S) 1
κ

sin(κ∆S)

−κ sin(κ∆S) cos(κ∆S)



⊕


1 ∆S

0 1





〈X〉(Si)
1
p0

〈
P̂X

〉
(Si)

〈Y 〉(Si)
1
p0

〈
P̂Y

〉
(Si)



+


− h̄2

κ

4p2
0
(cos(κ∆S)−1)

− h̄2
κ2

4p2
0

sin(κ∆S)

0
0

 . (5.282)

This shows that a particle entering the dipole magnet along the design trajectory,
i.e., with (〈X〉(Si) = 0,

〈
P̂X

〉
(Si) = 0, 〈Y 〉(Si) = 0,

〈
P̂Y

〉
(Si) = 0), will follow the

curved design trajectory, except for some tiny quantum kicks in the X coordinate
(∼ λ 2

0 /ρ) and the X-gradient (∼ λ 2
0 /ρ2), where λ0 is the de Broglie wavelength!

This again proves the remarkable effectiveness of classical mechanics in the design
and operation of accelerator optics.

5.3 EFFECT OF QUANTUM UNCERTAINTIES ON ABERRATIONS
IN ELECTRON MICROSCOPY AND NONLINEARITIES IN
ACCELERATOR OPTICS

Now we have to emphasize an important aspect of phase space transfer maps,
as revealed by the quantum theory in contrast to the classical theory. We have
identified the quantum averages 〈~r⊥〉(z) and

〈
~̂p⊥
〉
(z)/p0 as the classical ray

coordinates corresponding to the position and the slope of the ray intersect-
ing the xy-plane at z. As we have already noted, for the round magnetic lens,
central to electron microscopy, the expressions we have derived from quantum
theory for the various aberration coefficients are the same as their respective
classical expressions, of course, under the approximations considered. How-
ever, the quantum expressions in (5.201–5.204) would correspond exactly to the
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classical expressions for aberrations of position and gradient, provided we can
replace

〈
p̂x p̂2
⊥
〉
,
〈{

p̂x ,
(
~̂p⊥ ·~r⊥+~r⊥ ·~̂p⊥

)}〉
,
〈{

x , p̂2
⊥
}〉

, etc., respectively, by

〈p̂x〉
(
〈p̂x〉2 +

〈
p̂y
〉2
)

, 4
(
〈x〉〈p̂x〉2 + 〈y〉〈p̂x〉

〈
p̂y
〉)

, 2〈x〉
(
〈p̂x〉2 +

〈
p̂y
〉2
)

, etc. But,
that cannot be done. In quantum mechanics, in general, for any observable O,〈

ψ

∣∣∣ f (Ô
)∣∣∣ψ〉 6= f

(〈
ψ

∣∣∣(Ô
)∣∣∣ψ〉) unless |ψ〉 is an eigenstate of O. And, for any

two observables O1 and O2,
〈

ψ

∣∣∣ f (Ô1, Ô2

)∣∣∣ψ〉 6= f
(〈

ψ

∣∣∣Ô1

∣∣∣ψ〉 ,〈ψ

∣∣∣Ô2

∣∣∣ψ〉)
unless |ψ〉 is a simultaneous eigenstate of both Ô1 and Ô2. It is thus clear that for
the wave packets involved in electron optical imaging the replacement as mentioned
above is not allowed. As an illustration, consider the term ∼

〈{
~r⊥ , p̂2

⊥
}〉(

zob j
)
, one

of the terms contributing to coma (see (5.201) and (5.202)) which, being linear in
position, is the dominant aberration next to the spherical aberration. The correspond-
ing classical term,

(
(dx/dz)2 +(dy/dz)2

)
~r⊥ at zob j, vanishes obviously for an object

point on the axis. But, for a quantum wave packet with 〈~r⊥〉
(
zob j
)
= (0,0) the value

of
〈{
~r⊥ , p̂2

⊥
}〉(

zob j
)

need not be zero since it is not linear in 〈~r⊥〉
(
zob j
)
. This can

be seen more explicitly as follows. Let

δ̂x = x−〈x〉, δ̂y = y−〈y〉,

δ̂ px = p̂x−〈p̂x〉, δ̂ py = p̂y−〈p̂y〉. (5.283)

Then,〈{
~r⊥ , p̂2

⊥
}〉(

zob j
)
=

〈{
〈~r⊥〉+ δ̂~r⊥ ,

(
〈p̂x〉+ δ̂ px

)2

+
(〈

p̂y
〉
+ δ̂ py

)2
}〉(

zob j
)

=

〈{
〈~r⊥〉+ δ̂~r⊥ , 〈p̂x〉2 +

(
δ̂ px

)2
+
〈

p̂y
〉2

+
(

δ̂ py

)2

+2
(
〈p̂x〉 δ̂ px +

〈
p̂y
〉

δ̂ py

)}〉(
zob j
)

= 2〈~r⊥〉
(
zob j
)〈

~̂p⊥
〉(

zob j
)2

+2〈~r⊥〉
(
zob j
)〈(

δ̂ px

)2
+
(

δ̂ py

)2
〉(

zob j
)

+

〈{
δ̂~r⊥ ,

(
δ̂ px

)2
+
(

δ̂ py

)2
}〉(

zob j
)

+2
〈{

δ̂~r⊥ , δ̂ px

}〉(
zob j
)
〈p̂x〉

(
zob j
)

+2
〈{

δ̂~r⊥ , δ̂ py

}〉(
zob j
)〈

p̂y
〉(

zob j
)
, (5.284)

showing clearly that this coma term is not necessarily zero for an object point on the
axis, i.e., when 〈~r⊥〉= (0,0). The above equation also shows how this coma term for
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off-axis points (〈~r⊥〉 6= (0,0)) depends also on the higher order central moments of
the wave packet besides the position

(
〈~r⊥〉

(
zob j
))

and the slope
(〈

~̂p⊥
〉(

zob j
)
/p0

)
of the corresponding classical ray. When an aperture is introduced in the path of the
beam to limit the transverse momentum spread, one will be introducing uncertainties
in position coordinates

∆x =

√〈
δ̂x

2
〉
, ∆y =

√〈
δ̂y

2
〉
, (5.285)

and hence the corresponding momentum uncertainties

∆px =

√〈
δ̂ p

2
x

〉
, ∆py =

√〈
δ̂ p

2
y

〉
, (5.286)

in accordance with the Heisenberg uncertainty principle, and this would influence
the aberrations. However, in practice, such tiny quantum effects might be masked by
classical uncertainties caused by instrumental imperfections.

In the context of accelerator optics, let us consider a sextupole magnet normally
used for the control of chromaticity arising due to the beam being not monoenergetic.
Sextupoles are used in electron microscopy for the correction of spherical aberration.
A sextupole magnet, with its straight optic axis along the z-direction, is associated
with the magnetic field

~B =

(
Qsxxy,

1
2

Qsx
(
x2− y2) , 0

)
, (5.287)

corresponding to the vector potential

~A =

(
0, 0,−1

6
Qsx
(
x3−3xy2)) , (5.288)

where Qsx is a constant in the sextupole region z` ≤ z ≤ zr and zero outside. For a
quasiparaxial beam propagating in the +z-direction through the sextupole, the quan-
tum beam optical Hamiltonian is seen to be, from (5.34),

Ĥo =

 −p0 +
p̂2
⊥

2p0
+ 1

6 p0Ksx
(
x3−3xy2

)
, z` ≤ z≤ zr,

−p0 +
p̂2
⊥

2p0
, z < z`, z > zr,

(5.289)

with Ksx = qQsx/p0. Note that in deriving the above Ĥo, we have to keep terms of
order up to third power in (x,y), even for a paraxial beam, since the paraxial approx-
imation is meaningless in this case; in the paraxial approximation, the sextupole will
disappear. Let us assume the sextupole to be thin such that w = zr− z` ≈ 0. Then,
for the propagation of the beam through the sextupole, from z` to zr, the phase space
transfer map is seen to be
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〈x〉(zr)

1
p0
〈p̂x〉(zr)

〈y〉(zr)
1
p0

〈
p̂y
〉
(zr)

=



〈
e

i
h̄ w:
(
−p0+

p̂2
⊥

2p0
+ 1

6 p0Ksx(x3−3xy2)
)

:
x

〉
(z`)

1
p0

〈
e

i
h̄ w:
(
−p0+

p̂2
⊥

2p0
+ 1

6 p0Ksx(x3−3xy2)
)

:
p̂x

〉
(z`)〈

e
i
h̄ w:
(
−p0+

p̂2
⊥

2p0
+ 1

6 p0Ksx(x3−3xy2)
)

:
y

〉
(z`)

1
p0

〈
e

i
h̄ w:
(
−p0+

p̂2
⊥

2p0
+ 1

6 p0Ksx(x3−3xy2)
)

:
p̂y

〉
(z`)


,

≈


〈x〉(z`)+w 〈px〉(z`)

p0
1
p0
〈p̂x〉(z`)− 1

2 wKsx
(〈

x2
〉
(z`)−

〈
y2
〉
(z`)
)

〈y〉(z`)+w 〈py〉(z`)
p0

1
p0

〈
p̂y
〉
(z`)+wKsx〈xy〉(z`)

 .

(5.290)

Let us look at the nonlinear maps for the momentum components

〈p̂x〉(zr)≈ 〈p̂x〉(z`)−
1
2

wp0Ksx
(〈

x2〉(z`)−〈y2〉(z`)) ,〈
p̂y
〉
(zr)≈

〈
p̂y
〉
(z`)+wp0Ksx〈xy〉(z`) . (5.291)

It is clear that in the classical theory, one would have the corresponding maps as

px (zr)≈ px (z`)−
1
2

wp0Ksx

(
x(z`)

2− y(z`)
2
)
,

py (zr)≈ py (z`)+wp0Ksxx(z`)y(z`) . (5.292)

Substituting x = 〈x〉+ δ̂x and y = 〈x〉+ δ̂y, the quantum maps (5.291) become

〈p̂x〉(zr)≈ 〈p̂x〉(z`)−
1
2

wp0Ksx

[(
〈x〉2 (z`)+

〈
δ̂x

2
〉
(z`)
)

−
(
〈y〉2 (z`)+

〈
δ̂y

2
〉
(z`)
)]

,〈
p̂y
〉
(zr)≈

〈
p̂y
〉
(z`)+wp0Ksx

[
〈x〉(z`)〈y〉(z`)

+
〈(

δ̂x
)(

δ̂y
)〉

(z`)
]
. (5.293)

This shows that, generally, the leading quantum effects on the nonlinear accelera-
tor optics can be expected to be due to the uncertainties in the position coordinates
and the momentum components of the particles of the beam entering the optical ele-
ments. Such quantum effects involve h̄ only through the uncertainties and not explic-
itly. This has already been pointed out by Heifets and Yan [73], who have shown
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that the quantum effects due to such uncertainties affect substantially the classical
results of tracking for trajectories close to the separatrix, and hence the quantum
maps can be useful in quick findings of the nonlinear resonances. Accelerator beams
are complicated nonlinear, stochastic, many-particle systems. For details on the non-
linear optics of accelerator beams, see, e.g., the references on accelerator physics
mentioned earlier (Berz, Makino, and Wan [12], Conte and MacKay [27], Lee [127],
Reiser [158], Seryi [168], Weidemann [187], Wolski [192], Chao, Mess, Tigner, and
Zimmermann [20]), and also Mais [131], Todesco [184], and references therein.

5.4 NONRELATIVISTIC QUANTUM CHARGED PARTICLE BEAM
OPTICS: SPIN-0 AND SPINLESS PARTICLES

The nonrelativistic Schrödinger equation for a particle of charge q and mass m mov-
ing in the time-independent electromagnetic field of an optical system is

ih̄
∂Ψ(~r, t)

∂ t
=

[
1

2m

(
~̂p−q~A(~r)

)2
+qφ (~r)

]
Ψ(~r, t) , (5.294)

where ~A(~r) and φ (~r) are the magnetic vector potential and the electric scalar poten-
tial. Let us consider a particle of a nonrelativistic monoenergetic quasiparaxial beam
with total energy E= p2

0/2m, where p0 is the design momentum with which it enters
the optical system from the free space outside and |~p0⊥| � p0. We assume that the
total energy E is conserved when the beam propagates through any optical system
we are considering. Choosing the wave function of the particle as

Ψ(~r, t) = e−iEt/h̄
ψ (~r) , (5.295)

we get the time-independent Schrödinger equation obeyed by ψ (~r⊥,z):(
π̂2

2m
+qφ

)
ψ (~r⊥,z) = Eψ (~r⊥,z) , (5.296)

where ~̂π = ~̂p−q~A. Multiplying the equation on both sides by 2m, taking

2mE= p2
0, 2mqφ = p̃2, (5.297)

and rearranging the terms, we have

π̂
2
z ψ =

(
p2

0− p̃2− π̂
2
⊥
)

ψ. (5.298)

Note that this equation is identical, except for the expressions of the symbols p2
0

and p̃2, to the time-independent Klein–Gordon equation (5.7) which is the starting
point for our derivation of the relativistic quantum beam optical Hamiltonian (5.34).
Now, starting with (5.298), we can follow the same procedure, going through the
Feshbach–Villars-like formalism and the Foldy–Wouthuysen-like transformations,
and finally arrive at the nonrelativistic quantum beam optical Schrödinger equation,
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ih̄
∂ψ (~r⊥,z)

∂ z
= Ĥo,NRψ (~r⊥,z) ,

Ĥo,NR =−p0−qAz +
1

2p0

(
π̂

2
⊥+ p̃2)+ 1

8p3
0

(
π̂

2
⊥+ p̃2)2

− 1
16p4

0

{[(
π̂

2
⊥+ p̃2) ,[π̂2

⊥,qAz
]

+ih̄q

(
~̂p⊥ ·

∂~A⊥
∂ z

+
∂~A⊥
∂ z
·~̂p⊥

)]

−
[

π̂
2
⊥, ih̄

∂

∂ z

(
q2A2

⊥+ p̃2)]} ,

with p2
0 = 2mE, p̃2 = 2mqφ , (5.299)

which is identical to the relativistic quantum beam optical equation (5.34), except for
the expressions of p2

0 and p̃2. This shows that one can approximate the expressions
and formulae derived from the relativistic quantum beam optical equation (5.34)
using the nonrelativistic approximation

p2
0 =

1
c2

(
E2−m2c4)= 1

c2

(
E +mc2)(E−mc2)≈ 1

c2 2mc2E= 2mE,

p̃2 =
2qEφ

c2

(
1− qφ

2E

)
≈ 2qEφ

c2 ≈ 2qmc2φ

c2 = 2mqφ , (5.300)

as is appropriate for the charged particle beam optical systems for which E =
mc2 +E, E� mc2 and qφ � mc2. Conversely, since the nonrelativistic and the rela-
tivistic quantum beam optical equations of motion, (5.299) and (5.34) are identical,
except for the expressions of the symbols E, p2

0, and p̃2, it is possible to convert
the expressions and formulae derived from the nonrelativistic equation to relativistic
expressions and formulae by the replacement

p0 =
√

2mE= mv0

−→ p0 =
1
c

√
E2−m2c4

=
1
c

√√√√√m2c4

 1

1− v2
0

c2

−1

=
mv0√
1− v2

0
c2

, (5.301)

or,

m−→ m√
1− v2

0
c2

, (5.302)

i.e., replacement of the rest mass by the so-called relativistic mass, as has been the
common practice in electron optics.
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5.5 APPENDIX: PROPAGATOR FOR A SYSTEM WITH
TIME-DEPENDENT QUADRATIC HAMILTONIAN

Let it be required to find the propagator for a one-dimensional system obeying the
Schrödinger equation

ih̄
∂ |Ψ(t)〉

∂ t
= Ĥ(t)|Ψ(t)〉, (5.303)

where the time-dependent Hamiltonian has the form

Ĥ(t) = A(t)p̂2
x +B(t)(xp̂x + p̂xx)+C(t)x2. (5.304)

with A(t), B(t), and C(t) being real functions of t.
Using the Magnus formula (3.768), we can write

|Ψ(t)〉= Û
(
t, t ′
)
|Ψ
(
t ′
)
〉 (5.305)

with

Û
(
t, t ′
)
= exp

{
− i

h̄

∫ t

t ′
dt1 Ĥ (t1)

+
1
2

(
− i

h̄

)2 ∫ t

t ′
dt2
∫ t2

t ′
dt1
[
Ĥ (t2) , Ĥ (t1)

]
+

1
6

(
− i

h̄

)3 ∫ t

t ′
dt3
∫ t3

t ′
dt2
∫ t2

t ′
dt1

([[
Ĥ (t3) , Ĥ (t2)

]
, Ĥ (t1)

]
+
[[

Ĥ (t1) , Ĥ (t2)
]
, Ĥ (t3)

])
+ · · · .

}
. (5.306)

The required propagator is given by

K
(
x, t;x′, t ′

)
=
〈

x
∣∣∣Û (t, t ′)∣∣∣x′〉 , (5.307)

such that
Ψ(x, t) =

∫
dx K

(
x, t;x′, t ′

)
Ψ
(
x′, t ′

)
. (5.308)

Note that the operators
(

p̂2
x , (xp̂x + p̂xx) , x2

)
are closed under commutation leading

to the Lie algebra [
p̂2

x , (xp̂x + p̂xx)
]
=−4ih̄p̂2

x ,[
p̂2

x , x2]=−2ih̄(xp̂x + p̂xx) ,[
(xp̂x + p̂xx) , x2]=−4ih̄x2. (5.309)

Then, it is clear that we can write

Û
(
t, t ′
)
= exp

{
− i

h̄

[
a
(
t, t ′
)

p̂2
x +b

(
t, t ′
)
(xp̂x + p̂xx)+ c

(
t, t ′
)

x2]} , (5.310)
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where a(t, t ′), b(t, t ′), and c(t, t ′) are infinite series expressions in terms of A(t),
B(t), and C(t). To obtain the precise form of the equation (5.310) we proceed as
follows.

Substituting |Ψ(t)〉= Û (t, t ′) |Ψ(t ′)〉 in (5.303), it is seen that

ih̄
∂Û (t, t ′)

∂ t
= Ĥ(t)Û

(
t, t ′
)
, Û

(
t ′, t ′
)
= I, (5.311)

where I is the identity operator. Following Wolf [190], let us write

a =
ϕβ

2sinϕ
, b =

ϕ(α−δ )

4sinϕ
, c =− ϕγ

2sinϕ
, cosϕ =

1
2
(α +δ ). (5.312)

Then, we have

Û
(
t, t ′
)
= exp

{
− i

h̄

(
ϕ (t, t ′)

2sinϕ (t, t ′)

)[
β
(
t, t ′
)

p̂2
x

+
1
2
(
α
(
t, t ′
)
−δ

(
t, t ′
))

(xp̂x + p̂xx)− γ
(
t, t ′
)

x2
]}

.

(5.313)

Substituting this expression for Û (t, t ′) in (5.311), with H(t) given by (5.304), shows
that α (t, t ′), β (t, t ′), γ (t, t ′), and δ (t, t ′) satisfy the following equations:

Aα̈− Ȧα̇ +
[
4A
(
AC−B2)+2ȦB−2AḂ

]
α = 0,

α
(
t ′, t ′
)
= 1, α̇

(
t ′, t ′
)
= 2B

(
t ′
)
, (5.314)

αβ̈ −βα̈−2Ȧ = 0, β
(
t ′, t ′
)
= 0, β̇

(
t ′, t ′
)
= 2A

(
t ′
)
, (5.315)

α̇−2αB = 2Aγ, (5.316)
αδ −βγ = 1, (5.317)

where α̇ = dα/dt, α̈ = d2α/dt2, etc. It is thus clear that, given A(t), B(t), and C(t) in
Ĥ(t), the above equations provide α (t, t ′), β (t, t ′), γ (t, t ′), and δ (t, t ′), and ϕ (t, t ′)
is given by 2cosϕ = α + δ . Hence, Û(t, t ′) is now completely determined through
(5.313).

To find the required propagator, observe that(
Û† (t, t ′)xÛ (t, t ′)

Û† (t, t ′) p̂xÛ (t, t ′)

)
=

(
α (t, t ′) β (t, t ′)
γ (t, t ′) δ (t, t ′)

)(
x
p̂x

)
. (5.318)

Note that Û (t, t ′) generates a real linear canonical transformation of the conjugate
pair (x , p̂x), i.e., if

X̂ = αx+β p̂x, P̂ = γx+δ p̂x, (5.319)

then [
X̂ , P̂

]
= (αδ −βγ) [x , p̂x] = ih̄. (5.320)



Scalar Theory: Spin-0 and Spinless Particles 285

We can rewrite (5.318) as

xÛ
(
t, t ′
)
|ψ〉= Û

(
t, t ′
)(

α
(
t, t ′
)

x+β
(
t, t ′
)

p̂x
)
|ψ〉

p̂xÛ
(
t, t ′
)
|ψ〉= Û

(
t, t ′
)(

γ
(
t, t ′
)

x+δ
(
t, t ′
)

p̂x
)
|ψ〉, (5.321)

for any |ψ〉. Writing out this equation explicitly in terms of the matrix elements, it is
possible to solve for

〈
x
∣∣∣Û (t, t ′)

∣∣∣x′〉 = K (x, t;x′, t ′), up to a multiplicative constant
phase factor (see Wolf [189, 190] for details of the solution). The result is

K
(
x, t;x′, t ′

)
=

1√
2πih̄β (t, t ′)

e
i

2h̄β(t,t′)

[
α(t,t ′)x′2−2xx′+δ(t,t ′)x2

]
,

if β
(
t, t ′
)
6= 0, (5.322)

and

K
(
x, t;x′, t ′

)
=

e
iγ(t,t′)

2h̄α(t,t′)√
α (t, t ′)

δ

(
x′− x

α (t, t ′)

)
,

if β
(
t, t ′
)
= 0. (5.323)

In the two-dimensional case, if the Hamiltonian is of the form

Ĥ(t) = A(t)p̂2
⊥+B(t)

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
+ c(t)r2

⊥, (5.324)

the variables x and y are independent and separable, and the above results can be
extended in a straightforward manner with the replacements x2 −→ r2

⊥, p̂2
x −→

p̂2
⊥, and (xp̂x + p̂xx) −→

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
. Then, we can write K

(
~r⊥, t;~r′⊥, t

′) =
K (x, t;x′, t ′)K (y, t;y′, t ′).

In the case of the round magnetic lens taking (t, t ′) as (z,zi), one has in (5.97)

A(z) =
1

2p0
, B(z) = 0, C(z) =

1
2

p0α
2(z). (5.325)

Then, writing

α (z,zi) = g(z,zi) , β (z,zi) =
1
p0

h(z,zi) , (5.326)

we have from (5.314)–(5.317)

g′′ (z,zi)+α
2(z)g(z,zi) = 0, g(zi,zi) = 1, g′ (zi,zi) = 0,

h′′ (z,zi)+α
2(z)h(z,zi) = 0, h(zi,zi) = 0, h′ (zi,zi) = 1,

γ (z,zi) = p0g′ (z,zi) ,

δ (z,zi) =
1

g(z,zi)

(
1+h(z,zi)g′ (z,zi)

)
,

α (z,zi)δ (z,zi)−β (z,zi)γ (z,zi) = 1, (5.327)

where g′ = dg/dz, g′′ = d2g/dz2, etc. showing that g(z,zi) and h(z,zi) are two lin-
early independent solutions of the paraxial equation (4.51) satisfying the initial con-
ditions (5.114) and the relation (5.115).
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6 Quantum Charged Particle
Beam Optics
Spinor Theory for Spin-1

2
Particles

6.1 RELATIVISTIC QUANTUM CHARGED PARTICLE BEAM
OPTICS BASED ON THE DIRAC–PAULI EQUATION

6.1.1 GENERAL FORMALISM

For electrons, or any spin- 1
2 particle, the proper equation to be the basis for the

theory of beam optics is the Dirac equation. Sudarshan, Simon, and Mukunda
have shown that there is a simple rule by which paraxial scalar wave optics based
on the Helmholtz equation can be generalized consistently to paraxial Maxwell
wave optics, i.e., to Fourier optics for the Maxwell field (Sudarshan, Simon, and
Mukunda [175], Mukunda, Simon, and Sudarshan [137, 138], Simon, Sudarshan,
and Mukunda [170, 171]). Searching for a similar passage from the scalar electron
optics based on the nonrelativistic Schrödinger equation to the spinor electron optics
based on the Dirac equation, a formalism of quantum electron beam optics was ini-
tiated with application to round magnetic lens by Jagannathan, Simon, Sudarshan,
and Mukunda [79]. A more comprehensive formalism of quantum charged parti-
cle beam optics, with applications to several other electromagnetic optical systems,
was developed later by Jagannathan [80], Khan and Jagannathan [90], Jagannathan
and Khan [82], Conte, Jagannathan, Khan and Pusterla [26], and Khan [91]. This
chapter on the spinor theory of quantum charged particle beam optics follows mostly
the work by Jagannathan, Simon, Sudarshan, and Mukunda [79], Jagannathan [80],
Khan and Jagannathan [90], Jagannathan and Khan [82], Conte, Jagannathan,
Khan, and Pusterla [26], and Khan [91] (see also Jagannathan [83, 84, 85],
Khan [92, 93, 95, 99].

There were some preliminary studies by Rubinowicz [161, 162, 163, 164],
Durand [38], Phan-Van-Loc [144, 145, 146, 147, 148, 149] on the use of the Dirac
equation in electron optics. In 1986, Ferwerda, Hoenders, and Slump [48, 49] con-
cluded that the use of the scalar Klein–Gordon equation in electron microscopy
could be vindicated because a scalar approximation of the Dirac spinor the-
ory would be justifiable under the conditions obtaining in electron microscopy
(see also Lubk [129]). However, with the technological developments in electron
microscopy, like the Low Energy Electron Microscopy (LEEM) (see Bauer [7]) and
Spin Polarized Low Energy Electron Microscopy (SPLEEM) (see Rougemaille and

287
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Schmid [160]), the need for a proper quantum theory of electron beam optics based
on the Dirac equation is imminent.

As we have already seen, the Dirac equation is the relativistic equation linear
in the first derivative with respect to time, possessing proper probability and cur-
rent densities obeying a continuity equation, and naturally incorporating an intrinsic
angular momentum, or spin, h̄/2 for the particle described by it. Being linear in all
the first derivatives with respect to the space and time coordinates (x,y,z, t), it is, in
a way, already in a quantum beam optical form. Let us recall. The Dirac equation for
a free particle of mass m is

ih̄
∂ |Ψ(t)〉

∂ t
= ĤD,f|Ψ(t)〉,

ĤD,f = mc2
β + c~α ·~̂p,

β =

(
I O
O −I

)
, ~α =

(
O ~σ
~σ O

)
, (6.1)

where the state vector |Ψ(t)〉 is the four-component Dirac spinor,

I=

(
1 0
0 1

)
, O=

(
0 0
0 0

)
, (6.2)

and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (6.3)

are the Pauli matrices. The matrices αx, αy, αz, and β are known as the Dirac matri-
ces. For a particle of charge q, mass m, and anomalous magnetic moment µa, in
a time-independent electromagnetic field

(
~E((~r) ,~B(~r)

)
, with the magnetic vector

potential ~A(~r) and the electric scalar potential φ(~r), the Dirac–Pauli equation is

ih̄
(

∂

∂ t
−qφ)

)
|Ψ(t)〉= ĤDP|Ψ(t)〉,

ĤDP = mc2
β + c~α ·

(
~̂p−q~A

)
−µaβ~Σ ·~B, (6.4)

obtained from the free particle equation (6.1) by the principle of electromagnetic
minimal coupling and adding the Pauli term to take into account the anomalous
magnetic moment. In general, for any spin- 1

2 particle, with charge q and mass m,
we can write the total spin magnetic moment as~µ = (gq/2m)~S = (gqh̄/4m)~σ = µ~σ .
Writing g = 2(1+ a), we have µ = [(1+a)qh̄/2m] with qh̄/2m as the Dirac mag-
netic moment corresponding to g = 2 and µa = aqh̄/2m as the anomalous magnetic
moment corresponding to the magnetic anomaly a = (g/2)−1.

First, we shall get the general formalism to study the propagation of a quasiparax-
ial Dirac particle beam through electromagnetic optical systems with straight optic
axis along the z-direction. To this end, we proceed as follows. Let us take

Ψ(~r, t) = e−iEt/h̄
ψ (~r⊥,z) , (6.5)
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as the four-component wave function of a particle of the monoenergetic quasiparaxial
beam moving forward along the optic axis in which ψ (~r⊥,z) is the time-independent
four-component wave function. With ~p0 = p0~k as the design momentum, and∣∣~p0,⊥

∣∣ � p0, we shall take the energy of the particle to be positive given by

E =+
√

m2c4 + c2 p2
0. Substituting the expression for Ψ(~r, t) in (6.4) we get

(E−qφ)ψ (~r⊥,z) =
[
mc2

β + c~α ·
(
~̂p−q~A

)
−µaβ~Σ ·~B

]
ψ (~r⊥,z) . (6.6)

Multiplying this equation throughout from left by αz/c and rearranging the terms,
we can write

ih̄
∂ |ψ(z)〉

∂ z
= Ĥ |ψ(z)〉,

Ĥ =−p0β χαz−qAzI+(q/c)φαz +αz~α⊥ ·~̂π⊥+µaβαz~Σ ·~B,

with χ =

(
ξ I O
O −ξ−1I

)
, ξ =

√
E +mc2

E−mc2 , (6.7)

where I is the 4× 4 identity matrix. It is seen that Ĥ is not Hermitian. This is
related to the fact that, as we have already noted in the case of the scalar the-
ory, the probability of finding the particle in the vertical plane at the point z,∫

d2r⊥ ψ† (~r⊥,z)ψ (~r⊥,z), need not be conserved along the z-axis.
Noting that, with

M=
1√
2
(I+χαz) , M−1 =

1√
2
(I−χαz) , (6.8)

one has
Mβ χαzM

−1 = β , (6.9)

we define ∣∣∣ψ ′(z)〉= M
∣∣∣ψ(z)

〉
. (6.10)

Then,

ih̄
∂

∂ z

∣∣∣ψ ′(z)〉= Ĥ ′
∣∣∣ψ ′(z)〉 ,

Ĥ ′ = MĤ M−1 =−p0β + Ê + Ô,

Ê =−qAzI+
qφ

2c

(
ξ +ξ

−1)
β

− µa

2c

[(
ξ +ξ

−1)~B⊥ ·~Σ⊥+ (ξ −ξ
−1)

βBzΣz

]
,

Ô = χ

{
~α⊥ ·~̂π⊥+

µa

2c

[(
ξ −ξ

−1)(σy⊗ (Bxσy−Byσx))

+
(
ξ +ξ

−1)Bz (σx⊗ I)
]}

. (6.11)
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To see the effect of the transformation (6.10), let us apply it to a free time-
independent paraxial positive-energy Dirac plane wave propagating in the +z-
direction:

ψ ′1 (~r⊥,z)
ψ ′2 (~r⊥,z)
ψ ′3 (~r⊥,z)
ψ ′4 (~r⊥,z)

=
1√
2


1 0 ξ 0
0 1 0 −ξ

−ξ−1 0 1 0
0 ξ−1 0 1

×

1
4

√
cp0ξ

π3h̄3E


a+
a−

1
p0ξ

(a+pz +a−p−)
1

p0ξ
(a+p+−a−pz)

e
i
h̄ (~p⊥·~r⊥+pzz),

with |~p|= p0, p+ = px + ipy, p− = px− ipy,

|~p⊥| � pz ≈ p0, |a+|2 + |a−|2 = 1, (6.12)

where we have used the positive-energy solutions of the free-particle Dirac equation
(see (3.637), (3.640), and (3.641)). The result is


ψ ′1 (~r⊥,z)
ψ ′2 (~r⊥,z)
ψ ′3 (~r⊥,z)
ψ ′4 (~r⊥,z)

=
1
4

√
cp0ξ

2π3h̄3E


1
p0
[a+ (p0 + pz)+a−p−]

1
p0
[a− (p0 + pz)−a+p+]

− 1
p0ξ

[a+ (p0− pz)−a−p−]
1

p0ξ
[a− (p0− pz)+a+p+]

e
i
h̄ (~p⊥·~r⊥+pzz).

(6.13)

It is seen that the upper pair of components of |ψ ′(z)〉 are very large compared to the
lower pair of components since pz ≈ p0 for any particle of the paraxial beam. The
wave packet representing any particle of a positive-energy monoenergetic paraxial
beam will be of the form

Ψ(~r, t) = e−iEt/h̄
ψ (~r⊥,z) ,

ψ (~r⊥,z) =
∫
|~p|=p0

d2 p⊥ u(~p)e
i
h̄ (~p⊥·~r⊥+pzz),

u(~p) =
1
4

√
cp0ξ

π3h̄3E


a+ (~p)
a− (~p)

1
p0ξ

(a+ (~p) pz +a− (~p) p−)
1

p0ξ
(a+ (~p) p+−a− (~p) pz)

 ,

with
∫
|~p|=p0

d2 p⊥
(
|a+ (~p)|2 + |a− (~p)|2

)
= 1,

|~p⊥| � pz ≈ p0, E =
√

c2 p2
0 +m2c4. (6.14)
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From (6.13), it is clear that for any such paraxial wave packet,
∣∣∣ψ ′(z)〉 = M

∣∣∣ψ(z)
〉

will have its upper pair of components large compared to the lower pair of compo-
nents. Thus, in the paraxial situation, the even operator Ê of Ĥ ′ in (6.11) does not
couple the large upper components and small lower components of

∣∣∣ψ ′(z)〉while the

odd operator Ô of Ĥ ′ does couple them. This is exactly the same as in the nonrela-
tivistic situation obtained in the standard Dirac theory with respect to time evolution.
This and the striking resemblance of (6.11) to the standard Dirac equation (3.711)
make us turn to the Foldy–Wouthuysen transformation technique to analyse (6.11)
further.

Let us recall that the Foldy–Wouthuysen technique is useful in analysing the Dirac
equation systematically as a sum of nonrelativistic part and a series of relativis-
tic correction terms. It is essentially based on the fact that β commutes with any
even operator that does not couple the upper and lower pairs of components of the
Dirac spinor and anticommutes with any odd operator that couples the upper and
lower pairs of components of the Dirac spinor. So, applying a Foldy–Wouthuysen-
like transformation to (6.11) should help us analyse it as a sum of the paraxial part
and a series of nonparaxial, or aberration, correction terms. To this end, we make the
first transformation ∣∣∣ψ(1)

〉
= eiŜ1

∣∣∣ψ ′〉 , Ŝ1 =
i

2p0
β Ô. (6.15)

The resulting equation for
∣∣∣ψ(1)

〉
is

ih̄
∂

∂ z

∣∣∣ψ(1)
〉
= Ĥ (1)

∣∣∣ψ(1)
〉
,

Ĥ (1) = e−
1

2p0
β Ô

Ĥ ′e
1

2p0
β Ô − ih̄e−

1
2p0

β Ô ∂

∂ z

(
e

1
2p0

β Ô
)

=−p0β + Ê (1)+ Ô (1),

Ê (1) ≈ Ê − 1
2p0

β Ô 2− 1
8p2

0

[
Ô ,

([
Ô , Ê

]
+ ih̄

∂ Ô

∂ z

)]
− 1

8p3
0

β Ô 4,

Ô (1) ≈− 1
2p0

β

([
Ô , Ê

]
+ ih̄

∂ Ô

∂ z

)
− 1

3p2
0
Ô 3. (6.16)

Before proceeding further, let us find out the nature of
∣∣∣ψ(1)

〉
by looking at the free

particle case. From (6.13), for the free particle positive-energy plane wave spinor,
we get
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ψ
(1) (~r⊥,z) = e−

1
2p0

β χ~α⊥·~̂p⊥
ψ
′ (~r⊥,z)

≈ 1
4

√
cp0ξ

2π3h̄3E

(
I− 1

2p0
β χ~α⊥ ·~̂p⊥

)

×


1
p0
[a+ (p0 + pz)+a−p−]

1
p0
[a− (p0 + pz)−a+p+]

− 1
p0ξ

[a+ (p0− pz)−a−p−]
1

p0ξ
[a− (p0− pz)+a+p+]

e
i
h̄ (~p⊥·~r⊥+pzz)

=
1
4

√
cp0ξ

2π3h̄3E


1 0 0 − ξ p−

2p0

0 1 − ξ p+
2p0

0

0 − ξ p−
2p0

1 0

− ξ p+
2p0

0 0 1



×


1
p0
[a+ (p0 + pz)+a−p−]

1
p0
[a− (p0 + pz)−a+p+]

− 1
p0ξ

[a+ (p0− pz)−a−p−]
1

p0ξ
[a− (p0− pz)+a+p+]

e
i
h̄ (~p⊥·~r⊥+pzz)

=
1
4

√
cp0ξ

2π3h̄3E

×



a+
(

1+ pz
p0
− p2

⊥
2p2

0

)
+ 1

2 a−
[

p−
p0

(
1+ pz

p0

)]
a−
(

1+ pz
p0
+

p2
⊥

2p2
0

)
− 1

2 a+
[

p+
p0

(
1+ pz

p0

)]
− 1

ξ

{
a+
(

1− pz
p0
− p2

⊥
2p2

0

)
+ 1

2 a−
[

p−
p0

(
1− pz

p0

)]}
1
ξ

{
a−
(

1− pz
p0
− p2

⊥
2p2

0

)
+ 1

2 a+
[

p+
p0

(
1− pz

p0

)]}


× e

i
h̄ (~p⊥·~r⊥+pzz), (6.17)

showing clearly that the transformation (6.15) preserves the largeness of the upper
pair of components of the Dirac spinor compared to its lower pair of components.

It is seen that the effect of the transformation (6.15) is to eliminate from the odd
part of Ĥ ′, the terms of zeroth order in 1/p0. The odd part of Ĥ (1), Ô (1), con-
tains only terms of first and higher orders in 1/p0. By a series of successive trans-
formations with the same recipe (6.15), one can eliminate the odd parts up to any
desired order in 1/p0. This process will lead to the required quantum beam optical
Hamiltonian necessary for finding the transfer maps for observables of interest. In
the following section, we shall consider some examples of this general formalism.
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6.1.1.1 Free Propagation: Diffraction
Let us now consider the propagation of a monoenergetic beam of Dirac particles of
mass m through free space along the +z-direction. Let us start with the equation
(6.11) in the field-free case. Substituting φ = 0 and ~A = (0,0,0) in (6.11), we have

ih̄
∂

∂ z

∣∣∣ψ ′(z)〉= Ĥ ′
∣∣∣ψ ′(z)〉 , Ĥ ′ =−p0β +χ~α⊥ ·~̂p⊥. (6.18)

It is seen that Ĥ ′ is not Hermitian since there is no conservation of probability along
the z-axis. Note that(

Ĥ ′
)2

=

(
−p0I ξ~σ⊥ ·~̂p⊥

−ξ−1~σ⊥ ·~̂p⊥ p0I

)2

=
(

p2
0− p̂2

⊥
)
I. (6.19)

indicating that Ĥ ′ can be identified with the classical beam optical Hamiltonian,

−
√

p2
0− p2

⊥, for free propagation of a monoenergetic beam with the square root
taken in the Dirac way. Although in the present case it may look like as if one can take
such a square root using only the 2×2 Pauli matrices, it is necessary to use the 4×4
Dirac matrices to take into account the two-component spin and the propagations
in the forward and backward directions along the z-axis considered separately. The
spinor wave function

ψ
′ (~r⊥,z) =


a1
a2

a2 p+
ξ (p0+pz)

a1 p−
ξ (p0+pz)

e
i
h̄ (pzz+~p⊥·~r⊥), p0 =

√
p2

z + p2
⊥, (6.20)

with arbitrary coefficients a1 and a2 including normalization constants is a gen-
eral solution of (6.18) corresponding to a particle moving in the +z-direction with

pz =
√

p2
0− p2

⊥. It is seen that this spinor wave function has large upper pair of com-
ponents compared to the lower pair of components when the motion is paraxial, i.e.,
|~p⊥| � pz ≈ p0. This is analogous to the nonrelativistic positive-energy solutions of
the free-particle Dirac equation having large upper pair of components compared to
the lower pair of components.

In the same way as the free-particle Dirac Hamiltonian can be diagonalized by
a Foldy–Wouthuysen transformation, Ĥ ′ can be diagonalized exactly by a Foldy–
Wouthuysen-like transformation. Define∣∣∣ψ(1)(z)

〉
= e−θβ χ~α⊥·~̂p⊥

∣∣∣ψ ′(z)〉 , with tanh
(

2
∣∣∣~̂p⊥∣∣∣θ)=

∣∣∣~̂p⊥∣∣∣
p0

. (6.21)

Then, we have

ih̄
∂

∣∣∣ψ(1)(z)
〉

∂ z
= Ĥ (1)

∣∣∣ψ(1)(z)
〉

Ĥ (1) = e−θβ χ~α⊥·~̂p⊥Ĥ ′eθβ χ~α⊥·~̂p⊥ . (6.22)
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Let us write

eθβ χ~α⊥·~̂p⊥ = exp


β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣

∣∣∣~̂p⊥∣∣∣θ
 , with

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣
2

= I. (6.23)

Then, we have

eθβ χ~α⊥·~̂p⊥ = cosh
(∣∣∣~̂p⊥∣∣∣θ)I+ sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣

 (6.24)

Thus,

Ĥ (1) =

cosh
(∣∣∣~̂p⊥∣∣∣θ)I− sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


×
(
−p0β +χ~α⊥ ·~̂p⊥

)
×

cosh
(∣∣∣~̂p⊥∣∣∣θ)I+ sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


=

cosh
(∣∣∣~̂p⊥∣∣∣θ)I− sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


β

−p0 +
∣∣∣~̂p⊥∣∣∣×

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


×

cosh
(∣∣∣~̂p⊥∣∣∣θ)I+ sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


= β

−p0 +
∣∣∣~̂p⊥∣∣∣

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


×

cosh
(∣∣∣~̂p⊥∣∣∣θ)I+ sinh

(∣∣∣~̂p⊥∣∣∣θ)
β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣

2

= β

−p0 +
∣∣∣~̂p⊥∣∣∣

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣
e2θβ χ~α⊥·~̂p⊥

= β

−p0 +
∣∣∣~̂p⊥∣∣∣

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣
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×

cosh
(

2
∣∣∣~̂p⊥∣∣∣θ)I+ sinh

(
2
∣∣∣~̂p⊥∣∣∣θ)

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣


=−β

(
p0 cosh

(
2
∣∣∣~̂p⊥∣∣∣θ)− ∣∣∣~̂p⊥∣∣∣sinh

(
2
∣∣∣~̂p⊥∣∣∣θ))

+

β χ~α⊥ ·~̂p⊥∣∣∣~̂p⊥∣∣∣
(∣∣∣~̂p⊥∣∣∣cosh

(
2
∣∣∣~̂p⊥∣∣∣θ)− p0 sinh

(
2
∣∣∣~̂p⊥∣∣∣θ))

=−
(√

p2
0− p̂2

⊥

)
β , with tanh

(
2
∣∣∣~̂p⊥∣∣∣θ)=

∣∣∣~̂p⊥∣∣∣
p0

. (6.25)

This shows that in the ψ(1)-representation the quantum beam optical Dirac Hamilto-
nian for free propagation takes the classical form for each component of the spinor
wave function. In this representation, the four-component Dirac spinor representing
the beam moving in the forward z-direction has the lower pair of components as
zero and the four-component spinor representing the beam moving in the backward
z-direction has the upper pair of components as zero.

We are interested in the propagation of a monoenergetic quasiparaxial beam for
which |~p⊥| � pz ≈ p0, where p0 is the design momentum. In this case,

tanh
(

2
∣∣∣~̂p⊥∣∣∣θ)=

∣∣∣~̂p⊥∣∣∣
p0
� 1, (6.26)

and therefore, we have

tanh
(

2
∣∣∣~̂p⊥∣∣∣θ)≈ 2

∣∣∣~̂p⊥∣∣∣θ =

∣∣∣~̂p⊥∣∣∣
p0

, or, θ ≈ 1
2p0

. (6.27)

Let us make the first Foldy–Wouthuysen-like transformation, as in (6.16), with the
result ∣∣∣ψ(1)(z)

〉
= e−

1
2p0

β χ~α⊥·~̂p⊥ ∣∣ψ ′(z)〉 ,
ih̄

∂

∂ z

∣∣∣ψ(1)(z)
〉
= Ĥ (1)

∣∣∣ψ(1)(z)
〉

Ĥ (1) = e−
1

2p0
β χ~α⊥·~̂p⊥Ĥ ′e

1
2p0

β χ~α⊥·~̂p⊥

= e−
1

2p0
β χ~α⊥·~̂p⊥

(
−p0β +χ~α⊥ ·~̂p⊥

)
e

1
2p0

β χ~α⊥·~̂p⊥

≈
(
−p0 +

1
2p0

p̂2
⊥−

1
8p03

p̂4
⊥

)
β , (6.28)
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where we have omitted the odd term of second order in 1/p0. The expres-
sion on the right-hand side gives the first three terms of the series expansion of

−
(√

p2
0− p̂2

⊥

)
β . For an ideal paraxial situation, we have

Ĥ (1) ≈
(
−p0 +

1
2p0

p̂2
⊥

)
β . (6.29)

Since the lower pair of components of
∣∣∣ψ(1)

〉
are too small, in fact almost zero,

compared to the upper pair of components, we can replace β in Ĥ (1) by I. Hence,
we can take

Ĥ (1) ≈
(
−p0 +

1
2p0

p̂2
⊥

)
. (6.30)

Let us now retrace the transformations to get back to the original Dirac representa-
tion. We get ∣∣∣ψ(z)

〉
= M−1e

1
2p0

β χ~α⊥·~̂p⊥
∣∣∣ψ(1)(z)

〉
,

ih̄
∂

∂ z

∣∣∣ψ(z)
〉
= Ĥo

∣∣∣ψ(z)
〉
,

Ĥo = M−1e
1

2p0
β χ~α⊥·~̂p⊥Ĥ (1)e−

1
2p0

β χ~α⊥·~̂p⊥M

= M−1e
1

2p0
β χ~α⊥·~̂p⊥

(
−p0 +

1
2p0

p̂2
⊥

)
e−

1
2p0

β χ~α⊥·~̂p⊥M

=

(
−p0 +

1
2p0

p̂2
⊥

)
. (6.31)

Thus, we arrive at the quantum beam optical form of the free particle Dirac equation

ih̄
∂ψ (~r⊥,z)

∂ z
≈
(
−p0 +

1
2p0

p̂2
⊥

)
ψ (~r⊥,z) , (6.32)

which is same as in the scalar relativistic Klein–Gordon or nonrelativistic
Schrödinger theory, except for the wave function having four components.

Let us look at the transfer maps for transverse position coordinates and
momentum components. Recall that the position operator ~r of the nonrelativis-
tic Schrödinger theory has the zitterbewegung motion in the Dirac theory. In the
Foldy–Wouthuysen representation of the Dirac theory,~r behaves as a normal posi-
tion operator and has been interpreted as the mean position operator. In the Dirac
representation, the Newton–Wigner position operator behaves as a normal position
operator, and it transforms to~r, the mean position operator, in the Foldy–Wouthuysen
representation. Now, let us observe that in the ψ(1)-representation~r⊥ behaves as the
normal transverse position operator. To this end, let us define the Heisenberg picture
operator corresponding to~r⊥ as

~r(z)⊥ = e
i
h̄ Ĥ (1)z~r⊥e−

i
h̄ Ĥ (1)z. (6.33)
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Then, it follows that

d~r(z)⊥
dz

=
i
h̄

e
i
h̄ Ĥ (1)z

[
Ĥ (1) ,~r⊥

]
e−

i
h̄ Ĥ (1)z

=
i
h̄

e
i
h̄ Ĥ (1)z

[(
−p0 +

1
2p0

p̂2
⊥

)
,~r⊥

]
e−

i
h̄ Ĥ (1)z

=
1
p0

e
i
h̄ Ĥ (1)z~̂p⊥e−

i
h̄ Ĥ (1)z, (6.34)

as should be. This also shows that the transverse momentum operator is ~̂p⊥. So,
we can take ~r⊥ and ~̂p⊥ to be the mean transverse position operator and transverse
momentum operator, respectively, in the ψ(1)-presentation. The corresponding mean
transverse position operator in the quantum beam optical Dirac representation, or
ψ-representation, would be

~̃r⊥ = M−1e
1

2p0
β χ~α⊥·~̂p⊥~r⊥e−

1
2p0

β χ~α⊥·~̂p⊥M

≈ M−1
(
~r⊥+

1
2p0

[
β χ~α⊥ ·~̂p⊥ ,~r⊥

])
M

=~r⊥−
ih̄

2p0
β χ~α⊥. (6.35)

Since ~̃r⊥ is non-Hermitian, we can take its Hermitian part

~r⊥ =
1
2

(
~̃r⊥+~̃r

†
⊥

)
=~r⊥−

ih̄
4p0

(
ξ −ξ

−1)
β~α⊥

=~r⊥−
imch̄
2p2

0
β~α⊥ =~r⊥−

iλ 2
0

4πλc
β~α⊥, (6.36)

as the mean transverse position operator, where λ0 is the de Broglie wavelength and
λc is the Compton wavelength. Noting that in~r⊥ the constant term added to~r⊥ is tiny,
we can as well drop it and take the mean transverse position operator in the quantum
beam optical Dirac representation to be~r⊥ itself. The transverse momentum operator
remains the same, ~̂p⊥, in the quantum beam optical Dirac representation, since it

commutes with M−1e
1

2p0
β χ~α⊥·~̂p⊥ and hence is unchanged under the transformation

from the ψ(1)-representation.

Since the quantum beam optical paraxial Dirac Hamiltonian Ĥo is exactly same
as the quantum beam optical paraxial Hamiltonian of the scalar theory (5.77), the
transfer map is same as in (5.87),(

〈~r⊥〉(z)
1
p0

〈
~̂p⊥
〉
(z)

)
=

(
1 ∆z
0 1

)( 〈~r⊥〉(zi)
1
p0

〈
~̂p⊥
〉
(zi)

)
, (6.37)
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where the beam travels from the vertical plane at zi to the vertical plane at z. The
difference now is that

〈~r⊥〉(z) =
〈

ψ(z) |~r⊥|ψ(z)
〉
=
∫

d2r⊥ ψ
† (~r⊥,z)~r⊥ψ (~r⊥,z)

=
4

∑
j=1

∫
d2r⊥ ψ

∗
j
(~r⊥,z)~r⊥ψ

j
(~r⊥,z) ,〈

~̂p⊥
〉
(z) =

〈
ψ(z)

∣∣∣~̂p⊥∣∣∣ψ(z)
〉
=
∫

d2r⊥ ψ
† (~r⊥,z)~̂p⊥ψ (~r⊥,z)

=
4

∑
j=1

∫
d2r⊥ ψ

∗
j
(~r⊥,z)~̂p⊥ψ

j
(~r⊥,z) . (6.38)

Since the quantum beam optical free-particle Hamiltonian Ĥo is Hermitian, we have
taken

∣∣∣ψ(z)
〉

to be normalized, i.e.,

〈
ψ(z)

∣∣∣ ψ(z)
〉
=
∫

d2r⊥ ψ
† (~r⊥,z)ψ (~r⊥,z)

=
4

∑
j=1

∫
d2r⊥ ψ

∗
j
(~r⊥,z)ψ

j
(~r⊥,z) = 1. (6.39)

If it is desired to keep any non-Hermitian terms in a quantum beam optical Dirac
Hamiltonian, the four-component state vector

∣∣∣ψ(z)
〉

will have to be normalized at
each z since the normalization will not be conserved. Then, the average value of any
operator Ô corresponding to an observable Ô, which may be a 4× 4 matrix with
operator entries like, say, ~α ·~̂p, can be defined by

〈
Ô
〉
(z) =

〈
ψ(z)

∣∣∣Ô∣∣∣ψ(z)
〉

〈
ψ(z) | ψ(z)

〉
=

∫
d2r⊥ ψ† (~r⊥,z) Ôψ (~r⊥,z)∫
d2r⊥ ψ† (~r⊥,z)ψ (~r⊥,z)

=
∑

4
j,k=1

∫
d2r⊥ ψ∗j (~r⊥,z) Ô jkψk (~r⊥,z)

∑
4
j=1
∫

d2r⊥ ψ∗j (~r⊥,z)ψ j (~r⊥,z)
. (6.40)

The quantum beam optical Dirac Hamiltonian for free propagation is same as in the
scalar theory, except that it now acts on a four-component wave function. Integrating
(6.32), we have

∣∣∣ψ(z)
〉
= e
− i∆z

h̄

(
−p0+

p̂2
⊥

2p0

)
I ∣∣∣ψ (zi)

〉
, ∆z = z− zi. (6.41)
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In position representation,

ψ (~r⊥,z) =
∫

d2r⊥i [K (~r⊥,z;~r⊥i,zi)I]ψ (~r⊥i,zi) ,

K (~r⊥,z;~r⊥i,zi) =

〈
~r⊥

∣∣∣∣∣∣e−
i∆z
h̄

(
−p0+

p̂2
⊥

2p0

)∣∣∣∣∣∣~r⊥i

〉
. (6.42)

The expression for K (~r⊥,z;~r⊥i,zi) is already known to us from the scalar theory:

K (~r⊥,z;~r⊥i,zi) =

(
p0

2πih̄∆z

)
e
{

i
h̄ p0∆z+ ip0

2h̄∆z |~r⊥−~r⊥i|2
}
. (6.43)

Using this result, we have

ψ (~r⊥,z) =
(

p0

2πih̄∆z

)
e

i
h̄ p0∆z

∫
d2r⊥i

(
e

ip0
2h̄∆z |~r⊥−~r⊥i|2I

)
ψ (~r⊥i,zi) . (6.44)

With 2π h̄/p0 = λ0, the de Broglie wavelength, we get

ψ j(x,y,z) =
(

1
iλ0 (z− zi)

)
e

i2π

λ0
(z−zi)

×
∫ ∫

dxidyi e
iπ

λ0(z−zi)
[(x−xi)

2+(y−yi)
2]

ψ j (xi,yi,zi) ,

j = 1,2,3,4, (6.45)

which is the generalization of the Fresnel diffraction formula for a paraxial beam of
free Dirac particles. Thus, it is obvious that the diffraction pattern due to a paraxial
beam of free Dirac particles will be the superposition of the patterns due to the four
individual components of the spinor

∣∣∣ψ(z)
〉

representing the beam and the intensity
distribution of the diffraction pattern at the xy-plane at z will be given by

I(x,y,z) ∝

4

∑
j=1

∣∣∣∣∫ ∫ dxidyi e
iπ

λ0(z−zi)
[(x−xi)

2+(y−yi)
2]

ψ j (xi,yi,zi)

∣∣∣∣2 (6.46)

where the plane of the diffracting object is at zi and the plane at z is the observation
plane. When the presence of a field makes the quantum beam optical Hamiltonian Ĥo
acquire a matrix component, the propagator K (~r⊥,z;~r⊥i,zi) would have nontrivial
matrix structure, instead of being just ∝ I, leading to interference between the four
diffracted components of

∣∣∣ψ(z)
〉

.
When the monoenergetic beam is not ideally paraxial to allow the relevant approx-

imations to be made, one can directly use the free z-evolution equation,

ih̄
∂

∂ z

∣∣∣ψ(z)
〉
=−

{
p0β χαz + i(Σx p̂y−Σy p̂x)

}∣∣∣ψ(z)
〉
, (6.47)
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obtained by setting φ = 0 and ~A = (0,0,0) in (6.7). On integration, we get∣∣∣ψ(z)
〉
= exp

{
i
h̄

∆z(p0β χαz + i(Σx p̂y−Σy p̂x))

}∣∣∣ψ (zi)
〉
, (6.48)

the general law of propagation of the free Dirac wave function in the +z-direction,
showing the subtle way in which the spinor components are mixed up. For some
detailed studies on the optics of general free Dirac waves, particularly diffrac-
tion, see Rubinowicz ([161, 162, 163, 164], Durand [38], and Phan-Van-Loc
[144, 145, 146, 147, 148, 149], Boxem, Partoens, and Verbeeck [15], and references
therein). A path integral approach to the optics of Dirac particles has been developed
by Liñares [128].

6.1.1.2 Axially Symmetric Magnetic Lens
We shall study the propagation of a quasiparaxial charged Dirac particle beam
through a round magnetic lens without taking into account the anomalous magnetic
moment of the particle. We shall take the z-axis to be the optic axis of the lens. Since
there is no electric field, φ = 0. The vector potential can be taken, in general, as

~A =

(
−1

2
yΠ(~r⊥,z) ,

1
2

xΠ(~r⊥,z) ,0
)
, (6.49)

with

Π(~r⊥,z) = B(z)− 1
8

r2
⊥B′′(z)+

1
192

r4
⊥B′′′′(z)−·· · . (6.50)

The corresponding magnetic field is given by

~B⊥ =−1
2

(
B′(z)− 1

8
B′′′(z)r2

⊥+ · · ·
)
~r⊥,

Bz = B(z)− 1
4

B′′(z)r2
⊥+

1
64

B′′′′(z)r4
⊥−·· · . (6.51)

The practical boundaries of the lens, say z` and zr, are determined by where B(z)
becomes negligible, i.e., B(z < z`)≈ 0 and B(z > zr)≈ 0.

As we have already seen, the z-evolution equation for the time-independent spinor
wave function in the

∣∣∣ψ ′〉-representation (6.11) reads

ih̄
∂

∂ z

∣∣∣ψ ′(z)〉= Ĥ ′
∣∣∣ψ ′(z)〉 ,

Ĥ ′ =−p0β + Ê + Ô,

Ê =−qAzI,

Ô = χ~α⊥ ·~̂π⊥ = χ~α⊥ ·
(
~̂p⊥−q~A⊥

)
. (6.52)
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Let us recall that the
∣∣∣ψ ′〉 is related to the Dirac

∣∣∣ψ〉 by

∣∣∣ψ ′〉= M
∣∣∣ψ(z)

〉
,

M= M=
1√
2
(I+χαz) ,

χ =

(
ξ I O
O −ξ−1I

)
, with ξ =

√
E +mc2

E−mc2 , (6.53)

where E is the conserved total energy
√

m2c4 + c2 p2
0 of a particle of the beam with

the design momentum p0. To obtain the desired quantum beam optical representa-
tion of the z-evolution equation, we have to perform a series of successive Foldy–
Wouthuysen-like transformations outlined earlier. The first transformation is

∣∣∣ψ(1)
〉
= eiŜ1

∣∣∣ψ ′〉 ,
Ŝ1 =

i
2p0

β Ô =
i

2p0
β χ~α⊥ ·~̂π⊥. (6.54)

The resulting equation for
∣∣∣ψ(1)

〉
is

ih̄
∂

∂ z

∣∣∣ψ(1)
〉
= Ĥ (1)

∣∣∣ψ(1)
〉
,

Ĥ (1) = e−
1

2p0
β Ô

Ĥ ′e
1

2p0
β Ô − ih̄e−

1
2p0

β Ô ∂

∂ z

(
e

1
2p0

β Ô
)

=−p0β + Ê (1)+ Ô (1),

Ê (1) ≈ Ê − 1
2p0

β Ô 2− 1
8p2

0

[
Ô ,

([
Ô , Ê

]
+ ih̄

∂ Ô

∂ z

)]
− 1

8p3
0

β Ô 4,

Ô (1) ≈− 1
2p0

β

([
Ô , Ê

]
+ ih̄

∂ Ô

∂ z

)
− 1

3p2
0
Ô 3, (6.55)

in which we have to substitute Ê = −qAzI and Ô = χ~α⊥ · ~̂π⊥ and calculate the
expressions for Ê (1) and Ô (1). The second transformation will have the same pre-
scription

∣∣∣ψ(2)
〉
= eiŜ2

∣∣∣ψ(1)
〉
, Ŝ2 =

i
2p0

β Ô (1), (6.56)
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leading to the equation

ih̄
∂

∂ z

∣∣∣ψ(2)
〉
= Ĥ (2)

∣∣∣ψ(2)
〉
,

Ĥ (2) = e−
1

2p0
β Ô (1)

Ĥ (1)e
1

2p0
β Ô (1)

− ih̄e−
1

2p0
β Ô (1) ∂

∂ z

(
e

1
2p0

β Ô (1)
)

=−p0β + Ê (2)+ Ô (2),

Ê (2) ≈ Ê (1)− 1
2p0

β

(
Ô (1)

)2

− 1
8p2

0

[
Ô (1) ,

([
Ô (1) , Ê (1)

]
+ ih̄

∂ Ô (1)

∂ z

)]

− 1
8p3

0
β

(
Ô (1)

)4
,

Ô (2) ≈− 1
2p0

β

([
Ô (1) , Ê (1)

]
+ ih̄

∂ Ô (1)

∂ z

)

− 1
3p2

0

(
Ô (1)

)3
, (6.57)

in which we have to get the expressions for Ê (2) and Ô (2) by substituting the expres-
sions for Ê (1) and Ô (1) obtained from the first transformation. We shall stop with the
third transformation in this case. With the same prescription,∣∣∣ψ(3)

〉
= eiŜ3

∣∣∣ψ(2)
〉
, Ŝ3 =

i
2p0

β Ô (2), (6.58)

we get

ih̄
∂

∂ z

∣∣∣ψ(3)
〉
= Ĥ (3)

∣∣∣ψ(3)
〉
,

Ĥ (3) = e−
1

2p0
β Ô (2)

Ĥ (2)e
1

2p0
β Ô (2)

− ih̄e−
1

2p0
β Ô (2) ∂

∂ z

(
e

1
2p0

β Ô (2)
)

≈−p0β + Ê (3),

Ê (3) ≈ Ê (2)− 1
2p0

β

(
Ô (2)

)2

− 1
8p2

0

[
Ô (2) ,

([
Ô (2) , Ê (2)

]
+ ih̄

∂ Ô (2)

∂ z

)]

− 1
8p3

0
β

(
Ô (2)

)4
, (6.59)



Spinor Theory for Spin-1/2 Particles 303

in which we have omitted the odd term, and we have to get the expression for
Ê (3) by substituting the expressions for Ê (2) and Ô (2) obtained from the second
transformation.

The above transformations make the lower components of the spinor successively
smaller and smaller compared to the upper components for a quasiparaxial beam
moving in the +z-direction. In other words, one has

β

∣∣∣ψ(3)
〉
≈ I
∣∣∣ψ(3)

〉
. (6.60)

Now, Ĥ (3), without an odd term, is found to be of the form

Ĥ (3) =

(
Ĥ

(3)
1 +Ĥ

(3)
2 O

O Ĥ
(3)

1 −Ĥ
(3)

2

)
. (6.61)

In view of (6.60), we can approximate Ĥ (3) further and write

ih̄
∂

∂ z

∣∣∣ψ(3)
〉
≈ Ĥ

∣∣∣ψ(3)
〉
,

Ĥ =

(
Ĥ

(3)
1 +Ĥ

(3)
2 O

O Ĥ
(3)

1 +Ĥ
(3)

2

)
. (6.62)

To enable using directly the original Dirac |ψ(z)〉, satisfying (6.7), let us retrace the
transformations:∣∣∣ψ(3)

〉
−→ |ψ(z)〉= M−1e−iŜ1e−iŜ2e−iŜ3

∣∣∣ψ(3)
〉
,≈ M−1e−iŜ

∣∣∣ψ(3)
〉
, (6.63)

where

Ŝ ≈ Ŝ1 + Ŝ2 + Ŝ3−
i
2

([
Ŝ1 , Ŝ2

]
+
[
Ŝ1 , Ŝ3

]
+
[
Ŝ2 , Ŝ3

])
− 1

4

[[
Ŝ1 , Ŝ2

]
, Ŝ3

]
· · · ,
(6.64)

obtained by applying the Baker–Campbell–Hausdorff formula

eÂeB̂ ≈ eÂ+B̂+ 1
2 [Â , B̂], (6.65)

when
[
Â , B̂

]
6= 0 (see Appendix A for details). Implementing the inverse transfor-

mation leads to

ih̄
∂

∂ z

∣∣∣ψ(z)
〉
= Ĥo

∣∣∣ψ(z)
〉
,

Ĥo = M−1
{

e−iS Ĥ eiS − ih̄e−iS ∂

∂ z

(
eiS
)}

M. (6.66)

Calculating Ĥo, using (3.706), up to fourth order in
(
~r⊥,~̂p⊥

)
, we have

Ĥo = Ĥo,p +Ĥ ′
o +Ĥ

(h̄)
o + Ĥ(h̄)

o , (6.67)
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where

Ĥo,p =

(
1

2p0
p̂2
⊥+

1
2

p0α
2(z)r2

⊥−α(z)L̂z

)
I, (6.68)

Ĥ ′
o =

(
1

8p3
0

p̂4
⊥−

α(z)
2p2

0
p̂2
⊥L̂z−

α2(z)
8p0

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)2

+
3α2(z)

8p0

(
r2
⊥ p̂2
⊥+ p̂2

⊥r2
⊥
)
+

1
8
(
α
′′(z)−4α

3(z)
)

L̂zr2
⊥

+
p0

8
(
α

4(z)−α(z)α ′′(z)
)

r4
⊥

)
I, (6.69)

Ĥ
(h̄)

o ≈
(

h̄2

8p0

(
α
′(z)2−2α(z)α ′′(z)

)
r2
⊥

+
h̄2

32p0

(
α
′′(z)2−α

′(z)α ′′′(z)
)

r4
⊥

)
I, (6.70)

and, retaining only the Hermitian part,

Ĥ(h̄)
o ≈

3h̄2

64p0
α
′(z)α ′′(z)yr2

⊥ (yΣx− xΣy)

+

{
h̄
4
(
α
′′(z)−2α(z)3)r2

⊥−
h̄

2p2
0

α(z)p̂2
⊥

+
h̄

4p0
α
′(z)
(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
+

h̄
p0

α(z)2L̂z

+
h̄

16p0
α
′′(z)

(
p̂2
⊥r2
⊥+ r2

⊥ p̂2
⊥
)
− 3h̄

8p0
α(z)α ′′(z)L̂zr2

⊥

+
3h̄
16

α(z)2
α
′′(z)r4

⊥−
h̄

64p0
α
′′′(z)

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)
r2
⊥

− h̄
64p0

α
′′′(z)

({
p̂x , xr2

⊥
}
+
{

p̂y , yr2
⊥
})
− h̄α(z)

}
Σz

− ih̄
48p2

0
α
′(z)
[
β χ ,

{
~α⊥ · p̂⊥ ,

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)}]
− ih̄

32p0
α(z)α ′(z)

[
β χ ,

{
~α⊥ ·~r⊥ ,

(
~r⊥ ·~̂p⊥+~̂p⊥ ·~r⊥

)}]
+

ih̄
4

α
′(z) [β χ , (αxy−αyx)]

+
ih̄

32p0
(h̄α(z)− p0)α

′′′(z)
[
β χ , (αxy−αyx)r2

⊥
]

+
h̄2

32p0

(
2α
′(z)2r2

⊥−
1
2

α
′(z)α ′′′(z)r4

⊥

)
{β χ , αz}

+
h̄2

128p2
0

α
′′′(z)

[
β χ ,

[
αx p̂y−αy p̂x , r2

⊥
]]
, (6.71)

with α(z) = qB(z)/2p0.
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It should be noted that we are interested in the transfer map for the transverse
coordinates and momenta of the beam particle from the field-free input region to the
field-free output region. Hence, we can take the transverse position operator to be~r⊥
and the transverse momentum operator to be ~̂p⊥, as was found earlier in the discus-
sion of free propagation. Calculation of the transfer maps using the above quantum
beam optical Dirac Hamiltonian is exactly along the same lines as in the scalar the-
ory, except that now we have to use (6.40) for the definition of averages. In Ĥo,
the quantum beam optical Dirac Hamiltonian for the magnetic round lens, Ĥo,p is
the paraxial term leading to the point-to-point imaging, and Ĥ ′

o is the perturbation
term responsible for the main third-order aberrations. These two terms and Ĥ

(h̄)
o are

essentially scalar terms, ∝ I, which act on each component of the Dirac spinor
∣∣∣ψ(z)

〉
individually without mixing any of them. The h̄-dependent Ĥ(h̄)

o is a matrix term that
mixes the components of

∣∣∣ψ(z)
〉

and carries the signature of spin explicitly. Both

the h̄-dependent terms, Ĥ
(h̄)

o and Ĥ(h̄)
o , being proportional to the de Broglie wave-

length, might be negligible under the conditions in electron microscopy. This justifies
ignoring the electron spin and approximating the Dirac theory by the scalar Klein–
Gordon theory in electron microscopy (see, e.g., Hawkes and Kasper [72], Ferwerda,
Hoenders, and Slump [48, 49], and Lubk [129] for details of such an approximation
procedure different from our analysis). However, the following should be pointed
out: If the Dirac theory is approximated by a scalar theory, with the inclusion of
the h̄-dependent scalar terms, it will differ from the Klein–Gordon theory in the
h̄-dependent scalar terms, as is seen by comparing Ĥ

(h̄)
o in (6.70) above and the

h̄-dependent scalar Hermitian terms of the Klein–Gordon theory (5.213).
The matrix part in Ĥo in the Dirac theory, Ĥ(h̄)

o , adds to the deviation from the
Klein–Gordon theory. Without further ado, let us just note that the aberrations of
position

(
(δx)

(
zob j
)
,(δy)

(
zob j
))

, given in (5.201) and (5.202), get additional con-
tributions of every type from the matrix part. For example, the additional contribu-
tions of spherical aberration type to (δx)

(
zob j
)

and (δy)
(
zob j
)

are, respectively,

1
p3

0
C(h̄)

s
〈

p̂x p̂2
⊥Σz
〉(

zob j
)
=

h̄
8p4

0

∫ zimg

zob j

dz
(

6α
2
α
′′h4−α

′′′h3h′+4α
′′h2h′2

)
×
(〈

ψ1
(
zob j
)∣∣p̂x p̂2

⊥
∣∣ψ1

(
zob j
)〉
−
〈
ψ2
(
zob j
)∣∣p̂x p̂2

⊥
∣∣ψ2

(
zob j
)〉

+
〈
ψ3
(
zob j
)∣∣p̂x p̂2

⊥
∣∣ψ3

(
zob j
)〉
−
〈
ψ4
(
zob j
)∣∣p̂x p̂2

⊥
∣∣ψ4

(
zob j
)〉)

, (6.72)

and

1
p3

0
C(h̄)

s
〈

p̂y p̂2
⊥Σz
〉(

zob j
)
=

h̄
8p4

0

∫ zimg

zob j

dz
(

6α
2
α
′′h4−α

′′′h3h′+4α
′′h2h′2

)
×
(〈

ψ1
(
zob j
)∣∣p̂y p̂2

⊥
∣∣ψ1

(
zob j
)〉
−
〈
ψ2
(
zob j
)∣∣p̂y p̂2

⊥
∣∣ψ2

(
zob j
)〉

+
〈
ψ3
(
zob j
)∣∣p̂y p̂2

⊥
∣∣ψ3

(
zob j
)〉
−
〈
ψ4
(
zob j
)∣∣p̂y p̂2

⊥
∣∣ψ4

(
zob j
)〉)

, (6.73)
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with α = α(z), h = h
(
z,zob j

)
. Obviously, such contributions, with unequal weights

for the four spinor components, would depend on the nature of
∣∣∣ψ (zob j

)〉
, the spinor

wave function at the object plane, with respect to spin.
It is to be noted that in the quantum beam optical Dirac Hamiltonian Ĥo in (6.67),

the paraxial part Ĥo,p and the main perturbation part Ĥ ′
o are scalar, i.e., ∝ I, and are

identical to the respective paraxial part and the main perturbation part of the scalar
quantum beam optical Hamiltonian (5.181) . The additional h̄-dependent scalar and
matrix terms of the quantum beam optical Dirac Hamiltonian, though different from
the h̄-dependent terms of the scalar quantum beam optical Hamiltonian, are also
very small, like the h̄-dependent terms of the scalar quantum beam optical Hamilto-
nian, compared to the main paraxial and perturbation parts of the Hamiltonian which
are responsible for the focusing and main aberration aspects of the magnetic round
lens. Thus, we understand the behavior of a quasiparaxial beam of spin-1/2 par-
ticles propagating through an axially symmetric magnetic lens on the basis of the
Dirac equation.

6.1.1.3 Bending Magnet
We have already discussed the classical mechanics and the scalar Klein–Gordon the-
ory of the bending of a charged particle beam by a dipole magnet. Let us recall. A
constant magnetic field in the vertical direction produced by a dipole magnet bends
the beam along a circular arc in the horizontal plane. The circular arc of radius of
curvature ρ , the design trajectory of the particle, is the optic axis of the bending mag-
net. It is natural to use the arclength, say S, measured along the optic axis from some
reference point as the independent coordinate, instead of z. Let the reference particle
moving along the design trajectory carry an orthonormal XY -coordinate frame with
it. The X-axis is taken to be perpendicular to the tangent to the design orbit and in
the same horizontal plane as the trajectory, and the Y -axis is taken to be in the ver-
tical direction perpendicular to both the X-axis and the trajectory. The curved S-axis
is along the design trajectory and perpendicular to both the X- and Y -axes at any
point on the design trajectory. The instantaneous position of the reference particle
in the design trajectory at an arclength S from the reference point corresponds to
X = 0 and Y = 0. Let any particle of the beam have coordinates (x,y,z) with respect
to a fixed right-handed Cartesian coordinate frame with its origin at the reference
point on the design trajectory from which the arclength S is measured. Then, the two
sets of coordinates of any particle of the beam, (X ,Y,S) and (x,y,z), will be related
as follows:

x = (ρ +X)cos
(

S
ρ

)
−ρ, z = (ρ +X)sin

(
S
ρ

)
, y = Y (6.74)

To understand the bending of the path of a Dirac particle by a dipole magnet, we have
to use the Dirac equation written in the curved (X ,Y,S)-coordinate system. To this
end, following Jagannathan [80], we borrow the formalism from the theory of general
relativity (see, e.g., Brill and Wheeler [16]). Formalism of general relativity has been
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adopted in particle beam optics by Wei, Li, and Sessler [186] also in the context of
studying crystalline beams.

The Dirac equation for a free particle of mass m is

ih̄
∂

∂ t
ψ (~r, t) =

[
βmc2 + c~α ·

(
−ih̄~∇

)]
ψ (~r, t) . (6.75)

Multiplying both sides from left by −iβ/c, this equation can be written in the rela-
tivistically covariant form as[

γ
0
(

ih̄
∂

∂x0

)
−

3

∑
j=1

γ
j
(
−ih̄

∂

∂x j

)]
ψ
(
x0,
{

x j})=−imcψ
(
x0,
{

x j}) , (6.76)

or (
3

∑
j=0

γ
j ∂

∂x j +
mc
h̄

)
ψ
({

x j})= 0, (6.77)

where
(
x0 = ct,x1 = x,x2 = y,x3 = z

)
and the γ-matrices are defined by

γ
0 =−iβ =

(
−iI O
O iI

)
, γ

1 =−iβαx =

(
O −iσx

iσx O

)
,

γ
2 =−iβαy =

(
O −iσy

iσy O

)
, γ

3 =−iβαz =

(
O −iσz
iσz O

)
. (6.78)

Note that (
γ

0)2
=−I,

(
γ

1)2
= I,

(
γ

2)2
= I,

(
γ

3)2
= I,{

γ
j , γ

k
}
= 0, for j 6= k, (6.79)

or we can write {
γ

j , γ
k
}
= 2η

jkI, j,k = 0,1,2,3. , (6.80)

where [
η

jk
]
=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6.81)

is the contravariant metric tensor of the flat space-time. The corresponding covariant
metric tensor is

[
η jk
]
=
[
η

jk
]−1

=
[
η

jk
]
=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6.82)
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such that
[
η jk
][

η jk
]
= I, or ∑

3
`=0 ηk`η

` j = δ
j

k . Defining

γ j =
3

∑
k=0

η jkγ
k, j = 0,1,2,3. , (6.83)

we find {
γ j , γk

}
= 2η jkI, j,k = 0,1,2,3. (6.84)

The coordinates of a space-time point form a contravariant four-vector
(
x j
)
=(

x0,x1,x2,x3
)
. The components of the corresponding covariant four-vector (x j) =

(x0,x1,x2,x3) are given by

x j =
4

∑
k=0

η jkxk, j = 0,1,2,3, . (6.85)

or
x0 =−x0, x1 = x1, x2 = x2, x3 = x3. (6.86)

Using the Einstein summation convention, in which it is understood that repeated
indices are to be summed over, we can write ∑

4
k=0 η jkxk = η jkxk. Thus, we

have ηk`η
` j = δ

j
k . The relativistically invariant distance ds between two points

in flat space-time, say,
(
x0,x1,x2,x3

)
and

(
x0 +dx0,x1 +dx1,x2 +dx2,x3 +dx3

)
, is

given by

ds2 = η jkdx jdxk = η
jkdx jdxk = dx jdx j

=−
(
dx0)2

+
(
dx1)2

+
(
dx2)2

+
(
dx3)2

=−(dx0)
2 +(dx1)

2 +(dx2)
2 +(dx3)

2 . (6.87)

Note that writing equation (6.77) as(
γ

j ∂

∂x j

)
ψ
({

x j})=−(mc
h̄

)
ψ
({

x j}) , (6.88)

implies immediately, from the algebra of γ-matrices (6.80),(
γ

j ∂

∂x j

)2

ψ
({

x j})= (−mc
h̄

)2
ψ
({

x j}) , (6.89)

or, (
∇

2− 1
c2

∂ 2

∂ t2

)
ψ (~r, t) =

(mc
h̄

)2
ψ (~r, t) , (6.90)

the free-particle Klein–Gordon equation for each component of the free-particle
Dirac spinor.
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Let the curved space-time, in which we are interested, have (x̃µ) =
(
x̃0, x̃1, x̃2, x̃3

)
and

(
x̃µ

)
= (x̃0, x̃1, x̃2, x̃3) as the contravariant and covariant coordinates, respec-

tively, and the metric given by

ds2 = g̃µν dx̃µ dx̃ν = g̃µν dx̃µ dx̃ν , (6.91)

with
g̃µν = g̃νµ , g̃µν = g̃νµ , g̃µλ g̃λν = δ

µ

ν . (6.92)

Let
dx j = b j

µ dx̃µ , dx̃µ = aµ

k dxk, with aµ

k bk
ν = δ

µ

ν . (6.93)

Since we should have
η jkdx jdxk = η jkb j

µ bk
ν dx̃µ dx̃ν , (6.94)

we get the relation
η jkb j

µ bk
ν = g̃µν . (6.95)

With
γ j = η jkγ

k, (6.96)

we see from (6.80) that {
γ j , γk

}
= 2η jk. (6.97)

Defining
γ̃µ = b j

µ γ j, (6.98)

we get {
γ̃µ , γ̃ν

}
= b j

µ bk
ν

{
γ j , γk

}
= 2η jkb j

µ bk
ν = 2g̃µν . (6.99)

Corresponding to the covariant
{

γ̃µ

}
, we have the contravariant {γ̃µ} given by

γ̃
µ = g̃µν

γ̃ν . (6.100)

Now, the free-particle Dirac equation in the curved space-time is taken as[
γ̃

µ

(
∂

∂ x̃µ
−Γµ

)
+

mc
h̄

]
ψ ({x̃µ}) = 0, (6.101)

where the spin connection matrices
{

Γµ

}
are given by

Γµ = g̃αβ

(
aα

j
∂b j

ν

∂xµ
−Γ

α
µν

)
σ

βν , (6.102)

with

Γ
α
µν =

1
2

g̃αβ

(
∂ g̃νβ

∂xµ
+

∂ g̃µβ

∂xν
−

∂ g̃µν

∂xβ

)
, (6.103)
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the Christoffel symbols, and

σ
βν =

1
2

[
γ̃

β , γ̃
ν

]
. (6.104)

Note that
{

Γα
µν

}
are symmetric in µ and ν , and hence, there are 40 such symbols.

In the presence of an electromagnetic field, associated with the four-potential
{

Aµ

}
,

the equation for the Dirac particle of charge q and mass m in the curved space-time
becomes [

γ̃
µ

(
∂

∂ x̃µ
−Γµ −

iq
h̄

Aµ

)
+

mc
h̄

]
ψ ({x̃µ}) = 0, (6.105)

using the principle of minimal coupling.
For the curved space we are interested in

x̃0 = ct, x̃1 = X , x̃2 = Y, x̃3 = S, (6.106)

with the relation between (X ,Y,S) and (x,y,z) given by (6.74). Thus, from (6.74) we
find that, with ζ = 1+(X/ρ) = 1+κX ,

dx0

dx1

dx2

dx3

=


1 0 0 0
0 cos(κS) 0 −ζ sin(κS)
0 0 1 0
0 sin(κS) 0 ζ cos(κS)




dx̃0

dx̃1

dx̃2

dx̃3

 , (6.107)

defining the relation dx j = b j
µ dx̃µ . The inverse relation, dx̃µ = aµ

k dxk, is given by
dx̃0

dx̃1

dx̃2

dx̃3

=


1 0 0 0
0 cos(κS) 0 sin(κS)
0 0 1 0
0 − 1

ζ
sin(κS) 0 1

ζ
cos(κS)




dx0

dx1

dx2

dx3

 . (6.108)

From (6.95), we get

g̃00 =−1, g̃11 = g̃22 = 1, g̃33 = ζ
2, g̃µν = 0 for µ 6= ν , (6.109)

and from (6.92), it follows that

g̃00 =−1, g̃11 = g̃22 = 1, g̃33 =
1

ζ 2 , g̃µν = 0 for µ 6= ν . (6.110)

Among the 40 Christoffel symbols
{

Γα
µν

}
, only three are nonvanishing:

Γ
3
13 =

κ

ζ
, Γ

1
33 =−κζ , Γ

3
31 =

κ

ζ
. (6.111)



Spinor Theory for Spin-1/2 Particles 311

Calculating the spin connection matrices, using (6.102), we find all of them
vanishing:

Γ0 = Γ1 = Γ2 = Γ3 = 0. (6.112)

From (6.83), (6.98), and (6.100), we have

γ̃
0 = γ

0,

γ̃
1 = cos(κS)γ1 + sin(κS)γ3,

γ̃
2 = γ

2,

γ̃
3 =

1
ζ

[
−sin(κS)γ1 + cos(κS)γ3] . (6.113)

Thus, the equation for a free Dirac particle in the curved space of interest to us
becomes [

γ̃
0 ∂

∂ x̃0 + γ̃
1 ∂

∂ x̃1 + γ̃
2 ∂

∂ x̃2 + γ̃
3 ∂

∂ x̃3 +
mc
h̄

]
ψ ({x̃µ}) = 0. (6.114)

Writing explicitly, this equation is{
γ

0 1
c

∂

∂ t
+
[
cos(κS)γ1 + sin(κS)γ3] ∂

∂X
+ γ

2 ∂

∂Y

+
[
−sin(κS)γ1 + cos(κS)γ3]( 1

ζ

∂

∂S

)
+

mc
h̄

}
ψ

(
~R⊥,S, t

)
= 0. (6.115)

In the case of the dipole magnet used for bending the beam, the required magnetic
field is given by

BX = 0, BY = B0, BS = 0. (6.116)

The corresponding vector potential has the components

AX = 0, AY = 0, AS =−B0

(
X− κX2

2ζ

)
, (6.117)

such that

BX = (~∇×~A)X =
1
ζ

(
∂ (ζ AS)

∂Y
− ∂AY

∂S

)
= 0,

BY = (~∇×~A)Y =
1
ζ

(
∂AX

∂S
− ∂ (ζ AS)

∂X

)
= B0,

BS = (~∇×~A)S =
∂AY

∂X
− ∂AX

∂Y
= 0. (6.118)

Now, following (6.105), we get the equation for the Dirac particle moving in the field
of the dipole magnet as
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γ

0 1
c

∂

∂ t
+
[
cos(κS)γ1 + sin(κS)γ3] ∂

∂X
+ γ

2 ∂

∂Y

+
[
−sin(κS)γ1 + cos(κS)γ3]( 1

ζ

)(
∂

∂S
− iq

h̄
ζ AS

)
+

mc
h̄

}
ψ

(
~R⊥,S, t

)
= 0. (6.119)

Multiplying throughout from the left by −ih̄cγ0 and rearranging the terms, we can
rewrite this equation as

ih̄
∂

∂ t
ψ

(
~R⊥,S, t

)
=

{
mc2

β + cαX

(
−ih̄

∂

∂X

)
+ cαY

(
−ih̄

∂

∂Y

)
+cαS

(
− ih̄

ζ

∂

∂S
−qAS

)}
ψ

(
~R⊥,S, t

)
, (6.120)

where

αX = cos(κS)αx + sin(κS)αz

=

(
O cos(κS)σx + sin(κS)σz

cos(κS)σx + sin(κS)σz O

)
,

αY = αy =

(
O σy
σy O

)
,

αS =−sin(κS)αx + cos(κS)αz

=

(
O −sin(κS)σx + cos(κS)σz

−sin(κS)σx + cos(κS)σz O

)
. (6.121)

Note that αX , αY , and αS are Hermitian, odd operators, and anticommute with each
other and with β . Further, they obey α2

X = α2
Y = α2

S = I. In other words, αX , αY , and
αS obey exactly the same properties as the standard Dirac matrices αx, αy, and αz.

Let us now consider a monoenergetic paraxial Dirac particle beam passing
through the bending magnet. Taking

Ψ

(
~R⊥,S, t

)
= ψ

(
~R⊥,S

)
e−

i
h̄ Et , (6.122)

with E =
√

m2c4 + c2 p2
0 as the total conserved energy of the beam particle with

design momentum p0, we get the time-independent equation{
mc2

β + cαX

(
−ih̄

∂

∂X

)
+ cαY

(
−ih̄

∂

∂Y

)
+cαS

(
− ih̄

ζ

∂

∂S
−qAS

)}∣∣∣ψ(S)
〉
= E

∣∣∣ψ(S)
〉
. (6.123)
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Multiplying this equation on both sides from the left by αS/c and rearranging the
terms, we get

ih̄
ζ

∂

∂S

∣∣∣ψ(S)
〉
=
˜̂
H ζ

∣∣∣ψ(S)
〉
,

˜̂
H ζ =−p0β χαS−qASI+αS

(
αX P̂X +αY P̂Y

)
, (6.124)

where P̂X =−ih̄(∂/∂X), P̂Y =−ih̄(∂/∂Y ), and χ is same as in (6.7):

χ =

(
ξ I O
O −ξ−1I

)
, with ξ =

√
E +mc2

E−mc2 . (6.125)

We can now proceed exactly in the same way as we handled (6.7).
Observing that, with

M̃=
1√
2
(I+χαS) , M̃−1 =

1√
2
(I−χαS) , (6.126)

one has
M̃β χαSM̃

−1 = β , (6.127)

we define ∣∣∣ψ ′(S)〉= M̃
∣∣∣ψ(S)

〉
. (6.128)

Then,

ih̄
ζ

∂

∂S

∣∣∣ψ ′(S)〉=
˜̂
H
′

ζ

∣∣∣ψ ′(S)〉 ,
˜̂
H
′

ζ = M̃
˜̂
H ζ M̃

−1− ih̄
ζ

[
M̃

(
∂ M̃−1

∂S

)]
=−p0β +

˜̂
E +

˜̂
O,˜̂

E =−qASI+ i [cos(κS)Σx + sin(κS)Σz] P̂Y −
h̄κ

2ζ
βΣy,

˜̂
O = χ

[
αX

(
P̂X −

i
2

h̄κ

)
+αY P̂Y

]
, (6.129)

where the even term ˜̂
E commutes with β and the odd term ˜̂

O anticommutes with
β . To obtain the desired quantum beam optical representation of the S-evolution
equation, we have to perform the Foldy–Wouthuysen-like transformations. The first
transformation is∣∣∣ψ(1)

〉
= eiŜ1

∣∣∣ψ ′〉 ,
Ŝ1 =

i
2p0

β
˜̂
O =

i
2p0

β χ

[
αX

(
P̂X −

i
2

h̄κ

)
+αY P̂Y

]
. (6.130)
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The resulting equation for
∣∣∣ψ(1)

〉
is

ih̄
ζ

∂

∂S

∣∣∣ψ(1)
〉
=
˜̂
H

(1)

ζ

∣∣∣ψ(1)
〉
,

˜̂
H

(1)

ζ = e−
1

2p0
β Ô ˜̂

H
′

ζ e
1

2p0
β Ô − ih̄

ζ

[
e−

1
2p0

β Ô
(

∂

∂S
e

1
2p0

β Ô
)]

=−p0β + Ê (1)+ Ô (1),

Ê (1) = Ê − 1
2p0

β Ô 2−·· · ,

Ô (1) =− 1
2p0

β

([
Ô , Ê

]
+

ih̄
ζ

∂ Ô

∂S

)
−·· · . (6.131)

Let us stop at this first Foldy–Wouthuysen-like transformation and calculate ˜̂H (1)

ζ .
The result is

˜̂
H

(1)

ζ ≈−p0β −qASI+
1

2p0

(
P̂2

X + P̂2
Y −

1
4

h̄2
κ

2− ih̄κP̂X

)
β

+ i [cos(κS)Σx + sin(κS)Σz] P̂Y −
h̄κ

2ζ
βΣy, (6.132)

omitting the odd term. Substituting this ˜̂H (1)

ζ in (6.131), replacing β by I in the

resulting equation since
∣∣∣ψ(1)

〉
will have the lower pair of components very small

compared to the upper pair of components, and returning to the original Dirac repre-
sentation, we get

ih̄
ζ

∂

∂S

∣∣∣ψ(S)
〉
≈
{[
−qAS−

(
p0 +

h̄2
κ2

8p0

)
+

1
2p0

(
P̂2

X + P̂2
Y − ih̄κP̂X

)]
I

− h̄κ

2ζ
Σy

}∣∣∣ψ(S)
〉
. (6.133)

Multiplying both sides of this equation from the left by ζ , we can write

ih̄
∂

∂S

∣∣∣ψ(S)
〉
≈
{

ζ

[
−qAS−

(
p0 +

h̄2
κ2

8p0

)
+

1
2p0

(
P̂2

X + P̂2
Y − ih̄κP̂X

)]
I

−1
2

h̄κΣy

}∣∣∣ψ(S)
〉
. (6.134)

Following (6.117), we take

AS =−B0

(
X− κX2

2ζ

)
. (6.135)
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Further, let the curvature of the design trajectory be matched to the dipole magnetic
field such that

qB0 = κ p0. (6.136)

Then, simplifying and keeping only terms of order up to quadratic in (X ,Y ) and(
P̂X , P̂Y

)
, we have

ih̄
∂

∂S

∣∣∣ψ(S)
〉
=

{[
−
(

p0 +
h̄2

κ2

8p0

)
+

1
2p0

(
P̂2

X + P̂2
Y

)
+

1
2

p0κ
2X2

− h̄2
κ3

8p0
X− ih̄κ

2p0
(1+κX)P̂X

]
I− 1

2
h̄κΣy

}∣∣∣ψ(S)
〉
. (6.137)

Now, let us replace the non-Hermitian term i(1+κX)P̂X on the right-hand side by
its Hermitian part,

1
2

{(
i(1+κX)P̂X

)
+
(

i(1+κX)P̂X

)†
}

=
1
2

{
i(1+κX)P̂X − iP̂X (1+κX)

}
=−1

2
h̄κ. (6.138)

This leads to

ih̄
∂

∂S

∣∣∣ψ(S)
〉
=
˜̂
H D,d

∣∣∣ψ(S)
〉

˜̂
H D,d =

{[
−p0 +

1
2p0

P̂2
⊥+

1
2

p0κ
2X2

+
h̄2

κ2

8p0
(1−κX)

]
I− 1

2
h̄κΣy

}
. (6.139)

Note that this quantum beam optical Dirac Hamiltonian ˜̂H D,d , like the scalar quan-

tum beam optical Hamiltonian ˜̂H o,d in (5.279), reproduces the classical beam opti-

cal Hamiltonian for the dipole magnet H̃o,d in (4.185), when ~̂P⊥ and ~R⊥ are taken
as the corresponding classical variables, and the h̄-dependent terms are dropped. It
differs from the scalar quantum beam optical Hamiltonian in the h-dependent scalar
term ∝ I and has an extra h̄-dependent matrix term that will have different effects on
particles in different spin states. However, these h̄-dependent terms are very small
compared to the main classical part of the Hamiltonian, which leads to the bending
of the particle trajectory by the dipole. Thus, we understand the bending action of
the dipole magnet on a paraxial beam of spin- 1

2 particles on the basis of the Dirac
equation.
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6.1.2 BEAM OPTICS OF THE DIRAC PARTICLE WITH ANOMALOUS
MAGNETIC MOMENT

6.1.2.1 General Formalism
The main framework for studying the spin dynamics and beam polarization in
accelerator physics is essentially based on the quasiclassical Thomas–Frenkel–
Bargmann–Michel–Telegdi equation, or the Thomas–BMT equation as is commonly
called (see Thomas [182, 183], Frenkel [57, 58], Bargmann, Michel, and Telegdi [6]).
The Thomas–BMT equation has been understood on the basis of the Dirac equa-
tion, independent of accelerator beam optics, in different ways (see Sokolov and
Ternov [173], Ternov [180], Corben [29], and references therein). As shown by
Derbenev and Kondratenko [32], it is possible to obtain from the Dirac Hamiltonian,
using the Foldy–Wouthuysen representation, a quasiclassical effective Hamiltonian
accounting for the orbital motion, Stern–Gerlach effect, and the Thomas–BMT spin
evolution (see Barber, Heinemann, and Ripken [4, 5]). The same quasiclassical effec-
tive Hamiltonian has also been justified by reducing the Dirac theory to the Pauli
theory (see Jackson [77]). Based on such a quasiclassical Hamiltonian, a completely
classical approach to accelerator beam dynamics has also been developed (see Bar-
ber, Heinemann, and Ripken [4, 5]) in which an extended classical canonical formal-
ism is used by adding to the classical phase space two new real canonical variables
describing all the three components of spin. Following Conte, Jagannathan, Khan,
and Pusterla [26], we present here the spinor quantum charged particle beam opti-
cal formalism which, at the level of single particle theory, gives a unified account
of orbital motion, Stern–Gerlach effect, and the Thomas–BMT spin evolution for a
paraxial beam of Dirac particles with anomalous magnetic moment.

Let us consider the propagation of a paraxial beam of charged spin- 1
2 particles

with an anomalous magnetic moment through an optical element with straight optic
axis. We shall take the optic axis of the system to be along the z-direction. As we
have already seen, the z-evolution equation for the time-independent spinor wave
function of the beam particle in the

∣∣∣ψ ′〉-representation, (6.11), is

ih̄
∂

∂ z

∣∣∣ψ ′(z)〉= Ĥ ′
∣∣∣ψ ′(z)〉 ,

Ĥ ′ =−p0β + Ê + Ô,

Ê =−qAzI+
qφ

2c

(
ξ +ξ

−1)
β

− µa

2c

[(
ξ +ξ

−1)~B⊥ ·~Σ⊥+ (ξ −ξ
−1)

βBzΣz

]
,

Ô = χ

{
~α⊥ ·~̂π⊥+

µa

2c

[(
ξ −ξ

−1)(σy⊗ (Bxσy−Byσx))

+
(
ξ +ξ

−1)Bz (σx⊗ I)
]}

,

with χ =

(
ξ I O
O −ξ−1I

)
, ξ =

√
E +mc2

E−mc2 , (6.140)
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and E =
√

m2c4 + c2 p2
0 as the conserved total energy of a particle of the beam with

the design momentum p0. Let us recall that
∣∣∣ψ ′〉 is related to the Dirac

∣∣∣ψ〉 by

∣∣∣ψ ′〉= M
∣∣∣ψ(z)

〉
, M=

1√
2
(I+χαz) . (6.141)

To obtain the desired quantum beam optical representation of the z-evolution equa-
tion, we have to perform the Foldy–Wouthuysen-like transformations outlined ear-
lier. The first transformation is∣∣∣ψ(1)

〉
= eiŜ1

∣∣∣ψ ′〉 , Ŝ1 =
i

2p0
β Ô. (6.142)

The resulting equation for
∣∣∣ψ(1)

〉
is

ih̄
∂

∂ z

∣∣∣ψ(1)
〉
= Ĥ (1)

∣∣∣ψ(1)
〉
,

Ĥ (1) = e−
1

2p0
β Ô

Ĥ ′e
1

2p0
β Ô − ih̄

[
e−

1
2p0

β Ô ∂

∂ z

(
e

1
2p0

β Ô
)]

=−p0β + Ê (1)+ Ô (1),

Ê (1) ≈ Ê − 1
2p0

β Ô 2−·· · ,

Ô (1) ≈− 1
2p0

β

([
Ô , Ê

]
+ ih̄

∂ Ô

∂ z

)
−·· · . (6.143)

Substituting the expressions for Ê , Ô , and ξ from (6.140), we have,

Ĥ (1) =

[
−p0−qAz +

1
2p0

π̂
2
⊥+

m2µ2
a

2p3
0

(
B2
⊥+

E2

m2c4 B2
z

)]
I

+
qEφ

c2 p0
β +

mh̄µa

2p2
0

(
∇×~B

)
z
β

− 1
2p0

(
(h̄q+2mµa)BzΣz +

Eµa

c2
~B⊥ ·~Σ⊥

)
+

mµa

2p2
0

[
E

mc2

(
Bz~Σ⊥ ·~̂π⊥+~Σ⊥ ·~̂π⊥Bz

)
−
(
~B⊥ ·~̂π⊥+~̂π⊥ ·~B⊥

)
βΣz

]
.

(6.144)

Let us now approximate Ĥ (1) keeping only terms of order 1/p0, consistent with the
paraxial approximation. Then, with 2mµa = aqh̄, E = γmc2, and~S= h̄

2
~Σ, we have
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ih̄
∂

∂ z

∣∣∣ψ(1)
〉
= Ĥ (1)

∣∣∣ψ(1)
〉
,

Ĥ (1) ≈
(
−p0−qAz +

1
2p0

π̂
2
⊥

)
I+

qγmφ

p0
β

− q
p0

(
(1+a)BzSz + γa~B⊥ ·~S⊥

)
. (6.145)

As we have seen already in (6.17), for a paraxial plane wave,
∣∣∣ψ(1)

〉
has almost

vanishing lower pair of components compared to the upper pair of components.
Up to now all the observables, the field components, time, etc., are defined with

reference to the laboratory frame. But, in the covariant description, the spin of the
Dirac particle has simple operator representation in terms of the Pauli matrices only
in a frame in which the particle is at rest. So, it is usual in accelerator physics to define
spin with reference to the instantaneous rest frame of the particle while keeping the
other observables, field components, etc., defined with reference to the laboratory
frame. In the Dirac representation, the operator for spin as defined in the instanta-
neous rest frame of the particle is given by (see Sokolov and Ternov [173] for details)

~SR =
1
2

h̄

β

~Σ− c2
(
~Σ ·~̂π +~̂π ·~Σ

)
2E (E +mc2)

+
c~̂π
E

αx

 . (6.146)

The relation between the Dirac
∣∣∣ψ〉-representation and the

∣∣∣ψ(1)
〉

-representation
being ∣∣∣ψ(1)

〉
= e−

1
2p0

β Ô
M
∣∣∣ψ〉 , (6.147)

the operator for spin in the rest frame of the particle in the
∣∣∣ψ(1)

〉
-representation is

~S(1)R = e−
1

2p0
β Ô

M~SRM
−1e

1
2p0

β Ô
, (6.148)

as follows from (3.134) since in this case the transformation is not unitary. Let us
now make another transformation,∣∣∣ψA

〉
= Û (A)

∣∣∣ψ(1)
〉
, Û (A) = e−

i
2p0

(π̂xΣy−π̂yΣx). (6.149)

Note that this transformation preserves the smallness of the lower pair of components
compared to the upper pair of components. In the

∣∣∣ψA

〉
-representation, the operator

for spin in the instantaneous rest frame of the particle becomes

~S(A)R = Û (A)~S(1)R

(
Û (A)

)†
≈ h̄

2
~Σ =~S, (6.150)

as we desire, considering the paraxial approximation and the effect of β on
∣∣∣ψA

〉
being the same as I. Using the transformation (6.149) in (6.145), and calculating up
to the paraxial approximation, we get the z-evolution equation for

∣∣∣ψA

〉
as
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ih̄
∂

∂ z

∣∣∣ψA

〉
= ĤA

∣∣∣ψA

〉
,

ĤA = Û (A)Ĥ (1)
(

Û (A)
)†
− ih̄Û (A)

[
∂

∂ z

(
Û (A)

)†
]

≈
(
−p0−qAz +

1
2p0

π̂
2
⊥

)
I+

qγmφ

p0
β

− q
p0

{
~B ·~S+a

(
BzSz + γ~B⊥ ·~S⊥

)}
. (6.151)

In the previous treatments of optical elements we used to return to the original Dirac
representation by retracing the transformations made on it and the Dirac Hamilto-
nian. This led to the expansion of the Dirac Hamiltonian as a paraxial part plus a
series of nonparaxial aberration parts so that we can work with the Dirac Hamiltonian
approximated up to any desired level of accuracy. In the present case, we shall follow
an equivalent procedure. We shall not return to the original Dirac representation. We
shall continue to work with the

∣∣∣ψA

〉
-representation. Thus, we have to model the

wave function of any system in the
∣∣∣ψA

〉
-representation. Since

∣∣∣ψA

〉
has the lower

pair of components almost vanishing compared to the upper pair of components, we
can as well take

∣∣∣ψA

〉
to be a two-component spinor. Since ĤA is even, i.e., block-

diagonal with the odd part zero, its 11-block element becomes the Hamiltonian in
the two-component

∣∣∣ψA

〉
-representation. We shall denote the two-component

∣∣∣ψA

〉
as
∣∣∣ψ(A)

〉
, which satisfies the z-evolution equation

ih̄
∂

∂ z

∣∣∣ψ(A)
〉
= Ĥ (A)

∣∣∣ψ(A)
〉
,

Ĥ (A) ≈
(
−p0−qAz +

1
2p0

π̂
2
⊥+

qγmφ

p0

)
I

− q
p0

{
~B ·~S+a

(
BzSz + γ~B⊥ ·~S⊥

)}
, (6.152)

where ~S = (h̄/2)~σ . We shall now rewrite this equation as

ih̄
∂

∂ z

∣∣∣ψ(A)
〉
= Ĥ (A)

∣∣∣ψ(A)
〉
,

Ĥ (A) ≈
(
−p0−qAz +

1
2p0

π̂
2
⊥+

qγmφ

p0

)
I+

γm
p0

~Ω ·~S,

with ~Ω =− q
γm

(
(1+a)~B‖+(1+ γa)~B⊥

)
, (6.153)

where ~B‖ and ~B⊥ are the components of ~B along the optic axis and perpendicular

to it. We shall refer to the
∣∣∣ψ(A)

〉
-representation as the quantum accelerator optical

representation.
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Note that Ĥ (A), the quantum accelerator optical Hamiltonian, is Hermitian. In
other words,

∣∣∣ψ(A)
〉

has unitary z-evolution, and hence it can be normalized as

〈
ψ

(A)(z)
∣∣∣ψ(A)(z)

〉
=

2

∑
j=1

∫
d2r⊥

∣∣∣ψ(A)
j (~r⊥,z)

∣∣∣2 = 1, (6.154)

at any z. When the beam is described by a 2×2 density matrix

ρ
(A)(z) =

(
ρ
(A)
11 (z) ρ

(A)
12 (z)

ρ
(A)
21 (z) ρ

(A)
22 (z)

)
, (6.155)

at any z, the quantum accelerator optical z-evolution equation is

ih̄
∂ρ(A)(z)

∂ z
=
[
Ĥ (A) , ρ

(A)(z)
]
. (6.156)

If the beam can be described as a pure state, we would have ρ(A)(z) =∣∣∣ψ(A)(z)
〉〈

ψ(A)(z)
∣∣∣.

6.1.2.2 Lorentz and Stern–Gerlach Forces, and the Thomas–Frenkel–BMT
Equation for Spin Dynamics

The average of any observable, represented by the operator Ô in the quantum accel-
erator optical representation, is given by〈

Ô
〉
(z) = Tr

(
ρ
(A)(z)Ô

)
=

2

∑
j,k=1

∫ ∫
d2r⊥d2r′⊥

〈
~r⊥
∣∣∣ρ(A)

jk (z)
∣∣∣~r′⊥〉〈~r′⊥ ∣∣∣Ôk j

∣∣∣~r⊥〉 , (6.157)

in the transverse plane at z. It follows from (6.156) that the equation for z-evolution
of
〈

Ô
〉
(z) is given by

d
dz

〈
Ô
〉
(z) =

i
h̄

〈[
Ĥ (A) , Ô

]〉
(z)+

〈
∂ Ô
∂ z

〉
(z). (6.158)

Thus,
d 〈~r⊥〉

dz
=

i
h̄

〈[
Ĥ (A) ,~r⊥

]〉
=

1
p0
〈π̂⊥〉 . (6.159)

Quasiclassically, for any observable O , we can write

d
〈

Ô
〉

dt
≈ vz

d
〈

Ô
〉

dz
≈ p0

γm

d
〈

Ô
〉

dz
. (6.160)



Spinor Theory for Spin-1/2 Particles 321

For example, it follows from the above two equations that

d 〈~r⊥〉
dt

≈ p0

γm
d 〈~r⊥〉

dz
=

1
γm

〈
~̂π⊥

〉
, (6.161)

as should be. For ~̂π⊥ we have, with π̂z ≈ p0,

d
〈
~̂π⊥

〉
dz

=
i
h̄

〈[
Ĥ (A) , ~̂π⊥

]〉
+

〈
∂~̂π⊥
∂ z

〉

=
i
h̄

〈[
Ĥ (A) , ~̂π⊥

]〉
−q

〈
∂~A⊥
∂ z

〉
≈ qγm

p0

〈
−~∇⊥φ

〉
+

q
2p0

〈(
~̂π×~B−~B×~̂π

)
⊥

〉
− γm

p0

〈
~∇⊥

(
~Ω ·~S

)〉
=

qγm
p0

〈
~E⊥
〉
+

q
2p0

〈(
~̂π×~B−~B×~̂π

)
⊥

〉
− γm

p0

〈
~∇⊥

(
~Ω ·~S

)〉
. (6.162)

Hence,

d
〈
~̂π⊥

〉
dt

≈ q
〈
~E⊥
〉
+

q
2γm

〈(
~̂π×~B−~B×~̂π

)
⊥

〉
−
〈
~∇⊥

(
~Ω ·~S

)〉
. (6.163)

The quantum accelerator optical Hamiltonian Ĥ (A) corresponds to ih̄(∂/∂ z)=−p̂z.
Hence, we have to take the operator corresponding to πz, the kinetic momentum in
the longitudinal direction, as

π̂z = p̂z−qAz =−
(
Ĥ (A)+qAz

)
. (6.164)

Then, we have

d 〈π̂z〉
dz

=
i
h̄

〈[
Ĥ (A) ,−

(
Ĥ (A)+qAz

)]〉
−
〈

∂

∂ z

(
Ĥ (A)+qAz

)〉
=

i
h̄

〈[
Ĥ (A) ,−qAz

]〉
− qγm

p0

〈
∂φ

∂ z

〉
− 1

2p0

〈
∂

∂ z
π̂

2
⊥

〉
− γm

p0

〈
∂

∂ z

(
~Ω ·~S

)〉
=

qγm
p0
〈Ez〉+

q
2p0

〈(
~̂π×~B−~B×~̂π

)
z

〉
− γm

p0

〈
∂

∂ z

(
~Ω ·~S

)〉
, (6.165)

and

d 〈π̂z〉
dt
≈ q〈Ez〉+

q
2γm

〈(
~̂π×~B−~B×~̂π

)
z

〉
− γm

p0

〈
∂

∂ z

(
~Ω ·~S

)〉
. (6.166)
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Combining the two equations (6.163) and (6.166), we get

d
〈
~̂π
〉

dt
=

〈
q

[
~E +

1
2

(
~̂π

γm
×~B−~B×

~̂π

γm

)]〉
−
〈
~∇
(
~Ω ·~S

)〉
. (6.167)

The first term of this equation represents the Lorentz force, q
[
~E +

(
~v×~B

)]
. The

second term represents the Stern–Gerlach force. In the instantaneous rest frame of
the particle where γ = 1, the second term is seen to reduce to the familiar Stern–
Gerlach force

~FSG =−~∇V, V =−µ~σ ·~B, (6.168)

in which µ is the total spin magnetic moment of the particle, and apart from the spin,
the field components, the coordinates, etc. are also defined in the rest frame of the
particle. Equations (6.162) and (6.165), respectively, correspond to the transverse and
longitudinal Stern–Gerlach kicks. For a discussion of relativistic Stern–Gerlach force
using the Derbenev–Kondratenko semiclassical Hamiltonian, see Heinemann [74].

In the case of spin, we have

d
〈
~S
〉

dz
=

i
h̄

〈[
Ĥ (A) , ~S

]〉
=

i
h̄

γm
p0

〈[
~Ω ·~S , ~S

]〉
=

γm
p0

〈
~Ω×~S

〉
. (6.169)

As a result, we can write

d
〈
~S
〉

dt
≈
〈
~Ω×~S

〉
, (6.170)

which corresponds to the classical equation for spin dynamics,

d~S
dt

= ~Ω×~S, (6.171)

the Thomas–Frenkel–Bargmann–Michel–Telegdi equation, or the Thomas–BMT
equation. For more details on the Thomas–BMT equation, see, e.g., Conte and
MacKay [27], Lee [127], and Montague [136]. Thus, Ω in the quantum acceler-
ator optical Hamiltonian Ĥ (A) is the Thomas–BMT spin precession frequency.
The polarization of the beam is characterized by the vector ~P defined by (h̄/2)~P =

(h̄/2)〈~σ〉=
〈
~S
〉

. Thus, the quantum accelerator optical z-evolution equation (6.153)
accounts for the orbital and spin motions of the particle, up to the paraxial approx-
imation. To get higher order corrections, one has to go beyond the paraxial approx-
imation by continuing the process of Foldy–Wouthuysen-like transformations up to
the desired order.
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6.1.2.3 Phase Space and Spin Transfer Maps for a Normal
Magnetic Quadrupole

Let us now consider a paraxial beam of Dirac particles of charge q, mass m, and
anomalous magnetic moment µa, propagating through a normal magnetic quadrupole
with the optic axis along the z-direction. The practical boundaries of the lens can be
taken to be at z` and zr with z` < zr. Since there is no electric field, φ = 0. The field
of the normal magnetic quadrupole is

~B(~r) = (−Qny,−Qnx,0) , (6.172)

where

Qn =

{
constant in the lens region (z` ≤ z≤ zr)
0 outside the lens region (z < z`,z > zr)

(6.173)

The corresponding vector potential can be taken as

~A(~r) =
(

0,0,
1
2

Qn
(
x2− y2)) . (6.174)

Now, from (6.153), the quantum accelerator optical Hamiltonian for the normal
magnetic quadrupole is seen to be, with w = zr − z`, Kn = qQn/p0, and ηn =
q(1+ γa)Qnw/p2

0,

Ĥ (z) =


−p0 +

p̂2
⊥

2p0
, for z < z` and z > zr,

−p0 +
p̂2
⊥

2p0
− 1

2 p0Kn
(
x2− y2

)
+ηn p0

w (ySx + xSy) , for z` ≤ z≤ zr.

(6.175)

Here, we have denoted Ĥ (A) simply as Ĥ , and we shall do so in the rest of this
section also. Similarly, we will write ρ̂(z) instead of ρ̂(A)(z).

Let us consider the propagation of the beam from the transverse xy-plane at z =
zi < z` to the transverse plane at z > zr. The beam propagates in free space from zi
to z`, passes through the lens from z` to zr, and propagates through free space again
from zr to z. Let us now write the Hamiltonian Ĥ (z) as a core part Ĥ0(z) plus a
perturbation part Ĥ ′(z):

Ĥ (z) = Ĥ0(z)+Ĥ ′(z)

Ĥ0(z) =

 −p0 +
p̂2
⊥

2p0
, for z < z` and z > zr,

−p0 +
p̂2
⊥

2p0
− 1

2 p0Kn
(
x2− y2

)
, for z` ≤ z≤ zr,

Ĥ ′(z) =
{

0, for z < z` and z > zr,
ηn p0

w (xSy + ySx) , for z` ≤ z≤ zr.
(6.176)

Note that Ĥ (z) is Hermitian. A formal integration of (6.156), the z-evolution equa-
tion for ρ̂(z), gives

ρ̂(z) = Û (z,zi) ρ̂ (zi)Û† (z,zi) , (6.177)
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with

Û (z,zi) = P

(
e−

i
h̄
∫ z

zi
dzĤ (z)

)
, Û (zi,zi) = I, (6.178)

and

ih̄
∂

∂ z
Û (z,zi) = Ĥ (z)Û (z,zi) ,

ih̄
∂

∂ z
Û† (z,zi) =−Û† (z,zi)Ĥ (z). (6.179)

As we know, a convenient expression for Û (z,zi) is given by the Magnus formula:

Û (z,zi) = e−
i
h̄ T̂ (z,zi),

T̂ (z,zi) =
∫ z

zi

dz1 Ĥ (z1)+
1
2

(
− i

h̄

)∫ z

zi

dz2

∫ z2

zi

dz1

[
Ĥ (z2) ,Ĥ (z1)

]
+

1
6

(
− i

h̄

)2 ∫ z

zi

dz3

∫ z3

zi

dz2

∫ z2

zi

dz1

{[[
Ĥ (z3) ,Ĥ (z2)

]
,Ĥ (z1)

]
+
[[

Ĥ (z1) ,Ĥ (z2)
]
,Ĥ (z3)

]}
+ · · · . (6.180)

Going to the interaction picture, let us define

ρ̂i(z) = Û†
0 (z,zi) ρ̂(z)Û0 (z,zi) , (6.181)

with

Û0 (z,zi) = P

(
e−

i
h̄
∫ z

zi
dzĤ0(z)

)
. (6.182)

It follows that

ih̄
∂ ρ̂i(z)

∂ z
=

(
ih̄

∂

∂ z
Û†

0 (z,zi)

)
ρ̂(z)Û0 (z,zi)+Û†

0 (z,zi)

(
ih̄

∂ ρ̂(z)
∂ z

)
Û0 (z,zi)

+Û†
0 (z,zi) ρ̂(z)

(
ih̄

∂

∂ z
Û0 (z,zi)

)
=−Û†

0 (z,zi)Ĥ0(z)ρ̂(z)Û0 (z,zi)+Û†
0 (z,zi)

[
Ĥ (z) , ρ̂(z)

]
Û0 (z,zi)

+Û†
0 (z,zi) ρ̂(z)Ĥ0(z)Û0 (z,zi)

= Û†
0 (z,zi)

{(
Ĥ (z)−Ĥ0(z)

)
ρ̂(z)− ρ̂(z)

(
Ĥ (z)−Ĥ0(z)

)}
= Û†

0 (z,zi)
[
Ĥ ′(z) , ρ̂(z)

]
Û0 (z,zi)

=
[
Ĥ ′

i (z) , ρ̂i(z)
]

(6.183)

where
Ĥ ′

i (z) = Û†
0 (z,zi)Ĥ

′(z)Û0 (z,zi) . (6.184)
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Formally integrating (6.183), the z-evolution equation for ρ̂i(z), we get

ρ̂i(z) = Û ′i (z,zi) ρ̂i (zi)Û ′†i (z,zi) , (6.185)

where

Û ′i (z,zi) = P

(
e−

i
h̄
∫ z

zi
dz Ĥ ′

i (z)
)

= P

(
e−

i
h̄
∫ z

zi
dz
(

Û†
0 (z,zi)Ĥ

′(z)Û0(z,zi)
))

. (6.186)

From (6.181), we find that
ρ̂i (zi) = ρ̂ (zi) , (6.187)

and hence the equation (6.185) becomes

ρ̂i(z) = Û ′i (z,zi) ρ̂ (zi)Û ′†i (z,zi) . (6.188)

From (6.181), we have

ρ̂(z) = Û0 (z,zi) ρ̂i(z)Û
†
0 (z,zi) . (6.189)

Thus,
ρ̂(z) = Û0 (z,zi)Û ′i (z,zi) ρ̂ (zi)Û ′†i (z,zi)Û†

0 (z,zi) . (6.190)

The transfer maps for the observables of the system are to be calculated using the
formula for the average〈

Ô
〉
(z) = Tr

(
ρ̂(z)Ô

)
= Tr

(
Û0 (z,zi)Û ′i (z,zi) ρ̂ (zi)Û ′†i (z,zi)Û†

0 (z,zi) Ô
)

= Tr
[
ρ̂ (zi)

(
Û ′†i (z,zi)Û†

0 (z,zi) ÔÛ0 (z,zi)Û ′i (z,zi)
)]

. (6.191)

Note that in the field-free regions (z < z`, z > zr) and within the lens region
(z` ≤ z≤ zr), the Hamiltonian Ĥ (z) is z-independent. In view of this and the semi-
group property of the z-evolution operator Û , we have

Û0 (z,zi) = Û0 (z,zr)Û0 (zr,z`)Û0 (z`,zi)

= exp
{
− i

h̄
(z− zr)

(
−p0 +

p̂2
⊥

2p0

)}
× exp

{
− i

h̄
(zr− z`)

(
−p0 +

p̂2
⊥

2p0
− 1

2
p0Kn

(
x2− y2))}

× exp
{
− i

h̄
(z`− zi)

(
−p0 +

p̂2
⊥

2p0

)}
,

Û ′i (z,zi) = Û ′i (z,zr)Û ′i (zr,z`)Û ′i (z`,zi)
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= exp
{
−
(

iηn p0

h̄w

)
Û†

0 (z,zi)(xSy + ySx)Û0 (z,zi)

}
= exp

{
− iηn

h̄

[(
1

w
√

Kn
sinh

(
w
√

Kn
)

p0x

+
1

wKn

(
cosh

(
w
√

Kn
)
−1
)

p̂x

)
Sy

+

(
1

w
√

Kn
sin
(
w
√

Kn
)

p0y

+
1

wKn

(
cos
(
w
√

Kn
)
−1
)

p̂y

)
Sx

]}
. (6.192)

It is straightforward to calculate the required transfer maps using (6.191) and (6.192).
For the transverse position coordinates and momentum components, we get


〈x〉(z)

1
p0
〈p̂x〉(z)
〈y〉(z)

1
p0

〈
p̂y
〉
(z)

≈


T (X)
11 T (X)

12 0 0
T (X)

21 T (X)
22 0 0

0 0 T (Y )
11 T (Y )

12

0 0 T (Y )
21 T (Y )

22





〈x〉(zi)
1
p0
〈p̂x〉(zi)
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√
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(
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√
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(
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(
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√

Kn
)
−1
)
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√

Kn
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(
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√

Kn
)
〈Sx〉(zi)


 , (6.193)

where (
T (X)

11 T (X)
12

T (X)
21 T (X)

22

)
=

(
1 z− zr
0 1

)

×

(
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(
w
√

Kn
) 1√

Kn
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(
w
√
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√
Kn sinh
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w
√

Kn
)
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w
√

Kn
) )

×
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0 1
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11 T (Y )
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T (Y )
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=
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0 1
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√
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) 1√
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√
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−
√
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w
√

Kn
)
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(
w
√

Kn
) )

×
(

1 z`− zi
0 1

)
. (6.194)
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For the components of spin, we have

〈Sx〉(z)≈ 〈Sx〉(zi)+ p0ηn

(
1

w
√

Kn
sinh

(
w
√

Kn
)
〈xSz〉(zi)

+
1

p0wKn

(
cosh

(
w
√

Kn
)
−1
)
〈p̂xSz〉(zi)

)
,

〈
Sy
〉
(z)≈

〈
Sy
〉
(zi)− p0ηn

(
1

w
√

Kn
sin
(
w
√

Kn
)
〈ySz〉(zi)

− 1
p0wKn

(
cos
(
w
√

Kn
)
−1
)〈

p̂ySz
〉
(zi)

)
,

〈Sz〉(z)≈ 〈Sz〉(zi)− p0ηn

(
1

w
√

Kn
sinh

(
w
√

Kn
)
〈xSx〉(zi)

− 1
w
√

Kn
sin
(
w
√

Kn
)〈

ySy
〉
(zi)

+
1

p0wKn

(
cosh

(
w
√

Kn
)
−1
)
〈p̂xSx〉(zi)

+
1

p0wKn

(
cos
(
w
√

Kn
)
−1
)〈

p̂ySy
〉
(zi)

)
. (6.195)

Thus we have derived the transfer maps for the quantum averages of transverse
position and momentum components, and the spin components, for a monoen-
ergetic paraxial beam of Dirac particles propagating through a normal magnetic
quadrupole lens with a straight optic axis. It is evident that the transfer maps for
position and momentum components include the Stern–Gerlach effect. The lens
is focusing (defocusing) in the yz-plane and defocusing (focusing) in the xz-plane
when Kn > 0 (Kn < 0). The transverse Stern–Gerlach kicks to the trajectory slope(

δ

〈
~̂p⊥
〉
/p0 ∼ ηnh̄

)
are seen to disappear at relativistic energies, varying like

∼ 1/γ . At nonrelativistic energies, with γ ∼ 1, the kicks are ∼ wmKnµ/p2
0, where µ

is the total magnetic moment. If the spin of the particle is ignored, the transfer maps
for transverse position and momentum components become the classical transfer
maps. The transfer maps for the averages of the spin components, or the components
of the polarization vector, obtained above correspond to the quantum beam optical
version of the Thomas–BMT equation for spin dynamics in the paraxial approxima-
tion and are linear in the polarization components only when there is no spin-space
correlation, i.e., for the classical results to hold, one should have 〈xSz〉 = 〈x〉〈Sz〉,
〈ySz〉= 〈y〉〈Sz〉,〈p̂xSz〉= 〈p̂x〉〈Sz〉, etc.

6.1.2.4 Phase Space and Spin Transfer Maps for
a Skew Magnetic Quadrupole

Propagation of a paraxial beam of Dirac particles with anomalous magnetic moment
through a skew magnetic quadrupole and the corresponding phase space and spin
transfer maps have been discussed by Khan [92]. A skew magnetic quadrupole is
associated with the magnetic field
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~B(~r) = (−Qsx,Qsy,0) , (6.196)

corresponding to the vector potential

~A(~r) = (0,0,−Qsxy) , (6.197)

in which Qs is nonzero in the quadrupole region (z` ≤ z≤ zr) and zero in the field-
free outside region. For the propagation of a paraxial beam of Dirac particles with
anomalous magnetic moment, the quantum accelerator optical Hamiltonian of the
skew magnetic quadrupole will be, as seen from (6.153), with w = zr − z`, Ks =
qQs/p0, and ηs = q(1+ γa)Qsw/p2

0,

Ĥs(z) =


−p0 +

p̂2
⊥

2p0
, for z < z` and z > zr,

−p0 +
p̂2
⊥

2p0
+ p0Ksxy

+ηs p0
w (xSx− ySy) , for z` ≤ z≤ zr.

(6.198)

Now, let us make the following transformations:


x
p̂x
y
p̂y

=
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 1




x′

p̂′x
y′

p̂′y

 ,

(
Sx
Sy

)
=

1√
2

(
1 1
−1 1

)(
S′x
S′y

)
. (6.199)

Then, the Hamiltonian Ĥs(z) is seen to become

Ĥs(z) =


−p0 +

p̂′2⊥
2p0

, for z < z` and z > zr,

−p0 +
p̂′2⊥
2p0
− 1

2 p0Ks

(
x′2− y′2

)
+ηs p0

w

(
y′S′x + x′S′y

)
, for z` ≤ z≤ zr.

, (6.200)

same as for a normal magnetic quadrupole (6.175) with Qs, Ks, and ηs instead
of Qn, Kn, and ηn, respectively, and (x,y), (p̂x, p̂y), and (Sx,Sy) replaced
by (x′,y′),

(
p̂′x, p̂′y

)
, and

(
S′x,S

′
y
)
, respectively. Note that Sz is unchanged and(

σ ′x = 2S′x/h̄,σ ′y = 2S′y/h̄,σz = 2Sz/h̄
)

obey the same algebra as (σx,σy,σz), i.e.,

σ
′
x

2
= I, σ

′
y

2
= I, σ

′
xσ
′
y =−σ

′
yσ
′
x,

σzσ
′
x =−σ

′
xσz, σzσ

′
y =−σ

′
yσz. (6.201)
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This shows that the transfer maps for
(
〈x′〉 ,〈p̂′x〉/p0,〈y′〉 ,

〈
p̂′y
〉
/p0
)
, and

(
〈S′x〉 ,

〈
S′y
〉
,

〈Sz〉) will be the same as in (6.193 and 6.194) and (6.195), respectively, except for
the replacement:

(
〈x〉 ,〈p̂x〉/p0,〈y〉 ,

〈
p̂y
〉
/p0
)
−→

(
〈x′〉 ,〈p̂′x〉/p0,〈y′〉 ,

〈
p̂′y
〉
/p0
)
,

(Sx,Sy) −→
(
S′x,S

′
y
)
, Qn −→ Qs, Kn −→ Ks, ηn −→ ηs. Once the transfer maps

are obtained in terms of
(
〈x′〉 ,〈p̂′x〉/p0,〈y′〉 ,

〈
p̂′y
〉
/p0
)
, and

(
S′x,S

′
y,Sz

)
, the required

transfer maps for
(
〈x〉 ,〈p̂x〉/p0,〈y〉 ,

〈
p̂y
〉
/p0
)
, and (Sx,Sy,Sz) can be obtained using

the inverse of the transformations (6.199). The resulting transfer maps are as follows:
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(6.202)

and
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(6.203)
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where

Tsq (z,zi) =


1 z− zr 0 0
0 1 0 0
0 0 1 z− zr
0 0 0 1



× 1
2


C+ 1√

Ks
S+ C− 1√

Ks
S−

−
√

KsS− C+ −
√

KsS+ C−

C− 1√
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S− C+ 1√
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S+

−
√

KsS+ C− −
√

KsS− C+



×


1 z`− zi 0 0
0 1 0 0
0 0 1 z`− zi
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 , (6.204)

and

C± = cos(w
√

Ks)± cosh(w
√

Ks),

S± = sin(w
√

Ks)± sinh(w
√

Ks). (6.205)

6.2 NONRELATIVISTIC QUANTUM CHARGED PARTICLE
BEAM OPTICS: SPIN-1

2 PARTICLES

The nonrelativistic Schrödinger–Pauli equation for a spin- 1
2 particle of charge q and

mass m moving in the time-independent electromagnetic field of an optical system is

ih̄
∂Ψ(~r, t)

∂ t
=

{[
1

2m

(
~̂p−q~A(~r)

)2
+qφ (~r)

]
I−µ~σ ·~B

}
Ψ(~r, t) , (6.206)

where ~A(~r) and φ (~r) are the magnetic vector potential and the electric scalar poten-
tial of the field, Ψ(~r, t) is the two-component wave function of the particle, and µ is
the total magnetic moment of the particle. Let us consider a particle of a nonrelativis-
tic monoenergetic quasiparaxial beam with total energy E= p2

0/2m, where p0 is the
design momentum with which it enters the optical system from the free space outside
and |~p0⊥| � p0. The total energy E is conserved when the beam propagates through
any optical system with time-independent electromagnetic field we are considering.
Choosing the wave function of the particle as

Ψ(~r, t) = e−iEt/h̄
ψ (~r) , (6.207)

we get the time-independent Schrödinger–Pauli equation obeyed by ψ (~r⊥,z):{[
π̂2

2m
+qφ (~r)

]
I−µ~σ ·~B

}
ψ (~r) = Eψ (~r) , (6.208)
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where ~̂π = ~̂p−q~A. Multiplying the equation on both sides by 2m, taking

2mE= p2
0, 2mqφ = p̃2, (6.209)

and rearranging the terms, we have

π̂
2
z ψ =

(
p2

0− p̃2− π̂
2
⊥+2mµ~σ ·~B

)
ψ, (6.210)

in which we have dropped the identity matrix I as to be understood. Note that
this equation is identical, except for the additional term 2mµ~σ · ~B and ψ being a
two-component wave function, to the time-independent nonrelativistic Schrödinger
equation (5.298), which is the starting point for our derivation of the nonrelativis-
tic quantum beam optical Hamiltonian (5.299). Now, starting with (6.210), we can
follow the same procedure, going through the Feshbach–Villars-like formalism and
the Foldy–Wouthuysen-like transformations. So, let us introduce a four-component
wave function (

ψ
1

ψ
2

)
=

(
ψ

π̂z
p0

ψ

)
. (6.211)

Then, we can write (6.210) equivalently as

π̂z
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1
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=
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1
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ψ

2

)
. (6.212)

Now, let (
ψ

+
ψ−

)
= M

(
ψ

1
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2

)
=
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1 1
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1
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)

=
1
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)
. (6.213)

Then,
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(
ψ

+
ψ−

)
=
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(
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∂
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)(
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+
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(6.214)
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Rearranging this equation, we get

ih̄
∂

∂ z

(
ψ

+
ψ−

)
= Ĥ

(
ψ

+
ψ−

)
,

Ĥ=−p0β + Ê + Ô,

Ê =−qAzI+
1

2p0

[
σz⊗

(
π̂

2
⊥+ p̃2−2mµ~σ ·~B

)]
,

Ô =
i

2p0

[
σy⊗

(
π̂

2
⊥+ p̃2−2mµ~σ ·~B

)]
. (6.215)

Note that Ĥ has the same structure as the Dirac equation, with the leading term−p0β ,
an even term Ê which does not couple ψ

+
and ψ− and an odd term Ô which cou-

ples ψ
+

and ψ−. Further, the odd term anticommutes with β . It is also clear that the
lower pair of components ψ− will be small compared to the upper pair of compo-
nents ψ

+
. Foldy–Wouthuysen-like transformations will further make the lower pair

of components smaller compared to the upper pair of components. If we stop with
one Foldy–Wouthuysen-like transformation, we can get the quantum beam optical
Hamiltonian up to paraxial approximation. If we do this following the same proce-
dure as done earlier, and approximate the resulting four-component wave function
by a two-component wave function consisting of only the upper pair of components,
we get the nonrelativistic quantum beam optical Hamiltonian for a spin- 1

2 particle,
in the paraxial approximation, as

Ĥo,NR =

[
−p0−qAz +

1
2p0

(
π̂

2
⊥+ p̃2)] I− mµ

p0
~σ ·~B

=

(
−p0−qAz +

π̂2
⊥

2p0
+

mqφ

p0

)
I− mµ

p0
~σ ·~B. (6.216)

Thus, the nonrelativistic quantum beam optical z-evolution equation for the two-
component wave function of a spin- 1

2 particle is, in the paraxial approximation,

ıh̄
∂ψ (~r⊥,z)

∂ z
=

[(
−p0−qAz +

π̂2
⊥

2p0
+

mqφ

p0

)
I− mµ

p0
~σ ·~B

]
ψ (~r⊥,z) , (6.217)

to which the relativistic paraxial quantum beam optical equation (6.153) reduces
while taking the nonrelativistic limit

γ −→ 1, p0 −→ p0, (6.218)

and noting that

q(1+a)
p0

~B ·~S =
mq(1+a)h̄

2mp0
~σ ·~B =

m
p0

(
qgh̄
4m

)
~σ ·~B =

mµ

p0
~σ ·~B. (6.219)

This shows that one can get the nonrelativistic expressions and formulae by taking
the nonrelativistic limit of the results derived from the quantum beam optical Dirac
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equation exactly like in the scalar theory based on the Klein–Gordon equation. How-
ever, it is not possible to get the relativistic quantum beam optical equation (6.153)
by replacing m by γm and p0 by p0 in the nonrelativistic quantum beam optical
equation (6.217). Thus, it should be noted that converting the expressions and for-
mulae derived in the nonrelativistic theory to relativistic expressions and formulae
by replacing the rest mass m by γm, the so-called relativistic mass, as has been the
common practice in electron optics, is misleading in the spinor theory of quantum
charged particle beam optics.
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7 Concluding Remarks and
Outlook on Further
Development of Quantum
Charged Particle
Beam Optics

In conclusion, we have to make several remarks. Analogy between optics and
mechanics and its role in progress of physics is well known (for historical details see,
e.g., Hawkes and Kasper [70], Lakshminarayanan, Ghatak, and Thyagarajan [125],
Khan [108, 113, 115]). In the early days of electron optics, analogy with light optics
provided much guidance. In the development of the formalism of spinor theory of
charged particle beam optics presented here, the inspiration came from the work
of Sudarshan, Simon, and Mukunda in light optics (see Sudarshan, Simon, and
Mukunda [175], Mukunda, Simon, and Sudarshan [137, 138], Simon, Sudarshan,
and Mukunda [170, 171], Khan [120]). The formalism of quantum charged parti-
cle beam optics in turn has led to a similar approach, called quantum methodology,
to the Helmholtz scalar and the Maxwell vector optics. In analogy with the deriva-
tion of the scalar theory of quantum charged particle beam optics starting with the
Klein–Gordon equation, scalar theory of light beam optics is derived starting with
the Helmholtz equation and using the Feshbach–Villars-like form and the Foldy–
Wouthuysen-like transformations. In analogy with the derivation of the spinor theory
of quantum charged particle beam optics starting with the Dirac equation, the vec-
tor theory of light beam optics, including polarization, is derived starting with the
Maxwell equations expressed in a matrix form and using the Foldy–Wouthuysen-
like transformations. This methodology leads to scalar and vector theories of light
beam optics expressed as paraxial approximation followed by nonparaxial aberra-
tions (for details, see Khan, Jagannathan, and Simon [100], and Khan [101, 102,
103, 104, 105, 106, 107, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119]).

It is certain that at some point in future, quantum mechanics would become impor-
tant in accelerator beam optics. For example, Hill has discussed in [76] how quantum
mechanics places limits on the achievable transverse beam spot sizes in accelerators,
Kabel has considered in [89] how the Pauli exclusion principle will limit the mini-
mum achievable emittance for a beam of fermions in a circular accelerator, Venturini
and Ruth have suggested in [185] a framework to compute the wave function of a
single charged particle confined to a magnetic lattice transport line or storage ring,
Chao and Nash have examined in [19] the possible measurable macroscopic effect

335
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of quantum mechanics on beams through its echo effect using the Wigner phase
space distribution function, and Heifets and Yan have pointed out in [73] that quan-
tum uncertainties affect substantially the classical results of tracking for trajectories
close to the separatrix and hence the quantum maps can be useful in quick findings
of the nonlinear resonances. It is clear that several quantum mechanical problems
related to the beam optics, particularly the nonlinear beam optics, will have to be
handled in the future particle accelerators built to explore particle physics beyond
the standard model (For an overview of the currently envisaged landscape of future
particle accelerators, see, e.g., Syphers and Chattopadhyay [176]).

In the field of small-scale electron beam devices, electron beam lithography
is the primary tool in micro- and nanofabrications, particularly in the fabrication
of semiconductor devices and mesoscopic devices. In electron beam lithography
for nanoscale fabrication, it is required to generate high-resolution electron beams
to facilitate high-speed drawing of fine patterns on material substrates (see, e.g.,
Manfrinato et al. [132], Wu, Makiuchi, and Chen [193]). Though classical elec-
tron beam optics may be successful in designing the beam optical systems of the
present-day electron beam lithography, future advances in the technology would
certainly require the quantum theory of electron beam optics. Advancements in
high-resolution electron microscopy take place using various aspects of quantum
mechanics. Scanning tunneling microscopy was invented using the quantum tunnel-
ing effect to image directly the atoms of a sample (see, e.g., Chen [21]). Recently,
Kruit et al. [123] had a proposal to implement the suggestion of the so-called quan-
tum electron microscope (Putnam and Yanik [153]) that would use the principle of
interaction-free measurement based on the quantum Zeno effect (Misra and Sudar-
shan [133]). Another suggestion is electron microscopy based on quantum entangle-
ment (Okamoto and Nagatani [140]). Highest ever resolution in transmission elec-
tron microscopy has been reported by Jiang et al. [87] using ptychographic analysis
of the diffraction patterns of low-energy electrons by a two-dimensional specimen.
It should be emphasized that the formalism of quantum charged particle beam optics
presented here might not be related to the quantum aspects of the operational prin-
ciples of such novel electron microscopes, but will benefit the designing of electron
beam optical elements like the electron lenses used in the system.

It may be noted that the quantum charged particle beam optics presented here
is only at a preliminary stage of development with the quantum theory of several
concepts and topics of classical charged particle beam dynamics, particularly the
accelerator beam dynamics, waiting to be developed. The single most important task
would be to develop the quantum theory of particle acceleration and the longitudinal
beam dynamics and integrate it with the formalism of quantum beam optics to help
the treatment of energy spread, energy loss, etc. To this end, one has to find the
quantum mechanical analog of the classical six-dimensional phase space in which
the relative energy deviation and the longitudinal distance relative to the reference
particle are taken as the longitudinal phase space coordinates in addition to the four
transverse phase space coordinates. Next, one has to extend the theory beyond the
single particle dynamics with the generalization of the concepts like emittances and
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the Twiss (or Courant-Snyder) parameters. In this respect, phenomenological models
of quantum theory of charged particle beam dynamics based on Schrödinger-like
equations, often with the Planck constant replaced by an emittance, could provide
some guidance. Fedele et al. have developed extensively such quantum-like theories
of charged particle beam physics, called thermal wave model and quantum wave
model, to deal with different situations, including collective effects, space charge,
etc. (see, e.g., Fedele and Miele [40], Fedele and Shukla [41], Fedele et al. [42],
Fedele, Man’ko, and Man’ko [43], Fedele et al. [45, 46, 47] and references therein).
A model similar to the thermal wave model of Fedele et al. has been considered also
by Dattoli et al. [30]. Quantum-like approach has been used to study the phenomenon
of halo formation in accelerator beams by Pusterla [152], and Khan and Pusterla [94,
96, 97, 98]. Similarly, a semiclassical stochastic model for the collective dynamics of
charged particle beams has been developed by Petroni et al. [143]. May be it will be
profitable to formulate the quantum charged particle beam optics using the Wigner
function (see, e.g., Chao and Nash [19], Dragt and Habib [37], Jagannathan and
Khan [81], Fedele, Man’ko, and Man’ko [44]). Heinemann and Barber have studied
the dynamics of spin- 1

2 polarized beams using the Wigner function in the context of
accelerator physics (see [75]; see also Mitra and Ramanathan [134] for a discussion
of the Wigner function for the Klein–Gordon and Dirac particles).

In fine, we have presented the elements of Quantum Charged Particle Beam
Optics showing why and how classical charged particle beam optics works very
successfully in the design and operation of charged particle beam devices from
low-energy electron microscopes to high-energy particle accelerators. In future,
developments in technology would certainly require quantum theory for the purpose
of design and operation of various kinds of charged particle beam devices. We hope
that the formalism of quantum charged particle beam optics presented here would
be the basis for the development of the quantum theory of future charged particle
beam devices.
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théorie de l’electron de Dirac, C. R. Acad. Sci. Paris, 246 (1958) 388–390.

149. Phan-Van-Loc, Principes de Huygens en theorie de l’electron de Dirac, (Thesis,
Toulouse, 1960).

150. Pozzi, G., Particles and waves in electron optics and microscopy, in Advances in Imaging
and Electron Physics, Vol. 194, Ed. P. W. Hawkes, (Academic Press, New York, 2016)
pp. 1–234.

151. Pryce, M. H. L., The mass-centre in the restricted theory of relativity and its connexion
with the quantum theory of elementary particles, Proc. Roy. Soc. Ser. A, 195 (1948)
62–81.

152. Pusterla, M., Quantum-like approach to beam dynamics: Application to the LHC and
HIDIF projects, in Proceedings of the 18th Advanced ICFA Beam Dynamics Work-
shop on Quantum Aspects of Beam Physics—2000, Italy, Ed. P. Chen, (World Scientific,
Singapore, 2002), pp. 561–567.

153. Putnam, W. P. and Yanik, M. F., Noninvasive electron microscopy with interaction-free
quantum measurements, Phys. Rev. A 80 (2009) 040902.

154. Radlic̆ka, T., Lie algebraic methods in charged particle optics, in Advances in Imaging
and Electron Physics, Vol. 151, Ed. P.W. Hawkes, (Academic Press, New York, 2008)
pp. 241–362.

155. Ramakrishnan, A., L-Matrix Theory or the Grammar of Dirac Matrices, (Tata-McGraw
Hill, New Delhi, 1972).

156. Rangarajan, G., Dragt, A. J., and Neri, F., Solvable map representation of a nonlinear
symplectic map, Part. Accel., 28 (1990) 119–124.

157. Rangarajan, G. and Sachidanand, M., Spherical aberrations and its correction using Lie
algebraic methods, Pramana, 49(6) (1997) 635–643.

158. Reiser, M., Theory and Design of Charged Particle Beams, (2nd Edition, Wiley,
New York, 2008).

159. Rosenzweig, J. B., Fundamentals of Beam Physics, (Oxford University Press, Oxford,
2003).

160. Rougemaille, N. and Schmid, A., Magnetic imaging with spin-polarized low-energy
electron microscopy, Europ. Phys. J.: Appl. Phys., 50(2) (2010) 20101.
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