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Preface 

Once upon a time I wanted to be a chemist. I guess almost everybody 
goes through a lot of different imaginings during childhood, and I suppose 
society has a right to worry about some of them. But if you are like I was, 
a fair amount of your energy goes into imagining how you might someday 
make your living, and whether or not you will ever find something you can 
truly call your vocation. 

Now, vocation is not just some three syllable word for "job". It has 
connotations of what the clergy name a "calling", as in, "Have you felt 
called to the service of the Lord?" A lucky few people hear such a calling, 
although most hear faint siren voices, luring them toward ends that neither 
compel nor provide a living. You can hear these voices too, just practice 
your favorite hobby or sport for several days in a row and see if you can't 
hear a whisper or two telling you to make this your passion and livelihood. 
Well, anyway, all this is to say that once when I was still in high school I 
thought maybe chemistry was calling me in this way. 

We had just finished studying some fairly difficult stuff, I no longer 
remember what. I was feeling on top of the material and for no real reason 
sought out the science section of the town library. In it, I found two books, 
both entitled "The Hydrogen Atom". If you are reading this story, you are 
likely to know that the hydrogen atom is lesson number one for high school 
chemistry students. No atom is simpler, just one little proton and one even 
littler electron account for everything the little guy does. And here, right in 
front of me, are two books on just this one atom, the first one truly huge, 
as big as our whole chemistry textbook, and the second one about half that 
size. I took the small one, under the very mistaken impression that small 
equals simple, and sat down for a while to read. The first very noticeable 
thing about this book was the absence of the following picture: 
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You must know that this picture is required, by law, to precede every 
discussion of the hydrogen atom. And the discussion always starts, "Now, 
this (pointing) is a proton and this is an electron, and the little one goes 
around the big one, just as Rutherford figured out in 210 B.C. and this is the 
gospel truth!" Now, may be you can't tell that I am trying to make sport of 
science textbooks, so here I let you in on my little secret. The minute any­
body tries to tell you that some scientific explanation for something is the 
truth, you have to know you are in the presence of someone who has written, 
is writing, or is about to write a textbook. At the moment in my life when 
I opened that book on the hydrogen atom in the San Mateo public library, 
textbooks were all I had ever seen. And this new book did not resemble any 
of them. It had no pictures of genteel electrons orbiting politely stationary 
nuclei, it made no mention of Rutherford or Bohr; it made no reference to 
anything in my familiar old chemistry textbook. The sole intersection of 
that book and my understanding lay in the use of the word "hydrogen" 
and the ubiquitous display of derivatives of various functions, everywhere, 
standing in bizarre relationships to one another. In fact, the little book on 
the hydrogen atom seemed to be exactly the same as the big book on the 
hydrogen atom, except that all of the words had been removed. 

Some time later that same year I found out that I had been in the 
presence of quantum mechanics, a way to look at small-scale phenomena in 
terms of quantities that they possess, such as energy, momentum, location. 
These functions describing the object stand in for the actual object itself, 
and all relationships among objects are newly expressed by relationships 
between the functions that describe them. I will dwell more on this later, 
I only mention it now to explain the presence of all those derivatives and 
equations that made up most of the text of the book I was holding in my 
hands. 
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Well, physics is not my vocation and neither is chemistry, although the 
mysterious book on the hydrogen atom did motivate me to enroll in and 
then drop out of a college quantum mechanics course. I enrolled in it to 
understand the book I had found and I dropped out of it because it began, 
more or less, with "this is Schrodinger's equation", providing none of the 
connection I sought between Mr. Schrodinger and poor old Rutherford and 
Bohr. Meanwhile, I became a mathematician. And because of that little 
book, for the last twenty years I have made it my hobby to piece together 
the story of the hydrogen atom, how it grew from a simple little sun-plus-
planet into the set of equations that Schrodinger gave, and how the solution 
to those equations answers questions posed by Bohr himself. 

This little book is my gift to myself. It is the book I wish I had found 
next to those two others when I went to the library, so that I could have 
reached, with my still limited knowledge of physics and mathematics, the 
place where the other books began. This book is for you, too, especially if 
you are taking a physics or chemistry course now. In it, you will find some 
glue to help patch up your picture of the universe, especially the very small 
things in it. 

D. I. Wallace 





Contents 

Preface ix 

Chap te r 1 Rutherford , Bohr and Balmer 1 

Chap te r 2 Some Impor t an t Exper iments 7 

Chap te r 3 Early Q u a n t u m Mechanics: The Atom 15 

Chap te r 4 New Assumpt ions 19 

Chap te r 5 Zetetics 23 

Chap te r 6 Classical Waves 31 

C h a p t e r 7 Part icle-in-a-Box 39 

Chap te r 8 Exploring the Analogy 45 

Chap te r 9 Dr . Schrodinger, I P resume? 49 

Chap te r 10 The Q u a n t u m N u m b e r s 53 

Chap te r 11 Pleased to Meet you, Dr . Schur 59 

Chap te r 12 The Spherical Harmonics 65 

Chap te r 13 More French Mathemat ic ians 71 

Chap te r 14 Reprise: The Q u a n t u m N u m b e r s 77 

Chap te r 15 Chemis t ry and Bonding 81 



xiv The Bell That Rings Light 

Chapter 16 

Chapter 17 

Chapter 18 

Chapter 19 

Chapter 20 

Chapter 21 

Chapter 22 

Index 

Valence Shell Electron Pair 

The Shape of an Orbital 

Molecular Orbital Theory 

Valence Bond Theory 

Other Kinds of Bonding 

Case Study: Dye Molecules 

Afterword 

Repulsion 89 

93 

103 

117 

123 

129 

135 

137 



CHAPTER 1 

Rutherford, Bohr and Balmer 

The notion that the material world is composed of "atoms" is an old one. 
The first record we have of it is the version held by Democritus, in opposi­
tion to Aristotle's world picture. It never dominated the scientific imagina­
tion until well after Galileo invented the telescope. Seeing the Milky Way 
dissolve into a myriad of individual stars did something to the scientific 
imagination of the Renaissance that has yet to be completely undone. In 
short, if the universe at large is filled with distinct stars wheeling about, 
then why shouldn't the universe in miniature behave thus? And suddenly 
Democritus was no longer about something preposterous. Isaac Newton 
then gave the world some laws of physics which could conceivably apply 
to these little objects and, behold, a new science was born. If you think I 
am oversimplifying all of scientific history, you are right. But just remem­
ber how far Euclid got with only three objects (point, line, plane) and five 
laws to govern them. Well, you can also go pretty far with just atoms and 
Newton's laws of motion. 

What you cannot do with these ingredients, however, is explain chemical 
reactions. When baking soda mixes with vinegar, the outcome supercedes 
anything that can be described by a bunch of elastic collisions. Newton's 
laws, in other words, are adequate for describing what happens when you 
pour water into water, but not what happens when lye, for example, meets 
vinegar. This is why, while physics was enjoying a flowering of ideas in the 
late Rennaissance, chemistry was still all about finding the philosopher's 
stone and had more in common with magic than with what we now dis­
tinguish by the name of science. Once the idea of the atom was firmly 
ensconced in the imagination, however, chemists were able to base a fruit­
ful approach on the simple assumption that atoms of different substances 
behaved differently and hence had different structures from one another. 

1 
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So the indivisible atom became just divisible enough to share electrons. 
Protons were big and captured the essential nature of the atom, such as 
whether it was a hydrogen atom or an oxygen atom. Electrons were small 
and could be lost or gained during chemical reaction. In fact, a chemical 
reaction itself came to be defined in terms of electron transfer among atoms. 
This gain and loss of electrons didn't much affect the weight of the atom, 
nor did it change it into another substance. Atomists everywhere heaved a 
sigh of relief over this. Democritus slept more easily in his grave. Of course, 
to keep an atom in a neutral state, that is a chemically inactive state, it is 
necessary to balance various forces, so protons and electrons are supposed 
to be equal in number and to balance each other out exactly. Of course, 
the atomic weights require something different to happen, so the neutral 
neutron has to go along for the ride. 

With all of this basic equipment in place, chemists were able to figure 
out rules for a lot of different kinds of chemical reactions. The problem they 
were tackling looked something like this: Imagine you can see the scorecards 
for two teams playing some sport you have never seen before. Looking at 
the scores for a large number of games, you begin to see numerical patterns 
appear. From these patterns, deduce the rules of the game being played. 

It should be obvious that, in a situation like this, there must be multiple 
"right" answers. For example, if you were staring at a list of final scores for a 
basketball game, it would be hard to deduce from it how many players were 
on each team. It would be very hard not to rely on all sorts of longstanding 
assumptions and peripheral evidence when guessing that the scores came 
from the familiar game of basketball. And rely on such assumptions was 
exactly what those chemists did. If the universe at large consists of planets 
revolving around stars, then in miniature it should do the same. Electrons 
should revolve around the nucleus of protons and neutrons. The nucleus 
should never be disturbed. Certain numbers of electrons fit in each orbit. 
The outside orbits lose or gain electrons first, according to simple mathe­
matical rules with divinely mandated integer answers. Now, it is just a mat­
ter of working out which numbers work to predict the observed reactions. 

Should it surprise us that the model these fellows concocted worked so 
remarkably well to explain so many chemical phenomena? In fact, it worked 
to such an extent that it is still being taught to high school students today, 
a hundred years later. It had only a few parameters to adjust, namely 
number and capacity of orbits of electrons and rules for losing, gaining and 
sharing of outside electrons. Yet it explained, in the end, a virtual infinity of 
chemical reactions of wide ranging variety. No wonder that the picture Bohr 
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proposed of an atom remains even today the one that leaps immediately to 
mind for anybody who survived normal high school chemistry. 

But eventually a fellow named Balmer found some interesting numerical 
properties of an experiment that was hard to explain in terms of this model. 
The experiment is also described in every elementary chemistry book in the 
known universe and I'm going to describe it again right now, just in case 
you forgot about it. You put hydrogen (let us say) atoms in a dark location 
and then shoot energy (light? radiation of another sort? electric current, 
the story goes o n . . . ) at the atom to "excite" it. Remember, this business 
of exciting the electrons means that they gain energy and go up to an 
orbit farther from the nucleus of the atom. The current repeatedly boosts 
the electron into an "excited" state, whereupon it decays back into its 
unexcited, "ground" state. The ongoing process of boost-and-decay results 
in emission of energy, whose frequency (or wavelength, a simple relation) 
distribution is shown in Fig. 1.1. 

Figure 1.1 represents what happens when the light emitted from the 
atom is passed through a prism. In graphical form, it is shown in Fig. 1.2. 

Only certain frequencies were emitted. For a given type of atom, always 
the same frequencies were present. Atoms of different substances had a char­
acteristic "spectrum", as it was called. Bohr explained this phenomenon in 
terms of his own model of the atom by saying that the orbits contain­
ing electrons occurred at discrete intervals, pictured as distances from the 
nucleus, and that electrons had to "jump" from one of these to the next 
in a more or less discontinuous fashion, so that the difference in energy 
required to promote the electron resulted in a discrete line appearing in the 
spectrum of the atom. 

Now, you may be sufficiently brainwashed by twentieth century non­
chalance to see absolutely no problem with this interpretation, but there 
are plenty of problems. For starters, the underlying assumption that the 
microscopic universe should mirror the macroscopic one must be set aside. 
After all, a planet does not go jumping willy-nilly from one orbit of its star 
to another that is far further away, no matter how the energy is added. 
What's it supposed to do, just disappear from one location and reappear in 
another? Secondly, this kind of upstart behavior is not something you get 
from Newton's laws, another of the system's underlying premises. And worst 
of all, without Newton's laws there is no physical mechanism to explain any 
behavior of any sort that an electron might have. So here, and not for the 
first or last time in the history of science, we have a model with great 
predictive value in some ways, but one whose incapacity to explain one 
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Figure 1.1. The Balmer spectrum of hydrogen. Note that only thre 
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Figure 1.2. The energy level (stationary state) changes within the hydrogen atom 
resulting in the spectrum shown in Fig. 1.1. 

Figure 1.3. Plot of the electron probability density as a function of the radial 
distance from the nucleus for a hydrogen Is orbital. The relative density of points 
at any value of distance reflects the likelihood of localizing the electron near that 
point. 

persistent phenomenon forces the scientific community to rethink the very 
premises on which the model was initially based. 

Later, quantum mechanics would offer a mathematical model of the 
energy states of the hydrogen atom and it would yield shapes like the one 
shown in Fig. 1.3, which, of course, blow to bits our beloved image of the 
hydrogen atom as a little star with a fast little planet circling it. 





CHAPTER 2 

Some Important Experiments 

The two fundamental concepts we need before we approach the idea of 
quantization are the nature of light and the nature of the electron. You 
might wonder why we would want to ponder over these topics, after all, 
light is a wave and electron is a particle. That is clear, or is it? In our 
macroscopic view of the world such assumptions would be correct, but we 
need to look more closely at the microscopic nature of things. The best way 
to consider these topics is through a brief review of scientific history. Much 
of what we are about to do depends on our understanding of Coulomb's 
Law, therefore, we'll begin with a review of that topic and then look at 
seminal experiments that defined the nature of light and matter. 

Coulomb's Law 

Coulomb's Law defines the forces between charged objects 

F=-C^, (2.1) 

where qi is a charge and r is the distance between the charges. The 
Coulombic potential energy is simply the negative integral of the force 

V jFdr = C ^ . (2.2) 

If Eq. 2.2 leaves you uncomfortable, your memory might be jogged by look­
ing at a graphical representation of the Coulombic potential energy as in 
Fig. 2.1. 

1.2 Electrons 

We "assume" that electrons are particles, but why is that? What experimen­
tal results led us to this assumption? We can trace history back to Faraday 

7 
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V 

like charges: repulsive 

unlike charges: attractive 

Figure 2.1. Graphical representation of the Coulombic potential as given in 
Eq. 2.2. 

and his electrolysis experiments. In these experiments, an ion "collided 
with" an electron and deposited metal at an electrode. Faraday's observa­
tions included the fact that the quantity of deposited material depended 
upon the current, which is given in units of Coulombs (units of charge) per 
unit time. Of course, one may relate the total charge to the number of elec­
trons. Therefore, the amount of material (atomic or molecular) deposited 
at the electrodes was a function of the number of electrons and the molar 
weight of the ion. 

Does our consideration of the nature of the electron really matter? Well, 
scientists in the late 19th century were concerned with "cathode rays" and 
their nature — were they waves? Not according to Faraday's results. The 
"rays" were actually beams of particles, electrons. Need more evidence? 
Look to the experiments of J.J. Thomson, as shown in the diagram below. 

Thomson observed that one could deflect the "rays" with either an 
electric or a magnetic field — can you do that to a wave? Of course not, that 
behavior is characteristic of matter. Thomson, from this experiment, found 
the ratio of the electron charge to its mass, e/m, by analysis of deflecting 
electric and restoring magnetic fields. The value of e/m was 1000 times 
greater than that for any known ion, so the question became: Was e large 
or was m small? 

The definitive experiment by R. A. Millikan proved that all elec­
tric charges were multiples of 1.6 x 10 _ 1 9C (the elementary charge, e). 
Therefore, he could calculate the mass of the electron. A schematic of his 
apparatus is shown in Fig. 2.3 and briefly described below. 

Oil droplets were charged by collisions with ions. In the absence of an 
additional potential, they fell under the force of gravity. In the presence 



Some Important Experiments 9 

deflector 
phosphor 

cathode 

anode 

] undcllcctcd path 

j deflected path 

Figure 2.2. The experimental apparatus of J.J. Thomson. Electrons are emitted 
by the cathode, accelerated by the anode and detected by a phosphor at the end 
of the tube. A magnetic or electric field may be applied and will deflect the beam 
of electrons. 

Vacuum bell jar 

Oil injector 

Figure 2.3. Schematic diagram of the Mullikan oil drop experiment. An atomizer 
injects charged oil droplets into the vacuum chamber where they fall under the 
influence of gravity. The application of an electric field alters the motion. 

of an external potential, the droplet acceleration was changed; from this 

change, m was calculated to be 9.1 x 1 0 - 2 8 g . The particle nature of elec­

trons was now well established: particles may be deflected and tracked. The 

electron was clearly a particle. 

Light 

Waves are characterized by frequency, u, wavelength, A, and amplitude. We 

can relate the frequency and wavelength of light from "wave mechanics", 

Xu = c, (2.3) 



10 The Bell That Rings Light 
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Figure 2.4. The spectrum of electromagnetic radiation. 

where c is the speed of light, ~3 x 108 ms _ 1 . We represent a portion of the 
spectrum above. Note that "frequency" (expressed in units of the wave-
number, cm - 1 , not Hertz, s_ 1) and wavelength increase in opposite 
directions. 

The nature of light was also obvious, at least in the late 1800's — it 
must be a wave, correct? Let's explore that characterization. We begin by 
looking at blackbody radiation. We consider the topic qualitatively and use 
the result of the exact mathematical manipulation. 

A blackbody is one that absorbs and emits all frequencies. Experimen­
tally, we accomplish this by the following process- As you heat a body (say, 
a stove burner), you will observe that the perceived color of the object will 
make a transition from red to yellow-orange. It could turn white, and even 
blue, as the temperature increases. The color appears to change because 
the maximum frequency of the observed light moves to higher frequencies 
(lower wavelength) as the blackbody is heated. We can record the output, 
the emission spectrum, of the blackbody and the result is shown in Fig. 2.5 
for two different temperatures. 

The density of radiative energy, p (^,T), for a frequency between v and 
v + &v (in JnT"3) is given from classical theory by the following equation, 
sometimes called the Rayleigh-Jean model 

p{v,T)dv =^^v2<\v, (2.4) 

where c is the speed of light and k is the Boltzmann constant, which has 
the value 1.38 x 10 - 2 3 J mol^K""1. The problem is that the theory does not 
agree with the experiment. Theory indicates that the intensity rises as v2 

(or A - 2) and asymptotically goes to infinity for A = 0. Max Planck found 
the solution to the dilemma. In his model, just as in classical theory shown 
in Eq. 2.4, the radiation is due to oscillations of the electrons in the atoms 
of the blackbody; this is an antenna problem. In the Rayleigh model, the 
energies of the oscillators had no restrictions. Classical physics is continuous 
(all values of the variables are allowed), not discrete (variables are allowed 
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Figure 2.5. Experimental blackbody curves (unnormalized) for two different 
temperatures. 

to take on only certain values). Planck assumed that the oscillator energies 
were restricted to integral multiples, n, of the frequency, E = rihv. Using 
the techniques of what we now call statistical mechanics, Planck derived 
an equation which agreed with all of the experimental data, where h = 
6.62 x 10~34 Js is known as Planck's constant, 

87rhi>3 du 
p{v, T)di/ = n3 .-IW 

(2.5) 
ewr — 1 

Planck's result was not widely accepted in the physics community of the 
time (early 1900's). The theoreticians were certain that a classical solution 
to this problem would eventually be discovered. Even Planck was uncom­
fortable with the quantized results, but this was the beginning of the micro­
scopic view of the world. This was the start of quantum mechanics. 

The final, convincing evidence for the legitimacy of Planck's explana­
tion of the blackbody radiation results came from Einstein and his Nobel 
Prize winning theory of the photoelectric effect. What is the photoelectric 
effect? It is schematically described in Fig. 2.6. In short, UV light causes 



12 The Bell That Rings Light 
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Figure 2.6. The apparatus used to observe the photoelectric effect. Light strikes 
the photocathode, an electron is emitted, moves toward the anode and is detected. 

electrons to be emitted from a metallic surface held in a vacuum. The 
following experimental observations were well known at the time, but were 
left unexplained by classical physics: 

• the kinetic energy of the electrons is independent of the intensity of the 
incident light; 

• there is a threshold frequency and below it, there is no photoelectric 
effect; and 

• the kinetic energy of ejected electrons increases with increasing frequency 
of the incident light. 

It is instructive to examine the predictions from classical physics. It would 
be expected, if classical physics were valid, that 

• as the intensity of the light increases, so does the induced oscillation of 
the electrons and they break away. That is, higher intensity induces more 
violent oscillation and higher electron kinetic energy at escape and 

• the photoelectric effect should be frequency-independent, but intensity 
dependent. 

Looks like trouble for classical physics! 
Now, we return to Einstein's work. He knew of and used Planck's results 

for the oscillators. Einstein proposed that light consisted of packets of 
energy, E = hi/, called photons. Then, using conservation of energy, he wrote 

-mv = hv — (2.6) 
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where 4> is the work function or threshold energy of a particular metal. 
This is the minimum energy required for electron ejection, <f> = hv0. When 
hv > <f>, an electron is ejected and the excess energy, that energy above 
(f> becomes kinetic energy. Finally, the number, but not the energy, of the 
ejected electrons will increase as the number of photons or the intensity of 
light, increases. There is exact agreement between the experimental results 
and Einstein's model. One way to check this agreement is to measure the 
kinetic energy of the ejected electrons. How do we make these measure­
ments? We use a stopping potential, Vs. That is, the electrons are directed 
toward a negative electrode and the potential is increased until the electrons 
are stopped. The equation governing this process is 

-mv2 = -eV s , 

where e is a negative number. We can plot Vs versus v, as in Fig. 2.7. 
Now, we have a problem: we have proposed, actually assumed, that light 

could be described as a wave. Einstein just invoked a particle-like property 
to explain an experiment. Is light a wave? or a particle? And, if light is a 
particle as well as wave, what does that say about a particle? Can a particle 
also be thought of as a wave? In particular, is an electron a wave as well as 
a particle? 

The Dual Nature of Matter 

To address this issue, we skip over some important theoretical and experi­
mental advances for the time being and go to 1924. We will also not try to 
derive the solution to this apparent dilemma, but rather note that de Broglie 

Vs 

v0 v 
Figure 2.7. Stopping potential for the photoelectron as a function of incident 
frequency. 
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realized that, if a light had the properties of a particle, then it must have 
momentum. He deduced that the relationship between the wave property 
of wavelength and the particle property of momentum for a photon could 
be described by 

, 4 (2.7) 
and we can relate the momentum of a photon to its wavelength. More 
importantly, de Broglie asserted that this was true for matter, where p = 
mv, as well as for light, when p = mc. A practical result of this equality 
is the electron microscope. You have probably seen electron micrographs 
of insects, cells or atoms on a surface. Electron microscopes are capable of 
imaging objects as small as tens of nanometers. This high resolution results 
from the small wavelength of the electron traveling at a substantial fraction 
of the speed of light (large momentum). 

We continue our chronological digression by considering the work of 
Walter Heisenberg, also in the mid-1920's. He carefully considered the way 
in which the measurement of the position of an object using a photon of a 
given momentum would affect the position of the object being measured. 
Consider the following: if we wish to locate an electron to within a distance 
Ax, we must use light of that wavelength or we won't "see" the electron, at 
least not to that resolution. If we want to increase the resolution or accuracy, 
then A must be smaller, but p gets larger as the wavelength is reduced and 
more momentum will be transferred during the collision causing a larger 
uncertainty in the position of the observed object. The uncertainty rela­
tionship is 

AxAp > J, (2.8) 

where 

This is a fundamental law for the act of measurement. 



CHAPTER 3 

Early Quantum Mechanics: The Atom 

Now, on to the atom. The atom contains electrons and we may influence 
the energy of those electrons using electromagnetic radiation. Therefore, 
our discussion of the nature of electrons and light will be significant in the 
discussion of the atom. Coulomb's Law will also be invoked in the upcoming 
discussion. 

Prior to the work of Rutherford, the atom was considered an object 
of constant density. Rutherford (actually Rutherford and his graduate stu­
dent, Marsden) scattered a-particles (He2+) through metal foils and the 
data indicated that most of the mass of an atom was localized and the 
majority of the atom consisted of empty space. These conclusions resulted 
from an analysis of the scattering of the a-particles. When the cc-particle 
encountered the nucleus, in which most of the mass was localized, the scat­
tering angle was quite large, nearly 180°, that is, directly back at the source. 
Such observations were relatively rare, since most a-particles simply passed 
through the foil, undeflected. The conclusion cited above, most of the atom 
is "empty space", is obvious from these results. This work led to the orbital 
model of the atom, as shown in Fig. 3.1. However, classical physics tells 
us that electrons cannot exist in a stable orbit. The electron would nearly 
instantaneously radiate while dropping into the positively charged nucleus. 
While the new model was sufficient to explain the distribution of mass, it 
could not explain the reality of the atom, at least not in terms of classical 
physics. A new kind of physics was required: quantum mechanics. 

So finally, our short history leads us to Niels Bohr and early quantum 
theory. Bohr's analysis of the problem has errors and limited applicability. 
However, it is the start of a new field, explains the data available at the 
time and provides an indication of the new direction physical thought had 
taken. Therefore, we'll treat it in detail here. 
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Me 
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Figure 3.1. The Rutherford representation of the atom. 

What was the available data? What information set Bohr off on this new 
path? If we compare the spectrum of the hydrogen atom, the simplest atom, 
to that of a blackbody, the difference is striking. The blackbody radiates at 
all wavelengths, while the only visible light emitted by the hydrogen atom is 
at three very narrow wavelengths of red, blue and violet light, see Fig. 1.1. 
These data were well known when Balmer came up with an equation to fit 
the data (the luck of random curve fitting?) 

1 1 
3.2202X101 Hz, 3,4,5,. . (3.1a) 

cm 3 ,4 ,5 , . . . , (3.1b) 

We can rewrite this, converting v to 1/A 

u=\ = 109680 \ - - \ 

This is known as the Balmer Formula — why is n set equal to integers 
from 3 to infinity? We'll see shortly! This equation was later generalized by 
Rydberg to what we now call the Rydberg Equation 

(3.2) 

The constant, 109,680 c m - 1 in Eq. 3.2, is often given the symbol RH and is 
known as the Rydberg constant for hydrogen. This is what Bohr had to work 
with in his theoretical development, but as you can see, it is an extremely 
significant empirical result. Now, we go back to the orbital model with 
which we began this discussion. What do we know from classical physics 

V = 
1 

A = = 109680 
(y 

Kn)~ 
i > 

~nh 
\ 

cm 
- l 

5 n = = integer. 
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about an electron orbiting a positive charge, as in Fig. 3.1? The electron has 
angular momentum given by mvr. There will be a centripetal force toward 

mv 
the nucleus, F = and the electron should radiate and fall into the 

r 
nucleus! Bohr simply assumed that the electron didn't radiate and 
fall into the nucleus and examined the consequences. He built a 
theory based on four postulates: 

(1) electrons have allowed energies called stationary states; 
(2) electrons in stationary states do not radiate; radiation is due to changes 

in the stationary state of an electron; 
(3) electrons move in circular orbits; and 
(4) stationary states have angular momentum in multiples of h or h/2ir; 

mvr = nh. 

The centripetal force is Coulombic, after all we are looking at an electron 
and a collection of protons 

mv2 Ze2 Ze2 

or = my , (3.3) 

where Ze is the nuclear charge and e is the electron charge. 

Ze2 , , , 
=mz/2 , (3.4) 

r 

but, from Postulate 4, u
2 = n ' (3.5) 

2H2 

•-Zme2' (3-6> 
and is defined as the radius of the Bohr orbit. The radius is quantized, that 
is, it depends only on an integer, n. 

„2 
r = 0.530— A, (3.7) 

Z 
where 1 A = 10~8 cm. Now look at the energy of such an atom using equa­
tion 3.4 for K, the kinetic energy 

, x, 1 •> Ze2 1 Ze2 

E = K + V = -mv2 = , 
2 r 2 r ' 

1 Z2eAm 
E = - 2 ^ , n = l , 2 , 3 , . . , (3.8) 

where n is a quantum number. This is the stationary state energy of an 
electron in a one electron atom. At the limit n —> 00, E —> 0 and the atom 
is ionized. 
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Figure 3.2. Schematic representation of the transitions in the hydrogen atom. 

Can we get to Rydberg's Equation? Sure! We even get R H , the Rydberg 
constant! We easily recognize the cause of the observed discrete hydrogen 
atom spectrum using Fig. 3.2. 

AE = E final ^initial — ~ 
2 a0 °f n? 1,2,3, . . . 

What is wrong with this model? There are two significant problems. 
We know that Bohr took a leap away from classical physics, but we wish to 
base the answer to the question on some solid physics. If we know r exactly, 
this model will also provide us with an exact value of p\ This is a violation 
of Heisenberg's Uncertainty Principle. 

aon2 nh h 
(1) r = —=—, p = — violates ApAx > —. \ > Z r 2 
(2) Try to apply this model to the helium atom. Now we have two electrons. 

What do we do? How do we deal with multielectron systems? 

There is no allowance in this model for more than one electron. Some 
researchers tried to accommodate the extra electrons by using elliptical 
orbits, but that didn't work. How do we know it failed? We could use the 
same criterion we used for hydrogen. The question to ask is: Can we repro­
duce the experimental spectrum? For multi-electron atoms there are far 
too many lines of nearly the same wavelength. The Bohr model cannot pre­
dict the occurrence of these transitions. We need a new model; the "new" 
quantum mechanics. We shall use a formulation due to Schrodinger. 



CHAPTER 4 

New Assumptions 

Certain old assumptions die hard, particularly those having to do with 
circularity of motion. The circle is a sacrosanct figure for many cultures and, 
though it may be refuted as the actual description of a natural phenomenon, 
it is never completely abandoned as the ideal for which nature somehow 
strives. Bohr's circular orbits would give way to other models but the role 
of the circle itself continued to enlarge. Here we are going to explore, not 
quantum theory itself but the assumptions on which it is based. These 
include the circle, or more accurately the sphere, in a prominent role. 

The prospect of an electron disappearing from one orbit in order to 
reappear in another was sufficiently disturbing to prompt a review of what 
an electron might actually be. In fact, the question of what it is rapidly 
gave way to the question of what properties it might have that one could 
observe. Presumably it had location, and some locations were more likely 
for it to be in than others. Anything that had position could have velocity 
and acceleration too. And it had mass, which meant it also would have 
momentum. 

Also it possessed energy, and in discrete frequencies, as observed in the 
Balmer experiment. As we saw in an earlier chapter, this would mean that 
in some respects it behaved more like a wave than a particle. Specifically, 
a "particle", imagined perhaps as a billiard ball, can have any speed, any 
momentum, any acceleration. A continuum of possibilities exists for the bil­
liard ball, or the particle. An old-fashioned wave, although it can have any 
amplitude, has to decide what its frequency will be. Of course waves can 
be superimposed to make new waves, but one can describe what frequen­
cies will be present in the sum. And hydrogen, in its emission of beautiful 
red light during the Balmer experiment, always chooses the exact same fre­
quency to emit. In this choice, hydrogen behaves more like a wave than like 
a particle. 

19 
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Now, as soon as you have an object that resists classification as matter 
or energy or wave or whatever, it is arguably natural to think in terms of 
observable properties the object might have rather than actual attributes 
of itself. You might think these are the same, but they most certainly are 
not. In the case of hydrogen, it is very profitable to think of the electron 
as having, not a particular position and momentum, but rather a set of 
probabilities that describe the likelihood of finding it in a particular region 
of space at any given time. 

A probability distribution is nothing more than a function, as shown 
in Fig. 4.1, that describes the likelihood of the electron being in a certain 
region. This probability is expressed as the area under the graph of the func­
tion and above the region in question. By fiat, the total area is one. These 
distributions take the place of what was formerly envisioned as the loca­
tion of the electron. Such a distribution could equally well describe either 
the average time spent by the objectified electron in a particular region, or 
some other function related to the energy of the electron (according to the 
laws of physics) which could play the mathematical role of position without 
all the annoying ideological baggage that goes along with the concept. 

It is already hard to imagine an electron as something which simply 
might turn up here or there, and whose average behavior is all one can 
determine and describe as a probability distribution. This bit of imagina­
tion is necessary for our story. But one can even go further, although not 
out of strict necessity. One could suspend disbelief and attempt to think of 
an electron, formerly an actual object with a home of its own in one's psy­
che, not just as an object with characteristic probabilities for being found 
in various proximities to the nucleus, but as being the actual probability 
distribution itself. If you can do this, you might actually be one step ahead 
of the average physicist. Or one step behind, depending on how you look 
at it. It is an ancient doctrine that, at the most basic level of existence, the 
world is formed out of number. This is not science, this is mysticism at its 
finest. Nonetheless, the world is getting to look more and more that way. 
If you can imagine all of the properties of the electron, and then mentally 
throw away the actual electron as unnecessary to the many calculations 
that follow, then you can justifiably say that science is no longer merely 
science. You would have become a Pythagorean. 

Figure 4.1 is a picture of a probability distribution, which you might 
recognize as the usual bell curve describing grades in a class. If an object 
moved around on the real axis according to this distribution, it would spend 
most of its time between X = — 1 and X = 1 and the remainder outside. If 
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you were to reach between two lines drawn at these points and grab it, you 

would have a chance of catching it there exactly equaling the area under 

the curve and between the two lines. The total area under the curve is one, 

which makes the chance of it being somewhere at all also one. This is a 

very fancy way of asserting the existence of an electron. In Chapter 10, 

we'll apply this same formalism to the hydrogen atom. 

These are the new objects of physics, replacing the objectified electron 

in the mind of the quan tum mechanist. Furthermore, all the laws will be 

expressed as if the wave-like properties of the electron were all t ha t mat­

tered. Much has been lost contextually in the passing to such a system, 

especially certain comforting analogies to the macroscopic world. Much, 

however, is gained in syntax. To have an object tha t can be considered 

equally conveniently as wave or particle or probability distribution, depend­

ing on the a t t r ibutes it presents in a given situation, represents an enormous 

gain in syntax. 

To be specific, t reat ing the electron in this manner places it in a class 

of mathematical objects which can be acted upon by the tools of partial 

differential equations, functional analysis, abstract algebra and represen­

tat ion theory, all of which topics we will explore later. Mathematically, 

the electron behaves not at all like a planet but much more like a weight 

on a spring. The linguistic capabilities of the mathematics become much 

stronger in this new situation. Generally speaking, this gain in syntax is 

the very reason abstraction is valued in mathematics and physics. Often 
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Figure 4.1. The Gaussian distribution function. 
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abstraction is the first step in the change of viewpoint that increases one's 
mathematical options in a certain situation. In our situation, the change of 
viewpoint as to what constitutes an electron resulted in an entire field of 
study, namely quantum mechanics. 

This is half of the story. If the old assumption about the electron made it 
an object that moves in a circle, quantum mechanics replaces the "object" 
with its observable properties, described in the form of mathematical func­
tions. There is no longer an "object", except as lodged in the conservative 
mind of the physicist. Whatever we are looking at here doesn't "move", 
either, in any detectable sense. It remains to ask, what concept arises to 
take the place of the "circle", and how must it relate to the new notions of 
what an electron ought to be? 

Let us return to the experiment of Balmer that gave us hydrogen's line 
spectrum. The radiation of light from, say, a light bulb, is such a com­
monplace occurrence now that it is difficult to find novelty in the observa­
tion that the photon emitted by the electron was the same frequency when 
viewed from all directions. This may seem most unsurprising, as how should 
the electron be able to know which direction to send its energy? Yet, this 
simple observation provides the atom with the desired spherical symme­
try. That is, whatever laws describe the atom's energy spectrum must also 
respect the spherical symmetry of the spatial variables. Rotate the three-
dimensional space variables through any angle, along any axis, and the laws 
of physics must remain unchanged. The same color light must be emitted. 
In fact, this observation yields a whole set of symmetries for the atom, as 
big as the set of isometries of the sphere. An isometry is a rigid motion of 
an object that sets it down back upon itself. In this case, the isometries of 
the sphere consist of rotations about any diameter of it. 

Here we have circles, and in abundance. The collection of isometries of 
the sphere is an object with rich mathematical structure. It has a beautiful 
interaction with the laws of physics as described by Schrodinger's equa­
tion. The mathematics brought to bear on the problem is of a depth and 
flavor attained only in this century. It represents the combined efforts of 
both mathematicians and physicists, spawning much of the current activity 
in both fields. The story of the hydrogen atom in this century exemplifies 
also what has happened to much of the physical sciences, as mathematical 
"laws", which are theorems, and mathematical "objects", which are some­
times complete abstractions, grew into the conceptual roles formerly filled 
by familiar physical objects, such as planets, billiard balls, and the like. 



CHAPTER 5 

Zetetics 

It would be tempting, and in some sense enough, to say that because we 
observe certain behaviors in small particles that are characteristic of waves, 
we are therefore justified in describing these objects by a classical wave 
equation. If it walks like a wave and quacks like a wave, we may as well call 
it a wave. So it would be nice to be able to arrive at the wave equation for 
a quantum particle by reasoning from a few basic premises that make sense 
in the context of quantum mechanics. Just as the classical wave equation 
for a vibrating string can be derived from a discussion of forces acting on 
the string, so we would equally appreciate a derivation of the same equation 
based on the first principles of quantum mechanics. 

The ancient Greeks had words to describe different parts of the process 
of doing a geometric construction. They required an argument at the start 
of the construction that would convince the reader that the set-up of the 
construction did indeed reflect the requirements of the problem. This phase 
of the solution they called "zetetics". After the construction was completed, 
a proof was required to show that the figure constructed was what it was 
supposed to be (e.g. an equilateral triangle). This part of the solution was 
called "poristics". The middle part of the problem, the actual sequence of 
compass and ruler moves, was reported but not really explained. In modern 
mathematics classes, we tend to focus on that middle part. How do you solve 
the equation? In advanced mathematics classes, we focus on poristics. How 
can we prove our answer is the only possible solution? But the aesthetics 
of applied mathematics also requires zetetics. Why do we believe we are 
considering the right equation in the first place? 

The Schrodinger equation is a bit of a mystery the first few times it is 
encountered. And with good reason. It is more or less "given" as something 
worth studying without any real justification, except perhaps, some state­
ment such as: "it is valuable because it works." The Schrodinger equation is 
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not something that can be derived from Newton's laws or Maxwell's equa­
tions, or some other accepted "law" of physics. But when you think about 
it, those "laws" are themselves presented to us and not derived. The jus­
tification for them is that they agree with experimental results (in other 
words "they work") but somehow the Schrodinger equation seems different, 
probably because the physics that results from it is so uttterly unlike the 
Newtonian sort to which we have become accustomed. 

Having said that one cannot really derive the Schrodinger equation, 
we now want to make it plausible. There are excellent biographies of 
Schrodinger and more complete histories of quantum mechanics than that 
provided here. These may provide insight into exactly how it really came 
about. The intent here is to show that it is in some sense reasonable, given 
what we know of classical physics. 

The basic premise of quantum mechanics is that a small particle, such as 
an electron or a photon, is not described by a fixed location and speed at a 
given time. Rather, it is described by something called a wavefunction, i(x). 
If we know the wavefunction (as a function of position, x) for a quantum 
mechanical system, how do we use it to find location and speed? Our rule 
is that the magnitude of the wavefunction squared gives something called a 
probability density that we will denote as p = | i{x) |2. What does it mean to 
ask for the location of a particle when all we know is this probability density 
function? Even for a single variable this is a slightly tricky question. What 
is the probability of finding the particle at a particular point, xl It is zero! 
A probability density yields a probability when it is integrated between 
two points. What we can also find is the average value of location. You may 
remember how to do this computation from your freshman calculus class. 
This is just the integral of the expression "x | f(x) |2". 

We would also like to know the momentum of the particle. Because 
momentum is mass times velocity, this is equivalent to knowing the velocity 
of the particle, as the mass is not changing. So let us imagine that the 
wavefunction is dependent on time as well as space. Let us further imagine 
that the particle is moving along the x-axis at a constant rate of speed, 
which is a reasonable approximation over a (very) short period of time. We 
can achieve this by writing f(x) = i(y + kt), where y is the starting place. In 
other words, we make x a function of time by setting x = y + kt. The speed 
of motion is determined by the constant k. To retreive it, we would compute 
df/dt which, by the Chain Rule in calculus, is given by: df/dt= df/dx 
dx/dt = kdf/dx. So if you can measure the speed of the distribution, it is 
equivalent to knowing d / /dx . 
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We have just invented two operators. An operator is a special kind of 
function that has as its domain a space of functions and which returns a 
function as output in its range. Our two operators are: 

1) x, which operates on the wavefunction (by simple multiplication) to give 
us position, and 

2) p, which operates on the wavefunction (by taking first derivative with 
respect to position) to yield momentum 

The main feature of the two operators, x and 6./Ax, is that they do not 
commute. This observation is where our zetetics begin. 

Let's try two different approaches to reaching the Schrodinger equation. 
Our first approach will begin by asking a simple question: what is the result 
of the following difference where x is position and p is momentum? 

xp — px =? 

This is known as a commutation relation and in algebra, of course, the 
result would be zero. Classical physics would also predict that the result 
is zero, but in quantum mechanics it isn't. We can think about this in 
the following manner. Classical physics is a macroscopic approximation to 
quantum physics; in the limit of large dimensions, quantum physics goes 
over to classical physics. The commutator, defined as xp-px, is small, but 

Newtonian 
Howling 

Figure 5.1. Standard perception of position and momentum in the macroscopic 
world. 
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not zero. The reason that this is true is that in quantum mechanics we need 
operators, denoted by the caret,". The result, which we assume, rather than 
derive here is 

xp — px = ih, (5.1) 

where h is Planck's constant, h, divided by 2n and i is the imaginary num­
ber, — l1/2 . In classical physics, the observables, the quantities we measure, 
are dealt with directly and are functions of time according to Newton's 
Laws. In quantum mechanics, we do not deal directly with the observables, 
but rather with operators corresponding to the observables; x and p are the 
position and momentum operators, respectively. The result of an operator 
acting on a function is the observable, that is, the result of the momen­
tum operator acting on some appropriate function (to be denned!) is the 
momentum. If we step back a minute, we'll see that the commutation rela­
tion is actually Heisenberg's Uncertainty Principle in another form. If we 
assume that the commutation relation is valid, then we can define x and p 
from that expression. Let's arbitrarily define the operator x to be "multiply 
the subsequent function by the coordinate x". Then, in order to satisfy the 
commutation relationship, p must be given by the following 

<-*) (i) • (5-2) 

We can test the validity of our assignments using the function \I> (remember 
that the operators need a function on which to act) 

(xp — px)^> = xpty — px^ 

d d 
= -ihx—ty + (ih)W + ihx—ty 

ox ox 

iM> (5.3) 

This indicates that we have correctly defined our operators. Well, if we 
know x and p, we are all set. Classically we know that there are two energy 
components, kinetic energy given as p2/2m, and the potential energy, V. 
The total energy is the sum of these two. In one-dimension, we may write 
the total classical energy as 
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Now, look at the corresponding quantum mechanical expression using 
operators 

2m 
+ V{x) = E. 

-s;(s*l , + , ' < * > * = CT (5.4) 

We can define a new operator, the Hamiltonian operator, H, the result of 
applying this operator on our "eigenfunction", <J>, is the total energy of our 
system 

H = -lto(** )+V&- (5.5) 

The one-dimensional, time-independent Schrodinger Equation is now easily 
formulated 

Ht> = EV. 

We can easily generalize to three dimensions: 

H = 
h2 

2m 
( d2 

[dx2 + 
a 

«v + 
a > 

dz2 ) 
\ » T , 

)+V(x y, z) 

H 
2m 

•V 

(5.6) 

(5.7a) 

(5.7b) 

Hty = E^ is an eigenvalue equation, something that appears with regular­
ity in physics and engineering. We've already indicated that the functions 
^ are called eigenfunctions, in this case we also refer to them as wavefunc-
tions, since they will be related to solutions of the wave equation. If we can 
solve these equations, we are all done! How do we solve it? We don't know 
what these functions called eigenfunctions are and we still have no idea as 
to the potential energy function. It seems as if we are a long way off from 
a solution to anything. However, before we try to examine the solution to 
the Schrodinger equation, let's discuss a different approach to obtaining 
the equation itself; an approach based upon knowledge of classical wave 
mechanics. 

The wavelike behavior of particles is the fundamental observation upon 
which the discussion is based. If a particle has attributes of a wave, describe 
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it using the classical equation for a traveling wave: 

9{x,t) = Ce^kx-ut), (5.8) 

where the wave number, k, is related to the wavelength by 

fc=f, (5-9) 

and the angular frequency, u>, is related to the frequency by 

UJ = 2-nv. (5.10) 

Of course, all of this begs the question of what it is that ^(x, t) represents. 
If this were a description of water waves, ^(x, t) would be the height of the 
water in the wave above "sea level" or some other such reference height; 
if this were a description of an electromagnetic wave then ^(x,t) would 
represent the magnitude of the electric or magnetic field in the wave. But 
this wave is representing a particle. So what is "waving?" The answer, 
thanks to Max Born, is that ty(x,t) is related to the probability of finding 
a particle at a given point in space at a given time. For the present, just 
say that somehow or other ^(x,t) will represent attributes of the particle 
that can be measured in the laboratory (actually, not a bad statement to 
make about \I> when all is said and done). 

But we know more than the fact that a particle has attributes of a wave. 
From the work of Einstein and deBroglie, we know that the energy of the 
particle is related to the frequency of the corresponding wave by 

E = hv, 

or 

E = cuh, 

and we can solve this for the angular frequency of the wave: 

u) = E/h. 

But we also know that the momentum of the particle is related to the 
wavelength of its associated wave, 

h 
P=X' 

or 

p — hk, 
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and we can also write the wave number 

k-V-

so that an alternate way of writing the equation for the traveling wave is 

tf(M)= Cei{px-Et)lh. (5.11) 

It is clear that ^ has something to do with the energy and momentum of 
the particle that it is representing. Speaking mathematically, how might 
we extract a measurable value for these quantities from the equation for Vt 
that has been proposed? Consider the partial derivative of \P with respect 
to position a;: 

^ = l C (P\ ei(Px-Et)/H) = i % ( 5 1 2 ) 

ox \h/ 

which may be rewritten as 

— * = ipV. (5.13) 
ox 

We recognize this to be an eigenvalue equation where the momentum of the 
particle, p, is the eigenvalue. In short, the mathematical operator 

extracts the momentum of the particle from the wave function \I/. We can 

write this fact like this: 

-ih±-+P. (5.15) 

In this sense, then, the operator, 

ox 

assumes the role of an analogue to momentum for purposes of working with 
the wave equation. It is sometimes said that this operator "represents" the 
momentum of the particle. Consider the partial derivative of "if with respect 
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to time. 

dt 
¥ = iC 

dt 

i(px-Et)/h) 

=- * . 

This is another eigenvalue problem, this time with the energy, E, being the 
eigenvalue. The operator, 

acts to "extract" the energy from the wave function, and it may be said to 
represent energy in quantum theory, 

d 
ih 

dt 
E. 

In classical physics, the energy and momentum of a particle are related 
quantities. In particular, 

r.2 

E- P 
2m + V. 

We are now going to use the quantum mechanical operator analogues to 
energy and momentum in this classical relationship to see how these oper­
ators might be related. What justifies doing this? Analogy. Remember that 
this is not a derivation, it is a discussion to make the Schrodinger equation 
seem plausible and reasonable. Notice that the classical expression for total 
energy involves the square of the momentum. In the case of an operator, 
we will interpret this as the operator acting on itself like this: 

3 
P dx 

• ih 
dx 

(5.16) 

and carrying out the indicated operations 

Substituting this result into the equation for the total energy, 

or 

E 

lhWt* = 

2m 
d*_ 

dx2 + V 

2m \dx2J v * 

(5.17) 

(5.18) 

which is the Schrodinger equation. 



CHAPTER 6 

Classical Waves 

Because so much of what happens next rides on the assumption that an 
electron behaves like a wave, we thought it best to digress momentarily to 
show you some of the mathematical tools typically employed in discussions 
of ordinary waves, such as those one would see in a vibrating guitar string, 
for example. Several positions over time of a string plucked at its midpoint 
are shown in Fig. 6.1, and if you were to plot the displacement at the point 
x = 0.5 throughout time, you would see an oscillating pattern, like Fig. 6.2, 
which is why the equation describing the plucked string is one of those 
generically called the "wave equation". 

Now, the equation which governs the displacement at point x and 
time t is given by: 

Fxx(x,t) = kFtt(x,t). (6.1) 

This equation is derived from a discussion of forces acting on the guitar 
string in the form of tension, elasticity and other properties of actual or 
imagined guitar strings. These forces are usually described in terms of vec­
tors acting on some point on the string. Since the equation involves an 
unknown function and a relationship between its various partial deriva­
tives, it is an example of a partial differential equation. We are going to 
ignore the model that gives us this equation because our intent here is not 
to examine how such a model is constructed, but rather to see where it 
leads in the solution of the problem. But I will say three things about it. 
First of all, the mysterious constant, k, is one of those numbers that is going 
to depend on the particulars of the string in question. Is it nylon or steel? 
Is it tight or loose? And so forth. Second, k is always positive. Third, this 
equation doesn't take damping into account, so when we finally get to a 
solution of it, the string will seem to continue to oscillate forever. Don't 
worry, real strings won't do that. 
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observation point 

Figure 6.1. Three positions of a string vibrating (undamped) after it is plucked 
at its mid-point. 

Figure 6.2. The temporal oscillations observed at x = 0.5 for the vibrating string 
shown in Fig. 6.1. 
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It is worth asking, under these circumstances, what exactly constitutes a 
"problem" and what does it mean to find "the solution" ? To those who live 
to see math problems everywhere, this is a non-question. To anyone else, it 
may be the only real question. Well, in this case, the problem is to describe 
the range of possible behaviors of a vibrating string, including the most 
observable of its behaviors, namely the pitch you hear. Mathematically, 
this amounts to figuring out which functions could possibly describe the 
evolution of the position of the string over time, and what frequencies occur 
in the wave pictured above. Since any such function presumably satisfies the 
equation we wrote down, in terms of its second derivative in the x variable 
and its second derivative in the t variable, a solution means a function of 
x and t that satisfies that equation. To find the solution means to describe 
all such functions. 

Before tackling the equation above, there is one more ingredient that 
is absolutely necessary to making a definitive statement about the nature 
of the vibrations. That is the length of the string. A guitar string is firmly 
secured in two places, let us say at x = 0 and at x = 1, just as is indicated 
in the drawing above. Mathematically, this means that the function F(x, t) 
has to be equal to zero in certain places, namely: 

F(0,t) =F(l,t) =0. (6.2) 

This is what is called a "boundary condition" for a partial differential equa­
tion. Such conditions are often as important in determining the nature of 
the solution as the actual equation itself. (In fact, perpetrating changes 
of variables in these sorts of equations in order to swap a certain kind of 
boundary condition for some other one is an art form unto itself, and if 
you don't believe this, check out the phenomenon known as the soliton.) 
Now, what happens next is going to look like sleight-of-hand to the uniniti­
ated (that would be you). It is one of those old and venerable tricks of the 
trade, first used by Fourier himself, the granddaddy of the wave equation. 
Fourier was an engineer and the trick he used was based on an act of faith 
that is often well rewarded in the area of differential equations. Here is the 
assumption behind what happens next: / / / can find one kind of solution 
to that equation, I can figure out how to get all of them. So the general 
strategy is to find one solution, or one family of solutions, then use them 
to get a very large set of solutions. Then, after the fact, go back and prove 
that you did, indeed, find all of the possible solutions. 

So, this particular trick is called "separation of variables". All we 
do is assume the function F(x,t) is really the product of two functions: 



34 The Bell That Rings Light 

f(x) and g(t). Not only that, but we will suppose that / obeys the bound­
ary conditions above. Now Eq. 6.1 above becomes: 

fxx9 = kf9tt 

/(0) = / ( l ) = 0, 

where the derivative in x only affects the function / and the derivative in 
t only affects the function g. Fooling around with the algebra gives you: 

JXX j 9tt /0 *\ 
- = k - . (6.4) 

The alert reader will notice that although the left-hand-side of this equation 
depends only on x, the right-hand-side depends only on t. So both sides 
must be equal to the same constant. Now you have two easy ordinary differ­
ential equations in one unknown each. Also you have an unidentified flying 
parameter, namely the constant that both sides of the equation must equal. 
In the grand tradition of calculus textbooks, let us call this constant C. So 
now we have two separate equations to deal with, each in only one variable. 
The first one is: 

f 
J XX s~y 

(6.5) 
/(0) = / ( l ) = 0. 

And the second is: 

h— = C. (6.6) 
9 

Of course, we could rewrite these equations by multiplying both sides by 
either / or g, as appropriate. Then the first would look like: 

/** = Cf. (6.7) 

An equation of this sort, which has some expression in / on the left similar 
to this one (mathematicians call taking the second derivative a linear oper­
ator, and that is what we mean by "similar to this one"), and a constant 
times / on the right, is called an eigenvalue problem. C is the "eigenvalue" 
in this problem. The function / is the "eigenfunction". Some people spend 
their lives studying eigenvalue problems like this one, which crop up all 
through mathematics and physics. 

Let us look at that first equation. If C is negative then it looks just like 
the equation for a spring that comes from Hooke's Law. That is, there are 
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two functions, which are familiar to everyone, that solve this equation, 

f1(x) = 8m(y/\C\x) 

and (6.8) 

/ 2 ( a 0 = c o s ( v 1 q a : ) . 

Furthermore, all combinations of the form a/1+6/2 will also solve the equa­
tion in x. However, to get the boundary conditions we have to make sure 
/1 (x) and /2 (x) assume a value of zero at x = 0 and x = 1. This puts restric­
tions on what C could be. If you think about it, C must now be a negative 
integer multiple of ir. Furthermore, the cosine solutions don't work at all. 

But what if C is positive? Well, then the solution looks very different. 
It is easy to check that the two functions 

and (6.9) 

f2(x) = e ( - ^ > 

do the job quite nicely, except that neither of them satisfies the bound­
ary conditions. So, with supreme aplomb, we reject these solutions as 
possibilities. 

A brief reading here is about the use of the pronoun "we" in scientific 
writing. Of course, you had no part in the above calculation what­
soever except to read it. But such was my training as a mathemati­
cian that I believe in some core of my being that I will be struck 
with a pox if I write scientific stuff in the first person. Therefore 
I am forced to pretend that you and I are writing this and doing 
all the calculations together. This pretense some college professors 
actually seem to believe, for example when they say "I taught it to 
them but they didn't learn it". I, however, am not deceived, and 
that is why you will find a pile of similar problems on our website, 
www. math. dartmouth.edu/~matceBooksherf/physicalsci/index. html, 
all for you to work out by yourself. Of course, if you hand them in 
to anyone you will write in the first person plural, so that when your 
grader reads them she can pretend she did them too. 

http://dartmouth.edu/~matceBooksherf/physicalsci/index
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Now, let me, talk about this business of rejecting solutions tha t aren' t 

as nice as we might like. If you are start ing to get the idea tha t solving a 

problem of this sort requires making a bunch of somewhat arbi trary and not 

wholly justified decisions, proceeding somewhat blindly to see what hap­

pens, and finally checking later to see if your guesses were good, then you 

are more or less correct. Historically, this is what seems to have happened. 

In very applied contexts, such as engineering, it is still the way to proceed. 

Because this problem has been very well studied, however, it is possible to 

use a lot of fancy mathematics to justify some of these decisions up front. 

For example, the entire mathematical field called harmonic analysis stems 

from the proof of the observation tha t the sines and cosines we got for 

our solution when C was negative, taken together are big enough to build 

all the other solutions by taking infinite linear combinations of them. You 

could spend your life studying this phenomenon as it occurs in various con­

texts. You could get your Ph .D. doing this. I know. I did. In the short run, 

you could learn a lot by taking one of those advanced ma th classes called 

analysis, whose job it is to put a foundation under the kind of calculation we 

are doing now. But for the present, I shall proceed as Fourier did, following 

my nose to see where it might take me. You come along, too. 

Let me summarize where we are now. By a series of assumptions and 

calculations we have narrowed down our acceptable solutions to those of 

the form: 

/ ! ( * ) = sin ( V l q * ) , (6.10) 

where C must be a negative integer multiple of n. Now we must tu rn our 

at tention to the equation in the variable t: 

k9— = C (6.11) 

which we can rewrite as 

9tt = jg (6.12) 

and, as before we get solutions of the form: 

gi (t) = sin 

and (6.13) 
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Now, the boundary conditions are in the x variable and do not affect g, so 
we do not need to eliminate the cosine solutions this time. So now we have 
a large family of solutions to this equation, given by: 

. . / nit 
bn i{x, t) = sm(n7rx) sin I —=t 

\Vk 
and (6.14) 

/ nir 
Fn,2{x,t) = sm(n7rx)cos I —=t 

Out of these infinitely many solutions we can construct a sort of generic 
one that looks like: 

F[x,t) = J2anFnA{x,t) + bnFnt2(x,t) (6.15) 
n 

which can be expanded as: 

F(x, t) = y an sin(n7ra;) sin I ——t) + bn sm(mrx) cos I —j=t I. (6.16) 
„ \Vk J \Vk J 

Tah Dah! Now if you are not totally convinced that anything of this form 
is in fact a solution to the original wave equation, you should plug it in 
and see for yourself. Once you convince yourself of that, the only remaining 
question is whether such a scheme gives every possible solution. There are 
two ways to think about this question. I will, in the interests of convincing 
you that I have just done something sensible, offer both. Briefly, one way 
uses physics, and the other uses math. 

First I'll talk about the physics. If you believe that the wave equation 
above is a good model for a vibrating string, and if you believe in physics, 
then you should also believe that, given an initial state for the string there 
will be only one possible behavior stemming from it. By "initial state" I 
mean a description of how the string is deformed at t = 0. If you pluck a 
guitar string in a certain way and let it go, it should obey whatever physical 
laws control it and always do exactly the same thing. So, if you can match 
any initial condition, then you have described all possible solutions of the 
problem. Setting t = 0 gives: 

n 

F(x, 0) = ^ bn sm{nirx). (6.17) 

The theory of Fourier series tells us that we can find all of the different 
bn needed to match any initial condition F(x,0). At this point alarms 
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should be going off in your head because this approach doesn't tell us 
anything about any an. The physical explanation for that is that we could 
also have given our string an initial velocity distribution, Ft(x, 0). This can 
be achieved with a real guitar by musical techniques such as "hammering 
on" or "pulling off", and must be taken into account. To do this, we have 
to compute: 

Ft(x,0) = 2_]an—j= sin(mrx). (6.18) 
n>o vk 

Hooray! Now we can match two sets of initial conditions at once and get a 
unique answer using Fourier series. This is a physical approach. 

A more mathematical approach would invoke a theorem of differential 
equations, which says that a second order partial differential equation that 
is as nice as the one we have here, with two initial conditions of the form 
we just used, must have a unique solution. The branch of mathematics 
you would have to study to learn this theorem is called partial differential 
equations sometimes, or if the professor plans to give you the most general 
version, the area of study might be called differential operators on mani­
folds. Mathematically, this type of theorem makes the claim for our model 
of nature that the physical explanation is attempting to make for nature 
herself. Then we would again invoke the theory of Fourier series to tell us 
that the sines and cosines are good enough to do the job. 

As an interdisciplinary aside, we could also consider the computer sci­
ence approach, which would be to spend a few days programming our hypo­
thetical solution up and using our program to try to match a bunch of 
initial conditions to see if we can get a good approximation to them, and 
then using this as experimental evidence that we have found all of the pos­
sible solutions. As a mathematician, I feel obliged to point out that such 
an approach would take a lot longer than either of the ones above. This 
is because computers are such marvelous time saving inventions, although 
not as time saving as either a good theorem or genuine physical insight. 



CHAPTER 7 

Particle-in-a-Box 

Before going on to something as complex as an atom, let's look at a model 
problem in some detail. The first one is the one-dimensional particle-in-a-
box problem. This turns out to be an excellent conceptual model for conju­
gated dye molecules (see Chapter 21) and also a model for trapped charged 
particles. The problem and its solutions are similar to the vibrating string 
just discussed. The potential term is shown graphically and mathematically 
in Fig. 7.1. 

The formulation of the problem begins with the one-dimensional 
Schrodinger equation. Note that the Schrodinger equation is always valid, 
the nature of the problem will change the potential energy function, V(x) 

The potential energy is zero within the box and the walls are infinitely 
high since the potential energy is infinite outside of the box. We expect 
that the particle will only be found within the box and that the probability 
(and wavefunction) outside of the box is zero. What happens at the walls? 
This is a boundary value problem and we solve the equation by using the 
boundary conditions. In this case, we assume that the wavefunction also 
vanishes at the walls, 

*(0) = 0 and *(L) = 0. 

The general solution to this one-dimensional Schrodinger equation is well 
known. You could easily solve it with your knowledge of differential equa­
tions (Chapter 6) or locate it in tables of solutions to differential equations. 
The general solution is 

ty(x) = Ccoskx + Dsinkx, (7.1) 

where k = M ^ - J • 
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V 
> k 

0 

V(x) = ' 0 < x > L 
x<0 and x>L 

0 L * 

Figure 7.1. The potential energy for the one-dimensional particle-in-a-box. 

Now, use the boundary conditions in order to obtain the specific solution 
from the general one. At x = 0, sin x = 0 and then C must also equal zero 
and we do not learn anything about our system. At x = L, we must satisfy 
the equation 

i>(L) = DsinkL = 0, 

where 

So, the solution is 

sin kL = 0, 

n is 

Hf) 

if kL = nir, and n = 1,2,3, . . . 

„ n27r2h2 

S°'E~ 2mL2' » - W . -
and the energy is quantized, where n is the quantum number! Note that 
nowhere did we assume that the energy was quantized, ala Bohr. We for­
mulated the problem, solved it and the quantization fell out of the solution. 

One last problem remains to be solved, what is D? We need to define 
a new quantity to answer that question. The quantity \ij>\2 is known as 
the probability density, that is, the probability per unit distance for a one-
dimensional problem (see Chapter 4). If we integrate the probability den­
sity over all space, the result must be unity, since the particle must be 
somewhere! Let's do the integral using the wavefunction with the as yet 
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undefined value of D 

1 = f * * tfdx = D2 f sin2 ( ^ ) dx = l-LD2 (7.2) 

So, 

- ( I f 
and we are done! The results for the wavefunction and the energy are sum­
marized below. These are specific to the problem at hand. Other quan­
tum mechanical problems will have different solutions, but the technique of 
reaching that solution will be analogous to that we have just completed: 

„ n27r2H2 

E=-2^T> — 1 , 2 , 3 , . . . 

*»W={L) sm(—)• 
We may graphically examine the wavefunctions and the probability densi­
ties as we vary the quantum number, n. There is no reason to expect that 
the wavefunctions will be the same. In fact, the solutions look as shown in 
Fig. 7.2. A node is defined as a point at which tp and \tp\2 are zero. We will 
not find the particle at this position. The wavefunctions, ip are identical 
to the standing waves generated by the vibrating string, an example with 
which we are all much more familiar and has been treated in the previous 
chapter. Note especially, that the n = 1 wavefunction for the particle-in-a-
box is identical to the string plucked at its midpoint in Fig. 6.1. 

The energy of the particle in a box depends upon the quantum number, 
increasing as n increases. However, it also depends upon the length of the 
box. As L gets very large, the energy decreases, as does the separation 
between two adjacent energy levels. In fact, in the limit of very large L, the 
particle-in-a-box asymptotically approaches a free particle. In this limit, we 
make a transition from quantum mechanics with discrete energy levels to 
classical physics with continuous energy levels. 

What is &.E for the particle-in-a-box? That is, what is the separation 
between energy levels? We need to ask this question, because experimen­
tally, the energy differences are what we observe. Recall Bohr's postulate 
stating that electrons in atoms do not radiate, the radiation is due to 
changes in stationary states. So, if we observe radiation from an atom, 
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2.5 , 

Figure 7.2. The wavefunctions (top) and probability densities (bottom) for the 
first three states of the particle-in-a-box: n = 1 (heavy black), n = 2 (gray) and 
n = 3 (black). 

we are observing the energy difference between two levels. The energy dif­
ference is readily obtained by use of n and n + 1 as quantum numbers in 
the expression we derived for the one-dimensional case 

(2n+l)7r2 / i2 

AE = En+1 -En = 
2mL2 (7.3) 

Notice in Fig. 7.3, that unlike the Bohr atom (and all real atoms and 
molecules), the energy levels get farther apart with increasing n. 
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n = 5 

c n = 4 
E 

n = 3 
n = 2 
n = l 

Figure 7.3. Schematic representation of the energy levels for the one-dimensional 
particle-in-a-box. 





CHAPTER 8 

Exploring the Analogy 

It is worth spending a little time looking at how the wave equation will 
directly inform our approach to the hydrogen atom. We have seen the for­
malism applied to the particle-in-a-box problem, but hydrogen is much 
more complex. It is better to use the analogy with the vibrating string for 
our initial foray. All of the phenomena mentioned in the discussion of the 
vibrating string have a direct analogy to some aspect of the wave equation. 
If we can see how the analogy works, perhaps we will gain an insight into 
how to approach the puzzle of hydrogen. 

When you pluck the string of a guitar, you always have the sensation of 
hearing a particular tone or pitch. The same is true of most instruments. 
The lowest tone the string can produce is called the fundamental frequency 
of the string (or instrument or equation). This lowest tone has the same 
mathematical expression as the smallest eigenvalue of the wave equation 
describing the string (remember? that was —). That is, what you hear when 
you pluck a guitar string is basically what is predicted by the wave equation. 
This is because the lowest eigenvalue tells you the rate of oscillation (in 
time) of the string. This oscillation sets up an oscillation of air molecules of 
the same frequency, which carries the "sound" to your ear. The vibrating 
air hits your eardrum, which transfers the vibration to lots of little hairs 
inside your ear. These hairs are of various sizes and stiffnesses and each 
one has a fundamental frequency of its own. Each hair behaves like a little 
spring, and the vibrating air behaves like a forcing function for the spring 
equation. When the frequency of the air vibration is just right and matches 
up with the oscillating frequency of the hair, the hair starts to vibrate a 
lot, triggering a nerve ending that identifies the pitch. 

Of course, you can also pluck the string very cleverly so that the first 
coefficient in the Fourier expansion (bn) is zero, or nearly so. 

45 
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If you do this, you can arrange for the lowest eigenvalue to be absent (or 
nearly absent) from the Fourier expansion of the solution. Then you will 

27T 

hear the next eigenvalue. (Remember? that was ——). This tone is called 
the first harmonic or first overtone. It has exactly twice the frequency of 
the first one, and sounds a note exactly one octave higher than the original. 
This is the same as the n = 2 wavefunction in Fig. 7.2. The tone is quite 
eery because the string is not held in the middle, but allowed to vibrate 
throughout its full length. Your ear registers the higher tone because its 
Fourier coefficient is the largest, so that frequency of oscillation dominates. 
If several Fourier coefficients are of roughly the same magnitude, then none 
of the frequencies dominate and many hairs may vibrate simultaneously in 
your ear, causing you to hear a chord. Your ear is basically a mechanism 
for computing the largest Fourier coefficients present in a sound wave. A 
mathematician would say that your ear computes the Fourier transform of a 
sound wave. In effect, it solves an eigenvalue problem by building machinery 
(the hair) that mimics the physics of the thing that generates the sound 
(the guitar string). 

The frequencies of vibration corresponding to the Fourier coefficients in 
this example are the normal modes of oscillation of the string. They tell all 
there is to tell about the pitch or pitches you hear when you pluck it. They 
depend on the length of the string and its tension. They occur at discrete 
intervals, (7r,27r, etc.), giving an infinite sequence of possible tones, going 
higher and higher. In this way, they resemble the spectrum of lines of color 
associated with the hydrogen atom, which also occur as an infinite sequence 
of discrete frequencies with a characteristic distribution. For the hydrogen 
atom there is also a lowest frequency present, and all the rest are greater in 
frequency. In fact, the eigenvalues of the wave equation are referred to as the 

d2 

spectrum of the differential operator ——. The analogy is a good one because 
dxl 

for the string you hear its normal modes, (frequencies, eigenvalues, spec­
trum) directly. That is, you hear which frequencies are present in the sound, 
while for the glowing hydrogen atom you see which frequencies are present. 

Your eye is not built to separate the frequencies in the same way your 
ear is. You can test this first hand by mixing paint. If you mix two pure 
hues together (such as red and green), what you perceive is not red plus 
green, what you perceive is brown or gray. This is quite different from your 
perception of sound. If you play two different notes simultaneously, your 
ear separates them and you hear a chord, the musical equivalent of red 
plus green. Your eye, on the other hand, will not identify separately all the 
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frequencies present in a ray of light. That is why the light must be passed 
through a prism in order to see the various frequencies present. The prism 
is computing the Fourier transform of the light wave for us in this case. 

There is another aspect of the wave equation to which we had best pay 
close attention as well, and that is symmetry. There is a symmetry to the 
set of equations: 

Fxx(x,t) = kFtt(x,t) 
(8.1) 

F(0,t)=F(l,t) = 0. 

The partial differential operators are linear operators. That means they are 
invariant with respect to changes of variables of the form y = x + c. So you 
could replace x by 1 — x. This does not change the first of the two equations 
at all, and it flips the role of 0 and 1 in the second, leaving it invariant also. 
That is, a symmetric flip of the x-axis around x — 1/2 leaves the equations 
invariant. Now, notice that all of the solutions to the eigenvalue problem in 
x are also related by the same symmetry. For example: 

fi(x) =sin(27rx) (8.2) 

is an example of a solution. What happens if we replace x by 1 — x in this 
function? Trigonometry gives: 

/ i ( l -x) = sin(27r(l -x)) = - sin(27ra;). (8.3) 

In other words, the symmetry in the original equation acts on the solutions 
of the eigenvalue problem derived from that equation. The symmetry itself 
yields an eigenvalue of —1 when applied to these functions. Listen to this 
again: the symmetry, (x goes to 1 — x), behaves just like the differential 

operator I ——= ) • It has the same eigenfunctions, each of which has eigen­
value plus or minus one. This observation is a very special, easy case of a 
truly useful piece of mathematical machinery known as Schur's lemma. 

Now, remember from chapter two that, although we might not look at 
hydrogen as a teeny sun with little planets moving around it in circles, still 
the Balmer lines respected a spherical symmetry. That is, they gave the 
same frequencies no matter in what direction you measured. Later we will 
use Schur's lemma to capitalize on the presence of these symmetries so that 
we can solve Schrodinger's equation for the hydrogen atom. We didn't need 
to notice the symmetry of the wave equation to be able to solve it, but we 
will definitely need it for the hydrogen atom. 

I want to impress upon you the full set of implications of this analogy 
between sound and light, between the plucked string and the hydrogen 
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atom. First of all, the analogy doesn't make much sense if your model of 
the atom is Bohr's model. Kepler, studying the distribution of planets in 
the solar system, made a lot out of the fact that the various distances of 
planets to sun seemed to have a nice arithmetic relationship to each other, 
and he even used the term "music of the spheres" to describe the orderliness 
of these relationships. This analogy did not withstand the test of time, 
however, because Newtonian mechanics allow planets to be at any distance 
you like from the sun. This is handy because, as a corollary, satellites can be 
any distance you like from the earth, an observation we have utilized quite 
effectively this century. No, the analogy only starts to make sense from the 
point of view of quantum mechanics. 

If you are willing to think of hydrogen's lone electron as being charac­
terized by the probability of its being in a certain region of space, then the 
function which describes the probability distribution tells us what kind of 
behavior is possible for that electron, in a statistical or average sense. So 
we are now discussing a certain set of functions associated with hydrogen, 
namely all those which describe physically possible probability distribu­
tions for electron position. We know lots of different functions are possible, 
because hydrogen is observed to have different "excited states" or "levels of 
energy". These are exactly the phenomena we are hoping to explain with 
our model, so we expect lots of different solutions. 

These probability distributions are exactly of the form F(x, t), providing 
you allow x to be a vector in space which describes a position of the electron. 
For a given solution, F, the integral 

/ F{x,t)dx 
JR 

describes the probability that the electron will be in the region R at time t. 
Now, we have abandoned Newton in our search for an explanation of 

the Balmer lines. What new laws will govern the function F and what form 
will they take? There is only one possibility for the second part of that 
question: a partial differential equation. When we find that equation we will 
treat it as we treated the wave equation. We will make some assumptions 
about the form of the final solution so that we can separate variables in 
x and t and we will attempt to turn the equation into a pair of eigenvalue 
problems. We will solve each of them separately and hope that the solutions, 
as well as boundary values that come from physical considerations, tell us 
which eigenvalues are possible and how the solutions themselves might look. 
We will imagine that hydrogen is some sort of musical chime, and we will 
calculate the sound of its ringing. It just happens that hydrogen rings light. 



CHAPTER 9 

Dr. Schrodinger, I Presume? 

The historical development of the Schrodinger equation is available for your 
edification in some quantum mechanics texts, and good luck to you, too. 
Seriously, the way people figured these things out was as an axiomatic sys­
tem whose laws lead you to the results observed in nature. By axiomatic, I 
simply mean that the basic underlying assumption that an electron might 
obey a wave equation strikes me as an axiom upon which quantum mechan­
ics rests. The alternative assumption of an electron behaving like a body 
orbiting another body according to Newton's laws leads to radically dif­
ferent conclusions. In this approach you see the shadows of Euclid and 
Newton, standing off in the dim distance and cheering the brave physicists 
on. But, unlike Euclidean geometry or Newtonian physics, the answer to 
be explained was far from believable. While Euclid took the profound step 
of placing logical foundations under everyday geometric phenomena, and 
where Newton was able to use his assumptions to predict everyday physical 
phenomena, the physicists of the early part of the twentieth century were 
attempting to put a foundation under atomic phenomena, which foundation 
itself undermined Newton. In fact, the axioms themselves were very close 
to certain of the phenomena. So, while one might use them to predict what 
would happen, they were very unsatisfying answers to the question why? 

Certain clues and pointers did lie in the wavelike nature of light, 
however. After a long and somewhat convoluted development, it was 
Schrodinger who finally suggested that a particle with no forces acting on 
it should naturally obey the wave equation. For this he got the Nobel prize. 
In fact, in the context of particles, the wave equation is actually called the 
Schrodinger equation, even though Fourier, for heavens sakes! had solved 
it a hundred years before. The mathematician in me is showing through 
again, isn't it? 
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Of course, an electron that is part of an atom does indeed have forces act­
ing on it, otherwise it couldn't remain attached to its proton. This is where 
Schrodinger's equation really starts to do something interesting. There are 
various candidates for the potential field that would keep an electron in 
"orbit", but by now we know that it would have to have spherical sym­
metry. That is, any force acting on the electron should be expressed as a 
function of r only, where r is the radius from the electron to the center of 
the atom. In addition, that force should die away at great distance from the 
proton, because if an electron gets far enough from its proton, it is lost. The 
simplest candidate for a function of r that does this job is 1/r, and indeed, 
this function (up to a constant multiple) does the trick. In keeping with the 
spirit of forces acting on springs, we just add it on to the list of operators 
affecting our position function for the electron. For reasons of tradition, 
that function is always called \P. In this case, it would be ^(x, y, z, t). 

d2 

Now, the wave equation in one spatial variable has the operator ——-
dxz 

What operator does this job in three variables? It is possible to write down 
a Schrodinger equation for a particle in less than three dimensions, but 
for this you don't get the Nobel prize. Whatever operator we use must 
be unable to distinguish directions from the origin. The only second order 
operator with this property is (up to multiplication by a constant) 

A - — — — 
dx2 dy2 dz2' 

You will notice that I am using a mathematician's favorite notation for this 
operator, which is not the same as the standard physics text; the symbol A. 
This is the Laplace operator, or the Laplacian. With this notation in place, 
Schrodinger's equation is: 

( A + 3* = 4*' <9-2> 
where 

r = Vx2 + y2 + z2 

is the distance to the origin of the spatial variable. 
Compared with the vibrating string we seem to have an awful lot of 

variables here. We will want to separate variables in the same way we did 
for the wave equation in Chapter 6, but which variables shall we use? The 
key here lies in the spherical symmetry that can be read off the equation 
itself. Initially there are four variables, x, y, z, t, but obviously, t and r play 
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distinguished roles in this equation. Perhaps you remember from spherical 
geometry how to write the Cartesian coordinates x, y, z in spherical coor­
dinates so that r becomes one of the variables. In case you do not, here are 
the formulas: 

x r sin f cos t 

y = r sin v sm < 

z = rcos9. (9.3) 

Here the variables 9 and <p a r e given these labels because they are actually 
the Euler angles for spherical coordinates, as shown in Fig. 9.1. If you set 
r = 1 and let 6 and <fi change, you will get points that lie on the sphere of 
radius one. So these are the natural coordinates for points on the sphere. 

It is an interesting exercise in multivariable calculus to rewrite the 
Laplacian in terms of these new variables. If you do this you will get: 

A = (r^sintf)-1 3 ( 2 • fl0* 
— r sm0 — 
or \ or 

d ( . ndV 
+ d0(Bme-ee 

(9.4) 

And now, if you write 

9(x,y,z,t) = g(t)u(r)Y(0,<l>) 

1 

z 

1 y 

e 

> ' " 

> x 

,-*r 

X 

Figure 9.1. The Euler variables in terms of the Cartesian coordinates. 
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you can separate variables to get three equations, one for each of these new 
functions. You will have ordinary differential equations in t and r, because 
these variables occur alone. You will have a partial differential equation in 
9 and <f> which you should not separate further, for very good reasons having 
to do with a lot of abstract algebra which we will talk about later. Fooling 
around with the Laplacian in spherical coordinates yields this equation: 

(M + W + cru,) _^E=-AsY=Kf (g_5) 

where 
Y 

1 " s i n ^ U s i n * - ^ (9-6) * sm6d9 V 99 J d<p2 

which, as you can see, separates variables. The exact values of K, E and c 
will tell us the position of the spectral lines. The equation in u> simplifies 
further to give 

( r V ) ' - r 2 ( V ^ ) W = 0. (9.7) 

Now, let us remind ourselves of the roles of these three numbers, E, c, K. 
The constant c is a parameter of the original equation and cannot have more 
than one value. The possible values for K we will determine by studying 
the equation in Y, rather than the one in r. For a given choice of K, 
we will then determine which possibilities for E are allowed, and part of 
this determination will rest on physical assumptions about the system, as 
well as some general theory about this particular kind of equation that 
we will use to eliminate undesirable solutions. In particular, one of our 
assumptions will be about the total energy allowed in the system, which 
will result in a boundary condition that requires w to approach zero as r 
approaches infinity. When all is said and done, there will be one constant 
left undetermined. By choosing it (which will amount to a choice of c), we 
will specify the lowest value possible for E, and that will determine all the 
other eigenvalues. 



CHAPTER 10 

The Quantum Numbers 

We can now write the Schrodinger equation for any system. The problem 
is: how can we solve it for any system, or for even one system? It turns 
out that we can solve the equation exactly for a one-electron system. All 
other cases will require some form of approximation. We'll not try to repro­
duce that solution here. For now we shall concentrate only the solutions 
and interpret them. A word of warning; we revert back to the physicist's 
notation. In a subsequent chapter, we will explicitly connect the language 
of the physicist to that of the mathematician. We begin, for completeness, 
with the Schrodinger equation once more 

HV = EV, (10.1) 

where 

h2 f d2 d2 d2 \ H = -»n{w + W+^)+ViX-"-Z} ( 1 ° - 2 ) 

Recall that while Bohr assumed quantum numbers they result from the 
solution of the Schrodinger Equation. Let's look at the quantum numbers 
resulting from the solution and assign physical significance to them. 

Recall that in our one-dimensional particle in a box, we have one quan­
tum number. In a three-dimensional box, we have three. In short, we have 
one quantum number per coordinate (actually, per squared coordinate or 
degree of freedom, but we'll leave that distinction for another time). Below, 
we look at the quantum numbers and assess their significance. 

(1) The quantum number, n, is the "principal quantum number", and is 
related to the energy of an electron in an atom 

meiZ2 
E = ~!I^r> n = 1,2,3, . . . (10.3) 
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where Z is the atomic number, m and e are the mass and charge of 
the electron and h is Planck's constant divided by 2ir. The energy level 
spacing grows smaller as n increases. As n —> oo, E = 0 and the 
atom is ionized. You can easily see that Schrodinger and Bohr were in 
agreement for the hydrogen atom, as they should be. 

(2) The angular momentum quantum number, £ is required to accurately 
express the average electron distance from the nucleus 

,-=£(§-S£S), o^,.-, ( U u, 
£ = 0 => s orbital 

£ = 1 => p orbital, etc. 

where s,p, etc. are the customary chemist's names for the stationary 
states. 

(3) The magnetic quantum number, TO/, determines orientation in, and 
is only important for, atoms in a magnetic field. The values are 
restricted to 

-£ < mi < £ (10.5) 

(4) There is a fourth quantum number that is necessary but does not result 
from the solution to the Schrodinger equation as we have written it. 
Rather, it results from a relativistic form of the equation. This is the 
spin quantum number, ms, which is needed for many-electron atoms 
and has values 

ms = ±1/2. (10.6) 

How do we use these quantum numbers? We can specify the state of an 
atom (and later, a molecule) using quantum numbers. Let's see how by 
finding the answer to the following question: "What are the quantum 
numbers for the ground (lowest energy) state of the hydrogen atom?" 
We come to the solution by writing the lowest possible values for each 
of the quantum numbers. That would be the following set: 

n = 1 

£ = Q 

me = 0 

TO. = ± - . 
2 
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There are two possible sets of quantum numbers. Now take this concept 
one step further: what about the first excited state of the hydrogen atom? 

n = 1 
£ = 0 or 1 

/ \ 
me = 0 mi = 0,1 

ms = ±\ 

Eight possible sets of quantum numbers 
2,0,0, ±1/2 

2 , l , ( - l , 0 , l ) , ± l / 2 

We could use a table to see this more clearly: 

71 £ 

1 0 (Is) 
2 0 (2s) 

l (2p) 
3 0 (3s) 

l (3p) 
2 (3d) 

me 

0 
0 

- i , o , 
0 

- 1 , 0 , 
- 2 , 1, 0, 

1 

1 
1,2 

ms 

±1/2 
±1/2 
±1/2 
±1/2 
±1/2 
±1/2 

E, kcal/mol 

-1310 
-328 

-145 

Number states 

2 
8 

16 

There are always 2n2 possible combinations of quantum numbers. We 
divide these into orbitals. Orbitals are maps of the probability of the elec­
tron being located at a certain region in space. They are designated by 
their angular momentum quantum numbers. The values of magnetic and 
spin quantum numbers define the electrons within an orbital. 

As you have seen, the Schrodinger equation may be written in spherical 
polar coordinates using the usual transformation. As a result, we can write 
a radial part and an angular part for the wavefunction \f. As an example, 
let's look at the wavefunction for the Is and 2pz orbitals in the hydrogen 
atom. These orbitals have the quantum numbers n = 1, £ = 0, me = 0 and 
n = 2, £ = 1, me = 0, respectively. 

- 1 x 1/2 / X \ ! / 2 

*- = UJ -2U) e" (I07) 

**- = (h)1"""'-^{kT'0''i <10-8) 
11 v ' v v ' 

i>(0,<j>) R(r) 

where a = — (for H, a = a0, the Bohr radius = 0.529 x 10^10 m). 
ZJ 



56 The Bell That Rings Light 

>Jf2 

r 

Figure 10.1. The probability density for the Is orbital of hydrogen. 

Finally, let us return to the issue of probability, one that we ducked a 
while back. Consider ^>fs(r), the probability per unit volume within the Is 
orbital. This is shown for the Is orbital of hydrogen in Fig. 10.1. 

There is a maximum at the nucleus. This is correct, but is contrary 
to our pre-conceived notion that the electron is not in the nucleus. Well, 
our common sense is correct. We are looking at the probability density 
and we need to multiply the probability density by a volume element to 
get a probability. The volume element of the nucleus is very small and so 
the probability of locating the electron at the nucleus is negligible (but not 
zero!). This can all be clarified by looking at a different function. It is easier 
to consider the probability of finding the electron at r, regardless of angular 
part of wavefunction. So, we construct the radial probability distribution 
function, obtained by integrating over all angles. We treated distribution 
functions in Chapter 4. The result in the present case is r2R2. This is shown 
in Fig. 10.2 for several different orbitals. 

In general, all s orbitals have some probability near the nucleus. Why 
do p and s orbitals look different? This seems to have no relationship to the 
radial function we just discussed. That is correct! The difference in shape is 
due to angular terms. Let's ignore the radial part of the wavefunction and 
explore the angular term, <!>(#, <j>). In that case, we can write 

|$2PJ2 oc cos2 6 and |$ i s | 2 oc 1 (10.9) 

Clearly, |$ i 5 | 2 will not have any angular dependence. That is, it will gener­
ate a sphere in three-dimensions. |3>2PJ2, on the other hand, is a periodic 
function and the probability density is shown in Fig. 10.3. Values of 9 



The Quantum Numbers 57 

Figure 10.2. The radial probability distribution functions for hydrogen orbitals: 
Is (gray); 2s (black) and 3s (heavy black). 

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 

Figure 10.3. The angular dependence (in radians) of the unnormahzed hydrogen 
2pz wavefunction. 
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1.2 

0.9 

I 
! 

0.6 -

0.3 

probability of finding the 
electron between r and r+dr 

0.3 0.4 

Figure 10.4. Use of the radial probability distribution function to calculate 
probability. 

range from 0 to n and the angular dependence of the full wavefunction 
(think about rotating the curves in Fig. 10.3) will have the well-known 
"dumbbell" shape. 

Finally, a note on interpretation. What are the differences between ip, 
ip2,R2, etc.? 

• Evaluating ip2{r, 0, <j>) => the probability density at r, 6, cj> (the probability 
per unit volume of finding the electron in a volume element near (r, 6, <p). 

• R2 is the radial probability density. This is the probability of finding an 
electron between r and r -I- dr, regardless of 9 and <t>. 

• The radial probability is R2(r) x volume. This is the volume of a spherical 
shell between r and r + dr and is ~ 
r2R(r2)dr, as shown in Fig. 10.4. 

dr. So, the radial probability equals 



CHAPTER 11 

Pleased to Meet you, Dr. Schur 

By now you should be suspecting that the symmetries of the sphere that 
we investigated in Chapter 4 are going to play a major role in solving the 
equation we set up in Chapter 6. Chemistry and physics texts skirt the 
issue in truly paranoid fashion. Mark my words, however — you can have 
all the toy models you want of energy levels arranged in concentric circles 
around a gumball proton with little ball bearings pretending to be electrons 
zooming about, so many to each orbit, but none of this stuff will tell you 
where the spectral lines of hydrogen lie. Only the solution to Schrodinger's 
equation will tell you that, and the key to unlocking that equation is the 
group of its symmetries. 

A group is defined to be a set of objects (such as the real numbers or 
the rotation matrices) together with an operation, (such as addition in the 
first case and matrix multiplication in the second case), which takes a pair 
of these objects to a third one. Certain axioms must be satisfied. First of 
all, there has to be an object (called the identity) that preserves all the rest 
under the operation (such as addition of zero in the first example or multi­
plication by the identity matrix in the second). Secondly, every object has 
to have an inverse under the operation. An inverse of an object composed 
with the original object ought to give the identity. For the real numbers 
with addition, the identity is zero and the inverse of any number is its neg­
ative. What do you suppose the inverse of a rotation matrix will be? Finally, 
the operation specified for the group must be associative. Every kid learns 
that addition is associative, so there is no problem with the first example. 
Proving that matrix multiplication is associative is an amusing exercise. 

It's worth knowing the definition of a group because some of the princi­
ples we will be using to solve Schrodinger's equation are applicable to lots of 
situations involving groups, even though we will only be thinking about the 
group of rotations of the sphere, which has the special name SO(3, R). The 
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nomenclature is part of a group classification program for matrix groups, 
whose work spans a century. The "S" stands for "simple", which is code 
for having determinant one. The "O" stands for "orthogonal", because the 
matrices for rotations all share the common property that their rows are 
perpendicular vectors, as are their columns. Orthogonal is a fancy word for 
perpendicular. The "3" stands for 3 by 3 matrices and the "R" indicates 
that the entries are real numbers, rather than complex numbers or some 
other sort of object. These classifications are useful for describing proper­
ties of matrix groups in grand generality, a work begun in the 1800's by 
Sophus Lie. His hope was to use general principles to solve large classes of 
very difficult types of differential equations, whose symmetry groups these 
were. As a result, SO(3, R) is called a Lie group. As you will soon see, Lie's 
hunch about how to approach differential equations is very much borne out 
in the case of the Schrodinger equation. 

It's easier to think of the group of rotations as acting on all of three-
dimensional space, instead of just the sphere. Any point in space can be 
rotated about the origin; the sphere is just an invariant of those rotations. 
Now here is the amazing mathematical revelation: any group that acts on 
some space (such as three-dimensional space or the sphere), also acts on 
functions of that spatial variable. Here is an example of how it works. We 
are cowards, you and I, so we'll start with an "easy" example. 

Suppose the group we are thinking about is just the real numbers with 
addition. A member of this group (say, 3, for example) acts on the real 
number line by taking every number on the line and adding that group 
element to it (5 becomes 8, TT becomes 7r + 3). This has the effect of sliding 
the line to the right or left so many spaces, where it obligingly lies down 
right back on top of itself. How do we make this action into one on functions? 
By translating the variable, of course, so that for a group element y (or 3) 
and a function f(x), we get a new function: 

fv = f(x ~ V) 
or (11.1) 

h = f(x - 3). 

You can check that this new action is linear. In other words, a group element 
acting on the sum of two functions will have the same result as it would were 
it to act on each function separately and then one were to sum them. In 
other words, if the space of functions is a vector space, which it is, then every 
single element of this group acts like a matrix on this space of functions. 
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Ponder this. Hold this example in your head. Hold on tight to it because it 
is the inspiration for all that follows. 

For the case we care more about, the group SO(3, R) acts on functions in 
three space by rotating the spatial variable. So a function f(x, y, z) becomes 
f(Ax + By + Cz, Dx + Ey + Fz, Gx + Hy + Iz) where the matrix 

A B C\ 
D E F\ (11.2) 
G H I ] 

lies in SO(3, R). In other words, its rows form an orthogonal basis of R 
and so do its columns. In spherical coordinates, (r, 9, ip), this action would 
send / ( r , 9, <f>) to f(r,9 + a, 4> + /3) and it would look remarkably like the last 
example! (Of course, the transformation 9 —> 9 + a is not a true rotation. 
In fact, a and (3 would both be complicated functions of 9 and ip as well as 
the entries of the matrix above. That is why a and (3 are a bad choice of 
coordinate system for rotations of the sphere.) 

In both of these examples we are looking at a phenomenon known as 
a group representation. This just means that we have expressed (or rep­
resented) our group as linear operators (in both cases translation of the 
functional variable) on a vector space (of functions of a particular sort). In 
this way, we can think of the group as a large matrix. As we have seen from 
Fourier analysis when we looked at the wave equation, the dimension of one 
of these spaces of functions is infinitely large, so although we started out 
with matrix groups (1 by 1 matrices in the first case and 3 by 3 matrices in 
the second), we ended up with infinitely large matrices that act on spaces of 
functions. Entries of the matrix for the representation, called matrix coeffi­
cients for obvious reasons, will depend on the choice of basis for the vector 
space of functions. 

Let's introduce some simple notation for what is going on in these two 
examples. In both cases we have a group, say G, with group elements, one 
of which might be g. Each of these group elements acts on a function by 
changing the functional variables in some way. Let us denote that action as 

/ O r 1 * ) = p(g)f. (11.3) 

The reason for this notation is largely convention. This is the way a rep­
resentation theorist would write it. It's convenient because composition of 
matrices works out well this way, that is if g and h are two group elements, 

f{{gh)-lx) = fih-'g^x) = p(g)p(h) = p(gh)f. (11.4) 
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Check it out. This consistency of order makes certain kinds of algebraic 
manipulations a little easier, so this is how the action is written. 

Now we are equipped to ask the important question of this chapter. How 
do the spatial symmetries evident in the spectrum of hydrogen translate 
into a statement about the solutions of Schrodinger's equation? Remember 
that the spectral lines are invariant with respect to the observer's position. 
That means that if hydrogen is behaving as the solution to a differential 
equation, then when that solution is rotated according to any element of the 
symmetry group, we must obtain another solution. In other words, instead 
of moving the observer, think of rotating the atom. By doing this rotation, 
you must get another solution to Schrodinger's equation that gives the same 
spectral line. With our notation from Chapter 9 and this one, it must be 
that 

&sp(g)f = P(g)*sf. (H.5) 

In fact, it is possible to verify this directly by doing the change of variables 
and then applying As, and vice-versa. But this notation makes it very clear 
that the operator Ag commutes with the entire family of operators p(g), 
for all g. And this makes our eigenvalue problem a perfect candidate for 
Schur's Lemma. 

Schur's Lemma 

Suppose (T, V) is an irreducible representation of a group G on a finite-
dimensional complex vector space V. If A is a linear map such that 
A T(g) = T(g) A for all g in G, then there is a complex number c such 
that A = cl, where I is the identity operator (identity matrix in this case). 

Schur's lemma is telling us that if we can break our vector space of func­
tions into finite size pieces on which our representation is irreducible, then 
As will behave like a diagonal matrix on each piece, with the same number 
along the diagonal. To complete the picture, an irreducible representation 
is a representation of a group on a vector space that has no invariant sub-
spaces. In other words, the group completely mixes up the various objects it 
acts on, so that you can't break the representation into two smaller actions. 
To apply Schur's lemma to our eigenvalue problem above, we need to break 
up the space of functions on the sphere into subspaces, each of which is the 
group action given by a rotational change of variables preserves. To return 
to our easy example of translation of functions of one real variable, we can 
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see that the action given by 

fv(x) = f(x-y) (11.6) 

preserves certain subspaces of functions. You can see that if 

/ = ecx then 

fy(x) = ec{x~v) = e~cvecx = Kecx. (11.7) 

How does this example relate to Schur's lemma? Well, it is easy to check 
that translation of the functional variable which gives us our representation 

in this case, actually commutes with the operator — . 
dx 

Check this out. Since the space of functions spanned by the single func­
tion ecx is a finite-dimensional vector space of dimension one, translation 
becomes an example of an irreducible representation on this space. The 
hypotheses of Schur's lemma are satisfied and we can conclude without 
computation that 

- l e c * = Cecx (11.8) 
dx 

for some value of c. Schur's lemma doesn't tell us what that constant will 
be. Of course, anyone reading this will certainly be able to work the problem 
directly to see that c = C. 

For such an easy, familiar example, Schur's lemma doesn't gain us any 
new or particularly enlightening information. But for the case of rotations 
in three-dimensional space, it certainly will. In this situation, the invariant 
subspaces that are fixed by the group action will not be one-dimensional. 
Yet the lemma tells us that every element of such a subspace will be an 
eigenfunction of our spherical Laplace operator, A, and will always have the 
same eigenvalue. So we need to only compute the action of A on one function 
in each space to determine the eigenvalue. Furthermore, the dimensions 
of these invariant subspaces (which we can calculate) will have an actual 
physical interpretation, as we will see later. 





CHAPTER 12 

The Spherical Harmonics 

It is the general consensus among mathematicians I know that "The Spher­
ical Harmonics" would be a great name for a rock group, or possibly a 
barbershop quartet with somewhat portly members. Language conjures an 
image, no matter how technical the language may be. All of the discussion 
we have been having about groups and symmetries is part of the corner of 
mathematics called algebra, or sometimes out of honesty, abstract algebra. 
It is indeed a direct descendent of that Arabic and late medieval activity 
whose name is derived from the word al-jabr, meaning to restore. In its 
abstract form, it bears little resemblance to either the medieval subject or 
its renaissance counterpart as taught in high school, which we all have stud­
ied and whose exposition can be found in books entitled "College Algebra". 
That title is a tip-off that the contents of the book restore (al-jabr) what 
was supposed to have been learned in high school. In contrast, the most 
abstract renderings of modern algebra can be found in texts ingenuously 
titled "Basic Algebra 1". It is some matter of debate whether language is 
doing its job in these cases. 

The spherical harmonics are really the families of functions of the Euler 
angle variables, (</>, 9) which are invariant under rotation. The orthogonal 
group is not commutative, so its action on these variables doesn't amount 
to simply adding angles independently to the Euler angle variables. Rather, 
there is some complex interaction between rotations in <f> and 6 which you 
could work out if you had to do it. A simpler approach is to view every 
function on the sphere as the restriction of a function in three-dimensional 
space, where the action of the orthogonal group is given by a matrix by 
which one multiplies the vector (x, y, z). 
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Just as before, a function f(x, y, z) becomes f{Ax + By + Cz, Dx + 
Ey + Fz, Gx + Hy + Iz), where the matrix p(g) is given by: 

A B C\ 
D E F\ (12.1) 
GHlJ 

lies in SO(3, R). This function, when restricted to values of (x,y,z) where 
x2 + y2 + z2 = 1, gives a function of the points on the sphere. Of course, we 
will have to be careful because more than one function might be the same 
when restricted to just the sphere. So we will have to worry about that 
when we make our count of how many there are in each invariant subspace. 

Suppose we look at a particular function, 

f(x,y,z) = x3. (12.2) 

Then, if we transform the function according to the matrix above, 

p(g)f=(Ax + By + Czf. (12.3) 

What aspects of / are preserved by such a transformation? Multiplying the 
terms out gives us a major hint. Every term of the transformed polynomial 
has the same degree as the original, namely 3. So, if we took as a subspace of 
our huge vector space of functions those polynomials which are homogeneous 
of degree n, which means that every term has exponents which add up to n, 
then we would have a subspace that is invariant under our group action. 
Now, we have to be careful because some of them are really the same 
function when confined to the sphere. For example, 

f(x,y,z)=x2+y2 + z2 (12.4) 

is really a constant function on the sphere, so its degree goes down by 2. 
Because we believe in the mathematical phenomenon known as Taylor 
Series, we know that these polynomials are enough to generate all func­
tions on the sphere. 

It's worth noting the weirdness of this example. Normally if you take 
a second derivative of a polynomial of a certain degree, that degree goes 
down by 2. In other words, this trick of using polynomials won't work for 
the regular Laplace operator, so why should it work for the spherical one? 
The key lies in the finite dimensional hypothesis in Schur's lemma. For the 
lemma to work, the group G and the operator A must commute on this 
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finite dimensional space. The operator 

— — — (12 5) 
dx2 dy2 dz2 

does not preserve the space of polynomials of any particular degree, so we 
can't use Schur's lemma on it. In other words, although the group breaks 
the space of polynomials of degree less than or equal to x into invariant 
subspaces, the Laplacian doesn't cooperate by respecting those subspaces, 
at least not superficially. In fact, if it is going to be true that the Laplace 
operator has an eigenfunction that is a polynomial, then the eigenvalue 
must be zero. Do such functions exist? Yes they do, and they are called the 
harmonic polynomials. Here are some examples: 

x,y,z 

x-y2,y- z2,xy,yz 

3x2y — y3 

x3y-xy3 (12.6) 

and so on. Since each of these is an eigenfunction of A, if we use any one of 
them to make more by changing variables under the rotation group, we will 
construct many new eigenfunctions in this way. Now we have made spaces 
which satisfy the hypotheses of Schur's lemma, although the eigenvalue 
corresponding to the operator A is always zero. Of course, what we really 
care about is the eigenvalue corresponding to As, which will not be zero. 

As a matter of fact, if we look at what happens to those polynomials 
when we substitute Euler angles and set the radius to 1, we find something 
quite different. The polynomial z, for example, becomes 

f(4>,0) = coS(8). (12.7) 

If we apply the spherical Laplacian, we get 

A 5 / = -2cos(0). (12.8) 

If we pass to polynomials of degree 2, we have to be careful. They do not 
always look homogeneous when we finish setting x2 + y2 + z2 = 1. Let us 
look at z2, for example, which is not harmonic and so should not be an 
eigenfunction of A. Passing to spherical coordinates, and setting r = 1, 
this gives the function 

g(<j>,6) = cos2 (0). (12.9) 
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You can check that 

A s 5 = 2-6cos2(6>). (12.10) 

Clearly, if we try a new function 

G(<M)= cos2 ( ^ ) - i . (12.11) 

Then, G is an eigenfunction of As with eigenvalue —6. Now, if we were to 
create a bunch of new functions by applying our rotation group to this one, 
we would indeed create the irreducible representation described by Schur's 
lemma. Does this correspond to a harmonic function in x, y, z? Well, you 
can check that 

z2-\{x2+y2 + z2) (12.12) 

is in fact harmonic, and restricts to 

z2 I (12-13) 

on the unit sphere. It is pretty easy to construct a harmonic polynomial for 
any given degree if you mess around long enough, but kind of hard to write 
down a general recipe for getting one of an arbitrary degree. 

In fact, eigenfunctions for the spherical Laplacian can be written down 
explicitly in terms of Legendre polynomials. The Legendre polynomials are 
defined in terms of two indices as follows: 

where 

•Pn(z) = 7 ^ - T - ^ ( ( x 2 - ! ) " ) • (12.15) 

Armed with all of this notation, the function 

eim,t>P™{cos0) (12.16) 

is an eigenfunction of As with eigenvalue —n(n + 1). 
So, like a lot of math problems, this is one you can "solve" once you 

know what the answer is. And, like a lot of math problems, the modern 
approach (which in this case uses group theory and the fancy algebra of 
Schur's lemma) harkens back to famous families of "special functions", like 
the Legendre polynomials. For our purposes, the main fact we have gleaned 
is that the K of Chapter 9 is equal to n(n +1) for some positive integer, n. 
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Figure 12.1. Graphical representation of Eq. 12.17. This is also a stylized repre­
sentation of a 2p orbital. 

You can also do a fancy counting argument to figure out the dimension of 
each space of eigenfunctions, and you will find that the dimension of the 
space of functions whose eigenvalue is —n(n + 1) is, in fact, 2n + 1. This 
fact will figure in much later, when we know more about the final solution 
to Schrodinger's equation. 

Without even solving the equation in the radial variable, just knowing 
the spherical harmonics gives us a lot of information about the structure of 
the atom. The probability distribution of the electron is usually pictured as 
a cloud, where the density of the cloud denotes greater probability. Nodes 
of the spherical functions are choices of 6 and <p where the solution is zero. 
For example, 

f{</>,9) =cos0 (12.17) 

has a node at 0 = 7r/2, which is the entire x-y plane. The electron cloud 
for this solution looks like the drawing in Fig. 12.1. This figure represents 
one of the orbitals portrayed in any chemistry or modern physics book. 





CHAPTER 13 

More French Mathematicians 

To finish the computation of the energy level E we set out to find in 
Chapter 9, we must look again at the equation: 

(A/)--^(£-H + =fc±a)u .o, (mi 
where we have acknowledged that K = —n(n + l). Earlier, we hinted at the 
need for certain physical considerations to eliminate some kinds of solu­
tions to this equation. As you are aware if you have studied differential 
equations, sometimes what matters most is the long term behavior of the 
solution rather than a nice formula for it. This is one of those cases, because 
physicists like to assume that an electron can only have finite energy. That 
means, when translated, that the function of r that solves the above equa­
tion had better die out as r approaches infinity. The energy of the electron 
is somehow related to the integral of the absolute value of the function LO 
from zero to infinity. If the function doesn't go to zero as r gets large, that 
integral cannot be finite. This is an absolutely minimal criterion for the 
integral to be finite, and as you know if you remember your calculus, it is 
not nearly enough. But, if the function does go to zero, we can then do 
some extra work to check that the integral will also converge. 

The easiest way to get at the nature of the solution to our equation is to 
invoke power series to help us solve it. You might remember that a power 
series is a way to express a nice function (called analytic) as an overblown 
polynomial. Let 

uj{r) = a0 + air + a2r
2 + • • • (13-2) 

where the three dots mean that this series is actually infinitely long. By 
investigating this series, we can learn a lot about the long term behavior 
of the solution, depending on different choices of E and c. Unfortunately, 
if you plug it right in to the equation as it currently stands, you will get a 
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major mess. Try it if you want to, but don't blame me for what happens. 
Instead, we will break it down into pieces, none of which are that bad. 

Working through this problem, I realized that reading an exposition of 
it would actually be worse than working through it myself. So, in what 
follows, I have parsed the problem into small pieces, most of which do not 
use anything unfamiliar to a calculus student. There is a place toward the 
end of the exercises where you will have to do some messy estimates of 
how fast terms in the power series are growing. This sort of analysis is 
very akin to the kind of questions that come up in studying when power 
series converge. In the end, allowable choices of E will rest entirely on these 
estimates. This is because it is the boundary values in this problem that 
are controlling much of what goes on. The requirement that the solutions 
to Schrodinger's equation die out fast enough as r gets large so that the 
total energy is finite represents a physical requirement. Basically, this is 
the requirement that the electron be actually associated with the atom. 
Therefore, the allowable E that come out represent the bound states of 
hydrogen. 

In the end you will see that the answer to this chapter's equation is 
given by a family of classical functions, called the Laguerre polynomials. 
The Laguerre polynomials were studied long before this particular problem. 
It certainly seems to be the case that the same sorts of functions tend to 
reappear in physics with great frequency, along with the somewhat startling 
roles played by the integers and the circle. Why should physical phenomena 
so often be represented by the very sorts of number patterns and functions 
that humans find so easy to comprehend? This question has led to a phrase 
coined by Stanislaw Ulam, "the unreasonable effectiveness of mathematics". 
It's enough to make a Pythagorean out of any of us. 

A Guided Tour of the Radial Part of 
Schrodinger's Equation 

1. Do a change of variables on the equation in r. Let K = n(n + 1) and let 

UJ = rmy 

and compute what sort of equation it must then solve. You should get 

(m{m - 1) + 2m - K - r2E + cr)y + (2m + 2)ry' + r2y" = 0. (13.3) 

Notice the expression, 

m(m - 1) + 2m - K = m2 + m - K. (13.4) 
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Since K = n(n + 1 ) , if you set m = n, this expression will be zero. Do 
this and the equation becomes: 

{-r2E + cr)y + 2(n + l)ry' + r2y" = 0. (13.5) 

Notice that an r cancels out to give: 

(-rE + c)y + 2{n+l)y' + ry" = 0. (13.6) 

2. Do another change of variables. Set s = cr and compute the new differ­
ential equation resulting. Then set 

E = c2M. 

Setting u(s) = y(r), you should get 

(1 - sM)u + 2(n + l)v! + su" = 0. (13.7) 

Now, this equation looks perfectly amenable to plugging in a power series 
for u and chugging away. We have eliminated one degree of the variable 
and one of the constants. However, you will find, if you attempt a power 
series solution at this point, that you can write down a dependence 
among 

tin — 1 > &7l) 

and an+i. 
This is ok as far as it goes, but a two-step recursion like this makes it 
hard to deduce the long term properties of the an. A one-step recursion 
would be much better. So we will do one more change of variables. 

3. This time, set u = e~F'v, where F is some constant. Compute the new 
differential equation and see that if you set F = y M you will obtain: 

(1 - 2(n + l)F)v + (2(n + 1) - 2sF)v' + su" = 0. (13.8) 

This has the effect of moving the s from the coefficient of v to that 
of v', making the next computation easier. 

4. Are you ready to boogie? Set 

v — ao + a\s + • • • + a,jSJ + • • • . (13.9) 

Compute v' and v". Use the differential equation to figure out what 
the general coefficient, Oj+i, ought to be in terms of the previous 
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coefficient ctj. I find it easier in this case to look at an equation of the 
form: 

Av + [B - Cs)v' + sv" = 0, (13.10) 

where all of the constants are positive, because then I get the general 
relationship: 

Cj-A 
°*+i = (B + j ) ( J + l ) f l j - ( } 

This recursion formula is of the general form 

Oj+i = Qaj, (13.12) 

where Q has some sort of dependence on j . The remaining exercises 
allow us to analyze the recursion formula we have obtained. 
First notice that if there is some j for which Cj — A = 0, then the 
series terminates and the solution will be a polynomial. In our example, 
C = 2F and A = 1 - 2(n + 1)F. What relationship of j to F gives a 
polynomial solution? Show that, for a^+i to be zero, it must be that 

2 ( j + n + l ) V ' 

Then work backwards through your substitutions to show that this 
implies that 

g = 4 ( J - + n + l ) a
 ( m 4 ) 

and show that the solution corresponding to this choice dies out exponen­
tially fast as r goes to infinity. This involves working backwards through 
all of the various substitutions to get a general form for the solution. It 
so happens that these solutions can also be written as Laguerre polyno­
mials times an exponential. It is the exponential introduced in Step 3 
that gives the rate at which the function dies out at infinity. These are 
solutions to Schrodinger's equation that obey all of the constraints we 
originally put upon them. 
Now we will look at the case where the power series does not termi­
nate. This series, of course, will only represent the actual solution of 
your equation if the power series actually converges everywhere. Use 
an argument that compares the coefficients to those of an exponential 
function to show that the coefficients die out fast enough to guarantee 
convergence everywhere. 
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(13.16) 

Next, we will compute a lower bound for the same coefficients. Show 
that, for a large enough J, all the Oj for j > J are of the same sign. And 
now show that the absolute value of the expression 

(sfferu (13'15) 
is bounded below by 

P 

JTT 
and that, therefore, the coefficient aj+i is bounded below by 

WOTT)T <liu7> 
where (j + 1) = (j + l)(j)(j — 1) • • • 1, which is called (j + 1) factorial. 

Comparing these coefficients with those of an exponential functions 
allows you to say that the solution to your differential equation grows (in 
s) at least as fast as an exponential function divided by some power of s. 

Finally show that when you work backwards through the substitutions, 
this large rate of growth is maintained. Actually, the only thing likely to 
cause trouble for you is the presence of the exponential in Step 3. You will 
have to show that the rate of growth of the function represented by your 
power series is greater than that of some exponential. You can conclude 
from this annoying foray into power series that none of these solutions is 
allowed by the assumptions on Schrodinger's equation. Therefore, the only 
solutions are those you found in Step 5. 





CHAPTER 14 

Reprise: The Quantum Numbers 

Gentle reader, you have tolerated much to get to this point. Together we 
have made forays into almost every corner of mathematics in search of 
an explanation of the marvelous light of hydrogen. Will it pay? I assure 
you it will pay, and handsomely. But do not hope for perfection, because 
that is not what science gives. Only mathematics can ever be perfect. In 
this chapter, we will explore the quantum number. The language will be 
that of the mathematician. You might want a translator, if you are more 
comfortable with the chemical or physical dialect. Later chapters will do 
this for you. 

What have we found thus far? A magical integer, n, which tells about 
the space of spherical polynomials of degree n. Another magical integer, 
k = j + n + 1 tells us the eigenvalue 

E = w^ <141> 
which ought to yield the spectral lines. Of course, there is still the constant c 
which must be determined to give the full information contained in the 
model. This can be done, either experimentally or from first principles (and 
good luck to you, too!). Either way, it turns out that 

where m is the mass of the electron, e is the charge on the electron, and 
h is Planck's constant. Of course, everything is in units that would make 
a physicist happy. What do we observe when we run Banner's experiment? 
Well, we ought to see the difference in energies as the electron changes its 
natural frequency of oscillation to a lower energy one, while ringing light. 
Or we can evoke the prosaic language of chemistry texts, and claim that 
the "electron jumps from one energy level to the next". In any case, we 
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expect to see a difference that looks like 

v = Rkz2 - Rki2, (14.3) 

where k\ and k^ are two choices of the k which determine E. This k is called 
the principal quantum number as it completely determines the observed 
spectral lines. (Of course, chemists and some physicists use a different set 
of variable descriptors, see Chapters 3 and 10!) R is the Rydberg constant, 
which you get by taking one of the values of E that we chose and plug­
ging it in to the time-dependent part of the wave equation that gave us 
Schrodinger's equation. We discussed this constant back in Chapter 3, but 
with a primitive mathematical model. In other words, you are looking for 
the frequency associated with the equation: 

-K§ = Ef, (14.4) 

where *(x, y, z, t) = ip(x, y, z)f(t). 
The difference, 

E2-E1, (14.5) 

is given off as hu where v is the frequency of light emitted. In the end, 

R = 27r2me4/r3 (14.6) 

and so our model provides a very good explanation of the spectral lines, 
observable in the visible range when ki = 2. If k2 = 1, we get spectra in 
the ultraviolet range, found by Lyman in 1909. 

But this is by no means the whole story. It is also possible to use what 
we know about the dimensions of the spaces of solutions to these equations 
to see other possibilities for interpretation. For example, you can attempt to 
count up a set of linearly independent solutions to Schrodinger's equation 
for a fixed E. Remember from our discussion that 

where k = j + n+1. So the largest eigenvalue occurs when k = 0, which can 
only happen when both j and n are zero (what chemists and physicists call 
the Is orbital!). When n = 0 the corresponding spherical harmonic is the 
constant function, and there is one possibility for the Laguerre polynomial 
corresponding to each j . Since we are looking at products of these, we have a 
solution space of dimension 1. Of course, the time-dependent part will have 
two linearly-independent solutions, just like in an ordinary wave equation. 



Reprise: The Quantum Numbers 79 

nt 

-52 

-82 

-145 
E,kJmol" 

-328 

-1310 

Figure 14.1. The energy level diagram that leads to the Lyman spectrum in 
ultraviolet region. 

the 

So there will always be twice as many solutions to the full wave equation 

as there are to the corresponding Schrodinger equation. (Or two electrons 

per orbital, says the chemist!) 

It is an interesting exercise to rewrite the quantum numbers in Eq. 14.7 

in the form physicists and chemists like to use, as in Chapter 10. We leave 

this to the reader. 

Wha t happens as we go to higher energy solutions? If k = 2, there are 

two possibilities. One is t ha t n = 0 and j = 1, in which case, again there 

is one solution (the 2s orbital). But one can also have n — 1 and j = 0. 

For n = 1, the spherical polynomials have dimension In + 1 = 3 (the 2p 

orbtials) and so the total number of solutions for this value of E is 4. It is 

easy to see in general tha t for a given k there are 

fc-i 
J2 (2n + 1) = k2 

(14.8) 

different solutions to the equation. Physicists call this the k2-fold degen­

eracy. The number n has a special name, too. I t 's called the azimuthal 

quantum number. There is even a way to index the spherical functions cor­

responding to a given n to get a distinguished basis indexed by some variable 

p, which is then called the magnetic quantum number. This number shows 

up experimentally. For a given k and n, there are 2n + 1 indistinguishable 

states corresponding to the dimension of the space of spherical polynomi­

als of degree n. But the states are only indistinguishable if the symmetry 

we observed is maintained. One way to see these states is to break the 
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rotational symmetry of SO (3) and see what happens. In practice, this is 
done by placing hydrogen in a magnetic field, so that one of the directions 
of the sphere is distorted. There only remains a circular symmetry, namely 
that of SO(2). Because every irreducible representation of SO(2) is one-
dimensional, the spaces of spherical polynomials are broken up. Each space 
contains 2n + 1 linearly independent functions, so each of the Balmer lines 
breaks up into an odd number of lines, in what is called the Zeeman effect. 

There is more good news. Anyone who has stared at the periodic table 
and has taken basic chemistry knows that the orbital structure postulated 
for atoms is the same for all kinds of atoms. And all atoms exhibit a line 
spectrum that is independent of the viewer's position. So there is no reason, 
in principle, why you couldn't solve this problem for other sorts of atoms 
too. The basic ideas are indeed the same. Of course, problems arise in 
interpretation. For example, if we are interpreting our little electron as a 
wave, then what are we supposed to do with two electrons? After all, a wave 
plus a wave is still just a wave. As near as I can tell, quantum mechanics 
still has a way to go before it replaces the old fashioned pictures of helium, 
lithium and other, more complex, atoms. And any physicist can tell you 
that molecules, stripped of their pretty spherical symmetry, are trouble 
indeed. 

And now for the bad news. Although most of the things predicted by 
our model can be observed, some things can be found that the model will 
not predict. For example, there is a way to observe a degeneracy of one 
spectral line into (n + l ) 2 different lines, rather than just 2n + 1. This was 
explained by Fock, who reinterpreted Schrodinger's equation in a way that 
was invariant under SO (4, R). A larger symmetry group means bigger sub-
spaces corresponding to a given eigenvalue, hence more degeneracy under 
asymmetrical conditions. The story of hydrogen is far from over. 



CHAPTER 15 

Chemistry and Bonding 

1. Introduction 

The number of known chemical compounds, molecules, is staggering. 
Clearly, there is a propensity for atoms to combine into larger units. Can 
we apply the quantum ideas we previously developed to this problem? As 
you already know, an instructor never asks this type of rhetorical question 
unless the answer is yes! So, one of the basic questions we must address, 
regardless of our bonding theory, must be: "why does bonding occur?" We 
might expect to find the answer in thermodynamics, but let's put off explic­
itly answering that question until we make a few observations: 

(1) The X-O-H bond angle is approximately the same (~109°) regardless 
of the molecule in which it occurs, be it water (H-O-H) or methanol 
(C-O-H). 

H 

H 

(2) Bond energy, for a given type of bond, does not appear to differ greatly 
from molecule to molecule. The energy of the C-H bond in CH4 is 
~103kcal mole - 1 , while in C2He it is 96kcal mole - 1 . 
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(3) Elements in a given column of the periodic table have similar bonding 
characteristics. C, Si and Ge all form four bonds with H and all have 
H-X-H bond angles of ~109°. 

It seems as if these brief observations have provided us with additional 
criteria for any bonding theory that we might consider. That is, a successful 
theory of bonding must account for the molecular formula and the molecular 
geometry, as well as the driving force for bonding. 

To complicate matters even more, we note that while we all have some 
familiarity with the terms covalent bond and ionic bond, this is not the 
exclusive set of bonding types. In fact, few molecules are purely covalent 
or purely ionic. In addition to these chemical bonds, there are non-bonding 
interactions among atoms to provide what are generically known as weakly 
bound species. Included among this group are molecules with hydrogen 
bonding. This and the next few chapters will describe three "bonding the­
ories". A later chapter will address hydrogen bonding and, finally, other 
weak interactions. 

Lewis Dot Structures 

Lewis dot structures are the simplest approach to rationalizing chemical 
bonds. There are three different versions of this elementary idea. We start 
with the original by Lewis himself (1916): 

". . . atoms strive to achieve inert gas electron distributions by 
sharing electrons". 

Note that no distinctions are made between s and p electrons, because no 
one knew about such things in 1916. We represent atoms by dot structures; 
one dot per outer shell electron: 

H •§• -N- :£• 

I left as many unpaired electrons as I could. 
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We represent molecules by bringing such atoms together to make bonds, 
where a dash may be used to represent two electrons in a bond: 

H +H H:H 

1 
S H + :F . :F:H 

In these molecules, each atom has an inert gas configuration; for H, it 
is that of He, and for F, it is that of Ne. 

The second form of Lewis' model is known as the "octet rule": 

". . . except for H (and Li, Be and B), atoms form bonds until 
surrounded by eight electrons". 

This "rule" is valid for atoms with Z < 10 and shows why ammonia has 
three N-H bonds: 

3H +«N« H:N:H 
H 

However, look at the reaction between P and CI: 

5 » : + . p . 
•• • 

.V 
cr ci 

ci 

The phosphorous atom has ten electrons associated with it, in clear viola­
tion of the octet rule. However, we must remember that P has Z = 15, so 
there is no reason to believe that the octet rule will be obeyed. 
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This leads to the last (and best) version of the Lewis dot structure rules: 

".. . form as many bonds, at least there is the potential to form 
as many bonds, as there are available electrons". 

We define available electrons as the maximum number of unpaired electrons. 
This is not the standard definition! Going back to the PCI5 example, the 
phosphorous atom may have five unpaired electrons because d orbitals are 
available. For the related N atom, no d orbitals are available (n = 2), so 
the maximum number of unpaired electrons is three. We can also return to 
the carbon example cited at the beginning of this section. The four outer 
shell electrons can be distributed among the four total s and p orbitals, so 
carbon can form four bonds. 

The best way to see what all of the above text implies is to try it out. 
We'll do that by looking at some real molecules. 

Our first example is tetrafluoromethane, CF4. The total number of avail­
able (outershell) electrons (32) is given by the carbon contribution of four 
electrons and the contribution of seven electrons from each fluorine atom. 
The structure we draw follows the octet rule (recall that the line represents 
two electrons in a bond): 

Molecular nitrogen, N2, is a slightly more complicated example. Each 
nitrogen atom contributes five electrons, so that the total number of avail­
able electrons is ten. Begin by drawing a structure that obeys the octet rule 
while ignoring the total number of electrons: 
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This requires 14 electrons, which is four electrons too many! Therefore, we 
replace the single bond with a double bond. This reduces total number of 
electrons in our dot structure by two, and still satisfies the octet rule: 

We still have too many, 12, electrons in the structure, so we add another 
bond: 

This works! The lesson to take from this example: adding a double bond 
reduces the total number of electrons by two and a triple bond reduces that 
number by four. These steps, shown in the N2 example, exemplify the gen­
eral procedure to follow in writing Lewis dot structures. 

The final example will require us to pursue a new concept. The molecule 
is the nitroamide anion, N2HO^~. The number of available electrons, 24, is 
given by the sum of those from N (10), H (1), O (12) and the charge (1). 
Our trial structure would be: 

which requires 26 electrons. We need to add one double bond to our trial 
structure, but there are three possible positions for the double bond, as 
shown in the structures below: 
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These structures are known as resonance structures. The true structure 
is some weighted average of these three. That is, each N - 0 bond is between 
a single and double bond in length, as is the N-N bond. In order to rank 
the relative importance of each structure, we need to use formal charges. 
Formal charge, FC, is an arbitrary property. We define the formal charge 
on a specific atom by 

FC = number of outer shell electrons on the free atom 

—number of non-bonded electrons on the atom in the molecule 
— 1/2 of the number of bonding electrons around the atom. 

For structures (I) and (II), respectively, we find the formal charges: 

1 

2( 

1 

FCH = 1-0 0 

F C N = 5-4 

FCN =5-0 

FCo =6-6 

FCo = 6 

(2) 

(4) = -1 

(8) = 1 

(2) = -1 

F C H = 1-0 \m 0 

FCo = 6-6 

FCN = 5-2 

FCN = 5-0 

(2) 

(6) 

(8) 

-1 

•4--(4) = 0 
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H 

IN 

(1) " (II) 

A calculation identical to that for (II) may be made for (III). 

We Imvc three "rules" to assist in tlie- assignment of the contribution? 
of each struct lire to the observed structure: 

(i) ElectroiK'iimility is preferred. so thai tin* "host" structure has no 
formal charge at all. 

iii| We wish to 7iiii)mike ihe formal charges. so thai charges of i : I arc 
preferable to i-2. etc. Negative charges arc preferably positioned 
on inure elect roucgalive elements. 

(iii! Opposite charges should be as close as possible, while like charges 
should be as t';ir apart a.-< possible. 

Based on these criteria, we conclude that structure (I) is more important 
or contributes a larger fraction to the observed structure. We base this on 
assigning negative formal charges to oxygen rather than nitrogen atoms. 
The final assignment of the order of weight given to the structures is (I) > 
(II) = (III). 

We conclude by asking "how well does the Lewis dot structure formalism 
satisfy our criteria for a satisfactory bonding theory?" The obvious answer 
is "not very well". It will predict the correct molecular formula, but does not 
address geometry or the rationale for bonding. We'll improve our bonding 
theories in the next chapter. 

H 

le 
INI 

N, © 

6«0 





CHAPTER 16 

Valence Shell Electron 
Pair Repulsion 

One way to deal with the specific geometry of a molecule is to return to 
Coulomb's law, that is, to look at electron-electron repulsion. VSEPR is 
such an electrostatic theory of bonding. As with Lewis dot structures, it 
ignores specific orbitals. The observed geometry reflects the attempt to 
minimize electron-electron repulsion by maximizing the distance between 
electrons. Bond angles are determined solely by the number of valence elec­
trons around a central atom. It is instructive to use examples: 

(1) BeH2: Be has two valence electrons, so that the maximum separation 
between two electrons is 180°, leading to a linear geometry when the 
molecule is formed: 

H-r-Borj-H 

180 

(2) BH3: B has three valence electrons with a maximum separation of 120°, 
leading to a trigonal molecular geometry: 

120-

89 



90 The Bell That Rings Light 

(3) SF6: S has an "expanded" octet, that is, it can "use" d-orbitals since 
Z > 10. Therefore, using the broadest version of the Lewis dot structure 
rules, S has six available electrons and can form molecules using six 
equivalent bonds, 90° apart with octahedral geometry: 

F 

so-

so0 'F 

F 

(4) We saw PC15 earlier. The bond angles are not equivalent. The geometry 
is called trigonal bipyramidal, where the equatorial bonds are 120° 
apart and the axial bonds are 90° from the equatorial: 

CI 

120' \ ; i 

ci 

Recall an earlier discussion of the bonding in ammonia. The nitrogen atom 
has a non-bonding pair of electrons. How does this change the geometry 
according to the VSEPR model? We treat the pair of electrons as a "bond" 
for purposes of assigning an ideal or hypothetical geometry. We consider NH3 

to have four "bonds". The maximum separation would arrange the bonds 
in a regular tetrahedron with bond angles of 109.5°. However, electrons not 
involved in bonding are not as localized in space and distort the ideal geom­
etry. The ammonia H-N-H bond angle is less than 109.5°; approximately 
107°. The observed ammonia geometry is pyramidal. Similar geometric dis­
tortions are observed in the experimental geometries of H 2 0 and SF4. 

We have also seen multiply-bonded atoms. What effect do multiple 
bonds have on the VSEPR geometry? For purposes of geometry, we simply 
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• * > 

H - ' - ' O ^ H 
-104' 

treat multiple bonds as single bonds. Consider ethylene, C2H4 

yc=c\ 
r K N H 

The geometry around each carbon is trigonal planar, as though only three 
bonds were present. 

VSEPR Summary 
• H o d run pairs around a eeirtral a tom wi l l adopt a spat ia l arran^e-

mout t o i i i i i i i i n i /o o led rou e leetnm repulsion: 

• max imum repulsion occurs between two pairs of nou-boudinj> elec­

trons. fol lowed by non-hondin«; electron interact ions w i t h bond ing 

electrons. e t c : 

• i f a ^tr iK-turi" imo ives a DO"1 in teract ion. 1 ho most favored or ienta­

t i on is one w i t h the fewest fill" noubundiii.u: electron interact ions: 

• geometry is determined by the number of bonds: 

M^L\Lt.'̂ .L1.L(., IU!U. |.!lt.T..]iy.U*ii; geometry example 

A X j 2 l i n e a r " " ' C ' ( \ . 

AX;{ 3 t r igonal ni-'.j 

A X ! 4 to in ihodra l (.'l-'i 

AX.-, n t r igonal b ipyramida l l ' l \ -

A X „ ti octahedral SF, ; 
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It is time to reflect on how well VSEPR satisfies the criteria for a "success­
ful" bonding theory. Since it combines the features of Lewis dot structures 
(molecular formula) with a geometric prediction, we fulfill two of the three 
requirements, but we still have not answered the major question, that is, 
"What is the rationale for bonding?" Our search must continue. 



CHAPTER 17 

The Shape of an Orbital 

I have personally met students who are majoring in chemistry or physics or 
math and believe that those pictures of orbitals you see in every chemistry 
or physics book are shapes that have actually been measured or observed in 
some way. They are not. There is no scientific instrument that can directly 
measure the shape of an electron orbital. The reason is not merely that sci­
entists just don't try hard enough. The reason is Heisenberg's Uncertainty 
Principle. 

We discussed this topic earlier, but loosely stated this says that some­
thing smaller than the wavelength of light can't be "seen" by light. What 
does "size" mean anyway? It makes more sense to look at the experiments. 
If you put energy into the solitary electron of a hydrogen atom, one of two 
things happens: 

1. nothing; or 
2. a change of energy level. 

In the first case, you can't "see" anything as no change has been 
observed. In the second case you changed the state of the electron by 
attempting to observe it. If you try to "see" the new state, you will just 
change it again. So you can never see what is actually there. To draw the 
analogy with the particle-in-a-box, you are trying to find out where the 
particle is by shaking the box. It is a method doomed to failure. 

So where do all these pictures of s, p and d orbitals come from? Well, 
they are nothing more or less than three-dimensional graphs of the solutions 
to Schrodinger's equation corresponding to different choices of eigenvalues 
and different solutions corresponding to each choice of eigenvalue. 

Let us be clear. A solution to Schrodinger's equation is a function of 
three spatial variables that describes the probability distribution of the posi­
tion of an electron (if it is a particle and if it has a position in any meaningful 
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sense) as a wave form. We picture it as a cloud in three-dimensional space. 
The darker the cloud, the higher the distribution function is in that region 
and the more likely the electron is "found" there. That is why the orbitals 
are always portrayed as clouds. 

Now, what did we learn from grinding through the complete solution 
to Schrodinger's equation? We learned that we can construct solutions of 
the form: 

9(z,y,z,t) = g(t)v(r)Y(0,4>). (17.1) 

In such cases, Y is a spherical harmonic and u> is a product of a power of r, 
an exponential function, and a Legendre polynomial in r. We want to take 
a snapshot so time is fixed and we only care about the spatial coordinates. 
If we want to visualize these solutions, it is useful to think about where the 
functions are zero and what sorts of symmetry they have. 

We begin with the simplest case, the energy level corresponding to k = 1. 
You should recall that k = j + n + 1 where n is the degree of Y as a 
polynomial and where j is the degree of the polynomial part of w. So, in 
this situation, j and n are both zero. In other words, the polynomials in 
question are constants. This leaves only the non-polynomial part of a> free 
to van', and that part is just a decreasing exponential in r. So the entire 
solution depends only on r and decreases exponentially away from the origin 
(where we placed the nucleus of the atom). This how we get our standard 
picture of the Is orbital shown in Fig. 17.1: 

Figure 17.1. The Is orbital; the nucleus is at the center of the plot. 
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It is necessary to return to the slight annoyance of notation here. Physi­
cists like to call the principal quantum number "n" but mathematicians 
like to use "n" for the degree of the polynomial Y. So in this chapter, we 
are using fc for the principal quantum number to be consistent with our 
mathematical derivation of the solutions in earlier chapters. It is fc that 
tells you the energy level. 

You can also see from this analysis that this is the only solution corre­
sponding to fc = 1. That is, there is only one possible orbital shape for the 
lowest energy level for hydrogen. 

All of the s orbitals correspond to solutions where Y is constant. So 
the next one we want to look at is the 2s orbital. The principal quantum 
number, fc = 2 but n = 0 and j = 1 (physics notation: n = 2, / = 0, 
m = 0). Our solution is still given only in terms of r, but now the associated 
Legendre polynomial has degree 1 and there is one value of r for which it 
is zero. This gives a picture with concentric shells of positive density, the 
2,s orbital shown in Fig. 17.2: 

A similar discussion leads to pictures of the 3s, 4s, 5s, orbitals, see 
Fig. 17.3, all with more and more shells of positive density as the degree of 
the Legendre polynomial goes up. 

Of course, if the principal quantum number is 2 then it is also possible 
to get this by setting n = 1 and j = 0 (in physics a 2p orbital: n = 2,1 = 1, 
ni = —1,0,1). When j = 0, the function w is decreasing exponentially. 
But if the degree of the polynomial that gives us V is 1, then Y might 

Figure 17.2. The 2s orbital. Note the presence of a node at the transition from 
blue to red. 
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Figure 17.3. The 3s, 4s and 5s orbitals. Note that the number of nodes increases 
with the increase in principal quantum number. 

come from any combination of three possibilities: X, y or z. The solutions 
corresponding to these three are given by the relations: 

x = r sin 6 cos <j> 

y = rs\r\Qsm<f> (17-2) 

z = r cos 6, 

so setting r = 1 yields three distinct candidates for Y: 

Y = sin 8 cos 4> 
r = sin^sin^. (17.3) 
Y = cos6. 

If we look at the last of these, Y = cos 6 we can ask where this expression 
is zero and where it is largest. We know that cos 0 = 0 when 6 = ir/2 or 90° 
down from the positive z axis. That is, Y is zero exactly when z is zero, or 
on the x-y plane. If you take this piece of information and put it with the 
exponentially decreasing w(r), you get a two-lobed orbital lined up with 
the z axis as in Fig. 17.4: 

Figure 17.4. The 2p2 orbital: the nucleus is located at the node. 
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Figure 17.5. The 2px orbital. It is identical in shape to that shown in Fig. 17.4, 
but lies on the rc-axis. 

This is the 2p orbital. There are usually three 2p orhitals considered 
possible, and they are given by the three distinguishable solutions above. 
The solution that comes from the polynomial x, Y = sin 0 cos # is zero 
when x is zero. You can use the properties of the polynomial to get this or 
you can actually work it out from the angular variables. It just looks like a 
rotated version of the last solution, see Fig. 17.5: 

Because of Schur's lemma, we should not be surprised by this phe­
nomenon. Any rotated version of a solution to Schrodinger's equation will 
yield another solution with the same eigenvalue (or energy level, or princi­
pal quantum number). So of course there is a third 2p orbital as indicated 
in Fig. 17.6: 

Figure 17.6. The 2py orbital. 



98 The Bell That Rings Light 

This one is aligned with the y axis. But any orientation of a 2p orbital 
gives some kind of 2p orbital, so the choice of these three as standard 
candidates is somewhat arbitrary. On the other hand, the number 3 is the 
dimension of the vector space of solutions corresponding to n = 1, j = 0, 
so it is a very important number. Chemists use this number to determine 
the number of orbitais that can fit in a given atomic "shell". The number 
of orbitais in the shell corresponding to the principal quantum number 2 is 
four — one 2s orbital and three 2p orbitais. 

What happens if the principal quantum number is 3? There are three 
ways to achieve this, with n = 2, 1, or 0. If n = 0 and j = 2, you get the 
3s orbital as in Fig. 17.3. If n = 1 you get the same solutions for Y as you 
would in the case of the 2p orbital. Now, however, these are multiplied by 
Legendre polynomials of degree 1. These introduce a node at a fixed value 
of r. This cuts the p orbital in two by creating a sphere of zero density 
at this particular value of r. The result is the 3p orbitais, of which there 
are three linearly independent choices (the rest being made up by linear 
combinations of these three). A typical one looks like that in Fig. 17.7: 

The rest are all rotated versions of this one. 
Finally we should consider the case where n = 2 and j = 0 (in physics 

a 3d orbital: n = 3, I = 2, n< = —2, —1,0,1,2). Now there will be no radial 
nodes because the Legendre polynomial is constant. All the action will he in 
the angular variables. When n = 2 there are several harmonic polynomials 
that are easy to check: xy, yz, xz. It is easy to see where these are zero. 

Figure 17.7. The 3py orbital. Note the presence of nodes that are not seen in the 
2py orbital. 
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Figure 17.8. The 3dXy orbital. This lowest energy (/-orbital has two nodes. Recall 
that the lowest s-orbital had no nodes and the lowest p-orbital had a single node. 

The first one, for example, is zero if x = 0 or if y = 0. These are the y—z 
and x-z planes, respectively. So the solution corresponding to xy has four 
lobes in each of the four quadrants of the x-y plane, The function w{r) 
ensures that the distribution dies off exponentially away from the origin. 
The result gives a 3d orbital shown in Fig. 17.8: 

One can rotate this picture to give the other two easy harmonic poly­
nomials of degree 2, yz and xz. But this is not the whole story because 
the dimension of the space of homogeneous polynomials of degree two is 
6 (given by combinations of xy, xz, yz, xx, yy, zz) and we only lose one 
dimension by setting 

x2 + y2 + z2 = l. (17.4) 

We would expect five distinguishable solutions altogether. But recall that 
there are some subtle ones such as: 

z2-\{x2+y2 + z2) (17.5) 

which reduces to 

z2 - I (17.6) 
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Figure 17.9. The 3dZ2 orbital, which has a unique shape. 

on the unit sphere. When this is put in spherical coordinates it is given by 

G(t f>,0)=cos 2 (0)-1 . (17.7) 

This solution is zero exactly when 6 is at some fixed angle. So the node 
is a cone perpendicular to the z axis at that fixed angle. The solution 
corresponding to this polynomial has lobes along the z axis and also a 
donut shaped cloud around the z axis below the node and is shown in 
Fig. 17.9. 

You can see from the formula that the solution doesn't depend on <f>, 
therefore you see a circular symmetry around the z axis. This is one of the 
d orbitals frequently pictured in texts. There are two linearly independent 
forms of this, for a total of five possible d orbitals, no matter what energy 
level. So for principal quantum number three, there are five d-orbitals, three 
p-orbitals and one s-orbital forming a total of nine possible states. Of course 
you can continue this analysis for as long as you want, generating pictures 
and formulas for orbitals of arbitrary quantum number and complexity. 
Although in what follows we will not use more than the s and p orbitals, 
it is good to know that the mathematical machine that produced them is 
capable of producing many, many more. 

Before we proceed with our discussion, it might be useful to point out 
how typical this development is in science. We have replaced our axiomatic 
model of electrons in shells with a much more sophisticated model derived 
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from Schrodinger's equation and its specific solutions. This allows us to use 
the shapes of orbitals, which are really the shapes of waveforms solving a 
particular equation, to predict bonding angles and other properties. But, 
we can't see the orbitals directly by any scientific experiment. They are 
a mathematical construction, not an observable fact. Yet, they are close 
enough to being correct to allow us to improve our model of how atoms 
bond. In fact, they represent a huge breakthrough in how we look at these 
very small things. What the mathematics has done is to allow our main 
assumption (the electron is a wave) its full predictive power. Next, we'll 
apply all of this information to our bonding problem. 





CHAPTER 18 

Molecular Orbital Theory 

Our quest for a bonding theory leads now to molecular orbital theory (MO 
theory). This is an extension of the atomic orbital theory we have just 
learned. If it is "correct" for atoms, we must also be able to apply it to 
molecules, right? We'll start with an "easy" case. Consider the simplest 
molecule, H j , a one-electron system; the molecular analogy to the hydrogen 
atom. Begin with a thought experiment. Imagine that we could measure the 
probability density, 'J2, that is, the probability per unit volume of finding 
the electron in H j . If we construct a plot of \I/2 as a function of the distance 
from the hydrogen atoms, we would see the plot shown in Fig. 18.1. 

The probability of locating the electron on a line between the two nuclei 
is substantial. \I/2 is symmetric about both atoms. It is the molecular analog 
of the hydrogen atom orbital, a molecular orbital (MO) that we call a 
"sigma" orbital, a. Now compare \I/2

 + with ^ H + ^ H (*ne unbonded case) in 
Fig. 18.2. Formation of the bond increases the probability density between 
the nuclei at the expense of regions outside of that area. \E'2 + decreases 
much faster outside of the "bond". HJ has only one electron, a rather 
strange bond given our Lewis dot structure discussion, but Coulomb's law 
still applies: 

v . - ( * + * ) + * - . ( 1 8 J ) 
\rA rBJ rAB 

The first term is electron-nucleus attraction, while the second is 
nuclear-nuclear repulsion. The potential energy is lowest when the electron 
is near one of the nuclei or close to both of them. We conclude that bond 
formation permits the electron to be located in a large region of space for 
which the energy is low. The total energy is lowered by forming the bond. 
We have found the rationale for bonding! Occupation of an orbital such as 
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Figure 18.1. The o\s orbital for H^. The hydrogen nuclei are located at the peaks 
in the distribution. 

-1.5 -0.5 0.5 1.5 

Figure 18.2. Comparison of a\s orbital (red) for HJ" with two Hi s orbitals, located 
at the peaks in the distribution. 

tha t shown above leads to a stable bond. It is called a bonding orbital. The 

ground electronic s tate of H j has the single electron in this orbital. 

Let 's go back to our thought experiment. We can create the first excited 

s tate of H ^ . Look at this probability density plot in Fig. 18.3. 
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r 

Figure 18.3. The a*ls orbital for H+. 

Now, the probability density between the two hydrogen atoms is very 
small, almost zero. So, the electron is most likely to be found somewhere 
other than between the nuclei. This orbital does not lead to a stable bond 
and we expect dissociation to H + H + . This is an antibonding orbital. We 
label the antibonding orbital a*s and the bonding orbital a\s. 

The question you should now be asking is whether or not atomic orbitals 
have any relationship to molecular orbitals. In fact, we can form MOs from 
a Linear Combination of Atomic Orbitals, MO-LCAO. Mathematically, 
the MO would be expressed as 

*a l s cx* a ( l s ) + * b ( l s ) 
(18.2) 

yaL ex * a ( l s ) - * b ( l s ) , 

where only normalization constants are missing. Figures 18.1-18.3 demon­
strate this mathematical process. However, sometimes pictures are better 
than equations (only sometimes!). We could combine orbital shapes instead 
of wavefunctions for a symbolic representation of the formation of MOs from 
AOs, as we have done in Fig. 18.4. 

The Pauli Exclusion Principle (two electrons per orbital), Hund's Rule 
(put one electron into each orbital with the same energy before pairing elec­
trons) and the Aufbau Principle (fill orbitals with electrons in order from 
lowest energy to highest) all apply to MOs. We can draw an MO energy 
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V 

\l 

Figure 18.4. Schematic view of the formation of a\s and a\s orbitals from Hi„ 
orbitals. Two separated Is orbitals are shown in the top panel. If the two orbitals 
combine in phase (add), the bonding orbital in the middle panel is obtained. 
If they combine out of phase (subtract), the antibonding orbital shown in the 
bottom panel results. 
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level diagram to correlate the atomic and molecular energy levels for H j 
as we do in Fig. 18.5: 

t a* is 

E Is ( \ Is 

Figure 18.5. Lowest energy MOs for molecules with four or fewer electrons. 

We write the H j electron configuration as a\s. Note the analogy to the 
hydrogen atom ground state electron configuration, denoted as Is (we're 
simply changing the alphabet). Let's look at the electron configurations 
of the four simplest molecules. That is, look at those formed from atoms 
having only Is electrons. 

H+:<7is He+:af sa l s 

H2:cr2s He2: o\,o*& 

The MO electron configurations allow the following definition of bond order. 
Bond order (BO) is defined as 

BO = -(number of bonding electrons) 

— -(number of antibonding electrons) 

If BO = 1, we have a single bond, etc. Now we can write bond orders 
for these molecules and correlate the bond orders with experimental bond 
energies (BE). 

H+ has BO = - and BE ~ 270 kJ mole - 1 

2 
H2 has BO = 1 and BE ~ 450 kJ mole - 1 

For HeJ and He2, the results are BO = \\ BE ~ 310 kJ mole"1 and BO = 0; 
BE = 0, respectively. 

Bond energy is the energy required to break the bond. A larger bond 
energy indicates a more stable molecule. Therefore, we can make the fol­
lowing statements. H2 is the most stable of these molecules because it has 
the highest bond energy/bond order. He2 has a bond order of zero, so it 
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E 2.v . \ 2s 

Figure 18.6. The LCAO ais and a\s orbitals (top); corresponding energy level 
diagram (bottom). 

will not exist. (Note tha t recent experimental results indicate that He2 is 
very weakly bound, with a "bond energy" of less than 1 kJ m o l e - 1 and an 
effective "bond length" of 15 A!) 

The next molecules to explore are Ld2, Be2, B2, etc. Clearly, we need 
additional AOs for the construction of new MOs. T h e next AO is the 2s 
orbital. We might guess tha t we can form MOs as we did with I s orbitals 
and tha t would be correct as shown in Fig. 18.6. 

Since the 2s orbital is higher in energy than the I s , we expect tha t 
the 02s and a^s will be higher in energy than the <TIS and crf .̂ Again, our 
expectations are valid. 

Let 's keep adding AOs to our scheme. The next AO is 2p. This orbital 
is not spherically symmetric, so the MOs must have a different shape. We 
need to define an axis for the nuclei. Let 's follow convention and assume 
tha t the nuclei lie on the z axis. Begin with the pz orbital, since in this 
orbital lies on the internuclear axis. 

**5p, CK*2 p =(A) + * 2 ; > = (B) . (18.3) 

T h e combination, as shown in Fig. 18.7, has a decrease in probability density 

between the nuclei. We do not get a bonding orbital! T h e sum of two pz 

orbitals is o\Vx! 
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*c^«^2p,(A)+>l '2P , (B) 

Figure 18.7. LCAO formation of a^p orbital. The two p-orbitals are combined in 
phase, but this combination corresponds to an antibonding orbital. 

Now, try subtracting two pz orbitals. If you are assuming that this will 
create a bonding orbital, Fig. 18.8 indicates that you are correct. This is 
the opposite of s-based a orbitals! 

*CT2F,= C<* 2 ; , = ( A ) - * 2 P = ( B ) . (18.4) 

We still must combine the remaining p-orbitals into MOs. Since p orbitals 
have directionality, we must combine px with px and py with py. (This is 
because px has a nodal plane in the y-plane and vice versa). Let's look at 
the combinations of px orbitals and then we can generalize. 

Note that in this MO, shown in Figs. 18.9 and 18.10, we have increased 
the probability density between the nuclei, but off the internuclear axis. 
This is a 7r-bonding orbital. We can surely suggest what will happen if 
we subtract two px orbitals. We will get a decrease in probability density 
between the nuclei and off the axis, a 7r* or antibonding, orbital. 

Now, we can combine all of this into an energy level diagram for p-orbital 
based MOs, as shown in Fig. 18.11. 
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Figure 18.8. LCAO formation of aiv orbital. The two p-orbitals are combined 
out of phase, and this combination corresponds to a bonding orbital. 

Figure 18.9. LCAO formation of 7T2P orbital from two px or two py orbitals com­
bined in phase. 

This is a good time to review what we know so far about the LCAO-MO 
method. The energy of a particular MO is dependent upon: 

• The type of AO — MOs from Is orbitals have lower energies than those 
from 2s orbitals since Ei s < E2S. 

• Whether the MO is bonding or antibonding — clearly, antibonding 
orbitals are higher in energy than the corresponding bonding orbitals. 
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Figure 18.10. LCAO formation of jr*2p orbital from two px or two py orbitals 
combined out of phase. 

2p 

1 °"2p; 

Figure 18.11. Energy level diagram for MOs formed from 2p orbitals. 

How well the AOs overlap — looking at the different shapes of s and 
p orbitals, we see that, for bonding orbitals, s orbitals will overlap to 
a greater extent than p orbitals. Will pz orbitals overlap more or less 
than px and py? Unfortunately, there are other less obvious factors to 
be considered and the relative ordering of a^Pz and -K2Pc /f2p„ orbitals is 
molecule-dependent. 

For heavy atoms, O and F, the 2s and 2p orbitals are very different in 
energy and the 02Pz orbital is filled before the TT2P orbital. The opposite is 
true for the atoms Li through N. The energy levels are shown in Fig. 18.12. 

The change in ordering for the light atoms is due to a repulsive interac­
tion between <X2s and o"2p, which occurs because the atomic s and p orbitals 
are close in energy. It's time to do a few examples to make all of this 
concrete. 
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K*2px • 

Rlpx • 

2pz-

•K2py 

<3*2pz-

K*2px . n* 2py 

G2pz 

®2pz 

G2s 

K2p. .K2p 

a*2s 

0"2.t 

Figure 18.12. Energy level diagrams for MOs from atomic orbitals through 2p. 
The ordering of the levels for both light (right) and heavy (left) atoms is shown. 

Examples 

O2 hits a 1.0ml of ](i electrons. The electron configuration itm^l be 

UoiiU order - - —7 •- "J 

I - 2 
~ Hutul order -- —-— — 1 

•-, , , « ' - - 1 
T li«mo order --•• —-— •-•- l 

> one rr and one n bond 

'['here are iwo unpaired electrons in ( ) j . so it will he p a r a m a g n e t i c 

(a molecule, with all electrons paired is d ia inagi ic t ir . that is, not 

niHgiielic). 

N-j has fourteen total electrons. Tin1 configuration is: 

j *2 2 f ' j 2 2 2 

Bond order 
1 0 - \ 

— .'$ with one a and two » bonds. 

All of the electrons are paired, so nitrogen will he a diitina»nctii 
molecule. 
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An aside: We can check the magnetic predictions by pouring liquid Go 
and liquid N2 through a magnet. Tin; 0^ should be attracted 
to the. poles, but not the NV 

This analysis is vulid for ions as well as molecules, Lot's 
compare the bonding in .N^ with that in N;J" and N.>". 

N'7 (.13 electrons') 'rL f TuC TL^Is'TL Av,,°i-v 

Ionization removes a. bonding electron, so the bond 
order --• 2.5. 

N.; (1!) electruns)a?X.s < 4 , < ^ n ' ^ r r ' ^ r r j ^ 

The additional electron is placed in an. anttbondhig orbital. 
so that the bond order = '2.5. NJ and N.jj" have approxi­
mately the same bond energy. 

We have restricted all of this to homonuclear diatomic molecules. These 
are obviously a very small subset of the possible diatomic molecules. It is 
time to move on to heteronuclear molecules. We already know what needs 
to be considered. Let's write some configurations first, then look at the 
MOs in detail. 

Molecule Configuration Bond Order 

CN (13 electrons) <rjsafsalafsniPxa2p 2.5 

CO (14 electrons) o\safaa\safaal^\v 3 

NO (15 electrons) <J2
lsofsa

2
2safs<j2

2pT,%-K*2p 2.5 

We need to compare heteronuclear and homonuclear results. Are N2 and 
CO really the same, since they are isoelectronic? Isoelectronic molecules 
have the same number of electrons and the same electron configuration. 
We can make this comparison graphically, in Fig. 18.13. 

*a l s = cA^i s(A) + c B ?MB); cA = cB = 0.5, (18.5) 

*CTls = cA<MC) + cB^i»(0); cB > cA. (18.6) 

The asymmetry in the CO probability density is due to the difference 
in AO energies and correlates with electronegativity; probability density is 
greater near the more electronegative atom. The MO energy diagram for 
CO, shown below, reflects this difference. The bonding MO energy is closer 



114 The Bell That Rings Light 

^ 0 . 6 

t.S S 

T 2 

-LI -0.9 -ft* -*3 o o j OJ «.» J..J 

Figure 18.13. LCAO formation of a\s orbitals for N2 (top) and CO (bottom). 

to the oxygen AO energy, while antibonding MO energy is closer to the 

carbon AO energy, see Fig. 18.14. 

Let 's look at an extreme example of this asymmetry, the nearly ionic 

molecule HF . The first step is to determine the orbital energies so tha t we 

can decide which AOs will combine. 

H l s : - 1 3 1 0 k J m o l e " 1 F l s 

F 2 s 

F2p 

-42000 kJ mole" 1 

- 3 4 0 0 kJ mole" 1 

- 1 4 0 0 kJ mole" 1 

F i s will not combine with H i s because the energy of the fluorine orbital is 

so low. An energy mismatch also occurs between the F 2 s and H i s orbitals. 

The bond must form by combining the Hi 5 and F 2 p orbitals. To produce 
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Figure 18.14. CO molecular orbital energies for a\s and a\s orbitals. 
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Figure 18.15. HF molecular orbital energies. 

a a orbital, we can only combine F2Pz with H l s , with the resulting energy 

diagram shown in Fig. 18.15. 

H F has a total of ten electrons. Using the Pauli exclusion principle and 

the Aufbau principle, we fill the orbitals with electrons start ing from the 

lowest orbital. The resulting electron configuration is 

F2 Tp2 , _ 2 T 7 I 2 T ^ 2 
lsb2s(T t2Px

t2py-

The bond order is one and the F i s , F 2 s and F 2 p orbitals are all nonbonding 

orbitals ( that is, neither bonding nor antibonding). 

To review, we have found a successful bonding model! MO theory pro­

vides us with the important rationale for bonding. It directly provides a 

numerical result for the lowering of the energy tha t occurs when bonds 

form from atoms. It also provides structural details for the molecule. MO 

theory has proven quite successful and is the most widely used model for 

the formation of molecules. 





CHAPTER 19 

Valence Bond Theory 

We have listed this as a separate bonding model, but in reality this is not 
a different theory. We can make VB theory take the same mathematical 
form as MO theory, if we wish. However, this defeats its major benefit: 
a physical picture of bonding in large (especially organic) molecules. As 
always, we begin with something simple. In this case, we start with BeH2. 
We already know that the H-Be-H bond angle is 180°. Be has two valence 
electrons; a ls22s2 configuration. Since all of the electrons are paired, we 
can only imagine forming two bonds (actually, we can't imagine forming 
any bonds without changing the electron configuration) by unpairing the 
2s electrons, so that the electron configuration becomes ls22s2p. But how 
can this help? There are two problems: 

(i) 2p electrons are higher in energy than 2s, so how can we justify unpair­
ing the electrons? 

(ii) How can we get two equivalent bonds from a ls22s2p electron 
configuration? 

The solution to both of these difficulties is to use hybrid atomic orbitals. It 
is best to view these pictorially as in Fig. 19.1. 

The two sp orbitals then combine with two H (Is) orbitals to form two 
bonds, 180° apart. The two a bonds will be equivalent since each consists 
of an overlap between a Be (sp) orbital and a H (Is) orbital. 

Hybrid atomic orbitals are mathematical combinations of the "normal" 
atomic orbitals. They are as "real" as hydrogen-like AOs! Hybrid orbitals 
are an effective way to describe multielectron/multiatom systems, i.e. 
molecules. They are extremely useful in organic chemistry since the 
molecules are too large to treat with MO theory and extract a physical 
picture. 
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Figure 19.1. Schematic for formation of sp hybrid orbitals in Be. The top panel 
shows the s and p orbitals at a large distance and the bottom panel shows the 
two hybrid orbitals formed by the sum and difference of the two atomic orbitals. 
They point 180° apart. 

Let's look at a more complex molecule and explore the energetics of the 
bonding process. We'll do a thought experiment and construct a mechanism 
for the formation of CH4. Remember, it does not actually form this way. 
This is only an attempt to rationalize observations. Our mechanism: 

(i) start with ground state carbon (ls22s22p2) and four ground state 
hydrogens (Is); 

(ii) promote a carbon 2s electron to the 2p orbital, the configuration 
becomes ls22.s2p3 and we have four half-filled orbitals; 

(iii) use the 2s2p3 electrons to form 4 sp3 hybrid orbitals; and 
(iv) form CH4 from this configuration. 

The process is shown on the energy level diagram, Fig. 19.2. 
In our "mechanism", we must have an energy input of 406k.Jmol -1, 

but the hybridization process is cost-free in terms of energy. The endoergic 
process of forming sp3 orbitals leads to formation of four C-H bonds and 
an energy lowering of 2068kJmol - 1 . The net energy change for the overall 
"mechanism" is more exoergic than it would be if we simply formed CH2 
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Figure 19.2. Schematic mechanism for formation of CH4. 
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Figure 19.3. Relative ordering of 2s/2p atomic and sp hybrid orbitals. 

from the ground state carbon atom. In the carbon molecule, the hybrid 

orbital is l / 4 s and 3/4p. The energy of the sp3 orbital is 3/4 of the energy 

of the 2p, as can be seen in Fig. 19.3. 

In the end, for simple molecules, much like V S E P R we have an orbital 

hybridization based solely on the number of bonds. (We treat non-bonding 

pairs of electrons as "bonds" and multiple bonds as one; just as in VSEPR) . 

The fundamental difference in comparison to V S E P R is tha t we now have 

a theoretical basis for the assignment. 

a bonding electron pairs hybrid orbitals ideal geometry 

2 
3 
4 
5 
6 

sp 
sp2 

sp3 

dsp3 

cPsp3 

linear 
trigonal 
tetrahedral 
trigonal bipyramidal 
octahedral 
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Examples of VB Model Application 

(1) Ni t rogen, N 2 

• Begin with Lewis dot structure 

• liiach atom has OIK: sigma bond phis one non-bonding pair of 
electrons. so tin- liybvid orhiials will he up. 

• Tlio original electron eonhgurat ion is l.sa2."'!2//s 

• The hybrid orbital configuration is \ir(np\x'2px'2py for each 
N atom. 

• One of tin-- up hybrid orbitals is iillod with a non-bonding pair of 
electrons and the second overlaps the up orbital from the other 
N to form a a bond. 

• The two ?r bonds arc formed by overlap of px orbilals from the 
two N atoms with a pair ol';j,; orbitals. 

(2) Acetylene, C 2 H 2 

• Each C has two "bonds'" by our definition. Therefore, we export 
tip hybrid orbitals in the molecule for each C. 

• The orbital configuration becomes C(l«* lupfpxPy)-
• <T bonds form by overlap of a Yi(\.i) with an up orbital on each 

C and between the two 0 atoms using overlap of an up orbital 
from each C. 

C £ ' - H »a bonds 

(A I lii) 
P 2 P J . lbt>J 

l A l (B) 
.* bonds 

• The 7T orbitals lock in the geometry. It, is not possible to rotate 
the carbon atoms and maintain the orientation of the p orbitals 
needed for rr bonds. The rr bonds are oriented 90° apart. 
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(3) Ethyiene, C 2 H 4 

<<- There are three pairs of electrons around each C atom. 1 ^ 
are used in the cr bonding framework. 

* The cmbon hybrid electron configuration is I.?? (3p?)^p^ 

C ^ H(f4 

Cg^-H(l^) 
sp 

-H(l^) (7* bonds 

c^(#}^ bond 
# Again, the r̂ orbital "locks" in the geometry. Since % must 
overlap with px, we get a planar geometry. Ethane (CgHg) has 
no 7r bonds and may freely rotate. Ethane involves C with sp^ 
hybrid ofbitals. 





CHAPTER 20 

Other Kinds of Bonding 

Hydrogen bonds occur in the most polar molecules. That is, those molecules 
containing the elements with the largest electronegativity: N, O and F. 
These are not truly bonds in the sense that we have been using that term. 
Hydrogen has only a single electron involved in bonding. It can closely 
approach an electronegative atom without any electron-electron repulsion. 
This interaction is what we call a hydrogen bond. The bonds are a result of 
the skewed electron distribution in these molecules. One end is essentially 
positive and the other is essentially negative. For example, look at HF, 
where dimers are dominant. 

• • • • 

*J-*H""'£*H 

Hydrogen bonds occur in all phases: solid, liquids and gases. Typical 
hydrogen bond energies are less than 60kJmol _ 1 and bond lengths are 
approximately 2 A. Compare those values with a typical covalent bond, 
where the bond energy is 400-500 k J mol - 1 and bond lengths are 1.0-1.3 A. 

Hydrogen bonding is most evident in the determination of boiling points 
of hydrogen containing molecules. Specifically, compare the boiling points 
of the hydrides of Groups IV, VI and VII 

123 
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CH4 -170°C H 2 0 100°C HF 20°C 
SiH4 -110°C H2S -60°C HC1 -90°C 
GeH4 -95°C H2Se -40°C HBr -70°C 
SnH4 -50°C H2Te 0°C HI -40°C 

Group IV on the left is our control. As one goes down the Periodic 
Table, 21p increases. Groups VI and VII exhibit the same trend, except for 
H 2 0 and HF. These are the hydrogen-bonded molecules. Without hydro­
gen bonding, we predict H 2 0 would boil at ~ - 80°C! The need to "break" 
hydrogen bonds contributes to AH°ap and causes an increase in Tf,p. Hydro­
gen bonding leads to order in liquids and solids. For example, we have the 
"Mickey Mouse" model of hydrogen bonding in H 2 0 , as shown in Fig. 20.1. 

Similar, but weaker, interactions occur between other atoms and 
molecules. What are the forces that cause molecules to be attracted to each 
other? How are liquids "held" together? The answer is that these processes 
occur via intermolecular forces — they are much weaker than covalent or 
ionic bonds, or even hydrogen bonds. We'll look at a series of interactions 
of varying strength and apply the results to experimental observations. 

The first type is a general class called van der Waals forces. There 
are actually several specific types of interactions. They are responsible for 
deviations from ideal gas behavior at high temperatures and low pressures 
and also for condensation of gases at sufficiently low temperatures. 

Figure 20.1. Schematic representation of the hydrogen-bonded structure of liquid 
water. 
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A B 

charge polarization 

Figure 20.2. Schematic representation of induced polarization. 

(1) The London dispersion force is depicted in Fig. 20.2. 
A momentary fluctuation in the charge distribution of A induces charge 
polarization on B and this results in an electrostatic attraction. The 
strength of the interaction is given by 

VL = ~ . (20.1) 

Compare this result with Coulombic forces in ionic bonds, which scale 
as 1/r. London forces are operative over a very small range of r. The 
constant A includes the polarizability of the molecule. It is a measure of 
the extent of distortion of the electron cloud of an atom by the electric 
field of nearby atoms. Large atoms generally have the highest polar­
izability. This occurs because electrons far from the nucleus are more 
loosely held. Shapes of molecules also effect polarizability; spherical 
molecules are less polarizable than elongated molecules. 

(2) Dipole-dipole interactions are stronger than dispersion forces. The 
drawing in Fig. 20.3 will provide a visual clue to the nature of these 
interactions. If two molecules are polar and come together, there is 
an attractive interaction (provided that the alignment is correct). The 
potential energy has the same form as in (1), but the constant A now 
depends on the dipole moment rather than the polarizability. 

(3) Repulsive interactions are operative only at very small intermolecular 
separations. When molecules approach too closely, electrons in filled 
atomic orbitals begin to overlap and repel one another. The potential 
energy is given by 

y=§~2- (20-2) 

We can combine the London attractive term with this repulsive term to 
construct a realistic potential energy function known as the Lennard-Jones 
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/N 

Figure 20.3. Schematic representation of dipole-dipole interactions. 

potential shown in Fig. 20.4: 

V = ? 
B 

= Ae ®a-®' (20.3) 

The constant e is the minimum potential energy and a is the separation 
at which the potential energy becomes positive. The values of e are the 
formal equivalent of bond energies. However, a bond energy is typically 
4 3 0 k J m o r 1 (say for H2) while e is O J U m o l - 1 (for H2-H2). The values 

20 

IS 

10 -

5 

0 

-5 -

-10 

-IS 

Figure 20.4. The generic Lennard-Jones potential function. 
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Figure 20.5. IMF and the macroscopic effect of surface tension. 

of a orrespond to the sum of the van der Waals radii of the atoms. We 
"measure" these effects by determining Tmp and Tbp. 

Intermolecular forces (IMF) also have macroscopic manifestations. Now, 
we can take a more macroscopic look at these forces. What do we see 
when we look at liquids or solids rather than individual pairs of atoms or 
molecules as in the gas phase? 

Why do liquids appear as droplets? Let's look at Fig. 20.5. 
Focus on the dark molecules. A molecule in the interior experiences a 

number of attractive interactions from all sides, while a molecule at the 
surface has fewer possible interactions. The net effect is to pull molecules 
toward the center, leaving the droplet with a minimum of surface area, 
that is, a spherical shape. To increase surface area, molecules must move 
from the interior to the surface. This requires energy since an IMF must be 
overcome. The resistance to the increase in surface area is surface tension. 
The larger the IMF, the higher the surface tension. These are cohesive 
forces. 

Liquids exhibit capillary action. This is the spontaneous rising of a liquid 
in a small diameter tube. If the molecules of liquid are polar and the tube 
has a surface with polar bonds (like glass), we observe adhesive forces (glass 
has dangling oxygen atoms with a partial negative charges, which attract 
the positive end of the H 2 0 dipole). Water "climbs up" the tube at the 
walls, but cohesive forces try to pull H2O away from the walls. There is a 
balancing effect and we see a meniscus. Note that there are two possible 
shapes, shown in Fig. 20.6. 
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u u 
Figure 20.6. The meniscus: convex (left) and concave (right). 

A concave meniscus occurs in a liquid in which the adhesive forces are 
greater than the cohesive forces. The liquid climbs to a height where the 
weight of liquid column balances the attraction to the walls. 

A convex meniscus occurs in a liquid in which the cohesive forces are 
greater than the adhesive forces (an example is mercury in a glass tube). 



CHAPTER 21 

Case Study: Dye Molecules 

So, we have completed our journey through basic quantum theory and the 
application to chemical structure. Is there some way that all of this material 
can be tied together in an application? Of course, and we'll use extremes: a 
simple quantum model (the one-dimensional particle-in-a-box) and a very 
large, complex dye molecule. I'm sure that the particle-in-a-box, especially 
in one-dimension, seemed useless at the time we developed it. It turns out 
that it is an excellent model for conjugated (we'll see what that means in a 
moment) molecules. In short, the dye molecules constitute a case study in 
quantum mechanics and case studies are an excellent way to explore what 
we have learned in science or any other area of knowledge. 

The color of most dyes is due to the interaction between visible light and 
the atoms (or more correctly, the electrons in the atoms) that make up the 
molecules. It is a dynamic interaction. Light is continuously absorbed pro­
moting electrons to higher stationary states. The electrons subsequently 
drop back into the ground state configuration and repeat the cycle. The 
color we see is that of the incident white light minus the absorbed wave­
lengths. Recall that light will be absorbed only when its energy corresponds 
to the energy difference between the ground state and some excited state 
of the molecule, 

-^absorbed = -^excited state -Aground state (21.1) 

If we wish to predict the absorption spectrum of a molecule, we must know 
the energy levels of the molecule. Sadly, the hydrogen atom is the only "real" 
atomic/molecular system for which an analytic solution is known. Luckily 
for us, for the proper choice of molecule, some of the simpler quantum 
mechanical models are valid. I guess that means we must select the molecule 
to fit the theory! But our purpose here is to develop a case study, so we'll 
accept that and apply the one-dimensional particle-in-a-box model to a 
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specific type of dye known as a polyene. The model was discussed in detail 
in Chapter 7 and the analogous vibrating string in Chapter 8. There is no 
need to repeat those details here. But what is a polyene and how (and why) 
does it fit the ideal of the square well? 

A stylized polyene is shown in the drawing below. In this picture, the 
molecule is terminated by substituted six-membered rings. The long chain 

of double bonds represents a conjugated system and we'll see that this is our 
one-dimensional "box". To understand conjugation and the meaning of the 
chemist's shorthand drawing shown above, we'll look at a smaller molecule 
that is a fragment of the polyene shown above. This molecule is known as 
1,4-butadiene. 

^ ^ ^ < 

On the left is a shorthand representation as we saw for the polyene. On 
the right is the equivalent drawing in all of its glory. Using this conversion, 
you may see what symbols are assumed in the polyene drawing. The impor­
tant feature in the butadiene molecule is the alternating single and double 
bonds. This is conjugation. For a better understanding of what this means, 
we can refer to the p-orbitals on the carbon atoms. Linear combinations of 
these orbitals make up the molecular 7r-orbitals (see Chapter 19), as shown. 
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Each carbon atom contributes one electron to the 7r-orbitals; four carbon 
atoms means four 7r-electrons. Since electrons are indistinguishable, we may 
assume that these four electrons as distributed over the entire four carbon 
chain. Or, if we are attempting to apply a simple model, these four electrons 
are in a one-dimensional box with a length equal to the length of the carbon 
chain. And you probably thought that this simple model was one of these 
cases of use only in a lecture, not in the real world! 

So, a polyene is simply a long chain of alternating single and double 
bonds; a conjugated system. In our example, there are 16 7r-electrons, but 
the box length is rather undefined. Why? Resonance structures exist and 
the TV system is not really a linear chain. 

Let's begin the case study and work with something "real". This is an 
easy experiment to try out. We'll use data that we can take in the lab. The 
molecules are called cyanine dyes. We'll use three different ones with the 
following structures, imaginatively labeled A, B and C. 

The only difference among these three dye molecules is the length of the 
carbon chain connecting the two rings. The 7r-electron system "box" extends 
from nitrogen to nitrogen across the molecules. The dyes have six, eight and 
ten 7r-electrons, respectively, in the box. How big are the boxes? Time for 
simplifying assumptions: each bond in the chain has an average length of 
0.140 nm and we will extend the box one bond beyond each nitrogen atom 
as did Hans Kuhn {Journal of Chemical Physics 17, 1198 (1949) who first 
did this type of calculation. So the boxes are 0.84 nm, 1.12 nm and 1.40 nm, 
respectively. 

Recall the expression for the energy of an electron in a one-dimensional 
box and the resulting energy levels (Chapter 7) 

E • 1,2,3,.. (21.2) 
8mL2 ' 

There are two electrons per energy level, so levels up to n = 3,4 and 5 
are filled for dyes A, B and C, respectively. If the lowest energy transitions 
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n = 5 

n-4 

n = 3 

n = ! 

Figure 7.3. Schematic representation of the energy levels for the one-dimensional 

par(,icle-in-a-box. 
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are considered, n > n + 1, the energy (and wavelength) absorbed will be 
given by Eq. 21.3, 

t T " ^ ^ ~ (21-3) 

Let's do the calculation of the absorbed energy for the lowest transition 
for each dye. We predict absorption maxima of 333 nm, 461 nm and 589 nm 
for dyes A, B and C, respectively. How did we do? Well these are easy 
measurements to make in the lab. In fact, a number of general chemistry 
programs use this as a lab exercise. So, we have the data with which to 
compare. The observed maxima (each absorption is really a broad "band" 
extending over more than 30 nm for reasons beyond the scope of this treat­
ment, but we'll use the wavelength of maximum absorption) are 525 nm, 
610 nm and 720 nm. Our calculated values are at lower wavelength, higher 
energy, than the experimental ones indicating that the one-dimensional box 
is effectively longer than we estimated. However, this agreement looks worse 
than it really is. Let's use the experimental results to calculate the corre­
sponding box length. The results are 1.05 nm, 1.29 nm and 1.55 nm, respec­
tively; the discrepancy is less startling using this metric. As we thought, the 
"box" is longer than we assumed; approximately 1.5 average bond lengths 
longer. Why? 

Faculty are always ready with explanations for the failure of simple 
theories, but in this case there are legitimate reasons for the discrepancies 
and a look at those reasons is very instructive. The model assumes that the 
walls of the box are perpendicular; they rise with an infinite slope. That may 
approach reality for a charge particle trapped in an electric field, but not for 
something as complex as a dye molecule. The walls are undoubtedly curved. 
Curved walls will increase the length of the box. In fact, Kuhn added a term 
to his box length expression to account for this behavior and it resulted in 
very good agreement with the experimental data. We could do the same, 
and effectively scale the results. However, it is not our intention to exactly 
match the experimental result. We are exploring a case study and we can see 
that the relative dye absorption wavelengths are correct. A smaller error, 
one that we can usually ignore, is electron-electron repulsion. We have at 
least six electrons in this box. Way back, we started with Coulomb's law; 
like charges repel. There will be a small correction due to this effect. Finally, 
there are "localization" effects. The electrons "remember" the carbon atom 
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from which they were donated. However, this is an even smaller correction, 
that is readily ignored. 

So, we have applied a simple model, one that we can easily solve, to a 
complicated problem. We have a reasonable result. A better one may only 
be obtained with detailed calculations and serious computing. This case 
study attempted to show you that you have explored a topic with wide 
applicability. We hope (expect?) that it will whet your appetite to learn 
about quantum mechanics in more detail. It will be well worth the effort! 



CHAPTER 22 

Afterword 

In the preface, the purpose of this text was described from the perspective 
of my co-author, a mathematician who, prior to making that career choice, 
considered chemistry as a career. Here, I will sum up our goals and hopes for 
you, from the perspective of a chemist, who prior to making that choice con­
sidered mathematics (and, subsequently, engineering) as a possible major. 
If all of this sounds like two (at one time) very confused people, well, it 
should! The main purpose in writing this book was to combine a very rig­
orous mathematical approach with a more practical chemical approach and 
to bring you to a point where you will feel comfortable exploring quantum 
mechanics in more depth in your advanced courses. Our somewhat confused 
backgrounds were just what the National Science Foundation ordered, when 
we began teaching an interdisciplinary course (Integrated Mathematics and 
Physical Sciences) for incoming first year students. Along with a colleague 
from the Department of Physics, we covered introductory Calculus, Physics 
and Chemistry for science and engineering majors in a cohesive, interwoven 
course that extended over the entire first year. Confused as undergraduates, 
we were interdisciplinary as faculty! 

The path we have taken you through began with the early experiments 
that produced "strange" results — results that piqued the interest of some 
of the greatest scientific minds. We followed the development of the theory, 
from a mathematical and a practical point of view. That is, using the prac­
tical analogy of a "well-plucked" string, we derived the exact solution to the 
hydrogen atom problem. Of course, from a chemist's viewpoint, the vari­
ables were described with unfamiliar names, but the connection to the lab 
scientist's convention was easily made because of the clarity of the phys­
ical model. Finally, we made a gigantic practical leap and examined the 
results of not just looking at multielectron atoms, but looking at molecules, 
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with many electrons and many atoms. In that study of chemical bond­
ing, we took an approach analogous to that we used to study atoms. We 
began with an oversimplified bonding model and added complexity until we 
arrived at the molecular equivalent of quantum mechanics: quantum chem­
istry. We concluded with the application of a simple quantum mechanical 
model — the particle-in-a-box — to a complex chemical problem, the color 
of dye molecules. We didn't get the most accurate result we could, BUT 
even in failure there is much to be learned and we can explain away our 
absolute error, while enjoying the relative accuracy of the prediction for 
three different molecules. So, we hope that the novelty of our approach 
has proven instructive and we expect that you no longer wish to see that 
"required" illustration (in the preface) of a small sphere orbiting a large 
sphere. Rather, we expect that the Is probability density shown below is 
more to your liking! 

J.J. BelBruno 
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