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PREFACE 

Two important events in the history of physical sciences occurred re­
cently: the fiftieth anniversary of Quantum Mechanics and the Jubilee 
of Louis de Broglie's celebrated Thesis. These events occurred in the 
same period of time when the world honored de Broglie on the occa­
sion of his eightieth birthday. Some of de Broglie's friends, former 
students, and some people who used to know him and appreciate his 
personality decided to prepare an international volume for this cele­
brated occasion. 

Such a task was not very easy. It is always simpler to contribute in 
honor of famous people whose works and impact were great on a tech­
nical and pragmatic level than to contribute in honor of a person whose 
achievements were not only dominant in physical sciences themselves, 
but also had many important implications for the development of the 
whole branch of philosophy of sciences. 

Louis de Broglie, the man to whom we owe among other things the 
most fundamental notion of duality between waves and particles, be­
longs in a way to the Einsteinian school of thought. He never accepted 
literally the Copenhagen interpretation of quantum mechanics. To him 
it was clear that this interpretation makes quantum mechanics incomplete 
and highly non-deterministic. He always believed that since the duality 
between waves and particles was an experimental fact, there should be 
some manifestation of the Schrodinger wave itself in the realistic world. 
De Broglie had to struggle much for this idea, which he never gave up. 
The notions of hidden variables, pilot-waves, double-solution theory are 
all notions that we owe to him. Had we had a complete quantum-field 
theory, de Broglie's old dilemma of duality would have been settled, as 
it is clear that the structure of such a theory would contain both the 
field (wave) and the particle aspects. 

The reader will find in this book several groups of topics. The first 
group of three papers treats some fundamental questions with philo­
sophical implications, which lie at the foundations of quantum mechan-
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ics and are generally overlooked by the traditional school of physicists. 
We also give a short review of the historical development of hidden 
variables models, as well as some new ideas on the subject, and a few 
critical remarks concerning quantum-measurement theory and de Brog­
lie's pilot-wave theory. These papers constitute a kind of extended intro­
duction to the book. 

The second group of three contributions deals with the question of 
hidden variables (already mentioned above) from the theoretical and 
experimental points of view. It includes a specification of Bell's original 
argument, a review of two recent conflicting experimental results by 
those who performed them, and an axiomatic study of pre-quantum 
models in view of a possible completion of the quantum model by the 
so-called hidden variables. 

The two papers in the third group are, like the preceding paper, mainly 
concerned with the axiomatic approach to quantum theory, its relation 
to classical theory, and some problems of logic that are raised. 

The fourth group of three papers deals mostly with some probabilistic 
aspects of quantum mechanics, its stochastic and statistical interpreta­
tions. 

The remaining five contributions, which constitute the fifth group, 
treat, at various stages, the particle aspect. The first one describes a 
Lagrangian formalism for the Wheeler-Feynman theory of classical elec­
trodynamics which has some intriguing properties. The second, following 
a line of thought of de Broglie's school and most recent theoretical devel­
opments in elementary particles theory, describes a relativistic string as a 
model of extended particles. The last three papers deal with de Broglie's 
photon theory, its extension to a description of graviton and other par­
ticles, and some possible implications of this theory in various fields. 

Though we know that it is impossible to find contributions corre­
sponding to all the variety of aspects tackled by de Broglie in his sci­
entific activity, we have tried our utmost. We hope we have succeeded 
in representing some of the subjects with which de Broglie was con­
cerned during his long and fruitful activity. 

This book is dedicated to Louis de Broglie on the occasion of the jubilee 
of his celebrated Thesis. 

November 25,1974 THE EDITORS 



D. BORM 

ON THE CREATION OF A DEEPER INSIGHT INTO 

WHAT MAY UNDERLIE QUAN1:.UM 

PHYSICAL LAW 

I should like to take this opportunity to honor Louis de Broglie on the 
occasion of the Jubilee by discussing something that I think has been 
the essential moving force within his work; i.e. a strong feeling fQr the 
necessity of inquiry into the deeper meanings of the laws of quantum 
physics. 

I should perhaps say here that I too have always felt that quantum 
physics is an extremely significant clue to something deeper, and have 
never agreed with the common attitude, which tends to regard the 
quantum theory as a general form of knowledge that is final in its essence 
(though it may be admitted that it can perhaps still change and develop 
through detailed assumptions arising in particular applications~ It is for 
this reason that I worked on 'hidden variables' for a considerable period 
of time. But over the years I have found that, generally speaking, my 
reasons for doing this work have been rather widely misunderstood So 
perhaps it would be best to clear up this misunderstanding before going 
into the specific ideas that I would like to discuss here. 

To this end, let us first consider the question: 'What is a theory,? 
Some light is thrown on this question by looking at the origin of the 
word, which is the Greek 'theoria', based on the same root as 'theatre', in a 
verb meaning 'to view' or 'to make a sJ?<!ctacle'. This would suggest that 
we might regard theory primarily as a way of looking at things, i.e. as a 
form of insight, rather than as 'well defined knowledge of what things are'. 

To show that such a notion of theory fits in with what scientists ac­
tually do with their theories, we may consider Newton's discovery of the 
law of gravitation as a relevant example. Now, in ancient times, men 
thought that celestial matter and earthly matter were of essentially 
different natures, so that while it was regarded as natural for earthly 
objects to fall, it was also thought to be natural for celestial objects, such 
as the Moon, to remain up in the sky. Over the centuries, however, there 
arose the notion that celestial matter and earthly matter are not essen­
tially different But for a long time, men did not notice that this should 
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lead to a very serious question: 'Why doesn't the Moon fall'? In a sudden 
flash of understanding or insight (which is of the nature of perception 
through the mind rather than a process of logical thought) Newton saw 
that the Moon is falling. As the apple falls toward the centre of the Earth, 
so does the Moon, and so indeed does all matter. 

The reason why the Moon doesn't ever touch the Earth is, of course, 
that its tangential motion is always carrying it away from the centre, at 
the same time. So what is implied is a universal force of gravitation 
attraGting all matter toward various centres, whose net result depends, 
however, on the particular motions of each body. And thus, one had come 
to a radically new way of looking at all matter, heavenly and earthly, 
which proved to be in harmony with general scientific experience over 
several centuries. 

To be sure, many attempts were made to put this mode of perception 
on 'solid foundations' by means of precisely defined hypotheses from 
which secure conclusions could be drawn (Indeed, as the Greek root 
indicates, a 'hypo-thesis' is a supposition, 'put under' the facts, which 
might perhaps serve as such a foundation, after it has been thoroughly 
tested~ In my view, however, the essence of what the theorist does is in 
the creative act of insight, and not in the detailed hypotheses that may 
follow. These latter are mainly provisional and tentative suggestions 
for defining our forms of thought more precisely, which help to make 
the insight easier to relate to experiment (rather than a means of reaching 
a 'solid ground of knowledge' from which well defined and secure con­
clusions can be drawn). 

As is well known, the general form of insight underlying classical 
physics as a whole eventually broke down, giving rise to a deep and 
pervasive kind of confusion or unclarity. It is important to emphasize 
here, however, that the broad overall hypotheses in terms of which 
classical physics was expressed were never actually definitively dis­
proved by experiment For example, it is still possible in principle to hold 
on to the ether hypothesis, by modifying the detailed assumptions con­
cerning the properties of the ether in such a way that actual clocks and 
rulers will be inferred to obey the Lorentz transformation, as a con­
sequence of these assumptions. However, at a certain stage, Einstein saw 
that in the situation prevailing at that time, the attempt to base every­
thing on the ether theory was leading to serious lack of clarity. And so 
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he dropped the old point of view and started instead from the insight 
that the laws of physics are to be expressed through invariant relation­
ships in the actually observable phenomena and not through assump­
tions about the properties of a purely hypothetical ether. In a similar way, 
Bohr, de Broglie, Heisenberg, Schr6dinger, Dirac, and others dropped 
old points of view anQ came upon equally revolutionary new insights 
into the laws of quantum physics. 

Later, all these relativistic and quantum laws were given a 'solid 
foundation' through precisely formulated mathematical hypotheses. It is 
here, I feel, that physicists began to slip back into the old attitude that 
theories are to be regarded, not mainly as forms of insight, but rather as 
'solid and true knowledge of the nature of reality as a whole': (the main 
new point of modem physics being to suppose that reality as a whole is 
'relativistic and quantum mechanical' rather than 'classical' in its 
nature). 

What I would like to suggest instead is that reality as a whole is im­
mense and immeasurable, beyond anything that can be known as a closed 
and finally determined totality. Each theory is then only a particular form 
of insight, which can be regarded as a sort of light shed on certain limited 
aspects of reality, penetrating some limited way into the open and un­
known totality. So we may expect the unending development of radically 
new forms of insight, rather than a steady approach to some fixed and 
ultimate knowledge of 'what the whole universe really is'. 

Certainly, our actual experience with the development of science over 
the past few thousand years fits in very well with this notion of unending 
creation of new forms of insight, in which each form harmonizes with 
the content of the actual fact only within certain limits. Beyond such 
limits, any given form is seen to imply a kind of confusion or unclarity, 
which can however serve as a key clue to new forms of insight if its 
significance is understood in this light. And so we see the need to look 
carefully at unclear features of every theory, not merely trying to 'clear 
them up', but also keeping in mind the possibility that if they do not 
sooner or later clear up, they may tum out to be important indications 
for new forms of insight. 

Most of my work has at least implicitly been in line with such a view of 
the nature of theory; but because the general attitude in science is to 
suppose that theories are mainly forms of knowledge, actual or proposed, 
what I have written has not conveyed its meaning properly. 
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For example, when I first taught the quantum theory, I found that it 
was very unclear; and so, I wrote a book [1] which was mainly intended 
as an attempt to obtain a clear insight into Bohr's views on the subject. 
After the book was finished, I looked at it again very carefully, and could 
not escape the feeling that the whole matter was still very unclear. I then 
began to look at it from other points of view, not to develop 'conclusive 
new theories about what the whole universe really is', but rather, to in­
quire and to see if one couldn't come upon some further insight into 
quantum physics. In the course of exploring several such points of view, 
I hit upon the notion [2] that the electron might be both a particle and 
a wave, the particle being acted on by a new kind of 'quantum potential' 
which was determined in a certain way by the wave intensity. I later 
learned that others had tried this idea before, and that indeed, de Broglie 
had gone into it quite carefully. De Broglie himself informed me in a 
letter that he had dropped the idea because it failed to meet certain ob­
jections made by Pauli [2], based on the unclear implications of the 
theory concerning the behaviour of scattered electrons in the two-body 
problem This latter led me to look into this question more deeply, and as 
a result I saw that one had to extend the idea consistently to the many­
body system But in doing this, I was led to see what I felt to be a key new 
feature of a quantum mechanical system; i.e. that the 'quantum poten­
tial' now implied a 'many-body interaction' such that the force acting on 
any particle is a function of the state of the system as a whole as well as 
of the positions of all the particles in the system So one could say that as 
it was necessary in Newton's time to question the generally implicit and 
unconsciously held notion that Heavenly objects do not fall, so the facts 
now available imply the need to question the notion that the behaviour 
of a system can be understood by analysis into parts, which interact 
through 'forces' that are fixed in nature, and not dependent on the state 
of the system as a whole. In other words, one has to look at the whole 
world in a new way, which is as different from that perceived by Newton, 
as that of Newton was from the views generally accepted earlier. 

At this stage, however, one is not yet in a position to propose well 
defined hypotheses (which would perhaps correspond to that of the in­
verse square law of forces in classical physics). But, as pointed out earlier, 
the prevailing attitude 'in physics is that the essence of a theory is in its 
precisely and mathematically defined hypotheses which can be tested by 



A DEEPER INSIGHT INTO QUANTUM PHYSICAL LAW 5 

experiment, and not in the insights, which latter are indeed generally 
considered to be useful mainly as aids to the suggestion of such hypoth­
eses. So it was perhaps inevitable that what I wrote would be mis­
understood, by being construed as a proposed hypothesis. As a hypoth­
esis, what I was suggesting was evidently quite inadequate. But I felt that 
it was nevertheless a significant insight and that, as pointed out earlier, 
the development of such insight is the essence of the activity involved in 
the making of theories, rather than a mere step in coming to well defined 
and testable hypotheses. 

The above-described insight into the possible deeper meaning of the 
quantum theory did indeed lead me to try various hypotheses, to give it 
a more detailed expression Perhaps the most developed of these appeared 
in a paper that I wrote with Bub [3], which I felt brought out the key 
new feature implied in the quantum theory rather more clearly than had 
been done earlier. However, even this was quite inadequate, when con­
sidered as a specific hypothesis. But careful consideration of the whole 
situation then led me to see that what was involved was, more deeply, a 
new notion of order. That is, as one had to question the ancient notion of 
a key order between the Celestial and the Earthly, one has to question the 
modem Cartesian notion, that all physically relevant order is to be 
expressed through systems of co-ordinates [4]. In other words, the 
Cartesian co-ordinates are primarily forms of insight, and it is possible 
that they, too, are being extended beyond the context in which their 
meanings are free of confusion. 

Through raising such questions, I came upon quite a different notion 
of order, which is in harmony with the general context of relativistic and 
quantum mechanical experience. It is not the place here, however, to 
describe this notion of enfolded order or implicative order. This is dis­
cussed in other articles [4, 5] in which it is shown that such a notion of 
order gives insight into the irrelevance of analysis of a quantum system 
into parts, and into the need to look on it as an undivided whole. 

Meanwhile, some of the implications of this general question were 
taken up by other workers in the field A very notable step was taken by 
Bell [6] who, on the basis of certain mathematical hypotheses, proposed 
a way of testing experimentally the implications of the quantum theory 
concerning the irrelevance of analysis of a system into 'localizable' parts 
(i.e. into 'elements' whose basic responses to each other did not imply an 
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instantaneous and total interconnection or even interpenetration of all 
the component 'parts'~ Since then, Clauser [7] and others have carried 
the work further, to the point at which an experimental test was indicated 
in detail And this test has actually been made by Freedman and Clauser 
[8]. The result definitely fits in with the notion that the quantum system 
behaves as an indivisible whole, not relevantly analyzable into inde­
pendent parts, each of which would exist in a separate region of space. 
And so, the need for new forms of insight into this question is made even 
sharper and clearer than it was before. 

Another approach to this question can be obtained by considering 
some work done by Vigier and myself, in which we looked on the statis­
tical features of a quantum system as originating in perturbations from 
a random background of motions at a deeper 'sub quantum-mechanical 
level' [9]' Such ideas are perhaps somewhat reminiscent of ether theories, 
in so far as we regard this background as universal and present every­
where in space. Indeed. modern quantum mechanical field theories imply 
'zero point fluctuations' of the fields in each region of space, which are 
also somewhat similar, as can be seen from the fact that the properties 
of all matter are now determined in terms of quantum-mechanical 
averages of the 'vacuum state'; ie. the state of so-called empty space 
(which is, of course, in some sense all-pervasive and omnipresent). So, in 
various roundabout ways, something very much like an ether theory is 
creeping back into physics, though, of course, the detailed properties 
of the new 'ether' are radically different from those considered in the 
nineteenth century. Nevertheless, what is most significant about this 
trend is perhaps that it shows in yet another context the impossibility of 
disproving or falsifying a general form of thought, such as the notion of 
a universal and basic substance or 'ether' pervading the whole of space. 
Indeed. it shows that even after such a form of thought has once been 
dropped because it leads to general confusion, it may come back again 
later in new ways. 

Lately, de Broglie [10] has had what I regard as a very significant in­
sight into this aspect of the question This had led him to suggest that the 
deeper 'background' of space (whether we call it 'sub-quantum' or 'ether' 
or 'zero point fluctuations' or something else) can be regarded as a sort 
of 'thermal bath' with which the particle can exchange energy in the form 
of 'heat'. Indeed. he proposes that the 'quantum potential' originates in 
this exchange of 'heat energy' with the background of space. 
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To explain this idea, it is helpful to distinguish two kinds of motion 
of a system, the slow and the fast The slow motions of a thermal system, 
for example, are just the ordinary motions of its parts (e.g. movement of a 
piston) whereby it does work and exchanges energy with other systems 
on the same general level as itself. The fast motions are those of its con­
stituent molecules, whereby it exchanges energy with its environment in 
an 'invisible' way, i.e. a way that does not show on its own level. When 
such molecular motions are suitably random, this sort of exchange is 
called 'heat'. 

But, of course, the two ways of exchanging energy are inter-related. 
Their relationship is given by the laws of thermodynamics. Thus, we 
may write 

dE=dQ-dW 

where dE is the total change of internal energy of the system, dQ is the 
exchange through 'invisibly rapid' random motions of molecules in the 
form of heat, and d W is the exchange of energy at the 'visible' level. In 
general, dQ and d Ware not perfect differentials, but depend on the path 
of change. (E.g. dW=p dV for a volume, V of gas, under pressure, p). 
However, dE is always a perfect differentia~ and this expresses the first 
law of thermodynamics. The second law is expressed by saying that in 
thermal equilibrium, dQ = T dS where T is the temperature and S the 
entropy. 

De Broglie has in effect suggested that even the 'elementary' particles 
have a deeper structure, which is involved in 'fast' motions (i.e. of high 
frequency compared with the frequencies involved in the general motion 
of the particle as a whole ~ If this deeper structure is in 'thermal equilib­
rium' with the background, then there is an additional 'heat energy' 
involved when the particle moves from one place to another or goes from 
one 'quantum state' to another. And, as indicated earlier, de Broglie uses 
this idea to account for the 'quantum potential' acting on any given 
particle. By so doing, he is in effect considering the notion that the 'force' 
in each particle depends on parameters (such as T and S) which, in prin­
ciple, imply a reference to the state of the whole universe, and which in 
practice can be abstracted and simplified as implying a reference to the 
state of a whole system of particles. So a radically new way is opened to 
understanding the undivided wholeness of a quantum system. 
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While I find this insight very illuminating, I feel that it has aspects that 
are not clear, and which require further examination. In particular the 
concept of temperature is not relativistically invariant Because energy 
and momentum are components of a four-vector, any specification of 
temperature inevitably implies the existence of some special frame in 
which the average momentum is zero. But the 'vacuum state' (i.e. the state 
of the background when it is free of matter) should be invariant, and 
should not favor any particular frame. So one cannot properly attribute 
a temperature to the 'vacuum state'. 

What this difficulty suggests to me is that energy and temperature are 
not appropriate concepts for describing the condition of the 'vacuum' 
or of 'empty space free of matter'. Rather, we need a property that is 
invariant. Now, the basic invariant property in the field of mechanics is 
action. The relevance of this property in this context is further indicated 
by the fact that it is just the action which is quantized. 

For example, if we consider a field analyzed into normal modes of 
oscillation, then in the 'vacuum state' each oscillator has an average 
action, variable of :!l' = h/2 (This follows from the fact that the energy 
in the ground state is Eo=hy/2 and from the relationship :!l' =E/y~ It is 
clear then that one can, in some rough sense, look at the 'vacuum state' 
as a random distribution of action among the oscillators, in which the 
average for each oscillator is independent of its frequency. Evidently, this 
is a covariant distribution. Indeed, as can easily be shown, it is invariant, 
not only to a Lorentz transformation, but also, to an arbitrary canonical 
transformation. 

Let us now consider a 'particle' in a kind of 'quasi-thermal' equilibrium 
with its background When considered in abstraction from this back­
ground, the action function, F (X b t) of the particle will then be just the 
solution of the classical Hamilton-Jacobi equation, which determines 
a set of wave surfaces as functions of Xi and t. These equations can be 
obtained from the defining relation: 

3 

dF= L Pi dXi-H dt. 
i= 1 

Because dF is, by definition, a perfect differential, we can write 

3 of of 
dF= L -dXi +-

i=10Xi ot (1) 
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and this of course yields the usual Hamilton-Jacobi equations of classical 
physics 

H=_oF 
ot' 

The new idea is then to suppose, with de Broglie, that the particle has a 
large number of 'fast' inner degrees of freedom, capable of 'quasi-thermal' 
exchanges of action with its surroundings. Let us denote these by dA. 
So Equation (1) is modified to 

3 

dF= L Pi dXi-H dt-dA (2) 
i= 1 

dF is of course still to be taken as a perfect differential, defining the wave 
surfaces in this new context But in a 'quasi-static' or 'equilibrium' situa­
tion we write dA = A. dJL Here A. is analogous to temperature and 11 to 
entropy. (But, of course, it is only an analogy, because dA = A. dll refers to 
action exchanges and dQ= T dS refers to energy exchanges). We then 
obtain 

3 

dF= L Pi dXi-H dt-A. dll (3) 
i= 1 

In the 'vacuum state', A. is rigorously a constant But where matter is in­
volved, A. and 11 become functions of the co-ordinates, Xi and the time, t. 
We can thus write 

and 

(4) 

The above is equivalent to adding a kind of 'vector potential' term to the 
Lagrangian, L= Li Pi (dXJdt)- H. The proposal is then to explain at 
least some of the characteristically new quantum properties of matter 
(e.g. the force that was previously attributed to the 'quantum potential') 
as the result of an 'environmental vector potential', which indirectly 
describes the connection of each particle with the whole universe through 
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'fast' random motions by which it exchanges action with the general back­
ground. 

The detailed working out of this theory will be given in a later paper. 
For the present, I can only say that it does seem to offer the possibility 
of a fairly consistent description, not only of the one-particle system, but 
also, of the many particle system. 

Finally, I would like to add that a great deal of work remains to be done 
before our insight will reach a point at which it will be fruitful to make 
well-defined and experimentally testable hypotheses involving some 
basically new kind of theory. What is called for now is careful attention to 
unclear features of the work that has been done so far and patient con­
sideration of what is needed to clear them up. 

Birkbeck College (University of London) 
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J. S. BELL 

THE MEASUREMENT THEORY OF EVERETT AND 

DE BROGLIE'S PILOT WAVE 

In 1957 H. Everett published a paper setting out what seemed to be a 
radically new interpretation of quantum mechanics 1. His approach has 
recently received increasing attention 2. He did not refer to the ideas of 
de Broglie of thirty years before 3 nor to the intervening elaboration of 
those ideas by Bohm 4. Yet it will be argued here that the elimination of 
arbitrary and inessential elements from Everett's theory leads back to, 
and throws new light on, the concepts of de Broglie 5. 

Everett was motivated by the notion of a quantum theory of gravitation 
and cosmology. In a thoroughly quantum cosmology, a quantum me­
chanics of the whole world, the wave function of the world could not be 
interpreted in the usual way. For this usual interpretation refers only to 
the statistics of measurement results for an observer intervening from 
outside the quantum system. When that system is the whole world, there 
is nothing outside. This situation presents no particular difficulty for the 
traditional (or 'Copenhagen') philosophy, which holds that a classical 
conception of the macroscopic world is logically prior to the quantum 
conception of the microscopic. The microscopic world is described by 
wave functions which are determined by and have implications for 
macroscopic phenomena in experimental set-ups. These macroscopic 
phenomena are described in a perfectly classical way (in the language of 
'be-ables' 6 rather than 'observables', so that there is no question of an 
endless chain of observers observing observers observing ... ~ There is of 
course no sharply defined boundary between what is to be treated as 
microscopic and what as macroscopic, and this introduces a basic vague­
ness into fundamental physical theory. But this vagueness, because of the 
immense difference of scale between the atomic level where quantum 
concepts are essential and the macroscopic level where classical concepts 
are adequate, is quantitatively insignificant in any situation hitherto 
envisaged So, it is quite acceptable to many people. It is not surprising 
then that such a consistent traditionalist as L. Rosenfeld has gone so far 
as to suggest 7 that a quantum theory of gravitation may be unnecessary. 

M. Flalo et al. (eds.), Quantum Mechanics, Determinism, Causality, and Particles, 11-17. All Rights Reserved. 
Copyright © 1976 by D. Reidel Publishing Company, Dordrecht-Holland. 
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The only gravitational phenomena we actually know are of macroscopic 
scale and involve very many atoms. So we only need the concept of gravi­
tation on this classical leveL whose separate logical status is anyway 
fundamental in the traditional view. Nevertheless, I think that most con­
temporary physicists would regard any purely classical theory of gravita­
tion as provisionaL and hold that any really adequate theory must be 
applicable, in principle, also on the microscopic level - even if its effects 
there are negligibly small 8. Many of these same contemporary physicists 
are perfectly complacent about the vague division of the world into 
classical macroscopic and quantum microscopic inherent in contem­
porary (i.e., traditional) quantum theory. This mixture of concern on the 
one hand and complacency on the other is in my opinion less admirable 
than the clear headed and systematic complacency of Rosenfeld 

Everett was complacent neither about gravitation nor quantum theory. 
As a preliminary to a synthesis of the two he sought to interpret the notion 
of a wave function for the world This world certainly contains instru­
ments that can detect, and record macroscopically, microscopic and other 
phenomena Let A be the recording part, or 'memory', of such a device, or 
of a collection of such devices, and let B be the rest of the world Let the 
co-ordinates of A be denoted by a, and of B by b. Let cPn{a) be a complete 
set of states for A. Then, one can expand the world wave function l/I{a, b, t) 
at some time t in terms of the cPn: 

l/I{a, b, t)= L cPn{a) Xn{b, t) (E) 
n 

We will refer to the norm of Xn 

as the 'weight' of cPn in the expansion. As an example A might be a photo­
graphic plate that can record the passage of an ionizing particle in a 
pattern of blackened spots. The different patterns of blackening corre­
spond to different states cPrr Then it can be shown 9 along lines laid down 
long ago by Mott and Heisenberg, that the only states cPn with appreciable 
weight are those in which the blackened spots form essentially a linear 
sequence, in which the blackening of neighbouring plates, or of different 
parts of the same plate, are consistent with one another, and so on. In 
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the same way Everett, allowing A to be a more complicated memory, 
such as that of a computer (or even a human being), or a collection of such 
memories, shows that only those states <Pn have appreciable weight in 
which the memories agree on a more or less coherent story of the kind 
we have experience of. All this is neither new nor controversial. The 
novelty is in the emphasis on memory contents as the essential material 
of physics and in the interpretation which Everett proceeds to impose 
on the expansion E. 

An exponent of the traditional view, if he allowed himself to con­
template a wave function of the world, would probably say the following. 
Once a macroscopic record has been formed we are concerned with fact 
rather than possibility, and the wave function must be adjusted to take 
account of this. So from time to time the wave function is "reduced" 

(E') 

where (N being a renormalization factor) the restricted summation I' is 
over a group of states <Pn which are 'macroscopically indistinguishable'. 
The complete set of states is divided into many such groups, and the 
reduction to a particular group occurs with probability proportional to 
its total weight 

I' f db IXnI 2 . 

He will not be able to say just when or how often this reduction should be 
made, but would be able to show by analyzing examples that the ambi­
guity is quantitatively unimportant in practice. Everett disposes of this 
vaguely defined suspension of the linear SchrOdinger equation with the 
following bold proposal: it is just an illusion that the physical world 
makes a particular choice among the many macroscopic possibilities 
contained in the expansion; they are all realized, and no reduction of the 
wave function occurs. He seems to envisage the world as a multiplicity 
of 'branch' worlds, one corresponding to each term <PnXn in the expansion. 
Each observer has representatives in many branches, but the represen­
tative in any particular branch is aware only of the corresponding par­
ticular memory state <P ... So he will remember a more or less continuous 
sequence of past 'events', just as if he were living in a more or less well 
defined single branch world, and have no awareness of other branches. 



14 J. S. BELL 

Everett actually goes further than this, and tries to associate each partic­
ular branch at the present time with some particular branch at any past 
time in a tree-like structure, in such a way that each representative of an 
observer has actually lived through the particular past that he remembers. 
In my opinion this attempt does not succeed 9 and is in any case against 
the spirit of Everett's emphasis on memory contents as the important 
thing. We have no access to the past, but only to present memories. A 
present memory of a correct experiment having been performed should 
be associated with a present memory of a correct result having been ob­
tained If physical theory can account for such correlations in present 
memories it has done enough - at least in the spirit of Everett. 

Rejecting the impulse to dismiss Everett's multiple universe as science 
fiction, we raise here a couple of questions about it. 

The first is based on this observation: there are infinitely many dif­
ferent expansions of type E, corresponding to the infinitely many com­
plete sets 4>,.. Is there then an additional multiplicity of universes corre­
sponding to the infinitely many ways of expanding, as well as that cor­
responding to the infinitely many terms in each expansion? I think (I am 
not sure) that the answer is no, and that Everett confines his interpretation 
to a particular expansion. To see why suppose for a moment that A is just 
an instrument with two readings 1 and 2, the corresponding states being 
4>1 and 4>2. Instead of expanding in 4>1 and 4>2 we could, as a mathematical 
possibility, instead expand in 

In each of these states the instrument reading takes no definite value, and 
I do not think Everett wishes to have branches of this kind in his universe. 
To formalize his preference let us introduce an instrument reading 
operator R: 

and operators Q and P similarly related to 4>± and 4>'±. Then we can say 
that Everett's structure is based on an expansion in which instrument 
readings R, rather than operators like Q or P, are diagonalized This 
preference for a particular set of operators is not dictated by the mathe­
matical structure of the wave function 1/1. It is just added (only tacitly by 
Everett, and only if I have not misunderstood) to make the model reflect 
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human experience. The existence of such a preferred set of variables is one 
of the elements in the close correspondence between Everett's theory and 
de Broglie's - where the positions of particles have a particular role. 

The second question grows out of the first: if instrument readings are 
to be given such a fundamental role should we not be told more exactly 
what an instrument reading is, or indeed, an instrument, or a storage 
unit in a memory, or whatever? In dividing the world into pieces A and B 
Everett is indeed following an old convention of abstract quantum 
measurement theory, that the world does fall neatly into such pieces -
instruments and systems. In my opinion this is an unfortunate conven­
tion The real world is made of electrons and protons and so on, and as a 
result the boundaries of natural objects are fuzzy, and some particles in 
the boundary can only doubtfully be assigned to either object or en­
vironment I think that fundamental physical theory should be so for­
mulated that such artificial divisions are manifestly inessential In my 
opinion Everett has not given such a formulation - and de Broglie has. 

So we come finally to de Broglie. Long ago he faced the basic duality 
of quantum theory. For a single particle the mathematical wave extends 
over space, but the experience is particulate, like a scintillation on a 
screen For a complex system, t/J extends over the whole configuration 
space, and over all n in expansions like (E), but experience has a particular 
character, like the reduced expansion (E'). De Broglie made the simple and 
natural suggestion: the wave function t/J is not a complete description of 
reality, but must be supplemented by other variables. For a single particle 
he adds to the wave function t/J(r, t) a particle co-ordinate x(t) - the 
instantaneous position of the localized particle in the extended wave. It 
changes with time according to 

x = [Imt/J* (x, t) :x t/J (x, t)}t/J (x, t)j2 . (G) 

In an ensemble of similar situations x is distributed with weight 1t/J(x,t)j2 
dx, a situation which follows from (G) for all t if it holds at some t. To 
make a model of the world, a simple world consisting just of many non­
relativistic particles, we have only to extend these prescriptions from 3 
to 3N dimensions, where N is the total number of particles. In this world 
the many-body wave function obeys exactly a many-body Schrodinger 
equation There is no 'wave function reduction', and all terms in ex-
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pans ions like E are retained indefinitely. Nevertheless the world has a 
definite configuration (Xl' X2, X3 ... ) at every instant, changing according 
to the 3N dimensional version of (G). This model is like Everett's in 
employing a world wave function and an exact Schrodinger equation, and 
in superposing on this wave function an additional structure involving a 
preferred set of variables. The main differences seem to me to be these. 

(1) Whereas Everett's special variables are the vaguely anthropocentric 
instrument readings, de Broglie's are related to an assumed microscopic 
structure of the world The macroscopic features of direct interest to 
human beings, like instrument readings, can be brought out by suitably 
coarse-grained averaging, but the ambiguities in doing so do not enter 
the fundamental formulation. 

(2) Whereas Everett assumes that all configurations of his special 
variables are realized at any time, each in the appropriate branch universe, 
the de Broglie world has a particular configuration I do not myself see 
that anything useful is achieved by the assumed existence of the other 
branches of which I am not aware. But let he who finds this assumption 
inspiring make it; he will no doubt be able to do it just as well in terms of 
the x's as in terms of the R's. 

(3) Whereas Everett makes no attempt, or only a half-hearted one, to 
link successive configurations of the world into continuous trajectories, 
de Broglie does just this in a perfectly deterministic way (G). Now these 
trajectories of de Broglie, innocent as (G) may look in the configuration 
space, are really very peculiar as regards locality in ordinary three­
space 9. But we learn from Everett that if we do not like these trajectories 
we can simply leave them out We could just as well redistribute the con­
figuration (Xl' X2' ... ) at random (with weight 11/112) from one instant to the 
next. For we have no access to the past, but only to memories, and these 
memories are just part of the instantaneous configuration of the world 

Does this final synthesis, omitting de Broglie's trajectories and Everett's 
other branches, make a satisfactory formulation of fundamental physical 
theory? Or rather would some variation of it based on a relativistic field 
theory? It is logically coherent, and does not need to supplement mathe­
matical equations with vague recipes. But I do not like it Emotionally, 
I would like to take more seriously the past of the world (and of myself) 
than this theory would permit More professionally, I am uneasy about 
the possibility of incorporating relativity in a profound way. No doubt 
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it would be possible to ensure memory of a null result for the Michelson­
Morley experiment and so on But could the basic reality be other than 
the state of world, or at least a memory, extended in space at a single 
time - defining a preferred Lorentz frame? To try to elaborate on this 
would only be to try to share my confusion 

CERN, Geneva 
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M.FLATO 

QU ANTUM MECHANICS AND DETERMINISM 

1. PROLOGUE 

During my stay with the Institute for Theoretical Physics of the Royal 
Institute of Technology, Stockholm, I had many occasions to discuss 
with people their problems concerning the foundations of Quantum 
Mechanics. It is needless to say that thanks to geographical conditions, 
most of my friends in Stockholm accepted without any further ques­
tioning the Copenhagen interpretation of quantum theory. This fact was 
not surprising. 

What seemed surprising to me was the fact that most of them did not 
even bother to look at other approaches to this fundamental problem. 
I then decided to give a seminar lecture concerning the Einstein-Rosen­
Podolsky paradox and the problem of hidden variables. I was delighted to 
see that not only my colleagues but also some of their younger students 
came to this seminar. I therefore tried to be less technical and more peda­
gogical. Of course, no claim of originality was associated with that 
seminar talk. 

After having completely forgotten about that event, 1. P. Vigier told 
me one day that Louis de Broglie's eightieth birthday was coming, and 
that on such an occasion some of de Broglie's friends should prepare a 
special issue. I was then asked to contribute to this issue and eventually 
to be one of its editors. After having given some thought to the problem 
I remembered my lecture in Stockholm and decided that this was some­
thing suitable for such an event 

Indeed, is it not Louis de Broglie who never accepted the Copenhagen 
interpretation of Quantum Theory? Can one deny that it was de Broglie 
who really pushed in the Einsteinian direction and brought others to get 
interested in hidden-variables theories? 

This article, based on my seminar lecture in Stockholm (January 1971) 
is devoted to Louis de Broglie. 
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2. 

Let us begin by discussing the difference between classical (including 
relativistic) and quantum physical theories: the main difference is that 
in classical theories we can always divide the world into observer and 
observed such that the interaction between both is either negligibly 
small or can be controlled by us by measurements. In quantum physics 
this is not true! Due to the discontinuous character of changes we can­
not neglect the interaction between observer and observed It is rather 
that the process of observation changes the observed in an uncontrolled 
manner. Moreover we can give a theoretical lower bound for the ac­
curacy of the quantum measurement in many cases. It is only by postu­
lating such relations that ensure us such a lower bound (in case it exists) 
that we have a self-consistent theory of the atom - quantum mechanics. 

Of course, this point of view is the traditional one, and we can still 
argue about a possible complexity of classical measurement theory, when 
such a theory exists. 

The difference between the classical and the quantum cases evokes the 
question: Does physical reality exist by itself in the physicist's view 
('objectively') when the measurement procedure is not applied? Two 
answers are possible: 

(1) No. In this case we can accept without difficulties the usual inter­
pretation of quantum mechanics. 

(2) Yes. In this case we can believe that quantum mechanics is not 
complete and in a final theory, we shall be able to 'come back' to the 
classical concepts. 

To illustrate this philosophy we present a classical paradox due to 
Einstein, Rosen and Podolsky. 

The philosophy of these people is the following: reality is objective. 
Physical concepts just try to explain it and to picture it out to ourselves. 
A theory must answer the following criteria: 

1. Correctness. 
2. Completeness. 

Now the first criterion is decided by experiment. The paradox of ERP 
deals with the second one, completeness - applied to quantum mechanics. 
According to ERP completeness is the fact that every element of objective 
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physical reality has a counterpart in the theory. A kind of sufficient 
criterion of what they call reality is the following: If, for example, without 
disturbing the system we can predict with certainty the value of a physical 
quantity, then there is an element of the physical reality corresponding 
to it. Let us consider for example a particle in one dimension having 
the wave function ljJ = exp((2ni/h} Pox~ P being the momentum operator, 
PljJ=(h/2ni} (aljJ/aX) = PoljJ. Here in the state ljJ the momentum of the 
particle takes the value Po. Therefore according to ERP it corresponds to 
the physical reality. On the other hand for the position (Q) of the particle 
we know that QljJ = xljJ # aljJ with constant a. Since ljJlfi = 1 we can just 
say that all values of coordinates are equally probable. Therefore the 
value of x is not predictable, and can only be measured directly. However 
when we measure it, we alter the state. Therefore in quantum mechanics 
we say that when momentum is known position is not predictable. 

It follows that: 
(1) Either the quantum-mechanical description by wave-function is 

not complete, or 
(2) If two operators do not commute, the physical quantities they 

represent do not have simultaneous physical reality. (Otherwise both 
must be predictable by the wave-function). 

The ERP paradox tries to prove that contrary to what people believe 
it is point (1) which holds. 

3. THE PARADOX 

Suppose we have two systems I and II, interacting for time 0::::; t::::; T. 
Suppose that for t> T there is no interaction between both parts. If we 
know the states of I and II for a certain to> T we can calculate the state 
of I + II for instance for t> T. If ljJ is the combined state for I + II for t> T, 
we can say something about the states of! and II for t> T by the reduc­
tion technique of wave packt:ts. Suppose Un(xl) are eigenfunctions of an 
observable A in I with eigenvalues an' We now write ljJ (Xl' X2)= 
= I:,= 1 ljJn(X2) Un(X l), ljJn(X2) being just coefficients. If A is measured and 
found to have the value ak' we conclude that the second system is now in 
the state ljJk(X2) (reduction of the wave-packet~ We then have ljJ(Xl' X2)= 
ljJk(X2) Uk(Xl)' Now, if we measure B (instead of A) in the first system, 
we conclude that the second system is in another state than before, though 
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state of II. The same reality is here described by two different wave 
functions! In particular, Sl,lppose that the two states that we concluded 
that II was in - by measuring A and B in I - are eigenfunctions of two 
non-commuting operators. That this can be the case is illustrated by: 

-00 

with Xo constant. A is the momentum of the first particle. Then 
Up(x1)=exp( -(2ni/h) PX1), Up eigenfunction of A. We conclude that 
for II: 

Now t/J p is eigenfunction of the momentum of the second particle with 
momentum eigenvalue - p. If B is the coordinate ofI, y"(x1)=<5(X1 -x), 
we conclude that II is in the state 

-00 

which is eigenstate of the coordinate operator X 2 of II. As momentum 
and coordinate of II do not commute we illustrated our assertion. If 
this is the case, then by measuring either A or B in I (and without 
disturbing II) we predict with certainty either the value of P or the 
value of Q in II (P and Q being the non-commuting operators of before). 
We conclude that in the first case P is an element of reality and in the 
second case Q is. Both wave functions, however, belong to the same 
reality. 

Now (conclude ERP) if quantum mechanics is complete, our example 
brings us into contradiction, because it brought us to the conclusion that 
two non-commuting operators can have simultaneous reality. 

This contradicts the choice of 1 or 2 at the beglnning. Therefore 
quantum mechanics is not a complete theory, Q.E.D. 

It is clear that no paradox is possible if reality is defined in a different 
way (for instance the possibility of measuring simultaneously will be 
necessary for simultaneous reality!). However, for a classical physicist 
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like Einstein, the fact that reality can depend on measurement is an idea 
which is strange to physical sciences. 

It is also evident that much more profound an analysis can be done 
(and has been done) concerning the specific choice of the wave-packet 
reduction formula as well as around the problem of the correlations of 
subsystems I and II once they are 'apparently separated'. 

ERP conclude their paper by a hope that a more complete theory 
would be possible in the future to replace quantum mechanics. And this 
opened the door to 'hidden variables theories' and eternal discussions 
between von Neumannists and Einsteinists. 

4. 

The arguments we presented up till now had the following aims: 
(1) To show that a change in philosophy of physical reality can alter 

our conclusions concerning physical sciences; 
(2) To give a philosophical background to the physical interpretation 

of uncertainty principles; 
(3) To give a detailed background to the problem of hidden variables. 
We therefore pass now to an introduction to the hidden variables 

problem. It is clear that we live in a classical world and are trying to look 
into the quantum mechanical world in terms of results in our classical 
domain. There is no problem conceptually in describing the classical 
world directly as it is. We can describe (e.g.) positions of material 
bodies at> a2, ••. and many other classical parameters. A complete de­
scription of the state of the world will be given by (at> az, a3, ... , t/I) with 
both classical parameters and quantum-mechanical wave-functions. 

It is an interesting question to investigate where does the boundary 
between classical and quantum-mechanical variables lie in our descrip­
tion of the state of the world Though in practice we know when a 
phenomenon has to be calculated by quantum theory, this knowledge 
is rather approximate and is not a well established physical principle. 

It is rather probable that in a final description some classical para­
meters will remain. On the other hand, it might be that quantum 
mechanics is of a provisional character, and that a further theory will 
eliminate quantum mechanical variables in favour of other classical 
variables - the so-called hidden variables. 
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Another reason for believing in the possibility of having hidden 
variables has to do with the statistical nature of the results we get from 
quantum mechanics. One can for instance imagine that random statis­
tical fluctuations are determined by some extra hidden variables (as­
suming quantum mechanics is not complete). 

The last reason for a possible existence of hidden variables is the exis­
tence of paradoxes of the type of that of Einstein, Rosen and Podolsky 
(which we saw before). Let us give a simple paradox of this kind, due 
to D. Bohm: we are given a pair of spin! particles in the singlet (S = 0) 
state, and suppose they begin to move freely in opposite directions. 
Suppose now that t is an arbitrary unit vector in 1R3. From quantum 
mechanics we know that if Gl·t yields the value + 1, then G2·t will yield 
the value -1. (Gl' G2 are the Pauli spin matrices of the two particles). 
Now this means that no matter how the two particles are situated one 
relatively to the other, it is always possible to predict the spin value of 
one of them (in an arbitrary direction) knowing the corresponding quan­
tity for the other particle. It seems as if some kind of hidden variables 
(uncontrolled by us, of course) are involved here. This prediction could 
even be made for an a priori local situation. Later John Bell proved that 
no local hidden variables can reproduce all results of quantum me­
chanics. But let us come to the origin of the problem of hidden variables. 

A dispersion-free state is (roughly speaking) a state which is an eigen­
state of every observable in a given family of observables. Therefore 
every quantum mechanical system containing at least one pair of ob­
servables which are conjugate, namely for which the uncertainty rela­
tions hold, cannot have any quantum dispersion-free state. Since hidden 
variables determine with accuracy the values of all observables, to every 
quantum state will correspond a family of states with different values of 
hidden variables, each member of which is dispersion-free. Therefore the 
search for hidden variables is equivalent in a way to the search for dis­
persion-free states. 

It was von Neumann who utilized the fact that ifin quantum mechanics 
an observable is a linear combination of two other observables 
C=rxA+/JB, the same is true for its expectation values: <C)=rx<A)+ 
+ fJ <B). Now for dispersion-free states expectation values coincide with 
eigenvalues. But eigenvalues are in general not additive! Therefore von 
Neumann's conclusion was that dispersion-free states (and therefore 
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hidden variables interpretation) are not possible in quantum mechanics. 
To see that eigenvalues are not additive, consider the three Pauli spin 
matrices ofa particle having spin l The operator 1/J2 (ux+uy) has the 
eigenvalues ± 1 and this is not equal to 1/J2 (± 1 ± 1) which are linear 
combinations of eigenvalues of 1/J2 U x and of 1/J2 uy 

Now the meaning of the non-additivity of eigenvalues is very simple: 
in order to measure the quantities ux• uyand 1/J2 (ux+uy), we must have 
three different orientations of the Stern-Gerlach magnet These measure­
ments can certainly not be done simultaneously. 

Therefore intuitively speaking no a priori additivity of eigenvalues has 
to be expected. It is only true that statistical averages of quantities should 
be additive. 

The problem of hidden variables is quite subtle: on the one hand many 
abstract demonstrations (and quite 'general' ones) were given of their 
non-existence. A careful analysis in simple terms shows that all hide quite 
ad hoc 'physical assumptions'. 

On the other hand it is quite trivial to construct theories containing 
hidden variables which do not have any physical meaning. The real 
problem will of course be to construct theories with hidden variables 
having physical meaning, capable of reproducing all known quantum­
mechanical results and possessing also predictions in domains not yet 
covered by quantum mechanics. No example of such a theory is known 
to our day. 

We shall now discuss an explicit model. We consider a very simple 
example of a spin! particle in a magnetic field, originally due to L. de 
Broglie and D. Bohm. The Schrodinger equation is here: 

(}",(r, t) 
-(}-t -=[ -tLi +/t(G' H)l",(r, t). 

The wave function", is here a two component Pauli spinor, H the mag­
netic field, G a 3-vector built of Pauli spin matrices. We supplement the 
picture by a hidden (single 3-vector) variable iv satisfying the equation: 

div JI/t(iv, t) 
dt pl/t(iv, t)' 

where P is a probability-density, J a probability-current, defined as usual: 
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J",(r, t)=lm[tjJ*(r, t)·:r tjJ(r, t)], p",(r, t)=tjJ*(r, t)·tjJ(r, t). 

(1m stands for imaginary part of .and * is complex-conjugation.) 
A simple/calculation shows that the Schrodinger equation implies the 

continuity equation for our current: 

We suppose that the quantum mechanical state tjJ corresponds to an en­
semble (l, tjJ) of (hidden) dispersion-free states, l occuring with density 
p(l, t) satisfying: p(l, t) = p",(r, t). As a matter of fact, if the last equality 
holds for t= to, then in virtue of the equations of motion it will hold for 
all t. Remembering the equation of continuity and the equation for dljdt, 
it is evident that we are going to utilize the hidden variable A in our 
interpretation as the real position of the particle (known with accuracy) 
which replaces the quantum mechanical (tjJ, rtjJ) - the position expecta­
tion value. 

Other kinds of measurements which essentially depend on position 
measurements (like the measurement of a spin component in a given 
direction by a Stern-Gerlach experiment) will have as results determined 
values given by the aid of our hidden-variable A(t). 

Our scheme can be generalized to non-relativistic n-particle wave-me­
chanics: the state vector is here tjJ(r b ... , r n' t) and we allow interactions 
between the particles. The hidden variables are n vectors lb ... , In. Equa­
tions of motion for the hidden variables are as before: 

dlm Jm(ll' ... ' An' t) 
dt P(ll, ... , In' t) , 

where p(Ab ... ,t)=ltjJ(Ab ... ,t)12 and Jm(lb ... ,t)=Im(tjJ*(8j8Am)tjJ). As 
before the l's are distributed with probability density ItjJ1 2, and so on. 
Evidently the consequences are the same as in the preceding case. 

Before analyzing the advantages and the disadvantages of our scheme, 
one should remark that we do not discuss here what happens to the 
hidden variables during and after the measurement. Though the problem 
of measurement theory is very interesting, what we try here is to re­
interpret the usual theory rather than to replace it. Of course a meaning-
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ful hidden variables scheme (which nobody has found up till now) will 
in a way give direct hints on how one should formulate a coherent mea­
surement theory. 

We now list the 3 main advantages of our schemes: 
(1) Though we have a 2-component theory the particle has a determined 

position A. The classical (hidden) picture is a particle which does not spin. 
This last fact can explain why many classical rotator pictures of the 
spinning electron turned out to be failures: there is no need for an exact 
analogy between the quantum and the hidden-variables pictures. It is 
just that the last one should be capable of reproducing the first one. 

(2) The models just studied show that the result of a (e.g.) spin-mea­
surement depends on the initial A of the particle and on the magnetic 
field H This result takes into account the combination of the system and 
the apparatus. 

(3) Discussing the problem of the boundary between the classical and 
quantum worlds we said that in any case it is reasonable to suppose that 
the 'final picture' will contain classical variables - probably describing 
'macroscopic objects'. This is really the case in the models discussed until 
now. 

We are now going to describe the main disadvantage of our last 
scheme (first observed by Bell) which in turn will force us to introduce 
a kind of no-go theorem for local hidden variables. The disadvantage is 
the following one: conc~ntrating on a measurement at a given position 
Ai' we see that it depends also on what happens in all other 'positions' 
At> ... ,Aj-t> Aj-1, ... ,An• This means that the system of equations ofmo­
tion for the Ai' though being 'local' in ~3n, is 'not local' in the physical 
~3 space. In other words this means that a measurement of one of the 
two ERP measuring devices can influence the response of the second 
(distant!) device. For people who took care to analyze the ERP paradox 
this might look absurd, as their explanation would have to do with an 
information propagating from the first to the second device. 

The question we have to answer now, is whether this difficulty is in­
herent whenever we want to have 'local' hidden variables or if what we 
had up till now was just bad luck. 

5. 

To have a somehow based opinion on the question we consider a 
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typical example due to Bell. Suppose we have a system of two spin t par­
ticles prepared such that they move towards two different devices which 
measure spin components in directions a and b. Suppose our hidden 
variable is A, and p(A) is its probability distribution for the given quan­
tum mechanical state. 

The result A(= ± 1) can depend on A and on a, the result B(= ± 1) 
on A and b. Our notion of 'locality' will be translated here by the fact 
that A does not depend on b neither does B depend on ti The question 
is if e.g. the mean value of A· B in our hidden variable scheme can 
equal the quantum mechanical prediction. Now: 

<A' B) = p(a, b)= f dAp(A) A (a, A) B(b, A), 

with A = ± 1, B = ± 1. 

Remark: If the instruments themselves contain hidden variables in a 
'local' way, we shall have to average first over instrument variables and 
then find the same representation as before, but this time with A (a, A), 
E(b, A) and IAI ~ 1, lEI ~ 1. 

Suppose a', b' are other settings of the instruments. Calculate: 

Then 

p(a,b)-p(a,b')= f dAp (A)[A (a) B(b)-A(a) B(b')] = 

= f dAp(A) A(a)B(b)(1±A(a') B(b'))­

- f dAp(A) A (a) B(b') (1 ±A(a') B(b)). 

IP(a, b)-p(a, b')1~2±(p(a', b')+p(a', b)) 

and therefore 

IP(a, h)-p(a, h')1 + IP(a', h')+p(a', h))1 ~2 

(up till now the inequality holds both for the A, B case and the A, E 
case). 

Now we suppose a =b' and P(b', b')= -1 (which means that we re-
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strict ourselves to the A, B case~ The inequality becomes: 

IP(a, b) - P(a, h')1 ~ 1 + P(h, b'). 

Suppose now that the two particles system was in the singlet state 
(S = 0). Then quantum mechanically we know what P(a, b) is in this 
state: P(a, b)= - «(1a·(1b) = -(a, ~ (Therefore in our case P(h', h')=­
-(6' ·b')= -1). 

Thus we should also have had (if the local hidden variables picture 
was correct): 1-(a·b)+(a·b')1 ~ l-(b, b') for all unit vectors a, band b'. 
But this does not always hold: take for example 

(1 1) ~ ~ 
a= )2,0')2' b=(O,O,-l) and b'=(l,O,O). 

Therefore in our example the quantum mechanical result cannot be 
reproduced by the aid of local hidden variables. 

We finish this example with two remarks: 
(1) In order that this example would be taken seriously from the 

physical point of view, it should be possible to deduce the no-go con­
sequence from general fundamental principles without making use of so 
many particular assumptions. 

Moreover if this example is really physically meaningful, one should 
be able to have the same consequences under 'small perturbations' of 
the 'idealistic' notion of local hidden variables. Indeed there exists a 
particular sense in which the idealistic notion of locality is not stable 
under perturbations - and this by itself is a draw-back to the physical 
meaning of the notion of local hidden variables. 

In addition before comparing local-hidden and quantum predictions 
one has to analyze the important related question of correlation-length 
of the separated particles in realistic experiments. 

(2) One can of course check experimentally if it is the quantum pre­
diction which is correct, or the hidden-variable prediction. This point of 
view - taken by some people quite seriously - seems naive to me. 
Quantum mechanics was proved up till now to be very successful (when­
ever applicable). Hidden variables (if they exist) should be physically 
meaningful, able to reproduce all predictions of quantum mechanics, and 
have extra predictions in domains in which quantum mechanics cannot 
solve 'everything' (mildly speaking). 
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F or completeness we present a classical, simple (maybe too simple!) 
example of hidden variables due to BelL Consider a spin t particle 
without translational motion. A quantum mechanical state is here a two­
component spin or "', the observables being represented by exI + ~·a with 
exE IR, ~E 1R 3, I the 2 x 2 identity matrix, a the 'vector' composed of the 
three 2 x 2 Pauli spin matrices. 

Evidently (by diagonalization) the measurement of such observables 
yields one of the eigenvalues ex ± I~I, with relative probabilities calculated 
from <"', (exI + ~. a) "'). We introduce now a real parameter -t~A~t 
and denote the dispersion free states by ("', A). By rotation of coordinates, 

'" can be brought to the form (~), and we suppose that indeed '" has 

this form. Denote ~=(f3x, f3 y , f3z). Now suppose that on the dispersion 
free state ("', A) the measurement of IXI + ~. a gives with certainty the eigen­
value ex+I~1 Sign(AI~I+tlf3zI)SignX, where X=f3z if f3 z=l=O, X=f3x if 
f3z=O and f3x=l=O, X=f3y if f3z=O and f3x=O, SignX=+l if X~O and 
Sign X = - 1 if X < 0. 

Now quantum mechanically we know that 

(1,0) (aI +~·a) G)=a+ f3z • 

A simple calculation shows that this is also true while averaging on the 
parameter A: 

+ 1/2 f dA [IX + I~I· Sign (A I~I + t If3zl) Sign X] = a + f3z· 

-1/2 

Our example - though it is impossible to give here any direct phys­
ical meaning to the hidden variable - is such that hidden variables re­
produce the quantum-mechanical predictions, and that every dispersion­
free state has with accuracy one of the eigenvalues a + I~I or a -I~I. 

We end our article by mentioning the following four remarks: 
(1) Bell's typical example, proving the clash between quantum-mechan­

ics and the local hidden-variables picture, has been made more concrete 
in a note due to E. P. Wigner. 

(2) Ad hoc assumptions similar to those introduced by von Neumann 
in the famous hidden-variables theorem were also supposed in more 
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general demonstrations of this theorem in the framework of axiomatic 
quantum mechanics (Jauch, Piron, Misra, etc .... ). 

(3) Other possible roles (besides a dynamical role and the role to 
'complete' quantum mechanics) can in principle be played by some types 
of hidden variables. We did not discuss this matter in the present note. 

(4) Since quantum fields commute in the Euclidean region, the recently 
developed Euclidean quantum field theory could serve as a possible 
framework to a less naive hidden-variables model. 

To sum up, though personally I do not believe that it is the hidden 
variables direction that will in the future bring the big break-through 
to physics, I still think it is much wiser to look for more physical mode1s 
than for 'no-go' theorems. The reason is that our experience in Science 
shows that 'no-go' theorems are always based on assumptions which -
even in convincing cases like that of Bell's theorem - might still be not 
realized by Nature itself. 

Physique Mathematique, 
Universite de Dijon, and College de France, Paris. 
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ON HIDDEN VARIABLES AND QUANTUM 

MECHANICAL PROBABILITIES* 

ABSTRACT. An argument, due originally to J. S. Bell, is somewhat simplified and made 
more specific. It deals primarily with a quantum mechanical system consisting of the spins 
of two spin-t particles. It shows that a description of the quantum mechanical measure­
ment of the spin components of these two particles by means of hidden parameters is 
impossible if we assume that the parameters determining the outcome of the me .. .surement 
of the spin of each particle are independent of the direction in which we decide to measure 
the spin of the other particle. The mathematical reason for the impossibility is analyzed. 

1. INTRODUCTION 

It has often been suggested that the stochastic nature of the quantum 
mechanical measurement process is not the result of the failure of deter­
minism. Rather, it is suggested, our inability to predict the outcomes of 
quantum mechanical measurements is due to the lack of knowledge of 
the values which some 'hidden parameters' are assuming. The values of 
these hidden parameters (the exact nature of which remains unspecified) 
do uniquely determine the behavior of the system they describe, even 
insofar as measurements .on the system are concerned. However, the 
values of the hidden variables cannot be obtained directly. The quantum 
mechanical state vectors correspond to statistical distributions of these 
variables, not to definite values of them. It is for this reason that they do 
not suffice to determine the outcomes of quantum mechanical measure­
ments. To be sure, the outcome of a measurement on the system narrows 
the range which the hidden variables may have assumed before the 
measurement was undertaken, and hence also sharpens their distribution 
after the measurement. The distribution remains sufficiently unsharp, 
nevertheless, so that the outcomes of some, in fact most, measurements 
are still unforeseeable. 

The preceding paragraph described the theory of hidden variables. 
Objections to this theory were raised by many theorists. Von Neumann, 1 

in particular, pointed to the unreasonably large variety of hidden varia­
bles which must be assumed if one wishes to account for the postulate 
(implicit in quantum mechanical theory) that no matter how many sue-

M. Flalo et af. (eds.) , Quantum Mechanics, Determinism, Causality, and Particles, 33--41. All Rights Reserved. 
Copyright © 1976 by The American Journal of Physics. 
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cessive measurements we undertake on a system, the distribution of the 
hidden variables remains sufficiently unsharp so that the outcomes of 
measurements are as unpredictable as they were to begin with. Von 
Neumann's arguments have been much sharpened by others.2 The present 
article, however, is based on an observation of Bell, which is different 
from Von Neumann's though it leads to the same conclusion. The pur­
pose of the article is to give Bell's observation a simpler, or at least a more 
concrete, form. 

It is rather obvious that, given any quantum mechanical measurement 
represented by the operator Q, one can introduce a 'hidden variable', to 
be denoted by q, so that the statistical distribution of this hidden variable 
reproduces the probabilities for the various possible outcomes A1, A2' ... 
of the measurement of Q. In order to do this, it is only necessary to associ­
ate domains D1, D2, ••• of q with the possible measurement results 
A1, A2 ,. •• and to postulate that the distribution function P", (q) which 
corresponds to the state IjJ attributes a probability to the domain Dv which 
is equal to the probability that the measurement of Q on IjJ yields the 
value Av. 

Furthermore, if one wishes to reproduce, by means of hidden variables, 
the probabilities for the outcomes of several quantum mechanical mea­
surements, represented by operators Q1, Q2, ... one can do this by intro­
ducing a hidden variable qn for each of these measurements. One can then 
postulate that the outcome of the measurement of Qn depends only on 
the value of qn: one associates with each of the possible outcomes A~ of the 
measurement of Qn a domain ~ of the variable qn and postulates that the 
measurement of Qn yields the result A~ if qn is in the domain D~. It yields 
this result no matter what the values of the other variables q are. The 
distribution function P which is then associated with the state vector IjJ is 

(1) 

where P;(qn) is the distribution function which was associated, in the 
preceding paragraph, with the state vector IjJ in such a way that it repro­
duces the probabilities of the possible outcomes of the measurement of 
Qn. Clearly, the definition (1) of P", contains a great deal of arbitrariness. 
The choice of the domains Dn is arbitrary and could, in fact, depend on all 
the variables qm where m ¥- n. Also, at least as long as the spectra of the 
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operators Q are ~iscrete, the number of hidden variables q b q2' ... could 
be greatly reduced, in fact, it could be reduced to 1. 

The preceding discussion considers only single measurements, i.e., 
does not consider successions of observations on a system. However, the 
outcomes of such successions of measurements, as considered for instance 
by Von Neumann,l can also be accounted for by hidden variables. In 
order to do this, one introduces for each succession of observations which 
one wishes to account for, as many hidden variables as are observations 
in the succession. Furthermore, the probabilities for the various values of 
these hidden variables are not independent of each other; there must be 
statistical correlations between them Naturally, the number of hidden 
variables increases enormously when one does this. It is hardly necessary 
to give explicit formulas, analogous to (1); they can be obtained easily. 

2. BELL'S OBSERVATION 3 

Because of the enormous amount of arbitrariness in the association of 
P 1/1 with ljI, it is very surprising that an apparently very small (and very 
natural) restriction on the nature of the hidden variables renders it im­
possible to define a distribution PI/I which gives for certain measurements 
(actually nine measurements) the same probabilities as follow from quan­
tum mechanical theory. 

The system considered by Bell consists of two particles, both with spin 
t; the measurements are the components of these spins in definite direc­
tions. There are three such directions, W 1, W 2, W 3, and the nine measure­
ments which are considered concern: the simultaneous measurements 
of the two spins, the component of one in the Wi' of the other in the W k 

direction. Since the spin component of one spin-t particle in a definite 
direction can assume only two values, +t, and -t (to be abbreviated 
subsequently by + and -), each of the nine measurements can yield four 
results: the two components can be both +, both -, or the first + 
and the second -, or the other way around. The A. of the preceding sec­
tion can each assume only four values, corresponding to these four out­
comes of the measurements. If we introduce nine variables Q1, Q2'···' Q9, 

the P defined in Equation (1) can reproduce any quantum mechanical 
probabilities for the four possible outcomes of each of these nine measure­
ments - in fact, can reproduce any such probabilities, whether or not 
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consistent with quantum mechanics. The intervals defined in the pre­
ceding section subdivide the nine-dimensional space of the q into 49 

domains and the integral of P over one of these domains gives the prob­
ability for one of the four outcomes of one of the nine measurements. No 
contradiction can arise as long as no further postulate is introduced 

Bell does introduce, however, the postulate that the hidden variables 
determine the spin component of the first particle in any of the W direc­
tions and that this component is independent ofthe direction in which the 
spin component of the second particle is measured. Conversely, the values 
of the hidden variables also determine the spin component of the second 
particle in any of the three directions Wi> W2, W3, and this component is 
independent of the direction in which the component of the spin of the 
first particle is measured. These assumptions are very natural since the two 
particles may be well separated spatially so that the apparatus measuring 
the spin of one of them will not influence the measurement carried out on 
the other. Bell calls, therefore, the assumption just introduced the locality 
assumption It means that even though there may be any statistical rela­
tions between the states of the two particles, their spins are not affected 
by the orientation of the apparatus used for measuring the spin com­
ponent of the other. The result of this assumption is, however, that in­
stead of the 49 essentially different domains of the space of the hidden 
variables, we have only 26 essentially different domains. These can be 
characterized by symbols (G"i> G"2' G"3; '[1' '[2, '[3), all G" and '[ assuming two 
possible values: + or -, and the G" referring to the first, the '[ to the second, 
particle. If the hidden variables are, for instance, in the (+ - - ; - + -) 
domain, the measurement of the spin component of the first particle in 
the Wi direction will yield the value + (that is, +t), no matter in which 
direction the spin of the second particle is measured; if the component 
in the W 2 and W3 directions is measured, the result will be -. Similarly, 
the measurement of the spin component of the second particle in the Wi 

direction will give the result -, no matter in which direction the com­
ponent of the spin of the first particle was measured The measurement 
in the W2 direction will give the result +, in the W3 direction -. 

A state for which the quantum mechanical probabilities of the out­
comes of the nine possible measurements of the spin components cannot 
be reproduced, no matter what positive probabilities we attribute to the 
26 domains (G" 1, G" 2, G" 3; '[ 1, '[2, '[3), is the singlet state of the two spins. Let 
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(0"1,0"2,0"3; "1, "2, "3) denote henceforth the probability that the hidden 
parameters assume, for the singlet state of the two spins, a value lying in 
the domain which was denoted by this cymbol In order to calculate the 
quantum mechanical probabilities of the various outcomes of the nine 
possible measurements, let us denote the angles between the three direc­
tions Wb W 2, W3 by 812, 823, 831 (all between 0 and 1lJ The probability 
that the measurement of the spin component of the first particle in the 
Wi direction and the measurement of the spin component of the second 
particle in the Wk direction both give a positive result (or both give a 
negative result) is given by ! sin2!8i k- The probability that the first 
measurement gives a positive, the second a negative, result (or conversely) 
is ! cos2 !8ik- These expressions can be obtained by direct calculation 
They can be derived also by observing that the singlet state is spherically 
symmetric so that the total probability of the first particle's spin being in 
the direction Wi (rather than the opposite direction) is 1- If the measure­
ment of the first particle's Wl component gives a positive result, the 
measurement of this component of the second particle necessarily gives 
a negative result. Hence, the measurement of the spin of this particle in the 
W2 direction gives a positive result with the probability cos2 !8, where 8 
is the angle between the -Wl and the W 2 direction The total probability 
for the positive outcome of both measurements is then! cos2!8= 
=t sin2!812, as given before. The other probabilities can be calculated 
in the same fashion However, as long as the directions Wi satisfy certain 
conditions, these probabilities cannot be reproduced by hidden param­
eters. 

In order to see this, let us observe first that the value of a symbol such 
as (+, 0"2' 0"3; +, "2, "3) = 0 because it represents states for which the 
measurement of both particles' spin components in the W 1 direction is 
positive. For the singlet state specified, the probability of this is zero so 
that the hidden parameters cannot assume values which would give a 
positive spin of both particles in the W 1 direction The same is true for the 
W2 and W3 directions so that the symbols (0"1' 0"2' 0"3;"10 "2' "3)=0 unless 
"1=-0"1' "2=-0"2' "3=-0"3' This, then, leaves eight of the symbols 
finite. 

Let us now calculate the probability that the measurement of the spin 
component of the first particle in the W 1 direction, and that of the second 
in the W3 direction, is positive. This is the sum of 16 terms but only two of 
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them are nonzero: 

=(++-; --+)+(+--; -++)=!sin2t.931. (2) 

The last line gives the quantum mechanical value of the quantity in 
question However, the first term of the second line refers to states which 
give a positive (t)2 component of the spin of the first and also a positive 
(t)3 component of the spin of the second particle. This term is smaller, 
therefore [by the value of ( - + -; + - + )] than! sin2 923. Similarly, the 
second term ofthe second line is smaller [by the value of( + - + ; - + - )] 
than the probability that the measurements of the (t)1 component of the 
first particle's spin, and of the (t)2 component of the second particle's 
spin both give positive values. It is, therefore, smaller than! sin2t.912. 
It follows, therefore, from (1) that the theory of hidden parameters can 
reproduce the quantum mechanical probabilities only if the three direc­
tions (t)1, (t)2, (t)3 in which the spins are measured are so situated that 

(3) 

This inequality 4 is most easily discussed for three coplanar co such that 
CO2 bisects the angle between COl and C03. In this case 912 = 923 =!931 and 
(3) becomes 

(4) 

or cos2 !912~! that is 912 ~!1t, or 931 ~!1t. This is the condition also if 
co2 does not bisect the angle between COl and C03 so that the condition (3) 
is violated whenever the three directions are coplanar. Clearly, (3) may 
be violated even if the directions are not coplanar and we shall see later 
that there are further conditions on the three directions co if the measure­
ment of the projections of the two! spins forming a singlet state is to 
be reproducible by hidden parameters. 

3. SOME MA THEMA TICAL REMARKS 

Mathematically, Bell's conclusion seems surprising. We had, to begin 
with 64 regions in the space of the hidden variables, and only nine es­
sentially different experiments the outcomes of which were to be repro-
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duced by the 64 (or 63) probabilities of the regions. However, the fact that 
the probability of a positive result of the measurement of both spin com­
ponents in the WI direction, for instance, vanishes for the state in ques­
tion of the two spins meant that the sum 

L L (+0"20"3; +<2<3)=0 (5) 
0'20'3 t2t3 

vanishes, and since all 16 terms are nonnegative, all must vanish sepa­
rately. However, (2) and the other similar equations (for the simultaneous 
probabilities of the ±wi, ±wk directions) can still be solved in terms of the 
eight quantities (0"1' 0"2, 0"3; -0"1' -0"2, -0"3)' In fact, one parameter 
remains undeterminate by all these equations. One does obtain, however, 

(+++; ---)+(---; +++)= 

= 1-!(sin2!812 + sin2!823 +sin2!831 ) (6) 

so that the solution in terms of the (0"1,0"2,0"3; -0"1' -0"2' -0"3) will entail 
at least one negative probability if the right side of (6) is negative. One 
also obtains 

(+-+; -+-)+(-+-; +-+)= 

=!(sin2 !812 + sin2!823 -sin2!831) (7) 

and two other equations obtainable from Equation (7) by cyclic inter­
changes of the directions Wi' The condition that the right side of Equa­
tion (7) be positive gives Equation (3) and there are two other inequalities 
obtainable from (3) by cyclic interchanges of the indices 1, 2, 3. Although 
not very important, it may be worth noting that if the right sides of 
Equation (6) and (7) and the expressions obtained from the latter by cyclic 
interchange of the indices are all positive, all probabilities (0"1' 0"2' 0"3; 

- 0" 1, - 0"2' - 0"3) can be chosen to be positive by setting the two terms on 
the left sides of Equations (6) and (7) equal. The positive nature of the four 
expressions given is, therefore, the necessary and sufficient condition for 
the possibility to interpret the spin measurements in the Wi directions on a 
singlet state in terms of hidden variables. 

The conditions (3), and the conditions obtained therefrom by cyclic 
interchanges of the indices, have the form of triangular inequalities for 
three sides sin2!8i k" The condition which derives from (6) gives an upper 
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limit on the circumference ofthe triangle in question Were the sides of the 
triangles sin!9i/O rather than sin2t.9i/O the triangular conditions would be 
valid for all directions Wi. Bell 3 already noted the significance of the 
quadratic dependence of the probabilities on the angles between the 
directions of observation. 

Let us comment, finally, on the role of the particular state, the singlet 
state of two t spins, which was used in the argument presented Let 
0/1,0/20 ... and <Pl, <P2,··· be orthogonal sets of states of two systems. Bell's 
argument, as presented above, can then be applied to all states L ano/ n<Pn 
of the composite system as long as at least two ~ are different from zero. 
It can be applied, in particular, to the states of object plus apparatus 
obtained in ideal quantum mechanical measurements. The example of 
the singlet state of two spins t was used above because the realizability 
of this state and of the measurements used in the argument are difficult 
to question 
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NOTES 

* Reprinted from American Journal of Physics 38 (August 1970), No.8. 
1 The discussion of Von Neumann, most commonly quoted, is that contained in his book 
Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932) and the 
English translation of this, Mathematical Foundations of Quantum Mechanics (Princeton 
U.P., Princeton, N.J., 1955), Secs. IV.! and IV.2. As an old friend of Von Neumann, and 
in order to preserve historical accuracy, the present writer may be permitted the observa­
tion that the proof contained in this book was not the one which was principally responsible 
for Von Neumann's conviction of the inadequacy of hidden variable theories. Rather, 
Von Neumann often discussed the measurement of the spin component of a spin-! particle 
in various directions. Clearly, the probabilities for the two possible outcomes of a single 
such measurement can be easily accounted for by hidden variables (see, e.g., the rest of the 
present section or the more specific discussion on p. 448 of Bell's article, Note 2). However, 
Von Neumann felt that this is not the case for many consecutive measurements of the spin 
component in various different directions. The outcome of the first such measurement 
restricts the range of values which the hidden parameters must have had before that first 
measurement was undertaken. The restriction will be present also after the measurement 
so that the probability distribution of the hidden variables characterizing the spin will be 
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different for particles for which the measurement gave a positive result from that of the 
particles for which the measurement gave a negative result. The range of the hidden vari­
ables will be further restricted in the particles for which a second measurement of the spin 
component, in a different direction, also gave a positive result. A great number of con­
secutive measurements will select particles the hidden variables of which are all so closely 
alike that the spin component has, with a high probability, a definite sign in all directions. 
However, according to quantum mechanical theory, no such state is possible. SchrOdinger 
raised the objection against this argument that the measurement of a spin component in one 
direction, while possibly specifying some hidden variables, may restore a random distribu­
tion of some other hidden variables. It is this writer's impression that Von Neumann did 
not accept Schrodinger's objection. His point was that the objection presupposed hidden 
variables in the apparatus used for the measurement. Von Neumann's argument needs to 
assume only two apparata, with perpendicular magnetic fields, and a succession of measure­
ments alternating between the two apparata. Eventually, even the hidden variables of both 
apparata will be fixed by the outcomes of many subsequent measurements of the spin 
coinponent in their respective directions so that the whole system's hidden variables will 
be fixed. Von Neumann did not publish this apparent refutation of Schrodinger's objec­
tion. 
2 J. M. Jauch and C. Piron, Helv. Phys. Acta 36 (1963),827; S. B. Kochen and E. Specker, 
J. Math. Mech. 17 (1967), 59. D. Warrington, to appear shortly. This last paper, though 
based on Bell's observation (Note 3), shares with Von Neumann's argument the necessity 
to consider a succession of many observations. A rather complete and critical review of the 
earlier literature was given by J. S. Bell, Rev. Mod. Phys. 38 (1966), 447; objections against 
the articles reviewed were articulated also by D. Bohm and J. Bub, Rev. Mod. Phys. 38 
(1966),453. 
3 J. S. Bell, Physics 1 (1965), 195. A more quantitative evaluation of Bell's result, together 
with a proposal for an experimental test, was given by J. F. Clauser, M. A. Home, A. 
Shimony and R. A. Holt, Phys. Rev. Letters 23 (1969), 880, and this writer is indebted to 
these authors for having called his attention to Bell's article. See also D. Warrington, 
Note 2. 
4 It was pointed out by A. Shimony that Bell's inequality easily follows from (3). 
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COSTAS PAPALIOLIOS 

EXPERIMENTAL STATUS OF HIDDEN 

VARIABLE THEORIES 

The founders of quantum mechanics did not all agree that the new theory 
was the most complete possible description of the state of a physical 
system. The idea that the wave function represented a set of probability 
amplitudes which were acausally replaced by a single outcome as a result 
of a 'measurement' was resisted by many, most notably de Broglie and 
Einstein. One of the early attempts to provide a deterministic description 
of the behavior of individual systems by the introduction of new dynam­
ical variables was de Broglie's 1927 "theory of the double solution," [1] 
which he soon abandoned in the face of much skepticism and a seemingly 
convincing proof by von Neumann [2] that no deterministic extension of 
quantum mechanics via the introduction of hidden variables was pos­
sible. A quarter of a century later, however, he re-examined the argu­
ments of the probabilists and found them wanting. In 1953 de Broglie 
wrote [3] 

Von Neumann's proof apparently forbids all interpretations of probability distributions 
in wave mechanics by means of a causal theory with hidden parameters. Now, the theories 
of the double solution and of the pilot wave, though unproved, nevertheless exist, and 
one might well wonder how their existence can be reconciled with von Neumann's theory. 

Had he been writing in 1967, he could have added the work of Bohm and 
Bub [4] and of Wiener and Siegel [5] to the list of constructive hidden 
variables theories, and the theorems of Jauch and Piron [6], Gleason 
[7] and Kochen and Specker [8] to the mounting pile of proofs of the 
impossibility of hidden variables [9]. This apparent paradox was 
resolved by an incisive article by Bell [10], in which he examined the 
class of hidden variable theories ruled out by each proof and showed it 
to be a rather limited subset of all such theories; in particular von 
Neumann and Jauch and Piron required additivity of expectation values 
of non-commuting observables (which happens to be true in quantum 
mechanics but is not a physically justified requirement on an arbitrary 
theory), while Gleason and Kochen and Specker considered only theories 
in which the outcome of a measurement was independent of which com-

M. Flalo et a/. (eds.). Quantum Mechanics. Determinism, Causality, and Particles, 43-59. All Rights Reserved. 
Copyright © 1976 by D. Reidel Publishing Company, Dordrecht·Holland. 
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patible observables were simultaneously measured ('non-contextual 
theories'). Remarkably enough, at the very time when the axiomatic ap­
proach seemed to have reached a dead end, possibilities of experimental 
verification became apparent to several investigators, and it is their 
work which we shall describe in this article. 

1. TEST OF THE BOHM-BUB THEORY 

In addition to reproducing the statistical predictions of quantum me­
chanics, the Bohm-Bub hidden variable theory [4] was constructed to 
give a detailed causal account of the 'reduction of the wavepacket' 
during the measurement process. However, for the short time interval 
immediately following a measurement it makes predictions which differ 
from those of quantum mechanics, and it was this feature which led 
Papaliolios to undertake a simple and direct experimental test [11]. 

According to this theory, a two-state system is described in part by the 
usual quantum mechanical state vector 

(1) 

in which I/! 1 and I/! 2 are complex numbers satisfying the condition 

(2) 

and ja1 ), la2) are basis states in a Hilbert space. (In the experiment they 
are linear polarization eigenstates for an optical photon.) The description 
of the state is completed by specifying 

(3) 

where ~1' ~2' the hidden variables, are complex numbers. The vector I~) 
transforms the same as II/!) but obeys a different equation of motion. In 
equilibrium the hidden variables of an ensemble are distributed uniformly 
over the hypersphere 

(4) 

During a measurement, of sufficiently short duration, the hidden variables 
change negligibly but the dominant time evolution of the I/!i is governed by 

(5) 
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and the same with 1 replaced by 2 for dt/l2/dt; y is a positive number. These 
equations maintain the normalization condition (2), and they predict 
that if It/lil >I~ll then after a short time (for sufficiently large y), 1t/l112-.1 
and 1t/l212-.0, whereas if It/lll<l~ll, 1t/l112-.0 and 1t/l212-.1. Thus, except 
for a set of measure zero (It/1112=1~112~ the quantum state evolves deter­
ministically into either la 1) or la2 ) (apart from a phase factor) depending 
on the values of the hidden variables. With the equilibrium distribution 
given above, the usual quantum mechanical probabilities are reproduced 
Immediately after the measurement, however, those systems which have 
been found to be in lal), say, will no longer have the uniform distribution 
of hidden variables and a subsequent measurement will not yield the 
quantum results. Since this is not observed an additional mechanism 
must be invoked that causes the ~'s to relax toward the equilibrium dis­
tribution. 

I- I > I ' IT -I- ill--

Ib? 

LIGHT 
I DETECTOR ~ 

A B C 
Fig. 1. Experimental arrangement for the test of the Bohm-Bub theory. 

The experimental setup consisted of an incandescent light source, 
three polarizers, and a photomultiplier, arranged as shown in Figure 1. 
Photons from a low intensity lamp (to ensure that only single photons 
are involved in the measurements) are incident upon polarizer A, and 
those which are transmitted have the quantum mechanical polarization 
state 

(6) 

in which the Ib~ are basis states of linear polarization parallel and per­
pendicular to the axis of polarizer B, and nl2 - I> is the angle between the 
axes of A and B. Regardless of the distribution of the hidden variables of 
the photons emerging from A, the separation of the polarizers is so large 



46 STUART 1. FREEDMAN ET AL. 

that we can assume they have relaxed to the uniform distribution by the 
time the photons reach B. In region II, between Band C, the quantum 
state of the photons is 

(7) 

and the hidden variables of those photons that emerge from polarizer B 
must satisfy initially 

(8) 

which can be a very stringent requirement on the possible values of the 
hidden variables if 8 is made sufficiently small, though the light available 
to the detector is thereby reduced This shows very clearly how polarizer 
B selects photons according to their usual quantum states also selects 
them according to their hidden variables since these variables playa role 
in the act of measurement. 

The third polarizer C has its axis at f} relative to that of B; thus the basis 
states Ib;) can be written 

Ib1) = cos f} Ic1) - sinf} Ic2) 

Ib2) = sin f} Ic 1) + cos f} Ic2). 

t/I~) = cos f}t/I~) + sinf} t/I~) =cos f}, 

(9) 

(10) 

while the hidden variables, which transform by the same unitary trans­
formation, are related by 

~~) = cos f} ~~) + sin f} ~~) . (11) 

In order for a photon to be transmitted by polarizer C it must have 

It/I~)I > I~~)I· (12) 

Using (41 (10) and (11) we obtain 1 

1-tan2 f) I~~)I 
f} > ):(b) cosO!:, 

2 tan '02 
(13) 
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where IX is the phase angle between ~\b) and ~~). Now since 

I ~~)I ~l:::;tane, COSIX:S:; 1, 

a photon will certainly be transmitted if 

I-tan2 0 
2 >tane, 

tan 0 

or equivalently 

(14) 

(15) 

(16) 

Hence the photon gets through if 0<0<n/4-e/2~ a similar argument 
shows that the photon is definitely rejected if n/4 + e/2 < 0 < n/2. This 
prediction is of course in conflict with the cos2 0 transmission probability 
given by quantum mechanics (Malus' Law). In this experiment e= 10°, 
so the Bohm-Bub theory predicts certain transmission for 0<0<40° and 
certain rejection for 50° < 0 < 90°. The experiment verified the quantum 
prediction; thus the relaxation time for the hidden variables had to be 
shorter than the transit time for light from the front surface of B to the 
front surface of C. (It can be shown [11] that 90% of the photons interact 
in the first 3 x 10-4 em of the Polaroid HN-32.) Since the B polarizer was 
only 15 x 10-4 em thick, an upper limit of 1.9 x 10- 14 2 sec was set on the 
relaxation time. By equating 

1:~h/kT, (17) 

Bohm and Bub estimate1:~ 10- 13 s for room temperature, but there is no 
theoretical justification for this estimate. Thus, although this experiment 
weakens the position of the Bohm-Bub theory it does not rule it out al­
together. We note that a non-zero relaxation time 1: is essential for a test­
able Bohm-Bub theory. As the upper limit is reduced it becomes more 
difficult to invent a believable physical process that might be responsible 
for it The experiment has never been repeated; it is obviously worthwhile 
to corroborate and improve these results. 

2. TEST OF LOCAL HIDDEN VARIABLE THEORIES 

As Belinfante [12] has emphasized, much of the impetus for introducing 
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hidden variables has come from physicists who were dissatisfied not 
merely with the indeterminism of quantum mechanics but also with its 
apparent non-locality. In considering measurements on spatially sep­
arated parts of a system, one must according to the Copenhagen Inter­
pretation suppose that a measurement of one subsystem 'reduces' the 
state vector of the entire system Thus, although there is in fact no viola­
tion of locality, one is left with the uneasy feeling that a measurement in 
one region has instantaneously changed 'something' about a far-off 
region, even if that something is only our knowledge of the state of the 
distant region It was this fundamental problem that led Einstein, 
Podolsky, and Rosen (EPR) [13J to invent their well-known 'paradox', 
and which later suggested to Bell [14J an ingenious way to distinguish 
some of the predictions of all local deterministic hidden variable theories 
from those of quantum mechanics. 

The original EPR analysis was intended to show that quantum me­
chanics is an incomplete theory. It has since become traditional to re­
phrase their discussion by introducing a version of the mathematically 
simpler gedankenexperiment suggested by Bohm and Aharonov [15]. 
Consider, for example, a system consisting of two photons moving in 
opposite directions (the +z and -z directions), for which the spin part 
of the wave function is 3 

1 
It/!) = j2[IX)1IX)2 -IY)1IY)2J (18) 

where IX)i is the eigenstate of photon i with linear polarization along the 
x-axis and IX)i is the state along the y-axis. This type of state, which can­
not be written in product form, is produced in atomic cascades and in 
positronium annihilation, for example. 

EPR noted that if one determines that the polarization of photon 1 
is along the x- or y-axis then one can predict with certainty that the other 
photon will be found to have a polarization along the same axis, yet 
clearly a measurement of photon 1 cannot physically disturb photon 2 
Now the basis states in which It/!) is expressed are arbitrary; it can also be 
written in terms of rotated x'- and y'-axes. Again a measurement of the 
polarization of photon 1 with respect to a primed axis allows one to 
predict the polarization of photon 2 along the same axis. Yet the specifica­
tion of the polarization of photon 2 in both the unrotated and rotated 
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frames is more than is allowed by quantum mechanics, since these ob­
servables do not in general commute. The conclusion drawn by EPR 
was that since we can predict the polarization of photon 2 with respect 
to any axis without disturbing it, the result of a polarization measurement 
in any direction must have been determined beforehand; this much infor­
mation is not, however, contained in the quantum mechanical wave­
function and thus quantum mechanics is incomplete. There have been 
numerous replies to this argument; Bohr's [16] is probably the best 
known. Nevertheless it is fair to say that many physicists are still not 
satisfied that the questions raised by the EPR paradox have been con­
clusively answered. 

Bell realized that EPR had done more than identity the feature of 
quantum mechanics most objectionable to one's intuition He saw that 
the long range correlations made possible by the non-factorable form of 
11/1> in (18) might well exceed any that were possible in a theory in which 
the state of each photon could be described completely. His re-examina­
tion of the EPR paradox led in fact to the remarkable discovery that an 
upper bound could be set to the strength of the correlation allowed by any 
deterministic hidden variable theory that satisfies a natural condition 
of 'locality'. In certain situations the statistical predictions of quantum 
mechanics violate Bell's inequality; thus it is not possible to escape from 
the EPR paradox by introducing hidden variables unless one is prepared 
to say that quantum mechanics is incorrect [17]. 

In order to make clear the crucial assumption of locality we describe 
Bell's method of proving his inequality. Polarization measurements on 
photon 1 are associated with a deterministic function A{a, A), in which a 
represents the parameters of the measuring device (in this case the orien­
tation of the polarizer) and A represents the postulated hidden variables 
which give sufficient information to determine the results of all measure­
ments that might be made on that photon. A {a, A) takes on values corre­
sponding to the results of a measurement: we take - 1 for transmission 
of the photon in the ordinary ray and + 1 in the extraordinary ray. 
Similarly, we associate B{b, A) with photon 2 To describe an ensemble of 
experiments we define a measure on the hidden variables phase space 
represented by a positive function PII/t) (A), satisfying 

f PII/t) (A) dA = 1, (19) 

r 
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where r is the hidden variable space. The subscript on P reminds us that 
this distribution will correspond to the quantum mechanical ensemble 
described by the state 11/1>. To describe correlated measurements we con­
struct the correlation function D(a, b): 

D(a, b)= f PloJt) (A) A(a, A) B(b, A) dA (20) 

r 

which is the hidden variables analog of the quantum expectation value. 
The form of the correlation function given by (20) incorporates the essen­
tial assumption of locality: the function describing the product of two 
polarization measurements at widely separated locations has been written 
as the product of a function A (a, A) for photon 1 which is independent 
of b, the disposition of the measuring apparatus for photon 2, times a 
function B(b, A) which is independent of a. 

With the above expression for D(a, b) and the previously defined 
properties of PloJt)(A1 A(a, A) and B(b, A~ it can be shown [IS] that the 
following inequality must be obeyed by the correlation function:4 

-2~D(a, b)-D(a, c)+D(d, c)+D(d, b)~2. (21) 

The quantum mechanical expectation value is given by 

(22) 

where (}1 (a) is the quantum observable for a polarization measurement 
of the photon in the a direction, and similarly for (}2 (6). If we take in 
particular the state 11/1> from (IS) and assume perfect polarizers, then the 
quantum prediction is 

E(a, b) = E(c/» = cos2c/> 

where 
c/> =cos- 1 (a· b). 

Choosing the directions a, 6, c, d such that 

we find 

cos -1 (a' b) = cos -1 (d' c)= cos -1 (d' b)= rr:/s, 

cos- 1 (a·c)= 3rr:/S, 

E(a, b)-E(a, c) + E(d, c)+E(d, b)=2)2. 

(23) 

(24) 

(25) 

(26) 
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Hence the restriction by Bell's inequality, (21), makes it impossible for 
the hidden variables correlation to equal the quantum mechanical pre­
diction, no matter what PI"'> (A.) we choose. 

For the idealized correlation considered so far (and for the experi­
ments to be discussed) it is reasonable to assume that D(ii, b) depends 
only on the angle ¢ between ii and b. 5 Then using the notation D(¢)= 
=D(ii, b) we can obtain a special consequence of inequality (21) that will 
be useful in the subsequent discussion We simply note that the angles 
chosen in the previous example are in fact the angles for which quantum 
mechanics predicts a maximum violation of the righthand side of in­
equality (21). Furthermore, the maximum violation of the lefthand side 
occurs when cos-1(a,'b)=cos- 1(a'c)=cos- 1(a'b)=3n/8 and cos-1(a·c) 
= 9n/8. Since the physical angles between the polarizer axes are equiva­
lent modulo n, we combine the resulting inequalities, obtaining the more 
convenient inequality 

ID(n/8)- D(3n/8)1 ~ 1, (26) 

for a local hidden variable theory. 
Ineq. (26) is also violated by the quantum mechanical prediction for the 

polarization correlation arising from the quantum state 
1 

11/1)= fiOX)lIY)l +IY)2Ix)2)' (27) 

for which E(¢)=sin2¢. 

3. EXPERIMENTS 

The consequences of Bell's argument were analyzed from an experi­
mental point of view by Clauser, Horne, Shimony, and Holt [18, 19] in 
1969 and 1970. They concluded there was insufficient evidence that the 
restrictions imposed by a local hidden variable theory were, in fact, 
violated by nature, suggesting, however, that more conclusive experi­
ments were possible. For a decisive experiment, the quantum predictions 
for the quantities actually measured must directly violate the local 
hidden variable restriction Following this suggestion, experiments were 
carried out by Freedman and Clauser [23, 24] and by Holt and Pipkin 
[25,26]' 
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Both experiments investigate the linear polarization correlation of 
photons emitted from an atomic cascade. In each case decaying atoms 
are viewed by two symmetrically placed optical systems each containing 
lenses, an interference filter, a linear polarizer, and a photomultiplier 
capable of single photon counting. Coincidence counting techniques are 
used to insure that a particular two photon system originated from the 
same decaying atom The experiments, then, consist of measuring coin­
cidence count rates under various polarizer orientations (including 
polarizer removed). 

In a real polarizer some photons are lost by absorption or scattering 
and thus not transmitted in either the ordinary or extraordinary ray. The 
argument leading to inequality (21), however, merely relies on the dichot­
omic nature ofthe measurements. We therefore interpret + 1 (i.e. A (6, A) = 
= + 1 or B(b, A}= + I} to mean transmission of the photon and -1 to 
mean non-transmission, and the local hidden variable restriction will 
still apply to real experiments without additional assumptions. 

If all photons incident on a detector were counted the correlation func­
tion would be related to the experimental coincidence rates by the equa­
tion: 

(28) 

where R(c/>} is the coincidence rate for two photon detection with polar­
izers inserted at relative angle C/>, Rl (R2) is the coincidence rate with 
polarizer 1(2} inserted and 2(1} removed,6 and Ro is the coincidence rate 
with both polarizers removed However, since the detectors used in these 
experiments were not perfectly efficient (the efficiencies were in all cases 
less than 30%) an additional assumption must be made in order to employ 
Equation (28~ Stated more strongly than necessary, we assume that the 
probability of detection of a photon is independent of whether or not it 
has passed through a polarizer. 7 

Using Equation (28) inequality (26) can be written in the form, 

b=IR(31t/8) R(1t/8}1_*~0. 
Ro Ro 

(29) 

Freedman and Clauser utilized a lS0~lPl~lS0 (Figure 2) cascade 
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in atomic calcium to produce correlated two-photon systems. The calcium 
was formed in a beam which intersected the light from a filtered deuterium 
arc lamp. Calcium atoms were excited to the 3d4p e p 1) state by resonance 
absorption of light at 2275 A.. Some of the excited atoms decayed to the 

_-------=~J-~3d4p I~ 
----~=-------- / I 

/ 
I 

/ 
I 

I 
/ 

.Fig. 2. Partial Grotrian diagram of atomic calcium. 

4p2 e So) state and then cascaded to the ground state with the emission of 
two photons at 5513 A (Y1) and 4227 A (Y2~ Figure 3 shows the experi­
mental geometry. 

In the ideal case where photons Y1 and Y2 travel in opposite directions 
the two-photon state is represented in quantum mechanics by Equation 
(18~ For this experiment quantum mechanics predicts the ratio of 
R(</>}/Ro to be: [18, 19,23] 

R(</>}/Ro =*(e1 + e!) (eit + e;,) + 
+*(e1-e!) (eit-e;,) Fd</» cos2</>, (30) 
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where Bk{e:,,) is the transmittance of the ith polarizer for light polarized 
parallel (perpendicular) to the polarizer axis, and F 1 (tI) is a function of the 
half-angle tI ofthe detector solid angles. (This angle was the same for both 
detectors.) Fdtl) represents a depolarization due to non-collinearity of 
the two photons, and approaches unity for infinitesimal detector solid 

j,ca.OVEN 
LENS LENS 

~
1----_---tFILTj:R 2 , FILTER I ~ 

POLARIZER 2 ®;/ ~Q~ POLARIZER I 

... / ILENS =--------l 
LENS / c:PFILTER 

PH.A. 

/ <t>LENS 
! *D2ARC 

COINC 

COINC. f-----' 

TAG. 

Fig. 3. The experimental arrangement for the calcium experiment. The mercury experi­
ment is similar except for the light source and polarizers. 

angles. {For this experiment tI;:dO°, and F 1 (300)~.99.) 

Substituting the quantum predictions into the equation for b (Equation 
(29)) we find: 

bQM = ~(Bkt-B~) (B~-B;') Fl {tI)-t. (31) 
2J2 

The condition for a decisive experiment, bQM > 0, is thus seen to place 
restrictions on the polarizer transmittances and the detector solid angles. 

Using measured polarizer transmittances [23] and detector solid 
angles the quantum prediction for this experiment is 

bQM =·051. (32) 

The measured value of b, 

b =.050±.OO8 (33) 

is in excellent agreement with the above prediction and violates inequality 
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(29) by more than six standard deviations. Furthermore, R(cfJ)jRo was 
measured for eleven angles between 0° and 90° (Figure 4); these results 
were all consistent with quantum mechanics. Thus, this experiment 
provides strong evidence against local hidden variable theories. 

Holt and Pipkin and [25, 26] utilized the 9 1 P 1 -+ 7 3 S 1 -+6 3 Po cascade 
in 198Hg (Figure 5} Isotopically pure mercury was contained in a pyrex 
celL and atoms were excited to the initial state of the cascade by electron 
excitation. The quantum state for the 5676 A (Y1) and the 4047 A (Y2) 

.5~------------------------~ 

.4 

o .3 
0::: 

..-.. 

0::: .2 

.1 0-1-0 ATOMIC CASCADE 
IN 40Ca 

45 
cp 

90 

Fig. 4. Polarization correlation of photons from the calcium cascade. The solid line is 
predicted from Equation (30) with the measured polarizer transmittance and solid angles. 
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photons in the ideal case of opposite and collinear emission is given by 
Equation (27~ 

The quantum prediction for R(r/J)/Ro is: [18, 19,25] 

R~:) =(B1+B;') (B1+B~)-1(B1-B;') (B1-B~) F2(O)cos2r/J, 

(34) 

where Bit- and e;,. are defined as before but F 2 (0) is a more rapidly falling 
function of the detector solid angle. Using the measured polarizer trans­
mittances [25] and experimental solid angle (0:::::: 130 and F2(13°)::::::.95~ 
the quantum mechanical prediction for (j is: 
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Fig. 5. Partial Grotrian diagram of atomic mercury. 

(35) 
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However, the experimental values of R(n/8}/Ro and R(3n/8}/Ro yielded 

<5=.034±.013. (36) 

This value satisfies the hidden variable restriction (<5 ~ O) and moreover 
is nearly four standard deviations from the quantum mechanical pre­
diction. 

Neither Holt and Pipkin nor other experimenters have been able to 
find systematic errors sufficient to explain this result However, it is 
generally agreed that nearly all possible systematic errors would tend to 
wash out the quantum mechanical polarization correlation, and Holt 
and Pipkin remain cautious about the correctness of their findings. 

Other evidence on this question comes from experiments measuring 
the polarization correlation of annihilation photons from positrons 
stopped in matter [27-35]. It can be shown from angular momentum 
and parity considerations that the two-photon quantum state in the ideal 
case of collinear photons is given by (27~ Unfortunately, the Compton 
polarimeters which must be used in practice are so imperfect that no test 
of Bell's inequality is possible [19] unless further assumptions are made 
about the behavior of photons in the polarizers. [34] However, agreement 
with quantum mechanics does somewhat weaken the position of local 
hidden variable theories. Most of the results, except for some early dis­
crepancies, are in accord with quantum mechanics; however, the most 
recent experiment [35] seems to disagree with quantum mechanics and 
to lie just on the border of the hidden variable limit Furthermore, the 
data vary with the distance between source and polarizers. The conclu­
sions of this work should be contrasted with those of the comprehensive 
experiments of Kasday et aL [34] and of Langhoff [33]. 

We note, in conclusion, that the problem of the validity oflocal hidden 
variable theories rests with the experimentalists. New experiments are in 
progress or are being planned by several groups and we can hope for a 
solution in the near future. It is fair to say that the existing evidence still 
favors quantum mechanics; nevertheless, the question is of fundamental 
importance and there is too much at stake to allow any experimental dis­
crepancy to remain unexplained 

Princeton University 
Brown University 
Harvard University 
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NOTES 

1 Note that Ref. [II] incorrectly has 4 in the denominator of the left-hand side. 
2 The experimental verification of Malus' law, that the intensity in region III varies as 
cos2 0, was performed in steps of 10° for 0<0<90°. The descrepancy between the observed 
curve and that predicted by Bohm-Bub is greatest at the measured angles 0=40°, 50°. 
If we assume that the Bohm-Bub result at these angles decayed exponentially in time to 
within three times the measurement error we obtain a limit on the relaxation time, given by 

e- rj, sin 2 (40°)";; 3 x (0.01) 

where, is the time between the photon's interaction with polarizers Band C, and is 
5 x 10- 14 s. This results in a relaxation time,,,;; 1.9 X 10- 14 s. This limit is smaller than 
the limit quoted in Ref. 11 (2.4 x 10- 14 s). The reanalysis accounts for the factor of 2 error 
in the equation corresponding to Equation (16). 
3 Note that we are using separate right-handed coordinate systems for the two photons. 
4 This form of the restricted is more general than Bell's original. The right-hand inequality 
was first derived in Ref. [18]. Various proofs are described in Refs. [19-23J. 
5 Although this assumption is not required by a local hidden variable theory, a theory 
that did not satisfy this condition would immediately disagree with quantum mechanics. 
In any case the assumption is experimentally testable. (Ref. [23]). 
6 RI and R2 are assumed to be independent of angle. Again, a theory which did not 
satisfy this condition would immediately disagree with quantum mechanics and further­
more it is a testable assumption. (Ref. [23]). 
7 In fact a very special dependence is required to convert a local hidden variable correla­
tion emerging from the polarizers into one consistent with quantum mechanics. Never­
theless, since this assumption is not testable dedicated advocates of local hidden variables 
could argue that these experiments are not 'completely' decisive. However, there are 
more serious problems at the level of present experiments. 
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JEAN GREA 

PRE-QU ANTUM MECHANICS. INTRODUCTION TO 

MODELS WITH HIDDEN VARIABLES 

ABsTRACT. Within the context of formalisms of hidden variable type, we consider the 
models used to describe mechanical systems before the introduction of the quantum 
model. We give an account of the characteristics of the theoretical models and their 
relationships with experimental methodology. We then study in succession the models of 
analytical, pre-ergodic, ergodic, stochastic, statistical and thermodynamic mechanics. At 
each stage, the physical hypothesis is enunciated by postulate corresponding to the type of 
description of the reality of the model. Starting from this postulate, the physical proposi­
tions which are meaningful for the model under consideration are defined and their logical 
structure is indicated. It is then found that on passing from one level of description to 
another, we can obtain successively Boolean lattices embedded in lattices of continuous geo­
metric type, which are themselves embedded in Boolean lattices. It is therefore possible to 
envisage a more detailed description than that given by the quantum lattice, and to con­
struct it by analogy. 

1. INTRODUCTION 

The establishment of a model is a fundamental step taken by the physicist 
in the comprehension of reality. The methodological axiom sustaining 
this step is that any model is a stage in technique and its only purpose is to 
be dismantled [5]. Since its origin and up to its axiomatic formulation, the 
quantum model has shown itself in one feature as irreducible to the pre­
vious models (classical, statistical, thermodynamic, etc .... ) and incom­
patible with any extension of a 'complete' model (in the Einstein sense). 

The aim of this work is to examine the series of pre-quantum models in 
order to indicate the conditions under which they describe physical 
systems and the mathematical expression of these conditions. On this 
occasion we will see that the principle of existence of 'hidden variables' is 
not recent, and that its formulation is exhibited by a limited number of 
structures. Starting from these we ~visage different possibilities for 
the 'hidden variables' of a quantum model. 

In our examination of each of these models, we will attempt to give a 
precise formal expression of the set of propositions linked with it and to 
define the isomorphism linking it with the set of experimental proposi­
tions which corresponds to it. 

The order of increasing restrictions imposed on the experimental 

M. Fiala et aJ. (eds.). Quantum Mechanics, Determinism, Causality, and Particles, 61-103. All Rights Reserved. 
Copyright © 1976 by D. Reidel Publishing Company. Dordrecht·Holiand. 
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conditions will lead us to consider in tum the analytical model, the 
ergodic, stochastic statistic and then the thermodynamic models. 

2. RATIONAL NON-RELATIVISTIC MECHANICS AS A MODEL 

A. Definition 

This model consists of the isolation of a part D of reality with regard to 
certain a priori forms of our perception. By universal agreement, we allow 
to each concrete realization of these forms, numbers which will be the 
coordinates x.(v= 1, N + 1) of the realization. The whole set of possible 
coordinates generates a manifold M, starting from which the formal study 
of the system and of its evolution are assumed possible [1,28] and 
unambiguous within D. 

First Postulate of the Model: Stability for Direct Composition 

If x.( v = 1, N 1) and y" (J.l. = 1, N) are the coordinated associated respec­
tively with the system S1 and S2 concerned with the modeL there exists a 
set of co-ordinates (xV' Yl') associated with a system denoted by S1 U S2 for 
which the model is valid Conversely, if S is associated with {Zk} and {xv} 
is a sub-set of {Zk} associated with S1 by the model, there exists S2 with 

S=S1 VS2 and {YI'} with {Zk} = {xv}®{YI'}. 

Second Postulate: the Equation of Evolution 

Within D the evolution of the system is associated with a group of M 
automorphisrns with one parameter: V/" Locally on M, with the chart 
{(!), xv}, this evolution is then written by n-upple 

xvE(!) eM, v=1, n; dX. ( ) --=X. x, t, (X , 

dt 
(1) 

where the Xv are real uniformly continuous functions in the open region 
(!) and with respect to (X where (X represents a set of parameters which are 
essential and associated with the physical constants of the system The 
Xv are the Lie generators of V t on (!). 

Third Postulate: T-Invariance 

Since the system is closed, the description is invariant by reversal for the 
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motion. There exists an involution Ton M where: 

TTP=P, 

where P is any point whatsoever of M, where 

x{P)=x. 

TU t = U -tT. 
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(2) 

There are two consequences. The model defines an order of refinement 
of the description by the first postulate. A description is more refined if 
it connects a manifold with a larger range of dimension, that is if the num­
ber of 'constituents' and hence interactions for a given systems, increases. 

The notion of the state of the system is a derived notions. Since the 
fundamental data is the a priori forms and the physical constants, known 
as the fundamental magnitudes of the system, the state is associated with 
a set of values of these magnitudes. 

The fact of isolating the system within D is denoted by {X.} which is 
usually called the model of the system 

B. Formalisms 

(a) Newton's formalism. Systems are made up of points. The X. do not 
explicitly depend on the time. 

Resolution of{l) leads to the solution (6, d) 

x=x{x,i,t), where x=x{x,i,i) 

Reversibility is written simply as x = X{x, t, i~ The description is then 
given"by the N first integrals x{s, t, i). 

Two systems will be equivalent for (I) if there exists a diffeomorphism 
between their manifold which associate the system of generators of the 
first with the second. 

(b) Euler's formalism. The existence oflinks leads to systems of generalized 
co-ordinates and the well-known equations: 

d (aT) aT 0 

dt aqi - aqi = Qi{qiqit ) with T=tIgiAiqj (i,j=l,n). 

(3) 
Since the co-ordinates are no longer directly defined by observation it is 
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essential to characterise the equivalence of two descriptions, that is the 
identification for this model of two systems. 

It is shown that if: 

d (a!!T) a!!T - -. --=Di(l]il];t) where 
dt al]i al]i 

(4) 

describes the same system as (3), then: 

and there exists a bijective transform I] = <P (q) enabling us to pass from one 
description to the other. 

The change!!T --7!!T 0 <p =!!T* enables us to express (4) in the q frame and 
by identification: 

which are differential equations of first order in g /-Iv and Y /-Iv where 

gp,,[q(o)] =Yp" [q(o)]. 

The converse is clear 

(5) 

The model therefore associates in a unique manner with the physical 
system, the n + 1 dimensional manifold, a chart of which is (qi' 4;, t) up to 
the <p equivalence. 

(c) Lagrange-Hamilton formalism We restrict ourselves to the class of 
interactions which make a perfect differential d W for fixed t of the Pfaff 
form: 

n 

1td= L Xv(g, t) dqv=dW. (6) 
v= 1 

The interactions are derived from a potential This fact introduces a local 
property of the system, that of kinetic reversibility. The model gives a 
local description of quasi-static system. 

The equations of motion are obtained in a well-known manner 

df 
L= T + W +- (q) Euler's equations 

dt 
(7) 
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and in the change of variables: qi=qi(P), Pi(t)=oL/oqi where i= 1, n for a 
non-zero Hessian of L: 

L1 = 102L/oqiOq);60 

V = (Vp,H, - Vq,H) Hamilton's equations 

which are the Pfaff equations associated with: 
n 

Wd= L Pi dqi-H dt. 
i 

(8) 

(9) 

With the same aim as before, we must give an equivalence relationship 
concerning the different descriptions of the same system or concerning 
the identification of two systems by the model. 

It is well known that (q, p, H, t) '" (Q, P, H, T) if there exists a function 
G(q, P, H, t) where: 

bWd-dwd=O-L Pi dqi- H dt-L Pi dQi+K dt=dG. (10) 

These transforms do not apply to functions explicitly dependent on 
time. If we wish to conserve the separation (p, q)® t in the equivalence, 
we limit ourselves either to contact transform with Pfaff equations 
associated with w~= L Pi dq;, or with infinitesimal transforms of the first 
type. In all cases, these transforms conserve Poisson's relationship: 

n (0 0 0 0) 
(, )= i~l oq/ OPi - op/ oq .. 

A practical form of the equivalence transforms for the Hamilton model is 
that which is given by 

~ts~=ss 

oZ 
~=­oz 

( 0 - on) z=.(q, p) 
where S= on 0 Z=.(Q, P) 

(11) 

The ~ then provide a representation with 2n dimensions of the sym­
pletic group, on r=(p, q). 

In conclusion, all the models considered associate with the physical 
system a compact part M of a manifold of a space r known as 'phase 
spaces'. The state is defined by a point of M x IRt ; the evolution of the 
system is provided by the group of transforms defined in (1), (3~ (4),{7) and 
(8) which belong by definition to the equivalence transforms. 
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3. EXPERIMENTAL PROPOSITIONS 

In the exchange of information between the theorist and the experimenter, 
the latter makes use of a certain number of propositions .!t' c relative to a 
set tff of measuring equipment and [f' of physical systems considered. The 
propositions have truth values which are: 

- independent of the models, 
- independent of time although tff and [f' do depend on time (time is 

here taken to mean epoch). 
Finally the collection of propositions .!t' c forms a sub-group of a set .!t' 

which is finite at most. 
So as to examine more closely the structure of these proposition [28], 

let us characteristise a measuring device. 

(a) The Measuring Equipment dEtff 

This is by definition associated with an observable quantity A of at least 
[f" ~ [f' The possible values belong to a compact set ~d c ~ of real 
numbers. The sensitivity is associated with AaE£i(~~ the Borel of ~. 
It is the absolute value of Aa written IAal. Then: for a given d, 3 {a;} 
where i= 1,2,3, ... , n, a;E~ and: 

n 

U Aa;=~d Aa;=[a;-Aa, a;+Aa] Aa;nAaj =0; Vi#j 
; 

that is: there is a scale of measurement associated with each equipment. 
If E = Ui= 1 Aa;, the experimental proposition (the value of the observ­

able quantity A lies within E of the scale) is written Qt. More precisely 
we have a class of equivalence of measuring equipments written d. Two 
equipments are equivalent if there exists an isomorphism over the range 
of their questions. For a single magnitude, two equipments of different 
precisions are not equivalent The order relationship: 

(1) 

the significance of which is evident, impresses on the set Qt a structure of 
upper-half lattice [39a] with bound ~ = QR' .... and a lower bound Q1 = o. 
The involution: 

(2) 
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is a semi-complementation The atoms are the Q:t". We pass to the lattice 
structure by At n Q1 =(Qt u Q1). The set of Q1 is then a complete 
atomic Boolean lattice. 

The experimental observable A is then a O"-homorphism of .?4(IR.of) on 
2 .of. 

Note. For one and the same observable quantity A let us consider the finite 
set of equipments J:1AIRA, ilia) of differing degrees of precision. The set of 
Qk . is then a lattice, 2 A with the same bounds as those of 2 A and, 

n,l I 

Vi, 2 Ai is a sub-lattice of 2 A. 2 A is atomic-orthocomplemented, non 
modular, and of finite length. The notion of an observable quantity is 
linked with the equivalence class on the 2.of, by 

(3) 

2 A is usually considered as a Boolean lattice of the observable events. We 
can in particular obtain this result by again taking the related lattice to 
have the greatest sensitivity, or by limiting ourselves to one single sub­
lattice 2.of, * (p. 101). 

(b) 9"= {L}. The Systems 

L corresponds experimentally to an object isolated by a set of expe­
rimental arrangements, each process being necessarily reproducible. L is a 
class of equivalence of such processes. The elements of the class O"EL are 
realizations of the system. For each L there exists a sub-set Fxc.rff such 
that for all diEFx we have: 

(0", Qt,)~ {a, 1 } 'IE C.IRA 

Fx= {di , VO"EL, (O"Q ~~;,)= I}. 
(4) 

The equivalence class Fx with respect to (3) is known as the set of experi­
mentally observable quantities of L, written (!)x. 

We define the lattice 2x of experimental propositions relative to L 
as the free product [37b] of the 2 A, for AiE (!)x. 2 x is generated by union 
and intersection of all the n-uples [Q1~.J i= 1, N, AiE(!)x, Emi#0. 2x is . 
boolean 0" complete and atomic. The atoms are propositions of type: 

(6) 
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For all Ai of f!Jx, 2 A, is ortho-isomorphic with a sub-lattice of 2 x. The 
surjective homomorphism of 2 x on 2 Aj will be written as tlJ j 

(7) 

By construction, all the experimental propositions concerning L are 
contained in 2 x. 

(c) SE= {s} Set of States of L 
Experimentally, at each realization (TEL, the measurements of the AiEf!Jx 
provide one single result which has no physical significance. Repro­
ducibility therefore plays an integral part in the definition of the realiza­
tions of a system 

Out of a set of such realizations (called a 'physical experiment') we 
can give a coherent definition of a statistic [14] based on the frequencies 
of the results obtained If the set of experimental conditions is defined in 
such a manner that this statistic is reproducible, we say that the system L 
has been produced experimentally in a state s which is well defined; sis 
thus associated with an equivalence class of (TEL. 

if 

By the definition of a statistic we have: 

o ~ s . Ql~:l ~ 1 

s'O=O 

s· [VQ(Ail] = L [s' Q(Atl] (Ell . (Ell 
i ' 

s is an isotonic measure of probability on 2x: 

s E S x: Ql~:1 ~ Ql~111-+ s . Ql~:1 ~ s . Ql~11 

(8) 

(9) 

and s· tlJ j is an isotonic measure of probability on 2 Aj Vj with tlJ j defined 
in (7). 

(d) The Physical Propositions of L 
The elements are those of 2 x on which new order relations have been 
established by experiment, compatible with those of 2 x and called 
'experimental laws'. The elements concerned are called [13] 'elements of 
reality'. If a law is denoted by p, then: 
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For all realizations 0' of S we have the above implication and the Q~~ are 
n 

elements of realities. 

DEFINITION. We say that Q~i implies Q~kk weakly if there exists SESx 
'J n 

for which the correlation coefficient p(Q~:i' Q~~J= 1 for the statistic 
defined by s. Clearly a strong implication implies II weak implication. 

The reduction of If x by the laws p is the lattice of physical propositions 
of 1: or the experimental model of 1: written Lx. 

4. COMPLETE TOTAL PHYSICAL THEOR Y 

The structure of Lx is in general very complex [23]. What we wish to 
show is that the aim of the physicist is to obtain a Boolean lattice, or to 
obtain a theory with maximum predictive power. For this purpose we 
express within Lx two characteristics defining all experimental projects: 

1. 

2. 
3cELx a' /\b=c and cva=b. 

a= V (Xi; Vi, (Xi>-O where Wa={(Xi~a}. 
COa 

1. Means that any phenomenon which is a consequence of a, but is 
reproducible independently of a is a consequence of a factor c of Lx 
independent of a, maximum in the sense that we have sb = 1 ~sa = 1 or 
sc= 1, we have the Boolean lattice. 

D 

a' 

a b' 

0 
Fig. I. 

An equivalent formulation [35] is a a<b, a' /\ b=O~a=b. 
Two experimental propositions are identical if one implies the other 

and the other never takes place without the first one taking place (we take 
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the quotient of Lx by the equivalence relationship: 

a<b and a' /\ b=O (b' <a') b-a. 

2. Means that within the framework @x (that is a given time) the descrip­
tion is complete, or every proposition is implied by a defined sub-set of 
elementary propositions (atomic). 

We will further suppose that there exists PxeSx where: 

"Is' ESx, 3 {..liE IR} and 3 {S;EPx}; 

VaE@x, L AiSi(a) = s'(a) L Ai· 
i i 

Two cases now arise: 
(a) Whatever SEPx and aELx may be, the experiment or can predict 

sa = 0 or sa = 1. This means that he has been able experimentally to asso­
ciate an atom of L with every S which he can prepare (that is a set of values 
of all CE@xwith maximum precision) and that he has defined OJa, VaELx. 
The lattice gives a complete description. or alternatively we can say that 
the system is completely determined This has frequently occurred in 
history. It is then trivial to show that Lx is Boolean and P x a base of S x 
(pure states). 

(b) Whatever SE Sand aE Lz may be, s· aE [0, 1] can be predicted Two 
eventualities exist: 
- either the sub-lattice As e rLz where As = { aE Lz; s· a = 1 or sa = O} is 

above an atom of Lx and VrxELz, rx»O, he is able to produce S~ such 
that As« is generated by IX, that is he has a catalogue of 'pure states' and 
all SESx where As=0 will be interpreted as a mixture of pure states (this 
is the quantum case), 

- or VSELz, As=0, the system is not complete (this is the stochastic case~ 
In the two cases the description is clearly not total, and the aim of the 

experimentor has not been reached, since he has not got complete control 
of the system. 

There are three solutions left to him: 
- to increase the precision of his measuring instruments and to compli­

cate his experimental arrangements so as to increase Lx and Sx (new 
filters [23]), 

- to assume that @x is not sufficient and to ask the theoretician to in-
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vestigate the results concerning the SESJ:, srf;As to express them in 
functions of new observable quantities (hidden variables), 
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- to assume that L itself has not been well defined, and that in fact L is a 
complex (internal structures). 

Conclusion 

The aim of physics in every case is to obtain description (a), that is a 
Boolean lattice. It is certain that such a lattice is not associated with one 
single model, but if LJ: must be Boolean, the lattice LJ: of the propositions 
of a physical model must be regarded as embedded in LJ: the embedding 
being not necessarily given by a morphism. 

Conversely, the conditions enabling us to state that the limit of a series 
of lattice of propositions concerning successive models of a physical sys­
tem really does exist, and further that it is Boolean, are far from having 
been stated We can indicate one case where this converse is verified. 

Let us consider a family of complete lattice, 12J: orthocomplementary 
and atomic. For each L~ we have a secof states S~ complete in the sense of: 

(1) 

The states separate the propositions concerning L which is coherent 
with Section 3 (a). Further, for each i there exists a lattice of experimental 
propositions I!,J: Boolean (it is sufficient to take !l' J: as defined in Section 
3 (a)) and a set of states S~ experimental and complete; to sum up, we have 
a logic (12J:' S~) attached to the system L by the model i and correctly 
describing the logic (I!,J:' SH of the experiments concerning L. 

HYPOTHESES. For all i there exists (!l'i, Y'1 where EJ: C T!l'i (respective­
I y lJ: C T!l'i) and: 

with: 
VaEI!,J: (resp. iiE12J:) 

(Ja=sa (resp. aii=sii). 

(2) 

This hypothesis shows by the structures defined in Section 3, the first 
postulate of the mechanical model defined in Section 2: the partition of 
reality into a system L and the remainder is purely artificial. 
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Further, to say that (I!I' SD is the model of (.cI, SD means that there 
exists a surjection ({J of a non-empty part B of LIon .4: with: 

O'a = O'({J(a) = 0' [({J (a) /\ a] = s({J(a). (3) 

THEOREM. If the description is maximal, the logic corresponding to it is 
Boolean. 

H the description is maxima~ then (2I' 9'I)=SUPi(2~, 9'D for the 
order inclusion relation. Then there exists (LISI) C (2 I, 9' I) experimental 
logic associated with (2 I, 9' I) which for (2) and (3) may be considered as 
the logic of the complete model of 1:. 

There exists therefore ({J as a surjection of a part £ c L on 2 and 

'YO'e9'I 'Yae£ O'({J(a)=sii=O'=s. (4) 

Now 9'I is complete, therefore ({J (a) = a--+({J = 0 £=L=2. 

5. CLASSICAL LOGIC 

H we reconsider the results of Section 2, we find [ 6, a] that to a system 1:, 
classical mechanics associated a complete atomic Boolean (LIsI ). What­
ever the formalism, the equivalence classes are defined by the dimension 
of the manifold M the points of which are the atoms of LI . The observable 
quantities are the elements of a commutative Lie algebra of infinite 
dimension, the representations of which within the various formalisms of 
Section 2, are Borel functions on II with range in lit It is known [31,32] 
that a realization in terms of a Hilbert space yt' of squared functions 
summable on M (provided with the Ut invariant measure (Section 2, 
Equation (2)) where the observable are operators, is then commutative 
and yt' is simply the direct integral of Hilbert space of one dimension. 
(This is a formalism known as continuous super-selection [35a J.) This 
model corresponds to a determinist experimental logic (LISI). For this 
model to be tota~ it is necessary and sufficient for the definite isomorphism 
({J (Section 4, Equation (2)) to exist for (!)I in the limit ,1a=O where ,1a= 
=inf. .... , ,1ia, 'YdieAe(!)I (cf. Section 3 (a)). In other words its is necessary 
and sufficient that: 
(a) The proposition associated with the points of a sub-set which is 

countable and dense within M can be experimentally obtained 
(infinite precision) 
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(b) for this experimental lattice Cf' exists. 
Proposition (a) has been demonstrated [32b] under the condition that 

the interval of precision Aa is associated with a sphere K (P, e) of centre P, 
radius e and A (PI)E Aa, V P' E K with the Lebesgue measure on M and that 
the measure of M is finite. 

With regard to (b) it is well known experimentally that beyond a given 
degree of precision, Cf' no longer exists (the lattice of the model of micro­
scopic propositions is no longer Boolean [35b ]). 

Following this, numerous attempts to increase (!)r and to immerse 
(Lr, Sr) in (Lr,8r) take place without success. For these attempts, the 
theorems of non-existence of hidden variables [35c, 30] are valid We shall 
see that this type of extension is not that of the physical models which have 
succeeded classical mechanics. It is not surprising that the quantum model 
is resistant to it. 

6. THE PRE-ERGODIC MODEL 

To the postulates of Section 2 we add: 

(W) POSTULATE S. For all L the preparation of L cannot be instanta­
neously realized 

where (!)'; is the set of classes of measuring equipment relative to L and not 
equivalent to a clock. 

In order to construct (i!r, 8';) we start from the classic lattice Section 5. 
Those of the atoms which are compatible with (W) are of type Ql:'~;~ R+ 

that is the minimal propositions of the Ai where Ai = a~ Vt. 
Physical quantities ofthese types are the independent time first integrals 

of L. We suppose that all the Ai are given by continuous functions Cf'i(P) 
on M which are fi measurable (fi being the Ut invariant Lebesgue measure 
onM). 

(a) Parametrization by the First Integrals 

Let us consider a vector <P(z, t) of dimension 2m(m<n) with rank of 
gradz <P = 2m. Then (I) <P = <P (z, t) = 02m defines, t locally, a manifold r of 
dimension 2(n-m~ We can always choose a 2(n-m) vector", of compo-
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nent tjli and a 2n vector F such that z=F(tjI, t) is local parameter of rand 
that J=grad",F is ofrank2(n-m). 

If all the solutions z(t) of Hamilton's equations: 

SZ=gradzH 

which are in r for one t, remain for all t, the relationships (1) are known as 
invariant and the solutions are given by: 

with: 

SJL= -SatF+gradzH 

L(tjI, t)= '" 

(b) Case of the First Isolating Integrals [33J 

DEFINITION. The functions ({Jj, ... , ({J2m: r ~~ constitute an isolating 
set if: 

Vi, ({Ji(r)=Ieic~ is a connected open set 

VCiEIj, ({Ji 1 (cJ is closed sub-manifold of r, with 2n-l 
dimensions 

2m 

n ((Ji-1(Ci) is closed, 2(n-m) dimensional of r. 
i= 1 

If in addition the ({Ji are first integrals of (2) they are known as isolating and 
Me will denote the r sub-manifold defined by the ({Ji- 1 (c)'s. 

THEOREM (J. Dieudonne). If there exists a map Z=(ql, ... , qm Pb···, Pn) 
of r in the neighbourhood O(p)cr, such that: 

J la({Jil . J. k = - IS OJ maxImum ran 
aZk z(P) 

(3) 

the ({Ji form an isolating set: 
- the application r r+ ~2m is a submersion X, 
- the differential system induced on Me by X starting with Hamilton's 
equations is Hamiltonian. 

We consider the maximal set of such independent ({Ji' 2m in number. 
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Then: 
Vl/!(P) (Utl/!) (P)=l/!(P) 

where (4) 

Vi [<Pi' H] (P)=O VPEr. 

Observables of this type form a Lie sub-algebra of infinite dimension, of 

base <Pi' 

DEFINITION. If m<n the system will be known as pre-ergodic. This 
comes from the fact Me [<Pi = Ci] is not only Ut invariant but very often [lSc] 
almost always indecomposable into part of non-zero measure, Ut invariant. 

The variety Me is connected, compact and of finite measure (the hy­
pothesis H(z)<Eo and {zErH(z)=E} closed in r is generally understood 
in physics and justifies the existence of a least one <p). 

THEOREM [4]. If J is of rank 2m:., that is if {grad<p;}i=1,2m is afree 
family, Me is a toroid with 2m dimensions, the neighbourhoods of rare 
direct product of Me by [R2m and there exists a base xAz) of Me such that 
(<p, x)~(z) is canonical. 

On Me> this application induces an invariant measure Ut defined by 
[15]: 

1 s 
/1 = -- ,-----,-;-= 

Q(C)! I 0<Pi O<Pj!1/2' 
r= 1 OZr OZr 

(5) 

where IAI means detA and Q(c) is the normalizing factor for the measure 
/1, zr=(P" qr), s is the natural measure on M" provided with Xj' 

The algebra of the observables on Me is a Lie sub-algebra of that of the 
observables of r. The equivalence of two systems is still given in Section 2 
(Equation (11)). 

(c) Study of the Lattice IE 
THEOREM. The sub-lattice of D; relative to the propositions defined by 
the observables <Pi is a metric Boolean lattice. 

Let l/!=l/!(z, t)=02(;;-m) be the invariant relationships on Me which 
added to cI> determine the motion completely. We will suppose l/!i(Z, t) 
component of l/!, ji measurable; they cannot be 'better' since cI> is maximal 
These will be the first integrals of discontinuous type or infinitely multi-
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form. Nevertheless, by using a result of C. L. Siegel [38J and of Kolmo­
garov [ 4J we know that in the space of the Hamiltonians relative to 1:, for 
all neighbourhoods, we have systems which are completely integrals 
(n=m) and non-integrable (m= 1). For these latter the t/li are measurable 
non-analytic integrals. Then for r considered as the direct product of 
Me X ~2m, '" b j1 measurable is J1. measurable as a function defined on 
Mex T. 

(6) 

We make the following hypothesis: 
A preparation of 1: will always be able to concern the <Pi' But since the 

t/li depend in general on time, the experimental arrangement will only be 
able to concern one t/li and will give it the value ai at to. All the other 
t/lj j =f. i will take up their values in an interval Aaj compatible with At of 
(W). The resulting state will provide the results: 

SiQ1.'= 1 aie~Ai 

siQ1Je[O,1J, 

where Ai is the observable quantity associated with t/li' 
Since the t/lj are functionally independent, we have: 

(7) 

Vj=f.i °Xj={xe~A,:t/lil(x)=a;}c{open of ~Aj} (8) 

and D? = t/li 1 (ai' to) open of Me, aieal(~A') of precision Aai' 
Without any further possible information we associate with Si a (1-

measure p? on the Borel family generated by the parts of D? compatible 
with (7). D? is Pi measurable by construction and the class of sub-sets Pi 
measurable of D? is separable. Finally U;D?=MC" 

The interval At of (W) defines on ~Aj a family of open set alW(OX})c 
calW(~A). That is 

b}(aj) = { AajEaI(~A); t/I{t~~:t Utt/lt 1 (aj) nD? JeAaj} 

b}(aJealW(~A) 

then for all Si we have measure mi on ~2(n-m) where: 

miEn b}(aJJ=pi[Z' t/lAz)eb}(aj)]. 
j'¢i 

(9) 
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HYPOTHESIS. \ft>O, Pi is uniformly continuous with respect to J1. 
(5) 

Pi (dPt ) = YiJl.(dPt ) 

YiEIJ(Me, J1.) 
(10) 

In the opposite case, there exists an open range m of J1. measure zero 
with p(m)~O. Now J1.(m)=O, i.e. m belongs to an open range of a sub­
manifold of Me' that is there exists at least onej where t/Jj-l (m)=at Then 
the experimental arrangement preparing Ai = ai would simultaneously 
prepare Aj=af We would have locally a functional dependence ofifri and 
t/Jj. This possibility is considered to be very unlikely for globally func­
tionally independent t/Ji (this is [21b] a common method for obtaining 
ergodic properties). 

Consequences 

The measure mj defined by Equation (9) is a measure of probability on 
OJ °X}=Xi associated with Si (Section 3, Equation (8)~ We will not 
distinguish two measurable sub-set of Xi, mi measurable when the differ­
ence is of zero measure. 

For :very i= 1, 2(n-m), we have the decomposition LI=L",.®L"'i 
where L"", is the Boolean lattice generated by the lPk = Ck' Ai = ai (where 
Ai is the observable described by t/Ji) and mi is a valuation on L", l' the lattice 
of classes of mi measurable parts of Xi, ordered by the inclusion 

By the decomposition theorem of r into Me X ~2m, LI is isomorphic to 
the lattice L",®Lr Further, {t/J-JJ=Me since (4), t/J) completely deter­
mine the motion within r. Finally for every aiE~(~AJ D? is separable. 
Then Lx ~ Ltjr Finally [6c] any finite measures on a IT-algebra is a IT­

additive valuation If N is the set of elements with zero mi measure, the 
lattice of classes of equivalence by N is a separable, non-atomic Boolean, 
metric lattice. We have therefore: 

THEOREM. For every classical controllable observable Ai, i= [1,2 
(n-m)] the lattice LE is decomposable into a direct product of a complete 
atomic Boolean lattice and a metric non-atomic Boolean lattice. The com­
plete set of states (7) is the basis of the measurements on LE. 

THEOREM. The lattice of propositions of LE is ortho-isomorphic with a 
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reducible modular lattice. Since the centre is an atomic lattice, the quotient 
is ortho-isomorphic with a sub-lattice of the lattice of the sub-spaces of 
Hilbert space. 

There only remains the second proposition to be proved Let us 
consider the Hilbert space £(X;,!», m;) of square functions m; sum­
mabIe on X; where !»=~(X;) is the IT-algebra of the parts of Xi. Let I(d) 
be the characteristic function for dE!». Let us consider the projection 
f E £ --+ I (d) f E Vd sub-space of £. The application .A.: d r+ Vd is an injec­
tion of LIjI j' j #- i in LJ(' lattice of the sub-space of £. 

Indeed, A(d)=.A.(d')+-+m;(d+d')=O, hence .A. injects the equivalent m; 
classes into LJ('. Let J denote the d class. It will be recalled that QdQ2 +-+ 

+-+Ql ~Q2 and Vf, gE£, f=g+-+ Ilf-gil =0. Then .A. (d)/.A. (d') +-+J/d' and 
A(dnd')=.A.(d)/\.A.(d'). The application.A. is an ortho-isomorphism [25]. 

Conclusion. Pre-Ergodic Model of 'Hidden- Variables' 

Starting from a complete atomic Boolean lattice, the postulate (W) 
translating an experimental condition ofthe model has led us to a modular 
reducible family of lattices, each one associated with an experimental 
arrangement concerning a controlable observable. 

The statement that all the sub-lattices of a Boolean lattice are Boolean 
does not prevent the passage from a Boolean lattice to an embedded 
modular lattice. For these extensions all the theorem forbidding the 
existence of hidden variables are inapplicable. 

Finally we can summarize the formalism of hidden variables for LI by 
saying that LI is obtained from LI by introducing for every set (cp, A;) of 
variables a measurement family p;(t) on the ergodic manifold Me" The 
observables have been conserved here, but the states support a family of 
independent measurements p;(t). 

The classical limit is obtained simply as L1t-+O then P;=b(t/I;-a;} and 
the family t/lj being complete and simultaneously prepared lim.1t=o 
LI = LI atomic. It is shown indeed [9] that for all neighbourhoods of an 
ordinary point of r (that is fi almost everywhere) there exist 2n-l first 
integrals of the motion Then in this neighbourhood p;= b(t/I;- a;) for all i. 

7. THE ERGODIC MODEL 

This concerns the description of the systems which exhibit a stationary 
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character: ie. there exists a representation where the states are defined 
on a compact (tore) of the variety M and where the statistics induced by 
these states are independent of time. For this description we retain all the 
preceding postulates, to which we add: 

(X) POSTULATE E. The observables of the system are the mean values 
averaged over time of the classical observables of the system, when these 
values exist T 

AjE(DI~lj= lim ~ f t/lAi, t) dt, 
T-oo T 

(1) 

o 

where t/lAi, t) is the representation of Aj and (i, t)EMx to. 
Retaining postulate S, the states are still defined in Section 6 (Equation 

(7)), that is be the Pi(t} On the other hand, the observables are no longer 
all those of Section 6. The 'observables described by the ({Ji are still 
observables of.r with (X) since ({Ji O Ut=({Ji' Vt. On the other hand, the t/lj 
will give observables of.r only on condition that: 

T 

lim ~ f t/lj(ZO, t) dt=!/ij(i) ViED? 
T-oo T 

(2) 

o 
exists. 

LEMMA [18b]. For allf ELI (M, Jl) with a complex value: 

T 

~ 1 f f(x)= lim - f(Utx) dt exists Jl almost everywhere (p,p) 
T-oo T 

o (3) 

J(x) is Ut invariant Jl p.p, Jl summable: 

J(Utx)= J(x) 

f J(x) dJl= f f(x) dJl if Jl(M)< 00. 

M M 

(a) Case of Neighbouring Systems of Integrable Systems 
([38J and [4J) 

(4) 

(5) 
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Ut(D?) generates an invariant sub-system DieMe corresponding to 
t/li(Z, t)=ai' But in contrast to the CfJk which define a toroid (connected, 
compact). Di is more discontinuous and scattered on Me as the system 
departs further from the corresponding integrable system. 

Let us then consider the ergodic propositions corresponding to L,;. To 
do so let us decompose t/lj 1 (b{(aj-l)) into open functions Ai cD? 

Ai= nt/l;l(b{(a))nD? 
j*i 

T 

Ql:i~ lim ~ f Utt/lAA!, to) dt= 
T .... oo T 

o 
T 

= lim f t/lAUtAi, t) dt='frAAt). 
T .... oo 

o 

Now 'frj must be Ut invariant, but U~=t(UtA{)=Di.'frj is therefore cons­
tant on Di• It is a function of ai' 

On the other hand the measure Pi(Pt) becomes: 

T T 

lim ~ f Yi(Pt) J.l(dPt) dt= lim ~ f Yi(Pt) dJ.l=Yi(ai) 
T .... oo T T .... oo T 

o 0 

since J.l and Yi are Ut invariantPi=}I;(aJ JL 
The lattice is then composed of a family of Boolean lattices, iso­

morphic to Lepi defined above. We have a lattice by experimental arrange­
ment (preparing ai~ This is not surprising if we remember that the space 
state (of the solutions) of a system is defined only by the couple, initial 
conditions and evolution equations. 

To an observable Aj there will be associated a measure of (~A) in 
LepAi defined by 'frj(a;). 

(b) Case of Ergodic Systems [18a] 

This is the case where Me is metric-indecomposable, that is if every in­
variant measurable set has measure 0 or 1. Then in the decomposition 
(Section 6 (a)), Me is the maximum sub-variety of r, Ut invariant, and the 
only observables Ut invariant on Me are associated with constant fune-
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tions. We usually express this fact by saying that the trajectory is dense in 
phase space. 

In the Hilbertian formalism [22, 20a] of classical mechanics we then 
have: 2" 

f Lltd Ut = e E.. E .. : spectral distribution of Ut 

o 2" 

«fl Ut Ig) = f eiA.t d .. <fl E .. lg») (6) 
o 

E+o=lk) <kl with k(w)=/l(MJ- 1/2, WEr, 

Then E .. has no discontinuity in A=O for f EL2(Me, /l): 

lim II(E .. -Ik) <kl) fll=O 
.. ~+o 

(k 1 k)= 1. 
(7) 

(8) 

and E+of= Ik) <k 1 f) which is the definition of an observable described 
by f, and ergodic ([4], p. 16). 

The observables of a system for which (1, 2) exists are ergodic. The 
unitary of Ut gives, (f .. (P) being an Ut eigen-function) 

Ut{f,g}={Utf; Utg} 

'v' P E Me If .. (P)I * 0, Ut invariant, and therefore constant (positive) and 
'v'f .. +-+IA)='lk) ei6", (fJ .. (P) real) and [23] the proper values A cannot be 
degenerate; fJ .... :;l:nfJ .. o (Ao=inf. o.2"A), if not the system is evidently 
equivalent to a set of harmonic oscillators. A sufficient condition for this 
not to take place is the existence of A1> A2 proper frequencies with 

m, nEN =>m=n=O 

{Ai} is then dense in [0,2n] and 'v' f EL2(Mc, /l): 

If)= L: C .. iIAi)· 
i 

LEMMA. For all observables f E L2 (Mc, /l) the correlation function 

r(n) I<fl un If)1 
<f 1 f) 

converge in mean (discrete measure) towards zero. 

(9) 

(10) 

(11) 
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In fact U~ If) = If,,) considered as a random event on (Me, "') is a 
stochastic process with r(O)= 1, r(n):::;: 1, but starting from the spectral 
resolution of Ut we have the representation of Cramer-Khinchin type: 

2" 2" 

r(n) = f eiM d). <fl ~).If) =f ei).n dF(2) 
<f f) 

o 0 

which with Equation (8) gives: 

1 N-l 

lim - L r(n)=O. 
N ..... oo N n=O 

Consequences. 
For all Si (Section 6, Equation (7)) if limt .... 00 Pi (t) exists: 

(12) 

(13) 

lim Pi(t)=k", with '" as in Section 6 (Equation (5)). (14) 
t .... oo 

In fact Pi(t)=Yi(Pt) "'('" continuity of p;). If XA designated the charac­
teristic function of a A c Me which is measurable, we have: 

and 

T 

'rfXA; moo (A)=lim ~ f (U -t1'i' XA) dt=(Yi, XA) 
T T 

o 

p'(' = Yi'" and p'(' is Ut invariant. 

Now for Ut ergodic and irreversible, there exists only one invariant mea­
sure [20b], therefore Yi=k·(p·p) and k#O. 

THEOREM. The lattice of propositions of the system 1: for the ergodic 
model is Boolean atomic. 

Let AEl'9x, fA(<P, t/li) the associated Borel functions: 

T 

Q~ = {PEr, lim ~ f fA dtEE} = 
T .... oo T 

o 

= {PEr, E+ofAEE}={Ci' ](Ci)EE} 
with 

!(Ci)= f fA(P) k d",. 

Me 
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Where] (Ci) are m measurable and tpi(P) uniform and continuous on r, 
] is a Borel function on ~m. 

8. THE STOCHASTIC MODEL 

By retaining all the postulates, if we wish further to consider as physical 
propositions those which concern the observables defines on Me' we 
obtain the stochastic model In fact, any function on Me is a possible 
random variable and the family induced by VI is then a random function 
Two possibilities then present themselves: either the observations are 
defined at one precise instant, or the observations concern the over-all 
values of the observables over a definite interval in time. We will call the 
first 'pure stochastic models' and the second Brownian (or Gaussian). 

In every case, we have at the start on Me a distribution p, VI invariant 
and stationary established as the result of the ergodic process. The 
variables f(w) are not correlated with the f(wo) (cf. Section 7, Equation 
(13)). The observation considered in this model takes account of compati­
ble times (sufficiently large) with the establishment of the ergodic state of 
equilibrium. 

(a) The Purely Stochastic Model 

We consider a sequence of measurements at times to" ... , tl of the observ­
abIes Ai i= 1, k=2 (n-m), independent, defined on Me and characterising 
completely the system with the constants of motion tpi=Ci; t j + 1 -tj~ T 
where T is the ergodic equilibrium time. This sequence concernes a set of 
identical system (repeatability) and provides a frequency distribution v(ki ) 

of the k results obtained at the time of the ith measurements. 
For the series ti the lattice of propositions relative to Me is then that 

associated with the (1 algebra generated by the direct I product of the (1 

algebras of the Boolean parts of Dkc ~k where Dk is the set of the results 
of the v(k) measurements. On each of these lattices we have a measure of 
probability corresponding to the v (k). As in (V) this lattice is ortho­
isomorphic with a sub-lattice of a modular reducible lattice which can 
here be constructed directly. 

Let us put: 

(ka) -a a 
V i =r:t.ir:t.i (1) 
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where the phase of the rL[ is indeterminate and ~i(Dk') is a sub-base of 
the (1 algebra Dk' and: 

L v(Rf) = 1 +-+ {(Xna '" /2. 
aEIM, 

With each result ki we associate I"') with: 

V(kf)=I(Yi I "'i)12, (2) 

where the Iyi) are the vectors base of Ji'i' separable and isomorphic to [2. 

For each value system ofthe ((Ji we therefore have a base of [2 for which the 
probabilities v(kf) are the traces ofl"'i) on that base. The implications are 
defined by the elements of the transition matrix: 

[T(i, j)]a,aj = v(k?~ki')~O, 

where v is in this case the transition probability: 

v(/e k'!) 
(~j~k'!') "J 

V J ' v (kj) 
and: 

L [T(i,j)]a,aj= 1 
G'iEi1Sj 

i> j deduction 

i <j induction 

(3) 

(4) 

then by making use [10] of the indetermination of phase ofthe (Xi we have: 

T i· =1(YiiIY(ij) Iy?) 2 
[ (,J)]u,Uj IIY(ij) I Y?iI . (5) 

The operator Y(i,j) defined by (5) is the restriction to AI.: of the operator 
of evolution of the system. It is isomeric as a result of (4). Its stationary 
nature implies further that Y(i,j)=Y(i- j) and its unitary nature that 
the process is causal In fact with (1), (3) and (5) we have: 

'r/i>j'r/I"'i)+-+{(Xj} and 'r/Ji'i of base {lYi')}UEIM, 

IYi'Y (ij) l"'i)12 = L (Yi'l Y(ij) Iy?) (Y? I '" i)12 
<7j 

O=(Yi'l L Y(ij) Iy?) (Y? I "'i) [("') Y+(ij) IYi')-
Uj 

-("'i I yji) (Y?IY+ IYi')]. 

Since the base Iyi') is complete in Ji'i' Y(ij) unitary implying that the 
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ensemble .r(ij) Iyji> is free, the inequality only applied when: 

'v'1t/!i> and 'v'(li' Then: 

It/!j>=IYji> <i? I t/!) (6) 

for one single (lj. 
The state It/!i> =.r(ij) It/!j> can therefore only have as its origin the state 

Iy]!> obtained for the preceding observationj. This formalism is similar to 
that of quantum mechanics, for observables with denumberable spec­
trum. Inversely, it is established that the quantum model of experimental 
observables is a stationary unitary restriction of the pure stochastic 
model. This method could appear to be a good means of making a model 
with hidden variables. 

All kinetic models are connected with this model. The observations 
have a continuous spectrum and the implications are provided not by (5) 
but by the solutions of a kinetic equation [8]. All these equations in­
troduce (4) explicitly for i<j andj> ~ that is a unitary operator .r(ij) in­
troducing the different stochastic models of the wave formalism of quan­
tum mechanics. 

(b) The Brownian Model 

The propositions concern mathematical expectations and mean-square 
deviation of the observables on Me provided with the invariant measure 
by which the random variables are of Markovian and Gaussian type. This 
hypothesis is justified for C systems (ct: Arnold Avez, op. cit., Chapter III~ 
On the other hand, for linear mechanical systems which are symmetrical 
by translation, this hypothesis is probably true in the limit of n~ 00 

degrees offreedom. Physically the hypothesis of strong mixing is imposed 
on the system so that it will provide statistically regular events [20b]. This 
implies the presence of the observing equipment The principle of repe­
tition (reproducibility) of the observations (Section 3(c)) provides the 
Markovian character. Lastly, the· Gaussian character is imposed when 
we limit ourselves to two parameters the mean and the standard devia­
tion. It is then known [11] that there exists only one equivalent Gaussian 
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stochastic process. Reciprocally, any Gaussian-Markovian process is 
strongly mixing; to see this we consider a base of L2(A(, p.) defined by: 

u~ Iy), (z I y)=eiyz , 

where z is the Gaussian variable defined over Me. 
Then [40] 

lim (y'l un Iy)= lim e-(r'2+ y2)/2 en'r(n) =(y' I k) (k I y) 
n->oo n->oo 

by using Equations (13) and (8) of Section 7. 
In this case the construction of the Hilbert space is well known [41]. 

To the stochastic variable z(t, (X) of which .1z(t2• t10 (X) are Gaussian, 
centred and of variance It2 -t11, we associate for all observables f(Pt) the 
stochastic integral 

<X) 

F((X)= f f(t)Az(t,(X) 

-<X) 

(in the sence of mean square convergence) with 

(IF((XW) = f If(tW dt T= [0,1]' 

T 

Then for all orthonormal bases of L2 [0,1] of function of t there corre­
sponds a complete system of centred Gaussian functions cI>((X) which are 
statistically independent 

For all systems of observables ({Ji= Ci there corresponds a family 
fk(P), PEMe which is orthonomal, of eigen functions of U t on Me base of 
L2(Me, p.) and to every observable Q(P) of the system there corresponds a 
Brownian stochastic variable: 

Q((X)= f Q(Pt ) dz(Pt , (X) = ~ ANt/!N((X)' (2) 

Me 

The second equality in the sense of mean-square convergence on 
L2 ([0, 1], d(X) where t/!N((X) is the stochastic base [7] associated with the fk: 

The predictions concerning (liT) g Q(Pt ) dt are given by the proba-
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bilities of Q(a), IXE[O, IJ, that is by the known distributions of the t/lN(a)'s 
and of the coefficients AN. In order to determine the N's for which the 
AN'S are non-zero, we consider the development: 

(3) 

and the theorem [42]: let X(z) and t/I(z) be two orthogonal functions, 
within L2(Mc, Jl); then: 

IIxl12 
Ilx11 2+ 11t/l112 m{a; 13(a)1 ~1t/I(a)I}, (4) 

where: 

3(IX)= fX(p) dz(P, a). 

Thus we have associated the probability defined by (4) with the proposi­
tion kESp(Q). 

We can therefore characterise the lattice of propositions of the Brow­
nian model as the direct product of the lattice of the sub-spaces of the 
Hilbert space of base t/lN or A (of continuous dimension as soon as the 
system becomes strongly mixing) and the Boolean lattice of the parts of 
[Rm where m is the number of controllable first integrals (constant in the 
preparation of the Brownian system). 

9. THE MODEL OF STATISTICAL MECHANICS 

All the hypotheses (contained in the chapters before Section 8) being 
retained, let us now consider the influence of the process of preparation. 
This still necessitates the presence of a macroscopic apparatus r with 
phase space r and which possesses observables cp; of the same type as 
those of the prepared system. The observables (invariant integrals) of the 
total system L: u rare: 

i= 1, m. 

Postulate M. The Interaction Between L:' and L: is Weak 

We make use of the usual expression [27J of this: for all choices p' and p of 
absolutely continuous measures of Jl' and Jl on rand r, there exists an 
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m-set Y=(Yt. ... , Ym) of values of<Pj such that: 

pi {Pi er', ~<qJ;(PI)+qJi(P)-yj<Pi} =k (1) 

k is independent of Per. 
Then: 

T 

VfeLl(r, p) lim ~ f f(V,P) dt=Jr f(P) dp 
T .... oo T 

(2) 

o r 

for almost all P of r such that: 

qJi (P) = lYi (i = 1, m) 

On the other hand p and pi must be invariant by VI and V;; then there 
exists (Oi), i = 1, m constant with: 

and (3) 

aO and blJ being the normalization factors: 

(4) 

then for every 0 we have a set of values Yo of first integrals of E and E' 
such that: 

VfeLl(r, e-o-."Il), 
T 

lim ~ f f(P,) dt=~ f f(P) e-IJ''P(P) dll 
T"'oo T ao 

o r 

(5) 

almost everywhere within {P, qJi(P) = (Yo)j i= 1, m}; the values (YO)i 
are determined by the measurements (time averages) of the invariant of 
the system E: (p=c=(CP)o=Yo' 

It is then well known that all the predictions provided by this model are 
obtained starting from alP the partition function for m uniform, time 
independent integrals. If we denote by (X the (intensive) variables to which 
E is subjected, and which therefore depend on the first integrals (without 
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restriction of the problem, this dependence is Ceo) we have: 

o 10gao(lX) 
expected value of <Pi 

(6) 

Xij characterizes the influence of IXj on <Pi (extensive forces or variables~ 
G = log a6 + (). y playing the part of entropy and () -1 that of the generalized 
temperature. 

. 0210ga 0Yi 
c'·=---

J O(}iOOj O(}j 

are the specific heats with constant IX. 

The introduction of the macroscopic apparatus E' has therefore had as 
a consequence that the values of the first integrals <Pi of ~ become random, 
and that for each state an m-set of values is introduced, () characterizing 
the preparation () then becomes an ensemble of observables on the same 
foot as the <Pi and for ~, <P and 0 are the random variables of mean values 
y, e where e is the value of () which satisfies (6~ 

THEOREM. The observables (Oi' <p;) i= 1, m are complementary observ­
abies (in the quantum sense). 

The probability density on r beingf(z)=ai 1 e-6'P, we know [27] that: 

< (}i<Pk) = bik (7) 

that is the random variables are independent 
For ((}i; <Pi) let us consider the variations of (6) for lXi = Cte, i¥= j. 

. {(}k= Cte 1 
IXj vanable and k¥=i putting e1 =- (U 1 =E) 

<Pk=Cte kT 
we have 

(8) 
'Vj= 1, m. 

THEOREM. The lattice of propositions of statistical mechanics is 
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modular. To each set Ai i= 1, m of observables chosen within (0, cp) there 
corresponds a state where these observables are predicted and where the 
probabilities of the values of the others are given by: 

We are in the same position as case (Section 6). 
It may be remarked that for each one of these m-set we have associated 

one pure phase, that is an ergodic measure (Gibbs' phase rule). 
In conclusion, the presence of the macroscopic equipment r has 

modified the Boolean ergodic lattice of L into a modular lattice. As a 
result of (1) no passage to the limit is possible. It is noted that (1) is also 
valid in quantum mechanics [2] and that the inequality relations (8) are 
of the same type as those of Heisenberg. 

10. THE THERMODYNAMIC MODEL 

POSTULATE (T): the only observable quantities are functions of the 
conjugate variables (Yo, e), the intensive variables IX remaining the experi­
mental constraints which define L. 

An immediate consequence will be the absence of time in the set of 
thermodynamic propositions. In order for (T) to be admissible, following 
the previous postulates, two possibilities offer themselves: 
(a) The fluctuations of the quantities Yo and 0 are negligible (with a 

meaning to be stated) 
(b) There exists an experimental model for which the description of L only 

contains the mean values of (Yo, 0). The mean-square deviations are 
redundant if they are not zero. 

Examination of these two conditions, their equivalence and their 
implications will provide the lattice of propositions sought for. We will 
see that there exists an equivalent experimental lattice of propositions 
(Section 11). 

A. Conditions of Boltzmann Type 

In stochastic or Brownian models, the fluctuations are negligible if: 

(1) 
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that is if the Markov process is quasi-determinist in the sense of (Section 9 
(Equation (6)). Now if a Markov mechanical system is finite, no transition 
state exists. Further Section 9 (Equations (3) and (4)) give: 

7;j~exp[ -A;j f e- 8'1'dfl], (2) 

r 

where i andj are two states of 1: for the same ergodic state of 1:ul:'. We 
must therefore impose a condition that a8 should satisfy (n No general 
results exist In the case where: 

v 

that is to say in the case of 'sum functions', Schwartz' inequality applied to 
Section 7 (Equation (4)) and Tchebicheffs inequality for all gEL2 (r, fl) 
with: 

v 

g= I he (3) 
k=l 

give: 
«(g-fW) o(D (g2) 

that is the condition N -HX) necessary in (a) is then sufficient to make the 
fiuctuatiollS' negligible. In the cases where (3) is not verified, the limit of 
log alJ is to be studied directly. For all potentials X such that the energy of 
xC.r 

U(X)= I X(Z;) 
zeX 

is bounded [37] (in particular for a two-body interaction [15] or a short 
range interaction) we have the limit: 

. 1 
hm -loga8(N)=s(O, A) 

N-+oo N 

where: 

A = lim <P (A, N) 
N-+oo N 
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N is the number ofrepeats of rand Ns(B, A)=logae- Then: 

and all the quantities defined in Section 8 (Equation (6)) are well defined 

Consequences 

The fact that it is the function logao and not a8 which defines thermodyna­
mic magnitudes, introduces a supplementary equivalence relationship 
into Sx. For example, two different system of n repeats of 1:, in the same 
state, provide the same s(B, A) although 

N .... oo 

The set of first integrals for which the value of s(B, A) is not affected will 
be known as the mechanical components of 1:; for these observables s is 
constant although the states are different It will be noted qi i = 1, m the 
remaining macroscopic quantities: 

(i= 1, m. 
Finally: 

is subadditive of (qi) and is convex in Bi. Gibbs' phase rule is then valid 

B. Statistical Conditions 

Let us consider: 
e- 8<p 

p(Bz)=F(B, tp(z)=- Q(tp) 
(1.8 

as defined in Section 8 (Equation (10)) and let us put: 

e- 8<P(Z)Q(tp) dtp dB 
dP(z/B) = p(B) dB 

(4) 

(5) 

(6) 

the probability for 1: to be in a state prepared by B and defined by z then 
(5) is simply the probability of observing tp(z) when B is certain. 
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In general such a probability is written as: 

( /())= n(z, (}) 
p z P«(}) . 

THEOREM [23]. If p(z/(}) is analytic and non-zero in an open set 
Ocr®lRm and ifIP1, ... ,IPv are continuous on IR and m<v; the necessary 
condition for IPl' ... ' IPv to form a sufficient statistic for p is that for all 
(ex, f3)EO in the neighbourhood of this point: 

P(z/(})=exp [ -kt 8 kXk+ eo +Xo]. (7) 

where e j are uniform and analytic in e and Xi in z is the neighbourhood of 
(ex, 13). If m is the smallest value for which (7) is valid then: 

m 

L X k(Za = y"(IPi>···, IPv), 
i= 1 

where Y,. is uniform 
In other words, if we can reproduce 1: in the state Sx characterized bye, 

then p( (), z) is given by (5) and reciprocally (5) is the necessary form of the 
law of probability such that the statistics concerning IP(z) shall lead to 
good estimates of the e. Equations (6) of Section 8 then concern fully 
defined quantities. If for example we impose the following conditions on 
the IP: 

then: 

where 

and: 

IPi(Z, ,1.)E[Yi-f(f3), y;+f(f3)] e fixed (external coupling) 

F(IP, (}, ,1.)= f dP(z/e)= 

ao= f e-(JE(z) dz 

r 

e-(JE(z) 

dP(z/ef3)=-- dz. 
ao 

(8) 
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Then (maximum likelihood), the solutions of: 

8F 810gao 
-=0 e =-- (9) 
8CPn n 8CPn 

are the most probable values of (cp, e). These are the Equations (6) of Sec­
tion 8. 

C. Thermodynamic Propositions 

We have associated an ensemble of m observables q; and a function 
s(eiq;) with every system E. To every state of equilibrium there corre­
sponds a point of IRm and a value of s, the vector tangent to s at this point 
defining e. This is an exact description of classical mechanics [28] where 
the phase space .it v. (linear form on the tangent space of the configura­
tion space) is replaced by S, for the co-ordinates e;=8/8q; and n(e;)=q;). 
The equivalent descriptions [25] are given by the F(A;, BJ where (A;, BJ 
is deduced from (eiq;) by a product of Legendre transformations and F the 
corresponding transformations of S. Since the additive and convexity 
properties are conserved, we deduce at once that the lattice of prop­
ositions of a thermodynamic system in equilibrium is the lattice of the 
Borelians of II} c IRm - 1. 

II} is a compact part of IRm-l. A system of co-ordinates is known as a 
system of variable state for E and the equation of II} in IRm is the equation 
of state. We then have: 

THEOREM. The lattice of thermodynamic propositions is Boolean 
complete and atomic. 

11. EXPERIMENTAL THERMODYNAMIC PROPOSITIONS 

Starting from the considerations of Section 3 we will now show that 
experimental thermodynamic conditions provide a lattice of experimental 
propositions isomorphic with that of the model of Section 10. We are 
concerned with a total description and in conformity with the theorem of 
Section 4, the lattices are Boolean [6b]. 

We can characterize 'thermodynamic' experiments relative to d, Y, S 
defined in Section 3. 

(1) d T the complete ensemble of measuring instruments has no ele-
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ment equivalent to a clock, but we suppose that we are able to say whether 
one experiment takes place before or after an other (the notion of succes­
sion is acquired). 

(2) [/' T the same complete ensemble is used for 1: or for Un 1:; for all 
finite n and Vi, 1:;=1:; in particular, the components of U7=1 1:: are 
discernable. 

(3) ST the states are dispersion free. Land 1:1 (resp. 1:2) be a system of 
[/'T prepared in the state Sl (resp S2~ The system 1:=1:1 u1:2 is a system 
for which (9x = (9x, = (9X2. ft'x is the free product of ft'x, by !l'X2. For every 
element of !l'x, Q1=Q1, "Q12, we define SQ1=SlQ1,xs2Q12 and we 
note that S=Sl +S2. 

THEOREM. For a thermodynamic system, the ensemble ST of the thermo­
dynamic states provided with + is a commutative monoid. 

The definition in Section 3 (c) of the states and the complete property 

ST lead to a simplification law for +. In fact if VQ1 E!l'x" VQ2E!l'X2 
VQ3 E!l' X3 and Sl +S3 =S2 +S3 then: 

slQ1, =s2QL~Sl =S2· 

DEFINITIONS. We define a thermodynamic transformation as any 
ordered pair of states. 

This is called natural if the states correspond to two successive recorded 
observations (Sl > S2); then (Sl < S2) will be called antinatural and (s, s) nuL 

I t is called reversible if it is natural and anti-natural. 
The interpretation of the notion of a natural transformation leads us to 

make the following postulate: 

(Sl > S2) and (Sl > S3)~(S2 > S3) or (S3 > S2)· 

The set of natural transformations from the same origin is simply ordered 

Group of Transformations 

By putting: 

(Sl' S2)+(S'1 +S2)=(Sl +s~, S2+S2) 

-(Sl' S2)=(S2, Sl) 

(4) 

(5) 

we have a group structure T. If in addition we consider the group quotient 
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by the equivalence relation 

(S1' S2)-(S1 +a, S2 +a) (6) 

T ITo - f/ is a partially ordered group, without any nilpotent element and: 

(S1' S2»(S~, S~)+-+(S1 +S~S2+S1) (7) 

- the natural transformations f/N being the positive cone of f/ 
- two notable sub-groups of f/ are (f/ N) v (-f/ N)=f/ p 

and (f/ N)t\( -f/ N)=f/ R: 
we have a family of homomorphisms of S in f/ by 

SESf--+(J'=(ks, Is), if k> 1, positive integer, isotonic 

if k < 1, positive integer, antisotonic. 
(8) 

Thermodynamic Space 

By experimental definition this contains all the non-equivalent trans­
formations where this is due to reversibility, that is: 

'§=f/lf/R' 

Thermomechanical Space 

The elements of this space characterize all possible transformations: 

fl=f/lf/R' 

Note. By (8) we define a natural homomorphism of Son '§ and on fl: 

(S1' S2)E.rR~(J'~(S1)=(J'~(S2) 

(S1' S2)Ef/ p~(J'~(sd=(J'~(s ). 

We have a simple order on a part of S. In order to compare (that is to 
measure) the states amongst themselves, we must extend this order 
relation. To do this, we make use of the partial order of f/ which is well 
defined experimentally. 

DEFINITION. S1 <S2 for S1ES, and S2ES+-+3n, positive integer and 
CES where 

(10) 

The fact symbolized by (10) is a follows: one state is smaller than 
another, if we can reach it starting from the second. by the mean of a pos­
sible operation. 
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In order for thermodynamics to be a quantitative science, we must have 
S totally ordered by (10). In other words, it is necessary for there to exist a 
state e, starting from which all the states of the system may be reached, up 
to an operation (that which consists of adjoining a replica of 1: in a possible 
state). 

(01) AXIOM. V1:E[J'T3eX and VSES 3n positive integer and s< ne. 

THEOREM. There exists a function <p:Sx-+(~+r which is additive, 
constant on all states of possiible transformation, strictly positive for non­
equivalent states, bounded. 

Proof Let us consider: 

then: 

f(sl' S2)=inf{qEQ+, n2s2<n2s1 +nle, q=:i.} (11) 
Q+ 2 

(SI' s2)Effpl--+f=0; fE[O,oo[ 

f[(sl' s2)+(sl s2)]:;;;f(sl' S2)+f(sl' S2) 

f(nsl> nS2)=nf(sls2)' 

We thus have a function sublinear on ff, bounded, linear on every sub­
group of ff generated by (SI' S2) and ff po We use the Hahn-Banach 
theorem [12] to extend this function additive on ff. By homomorphism 
[8] we obtain the <p sought for. 

Rule of Interpretation 

The existence of ex imposed by axiom 01 ,?ut inaccessible by direct thermo­
dynamic experiment, leads to interpretation of experiments carried out 
macroscopically (n large) at the microscopic level (n"-' 1). In order for the 
theory to be consistent, it is necessary for a thermodynamic transforma­
tion to be significative of the theoretical transformation corresponding to 
the microscopic level In other words, if a macroscopic process is possible 
the microscopic process is possible. This is formally expressed as: 

(02) AXIOM. V(SI' S2)Eff ifVe>03m and n positive integers with m/n<e 

and if: k 
Vk 1'11 <me, k2'12 <ke; -<ml--+(nsl +'11 > nS2 +'12) 

k. 
then: (SI>S2)' • 
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Note. The axiom (02) expresses the fact that YN is closed for the order 
topology (10): 

. (iisil + Ils'll) , II(s1s2)11 =U:f n for (ns, ns )-(S1S2) 

Ilsll =infm/R ks<me. 

Then Y _ N is closed, Y p and Y R are closed, therefore t§ and f2 are 
separable. There also exists a sufficient set of rpi, continuous, additive, 
bounded by S in IR+ to separate the points of S. (This is the symbolization 
of the notion of sufficient statistics as seen above.) 

THEOREM. There exists afunction Z: ST-+IR which is additive, constant 
on equivalent states by reversibility, strictly increasing on irreversible 
transformations. 

Proof. Let us consider 

Z(S1S2)= inf {rEQ+, XESn (ns1 +X>ns2 +me);~=r}. 
Q+,ST n 

The transformation (x; me) is the "Slllallest which makes (S1> S2) natural. 
Z is a good quantity for comparison of the irreversibility of transforma­
tions with that which terminates by a multiple of e. 

We then verify that: 

ZE[O, 00[' z(-YNUYR)=O, 

Z is sub linear on Y, strictly positive and additive on Y N/ Y R' 

In the same way as f we extend to a function F which is positive 
bounded, and additive on Y. By the homomorphism (8) we obtain Z. 

Conclusion 

To all thermodynamic states we have associated a collection of m+ 1 
scalar defined by {rpi(S), Z(s)}. 

It remains for us to show that the equilibrium states belong to a surface 
of IRm + 1, which will correspond to the above function log ao. 

DEFINITION. A system is in a state of equilibrium u if 'VSEST(U> s) 
(u> s)f-+(s > U). That is to say that all subsequent observations of u are u. 
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THEOREM. The ensemble of equilibrium states belongs to the upper sheet 
of the positive cone of ff. 

Let us consider: {SES, s>a}={a}; 

cp({a}) is well defined and the co-ordinates of the sE{a} differ only by 
Z(s). Let us call a({a})=suPla} {2=Z(ns)jn} and be !X:~,...IR defined by: 

!X (f) = a {cp(s)} vSE{a}. 

Then !X is linear convex on ~. 

Conclusion 

The equilibrium states belong to the graph of !X in (cp, E); this graph is the 
manifold of Me seen above, since E has all the properties of log air The 
two models provide isomorphic Boolean lattices. 

In the experimental description, the (}i=O loga8joCPi correspond to the 
additive functions (linearity of tangent space) defined on IX, and constant 
on the family of states generated by an equilibrium state. 

Then S1 +S2 is an equilibrium state if S1 and S2 are equilibrium states, 
that is (}i(S) = (}i(Sk) Vi. 

12. CONCLUSION 

In this study we have attempted to give a correct description of the 
hypotheses or of the contingent data of the models used in classical me­
chanics before the introduction of quantum mechanics. On this occasion, 
the propositions provided by these models and their algebraic structure 
have been defined, each structure being necessarily embedded in the pre­
vious structure, without being a sub-structure. In particular we have 
passed from a classical Boolean lattice to a lattice of continuous geometry 
type for the Brownian model, then to a Boolean lattice for the thermo­
dynamic model 

From this viewpoint we can give clearer consideration to the problem 
of 'hidden variables' of quantum mechanics. The structure of the proposi­
tions is a Croc [35b] and no change of variable will affect it; in the same 
manner no extension, in which the quantum lattice is the quotient lattice 
by a sub-algebra of hidden variables, is possible, since the quotient of a 
Boolean algebra bya factor is still Boolean [6a]. Opposite to these models, 
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the extension which consists of imbedding a lattice in another of higher 
dimension and Boolean, then regarding the 'disturbing' elements as 
in observable is still possible but brings with it no physical information. 
Let us consider for example: the modular orthocomplemented lattice of 
the propositions associated with a polarization experiment (two­
dimensional Hilbert space) and the lattice of the propositions associated 
with a classical system with two propositions (a, b). 

J[ 

a 

o 

If 

a 
Fig. 2. 

Fig. 3. 

NIVEAU 3 

a' NIVEAU 2 

NIVEAU 1 
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We can always associate ao, a v b' ; a,,/4' a v b; a~, a' v b' ; a~/4' a' v band 
consider that (a( v b'))', a'( v b'), etc .... and the smaller propositions as 
unobservable in the quantum model (that is non-preparable). (For 
example, take an apparatus of which the precision is given by the third 
level and of which the precisions associated with the lower levels are not 
realizable~ On generalizing this diagram, we can always regard the lattice 
of a finite dimension Hilbert space as a sub-ensemble of the Boolean 
lattice of all the parts of the corresponding projective space (rays-space). 
But this form of extension provides no physical information. 

By making use of the extension structure given by the chain of the 
models described, we can on the other hand envisage an extension of the 
quantum model having a precise physical meaning. We can also note 
that this analogue method is at the source of quantum formalism itself. 

I'nstitut de Physique Nucieaire, 
Universite Claude Bernard, Lyon. 

NOTE 

* Let P", be the propositions of !i'de To define y!, v Y~j let us consider !i' B generated by 
union and intersection of all the P", for all i. Within!i' B, r:., v Y~j is well defined. Within !i'dk 
the set of upper-bound of y!, v Y~j is not empty. Let zV beihe lower bound of these upper­
bound of !i'dk" The zV are or&ered by k, where k is associated with the precision of slk. By 
putting infk Z~ = y!, v Y ~j and in the dual manner for ", we define the lattice !i'd' Ortho­
complementation in !i' A is caused by that of the !i'd,. 
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c. PIRON 

ON THE FOUNDATIONS OF QUANTUM PHYSICS 

The interpretation of quantum theory has always been a source of diffi­
culties, especially with regard to the theory of measurement We do not 
intend to enter here into the details of the polemic which has surrounded 
this problem. The article by London and Bauer [1J is an excellent intro­
duction to the subject, and Wigner's masterly exposition [2J which 
opened the summer-school of Varenna in 1970, clearly brings into evi­
dence different points of view in the controversy. 

In our opinion, this polemic shows that there seems to be an irreducible 
opposition between the language of classical physics and the language 
of quantum physics [3]. This opposition between the two languages is 
particularly irritating because in quantum physics one must make an 
appeal to classical concepts to describe the measurements. Also, if one 
considers a pure quantum description of the evolution of a macroscopic 
system, one is sometimes led to paradoxical results, contradicting our 
picture of reality. 'SchrOdinger's cat' [4J is a well-known example of such 
a paradox. 

In general one tries to avoid these difficulties by either one of the fol­
lowing two proposals: 

(i) one renounces the description of individual systems, and concedes 
reality only to the statistical results expressed in terms of probability 
with respect to an ensemble. In our opinion, this is the case for the theory 
proposed by Ludwig [5J and also the one proposed by Everett-Wheeler­
DeWitt [6]. 

(ii) one tries to return to a 'classical' description, at the cost of defini­
tively renouncing any attempt at complete description. This is the case 
for the hidden variable theories. 

Both of these approaches are incompatible with the 'program of real­
ism' which one may formulate as follows: 

to give a complete description of each individual system 
as it is in all its complexity. 
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The difficulties with and the strangeness of the quantum language may 
lead one to believe that it is impossible to realize such a program even 
approximately. However, it is perfectly possible to describe completely 
a system in terms of its properties, i.e. its elements of reality (in the sense 
of Einstein), and this without making use of the notion of probability; 
one can comprise in the same formalism the classical theory and the 
quantum theory, and thus clarify the role of the linear structure. We shall 
outline such a description in the following paragraphs. 

1. THE PROPOSITIONAL SYSTEM 

The mathematical category which permits such a description is that of 
CROCs. 

DEFINITION. A CROC is a set ft' endowed with the two structures: 
(1) A partial ordering relation denoted a < b, according to which If? 

is a complete lattice: for all subsets of elements aa Eft' there exists a least 
upper bound Va aaEft', and a greatest lower bound /\a aaEft'. In partic­
ular, there exists a minimal element 0 and a maximal element I. 

(2) A mapping from ft' onto ft', called an orthocomplementation, 
which 

(i) for each aEIf? associates a complement denoted a' such that 

a /\ a' = 0 and a v a' = I, 

(ii) is an involution: 

a<b=b' <a', a"=a, 

(iii) makes If? weakly modular 

a<b=av (a' /\b)=b. 

DEFINITION. A morphism in the category of CROCs is a mapping Il 
from a CROC ft'1' into a CROC If? 2 such that 

(i) Il(Vaaa)= Vallaa' 
(ii) a<b'=lla«llb)'. 

Before constructing such an object in physics let us discuss the notion 
of question and proposition. 
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DEFINITION. One calls a question every experiment leading to an 
alternative of which the terms are 'yes' and 'no'. 

There exists a trivial question which we shall denote as J, and which 
consists in measuring nothing and stating the answer 'yes' each time. 

When the physical system has been prepared in such a way that the 
physicist may affirm that in the event of an experiment the result 'yes' is 
certain, we shall say that the question is certain, or that the question is 
true. 

DEFINITION. One says that a question rt. is stronger than a question 13 
and one denotes this with rt. < 13, if whenever rt. is true, one can affirm that 
13 is true. 

This relation is transitive, therefore it is a quasi-order and it induces an 
equivalence relation: 

rt. '" 13 => rt. < 13 and 13 < rt.. 

DEFINITION. One calls a proposition and denotes by a, the equivalence 
class containing the question rt.. 

A proposition a is denoted as true for a given physical system if and 
only if one of the questions rt.Ea is true. This corresponds to a property, 
i.e. an element of reality, for the physical system. 

To construct the CROC .!f' associated to a given kind of physical sys­
tem we proceed in the following way: first we define from the set .!f' of 
propositions a partial ordering relation 

a<b=>rt.<f3 for rt.Ea, f3Eb; 

that is to say 'a true' => 'b true'. 

THEOREM . .!f' is a complete lattice for this partial order. 
Proof Let a family of propositions biE.!f' be given, and choose a 

representative f3i for each bi' Then we can define a new question TIi f3i 
by the following prescription: One chooses one of the f3i in the family 
arbitrarily, one performs the corresponding experiment, and one attri­
butes to TIi f3i the answer thus obtained It is easy to verify that TIi f3i is 
true if and only if all the f3i are true. The equivalence class containing 
TIi f3i defines a new proposition I\i bi which is the greatest lower bound 
for the bi' 
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The existence of a least upper bound follows immediately from the 
existence of a greatest lower bound for the family 

m= {x I XE2 and b;<x, V;} 
by 

Secondly, we have to define an orthocomplementation on the lattice 
of propositions 2. For this, we need the notion of compatible complement. 

DEFINITION. Two propositions a and b are compatible complements 
for each others if 

(i) they are complements for each other's 

a /\ b = 0 and a v b = I 

(ii) if there exists a question CXEa such that the inverse question cx-, 
obtained by exchanging the terms of the alternative, is contained in b. 

Furthermore, we must impose the following two axioms: 

AXIOM C. For each proposition a of the lattice 2 there exists at least 
one compatible complement denoted a'. 

AXIOM P. If a<b are propositions of the lattice 2 and if a' and b' are 
compatible complements for a and b respectively, then the sub-lattice 
generated by {a, a', b, b'} is distributive. 

Let us recall that a lattice 2 is distributive if and only iffor each triplet 
a, b, cE2 we have 

a v (b /\ c)= (a v b) /\ (a v c) 

In classical physics the lattice of propositions corresponds to the lattice 
of subsets of the phase-space, and it is a distributive lattice. This charac­
teristic property of the classical systems permits one to understand the 
meaning of axiom P. 

THEOREM. A lattice 2 satisfying the axioms C and P is a CROC; and 
conversely, if one interprets the orthocomplement in a CROC as a com­
patible complement, then the axioms C and P are satisfied. 
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Proof. If ft' satisfies the axioms C and P then we have: 

a<b=b'<a' 

since by the distributivity: 

a'=a'VWA~=~V~A~V~=a'V~ 

Thus, the compatible complement is unique and the mapping aI--+a' is an 
orthocomplementation. Finally, ft' is weakly modular: 

a<b=av(a' Ab)=b 

Conversely, in a CROC, C is trivial and for P we remark that for a < bone 
has to show that the sub-lattice generated by {a, a', b, b'} is distributive. 
This amounts to the verification that the two relations 

av(a' Ab)=b and b'v(bAa')=a' 

are necessary and sufficient for 

{a, a, a' A b, b, b', a v b', a', I} 

to be a distributive sub-lattice. 
The axioms C and P permit us to define the following important con­

cept. 

DEFINITION. Two propositions a and b in a CROC are said to be 
compatible (a+--+b) if and only if the sublattice generated by {a, a', b, b'} 
is distributive. 

The set &,·(H) of projectors Pa of a Hilbert space is a CROC under the 
partial ordering 

and the orthocomplementation 

It is also easy to show that two projectors are compatible if and only if 
they commute. 

The state of a particular physical system (prepared in a given way) is 
defined by the complete set of its elements of reality, i.e. the sub-set S c ft' 
of all the propositions which are true for the system under consideration. 
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In classical theory as in quantum theory, such a set is identical with the 
set of propositions which majorizes an atom i.e. a proposition pi=O for 
which 

O<x<p=x=O or x=p. 

Thus the states of a system are in one-to-one correspondence with the 
atoms of the CROC. On the other hand, by definition, it must be possible, 
for each proposition ai=O, to prepare the system in such a way that 'a is 
true'. This remark justifies the following mathematical axiom. 

AXIOM Ai' The CROC of propositions is atomic: for every proposition 
a i= 0 there exists an atom p < a. 

For completeness let us also mention the last axiom which charac­
terizes the CROC of propositions. 

AXIOM Az. If ai=O and p is an atom, and if d /\ p=O then (p v d) /\ a is 
an atom. 

DEFINITION. One calls a CROC satisfying the axioms Al and A z 
a propositional system. 

The CROC of sub-sets of phase-space and the CROC of projectors of 
Hilbert-space are examples of propositional systems. 

An observable is a correspondence between the propositions defined 
by the scale of the measuring apparatus and certain propositions of the 
system. Such a correspondence permits one to affirm a property of the 
system from the knowledge of a property of the apparatus. This justifies 
the following mathematical definition: 

DEFINITION. A morphism 

Jl : f!.l--+ f:f' 

from a distributive CROC f!.l into the propositional system f:f' is called an 
observable. Usually, one also imposes the additional condition JlI = I. 

Such a definition recovers the usual notion of observable. In fact, one 
can show, as we have done elsewhere [7J: 

(i) that in the classical case, each observable can be defined by the in-



ON THE FOUNDATIONS OF QUANTUM PHYSICS III 

verse image of a function on the phase-space; and conversely, each such 
function defines an observable. 

(ii) that in the usual quantum case, to each observable corresponds a 
self-adjoint operator whose spectral family (of projectors) defines the 
morphism; and conversely, to each self-adjoint operator corresponds a 
spectral family which defines an observable. 

2. GENERAL FORMALISM AND SUPERSELECTION RULES 

The center of a propositional system is by definition the set of propositions 
compatible with all the others. Let us recall some results [8]. The center 
is by itself a distributive proportional system, and therefore, it is iso­
morphic to the eRoe of the sub-set of a set In the purely classical case, 
the center is the whole propositional system and so one justifies the use 
of the sub-sets of the phase-space in classical physics. In the purely quan­
tum case (for example in the usual wave-mechanics) the center reduces to 
the propositions 0 and 1. Then the propositional system is essentially the 
eROe of projectors of a Hilbert space. 

In the general case, where the center is neither {O, I} nor the whole 
propositional system, one says that the system possesses superselection 
rules, and in this case it is a product (in the sense of the categories) of 
irreducible propositional systems, i.e. of the purely quantum kind. In 
the following, we will consider a particular case which is sufficiently 
general to describe both classical systems and usual quantum systems. 

Let us consider a family of separable complex Hilbert spaces Ha 
where (XED, a set of indices, and define the propositional system.IE as the 
product Va ~(Ha)· Then a proposition is represented by a family {Fa} 
of projectors. The ordering relation 

is given by 

and the orthocomplementation by the mapping 
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Two propositions {Pa} and {Qa} are compatible if and only if 

The state of Va & (Ha) is described by giving a ray in one of the Hilbert 
spaces H a, or equivalently, by giving a family of projectors all of which 
are null except for one which is of rank one. Each observable is defined 
by giving a family {Aa} of self-adjoint operators, and each symmetry 
(i.e. automorphism) is induced by a permutation f of the elements of Q 

and a family of unitary (or anti-unitary) operators 

Finally, to be complete, let us consider the problem of the description of 
the dynamics. We assume that a reversible evolution is induced by a 
representation of the one-parameter group of translations in the sym­
metries of the propositional system. Therefore, we associate to each 
interval of time 1" a permutation 

and a family of unitary operators 

together satisfying the relations 

and 

If we also assume some conditions of continuity and differentiability 
we can deduce the following equations 

and 
io ,1/1 aT = Yl' aT 1/1 aT 

i.e.: a Schrodinger equation coupled with a system of differential equa­
tions defined by a vector-field. 
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3. THE PROBLEM OF MEASUREMENT AND OF 

IRREVERSIBLE EVOLUTION 

If we want to describe the perturbation undergone by the physical system 
during a measuring process it is quite natural to consider the system and 
the measuring apparatus together, as one system, and we will refer to this 
as the composite system We may expect to be able to describe such a 
composite system in the formalism already outlined; because, if the ex­
perience shows that a certain quantity defined for the measuring appa­
ratus (for example the position of its pointer) has a well-defined value 
under all circumstances, and varies continuously with time, it is sufficient 
for avoiding any paradox to consider this quantity as one of the variables 
defining D, i.e. as a superselection rule. There is no difficulty of principle 
in doing this in our formalism, although it is rigorously impossible in 
the usual one, since in this case the superselection rules if they exist are 
discrete and correspond to constants of motion. 

Thus having the possibility to describe the state of the composite sys­
tem at each instant, one must for the sake of completeness also describe 
its dynamics. It is easy to see that it is not possible to explain the particular 
evolution of such a system by the Schr6dinger type equations of the last 
paragraph. In fact, according to these equations the evolution of the 
vector ljJa, depends explicitly on the values of cxtED; however, the evolu­
tion of the CXt themselves (in this case the position cx of the pointer) do not 
depend on the vector given in Ha,. Thus, since by definition a measure­
ment must establish a correlation between some vectors of one space 
Hao and different values of ex, we arrive at the above conclusion. Physical­
ly, this conclusion is not surprising since a measuring process is irre­
versible. If we are content to explain the evolution of the system by 
irreversible equations, it is not difficult to find such, but rather to choose 
one of the many examples known in physics. 

Finally, to show the power of our formalism, we will treat an example 
of an irreversible process. It concerns a singlet state which disintegrates 
into two identical particles of mass m and spin!. In our model we do not 
describe the motion of the center of mass, and we assume that the ob­
servables of the relative momentum and the relative position are super­
selection rules. Thus only the two spins are quantified The corresponding 
propositional system is then defined by a family {Hp,q,t} of Hilbert 
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spaces, labelled by the variables relative momentum p, relative position q 
and time t; each space Hp • q • l being canonically isomorphic to the four 
dimensional complex Hilbert space C2 ®C2. The initial state just after 
the disintegration is given by 

Po=P 

qo=O 

to=O 

l/IPO,qo.to=j!(l+->-I-+>}=j! r ~1 
l-~ 

The evolution of such a system in an external magnetic field parallel 
to the z-axis is, if it is reversible, given by 

(i) the classical Hamiltonian Jf'(p; q, t}= p2/m giving the equations 

2 
Pt=O and 41=- PI> 

m 

(ii) and the quantal Hamiltonian 

Jf'p.q,t= -Y( B( -~) (Tz®i +B( +V 1®(Tz) 
defining the Schrodinger equation 

ia ./. - Jf' ./. t'l'p. q.1 - p. q.I'I' p, q,t 

Now, the initial state l/I Po, qo, to is an eigen-vector for Jf' p, q, t if and only if 

This is only the case for q=O, that is at the instant t=O. Thus this initial 
state is not stationary and the system will in fact show relaxation effects. 
Such effects can be described with the help of the von Neumann density 
matrix. One is thus led to write some equations for the elements of the 
density matrix, which in the representation diagonalizing the Hamiltonian 
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take the following form [10] 

1 
iOtPiAt) = [£ p, q,t' p(t)]ij- iy(I - biJ Pij(t) 

If the relaxation time Tis much greater than the considered time interval, 
we can neglect the relaxation terms. However, in the opposite case the 
system evolves towards the final matrix: 

[
0 0 0 01 

1 0 1 0 0 
Pro =2 0 0 1 0 

o 0 0 0 

corresponding to a mixture of the states 1 + - > and 1- + >. 
In conclusion, the interpretation of the quantal phenomena requires us 

neither to give up the classical realistic point of view nor to invent new 
'ad hoc' languages. In fact, the particularity of classical physics comes from 
the purely accidental possibility, in all reasoning to identify the result of 
an eventual action on the system with an observed (or actual) fact. 

This being said, the irreversible dynamics which characterize the real 
evolution of a system give rise to the same difficulties in quantum theory 
as occurred in classical theory. And the example that we have presented 
manifestly shows that the hidden interaction (or, if one wants, the hidden 
variables) instead of explaining the quantal phenomena are the cause of 
their usual disappearance on the macroscopic level. This confirms the 
view that it is the accuracy of our measurements and not the defects of 
our apparatus which permits us to exhibit quantal effects. 
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BOGDAN MIELNIK 

QUANTUM LOGIC: IS IT 

NECESSARILY ORTHOCOMPLEMENTED? 

I. INTRODUCTION 

One of the intriguing problems of the present day theory is the lack of 
similarity between general relatIvity and quantum mechanics. General 
relativity is a product of a long evolution line of classical theories leading 
toward structural flexibility. The most characteristic steps of that evolu­
tion were: (1) the discovery of space-time geometry (stage of Minkowski 
space), (2) the generalization of the geometry (introduction of the pseudo­
Riemannian manifolds), and (3) the discovery that geometry depends on 
matter. In spite of its classical character general relativity is an example 
of an evolved theory: its fundamental structure is not given a priori 
(apart from generalities concerning the category) but is conditioned by 
physics. 

The development which led to quantum theories was not similar to 
that Here, there was only one decisive step: the abandoning of causal 
schemes and the transition to the probabilistic wave mechanics. Sub­
sequent progress consisted in improving the symbolic language of states 
and observables sufficiently to include probabilistic information of in­
creasing complexity. In spite of its rapid development the quantum 
theory did not undergo any further intrinsic changes of fundamental 
character and has not achieved a structural flexibility analogous to that 
of general relativity. Similarly, as in the twenties, present day quantum 
mechanics represents the variety of possible physical situations (pure 
states) by the same standard mathematical structure which is the unit 
sphere in a separable Hilbert space. Unlike the Riemannian manifolds 
the quantum mechanical unit spheres do not differ one from another: 
they are all isomorphic. The worlds of the present-day quantum me­
chanics thus present a picture of structural monotony: they are all 
'painted' on that same standard ideally symmetric surface. The formalism 
of the quantum theory of infinite systems and quantum field theory is not 
very different from that In spite of several mathematical refinements 
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(the introduction of C*-algebras, the Gelfand-Segal construction) the 
basic structural framework of the theory is conserved at the cost of quan­
titative mUltiplication: when meeting a new level of physical reality the 
quantum theory responds by simply producing infinite tensor products 
of its basic structure. The resulting development is more similar to an 
expansion than to an intrinsic evolution: one just submits other branches 
of physical theory to the standard language of states and observables 
which has almost become the only acceptable way of thinking in quantum 
theories. A still unfinished stage of that expansion process is the pro­
gramme of gravity quantization. A somewhat disquieting question arises, 
however: is the structure of the present day quantum theory indeed 
general enough to assure that further progress may be achieved just by 
continuing the techniques of operators in Hilbert spaces? Or, perhaps, 
the situation is different It may be that present day quantum theory still 
represents a relatively primitive stage of development and lacks some 
essential evolutionary steps leading towards structural flexibility [2]. 
If this were so, further development would involve a programme opposite 
to the 'quantization of gravity': instead of modifying general relativity 
to fit quantum mechanics one should rather modify quantum mechanics 
to fit general relativity. The way toward flexible quantum structures was 
recently opened in the convex set theoretical approach to quantum 
mechanics [1, 3, 5, 6]' On the other hand, there exist conservative argu­
ments supporting the necessity of the present day form of quantum 
theory, which are found in the axiomatics of quantum logic [4, 7]. This 
is why the axioms of quantum logic should be critically reexamined. 

2. LATTICE OF MACROSCOPIC MEASUREMENTS 

According to a generally accepted philosophy the 'quantum logic' is the 
set of all 'questions' which may be put to micro-object By a question 
(also: proposition, yes-no measurement) one usually understands any 
physical arrangement which, wl;len interacting with a microobject, may 
or may not produce a certain macroscopic effect interpreted as the answer 
'yes'. Though the 'question' may be put to any single micro-object, the 
answer becomes conclusive only if obtained for a great number of its 
independent replies. This leads to an abstract scheme where 'questions' 
idealize the macroscopic devices used to test the statistical ensembles of 
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microsystems. Let now Q denote the set of all 'questions' for certain 
definite physical objects. For completeness it will be assumed that Q 
contains two trivial questions: 'I' to which the answer is always 'yes' and 
'0' to which the answer 'yes' is never given The existence of statistical 
ensembles as the counterpart of Q allows us to introduce a certain struc­
ture in Q which is the most recognized element of geometry in quantum 
theory. 

DEFINITIONS. Given an ensemble x and a question aEQ, one says that 
the answer 'yes' to the question a is certain for the individuals of x if 'yes' is 
obtained for the average fraction 1 of the individuals of that ensemble. 
The ensembles x for which the answer 'yes' to the question a is certain will 
be told to form the 'certainly yes domain' of a. Given two questions 
a, bEQ, we say that a is more restrictive than b(a~b) if the certainty of the 
answer 'yes' to the question a implies the certainty of 'yes' to the question 
b. Thus, a ~ b if the 'certainly yes' domain of a is contained in the 'cer­
tainly yes' domain of b. 

The relation ~ is reflexive and transitive. The further properties of ~ 
are associated with the 'logical' interpretation According to that inter­
pretation the questions aEQ represent the elements of an abstract 'logic' 
which reflects the nature of the microsystems: the relation ~ is the 
implication of the logic. Since in any logical system the pair of implica­
tions a = band b = a means that 'a is equivalent to b', one generally as­
sumes that a similar property should hold in Q. 

AXIOM I. Two questions a, bEQ with identical 'certainly yes' domains 
are physically equivalent (i.e., cannot be distinguisbed by observing how 
they select any statistical ensemble). Formally: 

a~b and b~a=a=b. (2.1 ) 

In consequence, the relation ~ introduces a partial order in Q with 
upper and the lower bounds I and O. Because of common experience of 
classical and quantum phenomenology one also assumes that the partial 
ordering ~ makes Q a lattice. 

AXIOM II. For every pair a, bEQ the partial order ~ determines the 
unique lowest upper bound a v bEQ called the union of a and b. Similarly, 



120 BOGDAN MIELNIK 

for every a, bE Q there exists in Q the greatest lower bound a /\ b called the 
intersection of a and b. 

The physical interpretation given to the union a v b is that of an ex­
perimental arrangement which yields the answer 'yes' with certainty for 
those systems for which either a or b give certainly the answer 'yes'. 
Similarly, a /\ b is interpreted as an arrangement which yields the answer 
'yes' with certainty if both a and b yield the answer 'yes' certainly. The 
'logical' interpretation given to the operations /\ and v is that of con­
junction and alternative. Since Q is a 'logic', and the logical systems ad­
mit negation, one generally assumes the following axiom about an ortho­
complemented nature of Q: 

AXIOM III. There exists in Q a mapping a--'>a' which to every aEQ 
assigns precisely one a' EQ called a negative of a, such that: 

a/\a'=O; ava'=I 

(a vb)' = a' /\ b' ; (a /\ b)' = a' v b' 

(aT = a. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The physical interpretation given to the mapping a--'>a' is consistent 
with the general idea that the question is an arbitrary macroscopic ar­
rangement producing certain macroscopic alternative effects of which one 
is called 'yes' and the other is 'no'. Now, if a is an arrangement of that 
kind, the a' is interpreted as essentially the same arrangement with an 
opposite convention determining what is 'yes' and what is 'no'. 

The set of questions Q with the lattice operations /\, v and ortho­
complementation a--'>a' is sometimes considered the fundamental struc­
ture of quantum theory reflecting the nature of the corresponding physical 
objects. In case of classical objects the questions aEQ correspond to the 
subsets of a classical phase space. The symbols ~, v and /\ then have 
the sense of theoretical inclusion, union, and product respectively, while 
the mapping a--'>a' is the operation of taking the set theoretical comple­
ment. In that case the logic Q, apart of properties listed in Axioms I, II, 
III fulfills the distributive law: 

a/\ (b v c}=(a/\ b)v (a/\ c). (2.6) 
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One thus infers that the distributive property ofthe logic Q is a manifesta­
tion of the classical nature of the corresponding physical objects. A dif­
ferent case of a 'logic' is obtained by analyzing the structure of orthodox 
quantum mechanics. Here the 'questions' are the self adjoint operators 
with two-point spectrum {O, 1} in a certain Hilbert space :Ye (orthogonal 
projectors). Hence, there is one-to-one correspondence between the ele­
ments aEQ and closed vector subspaces of :Ye. The closed vector sub­
spaces in :Ye form an orthocomplemented lattice which is not distribu­
tive. Hence one infers that in the micro-world classical logic is no longer 
valid, but a new type of logic becomes relevant in which the alternative is 
not distributive with respect to the conjunction. One consistently inter­
prets the non-distributive property of Q as the main sign of a non-clas­
sical character of the corresponding objects. 

3. MOTIVATION OF HILBERT SPACE FORMALISM 

For a certain time the 'quantum logic' Q was considered to be the funda­
mental structure of quantum theory and has been studied to provide 
information concerning the most general form possible of quantum 
mechanics. According to a general belief, the answer should be obtained 
in the framework of some universal axioms which should reflect the na­
ture of the macroscopic 'yes-no' effects and thus should be valid for any 
quantum system. The problem of an axiom which would replace the dis­
tributive law of classical logic was studied by Pi ron [7]. He postulated 
the following property of weak modularity as the one which holds for 
both orthodox classical and orthodox quantum systems: 

a~b~av(a' /\b)=b. (3.1) 

Piron's axiom has no immediate physical interpretation. However, it 
has been additionally clarified by Pool [8J who has shown that (3.1) 
is a necessary condition which allows us to associate uniquely the ele­
ments aEQ with some idempotent operations upon the statistical en­
sembles which represent the selection processes performed by the corre­
sponding measuring devices. In Piron's scheme the weak modularity has 
been completed by axioms of atomicity and covering [7]. On that basis 
an important theorem was proved [7]: every irreducible 'quantum logic' 
must be isomorphic to the lattice of closed vector subs paces in a Hilbert 
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space over one of three basic number fields (real numbers, complex 
numbers or quaternions). Every reducible quantum logic is a simple 
product of Hilbert space lattices and thus, corresponds to the orthodox 
theory with superselection rules. 

The above results have a certain unexpected feature. They provide a 
good structural description of the existing theory. However, they seem 
to exclude the possibility of generalizations: we return here to the well 
known scheme of states and observables with the Hilbert space at the 
bottom [7, 8]' Moreover, the scheme of Piron and Pool is so compact 
that it is difficult to see in which point it could be relaxed without denying 
something very fundamental This is sometimes taken as an argument 
against the possibility of further generalizations of the present day quan­
tum scheme. However, the conclusion from the lattice theoretical results 
[7, 8J might be just the opposite. After all, most of the essential progress 
in physics has been achieved by denying something apparently obvious. 
Thus, general relativity denied the axioms of Euclid Present day quantum 
mechanics has denied the even more obvious distributive law. There is 
no reason to think that this process is ended The theorems of Piron and 
Pool exhibit a conservative quality of quantum logical axioms: it may 
thus be, that these axioms are the next 'obvious thing' to be negated in 
the future. is such a step possible? 

4. CRITIQUE OFAXIOMA TIC APPROACH 

It is a specific status of quantum axiomatics that it should reflect phenom­
enology. In order to verify the phenomenological background of quantum 
logical axioms a careful identification must be made in order to specify 
the elements of physical reality which correspond to the abstract 'ques­
tions'. At this point axiomatic theory is elusively elegant. A 'question' 
('proposition'), we say, is an arbitrary macroscopic arrangement which, 
when interacting with a micro-object, mayor may not produce a certain 
definite macroscopic effect: the presence of the effect is conventionally 
taken as the answer 'yes' whereas its absence is 'no' (or vice versa). Now, 
it is argued, the validity of the basic axioms of quantum logic (apart from 
weak modularity) is almost a matter of tautology. For instance, two 'yes­
no measurements' with the identical 'certainly yes' domains are obviously 
testing for the same feature, and so the difference between them is not 
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essential; this motivates the identity law (2.1). Similarly, the existence of a 
unique orthocomplement a' for an arbitrary 'yes-no' arrangement a is 
beyond discussion: a' is simply that some measuring arrangement with 
the roles of 'yes' and 'no' interchanged An apparently more involved 
problem concerns the existence of the union a v b and intersection a /\ b 
for any a, bEQ. Here, some plausible existence arguments can also be 
given, through the constructive prescription is not clear. The above argu­
ments would be indeed difficult to reject if not for the circumstance that 
the underlying definition is oversimplified In spite of its elegant gen­
erality, the idea of a 'question' as a quite arbitrary macroscopic arrange­
ment which produces a certain macroscopic alternative effect is wrong. 
To illustrate this, consider a statistical ensemble of any objects and a 
macroscopic device which yields the answer 'yes' for an average of t of 
them in a completely random way. A good approximation is a semi­
transparent mirror in the path of a photon beam (Figure 1). 

I 
1/2 I 

================~~------~~-------- I 'yes' 
I 
I 
I 

1/2 

(no' 

Fig. I. 

No doubt, this is a certain macroscopic arrangement producing a 
macroscopic alternative effect: either the photon reaches the screen 'yes' 
or it does not However, the arrangement on Figure 1 cannot be con­
sidered one of 'questions'. If it were, it would produce a sequence of 
catastrophes in the structure of 'quantum logic'. First of all, it would not 
be clear which device is the 'negative' of the semitransparent mirror a. By 
insisting on the purely verbal solution Oust the interchange of 'yes' and 
'no') one would conclude that a' is acting, in fact, identically as a: for it too 
gives the answer 'yes' in a completely random way for an average of t 
of the beam photons. Thus, a' = a. This would further imply: 0 = a /\ a' = 
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= a /\ a = a = a v a = a v a' = I and so, the whole structure of Q would col­
lapse. 

One might reply, that the axioms of quantum logic are exact, but they 
must be properly understood The semi-transparent mirror in Figure 1 
is not a good example of a 'question' since it is not at all a measuring 
device: it does not verify any physical property ofthe transmitted photons. 
This is a good answer, but it means that the whole approach of 'quantum 
logic' should start from an information which is inverse to the usually 
given. Not every arrangement producing a macroscopic alternative effect 
is a question (yes-no measurement) - the right information should read 
Indeed, one feels, that in order to be a quantum mechanical measuring 
device, the macroscopic arrangement should do something more specific 
than merely produce the 'yes' and 'no' effects in an arbitrary way. In some 
axiomatic approaches this is assured by requiring that the 'yes-no mea­
surement' should have the non-trivial certainty domains: there should be 
some microsystems for which the answer 'yes' is certain and some other 
for which the answer 'no' is certain. This requirement eliminates the 
semi-transparent window as an element of Q. However, it is still far from 
sufficient To see that, it is enough to consider two hypothetical macro­
scopic devices A and B acting on mixtures of red, yellow and violet light 
The device A transmits the red photons and absorbs the yellow and violet 
ones: however, it re-emits on average! of the absorbed yellow photons in 
form of red photons. The device B is also transparent for the red photons 
and absorbs the yellow and violet ones: now, however, ! of the violet 
photons are re-emitted in form of red photons. Schematically: 

A B 

red 

\.-----+---.:0. 0 

1/2 

Fig. 2. 
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Both devices A and B have a common 'certainly yes' domain: they are 
completely transparent only to the red photons. They also have the 
property of performing idempotent operations on photon mixtures which 
in some treatments is considered a fundamental quality of the 'yes-no 
measurements'. However, A and B have different domains of 'certainly 
no' and so, they are not physically equivalent This difference, in spite of 
Axiom 1, cannot be considered non-essential and absorbed into the 
identity relation (2.1). Indeed, if we insisted that A and B are merely two 
different physical realizations of that same abstract question aEQ, we 
would have two essentially different prescriptions for production of the 
negative a': once by taking A' ('certainly yes' for the violet) and once by 
taking B' ('certainly yes' for the yellow). Formally: A=B but A':;fB'. 
In consequence, something would be broken in the assumed structure 
of Q: either the identity axiom (2.1) or the uniqueness of the orthocom­
plement We therefore reach the conclusion that the macroscopic devices 
A and B are still not 'good enough' to represent the abstract 'questions'. 
Indeed, the most essential condition is still missing. According to Ludwig's 
thermodynamical condition [5] the macroscopic 'yes-no measuring 
device' apart from possessing non-trivial certainty domains must also 
have the property of minimizing the randomness of the 'yes' and 'no' 
answers. A generalized version of this idea was employed in [6] by re­
quiring that, for a given 'certainly yes' domain, the yes-no measurement 
should have a maximal possible 'certainly not' domain. This requirement 
is, finally, the sufficient condition which allows one to distinguish the 
subclass of those macroscopic devices which correspond to the abstract 
'questions'. An essential problem now arises: is it necessarily so, that 
the counter-examples against the quantum logical axioms must auto­
matically vanish when the class of the macroscopic 'yes-no' arrangements 
is restricted to the subclass of proper random-minimizing 'yes-no mea­
surements'? 

If the orthodox theory is not a priori assumed, the answer to this ques­
tion must remain conditional. It depends essentially on the validity of a 
certain intuitive image which we usually associate with the phenom­
enology of physical objects and which, in general, mayor may not be true. 
According to this image, each 'question' aEQ determines a certain specific 
property of micro-objects: the objects having that property are those for 
which the answer 'yes' is certain Now, we intuitively assume that for each 
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domain of micro-objects which possess a certain 'property' there is a 
unique complementing domain of micro-objects with an 'opposite proper­
ty': so that, once it is known for which objects the answer of the 'yes-no 
measurement' is 'certainly yes' it is also uniquely determined for which 
ones it should be 'certainly no'. This image is true in orthodox quantum 
mechanics because of the orthogonal structure of the closed vector sub­
spaces in a Hilbert space. However, it may be not of universal validity. 
In fact, it is not a logical impossibility to imagine a hypothetical physical 
world where to every domain of micro-objects with a certain special 
property there would be many possible 'complementing domains' corre­
sponding to many possible ways of being 'opposite' to that property. 
If that were so, there could exist many random minimizing 'yes-no 
measurements' with a common domain of 'certainly yes' and different 
'certainly no' domains. A hypothetical sequence of such devices is rep­
resented in Figure 3. 

Fig. 3. 

The devices Ai' A 2, ... schematically represented in Figure 3 choose the 
same domain of micro-objects on which the answer should be 'certainly 
yes' but they minimize the randomness in favor of various 'certainly no' 
domains Ql' Q2, ... For each of those devices the verbal negation opera­
tion (yes!:> no) could be easily performed leading to a sequence of devices 
A'l' A2,··· with different 'certainly yes' domains Q 1, Q2, ... Contrary to 
Axiom I, the devices Ai' A 2, ... would be physically different, and even if 
we tried to neglect the difference by insisting that (2.1) defines the right 
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physical equivalence, the negatives AI;, A~, ... could no longer be identified 
on that same principle. It thus becomes clear that the axioms of 'quantum 
logic' are not so absolute as they seem at the first sight. Even the apparent­
ly obvious laws of identification (2.1) and orthocomplementation (22-5) 
are not logically inevitable. Similarly, like the distributive law of classical 
logic, they are conditioned by the physical properties of the corresponding 
micro-objects. This suggests that before deciding what the 'quantum 
logic' is and which axioms it must fulfill, the theory should go deeper and 
look for the justification for the axiomatic structures in physics of the 
statistical ensembles themselves. The steps taken in this direction lead 
to the recently formulated convex scheme of quantum mechanics. 

5. CONVEX SCHEME OF Q.M. 

In the orthodox approach to quantum logic the statistical ensembles are 
an implicit counterpart. Their fundamental role has been rediscovered in 
the convex scheme of quantum mechanics [1, 5,6]' The basic concept of 
this scheme is that of a quantum state. Given a statistical ensemble of 
certain micro-objects the state stands for an averaged quality of a random 
ensemble individual. Formally, states are equivalence classes of statis­
tical ensembles. Given micro-objects of certain definite kind (e.g. elec­
trons) the fundamental structure of the scheme is the set S of all states. If 
the micro-objects obey orthodox quantum mechanics, then S is the set of 
all positive operators with unit trace in a certain Hilbert space yt' ('density 
matrices'). If it is not a priori assumed that the orthodox theory holds, it 
may only be granted that S has a structure of a convex set: the convex 
combinations PIX I +P2X2 for Xl' X2 ES and PI' P2~O,PI +P2 = 1 mean the 
state mixtures and the extremal points of S represent the pure states. In 
principle, S might be considered a convex set 'in itself with the convex 
combination axiomatically introduced [3]. However, for the sake of il­
lustrative qualities, one usually represents S as being embedded in a 
certain affine topological space E which can be constructed by a formal 
extension of S: the points in S then represent the pure and mixed states of 
the system, whereas the points of E out of S have no physical interpreta­
tion [6]. For the reason of physical completeness it is assumed that Sis 
a closed convex subset of E. 

Though the structure of S reflects a relatively simple phenomenology 
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(it only shows which states are the mixtures of which other states) there 
is an extensive physical information contained in the geometry of S. 
In particular, shape of S determines the structure of the macroscopic 
alternative measurements which is so fundamental in other axiomatic 
approaches. This is due to the following concept of a normal functional. 

DEFINITION. Given an affine space E with an affine linear combination 
A1X1 + A2X2 (Xl' X2EE, ..1.1, A2ER, Al +..1.2 = 1) a function tjJ:E-R is called 
linear if tjJ(A1X1 +A2X2)=A1tjJ(X1)+A2tjJ(X2) for every Xl' X2EE, A1, A2ER, 
..1.1 + A2 = 1. Given an affine topological space E and a closed convex sub­
set SeE, a continuous linear functional tjJ:E-R is called normal on S iff 
O~tjJ(x)~ 1 for every XES. 

The normal functional admit a simple geometric representation Any 
non-trivial linear functional in E can be represented by a pair of parallel 
hyperplanes on which it takes the values 0 and 1. Now, the functional tjJ 
is normal on S if the subset S is contained in the closed region of E limited 
by the hyperplanes tjJ = 0 and tjJ = 1. 

The normal functionals have a natural physical interpretation Let XES 

be a statistical ensemble and suppose, that there is a macroscopic device 
which produces a certain macroscopic alternative effect 'yes-no'. If one 
translates the 'yes' and 'no' into the numbers: 'yes' = 1 and 'no' = 0, the 
action of the device is completely characterized by a number tjJ(x) (O~ tjJ x 
x (x)~ 1) which represents the statistically averaged answer to the in­
dividuals of the ensemble x. Since it is implicit in the definition of the 
statistical ensemble that it is composed of independent individuals, the 
process of testing any mixed ensemble is equivalent to testing indepen­
dently each of the mixture components. Consistently, tjJ (P1 Xl + PZX2) = 
= P1 tjJ(X1)+ P2tjJ (X2) and so, every 'yes-no' arrangement defines a certain 
normal functional on S. Here, no limitations are present which are essen­
tial for the 'quantum logic'. Every macroscopic alternative arrangement 
is included in the scheme and is mathematically represented by a normal 
functional, no matter whether or not it minimalizes the random element in 
the 'yes' and 'no' answers. We thus reach a generalized scheme of quantum 
theory based on the theory of convex sets ('convex scheme' [6]). In that 
scheme the collection of all states of a physical system is represented by a 
closed convex set S in an affine topological space. The set of all macro­
scopic 'yes-no' devices corresponds to the collection of all normal func-
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tionals on S mathematically represented by all possible ordered pairs of 
closed hyperplanes enclosing the set S and labelled by numbers 0 and 1 
(see Figure 4). 

'certainty 
yes' 

s 

Fig. 4. 

Since the set of the normal functionals is determined by the shape of the 
convex set S, so is also the collection of macroscopic 'yes-no devices'. 
Consequently it is a feature of the convex scheme that in it the structure 
of the 'yes-no measurements' is not decreed a priori but is determined 
by the more fundamental structure of the statistical ensembles. By ana­
lyzing the precise mechanism of this determination we reach a certain new 
structure which is a natural candidate for a replacement of traditional 
'quantum logic'. 

6. LOGIC OF PROPERTIES 

It is a controversial problem, whether the formalism of quantum theory 
can be used to describe the properties of the single micro-object 'as it is, 
in all its complexity' (Piron [7J~ The single act of measurement in quan­
tum mechanics is not conclusive, and therefore, the direct interpretation of 
quantum mechanical formalism is that of a statistical scheme. The notion 
of property of a single system can however be introduced as a next ab­
straction stage of the theory. In the axiomatic approach of Jauch and 
Piron [4, 6J this is done by analyzing the structure of Q. Below, another 
method will be employed which departs directly from the properties of 
statistical ensembles. 
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Statistical ensembles are, in a way, macroscopic entIties: though it 
might be impossible to predict the behaviour of a single micro-individual 
in a given physical situation, one can predict the behaviour of the en­
semble as a whole. Therefore, there is no difficulty in defining the physical 
properties of the ensembles. By saying that a certain ensemble has a cer­
tain property we simply have in mind that the ensemble behaves in a speci­
fied way in some definite physical circumstances. If now the ensembles are 
represented by points of the convex set S, the properties are just the sub­
sets of S. It is still an open question, whether a subset of S should fulfill 
some regularity requirements (such as the measurability) in order to 
represent a physically verifiable property. As pointed out by Giles [9J 
the answer must depend upon the degree of idealization which is permitted 
by the theory. 

The main difficulty with the single individuals in a statistical theory 
lies in the fact that there is no immediate correspondence between the 
properties of the ensembles and the properties of the individuals. In fact, 
not every property of the ensemble is of such a nature that it may be at­
tributed to each single ensemble individual A strictly macroscopic 
example is obtained by considering a human ensemble composed half 
of men and half of women: the fifty-fifty composition then is a property 
of the ensemble which, however, cannot be attributed to each single 
ensemble individual Quite similarly, one can have a beam ef photons of 
which the average fraction t penetrates through a certain Nicol prism. 
However, it may be that the ability of penetrating through the prism with 
the probability t cannot be attributed to each single beam photon, for the 
beam is just a mixture of two types of photons one of which is certainly 
transmitted and the other certainly absorbed by the prism. In general, 
a property P of statistical ensemble is a proper starting point for a defini­
tion of a certain property of the single micro-objects if two conditions 
hold: (1) whenever two ensembles have the property P their mixtures must 
also have it, and (2) whenever a mixture has the property P, each of the 
mixture components must also have it These requirements mean that 
the properties of the single microsystems are represented only by special 
subsets PeS which fulfill the following definition [6]' 

DEFINITION. Given a convex S, a wall (also: face) of S is any subset 
PeS such that: (1) Xl' XzEP, Pl' pz ~O, Pl + pz = 1 = P1X l + pzXzEP, and 
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(2) P1X l + P2X2 EP with Xl' X2 ES, Pl, P2 > 0, Pl + P2 = 1 => Xl' X2 EP. Geo­
metrically, a wall is any convex subset of S which possesses the property 
of 'absorbing intervals': whenever P contains any internal point of a 
certain straight line interval [cS it must also contain the whole interval [. 

The concept of a wall generalizes that of an extreme point: the extreme 
points are just one-point walls of S. Any non-empty convex set S has two 
improper walls: the whole of S and the empty set 0. For any convex set the 
walls form a partially ordered set with the ordering relation ~ being the 
set theoretical inclusion c. As seen from the definition, the common part 
of any family of walls is also a wall This implies that the walls form a 
lattice: for any two walls P, ReS the greatest lower bound P 1\ R is just 
the common part P n R whereas the lowest upper bound P v R is ob­
tained by taking the common part of all walls containing both P and R. 
If the points of S represent the pure and mixed states of a certain hypo­
thetical system, the walls of S represent the possible properties of the 
system ordered according to their generality. In particular, the whole of 
S represents the most general property possible (no property) whereas the 
empty wall 0 stands for the impossible property (no system with that 
property). The extreme points of S (if they exist) are atoms in the lattice 
of walls: they correspond to maximally specified properties, in agreement 
with the Dirac idea of pure states as being the maximum sets of non­
contradictory information which one can have about the microsystem. 
It still remains an open question what sort of regularity requirements a 
wall should fulfill in order to be an operationally verifiable property. 
The standard quantum mechanical convention is to consider the lattice 
of closed walls of S as representing the physically essential properties of 
the system; this lattice will in future be denoted by IP. 

The existence of normal functions on S allows one to define a natural 
notion of orthogonality in IP. 

DEFINITION. Two properties P, R are called excluding or orthogonal 
(P .lR) if there is at least one macroscopic 'yes-no' arrangement which 
answers certainly 'yes' for systems with the property P and certainly 'no' 
for the systems with property R (or vice versa~ Thus, P .lR if there is a 
macroscopic device able to distinguish the property P from the property 
R without an element of probabilistic uncertainty. 

The i.et of properties IP with the relations of inclusion (~) and exclusion 
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(1..) is that structure of quantum theory which most directly reflects the 
nature of micro-objects. It has been thus proposed that the lattice IP 
should be considered the 'logic' of a quantum system instead of the lattice 
of macroscopic measurements Q [6]. The above idea of quantum logic is 
wider than the orthodox one. The 'propositions' (properties) here are not 
necessarily in one-to-one correspondence with some 'yes-no measure­
ments'. The 'property' is an abstracted quality of statistical ensembles and 
therefore, it should be verifiable: however, it is not a priori supposed that 
the verification might be always reduced to a single act of measurement 
In spite of a more abstract sense of IP, the problem of the validity of the 
standard lattice theoretical axioms becomes much simpler for the 'logic 
of properties'. In fact, the identity axiom (2.1) is automatically fulfilled, 
since the partial ordering ~ is now the set 'theoretical inclusion'. The 
lattice axiom, too, automatically holds because the closed walls of S must 
form a lattice. It is not so with the orthocomplementation law which has 
now a quite different status. The notion of 'negation' is not immanent for 
the properties. What becomes natural here is the more primitive relation 
of the exclusion 1... Depending on the structure of that relation the opera­
tion of negation can or cannot be constructed on IP. The following defini­
tion seems to express the physical idea of what the negation is. 

DEFINITION. Let P be a property and let p.l denote the subset of all 
properties which are orthogonal to P. If in p.l a greatest element exists, 

-~~--(/)2=1 

(/)1 = 1 

Fig. 5. 
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this element is called the negative of P and denoted P'. If for every P E IP the 
negative P' exists, we say that the logic IP admits negation. 

As is easily seen, the existence of negation, in general, is not ensured by 
the structure of the walls. A hypothetical case where negation could not 
be constructed because of the geometry of S is shown on Figure 5. 

For the convex set represented here the subset composed of one point 
x is a wall and the family {x}.l contains the seven non-trivial walls: the 
four one-point walls {yd, {Y2}, {Y3}, {Y4} and the three straight line seg­
ments P12, P 23, P34. The family {x}.l thus contains three maximal walls 
P 12, P23, P 34 but it does not contain the greatest one: the convex set S 
does not possess a wall which would contain the three segments P 12, P 23, 

P 34 and be orthogonal to x. As a consequence, no unique orthogonal 
complement can be defined for the 'property' P = {x}. The above situation 
has not very much to do with the possibility of interchanging the 'yes' and 
'no' answers in the 'yes-no measurements' and cannot be excluded by con­
sidering the nature of the macroscopic measuring devices. Inversely, this 
is the absence of the situations like that represented in Figure 5 which 
must be first granted to explain the origin of the usually assumed structure 
of Q. In fact, if the convex set in Figure 5 represented the collection of all 
pure and mixed states of a certain physical system, the structure of the 
'properties' would make possible the existence of three different 'yes-no' 
measurements with the same domain of 'certainly yes' (the pure state x) 
which would, however, minimize the random element in different ways, 
by choosing three different 'certainly not' domains P 12, P 23, P 34' This 
would lead to a non-orthodox structure of Q with the identity law broken 
(see also [6J~ This shows that the logic of properties IP, in a sense, lies one 
level deeper than the phenomenology of 'yes-no measurements'. The 
existence or non-existence of negation in IP is one simple fact which justi­
fies or disproves the whole system of axioms which are traditionally em­
ployed to describe the structure of 'questions'. An essential problem now 
arises: have we indeed some universal reasons to believe in the ortho­
complemented structure of IP? 

If we dismiss some verbal arguments, we are really left with one in­
tuitive picture which can be of importance. This is the picture of matter 
and of a certain selection process which subtracts a component of matter 
with a certain definite property. Now, if the subtraction is done with 
enough care, the component which remains ('the rest') depends only on 
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what was subtracted but it does not depend on how it was subtracted This 
simple picture is, in fact, one of the deepest constructional principles of 
present day theory and is the true origin of the subsequent image of IP 
as being an orthocomplemented lattice. Indeed, one usually takes for 
granted that each 'property' distinguishes a certain component of matter: 
'the rest' then uniquely defines the 'complementing property'. This idea 
finds a particular realization in classical theory, where the properties cor­
respond to subsets in a classical phase space and the 'subtraction' is the 
operation of taking the set theoretical complement A different mechanism 
stands for the same in orthodox quantum theory. Here the states of matter 
are described by vectors in a linear space (wave vectors) which obey a 
linear evolution equatioIL Now, if a wave vector is selected by subtracting 
a certain component, the uniqueness of 'the rest' is due to the existence of 
the linear operations. This explains the strong position of the ortho­
complementation axiom in the present day theory: whenever one deals 
with some quanta which are well described by a linear wave equation, the 
orthocomplemented structure of 'properties' will naturally appear. On 
the other hand, this also indicates that the orthocomplemented structure 
of IP might not be universal: it does not express the nature of any theory, 
it just expresses the essence of linearity. Is linearity a necessary attribute 
of quantum mechanics? In spite of the traditional philosophy of the super­
position principle, schemes based on non-linear wave mechanics have 
always been a tempting alternative for quantum theory. One might expect 
them to contribute something to the understanding of the measurement 
problem: for a possibility is open that the Schrodinger evolution equation 
and the measurement axioms are just two opposite approximations to a 
still undiscovered theory. Thus, the quantum axiomatics should not be 
too quickly closed This may become of special importance in problems 
which involve the quantization of gravity. 

In fact, if the gravitational field has a quantum character, an intriguing 
problem concerns the behaviour of a hypothetical single graviton. Is this 
behaviour similar to the dynamics of the macroscopic gravitational 
universe governed by Einstein's equations? In principle, it must not be so. 
It is possible that the single graviton in vacuum (if such an entity exists) is 
well described by a certain linear law, in agreement with the spirit of 
orthodox quantum mechanics, and that the non-linear behaviour of the 
macroscopic gravitational field is a secondary phenomenon due to inter-



QUANTUM LOGIC: ORTHOCOMPLEMENTED? 135 

actions in a cloud of many gravitons. In this case the formalism of opera­
tor fields in Hilbert spaces would be sufficient to describe the quantum 
gravitation However, this hypothesis has some disadvantages. In fact, if 
the graviton were described by a linear wave, a question would arise, as to 
in what space-time this wave propagates? Is it just the flat Minkowski 
space-time? If so, general relativity would be a theory with a background 
of Minkowski metric masked by clouds of gravitons. This is, however, 
against an innate aesthetics of general relativity, where the background 
metric which is not seen under the cover of the macroscopic field is un­
physical and should not enter into the formulation of the theory. Thus, it 
may be that the situation is different. Perhaps, even a single graviton in 
vacuum modifies the space time in which it exists and so, creates a non­
linearity in its own propagation law. This would lead to a new picture of 
quantum theory where the selection processes could no longer be as­
sociated with linear decomposition operations of certain 'state vectors' 
and the mechanism which had accounted for the uniqueness ofthe ortho­
complement in the orthodox theory would no longer be valid. The re­
sulting properties of 'non-linear quanta' would not have to imitate the 
orthogonality structure of the closed vector subspaces in Ye, but they 
could form a generalized type of logic where no unique negation opera­
tion can be constructed. 

Warsaw University 
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THE STOCHASTIC INTERPRETATION OF QUANTUM 

MECHANICS AND THE THEORY OF MEASUREMENT 

There is by now a variety of views concerning the general position of 
quantum physics in natural philosophy. This variety appears clearly in 
measurement theory, which is a necessary part of any consistent descrip­
tion of physical phenomena on the quantum level. The orthodox view 
reflects a radical departure from the traditional attitude in the analysis 
of the external world, an attitude of mind inherited from the rationalistic 
tradition. Subjective elements have been introduced into physics with 
the von Neumann paradigm, and this seems to be unavoidable within 
the orthodox scheme. Another variant of this scheme, i.e. Bohr's analysis 
of the measurement process, requires the abandonment of any descrip­
tion of nature that would be unique and independent of different 'levels' of 
phenomena It is no wonder that alternative interpretations have been 
sought, since the orthodox view implies philosophical consequences 
which are not easy to accept. 

In measurement theory the central dilemma opens with Bohr's insis­
tence on the 'wholeness' of the system and the apparatus during the 
measurement But the term 'wholeness' does not unambiguously deter­
mine by itself either the ontological attitude one can take, or the manner 
in which it should be incorporated into the physical theory. In both these 
aspects we are left with at least two possibilities. 

Philosophically, one may consider measurement as something funda­
mental, as an ultimate source of information. The systematic knowledge 
of the phenomena, i.e. the physical theory, is then nothing else but another 
expression for the correlated data Or, on the contrary, and in con­
cordance with the secular scientific tradition, we may consider measure­
ment as a physical process and analyze this process by specifying its 
conditions in any concrete physical situation. 

Physically, the 'wholeness' may be conceived as something nonana­
lyzable, something which should be present only through its manifesta­
tions (the complementarity, the impossibility of a unique reduction of a 
quantum ensemble into pure state sub-ensembles, etc.). Or, on the con-
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trary, we may insist that it should be analyzable, even, if necessary, by 
using the entities which are abstract in the sense of their being unobserv­
able. This alternative is known as the search for a hidden variable theory, 
the term referring to the aim of understanding the quantum probability 
features in analogy with the probability theory as used in the classical 
mechanics. Another way of stating the above-mentioned alternatives is 
to speak about the complete description of a physical system by the wave 
function 1/1, or to deny the completeness of this description, as was sug­
gested by de Broglie, Einstein and Schrodinger. 

In their 'primitive' form, hidden variable theories were excluded long 
ago by the von Neumann theorem, but in a more sophisticated version, 
which explicitly takes into account the measurement process, hidden 
variable theories are possible. One such theory was proposed by de 
Broglie as early as 1927 [lJ and further developed by Bohm much later 
(1952) [2]: the pilot-wave theory. The von Neumann theorem is not rel­
evant here because two incompatible measurements produce two dif­
ferent ensembles; this reveals the fact that the hidden variables of the 
measuring apparatus are as important as those of the measured system. 
The invention of such a model is of great importance. It opens a way 
towards a more profound theory (e.g. the theory of the double solution) 
and at the same time, it demonstrates that the prevailing theory of quan­
tum phenomena with the corresponding interpretation of its mathe­
matical formalism is not the only possible one. The result was achieved 
by giving the I/I-function a double role: it reflects the probabilistic features 
and at the same time it is considered as a physically real field The payoff 
comes in Bohm's measurement theory: the reality ascribed to the I/I-field 
mysteriously disappears once the reading on the scale of the apparatus 
is performed. The I/I-field is not subjective in the von Neumann sense, but 
nevertheless it seems to incorporate elements of the previous knowledge 
into the physical reality (we note that the physical reality we are speaking 
about is the physical reality strictu sensa and not the image of it which we 
can form). However, detailed analysis of the measurement process has 
revealed a feature which might be the cornerstone of the future theory. 
In order to describe mathematically the interaction process between two 
physical systems, one of which plays the role of the apparatus, something 
which could express mathematically the nonlocality of the interaction 
and the impossibility of analyzing the system in its complete autonomy is 
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needed, rationalizing in such a way the 'wholeness' of physical processes 
at the quantum level in agreement with the Bell theorem. 

With this in mind, one is in front of a no-man's-land, where many 
possibilities are open. One way might be to take seriously the connection 
between the Schrodinger equation and the equations for the Brownian 
motion of a particle [3], and to start directly with the dynamic equations 
relating the stochastic quantities which correspond to the position and 
the velocity in the classical limit By the use of stochastic variables one 
avoids the necessity of explaining, at this early stage of the theory, the 
probabilistic character of quantum laws. The underlying physical pic­
ture is that of a perpetual motion of the ultimate constituents of matter, 
a kind of 'Zitterbewegung' which, although undetectable, might be taken 
as the starting point in the elaboration of the description of physical 
phenomena. Some people might prefer to see in it just a methodological 
element, or perhaps a manifestation of intercorrelations in the underlying 
physical substratum. 

The stochastic theory of this type already exists in a preliminary form. 
Weizel [4], Nelson [3, 5] and La Peiia-Auerbach [6] have been able to 
show the equivalence between the non-relativistic Schrodinger equation 
and theory of the frictionless Brownian motion with the diffusion coeffi­
cient proportional to Planck's constant. The problem of the spin and that 
of the identical particles has been also successfully treated in the non­
relativistic approximation [7, 8J. 

This particular approach has some features which make its further 
investigation worthwhile. Instead of starting from the Schrodinger equa­
tion as a fundamental postulate and then simply reinterpreting it, this 
equation is derived from postulates which are inherited from the logical 
structure of classical physics. But in order to be complete, in the sense 
of being completely equivalent to the standard quantum mechanics, the 
theory should have its own theory of measurement This problem has not 
attracted a great deal of attention (with the exception of Ref [3] and [5]) 
and we wish to make a comment in this respect. 

In this theory the dynamics of a system consisting of N particles is 
described by a stochastic process X (t) on the configuration space R 3N ; 

X(t)= {Xi,,(t)}; i= 1, ... , N; a= 1,2, 3. The displacement during any finite 
time interval is given by the integral over infinitesimal Gaussian incre­
ments dX(t) with constant variance. The mean is a function of X(t) [9]. 
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One has: 

dX(t)= C[t, X(t)] dt+dW(t). (1) 

The Wiener process d W(t) is characterized by: 

E dW(t)=O 
(2) 

E dWT(t) dW(t)=(J2 dt, 

where E denotes the expectation and the superscript Trefers to the matrix 
transposition. 

The mean forward velocity C and the diffusion matrix (J2 are defined 
in terms of conditional expectations with respect to the past state: 

{ X(t+Llt)-X(t)1 } C[t, X (t)] = lim E X(t) =DX(t) 
.11--+0+ LIt 

(3) 

(J2[t, X (t)] = lim E{[X(t+Llt)-X(t)Y[X(t+Llt)-X(t)] X(t)}= 
&--+0+ LIt 

(4) 

Here, mi denotes the mass of the ith particle and Ii is Planck's constant 
divided by 2n. As it stands, it is connected with the definition of the dif­
fusion parameter. 

Almost all trajectories X(t) are continuous, but they are not differ­
entiable. Therefore, the velocity does not exist. The forward derivative D, 
defined in (3) can be extended to any function of X (t) by means of a Taylor 

. . 
senes expanSIOn. 

The image of the physical process which follows consists of an in­
dependent diffusion process for each particle but the mean (forward) 
velocity of any particle depends on the position of all others. The theory 
is strongly non-local and the configuration-space description becomes 
necessary. 

The transition probability P(Xt I X't'), characterizing the Markovian 
process, can be found from the forward Fokker-Planck equation. All 
what is needed is to know C and (J2 in R 3N + 1 space (coordinates plus 
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time). Then, the probability density p(X, t) is the solution of the equation: 

op (12 
at+ V(PC)-2 V 2 p=O. (5) 

In the same manner the transition probability P(X, t I X', t') can be 
found from the backward Fokker-Planck equation in terms of the back­
ward mean velocity C* and the corresponding diffusion matrix (1;. These 
two quantities are defined by using the conditional expectation with 
respect to the further state. From the general theory of Markov processes 
[3] it follows: (12 = (1; (6) 

Vp 
C-C*=(12-

p 
(7) 

All such relations are essentially kinematic. In order to introduce 
dynamics, Nelson [3, 5] has defined the mean acceleration: 

(8) 

This is a time-reversal invariant generalization of the second derivative. 
The dynamic law is obtained by postulating 

aCt, X(t)]=F[t, X(t)] (9) 

where F == {Ii"}; i = 1, ... , N; IX = 1, 2, 3) being the 3N -dimensional vector 
built from the classical force (per unit mass) which acts on particles. 

Using (7) we can eliminate C* from (9) and obtain an equation which 
connects C and p. This equation together with (5) determines p and C for 
all times if the initial values p(X, to) and C(X, to) are known. 

It was demonstrated that this system of equations is equivalent to 
SchrOdinger's equation [5, 6]. Therefore, it follows, that there is one-to­
one correspondence between quantum processes described by 
Schrodinger's equation and a certain class of Markovian processes. The 
probability density p of the stochastic mechanics is related to the Schro­
dinger ",-function with the known relation:p=I"'1 2. 

It should be stressed, nevertheless, that the equivalence obtained is 
valid only for ",¥=O (except possibly at infinity). Therefore, all the sta­
tionary states but the ground state are excluded, since they all have the 
nodal surfaces. The problem appears also in other alternative theories, 
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and the solution lies either in denying the physical relevance of these 
states [10], or in defining them as limits of the quasi-stationary states for 
which this difficulty does not arise [5]. (In measurement theory, where the 
quantum coupling between two systems determines the physical charac­
teristic of the system considered, the problem might be circumvented, 
since the action of the apparatus necessarily destroys the nodal surfaces, 
as we shall see from further discussion.) 

The stochastic mechanics, i.e. the system of equations for p and C ought 
to be completed by the measurement theory. This is also seen from the 
fact that the theory is incomplete as yet, since no rule is given for deter­
mination of the initial values p(X, to) and C(X, to). Unfortunately, at 
present we do not have a measurement theory expressed in terms of its 
own basic elements: the stochastic trajectory and the fundamental New­
tonian-type dynamic scheme. Nevertheless, the established corre­
spondence between stochastic mechanics and standard non-relativistic 
quantum mechanics enable us to explore tentatively different possibilities 
in order to see whether is it possible to think consistently of a measure­
ment process in terms of the stochastic mechanics. In this respect, we 
might take one of the following attitudes. 

(1) One might ignore the problem created by the von Neumann para­
digm and speak about the disconnected series of preparations and mea­
surements made on quantum ensembles [11]. This is not in contradiction 
with the minimal axiomatic scheme of quantum mechanics, although in 
some cases the delicate frontier between physics and semantics seems to 
play an exceptional role. This attitude is easily translated into the lan­
guage of stochastic theory. Here, we speak of the action of a measuring 
apparatus that gives rise to a change of the Markovian process, i.e. during 
the measurement process the system passes from one Markovian process 
to another. 

(2) It is possible to consider the 'wholeness' of the measurement process 
by including the position variables of the apparatus in the scheme. This 
line of thinking is two-sided: it might contain a bias towards an Everett­
like interpretation; or, the apparatus coordinates may be considered as 
determining an external field of forces, different for different measure­
ments. Then it follows immediately that two incompatible measurements 
are represented by two different Markovian processes. Contrary to the 
opinion that in this case the Brownian character of the apparatus sets a 
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limitation to the measurement precision [5J, we now think that the ap­
paratus is, from the very beginning, described by its macroscopic proper­
ties. In such case the difficulties do not lie in the overall Brownian motion 
of the apparatus, but in the impossibility of analyzing in detail the ex­
tremely complicated Brownian motion of the system during its interaction 
with the apparatus. The situation is even more complicated for the so­
called 'measurement of the second kind'. As de Broglie has pointed out 
[12J, the measurement can not always be effected by the separation of 
the wave function of the system into spatially separated wave packets and 
the subsequent detection of the particle by a mere establishment of its 
existence in one of the wave packets (this would be the so-called 'measure­
ment of the first kind', which could be treated as the setting up of a new 
Markovian process in accordance with the new knowledge acquired). In a 
'measurement of the second kind' the one-to-one correspondence is 
established between spatially separated wave packets of the 'indicator' 
particle and the states (not necessarily spatially separated) of another 
particle on which the measurement is being performed The detection of 
the 'indicator' particle in one definite region of space results sometimes 
in its disappearance, and all the information one obtains refers to its 
coupling with the surviving particle, the subsequent behaviour of which 
has to be predicted This could be a motivation for an analysis of the 
measurement process analogous to that of von Neumann in the orthodox 
theory, as well as the point at which the advocacy of measurement theory 
as a necessary part of the description of quantum phenomena finds its 
raison d'etre. 

(3) Therefore, let us consider the stochastic theory applied to the N­
particle problem. For brevity's sake we shall speak only about two par­
ticles: X(t)={Xi(t)}, i=l, 2 In this analysis we are guided by von 
Neumann measurement theory, which treats both the system and the 
apparatus as quantum objects. The stochastic variable X 2 (t) should be 
treated as the position of the 'indicator' particle, solving in such a way the 
above-mentioned difficulties concerning 'measurements of the second 
kind'. Nevertheless, we shall consider formally X 2 (t) as the 'apparatus 
coordinate', in order to be able to compare the measurement theory in 
the stochastic interpretation both with the orthodox measurement theory 
theory and with the Bohm's theory of measurement as given in his early 
papers [2]. 
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By choosing a convenient interaction with an appropriate apparatus 
we can measure different 'observables' associated with the particle. The 
apparatus position X 2 (t) is a macroscopic variable (i.e. it is considered in 
the m2 ...... CI) limit) and so the different values of an observable correspond 
to the macroscopically distinct 'readings'. We see that, just as in the case 
of the pilot-wave theory, these 'observables' do not belong to the particle 
alone, but are, in a sense, 'produced' through the interaction with an 
appropriate apparatus. But, with the one-to-one correspondence between 
possible (and directly observable) positions of the apparatus and the 
different states of the particle, it is, in principle, possible to determine the 
corresponding initial values of PI and CI after the 'reading' of the ap­
paratus, defining in such a way the Markovian process which describes 
the further stochastic motion of the particle. The information obtained 
by the measurement therefore enables us to construct the new ensemble 
to which the observed particles belong after the measurement. 

This analysis shows that the equivalence between two schemes holds 
only when the system is not subjected to the measurement In order to 
make a stochastic process correspond to the act of measurement itself, 
we must consider the larger configuration space which includes the given 
apparatus too. This point is similar to the von Neumann measurement 
theory. But now the fact that the apparatus shows a determinate 'reading' 
in any single experiment is not ascribed to an 'action of the abstract ego' 
on the otherwise complete wave function, but it translates the circum­
stance that a stochastic theory can not describe an individual event and 
it is, therefore, by definition incomplete. The necessity of using a different 
configuration space for each possible apparatus seem to vindicate in some 
measure the concept of an 'unanalyzable wholeness'. In fact, it is a con­
sequence of the non-local character of the theory. The non-locality makes 
the undisturbed observation of a system impossible. 

One notes that the position X I (t) of the particle plays a special role, 
being the fundamental variable of the stochastic theory, but the stochastic 
trajectory cannot be experimentally detected, since it is also disturbed 
by the measurement The stochastic theory should be considered as a 
'hidden motion' theory rather than a 'hidden variable' one, since it does 
not demand (but also it does not exclude) an underlying determinism. It 
is a pure particle theory whose mechanistic character may not be accep­
table to everyone, while it may be rather a point in its favor for others. 
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In conclusion we would like to point out that the stochastic inter­
pretation is a logically consistent alternative theory of microscopic 
phenomena, in the nonrelativistic approximation. Nevertheless, it is not 
altogether free from difficulties similar to those which beset the orthodox 
interpretation. 

First of all, in this case no clear criterion exists by which one can see 
that the physical system is a macroscopical one (except the m~oo limit 
and that is not sufficient~ So we cannot properly characterize the appa­
ratus starting from the fundamental dynamical scheme. This circum­
stance might be due to the fact that we lack at present the proper language 
to describe the measurement process in terms of the stochastic theory. 
Lacking that, we can only use the equivalence between the stochastic 
interpretation and the orthodox one to construct the theory of measure­
ment which is essentially a reinterpretation of the standard measurement 
theory. 

Another difficulty which remains in the stochastic theory is that the 
non-locality (manifest in tht; observed existence of distant correlations) 
is postulated through the fundamental system of equations and not ex­
plained in terms of some more fundamental physical interaction between 
the particles. This non-locality plays an important role in the theory of 
measurement, being responsible for the 'wholeness' of the process. The 
difficulty could be resolved only if there were an underlying and more 
fundamental physical theory, the present stochastic theory being only a 
first step towards its formulation. 

Nevertheless, in its preliminary form the theory may serve as a bridge 
between classical and quantum description of physical processes. It offers 
a better understanding of the relationship between methodological and 
objective elements of the physical theory by introducing the probability 
in the classical way. It does not pretend to give a complete description of 
an individual physical system and so it disposes of paradoxes such as the 
paradox of the Schrodinger's cat [3]. Further, the relation p = 11/112 follows 
from the fundamental postulates of the stochastic theory and need not be 
separately demonstrated as, e.g., on the causal interpretation [10]. 

Finally, it might be supported by the possible existence of the fluc­
tuating electromagnetic field [13], which might give rise to the stochastic 
motion of particles and at the same time be generated by this motion in 
some new kind of dynamical equilibrium. 
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However, it should be said that a fully relativistic stochastic theory does 
not exist at present, although some initial success in this direction has 
been achieved [14, 15]. 

Institute of Physics, Belgrade, Yugoslavia 
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D. BLOKHINTSEV 

STATISTICAL ENSEMBLES IN 

QUANTUM MECHANICS 

1. INTRODUCTION 

The interpretation of quantum mechanics presented in this paper is 
based on the concept of quantum ensembles. This concept differs 
essentially from the canonical one by that the interference of the observer 
into the state of a microscopic system is of no greater importance than in 
any other field of physics (see Refs. [1, 3]~ Owing to this fact, the laws 
established by quantum mechanics are of not less objective character 
than the laws governing classical statistical mechanics. 

The paradoxical nat.ure of some statements of quantum mechanics 
which results from the interpretation of the wave function as the observer's 
notebook greatly stimulated the development of the idea presented 
below. 

As early as in the initial stage of the development of quantum me­
chanics, many of these paradoxes were indicated by Professor de Broglie, 
to whom I am pleased to dedicate this paper on the occasion of his 80th 
anniversary. 

2. MACROSCOPIC SETTING 

Quantum mechanics deals with the study of the behaviour of micro­
scopic particles or their systems f..l embedded in a definite macroscopic 
environment 9Jl. This environment (in what follows called macrosetting) 
is, in its essence, specified in a macroscopic manner, i.e. by indicating the 
location of macroscopic bodies, by specifying classcal fields, the tempera­
ture of the bodies etc. 

It is obvious that measurements performed in this situation on a single 
specimen of the microscopic system yield no unambiguous information 
Measurement repeated for the same macroscopic setting 9R on a physi­
cally identical microsystem f..l will, generally speaking, lead to another 
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random result If such measurements are repeated an infinite number of 
times, and, as a result, there arises a definite reproducible distribution of 
the results, then we are concerned with a statistical ensemble. This en­
semble consists of an infinite number N (N -HI)) of reproductions of the 
settings 9Jl + f1. 

An example of such an ensemble in classical physics is the Gibbs 
ensemble in which the macrosetting is given by a thermostat Me with 
definite temperature e. The ensemble arises as a result of the reproduction 
of the settings Me + f1. The coupling between the molecular system f1 and 
the thermostat is, in this case, assumed to be weak. 

We note, that strictly speaking, the macrosetting 9Jl comprises the 
whole set of macroscopic factors, including the measuring instrument II 
and even the observer, which affect the microsystem. 

When restricting ourselves to physical effects, we can completely delete 
the observer, and then the whole macrosetting will be kept within the 
framework of physics. Under certain conditions, we can divide this setting 
9Jl into two parts; the part M which determines the state of the micro­
system irrespectively of the measuring instrument IT and the instrument 
itself: 

(1) 

Within the framework of classical physics all the measuring instruments 
providing one with the full information on the configuration of a micro­
system and its motion are, in principle, equivalent to one another, and 
thus form a unique class of instruments. This information reduces to 
indication of a point in the phase space ~(p, q~ Here by q we mean a 
complete set ql' q2, ... , qi of the generalized coordinates describing the 
space configuration of the system, and by P we mean a complete set 
Pl' Pl'···' PI of the canonically conjugate momenta describing the motion 
of the system in question. 

The distribution of the measurement results in a classical ensemble is 
given by the quantity: 

dWe(p, q)= Wo(p, q) dp dq (2) 

It is assumed that in this case the macrosetting is defined by the tempera­
ture of the thermostat e. The distribution (2) is complete, therefore all 
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other distributions can be simply derived from it by making a transforma­
tion to other variables (p' q'). 

It is worth noting that the distribution (2) contains both the charac­
teristics of the macrosetting (temperature e) and those of the microscopic 
system (dynamical variables p, q~ This emphasizes that we speak of a 
microscopic particle embedded in a certain macrosetting rather than a 
microscopic particle in itself. 

A classical measuring instrument may be arranged to be such that it will 
noticeably affect neither the system 11 under measurement nor the 
macrosetting M. Therefore in classical ensembles, when describing the 
macrosetting we may exclude the measuring instrument so that 9Jl=M. 

3. THE QUANTUM ENSEMBLE 

The ensembles of quantum mechanics differ essentially from the classical 
ones. This difference can be formulated in its shortest form by means of 
the principle of complementarity. In the language of the theory of 
quantum ensembles, this principle reads: there exists no quantum 
ensembles in which both the mean square deviation Aq; of the coordinate 

qs(s= 1,2, ... , f) and the one Ap; of the momentum Ps conjugate to it are 
arbitrarily small Mathematically this is expressed in the Heisenberg 
uncertainty relation 

(3) 

According to this principle, all measuring instruments are divided into 
two sub-classes: space-time ones and momentumenergy ones. The in­
struments belonging to the first sub-class are capable of providing in­
formation on the complete set of the coordinate variables q and thereby 
indicating a point in the configuration space 9l(q~ The instruments 
belonging to the second sub-class indicate a point in the momentum 
space 9l(p). It is impossible, in principle, to indicate a point in the phase 
space 9l(p, q) for the microsystem belonging to a quantum ensemble. By 
virtue of this division of instruments, we should in the case of a quantum 
ensemble indicate the measuring instrument II, when formulating the 
macrosetting. 

The macrosetting thus depends on the kind of the instrument, and this 
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dependence can be represented symbolically as 

IDlp=M +JIp 

IDlq=M+JIq 

IDla=M+JIa 

(4) 

where by JIp' JIq , JIa--- we mean the instruments measuring the dy­
namical variables P or q; or any others a - - -. It is seen from the scheme 
that we restrict ourselves to considering the cases when the part M of the 
macrosetting remains unaffected, in spite of the alteration of the instru­
ment This part forms the state of the micro particle in the ensemble. 
Following the Fock terminology, this is an instrument 'preparing' the 
initial state of a microparticle. 

The suggested distinction between M and JI makes it possible to 
formulate the quantum ensemble in a more narrow sense, as an inde­
pendent N times reproduction (N -+ OC!) of the setting 

(5) 

Different measurements on the same particle J1. are, generally speaking, 
incompatible. However, using an ensemble, it is possible to obtain any 
information about any simultaneously measurable variables if we divide 
N specimens of the ensemble into some parts N p, Nq, ... Na-+OC! in such a 
way that N =Np+Nq + ... +Na and each N p' N q, ••• Na-+OC!, and perform 
measurements with the aid of the instrument JI p in the group N p and 
with the aid of JIq in the group Nq and so on. 

In so doing, we find the distributions of the dynamical variables of the 
microsystem J1. embedded in the macrosetting M. We denote these 
distributions as 

dWM(p)=WM(p) dp 

dWM(q)=wM(q) dq (5') 

where p, q, ... , a are possible complete sets of simultaneously measurable 
dynanlical variables; dp, dq, .. . da, are the volume elements in the spaces 
3lip , ~(q) and ~(a~ The subscript M points to the fact that the distribu­
tions are related to the same macrosetting M. 
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It is obvious that the measurements leading to these distributions are 
performed on different specimens of the microsystem J1., J1.', J1.", ... since, 
according to the principle of complementarity it is impossible to detect in 
a quantum ensemble a specimen J1. with simultaneously defined p and q. 

For this reason the above distributions are, generally speaking, in­
compatible with one another and are related to essentially different 
p, q, ... a measurements. 

This point demonstrates precisely the difference of principle with the 
classical ensemble in which there exists only one distribution (2) of the 
complete set of variables. On the other hand, we may notice that the 
distributions (5) in the quantum ensemble contain both the microsystem 
dynamical variables p, q, ... a and the characteristic of the macrosetting 
marked by the subscript M. In this respect there is an entire analogy with 
the classical distribution (2). 

All different quantum distributions (5'), belong to the same quantum 
ensemble. It is natural to suppose that there must exist a quantity that 
characterizes the quantum ensemble ... irrespective of what kind of mea­
surement is carried out on the particle or system J1. This quantity is the 
wave function 'PM which is defined by the macrosetting M. It is a function 
of the complete set of simultaneously measurable dynamical variables of 
the microsystem J1.. Quantum mechanics is based on the assertion that 
all different distributions (5') are completely determined by the wave 
function 'PM' If the wave function is given in the space ~(p), then 

(6) 

and if it is given in the space 9l (q) then 

(6') 

A more general version of the quantum ensemble arises when the 
macrosetting is insufficiently undefined so that it does not allow us to 
assign to this setting the wave function 'PM alone. There are possible 
several wave functions 'P Mm n = 1, 2 ... , with a relative probability 
.?J'n(M). In this case the probability density is specified by means of the 
statistical operator introduced by von Neumann (also called the density 
matrix). Its matrix elements RM(q, q') are given by the formuIe 

(7) 
n 
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where q and q' are the two values of the variables q of the space 9l(q~ The 
diagonal tenn (q = q') of this operator yields the probability density 

WM(q)= I &'n(M) !'l'Mn(aW· (8) 
n 

The Neumann statistical operator RM(q, q') or the wave function 'l'M(q) 
provide a complete description of a quantum ensemble consisting of an 
infinite number of reproductions of the macrosetting M and the micro­
system Jl embedded in it. Of course, no matter whether this setting is 
created by an experimenter, as it occurs, for example, on accelerators, or 
this setting arises itself in nature. In other cases we may not be aware of 
the macroscopic conditions of M, and on the contrary, may judge of 
them from studying this quantum ensemble. An example is the investiga­
tion of cosmic rays when we attempt to establish the conditions of their 
origin from the analysis of their spectrum and composition. 

Thus, according to the theory of quantum ensembles, the wave function 
'l'M(q), or the statistical operator RM(q, q'), are objective characteristics of 
such an ensemble and make it possible to predict the results of all possible 
measurements on the microsystem Jl belonging to this ensemble. 

In this connection it should be stressed that neither the wave function 
nor the statistical operator can be measured by measurements on a single 
specimen of the microsystem Jl. 

However, in principle, they can be detennined from quantum ensemble 
measurements. 

We illustrate this by an example. Let the wave function 'l' be a super­
position of the two states 'l'1, and 'l' 2 with definite values Pi and P2 of the 
momentum, respectively. In this case 'l' = a1 'l'1 + a2 'l' 2. Suppose that, 
perfonning measurements on the particle we obtain P=Pl. However, we 
would also obtain the same result in the case when the ensemble is 
characterized by the function cp = 'l'1. Therefore, on the basis of this 
measurement we can not conclude whether the particle Jl is described by 
the wave function 'l' or cpo Only by repeating measurements many times 
can we find out that the ensemble to which our particle belongs includes 
also the values P = P2, and that there is an interference between these 
states. It is seen from this simple example that the wave function cannot 
belong to an individual particle in just the same way as the chance of a 
win is not the characteristic of the ticket itself but only shows that it 
belongs to the lottery as a whole. 
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4. PROBLEM OF MEASUREMENTS 

The problem of measurements and the related problem of the role of the 
observer were repeatedly investigated and discussed 

The formal aspect ofthe matter is well known. If the state of an ensemble 
is given by the wave function 'l'M and the dynamical quantity under 
measurement is presented by the operator Ie with the eigenvalues Ln 
and the eigenfunctions 'l'n (we consider the case when the system has a 
discrete spectrum and one degree of freedom ~ then 'l'M can be represented 
as a linear superposition 

(9) 
m 

If, after measurements, it turns out that L = Ln this superposition is 
contracted to a new function 

(10) 

As a result of reproductions of such measurements, there arises an 
ensemble described by the statistical operator 

(11) 
m 

In this case 

is the probability of that the measurements in the initial ensemble will 
yield for L the value Lm. 

There arises the question about the physical meaning of the contraction 
(10). Usually this contraction is thought of as an expression of the fact that 
after measurements of the quantity L on the micro system f1 the observer's 
information has changed Such an interpretation is allowable when we 
deal with the experiment performed by the observer itsel( However we 
suppose that the quantum description of phenomena remains valid as well 
for phenomena occurring without observer participation, e.g. radio­
active decay of atoms in nature. With such a statement of the problem we 
are unable to refer to the change of the information. We are thus con­
cerned with an objectively occurring phenomenon that may serve as the 
beginning of the chain of events up to the development of phenomena of 
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macroscopic scale. The arising paradox can be resolved only if we 
include in the quantum description together with the microsystem the 
measuring instrument and look after its action It is common opinion 
that actually this cannot be done because by uniting the instrument II and 
the microsystem f.1. into one interacting quantum system f.1. + II we should 
make use of a new instrument II' by means of which we shall investigate 
the state of the system f.1. + II etc. 

The inconsistency of this conclusion will be seen from further analysis 
of the measurement problem. The measuring instrument consists of two 
parts of different purpose: an analyser d and a detector !!). By means of 
the analyser the initial ensemble described by the wave function 'l'M (for 
simplicity we consider the case of a 'pure' ensemble) is decomposed into 
beams in such a way that the partial waves 'l'm in the superposition (9) are 
separated and each wave transforms into a beam going to the correspond­
ing detector placed in front of it Figure 1 illustrates these considerations. 

r--- ---- -- --, 
I 

5 I 

M \ 
I 

.... - _________ J 

r---- -- - - - - - - -- ----, 
: A 
I 
I 
I 

I 
I 
I 

: n=A+D 
~-----------------
Fig. 1. 

Q is a source of particles, s is a diaphragm with aperture, the left-hand 
area surrounded with the dotted line contains a macrosetting M that 
defines the ensemble of particles. The beam of these particles strikes a 
crystal d that yields a spectrum t/I b t/l2'.... This crystal serves as an 
analyser d and together with the detector!!) consisting of a few counters, 
!!) I!!) 2 constitutes a measuring instrument II = d +!!). This instrument is 
shown in the right-hand part of the figure. 

It is essential that the detector is a macroscopically unstable system. 
This is clear from the argument that the micro particle f.1. may have neither 
the energy nor the momentum sufficient for a macroscopic device to be 
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put into operation (for example, the microparticle cannot deflect the 
pointer in a meter~ If the microparticle had such an ability then we would 
consider it as a macroscopic object However, a micro particle can induce 
a macroscopic phenomenon if the device with which it interacts is macro­
scopically unstable. In this case the interaction of the particle f.1 with the 
detector begins, of course, at the level of a microscopic quantum phenom­
enon that then develops up to the level of a macroscopic phenomenon. 
This event is precisely the contraction of the wave packet that occurs due 
to the result L=L", obtained from measurement The 'contraction' (10) 
considered from the microscopic point of view has the character of an 
explosion, initiated by an atomic quantum phenomenon. Notice that 
all detectors are really macroscopic unstable systems (electrically, 
chemically or thermodynamically~ It is enough to recall a Geiger coun­
ter, the blackening of grains in a photographic emulsion, a Wilson cloud 
chamber or a bubble chamber. Summarizing, we may say that the quan­
tum measurement ('contraction') consists in initiating a macroscopic 
process in a macroscopically unstable system. In this analysis not one 
word has been said about the observer. It is clear that the situation de­
scribed consists in that the macrosetting 9R = M + q) which contains a 
macroscopically unstable element q) can be realized in nature in itself 
without any participation of the experimenter. Supplementing of the 
instrument II = d + q) with a new classical one II' will, of course, in­
troduce nothing new since in q) there already developed a macroscopic 
event which demands no quantum description. From this viewpoint the 
operation of the measuring instrument II can be considered by the 
methods of quantum mechanics. However, uniting the microparticle f.1 
and the measuring instrument we are obliged to describe the new ensemble 
by means of the statistical operator R(q, Q, I q'Q') depending on the 
dynamical variables of the particle q and the variables Q describing the 
measuring instrument, more exactly, the detector q). 

The wave function alone will, in this case, be insufficient since the 
detector is a macroscopic system. At the initial moment t = 0 the statistical 
operator R can be represented in the form of the product 

Ro(q, Q, q'Q')=ro(q, q') Ro(Q, Q'), (13) 

where ro is the statistical operator describing the microsystem at the 
moment t=O and Ro is the operator describing the detector also at t=O. 
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Owing to the effect of the microsystem on the detector, with the passage 
of time, the statistical operator R will change. Knowing at the initial 
moment its matrix elements (13) from the equation 

aft. __ 
-at + [HR] =0 (14) 

we can find the statistical operator R at t ..... H.X). In Equation (14) the 
operator H denotes the interaction energy between the particle J1. and the 
detector ~, [ ] are the Poisson brackets. If the detector ~ is unstable 
then at t-+oo the matrix R(q, Q, q', Q', t) will describe a new macroscopic 
phenomenon, e.g. an electric discharge in the Geiger counter. 

In conclusion we give a simple example illustrating the ideas presented 
in this section 

Let the state of the microparticle J1. in an ensemble be described by a 
standing wave: 

If'M(X)= ~ (eikx+e-ikx), (15) 

where x is the particle coordinate. We consider a detector which should 
answer the question about the sign of the particle momentum k. As such 

U (Q) 

Fig. 2. 
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a detector we take a macroscopic ball of mass M and place it at the top of a 
cone. This ball is supposed to scatter It particles. Since the ball is in un­
stable equilibrium the scattering of a particle with momentum k will push 
if off from the top of the cone, say, to the right, and the scattering of a 
particle with momentum to the left The particle scattering initiating the 
fall of the ball is a quantum phenomenon However, when falling the ball 
acquires a large energy and the quantum phenomenon develops up to the 
level of a macroscopic phenomenon This is precisely the action of our 
detector. Figure 2 is an illustration of the above considerations, where 
V(a) is the potential energy of the ball, Q is its coordinate. The scattering 
of a particle with momentum ±k gives an impact to the ball and knocks 
it out from within a small hole at the top of the cone. The stage of the ball 
far off the cone (at IQI-?oo) is, within an arbitrary accuracy, described by 
the calssical action function S(Q~ 4>+ and 4>- are the asymptotic wave 
functions of the ball equal to exp ± (iii!) S(Q} They do not interfere with 
each other. 

Another example, which we can calculate, may be a thermodynamically 
unstable system Let us assume that in the sites of a plane lattice there are 
located charged particles that oscillate about the equilibrium state in the 
plane x, y. We also assume that the initial state for t=O is such that the 
oscillations along the axis ox occur at a certain temperature f) and the 
oscillations along the axis oy are frozen in such a way that their tem-

y 
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Fig. 3. (a) Thermodynamically unstable oscillation of the lattice along the axis ox at 
a temperature 0 while the oscillation along the axis oy occurs at 0=0. (b) Circular 

oscilla tion of the lattice after the interaction with the Jl particle, the 
temperature is now 0/2. 



158 D. BLOKHINTSEV 

perature is zero, e' =0. Thus, the system is thermodynamically un­
stable. 

If a microparticle jJ. having magnetic moment penetrates into this 
medium it serves as a dust particle that provides exchange of energy 
between two degrees of freedom of the lattice particles, and at t-HXJ the 
temperature of the lattice falls down to 0/2 The action of the detector 
consists, in this case, in.. lowering the temperature of the lattice. 

Detailed mathematical calculations for both kinds of detector, 
mechanically and thermodynamically unstable ones, are given in the 
papers of the author [2,4]' 

BIBLIOGRAPHY 

[I] Blokhintsev, D. l., Mecanique quantique. Edit. Masson et Cie, Paris 1967; Quantum 
Mechanics, D. Reidel Pub!. Company, Dordrecht, 1964. 

[2] Blokhintsev, D. I., Principes essentiels de fa Mecanique quantique. Monographies 
Dunod, Paris (1967); The Philosophy of Quantum Mechanics, D. Reidel Pub!. Company, 
Dordrecht, 1968. 

[3] Blokhintsev, D. l., 'Otwet academiku V. A. Foku', Voprosy filosofii N6 (1952), 171. 
[4] Blokhintsev, D. l., Uspekhi fizicheskih nauk 95 (1958), 75. 



SATOSI WATANABE 

CONDITIONAL PROBABILITY IN 

WAVE MECHANICS* 

In his paper of 1948 [1] and in his book of 1956 [2] Louis de Broglie 
stressed that the ordinary relationship between joint probability and 
conditional probability no longer holds in wave mechanics, and that the 
difference lies above all in the definition of the joint probability of two 
physical quantities which are not simultaneously measurable. What is 
still more important, he showed that the double solution theory is not 
subject to this difficulty. He is certainly right in emphasizing this problem 
of joint probability and conditional probability, since it is the centre ofthe 
curious features of wave mechanics, which should be dealt with first if we 
wish to attempt an improvement of its ordinary interpretation 

We do not propose, however, to introduce any theoretical novelty with 
regard to probability in this paper. We will remain within the frame­
work of ordinary wave mechanics and will analyze not only the theoretical 
positions of conditional probability and joint probability, but also the 
algebraic structure, that is the 'logic' which exists in the set of experimental 
propositions of wave mechanics. 

We start by the introduction of three types of 'products' which can be 
defined amongst the 'propositions', A, B, C, etc. 

(i) A 'followed by' B: 

B· A (1) 

(ii) A 'and then' B: 
<-

BnA (2) 

(iii) A 'and' B (conjunction): 

BnA. (3) 

In general the product 'followed by' obeys the associative law, but does 
not necessarily obey the idem potential law nor the commutative law. If a 
proposition obeys the idem potential law, A· A = A, we call it 'simple 
proposition'. If two propositions satisfy the commutative law, they are 

M. Flato et al. (eds.), Quantum Mechanics, Determinism, Causality, and Particles. 159-165. All Rights Reserved. 
Copyright ©1976 by D. Reidel Publishing Company, Dordrecht-Holland. 
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said to be 'compatible'. The compatibility relationship is symmetrical 
and reflexive but not transitive. 

The product 'and then' in general obeys neither the idem potential law 
nor the associative law nor the commutative law. If the proposition is 
simple, it obeys the idem potential law with regard to the product 'and 
then' also. If A and B are simple and compatible, they satisfy the commu­
tative law in the sense of the product 'and then'. If three propositions are 
simple and compatible in pairs, they satisfy the associative law with 
regard to the product 'and then'. 

The product 'and' or the conjunction satisfies the associative law. If the 
propositions intervening are simple (not necessarily compatible~ all 
three laws hold good with regard to the product 'and'. If A and Bare 
simple propositions, the product A 'and' B is also a simple proposition. 

A physical quantity Q can in general be expressed in the form: 

(4) 

where qk is an eigenvalue of Q, and P(IPkJ is the projection operator for 
the eigenfunction (vector) corresponding to q", If there is a mUltiplicity in 
the eigenvalues we can write 

(5) 

where P[MI'J is the projection operator for the subspace determined by 
the eigenfunctions corresponding to the degenerate eigenvalue ql" The 
projection operator is a Hermitian matrix having eigenvalue 0 or 1, that is 

The dimension of the subspace is given by 

D/L=trace P[MI'J. 

(6) 

(7) 

The observation proposition is of the form: The quantity Q has the value 
q/ We can therefore make the operator P[MI'J correspond to this 
proposition. The propositions considered above are not limited to this 
type of observation propositions. But we always suppose that there is a 
matrix corresponding to a proposition, and we use the same symbols A, 
B, C, etc also for the matrices corresponding to the propositions. 

In terms of matrices, the different connectives introduced above are 
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written: 

A-B=AB 

A,.!iB=ABA 
AnB= ... ABABABA ... 

(8) 

(9) 

(10) 

If A and B are projection operators, the product 'followed by' is not 
necessarily a projection operator. If A is a projection operator, it satisfies 
the idem potential law in the sense of the product 'followed by' as a 
consequence of (6). The observation proposition is therefore a simple 
proposition. Compatibility corresponds to the commutative property of 
matrices. The product 'and then' of two Hermitian operators is Hermi­
tian. But the product 'and then' of two projection operators is not nec­
essarily a projection operator, but it is a Hermitian operator with non­
negative eigenvalues. All that has been said about the idem potentiaL 
commutative, and associative laws with regard to the product 'and then' 
follows from the definition of this connective in terms of matrices. The 
fact that the product 'and' satisfies all three laws, provided that the 
operators concerned are projection operators, requires a proof, but the 
reader will find this in my book Knowing and Guessing [3]. It is important 
to note that if we limit ourselves to commutative operators, all three 
connectives become identical. 

It is to be noted that the class of Hermitian operators with nonnegative 
eigenvalues is closed with regard to the connective 'and then', and that 
the class of projection operators is closed with regard to the connective 
'and'. The class of commutative projection operators is closed with 
regard to each of the three connectives' that are equivalent in this case. 

The operator 'zero' 0 and the operator 'all' Dsatisfy the following laws: 

0·A=A·0=0 
+-

0nA=An0=0 

0nA=An0=0 

D·A=A·D=A 

DnA=AnD=A 

DnA=AnD=A. 

(11) 

The matrix corresponding to 0 is the matrix with all coefficients zero, 
and the matrix corresponding to D is the identity matrix I. The matrices 
o and D are Hermitian, simple, and commute with all matrices. 
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The negation operation is defined by the following laws: 

(i) 
(ii) 
(iii) 

I (IA)=A 
AnB=A is equivalent to IAn IB= IB 
If IAnA=A, then A=0. 

In terms of matrices, the negation can be written: 

A=I-A. 

The connective 'or' or disjunction can be defined by: 

AuB= 1(IAn IB). 

(12) 

(13) 

(14) 

It can be shown that the simple propositions obey the absorptive law: 

An(AuB)=A. (15) 

We have in addition formulae which are obtained from those already 
given, by simultaneous replacement of n by u, u by n, and a proposition 
by its negation. We can thus show that the simple propositions form a 
lattice. We cannot, however, prove the distributative law. The lattice is 
therefore nondistributive. If we restrict the discussion to those proposi­
tions which are mutually commutative in pairs, the lattice becomes 
distributive. 

The probability that we shall obtain the affirmative result by observa­
tion of A in a system which is in state Z is given by: 

p(A; Z) = trace (A . Z), (16) 

where Z is a Hermitian operator with nonnegative eigenvalues which is 
normalized: 

trace Z= 1. (17) 

A special state Zo known as the 'neutral state' is defined by: 

Zo=I/trace I. (18) 

If we consider only simple operators and the neutral state, it can be 
shown that: 

p(A; Zo)+p(B; Zo)=p(AnB; Zo)+p(AuB; Zo) (19) 
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satisfying the fundamental axiom of probability: 

prob(A) + prob(B) = prob(A nB)+prob(A u B) (20) 

This is evident since p(A; Zo) is proportional to the dimension of the 
subspace corresponding to A. 

As we have shown elsewhere (Knowing and Guessing, pp. 367, 464 and 
504) there is however an anomaly even in the case of the neutral state. If 
we derive four conditional probabilities: 

p(A I C; Zo)=p(AnC; Zo)jp(C; Zo) 

p(B I C; Zo)=p(BnC; Zo)jp(C; Zo) 

p(AnB I C; Zo)=p(AnBnC; Zo)/p(C; Zo) 

p(AuB I C; Zo)=p((AnB)nC; Zo)jp(C; Zo) 

(21) 

they do not satisfy the fundamental axiom of probability (20) unless the 
propositions A, B, and C satisfy the distributative law. Since we do not in 
general have this law included in the observation propositions, we con­
clude that conditional probabilities do not exist even in the most favour­
able case of the neutral state Zoo If we restrict the discussion to simple 
compatible propositions, the quantities defined in (21) behave as true 
conditional probabilities. 

It must be noted that use can be made ofthe fact (Knowing and Guessing, 
pp. 450 and 494) that it is possible to define a (nonconditional) probability 
by means of (19) in order to show that in the finite dimensional case the 
lattice is modular, i.e. that: 

An(Bu C)=(A nB)u C 

if C=CnA. 

(22) 

If we use a state Z which is not neutral in (16), we cannot prove a 
formula of type (19), showing that probability cannot in general be 
defined in this latti.ce. If we restrict the discussion to distributative sub­
lattice, we can define not only the simple probability but also the condi­
tional probability. 

We come finally to the question of successive observations. For this 
purpose it is necessary to know how the state Z changes after an observa­
tion If we make an observation to determine whether A or not-A on a 
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system in state Z, and if we obtain an affirmative result, Z becomes Z' 
given by: 

Z' = AZA/trace(AZA). 

The probability of obtaining this result is, from (16): 

p(A; Z) = trace (AZ) = trace (AZA). 

(23) 

(24) 

We now make a second observation to determine whether B or not-B 
on the system which is now in state Z'; the probability of an affirmative 
result will be: 

p(B; Z') = trace (BZ') = trace (BAZA)jtrace (AZA) 

= trace (ABAZ)/trace (AZA). 
(25) 

The joint probability of result A and then result B will be given by the 
product of the two probabilities (24) and (25), i.e. 

p(A and then B; Z) = trace (ABA· Z) (26) 

This joint probability is thus formally equivalent to the probability of 
observation of ABA on the initial state Z (although ABA is not a projec­
tion operator~ It will be seen why we have called ABA 'A and then B'. It 
is precisely this joint probability that L. de Broglie considered in his 
discussion In wave mechanics, according to the usual interpretation, we 
can construct three joint probabilities for A and B, all different: the 
probability of A and then B: trace (ABA· Z); the probability of B and then 
A: trace (BAB Z); and the probability of A and B: trace ( ... ABABAB ... Z). 
These three coincide when A and B are compatible. 

We finish this short paper by mentioning that Z is the sum of several 
projection operators with nonne~ative weights. Thus, for a discussion 
of the logical structure of the propositions, there is no need to distinguish 
Z from other operators such as A, B, C, etc. The 'logic' is thus isomorphic 
with the algebra of projection operators and the probability is given by 
the trace of a product of projection operators. We would also mention 
that Z' becomes the projection operator A if Z is Zo, except for normaliza­
tion 
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NOTE 

* Translated from the French by N. Corcoran. 
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ROBER T L. ANDERSON AND JOHN G. NAGEL 

CLASSICAL ELECTRODYNAMICS IN TERMS OF A 

DIRECT INTERPARTICLE HAMILTONIAN 

ABSTRACT. A usual-time Hamiltonian formalism for the Wheeler-Feynman Theory of 
Classical Electrodynamics is presented in which: (i) momenta canonically conjugate to the 
particle coordinates are defined and the associated problem of the inversion of these 
defining relations for particle velocities in terms of the particle coordinates and canonical 
momenta is formally solved; (ii) the equations of motion for the canonical variables are 
expressed in the Hamiltonian form; (iii) the usual definition and properties of the Poisson 
bracket are preserved. There are two new and essential properties of the Hamiltonian in 
this theory: (i) it is a functional of the canonical variables, as well as a function of them; 
(ii) in general, it is not conserved in time. 

1. INTRODUCTION 

The physical importance of the Wheeler-Feynman direct interparticle 
action theory of classical electrodynamics 1-4 lies in the fact that: (i) the 
dynamical equations of motion which characterize the theory can be 
derived from the relativistically invariant F okker action principle 3; (ii) all 
the results of the Maxwell-Lorentz electrodynamics can be reproduced 
by employing the Wheeler-Feynman absorber theory of radiation 4; (iii) 
the solutions of Dirac s and Gupta 6 to the problem of the elimination of 
the self-energy are built into this theory and the physical origins of these 
solutions are described by the absorber theory of radiation. 

In the past, the obstacle in this theory to the development of a usual­
time Hamiltonian formalism in which particle coordinates appear as 
canonical variables was the proper identification of observable momenta 
canonically conjugate to the particle coordinates 7. The essential mathe­
matical problem is to invert the defining relations for the canonical 
momenta and express the particle velocities in terms of the canonical 
variables. The essential physical problem is to argue the observability 
of the canonical momenta 8. In this paper a formal solution to this 
problem is presented which then permits a usual-time Hamiltonian 
formulation of the theory. 

M. Flato el af. (eds.) , Quantum Mechanics, Determinism, Causality, and Particles, 167-178. All Rights Reserved. 
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2. ONE-PARTICLE LAGRANGIANS, MOMENTA, 

AND HAMIL TONIANS 

First, it is necessary to state the Wheeler-Feynman theory, hereafter 
referred to as the W-F theory, in the language of one-particle Lagran­
gians, momenta, and Hamiltonians. The W-F theory 4 is characterized 
by a Poincare invariant n-particle direct interparticle functional L(t1' t2) 

of the form 9 

L(t1' t2)=L[xaU), ~J= 
12 

= at1 f dt 2'a(X~(t))+ 
t2 t2 

+! a,t 1 f dt f dt' 2' ab(~ab(t, t/), ~~b(t, t')), (1) 
tl tl 

where 

(2) 

(3) 

(4) 

and the parameter t is equal to the usual time. Because the interaction is 
not propagated instantaneously from one particle to another the direct in­
terparticle functional L(t 1, t2) plays a dual role 10. First, the requirement 
that in the limit t 1 -+ - 00, t 2 -+ + 00 the vanishing of the fixed end-point 
and interval of integration variation of L(tb t2) yields the equations of 
motion (Fokker action principle). This requirement can be stated as 

. DL 
hm -=0, 

12-+ 00 DX~ 

which implies the 4-vector equations of motion 

(a= 1, ... , n) 

(5) 

(6) 
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where 00 

La{t}=2"At}+ I f 
b"'a 

dt' 2" ab{t, t'). (7) 

-00 

Formally, La(t) may then be considered as a one-particle Lagrangian 11. 

If one-particle 4-momenta Pall(t) are defined by the relation 

(8) 

where 
d:) 

Aall(t)= 2: eb f dt' !5(~;b(t, t')) x;J«t'), 
b"'a 

(9) 

-00 

then formally there exists a one-particle Hamiltonian Ha(t) defined by 

(10) 

and a set of Hamilton's equation for each particle, i.e., 

(11) 

This follows immediately by comparing Equations (1 H 11) with the cor­
responding equations for the theory of a charged particle in a given 
external field 12. 

Second, the fact that the general variation of L(t 1> t2 } vanishes identical­
ly under an infinitesimal Poincare transformation coupled with its 
evaluation along physically allowed particle trajectories yields the ten 
conservation laws 13 of 4-momentum, angular momentum and center of 
energy 14. This furnishes, in particular, the connection between the one­
particle momenta and the conserved 4-momentum, i.e., 

GO t t 00 

pll(t) = ~ p,:(t) + ~~ e~eb {f dt' f dt- f dt f dt} x (12) 

-co - 00 

This expression shows that, in general, the one-particle momenta are 
neither separately nor when summed conserved in time. 
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3. USUAL-TIME HAMILTONIAN FORMALISM 

Now, we are in a position to state the essential physical result of this paper, 
namely, our assertation that the usual-time Hamiltonian H (t) for the 
W-F theory is given by the following equation 

(13) 
a 

The validity of this assertion rests on three properties of H(t~ First, there 
exists a set of canonical momenta in the sense of a Hamiltonian formalism, 
ie., the defining relations Pai=aLJax~ for the set of one-particle 3-
momenta are invertible for the x';'s, each of which becomes a function of 
the corresponding x~'s and ~'s and a functional of all the xl's and p{,'s. 
This is the essential mathematical result of this paper and is proven in 
subsequent paragraphs. This result implies that H (t) can be expressed as a 
function and a functional of the set of canonical variables {x~, p~}~= 1. 

Second, H (t) reproduces the equations of motion in the Hamiltonian 
form. This follows because H (t)is a function of any canonical variable only 
through its corresponding one-particle Hamiltonian. Otherwise, H (t) is a 
functional of each canonical variable, but this functional dependence does 
not make any contribution under the operation of partial differentiation 
w.r.t any canonical variable. As previously pointed out, this property 
follows from the mathematics of a charged particle in a given external 
field Third, the time rate of change of any observable F is given by 

(14) 

where 
(15) 

is the usual Poisson bracket This follows immediately from Hamilton's 
equations of motion. 

4. INVER TlBILlTY OF THE DEFINING RELA TIONS FOR THE 

CANONICAL MOMENT A 

We shall now establish the invertibility of the defining relations for the 
one-particle 3-momenta Pai=aLa/ax~ and hence show they are the 
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momenta canonically conjugate to the particle space coordinates x~'s. In 
order to invert these defining relations, we first pass to the multiple­
proper time parameterization of the system Rewriting Equation (8) in 
this parameterization yields 

(16) 

-00 

where 
1 

II~ (Ta) = P;:(t), y':(Ta)=X~(t), dTa =- J goox;:(t) x~,,(t) dt, 
c 

and 
(17) 

d 

Equation (16) can now be written as 

II~(Ta) ( ) Y~(Ta) 
--= 1+1 --, 

mac C 
(19) 

where we have introduced the integral operator 

(20) 

-00 

such that its action is defined as follows 

00 

= L eaeb f dTa b([Ya(Ta)- Yb(Tb)]2) X 
b*a mac 

-00 

xf(mb' Yb(Tb) Yb(Tb), IIb(Tb))' (21) 

Now, formally if(1 + It 1 exists, we have 

;,u II" 
~=(l+Itl_a 
C mac 

(22) 
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which implies 

x;: (1 + It 1 n~/maC 

C J1+[(1+1) 1 Ua/maC] 2 , 

(23) 

where 

This is applicable for strong as well as weak coupling if (1 + It 1 exists. 
Now, in order to obtain an equation which determines the action of 
(1 + It ion the canonical variables {x~, p~}~= 1 in terms of these variables, 
we first rewrite the integral operator I in a form which involves the 
parameter t and the xa(t)'s apd x~(t)'s, namely, 

00 

1= L f dtl eAHb(tl-t~)+b(t' -t'R)] J1-(Xb(tl)/C)2 
b*· moc21~. b(t, tl)1 [1 + [sgn(tl - t)~. b(t, tl). x~(t')/c]' 

-00 

(25) 
where 

(26) 

and 

(27) 

Note the denominator in Equation (25) never vanishes because all 
particle world-lines are time-like. Equations (23) and (25) now combine to 
yield an integral equation for (1 + It 1 in terms of the x~'s and p~'s, 
namely, 

where 

00 

1=(1+lt1 1+ L dt l 0 b2 A R X { f ee 1. [15 (tl - tl ) + 15 (tl - tl )] 

b*. mocTI~'b(t, tl)1 
-00 

Wb(tl) 
X 

1 + [sgn(t' - t)] ;'b(t, tl). [(1 + I) 

(29) 



A DIRECT INTERPARTICLE HAMILTONIAN 173 

Under the assumption that (1 + It 1 exists, the integral equation (28) is 
exact and hence the solution for (1 + It 1 inserted into Equation (23) 
yields the desired inversion of the equations Pai(t)= oLa(t)/i3x~(t), irre­
spective of the strength of the interaction 15, 

If 

for all t, then Equation (28) can be rewritten as 

where 

and 
1 00 

(I+It 1 =-= L (-1)' Jr, 
1 +1 r=O 

(30) 

(31) 

(32) 

(33) 

Equation (31) evidently holds for many relativistic particle configurations 
but the rigorous limits of validity of it must yet be established We are 
presently investigating, using both analysis and computer experiments, 
the connection between Equation (31) and the particle configuration in 
which the set of dimensionless dynamical quantities 

± _ eaeb Jl-(x;'/c)2 
'lab mac21~bl [1±tb'x;'/c]' 

(34) 
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is such that rtab < 1 for almost all velocities and advanced and retarded 
separations. This condition is of interest because it would insure that 
Equation (30) would apply for almost all times. 

In the case that Equation (31) holds, its solution 16 when substituted 
into Equation (23), then constitutes the solution to the problem of the 
inversion of the defining relations for the canonical momenta for the 
W-F theory. The expression for the Hamiltonian H(t) in terms of the 
canonical variables and t readily follows. 

5. OBSERVABILITY OF THE CLASSICAL CANONICAL MOMENTA 

The observability of the canonical momenta Pa{t) reduces to that of the 
one-particle electromagnetic potentials Aa{t). These potentials do not 
involve, as does the conserved momentum, the electromagnetic momenta 
in transit between the particles at the time t, and are therefore, in principle, 
observable. In the last section we comment on the situation that pertains 
in any quantum version of this theory. 

6. TWO-HAMILTONIAN THEOR Y 

For interacting systems in the W-F theory, we then have in effect two 
Hamiltonians. One is the quantity La Ha{t) which plays the role of 
generating the canonical equations of motion and is in general not 
conserved while the second pOe generates the one-parameter Poincare 
time-translation group and is conserved This situation translates into 
the statement that Hamilton's equations of motion for this theory are not 
actively Poincare covariant 17. 

7. REMARKS ON THE PROBLEM OF THE QUANTIZATION 

OF THE W-F THEORY 

The intertwining of Einstein's 18 Principle of Special Relativity and the 
usual-time Hamiltonian formalism of classical particle mechanics 
presented here suggests a starting point from which to attempt to build a 
relativistic quantum theory of directly interacting charged particles 
either in the tradition of the wavemechanics of Einstein 19, de Broglie 20, 

and Schrodinger 21 or an adjunct quantum field theory as proposed by 
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Wheeler and Feynman 4. We would like to make a few remarks on these 
possibilities. 

The adjunct field approach was developed in an attempt to eliminate 
the theoretically unsatisfactory necessity for employing Renormalization 
Theory in order to remove the infinite self-energies in Quantum Electro­
dynamics. One difficulty encountered by Feynman in quantizing their 
theory was that he discovered that the 'energy' levels were complex 7. We 
believe that this is explained because he employed the potentials which do 
not account for the energy in transit and therefore in effect he employed 
Hdynamical= La Ha(t) which does not correspond to the total conserved 
energy of the system. It is suggested that perhaps the potentials augmented 
by the expressions for the energy in transit should be employed to con­
struct the adjunct fields. 

The above suggestion that Hconserved =poc is the quantity to focus upon 
is not only motivated by general principles, but also, more concretely, 
by the results of Andersen and von Baeyer 22 on the Bohr quantization of 
the two-body circular orbit solutions of Schild 23. As they point out, their 
result coincides exactly with the 0(4,2) infinite component wave equation 
approach of Barut and Baiquini 24 and Fronsdal 25 and with the Dirac 
formula for orbits with minimum eccentricity 26. 

Any attempt to imitate Dirac 27 in order to find a relativistic wave 
equation in which Pai-+ -goo (Ii/i)/(%x!) immediately poses at least two 
major questions of interpretatioll One is that H dynamical= pO c, where pO is 
given by Equation (12), when written in terms of the canonical variables 
{xa' Pa}:= 1 raises, the question of the interpretation of the operators 

(35) 

where Aa now also depends on the particle gradients. The other major 
question is how the advanced and retarded times are to be dealt with in 
such an approach. 

Finally, we would like to point out that the observability of the canoni­
cal momenta follows, since the arguments of Aharonov and Bohm 28 

concerning the observability of the electromagnetic potentials Aa are 
applicable in any quantum version of this theory. 
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THEORY OF ONE-DIMENSIONAL RELATIVISTIC 

ELASTIC CONTINUUM FOR THE MODEL OF 

PARTICLES AND RESONANCES* 

1. INTRODUCTION 

Motivated by the desire to restore a concrete picture for elementary 
particles in the frame of space-time in accordance with the tradition of 
Cartesian clarity, de Broglie and his group explored the possibility of 
classifying and of synthetizing various elementary particles by a structure 
extended in Minkowski space. Actually they focussed upon the rotational 
motion abstracted from the internal movement of the supposed extended 
structure and constructed 'relativistic rotator model' [1,2] an appealing 
property of which is the feasibility of explaining spin and isospin in­
cluding half integer eigenvalues. 

More recently a relativistic extended model for baryons and mesons 
has also been explored along the line in which Yukawa's bilocal model is 
generalized to a multilo,?al model, which performs dilatations and vibra­
tions as well This model has proved to have favorable features, such as 
linear trajectories and reasonable form factors in agreement with experi­
ment [3,4]' 

Generally speaking a relativistic extended system cannot be a rigid 
body, because of relativity, but must be a certain elastic system with 
internal cohesion in order to remain a finite continuum in course of its 
movement. Thus its size must depend on the state of motion and may vary 
during the motion. A simple and primitive example of such a relativistic 
extended model should be a one-dimensional elastic continuum ('string'). 
Indeed this is in a sense the most natural extension of the traditional point 
model which has hitherto been the basis of the usual theory of elementary 
particles. Recently it has been shown [5, 6] that such a 'string' taken as a 
model ofhadrons has the capability of deriving the Veneziano amplitude 
and its multiparticle generalization, which had just been proposed from 
S-matrix point of view to satisfy the concept of 'duality' for hadronic 
reactions [7]. The duality between direct channel resonance formation 
and Regge pole exchange is an important concept and might be compared 
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to the celebrated wave-particle duality in wave mechanics, but it thus 
becomes plausible to interpret the new duality just as a characteristic 
feature of a certain extended structure. Moreover the picture that rota­
tions and vibrations of a relativistic string underlie the sequence of 
hadronic states is reminiscent of de Broglie's imagination fifty years 
ago [8] that the stationary material waves inside the atom underlie the 
observed discrete energy levels of atoms. 1 

Now the theory of the relativistic string was originally formulated 
directly at quantum-mechanical level by the set of a wave equation and an 
infinite number of subsidiary conditions~ or equivalently by a super-wave 
equation (called detailed wave equation) [9]. It is, however, relevant to 
reconstruct the theory by first establishing the classical theory of a 
relativistic string explicitly and then quantisizing it, because this makes 
the correspondence-theoretic foundation and realistic interpretation of 
the theory clearer, even though the final ingredients of the theory are 
the same as in the original one. In fact some of the subtle points in 
the theory of relativistic string lie in the classical level of theory, and 
even the problem of 'ghost' has its classical root. Though such recon­
structions ofthe relativistic string theory have been investigated by several 
authors [1~15], we construct the theory in the present paper in a more 
general and unifying framework and give deeper analysis of the theoretical 
foundation Since we need to treat a relativistic movement performing a 
finite deformation our string theory cannot be immediately surmised from 
the conventional theory of non-relativistic string. Strangely, it does not 
seem that such a theory had been elaborated by relativists even at the 
classical level. 

We distinguish between 'realistic viewpoint' and 'geometric viewpoint'. 
First we establish the string theory in the realistic viewpoint, where each 
elementary constituent (say 'parton') of the string has three degrees of 
freedom The most general and flexible representation of this theory is 
given in the 'partial general-covariant form'. Then by choosing a suitable 
gauge we obtain the 'Lorentz-covariant formalism'. Taking another gauge 
we get the equivalent non-covariant formalism which directly exhibits the 
physical meaning of theory. Next we consider the string theory in the 
geometric viewpoint The model obtained differs from the realistic model 
above mentioned because here each 'parton' has only two degrees of 
freedom and represents the case of vanishing intrinsic parton mass. 



ONE-DIMENSIONAL RELATIVISTIC ELASTIC CONTINUUM 181 

The relationship between the 'realistic' and 'geometric' models is quite 
analogous to the relationship between the de Broglie-Proca field for 
massive 'photon' (or vector meson) [16] and the Maxwell field We show 
that the geometric model can be regarded as the singular limiting case of 
the realistic model The internal motion of the latter can be restricted to 
transversal ones by a certain physical constraint, and then we have a 
smooth passage from the realistic to the geometric models. We classify 
and explicitly illustrate actual movements of the relativistic string, to 
verify concrete picture. We find that our string model implies a striking 
realization of 'relativistic rotator model' by its states on the leading 
trajectory as well as by some other states. 

Finally we briefly state about quantization and interactions, and also 
give some general remarks. 

2. REALISTIC VIEWPOINT 

A motion of a finite string traces a two-dimensional timelike world strip 
bounded in the spacelike direction but unbounded in the timelike 
direction We represent it as 

x,,=x,,(O",'t"), 11=1,2,3,0 (2.1) 

with the aid of two independent parameters 0" and 't", where 0" runs over a 
finite domain [0"0' 0"1] while 't" over ( - 00, 00 ~ The geometrical quantities 
intrinsic to the world strip are the line element on it (dxy = G~p d'~ d,p 

and the surface element J - Do dO" d't", where 

Do = G11 GOO - (G10)2; G~p = g"v(ax"/a,,)(axv/a,p), 

('1=0",'0='t", rx.,j3=1,0). 

For the Minkowski metric g"v weusegllv ="IlV(1, 1, 1, -1) 2. GOo = (axjarf , 
Gll = (ax,,/aO")2 and G10 = (axjaO") (axll/a't") are the first fundamental 
quantities of the surface, forming the fundamental tensor of a 2-dimen­
sional Riemannian space, and have to satisfy 

(2.2) 

because the strip is timelike. At any point on the strip there exist two light-
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like directions, lying on the strip, given by 

d!/da={ -G10±J -Do)/Goo . (23) 

It is at first important to distinguish between the 'geometric viewpoint' 
and the 'realistic viewpoint'. In the former the world strip alone has 
physical sense such that one world strip is regarded to represent one and 
the same motion of the string, whereas in the latter viewpoint one and the 
same world strip corresponds to many different motions of the string 
corresponding to the situation that the same strip is woven by world lines 
differently. Henceforth we take this realistic viewpoint (For geometric 
viewpoint see Section 5.) Then a in (21) means the parameter to label each 
elementary constituent of the string, and hence it must always be a Lorentz 
scalar. The strip is interpreted as a bunch of world lines each correspond­
ing to a=const. (This interpretation assumes that constituents are 
distinguishable at least in classical theory.) To preserve this meaning of a 
the arbitrariness of the parameters (a, !) is limited within the transforma­
tion [15] 

(2.4) 

Even more specifically we may consider the string as the N -> 00 limit of 
the linear multilocal model which consists of N spacetime points x~) 
(IX = 1, ... , N) subject to 'relativistic Hooke potential' between neighbours 
[6, 4]. Then a is the relabelling of IX by a = (a 1 - a 0) IXI N + a 0, and we can 
interpret that dal(al -ao) is the relative particle number (or say 'parton 
number') contained in da. In so far as we keep this physical meaning of a, 
a is essentially fixed and we are not allowed to make an arbitrary trans­
formation on a. Therefore we agree to take a as dimensionless and as 
o ~ a ~ n. On the other hand! is an arbitrary parameter to specify a point 
along each world line. Thus any observable quantities and physical rela­
tions must be invariant under the 'partial general transformation' 

(a' = a). (2.5) 

Note that! need not be a Lorentz scalar and that (25) contains a trans­
formation which alters the dimension of !. 

It is important to note that the arbitrary parameter! is also a redundant 
parameter so that it must be possible to eliminate! without leading to any 
ambiguity in the physical interpretation [15]. To see this we rewrite (2.1) 
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as Xi=Xi(O"' 1:) and Xo =xo(O", 1:)= t. Then by solving the latter and insert­
ing the result into Xi=Xi(O", 1:) we get the ordinary (non-covariant) rep­
resentation for the motion of a string 

(2.6) 

which is unique in so far as the arbitrariness of (0",1:) is restricted within 
(2.4) [15]. The ordinary velocity V; of a certain element of the string is 
given as 

( ) lJxi(O"' t) 
V; 0", t ot (2.7) 

Then causality requires that 

IOX(O", t)1 < . 
ot = 1, t.e. ( OX )2 

GOO = 0: ~O everywhere. (2.8) 

(We employ the unit system where c= 1.) The condition (2.8) is invariant 
under (24~ It is proved that if (2.8) holds, (2.2) is always valid, whence 

GIl ~(G10)2/GOO, ((G10}2/GO~~0). (2.9) 

The 4-velocity is clearly V/l = (- Goor 1/2 (OX/l/01:~ Now, if the condition 
(28) is slightly more stringent such that GOo <:: 0, then we get (OXO/01:)2 > 0 
everywhere, and by reason of continuity oXo/01: must have a definite sign: 
that is, oxJ01: is either forward timelike everywhere, or backward time­
like everywhere. Next the ordinary 3-diemensional radius vector going 
from the position of an element 0" to that of 0"+ dO" of the string, viewed 
at time t by a Lorentz observer is 

(210) 

(oV;(O", t)/OO" = oW;(O", t)/ot). 

The length along the string from the end 0"=0 to the point 0", viewed by 
Lorentz observer is 

a 

1(0", t}= f )Wi dO". (2.11) 

o 
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In the present realistic viewpoint J!; and Hi; are observables and are indeed 
left invariant under (2.5). 

Any physically realizable motion has to satisfy a certain equation of 
motion and boundary condition on xll(a, T), but they are physically 
meaningful only if they are covariant under (25), and therefore they 
should be derived from an action integral which is invariant under (2.5) 
(as well as under the Poincare group~ We find that for free cases such an 
action is restricted to the form 

t1 1t 

A= f dT f Lda, L=-K CD V-v"" (2. 12a) 

to 0 

where 
(w~O). (2. 12b) 

[We discard the extremely complicated possibility.J Note that due to the 
causality condition (2.8) we have D",=Do+wGoo~O in so far as w~O. 
The above L contains two structure constants K and w with the dimen­
sions [Me 1J and [L2J, respectively. In place of them we may employ the 
constants 

(2.13) 

with the dimension [MJ and [ML - 2J, respectively. They are related to 
the modulus of internal tension and the mass density of the string (cf. 
Section 4), and L is rewritten as 

L= -~o J -( GOo + ~ Do). (2.14) 

(2.5) and (2.14) indicate that the theory is natural generalization of the 
relativistic point mechanics, where the free equation of motion must be 
derived form the action integral W = -rno J J -(dxJdT}2 dT which is in­
variant under arbitrary transformation T~T'(T~ As seen later the two 
structure constants determine the trajectory slope and the leading inter­
cept by 

IX' = (2nliKt 1, IX (0) = -nKw/(21i). 

[See Equation (3.23).J We assume that the constant K is a universal 
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constant with the value 

(2.15) 

Though this I( does not occur in the fundamental equations infree case, it 
defines the scale of momentum and angular momentum. 

Now the variational principle that JA = 0 with respect to an arbitrary 
variation Jxlt(u,.) vanishing at initial .0 and at final .1 yields the Euler 
equation and the boundary condition 

oPIt oSIt 
a; 8;;' Sit 10,,,=0, (2.16a, b) 

where 

oL G10x - GOox S = ___ =1( It,O 1t,1 

It oxlt ~ 
,I V -Dw 

(2.17) 

and we used the notations 

The following identities hold: 

(2. 18a, b) 

Thus (2. 16b) implies three conditions for each end. 
Unless W=0,3 we can reduce (2. 16a) to the following form of equation 

of motion 

(2.19) 

where ~ItV is 

Clearly (2.19) is invariant under the 'partial general transformation' (2.5) 
and contains three independent equations. This corresponds to the fact 
that each element of the string has three degrees of freedom. 
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Equation (2.16) implies the 4-momentum conservation law which 
holds on the world strip locally. Thus the 4-momentum of the system is 
given by the line integral 

P/l= f (P/l dO" + S/l d.), (2.20) 

where C is an arbitrary curve on the strip going from the end x/l(O, .) at 
any. to the other end x/l(n, .') at any.'. (220) does not depend on the 
choice of C, because P dO" + S d. is a total differential due to (2.16a) and 
because moreover we have (2.16b~ Taking any equal. curve on the strip 
for C we get 

" 

P/l= f P/l(O"") dO", 

o 

dPJd.=O. 

Similarly, the angular momentum tensor is 

M/lv= f (x[pPvl dO" + X [/lSvl d.), 

c 

which again does not depend on C and is written as 

" 
M/lv= f x[/l(O"") Pvl (0",.) dO", 

o 

P /l and M /lV are invariant under (2.5) and are observables. 

(2.21) 

(2.22) 

(2.23) 

P/l(O"") is also the canonical conjugate to x/l(O"' .), but it is verified that 
there exists one local identity between P/l and oxJoO": 

(2.24) 

which reflects the covariance of theory under (2.5). 

3. LORENTZ-COVARIANT FORMALISM 

To proceed now to obtaining the solutions and later to quantization it is 
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convenient to choose a suitable gauge in exploiting the invariance of 
(2.16) or (2.19) under (2.5). We have two particularly important gauges, the 
'Lorentz-covariant' one and the 'Lorentz-noncovariant' one. In this 
section we consider the former, where we impose 

(3.1) 

This means to choose, such that an equal , curve on the strip is every­
where orthogonal to world lines. Such, must now be a Lorentz scalar. 
(3.1) is reexpressed as 

(3.2) 

Under (3.1), the inequality (29) which results from the causality condi­
tion simplifies to 

Gll ~O everywhere. (3.3) 

Originally the transformation (25) implied that ,'s origin can be taken 
arbitrarily for each world line, but (3.3) now ensures that, is an 'instant 
parameter' such that an equal, curve on the strip is a space-like curve. 
Owing to this fact the definitions of the global quantities of the system, 
such as the geometrical center-of-mass X I" as integrals with respect to (J at 
equal, (See (3.8)) become physically suitable. 

From (2.19) and (3.1) we get Gll+w= -q>(,) GOo, where q>(,) is an 
arbitrary function oh, but satisfies q>(,»0 (in so far as w~O) because of 
(3.3). Further Equations (217), (2.19) and (2. 16b) simplify to 

P,. = K J q>(,) X,., 0, S,. = (K/J q>(,)) X,.,l' 
i]2x,. i]2x,. 1 dq> ox,. I 
--2 =q>(')-2-+---' and X,.,l 0,,,=0. 0(J 0, 2 d, 0, 

Next we use i = ft q>(,r 1/2 d, in place of ,. Then the above equations 
simplify to Gll +W= -(OX/Oi)2, P,.=K·oxjoi, and 02xjoi2=02xjO(J2. 
Owing to this first relation and (3.1), the parameter i is essentially uniquely 
fixed (aside of i~i+(») so that it must have a definite physical meaning. 
Indeed we have now (oxjoi)210,x= -w, so that fro i means the proper 
time of the ends (unless w=O). Henceforth we write i simply as ,. Thus 
finally the fundamental equations in this gauge consist of the d'Alembert 
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equation and the open-end boundary condition 

and the constraint 

Goo +Gl1 = -w. 

(3.4a, b) 

(3.5) 

The remarkable feature of the present gauge is that it produces curious 
pseudosymmetry between a and 'r notwithstanding the asymmetry of the 
original Lagrangian (2.12) due to non-zero w. This pseudo-symmetry 
means that the fundamental equations, apart from the boundary condi­
tion and the causality inequality, are invariant under the interchange 
a~'r, 'r~a. Since a and 'r have different domains this 'symmetry' has local 
sense only. Another feature is that the equation of motion is originally 
nonlinear but, with the present constraint which itself is quadratic, 
becomes linear. Of course the superposition principle does not apply to 
physical solutions. In those connections we now mention some charac­
teristic points of this formalism [The results in the following apply to the 
w-O case also, where, however, caution must be payed as to interpreta­
tion (See Section 5).J 

For the while we restrict our attention to linear equations (3.4a, b) 
alone (i.e. the equation of motion and boundary condition) in this gauge. 

(i) They are derivable from the simpler action integral 

Al=ff d'rdaLl' Ll=~(GOO-Gl1-w), (3.6) 

which is numerically equal, under the constraint, to the original L.4 Then 
we have the corresponding Hamiltonian density Hl =(ox/O'r)P-Ll = 
= K/2 (Goo + Gll + w), which gives the scalar Hamiltonian 

- 0 1I:K 
Hl=A +-w, 

2 

" 
AO=t f [~p2+K(~:YJ da. (3.7) 

o 
This allows the canonical formalism in which the role of t in the usual case 
is taken over by 'r, since the equation of motion (3.4) is reproduced via 

OXIl Mil OPIl Mil 
a:;- ~pll ' ~ ~XIl 
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(ii) The definition of center-of-mass depends on the gauge, but 

" 
x/Jr)=~ f x!'(O", 't') dO" 

o 

(3.8) 

defined in the present gauge is an unambiguous quantity, which we shall 
call 'geometrical center-of-mass'. It satisfies 

so that m't'/(nK) has the meaning of the proper-time of the center-of-mass. 
(This applies to the (0=0 case inclusive.) 

(iii) The action integral Al and Equations (3.4a, b) have very great 
symmetry properties, which are not necessarily shared by the original 
action integral A. They are invariant under several 'external transforma­
tions' acting on x!' as well as under several 'internal transformations' 
acting on (0", 't'). The translation and Lorentz groups, and also the external 
dilatation x!'(O", 't')-+A.x!,(0", 't'~ and the (0", 't')-dependent translation (mean­
ing nonlinear deformation) 

cosr't' 
x!'(O", 't')-+x!,(O", 't')+d!,·. cosro-, 

SInn 
(3.9) 

(d!,=const vector, r=integer) 

belong to the former. (Note, however, that under dilatation the action 
integral is not invariant) 

The internal transformation which leaves A1, whence (3.4) invariant, 
consists of special linear transformations, which do not mix 0" and 't', and 
the nonlinear conformal transformation, which mixes 0" and 't' and does 
not belong to (24~ The former consists of the internal scale transforma­
tion (O"'=aO", 't"=a't', O"~=O, 0"1 =a1t~ 't'-displacement ('t"='t'+<5), internal 
reflection (a' =n-O"), and 't'-reversal. The transformation (2.4) is reduced 
to this smaller 'special linear group', and the causality condition (3.3) is 
preserved under this transformation. By conformal transformation we 
mean the one which leaves the relation d0"2-d't'2=O invariant and 
satisfies [o't" laO" ]0,,, = 0.5 This is given in terms of an arbitrary periodic 
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function !(A)= In J" einl, (J,,*=!-n), as 

if(a, .)= a+t(! (r +a)-! (r - a)) = a + i I J" eint sinna, 
n 

.C(a, .)=.+t(!(.+a)+!(.-a))=.+ I J" eint cosna. (3.10) 
n 

The conformal symmetry implies that if we find a solution x!'(a, .) to the 
equation of motion and boundary condition (3.4) we obtain at once 
infinitely many other solutions x~(a,.) given by x!'(if(a, .), .C(a, .))= 
=x~(a, .). 

We now mention the conservation laws related to the above symme­
tries. The conservation laws of 4-momentum and angular momentum 
tensor hold of course. They are (2.20) and (2.22), where now P!,=K(OXJO.) 
and S!, = K(oxJoa). The invariance under (3.9) corresponds to the exis­
tence of an infinite number of conserved vectors 

" 
r 1 . f (ox ox) C!,=--elrt .....2 cosra+i -I' sinra da, 

.J2n o. oa 
o 

(r = integer) 

each of which means the weighted amplitude of each normal mode except 
for C~ = P J(.J2 nK). 

The invariance of Ai under the conformal group gives an infinite 
number of constants of motion 

(3.11) 
where 

" 
Ar(.)= f (F cosra+iG sinra) da. (r = integer) 

o 
(3.12) 

Since the conformal transformation concerns the internal parameters it 
commutes with the Poincare group acting on xl" Therefore PI' and M!'v 
are conformal invariant, while X!, is not. 

(iv) Equations (3.4a, b) imply that ox!'(a, .)/or±ox!'(a, .)/oa are the 
same functions of r±a only, which we denote as v!'(r± a), and moreover 
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that these functions are periodic: 

(3.13) 

Further in terms of C~ defined before this is expressed as 

OC! 

VI'(A)=J2 L: C~ e- ir". (3.14) 
r= - 00 

We denote the co-ordinate of the end as ul'('t"):=xl'(O, 't"}. Then vl'('t")= 
=dul'('t")/d't". ul'('t") and vl'('t") represent the motion of the end and are very 
useful quantities [17], because a motion of the whole string is completely 
specified by the motion of the end (See below.) We have in particular 

1t 1l 

PI'=~ f vl'('t") d't", A r =~ f (vl'('t")f eirt d't". (3.15) 

(v) If we introduce the relative co-ordinate and momentum, xl'(a, 't")= 
=xl'(a, 't")- X A't") and PI'(a, 't")= PI'(a, 't")- P In, then xl'(a, 't") is periodic in 
't", and Ml'v and AO also split into the part due to the center-of-mass motion 
and the part due to the internal motion such that Ml'v=X[I'Pv]+Sl'v, AO= 
= [1/2K(P 1')2 + R]/n, where S#v and R, too, are constants of motion. (See 
Ref. [15].) The magnitude of spin (i.e. the intrinsic angular momentum) 
is given (classically) by J=J-(wl')2/(Pl'f with WI'=tBI'VK"MvKP"= 

1 SVKp" =2"B/.1VK" . 

We now take account of the constraints (3.1) and (3.5~ It is clear that 
the constraint breaks the conformal invariance and also the external 
dilatation symmetry, unless W = 0. The constraint is also represented as 

(3.16) 

This means that the end moves causally and this guarantees that every 
point of the string also moves causally with three degrees of freedom. As 
remarked before (3.16) means that fo't" is the proper time of the ends. 
Moreover we can prove conversely that the condition that 't" should mean 
the proper time of the end is equivalent to the constraint (3.1), via the 
equation of motion and boundary condition. (3.16) also gives the relation 
(P y ~ - n2 Jl5, so that no tachyonic motion occurs and the mass m 

satisfies m ~ nJlo. 
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The constraint (3.16) is also expressed as 

o me A =--Q) 
2 ' 

A'=O 

(3. 17a) means that the squared mass is 

(r=±I, ±2, ... ). (3.17a, b) 

(3.18) 

Also (3.17) implies that the conservation laws of A' are apparent ones, 
and A', in contrast to C~, are not those constants of motion that classify 
physical solutions. 

The fact that under the s:;onstraints the parameters u and -r are essen­
tially unique corresponds to the fact that they have definite physical 
meanings, as already explained They still have slight arbitrariness within 
the special linear group, under which all fundamental equations are 
invariant In any case, however, in the present gauge all oxJo-r and 
oxJou can be expressed completely in terms of physical quantities 
V;(u, t) and W;(u, t~ Indeed by using the constraints we have, besides (3.2), 

(VW) 
W;+--2 Vi, 

I-V 

(3.19)6 

The present gauge is the most convenient for writing down the general 
solutions. In fact there are various ways to express the general solutions, 
each of which is useful. 

(i) One can give it in the form ofthe Cauchy problem. For that purpose 
we first consider that solution of 

which satisfies the initial conditions 

ODI - = <>(u), 
o-r t= 0 

D(u, 0)=0. 
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This is given by 

00 

D(a, L)=i L [e(L-a-2nn)+e(L+a-2nn)]= 
n= -00 

00 

n= -00 

which is odd in L and vanishes in the region where ILl < 0'. Next we define 
.1(0',0", L)=D(a-a', L)+D(a+a', L), which is even and symmetric in 0' 
and a' and has the properties that 

0.1 (0', 0", L)I 
--- =J(a-O")+J(a+O")+J(2n-a-O"), 

OL <=0 

.1(0',0", L)=O for ILl <10'-0"1. 
(3.20a, b) 

Then the solution to (3.4) is expressed as 

" 
(3.21) 

o 

Due to the property of.1, x/L(a', LO) in the region la-O"I>IL-Lol on the 
strip does not contribute to x/L(a, L~ In the neighborhood of x/L(a, L) the 
causal relation exists only for the region dL2 - da2 ~ 0, which means the 
timelike region because we have [x/L(a+da, L+dL}-x/L(a, L)]2=GOO 

dL2+Gll da2=GoO(dL2-da2}-w da2;£0. This verifies causality. 
The condition (3.1) is incorporated in (3.21) by assuming that G10=0 

and oG10/oL=0 at L=LO. 
(ii) A more simple way is suggested from the 'a-L symmetry'. Namely 

we exchange the roles of Land 0' in (i) and regard the problem as a 'Cauchy 
problem' with respect to 0'. Indeed the whole motion is determined once 
we are given the motion of the end x/L(O, L}=U/L(L}, which must have the 
property that its derivative V/L(L} satisfies the conditions (3.13), and (3. 16}. 
In terms of such U/L (L) the solution is given simply as x/L(a, L)=H U/L(L- a}+ 
+ U/L(L + a}], which in fact covers all possible solutions. Since the motion 
of the end U/L(L} and V/L(L} dominates the motion of the whole string, all 
relevant quantities are expressed in terms of it, as already remarked 

(iii) Another form of general solution is obtained by noting (3. 14}. 
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Namely 

Corresponding to (3.17) c~ must satisfy the constraints: 

00 

I cnc,-n=o, (r#O). 
n= - 00 

A', Rand SI'V are rewritten as 

00 

R = 211h, I cn*cn, 
n n=1 

00 

SI'V= -2niK I C[:C~in. 
n=1 

(iv) Another obvious way is to start from the expansion 

00 

xl'(O', r)= I x~(r) cosrO', 
r= -00 

1 00 

PI'(O', r)=- I ~(r) cosrO', 
2n '=-00 

where x~(r) satisfies d2x~dr2+r2~=0, while ~(r)=2nK·dx~(r)/dr. In 
particular x~(r)= X I'(r), P~ =2P w If we then define 

1 (dX' (r) ) C~(r)=- -I'--irx~(r), C;'(r)=C~(r)*, 
j2 dr 

the solution is C~(r)=C~ e- i'" where C~ are the same constants given 
before. 

In the m2 - J plot the classical solutions are distributed continuously in 
the hatched region in Figure 1. 

The solutions where only the first mode is excited besides C~ are simple 
and physically important They are specified by the complex vector C! 
which is restricted by 

(3.22a, b) 
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They give the solutions lying on the leading trajectory, which is given by 
R m2 nK 

J =-=--- w. (3.23) 
n 2nK 2 

By eliminating L we see that the motion of the string for this solution is a 
rigid rotation and the string has constant length T=2J2J/(nK)=(2/nK) 

J 
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2 
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Fig. 1. 

[m2-n2li5J1/2. The K-value of (2.15) corresponds to (X'~1 BeV- 2, and 
the above T means the extension of the order of nucleon Compton wave­
length. If we assume that the dimensionless constant n2Kw/n is of order 1, 
then we have w- 1.6 x 1O-27cm2. In the ground state (m=nKfo=nlio, 
J =0), however, the string shrinks up to a single point (In quantum 
mechanics, however, the spatial extension of the ground state is not 
essentially different from that of the excited states due to quantum fluctua­
tion.) 

We may consider the limiting cases. In the tensionless limit (K ->0, 
lio = fixed # 0) the leading trajectory becomes steeper to approach the 
vertical line (in Figure 1), with the ground state at (m2 = n2 li5, J = 0) 
fixed Then in a state on the leading trajectory T goes to 00. The opposite 
is the local theory limit, K -> 00 with lio = fixed # 0, where the trajectory 
becomes flat and T->o. Another limit is w->O, where the leading trajectory 
starts from the origin due to the external dilatation invariance. If x!'(O", L) 
is a solution at (m2, J) then Ax!, (0", L) is a solution at (). 2m2, ). 2 J). 
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4. NON-COVARIANT FORMALISM 

The theory of a realistic string model can also be represented in a Lorentz 
non-covariant formalism. This is obtained as follows. Since the original 
theory is covariant under arbitrary transformation {2.5}, we can choose 
T'{U, T} such that it equals xo{u, T} in the Lorentz frame under considera­
tion, namely 

T'{U, T}=Xo{U, T}=t. {4.1} 

This fixes the gauge completely. Now x;{u, T) becomes x;{u, T'}=X;{u, t), 
and further we have 

ox;{u, T'} ox;{u, t) 
V;, 

oXo (u, T') 
1, 

OT' ot OT' 

ox;{u, T'} ox;{u, t) oXo{u, T') 
(4.2) 

Wi, o. 
ou ou OU 

Thus in the present gauge GI%P and -Dro become 

Goo -+_{I_V2), Gll -+W2, G01 -+VW, 

-Dro-+Llro=(W2+w) {1- V2)+(VW)2, 
(4.3) 

so that the invariant action integral (2.12) is expressed as 
I, 1t 

A= -K f dt f duJJ":. (4.4) 

10 ° 
By (4.2) and (4.3) we see at once that the equation of motion (2.19) for the: 
case w#O goes over in the present gauge to the form 

( 
2 02X; 02X; 2 02X; 

W +w) ot2 -2VW otou -(I-V) ou2 =0, (4.5) 

while the boundary condition (2. 16b) becomes 

(4.6) 

(4.5) and (4.6) also follow directly from the variational principle on (4.4) in 
so far as W#0.7 The fundamental Equations (4.5) and (4.6) in this gauge 
are Lorentz non-covariant but free from constraint. 
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If we denote PI' in the present gauge as II 1" the 4-momentum of the 
system is It 

pp.=f IIp.{O", t) dO", with dPp.=O, (4.7)8 
dt 

o 
so that II; and II 0 mean the momentum and energy density per unit 0" (i.e. 
per parton) viewed by a Lorentz observer. 
From (2.17) and (4.2) they are 

K 0(-):1:) 
II;=- [(W2+W) V;-(VW) W;]=K ill , 

):1: oV; 

II 0 = K(W2 + w)/J,1:. 
(4.8) 

II; is the momentum variable canonically conjugate to x;{O", t), and n 
is generally not parallel to V. Also note that II 0 ~O everywhere, by virtue 
of IVI ~ 1 and OJ ~ 0, which mean causality. Likewise Sp. of (217) becomes 

- K [2 . 0):1: S;=--= (I-V) W;+{VW) V;]=K--, 
J dill oW; 

So = K{VW)/):1:, 
(4.9) 

and the Euler equation is oIIp.(O", t)/Ot=OSI'{O"' t)/oO". The relations (2.18) 
and (224) now take the forms 

So= VS, IIo=llV +K):1:, (4.10) 
1 

II~=n2+K2w2+-(nw)2+K2w, (w#O). (4.11) 
w 

Also we have the relations 

~~lo.1t =0, 

v=[n+(nw) W/w]/IIo, (w#O). 

In this gauge angular momentum tensor is written as 9 

It 

Mp.v= f 9Jlp.v{O", t) dO", 

o 

(4.12) 

(4.13) 

(4.14) 
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9Jlij means the angular-momentum density per parton in the Lorentz 
frame. We can verify the conservation law dMddt = dM;o/dt= 0, which 
imply that the theory is Lorentz-invariant, even though the equation of 
motion is non-covariant The 'physical center-of-mass' should be defined 
by 

" 
Xi(t)= f xi(O', t) IIo(O', t) dO'/Po, (4.15) 

o 

which conforms with the usual definition of center-of-mass of a relativistic 
extended system [18]. By (4.14~ Equation (4.15) is re-expressed as 

(4.16) 

which is also the usual relation. 
In the present gauge the theory is put in the standard Hamiltonian 

formalism. Indeed from (4.11) the Hamiltonian density is 

(4.17) 

unless w = 0, and the Hamiltonian fi = Po = So H dO' reproduces the equa­
tion of motion via V;=bfi/bIIi, aIIJat= -bfi/bxi, and there is no con­
straint. 

Thus in the Hamiltonian formalism the main difference between our 
relativistic theory and the usual theory of a non-relativistic string be­
comes the occurrence of the square-root in the Hamiltonian density, and 
this is natural as relativization procedure. We also remark that in the 
case w>O we can consider the non-relativistic and weak-deformation 
limit, IVI ~O and lax/aO'I ~fo. Then we have 

/J.o V 2 K W 2 IIo~/J.o+- +- , 
2 2 

These essentially coincide with the forms of non-relativistic string theory, 
and /J.o and K represent the linear mass density and the modulus oftension 

Finally we remark that we can also expand Xi(O" t) and IIi(O', t) in the 
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form 
00 

X;(O", t)= L X;'(t) cosna, 
n= - 00 

1 00 

IIi(O",t)=- L II?{t)cosna, 
2n n= - 00 

by virtue of the boundary conditions [See (4.6) and (4.12)]. 
Though it is difficult to obtain general solutions for the fundamental 

equations in this gauge, solutions with transversal internal movement are 
obtained directly in this gauge (See Section 7). 

5. GEOMETRIC VIEWPOINT 

In the theory given in Sections 2-4 the case W=O is special because then 
the action (2.12) reduces to the area on the world strip 

"[1 0'1 

A= -K f dr f dO"J -Do, 

to 0"0 

which is invariant under the general transformation 

O"--+o'{O", r), 

oO"'{O",r) 

r--+r'{O", r), 

=0, 

(5.1) 

(5.2a) 

(5.2b)10 

so that the equation of motion following therefrom is general-covariant. 
However, this is exactly the model which is to be obtained from the 

geometric viewpoint In this viewpoint the form of world strip and the 
motion of the end alone have physical meaning, and (O", r) are arbitrary 
Gauss coordinates specifying a point ('event') on the strip. Thus they have 
the arbitrariness of (5.2), where the new (O"', r') give an equivalent repre­
sentation of the same strip such that 

(5.3) 
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The geometrical quantities intrinsic to the strip are invariant under (5.2~ 
Note that now both 't and (f need not be restricted to Lorentz scalars, and 
{5.2} may contain a transformation altering their dimensions. Any physi­
cally realizable strip must satisfy a certain equation of motion and bound­
ary conditions, but these are physically meaningless unless they be 
covariant under (5.2). Thus they should be derived from an action integral 

which is invariant under (5.2). For the present we consider the free case. 
Then such an action is restricted to the unique form (5.1) [II, 12, 19]. 

The variational principle on {5.1} again yields (2.16), in which P/l and 

S/l are now 

and therefore we can bring (2.16) to the following form: 

Here (G~p) is the inverse matrix of(G~P). More explicitly 

Gll =GOOjDo, 

tf/lV is a projector defined by 

aXIl axv 
tf/lv=tfV/l=g/lV-G~p a(~ a(p' 

which satisfies tf /lvtf~ = 11 /lA' and 

oxv 
tf/lV a(~ =0. (0( = 1, 0). 

(5.4) 

(S.Sa, b) 

(5.6) 

This model has only one structure constant Ie and the theory is symmetric 
in (f and 't from the beginning, aside of the boundary condition {5.5b}. 
The equation of motion must contain only two independent equations 
because the strip, which alone has physical sense, is a 2-dimensional sur­
face. Indeed (5.5) contains just 4 - 2 = 2 independent equations since it is 
covariant under the general transformation with respect to the two ar­
bitrary parameters (f and 't. (In fact this is ensured by the indentity (5.6)). 
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Physically this means that each element of the string has only two degrees 
offreedom instead of three, because the longitudinal motion has no phys­
ical sense now. This is verified by noting that in the geometrical viewpoint 
observable quantities must be invariant under the general transformation 
(5.2~ Now the 'velocity' V; (except l'ilo.,,) and the 'radius vector' W; defined 
by (27) and (2.10) are not invariant against (5.2) so that they are not ob­
servables in the geometrical model 11 but depend on the gauge. We can 
prove however that the 'normal velocity' l'i 1. orthogonal to the string 

(5.7) 

is invariant under (5.2) and is observable. The 4-momentum and the 
angular momentum tensor, P/l and M/l'" which are given in the form (2.20) 
and (222) with the use of P/l and S/l of (5.4~ are also invariant under (5.2~ 
The relation (2.24) now splits into 

(5.8) 

The existence of these two local identities between P/l' which is canonical 
conjugate to x/l' and ox/oa reflects the covariance of theory under (5.2). 

For further analysis of theory we choose a suitable gauge, and again 
there exist two important choices. The first one is to impose two local 
conditions in exploiting the fact that the theory is originally covariant 
under (5.2) which contains two arbitrary parameters. For such conditions 
it is natural to take 

(5.9a, b) 

from the argument of Section 3. Then (5.5) simplify to the form (3.4), and 
both a and. are now Lorentz scalars. The two conditions (5.9a, b), how­
ever, are not mutually independent, so that the gauge is not yet fixed 
uniquely. Indeed the set of (5.9a, b) and (3.4a, b) is still invariant under 
the conformal transformation (3.10), which now forms a subgroup of(5.2). 
We are now fixing [ao, a 1] again as [0, nJ. The conformal invariance 
means here that x/l(a,.) and x~(a, .) = X/l (a" (a, -e), ~(a, -e)) trace out the 
same strip so that they represent one and the same motion of the string, 
even though they have different values of C~(r#O). We note in passing 
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that (5.9a, b) are represented also as 

(vll(r))2=O, (5.10) 

and that, under (5.9a, b), the two light-like directions (2.3) on the strip 
become simply dr ± da = 0. This means that r ± a are really local light-like 
parameters. 

To fix the gauge completely it is necessary to impose also the condition 

nllpll = const., 

from which follows also 

( 
00 axil 01 aXil) n G --G - =0, 

Il aa ar 

(5. 11 a) 

(5. 11 b) 

which is compatible with (5.5b). Here nil is a timelike (or light-like) con­
stant vector. Under the constraint (5.9a), (5.11) above reduces to n(ax/aa) 
=0, which is conformal non-invariant of course [19]. We further get 
nx(a, r)=(llxt 1 (nP) r+ nX(O). As far as nil is an arbitrary constant vector 
independent of the motion, this gauge is a non-covariant one, but if we 
adopt P Il for nil the gauge remains a covariant one. 

To express the theory in the second choice of gauge we choose r'(a, r) 
such that it equals xo(a, r). [See Equation (4.1).J Then, with the use of 
(4.2) we can prove that the equation of motion (5.5a) goes over to the non­
covariant equation 

'Ok(W2 a v,. _2VWav,. -(1-V2) aftk)=o, 
, at aa aa 

(5.12) 

while the boundary condition is again (4.6) 12. The invariant action in­
tegral (5.1) becomes 

1, 1C 

A = - K f dt f Fo da, (5.13) 

10 0 

where 

Thus 
1, 1, 

A= -K f dt f J1-(VJ.f· d1 , (5.13') 

10 0 
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where I is the length given by (2.11), and the upper limit 11 = SoJW2 dCT 
depends generally on t. The action (5.13~ whence the equation of motion 
(5.12) which follows therefrom, are invariant under an arbitrary trans­
formation 

CT-+O'{CT). (5.14) 

If we keep the ends as O'{O)=O, O'{n)=n, (5.14) is expressed as 

00 

O'{CT)=CT+ L bn sinner. (5.14') 
n= 1 

Since (5.12) is invariant under (5.14) it contains two independent equa­
tions, as is obvious form (ikWk=O, in agreement with the case of the 
original general covariant Equation (5.5a). 

The energy and momentum densities per unit CT are now 

(5.15a, b) 

so that Viii is undetermined from lli and llo. Corresponding to (5.8) there 
hold the relations 

Thus 

ox n-=o 
OCT ' 

II = n2+,,2 -[ ( OX)2J1/2 
o OCT' 

(5.16a, b) 

(5.17) 

The generator of the transformation (5.14) is n(CT, t)·OX{CT, t)/OCT, which 
however vanishes by {5.16a~ Thus this symmetry does not supply physical 
conserved quantities. This implies that (5.14) is to be interpreted as a 
reparametrization. Thus in this case the choice (4.1) does not yet fix the 
gauge completely, corresponding to the fact that Vi and W; still have 
arbitrariness depending on the gauge. Also lli and llo depend on the 
gauge, but the momentum and energy densities per unit length of the 
string, q/l' defined as 

(5.18) 

o 
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are independent of the gauge, and are expressed as 

(5.19) 

satisfying q~_q2=K2, qW=O. To fix the gauge completely, we need to 
impose a constraint, which is (5.11~ If we take Pil for nil' this means 

(Po-PY) (YW)=PW(I- y2), 

(Po _py)2W2 = [(m2/1tK)2_(PW)2] (1- y2). 

(5.20a) 

(5.20b) 

The gauge is now completely fixed and ~ and W; become unambiguous. 
We see in particular that Y and yJ. are the same at the ends and that y 2=1 
(velocity of light) there. Also we see that in the center-of-mass rest frame 
(P=O) YW =0 everywhere. The present gauge means therefore the one in 
which in the CM frame yll vanishes and Y equals the observable quantity 
yJ. everywhere. Clearly, the nonrelativistic limit does not exist for the 

geometrical model because the ends move with the velocity of light. 

6. TRANSVERSALlTY CONDITION 

We now return to the 'realistic' theory. This theory, as described in Sec­
tions 2--4, is complete in itself but we note that this theory still allows the 
introduction of a certain physical constraint consistently. The interest in 
this constraint comes from the fact that it produces a particular simplifica­
tion of the theory and also that with its introduction the theory becomes 
common both for w#O and for w=O cases. 

The constraint in question is 

P pPll = const. (6.1a) 

This results in 

( ooaxll 01 aXil) i.e. P G --G - =0, 
Il au aT (6.1b) 

via (2. 16a, b~ Physically the new constraint restricts the internal motion 
to transversal ones (rotation, lateral vibration) alone, and thus reduces 
the degree of freedom of each 'parton' of the string from three to two. 

If we first consider in the covariant gauge stated in Section 3, (6.1b) 
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simplifies to 
ax 

P au =0. 

This yields 
p2 

Px(u, r}=- r+PX{O}. 1tK 
In terms of the normal mode amplitude, (6.2) is expressed as 

pILC~=O, (r#O) 

(6.2) 

(6.3) 

(6.4) 

meaning that in the eM-rest frame all normal modes can only have space 
components (Co=O). 

The physical meaning of the new constraint becomes clearer by 
considering in the non-covariant formalism given in Section 4. First we 
note that in the non-covariant gauge, (6.1) takes the form (5.20) with the 
replacement W2~W2+W in the left side of (5.20b~ Henceforth in this 
and the next sections we always consider in the eM rest frame where 
P=O, P6=m2. Then (6.2) and (6.3) mean 

vw=O, 

( 1tK [1t2f..l6J1/2) 
V=-, b= 1--2- ~1. 

m m 

{6.5} 

(6.6) 

We have also Llco=(1-V2}2jv2. Then the non-linear equation of motion 
(4.5) simplifies to the linear equation 

(6.7) 

This is formally analogous to the equation of motion of the nonrelativistic 
string, but the physical ingredient is quite different We have otherwise 
the boundary condition. 

{6.8} 

The energy and momentum densities per unit u become 

IIi = II 0 V; = Pi' (6.9a, b) 
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so that we need not distinguish IIIl from PIl , and IIi agrees with V; apart 
from the constant factor II o. Accordingly the rest frame condition is 
expressed as 

" f V;(I1, t) dl1=O. (6.10) 

o 
Moreover the mechanical center-of-mass (4.15) becomes 

" 
- 1 f -Xi(t)=; xi(l1, t) dl1=Xi(O), 

o 

and this coincides with the geometrical center-of-mass coordinate 
X;(r) = Xi (0), so that we need not distinguish them. As (6.5) indicates, 
each portion of the string always moves perpendicular to the string, and 
it is important that this is valid irrespective of whether w > 0 or w = O. 

We insert here a note about the case w = 0, which is the case of the 
geometric model of Section 5. Here the equation of motion is (5.12), which 
gives only 

(6.11) 

in the rest frame. On the other hand we now have the constraints (6.5) and 
(6.6) also, i.e. VW=O, V2 +v2W2 =1, which lead to m(oVJot-v2 

o WJ 0(1) = O. This relation and (6.11) result in (6. 7~ Thus under the present 
constraint the basic equations are common both to w > 0 and to w = 0 
cases. As stated in Section 5, in the w = 0 case the constraint (6.2) is one we 
introduced to fix the gauge conveniently (rather than a physical con­
straint), and in this gauge V and Vl. are the same in the eM rest frame. 

According to (6.6) the velocity is largest at both ends where it is IVI =b, 
which approaches the light velocity with m-HXJ if w > 0, and is always c if 
w=O. Equation (6.6) is rewritten as 

[ W2+W]1/2 m 
IIo= = const=-

I-V2 11: 
(6.12) 

Equations (6.9b) and (6.12) imply that the local rest mass density per unit 
11 IS 

(6.13) 
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7. ANALYSIS OF THE MOTION, AND SOLUTIONS 

We consider the properties of the solutions to the fundamental Equations 
(6.5)-(6.8) and (6.10), which are common to the 'realistic model' under 
the transversality condition and to the 'geometric model'. Thus the fol­
lowing analysis apply to both cases. 

To solve the fundamental equations we use the fact that the whole 
motion is again determined once we are given the motion of the end, i.e. 
x;(O, t) and ox;(O, t)/ot= V;(O, t)= V;°(t), where V;°(t) must satisfy the 
following three conditions: 

V;°(t + 2n/v) = V;0 (t) , 

(VO(t}f=b2 

21</v 

f V;°(t) dt=O. 

° 
The solution is then given by 

x;(u, t)=t{x;(O, t-u/v)+x;(O, t+u/v)}, 

V;(u, t)=t{V;°(t-u/v}+ W(t+u/v)}. 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

Thus the motion has the following remarkable features in the rest frame. 
(i) Since the motion of each end is periodic (S~ (7.1)) and transversal 

and moreover has constant speed, it must be a rotational motion. 
(ii) On account of the condition (7.3) i.e. (6.10~ not only V;(u, t) but 

x;(u, t) itself is periodic in t, x;(u, t+ 2n/v) = x;(u, t), with the period 

At=2n/v=2m/K. (7.5) 

This means that each portion of the string moves in the eM-frame along 
a closed orbit with the fundamental period (7.5). This is somewhat 
reminiscent of a quantized motion in the old quantum theory, and the 
condition (7.3) simulates the quantum condition. This periodic motion of 
each portion, other than the ends, is generally rotational and vibrational 

(iii) The basic frequency v/2n = K/2m is inversely proportional to the 
mass. This fact might appear to be opposite to de Broglie's relation [8] 
mc2 = hv, which was basis of de Broglie's discovery of wave mechanics, 
but the above fact is related to causality. A higher mass state has a larger 



208 T AKEHIKO T AKABA Y ASI 

mean size and in order that in its rotation the velocity of the ends does not 
exceed c the angular velocity must be smaller. 

Now the function W(t) satisfying the above conditions is written in the 
form 

v10 (t)+ iV20 (t)= b sinO(T)· eitpln , 

V3°(t)=b cosO(T), 
(7.6) 

with T=vt and O(T)=n8T+g(T~ tp(T)=ntpT+h(T~ where ne and nil' are 
integers while g(T) and h(T) are periodic functions, g(T + 2n) = g(T), etc. 
They are not completely arbitrary, since we must have 

2" 2" f cosO(T) dT=O, f sinO(T) eitp(T) dT=O, (7.7) 

° ° 
to satisfy (7.3). 

We now illustrate the motion of the string by some typical solutions. 
(i) First we consider the case where only the r-th mode is excited In this 

case the transversality condition is automatically satisfied This solution 
is given by taking O(T) = n/2 and tp(T)= rT + const in (7.6)' The motion is 
given by 

(
X 1) b ( sin rvt) =- cosrO" , 
X2 rv cosrvt 

(7.8) 

This has r nodes, at 0"= (n+t)n/r (n=O, 1, ... , r-1), where V =0, whereas 
W vanishes at 0" = nn/r (n = 0, 1, ... , r). The elementary length along the 
string (in the eM-rest frame) is dl =.jW2. dO" = (b/v) sin rO"·dO". 

(a) If r= 1, the string is a straight line which rotates rigidly around its 
center 0" = n/2 with the constant angular velocity v, and with the constant 
length 11 = I(n) = 2b/v. This solution is the one already given in the covari­
ant formalism (Section 3) and constitutes the leading trajectory (3.23). 

(b) If r = 2, the string is folded in such a way that the points 0" and n - 0" 
coincide, and it rotates around the point 0" = n/4 (ie. 0" = 3n/4) with the 
angular velocity 2v. 

(c) Similarly, for r=r, the string is r-ply folded and makes a pure 
rotation with the angular velocity rv. Thus we find that our relativistic 
string implies a striking realization of 'relativistic rotator model'. The 
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magnitude of spin is 

J = m2b2 /(21r:Kr)={m2 - 1t21l~)/{2ma-), 

while the actual length of the string is Tr= JQir jW2 da=2J2J/{ma-), so 
that 

mTr ( 1t21l~)-lJ2 
-=4 1--2- ~4. 
J m -

(7.9) 

This relation verifies that Moller's inequality [18] T~ J /m between spin, 
mass and the spatial extension T for any system extended with positive 
energy density is fulfilled for our motion, as it should. 

r = 1 x 

r=2 x 

r=3 c x ) 

Fig. 2. 

(ii) Another typical example of a plane motion (O{T) = 1t/2) is given by 
cp{T)= IX sin T, (1X=const~ Then 

<[) 

~O+iV20=b eia. sinT =b L Jm{lX) eimvt . 
m=-oo 

The motion is the superposition of vibrations with angular frequencies 
of IX to the roots of Bessel function: JO{IX)=O, i.e. 1X=A.kO), (k= 1, 2, ... ). 
This implies the condition of closed orbit The motion involves all higher 
harmonic vibrations, and the spin is found to be J = 0. 

(iii) A simple example of a non-planar motion is given by taking 

O{T)=T+IX, cp{T)=2T+P, (IX, p=const). 

The condition (7.7), i.e. J~1t eia sin T d T = 0, 'quantizes' the admissible values 
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v and 3v. The string executes 3-dimensional vibrations and rotations 
around the nodal point (1 = n/2. 

All the solutions given above are those satisfying the transversality 
condition. In the case of the 'realistic' model (w #- 01 there are of course 
many more solutions originally which involve longitudinal movement as 
well. For obtaining those solutions the Lorentz covariant formalism 
(Section 3) is more convenient An example of such solution was explicitly 
given in Ret: [15]. 

We have seen that the transversal solutions have remarkably simple 
properties, but it is to be noted that in order to derive the dual amplitude 
in quantum theory the whole set of solutions must be taken into account 

8. QUANTUM THEORY 

Since we have clarified the structure of the classical theory of the free 
relativistic string we can now proceed to quantum theory and also to 
interactions, based on it The process is not straightforward, but we limit 
ourselves to a very brief description here. 

For quantization it is necessary to consider in a certain fixed gauge. The 
most convenient is the Lorentz covariant gauge (stated in Section 3), in 
which we now put the equal 't commutation relation 

[X/t((1, 't), P.((1', 't)] = ilig/t. [<5((1- 0-') + <5((1 + 0-') + 
+ <5(2n - (1- 0-')], (8.1) 

in the Heisenberg picture regarding 'to We then obtain, in free case, the 
more general commutation relation [9] 

[x/t((1, 't), x.((1', 't')] = -i(Ii/K) g/t.L1((1, (1', 't-'t'). (8.2) 

This implies that 

[X/t((1, 't), x.((1', 't')] =0, for l't-'t'l <1(1-(1'1, (8.3) 

expressing causality when Gll ~O is guaranteed Also from (8.2) u/t('t)= 
=x/t(O, 't) and v/t('t)=ax/t(O, 't)/a't satisfy the commutation relation [17] 

[U/t('t), V.('t')] = (2ili/K) g/t. L <5('t-'t'-2nn). (8.4) 
n 

It is proved that the above quantization is invariant under conformal 
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transformation (3.10~ and Equation (8.4) implies that v(r) has 'conformal 
spin' 1. The conformal operators A' have been given in Section 3, but in 
particular AO (the scalar Hamiltonian) must now be defined by the normal 
product A ° = 7tK In : e"e -" : = p2/(27tK) + 27tK I:= 1 en t en. Corre­
sponding to the classical constraints (3.17) the state vector must satisfy 
the wave equation and subsidiary conditions 

( 7tKW) AO+T 'l'=o, A''l'=O, (r= 1,2, ... ). (8.5a, b) 

The conformal operators lose their closure property as a whole, such that 
[A', AS] =Ii(r-s) A,+s+li2b,+s.or(r2-1)/3 [9]. On account of this fact 
and also of the fact that W is generally non-zero, the compatibility requires 
that we should restrict the subsidiary conditions (8.5) to the range of 
r=O, 1,2, .... alone, as indicated In classical theory the case w=O had the 
special feature that the whole theory is conformal-invariant in this case 
only, whereas in quantum mechanics the whole theory is invariant under 
the nonunitary transformations generated by A' + (7tKw/2) b,o(r=O, 1, 
2, ... ) regardless of whether w#O or w=O, and thus the w=O case loses 
its special position. When we assume (8.5) we are also assuming an 
indefinite metric with respect to relative-time degrees, and (8.5) deter­
mines the mass spectrum. In the Schrodinger picture regarding ., • is 
completely eliminated [15], so that we call this representation as '17-

formalism' [17], where the theory is represented by (8.5), or equivalently 
by the super-wave equation defined at every point of the string [9] 

It is expected for correspondence-theoretical reasons that the possible 
negative-norm states are suppressed precisely by (8.5~ This was recently 
verified [20] for 7tKw/2 = -Ii. 

Due to the 'symmetry' in 17 and ., we should be able to represent the 
theory also in the '.-formalism' in which 17 disappears [17]. This means 
that we can also represent the theory of the relativistic string in terms 
of the motion of the end u/l (.) and v/l (.), in quantum theory as welL This 
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fact is easily seen, based on the commutation relation (8.4) and the ex­
pression (See (3.15)) 

1t 

(8.6) 

We remark in passing that the transversality condition stated in Section 
6 can be introduced in quantum theory. For this purpose we impose the 
additional subsidiary condition 

PJl(O::Y+) P=O, (8.7) 

corresponding to the classical constraint (6.2~ Here we again extracted the 
positive-frequency part (oxJO(1)!+) from oxJO(1, and it is clear that (8.7) is 
reexpressed as 

(r=1,2, ... ). (8.8) 

The quantization of the classical theory of the relativistic string can also 
be performed on the basis of the non-covariant formalism given in 
Section 4. In the Schrodinger picture regarding t the quantum mechanics 
is given by 

[X;((1), llj(o-')] = iMij(!5((1- 0-')+ 15((1+ 0-') + !5(2n - (1- 0-')), 
_ (8.9) 

in olP/ot = HIP, (IP = IP [x ((1), t]) 

where FI = So H d(1 is to be given from (4.17) for the case w> 0, but we now 
need to take the normal product: 

(8.10) 

In the non-covariant formalism the quantity xo((1) is completely elimi­
nated so that we are entirely free from indefinite metric, but in the form 
above given it looks to be mathematically difficult to solve the equations 
leading to mass spectrum Moreover in the non-covariant quantum theory 
problem arises in the proof of Lorentz invariance, due to the redefinition 
by normal product. Nevertheless, if we now introduce the transversality 
constraint the theory is simplified and can be solved. 
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To introduce the coupling with an external scalar field cjJ(x) we again 
start from the Lorentz covariant gauge and add the interaction term 
acting at the end [9] 

£1 = - 2g 15(0") cjJ(x(O, r)) 
1t 

(8.11) 

to the free Lagrangian L1 of (3.6). 
We assume a plane wave cjJ(x)=e ikx cjJ(O) with -k2 =m;x/li2 and 

understand the normal product The wave equation and subsidiary 
conditions (8.5) are modified to 

[Ar+;:cjJ(X(O)):+ n~w broJ '1'=0, (r=O, 1,2, ... ) (8.12) 

which are mutually compatible only when the external mass has the 
unphysical Virasoro value m;x= -2nKIi [21]. If we further identify the 
external scalar meson with the ground mass state of the string, we have 
again nKw/2 = -Ii, which means that the leading intercept is a (0) = 1. It 
is well-known that in this case the quantum mechanical transition am­
plitude obtained from the propagator and the interaction vertex implied 
in (8.12) reproduce the dual amplitude [5]. We refrain, however, from 
entering into closer discussion of interaction in this paper. 

9. CONCLUDING REMARKS 

To conclude we want to stress a few general points. 
(i) Our string theory for hadrons implies a genuine spacetime model. In 

our theory it is essential that the basic variables xl'(O", r) have the meaning 
of space-time coordinates, because it is on the basis of this interpretation 
that we can properly identify the 4-momentum P Il of the system [9]. (See 
Equations (2.20), (4.7), (8.1)~ formulate causality (See Equations (28), 
(8.3)), and locate interactions (See Equation (8.11)). 

(ii) The variables xI' play the dual role: They themselves physically 
represent the 4-dimensional positional coordinates, but at the same time 
they are viewed like a field in the 2-dimensional space of Gauss coordi­
nates (0", r). Thus our string theory which is still at the one-particle level is 
formally analogous to a field theory in 2-dimensional space-time, where 
the characteristic 'symmetry' in 0" and r is at work. Moreover the 'general 
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covariance' under (5.2) or the 'partial covariance' under (25) on (0-, .) 
allows the string theory be analogous to the general theory of relativity 
or to the gauge theory. However, there arise simple and peculiar aspects 
of the string theory due to the 2-dimensional nature of the parameter 
space. Thus the equation of motion, which is originally highly nonlinear, 
can be linearized in a suitable gauge. The existence of conformal symmetry 
is another such aspect 

(iii) The 'realistic' viewpoint has led us to the theory of relativistic string 
which is more general than the theory obtained from the 'geometric' 
viewpoint and includes the latter theory as a singular limiting case (w=O) 
where some special features arise in the classical level by higher symmetry. 
A drawback of the geometrical viewpoint is that in quantization and inter­
action one is obliged to amend the theory arbitrarily by introducing a 
non-zero w. (cf. Ref. [19]~ Another drawback ofthe geometrical approach 
is that it does not lead to a suitable classical foundation for the quantum 
theory in the presence of coupling with external scalar field. 

(iv) The pure string theory treated in this paper is only an ideal one for 
a model of hadrons. One defect is that it does not contain isospin, half­
integer spin and baryon number properties. The generalization towards 
the introduction of these properties will become possible by incorporating 
some features of the relativistic rotator model and also the fusion theory 
initiated by de Broglie [22]. The pure string model can be regarded as the 
limit of a linear chain consisting of mass points, but now we consider a 
string corresponding to the limit of linear chain consisting of Dirac-like 
elements, and then the theory is linearized The result represents baryons 
or mesons depending on whether we linearize both the wave equation 
and subsidiary condition or the subsidiary conditions alone (cE Refs. 
[23, 4, 17]). 

This work is a development of my talk at the Xth Coral Gables Con­
ferences (January 1973) and my lecture at the Institut Henri Poincare 
(February 1973). I would like to thank Professors B. Kursunoglu, 
B. Sakita, K. Kikkawa, Y. Nambu, and J.-P. Vigier for valuable discus­
sions at various places on my winter journey. 

Nagoya University 
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NOTES 

* Paper dedicated to the Prof. L. de Broglie anniversary. 
1 It is also interesting to recall that in the remote past a string suggested harmony at the 
birth of theoretical physics thinking by Pythagorus and that later Kepler compared the rev­
olutions of planets around the sun to the vibrations of a string. 
2 We employ the notation convention such as (dx.)2=dx. dx·= I,(dxi)2 _(dxo)2. 
3 In the special case w=O, (2.16a) becomes, instead (5.5a). 
4 To construct the theory of relativistic string it is possible directly to start from (3.6), i.e. 
(3.4), which are not invariant under (2.5) but are invariant under conformal transformation. 
In this method we first note that (3.4a, b) are not sufficient to define a physical model be­
cause they do not ensure the 'uniqueness of physical interpretation' nor causality. It is then 
proved [15] that to ensure these requirements we must impose the condition (3.5), which 
works to break the conformal symmetry. 
5 The latter relation is necessary to leave (3.4b) invariant. 

6 Strictly speaking we have iJx%, = ± J - Goo/JI- V2 , but because ox%, has a definite 
sign (either positive or negative) everywhere we have written as in (3.19), taking the positive 
case. 
7 If w=O the variational principle yields Equation (5.12). 
8 The suffix JI. in lI. as well as in S. (See Equation (4.9» is generally not a 4-vector index. 
Note however that at each end II. is a 4-vector such that II. = Jl.oV. and coincides with P. 
in the Lorentz covariant gauge. Also S.=O at the ends. 
9 Again JI., v in IDl •• are generally not 4-vector indices. 
10 The boundary condition (5.2b) is necessary in order that the boundaries map the 
boundaries. The transformations 0"-+" ,-+0", and 0"-+0"'=,-0", ,-+,'=,+0" are quite 
useful but do not belong to (5.2). 
11 Vi 10,. are invariant against (5.2a) due to (5.2b). 
12 The condition Wi 10 .• =0 is invariant against (5.2) although the quantities Wi 10 .• 
are not. 
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J. GEHENIAU 

ON THE PHOTON THEORY OF L. DE BROGLIE 

The photon theory initiated by L. de Broglie some forty years ago contains 
several characteristic features, the most important of which I shall review 
in the following pages: a representation of the photon wave function 
through a bispinor, its wave equation, the annihilated state, and three 
points which still raise interesting questions, i.e. complex electromagnetic 
fields for elementary phenomena, non-Maxwellian tensor densities, and a 
massive photon. 

1. THE WAVE FUNCTION 

Soon after the publication of Dirac's relativistic electron theory, L. de 
Broglie proposed to consider the photon as a point system formed by 
'fusion' of a pair of spin 1/2 'complementary' particles; the wave function 
ofthis particle was thus a bispinor [1 (a), (1934), p. 38 and (b) Vol. I, p. 146]. 

Its sixteen components in [1 (a) and (b)] are those which transform 
like the product of a spinor by its complex conjugate. Here we shall use 
mainly, as does Mme Tonnelat in her thesis [2], the eM which transform 
like the products of the components tjli of a spinor tjI by those, t[Jk, of its 
adjoint t[J = tjI + Yo where tjI + = ttjl* is the transported conjugate of tjI, and 
Yo is the first of the Dirac matrices yo:: 

(IX, {3 = 0, 1, 2, 3) 

'100 = 1, 

'1!XP=O if IX=! {3. 

The eM are the elements of the matrix cjJ; i indicates the lines, k the 
columns. Through the known reduction formula 

(1) 
where 

(IX =! {3) 

each cjJ~ is given as a linear combination of the components of a scalar S, 

M. FlalO el al. (eds.) , Quantum Mechanics. Determinism, Causality, and Particles, 217-225. All Rights Reserved. 
Copyright © 1976 by D. Reidel Publishing Company, Dordrechl-Holland. 
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a vector Arr> an antisymmetrical tensor HaP, a pseudo-vector Ba and a 
pseudo-scalar P, and conversely these tensors are linear combinations of 
the cjJ~; for instance, 

Aa = trYacjJ (2) 

where tr = trace of. 
We note cjJ+ the transposed conjugate of cjJ and call adjoint of cjJ 

(3) 

This bispinor transforms like cjJ and its reduction formula is just (1) but 
with the conjugates S*, .. .instead of S, .... The reality condition of those 
tensors is thus 

Let us remark that, with the matrix of 'charge' conjugation C, 

one gets, [1, (d), Ch. VII], a 

P=cjJC 

(4) 

(5) 

(6) 

whose components transform like the products of two spinors. The tensors 
Aa, HaP are built with the symmetrical part 

p\i) = (P ik + P k;);Z (7) 

the tensors S, BIZ, P with the antisymmetrical part of P. 

2. THE WAVE EQU A TION 

We shall first write the wave equation for P, and note Y(l), (Y(2J Dirac 
matrices which operate on the first (second) index of PiT<- The two 
complementary particles appear symmetrically in t/lik; so the Y(1) and Y(2) 
are a couple of identical matrices yIZ. 

With these notations the de Broglie wave equation for the photon is 
written 

prp(x) = KP(X). (8) 
where 

(9) 
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r<x= (Y(l) + Y(2»)/2 (10) 

and the X' are the photon coordinates, Ii = 1, c = 1. 
Equation (8), (10) is simply Equation (67) of [1 (a), p. 38] in another 

representation of the wave function The fundamental properties of the 
matrices for the unit spin and zero spin particles have been given by Petiau 
in [3]. 

From (8), we have after multiplication of both sides by 

P(Y(l) -Y(2»)' 

if K:;i:O. From (8) and (11), 

So 

(a) 

(b) 

P1'(1) '1' = K'l' 

PY(2) '1' = K'l' 

p2'l' = K2 '1' 

which shows that K is the photon mass. 
In the tP-representation, (12a, b) become 

(a) pytP = KtP 

(b) - PtPy = KtP 

and (8), (11) 

p(YtP - tPy)/2= KtP 

pYtP = - p<fJy . 

(11) 

(12) 

(13) 

(12') 

(8') 

(11') 

The adjoint <p satisfies the same equation In other words, the system 
(12') is invariant under the operation K of complex conjugation 

Kp=-p, KtP=<p· 

It is also invariant for space (P) and time (T) refiexions, with 

TtP(t, x)=YstP + ( - t, x) Ys. 

Using (11 we obtain the tensorial forms of the wave equations. The 
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system (12a)=:(12'a) becomes 

i0a.AIZ=KS 

iO;.S-QiZHIZ;' =KA;. 

o;.AIl - 0IlA;. - iC;'ll!1.p(oa.BP -oP ~)/2 = KH;'11 

o;.P-ioa. xHd =KB;. 

-OIZ~=KP 

(14) 

where c;'lla.p is the completely antisymmetrical tensor whose component 

8012 3 = -1, (8°123 = + 1), 
and 

The tensorial form of (12b)-(12'b) is just (14) but with (- i) instead of L 
Thus, for (8') 

(a) KS=O 

(b) 

(c) 

o HIZ;'+KA;'=O 1 
O:AIl -OIlA;.=KH;'1l J 

o;.P=KB;. } 
-OIZ~=KP 

(15) 

it means three separated systems in which one could put three distinct 
masses Ko, K, K' instead of K. 

This could also be done in (8') through a small modification of its 
right-hand side. 

Putting then K o = 0 

(16) 

is a solution of the so modified Equation (8'), (II'); it defines the 'state of 
annihilation' which plays an important role in de Broglie's theory. This 
state (16) is also a solution of a five dimensional wave equation which 
generalizes (8'). [1 (c), p. 35 and p. 192]' 

The vectorial or Maxwellian states, pure unit spin states, are defined by 

(17) 
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or (7~ From (ISb) it is clear that A", and KH",p are e.m potentials and fields 
up to a same factor which for dimensional reasons is equal to 1/~ times 
a numerical constant More about that at Section 4. 

The states defined by 

4¢' = B",YsY'"+ Piys (IS) 

are pseudoscalar. 
Let us note that p(y¢+¢y)/2=K¢ instead of(S') would give the wave 

equations for a scalar and pseudo-vectorial particle. 

Remarks 

The wave mechanics proposed by J. M. Whittaker for the electron has 
been neglected [4]. His wave equations are simply (14) where p",should be 
replaced by 

to take account of an external electromagnetic field In fact, the J. M. 
Whittaker particle would be scalar, pseudo-scalar, vectorial and pseudo­
vectorial. 

Proca proposed much simpler tensorial equations for the electron [5]; 
as is known, the Proca particle is the vectorial one. For a complete 
bibliography of Proca's works on that point, see [6, References]. 

3. CONSER YED CURRENTS 

The matrix formalism is well suited to find conservation laws, whatever 
the spin. Let us give three examples: 

(a) From (12) one gets, as for the case of spin !, the two conserved vector 
currents 

C(1)=trPY(l)tp= -tr<PY"'¢ 
C(2) = tr PY(2) tp = tr <P¢y'" 

(P = Yo tp+ Yo), or 

C"'=tr Pr"'tp =tr( -<py"'¢ + <p¢y"')/2 

J'" = tr P (Y(1) -Y(2») tp /2 = - tr <p (y"'¢ + ¢y"')/2 

(19) 

(20) 

(21) 
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In tensor notation, 

4 Co: = iH:A.AA.+ iP*Bo:+c.c. 

4Jo:= -S* Ao: + xH:A.BA. + c.c. 

(20') 

(21') 

The vector Co: is the vector of photon density and flux. It would be identi­
cally zero for real fields. The vector Jo: will serve in Section 4. 

(b) The first energy-momentum densities which appear in de Broglie's 
theory are non-Maxwellian, symmetrical or not [1 (a), 1936, (b), 1940, 
p. 186, (c), p. 16]. Costa de Beauregard has called the attention to one of 
these non-symmetrical [7a], and used it to interpret properties of 
evanescent waves because 'the energy flux of the spinning photons is not 
collinear with their momentum inside Fresnel's evanescent wave' [7 (b)]. 
Let us remark that the theory of graviton-photon interactions could bring 
new information on which energy-momentum to choose. 

(c) The total angular momentum operator is the sum 

Jrs=ES+Srs (r, s= 1,2,3) 

of the orbital momentum 

E S = (x'pS - XSp') I x I 
and the spin 

S's=¥s x I -tJ x ifS 

in the 4> representation with the notation 

A x B4>= A4>B. 

The corresponding conservation laws are 

where 
J~S= -trtprO:J,s4> 

ro: = (yo: x I - I x t)/2. 

By this method we obtain quite simply the correct values for the angular 
momenta carried by plane waves [1, b) Tome I], and by 1m-polar waves 
defined as solutions of 
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F or this last case 

as required. 
Let us note that we have taken here, for the spin, components of 

SaA/l= _;pras)./lcp. 

The completely antisymmetrical spin tensor used in [8, p. 118] and [1, c) 
Ch VI] leads to the same results, but in the particular gauge where Ao=O. 

4. ELECTROMAGNETIC INTERACTIONS 

The theory of the electromagnetic interactions can be based on the 
elementary interaction hamiltonian between a charged particle and one 
photon [1, b) Tome II, p. 70 and c) Ch XI]. We shall indicate an equiva­
lent method, in the quantized field theory. From now on, cp is a quantized 
field, and so are the spinors 1/1, '" in the electron current 

(22) 

the star in cp*, 1/1* means now hermitian conjugate. 
The S, Aa, ••• , (S*, A:, ... ), are operators of destruction (creation) of 

annihilated, vectorial, ... photons. Thus, for examples, S* A produces a 
transition of a photon from a vectorial to an annihilated state. 

To get the Lagrangian density for the electromagnetic interactions in 
accord with de Broglie's views we have to treat the charged particles - the 
electrons for example - and the photon on the same level, as far as possible. 
Taking into account the usual Lagrangian density, we see that we have 
to take here as the Lagrangian density 

(23) 

the interaction terms for the two constituents of the photon are of opposite 
signs, as if they were particles of opposite charges. 

The next step is to compare (23) with 

efA~) 

where A('r) is the real Maxwellian potential. From (21') 

-e~(S*Aa+A:S)/2~=eA~). 

(24) 

(25) 
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Further, any physical state certainly contains a very large number no, 
let us sayan infinite number of annihilated photons per unit volume. Thus, 
S reproduces the same state multiplied by a very big number which we 
may put equal to ~, the phase factor being included in A *. Then 

(26) 

This compels us to regard 8 as an infinitely small quantity which cancels 
the probability of transformation of a photon from a vectorial to a 
pseudoscalar state and vice-versa Then, the interaction density (23) gives 
no possibility of creation of a pseudoscalar photon, and we shall neglect 
those states in the following. 

Let us stress that (25) is obtained from (21) where the quantized 4J is, in 
conformity with de Broglie's point of view, an operator of annihilation 
only. 

5. THE PHOTON REST MASS 

The convenience of a massive electrodynamics is generally recognized 
[9,6-5, 15-2, 15-4], but for de Broglie a non-zero value of the photon rest 
mass is essential. 

Up to now the best established quantity is an upper limit: K:::::; 3 x 10- 15 

eV, [6]~ As is well known this smallness reduces considerably the real 
e.m. interactions with a longitudinal photon compared to those with a 
transverse one. Recently, de Broglie and Vigier [10] have used a massive 
photon to interpret Imbert's experiments [11] about shifts of position of 
internally reflected light beams but interpretations with massless photons 
have been given afterwards [12], [13]. 

Cosmological events could be more appropriate. Following Vigier [14] 
collisions between longitudinal and transverse photons might explain 
observed anomalous red-shifts. On another hand, Oeser [15] has noted 
that through gravitational experiments, longitudinal photons could be 
detected as well as transverse ones. Other types of interactions with the 
same behaviour could be imagined But no definite conclusion can be 
drawn about the photon mass. 

U niversite de Bruxelles 
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MARIE ANTOINETTE TONNELA T 

FROM THE PHOTON TO THE GRAVITON AND TO A 

GENERAL THEOR Y OF CORPUSCULAR W A VES* 

1. INTRODUCTION 

Dirac's theory of the electron had introduced, as if by accident, the notion 
of spin into the very centre of quantum mechanics. In suggesting linear 
relativistic wave equations, P. A M Dirac [5] had been able to give an 
account of the anomalous Zeeman effect and of the characteristics of 
fine structure. The notion of spin thus appeared to determine even the 
type of equations which described the behaviour of a given particle. It 
played a fundamental part in a process of classification of particles. 

Starting from Dirac's equations which were valid for the electron, that 
is for a fermion of rest mass Mo and spin t (in units of h/2n1 we can 
imagine a process known as 'fusion', associating an even or odd number 
of such Dirac particles. In the first case, the association (fusion) of 2n 
(n = 1, 2, 3) particles will lead to the wave equations of a boson of maxi­
mum integer spin n; in the second case, the fusion of 2n + 1 Dirac particles 
will give the description of a fermion with maximum half-integer spin n+t. 

The simplest example clearly consists of postulating the fusion of two 
Dirac particles. Thus Louis de Broglie obtained in 1934 the equations of a 
particle with a spin one: the equations for a photon having a mass, that is 
Maxwell equations completed by terms in Jlo [9]. These relationships, 
identical with those to be obtained later by A Proca using another pro­
cedure, can also describe a (then new) spin 1 particle: the meson. (Cf. 
Geheniau [9]). 

The procedure introduced by Louis de Broglie could of course be gen­
eralised. The next step (Tonnelat [15], Petiau [12]) consists of the fusion 
of 2 photons, that is of 4 Dirac particles, thus obtaining the wave equa­
tions for a particle of spin 2: the graviton. 

At that time (1939) a general and systematic study of particles with spin 
appeared to be the key to a fruitful knowledge of matter. In 1935, Petiau 
had given the characteristic relationships between the operators which 
described the behaviour of certain types of particle: the Petiau-Duf'fin-

M. Flato et al. (eds.), Quantum Mechanics, DetermInism. Causalitv, and Particles. 227-235. All Rtghcs Reserred. 
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Kemmer relationships [11]; in 1938 Pauli and Fierz suggested, within 
the framework of field theory, equations for particles of any spin what­
soever. Due to the war, this work remained unknown in France, and in 
addition the syntheses based on the fusion process suggested by Louis 
de Broglie were rather different in nature [3]. 

It was not in fact just a wish of generalization that prompted Louis de 
Broglie to associate two Dirac particles to form a 'heavy photon'. The 
equations thus obtained have a particular solution known as the 'annihi­
lation solution' which seemed to Louis de Broglie to correspond to a pos­
sible description of the photoelectric effect: two material particles (elec­
trons) appeared to be able to vanish (annihilation) to produce an electro­
magnetic radiation. Lastly, the longitudinal waves associated with the 
propagation of a photon with nonzero mass played an essential part in the 
mechanism of Coulomb interactions. 

In a similar manner, the physical interpretation permitted by the 
method of fusion applied to particles of any spin must playa prepon­
derant part in a theory of corpuscular waves. In the first place, it was to 
show itself in the simplest of these: the theory of the graviton. 

2. THE GRAVITON, A PARTICLE WITH A SPIN 2 

At the time when Dirac was constructing a relativistic theory of the 
electron, and when Louis de Broglie was suggesting a relativistic theory 
of the photon, gravitation appeared to be separated by a very wide gulf 
from other physical phenomena Certainly, as was stressed by Louis de 
Broglie, it could appear paradoxical that the fastest particle, the photon, 
had not been described by a relativistic treatment until 1936. On the other 
hand, gravitation appeared to raise quite different problems. In fact, 
since 1915, Einstein's theory of gravitation, known as 'general relativity' 
had been accepted by all physicists. According to this theory, gravitation 
phenomena are a consequence of the non-Euclidean structure of space. 
In this curved universe created by the masses, the test particles move along 
geodesics which coincide, to a first approximation, with the orbits of the 
celestial bodies. 

The geometric interpretation of gravitation is one of the simplest and 
most elegant theories conceivable. It must be admitted, however, that it 
separates gravitation sharply from other physical phenomena, and in 
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particular from electromagnetism, with which it had hitherto always 
been to some extent associated 

There is of course no incompatibility between general relativity and 
corpuscular wave equations. If true space is a Riemann space, we can 
easily write out wave equations valid in such a space. Thus Schrodinger 
[13], Pauli [10] generalized Dirac's equations to a non-Euclidean space. 
In the same way, the equations of the photon can be extended to a curved 
space [14]. 

Nevertheless, these generalizations show only that there is a compati­
bility between two explanatory themes, the roles of which remain fun­
damentally different: in quantum mechanics, curved space remains a 
permissible framework; according to general relativity it becomes an 
effective cause. In the first case, the corpuscular wave equations are valid 
in the Riemann space; in the second case, this space becomes responsible 
for the nature of the orbits. It therefore seems that a form of option 
becomes necessary: either to geometrize all the forms of energy (as is the 
aim of the theories known as 'unitary'), or, on the contrary, to interpret 
gravitational energy by a specific quantum phenomenon. Eddington had 
already written in 1923 that "the mechanical properties of matter are 
commonly represented by the curvature of space-time" [6]; but, if we 
prefer, we can resolve this into particles and represent the mechanical 
properties by wave functions. We cannot consider it both ways at the 
same time" [6J. 

Since the mainly philosophical speculations of Boscovitch and of Le 
Sage (extra-terrestrial corpuscles), no successful effort had been made to 
describe gravitational phenomena by a corpuscular process. If we wish 
to make use of the fusion process of Louis de Broglie, we easily find that 
the association of two Dirac particles introduces quantities dependent 
on a quadrivector (spin 1) linked with the quadripotential CP/l; the fusion 
of four Dirac particles makes all the field quantities relative to the maxi­
mum spin 2 dependent on a symmetrical tensor of the second rank 
ifJ(/lV). This tensor is clearly the analogue of the non-EU(~lidean part of the 
metric tensor of general relativity. Its behaviour is described by linear 
equations comparable to the linear approximation of general relativity. 
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3. FUSION OF 2 PHOTONS AND LINEARIZED 

GRAVITATIONAL EQUATIONS 

More precisely, two Dirac particles described by the two wave functions 
with 4 components l/IP) and l/I<';) (i, m = 1, 2, 3,4) satisfy the equations 

(1) 

with 

Two other corpuscles (fJP) and (fJk2) satisfy the corresponding equations 

a /l(fJly/l + kO(fJ, = 0 

The wave function 

has 44 = 256 components and satisfies the linear equations 

(2) 

(3) 

(4) 

(5) 

The operators P, Q, R, S are formed by linear combinations of four 
Dirac operators acting respectively on one of the four indices of the wave 
function. It can be shown that (4), in conjunction with anyone of equa­
tions (5) justifies the validity of the whole system. 

The function lJ'iklm can be regarded as a matrix with 16 lines and 16 
columns that can be expressed in terms of a basic system of matrices of this 
type. Thus, generalizing the expression of the principle of fusion, we will 
put 

(6) 

where the sign + indicates the conjugate matrix, and A, B = 1, ... , 16. 
The physical field cjJ AB, quantities which are clearly complex, are thus 

divided into 4 groups: one corresponds to pure spin j = 2, three to the 
state where spin j= 1, and two to spin j=O (Tonnelat [15]~ Let us write 
three of these groups, the two others being identical to Maxwell's equa-
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tions completed by mass terms 

o 1l¢(VP) - OV¢(IlP) = kO¢[llv] P 

OP¢[PIl] v = - kO¢(llv) 

o 1l¢[Pa] v - ov¢[pa]1l = kO¢([llv] [pan 

J O;t/![VP]-~Vt/![IlP] = kot/![Ilv] P 

I ~ t/![PIl] v - kot/![Ilv] 

o Ilt/![Pa] v - ovW[pa]1l = kot/![[Ilv] [pan 

231 

I oll¢(O)=ko¢~O) ¢(O)= L ¢(Pp) 

I oP¢~O) = - ko¢(O) with ko¢~O) = ko Lp ¢[IlP] P = 0 1l¢(O) (So) 

o 1l¢~O) = ko¢~~) 

The group (So) is obtained from (S2) by contraction. Then by putting 

(7) 

we can obtain equations for a particle of total pure spin 2(Lp ¢~;1)=O), 
without mixture of spin j = o. The equations satisfied by the quantities 
¢(O) are identical with (S2) (Cf. van Isacker [2J). 

We can also show [2J that the equations (Sl) reduce to Maxwell's 
equations completed by mass terms. 

It is easily established (M. A Tonnelat [15J, [16J) that the equations 
(S2)' valid in vacuum, are identical with the linear approximation of Ein­
stein's equations, these latter now being written with a cosmological term. 
In particular, the tensor ¢([IlV] [pan has the symmetry features of the Rie­
mann-Christoffel tensor. It is formed with the ¢[IlV]P and the ¢(IlV) as the 
Riemann tensor is formed from the Christoffel symbols and the compo­
nents of the metric tensor. It can even be shown that the three groups 
(S2)' (Sl) and (So) constitute the linear approximation of the equations 
of the asymmetric Einstein-Schrodinger theory, this latter also including 
the cosmological term mentioned by Schrodinger [16]. 

4. COULOMB AND NEWTON INTERACTIONS 

In constructing his theory of the photon, Louis de Broglie had shown 



232 MARIE ANTOINETTE TONNELAT 

the existence of plane waves, of which certain spin components in a given 
direction, m= 1, correspond to right-hand polarized and left-hand polar­
ized components and others, m = 0, to a purely longitudinal polarization 
According to Louis de Broglie, these latter components ensure the 
Coulomb interactions between two charged particles. Indeed, the inter­
action term 

Lc = arbitrary constant (8) 

introduces the density-current quadrivector of Dirac's theory and the 
electromagnetic potential Aa created by the photon Postulating that the 
interaction between two charged particles takes place as a result of the 
longitudinal waves alone, we can calculate the elements of the matrix Hi! 

of an interaction Hamiltonian causing the transition of a system of two 
charged particles from the initial state (i) to the final state if) by emission 
and absorption of longitudinal photons. 

The interactions between charged particles by photon exchange thus 
constitute, as is stated by Louis de Broglie, a "double transition, resulting 
overall in the transfer of an electron from one state of annihilation to 
another state of annihilation". The intermediate state of the system is a 
virtual state and it is globally (that is from initial state to final state) 
that we can have conservation of energy and momentum. 

This principle, assumed by Louis de Broglie in the case of the photon, 
may be extended to the spin 2 particle. Two material particles exchange 
the 'longitudinal' gravitons corresponding to m=O (longitudinal waves). 
We can then determine the symmetric potential <P(aP) corresponding to 
the only longitudinal actions. The interaction Hamiltonian 

Kg = Lg TaP<P(aP) (Lg = arbitrary constant) (9) 

(TaP is the energy momentum of the material particles) is easily deduced 
from this. By making the traditional assumptions, we find that the ele­
ments of the matrix so calculated correspond to a potential 

U=_G m1m2 e-kolr121 
Ird 

(to) 

The potential U differs from the Newtonian potential by a Gaussian 
function. This latter is clearly nearly equal to unity if the mass of the 
graviton is very small. 
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We thus return to a sort of symmetry between gravitation and electro­
magnetism. The strange similarity between Coulomb and Newton forces, 
together with their sign difference, which had raised so much difficulty in 
post-Newtonian physics, may thereby receive the beginnings of an 
explanation. Unification, however, is no longer placed under the heading 
of geometry, but under that of the similar behaviour of particles carrying 
charges or masses. By exchange of photons or of gra vitons, they carry out 
transitions, the macroscopic summation of which is described either by 
Coulomb's law if there is an exchange of photons, or by Newton's law if 
there is an exchange of gravitons. It is for this reason that we can insist 
on this aspect of the question by giving this theory the title" A new form 
of unitary theory. Study of the spin 2 particle" [15]. 

Many questions can of course be asked: the transition from complex 
microscopic quantities to real macroscopic ones, the very meaning of 
'state of annihilation', the transition to a non-linear condition, the study 
of fields not in vacuum, but in matter; all is not yet made clear. How­
ever, it seems clear that the method of fusion, by introduction of non­
zero rest masses, cannot regard the abolition of these masses as a simple 
special case or as a limiting value (de Broglie and Tonnelat [4]). In this 
sense, the possibility of according a physical significance to the poten­
tials was used as a criticism of this theory at a time when gauge invariance 
was a sacred dogma of electromagnetism. 

5. PARTICLES OF ARBITRARY SPIN 

By generalizing the theories of the photon and the graviton, we could 
easily formulate wave equations for bosons of arbitrary integer spin. In 
the same way, fusion of an odd number of Dirac particles led to wave 
equations for fermions. These extensions (Cf. Petiau [11, 14]) have been 
analyzed and frequently completed by Louis de Broglie in his General 
Theory of Spin Particles [2]. This synthesis remains faithful to the physical 
principles which had been the basis of the 'new theory of light': the 
association of a physical field with every particle, and the statement of 
the correspondence between the field quantities and the corpuscular 
behaviour of the particle which remains fundamental Study of plane 
waves and of the energy-momentum tensor(s) is based on this same 
principle. We can of course ask ourselves whether the general study of 



234 MARIE ANTOINETTE TONNELA T 

particles with spin supposes that effective complex structure which the 
theory seems to postulate. We can also give thought to the fact that we 
are dealing here with a first linear approximation, which could lead to a 
non-linear extension Once again, general relativity would be both an 
obstacle and a model Questions of this nature were asked by Louis de 
Broglie in the last chapters of his book on the general theory of particles 
with spin [2]. Such also are the problems which he developed in his 
Wave Mechanics of the Photon and Quantum Theory of Fields [3]. 

"It appears certain to us", wrote Louis de Broglie, "that this theory 
[referring to the wave mechanics of the photon and its extension to 
particles with spin] has the great merit of demonstrating clearly the true 
physical meaning of the fairly abstract formulation of the quantum 
theory of fields and of giving a clear indication on questions which remain 
fairly obscure". This merit does not of course enable Louis de Broglie to 
solve all mysteries, but, without avoiding them, it provides a means of 
suggesting a clear statement of them, which is too frequently forgotten, 
and of genuine search for an interpretation Such was the aim of the first 
relativistic theory of light, hopes linked to a unitary theory of corpuscular 
type and subsequent generalizations. Whilst the questions raised are now 
stated in slightly different terms, they are very far from being answered. 

Universite de la Sorbonne, Faculte Pierre et Marie Curie 

NOTE 

* Translated from the French by N. Corcoran. 

BIBLIOGRAPHY 

[I] de Broglie, Louis, L'electron magnetique, Theorie de Dirac, Hermann, Paris 1934. 
[2] de Broglie, Louis, Theorie generate des particules Ii spin - Methode de Fusion, 

Gauthier-Villars, 1954. 
[3] de Broglie, Louis, Mecanique ondu/atoire du photon et theorie quantique des champs, 

Gauthiers-Villars, 1956. 
[4] de Broglie, Louis, and Tonnelat, M. A., 'Sur les possibilites d'une structure com­

plexe pour la particule a spin 2', C.R. Acad. Sci. 230 (1950),1329. 
[5] Dirac, P. A. M., 'The Quantum Theory of the Electron', Proc. Roy. Soc. A117, 1928, 

p.610. 
[6] Eddington, A. S., 'Electrons and Photons'. 



FROM THE PHOTON TO THE GRAVITON 235 

[7] Fierz, M., 'Ueber die relativistische Theorie kraftfreier Teilchen mit beliebigem Spin', 
Hel. Phys. Acta 12 (1939), 3. 

[8] Fierz, M. and Pauli, W., 'On Relativistic Wave Equation for Particles of Arbitrary 
Spin in an Electromagnetic Field', Proc. Roy. Soc. 173A (1939),211. 

[9] Geheniau, J., 'Mecanique ondulatoire de l'electron et du photon', Bull. Acad. Roy. 
Belg. (1937). 

[10] Pauli, W., 'Ueber die Forrnulierung der Naturgesetze', Ann. der Phys. 18 (1933),337. 
[11] Petiau, G., 'Contributions it I\~tude des equations d'onde corpusculaires', Bull. Acad. 

Roy. Belg. 76 (1936), 118. 
[12] Petiau, G., 'Sur les equations d'ondes des corpuscules de spin quelconque', J. Phys. 

Rad. 7 (1946), 124. 
[13] SchrOdinger, E., 'Diracches Elektron im Schwerfeld', Sitz Preuss Akad. d. Wiss. 3 

(1932),205. 
[14] Tonnelat, M. A., 'Sur la theorie du photon dans un espace de Riemann', Ann. der Phys. 

15 (1941), 144. 
[15] Tonnelat, M. A., 'Une nouvelle forme de theorie unitaire - Etude de la particule de 

spin 2', Ann. der Phys. 17 (1942), 151-208. 
'Etude des interactions entre la matiere et la particule de spin 2', Ann. de Phys. 19 
(1944), 396-445. 

[16] Tonnelat, M. A., Les theories unitaires de !'electromagnetisme et de la gravitation, 
Gauthier-Villars, 1965. 



JEAN-PIERRE VIGIER 

POSSIBLE IMPLICATIONS OF DE BROG LIE'S 

WAVE-MECHANICAL THEORY OF 

PHOTON BEHAVIOUR 

Analyzing in a recent publication [1J the historical ongm of Wave 
Mechanics, Professor de Broglie has recalled that its origin rests on the 
almost forgotten idea that all particles are endowed with an intrinsic 
oscillation: so that one can compare them to clocks which remain in 
phase with the'" waves utilized in Quantum Theory. This postulate of 
phase correlation is of relativistic nature. It yields an immediate demon­
stration of the identity of the principles of Fermat and Maupertuis. 

When applied to the theory oflight this idea provides a simple explana­
tion of an experimental property which has never been explained in the 
usual theory. If one considers the action of hertzian waves (of frequency 
v) on an oscillating circuit the absorbed energy is evidently split into 
isolated quantas which yield a discrete set of isolated impulsions. A 
regular oscillation can then only be permanently maintained if these 
impulsions are correlated with the frequency of the circuit which cor­
responds to the frequency of the incident wave .. , so that individual 
photons behave as if they carried individual frequencies equal to v. 

If we accept this idea we see also that the analogy between the theory of 
light and particle theory is only complete if we endow individual photons 
with a non-zero rest mass 11:;;:;.10- 48 gr. 

The existence of such a mass has been shown [2J to be compatible 
with recent experimental data and with currently known consequences of 
Quantum Electrodynamics. 

The aim of the present paper, written in homage to Louis de Broglie, is 
to follow up some possible theoretical and experimental consequences of 
this latter assumption (11#0) and to see whether de Broglie's original 
idea can help us to interpret puzzling new experimental data (such as 
possible 'anomalous' redshifts in astronomical observations [3J or 
beams of parallel high energy y's observed in cosmic ray plates [4J and to 
attack well-known unresolved theoretical difficulties in the present theory 
of light. 

M. Flato el aJ. (eds.), Quantum Mechanics. Determimsm, Causality, and Particles, 237-249. All Rights Reserred 
Copyright © 1976 by D. Reidel Puhiishiflg Company. Dordrecht-Holland. 
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A. The first theoretical point is that J.l#O determines the numerical value 
of IX = e2/nc. 

To show this following Adler and Bardeen [5] we can now work out 
free electron theory in a constant external electromagnetic field with a 
non-zero photon mass which can be taken equal to its true basic mass. 
This means that we neglect all photon self-energy graphs and work in the 
transverse Landau gauge. 

As shown by Adler and Bardeen [5] if we denote by eo the basic electron 
charge and m the electron mass, the asymptotic electron propagator for 
renormalized wave functions takes the form: 

S~(P)~~daugaUge P:b c[y.p+am(~;2)] (1) 

in the infinite momentum frame (I.M.F.) where p2 ~m2, with 8=(1/2) IX (eo) 
and IXo = e5/4n. The corresponding internal photon propagator can be 
written 

(2) 

and we can show that the physical value of IX can be deduced from its 
asymptotic value IXo from the relation IX = IXo, IXo being the singular eigen­
value of Gell-Mann and Low's equation p(IXo)=O. 

We deduce immediately from this the asymptotic form of the corre­
sponding Green function for an isolated electron moving in its own 
electromagnetic field in a constant external vector potential BJ1. Indeed 
introducing, in Feynman's notation [6] the function of x=y"x" and 
B=y"B" i.e. 4Je2(B, x) which represents the amplitude that an electron will 
arrive in x" in its own electromagnetic field (without leaving any photon 
in the external field) one deduces from Feynman's relation (\1 = y'" a/ax,,): 

the exact solution 

<xi + 1 I x):t = <xi + 1 I x)~t' exp [ - i((5t- B4 - (Xi+ 1 - x;) Bi)] 

which represents the transition form Xi to xi + 1 if we split its path in in­
finitesimal intervals of &. This is evidently mUltiplied by e2/4n (in the 
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system where Ii = c = 1) since the factor appears once (see relation (2)) 
each time the moving electron emits and absorbs a photon between the 
two points. 

This yields the following theorem: 

THEOREM I. If we suppress all photon self-energy graphs in Quantum 
Electrodynamics (henceforward included in a non-zero photon mass) the 
propagator of a charged Dirac particle (m#O) converges asymptotically 
(in the I.M.F. where p2~m2) towards the propagator of a zero-mass 
fermion The associated Green function in momentum space then satisfies 
a wave equation which is invariant under the conformal group C(M4)= 
= SO (4, 2)~SU(2, 2). The constant IX then appears as a coefficient of this 
asymptotic function 

We shall now discuss this asymptotic form in more detail through the 
utilization of a five-dimensional formalism. More precisely, we are going 
to show that the preceding I.M.F. motions (and associated IX definition) 
can be mapped on the I.M.F. motion of a Dirac uncharged particle in a 
particular five-dimensional space. This implies that IX now appears as a 
mUltiplying factor of the asymptotic Green function in five-dimensional 
momentum space i.e. 

THEOREM II. The asymptotic motion of a Dirac particle treated 
within the frame of Theorem I (and the corresponding IX definition) can 
be mapped on the motion of a neutral Dirac particle in a five-dimensional 
fiber space U 5: the fifth space-like dimension corresponding to a closed 
circle of radius ~ at each point This satisfies locally the SO (4,1) invariant 
wave equation (8i representing covariant derivatives): 

which reduces locally to the SO (5, 2) invariant relation 

yi-Oit/! =0 

(3) 

(4) 

for suitably chosen co-ordinates. The constant IX then appears as factor 
multiplying the Fourier transform, in momentum space, of the elementary 
solution of Equation (4). 

Its demonstration needs no development since its elements have been 
already discussed in the physical and mathematical literature, in particu-
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lar by Souriau [7]. Using the latter's notations we define a five-dimen­
sional Riemannian fiber space Us where the fifth spacelike dimension 
behaves like a closed loop (fiber) of radius ~ at each point. 

We introduce a principle of relativity which treats the five dimensions 
of Us on an equal basis. The electromagnetic four-vector potential d/l 
is defined as d/l=g/l5/g55 where i=I, ... ,4 and we use a local signature 
(- - - - +). 

Then writing yi. yk + yk. yi = 2gi1f(aj denoting the covariant derivation of 
the spinors in the direction j) we see immediately that the generalized 
Dirac equation in Us, i.e. 

(3) 

(a constant), l;lecomes invariant under the conformal group in five dimen­
sions SO (5, 2) for p2~a2. So that (3) can be written in the form yi'Oil/J'::::!O 
(4) in the asymptotic I.M.F. limit This limit corresponds to the asymp­
totic motion (1) since Souriau has shown that (3) reduces to the Dirac 
equation for massive charged particles with the correct minimal coupling 
eA/lr. Indeed at each point we can introduce transverse variables in 
which the hypersurfaces X5 = const are orthogonal to the fibers. So we 
write (the symbol", denoting that we are working in these variables) 

[Y/l' YvJ=2§/l" y/l=g/lVy., [Y/l' Y5J=0, y~= _~2 

y/l=y/l, y5=y5_(e/li) y/lA/l' Y/l=Y/l+(e/li) Y5AI" Y5=Y5' 

When we introduce these in the developed form of (3) i.e. 

yiOjl/J +{_1_ oJ..Ji9I. yl] -ii[ojYk- OkyjJ l} l/J +al/J=O 
2..Ji91 

we get (expanding l/J in a Fourier series l/J= Lz l/Jz(x/l) exp[iZx5J Z being 
an integer, and introducing P = y/l, r 5 = Y 5g = r 1 r 2r 3r 4 the relation 

r{O/l_i~.e A/l] l/Jz+[a-i~e'J¥.r5] l/Jz+ 

+1. Ix. F .·. r ./lr .vr5", =0 By 2-ir /lV 'I'z 

- 1 - -where X denotes the usual constant in R/lv -"2R . g /lV = XT/lV and A/l = 
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= ~ (2n/x)1/2 d w The last term of (4) can be neglected since ~ = e - 1 (x/2n)1/2 
i.e. ~=3.782 x 10- 32 em so that, if we write m2 ={Ze(2n/x)1/2)2-a2h2 

with m).=Ze(2nh)1/2- aK and introduce: 

I-irs l+irs 
m=-_·I, +i).· __ .I, 
"1' 2 'liz 2 'liz 

relation (4) reduces to 

(5) 

which takes the asymptotic form 

(6) 

in the limit p2 ~ m2. 

This completes our demonstration: since, if we work in the local co­
ordinate system where ai-.iJ/iJxi the equivalence of (3) and (6) implies 
(with the assumptions and restrictions of our first part) that e2 (h=c= 1) 
appears as a factor multiplying the Fourier transform in momentum 
space of the elementary solution of the asymptotic five-dimensional 
Dirac Equation (4). 

We shall now calculate explicitly this coefficient using well-known 
mathematical results of Hua [8] and Wyler [9]. We can indeed demon­
strate. 

THEOREM III. The coefficient of the Fourier transform of the elemen­
tary solution on CH(DS) ofrelation (4) invariant under C(MS)- SO(5, 2) 
can be written in the form 

(7) 

if one denotes by V (QS) - 1/2, V (S4) and V (DS) the respective volume of 
the spaces DS (interior of a complex five-dimensional sphere of radius 
one) QS its Silov boundary and S4 the surface of a unit sphere in a five­
dimensional real Euclidian space. 

This can be shown in the following way. At each point E Us one in­
troduces a tangent Euclidian space US and the associated spin or fields 
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defined as usual on M S=P(MS)/SO(4, 1); P(MS) denoting the local 
Poincare group. These spinors are eigenfunctions of the associated 
Laplace-Beltrami operator with eigenvalue O. Since we have in general 
OnEn=(4n)(n-2)/2·l5·In where In denotes the nxn unit matrix one can 
show that the elementary solution of equation (4) defined by the relation 
(YiOi) Ss = (4n)(S - 2)/2 M4 is related to the elementary solution Es of 
05ES = (4n)(S - 2)/2. l5. I4 through the relation Ss = VoJ Es· I4. Its Fourier 
transform Ss (k) defined by the relation 

( 1 )S/2 f Ss (k) = 2n Ss (x) exp(i<k I x») dx, ... dxs 

also satisfies (yiOJ Ss (k)= I4 so that one obtains the relation 

(8) 

which connects the elementary solutions (i.e. the multiplicating coeffi­
cients) of the Dirac and Laplace operators on Ms. One can calculate 
them explicitly by mapping MS the spinor fields and relation (4) on the 
bounded representation DS of the homogeneous quotient spaces 

DS = SO(5, 2)/SO(5) x SO (2). 

To achieve this result one can utilize an intermediate step i.e. the 
representation of MS on the five-dimensional complex space TS = RS + iVs 

where VS is the internal part of the forward oriented light cone, and RS 

the five-dimensional euclidian space. The group L(TS) of linear trans­
formations on TS is isomorphic to P(MS) on T S• 

One then utilizes the stereographic projection F: TS-+D s (which yields 
an analytic mapping of TS on DS) introduced by Wyler. As one knows its 
Silov boundary QS = S4 X Sl is just the quotient space SO(5, 2)/P(MS ) x D, 
D representing the dilatation group. The representation C (MS) ~ SO (5,2) 
on the space of solutions {cp/O scp} of the wave equation is equivalent to 
the representation of SO (5, 2) in the space H(DS) of homomorphic 
functions on DS. The Poisson kernels Ps correspond to the Green 
functions of a zeromass scalar field 

We have therefore mapped the spinor fields on MS into the unitary 
representations of C(MS) constructed on the set of all holomorphic 
eigenfunctions of the Laplace-Beltrami operator (deduced from the 
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Casimir operator giipip') with eigenvalue zero constructed with the in­
variant metric on D S• Their set spans a representative Hilbert space 
CH(D S ) with square integrable matrix elements. 

One obtains finally in this way the relation 

(9) 

z and e representing the variables on DS and QS. With (8) this relation (9) 
connects the elementary solutions of the Dirac and Laplace operators on 
D S• Since Hua [8J and Wyler [9, p. 22J have shown that the factor which 
multiplies Ss in DS can be written V (Qsr 1 V(DS)1/2 we see that the factor 
which multiplies Ss in DS can be written V(Qsr 1/2 V(DS)1/2 which shows 
that the coefficient of the Green function in the momentum space of D S 

takes the value of Theorem III Le. 

f=(4nr 3/2 . (2nr S/2. V(Qsr 1/2. V(DS)1/4. 

The associated value in T S being V(S4~ f if one utilizes [9 p. 22J the 
relation established by Wyler which connects the holomorphic functions 
on QS and T S• 

The last step in the determination of IX is to compare the f value of 
Theorem III with the value of the coefficient f of the Green function in 
D 4 = SO (4, 2)/SO(4) x SO (2) which results from the successive steps 

M4 -.;. T4 = R4 + iV4 -.;.D4 

since according to Theorem I IX multiplies the Green function associated 
to a zero mass particle in four-dimensional momentum space. We thus 
obtain (substituting 4 to 5 in the demonstration of Theorem III) 

k=1X . (4nr 1/2 (2nr 3 /2 • V(S3r 1. V(Q4r 1/2. V(D4)+ 1/2 

since one passes from five-dimensional motion to four-dimensional 
motion i.e. from US to M4 by 'freezing' XS the f value of Theorem III 
can be compared with the value of the coefficient f' of the Green function 
in the momentum space of D4 =SO(4, 2)/SO(4) x SO (2) which results 
from the successive mappings 

M4-.;.T4=R4+ iV4-.;.D4. 

Now according to Theorem I since IX multiplies the Green function in 
four-dimensional momentum spade we see (by substituting 4 to 5 in the 
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demonstration of Theorem III) that 

l' =(X • {4nt IJ2{2nt3/2. V{S3t 1. V{Q4t 1/2. V{D4)1/2, 
where 

- {4nt 1/2 corresponds to the normalization correspondence for 
holomorphic functions in Q4 and T4. 

- {2nt 3/2 results from the four-dimensional Fourier transform. 
- V{S3t1 results from the Q4~T4 transition 
- V{Q4t 1/2 is the p4 norm factor. 
- V{D4)1/2 normalizes to 1 the wave function in D4. 
Writing then f= l' we obtain 

(X = {4n)-1 {2nt 1 (2n2) e3;2r 1 {2n3)1/2 x 

x (23 n3)-1/2 (~)-1J2 .(~)1/4 
3 26 ,3 24 '5! 

1 

137,037 

B. If we apply the principle of phase correlation discussed at the be­
ginning of this paper to neutrinos we must endow both Ve and vI' with a 
small rest mass mv It is known that we can then construct by fusion non­
zero mass y photons (J = 1) and pseudoscalar particles qJ (J = 0) with 
mtp#O corresponding to the singlet state. Such particles have been 
introduced in the literature as quanta associated with the dilatation oper­
ator of the conformal group SO {4, 2)-SO (2, 2). 

If they exist the detection of such particles is only possible (as in the 
neutrino case) by indirect means: i.e. if we observe reactions where they 
must be introduced to ensure the conservation of energy momentum and 
spin. 

It is then tempting to associate them with 'anomalous' redshift obser­
vations discussed in astrophysics by Arp [3] and various authors, which 
have also been recently discovered in solar phenomena 

We only mention three: 
(a) the 'anomalous' redshift (jz= (jv/v- 10- 7 observed by Roddier [10] 

one the line SnI{A.=4697 A) at the edge of the sun; 
(b) the anomalous redshift (jz-2x 10- 7 observed by Goldstein [11] 

on the wavelength 2292 MHz at the superior conjunction of the satellite 
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Pioneer-6 behind the sun This shift analyzed by Merat et aL [12] is 
symmetrical with respect to center of the sun and can be interpreted as an 
interaction between a ({J flux originating from the edge of the sun and the 
2292 MHz photons; 

(c) the difference L1y observed between the axis of the sinusoids 
corresponding to the Doppler motion of double stars. These axes should 
superpose in principle.' An analysis by Kuhi et al. [13] shows it always 
operates in favour of the hottest component ... and is difficult to interpret 
with the help of Doppler or gravitational effects. 

The interpretation of these 'anomalous' shifts can be attempted within 
the frame of various theories. The simplest way is to assume the lost 
energy Mv If the solar phenomena is carried away by new light particles 
with strongly interact with the observed y's. If one utilizes ({J to that effect 
we shall now show it is possible to introduce interactions which satisfy 
the three main conditions imposed by the present experimental knowl­
edge i.e. 

(1) a strong forward scattering peak in the y - ({J collisions to ensure 
the point-like character at distant sources. A simple calculation shows 
that < b({J > ~ 10- 11 rad per collision; 

(2) a constant fractional energy loss for 1010 Hz<p~ 10 Hz since the 
observed 'anomalous' shifts are of the same order within these limits; 

(3) the absence of consequences which would contradict known results 
of Quantum Electrodynamics. 

Among various solutions we shall discuss a new one inspired by a 
proposal of Bethe [14] (in the fermion case) recently discussed by Clark 
and Pedigo [15]. As we shall show it remains valid despite various objec­
tions [16, 17] which have been raised against an initial model [18]. 

Let us denote by 4>1 and 4>'1' the spinors associated to y and ({J in the 
de Broglie fusion formalism. They satisfy the relations '1 + 4> = 4>1 and 
'1- 4> = 4>'1' with 

where the {3's have 16 dimensions. Both y and ({J are locally endowed 
with angular momenta mp.. = (h/2mc) 4> + /3p./3.4>: '1± representing projec­
tion operators and 4> the product (fusion) of two spin t components. 



246 JEAN-PIERRE VIGIER 

We then assume that the interaction Hamiltonian between y and cp 
takes the form (in de Broglie's notations): 

HI = - go : ($q>(m"'V)q>cPq» (0 (m",v)w W): 

- gi($y(f3cz)ycPy) (0 (p")w W): + h.c. 

where w stands for an intermediate particle (vector) exchanged between 
a spin t y and cp component, and U =w(O) for its annihilation state: so 
that one exchanges two W, i.e. a scalar particle, between y and cpo 

HI yields [19J for the differential cross section the expression 

da E- T 
-=k·--
dT ET 

with T = E - E', E (E') representing the initial (final) energy of the incident 
y which evidently favors a strong forward scattering for T -+0. The total 
cross section at is obtained by integrating between Tmin and Tmax i.e. 

at=k log(E/Tmin-1) 

The average energy loss per collision can be written 

<T>=~ f T(da) dT 
at dT 

which yields (per unit of length in a,density pq>(r)): 

dE «T» -= - pq>(r) at - E 
dr E 

A simple calculation then shows that 

i.e. 

bv f bz= --= -B cp (r) dr 
v '" 

in agreement with our initial model [18]. From relativistic kinematics 
one gets: 

T=E2. I-cosO 2(E2/mq>c2) sin2(O/2) 
2mq>c2+E(1-cosO) 1 + 2 (E/mq>c2) sin2(O/2) 
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for n col1ision~ we obtain 

<c58) representing the angular deflection per collision i.e. 

<T) <c58)2 
-->E--

E 2mtpc2 

It is clear that the cp particles do not intrude directly into Q.E.D. since 
they are neutral Their indirect intrusion via graphs of the type 

is negligible. The disintegration in flight 

y+cp ~ y+y+ ... +cp 

might explain anomalous phenomena recently discussed by Collins et al. 
if it corresponds to the cross section 0"",3 x 10- 25 cm2. 

The phenomenon discovered by Goldstein [11, 12] helps to fix 
possible numerical values for HI. 

In the cp-bath surrounding the Sun: if we aceept ntp",(1/2) ny we find 
[20] for '" 100 collisions between the sun and earth O"t'" 10- 22 cm2. 
This yields a lower value for mtp since we have 2mtpc2 ~ hv/c5z ie. (since 
c5v/v", 10- 9) mq> ~ 10- 29 gr for y'" 1010 Hz. 

In conclusion we shall briefly discuss another consequence of the phase 
correlation principle which goes beyond the scope of the present paper: 
i.e. the hidden variable theory of photon behaviour. 

If we introduce J1.:F 0 we know that true physical field quantities are no 
longer the F /" = 0 "A, - o,A" but the vector potentials A" since the theory 
is no longer gauge invariant Boundary conditions should be written 
directly on A,,: an idea already suggested by the Bohm-Aharonov effect 
which (despite the fact it is globally gauge invariant) implies true physical 
shifts associated with regions where F ". = 0 but A" = const:F O. If we 
introduce complex vector potentials A"=a,, exp(iS/Ii) where a,,(a;, v) and 
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S represent real vector and scalar fields in the field equations 

we seen that one can introduce a photon current jll and photon spin (Til 

respectively proportional to (ApFIlV*+ cc) and (A,f IlV*+ c4 The photons 
in the 'pilot wave' interpretation are then assumed to follow the jillines of 
flow and are distributed among them by 'quantum jumps' related with 
subquantum fluctuations [21]. We can explain in this way the quantum 
probability distribution of photons carried along any given field This 
localization of photon yields, as shown by Bell [22] and other authors 
[23] physically detectable consequences when we analyse various im­
proved versions of the Einstein-Podolsky-Rosen [24] experiment They 
are now being tested Though recent experiments yield conflicting evi­
dence at present it appears that if Holt's and Faraci et al.'s [25,26] results 
are confirmed, one should consider this as an indirect proof not only of 
hidden-variable theory but also of the correct nature and depth of de 
Broglie's original intuition ie. of the 'phase correlation' principle. 
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