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PREFACE

The purpose of this work is twofold: to provide a rigorous mathematical foundation
for study of the probability distributions of cbservables in quantum statistical mechanics,
and to apply the theory to examples of physical interest. Although the work will primarily
interest mathematicians and mathematical physicists, I believe that results of purely physical
interest (and at least one rather surprising result) are here as well. Indeed, some (§9.5)
have been applied (see [JKS]) to study a model of the effect of angular momentum on the
frequency distribution of the cosmic background radiation. It is somewhat incongruous that
in the half century since the development of quantum statistics, the questions of probability
distributions in so probabilistic a theory have been addressed so seldom. Credit is due to
the Soviet mathematician Y.A. Khinchin, whose Mathematical Foundations of Quantum
Statistics was the first comprehensive work (to my knowledge) to address the subject.

Chapters 7 and 8 are a digression into probability theory whose physical applications
appear in Chapter 9. These chapters may be rcad independently for their probabilistic
content. ] have tried wherever possible to make the functional analytic and operator theoretic
content independent of the probabilistic content, to make it accessible to a larger group of
mathematicians (and hopefully physicists).

My thanks go to LE. Segal, whose ideas initiated this work and whose work has provided
many of the results needed to draw up the framework developed here. My thanks go slso
to Themas Orowan, who saw the input and revision of this manuseript, using TEX, from
beginning to end; his work was invariably fast and reliable. Finally I would like to express my
appreciation to the Laboratory for Computer Science at M.ILT., on whose GEC 10 computer
this manuscript was compiled, revised, and edited.
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CHAPTER 1

INTRODUCTION

§1.1 Purposes and Background

The most general mathematical deseription of an equilibrium quantum system is in its
density operator, which contains all information relevant to the probability distributions
of associated observables. Let § be such a system, with Hamiltonian H calculated in a
reference frame with respect to which § has zero mean linear and angular momentum. Let
B = & be the inverse temperature of § (7' is temperature and k is Boltzmann’s constant).
If the operator e PH is trace class the appropriate density operator for § is

P e_ﬂH
P= e BH

Our general purpose is to obtain probability distributions of observables in § from spectral
properties of H. If H has very dense point spectrum, distributions depend on it only through
an appropriate spectral measure; if the spectrum has a continuous component then e #H
has infinite trace, so that the associated density operator and probability distributions must
again be defined via spectral measures. We will study how distributions are determined by
spectral measures u and apply the resulting theory to the (continuous spectrum) invariant
relativistic Hamiltonian in Minkowski space and to the (discrete spectrum) invariant Hamil-
tonian in a spherical geometry (Einstein space), to derive probability distributions of certain
important observables.

In some systems with continuous spectrum, a natural g obtains through a net {H.}, o
of operators with pure point spectrum which in an appropriate sense approximates H. In
order that subsequent conclusions be well-founded, it must be required that u be independent
of the choice of {H} <> o Within some class of physically appropriate or “natural” nets. For
example, if A is an elliptic operator on a non-compact Riemannian manifold M, a natural
class arises in approximating M by large compact manifolds. The well-developed theory
of spectral asymptotics of pseudodifferential operators is useful here (see, e.g., [H], [See]).
The procedure of infinite volume limits has also been studied and developed in Schrodinger
theory (see [Si, Section C6]). In physical applications such as to the Planck law for photons,
this approximation procedure is appropriate since distributions must be localized spatially,
as well as with respect to wave propagation vector.

In the systems we consider, many intcresting observables are sums of independent ones

indexed by the spectrum of a (maximal) commuting set of observables. Thus in cases



of continuous and asymptotically continuous spectrum, the notion of sum of independent
random variables is very naturally replaced by that of an integral (over the spectrum of
observables), defined in a way completely analogous to the Riemann integral. The theory of
such integrals and associated central limit theorems will be developed (Chapters 3-5), and

then applied to particular random variables of interest.

A more comprehensive and abstract theory will be studied in Chapters 7-9. The
integration procedure will be part of a more complete Lebesgue integration theory for random
variable-valued functions. Connections will be made with the theory of random distributions
and purely random fields [V,R1].

The related work in this area has been done primarily on R", with Lebesgue measure.
General information on random distributions is contained in [{GV]. Multi-dimensional white
noise was introduced in [Che}, motivated by study of so-called Lévy Brownian motion in [Lé];
the topic was further developed in [Mc]. A comprehensive theory of generalized random fields
was introduced by Malchan [M], using the notion of biorthogonality of random distributions
on R",

The non-linearity of the Lebesgue integral in Chapter 7 is not essential, since it is
equivalent to an ordinary (linear) Lebesgue integral of a distribution valued random variable
field, and equivalently an integral over a space of logarithms of characteristic functions. Thus
the integral is a simple and fundamental object. The probabilistic content is itself novel and
(hopefully) interesting, and these chapters have been written largely as a semi-autonomous
part of the monograph. Probability and statistical mechanics are re-joined in Chapter 9.

There are two physical implications of this work which warrant attention. The first is
that non-normally distributed observables (such as photon number) can arise in physically
attainable situations, namely those in which spectral density is non-vanishing near zero
energy; the latter occurs in systerns which are approximately one-dimensional, for example,
in optic fibers or wave guides. The second is that within the class of models in which the
density operator depends only on the Hamiltonian, the “blackbody spectrum” in a large-scale
equilibrium system of photons admits an energy density spectrum which follows a classical
Planck law, whose specific form depends only on basic geometry. This work provides a
rigorous basis for the study of blackbody radiation in general spatial geometries, specifically
the spherical geometry of Einstein space. This is a model of the physical universe (see [Se2}),
and is useful in mathematical physics, being a natural spatially compact space-time which
admits the action of the full conformal group.

Some of the results to be presented here are treated somewhat differently and in more
specific situations in an excellent foundational work by Khinchin [Kh], who treats asymptotic
distributions for photon systems in Minkowski space. The asymptotic spectrum of the
Hamiltonian there is approximated to be concentrated on the integers; such a procedure

suffices for consideration of energy observables for photons in three dimensional geometries,



although it must be considered somewhat heuristic. It is however not adequate for treatment
of more general situations (as will be seen here), since the very volatile dependence of
distributions on spectral densities near 0 is not visible in such an analysis. In general terms,

however, the present work extends many ideas pioneered by Khinchin.

The reading of any chapter is perhaps best done in two stages, the first involving only
brief inspections of technical aspects of proofs, and the second involving a more thorough
reading. Technicalities are often unavoidable in the proofs of theorems whose hypotheses

are minimally technical.

We now provide a brief explanation of the structure of this monograph. The remainder
of this chapter provides a mathematical-physical framework. This includes a description of
Fock space, and a rigorous presentation of elementary results on quantum statistical prob-
ability distributions. For example, we verify the common assumption that occupation num-
bers are independent random variables. Some of these results may be found (in somewhat
less thorough form) in statistical physics texts. Chapter Two presents some novel aspects of
calculating distributions of observables (still in discrete situations), and presents fundamen-
tals of the continuum limit. The basics of integration theory of random variable-valued
functions are developed in Chapter 3. Chapters 4 and 5 give applications to calculating
observable distributions, including criteria for normality and non-normality, and Chapter
6 provides physical applications. Here explicit distributions are calculated, and a rigorous
Planck law is derived for Bose and Fermi ensembles. It is shown that the Planck laws are
essentially independent of the intrinsic geometry of large systems. Chapters 7 and 8 develop
an analogous Lebesgue theory of integration, and Chapter 9 provides further applications,
in the more general framework.

We dispose of a few technical preliminaries. Throughout this work (except in §9.5) we
make the physical assumption that the chemical potential of particles under consideration is
0; this does not involve essential loss of generality, as the general case can be treated similarly.
Probability distributions are studied for particles obeying Bose and Fermi statistics. The two
situations are similar, and are studied in parallel. The essentials of Segal’s [Se3,4] formalism
for free boson and fermion fields are used throughout and are described below.

We briefly mention some conventions. The symbols Z, N, C, and R denote the integers
and the natural, complex, and real numbers, respectively. The non-negative integers and
reals are represented by Z+ and Rt The C* functions with compact support are denoted
by C2°. The symbols P, &, and V denote probability measure, expectation and variance.
The point mass at 0 is represented by &g, while = and || denote convergence in law (or
weak convergence) and the greatest integer function, respectively. The spectrum of an
operator A is ¢(A); the words “positive” and “non-negative” are used interchangeably, as
are “increasing” and “non-decreasing”, etc. The abbreviations r.v., d.f., ch.f and a.s., mean

“random variable”, “distribution function”, “characteristic function,” and “almost surely”.



The notation w-lim denotes a weak limit, i.e., limit in distribution. N(a,b) denotes the
normal distribution with mean a and variance b. If X is an r.v. or a distribution, then Fx

denotes its d.f.

We use the notation f(z) = O(z) (z — a) if ('QJ? is bounded as ¢ — a. We use

e

f(z) = o(z) (z——»a}if;i —0asz—a.

A question may arise as to the dimensions of physical quantities. The system of units
will be entirely general, unless otherwise specified. For instance, the energy E and inverse
temperature 8 may be interpreted in any units inverse to each other. Also, a preference for
setting ¢ = 1 will be evident in various places.

§1.2. The Free Boson and Fermion Fields Over a Hilbert Space

We now present relevant aspects of free boson and fermion fields in their particle
representations. No proofs will be supplied; a more detailed and general description is given
by Segal [Se3, Se4].

Let ¥ be a separable complex Hilbert space; for notational convenience and without loss
of generality assume ¥ is infinite dimensional. For n € N let

Kn=H@HQ..0H=Q ¥ (1.1)

=1

be the n-fold tensor product of ¥ with itself, and VS;B)(-) be the unitary representation of
the symmetric group X, of order n on K, which is uniquely determined by the property

n n
V'SB)((;)(® ZC,') == ® T,-1() (0 €Zp; 2 € X);

imsl i=1
Vf(;B)(a) thus permutes tensors. The (closed) subspace K ,(18) consisting of elements left

invariant by {V,({B)(a) 10 € En} is the n-fold symmetrized tensor product of ¥ with itself.

By convention K 85) = C.
For zy,...,z, € X.

3 VzaV... Vi, = v T = % Z V,(,B)(o)(é z,-) (1.2)
i=1

i=1 ‘o€L,

is the orthogonal projection of ®?._._1 z; into K 7(13); the latter is clearly spanned by vectors
of the form (1.2). Note that for z; € ¥ and 6 € L,

<

z; =

Io(i)‘ (13)

i<

H

=1



The direct sum of symmetrized tensor products over all orders

Ko = @ K
n=0

is the (Hilbert) space of symmetrized tensors over X.
Any unitary U on ¥ can be lifted to a unitary r&) (U): K &), kP which is defined
uniquely by

M) 2= Us) (e ) (1.4)
i=1 i=1

F,QB)(U) is simply the restriction to K ,(,.B) of the n-fold tensor product of U with itself; we
append the convention that I’ {()S)(U) : C — C is the identity. We define

ra(U) = @ TEW),
nz=0

so that for z, € K,,,
PB(U)(@ :z:n) = @ re\v)z,.
n=0 n==Q

A self-adjoint operator A in ¥ is naturally lifted to Kp as the self-adjoint generator of the

one parameter unitary group I'p(e*4):

dT 5(A) = %%ry(efm) , (1.5)

t=0

with the derivative taken in the strong operator topology.

The definitions for antisymmetric statistics are fully analogous to those above. Let s(o)
denote the sign of ¢ € £,,, and V,(lp)(-) be the unitary representation of X, on K, defined
by

VS‘F)(O')(® zi) = s(a) ® Z,-1 ) (ﬂ" € Ens z; € }'{)‘

i=1 =1

Let K ,(,F) denote the subspace of elements left invariant by {Vﬁf )(0) 10 € En}, with K (()F) =
C; the collection

Ty ATgA .. ATy = /\ T = ;11—‘ Z V,(,F)(a)(® :z:;) (z: € H); (1.6)
i=1 ’

c€ L, i=1

spans K ,(IF). The space of antisymmetrized tensors over ¥ is

Kr =@ k. (1.7)
n=0



H U is unitary on ¥, then I\(@F)(U) : K T(;F) - ,(,F) is defined by

F(F)(U ( ) /n\ Uz,

|I>:s

3

with I‘(()F): C — C the identity,
v)= @ riv)
n=0

is the lifting of U to K F) 1 A self-adjoint in ¥, then dI'z(A) is the generator of the
unitary group I'p(e®4).

Henceforth statements not specifically referring to the {anti-)symmetric constructions
will hold under both statistics; in particular this will hold when subscripts B and F are

omitted.
DEerINITION 1.1: The operator dI'(A) is the quantization of A.

The map dI' acts linearly on bounded and unbounded self-adjoint operators to the extent
that if {F;} .y are mutually orthogonal projections in ¥ and {Ej};.y C R, then

Y E,-P,-) — 3 By, (19)
=1 J==1

this fact will later prove useful. Physically, (K, dI'(A)) is the Hilbert space of states together
with the Hamiltonian of a many-particle non-interacting system each particle of which has
states in ¥ and time evolution governed by A.

If G = {g;} ;e is an orthonormal basis for ¥ then orthonormal bases for K, are given
by

n
88 = { v 9 <125 ... S Jn; 5 € N} (symmetric)
i=1
(1.9)
n
BF) = { /\ gi i <ja<...<jn K€ N} (antisymmetric)
=1

The basis B,(,B) can be represented through the correspondence

v g5 © ml,mg, ) =1 (gj‘- € G)!

gz=1



where m; denotes the number of appearances of g; on the left hand side, and E:’; LM =n.
If we append the convention ng) = {1} € C, then

is an orthonormal basis for Kg. We can thus write

N = {(m1,m2,~--) :my €27 z mi < oo}, (1.10a)

i=1

where N == (0,0,...) corresponds to 1, the basis for K gB) = C.
Correspondingly, if
o
N = U B,(,F)C Kp,
nuz=(

there is a bijection

note that no m; above may be greater than 1, since 1 limits the number of appearances of
g; under antisymmetric statistics (see {1.6)). The collection

N= {(ml,mz,...) : m; €40,1} i m; < oo} (1.106)

i=1

is a basis of Kg.

§1.3. The State Probability Space
Let G = {g;} jen be an orthonormal basis for ¥, with P; the orthogonal projection
onto the span of g;. If N is the basis of K constructed in (1.10), and n = (my,ma,...) € N,
then
dI'(P;jn = m;n (7 EN). (1.11)

Consequently if {¢;},cy C R and C = 3277 ¢;F; then by (1.8)

dI'(C)n = i cjmj)n. (1.12)

Given a distinguished operator p on K such that (¢} ¢ is non-negative self-adjoint and
(¢€) tr p == 1, dI'(C) can be interpreted as a random variable on N:



DEFINITIONS 1.2: An operator p with properties (1) and (47) is a density operator on K.
Through the probability measure P(n) = (pn,n) on N, it forms the state probability space
(N, P) corresponding to p. The r.v. ¢(n) = (d['(C)n, n) (if defined) is the value function of
dI'(C) or of C.

If A is self adjoint on ¥, 8 > 0, and e~PT @) i trace class,
e—PdT @)
a tr e=AdT @)
is a density operator. If G = {gf}jeN diagonalizes A and N is as above, then the state
probability space (N, P) corresponding to p is the (symmetric or antisymmetric) canonical
ensemble over A. Clearly any operator C which commutes with A defines an r.v. in this way.
These will be our object of study; of particular interest will be value functions of number
operators IN; == dI'(P;).

In physical applications A is a positive Hamiltonian governing time evolution of single
particles in a multi-particle system. If Ag; = E;g;, then g; € G represents a physical single
particle state of energy Ej; n = (my,mg,...) is the many-particle state with m; particles
in state g; ( = 1,2,...). By (1.11), the observable N; is the number of particles in state g;,
and its value function is interpreted accordingly.

We now derive necessary and sufficient conditions for existence of a canonical ensemble
over A, which we assume to be positive in ¥. The following proposition has been implicit in
the physical literature on statistical mechanics.

DEFINITION 1.3: An operator is O-free if 0 is outside its spectrum.

PROPOSITION 1.4: The operator e=#4T" @) js trace class if and only if

(£) e7P4 is trace class and A is O-free under symmetric statistics.

(i1) e7P4 is trace class under antisymmetric statistics.

Note that if either e™#4 or e~#9T®) is trace class, then both A and dI’ (A4) have pure
point spectrum and finite multiplicities, since A = dI'(A) |k, . Thus previous assumptions
on A have involved no loss of generality.

We sketch an argument for Proposition 1.4. In the symmetric case, define the function
fi; on N by n;(n) = m;. By (1.12)

tr e~ Pl (4) Z e~ PELLEm;(n) (1.13)

ekl

On the other hand, when the product

ﬁ (1-e88) 7 = ﬁ (irﬁ&} (1.14)

j=1 j=1



is multiplied out, it coincides with (1.13), so the latter converges if and only if

o0
Z e PP < oo,
J=0

and no E; are 0. The proof in the antisymmetric case is similar.
We thus have

Kp= H;o: ,(1 =€ PE)~1 (symmetric)

. 1.15
Kp = H;o;-_ (14 e £Es) (antisymmetric) (L15)

K =+tr e_ﬂdrm={

COROLLARY 1.4.1: If e=P4T'8) s trace class, then A has pure point spectrum and finite
multiplicities.



CHAPTER 3

INTEGRALS OF INDEPENDENT RANDOM VARIABLES.

In the limit of continuous spectrum for a Hamiltonian A, sums of r.v.’s indexed by the
spectrum, such as value functions of quantizations of observables commuting with A, are
most profitably represented as integrals for both notational and conceptual reasons. We
now develop theory and properties of these to the extent that they are useful later. These
results will be in a more natural probabilistic setting in Chapters 7 and 8, where integrals

of r.v.-valued functions over a measure space will be studied.

§3.1. General Theory of One Parameter Families.

For E > 0, let X(E) be a one-parameter family of independent r.v.’s and u a spectral
measure on RT. We integrate X with respect to p as follows. For each ¢ > 0 let % ==
{Ee;} s, be positive numbers (not necessarily distinct) such that the cardinality NV, (a,b) of
% 0 {{a, b} satisfies

eN(a,b) o ¢la, b] (3.1a)

for all 0 < e < b (b may be o). To avoid pathologies, assume also the existence of numbers
M, k > 0 such that for any interval I whose measure exceeds M,

eN.(I) < ku(I). (3.18)

DerINITION 3.1: {%},, ¢ is 2 spectral p-net.

Given a function ¢(€) on positive ¢, we define the probability distribution
/ X (E)o(dp) _w-hm¢ ZX(E‘J

with sums on the right defined only if order-independent. The limit is in the topology of
convergence in law, with the integral defined only if independent of 7.

If f is real-valued on R, the Riemann-Stieltjes integral of f with respect to u can be
defined as

R f(E)dp = lim OZ]’ (3.2)

R+ uP)—

with P a partition of R T into intervals AE;, E; € AL;, u(P) = sup; p(AE;), and the limit is
defined only when independent of P and E;, as well as order of summation (i.e., convergence
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is absolute). In evaluating the right side of (3.2) and all similar sums we apply the convention:
if p has an atom at E > 0, a partition P may formally divide F into degenerate intervals
{AE:},,;, each consisting of just the point E, such that ), ; u(AE;) = u({E}); the union
of such an interval with an adjacent non-degenerate interval is also allowable. P is an even
partition if u(E;) = u(E;), except possibly when E; is a rightmost non-empty interval, which
is allowed smaller measure.

THEOREM 3.2: If X(E) is a real number (i.e., a point mass) for each E, then [ X(E)dy
coincides exactly with g [ X(E)dp.

Proof: Assume that p [ X(E)du exists, and let 7, = {E{j}j{ s, be a spectral p-net. For

n € N let P, = {AE,;},, 1, be a sequence of even partitions of R following the above

conventions, such that p(P,) — 0. The indexing set I, C N may be finite or the whole of
7n— 00

N. For ¢ € I,, let Ep,;, E}; € AE,; satisfy

X(By) - < X(B)< X(Ba)+—  (E€ABy) (33)
ni2 ni2
and define (AE.)
_ K ni
n = {21:” ni2
A= S X(EMAR),  Bo= Y X(EnJu(AE.)
ieln ieln

If p has compact support then I, is finite, and by (3.1) and (3.3), the distance between
the number ¢ EJ‘GJ, X (E¢;) and the interval [A, —an, By, +a,| approaches 0 as € — 0. Since

a, — 0,
n—roo

[An'i‘an:Bn"’anl had R/X(E)dﬂ,

and the result follows here, since the p-net %, was arbitrary. For the general case, we must

show

€ ), 1X(E,)

|EBesl>d

— 0,
-

d—oo

uniformly in e. Let P = {AE;} be an even partition of R such that

> IX(E)wAE) < C (34)

5
for any set of E; € AE;. By (3.1b)

eN(AE;) < kmax(M, p(AE;)),
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so that
e Y |X(B,) < kmax(M,u(AE;)) sup |X(E).
B E€AB; EeDE;

Since P is even and by (3.4),

€ > XEN<k Y sup |X(E)max(M,u(AE) = 0, (35)

{Bes|>d AE;N[d,00] 5% E€AE;

convergence being manifestly uniform in e.

Conversely, assume [ X(E)dy exists. Let P, = {AE,;} be a sequence of partitions of
R with u(P,) — 0, and let E,; € AE,;. There exists an even partition P* = {AE}}
such that e

Q= E sup [ X(E)|(AE) < oo

hence if pu(P,) < p(P*), then

Z sup | X (E)|u(AEN:) < 3Q. (36)

EEAE

Let 7 = {E.;} be chosen such that for each E,; there is an integer n, (depending only on
€) and a j such that

a) The cardinality of {i : E,; = E,_;} is [
integer function, and for each 1, E.; = E,,_; for some j.

O I Jo = {j: (AE, ;) < enc} then & ; |X(En ;) |(AEn,;) < £.

c) ne —+ 00 monotonically.

u(Ln,5)
€

} where |-] denotes the greatest

Then if J <} is the complement of J,,

) A B 85 = X m,{[W]—umEnd)}

< Y X (Enb(BEn) + S |X(En,s

J€J, JEJE

(3.7)

wA
< -+ Z IX EJ E"e.?)
Te Jj€Jz e

1
< —{1+3 — 0
"ne{ + Q}e—»o !

the above holding for e sufficiently small. Thus g [ X(E)du exists and cquals [ X(E)dy,
completing the proof.§
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As is clear from the standard central limit theorem, expectation of r.v.’s does not scale
under independent sums in the same way as some other “linear” quantities, such as standard
deviation. For this reason expectation will in general diverge in the formation of integrals
(in which ¢(e) may be non-linear), while all other linear parameters converge to define a
limiting distribution. To avoid this inessential complication, we assume henceforth that

integrals involve 0-mean random variables.

DeriNiTION 3.3: I Y is an r.v. or probability distribution, Y*™ denotes the convolution
of Y with itself n times.

Recall that a distribution function F is stable if for every by, by and ay,as > 0, there
exist constants b and a > 0 such that

F(ayz + by) * F(agz + by) = F(az + b). (3.8)
Note that stability implies infinite divisibility.

PrOPOSITION 3.4: If Y = [ X(E)$(du) exists and is non-zero, then Y is stable,

l, = lim (n=1,2,3,...)

¢—0 ¢(ne)

exists, and [, Y** =Y,

Proof: Fix n and let {ex} be a sequence such that €41 < % Consider a spectral
p-net 7 = {E, ﬂ'}je s, such that 7, consists of .?% with each element repeated n times. For
k=1,23..,let

Yoo1=d(nex) Y. X(Ene,;)

7€ ne,

Yo = ¢(ex) E X (Ee,,5),

i€le,
where ney indicates a product.
Then o(ce)
€k
Yo =Y5 .
* %15 (ney,)
Letting k — o0, we conclude that
oy )
" k—+00 d)(nek)

exists, and that [,Y** ==Y .}
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COROLLARY 3.5: I'Y of Proposition 3.4 has finite second moment then it is normal.
Proof: The normals are the only stable distributions with finite second moment (see

[GK]).1

The following theorem generalizes Liapounov’s theorem (see, e.g. [Ch]) to infinite sums
of random variables, and will be instrumental in subsequent limit theorems. Recall that

convergence in law of a net {X;},., of random variables or distributions is denoted by

X;=M N(m, 62) is the normal distribution with mean m and variance o2

THEOREM 3.6: For each ¢ > 0, let {XE]}I_’<K be independent zero-mean r.v.’s on
the same probability space and K, o (or K = o0 ). Let
€E—

18 =e(IXl®), 0% =¢(x2),

= Y3, o= Y 2.

JEK, =K.

Then zf = — 0 the sum ZJEJ «j is asymptotically normal:

e—0

U—ZXQ =, N, 1) (3.9)

Proof: Let k. < K, be an integer such that (z)
ke .3
E,’:l’hj% -0
ke e—0
(2_7:1062_1)

and (4%)
K, 2
a’ .
————E’—,’j +1(73) - 0. (3.10)
z < 102 e—0

The sum E < 1X.; is asymptotically normal by (7) and Liapounov’s theorem:

k
X,
RYLEEN = N©,1).
J—l( CJ)z -
By (#¢) the same holds for
k
1 X
T, = Ziz1Xy (3.11)

1
K. 2)\?
(EJ: losj)
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The remainder X
e X, ;
= E____, =kt 1767 (3.12)

€ 3
()
satisfies £(U?) —»00. Hence
£—
Q.=T.+U. = N©,1)0 (3.13)

THEOREM 3.7: If  [$° €(X2)du and g fo 5(1)(;3)@ < oo, then

[ xEyat = N,

wherev= g [ E(X2)dp.
Proof: Let 7, = {E¢;},¢; for ¢ > 0 be a spectral p-net, and Xo; = X(E;). Let o¢;
and v,; be as above. Then

SiE(xal®) | ex,e(sl? | ff(}X[s)dp

2 . )
o (e, e02) " e(xP))

0. (314)
(z; "35)%

Hence

Y. X
/ X(E)dp)t = lim et Y X =lim 2iXe g v¥N(0,1) = N(0,v);
£ J

e—0 (e > a?j)%

the second equality follows by Theorem 3.2, and the third by Theorem 3.6 .1

§ 3.2. Background for Singular Integrals.

Now we prove a result central to the singular integral theory in Chapters 4 and 5. A
singular integral [ X(E)$(dp) is one where £(X %(E)) is singular. Since such integrals fail
to exist in general under the current definition, we make one which is more useful.

DEFINITION 3.8: Let X(E) be a one parameter family of independent r.v.’s on R, and
4t a o-finite measure on R, Let F(E) = ([0, E]), and for each € > 0, let 7, = {Eei}ie1

F(E .
be the ordered set of discontinuities of {-——E——)}, a jump discontinuity of size n being listed n

times. We define

/ X(E)p(dp) = lim qS( )iX(Eej)- (3.15)
=1
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THEOREM 3.9: Suppose ¢(€) and v(e) are functions and

%;:00 Sff(iXiS)é(dﬂ) <o, 0< s/g(Xz)d)Q(dp)Ev < 0.

Then s [ X9(dp) = N{0,v).

Proof: By the hypotheses,

<e)z‘e(ixe,~43)

Hence,

- 0, (3.16)

and 3 X; is asymptotically normal by Theorem 3.6; the variance of ¢(€) 3_; X.; is
¥ e) X, € (x ?J) , completing the proof.§

COROLLARY 3.10: If31 —k > 0 and
s (Xt <o, v s [ Ex? 2o

then

/X(d;z N(0, v).

§3.3. Distributions Under Symmetric Statistics

Given a spectral measure p and a spectral u-net 7, the operator A, with spectrum
7. induces a canonical ensemble under the conditions outlined in Chapter 2. For a net
of operators C. = g(A.), (with g a function on R'*') we now consider asymptotics of

corresponding value functions c; applications will be deferred until later.

DerFINITION 3.11: Let G4 denote the functions of E on R with two continuous
derivatives near z = 0, locally of bounded variation, such that
lg(E)|(e”E + 1)..1 is non-increasing for E sufficiently large. For ¢ € Gg, those non-trivial
spectral measures which are O-free and satisfy

0< /0 ” g™ (E)e PEdu(E) < oo (3.17)
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for n = 0,1,2,3 are denoted by R,y g. Those u € R, g5 whose spectral functions have three
continuous derivatives near 0 comprise S 4.

The monotonicity condition on |g(E)|(e?F + 1)_1 implies the same for
l9(B)|(eZ — 1),

The first and second {n = 0) conditions on y € R, g guarantee existence of a symmetrie
canonical ensemble, while the extra one on S, 4 is required to control asymptotic behavior
of c.. Let Uy s denote the spectral measures for which ¢, has an asymptotic distribution.
Here and in Chapters 4 and 5 we show that S, g C Uy s.

ProrosiTiON 3.12: Let f(-) and g(-) be non-decreasing and non-increasing, respectively,
with g(a) possibly infinite, and f(a) = 0. Then

!

b b z
o< [ otewse) - [ swuis) < [ ateiste) (319

where
¢’ = min(inf {z : f(z) > 1},}),

b may be oo, and “a” and “b” may be replaced by “a~” and ‘b~ ", respectively.

Proof: The proof is the same as that of Lemma 2.5 up to (2.20). We have

’gl /Sk g(z)df(z) > k}_:':l‘/s" g(=z)d[f(z)] 2 kgz/s" g(z)df(z), (3.19)

since the fact f{a) = 0 implies that

/ o@i1(e) 2 oz

for all k, including k = 1. Equation (3.19) immediately gives (3.18) when b = oc0. The case
of finite b follows similarly, as do the replacements of “a” and “b” by “e™" and “67".1

PrOPOSITION 3.13: Let |g(z)| be of bounded variation and non-increasing for large z,
with f non-decreasing. Then

/a bg(z)d{MJ = % / b g(z)df(z) + O(1) (e—0),

€

where b may be infinite, and a — a™, b+ b~ are allowed.

Proof: Assume b < oo. Since g has bounded variation, it suffices to assume g is

monotone. If g is non-increasing, the result follows from Lemma 2.5, the general case
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following similarly. If & = oo we may assume that |g| is non-increasing, since any interval
in which this fails may be disposed of by the above. In this case Lemma 2.5 again applies,

completing the proof.§

Letting f(z} = z above, we obtain

2] b
>, glke)= % /a g(z)dz + O(1). (3.20)

k=[l+1

THEOREM 3.14: Let g € Gg, and pu € Sy g, and one or both of the following hold:

(1) F'(0) =F"(0)=0; p€ Syp

(i) 9(0) = 0; u € Ry,
where F ig the spectral function of p. Let A, be the e-discrete operator corresponding to u,
and ¢, = g(Ac). Then the value function ¢, of dU'(C,) satisfies

Ve(eo- 3;) = N@,), (3.21)

where

m= /0°° Q(E)(eﬂE - 1)—1d;¢, v == /Ow g(E)eBE(eﬂE _ 1)-—2‘#‘_ (3.22)

Proof: (i) Let n; denote occupation numbers on the symmetric canonical ensemble over
A; then

Ce = Z Q(Eej)nzj
and ng; ~ 7(6"’3E=J’), where 'y(e‘ﬂE) denotes the geometric r.v. with parameter e #Z, Let
{X(E)}e> 0 denote independent y(e~#Z) r.v.’s, and

X(E) = X(E) - £(X(E)). (3.23)

Then

o[ ctomEEP@t < s [Cmiecm s exmpPant. 62

A calculation shows

e—PE — 00
5{(X(E) +E(X (E)})"} = {gg E-s)) (é-» 0).)

Hence the right side of (3.24) is bounded by

] )
5
c1 S/O E~¥dp)? + 2 s/ e PF
5

5
1

9%(E)\(dn) (3.25)

-
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where § > 0 is chosen such that (¢) § is not an atom of p, (¢7) for some K > 0, F(E) <
KE® (E < §), and (¢41) F is continuous for E < §. The second term is 0 by Theorem 3.2.

F(Ee; .
For By < 6, &) _ i and thus
so that the first term is bounded by

-1
lim Y (%) < lim ciKet il= lim etO(lne) = 0. (3.26)
¢ B <6 - (4)<s -

Hence, the left side of (3.24) is 0, while

o< s [ e(lomxmEin=s [ AEvorE)

/ ﬂE(eBE 1)—2du < oo.

By Corollary 3.10 with k = -2 and | = —%,

s /0 " BV (E)du)t = N(O,v), (3.27)

_ / * gAE)e”
0 (2 -1
To calculate the asymptotic expectation of ¢., we assume initially that g(0) > 0. Then

E(Ce) = Z (eﬁEeJ _ ( Z Z elsEe: — l)

E;<6 Ey>$

with

Thus ¢, is asymptotically normal.

with & chosen so that it is not an atom of u, and the absolute value of the summand is

decreasing in E; for E; < 6. By Proposition (3.13) the second sum on the right is

sf:o AP 4 [ (6)} = -i.f:’ AE) g+ o), (3.28)

while

py

9Bs) _ [° oBE) 1B _1[° o(E)
Zg g _/O A d{. : -}__ 2/ e ke, (329
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where

E ()
o<t e

and E'(e) = inf {E' : g—) > 1}. If F is 0 in a neighborhood of 0 then (3.28) holds for

6§ = 0. Otherwise, E'(¢) —>00 and

B () Ei(e) FE:€))
¢ 1 ¢ 1 c 1 !
o< e <t [ gare) =2 [ B(e)

€ €JO

for some ¢ > 0 and ¢ sufficiently small. The equality obtains as follows. Let F be thrice
continuously differentiable for E < %. F(-) is an inverse of E'q(), since Fo Ey(e) = ¢ (0 <
¢ < F(n)) (note that F is not generally invertible on (0,7], since it may be constant on
intervals). Hence equality follows formally by the change of variables ¢ = F (E); a rigorous
argument involves the definition of the Stieltjes integral as a limit of sums over partitions.
Since F(E) < KE? (E € (0,7)),

B9 2(x)  (0<ec<Fm).
Hence,
FEE) 4 3K ¥ 3k ¥
3K 3 _ 3K .
/(; El(e')ds < 5 F(E1(€)) 5 € (3.30)
Combining (3.28-30),
1 [* gE - -1
Efee) = Z/(‘) eﬂi(f_)ldp+0(e = —?—+0(6 3) (e —0). (3.31)

This calculation is much simpler if g(0) = 0 (and hence g(F) = O(E) near zero). By
(3.27) and (3.31),

Velee= ) = Ve~ £ed) + V(£ - )

=0 /0 g(E)X (E)(dp)? + 0 = N(0,v),

completing the proof of (7).
(¢¢) In this case g(E) = O(E) (E — 0), and

E(g(E)X (B)) = { (.32)
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with the same bounds for &(g%(E)X ( ). Hence asymptotic normality of c. follows by
Corollary 3.10, with k=1, I =1,

— 1. By Proposition .13,
5(c<)=f: %C{F(E)}:}/“ ﬂE(E) dy + O(1);

€ €EJQO

oo €'8E
Vi) =1 /O iﬂ%—zdﬁ + o),

completing the proof.ll

§ 3.4. Antisymmetric Distributions

DEFINITION 3.15: The class Hg is defined in the same way as Gg (Def. 3.11), without
the condition on differentiability. For g € Hg, Ty, s is Ry s without the 0-freedom condition.

The relaxed conditions above still allow proof of central limit theorems for observables
under antisymmetric statistics, since antisymmetric occupation numbers form a non-singular
family. In this case n; is Bernoulli (see §2.2), with moments easily bounded by

£ (les 1) < 5((135,- + (PB4 1)‘1)"’) =0(ePBs)  (k=0,1,2,...)  (3.33)

where
~ ; -1
flej = Nej — € (Nej) == Mgy — (e:ﬁE‘J +1)

By Corollary 3.10, ¢, = 3 g(E;)n.; is asymptotically normal. By Proposition 3.13,
([ _9B) \ [FE)]_1 /°° 9(E)
= == — d 1
)= [, (F M E)= 2 ) (Fo)wron

%) eﬂE
Vie)=1 [ (—g?:?dmw(l) (e—0).

(3.34)

Applying Proposition 3.13 to (3.34), we have
THEOREM 3.16: If g € Hg, and p € T, g, then

\/E(c£ - —)=>N(0 v),

where

00 oo BE
S R
o (e +1) Jo (efE 4 1)2



CHAPTER 2

VALUE FUNCTIONS ON A CANONICAL ENSEMBLE

Throughout this chapter A is a positive self-adjoint (energy) operator in ¥, satisfying
(¢) or (i%) of Proposition 1.4. In particular A has pure point spectrum {EJ-};": p and an
orthonormal eigenbasis G = {gi}jeN’ with Ag; = F;g;. Assume ¥ is separable and (for
notational convenience) infinite dimensional, and define the number operator N; = dT'(P;)
as before. The basis N of K corresponding to G is given in (1.10); its generic elements will
be n = (my,my,...). Define

Y )

tr AT @)
If a is the value function of dI'(A), and n; that of INV;, then

p= (2.1)

o

h(a) = > h(E;)n;. (2.2)

i=1
More generally, if € commutes with A and Cg; = ¢;g;, d['(C) has value function }°77. ; ¢jn;.

DEFINITION 2.1: The r.v. n; is the jt* occupation number in the canonical ensemble
over A.

Note that in the ensemble, according to {1.12),

1 1
P(n) = (pn,n) = — (e PT=1Eimin n) = — AL Eims 2.3
( tr e=Pdl' @) ) K 23)

§2.1. Physical Interpretation of Value Functions

The canonical ensemble over A at inverse temperature 8§ > 0 describes a non-self-
interacting system of particles in equilibrium at temperature T = ﬁ—lk {k is Boltzmann’s
constant) with particles whose individual time evolution is governed by the Hamiltonian A.
If the operator C, representing a physical observable for single particles, commutes with A,
dI'(C} is the observable representing “total amount” of C. Precisely,

dI'(Cn = (i m;{Cyg;, gi))n, (2.4)

j=1

(Cyg;, g;) representing the value of C in the state g;,
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The value function of dI'(C) is a random variable on the canonical ensemble, representing
the probabilistic nature of dI'(C). By its definition

e(n) = Z mi(Cg;,9;). (2.5)
g==1

In particular, the occupation number n; corresponding to g; is the r.v. on (N, P) which on
n takes the value my, i.e., the number of particles in state g;. The value of Aj; = E;nj on
n is E;m;, and represents the “total energy” of the particles in state g;.

§2.2. Distribution of Occupation Numbers
If n; denote occupation numbers and if t = (t3,g,...), B = (ny,ng...)and t -0 =
2. tini, then according to (2.3) the joint characteristic function of {n;} ..y is

O(t) = £(e7) = Il{ Y eivn B (2.6)
neN

where E = (E1, Ey,...), and £ denotes mathematical expectation. The right side factors to

give
Gt —BE;-Ht; -1 .
B(t) = 1 H (1 e PE;s .’) (syn.)metnc) ‘ (2.7)
K =1 (14 e=PE; 'Hti) (antisymmetric)
Thus, occupation numbers n; are independent r.v.’s with characteristic functions
(1 - e=PEs)(1 — ¢~PBsHit) ™!
i(t) = a1 o (2.8)
(T+ePE) (14 e(-PE; "“*))
By inversion of (2.8), n; is geometric in the first case, with
Plnj =1) = (1 — e™PBs)e~FE! (1=0,1,...), (2.9)
1 eﬂEi
fr)= ) V)= ———, (2:10)
ePEi — 1 (eﬂE,- _ 1)

where V denotes variance. Under antisymmetric statistics n; is Bernoulli, with

o (eﬂE" + 1)_1; I=1
P{‘HJ _z}—{(l,i..e“ﬁgj)—‘l; 1—0 (2.11)

1 AB;

J= s V)= ———
BE; 2R 2
el + 1 (eﬂE, + 1)
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The above distributions (specifically the independence of the occupation numbers) explicitly
verify facts which have been used in the physical literature for some time.
Rewriting of (2.3) shows that if

Ny = {n ={my,mo...): |n|= i m; = l}, (2.12)
j=1

the particle number value function n = E;’c’: 1n; satisfies

1 1 gy A
Pln=l=— Y &P =~ Y LB ezt (213)
K K . _. .
n€ N 1< <. €5
under symmetric statistics, with < replaced by < in the antisymmetric case. There is a
method of expressing (2.13) more simply for small values of ! which, however, becomes more
complicated as ! increases, and is not discussed here.
The total energy
A=E.-ni= ZEj'n,-

is a discrete r.v. with

1 e~ Pbd(b)
PA=b)=— > =
K NEN K
where d(b) is the cardinality of My ={n € N : n-E = b}.
When A has uniformly spaced spectrum E; = ¢j, (physically interesting in one dimen-
sional situations), these specialize in the symmetric case to
1 _ i .
Pla=l)== Y, &P Zmosin

B 1< ..ga

-1

=R1M Z e P Ly Im 3 e pe
B

1< .. 8511 NZFi-1

1 _ -1 . e Pedi—1
- T Bed o lyim & (2.14a)

1—eBe

. . —2B¢5.2
—_ ——1-.. Z e_ﬁf Z;il Jm €
Kp 1o, S, (1 —ePe)(1 — e=%¢)

1 oo

1 e —jBey—1 —1Be —7Be
R 1—¢d = 1 — g=7P¢),
s Jl;[l( e %) e j:IzI+1( )
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Similarly in the antisymmetric case

!
1 -+ .
Pln=1)=——e * [[(1-eP). (2.14b)
Kp :
j=1
Note that the tail of the number r.v. in (2.14) is geometric under symmetric statistics, and
resembles a discretized Gaussian in the antisymmetric case.

It is easily seen in this case that

c«ﬂelp‘ .
PA=e)={ Kz (symmetric) (2.15)
‘%2  (antisymmetric)

where p; (g;) is the number of ways of representing ! as a sum of (distinct) positive integers.
The asymptotics of the combinatorial functions p; and g; are tabulated in books of mathe-
matical functions (see [AS]).

§2.3. Formalism of Asymptotic Spectral Densities

In many situations in which a self-adjoint operator has large or asymptotically infinite
spectral density, use of a spectral measure on the real line is necessary for interpretation of
sums indexed by the spectrum, or mediating more detailed spectral information. A classical
example occurs in Sturm-Liouville systems on [0, 00}, whose “natural” spectral measures
for eigenfunction expansions are defined in terms of limits of spectral densities of their
restrictions to intervals (see [GS]). In the study of sums such as n = ) n;, a similar
situation occurs if the spectrum {E;} of A is very dense or continuous, e.g., if A is an
elliptic differential operator on a “large” Riemannian manifold. See Simon’s review article
[Si, Sections C6, C7] for a perspective on this problem in Schrédinger theory. Situations
such as these certainly predominate in macroscopic systems. In such cases, the appropriate
probabilistic context for study of probability distributions in canonical ensembles involves
integrals (rather than sums) of .independent random variables with respect to appropriate
spectral measures.

We begin with preliminary notions and facts. Henceforth || will denote the greatest

integer function.

DEFINITION 2.2: A spectral measure u is a o-finite measure on R+ = [0, oo]; F(E) =
|0, E] is the spectral function of u. The operator A, with point spectrum consisting of the
. . F(E) . - . e | FE) FET)| .
discontinuities of | ——|, each discontinuity E' having multiplicity | —— | —|—F—1, 18 the

€

e-discrete operator corresponding to u.

The operator A, has eigenvalue density essentially given by 5:—
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The correspondence between spectral measures p and nets {A.},, ¢ is bijective. Indeed,

F(E
the e-net of functions e{% converges uniformly to F, determining u.

We now investigate when A, defines a canonical ensemble, using criteria established in
Chapter 1. We require the following convention: the domain of integration in a Stieltjes

integral f: g(z)df(z) includes endpoints, and
/b oot
[ swaste) = tim [ ofeasta) (2.16)

We begin with a technical lemma.

LEMMA 2.3 Let f(-) and g(-) be defined on [a,b], g(-) be monotone non-increasing and
non-negative, f(-) be monotone and ¢(-) be Stieltjes integrable with respect to f(-) and [f(-)].
Then

< g(a). (2.17)

b b
| stwise) - [ oaisten

This holds if “a” is replaced by “a™”, ‘b” by “b~” or if [a,b] is replaced by [a, ).

Proof: Assume without loss that f(-) is non-decreasing, and that f(:) is continuous on
[a, b]; some inessential complications occur if the latter fails. Assume b = oo (otherwise f

and g can be appropriately extended), and let
ey <eo<zz< ..., (2.18)

where {z} are the discontinuity points of [f(-)]. If {zi} is empty the assertion is trivial.
Otherwise let

Sl = fayxl}} SZ = (iCl, 121: 53 == (327 23}’ cee e
Then

[ ewerer= % [ otertr [l = Soted, 19

and

g(zi) > /S’ch g(z)df(z) > g(zi+9) (k=1,2,...). (2.20)
Hence
< ola). (2.21)

The fact that
. steyirta) < ot (222
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and the first inequality in (2.20) imply (2.18); the remaining assertions follow similarly.ll

COROLLARY 2.4: If instead of monotone g is of bounded variation, then
b b

[ steiste) - [ otse)
a a

THEOREM 2.5: Let u be a spectral measure and A, the corresponding ¢-discrete operator.

< 2g(a).

Let f(-) be a non-increasing function. Then f(A.) is trace class if and only if
o0
/0 FE)du(E) < . (2.23)

Proof: If f(A) is trace class, then

= 2]
/Om J(E)du(E) = ¢ /: f(E)d(ﬁg@), (2.24)

If F(-) is bounded on [0, c0), the last expression is finite. Otherwise, the lemma implies

f 1@ T2 < [ 1o PO s g0y = el sta) + 107 < oo

Conversely if (2.23) holds, then
} / f(E ( ) f(07) < .8 (2.25)

etoo= [ el

COROLLARY 2.6: The operator f{A,) is trace class for some ¢ > 0 if and only if it is
for all € > 0.

while

COROLLARY 2.7: The operator e~#4« js trace class if and only if

/0 e PEdu(E) < co.

DEFINITIONS 2.8: A spectral measure u is 0-free if u({0}) =

Note that p is O-free if and only if A, is O-free for all . This fact together with
Corollary 2.7 and Proposition 1.4 completely characterizes those spectral measures which
define canonical ensembles.



CHAPTER 4

SINGULAR CENTRAL LIMIT THEOREMS, 1

The integration theory of Chapter 3 deals with non-singular integrals in that, e.g.,
s [ £(X3dp is finite. This section, from a probabilistic standpoint, is an illustration of the
singular theory for the family of geometric r.v.’s arising under symmetric statistics. The
non-normality of these integrals, demonstrated in Chapter 5, is closely connected to the
“infrared catastrophe” of quantum electrodynamics.

The most convenient formulation (with a view toward applications) is in the language

of limits rather than integrals. By Theorem 3.14, we may assume that g(0) > 0.

§4.1. The Case F(E)=aE? g¢g(E)=1
With the assumptions of §3.3 still in force, this falls into the category of “weakest”
violations of the hypotheses of Theorem 3.14. We have

Ba= % Vied = alpala)?+ o). (@.1)

€

where

¢(e) = e
(a definition which will hold henceforth); hence Theorem 3.14 cannot hold here. The
asymptotic distribution of ¢, though normal, has a new nature in that, after normalization
to standard variance and mean, ¢, is asymptotically dominated by occupation numbers n;
whose spectral values E; are arbitrarily small. Normality is in fact not universal in this
situation, as will be seen later.

Note that in all “singular” sums ¢, of r.v.’s to be considered, leading asymptotics will
depend only on spectral behavior near the origin; parameters related to global spectral

density will not contribute. We now consider a prototype.

LEMMA 4.1: If F(E) = aE? (E > 0), and g(E) = 1, then

72 a
R = ¢(e)(ce - 35ﬂ2) = N(O, [1—2) (4.2)

Proof: Assume without loss that @ == 1. The characteristic function of E, is
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$le)

Op,(t) = £(eFet) = e( 1t-‘r‘."T)é’(e‘"“"(‘)ct)

() e )

=1 L1 — e(-avativen [

50 that

inn (= 9T 5 (1o ) (1 - o FN] g

2
3¢ k=1

The branch of the logarithm is determined by analytic continuation from the real axis for
k large. We rewrite (4.3) as

- 2
In®g(t) = zgfggw

o 3 (i1 ) (o)

k=1

~ ﬁ:‘;]‘ (ln (1 _ e(..{a\/'c?%*id’(f)t)) - ln(ﬂ\/E—E - i¢(e)t))

k=1

+ §{ln ~In ﬂ\/—~l¢())}

k=1

+ i {In (1 - e"sﬂ) —In (1 — e(—ﬁ‘/‘-};%"(‘}))}
k=E+1

m{ h{BV/eR) - k,@\/_—uﬁ())}

k=1

[Z:: {In (BVek) — In(BV/ek — i(e)t )} (4.4)

* ‘[;H{ (B ek) —lﬂfk——uﬁ())}

where
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In the first sum ¢k ranges from 0 to 1, so that
]
. {tsver) - (o - oo

k=1

(4.5)
]
- {Z h'(wéi)w(e)t)}u FO@E) (-0
k=1
Similarly
> {usver) - s - iefan)

E=[+H]

(4.6)

= Z U(BVek)ig(e)t o1+ O((e)) (€1 0)
Note that h'(ﬂf % is bounded and monotone decreasing for z € [0, 1], as is
I(8/z) = eﬁﬁ—l’ for € [1,00). Thus (3.20) applies to the sums in (4.5) and (4.6), and
(4.4) becomes

ins, () = I { [ #iovans + o0 )}(1+0<¢( Dis(el

1

* {; /:o V(By/z)dz + 0(1)}(1 + O(6(e)))ig(e)t

(]
+ 3, {il6veR)~ o - ioteo (47)
k=1

_—itg(en? gl [° 1 '
= 32 + ; {/0 v 1d:z ~/0 ﬂﬁdr}(l + O(g{¢)))

Zl ( ﬂ\/)_) (e = 0).
k=1

For small € the arguments of all logarithms are near R C C, so that branches are defined
by analytic continuation.

Forz € Cand [z| < 1 3 In(l~z)=—z— ’—22{} + z8(z)), where S(-) is bounded. Noting
that

‘Mdt < ?gf)f - 0 (4~8)

fVek T Bye e—0



we have
2] /. [t 2,2
1o ip(e)t __ ig(e)t B(e)t o
k=11 (1 5\@) k=1(ﬂ\/e75)+ 2—;1 25%h )(1+ (1))
_ —i¢(e)t [‘H (L)+¢(6)2t2 [%] l (1+0(1)) (4.9)
Bve \ vk 2682 | ;4 K
_ —iglepf, [[1 (e)%%(, [1 0 .
-2 ] o)+ ST o vetr -0
Finally, replacin [%] by ;1 we have
[)
_ Ple)t —2ig(e)t | 7 0 o
k=11n(1 ﬁ\/e_k) ﬂé +2ﬂ2+ (1) ( 0):
Thus

Indp,(t) = _Ld)(e)wz + M{jﬁ- - E} Zigle)t _ 2 — +o(1)

3ef32 e |32 Be 242
(4.10)

t2
= —% +o(1) (e—0).

$2
Since e #% is the characteristic function of N (0, ﬂz) the Lévy-Cramér convergence theorem

completes the proof.ji

§4.2 The Case (gF')(0) > 0, ¢gF'(0)=0
In this case the “leading behavior” of ¢, arises from its small E; terms and can be
analyzed with use of the previous lemma. Recall that the convolution of distribution

functions is defined by
(F1* Fo)(z /le—— y)dFa(y), (4.11)

with the obvious extension to probability laws.

LEMMA 4.2: Let {X;}:2 ; be a collection of independent r.v.’s and {X;}{=. ; be another.
Let § = 3_X; and 8' = 3 X! converge a.e. If Fx, < Fxi(z) for all z, then Fg(z) <
Fg:(z).

Proof: This follows by direct calculation for finite sums, and in the general case from

the fact that almost sure implies distributional convergence.}



32

The sets G and S s are defined in Def. 3.11.

THEOREM 4.3: Let g € Gg and u € S, g, with g(0) > 0 and F the spectral function of
. Assume that F'(0) = 0 and F"(0) = 2a > 0. Then

0ec - 2) = (0. %22),

with m given by (3.22).

Proof: We prove this in three parts, first assuming ¢ = 1, F"(0") < 0, and then
sequentially eliminating the second and first conditions.

1. Assume
F"(0%) <0, g(E)=1.
Then -
Ce = Me = Z Nejy
j=1
and since p € S, g,
F"E)<0 B<ELN (4.12)

for some A > 0. Let

F(E); E <X\

FME) = ’ =7, 4.13

&) {F A\  E2A (413)

p* be the spectral measure defined by F*(-), and n} = jnz‘j the corresponding total

occupation number. Define

FMNE E2— P>

H(B) = [ E( )J + [a - (E)J, (4.14)

and let 7} = {E;“] 1<5< oo be the ordered discontinuities of H,(-), the size of a discontinuity

being its multiplicity in 7?. Let 7¢ = {E¢; 1<i<oo P® the discontinuities of [G;L,]’ so that

Q. € ]
B% = ,/;’. (4.15)

Let A7 and A? be self adjoint operators in Hilbert space with spectra ¥. and 732,
respectively, again with multiplicity. Note that

0< [i‘?} ~H(E)<1 (E€R), (4.16)

since for ¢,b € R,
0 < [a+8—{[a + [o]} < 1.
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Furthermore, if E:(j_1)> E¢;, then, for E3; < E < E:(j—l)

E2
{-‘I_E—]Z], HE(E)<]—1!
contradicting (4.16). Thus,
El,_1)S EG (2 < <o) (4.17)
Also, by (4.16),
B2 < B, (1< < oo (4.18)
Let {n:f}l <i<oo and {ngj}l <j< oo be the symmetric occupation number r.v.’s correspond-
ing to A} and A2, and
=) ng =), n (419)
=1 =1
total number r.v.’s. By Lemma 4.1 and the definition of A2,
2
oo =229 s ) L Npo, ). (4.20)
Va 3ef2 ) 0

Note also that by (4.15),
e{(ﬂj§>n:1)2} = 2Ly o+ € ()}

ﬁ2¢(€)2( exp (8/%) N 1 )
@ \(exp(BvD) -1 (exp(8y/2) - 1)

1
= O(W):o“'

o Be) .
we = NG ne1 = 6o (4.21)

with 8g the point mass at 0. If we define

so that

a—i_ a
n,Za B =N, N,

then (4.21) and (4.20) imply

2
Q l=0Qr-Wwe = ﬂ\—‘ﬁ%) (nf’l-— %2) = N(©,1). (4.22)
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The d.f. of nf; is

5

Foe (z) = Z Plng =k) = Z (1 - e‘ﬁE?:')e‘ﬁkE::‘ =1-ePE+1EG (7 € R),

which is monotonic in E¢;. By (4.17) and (4.18),

Fn:u_l)(x) S Fn;‘j(z} (.7 _>_ 2)
: (4.23)
Fu @) < Fay(e) (G2 1)

We decompose
Fe=70ur",

P> (8) E*--F> (E)}-

where the set 727 corresponds to the discontinuities in { ] and 72*7 to thosein {a—e————

the intersection of 77 and 727/ is listed twice in 7. Let
Sl={j:Eyer™, sl={j:E;e7"}, (4.24)

and define

nf=Sny, W= (4.25)

jES8! jesy

Note that ! (n?77) is the total occupation number corresponding to the d.f.

Fi(m) = T (Fe18) = Las- (2

By their definitions, n} and n??, are identically distributed.
By (4.12-13), F*!1(.) is monotone non-decreasing. Since p € Sy,

F*II e Slﬂy

and

F M eh = F"N'0h=o. (4.26)
By Theorem 3.14 and the above,

=17
* /j € * m
SIIE ;}—:ﬁ(ns}‘l— T)‘;}N(O,l),

n_ [T 1 2
- /0 o dlaE?~ F(E)

where

= ————d EZ_ FME)).
/ e P B)
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The r.v.
ndl=3$"pa. (4.27)

has [P term n¢(—~1y While the I** term of n* in (4.19) is nY. Thus by (4.23) the d.f. of the
Itk term of n2'lis bounded from above by that of the corresponding term in n};. Hence by
Lemma 4.2, letting F,(z) denote the d.f. of n,

Fn:(z) S Fn:.l(z),

and similarly, by (4.24),
Fre(z) < Fry(2).

Since these inequalities are preserved under renormalization of expectations and variances,
we have by (4.20)

Foe(z) < Fo:(z) Fo:(z) < Fgulz), (4.28)
where
2
g =20, o)
Ve 3¢B2
Thus by (4.28), and (4.22),
Faa(z) < Fo;(2) < Fgen(2) Ejol"‘zv(o,l) (=), (4.29)
and by (4.29),
Q: = N(0,1). (4.30)

But by the definition of @,

ﬂ¢(€)( g an?— 3ﬂ2m*”) ﬁff’(ﬁ)( «II m*”)
=—={n]' ~ + n*t - ——
Ve 3¢p? Va €

Bé(e) (n-z an?— 352’”‘”) + BVvITg(c) Q!

va \'* 3¢f? vae ¢
The coeficient of @217 approaches 0 and so the second term converges in law to §o. Thus
by (4.31), (4.30), the independence of n*! and n*!, and the identity of n2 and n},

2_ 3 zmtlf
5%%) (n? _ar 8 ;32 )fo N(0, 1).

Q:

(4.31)

Now let
n> =mne—nl. (4.32)
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Using by now standard arguments, we conclude

;;E—(x—)(n? (\) — mi(k)) = N(0,1), (4.33)
where " ) . .
> = . - €
m” (\) ~A FE ldF(E), v (\) __/)\ . l)2dF(E).
Equation (4.32) implies
Bo(e) my _ Béle)( an?— 38%m*1
-7 =R (- )
) (4.34)
B >y ML m_am
+ ﬁ(ne()\) ( — Tt 357))
By the definitions,
m 4+ m - :—;Z = ./>\°° ;Fél_:—ldF(E) =m” (), (4.35)

since

* 1 an?
e (@ ) = ——.
/;) ePE — 1 (a 2) 3B2

Because %SE) — 0, the last term in (4.34) converges to g by (4.33) and (4.35). On the other
hand, the first term on the right of (4.34) converges to the standard normal, so that

ﬂjf_f) (ne - ?) = NO.Y (4.36)
completing part L.

II. We now eliminate the restriction on F"(0) and assume only that g(E) = 1. In
this case there clearly exists a spectral function FO(‘) corresponding to a distribution /40 €
51 such that (1) F(E) — FOE) is monotone non-decreasing for £ € R, (2) (FO0*) =
0, (3) (FO(0) = @, and (4) (FOY"(0F) < 0. The construction of such a spectral function
involves finding one with sufficiently negative third derivative which is constant for all values
of E larger than some sufficiently small number E; > 0. The function FO satisfies the
hypotheses of Part 1.

Analogously to {4.14), define

(4.37)
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Let 7: = {EY; be the ordered set of discontinuities of F; and F. = {E¢}; o«

Jl<<:

so those of [F( )} As before

so that
Ei-1)< Ee. (4.38)

Let

oo o0
= Z Ty n; = E ng, (4.39)
j=1

be the total symmetric number r.v.’s obtained from F(E) and F*(E), respectively, and n} =
ne ~ ne1. As before we conclude from (4.38) that

Fg,(z) < Fp:(z); Fg:(z) < Fry(z), (4.40)

where

e 20,7,

with R and Rel corresponding similarly to n] and n}, respectively.
We make the decomposition 77 = F:7n 717, where 77 corresponds to discontinuities

( ) and 7! to those in {w

(4.25). By Theorem 3.14,

}. Let n}! and n:H be defined analogously to

€ . m*i
(- ) NG) (L41)

with

(4.42)

m«I! — /

By the conclusion of Part I,

where
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Hence,
R: = N(0,1). (4.43)
As in (4.21),
W, = ?—(\;_-l)zénd:}&o. (4.44)

Since Fyg,1)(-) is continuous, a net of probability distributions which converges to
Fn(o,1) () pointwise does so uniformly in . Thus by (4.44),

se = sup|Fi(q,1)(z) — Fr:(z)| _’00'
zER e
and

P » Foe)~ Py * Poale)] = | (Fis(e =)~ Favon) (=~ 9)dFw )

(4.45)
< sC/ dFw,(y) = s, —>00.
Also by (4.44),
Frn,y * Fw, (z) e Fro,) (),
so that
Fr: x Fy, (z)ejoFN(o’l) (z). (4.46)
Thus Lemma 4.2, (4.44), (4.40), and (4.43) imply
Fr; * Fw.(z) < Fry + Fw,(2) = FR.(z) < Fr(2) = Fnoy(2)  (z€R),
so that, with (4.46), we have
R, = N(0,1). (4.47)

III. In the general case we may assume g(0) 5£ 0, by Theorem 3.14. Then

Ce = g(o)ne + (Ce - g(o)ne)'
By Theorem 3.14 (with a slight modification if the integrand of m1 below is not asymptoti-
cally monotone),

i(( g(0)n, — i’ei) = N(0,1),

v1

mm [TOEO),, L [T g0,

o €fF-1 eﬁE -1)2
Together with the result of Part II, this gives

\/E(cs _ T) - N(O, g(O)a)’

where

€

completing the proof.}



CHAPTER 5

SINGULAR CENTRAL LIMIT THEOREMS, II

This chapter deals with the most singular families of geometric r.v.’s arising under our
hypotheses, those from spectral measures with non-vanishing density near 0. The singularity
of this situation fundamentally changes both the results and the proof of the associated limit
theorem. The normal distributions of integrals appearing in previous cases are now replaced
by an extreme value distribution whose parameters are entirely determined by spectral
density at 0. This will be shown in the prototypical case du(F) = dF(E) = dE, and in
general through an approach like that of Chapter 4. The approximately linear behavior of
F(E) at 0 will be exploited to decompose ¢, into two independent r.v.'s, to the first of which
the prototypical case will apply, and to the second Theorem 4.3.

The extreme value distribution is that with d.f. e~¢ ~. The normalized distribution,

with zero mean and unit variance, has d.f.
exp(_e“(:%”'*)), (5.1)

where v = .577... is Euler’s constant. For applications of this distribution to the statistics

of extremes, see [G].

§5.1 Asymptotics Under Uniform Spectral Density
In this section ¢,, u, and g are defined as before. We will require the following simple

lemma.

LeMMa 5.1: Let {Fc(-)}, o be a net of probability d.f.’s, and
F(z) - F(z) (z €R), (5.2)

€e—

where F(-) is a continuous d.I. If {G.(-)},, ¢ is any net of d.f.’s, then

limsup Fe(z) * G¢(z) = lim sup F(z) * G¢(2) (z € R); (5.3)
e—0 e—0

(5.3) holds as well for the lim inf.

LemMa 5.2: If F(E) = bE for some b > 0, and g(E) = 1, then
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Proof: We may assume b= 1. The logarithm of the ch.f. of R, is

it(eR, In(Pe) . ln(ﬁe) s 1 - e—ﬂij
In®p (t)=In (E(e (er '**_79—))) = th + J;ln(————l - e~ﬂej+iet)’ (5.4)

where the branch of each term is principal for ¢ > 0, and determined by analytic continua-
tion from ¢ > 0 elsewhere. Fixing ¢,

In®p,(t) = ﬁ%@
3 | 3
+ (In(1 — e7#¢7) — In(Bes) — In(1 — e~ T¥¢) 4 In(Bej — ite))
j=1
(5.5)
[za‘-]
(In(Bey) — In(Beg — ite))
3==1
+ Z (ln(l —e Py _In (1 - e(_’B"“H“))).
i=[g]+1
Let

hz) = In (1 "‘) I(z) = In{1 - ™),

with branches as before. The function A(-) is analytic at all points within unit distance
of the real axis interval [0, 1], and I(*) is analytic at all points within distance § of [0, oo)
Denote these regions of analyticity by Dj, and Dy, respectively. Let ¢t £ 0 and !etl < I
z € [0, o), then

Uz — iet) = I(z) — iet!'(z) + R(z),

where
(117 —sgte] 2
R | (Em) | |GEDo((=))
(iet)2(z)| ((—“_)21) T ((—‘_)21) Tt
(5.6)
w1\ 2
0((6""_11)) +0(1)

The term O( 1) satisfies
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for some C > 0 and sufficiently small values of the argument, and

o= -1 1 (5.7)

(et)? et

remains bounded for all € > 0, uniformly in z € D; (in fact independently of z). Thus if
t 7~ 0 is fixed, (“—:255(%)(;) is bounded uniformly in z for z € D; and € sufficiently small, and

i (In(l — e-ﬂf_‘}') _ ln(l _ e—ﬁej—{-iet))

=fai+
(5.8)
— > et
— { S e ﬂm} (1+0() = { Z m}u +0() (e—0)
=[&l+1 i=[#]+
which clearly also holds if £ == 0.
Similarly, one can show that for ¢t € R,
[#] L
Z (In(1 = e7P<9) — In(Bes) — In(1 — e™PITt) 4 In(Bej — det))
=
(5.9)

e Ry

The summands in the Jast terms of (5.8) and (5.9) are decreasing in fej, and Proposition

3.13 implies

o

Z g"é;;“t:—i == —‘% ln(l - 6_1) + 0(1) (510)
s=lgi
and
W1 L=t -1 0 5.11
‘létjg:l M‘% ——En{l—e )+0(1) (6“* )- {- )
Finally,

(%]

(3] 4]
Zlnﬁe] ) — In(Beg — det) zln(H]) (

1
o

0
)[4 ) ror(s-2)




42

where we continue our convention on branches. Stirling’s expansion gives

InT(z) = (z - %) Inz—z+ %ln(.‘l'/r) + O(I'i"l)’ (5.13)

uniformly for argz < A < n. Thus

wleg)ome(z]) e
el (2] D) 25 2)

N %}n(—l—g—i-— p +1)— 5 +00
(510
(=)= (313501 ) )
- 1n(69 - 5+ 09
—ur(1-3)-Snipd 406 (=0
Combining (5.5) and (5.8-14),
In(®p, (1) = lnF(l - g) + o(1),
so that
on ) =1(1- 5 Ja+ot) = r(1-5). (5.15)

The right side is the Fourier transform of the distribution with d.f. e"’“pz, and the proof
is completed by the Lévy-Cramér convergence theorem.j

§5.2 Asymptotics for Non-Vanishing Densities Near Zero

THEOREM 5.3: If p € 8y 3, F'(0) = b > 0, and g(0) > 0, then

Az
mie —e B (0)B
R(Ecc(~—~~(—) = e’
J e—0

€
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where
0)b €
mle) =m+ %lln(%—) )
(5.16)
~ [ 99 _ / = 9lB) ~g(0)
m = /0 g AF(B) - bB) + | TS dR(E).
Proof: 1. We assume initially that g(F) =1 and
F'(E)y<0 < ELA) (5.17)
for a X > 0. Let F"(0) = —a, F(E) be as in 4.13, and
2N bE — >N
H, = {F (E')} +[ E—F (E)} (5.18)
€ €
Let 7} = {E%}, Si<oo be as in Theorem 4.3, and 72 = {E%}, <j < oo De the discontinuities
of [*E], i.e., B%; = L.
We have
0< Fﬂ ~H(E)<1  (E€RY (5.19)
and
E} <E:;; (1<j<oo), Bl S By (257 <o) (5.20)
Let {n:j}lﬁi<w and {"ia’}ls_;(oo’ n? and n® correspond as before to 7 and 7° (see 4.19).
By the lemma,
bln (ébf) 8
. L 5.21
Qe=|ne+t—5 [ 3 (5.21)
Let
wbi=nbonby  nld ==l
J J
b= mb;  nly= ) n (€>0, 7=234..). (522
k=1 k=1
The d.f. of eni’j is
Fo (@) =1- I 1 e e (5.23)
€5 €—r
and thus
ij = enfj R (5.24)
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We subdivide 7! as in Theorem 4.3 into 77 and 727! with S and SI! defined as before.

Since

bE — FNE)
F)‘(E) E—0

for 7 € N there is an € > 0 such that if ¢ < ¢, then

0,

* w]
bELL — FMNEL)

e

since

N
El = inf{E‘ : FE) > j}.
Thus if € is sufficiently small and & is fixed
* 74 .
E; € 7 (7 < k€eN) (5.25)
Since F'(0) = b and by (5.17), there exist Eps > 0 and L > 0 such that if E < Eyy,
bE — LE? < FME) < bE. (5.26)

Let 7 € N, and ¢ be sufficiently small that (i) equation (5.25) holds for some k > j and (77)
E?; < Eay. Then

Nt
E;;=E; = inf{E’ : F(E) > j}.
€
Together with (5.26) this implies
En=2106) (-0 (5.27)
&g — ? € € . .
Thus, as in (5.23),
an‘ (I) =1- e_ﬂ[%+1](¥w(£2)) - ] - 6—%11. (528)
i e—0

Let D{a) denote the exponential distribution with distribution function 1 — e~** and
e
Then by (5.24) and (5.28)

W?, = enb, = Dj; W* = en* =3 D7 (7 e N). (5.29)

€2 €7 e—0 ¢ €7 s
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Let 9
LI - b __ m €_
Q. e( ; ),
bg = nb - nb"a n:J =n, 'n**:
€7 €]
and
@ =i -mD) g = (wi - 50
€ € €
By (5.20)
(i 1)()Sanj(I) (6>0,:1:ER 7=2,3 )
and hence
Foi(@) S Foulz)  (k=7+1), (5.31)
so0 that
Foui(®) < Foealz)  (k=7+1). (5.32)
Let .
b{In( 5
Q: - e(n: - I Il( b )l) (5.33)
Be

Thus by Lemma 5.1

limsup Fg.(z )--hmsupFW * F . ;(z) = limsup Fp; *F ( )

e—0 e—0 Q: e—0
< lirzzjgp Fpi « FQE"‘ (z)= lixenjgp FW:,; * FQ:,L(x) , (5.34)

= limsup Fg ».x(z) (z€R,jEN, k=j+1),
e—0

where we have also used (5.29), (5.31), (5.32), Lemma 4.2, and (5.30).
We have Q7 + WE, = @2, and thus

® 03 ()0 () = Du(t) (e>0,tER, jEN). (5.35)

By (5.21) and (5.24),

o1
bit bit .
val) (1-5) two(i-)  emiem,

8, )
the right sides being characteristic functions of ¢=° ° and D (% ]) , respectively. Thus

B guilt) = (1 ””)1‘(1 - %) = ai(1). (5.36)

e—0 B3
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Since ®](-) is continuous at 0,

Fo¥? — Fi(x)
e—0
where o
/ €=t dF](z) = ®](t),
and
lim sgp Fgus(z) < Fi(z) (z€R, jEN).
Thus by (5.34) and (5.37)
lim sup Fo: (z) < Fi(z) (7 EN).

e—0

On the other hand, by (5.3.6),
s

Fz{(x) — e,
J—+o0

Since the left side of (5.38) is independent of 7,

8

lim sup Fg. (z) < e
e—0
By (5.20),
Fn:j(:c) < Fue,(2) (e>0, z€R, JEN),
so that

Fai(z) < Fo;(=).

Combining (5.21), (5.41) and (5.39) yields

B, —_
€™ * = lim Fgi(z) < liminf Fg.(z) < limsup Fg.(z) < e°
e—0 ‘ e—0 N e—+0 ‘
so that
Fg-(z) — e ° (z €R)
€ e—0

and .

Qr=e" " .

We now form
1T

« o w]
e = N +TL£ 4

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

where n’7 and n?' are defined as in (4.25). By arguments identical to those following

€

equation (4.26), n?7 is identically distributed with nz‘, the occupation number corresponding
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to E} We have analogously (by Theorem 4.3)

«II ﬂiﬂ_ L7 7 T:_Ii)
Qe - \/E (ne € ei}ON(O’ 1)’ (5'45)
where
= / d(bE — FME)),
€
dle) = e (5.46)
By (5'33)9
. oI _ i! (éf) _l)) Vae .1 5.47
“ {”‘ (eﬁ (5 )= 7)) e (540
Hence by (5.45) and (5.43),
{-(Gm (- ") 2™ 549
Let
n> (\) = n —n’.
As in (4.33),
€ Sy M ()\})
=T (nE ) - e:jON(O, 1), (5.49)
with m> (\) and v> (\) defined as before. Thus,
b «II
(e =E) = (200G (5 -75))
(5.50)
«II b
+ e(n> A\ - m€ + 7 In (—'ge) - "me_e))
By calculation,
m T~ b ln(ﬁe) —me) = m” (\); (5.51)
eB b ! ’
hence the second term in (5.50) converges to 6g. By (5.48) and (5.50),
1 m(e) ey
R, = ;‘(gj(‘né - T) ;—joe . (552)

1. We eliminate here the restriction on F/(0). As in Theorem 4.3, let u® € S35 have
spectral function FU(-) such that (i) F(E)—F %) is monotone increasing in £, (1¢)(F 0y(0) =
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b, and (435) (F9)(0) = —a < 0. Let F*(-) be defined by (4.37). We employ the definitions

between (4.37) and (4.40). Equation (4.38) holds here also, and yields
Fr.(z) < Fr;(2) (z € R, €>0),

Ri=n-") r—dn-")

where

€

Eg =1 +0, By =% +0().
Thus, as in (5.27-29),
We=en.= D7 W'=en'y = D7,
EJ et €7 €3¢0 .

where n _« and ns are defined as in (5.22). As in (5.34),
liminf Fg. (z) < lim i(I)lf Fri(z),

[

where

RI = e(nﬂ - M), ni = n - ngj.
€
In (5.55), we have used Lemma 5.1, and

Fus(2) < Fra(z) (JEN, k=j+1),

R,
y 1 m(e)
G p—— — . ———
& a(e)("‘ T e )

and R;’f is defined similarly. By Lemma 5.1 and (5.55)

where

liminf Fg: * Fy,;(z) < liminf Fp; * Fy,,(2) = liminf Fg (z)

e—0 e—0 e—0

where

VVej EE €Ny (6 > 0; .? € N)

Define n!” and n!¥! as in (4.25), with respect to the decomposition

Fr=FluR,

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)
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F°(E)

€

£

where 72! corresponds to the discontinuities of { } and 77! to those of {

By Theorem 4.3,

%(n:” - -"1;1-) = N(0,1),

€—
with m*/? as in (4.42). The measure uO satisfies the hypotheses of Part 1, so that

m*(e _5
e(n*l—— ())2'}68 b’

¢ € e—0

where

bjin ()
8
Combining (5.58) and (5.59) yields

= o= 1) (- )

€

, m'= / N 1-——~d(F°{E}—bE).

I — «J
m* () = m" + o FETI

We have

m(e) — m*I{e) = m* T

so that by (5.58), the second term on the right of (5.61) converges to ég, and

R = ¢ 7.
0

By Lemma 5.1, (5.57), (5.53), and (5.62),

e s (&)= lim i(r)lfFR: * Fy,,;(z) < lim ingRI(x) < limsup Fg, ()
£+ [3nd

e—0

Bz
—e B

< IimOFR:(:c} =e

The limit 7 — oo yields

Fp(fg )(I)j:oo Fs,(z)
so that
e.‘%

R, =e”

HI. We finally consider general ¢, for which g is not identically 1. We have

¢ = g(0)n + (ce — g(O)ne).

F{E)-F*(E )]

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)



50

By Theorem 3.1,

#(0)(ec ~ 9(0)mc - ?)3 N(O,v1), (5:65)
with
Hence
e(ce - ﬁe(i)) = (e g(O)m) - 1) + e(g(o)ne _ M)ﬁoe—f"’:’, (5.66)

completing the proof.



CHAPTER 6

PHYSICAL APPLICATIONS

In this chapter we examine particle number and energy distributions in certain canonical
ensembles. The means of energy distributions provide generalized Planck laws; the classical
“blackbody curve” will be shown to apply in several situations. Normality of observables
is however not guaranteed, and the extreme value distribution arises in one-dimensional
systems.

To simplify the discussion, we consider only particles with chemical potential 0 (whose
energy of creation has infimum 0), e.g., photons and neutrinos. We study these in Minkowski
space and Einstein space (a spatial compactification of Minkowski space; see Segal [Se2]),
two versions of reference space. The canonical relativistic single particle Hamiltonian in its
scalar approximation will be used in both cases.

We study Minkowski space ensembles in arbitrary dimension. The Hamiltonian is
continuous, and a net of discrete approximations based on localization in space will be
introduced. Einstein space will be considered in its two as well as its (physical) four
dimensional version. The approach in these cases can be used to establish photon number
and energy distributions in a large class of Riemannian geometries, once the relevant wave

equations are solved.

§6.1 The Spectral Measure: an Example in Schrédinger Theory

We begin with remarks about obtaining the spectral measure u for an operator A with
continuous spectrum, acting in Minkowski space. An illustrative example of such an infinite
volume limit is in [Si].

Let H be an operator on L%R"). Let xz denote the characteristic function of Bg =
{z : |z| < R} and 75 be its volume. Suppose that for all g € O

Ng) = lim 2" Tr (xrg(H))

exists. This defines a positive linear functional on C%°, and there is a Borel measure du
defined by

Ng) = / g(\)du(\).

This measure is the density of states. It is the spectral measure associated with an infinite
volume limit, and the term is reserved for situations involving Schrodinger operators.
If H is a Schrodinger operator (relevant in our context for the statistical mechanies of

non-relativistic particles), we give a criterion for existence of a density of states [Si]. Assume
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the dimension n of space is greater than 2, and define the space of potentials

K, = {V :R" =R :lim [sup/ |z — yl'—"—le(y)|dy} = 0}.
a0 7 Jlz—y|<a
The spaces K, are more relevant to properties of Schrodinger operators —A + V than are

L? or local L? spaces. We have

THEOREM 6.1 (see [Si]): Let H = —A + V(z) act on R", with V € K,. The density
of states exists if and only if

L.(t)= lim Tngr (xre™tH)

R-—o00
exists.

This density of states is the physically appropriate spectral measure for statistical

mechanics.

§6.2. The Spectral Approximation Theorem
Let g € Gg, and u € Sy 5 be a spectral measure with spectral function F(-); let A, and
ng; be the e-discrete operator and occupation number r.v.’s corresponding to p. Let {Ac}.

be a net of discrete operators with corresponding occupation numbers n.j, and
oo
Ce — E g(Eej)nEJ-, (61)
i=1

with ¢, defined similarly. We now ask, How similar must the spectra of A, and A. be in

order that ¢, and ¢, coincide asymptotically in law?
Let 7, = {Eej};.”:l be the spectrum of A,, N(a,b) the cardinality of % N [a,b], and

ce(a,0) = Y 9(Eej)x(Eej)nes
k=1

be the truncation of ¢, with x(E) the characteristic function of [a,b]. We make similar
definitions for ., N’, and c,, with respect to A.. We will assume that there are positive

extended real functions E1(e) and Eo(e) such that
(’l) V(! (O,El)!el))_’ 0

Ve

e—0
) VEO.E:6)))_,
V(CZ) e—0
NE(O,E)’
121 sup hE)
) B () <B< By ()l V0, E) [e—0
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(iv) N(0,E) < MiN\(0,MgB) (0 < E < Eyfe))
for some My, M2 > J, independent of ¢.
We omit the proof of

THEOREM 6.2: Under these assumptions, if F'(0) = 0 then c. and ¢, have the same

asymptotic law i.e.,
1 ?
R — (c; - ﬁ) (6.2)

e )

have identical (normal) asymptotic distributions, where

m' = A eﬂlg —)ld#” (63)

and

m(e) — m' = o(1) (e—0).

CoROLLARY 6.2.1: Conditions (i) and (i) may be replaced by the generally stronger
ones

(7) €V(c.(0, E1(€)))—0

(77") €V{cL(E2(e), o0))—0.

§6.3 Observable Distributions in Minkowski Space

We now construct the canonical single particle Hilbert space for n + 1 dimensional
Minkowski space; the constructions on other spaces are made similarly. All particles will be
treated in scalar approximations, so fields will be approximated by scalar fields, and spins
by spin 0. Distributions will be studied in the frame in which expected angular and linear
momentum vanishes.

We let n dimensions correspond to position

(z1,22 ..y Zn) =X
and one to time zg = t. Total space-time coordinates are
(20,71, 20) = 5

the speed of light is 1 here.
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The field ¢(-) of a single Lorentz and translation invariant non-self-interacting scalar

particle satisfies

AG(E) — bue(E) = m?9(2), (6.4)
where m is mass, subscripts denote differentiation, and

82 8% a2
A= —t —+- 4+ —.
81% 81% dz2

Since m == 0 by assumption, we have A¢(Z) = ().
The single particle space ¥ consisting of solutions of (6.4) is formulated most easily in
terms of Fourier transforms. We have ¢(-) € ¥ if ¢(-) is real-valued and

#(z) = (2n)" 2 /R i e*F(k)dz, (6.5)

where
k= (ko,k1, ... kn)s dk = dkodky. . .dk, (6.6)

and

Hl
||

0= 2 ki
Above, F(-) is a distribution

F(k)dk = {6(ko— [K|)f (k) + 8(ko+ [k|)F(~k)} k|~ dk,

where 1K)
22 e LARM); 6.7
7 € (R") (6.7)
n %
k= (k... kn), - ]k|=(2 k?) ,  dk = dkydko. . .dk,, (6.8) -
i=1

&(-) denotes the Dirac delta distribution, and f(-) is the complex conjugate of f(-). The inner
product of f(-), fo(-) € ¥ (we use ¢(-) and f(-) interchangeably) is

(f1, f2 / I |kf]2(k : (6.9)

Since (6.5) is hyperbolic, solutions correspond to Cauchy data; we have

flk) = 2(»—2—-;)—%{&] /R . e** $(0,x)dx — 1 /R ne*‘k* q&t(O,x)dx}. (6.10)
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The state space thus consists of admissible Cauchy data, with time evolution dictated by
(6.8). Since solutions ¢(-) are real, the most convenient representation of ¥, which is complex,
is as Lebesgue measurable funetions f(-) on R™ satisfying (6.7), with inner product (6.9). In
this representation the Hamiltonian A = %% is multiplication by |k|.

The operator A has continuous spectrum, necessitating a discrete approximation in the
formation of a density operator. To this end, we localize in space, replacing R™ with the
torus T™. Asymptotic distributions are largely independent of the compact manifold used;

the sphere will prove to give the same asymptotics.

2
Let A, be the single particle Hamiltonian on the Torus T™ of volume (—ezﬂ—, with

spectrum
1
7.={e Zi}’) t(610in) € (2T = {Eg}in, (6.11)
]

(We neglect the 0 eigenvalue, which is without physical consequence.) The particle number
and energy r.v.’s corresponding to A, in its canonical ensemble (at given inverse temperature)
will be

ne(a,b) = Z Nejs A(a,b) = Z E¢jnej.

a<E;<b e<E;<b

DerFINITIONS 6.3: K3{-} denotes the modified Bessel function of the second kind, of

order 1.

Let A, be the e-discrete operator corresponding to the spectral measure p with spectral

function
FE)= £ (E > 0), (6.12)
(%)

which is the volume of an n-dimensional sphere of radius E.

LEMMA 6.4: Let I,(z) be the number of non-zero lattice points within a sphere of radius
z in n dimensions. Then
u) There is a number M, such that l,(z) < M,z"
b) For each n
La(2)0(252)

wEgn

-1 (6.13)

Proof: Statement (a) clearly holds for z large and small, and both sides are bounded
for intermediate values. Assertion {b) states that the ratio of the volume of a sphere to the

number of its lattice points converges to 1.
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For brevity and convenience we define the following real functions, which are fundamen-
tally related to asymptotic means and variances in canonical ensembles on Riemannian
manifolds. They are quantities determined by “global” properties of the appropriate spectral
measure pu, and thus arise in those less singular situations in which asymptotics are deter-

mined by the totality of u rather than its behavior near 0.

DEFINITIONS 6.5: Forn = 0,1,2,... we define

b -1 b pn-18E
mi(a,b) = %“‘dE, vi{a,b) = «E—e—-dE.
a €% +1 e (ePE 4 1)2

The Riemann zeta function is denoted by ¢(-), and

n
nwz
oy = .

r(=f)

In the (important) study of total particle number and energy, we will consider v¥ =

v£(0, 00) and mZE = mZ(0, co), which can be calculated explicitly:

m

_ _ T(n)(n) (n=234,...)

L ﬁn
_Tka—D)
v, = I ( 3,4,5,... )
et — {F(n)g(n)(l —217)87 (n>2)
" (n2)Y (n=1)
Dnk(n — (1 - 27" (> 3)
vF={p"2Imn2 (n=12)
(2% (n=1)

THEGREM 6.6: Under symmetric statistics,
(1)Ifa >0o0rifn> 3,

\/E(ﬂe(a, p)— (“’6 b+ 0{1)) = N0, anv;(a,b) (6.14)

s

(2)Ifa=0,b>0andn=2,

\[ﬁn%(” o P (a,e b) + o(l)) = N(O, };’%) (6.15)
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(3)Ifa=10,b>0andn=1,
— 2 (=) = Zn(a0)]) = 2 F K2 %), (6.16)
Be Be e—0

Note that (6.16) is entirely free of the global parameters of Def. 6.5.

e(ne (0,5)

Proof: We first show the hypotheses of Theorem 6.2 to be satisfied in cases (1) and (2).
Let N, and N/ correspond as before to A, and A, , and

By = Vallnelt,  Ey(o

0.

In case (1) (if @ = 0), the lowest eigenvalue of A’ is

Eisl == O(G%)x

while
2
NumEﬂqy=o(E2@U==oQAmq) (6.17)
Hence
V(r'(0, E(e))) < O(e_%\/llnd). (6.18)
In case (2),
V(0 B(e)) < O~ 1V/lIne]); (6.19)

Equations (6.18-19) prove (6.14). Lemma 6.4 gives (6.15) and (6.16); hence the first two cases
follow from Theorem 6.2.
If n ==1 and a = 0, A, has spectrum

Fo = {e,¢,2¢2¢,3¢,3¢,...}. (6.20)

Hence by Theorem 5.3 and the double multiplicities, the left side of (6.15) converges to the
convolution of e™ " with itself, which is on the right.}

If n. = n(0, 00), the distributions are explicitly

nl¢(n)r® + o nl¢(n — n?

ifn >3
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if n = 2; and
e(ne - g—e[ln(ﬁfﬂ) = 27T K (27F)

ifn=1.
For 0 < a < b < oo, let A(a,b) represent the total energy of bosons in the above

ensemble whose energies lie between a and b.

THEOREM. 6.7: In a boson ensemble in n+1 dimensional Minkowski space, the asymptotic
energy distribution is given by

anm, 4 (a,b)+ o(1)
Vel Ala,b) — ik = N(0, anv, 15(a, b)) (6.22)

€ £

Proof: The hypotheses of Theorem 6.2 can be verified as above for A.(a,b); the result
then follows from Theorem 3.14 and (6.12) .1

DEFINITIONS 6.8: If A(a,b) denotes a symmetric or antisymmetric energy r.v.,

£(Ae(a, b))
D.(a,b) = —X2e\B2)) 6.23
@8 = 5(&.0,00) 29
is the energy distribution function corresponding to Ac(a,b). If the limit
A(a,b
D(a,b) = lim £(Aclo,b) (6.24)

e=0 £(A(0, 00))’
exists, it is the asymptotic energy distribution of the net. If D(0, E) is absolutely continuous,

dE) = =0(0,E)

is the asymptotic energy density of the net.

Theorem 6.7 gives the asymptotics of €(A(a,b)): if A, = A(0, o), then

\/E(Ae _nnlg(n+ 1)t + 0(1)) - Now),

eﬂn+lr(z%ﬂ) e—0

where .
_n(n+1)l¢(n+ 1)z

+1
()
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COROLLARY 6.9: The asymptotic energy density of the Minkowski n + 1-space boson

canonical ensemble is

g (E > 0). (6.26)

dp(E) = (ePE — )nl¢(n + 1) B

We now find the asymptotic fermion distributions corresponding to A..

THEOREM 6.10: Let n(a,b) be the fermion number in the Minkowski space canonical
ensemble. Then

\/E(ns(a, b) ~ (“;”) *"(1)) — N(0, anv{a,b)). (6.27)

[md

Similarly, for fermion energy,

anml ., (a,b) + of1
Ve| A(a,b) - e+ el = N(0, anvf5(a, b)) (6.28)

€ e—0

Hence if A = A(0, 00)

nlng(n + 1)w% (1 — 27") + o(1)
\/E(AE - BRI )E? N(0,v), (6.29)
e (n+ lsln + Jrd(1 —277)
_nin+ Dli¢(n+ 1)rz(1-277
v = st ) . (6.30)

COROLLARY 6.11: The fermion ensemble in Minkowski n + 1-space has asymptotic
energy density
E™ ﬂ""LI

dr(E) = (€E + Dnl¢(n + 1)1 — 2-7)

(6.31)

§6.4 Distributions in Einstein Space

We now consider distributions in two and four dimensional Einstein space, U 2= §1xR
and U4 = 83 X R. In four dimensions the single particle Hamiltonian A, is the square root
of a constant perturbation of the Laplace-Beltrami operator for which the wave equation
satisfies Huygens’ principle.

We first consider Einstein 2-space, with

€=~ (6.32)
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where R is the radius of the spatial portion S. Clearly A, has spectrum (6.20), and the
R — 0o asymptotics follow directly from Theorems 6.6-6.10.
Since the discrete pre-asymptotic operator A, is of more direct interest here, we will

analyze associated distributions more carefully. We define two combinaterial functions.

DEFINITIONS 6.12: [f 0 < a < b < o0, and [ € Z?, then
2 .
Pet= Y. [ @@+ (6.33)
n(-)er(ab)asi<h

where

Pila,b) = {n() € Napj: Z n(i) = l}, (6.34)

a<i<b

and N, 1 is the set of all functions n(-) : ZtNa,b] — ZT. Define qu) (a,b) as the number of
ways of expressing | € Z7T as a sum of integers in the interval [a,b], no single integer being

used more than twice,
We present the following without proof.

THEOREM 6.13: If 0 < a < b < oo and A (a,b) is the boson energy in Einstein 2-space

at inverse temperature 8§ > 0, then A {a,b) is concentrated on

eZT={ej:j€ 27}, (6.35)
and )
2 ~efl
P(Ae(a,b) = el) = PL(@ )™ ez, (6.36)
Kpg
where -
Kp= [[(1—eP9)2 (6.37)
j=1
If A, represents fermion energy, then pgz) is replaced by qu) ,and Kg by
KF = H (1 -+ €~ﬁej)2. (638)
=1

The R — oo limits of the two-dimensional distributions are specializations of the n =1

cases in §6.1.

ProprosiTiON 6.14: As ;1 == R — oo, the asymptotic energy densities of bosons and

fermions in Einstein 2-space are

6EB2 vaﬁ?

dﬁz{E) = (67}3-_—1);(—2’ dF.:(E} = (E'BE + 1)7(2.
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We now consider distributions in Einstein 4-space 3 X R. The Hamiltonian A, acts as

;1% (where 7 is time) on the Hilbert space of solutions of the invariant non- self-interacting

scalar wave equation. It has spectrum o(A.) = {ne : n € N}, ne having multiplicity n?

PROPOSITION 6.15: If 8 > 0 then e~ P4l (Ae) apd ¢=BdlF (A<) are trace class.

Proof: By Proposition 1.4 it suffices to show e™#“¢ is trace class; we have

efe+1

tr e~ PA Z _72e Bel =P~~~ < x.f (6.39)
(o5~ 18
Note that -
Kp = tre Pdlaa) — H (1 — e Ped)
J=1

(6.40)

oo
Kp = tr e Pdlr{4) H 1+eﬂ‘-7

For completeness we derive the exact distribution of energy in terms of the following

integer-valued combinatorial functions.

DEFINITIONS 6.16: f0 < a < b<ooandl € ZT let

2 N+ 5%-1
on )(a, b) = Z ( H (n(])?—Jl ))’ (6.41)
n()eRiap) \a<si< v 7

Rz(a, b) = {n() € N[a,b] : Z n(z) == l},

a<i<b

where

with N, ;) as in Definitions 6.12, and () denoting ¢ choose d. Let q(7 )(a, b) be the number
of ways (without regard to order) of expressing | € Z % as a sum of integers in [a,b], each

integer 7 being used no more than 52 times.

THEOREM 6.17: The Bose energy A(a,b) in Einstein 4-space at inverse temperature
B > 0, is concentrated on €Zt, and

p{ a, b)e=#

i (leZhy (6.42)

P(Ac(a,b) =¢€l) =

.2 .
in the Fermi case pl(7 ) is replaced by q[w), and Kg by Kp.
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We now consider asymptotics of Einstein space distributions. Denote by A’ the e-discrete
operator corresponding to the spectral measure p for which F(E) = ETS. Let N(0,E) be
the cardinality of o(A¢) N (0, E), with the analogous definition for N’(0, E) relative to AL.

LEMMA 6.18: If ¢ > 0 and E > 0, then N.(0, E) < N.:(0,2E).

Proof: We have

Noto28) =[]
while
N(0,E) =]§ 2= % EKE} + 1)(2[%} + 1). (6.43)
T BT o

and equations (6.42-43) imply the result.}i

LEMMA 6.19: Let n(0, E) be the boson number corresponding to A, in Einstein 4-space.
Then

3V (n(0, V) =0 (6.45)
and N.(0,E)
sup |——2—t 1| — 0. 6.46
EZE)/E N(0,E) e=0 (6.4
Proof: We have
#) ]
¢Be65) st 1
V(0 Vo) = ), ———— <V Y ——
=1 (ePe®i)t — 1) i=1 (Be(65)*)?
N (6.47)
< —-—-—-m/ 7 3dz
(ﬁe}z 0
_ 3ePeez
= r ,

from which (6.45) follows. Equation (6.46) is implied by
E3}

(6.48)
6e3

N0.5) = |
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and (6.43).

LeMMA 6.20: If0 < a < b < oo, then

N(a,b) .
N’Es(a,b) c—0 ’

and
SV(nl(E,00)) — 0 (6.49)

€E— 00
uniformly in €.

Proof: The first assertion follows from (6.46). The second follows from the existence of
fixed ¢*, E* > 0 such that

N.(E,E) < zwgz(f.,gl) (e<e,E*<E < E;< o),
and the fact that
3V(nls(E, w)) = 0 (6.50)

uniformly in €. |}

THEOREM 6.21: The boson number in Einstein 4-space satisfies

\/g”(ne(a, b) — '"‘(5)) =, N0,

€3

where
1 [* B
m(e) == ‘2- . de + 0(1) (E — 0) (651)

b 2 _BE
,,ml/ B e
2Ja (ePE — 1)2

»

and

If n, represents fermion number, each “—” is replaced by “+”.
P

Proof: This follows in the Bose case from Lemmas 6.18-20, Theorem 6.1 and its Corol-
lary, and Theorem 3.14.§

THEOREM 6.22: The Einstein 4-space asymptotic boson and fermion number and energy
densities are identical to those in Minkowski 4-space. Precisely, equations (6.14), (6.22), and
(6.27-28) still hold.
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COROLLARY 6.23: The asymptotic energy densities of Bose and Fermi ensembles in

Einstein 4-space are

15E3484
dp,(E) = (5 — 1)

120E334
dry(E) = o

7(ePE + 1)md

§ 6.5 Physical Discussion
The requirements of localization in physical (as well as momentum) space result in the
approximation in §6.2 of the Hamiltonian for massless scalar particles in Minkowski space.
There seems to be no direct way of discretizing dI'(A) without reference to (A.) The r.v.
S a2

n. is interpreted as boson number in an n-dimensional torus of volume V =

2 the expected number per unit volume is asymptotically OE )n ; the same den51ty occurs

for Einstein 4-space (Theorem 6.21). If n = 1 the mean density of photons in the energy
interval [0, b] is asymptotically E X(BE) ! (€ = 0), and thus large (and R-dependent) in Einstein
space and infinite in Minkowski space. Since asymptotic density is independent of b, the

divergence clearly arises from bosons with effectively vanishing energy; this is an effect of

Bose condensation, in which large numbers of particles appear in the lowest energy levels.
The corresponding spatial energy density is, however, finite according to Theorem 6.7, which

gives mean density

E,
Dp=—>2 / ;)
zradr(ef?) 0 ol

This divergent density of low-energy bosons with finite corresponding energy density has
an analog in the “infrared catastrophe” of quantum electrodynamics (see [BD], §17.10), in
which an infinite number of “soft photons” with finite total energy is emitted by an electrical
current. The extreme density is correlated with the lack of normality in photon numbers.
The energy distribution of bosons in a Minkowski n + 1-space canonical ensemble in
(6.25) is the “Planck law” for such a system. An observer of scalar photons measures the
proportion of photon energy in the frequency interval [v, v + A V] to be [, et ) 4B B(E)dE,
with h Planck’s constant. Analogously, (6.31) gives the corresponding law for fermions;
in an ensemble con51<t1ng of neutrinos, the proportion of total neutrino energy observed in
[E, E+AE]is thus [ EtAr dr(E)dE. Note that the Planck laws for Einstein 4-space coincide
asymptotically with those in Minkowski space; this obviously also holds in one dimension.
This indicates that the cosmic background radiation expected in an approximately steady-
state model of the universe is largely independent of the underlying manifold. The specific

correspondences in this chapter are a consequence of the physical identity of Minkowski
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space and the “R — oo limit” of Einstein space of radius R.



CHAPTER 7

THE LEBESGUE INTEGRAL

In this chapter we introduce a natural and useful generalization of the notions in
Chapter 3. Lebesgue integration of r.v.-valued functions on a measure space is the maximal
completion of Riemann integration. The step from Riemann to Lebesgue integration shifts
the focus from the domain to the range of the integrated function; indeed, the ordinary
Lebesgue integral is a Riemann integral of the identity function on the range space with
respect to the domain-induced measure; this viewpoint will be used here.

The present integration theory is in fact interpretable as a formal extension of the theory
of semi-stable stochastic processes (see [La, BDK]), with an abstract measure space replacing
time. The r.v.-valued function X being integrated yields an r.v.-valued measure M defined
by M{A) = integral of X over A; this measure is clearly a generalized stochastic process.
Indeed, in the notation of this chapter, if {X(t)},.p is an collection of independent standard
normal r.v.’s, then f(t,,X'(t)(dt,_)l/2 is simply Brownian motion.

The advantage of the present approach to that of standard integrals of distribution-
valued random functions (e.g., “white noise”) [Che,R1,V] is that it does not require the
existence of a metric (or smooth volume element) on the underlying measure space. Precisely,
the present integration theory would, on a Riemmanian manifold, be equivalent to {linear)

integration of an r.v.-valued distribution with covariance
EXMADX ) = VX1 Xh2) (M €A

(Here, 6 denotes the point mass at Ao, in the variable A1.) However, an abstract measure
space generally has no such object.

A novel aspect of the Lebesgue integral is the use of a non-linear volume element
#(du). This may seem rather ad hoc; but in Chapter 8 the Lebesgue integral is shown
to be isomorphic to a linear integral over functions with range in a space of logarithms of
characteristic functions.

Lebesgue integration is the natural environment for detailed study of integrals of inde-
pendent random variables; however, aside from proof of associated fundamentals which will
comprise most of this and the next chapter, the approach here will be relatively goal and
applications oriented. Further on, the measure space (A, B, 1) will be the spectrum of an
abelian von Neumann algebra of quantum observables.

The material in the next three chapters will be largely independent of previous material,
and the probabilistic content stands on its own. The proofs may be omitted on a first reading.
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§ 7.1 Definitions and Probabilistic Background

We will often deal with normalized integrals (sums) of random variables with infinite
variance; the resulting limits will depend strongly on the tails of the integrated distributions.
We recall the bare essentials of general limit theorems for sums of independent random
variables; see [GK] for details.

In order to formulate the most general central limit results, we define the Lévy-Khinchin
transform of an infinitely divisible distribution. Recall every such distribution v has charae-
teristic function ® = ¥, where v is continuous and vanishes at ¢ = 0. The book of Loéwe

[Lo] has a proof of

THEOREM 7.1: The distribution v is infinitely divisible if and only if ® = e¥, where ¥
is given (uniquely) by

P(t) = iyt + [ ” (e‘“—1~ it )””2010(3), (7.1)

- 1 + 9:2 x2

with v € R and G is a non-negative multiple of a d.f.

The pair (4, G) is the Lévy-Khinchin transform of v. Note this is additive, in that if
v; has transform (7;,G;) (7 = 1,2), then vy * vg has transform (y1 + 72, G1 + Gg). It can
be shown that the transform is continuous from the space of distributions v in the topology
of weak convergence, to the pairs (v, G) in the topology of R1 crossed with the topology of
weak convergence.

Let {Xux}, 1< n < oo, 1<k <k, bea double array of independent random

variables; k,, == oo is allowed.
DerFINITION 7.2: The variables X i are infinitesimal if for every € > 0,

sup P(|Xnk] >€¢) — 0.
1<k<kn nreo

For any monotone functions Gp,(z), G(z) of bounded variation, we write Gn(z)= G(z)

if the same is true of the corresponding measures on R1,

LEMMA 7.3.1: Let {X,} be a sequence of independent r.v.’s. In order that ) oo ; Xy
converge weakly and order-independently, it is necessary and sufficient that

oo Xg ) Xn
Zf(HXz)’ ; f(?x,%) 7.2)

k=1

converge absolutely.
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Proof: By the three series theorem, order-independent convergence above is for any

T > 0 equivalent to absolute convergence of the series

; /sz i) 2,,: /lzlSr wdFa(e) L\; /lz|51 =dF(z), (7.3)

where F,, is the d.f. of X,,. But absolute convergence of (7.3) implies convergence of the
first series in (7.2). Thus proving absolute convergence of the second series reduces to the

2/1: (sz_z)d‘p Z/ileH dFy(z) (7.4)

Convergence of the latter follows from that of the first series in (7.2).
Conversely, if (7.2) converge absolutely, so do the first and third series of (7.3), while
convergence of the middle series follows from a subtraction argument, as in (7.4).1

same for

Henceforth, F,,i(z) will denote the (cumulative) distribution function of X, and all
infinite sums must converge order-independently to be well defined. Assume that {Xnk}k 1
form an infinitesimal array. The proof of the following theorem for k, finite is in [Lo]; we
extend it to general k,.

THEOREM 7.3: Let S, = 3, Xnk. In order that S, converge weakly to a distribution

S, it is necessary and sufficient that
GG, . (7.5)

Here,

kn oo kn x 2
Y ol Y ¥l
n = Gn +/ n Gulz) = / ———dF (), 7.6
g :§1 Al By k() (=) gx:l e Tie? ) (7.6)

and

o= [ yaPls) Fosle) = Fula+ an),
jyl<r

with 7 > 0 any fixed constant. The pair (v, G) is the Lévy-Khinchin transform of S.

Proof: This follows using apprommatlon by finite sums. For example, if S, converge
weakly to 8, the same is true of S}, Ek 1Xnk, where k}, is finite but suﬁicmntly large;
using the result for S and letting k;, become infinite proves (7.5). The only difficulty lies
in proving the sum defining S,, converges (order-independently) if and only if (7.6) does.
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To this end, note that if S, exists, the three series theorem implies 3 4o ;|an| con-

verges. Letting x(y) = TH

; / x(v) dFuily) = Z f Y = ank)dFak(y)

(7.7)
=3, /_ (X(¥) = ankx/(¥nk))dFni(9)
k=177

where y — anr < ynr < y is determined according to the mean value theorem. By
infinitesimality of the Xy, this sum converges if and only if ) o2 4 fjoco x{(y)dFx(y) con-
verges. This (again three series) occurs if and only if 35 ; 7, x(y)dFnk(y) converges for
some 7 > 0. The latter follows from the Lemma. The existence of the limit G(z) follows
similarly.

Conversely, assume the limits (7.6) exist. Then the sum

Z @k + [ ydFax(y

converges for any r > 0, since y — x{y) is dominated by -ﬁ—ig for |y| < 7. Therefore we
have convergence of

o0

T+ank oo
Z Apk +/ rta (y— a'nk) ank(y) == Z Qnk + Z nkP ank - ank, > T)
nlk

k=1 k=1

. Z (‘/‘r-{-a,‘k_‘/;:r-i-a;k)ydpnk(y)

Using infinitesimality of a,s and finiteness of ), P(|X x| > C) for C > 0 (the latter follows
from convergence of the second sum in (7.6)), the last two sums converge. Therefore ), @qx
is convergent, asis ), ff:o X dF k. Using (7.7) and the infinitesimality of {an}, we conclude
that ), ffw X dF i converges (absolutely) as well. Similarly, Y, ffooo T}%ngnk < o0.
Thus, by Lemma 7.2.1, §, exists and is order-independent.j

(7.8)

Henceforth let
z; |z| <1 T z?
x*(z) == { - x(z) = , 0(x) = . (7.9)
=Wz 1 a2 122

COROLLARY 7.3.1: In order that S,, converge weakly, it is necessary and sufficient that

kn
7 = lim Z bok, G(z)= w-lim L/ y)dF i (y
k=

n—00
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exist, where
bnk == [- X*(y)dpnk(y)} i?nk(y) = Fnk(y + bnk) (7.10)

The weak limit S has Lévy-Khinchin transform (v, G(u)), where

v = lim Z bnk + /°° X(¥)dFni(y)-

n—oo
=1

Proof: If S, converges weakly, then Go(z) = 3, [ 0(y)dF iy ) = G(z) for some
multiple G* of a d.f. If £7 are continuity points of G*, then

> = [

y?

a(y) (7.11)

converges as n — co. Similarly, 3, ftvi>f dF .1 (y) converges; and

3
y —
dF, Yy =/ deny
zk:/IuISfl‘i'yz o) lyl<r )

converges as well, as does y_, f]yj)'r ifggdﬁnk(y). Thus, by convergence of 7, in (7.6) and
the identity z — 2

+, we have convergence of

X —— x
1+22 7 14z
kn
-_>- (ank +/ denk(y))’
<t

k=1
with a, as in the Theorem. We conclude the convergence of
T—8nk kn

I;i":lank + /_ ydF o (y) = Z (aﬂk + /;y}sf(y - Qpnk) ank(y))

T—Cuk k=1

kn
= Z (ank + ank/ ank);
k=1 lylzr

(7.12) -

the sum Z nk / | dF, ;. clearly converges to 0 as n — oo by infinitesimality of the a,,
>T

and hence Z:';: 10nk converges to a limit as n — co.
On the other hand, since for z < 0, 3 F.x(z) converges weakly (eq. (7.11)),

/-Tma"k (z + ank) (Z Frilz ) = Z[.: X (e)dbn

O



71

converges, so that the sum defining 4’ converges (the sum Z / x"“dF, converges by
T

similar arguments). Let ¢t = bpk — @ni, and consider

T—Cnk
Z/ anky+bnk Z/ y+an)ank()

(7.13)
T=Cnk . U—Cnk N
= Z ( / 0(y) dF nx + / cr 0'(y) ank),
% -0 —o0
where ¢}, is between 0 and c¢,,. Without loss of generality, we let 7 < 1; then
Z |cnk| = Z |b'n.k - ankl = Z / X*(y) ank(y)} (714)
k k k |z|=7

remains bounded as n — oo, as does ¥ |c5.|. We have [~ |¢/(y)|dFnx — O uniformly in

k, so that the last term on the right of (7.13) vanishes as n — oo, and
Z / ¥)dFni(y) = C*(u) = G(u). (7.15)

Conversely, if the series for 4/ and G(u) converge absolutely in k and as n — oo, then

it follows along similar lines that E:":lflul>1 X" (y)dFnk(y) converges as n — oo, for any
kn

7 > 0. Thus, since Zx‘ank converges as n — 00, Liank converges as well. Using
k=1

by now standard arguments, it follows that ), ffooo X(y)dF ni(y) converges as n — oo,

as does E(ank + [ x(y)dF ni(y)). Similarly, if z is a continuity point of G(z), then

Yk S 0(¥)dF nk(y) — ().

We now prove the last statement of the Corollary. We have

lim Z[a""+/ xank}
lim Z{ank.if./ (X ex )odﬁ‘nkq./ X*d—F—nk],

since the measures 3, 8dF . and 3, 0dF,; have the same weak limit (see (7.15)). By the
mean value theorem,

oo 00 o0
Y, / X'dFpe =" / X" dF i — bok / X'(y = bk (y))dFnk
PR kT i

(7.16)

(7.17)

- 00

- bt |10 boa0)eF) )
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Since Y, f°°( "(y — b},1.))dF i is uniformly bounded (since
Dok f'y|>1ank 1s), and bnk — 0 uniformly, (7.17) vanishes as n — oo. Similarly, if 7 is a

continuity point of G and
lz| <7

P . Z; —
X (x)—{ﬂ; lz| >,

then Z / x**dFpx — 0 uniformly. Thus (7.16) is given by
k -—o0

o0

lim Z{a"" +/ (X" ~x"")dF nk +[ Xd}’ﬂnk}
n—soo & —o0 —00
o0 - o -
= li n +/ Y- x")dF, +/ an:'
im Z[a k (x" —x"") dFnk Xk

n—oo —o00

k

= lim Zl:ank-f- /I LiF. + / xankJ (7.18)
k

n-—+oo yi>r Y

= lim ank—{—/ xdF,,k,

n— oo

the last equality following from

Z/ —dF / ldﬁ‘nk-»o.
lyf>r Y ly-Honkl>7 Y 00

Equation (7.18), together with (7.15), completes the proof.}

§ 7.2 Definition of the Lebesgue Integral

Since we will study integrals of measure-valued functions, we consider metrics on spaces
of probability distributions. Let D be the set of probability Borel measures on RY, and D*
the set of finite Borel measures. Define the Lévy metric p* by

prvi,ve) =inf{h: Filz —h)— h < Fo(z) < Fy(z + h) + b},  (vy,v2€D%), (7.19)

where F; is the d.f. of v;. The Lévy metric is compatible with the topology of convergence
in distribution on D (see, e.g., [GK]). Note that p* can be defined for any pair vq,vg of
Borel measures on R. This general definition will be used here.

We will also require a stronger metric which emphasizes tail properties of measures. Let
é: RT—=R T be defined for small arguments, and nonvanishing. Define (recall (7.9))

G, s(z) = (—15/_ m 0(y) du(ﬁ-’&-}»)_ (7.20)
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We define

1 o0
pos(v1,v2) = p"(Gu, 5, Guy g) + g(/_w x(y)d(v1- Vz)(ié—)).-
The measure v(az) is defined by
v(az)(C) = v(aC),

for C a Borel set in R. Since the integrand of (7.20) vanishes only at z = 0, it follows that
for fixed 6, p¥ and pg 5 are equivalent. We introduce the strengthened metric
po(vive) = sup pgs(v1,v2). (7.21)
o<k 1
This will be useful for our integration theory, in which tail behavior of probability distribu-
tions will be crucial. Note that infinite distances under p, are not excluded; this is clearly
an inconsequential deviation from the standard properties of a metric. We will now require
a proposition. We define for f: R - R, ¢ > 0,
(ipOn)e) = sop [LEHEASEZ0)
0<s<e é

If v is a measure on R, then |v| is the total mass of v.

PROPOSITION 7.4: Let 8: R — R be absolutely continuous and of bounded variation,
and v4,vs be finite Borel measures on R. Let € = p¥*(v1,v3), and assume that ||8]|co, [|8']115
and |Jlip®)|8|(z)||1 are finite, where B denotes the derivative. Then

[ dter=va) < 18l + 210+ 25 o)

Proof: If v;(z) = [*_ dvi(z') (allowing a slight abuse of notation), then

‘/ B d(v1 - vo)

< 8te)in -3 (% +] 01— vale) dsta)

Sl + [ alet 4 e (ool =9 =) [d8(e)
< Bl + 21810+ [ (vl 40— ok~ QB do
= I8l + 20810+ [ vole)5e -1~ 18 + ) e

= I8l 2800 + [ _vale) éncle)



74

where .
ne)= [ 00—~ 18+ A
and
()| < el ip®p (@)l
Thus

[ sitvs=va)] < gl + 20810+ neva |~ [ ncivn

< e(11Blleo + 21812 + 211 1ip© B() 1)),

as desired.j

Remark: If X is any funetion for which f(z) == X(xfz(;"}(i) satisfies the hypotheses of
Proposition 7.4, then a metric equivalent to p, obtains by replacing ¥ by x in the definition.

To see this, note that by Proposition 7.4

E/_w(x Xdlor )% ) _I /- fﬁdiq—ifz)( ¢)}<F<p¢(ul,vz)>

where [ = XX, X and F is a continuous increasing function vanishing at 0.

Let (A, B, 1) be a o-finite measure space, and X: A—D be measurable, in that X ~}0) €
B for every pg-open O C D. Let R(X) be the range, and Rees(X) = {v € R(X) :
(X "YB(v))) > 0 Ve > 0}, where B, is a pg-ball of radius e. Note for future reference
that Ress(X) gives the full picture with regard to integration theory, since

BN X(O\) € Ress (X))} = 0. (7.22)

For otherwise, there would exist an uncountable number of open balls {Bp},,¢c ), in D, with

pX YBn)=0, 0< uX”l(U Bm) < oo

(recall A is o-finite). Such a situation is equivalent (by collapsing each B; ) to a discrete
non-atomic measure space of positive finite total measure, which does not exist.

By analogy with the Lebesgue integral, we initially assume u is finite and X is pg-
bounded, i.e., the diameter of its range is bounded. Let {P,}>. ; be a sequence of at most
countable partitions of Ress (X), each with elements {P,;}, U; Poi = Ress (X). For § C D,
let diam S = sup{p(v1,v2): v; € S}. We assume

(¢) M(P,) = sup(diam P,;) — 0
i

a0

(77) m(Py) = sx:p u(Pai) — 0.

[s Samgle o]
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Hence the mesh of P, vanishes both in diameter (i) and measure (iz). For the purposes of
this definition, as in Chapter 3, atoms p of p may be artificially divided into pieces p; and
apportioned to various Py, as long as ) u(p;) = u(p).

DEFINITION 7.5: A partition net satisfying (z) and (i7) is infinitesimal.

Let ¢(8) be defined for small positive §, and vanish at 0. We say that

o=+ 0

o XO)0) = tim 3 X (hui )X (Pu)

exists if the right side is independent of choice of \a; € Pa; and of {P,}i--; satisfying (1)
and (#). This is the finite Lebesgue integral of X with respect to ¢.

Remark: The finite Lebesgue integral does not depend on whether the partitions Py
are over the range R(X) or the essential range Regs(X).

By our assumption of o-finiteness of A, Ress(X) is separable. For if it were not, there
would exist an uncountable disjoint collection {B,} of balls in D, with u(X ~YB.)) > 0,
contradicting the o-finiteness of p.

For the case of a general o-finite measure y and measurable function X: A—D, we
disjointly partition Ress == UUp,cpPi ; we assume p*(P;), diam P; < oo, where p* =
X~ 1 The partition is always assumed at most countable, which is possible since Regs (X)
is separable and o-finite. The general Lebesgue integral

[ X0 = [ veta ) = > / I Y

is defined using finite integrals on the right, and exists if the sum on the right is independent
of the partition P. The above independence condition, which may seem difficult to test, is
natural; see Theorem 8.4,
We must verify that the general Lebesgue integral coincides with the finite one if R(X)
- is finite, bounded and separable. To this end, we require

PROPOSITION 7.6: If D; C D and the finite Lebesgue integral 1 [ p, v9(du”) exists, and
if Dy C D1 has positive Borel measure, then [ 0, Vo(du™) exists.

PROPOSITION 7.7: If the finite integral , fDl vé(du*) exists and P, is a partition of Dy,

o / vé(du* (v Z / é(du*(v)), (7.24)

order independently, where Y, vy = vy *vo*....
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Proof of Proposition 7.6: We will require the fact that the finite Lebesgue integral is
always infinitely divisible {this follows from the definition and a stronger result is provedin
Theorem 7.9). Hence the characteristic function ®(t) of Y = [ p, ¥ ¢(dp*) does not vanish.

Let P be an infinitesimal sequence of partitions of Dy, and P 4 sequence for Dy ~ Da.
Let X2 e P x® ¢ p® ana

at ! at *

-

xi=Yx%6:%) (=12,

1

¥rx S ) is unbounded (i.e., has a subsequence converging in law to a measure strictly less than
1as a— oo)for j =1 or 2, then Y cannot exist. Thus, there is a subsequence of {X Q)}
which converges in law to some probability distribution, and without loss of generality we
reindex X 9) so that X 53} = X (1), where X1 has ch.f. (1), Thus,

Q=00

X&l) *Xff):}Y;

hence

XM x® oy

or in terms of characteristic functions,

oM 1)o@ (1) — wu(t). (7.25)
=t OO
Since ®(t) 5% 0, this shows that 39 (t) converges, as does X% inlaw. By (7.25), w— lim X

@

is independent of the choice P&’, proving Proposition 7.6.1.

Sketch of proof of Proposition 7.7: Note that terms on the right in (7.24) can be well
approximated by “Lebesgue sums” ) Xoiid(phi;), where {Xo;} are elements of a sub-
partition of P,. Since the approximants can be made to converge order independently to
the left side, so can their limits [ v ¢(du*(v)). K-

In this chapter an assortment of distributions will obtain as Lebesgue integrals, as no
prior constraints are placed on existence of the mean and variance of the integrand.
The Lebesgue integral is clearly linear, i.e.,

L/(X1+X2)¢(d#*)= L/Xlé(d#*)+ L/X2¢(d}t'),

if X1 and X9 are independent for each X € A. It is also additive, i.e., the integral over a
union Ey U E5 of disjoint sets is the sum (i.e., convolution, in the distribution picture) of
the integrals over £ and Eq.
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Henceforth, all integrals of real-valued functions will be Lebesgue integrals. Clearly,
our integral reduces to standard Lebesgue integration when ¢ is the identity, and X(\) is a

point mass for A € A.

THEOREM 7.8: Let X(\) have 0 mean a.e. [u], withv = [, £(X%)dp and [, |€(X3)|dp
finite. Then the Lebesgue integral of X exists, and

[ XON@O)E = No,0)

Proof: Let {P,} and {\,;} be as above, and let Xoi = X(Nai), fai = pX " Pai). We
invoke Theorem 3.8, and note that

2 _ X €K o
02 (E f(Xaz).“'m)% a=

since the denominator approaches the integral ([ &(X 2{)\))(1!;:()\))%, while the numerator

vanishes, given that sup; a; — 0. This shows
X OO0

ZXai/‘ii = N(0,v).1
< a—>o0

§ 7.3 Basic Properties

DErFINITION 7.9: A probability distribution v is stable if to every ag, a2 > 0, by, bg,
there correspond constants @ > 0 and b such that

F(ajz + b1) x F(agz + bg) = Flaz +b),
where F is the d.f. of v. I b1, b9, b can be chosen to be 0, then v is a scaling stable.

Stable distributions, which are intimately connected to the Lebesgue integral, can be
characterized by

THEOREM 7.10 (Khinchin and Lévy, [KL]): In order that v be stable, it is necessary
and suflicient that its characteristic function & satisfy

o0 = 108() = vt — e {1 + 8.1 uli )}, (7.20)
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wherey€R, -1 <8<1, 0<n<2, ¢2>0, and

tanZn if n#£1
tyn) = 2 .
w(t,m) {%lnlﬂ ifnp=1

COROLLARY 7.10.1: In order that v be scaling stable, it is necessary and sufficient that
the logarithm of its characteristic function have the form

4

i (7.27)

P(t) = —c)t|" + icaft|”
wherec; > 0, 0< 7 <2, and |eg] < clltanﬁznl; if n = 1,c5 € R is arbitrary.

Proof: The scaling stability condition is %(t) + 9(%) = ¥(%). Sufficiency is clear, so
we prove only necessity. If v is stable, ¢(t) is given by eq. (7.26). We assume momentarily
that 7 1. Using (7.26), we have

1 1 1 1 t T
vt — + — | —c|t|"l 5 + = N1+ i8—tan—qp =
& (al ¥ 62) “l (a’i * 2){ BT 3‘“2”}

.1 af 1 b ™

We conclude that (i) v = 0 or (it} ¢ = 0. In either case, the function ¢ fits the form (7.26).
If 5 = 1, a similar argument shows 8 = 0, completing the proof.}i

The proof of the following lemma uses arguments similar to those in Theorem 7.3 and
its Corollary, and is omitted.

LEMMA 7.11.1: Let {X;}; be independent r.v.’s, and ). X, converge order indepen-
dently. Let {a,;} be an infinitesimal array of real numbers (i.e., a,; — 0, uniformly in 1).
n—>00

Then };a,:X; = 0.

n—oo

We have the following characterization of Lebesgue integrals.

THEOREM 7.11: In order that v be the distribution of a Lebesgue integral of an r.v.-

valued function, it is necessary and sufficient that v be scaling stable.
Proof: Assume Y = 1, [ X(\)¢(du(\)) # 0. It is easy to see that then ¢(6)6—+00. Let
D1 be the essential range of X and p* the induced measure on D;. Since scaling stability is

preserved under sums, there is no loss in assuming Dp is py-bounded and finite in measure.
Let 0 = rg < 7y < ro < ... be a sequence of positive numbers. Let Pfk be a partition of Dy
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into an at most countable collection of sets of measure smaller than €™, with py-diameter

€ Pk
fa:.? Te?
there is at most one element P¥; € P* with Pfs; C Pfk- and p*(PF, ) # e (note j1

changes with r and j). For simplicity, we assume such an element exists for all r > ry;

less than 1 g Forr > ry, let Pk be a sub-partition of Pk such that given any P*

its measure may be 0. Recall that singletons v € P,, can be sub-divided (along with their
measures), for purposes of partitioning; if this were only allowed for singletons of positive
measure, the following arguments would be somewhat more technical. Fix j as above, and let

P¥ be constructed in such a way that (ﬂ rn) ﬂP,u is non-empty, containing

reSr<regr

a fixed element, denoted by X,m, for each j. For r > i, choose X'fﬂ == Xfm ’,‘Jl,
where X¥ ;, is as above.
For each Pf; € P¥ with u(P¥;) = €™, choose X*; € P¥.. For r > ry, let P¥* =
{P E P, : p*(PE;) 5% €77}, and consider
st = YD Xhe(w(P) (7.26)
P, €Pk

which is order-independent by definition of the Lebesgue integral. Given rg,...,r%, we note
that since p*(P,;) < €77, r41can be made sufficiently large that for r > ry;, S** is
arbitrarily small (i.e., close to the unit mass at 0). This follows by Lemma 7.11.1, and from
the fact that at most are representative of each of the sets {Pfk J-}J. appears in the sum (7.28).
We thus successively select rg,r1,. .. so that pX(Sk*, 60)k:°°0, uniformly in r € [rg41, 00).

We now choose our final partitions. Let
P.=P}, X,,=Xk, P;=PF, S =5* (r € [rk+1,Tir2))

By the above,
§7 = 0.

00

Thus,
S= 3 Xgele™) = ¥ = o [ X060 (7.29)

P,; &Py
{2)

+ » and

However, each element of P, ~ P; may be divided exactly in half, P,; = P(l} UP
we may choose independent copies X g-), X 523) of X,;, to be contained in P?) and P?} ;
respectively. Then

= (5)r T x5 A 2

P, ;¢P; P gP,;

Thus 1(2) = ]mq;((Z:)) exists, and Y*2 = Y Y = [(2)Y in distribution. Similarly, for
n €N, Y = I(n)Y for some (n) € R. Thus Y is infinitely divisible; if 4 is the logarithm
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of its ch.f. then
np(t) = P(l(n)t) (n=1,2,...). (7.30a)

Thus,
~plt) = 1/,(?(%;?), (7.308)

and Zo(t) = g&(%t). We define [(Z) = Il‘((?:”)) IfX>0,let ¢, = X\, g €Q, the rationals.
Then

M(t) = lim g9p(t) = lim ¥(l(g:)t).

100 700

This holds for all t € R. Thus if ¥ is not identically 0, lim I{g;) = {(X\) exists, [ is continuous,
and M(t) = P(I(\)t) (A € RT). Letting g; — 0, we have {(0) = 0. Thus, if r > 0, ;g:: =r

for some Ay, A2 > 0. Thus, if a1,ag > 0, then letting r == %, there exists ¢ > 0 such that
¥(a1t) + ¥lazt) = p(cl(M1)t) + B{ci(M2)t)
= O\ + Maole) (7.31)

= p(I(\1 + Ag)et),

so that Y is scaling stable.

Conversely, assume Y is a scaling stable r.v. Let (7.27) be its log ch.f. and A = {Y}
be a singleton space with measure one. For each o € N, let {Y,;}, be independent copies of
Y in A which are assigned measure p;q, and let ¢(A) = \". Then S, = E,’Yai(#ai)% has

ch.f.
%(t) = Z —C3

n
|t

1
Bigt

n .
+ 1¢9

AL
Bit

= (‘Z #ia)(”cﬂt}" + iczlt}”l-;»l), (7.32)

— —ealt" + iczltﬁ"‘%,

so that the distribution of S, is independent of @. Letting Y also denote the identity function
on A, this shows that [ AYé(du) = lim S, =Y in distribution.§
L2 Samgde o]

We now show that the scaling function ¢ must be very restricted for a (non-trivial)
Lebesgue integral to exist. To properly motivate this, we make some observations about
so-called semi-stable stochastic processes [Laj. A stochastic process X, on R is semi-stable
if for every a > 0, X4 2 b{a)X; + ca) with b,c € R, and =~ denoting isomorphism. We
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assume X; is continuous, i.e., that
&imOP(lXHﬁ - Xi| > €)=0,
and that X, is proper, i.e. non-degenerate for all {. We then have

THEOREM 7.12 [La): If X; is semi-stable, proper, and continuous in the above sense,
and if X, has independent increments, then

b(a) = a®,
for some o 2> 0.

With the proper interpretation, this may be viewed as a special case of the next theorem.
The identification depends on the fact that any semi-stable, stationary 0-mean stochastic

process Y; with independent increments can be written

t
vo= [ x() éa),
where X is a measurable r.v.-valued function and ¢: Rt - R ™.

THEOREM 7.13: IfY = LfAXd)(dy) exists and is non-zero, then there exists ;,1 >0

such that %(61)6606 for some ¢ > 0. Specifically, n is given by (7.27), where 9 is the log ch.f.
Y § s

of Y. ‘

Proof: Note that convergence of Y implies gé(é}s—*oﬂ. Let Dy = Ress{X). Since ¥ ==

Jo, v#(du*) exists (u* = pX 1), it does also (and is non-zero) on some bounded, finite
sub-domain of D;. Thus assume without loss that Dy is pg-bounded and p*-finite. Let S, be
constructed as in (7.29). Let each P,; contributing to S, be subdivided into n equal pieces,
each containing X,; (again, arguments become technical if formal subdivision of X,; is not
allowed). This subdivision gives

Z er¢(e;r) = Z er¢(e-—r) ZE:2,3 rf;y? (7'33)

P, ;¢Py P igpP:

so that, letting r — oo,
y=XY"
{(n)

in distribution, where [(n) = lim ¢nd) By (7.27), therefore, I(n) = no. Thus, ¢(2) ~ en”m
#() n

for some ¢ > 0.



82

We now assume ¢(6) is not asymptotic to 06”7, for a contradiction. Assume without loss
1 )
that for some sequence é, — 0, ¢(6,) > (c+¢€)é7, for € > 0. Let 8, = e™*». Then by the
proof of Theorem 7.11,

Y X, = Y. (7.34)

n—+od
. .
P’n? épzﬂ

We assume without loss that the numbers r,, {see proof of Theorem 7.11) have the property
that €™ is integral.

Let 35, be defined by e*» = [e*»], where |:] denotes greatest integer. By readjustment
of {r,} in the proof of Theorem 7.11, we assume without loss that s, and &, lie in a single
interval [ri,741). Furthermore, we can choose P, such that {X,;: X,; appears in S,} D
{Xs,;: X5,; appears in S5, } for 5, < s < 5,44. If X, = {X,;: X,; appears in S, for
some 5, < s < 5,41, but not in S5, } (we treat all distinct elements of X, as independent),
then

=Y X¢(e) = 0. (7.35)
XeXn
Since the argument for this is similar to one for S7, in the proof of the last theorem, we omit
it.
It follows from (7.34) and (7.35) that

$e™") Y X5y = Y.

PniP5, e
This provides the contradiction, since
ey Y X5, = Y, (7.36)
'nJeP" nmee

and by assumption % fails. to converge to 1 as n — o0.§.
It follows from Theorem 7.13 and Corollary 7.3.1 that the set of admissible functions ¢
(i.e., measurable functions yielding non-trivial integrals) fall into equivalence classes with

Py ~ g if Z‘—E&g — ¢ for some constant ¢. Furthermore, each class has exactly one

homogeneous representative #(6) = & 7. Thus the classes of ¢ are indexed by the positive

reals.



CHAPTER 8

INTEGRABILITY CRITERIA AND SOME APPLICATIONS

In the first half of this chapter, we introduce an important integrability criterion for
random variable-valued functions (Theorem 1). We then compare the Lebesgue with the
Riemann integral, and finally give applications to the calculation of asymptotic joint dis-
tributions of commuting observables.

A central result shows the non-linear Lebesgue integral of Chapter 7 to be continuously
imbeddable into a standard Lebesgue integral I* over the space M” of measures on the
Borel sets of D, the space of probability distributions. Let C be the space of logarithms of
ch.f.’s (log ch.f.’s) of infinitely divisible distributions. Let J : D — C be the partially defined

function Jv = }ina (e —1)dvs, where vs = %”(ﬁa‘))‘ Let 4 be a measure on the Borel

sets of D, and I* : M™ -+ C denote the integration operator

I'p:/]udu(u).
Finally, let 7 denote the operation taking a ch.f. to its probability distribution, and E :

€ — D be given by E¢ = F(e¥).
Theorem 8.5 states that if I, : M* — D denotes the Lebesgue integral

Lip = L/DV¢(d# )

then the diagram

I E
¢

commutes. Specifically, the Lebesgue integral of a r.v.-valued function X : A — D is

L/I;Xd)(d/t) = ?(exp/AIim %(E(eix(x)w@)) - 1)@&)).

§—0



84

§8.1 The Criterion

The metric ps (eq. (7.21)) on the space D of probability laws will be used throughout
this chapter. Let X : A — D; C D be measurable from a space (A, 4, p) and p* = pX 1.
For measures v;, let 3, vi=vy*vg*...;as usual, let Y,y = vy +1p+... .

We say D; is ¢-separable if it is py-separable. Note that ¢-Lebesgue integrability is
senseless if D; or some subset containing the essential part of the range is not ¢-separable,
since required partitions P, cannot be countable. A function X : A — D is bounded if
its range has finite py-diameter. We now show that, in complete analogy to the real-valued
case, if p is finite and X : A — [y is bounded and measurable, then it is Lebesgue integrable.

We require

LEMMA 8.1.1:
(a) Let 115, vo; be two countable families of finite Borel measures on R. Then

PL(E a;Vi4, E ain") < max (Z aiPL(Vliy V2i): sup PL(VI:': Vzi)) (8-1)
i i i :

(b) Similarly, if (D, A, u*) is a measure space and F,(z), G, (z) are d.f.’s, then

[ B, [ Gule)du'))

< max [ $102, Guld ) s0p 9 ).

Proof of (a): Set €; = p“(vy4,v2;), and let € be the right side of (8.1). Letting F,; be
the corresponding distribution functions,

Z(a;Fn{z —g)—e< Z ai(Fe(z — &) — &) < Z a;Fpi{z)
<D aFuz+ &) +e&)
< Z(aiFl,-(z + 6)) +e.B

For a function X from a measure space A to a topological space D recall that v € D is
in the essential range Ress(X) if uX ~}IN) > 0 for every neighborhood N of v.
Recall also

2 z z;
oe)= 2, Xa)= co={3 130 5.2)
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THEOREM 8.1: Let (A, B,u) be finite, and X : A — D, be bounded and pg-Borel
measurable. Then Y = 1 [, X(\)¢(du(X)) exists if and only if

x 2 oo

G(v;z) = w-lim dus(y), v, = lim

dv, 8.3
§-0J-0 1+ y2 §—+0J/-00 1 + 'yz 5{9) ( )

exist for every v in the essential range of X, where vs = 511/(-‘;%'}). Furthermore, the pair

N = / xp(A), G(z)= / G(X;z)dp(N).

is the Lévy-Khinchin transform of Y.

Proof: Assume ~(v) and G(v) exist for v € supp p* where p* = pX 1. Let {Pa}2 1 be
an infinitesimal sequence of partitions of D; = Ress (X). For vak € Py, we first verify that
the distributions Z@l_)uak(E@Lj) form an infinitesimal sequence. To this end, we need

1 I
56 ‘b(&))ar—ﬁ 8o uniformly in v € Re{X). Suppose this is false. Then there

exists € > 0 such that for every N > 0, there is a v € Regs (X)) such that v{—o0,—N) +
v(N, 00) > €. This contradicts the boundedness (i.e., finite diameter) of Ress (X)), since then

to show

sup% f (y)dv( py 5)) can be made arbitrarily large for v € Ress (X'). Thus the sequence
5 f—

is infinitesimal.
According to Corollary 7.3.1, it now suffices to show

Zbak+/ xduak(y;bﬁ) Sy (8.4a)
ak Joa—oo

Z / ’ duak(y * b"’“) = Gla), (8.4b)

where ¢ak = ¢(l‘ak)y and

baie = [ Z x*(y)dvak(gi—k). (8.5)

First consider (8.4b). Note that

S ta(8) =L o)

T+bak y
—ba/ 6'(y + b2,) dva (-—- )
k —o00 (y k) k ¢(ﬂak)
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where [b%;| < |bak|- In addition, ;%;bak is bounded uniformly in @ and k (for a sufficiently

large) for all non-vanishing p., since the support of u* is bounded and replacing x in the
metric py by x* gives an equivalent one (see the remark after Prop. 7.4.). The second term

in the sum on the right of (8.8) converges to 0 uniformly in = and & since {V“k(m)}
“ k

are infinitesimal, so that

(Z / 9du¢,k(g+b"") ) / 3duak( ak)))a:we. (8.7)

&
Let Gs(v; ) = z)dv( %) be the df. of 6dvs. Then

pL(/Dx Cly; z)d#*(V):;/‘;()d"“k(@))

< pL(Zk: /P Gl z)du'(u),; /P . G(Vak;z)d#'('/)) (8.8)

+ PL(Z ,U'akG(Vak; :C), Z f‘akGuat(VaH z))
k k

To show (8.8) vanishes as & — oo, we note the first term on the right vanishes by Lemma
8.1.1, if
p*(G(v; 2), G(Vak,z)) — O

ax—ro0
for v € Py, uniformly in v and k; the latter follows from the metric infinitesimality of the
partition P,, and the equivalence of p¥ and py s Tor fixed 6§ > 0.
The second term on the right requires some care, however. For €,6 > 0,let Es = {v €
D1: p%(Gs,(v), G(v)) < € for 61 < 6}; note we have suppressed z. Let Eg5 = {v € Dy :
ps(v, Ecs) < B} be the f-neighborhood of Ecs. Let v € Eesig and 61 < 6. If v/ € E5, and
ps(V',v) < 28, we have

pH(Gs, (v), G(v)) < p"(Gs,(v), Go, (V) + *(Gs, ('), G(V')) + PH(C(V), G(v))
<28+e+28 (8.9)
=€+ 48;

we have used the definition (7.21) of pg(v1, vg) in terms of p*(Gs(v1), Gs(va)). Thus
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Given @ € N, let € = &1, 8 == 2supy poky B = 2sup, diam(Pqk). By the Lemma ( ~
denotes complement)

pL(Z ll'akG(Vak); Z ”O(kGIJak (Vak))
k k

= PL(Z 1" (Pax N Ees)G(va), Zﬂ*(Pak n Eeé)G#u(Vak)) (8.11)
k k

+p (ZN ak ﬂEee. Valc Z# ak ﬂEe& nak(’/ak)))'

If Po N Ecs 7# ¢, then Pog C E(14p)s by (8.10), since diam(Por) < §. Hence vox €
E(c14p)s) and supg.p, ., %4} PHC(Waic) Gune(Vak)) < €+ 4,30‘::000, so that the first
term on the right of (8.11) vanishes as @ — oo, by Lemma 8.1.1. The second term, on the
other hand, is bounded by /1’(£~'7e5)sup5l <1pep, G, (v, 00). For v1,v9€ Dy,

Gs(vy,00) — Gs(va, 00) < diam(Dg) < oo,

sothat sup Gg (v, 00} < oco. Since p‘(Esé) —+ 0, this term vanishes as @ — o0, so that
s <1peD ]

(8.8) vanishes as & — oo. Together with (8.7) this proves (8.4b) (recall [, G(X, z)dp(\) =
JRess () G ¥, 2)dp* (v)).

We now prove (8.4a). By the mean value theorem,

Zbak+/ xdvak(x:;&“k)

ak
= z °° T
-3 [ X duak(g;;) Y bak( / =X+ b,,k))du,,k( bak)),
for some |b}| < |ba|. By the arguments for (8.6), the last term vanishes as a -+ oo, and we

are left with proving
* z
Z X War\ 7— | =
PR ¢ak

which also follows along the same lines as the first part of the proof.
We now prove the inverse of the above, namely, that (8.4) is necessary for convergence.
Suppose first that for some v € supp p*, G(v) fails to exist. Define € > 0 by

€

w0y }‘.'.“06 P H(Gs,(v), Gs, (v)- (8.12)
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Let N = {v/ € D1 : py(v,v') < §}. We show that 1, [ vé(du") fails to exist, and hence
(see Proposition 7.6) the integral over Dy fails to exist. To this end, we may assume that
N = Dj. Let P, be an infinitesimal sequence of partitions of D;. In the following, we may
assume the partitions are even (fai = pqj) Without loss, by the arguments of Theorem 7.11
(i.e., the total measure of those elements P,; for which p"(P,;) does not equal the common
value can be made arbitrarily small). Then (letting &, be the common value of gak)

(Zﬂakgpﬂ(%k),u (P1)Gs.( )”’P (25 Gs,(Vak), 25 Gs.( V))

< max Z 6a0%(Gs_(Var), Gs, (V)), sup p*(Cs, (Var), Gs.(v)) (8.13)
k

k

€ € €
< (_ . _) =
> max 4” (D1)74 3’
assuming (without loss) that p*(D;) < 1.
Again without loss of generality, we may assume by (8.12) that the sequence 6, is such
that

p'(D1) lim  sup p%(Gs,, (), Gs,, (V) = ¢ (8.14)

A0 o)y >

Hence by (8.13),

. €
lim sup p (Z#mkc#a,x Val Z”aszMugk(Vazk)) 2 9’ (8‘15)

=P ) ay>a

so that Zu(,kGh,‘(uak) fails to converge, and by (8.6), so does ZpakG#ak(uak(z + bak))-
k k
(The last term in (8.6) still vanishes as a@ — o). Thus z, [ p, v9(du*) fails to exist by Corollary

7.3.1.
Now assume «,, fails to exist. If the weak limit of 8dv; exists, then

/°° x"(z) dvs(z) = /-°° x{(z) dvs(z f f(z)8(z) dvs(z), (8.18)

where f € Cg(R), so that the left side of (8.16) also fails to converge as § — 0. From here

on the argument using Corollary 7.3.1 is the same as above, and again 1, [ v¢(du*) fails to
converge. This completes the proof. §

The above conditions can be simplified to a large extent.
DerINITIONS 8.2: For ' € R, 4, denotes those functions ¢(6) defined for 6 small

() — > =R ~
& 5—:00 ER. Let A= Un'Z‘i Ay Define R* =R ~ {0}.

and positive satisfying
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THEOREM 8.3: Let X, ¢, and p satisfy the hypotheses of Theorem 8.1. Then Y =
L fn X ¢(du) exists if and only if

(i) ¢ € Ay for somen’ > 3

(i¢) for v in the essential range of X, vs converges weakly to a measure on R* as 6 — oo.

(ii) for v € supp p*, (a) if n' = % then V(v) < oo; (b) if—é <7'<1, £)=0;and

(c)if ' =1, limy oo f}{M z dv exists.

Note that the weak convergence condition above means v4 converges to (possibly infinite)
measures on RT and R, individually.

Proof: We first show the above imply the necessary and sufficient conditions of the

&’
(replace = by cz and let § — 0) show that Qu is homogeneous, and that

previous theorem. Let Qv = w-lims_,gvs == w-lim %u(-ﬁ»—) Simple scaling arguments

d(Qv) = (clnxr""‘ " cz|zr"—‘—”—) & (z€R¥), (8.17)

|=|

where n = ﬂ—l, For z > 0, let FH(z) = v[z,00) ; F~(—z) = v(—00,~z). Then since

1F+( z ) . cl+c2m"ﬂ,
50

6 \gn n
it follows that
2"FHz) — c1tez
Te O n ’
and similarly
(@) F~(~z) - 2°%2 (8.18)
OO0 7
Ifyg > %, then for v € supp u*,
1 M
/ o2y = M2 f 22dv(z), (8.19)
-1 -M

where M = 61‘; (8.19) is easily shown to converge using the asymptotics of F+and F~, after
integration by parts. Hence z2dvs converges weakly on [~1,1] and thus 8(z)dvs does on R,
so that the first weak limit in (8.3) exists. To examine the same limit when ' = 3, notice
that (8.19) now converges by the finiteness of V(v).

We prove existence of the second limit in (8.3). If ' > 1, the limit follows from the
convergence of

1 M
/ rdvs = M1 / z dv(z), (8.20)
-1 M
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via integration by parts as before. When % <7 <],

M 0o -M-
Mn—I/ zdu:——Mn—l[/ +:z:du+/ xduJ,
-M M —00

and the latter again converges via integrations by parts. This completes the proof of
sufficiency.

We now assume (8.3) to hold, and prove (i1)—(4i7) ( () is clearly necessary by Theorem
7.11). First, (i%) follows immediately from convergence of G(v; z), since weak convergence of
6dvs on R* implies the same for dvs. To prove (11%), first let ' = % Since 8dvs converges

weakly by hypothesis,
1 M

lim | z2dys = lim z2%dy
§-+0J -1 Meroo J-M

converges, proving (74¢), (a). Similarly, if —% < n' < 1, then

1 M
lim [ zdvs= lim M"! f z dv. (8.21)
§—0J-1 Moo -M
M
Since this converges (by 8.3) and 7 — 1 > 0, it follows that A}im z dv = 0. To show
—00 J M

that v indeed has a first moment, we show fgo zdv < oo (since the argument on R~ is the
same). Let G be a monotone function, G(0) = 0, defined by dG == zdv. By (8.19) and (8.3},

we have convergence as M — oo of
M
M2 /0 22dv = M"Y G(M) — A(M)),

where

M
AM) = Kl{. /O Glz) dz. (8.22)

Hence
G(M) - A(M) < h(M) (M > 0),

where (M) is a smooth positive function, with 2(0) = 0, '(0) < Cy, (M) = C2M 1 for
M > 1; note that G(z) < z. There exists a monotone function G*, G*(0) = 0, satisfying

where G* and A* are related by (8.22). The equation for M > 1,

G (M) - A*(M) = CoM 1™ (8.23)
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is solved by differentiating once, giving
G*(M) = C3 + oz(g)M—ﬂ (M > 1),
so that G* is bounded. On the other hand,
(G -G@)—(A"-4)>0 (8.24)

on R this implies (G* — G)(M) > (G* — G)(0) for M > 0, so G is bounded, proving that
v has a finite first moment on Rt. The proof is of course the same on R~. Thus necessity
of (¢%%) (b) is proved; necessity of (¢1z) (c) for convergence of the second integral in (8.3) is

clear, and this completes the proof. §

We now consider the general (non-finite) Lebesgue integral on a measure space (4, 3, u).
Recall (8.2).

LEMMA 8.4.1: Let X; be a sequence of independent r.v.’s, and b; = € x*(X;). The sum
3721 X; converges order independently if and only if ), |b;| and
3 £6(X; —b;) converge.

Proof: Assume the numerical series converge absolutely, and write, using the mean value
theorem,

Y EOX: +b) =) (X )+ Y b EO (X + b)), (8.25)

where |bf| < |b;| with probability one. It is easy to see the X, are infinitesimal, and in
particular that £6/(X;+b;) — 0, so by (8.25) 3" £6(X,) converges. From this it follows (with
convergence of Y. |b;]) that‘,_iof x{X;) converges as well, and sufficiency follows by Lemma
7.3.1. Conversely, using Lemma 7.3.1, if 3 £6(X;) and }_ £ x*(X;) converge absolutely, so
does Y £x(X;), and ) £0(X; — b;) converges by (8.25). 1

Recall that, for a measure v on R and ¢ : RT — R, the measures v5 and Gv are

1 z
_1(=z — wli 8.2
vs 6u(¢( )>, dGv)=w &IEnOGdU5, (8.26)
and - -
T = }}—% /; - x{z)dvs(z), v, = sh_% ]_ X (z)dvs(z) (8.27)

(see (8.2)), when the limits exist. If X is an r.v.,, GX and vx are defined analogously by the

distribution v of X. If p is a measure, |u| denotes total measure.
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THEOREM 8.4: Given ¢ : RT — R™, and X: A — D, a random variable-valued function
on the measure space A, the integral Y = 1 [, X(\)é¢(du())) exists if and only if (1) Gv and
v exist for every v in the essential range of X, and (2) [,|GX (\)|du()\) and fA’7X(>\)1dp.()\)
converge. Furthermore, the pair ( f AYxdu, f AGX dp) is the Lévy-Khinchin transform of Y.

Note that we make no restriction on D, i.e., X may be any measurable map into the
space of probability distributions. This theorem, together with Proposition 7.6, shows that
an integrable X induces a countably additive measure-valued measure M defined by M(B) =
fB X ¢(dp).

Proof: Assume (1) and (2) hold. Let p* be the measure induced on D by X. Since
tvo] < ealv| +c2lGu| for some ¢y,¢2 > 0, [, '7;(()\)'du‘ converges as well. Let {P;}ier be
an at most countable partition of Dy = Ress(X) into sets of finite measure and diameter.
Let

Dii={v€Di:7, >0}, Die={ve€Di:v, <0}

Assume without loss that P respects the partition Dy, D1z of D;. Let {Pi;}; be an at
most countable partition of P; whose elements have finite measure and diameter, with v;; €

Pyij, pi; = p*(Pij), éij = ¢{pij). Let b;; = ffooo x‘(z)duij(g’:?). By the proof of Theorem
8.1, 37, |bi;| can be made to differ from f},‘, |[v; |dp*(v) by arbitrarily little; hence the sub-
partitions P;; can be chosen so that .. 1j |b;;] converges. Given 7 € I, for a sufficiently
small sub-partition of {P;;}; (still denoted by {P;;}; P; is unchanged), E; vi;¢i; can be

made arbitrarily close to , [, v¢(du*(v)). Hence by Theorem 8.1,

Z_ /~ :od“ij(x;:ij) - /P Grldut (8.28)

can be made arbitrarily small. Therefore by condition (2), there exists a subpartition {P;;}:

such that 37, - b;; and 37, . 2. 0du,'j(zf") converge absolutely under P;;, as well as any

i

finer partition. Thus, by the Lemma, 2: (Z; v; j¢,-]-) converges order independently. Since
the inner sum approximates pr‘. vé(du*) arbitrarily well, the sum 3.} pri vé(du*) =
L [AX(\)¢(dp(N)) is also order independent. Since any two partitions have a minimal
common refinement, this sum is also independent of {P;}.

Conversely, if 1, [, X¢(dp) exists, we claim [, |GX|du < oo. For if the latter is false,
let {P;},c; be an at most countable partition of A into sets of finite measure and diameter.

The sum Z/ |GX |dp diverges; and therefore Z/ X ¢(dp) must also fail to converge
: F; : Pi

by the linearity and continuity of the Lévy-Khinchin transform (Remarks after Theorem
7.1). Thus the integral fails to exist. A similar contradiction obtains if [, |7, |du* = oo.
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Finally, if Y = 1, [, X ¢(du) exists, then Y = Y, Y;, where

Y. = L/P‘X(ﬁ(d/")

and P; is a sequence of subsets of A with finite measure and diameter. Thus, the Lévy-
Khinchin transform of Y is the sum of those of Y;. This together with the final assertion in
Theorem 8.1 completes the proof.§

We remark that conditions (1) can naturally be replaced by conditions (1)-(ié¢) of
Theorem 8.3.
The following lemma is proved in Loéve [Lo, §23].

LeMMA 8.5.1: Let a, € R, and ¥,, be finite Borel measures on R. If
. . 2
ita, + ffow ettt —1— T%%)L%;Jd\lfn converges to a function continuous at the origin,

then {an}n converges and {¥,}, converges weakly.

THEOREM 8.5: The integral Y = [, X ¢(dy) exists if and only if
(2) ¥, (t) = limgs 0 3(D.((6)t) — 1) exists and is continuous at t = 0 for v € Rees (X ), where
®, is the characteristic function of v
(#t) the integral

w0 = [ dxcq0ut) (829)
converges absolutely.
In this case Y has characteristic function e¥.

Proof: If Y exists, then according to Theorem 8.4, so do v, and Gv for v € Rege(X).
Furthermore, if ¥ € Ress (X),

lim ‘/(e“m — Ddvs(z) = iyt + [(em —-1- tat )1 + x2d(Gv)(z)

§=0 1+22/ 22

is clearly continuous at 0, proving (¢). According to (7.1), Y has the log ch.f.

o0 . 2
Pa(t) = it + / (e*’“—1— izt 2)(”; )dG (8.30)
-0 1+z z

where, by Theorem 8.4,

'7=/'7vd[1-, G———/Gl/dy',
D D
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and p* is the induced measure on D. Since the integrand in (8.30} is bounded, we can

interchange integrals, so

o0 . 2
o) = [ e [ (e -1- ) B e
D — 00 1 + z2 z2
[e <) o0 , . t
— { 1im [it / T dvs + / (e'“«—l— o )dedu"(u) (8.31)
DE=0L J—oo ] 472 —00 1+ 22

= [ [im 5 [ - i) = vie

It is clear that the integrals converge absolutely.
Conversely, assume that (¢) and (77) hold. If v € Ress(X),

R i 't 1 2
lim [ (¢ — 1)dvs = lim it / X dvs + / (e‘“ -2 )( tz )B(x)dug
§—0 50 1+22/\ z2

is continuous at 0, so that by the Lemma, v, = lim f xdvs and dGv = w-lim fdvg exist.
Let {P,-}i’E ; be a countable partition of A into sets of finite measure, on each on which X
is essentially bounded. This can be done by appropriately partitioning Reg(X). Let A, =
U'_{P:. By Theorem 8.4, f AKX &{dp) exists for all n, and by part one of this proof, if ¥,
is its log ch.l,, then

Pn = /An b o)) (8.32)

Clearly, fA.. X ¢(du) converges weakly as n — oo to an r.v. Y with ch.f. 9(¢). Thus Y is
independent of the choice of {Pf}iel’ and is the desired integral. i

§8.2 The Riemann Integral

Let (A, o) be a metric space with o-finite Borel measure g, and X: A — D be an r.v.-
valued function. The Riemann integral of X is defined with respect to partitions of A rather
than . We might again try to duplicate the elegance of the Lebesgue theory in the Riemann
integral, but we approach the latter with a view to utility, namely, to physically motivated
applications. With this intent, we define the Riemann integral using global partitions of A,
rather than patching integrals over sets of finite measure whose range under X is bounded.
The former definition will dovetail with that of the R*-integral.

DEFINITION 8.6: Let {P,}2_; be an infinitesimal sequence of partitions of A. Select a
function ¢ : RT— R™T. Let My; € P,;, and assume

Y‘Xf)\m}qﬁ(um} = Y,

o300
f
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where po; = p(Pas), and the {X(\)}, ¢ are independent. If Y is independent of {P,}, then
Y is the (¢-) Riemann integral of X (with respect to the non-linear measure ¢(dy)),

Y=g / X(0) ¢(dp(\) (8.33)

THEOREM 8.7: If X(\) is ¢-Riemann integrable then it is ¢-Lebesgue integrable, and
the integrals coincide.

Proof: Recall {7.21). We begin by assuming g is finite and X is pg-bounded. Let P,
be an infinitesimal net of partitions of A. Recall the Lebesgue integral may be equivalently
defined by allowing partitions of D to subdivide individual elements, even ones of measure
0. Under this more general (but equivalent) definition, there exists a partition sequence P,
of D such that X(P,;) = Py,. As before, we may use the arguments of Theorem 7.11
to assume (without subsequent loss) that the partitions P, (PJ) are even with respect to
po(pt = pXY), e, p(P,) = #{(Pa,); again the measure of those elements with odd
(unequal) measure can be made arbitrarily small by taking sufficiently small sub-partitions.

By taking sub-partitions, we may also assume that P}, vanish in diameter uniformly as

a — oo.

We proceed by contraposition, assuming the Lebesgue integral fails to exist. In this
case it suffices to show the Riemann integral fA4 X ¢(du) fails to exist for any A; C A with
positive measure, by arguments used in proving Proposition 7.6. By our assumption and
Theorem 8.1, either Gv or v, fails to exist for some v € Regs. Assume Gu does not exist. At
this point, using the above net P}, of partitions, the argument becomes exactly analogous
to that after (8.12), so we omit the details. The same argument works if v, fails to exist,
yielding the result when p is finite and X is pg—bounded. The fact that the two integrals
coincide in this case follows from correspondence of the Riemann sums over the partitions
P, and P.

If u(A) is infinite or X is unbounded, and p [ AX ¢(du) exists, then the integral also exists
over any subset A; C A with positive measure. Since the essential range of X is o-finite, it
is separable. Let {D;} be an at most countable partition of D, with p*(D;) and diam(D;) <
co. If A; = X~YD;), then 1 [ A X ¢(du) exists, and we must show that 3-,; 1 f A X ¢(du)
converges order independently to g [, X (du). This follows from the fact that r, f A X o(du)
can be approximated arbitrarily well by Riemann sums over partitions of A; whose total
sum over i approximates g [, X ¢(du). §

Recall that for v € D,

Gs(vz) = %— /_ w 0(y) du(g(%); s(v) = % /_ Z x(¥) du(ﬁ%—)).
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‘We now prove

THEOREM 8.8: Suppose
(!) X : A — D is Lebesgue integrable and ps—continuous,
(¢¢) the function gs (\) = Sup_ sass G, (X (\1), 00)+ |75, (X (A1)l is in LY{p{\)) for some
€6 > 0.
Then X is Riemann integrable.

Proof: We prove this for partitions which do not subdivide points (the proof therefore
does not directly work for measure spaces with atoms). The general case (which allows
partition elements which overlap on atoms) follows with small modifications.

Let P, be an infinitesimal net of partitions of A, and gk € Pax. Let Xor = X (Mak)y ok =
W(Pak)y @ak = ¢(pak). We first verify that the double sequence {¢axX ok} is infinitesimal.
Suppose it is not. Taking a subsequence if necessary, we may assume without loss of
generality that

BokaGuar, (Xak,,00) 2 €1

for some €1 > 0, and some choice of k, for each a. Therefore if §,¢ > 0,

g5 £(\) > uii (0(M Naka) < €) (8.34)

for o sufficiently large that pior, < 6. Furthermore, again taking subsequences if necessary,
we assume that pak, < JH(e—1),_,- Then if By = B(Aak,) (the e-ball about Xak, ),

ed A\ > / +/ +/ +~v-) d
/Aga, #( )--( B, By~ B, B3~ (B1UB;) g6 ¢ CH

> )+ (L~ i)+ (- )

Hik, H2ky M1k, H3k;  H2k,
> L (By)+ 1L )+ L u(By) +
o™ ! 2 uak, 2 2 pgk,
== 00,

since p(Ba) > pak, for o sufficiently large; this gives the desired contradiction. Thus,
{pakXak} is infinitesimal.
To prove the theorem, according to Corollary 7.3.1, it suffices to prove the convergence

3 f 0du&k(y;b°‘k) = Glz); (8.35a)
k -0 ok (>3

g

a— 00

Y bk — 7, (8.35b)
k
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for some G : R — R a multiple of a d.f., and some 4" € R, both independent of {P,}. Here,
Vg is the distribution of Xk, and

bak =j;cox dVak(éa ) (8.36)

with x* given by (7.9). We have

%:[:oeduak(“b“") /H (\z) du(\),

where z
Hy(M\z) = 1 Gduak(

Hak v —
Since X is pg-continuous, if X € supp(u), then X (X\) € Ress(X), so that by (1) of Theorem

8.4,

be
v ") (N € Pog).

ak

Hy(\;z) = H(X\;z), (8.37)

a=—+o0

where H{\;z) is a multiple of a d.f. in z for each A. Furthermore,

H,(M\z) < Ho(\;00)

w . (8.38)
— _}__, bak ' Yy
== 6 dVak(¢ak) + /:-c:o g (I) dv&k(¢ k) ()\ € Pafc)y

Hak HBak

where |b%;] < |bak| is determined by the mean value theorem. The first term on the right
is clearly dominated by gs ((\) € L(y) for  sufficiently large. Since the double sequence
u,,k( = ) is infinitesimal and 6'(0) = 0, the second term on the right is eventually dominated
by

H®(\;00) = bak 1 X duak( ) < Kge5(\) (\ € Pai), (8.39)
Hak Hak v —oc ¢ak

for o sufficiently large, with K independent of a. Thus, for a sufficiently large,
Ho(Mu) < (1+K)gs 0) € LY, (8.40)
By (8.37), if h(z) € CZ(R),
o0 o0
/ H,(\, z)h{z)dz — / H{X\, z)h(z)dz,
—00 a—0o0 J—o0

so that by (8.40), the dominated convergence therorem, and the Fubini theorem,

/ /H Nz) du(Ne(e)dz — /_m/Hx z) du(\)é(z)dz. (8.41)
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Since h € C(R) is arbitrary, it follows that

Z/:modu,,k(“b"") /H (xs2)dulx) /AH()\;:C) du(\);

note that the limit is independent of the choice P,.
Similarly, by (8.39),

Zb k= f HP ;00 )du(\) — / HB(x; 00)du()),

where H®) = lim H?), completing the proof of (8.35). §

Oty OR)

Note that the proof above holds if 45(v) is replaced by

)= [ alediuelz)
where x1(z) = x(z) + O(z?) (z = 0) is bounded. Thus we have

COROLLAR Y 8.8.1: The statement of the Theorem holds if in (i1) s is replaced by 7.

£8.3 The R*-Integral

Let (A, ¢) be a metric space with o-finite Borel measure . Let ¢: Rt — R, and py be
the corresponding metric on D. Let X: A — D be pg-measurable, with a range consisting of
independent r.v.'s. We now consider the general version of §3.1, i.e., the result of summing
“samples” of X at an asymptotically dense set of points in A. In Chapter 9, A will be the
spectrum of a von Neumann algebra of physical observables.

For € > 0, let Ac = {\¢;}jes. C A be at most countable. Note the elements of A need
not be distinct. For G C A, let N(G) = |A. N G|, where |-| denotes cardinality. We assume
that (z) for any open set G C A,

eN(G) ﬂop(G), (8.42a)
and (77 for some C' < p(A), if B is an open ball with u(B) > C,
eN(B) < ku(B) (8.42b)

for some fixed & € R. These conditions should be compared with (3.1).
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DEFINITION 8.9: The net {A.}cs o is a p-net of points. We define
/ X (N(dp) = lim ¢(e ZX o) (8.43)
if the right hand limit (in law) is independent of the choice of {A¢}> o
We proceed to relate the R* to the Riemann integral.

DEFINITION 8.10: Let (A, o) be a metric space, and E C A. Let | = diamFE, and s > 0
be the supremum of the diameters of all balls B C E. The pair (s,l) are the dimensions of
E.

LEMMA 8.12.1: Given € > 0, there is a partition P, of A such that each Py € P, has
dimensions (s, 1) where s > €, | < 5¢. Furthermore, P, can be chosen so that p(8P,;) = 0
for all k.

Proof: Let B be a maximal set of disjoint e-balls in A, and C be the collection of centers
of B € B. For B,(\) € B, let B()\) € A be the set of points closer to X than to any other
point in C. Let B = {B(\) : A € C}. If B € B, then the dimensions (s,1) of B satisfy
(s,1) C (2¢,4€), i.e. s > 2, | < 4de. There are at most a countable number of elements
of B with non-null boundaries. Let Bl, Bs, ... be an enumeration of this collection. For
7 >0, GCAlet By(G) = {\ € A:0(\,G) < n}. There exists 1 < § such that
By, (B1) = {X\ : 6(\,\1) < nifor someX; € By} has null boundary, since otherwise u would
not be o-finite. We replace B by B,(B1) and decrease the remaining sets in B accordingly.
We continue in this manner by then replacing Bg by B,,z(Bz) nz < § and, in general,
replacing B by B,,k(Bk) Mk < 7, at each stage adjusting B as well. At the end of this
process, all sets B € B have null boundary, and dimensions (s, ) C (e, 5¢). We let P, = B.1

DerFINITIONS 8.11: A Borel measure on a metric space is uniform if for € > 0, every
ball of radius € has measure bounded below by some constant ¢ > 0. A sequence {X;}
of r.v.’s is bounded if the corresponding d.f.’s F; satisfy FF < F; < G, where F and G are
d.f.’s. It is unbounded if it is not bounded. A collection of sets is a partial partition of a set
A if it satisfies all the requirements of a partition, except possibly |J, P« = A. In particular,
elements of A may be apportioned to several partition elements, if non-zero measures are

divided correspondingly.

Note that a sequence X, of r.v.’s is unbounded if for all M > 0 there exists € > 0 such
that sup P(|X,| > M) > e.
n>1

THEOREM 8.12: Let (A, o) be a metric space with uniform o-finite Borel measure p. If
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X : A — D is Riemann integrable, then it is R*-integrable, and the two integrals coincide.

Proof: Let {P/,}, be an infinitesimal sequence of partitions of A, such that (see Lemma
8.12.1) P!, has dimensions dim P/, C (2, 3), and u(8P/;) = 0. Since u is uniform, there

@ a’e

is a function h{a) > 0 such that p(P’,) > h(a). There exists a subpartition P, of P,,
consisting of sets with null boundary, with

h(a) < p(Par) < 2ha). (8.44)

If A is non-atomic, P, can be constructed as a standard subpartition of P,. If P!, has atoms
we can write, according to previous conventions, P/, as a union of n copies of P, each
with measure 1p(P/,), with each a distinct element of P, (this is a quick way of eliminating
the problem of atoms, although the end result could be accomplished by subdividing only
atoms).

Consider a p-net A, = {\[;}; satisfying

N (Poi) = {@} (8.45)

where § > 0, N.(Pax) = |AL N Pai|, and [] is the greatest integer function. Given a and
¢, subdivide P,k into the partition {Pax:}:, where each element satisfies pori = ﬁ%,
where poki = p(Pyki), and Pog; contains exactly one element Aoks € AL f =1, Xowi =

X (\aki), then
;Xaki¢(ﬂaki) = ;Xak@({g—?}_luak)
(8.46)
= ;X (Xej)tﬁ([%}_l I‘ak)

where in the last sum k is a function of j defined by \; € Pox. If @ = ofe) increases to
infinity sufficiently slowly as € — 0, then by (8.45) and the Riemann integrability of X, if
X=X (>‘ej )

gxem([gﬂ“lﬂak) =R fA X ¢(dp). (8.47)

Let [-] denote the greatest integer, & be fixed, {Xx;}: be an indexing {X(M¢;) : Xej € Par},

and 1
Qg = "’([ﬁf] uak) ~ $(e).

Y eaXe = 0, (8.48)
ky -0

To prove that
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we assume that it is not true. Recall that a space of finite measures with bounded total
measure is compact in the topology of weak convergence. Thus there exists a sequence
e, 0 such that (replacing € by £) (i)

—0

}: ageXpki = v (8.49a)
P foo
for some v 5 §,, or (ii)
Zagngki is unbounded as £ — oo, (8.49b)

ki

We assume (%), since the argument is similar otherwise. By Theorems 7.13, 8.7, and our

¢ (aex) , .
is well-defined, and vanishes

hypotheses, ¢ is homogeneous of positive order, so that ”
uniformly as £ — oo.

Therefore

!ﬁc_ ~1 —
[ o }ﬁ (azk)z_mﬂy

uniformly in k. Thus we may assume (by taking an £-subsequence if necessary) that

2 [M]Wl(aek) < h{a), (8.50)

7 L&t

for each k. For £ = 1,2,..., let {P%,;}; = P%, be a partial partition of P, into [%}
subsets, each of measure ¢~ Y(az), with Xo; € PL,;. By (8.50), P4, can be chosen so that
Poie = U, PE, is a partial partition of P,;. By choosing an f-subsequence, we may assume
by (i) that
1
PL(Z aszeki,V) < o
ik

where C' > 0 may be arbitrarily large. Therefore, the partial Riemann sum Z‘- % ,eagkX ki
becomes unbounded, contradicting Riemann integrability of X; this proves (8.48). Thus by
(8.47),

¢(e)2jjxq_jog /A X ¢(du) (8.51)

By an exactly parallel argument, if in (8.45) 8 = B(a) — 0, and a = of¢) —»08, the
I

a—+00

latter sufficiently slowly, then

e—0

8(0)Y X = 0. (8.52)
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Combining (8.51) and (8.52), if B(a) — 0, and

{Q-"I?ﬁ“ﬁJ < N'(Pax) < [(—1—‘%)—‘»‘3‘5} (8.53)
then
Y X = 5 [ Xolam) (8.54

Now consider a general p-net A, = {\.;};, not necessarily satisfying (8.53). Fix a
partition P, = {P,i}; with null boundaries, satisfying (8.44). If two partition elements
overlap (e.g., over atoms), elements of A, are apportioned among them alternatingly. By
(8.42),

C
Ne(Pak) = lAe nPakI S ?

for some C > 0 independent of k and ¢, while e N¢(Pak) 2 Hak: Let

1
Asa = {k : IENE(Pak) _.uakl _<. ;}

and
A= | ) Pu (8.55)
k€Aca
Note that A** 1 Aase— 0.
We claim that if S¢ C {5 : h\ej € A“*}, then

$(e) > X = 0. (8.56)

The proof of this claim, briefly, follows by assuming the negation and forming an alternative,
as in (8.49). A contradiction then follows along similar lines.
Let a == a(e), and
AR = n A ),

& <e

Let afe) —>00 sufficiently slowly that A* 1 A as € — 0, and
¢(e) Z Xe.‘i =0, (857)
8¢

it S, C{j: ;¢ A%} this is possible by (8.56). For P,y C AS*™

|€N5(chk) - ,u‘akl S

R+
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Let A} = {)\3}‘}3‘ C A be constructed so that Ael NP = AN Py if Py C A%, and
Ael N P, differs from A, N P,i by the minimal number of elements such that

1
[N Pak) — tras| < = (8.58)

for all k. Thus by (8.54),
ORLVER [ xotan (5.59)

However, Al is a small perturbation of A., in that (8.57) and (8.59) imply that (8.59) holds
also if )\Elj is replaced by A¢;. Il



CHAPTER 9

JOINT DISTRIBUTIONS AND APPLICATIONS

We now use the mathematical machinery developed in the last two chapters to consider
joint distributions of integrals of r.v.’s and apply them to statistical mechanics. The work
in deriving joint distributions of quantum observables will, with the above formalism, be

minimal.

§9.1 Integrals of Jointly Distributed R.V.’s

As in Chapter 8, let (A, 0) be a metric space with a o-finite Borel measure u. Assume
that random vector-valued functions X(\) = (X1(X), ..., Xn()\)) have a joint distribution for
fixed X € A and are indépendent for different . Let ¢ : RT — R be given. Define the

direct product D" = X"_;D and for &; = (v}, v?...,00), i =1,2,..., let

(see eq. (7.21)). Define
Ress (X) = {7 € R(X) : u(X~Y(B.(v))) > 0 Ve > 0}.

Let ®x(t) denote the joint ch.f. of X.

THEOREM 9.1: The random vector Y = [, X(\)$(du())) exists if and only if
(¢) for v € Ress(X),

Px(t) = lim <(ux(8(6)t) ~ 1 (9.)
exists, and
(i)
40 = [ b a0 (92)

converges absolutely. In this case, the ch.f. of Y is e¥ (t)

Proof: Suppose Y exists. If a is an n-vector and ¥(t) is the log ch.f. of Y, then for
t € R, 9(la) is the log ch.f. of a-Y. By Theorem 8.5 the log ch.f of 2-Y = [, a-X(\)g(dp()))
is also given by fﬂ/}n,x()\)(t) du()), adopting the notation of (9.1) for scalar r.v.’s. For a
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given X € A, if X € Regs (X), then a- X(X\) € Regs(a - X). Thus, since ®,.x (t) = ®x(ta),

Jim (0, (9(5)0) ~ 1) = lim 2(@x(9(s)ta) ~ 1)

exists; since a is arbitrary, {s) follows. In addition, by Theorem 8.5,

s2) = [ Buoxo 8 a0,

and the latter converges absolutely. Using va..x (t) = v¥x(ta) we conclude (9.2) converges
absolutely, and Y has log ch.f 9(t), proving (7).

Conversely, assume (z) and (¢z) hold. Then given a and X' € Reg(a - X), there exists
X' = (X%,...,X") such that X’ € Ress(X) and a X' = X'. Thus by (9.1) and (9.2) for
1xs and then by Theorem 8.5, a - 'Y exists. Since a was arbitrary, the proof is complete.fj

§9.2 Abelian W*-algebras

We present here a capsule summary of the spectral theory of W*-algebras to be used in
the next section. The material may be omitted without loss of continuity by those familiar
with it.

Let ¥ be a separable complex Hilbert space and L(¥) be the bounded linear operators on
H. A W* algebra A on ¥ is an algebra of bounded operators on ¥ closed under adjunction
(A — A*), and closed in the weak operator topology on ¥. A W*-algebra is naturally a
normed linear space with norm inherited from L(X). Let A* be the space of bounded linear
functionals on A as a Banach space and let the spectrum S of A consist of those ¢ € A* which
are also multiplicative, i.e., ¢(A142) = @(A1)$(A2), in the weak-star topology inherited from
A*. The Gel'fand representation gives a canonical isometric algebraic star-isomorphism of 4
with the algebra (under multiplication) formed by the bounded continuous complex-valued
functions Cg(S) on S. This isomorphism is, for a € 4,

a+— f€Cg(S), wheref(¢)= ¢(a)

For f € Cp(S) let Ty € A be the corresponding operator. For z,y € ¥, the map f —
(Tyz,y) is non-negative and is bounded on Cp(S) in its uniform (sup-norm) topology; hence
there exists a Borel measure p; 4 on S such that for f € Cp(S)

(foy y) = /S fdl‘z,y" (93)

DEFINITIONS 9.2: The measure y, 4 is a spectral measure. A measure y on S is basic
if for any subset of S to be locally p-null, it is necessary and sufficient that it be locally
Kz z-null for every z € ¥.
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Clearly any two basic measures are absolutely continuous with respect to each other.
We have (see [D2])

PrROPOSITION 9.3: If' ¥ is separable, then S carries a o-finite basic measure.

If p is basic, then Cp(S) = L>®°(S,u). If A is a measure space, then L(A), as a
W*-algebra acting on L¥A), is the multiplication algebra of A. We then have (see [D2]):

PROPOSITION 9.4: Let pu be basic on S. Then the Gelfand isomorphism is the unique
isometric star-isomorphism of the multiplication algebra L°°(S, 1) onto A.

If Ais a W*-algebra on ¥, a possibly unbounded closed operator A is affiliated with
A, or An A, if A commutes with every unitary operator in the commutant A’ of 4. If A
is normal, then A#n 4 if and only if A = f(A;), where A; € 4, and f : C — C is Borel
measurable.

A W*-algebra is maximal abelian self-adjoint (masa) if it is properly contained in no
other abelian W*-algebra. In physics, a maximal commuting set of observables (that is, its

spectral projections) generates a masa algebra. We require:

THEOREM 9.5 [Sel]: Two masa algebras are algebraically isomorphic if and only if they

are unitarily equivalent.

DerINITION 9.6: A measure space is localizable if every measurable set is a least
upper bound of sets with finite measure in the partial order of set inclusion. Two measure
spaces have isomorphic measure rings if there exists an algebraic isomorphism between
their (Boolean) rings of measurable sets (modulo null sets). They are isomorphic if the

isomorphism preserves measure.

THEOREM 9.7 [Se7): Two localizable measure spaces have isomorphic measure rings if
and only if their multiplication algebras are algebraically star-isomorphic.

§9.3 Computations with Value Functions

Although joint distributions of non-commuting observables in quantum statistical mech-
anics are difficult to describe (see [SeB] for the groundwork of such analysis), this is not
the case with commuting observables, which are amenable to a standard (commutative)
probabilistic analysis.

Let A be an abelian W*-algebra, and let A; > 0and A;n 4 (1 <1 < £). We assume that



107

A; represent globally conserved quantites in a canonical ensemble whose density operator is
formally

e—Bdl(A)

p=——r (94)

tre=BT(A)
where # = (B1,...,B¢), an £-tuple of positive numbers, A = (Ay,...,4;), and dI'((A) =
(dT'(A1),...,dT(Ag)) (T may be either T'g or I'p; see §1.2). Let By,..., B, be self-adjoint
operators affiliated with 4, whose joint distribution in the canonical ensemble of (9.4) is to
be determined.

As with the single operators, p must be interpreted as a limit of density operators
with discrete spectra. Proceeding in an analogous manner, let A be the spectrum of A.
Under Bose statistics, for A € A, let Ny be the probability space (Z1, B+, A) where Z1T =
{0,1,2,...}, By« is its power set and for z € Z1, RA(z) = e~A®)Bz(] — ¢=A) ) where
A(N\) = (A\(A1), .. MAg)). Under Fermi statistics,

JV)\ = ({07 1}7 B{O,l}y P)\)y

where

A0) = — A1) =1-A(0). (9.5)

1+ e FAl)

Thus M, represents possible particle numbers in state A. Spectral multiplicities need not be
indicated here by duplication of spectral values, since they will be subsumed in a spectral
measure g. Let N =[], M be the direct product space with product measure P = [], A.

DEFINITIONS 9.8: The pair (N, P) is the canonical ensemble over A at generalized

inverse temperature 3 corresponding to the (generally formal) operator p.

Let Ny, be an r.v. on N defined by NX(H)\,GAzN) = zy; N, is formally the number of
particles in state X. For 1 < ¢ < nlet

X,‘()\) = X(B,')N)\

be the r.v. on N representing the “total amount” of observable dI'(B;) in state X.

Our goal is to ascertain the joint distribution of (dT'(By),...,dI'(B,)) = dI'(B); this is
the distribution of a formal sum of X(\) = (X1(\),..., Xn()\)) over A € A. In order to study
the distribution asymptotically, we first center X(X\). Let

X(\) = X(\) - £(X(\)) = B\ )Ny, (9.6)
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Let p be a (o-finite) basic measure (see §9.2) on A. We study the Lebesgue integral
JAX(\)(du(N))?. In the Bose case the r.v. Ny is geometric with parameter e=#A (), and in
the Fermi case it is Bernoulli with parameter given by (9.5). Let ¥(t) be the ch.f. of Ny.
If 95 (t) is the ch.f. of X()\), then

®x(t) = x(t - B(\)). (9.7)

Therefore, for ¢ small
B(gt) =1— %d)tht’ + 03,

where M;;(\) = — 3‘2 B‘S: (0) is the covariance matrix of X,
Lt
— ej.é'AO‘}
Mi;(\) = E(Bi(MNB;(MNaz) = Bi(\)Bj(A)——— (9.8)
(F20)F1)

(see eq. (2.10)). The — (+) holds for Bose (Fermi) statistics. Thus if ¢(6) = 63,
— 1 1 . ..1 [
() = Jim ENGD) 1) = —StMOV.
Together with Theorem 9.1 this proves the reverse direction of

THEOREM 9.9: If X(\) are the centered random vectors above, then the Lebesgue

integral
Y= o [ X)) (9.9)
exists if and only if
M= AM(X)du(X) (9.10)
converges absolutely component-wise. In this case Y is normal, with covariance matrix M.

Proof: Only the forward direction remains. If (9.9) exists, then by Theorem 9.1,

Ag@o%(q’x(5%t) —1) du())

converges absolutely for all t. Thus, the same is true for (9.10). §

§9.4 Joint Asymptotic Distributions
By analogy with single operators, calculations like those above can be viewed as a direct

treatment of an infinite volume limit. However, the algebra A and its spectrum A are actually
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limits of a net of discrete algebras A, with spectra A, and the joint distributions of X are
asymptotic forms of those for discretized random vectors X.. In the discretized situation,
all formal quantities, including the density operator, are well-defined.

Let 4 be a o-finite basic measure on A, and ¢ be a metric on A whose Borel sets B
are just the y-measurable sets (the existence of such metrics in applications will be shown
explicitly; the integral, if it exists, is independent of the metric used). Let {A.} be a p-net
(Def. 8.9) of points in A, and for A € 4, let Ac = A |4,.

DEFINITION 9.10: The algebra A = {A. : A € A} is the e-discrete approximation of 4
with respect to y. Let Ay,..., 47 and By,..., B, be as in §9.3.

In calculating R*-integrals of r.v.’s X(\) = B(\)IVy we will be calculating ¢ — 0 limits

Y, Xpa)= Y, XDa) (9.11)

)\u'eAc )\ueAJ
In order to use the machinery of §8.3, we need some assumptions about A(\) and B(X).
Precisely, we require that A;(\) be o-continuous, and similarly for B;(\) (that is, that there

of sums

exist continuous representatives). We then have

THEOREM 9.11: Let A(\), B(A), A, i, and o be as above, and u be uniform (Def. 8.11)
with respect to o. If for some e > 0

/ sup  |B(\)|2 —————-—-—m—zd;z()\) < 00, (9.12)
Ao(n)<e (eE‘A(")fF 1)

then the normalized distribution of B in the canonical ensemble over A at generalized inverse

temperature f is jointly normal, with covariance

e~ FAM)
My = [ BB ) — ) (0.13)
(eE‘A ()‘) F 1)
where — (+) refers to Bose (Fermi) statistics. That is,
v [ BON (@) /2

exists and is normal with covariance M;.

Proof: By Theorems 8.12, 8.7, and 9.9, we need only show that X(A\) = B(A\)N, is
Riemann integrable. By Corollary 8.8.1, it suffices to show
. 1 — .
maN= s (VT aVEX) €L (014)

G, <6
o{x;,2)<e



110
for some €,6 > 0 and all 1 < ¢ < n, where
xi(z) = {

Since £(X;(\)) = 0, letting I(z) = z,

z; z<1
0; z>1.

i 1 =2 -
mipN < sup (6% + (- x)(VEX )
5156 1
e(dg MK

<c¢ sup %e(slff)zcza?(x)wm)

51546
SO
B-A(N)
= swp BN
{'SPNEC AN 1

This shows that (9.14) is implied by (9.12), and completes the proof.ii

§9.5 Applications

An advantage of Einstein space over canonical spatially cut-off versions of Minkowski
space is its possession of the full conformal group of summetries. In particular, the rotation
group acts on Einstein space. Untractable (non trace-class) expressions involving generators
of the conformal group in Minkowski space become tractable in Einstein space. For the
purpose of evaluating joint distributions of observables Minkowski 4-space should be viewed
as an infinite volume limit of Einstein space.

Theorem 9.11 allows evaluation of joint distributions in canonical ensembles (9.4),
viewed as limits (according to a spectral measure p ) of systems with discrete spectrum.
This section provides two explicit calculations.

() Non-vanishing chemical potential

Let § be a system with chemical potential p > 0, single particle Hamiltonian A, and
formal density operator

p=———"" (9.15)
tr e=A-dT (A)

where 8 = (B, 1), and A = (A,I). Note that N = dI'(I) is the particle number operator.
This models an ensemble in which creation of particles requires energy u. In this case the
W* algebra A generated by spectral projections of A and I is the bounded Borel functions
of A.

If § consists of non-relativistic particles in Minkowski n + 1-space, the spectrum of
4 is measure theoretically equivalent to Rt. The appropriate spectral measure is dm =
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#é——:)E"_ldE (see (6.12)). The joint distribution of H = dI'(A) and N is obtained by
integrating X = B(E)N g, where B(E) = (E, 1), and Ng is a centered geometric r.v. with
parameter e BE—# (under Bose statistics). According to Theorem 9.11, the normalized joint

asymptotic distribution of H and N is normal with covariance

2 BE+u
M= R-/ (E E)———-—————e dm.
A\E 1 (ePE+1 F l)2

Defining the generalized zeta function
¢(n,z) = E kmzk (9.16)
k=1

and using
Red n_ z4u
/ L—i dz = +n! ¢(n, e ") (n > 2), (9.17)
0 (=t F 1)

we get

v _Enirt %;*i)g(nﬁ-l,ie_") 2¢(n, £eH) (n>3)
FT(ER)\  Bslnte™)  n=1, xe) B

Note that Mjjand Magcoincides with (6.25) and the right side of (6.21), respectively, in
the Bose case if u = 0. The calculation for n < 3 is similar, and thus omitted.

(¢%) Density operator involving angular momentum (see [JKS])
In this model, the formal density operator in a system § is given by
e~ BH—~L? (9.18)
= . 9.18
g tr e—BH—7L? |

where H and L are energy and angular momentum [JKS, Se8]; we ignore chemical potential
for simplicity. We will study § in Minkowski four-space M4, as an infinite volume limit of
Einstein space.

We remark first on the appropriate measure space of Theorem 9.11. Let A* be the W*-
algebra generated by A and m?, the single particle energy and angular momentum operators.
Let A* be the spectrum of A*, and u* be a o-finite basic measure on A*. By Proposition 9.4,
L (p*) is star-isomorphic to A*.

Let A=RT X Z1, and p = m X ¢, with m Lebesgue measure, and c{l} = 2/ + 1, for
1€ Zt. Then 4 = L*>(p) is star-isomorphic to A%, specifically through the correspondence

A~ Mg; m2 e Mig41) (9.19)
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where E and [ denote independent variables on RT and Z ™, respectively, and M denotes
multiplication. Thus L*°(p*) and L*(u) are star-isomorphic. By Theorem 9.7, therefore,
(A*, u*) and (A, p) have isomorphic measure rings, so that the image (under the isomorphism)
of p on A* is equivalent to u*, and thus itself a basic measure.

Thus, henceforth we may restrict attention to (A, u); g is a physically appropriate

measure on A, since it incorporates the asymptotics of the joint spectrum of A, and m2

in Einstein space U% of radius R proportional to 31, as R becomes infinite. Specifically (see

§6.3), the joint spectrum of A, and m? in Uis
{(en, i1+ 1)) : n,1 € 27},

this being the joint range of the corresponding functions on A.

The object of interest in studying the ¢ — 0 asymptotics of the joint distribution
(covariance) of H and L? is, according to Theorem 9.11, the local covariance of EN» and
il + 1)Ny, where A\ = (E,l) € A, and Ny, is a centered geometric r.v. with parameter
e PAR) with B = (8,7) and A(\) = (B, (L + 1)). This is the dyadic matrix

_( E _( E?* Elfl+1) f A

Integrating over A, we obtain as the covariance of H and L? in Minkowski space:

1 &2 -5
v A e
B3y FEL
where -
Er(my) =2 ) (20 + 1) gln, £ 7)) (9.21)
=0

with ¢ given by (9.16). Note that, as indicated by the vy — 0 limit in (9.21), the joint
distribution of energy and angular momentum when v = 0 is singular, with the conditional
expectation of angular momentum infinite for every energy value in Minkowski space. This is
to be expected, since for a fixed energy value the range of the angular momentum becomes
unbounded as B — oo. See [JKS, Se8]) for an application of (9.20) to a model for the
influence of angular momentum on the cosmic background radiation.



EPILOGUE

I would like to leave the reader by briefly identifying two significant open questions
which arise in the present eontext.

The first is, what asymptotic probability distributions arise in a system whose spectral
measure dp ~ z%dz (o > 0) fails to have three continuous derivatives near 0 (Def. 3.11)?
The failure to answer this question in Chapters 4 and 5 seems technical,

Second, how can these results be extended to a non-commutative setting (i.e., one
involving non-commuting observables)? It seems that gage spaces, the non-commutative
analogs of probability spaces [Se6], are the appropriate framework. This question may have
very significant mathematical ramifications.
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semi-stable process, 80
separable, ¢-, 84
singular integrals, 21-22, 28-50
single particle space, construction, 53-55
spectral approximation, 52-53
spectral Tunction, 13
spectral measure, 1, 13-15, 105, 111
spectral p-net, 16
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