


Lecture Notes in Physics
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Preface

But all the clocks in the city
Began to whirr and chime:
’O let not Time deceive you,
You cannot conquer Time.

W. H. Auden

It is hard to think of a subject as rich, complex, and important as time. From the
practical point of view it governs and organizes our lives (most of us are after all
attached to a wrist watch) or it helps us to wonderfully find our way in unknown
territory with the global positioning system (GPS). More generally it constitutes the
heartbeat of modern technology. Time is the most precisely measured quantity, so
the second defines the meter or the volt and yet, nobody knows for sure what it
is, puzzling philosophers, artists, priests, and scientists for centuries as one of the
enduring enigmas of all cultures. Indeed time is full of contrasts: taken for granted
in daily life, it requires sophisticated experimental and theoretical treatments to be
accurately “produced.” We are trapped in its web, and it actually kills us all, but it
also constitutes the stuff we need to progress and realize our objectives. There is
nothing more boring and monotonous than the tick-tock of a clock, but how many
fascinating challenges have physicists met to realize that monotony: Quite a number
of Nobel Prize winners have been directly motivated by them or have contributed
significantly to time measurement.1 We feel that time flows, we feel it as an ever
evolving, restless “now”, and yet, from the perspective of relativity this unfolding
of events at an always renewing present instant would in fact be “an illusion.” Also,
while the future awaits us and the past is gone, there is no time arrow making such
a fundamental distinction in the microscopic equations of physics.

Physics does not capture time in its domain without residue, but it has of course
much to say about time, an essential element of its theories and of our rational-
ization of nature. In the case of relativity, time plays a prominent, starring role:

1 Here is a nonexhaustive list including award years: Isidor I. Rabi (1944), Charles H. Townes
(1964), Alfred Kastler (1966), Norman F. Ramsey, Hans G. Dehmelt and Wolfgang Paul (1989),
Steven Chu, Claude Cohen Tannoudji, and William D. Phillips (1997), John L. Hall and Theodor
W. Hänsch (2005).
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vi Preface

Einstein changed dramatically our concept of time and thus of the world. By
contrast, quantum mechanics, the other great twentieth century physical theory, has
paid to time a much more modest and secondary attention, and most practitioners
have even refused with stubborn determination to deal with some of its evident
aspects, the “time observables,” in our opinion without a good or sufficient reason.
Less controversial but not at all less interesting and much influential have been the
fundamental contribution of quantum mechanics to improve time measurement with
atomic clocks, as well as the development of techniques to study quantum dynamics
and characteristic timescales, both at theoretical and experimental levels, comple-
mentary to the knowledge on the structure and properties of matter derived from
time-independent methods.

The aim of a workshop series at La Laguna, Spain, since the first edition in 1994,
and of this book series is to promote and contribute to a more intense interplay
between time and the quantum world. This volume fills some of the gaps left by
the first one, recently re-edited. It begins with a historical review in Chap. 1. Most
chapters orbit around fundamental concepts and time observables (Chaps. 2–6), or
quantum dynamical effects and characteristic times (Chaps. 7–12). The book ends
with a review on atomic clocks in Chap. 13. Several authors have participated in
“Time in Quantum Mechanics” workshops at La Laguna or Bilbao, but we have not
imposed this as a necessary condition. As in the first volume, our recommendation
to all authors has been to write reviews that may serve both as an introductory guide
for the noninitiated and a useful tool for the expert, leaving them full freedom for
the choice of emphasis and presentation.

We would like to acknowledge the work, patience, and discipline of all contrib-
utors, as well as the support of the University of the Basque Country (UPV-EHU),
Ministerio de Ciencia e Innovación (Spain), EU Integrated Project QAP, EPSRC
QIP-IRC, German Research Foundation (DFG), and the Max Planck Institute for
Complex Systems at Dresden, where much of our work was completed within the
“Advanced Study Group” “Time: quantum and statistical mechanics aspects” orga-
nized by L. S. Schulman during the summer of 2008.

Bilbao, Braunschweig, London, J.G. Muga, A. Ruschhaupt, and A. del Campo
January 2009
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Chapter 1
Memories of Old Times: Schlick and
Reichenbach on Time in Quantum Mechanics

José M. Sánchez-Ron

Space and time are the basic entities in physics; they provide the framework for any
description of natural processes. As such, both have been throughout history the
subject of many philosophical and scientific analyses (remember Newton’s reflec-
tions and use of absolute space and time). The 20th century was specially fruitful
in this regard. It could hardly have been otherwise, in as much as the first physics
revolution that took place then – special (1905) and general relativity (1915) – was
deeply dependent on the concepts of space and time. The fact that relativity appeared
on the physics scenario before quantum mechanics and that space and time played
such an important role in it meant that during most of the century the great majority
of philosophical analyses of both concepts were based on Einstein’s theory, while
much less attention was dedicated to the implications that quantum physics had on
them. Moritz Schlick (1882–1936), the leader of the Vienna Circle (the philosoph-
ical group that began its activities in 1924), and Hans Reichenbach (1891–1953),
the main protagonists of the present chapter, are good examples of this, although
they finally turned their attention also to the philosophy of quantum mechanics,
the second being probably the most active of the philosophers of his time on this
activity.

1.1 Introduction: The New Physics, via Relativity, Attracts
the Philosophers

Restricting ourselves to the German-speaking world (in which, as a matter of fact,
those philosophical interests first appeared), we have that Moritz Schlick was one
of the earliest and more active “missionaries” of Einstein’s relativity in the philo-
sophical arena. A student of Max Planck, under whom he got his Ph.D. in physics
in 1904, with a thesis on the reflection of light in inhomogeneous media, Schlick
turned afterward his academic activity to philosophy and was soon attracted by the
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many wonders of relativity, as can be seen, for example, in his 1915 article on “Die
philosophische Bedeutung des Relativitätsprinzips” [39], or in his rather general
exposition of Einstein’s relativity theories that appeared in 1917, in two parts, in the
scientific weekly journal Die Naturwissenschaften, as well as, expanded, in book
format [40, 41].

Einstein was particularly attracted by Schlick’s ideas. Thus, on April 19, 1920, he
wrote to him1: “Your epistemology has made many friends. Even Cassirer had some
works of acknowledgment for it . . .Young Reichenbach has written a very interest-
ing paper about Kant & general relativity, in which he also gives your comparison
with a calculating machine.”

We find in this excerpt the names of two German-speaking philosophers who,
together with Schlick, wrote extensively about relativity: Ernst Cassirer (1874–1945)
and Hans Reichenbach. In due time, by the way, both left Germany and made the
United States their country (both as professors of philosophy: Cassirer at Yale Uni-
versity since 1932 and Reichenbach at the University of California, Los Angeles,
since 1938).

Cassirer, who had grown up philosophically as a member of the neo-Kantian
school of Marburg, recognized that he had to revise his philosophical views so as
to see whether they were consistent or not with Einstein’s relativity theories. He
was particularly interested in finding out whether the philosophical worldview that
he had presented in his Substanzbegriff und Funktionsbegriff (1910), which was
dominated by the Newtonian conceptions of space and time, was consistent with
the new relativity world. Thus, after producing a manuscript about this subject and
having sent it to Einstein, he wrote to him on May 10, 1920, thanking for his help2:
“Please accept my cordial thanks for your kind willingness to glance briefly through
my manuscript now . . .As far as the content of my text is concerned, it evidently
does not propose to list all philosophical problems contained in the theory of rela-
tivity, let alone to solve them. I just wanted to try to stimulate general philosophical
discussion and to open the flow of arguments and, if possible, to define a specific
methodological direction. Above all, I would wish, as it were, to confront physicists
and philosophers with the problems of relativity theory and bring about agreement
between them. . ..”

The manuscript in question was published next year, in 1921, as a book entitled
Zur Einstein’schen Relativitätstheorie (Einstein’s Theory of Relativity [9]).

As to Reichenbach, he was also an early follower of the new relativity theories,
not been in this sense one of the many who only became interested in them after
the news of the eclipse expedition made Einstein and his theories world-famous
in November 1919. “Due to my work in the army radio troops [signal corps],” he
wrote in an autobiographical sketch for academic purposes [38, p. 2], “I became
involved with radio technology and during the last year of the war [World War I],
after I was transferred from active duty because of a severe illness I had con-

1 [23, p. 510], [21, p. 317].
2 [24, p. 255], [22, p. 158].
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tracted at the Russian front, I began to work as an engineer for a Berlin firm
specializing in radio technology (from 1917 until 1920). During this period, and
in my capacity as physicist, I directed the loud-speaker laboratory of this firm. . .
Soon thereafter, my father died and for the time being I could not give up my engi-
neering position because I had to earn a salary in order to provide for my wife and
myself. Nevertheless, in my spare time I studied the theory of relativity; I attended
Einstein’s lectures at the University of Berlin; at that time, his audience was very
small because Einstein’s name had not yet become known to a wider public. The
theory of relativity impressed me immensely and led me into a conflict with Kant’s
philosophy. Einstein’s critique of the space-time-problem made me realize that
Kant’s a priori concept was indeed untenable. I recorded the result of this profound
inner change in a small book entitled Relativitätstheorie und Erkenntnis Apriori
[1920].”

It gives an idea of Reichenbach’s intentions what he wrote to Einstein (June
15, 1920) when asking permission to dedicate him his book Relativitätstheorie und
Erkenntnis Apriori3: “You know that with this work my intention was to frame the
philosophical consequences of your theory and to expose what great discoveries
your physical theory have brought to epistemology. . . I know very well that very few
among tenured philosophers have the faintest idea that your theory is a philosophical
feat and that your physical conceptions contain more philosophy than all the multi-
volume works by the epigones of the great Kant. Do, therefore, please allow me to
express these thanks to you with this attempt to free the profound insights of Kantian
philosophy from its contemporary trappings and to combine it with your discoveries
within a single system.” To this letter, Einstein replied (June 30, 1920)4: “The value
of the th. of rel. for philosophy seems to me to be that it exposed the dubiousness of
certain concepts that even in philosophy were recognized as small change. Concepts
are simply empty when they stop being firmly linked to experience.”

Relativitätstheorie und Erkenntnis Apriori was not the only book Reichenbach
dedicated to those matters. He also published Axiomatik der relativistischen
Raum-Zeit-Lehre (1924) and Philosophie der Raum-Zeit-Lehre (1928). In them he
developed a causal theory of time “according to which the concept of time is reduced
to the concept of causality; since, on the other hand, measurement of space is also
reduced to the measurement of time, space and time are therefore shown to be the
‘causal structure of the world’” [38, p. 5].

1.2 Time in Quantum Physics: The Time–Energy
Uncertainty Relation

So, we have seen that Einstein’s relativity theories attracted the attention of the
philosophers, first of the German-speaking ones. We can consider this as a sort of

3 [24, p. 313–314], [22, p. 195].
4 [24, p. 323], [22, p. 201].
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entrance door of philosophers to the new physics that the new century was produc-
ing. But after relativity came quantum physics; therefore, we should ask ourselves if
quantum physics, quantum mechanics in particular, attracted so much and so early,
philosophical attention as relativity.5

“During the first decades of the development of quantum physics it was often
stated that the concepts of space and time are intrinsically inapplicable at the
quantum level, even when no doubt was implied as to the validity of these con-
cepts in the domain of classical physics, both relativistic and pre-relativistic,”
wrote Henry Mehlberg [30, p. 235], a member of the great inter-war generation
of teachers and students in physics, logic, and philosophy of science. What did he
mean?

When faced with the problem of sustaining such assertion (Mehlberg did not
offer any reference), I thought immediately of Niels Bohr, the great patron of quan-
tum physics, and, indeed, I found soon a pertinent reference in a paper he wrote in
1935 to oppose Einstein–Podolsky–Rosen’s 1935 famous critique of the quantum
mechanical description of physical reality. There Bohr [6, p. 700] wrote,

It is true that we have freely made use of such words as ‘before’ and ‘after’ implying time-
relationships; but in each case allowance must be made for a certain inaccuracy, which is
of no importance, however, so long as the time intervals concerned are sufficiently large
compared with the proper periods entering in the closer analysis of the phenomena under
investigation. As soon as we attempt a more accurate time description of quantum phenom-
ena, we meet with the well-known paradoxes, for the elucidation of which further features
of the interaction between the objects and the measuring instruments must be taken into
account.

And he added [6, pp. 700–701],

The decisive point as regards time measurements in quantum theory is now completely
analogous to the argument concerning measurements of positions. . . Just as the transfer of
momentum to the separate parts of the apparatus, - the knowledge of the relative positions
of which is required for the description of the phenomenon -, has been seen to be entirely
uncontrollable, so the exchange of energy between the object and the various bodies, whose
relative motion must be known for the intended use of the apparatus, will defy any closer
analysis. Indeed, it is excluded in principle to control the energy which goes into the clocks
without interfering essentially with their use as time indicators.

And he then concluded,

Just as in the question discussed above of the mutually exclusive character of any unam-
biguous use in quantum theory of the concepts of position and momentum, it is in the last
resort this circumstance which entails the complementary relationship between any detailed
time account of atomic phenomena on the one hand and the unclassical features of intrinsic
stability of atoms, disclosed by the study of energy transfers in atomic reactions on the other
hand.

5 The content of the present chapter refers mainly to non-relativistic quantum mechanics; however,
a relativistic theory will not introduce many fundamental differences in the topics I address here;
only that, instead of just one time, we would have to consider as many local times as particles
involved.
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Bohr was referring, of course, to Heisenberg’s uncertainty relations

Δx ·Δp ≥ h/4π,

ΔE ·Δt ≥ h/4π,

where x represents the position, p the linear momentum, E the energy, t the time,
and h Planck’s constant.

The force and pertinence of Bohr’s arguments seem obvious though not trivial –
but, as far as I know, very few scholars addressed them explicitly. In an early paper,
in which they tried to extend the uncertainty principle to relativistic quantum theory,
Landau and Peierls [26] did. There, and referring to the energy uncertainty relation,
they wrote [26, 27, p. 467],

Clearly it does not signify that the energy can not be known exactly at a given time (for in
that case the concept of energy would have no meaning), nor does it mean that the energy
can not be measured with arbitrary accuracy within a short time. We must take into account
the change caused by the process of measurement even in the case of a predictable mea-
surement, i.e. of the difference between the result of the measurement and the state after the
measurement. The relation then signifies that this difference causes an energy uncertainty
of the order of h/Δt , so that on time Δt no measurement can be performed for which the
energy uncertainty in both states is less that h/Δt .

However, it is legitimate to ask about the ideas on such questions by Heisenberg,
the discoverer of the uncertainty principle. Well, neither in the 1927 paper in which
he introduced the uncertainty relations nor in the lectures he delivered in Chicago
in the spring of 1929 on “The physical principles of quantum theory” [18–20]
did he pay special attention to the time–energy uncertainty relation nor, certainly,
considered what it might imply for the meaning of time in the quantum domain.
Similarly, when he introduced (beginning in the second edition) Heisenberg’s prin-
ciple of uncertainty in his influential The Principles of Quantum Mechanics, the
always precise Paul Dirac [11] had nothing to say about the time–energy relation;
actually, in the section dedicated to the uncertainty relations, he introduced only
the position–momentum relation, a tactic that it is found also in the section that
Landau and Lifshitz dedicated to the uncertainty relations in the volume dealing
with non-relativistic quantum mechanics of his well-known course of theoretical
physics. There, Landau and Lifshitz [25, p. 49] opted for writing Δ f ·Δg ≈ hc and
added that if one of the magnitudes, say f , is equal to the energy, E , and the other
operator (g) does not depend explicitly on time, then c = g, and the uncertainty
relation in the semiclassical case would be ΔE ·Δg ≈ hg.

Perhaps, Dirac and Landau and Lifshitz considered the non-commutativity of E
and t (from which the uncertainty relation is derived) questionable if t is not an
operator, but rather a c-number,6 a circumstance that in his classic Mathematische

6 C-numbers were introduced by Dirac [10, p. 562]: “The fact that the variables used for describing
a dynamical system do not satisfy the commutative law means, of course, that they are not numbers
in the sense of the word previously used in mathematics. To distinguish the two kinds of numbers,
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Grundlagen der Quantenmechanik, John von Neumann [48, Chap. 5, Sect. 1] had
already pointed out, although briefly and rather cryptically.

During the following decades there would be several attempts to prove rigor-
ously the time–energy uncertainty relation, whose truth nobody seemed to doubt.
Among those who made progress on this question figure Bohr and Rosenfeld [7],
Mandel’shtam and Tamm [28], Fock [15], Aharonov and Bohm [1, 2], and Fujiwara
[16]. The problem even made its way into a few textbooks, at least in two written
by Russian scientists. The first one was the already mentioned text of Landau and
Lifshitz. Section 44 of it is entitled “The uncertainty relation for the energy” [25, pp.
157–159] (note that no explicit reference is made to time, energy being the central
physical concept in it). Reading it, it is obvious that time was the usual classical
parameter, Δt the interval of time between two measurements, and ΔE “the dif-
ference between two values of energy measured exactly at two different instants of
time.”

The other Russian book is the fourth edition of Dmitrii Blokhintsev’s [4, 5]
quantum mechanics text, which had a whole section dedicated to “The law of con-
servation of energy and the special significance of time in quantum mechanics.”
There, Blokhintsev [5, p. 389] stated that “a relation between the uncertainty ΔE
in the energy E at a given time t and the accuracy Δt with which the instant t
is determined. . . does not exist in quantum mechanics, just as there is no relation
tH − Ht = ih/2π as distinct from the relation xPx − Px x = ih/2π .” Recognizing,
nevertheless, that that relation was satisfied in practice, he added, “We can, however,
obtain the relation [ΔE · Δt ≥ h/4π ] if the quantities ΔE and Δt are suitable
interpreted” (his own option was to deal with a wave packet with group velocity v
and having a dimension Δx , so that Δt = Δx/v, but he also referred, favorably, to
Mandl’shtam and Tamm’s paper [28]).

A good and concise statement of what the situation was at the beginning of the
1970s is the following, due to Aharonov and Petersen [3, p. 136]:

As it is well known, the time-energy relation cannot be deduced from the commutation rela-
tions in the usual way, since the time is not a dynamical variable but a parameter. This has
given rise to two different interpretations of the meaning of Δt . According to the first, Δt
refers to the uncertainty in any dynamical ‘time’ defined by the system itself; for example,
the position of the hand of a clock is such a dynamical variable. If the energy of the clock has
been measured with an accuracy ΔE , then there must be an uncertainty in the position of
the hand such that the corresponding Δt ≥ h/ΔE . According to the second interpretation,
Δt refers to the period during which the energy measurement takes place. In other words,
the uncertain time is not related to any dynamical variable belonging to the system itself but
rather to the laboratory time which specifies when the energy is measured.

There would be, no doubt, much more to say on these questions.7 However, I
will not follow this route, because I am interested in Schlick and Reichenbach’s
reactions to quantum physics as regards time, specially in Reichenbach’s, the most

we shall call the quantum variables q-numbers and the numbers of classical mathematics which
satisfy the commutative law c-numbers.”
7 N. of E.: See Chap. 3 (first volume) by P. Busch on the time–energy uncertainty relation.
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knowledgeable in quantum physics of those philosophers who first reacted to the
relativity and quantum revolutions.8 What I have already said proves, I think, that
there were important – from the physical as well as from the philosophical point of
view – problems related to the concept of time in quantum physics and that, although
not always clear and abundant, there was enough material produced by physicists
which a knowledgeable philosopher could, at least, mention.

1.3 Schlick on Quantum Theory

As mentioned before, Moritz Schlick, the former doctoral student of Max Planck
and physicist turned philosopher, was one of the first German-speaking philosophers
who paid attention to the implications that Einstein’s relativity had on the space and
time concepts considered from a philosophical point of view. Indeed, he published
a large number of works on this subject. The question is: when quantum mechanics
was formulated, and its philosophical implications became apparent, did he dedicate
to the quantum as much attention and efforts as he had dedicated to relativity? The
answer is a plain “no.”

This does not mean, however, that the quantum did not make its way to some of
his publications. Thus, in a paper dedicated to causality in contemporary physics,
Schlick could not avoid referring to the novelties introduced by quantum mechanics
[42, 44, p. 203]: “The most succinct description of the situation outlined is doubt-
less to say (as do the leading investigators of quantum problems), that the field of
validity of the ordinary concepts of space and time is confined to the macroscop-
ically observable; within atomic dimensions they are inapplicable.” Such a drastic
sentence certainly deserved a detailed justification, which, however, the paper does
not include. Next year, during a lecture Schlick [43] delivered at the University of
Berkeley in which he made use of the uncertainty relations, the argument was the
traditional, that is, one in which only the position–momentum relation was consid-
ered. Nothing was said about the time–energy relation. With such theoretical bag-
gage, Schlick could argue that the classical physics assertion that “a particle which
at one moment has been observed at a definite particular place could be observed,
after a definite interval of time, at another definite place” will cease to be true: if we
take the value of the velocity of a particle and try to use it for an extrapolation to
get a future position of the particle, “the Uncertainty Principle steps in to tell us that
our attempt is in vain; our value of the velocity is no good for such a prediction, our

8 To support the contention that Reichenbach was the most knowledgeable in quantum physics of
the philosophers who first reacted to the relativity and quantum revolutions, I offer the following
quotation from Carnap’s autobiography in The Library of Living Philosophers [8, p. 14]: “After
the Erlangen Conference [1923] I met Reichenbach frequently. Each of us, when hitting upon
new ideas, regarded the other as the best critic. Since Reichenbach remained in close contact
with physics through his teaching and research, whereas I concentrated more on other fields, I
often asked him for explanations in recent developments, for example, in quantum-mechanics. His
explanations were always excellent in bringing out the main points with great clarity.”
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own observation will have changed the velocity in an unknown way, therefore the
particle will probably not be found in the predicted place and there is no possibility
of knowing where it could be found” [43, 31, pp. 255–256].

Positions – that is, space – were, therefore, the subject of Schlick considerations,
not time; “the particle will probably not be found in the predicted place,” he wrote,
but this “predicted place” will take place, as well as the previous one, at definite
instants of time, not subject, apparently, to any uncertainty. This was made possible,
obviously, by the use of the position–momentum uncertainty relation, as well as by
ignoring the time–energy relation. Were it not ignored, could it be argued for time
the same that was said about space? Naturally, the problem was (and still is) the
special nature of time.9

1.4 Reichenbach on Time in Quantum Physics

Hans Reichenbach was more active in the philosophical analysis of quantum physics
than Schlick (among other things because he lived more). His main contribution,
an original one, was the introduction of a three-valued logic, in which a category
called “indeterminate” stands between the truth values “true” and “false.” The place
where he gave a more detailed presentation of such ideas was his book Philosophic
Foundations of Quantum Mechanics [33].10

In the preface of this work, Reichenbach [37, vi–vii], already installed in the
Department of Philosophy of the University of California, Los Angeles, explained
why he had become involved with quantum theory. Thus, and after referring to the
first phases in the development of quantum mechanics, he stated that the time had
arrived for attempting a serious philosophical study of the foundations of the theory.
“Fully aware that philosophy should not try to construct physical results, nor try
to prevent physicists from finding such results,” he “nonetheless believed that a
logical analysis of physics which did not use vague concepts and unfair excuses
was possible.” And he added,

The philosophy of physics should be as neat and clear as physics itself; it should not take
refuge in conceptions of speculative philosophy which must appear outmoded in the age of
empiricism, nor use the operational form of empiricism as a way to evade problems of the
logic of interpretations. Directed by this principle the author has tried in the present book to
develop a philosophical interpretation of quantum physics which is free from metaphysics,
and yet allow us to consider quantum mechanical results as statements about an atomic
world as real as the ordinary physical world.

9 Although not in the quantum realm, but in the relativistic one, Einstein pointed the specificity
of time in his autobiographical notes when, after remembering the well-known mental experiment
that he posed himself at the age of 16 (what would happen if he pursued a beam of light with
the velocity of light), he added [12, p. 53]: “One sees that in this paradox the germ of the special
relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify
this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character
of time, viz., of simultaneity, unrecognizedly was anchored in the unconscious.”
10 I will use the first paperback printing of this book [37]. An interesting review of the book was
written by Mehlberg [29].
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The purpose was, of course, sound and the results significant, but not so as
regards the concept of time in quantum mechanics. Reichenbach, it is true, included
the time–energy uncertainty relation alongside the position–momentum one, but his
interpretation of them was not particularly interesting or new; he emphasized their
implications with respect to causality, not with respect to time itself. And he said
nothing about the time not being an operator but a mere parameter. However, we
know that time was a concept in which he was specially interested. The Direction of
Time, a posthumous work, assembled by his wife, Maria, from various manuscripts
he left at the time of his death in April 1953 is proof of this.11 However, the problem
of the direction of time is part of several branches of classical physics (mechanics,
electrodynamics, thermodynamics, statistical physics, cosmology), and we must not
be surprised that the majority of the pages of The Direction of Time [35] were dedi-
cated to what classical physics, thermodynamics, and statistical physics have to say
concerning the observed asymmetry between past and future: 200 pages versus 63
dedicated to “The time in quantum physics.” Besides, the question of the direction
of time is not exactly the same as what is its nature, assuming such a thing, or
expression, the “nature of time,” makes sense.12

Early on the chapter of the book dedicated to time in quantum mechanics,
Reichenbach considered the wave function of Schrödinger’s equation, which occu-
pies the central place in the theory. He pointed out that when the state changes
in the course of time, the variable t enters as another argument into the function,
which is then written in the form Ψ (q, t), and that the differential equation which
Schrödinger had constructed to express the fundamental law of change in quantum
mechanics has the form

HopΨ (q, t) = c[∂Ψ (q, t)/∂t] , (1.1)

where c = ih/2π .
“The direction of time,” wrote then Reichenbach [35, p. 209], “that is, the tempo-

ral direction in which the change occurs, manifests itself in the sign of the argument
‘t’.” However, what happens if we change t by −t? The problem here is that con-
trary to what happens in classical physics, where the differential equations are of
second order in time, with first derivatives absent, in quantum mechanics the latter
are present. Therefore, one has that if Ψ (q, t) is a solution of Schrödinger equation,

11 Shortly before, the Institut Henry Poincaré published the text of a series of lectures Reichenbach
[34] delivered at that Paris Institute on June 4, 6, and 7, 1952. Some of the themes of The Direction
of Time were advanced there.
12 I am aware that often the question of the “nature of time” is identified with “the direction of
time.” A splendid example of this is the collective book edited by Thomas Gold entitled The Nature
of Time [17], in which, however, most contributions deal with the direction of time. Of course,
with my comments I do not mean that the problem of the direction of time is not interesting or
fundamental. I fully agree with what the theoretical astrophysicist Dennis Sciama [45, p. 6] wrote,
“Time has always struck people as mysterious: mysterious, in fact, in a number of different ways.
One thing that is mysterious about time is its directionality. What is it that underlies time’s arrow?
What, that is to say, is the source of the asymmetry between past and future, between earlier and
later? Why, for example, can we remember the past but not the future?”
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Ψ (q,−t) is not, because the equation it satisfies is

HopΨ (q,−t) = −c · [∂Ψ (q,−t)/∂t], (1.2)

which differs from the original in the minus sign on the right-hand side.13 And here
Reichenbach [35, pp. 209–210] wrote,

There remains the problem of distinguishing between Ψ (q, t) and Ψ (q,−t). In order to
discriminate between these two functions, we would first have to know whether (1.1) or
(1.2) is the correct equation. But the sign of the term on the right in Schrödinger’s equation
can be tested observationally only if a direction of time has been previously defined. We
use here the time direction of the macrocosmic systems by the help of which we compare
the mathematical consequences of Schrödinger’s equation with observations. Therefore, to
attempt a definition of time direction through Schrödinger’s equation would be reasoning
on a circle; this equation merely presents us with the time direction which we introduced
previously in terms of macrocosmic processes.

And he added,

It may be recalled that even in classical physics the time direction of a molecule is not ascer-
tainable from observations of the molecule, even if such direct observations could be made,
but is determined only by comparison with macroprocesses, for which statistics define a
time direction. In the same way, the time direction of a quantum-mechanical elementary
process, like the movement of an electron, is determined only with reference to the time of
macroprocesses.

This consideration shows that the fundamental quantum-mechanical law governing the time
development of physical systems does not distinguish one time direction from its opposite.
Since the laws governing the observables of quantum physics are not causal laws, but prob-
ability laws, the reversibility of elementary processes assumes here the form of a symmetry
of the relations connecting probability distributions. These connecting relations are strict
laws expressible through a differential equation, namely, Schrödinger’s equation.

“Time direction of a quantum-mechanical elementary process,” he wrote, “is
determined only with reference to the time of macroprocesses.” Not a stimulating
comment for anyone who would have thought that so radical physics revolution as
quantum mechanics should affect also our ideas of what time is.

1.5 Reichenbach on Feynman’s Theory of the Positron

One thing that strikes one when reading Reichenbach’s book is how scarce the
references to works of physicists who dealt with the quantum are, whether with
quantum mechanics or with quantum electrodynamics. It seems as if it was more a
philosophical inner discussion, illuminated mainly by quantum mechanics (mainly

13 N. of E.: The standard “time-reversal invariance” argument is based on the commutation of the
Hamiltonian with the antiunitary time-reversal operator, see, e.g., Chap. 12 in this volume. The
time-reversed state of Ψ (q, t) is Ψ (q, t)∗. If Ψ (q, t)∗ evolves for a time t , the resulting state is
Ψ (x, 0)∗, which is the time-reversed state of Ψ (x, 0). For a critical analysis see A.T. Holster, New
J. Phys. 5, 130 (2003).
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Schrödinger’s version), statistical mechanics, and the mathematical theory of proba-
bility. There is, however, an important exception: Reichenbach’s reference to works
of the Lausanne professor E. C. G. Stückelberg and the American Richard Feynman
on the theory of positrons, where they considered positrons as electrons moving
backward in time [46, 47, 13, 14].14

“Surprisingly enough,” he wrote [35, pp. 263–264], “recent developments have
demonstrated that the genidentity [that is, the physical identity of a thing] of mate-
rial particles can be questioned more seriously than is done in Bose statistics. The
difference between one and two, or even three, material particles can be shown to be
a matter of interpretation; that is, this difference is not an objective fact, but depends
on the language used for the description. The number of material particles, therefore,
is contingent upon the extension rules of language. However, the interpretations thus
admitted for the language of physics differ in one essential point from all others:
they require an abandonment of the order of time.”

Those “recent developments” were the “conceptions. . . developed by E. C. G.
Stückelberg and R. P. Feynman. Their investigations showed that a positron – that is,
a particle of the mass of an electron, but carrying a positive charge – can be regarded
as an electron moving backward in time.” To Reichenbach [35, pp. 266, 268] such
interpretation “does not merely signify a reversal of time direction; it represents an
abandonment of time order. . .This is the most serious blow the concept of time
has ever received in physics. Classical mechanics cannot account for the direction
of time; but it can at least define a temporal order. Statistical mechanics can define
a temporal direction in terms of probabilities; but this definition presupposes time
order for those atomic occurrences the statistical behavior of which supplies time
direction. Quantum physics, it appears, cannot even speak of a unique time order of
the processes, if further investigations confirm Feynman’s interpretation, which is at
present still under discussion.”

Even without addressing the fundamental problem of putting in a sound theoret-
ical basis for the time–energy uncertainty relation and deriving its consequences for
the concept of time, Reichenbach had found that the realm of the quantum was a
dangerous territory for the conception of time that classical physics had favored.

1.6 Epilogue

In his book Philosophie der Raum-Zeit-Lehre, and thinking in the case of the rel-
ativity theories, Reichenbach [32] [36, p. 109] stated that “philosophy of science
has examined the problems of time much less than the problems of space. Time
has generally been considered as an ordering schema similar to, but simpler than,
that of space, simpler because it has only one dimension. Some philosophers have

14 Feynman’s work here was influenced by his previous collaboration with John Wheeler on an
action-at-distance electrodynamics, in which they used retarded as well as advanced potentials;
that is, electromagnetic waves moving forward and backward in time [49, 50].
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believed that a philosophical clarification of space also provided a solution of the
problem of time.” It seems to me, after having reviewed here what Moritz Schlick
and Hans Reichenbach – just two, certainly, German-speaking philosophers of sci-
ence, but, nevertheless, very prominent ones – had to say about time in quantum
mechanics, that the same comment can be applied to the analysis of time in the
quantum domain. How different, and much less frequent, were the comments that
the two uncertainty relations aroused apropos the time concept is a good example
of such assertion. Of course, it is true – obviously true – that scientifically time is
a much more problematic and difficult concept to define and study than space, but
it is so fundamental! Without it, there would be nothing, just “something” (I resist
calling it “world”) unknowledgeable. With it, we have science, but also mystery, the
mystery of a concept perhaps too difficult for us to fully understand.
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Chapter 2
The Time-Dependent Schrödinger Equation
Revisited: Quantum Optical and Classical
Maxwell Routes to Schrödinger’s Wave
Equation1

Marlan O. Scully

2.1 Introduction

In a previous paper [1, 2] we presented quantum field theoretical and classical
(Hamilton–Jacobi) routes to the time-dependent Schrödinger equation (TDSE) in
which the time t and position r are regarded as parameters, not operators. From this
perspective, the time in quantum mechanics is argued as being the same as the time
in Newtonian mechanics. We here provide a parallel argument, based on the photon
wave function, showing that the time in quantum mechanics is the same as the time
in Maxwell equations.

The next section is devoted to a review of the photon wave function which is
based on the premise that a photon is what a photodetector detects. In particular, we
show that the time-dependent Maxwell equations for the photon are to be viewed
in the same way we look at the time-dependent Dirac–Schrödinger equation for the
(massive) π meson particle or (massless) neutrino.

In Sect. 2.3 we then recall previous work which casts the classical Maxwell
equations into a form which is very similar to the Dirac equation for the neutrino.
Thus, we are following de Broglie more closely than did Schrödinger, who followed
a Hamilton–Jacobi approach to the quantum mechanical wave equation. In this
way, with nearly a century of hindsight, we arrive naturally at the time-dependent
Schrödinger equation without operator baggage. Figures 2.1 and 2.2 summarize the
physics of the present chapter.

M.O. Scully (B)
Texas A&M University, College Station, TX 77843; Princeton University, Princeton,
NJ 08544, USA, mscully@Princeton.edu

1 It is a pleasure to dedicate this chapter to David Woodling who has enriched our lives through his
engineering and mechanical gifts and his insightful and gentle ways.
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Fig. 2.1 Comparison of the quantum field, wave mechanical, and classical descriptions of the spin
1 photon, spin 1

2 neutrino, and spin 0 meson; adapted from Scully and Zubairy “Quantum Optics”
[3]

Fig. 2.2 Top Down: The time-dependent Schrödinger wave equation follows from the quantum
optical “a photon is what a photodetector detects” definition. This is in accord with the usual wave
function definition Ψ (r, t) = 〈r|Ψ (t)〉 since |r〉 = Ψ̂ +(r )|0〉. Bottom Up: The time-dependent
Schrödinger wave follows nicely from the classical Maxwell equations by, for example, working
with a combination of electric and magnetic fields

2.2 The Quantum Optical Route to the Time-Dependent
Schrödinger Equation

Quantum optics is an offshoot of quantum field theory in which we are often inter-
ested in intense light beams such as provided by the laser. However the issue of the
photon concept, and how we should think of the “photon,” is a topic of current and
reoccurring discussion.

Perhaps the most logical, at least the most operational, approach is to say that the
photon is what a photodetector detects. In this spirit we consider the excitation of a
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single atom at point r at time t to be our photodetector and, following [3], write the
probability of exciting the atom as

PΨ (r, t) = η〈Ψ ∣
∣Ê†(r, t)Ê(r, t)

∣
∣Ψ 〉 . (2.1)

Several points should be made:

1. We consider the state |Ψ 〉 to be a single photon state. For example, the state
generated by the emission of a single photon (see [3], Eq. 6.3.18)

∣
∣ψγ 〉 =

∑

k

ck |k〉 , (2.2)

where the state |k〉 is expressed in terms of the radiation creation operator â†
k as

|k〉 = â†
k |0〉 and in the simple case of a scalar photon, we find

ck = gk
e−ik·r0

(νk − ω0) + iΓ/2
, (2.3)

where gk is the atom-field coupling constant, r0 is the atomic position vector, νk

and ω0 are the photon and atomic frequencies, and Γ is the atomic decay rate.
2. The uninteresting photodetection efficiency constant η will be ignored in the

following.
3. Ê†(r, t) and Ê(r, t) are the creation and annihilation operators defined by

Ê†(r, t) =
∑

k,λ

ε
(λ)
k Ek â†

k,λe
−iνk t+ik·r , (2.4)

where ελk is the unit vector for light having polarization λ and wave vector k,
νk = ck = c|k| and the electric field “per photon” Ek = √

�νk/2ε0V , where we
use MKS units so that ε0μ0 = 1/c2 and V is the quantization volume.

Next we insert a sum over a complete set of states,
∑

n |n〉〈n| = 1 in Eq. (2.1) and
note that since there is only one photon in ψγ (and Ê(r, t) annihilates it), only the
vacuum term |0〉〈0| will contribute. Hence we have

Pψγ (r, t) = 〈ψγ |Ê†(r, t)|0〉〈0|Ê(r, t)|ψγ 〉 , (2.5)

and we are therefore led to define the single photon detection amplitude as

ΨE (r, t) = 〈0|Ê(r, t)|ψγ 〉 . (2.6)

As shown in detail in Sect. 2.4, the one photon state |ψγ 〉 yields

ΨE (r, t) = E
Δr
Θ

(

t − Δr

c

)

e−i(t−Δr/c)(ω−iΓ/2) , (2.7)
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where E is a constant, Δr is the distance from the atom to the detector, and Θ(x) is
the usual step function. More generally we have

ΨE (r, t) = 〈0|Ê(r, t)|ψγ 〉 =
〈

0

∣
∣
∣
∣

∑

k,λ

ε̂λk

√

�νk

2ε0V
âk,λe

−iνk t+ik·r
∣
∣
∣
∣
ψγ

〉

. (2.8)

The field is sharply peaked about the frequency ω so that we may replace the
frequency νk as it appears in the square root factor by ω and write

ΨE (r, t) =
√

�ω

2ε0
ϕγ (r, t) , (2.9)

where

ϕγ (r, t) =
∑

k,λ

ε̂
(λ)
k

〈

0

∣
∣
∣
∣
âk,λ

e−iνk t+ik·r
√

V

∣
∣
∣
∣
ψγ

〉

. (2.10)

The complete “photon wave function” also involves the magnetic analog of the
proceeding. To that end we write

ΨH(r, t) = 〈0|Ĥ (r, t)|ψγ 〉 , (2.11)

where Ĥ (r, t) is the annihilation operator for the magnetic field which is given by

Ĥ (r, t) =
∑

r,λ

k
k
× ε̂(λ)

k

√

�νk

2μ0
âk,λ

e−iνk t+ik·r
√

V
, (2.12)

and we introduce the notation

ΨH(r, t) =
√

�ω

2μ0
χγ (r, t) , (2.13)

where

χγ (r, t) =
〈

0

∣
∣
∣
∣

∑

k,λ

k
k
× ε̂(λ)

k ak,λ
e−iνk t+ik·r

√
V

∣
∣
∣
∣
ψγ

〉

. (2.14)

Finally, we write ϕγ (r, t) and χγ (r, t) in matrix form as

ϕγ =
⎡

⎣

ϕx

ϕy

ϕz

⎤

⎦ , χγ =
⎡

⎣

χx

χy

χz

⎤

⎦ , (2.15)
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in terms of which Maxwell equations may be written as

i�
∂

∂t

[

ϕγ
χγ

]

=
[

0 −cs · p
cs · p 0

] [

ϕγ
χγ

]

, (2.16)

where p = �

i ∇ and

sx =
⎡

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎦ , sy =
⎡

⎣

0 0 1
0 0 0
−1 0 0

⎤

⎦ , sz =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ (2.17)

are the 3 × 3 matrices for the (spin 1) photon.
Finally, we note the close correspondence with the two-component (spin 1

2 )
neutrino,

[

ϕphoton

χphoton

]

←→
[

ϕneutrino

χneutirno

]

, (2.18)

and the Dirac equation for the neutrino

i�
∂

∂t

[

ϕν
χν

]

=
[

0 −cσ · p
cσ · p 0

] [

ϕν
χν

]

, (2.19)

where σ is given in terms of the 2 × 2 Pauli matrices and p = �

i ∇.
We conclude by noting that, just as in the quantum field theory [4, 5] route to

the Schrödinger equation, the appearance of ∂
∂t and ∇ in Eq. (2.16) has not arisen

from operator arguments. In the next sections, we follow a de Broglie wave–particle
duality path to the Schrödinger equation.

2.3 The Classical Maxwell Route to the Schrödinger Equation

In the previous section, we followed a top-down quantum field route to the
Schrödinger equation, see Fig. 2.2. In particular, we saw that the quantum opti-
cal analysis of the single photon wave equation provided an interesting connection
between the Schrödinger (Dirac) equations for photons and neutrinos.

In the present section, we start with the classical Maxwell equations and obtain
a Schrödinger equation for the combination E + iH which previous workers [6, 7]
call the photon wave function. It is then natural to follow de Broglie and associate a
wave function with matter waves. This provides another (operator-free) route to the
Schrödinger equation.
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Thus, we define the “classical” photon wave function as

Ψm(r, t) = E(r, t) + iH(r, t) =
⎡

⎣

ψx (r, t)
ψy(r, t)
ψz(r, t)

⎤

⎦ , (2.20)

where the subscript m stands for Maxwell. Along the lines of the discussion in
Sect. 2.2, we may write the Maxwell equations as

i�Ψ̇m(r, t) = −cs · pΨm(r, t) , (2.21)

where p = �

i ∇, as before, but now

sx =
⎡

⎣

0 0 0
0 0 −i
0 i 0

⎤

⎦ , sy =
⎡

⎣

0 0 i
0 0 0
−i 0 0

⎤

⎦ , sz =
⎡

⎣

0 −i 0
i 0 0
0 0 0

⎤

⎦ . (2.22)

The present s matrix is related to the s of Sect. 2.2 by the factor i . It also should be
noted that the present photon wave function ψm is a 1×3 matrix whereas that of 2.2
is a 1 × 6 matrix. That is, the quantum optical analysis involves a two-component
wave function inΨε andΨH; in the present analysis we find it convenient to combine
the electric and magnetic contributions at the outset.

Since the energy per photon is �ω = �ck = cp, we write

i�Ψ̇m(r, t) = HΨm(r, t) , (2.23)

where the Hamiltonian is given by

H = −cs · p . (2.24)

The natural extension of this Schrödinger equation for the spin one massless
photon to the case of a spin zero particle of mass m is clear. That is, since E =
√

m2
0c4 + p2c2 is the finite mass extension of E = pc, we follow the lead of de

Broglie and write

i�Ψ̇ (r, t) =
√

m2
0c4 + p2c2Ψ (r, t) , (2.25)

where p = �

i ∇, just as it is for the photon.

Hence when m0c2 � pc we may write
√

m2
0c4 + p2c2 ∼= p2

2m + m0c2, and we
have

i�Ψ̇ (r, t) = −�
2

2m0
∇2Ψ (r, t) , (2.26)
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which is the non-relativistic wave equation, again obtained without introducing
operator-valued time or momentum.

2.4 The Single Photon and Two Photon Wave Functions

The photon wave function concept really comes into its own when solving problems
involving photon–photon correlations. Then, as is explained in [8], the two photon
wave function

ψ (2)(r1, t1; r2, t2) ≡ 〈0|Ê(r2, t2)Ê(r1, t1)|Ψ 〉 (2.27)

is the subject of interest. Under some conditions this may be written in terms of
single photon wave functions, as in the case of two photon cascade discussed below.
Some of the calculational details will be given since the physics (and the devil) is in
the details.

Consider first the single photon wave function. From Eqs. (2.3) and (2.4) and
ignoring polarization, we find

〈0|Ê(r, t)|ψγ 〉 =
√

�

2ε0V

∑

k

(νk)1/2gke−iνk t eik·(r−r0) 1

(νk − ω) + iΓ/2
. (2.28)

We now evaluate this function by converting the sum into an integral. The φ- and θ -
integrations can be carried out by choosing a coordinate system in which the vector
r−r0 points along the z-axis. We then carry out the integration over |k| by evaluating
the density of states and matrix elements at resonance. We are left with the integral

∫ ∞

−∞
dνk

e−iνk t+iνkΔr/c

(νk − ω) + iΓ/2
,

which is evaluated via contour methods and where Δr = |r − r0| is the distance
from the atom located at position r0 to the detector. For t < Δr/c, the contour lies
in the upper half-plane and if t > Δr/c, in the lower half-plane. On performing the
integration, we find

〈0|Ê(r, t)|ψγ 〉 = E
Δr
Θ

(

t − Δr

c

)

e−i(t− Δr
c )(ω−iΓ/2) , (2.29)

whereΘ is a unit step function and E is an overall constant with the units of electric
field.

Next we consider the problem of “interrupted” emission, see Fig. 2.3. The first
photon, associated with the a ↔ b transition, is described in the long time limit by
our “old friend”
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Fig. 2.3 Figure illustrating
decay of atom excited to state
a at a rate γa to non-decaying
level b. Upon detection of
a → b photon, population in
level b is transferred to b′ by
means of an external field
indicated by wavy line. Level
b′ decays to c at rate γb

|γ 〉 =
∑

k

ga,ke−ik·r

(ωab − c|k|) − iγa
|1k〉 . (2.30)

Likewise the second photon, associated with the b′ → c transition, is given in
the long time limit by

|φ〉 =
∑

q

gb,qe−i(q·r−cqt0)

(ωac − c|q|) − iγb
|1q〉 , (2.31)

where t0 is the time of detection of γ photon and the transfer from b → b′.
Using (2.30) and (2.31), it is easy to calculate the two photon wave function

Ψ (2)(r1, t1; r2, t2) as defined by (2.27). We find

ψ (2)(r1, t1; r2, t2) = ψγ (r1, t1)ψφ(r2, t2) + ψφ(r1, t1)ψγ (r2, t2) , (2.32)

where

ψγ (ri , ti ) = εγ

Δri
Θ

(

ti − Δri

c

)

e−γa (ti− Δri
c )e−iωab(ti− Δri

c ), (2.33)

and

ψφ(ri , ti ) = εφ

Δri
Θ

(

ti − t0 − Δri

c

)

e−γa (ti−t0− Δri
c )e−iωbc(ti−t0− Δri

c ), (2.34)

where i = 1, 2 designates the detector positions.

2.5 Conclusions

One motive for this chapter is to show that the time appearing in the classical
Maxwell equations is the same as the time parameter which appears in the TDSE.
Thus, the times appearing in classical mechanics and electrodynamics and quantum
mechanics are all the same.

Another motivation involves the definition of the photon wave function in terms
of the electric and magnetic operators as
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ΨE (r, t) = 〈0|Ê(r)|Ψ (t)〉, (2.35)

and

ΨH(r, t) = 〈0|Ĥ (r)|Ψ (t)〉. (2.36)

Equations (2.6) and (2.11) are the analog of the matter wave probability
amplitudes

Ψ (r, t) = 〈0|ψ̂(r)|Ψ (t)〉 (2.37)

discussed at length in Sect. 2.1.
As explained in [3], the discussion of the proceeding paragraph serves to put the

nice question of Kramers [9] in perspective. Specifically, Kramers asks,

When in 1924 De Broglie suggested that material particles should show wave phenom-
ena . . . such a comparison was of great heuristic importance. Now that wave mechanics has
become a consistent formalism one could ask whether it is possible to consider the Maxwell
equations to be a kind of Schrödinger equation of light particles . . .?

Kramers answers his question in the negative, he says,

Thus it is natural to ask what are the φ’s for photons? Strictly speaking there are no such
wave functions! One may not speak of particles in a radiation field in the same sense as
in the elementary quantum mechanics of systems of particles as used in the last chapter.
The reason is that the wave equation . . . solutions of Schrödinger’s time dependent wave
function corresponding to an energy Eλ have a circular frequency ωλ = +Eλ/�, while the
monochromatic solutions of the wave equation have both ±ωλ.

In other words, Kramers is saying that “the real electric wave has both exp(−iνk t)
and exp(iνk t) parts while the matter wave has only exp(−iνpt) type terms.”

However, from the quantum optical perspective, we see that the photon wave
functions (2.35) and (2.36) and the matter wave function (2.37) are identical in spirit.
An earlier discussion of the importance of the analytical (positive frequency) signal
in this context was given by Sudarshan [10].

The present measurement theory, “a-photon-is-what-a-photodetector-detects”
point-of-view is discussed further in [3]. We have also included in Sect. 2.4 a
detailed photon–photon correlation analysis [8] for the convenience of the reader.
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Chapter 3
Post-Pauli’s Theorem Emerging Perspective
on Time in Quantum Mechanics

Eric A. Galapon

3.1 Introduction

In a Hilbert space setting, Pauli’s well-known theorem asserts that no self-adjoint
operator exists that is conjugate to a semibounded or discrete Hamiltonian [55].
Pauli’s argument goes as follows. Assume that there exists a self-adjoint operator
T conjugate to a given Hamiltonian H, that is, [T,H] = i�I; such an operator
conjugate to the Hamiltonian is known as a time operator. Since T is self-adjoint,
the operator Uε = exp(−iεT) is unitary for all real number ε. Now if ϕE is an
eigenvector of H with the eigenvalue E , then, according to Pauli, the conjugacy
relation [T,H] = i�I implies that T is a generator of energy shifts so that HUεϕE =
(E + ε)ϕE+ε; this means that H has a continuous spectrum spanning the entire real
line because ε is an arbitrary real number. Hence, the ‘inevitable’ conclusion that if
the Hamiltonian is semibounded or discrete no self-adjoint time operator T will exist
to satisfy [T,H] = i�I. A modern reading of Pauli’s theorem is that the conjugacy
relation [T,H] = i�I implies that the pair T and H form a system of imprimitivities
over the entire real line, so that when H is semibounded or discrete T cannot be
self-adjoint [59].

It is Pauli’s theorem that has distilled the idea that self-adjointness and conjugacy
of a time operator for a semibounded or discrete Hamiltonian cannot be imposed
simultaneously [29, 43, 56, 59, 53, 60, 44]. Since quantum observables are pos-
tulated to be self-adjoint operators in the earlier days of quantum mechanics [63],
the non-existence of self-adjoint time operator has been interpreted to mean that
time is not a dynamical observable but a mere parameter marking the evolution of
a quantum system [58, 36, 54, 7, 2]. However, it is likewise widely recognized that
time acquires dynamical significance in questions involving the occurrence of an
event [59, 8, 52, 12] – when a nucleon decays [15] or when a particle arrives at a
given spatial point [51, 39] or when a particle emerges from a potential barrier [48].
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Moreover, there is the time–energy uncertainty principle, a reasonable interpretation
of which requires more than a parametric treatment of time [8, 1, 3, 9, 16, 17, 40–42].
This opposing view on time in quantum mechanics precipitated to what is now
known as the quantum time problem.

Pauli’s theorem has been so ingrained into the physicist’s psyche that it stifled
serious sustained research on the quantum dynamical aspect of time until quite
recently. The realization that quantum observables are not necessarily self-adjoint
but may be non-self-adjoint as first moments of positive operator-valued measures
(POVM) has brought a resurgence of interest on the quantum time problem. The
introduction of POVM observables has opened up the possibility of entertaining
non-self-adjoint, conjugate time operators as quantum observables, because such
operators may be first moments of certain POVMs [59, 2, 10]; the quantized free
time of arrival operator is an example of such a non-self-adjoint operator conju-
gate to the free Hamiltonian [14]. Since Pauli’s theorem has been understood to
mean that T and H are each other’s generator of translations in their respective
spectral measures, it has been the belief that a time operator must inevitably be
non-self-adjoint for semibounded Hamiltonians and must cardinally be covariant
and a POVM observable [29, 59, 60, 2, 8, 9, 14, 4]. Now covariance requires that a
time operator must at least have a completely continuous spectrum. This altogether
denies the possibility of constructing self-adjoint time operators that are bounded
and compact for semibounded Hamiltonians.

However, while a sustained development in the dynamical aspect of time under
the motivation of POVM observables is in progress, an unexpected development
has emerged: a counter example to Pauli’s theorem in the Hilbert space formulation
of quantum mechanics is constructed, exposing the subtle assumptions that go into
Pauli’s arguments that cannot be sustained. In [19] we have shown the consistency
of a bounded and self-adjoint operator conjugate to a discrete and semibounded
Hamiltonian, contrary to Pauli’s claim. There we have explicitly shown that the
quantized classical free time of arrival for a spatially confined particle is self-adjoint,
compact, and conjugate to the Hamiltonian in a non-dense subspace of the Hilbert
space. This in effect has demonstrated that the non-self-adjointness of the same
formal quantized operator for a particle in the real line has nothing to do with the
semiboundedness of the free Hamiltonian, again, contrary to expectations due to
Pauli’s theorem. The existence of such self-adjoint time operators has opened up
a new window through which the quantum time problem can be viewed from a
different perspective.

In this chapter, we synthesize the progress that we have made since the appear-
ance of [19], in particular, to our solution to the quantum time of arrival problem
in the interacting case [50, 4, 49, 21]. Our solution consists of generalizing the
time of arrival for a spatially confined particle in [19] under more general boundary
conditions and in the presence of an interaction potential. This generalization led to
the introduction of the confined quantum time of arrival (CTOA) operators, which
are both conjugate and self-adjoint [24, 25, 22]. The dynamical behaviors of the
eigenfunctions of the CTOA operators lead to a coherent theory of quantum arrival
in one dimension that can yield both time of arrival distributions and at the same
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give a mechanism for the appearance of particle at the moment of its arrival [26, 23].
The resulting theory of quantum arrival invites us to reconsider our beliefs on time
operators and on the role of time in quantum measurement theory.

3.2 Quantum Canonical Pairs

3.2.1 Canonical Pairs in Hilbert Spaces

We cannot start to appreciate the significance of the counter example to Pauli’s the-
orem without a clear understanding of the properties of a canonical pair in a Hilbert
space. To the physicist, a canonical pair is a pair of operators (Q,P) satisfying the
canonical commutation relation, [Q,P] = i�I, (CCR), but a quantum canonical pair
is much more elaborate than that. Failure to recognize its ramifications can lead to
unwarranted claims and conclusions regarding the properties of such a pair [11].
Let H be the system Hilbert space, which we assume to be infinite dimensional. If
we seek a pair of operators in H, Q and P, with respective domains DQ and DP,
satisfying the CCR, then two facts must be recognized:

1. No pair (Q,P) exists to satisfy the CCR in the entire Hilbert space H.
That is, there are no Q and P such that [Q,P]ϕ = i�ϕ for all ϕ in H, or
[Q,P] = i�IH, where IH is the identity in H. A pair (Q,P) can at most satisfy
the CCR in a proper subspace, Dc, of H; that is, the relation [Q,P]ϕ = i�ϕ
holds only for all those ϕ in Dc, where Dc is always smaller than H. Thus a
canonical pair in a Hilbert space is a triple C(Q, P;Dc) – a pair of Hilbert space
operators, Q and P, together with a non-trivial, proper subspace Dc of H, which
we refer to as the canonical domain. The canonical domain may or may not be
dense;1 it may not even be invariant under either Q or P. These subtle properties
of the canonical domain generally forbid us from acting arbitrarily with Q and
P on Dc. Failure to pay attention to these small details can lead to erroneous
generalizations; for example, the conclusion that the spectra of Q and P are the
entire real line because they satisfy the CCR (see, for example, [11]) requires, at
least, the canonical domain be dense and invariant under Q and P. When even just
one of these conditions is not satisfied, the conclusion no longer holds. In general
the commutator domain, Dcom = DQP ∩DPQ, the domain in which (QP−PQ) is
defined in the Hilbert space, does not coincide with the canonical domain. That
is, the canonical commutation relation [Q,P]ϕ = i�ϕ does not hold in general
for arbitrary elements of Dcom but only for certain elements of a subset Dc of
Dcom.

2. There are canonical pairs in the same Hilbert space that do not share the same
properties.

1 A subspace D of H is dense if the only vector orthogonal to all elements of D is the zero vector.
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This means that, for a given Hilbert space H, we can find different pairs of oper-
ators (Q j ,P j ) acting in H, together with corresponding subspaces D j , such that we
have the canonical pairs C(Q j ,P j ;D j ). The pairs (Q j ,P j ) and (Q j ′ ,P j ′ ) may be
different in the sense that there is no unitary operator U such that Q j ′ = UQ j U−1

and P j ′ = UP j U−1. For such cases, the pairs C(Q j ,P j ;D j ) will have different
spectral properties, e.g., one pair may be self-adjoint, another non-self-adjoint. Also
it is possible that for a given operator Q there may be several distinct Pk’s with
corresponding subspaces Dk – that is, Pk �= Pk ′ and Dk �= Dk ′ for k �= k ′ – such
that for every k we have the canonical pair D(Q,Pk ;Dk). Of course for a given P
and Dc, such that we have the canonical pair C(Q, P;Dc), we can also find another
operator P′ = P + F with [Q,F]ϕ = 0 for all ϕ in Dc such that we have another
canonical pair C ′(Q,P′;Dc). But we mean more than that: For Pk �= Pk ′ there may
not be an F such that Pk ′ = Pk +F. We will illustrate later how these different cases
may arise in certain physical systems.

3.2.2 Classification of Hilbert Space Solutions to the CCR

For a given Hilbert space H, we refer to a canonical pair C(Q,P;Dc), with Q and
P both operators in H, as a solution to the CCR.2 Solutions split into two major
categories, according to whether the canonical domain Dc is dense or not. We shall
say that a canonical pair is of dense-category if the corresponding canonical domain
is dense; otherwise, it is of closed category. Solutions under these categories further
split into distinct classes of unitary equivalent pairs, and each class will have its
own set of properties. Under such categorization of solutions, the CCR in a given
Hilbert space H assumes the form [Q,P] ⊂ i�PD̄c

, where PD̄c
is the projection

operator onto the closure D̄c of the canonical domain Dc. If the pair C(Q,P;Dc)
is of dense category, then the closure of Dc is just the entire H, so that PD̄c

is the
identity IH of H. In fact, we are considering a more general solution set to the CCR
than has been considered so far. The traditional reading of the CCR in H is the form
[Q,P] ⊂ i�IH, which is just the dense category.

It can be shown that the canonical and commutator domains coincide for dense
category canonical pairs, that is, Dc = Dcom; on the other hand, the canonical
domain is smaller than and contained in the commutator domain for closed category
canonical pairs, that is, Dc ⊂ Dcom [27]. Since only the dense category solutions
have been the subject of investigations so far, we have gotten used to dealing with
canonical pairs in the entire commutator domain and may feel suspicious with the

2 We avoided to use the more mathematically accurate term representation in favor of the term
solution. The reason is that representation carries an extra connotation in physics in which it usu-
ally implies equivalence. For example, we have position and momentum representations, and we
know that these two representations are equivalent so that it does not matter which one we use in
describing our system. In fact, the use of phrases such as representations of the Heisenberg pair
in physics literature has added to the confusion on the exact nature of quantum canonical pairs, in
particular, giving the impression that different canonical pairs have similar properties.
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closed category solutions. However, the confined time of arrival operators, together
with their Hamiltonians, form such a class of canonical pairs, and they, as we will
see later, have an unambiguous physical origin.

3.2.3 Is There a Preferred Solution to the CCR?

We discussed above that for a given Hilbert space H there are numerous solutions
to the canonical commutation relation that do not necessarily share the same prop-
erties. So is there a preferred solution to the CCR? Should we accept only solutions
of dense or closed category of a specific class? Let us see how different solutions
may arise in a given Hilbert space and see how each solution may represent different
systems.

Let us consider the well-known position and momentum operators in three differ-
ent configuration spaces: The entire real line, Ω1 = (−∞,∞); the bounded segment
of the real line, Ω2 = (0, 1); and the half line Ω3 = (0,∞). Quantum mechanics
in each of these happens in the Hilbert spaces H1 = L2(Ω1), H2 = L2(Ω2), and
H3 = L2(Ω3), respectively. The position operators, Q j , in H j , for all j = 1, 2, 3,
arise from the fundamental axiom of quantum mechanics that the propositions for
the location of an elementary particle in different volume elements of Ω j are com-
patible (see Jauch [45] for a detailed discussion for Ω1, which can be extended to
Ω2 andΩ3). They are self-adjoint and are given by the operators (Q jϕ)(q) = qϕ(q)
for all ϕ in the domain DQ j = {

ϕ ∈ H j : Q jϕ ∈ H j
}

. Note that Q1 and Q3 are
both unbounded, while Q2 is bounded.

Now each of the configuration spaces, Ω1, Ω2, and Ω3, has an identifying prop-
erty. Ω1 is fundamentally homogeneous – points there are physically indistinguish-
able. On the other hand,Ω2 andΩ3 are not homogeneous, the boundaries being the
distinguishing factor. However, their inhomogeneities are not the same, their number
of boundaries being different. These properties can be expressed mathematically in
terms of the respective representation of translation in each of these configuration
spaces. Translation in Ω1 is isomorphic to the additive group of real numbers; in
Ω2, to the group of rotations of the circle; in Ω3, to the semigroup of additive pos-
itive numbers. Thus in H1 and H2 there are one-parameter unitary operators U1(s),
U2(s) representing translations in H1 and H2, respectively. And in H3 there is a
completely one-parameter semigroup U3(s) representing translations. If we define
the momentum operator as the generator of translation in the configuration space,
then the momentum operator in H j is the operator P j defined on all vectors ϕ for
which the limit � lims→0(is)−1(U j (s) − IH)ϕ = P jϕ exists. Explicitly, it is given by
(P jϕ)(q) = −i�ϕ′(q).

In each H j , there exists a dense common subspace D j of Q j and P j , which is
invariant under Q j and P j , for which we have the canonical pair C j (Q j ,P j ;D j ).
The C j ’s are of the same dense category, but they belong to different classes: Q1 and
P1 are both self-adjoint, having absolutely continuous spectra spanning the entire
real line Re and forming a system of imprimitivities in Re, and their restrictions
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in D1 are essentially self-adjoint. Q2 is self-adjoint with an absolutely continuous
spectra in (a, b), and its restriction in D2 is essentially self-adjoint; P2 is self-adjoint
with a pure point spectrum, but its restriction in D2 is not essentially self-adjoint.
Q3 is self-adjoint with an absolutely continuous spectra in (0,∞), and its restriction
in D3 is essentially self-adjoint; P3 is maximally symmetric and non-self-adjoint,
thus without any self-adjoint extension. These varied properties of the position and
momentum canonical pairs are obviously the consequences of the underlying prop-
erties of their respective configuration spaces.

So is there a preferred solution to the CCR? Recall that there is only one separable
Hilbert space; that is, all separable Hilbert spaces are isomorphically equivalent to
each other, so that there are unitary operations transforming one Hilbert space to
another. The three Hilbert spaces, H1, H2, and H3, are separable, and hence can be
transformed to a common Hilbert space HC , together with all the operators in them,
including their respective position and momentum operators. The canonical pairs,
{C1, C2, C3}, are then solutions of the CCR in the same Hilbert space HC . And we
have seen that they are of dense category solutions, but of different classes – and,
most important, they represent different physical systems. If we look at the diverse
properties of the above C j ’s, we can see that these properties are reflections of the
fundamental properties of the underlying configuration spaces of their respective
physical systems.

It is then misguided to prefer one solution of the CCR over the rest or to require
a priori a particular category of a specific class of a solution without a proper con-
sideration of the physical context against which the solution is sought. For example,
if we insist that only canonical pairs forming a system of imprimitivities over the
real line are acceptable, then, within the context of position–momentum pairs, we
are imposing homogeneity in all configuration spaces. But why impose the homo-
geneity of, say,Ω1 in intrinsically inhomogeneous configuration spaces likeΩ2 and
Ω3?

From the position–momentum example, it can be concluded that the set of prop-
erties of a specific solution to the CCR is consequent to a set of underlying fun-
damental properties of the system under consideration, or to the basic definitions
of the operators involved, or to some fundamental axioms of the theory, or to some
postulated properties of the physical universe. That is, a specific solution to the CCR
is canonical in some sense, i.e., of a particular category and of a particular class. It is
conceivable to impose that a given pair be canonical as a priori requirement based,
say, from its classical counterpart, but not without a deeper insight into the underly-
ing properties of the system. In other words, we do not impose in what sense a pair is
canonical if we do not know much, we derive in what sense instead. Furthermore, if
a given pair is known to be canonical in some sense, then we can learn more about
the system or the pair by studying the structure of the sense the pair is canonical
[19].

We can appreciate this statement further by noting that finding solutions to the
CCR in a Hilbert space is akin to solving a differential equation in which there is
no preferred solution until appropriate boundary or initial condition is imposed.
Also as in differential equations where the imposed conditions may not admit
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a solution, the CCR may, too, not admit a solution for a given required set of
properties of the sought-after canonical pair. For example, we may require a solution
in L2(0,∞) for the position and momentum operator pair that are both self-adjoint.
But, while the position operator is self-adjoint, the momentum operator cannot be
self-adjoint. Hence, no solution exists for the sought pair. It is clear though that
the reason for the non-existence of solution lies in the inhomogeneous property of
the underlying configuration space; and the non-self-adjointness of the momentum
operator, being the generator of translation in the configuration space, is a statement
of this fact in the system Hilbert space. It is important to bear in mind that, while
the set of properties we require of a canonical pair may be physically motivated,
the mathematical structure of Hilbert spaces is under no obligation to submit to our
wishes. If no solution exists, it may be because our required properties are incon-
sistent or not physically possible in the first place. And if we pay attention to why
no solution exists or why a certain class of solutions exists, we may have a better
understanding of the physical underpinnings of the system under consideration.

3.2.4 Example: Dense and Closed Category Solutions
to the Time–Energy Canonical Commutation Relation

Consider a particle in a force-free interval [−l, l]. The system Hilbert space is
H = L2[−l, l]. Let the Hamiltonian be (Hϕ)(q) = −�

2ϕ′′(q)/2μ subject to the
boundary conditions ϕ(−l) = e−2iγ ϕ(l) and ϕ′(−l) = e−2iγ ϕ′(l), for some fixed
γ with 0 < |γ | < π/2. We demonstrate that there exist at least two self-adjoint
time operators conjugate to H, forming dense and closed category solutions to the
time–energy canonical commutation relation [T,H]ϕ = i�ϕ. Moreover, we find
these time operators to be both compact and hence non-covariant.

Now there exists a compact and self-adjoint operator T1 such that T1 and H form
a canonical pair of dense category [20]. This operator has the integral representation

(T1ϕ) (q) =
∫ l

−l

[

i�
∑

k,k ′

′ ϕ
(γ )
k (q)ϕ(γ )

k ′ (q ′)∗

Ek − Ek ′

]

ϕ(q ′) dq ′ , (3.1)

where the φ(γ )
k (q)’s are the eigenfunctions of H and the Ek’s are the corresponding

eigenvalue (see Eq. 3.42), in which the primed sum indicates that k = k ′ is excluded.
That is, the pair T1 and H satisfy the canonical commutation relation in some dense
subspace D(1)

c of H,

([T1,H]ϕ)(q) = i�ϕ(q), for all ϕ(q) ∈ D(1)
c , (3.2)

D(1)
c =

{

ϕ(q) =
∑

k

akϕ
(γ )
k (q),

∑

k

|ak |2 <∞,
∑

k

ak = 0

}

. (3.3)
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Since the canonical domain is dense, i.e., orthogonal only to the zero vector, the
canonical pair C(T1,H;D(1)

c ) is of dense category. T1 is compact because its kernel
is square integrable.

There exists a compact and self-adjoint operator T2 such that T2 and H form a
canonical pair of closed category. This operator has the integral representation

(T2ϕ)(q)=
∫ l

−l

[
μ

4� sin γ
(q + q ′)

(

ei γ H (q − q ′) + e−i γ H (q ′ − q)
)
]

ϕ(q ′) dq ′,(3.4)

where H (q − q ′) is the Heaviside function. That is, the pair H and T2 satisfies the
canonical commutation relation in a non-dense subspace of H,

([T2,H]ϕ) (q) = i �ϕ(q) for all ϕ(q) ∈ D(2)
c , (3.5)

D(2)
c =

{∫ l

−l
ϕ(q) dq = 0, ϕ(−l) = ϕ(l) = 0, ϕ′(−l) = ϕ′(l) = 0

}

. (3.6)

Since the canonical domain D(2)
c is not dense, i.e., it is orthogonal to any vector

φ(q) = constant �= 0, the canonical pair C(T2,H;D(2)
c ) is of closed category. T2 is

likewise compact because its kernel is square integrable.
This example shows that it is possible for a given Hamiltonian to have numer-

ous distinct associated time operators. So which time operator? Learning from our
example with the position and momentum operators, we cannot know which one
until we knew the origins of these operators or studied their properties. Remem-
ber that the quantum time problem has many aspects – quantum arrival, quantum
traversal, quantum tunneling – so it is possible that one time operator is more
appropriate than the other for a certain aspect of the quantum time problem. While
both operators are compact, it is not necessary that they will exhibit the same
dynamical behaviors, so that they do not necessarily represent the same aspect of
time.

The rest of the chapter is devoted to solving the time of arrival problem by finding
the appropriate time of arrival operator solution to the time–energy canonical com-
mutation relation. From this we will uncover the physical origin of the time operator
T2 and find the operator −T2 as a time of arrival operator for a spatially confined
particle under certain boundary condition. More importantly, we will find that the
solution set for such a system in the presence of a continuous interaction poten-
tial consists of self-adjoint, compact, and conjugate time operators – the confined
time of arrival (CTOA) operators. It will become clear why the CTOA operators
are appropriately referred to as time of arrival operators; and, in the process, it will
be made evident why compact and non-covariant time operators can be physically
meaningful.
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3.3 Time of Arrival Operators

3.3.1 The Quantum Time of Arrival Problem

The quantum time of arrival problem seeks to find the time of arrival distribution
of a quantum particle at a given arrival point in the configuration space, for a given
initial state [50]. A solution to the problem within standard quantum mechanics
constitutes finding a time of arrival operator T conjugate to the system Hamilto-
nian H, [H,T]ϕ = i�ϕ, that admits a spectral resolution, not necessarily projection
valued, from which the time of arrival distribution can be computed in the standard
way.

However, the consensus is that no time of arrival operator can be constructed in
the most general case of arbitrary arrival point and of arbitrary interaction potential.
In the early days of quantum mechanics, the reason for this consensus is that no
self-adjoint time of arrival operator can be constructed, in accordance with Pauli’s
theorem. This belief has been bolstered by the observation that the quantization
of the free classical time of arrival expression is non-self-adjoint and admits no
self-adjoint extension. But even with the acceptance of POVMs as observables,
so that the non-self-adjoint free time of arrival operator can be interpreted as a
POVM observable [14], the belief is still there that no time of arrival operator can be
constructed.

In one dimension, the most quoted reason is that the classical time of arrival at
some point x , which is given by

Tx (q, p) = −sgn(p)

√

μ

2

∫ q

x

dq ′
√

H (q, p) − V (q ′)
, (3.7)

where H is the Hamiltonian and V is the interaction potential and (q, p) are the
position and momentum at t = 0, does not admit a sensible quantization because
Eq. (3.7) is generally not everywhere real and single valued in the entire phase space
[50, 57]. Moreover, the known existence of obstruction to quantization in Euclidean
space forbids the existence of quantization that satisfies the Dirac Poisson-bracket-
commutator correspondence; this implies that even if somehow we can quantize
Eq. (3.7), then in general the quantized time of arrival operator is not conjugate
with the Hamiltonian. For these reasons it is believed that if a theory of quan-
tum arrival existed it could not rest on the spectral resolution of a time of arrival
operator.

However, it is now clear that these objections to the construction of time of arrival
operators can be overcome. In this section, we describe how a time of arrival oper-
ator conjugate to a given Hamiltonian can be constructed. And in later sections we
will describe how self-adjoint, compact, and conjugate time of arrival operators can
be obtained from this time of arrival operator. We will see how these self-adjoint
operators can address not only the quantum time of arrival problem but also the
question of appearance of particles in quantum mechanics.
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3.3.2 The Idea of Supraquantization

Quantization seeks to derive the quantum counterpart of a classical observable
f (q, p) by some associative mapping Q of the real-valued function f (q, p) to a
maximally symmetric operator F in the system Hilbert space H, i.e., Q( f ) �→ F.
A paramount requirement of quantization is that the Poisson bracket of two (classi-
cal) observables quantizes into the commutator of the separately quantized observ-
ables, in particular, Q({ f, g}) = (i�)−1 [Q( f ),Q(g)]. However, there is a well-
known obstruction to quantization in Euclidean space (and other spaces) which
says that no quantization exists that satisfies the Poisson-bracket-commutator corre-
spondence requirement for all observables [32, 33, 31, 34, 30, 35, 38, 61]. This
is unsatisfactory because the said correspondence is necessary, for example, in
ensuring that required evolution properties of a certain class of observables are
satisfied.

Thus in [18, 21] we addressed the problem of obstruction to quantization by
proposing the method of supraquantization – the construction of quantum observ-
ables without quantization and the subsequent quantum mechanical derivation of its
classical counterpart. The central idea of supraquantization is that quantum observ-
ables can be grouped meaningfully into distinct classes of observables, with each
class possessing a set of properties that distinguishes the observables of the class
from other observables not belonging to the class. It is the central problem of
supraquantization to determine this set of properties shared by the class of observ-
ables. Once these properties are known, the observables of the class are determined
by imposing the axioms of quantum mechanics in conjunction with other principles
of physics and by requiring that the quantum observables of the class reduce to their
classical counterparts in the classical limit.

For a specific class of classical observables, the required supraquantization may
be accomplished by referring to one of the members of the class and employing a
transfer principle to the rest. The transfer principle can be expressed as follows: Each
element of a class of observables shares a common set of properties with the rest of
its class such that when a particular property is identified for a specific element of
the class that property can be transferred to the rest of the class without discrimina-
tion. This, together with the axioms of quantum mechanics and the correspondence
principle, allows us to infer a general property of the observables of the class by
solving a particular observable of the class and then abstracting from that particular
observable the sought after property.

The idea of supraquantization is employed in [18, 21] in constructing time
of arrival operators without quantization and is described in the rest of this sec-
tion. We describe below how solving for the free quantum time of arrival opera-
tor without quantization leads to solving the time of arrival operator in the pres-
ence of interaction potential using the transfer principle. This consequently leads
to the derivation of the classical time of arrival from pure quantum mechanical
consideration.
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3.3.3 Construction of Time of Arrival Operators Without
Quantization

Before we proceed, observe that by changing variables from (q, p) to (q̃ = q −
x, p̃ = p) in Eq. (3.7), we find that Eq. (3.7) becomes the time of arrival at the
origin for the potential Ṽ (q̃) = V (q̃ + x). Hence it is sufficient for us to consider
the time of arrival at the origin in the development to follow, for when the arrival
point is different from the origin we only have to appropriately change variables.
Our problem now is to find the appropriate time of arrival operator T at the origin
for a given Hamiltonian H for a quantum particle in one dimension.

While our ultimate goal is to construct self-adjoint and conjugate Hilbert space
time of arrival operators for a given interaction potential, we pose the construc-
tion problem in the rigged Hilbert space Φ× ⊃ H∞ ⊃ Φ as an intermediate step,
where Φ is the fundamental space of infinitely differentiable functions in the real
line with compact supports, H∞ = L2(−∞,∞) is the Hilbert space closure of Φ
under the usual metric of quantum mechanics and Φ× is the space of functionals
on Φ. The operator T that we seek generally maps Φ into Φ× and has the integral
representation

(Tϕ) (q) =
∫ ∞

−∞
〈q|T

∣
∣q ′〉 ϕ(q ′)dq ′, (3.8)

for all ϕ(q) in Φ. In this form, solving for T is finding for the kernel 〈q|T
∣
∣q ′〉 . But

how do we determine the kernel 〈q|T
∣
∣q ′〉 without resorting to quantization?

We accomplish this in two steps. First, it is by identifying the set of properties of
the time of arrival operator T and the set of appropriate physical principles that will
uniquely identify T. Second, it is by implementing the transfer principle where we
solve the construction of the free time of arrival operator using the results of first
step to abstract out the general form of the time of arrival operator kernel.

Let us enumerate the properties of the time of arrival T that we require:

1. Being a time of arrival operator, it must at least evolve according to dT/dt =
−IΦ , where IΦ is the identity in Φ, at least in the neighborhood of t = 0. This
condition translates to the generalized canonical commutation relation

(

[H×,T]ϕ
)

(q) = i�ϕ(q) (3.9)

for all ϕ(q) in Φ, where H× is the rigged Hilbert space extension of H in Φ×.
This is a property arising from the axioms of quantum mechanics.

2. For the operator T to be identifiable as a time of arrival operator, it must reduce
to the classical time of arrival in the classical limit. That is, it must satisfy the
condition

T0(q, p) =lim
�→0

T�(q, p) , (3.10)
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where T0(q, p) is the classical time of arrival at the origin and T�(q, p) is the
Wigner transform of the kernel

T�(q, p) =
∫ ∞

−∞

〈

q + v

2

∣
∣
∣T

∣
∣
∣q − v

2

〉

exp
(

−i
v p

�

)

dv . (3.11)

This is a property arising from the correspondence principle.
3. The operator T must satisfy the time reversal symmetry ΘTΘ−1 = −T, where
Θ is the time reversal operator; this translates to the condition

〈q|T
∣
∣q ′〉 ∗ = − 〈q|T

∣
∣q ′〉 . (3.12)

4. In keeping with the requirement that quantum observables must yield real expec-
tation values, we require T to be Hermitian; this translates into the condition

〈

q ′∣∣T |q〉 ∗ = 〈q|T
∣
∣q ′〉 . (3.13)

The time reversal and hermicity conditions already restrict the functional form
of the kernel. Equation (3.12) implies that 〈q|T

∣
∣q ′〉 is purely complex, so that

〈q|T
∣
∣q ′〉 = iτ (q, q ′), where τ (q, q ′) is real valued. On the other hand, Eq.

(3.13) implies that τ (q, q ′) = −τ (q ′, q), which allows us to write τ (q, q ′) =
T (q, q ′)S(q, q ′), where T (q, q ′) = T (q ′, q) and S(q, q ′) = −S(q ′, q). The time
reversal and hermicity conditions then dictate that the kernel is of the form
〈q|T

∣
∣q ′〉 = iT (q, q ′)S(q, q ′), with T (q, q ′) and S(q, q ′) to be determined. The

conjugacy (3.9) and the correspondence principle (3.10) conditions will further
restrict the forms of T (q, q ′) and S(q, q ′), but we will find the above-enumerated
conditions are not sufficient to uniquely identify T. However, supplementing them
with the condition that only parameters of the system enter into the construction will
identify T uniquely.

Recognize that solving for the time of arrival operator T for a given Hamilto-
nian H is essentially solving for the generalized canonical commutation relation
(3.9) under certain conditions specified by Eqs. (3.10), (3.12), and (3.13). This is
an example of what we have discussed earlier that canonical pairs may arise as
solutions to specific problems. We will see below that there are in fact numerous
solutions to Eq. (3.9), but only a particular solution will be found acceptable.

3.3.4 Non-interacting Case

We now solve the free particle kernel without quantization.3 The problem is to deter-
mine the unknown T (q, q ′) and S(q, q ′) for the free particle. Substituting the free
Hamiltonian and the time of arrival operator back into Eq. (3.9) and after performing

3 Here we give a more transparent solution than the one provided in [21].
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two integrations by parts, we arrive at

([H,T]ϕ)(q) =
∫

Σ

i

[

− �
2

2μ

∂2T (q, q ′)
∂q2

+ �
2

2μ

∂2T (q, q ′)
∂q ′2

]

S(q, q ′)ϕ(q ′) dq ′

+
∫

Σ

i
�

2

2μ

[

−
{

2
∂T

∂q

∂S

∂q
+ T (q, q ′)

∂2S

∂q2

}

+
{

2
∂T

∂q ′
∂S

∂q ′ + T (q, q ′)
∂2S

∂q ′2

}]

ϕ(q ′)dq ′ , (3.14)

where Σ is the support of ϕ(q). We now have to choose T (q, q ′) and S(q, q ′) such
that T is a solution to the generalized CCR. The first term can be made to vanish
without specifying S(q, q ′) by imposing that T (q, q ′) is a continuous solution to the
partial differential equation

− �
2

2μ

∂2T (q, q ′)
∂q2

+ �
2

2μ

∂2T (q, q ′)
∂q ′2 = 0 . (3.15)

This has the general solution T (q, q ′) = f (q + q ′) + g(q − q ′), where f and g are
arbitrary; however, since T (q, q ′) = T (q ′, q), g must be an even function.

Moreover, functions T (q, q ′) and S(q, q ′) must be chosen such that the second
term equals the right-hand side of Eq. (3.9). This is only possible if the brack-
eted quantity in the second term involves the Dirac delta function and, perhaps, its
derivatives. Since T (q, q ′) has already been chosen to satisfy a second-order partial
differential equation, so that it has continuous second-order partial derivatives, the
delta function must only come from S(q, q ′). The general form of S(q, q ′) that leads
to the required Dirac delta function is S(q, q ′) = C H (q − q ′) + B H (q ′ − q),
where C and B are constants and H (x) is the Heaviside step function. But since
S(q, q ′) = −S(q ′, q), we must have B = −C or S(q, q ′) = C sgn(q − q ′), where
sgn(x) = H (x) − H (−x) is the sign function.

Substituting S(q, q ′) = C sgn(q − q ′) back into the second term leads to

([H,T]ϕ)(q) =
{

−2C
�

μ

[
∂T

∂q
+ ∂T

∂q ′

]

q ′=q

}

i�ϕ(q) . (3.16)

Hence T is a solution to the CCR if the bracketed quantity is unity. If we choose
C = −μ/�, we must have

[
∂T

∂q
+ ∂T

∂q ′

]

q ′=q

= 1

2
. (3.17)

This implies that T (q, q ′) has finite first derivatives along the line q = q ′. For a
solution of the form T (q, q ′) = f (q + q ′), the only possible solution satisfying
(3.17) is given by T (q, q ′) = (q + q ′)/4; however, the general solution satisfying
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(3.17) is given by T ′(q, q ′) = (q + q ′)/4 + h((q − q ′)2), where h(x) continuous
second derivative everywhere.

We now require that the correspondence principle be satisfied. That is, the clas-
sical time of arrival at the origin, given by T = −μq/p, must be derived from T.
We first consider the solution T (q, q ′) = (q + q ′)/4 so that we have the kernel

〈q|T
∣
∣q ′〉 = μ

i�

(q + q ′)
4

sgn(q − q ′) . (3.18)

This is an acceptable solution if the corresponding operator T reduces to the classi-
cal free time of arrival. Indeed we have its Wigner transform

∫ ∞

−∞

〈

q + v

2

∣
∣
∣T

∣
∣
∣q − v

2

〉

exp
(

−i
v p

�

)

dv= μ

2i�
q
∫ ∞

−∞
sgn(v)e−ivp/� dv=−μ q

p
. (3.19)

Thus Eq. (3.18) solves the kernel problem. However, as we have noted above, the
function T (q, q ′) is not, so far, uniquely determined because we can have, say, the
solution T ′(q, q ′) = (q + q ′)/4 + a(q − q ′)2 for some real constant a. This gives
another solution T′ whose Wigner transform is given by

∫ ∞

−∞

〈

q + v

2

∣
∣
∣T′

∣
∣
∣q − v

2

〉

exp
(

−i
v p

�

)

dv = −μ q

p
− 4aμ�

2 1

p3
, (3.20)

which reduces to the classical free time of arrival as � → 0. For a fixed we find
that the two operators T and T′ satisfy the correspondence principle in the classical
limit.

Hence the enumerated properties of the time of arrival operator that we seek is not
sufficient to uniquely identify the solution. They must somehow be supplemented.
Notice that T′ involves a constant a with unit of inverse length that cannot be gener-
ated from the available parameters of the free particle, which are � and μ. Hence to
consider T′ we have to introduce another constant of nature which is questionable
because quantum mechanics does well without the need for such another physical
constant. Thus restricting ourselves to solutions involving parameters of the system
alone, we are left with the solution T (q, q ′) = (q+q ′)/4, and the free time of arrival
operator kernel is given by Eq. (3.18).

3.3.5 Interacting Case

Having solved the free particle kernel, we proceed in implementing the transfer
principle. We hypothesize that all time of arrival operator kernels assume the same
form. Thus, from Eq. (3.18), the kernel takes on the form

〈q|T
∣
∣q ′〉 = μ

i �
T (q, q ′) sgn(q − q ′) , (3.21)
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where T (q, q ′) depends on the interaction potential and which we refer to as the ker-
nel factor. From the time reversal symmetry and hermicity requirement, we require
that T (q, q ′) be real valued and symmetric, T (q, q ′) = T (q ′, q). We determine
T (q, q ′) by imposing condition (3.9) on T. Substituting Eq. (3.21) back into the
left-hand side of Eq. (3.9) and performing two successive integration by parts, we
arrive at

(

[H×,T]ϕ
)

(q) = i�

(
dT (q, q)

dq
+ ∂T (q ′, q ′)

∂q
+ ∂T (q, q)

∂q ′

)

ϕ(q) dq

−i
μ

�

∫

Σ

[(

− �
2

2μ

∂2

∂q2
+ V (q)

)

T (q, q ′) −
(

− �
2

2μ

∂2

∂q ′2 + V (q ′)
)

T (q, q ′)
]

×sgn(q − q ′)ϕ(q ′) dq ′, (3.22)

where Σ is the support of ϕ(q). We point out that our ability to arrive at this expres-
sion has been made possible by extending the formulation in a rigged Hilbert space.

If H× and T are to be conjugate in Φ, then the right-hand side of Eq. (3.22) must
reduce to Eq. (3.9). Following the lead of the free particle case, Eq. (3.22) reduces
to Eq. (3.9) if we impose that T (q, q ′) solves the partial differential equation

− �
2

2μ

∂2T (q, q ′)
∂q2

+ �
2

2μ

∂2T (q, q ′)
∂q ′2 + (

V (q) − V (q ′)
)

T (q, q ′) = 0 (3.23)

and satisfies the condition

dT (q, q)

dq
+ ∂T (q, q ′)

∂q

∣
∣
∣
∣
q=q ′

+ ∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=q

= 1 . (3.24)

Equation (3.24) defines a family of operators conjugate to the Hamiltonian in the
sense required by Eq. (3.9).

The conditions guaranteeing uniqueness of T (q, q ′) is found by appealing to the
transfer principle. We determine the set of conditions satisfied by the free particle
kernel factor that ensures it uniqueness and then impose the same conditions in the
interacting case. By inspection, the free particle kernel factor T (q, q ′) = (q + q ′)/4
satisfies both (3.23) and (3.24), and it satisfies the conditions

T (q, q) = q

2
, T (q,−q) = 0 . (3.25)

These two conditions uniquely identify the free particle solution. By virtue of
the transfer principle, we impose the same conditions (3.25) on the solution to
Eq. (3.23). It can be established that the boundary conditions (3.25) guarantee that
boundary condition (3.24) is satisfied; moreover, Eqs. (3.25) already imposes the
condition T (q, q ′) = T (q ′, q) [21]. Likewise, it can be shown that for continuous
potentials Eq. (3.23) has a unique solution in the entire qq ′-plane [22, 47].
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In general, the solution to the time kernel equation falls into whether the system
under consideration is linear or non-linear. For linear systems, systems with the
interacting potential V (q) = aq2 + bq + c for some constants a, b, and c, the
solution is given by Tlin(q, q ′) = T0(q, q ′), where

T0(q, q ′) = 1

2

∫ η

0
0 F1

(

; 1;
μ

2�2
[V (η) − V (s)]

)

ds

∣
∣
∣
∣
η= q+q′

2

, (3.26)

in which 0 F1 is a specific hypergeometric function. On the other hand, for non-linear
systems with everywhere analytic potentials, the solution to the time kernel equation
is given by Tnli (q, q ′) = T0(q, q ′) + T1(q, q ′) + T2(q, q ′) + · · · , where T1(q, q ′),
T2(q, q ′), . . . are determined by the potential and are found by solving explicitly the
time kernel equation for the given potential.

The correspondence principle can now be established via the Wigner transform
of the kernel of T. For linear systems, we have T�(q, p) = t0(q, p); while for non-
linear systems, T�(q, p) = t0(q, p) + �

2t1(q, p) + �
4t2(q, p) + · · · , where t0(q, p)

is given by

t0(q, p) = −
∞
∑

k=0

(−1)k (2k − 1)!!

k!

μk+1

p2k+1

∫ q

0
[V (q) − V (q ′)]k dq ′, (3.27)

and the �
2 j t j (q, p)’s arise from the Tj (q, q ′) in the solution for Tnli (q, q ′). For

potentials continuous in the neighborhood of the origin, Eq. (3.27) can be summed
to yield the classical time of arrival T0(q, p) at the origin. That is, t0(q, p) is an
expansion of T0(q, p) in the neighborhood of the arrival point; for this reason, we
referred to t0(q, p) as the local time of arrival. Hence we have our operator T reduc-
ing to the classical time of arrival in the classical limit. And we have solved the
supraquantization of the time of arrival operator, at least, for continuous potentials.

3.3.6 Time of Arrival Operators in Representation-Free Form

In the construction of the confined time of arrival operators in the next section, we
will need to explicitly write our time of arrival operator T in terms of the position
and momentum operators, q and p, that is, in representation-free form. T must be
written in them such that, in coordinate representation, the kernel of T is given by
Eq. (3.21). Moreover, T must be in the form such that the generalized time–energy
CCR, ([H×,T]ϕ)(q) = i�ϕ(q), assumes the formal relation [H,T] = i�I, where H
is the formal Hamiltonian H = p2/2μ+ V(q) [28].

This can be accomplished by Weyl quantizing the transform T�(q, p) of the
kernel. For everywhere analytic potentials, T�(q, p) is an expansion in qn p−m for
positive integers n and m. The explicit operator form of T is then obtained with the
formal replacement scheme
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qn

pm
�→ T−m,n = 1

2n

n
∑

j=0

(
n

j

)

q j p−mqn− j (3.28)

in T�(q, p). In this form, the canonical commutation relation formally reads
[H,T] = i�I; this can be shown by using the known algebra of the formal operators
T−m,n due to Bender and Dunne [28, 5, 6].

For linear systems, it is clear that the formal time of arrival operator T is obtained
by Weyl quantizing the classical local time of arrival since T�(q, p) = t0(q, p).
On the other hand, for non-linear systems, T is the quantization of t0(q, p) plus
quantum corrections required to satisfy the time–energy commutation relation; due
to the existence of obstruction to quantization in Euclidean space, T (for non-linear
systems) cannot be constructed, except for linear systems, via direct quantization of
the classical time of arrival.

3.3.7 Example: The Harmonic Oscillator

Let us consider the harmonic oscillator whose interaction potential is given by
V (q) = μω2 q2/2. Substituting the potential back into the general expression for
the classical time of arrival (3.7) yields the time of arrival at the origin T0(q, p) =
− tan−1 (μωq/p) /ω, for position q and momentum p at t = 0. On the other hand,
the local time of arrival at the origin is given by

t0(q, p) = −
∞
∑

k=0

(−1)k

2k + 1
μ2k+1ω2k q2k+1

p2k+1
, (3.29)

obtained by either expanding T0(q, p) or using Eq. (3.27). We demonstrate how
Eq. (3.29) can be obtained using supraquantization.

Substituting the harmonic oscillator potential back into Eq. (3.23), the kernel
factor can be solved to yield [21]

T (q, q ′) = �

2μω

∞
∑

k=0

1

(2k + 1)!

(μω

2�

)2k+1
(q + q ′)2k+1 (q − q ′)2k

= �

2μω

sinh
(
μω

2�
(q2 − q ′2)

)

(q − q ′)
. (3.30)

This solution is unique and analytic in the entire qq ′-plane. Using the identity

∫ ∞

−∞
ym−1sgn(y)e−i xydy = 2(m − 1)!/(im xm) , (3.31)

the Wigner transform of the kernel can be calculated to yield
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T�(q, p) = 1

2iω

∞
∑

k=0

1

(2k + 1)!

(μω

2�

)2k+1
(2q)2k+1

∫ ∞

−∞
v2ksgn(v) exp

(

−i
v p

�

)

dv

= −
∞
∑

k=0

(−1)k

2k + 1
μ2k+1ω2k q2k+1

p2k+1
. (3.32)

We find that T�(q, p) coincides exactly with the local time of arrival in the neigh-
borhood of the origin.

Now quantizing the local time of arrival yields the harmonic oscillator time of
arrival operator in formal representation-free form

T = − 1

ω

∞
∑

k=0

(−1)k

2k + 1
μ2k+1ω2k+1T−2k−1,2k+1 . (3.33)

This can shown to be formally conjugate with the formal harmonic oscillator Hamil-
tonian

H = 1

2μ
p2 + μω2

2
q2 . (3.34)

That is, [H,T] = i�I on using the formal canonical commutation relation [q,p] =
i�I [28]. Here we see that the result of supraquantization coincides with the Weyl
quantization of the local time of arrival.

3.3.8 Example: The Quartic Oscillator

Let us consider the quartic oscillator whose interaction potential is given by V =
λq4/4. The local time of arrival can be calculated from Eq. (3.27) to give

t0(q, p) = −
∞
∑

j=0

(−1) j Γ (5/4)Γ ( j + 1/2)√
π2 jΓ ( j + 5/4)

μ j+1λ j q4 j+1

p2 j+1
. (3.35)

In the following, we demonstrate that T�(q, p) = t0(q, p) +O(�2). And this is just
a special case of our general result on the equality of T�(q, p) and t0(q, p) only in
the limit of vanishing or infinitesimal � for non-linear systems.

Substituting the quartic oscillator back into Eq. (3.23), the kernel factor can be
solved to yield [21]

T (q, q ′) = 1

4

∞
∑

k=0

∞
∑

j=2k

σk, j

(
μλ

16�2

) j−k

(q + q ′)4 j+1−6k(q − q ′)2 j , (3.36)

where the σk, j ’s are constants given by
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σ0, j = Γ (5/4)

8 j j!Γ ( j + 5/4)
, (3.37)

σk, j =
j−2k
∑

m=0

σk−1,2(k−1)+m

8 j−2k+1−m (− j) j−2k+1−m

(− 1
4 − j + 3k

2

)

j−2k+1−m

, (3.38)

for k = 1, 2, . . . and j ≥ 2k, in which (a)n is the Pochammer symbol. This solution
is likewise unique.

Using the same identity, we can similarly calculate the Wigner transform of the
kernel to yield

T�(q, p) = −
∞
∑

j=0

(−1) j Γ (5/4)Γ ( j + 1/2)√
π2 jΓ ( j + 5/4)

μ j+1λ j q4 j+1

p2 j+1

−�
2 · 1

4

∞
∑

j=2

(−1) jσ1, j (2 j)!μ jλ j−1 q4 j−5

p2k+1
− · · ·

= τ0(q, p) + �
2τ1(q, p) + �

4τ2(q, p) + · · · , (3.39)

where the τ j (q, p)’s are independent of �. Comparing the leading term, which is
independent of �, we find that it is just the local time of arrival at the origin. Thus
the classical time of arrival is recovered from the time of arrival operator.

Quantizing the local time of arrival yields the quartic oscillator time of arrival
operator in formal representation-free form

T = −
∞
∑

j=0

(−1) j Γ (5/4)Γ ( j + 1/2)√
π2 jΓ ( j + 5/4)

μ j+1λ j T−4 j−1,2k+1

−�
2 · 1

4

∞
∑

j=2

(−1) jσ1, j (2 j)!μ jλ j−1T−4 j+5,2k+1 − · · · . (3.40)

This can be shown to be formally conjugate with the formal quartic oscillator Hamil-
tonian

H = 1

2μ
p2 + λq4 . (3.41)

That is, [H,T] = i�I on using the formal canonical commutation relation [q,p] =
i�I [28]. We find that the leading term is just the Weyl quantization of the local time
of arrival. However, the appearance of terms in powers of � shows that quantization
fails to yield a formal time of arrival operator that is conjugate with the Hamiltonian.
This is a manifestation of the obstruction to quantization in Euclidean space.
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3.4 Confined Time of Arrival Operators

Technically the confined time of arrival (CTOA) operators are the projections of the
formal operator T in the Hilbert space Hl = L2[−l, l] [24, 25, 22, 28]. Physically
they are the time of arrival operators for a confined particle in the interval [−l, l]
under certain boundary conditions imposed on the momentum operator of the con-
fined particle. Since the time of arrival operator T is explicitly in terms of the posi-
tion and momentum operators, a CTOA operator is the operator T written in terms
of the position and momentum operator of the confined particle. The CTOA operator
is then obtained by specifying the position and momentum operator. The position
operator is unique and is given by the bounded operator q, (qϕ) (q) = qϕ(q) for
all ϕ(q) in Hl . On the other hand, the momentum operator is not unique and has to
be considered carefully. We assume the system to be conservative and we require
that the evolution of the system be generated by a purely kinetic Hamiltonian in the
absence of interaction potential. The former requires a self-adjoint Hamiltonian to
ensure that time evolution is unitary. The latter requires a self-adjoint momentum
operator commuting with the kinetic energy operator.

These two requirements are only satisfied by the following choice of the momen-
tum operator. For every |γ | < π/2, define the self-adjoint momentum opera-
tor (pγ φ)(q) = −i�φ′(q), with domain Dpγ consisting of those vectors φ(q) in
Hl with square integrable first derivatives and that satisfy the boundary condition
φ(−l) = e−2iγ φ(l). With pγ self-adjoint, the Hamiltonian is purely kinetic in the
non-interacting case, i.e., Hγ = (2μ)−1p2

γ . The momentum and the Hamiltonian
then commute and have the common set of eigenvectors

φ
(γ )
k (q) = 1

2l
exp

[

i (γ + kπ )
q

l

]

, (3.42)

with respective eigenvalues pk,γ = �(γ + kπ )l−1, Ek = p2
k,γ (2μ)−1, for all k = 0,

±1, ±2, . . .. Since T depends on the momentum operator, the projection of T in Hl

is a family of operators
{

Tγ
}

, with each Tγ corresponding to the momentum pγ .
The operators Tγ are the confined time of arrival operators.

To find the Tγ ’s explicitly we need to have the explicit forms of the operators
T−m,n in Hl for every γ and positive integer m and n, in particular their kernels in
coordinate representation. There are two cases to consider: for non-periodic bound-
ary conditions, γ �= 0; and for periodic boundary condition, γ = 0. Both give the
compact and self-adjoint operators

Tγ �=0
−m,n = 1

2

n
∑

j=0

(
n

j

)

q j p−m
γ qn− j , Tγ=0

−m,n = 1

2

n
∑

j=0

(
n

j

)

q j P−m
0 qn− j , (3.43)

where P−1
0 = Ep−1

0 E in which E is the projector onto the subspace orthogonal to
the null space of p0. The physical motivation and mathematical justification of using
P−1

0 is elaborated in [19].
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For continuous potentials, the index m is of the form m = 2s + 1 for some
positive integer s. Now in coordinate representation, the operators Tγ−2s−1,n in the

Hilbert space Hl assume the integral form
∫ l
−l 〈q|Tγ−2s−1,n

∣
∣q ′〉 ϕ(q ′)dq ′, where the

kernels are given by [22]

〈q|T−2s−1,n

∣
∣q ′〉 =

(
q + q ′

2

)n

〈q| p−2s−1
∣
∣q ′〉 , (3.44)

where

〈q| p−2s−1
γ �=0

∣
∣q ′〉= 1

2 sin γ

(−1)s(q − q ′)2s

�2s+1(2s)!

(

eiγ H (q − q ′) + e−iγ H (q ′ − q)
)

,(3.45)

〈q|P−2s−1
0

∣
∣q ′〉 = i(−1)s

2�2s+1

(q − q ′)2s

(2s)!
sgn(q − q ′) − i

l

(−1)s

2�2s+1

(q − q ′)2s+1

(2s + 1)!
. (3.46)

Notice that the second term in Eq. (3.46) can be obtained by integrating the factor of
sgn(q−q ′) in the first term with respect to the variable v = (q−q ′). This observation
will be important below.

Because the Tγ−2s−1,n’s are Fredholm integral operators in coordinate represen-
tation, the projection of the formal operator T in Hl = L2[−l, l] is the family of
Fredholm integral operators

{

(Tγ ϕ)(q) =
∫ l

−l
〈q|Tγ

∣
∣q ′〉 ϕ(q ′)dq ′, |γ | ≤ π/2

}

. (3.47)

Using the coordinate representation of the operators T−2s−1,n in Hl for a given γ ,
the kernel of Tγ can be shown to be given by [22]

〈q|Tγ �=0

∣
∣q ′〉=−μT (q, q ′)

� sin γ

(

eiγ H (q − q ′)+e−iγ H (q ′ − q)
)

, (3.48)

〈q|Tγ=0

∣
∣q ′〉=μ

i�
T (q, q ′)sgn(q−q ′)− μ

il�
B(q, q ′) , (3.49)

where T (q, q ′) is the kernel factor and B(q, q ′) is given by

B(q, q ′) =
∫ (q−q ′)

0
T (u, v)dv

∣
∣
∣
∣
∣
u=q+q ′

, (3.50)

in which T (u, v) = T (q, q ′) with u = (q + q ′) and v = (q − q ′). Equation (3.50)
follows from the observation made above concerning Eq. (3.46).
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For continuous potentials the kernel 〈q|Tγ
∣
∣q ′〉 is square integrable; and since it

is symmetric, the confined time of arrival operator Tγ is compact and self-adjoint.4

The compactness of Tγ implies that Tγ has a complete set of square integrable
eigenfunctions with a pure discrete spectrum. This further implies that the confined
time of arrival operators cannot be covariant as their eigenvalues do not constitute
the real line. We will see later on that even though the Tγ ’s are non-covariant they
are physically meaningful. Moreover, we will provide for a numerical evidence that
covariance may be recovered in the limit as the confining length l increases indefi-
nitely.

With the kernel factor T (q, q ′) = (q + q ′)/4 for the free particle, the origin
of the operator −T2 in Sect. 3.2.4 is now clear: It is just the confined time of
arrival operator for the given system for the given boundary conditions on the
Hamiltonian.

3.5 Conjugacy of the Confined Time of Arrival Operators

We now address the conjugacy of the CTOA operators Tγ with their respective
Hamiltonians Hγ . We will show that the commutator domain and the canonical
domain do not coincide and that the confined time of arrival and Hamiltonian pair is
a canonical pair of closed category. The proof of the non-triviality of the canonical
domain is given elsewhere [27].

3.5.1 Non-periodic Boundary Conditions

We first determine the commutator domain Dcom of Tγ and the Hamiltonian Hγ for
γ �= 0; for continuous potentials, the potential energy operator is defined every-
where in Hl so that the domain of Hγ equals the domain of the kinetic energy
operator. Now Dcom consists of all vectors common to the domains of the operators
TγHγ and HγTγ . Since Tγ is defined everywhere in the Hilbert space, the domain
of TγHγ is just the domain of Hγ , DTγHγ

= DHγ
. Since DHγ

is dense, DTγHγ
is

dense. On the other hand, the domain of HγTγ consists of those vectors ϕ in H
such that Tγ ϕ falls into the domain DHγ

of Hγ . In particular, it consists of those
ϕ(q) such that (Tγ ϕ)(−l) = e−2γ (Tγ ϕ)(l) and (Tγ ϕ)′(−l) = e−2γ (Tγ ϕ)′(l).

One can explicitly work out the implementation of these boundary conditions to
yield

4 In [22] two confined time of arrival operators are introduced: The algebra preserving CTOA
operators, which are just the operators we refer to here as the confined time of arrival operators;
and the quantized CTOA operators, which are the projections of the Weyl-quantized local time
of arrival in the Hilbert space Hl . The two are the same for linear systems, while the later is the
leading term of the former for non-linear systems.
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DHγTγ =
{

ϕ(q) ∈ L2[−l, l] : ϕ′(q) ∈ L2[−l, l],
∫ l

−l
φT (q ′)ϕ(q ′)dq ′ = 0,

∫ l

−l
ϕT (q ′)ϕ(q ′)dq ′ + il sin γ

(

e−iγ ϕ(l) + eiγ φ(−l)
) = 0

}

, (3.51)

where

φT (q ′) =
∫ l

−l

∂T (q, q ′)
∂q

dq, ϕT (q ′) =
∫ l

−l

∂2T (q, q ′)
∂q2

dq . (3.52)

Since DTγHγ
= DHγ

the domain of the commutator is found by restricting the
domain of HγTγ in the domain of Hγ . Explicitly the commutator domain is
given by

D[Hγ ,Tγ ] =
{

ϕ(q) ∈ DHγ
: ϕ′(q) ∈ L2[−l, l],

∫ l

−l
φT (q ′)ϕ(q ′)dq ′ = 0,

∫ l

−l
ϕT (q ′)ϕ(q ′)dq ′ + 2il sin γ e−iγ ϕ(l) = 0

}

. (3.53)

Since T (q, q ′) has continuous first and second partial derivatives with respect to
both variables, the functions φT (q ′) and ϕT (q ′) are both square integrable in [−l, l]
so that they belong to Hl . This implies that the condition

∫ l
−l φT (q ′)ϕ(q ′)dq ′ = 0

requires that the vector φT in Hl be orthogonal to the domain DHγTγ . The commu-
tator domain is then not dense.

For all ϕ in the commutator domain, the commutator can be explicitly evaluated
to yield

(

[Hγ ,Tγ ]ϕ
)

(q) = i�

(

dT (q, q)

dq
+ ∂T (q, q ′)

∂q

∣
∣
∣
∣
q ′=q

+ ∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=q

)

ϕ(q)

− μ

� sin γ

∫ l

−l

(

− �
2

2μ

∂T (q, q ′)
∂q2

+ �
2

2μ

∂T (q, q ′)
∂q ′2 (V (q) − V (q ′))T (q, q ′)

)

× (

eiγ H (q − q ′) + e−iγ H (q ′ − q)
)

ϕ(q ′)dq ′

+ �

2 sin γ
e−iγ ϕ′(l)

(

T (q, q ′)
∣
∣
q ′=−l

− T (q, q ′)
∣
∣
q ′=l

)

− �

2 sin γ
e−iγ ϕ(l)

(

∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=−l

− ∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=l

)

. (3.54)

We arrive at this expression by performing two successive integration by parts in
evaluating the action of the operator TγHγ .

The bracketed quantity in the first term equals one, by virtue of the boundary con-
ditions on the kernel factor Eq. (3.24); and the second term vanishes, since T (q, q ′)
solves Eq. (3.23). Then the required commutator is given by
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(

[Hγ ,Tγ ]ϕ
)

(q) = i�ϕ(q) + �

2 sin γ
e−iγ ϕ′(l)

(

T (q, q ′)
∣
∣
q ′=−l − T (q, q ′)

∣
∣
q ′=l

)

− �

2 sin γ
e−iγ ϕ(l)

(

∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=−l

− ∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=l

)

.(3.55)

If the second and third terms vanish, then Hγ and Tγ are conjugate in their entire
commutator domain. However, they do not generally vanish because the vectors
ϕ(q) in D[Hγ ,Tγ ], together with their first derivatives, do not necessarily vanish at the
boundaries.

But if the commutator is further restricted to those elements of the commutator
domain that satisfies ϕ(∂) = 0

(

or ϕ(−l) = ϕ(l) = 0
)

and ϕ′(∂) = 0
(

or ϕ′(−l) =
ϕ′(l) = 0

)

, the pair forms a canonical pair,

(

[Hγ ,Tγ ]ϕ
)

(q) = i�ϕ(q) for all ϕ(q) ∈ Dcan(Hγ ,Tγ ) , (3.56)

Dcan(Hγ ,Tγ ) =
{

ϕ(q) ∈ DHγ
: ϕ(∂) = 0, ϕ′(∂) = 0,

∫ l

−l
φT (q ′)ϕ(q ′)dq ′ = 0,

∫ l

−l
ϕT (q ′)ϕ(q ′)dq ′ = 0

}

. (3.57)

The canonical domain is orthogonal to the vectors φT and ϕT , hence not dense. The
pair Hγ and Tγ then forms a canonical pair of closed category.

3.5.2 Periodic Boundary Condition

The commutator domain for H0 and T0 can be similarly derived. It is given by

D[H0,T0] =
{

ϕ(q) ∈ DH0 :
∫ l

−l
φT,B(q ′)ϕ(q ′)dq ′ = 0 ,

∫ l

−l
ϕT,B(q ′)ϕ(q ′)dq ′ + 4lϕ(l) = 0

}

, (3.58)

where

φT,B(q ′) =
(

T (q, q ′)
∣
∣
q=l + T (q, q ′)

∣
∣
q=−l

)

− 1

l

(

B(q, q ′)
∣
∣
q=l − B(q, q ′)

∣
∣
q=−l

)

,

(3.59)
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ϕT,B(q ′) =
(

∂T (q, q ′)
∂q

∣
∣
∣
∣
q=l

+ ∂T (q, q ′)
∂q

∣
∣
∣
∣
q=−l

)

−1

l

(

∂B(q, q ′)
∂q

∣
∣
∣
∣
q=l

− ∂B(q, q ′)
∂q

∣
∣
∣
∣
q=−l

)

. (3.60)

Since T (q, q ′) and B(q, q ′) are both continuous, together with their first derivatives,
φT B(q ′) and ϕT B(q ′) both belong to the Hilbert space. Then because of the condition
∫ l
−l φT B(q ′)ϕ(q ′)dq ′ = 0, the commutator domain is not dense.

For all ϕ in the commutator domain, the commutator can be explicitly evaluated
to yield

([H0,T0]ϕ) (q) = i�ϕ(q)

− μ

i�l

∫ l

−l

[

− �
2

2μ

∂2 B(q, q ′)
∂q2

+ �
2

2μ

∂2 B(q, q ′)
∂q ′2 + (V (q) − V (q ′))B(q, q ′)

]

ϕ(q ′)dq ′

− i�

2
ϕ′(l)

[(

T (q, q ′)
∣
∣
q ′=l

+ T (q, q ′)
∣
∣
q ′=−l

)

+ 1

l

(

B(q, q ′)
∣
∣
q ′=l

− B(q, q ′)
∣
∣
q ′=−l

)]

+ i�

2
ϕ(l)

[(

∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=l

+ ∂T (q, q ′)
∂q ′

∣
∣
∣
∣
q ′=−l

)

+1

l

(

∂B(q, q ′)
∂q ′

∣
∣
∣
∣
q ′=l

− ∂B(q, q ′)
∂q ′

∣
∣
∣
∣
q ′=−l

)]

, (3.61)

where we have performed the same simplifications done above to arrive at the first
term. Again the pair is not conjugate in the entire commutator domain. However, we
see that further restriction of the commutator domain yields a canonical domain. In
contrast to the non-periodic case, vanishing of the ϕ(q)’s and their derivatives at the
boundaries is not sufficient to enforce conjugacy of the pair.

Let us define the integral operator (ϕB)(q) = ∫ l
−l 〈q|B

∣
∣q ′〉 ϕ(q ′)dq ′ with kernel

given by

〈q|B
∣
∣q ′〉 = − �

2

2μ

∂2 B(q, q ′)
∂q2

+ �
2

2μ

∂2 B(q, q ′)
∂q ′2 + (V (q) − V (q ′))B(q, q ′) . (3.62)

This does not vanish because B(q, q ′) is not a solution to Eq. (3.23). Thus restricting
the commutator domain to those vectors that belong to the null space of B and to
those vectors, together with their first derivative, that vanish at the boundaries yields
a canonical domain. Then we have the canonical commutation relation

([H0,T0]ϕ) (q) = i�ϕ(q) for all ϕ(q) ∈ Dcan(H0,T0) , (3.63)
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Dcan(H0,T0) =
{

ϕ(q) ∈ DH0 : ϕ(∂) = 0, ϕ′(∂) = 0,
∫ l

−l
φT B(q ′)ϕ(q ′)dq ′ = 0,

∫ l

−l
ϕT B(q ′)ϕ(q ′)dq ′ = 0, (Bϕ)(q) = 0

}

. (3.64)

The canonical domain is again not dense because there are non-zero vectors orthog-
onal to the canonical domain; moreover, it is contained in the null space of B, which
is not dense. The pair H0 and T0 then forms a canonical pair of closed category.

The above results are meaningful only if the canonical domain is not trivial. In
the following, we will consider the non-interacting case to demonstrate the non-
triviality of the canonical domain of the confined time of arrival operators. In the
process, we will be introducing a method of constructing explicitly the vectors of
the canonical domain.

3.5.3 Example: Non-interacting Case

3.5.3.1 Non-periodic Boundary Conditions

For the non-interacting case, the kernel factor is given by T (q, q ′) = (q + q ′)/4.
From this, the vectors φT and ϕT orthogonal to the canonical domain can be deter-
mined to yield φT (q ′) = l/2 and ϕT (q ′) = 0. The canonical domain reduces to

Dcan(Hγ ,Tγ ) =
{

ϕ(q) ∈ DH0 : ϕ(∂) = 0, ϕ′(∂) = 0,
∫ l

−l
ϕ(q)dq = 0

}

. (3.65)

Clearly Dcan is not dense because it is orthogonal to the non-zero vector φ(q) =
constant . We now show that this subspace is not trivial and in fact it contains an
infinite number of elements.

We do so by constructing explicit elements of the canonical domain. Every
element of DHγ

can be expanded in terms of the complete eigenfunctions of the

momentum operator, ϕ(q) = ∑

k ϕk φ
(γ )
k (q), where ϕk = ∫ l

−l φ
(γ )∗
k (q)ϕ(q)dq. For

ϕ(q) to belong to the domain of the Hamiltonian, it must have a square integrable
second derivative; this imposes the condition

∑

k k4 |ϕk |2 < ∞ on the ϕk’s. Now
ϕ(q) belongs to the canonical domain if it satisfies all the required conditions, which
translates to conditions on the coefficients ϕk’s. The conditions ϕ(∂) = 0, ϕ′(∂) = 0,
and

∫ l
−l ϕ(q)dq translate respectively into

∞
∑

k=−∞
(−1)kϕk = 0,

∞
∑

k=−∞
(−1)kk ϕk = 0,

∞
∑

k=−∞

(−1)k

kπ + γ ϕk = 0 . (3.66)

For vectors in the domain of the Hamiltonian, Eqs. (3.66) determine a system of
three equations determining three of the ϕk’s in terms of the rest of the coefficients.
This allows us to construct the basic vectors that belong to the canonical domain,
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that is, the vectors with the smallest number of expansion coefficients. Let k0, k1,
k2, and k3 be any integer, with ki �= k j for i �= j . Then the vector

ϕ(q) = ϕk0φ
(γ )
k0

(q) + ϕk1φ
(γ )
k1

(q) + ϕk2φ
(γ )
k2

(q) + ϕk3φ
(γ )
k3

(q) (3.67)

belongs to the domain of the Hamiltonian. We can fix ϕk0 and determine the three
other coefficients for ϕ(q) to belong to the canonical domain. Equations (3.66) then
yield the system of equations in matrix form

⎛

⎝

(−1)k1 (−1)k2 (−1)k3

(−1)k1 k1 (−1)k2 k2 (−1)k3 k3
(−1)k1

k1π+γ
(−1)k2

k2π+γ
(−1)k3

k3π+γ

⎞

⎠

⎛

⎝

ϕk1

ϕk2

ϕk3

⎞

⎠ = (−1)k0+1ϕk0

⎛

⎝

1
k0
1

πk0+γ

⎞

⎠ (3.68)

that determines the coefficients ϕk1 , ϕk2 , and ϕk3 in terms of ϕk0 .
For a given ϕk0 , the coefficients ϕk1 , ϕk2 , and ϕk3 are determined if the determinant

of the matrix

C =
⎛

⎝

(−1)k1 (−1)k2 (−1)k3

(−1)k1 k1 (−1)k2 k2 (−1)k3 k3
(−1)k1

k1π+γ
(−1)k2

k2π+γ
(−1)k3

k3π+γ

⎞

⎠ (3.69)

does not vanish. The determinant is given by

det C = (−1)k1+k2+k3π2 (k3 − k2)(k1 − k3)(k1 − k2)

(πk3 + g)(πk2 + g)(πk1 + g)
, (3.70)

which does not vanish for different positive integers k1, k2, and k3. Hence the canon-
ical domain of the pair Hγ and Tγ is non-trivial and is in fact infinite dimensional.

The above method of constructing the basic vectors of the canonical domain
holds for an arbitrary confined time of arrival operator. In showing for the non-
triviality of the canonical domain, one needs only to construct the matrix C from
the boundary conditions and show that the determinant does not vanish. We will use
this procedure in what follows.

3.5.3.2 Periodic Boundary Condition

For the periodic case, the canonical domain is not only determined by the free kernel
factor but also by the kernel B(q, q ′), which is obtained from Eq. (3.50) and is given
by B(q, q ′) = (q2−q ′2)/4. Given T (q, q ′) and B(q, q ′), we have the relevant vectors
and kernel φT B(q ′) = q ′/2, ϕT B(q ′) = 0, and 〈q|B

∣
∣q ′〉 = −�

2/2μ, respectively.
Then the canonical domain reduces to
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Dcan([H0,T0]) =
{

ϕ(q) ∈ DH0 : ϕ(∂) = 0, ϕ′(∂) = 0,
∫ l

−l
q ′ϕ(q ′)dq ′ = 0,

∫ l

−l
ϕ(q ′)dq ′ = 0

}

. (3.71)

The condition
∫ l
−l ϕ(q ′)dq ′ = 0, which follows from the requirement that ϕ(q)

must belong to the null space of B, restricts the canonical domain to those ϕ(q)
with coefficient ϕ0 = 0, ϕ(q) = ∑

k �=0 ϕkϕ
(γ )
k (q), with ϕk = ∫ l

−l ϕ
(0)∗
k (q)ϕ(q)dq;

and since ϕ(q) must belong to the domain of the Hamiltonian, the coefficients must
also satisfy the requirement

∑

k k4 |ϕk |2. The rest of the conditions on the canonical
domain read

∑

k �=0

(−1)ϕk = 0,
∑

k �=0

(−1)kkϕk = 0,
∑

k �=0

(−1)k

k
ϕk = 0 . (3.72)

The conditions (3.72) again determine three of the coefficients in terms of the rest
of the coefficients. For three different integers, k1, k2, and k3, the matrix of the
coefficients is given by

C =
⎛

⎝

(−1)k1 (−1)k2 (−1)k3

(−1)k1 k1 (−1)k2 k3 (−1)k3 k3
(−1)k1

k1

(−1)k2

k2

(−1)k3

k3

⎞

⎠ . (3.73)

The determinant of C can be calculated to yield

det C = (−1)k1+k2+k3
(k2 − k1)(k1 − k3)(k2 − k3)

k1k2k3
, (3.74)

which does not vanish for different non-zero k j ’s. Hence the canonical domain is
not trivial and is infinite dimensional.

3.6 Dynamics of the Eigenfunction of the Confined Time
of Arrival Operators

3.6.1 CTOA Operator Eigenvalue Problem

Let us first summarize the properties of the eigenfunctions and eigenvalues of the
CTOA operators. The immediate properties of the CTOA operators follow from
their being compact self-adjoint operators. This implies that they have a complete
orthogonal set of (square integrable) eigenfunctions with corresponding discrete
eigenvalues. Moreover, their compactness implies that their eigenvalues are bounded
and they get denser as they approach the value zero. The boundary condition
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T (q, q) = q/2 dictates that the trace of Tγ vanishes, Tr[Tγ ] = ∫ l
−l

〈

q
∣
∣Tγ

∣
∣ q
〉

dq ∝
∫ l
−l T (q, q) dq = 0. This implies that the sum of the eigenvalues of Tγ is zero,

which means that Tγ has positive and negative eigenvalues.
For a fixed γ , the relationship between eigenfunctions corresponding to positive

and negative eigenvalues can be established from the following symmetry of the
kernels:

〈q|Tγ ′
∣
∣q ′〉 = − 〈−q|Tγ ′

∣
∣−q ′〉 ∗ , 〈q|Tγ ′′

∣
∣q ′〉 = − 〈q|Tγ ′′

∣
∣q ′〉 ∗ , (3.75)

where 0 < |γ ′| < π/2 and |γ ′′| = 0, π/2. These symmetries correspond to the
respective symmetries of the confined time of arrival operators

Π−1Θ−1Tγ ′ΘΠ = −Tγ ′, Θ−1Tγ ′′Θ = −Tγ ′′ . (3.76)

If ϕτ,γ ′ is an eigenfunction of Tγ ′ with the eigenvalue τ , then the first symmetry
dictates that the vector ΘΠϕτ,γ ′ is an eigenfunction of Tγ ′ with the corresponding
eigenvalue −τ . Also if ϕτ,γ ′′ is an eigenfunction of Tγ ′′ with the eigenvalue τ , then
the second symmetry dictates thatΘϕτ,γ ′′ is an eigenfunction of Tγ ′′ with the corre-
sponding eigenvalue −τ . This is consistent with the above result that the eigenvalues
sum to zero.

Analytical calculations for the non-interacting case [24, 25] and numerical com-
putations for the interacting case [22]5 show that the confined time of arrival opera-
tors are non-degenerate, and they come in pairs of positive and negative eigenvalues,
in accordance with the above results. In particular, the eigenfunctions can be written
in the form ϕ±γ,n , n = 1, 2, 3, . . . , where Tγ ϕ±γ,n = ±τγ,nϕ±γ,n , with τγ,n > 0. The
eigenvalues are ordered according to τγ,1>τγ,2>τγ,3>. . .. From the above symme-
tries, we have the relationships ϕ−γ ′,n(q) = [ϕ+γ ′,n(−q)]∗ and ϕ−γ ′′,n(q) = [ϕ+γ ′′,n(q)]∗.
The eigenfunctions are classifiable into nodal (vanishing at some point in [−l, l]) or
non-nodal (non vanishing anywhere in [−l, l]). The eigenfunctions further come in
pairs of nodal and non-nodal ones, i.e.,

Pk =
{

ϕ±γ,2k+1, ϕ
±
γ,2k+2

}

, (3.77)

for k = 0, 1, 2, . . . , with corresponding pair of eigenvalues τ±k = {

τ±2k+1, τ
±
2k+2

}

(except perhaps for the first two largest eigenvalue–eigenfunctions), such that τ±2k+1
and τ±2k+2 have neighboring values. The significance of this pairing is best

5 Due to the intractability of solving the kernel factor for non-linear systems, the CTOA operator
eigenvalue problem for these systems has been investigated using the leading term of the kernel
factor, which is known for any potential. We expect that the results are already representative of
the exact results because the corrections to the leading term differ from the largest correction by a
factor of �

2 in the classical limit. On the other hand, the full solution for linear systems have been
used in the numerical investigation. The reader is referred to [22] for a detailed discussion of the
numerical computations.
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appreciated in the limit for arbitrarily large l, which we will consider later. Nodal
and non-nodal eigenfunctions alternate.

3.6.2 Dynamics of the CTOA Operator Eigenfunctions

Using symmetry arguments, it can be established that the negative eigenvalue–
eigenfunctions have exactly the same dynamics as those of the positive eigenvalue–
eigenfunctions in the time-reversed direction. It is then sufficient for us to consider
in detail the dynamical behaviors of the positive eigenvalue–eigenfunctions. Our
analysis is based on the numerical evaluation of ϕ+γ,n(q, t) = (e−iHγ t/�ϕ+γ,n)(q).

Our numerical simulation shows remarkable similarity of the time evolutions of
the eigenfunctions across the set of potentials considered, which included V (q) =
{0, q, q2/2, q2/2 + q} for linear systems and V (q) = {q4, sin q, e−q2/2} for non-
linear systems [22]. Foremost, the uncertainty of the position operator with respect
to the evolved eigenfunction ϕ+γ,n(q, t), which is given by

(Δq) (t) =
√
〈

ϕ+γ,n(t)
∣
∣q2

∣
∣ϕ+γ,n(t)

〉− 〈

ϕ+γ,n(t) |q|ϕ+γ,n(t)
〉2
, (3.78)

obtains its minimum value at the time equal to the eigenvalue corresponding to the
eigenfunction ϕ+γ,n(q). Moreover, the minimum uncertainty decreases with increas-
ing n so that the eigenfunctions become increasingly localized at the origin at their
eigenvalues with n. For eigenfunctions that are not eigenfunctions of the parity
operator, the expectation value of the position operator evolves such that it crosses
the origin at their respective eigenvalues; these eigenfunctions arise in general for
γ �= 0, π/2. The non-nodal eigenfunctions evolve such that the probability den-
sity is maximum at the origin at their eigenvalues. On the other hand, the nodal
eigenfunctions evolve with the probability density having two peaks approaching
the origin, with the time of closest approach at their eigenvalues.

In short, the CTOA-operator eigenfunctions (within numerical accuracy) evolve
according to Schrödinger’s equation such that the event of the position expectation
value assuming zero and the event of the position uncertainty being minimum occur
at the same instant of time equal to their corresponding eigenvalues. Figures (3.1)
and (3.2) show these behaviors for non-interacting and harmonic oscillator cases,
respectively.

We have referred to this dynamical property of the eigenfunctions as their unitary
arrival at the arrival point at their respective eigenvalues, unitary arrival because
they exhibit the dynamical behavior during their unitary time evolution according to
Schrödinger equation. The unitary arrival of the eigenfunctions support the interpre-
tation that the confined time of arrival operators are first time of arrival operators,
the corresponding eigenvalues being the first unitary time of arrival of the eigen-
functions. This dynamical behavior of the eigenfunctions is important because it
gives an instance in which the time of occurrence of a quantum event – in our case
unitary arrival at a certain point in the configuration space – is solved in the form of
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Fig. 3.1 (Color online) Non-interacting case: (a) n = 20 and (b) n = 21 evolved eigenprobability
densities, |ϕn(q, t)|2, for γ = 0.01, with � = l = m = 1. Both symmetrically collapse at the origin
at their respective eigenvalues, 0.0081 and 0.0079. (Reprinted from [24])

Fig. 3.2 (Color online) Harmonic oscillator: The evolved eigenprobability densities, |ϕn(q, t)|2,
for the (a) 9 th non-nodal (γ = 0) and (b) 8 th nodal (γ = π/2) positive eigenvalue–eigenfunctions
of the harmonic oscillator CTOA operator for l = 1. The eigendensities take their maximum values
at the arrival point at their respective eigenvalues. The eigendensities become more localized at the
arrival point at the eigenvalue as n increases. (Reprinted from [22])

an eigenvalue problem of a self-adjoint operator, which is conjugate to the system
Hamiltonian, with the eigenfunctions as the states exhibiting the event at a later time
equal to their respective eigenvalues.

3.7 Dynamical Behaviors in the Limit of Large Confining
Lengths and the Appearance of Particle

3.7.1 Properties of the Eigenfunctions and Eigenvalues for Large
Confining Lengths

We now describe the dynamical behavior of the CTOA-operator eigenfunctions as
the confining length l gets arbitrarily large [26, 23]. The representative potentials
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V (q)={0, q2/2, q4/4} have been used in the numerical computations, with V (q)=0
considered in [26] and the rest of the potentials in [23].

First, let us consider the behavior of the eigenvalues as l increases, obtained
by a numerical study of the CTOA-operator eigenvalue problem for increasing l.
Since the positive and negative eigenvalue–eigenfunctions are related by a symmetry
relation, it is sufficient for us to consider only positive eigenvalues. For any given
time τ > 0, we can find a sufficiently large confining length l0 such that τ is less than
the largest eigenvalue of the CTOA operator corresponding to l0. For any such l0, we
can find a pair of nodal and non-nodal eigenfunctions Pk such that their eigenvalues
τ2k+1 and τ2k+2 are closest to τ (see description above of the eigenfunctions and
eigenvalues). Consider a sequence of increasing l’s, l0 < l1 < l2 < l3 < · · · .
Then there will be a k1 corresponding to l1 such that τk1 is closest to τ ; and a k2

corresponding to l2 such that τk2 is closest to τ ; and so on. Our computation indicates
that as l gets larger, τ2k+1 approaches τ2k+2. That is, the pair of eigenfunctions Pk

becomes degenerate. Our computation likewise indicates that the eigenvalues in the
neighborhood of τ get denser as the confining length tends toward infinity, so that,
for a given τ , τkr for a given lr converges to τ . This indicates that the spectrum of
the CTOA operator tends to the continuum, which implies that the eigenfunctions
will eventually become non-square integrable. These results are consistent with the
known properties of the eigenfunctions of the free time of arrival operator in the
entire configuration space [14].

But what is the behavior of the pair Pk of eigenfunctions corresponding to the pair
of eigenvalues closest to the given time τ as l gets arbitrarily large? We know from
our earlier results that the width of an evolving CTOA eigenfunction is minimum
at time equal to its corresponding eigenvalue. Figure 3.4 shows that the modulus
square of the evolved pair of eigenfunctions tends to the Dirac delta with support
at the arrival point as lr tends to infinity. Then the CTOA eigenfunctions evolve to
a singular support at the arrival point at their respective eigenvalues in the limit; in
particular |ϕnr (q, τkr )|2 tends to the position eigenfunction at the arrival point (see
Figs. 3.3 and 3.4). These numerical observations are consistent for all the potentials
considered, suggesting that the behaviors of the CTOA operators in the limit of
arbitrarily large l are the same.

3.7.2 The Appearance of Particle

The limiting dynamical behavior described above gives us the picture of quantum
arrival within standard quantum mechanics as that of unitarily evolving CTOA
eigenfunction to a localized support at the arrival point.6 If we accept the dogma
that particles are wave packets of singular support, then the CTOA eigenfunctions
for arbitrarily large l’s are particles at their respective eigenvalues. This endorses
a mechanism for the localization of the wave function in space and in time at the

6 This and the following sections are excerpts from [23].
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Fig. 3.3 Non-interacting case: Probability density |ϕn(τ )|2 versus position at the corresponding
closest eigenvalue τn to t = 0.01, for the even (upper figure) and odd (lower figure) eigenfunctions.
The different lines are associated with l = 1 (thick solid line), l = 2 (dashed line), l = 3 (long-
dashed line), l = 4 (dotted-dashed line), and l = 5 (thin solid line). (Reprinted from [26])

Fig. 3.4 Harmonic oscillator: (a) The evolved eigenprobability densities at their respective eigen-
values corresponding to the non-nodal eigenfunctions with eigenvalues nearest to τ = 0.11 for
lengths l = 1 (solid line), l = 2 (dashed line), and l = 3 (dotted line), for the harmonic oscillator
CTOA operator T0. (b) The corresponding nodal eigenfunctions for lengths l = 2 (solid line),
l = 3 (dashed line), and l = 4 (dotted line). Peak increases with l. (Reprinted from [23])

registration of the particle: Consider a quantum particle prepared in some initial
state ψ0. Without loss of generality, we can assume that ψ0 has a compact support.
We can then enclose the system by a box of very large length (for all practical
purposes infinite), with the support of ψ0 lying completely in the box. Since the
CTOA eigenfunctions are complete we can decompose ψ0 in terms of these eigen-
functions. Now if we presuppose that particle detectors somehow respond only to a
localized wave packet or localized energy, then registration or arrival of the particle
at the arrival point at time τ can be interpreted as the detection of the component
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eigenfunction whose eigenvalue is τ , that is, unitarily arriving (essentially collaps-
ing for arbitrarily large l) at the arrival point. This implies that the appearance or
arrival of the particle is a combination of a collapse of the initial wavefunction into
one of the eigenfunctions of the time of arrival operator right after the preparation
of the initial state followed by a unitary evolution of the eigenfunction.

The emergent interpretation contrasts with the standard interpretation of the col-
lapse of the spatial wavefunction on the appearance of particle. In standard quantum
mechanics, when a quantum object is prepared in some initial state ψ0 and when an
observable of the object is measured at a later time T , then the state at the moment
of measurement, which is ψ(T ) = UTψ0, where Ut is the time evolution opera-
tor, collapses randomly into one of the eigenfunctions of the observable. Now the
consensus is that the appearance of particle is a position measurement, so that the
appearance at point q0 at some time T is the projection of the evolved wavefunc-
tion ψ(q, T ) = UTψ0(q) to the eigenfunction δ(q − q0) of the position operator.
But according to our quantum arrival description, the collapse occurs much earlier
than the appearance of the particle, with the initial state collapsing to one of the
eigenfunctions of the time of arrival operator right after the preparation and with
the particle appearing later at the moment the eigenfunction has evolved to a state
of localized support at the arrival point. The appearance of particles then (at least
within the context of quantum arrival) does not arise out of position measurement
but rather out of time measurement.

One may, however, question the validity of our interpretation when there was no
initial intention to observe the arrival of the particle. If from the very start the instru-
ment has been set up to detect the arrival of the particle, it can be argued that the
setup is already a measurement that has caused the initial state to collapse into one
of the CTOA eigenfunctions, then evolve until observed. But this reasoning appears
untenable when the decision to observe arrival is deferred, because the initial state
has been evolving according to Schrödinger equation, assuming that no other obser-
vation is made. But not quite. Quantum mechanics is inherently non-local in time
[64]. And that means “the description of the past must bear actions of the present”
[37]. The collapse right after the preparation (when arrival measurement is to be
made) and the Schrödinger evolution right after the preparation (when some other
measurement is to be made) are two potentialities that are simultaneously true for
the system, which one is realized depends on the decision what to do with the system
at the moment. Temporal non-locality then replaces the spatial non-locality inherent
in the spontaneous localization of the wavefunction in the standard interpretation.

3.8 Quantum Time of Arrival Distribution

3.8.1 The Formalism

In [26] it is shown that the well-known time of arrival distribution for a quantum-
free particle due to Kijowski [46] can be extracted from the confined time of arrival
operators for the non-interacting case in the limit of infinite confining length.
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This indicates that the time of arrival distribution in the entire real line can be
approximated by the time of arrival distribution from the compact confined time
of arrival operators [23]. This is important as solving for the eigenvalue problem
for the time of arrival operator T (in the entire real line) is intractable, at least,
at the moment. Once the kernel factor for a given interaction is already known,
the eigenvalue problem for a confined time of arrival operator can be readily
computed numerically [13, 62]. For linear systems, the kernel factor Tlin(q, q ′)
is readily available because it equals T0(q, q ′) which is expressible only in terms
of the interaction potential. On the other hand, for non-linear systems, the kernel
factor is difficult to solve exactly. However, the kernel factor for such systems
has the expansion Tnli (q, q ′) = T0(q, q ′) + T1(q, q ′) + · · · . Since the succeed-
ing terms contribute to the time of arrival operator in powers of �

2, the leading
term can approximate the kernel factor, T (q, q ′) ≈ T0(q, q ′), in the non-linear
case.

Let us for the moment assume that the initial state of the quantum particle, ψ0(q),
has a compact support. We now enclose the support of ψ0(q) by a very large box
centered at the arrival point. Since the CTOA operator Tγ=0 satisfies the same time
reversal symmetry as that of the time of arrival operator T in the unbounded space,
we use Tγ=0 to approximate T or we take Tγ=0 as coarse-grained version of T [23].
We then construct the confined time of arrival operator Tγ=0 for the given box. Once
T0 is constructed, compute

Pψ0 (x, t) =
∑

τ l
0,s≤t

∣
∣〈ϕl

0,s |ψ0〉
∣
∣
2
, (3.79)

where ϕl
0,s and τ l

0,s are the eigenfunctions and eigenvalues of T0. The overlap
〈

ϕl
0,s |ψ0

〉

is the probability amplitude that the initial state will collapse into the sth
eigenfunction right after the preparation. With this interpretation of the overlap,
Pψ0 (x, t), in the limit of infinite l, can be naturally interpreted as the probability that
one of the components of the eigenfunctions with corresponding eigenvalues less
than or equal to t shall have unitarily evolved to a localized wavefunction at the
arrival point x . If our detector is what we have presupposed above, then Pψ0 (x, t)
is the probability of detection or arrival at x after some time t . Given Pψ0 (x, t) the
time of arrival probability density is found by differentiation with respect to time,
Πψ0 (x, t) = ∂t Pψ0 (x, t). The peaks of Πψ0 (x, t) determine the most likely times of
arrival at the given arrival point.

If the initial state has infinite tails, we can always approximate it with arbi-
trary accuracy by a function ψl whose support lies entirely in the interval [−l, l]
such that ψl →ψ0 as l →∞. Then Pψ0 (x, t) is computed as above. The whole
process can be implemented numerically by choosing the confining length to be
large enough. The probability density can then be obtained by numerical inter-
polation and differentiation. Caveat – this procedure is meaningful only when
the time of arrival operator T has completely continuous spectrum in the Hilbert
space H∞.
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3.8.2 Example: The Harmonic Oscillator Time of Arrival Problem

Let us consider the harmonic oscillator time of arrival problem [23] at the ori-
gin. We choose our initial states to be particular Gaussians of the form ϕ(q) =
Ne−(q−q0)2/(4δq2)+ip0q/�. We compare the time of arrival distribution Πϕ(x = 0, t)
computed using our algorithm above with the classical time of arrival T (q0, p0) =
−ω−1 tan−1(q0/ωp0). Figure 3.5a shows the computed time of arrival distribution
for a fixed average position q0 and for varying average momentum p0. Evidently the
time of arrival distribution becomes localized with increasing average momentum.
In fact the most likely time of arrival approaches the classical time of arrival as aver-
age momentum increases; that is, the quantum time of arrival distribution becomes
increasingly localized at the classical time of arrival. This implies that the quantum
first time of arrival distribution approaches the classical distribution for arbitrarily
large momenta or for high-energy oscillators. For small momenta, the most likely
time of arrival is shorter than the classical time of arrival, so that quantum oscillators
are, on the average, faster than their classical counterparts.

Fig. 3.5 (a) The probability density for q0 = 2.25 and p0 = 10, 20, 30, 50. (b) Evidence for
covariance in the limit of infinite l. The probability densities corresponding to times t = 0 (solid
line), t = 0.02 (dashed line), t = 0.08 (dotted line) for p0 = −30, q0 = 2.25, � = m = σ = 1.
(Reprinted from [23])

One desirable property of the time of arrival distribution is covariance; that is,
translation in time should not affect the distribution. Covariance has been a pri-
mary requirement on time operators, and it is the lack of covariance of the CTOA
operators (they being compact) that their introduction has been initially doubted
upon. Figure 3.5b gives evidence of covariance of the distribution for times smaller
than the period of the harmonic oscillator time evolution operator. The given initial
state is evolved through different times. These evolved states are used as the initial
states in the computation for the TOA distribution. If the distribution is covariant,
the resulting distributions must be translations of each other. This is evident in the
figure. Thus while the CTOA operators are non-covariant, covariance may naturally
emerge in the limit of infinite confining length.
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3.9 Conclusion

Since the clarification of Pauli’s theorem and the introduction of the self-adjoint and
conjugate quantization of the classical free time of arrival for a spatially confined
particle in [19], we have already made progress toward a better understanding of
the quantum time problem. Our solution to the quantum time of arrival problem via
the self-adjoint and conjugate confined time of arrival operator represents such a
progress. However, our progress has opened a cache of issues confronting standard
quantum mechanics at the foundational level.

Our investigations on the confined quantum time of arrival operators show that
the spectral properties of a time operator can acquire unambiguous interpretation
independent of the postulates of standard quantum measurement theory. In particu-
lar, the spectral properties may be tied with the dynamics of the system, such as the
eigenfunctions of the confined quantum time of arrival operators unitarily arriving
at some point at their respective eigenvalues. This calls for a certain modification
of the standard quantum measurement theory, which makes no exceptions on the
interpretation of the spectral properties of observables. How the modified quantum
theory of measurement will eventually look like is not yet clear. But we foresee that
the modified theory will require classification of quantum observables into, which
we can provisionally call, temporal and non-temporal observables, with the former
falling into the standard quantum measurement theory and the latter falling into the
more general measurement theory that accommodates time as a dynamical observ-
able. But how can this classification be made? We suspect that temporal observables
comprise the Hilbert space solutions to the time–energy canonical commutation
relation for a given Hamiltonian.

The most surprising aspect of the confined time of arrival operators is that it
connects the quantum time of arrival problem and the problem of the appearance
of particle in quantum mechanics. In standard quantum mechanics, the appear-
ance of particle arises out of the collapse of the wave function brought about by
position measurement, and the collapse occurs not before but at the moment the
particle appears on our detectors. However, the dynamics of the confined time of
arrival operators suggests that the appearance of particle arises as a combination
of the collapse of the initial wave function into one of the eigenfunctions of the
time of arrival operator, followed by the unitary Schrödinger evolution of the eigen-
function. This implies that particles, at least within quantum arrival setting, do not
arise out of position measurements but out of time of arrival measurements and that
the collapse of the wave function on the appearance of particle is not fundamental
but decomposable into a series of casually separated processes. This invites us to
reconsider our beliefs on quantum measurement theory.

Finally, the clarification of “Pauli’s theorem” has brought us the realization
that the time–energy canonical commutation relation has a large class of physi-
cal solutions, contrary to expectations precipitated by Pauli’s theorem. We have
already demonstrated that physically meaningful Hilbert space solutions to the
canonical commutation relation split into categories. But that is as far as we know.
There is a need to pursue the investigation of the whole class of solutions to the
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canonical commutation relation in general and the relationship of these solutions to
the quantum time problem. We note that only one class of solutions, the dense cate-
gory canonical pairs that form a system of imprimitivities, has been given attention
to in physics literatures, and the rest of the solutions are ignored or are assumed
not to exist. The quantum time problem is multifaceted. With our solution to the
quantum time arrival problem in the form of a solution to the time–energy CCR, it is
not unreasonable to entertain the idea that the different solutions to the time–energy
canonical commutation relation may be identified with the different facets of the
quantum time problem.
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Chapter 4
Detector Models for the Quantum Time
of Arrival

Andreas Ruschhaupt, J. Gonzalo Muga, and Gerhard C. Hegerfeldt

There is so much in that moment!
John Asherby

4.1 The Time of Arrival in Quantum Mechanics

Quantum particles are characterized, for a given preparation, by a fundamental
stochasticity of their observable features, such as positions, momenta, energies, or
times, e.g., times of arrival at a detector in time-of-flight experiments. In quantum
theory the preparation stage is encoded in a wave function,1 whereas averages or
statistical moments of the observables are calculated by a well-known prescription
(the expectation value integral) from self-adjoint operators and their powers: this is
at least the case for position, momentum, or energy. In fact, the entire statistical dis-
tributions are given by the square modulus of the overlap of the wave function with
the corresponding eigenstates. It may be argued that, for a general observable, the
choice of operator is as much of an art as a science, since none of the “rules of quan-
tization” known is of universal validity; there is not necessarily a one-to-one relation
between classical and quantum observables, so that a single classical quantity may
be related to several (observable!) quantum quantities; and, there is frequently no
obvious trace of the apparatus or experimental procedure in the formalism. In spite
of these difficulties, the validity of the chosen operator is eventually confirmed or
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denied by comparison with experiment, and by consistency arguments, as for posi-
tion, momentum, or energy. The fate of time as a random variable, realized, for
instance, by the instantaneous clicks of a detector, has been, however, much more
problematic. In fact, amazingly, the theoretical study of time observables has been
in practice abandoned, if not banned, for decades, except for a handful of disperse
contributions (e.g., by Wigner, Aharonov and Bohm, Allcock, Kijowski, Srinivas,
and Werner) [69]. The main reason for this strange state of affairs has been the
dominance of the paradigm imposed by Pauli’s argument against the existence of
self-adjoint time operators, according to which “time is only a parameter” in quan-
tum mechanics. Instead of doing something about it, given the appalling evidence
that time is also a random variable in the laboratories, most physicists have instead
preferred to repeat the above mantra.

There are also complementary reasons that explain, at least partially, the neglect
of time observables. One is that assuming classical translation of the particles has
been an excellent approximation in practice, but in modern atom optics experiments
with ultra-cold atoms this is not necessarily the case. Other reason is that in many
experiments the signal is actually proportional to the (unproblematic) position prob-
ability density ρ(x, t), rather than to a proper time-of-arrival density Π (x, t). There
is unfortunately a widespread confusion about this distinction, see Sect. 4.5.3 below
for more details, and the expression “time of flight” is nowadays applied quite stan-
dardly in the cold-atom community to experiments in which essentially the position
probability density, and not a time-of-arrival (TOA) density, is monitored. We are
thus far from being free from constraining prejudices on time observables and much
remains to be done on experiments and theory, but progress has been made. The fun-
damental theoretical lacuna for time observables has in more recent times struck the
attention of several researchers2 and led us, in particular, to embark on an ongoing
research program.

The arrival time has been investigated at a fundamental level without making
the detector explicit, i.e., idealized arrival time distributions – based on positive
operator-valued measures (POVM) instead of a self-adjoint time operator – have
been derived. These ideal theories use symmetry or consistency arguments (e.g., a
correct classical limit), but need the support of experiments and the relation to aux-
iliary operational models which capture the essential aspects of these experiments.

In reverse, it is important to know what a particular experiment is really mea-
suring and, again, the operational models play a useful intermediate role in this
regard. An early attempt to incorporate the apparatus in an explicit, though certainly
simplified manner is due to Allcock, by means of a complex, localized imaginary
potential that absorbs the quantum wave packet [4–6]. The rationale for its use is
that the incident particle in the measurement process is subjected to an irreversible
transformation from the incident channel into some other final channels. It could,
for example, be ionized or emit a photon after having been excited by a laser. The

2For reviews on the arrival time see [63, 69] and for more recent work [31, 83, 7, 47, 39, 81, 22,
40, 58, 8, 49, 12, 50, 3, 88, 43].
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2−level atom

x

y

laser

Fig. 4.1 Scheme of the atom-laser model

wave function component in the incident channel would thus lose norm at a rate
proportional to the detection signal, a process mimicked by a complex absorbing
potential.

The subject of this chapter is a more detailed model which has been developed
since 2000 [64, 31, 32, 47, 48, 81, 82, 70, 33]: in essence it consists of a two-level
atom wavepacket in the ground state sent toward a laser-illuminated region where
the atom is excited, see Fig. 4.1; the detection time of the first spontaneous photon
provides an operational definition of the arrival time that can be compared to more
abstract theories and ideal quantities for the particle. We will show that the complex
potential detector model can be justified in some limit from the atom-laser model.
Moreover, we shall see that by means of different limiting operations of the laser
field shape or intensity and manipulations of the time-dependent signal, such as
“deconvolutions” and normalizations at the level of expectation values, or of the
initial state, via “operator normalization,” a wealth of information on a moving atom
wavepacket is available: not only TOA distributions but also probability densities,
kinetic energy densities, current densities, and other local densities.

The structure of the chapter is the following: in the rest of this section Allcock’s
papers [4–6] and the local density concept are reviewed; in Sect. 4.2 the basic atom-
laser model is examined in more detail; the complex potential detector models and
their connection to the atom-laser model will be revisited in Sect. 4.3; Sect. 4.4
deals with the concept of operator normalization and its application to arrival times;
and Sect. 4.5 will show how other local densities, in particular the kinetic energy
density, can be measured by the atom-laser model in certain limits; finally, pulsed
measurement of the quantum time of arrival will be examined in Sect. 4.6, while
Sect. 4.7 provides a summary.

4.1.1 The Papers of Allcock

Modern research on the quantum TOA owes much to Allcock’s seminal work
[4–6]. Looking for an ideal quantum arrival time concept, he considered, for a par-
ticle moving in one dimension, that arrival time measuring devices should rapidly
transfer any probability that appears at x > 0 (x = 0 being the “arrival position”)
from the incident channel into various orthogonal and time-labeled measurement
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channels. As a simple model to realize this basic feature he proposed a pulsed,
periodic removal, at time intervals δt , of the wave function ψ(x) for x > 0, while
the x < 0 region would not be affected, see Fig. 4.2. A similar particle removal
would provide the distribution of first arrivals for an ensemble of classical, freely
moving particles as δt → 0. We shall elaborate on this idea in Sect. 4.6.

The difficulties to solve the corresponding mathematical problem lead Allcock to
study instead a different, continuous model with an absorbing imaginary potential
in the right half line, −iV0Θ(x), V0 > 0, to simulate the detection. He argued that
the two models should lead to similar conclusions with a time resolution of the
order δt in the chopping model or �/2V0 in the complex potential model. He then
solved the Schrödinger equation with the complex potential and noticed that for
V0 � |E |max, where Emax is a maximal relevant energy in the wave packet, the
apparatus response vanishes, −δN (t)/δt → 0, with N (t) = 〈ψ(t)|ψ(t)〉, because
of quantum mechanical reflection. This is one of the first discussions of the quantum
Zeno effect, not yet known by this name at that time.3

Fig. 4.2 Schematic representation of the time-of-arrival measurement by periodic projection of the
wave function onto the subspace x < 0 at times t j = jδt , j = . . . ,−1, 0, 1, . . .. Figures (a) and
(b) represent two instants immediately before and after the elimination of norm at x > 0

3Eight years later Misra and Sudarshan [62] generalized this result studying the passage of a system
from one predetermined subspace to its orthogonal subspace: the periodic projection method in the
limit δt → 0 was presented as a natural way to model a continuous measurement, but it did not
lead to a time distribution of the passage but to its suppression [62], imposing Dirichlet boundary
conditions [35]. This lack of a “trustworthy algorithm” to compute TOA and related distributions
has been much debated since then, see [54, 34, 57] for a review.
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Allcock thus disregarded the strong absorption limit (equivalently the short δt
limit) because of reflection, and only considered the weak absorption limit, in which
the detection takes a long time but all particles are eventually detected. Under the
assumption that the measured arrival time distribution Π was a convolution of an
ideal distribution Πid and an apparatus function R (the distribution for the particle
survival at rest in the imaginary potential, R(t) = 2V0Θ(t)e−2V0t/�/�),

Π = Πid ∗ R ,

he suggested as an approximate solution for the unknown ideal distribution the pos-
itive expression4

ΠK (t) = �

m
〈ψ f (t)|̂k1/2δ(̂x )̂k1/2|ψ f (t)〉 , (4.1)

where k̂ and x̂ are the wave number and position operators, m is the mass, and the
averages are computed with the freely moving wave function ψ f , without the com-
plex potential (unless stated otherwise the initial states have only positive momenta).
He also obtained the (not positive semidefinite) current density as the exact solution
for Πid in the V0 → 0 limit,

J (t) = �

2m
〈ψ f (t)|[̂kδ(̂x) + δ(̂x )̂k]|ψ f (t)〉 . (4.2)

This last result makes sense classically, but in quantum mechanics J (t) is not posi-
tive semidefinite even for states composed only of positive momenta [4–6, 63].
ΠK (t) has been later rederived in different ways and is nowadays known as

“Kijowski’s distribution” [55, 63, 47]. Kijowski [55] inferred it from an axiomatic
approach inspired by the arrival time of classical particles. Much more recently, the
distribution ΠK has been related to the positive operator-valued measure (POVM)
generated by the eigenstates of the Aharonov–Bohm (maximally symmetric) time-
of-arrival operator [1, 63, 41]. This method emphasizes the fact that self-adjointness
is not necessary to generate quantum probability distributions.

Werner generalized Kijowski’s distribution characterizing all possible covariant
arrival time observables [89] and also showed a connection to absorption processes
described by a semigroup [90]. Kijowski’s distribution has also been compared to
other approaches and generalized for multi-particle systems and for systems subject
to interaction potentials [67, 68, 13, 15, 14, 16, 17].

4.1.2 Local Densities

The quantum mechanical probability flux (4.2) and Kijowski’s distribution (4.1)
are two quantizations of the same classical local density. Other local densities will

4Operators will wear a hat when confusion is possible with corresponding functions or c-numbers.
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appear along the chapter so a lightning review of this concept is in order. For a
classical dynamical variable A(q, p) of position and momentum, its local density,
αA(x), is

αA(x) =
∫

dpD(x, p)A(x, p) =
∫

dqdpD(q, p)δ(x − q)A(q, p) ,

where D(q, p) is the phase space density. To quantize this expression one can use

δ(x − x̂) = |x〉〈x |,

and consider, for a point x , the operator Â(x) = Â|x〉〈x |, or rather one of its many
symmetrizations, as a quantum density (operator) for the observable Â. For a given
state |ψ〉, the expectation value 〈ψ | Â(x)|ψ〉 would then be a candidate for the value
of the local density at the point x of the observable Â. The simplest case is Â = 1,
and it corresponds to the particle density, ρ(x) = |〈x |ψ〉|2. If Â does not com-
mute with |x〉〈x |, there are infinitely many “combinations” (orderings) to construct
a quantum density [26, 66], for example,

Â1/2|x〉〈x | Â1/2 , (4.3)
1

2

(

Â|x〉〈x | + |x〉〈x | Â) , (4.4)

1

2

(

Â1/2|x〉〈x | Â1/2
)+ 1

4

(

Â|x〉〈x | + |x〉〈x | Â) . (4.5)

Different symmetrizations may have a perfectly respectful status as physically
observable and measurable quantities, and different orderings may be associated
with latent properties realized via different experimental measurement procedures
as we shall see. They may also be related more indirectly to observables and yet
carry valuable physical information.

In addition to the case of the flux andΠK already mentioned, in which Â = p̂/m,
a second important example of this quantum non-uniqueness for a single classical
quantity is the kinetic energy density, [27, 28, 77], with Â = p̂2/2m as the kinetic
energy operator. Operational procedures devised to achieve a TOA distribution may
actually provide a kinetic energy density, see Sects. 4.5.1 and 4.5.2. It may also be
possible to find simple approximate relations between ρ,ΠK , J , and kinetic energy
densities for wave packets with rather well-defined momentum, see Sect. 4.5.3, but,
in general, they are fundamentally different functions.

4.2 The Basic Atom-Laser Model

Apart from Allcock’s work, several “toy models” for arrival time measurements
have been put forward [2, 63, 16, 21, 78, 44, 80]. Instead, the aim of Damborenea
et al. in [31], following [64], was to work out a more realistic model describing
a TOA measurement by quantum optical means. The basic idea is that a region
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of space may be illuminated by a laser and upon entering the region an atom will
start emitting photons. The first-photon emission can be taken as a measure of the
arrival time of the atom in that region, see Fig. 4.1.5 The pumping of the atom to
the excited state and the photon emission takes some time and therefore produce
delays with respect to some “ideal” arrival time of the atom. Increasing the laser
intensity, and considering shorter lifetimes, does not solve the problem because the
atom tends to be reflected from the laser region without ever emitting a photon. This
is further discussed in Sect. 4.2.1 where the details of the model will be given.

A way out of these difficulties is to “subtract” the delays from the first-photon
probability density by means of a deconvolution with an atom at rest, see Sect. 4.2.2.
This results in a distribution which, for shorter and shorter lifetime of the atomic
level, converges to J , the quantum mechanical probability flux, and provides a way
to measure it.

4.2.1 Effective One-Dimensional Equations

We assume that a region is illuminated by a laser sheet, treated semiclassically, on
the y−z plane with wave vector in y-direction. There will be no z-dependence in the
full Hamiltonian so this coordinate may be ignored. We will use the quantum jumps
approach [51–53, 76] which is essentially equivalent to quantum trajectories [25]
and to the Monte Carlo wave function approach [30]. Using also the rotating-wave
approximation, and in a laser adapted interaction picture to get rid of an explicit time
dependence, the effective two-dimensional Hamiltonian for the undetected atom
which results from the quantum jump approach after tracing over the photon part is

H2D = p̂ 2
x

2m
+ p̂ 2

y

2m
+ �

2

(

0 Ω(x)e−ikL y

Ω(x)eikL y −2ΔL − iγ

)

,

with |1〉 ≡
(

1
0

)

, |2〉 ≡
(

0
1

)

, and where p̂x = −i� ∂
∂x , p̂y = −i� ∂

∂y are the

momentum operator components in x− y space, Ω is the Rabi frequency, kL is the
laser wave number, and γ is the Einstein coefficient of level 2, i.e., its decay rate or
inverse lifetime. We will examine the stationary Schrödinger equation

E2Dχ (x, y) = H2Dχ(x, y) (4.6)

for wave functions with the atom incident in the ground state with well-defined
momentum and energy, E2D = �

2

2m

(

k2
x + k2

y

)

.

5A way to realize this atom-laser model experimentally is by using a Lambda system in which the
laser drives the transition between levels 1 and 2 whereas 2 decays very fast and preferentially to a
third non-interacting sink state 3 [74].
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The two-dimensional equation (4.6) can be transformed into an effective one-
dimensional one by inserting the ansatz

χ (x, y) =
(

φ(1)(x)eiky y

φ(2)(x)ei(ky+kL )y

)

.

Then we get

�
2k2

x

2m

(

φ(1)(x)
φ(2)(x)

)

=
[

p2
x

2m
+ �

2

(

0 Ω(x)
Ω(x) −2Δ− iγ

)](

φ(1)(x)
φ(2)(x)

)

,

where

Δ = ΔL − �

2m
(2kykL + k2

L )

is an effective detuning which includes Doppler and recoil terms. We have thus
reduced the original problem to a one-dimensional equation with effective
Hamiltonian

Hc = p̂2/2m + �

2

(
0

0

0

−iγ

)

+ �

2

(
0

Ω(x)

Ω(x)

−2Δ

)

. (4.7)

(The x subindex is dropped in the momentum operator since only effective one-
dimensional equations in the x-direction are considered hereafter.) We shall con-
centrate now on the on-resonance (Δ = 0) case that may be achieved by normal
incidence (ky = 0) and by adjusting the laser detuning to cancel the recoil frequency
k2

L�/(2m).

4.2.1.1 Stationary Scattering Eigenfunctions

Let us first solve the eigenvalue equation

HcΦk = EΦk, where Φk(x) ≡
(

φ
(1)
k (x)
φ

(2)
k (x)

)

and E = �
2k2/2m , (4.8)

for waves incident from the left in the ground state (dropping the subindex x in k
too). In the simplest solvable model Ω(x) = Θ(x)Ω , which corresponds to a sharp
laser beam boundary at x = 0 and a semi-infinite field extension. If the atoms are
slow enough the result of the experiment should not depend on the beam width
beyond a minimal length necessary for detection.

For x < 0, left-incoming states must be of the form

Φk(x) = 1√
2π

(
eikx + R1e−ikx

R2e−iqx

)

, x < 0, k > 0 ,
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where q satisfies

E + i�γ /2 = �
2q2/2m ,

with Im q > 0 for boundedness, while R1 and R2 are the reflection amplitudes.
Note that although E is real, the complete wave functions will not be orthogonal, in
accordance with the non-hermiticity of Hc.

To obtain the form of Φk(x) for x ≥ 0, we denote by |λ+〉 and |λ−〉 the eigen-

states of the matrix 1
2

(
0
Ω

Ω

−iγ

)

corresponding to the eigenvalues λ±,

λ± = − i

4
γ ± i

4

√

γ 2 − 4Ω2 ,

|λ±〉 =
(

1

2λ±/Ω

)

.

Note that |λ±〉 are not orthogonal and have not been normalized. Nevertheless one
can write Φk as a superposition of the form

√
2πΦk(x) = C+|λ+〉eik+x + C−|λ−〉eik−x , x ≥ 0 .

From the eigenvalue equation (4.8), one obtains for x ≥ 0

k2
± = k2 − 2mλ±/� = k2 + iγm/2� ∓ im

√

γ 2 − 4Ω2/2� ,

with Im k± > 0 for boundedness. From the continuity of Φk(x) and its derivative at
x = 0 one gets R1, R2,C± and the wave functions explicitly [31].

4.2.1.2 Wavepackets

Wavepackets Ψ =
(

ψ (1)

ψ (2)

)

are treated as superpositions of the stationary eigen-

functions. This is easy for an initial ground state wave packet
(
ψ (1)(x,t0)

0

)

coming in

from the far left side and with t0 in the remote past. Indeed, if ψ̃(k) denotes the
momentum amplitude the wave packet would have as a freely moving packet at
t = 0, then

Ψ (x, t) =
∫ ∞

0
dk ψ̃(k) Φk(x) e−i�k2t/2m . (4.9)

The normalization is chosen such that ||Ψ (t0)||2 = 1, for t0 in the remote past. The
probability, N (t), of no photon detection for a wave packet from t0 up to time t is
given by

N (t) = ||e−iHc(t−t0)/�Ψ (t0)||2 ,
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and the probability density, Π (t), for the first-photon detection by

Π (t) = −dN

dt
= i

�
〈Ψ (t)|Hc − H †

c |Ψ (t)〉 .

Since Hc − H †
c = −iγ�|2〉〈2|, the first-photon probability density is given by

Π (t) = γ
∫ ∞

−∞
dx |ψ (2)(x, t)|2 .

4.2.1.3 The Reflection Problem and the No-Detection Probability

The probability of no photon detection at all is N (t = ∞). Only ψ (1) contributes to
this and, becauseΩ(x) = ΩΘ(x), only for x < 0, since, for x > 0, the ground state
part will eventually be pumped by the laser to the excited state. So we get

N (t = ∞) = 1 −
∫ ∞

t0

dt ′Π (t ′) =
∫ ∞

0
dk |R1(k)|2|ψ̃(k)|2 .

As a consequence, Π (t) is, in general, not normalized to 1.
|R1|2 and therefore the probability for missing an atom increases with Ω , the

strength of the laser driving. On the other hand, for k → ∞ reflection becomes
negligible. Hence for faster atoms reflection does not pose a problem. For later
purposes we also consider increasingly large γ , the other parameters kept fixed.
In this case the state vector for x > 0 becomes simply the plane wave with wave
number k in the ground state. This means that for increasing γ there is less and less
reflection, but also less and less absorption, i.e., photon detection, so that the effect
of the laser on the atom decreases. Moreover, if both γ and Ω go to infinity with
γ /Ω kept fixed, then R1 → −1 and all atoms are reflected without having been
detected.6 Depending on the parameters, the delay and reflection problem may be
either very relevant or negligible [31].

4.2.2 The Connection to an Idealized Arrival Time Distribution

We have just seen that avoiding reflection by weak driving,Ω/γ � 1, would cause
a severe delay problem since the laser would take more time to pump the atom to
the excited state, see Fig. 4.3.

Should it not be possible to somehow compensate the delay in Π (t) by that of
the atom at rest and thus arrive, in some limit, at a delay-free ideal distribution? To

6More precisely, if Ω and γ are of the same order of magnitude and γ � �k
m k or, alternatively, if

Ω/γ � 1 and Ω2/γ � �k
m k, then R1 ≈ −1. Physically, both conditions mean that the distance

traveled by the atom in the time it takes for a photon to be scattered is much less than the de Broglie
wavelength.
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Fig. 4.3 Time-of-arrival distributions: Flux J (solid line, here indistinguishable from Kijowski’s
ΠK ) and Π (first photon, dots). Note the delay in Π . The initial state is a minimum-uncertainty-
product Gaussian for the center-of-mass motion of a single Cesium atom in the ground state with
〈v〉 = 9.0297 cm/s, 〈x〉 = −1.85 μm, and Δx = 0.26 μm; Ω = 0.0999γ ; all figures are for the
transition 62 P3/2 – 62 S1/2 of Cesium with γ = 33.3 MHz

achieve this, we assume the “experimental” arrival time distribution Π (t) to be the
convolution of a hypothetical ideal distribution, Πid, with the detection probability
density W (t) for an atom at rest [56], which is put in the laser field in the ground
state,

Π = Πid ∗ W,

W (t) = γΩ2

4|S|2 e−γ t/2|eSt/2 − e−St/2|2Θ(t) ,

where

S = 1

2
(γ 2 − 4Ω2)1/2 .

The delay inΠ is then contained in W and the hypothetical ideal distributionΠid is
obtained by deconvolution from Π̃id = Π̃/W̃ , where the tildes denote the Fourier
transforms, e.g., Π̃(ν) = ∫

dte−iνtΠ (t). One finally obtains, using (4.9) and taking
the γ → ∞ limit [31],

Πid(t) → J (0, t) ,

which is the flux for the free wave function ψ f (x, t) at x = 0, i.e., the one evolving
without laser, see also Fig. 4.4. This is an extremely interesting result since J is a
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Fig. 4.4 Excellent agreement between Πid (filled circles) and J (solid line); deviations from ΠK

(dotted line) and Π (dot-dashed line). The initial wave packet is a coherent combination ψ =
2−1/2(ψ1 + ψ2) of two Gaussian states for the center-of-mass motion of a single Cesium atom
that become separately minimal uncertainty packets (with Δx1 = Δx2 = 0.021 μm and average
velocities 〈v〉1 = 18.96 cm/s, 〈v〉2 = 5.42 cm/s) at x = 0 and t = 2 μs; Ω = 0.37γ

natural candidate for the arrival time distribution. We note that J is normalized to 1
for a wave function which has only positive-momentum components.

4.2.3 Generalizations of the Atom-Laser Model

Different generalizations of the atom-laser model have been worked out:
In [32] the effects of a finite laser width (in contrast to the semi-infinite laser

described before) are examined. In that setting, the flux can again be obtained from
the probability density for the arrival of the first photon in a given limit.

In [45] the three-dimensional formulation of the atom-laser model is investigated
in detail. It is shown that within typical conditions for optical transitions the results
of the simple one-dimensional version are generally valid. Differences that may
occur are consequences of Doppler and momentum-transfer effects. Ways to mini-
mize these are discussed.

In [82] the idea of the atom-laser model is transferred to an ionization model. A
method to achieve perfect detection of ultra-cold atoms at fixed incident velocity is
proposed.

4.3 Complex Potentials

Allcock [4–6] modeled the arrival detector by a local and energy-independent com-
plex potential, i.e., he put forward a simplified operational approach for arrival
times. The operational (unnormalized) time-of-arrival distribution Π is then identi-
fied as the absorption rate
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Π = −dN/dt ,

where N is the decreasing norm of the quantum wave packet for the undetected
particle. Later, Muga and coworkers used more complicated functional forms for
the complex potential, including a real part, to show that the reflections induced
by the step model could be partially avoided [65, 75]. Imaginary potentials have
also been used in the phenomenological event-enhanced quantum theory (EEQT)
of Blanchard and Jadczyk [18, 20, 19] to simulate time-of-arrival and traversal time
measurements [21, 75, 78–80], and Halliwell [44] derived the imaginary step poten-
tial used by Allcock from an abstract two-level detector model.

The agreement between the deconvolution performed by Allcock with a weak
imaginary step potential and the deconvolution of Sect. 4.2.2, in the short lifetime
(weak driving) limit, suggests that there must be a connection. Indeed, the laser-
atom model can be reduced to a local and energy-independent complex potential
model in the weak driving regime. To see this first at a heuristic and intuitive level,
let us write the stationary Schrödinger equation for the effective Hamiltonian (4.7)
in components, putting Δ = 0,

Eφ(1)(x) = p̂ 2

2m
φ(1)(x) + �

2
Ω(x)φ(2)(x) , (4.10)

Eφ(2)(x) = p̂ 2

2m
φ(2)(x) + �

2
Ω(x)φ(1)(x) − i�γ /2φ(2)(x) . (4.11)

If �γ is much larger than the rest of energies in (4.11), we can approximate φ(2)

from this equation as

φ(2)(x) ≈ Ω(x)

iγ
φ(1)(x) .

Putting this into Eq. (4.10) we get

Eφ(1)(x) ≈ p̂ 2

2m
φ(1)(x) − iV0(x)φ(1)(x) , (4.12)

where

V0(x) = �Ω(x)2

2γ
, (4.13)

i.e., there results a local, purely imaginary, and energy-independent potential for
state 1.

For a wavepacket with stationary components satisfying (4.12), ψ (1)(t) satisfies
the one-dimensional Schrödinger equation
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i�
d

dt
ψ (1)(t) ≈ [

p̂2/2m − iV0(̂x)
]

ψ (1)(t) . (4.14)

Since ψ (2)(t) → 0, one has

N (t) ≈ ||ψ (1)(t)||2 ,

and so

Π (t) = −dN

dt
≈ 2

�

∫ ∞

−∞
dx V0(x)

∣
∣ψ (1)(x, t)

∣
∣
2
.

Therefore, in the simple semi-infinite laser case Ω(x) = ΩΘ(x), we get

Π (t) ≈ 2V0

�

∫ ∞

0
dx |ψ (1)(x, t)|2 , (4.15)

where V0 = �Ω2/2γ is now a constant. Equations (4.14) and (4.15) relate the
atom-laser model to the complex potential model of Allcock, see also [44].

An interesting case is the limit of the delta potential V0(x) = −iV0δ(x), for which
the signal Π (t) provides the probability density,

Π (t) ≈ 2V0

�

∣
∣ψ (1)(0, t)

∣
∣
2
.

However, this is not the probability density for the freely moving wave unless the
additional limit V0 → 0 is taken.

4.3.1 Complex Potential from Feshbach’s Theory

A more rigorous and systematic derivation of the complex potential follows from
using Feshbach’s projector techniques [37, 38, 61]. They let us obtain an exact
generalized, non-local and energy-dependent, complex potential treatment for laser
and atom parameters that cannot be described with the simple local and energy-
independent approach and also set its conditions of validity.

We shall now include detuning, as in (4.7),

Hc = K 1 + V = 1

2m

(
p̂2

0

0

p̂2

)

+ �

2

(
0

Ω(x)

Ω(x)

−(2Δ+ iγ )

)

,

where K = p̂2/2m is the kinetic energy operator and 1 = |1〉〈1| + |2〉〈2|
the unit operator in the internal state subspace. We want to solve the eigenvalue



4 Detector Models for the Quantum Time of Arrival 79

equation (4.8). Therefore, we may apply the complementary projectors

P = |1〉〈1|, Q = |2〉〈2| ,

to write, using the standard manipulations of the partitioning technique [37, 38, 61],
an exact integro-differential equation for the ground state amplitude φ(1)

k ,

Eφ(1)
k (x) = Kφ(1)

k (x) +
∫ ∞

−∞
dx ′ 〈x, 1|Vopt(E)|x ′, 1〉φ(1)

k (x ′) ,

where the exact complex non-local and energy-dependent “optical” potential is

Vopt(E) = PVopt(E)P = PV P + PV Q(E + i0 − Q H Q)−1 QV P ,

and its coordinate representation is given by

〈x, 1|Vopt(E)|x ′, 1〉 = −mi

4

ei|x−x ′ |q

q
Ω(x)Ω(x ′) ,

with q =
√

2m E
�

(1 + μ)1/2, Im q ≥ 0, and μ = 2Δ+iγ
2E/� . The exact equation for the

excited state is

φ
(2)
k (x) = − im

2�

∫ ∞

−∞
dx ′ e

i|x−x ′ |q

q
Ω(x ′)φ(1)

k (x ′) .

If we setΩ(x) = ΩMω(x), where ΩM is the maximum of |Ω(x)|, we get by partial
integration

∫ ∞

−∞
dx ′ e

i|x−x ′ |q

q
ω(x ′) f (x ′) = 1

μ

i�2

m E
ω(x) f (x) +O

(
1

μ2

)

, (4.16)

for some function f (x) and 2E/� being constant.
Let us now examine the limit μ → ∞ keeping 2E/� and ΩM constant. To

apply perturbation theory, we assume an asymptotic expansion of φ(1)
k in powers of

1/μ and compare equal powers of 1/μ on both sides taking (4.16) into account. It
follows that

Eφ(1)
k = Kφ(1)

k (x) + W (x)φ(1)
k (x) +O

(
1

μ2

)

,

where

W (x) = Ω(x)2
�

2(2Δ+ iγ )
, (4.17)



80 A. Ruschhaupt et al.

i.e., there results a local and energy-independent approximation W (x) to the exact
optical potential. For the excited state, we get

φ
(2)
k (x) = 1

2Δ+ iγ
Ω(x)φ(1)

k (x) +O
(

1

μ2

)

, (4.18)

i.e., the population of the excited state is very small compared to the ground state
population when the local potential applies.

Note that (4.17) includes real and imaginary parts that can be modified by modu-
lating the laser intensity and/or detuning. This may be used to control and optimize
the atom dynamics and detection with quantum optical means [71].

Another interesting limit which yields the same effective potential is μ → ∞
while 2E/� and Ω2

M/μ remain constant [81].
The time-dependent two-component state vector for the undetected atom Ψ is

obtained by solving the time-dependent Schrödinger equation corresponding to H .
For the atom incident from the left in the ground state, Ψ is given by a linear super-
position of the stationary waves. If the local and energy-independent potential W (x)
is a good approximation for all stationary waves composing the wavepacket, then
the ground state component satisfies a closed time-dependent Schrödinger equation

i�
∂

∂t
ψ (1)(x, t) ≈ p̂2

2m
ψ (1)(x, t) + W (x)ψ (1)(x, t) ,

whereas the excited state component becomes

ψ (2)(x, t) ≈ 1

2Δ+ iγ
Ω(x)ψ (1)(x, t) .

As a consequence the photon detection rate, or operational arrival time distribution,
is given by

Π = −dN

dt
≈ − ∂

∂t

∫ ∞

−∞
dx

(

1 + Ω2(x)

(2Δ+ iγ )2

)

|ψ (1)(x, t)|2

≈ − ∂
∂t

∫ ∞

−∞
dx |ψ (1)(x, t)|2 .

ForΔ = 0 this result corresponds to the phenomenological one-channel models that
make use of an imaginary potential [4–6, 21, 78–80], which can now be physically
interpreted as WΔ=0(x) = −iV0(x) where V0(x) is given by Eq. (4.13). The phys-
ical significance of these approximations may also be understood by applying the
Markovian limit in the time-dependent version of the partitioning technique due to
Zwanzig [91].
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4.3.2 Multiple Photon Case

In general the atom will emit many photons in consecutive fluorescence cycles and
the distribution of the photon detection times may be of interest. The multiple pho-
ton case can also be studied by the quantum jumps approach. In this section we shall
assume that the following conditions are satisfied: Δ = 0, γ � ΩM and the energy
is assumed to be small, i.e., E � �γ /2, but large with respect to the recoil energy.
This simplifies the resetting of the wave function after a photon has been detected.

With the abbreviation g(x) = Ω(x)√
γ

the effective ground state potential becomes

W (x) = −i �

2 g(x)2 and, using the above assumptions, the quantum jump algorithm
takes the following form:

(1) Start with an atom in the ground state.
(2) In each time step (δt �γ,ΩM ) evaluate the detection probability δP between

t and t + δt ,

δP = γ ∥∥ψ (2)(t)
∥
∥

2
δt = ∥

∥g · ψ (1)(t)
∥
∥

2
δt .

(3) Choose uniformly a random number r ∈ [0, 1].
(4a) If r > δP then no detection occurs and the wave function of the atom at

time t + δt is given by

ψ (1)(x, t + δt) = 1√
1 − δP

[

1 − i

�
δt

(
p̂2

2m
− i

�

2
g(x)2

)]

ψ (1)(x, t) ,

ψ (2)(x, t + δt) = − i√
γ

g(x)ψ (1)(x, t + δt) .

(4b) If r < δP then a photon is detected and the wave function collapses and is
given at time t + δt by

ψ (1)(x, t + δt) = 1
∥
∥ψ (2)(t)

∥
∥
ψ (2)(x, t) = −i

1
∥
∥g · ψ (1)(t)

∥
∥

g(x)ψ (1)(x, t) ,

ψ (2)(x, t + δt) = 0 .

(For a more general treatment including the effect of recoil see [72].)
(5) Let t + δt → t and go to (2) for possible further detections until a certain

maximum propagation time is reached. This would complete one “trajectory” with
a record of photon emissions at a sequence of time steps. For obtaining averaged
statistical results many trajectories starting at step (1) must be run.

It is remarkable that only the ground state ψ (1) has to be taken into account for
this algorithm, i.e., for dealing with the multiple-photon case, under these approxi-
mations.

Note that this algorithm is also essentially coincident with the “PDP algorithm”
of phenomenological “event-enhanced quantum theory” (EEQT) applied for arrival
times using one complex potential detector (see, for example, [78, 20]). While the
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function g(x) has only the abstract meaning of a “detector sensitivity” in EEQT, it
has a precise physical content in the framework of the fluorescence model, namely
g(x) = Ω(x)√

γ
, and we have also provided the conditions for the validity of the phe-

nomenological model.

4.4 Quantum Arrival Times and Operator Normalization

This and the following two sections will deal with the cases disregarded by Allcock
because of mathematical or physical difficulties, corresponding to strong interac-
tions (driving) in the continuous case and to short pulses in the discrete measurement
model. The good news is that these limits may indeed provide information on several
local densities of the freely moving atom when harnessed with different treatments
of the measured signal or the initial state. This section, in particular, provides an
operational interpretation of Kijowski’s distribution, which had remained elusive
for a long time [63, 31], in the physically attractive limit of strong laser field and
fast spontaneous emission. The trick is to compensate for the undetected atoms by
modifying the initial state with the “operator normalization” technique proposed by
Brunetti and Fredenhagen [24].

4.4.1 Operator-Normalized Arrival Times

For certain observables not all repetitions of the experiment give a measurement
result. When detecting the atom’s arrival at a laser region, there may be reflection or
transmission without detection.

It is possible to normalize “by hand,”

ΠN (t) := Π (t)
∫

Π (t ′) dt ′
,

where

Π (t) = −dN/dt = 〈ψin(0)|Π̂t |ψin(0)〉 ,
Π̂t = −dN̂

dt
, N̂ = Uc

†(t,−∞)Uc(t,−∞), (4.19)

and

Uc(t, t0) = e−iHc(t−t0)/�e−iH0t0/� . (4.20)

Note that we have taken the average over incoming, asymptotic, and freely moving
states.
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The alternative is to normalize at the level of operators. For that end let us define a
detection probability operator assuming for simplicity a complex potential treatment
and a semi-infinite laser (the more general two-channel case or finite-width lasers
may be handled similarly [47]),

B̂ =
∫ ∞

−∞
dt Π̂t = 1 − N̂t→∞

= 1 − Ŝ† Ŝ .

Here Ŝ is the scattering operator which connects incoming and outgoing freely
moving asymptotic states, ψout = Ŝψin. The expectation value for the incoming
asymptote is

Pdetection = 〈ψin|B̂|ψin〉 = 1 − 〈ψout|ψout〉 .

For a semi-infinite laser, and left incidence,

Pdetection = 1 −
∫ ∞

0
dp |φin(p)|2|R(p)|2 ,

〈p|B̂|p′〉 = (1 − |R(p)|2)δ(p − p′) .

Then we normalize at the “operator level” as follows:

Π̂ON
t = B̂−1/2Π̂t B̂−1/2 .

The corresponding distribution ΠON(t) = 〈ψin|Π̂ON
t |ψin〉 is, by construction, nor-

malized to 1. The physical meaning of this formal operation is to modify ψin by
the operators B̂−1/2 to compensate the detection losses. In the example of the semi-
infinite laser, in p-representation,

ψin(p) → ψ ′(p) = ψin(p)[1 − |R(p)|2]−1/2/C ,

where C is a normalization constant. This preparatory “filtering” operation previous
to the time measurement can be performed in principle by passing the initial cloud
through a potential with the adequate scattering amplitude. However, the unbounded
nature of the operator B̂−1/2 restricts such a method to states with a low-energy
cutoff or which vanish at p = 0 fast enough.

4.4.2 Kijowski Distribution as a Limiting Case

If the complex potential model is applicable, the distribution in Eq. (4.15) is again
not normalized to 1, and it is, therefore, natural to employ an operator normalization.
Now the operator-normalized distribution is obtained as
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ΠON(t) = 2V0

�

∫ ∞

0
dx

∫

dkdk ′ ψ̃(k)ψ̃(k ′)

×(1 − |R(k)|2)−
1
2 (1 − |R(k ′)|2)−

1
2

× T (k)T (k ′) ei�(k2−k ′2)t/2me−i(κ−κ ′)x .

In the limit of strong interaction, V0 → ∞, this goes to Kijowski’s distribution,

ΠON(t) → ΠK (t) for V0 → ∞ . (4.21)

The advantage of the one-channel model is that it provides a simple calculational
tool for further, more complicated arrival time problems and that, by simple limits
and operator normalization, it is related to the operational fluorescence approach as
well as to the axiomatic distribution of Kijowski.

Nevertheless, even in the general two-channel model, the operator-normalized
distributionΠON(t) approaches Kijowski’s axiomatic distribution for large γ andΩ ,
with γ 2/Ω2 = constant.

ΠON(t) → ΠK (t) for γ → ∞, γ 2/Ω2 = const . (4.22)

Experimentally,Ω is easier to adjust than γ .7 Therefore we also consider the limit of
large Ω , with γ held fixed. For γ → ∞ one again obtains Kijowski’s distribution,
but for finite γ there is a delay in the arrival times. We can try to eliminate this, as
before, by a deconvolution with the first-photon distribution, W (t), of an atom at
rest in the laser field, making the ansatz

ΠON(t) = Πid(t) ∗ W (t) (4.23)

for an ideal distribution Πid(t). For any value of γ and in the limit of strong driving
[47],

Πid(t) → ΠK (t) for Ω → ∞, γ = const . (4.24)

4.4.3 Operator-Normalized Quantum Arrival Times for Two-Sided
Incidence and in the Presence of Interactions

An obvious limitation of the semi-infinite models (with the laser in explicit form
or with a complex potential) is that one cannot study the arrival at a point, x = 0,
say, for a state incident from both sides, x > 0 and x < 0 [59, 69]. Similarly,
if one is interested in the arrivals within an interaction region, the semi-infinitely
extended measurement will severely affect the dynamics of the unperturbed system

7γ may also be adjustable though, in particular when it is an effective decay rate resulting from
some forced driving into a rapidly decaying state.
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on one side. It is possible to apply, instead of the semi-infinite interaction, a weak
and narrow, minimally perturbing, absorbing potential combined with “operator nor-
malization” to these two more elusive arrival time problems.

Let us consider an asymptotically free, moving wave packet impinging on a
potential −iVε located in −ε ≤ x ≤ ε and a real potential U localized between
a and b. The Hamiltonian is given by

Hc = p̂2

2m
− iVεχ[−ε,ε] + Uχ[a,b](̂x) , (4.25)

where χ[a,b] is one in [a, b] and zero elsewhere. In the atom-laser model we have
Vε = �Ω2/2γ . For the limit ε→ 0 we consider two cases:

(a) Vε ∼ ε−1 ,

(b) Vε ∼ ε−α, 0 < α < 1 .
In the limit ε → 0, case (a) yields an imaginary delta-function potential whereas
case (b) implies a weaker and less perturbing measurement.

4.4.3.1 Free Wave Packet

The easiest case is a free incoming wave packet of positive momenta, see Fig. 4.5a.
Its Hamiltonian is given by Eq. (4.25) with U = 0. Imposing standard matching

conditions, in the limit ε
(a)→ 0 one obtains the same result as for an imaginary δ-like

potential. In the limit ε
(b)→ 0 the measurement region obviously has no effect on

the motion of the atoms. However, by operator normalization a finite distribution is
obtained in both limits,

ΠON → ΠK . (4.26)

Fig. 4.5 Measurement scheme for the arrival time distribution at x = 0 of a wave packet coming
from the left. (a) Free wave packet. (b) Tunneling wave packet
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Now let us look at the case of general states with U = 0. The Hamiltonian Hc

in Eq. (4.25) commutes with the parity operator and, as a consequence, so does the
operator Π̂t . Therefore, its matrix elements between symmetric and antisymmetric
states vanish, so that the operator normalization of Π̂t can be performed in the sub-
spaces of symmetric and antisymmetric states independently by expanding in sym-
metric and antisymmetric eigenfunctions, respectively. Although for antisymmetric
states the wave function vanishes at x = 0, the operator normalization preserves
a finite arrival time distribution even when the width of the measurement region
contracts to 0. A state ψ can be written in terms of its symmetric and antisymmetric

part, and in the limit ε
(a)→ 0 and ε

(b)→ 0 one obtains

ΠON
ψ (t) = �

2πm

∑

±

∣
∣
∣
∣

∫ ∞

0
dk ψ̃(±k)

√
k e−i�k2t/2m

∣
∣
∣
∣

2

. (4.27)

This expression has been proposed in Refs. [55, 69] on more heuristic grounds as a
generalization of the distribution from left (or right) incoming states to general free
states.

4.4.3.2 Effect of a Real Barrier

When the real barrier is present, U �= 0, see Fig. 4.5b, the operator-normalized

arrival time distribution of a tunneled particle takes, with ε
(b)→ 0, the form

ΠON
pot(t) =

�

2πm

∣
∣
∣
∣

∫

dk ψ̃(k)e−i�k2t/2m
√

k
T (k)

|T (k)|
∣
∣
∣
∣

2

.

The effect of the additional potential is the introduction of a phase factor which
comes from the transmission amplitude T (k) of the real potential. This means that
the Hartman effect can be observed [46] in the arrival time distribution, i.e., the
arrival time peak becomes independent of the barrier width.

In the above setup an incoming free particle was prepared far to the left and
then interacted with an external real potential. If one includes the real potential as
part of the preparation procedure through which the particle passes far away on the
left, the incident state for operator normalization purposes would be the normalized
transmitted wave packet. For the positive results, i.e., transmissions, the normalized
incoming free state is then characterized by T (k)ψ̃(k)/(

∫

dk |T (k)ψ̃(k)|2)1/2 instead
of ψ̃(k). Applying Kijowski’s distribution to the incoming free state thus prepared
gives

ΠT
K (t) = �

2πm

∣
∣
∣

∫

dk ψ̃(k)e−i�k2t/2m
√

k T (k)
∣
∣
∣

2

×
(∫

dk |T (k)ψ̃(k)|2
)−1

. (4.28)

This expression coincides with the proposal of Refs. [60, 69, 13, 15].
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4.5 Kinetic Energy Densities

In this section we continue exploring the strong interaction limit, first via “normal-
ization by hand” in Sect. 4.5.1 and then by deconvolution in Sect. 4.5.2. This will
produce a kinetic energy density that is approximately related to the other local
densities in Sect. 4.5.3 by expanding over the momentum width.

4.5.1 Kinetic Energy Density, Fluorescence, and Atomic
Absorption Rate in an Imaginary Potential Barrier

In the complex potential model and for large V0, V0 � �
2k2/2m, one has in leading

order (the barrier is now located between 0 and L and the wavepacket comes from
the left)

Π (t) � �
2

πm
√

mV0

∫ ∞

0
dk

∫ ∞

0
dk ′ψ̃∗(k)ψ̃(k ′) ei�(k2−k ′2)t/2mkk ′ .

This expression is independent of the barrier length L as a result of the large V0

limit, so the same result is obtained with an imaginary step potential −iV0Θ (̂x) or
with a very narrow barrier as in the previous section.

The normalization constant is given by
∫

Π (t)dt � 2�k0(mV0)−1/2, where the
mean wave vector reads k0 = ∫ |ψ̃(k)|2k dk, and the normalized absorption rate
(“normalization by hand”) is

ΠN (t) � �

2πmk0

∫ ∞

0
dk

∫ ∞

0
dk ′ψ̃∗(k)ψ̃(k ′) ei�(k2−k ′2)t/2mkk ′ . (4.29)

With the freely moving wave packet ψ f (x, t), this can finally be rewritten in the
form

ΠN (t) � �

mk0
〈ψ f (t)|̂kδ(̂x )̂k|ψ f (t)〉 . (4.30)

Now, the right-hand side is just the expectation value at time t of the kinetic energy
density operator corresponding to Eq. (4.3) (we shall call it τ̂ (1), and similarly τ̂ (2,3)

correspond to Eqs. (4.4) and (4.5)8) evaluated at the origin! Thus, if p0 = k0� is the
initial average momentum we have, in the limit V0 → ∞,

lim
V0→∞

ΠN (t) = 2

p0
〈̂τ (1)(x = 0)〉t . (4.31)

8These three operators lead to the three versions of the kinetic energy density commonly found in
applications [9, 23, 27, 11, 10, 86, 87, 66].
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Note that the averages are computed with the freely moving wave function.
The results are different from the ones obtained by operator normalization as

applied in the previous section, i.e., by normalizingΠON to 1. It is possible, however,
to get the same kinetic energy density in (4.31) by using p0/2 as normalization
constant [48].

4.5.2 Kinetic Energy Density from First-Photon Measurement
and Deconvolution

If the atom-laser model is used to implement the complex potential V0, then V0 =
�Ω2/2γ , with �γ much larger than the kinetic energy. The limit V0 → ∞ implies
a simultaneous change of Ω and γ but, experimentally, the Rabi frequency Ω is
easier to adjust than γ . To overcome this problem, we describe now a procedure
that allows to keep the value of γ fixed.

We again consider the atom-laser model but now for the limit Ω → ∞ and
γ = const. In that case, the simplified description of the evolution of the wave
function by means of the imaginary potential is not feasible, and one has to solve
the full two-channel problem. This has been done in Refs. [31, 47] and “normalizing
by hand” with a constant the resulting photon detection rate ΠN (t) becomes

ΠN (t) � �

2πmk0

∫ ∞

0
dkdk ′ψ̃∗(k)ψ̃(k ′) ei�(k2−k ′2)t/2m γ kk ′

γ + i�(k2 − k ′2)/m
.

For �γ large compared to the kinetic energy of the incident atom, Eq. (4.29) is
recovered, but for finite γ there is a delay in the detection rate. This can be elim-
inated by means of a deconvolution with the first-photon distribution W (t) for an
atom at rest [31, 47]. Using the ansatz

Π (t) = Πid(t) ∗ W (t) ,

and deconvolution,

Πid(t) � 2

p0
〈̂τ (1)(x = 0)〉t

holds as before.

4.5.3 Relations Between Different Local Densities

Here we briefly discuss a formal connection between the arrival time distribution of
Kijowski (4.1) and the kinetic energy densities 〈̂τ (1)(x = 0)〉t and 〈̂τ (2)(x = 0)〉t .
For wave packets peaked around some k0 in momentum space, the operator k̂1/2

acting on ψ f in Eq. (4.1) can be expanded in terms of (̂k − k0),
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k̂1/2 = k1/2
0 + 1

2
k−1/2

0 (̂k − k0) − 1

8
k−3/2

0 (̂k − k0)2 +O
(

(̂k − k0)3
)

. (4.32)

We take k0 to be the first moment of the momentum distribution, k0 = ∫ |ψ̃(k)|2k dk.
Inserting the expansion in Eq. (4.32) into Eq. (4.1) yields in zeroth order a very
simple result,

ΠK (t) = v0|ψ f (0, t)|2 +O(̂k − k0) ,

i.e., the particle density times the average velocity v0 = k0�/m. In first order in
(̂k − k0) one obtains the flux at x = 0,

ΠK (t) = J (0, t) +O
(

(̂k − k0)2) ,

and to second order the expression

ΠK (t) = J (0, t) + 1

2p0
Δ(0, t) +O

(

(̂k − k0)3
)

,

where

Δ(0, t) = 〈̂τ (1)(x = 0)〉t − 〈̂τ (2)(x = 0)〉t .

For states with positive momentum, which we are considering here, the first order,
namely the flux, is correctly normalized to 1 and so is the second order since the time
integral over Δ is easily shown to vanish. This difference only provides a local-in-
time correction to J that averages out globally. Its quantum nature can be further
appreciated by the more explicit expression

1

2p0
Δ = �

2

8mp0

∂2|ψ f (0, t)|2
∂x2

.

4.6 Disclosing Hidden Information Behind the Quantum Zeno
Effect: Pulsed Measurement of the Quantum Time of Arrival

This section completes our analysis of the strong interaction regime and deals with
pulsed measurements simulated by instantaneous projections as in Fig. 4.2. When
they are performed very frequently the wave packet is totally reflected. The first
discussions of the Zeno effect, understood as the hindered passage of the system
between orthogonal subspaces because of frequent instantaneous measurements,
emphasized its problematic status and regarded it as a failure to simulate or define
quantum passage-time distributions [4–6, 62]. We shall see, however, that in fact
there is a “bright side” of the effect: by normalizing the little bits of norm removed
at each projection step,
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ΠZeno = lim
δt→0

−δN/δt

1 − N (∞)
,

a physical time distribution defined for the freely moving system emerges,9 the same
kinetic energy density found in the previous section [33].

4.6.1 Zeno Time Distribution

To find ΠZeno we shall put the parallelism hinted by Allcock between the pulsed
measurement and the continuous measurement on a firmer, more quantitative basis.
We shall define formally the pulsed and continuous measurement models as well as
an intermediate auxiliary model [7] that will be a useful bridge between the two.

The “chopping process” amounts to a periodic projection of the wave function
onto the x < 0 region at instants separated by a time interval δt . The wave func-
tions immediately after and before the projection at the instant t j are related by10

ψ(x, t j+) = ψ(x, t j−)Θ(−x).
The wave at x > 0 may also be canceled with a “kicked” imaginary poten-

tial V̂k = V̂ δt Fδt (t), where the subscript “k” stands for “kicked” and Fδt (t) =
∑∞

j=−∞ δ(t − jδt),

V̂ = −iV̂I = −iV0Θ (̂x) , (4.33)

provided

V0δt � � . (4.34)

The general (and exact) evolution operator is obtained by repetition of the basic unit

Ûk(0, δt) = e−iĤ0δt/�e−iV̂ δt/� , (4.35)

where Ĥ0 = −(�2/2m)∂2/∂x2.
For the continuous model, the evolution under the imaginary potential (4.33) is

given by

Û (0, δt) = e−i(Ĥ0+V̂ )δt/� = e−iĤ0δt/�e−iV̂ δt/� +O(δt2[V̂ , Ĥ0]/�2) .

Comparing with Eq. (4.35) we see that the kicked and continuous models agree
when

9There are other “positive” uses of the Zeno effect, such as reduction of decoherence in quantum
computing, see, e.g., [73, 36].
10Experimental realizations of repeated measurements will rely on projections with a finite fre-
quency and pulse duration that provide approximations to the ideal result. Feasible schemes may
be based on pulsed localized resonant laser excitation [85] or sweeping with a detuned laser [29].
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δt2|〈[V̂ , Ĥ0]〉|/�2 � 1 . (4.36)

At first sight a large V0δt/�, see Eq. (4.34), seems to be incompatible with this
condition so that the three models would not agree [33]. In fact the numerical cal-
culations show a better and better agreement between the continuous and pulsed
models as V0 → ∞ when δt and V0 are linked by some predetermined (large)
constant α, δt = α�/V0.

Figures 4.6 and 4.7 illustrate this agreement: in Fig. 4.6 the average absorption
time, 〈t〉 = ∫∞

0 (−d N/dt)tdt/[1−N (∞)], is shown versus δt (chopping) and �/2V0

(complex potential) for a Gaussian wave packet sent from the left toward the origin.
The lines bend at high coupling because of reflection. The normalized absorption
distribution as V0 → ∞ has been derived in Sect. 4.5.1, see Eq. (4.30):

ΠN (t) = �

mk0
〈ψ f (t)|̂kδ(̂x )̂k|ψ f (t)〉 , (4.37)

where k0� is the initial average momentum. Figure 4.7 shows for a more challenging
state, a combination of two Gaussians, that this ideal distribution becomes indistin-
guishable from the normalized chopping distribution when δt is small enough. Even
the minor details are reproduced and differ from J and Πk , also shown.

To understand the compatibility “miracle” of the inequalities (4.34) and (4.36),
we apply the Robertson–Schrödinger (generalized uncertainty principle) relation,

∣
∣〈[V̂ , Ĥ0]〉∣∣ ≤ 2|ΔVI |ΔH0 ,

Fig. 4.6 Average absorption times evaluated from −dN/dt (normalized) for the projection method
and the continuous (complex potential) model. The initial state is a minimum uncertainty product
Gaussian for 23Na atoms centered at x0 = −500 μm with Δx = 23.5 μm and average velocity
0.365 cm/s. In all numerical examples negative momentum components of the initial state are
negligible
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Fig. 4.7 Time-of-arrival distributions: Flux J (dashed line), ΠK (solid line), ΠZeno (big sparse
dots), and Πchopping (for pulses separated by δt = 0.266 ns, dotted line). The initial wave packet is
a combinationψ = 2−1/2(ψ1+ψ2) of two Gaussian states for the center-of-mass motion of a single
cesium atom that become separately minimal uncertainty packets (with Δx1 = Δx2 = 0.021 μm
and average velocities 〈v〉1 = 18.96 cm/s, 〈v〉2 = 5.42 cm/s) at x = 0 and t = 0 μs

where Δ denotes here the standard deviation. Since |ΔVI | is rigorously bounded at
all times by V0/2,11 imposing δtV0 = α� with α � 1, a sufficient condition for
dynamical agreement among the models is

V0 � ΔH0 . (4.38)

For large V0 the packet is basically reflected by the wall so that ΔH0 tends to retain
its initial value and Eq. (4.38) will be satisfied during the whole propagation.

This implies in summary that ΠZeno = ΠN , Eq. (4.37), a very remarkable result,
which again illustrates that an active intervention on the system dynamics may pro-
vide an ideal quantity for the system.

The proposed normalization method may be applied to other measurements as
well, i.e., not only for a TOA of freely moving particles, but, in general, to first
passages between orthogonal subspaces, and it will be interesting to find out in each
case the ideal time distribution brought out by normalization.

4.6.2 An Approximate Relation Between Pulsed and Continuous
Measurements

So far we have discussed the limits δt, �/V0 → 0 in order to find the corresponding
time distribution. We shall now relate the pulsed and continuous measurements

11If N+ is the norm in x > 0, |ΔV | = V0(N+ − N 2
+)1/2 which is maximal at N+ = 1/2.
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approximately for finite, non-zero values of δt and �/V0, when they are suffi-
ciently large to make reflection negligible: the average detection time is delayed
with respect to the ideal limit corresponding to ΠZeno as

〈t〉 ≈ 〈t〉Zeno + δt/2 ≈ 〈t〉Zeno + �

2V0
,

see Fig. 4.6, since, once a particle is in x > 0, �

2V0
and δt/2 are precisely the average

lifetimes in the continuous and discrete measuring models, respectively.12 This sug-
gests an approximate agreement between projection and continuous dynamics when
δt ≈ �/V0 is satisfied. For large V0, this is asymptotically not in contradiction with
the requirement of a large α since V −1

0 − (αV0)−1 → 0 as V0 → ∞; in any case
quantum reflection breaks down the linear dependence, see Fig. 4.6.

A similar relation between pulsed and continuous measurements was described
by Schulman [84] and has been tested experimentally [85]. The simplest model
in [84] may be reinterpreted as a two-level atom in a resonant laser field, Ĥ =
�

2

(
0
Ω

Ω

−iγ

)

. The relation between pulsed and continuous measurements follows by

comparing the exponential decay for the effective 2-level Hamiltonian with Rabi
frequency Ω and excited state lifetime 1/γ , with the decay dynamics when γ = 0
and the system is projected every δt into the ground state. It takes the form [84]
δt = 4

γ
for γ /Ω � 1 (weak driving). In our TOA model we have a different set of

parameters. Using Ĥ = Ĥ0 + �

2

(
0

ΩΘ (̂x)
ΩΘ (̂x)
−iγ

)

gives V0 = �Ω2

2γ , so that δt ≈ �/V0

becomes

δt ≈ 2
γ

�Ω2
,

different from Schulman’s relation, as it may be expected since the pulsed evolution
depends on Ω in Schulman’s model but not in our case, where it is only driven by
the kinetic energy Hamiltonian Ĥ0.

4.7 Summary

In this chapter we have discussed a model to measure the time of arrival of an
atom. The basic idea is that upon entering a laser-illuminated region the atom will
start emitting photons, and the first-photon detection can be taken as a measure of
the arrival time of the atom in that region. We have shown the explicit connection
between this atom-laser model and approaches where the detector is modeled in a

12The origin ordinate would be slightly above 〈t〉Zeno for optimized straight lines. Reflection at
small δt (or high V0) favors the detection of faster particles and bends the 〈t〉 lines toward shorter
times, as in Fig. 4.6.
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simplified manner by a local complex potential, with the arrival probability distri-
bution given by the decrease rate of the norm of the quantum wave function.

By using deconvolution techniques, we can measure, according to this model,
the quantum mechanical flux in a limit. The quantum mechanical flux is in many
cases a good approximation to Kijowski’s distribution, an ideal reference distribu-
tion for the arrival time of a particle. By applying operator normalization we can
get also Kijowski’s distribution directly from the fluorescence in some limits, which
provides an operational interpretation of Kijowski’s distribution.

The quantum mechanical flux and Kijowski’s distribution are examples of local
densities associated with a single classical local density. Other examples are the
quantum kinetic energy densities that could also be measured in some limits.

Summarizing, we have shown that several local densities of an atomic
wavepacket (quantum mechanical flux, Kijowski’s time-of-arrival distributions,
kinetic energy densities) can be measured for different limits of the laser shape
or intensity and by means of different manipulations of the fluorescence signal or
the initial state. One could in this manner observe quantum dynamical effects that
have not been realized experimentally so far, for example, the backflow effect (neg-
ative fluxes for positive–momentum wavepackets), and quite generally distinguish
quantum from classical dynamics and arrival times. Of course actual measurements
will generally approximate these limits and operations only to some degree and this
will determine the quantity which is really measured. We emphasize though that it
is only through extreme operations and idealized limits that we get access to the
properties of the bare, freely moving system.

There are still many open questions. For example, the atom-laser model has been
examined until now on a single-particle level. An interesting task is to extend the
model and examine many-particle effects. Another route of research is to apply the
atom-laser model to other time quantities.
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Chapter 5
Dwell-Time Distributions in Quantum
Mechanics

José Muñoz, Iñigo L. Egusquiza, Adolfo del Campo, Dirk Seidel,
and J. Gonzalo Muga

LOCATIONS and times—what is it in me that meets them all,
whenever and wherever, and makes me at home?

Walt Whitman

5.1 Introduction

Time observables in quantum mechanics have a long and debated history [33]. In
spite of the fact that random time variables, measured after a system is prepared, are
common in laboratories, most often it has been argued that questions about time in
quantum mechanics should best be left alone, as illustrated by the frequent reference
to Pauli’s theorem. Alternatively, the emphasis has been laid on characteristic times,
i.e., single time quantities characterizing a process such as tunneling or decay. This,
in many ways, runs counter to the usual procedure in quantum mechanics, where
additionally to the average value of a quantity we require prediction of higher order
moments of that quantity; in other words, the probability distribution.
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With regard to the time-of-arrival observable several such distributions have been
proposed and studied, see volume 1 of “Time in Quantum Mechanics” [12, 28], and
Chaps. 3 and 4 in this volume. In this chapter we analyze the dwell time, which
appears to be a much simpler time observable because the associated operator will
indeed be self-adjoint (over the adequate domain). At first sight, it could be thought
that this statement contradicts Pauli’s theorem, which asserts that no self-adjoint
time observable can exist with canonical commutation relations with a semi-bound
Hamiltonian. However, the dwell time is an interval quantity, as opposed to the
instant quantity that the time of arrival describes. Its associated operator, therefore,
should commute with the Hamiltonian, as opposed to presenting canonical commu-
tation with it.

The dwell time of a particle in a region of space and its close relative, the
delay time [43], are rather fundamental quantities that characterize the duration
of collision processes, the lifetime of unstable systems [13], the response to per-
turbations [19], ac-conductance in mesoscopic conductors [7], or the properties
of chaotic scattering [29]. In addition, the importance of dwell and delay times
is underlined by their relation to the density of states and to the virial expansion
in statistical mechanics [8]. We could thus hardly fail to study and characterize in
detail such a prominent quantity. For a sample of theoretical studies on the quantum
dwell time, see [13, 19, 48, 5, 22, 8, 44, 11, 50, 45, 23, 49, 20, 46, 3, 27, 47].
A recurrent topic has been its role and decomposition in tunneling collisions.
Instead, we shall focus here on different, so far overlooked but fundamental aspects,
namely, the measurability and physical implications of its distribution and its second
moment.

Despite the nice properties of the dwell-time operator, the relevance of the con-
cept and average value in many different fields, or the apparent formal simplicity
stated above, the dwell time is actually rather subtle and remains elusive and chal-
lenging in many ways. In particular, a direct and sufficiently noninvasive measure-
ment, so that the statistical moments are produced by averaging over individual
dwell-time values, is yet to be discovered. If the particle is detected (and thus local-
ized) at the entrance of the region of interest, its wavefunction is severely modified
(“collapsed”), so that the times elapsed until a further detection when it leaves the
region do not reproduce the ideal dwell-time operator distribution and depend on the
details of the localization method. Proposals for operational, measurement-based
approaches to traversal times which model the detectors and study the effect of
localization have been discussed by Palao et al. [37] and by Ruschhaupt [39]. For
attempts to measure the dwell time with continuous or kicked “clocks” coupled to
the particle’s presence in the region, see [47, 1]. All operational approaches to the
quantum dwell time known so far have provided only its average, and indirectly,
by deducing it from its theoretical relation to some other observable with measur-
able average. The average is obtained, for example, by a “Larmor clock,” using a
weak homogeneous magnetic field in the region D and the amount of spin rota-
tions of an incident spin− 1

2 particle [2, 41, 6]. An optical analog is provided by the
“Rabi clock” [4]. It can also be deduced from average passage times at the region
boundaries [27], as well as by measuring the total absorption if a weak complex
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absorbing potential acts in the region [16, 17, 31]. This last setup could be imple-
mented with cold atoms and lasers as described in [11, 40] and will be discussed in
Sect. 5.4.2.

The chapter is organized as follows: the first sections are devoted to fundamental
and formal aspects (Sect. 5.2), examples (Sects. 5.3 and 5.4), or extensions (Sect.
5.5) of the dwell-time concept and operator, whereas Sect. 5.6 tackles the relation-
ship between the moments of the dwell-time operator and flux–flux correlation func-
tions (ffcf) [35], generalizing an approach by Pollak and Miller [38]. They showed
that the average stationary dwell time agrees with the first moment of a microcanon-
ical ffcf. We shall see that this relation holds also for the second moment, but not
for higher moments, and extend their analysis to the time-dependent (wavepacket)
case. We shall also discuss a possible scheme to measure ffcf’s, thus paving the way
toward experimental access to quantum features of the dwell-time distribution.

5.2 The Dwell-Time Operator

Unlike other time quantities, there has been a broad consensus on the operator
representation of the dwell time [13, 19]. For one particle evolving unitarily with
Hamiltonian Ĥ in region D, which we limit here to one dimension for simplicity,
D = {x : x1 ≤ x ≤ x2}, it takes the form

T̂D =
∫ ∞

−∞
dt χ̂D (t) =

∫ ∞

−∞
dt eiĤ t/�χD (̂x) e−iĤ t/� , (5.1)

where χ̂D (t) is the (Heisenberg) projector onto D and χD (̂x) = χ̂D (0) = ∫ x2

x1
dx |x〉〈x |.

Without delving too far in the functional analysis definition, i.e., into the proper
description of its domain and of its adjoint, we can see that T̂D will be self-adjoint
(we shall come back to this issue after studying the specific example of the free
particle Hamiltonian in Sect. 5.3). At any rate, it is clear that, at least formally, this
operator commutes with the Hamiltonian, as can be seen from what follows1:

T̂De−iĤ t/� =
∫ ∞

−∞
dτ eiĤτ/�χD (̂x) e−iĤ (τ+t)/� (5.2)

=
∫ ∞

−∞
dτ eiĤ (τ−t)/�χD (̂x) e−iĤτ/� = e−iĤ t/�T̂D .

The commutation of T̂D and the Hamiltonian leads us to search for the eigenfunc-
tions of dwell time in the stationary eigenspaces of the latter. Let α be the degeneracy

1 Time-limited versions of the dwell-time operator such as
∫∞

0 dt eiĤ t/�χD (̂x) e−iĤ t/� do not gen-
erally commute with Ĥ , see [13] or Sect. 5.5.2.
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index for these eigenspaces, such that Ĥ |E, α〉 = E |E, α〉. We easily obtain the
matrix elements of T̂D in the corresponding eigenspace:

T̂D|E, α〉 = 2π�

∑

β

〈E, β|χD (̂x)|E, α〉 |E, β〉 . (5.3)

We may thus reduce the problem of eigenvalues and eigenfunctions of the dwell-
time operator to a set of matrix diagonalization problems in each of the eigenspaces
of the Hamiltonian.

Except in Sect. 5.5 we shall assume that the Hamiltonian holds a purely contin-
uous spectrum with degenerate (delta-normalized) scattering eigenfunctions |φ±k〉
corresponding to incident plane waves | ± k〉, with energy E = k2

�
2/(2m), normal-

ized as 〈k|k ′〉 = 〈φk |φk ′ 〉 = δ(k − k ′).
Following the same manipulation done for the S-operator in 1D scattering theory

[27], it is convenient to define an on-the-energy-shell 2 × 2 dwell-time matrix T by
factoring out an energy delta,

〈φk |T̂D|φ′k〉 = δ(E − E ′)
|k|�2

m
Tkk ′ , (5.4)

where E ′ = k ′2
�

2/(2m) and

Tkk ′ = 〈φk |χD (̂x)|φk ′ 〉2πm

|k|� , E = E ′ . (5.5)

In particular, Tkk is the average dwell time for a finite space region defined by
Büttiker in the stationary regime [6]:

Tkk = 1

| j(k)|
∫ x2

x1

dx |φk(x)|2 , (5.6)

where j(k) is the incoming flux associated with |φk〉.
An intriguing peculiarity of the quantum dwell time is that the diagonalization of

T at a given energy provides in general two distinct eigenvalues t±(k), k > 0, and
corresponding eigenvectors |t±(k)〉, even in cases in which only a single classical
time exists, such as free motion or transmission above the barrier; some explicit
examples are discussed below. A consequence is a broader variance of the quantum
dwell-time distribution compared to the classical one.

The quantum dwell-time distribution for a state |ψ〉 = |ψ(t = 0)〉 is formally
given by

Πψ (τ ) = 〈ψ |δ(T̂D − τ )|ψ〉 , (5.7)

since the self-adjointness of the dwell-time operator implies that the spectral theo-
rem applies and that operator moments coincide with the moments of the distribu-
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tion. We shall not consider in this work other sources of fluctuations such as mixed
states or ensembles of Hamiltonians. In these two cases one could compute distribu-
tions of average dwell times, whereas here we shall be interested in the distribution
of the dwell time itself, but only for pure states and a single Hamiltonian.

On computing the distribution of dwell times we run into the difficulty, men-
tioned above, that the dwell-time operator is multiply degenerate. It is useful in this
case to profit from the spectral theorem to compute the generating function of the
dwell-time distribution, defined as

fψ (ω) =
∫ ∞

0
dt eiωt Πψ (t) = 〈ψ |eiωT̂D |ψ〉 . (5.8)

Normalizing the dwell-time eigenvectors so as to have the resolution of the identity

1̂ =
∑

α

∫ ∞

0
dk|tα(k)〉〈tα(k)| , (5.9)

fψ can be written as

fψ (ω)=
∫ ∞

0
dk

[

eiωt+(k)〈ψ |t+(k)〉〈t+(k)|ψ〉 + eiωt−(k)〈ψ |t−(k)〉〈t−(k)|ψ〉
]

,

(5.10)

and hence,

Πψ (t) =
∫ ∞

−∞

dω

2π
e−iωt fψ (ω)

=
∫ ∞

0
dk

[

δ(t − t+)|〈ψ |t+〉|2 + δ(t − t−)|〈ψ |t−〉|2
]

. (5.11)

The average of the dwell time for a wavepacket can be given in terms of the
position probability density in correspondence (unlike its second moment, as shown
below) to the expression for an ensemble of classical particles. It reads [18, 30]

〈ψ |T̂D|ψ〉 =
∫ ∞

−∞
dt
∫ x2

x1

dx |ψ(x, t)|2 =
∫ ∞

0
dk |〈k|ψ in〉|2Tkk , (5.12)

where ψ(x, t) = ∫∞
0 dk 〈φk |ψ〉 exp(−i�k2t/2m)φk(x) is the time-dependent wave

packet and we assume, here and in the rest of the Chapter, incident wavepackets
with positive momentum components. To write Eq. (5.12), use has been made of
the standard scattering relation 〈φk |ψ〉 = 〈k|ψ in〉, where 〈x |k〉 = (2π )−1/2 exp(ikx)
and ψ in is the freely moving asymptotic incoming state of ψ . Space–time integrals
of the form (5.12) had been used to define time delays by comparing the free motion
to that with a scattering center and taking the limit of infinite volume [15].

The second moment takes the form, as before for wavepackets with incident
positive momentum components,



102 J. Muñoz et al.

〈

T̂ 2
D

〉 =
∫ ∞

0
dk(T 2)kk |〈k|ψ in〉|2 =

∫ ∞

0
dk(|Tkk |2 + |Tk−k |2)|〈k|ψ in〉|2

=
∫ ∞

0
dk

4π2m2

�2k2

×
[( ∫ x2

x1

dx |φk(x)|2
)2

+
∣
∣
∣

∫ x2

x1

dx φ∗k (x)φ−k(x)
∣
∣
∣

2
]

|〈k|ψ in〉|2 , (5.13)

with a term without classical counterpart.

5.3 The Free Particle Case

In order to get a better grasp of the abstract results, it is adequate to illustrate them
with the explicitly solvable free particle case for a region D that extends from
x1 = 0 to x2 = L . Indeed the humble freely moving particle turns out to be
rather interesting and surprisingly complex with regard to the dwell time. The free
particle Hamiltonian is doubly degenerate; we can choose the degeneracy indices to
coincide with the sign of the momentum, and, on computation, with due attention
to the different normalization of the energy and the momentum eigenfunctions, we
find the following generalized eigenfunctions of the free dwell-time operator:

|t±(k), D〉 = 1√
2

[|k〉 ± eikL | − k〉] , (5.14)

where

t±(k) = mL

k�

(

1 ± 1

kL
sin kL

)

(5.15)

are the corresponding eigenvalues, in clear contrast to the classical time tclass=
mL/(|k|�), see Fig. 5.1. It is important to notice that the inverse function is mul-
tivalued. Due to this multivaluedness we have kept generalized eigenfunctions with
the dimensionality of |k〉, instead of normalizing them to the delta function in dwell
times. With this normalization it is easy to check that the resolution of the identity
has the form (5.9).

Interestingly, t−(k) tends to 0 as k → 0, one more very nonclassical effect that is
better understood from the coordinate representation of the eigenvectors,

〈x |t+〉 = eikL/2

π1/2
cos[k(x − L/2)] ,

〈x |t−〉 = ieikL/2

π1/2
sin[k(x − L/2)] , (5.16)
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Fig. 5.1 (Color online) Eigenvalues of the dwell-time operator as a function of q = kL , in units
mL2/�, for a freely moving particle in a region of length L

symmetric and antisymmetric with respect to the interval center. 〈x |t−〉 vanishes at
L/2, so the particle density tends to vanish in D with longer wavelengths as k → 0.

The dwell-time operator for an interval D′ = [a, a + L] is obtained from the one
above by translation:

T̂D ′ = e−iak̂ T̂Deiak̂ , (5.17)

and, as a consequence, the eigenvalues are not modified, while the new eigenfunc-
tions are easily computed as

|t±(k), D′〉 = e−iak̂ |t±(k), D〉
= 1√

2

[

e−iak |k〉 ± eik(a+L)| − k〉] . (5.18)

It is straightforward to compute directly the action of T̂D in the wavenumber
representation,

〈k|T̂D|ψ〉 = mL

|k|�
[

ψ̃(k) + e−ikL 1

kL
sin (kL) ψ̃(−k)

]

, (5.19)

where ψ̃(k) = 〈k|ψ〉. This allows us to study the functional aspects of the opera-
tor. In particular, it is easy to check, using the requirement of normalizability, that
the domain of the operator is given by functions such that ψ̃(k)/k→0 as k→0. The
requirement of symmetry does not add further limitations to the domain. As to the
deficiency indices, they are computed to be (0, 0). These computations are carried
out for the interval D = [0, L], but, given the unitary equivalence of other intervals
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of the same length (see Eq. 5.17), the same results carry over for regions composed
of an arbitrary number of closed intervals.

It should come as no surprise that functions in the domain of the (free particle)
dwell-time operator must vanish at k = 0 fast enough, since the characteristic evo-
lution of a generic wavefunction is dictated by the free propagator, with its t−1/2

temporal behavior. This entails the divergence of the dwell time unless the state has
no k = 0 component and the amplitude decay is faster than k as k → 0 (for a
simple analysis, see [10]). The divergence of the average dwell time for states with
nonvanishing k = 0 components also occurs for ensembles of classical particles.

To calculate the distribution Πψ (t), see Eqs. (5.10) and (5.11), we have in this
case the characteristic function

fψ (ω) =
∫ ∞

−∞
dk eiωmL/(|k|�) cos

[ωm

k2�
sin(kL)

]

|ψ̃(k)|2

+ i
∫ ∞

−∞
dk eiωmL/(|k|�) sin

[
ωm

|k|k�
sin(kL)

]

e−ikL ψ̃(k)ψ̃(−k) .

(5.20)

The distribution Πψ (t) has support only on the positive semi-axis, as can be seen
from the explicit expression for the eigenvalues. This, in turn, is a nontrivial check
of the correctness of the definition.

A further initially surprising result of this analysis is that for highly monochro-
matic wavepackets (i.e., highly concentrated in one point in the momentum repre-
sentation), the probability density for dwell times is generically bimodal because of
the two eigenvalues t±(k) expounded in Eq. (5.15). An experimental verification of
the eigenvalues and of the quantum nature of the dwell time, could be realized with
the aid of a matter wave mirror located at a point X > L , reflecting an incident
plane wave |k〉. The resulting standing wave would take the form, up to a global
phase factor,

|ψX 〉 = |k〉 − e−2ik X | − k〉 . (5.21)

We may now compute the average dwell time between 0 and L ,

〈ψX |T|ψX 〉 = Tkk + T−k−k − 2Re(e−2ik X Tk−k)

= 2
Lm

|k|�
{

1 − cos[k(L + 2X )]
sin(kL)

kL

}

, (5.22)

which oscillates between the maximum and minimum values 2t±, see (5.15); they
occur at specific locations of the mirror, namely

X− = − L

2
+ πn

k
, (5.23)

X+ = − L

2
+ πn

k
+ π

2k
(5.24)
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(n integer such that X > L), for which the standing wave |ψX 〉 becomes proportional
to |t±〉. The proportionality factor 21/2 accounts for the fact that the extrema corre-
spond to twice the eigenvalues. This is easy to interpret physically with reference
to a classical particle which, under similar circumstances, would traverse the region
twice, first rightward and then leftward. For any X between the privileged values X±
given above, |ψX 〉 is a linear superposition of the dwell-time eigenvectors and thus
the resulting average dwell time lies in a continuum between twice the eigenvalues.
In a proposed experiment a highly monochromatic continuous beam would be sent
toward the mirror and the particle density could be measured between 0 and L by
fluorescence or other means. The oscillations of the signal as a function of X would
be in sharp contrast to the classical case, for which the beam density and dwell time
would remain unaffected by a change of the mirror’s position.

5.3.1 A Comparison with Classicality

We have already noticed some of the peculiarities of the quantum dwell time com-
pared to the classical dwell time. Here we elaborate this comparison further. Con-
sider a classical ensemble of free particles, described by the initial probability den-
sity on phase space, F(x, p). The dwell-time distribution for this case is given by

Πclass(t) =
∫

dx dp δ

(

t − mL

|p|
)

F(x, p)

= mL

t2

∫

dx

[

F

(

x,
mL

t

)

+ F

(

x,
mL

−t

)]

, (5.25)

that is to say, the marginal momentum distribution evaluated at mL/t and −mL/t
and multiplied by the normalization factor mL/t2. On the other hand, distribution
(5.11) obtained from Eq. (5.20) includes effects of interferences between positive
and negative momentum components in two different ways. In the first place, there
is the obvious interference of the last line of (5.20); but in addition to this, the
argument of the cosine also reveals these effects. In order to see better this point, let
us examine a different operator,

t̂D := λ̂+T̂Dλ̂+ + λ̂−T̂Dλ̂− = mL/|̂p| , (5.26)

where λ̂± are the projectors onto the positive/negative momentum subspaces. Notice
that λ̂± do not commute with T̂D . The last form in Eq. (5.26), specific of free motion,
is particularly transparent and reproduces the one of the classical dwell time. The
eigenfunctions are | ± k〉, k > 0, and the corresponding eigenvalues are twofold
degenerate and equal to the classical time, mL/�|k|. The distribution of dwell times
for this operator, and for positive-momentum states, is given by
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πψ (τ ) = mL

�τ 2

∣
∣
∣
∣
ψ̃

(
mL

�τ

)∣
∣
∣
∣

2

, (5.27)

which coincides with the classical distribution for initial wave functions whose sup-
port is limited to positive momenta. In this manner we see that distribution (5.11)
incorporates interferences even if only positive momenta are present. To be even
more explicit, observe that, for a state ψ with only positive momentum components,
the second moment of the dwell-time distribution for operator (5.1) is given by

〈

T̂ 2
D

〉 =
∫ ∞

0
dk(T 2)kk |ψ̃(k)|2 =

∫ ∞

0
dk(|Tkk |2 + |Tk−k |2)|ψ̃(k)|2

=
∫ ∞

0
dk

m2L2

k2�2

[

1 + 1

k2L2
sin2 (kL)

]
∣
∣ψ̃(k)

∣
∣
2
, (5.28)

which contrasts with

〈

t̂ 2
D

〉 =
∫ ∞

0
dk

m2L2

k2�2

∣
∣ψ̃(k)

∣
∣
2
, (5.29)

thus indicating that indeed the second term is due to quantum interference.
As said above, there is another rather striking way of seeing this point by consid-

ering a highly monochromatic wavepacket. The classical distribution would have a
very sharply defined peak around mL/p0, where p0 is the central momentum of the
wavefunction, p0 = k0�; on the other hand, the quantum distribution would have
two sharp peaks centered on t+(k0) and t−(k0). The distance between peaks goes to
0 as p0 increases, as was to be expected in the classical limit.

The on-the-energy-shell version of t̂D , t, is also worth examining. By factoring
out an energy delta function as in Eq. (5.4) we get for a plane wave |k〉 the average
tkk = mL/(�k), which is equal to Tkk , but the second moment differs, (t2)kk =
(tkk)2 = (Tkk)2 ≤ (T2)kk ; in other words, the variance on the energy shell is 0 since
only one eigenvalue is possible for t. Contrast this with the extra term in Eq. (5.28),
which again emphasizes the nonclassicality of the dwell-time operator T̂D and its
quantum fluctuation.

5.4 The Scattering Case

Let us now study the dwell time in a potential barrier or well without bound states,
that is, the dwell time in an interval which coincides with the finite support of the
potential V (x), which presents no bound states. For simplicity, we shall assume as
before that this interval starts at point x = 0 and has length L . We shall use the
complete basis of incoming scattering stationary states,

∣
∣k+〉, with the following

position representation, for k > 0,
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〈

x
∣
∣k+〉 = 1√

2π

{

eikx + Rl(k)e−ikx for x < 0
T l(k)eikx . for x > L

, (5.30)

whereas, for k < 0, we have

〈

x
∣
∣k+〉 = 1√

2π

{

T r (−k)eikx for x < 0
eikx + Rr (−k)e−ikx for x > L

(5.31)

(the superscripts l, r in T l , Rl and T r , Rr stand for left and right incidence, respec-
tively). We have omitted any explicit expression in the interval [0, L] because of the
potential dependence. The eigenvalues and eigenstates of the dwell-time operator
can be formally computed using Ĥ

∣
∣k+〉 = (k2

�
2/2m)

∣
∣k+〉. To that end define

ξ (k) =
〈

k+ ∣∣χD (̂x)
∣
∣ k+〉

2σ (k)
, (5.32)

where

σ (k) = ∣
∣
〈−k+ ∣∣χD (̂x)

∣
∣ k+〉∣∣ (5.33)

and

eiϕ(k) =
〈−k+ ∣∣χD (̂x)

∣
∣ k+〉

σ (k)
. (5.34)

Additionally, for the sake of compactness in later formulae, let

μ(k) = 1

2
[ξ (−k) − ξ (k)] . (5.35)

We then have that the eigenvalues of the dwell-time operator are given by

t±(k) = 2πmσ (k)

|k|�
[
ξ (k) + ξ (−k)

2
±
√

1 + μ2(k)

]

, (5.36)

while the eigenfunctions are

|t±(k)〉 = N±
{∣
∣k+〉+ eiϕ(k)

[

μ(k) ±
√

1 + μ2(k)
] ∣
∣−k+〉

}

(5.37)

and the normalization is given by

N± = 1√
2

[

1 + μ2 ± μ
√

1 + μ2(k)
]−1/2

. (5.38)
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In fact, we can relate the quantities ξ (k), σ (k), and ϕ(k) to scattering data whenever
the support of the scattering potential is completely included in the region D. Let
χ̄D (x) be the complementary function to χD (x). We can compute

〈

k ′ +∣∣ χ̄ (̂x)
∣
∣k+〉

explicitly, and using unitarity and the conditions this imposes on the scattering
amplitudes, we are led to the following expressions (where we omit the arguments
of the scattering amplitudes, since all are evaluated at k, and denote derivative with
respect to k as ∂k):

〈

k+ ∣∣χD (̂x)
∣
∣ k+〉 = L

2π

∣
∣T l

∣
∣
2 + i

2π

[

Rl∂k R̄l + T l∂k T̄ l
]+ i

4πk

[

R̄l − Rl
]

,

〈−k+ ∣∣χD (̂x)
∣
∣− k+〉 = L

2π

[

1 + ∣
∣Rr

∣
∣
2
]

+ i

2π

[

Rr∂k R̄r + T r∂k T̄ r
]

+ i

4πk

[

e−2ikL R̄r − e2ikL Rr
]

,

〈−k+ ∣∣χD (̂x)
∣
∣ k+〉 = L

2π
T l R̄r + i

2π

[

Rl∂k T̄ r + T l∂k R̄r
]

+ i

4πk

[

T̄ r − e2ikL T l
]

. (5.39)

Notice that the second term of each of the previous expressions can be identified
with the corresponding on-shell matrix elements of −(im/k�)S†∂k S. That is, with
Smith’s delay time.

5.4.1 The Square Barrier

For the specific case of a square barrier in which V (x) = V0[θ (x − L)− θ (x)], with
θ (x) being Heaviside’s unit step function, we can put to good use the symmetries
of the Hamiltonian, namely x → L − x and k → −k. These are realized on the
scattering states as

〈L − x |k+〉 = eikL〈x ∣∣−k+〉 , (5.40)

whence ξ (k) = ξ (−k) and μ(k) = 0. Furthermore,

〈

k+ ∣∣χD (̂x)
∣
∣ k+〉 = L |T (k)|2

2πκ2

{

k2 − mV0

�2

[

1 + 1

2κL
sin (2κL)

]}

, (5.41)

where κ =
√

k2 − 2mV0/�2, real and positive for positive above-the-barrier momenta
and with positive imaginary part for tunneling momenta. After some cumbersome
algebra, one readily obtains

t±(k) = |T (k)|2 mL

2� |k| κ2

[

k2 + κ2 ± (

κ2 − k2
)

cos κL
]
[

1 ± 1

kL
sin kL

]

, (5.42)
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which is to be compared with (5.15) namely the free particle result gets modulated
by the transmission amplitude and a potential-dependent oscillatory factor. For high
energies the modulating term tends to 1, and we recover the free particle case, as one
should. For small momenta, both eigenvalues tend linearly to 0 with the momentum,
unlike the free case where one of them diverges. It is also relevant that the dwell-time
eigenvalues are bounded above, and therefore the average value is also bounded! In
order to have a better grasp of this result, it is convenient to express the eigenvalues
in dimensionless terms (k = q/L , V0 = �

2 Q2/(2mL2) ):

t±(k) = 2mL2

�

q ± q√
q2−Q2

sin
√

q2 − Q2

2q2 − Q2 ± Q2 cos
√

q2 − Q2
, (5.43)

see Fig. 5.2.
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Fig. 5.2 (Color online) Dwell-time eigenvalues for the square barrier, in units of mL2/�, for Q = 8

5.4.2 Average Dwell Time from Fluorescence Measurements

In this section we shall model the measurement of the average dwell time τD = 〈T̂D〉
of an ultra-cold atom at a square barrier created by a laser shining perpendicular to
its motion with homogeneous intensity between 0 and L .

Consider a two-level system coupled in a spatial region to an off-resonance laser
with large detuning, Δ � γ,Ω , where Δ is defined as the laser frequency minus
the frequency of the atomic transition, γ is the decay constant (inverse lifetime or
Einstein’s coefficient), and Ω is the Rabi frequency.

The amplitude for the atomic ground state up to the first photon detection is
governed then by the following effective potential, see [25, 36] or Chap. 4:
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V (x) = VR − iVI = �Ω2

4Δ
− i

�γΩ2

8Δ2
, (5.44)

so that the average detection delay (lifetime of the ground state if the atom at rest
is put in the laser-illuminated region) is, see, e.g., [34], 4Δ2/Ω2γ . Whereas γ is
fixed for the atomic transition, Ω and Δ may be controlled experimentally, and
the ratio Ω2/Δ can always be chosen so that the real part of V remains constant.
This still leaves some freedom to fix their exact values which we may use to set
the imaginary part. If we do so making sure that at most one fluorescence photon
is emitted per atom, i.e., τD � 4Δ2/Ω2γ , the fluorescence signal produced by
an atomic ensemble will be proportional to the absorption probability A. This signal
provides, after calibration to take into account the detector solid angle and efficiency,
an approximation for the derivative (5.46) and therefore the average dwell time for
the potential (5.44) is

τD ≈ �A/(2VI ) . (5.45)

This follows by integrating −dN/dt = (2VI /�)〈ψ(t)|χD (̂x)|ψ(t)〉 over time, N
being the surviving norm, and A=1−N the absorption (fraction of atoms detected).
In the limit VI → 0 and for highly monochromatic incidence, the average (station-
ary) dwell time at the real potential is obtained:

Tkk = lim
VI→0

(�/2)∂VI A(k) , (5.46)

where A(k) is the total absorption probability for incident wavenumber k. The equiv-
alence of this quantity with (t+(k) + t−(k))/2 can readily be checked.

One may think of relaxing the one-photon condition to get a proxy for the dwell
time of an individual atom of the ensemble from the photons detected in an idealized
one-atom-at-a-time experiment. For VR negligible versus E , it could be expected
that for some regime this distribution of emitted photons would also be bimodal.
For the bimodality to be observed, the characteristic interval between modes (�/E ,
where E is the particle’s energy) should be greater than the characteristic inter-
val between successive emission of fluorescence photons, but these conditions and
Δ > γ are not compatible, and similar difficulties are found for on-resonance exci-
tation. A pending task is the application of (deconvolution or operator normaliza-
tion) techniques which have been successfully applied to the arrival time, at least in
theory.

Figure 5.3 shows the exact dwell time and approximations for several values of
VI calculated for a transition of Cs atoms (the details are in the figure caption). A
larger VI implies larger errors but also a stronger signal. In practice the minimal
signal requirements will determine the accuracy with which the dwell time can be
measured. Figure 5.4 shows the relative error of the dwell-time maxima versus the
corresponding absorption probability. In these figures the beam is monochromatic.
We can check the reality of the quantum prediction at hand differing from the clas-
sical one, namely that for all ingoing waves the quantum mechanical dwell time is
bounded, unlike the classical one.
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Fig. 5.3 Exact average dwell time (solid line) for Cs atoms crossing a square barrier of width 2μm
and height 8.2674 × 103 s−1

� (in velocity units, 0.28 cm/s) versus incident velocity. Approxima-
tions are calculated with Eq. (5.45) for VI = 3.307 s−1

� = V1 (indistinguishable from the exact
result,Δ = 2500γ ,Ω = 1.57γ ), 10 V1 (double dotted–dashed line,Δ = 250γ ,Ω = 0.5γ ), 102V1

(dashed line, Δ = 25γ , Ω = 0.16γ ), and 103V1 (dotted–dashed line, Δ = 2.5γ , Ω = 0.05γ ).
The transition is at 852 nm with γ = 33.3×106 s−1; Δ and Ω are obtained from Eq. (5.44)

Fig. 5.4 Relative errors, calculated from the maxima of exact and approximate results, |τD(exact)−
τD(approx)|/τD(exact), versus the absorption (i.e., detection) probability used to calculate
τD(approx) at the maximum. Same system as for the previous figure

5.5 Some Extensions

In this section we present miscellaneous extensions of the previous formalism and
results: for bound states, for dwelling into states rather than in a spatial region, and
for multiparticle systems.
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5.5.1 The Harmonic Oscillator and Systems with Bound States

If we were to try the direct application of definition (5.1) to the case of the harmonic
oscillator we would soon run into trouble due to divergent integrals. A natural option
is to restrict the total time to one period of the system, as follows:

T̂D =
∫ T/2

−T/2
dτ eiĤτ/�χD (̂x) e−iĤτ/� , (5.47)

where the Hamiltonian is p̂ 2/2m + mω2 x̂ 2/2 and T = 2π/ω. We can thus write
the dwell-time operator, restricted to one period, as

T̂D = T
∞
∑

n=0

〈

n
∣
∣χD (̂x)

∣
∣ n
〉 |n〉 〈n| . (5.48)

The eigenvalues, T
〈

n
∣
∣χD (̂x)

∣
∣ n
〉

, can be understood as the period times the propor-
tion of that period spent by the particle in the stationary state in the region D. This
suggests an alternative useful quantity for systems whose Hamiltonian has a purely
point spectrum. Define

τ̂D = lim
T→∞

1

T

∫ T/2

−T/2
dτ eiĤτ/�χD (̂x) e−iĤτ/� . (5.49)

Let the Hamiltonian be given by

Ĥ =
∑

n,α

En |En, α〉 〈En, α| , (5.50)

with α a degeneracy index. Then it is easy to compute

τ̂D =
∑

n,α,β

|En, α〉 〈En, α|χD (̂x) |En, β〉 〈En, β| , (5.51)

that is to say, the operator that gives us the fraction of time spent in region D is
diagonal in the energy basis, up to degeneracy in energy.

5.5.2 Times of Residence

The construction above suggests an extension to the time of residence, which is an
analog of the dwell time valid for systems in which the concept of a region in space
is not applicable. The question we now purport to answer is the following one: how
much time has a system spent in a state |ψ〉? Or, alternatively, from time 0 to T , what
is the proportion of time the system has spent in that state? Let then the projector
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associated with the state |ψ〉 be denoted by P and the unitary evolution operator by
U (t). We define the time-of-residence operator as

τ̂ψ (0; T ) =
∫ T

0
dt U †(t)PU (t) . (5.52)

For example [45], consider a two-level system with Hamiltonian

Ĥ = �

2

(

0 Ω
Ω 0

)

(5.53)

and the state |ψ〉 =
(

1
0

)

. The time of residence gets written as

τ̂ψ (0; T ) =
⎛

⎝

T
2 + 1

2Ω sin (ΩT ) −i
2Ω (1 − cos (ΩT ))

i
2Ω (1 − cos (ΩT )) T

2 − 1
2Ω sin (ΩT )

⎞

⎠ . (5.54)

This entails that the measurement of this quantity would inevitably lead to one of
the following two (eigen)values:

τ± = T

2
± sin (ΩT/2)

Ω
. (5.55)

The fact that only two values can be obtained in each realization of the experiment,

and not a continuous distribution of time of presence in the state |ψ〉 =
(

1
0

)

, has

been attributed to a predictive character of the measurement involved, as opposed to
an observation that extends over time through the coupling with a weakly interacting
clocking system [45].

As a matter of fact, the average time spent by a particle prepared at instant 0 in
a generic state ranges from τ− to τ+ for the eigenstate of P . Represent a generic
pure or mixed state ρ by a vector in or on the Bloch sphere, ρ = (1 + r · σ )/2; then

the average time of residence in state

(

1
0

)

over the time interval [0, T ] is T/2 +
[

(1 − cos (ΩT ))ry + sin (ΩT ) rx
]

/2Ω , which, as stated, ranges over [τ−, τ+].
It should be noticed that the operator of time of residence from instant 0 to instant

T is generically not stationary; for the example at hand we have

[

Ĥ , τ̂ψ (0; T )
] = i�

2

(

1 − cos (ΩT ) i sin (ΩT )
−i sin (ΩT ) −1 + cos (ΩT )

)

. (5.56)

Notice that whenever T = 2nπ/Ω , with n a natural number, the corresponding time
of residence does indeed commute with the Hamiltonian; this is in keeping with the
expressions of Sect. 5.5.1.
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5.5.3 Multiparticle Systems

Definition (5.1) admits a straightforward extension to systems of many particles,
using the formalism of second quantization, in which we perform the substitution

χD (̂x) → n̂D =
∫

D
dx â†

x âx , (5.57)

where âx is the annihilation operator at point x . For free particles, that is to say, for
a Hamiltonian of the form

Ĥ =
∫ ∞

−∞
dk

�
2k2

2m
n̂k =

∫ ∞

−∞
dk

�
2k2

2m
â†

k âk , (5.58)

with âk the operator that annihilates a particle with wavenumber k, we can compute
the dwell-time operator as

T̂D =
∫ ∞

−∞
dk

mL

|k|�
[

â†
k âk + 1

kL
eikL sin (kL) â†

−k âk

]

. (5.59)

It is also feasible to write a dwell-time density operator, which for the free case
reads

Π̂a(t) =
∫ ∞

−∞
dk

{
1

2

[

δ (t − t+(k)) + δ (t − t−(k))
]

a†
kak

+ e−ikL

2

[

δ (t − t+(k)) − δ (t − t−(k))
]

a†
ka−k

}

. (5.60)

It is easy to see that 〈ψ |Π̂a(t)|ψ〉 reduces to the dwell-time density for the one-
particle marginal wavefunction. The real multiparticle aspect of this construction
will only be accessible through dwell-time–dwell-time correlation functions, for
which a suitable operational interpretation needs to be built.

In addition, we note that for multiparticle systems, the alternative question might
be posed as what is the time during which a given number of particles n can be
found in the region D. This naturally leads to the introduction of the dwell-time
operator for n particles:

T̂D(n) =
∫ ∞

−∞
dtÛ †(t)δ̂nD ,nÛ (t)

= 1

2π

∫ ∞

−∞
dt
∫ 2π

0
dθÛ †(t)eiθ (̂nD−n)Û (t) , (5.61)

where n̂D is the density operator restricted to the region D, defined in Eq. (5.57).
Letting ρ̂ be the density matrix describing the state of the system, it is convenient to
introduce the characteristic function
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F(θ ; t) = Tr[̂ρÛ †(t)eiθ n̂D Û (t)] , (5.62)

whose Fourier transform is the atom number distribution in the region D [21]:

PD(n, t) = 1

2π

∫ 2π

0
e−inθ F(θ ; t)dθ , (5.63)

with n ∈ N. The meaning of PD(n, t) is precisely the probability for n particles to
be found in the spatial domain D at time t .

Knowledge of the atom number distribution can be used to compute the average
dwell time for different number of particles, namely

〈T̂D(n)〉 =
∫ ∞

−∞
dtTr[̂ρ(t)δ̂nD ,n] =

∫ ∞

−∞
dt PD(n, t) . (5.64)

5.6 Relation to Flux–Flux Correlation Functions

This section follows [35] and examines a link between the dwell time and flux–flux
correlation functions (ffcf) that have been considered mostly in chemical physics to
define reaction rates for microcanonical or canonical ensembles [24]. The motiva-
tion for this exercise is to relate the dwell-time distribution, and not just the average
value, to other observables.

5.6.1 Stationary Flux–Flux Correlation Function

Pollak and Miller [38] have shown a connection between the average stationary
dwell time and the first moment of an ffcf. They define a quantum microcanonical
ffcf CP M (τ, k) = Tr{Re ĈP M (τ, k)} by means of the operator

ĈP M (τ, k) = 2π�[ Ĵ (x2, τ ) Ĵ (x1, 0) + Ĵ (x1, τ ) Ĵ (x2, 0)

− Ĵ (x1, τ ) Ĵ (x1, 0) − Ĵ (x2, τ ) Ĵ (x2, 0)]δ(E − Ĥ ) , (5.65)

where Ĵ (x, t) = eiĤ t/� 1
2m [ p̂δ(̂x−x)+δ(̂x−x) p̂]e−iĤ t/� is the quantum mechanical

flux operator in the Heisenberg picture, and p̂ and x̂ are the momentum and position
operators.

This definition is motivated from classical mechanics: Eq. (5.65) counts flux cor-
relations of particles entering D through x1 (x2) and leaving it through x2 (x1) a time
τ later. Moreover, particles may be reflected and may leave the region D through
its entrance point. This is described by the last two terms, where the minus sign
compensates for the change of sign of a back-moving flux. Note that these negative
terms lead to a self-correlation contribution that diverges for τ → 0.
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We shall first derive the average correlation time and show its equivalence with
the average dwell time. We shall only consider positive incident momenta and define
Ĉ+

P M by substituting δ(E − Ĥ ) by δ+(E − Ĥ ) := δ(E − Ĥ )Λ+, where Λ+ is the
projector onto the subspace of eigenstates of H with positive momentum incidence.
By means of the continuity equation

− d

dx
Ĵ (x, t) = d

dt
ρ̂(x, t) , (5.66)

where ρ̂(x, t) = eiĤ t/�δ(̂x−x)e−iĤ t/� is the (Heisenberg) density operator, Ĉ+
P M (τ, k)

can be written as

Ĉ+
P M (τ, k) = −2π�

(
d

dτ
χ̂D (τ )

)(
d

dt
χ̂D (t)

)

t=0

δ+(E − Ĥ ) . (5.67)

By a partial integration and using the Heisenberg equation of motion, the first
moment of the Pollak–Miller correlation function is given by

Tr

{∫ ∞

0
dτ τ Ĉ+

P M (τ, k)

}

= Tr

{

2π�

∫ ∞

0
dτ χ̂D (τ )

1

i�
[χ̂D (0), Ĥ ]δ+(E − Ĥ )

}

.

(5.68)
Boundary terms of the form limτ→∞ τ γ χ̂D (τ ), γ = 0, 1, 2, are omitted here and
in the following. The contribution of these terms should vanish when an integration
over stationary wavefunctions is performed to account for the wavepacket dynamics,
as it is done explicitly in the next section. For potential scattering the probability
density decays generically as τ−3, which assures a finite dwell-time average, but for
free motion it decays as τ−1 [32], making τD infinite, unless the momentum wave
function vanishes at k = 0 sufficiently fast as k tends to 0 [11], as we have discussed
before.

Writing the commutator explicitly and using the cyclic property of the trace give

Tr

{∫ ∞

0
dτ τ Ĉ+

P M (τ, k)

}

= Tr

{

2π�

∫ ∞

0
dτ

(

− d

dτ
χ̂D (τ )

)

χ̂D (0)δ+(E − Ĥ )

}

, (5.69)

and integration over τ yields the final result:

Tr

{∫ ∞

0
dτ τ Ĉ+

P M (τ, k)

}

= 2π�Tr
{

χ̂D (0)δ+(E − Ĥ )
} = Tkk . (5.70)

Expressing the trace in the basis |φk〉 gives back the stationary dwell time of
Eq. (5.6), i.e., the diagonal element of the on-the-energy-shell dwell-time operator,
Tkk .
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The calculation of the average in [38] is different in some respects: (a) The coor-
dinates x1 and x2 are taken to minus and plus infinity, but it can be carried out for
finite values modifying Eq. (8) of [38] accordingly; (b) Formally there are no explicit
boundary terms at infinity but a regularization is required in Eq. (16) of [38], which
is justified for wave packets; (c) δ(E − Ĥ ) is used instead of δ+(E − Ĥ ). This
simply provides an additional contribution for negative momenta parallel to the one
obtained here for positive momenta; (d) In our derivation the average correlation
time is found to be real directly, even though Ĉ+

P M (τ, k) is not self-adjoint, whereas
in [38] the real part is taken. (The discussion of the imaginary time average in [38]
is based on a modified version of Eq. (5.65).)

Next, we will show that the second moment of the Pollak–Miller ffcf equals the
second moment of T. This was not observed in Ref. [38]. Proceeding in a similar
way as above, we start with

I = Tr

{∫ ∞

0
dττ 2Ĉ+

P M (τ, k)

}

. (5.71)

Integrating by parts twice, neglecting the term at infinity, using Heisenberg’s equa-
tion of motion and the fact that φk is an eigenstate of Ĥ , the real part is

I + I∗

2
= 2πm

�k

∫ ∞

0
dτ 〈φk |[χ̂D (τ )χ̂D (0) + χ̂D (0)χ̂D (τ )]|φk〉 . (5.72)

Introducing resolutions of the identity,

ReI =
{
2πm

�k

∫ ∞

0
dτ
∫ ∞

−∞
dk ′
∫ x2

x1

dx
∫ x2

x1

dx ′ei(E−E ′)τ/�φ∗k (x)φk ′(x)φ∗k ′(x
′)φk(x ′)

}

+c.c. , (5.73)

where c.c means complex conjugate. Making the changes τ → −τ and x, x ′ →
x ′, x in the c.c-term, it takes the same form as the first one, but with the time inte-
gral from −∞ to 0. Adding the two terms, the τ -integral provides an energy delta
function that can be separated into two deltas which select k ′ = ±k to arrive at

Tr

{

Re
∫ ∞

0
dτ τ 2Ĉ+

P M (τ, k)

}

= 4π2m2

�2k2

[( ∫ x2

x1

dx |φk(x)|2
)2

+
∣
∣
∣

∫ x2

x1

dx φ∗k (x)φ−k(x)
∣
∣
∣

2
]

= (T2)kk . (5.74)

In other words, the relation between dwell times and flux–flux correlation functions
goes beyond average values and C+

P M (τ, k) includes quantum features of the dwell
time: note that the first summand in Eq. (5.74) is nothing but (Tkk)2, whereas the
second summand is positive, which allows for a nonzero on-the-energy-shell dwell-
time variance (T2)kk − (Tkk)2. We insist that the stationary state considered has
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positive momentum, φk(x), k > 0, but this second term implies the degenerate
partner φ−k(x) as well, and is generically nonzero.

We shall see in the next section with a more general approach that these connec-
tions do not hold for higher moments.

5.6.2 Time-Dependent Flux–Flux Correlation Function

A time-dependent version of the above flux–flux correlation function can be defined
in terms of the operator

Ĉ(τ ) =
∫ ∞

−∞
dt
[

Ĵ (x2, t + τ ) Ĵ (x1, t) + Ĵ (x1, t + τ ) Ĵ (x2, t)

− Ĵ (x1, t + τ ) Ĵ (x1, t) − Ĵ (x2, t + τ ) Ĵ (x2, t)
]

, (5.75)

which leads to the flux–flux correlation function

C(τ ) = 〈Re Ĉ(τ )〉ψ , (5.76)

where the real part is taken to symmetrize the nonself-adjoint operator Ĉ(τ ) as
before.

As in the stationary case, Eq. (5.76) counts flux correlations of particles entering
D through x1 or x2 at a time t and leaving it either through x1 or x2 a time τ later.
Moreover we integrate over the entrance time t . It can be shown that the first moment
of the classical version of Eq. (5.75), where Ĵ is replaced by the classical dynamical
variable of the flux, gives the average of the classical dwell time.

As in Eq. (5.67), we may rewrite Ĉ(τ ) as

Ĉ(τ ) = −
∫ ∞

−∞
dt

d

dτ
χ̂D (̂x, t + τ )

d

dt
χ̂D (̂x, t) . (5.77)

From here we note that the ffcf C(τ ) is not normalized:

∫ ∞

0
dτ Ĉ(τ ) =

∫ ∞

−∞
dt χ̂D (t)

d

dt
χ̂D (t) = 0 , (5.78)

as a result of the self-correlation.
Next we derive the average of the time-dependent correlation function. With a

partial integration one finds

∫ ∞

0
dτ τ Ĉ(τ ) =

∫ ∞

−∞
dt
∫ ∞

0
dτ χ̂D (̂x, t + τ )

d

dt
χ̂D (̂x, t) .

A second partial integration with respect to t replacing d/dt by d/dτ and integrating
over τ gives
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∫ ∞

0
dτ τ Ĉ(τ ) =

∫ ∞

−∞
dt χ̂2

D
(̂x, t) =

∫ ∞

−∞
dt χ̂D (̂x, t) = T̂D , (5.79)

where χ̂2
D
= χ̂D has been used. Equation (5.79) generalizes the result of Pollak and

Miller to time-dependent dwell times.
A similar calculation can be performed for the second moment of C(τ ). After

three partial integrations with vanishing boundary contributions to get rid of the
factor τ 2 one obtains

∫ ∞

0
dτ τ 2Ĉ(τ ) = 2

∫ ∞

−∞
dt
∫ ∞

0
dτ χ̂D (̂x, t + τ )χ̂D (̂x, t) .

Making the substitutions t + τ → t and τ → −τ in the complex conjugated term,
we find

Re
∫ ∞

0
dτ τ 2Ĉ(τ ) = T̂ 2

D . (5.80)

5.6.3 Example: Free Motion

For a stationary flux of freely moving particles with energy Ek , k > 0, described
by φk(x) = 〈x |k〉 = (2π )−1/2eikx , the first three moments of the ideal dwell-time
distribution on the energy shell are given by

Tkk = mL

�k
, (5.81)

(T2)kk = m2L2

�2k2

(

1 + sin2(kL)

k2L2

)

, (5.82)

(T3)kk = m3L3

�3k3

(

1 + 3
sin2(kL)

k2L2

)

. (5.83)

As proved above, the first two moments agree with the corresponding moments of
the Pollak–Miller ffcf, but for the third moment we obtain instead

Tr

{

Re
∫ ∞

0
dτ τ 3Ĉ+

P M (τ, k)

}

= m3L3

�3k3

[

1 − 3[1 + cos2(kL)]

k2L2
+ 3 sin(2kL)

L3k3

]

.

(5.84)

In Fig. 5.5 the first three moments are compared. The agreement between (T3)kk

and Eq. (5.84) is very good for large values of k, but they clearly differ for small k.
Nevertheless, the agreement of the first two moments suggests a similar behavior of
Π (τ ) and C(τ ).
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Fig. 5.5 (Color online) Comparison of the first three moments: Tkk , (T2)kk and (T3)kk , with the
corresponding moments of the flux–flux correlation function, for a free-motion stationary state
with fixed k. (Tkk )2 is also shown. � = m = 1 and L = 2

To calculateΠψ (τ ) for a wavefunction ψ̃(k) := 〈k|ψ〉 with only positive momen-
tum components we use Eq. (5.11) and the explicit forms of the eigenvectors,
Eq. (5.14) and eigenvalues t±, Eq. (5.15):

Πψ (τ ) = 1

2

∑

j

∑

γ=±

|ψ̃(kγj (τ ))|2
|F ′
γ (kγj (τ ))| , (5.85)

where the j-sum is over the solutions kγj (τ ) of the equation Fγ (k) ≡ tγ (k) − τ = 0
and the derivative is with respect to k.

We use the following wavefunction [27]:

ψ̃(k) = N (1 − e−αk2
) e−(k−k0)2/[4(Δk)2]e−ikx0Θ(k) , (5.86)

where N is the normalization constant and Θ(k) the step function. For the free
flux–flux correlation function we write

C(τ ) = Re
∫ ∞

0
dk

∫ ∞

0
dk ′ ψ̃∗(k)ψ̃(k ′)〈k|Ĉ(τ )|k ′〉 , (5.87)

and Ckk ′(τ ) = 〈k|Ĉ(τ )|k ′〉 in the free case

Ckk ′(τ ) = m

2π�k
δ(k − k ′)

d2

dτ 2

[

2g(�kτ/m) − g(�kτ/m − L) − g(�kτ/m + L)
]

,

(5.88)
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where

g(x) = −2eimx2/(2�τ )

(
iπ�τ

2m

)1/2

+ iπx erfi

(√

im

2�τ
x

)

. (5.89)

The result is shown in Fig. 5.6. The ffcf shows a hump around the mean dwell time
but it oscillates for small τ and diverges for τ → 0. As discussed above, this is
due to the self-correlation contribution of wavepackets which are at x1 or x2 at the
times t and t + τ without changing the direction of motion in between. A similar
feature has been observed in a traversal-time distribution derived by means of a path
integral approach [14].
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Fig. 5.6 (Color online) Comparison of dwell-time distribution Π (τ ) (dashed line) and flux–flux
correlation function C(τ ) (solid line) for the freely moving wave packet (5.86). Furthermore, the
alternative free-motion dwell-time distribution π (τ ), Eq. (5.27), is plotted (circles). We set � =
m = 1 and |x0| large enough to avoid overlap of the initial state with the space region D = [0, 45].
k0 = 2, Δk = 0.4, and α = 0.5

In contrast,Πψ (τ ) behaves regularly for τ → 0, but shows peaks in the region of
the hump. This is because the denominator of Eq. (5.85) becomes zero if the slope
of the eigenvalues t±(k) is zero, which occurs at every crossing of t+(k) and t−(k).

The distribution πψ (τ ), see Eq. (5.27), is also computed: it agrees with C(τ ) in
the region near the average dwell time and it tends to 0 for τ → 0. However, it does
not show the resonance peaks of Πψ (τ ).

In the absence of a direct dwell-time measurement, the physical significance of
T̂D and t̂D depends on their relation to other observables. The present results indicate
that the second moment of the flux–flux correlation function is related to the former
and not to the later, providing indirect support for the physical relevance of the
dwell-time resonance peaks, but other observables could behave differently.
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5.6.4 Approximations

While the previous results bring dwell-time information closer to experimental real-
ization, the difficulty is translated onto the measurement of the ffcf, not necessarily
an easy task. A simple approximation is to substitute the expectation of the prod-
uct of two flux operators by the product of their expectation values, which are the
current densities. Using the wave packet of Eq. (5.86), we have compared the times
obtained with the full expression (5.76) and with this approximation in Fig. 5.7. The
two results approach each other as Δk → 0, also by increasing L and/or k0.
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Fig. 5.7 (Color online) Comparison of the relative error of 〈T̂ 2
D〉 using the approximation C0(τ )

instead of C(τ ) for free motion. α = 0.5, � = m = 1, and L = 100

The exact result can be approached systematically, still making use of ordinary
current densities, as follows: First decompose Ĵ (xi , t + τ ) Ĵ (x j , t) by means of

1̂ = P̂ + Q̂ , (5.90)

P̂ = |ψ〉〈ψ | , (5.91)

so that

Ĵ (xi , t + τ ) Ĵ (x j , t) = Ĵ (xi , t + τ )(|ψ〉〈ψ | + Q̂) Ĵ (x j , t) . (5.92)

It is useful to decompose Q̂ further in terms of a basis of states orthogonal to |ψ〉
and to each other, {|ψQ

j 〉},

Q̂ =
∑

j

|ψQ
j 〉〈ψQ

j | , (5.93)
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that could be generated by means of a Gram–Schmidt orthogonalization procedure.
Now we can split Eq. (5.75):

Ĉ(τ ) = Ĉ0(τ ) + Ĉ1(τ ) , (5.94)

where Ĉ0(τ ) has the structure of Ĉ , but with P inserted between the two flux oper-
ators in each of the four terms. Similarly Ĉ1(τ ) has Q inserted and can be itself
decomposed using Eq. (5.93).

We define C(τ ) = C0(τ )+C1(τ ) by taking the real part of 〈ψ |Ĉ0(τ )+ Ĉ1(τ )|ψ〉.
C0 is the zeroth-order approximation discussed before and only involves ordinary,
measurable current densities [9]. The nondiagonal terms from C1, 〈ψ | Ĵ (xi , t)|ψQ

j 〉
〈ψQ

j | Ĵ (x j , t + τ )|ψ〉, can also be related to diagonal elements of Ĵ by means of the
auxiliary states

|ψ1〉 = |ψ〉 + |ψQ
j 〉 ,

|ψ2〉 = |ψ〉 + i|ψQ
j 〉 ,

|ψ3〉 = |ψ〉 − i|ψQ
j 〉 , (5.95)

since

〈ψ | Ĵ (x, t)|ψQ
j 〉 =

1

2
〈ψ1| Ĵ (x, t)|ψ1〉 − 1

4
〈ψ2| Ĵ (x, t)|ψ2〉

−1

4
〈ψ3| Ĵ (x, t)|ψ3〉 + i

4
〈ψ3| Ĵ (x, t)|ψ3〉

− i

4
〈ψ2| Ĵ (x, t)|ψ2〉 . (5.96)

5.7 Final Comments

The quantum dwell-time distribution of a particle in a spatial region and its second
moment present nonclassical features even for the simplest case of a freely moving
particle, such as bimodality (due to two different eigenvalues for the same energy),
with the strongest deviations from classical behavior occurring for de Broglie wave-
lengths of the order or larger than the region width. Progress in ultra-cold atom
manipulation makes plausible the observation of these effects and motivates further
effort to achieve an elusive direct measurement of the dwell times or to link the
distribution and its moments to other observables. We have in this regard pointed
out that the flux–flux correlation function provides access to the second moment.
The potential impact on cold atom time–frequency metrology [42, 26] and other
fields in which the dwell time plays a prominent role (such as conductivity [7] or
chaos) remains an open question.
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Chapter 6
The Quantum Jump Approach and Some
of Its Applications

Gerhard C. Hegerfeldt

6.1 Introduction

Modern techniques allow experiments on a single-driven atom or a single system.
The quantum jump approach was originally developed for the description of the
temporal evolution of such a driven system and was later extended to more general
situations like a moving particle coupled to a spatially confined laser beam or to
spin-boson baths. In this chapter the underlying ideas are presented and illustrated
by simple examples. Applications include the spectacular macroscopic light and
dark periods in the fluorescence of a single atom, quantum counting processes, and
arrival times.

The quantum jump approach1 takes its name from the jump-like change of state
when a measurement is performed. A simple example for such a jump-like change
occurs in a two-level atom interacting with the quantized radiation field. If ini-
tially the atom is in the excited state and the radiation field in the no-photon state
(vacuum), then the complete system evolves into a superposition of atomic and pho-
ton states. If at a specific time one detects a photon by absorption then, by standard
theory, right thereafter the atom is in the ground state.

A more complicated example would be a single atom in a trap irradiated by
a classical laser. Again, the complete system (atom plus radiation field) evolves
under the joint time development into a complicated superposition of atomic and
photon states, and again one could detect the fluorescence photons (outside the laser
direction, laser light is not detected). Right after each photon detection the state
of the atom is reset to the ground state for the two-level case and in general to

G.C. Hegerfeldt (B)
Institut für Theoretische Physik, Universität Göttingen, Friedrich–Hund–Platz 1,
D-37077 Göttingen, Germany, hegerf@theorie.physik.uni-goettingen.de

1 The quantum jump approach was developed in [35, 49, 23]. It is equivalent and simultaneous to
the Monte Carlo wave function approach (MCWF) [17] and to the quantum trajectory approach
[14].
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more complicated states and even to density matrices. Moreover, the reset state may
depend on the state prior to the detection and thus on the time a photon is detected.
Of course, recoil can also change the atomic center-of-mass momentum.

The quantum jump approach (QJA) has been developed to study the temporal
behavior of a single system coupled to a “bath,” such as an atom coupled to the
radiation field, driven by an external field like a laser. A spectacular example for a
phenomenon that can be observed for a single system but not for an ensemble is the
famous macroscopic quantum jumps of a three-level atom, predicted by Dehmelt
[19]. He considered an atom with a ground state 1 and two excited states 2 and 3
where the former is strongly coupled to 1 and decays rapidly, while the latter is
metastable (cf. Fig. 6.1). The 1–2 transition is strongly driven by a laser and the 1–3
transition is weakly driven.

Fig. 6.1 (Color online) System with macroscopic light and dark periods. Three-level system in a
V configuration. Level 2 decays rapidly while level 3 is metastable. The 1–2 transition is strongly
driven by a laser, and the 1–3 transition is weakly driven

Semi-classically one would expect the electron to make rapid transitions between
levels 1 and 2, accompanied by a stream of spontaneous photon emissions, in the
order of 108 photons per second. These would form a visible light period. From time
to time the weak driving of the 1–3 transition, however, would manage to put the
electron into the metastable level 3 where it would stay for some time (“shelving”).
During this time the stream of spontaneous photons would be interrupted, leading to
a dark period. Then the electron would jump back to level 1, with a new light period
beginning. This is depicted in Fig. 6.2, where each short line denotes the emission
of a spontaneous photon.

Fig. 6.2 Each line represents an individual photon. Groups of photons represent a light period,
with a dark period in between two such groups

Experimentally, the individual photons are not resolved, and in the fluorescence
signal one just observes light and dark periods [10–13]. The light and dark periods
can last from milli-seconds to minutes and their durations are random. In an ensem-
ble of such atoms (e.g., gas with no cooperative effects) light and dark periods from
different atoms would overlap, and consequently one would just see diminished
fluorescence. Only light and dark periods from a single or a few atoms are directly
observable.
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The above semi-classical description is adequate when the atom is irradiated by
incoherent light, with the level separations in the optical domain, since in this case
one can use rate equations. However, when the atom is irradiated by coherent light
as by a laser, quantum coherences can build up. Quantum mechanically the atom
will then in general be in a superposition of the three states |1〉, |2〉, and |3〉 but
never strictly in the state |3〉 for an extended period, i.e., there will always be a
small admixture of |2〉. These coherences can change the situation considerably and
can lead to quantitatively different predictions for the frequency and length of the
light and dark periods. The small admixture of |2〉 could, in principle, even have the
strange consequence that the first photon after a dark period could come from a 2–1
transition instead of a 3–1 transition as predicted by the semi-classical argument,
although an experimental verification of this effect is presently beyond reach.

The QJA was specifically developed to treat problems like these. The QJA has
turned out to be a practical tool for questions concerning a single system and often
has technical and conceptual advantages. An extensive review [42] appeared some-
time ago, and therefore this chapter will be more intent on trying to explain the
basics and illustrate the approach by simple, but interesting, examples. In particular,
the above light and dark periods will be treated in some detail and it will be shown
that, with suitably chosen parameters, the first photon after a dark period can indeed
come in about half of all cases from the 2–1 transition. More details as well as
applications can be found in [35, 23, 29, 30, 5, 31, 8, 32, 33, 6, 34, 9, 7] and in the
brief survey [24]. Also included are some more recent extensions of the approach
to incorporate recoil (cf. e.g. [25]) and the possibility of replacing density matrices
by pure states [26] as well as applications to arrival times and to spin-boson models
which have been discussed in [27, 28].

6.2 Repeated Measurements on a Single System: Conditional
Time Development, Reset Operation, and Quantum
Trajectories

In this section the basic ideas underlying the QJA will be explained by means of an
atomic system which is driven by a laser and radiates photons. For the example of
a two-level system the resulting conditional Hamiltonian for the time development
between photon detections will be calculated explicitly in Sect. 6.2.1. From the con-
ditional Hamiltonian the probability density for the first photon is derived in Sect.
6.2.2. The reset operation which yields the atomic state right after a photon detection
will also be explicitly determined for this example in Sect. 6.2.4. Although the result
for the two-level system is obviously just the ground state, the explicit calculation
for this simple example facilitates the understanding of the general case in Sect. 6.4.
In Sect. 6.2.5 the notion of quantum trajectories will be explained by means of this
example.

It is intuitively reasonable that it should make no difference physically whether
or not the photons radiated by an atom are detected and absorbed once they are
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sufficiently far away. It therefore suggests itself to employ gedanken photon mea-
surements, over all space and with ideal detectors, at instances a time Δt apart.
For a single-driven atom this may look as in Fig. 6.3. Starting in some initial state
with no photons (the laser field is considered as classical), at first one will detect no
emitted photon in space and then, say at the n1th measurement, a first photon will
be detected (and absorbed), the next photon at the n2th measurement, and so on.

Fig. 6.3 Repeated photon measurements at times Δt apart. The first are null measurements where
no photon is found

Ideally one would like to let Δt → 0 to simulate continuous measurements. But
this is impossible in the framework of quantum mechanics with ideal measurements
due to the quantum Zeno effect [39, 36]. To get an idea how to chooseΔt , intuitively
it should be large enough to allow the photons to get away from the atom. On the
other hand, Δt should also be short compared to level lifetimes so that these can be
resolved in time. This leads to the requirement

Δt ∼= 10−13 − 10−10s . (6.1)

For a similar requirement compare the book by Dirac [20]. For consistency one has
of course to check that all results do not depend on the particular value of Δt when
chosen in this interval. Also, for systems coupled to other baths, another range for
Δt may be appropriate.

These measurements on a single atom can be translated into an ensemble descrip-
tion as follows. Let E be an ensemble of many atoms, each with its own quantized
radiation field, of which the considered atom plus field is a member. At time t0 = 0
the ensemble is described by the state |0ph〉|ψA〉. Now one imagines that on each
member of E photon measurements are performed at times Δt, ..., nΔt, ... . Now
we denote, for n = 1, 2, ..., by E (nΔt)

0 the subensemble which consists of all systems
of E for which at the times Δt, ..., nΔt no photon was detected. This is depicted in
Fig. 6.4 where the individual system under consideration, atom plus radiation field,
is denoted by a dot “·” and it is a member of E (nΔt)

0 .
Now one can proceed by ordinary quantum mechanics and the von Neumann–

Lüders reduction rule [1]. Let P0 be the projector onto the no-photon subspace,

P0 ≡ |0ph〉1A〈0ph| , (6.2)

and let U (t, t0) be the complete time-development operator, including the laser
driving and the interaction of the atom with the quantized radiation field. Then the
subensemble E (Δt)

0 is described by
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Fig. 6.4 Ensemble E and subensembles. E (nΔt)
0 denotes the subensemble with no photons found

until, and including, the nth measurement. The dot denotes the single system actually under con-
sideration for which it is assumed that no photon was found until the nth measurement so that it
lies in E (nΔt)

0

P0U (Δt, 0)|0ph〉|ψA(0)〉 (6.3)

and the subensemble E (nΔt)
0 by

P0 U (nΔt, (n − 1)Δt)P0...P0 U (Δt, 0)|0ph〉|ψA(0)〉 ≡ |0ph〉|ψcond(t)〉 , (6.4)

where we have put t ≡ Δt . The relative size of the subensemble E (nΔt)
0 is the prob-

ability to find a member of E in E (nΔt)
0 and is given by the norm square of the above

expression. Hence

P0(t) ≡ ‖ |ψcond(t)〉‖2 (6.5)

is the probability to find no photon until time t = nΔt . Since the decrease of P0(t)
in the time interval Δt is the probability, w1(t)Δt , of finding a photon in Δt , one
has

w1(t)Δt = −(P0(t +Δt) − P0(t)) . (6.6)

This relation also results from the reset operation, as explained in Sect. 6.2.4.
To calculate |ψcond(t)〉 we note that

P0 U (t ′ +Δt, t ′)P0 = |0ph〉〈0ph|U (t ′ +Δt, t ′) |0ph〉〈0ph| (6.7)

and that the inner expression is a purely atomic operator which is easily obtained by
second-order perturbation theory.

The time development of |ψcond(t)〉 occurs under the condition that no photon is
observed until time t , i.e., it is a conditional time development, and therefore the
norm of |ψcond(t)〉 decreases. It will be shown in the following that, on a coarse-
grained timescale, |ψcond(t)〉 can be written by means of a nonunitary conditional
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time-development operator Ucond(t, 0) as

|ψcond(t)〉 = Ucond(t, 0)|ψA(0)〉 , (6.8)

where Ucond(t, 0) satisfies the Schrödinger equation

d

dt
Ucond(t, 0) = − i

�
Hcond(t)Ucond(t, 0) (6.9)

with a complex conditional Hamiltonian Hcond. The nonunitarity of Ucond(t, 0) cor-
responds to the decrease in time of the probability P0(t) of finding no photon until
time t . This will be illustrated now for the example of a two-level system. The
general case will be treated in Sect. 6.4.

6.2.1 The Conditional Hamiltonian for a Two-Level System

In this section the atom will be assumed to be at rest and located at the origin. Its
center-of-mass motion will be taken into account in Sect. 6.7. For optical wave-
lengths the atom can be treated as point-like. Let Eext(0, t) denote an external field
at the origin. Then the Hamiltonian for the complete system, atom plus quantized
electromagnetic field Ê, is given in the Schrödinger picture by [37, 16]

H = �ω0|2〉〈2| +
∑

�ωka†
kλakλ + eD̂ · Ê(0, 0) + eD̂ · Eext(0, t) , (6.10)

where D̂ is the electronic dipole operator,

D̂ =
∑

i j

〈i |X̂e| j〉 |i〉〈 j | ≡
∑

i j

D21 |i〉〈 j | . (6.11)

In the usual rotating-wave approximation the Hamiltonian becomes

H = �ω0 |2〉〈2| +
∑

�ωka†
kλakλ +

[

eD̂(−) · E(+)
ext (t) + h.c.

]

+
[

eD̂(−) · Ê(+) + h.c.
]

≡ H 0
A + H 0

F + HAL (t) + HAF , (6.12)

where
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H 0
A = �ω0 |2〉〈2| , H 0

F =
∑

kλ

�ωka†
kλakλ , (6.13)

D̂(−) = D21|2〉〈1| , Di j = 〈i |X| j〉 , (6.14)

Ê(+) =
∑

kλ

ie

{
�ωk

2ε0V

}1/2

εkλakλ ,

E(+)
ext (t) = 1√

2π

∫ ∞

0
dωẼext(ω)e−iωt ,

and a frequency cutoff is included. V is the quantization volume, later taken to
infinity, a†

kλ and akλ are the photon creation and annihilation operators, and εkλ a
polarization vector. For an external laser field of frequency ωL ,

EL (t) = Re E0e−iωL t , (6.15)

and the Rabi frequency, Ω , is defined as

Ω = eD12 · E0 . (6.16)

For an external laser field, HAL (t) then becomes, in the rotating-wave approxima-
tion,

HAL (t) = Ω

2

{|2〉〈1| e−iωL t + h.c.
}

, (6.17)

where the Rabi frequency Ω plays the role of a coupling constant.
Going over to the interaction picture with respect to H 0

A + H 0
F one has

HI (t) = H I
AL (t) + H I

AF (t) , (6.18)

which is obtained by replacing |2〉〈1| and akλ in the original interaction Hamiltonian
by |2〉〈1|eiω0t and akλe−iωkt , respectively. We now calculate, for ti ≤ t ′ < ti+1,

〈0ph| d

dt ′
UI (t ′, ti ) |0ph〉 . (6.19)

In the first-order contribution only H I
AL (t) remains since H I

AF (t) is linear in the
creation and annihilation operators and hence

〈0ph|H I
AF (t)|0ph〉 = 0 . (6.20)

The second-order contribution is, by (6.20),

− �
−2

∫ t ′

ti

dt ′′
{〈0ph|H I

AF (t ′)H I
AF (t ′′)|0ph〉 + H I

AL (t ′)H I
AL (t ′′)

}

. (6.21)
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Now, if the external field Eext(t) is smooth in time, e.g., given by laser, and not
wildly fluctuating like a thermal or chaotic field, then the second part in (6.21) con-
tributes a term of higher order in Δt and can therefore be omitted. For a chaotic
external field, however, this part may give rise to a contribution of the order of Δt
and then has to be retained. In this case one can no longer work with state vectors
(wavefunctions) but has to use (conditional) density matrices. A particular example
of this is treated in [30].

Thus, supposing a smooth external field, only terms of the form aa† survive in
the second-order contribution, which then becomes

− �
−2

∫ t ′

ti

dt ′′|2〉〈1|1〉〈2|
∑

kλ

e2
�ωk

2ε0V
(D21 · εkλ)(εkλ · D12)e−i(ωk−ω0)(t ′−t ′′)

= −�
−2|2〉〈2|

∫ t ′−ti

0
dτ

∑

kλ

e2
�ωk

2ε0V
(D21 · εkλ)(εkλ · D12)e−i(ωk−ω0)τ . (6.22)

One can now use properties of the correlation function

κ(τ ) ≡
∑

kλ

e2ωk

2ε0�V
(D21 · εkλ)(εkλ · D12) e−i(ωk−ω0)τ . (6.23)

With V −1 = Δ3k/(2π )3 one can perform the limit V → ∞, and the sum over k
becomes an integral over ω, with a suitable frequency cutoff, and an integral over
the unit sphere. The correlation function has an effective width of the order of ω−1

0

around τ = 0, and for t ′ − ti � ω−1
0 one can therefore extend the τ integration in

(6.22) to infinity [2]. This amounts to the replacement

∫ t ′−ti

0
dτei(ω0−ωk)τ ∼= πδ(ωk − ω0) + iP 1

ωk − ω0
(6.24)

and corresponds to the usual Markov approximation in the derivation of the optical
Bloch equations [38, 43]. The principal-value term is analogous to a level shift and
will be omitted [16, 43]. For the second-order contribution one then obtains

− |2〉〈2|
∫

d3k
e2ωk

(2π )3�2ε0
D21 ·

2
∑

λ=1

εkλεkλ · D12πδ(ωk − ω0) . (6.25)

The last integral is denoted by Γ and using

2
∑

λ=1

|εkλ · D12|2 = |D12|2 − |k̂ · D12|2 (6.26)

one obtains
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Γ ≡ e2

6πε0�c3
|D21|2|ω0|3 = A/2 , (6.27)

where A is the usual Einstein coefficient.
Hence, integrating over t ′ from ti to ti+1 and using 1 + α ≈ eα for small α, we

obtain

〈0ph|UI (ti+1, ti )|0ph〉 = exp

{

− i

�

∫ ti+1

ti

dt ′
{

H I
AL (t ′) − i�Γ |2〉〈2|}

}

. (6.28)

For small Δt this can be replaced by a time-ordered exponential,

〈0ph|UI (ti+1, ti )|0ph〉 = T exp

{

− i

�

∫ ti+1

ti

dt ′
{

H I
AL (t ′) − i�Γ |2〉〈2|}

}

≡U I
cond(ti , ti−1) .

(6.29)

From this, one has, with t = tn,

n
∏

i=1

〈0ph|(UI (ti , ti−1)|0ph〉 = T exp

{

− i

�

∫ t

0
dt ′

{

H I
AL (t ′) − i�Γ |2〉〈2|}

}

=U I
cond(t, 0) ,

(6.30)

where the product sign on the l.h.s. includes an ordering in an obvious way.
Since

〈0ph|U (ti , ti−1)|0ph〉 = e−iH 0
Ati/�〈0ph|UI (ti , ti−1)|0ph〉eiH 0

Ati−1/� (6.31)

and since, for t = tn = nΔt ,

Ucond(t, 0) =
n
∏

i=1

〈0ph|U (ti , ti−1)|0ph〉 ,

we obtain, on a coarse-grained timescale, from (6.30) and (6.31)

Ucond(t, 0) = T exp

{

− i

�

∫ t

0
dt ′

{

H 0
A + HAL (t ′) − i�Γ |2〉〈2|}

}

, (6.32)

which is the transformation of (6.30) back to the Schrödinger picture.
Thus the conditional Hamiltonian for a two-level atom with no photon emission

until time t is given, on the coarse-grained timescale, by

Hcond(t) = H 0
A + HAL (t) − i�

A

2
|2〉〈2| . (6.33)
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It may be worthwhile to point out that (6.29) can be derived directly in a more
elaborate way without recourse to perturbation theory by means of the Markov prop-
erty alone. Therefore the possible errors involved in going from (6.19) to (6.29) do
not add up.

6.2.2 First-Photon Probability Density for a Laser-Driven
Two-Level System

For an external laser field one has

Hcond(t) = �ω0 |2〉〈2| + Ω

2

{|2〉〈1| e−iωL t + h.c.
}− i�

A

2
|2〉〈2| . (6.34)

It is noteworthy that one can get rid of the time dependence by going over to a
“laser-adapted interaction picture” by means of the operator

H 0
L = �ωL |2〉〈2| (6.35)

instead of H 0
A. In this interaction picture the conditional Hamiltonian becomes

H IL
cond = −�Δ |2〉〈2| + Ω

2
{|2〉〈1| + |1〉〈2|} − i�

A

2
|2〉〈2| , (6.36)

where Δ = ωL − ω0 is the detuning. In matrix form this reads

H IL
cond/� =

(

0 Ω/2
Ω/2 −Δ− iA/2

)

. (6.37)

In these expressions one clearly sees that the imaginary term leads to a decrease of
the state vector norm – this corresponds to a decrease of the probability P0(t) of
finding no photon until time t .

From (6.6) one then obtains for the probability density for the first photon

w(t) =− d

dt
P0(t)

=− d

dt
|| exp{−iH condt/�}|ψA(0)〉||2

= i

�
〈ψcond(t)|H cond − H †

cond|ψcond(t)〉 .

(6.38)

For the two-level system this becomes

w(t) = A |〈2| exp{−iH I L
condt/�}|ψA(0)〉|2 . (6.39)
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If λ± denote the eigenvalues of H I L
cond/� then the conditional time-development

operator in this interaction picture is given by

exp{−iH I L
condt/�} = 1

λ+ − λ−

{

e−iλ+t
[

H I L
cond − λ−

]− e−iλ−t
[

H I L
cond − λ+

]
}

.

(6.40)

This identity can be checked directly by applying both sides of the equation to
the eigenvectors |λ±〉. If one starts in the atomic ground state, |ψA(0)〉 = |1〉, one
obtains for ωL = ω0 (zero detuning, Δ = 0 )

λ± = − iA

4
± 1

4

√

4Ω2 − A2 , (6.41)

and for the first-photon probability density

w(t) = 4AΩ2

|4Ω2 − A2|e
−At/2

∣
∣
∣
∣
sin

(
1

4

√

4Ω2 − A2t

)∣
∣
∣
∣

2

. (6.42)

This probability density is plotted in Fig. 6.5 forΩ = 2A. It should be noted that
w(0) = 0. This is connected to the so-called anti-bunching of photons as follows.
One can imagine that at time t = 0 a photon was emitted, right after which the
atom is in the ground state. Hence w(0) = 0 means that in light emitted from the

w
/A

At

0.4

0.3

0.2

0.5
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0.0
2.5 10.05.0 7.50.0

Fig. 6.5 (Color online) Probability density, w(t), for the first photon as a function of time for a
laser-driven two-level system, withΩ = 2A. The vanishing ofw(t) for t = 0 implies anti-bunching
of photons
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atom there is only a small probability to find two photons in quick succession. This
is in contrast to natural (chaotic) light where there is bunching, i.e., photons tend
to come in pairs. Anti-bunching, which is usually derived by means of the optical
Bloch equations, just reflects the fact that it takes some time for the light source to
pump the atom back to the excited state before the next photon can be emitted.

From (6.42) the mean waiting time, τ , for the first photon is calculated as

τ = 2Ω2 + A2

AΩ2
. (6.43)

This result will be used later in connection with the discussion of macroscopic light
and dark periods.

6.2.3 Connection with the Quantum Zeno Effect

When one lets Δt become smaller and smaller the above derivation shows very
nicely how and where the quantum Zeno effect [39] turns up in a very natural way. If
Δt is chosen much smaller than the inverse optical frequencies, the last exponential
in (6.22) can be replaced by 1, and the integral becomes proportional to t ′ − ti .
Equation (6.28) is then replaced by

〈0ph|UI (ti+1, ti )|0ph〉 = exp

{

− i

�

{

HAL (ti )Δt − i� const |2〉〈2|(Δt)2
}
}

. (6.44)

The time-ordered product of these operators then becomes, for Δt → 0,

T exp

{

− i

�

∫ t

0
dt ′

{

H I
AL (t ′)

}
}

. (6.45)

This is a purely atomic operator, and hence the time development of the field
becomes frozen, i.e., for Δt → 0 one always remains in the vacuum and the tem-
poral change occurs only in the atomic subspace. For this reason one cannot choose
Δt arbitrarily small in the quantum jump approach.

6.2.4 Jumps and Reset Operation

With the detection of a photon the conditional time development terminates and the
atom “jumps” to a new state. For a two-level system it is intuitively clear that right
after a photon detection the atom should be in its ground state and it would seem to
use overkill to calculate this by the general more involved theory. It is instructive,
however, to see how the machinery works for this simple system and it clarifies the
procedure for the general case.
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We consider an ensemble where no photons are present at some time t . At this
instant the total ensemble is thus described by a state |0ph〉|φ〉 or more generally by
a density matrix ρtot(t) = |0ph〉ρ〈0ph| where ρ is the density matrix of the atoms.
The (normalized) state of the subensemble for which photons are detected by a
nonabsorptive measurement at time t + Δt is given, in view of the von Neumann–
Lüders projection postulate [1], by

P1ρtot(t +Δt)P1/tr(·) , (6.46)

where

P1 ≡ 1 − |0ph〉1A〈0ph| , (6.47)

and where the trace of P1ρtot(t +Δt)P1 gives the probability of detecting a photon
in the time interval Δt . Note that (6.46) still contains the photons.

After a photon measurement by absorption no photons are present any longer and
it was argued in [23] that the resulting state is obtained from (6.46) by a partial trace
over the photons, i.e., by

|0ph〉
(

trphP1ρtot(t +Δt)P1
)〈0ph|/tr(·) . (6.48)

The physical reason for this is that for the atomic description alone it should make
no difference in infinite space whether or not the photons are absorbed, as long as
they are sufficiently far away from the atom and no longer interacting with it.2 We
define the superoperator R, which acts on atomic density matrices, by

Rρ Δt ≡ trph
(

P1U (t +Δt, t)|0ph〉 ρ 〈0ph|U †(t +Δt, t)P1
)

(6.49)

and call R the reset operation and Rρ/tr(·) the (normalized) reset state. The atomic
trace of Rρ Δt gives the probability of detecting a photon in the time interval Δt
when initially there were no photons and the atom was in the state ρ.

Equation (6.49) can be calculated by perturbation theory for UI (t +Δt, t), as in
Sect. 6.2.1. Now the first-order contribution suffices and in this order the external
(laser) field drops out since P1|0ph〉 = 0. One obtains in a straightforward way

Rρ Δt = e−iH 0
AΔt/�|1〉〈2|ρ|2〉〈1|eiH 0

AΔt/�

×
∫ Δt

0
dt ′

∫ Δt

0
dt ′′

∑

kλ

ei(ωk−ω0)(t ′−t ′′) e2ωk

2ε0�V
(D12 · εkλ)(εkλ · D21) .

(6.50)

To apply the Markov property, we decompose the rectangular integration domain
over t ′ and t ′′ in (6.50) into two triangles, leading to

2 For a cavity, however, where photons can return and revivals can occur, the results are different.
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∫ Δt

0
dt ′

∫ t ′

0
dt ′′ei(ωk−ω)(t ′−t ′′) +

∫ Δt

0
dt ′′

∫ t ′′

0
dt ′ei(ωk−ω)(t ′−t ′′) . (6.51)

As in (6.22) and (6.24), by the properties of the correlation function, each of the
inner integrals can be replaced by πδ(ωk − ω0) where the principal values cancel
each other. In this way one obtains

Rρ Δt = A|1〉〈2|ρ|2〉〈1|Δt

= Aρ22|1〉〈1|Δt .
(6.52)

Thus, as expected, the probability density is given by the Einstein coefficient multi-
plied by the occupation of the excited level, and after detection of a photon the atom
is in the ground state. The appearance of the Einstein coefficient and the ground
state reflects the fact that one observes spontaneous photons only since the laser is
treated classically. Anyway, if the laser photons were treated quantum mechanically
it should be recalled that photons from stimulated emissions have the same direction
as the incident, stimulating, laser photons and are therefore not observed.

Now, if instead of a normalized atomic density matrix one takes the conditionally
time-developed state |ψcond(t)〉, then the atomic trace of

R (|ψcond(t)〉〈ψcond(t)|) (6.53)

gives the probability density for a photon at time t under the condition that no photon
has been detected before, i.e., the probability density for the first photon after t = 0.
This was denoted by w(t) in (6.42) and therefore

w(t) = tr
(

R (|ψcond(t)〉〈ψcond(t)|) ) . (6.54)

The general reset state for systems at rest has been determined in [23, 34] and is
given in Sect. 6.4. It may depend on |ψcond(t1)〉 where t1 is the detection time of the
photon.

6.2.5 Quantum Trajectories

One can now distinguish different steps in the temporal behavior of the single atom
under the above gedanken measurements.

(i) Until the detection of the first photon, the atom belongs to the subensembles
E (nΔt)

0 and hence is described by the (non-normalized) vector

|ψcond(t)〉 = Ucond(t, 0)|ψA(0)〉 . (6.55)



6 The Quantum Jump Approach and Some of Its Applications 141

(ii) The first photon is detected at some (random) time t1, according to the proba-
bility density

w(t) = −dP0(t)

dt
= − d

dt
‖ |ψcond(t)〉‖2 . (6.56)

(iii) Jump: With the detection of a photon the atom has to be reset to the appropriate
state. For example, a two-level atom will be in its ground state right after a
photon detection.

(iv) From this reset state the time development then continues with Ucond(t, t1),
until the detection of the next photon at the (random) time t2. Then one has to
reset (jump), and so on.

In this way one obtains a stochastic path in the Hilbert space of the atom. The
stochasticity of this path is governed by quantum theory, and the path is called a
quantum trajectory. In general the reset state will not be a pure state but a density
matrix, as explained in Sect. 6.4.2, and this may result in quantum trajectories with
density matrices instead of pure states, even if one starts in a pure state. However,
it is pointed out in Sect. 6.6 that one can replace such a trajectory by a trajectory
consisting of pure states only. The stochastic process underlying the quantum tra-
jectories is a jump process with values in a Hilbert space. If the reset state is always
the same, e.g., the ground state, one has a renewal process. If the reset state depends
on the conditional state before the jump, one has a Markov process only.

In which sense the parts of a trajectory between jumps can be regarded as an
ensemble created by repetition from a single system at stochastic times will be
discussed in the last section.

The steps (i)–(iv) above can be used for simulations of a trajectory. This will be
discussed in more detail in Sect. 6.6 for the specific example of a three-level cascade
system.

6.3 Application: Macroscopic Light and Dark Periods

The ideas of the preceding section will now be used to provide a direct quantum
mechanical understanding of macroscopic light and dark periods without employing
Bloch equations or a rate-equation approach. For the V system of Fig. 6.1 which
employs two coherent light sources the QJA as described so far can be applied right
away. For setups which in addition to a laser also have driving by a lamp the QJA
has to be carried over to include incoherent driving. This has been done in [30],
and those results can be used to discuss those experimentally realized systems in
[10–13] which have driving by a lamp.

In this section the QJA will be applied to the V system of Fig. 6.1. A strong
laser of frequency ωL1 drives the 1–2 transition, while the transition from 1 to the
metastable state 3 is weakly driven by a laser of frequency ωL2. It is assumed that
the laser frequencies are close to the transition frequencies ω2 and ω3 and that the
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latter are far apart. Then instead of (6.12), (6.13), and (6.17) one has

H 0
A =�ω2|2〉〈2| + �ω3|3〉〈3| ,

Di1 =〈i |X|1〉 , D̂(−) = D21|2〉〈1| + D31|3〉〈1| ,
HAL (t) =Ω1

2

{|2〉〈1| e−iωL1t + h.c.
}+ Ω2

2

{|3〉〈1| e−iωL2t + h.c.
}

,

(6.57)

where Ω1 and Ω2 are the respective Rabi frequencies characterizing the strength of
the atom–laser interaction. One can now determine the conditional Hamiltonian for
this system either as in the preceding section or by using the general expression in
(6.83). Written in an obvious matrix form the result is of the form

Hcond/� =
⎛

⎝

0 eiωL1tΩ1/2 eiωL2tΩ2/2
e−iωL1tΩ1/2 ω2 − iA2/2 −iγ12

e−iωL2tΩ2/2 −iγ21 ω3 − iA3/2

⎞

⎠ , (6.58)

where A2 and A3 are the respective Einstein coefficients and where the γi j terms
will later be seen to be negligible by the rotating-wave approximation. Going over
to a “laser-adapted interaction picture” by means of the operator

H 0
L = �ωL1|2〉〈2| + �ωL2|3〉〈3|, (6.59)

one obtains, with the detunings Δ1 = ωL1 − ω2 and Δ2 = ωL2 − ω3 ,

H I L
cond/� =

⎛

⎝

0 Ω1/2 Ω2/2
Ω1/2 Δ1 − iA2/2 0
Ω2/2 0 Δ2 − iA3/2

⎞

⎠ , (6.60)

where the rapidly oscillating terms γi j exp{±i(ωL2 − ωL1)t} can be, and have been,
omitted. It will be assumed in the following that

Ω2
1 � Ω2

2 , A3 A2 and A2 � A3, Ω2 (6.61)

as well as Δ1 = 0. From the inequalities it follows that the upper left 2 × 2 matrix
dominates. (This becomes evident if one adds Δ21 to H I L

cond/� to get rid of −Δ2

in the 33 component of the matrix.) The upper left 2 × 2 matrix is the same as in
(6.37) for a two-level system. Therefore, two of the eigenvalues, λ1,2, of H I L

cond/� are
approximately given by (6.41) and the third by

λ3 +Δ2 ∼ −iA3 . (6.62)

Therefore, there are different orders of magnitudes present in the imaginary parts of
the eigenvalues and one has

− Imλ3 � −Imλ1,2 . (6.63)
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From this one obtains an understanding of the light and dark periods as follows.
Let |λi 〉 be (nonorthogonal) eigenvectors of H I L

cond/� (in case of degeneracy one has
to consider limits) and let 〈λi | be the dual basis, defined by

〈λi |λ j 〉 = δi j . (6.64)

Then one can write, for initial state |1〉,

exp{−iH I L
condt/�}|1〉 =

3
∑

j=1

e−iλ j t |λ j 〉〈λ j |1〉 . (6.65)

Since |λ1,2〉 are mainly a superposition of |1〉 and |2〉 and |λ3〉 is close to |3〉, the last
term in the sum is negligible for times of the order A−1

2 and Ω−1
1 , while for times

much larger than A−1
2 andΩ−1

1 , the first two terms become exponentially small, and
the third term, though small, remains.

As in (6.38) the probability density for the first photon is

w(t) =− P ′
0(t)

=〈1| exp{iH I L†
condt/�}{A2|2〉〈2| + A3|3〉〈3|

}

exp{−iH I L
condt/�}|1〉

=A2

∣
∣〈2| exp{−iH I L

condt/�}|1〉∣∣2 + A3

∣
∣〈3| exp{−iH I L

condt/�}|1〉∣∣2 .
(6.66)

By the preceding argument, the first term is close to the two-level expression in
(6.42). It dominates for small times and then becomes exponentially small. For large
times the other, small, term remains which then slowly drops off with a very small
exponential exponent.

For the two-level system the waiting time between two photons is of the order
of A−1

2 and Ω−1
1 and waiting times much larger than this practically never happen.

One can therefore now define what one can reasonably understand as a dark period.
One can pick a time T0 satisfying

A−1
2 , Ω

−1
2 � T0 � A−1

3 , Ω
−1
3 . (6.67)

Then, if the waiting time between two photons is larger than T0, this is called a dark
period.

For the temporal behavior of a single atom and its associated quantum trajectory
one has now the following situation. One starts in |1〉, one quickly has a photon, is
back in |1〉, again a quick photon, and so on. In a very rare event there is no photon
within a time interval of length T0. Once this has happened there is only a very small
probability density for the next photon and the total waiting time is much larger
than T0.

The probability of no photon within time T0 is

P0(T0) ∼= ||e−iλ3T0 |λ3〉〈λ3|1〉||2 . (6.68)
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The exponential is close to 1 while the remainder is small. Thus, after each photon
there is a small probability, i.e., P0(T0), for a dark period. Therefore a dark period
occurs after an average number of 1/P0(T0) photons; the latter form a “light period.”
Note that if P0(T0) is too small a dark period may in practice never occur. This
clearly depends on the parameters chosen.

The probability density, wD(t), for the length of a dark period is the same as the
probability density for the first photon to occur after a time interval of length T0.
Thus one has from (6.66), after normalization,

wD(t) = w(t)Θ(t − T0)/
∫ ∞

T0

dt ′w(t ′)

∼= 2|Imλ3|e−2|Imλ3|tΘ(t − T0)/e−2|Imλ3|T0 ,

(6.69)

and this is essentially an exponential distribution. Here Θ(t) is the step function
which vanishes for t < 0 and is 1 for t > 0. The mean duration, TD , of a dark
period is then

TD = T0 + 1

2|Imλ3|
∼= 1

2|Imλ3| . (6.70)

Since after each photon from the 1–2 transition the probability for a dark period
is P0(T0), one needs on the average P0(T0)−1 tries, i.e., photons, before a dark period
occurs. Therefore the mean duration, TL , of a light period is approximately the num-
ber of these needed photons multiplied by the mean waiting time between photons
for the two-level system, i.e., by τ from (6.43). Hence one has

TL
∼= 2Ω2 + A2

AΩ2

1

P0(T0)
. (6.71)

For a quantitative treatment one has to calculate the eigenvalues λi which can, in
principle, be done in a complicated closed form. Simpler approximate expressions
are [49]

λ1,2
∼=− iA2

4
± 1

4

√

4Ω2
1 − A2

2 ,

λ3 +Δ2
∼=− iA3

2
− iΩ2

2
A2Ω

2
1 + 2iΔ2(Ω2

1 − 4Δ2
2 − A2

2)

2(Ω2
1 − 4Δ2

2)2 + 8A2
2Δ

2
2

.

(6.72)

With this one obtains from (6.70)

TD = {A3 + Ω2
2Ω

2
1 A2

(Ω2
1 − 4Δ2

2)2 + 4A2
2Δ

2
2

}−1 . (6.73)

For the parameters
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Ω1 = A2 = 108 s−1, Ω2 = 104 s−1, A3 = 1 s−1, and Δ2 = Ω1/2 (6.74)

this gives

TD = 0.5 s . (6.75)

In order to make sure that these long dark periods do not occur too seldom one
has to make sure that P0(T0) is not too small. To determine P0(T0) one can avoid the
calculation of the eigenvectors by using

|λ3〉〈λ3| = (H I L
cond/� − λ1)(H I L

cond/� − λ2)

(λ3 − λ1)(λ3 − λ2)
. (6.76)

This identity and its cyclic variants are easily checked by applying it to the eigen-
vectors |λi 〉. Neglecting the exponential in (6.68), which is close to 1, one finds

P0(T0) ∼= Ω2
2

A2
2 + 4Δ2

2

(Ω2
1 − 4Δ2

2)2 + 4A2
2Δ

2
2

. (6.77)

Intuitively one would expect a maximum for the frequent occurrence of dark periods
if the driving is on resonance (Δ2 = 0), but contrary to this, when Ω1 is large, the
dark periods are most frequent forΔ2 close toΩ1. This was already noticed in [15].
For the above parameters the mean duration of a light period is TL = 1.5 s so that
light and dark periods have a similar mean duration.

From (6.65) and (6.76) another curious effect follows. In a dark period the atom
is essentially in the state |λ3〉 which can be calculated by applying (6.76) to |1〉
and then normalize the resulting vector to 1. The eigenvector |λ3〉 has a very small
second component and therefore the next photon after a dark period can also come
from a 2–1 transition, not only from a 3–1 transition as suggested by a rate-equation
approach. For the parameters in (6.74) the probability for this strange effect is an
astonishing 1/2 [49]!

6.4 The General N-Level System and Optical Bloch Equations

6.4.1 The Conditional Hamiltonian

In the general case, the Hamiltonian for the complete system, N-level atom plus
quantized electromagnetic field, is again given by an expression as in (6.10), only
with �ω0|2〉〈2| replaced by

H 0
A =

∑

i

�ωi |i〉 〈i | . (6.78)

In the rotating-wave approximation the Hamiltonian then becomes
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H =
∑

i

�ωi |i〉 〈i | + H 0
F +

[

eD̂(−) · E(+)
ext (t) + h.c.

]

+
[

eD̂(−) · Ê(+) + h.c.
]

≡ H 0
A + H 0

F + HAL (t) + HAF , (6.79)

where now

D̂(−) =
∑

i> j

Di j |i〉〈 j | ,

Di j = 〈i |X| j〉 (6.80)

and where i > j means ωi > ω j . The expression for Ê is the same as in (6.13). We
introduce the notation ωi j = ωi − ω j .

One can now proceed as in Sect. 6.2. Instead of the single correlation functions
κ(τ ) in (6.23) one can introduce correlation functions of the form

κ j i�m(τ ) ≡
∑

kλ

e2ωk

2ε0�V
(D j i · εkλ)(εkλ · D�m) e−i(ωk−ω�m )τ . (6.81)

The correlation function has an effective width of the order of ω−1
�m around τ = 0,

and forΔt � ω−1
�m one can, similarly as in the N = 2 case, extend a time integration

in the second-order contribution to infinity [2]. This amounts to the replacement

∫ t ′−ti

0
dτei(ω�m−ωk)τ ∼= πδ(ωk − ω�m) + iP 1

ωk − ω�m (6.82)

and corresponds to the usual Markov approximation in the derivation of the optical
Bloch equations [38, 43]. Again, the principal-value term corresponding to a level
shift will be omitted.

Then one finds that the conditional Hamiltonian for an N -level atom with no
photon detection until time t is, on the coarse-grained timescale, given in the
Schrödinger picture by

Hcond(t) = H 0
A + HAL (t) − i�Γ̂ , (6.83)

where the damping operator Γ̂ is defined by

Γ̂ ≡
∑

i�j
i,�> j

Γi j j�|i〉〈�| (6.84)

and the generalized damping constants Γi jk� by

Γi jk� ≡ e2

6πε0�c3
Di j · Dk�|ωk�|3 . (6.85)
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Note that, similar to (6.27), for i > j , one has

Γi j j i = Ai j/2 , (6.86)

where Ai j is the Einstein coefficient for the i– j transition.

6.4.2 The Reset Operation

One can again proceed as in Sect. 6.2 to determine the state after a photon detection,
but additional complications can arise unless all optical transition frequencies ωi j

and ω�m are far apart or unless two optical transition frequencies are very close so
that |ωi j − ω�m |Δt � 1. The latter case can lead to interesting coherence effects
which were discussed for the Λ system in [31]. In general, oscillatory terms can
appear, but it was shown in [34] that for photon counting these can be omitted. The
result of [23, 34] is

Rρ =
∑

i j�m
i> j,�>m

{

Γ j i�m + Γ�mji
} | j〉〈i |ρ|�〉〈m| . (6.87)

In the sum, only transitions from higher to lower atomic levels appear. This is phys-
ically reasonable since, with a classical laser, one is detecting spontaneous photons
only. Anyway, if the laser photons were also treated quantum mechanically then
photons from stimulated emissions would have the same direction as the incident,
stimulating, laser photons and would therefore not be observed.

As in Sect. 6.2.4, tr(Rρ)Δt is the probability to find a photon in Δt , and the
analog of (6.54) again gives the probability density for the first photon.

6.4.2.1 Examples

(i) Two-level system. Then Di j = 0 unless i or j equals 1, the ground state. Then
Rρ = A ρ22|1〉〈1|, by (6.87). This means that after a photon detection the
atom is in the ground state as expected and as already found in Sect. 6.2.4.

(ii) Λ-system, two ground states | 1〉 and | 2〉, excited state | 3〉 (cf. Fig. 6.6): only
D13, D31, D23, and D32 are nonzero. Then one has, with the Einstein coefficients
A31 and A32 and in matrix notation,

Rρ = ρ33

⎛

⎝

A31 Γ1332 + Γ3213 0
Γ2331 + Γ3123 A32 0

0 0 0

⎞

⎠ . (6.88)

Therefore, the normalized reset matrix is always the same and given by the
matrix divided by its trace. The off-diagonal terms vanish only if D31 ·D23 = 0.
For levels 1 and 2 sufficiently far apart the off-diagonal terms can be neglected
for most questions so that the atom can be taken to be either in state | 1〉 or | 2〉
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A31

A32

1

2

3

Fig. 6.6 The Λ configuration. The upper level 3 can decay to the lower levels 1 and 2. In addition
there may be driving of the 1–3 and 2–3 transitions

after a photon detection. On the other hand, for levels 1 and 2 close together
the off-diagonal terms lead to interesting coherence effects such as dark peri-
ods [29, 32] and quantum beats in the correlation function g(2)(τ ) even under
illumination with incoherent light [30].

(iii) Three-level cascade system. This level system is shown in Fig. 6.7. In matrix
notation one obtains from (6.87)

Rρ =
⎛

⎝

A21ρ22 (Γ1232 + Γ3212)ρ23 0
(Γ2321 + Γ2123)ρ32 A32ρ33 0

0 0 0

⎞

⎠ . (6.89)

Here the normalized reset matrix depends on ρ. For a quantum trajectory the reset
matrix will therefore in general depend on the time of the resetting since matrix
elements of the conditional density matrix elements vary with time if both D21and
D32 are nonzero. The dependence on the state prior to detection, and thus on time, is
easy to understand for large level separation. If, for example, the atom were in state
| 2〉 there would only be a transition to | 1〉, while if it were in a superposition of
| 2〉 and | 3〉 it could go to | 1〉 or | 2〉 or a mixture thereof.

A32

A21

3

2

1

Fig. 6.7 The three-level cascade configuration
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6.4.3 Quantum Trajectories and Recovering the Bloch Equations

It will now be shown that the collection of all quantum trajectories of an N -level
system with the same initial state yields a solution of the usual Bloch equations for
the system.

We consider a large ensemble of systems (atoms) interacting with the quantized
radiation field and an external field. After taking a partial trace over the photons, the
system alone is described by a density matrix, ρ(t). To each individual atom there
corresponds a quantum trajectory, each starting with the initial state ρ(t0) and with
jumps at different times. Now consider a time t . At a fixed time t , each trajectory is
in a particular mixed or pure state, which depends on its history. Let the incoherent
weighted sum of these states be denoted by ρ(traj)(t). Then in the time interval (t, t +
dt) a particular subensemble of systems will have no jumps (photon detections), and
this subensemble is described, including its relative size, by

Ucond(t + dt, t) ρ(traj)(t) U †
cond(t + dt, t), (6.90)

since the state of each individual trajectory satisfies such an equation and (6.90) is
just the weighted incoherent sum of all these. Similarly, the subensemble of systems
with a jump is described, including its relative size, by

R(ρ(traj)(t)) dt . (6.91)

Hence, with

Ucond(t + dt, t) = 1 − i

�
Hconddt (6.92)

one has

ρ(traj)(t + dt) = ρ(traj)(t) − i

�
{Hcondρ

(traj) − ρ(traj) H †
cond}dt +R(ρ(traj)(t)) dt (6.93)

and this gives

ρ̇(traj) = − i

�
{Hcondρ

(traj) − ρ(traj) H †
cond} +Rρ(traj) . (6.94)

This coincides with the quantum optical Bloch equations (which are usually written
in a somewhat different way [38, 43]). Since the initial condition is the same, one
has that ρ(traj)(t) yields a solution of the optical Bloch equations.

Therefore, the QJA lends itself to a numerical solutions of the Bloch equations
by simulations of quantum trajectories. If R always resets to pure states, one can
work in dimension N instead of N 2 for the Bloch equations. For large N this is a
tremendous numerical advantage. On the other hand, if R resets to a density matrix
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this advantage would be lost; however, as indicated in Sect. 6.6 one can always reset
to (auxiliary) pure states.

There are quite efficient ways to derive master equations like the Bloch equations.
Hence, for given Bloch equations, one can read off from (6.94) either Hcond or Rρ
if the other is known, or one can make an educated guess for both from the form of
the Bloch equations.

If one is only interested in simulating solutions of the Bloch equations there
are alternative schemes to achieve this, e.g., trajectories of diffusion processes
[22, 46]. Still another type of trajectories has been used in [3], see Chap. 10 to
study photonic crystals and band gap materials where the Markov property does not
hold.

6.5 Quantum Counting Processes

The QJA will now be used to determine the statistics of broadband photon counting
for a general N -level atom and, more generally, for systems with jumps (with reset
operation R) and a conditional time development between jumps. To be completely
general we use density matrices.

6.5.1 Counting Statistics

For a density matrix the conditional time development is given by a superoperator,
Tcond, defined by

Tcond(t, t0) ρ(t0) ≡ Ucond(t, t0) ρ(t0) U †
cond(t, t0) . (6.95)

If ρ(t0) is normalized, its trace gives the probability P0(t) ≡ P0(t ; ρ(t0)) of finding
no photon (jump) between t0 and t .

The subensemble with (i) no photon found between t0 and t and (ii) a photon
at t + Δt is described by R Tcond(t, t0) ρ(t0) since R performs the resetting. The
size of the subensemble relative to the original ensemble, and thus the probability
w1(t, t0; ρ(t0))Δt to find the first photon after t0 at t +Δt , is the trace of this times
Δt , i.e.,

w1(t, t0; ρ(t0)) = tr
(

R Tcond(t, t0) ρ(t0)
)

, (6.96)

which is the analog of (6.54).
Analogously, the subensemble for which photons are found in the intervals

[t1, t1 +Δt], . . ., [tn, tn +Δt] but none in between and none between tn +Δt and t
is described by

Tcond(t, tn) R Tcond(tn, tn−1) · · · R Tcond(t1, t0) ρ(t0) , (6.97)
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where Tcond(ti , ti−1 +Δt) has been approximated by Tcond(ti , ti−1). The size of this
subensemble relative to the original one is the trace times (Δt)n , and it gives the
probability for this event. Going over to the coarse-grained timescale we have that
the probability density w(t1, . . . , tn; [t0, t]) for finding exactly n photons at times
t1 < t2 · · · < tn in the interval [t0, t] is given by

w(t1, . . . tn; [t0, t]) = tr
(

Tcond(t, tn) R Tcond(tn, tn−1) · · · R Tcond(t1, t0) ρ(t0)
)

.

(6.98)
Putting t = tn the superoperator Tcond(t, tn) drops out and one obtains the prob-
ability density, w(t1, · · · , tn), for finding n photons at t1 < · · · < tn and none in
between,

w(t1, . . . tn) = tr
(

R Tcond(tn, tn−1) · · · R Tcond(t1, t0) ρ(t0)
)

. (6.99)

This can be rewritten as follows. We denote by ρ̂i the normalized reset matrix at
time ti . Then one has, by (6.96),

R Tcond(t1, t0) ρ(t0) =w1(t1, t0; ρ(t0)) ρ̂1 ,

R Tcond(t2, t1)R Tcond(t1, t0) ρ(t0) =w1(t1, t0; ρ(t0))R Tcond(t2, t1)ρ̂1

=w1(t1, t0; ρ(t0)) w1(t2, t1; ρ̂1) ρ̂2,

(6.100)

and so on. In this way one obtains

R Tcond(tn, tn−1) · · ·R Tcond(t1, t0) ρ(t0) = w1(t1, t0; ρ(t0)) · · ·w1(tn, tn−1; ρ̂n−1) ρ̂n

(6.101)

and therefore

w(t1, . . . tn) = w1(t1, t0; ρ(t0))w1(t2, t1; ρ̂1) · · · w1(tn, tn−1; ρ̂n−1) . (6.102)

This result can also be obtained directly by considering quantum trajectories and the
probability densities after the jumps.

For the two-level system, the V system and theΛ system, in example (ii) of Sect.
6.4 the reset matrix is always the same. In general, if after each jump the system is
always reset to the same normalized state or density matrix, ρ̂r say, i.e., if for any ρ,
one has

Rρ = λρ ρ̂r = tr(Rρ) ρ̂r , (6.103)

then the memory is lost after each detection. In this case (6.99) factorizes into single-
photon probabilities:

w(t1, . . . , tn) = tr
(

R Tcond(tn, tn−1)ρ̂r
) · · · tr

(

R Tcond(t1, t0)ρ(t0)
)

= w1(tn, tn−1; ρ̂r) · · · w1(t2, t1; ρ̂r)w1(t1, t0; ρ(t0)) .
(6.104)
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In this case the analysis becomes particularly easy and many quantities can be cal-
culated by Laplace transform as in [49] for the case of a single ground state.

It is also of practical interest to consider the probability density, denoted by
p(t1, . . . , tn), associated with trajectories for which jumps (i.e., photons from the
corresponding atom) are found in the intervals [t1, t1 + Δt], . . ., [tn, tn + Δt] and
arbitrarily many jumps in between. To describe this subensemble, denote the time-
development superoperator for the optical Bloch equations by TB(t, t0), i.e.,

ρ(t) = TB(t, t0) ρ(t0) . (6.105)

Then starting at time t0 with ρ(t0), the time development goes with TB(t, t0) until
t = t1, then there is the reset operation R to those trajectories with a jump, after
that the time development with TB(t2, t1), reset, and so on. The subensemble of
trajectories for which jumps are found in the intervals [t1, t1 +Δt], . . ., [tn, tn +Δt]
and arbitrarily many jumps in between and later is therefore described at time t > tn
by the density matrix

TB(t, tn−1)R TB(tn, tn−1) · · · R TB(t1, t0) ρ(t0) , (6.106)

and the relative size of the subensemble is given by the trace of this times (Δt)n .
Therefore the probability density, p(t1, . . . , tn), for finding jumps (photons from the
atom) at times t1 < · · · < tn , with arbitrarily many jumps in between and at later
times, is given by

p(t1, . . . , tn) = tr
(

R TB(tn, tn−1) · · · R TB(t1, t0) ρ(t0)
)

. (6.107)

The superoperator TB(t, tn−1) in (6.106) has dropped out since it conserves the trace.
The above probability densities determine a classical stochastic process whose

sample paths are given by the photon detection times of a single radiating atom.
Without external pumping these paths terminate. Ergodicity allows one to replace
time averages over a single trajectory by ensemble averages. In many cases the latter
can be computed analytically.

6.5.2 Converse: From Bloch Equations to the Conditional Time
Development

In this section it will be shown that one can derive the conditional time develop-
ment directly from the Bloch equations and the reset operation, without using the
projection machinery from Sects. 6.2.1 and 6.4.1.

We start at time t0 and consider an ensemble of trajectories of radiating atoms
whose incoherent sum of states at time t is described by a density matrix ρ(t). It is
assumed that ρ(t) obeys the Bloch equations. We denote by ρ0(t) the density matrix
for the subensemble of trajectories for which no jump (no photon detection) has
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occurred until time t . The normalization is chosen in such a way that the trace gives
the relative size of the subensemble. To begin with, in the time interval [t0, t0 +Δ],
a photon will have been detected for some of the atoms, i.e., there will have been a
jump on some trajectories, and this subensemble is described by Rρ(t0)Δt , includ-
ing its relative size. The complementary subensemble is described by the difference
of the original ρ(t0 +Δt) and Rρ(t0)Δt , so that

ρ0(t0 +Δt) = ρ(t0 +Δt) −Rρ(t0)Δt . (6.108)

This subensemble as a total would evolve until t0 + 2Δt with the Bloch equations,
i.e., as TB(t0 + 2Δt, t0 + Δt) ρ0(t +Δt), and the sub-subensemble with no photon
detected at time t + 2Δt is again a difference,

ρ0(t0 + 2Δt) = TB(t0 + 2Δt, t0 +Δt)ρ0(t0 +Δt) −Rρ0(t0 +Δt)Δt . (6.109)

In the same vain one obtains for general t

ρ0(t +Δt) = TB(t +Δt, t) ρ0(t) −Rρ0(t)Δt . (6.110)

If LB denotes the superoperator which generates the time development of the Bloch
equations, then TB(t +Δt, t) = eLBΔt and (6.110) can be written as

ρ0(t +Δt) = (1 + LBΔt) ρ0(t) −R ρ0(t)Δt . (6.111)

This finally yields for the subensemble with no jump (photon detection) until time t
the equation

ρ̇0(t) = (

LB −R
)

ρ0(t) . (6.112)

The difference in the brackets is just the time development given by the conditional
Hamiltonian, as seen from (6.94).

It may seem from this derivation that one might be able to take the limit Δt → 0
without running into the quantum Zeno effect. However, it is well known that the
optical Bloch equations are not valid for arbitrarily small times because also in their
derivation the Markov property is used, and this requires Δt to be larger than the
correlation time. Hence for Δt → 0 one would have difficulties with (6.111).

6.5.3 Connection with Continuous Measurements

In order to describe continuous measurements, Davies and Srinivas [47, 48] have
extended the axiomatics of quantum mechanics by postulates for “homogeneous
quantum counting processes.” In particular, their postulates imply the existence
of two superoperators, J and St , which map trace class operators to trace class
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operators and satisfy certain properties. For an individual system of an ensem-
ble described by a density matrix ρ their meaning is as follows. tr(Stρ) is the
probability of finding no counting event in [0, t], and the probability density,
wDS(t1, . . . , tn; [0, t]), for finding a counting event exactly at the times t1, . . . , tn
in [0, t] is given by

wDS(t1, . . . , tn; [0, t]) = tr
(

St−tn J Stn−tn−1 J · · · J St2−t1 J St1ρ
)

. (6.113)

For a particular system J and St have to be determined phenomenologically or by
intuition.

A comparison with (6.98) shows that this has the same structure as that obtained
by the QJA and that the unknown superoperators J and St have to coincide with
the R and Tcond constructed above. In contrast to the axiomatic theory of Davies
and Srinivas, however, the superoperators are explicitly known in the QJA. In
this way one has arrived, without the need of new axioms, at the results of the
continuous measurement theory of [47, 48] for the general N -level atom within
the usual framework of quantum mechanics and with the reduction rule of von
Neumann and Lüders for demolition measurements, except that a temporal coarse
graining has been used. Counting processes analogous to (6.99) have also been
derived in [44].

6.6 How to Replace Density Matrices by Pure States
in Simulations

In many cases the reset state is not a pure state even if one starts in a pure state.
Moreover, the particular reset state in a quantum trajectory may depend on the
conditional state preceding it and thus on the whole history before the resetting.
If in a simulation one would work with density matrices instead of pure states,
one would enormously complicate the numerics for large dimension N of the level
space since density matrices lead to N 2 instead of N , as pointed out in Sect. 6.4.3.
It will be shown elsewhere [26] that for simulations one can always go over to
quantum trajectories with pure states which yield both the same jump statistics and
the Bloch equations as the original trajectories. In simple situations this procedure
has been used before [4]. For simulations this is of great numerical advantage if N is
large. The general proof of this statement is somewhat involved and it may be more
instructive to see how this works in a specific example which is simple enough but
still exhibits all salient features.

To this end we consider a simple three-level cascade system as in Fig. 6.7, where
level 2 may decay to level 1 and level 3 to level 2. Only the 1–3 transition is driven
by a laser. To keep things simple we assume the laser to be on resonance, i.e., ωL =
ω3 − ω1. In the Schrödinger picture the conditional Hamiltonian is then of the form
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H cond=
3
∑

1

�ωi |i〉〈i |+ �Ω

2

(|1〉〈3|eiωL t+|3〉〈1|e−iωL t
)− i�A2

2
|2〉〈2|− i�A

2
|3〉〈3| ,

(6.114)

where A2 and A are the Einstein coefficients of level 2 and 3, respectively. By going
over to the interaction picture we get rid of the time dependence and obtain

H I
cond = �Ω

2

(|1〉〈3| + |3〉〈1|)− i�A2

2
|2〉〈2| − i�A

2
|3〉〈3| . (6.115)

The reset operation for this system is given in (6.89), and here we write it in the
form

Rρ = A2ρ22|1〉〈1| + Γρ23|1〉〈2|
+Γ ∗ρ32|2〉〈1| + Aρ33|2〉〈2| ,

(6.116)

where we use the abbreviation Γ ≡ Γ1332 + Γ3213. Note that |Γ |2 ≤ A2 A so that
Rρ is a positive operator.

The operator H I
cond consists of the part −i�(A2/2)|2〉〈2|, responsible for the

decay of level 2, and a remainder operating in the 2D subspace spanned by |1〉
and |3〉. If �λ± denote the eigenvalues of the 2D part, i.e.,

λ± = − iA

4
± 1

4

√

4Ω2 − A2 , (6.117)

then the conditional time development in the interaction picture is easily determined
as in (6.40) to be given by

exp{−iH I
condt/�} =e−A2t/2|2〉〈2|

+ 2√
4Ω2 − A2

{

e−iλ+t

[
Ω

2

(

|1〉〈3| + |3〉〈1|
)

− λ−|1〉〈1| −
(

λ− + iA

2

)

|3〉〈3|
]

−e−iλ−t

[
Ω

2

(

|1〉〈3| + |3〉〈1|
)

− λ+|1〉〈1| −
(

λ+ + iA

2

)

|3〉〈3|
]}

.

(6.118)

In particular, one finds

exp{−iH I
condt/�}|1〉 = 2√

4Ω2 − A2

{

e−iλ+t

[

−λ−|1〉 + Ω

2
|3〉

]

− e−iλ−t

[

−λ+|1〉 + Ω

2
|3〉

]}

,

exp{−iH I
condt/�}|2〉 = e−A2t/2|2〉 .

(6.119)
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For an initial state |α〉 the probability density, denoted by w1(t, t0 = 0; |α〉), for the
first photon is, by (6.38),

w1(t, t0 = 0; |α〉) = i

�
〈α| exp{iH †

condt/�}(H cond − H †
cond

)

exp{−iH condt/�}|α〉 .
(6.120)

For a superposition of |1〉 and |2〉,

|α〉 = α1|1〉 + α2|2〉 , (6.121)

one then obtains

w1(t, t0=0; |α〉)=|α2|2 A2e−A2t+|α1|2 4AΩ2
∣
∣4Ω2 − A2

∣
∣
e−At/2

∣
∣
∣
∣
sin

(
1

4

√

4Ω2 − A2t

)∣
∣
∣
∣

2

.

(6.122)

Figure 6.8 shows the behavior of w1(t, t0 = 0; |α〉) for a particular set of parameters
as detailed in the figure caption. For these parameters the mean time for the first
photon is τ = 13/(8A). Figure 6.8 should be compared with the first-photon prob-
ability density for the two-level atom in Fig. 6.5. In Fig. 6.8 the probability density
does not vanish for t = 0 since one starts in a superposition of ground state and first
excited state so that the first photon can come more quickly.

w
/A

At

0.0

0.4

0.2

0.5
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7.5 10.02.50.0 5.0

Fig. 6.8 (Color online) Probability density, w1(t, t0 = 0; |α〉), for the first photon as a function of
time, for initial state |α〉 = (|1〉 + |2〉)/√2, A2 = A, Ω = 2 A, |Γ |2 = A2 A/2; the mean time for
the first photon is τ = 13/(8A)
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In a simulation of a quantum trajectory with initial pure state |α〉, one determines
a time, t1 say, for the first photon according to the probability density w1(t, t0 =
0; |α〉) by means of random number operators in a standard way. Then, after this
first photon, the state has to be reset by the reset operation R in (6.116). For the
present example this can be written in matrix form as

Rρ cond =
⎛

⎝

A2ρ
cond

22 Γρ cond
23 0

Γρ cond
32 Aρ cond

33 0
0 0 0

⎞

⎠ , (6.123)

where ρ cond is given by the original state |α〉 conditionally time-developed until
time t1 and written as a density matrix,

ρcond(t1) = exp{−iH condt1/�}|α〉〈α| exp{iH †
condt1/�} . (6.124)

Note that

trρcond = w(t1) , (6.125)

the probability density for the first photon, as it should. The reset matrix normalized
to trace 1 is denoted by ρ̂,

ρ̂ ≡ R ρ cond/tr(R ρ cond) . (6.126)

If the initial state is either |1〉, |2〉, or |3〉, the reset matrix ρ̂ after the first photon
corresponds to a pure state, namely |2〉, |1〉, or |2〉, respectively. But for the initial
state |α〉 from (6.121) one has

ρ cond
22 (t1) =|α2|2e−A2t1 ,

ρ cond
33 (t1) =4|α1|2 Ω2

√
4Ω2 − A2

eAt1/2 sin2
√

4Ω2 − A2t1/4 ,

ρ cond
23 (t1) =2i ᾱ1α2

Ω√
4Ω2 − A2

e−A2t1/2−At1/4 sin
√

4Ω2 − A2t1/4

(6.127)

and then the reset matrix need not be pure state. Indeed, for it to be pure, the nonzero
2 × 2 submatrix has to have determinant 0, i.e.,

A2ρ
cond

22 Aρ cond
33 − |Γρ cond

23 |2 = 0 . (6.128)

Since with the initial state |α〉 from (6.121) one has |ρ cond
23 |2 = ρ cond

22 ρ cond
33 this

requires |Γ |2 = A2 A to have a pure reset state.
In case the latter condition is not fulfilled the reset matrix can correspond to a

mixed state. To see how large the deviation from a pure state is if |Γ |2 < A2 A we
diagonalize ρ̂. Its eigenvalues are 0 with eigenvector |3〉, p+ and p− = 1 − p+,
where
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p± = 1

2
± 1

2

√

1 + 4
|Γ |2|ρ cond

23 |2 − A2 Aρ cond
22 ρ cond

33

(A2ρ
cond

22 + Aρ cond
33 )2

, (6.129)

with corresponding normalized eigenvectors

|p±〉 =
⎛

⎝

Γρ cond
23

(A2ρ
cond

22 + Aρ cond
33 )p± − A2ρ

cond
22

0

⎞

⎠ /norm . (6.130)

When ρ cond
23 (t1) vanishes ρ̂ is diagonal and the eigenvectors are |1〉 and |2〉, respec-

tively.

Fig. 6.9 (Color online) The eigenvalue p+ of the reset matrix right after the first photon at time t1,
as a function of t1, for the same initial state and parameters as in Fig. 6.8. In the center of the time
interval, p+ differs appreciatively from 1 and thus ρ̂ considerably deviates from a pure state

In Fig. 6.9 we have plotted p+ as a function of the time t1 of the first photon,
for the same initial state and parameters as in Fig. 6.8. At the initial time one has
the initial pure state and hence p+ = 1. Whenever p+ < 1, ρ̂ is a mixture, and the
deviation from a pure state is the more pronounced the closer p+ is to 1/2.

Figure 6.10 shows that the eigenvectors of the reset matrix ρ̂ can deviate signif-
icantly from |1〉 and |2〉. In this figure we have plotted the absolute value, R, of the
ratio of the first and second components of |p+〉 as a function of the time t1 of the
first photon, for the same initial state and parameters as in Fig. 6.8. In the center
of the depicted time interval the first and second components of |p+〉 are of similar
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Fig. 6.10 (Color online) Absolute value, R, of the ratio of the first and second components of the
eigenvector |p+〉 of the reset matrix, as a function of the time t1, for the same initial state and
parameters as in Fig. 6.8. In the center of the time interval the first and second components of |p+〉
are of similar magnitude, while at the boundary times it is predominantly in |1〉

magnitude, while at times close to the boundary of the figure |p+〉 is close to |1〉 and
|p−〉 close to |2〉.

For a simulation one now has two quite different situations. When one starts in
the atomic state |1〉, the atom is pumped to a superposition of |3〉 and |1〉. After the
first photon it jumps to |2〉. After the second photon it jumps from |2〉 to |1〉, so
after two photons one is back to the original starting state |1〉 and the simulation
continues as before. When one starts in the atomic state |2〉, the atom decays to |1〉,
and after that the simulation continues as before.

However, if one starts from a superposition of |1〉 and |2〉, which can be prepared,
e.g., by a pulse from a second laser, the situation is completely different. In this case
the atom will in general be reset to a nonpure state right after the first photon. In
a simulation one would then have to continue the conditional time development
until the next photon with a density matrix. For a higher dimensional atomic state
space a simulation with density matrices is much more time consuming than with
pure states. As noted at the beginning of this section, one can bypass this compli-
cation and go over to a sequence of (simulated) pure states, without changing the
overall jump statistics in a trajectory and still generating the Bloch equations for an
ensemble of such trajectories [26]. This tremendously reduces numerical effort in
more complicated cases. We will demonstrate this procedure in the simple cascade
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model outlined above, although in this case the numerical simplifications are not so
pronounced.

Replacing density matrices by pure states in simulations: One starts in the state
|α〉, develops with Ucond(t, 0), calculates the probability density w1(t, t0 = 0; |α〉)
for the first photon as in (6.122), and generates the first photon time, t1, by a random
number generator according to this probability density. Then one determines the
corresponding reset matrix ρ̂ ≡ ρ̂(t1) as in (6.123). Instead of resetting the atomic
state to ρ̂(t1) one determines its eigenvalues p±(t1) and eigenstates |p±(t1)〉 and
resets the atom to the pure state |p+(t1)〉 with probability p+(t1) or to |p−(t1)〉 with
probability p−(t1). Then one applies the conditional time development Ucond(t, t1)
to the pure state chosen and calculates the probability density w1(t, t1; |p±(t1)〉) for
the second photon. With this probability density one generates the time, t2, for this
second photon and determines the reset matrix at time t2, which obviously depends
on the pure reset state chosen at time t1. Again, instead of resetting the atom to this
reset matrix, one resets to one of its eigenvectors with the probability given by the
corresponding eigenvalue. This procedure is depicted in Fig. 6.11. Continuing in
this way, one generates a pseudo-quantum trajectory with pure states which does
not correspond to an actual physical trajectory. Nevertheless, the jump statistics
obtained by time averaging over such a trajectory agrees with the photon statistics
of the original physical process [26].

Fig. 6.11 Simulation of a trajectory consisting of pure states. One starts in |α〉, develops with Ucond,
generates the first jump time t1, and determines the reset state for Ucond(t1, 0)|α〉 and its eigenvalues
p±(t1) and eigenvectors |p±(t1)〉. At t1 one resets to |p±(t1)〉 with probability p±(t1). Then one
develops the chosen reset state with Ucond(t, t1), generates the next jump time t2, and determines
the reset state for Ucond(t2, t1)|p±(t1)〉 and its eigenvalues p±(t2) and eigenvectors |p±(t2)〉. At t2
one resets to |p±(t2)〉 with probability p±(t2), and so on

Recovering the Bloch equations: Now one can repeatedly generate a large ensem-
ble of such trajectories, always starting with the same initial state |α〉. At a fixed time
t , each trajectory is in a particular pure state, which depends on its history. Let the
incoherent weighted sum of these states be denoted by ρ(sim)

|α〉 (t). It can then be shown
[26] that this density matrix satisfies the optical Bloch equations of the original
problem with the same initial condition, i.e., |α〉〈α|, and hence renders a solution of
the Bloch equations of the original problem. In general, for a large number of levels,
this can be numerically extremely advantageous.
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6.7 Inclusion of Center-of-Mass Motion and Recoil

6.7.1 Conditional Hamiltonian and Reset Operation

Until now, the N -level system was assumed to be at rest. For atoms or ions in a trap
this is often a good approximation. In general, however, the motion of the system
should be taken into account, in particular when the laser intensity varies in space
and when the center-of-mass (cm) motion should be treated quantum mechanically,
as for lower velocities.

As an example we consider a two-level system with quantized cm motion, inter-
acting with a classical laser and with the quantized radiation field. In the Schrödinger
picture the corresponding Hamiltonian is of the form

H = P̂/2m +�ω0|2〉〈2|+
∑

�ωka†
kλakλ+ eD̂ ·E(X̂, 0)+ eD̂ ·EL (X̂, t) , (6.131)

where X̂ and P̂ denote cm position and momentum operator and D̂ the dipole oper-
ator as in (6.11). The classical laser field is of the form

EL (x, t) = Re E0(x)e−iωL t , (6.132)

where we allow for a position-dependent laser amplitude. We put

gkλ ≡ ie
√

ωk

2εo�V
εkλ · D12

and go over to a “laser-adapted cm field interaction picture” by means of the
operator

H̃ 0
L = P̂2/2m + �ωL |2〉〈2| + H 0

F (6.133)

and denote the resulting Hamiltonian by H Lcm
I . With the rotating wave approxima-

tion one then has in this interaction picture

H Lcm
I = − �Δ|2〉〈2|

+ |1〉〈2|
∑

gkλak,λ exp{−i(ωk − ωL )t} exp{ik · (X̂ + P̂t/m)} + h.c.

+ �

2
|2〉〈1|Ω(X̂ + P̂t/m) + h.c. , (6.134)

where Δ = ωL − ω0 is the detuning and the position-dependent Rabi frequency is

Ω(x) = eD12 · E0(x) .

As is (6.7) we consider the zero-photon matrix element of the time-development
operator from t to t +Δt . In the Dyson series of the time-development operator we
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keep only terms proportional toΔt . Then only the laser contributes to the first order,
which is

− i

�

∫ t+Δt

t
dt ′

{
�

2
|2〉〈1|Ω(X̂ + P̂t ′/m) + h.c.

}

.

The second-order term in the time-development operator becomes

(

− i

�

)2

〈0ph|
∫ t+Δt

t
dt ′
∫ t ′

t
dt ′′H Lcm

I (t ′)H Lcm
I (t ′′) |0ph〉 =

− 1

�2
|2〉〈2|

∫ t+Δt

t
dt ′

∫ t ′

t
dt ′′

∑

kλ

|gkλ|2 exp{i(ωk − ωL )(t ′ − t ′′)}

exp{ik · (X̂ + P̂t ′/m)} exp{−ik · (X̂ + P̂t ′′/m)} , (6.135)

where again, as in Sect. 6.2.1, the laser terms have been omitted since they are
proportional to (Δt)2.

We note that

X̂(t ′) ≡ X̂ + P̂t ′/m = X̂ + P̂t/m + P̂(t ′ − t)

is the time development of X̂ in the free Heisenberg picture of the cm motion of the
system. WithΔt ≈ 10−12 s as in (6.1) and the atomic velocity around 1 m/s one has
Δx ≡ νΔt = 10−12 m. With optical wavelengths one has k ∼ 2 × 106 m−1 so that
kΔx ∼ 2 × 10−6 and therefore the P̂(t ′ − t) part can be neglected in the exponent.
It can similarly be neglected in Ω(X̂ + P̂t ′/m) of the first-order term if Ω(x) does
not vary significantly over a distance of Δx . Hence, under these conditions one has

X̂(t ′) ≈ X̂(t ′′) ≈ X̂(t) . (6.136)

Then the last two exponentials in (6.135) cancel. As in Sect. 6.2.1 for the two-
level case without cm motion this leads to the damping term − 1

2 A|2〉〈2| and one
obtains as conditional Hamiltonian in the laser-adapted cm interaction picture

H Lcm
cond = −�Δ|2〉〈2| − i

2
�A|2〉〈2| + �

2
Ω(X̂(t))|2〉〈1| + h.c. . (6.137)

Reversing the interaction picture with respect to the free cm Hamiltonian, one
obtains for the conditional Hamiltonian in the laser-adapted interaction picture,
denoted as in (6.36) by H I L

cond,

H I L
cond = P̂2/2m − �Δ|2〉〈2| − i

2
�A|2〉〈2| + �

2
Ω(X̂)|2〉〈1| + h.c. . (6.138)

In the Schrödinger picture this becomes
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Hcond = P̂2/2m + �ω0|2〉〈2| − i

2
�A|2〉〈2| + �

2
Ω(X̂)|2〉〈1|e−iωL t + h.c. ,

(6.139)

which is the analog of (6.34).
The reset operation looks somewhat different if cm motion is included. The

atomic density operator ρ now describes both the cm motion and the internal two-
level degrees of freedom. Therefore, if one takes matrix elements with momentum
eigenvectors of the cm motion, then

ρ(p,p′) ≡ 〈p|ρ|p′〉 (6.140)

becomes an operator for the internal degrees of freedom, which corresponds to a
2 × 2 matrix in case of a two-level system. The reset operation R is again given
by the general expression in (6.49), but now with the Hamiltonian from (6.131). As
before, in first-order perturbation theory the external field drops out and one obtains
instead of (6.50)

Rρ Δt =
∫ Δt

0
dt ′

∫ Δt

0
dt ′′

∑

kλ

ei(ωk−ω0)(t ′−t ′′) e2ωk

2ε0�V
|εkλ · D21|2e−ik·X̂(t ′)|1〉〈2|ρ|2〉〈1|eik·X̂(t ′′) .

(6.141)

Similarly as before one can replace X̂(t ′) and X̂(t ′′) by X̂, by (6.136). Note that since
〈2|ρ|2〉 is a cm operator, it does not commute with X̂. Now one can proceed as in
(6.51) to split the double integral and use the property of the correlation function.
Again this gives a πδ(ωk − ω0) which allows to perform the k2dk integration. This
gives

Rρ = A|1〉〈1|
∫

dΩk
|D21|2 − |k̂ · D21|2

|D21|2 e−ik·X̂〈2|ρ|2〉eik·X̂ , (6.142)

where the angular integration is over the unit vectors k̂. In momentum space one has

eik·X̂|p〉 = |p + �k〉 (6.143)

and this gives with (6.142)

〈p|Rρ|p′〉= A|1〉〈1|
∫

dΩk

(

1 − |k̂ · D21|2
|D21|2

)

〈2|〈p + �ω0k̂/c| ρ |p′ + �ω0k̂/c〉|2〉 .

(6.144)

The first factor in the integral is the usual dipole emission characteristics and the
terms �ω0k̂/c yield momentum conservation after the photon emission. We note
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that the resulting reset matrix is a pure state only for internal degrees of freedom but
not for the cm variables, even if the density matrix before the photon detection is a
pure state.

Instead of asking for the detection of any photon one may ask for a photon detec-
tion in a given direction k̂. Then the reset operation, Rk̂, is given by

〈p|Rk̂ρ|p′〉 = A|1〉〈1| (1 − |k̂ · D|2
D2

)〈2|〈p + �ω0k̂/c| ρ |p′ + �ω0k̂/c〉|2〉 ,
(6.145)

which reflects the dipole emission characteristics. If ρ is a pure state in momentum
space this is again a pure state. The probability to detect a photon with direction in
the solid angle dΩk in the time interval dt is given by

trRk̂ρ dΩk dt . (6.146)

Integrating (6.145) over all directions gives the reset matrix in (6.144).
Similarly, one may ask for a photon detection in a given direction k̂ and given

polarization λ. The corresponding reset operation, Rk̂λ, is then given by

〈p|Rk̂λρ|p′〉 = A|1〉〈1| |εkλ · D21|2
D2

〈2|〈p + �ω0k̂/c| ρ |p′ + �ω0k̂/c〉|2〉 .
(6.147)

Again, if ρ is a pure state in momentum space this is again a pure state, and the
analog of (6.146) holds.

In simulations of quantum trajectories of a two-level system with cm one can
work with the reset operation Rk̂ or with Rk̂λ and thus with pure states when one
starts in a pure state [45]. In this case one does not need the more complicated
procedure of Sect. 6.6.

6.7.2 Application to Quantum Arrival Times

An important open problem in quantum theory is the question of how to formulate
the notion of “arrival time” of a particle, such as an atom, at a given location, i.e., the
time instant of its first detection there. This is clearly a very physical question, but
when the extension and spreading of the wave packet is taken into account, a satis-
factory formulation is far from obvious. The problem of time in quantum mechanics,
both for time instants and time durations such as dwell time, has received a great
deal of theoretical attention recently [40]. When the translational motion of the par-
ticle can be treated classically, a full quantum analysis of arrival time is in fact not
necessary. This is the case for fast particles, and therefore arrival times are presently
measured mostly by means of time-of-flight techniques, whose analysis is carried
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out in terms of classical mechanics. Problems, though, arise for slow particles for
which the finite extent of the wavefunction and its spreading become relevant, such
as for cooled atoms dropping out of a trap. Then a quantum theoretical point of view
is needed. It is therefore important to find out when the classical approximations
fail and to propose measurement procedures for arrival times in the quantum case.
Since the theoretical definition of a quantum arrival time is still subject to debate it
is necessary to determine what exactly such measurement procedures are measuring
and to compare such operational approaches with the existing, more abstract and
axiomatic, theories.

An experimentally very natural approach to determine the arrival time of an atom
is by quantum optical means. A region of space may be illuminated by a laser and
upon entering the region an atom will start emitting photons. The first photon emis-
sion can be taken as a measure of the arrival time of the atom in that region.

It is easiest to first study the 1D case and use the corresponding equations of Sect.
6.7.1. Then (6.139) simply becomes 1D in p and x . Illuminating the half axis x > 0
perpendicularly by a laser, the Rabi frequency Ω(x) becomes a multiple of the step
function Θ(x). In [18] the corresponding conditional time development has been
solved explicitly and the distribution of the first-photon times have been calculated.
If one deducts by a deconvolution technique the delays due to the finite pumping
time, one obtains in the limit of weak pumping a surprising result for the arrival
time distribution, namely the usual well-known quantum mechanical probability
flux. More details can be found in Chap. 4.

Another model for arrival times will be discussed in Sect. 6.8. This model couples
the center-of-mass motion to spins which in turn are coupled to bosons. The arrival
of the particle induces a spin flip which in turn induces the emission of a boson.

6.8 Extension to Spin-Boson Models

In this section it will be shown in an example that the QJA can be extended to a
system which is coupled to a bath I which in turn is coupled to another bath, bath
II. Measurements are taken on bath II and from these one can infer properties of the
small system. Bath I serves as an amplifier to enhance the signal and can be viewed
as a part of the measuring apparatus, a part which is treated quantum mechanically.

The model to be considered here consists of a moving particle coupled to a spatial
array of spins which in turn are coupled to bosons [21]. This model recently has been
used to study arrival times as well as passage times [27, 28]. In places where the par-
ticle wavefunction overlaps with a spin there is a high spin-flip probability. Initially
the spins are in the (metastable) up state. When the particle passes a spin there is
a very high probability for a single spin flip, accompanied by a boson emission, as
depicted in Fig. 6.12. The spin flip leads to a large energetic gain for neighboring
spins and therefore to a large spin-flip probability of the neighboring spins. By a
domino effect, this leads to a sudden flip of all spins, accompanied by a burst of
bosons, which can be detected.
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Fig. 6.12 (Color online) Array of spins in a metastable state in a weak magnetic field B. A passing
particle produces a single spin flip, accompanied by a boson emission. By a domino effect, the spin
flip causes all spins to flip, accompanied by an avalanche of bosons
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The individual terms are the free Hamiltonian for the particle, the spin Hamiltonian
with ferromagnetic interaction, the free boson Hamiltonian, a small permanent spin-
bath coupling which induces very rare spontaneous spin flips, and a further spin-bath
coupling which is strongly enhanced if the particle is close to a spin, i.e., |g( j)

l | �
|γ ( j)

l |, where χ ( j)(x) is a sensitivity function, e.g., equal to 1 in a neighborhood of

the j th spin, while ei f ( j)
l are possible phase factors which will later be put to 1.

It should be noted that the Hamiltonian conserves the excitation number, which
is the sum of up spins and bosons. Hence a boson detection indicates a spin flip,
which in turn indicates that the particle has passed close to a spin (unless one has an
extremely rare exceptional spontaneous spin flip). Therefore, one can consider the
time of a boson detection as a signal for the arrival of the particle at the spin array so
that this model can be regarded as a model for arrival times [27, 28]. The motivation
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for this model comes from the desire to minimize the backreaction of the detection
on the particle by employing the intermediary spin system.

To illustrate how the QJA works for this model we use a simple example in one
space dimension, with a single spin and N discrete boson modes, where later N is
taken to infinity. The modes ω� and coupling constants g� are taken as

ω� = ωM n/N , n = 1, · · · , N ,

g� = −iG
√

ω�/N , (6.149)

where ωM is the maximal boson frequency. The particle wave packet is assumed
to come in from the left. The probability, Pdisc

1 (t) (“disc” stands for “discrete”), of
finding the detector spin in state | ↓〉 at time t is given by

Pdisc
1 (t) =

∑

�

∫ ∞

−∞
dx |〈x ↓ 1� |Ψ t 〉|2 (6.150)

≡ 1 − Pdisc
0 (t) .

As long as no recurrences occur (i.e., no transitions | ↓ 1�〉 �→ | ↑ 0〉) one can
regard

wdisc
1 (t) = d

dt
Pdisc

1 (t) = − d

dt
Pdisc

0 (t) (6.151)

as the probability density for a spin flip (i.e., for a detection) at time t . In
Fig. 6.13 the dots represent results of a numerical calculation of the spin-flip prob-
ability density of N = 40 spins, for a sensitivity function χ (x) = Θ(x) and for

Fig. 6.13 Dots: spin-flip probability density for incoming Gaussian wavefunction, N = 40,
χ(x) = Θ(x), where Θ is the step function; solid line: QJA result for continuum limit (N → ∞),
the numerical evaluation is much faster
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an incoming Gaussian wavefunction. Numerically the calculation is extremely time
consuming.

Quantum jump approach: In the continuum limit, N → ∞, the QJA can be
employed and leads to significant numerical simplifications if the coupling constants
are such that the Markov property holds. This means here that for the correlation
function κ(τ ), now defined as

κ(τ ) ≡
∑

�

|g�|2 e−i(ω�−ω0)τ , (6.152)

there is a small correlation time τc such that

κ(τ ) ≈ 0 if τ > τc .

Then one can define A and δshift, the analogs of Einstein coefficient and level shift,
by

A ≡ 2 Re
∫ ∞

0
dτκ(τ ) ,

δshift ≡ 2 Im
∫ ∞

0
dτκ(τ ) .

(6.153)

Proceeding as in Sect. 6.2, but now with Δt � τc, one obtains that the time devel-
opment under the condition of no boson detection (i.e., no spin flip) is given by the
conditional Hamiltonian

Hcond = P̂2/2m + �/2 (δshift − i A)χ (x̂)2 , (6.154)

where χ (x) is the sensitivity function. Formally, Hcond is seen to contain a position-
dependent absorption and energy shift. The imaginary part leads to a decrease of the
wavefunction norm which physically means a decrease of the no-detection proba-
bility.

On a coarse-grained timescale one then finds, as in (6.38), for the probability
density of the first boson (i.e., first spin flip)

w1(t) =− d

dt
P0(t)

= i

�
〈ψcond(t)|H cond − H †

cond|ψcond(t)〉

=A
∫

dx χ (x)|〈x |ψcond(t)〉|2 .

(6.155)

If χ (x) is the characteristic function of an interval, where the spin is located, this is
just the decay rate A of the excited state of the detector multiplied by the probability
that the particle is inside the detector but is not yet detected – a very physical result.
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This result has been used to calculate w1(t), the solid curve in Fig. 6.13, for the
continuous version of (6.149), with χ (x) = Θ(x) and otherwise the same parame-
ters as for the discrete case. Up to the time of revivals – due to the discrete nature of
the bath – the agreement between the discrete version and the QJA result is excellent.
The numerical evaluation of the QJA result, however, is much faster.

Incidentally, it should be noted that for the discrete example one did not calculate
the probability for no boson detection until time t but rather the probability of no
boson detection at time t . Figure 6.13 shows that until the occurrence of revivals for
the discrete case and in the limit of infinite boson modes this makes no difference.

Reset operation: If ρtot denotes the density matrix for the total system when the
particle is in the state ρp, the spins are up and no bosons present, then R is now
given by

Rρp ·Δt ≡ trspin trbath P1 U (Δt, 0)ρtot U †(Δt, 0) P1 , (6.156)

where P1 ≡ ∑

��� |1���〉〈1���| and where the partial trace is now over both spins and
bosons.

For discrete case, with N = 15 boson modes and χ (x) = Θ(x), the dots in
Fig. 6.14 represent numerical results for

〈

x
∣
∣Rρp

∣
∣ x
〉

for a Gaussian state ρp =
|ψ〉〈ψ |. The dots are obtained by a very time-consuming calculation.

In the continuum limit, with the Markov property, and a pure state ρp = |ψ〉〈ψ |
the reset state is again pure and one obtains

Rρp = |ψreset〉〈ψreset| , (6.157)

with

|ψreset〉 ≡ A1/2χ (x̂)|ψ〉 . (6.158)

Fig. 6.14 Dots: N = 15 discrete boson modes, χ(x) = Θ(x); reset state
〈

x
∣
∣Rρp

∣
∣ x
〉

for a Gaussian
state ρp = |ψ〉〈ψ |; solid line: Same with QJA for continuum limit, N → ∞, the numerical
evaluation is much faster
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This means that after its detection, which is equivalent to the detection of a boson,
the particle state is localized in the region of the detector (given by the sensitivity
function χ (x)). This is a physically very appealing result since a position measure-
ment should localize the particle.

For the continuum limit of the discrete case in Fig. 6.14, the solid curve displays
〈

x
∣
∣Rρp

∣
∣ x
〉 = |〈x |ψreset〉|2. The agreement between the discrete version and the QJA

result is excellent. The numerical evaluation of the QJA result, however, is again not
only much faster but almost trivial, by (6.158).

These results and their extensions to many spins have been applied to the study
of arrival and passage times in [27, 28, 41] where more details can be found. In par-
ticular the backreaction of the detection of a boson on the particle has been studied
by the QJA. Somewhat surprisingly it turns out that in spite of the presence of the
spin system mediating between boson and particle this backreaction is not trivial
and of similar nature as in the atom–photon model of Sect. 6.7.2.

6.9 Discussion

In general, a quantum mechanical description of the time development of a sin-
gle system is not possible since quantum mechanics deals with ensembles. But
for a single fluorescing system, like an atom in a trap, which is driven by a light
source and on which photon detections are performed, this is at least partially fea-
sible and it is just accomplished by the quantum jump approach (QJA). Technically
it is achieved by reverting back to an ensemble description. Besides the statisti-
cal properties of the photon detections the QJA also allows one to calculate the
temporal state of the single system depending on the, in principle unpredictable,
stochastic detection times, with a smooth “conditional” time development by a con-
ditional complex Hamiltonian between detections and a reset operation (“jump”)
of the state right thereafter. From this one can determine the statistical proper-
ties of a single radiating system. The temporal succession of continuously chang-
ing states and sudden state reset operations (jumps) of the state at random times
form a quantum trajectory of a given single system. Correspondingly, an ensemble
of many radiating systems determines an ensemble of quantum trajectories. The
related question of whether a single quantum trajectory cannot just be viewed as a
preparation of an ensemble by repetition after each jump or reset will be discussed
below.

In principle one should also realize that there is a distinction between the state-
ments “no photon until time t” and “no photon at time t .” From the theoretical
point of view one therefore has to make sure that there are no photons in between
detections. To ensure this one would, in principle, have to use continuous measure-
ments. In order to avoid this complication and to simplify the approach, the deriva-
tion is proceeded by rapidly repeated, hypothetical (“gedanken”) measurements at
times Δt apart and then invoked temporal coarse graining. Ideally, of course, one
would like to let Δt tend to 0, but with the reduction rule of von Neumann and
Lüders employed here this is not possible, due to the so-called quantum Zeno effect.
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Therefore, one has to ensure that, within a certain range, the results are independent
of the particular choice of Δt . This can indeed be verified if the Markov property
holds for the system coupled to the photons (or to another bath). In the derivation
presented in Sect. 6.2 this became particularly transparent because in second-order
perturbation theory the interaction with the bath produced, by the Markov property,
a term proportional to Δt and not to (Δt)2. The latter form of dependence only
sets in for Δt → 0 and gives rise to the quantum Zeno effect. As mentioned in
Sect. 6.2, however, the use of perturbation theory is not essential to the derivation
and that therefore possible errors do not add up for the hypothetical measurements.
Moreover, after the calculation is performed, the probability of finding no photon
until and at time t turns out to be the same. Physically this can be understood as the
fact that once the photon is away from the atom it is not reabsorbed. Again this can
be shown mathematically to be a consequence of the Markov property, and it would
not hold in a cavity where revivals can occur.

If the Markov property does not hold and if one uses a sequence of gedanken
measurements which are some more or less arbitrary time Δt apart, one will usu-
ally be led to nonphysical results. As another example, in addition to cavities, the
Markov property also does not hold for photonic crystals, due to a photonic band
gap.

When one applies the QJA in simulations it is not necessary to simulate each
of the rapidly repeated individual measurements at times Δt apart, but one can
rather use the conditional Hamiltonian to calculate the waiting time distribution and
generate the detection (or jump) times. Only if this is too complicated, e.g., for a
large number of degrees of freedom coming from many levels or from inclusion of
the atomic motion, one will simulate each time step Δt . The advantage of the QJA
for simulations becomes particularly pronounced if one can work with pure states
because this reduces the dimension to N , i.e., to the number of levels, compared to
N 2 for density matrices as in the optical Bloch equations. As has been pointed out
in Sect. 6.6 it is always possible to go over to pure states, even if the reset operation
originally gave a density matrix. The ensemble of quantum trajectories correspond-
ing to an ensemble of radiating systems provides a solution of the optical Bloch
equation for the system, and hence in this respect simulations can be extremely
useful for large N .

The hypothetical, gedanken, measurements employed in the derivation of the
QJA are obviously highly idealized. A realistic photon detector misses many pho-
tons, be it by an efficiency less than 1, be it by an aperture less than 4π . The under-
lying assumption is that in such a case the experimental probability distribution is
obtained from the ideal jump (detection) trajectory by assigning, as in [6], probabil-
ities for the recording of the jumps and that one does not need to model the actual
detector in detail.

A variant of the QJA arises in the investigation of the frequency spectrum in a
light period of the Dehmelt system in Fig. 6.1. Here the theoretical problem is that
in order to make sure that one is in a light period one has to detect the photons.
This detection possibly changes the spectrum. In [33] this problem was solved by
measuring the light period through photons emitted in a half space and using it to
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trigger a spectrometer in the other half space. This procedure bypasses the time–
energy uncertainty relation.

There is an interesting application of the QJA to an experiment on the quantum
Zeno effect. In the experiment [36] a large number of ions with a V configuration
as in Fig. 6.1 were stored in a Penning trap. The time development was given by
a so-called π pulse of length Tπ connecting the ground state 1 and the metastable
state 3. Intermittently the ground state population was measured by a very short
pulse of a probe laser coupling level 1 with level 2, where emission of photons
would indicate the ground as measurement outcome and level 3 otherwise. This
was regarded in [36] as a measurement to which the projection postulate could be
applied. With up to 64 probe pulses (“measurements”) during a π pulse agreement
was found, within the error bars, with the quantum Zeno predictions for the level
populations. In an application of the QJA [5], on the other hand, the probe pulse was
directly included into the dynamics and it was shown by means of the QJA that the
probe pulse can indeed be regarded as a measurement which at least approximately
satisfies the projection postulate. It was also possible to calculate the errors which
arise when one replaces the probe pulse by an ideal measurement satisfying the
projection postulate.

This is an example of a Heisenberg cut, where part of the measurement apparatus
is included in the dynamics, the actual measurement then being on the photons.
Of course, in the QJA one also employs the projection postulate, but only for the
photons, and the photons are, so to speak, at the very end of the chain. The spin-
boson detector model presented in Sect. 6.8 can be regarded as another example for
a Heisenberg cut. Here the bath of spins can be either viewed as part of the apparatus
or as part of the quantum mechanical system. The spin-boson detector model also
illustrates the fact that the QJA can be applied to a variety of systems which are
coupled to a chain of baths and where the gedanken measurements are performed
on the last member of the chain.

When the resetting in a quantum trajectory is always done to the same state, e.g.,
to the ground state, and if the light source is constant in time, then the trajectory
parts between jumps can be viewed as a preparation of an atomic ensemble by repe-
tition, albeit at random times and of different lengths. There is also a non-Hermitian
conditional time development in this part which is not given by the usual Hermi-
tian Hamiltonian. Such a part of a quantum trajectory corresponds to a complete
system consisting of the driven atom interacting with the quantized radiation field
on which rapidly repeated photon measurements are performed with null outcome.
The resetting of the system after the detection of a photon at some random time can
be regarded as a new preparation. In view of the non-Hermitian time development
between resettings this particular ensemble cannot be regarded as a usual ensemble
of atoms plus field developing in time since the successive, rapidly repeated, null
measurements between photon detections change the time development. When the
reset operation is not always to the same state, but rather dependent on the condi-
tional state immediately before a photon detection and thus dependent on the prior
history of the trajectory, then the trajectory parts between jumps can also be regarded
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as an ensemble, but it is even stranger than the one before since the initial states are
in general always different.

One may raise the question whether quantum trajectories can be interpreted
realistically, as being “real,” or whether they are just a convenient mathematical
device. Now, if the hypothetical null and photon measurements in the derivation
were actually performed then one probably would conclude that the atom follows
this path. But what if the measurement are not, or only partially, performed? Can
one assume, at least in principle and consistently and without running into con-
tradictions, that there are individual photon emissions/detections at certain times,
random though and not predictable? If this were so one might say that a quantum
trajectory was realistic or objective, even without measurements actually being per-
formed. However, with given sharp emission/detection times one would encounter,
by the time–energy uncertainty relation, a much broader frequency spectrum than
the usual one – a contradiction. So one should not assume, in spite of their physical
interpretation, that the trajectories of the QJA are always realistic. Rather, they are
adapted to particular questions such as photon statistics. The complete information
is contained in the state vector or density matrix of the total system, i.e., system plus
quantized radiation field or bath, and it is prudent to keep in mind this holistic view.

References

1. The projection postulate as commonly used nowadays is due to G. Lüders, Ann. Phys. 8,
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Chapter 7
Causality in Superluminal Pulse Propagation

Robert W. Boyd, Daniel J. Gauthier, and Paul Narum

7.1 Introduction

The theory of electromagnetism for wave propagation in vacuum, as embodied by
Maxwell’s equations, contains physical constants that can be combined to arrive at
the speed of light in vacuum c. As shown by Einstein, consideration of the space–
time transformation properties of Maxwell’s equations leads to the special theory of
relativity. One consequence of this theory is that no information can be transmitted
between two parties in a time shorter than it would take light, propagating through
vacuum, to travel between the parties. That is, the speed of information transfer is
less than or equal to the speed of light in vacuum c and information related to an
event stays within the so-called light cone associated with the event. Hypothetical
faster-than-light (superluminal) communication is very intriguing because relativis-
tic causality would be violated. Relativistic causality is a principle by which an
event is linked to a previous cause as viewed from any inertial frame of reference;
superluminal communication would allow us to change the outcome of an event
after it has happened.

Soon after Einstein published the theory of relativity, scientists began the search
for examples where objects or entities travel faster than c. There are many known
examples of superluminal motion [1]. One example arises when observing radio
emission in certain expanding galaxies known as superluminal stellar objects. This
motion can be explained by considering motions of particles whose speed is just
below c (i.e., highly relativistic) and moving nearly along the axis connecting the
object and the observer [2]. Hence, these are not superluminal motions after all.
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Explaining, in simple terms, why apparent superluminal motions do not violate
the special theory of relativity or allow for superluminal communication can be
exceedingly difficult. Also, approximations used to solve models of the physical
world can lead to subtle errors, sometimes resulting in predictions of superluminal
signaling. For these reasons, studying superluminal signaling can be an interesting
exercise because it often reveals unexpected aspects of our universe or the theories
we use to describe its behavior.

One example of apparent superluminal behavior occurs in the transfer of infor-
mation encoded on optical pulses propagating through a dispersive material. Under
conditions where the dispersion of the medium is anomalous over some spectral
region, defined in greater detail below, it is possible to observe the peak of a pulse
of light apparently leaving a dispersive material before a pulse peak enters! Does
such a situation imply that information flows outside the light cone and thus that
relativistic causality is violated?

The possibility of such “fast-light” behavior has been known for nearly a cen-
tury and has been the source of continued controversy and confusion. Yet a rather
simple mathematical proof shows that such behavior is completely consistent with
Maxwell’s equations describing pulse propagation through a dispersive material and
hence does not violate Einstein’s special theory of relativity. While the proof is
straightforward, great care is needed in interpreting the special theory of relativity
and in determining whether experimental observations are consistent with its pre-
dictions.

This chapter reviews the history of fast-light research, describes one approach for
understanding how information encoded on optical beams flows through a disper-
sive material, and describes how these results can be interpreted within the frame-
work of the special theory of relativity. In this chapter we do not discuss the issue
of the optical analogue of the tunneling of particles through a potential barrier. It is
known that this process can also lead to superluminal behavior, but for reasons quite
distinct from the situation treated here, the propagation of light through dispersive
media. Superluminal effects based on tunneling have been reviewed recently by
Winful [3]; see also “Time in Quantum Mechanics – Vol. 1.”

7.2 Descriptions of the Velocity of Light Pulses

Before we delve more deeply into the implications of superluminal propagation
velocities, it is crucial to define exactly what we mean by the “velocity of light” in
a dispersive material. Because a pulse disperses, its motion cannot be described
rigorously using a single velocity. For this reason, there is in fact more than
one way to define the velocity of light, depending on what aspect of light prop-
agation is being considered. In this section, we review some of these defini-
tions. Additional discussions of these points can be found in [4] or on page 58
of [5].
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1. Oftentimes, the velocity of light is taken to mean the velocity of light in vac-
uum, the universal constant c. Since 1983, c has been defined to have the value
299,792,458 m/s. This is both the velocity at which points of constant phase
move through the vacuum and the velocity at which disturbances in the electro-
magnetic field move.

2. In a material medium the points of constant phase move with the velocity νp =
c/n where n is the refractive index and νp is called the phase velocity.

3. When the refractive index varies with frequency, the velocity at which dis-
turbances in the field move through the medium will, in general, be different
both from the phase velocity and from c. One velocity that is often associated
with the motion of a disturbance is called the group velocity and is given by
νg = c/ng , where ng is the group index which is related to the refractive index by
ng = n+ω dn/dω. Clearly, the group index differs from the refractive index for a
dispersive medium, that is, a medium for which the refractive index is frequency
dependent. If the refractive index varies nearly linearly with frequency, at least
over the frequency range of interest, the group velocity will itself be frequency
independent. In this case, a pulse will propagate with negligible distortion, and
the group velocity can be interpreted as the velocity with which the peak of
the pulse moves. For the case of a medium with loss, there are some subtleties
regarding the interpretation of the group velocity. We shall return to this point in
Sect. 7.7.

4. There is also an energy velocity, defined by νE = S/u, where S is the magnitude
of the Poynting vector and u is the energy density. Loudon [6] shows that νE =
c/[n′ +n′′(ω/Γ )] for an absorbing medium comprised of a collection of Lorentz
oscillators, where n′ and n′′ denote, respectively, the real and imaginary parts of
the refractive index and Γ is the transition linewidth. The reason why one must
specify the type of medium is that, near resonance, much of the energy density
resides in the Lorentz oscillators. While it is not clear from naive inspection, the
energy velocity reduces to the group velocity when damping is negligible (that
is, when Γ goes to zero). Lysak [7] shows that the energy velocity is always less
than c for a non-inverted atomic medium. Additional discussions of this topic
have been presented by Sherman and Oughstun [8, 9].

5. There are three somewhat related velocities known as the front velocity, signal
velocity, and information velocity. Let us suppose that initially the optical field
vanishes in all space and at a certain moment of time t0, it is suddenly turned
on. The initial turn-on of the field will propagate at a velocity known as the
front velocity. It can be shown theoretically that the front velocity is equal to c,
because the abrupt turn-on must possess extremely high-frequency components
that cannot induce a response in the optical medium.

Let us now assume further that, following the front, the source emits a well-
defined pulse, and that the field vanishes entirely both before the pulse begins
and after the pulse ends. We refer to a pulse of this sort as a signal, and the
velocity at which the peak of the pulse moves is known as the signal velocity.
Under many practical circumstances, the signal velocity will equal the group
velocity.
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Any radiation that arrives before the main body of the pulse is known as a
precursor. The precursors arrive after the arrival of the pulse front. A precursor
consisting of high-frequency components is known as a Sommerfeld precursor,
and it arrives at a time determined by the velocity c/n(∞) ≈ c. Any precursor
associated with low-frequency components is called a Brillouin precursor, and
it arrives at a time determined by the velocity c/n(0). Here we symbolically
represent the refractive index at high frequencies by c/n(∞) and the refractive
index at low frequencies by c/n(0).

Finally, the information velocity is the velocity at which the information con-
tent of the pulse is transmitted. From a practical point of view, useful infor-
mation usually arrives at the peak of the pulse, which travels approximately
at the group velocity. However, the information velocity is usually defined in
terms of the earliest moment at which, even in principle, the information content
of a pulse could be determined and hence is associated with the pulse front.
This velocity is then associated with the velocity c. This thought can be made
more precise by noting that information resides at points of discontinuity of an
optical waveform [10, 11], which propagate at the vacuum velocity c because of
their broad frequency content. This result follows from the argument that smooth
parts of a pulse cannot carry information, since the future evolution of the pulse
can, in principle, be predicted by performing a Taylor series expansion of the
pulse amplitude. It is the difference between the practical and precise defini-
tions of the information velocity that has given the greatest confusion regard-
ing the tension between fast-light pulse propagation and the special theory of
relativity.

6. There is still another velocity known as the centroid velocity. This approach goes
back to Smith in 1970 [4], although the recent advocates have been Peatross et al.
[12] and Cartwright and Oughstun [13]. The centroid velocity is the velocity
with which the time center of mass moves through the material. The paper by
Cartwright and Oughstun is especially interesting. They study the centroid veloc-
ity as a function of optical thickness of a material. They show that the centroid
velocity is equal to the group velocity for thin media and is equal to the velocity
of the Brillouin precursor (that is, c/n(0)) for thick media.

7.3 History of Research on Slow and Fast Light

Ideas about slow and fast light go back at least 170 years. The distinction between
the group velocity and phase velocity was recognized by Hamilton [14] as early
as 1839. A full theoretical treatment of the group velocity was presented by Lord
Rayleigh [15, 16] in 1877. The classic book Theory of Electrons by Lorentz [17]
provides formulas for the refractive index of an atomic vapor. Straightforward eval-
uation of these formulas shows that the group velocity can become very small
(slow light) or very large (fast light). Early in the 20th century people were espe-
cially intrigued at the prediction of superluminal group velocities, as such velocities
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seemed at odds with the theory of relativity. Work by Brillouin and Sommerfeld
helped to resolve this dispute by showing that, even though the group velocity could
become superluminal, this did not mean that the front velocity (associated with the
turn-on of a wave) could become superluminal. Interest in slow and fast light contin-
ued during the 1980s. Significant work during this period included the experiments
[18, 19] aimed at verifying earlier predictions.

Many of the procedures that can be used to produce superluminal propagation
are in fact variations of methods that were first used to slow down the velocity of
light. We therefore review both slow- and fast-light methods in the remainder of this
section.

A great impetus for more recent research was the experiment of Hau and cowork-
ers [20] in 1999. This work captured the popular imagination by showing that light
could be slowed down to the “human” speed of 17 m/s. The breakthrough in labo-
ratory implementation behind this achievement was the use of electromagnetically
induced transparency (EIT). EIT is a quantum coherence effect that induces trans-
parency in a material while allowing it to retain large nonlinear properties. The use
of EIT methods was crucial to this study. Without the use of EIT, the transmitted
pulse of light, while significantly delayed, would have been attenuated so strongly
as to be immeasurably weak. In order to implement EIT, Hau et al. applied both the
signal field and a strong coupling field to their atomic medium. This coupling field
induces a narrow transparency window that both allowed the signal to be transmitted
and created a large spectral variation of the refractive index. The material medium
used in the experiment of Hau et al. was an atomic ensemble in the form of a Bose–
Einstein condensate. This experiment was soon followed by that of Kash [21], who
showed that ultraslow-light speeds could also be obtained in a hot atomic vapor of
rubidium. This observation dispelled the notion that the use of ultra-cold atoms was
essential to ultraslow-light propagation.

More recently there has been enormous interest in developing additional tools
for controlling the group velocity of light. In broad scope, there are two procedures
that can be used to control the group velocity. One of these procedures is to make
use of material resonances, such as the sharp absorption resonances of an atomic
such as those used by Hau et al. Control can be achieved, for example, by applying a
strong optical field to modify through nonlinear optical methods the optical response
experienced by the signal field.

From a practical point of view, it is desirable to find means for producing slow
light that avoid the need to use atomic ensembles held at exotic temperatures. One
approach is to make use of slow light based on the concept of coherent population
oscillations (CPO). This process is quite insensitive to the presence of dephasing
processes, and thus can operate in room temperature solids, media that hold par-
ticular promise for use in practical applications. This CPO process leads to a very
narrow spectral hole in the absorption profile of a saturable absorber and conse-
quently to a very large value of the group index. Slow light based on the CPO effect
was demonstrated first in ruby [22]. Later both slow and fast light based on the
CPO effect was observed in an alexandrite crystal [23] and in an erbium-doped fiber
amplifier [24].
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In addition to EIT and CPO, a wide variety of other sorts of resonances have been
used to produce slow-light effects. There has been particular success with the use
of stimulated Brillouin scattering [25, 26] and stimulated Raman scattering [27]. In
each of these processes, the strong gain feature induced by the presence of a strong
pump field will also produce (as a consequence of Kramers–Kronig relations) a
rapid spectral variation in the refractive index which in turn leads to strong slow-
light effects.

The other procedure for producing slow and fast light is to use structural res-
onances to modify the optical response. For example, in a photonic crystal the
group velocity of light can be slowed dramatically near the edge of the photonic
Brillouin zone. This approach has also been quite exciting. One particular example
of this approach is the work of Vlasov [28] in producing a group index of 300
by appropriate patterning of a silicon waveguide, with important implications for
silicon photonics.

Historically, the greatest challenge in slow-light research has been to find situa-
tions in which a data packet could be delayed by many pulse lengths. Delay mea-
sured in units of pulse length is often referred to as the delay-bandwidth product.
For several years, the largest delay-bandwidth product was limited to the value of
approximately five observed in the initial experiment of Hau et al. More recently, a
delay-bandwidth product of 80 was observed in one specific situation [29]. Nonethe-
less, the need to develop methods for producing large delay-bandwidth products
at arbitrary wavelengths and for arbitrary pulse lengths remains an active area of
research within the slow-light community.

Fast light possesses some similarities but some differences from slow light. First
of all, fast light is conceptually very intriguing. People can accept the suggestion
that many physical processes can be slowed down to an arbitrary degree. But it is
more difficult to accept the suggestion that the same process can be speeded up
to an arbitrary degree. For instance, there is no limit to how slowly one can walk
across a lecture hall, but there are obvious limits to how quickly one can do so. But
what is surprising is that, at a formal mathematical level, there seems to be almost
complete symmetry between slow light and fast light. Since the group velocity is
given by c/ng where ng = n + ω dn/dω, we see that slow light occurs if dn/dω is
large and positive (known as normal chromatic dispersion) whereas fast light occurs
if dn/dω is large and negative (anomalous chromatic dispersion). Both types of
behavior occur regularly in nature. The study of fast light is conceptually important
as it allows us to examine the nature of the modification of the velocity of light.
In addition, fast light can lead to applications of its own. One application of fast
light is in the construction of regenerators for optical telecommunication. One form
of regeneration requires that optical data pulses be actively centered in their time
windows. The ability to advance as well as delay a data packet greatly facilitates
this form of regeneration.

As described above, Sommerfeld and Brillouin investigated a step-modulated
pulse propagating through a collection of Lorentz oscillators in a spectral region
of anomalous dispersion. Based on this investigation, Brillouin suggested that the
group velocity is not physically meaningful in this situation because the pulse
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becomes severely distorted [30]. For this reason, several textbooks on electromag-
netism state that νg > c or νg < 0 is unphysical.

An interesting twist to this story came about in 1970 when Garrett and McCum-
ber [31] published a theoretical study on propagation of smooth-shaped pulses
through a resonant absorber in a region of anomalous dispersion. They showed
that the group velocity does have meaning even in the “fast light” case as long
as the medium is thin enough so that pulse distortion is not too severe. In fact,
they predicted that it is possible that the peak of a light pulse may exit the optical
material before a pulse peak passes through the entrance face, which is the physical
interpretation of a negative group velocity. The first indirect measurement of a group
velocity exceeding c was made by Faxvog and collaborators [32, 33], who studied
mode pulling in a self-mode-locked helium–neon laser containing a neon absorption
cell.

Some years later, Chu and Wong [18] studied experimentally both slow and fast
light for picosecond laser pulses propagating through a GaP:N crystal as the laser
frequency was tuned through the absorption resonance arising from the bound A-
exciton line. Both positive and negative group delays were observed. Because they
were using short pulses, an autocorrelation method was used to measure pulse delay,
which can obscure possible pulse distortions. Their experimental results were found
to be in good agreement with theoretical predictions, which were obtained from a
model that is a slight generalization of the model studied by Garrett and McCumber.
Somewhat later, work by Ségard and Macke [34] on microwave pulse propagation
through a resonant absorber made direct measurements of the field envelope, thus
demonstrating directly that there was only minor pulse distortion. Negative group
velocities have since been observed by others [35].

In these experiments, fast-light pulse advancement was accompanied by substan-
tial pulse attenuation. Steinberg and Chiao [36] predicted that it is possible to use
two adjacent gain lines to obtain fast light, where anomalous dispersion occurs when
the carrier frequency of the pulse is set in the middle of the gain doublet. Chiao and
collaborators published several other works that described why fast-light pulse prop-
agation does not violate the special theory of relativity [37–39]. In particular, they
focus on the idea that information is encoded on points of non-analyticity on optical
waveforms, and it is these points that move at c. More recently, Parker and Walker
[40] suggest that the very act of encoding information on a waveform necessarily
creates points of non-analyticity.

The prediction of Steinberg and Chiao [36] was verified in an experiment by
Wang et al. [41], where the gain doublet was produced in a laser-pumped cesium
vapor. They observed measurable pulse advancement in combination with small
pulse amplification. While they were careful to point out that their experimental
observations were consistent with the special theory of relativity, they did not give
a detailed explanation of why this was the case. Unfortunately, some of the popular
press cast their experiment as violating Einstein’s theory, giving rise to considerable
confusion and controversy.

Soon thereafter, Stenner et al. [42] designed an experiment to measure directly
the speed at which information propagates through a fast-light material. They used
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an experimental setup similar to that used by Wang et al., but with large dispersion
that gave rise to larger pulse advancement. Figure 7.5 shows an example of their data
for the case of a smooth Gaussian-shaped pulse propagating through the fast-light
medium in comparison to the same pulse propagating through vacuum. The larger
advancement relative to the pulse width obtained in their experiment made it easier
to distinguish the different velocities describing pulse propagation. From this data,
they inferred that ng = −19.6±0.8, indicating that they were operating in the highly
superluminal regime.

Fig. 7.1 Fast-light pulse propagation. Temporal evolution of a 263.4-ns-long (full width at half
maximum) pulse propagating through a laser-pumped potassium vapor (dashed line) and vacuum
(solid line) [42]

To determine the information velocity, Stenner et al. encoded new information on
the waveform at the top of the Gaussian-shaped pulse by rapidly turning the pulse
off or by switching it to a higher value. Such an approach enhanced their ability to
estimate the location of a non-analytic point in the presence of noise. The moment
when a decision was made to switch between the communication symbols (either
pulse high or pulse low) corresponded to the point of non-analyticity.

They detected the location of the point of non-analyticity by determining the
arrival of new information using a receiver that distinguished between symbols to
a desired level of certainty, characterized by the bit error rate (BER). Using this
method, they found that the information velocity is always less than but nearly equal
to c, even for a medium where ng is highly superluminal. Thus, they demonstrated
that the peak of the advanced pulse at the exit face of the medium is not causally con-
nected to the peak at the entrance face. Follow-up studies showed that information
also travels nearly at c even for a material where νg << c [43] and that information
propagation is connected to the front velocity and optical precursors [44].

Other analyses of the relation between superluminality and information transfer
have been reported as well in the literature. Diener [45] has concluded that super-
luminal group velocities do not imply superluminal information velocities because
the pulse shape can always be determined by analytic continuation of the pulse
shape within the light cone. Kurizki et al. [46] have shown that the injection of



7 Causality in Superluminal Pulse Propagation 183

spectrally narrow wavepackets into quantized amplifying media can give rise to
transient tachyonic wavepackets. Kuzmich et al. [47] have studied limitations on
information transfer in fast-light situations based on quantum effects. Wynne [48]
has argued theoretically that information cannot be transmitted superluminally and
that claims to the contrary are the result of incorrect reasoning. Tanaka et al. [49]
have observed negative group velocities in a Rb vapor. Ruschhaupt and Muga
[50] have shown theoretically that the peak of an electromagnetic pulse can arrive
simultaneously at different positions in an absorbing waveguide. Clader et al. [51]
have shown that instabilities often associated with superluminal propagation can be
avoided through use of sufficiently short pulses.

The surprising behavior discussed above can be illustrated with some examples.
Under conditions of sufficiently large anomalous dispersion, the group index can
take on negative values (recall the definition ng = n + ω dn/dω). This possibility
raises the question of what it means for a group velocity νg = c/ng to become
negative. Figure 7.2 shows a numerical simulation of the propagation of a pulse
through a material possessing a negative value of the group velocity. The influence
of gain, absorption, or group velocity dispersion is not included in this model, and
thus the simulation is based simply on performing a numerical integration of the
reduced wave equation
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Fig. 7.2 Numerical simulation of pulse propagation through a material with a negative value of
the group velocity
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for the pulse amplitude A(z, t) for the situation in which the group velocity is neg-
ative. One sees from Fig. 7.2 that the pulse appears to leave the material before
it enters and that the pulse appears to move backward within the material. How
behavior of this sort can possibly be physical and consistent with the concept of
causality is a matter that we will deal with in later sections of this chapter. For the
present, we simply point out that an input pulse in the form of a Gaussian waveform
has wings that extend from plus infinity to minus infinity. In this sense, even in
the top frame of Fig. 7.2, the input pulse already has a contribution at the output,
and there is no possibility for a violation of causality to occur. Alternatively, we
can consider superluminal pulse propagation to represent a special form of pulse
reshaping, in which the pulse form is retained but shifted earlier in time.

Experimental verification of this sort of behavior has been reported by Gehring
et al. [24] in an experiment that studied pulse propagation through an erbium-doped
optical amplifier. A negative value of the group index was obtained by means of the
CPO effect described above. Some of the experimental results are shown in Fig. 7.3.
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Fig. 7.3 Experimental results demonstrating the reality of negative group velocities [24]. The
arrows point to the peak of each pulse
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Note that the peak of the pulse clearly is moving in the backward direction (right to
left) inside the material, even though outside the material the pulse is moving left to
right. Because the experiment was performed through use of an amplifying medium,
the output pulse is larger than the backward-going pulse within the material.

7.4 The Concept of Simultaneity

As we mentioned earlier, a primary concern of this chapter is to examine how the
superluminal pulse propagation can be compatible with the concept of causality. But
to understand what is meant by causality, one must first understand what it means
for events to occur simultaneously. In this section, we present an examination of the
concept of simultaneity. Much of the subtlety involved in considerations of causality
involves the concept of what it means for two events to be simultaneous [52].

We begin by distinguishing local simultaneity from distant simultaneity. There
are subtleties involved in each concept. We first consider the case of local simultane-
ity, as it is the more basic concept. One says that two events, A and B, located at the
same point in space, are simultaneous if they occur at the same time. The subtlety of
this definition is that it presupposes that one understands what one means by time.
If the events are not simultaneous, either A occurs before B or it occurs after B.
The distinction between “before” and “after” implies that there is a direction of the
flow of time. We know from everyday experience that time flows in one direction
(from the past to the future), but this point remains unsettling in part because it is
not obvious what physical process breaks the symmetry between earlier and later
times. This thought can be made more precise by noting that most of the laws of
physics are symmetric upon the reversal of the sign of the time coordinate. The
existence of certain laws which do not obey this property, such as the tendency of
entropy to increase monotonically, may lead to some understanding of the origin of
the direction of the flow of time [53].

In considerations of causality and simultaneity, one conventionally defines an
“event” as a process that occurs at a given location with coordinates x , y, and z at
a given time t . One can thus define an event in terms of its space–time coordinates
(x , y, z, t). As noted above, the time coordinate of the event has a very different
character from the spatial coordinates, in that there is a sense of directionality to the
time coordinate not present in the spatial coordinates.

So how does one define time? One definition is that put forth by Kant, as reported
by Jammer [52]. Kant says that if event A could cause event B, then A is said to
occur before B. This thought is very much consistent with modern views of phys-
ical causality, but has the disadvantage that one cannot then examine the relation
between causality and the flow of time if time has been defined in terms of causality.
Perhaps a better procedure is to follow the lead of Einstein and define time simply
to be what a clock measures. We assume that we place a “clock” at the point (x ,
y, z) and define the unit of time to be the interval between successive ticks of the
clock. From this point of view, a good clock is one for which the laws of classical
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mechanics are well satisfied with time defined in this manner. To summarize this
point, we conclude that two events both occurring at the same spatial point (x , y, z)
are said to be simultaneous if both events occur at the same time t , with t defined as
above.

Somewhat more subtle is the concept of distant simultaneity. The underlying
question here is, what does it mean for two events to be called simultaneous if
they do not occur at the same point in space? Philosophical discussion of this point
goes back at least as far as the golden age of Greece. This issue certainly possesses
a technological component (How could one hope to measure distant simultaneity
without the help of reliable clocks?), but also addresses the conceptual issue of what
it means for two separated events to be said to be simultaneous.

One impetus for these discussions occurred within the field of astrology, which
holds that one’s future depends on the configuration of the stars and planets at the
time of one’s birth. It thus became important to know the state of the heavens at
the moment of a child’s birth, even if the heavens were obscured by cloud cover
or rendered unobservable by daylight. It is interesting to note that Saint Augustine
argued against the validity of astrology by means of the following argument [54].
He considered the hypothetical situation in which two women located in different
households were to give birth at approximately the same time. One woman had
great wealth, whereas the other was a servant. The child of the wealthy woman
would almost certainly be more successful in life than the child of the poor woman.
If these children were born simultaneously, this occurrence would contradict the
predictions of the laws of astrology. But how would one establish the simultaneity
of the two births, occurring at separated points? In a manner that foreshadows that of
Einstein some 1500 years later, Augustine proposes the following procedure. Two
messengers are employed and they are selected so that they run at the same speed.
One messenger is stationed near each expectant mother, and at the moment that
the child is born the messenger is told to run to the other household to announce
the birth. If the messengers meet en route, the exact location of their meeting is
recorded, and if this spot is exactly equidistant between the two households the
births are said to have occurred simultaneously.

Within modern physics, one defines distant simultaneity in terms of synchro-
nized clocks. One assumes that two clocks of identical construction are located at
spatial points A and B. Being of identical construction, these clocks are, therefore,
assumed to run at the same rate. If the clocks can be synchronized, then the concept
of distant simultaneity becomes meaningful, in the sense that two events are said to
be simultaneous if the event at A occurs at a time measured by the clock at A, that
is, the same time as the time of event at B as measured by the clock at B.

Eddington [55] describes two possible procedures for synchronizing distant
clocks. One method is to transport clock A to point B, set the clocks to read the
same time, and then transport clock A back to its original location. Of course, an
auxiliary clock can alternatively be used for this purpose. Because of relativistic
time dilation, the clock needs to be moved very slowly in order for this procedure to
be valid. In principle, one can always perform this procedure, because time dilation
effects are second order in the ratio ν/c (here ν is the velocity of the clock), whereas
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the time required for the transport scales as 1/v. This method also presupposes that
the clock maintains its accuracy during the time intervals of acceleration needed to
change its velocity.

The second method, described by Einstein in his 1905 paper, is based on signal-
ing using light beams. Several variations of this method exist. One is for A to send
a light pulse to B, where it is reflected back to A. B sets its clock to some reference
time (for instance t = 0) at the moment that the pulse arrives at B. A waits until the
light pulse returns, and then sets its clock to the reference time at a moment exactly
halfway between the time t1 at which the pulse left A and the time t2 at which the
pulse returned. Many authorities have argued that while this procedure provides an
acceptable procedure for synchronizing the two clocks, the synchronization thus
achieved is simply one of arbitrary convention. They argue that A could set the
reference time of its clock to any time in the interval (t1, t2) and thereby establish an
entirely consistent form of clock synchronization. The reason for this arbitrariness
is that there appears to be no definitive proof that the velocity of light c+ along the
positive x-direction (for instance) is the same as the velocity c− along the negative
x-direction. The argument is that measurements of the velocity of light actually
yield only the average of c+ and c−, and it is this quantity that is conventionally
known as c. This unexpected conclusion follows from the fact that it is possible to
measure the one-way velocity of light only if one already has synchronized clocks
at both ends of the beam path, which cannot be possible if one’s intent is to develop
a procedure for clock synchronization.

7.5 Causality and Superluminal Pulse Propagation

The key to understanding why fast-light pulse propagation is consistent with the
special theory of relativity is to investigate what is meant by a signal, as described
above in Sect. 7.2 and its connection to an event. In Einstein’s public discussions
of the theory [56], he focuses on the concept of an “event,” such as a spark caused
by a lightning bolt, and how the event (or multiple events) would be observed by
people at various locations. He was especially interested in observers moving with
respect to a coordinate system that is stationary with respect to the events. A detailed
description of his findings is not needed for our present discussion, as it is necessary
to consider only the properties of a single event in a single coordinate system.

A convenient way to discuss the flow of information from an event is to use
a space–time diagram (Minkowski diagram), where the horizontal axis is a single
spatial coordinate and time is plotted along the vertical axis (see Fig. 7.5). Accord-
ing to the special theory of relativity, the fastest way that knowledge of the event
can reach an observer is if it travels at the speed of light in vacuum; the lines that
connect points in a space–time diagram that follow vacuum speed-of-light propa-
gation define the light cone – the shaded region in Fig. 7.5(a). The inverse of the
slope of lines drawn in a space–time diagram is equal to the velocity. Observers at
space–time points within the shaded cone (e.g., observer A in Fig. 7.5(b)) are able
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to see the event and those outside the cone cannot (e.g., observer B in Fig. 7.5(b)).
Note that the cone extending for times preceding the event represents the space–time
regions where light could reach the location of the event. That is, an observer (not
shown) in this region can affect the event but cannot see the event.

On the other hand, hypothetical faster-than-light propagation of information is
relativistically acausal. Acausal means that there is no direct time-ordered link
between a cause and an effect. An example of a hypothetical faster-than-light com-
munication scheme is shown in Fig. 7.5(c), where we assume that it is possible
to transmit information with a speed that is less than zero (negative velocity). If
such superluminal signal was possible, information could be transmitted from the
positive-time light cone to a person at position D. This observer could change the
outcome of the event (e.g., prevent it from happening) because she is located within
the light cone leading to the event, but at a time before the event happens. Thus, she
can change the outcome of the event.

t t

A

t

a) b) c)

A

x
event

x
event

B

x
event

C
D

Fig. 7.4 The light cone associated with an event. (a) Space–time diagram of an event. (b) Observers
at space–time points A and B. In a world that is relativistically causal, A observes the event, but
B does not. (c) Communication in a hypothetical acausal world. If relativistic causality could be
violated, a person at C could observe the event and transmit information to a person at D using a
superluminal communication channel. The person at D could then change the outcome of the event

To address whether fast-light pulse propagation provides a mechanism for rela-
tivistically acausal communication, it is necessary to define a signal. As discussed
briefly in Sect. 7.2, Sommerfeld [30] defined a “signal” as a wave that is initially
zero and suddenly turns on to a finite value, which is known as a step-modulated
pulse. In terms of the special theory of relativity, the moment that the wave turns on
corresponds to the event.

In an analysis conducted by Sommerfeld and Brillouin [30], they used Maxwell’s
equations to predict the propagation of a step-modulated electromagnetic wave,
which was coupled to a set of equations that described how it modifies the dis-
persive material. For the dispersive material, they assumed that it consisted of
a collection of Lorentz oscillators. A Lorentz oscillator is a simple model for
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an atom that describes its resonant behavior when interacting with light. Each
oscillator consists of a massive (immoveable) positive core and a light negative
charge that experiences a restoring force obeying Hooke’s Law. Furthermore, they
assumed that the negative charge experiences a velocity-dependent damping so that
any oscillations set in motion will eventually decay in the absence of an applied
field.

Conceptually, an incident electromagnetic wave polarizes the material (causes
a displacement of the negative charges away from their equilibrium position), and
this polarization acts back on the electromagnetic field to change its properties (e.g.,
amplitude and phase). The coupled Maxwell–Lorentz-oscillator model is known
to possess spectral regions of anomalous dispersion where the group velocity υg

takes on negative values or values greater than c thus should be able to address the
controversy. The model is so good that it is still in use today for describing the linear
optical response of dispersive materials.

Using asymptotic methods to solve the pertinent inverse Fourier integral, Som-
merfeld was able to predict what happens to the propagated field for times immedi-
ately following the sudden turn-on of the wave, that is, what happens in the vicinity
of the pulse front. He was able to show that the velocity of the front is always equal
to c. In other words, the front of the pulse coincides with the boundary of the light
cone shown in Fig. 7.5, even though the pulse is propagating through the dispersive
dielectric material.

Sommerfeld gave an intuitive explanation for his prediction. When the electro-
magnetic field first starts to interact with the oscillators, they cannot immediately
act back on the field via the induced polarization because they have a finite response
time. Thus, for a brief moment after the front passes, the dispersive material behaves
as if there is nothing there – as if it were vacuum. From the point of view of infor-
mation propagation, one should be able to detect the field immediately following
the front and hence observe information traveling precisely at c.

After the front passes, mathematical predictions are very difficult to make because
of the complexity of the problem. Brillouin extended Sommerfeld’s work to show
that the initial step-modulated pulse, after propagating far into a medium with a
broad resonance line, transforms into two wavepackets (now known as optical pre-
cursors) and is then followed by the bulk of the wave (what Brillouin called the
“main signal”). They found that the precursors tend to be very small in amplitude
and thus it would be difficult to measure information transmitted at c; rather, it
would be easiest to detect at the arrival of the main signal, which they found travels
slower than c. The term precursor is somewhat confusing because it implies that the
wavepacket comes before something; in this usage, the precursors come before the
main signal, but after the pulse front.

One aspect of Sommerfeld and Brillouin’s result that can lead to confusion is the
possible situation when one or more of these wavepackets travel faster than c. What
is implied here is that a velocity can be assigned to the precursors and the main
signal to the extent that they do not distort and that these velocities can all take on
different values. In a situation where the velocity of a wavepacket exceeds c, it will
eventually approach the pulse front (which travels at c), become much distorted (so
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Fig. 7.5 In a typical experiment, the emitted waveform has the shape of a well-defined pulse.
Nonetheless, the waveform has a front, the moment of time when the intensity first becomes non-
zero. When such a waveform passes through a fast-light medium, the peak of the pulse can move
forward with respect to the front, but can never precede the front. Thus, even though the group
velocity is superluminal, no information can be transmitted faster than the front velocity, which is
always equal to c

that assigning it a velocity no longer makes sense), and either disappear or pile up
at the front.

Sommerfeld and Brillouin’s research appeared to satisfy scientists in the early
1900s that “fast light” does not violate the special theory of relativity. Yet there
continue to be researchers who question various aspects of their work. One point of
contention is that some people believe that it is impossible to generate a waveform
in the lab that has a truly discontinuous jump (e.g., there is no electromagnetic field
before a particular time and then a field appears). Yet having something appear at a
particular space–time point is precisely what is meant by an event described above.
Thus, if one does not believe in discontinuous waveforms, then the very conceptual
framework of the special theory of relativity and the associated light cone shown
in Fig. 7.5 would need to be thrown out. Many scientists are unwilling to do so.
Also, the existence of optical precursors has been questioned because Sommerfeld
and Brillouin made some mathematical errors in their analysis concerning the prop-
agated field for times well beyond the front, although recent research suggests that
precursors can be readily observed in experimental setups similar to that used in
recent fast-light research [44, 57].

So how can the data shown in Fig. 7.1 be consistent with the special theory of
relativity? To answer this question, we need to make a connection between Som-
merfeld’s idea of a signal and the data shown in the figure. In the experiment, a
pulse was generated by opening a variable-transmission shutter (an acousto-optic
modulator); only a segment of the pulse is shown in the figure. At an earlier time
not shown in the figure, the light was turned from the off state to the on state, but
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with very low amplitude. The moment the light first turns on coincides with the
pulse front (the event). At a later time, the pulse amplitude grows smoothly to the
peak of the pulse and then decays.

As far as information transmission is concerned, all the information encoded on
the waveform is available to be detected at the pulse front (although it might be
difficult to measure in practice). The peak of the pulse shown in Fig. 7.5 contains no
new information. Thus, the fact that the peak of the pulse is advanced in time is not
a violation of the special theory of relativity, so long as it never advances beyond
the pulse front. Figure 7.6 shows a schematic of the light cone for such a fast-light
experiment.

Fig. 7.6 Pulse propagation in a fast-light medium with a negative group velocity. The space–time
diagram shows that the peak is advanced as it passes through the medium, but the pulse front
is unaffected. The opening angle of the light cone is drawn differently from that in Fig. 7.5 for
illustration purposes only

In our opinion, all experiments to date are consistent with the special theory of
relativity, even though it may be difficult to show this. In some experiments, the
pulse shape is such that it is exceedingly difficult to detect the pulse front and hence
it may appear that the special theory has been violated. In other experiments espe-
cially designed to accentuate the pulse front, it has been shown that the information
velocity is equal to c within the experimental uncertainties in both fast-light [42]
and slow-light regimes [43].

7.6 Quantum Mechanical Aspects of Causality and Fast Light

Quantum mechanics provides a mechanism that at first glance seems to imply the
possibility of superluminal communication, even for propagation through vacuum.
This mechanism is the simultaneous collapse of the wave function at all points in
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space caused by a measurement performed on the system at one particular point in
space. This is an effect that does not occur in classical physics and hence deserves
further consideration with regard to the possibility of superluminal communication.

Let us consider a hypothetical superluminal communication system based on
this effect [58–60], as illustrated in Fig. 7.7. We consider entangled particles gener-
ated by an Einstein–Podolsky–Rosen (EPR) source. For concreteness, we consider
a system that generates two correlated photons that travel in opposite directions and
carry zero total spin angular momentum. Furthermore, two observers, Alice and
Bob, are located on opposite sides of and at large distances from the source. They
are equipped with optical components that can analyze the state of polarization of
the arriving photons. Bob is slightly further away from the source than Alice, and
we want to establish a one-way superluminal communication link from Alice to
Bob.

Entangled-Photon
Source

Alice Bob

H
V

H
V

Entangled-Photon
Source

Alice Bob

R
L

R
L

λ/4λ/4

Linear Basis

Circular Basis

Fig. 7.7 Potential superluminal quantum communication scheme. A source produces pairs of
entangled photons, where one photon is sent to Alice and the other to Bob. In the linear mea-
surement basis, a polarizing beam splitter and two single-photon detectors determine whether
the photons are horizontally (H) or vertically (V) polarized. In the circular measurement basis, a
quarter-wave plate is inserted before the beam splitter, allowing for the measurement of left (L) or
right (R) circularly polarized photons. Bits are communicated by inserting or not the quarter-wave
plate in the setups, as described in the text

In one scenario, Alice places a polarizing beam splitter that spatially separates
one state of linear polarization (say vertical, V ) from the other state of polarization
(horizontal, H ). The output ports of the polarizing beam splitter are directed to
single-photon detectors. Bob has an identical apparatus, which is at a great distance
from Alice, and he aligns the axis of his polarizing beam splitter the same as Alice’s.
Because of the fact that their total angular momentum of the photons is zero, when-
ever Alice measures V , the bi-photon wave function collapses and Bob is assured
of measuring H essentially instantaneously after Alice performs her measurement.
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Similarly, Bob will measure V whenever Alice measures H . In this configuration,
the polarizing beam splitters and single-photon detectors perform measurements in
what we call the “linear” basis.

Alice and Bob can also perform measurements in the “circular” basis, where
the analysis apparatus will determine whether the photons are left circular (LC)
polarized or right circular (RC) polarized. This measurement can be performed by
placing a quarter-wave plate in front of the polarizing beam splitters, where the
optical axis of the plate is orientated at 45◦ to the axis of the linear polarizing beam
splitter. With the wave plate in the system, Bob is assured to measure RC (LC)
whenever Alice measures RC (LC).

The hypothetical superluminal communication scheme is based on a change of
measurement basis. By inserting the wave plate into the setup or not, Alice can
force Bob’s photon to be either linearly or circularly polarized (more precisely, she
can force Bob’s photon to be an eigenstate of either linear or circular polarization).
Thus, it appears as if Alice can transmit binary information to Bob by inserting or
not inserting the wave plate into her apparatus. All Bob has to do is to determine
with certainty whether Alice was using the linear or circular basis. The first problem
with this scheme is a well-known classical result: it is only possible to measure
whether an optical beam is linear or circular polarized by analyzing it both with
linear and circular polarizers. In other words, Bob would have to send the photon
through the linear-basis apparatus and the circular-basis apparatus. Unfortunately,
one apparatus destroys the incident photon as a result of the measurement and hence
it is unavailable to send on the other.

One way around this problem is for Bob to “clone” the incident photon so that
there are two copies, where one copy will be sent to a linear-basis apparatus and
the other is sent to a circular-basis apparatus [58, 59]. The process of stimulated
emission of radiation can in a sense clone an incident photon, so one might think that
an optical amplifier in the path of the photon would be useful for this communication
scheme. Unfortunately, an optical amplifier adds additional photons to the beam
path via the process of spontaneous emission. These additional photons have an
arbitrary state of polarization [61]. They destroy the benefits of the amplifier and
hence prevent Alice from communicating with Bob via the nonlocal characteristics
of quantum mechanics.

The problem with the superluminal communication scheme is much deeper that
it appears from this discussion. The very linearity of quantum mechanics prevents
the cloning of an arbitrary quantum state, a result of the no-cloning theorem [62, 63].
Thus, any device – not just an optical amplifier – fails to clone the incident photon
and hence the communication scheme fails.

Other researchers have wondered whether an imperfect copy of the incident pho-
ton would be sufficient for superluminal communication. The best or optimal quan-
tum copying machine has been identified; even with the best possible copying appa-
ratus, the quantum communication scheme just barely fails. This failure is nicely
summarized by N. Gisin [64] in his 1998 paper: “Once again, quantum mechanics is
right at the border line of contradicting relativity, but does not cross it. The peaceful
coexistence between quantum mechanics and relativity is thus re-enforced.”
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7.7 Numerical Studies of Propagation Through Fast-Light Media

In order to explore further some of the features of fast-light propagation described
above, we have performed numerical studies of the propagation of optical pulses
through fast-light media. For these studies, we assume that the medium consists
of a single Lorentzian absorption line set on a broad gain background. We assume
the presence of the broad gain background to prevent the transmitted pulse from
becoming so weak as to be immeasurable. The absorption coefficient of the material
is thus taken to be of the form

α(δ) = αb + αl

1 + (δ2/γ 2)
. (7.2)

Here αb is the value of the background absorption coefficient (assumed negative),
αl is the line-center absorption coefficient of the absorption line, γ is its linewidth,
and δ is the frequency detuning from line center. According to the Kramers–Kronig
relations, the refractive index associated with this absorption is given by

n(δ) = nb + α1λ

4π

γ/δ

1 + (δ2/γ 2)
, (7.3)

where λ is the optical wavelength and nb is the background refractive index, which
we shall subsequently set equal to unity. From this result, we then find that the group
index ng = n + ω dn/dω is given by

ng = 1 + α1c

2γ

1 + (δ2/γ 2)

1 + [(δ2/γ 2)]2
. (7.4)

The expression for the group velocity νg = c/ng then follows directly.
The input pulse is taken to be a transform-limited Gaussian pulse of the form

A(z, t) = A0e−t2/T 2
. (7.5)

Here T is the pulse width defined as the amplitude half-width to 1/e or the inten-
sity half-width to 1/e2. Equivalently, we can describe the pulse in the frequency
domain as

Ã(z, ω + δ) = Ã0e−δ
2/ξ 2

, (7.6)

where ξ = 2/T is the frequency-domain pulse width. This pulse will be advanced
compared to vacuum propagation as it passes through the medium. Neglecting
dispersion in the group velocity and the fact that the frequency-varying absorp-
tion will cause spectral reshaping of the pulse, the amount of pulse advancement
ΔT = L/vg − L/c resulting from propagation through a length L of the medium is
found to be
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ΔT = −α1L

2γ

1 + (δ2/γ 2)

1 + [(δ2/γ 2)]2
. (7.7)

As can be seen, the amount of pulse advancement increases with increasing absorp-
tion αl L and also with decreasing linewidth γ . However, a line that is too narrow
compared to the spectral width of the input pulse will lead to pulse distortion either
by group velocity dispersion or by spectral reshaping of the pulse [65–67]. In the
cases studied here, pulse narrowing by spectral reshaping is the dominant effect.
If the limit on pulse narrowing is set so that to the first order the pulse duration
becomes infinitesimally small, we find by means of the procedure described in [66]
that the following inequality must be satisfied:

2αl L ≤ (γ T )2 . (7.8)

The allowable total integrated absorption αl L is limited by two factors. First, in
order to be able to detect the output pulse, the transmission at the center frequency
of the pulse must not be too small. Second, in order to avoid instabilities, the gain of
the background must not be too large. Taking (somewhat arbitrarily) the minimum
allowable transmission at the center frequency of the pulse to be e−32 and the maxi-
mum allowable gain to be e32, we find that the maximum relative pulse advancement
ΔT/T that can be obtained in the system studied here is given according to Eqs.
(7.7) and (7.8) by

ΔT/T = 2
√

2 . (7.9)

This maximum pulse advancement is obtained when the line-center absorption of
the absorption line is set equal to e−64 and the gain of the broadband background is
set equal to e32. Other authors have deduced similar limits on the maximum possible
pulse advancement [68].

A more detailed description of the propagation of the optical pulses through
the material medium can be obtained by performing a numerical simulation of the
propagation process. Because we are considering the situation in which the material
responds linearly to the optical pulse, we model the propagation by means of the
following procedure. The input pulse is decomposed into a Fourier integral, and each
frequency component is allowed to propagate through the medium, acquiring phase
and amplitude modifications in accordance with its frequency-dependent refractive
index (Eq. 7.3) and absorption coefficient (Eq. 7.2). The time evolution of the output
pulse is then obtained by performing the inverse Fourier transform on the output
spectrum.

Some of the results of this procedure are shown in Fig. 7.8. The parameters
for the advanced pulse were chosen to give the maximum possible advancement
in that sense that according to the first-order analytic model the pulse duration
would shrink to zero. We see that the pulse has narrowed but not as much as the
first-order theory would predict. In addition, the amount of pulse advancement is
12% smaller that predicted by Eq. (7.9). For comparison, in this figure we also
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Fig. 7.8 Pulse advancement in a medium consisting of an absorption line with a total attenuation
of e−64 set on a broad gain background with a gain of e64. The ratio between the width γ (half-width
at half maximum) of the Lorentzian line to the spectral width ξ (half-width to 1/e in amplitude)
of the input pulse is 5.7. The input/reference pulse shows what the output pulse would be if the
medium were replaced by an equal length of vacuum. Also shown for comparison is the pulse delay
that experienced upon propagation through a slow-light medium consisting of an e64 gain line set
on a broad e−32 absorptive background. Note that pulses tend to compress in time for fast-light
propagation and broaden in time for slow-light propagation

give an example of pulse propagation through a slow-light medium. In the con-
figuration studied here, there is no fundamental limit on how strong the broad
absorptive background could be, and therefore there is no limit on how much the
pulse can be delayed [66]. In choosing the parameters for this example, we required
that the pulse broaden by no more than a factor of

√
2. Other configurations using

multiple lines and operating far from line center can also give rise to large delays
[65, 67, 69].

No other choice of line strengths and linewidths has been found that gives sig-
nificantly more pulse advancement than that shown in Fig. 7.8. The reason for this
behavior is that fast light occurs when the center frequency of the light pulse is at a
local minimum of the transmission. Therefore, if one tries to obtain a larger pulse
advancement, either the transmission at the center frequency will be too low for
detection of the pulse at the output or the gain away from the center frequency will
be so high that it leads to instabilities [19, 68].

The fact that the peak arrives at the output earlier than it would have arrived had
the medium been replaced by an equal length of vacuum suggests that the peak of
the pulse travels faster in the medium than the speed of light in vacuum. A situation
of this sort is shown in Fig. 7.9. Here the material parameters are chosen such that
the group velocity from first-order theory is twice the speed of light in vacuum. As
can be seen, at t = 0.4 (in all of our numerical work we normalize the time in
units of the vacuum transit time through the medium) the pulse peak has traveled
approximately twice as far as the reference pulse. Due to spectral reshaping of the
pulse by the frequency-varying absorption, the apparent pulse velocity then begins
to slow down and pulse distortion starts to occur. This simulation is performed with
a ratio of the width γ of the absorption line to the spectral width ξ of the input
pulse of 4. For this ratio, we have found that the maximum allowable integrated line
strength (that is, exp(−αl L)) before the occurrence of significant pulse distortion
by spectral reshaping is e32. The integrated line strength of the example shown in
Fig. 7.9 is e48 and consequently after propagating approximately two-thirds of the
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Fig. 7.9 A sequence of frames showing a Gaussian pulse propagating through a fast-light medium.
The medium is comprised of a Lorentzian absorption line of integrated line strength e−48 set on
a broad gain background with a gain of e45.3 chosen to give an output pulse equal in amplitude
to the input pulse. The ratio γ /ξ of the width of the absorption line to the spectral width of the
input pulse is 4. For comparison we also show as the dashed curve how the pulse would propagate
through an equal length of vacuum

way through the medium (at t = 0.8) severe pulse distortion sets in and the pulse
breaks up into several parts.

The advancement ΔT in units of input pulse width T depends only on the inte-
grated line strength exp(αl L) and on the linewidth γ but not on the physical length of
the medium. Through use of the concept of group velocity, the pulse advancement
shown in Fig. 7.8 can be considered to be the difference in the transit times of a
pulse moving at c and of a pulse moving through the medium at the effective group
velocity ν ′g such that

ΔT = L

c
− L

v′g
. (7.10)

This effective group velocity is, in general, different from the group velocity νg

given by first-order theory. Solving this equation for the effective group velocity, we
find that

c

v′g
= 1 − ΔT

L/c
. (7.11)
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Fig. 7.10 Pulse advancement in a medium consisting of a Lorentzian absorption line of integrated
line strength e−32 set on a broad gain background of gain e30.7. Depending on the length of the
medium compared to the spatial advancement of the pulse, the pulse advancement can be consid-
ered to be the result of a larger-than-c, infinite, or negative group velocity as shown in the left,
middle, and right columns, respectively

When the length L of the medium lies in the range cΔT < L < ∞, ΔT will
be positive and hence the group velocity will be larger than the speed of light in
vacuum, for cΔT = L , the group velocity becomes infinite, and when L is smaller
than cΔT the group velocity is negative. Examples of these three situations are
shown in Fig. 7.10.

When the group velocity is larger than c but finite, the pulse propagation takes the
form of a distinct pulse that moves through the medium at a superluminal velocity.
When the group velocity is infinite, the propagation through the medium occurs
instantaneously in the sense that the peak at the output occurs at the same time
that the peak of the input pulse reaches the input face of the medium. For nega-
tive group velocities, a well-defined pulse moves backward through the medium,
as has been observed experimentally [24]. In this case the peak of the output pulse
actually leaves the medium before the input pulse enters. For the three cases shown
in Fig. 7.10, the group velocities obtained from the numerical simulation and from
Eq. (7.11) are very close to the group velocity predicted by the first-order theory.

In the simulations described above, the strength of the broad gain background
has been chosen such that the peak intensities of the input and output pulses are
equal. When this is the case, we observe a distinct pulse propagating through the
medium. We can then think of the pulse advancement as occurring as a result of
superluminal pulse propagation. However, in many experimental situations, a large
net absorption is experienced in passing through the medium. An example of such
behavior is shown in Fig. 7.11. Here we assume the presence of an absorption line
of integrated line strength e−32 and no gain background.

In this case the pulse decays approximately exponentially as it propagates through
the medium, and the output peak is approximately e32 times smaller than that of
the input. In order to make the pulse visible in the plots, the pulse intensities are
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Fig. 7.11 Pulse propagation through a fast-light medium with large net absorption consisting of a
absorption line of integrated line strength e−32. In each panel the intensity is normalized to fill the
vertical scale. The group velocity is 1.2 times c, but as a result of large absorption the peak in the
medium lags behind the peak of the reference pulse until t = 0.6. For each panel the scale factor
S gives the value by which the pulse intensity within the medium has been multiplied to ensure
that it fills the entire vertical scale. The output pulse intensity has been multiplied by a factor of
2.1 × 1013 in all cases

normalized in each panel to fill the vertical scale. The intensity inside the medium
initially decays exponentially, as would be expected because of the large absorption.
Later, a clear pulse is formed. However, until t = 0.6 the pulse lags behind the ref-
erence pulse and in a sense propagates with a group velocity smaller than c. Later
there are multiple peaks within the medium, and only at the output does a clear,
relatively undistorted, advanced pulse appear. In this case the pulse advancement
cannot be regarded as occurring as the result of superluminal propagation because
there is no well-formed pulse propagating faster than c within the medium. Rather,
the apparent superluminal behavior occurs as the result of spectral reshaping.

The appearance of an undistorted output pulse that propagates faster than the
vacuum speed of light c might initially seem to imply a violation of the laws of
the special theory of relativity. One can even find situations in which the peak of
the output pulse leaves the medium before the peak of the input pulse reaches the
medium, apparently violating causality.

The next two figures illustrate this sort of behavior. In Fig. 7.12 we show that
the moderately distorted output pulse is not the result of the peak of the input pulse
propagating faster than the speed of light in the medium, but rather is the result of
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Fig. 7.12 (a) The propagation of a Gaussian pulse through a medium consisting of an absorption
line of integrated line strength e−44 on a gain e41.6 background. The output peak arrives before
the reference peak, indicating superluminal propagation. (b) Same as in (a), but in this case only
the very leading edge of the Gaussian pulse is launched into the medium. There is still an output
peak identical to the peak in (a) showing that this peak is not caused by the peak in the Gaussian
input pulse propagating faster than the vacuum speed of light c, but is the result of distortion and
amplification of the leading edge of the pulse, a fully causal process

distortion and amplification of the early part of the input pulse. We first note that the
Gaussian input pulse in Fig. 7.12(a) has, in principle, been in existence for all times,
even if it falls off very rapidly as we move away from the peak. The second point to
note is that we have been very careful in placing the center frequency of the input
pulse at a frequency where the transmission through the medium is at a minimum
and has the value 9%. Close to this frequency, the gain is very large, on the order
of 1018. Third, we note that, like previous workers, we use Gaussian input pulses.
Gaussian pulses have the property of having a clear peak in the time domain while
at the same time being well contained in the frequency domain. In Fig. 7.12(b) we
show the result of launching only the very early parts of the input pulse. Up until
the time labeled “turn off of input pulse” the input in Fig. 7.12(b) is the same as the
Gaussian input in Fig. 7.12(a). After this point the Gaussian input is rapidly ramped
down to zero as shown. On the output side of the medium, we see that the peak of
Fig. 7.12(a) is still present, unchanged. This result indicates that this peak occurs as
the result of the unchanged part of the input pulse, the leading edge, being amplified
and distorted [42, 70]. Thus there is no causal connection between the peak of the
output pulse and the peak of the input pulse. The relative gain required to turn the
weak leading edge into the output peak shown is only 107, much below the 1018

gain that is available. The turning-off of the input pulse in Fig. 7.12(b) introduces
frequency components on the input that are far from line center and see high gain
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on propagating through the medium, resulting in the later parts of the output going
off scale in the plot shown.

From the type of simulation shown in Fig. 7.9, it is tempting to regard the pulse
advancement as occurring as the result of the peak of the pulse propagating faster
than c, moving gradually ahead of the reference pulse while suffering very little
pulse distortion. This picture leads to concern about how this behavior can be consis-
tent with the special theory of relativity. The resolution of this concern is that this is
a very misleading picture. It is more correct to regard what happens on propagation
as a continuous distortion of the pulse that moves the peak of the distorted pulse
ahead of the peak of the undistorted reference pulse.

The information velocity can be considered to be the velocity at which the out-
come of some “choice travels.” In many circumstances the information velocity
is, for practical purposes, equal to the group velocity. The simulation shown in
Fig. 7.13 demonstrates that this is certainly not the case in a fast-light system. Here,
the input vanishes up to the point marked “pulse front.” Then a decision is made
to launch a pulse into the medium with the shape and peak position as shown. The
information velocity is the velocity within the medium at which this information
travels. The decision to launch the pulse forces the input to jump from zero up to a
value that is consistent with the rest of the pulse being Gaussian. This jump forms
the pulse front [70, 42].

Input

Input x 1000 Front arriving at c 

Pulse front

Peak arriving at
vg> c

 

Reference

Fast light
medium

Fig. 7.13 Up to the point marked “pulse front,” the input vanishes. At that point a decision is made
to launch the pulse. The jump in pulse amplitude at this point forms the pulse front. This pulse front
arrives at the output after propagating through the medium with velocity c and heralds the fact that
the pulse has been launched. The subsequent arrival of the peak carries no new information, even
though it can be thought of as arriving after superluminal propagation. These numerical results are
consistent with the conceptual picture presented in Fig. 7.5

Under these conditions, we see that there are two peaks in the output, the “nor-
mal” advanced pulse and a second feature labeled “front.” In this numerical simula-
tion, the various parameters have been chosen such that these two peaks have equal
amplitude. The first peak marks the arrival of the pulse front. This peak arrives
with the same speed as the reference pulse, the speed of light in vacuum. Later the
advanced pulse arrives. This peak arrives earlier than the peak of the pulse would
have arrived had the medium been replaced by an equal length of vacuum. It can,
therefore, be regarded as consequence of the group velocity being greater than c.
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But this peak carries no new information, as we already know from the arrival of
the front that the rest of the pulse must arrive. The arrival of the superluminal pulse
does, therefore, not violate causality.

7.8 Summary

We have reviewed recent theoretical and experimental research that establishes that
pulses can propagate through material systems with superluminal or even negative
group velocities. Nonetheless, these exotic propagation effects are fully compatible
with established notion of causality.

At a fundamental level, the nature of slow and fast light seems fairly well under-
stood. But there still may be some surprises on the horizon. We noted in the body of
this chapter that there seems to be no fundamental limit on how much one can delay
a light pulse using slow-light methods, and in fact pulse delays as great as 80 pulse
lengths have been observed [29]. Conversely, there seem to be severe limitations
that limit the amount of advancement for a fast-light system to at most several pulse
widths [71].1 But can these limitations be overcome? This is an intriguing question
that merits further examination.
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Chapter 8
Experiments on Quantum Transport of
Ultra-Cold Atoms in Optical Potentials

Martin C. Fischer and Mark G. Raizen

8.1 Introduction

In this chapter, we describe our experiments with ultra-cold atoms in optical poten-
tials and show how we can address fundamental issues of time in quantum mechan-
ics. The high degree of experimental control and the conceptual simplicity are the
main advantages of our system. We start with an overview of the basic interaction
of atoms and light and make the connection between atoms in optical lattices and
solid state physics. While this latter connection has evolved into a major theme in
physics over the past decade, at the time of this work it was still new and unexplored.
After introduction of the theoretical model and the basic equations, we introduce the
experimental apparatus. We then review our experiments to observe the Wannier–
Stark ladder in an accelerating lattice. This system was used to study quantum tun-
neling where short-time non-exponential decay was first observed for an unstable
quantum system. We then describe our experiments to observe the quantum Zeno
and anti-Zeno effects for an unstable system that is repeatedly interrogated. We
conclude this chapter with a brief outlook into the future.

8.1.1 The Interaction of Atoms and Light

The manipulation of the motional state of individual atoms with light fields was
observed as early as 1930, when Frisch measured the deflection of an atomic beam
with resonant light from a sodium lamp [15]. The measured deflection was caused
by the recoil momentum that an atom acquires when absorbing or emitting a single
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photon of light. When an atom absorbs a photon from a beam of light, it acquires
momentum in the direction of the light beam. Since scattered photons are emitted
without preferred direction, the momentum acquired during the emission averages
to zero over many cycles. This leads to a net force on the atom which is called
the spontaneous force, or radiation pressure. The spontaneous force scales with the
scattering rate and for large detunings falls off quadratically with the detuning ΔL

of the light from the atomic resonance [9]:

Fspont ∝ I

Δ2
L

, (8.1)

where I is the laser intensity.
Another type of force is based on the coherent scattering of photons. The oscil-

lating electric field of light can induce a dipole moment in the atom. If the induced
dipole moment is in phase with the electric field, the interaction potential is lower in
regions of high field and the atom will experience a force toward those regions. If it
is out of phase, a force pointing away from regions of high field results. This force is
called the dipole force. As opposed to the spontaneous force, the dipole force only
falls off linearly with the detuning from the atomic resonance in the limit of large
detuning [9]

Fdipole ∝ ∇ I

ΔL
. (8.2)

From the scaling laws for the two types of forces it is clear that with sufficient
laser intensity, the spontaneous force can be made negligibly small while still gen-
erating an appreciable dipole force. As early as 1970, Ashkin succeeded in trapping
small particles with a pair of opposing, focused laser beams, making use of both
types of forces. However, only the relatively recent development of laser cooling
and trapping techniques have created the conditions for controlled manipulation of
atoms with the dipole force alone [7]. While the laser cooling and trapping required
to prepare our atomic sample utilized near-resonant light and thus both types of
light forces, the optical lattices were composed of far-detuned light, so that only the
dipole interaction was important.

8.1.2 Optical Lattices and the Connection to Solid State Physics

In our experiments we created a periodic optical potential by spatially overlapping
two laser light beams. The periodicity of the resulting standing wave was determined
by the interference pattern in the region of overlap. In the nodes of a standing wave,
the electric field of the light interferes destructively and atoms at those positions are
unaffected by the light. Away from the nodes, the dipole interaction causes a light-
induced shift of the atomic energy levels, which is maximal at the anti-nodes. This
shift of the energy levels – which is another way of describing the aforementioned
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dipole force – is periodic in space. The system of a particle in a periodic potential
is the textbook model of an electron in a crystal lattice and has been studied in
great detail. In the 1920s Bloch arrived at the conclusion that due to the periodicity
of the lattice, the eigenstates are plane waves modulated by periodic functions of
position [4]. The implications of these findings on the description of transport in
periodic potentials under the influence of externally applied fields are profound.
Some of the resulting effects, such as Bloch oscillations and Wannier–Stark states,
are treated in more detail in Sect. 8.4. Experimental verification of those predicted
effects in crystal lattices, however, has been hindered by extremely short relaxation
times. Electrons in a crystal lattice can scatter on impurities, dislocations, phonons,
and even on other electrons. If the scattering occurs on a timescale faster than
the timescale for coherent evolution of the system, coherent transport effects are
destroyed. Advances in the production of very high purity superlattice structures in
the 1970s allowed the experimental investigation of some of those coherent effects
for the first time [31]. However, the ratio of the relaxation time to the characteristic
timescale for coherent evolution in those systems was still only on the order of
unity. In our system we can achieve a ratio on the order of 103. The relaxation
time is mainly limited by spontaneous emission during the interaction, which can
be made very small by detuning far from resonance. This high ratio and the ability
to dynamically control the interaction potential in real time during the experiment
allowed us to observe many of the coherent effects which are inaccessible in solid
state systems. A more detailed comparison of the solid state and atom optics system
is given in a recent overview article [38].

8.1.3 Interaction Hamiltonian

In this section, we derive the effective Hamiltonian for a two-level atom in a standing
wave of far-detuned light, closely following Graham et al. [16]. The atom is assumed
to have a ground state |g〉 and an excited state |e〉, separated in energy by �ω0. For a
single atom of such type in a classical light field E(r, t), the Hamiltonian is the sum
of three contributions: the kinetic energy of the center of mass, the internal energy,
and the interaction energy [25]

H = HCM + Hinternal + Hinteraction , (8.3)

where

HCM = p2

2M
, (8.4)

Hinternal = 1

2
�ω0 σz, and (8.5)

Hinteraction = −d · E(r, t) = − (〈e|d · E|g〉 σ+ + 〈g|d · E|e〉 σ−) . (8.6)
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The symbols σ± and σz denote the Pauli spin matrices. For a linear polarization
vector ε̂ of the light, we can define the resonant Rabi frequency as

Ω = −〈e|d · E|g〉
�

= −〈g|d · E|e〉
�

= −〈g|d · ε̂|e〉
�

E , (8.7)

where we have assumed a slow variation of the field amplitude E(r, t).
We create an optical lattice by overlapping two laser beams with identical linear

polarization vectors ε̂. The electric field is then of the form

E(r, t) = 1

2
ε̂
(

E1 ei(k1·r−ω1 t) + E2 ei(k2·r−ω2 t)
)+ c.c. (8.8)

Using this light field, we find that the interaction term is

Hinteraction =
∑

n=1,2

�
Ωn

2

(

σ−e−i(kn ·r−ωn t) + σ+ei(kn ·r−ωn t)
)

, (8.9)

where we have used the rotating wave approximation to drop the counter-rotating
terms σ+e+iωt and σ−e−iωt [25]. To separate the center-of-mass motion of the atoms
from their internal state, we write the atomic state as

|Ψ (r, t)〉 = cg(r, t)|g〉 + ce(r, t)|e〉 . (8.10)

We insert |Ψ 〉 into the time-dependent Schrödinger equation with the Hamiltonian in
Eq. (8.3) to obtain propagation equations for cg and ce. Following Graham et al. [16]
for a sufficiently large detuning from resonance, we can adiabatically eliminate the
excited state amplitude and remain with an equation for the (phase transformed)
ground state amplitude c̃g

i�∂t c̃g =
[

p2

2M
+ �

Ω1Ω2

4ΔL

(

ei(q·r−δt) + e−i(q·r−δt))
]

c̃g , (8.11)

where q = k2 −k1, δ = ω2 −ω1 (the frequency difference between the two beams),
and ΔL = ω1+ω2

2 − ω0 (their average detuning from resonance). This leads to an
effective Hamiltonian for an atom in the ground state

H = p2

2M
+ V0 cos (q · r − φ(t)) , (8.12)

where for generality we have introduced an arbitrary time-dependent phase φ(t) (the
instantaneous frequency difference is δ(t) = dφ

dt ). The amplitude of the potential
term is

V0 = �
Ω1Ω2

2ΔL
. (8.13)
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Fig. 8.1 Term diagram for the sodium D2 line. The nuclear spin of sodium is I = 3/2, and
so the ground state of sodium 3S1/2 has two hyperfine levels F = 1, 2. For the 3P3/2 excited
state, we have J = 3/2 so that F = 0, 1, 2, 3. The 2F + 1 magnetic sublevels are also shown.
Representative examples of (a) the cooling and trapping light, (b) the optical pumping sideband,
and (c) the far-detuned optical lattice light are shown as arrows.

The expression for the well depth V0 contains the resonant Rabi frequencies Ω1

and Ω2. The calculation of these frequencies is complicated by the fact that sodium
is by no means a system with a two-level structure, as can be seen in the term dia-
gram for the levels contributing to the sodium D2 line in Fig. 8.1. However, several
factors make a determination of the well depth possible. Our initial condition (before
the atoms interact with the light) is such that almost all atoms populate the hyperfine
F = 2 level in the lower manifold. For linearly polarized light, all of the (nearly)
degenerate m F levels experience the same level shift in the far-detuned regime.
Therefore the entire sample experiences the same effective potential [9, 32]. The
actual dipole coupling for a particular ground state sublevel |F m F 〉 is obtained by
summing over its couplings to all of the available excited states. When the detuning
is large compared to the excited state frequency splittings, all of the excited states
participate, and the detuning for each excited state is approximately the same. In
addition, the dipole coupling summed over all excited states and all polarizations
is independent of the m F sublevel considered [32, 40]. Because of the spherical
symmetry of the dipole operator, the three Cartesian components in this sum are
equal and therefore the effective dipole coupling for the case of linearly polarized
light and large detuning, regardless of the ground state population, is one-third the
square of the dipole matrix element for the full D2 (J = 1/2 ↔ J ′ = 3/2) transition

|deffective|2 = e2|D12|2
3

. (8.14)
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The dipole matrix element e2|D12|2 can be obtained from the Einstein A coefficient,

A21 = Γ = 1

τ
= ω3

0e2|D12|2
3πε0�c3

2J + 1

2J ′ + 1
, (8.15)

which is related to the radiative lifetime [25]. Here, J = 1/2 is the ground state
and J ′ = 3/2 is the excited state. The radiative lifetime, τ = 16.2 ns, is known
empirically. Using Eqs. (8.14) and (8.15), the effective dipole moment is then

deffective =
√

ε0�λ
3
L

4π2τ
= 1.71 × 10−29 cm . (8.16)

The time-averaged intensity (defined as the absolute value of the Poynting vector)
of a beam of light is related to the amplitude of the electric field by I = 1

2 cε0 E2.
Using this relation together with Eqs. (8.7) and (8.13) yields an expression for the
well depth in terms of measurable quantities

V0 = 2πc2

τω3
0

√
I1 I2

ΔL
, (8.17)

where I1 and I2 are the intensities of the traveling wave components.

8.1.4 Spontaneous Emission Rate

In deriving the Hamiltonian for our system, we made the assumption that sponta-
neous emission can be neglected. Since spontaneous emission is the largest source
of decoherence, this statement needs to be quantitatively verified. The total sponta-
neous photon scattering rate is given by the product of the lifetime and the (steady
state) excited state population. Ignoring collisional relaxation we have for the scat-
tering rate [25, 40]

Rsc =
(
Γ

2

)
S

1 + S + 4(ΔL/Γ )2
, (8.18)

where the saturation parameter is given by

S = I

Isat
= 2

(
Ω

Γ

)2

. (8.19)

Using Eq. (8.7) the saturation intensity Isat can be expressed as

Isat = cε0Γ
2
�

2

4d2
effective

. (8.20)
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For a linearly polarized far-detuned light beam, we can use the effective dipole
matrix element defined in Eq. (8.16) and obtain Isat = 9.39 mW/cm2. For a large
detuning we can also approximate the scattering rate as

Rsc ≈ πΓ

ΔL

V0

h
, (8.21)

where we have used the definition of the well depth for equal beam intensities as in
Eq. (8.13). For typical experimental parameters of V0/h = 80 kHz and ΔL = 2π ×
40 GHz, we get Rsc = 60 s−1 or roughly one event every 20 ms. For the tunneling
experiments of Sect. 8.5, where the requirements on the spontaneous emission were
the most stringent, the relevant interaction duration (the time of large acceleration)
was at most 100 μs. In this time, less than 1% of the atoms scattered a spontaneous
photon.

8.2 Experimental Apparatus

Three important steps were necessary to perform our experiments: the preparation
of the initial condition, the generation and application of the interaction potential,
and the measurement of the final state of the atoms. To outline the experimental
sequence, a simplified schematic is shown in Fig. 8.2. We will give only a brief

Load MOT
(1–20 s)

Interaction with
optical lattice

(1 ms)

Ballistic expansion
(3 ms)

Freezing molasses
and CCD exposure

(10 ms)

Fig. 8.2 Schematic of the experimental sequence. First the atoms are collected and cooled in a
magneto-optic trap. The trapping fields are extinguished and the optical interaction potential is
introduced. After interacting with the optical lattice, the atoms are allowed to expand freely in the
dark. Finally, the cooling beams are turned on, freezing the atoms in place, and the fluorescence is
imaged onto a charge-coupled device (CCD) camera
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description of these steps; more details can be found in [11]. The starting point for
the interaction was an atomic cloud that was trapped and cooled in a magneto-optic
trap (MOT) in the standard σ+ − σ− configuration [6, 37]. Loading sodium atoms
from the thermal background into the MOT typically resulted in a cloud of 3 × 105

atoms with a final Gaussian distribution with a width of σx = 0.3 mm in position
and σp = 6 �kL in momentum, where �kL is the momentum of a single photon
of resonant light. The trapping and cooling fields were then switched off and the
interaction beams were turned on. The details of the generation of the interaction
potential is given below. After a typical interaction duration of not more than a
few milliseconds, the light beams were turned off and the atoms were allowed to
expand freely. During this period of ballistic expansion, each atom moved a distance
proportional to its velocity. This allowed us to determine the velocity distribution by
recording the spatial distribution of the atomic cloud. For this purpose the resonant
light was turned on after the free drift period to produce a viscous optical molasses
that halted the ballistic motion of the atoms and provided spontaneously scattered
resonant light for detection. This light was imaged onto a charge-coupled device
camera (CCD) to obtain the desired spatial information. Nonuniform detection effi-
ciencies within the optical molasses were measured and compensated for during
data analysis.

8.3 Details of the Interaction

The optical potential was formed by overlapping two linearly polarized traveling
waves with parallel polarization vectors. Both beams were derived from the same
laser in order to reduce sensitivity to frequency fluctuations originating in the laser.
A schematic of the setup is shown in Fig. 8.3. The overall power of the beams
was adjusted by an acousto-optic modulator (AOM1). The frequencies of the two
beams were controlled independently by two acousto-optic modulators (AOM2
and AOM3). During the tunneling experiments described in Sect. 8.5 the atoms
needed to be accelerated to a velocity of up to 3 m/s. This corresponds to 100 vr,
where vr is the single photon recoil velocity of the atom. To reach this velocity, the
counterpropagating beams need to differ in frequency by 10 MHz. During the exper-
iment the frequency difference needed to be adjusted from zero to this maximum
value without misalignment. For this reason a double-pass AOM setup was cho-
sen. The frequency of the double-passed beam was scanned, whereas the frequency
of the counter-propagating beam was held constant. The beam in the variable fre-
quency arm of the arrangement was focused by a lens through the acousto-optic
modulator (AOM3) operating at 40 MHz ±Δν. An identical lens was placed after
the AOM in the first-order diffracted beam. The undeflected portion of the beam
was discarded. After being reflected by a mirror the diffracted beam retraced its
path through AOM3 and was diffracted again in the same manner. The beam was
deflected twice on its path through the AOM, and the frequency was therefore down-
shifted by twice the drive frequency. Any change in the drive frequency of AOM3
led to an angle change of the first-order diffracted beam, but the beam completing
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Fig. 8.3 Schematic of the interaction beam setup. AOM1 (40 MHz) provides the global control
of the intensity. AOM3 is a double-passed, 40 MHz AOM shifting the beam frequency down by
twice its drive frequency without leading to an appreciable angular deflection. AOM2 is in the
single-passed configuration shifting down the beam frequency by 80 MHz

both passes through the AOM was still overlapped with the incoming beam regard-
less of the deflection angle. To separate the backreflected from the incoming beam
the polarization was rotated along the path with a quarter-wave plate (λ/4) so that
a polarization beam splitter cube could be used for separation. To compensate for
the frequency offset of 80 MHz introduced by AOM3, the frequency in the sec-
ond arm was down-shifted by AOM2, also by 80 MHz. The frequency difference
between both beams was therefore 2Δν. After passing through the acousto-optic
modulators each beam was spatially filtered. The resulting transverse beam intensity
profiles were approximately Gaussian with a beam radius of about 2 mm. The size
and divergence of the beams were matched to avoid transverse spatial interference
fringes, which could have created local variations of the well depth. A small part
of each beam was diverted onto a photodiode to measure the optical power (the
calibration accuracy was about 10%).

8.4 Quantum Transport

The system of ultra-cold atoms in a periodic optical potential offers a unique means
of studying solid state effects with quantum optics tools. In order to gain insight
into the possibilities for experiments, some of the basic properties of this system
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will be reviewed. A thorough treatment of the fundamental properties can be found
in many solid state textbooks, such as Ashcroft and Mermin [2] or Marder [30]. The
specifics of our system are described more thoroughly by Fischer [11].

8.4.1 Stationary Lattice

We created the optical potential by spatially overlapping two counterpropagating
light beams (kL ≡ k2 = −k1), which yields q = k2 − k1 = 2kL. Choosing the
same frequency for both beams simplifies the effective Hamiltonian in Eq. (8.12) to

H = p2

2M
+ V0 cos (2kLx) , (8.22)

assuming that beam propagation is along the x-axis. This form of the Hamiltonian is
a textbook example for a particle placed in a spatially periodic potential, and many
general properties of this system can be derived by symmetry arguments alone. The
most fundamental properties are expressed in Bloch’s theorem. It states that the
eigenstates ψ(x) of this Hamiltonian take on the form of a plane wave multiplied by
a function u(x) of periodicity d = π

kL
= λ

2 (the periodicity of the potential):

ψn,k(x) = eikx un,k(x) , (8.23)

where k is the quasi-momentum of the particle. The index n is called the band
index and appears in Bloch’s theorem because for a given k there are many solu-
tions to the Schrödinger equation. An important consequence of Bloch’s theorem
is that the wave functions and the energy dispersion of the particle are periodic in
quasi-momentum (reciprocal) space with a periodicity of K = 2π

d = 2kL in recip-
rocal space. Another property of paramount importance concerns the mean velocity
of a particle in a particular Bloch state ψn,k . It can be shown that the velocity is
determined by the energy dispersion relation as

νn(k) = 1

�

∂En(k)

∂k
, (8.24)

in analogy to the free particle case [2].
The problem of finding the energy eigenstates of H , that is solving H |ψ〉 =

E |ψ〉, is equivalent to solving Mathieu’s equation [1]. Sample dispersion curves
(energy versus the quasi-momentum k) were calculated and plotted in Fig. 8.4. For
a vanishing well depth V0 the dispersion curve is the free particle energy parabola
E(k) = �

2k2

2M . For a finite well depth V0, the lowest crossing points of the free energy
parabolas at k = ±kL develop a level repulsion due to the coupling of the levels by
the potential term. The amount of repulsion in this avoided level crossing can easily
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Fig. 8.4 Dispersion curves of a particle in a sinusoidal potential. Plotted here are the energy (in
units of E0 = 8 �ωr, �ωr being the recoil energy) versus the quasi-momentum k (in units of kL)
in the repeated-zone scheme (left panels) and in the reduced-zone scheme (right panels). The well
depth V0/h of the potential is (a) 0, (b) 40 kHz, and (c) 200 kHz

be estimated by first-order degenerate perturbation theory. The eigenenergies of the
coupled system are

E1,2 = �
2k2

L

2M
± 1

2
V0 . (8.25)

The energy splitting for the first crossing and therefore the width of the first band gap
is, to first order in V0, equal to V0 itself. The coupling term cos(2kLx) connects only
states with a difference in momentum of 2 �kL. For the calculation of the splitting
at higher crossing points, we therefore need to resort to perturbation expansions of
higher order.

The energy values evaluated at the band edges as a function of the well depth V0

have been determined numerically and are displayed in Fig. 8.5. From this figure
one can see that the energy bands evolve from a continuum of allowed energies, for
a vanishing well depth, into the linearly spaced discrete energy levels of a harmonic
oscillator, in the limit of large well depth.
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Fig. 8.5 Regions of allowed (gray) and restricted (white) energy in the periodic potential as a
function of the well depth. The energy is measured relative to the bottom of the well. Indicated as
a dashed line is the top edge of the potential (2V0)

8.4.2 Accelerating Lattice

For the system of electrons in a crystal lattice, the most commonly encountered
perturbation is an applied static electric field. This seemingly simple perturbation
leads to a very rich system, whose properties were controversial for quite some time.
Experimental tests in the field of solid state physics were hindered by decohering
processes such as scattering of the electrons on impurities in the crystal lattice or
scattering among themselves. These effects are negligible in our atom optics sys-
tem and we were able to contribute to this field by studying some of the effects
previously inaccessible to experiment.

8.4.2.1 Semiclassical Equations of Motion

A static electric field, which exerts a strong force on the electrons in a crystal, does
not have the desired effect on a neutral atom in an optical potential. However, we can
simulate the corresponding force by introducing an appropriate time dependence of
the optical lattice. Let us consider an optical lattice composed of two counterpropa-
gating light beams of unequal frequencies. A constant acceleration of the “standing”
wave pattern is generated by linearly chirping the frequency difference of these
counterpropagating beams. This is described by φ(t) = kLat2 in Eq. (8.12), where
a is the acceleration. Inserting this into the Hamiltonian yields

H = p2

2M
+ V0 cos

[

2kL

(

x − 1

2
at2

)]

. (8.26)
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To make the connection to the solid state system, one can transform Eq. (8.26) to
the frame of reference accelerated with the potential by applying a unitary transfor-
mation, following Peik et al. [36], resulting in

H̃ = p2

2M
+ V0 cos(2kLx) + Ma x . (8.27)

The last term containing the mass M of the atom is an inertial term, resulting from
the transformation to an accelerating frame of reference. It mimics the role of the
interaction potential Uel = Ee x between an electric field E and the electron of
charge e. Having established this connection, we can directly apply the results for
the solid state system to an atom in the accelerated optical potential. A derivation
of the semiclassical equations of motion for small electric fields can be found in
standard textbooks [2, 30] and are simply stated here without proof. They express
the relationship of the state’s quasi-momentum k, band index n, energy En(k), and
mean velocity vn(k). By replacing the force F = e E with F = Ma, we obtain the
following statements:

1. The band index n is a constant of motion.
2. The expression for the velocity in Eq. (8.24) remains unchanged and the evolu-

tion of the quasi-momentum is described by

k̇n(t) = −1

�
Ma . (8.28)

3. The form of the band structure En(k) is unchanged.

The restriction of small fields deserves special attention. The statement that the
band index is a constant of motion indicates that inter-band transitions are being
neglected. However, for larger fields electrons can tunnel across the band gap. An

estimate for a “small” field strength is given by Ashcroft and Mermin as E � E2
g

e�vF
,

with vF being the typical electron velocity in the originating band and Eg being the
minimum energy separation of the perturbed levels [2]. In our system this transforms
to a condition for the acceleration

a � E2
g

�2kL
, (8.29)

where vr = �kL/M serves as the typical velocity at the edge of the Brillouin zone.
Since for higher band indices the gaps get smaller and the velocity gets higher, a
dramatic increase in the tunneling probability is to be expected. A more detailed
study of tunneling across band gaps will be provided in Sect. 8.5.
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8.4.2.2 Bloch Oscillations and Wannier–Stark States

One remarkable consequence of the equations of motion stated above is that parti-
cles exposed to a static field are predicted to oscillate in space rather than increase
their velocity steadily. As can be seen by integrating Eq. (8.28), the quasi-momentum
increases linearly with time as

k(t) = k0 − Mat

�
. (8.30)

The velocity of the particle with a given quasi-momentum k is given by Eq. (8.24)
as the derivative of the dispersion curve at the point k. Since En(k) is oscillatory in
reciprocal space and k varies linearly with time, the velocity vn(t) is oscillatory in
time. The period of oscillation τB is the time it takes for a particle to traverse the
Brillouin zone of width K = 2kL and calculates to

τB = 2�kL

Ma
= 2vr

a
. (8.31)

A sketch of these Bloch oscillations is graphically depicted in Fig. 8.6(a). An atom
starting in the lowest band of the potential will increase its quasi-momentum k due to
the applied force, as given by Eq. (8.30). As it approaches the edge of the Brillouin
zone at a constant rate ∂t k, the velocity decreases as the slope of the dispersion curve
decreases. At k = kL the derivative ∂k E0(k) is zero and according to Eq. (8.24) the
particle is at rest. It will then reverse its velocity and continue its motion, until the
velocity is reversed again at the next minimum of the dispersion curve. The reversal
of its velocity at k = kL can be viewed as a first-order Bragg reflection of the
particle wave by the periodic potential. The arguments above also hold for atoms
in higher bands. They oscillate at the same Bloch frequency. However, the velocity
reversal in higher bands corresponds to a higher order Bragg scattering process. It
is important to note that this reversal of the atomic velocity occurs relative to the
accelerated frame. In the laboratory frame the constant acceleration of the potential
is superimposed on the oscillation of the atom.

For a higher field strength (or acceleration, in the atom optics system) the particle
might not be able to follow the dispersion curve adiabatically as it approaches the
edge of the Brillouin zone. It can cross the band gap and continue its motion in
a higher band, as indicated in Fig. 8.6(b). This corresponds to a tunneling process
through the band gap, in which case the semiclassical equations stated above no
longer hold. For a particle undergoing tunneling, the transformation back to the
laboratory frame reveals no change of velocity at all. The particle is simply lost out
of the potential and can no longer track the acceleration.

The Bloch bands of an atom in a stationary potential are, by definition, con-
tinuous regions in the energy spectrum. Bloch oscillations in an accelerated lattice
reveal themselves in the energy spectrum as discrete peaks with an energy separation
of hνB, where νB = 1/τB. This is a consequence of the Bloch bands splitting up
into discrete Wannier–Stark states. A physical interpretation of these states can be
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Fig. 8.6 Sketch of a particle trajectory in reciprocal space. In the upper panel (a) the rate of change
of the quasi-momentum is slow enough for the particle to follow the dispersion curve adiabatically
across the Brillouin zone boundary. This is equivalent to discontinuing the motion at one edge
of the Brillouin zone and emerging from the other side in the same band. The lower panel (b)
illustrates a case for a larger force, where the particle cannot follow the curve and tunnels through
the band gap

obtained by regarding the transition between bands as a temporal interference effect.
Quantum mechanically, atoms can tunnel between bands at all positions within the
Brillouin zone. Since Bloch oscillations lead to multiple passes through the Brillouin
zone, transition amplitudes can interfere constructively or destructively, depending
on the rate at which the particle traverses the Brillouin zone. This is in analogy to the
optical interference pattern generated by a plane wave of light illuminating an array
of slits or a grating. The temporal interference produces sharp resonances spaced
at the (temporal) grating period τB. The more traversals of the Brillouin zone the
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particle completes, the sharper the resonance becomes. If the particle tunnels out
of the band quickly, the resonances are broad, indicating a short lifetime of the
associated state. The tunneling out of a bound state is enhanced by the presence of a
Wannier–Stark state of the same energy, but in a higher band and displaced by one
or more lattice sites. This situation is depicted in Fig. 8.7(a).

Fig. 8.7 Schematic of the Wannier–Stark ladder within the bands. In (a) the tunneling process is
indicated. The presence of a Wannier–Stark state in the continuum of the higher band enhances
the tunneling probability across the gap. In (b) a weak spectroscopic drive couples the states and
introduces transitions. In either case, once an atom is in the second band, it can easily tunnel across
successive band gaps into higher bands

Krieger and Iafrate [23] also consider the possibility of driving transitions between
bands with an external alternating probe field. Assuming that the transition due to
the probe drive is the dominant loss process from the first band (neglecting tunnel-
ing), they obtain a resonance condition for the drive frequency νp

νp = Ēg

h
+ nνB , (8.32)
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where Ēg is the average band separation. Here, the driving field provides a direct
spectroscopic tool to probe the lattice structure of the Wannier–Stark states by allow-
ing transitions between the states, as indicated in Fig. 8.7(b).

8.4.3 Band Spectroscopy and Wannier–Stark Ladders

In our experiments the initial atomic distribution was approximately Gaussian with
a width of σx = 0.3 mm in position and σp = 6 �kL in momentum. However, to
be able to study tunneling and transitions between single bands, an initial condition
with only one populated band, preferably the lowest, was desired. If we suddenly
turn on the optical potential within the atomic distribution, only a fraction of the
atoms are transferred into the lowest band [35]. Most atoms will be projected into
higher index bands. The location of the bands relative to the potential is indicated in
Fig. 8.5. For a typical well depth of V0/h = 70 kHz, we can see that atoms in the
lowest band are trapped within the potential wells, whereas atoms in the second band
are only partially trapped. Atoms in even higher bands have energies well above the
potential and hence are effectively free. The location of the bands with respect to the
potential well can be regarded as an indicator for the tunneling rates between bands
when an acceleration is applied. Bands that lie entirely within the wells have a much
smaller tunneling rate than bands outside the range of the potential. To empty all
but the lowest band, we took advantage of this difference in tunneling rates across
successive band gaps. After turning on the standing wave, it was accelerated to a
velocity of v0 = 40 vr, as indicated in Fig. 8.8. During this acceleration the atoms
in the first band performed a sequence of Bloch oscillations within the potential
and were accelerated in the laboratory frame. Atoms in higher bands could tunnel
through the successively smaller band gaps and were lost out of the potential. The
transport acceleration atrans was chosen to maximize tunneling out of the second
band while minimizing losses from the first trapped band. For typical experimental
parameters of V0/h = 70 kHz and atrans = 2000 m/s2, the Landau–Zener expres-
sion derived in Sect. 8.5 for the lifetime of the first and second band yields 24 ms
and 40 μs, respectively. This ensured that after 600 μs of acceleration only the first
band still contained a significant number of atoms.

For band spectroscopy experiments the frequency chirp was stopped after reach-
ing the velocity v0 and the frequency difference was held constant. At that point,
a phase modulation at the frequency of νp was added to one of the two counter-
propagating beams forming the standing wave, as indicated in Fig. 8.8. This phase
modulation could drive transitions between bands, if the band separation for some
value of k was close to E = hνp. The modulation typically lasted for 500 μs and
was switched on and off smoothly over 16 μs to avoid any discontinuous phase
changes in the potential that could induce transition to higher bands. The amplitude
of the modulation was chosen to be small enough to not perturb the band structure.

In order to study Wannier–Stark states experimentally a constant acceleration of
the optical potential was necessary. Therefore the frequency chirp was not stopped
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Fig. 8.8 Interaction beam timing diagram for the band spectroscopy experiments. After the
molasses stage the resonant light is turned off and the optical lattice was turned on. A subset
of atoms is projected into the fundamental band and separated in velocity by an acceleration atrans.
After this preparation stage, the optical lattice position and amplitude are varied to realize the
potential under study. This step is followed by separating the atoms in the lowest band from those
in higher bands by the same acceleration atrans. The atoms are then allowed to expand freely in the
dark and the spatial distribution is illuminated with the resonant molasses light

during the modulation time but was adjusted to yield the desired value of the accel-
eration a. To spectroscopically investigate the states, we superimposed the phase
modulation at frequency νp onto this frequency chirp.

After a fixed time interval the modulation was turned off and the frequency chirp-
ing resumed at a rate corresponding to atrans. This separated in momentum space the
remaining trapped atoms in the lowest band from those having made the transition
into higher bands. After reaching a final velocity vfinal = 80 vr, the interaction beams
were switched off suddenly.

In the detection phase we needed to distinguish three classes of atoms: (1) atoms
that were not initially trapped in the lowest band and immediately tunneled out of
the well during the initial acceleration, (2) atoms which were trapped in the first
band at the beginning of the interaction but were driven out by the modulation,
and (3) atoms that remained in the first band during the entire sequence. Since
the atoms in different classes had left the trapping potential at different stages of
the experimental sequence, they were accelerated to different velocities. Therefore,
after drifting in the dark for 3 ms, these classes separated in space and could be
distinguished by recording their position. For this purpose the atoms were imaged
in the “freezing molasses” as described in Sect. 8.2. A typical fluorescence image of
the atoms is shown in Fig. 8.9(a). The two-dimensional image was then integrated
in the direction perpendicular to the axis of the interaction beams to obtain a one-
dimensional distribution along the beam direction, containing all three classes of
atoms. The corresponding integrated distribution is shown in Fig. 8.9(b). In order to
reduce sensitivity to fluctuations of the number of atoms in the MOT, the number of
survivors (atoms in class (3)) was normalized by the total number of atoms initially
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Fig. 8.9 Part (a) shows a fluorescence image from an atomic distribution acquired after a time of
ballistic expansion. Part (b) shows the distribution integrated in the vertical direction. The large
peak on the right is the part of the atomic cloud that was not trapped during the initial acceleration.
The center peak indicates the atoms that were initially trapped in the first band but were driven
out by the modulation. The left peak corresponds to atoms that remained trapped during the entire
sequence. The survival probability is the area under the left peak normalized by the sum of the
areas under the left and center peak

trapped in the first band, which was obtained by summing the contributions of class
(2) and class (3).

To observe the temporal evolution of the fundamental band population, we
repeated the sequence in Fig. 8.8 for various modulation durations, holding the
probe frequency νp and amplitude m fixed. These studies resulted in the observa-
tion of Rabi oscillations between Bloch bands [13]. For large amplitudes of the
modulation, we observed a dynamical suppression of the band structure, effectively
turning off Bloch tunneling [28].

To obtain a spectrum of the Wannier–Stark states, we applied the modulation
during a period of constant acceleration and repeated the sequence for various probe
modulation frequencies, holding the modulation amplitude m and the duration fixed.
Figure 8.10 shows three measured spectra for the accelerations of 947, 1260, and
1680 m/s2, which correspond to the Bloch frequencies ωB/2π = 16.0, 21.4, and
28.5 kHz, respectively. The spectra were obtained at a fixed well depth of V0/h =
91.6 kHz and a fixed probe modulation amplitude of m = 0.05. For a well depth
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Fig. 8.10 Wannier–Stark ladder resonances for a well depth of V0/h = 91.6 kHz and accelera-
tions of (a) 947 m/s2, (b) 1260 m/s2, and (c) 1680 m/s2, which correspond to the Bloch frequencies
ωB/2π = 16.0, 21.4, and 28.5 kHz, respectively. For the chosen well depth, the average band
spacing is Ēg/h = 104 kHz which is in good agreement with the location of the central resonance.
The points are connected by thin solid lines for clarity. The thick solid lines show the results of
numerical simulations using the experimental parameters. Figure from [29]; Copyright 1999 by the
American Physical Society

of V0/h = 91.6 kHz, the average band spacing is Ēg/h = 104 kHz, which is in
good agreement with the location of the central resonance in the three spectra of
Fig. 8.10.

Also shown in Fig. 8.10 is the result of a numerical integration of the time-
dependent Schrödinger equation using the experimental parameters. We believe
that phase noise in the interaction beams prevented the survival probability from
reaching unity, when the probe was far from resonance, and reduced the depth
of the spectral features by a constant factor. For this reason, the y-values of the
theory curves were shifted and scaled to match the baseline and amplitude of the
central resonance. In addition, the value for the probe modulation amplitude m was
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adjusted in the numerical simulations from 0.05 to 0.035 to reproduce the relative
peak heights.

The spectral width of the resonances is fundamentally determined by the finite
lifetime of the Wannier–Stark states due to tunneling. However, a number of exper-
imental mechanisms (e.g., phase noise in the standing wave beams, variations in the
well depth, or the finite transverse extent of the optical potential) contributed to the
measured width being substantially broader than that predicted by the simulations.

8.5 Quantum Tunneling

In the previous section we studied the spectral features of Bloch states and Wannier–
Stark states by driving transitions between those states. These inter-band transitions
were imposed externally by a modulation of the potential. Without modulation the
band index was conserved. The accelerations that transported the atoms through
reciprocal space were small enough to preserve the validity of the semiclassical
equations of motion. In this section we investigate the effect of a large accelera-
tion of the optical potential. In this case the semiclassical equations no longer hold
and inter-band tunneling can occur. The atoms can leave the trapping potential via
tunneling into the continuum of free states. The system is therefore unstable and
the number of trapped atoms decays with time. By adjusting the acceleration the
stability of the system can be altered dynamically and the decay rates vary over
a wide range. In this system, short-time deviations from the universal exponential
decay law are observed [42]. In addition, we study the fundamental effects of mea-
surements on the decay rate and report on the first observation of the quantum Zeno
and anti-Zeno effects in an unstable system [12].

8.5.1 Classical Limit

As derived in Sect. 8.4, atoms in an accelerated standing wave are subject to a
potential

V (x) = V0 cos(2kLx) + Max . (8.33)

This potential is stated in the reference frame accelerated with the potential as given
in Eq. (8.27). For a small enough acceleration a particle can be classically trapped
within the wells of this “washboard” potential. In this case the particle will accel-
erate along with the potential. For a larger acceleration the potential wells become
increasingly asymmetric up to a point where the particle is no longer confined by
the potential. The critical acceleration ac,class, for which the potential loses its abil-
ity to confine the particle, can be found by solving for extrema of the potential in
Eq. (8.33), which only exists for

|a| < ac,class = 2kLV0

M
. (8.34)
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For accelerations smaller than ac,class the particle gets accelerated along with the
potential whereas for larger accelerations there are no local potential minima.

8.5.2 Landau–Zener Tunneling

8.5.2.1 Tunneling Rates

In this section we provide a short description of the Landau–Zener tunneling process
based on diabatic transitions in momentum space [35, 44]. An alternative description
can be derived in the position representation [26, 45]. As a starting point we consider
the semiclassical equations of motion describing the time evolution of the quasi-
momentum in reciprocal space. In order to allow for inter-band transitions, we must
now abandon the condition that the band index be a constant of motion. The shape
of the Bloch bands and the time evolution equation for the quasi-momentum are still
assumed to be valid. The stationary periodic potential causes the free particle energy
levels to undergo a level repulsion. This shift is most pronounced at the edges of the
Brillouin zone. A particle approaching the avoided level crossing might not be able
to follow the dispersion curve adiabatically, in which case it continues its motion
and diabatically changes levels across the energy gap. In 1932 Zener derived an
expression for the probability P of diabatic transfer between two repelled levels [44]

P = exp

(

− π
2�

E2
g

d
dt (ε1 − ε2)

)

, (8.35)

where Eg is the minimum energy separation of the perturbed levels and ε1,2 are
the unperturbed energy eigenvalues of level 1 and 2, respectively. In our case the
unperturbed energy curve is simply the free particle kinetic energy dispersion E p =
p2/2M . Using the semiclassical equation of motion for the quasi-momentum, we
obtain for the probability of transfer

P = e−ac/a , (8.36)

where the critical acceleration ac is given by

ac = π

4

E2
g

n �2kL
. (8.37)

We let N denote the number of particles populating the lowest band within the first
Brillouin zone. The rate of atoms crossing the band gap is equal to the rate of atoms
approaching the transition region times the probability of tunneling if we assume the
band to be uniformly populated. We obtain an exponential decay of the population
N in the band under consideration as

N = N0 e−ΓLZ t , (8.38)
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with the Landau–Zener (LZ) decay rate ΓLZ given by

ΓLZ = a

2vr
e−ac/a . (8.39)

Experimental studies of the tunneling rates out of the lowest band were performed
in our group and the decay rates were compared to the Landau–Zener prediction [3,
27].

8.5.2.2 Deviations from Landau–Zener Tunneling

The expression for the LZ tunneling rate derived above is based on a single transit
of the atom through the region of an avoided crossing. However, for small tunneling
probability the atom can undergo Bloch oscillations within a given band, leading to
multiple passes through the Brillouin zone. The tunneling amplitudes can interfere
constructively or destructively depending on the rate at which the atom traverses
the Brillouin zone. This mechanism is responsible for the formation of tunneling
resonances. For small accelerations the tunneling rate is small and the atoms can
perform many Bloch oscillations before leaving the band. Therefore large deviations
from the Landau–Zener prediction for the tunneling rate are to be expected. For a
larger acceleration the atom leaves the band quickly and the interference effects are
less pronounced. For those cases the LZ prediction is a good approximation for the
actual tunneling rate. These statements are in agreement with the observed tunneling
rates [3, 27].

8.5.3 Non-exponential Decay

8.5.3.1 Theoretical Description

An exponential decay law is the universal hallmark of unstable systems and is
observed in all fields of science. This law is not, however, fully consistent with
quantum mechanics and deviations from exponential decay have been predicted for
short as well as long times [20, 43, 14]. In 1957 Khalfin showed that if H has a
spectrum bounded from below, the survival probability is not a pure exponential but
rather of the form

lim
t→∞ P(t) ≈ exp(−ctq ) q < 1, c > 0 . (8.40)

Later Winter examined the time evolution in a simple barrier-penetration prob-
lem [43]. He showed that the survival probability begins with a non-exponential,
oscillatory behavior. Only after this initial time does the system start to evolve
according to the usual exponential decay of an unstable system. Finally, at very long
times, it decays like an inverse power of the time. The initial non-exponential decay
behavior is related to the fact that the coupling between the decaying system and the
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reservoir is reversible for short enough times. Moreover, for these short times, the
decayed and undecayed states are not yet resolvable, even in principle.

A simple argument will illustrate this point. We assume that the system is initially
in the undecayed state |Ψ0〉 at t = 0, and that the state evolves under the action of
the Hamiltonian H ,

|Ψ (t)〉 = e−i Ht/�|Ψ0〉 = A(t)|Ψ0〉 + |Φ(t)〉 , (8.41)

where A(t) is the probability amplitude for remaining in the undecayed state and
the state |Φ(t)〉 denotes the decayed state with 〈Ψ0|Φ(t)〉 = 0. The probability of
survival P in the undecayed state is therefore P(t) = |A(t)|2. Acting with the time
evolution operator e−i H (t+t ′)/� on the state |Ψ0〉 yields

A(t + t ′) = A(t)A(t ′) + 〈Ψ0|e−i Ht ′/�|Φ(t)〉 . (8.42)

If it were not for the last term, the equation above would generate the characteristic
exponential decay law of an unstable system. However, the term under consideration
describes the possibility for the decayed state |Φ(t)〉 to re-form the initial state |Ψ0〉
under the time evolution operator for time t ′.

For very short times we can make a general prediction about the time evolution of
the survival probability P . Given that the mean energy of the decaying state is finite
and that H has a spectrum that is bounded from below, one can show following the
arguments of Fonda et al. [14] that

dP(t)

dt

∣
∣
∣
∣
t→0

= 0 . (8.43)

As outlined by Grotz and Klapdor [18] we can expand A(t) in a power series

A(t) = 1 − i
t

�
〈Ψ0|H |Ψ0〉 − t2

2�2
〈Ψ0|H 2|Ψ0〉 + O(t3) . (8.44)

Using this expansion results in an expression for the survival probability

P(t) = |A(t)|2 = 1 − t2

�2
〈Ψ0|(H − Ē)2|Ψ0〉 + O(t4) , (8.45)

where Ē = 〈Ψ0|H |Ψ0〉. This form indicates a population transfer beginning with a
flat slope and suggests an initial quadratic time dependence.

The results stated here are general properties independent of the details of the
interaction. However, the timescale over which the deviation from exponential
behavior is apparent depends on the particular timescales of the decaying system.
Greenland and Lane point out a number of timescales which are relevant [17]. The
first timescale τe is given by the time that it takes the decay products to leave the
bound state region. This time can be estimated as
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τe = �

E0
, (8.46)

where E0 is the energy released during the decay. It determines the amount of time
required to pass before the decayed and undecayed states can be resolved. The sec-
ond timescale τw is related to the bandwidthΔE of the continuum to which the state
is coupled

τw = �

ΔE
. (8.47)

The phases of all states in the continuum evolve at a rate corresponding to their
energy. Thus after the time τw the phases of these states have spread over such a
wide range as to prevent the reformation of the initial undecayed state. After this
dephasing time, the coupling is essentially irreversible.

Although these predictions are of general nature and applicable in every unstable
system, deviations from exponential decay have not been observed experimentally
in any other system than the one described here [42]. The primary reason is that
these characteristic timescales in most naturally occurring systems are extremely
short. For the decay of a spontaneous photon, the time τe it takes a photon to tra-
verse the bound state size is approximately an optical period, 10−15 s. For a nuclear
decay this timescale is orders of magnitude shorter, about 10−21 s. By contrast, the
dynamical timescale for an atom bound in an optical lattice is just the inverse band
gap energy, which in our experiments is on the order of several microseconds.

Niu and Raizen [34] performed a more detailed investigation of a two-band
model of our system. They find an initial non-exponential regime that starts with
a quadratic time dependence, then becomes a damped oscillation, and finally settles
into an exponential decay. The timescale for which the coherent oscillations damp
out and the exponential decay behavior sets in is identified as the crossover time tc
equal to

tc = Eg

a

1

2�kL
. (8.48)

For a typical value for the acceleration of a = 10, 000 m/s2 and a band gap of
Eg/h = 80 kHz, the crossover time calculates to tc = 2 μs.

8.5.3.2 Experimental Realization

The preparation of the initial state was done as described previously. After turning
on the interaction beams, a small acceleration of atrans = 2000 m/s2 was imposed to
separate those atoms projected into the lowest band from the rest of the distribution.
After reaching the velocity v0 = 35 vr, the acceleration was suddenly increased to
a value atunnel where appreciable tunneling out of the first band occurred. Unlike
in the band spectroscopy experiments no phase modulation was added to induce
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transitions between the bands. The large acceleration atunnel was maintained for a
period of time ttunnel, after which time the frequency chirping continued again at the
decreased rate corresponding to atrans. This separated in momentum space the atoms
that were still trapped in the lowest band from those in higher bands. After reaching
a final velocity of vfinal = 80 vr, the interaction beams were switched off suddenly.
A diagram of the velocity profile versus time is shown in Fig. 8.11(a).

Fig. 8.11 Part (a) shows a diagram of the acceleration sequence to study tunneling out of the
lowest band. Part (b) shows a typical integrated spatial distribution of atoms after ballistic expan-
sion. The large peak on the right is the part of the atomic cloud that was not trapped during the
initial acceleration. The center peak indicates the atoms that tunneled out of the potential during
the fast acceleration period. The leftmost peak corresponds to atoms that remained trapped during
the entire sequence. Figure from [12]; Copyright 2001 by the American Physical Society

In the detection phase we determined the number of atoms that were initially
trapped and what fraction remained in the first band after the tunneling sequence.
After an atom tunneled out of the potential during the sequence, it would maintain
the velocity that it had at the moment of tunneling. During the period of free bal-
listic expansion the difference in final velocity between trapped and tunneled atoms
led to their spatial separation (Fig. 8.11(b)). To observe the temporal evolution of
the fundamental band population, we repeated a sequence such as in Fig. 8.11(a)
for various tunneling durations ttunnel, holding the other parameters of the sequence
fixed.

Figure 8.12 shows the probability of survival in the accelerated potential as a
function of the duration of tunneling for various values of the tunneling acceleration
atunnel between 6000 and 20,000 m/s2. The value for the well depth for all curves
was V0/h = 92 kHz. Initially, the survival probability shows a flat region, owing
to the reversibility of the decay process for short times. At intermediate times the
decay shows a damped oscillation that for long times evolves into the characteris-
tic exponential decay law. By this time the coupling is essentially irreversible and
reformation of the undecayed state is prohibited. As a comparison we also show the
results of quantum mechanical simulations of the entire experimental sequence as
solid lines in the same graph. The tunneling rates depend strongly on the well depth
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Fig. 8.12 Probability of survival in the accelerated potential as a function of duration of the tun-
neling acceleration. Data points for different values of the large acceleration atunnel are shown. Each
point represents the average of five experimental runs, and the error bar denotes the error of the
mean. These data were recorded for a well depth of V0/h = 92 kHz and have been normalized to
unity at ttunnel = 0 to compare to the quantum mechanical simulations (shown in solid lines with
no adjustable parameters)

of the potential. Considering the uncertainty of 10% in the calibration of the power
in the interaction beams, the simulations match the observed data quite well.

8.5.4 Quantum Zeno and Anti-Zeno Effects

The universal phenomenon of non-exponential decay of unstable systems led Misra
and Sudarshan in 1977 to the prediction that frequent measurements during this
non-exponential period could inhibit decay entirely [33, 5, 41]. They named this
effect the quantum Zeno effect after the Greek philosopher, famed for his paradoxes
and puzzles. In his most famous paradox, Zeno considers an arrow flying through the
air. The time of flight can be subdivided into infinitesimally small intervals during
which the arrow moves only by infinitesimal amounts. Assuming the summation of
infinitesimal terms amounts to nothing led Zeno to believe that motion is impossi-
ble and is merely an illusion. The version put forth by Misra and Sudarshan is the
quantum mechanical version of the paradox.

To illustrate their main point, we consider the time evolution of a system in
the non-exponential regime, where the probability of remaining in the undecayed
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state is given by Eq. (8.45). We now subdivide the time t into n time intervals of
length τ and perform a measurement of the system after each interval. Each mea-
surement redefines a new initial condition and effectively resets the time evolution.
The system must therefore start the evolution again with the same non-exponential
decay features. The probability of remaining in the undecayed state at time t
(after n measurements at intervals τ ) is therefore P(t) = [P(τ )]n , which we can
approximate as

P(t) = exp

(

−n τ 2 〈H 2〉
�2

)

= e−γ t , (8.49)

where the decay rate γ is given by

γ = τ 〈H 2〉
�2

. (8.50)

The time evolution of the system that is repeatedly measured is therefore an expo-
nential decay. The remarkable fact is that the decay rate depends on the measure-
ment interval τ and tends to zero as τ goes to zero. Reviews of the quantum Zeno
effect can be found in modern textbooks of quantum mechanics [39]. Even though
measurement-induced suppression of the dynamics of a two-state driven system has
been observed [19, 24], no such effect was ever measured on an unstable system.

Whereas in the previous section we established the non-exponential time depen-
dence, the focus of this section is the effect of measurements on the system decay
rate. The quantity to be measured was the number of atoms remaining trapped in
the potential during the tunneling segment. This measurement could be realized by
suddenly interrupting the tunneling duration by a period of reduced acceleration
ainterr, as indicated in Fig. 8.13(a). During this interruption tunneling was negligible
and the atoms were therefore transported to a higher velocity without being lost out
of the well. This separation in velocity space enabled us to distinguish the remaining
atoms from the ones having tunneled out up to the point of interruption, as can be
seen in Fig. 8.13(b). By switching the acceleration back to atunnel, the system was
then returned to its unstable state. The measurement of the number of atoms that
remained trapped defined a new initial state with the remaining number of atoms as
the initial condition. The requirements for this interruption section were very similar
to those during the transport section, namely the largest possible acceleration while
maintaining negligible losses for atoms in the first band. Hence ainterr was chosen to
be the same as atrans.

Figure 8.14 shows the dramatic effect of frequent measurements on the decay
behavior. The hollow squares indicate the decay curve without interruption. The
solid circles in Fig. 8.14 depict the measurement of the survival probability in which
after each tunneling segment of 1 μs an interruption of 50 μs duration was inserted.
Only the short tunneling segments contribute to the total tunneling time. The sur-
vival probability clearly shows a much slower decay than the corresponding system
measured without interruption. Care was taken to include the limited time response
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Fig. 8.13 Part (a) shows a diagram of the interrupted acceleration sequence. The total tunneling
time is the sum of all the tunneling segments. Part (b) shows a typical integrated spatial distribution
of atoms after ballistic expansion. The peaks can be identified as in Fig. 8.11. However, the area
containing the tunneled fraction of the atoms is now composed of two peaks. Atoms that left the
well during the first tunneling segment are offset in velocity from the ones having left during the
second period of tunneling. The amount of separation is equal to the velocity increase of the well
during the interruption. Figure from [12]; Copyright 2001 by the American Physical Society
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Fig. 8.14 Probability of survival in the accelerated potential as a function of duration of the tun-
neling acceleration. The hollow squares show the non-interrupted sequence, the solid circles show
the sequence with interruptions of 50 μs duration every 1 μs. The error bars denote the error of
the mean. The data have been normalized to unity at ttunnel = 0 in order to compare to the quantum
mechanical simulations (solid lines; no adjustable parameters). For these data the parameters were
atunnel = 15, 000 m/s2, ainterr = 2000 m/s2, tinterr = 50 μs, and V0/h = 91 kHz. Figure from [12];
Copyright 2001 by the American Physical Society
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of the experimental setup into the analysis of the data. Also indicated as solid
lines are quantum mechanical simulations of the decay by numerically integrating
Schrödinger’s equation for the experimental sequence and determining the survival
probability numerically. The simulations contained no adjustable parameters and
are in good agreement with the experimental data. We attribute the seemingly larger
decay rate for the Zeno experiment as compared to the simulation to the under-
estimate of the actual tunneling time.

Recently it was predicted that an enhancement of decay can be observed for
slightly longer time delays between successive measurements during the non-
exponential region. In contrast to the suppressed decay for the Zeno effect this
prediction was named the anti-Zeno effect [21, 22, 10]. The shape of the unin-
terrupted decay curve in Fig. 8.14 makes this suggestion fairly obvious. After an
initial period of slow decay the curve shows a steep drop as part of an oscillatory
feature, which for longer time damps away to show the well-known exponential
decay. If the system was interrupted right after the steep drop, one would expect
an overall decay that is faster than the uninterrupted decay [22]. The solid circles
in Fig. 8.15 show such a decay sequence, where after every 5 μs of tunneling the
decay was interrupted by a slow acceleration segment. As in the Zeno case, these
interruption segments force the system to repeat the initial non-exponential decay
behavior after every measurement. Here, however, the tunneling segments between
the measurements are chosen longer in order to include the periods exhibiting fast
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Fig. 8.15 Survival probability as a function of duration of the tunneling acceleration. The hollow
squares show the non-interrupted sequence, the solid circles show the sequence with interruptions
of 40 μs duration every 5 μs. The error bars denote the error of the mean. The experimental
data points have been connected by solid lines for clarity. For these data the parameters were
atunnel = 15, 000 m/s2, ainterr = 2800 m/s2, tinterr = 40 μs, and V0/h = 116 kHz. Figure from [12];
Copyright 2001 by the American Physical Society
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decay. The overall decay is much faster than for the uninterrupted case, indicated by
the hollow squares in the same figure.

The key to observing the Zeno and anti-Zeno effects is the ability to measure
the state of the system in order to repeatedly redefine a new initial state. In our
case the measurement is done by separating in momentum space the atoms still
left in the unstable state from the ones that decayed into the reservoir. In order to
distinguish the two classes of atoms, they must have a separation of at least the
size of the momentum distribution of the unstable state, which in our case is the
width of the first Brillouin zone of Δp = 2�kL. The time it takes for an atom
to be accelerated in velocity by this amount is the Bloch period τB = 2vr/ainterr,
assuming an acceleration of ainterr. An interruption shorter than this time will not
resolve the tunneled atoms from those still trapped in the potential and therefore
results in an incomplete measurement of the atom number. To investigate the effect
of the interruption duration, we repeated a sequence to measure the anti-Zeno
effect for varying interruption durations while holding all other parameters constant.
Figure 8.16 displays the results of this measurement, interrupting the decay every
5 μs with an acceleration of ainterr of 2000 m/s2. The hollow squares show the unin-
terrupted decay sequence as a reference. For an interruption duration smaller than
the Bloch period of 30 μs, the measurement of the atom number is incomplete and
has little or no effect. For a duration longer than the Bloch period, the effect saturates
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Fig. 8.16 Survival probability as a function of duration of the tunneling acceleration. The hol-
low squares show the non-interrupted sequence, other symbols indicate the sequence with a finite
interruption duration after every 5 μs of tunneling. The error bars denote the error of the mean. A
further increase of the interruption duration than as indicated does not result in a further change of
the decay behavior. The experimental data points have been connected by solid lines for clarity. For
these data the parameters were atunnel = 15, 000 m/s2, ainterr = 2000 m/s2, and V0/h = 91 kHz,
leading to a Bloch period of τB = 30 μs. Figure from [12]; Copyright 2001 by the American
Physical Society
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and results in a complete restart of the decay behavior after every interruption. Even
though this method of interruption is not an instantaneous measurement of the state
of the unstable system, we can still accomplish the task of redefining the initial state
by first switching the system from an unstable to a stable one, then in a finite time
perform the measurement, and finally switching the system back to being unstable
again.

8.6 Conclusions

In conclusion, we have completed a detailed study of the onset of irreversibility in
an unstable quantum system and its control by repeated interrogation. We end this
chapter by making some comments about possible future directions. The develop-
ment of new tools to control many-body systems is a promising direction to follow.
In particular, our group has been working toward the experimental realization of
few-body number states [8]. These states of a definite number of atoms in the ground
state of a well are an ideal starting point for the study of few-body tunneling and
the onset of irreversibility. Future work in our group will focus on this problem.
Finally, it is a great pleasure to acknowledge and thank the many people who have
collaborated with us on this work over the years. The experiments were carried out
together with Kirk Madison, Steven Wilkinson, Cyrus Bharucha, Patrick Morrow,
and Braulio Gutiérrez-Medina. Theoretical work was conducted in parallel to our
experiments together with Qian Niu, Roberto Diener, and Bala Sundaram. This work
was supported by the R. A. Welch Foundation, the National Science Foundation, and
the Sid. W. Richardson Foundation.
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Chapter 9
Quantum Post-exponential Decay

Joan Martorell, J. Gonzalo Muga, and Donald W.L. Sprung

After a long time the rain let up, but the clouds stayed, and the
lightning kept whimpering, and by and by a flash showed us a
black thing ahead, floating, and we made for it.

Mark Twain

9.1 Introduction

Exponential decay is a very general phenomenon in the natural sciences. It occurs
when a quantity N decreases at a rate proportional to its value,

dN

dt
= −1

τ
N , N = N0e−t/τ . (9.1)

It occurs in practically every field of physics, including unstable or excited ele-
mentary particles, nuclei, atoms, molecules, or quantum dots. Typical examples of
microscopic decay processes are nuclear alpha-decay, atomic autoionization, spon-
taneous emission of a photon from an excited state, or escape from a potential trap.
In the quantum world, however, the exponential law is not an obvious consequence
of the basic dynamical law, which is Markovian (i.e., memoryless) and applies to
amplitudes, not probabilities. Accordingly, the derivation of exponential decay from
first principles has been the subject of much scrutiny and debate.

Quantum decay was first examined in nuclear physics: the decay of natural
radioactive nuclei has been studied for more than a century [116]. Gamow [41]
developed the first quantal theory for alpha-decay. He explained, at least quali-
tatively, the vast range of alpha-decay lifetimes as a tunneling phenomenon by
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imposing “outgoing wave boundary conditions” on the wave function at the outer
edge of the confining barrier. Such an outgoing condition can be satisfied, in general,
only for a discrete set of complex energies. The corresponding “Gamow states” are
usually associated with “resonances,” a concept that almost always arises in dis-
cussions of decay, especially exponential decay. Gamow states decay exponentially
in time, with twice the imaginary part of the complex energy, divided by �, giving
the inverse lifetime. However, they are unphysical states because the wave function
grows exponentially outside the interaction region in coordinate space. They can,
however, be used successfully for performing “resonant state” or “pole” expansions
of the physical wave function [45]. A simple explanation of why the Gamow state
provides the correct decay rate, using a more conventional expansion in (real energy)
stationary eigenstates, is given in [10].

Weisskopf and Wigner, in another influential paper [139, 140], worked out a more
elaborate theory for spontaneous emission from an excited atom interacting with the
quantized radiation field, as introduced by Dirac [23]. This approximate theory also
predicts exponential decay and sets a standard paradigm for treating general decay
problems in which an initial discrete bound state (or more generally a set of them) is
coupled to (“embedded into”) a perturbing continuum of states that destabilizes the
discrete state, making it a decaying resonance. The relation between Fermi’s golden
rule and exponential decay was explored at length by Hillery [57] for radiative decay
of a discrete atomic state, either in free space or in a cavity. The 2p →1s decay in
hydrogen was examined in detail and estimates were made for the deviations at long
and short times.

In summary, exponential decay is ubiquitous and a standard topic in quantum
mechanics books where it is derived in first-order time-dependent perturbation the-
ory using Fermi’s golden rule. What is less well known, at least at textbook level, is
that at both short and long times, quantum mechanics predicts deviations from the
exponential law. The Zeno effect, a subject which has attracted much attention in
recent years [11] and is treated in both the previous and present volumes of Time in
Quantum Mechanics, is associated with the short time deviation. The deviations at
long times are less often discussed and constitute the central topic of this chapter.

Figure 9.1 shows the survival probability for a particle initially confined inside a
very simple spherically symmetric potential (s-wave decay). (Details of the potential
will be given in Sect. 9.3.3.) Up to t � 50 the decrease is exponential. After a
transition near t � 100, beyond t � 150 the decay is again smooth and clearly
follows a different law. This is the post-exponential decay at issue. We will discuss
how it is determined by the corresponding Hamiltonian.

From another perspective, Figs. 9.2 and 9.3 show the absolute value of the
radial s-wave function determined from a numerical solution of the time-dependent
Schrödinger equation. The leftmost part of the x-axis corresponds to the inner well
(see inset of Fig. 9.1). Figure 9.2 covers the range of times corresponding to expo-
nential decay. As time progresses the amplitude in the well decreases exponentially
and an outgoing wave packet expands beyond the barrier. The line for the earliest
time shows the emission of several humps corresponding to higher energy wave
packets. These are evidence that the chosen initial state is a superposition of several
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Fig. 9.1 Survival probability, P(t), for an s-wave-confining potential consisting of a square well,
a surrounding square barrier, and an outer inverse square potential. Units such that � = 2m = 1.
Continuous line: exact solution. Dashed line: prediction for asymptotic decay, Eq. (9.47). Inset:
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Fig. 9.2 Snapshots of |u(r, t)| , 0 < r < 72, for times corresponding to exponential decay. From
top to bottom at r = 30, the continuous lines correspond to times t = 15, 30, 45, 60, and 75

quasibound states. Figure 9.3 corresponds to post-exponential times and shows a
much more regular trend: the wave function moves steadily outward and the part
inside the inner well is a smooth continuation inward of the main outer part. It is
this residual interior amplitude that shows the power law decrease.

From a theoretical viewpoint, this is an interesting regime, where the classical
prediction of Eq. (9.1) differs from the quantal prediction. Quantum mechanics
allows a very general argument leading to elegant results. On the experimental side,
access to the post-exponential regime has proven to be difficult. There have been
many attempts to provide convincing experimental evidence of post-exponential
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decay, with scant success [103, 101, 48, 104, 96]. Consequently, various ideas have
been put forth to explain the lack of success. It has been argued that repetitive
measurements on the same system, and the ensuing repeated reduction of the wave
packet, or simply the interaction with the environment would lead to persistence of
the exponential regime to times well beyond those expected in an isolated system
[38, 71, 112]. A recent measurement of post-exponential decay in organic molecules
in solution [121] has thus come as a surprise, triggering renewed interest in the
subject.

Aside from the challenge of understanding and extending these experimental
results, the motives for studying post-exponential decay are manifold. Winter, for
example, argued that hidden variable theories could produce observable effects in
samples that have decayed for many lifetimes [142]. More recently Krauss and Dent
have suggested that late-time behavior of unstable systems may have important
cosmological implications [69]. Decay at long times is quite sensitive to delicate
measurement or environmental effects, becoming a testing ground for theories of
these processes. At a fundamental level, the detailed form of long time deviations
may help to distinguish between standard, Hermitian quantum mechanics [26], and
modifications proposed to incorporate a microscopic arrow of time [98, 97]. From a
practical point of view, Norman pointed out that post-exponential decay could set a
limit to the validity of radioactive dating schemes [104]. In a recent paper we have
also argued that the deviation could be a diagnostic tool for characteristics of certain
cold atom traps [80]. Indeed, due to technological advances in lasers, semiconduc-
tors, nanoscience, and cold atoms, microscopic interactions are now relatively easy
to manipulate, making decay controllable and post-exponential decay more acces-
sible to experimental scrutiny and/or applications. For example, under appropriate
conditions it could become the dominant regime and be used to implement an anti-
Zeno effect, speeding up decay [73].
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Finally, let us also mention that recent experiments on propagation of electric
fields in periodic waveguide arrays provide a classical analog of a simple quantum
system with exponential decay [74, 19]. These experiments may allow one to reach
the post-exponential region in a particularly simple case, as we will discuss below.

9.1.1 What We Shall Not Discuss

This review focuses, as emphasized in the title chosen for the chapter, on sys-
tems whose decay is exponential over several lifetimes, i.e., systems where an iso-
lated resonance is dominant, or whose decay is characteristic of a post-exponential
regime, as for resonances very close to threshold [63, 42]. There are many phenom-
ena where decay is not at all exponential: A trivial example is the survival prob-
ability of a freely moving quantum particle represented, say, by a Gaussian wave
function. Overlapping resonances in nuclear physics can also make the decay quite
complex [24], even for two degenerate discrete levels [115]. The level structure of
polyatomic molecules leads to complicated coherence effects of interaction between
levels and regular or irregular quantum beats [82]. Nonexponential decay signals
may also result from the incoherent addition of purely exponential contributions
from different members of the ensemble [27, 134, 102] or from temporal fluctua-
tions of the environment on a timescale larger than the lifetime. Power law decay in
the photoluminescence of conjugated polymers has also been reported but its mech-
anism involves incoherent processes [100, 16]. Another interesting phenomenon
is the suppression of decay of dressed bound states, in or out of the continuum,
formed by the interaction of the original discrete state(s) with the continuum states
[127, 128, 78]. For other examples of nonexponential decay see [119, 126, 31].
Interesting as they are, these cases and systems are beyond the scope of this review,
although we may briefly comment on some of them.

9.1.2 Previous Reviews

A number of monographs and review articles on the decay process in quantum
mechanics, including post-exponential decay, exist. Among the textbooks, Sakurai
[124] gives an excellent summary of the basic theory. The most frequently cited
review is that of Fonda et al. [38]. It includes a section on the interpretation of
repetitive experimental measurements. The monograph of Goldberger and Watson
[47] uses the resolvent method to relate the asymptotic decay law to the threshold
behavior of the energy density. Cohen-Tannoudji et al. [12] considered decay in the
context of an initial discrete state coupled to a continuum of final states. In the same
context Nakazato et al. [93] and Facchi et al. [32, 33] include a detailed discussion
of Laplace transforms to extract asymptotic contributions to the survival probabil-
ity. See also Longhi [76] for a recent extension to the more complex problem of
coupling to a cavity with intrinsic gains and losses.
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In this chapter we avoid unnecessary repetition of thoroughly reviewed material,
although some well-known topics will be also briefly outlined for completeness.
These include the Paley–Wiener theorem, see below, and a brief reminder of basic
results of the discrete–continuum model in Sect. 9.2. We shall rather concentrate on
some recent results and potential scattering. Decay of a single particle from a trap
will be the main physical system under discussion in Sects. 9.2 (devoted to sim-
ple models) and 9.3 (on explicit decay laws depending on the long-range potential
tail). Section 9.4 reviews different physical interpretations that have been given to
post-exponential phenomena, and Sect. 9.5 the difficult route toward experimental
observation. In the remainder of this section we introduce the basic and seminal
work by Khalfin, with only a brief account of what preceded him.

9.1.3 Early Work and Paley–Wiener Theorem

Following the theories of Gamow, and Weisskopf and Wigner, Hellund [56] ana-
lyzed the decay of resonance radiation and showed that decay could not be exactly
exponential. He also noted that it should be slower at long times. Later on, Höhler,
going beyond the simplifications of the Weisskopf–Wigner model, obtained a power
law for long times [58]; see also [114] for an early study of nonexponential alpha-
decay.

Khalfin [65] discovered a very general result: the long-time decay for Hamil-
tonians with spectra bounded from below is slower than exponential. Here is the
argument: Consider a system described by a time-independent Hamiltonian, H ,
initially in a normalized nonstationary state |Ψ0〉. The survival amplitude of that
state is defined to be the overlap of the initial state with the state at time t and is the
expectation value of the time evolution operator

A(t) = 〈Ψ0| exp(−iHt/�)|Ψ0〉 . (9.2)

The survival probability, sometimes called the “nondecay probability” [38], is1

1 The survival probability is sometimes criticized as a measure of decay. For example, in a simple
half-scattering problem with a particle located initially in a trapping potential, it may be difficult to
measure. Some decay analyses therefore discuss other quantities, such as the nonescape probability
from a region of space [43, 92], the probability density at chosen points of space [89, 88, 133], the
flux [94, 95, 141], the arrival time [2]. For initially localized wave packets, there is no major
discrepancy between survival probability and the nonescape probability. A claim to the contrary
for long-time decay in [43] was criticized [89, 9, 136, 135] and confirmed later to be the result
of a nonconverged computation [45]. Examination of densities, fluxes, or arrival time distributions
may be interesting since a new variable is introduced but at the price of losing the simplicity and
uniqueness of the survival probability.

A property of the survival amplitude not necessarily shared by other decay measures is its
“stationarity.” To formulate it we require a more precise notation: Let P(t, t0) = |〈ψ(t0)|ψ(t)〉|2
be the survival probability at time t of the state ψ(t0). It then follows from the hermiticity of H
that P(t, t0) = P(t + t ′, t0 + t ′), in other words, for a given wave packet the survival amplitude
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P(t) = |A(t)|2 . (9.3)

The stationary states, H |ΦE,λ〉 = E |ΦE,λ〉 (where λ denotes any other quantum
numbers comprising a complete set of commuting observables), determine a basis.
We assume that the Hamiltonian has only a continuous spectrum or at least that the
discrete states of H are orthogonal to Ψ0. Further, we assume that the spectrum is
bounded from below: Em < E <∞. The completeness relation is then

∑

λ

∫ ∞

Em

dE |ΦE,λ〉〈ΦE,λ| = 1 , (9.4)

which gives

A(t) =
∫ ∞

Em

dEω̃(E) e−iEt/� , where

ω̃(E) =
∑

λ

|〈ΦE,λ|Ψ0〉|2 (9.5)

is called the “energy density” of the quasi-stationary state. It is then natural to define

ω(E) =
{

ω̃(E) , E ≥ Em

0 , E < Em
(9.6)

and express the survival amplitude as the Fourier transform of the energy density
[70],

A(t) =
∫ ∞

−∞
dEω(E)e−iEt/� . (9.7)

Khalfin showed that when ω(E) is so bounded from below, the Paley–Wiener theo-
rem [111] requires that

∫ ∞

−∞
dt

ln |A(t)|
1 + t2

<∞ . (9.8)

For this integral to converge as t → ∞, the numerator must grow no faster than
∝ t2−a with a > 1. This clearly rules out exponential decay at sufficiently long
times. Assuming such a bound,

P(t) ≥ Ae−β|t |
q
, (9.9)

P(t2, t1) is a function only of the time difference t2 − t1. This may seem strange at first, but note
that usually only the case in which the initial wave packet is localized in a region of space is of
physical significance in a decay process.
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with A > 0, β > 0, and q < 1. An alternative proof, avoiding use of the Paley–
Wiener theorem, has been given by Hack [54].

9.1.3.1 Decay at Post-exponential Times with Energy Integrals

Given an explicit expression for the energy density, to find analytic approximations
for the post-exponential contribution to P(t), one may replace the integration path in
Eq. (9.5) by a contour integral in the complex plane [38, 67, 109]. For convenience,
we place the origin of energy at threshold, Em = 0, and choose a closed contour
consisting of the positive real energy axis, a quarter circle of infinite radius running
clockwise from the positive real axis to the negative imaginary axis, and continuing
to the origin. Under very general conditions, integration along the circular arc gives
a vanishing contribution. Then,

A(t) =
∫ ∞

0
dE ω(E) e−iEt/�

=
∮

dE ω(E) e−iEt/� +
∫ −i∞

0
dE ω(E) e−iEt/�

≡ Ap(t) + Av(t) , (9.10)

where we have analytically continued ω(E) into the lower half of the complex plane.
Depending on the analytic structure of ω(E), this may or may not be a simple task.
The contour integral Ap(t) is 2π i times the sum of residues of poles in the fourth
quadrant. These poles correspond to exponentially decaying terms.

The integral along the imaginary axis, Av(t), gives the dominant contribution to
the decay at long times. We write the variable of integration as Ẽ = iE to obtain

Av(t) = i
∫ ∞

0
dẼ e−Ẽ t/� ω(−i Ẽ) . (9.11)

The exponential term becomes negligible after many lifetimes, say when t � τ =
�/Γ , with Γ the width of the lowest lying resonance in ω(E). At such times t ,
the exponential in Eq. (9.11) restricts the range of significant contributions to the
integral to values of Ẽ � Γ , which means to energies close to threshold.

A simple example is a pure Lorentzian energy density,

ωL (E) = Γ/(2π )

(E − ER)2 + Γ 2/4
. (9.12)

In Sect. 9.2.2 we show how this appears, under suitable approximations, for a dis-
crete state coupled to a continuum. (See also [38] pp. 604–606 for a similar but
more elaborate model.) This energy density has a pole at E = ER − iΓ/2, giving
the exponential decay contribution

Ap(t) = e−i ER t/� e−Γ t/2� . (9.13)
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In addition, when t → ∞,

Av(t) = i
Γ

2π

∫ ∞

0
dẼ

exp(−Ẽ t/�)

(−iẼ − ER)2 + Γ 2/4

� i
Γ

2π

�

E2
R + Γ 2/4

1

t
+O

(
1

t2

)

, (9.14)

where in the second line we have set Ẽ = 0 in the denominator to evaluate the
integral. This model therefore predicts that asymptotically, when the exponential
term in Eq. (9.13) becomes negligible, P(t) � |Av(t)|2 ∝ t−2.

Notice that due to the phase −ERt/� in Ap(t), in the range of times where the
two contributions are of similar magnitude, interference oscillations are expected to
occur. For a complete analysis of the decay for a more realistic truncated Lorentzian,
including an exact expression for A(t) and additional terms in the expansion of
Av(t), see [130].

Suppose now that ER decreases toward threshold at Em = 0. As the pole moves
toward the negative imaginary axis it increases the value of Av(t), eventually making
it comparable to Ap(t). In the limit ER = 0 obviously the above decomposition is
invalid, implying that the decay ceases to be exponential. This is known as small
Q-value decay. For a more complete theoretical analysis of this situation and some
particular model examples, see [63]. According to that analysis, small Q-value
decay becomes noticeable when Q ≡ ER − Em ≤ Γ/2.

The simplicity of the above model has made it popular in discussions of expo-
nential decay. Jakobovits et al. [62] have shown that the steepest descent method
applied directly to Eq. (9.5) also leads to exponential decay and shows that any
corrections to it should usually be small.

Although useful as an illustration, Eq. (9.12) is far from being a realistic model
for the energy density, in particular for the asymptotic law, since the Lorentzian
form is generally not valid near threshold.

9.2 Simple Models and Examples

To fully appreciate post-exponential decay it is useful to understand first why expo-
nential decay should be expected at all in a quantum system, even if only approxi-
mately, or over some limited time interval. The Gamow and Weisskopf–Wigner the-
ories provide a clue, but a fresh look at the survival amplitude, Eq. (9.2), could raise
doubts about the robustness of exponential decay, since a properly chosen initial
state Ψ (0) and energy density are amenable to an almost arbitrary decay law [46].
This puzzle is perhaps easier to understand in discrete–continuum decay models
[113] (see below for an elementary illustration), but it has also been discussed in the
context of scattering processes, e.g., in [47, 38]. If the initial preparation involves
localization, the initial wave function will overlap prominently with scattering func-
tions in certain regions of the energy spectrum, close to resonant poles, since they
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are more localized in the interaction region than ordinary, non-resonant waves. Con-
tributions from broad resonances will decay faster, whereas for a narrow resonance it
is the analytical structure of the pole rather than the complete state amplitude, which
dominates the behavior, leading in practice to an “effective” Lorentzian energy
density and through it to exponential decay.

9.2.1 Discrete State Embedded in a Continuum

Let us assume a simple Hamiltonian of the form

H = Eφ|φ〉〈φ| +
∫

dE E |E〉〈E | +
{∫

dE W (E) |φ〉〈E | + h.c.

}

. (9.15)

This is a typical nondegenerate single-channel Hamiltonian model which neglects
continuum–continuum interactions. Other versions are due to Fano [34], Anderson
[1], Lee [72], and Friedrichs [40] and have been successfully applied to study, for
example, autoionization, photon emission, or cavities coupled to waveguides. The
dynamics can be solved in several ways, using coupled differential equations for the
time-dependent amplitudes and Laplace transforms, or finding the eigenstates with
Feshbach’s (P, Q) projector formalism [35], which allows separation of the inner
(discrete) and outer (continuum) spaces and provides explicit expressions ready
for exact calculation or phenomenological approaches. For modern treatments with
emphasis on decay, see [24, 108]. Writing the eigenvector as [34, 24]

|ΦE 〉 = |φ〉〈φ|ΦE 〉 +
∫

dE ′ |E ′〉〈E ′|ΦE 〉 , (9.16)

the coefficients for the discrete state are determined to be, using Laplace transform
techniques or the projector P, Q formalism,

|〈φ|ΦE 〉|2 = |W (E)|2
[E − Eφ − F(E)]2 + π2|W (E)|4 , (9.17)

where

F(E) = P
∫

dE ′|W (E ′)|2/(E − E ′) . (9.18)

If W (E) → W is energy independent, which is the essence of the Weisskopf–
Wigner approximation, and if the range of integration is extended from −∞ to ∞,
then F(E) = 0 and |〈φ|ΦE 〉|2 becomes a Lorentzian,

|〈φ|ΦE 〉|2 = Γ/2π

(E − Eφ)2 + Γ 2/4
, (9.19)
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with Γ = 2π |W |2. Then, if the initial state is precisely φ, the energy density is
a Lorentzian (Breit–Wigner form) and as we have shown in Sect. 9.1, its survival
probability has an exponential component

P(t) = e−Γ t/� . (9.20)

For weak coupling of bound state to continuum, the resonance is long-lived and
its width is small, so that the constant-W approximation holds quite well. How-
ever, there is a fundamental physical limit to its validity, namely the existence of
the energy threshold. If the resonance energy is close to threshold, this effect will
be more noticeable, or even dominant, to the point of making the decay totally
nonexponential [63, 42].

9.2.2 Simple Models Set in the Momentum Plane

Many decay models and in particular potential scattering models are treated in the
complex momentum plane. The basic “mathematical” reason for exponential decay
is easily seen to be the presence of a complex pole in the fourth quadrant of the
momentum complex plane (second Riemann sheet of the energy plane), which,
through its exponentially decaying residue, dominates the dynamics for some time.
A simple analytical example of the deviation from exponentiality follows from the
integral expression for the survival amplitude,

A(t) = 〈Ψ0|e−iHt/�|Ψ0〉 = i

2π

∫

C
dq e−izt/� I (q) , (9.21)

where

I (q) = q

m
〈Ψ0| 1

z − H
|Ψ0〉 , (9.22)

z = q2/2m, and the contour C goes from −∞ to ∞ passing above all singularities
in the complex momentum plane q. One-dimensional motion of a particle of mass
m is assumed. Consider now a pole expansion of the form I (q) = ∑

ak/(q − qk)
[90, 45]. Since each term can be analyzed separately and combined linearly later,
we concentrate on a single pole, I (q) = ar/(q − qr ), with qr assumed to lie above
the diagonal of the fourth quadrant and below the real axis. The integral is easily
evaluated by deforming the contour to run diagonally across the second and fourth
quadrants and picking up a small circle surrounding the pole. This gives

A(t) = 1

2
arw(−ur ) = ar

{

exp(−u2
r ) − 1

2
sgn[Im(ur )]w[sgn[Im(ur )]ur ]

}

,

(9.23)
where
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ur = qr/ f, f = (1 − i)(m�/t)1/2 , (9.24)

and w(z) = exp(−z2)erfc(−iz).2 We have used the relation

w(−z) = 2e−z2 − w(z) . (9.25)

Equation (9.23) is particularly suitable for analyzing exponential decay, explicitly
given by the pole, and its deviation, given by the line integral along the diagonal,
evaluated as a w-function. The function w(z) has the asymptotic expansion

w(z) ∼ i√
π z

(

1 + 1

2z2
+ ...

)

, (9.26)

which, for long times, leads to a 1/t1/2 behavior.
However, an I (q) with a single pole would be incompatible with time-reversal

symmetry A(t) = A(−t)∗. The minimal model compatible with time-reversal must
include, in addition to the resonance at qr , the antiresonance pole at −q∗

r ,

I (q) = ar

q − qr
+ a∗

r

q + q∗
r

, (9.27)

with ar = 1 + iIm qr/Re qr [44]. The contour integral along the diagonal which
defines the u variable does not enclose this antiresonance pole, so it does not provide
an exponentially decaying term but an additional contribution (the w(ur )-function)
that is significant only at short and long times [44]. In particular, it cancels exactly
the asymptotic t−1/2 decay from the resonance pole. However, the second terms in
Eq. (9.26) do not cancel, resulting in a leading t−3/2 behavior for A(t).

So far this is a pure decay model rather than a Hamiltonian model; for an applica-
tion see, e.g., [92]; but Hamiltonian realizations are possible. The separable potential
considered in [90, 88, 89] leads to three core (state-independent) poles, two of them
forming a resonance/antiresonance pair. Even closer to the minimal decay model is
the delta-shell potential, discussed is the next section, when only the lowest reso-
nance is excited and higher resonances can be neglected. Then it is exactly described
by Eq. (9.27).

A general and useful result, independent of the assumed pole expansion, follows
from noting that if the resolvent matrix element in Eq. (9.21) admits a series expan-
sion, c0 + c1q + c2q2 + ..., the leading term in the asymptotic formula, obtained by
term by term integration, is

A(t) ∼ 1

m
√

2π i
c1

(
m�

t

)3/2

, (9.28)

2 ∫∞
−∞

e−u2

u−z = iπ sgn[Im(z)]w{z sgn[Im(z)]}.
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c0 does not contribute by symmetry. For explicit examples of this, see [89], where
a similar analysis is performed for the propagator and probability density. Further
details are given in Sect. 9.4.2.

9.2.3 Exponential Decay as a Boundary Condition

Torrontegui et al. [133] have recently proposed a minimal, solvable 1D “source”
model based on imposing an exponentially decaying amplitude for all times at one
point in space (x = 0). This provides an economical approach to mimic analyti-
cally the wave function due to an exponentially decaying system with a long-lived
resonance, while avoiding a detailed description of the interaction region where the
decaying system is prepared. Deviations from exponential decay are observed in the
probability density at x > 0.

9.2.4 One-Dimensional Well-Barrier Model of Confining Potential

One of the simplest 1D models of a decaying particle with a full description of
the dynamics, including the preparation region, consists of a flat well surrounded
by equal square barriers: in units � = 2m = 1, we write V(x) = −V0 when −a
< x < a; V(x) = Vb when a < |x | < d and V(x) = 0 when |x | > d. The
initial state is chosen symmetric: Ψ0(x) = 1/

√
a cos(πx/(2a) Θ(a − |x |), and the

continuum wave functions are

Ψ (x ; E) =
⎧

⎨

⎩

N cos kI x , |x | < a
Abeκx + Bbe−κx , a < x < d

1√
2πk

cos[kx − δ(k)] , d < x
(9.29)

for x > 0, while Ψ (−x) = Ψ (x). Here k2 = E , kI =
√

k2 + V0, and κ =
√

Vb − k2. The normalization of the outer part is determined by the condition

∫ ∞

−∞
dx Ψ (x ; E) Ψ (x ; E ′) = δ(E − E ′), (9.30)

which leads to

N 2 = 1

2πk

[(

cosh2(κb) + κ2

k2
I

sinh2(κb)

)

cos2(kd − δ(k))

+ k2

κ2

(

sinh2(κb) + κ2

k2
I

cosh2(κb)

)

sin2(kd − δ(k))

+2
k

κ
sinh(κb) cosh(κb) sin(kd − δ(k)) cos(kd − δ(k))

(

1 + κ2

k2
I

)]

.

(9.31)
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In terms of these, the energy density is

ω(E) ≡ |〈Ψ0|Ψ (E)〉|2 =
∣
∣
∣
∣
N 1√

a

∫ a

−a
dx cos kI x cos

(

π
x

2a

)
∣
∣
∣
∣

2

= N 2

a

[
π/a cos kI a

k2
I − π2/(4a2)

]2

. (9.32)

The asymptotic behavior, when E → 0, is easily found to be ω(E) ∝ k−1. Applying
Eq. (9.11) one finds

Av(t) ∝ t−3/2 , P(t) ∝ t−3 . (9.33)

Figure 9.4 is drawn for the parameters: V0 = 0.5,Vb = 1.8, a = 1.0, and d = 1.4.
The exact survival probability is compared to some alternative asymptotic forms of
P(t) and shows that indeed the asymptotic time dependence is that of Eq. (9.33).
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Fig. 9.4 Survival probability, P(t) vs. time for the 1D-confining potential described in the text.
Continuous line: exact solution of the TDSE. The three dashed lines correspond to asymptotic
decays proportional to 1/t, 1/t2, and 1/t3. The proportionality constants have been adjusted to
reproduce the exact P(t = 800)

9.3 Three-Dimensional Models of a Particle Escaping
from a Confining Potential

In this section, we directly obtain the energy densities and asymptotic decay profile
for specific and increasingly realistic potential forms.
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9.3.1 The Delta-Shell Model

Winter [141] gave the first explicit example of the validity of Khalfin’s prediction.
He studied 1D motion on the half-line x ≥ 0, with a delta barrier at x = a and zero
potential elsewhere. He took the initial wave function to be the ground state of an
infinite well, Ψ0(x, t = 0) = √

2/a sin(πx/a)Θ(a − x), and showed that the mean
momentum and the current at long times deviated from those of pure exponential
decay, making a few analytical approximations. Recently the same problem has been
re-analyzed by Dicus et al. [22] and indeed they find that the survival probability
deviates from exponential at long times.

Winter’s model and its variants have been applied on many subsequent occa-
sions, for example, to study the effect of a distant detector (by adding an absorptive
potential) [18], anomalous decay from a flat initial state [31], resonant state expan-
sions [45], initial state reconstruction [92], or the relevance of the non-Hermitian
Hamiltonian concept (associated with a projector formalism for internal and external
regions of space) in potential scattering [125]. In [125] the model was extended to a
chain of delta functions to study overlapping resonances.

Del Campo et al. [17] have also generalized the model for a Tonks–Girardeau gas
of N bosons with strongly repulsive contact interactions as well as spinless fermions
with strongly attractive contact interactions, and studied the long-time asymptotics
and some new effects in the few-body decay of these systems.

9.3.2 Well-Behaved Short-Range Potentials

Spherically symmetric potentials V (r ) in three dimensions conserve angular momen-
tum. One can separate the wave function into partial waves or channels of given
angular momentum �. For each partial wave, the radial Schrödinger equation is

d2w�

dr2
− �(�+ 1)

r2
w� + [k2 − V(r )]w� = 0 , (9.34)

where V(r ) = (2m/�2)V (r ), k2 = (2m/�2)E , and w�(k, r )/r is the radial wave
function in channel �. From the low-energy behavior of w� one can extract the
threshold behavior of the energy density ω(E) and from there, the time dependence
of the post-exponential survival probability. For so-called well-behaved potentials
this is a standard exercise in potential scattering theory [131]. These potentials
decrease as 1/r3 or faster when r → ∞ and are less singular than 1/r3/2 when
r → 0+. We will now summarize the derivation given in [80]. We work with
solutions normalized as

∫ ∞

0
dr w�(k

′, r )∗w�(k, r ) = δ(k ′ − k) (9.35)

and obeying the boundary condition w�(k, 0) = 0. At large distance
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lim
r→∞w�(k, r ) = (2/π )1/2 sin(kr − π�/2 + δ�) , (9.36)

where δ� is the phase shift for partial wave �. The corresponding solutions normal-
ized to energy, rather than momentum, are

w�(E, r ) =
√

m

�2k
w�(k, r ) . (9.37)

In turn, these solutions are related to the regular solutions φ̂� (defined by their behav-
ior as Riccati–Bessel functions ĵ�, φ̂�(r ) ∼ ĵ�(kr ) when r → 0) by

w�(k, r ) =
√

2

π

φ̂�

| f�(k)| , (9.38)

where f�(k) is the Jost function defined as in [131]. From the definition, Eq. (9.5),
and particularizing to a single-channel �,

ω�(E) = |〈ui |w�(E)〉|2 = 2m

π�2

1

k

|〈ui |φ̂�〉|2
| f�(k)|2 , (9.39)

where ui (r ) is the radial wave function of the initial state, normalized to unity, and
it is assumed that ui (r ) = 0 beyond some fixed distance r = ra . Aside from the
exceptional case where there is a bound state at zero energy, the Jost function, f�(k),
tends to a nonvanishing constant f�(0) as k → 0, and the threshold dependence of
the energy density follows from that of φ̂�(k, r ). It can be shown that [131]

|φ̂�(k, r )| ≤ γ
�

( |kr |
1 + |kr |

)�+1

e|Imkr | as k → 0 , (9.40)

where γ
�

is some constant. This guarantees the desired analytic properties and allows
the use of Eq. (9.10). Since the limiting behavior at small k is that of the Ricatti–
Bessel functions, it is clear that when k → 0,

|〈ui |φ̂�〉|2 ∝ k2l+2 ⇒ ω(E) � ζ k2l+1 , (9.41)

where ζ is a constant.
To evaluate Av(t), we have to continue this function to small energies on the

negative imaginary axis, ω(−iẼ) � ζ (−i)l+1/2 Ẽ l+1/2.
Inserting this into Eq. (9.11) one immediately finds

Av(t) � −(−i)l+3/2 ζ Γ (l + 3/2) t−(l+3/2) . (9.42)

This is the well-known result that the asymptotic decay in a channel with angu-
lar momentum � in a well-behaved exterior potential follows a power law, P(t) ∝
1/t2l+3, with an integer exponent.
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9.3.3 The Long-Range Part of the Potential

The above short-range potentials include as a special case potentials that are strictly
constant beyond a certain distance. We are now going to discuss the opposite situ-
ation: how the decay law is modified when the outer tail of the potential decreases
more slowly than 1/r3 and find cases where the decay is no longer a power law. For
simplicity we will consider only s-waves (� = 0).

9.3.3.1 Inverse Square Potentials

The case of potentials with nonsingular inner part, and smoothly decreasing as 1/r2

when r → ∞, is particularly interesting for its simplicity and for the range of
behaviors exhibited [80]. Moreover, attractive inverse square potentials occur phys-
ically as effective radial potentials between a charged wire and a polarizable neutral
atom [20], the strength factor being proportional to the square of the linear charge
density of the wire and thus controllable [20, 21, 55]. Combined with a repulsive
centrifugal term, an arbitrary α/r2 potential can be implemented. It is also possible
to modify the inner region and implement a potential minimum by a time-varying
sinusoidal voltage in the high frequency limit [55] or by replacing the wire by a
charged optical fiber with blue detuned light propagating along the fiber with the
cladding removed [21]. Decay experiments with cold atoms showing exponential
laws have been performed [20], and the ability to modify the potential parameters
makes the observation and study of the long-time power law in these systems a
realistic prospect.3

For s-waves, when E → 0, one can prove that

w(E, r ) �
√

2mk

π�2

1

| f (k)| φ0(r ) , (9.43)

where for brevity we have omitted the subindex � = 0. We denote by φ0(r ) the zero-
energy solution of the Schrödinger equation that satisfies the boundary conditions:
φ(r = 0) = 0, (∂φ(r )/∂r )r=0 = 1. It follows that near threshold

〈w(E)|ui 〉 ∝
√

k

| f (k)| , ω(E) ∝ k

| f (k)|2 . (9.44)

Earlier we used the property that for short-range potentials f (0) �= 0, giving ω(E) ∝
k when � = 0. For a potential which behaves as 1/r2 as r → ∞, this is no longer
true, and several cases must be considered: We write the asymptotic (r → ∞) form
of the potential as

3 Dipole (r−2) potentials are also the effective interaction between an electron and an excited
hydrogen atom [107] or a polar molecule such as HCl [25, 30]. Control of the interactions in
this case is, however, much reduced.
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V(r ) � α

r2
. (9.45)

Referring only to the tail and implying nothing about the inner part, we will call
potentials with α > 0 (resp. α < 0) repulsive (attractive). In addition we will distin-
guish between weakly attractive, −1/4 < α < 0, and strongly attractive potentials,
α < −1/4.

It is convenient to introduce β via β(β+1) = α. Then weakly attractive potentials
correspond to −1/2 < β < 0 and repulsive potentials to β > 0. In both cases, the
solutions of the Schrödinger equation at large r can be written as linear combina-
tions of the Ricatti–Bessel functions ĵβ(kr ) and n̂β(kr ), and the order of the related
cylinder functions ν = β + 1/2 remains positive. Using the analytic properties of
the Bessel functions as kr → 0, to lowest order in k,

| f (k)| � D k−β ; ω(E) � ζ k2β+1 , (9.46)

where ζ and D are constants. The formal similarity to Eq. (9.41) is evident and
corresponds to the analogy between the form of V(r ) in Eq. (9.45) written in terms
of β: V(r ) = β(β + 1)/r2 and the centrifugal term in Eq. (9.34). It follows that

Av(t) � −(−i)β+3/2 ζ Γ (β + 3/2) t−(β+3/2) . (9.47)

It should be emphasized that here β can take any real value greater than −1/2.
The previously considered well-behaved potentials always lead to power laws with
integer exponents 2�+3 for the asymptotic survival probability. In contrast to them,
for repulsive or weakly attractive inverse square tail potentials the asymptotic decay
law is still a power law but with an exponent that can be arbitrarily adjusted by
varying the strength β.

To illustrate this result, we used a very simple model of confining potential
(shown as an inset of Fig. 9.1):

V(r ) =
⎧

⎨

⎩

−V0 , 0 < r ≤ ra

Vb , ra < r ≤ rd
α
r2 , rd < r

. (9.48)

Taking units where � = 2m = 1, the parameters of the specific example are
as follows: V0 = 0.5, ra = 3.0,Vb = 1.8, rd = 3.4, and α = 0.39 (β =
0.3). The radial wave function for the initial state is again chosen as ui (r ) =√

2/ra sin(πr/ra)Θ(ra − r ). In terms of these one can work out an explicit expres-
sion for the constant ζ appearing in Eq. (9.47). Figure 9.1 compares the exact sur-
vival probability to the excellent prediction given by Eq. (9.47), for sufficiently long
times.
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9.3.3.2 Post-exponential but Not Yet Asymptotic

In all the above discussion we have assumed that there was no intermediate range
of times for which the decay was no longer exponential or mixed, and yet it was
not fully asymptotic. In fact, for attractive potentials this range exists and can be
misleading: Explicit calculations show a deviation from the exponential decay law
that can be well fitted over a sizeable range of times with a power law, but neither
the exponent nor the absolute value is well predicted by the above expressions. A
more careful examination of the k → 0 behavior of the Jost function shows that
at least two more terms are needed in the truncated expansion and that it has to be
rewritten as

| f (k)|2 � k(λ−k−2ν + λ0 + λ+k2ν) , (9.49)

with ν = β + 1/2 as defined earlier and the λ’s are constants. (Note that when
β → −1/2, ν → 0, and k2ν � 1.) Further details may be found in [80].

9.3.3.3 Strongly Attractive Outer Potentials

When α < 1/4, then ν, the order of the cylinder functions, becomes imaginary,
ν → iν ′ = i

√
1/4 − α, and the asymptotic form of the Jost function behaves very

differently [107, 25, 80]:

| f (k)|2
k

� N
[

sinh2(ν ′π/2) + cos2(ν ′ ln k + ψ)
]

. (9.50)

The expression for ψ is given in [80]. Obviously, from this expression one cannot
derive any simple form of power law decay for the asymptotic survival probability.
Still, using the method of steepest descents, one can write an approximate form for
Av(t) and argue that the decay must be close to 1/t , as found in explicit numerical
calculations.

9.3.4 Potentials with a α/r p Asymptotic Decrease, 2 < p < 3

For these potentials, the threshold dependence of the energy density is still given
by Eq. (9.44), so that the small k behavior is again determined by that of the Jost
function. Klaus [66] has given the required expressions for the Jost function. (He
wrote the potential at large r → ∞ as V(r ) � q0/r2+ε, so his q0 is our α and 2 + ε
is our p.) He discussed the case 0 < ε ≤ 1 and considered two options: either (i)
f (0) �= 0 or (ii) f (0) = 0. Since the second case is exceptional, corresponding to a
bound state at zero energy, we will discuss only case (i), where the Jost function is
nonvanishing at zero energy,
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f (k) = f (0)
(

1 + a0 e−iπε/2 kε
)+O(kε) ,

a0 ≡ − q0 2ε

ε(ε + 1)
Γ (1 − ε) . (9.51)

Inserting this into Eq. (9.44) and keeping only terms up to order kε, we have

ω(E) � Λ k

| f (0)|2 (1 − λkε) ,

λ ≡ 2a0 cos(πε/2) , (9.52)

where Λ is a constant. We can now determine the corresponding Av(t):

Av(t) =
∫ −i∞

0
dE ω(E)e−iEt/�

= i
∫ ∞

0
dx e−xt Λ

e−iπ/4

| f (0)|2 x1/2
(

1 − λe−iπε/4xε/2
)

= iΛe−iπ/4

| f (0)|2
(∫ ∞

0
dx e−xt x1/2 − λe−iπε/4

∫ ∞

0
dx e−xt x (1+ε)/2

)

= iΛe−iπ/4

| f (0)|2
(

Γ (3/2)t−3/2 − λe−iπε/4Γ ((3 + ε)/2)t−3/2−ε/2
)

. (9.53)

In the above we wrote E = −ix and therefore k = e−iπ/4√x . A point worth remark-
ing is that | f (0)| plays the role of a normalization factor, so that if we are primarily
interested in the “slope” of the post-exponential decay, we can ignore | f (0)|, and it
is the values of ε and q0 that fix the slope. When t is very large, the second term is
negligible, and the decay again follows a simple power law with P(t) ∝ 1/t3. At
intermediate times, the second term is sizeable and, depending on the value of ε, the
effective power law will deviate significantly from inverse cubic. (Note that when
ε→ 0, the truncated expansion in Eq. (9.52) is no longer adequate.)

9.4 Physical Interpretation of Post-exponential Decay

The argument based on the Paley–Wiener theorem is sound and convincing but
perhaps not very illuminating from a physical perspective. We have also seen that
post-exponential decay can be mathematically attributed to the fact that the pole
contribution decreases until eventually it is comparable to or smaller than a line
integral, whose value arises predominantly from a saddle point at threshold, asso-
ciated with slow particles. This is surely more intuitive, yet not fully satisfying
for those seeking a more pictorial, rather than a complex plane, understanding of
the phenomenon. In this vein, Hellund proposed an electrostatic analog [56] which
relates quantum emission of radiation to the damped oscillation of a charge describ-
able in purely classical (stochastic) terms. He thus interpreted the deviation from
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exponential decay as a “straggling phenomenon” characteristic of diffusion pro-
cesses. Since quantum dynamics cannot be generally reduced to a classical diffusion
process it would be interesting to explore the general applicability of this concept in
other decay models. Other interpretational efforts are reviewed next.

9.4.1 Initial State Reconstruction

A powerful, general argument to explain nonexponential decay is the so-called “ini-
tial state reconstruction” [29, 37]. Following Feshbach, define projection operators
P = |Ψ0〉〈Ψ0| and Q = 1 − P . Then

A(t) = 〈Ψ0|e−i H (t−t ′)/�(P + Q)e−i Ht ′/�|Ψ0〉
= A(t − t ′)A(t ′) + 〈Ψ0|e−i H (t−t ′)/� Q e−i Ht ′/�|Ψ0〉 (9.54)

for any intermediate time t ′. When the second term can be neglected, the relation
reduces to A(t) = A(t − t ′)A(t ′), whose solution Ae(t) = exp(−γ t) is the exponen-
tial decay law. The neglected term corresponds to “initial state reconstruction”: at
intermediate times, t ′, the system is in states orthogonal to |Ψ0〉 (in the subspace Q)
but at time t it is found again in the “reconstructed” initial state. Since Ae decreases
exponentially, we expect that at long enough times, the second term in Eq. (9.54)
cannot in general be neglected and the exponential regime ceases to be valid. The
second term in Eq. (9.54) is sometimes called the “memory” term, as it implies
that quantum mechanics allows one to determine the absolute age of the decaying
system [48]. We introduce the following notation:

AP (t) ≡ A(t − t ′)A(t ′), AQ(t) ≡ A(t) − AP (t) . (9.55)

Note that these amplitudes depend on t and also on t ′, but we have not written this
second dependence explicitly. The survival probability can be decomposed as

P(t) = |AP (t)|2 + |AQ(t)|2 + 2Re
[

A∗
P (t)AQ(t)

]

(9.56)

and again each term depends on t ′. The third contribution will be called the inter-
ference or mixed term. Muga et al. [92] investigated the relative importance of the
three terms. If the interference is negligible, the reconstruction process is similar to
a consistent “classical” history in which we can assign probabilities to alternative
paths, and reconstructed states can indeed be located elsewhere at an intermediate
time. In simple terms, when the histories are consistent we may plainly say that
events have happened in one or the other order with certain probabilities, without
the need to invoke virtual paths and complex amplitudes. If, on the contrary, inter-
ference matters, the reconstruction is not a consistent history [50]. There remains of
course an arbitrariness in the definition of “negligible,” since the interference term is
often small compared to the others, but rarely 0. One should accept, in other words,
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that the “consistency” or “classicality” of the histories is not absolute and sharply
defined, but a contingent quality that may, nonetheless, be precisely quantified. The
calculations, done for Winter’s model and for the 2-pole model of Sect. 9.2, showed
a significant difference between short- and long-time deviations from exponential
decay as far as the role of state reconstruction is concerned. It becomes a consistent
history for long times but not for short times. Reconstruction, and long-time decay,
was hindered by placing an absorber outside the interaction region; more on this
later.

9.4.2 Is Free Motion the Origin of Post-exponential Decay?

Jacob and Sach [61], in their field theoretical analysis of a scalar particle coupled to
two pions, found nonexponential terms decaying like t−3/2 in the amplitude. Their
explanation was geometrical: If a particle is produced at point x having velocity
between v and dv, it will appear after a time t within a spherical shell of radius vt
centered on x , and the thickness of the shell will be tdv. The probability that it will
be found within a small element of volume within the shell is inversely proportional
to the volume 4π t3v2dv of the shell. Hence the probability amplitude is proportional
to t−3/2. It is a simple picture but unfortunately cannot be a universal explanation,
since, for example, the decay amplitude in 1D scattering is generically t−3/2, see,
for instance, the example given in Sect. 9.2.4, Eq. (9.33), and Fig. 9.4, whereas the
above argument translated to 1D would give only t−1/2. The post-exponential power
law behavior is sometimes interpreted as expressing the dominance of free motion
[11, 106], but explicit calculations of the long-time propagator for specific potential
scattering models in one dimension show that this is not the case in general. Muga,
Delgado, and Snider [89] expressed the propagator as an integral in the momentum
q-plane

〈x |e−iHt/�|x ′〉 = i

2π

∫

c
dq I (q) exp(−izt/�) , (9.57)

I (q) = q

m
〈x | 1

z − H
|x ′〉 , (9.58)

where z = q2/2m and the contour C runs from −∞ to ∞ passing above the singu-
larities of the resolvent. C is then deformed to pass along the diagonal of the second
and fourth quadrants so that the long-time dependence is explicitly extracted from
the behavior of I (q) at the origin. By decomposing the resolvent according to

1

z − H
= 1

z − H0
+ 1

z − H0
V

1

z − H
, (9.59)

(with H0 the kinetic energy) I (q) separates into “free” and “scattered” parts,
I = I f + Is , which can be calculated for specific models. For 1D motion on the full
line, the free motion part gives I f = −i/�, which implies 〈x |e−iH0t/�|x ′〉 ∼ t−1/2
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at long times, differing from the generic behavior of the propagator (except for the
exceptional case of a zero-energy pole of the resolvent matrix element). Indeed,
one obtains 〈x |e−iHt/�|x ′〉 ∼ t−3/2 when the interaction is taken into account. This
comes about because of a cancellation between free motion and scattered contri-
butions, i.e., Is(0) = −I f (0) �= 0, which can be checked in specific potentials.
For motion restricted to the half-line (or 3D partial waves) both terms vanish,
Is(0) = I f (0) = 0, so both free and scattering components provide generically
terms of the same order, t−3/2, to the propagator. (Exceptions due to zero-energy res-
onances or specially chosen states have been considered by Miyamoto [84, 86, 87].)

Free motion is also implicit in an argument by Newton which makes use of
classical mechanics [94, 95]. Provided that a point source emits particles with an
exponential decay law and with a certain velocity distribution, their current density
at a distant point would eventually depend on time according to an inverse power
law. This is a suggestive observation, although it does not explain why the source
itself, i.e., the survival probability, ceases to decay exponentially. In this respect
Winter [141] provides an interesting result from the analysis of its model for a strong
delta case. At the location of the delta, x = a, he defines an average local velocity
as the ratio between the flux and the density and finds, for the exponential regime,
the average velocity associated with the resonance, whereas in the post-exponential
regime he has a/t , again suggesting a simple classical-like and free motion type of
explanation.

9.5 Toward Experimental Observation

Already in 1911, Rutherford looked for experimental deviations from the exponen-
tial law in the alpha decay of 222Ra, but found no deviations up to 27 half-lives.
Similar searches have been made over the years, in experiments on the decay of
radioactive nuclei and unstable particles, never finding any clear evidence. Particu-
larly interesting for its accuracy is the experiment of Norman et al. [103] in 1988.
They observed the decay of a sample of 56Mn, with a half-life of 2 1

2 hours, for a
total of 45 half-lives. That corresponds to a reduction of the initial activity by an
impressive factor of � 3 × 1014; still no significant deviation from the exponential
law was found. (This paper includes a list of prior measurements and their corre-
sponding number of half-lives.) It was pointed out, however, by Avignone [3] that
an estimate by Winter implies that deviations from the exponential law would be
expected to occur only at times of the order of 200 lifetimes in that experiment.
Clearly, that is well beyond feasibility.

Already at that time, other possible reasons for the persistence of exponential
decay were summarized by Greenland [48]. As explained earlier, any process sup-
pressing initial state reconstruction will extend exponential decay to longer times
than in an isolated system. In the case of radioactive decay, any fragments leav-
ing the nucleus might interact with the surrounding electrons or with other atoms,
irreversibly suppressing the reconstruction of the undecayed state. For the 56Mn
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experiment it means that the decaying nucleus must not interact with its surround-
ings for the duration of the experiment.

Deviations from exponential decay have also been sought in particle physics.
For a review of experiments up to 1968, see Nikolaev [101]. More recent attempts
have similarly failed to detect any deviation. Tomono et al. [132] made precise
measurements of the muon lifetime. Their experiment stopped at 17 μs, around 8
muon lifetimes, whereas theoretical models predict deviations to occur only at times
beyond 200 μs. Novkovic et al. [105] have measured the decay of 198Au up to 25
lifetimes, also finding no evidence for nonexponential decay.

In atomic physics, Robiscoe [120] calculated the long-time correction for the
2P → 1S transition in a nonrelativistic two-level hydrogenic atom, finding that it
would dominate over the exponential term only after 125 lifetimes (Z = 1). His
calculated modifications to the Lorentzian line-shape were also minute. Assuming a
small Γ/ER ratio, and an atom–field coupling linear in energy (which hold generally
for all spontaneous electric dipole processes), he concluded that the deviations are
undetectably small for all of the most prominent spontaneous atomic transitions.
Nicolaides and Mercouris [99] arrived at a more optimistic conclusion in studying
decay of an autoionizing state close to threshold, the He−1s2p2 4P core-excited
shape resonance, with time-dependent methods. For that case the post-exponential
decay sets in after 12 lifetimes.

9.5.1 Effects of Measurement and/or Environment

9.5.1.1 Collapse Models

The effect of the environment on the decaying particle, understood in a broad sense
that could include the measurement apparatus, has been modeled by assuming ran-
domly distributed collapsing interactions [28, 38]. It is argued, for example, that
as an unstable elementary particle decays in a bubble chamber, each bubble is a
measurement indicating that the particle has not yet decayed (has survived), so that
a reduction takes place, resetting the system into the initial undecayed state. There-
fore, the decay law that should be observed in experiment will be an environment-
affected F(t) rather than P(t). The probability that the system is not subjected to
any measurement in a time interval δt is taken to be exp(−λδt). As detailed in [38],
the survival probability F(t) resulting from these measurements satisfies

F(t) = e−λt P(t) + λ
∫ t

0
dt ′ e−λt ′ P(t ′)F(t − t ′) , (9.60)

where P(t) is the survival probability without measurements. The integral is a con-
volution. Using Laplace transforms one easily finds that f (s) = L[F(t)] is given
by
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f (s) = p(s + λ)

1 − λp(s + λ)
, (9.61)

where p(s) = L[P(t)]. There is a particularly simple case: P(t) = exp(−γ t), for
which F(t) = P(t). More generally, a zero of the denominator of Eq. (9.61) on the
negative real axis gives a contribution to F(t) of exponential form. If the parameter
λ is sufficiently large, this term will dominate and the corrections to the original
lifetime are small. Moreover, the post-exponential regime will be suppressed.

Benatti and Floreani [7] have worked out a density operator model for elementary
particle decays, taking into account incoherent interactions with the environment,
and reached a similar conclusion.

9.5.1.2 Unitary Model for System–Environment Coupling

Lawrence [71, 112] studied the effect of interactions with the environment, using a
unitary 3D � = 0 model of a particle confined by a delta-shell potential at r = a.
Once outside the barrier, the particle interacts with N continuous spins. The interac-
tion Hamiltonian is: H = ηΘ(r−a)

∑N
i=1 Si , where Si are operators that correspond

to projections on a chosen axis of the i th spin and have a continuous spectrum,
Si |μi 〉 = μi |μi 〉, with μi ∈ [−1, 1]. This leads to very simple expressions for
the resulting energy density and analytic results for the asymptotic survival prob-
ability. Whereas in the absence of environmental coupling the latter shows a t−3

dependence, the coupling to N spins leads to P(t) ∼ t−2N−3, and the exponential
regime is extended by a time that increases faster than linearly with N . Although
the model is very simple, it provides a convincing demonstration of the relevance of
the environment effects and the substantial modifications to the survival probability
they entail. It is interesting also that for weak coupling, the dramatic effect at late
times is accompanied by a negligible effect at early and intermediate times.

9.5.1.3 Effects of Adiabatic Switching and of Fluctuations of the Interaction

Greenland and Lane [49], using the model of Eq. (9.15) for photoionization, studied
the effect of laser fluctuations (i.e., fluctuations in discrete to continuum matrix
elements) and obtained for the decay rate the usual result, 2πW 2, averaged over
the bandwidth. They also argued, based on arguments similar to those in [38], that
laser fluctuations eliminate the post-exponential region unless the transition is fast
on the timescale of the fluctuations.

Mittelman and Tip [83], and Robinson [118] examined the effect of an adia-
batic switching-on of the discrete–continuum coupling. The treatment of Robinson
is more general and shows, in agreement with Mittelman and Tip, that adiabatic
switching can attenuate the correction to exponential decay at long times. However,
it differs from [83] in that the reduction depends on the rise time of the coupling
potential, instead of the observation time. It thus leaves open the possibility of
observing post-exponential decay, in particular for photoionization near threshold.
Memory effects due to finite-time switching conditions for the release of the initial
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state have been recently revisited by Martorell et al. with the analytically solvable
model of Sect. 9.5.3 [81].

9.5.1.4 Ways to Enhance Post-exponential Decay

Most of the proposals to enhance post-exponential decay to make it visible, or to
advance the time at which it dominates, are based on the idea of placing a reso-
nance close to threshold [98, 63, 42, 123, 143, 73]. In this respect, systems with
controllable parameters are preferred, for example, photodetachment of electrons
from negative ions, spontaneous emission in a cavity close to cutoff frequency or
in a photonic band-gap material, see the chapter by Alonso and de Vega in this
volume. Lewenstein and Rzazewski [73] proposed to manipulate the decay making
the long-time decay dominant even at early stages so that repeated measurements
could lead to an acceleration of decay (anti-Zeno effect). A precedent for this idea
was included in the well-known article on the Zeno effect by Chiu, Sudarshan and
Misra [11]. They pointed out that if the decay is measured periodically at very long-
time intervals T (in the post-exponential range), the decay law at time t = N T will
be F(t) = P(T )N ∝ (t/N )−κN if the survival probability for the isolated system is
P(t) ∝ 1/tκ .

Another idea is to control the initial state so as to maximize the post-exponential
term. This has been explored by Miyamoto [85] with an N -level Friedrichs model.
One further option would be to use scattering singularities, such as a zero-energy
resonance, naturally or artificially, to provide slower long-time decay [89, 87, 80].
The escape of interacting cold atoms from a trap, in the strongly interacting Tonks–
Girardeau regime, has been also proposed to improve the visibility of the long-time
decay, because the signal would be enhanced proportionally to the number of atoms
[17].

Finally, Torrontegui et al. have recently found that the probability density at the
exponential to post-exponential transition time, and thus its observability, increases
with the distance of the detector from the source, up to a critical distance beyond
which exponential decay is no longer observed [133]. This result is inspired by
an earlier classical model by Newton [94, 95]. Quantum solvable models provide
explicit expressions for the dependence of the transition on resonance and observa-
tional parameters, facilitating the choice of optimal conditions.

9.5.1.5 Complex Potentials

The detector model proposed in [92, 18] is formally Winter’s model complemented
by an imaginary absorbing potential,

H = − ∂2

∂x2
+ ηδ(x − 1) − iVcΘ(x − Xc) , x ≥ 0 , (9.62)

and the initial state is as usual the ground state of an infinite well between 0 and
1. This is an “optical model” where the absorbing potential represents the effect of
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detection of the escaping atom by laser excitation and photon emission in the outer
region; see Chap. 4.

This Hamiltonian may hold Nloc discrete, localized eigenstates of complex
energy with purely exponential decay. The detector is placed at the barrier edge at
Xc = 1, or further out. The survival amplitude may be written in terms of eigenstates
forming a biorthogonal basis [91]:

A(t) =
Nloc∑

l=1

Cl Ĉl e−iEl t +
∫ ∞

0
f (q) e−i(q2−iVc)t dq , (9.63)

where Cl = 〈ψ0|ul〉, Ĉl = 〈ûl |ψ0〉, f (q) = 〈ψ0|φq〉〈φ̂q |ψ0〉, and |ul〉 and |ûl〉 are,
respectively, right and left localized eigenstates. The continuum eigenstates appear-
ing above, |φq〉 and |φ̂q〉, satisfy

H |φq〉 = Eq |φq〉 = (q2 − iVc)|φq〉 , (9.64)

〈φ̂q |H = Eq〈φ̂q | = (q2 − iVc)〈φ̂q | , (9.65)

〈φq |φ̂q ′ 〉 = δ(q − q ′) . (9.66)

Note that |φq〉 and its corresponding biorthogonal partner are not usual scattering
states because the exterior region is not free from interaction (V (x) �= 0 when x →
∞). However, the potential is constant there and this enables us to write the solution
in the external region in terms of an S matrix,

φq (x) = 1

(2π )1/2

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

C1 sin kx, 0 ≤ x ≤ 1

Aeikx + Be−ikx , 1 ≤ x ≤ Xc

e−iqx − S(q)eiqx , x ≥ Xc

, (9.67)

where k = (q2 − iVc)1/2 is the wavenumber inside, q the wavenumber outside, and
C1, A, B, and S are obtained from the matching conditions at x = 1 and x = Xc.
For scattering-like solutions, q is positive. There are two branch points of k in the
complex q-plane; we take the branch cut to connect these points. Similarly, the root
in q = (k2 + iVc)1/2 is defined with a branch cut joining the two branch points in
the k-plane. In contrast to scattering-like states of the continuum, localized states
are characterized by a complex q with positive imaginary part.

The main effect of increasing Vc, at weak intensities, is the progressive sup-
pression of long-time deviations, as illustrated in Fig. 9.5. Beyond some threshold
strength, even the exponential decay is affected. A quantitative approximation to
the survival probability helps to understand these effects: Let qr be the resonance
with the longest lifetime and let us assume that it is narrow and isolated. If all
other resonances have already decayed, for weak enough absorption, i.e., Nloc = 0,
the integral of Eq. (9.63) can be approximated, using contour deformation in the
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Fig. 9.5 ln[P(t)] for different absorptive step potentials, see Eq. (9.62). Vc = 0 (thick solid line),
0.1 (dashed line), 0.3 (thin solid line), and 0.5 (dots). Xc = 1 and η = 5

complex q-plane, by the residue corresponding to the first resonance plus a saddle
contribution,

A(t) ≈ −2π i Res [ f (q)]q=qr
e−iEr t e−Γr t/2 −

√
π i

8
f̈ (0)e−Vc t 1

t 3/2
, (9.68)

where Er represents the energy of the decaying particle, Γr the corresponding decay-
ing width, and f̈ (0) = [d 2 f (q)/dq2]q=0. The second term is responsible for the
deviation from the exponential decay in the survival P(t) = |A(t)|2. The novelty
with respect to the nonabsorption case, Vc = 0, is that the deviation is not given by
a purely algebraic term: The usual algebraic dependence is multiplied by the expo-
nentially decaying factor exp(−Vct). By increasing Vc, the deviation term decays
more and more rapidly until, at threshold, i.e., Γr = V th

c , the deviation decays faster
than the residue term. This threshold value corresponds exactly to the passage from
a resonance to a localized, normalizable state with purely exponential decay. While
for Vc < V th

c , the dominant term at long times is the saddle contribution (pro-
portional to exp(−Vct) t−3/2 ), in the opposite case, Vc > V th

c , the decay is purely
exponential, and the dominant contribution comes from the discrete part of the
spectrum.

9.5.1.6 Effect of a Distant Detector

A still controversial and rather crucial question is how is the decay affected by the
distance between detector and system in indirect measurements [13–15, 59, 60, 79,
68, 137, 138, 110, 122]? In their conceptual analysis of the Zeno effect, Home and
Whitaker [59] stated that the only real paradox is that the system is predicted to
have its decay affected by a detector at a macroscopic distance. Indeed, a common
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sense expectation is that a greater separation of the detector from the initial location
of the system ought to reduce the perturbing effects of measurement, but theories
confirming this expectation have been disputed [13–15, 137]. The need for more
work to arrive at a definite conclusion is clear [68].

One way to proceed is by study of explicit models. In [18], with the Hamiltonian
model of Eq. (9.62), it was shown that the disturbance of the measurement (rep-
resented by the complex absorbing potential) on the survival amplitude disappears
with increasing distance Xc between the initial state and the detector, as well as by
improving its efficiency.

9.5.1.7 Observation of Power Laws in Organic Molecules, Quantum Dots,
or Nanocrystals

In view of the above arguments favoring persistence of exponential decay at long
times and of the distorting environmental effects on the power law decay, it came
as a surprise that the experiments of Rothe et al. [121] showed a clean power law
decrease after the cross-over from the exponential regime. In those experiments, the
luminescence decays of several species of dissolved organic molecules were mea-
sured, most with lifetimes of the order of nanoseconds, but some up to a tenth of a
millisecond. Power law decays with algebraic exponents between � 2 and � 4 were
deduced. The strategy followed was to look for resonant decays with large Γ and not
too small ER . As shown in Eq. (9.14), larger Γ increases the asymptotic component
and not too small ER avoids small Q nonexponential decay. Having the molecules
in solution increases the widths, and for large molecules, intramolecular structure
also favors increased broadening. In this case, environmental effects increase rather
than decrease the asymptotic terms.

Unfortunately, the theoretical description of luminescence decay in such organic
molecules is difficult [6, 4, 5], and therefore a detailed comparison with theory is
missing. The possibility of other origins for the observed power law decrease in
fluorescence has been ruled out by Rothe et al. [121]. Still, very recently Sher et al.
[129] have also measured power law decay in the fluorescence blinking of various
semiconductor nanocrystals. They reproduced those with Monte Carlo simulations
on a three-level model. These authors claim that their approach can be also useful
in the analysis of nonexponential fluorescence decays of molecular systems. In fact
colloidal semiconductor quantum dots, nanorods, nanowires, and some organic dyes
exhibit power law distributions of on- and off-times of emission intermittency [39].
They can be explained with models in which an electron jumps into one of the
multiple traps and returns, but not all facets of the experiment are well understood.
In condensed molecular solids composed of conjugated polymers [100], the power
law luminescence found experimentally is attributed to electron–hole pair recombi-
nation and explained using inhomogeneous, statistical theories. Therefore, the field
is still open, both theoretically and experimentally, and more conclusive work on
these systems would be highly desirable.
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9.5.2 Indirect Measurement

Rather recently, Kelkar et al. [64] made an interesting proposal for extracting the
long-time survival probability from the low-energy � = 0 phase shift of α–α scat-
tering, where it is affected by a 2+ resonant state (virtual formation of 8 Be). By
fitting the experimental phase shift to a parameterized form, they extracted a power
law behavior 1/t6.36 for P(t). The explanation for this value is murky, since the
long-range part of the α–α potential is dominated by Coulomb repulsion, and the
post-exponential decay law should be modified by that long-range potential tail.
Applying the recipe for well-behaved potential tails with � = 2, the exponent would
be 7. The result is nevertheless interesting, as it is a different way to approach the
problem, which may have application to other systems. Their result corresponds to
an estimated changeover time of 30 lifetimes, which makes a direct observation not
feasible.

9.5.3 A Classical Analog of a Decaying Quantum System

Recently Longhi [74, 75] proposed to use a system of identical parallel wave guides
as an optical analog of a decaying quantum system. A laser beam injected in the first
guide leaks amplitude to the second as it travels down the guide [77]. The second
guide similarly leaks to the first and third, and so on. Distance along the guide plays
the role of time. Let cn(t) be the amplitude in the guide labeled n at distance t from
the point of injection. If the guides have identical cross section and are equidistant,
the transverse motion is in a periodic system with nearest neighbor interactions. The
system is equivalent to a particle in a tight-binding model with Schrödinger equation

i�
d|ψ〉
d(gt)

= 1

g
HT B |ψ〉 = ĤT B |ψ〉 with

ĤT B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε1/g −Δ 0 · · · 0 0
−Δ ε0/g −1 · · · 0 0

...
...

... · · · ...
0 0 0 · · · ε0/g −1
0 0 0 · · · − 1 ε0/g

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (9.69)

Here g is the coupling parameter between adjacent wave guides and ε0 is the com-
mon site energy for all sites in the periodic portion of the system. Site 1 is special; its
site energy ε1 may differ from ε0 and its coupling parameter is gΔ, with 0 ≤ Δ ≤ 1.
For example, if the first wave guide is placed farther apart from its neighbor, we
should expect |Δ| < 1, and if its profile is wider, ε1 < ε0.

From here on we will measure distance in units of �/g and suppose that ε1 = ε0

by making the guides to have identical cross-sections. Then ĤT B is a dimensionless
Hamiltonian of a “particle” in a semi-infinite discrete space. Initially, only c1(t =
0) = 1 is nonzero. If Δ is significantly less than 1, the beam is trapped behind a
barrier and will only slowly leak out to site 2. The exact time-dependent solution is



9 Quantum Post-exponential Decay 269

c1(t) =
∑

s=0

α2s 2s + 1

t
J2s+1(2t) . (9.70)

Here, α2 ≡ 1 − Δ2 is the “decoupling” parameter. If Δ = 0 (by placing the first
guide far from the rest of the system), a well-known sum rule satisfied by the Bessel
functions gives c1(t) = 1 at all times. At the other extreme, for Δ ∼ 1, small α2

makes the series converge rapidly. c1(t) plays the role of the survival amplitude of a
decaying quantum analog.

For the other sites, the solution is

cn(t) = in−1Δ
∑

s=0

α2s 2s + n

t
J2s+n(2t) . (9.71)

Because JN (2t) ∼ t N/N ! at small t , it is clear that the initial conditions at t = 0
have been satisfied.

Longhi showed that there are three distinct regions of t-dependence. At small t ,
from the properties of J1(2t),

c1(t) ≈ 1 − t2/2 . (9.72)

Next there is an intermediate region where exponential decay holds, with

c1(t) ≈ 1 + α2

2α2
exp [−γ0t/2] , where

γ0 = Δ2/α (9.73)

is the decay constant of the Gamow state. Weak coupling gives very slow decay and
strong coupling Δ ∼ 1 very rapid decay.

At still longer t , the exponential has fallen so far that it is smaller than the asymp-
totic value of the sum of Bessel functions. In this limit we can approximate each
term and perform the sum to obtain the asymptotic value for cn(t).

Use of the asymptotic form

Jn+2s(2t) ∼ (−)s

√
π t

[

cosΦn − 4(n + 2s)2 − 1

16t
sinΦn

]

,

Φn+2s ≡ 2t − (n + 1

2
)
π

2
− sπ (9.74)

leads, in lowest order, to

cn(t) ∼ Δ in−1

√
π t3

n + (n − 2)α2

(1 + α2)2
cos(2t − (2n + 1)

π

4
) ,

c1(t) ∼ 1√
π t3

1 − α2

(1 + α2)2
cos(2t − 3π/4) . (9.75)



270 J. Martorell et al.

These can be further embellished by adding the next to leading order term in the
asymptotic form. In any case it is evident that the post-exponential decay is a power
law with exponent −3/2.4

It turns out to be an excellent approximation to write c1(t) as the sum of the
exponential plus the asymptotic approximation, for all but the very shortest t . In the
cross-over region their phases are correct so that the interference oscillations are
nicely reproduced. For example,

c1(t) ≈ 1 + α2

2α2
e−γ0t/2 + S1

t
J1

(

2t − a1

t

)

, (9.76)

for t >> a1, where

S1 = 1 − α2

(1 + α2)2
, a1 = 6α2

(1 + α2)2
+ 3

16
. (9.77)

When α is small ( Δ → 1), there is almost no exponential region, whereas when
α → 1, the exponential region extends to very large times. This is illustrated in
Fig. 9.6: It can be seen that when Δ = 0.4 in the time range shown the decay
is exponential. When Δ = 0.95 the post-exponential decay is reached very soon,
and the survival probability is still quite sizeable. The figure also shows the effect
of disorder on the post-exponential decay: Instead of assuming a constant g for
the tunneling matrix elements, we have added a random fluctuation of ±1 % to

1e-05

1e-04

1e-03

1e-02

1e-01

1

5 10 15 20 25 30 35 40

P(
t)

time

Fig. 9.6 Survival probability, P(t) = |c1(t)|2. Continuous line: Δ = 0.95; long dashed line:
Δ = 0.4. The dotted lines defining a band of values correspond to the simulations with a random
fluctuation of ±1 % in the tunneling matrix elements

4 The long-time regime has been studied also for finite-time switching in [81] and to examine its
observability as a function of distance in [133].
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each of the tunneling matrix elements between consecutive sites. By running a large
number of cases we determine an average and a mean square deviation. The band
corresponds to the average ±3 standard deviations. As can be seen the effect on
the post-exponential decay is significant and suggests that localization effects are
taking place at long times. Note that if that random fluctuation could be attributed
to “environmental” effects, our model does not predict an extension of the range of
exponential decay.

We have recently investigated initial switching effects in this model. It was
assumed that the coupling Δ(t) was increased from 0 to its final value Δ over a
time T rather than instantaneously at time 0. The result is an additional phase shift
T added to a1 in Eq. (9.77), and S1 is multiplied by sin T/T . Together these changes
alter the interference between exponential and asymptotic decay contributions in a
way which ought to be observable [81].

The group in Milan have carried out two experiments [19, 8] which verify
Longhi’s theory. In the first, they arranged Δ = 1 (α = 0) and found that the
measured amplitude in guide n followed the expected form of the Bessel function
cn(t) = Jn(2t)/t [117].

In the second paper [8], Longhi and collaborators verified the optical analog of
the Zeno effect. To do this, the wave guides were broken into longitudinal segments
of length t = L . The beam in guide n = 1 entering a new segment effectively
resets the initial condition (albeit with a reduced amplitude less than unity). The
segment length L was chosen to be short, to correspond to the short-time behav-
ior, Eq. (9.72). What they found was that the decay of c1(t) in each short seg-
ment was reset to the quadratic behavior, so that it never reached the exponential
decay regime. On the contrary, without segmentation they did see a switch-over to
Eq. (9.73). It will be interesting to see whether their experiment can be extended to
longer length scales to verify the changeover to post-exponential decay, described in
Eq. (9.76).

9.6 Final Comments

We have provided an overview of quantum post-exponential decay, from the early
works to the most recent analyses and experiments. Several simple models were
discussed, which help to understand the fundamental properties of the long-time
deviation from exponential decay, and provide clues for its control and for setting
new experiments, which is indeed one of the major challenges. Post-exponential
decay is a subtle phenomenon, involving weak and low-energy signals, easy to per-
turb and hard to detect. However, recent progress in artificial mesoscopic semicon-
ductor structures or trap design and detection of ultra-cold atoms may offer access
to this regime for simple quantum systems. Further challenges are to gain a full
understanding of post-exponential decay in complex systems, such as organic
molecules in solution, as well as a more intuitive, physical interpretation of the
effect.
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Chapter 10
Timescales in Quantum Open Systems:
Dynamics of Time Correlation Functions
and Stochastic Quantum Trajectory Methods
in Non-Markovian Systems

Daniel Alonso and Inés de Vega

Past experience, if not forgotten, is a guide for the future
Chinese proverb

10.1 Introduction

The dynamics of a system in interaction with another system, the later considered
as a reservoir, is studied in many different domains in physics. This approach is
useful not only to address fundamental questions like quantum decoherence and the
measurement problem [1] but also to deal with practical and theoretical problems
appearing in the emerging fields of nanotechnology [2, 3] and quantum computing
[4–6], as well as in systems of ultra-cold atoms [7]. In many of these cases, the basic
approximation is the Markov assumption in which there is a clear separation of the
typical timescales associated with the system and the reservoir or environment. This
separation of timescales, together with other assumptions like the weak coupling
between the system and the reservoir, has been central in the development of sev-
eral fields, in particular in quantum optics [8, 9]. However, in the last few years,
new systems where the Markov approximation is no longer valid have received
increasing attention. This has produced a growing interest in developing a theory
of non-Markovian quantum open systems.

The interaction of systems with structured environments, e.g., atoms coupled
to the radiation field within a photonic crystal or a cavity [10], the interaction of
systems with spin baths [11] (e.g., quantum dots in a bath of atomic nuclei) or with
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Universidad de La Laguna, La Laguna 38203, Tenerife, Spain, dalonso@ull.es

I. de Vega
Max Planck Institute of Quantum Optics, Garching 85748, Germany, ines.devega@mpq.mpg.de

Alonso, D., de Vega, I.: Timescales in Quantum Open Systems: Dynamics of Time Correlation
Functions and Stochastic Quantum Trajectory Methods in Non-Markovian Systems. Lect. Notes
Phys. 789, 277–301 (2009)
DOI 10.1007/978-3-642-03174-8 10 c© Springer-Verlag Berlin Heidelberg 2009



278 D. Alonso and I. de Vega

environments at low temperatures, the non-Markovian dynamics of entanglement
[12], or the dynamics of a continuous atom laser based on focusing to an indepen-
dently formed atomic condensate [13], are just examples of current problems where
understanding non-Markovian features is crucial.

10.2 Atoms in a Structured Environment, an Example
of Non-Markovian Interaction

One of the most basic concepts in physics is the spontaneous emission of an atom. It
is known that spontaneous emission from an excited atom can be modified by plac-
ing the atom in a structured environment [14, 15]. Such environments are physically
realized by placing the atoms in cavities or within photonic crystals. In both cases,
the photonic density of states of the radiation field is severely modified. On the one
hand, the boundary conditions that a cavity imposes to the radiation field modify its
photonic density of states, which is no longer a growing function of the frequency,
but becomes a Lorentzian centered in the cavity resonant frequency. This resonant
frequency is related to the cavity length. Following the well-known Fermi Golden
rule, the spontaneous emission rate of an atom is proportional to the photonic density
of states of the field in the central emission frequency. Consequently, the emission
of an atom within a cavity can be suppressed if the central emission frequency is
off-resonant with respect to the cavity resonant frequency, i.e., with respect to the
center of the Lorentzian. On the other hand, photonic crystals present a periodicity
in the refraction index, which produces strong Bragg scattering for photons within
a certain frequency range. Hence, these photons are not present within the crystal,
and therefore the photonic density of states is 0 for the corresponding frequency
range. As a consequence, the photonic density of states typically presents a band-
gap profile consisting of regions where it varies abruptly (the bands) and regions
where it is 0 (the gaps). The spontaneous emission of an atom near a band-gap edge
[16, 17] differs from the exponential decay and exhibits oscillations, see Chap. 9
in this volume. Furthermore, even at zero temperature the steady-state population
may remain finite for the excited state [18]. A similar phenomenon, the so-called
limited quantum decay, is discussed in [19] for the case of a single level coupled to
a continuum which is bounded in energy.

As noted before, a key element in the interaction of an atom with the electro-
magnetic field is the density of electromagnetic modes of such field for the atomic
transition frequency. However, it is also important to consider the profile of the
density of states around such a frequency. The electromagnetic field may be viewed
as a reservoir or environment in interaction with the atom. If the density of photons
around the atomic transition frequency is smooth then the interaction between the
atom and the reservoir is, to a good approximation, Markovian. This means that
there is a timescale associated with the dynamics of the atom that is slow and also
a fast timescale associated with the correlation function of the environment. This
in turn leads to an atomic dynamics that does not depend on its previous history.
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The spontaneous decay in this case is almost exponential with a characteristic decay
rate and the spectrum of the photons emitted exhibits a Lorentzian profile. A typical
example is the interaction of an atom with a free electromagnetic field.

On the other hand, if the photonic density of states varies on a frequency range
that is comparable with the spontaneous emission rate, the dynamics of the atom in
contact with the reservoir may show noticeable non-Markovian effects. In such case
the decay is nonexponential and the spectrum of the emitted light does not present
a Lorentzian profile [20]. For non-Markovian interactions, the timescale associated
with the environmental correlation function is not fast enough in comparison to that
of the atomic dynamics, and the atomic dynamics depends on its previous history.

We may find other examples where non-Markovian effects may be important,
as in the dynamics of qubits [21]. In this chapter we shall focus on atoms in non-
Markovian environments and will particularize to atoms in photonic crystals.

10.3 Two Complementary Descriptions of the Dynamics
of a Quantum Open System

The description of the dynamics of a quantum open system is usually done in a
reduced scheme in which the degrees of freedom of the environment are averaged
out. There are different ways of tackling the problem: we may use the reduced den-
sity matrix of the system that evolves according to some master equation or we
may consider some Schrödinger type of equation that evolves vectors in the Hilbert
space of the system conditioned to the state of the environment. In the last context,
a frequent approach is based on the so-called Stochastic Schrödinger equations.
Alternatively, other Monte Carlo methods have been developed, as the quantum
jump approach (see Chap. 6). Along the chapter, we will consider a large system
described by a Hamiltonian H , which consists of the addition of a system Hamilto-
nian HS , an environment Hamiltonian HE , and an interaction Hamiltonian between
the system and the environment HI . In the examples discussed here, the system is an
atom, the environment is an electromagnetic field, and their interaction is described
by assuming the dipolar approximation.

10.3.1 Reduced Density Matrix Approach

The state of the system at time t can be characterized by its reduced density matrix,
ρS(t), that is obtained by tracing out the degrees of freedom of the environment from
the density matrix of the whole system ρ(t), i.e., ρS(t) = T rE (ρ(t)), with T rE being
the trace over the environmental degrees of freedom. The reduced density matrix
depends on time and evolves according to some mapping Lt that when applied to
and initial state ρS(0) gives the state at later time ρS(t). In the Markov case such
mapping reduces to a master equation of Lindblad form (� = 1) [22, 23]:
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dρS(t)

dt
= −i [Hs, ρS(t)] + 1

2

∑

n

(
[

LnρS(t), L†
n

]+ [

Ln, ρS(t)L†
n

]

) ≡ LtρS(t) ,

(10.1)
where Ln are operators in the Hilbert space of the system that model the coupling
of the system to its environment.

In the non-Markovian case, the Lindblad equation does not rule the dynamics
of ρS , and a more general master equation is needed. An example is the Redfield
equation that has been proven to be valid for long times and within the weak cou-
pling limit [24, 25] by considering a slippage or controlled modification of the initial
condition, ρS(0) [26, 27]. In general, non-Markovian master equations contain some
memory effects in the system–environment interaction which are absent in the Lind-
blad equation. Apart from the Redfield equation, some other non-Markovian master
equation approaches are discussed in [28–30] where memory effects are taken into
account. Another set of time-convolutionless master equations is found in [31, 32].
Other useful methods rely on the computation of the evolution of the Heisenberg
equations of motion [33, 34].

With the solution of the master equation it is then possible to compute the expec-
tation values of system observables. If A is one observable of the system its expec-
tation value is then given by

〈A(t)〉 = T rS(ρS(t)A) . (10.2)

In this particular sense the dynamics of the atom is solved within the approxima-
tions made.

10.3.2 Stochastic Schrödinger Equation Approach

Complementary to the master equation approach, different methods have been
developed in many fields that consider the evolution of vectors in the Hilbert
space of the system conditioned to the dynamics of the environment. In such
schemes the environment acts as a source of quantum noise, zt [8, 35–38], affecting
stochastically the evolution of the system. If ψ(z, t) is the time-dependent system
vector, and its evolution is driven by a quantity zt that depends on the coordinates
of the environment z, one can obtain the reduced density matrix of the system as

ρS(t) = M
[|ψt (z

∗)
〉 〈ψt (z)|] , (10.3)

where M is the average over the environmental noise. Such stochastic equations
are said to give an unraveling of the reduced density matrix ρS(t). In the Markov
case there are several unravelings for the Lindblad master equation. Each unravel-
ing corresponds to a particular way of making decomposition (10.3) of the reduced
density matrix. We may found in this context the quantum jump or Monte Carlo
wave function approach [8, 39–43] that involves jumps occurring at random times.
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Alternatively, the quantum state diffusion approach considers a continuous time
evolution [44–47]. These two approaches or unravelings have provided powerful
methods to numerically compute the evolution of the system quantum mean values.
Moreover, some of them provide us with an interpretation of a particular measur-
ing scheme. In particular, different measurement schemes of the emitted light in a
homodyne or heterodyne detection lead to different stochastic Schrödinger equa-
tions with distinct diffusive terms [48, 49]. A particular example is the continu-
ous measurements on atoms described by diffusive type of Schrödinger equation
[50]. The relation of continuous measurements and the stochastic schemes for state
vectors in the Markovian case have been extensively discussed, see for instance
[51, 36].

For non-Markovian interactions, several groups have developed a theory of
stochastic Schrödinger equations for state vectors [52–54, 26, 27, 55–58, 33, 1].
A different method, which is based on using a pair of state vectors rather than a
single one, was proposed in [59, 36] and further developed in [60]. Nonetheless, the
physical interpretation of non-Markovian Schrödinger equations is still on debate
[61–63].

10.3.3 Derivation of a Non-Markovian Stochastic Schrödinger
Equation (NMSSE)

In this section we shall derive an NMSSE, as the one obtained in [52–54]. To that
end we shall consider a Hamiltonian of the following form:

H = HS + HI + HE = HS +
∑

λ

(gλLa†
λ + g∗

λL†aλ) +
∑

λ

ωλa
†
λaλ , (10.4)

where � = 1, HE is a set of harmonic oscillators described by their creation and
annihilation operators a†

λ, aλ, and with frequencies ωλ. In the interaction Hamilto-
nian, L is a system operator that describes the coupling to the environment and gλ
are the coupling constants of the λth mode to the system. This Hamiltonian is well
suited to describe different systems, in particular the interaction between an atom
and an electromagnetic field when one-photon processes are dominant.

Let |Φt 〉 be the state of the whole system in the interaction picture with respect
to the environment. In this representation the Schrödinger equation reads

i∂t |Φt 〉 = (HS + HI (t))|Φt 〉
= HS|Φt 〉 +

∑

λ

(gλLeiωλt a†
λ + g∗

λL†e−iωλt aλ)|Φt 〉 . (10.5)

Since the environment is a set of harmonic oscillators, it is convenient to describe
it by using a coherent state basis in the Bargmann representation. A coherent state
of the oscillators |z〉 = |z1z2 · · · zλ · · · 〉 satisfies the relations aλ|z〉 = zλ|z〉 and
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〈z|aλ = ∂
∂z∗λ

〈z|. The coherent states fulfill a resolution of the identity of the form

1 = ∫

dμ(z)|z〉〈z|, where the measure dμ(z) is given by

dμ(z) = d2z1 e−|z1|2

π

d2z2 e−|z2|2

π
· · · d2zλ e−|zλ|2

π
· · ·

=
∏

m

d2zm

π
e−|zm |2 . (10.6)

The state |Φt 〉 of the total system may be expressed, using the identity in the
coherent state basis, as

|Φt 〉 =
∫

dμ(z)|z〉|ψt (z
∗)〉 , (10.7)

where |ψt (z∗)〉 = 〈z|Φt 〉 is a vector in the Hilbert space of the system and it depends
on the state of the environment |z〉. The solution of the Schrödinger equation (10.5)
can be obtained if one finds the system state vector |ψt (z∗)〉. The dynamical equation
for |ψt (z∗)〉, which follows from Eq. (10.5), is

i∂t |ψt (z
∗)〉 = HS|ψt (z

∗)〉 + Lzt |ψt (z
∗)〉 + L†

∫ t

0
dsα(t − s)

δ|ψt (z∗)〉
δzs

, (10.8)

where

zt =
∑

λ

gλz
∗
λe

iωλt (10.9)

is a time-dependent function that takes into account the rotation of the environment
oscillators weighted by their coupling to the system. This function acts as a driving
in (10.8). The larger is the coupling of a particular oscillator to the system, the
greater is its contribution to the driving of the system. In the third term of the RHS
of (10.8), a dissipative term containing a memory kernel α(t−s) = ∑ |gλ|2e−iωλ(t−s)

appears. The functional derivative δ|ψt (z∗)〉
δzs

still has to be handled in order to use Eq.
(10.8). In some simple cases, this functional derivative may be computed explicitly,
but in general some approximations are needed. On the other hand, an important set
of relations that has been used along the derivation of (10.8) is

∫

dμ(z)zt = M[zt ] = 0 ,

M[zt zs] = 0, and M[z∗t zs] = α(t − s) . (10.10)

This set of relations allows a stochastic interpretation of (10.8). Indeed, we may
think on zt as a colored complex Gaussian noise with mean and correlations given
by (10.10), where α(t − s) is the so-called environment correlation function. The
non-Markovian character of (10.8) is contained in the fact that α(t−s) is not of delta
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distribution. Let us point out that Eq. (10.8), together with the representation of state
(10.7), corresponds to an equivalent representation of original problem (10.5).

At this point we may proceed in two ways. If we have all the information of
the coupling constants and the frequencies of the harmonic oscillators of the envi-
ronment, we may sample at random and according to the measure dμ(z), a set of
coherent state coordinates z. With such set we construct zt and the environment
correlation function α(t − s). For a given initial state of the system we may then
try to solve (10.8). Such solution |ψt (z∗)〉 is associated with a single realization of
the coordinates z and represents a single quantum trajectory of the system. If we
sample again the coherent state measure dμ(z) we will obtain different trajectories.
Alternatively we may proceed phenomenologically, i.e., we assume that we know
the correlation function of the environment α(t − s), then we may synthesize a
colored complex Gaussian noise [26, 64] such that it has a correlation α(t−s) and so
properties (10.10) are fulfilled. Again, every different realization of the synthesized
noise would give a different trajectory.

With the set of trajectories |ψt (z∗)〉 obtained we may in principle construct the
solution |Φt 〉 of (10.5). More of our interest is the reduced density matrix of the
system that will be given by (10.3). In particular, if A is an observable of the system,
its expectation value 〈A(t)〉 = 〈Φt |A|Φt 〉 is

〈A(t)〉 = T rS(ρS(t)A) = M[〈ψt |A|ψt 〉] . (10.11)

Therefore, the full description of the reduced dynamics can be tackled through
the solution of (10.8).

As we mentioned above the functional derivative δ|ψt (z∗)〉
δzs

is difficult to manipulate
in most of the cases. Nonetheless, it is possible to construct some particular forms
of it. One of them consists on writing δ|ψt (z∗)〉

δzs
= O(t, s, z)|ψt (z∗)〉 and constructing

the operator O(t, s, z) [55, 65]. For instance, within the weak coupling limit, the
operator O(t, s, z) is given by a perturbative expansion on the coupling constant
that leads to an approximation, up to second order, of (10.8) of the form

i∂t |ψt (z
∗)〉 = HS|ψt (z

∗)〉 + Lzt |ψt (z
∗)〉 + L†

∫ t

0
dsα(t − s)Vt−s L|ψt (z

∗)〉
+higher orders . (10.12)

Here, we have defined the operator Vt that acts on system operators A, B,C, ...
as Vt ABC... = e−iHSt AeiHSt BC.... Let us point out that higher order terms in the
expansion of O(t, s, z) in terms of the coupling constant may involve the noise zt

as shown in [66]. Here the time under which the perturbative expansion is valid
decreases as the square of the coupling constant, as it is stated by the Van Hove
limit [67, 68]. A discussion in the context of a two-level system immersed in a
photonic crystal may be found in [69].
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10.4 Dynamics of Multiple Time Correlation Functions

Many properties of physical systems are described by correlation functions. Among
others, spectral properties of light in interaction with matter rely on the knowledge
of multiple time correlation functions (MTCF). In the case of a system in interaction
with an environment and within the Born–Markov approximation, it is known that
the dynamics of multiple time correlation functions are ruled by the so-called quan-
tum regression theorem [70–72, 9]. Basically, the statement is that the dynamical
equations for the expectation values of system observables (one-time functions) are
the same as those of two-time correlation functions. This principle is also valid to
derive the dynamical equations of higher order correlations.

10.4.1 Two-Time Correlation Functions in the Markov Case:
Quantum Regression Formula

Let us discuss in more detail the quantum regression theorem. Our aim is to compute
the expectation value of a set of system observables A1, A2, .... According to the dis-
cussion in Sect. 10.3 this may be done through the knowledge of the reduced density
matrix of the systems, ρS(t). Alternatively we may try to compute the expectation
〈A1(t)〉 at any time studying its dynamics, i.e., the dynamical equation it satisfies.
This equation may be obtained from Eq. (10.1) and integrated along with the initial
condition 〈A1(0)〉. The resulting linear equation is

d 〈Ai (t)〉
dt

=
∑

j

Li j (t)
〈

A j (t)
〉

. (10.13)

From the quantum regression theorem it follows that the two-time correlation func-
tions have the same equations of motion, i.e.,

d 〈Ai (t + τ )Ak(t)〉
dτ

=
∑

j

Li j (t)
〈

A j (t + τ )Ak(t)
〉

. (10.14)

This set of equations is rather convenient to compute correlations. The conditions
of its validity are discussed in [73] and also in [72, 74].

For non-Markovian interactions, contrary to the Markov case, correlations verify
a different set of equations than quantum mean values. In addition, these equations
contain the memory kernel associated with the environment (the environment cor-
relation function).

In the next section we shall focus on the dynamics of two-time correlation func-
tions of system observables. While higher order correlations can also be evaluated,
we find that to illustrate the theory it is enough to consider only two-time correla-
tions. We will use the system of equations derived in [34, 75] in the weak coupling
limit.
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10.4.2 Two-Time Correlation Function of System Observables
in the Non-Markovian Case

Let us take a set of N system observables A1(t1), A2(t2), . . . , AN (tN ) in Heisenberg
representation, such that t1 > t2 > · · · > tN . If Ψ0 is the initial state of the total
system, CA(t) = 〈Ψ0|A1(t1)A2(t2) · · · AN (tN )|Ψ0〉 is an N -time correlation function
of the system. This is the object of our interest.

To begin let us consider the Heisenberg evolution equation for a system observ-
able A(t) = U−1(t, 0)AU(t, 0), where U(t, 0) is the evolution operator with the total
Hamiltonian,

dA(t1)

dt1
= iU−1(t1, 0)[HT , A]U(t1, 0) = −i[HS(t1), A(t1)]

+i
∑

λ

gλ
(

a†
λ(t1, 0)[L(t1), A(t1)] + [L†(t1), A(t1)]aλ(t1, 0)

)

. (10.15)

We can replace in (10.15) the formal solution of the evolution equation of the
environmental operators, daλ(t1, 0)/dt1 = i[HT (t1), aλ(t1, 0)] = −iωλaλ(t1, 0) −
igλL(t1),

aλ(t1, 0) = e−iωλt1 a(0, 0) − igλ

∫ t1

0
dτe−iωλ(t1−τ )L(τ ) . (10.16)

The single evolution equation (10.15) becomes

dA(t1)

dt1
= i[HS(t1), A(t1)] − ν†(t1)[L(t1), A(t1)]

+
∫ t1

0
dτα∗(t1 − τ )L†(τ )[A(t1), L(t1)] + [L†(t1), A(t1)]ν(t1)

+
∫ t1

0
dτα(t1 − τ )[L†(t1), A(t1)]L(τ ) , (10.17)

with α(t) = ∑

λ |gλ|2e−iωλt being the environment correlation function. Generally,
for an environment with a large number of degrees of freedoms this function decays
in a typical timescale τB environment correlation time. We have also defined the
bath operators

ν†(t1) = −i
∑

λ

gλa
†
λ(0, 0)eiωλt1 ,

ν(t1) = i
∑

λ

gλaλ(0, 0)e−iωλt1 . (10.18)

From (10.17) the evolution equation of the quantum mean value of A for an initial
state of the form | Ψ0〉 =| ψ0〉 | 0〉, with |0〉 the vacuum state for the environment,
is equal to
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d

dt1
〈Ψ0 | A(t1) | Ψ0〉 = i〈Ψ0 | [HS(t1), A(t1)] | Ψ0〉

+
∫ t1

0
dτα(t1 − τ )〈Ψ0 | [L†(t1), A(t1)]L(τ ) | Ψ0〉

+
∫ t1

0
dτα∗(t1 − τ )〈Ψ0 | L†(τ )[A(t1), L(t1)] | Ψ0〉 .

(10.19)

It is important to note that in dynamical equation (10.17) the environment oper-
ators ν(t) and ν†(t) represent an external driving acting on the system due to its
interaction with the environment. These f orces are related to the correlation func-
tion α(t − t ′), in fact it can be shown that 〈0|ν(t)ν†(t ′)|0〉 = α(t − t ′), so that the
environment correlation function is the autocorrelation function of the environment
f orces acting on the system. Furthermore, 〈0|ν†(t)|0〉 = 〈0|ν(t)|0〉 = 0.

Let us now calculate the following evolution equation:

dA(t1)B(t2)

dt1
= iU−1(t1)[HT , A]U(t1)B(t) = i[HS(t1), A(t1)]B(t2)

+i
∑

λ

gλ
(

a†
λ(t1, 0)[L(t1), A(t1)]B(t2)

+[L†(t1), A(t1)]aλ(t1, 0)B(t2)
)

.

(10.20)

The idea again is to eliminate the dependence on the environmental operators once
the average over the total system state is performed. First, we replace the analytical
solution of the creation operator a†

λ(t1, 0), so that the term a†
λ(0, 0) appears in the left

hand side of the expression and can be eliminated when applying the vacuum initial
state. Second, we move the annihilation operator to the right-hand side by doing the
following:

aλ(t1, 0)B(t2) = U−1(t2)aλ(t1, t2)BU(t2)

= U−1(t2)e−iωλ(t1−t2)aλ(0, 0)BU(t2) − igλ

∫ t1

t2

dτe−iωλ(t1−τ ) L(τ )B(t2)

= B(t2)aλ(t2, 0) − igλ

∫ t1

t2

dτe−iωλ(t1−τ ) L(τ )B(t2) , (10.21)

where we have used

aλ(t1, t2) = e−iωλ(t1−t2)aλ(t2, t2) − igλ

∫ t1

t2

dτe−iωλ(t1−τ )L(τ, t2), (10.22)
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with aλ(t2, t2) = aλ(0, 0) ≡ aλ and [B, aλ(0, 0)] = 0. We now insert in the former
expression the solution of aλ(t2, 0), which is of the form (10.16), and obtain

aλ(t1, 0)B(t2) = e−iωλt1 B(t2)aλ(0, 0) − igλ

∫ t2

0
dτe−iωλ(t1−τ ) B(t2)L(τ )

−igλ

∫ t1

t2

dτe−iωλ(t1−τ )L(τ )B(t2) . (10.23)

Replacing (10.23) by (10.20) and considering the solution of a†
λ(t1, 0), we obtain

dA(t1)B(t2)

dt1
= i[HS(t1), A(t1)]B(t2) − ν†(t1)[L(t1), A(t1)]B(t2)

−
∫ t1

0
dτα∗(t1−τ )L†(τ )[L(t1), A(t1)]B(t2) + [L†(t1), A(t1)]B(t2)ν(t1)

+
∫ t1

t2

dτα(t1 − τ )[L†(t1), A(t1)]L(τ )B(t2)

+
∫ t2

0
dτα(t1 − τ )[L†(t1), A(t1)]B(t2)L(τ ) . (10.24)

The evolution of the quantum mean value 〈A(t1)B(t2)〉 is again obtained by
applying the total initial state on both sides of the former expression. When such
initial state is | ψ0〉 | 0〉, we obtain the following:

d〈Ψ0 | A(t1)B(t2) | Ψ0〉
dt1

= i〈Ψ0 | [HS(t1), A(t1)]B(t2) | Ψ0〉

+
∫ t1

0
dτα∗(t1 − τ )〈Ψ0 | L†(τ )[A(t1), L(t1)]B(t2) | Ψ0〉

+
∫ t1

t2

dτα(t1 − τ )〈Ψ0 | [L†(t1), A(t1)]L(τ )B(t2) | Ψ0〉

+
∫ t2

0
dτα(t1 − τ )〈Ψ0 | [L†(t1), A(t1)]B(t2)L(τ ) | Ψ0〉 .

(10.25)

Equations (10.19) and (10.25) represent the evolution of quantum mean values
and two-time correlations, respectively, obtained without the use of any approxima-
tion. However, it is clear that these equations are open, in the sense that quantum
mean values depend on two-time correlations, while two-time correlations depend
on three-time correlations. In general, when no approximations are made, N -time
correlation depends on (N + 1)-time correlations, which gives rise to a hierarchy
structure of MTCF as described in [76].
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At this stage we consider that the system and the environment are weakly cou-
pled. If we define Vt AB = eiHSt Ae−iHSt B and A(t) = eiHT t Ae−iHT t , we can write
a weak coupling approximations of Eqs. (10.19) and (10.25) up to second order in
the coupling constant (see [34, 75] for details).

Then we obtain the following equation for quantum mean values:

d

dt1
〈Ψ0 | A(t1) | Ψ0〉 = i〈Ψ0 | {[HS, A]} (t1) | Ψ0〉

+
∫ t1

0
dτα∗(t1 − τ )〈Ψ0 | {Vτ−t1 L†[A, L]

}

(t1) | Ψ0〉

+
∫ t1

0
dτα(t1 − τ )〈Ψ0 | {[L†, A]Vτ−t1 L

}

(t1) | ψ0〉
(10.26)

and for two-time correlations

d

dt1
〈Ψ0 | A(t1)B(t2) | Ψ0〉 = i〈Ψ0 | {[HS, A]} (t1)B(t2) | Ψ0〉

+
∫ t1

0
dτα∗(t1 − τ )〈Ψ0 | {Vτ−t1 L†[A, L]

}

(t1)B(t2) | Ψ0〉

+
∫ t1

0
dτα(t1 − τ )〈Ψ0 | {[L†, A]Vτ−t1 L

}

(t1)B(t2) | ψ0〉

+
∫ t2

0
dτα(t1 − τ )〈Ψ0 | {[L†, A]

}

(t1)
{

[B, Vτ−t2 L]
}

(t2) | Ψ0〉 .
(10.27)

As noted in [34, 75], while the first two terms of (10.27) are analogous to those of
(10.26), the equation for two-time correlations contains an additional term that does
not appear in the evolution of quantum mean values. Note that this term vanishes
for Markovian interactions, since then the correlation α(t1 − τ ) = Γ δ(t1 − τ ) is 0
in the domain of integration from 0 to t2. This result is consistent with the quantum
regression theorem discussed in Sect. 10.4.1.

In conclusion, Eq. (10.27) shall be used in general to evaluate the evolution of
non-Markovian two-time correlations. Moreover, as it is shown in [76], Eqs. (10.26)
and (10.27) are just the first two equations of a full hierarchy of equations for multi-
ple time correlations. This hierarchy is closed in the sense that an N -time correlation
function depends at most on other N -time correlations.

Let us remark that it is possible to show that under certain conditions, multiple
time correlation functions evolve as expectation values in the stationary limit, even
in the non-Markovian case [77].
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In the same vein that for the expectation values, it is possible to compute a par-
ticular multiple time correlation function with a stochastic scheme. We shall discuss
this issue in the next section.

10.4.3 Non-Markovian Stochastic Trajectory Methods for MTCF

It is possible to develop a stochastic scheme to compute multiple time correla-
tion functions. The advantage of this method is that it allows the evaluation of a
specific correlation function, in contrast to the equations discussed in the previ-
ous sections where the evolution of a certain correlation is coupled to some other
correlations.

If we take the partial interaction picture with respect to the environment, the N -
time correlation function is defined as CA(t|Ψ0)=〈Ψ0|

∏N
i=1U−1

I (ti , 0)AiUI (ti , 0)|Ψ0〉,
where UI is the evolution operator of the system in the interaction picture. Within
the Bargmann representation [9, 66], we write

CA(t|Ψ0) =
∫

dμ(z)〈ψ0|G−1(0, 1)
N
∏

i=1

Ai G(i, i + 1)|ψ0〉 , (10.28)

with t0 = 0, tN+1 = 0, and zN+1 = z0. We have introduced the reduced propagators
G(i, i + 1) ≡ G(z∗i zi+1|ti ti+1) = 〈zi |UI (ti , ti+1)|zi+1〉, which act on the system
Hilbert space and give the evolution of system state vectors from ti+1 to ti , given
that in the same time interval the environment coordinates go from zi+1 to zi . It
is clear then that once their time evolution is solved, the time correlation function
(10.28) can be obtained. It can be shown that the reduced propagator satisfies the
evolution equation [34]

∂G(i, i + 1)

∂ti
= (− iHS + Lz∗i,ti − L†zi+1,ti

)

G(i, i + 1)

−L†
∫ ti

ti+1

dτα(ti − τ )〈zi |UI (ti , ti+1)L(τ, ti+1)|zi+1〉 ,(10.29)

with L(t ′, t) = eiHB t e−iH (t−t ′)LeiH (t−t ′)e−iHB t ′ . Also, zi,t = i
∑

λ gλzi,neiωλt is a
time-dependent function, α(t − τ ) = ∑

λ |gλ|2e−iωλ(t−τ ), and the initial condition
G(i, i + 1) = exp (z∗i zi+1). Thus the function zi,t is a sum of time-dependent coher-
ent states and α(t − τ ) is its time autocorrelation function, as it can be verified
by computing the average M[zi,t z∗i,τ ] regarding the measure dμ(z) as shown in the
previous section:

〈zi |UI (ti , τ )LUI (τ, ti+1) | zi+1〉 = Ml
[〈zi |UI (ti , τ ) | zl〉L〈zl | UI (τ, ti+1) | zi+1〉

]

= Ml
[

G(z∗i zl |tiτ )LG(z∗l zi+1|τ ti+1)
]

, (10.30)

where in the second line we have inserted 1= ∫
d2z
π

e−|z|2 |z〉〈z|, and we have defined
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Ml [· · · ] =
∫

dμ(zl ) · · · . (10.31)

With this notation, Eq. (10.29) can be rewritten as

∂G(z∗i zi+1|ti ti+1)

∂ti
= (− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|ti ti+1)

−L†
∫ ti

ti+1

dτα(ti − τ )Ml
[

G(z∗i zl |tiτ )LG(z∗l zi+1|τ ti+1)
]

.

(10.32)

In this equation, the last term expresses how the dissipation at time t depends
on previous trajectories of other system propagators [78]. For that reason, Eq.
(10.29) cannot in general be expressed in terms of the particular propagator evolved
G(i, i + 1), and hence it is not a closed equation for this propagator. Only in very
exceptional cases this can be done in an exact way, while in most of the systems it
is necessary to perform some approximations to close the equation.

One possible approximation is to assume that

〈zi |UI (ti , ti+1)L(τ, ti+1)|zi+1〉 = O(zi+1zi , ti+1, τ )G(i, i + 1) , (10.33)

where the operator O has to be constructed [55], for instance, by treating L(τ, ti+1)
in the weak coupling limit. In terms of O(zi+1zi , ti+1, τ ), Eq. (10.29) reads

∂G(i, i + 1)

∂ti
=
(

− iHS + Lz∗i,ti − L†zi+1,ti

−L†
∫ ti

ti+1

dτα(ti − τ )O(zi+1zi , ti+1, τ )

)

G(i, i + 1) . (10.34)

Equations (10.29) or (10.34) depend on two time-dependent functions, z∗i,ti and
zi+1,ti , which take into account the “history” of the environment and lead to a con-
ditioned dynamics of the system with respect to the environment dynamics. They
constitute the starting point to compute the non-Markovian MTCFs within a Monte
Carlo method by choosing the variables zi randomly according to the distribution
dμ(z). For a single realization, a value of the integrand appearing in (10.28) can
be obtained; first, evolving |ψ0〉 from (tN+1 = 0, zN+1 = z0) to (tN , zN ) so that
a vector |φN 〉 = G(N , N + 1)|ψ0〉, second, applying AN to |φN 〉 so that we get
|φ̃N 〉 = AN |φN 〉, third, evolving |φ̃N 〉 with G(N − 1, N ), and so on. The process
continues until the vector |φ1〉 = G(1, 2)|φ̃2〉 is obtained and finally it is used to
compute 〈ψ1|A1|φ1〉, with |ψ1〉 = G(0, 1)|ψ0〉. In the end, the sum over many of
these “histories” with respect to the measure dμ(z) leads to the MTCFs defined in
(10.28).

Notice that since the equation for the reduced propagator (10.29) is made for an
initial state of the environment different from the vacuum, it can be used to compute
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the expectation values and correlation functions of system observables with more
general initial conditions than the one usually taken, i.e., |Ψ0〉 = |ψ0〉|0〉 [64].

The choice between using the stochastic method and the system of equations for
computing the MTCFs has to be made according to the particular problem. When
an N -time correlation function has to be computed with the first method, the system
of equations will contain all possible correlations of the matrices Y that form a basis
for the QOS. The correlation of other system observables can be computed by com-
bining correlations of this basic set of observables. In turn, the stochastic method
allows us to compute only the particular correlation function that is needed, and not
the whole set of YN correlations that appears interrelated in the set of differential
equations. Hence, if the system has a large number of degrees of freedom, so that Y
is a large set, the stochastic method is in general more convenient.

10.5 Examples

To illustrate the theory let us discuss the particular examples of the spontaneous
emission of an atom and the fluorescence in a structured environment.

10.5.1 Atomic Emission Spectra

In this section, we derive the formula necessary to obtain the emission spectra of a
two-level atom in non-Markovian interaction with the surrounding radiation field.
We follow a well-known photodetection model of experiment, the gedanken spec-
trum analyzer, that provides an operational definition of the spectral profile [79].
The Hamiltonian of the emitting atom (with levels |1〉 and |2〉) is given by

HS = −ω12

2
(σ22 − σ11) = ω12

2
σz , (10.35)

where σi, j = |i〉〈 j |, with {i, j} = 1, 2, are the atomic pseudospin operators in
the atomic basis, and the total Hamiltonian of emitting atom and radiation field
is described by a Hamiltonian HR , given by HR = HS + HB + ∑

λ gλ(L†aλ +
a†
λL). In order to detect the emitted radiation, suppose that we have a detecting atom

placed in r with Hamiltonian HD = ωσz/2, where ω is its rotating frequency. The
Hamiltonian of the total system (detector atom, emitting atom, and radiation field) is

H = HD + HR + W . (10.36)

Here the coupling between the detecting atom HD with HB is dipolar and given by
a Hamiltonian W , which in the interaction picture with respect to the detector is
given by

W̃ (t) = [

σ21dD · E(+)(r, t)eiωt + σ12dD · E(−)(r, t)e−iωt
]

. (10.37)
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Here, we have considered dD
21d̂D = dD

12d̂D = 〈1 | D | 2〉 = dD. The superindex
D reminds that these are the components of the detector’s dipole. It is important to
note here that the field operators E(+) and E(−) correspond to the field emitted by
the atoms and the background radiation field. The positive part of the field at the
position r is defined as

E(+)(r, ra, t) =
∑

λ

ελAλ(r)aλ(ra, t)eλ (10.38)

and E(−)(r, ra, t) = [E(+)(r, ra, t)]† [80]. In the last expression (and from now on)
we have added explicitly the dependence on the position ra of the source dipole

(or emitting atom) that originates the field. The quantity ελ =
√
ωλ
2ε0

, with υ the

quantization volume. In terms of the coupling strengths we find that gλ ≡ gλ(r) =
ελAλ(r)d · eλ.

A shutter is placed between the radiating atom and the detector. In that way,
the radiation illuminates the detector only for the time T in which the shutter is
open. In order to excite the detector, the time of observation T needs to be much
larger than the inverse of the natural width γ of the detecting atom’s excited level.
In addition, T should be larger than the reciprocal of the spectral width 1/Γ of the
emitting atom. With this setup, the spectral distribution of the fluorescence light,
P(ω, T ), is defined as the probability of excitation of the detecting atom at the time
of observation T , i.e.,

P(ω, T ) = T rR,D (| 2〉〈2 | ρ(T )) , (10.39)

where ρ(T ) is the density matrix of the total system at time T . Replacing the Taylor
expansion of the density matrix ρ(T ) for ρ(T ) ≈ ρ(0), and after some manipula-
tions, P(ω, T ) is obtained as

P(ω, T ) =
∫ T

0
dt
∫ T

0
dt ′eiω(t−t ′)g(1)(r, ra ; t, t ′) . (10.40)

Here, the average 〈· · · 〉 = T rR (ρR · · · ), and we have defined

g(1)(r, ra ; t, t ′) = 〈dD · E(−)(r, ra, t)dD · E(+)(r, ra, t
′)〉 (10.41)

as the first-order correlation of the projection of the emitted field in the direc-
tion of the dipole. In the last expression, the operators dD · E(−)(r, ra, t) and
dD · E(+)(r, ra, t ′) should be replaced by their expression in terms of the system
operators L† and L , respectively. This is done by inserting in (10.38), and in its
complex conjugated, solution (10.16) for a†

λ(t, 0) and aλ(t ′, 0), respectively. Taking
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into account that the term proportional to a†
λ(0, 0) aλ(0, 0) does not contribute to

photodetection signals since the field is in the vacuum state |0〉, then

P(ω, T ) =
∫ T

0
dt
∫ T

0
dt ′eiω(t−t ′)

×
{∫ t

0
dτ

∫ t ′

0
dτ ′α∗(t − τ )α(t ′ − τ ′)〈L†(τ )L(τ ′)〉

}

. (10.42)

This formula emphasizes the role of the system fluctuations 〈L†(τ )L(τ ′)〉 in mea-
surable quantities like the power spectrum of emitted light.

Here it has been assumed that there is no spatial dependence of the environment
correlation function. More details of the derivation can be found in [81].

In the Markov case, the environmental correlation is a delta function, α(t − τ ) =
Γ δ(t − τ ), and the last formula is just

P(ω, T ) = Γ 2
∫ T

0
dt
∫ T

0
dt ′eiω(t−t ′)〈L†(t)L(t ′)〉 , (10.43)

which in the stationary limit, i.e., with an observation time T → ∞, leads to the
usual expression for the power spectra [9]. In addition, within the Markov approx-
imation the system correlations 〈L†(0)L(τ )〉 can be computed with the quantum
regression theorem.

In the non-Markovian case, we cannot assume that the correlation function is a
delta, and it is necessary to use the original formula, (10.42) for the spectra, and the
system of equations (10.27) in order to compute the system correlations.

Let us now use formulas (10.42) and (10.43) to compute the non-Markovian
and Markovian spectra, respectively [82], see Fig. 10.1. The non-Markovian case
corresponds to choosing γ small enough so that the correlation function decays
within a nonzero correlation time. Since we are dealing with spontaneous emission
processes, in which the correlation functions 〈L†(t)L(t ′)〉 relax to a zero value, we
choose the observing time of the detector T > TC A, where TC A is the relaxation
time of the two-time correlation. Notice that when a laser is tuned to the atomic
rotating frequency, then the two-time correlations do not decay to a zero value, so
that the condition T > TC A is not sufficient to obtain a stationary spectrum. In this
case it is necessary to define the spectra in a stationary limit T → ∞.

In the derivation of Eq. (10.42) we have assumed that (10.41) does not depend
on the spatial coordinates and therefore no spatial dependence is considered in the
correlation function of the environment. However, there are systems in which it
is crucial to consider this spatial dependence, for instance, where the evanescent
components of the emitted field are relevant [83]. We shall see in the next section an
example in which such spatial dependence has to be taken into account explicitly.
The emission spectra (10.42) are then replaced by a more general expression which
includes the relative position of the detector with respect to the emitting atom:
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Fig. 10.1 (Color online) The spontaneous emission spectra are computed with formula (10.42) for
several values of γ , and by choosing T > TA, where TA is the atomic relaxation time. In order
to observe the departure from the Lorentzian profile typical of Markovian interactions, the result
is numerically fitted with a Lorentzian function. When γ is small, so that non-Markovian effects
are important in the atomic dynamics, the Lorentzian fitting is not appropriate, which means that
the use of formula (10.42) is necessary to compute the spectra. For γ = 100 the interaction is
practically Markovian, and the spectra correspond perfectly to a Lorentzian

P(ω, T ) =
∫ T

0
dt
∫ T

0
dt ′eiω(t−t ′)g(1)(r, ra, t, t

′)

=
∫ T

0
dt
∫ T

0
dt ′eiω(t−t ′)

{∫ t

0
dτ

∫ t ′

0
dτ ′S∗(r, ra, t, τ )S(r, ra, t

′, τ ′)

×〈L†(τ )L(τ ′)〉
}

, (10.44)

where

S(r, ra, t, τ ) =
∑

λ

gD
λ gλe

−iωλ(t−τ )ei(r−ra )k (10.45)

is the spatially dependent correlation function. In order to compute the fluorescence
spectra, the limit of T → ∞ has to be taken, so that the signal is observed in the
stationary limit. In that case, the above formula corresponds to a double Laplace
transform of a convolution,

P(ω) = S∗(r, ra,−ω)S(r, ra, ω)〈L†(−ω)L(ω)〉 . (10.46)
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10.5.2 Fluorescence in a Structured Environment

We shall focus in this section on the fluorescence spectra of a two-level atom
immersed in a structured environment. We shall use the results of previous sec-
tions, which are valid for an arbitrary system, provided that it is linearly and weakly
coupled to its environment. If the atom is additionally driven by a laser, the coupling
operator L appearing in the Hamiltonian (10.4) has a particular form, which we shall
derive in the following.

Let us first consider the interaction Hamiltonian of the atom with a classical laser
field, which in the rotating wave approximation can be written as follows [79, 18]:

HSL = ε(σ21e−i(ωL t+φT ) + σ12ei(ωL t+φT )) , (10.47)

where ωL is the frequency of the laser, ε its Rabi frequency, and φT its phase.
Because of the magnitude of the laser field, the Hamiltonian HSL should be consid-
ered as part of the noninteracting Hamiltonian H0, so that now H0 = HS+HB+HSL .
The explicit time dependence of the Hamiltonian can be eliminated by applying the
following unitary operator:

Ut = e
[iωL t+iφT ]

[
∑

λ a†
λaλ+(σ22−σ11)

]

. (10.48)

This operation transforms the Hamiltonian into the rotating frame of the laser, where
it can be written as H ′ = H ′

0 + H ′
I . Here,

H ′
0 =

∑

λ

Δλa
†
λaλ +

1

2
ωSσ3 + ε[σ21 + σ12] , (10.49)

with Δλ = ωλ − ωL , and

H ′
I = i

∑

λ

gλ(σ12a†
λ − aλσ21) . (10.50)

A new unitary operation V ,

V =
(

c −s
s c

)

(10.51)

may transform the system into a dressed picture, where the Hamiltonian H̃ =
V −1 H ′V has the form (10.4). The constants appearing in the transformation matrix
V are c = cosφ and s = sinφ, where the angle, φ, is given by sin2 φ =
1
2 [1− sgn(ΔSL )/

√

ε2/Δ2
SL ) + 1], withΔSL = ωS −ωL . The noninteracting dressed

state Hamiltonian H̃0 = H̃S + H̃B + H̃SL is equal to
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H̃0 = ΩR3 +
∑

λ

Δλa
†
λaλ (10.52)

and the interaction Hamiltonian H̃I has the same form as in (10.4) once the interac-
tion operator L is defined as

L = csR3 + c2 R12 − s2 R21 . (10.53)

Here, Ri j = |ĩ〉〈 j̃ | are the atomic operators defined in the dressed state basis
{|1̃〉, |2̃〉}, and R3 = R22 − R11. The quantity Ω = [ε2 +Δ2

SL/4]1/2 is the so-called
generalized Rabi frequency.

Once the coupling operator L is known, the two-time correlation 〈L†(τ )L(τ ′)〉
can be easily computed with Eq. (10.27). Note that the form of L is such that the
last term of (10.27) is nonzero, and therefore the quantum regression theorem is not
fulfilled.

In order to obtain the emission spectra with (10.46), it is necessary to derive the
Laplace transform of the spatial-dependent correlation function, S∗(r, ra, ω).

We should then consider the explicit form of the coupling constants appearing in
(10.4) which for a dipolar coupling is

gλ = −i

√

1

2�ε0ωλ
ω12êkσ · d12eik·r , (10.54)

where d12 is the atom dipolar moment, êkσ is the unit vector in the direction of the
polarization σ for a given wave vector k, and ε0 is the electric vacuum permittivity.

By using this definition, and following Eq. (10.45), we shall now write

S(r, ra, τ ) = γ (
a

2π
)3
∑

σ

∫

1B Z
dk

|êk,σ · ûd ||êk,σ · ûD
d |

ω(k)
e−iω(k)τ ei(r−ra )·k , (10.55)

where ûD
d is the unitary vector corresponding to the dipolar moment of the detector,

γ = ω2
12d2

12/(2ε0�), and the integrals are performed over the first Brillouin zones of
the crystal. In order to calculate the integrals appearing in (10.55), it is clear that the
dispersion relation ω(k) is needed.

Analogously to the tight binding model in solid state physics, the dynamics near
the edge of the band is often described through an effective mass approximation.
This approximation is based on an expansion of the full dispersion relation in the
vicinity of the band edge (see for instance [84–87]). Hence, considering the simplest
case of a cubic lattice, the dispersion relation has the parabolic form ω(k) = ωc +
A(k− k0)2, where k0 is the origin of the first Brillouin zone of the crystal (which is
the unitary cell in k space) about which we perform the expansion in each direction,
ωc is the frequency of the band edge, and A is a constant that depends on the specific
photonic crystal considered.
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In order to calculate the spatial-dependent correlation function, S(r, ra, t, τ ), we

assume that the quantity |êk,σ ·ûd ||êk,σ ·ûD
d |

ω(k) is a slowly varying function in the reciprocal
space (particularly in the region nearby the symmetric point k0). In that case, we
can express function (10.55) as

S(r, ra, τ ) = γ (
a

2π
)3
∑

σ

|êk0,σ · ûd ||êk0,σ · ûD
d |

ω(k0)

∫

1B Z
dke−iω(k)τ ei(r−ra )·k . (10.56)

Its Laplace transform is then given by

S(r, ra, ω) = γ
( a

2π

)3 ∑

σ

|êk0,σ · ûd ||êk0,σ · ûD
d |

ω(k0)

∫

1B Z
dk

ei(r−ra )·k

i(ω(k) − ω)
. (10.57)

In order to perform the last integrals analytically, we consider the parabolic dis-
persion relation and the limit in which the detector and the emitting atom are far
away from each other. In that way, we can make the change of variable q = k − k0,
so that we have ω(k) = ωc + Aq2 and extend the limits of integration to infinity.
Then

S(r, ra, ω) = −Q
2π

id

∫ ∞

0
dqq

eikd − e−ikd

ω(q) − ω , (10.58)

here we have assumed that q = q(sin θ cosφ, sin θ sinφ, cos θ ) and d = r − ra

being parallel to the z-axis. The last consideration is not too restrictive. Any arbitrary
rotation of the detector (i.e., of d) may give rise to the same result of the integral,
which is performed along the whole reciprocal space. The constant

Q = γ
( a

2π

)3
eik0·d[1 − (k0 · ud )2

k2
0

][

1 − (k0 · uD
d )2

k2
0

]

, (10.59)

provided that the dD
12 = d12. Considering that θ and θD are the angles between k0

and ud and uD
d , respectively, one finds

Q = γ
( a

2π

)3
eik0d sin2 θ sin2 θD . (10.60)

Performing the last integral of (10.58), we just obtain

S(r, ra, ω) = Q2π2

idA e−d/ l , (10.61)

where l = 1/
√
ω−ωc
A is the so-called localization length. Note that there are two pos-

sibilities: if ωc < ω then S is proportional to exp(−id/ l) and following Eq. (10.46)
the power spectrum decays as d−2; if ωc > ω, S is proportional to exp(−d/|l|), and
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the power spectrum decays exponentially. Hence, emitted photons with frequencies
within the gap will not contribute to the power spectra if the detector is placed far
away from the emitter. The reason is that in the long-time limit, all photons within
the gap are emitted in the form of evanescent modes and remain spatially local-
ized nearby the emitting atom (see Fig. 10.2). In addition, increasing the frequency
detuning with respect to the band edge, which we assume placed at ωc = 0, gives
rise to a decreasing localization length l, and therefore to a faster spatial decaying
of the function S.

Fig. 10.2 (Color online) The power spectrum P(ω) times d2 is considered for different values of
the detector distance d, which is measured in units of

√
A/ωL . Solid line: d = 0.1, dotted line:

d = 10, and dashed line: d = 100. The Rabi frequency isΩ = 0.55, so that the left sideband of the
Mollow triplet is within the gap, while the right sideband lies within the band. When the detector is
placed sufficiently far away from the emitting atom, the left sideband is no longer detected. More
specifically, no emission is detected within the gap region

10.6 Discussion and Conclusions

In the last few decades the development of new systems, like quantum dots and atom
lasers, and the engineering of new materials, like photonic crystals, have given rise
to phenomena which cannot be described by considering the Markov approxima-
tion. This has produced a growing interest in developing a theory of non-Markovian
quantum open systems, where a finite relaxation time for the surrounding environ-
ment is considered. Such finite relaxation time turns out to play an important role,
giving rise to some important memory effects in the evolution of the quantum open
system.

Memory effects are observed in all the system dynamical quantities, particularly
in its expectation values and its fluctuations, which are encoded by multiple time
correlation functions. In this chapter, we have discussed the different methods that
exist to compute such quantities. Using a stochastic Schrödinger equation approach,
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and developing the dynamical equations that quantum observables and correlations
of the system satisfy. Both approaches are complementary to each other, and the
choice between them should be made according to the specific needs we have.

Apart from the theoretical interest, the importance of multiple time correlation
functions relies on the fact that many measurable quantities are related to them. For
instance, an atom interacting with the electromagnetic field emits some radiation
that can be detected in the laboratory. In many experiments, the measured quantity
is the number of photons, a quantity that turns out to be proportional to a certain two-
time correlation function of system observables. Henceforth, predicting this exper-
imental result requires a theory to describe not only quantum mean values but also
multiple time correlation functions. For the Markov case there are well-developed
tools to compute multiple time correlation functions, the most relevant being the
so-called quantum regression theorem. For the non-Markovian case, the structure
of the evolution equations of system fluctuations is much more complicated, since
some memory effects should be taken into account. In general, non-Markovian fluc-
tuations do not follow the predictions of the quantum regression theorem, an issue
that has been widely treated in the literature and we have discussed in this chapter.
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Chapter 11
Double-Slit Experiments in the Time Domain

Gerhard G. Paulus and Dieter Bauer

11.1 Introduction

Writing about “double-slits in time” bears the risk of entering mined area. It is thus
advisable to first set the stage by describing the kind of experiments, either real ones
or gedankenexperiments, we are going to discuss.

Let us consider some massive particle(s) fulfilling a nonrelativistic, time-depen-
dent Schrödinger equation. Initially, the particle(s) are confined inside some region,
e.g., a particle beam impinging on a shutter, atoms in a magneto-optical trap (MOT),
or electrons in an atom. At later times particle(s) are allowed to leave the region upon
passing through externally controlled “time slits.” Such time slits can be realized
by chopping or modulating a particle beam [62, 4, 23, 29], using laser light as an
ultrafast atomic mirror [63, 3], or ionizing atoms using intense laser pulses [41],
respectively.

Moshinsky studied in the seminal 1952 paper entitled “Diffraction in Time” [49]
the case of a perfectly absorbing shutter at z = 0, blocking a particle beam of wave
vector kz along the z-axis 〈z|Ψ (t = 0)〉 = exp[ikzz]Θ(−z) (with Θ the Heaviside
step function) for times t < 0 but removed suddenly at t = 0. Moshinsky showed
that for t > 0

|〈z|Ψ (t)〉|2 = 1

2

{[
1

2
+ C(ξ )

]2

+
[

1

2
+ S(ξ )

]2
}

(11.1)

holds, where ξ = (kzt − z)/(
√
π t) and C and S are the Fresnel integrals (units

are used where � and the mass of the particle are unity). Plotting the probability
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density (11.1) at a given spatial point z′ as a function of time one obtains the diffrac-
tion pattern well known from spatial diffraction at a straight edge (see, e.g., [8]).
Times t < z′/kz , i.e., times less than the “time of flight” to the chosen position z′,
correspond to the “shadow” region where the probability that a particle yet arrived
is rather small (although nonzero). However, for times t > z′/kz , the probability
density does not simply assume the constant value it has for z < 0 but oscillates
around this value, exactly as the light intensity does in the illuminated region behind
a straight edge. This diffraction in time has been revisited several times in the lit-
erature. In [45] it is analyzed in terms of Wigner distributions and tomographic
probabilities. The effect of the aperture function on the temporal diffraction pattern
was studied in [19], and in the very recent reference [20], Moshinsky’s shutter was
replaced by a moving mirror, which offers the possibility to slow down or accelerate
atom beams and may be useful for atom interferometry in the time domain. A valu-
able review on exact solutions for time-dependent phenomena of such kind includ-
ing concise introductions into the relevant theoretical methods can be found in [39].

While spatial diffraction also occurs for massive particles, diffraction in time
does not occur for light. This – perhaps at first sight puzzling – asymmetry is due to
the fact that only for stationary solutions both the Schrödinger and the wave equa-
tions reduce to the Helmholtz equation and thus have formally equivalent solutions.
For time-dependent phenomena the different dispersion of matter and light waves
yields different dynamics1 [10, 11].

When talking or writing about “interference in time” a common objection one
encounters is that this cannot be because time is not an operator, at least in “main-
stream” quantum theory [30, 31]. As a consequence, the “occurrence time” of phys-
ical events is not an observable and thus does not fulfill an uncertainty relation
with the energy (i.e., usually the Hamiltonian) of the system. However, aside from
the fact that interference per se does not require operators, uncertainty relations
between times and energies emerge for reasons different from noncommuting oper-
ators in many quantum mechanical calculations. In fact, in the theoretical analysis
of Sects. 11.2 and 11.4, we shall also meet (at least) two variants of the time–energy
uncertainty relation: peaks in energy spectra become narrower if the interaction time
increases and interference structures in energy depend on the time delay which
characterizes the preparation of the quantum state, in our case the delay between
two or more “slits” in time. An excellent overview of the multifaceted aspects of the
time–energy uncertainty relation, in general, is given in Chap. 3 of the first volume
of this book series [12] (see also [28], the classic papers [2, 44], and, e.g., [50, 38]).

11.2 Wave Packet Interference in Position and Momentum Space

The theoretical analysis in this section and later on in Sect. 11.4 is performed for
electronic wave packets using atomic units. The generalization to any kind of matter
waves is straightforward (see also [11]).

1 More mathematically, the first time derivative in the Schrödinger equation and the second time
derivative in the wave equation yield different dynamics.
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The wave function of a free electronic Gaussian wave packet fulfilling the time-
dependent Schrödinger equation (TDSE)

i
∂

∂t
|ψk(t)〉 = 1

2
p̂2|ψk(t)〉 (11.2)

reads in position space

〈r|ψk(t)〉 = A
(

1 + it/a2
)3/2 exp

[

−r2 − 2ia2k · r + ia2k2t

2a2
(

1 + it/a2
)

]

(11.3)

and in momentum space2

〈p|ψk(t)〉 = Aa3 exp

[

−1

2
a2(k − p)2 − 1

2
ip2t

]

. (11.4)

Here, A is a normalization constant, k is the center-of-mass momentum of the wave
packet (i.e., equal to the group velocity in atomic units), and a determines the width
of the wave packet.

11.2.1 Double-Slit in Space

Let us first analyze the “standard” double-slit in space with the help of Gaussian
wave packets. We assume that two wave packets of equal width and amplitudes
start at t = 0 with equal center-of-mass momentum k = kzez , kz > 0, at the two
spatial positions r = ±dex . The wave function at a later time t > 0 reads in position
space, according to (11.3),

〈r|ψkz (t)〉 =
A

(

1 + it/a2
)3/2 exp

[

− y2 + z2 − 2ia2kzz + ia2k2
z t

2a2
(

1 + it/a2
)

]

×
{

exp

[

− (x − d)2

2a2
(

1 + it/a2
)

]

+ exp

[

− (x + d)2

2a2
(

1 + it/a2
)

]}

(11.5)

and in momentum space, according to (11.4),

2 For an explicit Fourier transformation the integral

1√
2π

∫ ∞

−∞
dx exp[−ipx x] exp[−αx2 + βx − γ ] = 1√

2α
exp[−γ ] exp

[
(β − ipx )2

4α

]

(for Reα > 0) is useful.
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〈p|ψkz (t)〉 = 2Aa3 exp

[

−1

2
a2(kz − pz)

2 − 1

2
a2(p2

x + p2
y) − 1

2
ip2t

]

cos px d .

(11.6)
For the probability density in position space one obtains the lengthy and time-
dependent expression

|〈r|ψkz (t)〉|2 = |A|2ρa(y, t)ρa(z − kzt, t) {ρa(x − d, t) + ρa(x + d, t) + I (x, t)} ,
(11.7)

with

ρa(ξ, t) = [

1 + (t/a2)2
]−1/2

exp

[

− ξ 2

a2[1 + (t/a2)2]

]

(11.8)

and the interference term

I (x, t) = 2
[

1 + (t/a2)2
]−1/2

exp

[

− x2 + d2

a2[1 + (t/a2)2]

]

cos

[
2xdt/a2

a2[1 + (t/a2)2]

]

.

(11.9)
In momentum space the probability density is stationary and simply given by

|〈p|ψkz 〉|2 = 4|A|2a6 exp
[−a2(kz − pz)

2 − a2(p2
x + p2

y)
]

cos2 px d , (11.10)

from which the position of the interference maxima and minima can be immediately
inferred. The function cos2 ϕ has maxima (zeros) at ϕ = nπ (ϕ = (2n + 1)π/2),
n = 0, 1, 2, . . .. Hence we have

px d = nπ (maxima) , (11.11)

px d = (2n + 1)
π

2
(minima) (11.12)

(note that the slit separation is 2d in our case). For t/a2 � 1 the interference term
(11.9) is proportional to cos(2dx/t) so that interference maxima (minima) in (11.7)
are expected for 2dx/t = 2nπ (for 2dx/t = (2n + 1)π ). Identifying x/t with the
lateral momentum px this result agrees, of course, with (11.11) and (11.12). On
the other hand, with kz = z/t = 2π/λ one obtains the condition for constructive
interference as usually given in textbooks, i.e., in terms of the wavelength λ, the
distance between the slits and the screen L = z, and the fringe distance from the
central maximum x ,

nλ

2d
= x

L
(constructive interference) . (11.13)

Figure 11.1 illustrates the interference of two Gaussian wave packets in position
space.
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Fig. 11.1 Interference of two Gaussian wave packets in position space. The wave packets of width
a and amplitude A start at x = ±d with equal momentum kz in z-direction. The actual param-
eters are A = a = 1, kz = 10, and d = 5. The contours of the probability density are scaled
logarithmically. The time t is given in the upper right of each panel

11.2.2 Double-Slit in Time

Let us now consider two Gaussian wave packets “born” at the same spatial position
r = 0 with vanishing group velocity k = 0 and the same amplitude A and initial
width a at times t = 0 and t = t ′. The wave function in position space for times
t > t ′ is then given by

〈r|ψ(t)〉 = A
(

1 + it/a2
)3/2 exp

[

− r2

2a2
(

1 + it/a2
)

]

+ A
[

1 + i(t − t ′)/a2
]3/2 exp

[

− r2

2a2
[

1 + i(t − t ′)/a2
]

]

(11.14)

and in momentum space by

〈p|ψ(t)〉 = Aa3 exp

[

−1

2
a2 p2 − 1

2
ip2t

]{

1 + exp

[
1

2
ip2t ′

]}

. (11.15)
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The interference term in the position space probability density |〈r|ψ(t)〉|2 appears
to be quite complicated, and in the more general case of nonvanishing momenta k1

and k2 even more so. However, it can be shown that far away from the origin and
for t/a2 � t ′/a2 the modulation is proportional to cos[r2t ′(1 + t ′/t)/(2t2)], i.e.,
chirped in time and space. Identifying r/t with p, the leading term in the cosine
argument is just p2t ′/2. In fact, calculating the probability density in momentum
space from (11.15) we obtain

|〈p|ψ〉|2 = 2|A|2a6 exp
[−a2 p2

]
{

1 + cos

[
1

2
p2t ′

]}

. (11.16)

Figure 11.2 shows the probability density in space and time. In a gedankenexperi-
ment one may observe at a fixed position in space the probability density which
passes by. In Fig. 11.2 the result is shown for x, y = 0 and z = 100: first the fast
components of the first wave packet arrive. Then the fast components of the second
wave packets reach the observer, interfering with the first wave packet. At later
times the slower components pass by. As a result the modulation in the observed
probability density has a negative chirp.

Equations (11.15) and (11.16) can be easily generalized to the case of nonvan-
ishing center-of-mass momenta k1, k2 and different amplitudes A1, A2 where

〈p|ψk1,2,A1,2 (t)〉 = A1a3 exp

[

−1

2
a2(k1 − p)2 − 1

2
ip2t

]

+ A2a3 exp

[

−1

2
a2(k2 − p)2 − 1

2
ip2(t − t ′)

]

(11.17)

z (a.u.)

t (
a.

u.
)

Fig. 11.2 Interference of two Gaussian wave packets born with a time delay t ′ in the zt-plane.
The wave packets of width a and amplitude A start at r = 0 with k = 0. The actual parameters
are A = a = 1 and t ′ = 20. The contours of the probability density are scaled logarithmically.
The probability density at the fixed spatial position z = 100, x = y = 0 as a function of time is
indicated at the right border of the contour plot
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and

|〈p|ψk1,2,A1,2〉|2 = a6

{

|A1|2 exp
[−a2(k1 − p)2

]+ |A2|2 exp
[−a2(k2 − p)2

]

+ exp

[

−1

2
a2[(k1 − p)2 + (k2 − p)2]

]

2Re A1 A∗
2 exp

[

−1

2
ip2t ′

]}

.

(11.18)

The interference is therefore governed by the term

∼ 2Re A1 A∗
2 exp

[

−1

2
ip2t ′

]

, (11.19)

while the center-of-mass momenta k1, k2 affect the envelope of the momentum
spectrum only. If A1 and A2 are both real, the condition for interference maxima
reads

Ekint ′ = 2nπ, n = 0, 1, 2, . . . , (11.20)

where Ekin = p2/2. The interference term (11.19) is one of the examples for a
time–energy uncertainty relation promised in our introductory remarks in Sect. 11.1.
It is a relation between the time delay of preparation of the two wave packets and
the kinetic energy. The bigger the time delay t ′ the faster are the oscillations due
to interference in the energy or momentum spectra. Suppose we want to measure
the time delay by determining the interference minima or maxima. Then expression
(11.20) tells us that we need a spectrometer with an energy resolution better than
� π/t ′.

Figure 11.3 shows cuts (px = py = 0) through the probability density in momen-
tum space for various center-of-mass momenta and amplitudes. Panel (a) shows
basically 1 + cos(p2

z t ′/2) multiplied by a Gaussian envelope. In case (b) the inter-
ference causes only minor modulations of the two momentum wave packets moving
with pz = kz = ±2. In case (c) the complex amplitude A2 changes the “phase of
the slit,” resulting in a sine-like modulation instead of a cosine-like. Finally, panel
(d) corresponds to two wave packets with k2z = 2k1z so that the later-emitted wave
packet overtakes the previously emitted one.

11.2.3 Grating in Time

Combinations of single- and double-slits in time and space were thoroughly studied
in [11]. We move directly on to the time analogue of a spatial grating. Let us assume
that the time delay between two subsequent emissions is constant and given by
t ′ = T = 2π/ω, and the total number of time slits is N . For times t > (N − 1)T ,
the wave function in momentum space then reads
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Fig. 11.3 Cuts (px = py = 0) through the probability density in momentum space for the case of
two Gaussian wave packets of width a = 1, “born” with a delay t ′ = 50, and (a) k1 = k2 = 0,
A1 = A2 = 1.0; (b) k1 = −2.0ez = −k2, A1 = A2 = 1.0; (c) k1 = k2 = 0, A1 = 1.0, A2 = −i;
(d) k1 = 0.5ez , k2 = 1.0ez , A1 = A2 = 1.0

〈p|ψk(t)〉 = a3 exp

[

−1

2
a2(k − p)2 − 1

2
ip2t

]

ΣN ,T (p) , (11.21)

with

ΣN ,T (p) =
N−1
∑

n=0

An exp [iEkinnT ] . (11.22)

If the phase-slip between subsequent emissions is constant, i.e., An = A exp[inϕ],
we obtain

ΣN ,T (p) = A
N−1
∑

n=0

exp [i(EkinT + ϕ)n] = A
N−1
∑

n=0

exp [iEnT ] = A
exp[iEN T ] − 1

exp[iET ] − 1
,

(11.23)
where E = Ekin + ϕ/T . The probability density in momentum space thus is
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f N
 (

x)

x

Fig. 11.4 The function fN (x) = sin2(N xπ )/[N 2 sin2(xπ )] for N = 2 (dashed), 3 (dotted), and 9
(solid). The factor 1/N 2 was introduced to normalize all the absolute maxima at integer x to 1

|〈p|ψk〉|2 = |A|2a6 exp
[−a2(k − p)2

] sin2[ENπ/ω]

sin2[Eπ/ω]
. (11.24)

The grating function fN (x) = sin2(N xπ )/[N 2 sin2(xπ )] is shown in Fig. 11.4 for
N = 2, 3, and 9. As for a spatial grating the maxima of fN (x) at integer x become
sharper and sharper with increasing number of slits N , while all other modulations
in between are more and more suppressed. N 2 fN (x) approaches a δ-comb in the
limit N → ∞. Integer x corresponds to peaks at E = jω, j ∈ Z. Hence, if we
think of the wave packets being generated by a long laser pulse of frequency ω,
the photo electron peaks in the energy spectra are expected to be separated by the
photon energy �ω (= ω in atomic units).

11.2.4 Continuous Slit in Time

If the electronic population in the continuum is generated continuously, e.g., by
ionization in strong fields, it is reasonable to replace (11.21) by

〈p|ψk(t)〉 = a3 exp

[

−1

2
ip2t

]

S(p) (11.25)

with

S(p) =
∫ Tp

0
g(t ′) exp

{

−1

2
a2[k(t ′) − p]2 + 1

2
ip2t ′

}

dt ′ , (11.26)

where g(t ′) is some complex function which weights the electronic source and
replaces the coefficients An in (11.22). We assume that g(t ′) is only nonvanishing
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within the time interval [0, Tp] and allow the center-of-mass momentum k to vary
with the emission time. Having in mind the ionization of atoms in strong laser fields
as the source of electronic wave packets in the continuum, we set

k(t) = −A(t) , (11.27)

with A(t) the vector potential of the laser pulse because a classical electron, which
is instantaneously “born” in a laser field at time t with vanishing initial velocity,
will have a drift momentum k(t) = −A(t) once the laser pulse is over. If the laser
pulse is short (meaning that the electron does not leave the focal region while the
laser pulse is on) k(t) = −A(t) will also be the drift momentum with which the
electron reaches the detector. Since the ionization probability of atoms strongly
increases with the absolute value of the applied electric field of the laser pulse
E(t) = −∂t A(t), the absolute value of the weight function |g(t)| should be chosen
accordingly. Figure 11.5 shows cuts (px = py = 0) through the probability density
in momentum space |〈p|ψ〉|2 for a vector potential describing a linearly polarized
laser pulse in dipole approximation
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pz (a.u.) pz (a.u.)

(c) (d)

Fig. 11.5 (Color online) Cuts (px = py = 0) through the probability density in momentum space
for the continuous slit according to Eqs. (11.25), (11.26), (11.27), and (11.28) with g(t) = E(t)
and the laser pulse parameters ω = 0.056, ϕcep = π/2, Ê = 0.05. Panel (a) shows the result for
an ncyc = 5-cycle pulse of the form (11.28), (b) for a 10-cycle, (c) for a 25-cycle, and (d) for a
25-cycle pulse but g(t) = |E(t)|. The vertical lines indicate momenta pz fulfilling p2

z /2 = jω,
j ∈ Z
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A(t) =
{

Âez sin2
[
ωt

2ncyc

]

sin(ωt + ϕcep) for t ∈ [0, ncyc2π/ω]

0 otherwise
. (11.28)

Here, Â = −Ê/ω is the vector potential amplitude corresponding to an electric
field amplitude Ê , ncyc is the number of laser cycles in the pulse, and ϕcep is the
carrier-envelope phase. Figure 11.5 shows that with increasing pulse duration the
peaks in the momentum spectra narrow around the positions Ekin = p2

z /2 = jω,
j ∈ Z – another example for a time–energy uncertainty relation.

11.3 Time-Domain Double-Slit Experiments

The first experiment specifically designed to investigate interference phenomena in
a dynamical double-slit setup was carried out by Sillitto and Wykes in 1972 [62].
The motivation for that experiment dates back to a paper by Mandel in 1959. Based
on classical coherence theory, Mandel predicted that interference may be observed
in a double-slit arrangement where the slits are opened and closed alternately, even
if both shutters are never open at the same time [43]. The condition is that the coher-
ence time is longer than the time lag between closing the one and opening the other
slit. Interestingly, Mandel’s work was inspired by a paper discussing a variant of
the Schrödinger-cat paradox [32], which, however, has little to do with the type
experiments discussed in the following. In fact, even the Sillitto and Wykes paper
differs from the experiments to be discussed, as it still considers a spatial double-slit
where certain transmission properties of each slit can be controlled in time. In fact,
without a spatial separation of the slits, no diffraction or interference effects are to
be expected for light [10]! Therefore we will focus on experiments with massive
particles where interference of de Broglie waves is observed. The observation of
diffraction when using massive particles belongs, of course, to the classics of mod-
ern physics. For the first time it was realized with electrons scattered at crystals by
Davisson and Germer [18]. In the 1960s, Jönsson succeeded to realize the classic
double-slit arrangement and to observe the respective interference pattern [33, 34].
Interference of thermal neutrons in interferometers cut from a single crystal has been
the next step for this kind of experiments. They have opened unique possibilities for
investigating, e.g., the Aharonov–Bohm effect [21] and dynamical diffraction [58].
With the advent of laser-cooled atoms and the invention of optical elements like
mirrors and beam splitters for cold atoms, the number of possible applications of
atom interferometry has grown such that it is impossible to summarize them in a
few words.

11.3.1 Double-Slit in Time Using Cold Atoms

Virtually all of these experiments are analogues of static optical setups. Time-
dependent interferometers have rarely been realized with de Broglie waves. For the
Sillitto–Wykes experiment, e.g., a neutron interferometer has been proposed [9] but
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not yet realized. One notable exception is the experiment by Szriftgiser et al. [63]
that uses laser-cooled cesium atoms. These are dropped onto an atom mirror and
bounce there three times like on a trampoline. Being based on a laser, this trampoline
can be switched on and off at any time ad libitum. Most of the time, the jumping
sheet is in fact missing. This allows to use the first bounce for selecting atoms with
well-defined velocity. When the atoms return to the mirror at the second bounce, the
mirror may in fact be switched on twice, i.e., two wave packets will be reflected.
In this way, the double-slit in time is realized. The third bounce together with sub-
sequent optical detection of the atoms that made it through this sequence then is
used to analyze the energy distribution (or, what is equivalent, the time of flight) of
the atoms upon their second return to the atom mirror. The various places of use
of lasers in this experiment should not lead to the misunderstanding that internal
states of the atoms being used were altered. This would in fact destroy the effects
to be discussed below, could however be used in the future for other which-way
experiments.

A schematic of the experimental setup is displayed in Fig. 11.6. It consists
in fact of two magneto-optical traps (MOTs), realized by shining diode lasers of

Fig. 11.6 The experimental setup consists of two magneto-optical traps (MOTs). The upper one
at relatively high pressure is used to cool a sufficiently large number of atoms. Subsequently, these
are dropped and recaptured by the lower MOT some 3 mm above the prism. The evanescent wave
created on the prism surface serves as atom mirror (from Szriftgiser et al. [63])
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appropriate wavelength from all directions into two glass cubes aligned vertically
with 70 cm distance. They are each pumped by a 25-� ion pump and connected
such that differential pumping is effective through a 140 mm long thin glass tube.
This allows high gas pressures and thus a large number of trapped atoms (≈ 108)
in the upper cube while maintaining good vacuum in the lower cube where the
actual experiment is performed. The atoms are released from the upper trap by
switching off the respective laser and magnetic field. After falling some 375 ms
through the connecting tube they are caught with 20% efficiency in the second
MOT, just h = 3 mm above the atom mirror. Cooled to 5 μK, in the F = 4
hyperfine ground state, every 1.6 s some 107 atoms can be dropped onto the atom
mirror.
This mirror is formed by an evanescent light field created by total internal reflection
at a super-polished fused silica prism using a laser blue-detuned from the cesium
D line, see Fig. 11.6 [16]. Accordingly, the atoms are low-field seekers and may be
reflected in the light field that decays rapidly in vertical direction like exp(−2κz),
where κ−1 = 190 nm. The spatial extend of the evanescent field in vertical direction
requires that it remains switched on for at least τmin = 2κ/v, where v = √

2gh is
the mean velocity of the atoms at the surface of the atom mirror and g = 9.81 m/s2.
This leads to τmin = 1.5 μs.

The potential energy of the atoms, when released from the MOT, exceeds the
thermal energy by about a factor of 10. The temperature of 5 μK would translate
into a coherence time 1/Δν = 10 μs. However, a further reduction in energy spread
of the atoms is desirable. As already mentioned, this can be achieved by switching
the atom mirror active for a brief period τ , of course τ > τmin. Obviously, this
reduces the energy spread of the reflected atoms to E0τ/T when they return after
another 2T to the mirror surface for a second time. Here E0 = mgz0 and T = 25 ms
is the drop time of the atoms.
In order to observe quantum effects induced on the second reflection of the atoms
on the mirror, the (classical) energy spread ΔEcl = E0τ/T , given by cooling and
subsequent selection of atoms as described, has to be smaller than the energy uncer-
taintyΔEqu due to quantum effects, i.e., due to diffraction of de Broglie waves. This
sets an upper limit for the duration τ during which the mirror is active at the second
bounce.3 Otherwise the former would mask the latter. As for any square-shaped
mask, the diffraction pattern after the mirror made active by a single laser pulse
of duration τ has the familiar sinc-shape form with a width of ΔEqu = h/τ . An
equivalent statement would be to demand that the coherence time 1/Δν = h/ΔEcl

has to be longer than τ . Both lead to τ <
√

hT/E0 = 150 μs.
Quite elegantly, the energy distribution of the atoms after the second reflection

can be analyzed by another reflection taking place around 5T after the release of the
atoms from the MOT. In order to probe the energy distribution of the atoms, the third
pulse is shifted in a time interval corresponding to a few timesΔEqu. What remains
to be done is to determine the number of atoms reflected at the third bounce in

3 For simplicity, τ is chosen to be equal for all three reflections.
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dependence of the position in time of the third pulse. This can be done by exciting
the atoms after the third reflection with yet another laser pulse, but now tuned to
the 6s1/2–6p3/2 transition. The fluorescence is detected by a photomultiplier. At
this point, the low-target gas pressure made possible by the twin-MOT becomes
essential. As one would expect, the transmission of the apparatus is very low. Out
of the 107 atoms captured in the lower MOT, just a few make it to the detection
interaction area. A few improvements in this respect are certainly possible and some
are in fact implemented in the work described in more detail in [63]. The sequence
of pulses is shown in Fig. 11.7.

Now it is straightforward to perform a double-slit experiment by switching on the
atom mirror twice at the second return of the atoms. This means that two interfering
de Broglie waves generated with a brief delay will emerge. Of course, the separation
of these two pulses should be shorter than the coherence time. Just like for diffrac-
tion with a single pulse as discussed above, the interference fringes can be recorded
by scanning the third pulse. Thus, the interference pattern is measured as a function
of the time of flight (see Fig. 11.8). It is even possible to shift the fringe pattern.
In case one of the two pulses that form the double-slit is weaker than the other, the
atoms are reflected a little bit closer to the surface of the atom mirror. Therefore,
those atoms experience an additional phase shift. With Δφ = 2π ·Δ�/ΛDB, where
ΛDB = h/(mgT ) is the de Broglie wavelength close to the mirror surface, it can
easily be calculated that a difference in path length of Δ� = h/(2mgT ) ≈ 12 nm
results in destructive interference (Δφ = π ). This means that a fringe shift by half
a period is observed, if the atom for one of the slits approaches the surface by 6 nm
closer than the other. A reduction in intensity of 5% for one of the atom mirror
pulses is sufficient to realize this phase shift.

Fig. 11.7 Trajectories of the atoms following their release from the lower trap. The atoms bounce
like on a trampoline at the atom mirror which can be switched on and off by pulsing the laser that
creates the evanescent wave. The first reflection by applying a laser pulse P1 is used to narrow
down the velocity distribution, thus increasing the coherence time. The second reflection induces
diffraction in time. A double-slit in time can be realized by switching the atom mirror on twice
with a pair of pulses P2a and P2b, separated by a brief time lag. The atom mirror is switched on for
a third time by a laser pulse P3 in order to probe the diffraction pattern. P3 is shifted around the
nominal return time and the number of atoms that have successfully completed the entire trajectory
are detected (from Szriftgiser et al. [63])
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Fig. 11.8 Interference fringes of cold atoms after reflection at a temporal double-slit. For the upper
panel both atom trajectories have the same length. For the lower panel, pulse P2b was given a
slightly smaller intensity so that atoms reflected by this pulse would approach the prism surface a
few nanometers closer, thus giving rise to a fringe shift of half a period (from Szriftgiser et al. [63])

11.3.2 The Attosecond Double-Slit

Strong-field ionization provides mechanisms for realizing a double-slit in time under
quite different conditions. In this case, the temporal slits are brief windows in time
within the cycles of the optical field that induce ionization. The decisive fact is
that the phase (or time) within any optical cycle, at which ionization takes place,
determines the photoelectron momentum and thus its kinetic energy. This means
that the instant of ionization is mapped onto the momentum of the photoelectron.
Consequently, for more than one optical cycle, there is more than one possibility
to create photoelectrons of a given momentum and interference will be observed.
Few-cycle laser pulses consisting of two or even less optical cycles within their full
width at half maximum (FWHM) are particularly well suited to create double-slit
interferences [41].

In the present context, a laser field is considered strong if optical field ionization,
i.e., tunneling, is the leading process of ionization. As for regular field ionization,
the barrier through which bound electrons may tunnel is formed by the laser field
and the atomic potential. For linear ionization, this implies that the tunnel opens and
closes twice during one optical cycle. The transient nature of the potential barrier
suggests that a description of ionization based on tunneling can only be meaningful
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if the frequency ωt of the electron that tunnels through the Coulomb barrier is high
as compared to the laser frequency ω = 2π/T [36, 37], i.e.,

γ := ω

ωt
= ω

√
2m|E0|
|eÊ | =

√

|E0|
2UP

< 1 . (11.29)

γ is the so-called Keldysh parameter, E0 is the energy of the bound state from which
the electron starts, i.e., |E0| is the ionization potential, and Ê is the amplitude of the
laser field. The ponderomotive potential UP = e2 Ê2/(4mω2) is the quiver energy of
an unbound electron in an electric field oscillating with angular frequency ω and an
important scaling factor in strong-field laser physics. Keldysh parameters γ ≈ 1 can
fairly easily be realized by exposing rare gas atoms to intense femtosecond lasers at
intensities around 1014 W/cm2. A review of tunneling and multiphoton ionization
can be found in [55].

The tunneling probability depends exponentially on the field strength. As a con-
sequence, ionization is confined to brief time intervals close to the maxima of the
oscillating electric field strength of a laser pulse. To a large extent, the trajectory of
an electron (or rather an electron wave packet) released from the atom by tunneling
will be dominated by the laser field because it is much stronger than the field of the
ion for the biggest part of the trajectory.4 Therefore, it is reasonable to model in a
first approximation ionization by classical mechanics, i.e., by calculating classical
electron trajectories. Assuming, for the time being, a continuous, linearly polarized
laser field of the form

E(t) = Ê cos(ωt) (11.30)

and tunneling at a phase ωt0, one immediately obtains in atomic units (see also the
remark after Eq. (11.27) in Sect. 11.2.4)

v(t) = − Ê

ω
[sin(ωt) − sin(ωt0)] (11.31)

for the velocity of the electron, if v = 0 is assumed for the electron at the instant of
tunneling. For the drift energy Ekin of the photoelectron, i.e., the quantity measured
in an experiment, this results in

Ekin = 2UP sin2(ωt0) . (11.32)

Equation (11.32) is quite an important result as it shows what has been announced at
the beginning: The kinetic energy is determined by the instant at which the electron
enters the continuum. In addition, we note that electrons tunneling at ωt0 = 0 will
have zero drift energy, whereas those ejected into the field at ωt0 = π/2 will obtain

4 This is in fact the essence of the strong-field approximation (SFA) to be introduced in Sect. 11.4.
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the maximum kinetic energy of 2UP. Tunneling is, of course, much more likely at
the peak of the field at ωt = 0, which explains that photoelectron spectra show
way more electrons at low energies than at high energies. This simple theory of
strong-field ionization is known as the “simple man’s model” since the late 1980s
[65] and has been beautifully confirmed in microwave experiments using Rydberg
atoms [25, 26].

The same result can be obtained taking advantage of conservation of the canoni-
cal momentum

pcan = p + eA = const. , (11.33)

where A is the vector potential and p = mv (= v in atomic units) is the kinetic
momentum. Using the same approximations as above, i.e., p(t0) = 0, remembering
that p(t → ∞) ≡ pdrift, and taking into account A(t → ∞) = 0 for a pulse with no
DC component [48], the identity pcan(t0) = pcan(∞) yields

pdrift = eA(t0) . (11.34)

Thus, the electron momentum is given by the vector potential at the instant of ioniza-
tion. Or, reading this statement the other way round: Selecting electrons with a given
momentum is equivalent to selecting electrons leaving the atom at a well-defined
phase. This result holds for arbitrary pulse forms, in particular also for few-cycle
pulses. For an illustration, see Fig. 11.9. Choosing the electron momentum implies
choosing the instant of ionization with sub-cycle resolution, i.e., on the attosec-
ond scale. For a given electron energy and emission direction (parallel to the laser

Fig. 11.9 Temporal variation of the vector potential A(t) for a few-cycle laser pulses with a −sine-
like temporal variation of the field, i.e., E(t) = Ê(t) cos(ωt + π/2). The temporal slits are given
by the condition p − eA(t0) = 0. For a −sine-like pulse, this leads to a double-slit in the negative
(since e = −|e|) direction and a single slit in the opposite direction. Each slit can be resolved into
a pair of slits (from Lindner et al. [41])
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polarization), the temporal evolution of the field of a few-cycle laser pulse can be
chosen such that for one emission direction, just a single optical (half-) cycle may
generate electrons of this energy, while for the opposite direction there are two such
(half-) cycles. This is in fact the essence of the attosecond double-slit.

The strength of the classical model is the intuitive insight it provides. Hardly
more than the number and position of the solutions of p − eA(t0) = 0 for given
p has been used in order to explain double-slit behavior for strong-field ioniza-
tion induced by few-cycle laser pulses. The respective solutions t0(p) in a quantum
model that will be discussed below in Sect. 11.4.3 are complex, thus allowing access
to classically forbidden electron energies. However, the symmetry of these solutions
stays the same and so do the results qualitatively.

Generation of few-cycle laser pulses is remarkably simple: Pulses of a conven-
tional femtosecond laser system are sent through a hollow fiber filled with a few
hundred millibar of Argon or Neon [51, 52]. Due to self-phase modulation the spec-
trum broadens and the pulses can be compressed to as few as 5 fs (FWHM). The
method works best for sufficiently powerful (1 mJ) and short (<25 fs) femtosecond
pulses to start with. The duration of the compressed pulse has to be compared with
the optical period of T = 2.5 fs for the typical wavelength of 800 nm of titanium-
sapphire femtosecond lasers. This means the temporal evolution of the field E(t)
depends on the phase of the carrier wave with respect to the maximum of the pulse
envelope. This can be seen by writing E(t) as a product of envelope Ê(t) and carrier
wave:

E(t) = Ê(t) cos(ωt + ϕ) . (11.35)

ϕ is the so-called absolute phase, also known as carrier-envelope phase. Special
cases are cosine-like, sine-like, −cosine-like, and −sine-like pulses for ϕ = 0,
−π/2, π , and π/2. This phase determines the evolution of the field and therefore its
measurement and stabilization is of pivotal importance for, e.g., attosecond laser
physics which takes advantage of processes evolving within fractions of optical
cycles. The absolute phase was first detected in photoionization experiments [53]
and later measured in the same way [54]. Stabilization of the absolute phase has
first been achieved in frequency metrology [59, 64, 35] and later also for amplified
laser pulses [5]. For the attosecond double-slit, the absolute phase determines the
number of slits for a given emission direction. More precisely, it determines the ion-
ization probability for each half-cycle by controlling their amplitude. The analogue
to a regular double-slit would be that the number and the width of the slits can be
controlled.

The phase-stabilized few-cycle laser pulses are focused onto a gas jet situated
in an electrically and magnetically shielded vacuum apparatus. Perpendicular to the
laser beam, two electron detectors are installed to the left and to the right of the laser
focus, thus forming a twin (or stereo) time-of-flight (TOF) spectrometer. The setup
is depicted in Fig. 11.10. The laser polarization is linear and parallel to the axis of
the TOF spectrometers.
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Fig. 11.10 (Color online) Stereo-photoelectron spectrometer. Two opposing electrically and mag-
netically shielded time-of-flight spectrometers are mounted in an ultrahigh vacuum apparatus.
Argon atoms fed in through a nozzle from the top are ionized in the focus of a few-cycle laser beam.
The laser polarization is linear and parallel to the flight tubes. Note that the laser field changes
sign while propagating through the focus. Slits with a width of 250μm are used to discriminate
electrons created outside the laser focus region chosen. The slits can be moved from outside the
vacuum system. A photodiode and micro-channel plates (shown in gray (red online) and black)
detect the laser pulses and photoelectrons, respectively. A pair of glass wedges is used to optimize
dispersion and to change the absolute phase (from Paulus et al. [54])

Figure 11.11 displays measured electron spectra. In Fig. 11.11(a) the spectra
recorded at the left and the right detectors are shown for ±cosine-like and ±sine-
like pulses. A problem in presenting such spectra is that they quickly roll off with
increasing electron energy. This roll-off was eliminated by dividing the spectra by
the average of all spectra over the pulse’s phase. Clear interference fringes with
varying visibility are observed as expected from the discussion above. The highest
visibility is observed for −sine-like pulses in the positive (“right”) direction. For
the same pulses, the visibility is very low in the opposite direction. Changing the
phase by π interchanges the role of left and right as expected. The most straight-
forward explanation is to assume that, for −sine-like pulses, there are two slits and
no which-way information for the positive direction and just one slit and (almost)
complete which-way information in the negative direction. The fact that the inter-
ference pattern does not entirely disappear is caused by the pulse duration, which is
still slightly too long to create a perfect single slit.

Under the conditions of this experiment, each argon atom emits at most one
electron, whose various options of how to reach a given final state lead to interfer-
ence. For sine-like pulses, these options correspond to a double-slit in time in one
direction and to a single-slit in the other and are created for each atom separately
by the few-cycle laser pulse. Therefore, even though there is more than one argon
atom in the laser focus, the experiment operates under single-electron conditions.
On the scale of the electron’s de Broglie wavelength, other atoms are far away and,
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Fig. 11.11 (Color online) Photoelectron spectra of argon measured with 6-fs laser pulses at an
intensity of 1 × 1014 W/cm2 as a function of the absolute phase. Panel (a) displays the spectra for
±sine- and ±cosine-like laser fields. The gray (red online) curves are spectra recorded with the left
detector (negative direction), while the black curves relate to the positive direction. For ϕ = π/2
the fringes exhibit maximum visibility for electron emission to the right, while in the opposite
direction minimum fringe visibility is observed. In addition, the fringe positions are shifted. Panel
(b) displays the entire measurement where the fringe visibility is coded in false colors (online).
The fringe positions vary as the phase ϕ of the pulse is changed. This causes the wave-like bending
of the stripes in these figures. Both panels, in principle, show the same information because a
phase shift of π mirrors the pulse field in space and thus reverses the role of positive and negative
direction. However, the data shown were recorded simultaneously but independently where the
phase φ was varied between 0 and 2π (from Lindner et al. [41])
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moreover, randomly distributed. This is in contrast to the double-slit in space where
the beam has to be sufficiently dilute to ensure a one-electron measurement.
The fringe pattern exhibits an envelope. From Fig. 11.11 a width of this envelope of
about four fringes is inferred. Just as for a double-slit experiment, the width of this
envelope can be associated with the width of the slits. However, Fig. 11.9 suggests
that what is seen here is not the width of the slit. Rather, each slit can be resolved
into a pair of slits whose separation is inversely proportional to the width of the
envelope.

It might be worth reflecting that this version of the double-slit experiment has
quite some remarkable features. Besides the fact that it is realized in the time–energy
domain, there are slits being windows in time of attosecond duration. These “slits”
can be opened or closed by changing the temporal evolution of the field of a few-
cycle laser pulse by controlling the absolute phase. At any given time there is only a
single electron in the double-slit arrangement. In addition, the presence and absence
of interference may be observed for the same electron at the same time by choosing
the direction of observation.

11.3.3 More Slits

Fringes in photoelectron spectra recorded under strong-field conditions are not new
at all. In fact, strong-field photoionization is also known as above-threshold ioniza-
tion (ATI), and the signature of ATI spectra is a series of peaks separated by the
photon energy. The effect has first been observed in 1979 [1]. The conventional
interpretation of the effect is an extension of multiphoton ionization. Accordingly,
the energy position Es of the sth ATI peaks is predicted to be given by a generalized
Einstein law Es = (n+s)�ω−|E0|−UP. Here, n is the minimum number of photons
necessary to subdue the ionization threshold which is raised by UP due to light
shift [15]. However, it is hardly possible to generalize this picture to few-cycle laser
pulses. For these the notion of ponderomotive level shifts is questionable. Moreover,
the varying contrast of the fringes as well as the fringe shifts in dependence of the
absolute phase are difficult to explain.

It is much easier to extend diffraction in the time domain from few-cycle to longer
pulses. In place of the double-slit one would then speak of a grating in time, as dis-
cussed in Sect. 11.2.3. The respective temporal windows for photoelectron emission
in a given direction are separated by the optical period T . Therefore, the separation
of the ATI peaks by �ω is an immediate consequence. With slightly more effort,
the ATI peak shift due to the ponderomotive shift of the ionization potential can be
explained. For this, the phases of the trajectories given by S/� have to be computed.
Hereby S = ∫

Ldt is the classical action of the trajectory calculated by integrating
the Lagrange function L along the trajectory. For constructive interference, trajec-
tories launched during subsequent optical cycles must have a phase difference of
an integer multiple of 2π . This is the case when the generalized Einstein law is
fulfilled.
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The times t0 at which the temporal slits are open for a given photoelectron
momentum are determined by Eq. (11.34). However, t0 determines not only the drift
momentum of the photoelectrons via Eq. (11.34) but also the probability with which
such an electron is ionized in the first place. For tunneling the ionization probability
depends exponentially on −1/|E(t0)|.5 Ionization probability and drift momentum
can be disentangled by inducing ionization with attosecond XUV pulses. Attosec-
ond pulses are much shorter than an optical period in the visible (VIS) or near-
infrared (NIR) spectral range. If used for ionizing atoms exposed to an additional
optical field in the VIS or NIR, they can promote an electron at a defined phase
ωt0 into the optical field. At that instant, the kinetic energy of that photoelectron is
E(t0) = �ωXUV − |E0|. This is different from the situation discussed in Sect. 11.3.2
where we had E(t0) = 0. Nevertheless, also in this situation it is possible to calculate
the photoelectron’s drift momentum using Eq. (11.33):

pdrift = ±
√

2mE(t0) + eA(t0) . (11.36)

If this process is repeated in subsequent optical cycles, interference of the electron
wave packets created in each cycle can be expected. Due to the periodicity with T ,
the spacing of the fringes must be equal to the photon energy �ω.

It might seem to be exceedingly difficult to implement the idea just described
experimentally because one needs to synchronize the XUV attosecond pulses with
the optical field with attosecond precision, which corresponds to sub-micron spa-
tial precision. Fortunately, the prevalent method for generation of attosecond pulses
offers an intrinsic solution to this problem. XUV attosecond pulses can be gen-
erated by high-harmonic generation (HHG) in gases. HHG was discovered in the
1980s [24]: An intense NIR femtosecond pulse is focused on rare gases at a density
of 1016–1017 cm−3. Depending on intensity and other experimental parameters, all
odd harmonics up to a few hundred orders may be produced. The mechanism of
this process is not very relevant to the present topic. Briefly, it can be explained
by a simple extension of the classical model of strong-field ionization discussed in
Sect. 11.3.2. Electron wave packets leaving the atom near the peak of the NIR field
may be driven back to the ion core. Depending on the phase at which the wave
packet was launched, the kinetic energy of the electrons upon return may be as high
as 3.17 UP. In case the electron recombines about 3/4 T later, short-wavelength radi-
ation with �ωXUV < 3.17UP + |E0| is created [40, 17] and XUV attosecond pulses
are emitted collinear to the NIR femtosecond laser pulses in each half-cycle. For
reviews on HHG, see [61], and for one on re-colliding electrons in general [7]. The

5 The tacit assumption is that tunneling is an instantaneous process. This assumption may be
wrong. In that case, one would need to distinguish between the time t01 when the electron enters
the tunnel and the time t02 when the electron leaves the tunnel and the trajectory begins to evolve
in the laser field. The field strength relevant for calculating the ionization probability would be
E(t01), while the drift momentum would be given by eA(t02). Obviously, this complication would
not alter the mechanisms discussed so far. The only consequence would be a change of the shape
of the spectrum.



11 Double-Slit Experiments in the Time Domain 325

Fig. 11.12 (Color online) Attosecond pulse trains synchronized to an NIR laser field are used to
create electron wave packets by ionizing rare gas atoms. Successive electron wave packets have a
delay of one optical cycle. The ionization probability can be controlled by shifting the attosecond
pulses with respect to the NIR laser field. The electron wave packets interfere and create a diffrac-
tion pattern. Panel (c) displays experimental results obtained for XUV–NIR delays of 0, T/4, T/2,
and 3T/4 (from Mauritsson et al. [47])

re-collision process explains why the train of attosecond pulses are synchronized
with the optical field by which they are created.

In order to choose t0, one has to delay the attosecond pulses with respect to the
optical field. This is certainly technically demanding, but possible. The remaining
problem is that the attosecond pulses are created every half-cycle, i.e., for different
signs of the field which results in a π phase shift for consecutive attosecond pulses.
Also this problem can be solved by using a two-color femtosecond laser pulse [46].
The idea of realizing a multiple slit diffraction experiment in this way has been
realized recently [47], see Fig. 11.12. Admittedly, the purpose of that experiment
reaches beyond the present discussion by addressing potential applications outside
the scope of this chapter.

11.4 Strong-Field Approximation and Interfering
Quantum Trajectories

In our theoretical analysis of time slits in Sect. 11.2, we tacitly assumed that wave
packets somehow appear in the continuum and evolve freely afterward. Such a
dynamics does not correspond to a unitary time evolution. Instead, the wave function
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rather fulfills an inhomogeneous Schrödinger equation with a source term (see, e.g.,
[11]). This source term may, in principle, be removed by an extension of the quan-
tum system being described, i.e., by incorporating the bound state dynamics prior
to the “birth” of the wave packet in the case of strong-field ionization.

Let us start with an electronic eigenstate of the field-free Hamiltonian. The elec-
tron may at time ti be in the ground state |Ψ0(ti)〉 with energy E0 < 0, for instance,
and the laser field is not yet switched on. Now let us consider the matrix element

Mp(tf, ti) = 〈Ψp(tf)|Û (tf, ti)|Ψ0(ti)〉 , (11.37)

which governs the probability wi→f = |Mp(tf, ti)|2 to find the electron at time tf in
the scattering state |Ψp(tf)〉 where p is the asymptotic momentum far away from the
atom (where the measurement is performed). We assume that at time tf the laser
field is off again. Û (t, t ′) = Û †(t ′, t) is the time-evolution operator associated with
the time-dependent Schrödinger equation

i
∂

∂t
|Ψ (t)〉 = Ĥ (t)|Ψ (t)〉 , Ĥ (t) = 1

2
[p̂ + A(t)]2 + V̂ (r) , (11.38)

where A(t) is the vector potential describing the laser field in dipole approximation
and V̂ (r) is the binding potential. The minimum coupling Hamiltonian Ĥ (t) can be
split in various ways:

i
∂

∂t
|Ψ (t)〉 = [Ĥ0 + Ŵ (t)]|Ψ (t)〉 = [ĤV(t) + V̂ (r)]|Ψ (t)〉 , (11.39)

with

Ĥ0 = p̂2

2
+ V̂ (r) , ĤV(t) = p̂2

2
+ Ŵ (t) , (11.40)

and Ŵ (t) the interaction with the laser field,

Ŵ (t) = p̂ · A(t) + 1

2
A2(t) (velocity gauge) . (11.41)

The gauge transformation of the potentials (both scalar potential φ and vector
potential A) and the wave function |Ψ (t)〉,

A′ = A + ∇χ (r, t) , φ′ = φ − ∂χ (r, t)
∂t

, |Ψ ′(t)〉 = e−iχ(r,t)|Ψ (t)〉 ,

where χ (r, t) is an arbitrary differentiable scalar function, leaves the electric and the
magnetic field unchanged:

E = −∂t A − ∇φ = E′, B = ∇ × A = B′ . (11.42)
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This gauge invariance offers the possibility to choose a gauge that suits us best, e.g.,
with respect to computational simplicity. However, this statement only holds true
as long as all approximations we make do not destroy the gauge invariance (see
Sect. 11.4.6). Transformation to the so-called length gauge is achieved by choosing

χ (r, t) = −A(t) · r . (11.43)

Because of ∇χ = −A the vector potential is “transformed away” while φ′ =
−∂tχ = −E · r. The Hamiltonian in length gauge reads

Ĥ ′(t) = p̂2

2
+ V̂ (r) − φ′(r, t) = p̂2

2
+ V̂ (r) + E(t) · r̂ (11.44)

(one could also absorb V̂ (r) in φ and φ′). Note that the transformation of the wave
function

|Ψ ′(t)〉 = eir̂·A(t)|Ψ (t)〉 (11.45)

can be interpreted as a translation in momentum space. In fact, while in velocity
gauge the quiver momentum is effectively subtracted from the kinetic momentum,
leading to a canonical momentum different from the kinetic momentum, in length
gauge kinetic and canonical momenta are equal.

From (11.44) we infer

Ŵ ′(t) = E(t) · r̂ (length gauge), (11.46)

with E(t) = −∂t A(t).

11.4.1 Volkov Wave Functions

The Volkov–Hamiltonian ĤV(t) governs the free motion of the electron in the laser
field. It fulfills in velocity gauge

i
∂

∂t
|ΨVp(t)〉 = ĤV(t)|ΨVp(t)〉 = 1

2
[p̂ + A(t)]2|ΨVp(t)〉 . (11.47)

Thanks to the dipole approximation the Volkov–Hamiltonian is diagonal in momen-
tum space. The solution of (11.47) is thus readily written down:

|ΨVp(t, ti)〉 = e−iSp(t,ti)|p〉, Sp(t, ti) = 1

2

∫ t

ti

dt ′ [p + A(t ′)]2, (11.48)

where |p〉 are momentum eigenstates, 〈r|p〉 = eip·r/(2π )3/2. Note that the lower
integration limit ti affects the overall phase of the Volkov solution only. As
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mentioned above, the transition to the length gauge corresponds to a translation
in momentum space. It is thus easy to check that in length gauge one has

|ΨVp
′(t, ti)〉 = e−iSp(t,ti)|p + A(t)〉 (length gauge), (11.49)

with the same action Sp(t, ti) as in (11.48). In passing we note that in the original
paper by Wolkow [66] the solution to the Dirac equation (i.e., relativistic and thus
without dipole approximation) was presented.

11.4.2 Strong-Field Approximation (SFA)

The time-evolution operator Û (t, t ′) satisfies the time-dependent Schrödinger equa-
tion (11.39),

i∂t Û (t, t ′) = [Ĥ0 + Ŵ (t)]Û (t, t ′) . (11.50)

Its formal solution is given by the integral equations

Û (t, t ′) = Û0(t, t ′) − i
∫ t

t ′
dt ′′ Û (t, t ′′)Ŵ (t ′′)Û0(t ′′, t ′)

= Û0(t, t ′) − i
∫ t

t ′
dt ′′ Û0(t, t ′′)Ŵ (t ′′)Û (t ′′, t ′) , (11.51)

where Û0(t, t ′) is the evolution operator corresponding to the time-dependent
Schrödinger equation with Ĥ0 only. Inserting (11.51) into the matrix element (11.37)
leads to

Mp(tf, ti) = −i
∫ tf

ti

dt ′ 〈Ψp(tf)|Û (tf, t
′)Ŵ (t ′)|Ψ0(t ′)〉 , (11.52)

where use of 〈Ψp(tf)|Û0(tf, ti)|Ψ0(ti)〉 = 〈Ψp(tf)|Ψ0(tf)〉 = 0 was made because
|Ψp(tf)〉 is a scattering state orthogonal to |Ψ0(tf)〉 and Û0(t ′, ti)|Ψ0(ti)〉 = |Ψ0(t ′)〉.
Since the propagator Û (t, t ′) also satisfies the integral equations

Û (t, t ′) = ÛV(t, t ′) − i
∫ t

t ′
dt ′′ ÛV(t, t ′′)V̂ Û (t ′′, t ′)

= ÛV(t, t ′) − i
∫ t

t ′
dt ′′ Û (t, t ′′)V̂ ÛV(t ′′, t ′) , (11.53)

where ÛV(t, t ′) is the evolution operator corresponding to the time-dependent
Schrödinger equation (11.47), one obtains, upon inserting (11.53) in (11.52) [42],
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Mp(tf, ti) = −i

[∫ tf

ti

dt ′ 〈Ψp(tf)|ÛV(tf, t
′)Ŵ (t ′)|Ψ0(t ′)〉

−i
∫ tf

ti

dt ′′
∫ tf

t ′′
dt ′ 〈Ψp(tf)|ÛV(tf, t

′)V̂ Û (t ′, t ′′)Ŵ (t ′′)|Ψ0(t ′′)〉
]

.

(11.54)

Using
∫ tf

ti
dt ′′

∫ tf
t ′′ dt ′ = ∫ tf

ti
dt ′

∫ tf
ti

dt ′′Θ(t ′ − t ′′) = ∫ tf
ti

dt ′
∫ t ′

ti
dt ′′ expression (11.54)

may be recast in the form [42]

Mp(tf, ti) =− i
∫ tf

ti

dt ′ 〈Ψp(tf)|ÛV(tf, t
′)
[

Ŵ (t ′)|Ψ0(t ′)〉

− i
∫ t ′

ti

dt ′′ V̂ Û (t ′, t ′′)Ŵ (t ′′)|Ψ0(t ′′)〉
]

. (11.55)

Equation (11.55) is still exact and gauge invariant. Whatever is missed in the first
term of (11.55) is included in the second term where the full but unknown time-
evolution operator Û (t ′, t ′′) appears. Neglecting the second term, replacing the final
state |Ψp(tf)〉 with a plane wave |p〉, and making use of the expansion of the Volkov
propagator into Volkov waves

ÛV(t, t ′) =
∫

d3k |ΨVk(t, ti)〉〈ΨVk(t ′, ti)| (11.56)

(ti is arbitrary since it cancels), we obtain, up to an irrelevant overall phase
exp[−iSp(tf, ti)], the SFA or so-called Keldysh amplitude [36, 37, 22, 60]

MKp(tf, ti) = −i
∫ tf

ti

dt 〈ΨVp(tf, t)|Ŵ (t)|Ψ0(t)〉 . (11.57)

The SFA transition amplitude integrates over all ionization times t where the tran-
sition from the bound state |Ψ0(t)〉 to the Volkov state |Ψ Vp(tf, t)〉, mediated by the
interaction with the laser field Ŵ (t), may take place.6 Expression (11.57) thus may
be thought of replacing in a self-consistent manner Eq. (11.25) in the simple ad hoc
model of a continuous slit.

In length gauge the matrix element (11.57) reads

MKp(tf, 0) = −i
∫ Tp

0
dt ′ e−iSp(tf,t ′)〈p + A(t ′)|r · E(t ′)|Ψ0〉 e−iE0t ′ . (11.58)

Here we assumed that the electric field E(t) is nonvanishing only for t ∈ [ti = 0, Tp].
Multiplication by the constant phase factor exp[iSp(tf, 0)] finally gives

6 The second term in the matrix element (11.55) may be taken into account in a similar, approxi-
mate way, allowing for the description of rescattering processes [48].
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MKp = −i
∫ Tp

0
dt ′〈p + A(t ′)|r · E(t ′)|Ψ0〉 eiSp,E0 (t ′) , (11.59)

where

Sp,E0 (t) =
∫ t

0
dt ′

(
1

2
[p + A(t ′)]2 − E0

)

. (11.60)

In the case of a hydrogen-like ion starting from the ground state the matrix element
needed in (11.59) reads

〈k|r · E(t)|Ψ0〉 = −i27/2(2|E0|)5/4 k · E(t)

π (k2 + 2|E0|)3
. (11.61)

In experiments one usually measures the differential ionization probability wp,
which is the probability to find an electron of final energy Ep = p2/2 emitted in
a certain direction, i.e., into the solid angle element dΩp that is covered by the
measuring device. The probability wp is related to the transition matrix element Mp

through

wp dEp
︸︷︷︸

p dp

dΩp = |Mp|2 d3 p = |Mp|2 p2dp dΩp, (11.62)

so that

wp = p |Mp|2 . (11.63)

Hence, in order to calculate the SFA differential ionization probability wKp =
p |MKp|2 for a given final momentum p and hydrogen-like ions only the time
integral in (11.59) remains to be evaluated. With nowadays computers, the brute
force numerical evaluation of such an integral is so fast that an entire photoelectron
momentum or angle-resolved energy spectrum can be obtained in a couple of sec-
onds. However, more insight is gained if we employ the saddle-point approximation
to evaluate the time integral in (11.59), as will be shown in the following.

11.4.3 Interfering Quantum Trajectories

The saddle-point times contributing most to the time integral in (11.59) are deter-
mined by the stationary phase equation ∂t Sp,E0 (t)|t=ts = 0, which leads to

1

2
[p + A(ts)]2 = E0 . (11.64)

Because E0 < 0 the saddle-point times ts are necessarily complex. For the case
of a hydrogen-like ion the matrix element (11.59) can be rewritten in terms of the
saddle-point solutions as [48]



11 Double-Slit Experiments in the Time Domain 331

MKp � −2−1/2(2|E0|)5/4
∑

s

exp[iSps]

S′′
ps

, (11.65)

where

Sps = Sp,E0 (ts) (11.66)

and

S′′
ps =

d2Sp,E0 (t)

dt2

∣
∣
∣
∣
t=ts

= −E(ts) · [p + A(ts)] . (11.67)

In the following we shall restrict ourselves to linearly polarized laser pulses
where A(t) = A(t)ez . The photoelectron momentum spectra then have azimuthal
symmetry about the z-axis, and with p‖ = p · ez and p⊥ = p − p‖ez , Eq. (11.64)
can be rewritten as

A(ts) = −p‖ ± i
√

2|E0| + p2
⊥ . (11.68)

For an infinite pulse A(t) is periodic and infinitely many saddle-point times ts for a
given final momentum p contribute in the sum (11.65), giving rise to discrete peaks
in the photoelectron energy spectra, separated by ω. For a finite pulse only a finite
number of solutions exist, and only those with the smallest imaginary part of Sps

are important. If there are two or more solutions of similar maximum weight, i.e.,
similar ImSps , we expect an interference pattern in the photoelectron momentum or
energy spectra. If, on the other hand, only one saddle-point solution is dominating
the sum in (11.65), no interference pattern is expected.

The action (11.66) is complex but otherwise classical. One may therefore inter-
pret the matrix element (11.65) as a sum over complex classical trajectories [48] or
so-called quantum trajectories. Each saddle-point solution corresponds to a quan-
tum trajectory which starts at the complex time ts (ionization) and which arrives
with the desired asymptotic momentum at a detector. The initial conditions can be
chosen such that Re r(ts) = 0, and all entities become real once the electron leaves
from the tunnel exit r(Re ts) into the classically allowed region. We do not need
to calculate these trajectories explicitly for our purposes. However, we would like
to mention that they were successfully used as a starting point for incorporating
Coulomb corrections into plain SFA (see Sect. 11.4.6).

The connection of (11.65) with the time slits discussed in Sect. 11.2 is now estab-
lished. In Sect. 11.2 we put the time slits “by hand” upon assuming that at certain
time instances wave packets appear in the continuum. Each of these Gaussian wave
packets contained all momenta. Instead, in expression (11.65) each saddle-point
solution corresponds to a time slit for a given final momentum. The corresponding
quantum trajectory connects the time slit with the detector. Several quantum tra-
jectories for a given final momentum may interfere. This gives rise to interference
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patterns in the momentum spectra |MKp|2 or differential energy spectra (11.63).7

While in (11.26) we put some weighting function g(t) “by hand,” it is automatically
taken care of in (11.65) via the imaginary part of Sps : If the ionization probability
at time Re ts is too low, the imaginary part of Sps is large, thus suppressing the
contribution of this saddle point to the transition matrix element.

11.4.4 Analysis of Few-Cycle Ionization Dynamics: Attosecond
Time Slits

Let us illustrate the saddle-point approach to the SFA for a particular example.
We assume a laser pulse of the form (11.28) with ω = 0.056, ncyc = 4, and
Ê = −ω Â = 0.1. We will first discuss the case ϕcep = 0 and concentrate on
photoelectron spectra along the laser polarization direction, i.e., p⊥ = 0.

Figure 11.13 helps to analyze the dominating saddle-point solutions of (11.68)
for p⊥ = 0 and p‖ ∈ [−2.2, 2.2]. Panel (a) shows the saddle points ts in the
complex time plane. The vector potential A(t) (solid) and the electric field E(t)
(dashed) are indicated in order to show that Im ts is smallest whenever |E(t)| has a
local maximum, i.e., ionization is probable. The signs + and − refer to the signs in
(11.68), the colors to positive (black) or negative (gray; red online) final momentum
p‖, as is clearly seen in panel (b) where the final momentum p‖ is plotted vs the
ionization time Re ts : The negative of the value of the vector potential at the time of
ionization determines the final momentum at the detector. High final momenta are
achieved if ionization occurs at low |E(t)|, i.e., high |A(t)|. However, the ionization
probability is expected to be low for small |E(t)|, as is confirmed in panel (c) where
Im Sps is plotted, which determines the weight of the saddle-point solution in the
sum in (11.65). Hence, the dashed-dotted saddle-point solutions are the dominating
ones, followed by the dotted, dashed, and solid ones. We identify three dominant
time slits, centered around the three largest local maxima in |E(t)|. The central slit
(“slit 1”) is the most dominant one since it is connected to the absolute maximum of
the electric field, which coincides with the maximum of the pulse envelope for the
carrier-envelope phase chosen. Slits 2a and 2b have already a lower weight since
Im Sps is larger. For our choice of the pulse (even number of cycles and carrier-
envelope phase ϕcep = 0), the saddle-point solutions for ±|p‖| are symmetric in
the sense that Im Sps is independent of the sign of p‖. As a consequence, the SFA
predicts a perfect “left/right symmetry” of the photoelectron momentum spectrum
so that it is sufficient to analyze the differential photoelectron energy spectrum in,
say, polarization direction ez , i.e., p‖ > 0.

Figure 11.14 shows the result of such an analysis where the number of time slits
in the evaluation of the matrix element (11.65) is increased stepwise. Including only

7 In order to obtain an analytical formula for the spectra one may try to rewrite the discrete sum
(11.65) as an integral, i.e., to introduce a continuous slit [27].
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Fig. 11.13 (Color online) Saddle-point analysis for an ncyc = 4-cycle linearly polarized sin2-pulse
(11.28) with ω = 0.056 and Ê = −ω Â = 0.1. In each of the panels, the vector potential A(t)
(solid) and the electric field E(t) (dashed) are indicated (arbitrarily normalized) and the same color
and line styles are used. (a) Saddle times ts in the complex time plane; the signs + and − refer to
the signs in (11.68), the colors to positive (black) or negative (gray; red online) final momentum
p‖; only saddle points within plus/minus one cycle around the pulse maximum are shown. (b) Final
momentum p‖ vs the ionization time Re ts . (c) Imaginary part of the saddle-point action Im Sps vs
the ionization time Re ts
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Fig. 11.14 Photoelectron spectra (11.63) in laser polarization direction for the pulse analyzed in
Fig. 11.13. The exact SFA spectrum from the numerical integration of (11.59) (gray and bold) is
compared with the saddle-point results (11.65), taking into account only the dominating quantum
trajectory (dotted), the two most dominating ones (dashed), and the three most dominating ones
(solid). All spectra are shifted vertically such that their maximum is at 1

the dominating saddle-point solutions drawn dash-dotted in Fig. 11.13 gives the
dotted spectrum, i.e., just the overall slope without any interference pattern. Includ-
ing the next branch of saddle-point solutions (drawn dotted in Fig. 11.13) gives the
dashed spectrum, which reproduces correctly the pronounced interference pattern of
the full, numerical SFA result (plotted gray and bold). These saddle-point solutions
constitute the second half of slit 2a and the first half of slit 2b. Finally, incorporating
also the second halves of slits 2a and 2b (dashed saddle-point solutions in Fig. 11.13)
gives the spectrum drawn solid, which reproduces the small-scale modulations in
the full, numerical SFA spectrum. The spectrum does not change anymore if more
saddle-point solutions are taken into account (the next most important ones would
be the solutions drawn solid in Fig. 11.13 for which, however, Im Sps is already too
large to have a sizable effect on the spectrum).

11.4.5 Carrier-Envelope Phase Dependence

Figure 11.13 shows that for the above-chosen pulse, the value ϕcep = 0 cor-
responds to the case of perfect left/right symmetry: Each time slit has equally
weighted parts leading to left (p‖ < 0) and right (p‖ > 0) going electrons. Such
a pulse is frequently called a “cosine pulse” since the electric field behaves like a
cosine with respect to the maximum of the pulse envelope. It is obvious that the
situation changes with changing ϕcep. The most asymmetric case is expected for
ϕcep = ±π/2, i.e., a “sine pulse.” In fact, as is seen from Fig. 11.15 there are two
groups of two equally weighted slits (“slit 1a,” “slit 1b” and “slit 2a,” “slit 2b,”
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Fig. 11.15 (Color online) Same as Fig. 11.13 but for a “sine-like” pulse (ϕcep = π/2). Now there
are two most dominant time slits (indicated “slit 1a” and “slit 1b” in panel (c)) and two next most
important ones (“slit 2a” and “slit 2b”). However, the situation is now asymmetric with respect to
the sign of the final momentum, as is seen from panel (b)
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respectively). The second half of “slit 1a” and the first half of “slit 1b” give rise
to right-going electrons now whereas it is vice versa for the left-going electrons.
The opposite applies to slits 2a and 2b where the absolute value of the electric
field, however, is already smaller. As a consequence, quantum trajectories leading
to positive and negative final momentum p‖ are weighted differently, and the sym-
metry in the photoelectron momentum spectrum is broken. This is clearly visible
in Fig. 11.16 where the differential photoelectron energy spectra are shown for the
“right-going” electrons with p‖ > 0 and the “left-going” electrons with p‖ < 0.
The spectrum for the right-going electrons is less structured than the spectrum in

p|| > 0
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p|| > 0
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Fig. 11.16 Photoelectron spectra (11.63) in laser polarization direction (upper panel, “right-going”
electrons) and in the opposite direction (lower panel, “left-going” electrons) for the pulse analyzed
in Fig. 11.15. The exact SFA spectra from the numerical integration of (11.59) (gray and bold)
are compared with the saddle-point results (11.65), taking into account only one of the dominating
quantum trajectories starting from slit 1a or 1b for a given final momentum p‖ (dotted), both
trajectories from slit 1a and 1b (dashed), and all four trajectories (slits 1a, 1b, 2a, and 2b, solid).
For the right-going electrons (upper panel) slits 2a and 2b are not important so that the interference
pattern is less complex than for the left-going electrons (lower panel)
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Fig. 11.14 for ϕcep = 0: The bigger scale interference pattern (arising from slits
1a and 1b) is similar but the small-scale modulations are absent because slits 2a
and 2b are not important for the right-going electrons. However, for the left-going
electrons the situation is the opposite: The small-scale modulations are much more
pronounced than in Fig. 11.14 because quantum trajectories originating from both
slit 2a and slit 2b are contributing to the spectrum of the left-going electrons. Hence,
by varying the carrier-envelope phase between +π/2 and −π/2 the attosecond time
slits are shifted and the relative weight of their contributions is affected. As a result
the pronounced interference structure visible in Fig. 11.16, lower panel, can be con-
tinuously transferred from the left-going electrons to the right-going electrons, with
the left/right-symmetric spectrum shown in Fig. 11.16 being the intermediate case
ϕcep = 0.

11.4.6 Beyond the SFA

We do not want to give the wrong impression that the plain SFA (i.e., without
rescattering and Coulomb corrections) introduced above is sufficient to understand
all aspects of strong-field laser atom interaction. Replacing the final state |Ψp(tf)〉
by a plane wave |p〉 and neglecting further interactions with the Coulomb potential
in the transition from the (still exact) Eq. (11.55) to the Keldysh amplitude (11.57)
is not as innocent as it may seem. First of all, gauge invariance is lost, which can
even have consequences on a qualitative level, as was shown in [6]. The formal
replacement of the final state and the omission of the second term in (11.55) may be
physically interpreted as neglecting the Coulomb interaction between the electron
and the ion once the electron is emitted. However, this Coulomb interaction after the
emission of the electron influences significantly momentum distributions, including
the left/right asymmetry discussed in Sect. 11.4.4 [13, 14], the interference structure
of spectra, and the angular distributions of the photoelectrons in, e.g., elliptically
polarized laser fields [56]. It is good news that the quantum orbit approach to the
SFA introduced in Sect. 11.4.3 also offers the possibility to overcome these (and
other) shortcomings [56, 57].
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Chapter 12
Optimal Time Evolution for Hermitian
and Non-Hermitian Hamiltonians

Carl M. Bender and Dorje C. Brody

The shortest path between two truths in the real domain
passes through the complex domain.

Jacques Hadamard, The Mathematical Intelligencer 13 (1991)

12.1 Introduction

Interest in optimal time evolution dates back to the end of the seventeenth century,
when the famous brachistochrone problem was solved almost simultaneously by
Newton, Leibniz, l’Hôpital, and Jacob and Johann Bernoulli. The word brachis-
tochrone is derived from Greek and means shortest time (of flight). The classical
brachistochrone problem is stated as follows: A bead slides down a frictionless wire
from point A to point B in a homogeneous gravitational field. What is the shape of
the wire that minimizes the time of flight of the bead? The solution to this problem
is that the optimal (fastest) time evolution is achieved when the wire takes the shape
of a cycloid, which is the curve that is traced out by a point on a wheel that is rolling
on flat ground.

In the past few years there has been much interest in the quantum brachistochrone
problem, which is formulated in a somewhat similar fashion: Consider two fixed
quantum states, an initial state |ψI 〉 and a final state |ψF 〉 in a Hilbert space. We
then consider the set of all Hamiltonians satisfying the energy constraint that the
difference between the largest and smallest eigenvalues is a fixed energy ω: Emax −
Emin = ω. Some of the Hamiltonians in this set allow the initial state |ψI 〉 to evolve
into the final state |ψF 〉 in time t :

|ψF 〉 = e−iHt/�|ψI 〉 . (12.1)
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The quantum brachistochrone problem is to find the optimal Hamiltonian, that is,
the Hamiltonian that accomplishes this evolution in the shortest possible time, which
we denote by τ .

In this chapter we show that for Hermitian Hamiltonians the shortest evo-
lution time τ is a nonzero quantity whose size depends on the Hilbert-space
distance between the fixed initial and final state vectors. However, for complex
non-Hermitian Hamiltonians, the value of τ can be made arbitrarily small. Thus,
non-Hermitian Hamiltonians permit arbitrarily fast time evolution.

Of course, a non-Hermitian Hamiltonian may be physically unrealistic because it
may possess complex eigenvalues and/or it may generate nonunitary time evolution,
that is, time evolution in which probability is not conserved. However, there is a
special class of non-Hermitian Hamiltonians that are PT symmetric, that is, Hamil-
tonians that are invariant under combined space and time reflection. Although such
Hamiltonians are not Hermitian in the Dirac sense, they do have entirely real spectra
and give rise to unitary time evolution. Thus, such Hamiltonians define consistent
and acceptable theories of quantum mechanics. We show in this chapter that if we
use Hamiltonians of this type to solve the quantum brachistochrone problem, we
can achieve arbitrarily fast time evolution without violating any principles of quan-
tum mechanics. Thus, if it were possible to implement faster-than-Hermitian time
evolution, then non-Hermitian Hamiltonians might have important applications in
quantum computing.

This chapter is organized as follows: In Sect. 12.2 we introduce and describe
PT quantum mechanics and explain how a Hamiltonian that is not Dirac Hermi-
tian can still define a consistent theory of quantum mechanics. Then in Sect. 12.3
we explain why complex classical mechanics allows for faster-than-conventional
time evolution. In Sect. 12.4 we discuss the quantum brachistochrone for Her-
mitian Hamiltonians. Then, in Sect. 12.5 we extend the discussion in Sect. 12.4
to Hamiltonians that are not Dirac Hermitian. In Sect. 12.6 we explain how it
might be possible for a complex Hamiltonian to achieve faster-than-Hermitian time
evolution.

12.2 PT Quantum Mechanics

Based on the training that one receives in a traditional quantum mechanics course,
one would expect a theory defined by a non-Hermitian Hamiltonian to be physically
unacceptable for a closed system1 because the energy levels would most likely be
complex and the time evolution would most likely be nonunitary (not probability
conserving). However, theories defined by a special class of non-Hermitian Hamil-
tonians called PT -symmetric Hamiltonians can have positive real energy levels and
can exhibit unitary time evolution. Such theories are consistent quantum theories. It

1 N. of E.: For open systems non-Hermitian Hamiltonians and non unitary evolution may be per-
fectly physical, see e.g., Chap. 6 by G. Hegerfeldt or Chap. 4 by A. Ruschhaupt et al., this volume.
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may be possible to distinguish these theories experimentally from theories defined
by Hermitian Hamiltonians because, in principle, non-Hermitian Hamiltonians can
be used to generate arbitrarily fast time evolution.

We use the following terminology in this chapter: By Hermitian, we mean Dirac
Hermitian, where the Dirac Hermitian adjoint symbol† represents combined matrix
transposition and complex conjugation. The parity operator P performs spatial
reflection and thus in quantum mechanics it changes the sign of the position operator
x and the momentum operator p: Px P = −x and PpP = −p. Because the parity
operator P is a reflection operator, its square is the unit operator: P2 = 1. The
time-reversal operator T performs the time reflection t → −t , and thus it changes
the sign of the momentum operator p, T pT = −p, but it leaves the position oper-
ator invariant: T xT = x . The square of T is the unit operator T 2 = 1. We require
that the operators P and T individually leave invariant the fundamental Heisenberg
algebra of quantum mechanics [x, p] = i. Thus, while P is a linear operator, we see
that T must perform complex conjugation T zT = z∗, and hence T is an antilinear
operator.2

The first class of PT -symmetric quantum mechanical Hamiltonians was intro-
duced in 1998 [6]. Since then there have been many papers on this subject by a wide
range of authors. There have also been three recent review articles [4, 5, 30]. In
[6] it was discovered that even if a Hamiltonian is not Hermitian, its energy levels
can be all real and positive so long as the eigenfunctions are symmetric under PT
reflection.

These new kinds of Hamiltonians are obtained by deforming ordinary Hermi-
tian Hamiltonians into the complex domain. The original class of PT -symmetric
Hamiltonians that was proposed in [6] has the form

H = p2 + x2(ix)ε (ε > 0) , (12.2)

where ε is a real deformation parameter. Two particularly interesting special cases
are obtained by setting ε = 1 to get H = p2 + ix3 and by setting ε = 2 to get
H = p2 − x4. Surprisingly, these Hamiltonians have real, positive, discrete energy
levels even though the potential for ε = 1 is imaginary and the potential for ε = 2
is upside down. The first complete proof of spectral reality and positivity for H in
(12.2) was given by Dorey et al. [28, 29].

The philosophical background of PT quantum mechanics is simply this: One
of the axioms of quantum mechanics requires that the Hamiltonian H be Dirac
Hermitian. This axiom is distinct from all other quantum mechanical axioms because
it is mathematical rather than physical in character. The other axioms of quantum
mechanics are stated in physical terms; these other axioms require locality, causality,
stability and uniqueness of the vacuum state, conservation of probability, Lorentz

2 Another way to see that T is associated with complex conjugation is to require that the time-
dependent Schrödinger equation be invariant under time reversal. This implies that time reflection
t → −t must be accompanied by complex conjugation i → −i. See [60] for a discussion of the
properties of antilinear operators.
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invariance, and so on. The condition of Dirac Hermiticity H = H † is mathematical,
but the condition of PT symmetry H = H PT = (PT )H (PT ) (space–time reflec-
tion symmetry) is physical because P and T are elements of the Lorentz group.

The spectrum of H in (12.2) is real, which poses the question of whether this
Hamiltonian specifies a quantum mechanical theory. That is, is the theory specified
by H associated with a Hilbert space endowed with a positive inner product and does
H specify unitary (norm-preserving) time evolution? The answer to these questions
is yes. Positivity of the inner product and unitary time evolution was established in
[11, 12] for quantum-mechanical systems having an unbroken PT symmetry (an
analogous result was obtained by Mostafazadeh [51]) and in [13] for quantum field
theory.

To demonstrate that the theory specified by H in (12.2) is a quantum mechanical
theory, we construct a linear operator C that satisfies the three simultaneous alge-
braic equations [11]: C2 = 1, [C, PT ] = 0, and [C, H ] = 0. Using C , which in
quantum field theory is a Lorentz scalar [8], we can then construct the appropriate
inner product for a PT -symmetric Hamiltonian: 〈a|b〉 ≡ aC PT · b. This inner prod-
uct, which uses the C PT adjoint, has a strictly positive norm: 〈a|a〉 > 0. Because
H commutes with both PT and C , H is self-adjoint with respect to C PT con-
jugation. Also, the time-evolution operator e−iHt/� is unitary with respect to C PT
conjugation. Note that the Hilbert space and the C PT inner product are dynamically
determined by the Hamiltonian itself.

We have explained why a PT -symmetric Hamiltonian gives rise to a unitary
theory, but in doing so we raise the question of whether PT -symmetric Hamilto-
nians are useful. The answer to this question is simply that PT -symmetric Hamil-
tonians have already been useful in many areas of physics. For example, in 1959
Wu showed that the ground state of a Bose system of hard spheres is described by
a non-Hermitian Hamiltonian [61]. Wu found that the ground-state energy of this
system is real and he conjectured that all of the energy levels were real. Hollowood
showed that the non-Hermitian Hamiltonian for a complex Toda lattice has real
energy levels [42]. Cubic non-Hermitian Hamiltonians of the form H = p2 + ix3

(and also cubic quantum field theories having an imaginary self-coupling term) arise
in studies of the Lee-Yang edge singularity [25, 26, 32, 62] and in various Reggeon
field-theory models [23, 39, 40]. In all of these cases a non-Hermitian Hamiltonian
having a real spectrum appeared mysterious at the time, but now the explanation is
clear: In every case the non-Hermitian Hamiltonian is PT symmetric. Hamiltonians
having PT symmetry have also been used to describe magnetohydrodynamic sys-
tems [35, 38] and to study nondissipative time-dependent systems interacting with
electromagnetic fields [31].

An important application of PT quantum mechanics is in the revitalization of
theories that have been thought to be dead because they appear to have ghosts.
Ghosts are states having negative norm. We have explained above that in order to
construct the quantum mechanical theory defined by a PT -symmetric Hamiltonian,
we must construct the appropriate adjoint from the C operator. Having constructed
the C PT adjoint, one may find that the so-called ghost state is actually not a ghost
at all because when its norm is calculated using the appropriate definition of the
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adjoint, the norm turns out to be positive. This is what happens in the case of the
Lee model.

The Lee model was proposed in 1954 as a quantum field theory in which mass,
wave-function, and charge renormalization could be performed exactly and in closed
form [48]. However, in 1955 Källén and Pauli showed that when the renormalized
coupling constant is larger than a critical value, the Hamiltonian becomes non-
Hermitian (in the Dirac sense) and a ghost state appears [45]. The importance of
the work of Källén and Pauli was emphasized by Salam in his review of their paper
[58] and the appearance of the ghost was assumed to be a fundamental defect of
the Lee model. However, in 2005 it was shown that the non-Hermitian Lee-model
Hamiltonian is PT symmetric and when the norms of the states of this model are
determined using the C operator, which can be calculated exactly and in closed
form, the ghost state is seen to be an ordinary physical state having positive norm
[9]. Thus, the following assertion by Barton [3] is not correct: “A non-Hermitian
Hamiltonian is unacceptable partly because it may lead to complex energy eigen-
values, but chiefly because it implies a nonunitary S matrix, which fails to conserve
probability and makes a hash of the physical interpretation.”

Another example of a quantum model that was thought to have ghost states,
but in fact does not, is the Pais–Uhlenbeck oscillator model [16–18]. This model
has a fourth-order field equation, and for the past several decades it was thought
(incorrectly) that all such higher-order field equations lead inevitably to ghosts. It is
shown in [16] that when the Pais–Uhlenbeck model is quantized using the methods
of PT quantum mechanics, it does not have any ghost states at all.

There are many potential applications for PT quantum mechanics in areas such
as particle physics, cosmology, gravitation, quantum field theory, and solid-state
physics. These applications are discussed in detail in the recent review article in [5].
Furthermore, there are now indications that theories described by PT -symmetric
Hamiltonians can be observed in table-top experiments [49, 55, 56].

Having shown the validity and potential usefulness of PT quantum mechan-
ics, one may ask why PT quantum mechanics works. The reason is that C P is
a positive operator, and thus it can be written as the exponential of another oper-
ator Q: C P = eQ . The square root of eQ can then be used to construct a new
Hamiltonian H̃ via a similarity transformation on the PT -symmetric Hamiltonian
H : H̃ ≡ e−Q/2 HeQ/2. The new Hamiltonian H̃ has the same energy eigenvalues
as the original Hamiltonian H because a similarity transformation is isospectral.
Moreover, H̃ is Dirac Hermitian [52]; PT quantum mechanics works because there
is an isospectral equivalence between a non-Hermitian PT -symmetric Hamiltonian
and a conventional Dirac Hermitian Hamiltonian.

There are a number of elementary examples of this equivalence, but a nontrivial
illustration is provided by the Hamiltonian H in (12.2) at ε = 2. This Hamiltonian
is not Hermitian because boundary conditions that violate the L2 norm must be
imposed in Stokes wedges in the complex plane in order to obtain a real, positive,
discrete spectrum. The exact equivalent Hermitian Hamiltonian is H̃ = p2 + 4x4 −
2� x , where � is Planck’s constant [10, 24, 44]. The term proportional to � vanishes
in the classical limit and is thus an example of a quantum anomaly.
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Since PT symmetry is equivalent by means of a similarity transformation to
conventional Dirac Hermiticity, one may wonder whether PT quantum mechanics
is actually fundamentally different from ordinary quantum mechanics. The answer
is yes and, at least in principle, there is an experimentally observable difference
between PT -symmetric and ordinary Dirac Hermitian Hamiltonians. The quantum
brachistochrone provides a setting for examining this difference and provides a way
to discriminate between the class of PT -symmetric Hamiltonians and the class of
Dirac Hermitian Hamiltonians.

12.3 Complex Classical Motion

It is implicitly assumed in the derivation of the classical brachistochrone that the
path of shortest time of descent is real. However, it is interesting that if one allows
for the possibility of complex paths of motion, one can achieve an even shorter
time of flight. In this section we consider a simple classical-mechanical system.
Our purpose is to explain heuristically how extending a dynamical system into the
complex domain can result in faster-than-real time evolution.

To demonstrate that a shorter time of flight can be achieved by means of complex
paths, let us consider the classical harmonic oscillator, whose Hamiltonian is

H = p2 + x2 . (12.3)

If a particle has energy E = 1, then the classical turning points of the motion of
the particle are located at x = ±1. The particle undergoes simple harmonic motion
in which it oscillates sinusoidally between these two turning points. This periodic
motion is indicated in Fig. 12.1 by a solid line connecting the turning points. How-
ever, in addition to this oscillatory motion on the real-x axis, there are an infinite
number of other trajectories that a particle of energy E can have [7]. These classical
trajectories, which are also shown in Fig. 12.1, are all ellipses whose foci are located
at precisely the positions of the turning points. All of the classical orbits are periodic,
and all orbits have the same period T = 2π . Thus, a classical particle travels faster
along more distant ellipses.

Now suppose that a classical particle of energy E = 1 travels along the real-x
axis from some point x = −a to x = a, where a > 1. If the potential V (x) is
everywhere zero along its path, then it will travel at a constant velocity. However,
suppose that the particle suddenly finds itself in the parabolic potential V (x) = x2

when it reaches the turning point at x = −1 and that it suddenly escapes the influ-
ence of this potential at x = 1. Then, the time of flight from x = −a to x = a
will be changed because the particle does not travel at a constant velocity between
the turning points. Next, let us imagine that the potential V (x) = x2 is suddenly
turned on before the particle reaches the turning point at x = −1. In this case,
the particle will follow one of the elliptical paths in the complex plane around the
positive real axis. Just as the particle reaches the positive real axis the potential
is turned off, so the particle proceeds onward along the real axis until it reaches
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Fig. 12.1 Classical trajectories in the complex-x plane for the harmonic oscillator whose Hamil-
tonian is H = p2 + x2. These trajectories represent the possible paths of a particle whose energy
is E = 1. The trajectories are nested ellipses with foci located at the turning points at x = ±1. The
real line segment (degenerate ellipse) connecting the turning points is the usual periodic classical
solution to the harmonic oscillator. All closed paths have the same period 2π

x = a. This trip will take less time because the particle travels faster along the
ellipse in the complex plane.

We have arrived at the surprising conclusion that if the classical particle enters
the parabolic potential V (x) = x2 immediately after it begins its voyage up the real
axis, its time of flight will be exactly half a period, or π . Indeed, by traveling in the
complex plane, a particle of energy E = 1 can go from the point x = −a to the
point x = a in time π , no matter how large a is. Evidently, if a particle is allowed to
follow complex classical trajectories, then it is possible to make a drastic reduction
in its time of flight between two given real points.

12.4 Hermitian Quantum Brachistochrone

The quantum brachistochrone problem, as described briefly in Sect. 12.1, is similar
to the classical counterpart except that the optimization takes place in a Hilbert
space. Specifically, we are given a pair of quantum states, an initial state |ψI 〉 and
the final state |ψF 〉, and we would like to find the one-parameter family of unitary
operators {Ut } that achieves the transformation |ψI 〉 → |ψF 〉 = Ut |ψI 〉 in the
smallest possible time t . Since a one-parameter family of unitary operators can be
formed in terms of a Hermitian operator H as Ut = exp(−iHt/�), the problem
is equivalent to finding the Hermitian operator H that realizes the transformation
|ψI 〉 → |ψF 〉 in the shortest possible time.

The Hermitian operator H can be thought of as representing the Hamiltonian, so
the quantum brachistochrone problem is equivalent to finding the optimal Hamil-
tonian H satisfying exp(−iHt/�)|ψI 〉 = |ψF 〉. However, it is intuitively clear that
if we are allowed to have access to an unbounded energy resource, then the time
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required for the relevant transformation, irrespective of whether the Hamiltonian is
optimal or not, can be made arbitrarily small. Hence, for a quantum brachistochrone
problem to possess a nontrivial solution, some form of constraint is needed. The
simplest constraint is to assume that the energy is bounded so that the difference
between the largest and the smallest energy eigenvalues has a fixed value ω:

Emax − Emin = ω . (12.4)

A short calculation shows that if the Hamiltonian H is bounded, then (i) the standard
deviation of the energy is bounded according to

ΔH ≤ 1
2 (Emax − Emin) , (12.5)

and (ii) the state with maximum energy uncertainty is (|Emax〉 + |Emin〉)/
√

2. It
follows that the energy constraint (12.4) is equivalent to a constraint on energy
uncertainty.

The brachistochrone problem of this type has been analyzed recently and a solu-
tion was obtained by means of a variational method [27]. It has also been solved in
terms of a more elementary approach making use of the geometry of quantum state
space [20, 21]. We shall follow closely the latter approach here.

Let us now state the simplest form of the quantum brachistochrone problem:
We have a quantum system represented by an N -dimensional Hilbert space H and
a prescribed pair of states |ψI 〉 and |ψF 〉 on H. The problem is (a) to find the
Hamiltonian H satisfying the constraint (12.4) such that the unitary transformation
exp(−iHt/�)|ψI 〉 = |ψF 〉 is achieved in the shortest possible time and (b) to find
the time required to realize such an operation.

A little geometric intuition allows us to find the solution to this problem with
minimum effort. Recall that the time required for transporting a state along a path in
H is given by the distance divided by the speed. Hence, all we have to do is first iden-
tify the shortest path and measure its length and then allow the state to evolve along
the path with the greatest possible speed without violating the constraint (12.4).

In quantum mechanics the notion of distance is closely linked to the notion of
transition probability [22, 43]. In particular, by looking at the transition probability
between neighboring states we can derive the expression for the metric on the space
of quantum states. This allows us to measure distances between states. The idea can
be sketched as follows: Consider a state |ψ〉 in H and a neighboring state |ψ〉+|dψ〉.
The transition probability between these states is

cos2
(

1
2 ds

) = (〈ψ | + 〈dψ |)|ψ〉〈ψ |(|ψ〉 + |dψ〉)
〈ψ |ψ〉(〈ψ | + 〈dψ |)(|ψ〉 + |dψ〉) , (12.6)

where ds defines the line element on the space of pure states. By using

cos2
(

1
2 ds

) ≈ 1 − 1

4
ds2 , (12.7)
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expanding the right side of (12.6), and retaining terms of quadratic order, we find
that the line element is

ds2 = 4
〈ψ |ψ〉〈dψ |dψ〉 − 〈ψ |dψ〉〈dψ |ψ〉

〈ψ |ψ〉2
. (12.8)

This line element is known in geometry to arise from the Fubini–Study metric [47]
and it can be used to measure the distance of the shortest path joining a pair of points
on the space of pure quantum states.

If the Hilbert space is two dimensional, then a generic normalized state vector
|ψ〉 can be expressed in the form

|ψ〉 =
⎛

⎝

cos 1
2θ

sin 1
2θ eiφ

⎞

⎠ . (12.9)

A short calculation then shows that the Fubini–Study line element (12.8) reduces in
this case to the expression

ds2 = dθ2 + sin2 θ dφ2 , (12.10)

which we recognize as the line element on the Bloch sphere S. (The Bloch sphere
is the state space of two-level systems.)

In the case of an N -dimensional Hilbert space H, if we are given a pair of dis-
tinct states |ψI 〉 and |ψF 〉, then the linear span of these two states forms a two-
dimensional subspace of H. It should be intuitively clear that the shortest path join-
ing |ψI 〉 and |ψF 〉 should lie on this two-dimensional subspace. Thus, irrespective of
the dimensionality of H the solution to our quantum brachistochrone problem can
be obtained by analyzing the two-dimensional subspace spanned by |ψI 〉 and |ψF 〉.
Even when we restrict our attention to this subspace, there still remain infinitely
many unitary orbits that realize the transformation |ψI 〉 → |ψF 〉 = Ut |ψI 〉. How-
ever, since the two-dimensional state space is just the Bloch sphere S endowed with
the spherical metric (12.10), we see that there is a unique great circle arc that joins
|ψI 〉 and |ψF 〉 on S. (This assumes, of course, that |ψI 〉 and |ψF 〉 are not antipodal
points of the sphere. Otherwise, there are infinitely many such paths.) In this way
we have identified the shortest path joining |ψI 〉 and |ψF 〉. The shortest distance
smin between these two points of S is thus given by

smin = 2 arccos

( |〈ψI |ψF 〉|√〈ψI |ψI 〉〈ψF |ψF 〉
)

. (12.11)

This result can also be obtained by integrating the line element (12.10) along the
great circle arc on S.

Having obtained the distance of the shortest path we proceed to find the max-
imum speed at which the state can evolve unitarily. For the evolution of the state
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we must consider the general Schrödinger equation, but we also need to express the
equation in the correct form. This is the so-called modified Schrödinger equation

d|ψt 〉
dt

= − i

�
H̃ |ψt 〉 . (12.12)

In this equation the mean-adjusted Hamiltonian H̃ is given by

H̃ = H − 〈H〉 , (12.13)

where

〈H〉 = 〈ψ |H |ψ〉
〈ψ |ψ〉 . (12.14)

Note that 〈H̃〉 = 0 and that according to (12.12) the tangent vector d
dt |ψt 〉 is every-

where orthogonal to the direction of the state [46]. Since the energy expectation 〈H〉
depends on the state |ψ〉, the modified Schrödinger equation appears to be nonlinear.
However, this is not the case. The point is that the expectation value of the Hamil-
tonian is a constant of the motion under the Schrödinger dynamics. Thus, given the
initial state |ψI 〉, we calculate 〈H〉 in this state and subtract this number from the
Hamiltonian. Since the Hamiltonian in quantum mechanics is defined only up to
an additive constant, this modification does not alter the physics in any way. It is
worthwhile noting that the modified Schrödinger equation (12.12) is canonical and
reduces to the standard eigenvalue problem when the state |ψt 〉 is time independent
without one having to evoke the correspondence principle [22].

If the initial state vector |ψI 〉 is normalized, then the evolution (12.12) preserves
the norm. It follows that 〈ψ |dψ〉 = 0. Since the speed v of quantum evolution is
given by v = ds/dt , we find from (12.8) and (12.12) that

v2 = 4

�2
〈ψt |(H − 〈H〉)2|ψt 〉 = 4

�2
〈ψI |(H − 〈H〉)2|ψI 〉 . (12.15)

This shows that the speed of quantum evolution is given by the energy uncer-
tainty. The expression (12.15) for the speed of quantum evolution is known as
the Anandan–Aharonov relation [1]. Since we know from (12.5) that under the
constraint (12.4) the energy uncertainty ΔH is bounded by 1

2ω, we find that the
maximum speed of quantum evolution is given by

vmax = ω

�
. (12.16)

By using the results in (12.11) and (12.16) we deduce that the minimum time
required for realizing the unitary transportation |ψI 〉 → |ψF 〉 = Ut |ψI 〉 is given
by the ratio smin/vmax. In particular, if |ψI 〉 and |ψF 〉 are orthogonal, then they
correspond to antipodal points on the Bloch sphere S, and we have smin = π . In
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Fig. 12.2 (Color online) Optimal Hamiltonian for quantum state transportation. The two-
dimensional complex Hilbert space spanned by the initial state |ψI 〉 and the final state |ψF 〉 can be
visualized in real terms as a Bloch sphere S . The two states |ψI 〉 and |ψF 〉 can then be identified
as a pair of points on S . Assuming that these two points are not antipodal, there exists a unique
great circle arc joining these two points, which determines the shortest path joining the two states.
The optimal way of unitarily transporting |ψI 〉 into |ψF 〉 is therefore to rotate the sphere along the
axis orthogonal to the great circle. The axis of rotation then specifies two quantum states: |E−〉 and
|E+〉. These states are the eigenstates of the optimal Hamiltonian H

this case, the minimum time required to orthogonalize the state (that is, for the state
to evolve into a new state that is orthogonal to the original state) is known as the
passage time τP [19, 59]. The passage time is explicitly

τP = π�

2ΔH
= π�

ω
. (12.17)

The passage time (12.17) provides the bound in Hermitian quantum mechanics for
transporting a state into an orthogonal state and is sometimes referred to as the
Fleming bound [33].

The ratio smin/vmax gives the solution to part (b) of our quantum brachistochrone
problem. To solve part (a), that is, to find the optimal Hamiltonian, we argue as
follows: Since the problem is confined to a two-dimensional subspace of H, the
solution can be obtained by elementary trigonometry on the Bloch sphere S. The
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key idea is to recall that the shortest path joining |ψI 〉 and |ψF 〉 is a great circle
arc on S. Without loss of generality, we can assume that |ψI 〉 and |ψF 〉 lie on the
equator of S with respect to a suitable choice of axis. Then, the unitary motion
along the shortest path can be generated by the rotation of S along this axis. Since
the eigenstates of the Hamiltonian H that generates such a rotation correspond to
the antipodal points along this axis, the pair of states |ψI 〉 and |ψF 〉 can both be
expressed as equal superpositions of the eigenstates of H with the relative phase
shifted by smin. Writing |E+〉 and |E−〉 for the normalized eigenstates of H and
using α = smin/2, we can express the initial and final states in the form

1√
2

(|E−〉 + e−iα|E+〉
) = |ψI 〉 and 1√

2

(|E−〉 + eiα|E+〉
) = |ψF 〉 . (12.18)

Solving these equations for |E+〉 and |E−〉, we obtain

|E−〉 = i√
2 sinα

(

e−iα|ψF 〉 − eiα|ψI 〉
)

(12.19)

and

|E+〉 = − i√
2 sinα

(|ψF 〉 − |ψI 〉
)

. (12.20)

These are the eigenstates of the optimal Hamiltonian H that generate the unitary
motion |ψI 〉 → |ψF 〉 = Ut |ψI 〉 along the shortest path. The eigenvalues of the
optimal H can be arbitrary as long as condition (12.4) is satisfied. Without loss of
generality, we may assume H to be trace free, and we obtain the solution to part (a)
of the quantum brachistochrone problem:

H = 1
2ω|E+〉〈E+| − 1

2ω|E−〉〈E−| . (12.21)

This is the “minimal” solution to the problem in the sense that H acts only on the
two-dimensional subspace of H while leaving the rest of H unperturbed.

As a special example, consider the problem of a spin flip, that is, turning a spin-up
state into a spin-down state unitarily. In this case the initial and final states can be
written as

|ψI 〉 =
(

1

0

)

and |ψF 〉 =
(

0

1

)

(12.22)

in the spin-z basis. Substituting these into (12.19) and (12.20), we find that the
eigenstates of the optimal Hamiltonian are

|E−〉 = 1√
2

(
1

1

)

and |E+〉 = i√
2

(
1

−1

)

(12.23)

because in this case we have α = π/2. Substituting this result into (12.21) yields
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H = 1
2

(

0 −ω
−ω 0

)

(12.24)

for the optimal Hamiltonian. By using the relation

eiφσ·n = cosφ1 + i sinφσ · n , (12.25)

where n is a unit vector and

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

(12.26)

are Pauli matrices, we obtain the following expression for the optimal unitary oper-
ator:

Ut =
⎛

⎝

cos
(
ωt
2�

) −i sin
(
ωt
2�

)

−i sin
(
ωt
2�

)

cos
(
ωt
2�

)

⎞

⎠ . (12.27)

It follows at once that the optimal unitary orbit |ψt 〉 = Ut |ψI 〉 is given by

|ψt 〉 =
(

cos
(
ωt
2�

)

−i sin
(
ωt
2�

)

)

. (12.28)

We find that the first time at which |ψt 〉 reaches |ψF 〉 is given by the condition
ωt/2� = π/2, that is, when t = τP, where τP is the passage time given in (12.17).

We have seen how the simplest form of a quantum brachistochrone problem
can be solved in Hermitian quantum mechanics by considering a two-dimensional
Hilbert subspace combined with elementary geometric constructions on it. In a more
general situation the unitary motion may be constrained further so that the opti-
mal Hamiltonian (12.21) may not be implementable. For example, the constraint
may enforce the path of the unitary evolution to lie in a three- rather than two-
dimensional subspace. To determine what happens let us work out the passage time
for this example.

Since in this case the minimal solution H to the brachistochrone problem is a
three-dimensional matrix, we can express the initial state |ψI 〉 in terms of the three
eigenstates of H according to

|ψI 〉 = cosα|Ei 〉 + sinα cosβeiφ |E j 〉 + sinα sinβeiϕ |Ek〉 , (12.29)

where α, β are angular coordinates, φ, ϕ are phase variables, and we assume that
Ei < E j < Ek . If a unitary operator UT transforms this state into an orthogonal
state, then the condition

cos2 α + sin2 α cos2 βe−iω j i T/� + sin2 α sin2 βe−iωki T/� = 0 (12.30)
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must be satisfied, where ω j i = E j − Ei and ωki = Ek − Ei . To render the anal-
ysis more tractable, we simplify this constraint by assuming that α = β = π/4.
Then (12.30) implies that a necessary condition for the state |ψI 〉 to evolve into an
orthogonal state is given by the relation

ωki

ω j i
= 2m − 1

2n − 1
, (12.31)

where m, n are natural numbers such that m �= n.
Thus, the solution to the brachistochrone problem must be such that the eigen-

values of H satisfy condition (12.31) as well as the constraint Emax − Emin ≤ ω.
Assuming that these constraints are indeed satisfied, the initial state evolves into
an orthogonal state |ψF 〉. The first time that |ψI 〉 evolves into a state orthogonal to
|ψI 〉, in particular, is given by

T = π�

ω j i
= 3π�

ωki
. (12.32)

However, since in this case Ut |ψI 〉 does not describe a geodesic path, T will be
larger than Fleming’s passage time τP given in (12.17). Indeed, without loss of gen-
erality we may set Ei = 0. Then, it is straightforward to verify that T = √

6τP. This
follows from the fact that under the constraint ωki = 3ω j i that comes from (12.32),
the squared energy dispersion in the state (12.29) with α = β = π/4 is given by
ΔH 2 = 3

2ω
2
j i .

12.5 Non-Hermitian Quantum Brachistochrone

We have seen how the solution to the simple brachistochrone problem can be
obtained in the Hermitian quantum theory. What happens if we extend the quantum
theory into the complex domain by looking at a PT -symmetric theory? We saw ear-
lier that in classical mechanics if we were to allow for a complex path interpolating
a pair of real points of the coordinate space, then it is possible (at least mathemati-
cally) to transport a particle across a large distance in virtually no time. It turns out
that an analogous situation emerges in the PT -symmetric theory. Here we present
a simple algebraic calculation of the optimal evolution time from an initial state to
a final state by using a simple 2 × 2 Hamiltonian. As we have remarked above,
the 2 × 2 model suffices to cover general cases because in the case of our simple
brachistochrone problem the solution is found on the two-dimensional subspace of
the Hilbert space spanned by the initial state |ψI 〉 and the final state |ψF 〉. In the
case of a PT -symmetric Hamiltonian the variational approach gives a more direct
way to handle the brachistochrone problem. Thus, we shall first briefly revisit the
Hermitian case but expressed in the variational formalism and then we will compare
the result to its PT -symmetric counterpart.
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12.5.1 Hermitian 2 × 2 Matrices

We choose a basis so that the initial and final state vectors take the form

|ψI 〉 =
(

1
0

)

and |ψF 〉 =
(

a
b

)

, (12.33)

where the condition that |ψF 〉 be normalized is |a|2 + |b|2 = 1. The most general
2 × 2 Hermitian Hamiltonian is

H =
(

s r e−iθ

r eiθ u

)

(r, s, u, θ real) . (12.34)

For this Hamiltonian the eigenvalue constraint (12.4) takes the form

ω2 = (s − u)2 + 4r2 . (12.35)

To find the optimal Hamiltonian satisfying this constraint, we rewrite H as a
linear combination of Pauli matrices:

H = 1
2 (s + u)1 + 1

2ωσ·n , (12.36)

where

n = 1

ω
(2r cos θ, 2r sin θ, s − u) (12.37)

is a unit vector. Then by the use of identity (12.25) the evolution equation |ψF 〉 =
e−iHτ/�|ψI 〉 can be expressed in the form

(

a
b

)

= e−
1
2 i(s+u)t/�

⎛

⎝

cos ωt
2�

− i s−u
ω

sin ωt
2�

−i 2r
ω

eiθ sin ωt
2�

⎞

⎠ . (12.38)

The second component of this equation gives |b| = 2r
ω

sin ωt
2�

, which allows us to
find the required time of evolution:

t = 2�

ω
arcsin

ω|b|
2r

. (12.39)

We must now minimize the time t over all r > 0 while maintaining the energy
constraint in (12.35). This constraint tells us that the maximum value of r is 1

2ω. At
this value we have s = u. Because H can be made trace free, we can set s = u = 0.
The variable θ in (12.36) does not affect the eigenvalues, so we may set θ = π . Then
we recover the optimal Hamiltonian obtained in (12.24). As regards the minimum
evolution time τ we have
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τ = 2� arcsin |b|
ω

. (12.40)

In the special case for which a = 0 and b = 1 so that |ψI 〉 and |ψF 〉 are orthogonal,
we recover the passage time τ = τP = π�/ω, the smallest time required for a spin
flip .

Although the form of the result in (12.40) resembles the statement of the uncer-
tainty principle, it is merely the statement indicated above that rate ×time=distance;
the maximum speed of evolution is given by ΔH , and the distance between |ψI 〉
and |ψF 〉, assuming they are normalized, is given by 2 arccos(|〈ψF |ψI 〉|). Since
|〈ψF |ψI 〉| = |a| and |a| =

√

1 − |b|2, we obtain (12.40) from the relation

arccos
√

1 − |b|2 = arcsin|b| . (12.41)

12.5.2 Non-Hermitian 2 × 2 Matrices

We now show by direct calculation that for a PT -symmetric Hamiltonian, τ can be
arbitrarily small. This is because a PT -symmetric Hamiltonian whose eigenvalues
are all real is equivalent to a Hermitian Hamiltonian via H̃ = e−Q/2 HeQ/2, where
Q is Dirac Hermitian. The states in a PT -symmetric theory are mapped by e−Q/2

to the corresponding states in the Dirac Hermitian theory. But, the overlap distance
between two states does not remain constant under a similarity transformation. We
can exploit this property of the similarity transformation to overcome the Hermitian
lower limit on the time τ . (The detailed calculation is explained in [14].)

We consider the general class of PT -symmetric 2 × 2 Hamiltonians having the
form

H =
(

r eiθ s
s r e−iθ

)

(r, s, θ real) . (12.42)

The time-reversal operator T performs complex conjugation and the parity operator
in this case is given by

P =
(

0 1

1 0

)

. (12.43)

The two eigenvalues

E± = r cos θ ±
√

s2 − r2 sin2 θ (12.44)

are real if s2 > r2 sin2 θ . This inequality defines the region of unbroken PT sym-
metry. The unnormalized eigenstates of H are
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|E+〉 =
(

eiα/2

e−iα/2

)

and |E−〉 =
(

ie−iα/2

−ieiα/2

)

, (12.45)

where α is given by sinα = (r/s) sin θ . Note that the condition of unbroken PT
symmetry of H in (12.42) implies that α is real. The C operator required for defining
the Hilbert space inner product is

C = 1

cosα

(

i sinα 1
1 −i sinα

)

. (12.46)

It is easy to verify that the C PT norms of both eigenstates have the value
√

2 cosα.
To calculate τ we express the Hamiltonian H in (12.42) as

H = (r cos θ )1 + 1
2ωσ·n , (12.47)

where

n = 2

ω
(s, 0, ir sin θ ) (12.48)

is a unit vector. The energy constraint requires that the squared difference between
energy eigenvalues is

ω2 = 4s2 − 4r2 sin2 θ . (12.49)

The positivity of ω2 is ensured by the condition of unbroken PT symmetry. Notice
that (12.49) differs from (12.35) by a sign. We can think of (12.49) as being hyper-
bolic in character, while (12.35) is elliptic in character. The technical advantage of
the constraint in (12.49) is that because of the minus sign both terms on the right
side can become large without violating the condition that ω be fixed. We will see
that it is this fact that allows the non-Hermitian Hamiltonian H in (12.42) to achieve
faster-than-Hermitian time evolution.

To determine τ we write down the PT -symmetric time-evolution equation in
vector form:

e−iHt/�

(

1
0

)

= e−itr cos θ/�

cosα

⎛

⎝

cos( ωt
2�

− α)

−i sin
(
ωt
2�

)

⎞

⎠ . (12.50)

In particular, consider the pair of vectors used in the Hermitian spin-flip case as

in (12.22). Observe that the evolution time t needed to reach |ψF 〉 =
(

0
1

)

from

|ψI 〉 =
(

1
0

)

is given by

t = (2α − π )�

ω
. (12.51)
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Optimizing this result over allowable values for α as α approaches 1
2π , the optimal

time τ tends to zero, a dramatic change from the Hermitian result in (12.17)! Note,
however, that the two vectors in (12.22) are not orthogonal with respect to the C PT
inner product. This is the reason that the Fleming bound in (12.17) is not violated.

12.6 Extension of Non-Hermitian Hamiltonians to
Higher-Dimensional Hermitian Hamiltonians

We have seen how a quantum state can be transported unitarily into another state
in arbitrarily short time by using a bounded Hamiltonian if we allow for a com-
plex path interpolating them in the space of unitary motions. Can such an opera-
tion be implemented in practice? If the answer is affirmative, then the implication
is immense in quantum information, computation, cryptography, and other related
fields. For example, if a quantum computer were to exist, then solutions to difficult
optimization problems can in principle be found in arbitraily short time, and this in
turn would have important implications in society as a whole.

A gedanken experiment was proposed in [14] to realize this effect in a laboratory.
The setup is as follows: we use a Stern–Gerlach filter to create a beam of spin-up
electrons. The beam then passes through a black box containing a device governed
by a PT -symmetric Hamiltonian that flips the spins unitarily in a very short time.
The outgoing beam then enters a second Stern–Gerlach device that verifies that the
electrons are now in spin-down states. In effect, the black box device is applying a
complex magnetic field B:

B = (s, 0, ir sin θ ) . (12.52)

If the field strength has sufficiently large amplitude, then spins can be flipped in
virtually no time because the complex path joining these two states is arbitrarily
short without violating the energy constraint in (12.49). We emphasize that the fact
that the field strength can be made large without violating the energy constraint
(12.4) is a consequence of the hyperbolic representation in (12.49).

The arbitrarily short alternative complex pathway from an up state to a down
state, as illustrated by this thought experiment, is reminiscent of the short alterna-
tive distance between two widely separated space–time points as measured through
a wormhole in general relativity. This comparison is of course controversial, and it
has subsequently motivated much research and it has generated a lively debate in the
literature [2, 15, 34, 36, 37, 50, 53, 54, 57]. We emphasize that the entire package
of flipping the spin is not realized by a unitary operation. This follows from the fact
that PT -symmetric quantum theory is unitary, and as such it respects the Fleming
bound (12.17) applicable to all unitary theories [14]. The point is that the “black
box” scheme described above actually consists of three regimes: (i) the prepara-
tion of a spin-up state in the Hermitian setup, (ii) the fast unitary motion to flip
the spin using a PT -symmetric Hamiltonian, and (iii) the recovery of a spin-down
state in the Hermitian setup. Thus, the operation is locally unitary, but the switching
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between Hermitian and PT -symmetric description is not unitary. This three-step
process of switching Hamiltonians is analogous to the classical procedure described
in Sect. 12.3 for obtaining faster-than-real time evolution. Recall that in the classical
case we were able to transport a finite-energy particle across a large distance in a
short time by switching the potential through which it was traveling. Note that in
the classical case there is no question of violating unitarity because the particle does
not get lost.

The question of unitarity and faster-than-Hermitian time evolution has been reex-
amined in more detail in [36, 54] by means of a geometric approach and also in [2],
where a more general class of non-Hermitian Hamiltonians that are not necessar-
ily PT symmetric are considered. In particular, Mostafazadeh has emphasized the
role of quantum observables in such an experiment; the spin operator in Hermitian
quantum mechanics cannot be interpreted as a spin operator in the PT -symmetric
counterpart, thus leading to ambiguities regarding the physical interpretation of the
gedanken experiment described above.

An intriguing alternative proposal for an implementation of the fast spin flip has
been made more recently by Günther and Samsonov [37]. The idea is to embed the
problem into a Hermitian setup represented by a higher-dimensional Hilbert space.
Specifically, take our PT -symmetric Hamiltonian H in (12.42). The eigenstates of
H are not orthogonal with respect to the Hermitian inner product. Since H is not
Hermitian, its Hermitian conjugate defines a new matrix H †. The eigenstates of H †

thus also define a pair of nonorthogonal states in the Hermitian theory. When these
four states are suitably normalized, they can be used to form an over-complete basis
set in the Hermitian two-dimensional Hilbert space. Such an over-complete set of
basis is also known as a positive operator-valued measure (POVM), commonly used
in the analysis of quantum information theory. A key idea is that such a basis can
be embedded in a higher-dimensional Hilbert space to form an orthogonal basis by
using the Naimark dilation [41]. A Hermitian Hamiltonian can then be constructed –
in this case a 4 × 4 matrix – such that its eigenstates are precisely the four states
thus obtained. Using this Hamiltonian it is possible to construct a standard unitary
motion in such a way that the induced motion obtained by the projection onto the
two-dimensional subspace is characterized by the PT -symmetric motion (12.50).

In this way, Günther and Samsonov were able to show that the fast spin flip
can in principle be realized in the standard Hermitian quantum mechanics by a
combination of a unitary motion and a projection in a larger-dimensional Hilbert
space. In practical terms this means that one should couple the spin to an auxiliary
particle (this can be done either by a projection or by a unitary operation), apply
a unitary evolution in the larger Hilbert space of the combined system, and finally
project out the auxiliary particle to recover the spin in the transported state. The net
effect of such an operation can then be characterized by (12.50). The passage time
is apparently violated due to the general fact that when a unitary motion is projected
to a subspace of a Hilbert space, the resulting dynamics need not respect laws of
unitarity. It would be of considerable interest to find out whether the Günther and
Samsonov scheme can actually be implemented in a laboratory, and if not, what
might be the difficulty preventing the violation of the Fleming bound.
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Chapter 13
Atomic Clocks

Robert Wynands

13.1 Introduction

Time is a strange thing. On the one hand it is arguably the most inaccessible physical
phenomenon of all: both in that it is impossible to manipulate or modify – for all
we know – and in that even after thousands of years mankind’s philosophers still
have not found a fully satisfying way to understand it. On the other hand, no other
quantity can be measured with greater precision. Today’s atomic clocks allow us to
reproduce the length of the second as the SI unit of time with an uncertainty of a
few parts in 1016 – orders of magnitude better than any other quantity. In a sense,
one can say [1]

Time? We don’t know what it is, but we know how to measure it!

This chapter is written in this spirit, from the point of view of an “atomic clock-
maker”. The goal is to explain why and what for we need man-made clocks at all to
tell us the time, how a clock and today’s atomic clocks, in particular, work, and what
the atomic clocks of the future might look like. In the initial parts of this chapter the
material will be presented on an elementary level suitable for a general audience,
and in later sections the physical details will be covered with more rigor, including
discussion of the influence of quantum aspects of its operation.

There exist a number of books on atomic clocks and atomic frequency standards,
of course. The “bible”, so to speak, is the two-volume book by Vanier and Audoin
[2]. It covers in great detail the most commonly used frequency standards, with the
exception of fountain clocks and optical clocks which did not exist at the time this
standard reference work was written. Some modern developments are covered in the
book by Riehle [3].

R. Wynands (B)
Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany,
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13.2 Why We Need Clocks at All

Why, indeed? Everybody knows a day consists of 24 h of 60 min of 60 s each. So
why not just divide the interval between noon today and noon tomorrow, as indicated
by the Sun reaching the highest point along its trajectory across the sky, by 86,400,
and then we know how long a second is?

13.2.1 Why Not Use Celestial Motion?

The problem with this definition of the length of the second is that the “solar day”,
defined as the time interval between two successive local noons, is not constant over
the course of the year. In temperate latitudes it varies by as much as a minute, with
the solar day in the Northern winter half a minute longer than the yearly average
and half a minute shorter in September.

But even basing the second on the average duration of the day is not a good
option. In the 1930s Scheibe and Adelsberger at Physikalisch-Technische Reichs-
anstalt were developing highly precise quartz clocks. Not only could they observe
the gradual slow down of Earth’s rotation due to tidal friction but they were the first
to detect the irregularities in the rotation of the Earth due to mass redistributions
within the Earth (magma movements, earthquakes) and on the Earth (weather, ocean
currents) [4–7]. With today’s technology these irregularities in the position and ori-
entation of Earth’s axis of rotation and in the length of the day can be monitored
on a day-by-day basis. Measured data and predictions over several months can be
obtained via the Internet from the web site of the International Earth Rotation and
Reference Systems Service [8].

Until 1967 the length of the second in the International System of Units (SI) was
defined in a rather complicated fashion based on the length of the year. In that year
the astronomy-based definition was abandoned in favour of a definition still valid
today:

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the 133Cs atom.

In order to realize this definition with highest possible accuracy one therefore has to
build a caesium atomic clock.

13.2.2 A Brief History of Clocks

The passing of time has always held a special importance to mankind. Calendar
sticks and cave paintings dating back to the Stone Age have been found; solar clocks
were used in ancient Egypt, as were water clocks (clepsydras). The first mechanical
clocks appeared in central Europe during the thirteen century and became an imme-
diate success: Although they lost or gained a significant part of an hour each day
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Fig. 13.1 Historical development of mankind’s clock-making ability, using the daily clock error
as a criterion

they were good enough to fill the magistrates of neighbouring towns with envy, who
then hurried to acquire such a symbol of progress, too (Fig. 13.1).

The first practical pendulum clocks were built by Huygens around 1670. Their
daily error was of the order of 10 s, or a relative error of only 10−4. This remarkable
feat serves to show how special the measurement of time is in metrology. It is not
easier to measure the passing of time compared to other metrological tasks, but with
proper effort it can be done much better than for any other quantity. It was like this
in the seventeen century, and it is still in this way in the twenty-first century.

Another development of note in the time line (Fig. 13.1) is the invention of the
chronometer by John Harrison in the eighteen century. It was developed and used
in navigation at sea to determine one’s longitude. The interesting story surrounding
this multi-decade quest by an English carpenter has been told in a famous book
[9]. The best mechanical clocks, relying on a mechanical pendulum swinging in a
vacuum, could reach inaccuracies of about a second per year; they reached the end
of their development around 1900.
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The quartz clock, invented in 1929, immediately brought an improvement by an
order of magnitude. The first caesium atomic clock, in 1955, ushered in a rapid and
accelerating development has led to caesium atomic clocks that lose or gain less than
100 ps per day, i.e. that have an uncertainty of better than 10−15. This corresponds
to a microsecond in 35 years or a nanosecond in 2 weeks. Optical clocks envisioned
for the future offer the prospect of reaching uncertainties of 10−18, corresponding to
only half a second over the age of the universe.

13.2.3 Who Needs Precise Time?

Today one can buy a fist-sized atomic frequency standard for a few hundred euros.
It offers a relative instability at 1 s and at 1 day of averaging time of about 10−11.
If this stability of a microsecond per day could be scaled up to a human lifetime,
it would correspond to a mere 0.02 s. Mind-boggling as this sounds, we all rely on
this kind of performance everyday. That is because those compact atomic clocks are
employed in cellphone networks to help with the synchronization within a cell [10].

The performance of the atomic clocks aboard the satellites for navigation systems
like GPS, GLONASS or Galileo is about 10-fold better and of the clocks in the
ground stations another factor of 100–1000.

Other, less demanding timing and synchronization are required for financial
transactions, in the managing of electrical power distribution grids, and many other
contexts of our daily lives.

So, who needs precise time? All of us!

13.2.4 International Timescales

About 300 atomic clocks from more than 50 institutions worldwide contribute to
the generation of the various international timescales. This process is organized by
the International Bureau of Weights and Measures (BIPM) near Paris. Most of the
clocks are either commercial caesium atomic clocks with an uncertainty down to
2 × 10−13 for the best models or hydrogen masers. Two primary clocks, PTB-CS1
and PTB-CS2, enter at this stage, too; for several decades they have been the only
primary clocks actually running continuously as a clock to assist in the generation
of international timescales.

Participating laboratories mutually compare their clocks (using a variety of
satellite-based techniques) “round the clock”, so to speak. Some details can be
found in the tutorial by Levine, for instance [11]. The data from all these continuous
pair-wise comparisons are used by BIPM scientists to form a weighted mean, called
Echelle Atomic Libre (EAL), free atomic timescale. Stable clocks obviously get a
higher weight than less stable clocks, up to some maximum weight [12]. EAL is
a very stable timescale but its scale unit is not necessarily coincident with the SI
second.

In a second step, the rate of EAL is adjusted by a correction (6.758 × 10−13 as
of June 2008 [13]) to obtain a timescale with a scale interval as close as possible to
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the SI second. This scale is called International Atomic Time (TAI). The rate of TAI
is calibrated by comparing any one of the clocks participating in the generation of
EAL to a primary clock, nowadays typically a caesium fountain clock.

The rates of EAL and TAI are published in the bulletin Circular-T around the
middle of each month, based on the measured data for the previous month. This
delay is one reason why the scale interval of TAI is not exactly the SI second at any
one time. For instance, in June 2008 the scale interval of TAI differed from the SI
second by 3.3 × 10−15 [13]. Another reason is that most users of atomic timescales
place more importance on a stable scale even if its ticks are not spaced by exactly
1 SI second. Therefore any steering corrections can only be applied at a maximum
“slew rate”. And finally, there is another variable delay of weeks or months until
the laboratories running primary clocks have communicated their results of TAI
calibrations to BIPM.

The timescale that we use in everyday life is derived from Coordinated Universal
Time (UTC), with an adjustment for the respective time zone. UTC in turn is derived
from TAI by subtraction of an integer number of seconds, 33 as of this writing
(Fig. 13.2).

Unfortunately, after 24 h on a TAI clock Earth has (on average) not quite com-
pleted a full rotation around its axis – there is a lag of about 2 ms. This is because at
the time when the astronomical definition of the second was fixed the Earth rotated
slightly faster around its axis, but since then it has been slowed down by tidal friction
(see also Sect. 13.2.1). Over the course of a year and a half on average, the daily lags
add up to about 1 s. By international convention, it is then that an additional second,
a leap second, is introduced into UTC and the times in the various time zones around
the Earth. This additional second is usually introduced into UTC as 23:59:60 h on
December 31 or June 30. As of this writing, the last time this happened was on
31 December 2005 (Fig. 13.3). At what time another leap second will be inserted
depends on the irregular rotation of the Earth, which is hard to predict with sufficient

Fig. 13.2 The relation between timescales TAI, UTC, and the standard time in a time zone other
than that of Greenwich (here Central European Time, “MEZ” in German). Obviously, this photo-
graph was taken before 31 December 2008 leap second increased the lag of UTC with respect to
TAI to 34 s
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Fig. 13.3 The difference between UTC and TAI over the last decades (step-like curve) and the
time lag of Earth’s rotation phase UT1 with respect to TAI (smooth curve). The data beyond July
2008 are an extrapolation calculated by IERS

accuracy over more than a few months. A leap second is announced about half a year
in advance by a bulletin of the International Earth Rotation and Reference Systems
Service (IERS) [8]. For instance, Issue 36 of Bulletin-C of the IERS published on
04 July 2008 announces another leap second at 23:59:60 h UTC on 31 December
2008 [14]. From then on UTC will lag TAI by 34 s – until the next leap second.

More information on the history and present situation regarding timescales can
be found in a review [15].

13.3 What Is a Clock?

From the clock-maker’s perspective, which we are assuming in this chapter, a prac-
tical description of a clock is this: It is a combination of a frequency standard and
a counter. The frequency standard (think of the pendulum in a pendulum clock)
provides a periodic sequence of events with a period of known length. The counter
(the clockwork consisting of cogs and wheels in the case of a pendulum clock)
counts the number of oscillation periods that have passed since some initial moment
in time and translates this into a suitable display of the passing of time, for instance,
by moving clock hands around a dial.

In the example of a quartz wrist watch the frequency standard is formed by a
specially shaped quartz crystal oscillating at 32,768 Hz. The counter is an electronic
circuit that counts off 32,768 periods and then advances the display by 1 s. Even
the good old hour glass fits the above definition. The period is given by the time
the grains of sand or egg shell need to trickle through into the lower compartment,
while the counting is done by a human operator reversing the hour glass once all
grains have trickled through.
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All the clockmaker’s expertise goes into ensuring that the period of the frequency
standard remains constant, not only when the clock itself ages but also when the
conditions around it change. For instance, in an ill-constructed pendulum clock the
oscillation period might increase when a temperature rise leads to a lengthening of
the pendulum. Issues of air pressure, humidity and also aging properties of materials
and greases need to be taken into account and compensated. In an atomic clock,
other effects can lead to a change of the period, like changes in magnetic fields or
collisions of atoms among themselves or with the walls of a container.

Let us define a few technical terms here for use in the remainder of this chapter
(for the full formal definitions of metrological terms, see [16]). When the clock
period is different from its nominal value, this is called a frequency bias. Such a
bias is typically caused by a systematic effect, for instance, by the Zeeman effect
shifting an atomic energy level in the presence of a magnetic field. The uncertainty
of a frequency standard describes how sure we can be that the period matches its
expected or nominal value, for instance, how well a clock reproduces the length
of the SI second. Of course there will always be a certain amount of period-to-
period fluctuation (noise) in the length of the period, as characterized by the standard
deviation of the noise; this is called the instability of the standard. If a clock is
switched off and switched on again at a later time the reproducibility specifies how
well the new clock output frequency matches the previous one; this last parameter
is sometimes called frequency retrace in technical specifications of commercially
available atomic clocks.

The terms primary and secondary frequency standards both denote a device that
has been thoroughly characterized such that all potential frequency biases are either
excluded or, if they cannot be avoided, at least understood so well that one can
correct the standard’s output by a corresponding amount. If such a standard is based
on the very transition used to define the length of the SI second, it is called a primary
standard.

Note that from a pragmatic point of view a clock with a bias is just as usable for
precise timing as a clock without bias, provided the bias is known with sufficient
precision. All one needs to do is to correct the clock’s display by the daily bias
multiplied by the number of days that have passed. This only works as well as the
value of the bias is known – as quantified by the uncertainty of the clock. Deter-
mining and minimizing this uncertainty is perhaps the major task of the atomic
clock-maker: thinking about effects that could lead to a frequency bias, avoiding
them or correcting for them, and ensuring that operating conditions and corrected
frequency biases remain constant.

13.4 How an Atomic Clock Works

Simply put: Just like any other clock! The underlying phenomenon of known
duration in this case is the period of oscillation of an atomic transition moment
between two quantum states or of the electromagnetic wave needed to induce it. The
clockwork in general consists of sophisticated electronic circuitry, although lasers
are coming more and more into play.
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Fig. 13.4 Principle of operation of the atomic frequency standard. The output of an oscillator
probes a spectral feature and a detector registers the response of the system. A servo loop uses this
signal to retune the oscillator to the desired working point along the spectral feature. The external
output of the oscillator is thus referenced to an internal feature of the atom (or molecule or ion)

In an atomic clock the frequency standard is based on a transition between
energy levels in a quantum system, for instance, an atom, an ion or a molecule.
By stabilizing the frequency of an oscillator to this transition frequency one can
counteract technical noise, aging or other sources of drift of the oscillator fre-
quency. Figure 13.4 shows the main principle of operation of such an atomic fre-
quency standard. The oscillator not only provides the output signal of the stan-
dard but also is used to interrogate a spectral feature in the quantum system.
This spectral line is used as a frequency discriminator. A frequency excursion of
the oscillator leads to a change in detected signal. A servo loop then tunes the
oscillator back to the desired working point along the profile of the spectral fea-
ture, for instance an atomic absorption line. The output of the frequency standard
therefore serves as a macroscopic representation of a microscopic property of the
atom in question, for instance, the energy difference between two particular energy
levels.

In order to characterize and quantify the frequency instability of a clock one
could in principle just compute the standard deviation of a sequence of clock read-
ings relative to a perfect (or at least a much better) clock. The smaller the number,
the more stable the clock is. However, using this definition a clock with a very stable
bias would erroneously be assigned a high instability. Even worse, this standard
deviation grows with time!

Instead, the time-and-frequency community uses the two-sample relative Allan
standard deviation σy , or its square, the Allan variance σ2

y [17], which will be
described in the following. Consider the sequence of time intervals xi between the
“tick” of the clock under test and the “tick” of a perfect clock, taken at regular time
intervals τ . Next compute the normalized instantaneous frequency

yi = (xi+1 − xi )/(2πν0τ ) , (13.1)

where ν0 is the clock’s nominal tick frequency. Normalizing the instantaneous fre-
quency by the nominal one has the advantage that the relative stabilities of oscilla-
tors running at very different frequencies can be compared in a meaningful way.
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The variance of the sequence of yi estimated from a sample of size N – the
N -sample variance – is

s2
y = 1

N − 1

〈
N
∑

i=1

(yi − ȳ)2

〉

, (13.2)

where ȳ = (
∑N

i=1 yi )/N is the average value of the instantaneous frequency. For
the characterization of frequency stability it has turned out [17] that the two-sample
variance possesses particularly useful properties. It is obtained by setting N = 2 in
Eq. (13.2):

σ2
y(τ ) = 1

2

〈

(y2 − y1)2〉 , (13.3)

where the τ dependence is implicit in the yi and the angle brackets indicate the
ensemble average.

Equation (13.3) basically represents (except for the factor of 1/2) the average
value of the squared relative frequency changes from sample point to sample point.
A convenient feature of this definition is that σ2

y(τ ), called the Allan variance in
the time-and-frequency community [17], is insensitive to a constant frequency bias
between the reference oscillator and the oscillator under test. In that sense the Allan
variance is a representative measure of the fluctuations of a frequency around its
mean value. The square root of this variance is called the relative Allan standard
deviation (or “Allan deviation” for short). Note that in the special case of pure white
frequency noise σy(τ ) coincides with the standard deviation of the Gaussian distri-
bution describing the frequency fluctuations.

In practice, of course, one does not have an infinite series of measurements xi or
yi at one’s disposal, so a finite approximation is used:

σ2
y(τ ) = 1

2(k − 1)

k−1
∑

i=1

(yi+1 − yi )
2 , (13.4)

with k sufficiently large to get a meaningful estimate. Lesage and Audoin have pub-
lished a series of papers dealing with the question of what the uncertainty of that
estimate is [18, 19]. For instance, the relative uncertainty in the case of pure white
frequency noise is

Δ(σ2
y)

σ2
y

= 3k − 4

(k − 1)2
(13.5)

Δ(σy)

σy
=

√
3k − 4

2(k − 1)
(13.6)



372 R. Wynands

for the Allan variance and the Allan deviation, respectively. So typically one should
have k ≥ 19 to reach a 20% relative uncertainty for the Allan deviation, which
means a measurement of total duration 20τ .

By looking at the changes in instantaneous frequency from data point to data
point one removes the influence of a constant bias from the estimate σy of the clock’s
instability. Of course, the Allan variance is still influenced by changes of a bias,
for instance, so in general σ2

y depends on averaging time τ . For white noise, this
dependence takes the form of τ−1 for the Allan variance or τ−1/2 for the Allan
standard deviation . When 1/ f noise is present the Allan deviation will level off at
some higher τ or even start to increase in the case of drift.

For the case of white frequency noise, which should govern the behaviour of a
good primary or secondary frequency standard, the Allan standard deviation can be
written as

σy(τ ) = 1

π

Δν

ν0

1

S/N

√

Tcycle

τ
. (13.7)

Here Δν is the width of the atomic transition line of resonance frequency ν0, S/N
is the signal-to-noise ratio of the detection process, Tcycle is the period at which any
corrections to the clock frequency are applied and τ is the averaging time.

It is clear from Eq. (13.7) that it only makes sense to build an atomic clock when
the frequency discriminator has a narrow linewidthΔν. This implies a steep slope at
the side of the resonance (or a sharp extremum at the centre of the resonance when
a modulation technique is used), so that already a very small frequency excursion of
the oscillator gives a detectable signal change.

One also sees that the actual resonance frequency ν0 should be as high as possi-
ble. The choice of caesium is a good one in this respect because not many elements
provide a conveniently accessible microwave transition at a frequency as high as
9.2 GHz. The influence of ν0 is one important reason why the clocks of the future
in all probability will be optical clocks. With a ν0 of hundreds of THz one easily
gains several orders of magnitude compared to caesium. Of course, ν0 is not the
only factor determining the instability of a clock, and the other factors can work for
or against the various candidate optical clocks. This will be discussed in more detail
in Sect. 13.9.

13.5 The “Classic” Caesium Clock

The publication in 1955 by Essen and Parry [20] is regarded as the birth of the
caesium atomic clock. Performance has greatly increased since then, but the work-
ing principle has remained the same even in today’s commercial caesium-beam
clocks.
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13.5.1 Why Caesium?

Choosing the alkali metal caesium for an atomic clock offers a number of advan-
tages. All radioactive isotopes of caesium have rather short half-lives, so naturally
occurring caesium only contains the only stable isotope, 133Cs. As an alkali metal,
it has a 2S1/2 ground state, which simplifies the hyperfine structure, even though
the nuclear spin is characterized by spin quantum number I = 7/2 (Fig. 13.5).
Since 133Cs is bosonic there exists a pair of ground states with magnetic quantum
number m F = 0. Those two states show a Zeeman frequency shift in response to an
external quasi-static magnetic field only in second order, which allows an essential
relaxation of the experimental requirements for the stability and homogeneity of
such an external field. Due to selection rules this “clock transition” can be induced
only by an alternating magnetic field polarized along an external static magnetic
field.

From Eq. (13.7) we have seen that one wants a transition with a high-resonance
frequency. Caesium is well suited in this regard, because its 9-GHz ground state
hyperfine splitting is among the largest of all elements and not too large to be con-
veniently reached by microwave equipment available in the 1950s when the caesium
clock was invented. As an alkali atom, caesium easily parts with its outer electron, so
a hot-wire ionization detector can provide a high detection efficiency. Other prac-
tical advantages are that caesium can be evaporated at a sufficient rate already at
rather modest temperatures, that caesium is not poisonous and it is readily available,
too.

In retrospect, the choice of caesium was an extremely fortunate one. Cae-
sium arguably is the chemical element that is most easily laser-cooled and laser-
manipulated, due to the fact that its level scheme is rather simple and that the 852-nm
wavelength of its D2 line falls right into the range where silicon photodiodes are
most efficient and laser diode is available commercially at high powers and with a
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Fig. 13.5 Right: Simplified 133Cs energy level diagram (not to scale) showing the hyperfine split-
ting of the 6 2 S1/2 ground state and the 6 2 P3/2 excited state. The excitation lines for laser cooling
and repumping, used in the caesium fountain clock, are indicated by arrows. Left: Blow-up of the
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narrow linewidth. This has made it possible to switch from the thermal-beam clocks
to be described next to the fountain clocks described further below. The introduction
of fountain clocks reduced the uncertainty in the realization of the length of the SI
second by more than an order of magnitude over the very best thermal-beam clocks,
and perhaps another order of magnitude in the near future. It is hard to imagine a
similar success and a similar improvement in the realization of the unit of time had
Essen and Parry chosen another chemical element for their atomic clock.

13.5.2 The Thermal-Beam Caesium Clock

Caesium atoms emanate from an oven at typically 170 ◦C and cross a first inhomo-
geneous magnetic field (Fig. 13.6). In PTB-CS1 and PTB-CS2, for instance, this
field can be produced by a cylindrical quadrupole or a hexapole or a combination of
both. Roughly speaking, atoms in state |F = 4〉 are collimated by the magnet and
those in |F = 3〉 defocused and lost from the beam. There are some tricky details
here which are described in the literature (see [21] and references therein).

microwave
oscillator

output
signal

microwave
cavity

oven

detector
polarizer
magnet

analyzer
magnet

servo system

Fig. 13.6 Principle of operation of the “classical” caesium atomic clock making use of a thermal
beam of atoms emanating from an oven. The atoms are spin selected by a multipole magnet, then
traverse a microwave resonator structure, before a second magnet separates the atoms that did make
the transition from those that did not. A servo loop adjusts the microwave frequency such that an
optimum number of atoms arrive at a hot-wire detector. In later versions the magnets and detector
have been replaced by suitable laser excitation zones, the so-called optically pumped thermal-beam
clocks

The net result is that after the magnet the caesium beam is spin polarized and
then crosses the microwave interaction region. The peculiar two-pronged shape of
the microwave cavity is explained in the next section. Note that the microwave inter-
action has to take place inside a resonant cavity because only in this way the phase
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of the microwave radiation can stably be controlled over the whole cross section and
interaction length of the atomic beam.

A second magnet deflects atoms that made the transition to |F = 3〉 onto a hot-
wire detector (“flop-in configuration”), where the atoms are ionized and a small
current (≈ 10 pA) is registered. So the fact that atoms are arriving at the detector is
an indication that the microwave frequency is approximately correct. An electronic
servo loop then adjusts the frequency to the optimum value, as registered in the
detected signal.

The output signal of the clock consists of a microwave signal of frequency 9,
192, 631, 770 Hz. In other words, 1 s is over once the microwave has completed 9,
192, 631, 770 periods of its oscillation – just as the definition of the SI second says.

The microwave signal feeding the cavity for probing of the atomic transition
is typically synthesized from a low-noise voltage-controlled quartz crystal oscilla-
tor (VCO). Usually the VCO is weakly phase-locked to a hydrogen maser which
serves as a frequency reference for the caesium clock. By proper multiplication and
mixing of the VCO frequency with the frequency of a radio frequency synthesizer
the 9.2-GHz microwave signal for the interrogation is generated. By square-wave
frequency modulation of the synthesizer output frequency with an amplitude of half
the linewidth, the atoms are probed alternatively at the left and the right sides of the
resonance line. The differenceΔp of the two transition probabilities for each side is
a measure of the offset of the microwave carrier frequency from the centre of the res-
onance line. If it is not 0, the synthesizer frequency is corrected accordingly. In this
case the series of correction values gives the relative frequency difference between
the clock and the frequency reference. Alternatively Δp can be used directly to
control the frequency of a VCO in a servo loop. In this case the VCO output directly
represents the clock frequency.

The measured clock frequency differs from the unperturbed caesium transition
frequency ν0 = 9, 192, 631, 770 Hz by the sum of all frequency biases. For exam-
ple, this sum is of the order of 2 Hz in the case of PTB-CS2, a thermal-beam clock
in operation since 1985. The correction amounts to about 1 mHz in the case of PTB-
CSF1, a fountain primary clock in operation since 1999.

13.6 The Ramsey Technique

The microwave cavity of a caesium atomic beam clock is not a simple rectangular or
cylindrical box (Fig. 13.6). Instead, the microwave cavity is split into two interaction
zones, so that the Method of Separated Oscillatory Fields can be employed. This
method is usually called the Ramsey method, after Norman Ramsey who invented
it in 1949 [22] and received the 1989 Nobel Prize in Physics for it (and for his
contributions to the hydrogen maser, to be discussed in Sect. 13.8.2).

A big problem facing the atomic clock-maker is posed by the uncertainty relation
between energy (or frequency) and time [23]. If we want to determine the exact
transition frequency in an atom with ever higher accuracy, we need to achieve ever
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smaller linewidths Δν. This means we need to observe the unperturbed transition
moment over ever longer time Δt . For the simplest microwave cavity, a cylindrical
box roughly one-half wavelength long, the interaction time for caesium atoms with
a velocity selected around v ≈ 100 m/s (as in PTB-CS1) would lead to an observed
linewidth Δν of about 10 kHz.

It was found by Ramsey, however, that one could split the interaction zone into
two parts separated by some longer distance L and obtain a resonance feature with
a width inversely proportional to the transit time L/v. For a thermal-beam clock the
Ramsey method provides a linewidth reduced by l/L , which could amount to one
or two orders of magnitude. In the following we will look at the resulting line shape
in more detail.

If we assume for simplicity that the microwave, as seen by the atom, is switched
on and off instantaneously when the atom enters each arm of the cavity and that
its amplitude is constant within each interaction zone, the transition probability is
given by the expression [2]

P(δ) =4b2

Ω2
sin2(Ωτ/2)

×
[

cos(Ωτ/2) cos[(δT + φ)/2] − δ

Ω
sin(Ωτ/2) sin[(δT + φ)/2]

]2

.

(13.8)

Here τ and T are the transit times of an atom through one interaction region and
through the space between the two regions, respectively. The detuning δ is positive
when the frequency of the microwave is higher than the resonance frequency of the
atom, and Ω = √

b2 + δ2. The Rabi frequency b = μBm/� is a measure of the
strength of the interaction, containing both the magnetic dipole moment μ of the
transition and the amplitude Bm of the microwave magnetic field.

Figure 13.7 shows an example of the resulting line shape as a function of δ. The
graph of Ramsey transition probability as a function of frequency detuning looks
just like the graph of the light intensity as a function of position in the far field
of a double-slit diffraction pattern in optics. Of course, this is not a coincidence
because in both cases there are two pathways along which the system can reach
the same final state from the same initial state. While in the optical diffraction case
the photon can have gone through one slit or the other, so to speak, here the atom
can undergo the transition in the first or in the second Ramsey zone. Since the end
results are indistinguishable, the rules of quantum mechanics state that one has to
add the probability amplitudes for the two pathways and square the result to obtain
the outcome seen on the detector, leading to interference fringes. The atomic clock
with Ramsey excitation therefore constitutes a quantum-mechanical device, an atom
interferometer.

One recognizes the dotted line as the line shape when only one zone of twice
the length is present, i.e. T = 0 in Eq. (13.8) with properly adjusted b. Under
this envelope the transition probability oscillates rapidly with detuning. This is
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Fig. 13.7 Examples of a calculated Ramsey interference pattern as a function of frequency detun-
ing δ. The parameters used in Eq. (13.8) are τ = 11.12 ms, T = 40 ms, b = 141.21/s. The dotted
line is the envelope of the fringe pattern, obtained by averaging over rapidly oscillating terms in
(13.8)

analogous to the optical case where the double-slit diffraction pattern consists of
high spatial-frequency fringes under an envelope given by the diffraction pattern for
a single slit of the same width.

The Ramsey technique has a number of advantages even over a single interaction
zone of the same total length 2l + L , some of which are listed here without further
comments:

• The central Ramsey fringe is actually narrower almost by a factor of 2 than if the
interaction time would have been 2τ + T in a single long zone.

• For a laterally extended beam of atoms susceptible to Zeeman shift of the res-
onance frequency, each atom only has to see the same average magnetic field
along its trajectory. As long as this condition is fulfilled one need not fulfil the
much harder condition that the field is constant everywhere on and off axis.

• When the phase difference of the microwave fields in the two zones is constant
there is no first-order Doppler shift or broadening.

There are other useful features of the Ramsey technique that are important in
other fields of physics. They have been omitted here because they have less rele-
vance for the application of the method in atomic clocks.

Although there is no first-order Doppler broadening of the central Ramsey fringe
there is nonetheless a large influence of the velocity distribution of the atoms
(Fig. 13.8). In a thermal-beam clock, fast atoms experience a shorter time T between
the two parts of the Ramsey interaction, resulting in a larger fringe width than for
slower atoms with larger T . As a result, the fringe contrast washes out with increas-
ing detuning from the central fringe. This is once again completely analogous to the
optical case, with the role of the atomic velocity distribution played by a limited
coherence length of the light illuminating the double slit. The background that the
remaining fringes sit on is called the Rabi pedestal; it corresponds to the resonance
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Fig. 13.8 Calculated Ramsey interference fringes as a function of frequency detuning δ/2π for
Gaussian velocity distributions of different standard deviations σv centred at a mean velocity of
v̄ = 2.5 m/s (other parameters as in Fig. 13.7). Top: monokinetic beam. Centre: σv = 0.1 m/s.
Bottom: σv = 0.4 m/s. The fringes wash out to the Rabi pedestal, which is one-half of the envelope
of the fringe pattern for monokinetic atoms
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Fig. 13.9 Measured Ramsey fringe pattern for PTB’s CS1 thermal-beam clock

linewidth of a single microwave excitation in one of the zones, so it is much wider
than a fringe of the Ramsey curve.

A typical example of a measured Ramsey fringe pattern is shown in Fig. 13.9
for the case of PTB-CS1. The curve appears upside down compared to Fig. 13.8
because PTB-CS1 is operated in the so-called flop-out configuration, so that the
signal at the detector is at its minimum exactly on resonance. The thermal velocity
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spread is small enough that more than a dozen fringes can be seen on either side of
the maximum. The contrast of the Ramsey fringe is only 55% because the magnetic
state selection mostly selects for |F〉 only, more or less regardless of the magnetic
quantum number m F . Therefore, there is always a background of |F = 4,m F �= 0〉
atoms present at the detector.

The lowest relative uncertainty achieved for thermal-beam clocks with magnetic
state selection is 8 × 10−15 in PTB-CS1, using a 73.6-cm separation of the Ramsey
zones [21]. Longer zones are not practical, in particular because of the increasing
influence of the exact shape of the atomic velocity distribution on potential fre-
quency biases. Some improvement can be obtained by replacing state selection and
detection by laser optical pumping and laser-induced fluorescence [24–26]. Two
such clocks still are in operation today, SYRTE-JPO [24] and NICT-O1 [26], with
relative uncertainties of 6.4 and 6.8 parts in 1015, respectively.

13.7 Atomic Fountain Clocks

New developments in quantum optics, in particular the advent of laser-cooling tech-
niques [27–30], opened the door to a radically new approach to the interaction time
problem. Using a suitable arrangement of laser beams and magnetic fields one can
capture caesium atoms from a thermal vapour and at the same time cool them down
to just a few microkelvin above absolute zero temperature. Typically, in a few tenths
of a second one can trap 10 million caesium atoms in a cloud a few millimetres
in diameter and at a temperature of a microkelvin. At this temperature, the average
thermal velocity of the caesium atoms is of the order of 1 cm/s, so the cloud of atoms
stays together for a relatively long time. This cloud can be launched against gravity
using laser light. Typically, the launch velocity is chosen such that the atoms reach
a height of about 1 m above the trapping region before they turn back and fall down
the same path they came up. Operation of a fountain clock typically proceeds in a
pulsed mode, with the trapping–launching–detecting cycle taking a time Tcycle ∼ 1 s.
The motion of the cloud resembles that of the water in a pulsed fountain, hence the
name “fountain clock”.

On the way up and on the way down the atoms pass through the same microwave
cavity. The two spatially separated Ramsey interactions of the thermal-beam clock
are thus replaced by two interactions in the same position but with reversed direction
of travel. The microwave power is chosen such that on each pass a π/2 pulse is
experienced by the atoms. Ideally, therefore, after the first microwave interaction
the atoms are in a quantum-mechanical, coherent superposition of both clock states
with equal weight for each state. After the second passage through the cavity the
transition from one clock state to the other is “completed” (in the fully resonant
case).

Following the second interaction the state of the atom can be probed by laser-
induced fluorescence. For a typical launch height around half a metre above the
microwave interaction zone it is possible to achieve effective interaction times of



380 R. Wynands

–100 –50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Frequency detuning (Hz)

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

–4 0 4

Fig. 13.10 Measured Ramsey fringe pattern for PTB’s CSF2 fountain clock. Inset: the central part
enlarged. The slowly oscillating curve is the Ramsey fringe pattern of the thermal-beam clock
PTB-CS1 already shown in Fig. 13.9; its curvature is so small near detuning zero that the curve
appears almost flat in the inset

more than half a second. The resulting 100-fold reduction in microwave resonance
linewidth (Fig. 13.10) is the most obvious advantage of a fountain clock over a
thermal-beam clock. Note also that the contrast of the resonance is approaching
100% because the atomic cloud can be prepared such that it consists of |m F = 0〉
atoms only.

Equally important is a reduction in the influence of certain systematic effects
because the atoms are so slow. Furthermore, the trajectory reversal eliminates the
frequency bias that might exist due to a small and all but unavoidable manufacture-
related phase difference between the microwave fields in the two interaction zones.
It also greatly reduces the influence of any transverse or longitudinal phase gradients
of the microwave field inside the cavity.

Employing a laser-cooled sample is essential for a fountain clock because in
thermal samples the number of slow atoms is too small to obtain a sufficient signal
strength [31] and because one would need a vacuum apparatus of several metres
in height in order for some of the slower atoms to come to a stand-still in it and
fall back [32]. The first considerations [33] and successful realizations [34] of the
fountain principle were followed by the first metrological fountain, FO1, at the
Observatoire de Paris/France [35]. Its design [36] became a standard for almost
all subsequently constructed fountain clocks, with some variations of course. In
the late 1990s the fountains NIST-F1 at the National Institute of Standards and
Technology (NIST) in Boulder/USA [37, 38] and CSF1 at Physikalisch-Technische
Bundesanstalt (PTB) in Braunschweig/Germany [39–41] became operational as pri-
mary standards. Recently, they were joined by the caesium fountain clocks CsF1
at the Istituto Elettrotecnico Nazionale (IEN) in Torino/Italy [42], CsF1 at the
National Physical Laboratory (NPL) in Teddington/GB [43], F1 at National Metrol-
ogy Institute of Japan (NMIJ) [44] and CsF1 at National Institute of Information and
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Communication Technology Laboratory (NICT) also in Japan [45]. With FO2 and
FOM [46] the Observatoire de Paris (SYRTE) is operating two more primary foun-
tain clocks. A number of other laboratories are currently developing fountain clocks
(see [47–54] for an incomplete list of examples). Most of these are employing cae-
sium as the active element.

Because fountain clocks currently constitute mankind’s best way to realize the
unit of time we will now discuss those clocks a little further. Many more details can
be found in a review [55] and the specific references therein.

13.7.1 Operation of a Fountain Clock

Figure 13.11 shows a simplified set-up of the vacuum subsystem of a fountain clock.
Six laser beams cross in the centre of the preparation zone, where the cold atom
cloud is produced. Above that follows the detection zone which is traversed by laser
beams for fluorescence detection of the falling cloud. The microwave interactions
take place inside a magnetic shield in the presence of a well-defined internal lon-
gitudinal magnetic field (the “C-field”). The clock is operated in a pulsed fashion,
with a cycle typically lasting about 1 s (Fig. 13.12).

Magnetic
shields

C-field coil

Vacuum tank

1 
m Ramsey cavity

State-selection
cavity

Caesium
reservoir

to pump
and window

Detection zone

Preparation
of cold atoms

.............................

.............................

Fig. 13.11 Simplified set-up of the atomic fountain clock PTB-CSF1
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Fig. 13.12 Principle of operation of the atomic fountain clock (simplified). The full cycle
(a)–(g) takes about Tcycle ≈ 1 s. (a) A cloud of cold atoms in states |F = 4,m F 〉 is trapped in the
intersection region of six laser beams. (b) The cloud is launched by frequency detuning of the ver-
tical lasers. (c) Inside the state-selection cavity certain atoms are transferred to |F = 3,m F = 0〉.
(d) When the cloud exits the state-selection cavity a laser pulse pushes away all atoms not in
|F = 3,m F = 0〉. (e) The cloud slowly expands during its ballistic flight in the dark. On the way
up and on the way down it passes through the main microwave cavity, the Ramsey cavity, where
the transition to |F = 4,m F = 0〉 is driven. (f) Detection lasers are switched on; they probe the
population distribution by laser-induced fluorescence

The source of caesium atoms traditionally consists of a temperature-controlled
caesium reservoir held at a suitable temperature near room temperature in order
to obtain a caesium partial pressure in the order of 10−6 Pa in the cooling cham-
ber. Alternatively, a laser-cooled atomic beam can be directed at the main trap-
ping region, thus shortening the trapping time from a few hundred to a few tens
of milliseconds; chirp-slowed [46], LVIS [56] and 2D-MOT [57] beams have been
used.

To obtain the required low temperatures of the atom samples in an atomic foun-
tain the atoms are cooled in a magneto-optical trap (“MOT”) [58] and/or an optical
molasses (“OM”) [59, 60]. Key to both configurations is a set-up consisting of three
mutually orthogonal pairs of counter-propagating laser beams. There are either two
vertical and four horizontal beams (the (0,0,1) geometry, Fig. 13.11) or there are
three beams, arranged symmetrically around the vertical, coming from below and
the other three from above (called the (1,1,1) geometry).

Two laser frequencies are needed for efficient cooling (Fig. 13.5). The main
power in the six beams is provided by light tuned slightly to the red (low-frequency)
side of the cyclic |F = 4〉 → |F ′ = 5〉 caesium transition in order to scatter a large
number of photons in a short time. Small polarization imperfections in connection
with off-resonant excitation to the excited state |F ′ = 4〉 can lead to optical pumping
into the |F = 3〉 state. A repumping laser beam tuned to the caesium transition
|F = 3〉 → |F ′ = 4〉 is therefore superimposed on at least one of the six cooling
laser beams. It depletes the |F = 3〉 level so that all atoms can continue to participate
in the cooling process. Additional laser-cooling steps are typically applied before
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and/or after the cloud has been launched towards the cavities. More details on this
are presented in [55].

Typically 107, . . . , 108 atoms are trapped and cooled. This atom number is
mainly limited by the available laser power and laser beam diameters. For reasons
of compactness, low power consumption, reliability and ease of use, most optical
set-ups use exclusively laser diode systems. Their light powers and frequencies need
to be controlled precisely in order to properly cool, launch and detect the atoms.
Furthermore, all laser light has to be blocked completely during the interaction of
the atoms with the microwave field so that the atomic transition frequency is not
shifted by the ac Stark effect [61].

After trapping, the atoms are launched by the “moving molasses” technique
(Fig. 13.12b). The pattern formed by the interference of the vertical trapping beams
can be made to move at a velocity cδν/νc when the upward-directed laser beam is
tuned to a frequency νc+δν and the downward-directed laser beam to νc−δν. In this
upward-moving interference pattern the atoms are accelerated within milliseconds
to velocities of several metres per second. At this stage in the fountain cycle the
atomic population is distributed across all ground state sublevels, mostly those with
|F = 4〉 (Fig. 13.13a).

The last cooling stage consists of a sub-Doppler laser-cooling phase, as described
in [55]. When the lasers are finally switched off altogether the caesium atom

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 13.13 Qualitative population of the Zeeman sublevels in the caesium ground state during key
phases of the fountain cycle. (a) After trapping and launching. (b) After post-cooling. (c) After
passage through the state-selection cavity. (d) After the laser blow-away pulse. (e) After the first
passage through the Ramsey cavity. (f) After the second passage through the Ramsey cavity. Here
is assumed that the microwave frequency is slightly detuned from exact atomic resonance. (g) Just
before the atoms in |F = 3〉 are detected
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temperature is about 1 μK, corresponding to a thermal velocity of less than 1 cm/s.
When the repumping laser is switched off slightly later than the cooling laser all
atoms end up in an |F = 4〉 level (Fig. 13.13b).

As the next step a further state-selection process can be applied to the atoms in
order to reduce the background signal and the collisional shift due to atoms in states
with m F �= 0 which do not take part in the “clock transition” between the states with
m F = 0. This removal of atoms with m F �= 0 is a big advantage of fountain clocks
over thermal-beam clocks also because it reduces effects like Rabi and Ramsey
pulling and frequency shifts due to Majorana transitions [62], apart from improving
the contrast of the Ramsey pattern (Fig. 13.10). For the state selection the |F =
4,m F = 0〉 atoms are first transferred by a microwave π pulse using the clock
transition to the state |F = 3,m F = 0〉. This can be done in a microwave state-
selection cavity in which the atoms pass before they enter the Ramsey cavity for the
first time (Figs. 13.12c and 13.13c). Afterwards all the atoms which remained in the
|F = 4〉 state are pushed away by the strong spontaneous light force exerted by a
laser beam tuned to resonance with the |F = 4〉 → |F ′ = 5〉 transition. This results
in a pure atomic sample of atoms all in state |F = 3,m F = 0〉 entering the Ramsey
cavity (Fig. 13.13d), where subsequently the clock transition |F = 3,m F = 0〉 →
|F = 4,m F = 0〉 is excited.

Let us note here that this extreme nonequilibrium distribution of atomic pop-
ulation is attractive not only for time keeping. It can be used to perform precise
spectroscopic experiments with a state-selected, monokinetic, cold sample of atoms,
which can still be manipulated by laser light, microwaves or electric fields for an
observation time of about half a second. This single-populated state need not be the
|F = 3,m F = 0〉 state but can be almost any other of the 16 sublevels when the
microwave frequency in the state-selection cavity is tuned to a different transition.
Examples for planned or completed experiments include the measurement of the
black-body radiation shift of the clock transition when the vacuum tube is heated
[63], the investigation of state-dependent Feshbach resonances in the collisional
cross sections between cold caesium atoms [64] or the proposed search for parity
violation in atoms [65]. The fountain principle can also be used to determine the
gravitational constant G [66], the local gravitational acceleration g [67] or the fine
structure constant α [68].

One of the most critical parts of a fountain clock is the microwave cavity for
the Ramsey interaction. Much work has been done on different realizations of these
delicate devices (see [55] for more details and references). Most fountain clocks
use a cylindrical microwave cavity with the field oscillating in the TE011 mode.
This mode (indicated in Fig. 13.14) exhibits particularly low losses which results
in a particularly small running-wave component in the cavity. The dependence of
the microwave phase on the transverse position of the atomic trajectory is therefore
small, as well. The oscillating microwave magnetic field inside the cavity is directed
primarily along the vertical, the same direction as the static magnetic C-field of
typically 100 nT flux density. Selection rules therefore favour the Δm = 0 transi-
tions. The static field in addition detunes all other transitions, so that even the small
curvature of the microwave field lines near the end caps of the cavity does not lead
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Fig. 13.14 Sketch of the
microwave field geometry
inside a typical TE011

cylindrical microwave cavity.
Dotted line: trajectory of the
atoms

to a substantial amount of parasitic Δm F = ±1 transitions. As a result, the clock
transition |F = 3,m F = 0〉 → |F = 4,m F = 0〉 dominates.

After the first passage through the Ramsey cavity the atomic population looks
like as indicated in Fig. 13.13e: a coherent superposition of the two clock states.
This atomic coherence precesses at its intrinsic rate, and during the second cavity
passage, on the way down, its phase is probed with the microwave again. In the
case of exact resonance, for instance, the microwave phase relative to that of the
atomic coherence is still the same, so the transition is completed and all atoms end
up in the upper state |F = 4,m F = 0〉. Figure 13.13f depicts the situation when
the microwave frequency is slightly detuned so that the transition probability is not
100%.

In a fountain clock the atoms arriving in |F = 4〉 and those in |F = 3〉 are
detected separately via laser-induced fluorescence. When the falling atoms pass
through a first transverse standing-wave light field tuned to the |F = 4〉 → |F ′ = 5〉
transition the fluorescence light emitted by the atoms in |F = 4〉 is detected with
a photodiode. The time-integrated photodetector signal, N4, is proportional to the
number of atoms in the state |F = 4〉. From the shape of the time-dependent pho-
todetector signal one can infer the axial velocity spread of the atoms in the cloud,
which indicates the corresponding kinetic temperature. The |F = 4〉 atoms are
then pushed away by a second beam slightly below, a transverse travelling-wave
laser field tuned to the |F = 4〉 → |F ′ = 5〉 transition. Only the atoms in state
|F = 3〉 remain (Fig. 13.13g). These are then pumped to the state |F = 4〉 by
a third horizontal detection laser beam, positioned lower again and tuned to the
|F = 3〉 → |F ′ = 4〉 transition. Superposed or slightly below another laser beam
is present, which is again tuned to the |F = 4〉 → |F ′ = 5〉 transition. In effect,
the atoms in |F = 3〉 are first pumped to the state |F = 4〉 and then detected
by their fluorescence on the |F = 4〉 → |F ′ = 5〉 transition with the help of a
second photodetector, giving a measure N3 for the number of atoms that arrived in
the detection zone in the state |F = 3〉.
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In the servo system the ratio N = N4/(N3 + N4) is calculated. This ratio is
independent of the shot-to-shot fluctuations in atom number, which typically lies
in the percent range, and is used as the input signal to the microwave-frequency
servo loop. As in thermal-beam clocks, the interrogation microwave is square-wave
frequency modulated, here with a period of 2Tcycle, so that alternate “shots” are taken
at the left and the right sides of the central Ramsey fringe. From the difference of
Nleft and Nright the correction signal for the microwave carrier frequency is derived.

13.7.2 Uncertainty Budget

For a precise frequency standard a detailed knowledge of all sources of uncertainty
is absolutely essential. Here we will present a rather complete list of such contri-
butions for the case of a primary fountain clock. We are choosing this clock as an
example because of its great importance today. For the optical clocks of the future
the list will be very similar in principle, but of course with some modifications in the
details. For example, the role of the cavity-related shifts in a microwave clock, dis-
cussed on Page 389, will be played by the wavefront curvature of the interrogation
laser beam(s) in an optical clock. Similarly, the Dick effect (explained below) in an
optical clock is due to the frequency noise on the interrogation laser rather than on
the noise of a microwave oscillator.

Two types of uncertainties have to be considered. Statistical uncertainties in gen-
eral decrease with longer averaging time, whereas systematic uncertainties reflect
our imperfect knowledge of potential frequency biases and, with the exception of
drifts of operating parameters, are independent of averaging time.

13.7.2.1 Statistical (Type A) Uncertainties

In a well-designed fountain clock the following noise contributions to the total insta-
bility have to be considered [69]:

(a) Quantum Projection Noise [70]: resulting from the fact that a fountain clock is
operated alternatingly at the left and the right sides of the central Ramsey fringe
where the transition probability is neither 0 nor 1.

(b) Photon Shot Noise: resulting from the statistical detection of a large number of
photons per atom.

(c) Electronic Detection Noise: resulting from the electronic detection process by
typically a photodiode followed by a transimpedance amplifier.

(d) Local Oscillator Noise: resulting from a downconversion process of local oscil-
lator frequency noise components because of the noncontinuous probing of
the atomic transition frequency in a pulsed fountain (“Dick effect”). Basically,
phase excursions of the local oscillator while no atoms are in or above the
microwave cavity will go undetected and therefore add some of the phase noise
of the local oscillator to the output of the clock.
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When assuming a white frequency spectrum of the noise sources Eq. (13.7) takes
the following form [69]:

σy(τ ) = Δν

πν0

√

Tcycle

τ

(
1

Nat
+ 1

Natεcnph
+ 2σ2

δN

N 2
at

+ γ
)1/2

. (13.9)

The terms in the brackets of (13.9) quantify the four processes (a)–(d) listed
above. Nat is the number of detected atoms, nph the average number of photons
scattered per atom at the detection and εc is the photon collection efficiency. σ2

δN is
the uncorrelated rms fluctuation of the atom number per detection channel.

With sufficiently high numbers of photons detected per atom and using state-
of-the-art low-noise electronic components, the noise contributions (a), (b) and (c)
can be reduced to such a level that the frequency instability is determined by the
Dick effect (d). A quantitative description of the Dick effect is beyond the scope of
this chapter; it can be found in [71–74]. With the best currently available voltage-
controlled oscillators (VCOs) the relative frequency instability is limited to the order
of 10−13(τ/s)−1/2.

In order to improve on that one can use a better local oscillator or reduce the
dead time of the fountain, i.e. the fraction of the fountain cycle where no atoms
are in or above the microwave cavity. However, some dead time is unavoidable
in the standard pulsed fountain described so far because one has to wait until the
detection process is finished before the next cloud can be launched. A continuous-
beam fountain clock, however, would be practically immune from the Dick effect.

Conceptually the easiest way to reduce the influence of the Dick effect on the
short-term instability is to use a more stable local oscillator. Using a cryogenic sap-
phire oscillator developed at the University of Western Australia [75] and a specially
designed low-noise microwave synthesis chain the group at SYRTE was able to
reach a fractional frequency instability of only 1.6 × 10−14 (τ/s)−1/2 [76], which
was only limited by quantum projection noise [69].

The additional effort of liquid-helium refrigeration required for low-noise cryo-
genic sapphire oscillators can be avoided when using a laser frequency comb (see
Sect. 13.9.2 below) to transfer the superior short-term stability of a laser stabilized
to a high-finesse optical cavity down into the microwave regime and then deriving
the 9.2-GHz interrogation signal from that phase-stable microwave. Initial results of
the phase stability of such a signal have been reported recently [77].

To speed up the loading and preparation of the cold atomic cloud the atoms can
be collected not from the residual background vapour but from a slow atomic beam
instead, as was discussed above in Sect. 13.7.1.

Loading from a slow beam is indispensable when implementing a multi-toss
scheme. The idea is to have more than one ball of atoms travelling inside the appa-
ratus simultaneously. For instance, the same number of atoms as in a single-ball
fountain can be distributed over several balls. In each of them the atomic density is
lower, and the collisional shift reduced in proportion. One implementation scheme
is to launch several balls (up to 10 or so) in quick succession but with successively
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decreasing launch height [78]. These balls never meet in the free-flight zone above
the cavity where collisions would lead to a frequency shift. But they all come
together in the detection zone – where cold collisions do not matter anymore –
to produce a strong signal. This idea has been tested at NIST [79] and is envisioned
to be implemented in NIST-F2 [80].

Another avenue is the “juggling fountain” [81] where several balls are launched
with a time separation smaller than the flight time of an individual cloud. When tim-
ing and launch velocities of the individual clouds are chosen such that each time two
of them meet their relative energies fulfil the condition for a Ramsauer resonance,
they pass through each other basically without scattering, i.e. without additional
collisional shifts. It is straightforward to do this with just two “balls”, but amazingly
it can also be done with more than two balls [82]. The multi-ball scheme requires a
precise control of the launch times, velocities and densities of the individual balls.
Furthermore it relies on a delicate cancellation of the collisional shifts in successive
two-ball collisions, making use of the energy dependence of sign and amplitude of
the shift [82].

The Dick effect can be all but eliminated when the fountain clock is operated
in a continuous mode rather than pulsed [83, 84]. At the same time, because of the
continuous detection a lower density beam can be used, reducing the uncertainty
due to cold collisions. However, a continuous fountain poses a number of technical
and experimental challenges. First of all, since the preparation and the detection
zones have to be spatially distinct the atoms have to fly along a parabolic path. This
requires a special geometry for the main cavity. Unfortunately, in this way one loses
one of the big advantages of the pulsed fountain design, where the atoms retrace
their path through the microwave field and thus mostly cancel any end-to-end phase
shifts in the cavity. In the continuous fountain FOCS-1 a special device allows one
to rotate the cavity around the vertical axis by precisely 180◦, so that an effective
beam reversal occurs [85], in analogy to the procedure in thermal-beam clocks [21].

Furthermore, the suppression of stray light from the preparation zone becomes
more complicated. Unlike in the pulsed case the laser light cannot be switched off
during the free-flight phase of the atoms, so for the continuous fountain one resorts
to mechanical shutters inside the vacuum vessel. A wheel with partially overlapping
filters absorbing the laser radiation is rotating rapidly through the atomic beam in
such a way that the direct line of sight from the detection zone into the free-flight
zone passes through at least one filter at any one time. Not only does this chop thin
slices out of the continuous atomic beam but also does one have to have a motor
inside the ultra-high vacuum system – which also has to be nonmagnetic!

Details of all design issues can be found in the thesis by Joyet [85]. The first such
clock, METAS-FOCS1, is now being commissioned at METAS [57, 47], with an
improved version FOCS2 being under development [86]. Design goals are a relative
short-term instability of 7 × 10−14 (τ/s)−1/2 (using a quartz oscillator as a local
oscillator for the 9-GHz synthesis chain) and a relative uncertainty of 10−15.

Obtaining a small frequency instability is indispensable for the evaluation of sys-
tematic uncertainty contributions at the level of 10−15 or below. Even an instability
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of only 10−13(τ/s)−1/2 still results in a 3.4 × 10−16 statistical uncertainty after one
full day of measurement.

13.7.2.2 Systematic (Type B) Uncertainties

To a large degree the sources of frequency bias in a fountain clock are very simi-
lar to those in a thermal-beam clock. The latter are described in great quantitative
detail in the book by Vanier and Audoin [2]. The fact that now one has a state-
selected, monokinetic sample of laser-cold atoms greatly reduces some of these
biases but also introduces two new ones: the light shift and the cold-collision shift.
Here we will present just an overview and refer the reader to the review [55] and
the published formal evaluations of the individual fountain clocks, for example, in
[76, 40, 38, 42–45].

(1) Second-Order Zeeman Effect
The applied static magnetic bias field (“C-field”) results in a second-order
shift of the clock transition by fc = 0.0427 Hz×(BC/μT)2, where BC is
the magnetic flux density of the C-field, so that almost 5 × 10−14 relative
frequency shift is obtained for the typical BC ∼ 0.1 μT. One can use the
atoms themselves as probes for the mean C-field strength, its inhomogeneity
and its temporal stability by measuring the resonance frequency fZ of the
first-order field-sensitive transition |F = 4,m F = 1〉 → |F = 3,m F = 1〉. In
contrast to a conventional beam clock, an atomic fountain provides the advan-
tageous possibility of mapping the C-field by launching the atoms to different
heights hmax. For a given hmax the measured fZ is an average over BC (z)
encountered by the atom cloud, weighted with the z- and hmax-dependent
dwell time of the cloud. The series of fZ (hmax) can be deconvoluted to
obtain BC (z) [87].

(2) Majorana Transitions
Majorana transitions (ΔF = 0,Δm F = ±1) between the m F substates within
a hyperfine ground state |F = 4〉 or |F = 3〉 can be induced near zero cross-
ings of the magnetic field strength [88]. In real caesium clock cavities it cannot
be avoided that due to the field geometry some ΔF = ±1,Δm F = ±1
transitions occur besides the designated clock transition, albeit with a small
probability. In connection with Majorana transitions large frequency shifts can
occur [89] because atoms can end up in superposition states with the same
F quantum number but different m F quantum numbers. For these states the
hyperfine transition frequency is in general different from the clock transition
frequency, with a resulting overall frequency shift. For a well-controlled mag-
netic field geometry the uncertainty estimate due to Majorana transitions is
typically stated as less than 10−16.

(3) Cavity-Related Shifts: Residual First-Order Doppler Effect and Cavity Pulling
A general advantage of an atomic fountain is that the atoms cross the same
microwave cavity twice in opposite directions. If the atomic trajectories were
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perfectly vertical, frequency shifts due to axial and radial cavity phase
variations would be perfectly cancelled as each atom would interact with the
field first with velocity v (upwards) and later with −v (downwards). Due to
the transverse residual thermal velocity and a possible misalignment of the
launching direction atoms in general do not retrace their upward trajecto-
ries on the way down, so a first-order Doppler frequency shift can remain.
Uncertainty contributions of the order of at most several 10−16 are estimated
typically [76, 40, 38, 42–45].

The frequency shift due to cavity pulling is usually negligible because atom
numbers are still rather low. Furthermore, since cavity pulling is proportional
to atom number it is corrected for automatically when the collisional shift
correction (see below) is applied.

(4) Rabi and Ramsey Frequency Pulling
Frequency shifts due to Rabi and Ramsey frequency pulling [2] can occur in
the presence of nonzero and asymmetric (with respect to m F = 0) popula-
tions of the |F,m F �= 0〉 substates when the atoms enter the Ramsey cavity.
However, the state selection process in a fountain clock strongly reduces the
impact of these frequency pulling effects to well below 10−16.

(5) Microwave Leakage
The presence of microwave radiation outside the cavities can lead to large
frequency shifts despite the partial cancellations due to the near-symmetry of
the up-down motion of the cloud. The spread of the cloud, combined with
the fundamentally unavoidable radial microwave power variation inside the
cavity, makes the atoms see different effective microwave powers during the
two cavity passages. This greatly increases the clock’s susceptibility to stray
field-induced frequency bias [90]. Typical uncertainties evaluated so far fall in
the low 10−16 range once all microwave devices, cables and connectors have
been shielded carefully.

(6) Electronics and Microwave Spectral Impurities
The low total systematic uncertainty of a fountain clock requires tight spec-
ifications for any electronic subsystems in order to avoid frequency bias
caused by servo offsets or microwave spectral impurities [91, 92]. Recent
improvements on other systematic uncertainties have prompted several groups
to upgrade their microwave electronics so that they no longer limit further
progress [93–96].

(7) Light Shift and Optical Pumping/Heating
All lasers must be completely blocked while the atoms are in or above the
Ramsey cavity. Otherwise, the shift of the atomic energy levels by the AC
Stark effect (light shift) [61] will lead to a frequency bias – nanowatts of
residual laser power can already be too much. Once the atoms have fallen
through the Ramsey cavity they still must be protected from stray light until
they have passed the detection zone to avoid heating of the cloud [97] and a
reduced contrast of the Ramsey fringe [98]. With combinations of large laser
frequency detuning and of acousto-optical and mechanical shutters the corre-
sponding uncertainty can be reduced to below 10−16.
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(8) Blackbody Shift
AC Stark shift of a different origin is induced by the thermal radiation of
the vacuum enclosure. Assuming that this radiation follows the spectral power
density distribution of a black body the clock transition frequency is shifted by

fbb = −1.579 × 10−4 Hz

(
T

300 K

)4

×
[

1 + 0.013

(
T

300 K

)2
]

(13.10)

for a vacuum enclosure at temperature T [99–103, 63]. Hence, for a cae-
sium clock at room temperature the relative frequency shift is of the order of
−17 × 10−15. A corresponding correction must be applied. Its relative uncer-
tainty lies below 10−16 when the thermal environment seen by the atoms is
known within 0.2 K or so. The NIST-F2 and the NRC-FCs1 fountains under
development will all but eliminate this shift when they are operated at liquid-
nitrogen temperature [80, 52].

(9) Collisional Shift
A major source of uncertainty is the frequency shift due to collisions among
the cold atoms in the cloud [104]. The collisional cross section was found to be
strongly dependent on energy (i.e. the average temperature of the cloud) [105].
The problem is particularly serious for caesium because it was found that its
collisional cross section is unusually large at the low cloud temperatures used
in a fountain. Conceptually the simplest solution would be to choose another
element. For instance, in rubidium the collisional cross-section is almost two
orders of magnitude lower [106, 107]. Indeed, rubidium fountain clocks have
been built where the reduction of collisional shift uncertainty was one of the
motivations [108, 109].

A number of schemes have been devised to reduce the collisional shift or at
least its contribution to the uncertainty budget of the caesium fountain clock,
for instance, by lowering the density of the atomic cloud and therefore the
collision rate. A reduced number of atoms, however, reduce the detected signal
and therefore the signal-to-noise ratio and the short-term stability (Eq. 13.9).

Recent developments are helping to ease this trade-off problem for the case
of caesium. The problem of loss of signal for low-density clouds can be cir-
cumvented by controlling the preparation of the atoms such that more than
one low-density cloud at a time is travelling through the vacuum system, as
discussed above in connection with the Dick effect. The continuous fountain
also allows one to reduce the influence of collisional shift because it spreads
the atoms over the whole trajectory instead of concentrating them in a high-
density cloud.

The more traditional approach is to measure the clock’s output frequency
for two or more effective densities of the atomic cloud and then extrapolate
to zero density. Since the frequency shift due to cold collisions is linear in
effective atom density, one can extrapolate the measured frequencies obtained
with clouds of different densities to zero density using a linear regression.
This is the method currently employed by all primary fountain clocks. Since
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the actual density of the cloud is not readily accessible in the experiment, one
substitutes the number Nat of detected atoms instead. This, of course, assumes
that there is a strict proportionality between Nat and effective density. The
actual experimental practice in the various laboratories differs in the way that
clouds of different densities are prepared. One way is to vary the loading
time of the MOT/OM to determine the proportionality factor between atom
number and output frequency [55]. In all subsequent frequency measurements
one continuously monitors the atom number and scales it with this factor to
extrapolate to the zero density value [40]. A disadvantage of this method is
that one cannot exclude a difference in the spatial distribution of the atoms
within the cloud for the two atom number regimes, which in general could
change the proportionality factor between effective density and detected atom
number. An additional contribution therefore needs to be included into the
uncertainty budget.

As an alternative, the collisional shift can be monitored during the course
of a frequency evaluation, by switching between two different atom numbers
every few shots [43] or every hour [42]. The switching is done by varying
the microwave power or detuning for the state-selection pulse. Once again
it cannot be excluded that the density distribution of the state-selected cloud
changes between high and low atom number due to inhomogeneities of the
microwave excitation.

When a very stable local time reference, for instance, a maser ensemble,
is available, one can also run the fountain at extremely low atom number (i.e.
very low collisional shift) and just average over a longer time interval [110].

Perhaps the most elegant way is to use the technique of rapid adiabatic
passage during the preparation stage (Figs. 13.12c and 13.13c) in the state-
selection cavity [111]. This method relies on the fact that the population of
state |F = 4,m F = 0〉 can be transferred with 100% efficiency into state
|F = 3,m F = 0〉 when both frequency and amplitude of the microwave
radiation inside the selection cavity are ramped with just the right timing
[112]. Details of the technique can be found in [112, 111, 113]. Basically,
the microwave detuning is ramped from (ideally) minus infinity to infinity,
while the amplitude goes from 0 to a maximum (at detuning zero) and back to
0 again. One has to ensure that the rate of change of the microwave frequency
has to be much lower at all times than the square of the Rabi frequency (which
is proportional to microwave power).

When the pulse is switched off abruptly at detuning δ = 0 the atoms
are left in an exactly equal superposition of both states. The important fea-
ture of the rapid adiabatic passage is that this happens independently of the
actual Rabi frequency an atom sees, i.e. it does not depend on where an atom
passes through the field inside the cavity (the field amplitude decreases across
the aperture when going away from the centre). The pushing beam therefore
removes exactly half of all atoms, without changing the density distribution,
temperature or velocity of the cloud – in contrast to the other methods where
such changes cannot be excluded.
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At SYRTE the ratio of 1 : 2 can be prepared and maintained with an accu-
racy of 10−3 [76], allowing for a very precise determination of the collisional
shift rate and its correction. The precise control over atomic populations in
SYRTE-FO2 has also made it possible to detect Feshbach resonances in the
dependence of the collisional shift on magnetic quantum number m F [64].
Surprisingly, these resonances occur already for flux densities of 2 μT or
less.

Finally, under certain circumstances one can actually run a caesium foun-
tain clock under operating conditions where the total collisional shift experi-
enced by the cloud is 0 [114]. A typical Cs fountain standard operates with
atoms cooled down to 1–2 μK at the time of launch. As the cloud expands
during its ballistic flight, correlations build up between atomic position and
velocity, an effect particularly pronounced for atoms initially trapped in a
small cloud (like in a MOT). Basically, atoms sort themselves spatially into
concentric shells of very nearly the same velocity. This means that the effec-
tive collisional energy decreases down to a few hundred nanokelvins even
before the first Ramsey interaction [115]. At low energies the collision rate
coefficients for the clock states |F = 3,m F = 0〉 and |F = 4,m F = 0〉 differ
in sign, which gives rise to a strong variation of the collisional shift if the
relative weights of the clock states in the superposition state prepared during
the first Ramsey interaction are varied.

This could be confirmed experimentally and theoretically for two inde-
pendent primary standards [114]. The fraction of the population in a given
clock state (e.g. |F = 4,m F = 0〉) was changed by adjusting the amplitude
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Fig. 13.15 Measurement of the collisional frequency shift in PTB-CSF1 as a function of the pop-
ulation composition during the Ramsey time. The experimental data are fitted by a linear function
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of the microwave field in the Ramsey cavity. The collisional frequency shift
for atoms captured in a MOT varies linearly with the population fraction
(Fig. 13.15). For PTB-CSF1 the collisional frequency shift is cancelled for
a 30% fraction of |F = 4,m F = 0〉 atoms, which can be achieved experimen-
tally with only a minor reduction of the fringe contrast and short-term stability
of the fountain clock.

The practical details of this method have been considered in detail in [116];
under certain circumstances a shortening of the averaging time to reach a cer-
tain statistical uncertainty of about an order of magnitude was predicted. So
far, this method is not yet applied routinely.

(10) Background Gas Collisions
At typical vacuum pressures in the ballistic flight region in the low 10−7 Pa
range the effect of collisions of cold caesium atoms with residual gas atoms is
estimated to be well below 10−16.

(11) Time Dilatation: Relativistic Doppler Effect
Relativistic time dilatation reduces the clock frequency observed in the lab-
oratory frame by fD ≈ ν0〈v2〉/(2c2), with 〈v2〉 the mean quadratic veloc-
ity of the atoms above the microwave cavity and c the velocity of light.
Typically fD/ν0 is of the order of 10−17, so that in contrast to thermal-
beam clocks time dilatation and the associated uncertainty contribution can be
neglected.

(12) Gravitational Redshift
Even though the gravitational redshift [117] of about −1.1×10−16 per metre of
elevation above the geoid is not relevant for the realization of the proper sec-
ond of a clock and for local frequency measurements at the same gravitational
potential, its knowledge is necessary for comparing remote clocks, for instance
when contributing to international atomic time (TAI). Hence the mean height
of the atoms above the geoid during their ballistic flight above the microwave
cavity centre has to be determined with a typical uncertainty of 1 m, corre-
sponding to a frequency uncertainty of 10−16. In principle, a limitation is given
by the accuracy with which the local gravitational potential can be determined.
Even for high-altitude laboratories like NIST in Boulder (≈ 1630 m above sea
level) the correction can be determined with a relative uncertainty of 3×10−17

[118]. At this relative uncertainty the gravitational redshift will probably not
become a limiting factor for clocks based on microwave transitions. This is in
contrast to the case of future optical clocks.

(13) Other Systematic Effects
There are other frequency-shifting effects (dc Stark shift, Bloch–Siegert shift)
[2], which can be estimated to be less than 10−17 in a fountain clock, or the
microwave recoil shift at around 10−16 [119].

In conclusion it can be stated that the main contributions to the systematic uncer-
tainty are of the order of a few 10−16 or less. As the individual systematic uncer-
tainty contributions can be assumed to be linearly independent, the resulting total
systematic uncertainty is the square root of the sum of squares of the individual
contributions.
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13.7.3 State of the Art

Worldwide, as of July 2008 there are nine primary fountain clocks in operation that
have been used to contribute to the international timescales. The individual clocks
have very different characteristics, depending on the design choices made by the
teams developing and operating them. Which of the fountains is the “best one” right
now? Well, that depends on the criterion chosen.

• Stability
In terms of stability the SYRTE fountains FO1 and FO2 with σy(1 s) = 2×10−14

are unsurpassed. This low instability is achieved by referencing the 9-GHz
microwave to an ultrastable cryogenic sapphire oscillator (CSO) [75, 76, 69].
So far, the other groups have shied back from the enormous technical and finan-
cial effort involved in the operation of a CSO at liquid-helium temperature. New
developments in the field of femtosecond laser frequency combs have opened up
the possibility of using such a comb “in reverse”, by locking it to a narrow opti-
cal Fabry–Perot resonance and deriving a phase-stable 9-GHz microwave signal
from it. Performance similar to that of a CSO has been reported [77].

• Uncertainty
SYRTE-FO1, SYRTE-FO2 and NIST-F1 can now be run under conditions of
3, . . . , 4 × 10−16 relative uncertainty [76, 110, 120], with most other fountain
clocks currently in the range of 10−15 or slightly below. There appears to be
room for substantial reductions in the uncertainties of collisional shift, cavity-
related effects and electronics by a more stringent control of operating parameters
and a better theoretical understanding of microwave cavities. However, it will be
difficult to drive the relative uncertainty much below 1, . . . , 2 × 10−16.

That is because reducing the uncertainty of the black-body shift appears rather
difficult for the existing fountains since it would require a sufficiently detailed
knowledge of the effective thermal environment of the atoms during their free-
flight phase. This includes not only the actual inner-wall temperature to within
better than 0.2 K but also reliable values for the emissivity of the inner surfaces
of the vacuum tube (which might change due to physisorption or chemisorption
of caesium or residual gases over the years of operation) as well as the influence
of radiation coming in through windows and other openings. Any substantial
progress on this front might require the cooling of the walls of the vacuum tube.
This is exactly what is intended for NIST-F2 and NRC-FCs1, which are currently
under construction [80, 52].

• Robustness
Although not as “sexy” as the other two criteria, the operational robustness of
a clock is important for its application in the generation of timescales, be it on
a local or on an international level, although depending on circumstances some
dead time can be tolerated. No fountain can yet run with the same round-the-
clock unattended operation as the thermal-beam clocks PTB-CS1 and PTB-CS2
have been doing for decades. The main problem here is the stability of the oper-
ating parameters of the laser sources over days and weeks, in particular slow
drifts into less favourable operational regimes or even mode hops. Using standard
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extended-cavity diode lasers with feedback from an external diffraction grating it
is possible today to run a fountain clock with better than 99.8% availability over
weeks. This is, for instance, the case with PTB-CSF1, where the small amount
of dead time is entirely due to scheduled laser parameter checks [121]; recently,
completely unattended and uninterrupted operation for about 3 weeks has been
tried successfully.

New laser sources, like the extended-cavity lasers developed for the ACES
project [122] or the high-power narrow linewidth DFB laser diodes now available
commercially, might simplify long-term operation of fountain clocks. Dead times
due to unintended laser dropouts can be minimized by automated laser relock
systems, although these cannot always deal with mode hops.

13.8 Other Types of Atomic Clocks

A discussion of atomic clocks would not be complete without at least a brief discus-
sion of some other types of atomic clocks. Out of the many possibilities only two are
selected here: the vapour-cell clock, which trades uncertainty for a smaller size, and
the hydrogen maser which trades uncertainty for superior short- and medium-term
stability.

13.8.1 Vapour-Cell Clocks

Vapour-cell atomic clocks are perhaps the most influential type of atomic clock
for everyday life – or if they are not yet, they soon will be. This is because it is
rubidium-vapour clocks that work aboard the GPS satellites, helping us navigate
unfamiliar terrain, and that are gradually finding their way into cell phone network
base stations. With the development of the chip-scale atomic clock even battery-
operated, handheld devices like the GPS receivers or the cell phones themselves
might soon contain their own atomic clock. And would not an atomic wrist watch
be ever so cool?

13.8.1.1 Microwave Vapour-Cell Clock

Caesium and rubidium have two big practical advantages that distinguish them from
almost all other chemical elements. They can easily be manipulated with read-
ily available diode laser sources, and the vapour pressure above solid caesium or
rubidium is high enough to do useful spectroscopy even at room temperature. It is
therefore possible to place a small crumb of Cs or Rb into an evacuated glass cell,
shine a light beam through the cell and observe a spectroscopic signal (typically the
transmitted power) shaped by the optical properties of the atomic vapour.

In the simplest embodiment this light actually does not come from a laser but
from a spectral lamp containing the element of interest, typically rubidium. Natural
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rubidium consists of a mixture of two isotopes, 85Rb and 87Rb (Fig. 13.16). Most
of the light given off by the lamp corresponds to the D1 and D2 lines at 794 and
780 nm wavelength, respectively. By a lucky coincidence, the Doppler-broadened
|F = 3〉 → |F ′〉 absorption line in 85Rb overlaps the |F = 2〉 → |F ′〉 absorption
line in 87Rb; this is true both for the D1 and the D2 lines. The |F = 2〉 → |F ′〉
light component emitted by an isotopically pure 87Rb lamp is therefore absorbed in
an isotopically pure 85Rb “filter” cell (Fig. 13.17), leaving a transmitted light beam
that can only interact with the |F = 1〉 → |F ′〉 absorption line in the main 87Rb
cell. Atoms in ground state |F = 1〉 are optically excited and then decay into either
one of the ground states. Atoms in state |F = 2〉 are trapped because they cannot be
excited by the filtered lamp light anymore. State |F = 2〉 is therefore called a “dark
state” for this particular light spectrum.
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Fig. 13.16 Level scheme for the D1 excitation line of the two naturally occurring rubidium isotopes
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Fig. 13.17 Set-up of a compact optical-pumping rubidium microwave clock. The typical volume
of such a clock is 250 cm3
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Sooner or later all of the atomic population will have been optically pumped
into state |F = 2〉, and the main cell becomes transparent for the light beam: one
observes maximum signal on the photodetector. When now a 6.8-GHz microwave is
present it can induce transitions from |F = 2〉 to |F = 1〉. This restores some popu-
lation to the light-absorbing state, so that the transmission signal decreases. A servo
loop adjusts the microwave frequency such that the detector signal is minimized. In
the absence of frequency-shifting effects the microwave frequency then is 6, 834,
682, 610. 904, 324 Hz.

However, in order to get a reasonably narrow linewidth one needs to prolong the
period of time the atoms spend inside the volume illuminated by the laser beam.
One way is to use a chemically inert buffer gas chosen such that the ground state
coherence is not destroyed by collisions of buffer gas atoms with the alkali atoms
[123]. Typical gases are the noble gases or nitrogen. Alternatively, one can coat the
walls of the cell with paraffin, siloxanes or similar substances that exhibit a very low
sticking coefficient for alkali atoms and that isolate them from paramagnetic impu-
rities inside the wall material. In this way, the ground state coherence can survive
hundreds or even thousands of wall collisions, allowing a coherence lifetime of the
order of a second and a correspondingly narrow resonance line.

Over the years a number of commercial designs have been developed for a wide
range of applications including space-qualified versions. Typical specifications are
a relative short-term instability of 3× 10−11 and 2× 10−11 at 1 second and at 1 day,
respectively. Long-term drift rates can be as low as a few parts in 1014 per day after
an initial burn-in phase [124]. At least some of this drift is due to chemical reactions
between the alkali atoms and the walls of the cells, with additional contributions due
to a changing light spectrum coming out of the 87Rb lamp as it ages.

Easy as it looks to replace the spectral lamp by a laser, there are several problems
with this approach [125]. For one thing, the laser frequency noise gets converted by
the absorption profile of the vapour cell into amplitude noise [126], thus reducing the
short-term stability of the clock, unless special measures are taken to stabilize the
laser parameters and to narrow the linewidth. Another issue is the question of long-
term stability of the laser characteristics, where until very recently no commercially
viable solution of the aging problem could be found.

13.8.1.2 Purely Optical Vapour-Cell Clocks

Small as these clocks are, a further miniaturization is desirable, maybe down to
chip-scale. More important would be to find a way to curb the (relatively) large
power requirements of optical-pumping clocks, ideally down to a few 10 mW so
that it could run off a reasonable-sized battery for an extended period of time. Such
small, low-power atomic clocks could find their way into GPS receivers, cell phones
or even wrist watches.

The microwave excitation sets a natural size limit to any miniaturization effort,
given by the microwave wavelength or some large fraction thereof. This limita-
tion can be overcome by switching to an all-optical excitation scheme (Fig. 13.18).
Basically, one uses the same clock transition |F,m F = 0〉 → |F + 1,m F = 0〉 but
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Fig. 13.18 Principle of operation of the dark-state clock. Instead of coupling the levels involved
in the “clock transition” with a microwave one uses two phase-stable laser fields with a frequency
difference precisely matching the level splitting on the clock transition

instead of coupling those levels with a microwave one uses two phase-stable laser
fields with a frequency difference precisely matching the level splitting on the clock
transition.

The phenomenon one makes use of here is called coherent population trapping
(CPT) [127]. CPT in a Λ system (Fig. 13.19) shows interesting properties suitable
for a compact atomic clock. Consider first the situation of Fig. 13.19a. A resonant
laser field of frequency ω1 interacts with the transition from state |1〉 to the excited
state |e〉. Excited atoms can decay back in to either |1〉 or |2〉. Since the laser is not
resonant with the transition |2〉 → |e〉, any atom reaching state |2〉 can no longer be
excited by the laser frequency ω1. State |2〉 therefore is a dark state because after
several absorption–emission cycles all population will have accumulated in it; no
more absorption can take place, therefore no more spontaneous emission light is
given off by the sample.
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Fig. 13.19 The three-level Λ system. (a) A laser resonant with the |1〉 → |e〉 transition cannot
interact with any population in the |2〉 state, so this state becomes a dark state. (b) Likewise, for a
laser resonant only with the |2〉 → |e〉 transition state |1〉 becomes a dark state. (c) For a coherent
superposition of the two laser fields the dark state is a coherent superposition of |1〉 and |2〉
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On the other hand, if the radiation is applied on the other optical transition
(Fig. 13.19b) the state |1〉 becomes a dark state. Surprisingly (or maybe not), when a
coherent superposition of the two laser fields is applied, a new dark state consists of
a coherent superposition of the two atomic ground states, where the weights of the
two components are inversely proportional to the Rabi frequencies Ωi on the two
optical transitions (Fig. 13.19c):

|dark〉 = Ω2|1〉 −Ω1|2〉
Ω2

1 +Ω2
2

. (13.11)

Note that this equation smoothly transforms into the two limiting cases (a) and (b)
of Fig. 13.19.

Closer inspection of the mathematics shows that atoms can reach this coherent
dark state, the quantum-mechanical superposition of two ground states, only if the
laser difference frequency closely matches the frequency splitting between the two
ground states. In that case a ground state coherence is generated that prevents any
further excitation into the excited state. For a well-designed experimental set-up,
where the two laser frequency components are derived from two phase-locked lasers
[128] or from two modulation sidebands of a single laser [129], the width of the
resonance is only limited by the lifetime of the ground state coherence, for instance
by the inverse of the observation time. It is straight-forward to obtain linewidths of
just a few 10 Hz as a function of the difference frequency of the two lasers [130]
when a buffer gas is used to prevent the atoms in a thermal vapour from leaving the
volume illuminated by the laser beams. A servo loop can lock the laser difference
frequency to the ground state hyperfine splitting frequency, i.e. 9.2 GHz for caesium
vapour or 6.8 GHz for 87Rb vapour.

Note a difference here to the case of a microwave-induced transition in the
beam, fountain, or vapour-cell clocks described before. There the signal was con-
nected to the net transfer of population from one clock state to the other, which
can only happen when the two levels start with different populations. In con-
trast, the CPT clock relies on the generation of a ground state coherence, i.e. an
off-diagonal element in the density matrix becomes nonzero; this coherence can
be induced by the two laser beams even when the populations in the two cou-
pled ground state levels are equal. A state-selection mechanism therefore is not
required.

The first use of the CPT effect for an atomic frequency standard was in a sodium
atomic-beam experiment [131]. Later a series of papers was published that exam-
ined the use of the CPT resonance for sensitive magnetometry and for the con-
struction of vapour-cell clocks as described here (see [132] for a compilation of the
pioneering work and [133] for a more recent review). In a US–German collaboration
a first prototype of a miniaturized CPT clock could be demonstrated [134]. Shortly
thereafter, a truly chip-sized physics package for a CPT clock was constructed and
tested [135]. A recent review sums up the current state of the art [136]. A major
technological problem there is how to build and fill a millimetre-sized cell with
an alkali vapour and a buffer gas at just the right pressure. A first commercial
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device, although overall not quite at chip-scale yet, will enter the market soon. It will
probably offer an instability of 1.6×10−11 at 1 second and of below 10−12 at several
hours, in a package smaller than 50 cm3 [137].

A related device is the CPT maser [138], where the radiation emitted by the oscil-
lating magnetic dipole moment (the ground state coherence) is used. The advantages
and disadvantages of this principle are discussed in [138].

13.8.2 The Hydrogen Maser

Another invention by Ramsey, and another reason for why he got the Nobel Prize,
is the hydrogen maser (Fig. 13.20) [139, 140, 2]. From a beam of atomic hydrogen,
generated from H2 gas in a radiofrequency discharge, the atoms in the upper ground
states |F = 1,m F = 0〉 and |F = 1,m F = 1〉 are focussed by a polarizer magnet
into a storage bulb inside a microwave cavity resonant with the 1.4-GHz frequency
of the |F = 1,m F = 0〉 → |F = 0,m F = 0〉 hyperfine transition; atoms in the
other ground states (|F = 1,m F = −1〉 and |F = 0,m F = 0〉) are defocused
and do not reach the storage bulb. Therefore, a population inversion exists in the
hydrogen atom sample moving around inside the bulb with an average velocity close
to 0. When the flux of incoming spin-polarized atoms and their storage time in the
bulb is high enough, a self-sustained maser oscillation is possible. A small antenna
in the cavity picks up this oscillation, from which the output signal of the frequency
standard is derived.

This is the principle of operation of an active hydrogen maser, with some vari-
ation of course in the individual embodiments. The passive hydrogen maser is

H
2

source
H

 
source

(rf discharge)
focussing
magnet(s)

thermal
shield

bias field
coil

microwave
cavity

H storage bulb microwave
pickup loop

and to electronics

Fig. 13.20 Principle of operation of the hydrogen maser. Molecular hydrogen gas is dissociated in
a radiofrequency discharge. Hydrogen atoms in a low-field seeking state are magnetically focussed
into a storage bulb where they can emit a microwave photon into the cavity. A pickup loop registers
the resulting cavity field and passes it on to the electronics, which in turn generates the maser output
signal from it
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constructed similarly, except that a 1.4-GHz microwave signal is sent into the cav-
ity and its amplification by the hydrogen atoms inside is monitored. The passive
maser in general has a smaller form factor at the expense of larger short-term
instability.

A key component is the storage bulb, which is coated with Teflon or similar
materials so that an |F = 1〉 hydrogen atom survives thousands of wall collisions
before a spin-depolarization event occurs. Storage times of several seconds are thus
possible for the hydrogen atoms.

The main advantage of a hydrogen maser is its low relative short-term instability
on the order of < 10−14 at 1 s of averaging time. However, its long-term stabil-
ity suffers from drifts in the parameters of the set-up, in particular the geometrical
dimensions of the storage bulb (which can be, for instance, air pressure dependent
in simple designs) and chemical changes and againg of its wall coating, which in
turn change the frequency shift due to the wall collisions.

The hydrogen maser finds application wherever one needs a stable timescale, for
instance in astronomical observatories for pulsar timing or for radio interferometry
and, of course, in timing laboratories all over the world.

13.9 Optical Clocks

Perhaps the most dynamic area in the field of atomic clocks is that of optical clocks,
where great advances occurred in the last few years. So whatever I write here will be
outdated by the time this book appears in print. Therefore, here I will restrict myself
to giving only the general ideas and to focussing on some of the recent advances. A
fairly recent review covers the state of the art as of early 2005 [141].

A look at Eq. (13.7) immediately shows why an optical rather than a microwave
frequency standard might be an attractive option. The frequency ν0 of the oscillator
appears in the denominator of the equation for the instability. Since ν0 is five to six
orders of magnitude larger for an optical transition than for one in the microwave
regime one can expect an enormous gain in short-term stability (Table 13.1). Of
course, many other fundamental and technical problems need to be addressed before
such low instabilities can be reached. All in all, however, one can hope to reach
a clock uncertainty of around 10−18, after a number of expected and unexpected
technical and fundamental challenges have been met.

Table 13.1 Extrapolated short-term instabilities of some proposed optical frequency standards
calculated using Eq. (13.7) with Tcycle = 1 s for simplicity

Atom / ion Number of atoms Transition frequency Linewidth (Hz) σy(τ = 1 s)
133Cs 6 × 105 9.2 GHz 0.9 4 × 10−14

171Yb+ 1 688 THz 3.1 2 × 10−15

40Ca 107 456 THz 400 9 × 10−17

87Sr 106 430 THz 5 4 × 10−18



13 Atomic Clocks 403

13.9.1 How an Optical Clock Works

The operating principle of an optical clock is once again covered by Fig. 13.4. Here
the oscillator is a narrow-band laser source, the spectroscopy is performed either on
a single trapped ion or on a cloud of cold atoms (free falling or held in an optical
trap). The detection is done by observing the fluorescence light coming from the
ion or atoms. One modification, however, needs to be applied to the principle of
Fig. 13.4. It is impractical to have an optical signal as the clock output. Instead, one
would rather have a microwave signal, which can then be processed by standard
electronic techniques. This task, the optical-to-microwave clockwork function, is
taken up by a femtosecond laser frequency comb.

The first role of the lasers in an optical clock is to cool the sample. In principle
the same cooling techniques are applied as described above for the case of caesium
fountain clocks. In the case of a trapped ion clock additional cooling, for instance
sideband cooling [142], can be applied to cool the motion of the atom down to its
motional ground state. The exact details, like the question of whether and how to
apply repumping light, depend on the actual atom/ion in question. As an example,
we will consider here the case of a single-ion 171Yb trap (Fig. 13.21) [143]. Two
clock transitions are being investigated: the quadrupole transition S1/2 →D3/2 at
435 nm wavelength and the octupole transition S1/2 →F7/2 at 467 nm wavelength,
with natural linewidths of 3 Hz and some nanohertz, respectively.

The main laser cooling is done on the 369-nm transition, with some repumping
light applied on the other hyperfine transition (Fig. 13.21); a relatively strong mag-
netic field applied during the cooling phase prevents the population of dark states in
the ground state by inducing Larmor precession. In order to excite one of the clock
transitions one needs a laser with a linewidth of less than a Hertz, in order to obtain
a suitably narrow resonance line. This is achieved by locking the laser to a Fabry–
Perot resonance in a high-finesse (finesse > 100, 000 is possible) optical resonator

F = 0
F = 12S1/2

F = 0
F = 12P1/2

369 nm
(E1) 435 nm

(E2)

467 nm
(E3)

935 nm
(E1)

638 nm
(M1)

F = 1
F = 03D[3/2]1/2

F = 1
F = 22D3/2

F = 3
F = 42F7/2

F = 3
F = 21D[5/2]5/2

Fig. 13.21 Relevant levels for the 171Yb single ion optical frequency standard, using either the
electric-quadrupole resonance line at 435 nm wavelength or the octupole line at 467 nm
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with a low-thermal expansion spacer material between the mirrors, typically glass
ceramics. This resonator must be well isolated from external perturbations, so it is
fixed on a vibration-isolated mount [144]. Impressively small linewidths of about
0.1 Hz are possible in this way [145].

After the ion has been cooled one can switch off the repumping light on the
cooling transition, and a little while later the cooling light itself. The atom is then
in the lower clock state 2S1/2, F = 0. Next the probing light (either 435 or 467 nm)
is applied for some time (tenths of seconds typically). When the cooling light is
switched on again, the amount of fluorescence light observed on the cooling tran-
sition immediately after turn-on is an indication of whether the atom has made the
transition to the long-lived upper clock state or not: if there still is fluorescence light,
it has not! The absence of fluorescence light, in contrast, means that the atom is now
in the upper state of the clock transition.

The other laser frequencies are needed to prevent the atom falling into other
metastable levels. From the upper level of the cooling transition the atoms can
decay spontaneously into both hyperfine levels of the upper clock state 2D3/2. The
935-nm light resonantly excites atoms in F = 1 to the 3D[3/2]1/2 state which decays
spontaneously into the ground state. This light beam also nonresonantly excites
the transition from the upper clock level, F = 2. This weak excitation rate must
be taken into account when considering the characteristics of the clock transition
but it has the essential and beneficial effect of depopulating the upper clock state
much faster than its very long spontaneous lifetime would prescribe. In this way
one need not wait for the atom to decay spontaneously via the forbidden clock
transition, which could take a very long time indeed! The 638-nm light prevents
shelving of the atom in the 2F7/2 state, which can happen by spontaneous decay
from states omitted from Fig. 13.21 that are populated by collisions with residual gas
atoms.

By repeating this cooling and probing cycle for the same detuning one can deter-
mine the transition probability for a given detuning of the interrogation laser, and by
scanning this laser one can build up a line profile of the clock transition. Its width is
Fourier-limited by the duration of the interrogation light pulse when the linewidth
of the interrogation laser is sufficiently narrow.

When the servo loop of the optical clock is closed the frequency of the narrow-
band interrogation laser is locked to the clock transition. Careful consideration has to
be given to the sampling and locking parameters in order to obtain the best stability,
as detailed in [146]. A stringent test of the quality of the optical frequency standard
realized in this way is to actually build two of them and to compare them. The PTB
group has done this for two independent 171Yb+ ion standards and found a frequency
difference of only 3.6 ± 6.1 × 10−16, i.e. no difference within the total uncertainty
[143].

We will not go into the details of systematic frequency biases of optical clocks
here – we have already done that for the example of a fountain clock above. There is
once again a long and in principle rather similar list of effects that need to be investi-
gated and controlled, with differences in detail, of course. Of particular importance
are questions related to the trapping of the atoms: offsets and motion of an ion due
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Fig. 13.22 How to measure optical frequencies with a femtosecond laser, or how to transfer an
optical frequency into the microwave regime when fr and f0 are known and Δ f is measured

to static or dynamically generated electrical charges on the materials in the vicinity
of the ion, or light shifts (discussed below) in an optical trap for neutral atoms.

13.9.2 Obtaining Time from an Optical Clock

The optical frequency needs to be transferred into the microwave domain so that
a time signal can be derived from it. This optical-microwave transfer can be done
with the help of a laser frequency comb [147, 148]. The principle, originally devised
for the measurement of an unknown optical frequency, is shown in Fig. 13.22.
It makes use of the fact that a periodic train of short light pulses with repetition
rate fr , as it comes out of a mode-locked laser, consists of a sequence of equidistant
light frequency components separated by fr in frequency space. Except for a small
frequency offset the absolute frequency of one of these modes is a large integer
multiple of fr . The small offset frequency f0 reflects the phase slip between carrier
and envelope of the short pulses as a result of the difference between group and
phase velocity in the medium traversed by the pulses. The frequency of an optical
lightwave can be determined by measuring its offset (in the radiofrequency range)
from the closest mode of the comb.

Using the strong optical nonlinearity of special types of optical fibre one can
broaden the frequency spectrum of the pulsed laser beam so much that it spans
more than one octave. This allows one to frequency-double one of the low-frequency
modes and compare the second harmonic to the closest one of the high-frequency
modes. As indicated in Fig. 13.22 this can be used to determine f0, or even to lock it
to some desired value. When the system is run “in reverse”, it allows one to transfer
the optical frequency of an optical clock into the microwave domain.

Systems like that have been used to determine the frequencies of a number
of optical transitions by now, relative to the SI second reproduced by a caesium
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fountain clock, by locking fr to the caesium clock output. Even more precise are
frequency comparisons between optical transition lines directly, without the detour
through the caesium-based SI second: relative uncertainties of the frequency ratio
of about 10−17 have been demonstrated [149].

13.9.3 Which System Would Make the “Best” Optical Clock?

What would be the best ion or atom to use in an optical clock? This question is
hard to decide because so many different and competing aspects enter, like the
sensitivity of the clock transition frequency to the Zeeman effect or to blackbody
radiation, or the influence of nuclear quadrupole moments. On top of that, the ion’s
or atom’s level structure must allow laser cooling with reasonable effort, including
the provision of the required laser wavelengths. It is an interesting idea, therefore, to
separate the two functions, that of being laser coolable and that of having a suitable
clock transition, into two ions of different chemical species [150]. When the two
ions are trapped inside a linear ion trap, for instance, their joint normal modes of
motion can be cooled by laser-cooling one ion. The clock transition can be excited
and read out by entangling internal states of the ion with the motional states in the
trap – the quantum logic clock. This has been demonstrated with a combination of
9Be+ for cooling and 27Al+ as the clock ion [151].

Whether a single ion or a cloud of cold atoms is the better optical clock depends
on whether one is more interested in low instability or in low uncertainty. Certainly,
with many atoms one obtains a much higher signal, but on the other hand those
atoms could potentially interact with each other. Also, for a single ion the question
of inhomogeneity of external magnetic or laser light fields is not an issue. Until
recently, the observation time for a cold atom cloud in a clock was limited to the
free-fall time in Earth’s gravity. In principle, one could trap atoms using the periodic
light shift potential they experience in a 1D, 2D, or 3D standing wave. However, in
general the trapping light would also shift one of the clock states, thus giving a
frequency bias that would be extremely hard to control. Fortunately, it was then
pointed out that for strontium, for instance, a specific, “magic” wavelength for the
trapping light would cause the same light shift for both trapping states, so that no
frequency bias would be caused by the trapping lasers [152]. Similarly, Yb and Ca
could be trapped with their respective “magic” wavelengths.

This has certainly helped to push ahead the work on neutral atom clocks, with
several groups now working on Sr optical clocks. Measurements of the frequency
of the 1S0 → 3P0 transition in 87Sr by three groups agree within 1 × 10−15 with
each other [153], making this transition a potential candidate for the redefinition
of the second. It is an open question whether a Bose–Einstein condensate of atoms
could be useful for an atomic clock; after all, in this dense sample the question of
interactions becomes of critical importance.

Today the optical clocks with the lowest estimated frequency bias are ion clocks,
in particular the clock transitions 1S0 → 3P0 in 27Al+ and 2S1/2 → 2D5/2 in 199Hg+.
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Their current relative systematic uncertainties stand at 2.3× 10−17 and 1.9× 10−17,
respectively [149]. This is more than an order of magnitude better than the uncer-
tainty within which the best fountain clocks can reproduce the SI second as it is
currently defined.

In 2006 the Meter Convention recommended one microwave and four optical
transitions as secondary representations of the second [154]; they are listed in
Table 13.2. The elements and transitions in the table are, of course, not the only
candidates for a future redefinition of the second – the race is wide open and will
still take some time to decide. After all, when the definition of the second is changed
one wants to be sure that one really has made the best choice. That is why in all
probability at its next official meeting in 2011 the Meter Convention will leave the
caesium-based definition of the second untouched for now even though one or more
other base units might be redefined [155]. However, at that time we can expect to
see recommendations for other secondary representations of the second, as well as
reductions in the assigned uncertainties of those in Table 13.2.

Table 13.2 Transitions recommended in 2007 as secondary representations of the second

Atom / ion Transition Frequency (Hz) Relative uncertainty Group
87Rb S1/2 → S1/2 6,834,682,610. 904,324 3 × 10−15 SYRTE
199Hg+ S1/2 → D5/2 1,064,721,609,899,145 3 × 10−15 NIST
171Yb+ S1/2 → D3/2 688,358,979,309,308 9 × 10−15 PTB
88Sr+ S1/2 → D5/2 484,779,044,095,484 7 × 10−15 NPL
87Sr 1 S0 → 3 P0 429,228,004,229,877 1.5 × 10−14 U. Tokyo, SYRTE, NIST

13.10 The Future (Maybe)

If we look at clock-making in general, we find a recurring theme. It is always a
quest for an oscillating system that is ever better isolated from its surroundings.
In that sense a vibrating quartz crystal is better than a mechanical pendulum and
an oscillating magnetic transition dipole moment in an atom much better than a
macroscopic crystal. If we carry this thought further, one might think about a system
even more isolated than an electron in an atom: an oscillation of a nucleus [156].

Certainly, at some point a few years ahead the caesium-based definition of the
length of the SI second will be replaced by one based on a transition in the optical
frequency range. Until then, caesium fountain clocks will remain the most precise
(and still improving) standards of time.

13.10.1 A Nuclear Clock?

Typically, excitations of an atomic nucleus lie in the MeV energy range, but in the
case of the thorium isotope 229Th a low-lying energy state a mere 7.6 eV above the
ground state has been deduced from the analysis of high-energy decay spectra [157].
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It is an intriguing thought that using ultraviolet light one should be able to excite
a nuclear transition. A number of interesting physics questions are connected to this
issue, like how strong the coupling of that excited state is to the surrounding electron
cloud, i.e. how narrow the resonance line is. There is still a lot of work ahead before
a single 229Th ion in a Paul trap can provide a new standard of time [156]. The
first step must be to find the actual transition frequency in an optical experiment
because it is known right now only with an uncertainty of 0.5 eV [157]. With that
large uncertainty it is not even clear what laser source would be required.

13.10.2 A Pulsar Clock?

For completeness, one should also mention the idea of going back to an astronomical
phenomenon to monitor the passing of time with high precision: pulsars. At some
time it was thought that the regular flashes of radio waves emitted by millisecond-
period pulsars could form a more stable timescale than Earth-bound clocks could
provide [158]. However, there are a number of difficulties that are hard to solve. One
is of a principal nature: Because many of the parameters of a pulsar are not known a
priori they need to be determined by measurement – which must not involve atomic
clocks, or otherwise one would fold their drifts into the parameters of the pulsars.
For instance, in general the pulsar must slow down due to energy losses, but this
slow-down rate needs to be determined experimentally with very high precision so
that it can be corrected for [158, 159].

Already in the mid-1990s it was pointed out that with the atomic clocks available
then, such a pulsar timescale would not bring much of an advantage, if at all. Today,
after the advent of caesium fountain clocks and with the prospect of optical clocks it
has become apparent that man-made clocks will probably remain superior to natural
systems like quasars, even for averaging times of several decades. One reason is
that one cannot exclude that some violent event (like another body falling into the
pulsar) might alter the period of the quasar or shift its beam away from Earth, in
effect destroying the clock. But the main reason is that the signal from the quasar on
its way to Earth has to traverse whatever is located between the quasar and the Earth.
A cloud of interstellar matter will delay the radio signal by an amount connected to
its (density-dependent) index of refraction, so cloud movements will in general lead
to a jitter or even a long-term drift in the arrival times of the pulses, thus giving fre-
quency noise or even a bias which cannot be controlled. In fact, nowadays the timing
jitter of distant pulsars observed on the Earth is analyzed to extract information on
a background of gravitational waves traversing the line of sight [160].

13.10.3 Clocks in Space

The same ideas used in fountain clocks can be adapted for clocks in a low-gravity
environment. Clouds of cold atoms can be laser-prepared and then gently pushed
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through a microwave cavity to be detected at its end. One can expect many sec-
onds of interaction time between atoms and microwave radiation, with resulting
linewidths around 100 mHz. Three such projects for the International Space Station
have been pushed ahead [161]. A NASA project, the caesium clock PARCS [162],
recently became a victim of funding redistribution favouring the Mars initiative in
the United States. The same fate has befallen the rubidium clock experiment RACE
[163], another US-American project. An ESA project, ACES [164], is fully devel-
oped but has hit funding problems, too.

Clearly, many design issues must be tackled in order to construct a clock that
survives launch and that can work without any in-place user intervention. A major
task for all space-based clocks meant to provide timing information for Earth-bound
users is to develop ways of transferring the projected stability and accuracy to the
ground. It is beyond the scope of this chapter to go into any of the details here.

13.11 Precision Tests of Fundamental Theories

Precise and stable atomic clocks can be employed to learn more about fundamen-
tal assumptions about the physical world we live in. For instance, are constants of
nature really constant?

13.11.1 Testing Relativity

Local position invariance (LPI) forms a part of the more general Einstein equiva-
lence principle, which in turn is a foundation of Einstein’s theory of general rel-
ativity. To test its validity, over the course of more than 2 years the frequency
difference between PTB-CSF1 and different hydrogen masers was monitored in
order to look for variations that are synchronous with the time-varying gravitational
potential ΔU (t) due to the annual elliptical orbital motion of the Earth. No viola-
tion of the null result predicting LPI could be detected at the level of 6 × 10−6 of
the amplitude of ΔU (t)/c2 [165, 166]. This result represents an improvement by a
factor of about 100 compared to previous similar experiments and is one demon-
stration that significant improvements in the field of basic research become possi-
ble with the help of improved frequency standards like fountain clocks. Recently
[167] the analysis was repeated using data of all atomic clocks available at the
time, and over the longer data collection interval accumulated since the pioneer-
ing work [165]. Another improvement by a factor of 20 has been achieved in this
way.

By comparing the frequency values determined for the 87Sr clock transition
1S0 → 3 P0 at 698-nm wavelength in three different laboratories around the world
and at different times, one can derive an even more stringent upper limit for any
violation of local position invariance [153].
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13.11.2 How Constant Are Fundamental Constants?

The excellent stability and reproducibility of modern atomic clocks can help to
detect possible variations in the fundamental constants of nature, by allowing
repeated comparisons of different optical and/or microwave transitions over many
years [168–175]. This is not the only way to learn about possible time variations of
constants. More experimental techniques, applicable on a laboratory and on a cos-
mological timescale and also covering other fundamental constants, are discussed
in a number of recent reviews, some of which can be found under [170, 173, 175].
Here we will mention only a few of those involving atomic clocks in a direct way.
But even here, no completeness is claimed or even intended in this very dynamic
field.

13.11.2.1 Microwave Comparisons

Currently the SYRTE laboratory in Paris is unique in that they have a metrological-
quality rubidium fountain clock at their disposal. In earlier years they could run
one of their fountain clocks with 87Rb instead of caesium, leading to a precise
determination of the frequency of the Rb clock transition [176]. Combined with
a redetermination a few years later one can derive a limit for a temporal variation of
the frequency ratio [168]:

∣
∣
∣
∣

d ln( fRb/ fCs)

dt

∣
∣
∣
∣
< 7 × 10−16/year . (13.12)

Since fCs/ fRb ∝ α0.44μCs/μRb [168], one can infer a limit for the temporal variation
of the fine structure constant α if one assumes that the ratio of the two nuclear mag-
netic moments μi remains constant. Simply speaking, one therefore has to “decide”
whether any observed temporal change should be attributed to a change of the fine
structure constant or the magnetic moments of the nuclei, i.e. some properties of the
strong nuclear force.

In the meantime fountain SYRTE-FO2 has been modified to run on both atomic
species simultaneously. This latter arrangement allows for the precise control and
correction of common systematic errors, like drifts of the magnetic holding field
above the Ramsey cavity. A recent remeasurement of the rubidium clock frequency
has been presented at a conference [109]. Together with the previous measurements
an improved limit of

d ln( fRb/ fCs)

dt
= (−3.2 ± 2.3) × 10−16/year (13.13)

has been obtained.
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13.11.2.2 Absolute Frequency Measurements

A model-independent way of determining a possible time variation of α can be
found by separating the expression for the frequencies f1 and f2 of two electronic
transitions into constant and possibly time-dependent terms:

f1,2 = Ry × C1,2 × F1,2(α) , (13.14)

where Ry is the Rydberg constant. The constants C1,2 contain only mathematical
constants and atomic quantum numbers, while the complete dependence on the fine
structure constant α is contained in F1,2(α), which is computed from atomic theory.
Taking the time derivative of Eq. (13.14) for the two frequencies f1 and f2 one
arrives at

d(ln f1,2)

dt
= d(ln Ry)

dt
+ A1,2 × d(lnα)

dt
, (13.15)

where A1,2 = d(ln F1,2)/d(lnα). This system of two equations contains two
unknowns, the derivatives of the Rydberg and the fine structure constants, and thus
can be solved easily and in a model-independent way, i.e. without any assumptions
about which quantities do and which do not change.

Using this approach, one can combine absolute frequency measurements (i.e.
with respect to a primary caesium fountain clock) for different atomic species
and/or transitions taken in different laboratories over some longer time interval. For
instance, using the frequency of the clock transition in the 199Hg+ ion, measured at
NIST over the last few years, and the frequency of the clock transition in the 171Yb+

ion, measured at PTB since 2000, one arrives at [172, 177]

d lnα

dt
= (−2.6 ± 3.9) × 10−16/year (13.16)

d ln Ry

dt
= (−5.5 ± 11.1) × 10−16/year . (13.17)

A number of refinements have been done over the last few years, whenever a new
measurement of one of the contributing transitions, or a different transition, has
become available. However, for the very best optical frequency standards today, the
measurement with respect to the caesium fountains constitutes a limitation because
they cannot reproduce the SI second with better than a few parts in 1016 relative
uncertainty.

13.11.2.3 Optical Frequency Ratios

Even simpler conceptually is the search for a time dependence of α when two optical
transition frequencies can be compared directly, without the detour through the Cs
clock. Using Eq. (13.14) one obtains
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f1

f2
= C1

C2
× F1(α)

F2(α)
, (13.18)

which results in a simple expression for the time derivative of α only:

d(lnα)

dt
= (A1 − A2) × d[ln( f1/ f2)]

dt
. (13.19)

Once again, the first term on the right-hand side is known from atomic theory and
the second one can be measured.

The most recent test as of this writing is provided by a direct comparison of the
“clock” transitions in a trapped Al+ ion and a trapped Hg+ ion [149]. From the
measured change in the frequency ratio (or lack thereof) over about 2 years one can
deduce that the fine structure constant did not change by more than about two parts
in 1017 per year:

α̇

α
= (−1.6 ± 2.3) × 10−17/year . (13.20)

This is just the first example of similar experiments to be expected in the coming
years. For instance, Lea has suggested [173] a comparison of an octupole and a
quadrupole transition frequency in a single atom, where a number of systematics
might be common mode and thus drop out or at least be reduced. A particularly good
system is the ytterbium ion [173], where experiments are planned, for instance, at
PTB, using the two clock transitions described in Sect. 13.9.

13.12 Conclusion

Atomic clocks and the precise timing and experimentation they allow are continu-
ing to fascinate physicists and a general audience alike. With recent advances and
envisioned developments let us hope that this fascination will continue in years to
come. Better atomic clocks will allow us to understand the physical world better than
today. And perhaps they will make possible technical applications that we cannot
even dream of today.
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