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narius (Eds.), Molecules in Interaction with Surfaces
and Interfaces

Vol.635: D. Alloin, W. Gieren (Eds.), Stellar Candles
for the Extragalactic Distance Scale

Vol.636: R. Livi, A. Vulpiani (Eds.), The Kolmogorov
Legacy in Physics, A Century of Turbulence and
Complexity

Vol.637: I. Müller, P. Strehlow, Rubber and Rubber
Balloons, Paradigms of Thermodynamics

Vol.638: Y. Kosmann-Schwarzbach, B. Grammaticos,
K.M. Tamizhmani (Eds.), Integrability of Nonlinear
Systems

Vol.639: G. Ripka, Dual Superconductor Models of
Color Confinement

Vol.640: M. Karttunen, I. Vattulainen, A. Lukkarinen
(Eds.), Novel Methods in Soft Matter Simulations

Vol.641: A. Lalazissis, P. Ring, D. Vretenar (Eds.),
Extended Density Functionals in Nuclear Structure
Physics

Vol.642: W. Hergert, A. Ernst, M. Däne (Eds.), Com-
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Preface

This book is devoted to the study of the symmetries in quantum mechanics.
In many elementary expositions of quantum theory, one of the basic assump-
tions is that a group G of transformations is a group of symmetries for a
quantum system if G admits a unitary representation U acting on the Hilbert
space H associated with the system. The requirement that, given g ∈ G, the
corresponding operator Ug is unitary is motived by the need for preserving
the transition probability between any two vector states ϕ,ψ ∈ H,

|〈ϕ,Ugψ〉|2 = |〈ϕ,ψ〉|2. (0.1)

The composition law

Ug1g2 = Ug1Ug2 (0.2)

encodes the assumption that the physical symmetries form a group of trans-
formations on the set of vector states.

However, as soon as one considers some explicit application, the above
framework appears too restrictive. For example, it is well known that the wave
function ϕ of an electron changes its sign under a rotation of 2π; the Dirac
equation is not invariant under the Poincaré group, but under its universal
covering group; the Schrödinger equation is invariant neither under the Galilei
group nor under its universal covering group.

The above pathologies have important physical consequences: bosons and
fermions can not be coherently superposed, the canonical position and mo-
mentum observables of a Galilei invariant particle do not commute and par-
ticles with different mass cannot be coherently superposed.

For the Poincaré group the above problem was first solved by Wigner
in his seminal paper [40] and it was systematically studied by Bargmann,
[1], and Mackey, [27] (see, also, the book of Varadarajan, [35], for a detailed
exposition of the theory).

These authors clarified that in order to preserve (0.1), one only has to
require that U be either unitary or antiunitary and (0.2) can be replaced by
the weaker condition

Ug1g2 = m(g1, g2)Ug1Ug2 , (0.3)
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where m(g1, g2) is a complex number of modulo one (U is said to be a pro-
jective representation). Moreover, they showed that the study of projective
representations can be reduced to the theory of ordinary unitary representa-
tions by enlarging the physical group of symmetries. For example, the rotation
group SO(3) has to be replaced by its universal covering group SU(2). The
trick of replacing the physical symmetry group G with its universal covering
group G∗ is so well known in the physics community that the group G∗ itself
is considered as the true physical symmetry group. However, for the Galilei
group the covering group is not enough and one needs even a larger group G,
namely the universal central extension, in order that the unitary (ordinary)
representations of G exhaust all the possible projective representations of G.

The aim of this book is to present the theory needed to construct the uni-
versal central extension from the physical symmetry group in a unified, simple
and mathematically coherent way. Most of the results presented are known.
However, we hope that our exposition will help the reader to understand the
role of the mathematical objects that are introduced in order to take care of
the true projective character of the representations in quantum mechanics.
Finally, our construction of G is very explicit and can be performed by simple
linear algebraic tools. This theory is presented in Chap. 3.

Coming back to (0.1), this equality means that we regard symmetries as
mathematical objects that preserve the transition probability between pure
states. The structure of transition probability is only one of the various phys-
ically relevant structures associated with a quantum system. Other relevant
structures being, for instance, the convex structures of the sets of states and
effects, the order structure of effects, and the algebraic structure of observ-
ables. Therefore it is natural to define symmetry as a bijective map that
preserves one of these structures. In Chap. 2 we present several possibilities
of modeling a symmetry and we show that they all coincide. Hence one may
speak of symmetries of a quantum system. The set of all possible symmetries
forms a topological group Σ and, given a group G, a symmetry action is
defined as a continuous map σ from G to Σ such that

σg1g2 = σg1σg1 .

As an application of these ideas, in Chaps. 4 and 5 we treat in full detail
the case of the Galilei group both in 3 + 1 and in 2 + 1 dimensions. The
choice of the Galilei group instead of the Poincaré group is motivated first of
all by the fact that the Poincaré group has already been extensively studied
in the literature. Secondly, from a mathematical point of view, the Galilei
group shows all the pathologies cited above and one needs the full theory
of projective representations. We also treat the 2 + 1 dimensional case since
there is an increasing interest in the surface phenomena both from theoretical
and from experimental points of view.

The last chapter of the book is devoted to the study of Galilei invariant
wave equations. Within the framework of the first quantisation, the need for
wave equations naturally arises if one introduces the interaction of a particle
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with a (classical) electromagnetic field by means of the minimal coupling
principle. To this aim, one has to describe the vector states as functions on
the space-time satisfying a differential equation, the wave equation, which is
invariant with respect to the universal central extension of the Galilei group.
In Chap. 6 we describe how these wave equations can be obtained without
using Lagrangian (classical) techniques. In particular, we prove that for a
particle of spin j there exists a linear wave equation, like the Dirac equation
for the Poincaré group, such that the particle acquires a gyromagnetic internal
moment with the gyromagnetic ratio 1

j .
Since the book is devoted to the application of the abstract theory to the

Galilei group, we always assume that the symmetry group G is a connected
Lie group. In particular, we do not consider the problem of discrete symme-
tries. In the Appendix we recall some basic mathematical definitions, facts,
and theorems needed in this book. The reader will find them as entries in
the Dictionary of Mathematical Notions in the Appendix. The statement of
definitions and results are usually not given in their full generality but they
are adjusted to our needs.
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1 A Synopsis of Quantum Mechanics

This chapter collects the basic elements of quantum mechanics in the form
that is appropriate for an analysis of space-time symmetries. The reader who
is familiar with the Hilbert space formulation of quantum mechanics may
start directly with Chap. 2 of the book and return here if a need to check
our notations and terminology arises.

In quantum mechanics a physical system is represented by means of a
complex separable Hilbert space H, with an inner product 〈·, ·〉. The general
structure of any experiment – a preparation of a system, followed by a mea-
surement on it – is reflected in the concepts of states and observables, or,
states and effects. In their most rudimentary forms states and observables
of the system are given, respectively, as unit vectors ϕ ∈ H and selfadjoint
operators A acting on H. The real number 〈ϕ,Aϕ〉 is then interpreted as the
expectation value of the measurement outcomes of the observable A when
measured repeatedly on the system in the same state ϕ.

The probabilistic content of the ‘expectation value postulate’ becomes
more transparent when one considers the spectral decomposition ofA. Indeed,
ifA =

∫

R
xdΠA(x) is the spectral decomposition of A, then for any unit vector

ϕ the number 〈ϕ,Aϕ〉 is just the expectation value of the probability measure
X �→ 〈ϕ,ΠA(X)ϕ〉, where ΠA(X) is the spectral projection of A associated
with the Borel subsets X of the real line R. The number 〈ϕ,ΠA(X)ϕ〉 ∈ [0, 1]
is interpreted as the probability that a measurement of A leads to a result in
the set X when the system is in the state ϕ.

Both theoretical and experimental reasons require a slight generalisation
of the above framework. First of all, in order to take into account statistical
mixtures and to describe states of subsystems of compound systems one also
needs density matrices: vector states and density matrices are simply the
states of the system and are represented by positive trace one operators.
Moreover, in order to give a probabilistic interpretation to the theory, the
only requirement is that the map X �→ 〈ϕ,ΠA(X)ϕ〉 is a probability measure
on R. Hence, one may replace the projection operator ΠA(X) with a positive
operator E(X) such that E(X) is bounded by the identity operator I: such
an operator is called an effect of the system. An observable is then given as
an effect valued measure X �→ E(X).

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 1–6
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



2 1 A Synopsis of Quantum Mechanics

In this generality, if tr
[
·
]

denotes the trace of a trace class operator, then
the real number tr

[
TE

]
∈ [0, 1] gives the probability for an effect E in a state

T .
In the next two sections we shall have a closer look at the basic sets of

states and effects emphasizing those structures which lead to natural formula-
tions of symmetry transformations. We end this chapter with a brief remark
on the notion of an observable. The material presented here is quite stan-
dard. For further information on the basic structures of quantum mechanics
the reader may consult, in addition to the classics of von Neumann [36] and
Dirac [12], any of her or his favorite books on the subject matter. Most of
the results quoted here are presented in a more detailed form, for instance,
in the monographs of Beltrametti and Cassinelli [3], Busch et al [8], Davies
[11], Holevo [19, 20], Jauch [23], Ludwig [25], or Varadarajan [35].

1.1 The Set S of States and the Set P of Pure States

Let H be the Hilbert space of the quantum system, with inner product 〈·, ·〉,
linear in the second argument. Let B denote the set of bounded operators on
H and let B1 be its subset of the trace class operators. We denote by tr

[
T
]

the trace of an element T ∈ B1. If A, B are in B, we write A ≤ B, or B ≥ A,
if B −A is a positive operator.

A state T of the system is an element of B1 such that T is positive and
of trace one. We let S be the set of all states, that is,

S := {T ∈ B1 | T ≥ O, tr
[
T
]

= 1}. (1.1)

It is a convex subset of the set B1. Indeed, if T1, T2 ∈ S and 0 ≤ w ≤ 1,
then wT1 + (1−w)T2 ∈ S. In fact, S is even σ-convex, that is, if (Ti)∞

i=1 is a
sequence of states and (wi)∞

i=1 is a sequence of numbers such that 0 ≤ wi ≤
1,
∑∞
i=1 wi = 1, then the series

∑∞
i=1 wiTi converges in B1 in the trace norm

‖·‖1 to an operator in S; we denote this state as
∑
wiTi.

The convex structure of S reflects the physical possibility of combining
states into new states by mixing them with given weights. If T = wT1 + (1−
w)T2, we say that T is a mixture of the states T1 and T2 with the weight w.
The convex structure of S allows one to identify its extreme elements, that
is, the elements T ∈ S for which the condition T = wT1 + (1 − w)T2, with
T1, T2 ∈ S, 0 < w < 1, is fulfilled only for T = T1 = T2. The extreme states
are thus those states which cannot be expressed as mixtures of other states.
Such states are often called pure states, a notion which, however, requires
further qualification in the presence of the so-called superselection rules. We
let ex (S) denote the set of extreme states.

For any ϕ ∈ H, ϕ 	= 0, we let P [ϕ] denote the projection on the one-
dimensional subspace [ϕ] := {cϕ | c ∈ C} generated by ϕ, that is,

P [ϕ]ψ := 〈ϕ,ψ〉〈ϕ,ϕ〉 ϕ,
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for all ψ ∈ H. Let P denote the set of one-dimensional projections on H.
Then for any P ∈ P, P = P [ϕ] for some nonzero ϕ ∈ P (H), the range of P .

The set P is an important subset of S. Indeed, if T ∈ S, then T , as a com-
pact selfadjoint operator has a decomposition T =

∑∞
i=0 wiPi, where (Pi) is

a mutually orthogonal (PiPj = O) sequence in P, wi ∈ [0, 1],
∑
wi = 1, with

the series converging in the operator norm of B (since T is compact) but also
in the trace norm of B1 (since T is trace class). The numbers wi, wi 	= 0,
are the nonzero eigenvalues of T , each of them occurring in the decomposi-
tion as many times as given by the (finite) dimension of the corresponding
eigenspace. On the basis of this result it is straightforward to show that the
set of extreme states is equal to the set of one-dimensional projections,

ex (S) = P. (1.2)

For this reason we also call the extreme states the vector states. The above
result also shows that the σ-convex hull of P is the whole set of states,

σ − co (P) = S. (1.3)

In other words, vector states exhaust all states in the sense that any state
can be expressed as a mixture of at most countably many vector states.

It is a basic feature of quantum mechanics that any two (or more) vector
states P1 and P2 can also be combined into a new vector state by superposing
them. To describe this familiar notion in an appropriate way, let P1∨P2 denote
the least upper bound of P1 and P2. Then any P ∈ P which is contained in
P1 ∨ P2, that is, P ≤ P1 ∨ P2, is a superposition of P1 and P2. On the other
hand, any vector state P can be expressed as a superposition of a vector
state P1 and another vector state P2 exactly when P1 is not orthogonal to
P , P1 	≤ P⊥, that is, if and only if tr

[
PP1

]
	= 0 (we are excluding here the

trivial case P2 = P ).
As is well-known, the idea of superposition of vector states is most directly

expressed using the linear structure of the underlying Hilbert space. Indeed,
if P1 = P [ϕ1] and P2 = P [ϕ2], then the superpositions of P1 and P2 are
exactly those vector states which are of the form P = P [c1ϕ1 + c2ϕ2], with
c1, c2 ∈ C. If P = P [ϕ] is any vector state and P1 = P [ϕ1] is such that
P1 	≤ P⊥, then 〈ϕ,ϕ1〉 	= 0, and P is a superposition of P1 and, for instance,
P [ϕ− 〈ϕ1, ϕ〉ϕ1].

1.2 The Set E of Effects and the Set D of Projections

Any state T ∈ S induces an expectation functional E �→ tr
[
TE

]
on the set B

of bounded operators. The requirement that the numbers tr
[
TE

]
represent

probabilities implies that the operator E is positive and bounded by the unit
operator: O ≤ E ≤ I. Such operators are called effects and the number
tr
[
TE

]
is the probability for the effect E in the state T . Let
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E := {E ∈ B |O ≤ E ≤ I} (1.4)

denote the set of all effects.
As a subset of B, E is ordered, with O and I as its order bounds. The

order on E is connected with the basic probabilities of quantum mechanics.
Indeed, for any E,F ∈ E, E ≤ F (in the sense that F − E ≥ O) if and only
if tr

[
TE

]
≤ tr

[
TF

]
for all T ∈ S. The map E � E �→ E⊥ := I − E ∈ E

is a kind of complementation, since it reverses the order (if E ≤ F , then
F⊥ ≤ E⊥) and, when applied twice, it yields the identity ((E⊥)⊥ = E).
These properties guarantee that the de Morgan laws hold in E in the sense
that if, for instance, the greatest lower bound E ∧F of E,F ∈ E exists in E,
then the least upper bound of their complements E⊥ and F⊥ also exists in E
and (E∧F )⊥ = E⊥∨F⊥. However, E �→ E⊥ is not an orthocomplementation
since the greatest lower bound of E and E⊥ need not exist at all, or, even
when it does, it need not be the null effect.

The set of projections D is an important subset of E. For any E ∈ E,
EE⊥ = E⊥E, so that EE⊥ is an effect contained in both E and E⊥. There-
fore, the projections can be characterized as those effects E for which the set
of lower bounds of E and E⊥, l.b. {E,E⊥}, contains only the null effect,

D = {D ∈ E | l.b. {D,D⊥} = {O} }. (1.5)

In addition to its order structure, the set E of effects is a convex subset
of the set of bounded operators B: for any E,F ∈ E and 0 ≤ w ≤ 1, wE +
(1 − w)F ∈ E. This structure reflects the physical possibility of combining
measurements into new measurements by mixing them. An effect E ∈ E is
an extreme effect if the condition E = wE1 + (1 − w)E2, with E1, E2 ∈ E,
0 < w < 1, implies that E = E1 = E2. Extreme effects arise from pure
measurements, that is, measurements which cannot be obtained by mixing
some other measurements. By a straightforward application of the spectral
theorem one may show that the set of extreme effects ex (E) equals with the
set of projections,

ex (E) = D. (1.6)

The algebraic structure of B also equips E with the structure of a partial
algebra. Indeed, for any E,F ∈ E, their sum E+F is an effect whenever the
operator E + F is bounded by the unit operator. Moreover, for each E ∈ E,
there is a unique E′ ∈ E such that E + E′ = I. Clearly, E′ = E⊥. This
structure is closely related to the physical possibility that the effects E and
F , for which E + F ≤ I, can be measured together. The partial sum leads
us to define an order on E: for any E,F ∈ E, we write E ≤ F exactly when
there is a G ∈ E such that E+G = F . Obviously, the order so defined agrees
with the order given by the notion of a positive operator. We observe also
that if D1, D2 ∈ D, then D1 +D2 is an effect if and only if it is a projection,
hence D itself is endowed with a partial algebra structure by restricting on it
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the partially defined sum of E. The order defined on D by this partial sum
is obviously the standard one.

There is, however, an important difference between D and E as concerns
the relation between their structures of partial algebras and ortho-ordered
sets. In fact, given D1, D2 ∈ D, one has D1 +D2 ∈ D if and only if D1 ≤ D⊥

2
and, in this case, D1 + D2 = D1 ∨ D2. Hence, not only the partial algebra
structure of D determines its order structure, but the converse is also true.
This is, however, not the case in the set of effects. In fact, there exist the
effects E,F ∈ E such that E ≤ F⊥ and E + F ∈ E, but E + F 	= E ∨ F , as
would be required if we were to define the partial sum in terms of the order.
This is due to the fact that E∨F need not exist at all. As an example, consider
E = αD1, F = βD2, with 0 < α < β < 1, D1 ≤ D⊥

2 and D1, D2 ∈ D. Then
αD1 ≤ (βD2)⊥, αD1 + βD2 ∈ E, but αD1 ∨ βD2 does not exist.

With respect to the partial sum structure, the projections may again be
distinguished as a special subset of effects. Indeed, D is the set of effects
E ∈ E for which the set of upper bounds u.b. {E,E′} = {I}, in the order
given by the sum.

The notion of the coexistence of effects is a fundamental concept in quan-
tum mechanics which is introduced to describe effects that can be measured
together by measuring a single observable. For any two effects E,F ∈ F
their coexistence can equivalently be formulated as follows: E and F are
in coexistence if and only if there are effects E1, F1, G ∈ E such that
E = E1 +G,F = F1 +G, and E1 +F1 +G ≤ I. When applied to projections
D1, D2 ∈ D ⊂ E, their coexistence is equivalent to their compatibility, which,
in turn, is equivalent to the commutativity of D1 and D2.

1.3 Observables

We close this introductory chapter with a short remark on observables. In
accordance with the idea that an observable provides a representation of
the possible events occurring as outcomes of a measurement, we define an
observable as an effect valued measure Π : F → E on a σ-algebra F of
subsets of a nonempty set Ω. That is, a function Π : F → B is an observable
if 1) Π(X) ≥ O for all X ∈ F , 2) Π(Ω) = I, and 3) Π(∪Xi) =

∑
Π(Xi)

for all disjoint sequences (Xi) ⊂ F , where the series converges in the weak,
or, equivalently in the strong operator topology of B. We recall that an
observable Π : F → B is projection valued, that is, Π(X) ∈ D for all
X ∈ F , if and only if it is multiplicative, that is, Π(X ∩ Y ) = Π(X)Π(Y )
for all X,Y ∈ F . Finally, we note that an observable Π : F → B and a state
T ∈ S define a probability measure

pΠT : F → [0, 1], X �→ pΠT (X) := tr
[
TΠ(X)

]
,

which, in the minimal interpretation of quantum mechanics, is the probabil-
ity distribution of the measurement outcomes of Π in state T in the following
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sense: the number pΠT (X) is the probability that a measurement of the ob-
servable Π on the system in the state T leads to a result in the set X. In
accordance with this interpretation, the number tr

[
TE

]
is the probability for

the effect E ∈ E in the state T ∈ S, and, since P ⊂ S and P ⊂ E, the number
tr
[
P1P2

]
may also be interpreted as the transition probability between the

vector states P1 and P2.



2 The Automorphism Group
of Quantum Mechanics

The idea of symmetry receives its natural mathematical modelling as a trans-
formation on the set of entities the symmetry refers to. The basic structures
of quantum mechanics are coded in the sets of states and effects and in the
duality between them. As described in Chap. 1 these sets possess various
physically relevant structures which define the corresponding automorphism
groups. Any of them could be used to formulate the notion of symmetry in
quantum mechanics. The plurality here, however, is deceptive since all these
automorphism groups turn out to be isomorphic in a natural way. This chap-
ter is devoted to the study of several such groups and the natural connections
between them.

Section 2.1 formulates the relevant automorphisms and investigates their
main properties. Section 2.2 states and proofs the fundamental representation
theorem, the Wigner theorem, for such automorphisms. Section 2.3 summa-
rizes and completes the study of the isomorphisms of the groups of state and
effect automorphisms.

We let H be the Hilbert space of the system and we use the notations
and terminology introduced in Chap. 1.

2.1 Automorphism Groups of Quantum Mechanics

The various structures of the sets of states and effects and the function
(T,E) �→ tr

[
TE

]
lead to several natural automorphisms of quantum me-

chanics. They will be discussed in the following subsections.

2.1.1 State Automorphisms

The set S of states is a convex set, the convexity structure exhibiting the
possibility of combining states into new states by mixing them. This structure
leads to the following definition of a state automorphism.

Definition 1. A function s : S→ S is a state automorphism if
1) s is a bijection,
2) s(wT1 + (1−w)T2) = ws(T1) + (1−w)s(T2) for all T1, T2 ∈ S, 0 ≤ w ≤ 1.

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 7–25
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Let Aut (S) denote the set of all state automorphisms. It is straightfor-
ward to confirm that Aut (S) is a group with respect to the composition of
functions. The duality (T,E) �→ tr

[
TE

]
serves to define a natural topology

on Aut (S). Indeed, any pair of a state T and an effect E defines a function
Aut (S) � s �→ fT,E(s) := tr

[
s(T )E

]
∈ [0, 1], and we endow Aut (S) with

the weakest topology in which all these functions fT,E , T ∈ S, E ∈ E, are
continuous. The following lemma gives some basic properties of state auto-
morphisms.

Lemma 1. Let s ∈ Aut (S).
1) s is the restriction of a unique trace-norm preserving linear operator on
the set B1,r of the selfadjoint trace class operators on H;
2) s(P) ⊆ P;
3) if s(P ) = P for all P ∈ P, then s is the identity.

Proof. 1) To extend s to B1,r := {T ∈ B1 |T ∗ = T} consider first a T ∈
B+

1,r := {T ∈ B1,r |T ≥ O}, and define

s̃(T ) := ‖T‖1 s(T/ ‖T‖1)

for T 	= O and put s̃(T ) = O if T = O. Then, for any λ ≥ 0, one gets
s̃(λT ) = λs̃(T ), which is the positive homogeneity of s̃. Now let T1, T2 ∈ B+

1,r
and write T1 + T2 in the form

T1 +T2 = (‖T1‖1 + ‖T2‖1)
(

‖T1‖1
‖T1‖1 + ‖T2‖1

T1

‖T1‖1
+

‖T2‖1
‖T1‖1 + ‖T2‖1

T2

‖T2‖1

)

.

The positive homogeneity of s̃ and the convexity of s then yield the additivity
of s̃, s̃(T1+T2) = s̃(T1)+s̃(T2). Consider next a T ∈ B1,r, write T = T+−T−,
where T± = 1

2 (|T | ± T ), with |T | :=
√
T ∗T , and define

ŝ(T ) := s̃(T+)− s̃(T−).

The additivity of s̃ and its homogeneity over non-negative real numbers give
the linearity of ŝ. Also, if T = T1 − T2 for some other T1, T2 ∈ B+

1,r, then
T+ + T2 = T− + T1, so that by the additivity of s̃, s̃(T+)− s̃(T−) = s̃(T1)−
s̃(T2), which shows that ŝ is well defined. By construction, ŝ is positive, that
is, ŝ(T ) ≥ O for all T ≥ O. Moreover, it preserves the trace, since

tr
[
ŝ(T )

]
= tr

[∥
∥T+

∥
∥

1 s(T
+/

∥
∥T+

∥
∥

1)−
∥
∥T−∥∥

1 s(T
−/

∥
∥T−∥∥

1)
]

=
∥
∥T+

∥
∥

1 −
∥
∥T−∥∥

1 = tr
[
T+]− tr

[
T−] = tr

[
T
]

for all T ∈ B1,r. If f : B1,r → B1,r is another positive linear map which
extends s, then for any T ∈ B1,r, f(T ) = f(T+ − T−) = f(T+) − f(T−) =
‖T+‖1 f(T+/ ‖T+‖1)−‖T−‖1 f(T−/ ‖T−‖1) = ‖T+‖1 s(T+/ ‖T+‖1)−‖T−‖1
s(T−/ ‖T−‖1) = ŝ(T ), showing that the extension is unique. A direct compu-
tation shows, in addition, that ŝ−1 is the inverse of ŝ so that ŝ is a bijection.
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It remains to be shown that ŝ preserves the trace norm. In fact, for any
T ∈ B1,r, we have

‖ŝ(T )‖1 =
∥
∥ŝ(T+ − T−)

∥
∥

1 =
∥
∥ŝ(T+)− ŝ(T−)

∥
∥

1

≤
∥
∥ŝ(T+)

∥
∥

1 +
∥
∥ŝ(T−)

∥
∥

1 =
∥
∥T+

∥
∥

1 +
∥
∥T−∥∥

1

= tr
[
T+ + T−] = tr

[
|T |

]
= ‖T‖1 .

Since the inverse s−1 of s has the same properties as s, one also has ‖T‖1 =∥
∥ŝ−1(ŝ(T ))

∥
∥

1 ≤ ‖ŝ(T )‖1, so that ‖ŝ(T )‖1 = ‖T‖1.
2) Let P ∈ P and assume that s(P ) = wT1 +(1−w)T2 for some 0 < w <

1, T1, T2 ∈ S. Then P = ws−1(T1) + (1− w)s−1(T2), so that P = s−1(T1) =
s−1(T2) and thus s(P ) = T1 = T2 showing that s(P ) ∈ P.

3) Any T ∈ S can be expressed as T =
∑

i wiPi for some sequence
(wi) of weights [0 ≤ wi ≤ 1,

∑
wi = 1] and for some sequence of elements

(Pi) ⊂ P with the series converging in the trace norm. By the continuity of
s, s(T ) =

∑

i wis(Pi), which shows that s(T ) = T for all T ∈ S whenever
s(P ) = P for all P ∈ P. ��

Example 1. For any unitary operator U ∈ U define sU (T ) := UTU∗ for all
T ∈ S. Clearly, sU is a state automorphism. Let U1, U2 ∈ U. Then sU1 = sU2

if and only if U1 = zU2 for some complex number z of modulus one. Indeed,
if sU1(T ) = sU2(T ) for all T ∈ S, then, in particular, sU1(P ) = sU2(P ) for
all P ∈ P, so that U1ϕ = z(ϕ)U2ϕ, z(ϕ) ∈ T, for all ϕ ∈ H. It remains
to be shown that the function ϕ �→ z(ϕ) is constant. Let c ∈ C, ϕ ∈ H.
Then U1(cϕ) = cU1ϕ = cz(ϕ)U2ϕ and U1(cϕ) = z(cϕ)U2(cϕ) = cz(cϕ)U2ϕ,
so that z(ϕ) = z(cϕ). Let ϕ,ψ ∈ H. Then U1(ϕ + ψ) = U1ϕ + U1ψ =
z(ϕ)U2ϕ + z(ψ)U2ψ as well as U1(ϕ + ψ) = z(ϕ + ψ)U2(ϕ + ψ) = z(ϕ +
ψ)U2ϕ + z(ϕ + ψ)U2ψ. Assume that ϕ 	= cψ, that is, ϕ and ψ are linearly
independent. Then θ := (〈ψ,ψ〉ϕ− 〈ψ,ϕ〉ψ) / (〈ψ,ψ〉〈ϕ,ϕ〉 − 〈ϕ,ψ〉〈ψ,ϕ〉) is
a vector such that 〈θ, ϕ〉 = 1 and 〈θ, ψ〉 = 0. Taking the scalar product
of the vector U1(ϕ + ψ) with the vector U2θ then yields z(ϕ) = z(ϕ + ψ)
for any ψ ∈ H that is linearly independent of ϕ. Therefore, z(ϕ) is constant.
Similarly, if U ∈ U is an antiunitary operator, then sU , with sU (T ) := UTU∗,
T ∈ S, is an element of Aut (S), and two such automorphisms sU1 and sU2

are exactly the same when U1 = zU2 for some z ∈ T.

2.1.2 Vector State Automorphisms

The set P of vector states is a distinguished subset of the set of all states,
P = ex (S). These are the states that cannot be expressed as mixtures of
other states. However, they can be superposed into new vector states and any
vector state can be expressed as a superposition of some other vector states.
We use this structure to define the following notion of an automorphism of
vector states.
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Definition 2. A function p : P→ P is a superposition automorphism if
1) p is a bijection,
2) for all P, P1, P2 ∈ P, P ≤ P1 ∨ P2 ⇐⇒ p(P ) ≤ p(P1) ∨ p(P2),
3) for all P, P1 ∈ P, P1 	≤ P⊥ ⇐⇒ p(P1) 	≤ p(P )⊥.

Let Auts(P) denote the set of all superposition automorphisms of vector
states. It is a group with respect to the composition of functions, and the
functions p �→ fP,E(p) := tr

[
p(P )E

]
, P ∈ P, E ∈ E, give it a natural initial

topology. Given U ∈ U ∪U we can define pU : P → P as pU (P ) = UPU∗.
Then pU ∈ Auts(P) and pU1 = pU2 if and only if U1 = zU2 for some z ∈ T.

The notion of transition probability on P serves to define another natu-
ral notion of a vector state automorphism. We simply call it a vector state
automorphism.

Definition 3. A function p : P→ P is a vector state automorphism if
1) p is a bijection,
2) tr

[
p(P1)p(P2)

]
= tr

[
P1P2

]
for all P1, P2 ∈ P.

Let Aut (P) denote the set of all vector state automorphisms. One may
again readily check that Aut (P) forms a group with respect to the function
composition, pU ∈ Aut (P) for each U ∈ U∪U and the basic duality defines
a natural topology on Aut (P). This is the initial topology defined by the
family of functions fP1,P2 , P1, P2 ∈ P, where fP1,P2(p) := tr

[
p(P1)P2

]
.

Condition 3 of Definition 2 is equivalent to the condition that
tr
[
p(P1)p(P )

]
= 0 if and only if tr

[
P1P

]
= 0. This is a weakening of

condition 2 of Definition 3. Let Aut0(P) denote the group of the bijective
functions p : P → P which satisfy condition 3 of Definition 2, that is,
which preserve transition probability zero. Then Auts(P) ⊆ Aut0(P) and
Aut (P) ⊆ Aut0(P). We shall see that, if the dimension of the Hilbert space
is greater than 2, then these three groups are the same. On the other hand, if
dimH = 2, then Aut (P) ⊂ Aut0(P) = Auts(P). The following example ex-
hibits the two dimensional case, whereas we return to confirm the remaining
statements in Sect. 2.3.1.

Example 2. Consider the two dimensional Hilbert space H = C
2. The set P

of one-dimensional projections on C
2 consists exactly of the operators of the

form 1
2 (I + a · σ), where a ∈ R

3, ‖a‖ = 1, and σ = (σ1, σ2, σ3) are the Pauli
matrices. Therefore, any p : P→ P is of the form 1

2 (I+a ·σ) �→ 1
2 (I+a′ ·σ)

so that p is bijective if and only if a �→ a′ =: f(a) is a bijection on the unit
sphere of R

3. Writing a = (1, θ, φ), θ ∈ [0, π], φ ∈ [0, 2π] we define a function
f such that f(1, θ, φ) = (1, θ, φ) whenever θ 	= π

2 and we write f(1, π2 , φ) =
(1, π2 , g(φ)), with g(φ) = φ2/π for 0 ≤ φ ≤ π and g(φ) = (φ − π)2/π + π for
π ≤ φ ≤ 2π. The function p : P→ P defined by f is clearly bijective. Using
the fact that tr

[ 1
2 (I + a · σ) 1

2 (I + b · σ)
]

= 1
2 (1 + a · b) one immediately

observes that p preserves the transition probability zero but not, in general,
other transition probabilities. Hence p ∈ Aut0(P), but p /∈ Aut (P); this
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example is essentially due to Uhlhorn [37]. Finally, in the two dimensional
case, condition 2 of Definition 2 is trivial, so that now Aut0(P) = Auts(P).

The set P is a subset of S. One may then ask whether a state auto-
morphism, when restricted to the vector states, defines a vector state auto-
morphism. The following lemma answers this question affirmatively, show-
ing, in fact, that the restriction s �→ s|P defines a group isomorphism
Aut (S)→ Aut (P).

Proposition 1. The function Aut (S) � s �→ s|P ∈ Aut (P) is a group iso-
morphism.

Proof. Let s ∈ Aut (S). By Lemma 1 its restriction s|P on P is well-defined
and bijective. Let ŝ be the trace-norm preserving linear extension of s on
B1,r, and let P1, P2 ∈ P. Then

2
√

1− tr
[
P1P2

]
= ‖P1 − P2‖1 = ‖ŝ (P1 − P2)‖1 = ‖ŝ(P1)− ŝ(P2)‖1

= ‖s(P1)− s(P2)‖1 = 2
√

1− tr
[
s(P1)s(P2)

]
,

so that s|P preserves the transition probabilities. The map s �→ s|P is clearly
a group homomorphism. Its injectivity follows from the above proved fact
that s is the identity whenever s|P is such. To prove the surjectivity, let
p ∈ Aut (P). Since any T ∈ S can be decomposed as T =

∑
wiPi we may

define sp(T ) :=
∑
wip(Pi). If T =

∑

j w
′
jP

′
j is another decomposition of

T , then a direct computation shows that
∑

j w
′
jp(P

′
j) =

∑

i wip(Pi). Thus
sp is well defined. Its convexity, injectivity, and surjectivity can readily be
confirmed. Clearly, sp|P = p, and the proof is complete. ��

2.1.3 Effect Automorphisms

The set of effects E possesses three distinct, physically relevant basic struc-
tures, the ⊥-order structure, the convexity structure, and the partial algebra
structure. They all lead to natural notions of effect automorphisms.

Definition 4. A function e : E→ E is an effect ⊥-order automorphism if
1) e is a bijection,
2) for all E,F ∈ E, E ≤ F ⇐⇒ e(E) ≤ e(F ),
3) e(E⊥) = e(E)⊥ for all E ∈ E.

Definition 5. A function e : E→ E is an effect sum automorphism if
1) e is a bijection,
2) for all E,F ∈ E, E + F ∈ E ⇐⇒ e(E) + e(F ) ∈ E,
3) e(E + F ) = e(E) + e(F ) whenever E + F ∈ E.

Definition 6. A function e : E→ E is an effect convex automorphism if
1) e is a bijection,
2) e(wE + (1− w)F ) = we(E) + (1− w)e(F ) for all E,F ∈ E, 0 ≤ w ≤ 1.



12 2 The Automorphism Group of Quantum Mechanics

Let Auto(E), Auts(E), and Autc(E) denote the sets of all effect ⊥-order,
sum, and convex automorphisms, respectively. They all form groups and the
functions fT,E : e �→ tr

[
Te(E)

]
, T ∈ S, E ∈ E, equip them with natural

initial topologies. Clearly, the functions eU , U ∈ U ∪U, defined as eU (E) =
UEU∗, E ∈ E, belong to any of these groups. Apart from their apparent
difference, the sum and convex automorphisms of effects are identical.

Proposition 2. The groups Auts(E) and Autc(E) are the same.

Proof. Analogously with the extension of s ∈ Aut (S) to ŝ : B1,r → B1,r
given in Lemma 1, any sum automorphism e ∈ Auts(E) can uniquely be ex-
tended to a positive bijective linear map on Br, so that its restriction to E is,
in particular, a convex automorphism. Hence Auts(E) ⊆ Autc(E). Similarly,
any convex automorphism e ∈ Autc(E) extends uniquely to a positive bijec-
tive linear map on Br, and its restriction to E is also a sum automorphism,
Autc(E) ⊆ Auts(E). ��

Proposition 3. Auts(E) is a subgroup of Auto(E).

Proof. Let e ∈ Auts(E). If E ≤ F then F = (F − E) + E, with F − E ∈ E,
and thus e(F ) = e(F −E) + e(E), so that e(E) ≤ e(F ). Since e−1 shares the
properties of e, the converse is also true, that is, if e(E) ≤ e(F ), then E ≤ F .
The bijectivity of e and the fact that O = inf E and I = supE imply that
e(O) = O and e(I) = I. Since I = e(I) = e(E + E⊥) = e(E) + e(E⊥), one
also has e(E)⊥ = e(E⊥). ��

Remark 1. An effect ⊥-order automorphism preserves the orthogonality of
effects, that is, it has the property 2) of Definition 5. On the other hand,
if e : E → E is a bijection such that for any E,F ∈ E, E + F ∈ E if an
only if e(E) + e(F ) ∈ E, then e also preserves the order in both directions.
Moreover, since for any E ∈ E, E⊥ = sup{F ∈ E |E+F ≤ I}, one gets that
e(E⊥) = e(E)⊥, that is, e is a ⊥-order automorphism.

Remark 2. The notion of coexistence of effects is a fundamental property of
effects. Therefore, one could introduce the corresponding automorphism as a
bijection e : E → E satisfying the following condition: for any E,F ∈ E, E
and F are coexistent if and only if e(E) and e(F ) are coexistent. The map
e for which e(O) = I, e(I) = O, and e(E) = E otherwise, is an example of
such a transformation, showing that coexistence preserving transformation
need not preserve the order, and thus does not lead to a useful characteriza-
tion. However, when combined with an effect order automorphism, that is,
property 2) of Definition 4, the preservation of coexistence in the above sense
suffices to determine the structure of such automorphisms for dim(H) ≥ 3
[30].

We proceed to show that an effect sum automorphism defines a unique
state automorphism. For this the following two lemmas are needed, the first
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one being a direct consequence of the previous proposition and the result
concerning the limits of increasing bounded nets of selfadjoint operators.

Lemma 2. Let e ∈ Auts(E). Then
1) if (Ei)i∈I is any family of elements of E such that supi∈I Ei ∈ E and
supi∈I e(Ei) ∈ E, then supi∈I e(Ei) = e (supi∈I Ei) ;
2) if (Ei)i∈I is an increasing net of elements of E, then supi∈I Ei ∈ E and
supi∈I e(Ei) ∈ E, and supi∈I e(Ei) = e (supi∈I Ei) .

Lemma 3. Let m : E→ [0, 1] be a function with the following properties:
1) if E + F ≤ I, then m(E + F ) = m(E) +m(F ),
2) if (Ei)i∈I is an increasing net in E, then m (supi∈I Ei) = supi∈I m(Ei).
There is a unique T ∈ B+

1,r such that for all E ∈ E, m(E) = tr
[
TE

]
.

Proof. We notice first that m(E) = m(E + O) = m(E) + m(O), so that
m(O) = 0. We prove next that for all E ∈ E and 0 < λ < 1,

m(λE) = λm(E).

If λ is rational this follows from the additivity of m. Let 0 < λ < 1 and let
(rn) be an increasing sequence of positive rationals converging to λ. Then

sup
n

(rnE) = λE

and this implies that

m(λE) = m

(

sup
n
{rnE}

)

= sup
n
m(rnE) = sup

n
(rnm(E)) = λm(E).

The (unique) extension of m to a positive linear map m̂ : Br → R is again
straightforward.

The map m̂ is normal. Indeed, if (Ai)i∈I is an increasing norm bounded
positive net in Br, then, letting c = supi ‖Ai‖, (Ai/c)i∈I is an increasing net
in E and we have

m̂

(

sup
i
Ai

)

= cm̂

(

sup
i

Ai
c

)

= c sup
i
m

(
Ai
c

)

= sup
i
m̂(Ai).

Hence m̂ is a linear positive normal function on Br. It is well known that
such an m̂ defines a unique positive trace class operator T such that m̂(A) =
tr
[
TA

]
for all A ∈ Br, see, for instance [11, Lemma 6.1, Chap. 1]. Since m̂

is uniquely defined by its restriction m on E the proof is complete. ��

Proposition 4. Let e ∈ Auts(E). There is a unique se ∈ Aut (S) such that
se(P ) = e(P ) for all P ∈ P. Moreover, the correspondence Auts(E) � e �→
se ∈ Aut (S) is an injective group homomorphism.
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Proof. Let e ∈ Auts(E). For all T ∈ S define the map from E to [0, 1] by
E �→ tr

[
Te−1(E)

]
. By the above two lemmas there is a unique positive trace

class operator T ′ such that tr
[
Te−1(E)

]
= tr

[
T ′E

]
for all E ∈ E. Taking

E = I we have tr
[
T ′] = 1, hence T ′ ∈ S. We define se from S to S as

se(T ) := T ′ so that tr
[
se(T )E

]
= tr

[
Te−1(E)

]
, for all E ∈ E. Using this

formula it is straightforward to prove that se ∈ Aut (S) and that e �→ se is a
group homomorphism. Moreover, suppose that se(T ) = T for all T ∈ S, then
tr
[
T (E − e−1(E))

]
= 0, E ∈ E, for all T ∈ S. Hence E = e−1(E) for all

E ∈ E, that is, e is the identity. This shows the injectivity of the map e �→ se
and ends the proof. ��

2.1.4 Automorphisms on D

The set D of projections is a subset of E. In fact, D = ex (E). As discussed
in Chap. 1, the ⊥-order structure and the partial algebra structure coincide
on D. Consequently, Definitions 4 and 5 when applied to D are the same,
and we choose to consider the following notion of an automorphism on D.

Definition 7. A function d : D→ D is a D-automorphism if
1) d is a bijection,
2) for all D1, D2 ∈ D, D1 ≤ D2 ⇐⇒ d(D1) ≤ d(D2),
3) d(D⊥) = d(D)⊥ for all D ∈ D.

The set Aut (D) of all D-automorphisms is a group with respect to the
composition of functions and it is a topological space with respect to the
initial topology given by the functions fT,D : d �→ tr

[
Td(D)

]
, T ∈ S, D ∈ D.

Again, the functions dU , U ∈ U∪U, defined as dU (D) = UDU∗, are elements
of Aut (D).

Since D ⊂ E one may consider the restriction of an e ∈ Auto(E) on D.
One gets:

Proposition 5. The function Auto(E) � e �→ e|D ∈ Aut (D) is a group
homomorphism.

Proof. Let e ∈ Auto(E). Then for any E,F,G ∈ E, G is a lower bound of
E and F if and only if e(G) is a lower bound of e(E) and e(F ). Since D
consists exactly of those effects E ∈ E for which O is the only lower bound
of E and E⊥ one thus has e(D) ⊆ D. Clearly, (e1 ◦ e2)|D = e1|D ◦ e2|D and
e−1|D = (e|D)−1. ��

The homomorphism of the above lemma is, in fact, injective whenever
the dimension of the Hilbert space is, at least, two. We shall prove this re-
sult, which is due to Ludwig [25, Theorem 5.21, p. 226], using the following
characterization of effects [18]:

Lemma 4. For any E ∈ E,
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E = ∨P∈P(E ∧ P ) = ∨P∈Pλ(E,P )P,

where

λ(E,P ) := sup{λ ∈ [0, 1] |λP ≤ E}. (2.1)

In fact, λ(E,P ) = max{λ ∈ [0, 1] |λP ≤ E}, and if ϕ ∈ H, ‖ϕ‖ = 1, is
such that Pϕ = ϕ, then λ(E,P ) =

∥
∥E−1/2ϕ

∥
∥

−2
, whenever ϕ ∈ ran(E1/2),

whereas λ(E,P ) = 0, otherwise.

Proposition 6. If dim(H) ≥ 2, then the function Auto(E) � e �→ e|D ∈
Aut (D) is injective.

Proof. It suffices to show that if e ∈ Aut(E) is such that e(D) = D, for all
D ∈ D, then e is the identity function. Therefore, assume that e(D) = D,
for all D ∈ D. Then, in particular, e(P ) = P , for all P ∈ P. Thus, for any
γ ∈ [0, 1], P ∈ P, e(γP ) ≤ e(P ) = P , so that

e(γP ) = τ(γ, P )P (2.2)

for some τ(γ, P ) ∈ [0, 1]. The proof now consists of showing that, for any
γ ∈ [0, 1] and for any P ∈ P, τ(γ, P ) = γ. If this is the case, then, for any
E ∈ E,

e(E) = ∨P∈Pe(λ(E,P )P )
= ∨P∈Pτ(λ(E,P ), P )P
= ∨P∈Pλ(E,P )P
= E

and we are through. We proceed in three steps.
Step 1. Let E ∈ E. From (2.1) we obtain that

e(E) = ∨P∈Pe(λ(E,P )P ) = ∨P∈Pτ(λ(E,P ), P )P

and also that
e(E) = ∨P∈Pλ(e(E), P )P.

Taking the meet of both expressions with any 1 dimensional projection we
see that

τ(λ(E,P ), P ) = λ(e(E), P ) (2.3)

for any E ∈ E, P ∈ P.
Step 2. We show next that the function τ does not depend on P , that is,

τ(γ, P ) = τ(γ) (2.4)
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for each γ ∈ [0, 1], P ∈ P. Clearly τ(0, P ) = 0 and τ(1, P ) = 1 for all P ∈ P.
Thus, consider a fixed 0 < γ < 1 and let P,Q ∈ P be such that QP 	= O.
Define

µ =
1− γ

1− γ(1− tr
[
PQ

]
)
. (2.5)

Observe that 1 − γ ≤ µ < 1 and define E := I − µQ. Then ran(E1/2) = H,
so that, by Lemma 4,

λ(E,P ) =
1

tr
[
E−1P

] =
µ− 1

µ(1− tr
[
QP

]
)− 1

= γ.

Hence, due to (2.3),

τ(γ, P ) = λ(e(E), P ). (2.6)

On the other hand e(E) = I−τ(µ,Q)Q and again we have ran(e(E)1/2) = H,
so that,

λ(e(E), P ) =
1

tr
[
e(E)−1P

] =
τ(µ,Q)− 1

τ(µ,Q)(1− tr
[
QP

]
)− 1

. (2.7)

Comparing (2.6) and (2.7) we have

τ(γ, P ) =
τ(µ,Q)− 1

τ(µ,Q)(1− tr
[
QP

]
)− 1

.

From (2.5) we get

(1− tr
[
PQ

]
) =

µ+ γ − 1
µγ

,

hence

τ(γ, P ) =
γµ[τ(µ,Q)− 1]

τ(µ,Q)(µ+ γ − 1)− γµ. (2.8)

We then see that τ(γ, P ) fulfills (2.8), whereQ is any 1-dimensional projection
such that tr

[
PQ

]
	= 0 and µ is defined by (2.5). On the other hand, µ depends

only on γ and tr
[
PQ

]
. Given P1, P2 ∈ P, one can find Q ∈ P such that

tr
[
P1Q

]
= tr

[
P2Q

]
	= 0 so that (2.8) implies τ(γ, P1) = τ(γ, P2) and this

proves that τ does not depend on P . Equation (2.4) is thus established.
Step 3. Now suppose that dimH ≥ 2. It is clear from (2.5) that if 1−γ ≤

α < 1, we can choose P,Q ∈ P such that µ = α. Hence (2.8) gives

τ(γ) =
γα[τ(α)− 1]

τ(α)(α+ γ − 1)− γα (2.9)
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for all α such that 1−γ ≤ α < 1. Choosing α = 1−γ in (2.9), since γ ∈ (0, 1)
is arbitrary, we obtain

τ(γ) = 1− τ(1− γ) (2.10)

for any γ ∈ (0, 1). Observe now that (2.9) can be rewritten as

τ(γ) =
a(α)γ

1 + γ(a(α)− 1)
1− γ ≤ α < 1, (2.11)

with a(α) = α
α−1

τ(α)−1
τ(α) . We then obtain from (2.11) that

a(α) =
1− γ
γ

τ(γ)
1− τ(γ) 1− γ ≤ α < 1,

from which we conclude that a(α) is a constant. By comparison with (2.10)
we see that in fact a(α) = 1, so that τ(γ) = γ for all γ ∈ [0, 1]. This concludes
the proof. ��

Proposition 7. Let p ∈ Aut0(P). There is a unique dp ∈ Aut (D) such that
dp(P ) = p(P ) for all P ∈ P. Moreover, the map Aut0(P) � p �→ dp ∈
Aut (D) is a group isomorphism.

Proof. In this proof we identify the projection lattice D with the lattice M
of all closed subspaces of H. Let p ∈ Aut0(P). For all M ⊂ H, M 	= {0}, let

dp(M) = {ψ ∈ p([φ]) : φ ∈M, φ 	= 0},

and put dp({0}) = {0}. We observe that dp−1(dp(M)) = {Φ ∈ p−1([ψ]) :
ψ ∈ dp([φ]), φ ∈ M,φ 	= 0} = {Φ ∈ p−1(p[φ]) : φ ∈ M, φ 	= 0} = CM . In
the same way we have that dp(dp−1(M)) = CM . Now let M ∈M. We then
have dp(M⊥) = dp(M)⊥. In fact, if φ ∈M and ψ ∈M⊥ are nonzero vectors,
then p(P [φ]) ⊥ p([ψ]). Hence dp(M) ⊥ dp(M⊥), dp(M⊥) ⊂ dp(M)⊥ and,
since M = dp−1(dp(M)), one concludes that dp(M⊥) = dp(M)⊥. Moreover,
since M is a closed subspace, dp(M) = dp((M⊥)⊥) = (dp(M⊥))⊥, proving
that dp(M) is a closed subspace. We denote by dp the map from M to M
sendingM to dp(M). Obviously dp is bijective and preserves the order and the
orthogonality, that is, dp ∈ Aut (D). Finally, by construction, dp(P ) = p(P )
for all P ∈ P. A standard calculation shows that the map p �→ dp is a
group homomorphism. Its injectivity is obvious. Finally, if d ∈ Aut (D), then
obviously d(P) = P and d preserves orthogonality, so that d|P ∈ Aut0(P)
and this shows surjectivity. The proof is now complete. ��

Proposition 8. Let dim(H) ≥ 3. Given d ∈ Aut (D) there is a unique sd ∈
Aut (S) such that sd(P ) = d(P ) for all P ∈ P. Moreover, the map Aut (D) �
d �→ sd ∈ Aut (S) is an injective group homomorphism.
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Proof. Let d ∈ Aut (D). Since d is a lattice orthoisomorphism on D the
mapping D � D �→ tr

[
Td−1(D)

]
∈ [0, 1] is a generalized probability measure

on D for all T ∈ S. According to a theorem of Gleason [17] (which holds
if the dimension of H is greater than 2) there is a unique T ′ ∈ S such that
tr
[
T ′D

]
= tr

[
Td−1(D)

]
for all D ∈ D. The induced function T �→ T ′ =:

sd(T ) is one-to-one onto and it preserves the convex structure of S, that
is, sd ∈ Aut (S). Clearly the map d �→ sd is a group homomorphism. We
show now that sd(P ) = d(P ) for all P ∈ P. It is sufficient to prove that
tr
[
sd(P1)P2

]
= tr

[
d(P1)P2

]
, P1, P2 ∈ P. Since sd, restricted to P, is a P-

automorphism we have tr
[
sd(P1)P2

]
= tr

[
P1s

−1
d (P2)

]
= tr

[
P1sd−1(P2)

]
=

tr
[
d(P1)P2

]
. Suppose now that sd(T ) = T for all T ∈ S. Then d(P ) = P for

all P ∈ P. Hence, d(D) = d(∨P≤DP ) = ∨P≤Dd(P ) = ∨P≤DP = D for any
D ∈ D, which shows that d is the identity, and the map d �→ sd is injective.
��

To close this subsection consider an effect ⊥-order automorphism e ∈
Auto(E) and let E = ∨Pλ(E,P )P be the decomposition of E ∈ E given in
Lemma 4. Then

e(E) = e (∨Pλ(E,P )P ) = ∨Pe(λ(E,P )P ) = ∨Pλ (e(λ(E,P )P ), e(P )) e(P ).

Using arguments similar to those applied in the proof of Proposition 6,
Mólnar and Páles showed [29] that λ (e(λ(E,P )P ), e(P )) = λ(E,P ) and
that tr

[
P1P2

]
= tr

[
e(P1)e(P2)

]
for any two P1, P2 ∈ P. We formulate these

results in the form of a lemma.

Lemma 5. Assume that dim(H) ≥ 2. The restriction of any e ∈ Auto(E)
in P is a vector state automorphism. Moreover, for any E ∈ E, e(E) =
∨Pλ(E,P )e(P ).

2.1.5 Automorphisms of H
With a slight abuse of language, the automorphisms of the Hilbert space
H are either the bijective linear maps U : H → H that preserve the inner
product, that is, 〈Uϕ,Uψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ H, or the bijective antilinear
maps U : H → H that reverse the inner product, that is, 〈Uϕ,Uψ〉 = 〈ψ,ϕ〉
for all ϕ,ψ ∈ H. They are exactly the unitary and antiunitary operators on
H. The set Aut (H) = U ∪U as well as the quotient space Σ = Aut (H)/T,
where T = {zI | z ∈ T}, are topological groups with the properties described
in Dictionary A.1 and in Appendix A.2.

Let σ ∈ Σ and U ∈ σ. Define the function gσ : Br → Br, by gσ(A) :=
UAU∗. Applying the arguments of Example 1, one observes that gσ is well
defined and gσ1 = gσ2 only if σ1 = σ2. Moreover, when restricted to any of
the sets P, S, D, and E, endowed with any of the relevant structures, gσ
defines a corresponding automorphism. We thus conclude with the following
proposition.
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Proposition 9. The map σ �→ gσ defines an injective group homomorphism
of Σ to Aut (S), Auts(P), Aut (P), Aut0(P), Auto(E), Auts(E), and to
Aut (D).

From now on we denote the restrictions of the functions gσ to the sets P,
S, D, and E, respectively, as pσ, sσ, dσ, and eσ.

2.2 The Wigner Theorem

This section contains the Wigner theorem and two corollaries to it. The proof
presented here, originally published in [9], is a modification of Bargmann’s
proof [2] of Wigner’s classic result [39].

2.2.1 The Theorem

Theorem 1. Let p ∈ Aut (P). There is a U ∈ U ∪U such that p = pU , that
is, p(P ) = UPU∗ for all P ∈ P. U is unique up to a phase factor.

Proof. Fix p ∈ Aut (P). Let ω ∈ H, ω 	= 0, be a fixed vector and define

Oω :=
{
ϕ ∈ H | 〈ω, ϕ〉 > 0

}
.

We observe that Oω is a cone, that is, Oω +Oω ⊂ Oω and λOω ⊂ Oω, λ > 0.
Let ω′ be a vector in the range of the projection p(P [ω]) such that ‖ω′‖ = ‖ω‖
and define the cone Oω′ . The proof of the theorem will now be split into five
parts.
Part 1. We show that there is a function

Tω : Oω → Oω′

such that for all ϕ,ϕ1, ϕ2 ∈ Oω, λ > 0,

‖Tωϕ‖ = ‖ϕ‖ , (2.12)
Tω(λϕ) = λTωϕ, (2.13)
Tω(ϕ1 + ϕ2) = Tωϕ1 + Tωϕ2, (2.14)
P [T ]ωϕ = p(P [ϕ]). (2.15)

To define Tω we observe first that for any vector ϕ ∈ Oω, there is a unique
vector ψ ∈ Oω′ , ‖ψ‖ = ‖ϕ‖, such that p(P [ϕ]) = P [ψ]. We denote ψ = Tωϕ.
This defines a function Tω : Oω → Oω′ . Observe that Tωω = ω′. By definition,
Tω is norm preserving, positively homogeneous, and p(P [ϕ]) = P [Tωϕ]. Also
for any ϕ1, ϕ2 ∈ Oω,

|〈Tωϕ1, Tωϕ2〉| = |〈ϕ1, ϕ2〉|. (2.16)
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We prove next the additivity of Tω. Let ϕ1, ϕ2 ∈ Oω. By the definition of
Oω, ϕ1 and ϕ2 are linearly dependent (over C) if and only if ϕ1 = λϕ2
for some λ > 0. If ϕ1 = λϕ2 then Tω(ϕ1 + ϕ2) = Tω

(
(λ + 1)ϕ2

)
= (λ +

1)Tωϕ2 = λTωϕ2 +Tϕ2 = Tωϕ1 +Tωϕ2. Assume now that ϕ1, ϕ2 are linearly
independent. We observe first that for any ψ ∈ H, if 〈Tωϕi, ψ〉 = 0, i = 1, 2,
then 〈ϕi, γ〉 = 0, i = 1, 2, for any γ ∈ p−1(P [ψ]), and thus 〈Tω(ϕ1 + ϕ2), ψ〉 =
0. Hence

Tω(ϕ1 + ϕ2) = z1Tωϕ1 + z2Tωϕ2

for some z1, z2 ∈ C. Since ϕ1, ϕ2 are linearly independent there are two
uniquely defined vectors θ1, θ2 in [ϕ1, ϕ2], the subspace generated by the
vectors ϕ1, ϕ2, such that 〈θi, ϕj〉 = δij , i, j = 1, 2. In fact, they are

θi =
(
〈ϕj , ϕj〉ϕi − 〈ϕj , ϕi〉ϕj

)
/
(
〈ϕj , ϕj〉〈ϕi, ϕi〉 − 〈ϕi, ϕj〉〈ϕj , ϕi〉

)
,

i = 1, 2, i 	= j. Writing ϕ = ϕ1 + ϕ2,

1 = 〈ϕ, θi〉 = |〈ϕ, θi〉|2 = |〈Tωϕ, Tωθi〉|2 = |zi|2

so that that |zi| = 1. Since ϕ1, ϕ2, ϕ ∈ Oω and Tωϕ1, Tωϕ2, Tωϕ ∈ Oω′ one
has 〈ω, ϕ〉 = |〈ω, ϕ〉| = |〈ω′, Tωϕ〉| = 〈ω′, Tωϕ〉, which gives

〈ω, ϕ1〉+ 〈ω, ϕ2〉 = z1〈ω, ϕ1〉+ z2〈ω, ϕ2〉. (2.17)

But then

〈ω, ϕ1〉+ 〈ω, ϕ2〉 =
∣
∣〈ω, ϕ1〉+ 〈ω, ϕ2〉

∣
∣

=
∣
∣z1〈ω, ϕ1〉+ z2〈ω, ϕ2〉

∣
∣

≤
∣
∣z1〈ω, ϕ1〉

∣
∣ +

∣
∣z2〈ω, ϕ2〉

∣
∣

= 〈ω, ϕ1〉+ 〈ω, ϕ2〉,

which shows that z1〈ω, ϕ1〉 = λz2〈ω, ϕ2〉 for some λ ∈ R. Therefore, 0 <
z1〈ω, ϕ1〉 + z2〈ω, ϕ2〉 = (1 + λ)z2〈ω, ϕ2〉, which shows that the imaginary
part of z2 equals 0 and one thus has z2 = ±1. Similarly, one gets z1 = ±1.
From (2.17), where 〈ω, ϕ1〉, 〈ω, ϕ2〉 > 0, one finally gets z1 = z2 = 1. This
completes the proof of the additivity of Tω.
Part 2. Let ψ ∈ H, ψ 	= 0, and assume that T is any function Oψ → H,
having the properties (2.12)–(2.15). Then for any ϕ ∈ Oω ∩ Oψ,

T (ϕ) = zTω(ϕ), (2.18)

for some z ∈ T. Indeed, by the property (d), it holds that for any ϕ ∈
Oω ∩ Oψ, Tϕ = f(ϕ)Tωϕ, with f(ϕ) ∈ T, and it remains to be shown
that f(ϕ) is constant on Oω ∩ Oψ. For any λ > 0 and ϕ ∈ Oω ∩ Oψ,
T (λϕ) = f(λϕ)Tω(λϕ) = λf(λϕ)Tωϕ and T (λϕ) = λTϕ = λf(ϕ)Tωϕ.
Hence λf(λϕ)Tωϕ = λf(ϕ)Tωϕ. Since Tωϕ 	= 0 for ϕ 	= 0, this gives
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f(ϕ) = f(λϕ). Consider next vectors ϕ1, ϕ2 ∈ Oω ∩ Oψ such that ϕ1 	= λϕ2
for any λ > 0 (so that ϕ1, ϕ2 are linearly independent over C). Then
T (ϕ1 + ϕ2) = f(ϕ1 + ϕ2)Tω(ϕ1 + ϕ2) = f(ϕ1)Tωϕ1 + f(ϕ2)Tωϕ2. Using
again the above vectors θ1, θ2, associated with ϕ1, ϕ2 one easily gets, e.g.,
f(ϕ1 + ϕ2) = f(ϕ1) for any ϕ2 ∈ Oω ∩ Oψ. Hence f(ϕ) is constant on
Oω ∩ Oψ and thus Tω is unique modulo a phase on the cone Oω .
Part 3. Let ω ∈ H, ω 	= 0, and let Tω : Oω → Oω′ be defined as in Part 1. We
show next that Tω has one of the following two properties, either

〈Tωϕ1, Tωϕ2〉 = 〈ϕ1, ϕ2〉 (2.19)

for all ϕ1, ϕ2 ∈ Oω, or

〈Tωϕ1, Tωϕ2〉 = 〈ϕ2, ϕ1〉 (2.20)

for all ϕ1, ϕ2 ∈ Oω. First of all, let ϕ1, ϕ2 ∈ Oω. Then
〈Tω(ϕ1 + ϕ2), Tω(ϕ1 + ϕ2)〉 = 〈ϕ1 + ϕ2, ϕ1 + ϕ2〉. Using the additivity of
Tω and the inner product this shows, in view of (2.16), that either
〈Tωϕ1, Tωϕ2〉 = 〈ϕ1, ϕ2〉 or 〈Tωϕ1, Tωϕ2〉 = 〈ϕ2, ϕ1〉. We show next that
for a fixed ϕ ∈ Oω, either 〈Tωϕ, Tωψ〉 = 〈ϕ,ψ〉 or 〈Tωϕ, Tωψ〉 = 〈ψ,ϕ〉 for
all ψ ∈ Oω. To prove this assume on the contrary that there are vectors
ϕ1, ϕ2 ∈ Oω such that 〈Tωϕ, Tωϕ1〉 = 〈ϕ,ϕ1〉(	= 〈ϕ1, ϕ〉) and 〈Tωϕ, Tωϕ2〉 =
〈ϕ2, ϕ〉(	= 〈ϕ,ϕ2〉). By a direct computation of 〈Tωϕ, Tω(ϕ1 + ϕ2)〉 one ob-
serves that this leads to a contradiction. By a similar counter argument
one finally shows that either 〈Tωϕ, Tωψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ Oω or
〈Tωϕ, Tωψ〉 = 〈ψ,ϕ〉 for all ψ ∈ Oω.
Part 4. We construct next a unitary or antiunitary operator U of H for which
p(P ) = UPU∗ for all P ∈ P.

Let ω ∈ H and Tω : Oω → Oω′ be given as in Part 1. Let M = [ω]⊥ and
M ′ = [ω′]⊥ and define a function S : M →M ′ by

Sϕ := Tω+ϕϕ, ϕ 	= 0
Sϕ := 0, ϕ = 0

where Tω+ϕ is the operator on the cone Oω+ϕ with the choice of the phase
given by Tω+ϕω = ω′. S is well defined since for any ϕ ∈ M , ϕ 	= 0, we
have ϕ ∈ Oω+ϕ. Moreover, for any two ϕ,ψ ∈M , Tω+ϕ = Tω+ψ on the cone
Oω+ϕ∩Oω+ψ, which contains at least the vector ω for which Tω+ϕω = Tω+ψω.
According to Part 3 any Tω+ϕ, ϕ ∈M , has either the property (2.19) or the
property (2.20). Due to the fact that for all ϕ,ψ ∈ M , Tω+ϕ = Tω+ψ on the
intersection of their defining cones, all the operators Tω+ϕ, ϕ ∈M , are of the
type (2.19) or they all are of the type (2.20). We proceed to show that S
is in the first case a unitary operator and in the second case an antiunitary
operator. In fact the proofs of the two different cases are similar and we treat
only the case that all Tω+ϕ, ϕ ∈M , are of the type (2.19).

We show first that for any ϕ ∈M,λ ∈ C, S(λϕ) = λSϕ. In fact, if λϕ = 0,
the result is obvious, otherwise we have
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〈Tω(ω + λϕ), Tω(ω + ϕ)〉 = 〈ω + λϕ, ω + ϕ〉
= ‖ω‖2 + λ̄〈ϕ,ϕ〉

〈Tω(ω + λϕ), Tω(ω + ϕ)〉 = 〈Tω+λϕ(ω + λϕ), Tω+ϕ(ω + ϕ)〉
= 〈Tω+λϕω + Tω+λϕ(λϕ), Tω+ϕω + Tω+ϕϕ〉
= 〈ω′ + S(λϕ), ω′ + Sϕ〉
= ‖ω′‖2 + 〈S(λϕ), Sϕ〉.

Since ‖ω‖ = ‖ω′‖ this gives 〈S(λϕ), Sϕ〉 = λ̄〈ϕ,ϕ〉. But S(λϕ) = Tω+λϕ(λϕ)
∈ p(P [λ]ϕ) and Sϕ ∈ p(P [ϕ]), which shows that S(λϕ) = zSϕ for some
z ∈ C. Therefore, λ̄〈ϕ,ϕ〉 = 〈S(λϕ), Sϕ〉 = z̄〈Sϕ, Sϕ〉 = z̄〈ϕ,ϕ〉, which gives
z̄ = λ̄, and thus S(λϕ) = λSϕ.

To show the additivity of S on M , let ϕ1, ϕ2 ∈ M . If ϕ1 = λϕ2, λ ∈ C,
then the homogeneity of S gives the additivity. Therefore, assume that ϕ1, ϕ2
are linearly independent. Let θ1, θ2 be the unique vectors in [ϕ1, ϕ2] such that
〈θi, ϕj〉 = δij . Then

S(ϕ1 + ϕ2) = Tω+ϕ1+ϕ2(ϕ1 + ϕ2)
= Tω+θ1+θ2(ϕ1 + ϕ2)
= Tω+θ1+θ2ϕ1 + Tω+θ1+θ2ϕ2

= Tω+ϕ1ϕ1 + Tω+ϕ2ϕ2 = Sϕ1 + Sϕ2.

Hence S : M →M ′ is a linear map. It is also isometric since for any ϕ ∈M ,
ϕ 	= 0, 〈Sϕ, Sϕ〉 = 〈Tω+ϕϕ, Tω+ϕϕ〉 = 〈Tϕϕ, Tϕϕ〉 = 〈ϕ,ϕ〉. Moreover, for
any unit vector ϕ ∈M one has P [S]ϕ = p(P [ϕ]). To show the surjectivity of
S, let ψ ∈M ′, ψ 	= 0. Since p is surjective there is a unit vector ϕ ∈M such
that p(P [ϕ]) = P [ψ]. Hence Sϕ = λψ for some λ ∈ C. Since ‖ϕ‖ = 1, also
‖Sϕ‖ = 1 so that λ 	= 0 and thus S(ϕλ ) = ψ. This concludes the proof of the
unitarity of S.

We now have H = [ω] ⊕ M = [ω′] ⊕ M ′ and we define U : H → H
such that U(λω+ϕ) = λω′ +Sϕ for all λ ∈ C, ϕ ∈M . If S is antiunitary we
define U instead by U(λω+ϕ) = λ̄ω′ +Sϕ. Clearly, the operator U is unitary
(antiunitary) and it is related to the function p according to p(P ) = UPU∗

for any P ∈ P.
Part 5. Let V : H → H be related to p according to p(P ) = V PV ∗, P ∈ P.
By change of phase we may assume that V ω = ω′. Let ϕ ∈M . The operator
V has, in particular, the properties (2.12)–(2.15) on Oω+ϕ so that V , when
restricted on Oω+ϕ, equals zTω+ϕ for some z ∈ T. But since V ω = ω′ =
zTω+ϕω = zω′, one has that for any ϕ ∈ M , V |Oω+ϕ

= Tω+ϕ, that is,
V ϕ = Sϕ on M . Therefore, V equals with U on M , showing that V = U
whenever M 	= {0}. In other words, U is unique modulo a phase factor
and the unitary or the antiunitary nature of U is completely determined
by p ∈ Aut (P) (apart from the trivial case of H being one-dimensional).
Moreover, the operator U does not depend on the choice of the vector ω.
This ends the proof of the theorem. ��
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The following result is an immediate corollary to the Wigner theorem.

Corollary 1. For any p ∈ Aut (P) there is a unique σp ∈ Σ such that
p = pσp . The function Aut (P) � p �→ σp ∈ Σ is an injective group ho-
momorphism.

As another application of the Wigner theorem one gets the following from
Lemma 5:

Corollary 2. Assume that dim(H) ≥ 2. For any e ∈ Auto(E) there is a
unique σe ∈ Σ such that e = eσe .

2.3 The Group Isomorphisms

2.3.1 Isomorphisms

In this section we collect the results obtained in the previous sections on the
relations between the various automorphism groups of quantum mechanics.
This will allow us to prove, apart from the particular cases of one and two
dimensional Hilbert spaces, that all these groups are isomorphic.

Consider the following diagrams:

dim(H) ≥ 1 dim(H) ≥ 1 dim(H) ≥ 2

Aut (D) Aut (S) 4←− Auts(E) Auto(E)�

�



�1

�

3

�

�

Aut0(P) Aut (P) 2−→ Σ Σ

The double arrow in the first diagram is the isomorphism of Proposition 7,
while the arrows 1 to 4 in the second diagram are injective homomorphisms
given by Proposition 1, Corollary 1, Proposition 9 and Proposition 4, re-
spectively. Proposition 9 and Corollary 2 give the double arrow in the third
diagram. We show that the map obtained by composing the arrows in the
second diagram is the identity. From this it follows that the maps involved
are isomorphisms.

Let G denote any of the four groups appearing in the second diagram.
Starting from G and composing the injective group homomorphisms, one
obtains an injective group homomorphism φG of G into G.

Corollary 3. The map φG is the identity on G.

Proof. It is sufficient to prove the statement for a particular choice of G.
Choosing, for instance, G = Aut (S), we then have
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φAut (S) : s �→ ps �→ σps
�→ eσps

�→ seσps
,

where we use the notations ps := s|P and eσ := gσ|E. It can immediately be
checked that φAut (S)(s) = s. ��

Now suppose that the dimension of the Hilbert space is at least three and
consider the following diagram:

Auts(P) 6−→ Aut0(P) −→ Aut (D)�

5



�7

Σ ←− Aut (P) ←− Aut (S)

Here the new arrows 5, 6 and 7 are given, respectively, by Proposition 9,
the natural immersion Auts(P) ↪→ Aut0(P), which is obviously an injective
group homomorphism, and by Proposition 8.

As in Corollary 3, one can prove that the loop contained in the previous
diagram is in fact an identity. Hence we conclude that, if dimH ≥ 3, all the
groups considered are isomorphic. We summarize this fact in the following
corollary.

Corollary 4. If dim (H) ≥ 3, the groups Σ, Aut (S), Auts(P), Aut (P),
Aut0(P), Auts(E), Autc(E), Auto(E) and Aut (D) are isomorphic.

Remark 3. As pointed out in Remark 2, if dim (H) ≥ 3, then the structure of
bijective maps e : E→ E, which preserve both the order and the coexistence
of effects, can also be determined and they are of the form e = eU , U ∈
Aut (H), [30]. The list of Corollary 4 could thus be extended further with
another group of automorphisms.

2.3.2 Homeomorphisms

We proceed to show that the isomorphisms of the previous section are home-
omorphisms when the groups are equipped with their natural topologies in-
duced by the duality (T,E) �→ tr

[
TE

]
. Let X denote one of the sets S, P,

E, or D, and let G(X) stand for any of the groups of automorphisms of X
considered so far, endowed with its natural topology. According to the re-
strictions on the dimension of H imposed by Corollary 4 we can suppose that
the dimension of H is greater than 2. Hence, in each case the group G(X) is
isomorphic to Σ and for any x ∈ G(X) there is a unique σx ∈ Σ such that
x = xσx , with xσx = gσx |X. Thus for any U ∈ σx, x = xU , that is,

x(A) = xU (A) = UAU∗, A ∈ X.

Proposition 10. The map jX : Σ → G(X), σ �→ xσ, is a group homeomor-
phism, and G(X) is a second countable, metrisable, topological group.
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Proof. The group Σ is a second countable, metrisable, topological group (see
Appendix A.2) and the map jX is bijective so that it remains to be shown that
it is a homeomorphism. We demonstrate first that the function JX : U∪U→
G(X), U �→ JX(U) := xU is continuous. Since U ∪ U is second countable,
it suffices to show that if (Un)n≥1 is a (strongly) convergent sequence in
U∪U, then (JX(Un))n≥1 is convergent in G(X). As U �→ U−1 is continuous
in U ∪U, we have, for instance for X = S,

lim
n→∞ fT,E(JS(Un)) = lim

n→∞ tr
[
JS(Un)(T )E

]

= lim
n→∞ tr

[
UnTU

−1
n E

]

= tr
[
UTU−1E

]
= fT,E(JS(U)),

for all E ∈ E, T ∈ S, which shows the continuity of JS. The other cases
are shown as well. By definition of quotient topology, this also proves that
jX is continuous. It remains to be shown that the inverse mapping j−1

X is
continuous. Consider the group G(X) and let (ϕi)i≥1 be a dense sequence
of unit vectors in H. Since P is contained in X, the sequence of functions
(
fP [ϕi],P [ϕj ]

)

i,j≥1
gives G(X) a metrisable topology, which a priori is weaker

than the one defined above for G(X). We shall show that j−1
X is continu-

ous in this weaker topology. It suffices again to consider only sequences. Let
(xn) be a convergent sequence in G(X), with xn → x. We will show that
j−1
X (xn) → j−1

X (x) in Σ. To proceed assume on the contrary that j−1
X is not

continuous, so that there is an open set O ⊂ Σ such that j−1
X (x) ∈ O but

j−1
X (xnk

) /∈ O for a subsequence (xnk
) of (xn). Let Uk, U ∈ U ∪ U such

that jX([Uk]) = xnk
and jX([U ]) = x. The sequence (Uk) is bounded, so

that it has a weakly convergent subsequence (Ukh
) in U ∪ U, with Ukh

→
V . But then tr

[
P [ϕi]xnkh

(P [ϕj ])
]

= |〈ϕi, Unkh
ϕj〉|2 → |〈ϕi, V ϕj〉|2 and

tr
[
P [ϕi]xnkh

(P [ϕj ])
]
→ tr

[
P [ϕi]x(P [ϕj ])

]
= |〈ϕi, Uϕj〉|2, which shows that

[V ] = [U ]. Since Unkh
→ V also strongly we thus have [Unkh

] → [V ] = [U ],
which is a contradiction. This shows that j−1

X : G(X) → Σ is continuous.
This ends the proof. ��

2.3.3 The Automorphism Group of Quantum Mechanics

On the basis of Corollary 4 and Proposition 10 all the groups considered
so far are isomorphic and homeomorphic with each other in a natural way,
with the dimension requirement dim(H) ≥ 2 for the group Auto(E), and
dim(H) ≥ 3 for the groups Aut (D), Aut0(P), and Auts(P). Any of these
groups may thus be called the automorphism group of quantum mechanics.
The implementation of the structure preserving transformations in terms of
unitary or antiunitary operators is, however, most directly obtained from the
group Σ in terms of a section s : Σ → U ∪U for the canonical projection
π : U∪U→ Σ. Therefore, from now on we shall refer to the group Σ as the
automorphism group of quantum mechanics.



3 The Symmetry Actions
and Their Representations

This chapter is devoted to the study of the homomorphisms

G � g �→ σg ∈ Σ,

where G is a connected Lie group and Σ the symmetry group of quantum
mechanics. We call such a homomorphism symmetry action, leaving the word
“representation” for the more specific use of representing a group in terms
of unitary or antiunitary operators on the underlying Hilbert space. It is
the notion of symmetry action which formalizes the idea that a group G
is a symmetry group of a quantum system described by a Hilbert space
H. The assumption that G is a Lie group is satisfied by most groups of
physical relevance, like the Euclidean group, the Galilei group, or the Poincaré
group. The assumption on the connectedness of G implies that we consider
only continuous symmetries. These mathematical assumptions are crucial in
determining the symmetry actions of a group.

We will show that there is a natural connection between symmetry actions
of a group G and representations of another group G, the universal central
extension of G, and it is this connection which is of primary importance in
the physical applications.

The material of this chapter is organized in the following way. Section 3.1
introduces the basic definitions concerning the symmetry actions of a Lie
group. These definitions do not depend on the Lie structure of the group.
Section 3.2 collects some technical results on the multipliers of a connected
simply connected Lie group. Section 3.3 reviews the construction of the uni-
versal central extension for a connected Lie group and presents the funda-
mental connection between the symmetry actions of such a group and the
unitary representations of its universal central extension. In Sect. 3.4 the
Mackey Machine of Appendix A.3 will be applied to construct these repre-
sentations for the case where the universal central extension of the symmetry
group is a regular semidirect product. Temporal evolution of a closed system
will offer the first elementary example of the application of the general theory
(Sect. 3.5).

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 27–47
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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3.1 Symmetry Actions of a Lie Group

Let G be a topological group and H a complex separable Hilbert space.
The following definition translates in mathematically precise language the
physical requirement that G is a group of symmetries for a quantum system
represented by the Hilbert space H.

Definition 8. A function G � g �→ σg ∈ Σ is a symmetry action of G on
H if it is a continuous group homomorphism, that is, a continuous function
having the properties σe = [I] and σg1g2 = σg1σg2 for all g1, g2 ∈ G.

According to Proposition 12 and the von Neumann theorem (Lemma 14,
A.1), the continuity of a symmetry action σ : G → Σ is already implied by
its measurability. This is a useful result since the measurability of σ is often
simpler to verify than its continuity.

Let G be a group and consider the problem of describing all the quantum
systems that have G as a group of symmetries. To solve this problem in an
appropriate way one must take into account the fact that physics does not
fix in a unique way the Hilbert space associated with a quantum system.
Therefore, let H and H′ be two Hilbert spaces and define Σ(H,H′) as the
set of equivalence classes of unitary or antiunitary operators B : H → H′

with respect to the following relation: B1 is equivalent to B2 if there is a
z ∈ T such that B1 = zB2. Let [B] := {zB | z ∈ T} denote the equivalence
class of B and extend the operator product to these classes such that if
[B1] ∈ Σ(H,H′) and [B2] ∈ Σ(H′,H′′), then [B1][B2] := [B1B2] ∈ Σ(H,H′′).
Clearly, each element of β ∈ Σ(H,H′) allows one to describe the quantum
system associated with H in terms of the mathematical objects defined on
H′ in such a way that the probabilistic structure of the theory is completely
preserved. In particular, any such β ∈ Σ(H,H′) establishes a one-to-one
correspondence between the symmetry groups Σ(H) and Σ(H′) through the
mapping

Σ(H) � σ �→ βσβ−1 ∈ Σ(H′).

In view of the above considerations the following definition is natural.

Definition 9. Two symmetry actions σ : G → Σ(H) and σ′ : G → Σ(H′)
of a group G on the Hilbert spaces H and H′, respectively, are equivalent if
there is a β ∈ Σ(H,H′) such that βσg = σ′

gβ for all g ∈ G.

Different physical systems which behave in the same way under the action
of a group G are thus characterized by the property that the corresponding
symmetry actions are equivalent.

We say that a physical system is elementary with respect to the symmetry
action σ : G → Σ if for any vector state P ∈ P the set {σg(P ) | g ∈ G} of
vector states is complete in the sense of superpositions, that is, any other
vector state P1 ∈ P can be expressed as a superposition of some of the vector
states σg(P ), g ∈ G (see the discussion at the beginning of Chap. 1.1). This
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is equivalent with the fact that for any P ∈ P the least upper bound of the
projections σg(P ), g ∈ G, is the identity operator, that is, ∨g∈Gσg(P ) = I.

Lemma 6. Let σ : G → Σ be a symmetry action. The following two condi-
tions are equivalent:

a) for any P ∈ P, ∨g∈Gσg(P ) = I;
b) for any P1, P2 ∈ P there is a g ∈ G such that tr

[
P1σg(P2)

]
	= 0.

Proof. Assume a) and let P1, P2 ∈ P, so that, for instance, ∨g∈Gσg(P2) = I.
If tr

[
P1σg(P2)

]
= 0 for all g ∈ G, then σg(P2) ≤ P⊥

1 for all g ∈ G. Therefore,
I = ∨g∈Gσg(P2) ≤ P⊥

1 , so that P1 = 0, which is a contradiction. Assume
now b), and choose a P ∈ P. Assume that the projection R = ∨g∈Gσg(P2) is
not I, so that its complement R⊥ is nonzero. Let Q be any one-dimensional
projection contained in R⊥. Then R ≤ Q⊥, and thus σg(P ) ≤ Q⊥ for all
g ∈ G. But then tr

[
Qσg(P )

]
= 0 for any g ∈ G, which conflicts with b).

This lemma leads to the following physically motivated notion of the irre-
ducibility of a symmetry action. Its mathematical correctness becomes clear
in Theorem 3.

Definition 10. A symmetry action σ : G → Σ is irreducible if for any
P1, P2 ∈ P there is a g ∈ G such that tr

[
P1σg(P2)

]
	= 0.

The classification of the possible elementary quantum systems having G as
the symmetry group is traced back to the mathematical problem of finding
all the irreducible symmetry actions of G, up to an equivalence. To this aim
an essential step is to study the connection between the symmetry actions
and the unitary / antiunitary representations.

From now on we assume that G is a connected Lie group. Since Σ0 :=
U/T is the connected component of the identity of Σ and the map g �→ σg
is continuous, then, for all g ∈ G, σg ∈ Σ0, that is, all the symmetries σg are
induced by unitary operators.

Let U : G → U be a unitary representation of G and let π : U → Σ0 be
the canonical projection. Then the map

G � g �→ σg := π(Ug) ∈ Σ0

is a symmetry action of G on H. Furthermore, if U and U ′ are unitarily
equivalent unitary representations of G in H and H′, respectively, the sym-
metry actions G � g �→ π(Ug) ∈ Σ0(H) and G � g �→ π(U ′

g) ∈ Σ0(H′) are
equivalent as well. Moreover, if g �→ Ug is an irreducible representation, then
also g �→ π(Ug) is irreducible.

The unitary representations of G are not enough to describe all the sym-
metry actions of G, and there are unitarily inequivalent representations of
G such that the corresponding symmetry actions are equivalent. Indeed, let
σ : G → Σ0 be a symmetry action and s : Σ0 → U a measurable section
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for the canonical projection π : U→ Σ0, that is, a measurable function such
that π(s(σ)) = σ for all σ ∈ Σ0. Then the function

G � g �→ Ug := s(σg) ∈ U

is measurable, Ue = I, but, instead of Ug1g2 = Ug1Ug2 , one only gets the
weaker condition

Ug1g2 = z(g1, g2)Ug1Ug2 , (3.1)

with z(g1, g2) ∈ T. The fact that σ is a group homomorphism implies that

z(g1g2, g3)z(g1, g2) = z(g1, g2g3)z(g2, g3) (3.2)
z(g, e) = z(e, g) = 1. (3.3)

The map (g1, g2) �→ z(g1, g2) satisfying (3.2) and (3.3) is called a T-multiplier
and the map g �→ Ug satisfying (3.1) is known as a projective representation of
G, with the multiplier z. Moreover, if σ′ is another symmetry action equiva-
lent to σ and acting inH′, then, by definition, there is a unitary or antiunitary
operator B from H onto H′ and a measurable function G→ T such that

U ′
g = b(g)BUgB−1 g ∈ G,

where U ′
g := s(σ′

g). Conversely, given a projective representation g �→ Ug of
G, g �→ π(Ug) is a symmetry action of G. Moreover, if g �→ U ′

g is another
projective representation of G such that there is a unitary or antiunitary
operator B from H onto H′ and a measurable function b : G→ T such that
U ′
g = b(g)BUgB−1 for all g ∈ G, then the symmetry actions g �→ π(Ug) and

g �→ π(U ′
g) are equivalent.

The problem of determining the symmetry actions of G is reduced to
the study of the projective representations of G and of finding a suitable
notion of equivalence that generalizes the unitary equivalence of represen-
tations. In order to apply the powerful theory of (ordinary) representations
one needs to take a second step. This consists of defining a group G such
that its irreducible unitary representations are in one to one correspondence
with the irreducible projective representations of G. Such a group G will
be constructed in Sect. 3.3 and it will be called the universal central exten-
sion of G. Its construction depends heavily on the structure of the set of the
T-multipliers of G.

The determination of the T-multipliers of a Lie group is, in general,
a highly difficult nonlinear problem. However, the classification of the T-
multipliers of a connected, simply connected Lie group can be reduced to a
finite-dimensional linear problem on the Lie algebra of the group.

In many physical applications the group G is not simply connected. To
bypass this difficulty, one can consider the universal covering group G∗ of
G. By definition, it is simply connected. However, in general, the set of the
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T-multipliers of G may be quite different from the set of the T-multipliers of
G∗. For example, the Poincaré group has (essentially) two multipliers (cor-
responding to the bosonic and the fermionic particles, respectively), whereas
its universal covering group only has the trivial multiplier.

It will be shown in the following sections that, despite this fact, the study
of the T-multipliers of G∗ is sufficient to classify all the symmetry actions
of G, also when G is not simply connected. This remarkable mathematical
fact has created some confusion in the physics literature, where, sometimes,
instead of the natural symmetry group G its covering group G∗ is considered
as the true group of physical symmetries.

Remark 4. The common way to solve the problem of passing from projec-
tive representations to (ordinary) representations starts with classifying the
T-multipliers of G. Each multiplier z is then used to define a group Gz, the
central extension of G by T. Finally, one classifies all the irreducible repre-
sentations of Gz (see, for example, [35]).

3.2 Multipliers for Lie Groups

This section gives a brief summary of the part of the theory of multipliers
needed to describe the multipliers for a simply connected Lie group. The
proofs of the quoted results can be read, for instance, in Chap. 7 of [35],
where a systematic study of the multipliers is presented.

Let H be a connected and A a commutative Lie group, and let e and 1
be their respective unit elements.

Definition 11. An A-multiplier of H is a measurable map τ : H ×H → A
for which

τ(e, g) = τ(g, e) = 1, g ∈ H,
τ(g1, g2g3)τ(g2, g3) = τ(g1, g2)τ(g1g2, g3), g1, g2, g3 ∈ H.

Two A-multipliers τ1 and τ2 of H are equivalent if there is a measurable map
b : H → A such that

τ2(g1, g2) =
b(g1g2)
b(g1)b(g2)

τ1(g1, g2), g1, g2 ∈ H.

An A-multiplier τ is exact if it is equivalent to the constant multiplier 1, that
is,

τ(g1, g2) =
b(g1g2)
b(g1)b(g2)

, g1, g2 ∈ H,

for some measurable map b from H to A.
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The set of A-multipliers is a commutative group under pointwise multiplica-
tion and the set of exact A-multipliers is a subgroup of it. We let H2(H,A)
denote the corresponding quotient group.

The introduction of the above notion of equivalence of multipliers is mo-
tivated by the following observation. Let G be a group of symmetries and
assume that it is a connected Lie group. Let σ : G→ Σ0 be a symmetry ac-
tion of G. Given a measurable section s : Σ0 → U for the canonical projection
π : U→ Σ0, define, for all g, g1, g2 ∈ G,

Ug = s(σg)
z(g1, g2)I = Ug1g2U

−1
g2 Ug1 .

Then z is a T-multiplier of G and U is a projective representation with z
as its multiplier (compare with (3.1)). If s′ is another measurable section
for π and z′ is the multiplier of the projective representation g �→ s′(σg),
then z and z′ are equivalent T-multipliers. Moreover, if τ is a T-multiplier
of G, there always exists a projective representation U of G having τ as
its multiplier, see [35]. If τ ′ is another multiplier equivalent to τ , there is a
projective representation having τ ′ as its multiplier and which induces the
same symmetry action as U does.

The above observations imply that in order to classify all the symmetry
actions of a group G it suffices to study the quotient group H2(G,T) instead
of the group of the T-multipliers of G.

From now on we assume that the generic Lie group H is simply connected.
The following lemma, see Corollary 7.32 of [35], reduces the study of the

T-multipliers of H to the study of its R-multipliers.

Lemma 7. Each T-multiplier of H is equivalent to one of the form eiτ , where
τ is an R-multiplier of H. The multiplier τ is exact if and only if the multiplier
eiτ is exact.

In general, multipliers are measurable functions. However, in the case of
the real valued multipliers one may restrict the study to analytic multipliers
only. This is due to the following result, see Corollary 7.30 of [35].

Lemma 8. Any R
n-multiplier of H is equivalent to an analytic one.

The above two lemmas imply that each T-multiplier is equivalent to a
multiplier eiτ , where τ is an analytic R-multiplier. Moreover, since τ is an-
alytic and H is simply connected, the multipliers may be studied from an
infinitesimal point of view. To do this, we need the following definition. In
that Lie (H) denotes the Lie algebra of H and (X,Y ) �→ [X,Y ] is its Lie
product.

Definition 12. A bilinear skew symmetric map F : Lie (H)× Lie (H)→ R
n

for which

F (X, [Y,Z]) + F (Z, [X,Y ]) + F (Y, [Z,X]) = 0, X, Y, Z ∈ Lie (H),
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is a closed R
n-form. A closed R

n-form F is exact if there is a linear map
q : Lie (H)→ R

n such that

F (X,Y ) = q([X,Y ]), X, Y ∈ Lie (H).

The set of closed R
n-forms is a finite dimensional real vector space and

the set of exact R
n-forms is a subspace of it. Let H2(Lie (H),Rn) denote the

corresponding quotient space.
The above definition is motivated by the following result, which is es-

sential in order to define the universal central extension of a connected Lie
group. Observe that the set of R

n-multipliers is a real vector space under the
pointwise operations and the set of exact R

n-multipliers is a subspace of it,
so that the group H2(H,Rn) is also a vector space.

Theorem 2. The vector spaces H2(H,Rn) and H2(Lie (H),Rn) are isomor-
phic in a canonical way.

Proof. To exhibit the isomorphism claimed, let F be a closed R
n-form and

denote by R
n⊕F Lie (H) the Lie algebra defined by the following Lie bracket:

[
(v1, X1), (v2, X2)

]
:= (F (X1, X2),

[
X1, X2

]
),

for all v1, v2 ∈ R
n and X1, X2 ∈ Lie (H). Let α : R

n → R
n ⊕F Lie (H)

be the natural injection and β : R
n ⊕F Lie (H) → Lie (H) the natural pro-

jection. These maps are Lie algebra homomorphisms and Ker β = Im α.
Due to Theorems 6 and 7 of Appendix A.1, there exists a unique (up
to an isomorphism) connected, simply connected Lie group HF , such that
Lie (HF ) = R

n ⊕F Lie (H), and two group homomorphisms a : R
n → HF ,

b : HF → H such that the induced Lie algebra homomorphisms ȧ and ḃ equal
α and β, respectively. Moreover, one can prove that a is a homeomorphism
from R

n onto a(Rn) and HF /a(Rn) is isomorphic to H. By a known result
(see, for example, Lemma 7.26 of [35]) there exists an analytic map c from
H to HF such that c(e) = e and b(c(h)) = h for all h ∈ H. If we define

τF (h1, h2) := c(h1)c(h2)c(h1h2)−1, h1, h2 ∈ H,
then τF is (modulo identification) an analytic R

n-multiplier and the function
[F ]→ [τF ] is the isomorphism in question. Since τF is analytic, one can easily
check that HF is isomorphic, as a Lie group, to R

n ×τF
H, which is a Lie

group with respect to the product

(v1, g1)(v2, g2) = (v1 + v2 + τF (g1, g2), g1g2), v1, v2 ∈ R
n, g1, g2 ∈ H. ��

3.3 Universal Central Extension
of a Connected Lie Group

Let G be a connected Lie group, G∗ its universal covering group and δ : G∗ →
G the covering homomorphism. The kernel of δ, Ker δ = {g∗ ∈ G | δ(g∗) = e},
is a closed, discrete, central subgroup of G∗.
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Let H2(G∗,R) be the vector space of the equivalence classes of the R-
multipliers of G∗. By Theorem 2 it is finite dimensional. Let H2(G∗,R)δ be
the subset of the equivalence classes [τ ] ∈ H2(G∗,R) such that

τ(k, g∗) = τ(g∗, k), k ∈ Ker δ, g∗ ∈ G∗. (3.4)

Since Ker δ is central in G∗ this relation holds for all R-multipliers of G∗

which are equivalent to τ . Hence the set H2(G∗,R)δ is well defined. Moreover,
H2(G∗,R)δ is a subspace of H2(G∗,R). Let N be its dimension.

Let τ1, . . . , τN be some fixed analytic R-multipliers of G∗ such that their
equivalence classes [τ1], . . . , [τN ] form a basis of H2(G∗,R)δ. The function
τ : G∗ ×G∗ → R

N , defined as

τ(g∗
1 , g

∗
2)i := τi(g∗

1 , g
∗
2), g∗

1 , g
∗
2 ∈ G∗, i = 1, . . . , N,

is an analytic R
N -multiplier of G∗. The restriction of τ to Ker δ×Ker δ is an

R
N -multiplier of the discrete group Ker δ, hence it is exact (see Proposition 2,

Sect. 4, Chap. 1 of [6]). Without loss of generality one may thus assume that
τ is analytic and

τ(k1, k2) = 0, k1, k2 ∈ Ker δ. (3.5)

Definition 13. Let G = R
N × G∗ be the product manifold. Since τ is ana-

lytic, G is a Lie group with respect to the product

(v1, g∗
1)(v2, g∗

2) = (v1 + v2 + τ(g∗
1 , g

∗
2), g∗

1g
∗
2), v1, v2 ∈ R

n, g∗
1 , g

∗
2 ∈ G∗.

G is the universal central extension of G.

The following observation explains why G is called a central extension of
G. Define the map ρ from G to G as

ρ(v, g∗) := δ(g∗), v ∈ R
N , g∗ ∈ G∗.

Clearly, ρ is an analytic surjective group homomorphism and its kernel

K = {(v, k) ∈ G | v ∈ R
N , k ∈ Ker δ}

is a closed subgroup of G. By definition, τ(k, g∗) = τ(g∗, k) for all k ∈ Ker δ
and g∗ ∈ G∗, so that K is central in G. Hence, G is a kind of a generalization
of the universal covering group. Moreover, (3.5) implies that K, as a Lie
group, is the direct product of R

N and Ker δ, that is, K = R
N ×Ker δ.

The next two definitions are essential in order to describe properly the
relation between the symmetry actions of G and the unitary representations
of G. We recall the notation T = {zI | z ∈ T}

Definition 14. A representation U : G → U is admissible if it satisfies the
condition

Uh ∈ T for all h ∈ K. (3.6)
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Let U be an admissible representation. Its restriction to K is a character
of K. Since K = R

N×Ker δ, this character is of the form U(v,k) = eiw·vε(k)I,
v ∈ R

N , k ∈ Ker δ, for some w ∈ R
N and for some character ε of Ker δ. We

call w the algebraic charge of U and ε its topological charge. The motivation for
these names derives from the fact that Ker δ depends only on the topological
structure of G, whereas the dimension N is connected with the structure of
H2(Lie (G),R).

Every irreducible representation of G is admissible. Indeed, let U be an
irreducible representation. Since K is central, Uk, k ∈ K, commutes with
each Ug, g ∈ G, so that, by Schur’s lemma, Uk is a multiple of the identity.
Since Uk is unitary, it is a phase factor, that is, Uk ∈ T.

Definition 15. Let U and U ′ be two unitary representations of G acting inH
and H′, respectively. We say that U and U ′ are physically equivalent if there
exists a unitary or antiunitary operator B : H → H′ and a map b : G → T

such that

BUg = b(g)U ′
gB, g ∈ G. (3.7)

If U and U ′ are unitarily equivalent, then they are also physically equivalent,
but the converse implication is not true. Moreover, if U is an admissible
representation, then every representation that is physically equivalent to U
is also admissible.

The following lemma shows that the map b in (3.7) is, in fact, a character
of G∗.

Lemma 9. Let U and U ′ be two unitary representations of G. The represen-
tations U and U ′ are physically equivalent if and only if there is a character
χ of G∗ and a unitary or antiunitary operator B such that (3.7) holds with

b(v, g∗) = χ(g∗) v ∈ R
N , g∗ ∈ G∗.

Proof. Assume that U and U ′ are physically equivalent and let b and B be
such that (3.7) holds. Then, for all g ∈ G

b(g)I = BUgB
−1U ′−1

g .

Fix a unit vector ϕ ∈ H′. Then b(g) = 〈U−1
g B−1ϕ,B−1U ′−1

g ϕ〉. Since U
and U ′ are continuous in the strong operator topology, the function b is also
continuous. Moreover, for all g1, g2 ∈ G

BUg1g2 = b(g1g2)U
′
g1g2

B

BUg1Ug2 = b(g1g2)U
′
g1
U ′
g2
B

b(g1)b(g2)U
′
g1
U ′
g2
B = b(g1g2)U

′
g1
U ′
g2
B.

Thus b(g1)b(g2) = b(g1g2). Obviously, b(e) = 1, so that b is a character of G.
The restriction of b to R

N is thus of the form b(v, e∗) = eiw·v, v ∈ R
N , for

some w ∈ R
N . Then, if g∗

1 , g
∗
2 ∈ G∗,
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b((0, g∗
1))b((0, g∗

2)) = b((τ(g∗
1 , g

∗
2), e∗))b((0, g∗

1g
∗
2))

= eiw·τ(g∗
1 ,g

∗
2 )b((0, g∗

1g
∗
2)).

Hence, by Lemma 7, the R-multiplier w · τ is exact, so that w = 0. If χ is the
restriction of b to G∗, then for all v ∈ R

N and g ∈ G, b(v, g∗) = χ(g∗) and χ
is a character of G∗. The converse implication is evident. ��

We are now prepared state the main result of this section. Let U be an
admissible representation of G and define, for all g ∈ G,

σUg := π(Ug), (3.8)

where g = (v, g∗) ∈ G is such that ρ(g) = δ(g∗) = g. The following theorem
is then obtained.

Theorem 3. With the above notations, σU is a symmetry action of G and
the correspondence [U ] �→ [σU ] between the physical equivalence classes of
admissible unitary representations of G and the equivalence classes of the
symmetry actions of G is a bijection. The representation U of G is irreducible
if and only if σU is an irreducible symmetry action of G.

Before proving the theorem some comments are due. The above result
shows that the equivalence classes of admissible representations of G classify
quantum systems that are different from each other with respect to the sym-
metry group G. In particular, the irreducible representations of G, which are
always admissible, describe all the possible systems that are elementary with
respect to G.

Consider next the case of a reducible representation of G. For sake of
simplicity, assume that U = U1 ⊕ U2, where U1 and U2 are irreducible rep-
resentations, so that the representations Ui are admissible. Let wi and εi
denote the corresponding algebraic and topological charges. In general, U is
not admissible. A simple calculation shows that U is admissible if and only
if w1 = w2 and ε1 = ε2. Thus vector states associated with different elemen-
tary systems can be superposed into new vector states only if the elementary
systems have the same algebraic and topological charges. This fact is at the
root of the existence of superselection rules for non-elementary systems.

The relation between the decomposition into irreducible representations
and the notion of physical equivalence also requires some special care. One
can easily show that, if b is a nontrivial character of G which is 1 on K, then,
bU2 is an irreducible representation physically equivalent to U2. Nevertheless,
U1⊕U2 and U1⊕ bU2 are physically inequivalent admissible representations.
In the same way, if the algebraic charge w of U1 and U2 is zero and their topo-
logical charge ε is such that ε2 extends to a character b of G, then U1⊕U2 and
U1⊕bBU2B

−1, where B is any antiunitary operator, are physically inequiva-
lent admissible representations, even though U2 and bBU2B

−1 are physically
equivalent. This kind of phenomenon does not occur if one considers the
unitary equivalence instead of the physical equivalence.
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We come back to the proof of Theorem 3, which requires some technical
lemmas.

We start with stating some properties of G.

Lemma 10. Let G be the universal central extension of G.

1. There is a measurable map c : G → G such that c(e) = (0, e∗) = e and
ρ(c(g)) = g for all g ∈ G. (We call such a map a section for ρ.)

2. Given a section c for ρ, define the map Γc : G×G→ K as

Γc(g1, g2) := c(g1)c(g2)c(g1g2)−1, g1, g2 ∈ G.
Then Γc is a K-multiplier of G and its equivalence class does not depend
on the choice of the section c.

3. Considering R
N as a subgroup of K = R

N × Kerδ, the K-multiplier
Γc ◦ (δ × δ) of G∗ is equivalent to τ .

4. Let χ be a character of K. With the above notations, the map µχ : G ×
G→ T defined as

µχ(g1, g2) := χ (Γc(g1, g2)) , g1, g2 ∈ G,
is a T-multiplier of G and its equivalence class [µχ] does not depend on
the choice of the section c.

Proof.

1. Since ρ is a surjective group homomorphism whose kernel is K and ρ
is analytic, G is isomorphic, as a Lie group, to the quotient G/K. The
existence of a section is thus a standard result (see, for example, Theorem
5.11 of [35]).

2. If g1, g2 ∈ G, then ρ(Γc(g1, g2)) = e, so that Γc(g1, g2) ∈ K. By direct
computation one checks that Γc is a K-multiplier. Let c′ be another
section for ρ, then, for all g ∈ G, c(g) = b(g)c′(g) for some measurable
function b from G to K. Hence, for all g1, g2 ∈ G

Γc′(g1, g2) =
b(g1g2)
b(g1)b(g2)

Γc(g1, g2).

3. Let i : G∗ → G be the natural immersion and a the measurable map
from G∗ to G defined as

a(g∗) := c(δ(g∗))i(g∗)−1, g∗ ∈ G∗.

Since ρ(a(g∗)) = e, the map a takes values in K. Then, if g∗
1 , g

∗
2 ∈ G∗,

Γc(δ(g∗
1), δ(g∗

2)) = c(δ(g∗
1))c(δ(g∗

1))c(δ(g∗
1)δ(g∗

2))−1

= a(g∗
1)i(g∗

1)a(g∗
2)i(g∗

2)i(g∗
1g

∗
2)−1a(g∗

1g
∗
2)−1

= a(g∗
1)a(g∗

2)a(g∗
1g

∗
2)−1i(g∗

1)i(g∗
2)i(g∗

1g
∗
2)−1

= a(g∗
1)a(g∗

2)a(g∗
1g

∗
2)−1(τ(g∗

1 , g
∗
2), e∗),

i.e., Γc ◦ (δ × δ) is equivalent to τ .
4. This is a simple consequence of the properties of Γc given in item 2. ��
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The following lemma describes the group H2(G,T) in terms of the char-
acters of K and G∗. This result is important in itself.

Let K̂ be the dual group of K and V the subgroup of those characters of
K which extend to characters of G. By the Lemma 9 the elements of V can
be identified with characters of G∗.

Lemma 11. The mapping K̂ � χ �→ [µχ] ∈ H2(G,T) is a surjective homo-
morphism whose kernel is V .

Proof. By direct computation one can check that χ �→ [µχ] is a group ho-
momorphism. To show its surjectivity, we notice that, since the equivalence
class [µχ] does not depend on the specific form of the section c, we can choose
for c the particularly simple form

c(g) = (0, c̃(g)) , g ∈ G,

where c̃ : G → G∗ is measurable and satisfies c̃(e) = e∗ and δ(c̃(g)) = g for
all g ∈ G. With this choice a straightforward calculation shows that

Γc(g1, g2) = ( τ(c̃(g1), c̃(g2))− τ(γ(g1, g2), c̃(g1g2)) , γ(g1, g2) ) , (3.9)

where g1, g2 ∈ G and γ(g1, g2) = c̃(g1)c̃(g2)c̃(g1g2)−1 ∈ Ker δ. Now let µ be
a T-multiplier of G and µ∗ the T-multiplier of G∗

µ∗(g∗
1 , g

∗
2) = µ(δ(g∗

1), δ(g∗
2)), g∗

1 , g
∗
2 ∈ G∗.

According to Lemma 7,

µ∗(g∗
1 , g

∗
2) =

a(g∗
1g

∗
2)

a(g∗
1)a(g∗

2)
eiτ(g

∗
1 ,g

∗
2 ), g∗

1 , g
∗
2 ∈ G∗, (3.10)

for some analytic R-multiplier τ of G∗ and a measurable function a : G∗ → T.
We claim that

τ(k, g∗) = τ(g∗, k) k ∈ Ker δ, g∗ ∈ G∗. (3.11)

In fact, let k ∈ Ker δ and g∗ ∈ G∗. Since µ∗(k, g∗) = µ∗(g∗, k) = 1, then

eiτ(k,g
∗) =

a(k)a(g∗)
a(kg∗)

=
a(k)a(g∗)
a(g∗k)

= eiτ(g
∗,k).

Hence τ(k, g∗) = τ(g∗, k) + 2πn(k, g∗) where n(k, g∗) is an integer. By con-
tinuity of τ(k, ·) and since G∗ is connected, the map n(·, ·) depends only on
k, and, choosing g∗ = k, we conclude that n(k, g∗) = 0 for all k ∈ Ker δ,
g∗ ∈ G∗.

Due to (3.11), the equivalence class of τ belongs to H2(G∗,R)δ and, by
definition of τ , there is a w ∈ R

N such that, up to equivalence, τ = w · τ .
Hence (3.10) becomes
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µ∗(g∗
1 , g

∗
2) =

a(g∗
1g

∗
2)

a(g∗
1)a(g∗

2)
eiw·τ(g∗

1 ,g
∗
2 ), g∗

1 , g
∗
2 ∈ G∗. (3.12)

The previous equality implies that the map χ : K → T, with χ(v, k) :=
eiw·va(k), v ∈ R

N , k ∈ Ker δ, is, in fact, a character of K. Hence, by
statement 4 of Lemma 10, χ defines a T-multiplier µχ of G.

We will show that µχ is equivalent to µ. In fact, using (3.9), one has

µχ(g1, g2) = χ(Γc(g1, g2))

= eiw·( τ(c̃(g1),c̃(g2))−τ(γ(g1,g2),c̃(g1g2)) )a(γ(g1, g2)).

Using twice (3.12) we obtain

eiw·τ(c̃(g1),c̃(g2)) =
a(c̃(g1))a(c̃(g2))
a(c̃(g1)c̃(g2))

µ(g1, g2)

e−iw·τ(γ(g1,g2),c̃(g1g2)) =
a(c̃(g1)c̃(g2))

a(γ(g1, g2))a(c̃(g1g2))

so that

µχ(g1, g2) =
a(c̃(g1))a(c̃(g2))
a(c̃(g1g2))

µ(g1, g2),

which shows the equivalence of µ and µχ.
Suppose now that χ is a character of K that extends to a character of G

(still denoted by χ). Then

µχ(g1, g2) = χ(c(g1)c(g2)c(g1g2)−1)
= χ(c(g1))χ(c(g2))χ(c(g1g2)−1),

showing that µχ is exact. Conversely, assume that

µχ(g1, g2) =
a(g1g2)

a(g1)a(g2)

for some measurable function a : G → T. Observe that, for all g ∈ G,
gc(ρ(g))−1 ∈ K and define χ′ : G→ T as

χ′(g) = χ(hc(ρ(g))−1)a(ρ(g))−1 , g ∈ G.

Then χ′ is a character of G. Indeed, χ′ is measurable, and if g1, g2 ∈ G,

χ′(g1)χ
′(g2) =

χ(g1c(ρ(g1))−1g2c(ρ(g2))−1)
a(ρ(g1))a(ρ(g2))

=
χ
(
g1g2c(ρ(g2))−1c(ρ(g1))−1

)
µχ(g1, g2)

a(ρ(g1g2))

=
χ
(
g1g2c(ρ(g2))−1c(ρ(g1))−1c(ρ(g1))c(ρ(g2))c(ρ(g1g2))−1

)

a(ρ(g1g2))
= χ

(
g1g2c(ρ(g1g2))

−1) a(ρ(g1g2))
−1

= χ′(g1g2).
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Moreover, since a(e) = 1, χ′(k) = χ(k) for all k ∈ K.
Hence,H2(G,T) is isomorphic, as an abstract group, to the quotient group

K̂/V and this concludes the proof. ��

If the subgroup V of K̂ is closed one may give a better description of
H2(G,T). Define

K0 := {(v, k) ∈ K | b(k) = 1 for any character b of G∗}.

Then K0 is a commutative closed subgroup of K. Since V is closed, a stan-
dard result on commutative locally compact groups (see, for example, Theo-
rem 4.39 of [14]) shows that K̂/V is isomorphic to the dual group K̂0 of K0.
In particular, any element χ ∈ K̂0 extends to an element χ̂ ∈ K̂ and χ̂ is
uniquely defined by χ, up to an element of V . Let µχ be the T-multiplier of
G defined by

µχ(g1, g2) = χ̂(Γc(g1, g2)), g1, g2 ∈ G,

where Γc is defined in Lemma 10. As a consequence of Lemma 11, the equiva-
lence class [µχ] depends only on χ and not on the particular extension chosen.

Corollary 5. If V is closed, the map K̂0 � χ �→ [µχ] ∈ H2(G,T) is a group
isomorphism.

We are now ready to prove the main theorem of this section.

Proof (Proof of Theorem 3). In the following we fix a section c : G→ G for
the function ρ : G→ G and a section s : Σ0 → U for the canonical projection
π : U → Σ0. Due to the admissibility condition (3.6), if h1, h2 ∈ G are such
that ρ(h1) = ρ(h2) = g, then π(Uh1) = π(Uh2), showing that σUg is well-
defined. In particular, we have

σUg = π(Uc(g)) , g ∈ G.

First we show that g �→ σUg is a symmetry action of G. Indeed, if g1, g2 ∈ G,
then

σUg1σ
U
g2 = π(Uc(g1))π(Uc(g2))

= π(Uc(g1)Uc(g2))
= π(Uc(g1)c(g2)c(g1g2)−1)π(Uc(g1g2))

= π(Uc(g1g2)) = σUg1g2 ,

where we used the fact that c(g1)c(g2)c(g1g2)−1 ∈ K as well as the admissi-
bility of U . Since c is measurable, σU is also measurable. Also, σUe = I, so
that σU is a symmetry action of G.

Let U and U ′ be two physically equivalent admissible representations of
G acting on H and H′, respectively. The corresponding symmetry actions σU
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and σU
′
are also equivalent. Indeed, in this case BUh = b(h)U ′

hB, h ∈ G, for
some unitary or antiunitary operator B : H → H′ and a character b : G→ T.
If β denotes the equivalence class [B] ∈ Σ(H,H′), then βσUg = σU

′
g β for all

g ∈ G, which is just to say that σU and σU
′
are equivalent. This shows that

the map [U ] �→ [σU ] is well defined.
We now show its surjectivity. Let σ be a symmetry action of G and define

µ : G×G→ U as

µ(g1, g2) := s(σg1)s(σg2)s(σg1g2)
−1, g1, g2 ∈ G.

Since π(µ(g1, g2)) = I, µ(g1, g2) ∈ T. Moreover, µ is measurable and by a
direct computation one confirms that µ is, in fact, a T-multiplier of G. By
Lemma 11, there is a character χ of K and a measurable function a : G→ T

such that

µ(g1, g2) =
a(g1g2)

a(g1)a(g2)
µχ(g1, g2) , g1, g2 ∈ G. (3.13)

Define a map Uσ : G→ U as

Uσh := χ(hc(ρ(h))−1)a(ρ(h))s(σρ(h)), h ∈ G.

Then Uσ is a representation of G. Indeed, as a composition of measurable
maps Uσ is measurable. Since a(e) = 1 and s(I) = I, Uσ(0,e∗) = I. Finally, for
any h1, h2 ∈ G,

Uσh1
Uσh2

= χ(h1c(ρ(h1))−1h2c(ρ(h2))−1)a(ρ(h1))a(ρ(h2))s(σρ(h1))s(σρ(h2))

= χ
(
h1h2c(ρ(h2))−1c(ρ(h1))−1)

a(ρ(h1))a(ρ(h2))µ(g1, g2)s(σρ(h1h2))

= χ
(
h1h2c(ρ(h2))−1c(ρ(h1))−1)χ

(
c(ρ(h1))c(ρ(h2))c(ρ(h1h2))−1)

a(ρ(h1h2))s(σρ(h1h2))

= χ
(
h1h2c(ρ(h1h2))−1) a(ρ(h1h2))s(σρ(h1h2))

= Uσh1h2
.

Since π ◦ s = idΣ0 and ρ ◦ c = idG, one readily verifies that σU
σ

= σ, proving
the surjectivity of the map [U ] �→ [σU ].

Assume next that σU and σU
′

are equivalent symmetry actions, and let
β ∈ Σ(H,H′) be such that π(U ′

c(g))β = βπ(Uc(g)), for all g ∈ G. We may thus
conclude that for some unitary or antiunitary operator B ∈ β and for some
measurable map b : G → T, U ′

c(g) = b(g)BUc(g)B−1. Let h ∈ G, g = ρ(h),
and k = hc(g)−1, then k ∈ K and

U ′
h = U ′

kU
′
c(g) = U ′

kb(c(g))BUc(g)B
−1

= U ′
kb(c(g))BUk−1UhB

−1 = b̂(h)BUhB−1,
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taking into account that, due to (3.6), U ′
k and Uk−1 are phase factors that

we have collected in b̂. This shows that U and U ′ are physically equivalent
representations of G, proving the injectivity of the map [U ] �→ [σU ].

To conclude, we prove the statement about irreducibility. Given, as above,
h = c(g)k ∈ G with g ∈ G and k ∈ K, and two vectors states P1 = P [φ1]
and P2 = P [φ2], with φ1, φ2 ∈ H, one has

|〈φ1, Uhφ2〉|2 = |〈φ1, Uc(g)Ukφ2〉|2

= |Uk〈φ1, Uc(g)Ukφ2〉|2

= tr
[
P1σ

U
g (P2)

]
, (3.14)

where Uk is a phase factor since U is admissible.
We now assume that U is irreducible and we prove that σU is also irre-

ducible. Let P1 = P [φ1] and P2 = P [φ2] be two vector states with φ1, φ2 ∈ H.
Due to the irreducibility of U ,

φ2 ∈ span{Uhφ1 : h ∈ G}

so that there is h ∈ G such that 〈φ1, Uhφ2〉 	= 0. By (3.14), it follows that
tr
[
P1σ

U
g (P2)

]
	= 0, where g = ρ(h), that is, σU is irreducible. The converse

statement can be proved in a similar way so that U : G→ U is irreducible if
and only if σU : G→ Σ is irreducible. ��

Let U be an admissible representation of G and w and ε its algebraic and
topological charges. One can easily check that the map G∗ � g∗ �→ U(0,g∗) ∈
U is a projective representation of G∗ with the T-multiplier µ∗(g∗

1 , g
∗
2) =

eiw·τ̄(g∗
1 ,g

∗
2 ). Moreover, if c : G → G is a section for ρ, then the map G �

g �→ Uc(g) ∈ U is a projective representation of G and its T-multiplier is
µχ where χ(v, k) = eiw·vε(k) and µχ is defined in item 4 of Lemma 10. As
a consequence of statement 3 of the same lemma, µ∗ and µχ ◦ (δ × δ) are
equivalent. Nevertheless, even if µ∗ is exact, µχ could be non-exact.

3.4 The Physical Equivalence for Semidirect Products

According to Theorem 3, the irreducible inequivalent symmetry actions of a
group G are completely described by the irreducible physically inequivalent
representations of its universal central extension G. In the examples consid-
ered in this monograph, the universal central extension is a regular semidirect
product with a commutative normal subgroup, so that any irreducible rep-
resentation is unitarily equivalent to some induced one [26]. In this way, the
problem of characterizing physically inequivalent irreducible representations
is reduced to the analogous problem for the induced representation. The
present section describes the solution in terms of properties of the orbits in
the dual space and of the inducing representations.
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Let G = A ×′ H be a Lie group with A a commutative normal closed
subgroup and H a closed subgroup. In this section we denote the elements
of G as g = (a, h). We denote by Â the dual group of A and by (g, ·) �→ g[·]
both the inner action of G on A and the dual action of G on Â. If x ∈ Â,
let Gx := {g ∈ G | g[x] = x} be the stability subgroup of G at x and G[x] :=
{g[x] | g ∈ G} the corresponding orbit. We assume that each orbit in Â is
locally closed (i.e., the semidirect product is regular) and, to simplify the
exposition, that it has a G-invariant σ-finite measure.

Moreover, given x ∈ Â and a representationD ofGx∩H acting in a Hilbert
space K, we denote by U = IndG

Gx
(xD) the representation of G unitarily

induced by the representation xD of Gx,

(xD)ah = xaDh, a ∈ A, h ∈ Gx ∩H.

Explicitly, let ν be a G-invariant σ-finite measure on G[x] and c a measurable
map from G[x] to G such that c(x) = e and c(y)[x] = y for all y ∈ G[x]
(we call such a map a section for G[x]). Then U acts on the Hilbert space
L2(G[x], ν,K) as

(Ugf)(y) = (xD)(c(y)−1gc(g−1[y]))f(g−1[y]),

where y ∈ G[x], f ∈ L2(G[x], ν,K), and g ∈ G.
We shall now classify all the equivalence classes (with respect to the notion

of physical equivalence) of irreducible representations of G in the case of
regular semidirect products.

Let Âs be the set of singleton G-orbits in Â, i.e.,

Âs = {y ∈ Â : g[y] = y, g ∈ G}.

Define for all x ∈ Â the orbit class

Õx := {yg[xε] : y ∈ Âs, g ∈ G, ε = ±1}.

Obviously, for all x′ ∈ Õx, G[x′] ⊂ Õx and Õx = Õx′ , so that one may choose
a family {xi}i∈I of elements in Â such that Â is the disjoint union of the sets
Õxi

.

Theorem 4. Let G = A ×′ H be a regular semidirect product and Â =
∪i∈IÕxi , Õxi ∩ Õxj = ∅, for all i 	= j.

1. Every irreducible representation of G is physically equivalent to one of the
form IndG

Gxi

(xiD) for some index i and some irreducible representation

D of Gxi ∩H.
2. If i 	= j and D, D′ are two representations of Gxi ∩ H and Gxj ∩ H,

respectively, then IndG
Gxi

(xiD) and IndG
Gxj

(xjD′) are physically inequiv-

alent.
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3. Let x ∈ Â and D, D′ be two representations of Gx∩H. Then IndG
Gx

(xD)

and IndG
Gx

(xD′) are physically equivalent if and only if one of the follow-
ing two conditions is satisfied:
a) there exist y ∈ Âs, a character χ of H, and a unitary operator M

such that

G[x] = yG[x],
D′
hsh−1 = χsMDsM

−1, s ∈ Gx ∩H,

where h ∈ H is such that x = yh[x];
b) there exist y ∈ Âs, a character χ of H, and an antiunitary operator
M such that

G[x] = yG[x]−1,

D′
hsh−1 = χsMDsM

−1, s ∈ Gx ∩H,

where h ∈ H is such that x = yh[x−1].

Motivated by the above theorem, if U is a representation of G physically
equivalent to some induced representation IndG

Gx
(xD) we say, with a slight

abuse of terminology, that U lives on the orbit class Õx.
The proof of the theorem is based on the following lemma.

Lemma 12. Let x, x′ ∈ Â. Let D be a representation of Gx ∩H acting in K
and D′ a representation of Gx′ ∩H acting in K′. The induced representations
IndG

Gx
(xD) and IndG

Gx′
(x′D′) are physically equivalent if and only if there

exist an element h ∈ G, a character χ̃ of G and a unitary or antiunitary
operator M from K onto K′ such that

1. Gx′ = hGxh
−1;

2. (x′D′)hgh−1 = χ̃gM(xD)gM−1 for all g ∈ Gx.

Moreover, every character of G is of the form

(a, h) �→ χ̂aχh , a ∈ A, h ∈ H

where χ̂ ∈ Âs and χ is a character of H.

Proof. First we prove the statement on the characters of G. If χ̃ is a character
of G, let χ̂ and χ be its restrictions to A and H, respectively. Then χ is a
character of H and, by definition of dual action, χ̂ ∈ Âs. The proof of the
converse implication is similar.

We now turn to the first statement. To simplify the notations, denote
U = IndG

Gx
(xD) and U ′ = IndG

Gx′ (x
′D′). The representations U and U ′ are

physically equivalent if and only if there exist a character χ̃ of G and a unitary
or antiunitary operator B such that
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U ′ = χ̃B−1UB.

As a first step we define in terms of U and χ̃ two induced representations U+

and U− of G such that
U± = χ̃W−1

± UW±,

where W+ [or W−] is unitary [or antiunitary]. In particular, U+ and U− are
physically equivalent to U .

By the previous result χ̃ = χ̂χ, where χ̂ ∈ Âs and χ is a character of H.
Define the maps ψ+ and ψ− from Â onto Â as ψ±(x) := χ̂x±1. The maps ψ±
are measurable isomorphisms that commute with the action of G, so that,
for all x ∈ Â, ψ± maps the orbit G[x] onto the orbit G[ψ±(x)] and one has
Gx = Gψ±(x). If ν is an invariant measure on G[x], the image measure ν±

with respect to ψ± is an invariant measure on G[ψ±(x)] and if c is a section
for the orbit G[x], then c± = c ◦ ψ−1

± is a section for the action of G on the
orbit G[ψ±(x)].

Fix a unitary operator L+ and an antiunitary operator L− on K. Consider
the representations of Gx,

g �→ χ̃gL±(xD)gL−1
± ,

and observe that their restriction to A are exactly the elements x±. Since
Gx± = Gx we can define the induced representations of G,

U± := IndG
Gx±

(χ̃L±xDL−1
1 ±),

acting in L2(G[x±], ν±,K).
Moreover, define the operators W± from L2(G[x±], ν±,K) onto

L2(G[x], ν,K)

(W±f)(y) = χ̃±1
c(y)L

−1
± f(ψ±(y)), y ∈ G[x].

It is easy to show that W+ [or W−] is unitary [or antiunitary].
We have

U± = χ̃W−1
± UW±.

In fact, let g ∈ G, f ∈ L2(G[x±], ν±,K), and y ∈ G[x±]

χ̃g
(
W−1

± UgW±f
)
(y) = χ̃gχ̃

−1
c±(y)L± (UgW±f) (ψ−1

± (y))

= χ̃gχ̃
−1
c±(y)L±(xD)γ±(g,y)(W±f)(g−1[ψ−1

± (y)])

= χ̃gχ̃
−1
c±(y)L±(xD)γ±(g,y)χ̃

±1
c±(g−1[y])L

−1
± f(g−1[y])

= (χ̃L±xDL−1
± )γ±(g,y)f(g−1[y])

= (U±
g f)(y).

where γ±(g, y) = c±(y)−1gc±(g−1[y]) = c(ψ−1
± (y))−1gc(g−1[ψ−1

± (y)]).
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To conclude the proof of the lemma, observe first that there always exists
a unitary operator V such that either B = W+V or B = W−V , according
to the fact that B is unitary or antiunitary. Hence U and U ′ are physically
equivalent if and only if U ′ is unitarily equivalent either to U+ or to U−.
Due to a theorem of Mackey (see, for example, Theorem 6.42 of [14]), this
is possible if and only if there exist h ∈ G such that Gx′ = hGxh

−1 and a
unitary or antiunitary operator M (depending on the fact that B is unitary
or antiunitary) such that (x′D′)hgh−1 = χ̃gM(xD)gM−1 for all g ∈ Gx. ��

Proof (Proof of Theorem 4).

1. Since the semidirect product is regular, a theorem of Mackey (see, for
example, Theorem 6.42 of [14]) implies that each irreducible unitary rep-
resentation of G is unitarily (hence physically) equivalent to one of the
form IndG

Gx
(xD′) for some x ∈ Â and some irreducible representation D

of Gx ∩ H. There is an index i such that x ∈ Õxi and, by definition of
orbit class, there exist y ∈ Âs and h ∈ G such that x = yh[xεi ] where
ε = ±1. Hence Gx = hGxih

−1 and we can define a representation D of
Gxi
∩H either as

Dg = D′
h−1gh, g ∈ Gxi ∩H,

if ε = 1, or as

Dg = MD′
h−1ghM

−1, g ∈ Gxi ∩H,

if ε = −1, where M is a fixed antiunitary operator. Then, by Lemma 12,
IndG

Gx
(xD′) is physically equivalent to IndG

Gxi

(xiD).

2. If IndG
Gxi

(xiD) and IndG
Gxj

(xjD′) are physically equivalent, condition 2

of Lemma 12 with the choice g = a ∈ A implies that xj = yh[xεi ] for some
y ∈ Âs and ε = ±1, so that, by definition of xi, i = j.

3. Apply Lemma 12 with x = x′, taking into account the form of the char-
acters of G. ��

We observe that if D′ is unitarily equivalent to D, the conditions (a) of item 3
of Theorem 4 are satisfied with y = 1, χ̃ = 1, and h = e and this is exactly
the case of unitary equivalence of the induced representations. However, in
general, there are other possibilities apart from the unitary equivalence. There
are even situations in which both conditions (a) and (b) hold.

3.5 An Example: The Temporal Evolution
of a Closed System

As a first simple illustration of the general theory developed so far, consider
the additive group of the real line R. It is a connected and simply connected
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Lie group, so that, in particular, its covering group R
∗ is R itself, and the

symmetry actions of R on H take values in Σ0, R � t �→ σt ∈ Σ0. The Lie
algebra Lie (R) of the additive group R can be identified with the vector space
R, with the Lie product [x, y] = 0, x, y ∈ R, and with the exponential map
Lie (R) � x �→ exp(x) = x ∈ R being the identity. Any bilinear function F on
R× R is of the form F (x, y) = λxy for some λ ∈ R, so that there is no skew
symmetric bilinear forms in the present case, and, in particular, the vector
space of the closed forms H2(Lie (R),R) contains only the zero vector. The
central universal extension of R is thus R, R = R

∗ = R. According to the
Stone theorem, any (strongly continuous) unitary representation R � t �→
Ut ∈ U is of the form Ut = eitH , t ∈ R, where H is a selfadjoint operator
acting in H. Any symmetry action σ : R→ Σ0 is now of the form σ = σU for
some unitary representation U : t �→ Ut = eitH , and two symmetry actions
σ1 and σ2 are equivalent if and only if the representations U1 and U2 differ
by a character, that is, H1 = H2 + aI for some real number a. The temporal
evolution of a closed system is a particular instance of the symmetry actions
R→ Σ0, and we may conclude that two systems with Hamiltonians H1 and
H2 which differ only by a constant aI do have the same evolutions.
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In this chapter we describe the Galilei group and its universal central exten-
sion both in 3 + 1 and in 2 + 1 dimensions.

4.1 The 3 + 1 Dimensional Case

In this section we use the vector notation x for the elements of R
3.

Let V := (R3,+) be the three dimensional real vector group, the group
of velocity transformations, and let SO(3) be the classical Lie group of the
special orthogonal 3 × 3 real matrices, the rotation group in R

3. For any
(v, R) ∈ V × SO(3) we put, following the notation of the semidirect product
in A.1,

f(v, R) ≡ R[v] := Rv.

This defines an analytic action of SO(3) on V and the semidirect product
defined by this action is the homogeneous Galilei group

Go := V ×′ SO(3).

According to the definition of Lie subgroup in A.1 both V and SO(3) are
closed Lie subgroups of Go, and V is a normal subgroup of Go. In addition,
V is Abelian, and SO(3) is compact and connected but not simply connected
[38].

Let Ts := (R3,+) be the three dimensional real vector group, the group
of space translations, Tt := (R,+) the one dimensional real vector group, the
group of time translations, and let T := Ts × Tt denote the four dimensional
real vector group of space-time translations. We denote its elements by (a, b).
Consider the action of Go on T defined as

(v, R)[(a, b)] := (Ra + bv, b)

for all (v, R) ∈ Go, (a, b) ∈ T . This is an analytic action and it defines the
semidirect product, the Galilei group

G := T ×′ Go.

As above, T and Go are closed Lie subgroups of G, and T is normal and
Abelian.

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 49–59
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



50 4 The Galilei Groups

For any g ∈ G we write g = (a, b,v, R) and we call these the Galilei
transformations. The identity element of G is e = (0, 0,0, I) and the inverse
of an element g is given as

g−1 = (a, b,v, R)−1 = (−R−1(a− bv),−b,−R−1v, R−1).

The product of two transformations g, g′ obtains the form

gg′ = (a, b,v, R)(a′, b′,v′, R′) = (Ra′ + b′v + a, b+ b′, Rv′ + v, RR′).

4.1.1 Physical Interpretation

The Galilei group G acts as a Lie transformation group on R
4:

g[(x, t)] := (Rx + vt+ a, b+ t)

for any g ∈ G and for all (x, t) ∈ R
4. This action allows one to identify G

as the group of transformations of the coordinates of the Newtonian space-
time R

4 = R
3 × R. In fact, each reference frame F attaches a Cartesian

system of coordinates to the space-time points, and any two inertial reference
frames F, F ′ are obtained from each other by affecting a rotation R, a velocity
boost v, a space translation a, and a time translation b. In other words, the
coordinates (x′, t′) of an inertial frame F ′ are related to the coordinates (x, t)
of another inertial frame F as follows:

x′ = Rx + vt+ a,

t′ = b+ t.

This allows one to regard the Galilei group G as the group of the coordinate
transformations between the inertial frames of the Newtonian space-time.

4.1.2 The Covering Group

Regarding G as an analytic manifold, G is the product of T ×V = R
7 and of

SO(3). The manifold R
7 is simply connected, whereas SO(3) fails to be simply

connected and its universal covering group is the (complex) special unitary
group SU(2). We let δ : SU(2)→ SO(3) denote the covering homomorphism.
It is an analytic function and its kernel is ker (δ) = {±I}. The group

G∗ := T ×′ (V ×′ SU(2)) ≡ T ×′ G∗
o

is connected and simply connected and is the covering group of the Galilei
group. The covering homomorphism δ : G∗ → G is given by δ((a, b,v, h)) =
(a, b,v, δ(h)) and its kernel consists of the two elements ±e∗.
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4.1.3 The Lie Algebra

Since T and V are vector groups, their Lie algebras can be canonically iden-
tified with the vector spaces R

4 and R
3, respectively,

Lie (T ) = R
4,

Lie (V) = R
3.

The exponential maps Lie (T ) → T and Lie (V) → V are then the identity
maps. These Lie algebras are Abelian, so that, for instance, [a1, a2] = 0 for
all a1, a2 ∈ Lie (T ). The Lie algebra of SO(3) is the vector space so (3) of
3× 3 real traceless skew symmetric matrices,

Lie (SO(3)) = so (3).

The exponential map exp : so (3) → SO(3) is the usual exponential map of
matrices, expA = eA, A ∈ so (3), and the bracket is now the commutator of
the matrices, [A1, A2] = A1A2−A2A1, A1, A2 ∈ so (3). The Lie algebra so (3)
is not Abelian and it has no proper ideals, that is, so (3) is simple. Therefore,
the linear span of the elements [A1, A2], A1, A2 ∈ so (3), is the whole so (3),

[so (3), so (3)] = so (3).

The Lie algebra of G0 = V ×′ SO(3), as a vector space, is

Lie (G0) = Lie (V)⊕ Lie (SO(3))
= R

3 ⊕ so (3).

Due to the action of SO(3) on V, R[v] = Rv, one has [v, A] = Av for all
v ∈ Lie (V), A ∈ so (3), showing that Lie (V) is an ideal in Lie (G0); in fact,

[Lie (V), so (3)] = Lie (V).

The Lie algebra of G = T ×′ G0, as a vector space, is

Lie (G) = Lie (T )⊕ Lie (V)⊕ Lie (SO(3))
= R

4 ⊕ R
3 ⊕ so (3).

We let X = (a,v, A) ≡ (a, b,v, A) denote its generic element. Taking into
account the semidirect product structure of G one obtains

[Lie (T ),Lie (G0)] ⊂ Lie (T ).

Since T is normal in G, the inner automorphisms define a natural action of
SO(3) on T , which preserves the splitting T = Ts × Tt. Taking the adjoint
action on Lie (T ) = Lie (Ts) ⊕ Lie (Tt), we have the brackets [a, A] = Aa,
a ∈ Lie (Ts), A ∈ so (3), [b, A] = 0, b ∈ Lie (Tt), A ∈ so (3), showing that
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[Lie (Ts), so (3)] = Lie (Ts)
[Lie (Tt), so (3)] = 0.

Moreover, by explicit calculation, one gets [b,v] = bv and [a,v] = 0, that is,

[Lie (Tt),Lie (V)] = Lie (Ts)
[Lie (Ts),Lie (V)] = 0.

In particular, the above relations show that Lie (T ) is an ideal in Lie (G).
The Lie algebra of the covering group G∗ = T ×′ (V ×′ SU(2)) of the

Galilei group is

Lie (G∗) = Lie (T )⊕ Lie (V)⊕ Lie (SU(2))
= R

4 ⊕ R
3 ⊕ su (2),

where su (2) is the vector space of all 2×2 skew Hermitian complex matrices.
The covering homomorphism δ : SU(2) → SO(3) induces an isomorphism
between the Lie algebras of SU(2) and SO(3). We denote it by δ∗ : su (2)→
so (3). The Lie algebras Lie (G) and Lie (G∗) of the Galilei group G and its
covering group G∗ are thus isomorphic. We denote an element of Lie (G∗) by
X∗ = (a,v, B) ≡ (a, b,v, B), B ∈ su (2), and we recall that, for instance,
[v, B] = δ∗(B)v and [a, B] = δ∗(B)a.

4.1.4 The Multipliers for the Covering Group

We next compute the multipliers of the covering G∗ of the Galilei group,
which is a connected simply connected Lie group. Hence, the problem is
reduced to one of studying the closed forms on its Lie algebra Lie (G∗).

Let F be a closed R-form on the Lie algebra Lie (G∗). We observe that
su (2) acts on V, endowed with the usual inner product, as an irreducible
orthogonal representation and on T , endowed with the usual inner product,
as an orthogonal representation which is the direct sum of two non equivalent
irreducible representations acting on Ts and Tt, respectively.

Using Theorem 7.40 of [35] one concludes that F restricted to Lie (G∗
0)×

Lie (G∗
0) and (Lie (T ) ⊕ su (2)) × (Lie (T ) ⊕ su (2)) is exact, so that there is

a linear function q1: Lie (G∗)→ R such that

F (X,Y ) = q1([X,Y ]), X, Y ∈ Lie (G∗
0),

q1(a) = 0, a ∈ Lie (T ).

Let F ′(X,Y ) := F (X,Y )−q1([X,Y ]), X,Y ∈ Lie (G∗). Then F ′ is equivalent
to F and it is zero on Lie (G∗

0)×Lie (G∗
0). Moreover, there is a linear function

q2 on Lie (G∗) such that
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F ′(X,Y ) = q2([X,Y ]), X, Y ∈ Lie (T )⊕ su (2),
q2(v) = 0, v ∈ Lie (V).

Let F ′′(X,Y ) := F ′(X,Y ) − q2([X,Y ]), X,Y ∈ Lie (G∗). Then F ′′ is equiv-
alent to F and it is zero on (Lie (T )⊕ su (2))× (Lie (T )⊕ su (2)) as well as
on Lie (G∗

0)× Lie (G∗
0) since [Lie (V),Lie (G∗

0)] ⊂ Lie (V).
Let b ∈ Lie (Tt) and v ∈ Lie (V). Since Lie (V) = [Lie (V), su (2)] there

exist v′ ∈ Lie (V) and B ∈ su (2) such that v = δ∗(B)v′ = [v′, B]. Hence,

F ′′(b,v) = F ′′(b, [v′, B]) = −F ′′(B, [b,v′])− F ′′(v′, [B, b]) = 0

since [b,v′] = bv′ ∈ Lie (Ts) and [B, b] = 0.
We are left with the restriction of F ′′ to Lie (V) × Lie (Ts), that is, to

R
3 × R

3. Let C be the operator on R
3 such that

F ′′(v,a) = v · Ca, v ∈ Lie (V), a ∈ Lie (Ts).

Since for all B ∈ su (2)

F ′′(v, [a, B]) + F ′′(a, [B,v]) = 0, v ∈ Lie (V), a ∈ Lie (Ts),

one obtains that Cδ∗(B) = δ∗(B)Ct, B ∈ su (2), where Ct denotes the
transpose of C. This then implies that C is a multiple of the identity operator.

Collecting all the results, we have that, given a closed form F : Lie (G∗)×
Lie (G∗)→ R, there is a real number m ∈ R such that F is equivalent to Fm,
where Fm is given by

Fm(X1, X2) = m(v1 · a2 − a1 · v2),

with Xi = (ai, bi,vi, Bi) ∈ Lie (G∗), i = 1, 2. The form Fm is exact if and
only if m = 0 and the forms Fm and Fm′ are equivalent if and only if m = m′.

It follows that the vector space H2(Lie (G∗),R) is one dimensional and
its elements are the equivalence classes [Fm], m ∈ R.

4.1.5 The Universal Central Extension

We close this section by computing the universal central extension of the
covering group of the Galilei group. Since H2(Lie (G∗),R) is one dimensional,
G is of the form R ×′

τ G
∗, where τ is an analytic R-multiplier for G∗ such

that [F1] = [Fτ ], as given in Lemma 8 of Sect. 3.2 of Chap. 3, and

F1(X∗
1 , X

∗
2 ) = v1 · a2 − a1 · v2,

with X∗
i = (ai, bi,vi, Bi) ∈ Lie (G∗), i = 1, 2.

To compute τ , we proceed to show that G is, in fact, a semidirect product
of R× T = R

5 and G∗
0. This can be done by studying the Lie algebra of G.

The Lie algebra of G is given by
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Lie (G) = R⊕ Lie (G∗)
= R⊕ (Lie (T )⊕ (Lie (V)⊕ su (2))),

with the Lie product

[(m1, X
∗
1 ), (m2, X

∗
2 )] := (F1(X∗

1 , X
∗
2 ), [X∗

1 , X
∗
2 ]),

m1,m2 ∈ R, X∗
1 , X

∗
2 ∈ Lie (G∗).

By a direct computation one can confirm that Lie (V)⊕su (2) is a subalgebra
of Lie (G),

[Lie (V)⊕ su (2),Lie (V)⊕ su (2)] ⊆ Lie (V)⊕ su (2),

with the identification of an element (v, B) ∈ Lie (V)⊕su (2) with (0,v, B) ∈
Lie (G), 0 ∈ R

5. As another immediate observation one has that R⊕Lie (T ) =
R

5 is an Abelian subalgebra of Lie (G), again, with the identification of
(m,a, b) ∈ R ⊕ Lie (T ) with (m,a, b,0, 0) ∈ Lie (G). In fact, R ⊕ Lie (T )
is an ideal of Lie (G). Indeed, for (v, B) ∈ Lie (V) ⊕ su (2) and (m,a, b) ∈
R⊕ Lie (T ) one has

[(v, B), (m,a, b, )] ≡ [(0,0, 0,v, B), (m,a, b,0, 0)]
= (v · a, [(v, B), (a, b)])
= (v · a, δ∗(B)a + bv, 0,0, 0)
= : ρ∗(v, B)(m,a, b),

with ρ∗(v, B) denoting the 5× 5 real matrix

ρ∗(v, B) =





0 v 0
0 δ∗(B) v
0 0 0



 ,

which acts on the (column) vector (m,a, b) ∈ R
5. This shows that Lie (G)

is a semidirect product of R ⊕ Lie (T ) with Lie (V) ⊕ su (2) relative to ρ∗.
Therefore, G is a semidirect product of R×T and V×′SU(2), and it remains
to determine the action of V ×′ SU(2) on R× T .

The action of (v, h) ∈ V ×′ SU(2) on R
5 is given by the 5 × 5 matrix

ρ(v, h) such that the differential at the identity of ρ : (v, h) �→ ρ(v, h) is
ρ∗(v, B). Since ρ is a representation we can compute the action of v and h
separately.

Let B ∈ Lie (su (2)). Then

ρ(0, eB) = eρ
∗(0,B)

=
∞∑

n=0

1
n !

ρ∗(0, B)

=





1 0 0
0 eδ

∗(B) 0
0 0 1



 .
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Since eδ
∗(B) = δ(eB) and the exponential map is surjective we have for h = eB

ρ(0, h) =





1 0 0
0 δ(h) 0
0 0 1



 .

Let v ∈ Lie (V) so that expv = v ∈ V. By a direct computation one now
gets

ρ(v, I) = eρ
∗(v,0) =





1 v 1
2 v2

0 I v
0 0 1



 .

Therefore,

ρ(v, h) = ρ(v, I)ρ(0, h) =





1 v · δ(h) 1
2 v2

0 δ(h) v
0 0 1



 .

The action of (v, h) ∈ V ×′ SU(2) on R
5 is thus explicitly given by

ρ(v, h)(m,a, b) = (m+ v · δ(h)a + 1
2bv

2, δ(h)a + bv, b).

From that one may also extract the corresponding multiplier for G∗. Indeed,
for any (0,ai, bi,vi, hi) ∈ G, i = 1, 2, the multiplication law is now given as

(0,a1, b1,v1, h1)(0,a2, b2,v2, h2) =
(v1 · δ(h1)a2 + 1

2b2v
2,a1 + δ(h1)a2 + b2v1, b1 + b2,v + δ(h1)v2, h1h2),

which shows that

τ(g∗
1 , g

∗
2) = v1 · δ(h1)a2 + 1

2b2v
2
1.

Since G = R ×′
τ G

∗, the group law in G is now given as follows: for any
(c1, g∗

1), (c2, g∗
2) ∈ G, with g∗

i = (ai, bi,vi, hi) ∈ G∗, ci ∈ R,

(c1, g∗
1)(c2, g∗

2) = (c1 + c2 + τ(g∗
1 , g

∗
2), g∗

1g
∗
2)

= (c1 + c2 + 1
2b2v

2
1 + δ(h1)a2 · v1, g

∗
1g

∗
2),

where we have fixed the vector [F1] as the basis of the vector space H2

(Lie (G∗),R).
Recalling that G∗ = T ×′ (V ×′ SU(2)), we observe first that A ≡ R

5 =
{(a, b, c) : (a, b) ∈ T , c ∈ R}, with the identification (a, b, c) = (c,a, b,0, I),
and H ≡ V×′SU(2), with the identification (v, h) = (0, 0,v, h, 0), are (closed
Lie) subgroups of G, A being a normal Abelian subgroup of it. By a direct
computation one verifies that G = AH and A∩H contains only the identity
element (0, 0,0, I, 0) of G. In other words,

G = A×′ H,

and the action of H on A is given as

(v, h)[a] = (v, h)(a, b, c)(v, h)−1

= (δ(h)a + bv, b, c+ 1
2bv

2 + δ(h)a · v).
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4.2 The 2 + 1 Dimensional Case

From the physical point of view, the interest in the Galilei group in 2 + 1
dimensions arises in solid state physics where some genuine examples of two
dimensional systems can be found.

In this section we use the vector notation x for the elements of R
2. The

Galilei group in 2 + 1 dimensions is

G = T ×′ (V ×′ SO(2)),

where T = Ts × Tt, Ts = R
2, Tt = R, and V = R

2. The semidirect product
structure is analogous to the 3 + 1 dimensional case. The covering group is
G∗ = T ×′ (V ×′

R) and we denote its element as (a, b,v, r), where a,v ∈ R
2,

b ∈ R and r ∈ R. The kernel of the covering homomorphism δ is

{(0, 0,0, 2πk) : k ∈ Z}.

The Lie algebra of G∗ is, as a vector space,

Lie (G∗) = Lie (T )⊕ Lie (V)⊕ Lie (R)
= R

3 ⊕ R
2 ⊕ R .

We denote the elements of Lie (G∗) by (a, b,v, r), with b, r ∈ R, a,v ∈ R
2.

4.2.1 The Multipliers for the Covering Group
and the Universal Central Extension

A result of Bose [4] shows that H2(Lie (G∗),R) is a three dimensional vector
space and a basis is given by the equivalence classes of the following closed
R-forms:

F1 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = r1b2 − r2b1,
F2 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = v1 · a2 − v2 · a1,

F3 ((a1, b1,v1, r1), (a2, b2,v2, r2)) = v1 ∧ v2,

where v1 ∧ v2 is a shorthand notation for v1xv2y − v2xv1y. Define F as the
closed R

3-form F = (F1, F2, F3). To compute the corresponding R
3-multiplier

τF of G∗, we have to determine the simply connected Lie group G∗
F with Lie

algebra

Lie (G∗
F ) = R

3 ⊕F Lie (G∗).

The algebra Lie (G∗
F ) is, in fact, a semidirect sum. This can be seen as follows.

Write Lie (G∗
F ) = R

2 ⊕ Lie (G∗) ⊕ R and its elements as (c1, c2, X, x) with
c1, c2, x ∈ R and X ∈ Lie (G∗) such that

[(c1, c2, X, x), (c1, c2, X ′, x′)] = (F1(X,X ′), F2(X,X ′), [X,X ′], F3(X,X ′) ) .
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By direct computation, the set

{(v, r, x) ≡ (0, 0,0, 0,v, r, x) : (v, r, x) ∈ Lie (V)⊕ Lie (R)⊕ R}

is a subalgebra of Lie (G∗
F ) with Lie brackets

[(v, r, x), (v′, r′, x′)] = (δ̇(r)v, 0,v ∧ v′) ,

where (v, r, x), (v′, r′, x′) ∈ Lie (V)⊕Lie (R)⊕R. If H = V ×R×R is the Lie
group with the product

(v, r, x)(v′, r′, x′) = (v + δ(r)v′, r + r′, x+ x′ + v ∧ δ(r)v′),

one can check that its Lie algebra is Lie (V)⊕ Lie (R)⊕ R.
Moreover, the set

{(c1, c2,a, b) ≡ (c1, c2,a, b,0, 0, 0) : (c1, c2,a, b) ∈ R
2 ⊕ Lie (T )}

is an Abelian ideal of Lie (G∗
F ) isomorphic to Lie (R2 × T ).

Taking into account the previous results and the fact that, as a vector
space,

Lie (G∗
F ) =

(
R

2 ⊕ Lie (T )
)
⊕ (Lie (V)⊕ Lie (R)⊕ R) ,

the Lie algebra Lie (G∗
F ) is isomorphic to the semidirect sum of Lie (R2 ×T )

and Lie (H).
Explicitly, if (v, r, x) ∈ Lie (H) and (c1, c2,a, b) ∈ Lie (R2 × T ) one has

[(v, r, x), (c1, c2,a, b)] = (rb,v · a, δ̇(r)a + bv, 0)
=: ρ̇(v, r, x)(c1, c2,a, b),

where ρ̇(v, r, x) is the 5× 5 matrix

ρ̇(v, r, x) =









0 0
0 0

0
v

r
0

0 0
0 0

0 −r
r 0 v

0 0 0 0









,

which acts on the column vector (c1, c2,a, b) ∈ Lie (R2 × T ).
If ρ is the representation of H such that its differential at the identity is

ρ̇, then G∗
F is the semidirect product of R

2 × T and H with respect to ρ. A
simple calculation shows that
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ρ(v, 0, 0) =









1 0
0 1

0
v

0
1
2v2

0 0
0 0

1 0
0 1 v

0 0 0 1









ρ(0, r, 0) =









1 0
0 1

0
0

r
0

0 0
0 0 δ(r) 0

0 0 0 1









ρ(0, 0, x) =









1 0
0 1

0
0

0
0

0 0
0 0

1 0
0 1 0

0 0 0 1









.

Hence the action of H on R
2 × T is given by

(v, r, x)[(c1, c2,a, b)] = (c1 + br, c2 + v · δ(r)a +
bv2

2
, δ(r)a + bv, b).

If g = (c1, c2,a, b,v, r, x) and g′ = (c′1, c
′
2,a

′, b′,v′, r′, x′) are in G∗
F , then

gg′ = (c1 + c′1 + b′r, c2 + c′2 + v · δ(r)a′ +
b′v2

2
,a + δ(r)a′ + b′v, b+ b′,

v + δ(r)v′, r + r′, x+ x′ + v ∧ δ(r)v′),

so that the explicit form of τF = (τ1, τ2, τ3) is

τ1(g, g′) = b′r
τ2(g, g′) = v · δ(r)a′ + b′v2/2
τ3(g, g′) = v ∧ δ(r)v′.

By Theorem 2, the equivalence classes [τ1], [τ2], [τ3] form a basis ofH2(G∗,R).
Moreover τ2 and τ3 satisfy the condition

τi(k, g∗) = τi(g∗, k), k ∈ Ker δ, g∗ ∈ G∗,

while τ1 does not. It follows that dimH2(G∗,R)δ = 2, τ = (τ2, τ3) and the
universal central extension G is of the form R

2 ×′
τ G

∗. We observe that G is
the semidirect product of the closed vector subgroup

A = T × R = {(a, b, c) � (c,a, b,0, 0, 0) : c ∈ R,a ∈ Ts, b ∈ Tt}

and the Lie subgroup H

H = {(v, r, x) � (0,0, 0,v, r, x) : v ∈ V, x, r ∈ R}
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with respect to the action of H on A given by

(v, r, x)[(a, b, c)] = (δ(r)a + bv, b, c+ v · δ(r)a +
bv2

2
).

Finally, one has that

K = {(0, 0, c,0, 2πn, x) : c, x ∈ R, n ∈ Z} � Z× R
2.
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In this chapter we apply the general theory of symmetry actions as developed
in Chaps. 2 and 3 to the Galilei groups of Chap. 4 splitting the treatment
again into the 3 + 1 and 2 + 1 dimensional cases. We find it worthwhile,
however, to start with a general analysis of the constraints imposed by the
relativity principle on the description of a physical system in quantum me-
chanics.

5.1 The Relativity Principle for Isolated Systems

The description of physical phenomena is always done according to the choice
of a reference frame so that, in particular, the quantum mechanical descrip-
tion of a system is given with respect to a chosen frame. In the following we
also use the term observer as a synonym for a reference frame. The relativity
principle deals with the comparison of the descriptions of a physical system
with respect to different observers. In order to do this one selects a preferred
family of reference frames, namely the inertial observers.

The transformations between the space-time coordinates of inertial frames
form a group G that we call the covariance group of space and time. Clearly
G acts transitively and freely on the set of inertial observers. It is a basic
experimental fact that this group is the Poincaré group though in many
physical situations this group can also be approximated by the Galilei group.
In view of this fact, we first discuss the relativity principle without specifying
the explicit form of G.

Let S be a physical system. According to the general rules of quantum
mechanics any inertial observer F describes S by fixing a Hilbert space HF
and identifying states and observables with suitable sets of operators on HF .
It is no loss of generality to assume that the Hilbert space HF does not
depend on F , hence we denote by H a fixed complex separable Hilbert space
used by all inertial observers to describe S. We also assume that all inertial
observers identify states and observables of S with operators on H according
to their own coordinate system.

Moreover, we assume that the dynamical evolution of each observer pre-
serves the natural structures of the sets of states and observables. This
amounts to saying that, given any observer F , for all t1, t2 ∈ R there ex-

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 61–72
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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ist DF (t1, t2) satisfying

DF (t1, t2) ∈ Σ
DF (t2, t3)DF (t1, t2) = DF (t1, t3)

DF (t1, t2) = DF (t2, t1)−1

for all t1, t2, t3 ∈ R. The mapping DF (t1, t2) represents time evolution from
t1 to t2 according to F .

Any observer F associates to the evolving system S a dynamical state,
namely a map

R � t �→ TF (t) ∈ S

such that TF (t2) = DF (t1, t2)TF (t1) for all t1, t2 in R. This map is completely
determined by DF and TF (0), that is the state that F assigns to S at the
origin of his time. Hence, any observer identifies his set of dynamical states
with the set of states S mapping each dynamical state to the corresponding
initial state. Note that this identification depends on the observer F and on
the dynamics.

Two inertial observers F and F ′ describe the same evolving system in
general with two different initial states T and T ′ and this defines a bijective
function sF

′
F : S → S mapping T to T ′. It is natural to assume that sF

′
F

preserves the structure of the set of states, so that sF
′

F ∈ Σ. Moreover, by
definition, sF

′′
F ′ sF

′
F = sF

′′
F must hold for all inertial observers F, F ′, F ′′. Since

the group G acts transitively and freely on the set of inertial observers, we
will denote the map sF

′
F as sF,g, where g ∈ G is the only element in G such

that gF = F ′. Hence we have

sgF,hsF,g = sF,hg , g, h ∈ G. (5.1)

It is important to note that this relation determines uniquely sF,g for all F
and all g if sF0,g is known for all g and for a fixed inertial observer F0. In
fact, suppose that sF0,g is given for all g and let F = hF0. If one defines
sF,g = sF0,ghs

−1
F0,h

, then, given h′ ∈ G, one has

sh′F,g = sF0,gh′hs
−1
F0,h′h

= sF0,gh′hs
−1
F0,h

sF0,hs
−1
F0,h′h

= shF0,gh′s−1
hF0,h′

= sF,gh′s−1
F,h′ ,

so that the maps sF,g satisfy (5.1).
The relativity principle states that all inertial observers are equivalent for

the description of isolated systems. This principle is implemented in quantum
mechanics in the following way: if S is an isolated system, the map sF,g
depends only on the element g of the group G and not on the observer F .
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From (5.1) and the relativity principle it follows that for an isolated system
the map G � g �→ sg := sF,g ∈ Σ is a group homomorphism (which does
not depend on the choice of F ). Moreover, it is natural to assume that this
homomorphism is continuous, so that the relativity principle associates to
any isolated system a symmetry action of the space-time covariance group G.

As a consequence of the relativity principle and the results obtained in
Chap. 3, one sees that the isolated and elementary systems are described in
quantum mechanics by the irreducible unitary representations of the universal
central extension G of the covariance group G of space-time. In the following
sections, we apply this fundamental result to the case of G being the Galilei
group both in 3 + 1 dimensions and in 2 + 1 dimensions. However, to close
this part, we discuss briefly the case of non isolated systems.

5.1.1 Galilei Systems in Interaction

For a non isolated system the maps sF,g depend in general both on F and
on g. However in the case of Galilean relativity, the peculiar structure of the
Galilei group allows us to guess the dependence of the maps sF,g from F and
g also in the case of non isolated systems.

The Galilei group G can be written as

G = H ×′ Tt,

where H = (Ts × V) ×′ SO(3) is the isochronous subgroup and Tt is the
subgroup of time translations. The subgroup H is normal in G and Tt acts
on H as

b[(a,v, R)] = (a− bv,v, R).

Any element g of G can be written, in a unique way, as g = hb with h ∈ H
and b ∈ Tt.

Observe that, if b is an element of the time translation subgroup Tt and
F is any inertial observer, by definition we have

sF,b = DF (0,−b), (5.2)

where DF is the time evolution operator of F .
Let now S be a physical system and assume it is isolated. As explained

before, there is a symmetry action g �→ sg associated to S. To stress the fact
that sg refers to a free system, we denote it by sfg . Suppose now that the
same system is subject to an interaction. Then the maps sF,g will in general
depend also on the observer F . However, fixing an inertial observer F0 (the
laboratory), if h is an element of the isochronous subgroup, F0 and hF0 have
the same origin of time, so that it is natural to assume that the map sF0,h is
the same as in the free case, that is, we assume that

sF0,h = sfh , h ∈ H. (5.3)
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If g = hb ∈ G then (5.1) implies sF0,g = sF0,hb = sbF0,hsF0,b. This suggests
to assume that

sF0,g = sfhDF0(0,−b) , g = hb ∈ G. (5.4)

As mentioned before, the above relations, together with (5.1) fix uniquely
the maps sF,g for all F and g for the interacting system S. Explicitly, let
g1, g2 ∈ G, g1 = h1b1, g2 = h2b2 and consider the inertial observer F = g1F0.
Then

sF,g2 = sg1F0,g2

= sF0,g2g1s
−1
F0,g1

= sF0,h2b2[h1]b2b1s
−1
F0,g1

= sfh2b2[h1]
DF0(0,−b2 − b1)DF0(0,−b1)−1sf

h−1
1

= sfh2b2[h1]
DF0(−b1,−b2 − b1)s

f

h−1
1
.

This is consistent with (5.2) only if the dynamical evolution operators satisfy

DF (0, b2) = sfb2[h1]
DF0(−b1,−b2 − b1)s

f

h−1
1

for F = h1b1F0.
Moreover, one verifies that this construction is independent of the choice

of the “laboratory frame” F0. In particular, if g2 = h2 ∈ H,

sF,h2 = sfh2h1
sf
h−1
1

= sfh2
.

5.2 Symmetry Actions in 3 + 1 Dimensions

To determine the unitary irreducible representations of the universal central
extension G = R

5 ×′ G∗
o of the Galilei group G we follow the prescription of

Sects. 3.3 and 3.4 of Chap. 3.

5.2.1 The Dual Group and the Dual Action

Any quintuple (p, E,m) of real numbers defines a character χ of the vector
group A = R

5 through the formula:

χ(a, b, c) = ei(−p·a+Eb+mc), (a, b, c) ∈ R
5

(for the sake of convenience, we have chosen a minus sign in the first term of
the exponent). On the other hand, it is well known that all the characters of
R

5 are of this form. Therefore, the dual group Â can be identified with the
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additive group R
5, for which we use the notation P

5. The elements of P
5 are

denoted by p = (p, E,m).
Since the action of an element ḡ = (a, b, c,v, h) ∈ G on A = R

5 is given
by

ḡ[(a′, b′, c′)] = (δ(h)a′ + b′v, b′, c′ + 1
2b

′v2 + v · δ(h)a′),

with (a′, b′, c′) ∈ A, the dual action on Â = P
5 is

ḡ[(p, E,m)] = (δ(h)p +mv, E + 1
2mv2 + v · δ(h)p,m),

with (p, E,m) ∈ P
5.

5.2.2 The Orbits and the Orbit Classes

The action of G on the dual group P
5 splits it into three kinds of orbits.

For fixed Eo,m ∈ R, m 	= 0, consider the point pEo,m := (0, Eo,m) ∈ P
5.

Its orbit is

G[pEo,m] = {(p, E,m) |p ∈ P
3, E = Eo +

p2

2m
}.

Similarly, the orbit of a point pr := ((0, 0, r), 0, 0) ∈ P
5, with a fixed r ∈ R,

r > 0, is
G[pr] = {(p, E, 0) |p ∈ P

3, |p| = r, E ∈ P}.
Finally, the orbit of a point pEo := (0, Eo, 0) ∈ P

5 is the singleton set

G[pEo ] = {(0, Eo, 0)}.

By a direct inspection one observes that these three classes of orbits exhaust
the whole set P

5, and that these orbits are closed, and thus also locally closed
in P

5.
Any character of G is of the form yχ, where y = (0, Eo, 0) ∈ P

5 and χ is
a character of G∗

o. Since G∗
o is also a semidirect product, G∗

o = V ×′ SU(2),
its characters are also of the product form. However, V̂ = P

3 has only the
origin as a one-point orbit and SU(2), as a simple Lie group, has no nontrivial
characters. Thus any character of G is of the form

ḡ = (a, b, c,v, h) �→ eibEo ,

with Eo ∈ P. The orbit classes are the following: for any m > 0,

Õ1
m = ∪Eo∈R

(
G[pE0,m] ∪G[pE0,−m]

)
,

for any r > 0,
Õ2
r = G[pr],

and, finally,
Õ3 = ∪Eo∈RG[(0, Eo, 0)].



66 5 Galilei Invariant Elementary Particles

5.2.3 Representations Arising from Õ1
m

In the orbit class Õ1
m we choose the orbit G[p0,m]. The function

P
3 � p �→ (p, p2

2m ,m) ∈ G[p0,m]

defines a global coordinate system (surjective diffeomorphism) of P
3 onto

G[p0,m].
The dual action of G on G[p0,m] induces an action on P

3, for any ḡ =
(a, b, c,v, h) ∈ G and for each p ∈ P

3,

ḡ[p] = δ(h)p +mv

(notice that the action of G∗
o is the natural action of the Euclidean group on

P
3). The Lebesgue measure dp is a G-invariant σ-finite measure on P

3 and
the stability subgroup of the point p0,m of the orbit G[p0,m], that is, of the
point 0 ∈ P

3, is readily seen to be Gpo = A×′ SU(2). The map β : P
3 → G

p �→ (0, 0, 0, p
m , I),

has the properties β(0) = (0, 0, 0,0, I) and β(p)[0] = p, p ∈ P
3, showing

that β is an (analytic) section for the action of G on G[p0,m] and that β takes
values in G∗

o. With this section one has that for each ḡ = (a, b, c,v, h) ∈ G
and p ∈ P

3,

β(p)−1ḡβ(ḡ−1[p]) = (a− bp

m
, b, c+

p2

2m
b− p · a

m
,0, h).

The group SU(2) is a compact, connected, simply connected Lie group
and it is well known that all its irreducible unitary representations are of the
form D

j acting on the Hilbert space C
2j+1, with j = 0, 1

2 , 1,
3
2 , 2, · · ·. Thus

the (pmD
j)-induced irreducible unitary representations U (m,j) of G acting on

L2(P3, dp,C2j+1) are of the form

(U (m,j)
ḡ f)(p) = ei(−p·a+

p2

2mb+mc)
D
j(h) f(δ(h−1)(p−mv)),

for any f ∈ L2(P3, dp,C2j+1), p ∈ P
3, ḡ = (a, b, c,v, h) ∈ G. According to the

results of Sect. 3.3.4, the representations U (m,j), m > 0, j = 0, 1
2 , 1,

3
2 , 2, · · ·

are all physically inequivalent representations arising from the orbit classes
Õ1
m, m > 0.

5.2.4 Representations Arising from the Orbit Class Õ2
r

Consider next the orbit G[pr], and let S1 denote the unit sphere centered at
the origin of P

3. The function

S1 × P � (u, E) �→ (ru, E, 0) ∈ G[pr]
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is a diffeomorphism allowing one to identify the orbit G[pr] with the manifold
S1 × P. The action of G on G[pr] can again be transferred to an action of G
on S1 × P,

(a, b, c,v, h)[(u, E)] = (δ(h)u, E + rv · δ(h)u),

where ḡ = (a, b, c,v, h) ∈ G and (u, E) ∈ S1 × P.
Let dΩ denote the unique normalized rotation invariant measure on the

sphere S1 and let dE denote the Lebesgue measure on P. The product measure
dΩdE is then a G-invariant σ-finite measure on S1 × P.

The point pr of the orbit G[pr] corresponds to, the point ((0, 0, 1), 0) ∈
S1 × P. To determine the stabilizer of this point we observe that

(0, 0, 0,v, h)[((0, 0, 1), 0)] = ((0, 0, 1), 0)

if and only if δ(h) is a rotation of the sphere S1 around its south-north axis
and v is of the form (v1, v2, 0). Since

δ

(
eit/2 0

0 e−it/2

)

=





cos t sin t 0
− sin t cos t 0

0 0 1



 ,

we observe that the stability subgroup of the point ((0, 0, 1), 0) ∈ S1 × P is

A×′ E(2) =

A×′ {(v, h) ∈ G∗
o |v = (v1, v2, 0), v1, v2 ∈ R, h =

(
z 0
0 z−1

)

, z ∈ T}.

Consider now the function β : S1 × P→ G,

(u, E) �→ (0, 0, 0, Er u, hu),

where hu ∈ SU(2) is such that δ(hu)(0, 0, 1) = u. Using the polar coordinates
θ ∈ [0, π], ϕ ∈ [0, 2π) one has

u = (sin θ cosϕ, sin θ sinϕ, cos θ)

so that

hu =
(
e−iϕ/2 cos θ2 −e−iϕ/2 sin θ

2
eiϕ/2 sin θ

2 eiϕ/2 cos θ2

)

and thus

δ(hu) =





cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ



 .

Clearly, β((0, 0, 1), 0) = (0, 0, 0,0, I) and β(u, E)[((0, 0, 1), 0)] = (u, E) for
all (u, E) ∈ S1 × P, showing that σ is an (analytic) section for the action
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of G on the orbit G[pr] taking values in G∗
o. Using the polar coordinate

representations of u, hu, and δ(hu), one may also easily compute that for
any ḡ = (a, b, c,v, h) ∈ G, (u, E) ∈ S1 × P,

σ(u, E)−1 ḡ σ(ḡ−1[(u, E)]) =
(σ(u, E)−1[(a, b, c)],−v · u(0, 0, 1) + δ(h−1

u )v, h−1
u hhδ(h−1)u).

Since (δ(h−1
u )v)3 = u ·v and δ(h−1

u hhδ(h−1)u)(0, 0, 1) = (0, 0, 1) one confirms
that

σ(u, E)−1 ḡ σ(ḡ−1[(u, E)]) ∈ A×′ E(2)

for all ḡ = (a, b, c,v, h) ∈ G.
Let L be a unitary irreducible representation of the stability subgroup

E(2) acting on a complex separable Hilbert space K. The (prL)-induced
representation U (r,L) of G then acts on L2(S1 × P, dΩdE,K) according to

(U (r,L)
ḡ f)(u, E)

= ei(Eb−p·a) L(β(u, E)−1 (v, h)β((v, h)−1[(u, E)]))f(δ(h−1)u, E − v · u),

for any f ∈ L2(S1 × P, dΩdE,K), (u, E) ∈ S1 × P, ḡ = (a, b, c,v, h) ∈ G.
To determine the representations L of E(2) we exhibit first its semidirect

product structure. For v = (v1, v2, 0) ∈ R
3 we define

ξ(v) := v1 − iv2.

With this definition the product (v1, h1)(v2, h2) = (v, h) of two elements of
E(2) is given by

ξ(v) = z2
1ξ(v2) + ξ(v1), h =

(
z1z2 0
0 (z1z2)−1

)

,

showing that E(2) can be identified with the semidirect product C×′
T, with

the multiplication (ξ1, z1)(ξ2, z2) = (z2
1ξ2 + ξ1, z1z2). The action of T on C is

thus given by z[ξ] = z2ξ. The irreducible unitary representations of E(2) can
thus be induced from the irreducible unitary representations of the stability
subgroups of the points of the orbits of Ĉ, the dual group of C.

For any w ∈ C, the mapping

xw(ξ) := eiRe (wξ)

is a character of the additive group of complex numbers C, and all the char-
acters of C are of this form. In fact, the map C → Ĉ, w �→ xw is a group
isomorphism. The (dual) action of T on Ĉ is easily seen to be z[xw] = xz2w
for all z ∈ T, w ∈ C. The orbits in Ĉ are then the singleton set {0} and the
circles Oρ := {w ∈ C | |w| = ρ} ρ > 0. In the first case the stability subgroup
is T itself. To find the stability subgroup for the case ρ > 0, fix the point
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w = ρ ∈ Oρ. Since z[ρ] = z2ρ = ρ if and only if z = ±1, we observe that
the stability subgroup of the point w = ρ of the orbit Oρ is the two-element
group Z2 = {1,−1}.

Consider the orbit {0}. The unitary irreducible representations of T are
the characters z �→ zn, n ∈ Z. The induced unitary representations L0,n of
E(2) act on C as multiplications by zn, that is, L0,n

(ξ,z) = Mzn .
Consider next an orbit Oρ, ρ > 0. The invariant measure on it is the

normalized arc length dϑ
2πρ , and the irreducible unitary representations of Z2

are the trivial constant 1 representation and the one for which 1 �→ 1, −1 �→
−1. The corresponding induced representations of E(2) act on L2(Oρ, dϑ2πρ ,C)
and they are

(L+,ρ
(ξ,z)f)(w) = eiRe (wξ)f(z−2w),

(L−,ρ
(ξ,z)f)(w) = ±eiRe (wξ)f(z−2w),

where the sign ± depends on the choice of the section c.

5.2.5 Representations Arising from the Orbit Class Õ3

The stability subgroup of the orbit G[(0, 0, 0)] = {(0, 0, 0)} is the whole
group G∗

o. Let Π be a unitary irreducible representation of G∗
o acting on

K. The Hilbert space of the induced representation U0,Π of G is then
L2({(0, 0, 0)}, µ(0,0,0),K) � K and it is defined by

U0,Π
(a,b,v,h,c) f = Π(v, h)f, f ∈ K.

All the induced representations arising from the different orbits G[(0, E, 0)]
in Õ(0,0,0) are physically equivalent.

5.3 Symmetry Actions in 2 + 1 Dimensions

5.3.1 Unitary Irreducible Representations of G

Like in the 3+1 dimensional case the universal covering group G is a semidi-
rect product, so that we may again apply the results of Sect. II. 3.4 to classify
the irreducible inequivalent representations of G. Let Â be the dual group of
A. We identify Â with P

4 using the pairing

〈(p, E,m), (a, b, c)〉 = −p · a + Eb+mc.

The dual action of G on Â is

g[(p, E,m)] = (δ(r)p +mv, E + δ(r)p · v +
1
2
mv 2,m),

where g = (a, b, c,v, r, x) ∈ G. We have the following orbits for the dual
action.
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1. For each l ∈ R, l > 0,

G[(pl, 0, 0)] = {(p, E, 0) : p 2 = l2},

where pl = (0, l).
2. For each E ∈ R,

G[(0, E, 0)] = {(E,0, 0)}.
3. For each m,Eo ∈ R, m 	= 0,

G[(0, Eo,m)] = {(p, E,m) : E − p 2

2m
= E0}.

All the orbits are closed in Â, hence the semidirect product is regular and
Theorem 4 can be applied.

The set of singleton orbits is

Âs = {(0, E, 0) : E ∈ R},

and the orbit classes of G are the following:

1. for each l ∈ R, l > 0,
Õ1
l = G[(pl, 0, 0)];

2.
Õ2 =

⋃

E∈R

G[(0, E, 0)];

3. for any m > 0,

Õ3
m =

⋃

Eo∈R

(
G[(0, Eo,m)] ∪G[(p, Eo,−m)]

)
.

In the following we will exploit in detail only the third case, which presents
some interesting physical features.

Let m > 0 and pm = (0, 0,m) ∈ Õ3
m. The stability subgroup

Gpm ∩H = {(v, r, x) ∈ H : v = 0}

is isomorphic to R
2 and its irreducible representations are its characters.

Explicitly, λ, µ ∈ R define the character of Gpm
∩H

(0, r, x) �→ eiλxeiµr.

Now we observe that

1. if y ∈ Âs, y 	= 0, then yG[pm] 	= G[pm];
2. G[pm] 	= G[pm]−1;
3. the characters of H are of the form

(v, r, x) �→ eiµr.
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According to Theorem 4, every irreducible representation of G living on an
orbit class Õpm

is equivalent to one of the form Um,λ =IndG
Gpm

(Dm,λ) where

Dm,λ is the representation of Gpm

(a, b, c,0, r, x) �→ ei(mc+λx).

Moreover, the set {Um,λ : m,λ ∈ R, m > 0} is a family of physically in-
equivalent representations of G.

To compute explicitly Um,λ, we observe that the orbit

G[pm] = {(p, E,m) : E − p 2

2m
= 0}

can be identified with P
2 using the map

P
2 � p←→

(

p,
p 2

2m
,m

)

∈ G[pm].

With respect to this identification the action of G on the orbit becomes

(a, b, c,v, r, x)[p] = δ(r)p +mv

so that the Lebesgue measure dp on P
2 is G-invariant. We consider the section

β : P
2 → G, p �→

(

0, 0, 0,
p

m
, 0, 0

)

for the action of G on P
2. The representation Um,λ of G acts in L2(P2, dp)

as
(

Um,λ(a,b,c,v,r,x)f
)

(p) = ei(
b

2m p2−p·a+mc)eiλ(x+
1
m (v1p2−v2p1))f(δ(−r)(p−mv)).

From the explicit form of Um,λ one readily gets that the angular momen-
tum, i.e. the selfadjoint operator that generates the 1-parameter subgroup of
rotations, has only the orbital part, so that the elementary particles in 2 + 1
dimensions have no spin. However, they acquire a new charge λ, which is
not of a space-time origin, but arises from the structure of the multipliers. If
λ 	= 0, the two linear momenta do not commute.

We add some final comments.

1. The characters of G∗ are

G∗ � (a, b,v, r) �→ eiEbeiµr ∈ T,

where E, µ ∈ R. The set V of characters of K that extend to G∗ is

V = {(c,0, 0,0, 2πn, x) �→ zn : z ∈ T} � T.
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The group V is a closed subgroup of K̂ = P
2×T and K0 = R

2. Applying
Corollary 5, H2(G,T) is isomorphic to R

2. In particular, any T-multiplier
of G is equivalent to one of the form

( (a, b,v, R), (a′, b′,v′, R′) ) �→ eim(v·Ra′+ 1
2 b

′v2)eiλR(v1v′
2−v2v′

1) ,

where m,λ ∈ R
2, v = (v1.v2) and v′ = (v′

1.v
′
2).

2. From the explicit form of the characters of G∗ one has that, for all E, µ ∈
R, the representation

(a, b, c,v, r, x) �→ ei(Eb+µr)Um,λ(a,b,c,v,r,x)

is physically equivalent to Um,λ. Hence the angular momentum and the
energy are both defined up to an additive constant. For the energy this
phenomenon is well known in 3 + 1 dimensions, while it does not occur
for the angular momentum.

3. The admissibility condition (3.6) gives rise to two superselection rules
that do not allow superpositions of states with different mass m or with
different charge λ. However, there is no superselection rule connected with
the spin.
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According to the results of the previous sections, a free elementary quantum
object that is invariant under the Galilei group is described by an irreducible
unitary representation of the corresponding universal central extension. The
representation acts on a Hilbert space of square integrable functions over
the momentum space, so that the vector states of the system are functions
of the linear momentum and energy. This description is unnatural when the
object is interacting with an external field, which is a function of space-time
variables. In such a case one would like to characterise the states of the system
as solutions of wave equations, which are partial differential equations in the
space-time variables. Usually these equations are deduced from a Lagrangian
which is invariant with respect to a suitable representation of the symmetry
group and the states of the system are regarded as classical (differentiable)
fields. However, in doing so one hides the Hilbert space structure of the theory
and the mathematical problems connected with the fact that state vectors are,
in general, only square integrable and not necessarily differentiable functions.

To overcome this problem, in Sect. 6.1 we describe vector states as vector
valued distributions on the space-time that are weak solutions of invariant
local operators, called wave operators. These wave operators are characterised
by Theorem 5 below and we use this result to describe the Galilei invariant
wave equations both in 3 + 1 and in 2 + 1 dimensions.

Section 6.2 is devoted to studying the 3 + 1 dimensional case. For each
elementary particle we find two classes of wave equations. The first one is
the usual Schrödinger equation, which is a second order differential operator
and which is not invariant with respect to the Galilei group, but only with
respect to its universal central extension. This fact reflects the true projective
character of unitary representations associated with Galilei invariant objects.

The main feature of the second class is that the wave operator is a differ-
ential operator of the first order in the space-time variables as is the Dirac
equation for the relativistic electron. If the interaction with an electromag-
netic field is introduced on this latter wave equation by means of the minimal
coupling principle, the particle acquires an internal magnetic momentum with
gyromagnetic ratio g = 1

j , where j is the spin of the particle. We notice that,
if one introduces the interaction on the Schrödinger equation, one does not
obtain any coupling between spin and magnetic field.

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 73–87
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Section 6.3 describes the 2 + 1 dimensional wave equations. In this case,
there are two kinds of elementary particles that can describe physical sys-
tems. The first one does not admit wave equations at all, whereas, for each
particle of the second class, there is essentially only one wave equation of first
order and such that the vector space where the distributions take values has
minimal dimension. The particles described by this wave equation interact
with an electromagnetic field as three-dimensional spin-1/2 particles.

6.1 Wave Equations

In this section we briefly recall the main results on the wave equations, fol-
lowing the theory developed in [10].

To begin with we recall some basic definitions concerning distributions,
see [21] for a full account. Given n ∈ N, let D(Rn) be the space of C∞

functions f : R
n → C with compact support and D′(Rn) the corresponding

space of distributions, that is, the space of (continuous) linear functionals

T : D(Rn)→ C, f �→ 〈T, f〉.

We recall that any continuous function φ : R
n → C defines a distribution

Tφ as

〈Tφ, f〉 =
∫

Rn

φ(x)f(x) dx,

where dx is the Lebesgue measure on R
n. In the following we identify Tφ

with φ. Finally, the support of a distribution T is defined as the smallest
closed set supp T ⊆ R

n having the following property: for all f ∈ D(Rn), if
supp f ∩ supp T = ∅, then 〈T, f〉 = 0.

In order to take care of the spin of the object we have to consider vector
valued distributions. For any m ∈ N, we let D(Rn)m and D′(Rn)m be the
m-fold Cartesian products of D(Rn) and D′(Rn), respectively, and we write

〈T, f〉 :=
m∑

i=1

〈Ti, fi〉,

where T = (T1, . . . , Tm) ∈ D′(Rn)m and f = (f1, . . . , fm) ∈ D(Rn)m.
To give the definition of an invariant wave equation we replace, as usual,

the Galilei group G by its universal central extension G. The group G is a
semidirect product A×′ H, where H is a Lie group and the normal Abelian
factor A is R

n, with n = 5 in 3 + 1 dimensions and n = 4 in the 2 + 1
dimensional case.

It is natural to assume that spin is invariant with respect to translations
and that it transforms according to a representation L with respect to the
action of the homogeneous part. Hence, we fix a finite dimensional represen-
tation L of H acting on C

m.
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To simplify the notation, we extend L to a representation of G in a trivial
way,

L(a, h) := L(h) , a ∈ R
n, h ∈ H.

We use it to define a geometric action of G on D′(Rn)m in the following way:
given g ∈ G, for all T ∈ D′(Rn)m, define ΛgT as the distribution

〈ΛgT , f〉 := 〈T, fg〉 , f ∈ D(Rn)m,

where, for all f ∈ D(Rn)m,

(fg)(x) := L(g)tf(g[x]) , x ∈ R
n,

and L(g)t is the transpose of the matrix L(g).
One can check that ΛgT is well defined and g �→ Λg is a (differentiable)

representation of G acting on D′(Rn)m, see, for example, [34] for definitions.
Since C

m is a complex vector space, we can also consider the adjoint
representation L∗, that is,

L∗(g) := L(g−1)∗ , g ∈ G,

where L(g−1)∗ is the adjoint (transpose and complex conjugate) of L(g−1).
As above, we let

〈Λ∗
gT , f〉 := 〈T, fg∗〉 , x ∈ R

n,

where

(fg
∗
)(x) := (L∗)(g)tf(g[x]) = L(g−1)f(g[x]) , x ∈ R

n.

The use of the transpose matrix is motived by the following fact. If T ∈
D′(Rn)m is the function φ : R

n → C
m and g ∈ G, then ΛgT is the function

(ΛgT )(x) = L(g)φ(g−1[x]) , x ∈ R
n,

and Λ∗
gT is the function

(Λ∗
gT )(x) = L∗(g)φ(g−1[x]) , x ∈ R

n.

With the above background the definition of an invariant wave equation can
now be given.

Definition 16. An L-invariant wave equation is a family (Di)Ni=1 of contin-
uous operators on D′(Rn)m satisfying the following conditions.

i) For any T ∈ D′(Rn)m and i = 1, . . . , N ,

supp DiT ⊂ supp T. (6.1)
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ii) For each i = 1, . . . , N , one of the following two conditions holds:

Λg(DiT ) = Di(ΛgT ) , g ∈ G, T ∈ D′(Rn)m, (6.2)
Λ∗
g(DiT ) = Di(ΛgT ) , g ∈ G, T ∈ D′(Rn)m. (6.3)

iii)The vector space of weak solutions of the system





D1T = 0,
. . .

DNT = 0,
(6.4)

contains a unique subspace H such that H is a Hilbert space with respect
to a suitable sesquilinear form 〈·, ·〉H, inducing a topology finer than the
original one, and the action of Λ onH is invariant, unitary and irreducible.

A continuous operator on D′(Rn)m that decreases supports, that is, has
the property (6.1), and which satisfies condition (6.2) (or condition (6.3)) is
called an invariant wave operator (or *-invariant wave operator).

The above definition is motived by the following observations. The need
to define wave equations in terms of N wave operators is in order to take care
of the fact that the group A is bigger than the physical space-time R

4 (or
R

3). Condition (6.1) is the requirement that the physical system be described
by local dynamical laws. Conditions (6.2) and (6.3) assure that the kernels
of the operators Di are G-invariant. In particular, the first one is natural
from a geometrical point of view and the second one implies that the formal
Lagrangian functions

Li(T ) =
m∑

j=1

∫

Rn

Tj(x)(DiT )j(x) dx

areG-invariant. Finally, the system of (6.4) singles out exactly one elementary
system, namely the one described by the unitary irreducible representation
U , where U denotes the restriction of Λ to H. In the following, we say that
the wave equation defined by the system (6.4) is associated with U .

Now we fix a G-elementary particle, described by a unitary irreducible
representation U of G and we are searching for wave equations associated
with U . The following theorem gives a classification. To state the result we
wish to recall some facts. Since A is the vector space R

n, its dual is P
n = R

n.
The dual space P

n of R
n can be split into a disjoint union of orbits

of a family of points {ps}s∈I ⊂ P
n, that is, P

n = ∪s∈IG[ps], where, for
s 	= t, G[ps] ∩ G[ps] = ∅. Moreover, every unitary irreducible representation
of G is equivalent to one of the form IndG

Gps
(ps ⊗ π), where π is an irre-

ducible unitary representation of Hps
= Gps

∩H acting on Kπ. We denote by
HomHps

(Kπ; Cm) the vector space of continuous operators from Kπ to C
m

that intertwine the representations π and L, viewed as a representation of
Hps .
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The representation U is thus of the form U = IndG
Gp0

(p0 ⊗ τ) for some

p0 ∈ P
n and some irreducible unitary representation τ of Hp0 = Gp0 ∩H.

Theorem 5. For any p ∈ P
n, let (M1(p), . . . ,MN (p)) be complex m × m

matrices satisfying the following conditions:

1. for all i = 1, . . . , N , the map p �→Mi(p) is polynomial;
2. for each i = 1, . . . , N , one of the following two conditions is satisfied,

L(h)Mi(h−1[p])L(h−1) = Mi(p) (6.5)
L(h)∗Mi(h−1[p])L(h−1) = Mi(p) (6.6)

for all h ∈ H and p ∈ P
n;

3. there is a unique, up to a constant, B ∈ HomHp0
(Kτ ; Cm), B 	= 0, such

that
Mi(p0)B = 0

for all i = 1, . . . , N ;
4. for any irreducible representation IndG

Gps
(ps ⊗ π) not unitarily equivalent

to U and for all B ∈ HomHps
(Kπ; Cm), B 	= 0, there exists an i =

1, . . . , N, such that
Mi(ps)B 	= 0.

For all i = 1, . . . , N , define the operators Di as

〈DiT , f〉 := 〈T,F−1M t
iFf〉, (6.7)

where T ∈ D′(Rn)m, f ∈ D(Rn)m and F is the Fourier transform. The
operators (D1, . . . , DN ) are L-invariant wave equations associated with U .

The above theorem holds under two technical assumptions, which are always
satisfied for the Galilei groups. First of all, the G-invariant measure ν on the
orbit G[p0] defines a tempered distribution Tν by means of

〈Tν , f〉 :=
∫

G[p0]
f(x) dν(x),

see [21] for definitions. Moreover the representation L is at most of polynomial
growth on G[p0], that is,

‖L(β(p))‖ ≤ C(1 + |p|k) , p ∈ G[p0],

where C > 0 and k ∈ N are suitable constants, |p| is the Euclidean norm of
p, ‖L(β(p))‖ is the usual matrix norm and β is a section from G[p0] to H.

The proof of this result uses in a deep way the theory of quasi-invariant
distributions [7]. The reader may wish to consult [10] for a proof. Here we
stress only the following facts.
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Remark 5. The condition that IndG
Gps

(ps ⊗ π) is not unitarily equivalent to
U implies that either ps 	= p0 or, if ps = p0, π is not equivalent to τ .

Remark 6. Equation (6.5) implies that, for all s ∈ I, M(ps) ∈ HomHps

(Cm; Cm) and (6.6) M(ps) ∈ HomHp(Cm; (Cm)∗), where (Cm)∗ denotes the
vector space C

m endowed with the representation adjoint to L. In both cases,
M(ps) defines uniquely M(p) on the corresponding orbit G[ps].

The condition in item (3) of Theorem 5 implies that the space HomHp0

(Kτ ; Cm) is non zero and this is equivalent to the fact that L restricted to Hp0

contains τ as a subrepresentation. In the same way, the condition in item (4)
has to be checked only for representations π that are contained in L.

We close this section with some further observations. Since the unitary
equivalence is stronger than the physical equivalence, the equivalence class of
U is not uniquely defined by the quantum system and, hence, we can obtain
different wave equations associated with the same elementary particle. This
is not surprising since, for instance, the Hamiltonian operator is defined only
up to a constant and hence also the Schrödinger equation. Obviously, the
physical content of the theory has to be the same in all those cases.

Due to the fact that the matrices Mi(p) are polynomial in p, F−1M tFf
is in D(Rn)m for all f ∈ D(Rn)m, so that (6.7) is well defined and it implies
that the wave operatorsDi are finite order differential operators with constant
coefficients, that is,

Di =
∑

ν

Cν
∂

∂ν1x1 . . . ∂νnxn
,

where ν = (ν1, . . . , νn) is an integer multi-index and Cν are constant m×m
complex matrices. Moreover, since Di are differential operators, one can also
prove [10] that the vector states of the elementary particle, which are solutions
of the wave equation, are in fact tempered distributions. Finally, the degree
of the polynomial Mi(p) defines the order of the differential operator Di. It is
always possible to reduce the order of the corresponding differential equation
DiT = 0 by adding auxiliary degrees of freedom. Nevertheless, in general,
one obtains wave operators that do not satisfy (6.2) or (6.3). Therefore, it is
of interest to find representations L of H admitting a wave equation given by
first order differential operators. In this case we say that the wave equation
is of Dirac type.

In [10], the following stronger result is proved. If the two technical assump-
tions mentioned after Theorem 5 hold for every orbit G[ps], s ∈ I, then every
L-invariant wave equation (D1, . . . , DN ) is of the form given by Theorem 5.

6.2 The 3 + 1 Dimensional Case

From Chap. 5 we know that the free elementary Galilei objects in 3 + 1
dimensions having physical meaning are described by mass and spin. Thus
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we fix the mass m0 > 0 and the spin j with 2j ∈ N and we search for the wave
equations associated with U (m0,j) = IndG

Gp0
(p0 ⊗ D

j), where p0 = (0, 0,m0)

and D
j is the representation of SU(2) acting on C

2j+1, see Sect. 5.2.3 of
Chap. 5 for the notations.

We define the Fourier transform between A = R
5 and Â = P

5 in a such
way that it gives the following correspondence between the multiplicative
operators on D′(P5) and the differential operators on D′(R5):

p↔ i∇
E ↔ −i ∂

∂t

c↔ −i ∂
∂ξ
.

The first step is to select a finite-dimensional representation L of H. In the
final section of this chapter we shall briefly present a method to obtain finite-
dimensional representations of H. To choose among them, we can consider
two different kinds of constraints. The first one is that the vector space car-
rying the representation L has a minimal dimension. On the other hand, we
can require the wave equation to be of the Dirac type.

We consider the first case. Let D
j be the irreducible representation of

SU(2) acting on C
2j+1, and extend it to a representation Lj of H in a trivial

way, that is, Lj(v, h) = D
j(h). Define the mappings M1 and M2 from P

5 into
the space of (2j + 1)× (2j + 1) matrices as

M1(p, E,m) = (m−m0)I2j+1

M2(p, E,m) = (2mE − p 2)I2j+1.

One can easily check that M1 and M2 satisfy all the conditions of Theorem 5.
Using relation (6.7), one obtains the explicit form of the corresponding wave
operators (D1, D2):

D1 = (i
∂

∂ξ
−m0)I2j+1 ,

D2 =
(

−2
∂2

∂ξ∂t
+ ∇2

)

I2j+1.

To show that the equations are the usual Schrödinger equation, consider a
function φ ∈ C∞(R5,C2j+1) such that

{
D1φ = 0
D2φ = 0 ,

in the sense of a distribution. From the first equation it follows that

φ(x, t, ξ) = e−im0ξψ(x, t) ,
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where ψ is in C∞(R4,C2j+1) and from the second equation one gets that ψ
satisfies the Schrödinger equation

i
∂ψ

∂t
(x, t) = − 1

2m0
∇2ψ(x, t).

One has to consider two differential operators in order to assure the correct
invariant property of the wave equation (it is well known that the Schrödinger
equation is not Galilei invariant). Moreover it is clear that the dimension of
C

2j+1 is minimal.
Now we address the problem of finding a wave equation of the Dirac type.

We consider first the case j > 1
2 . Let Lj be the representation of H, acting

on
V j = C

2j−1 ⊕ C
2j+1 ⊕ C

2j+1,

given by

Lj(v, h) =





D
j−1(h) 0 v · T (j−1)j

D
j(h)

0 D
j(h) v ·Hj

D
j(h)

0 0 D
j(h)



 , (6.8)

with v ∈ V, h ∈ SU(2) and the matrices T (j−1)j and Hj are introduced in
Sect. 6.4 below. We notice that dimV j = 6j + 1.

Let D1 and D2 be the differential operators

D1 = (i
∂

∂ξ
−m0)I6j+1 ,

D2 = i





I2j−1
∂
∂ξ 0 T (j−1)j ·∇

0 I2j+1
∂
∂ξ Hj ·∇

(T (j−1)j)∗ ·∇ Hj ·∇ 2j2I2j+1
∂
∂t .



 .

The above wave equation coincides, at least formally, with the one found
by Hurley with Lagrangian methods, [22]. Applying Theorem 5 one has the
following result.

Proposition 11. The set (D1, D2) is a Dirac type Lj-invariant wave equa-
tion associated with the Galilean elementary particle of mass m0 and spin j.

Proof. Using the notation of Theorem 5, we have that p0 = (0, 0,m0), Gp0 ∩
H = SU(2), τ = D

j and Kτ = C
2j+1. Moreover, the orbit G[p0] is isomorphic

to P
3 and, under this isomorphism, the invariant measure ν on G[p0] is the

Lebesgue measure that clearly defines a tempered distribution. Finally, the
representation Lj is at most of polynomial growth on the orbit G[p0]. Indeed,
using the section

G[p0] � (p, E,m) �→ (
p

m0
, e) ∈ H ,
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one has that
∥
∥
∥Lj( p

m0
, e)

∥
∥
∥ ≤ (1 + C|p|2), where C is a suitable constant.

Theorem 5 can thus be applied.
Define two functions M1 and M2 from P

5 to the space of (6j+1)×(6j+1)
matrices as

M1(p, E,m) = (m−m0)I6j+1 ,

M2(p, E,m) =





mI2j−1 0 −p · T (j−1)j

0 mI2j+1 −p ·Hj

−p · (T (j−1)j)∗ −p ·Hj 2j2EI2j+1.



 .

One can easily check that, for all T ∈ D′(R5)6j+1 and f ∈ D(R5)6j+1,

〈DiT , f〉 = 〈T,F−1M t
iFf〉, i = 1, 2.

Obviously the maps M1 and M2 are polynomials with maximal degree
1 and M1 satisfies (6.5). We now show that M2 satisfies (6.6). Indeed, it is
enough to verify this on the set

Ω = {(p, E,m) ∈ P
5 : m 	= 0},

which is dense in P
5. By means of an explicit computation one has that for

all (p, E,m) ∈ Ω,

(p, E,m) = (
p

m
, e)[(m,0, E − p 2

2m
)].

Moreover, define for all a, b ∈ R the matrix

∆(a, b) :=





aI2j−1 0 0
0 aI2j+1 0
0 0 2j2bI2j+1



 .

The matrix ∆(a, b) is in the commuting ring of the restriction of Lj to
SU(2) (observe that if h ∈ SU(2), then (Lj)∗(h) = Lj(h)). Finally, for all
(p, E,m) ∈ Ω,

M2(p, E,m) = (Lj)∗((
p

m
, e))∆(m,E − p2

2m
)(Lj)((− p

m
, e)),

where we use (6.12) below to linearise the term proportional to p 2

2m .
We now show that the conditions (3) of Theorem 5 are satisfied. Indeed,

let B ∈ HomSU(2)(C2j+1; C6j+1). Then B is of the form

B(w) = (0, βw, αw) ∈ C
2j−1 ⊕ C

2j+1 ⊕ C
2j+1,

where α, β ∈ C. Since M1(p0) = 0, obviously M1(p0)B = 0, whereas, by
an explicit computation, the condition M2(p0)B = 0 is equivalent to β = 0.
Hence, there is a unique B 	= 0, up to a constant, satisfying condition (3).
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Consider now condition (4). Let ps = (0, ε,m) ∈ P
5 and π an irreducible

unitary representation of Gps
∩H = SU(2) such that

IndG
Gps

(p⊗ π) is not equivalent to IndR5×′SU(2)(p0 ⊗ D
j), (6.9)

then, taking into account Remark 5,

1. if m 	= m0, then M1(ps) = (m−m0)I6j+1 is clearly invertible, so that if
B ∈ HomHps

(Kπ; C6j+1), B 	= 0, then M1(ps)B 	= 0;
2. if m = m0, then

a) if ε 	= 0,

M2(ps) =





m0I2j−1 0 0
0 m0I2j+1 0
0 0 2j2εI2j+1,



 ,

which is invertible, and, as above, we can conclude that the rela-
tion (4) holds with i = 2;

b) if ε = 0, then, by (6.9), π = D
j′

with j′ 	= j. Moreover, the fact that

HomHSU(2)(Kps
; C6j+1) 	= {0},

implies that j′ = j − 1 and that the range of B is contained in the
subspace C

2j−1 ⊕ {0} ⊕ {0}. Hence M2(ps)B 	= 0 if B 	= 0. ��

For j = 1
2 the vector space C

2j−1 reduces to the zero vector and the
matrices T (j−1)j are the zero matrices, so that the wave operator D2 is given
by

D2 = i

(

I2
∂
∂ξ H

1
2 ·∇

H
1
2 ·∇ 1

2I2
∂
∂t

)

.

This was found for the first time by Lévy-Leblond, [24]. The main difference
with the case j ≥ 1 is that D2 is both *-invariant and invariant. From the
mathematical point of view this phenomenon is a consequence of the fact
that the matrices H

1
2 , which are proportional to the Pauli matrices, satisfy

also the anticommutation relations

H
1
2
i H

1
2
j +H

1
2
j H

1
2
i =

1
2
δij .

The case j = 0 requires small modifications. Let L0 be the representation
of H acting on C

3 ⊕ C given by

L0(v, h) =
(
δ(h) v

0 1

)

,

where v ∈ V and h ∈ SU(2). Let D1 and D2 be the differential operators
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D1 = (i
∂

∂ξ
−m0)I4 ,

D2 = i

(
I3

∂
∂ξ ∇

∇ 2 ∂
∂t

)

.

The proof that (D1, D2) is a Dirac type wave equation for the spinless particle
of mass m0 is the same as the one of Proposition 11. Observe that in this
case D2 is a *-invariant wave operator and the dimension of the vector space
carrying the representation is 4.

6.2.1 The Gyromagnetic Ratio

In the previous section we proved that with each elementary particle of mass
m0 and spin j there is associated an L-invariant Dirac type wave equation
(D1, D2). We now introduce the interaction of the particle with a given ex-
ternal electromagnetic field (E,B). We stress that (E,B) are not dynamical
variables and, obviously, can destroy the Galilei invariance. The interaction
will be introduced on the free wave equation by means of the minimal coupling
principle. Taking into account that the variable ξ has no physical meaning
the prescription of the minimal coupling is

−i∇ �→ −iD := −i∇− qA(x, t)

i
∂

∂t
�→ iD4 := i

∂

∂t
− qV (x, t)

i
∂

∂ξ
�→ iD5 := i

∂

∂ξ
,

where V and A are potentials defined by (E,B) and q is the electric charge.
In doing so, for j > 0, the wave equation becomes

Dint
1 = (iD5 −m0)I6j+1 ,

Dint
2 =





iI2j−1D5 0 iT (j−1)j ·D
0 iI2j+1D5 iHj ·D

(T (j−1)j)∗ ·D iHj ·D 2j2iI2j+1D4.



 .

To explain the meaning of this equation, suppose that Φ is a smooth function
from R

5 to C
6j+1 satisfying

Dint
1 Φ = 0 and Dint

2 Φ = 0 ,

in the sense of a distribution. From first equation it follows that

Φ(x, t, ξ) = e−im0ξφ(x, t) .

Writing φ = (ω, χ, ψ) with ψ and χ taking values in C
2j+1 and ω in C

2j−1,
the second equation gives
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m0ω + iT (j−1)j ·Dψ = 0
im0χ+ iHj ·Dψ = 0

i(T (j−1)j)∗ ·Dω + iHj ·Dχ+ 2j2iD4ψ = 0.

Solving these four equations in terms of φ, using (6.12) to compute the ex-
pression HaHb + (T (j−1)j

a )∗T (j−1)j
b , and using the commutation relations

[Da,Db] = −iqεabcBc , a, b, c = 1, 2, 3,

one has
(

i
∂

∂t
− qV (x, t)− 1

2m0
(i∇ + qA(x, t))2 +

q

2jm0
Hj ·B(x, t)

)

ψ(x, t) = 0.

(6.10)

The physical interpretation of this equation suggests that a quantum par-
ticle with spin j interacting with an electromagnetic field acquires an intrinsic
magnetic momentum with gyromagnetic ratio g = 1

j , as deduced by Hurley
[22]. Although the form of the interaction between the particle and the elec-
tromagnetic field has its root in the relativistic framework, (6.10) follows
from Galilean covariance requirements, as soon as one assumes the minimal
coupling principle and the fact that the wave equation is of the Dirac type.

The case j = 0 can be treated with similar calculations. The result is that
the wave equation for the scalar component is the usual wave equation for a
spinless particle in the electromagnetic field.

6.3 The 2 + 1 Dimensional Case

From Sect. 5.3 of Chap. 5 we know that the elementary free particles in
2 + 1 dimensions are described by irreducible unitary representations of the
universal covering group G of the Galilei group of the form

Um,λ = IndG
Gpm

(pm ×Dm,λ),

where pm = (0, 0,m), Gpm = R
4 ×′ ({0} × R

2) and Dm,λ is the (scalar)
representation of Gpm

given by

(a, b, c,0, r, x) �→ ei(mc+λx).

We show that, if λ 	= 0, there are no wave equations associated with Um,λ.
Indeed, from Condition (3) of Theorem 5, with p0 = pm and τ = Dm,λ, it
follows that the representation L of H, restricted to the stability subgroup
{0} × R

2, has to contain the character

(0, r, x) �→ eiλx

as a subrepresentation. Due to the following Lemma, this condition implies
that λ = 0.
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Lemma 13. Let L be a finite dimensional representation of H, then for all
x ∈ R, L(0, 0, x) is a unipotent operator.

Proof. Let Lie (H) = R
2 ⊕ R⊕ R be the Lie algebra of H and (e1, e2, e3, e4)

the canonical basis. Define L̂ as the differential of L, which is a Lie algebra
representation of Lie (H). Let l be an eigenvalue of L̂(e4) and W the corre-
sponding eigenspace. Since [e1, e4] = [e2, e4] = 0, it follows that L̂(e1) and
L̂(e2) leave invariant W , but [e1, e2] = e4, so that L̂(e4) restricted to W has
null trace and, hence, l = 0. ��

For fixed m 	= 0, we are thus looking for wave equations associated with
Um,0. Since we are interested in coupling the particle with an external elec-
tromagnetic field, we choose the representation L of the group H in such a
way that there are L-invariant Dirac type wave equations.

Let L be the representation of H acting on V = C
2 as

L±(v, r, x) =
(
e±ir (vx ± ivy)
0 1

)

.

As a consequence of Theorem 5, the following result is obtained.

Corollary 6. Given m 	= 0, let D1 and D2 be the following differential op-
erators

D1 = (i
∂

∂ξ
−m)I2 ,

D2 = i

(
∂
∂ξ ( ∂∂x ± i

∂
∂y )

( ∂∂x ∓ i
∂
∂y ) 2( ∂∂t − ε0)

)

.

Then (D1, D2) is an L±-invariant wave equation of the Dirac type.

The proof of the above corollary is very similar to that of Proposition 11 and
we omit it. In [10], it is also shown that the above wave equations are unique,
if one requires the dimension of the space, where L acts, to be at most 2.

If the interaction with a given external electromagnetic field (E, Bz) is
again introduced by the minimal coupling, the computations of Sect. 6.2.1
can be repeated to yield the equation

(

i
∂

∂t
− qV (x, t)− 1

2m
(i∇ + qA(x, t))2 ∓ q

2m
Bz(x, t)

)

φ(x, t) = 0,

(6.11)

where φ is a smooth function from R
3 to C.

From a physical point of view, comparing (6.11) with the corresponding
three dimensional equation (6.10), we see that the two dimensional elemen-
tary particles of mass m (recall that λ = 0) interact with the electromagnetic
field as three dimensional spin-1/2 particles with spin down (L+-invariant
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wave equations) or spin up (L−-invariant wave equations). Notice that, since
the spin of a 2 + 1 dimensional particle has no physical meaning (in particu-
lar for the representation Um,0 it is zero), the gyromagnetic ratio can not be
defined.

We stress that this result depends on the minimal assumption on the
dimension of the vector space carrying the representation L and it will have
to be checked experimentally. This minimal hypothesis in the choice of L
holds also for the relativistic Dirac equation whose nonrelativistic limit gives
rise to the known gyromagnetic ratio 1

j .

6.4 Finite Dimensional Representations
of the Euclidean Group

To close our treatise we consider the finite dimensional continuous represen-
tations of the covering group E(3)∗ of the Euclidean group E(3) in three
dimensions. The group E(3)∗ is given by the semidirect product of the vector
group R

3 and the Lie group SU(2) acting on R
3 in the usual way. It is evident

that E(3)∗ coincides with the homogeneous factor H of the universal central
extension of the Galilei group in 3+1 dimensions, as defined in Sect. 4.1 of
Chap. 4. Finite dimensional representations are needed in constructing Galilei
invariant wave equations. Hence, in the following, let H = E(3)∗.

Since H is simply-connected, its finite dimensional representations are
in one to one correspondence with the representations of its Lie algebra.
One has that Lie (H) is the semidirect sum of the Abelian Lie algebra R

3

and the simple Lie algebra su(2). Due to the fact that Lie (H) is neither
compact nor semisimple, it is very difficult to obtain a complete classification
of the representations of Lie (H). Nevertheless George and Lévy-Nahas [16],
reduce the problem to the one of solving a non linear matrix equation, see
relation (6.13) below. In the following we briefly describe their results.

Let H = (H1, H2, H3) be the usual basis of su(2) and denote the elements
of Lie (H) as (v, l), with v, l ∈ R

3, instead of (v, l ·H).
For each j ∈ 1

2N, let dj be the irreducible representation of su(2) labeled
by j and let

Hj =
(
idj(H1), idj(H2), idj(H3)

)

be the corresponding Hermitian generators.
For all j, k ∈ 1

2N, the dimension of the vector space

W 1,k,j := HomSU(2)(R3;L(C2j+1,C2k+1))

is one if |k − j| ≤ 1, whereas it is zero in the other cases. Hence, let T kj ∈
W 1,k,j be normalized in such a way that

T jj = Hj

T j(j−1) = (T (j−1)j)∗ (6.12)
v1 ·Hjv2 ·Hj + v1 · (T j(j−1))∗v2 · T (j−1)j = i j(v1 ∧ v2) ·Hj + j2v1 · v2,
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where v · T (j−1)j := T (j−1)j(v). The explicit form of the matrices T (j−1)j

can be found in [15]. The relation (6.12) is fundamental for the problem of
finding a Dirac type wave equation.

Let ρ be a finite dimensional representation of Lie (H). One can prove, [16],
that ρ can be written, in a suitable basis, in upper triangular block form of
the type:

ρ(v, l) =








ρ1(l) f̃12(v) . . . f̃1n(v)
0 ρ2(l) . . . f̃2n(v)
...

...
. . .

...
0 0 . . . ρn(l)







.

The blocks on the diagonal are given by

ρp(l) = ⊕j(Iñjp
⊗ (l ·Hj)) ,

where ñjp is the multiplicity of the j-representation in the p-block. The off-
diagonal blocks are of the form, with p < q,

f̃pq(v) = (f̃ij,pq(v))ij = (Mij,pq ⊗ v · T ij)ij ,

where Mij,pq are ñip × ñjq matrices. One has to determine these matrices in
a such way that the following non linear equation holds:

∑

k

γijkMikMkj = 0 , (6.13)

where Mij = (Mij,pq)pq is a block matrix (
∑

p ñip ×
∑

q ñjq) whose elements
are the matrices Mij,pq (Mij,pq = 0 if p ≥ q), and γijk are known coefficients
that can be found in [16]. We notice that in the case ñip = 1 for all i, p, the
matrices Mij,pq are reduced to scalars.

Applying this technique, one obtains the representation Lj introduced by
relation (6.8), with 2j ∈ N, j ≥ 1

2 .



A Appendix

A.1 Dictionary of Mathematical Notions

This dictionary gives the definitions and the basic properties of most of the
mathematical concepts that are freely used in the book. No references are
given since the material is standard. In this Appendix H is a complex sepa-
rable Hilbert space (see the corresponding item below).

Absolute value of an operator. The absolute value |A| of an operator
A ∈ B is the unique positive operator |A| ∈ B such that |A|2 = A∗A.

Adjoint of an operator. The adjoint of an operator A ∈ B is the unique
operator A∗ ∈ B such that 〈A∗ϕ,ψ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H. The map
B � A �→ A∗ ∈ B is an antilinear map such that (A∗)∗ = A, ‖A∗‖ = ‖A‖
and ‖A∗A‖ = ‖A‖2, that is, B is a C∗-algebra.

Analytic function. Let M be an analytic manifold. A function f : M →
R is analytic at the point p ∈ M if there is a chart (U,ϕ) of M such that
p ∈ U and f ◦ ϕ−1 : ϕ(U)→ R is real analytic. The set of analytic functions
on M at the point p is a real vector space and we denote it by F(p).

Antilinear operator. An additive map A : H → H for which A(cϕ) =
c̄Aϕ for all ϕ ∈ H and c ∈ C (where c̄ denotes the complex conjugate of c) is
an antilinear operator.

Antiunitary operator. A bounded antilinear operator U is antiunitary
if UU∗ = U∗U = I, that is, if U∗ = U−1. The antiunitary operators are the
bijective antilinear functions U : H → H which reverse the inner product,
〈Uϕ,Uψ〉 = 〈ψ,ϕ〉 for all ϕ,ψ ∈ H. An antilinear U is antiunitary if and only
if it is an isometry and a surjection. We let U denote the set of all antiunitary
operators on H. The product of two antiunitary operators is unitary. The set
U can be equipped by the norm topology as well as by the strong and weak
operator topologies. In particular, the strong and weak operator topologies
coincide (cp. unitary operators).

Atoms of D. An atom of the set D is an element P ∈ D for which the
condition O ≤ D ≤ P , D ∈ D, implies that either D = O or D = P . They
are exactly the one-dimensional projections on H. Any D ∈ D is the least
upper bound of the atoms contained in it, D = ∨P≤DP . Since H is separable,
any D can be expressed as the least upper bound of at most countably many
atoms contained in D (cp. weak atom).

G. Cassinelli, E. De Vito, P.J. Lahti, and A. Levrero, The Theory of Symmetry Actions in
Quantum Mechanics, Lect. Notes Phys. 654, pp. 89–101
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Borel measure. Let X be an lcsc space. The Borel σ-algebra B(X) of
X is the σ-algebra of subsets of X generated by its open sets. A measure µ :
B(X)→ [0,∞] that is finite on the compact sets is called a Borel measure on
X. Any Borel measure onX is necessarily σ-finite, that is,X can be expressed
as a countable union of disjoint sets En ∈ B(X) for which µ(En) < ∞, and
regular, that is, for any E ∈ B(X), µ(E) = sup{µ(K) |K ⊂ E compact} =
inf{µ(O) |E ⊂ O open}.

Bounded antilinear operator. An antilinear operator A is bounded if
there is a constant M ∈ [0,∞) such that ‖Aϕ‖ ≤ M ‖ϕ‖ for all ϕ ∈ H. The
norm of a bounded antilinear operator A is given as ‖A‖ := sup {‖Aϕ‖ |ϕ ∈
H, ‖ϕ‖ ≤ 1} (<∞). The adjoint A∗ of an antilinear operator A is the unique
antilinear operator for which 〈ψ,A∗ϕ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H.

Bounded operator. A linear operator A : H → H is a bounded (linear)
operator if there is a constant M ∈ [0,∞) such that ‖Aϕ‖ ≤ M ‖ϕ‖ for all
ϕ ∈ H. The existence of such a constant is equivalent to the continuity of A.
We let B denote the set of all linear bounded operators on H. If H is to be
emphasized, we denote it as B(H).

Character. A character of an lcsc group G is a continuous (group) ho-
momorphism G → T. The set of characters of G is a group under pointwise
multiplication. When G is an Abelian group the group of characters of G is
denoted by Ĝ and is called the dual group of G. The group Ĝ is an lcsc group
with respect to topology of the uniform convergence on compact sets.

Compact selfadjoint operator. An operator A ∈ B is compact if the
closure of the set {Aϕ | ‖ϕ‖ ≤ 1} is compact. The spectral structure of com-
pact selfadjoint operators is particularly simple. Indeed, if A is a compact
selfadjoint operator, then A can be expressed as a norm convergent series (or
as a finite sum) A =

∑

n λnPn, where λn 	= 0 for each n, Pn is a nonzero
projection (of finite rank) for each n, PnPm = 0 for n 	= m, and λn 	= λm
for n 	= m. Moreover, the set of numbers λn in the formula A =

∑

n λnPn
is the set σ(A) \ {0}, where σ(A) is the spectrum of A, and limn→∞ λn = 0,
provided that the numbers λn are infinitely many.

Connected component. A component of a point x of an lcsc space X
is the union of all connected subspaces of X containing x. If x is the identity
element e of an lcsc group G and Ge is the connected component of e then,
Ge is a closed normal subgroup of G.

Connected group. A topological group is connected if it is connected
as a topological space, that is, if it is not the union of two nonempty open
disjoint subsets. A topological subgroup is connected if it is connected with
respect to the relative topology.

Cauchy-Schwarz inequality. The Cauchy-Schwarz inequality states
that, for any two vectors ϕ,ψ ∈ H,

|〈ϕ,ψ〉| ≤ ‖ϕ‖ ‖ψ‖ .
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Equality of operators. Given two operators A,B ∈ B, acting on a
complex Hilbert space H, A = B if and only if 〈ϕ,Aϕ〉 = 〈ϕ,Bϕ〉 for all
ϕ ∈ H.

Exponential map. Let G be a Lie group. The exponential map exp is
the unique analytic map from Lie (G) to G such that

1. for all X ∈ Lie (G), the map

R � t→ exp(tX)

is a group homomorphism of the real additive line into G;
2. for all X ∈ Lie (G) and f ∈ F(G),

d f(exp(tX)
dt |t=0

= X(f).

In particular, if G is a matrix group, so that X ∈ Lie (X) is a matrix, then

exp(X) =
∞∑

n=0

1
n!
Xn.

Fréchet-Riesz theorem. The Fréchet-Riesz theorem assures that for
each bounded linear functional f : H → C there is a unique ψ ∈ H such that
f(ϕ) = 〈ψ,ϕ〉 for all ϕ ∈ H.

G-space. Let G be an lcsc group. An lcsc space X is called an (lcsc)
G-space if G acts on X by means of a continuous map, called action

G×X � (g, x) �→ g[x] ∈ X ,

such that

e[x] = x for all x ∈ X ,

(g1g2)[x] = g1[g2[x]] for all g1, g2 ∈ G, x ∈ X.

In particular, for each g ∈ G the mapping X � x �→ g[x] ∈ X is a homeo-
morphism.

Let x ∈ X. The set Gx = {g ∈ G | g[x] = x} is a closed subgroup of G,
the stability subgroup at x, and the set G[x] = {g[x] ∈ X | g ∈ G} is the orbit
of the point x.

Haar measure. Let G be an lcsc group. A left [or right] Haar measure
on G is a Borel measure which is invariant with respect to the left [or right]
action of G on itself given by

g[h] := gh for all g, h ∈ G ( or [h]g := hg ) .

A theorem of André Weil assures that left and right Haar measures exist and
are unique up to a positive multiplicative constant. If the left Haar measure
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is also right invariant, the group is called unimodular. The Galilei group and
its universal extension both in 3 + 1 and 2 + 1 dimensions are unimodular.

Hilbert basis. A (Hilbert) basis (ξn)n∈I is a collection of mutually or-
thogonal vectors in H, 〈ξn, ξm〉 = δn,m for all n,m ∈ I, such that their closed
linear span lin {ξn} = H. Moreover, for all ϕ ∈ H, it holds that

ϕ =
∑

n∈I

〈ξn, ϕ〉ξn Fourier series

‖ϕ‖2 =
∑

n∈I

|〈ξn, ϕ〉|2 Parseval formula.

The cardinality of the index set I is the dimension of H. Since H is separable,
I is either a finite set or countable.

Hilbert space. A complex Hilbert space H is a vector space H over C

with an inner product 〈·, ·〉, linear in the second argument, such that H is
complete with respect to the norm

‖ϕ‖ :=
√

〈ϕ,ϕ〉 , ϕ ∈ H.

A Hilbert space H is separable if it has a countable dense subset. In this book
by Hilbert space we mean a complex separable Hilbert space.

Invariant measure. Let X be a G-space. If µ is a Borel measure on X
then the image measure g(µ) of µ under the mapping x �→ g[x] is defined as

g(µ)(E) = µ({x : g[x] ∈ E})

for each E ∈ B(X). In an equivalent way, g(µ) can be defined by the equality
∫

X

f(x)dg(µ)(x) =
∫

X

f(g[x])dµ(x)

for all f ∈ Cc(X), where Cc(X) is the set of continuous functions with com-
pact support.

The measure µ is called invariant if µ = g(µ) for all g ∈ G. The invariance
of µ is equivalent to any of the following conditions:

a) µ(E) = g(µ)(E) for all E ∈ B(X);
b) µ(K) = g(µ)(K) for all K ⊂ X compact;
c)

∫

X
f(g[x])dµ(x) =

∫

X
f(x)dµ(x) for all f ∈ Cc(X).

If G is a unimodular and X is a transitive G-space such that the stability
subgroup is also unimodular, then X admits an invariant measure, unique
up to a positive multiplicative constant.

Irreducible unitary representation. A unitary representation U of
a group G acting on H is irreducible if the null space and the whole space
are the only invariant closed subspaces. The Schur lemma assures that U is
irreducible if and only if the only operators in B commuting with all Ug,
g ∈ G, are the ones proportional to the identity.
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Lcsc space and group. A topological Hausdorff space is called locally
compact second countable (lcsc) if each point has a compact neighborhood and
it satisfies the second axiom of countability. An lcsc group is a topological
Hausdorff group with an lcsc topology.

Lie algebra. A (real) Lie algebra g is a vector space over R endowed with
an antisymmetric bilinear mapping (Lie bracket) g×g � (X,Y ) �→ [X,Y ] ∈ g
satisfying the Jacobi identity,

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

Lie algebra homomorphism. Let g1 and g2 be two Lie algebras. A (Lie
algebra) homomorphism f : g1 → g2 is a linear function which preserves the
Lie bracket, that is,

[f(X), f(Y )]2 = f ([X,Y ]1) .

An isomorphism of Lie algebras is a bijective homomorphism.
Lie algebra of a Lie group. Let G be a Lie group G. A vector field

X ∈ D1(G) is left invariant if the following condition holds. For all g ∈ G
and f ∈ F(G),

X(fg) = X(f)g,

where fg is the function defined by fg(h) = f(g−1h), for all h ∈ G.
Left invariant vector fields form a subalgebra Lie (G) of the Lie algebra

D1(G) and Lie (G) is called the Lie algebra of G. A standard result of the
theory of Lie groups assures that Lie (G) is isomorphic to the tangent space
Te(G) of G at the identity e by means of

Lie (G) � X �→ Xe ∈ Te(G).

In particular, Lie (G) is a finite dimensional vector space.
Lie Group. An lcsc group G is a (real) Lie group if there is a (real)

analytic structure on the set G, compatible with its topology, which converts
it into a (real analytic) manifold and for which the group operations (g, h) �→
gh and g �→ g−1 are analytic. If G is a Lie group, then G, as a topological
group, is an lcsc group.

Lie group homomorphism. Let G1 and G2 be two Lie groups. A (Lie
group) homomorphism π : G1 → G2 is a group homomorphism which is also
an analytic mapping of the manifold underlying G1 into the manifold under-
lying G2. A (Lie group) isomorphism is a bijective Lie group homomorphism
such that the inverse is also a Lie group homomorphism.

A Lie group homomorphism π : G1 → G2 defines a Lie algebra homo-
morphism π̇ : Lie (G1)→ Lie (G2) in the following way. Given X ∈ Lie (G1),
π̇(X) is the left invariant vector field on G2

F(G2) ��→ X(f ◦ π).

The following converse result holds.
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Theorem 6. Let G1 and G2 be connected Lie groups and f : Lie (G1) →
Lie (G2) a Lie algebra homomorphism. If G1 is simply connected, then there
exists one and only one Lie group homomorphism π : G1 → G2 such that
π̇ = f .

Lie groups and Lie algebras: main theorems. There are two results
due to Sophus Lie about the structure of Lie groups.

Theorem 7. Let g be a Lie algebra. Then there is a connected, simply con-
nected Lie group whose Lie algebra is isomorphic to g.

Theorem 8. Let G1 and G2 be Lie groups and Lie (G1) and Lie (G2) the
corresponding Lie algebras. Then Lie (G1) and Lie (G2) are isomorphic if
and only if G1 and G2 are locally analytically isomorphic, that is, if there
exist two open neighborhoods U1 and U2 of the identities in G1 and G2 and
an analytic diffeomorphism f of U1 onto U2 such that for any g, h ∈ U1,
we have that gh ∈ U1 if and only if f(g)f(h) ∈ U2 and, if this is the case,
f(gh) = f(g)f(h).

Lie subgroup. Let G be a Lie group of dimension n. An (algebraic)
subgroupH ofG is called a Lie subgroup (of dimensionm < n) if the following
condition holds: for all h0 ∈ H, there is a chart (U,ϕ) of G such that h0 ∈ U ,
ϕ(h0) = 0 and ϕ(U ∩H) is the intersection of the open set ϕ(U) ⊂ R

n and an
m-dimensional vectorial subspace of R

n. In this case, on H there is a unique
real analytic structure compatible with the relative topology such that H is
a Lie group and the canonical immersion i : H → G is analytic.

A Lie subgroup H is always a closed subgroup of G and its Lie algebra
Lie (H) is a Lie subalgebra of Lie (G). Conversely, any closed subgroup of
G is a Lie subgroup. We notice that in the literature there are different not
equivalent definitions of Lie subgroups. Our definition is strong enough to
assure that a Lie subgroup is always closed in G, compare with the definition
of a regularly embedded Lie subgroup of [38].

Manifold. Let M be an lcsc space. A chart of M is a pair (U,ϕ), where
U is an open set of M and ϕ is a homeomorphism of U onto an open subset
of R

n for some n. The number n is the dimension of the chart. Different
charts on M have the same dimension. A real analytic structure on M is a
set {(Ui, ϕi) | i ∈ I}, I an index set, where for each i ∈ I, the pair (Ui, ϕi) is a
chart of dimension n on M such that ∪iUi = M and for each i, j ∈ I the map
ϕj ◦ϕ−1

i : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj) is a real analytic function. We say that
M is a (real analytic) manifold of dimension n if a real analytic structure is
defined on M .

Measurable function. Let X and Y be two lcsc spaces. A map f : X →
Y is called measurable if, for all E ∈ B(Y ), f−1(E) ∈ B(X).

Norm of an operator. Let A ∈ B be an operator. The norm of A is
defined as ‖A‖ := sup {‖Aϕ‖ |ϕ ∈ H, ‖ϕ‖ ≤ 1} and it satisfies ‖AB‖ ≤
‖A‖ ‖B‖, for all A,B ∈ B, that is, B is a Banach algebra.
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One-dimensional projection. A projection P is a one-dimensional
projection if it is a projection on a one-dimensional subspace of H. If

ϕ ∈ H, ϕ 	= 0, then P = P [ϕ], where P [ϕ]ψ := 〈ϕ,ψ〉
〈ϕ,ϕ〉ϕ, for all ψ ∈ H.

Clearly, P [ϕ] = P [ψ] if and only if ϕ = cψ for some c ∈ C, c 	= 0. We let P
denote the set of all one-dimensional projections.

Operator order. For any A,B ∈ B we write A ≤ B, and say that A is
contained in B, if B −A is positive. The relation ≤ is an order on B, and it
makes B a partially ordered vector space. We recall that B is an antilattice,
that is, any two elements A,B ∈ B have the greatest lower bound A ∧ B in
B if and only if A and B are comparable, that is, either A ≤ B or B ≤ A.

Orthogonal vectors. Two vectors ϕ,ψ ∈ H are orthogonal, ϕ ⊥ ψ, if
〈ϕ,ψ〉 = 0, and a set K ⊂ H is orthonormal if the vectors ϕ ∈ K are mutually
orthogonal unit vectors.

Polarization identity. The polarization identity 〈ϕ,ψ〉 = 1
4

∑3
n=0 i

n

‖ψ + inϕ‖, ϕ,ψ ∈ H, connects the inner product and the norm of a Hilbert
space H.

Positive operator. An element A ∈ B is positive, A ≥ O, if 〈ϕ,Aϕ〉 ≥ 0
for all ϕ ∈ H. Positive operators are selfadjoint. We let B+, or, equivalently,
B+
r , denote the set of all positive operators on H.
Projection operator and the projection lattice. An operator D ∈ B

is a projection if D = D2 = D∗. We let D denote the set of all projections
on H. When the order on B is restricted on D, D gains the structure of
a complete lattice with the zero operator O and the unit operator I as the
order bounds, O ≤ D ≤ I for all D ∈ D. The map D �→ D⊥ := I −D is an
orthocomplementation and it turns D into a complete orthocomplemented
orthomodular lattice.

Projections and closed subspaces. The set D of projections on H
stands in one to one onto correspondence with the set M of closed subspaces
of H. If D ∈ D, then its range D(H) := {Dϕ |ϕ ∈ H} is a closed subspace.
On the other hand, if M ⊆ H is a closed subspace, then H = M ⊕M⊥,
where M⊥ := {ψ ∈ H |ψ ⊥ ξ for all ξ ∈ M}. Hence, each ϕ ∈ H can
uniquely be expressed as ϕ = ϕM + ϕM⊥ , with ϕM ∈ M , ϕM⊥ ∈ M⊥.
Then DM : ϕ �→ ϕM is a projection, with DM (H) = M . The correspondence
D �→ D(H), or, inversely, M �→ DM , is a bijection, and it preserves both
the order (D1 ≤ D2 ⇔ D1(H) ⊆ D2(H)) and the orthocomplementation
(D(H)⊥ = D⊥(H)).

Quotient space. Let G be an lcsc group and H a closed subgroup. The
quotient space G/H is the set of equivalence classes of G with respect to the
following relation:

g1 ∼ g2 ⇐⇒ there is an h ∈ H such that g2 = g1h .

The quotient space G/H, endowed with the quotient topology, is a transitive
G-space with respect to the action

g1[ġ] = ˙g1g, g ∈ G, ġ ∈ G/H ,
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where ġ denotes the equivalence class of g. In particular the stability subgroup
at ė is H.

Section. Let G be an lcsc group and X a transitive G-space. Let xo ∈ X,
a section is a map c : X → G such that c(xo) = e and c(x)[xo] = x for
all x ∈ G[xo]. A result of George Mackey assures that there always exists a
measurable section.

Selfadjoint operator. An operator A ∈ B is called selfadjoint if A∗ = A
or, equivalently, if 〈ϕ,Aϕ〉 ∈ R for all ϕ ∈ H. We let Br denote the set of
all selfadjoint operators on H. If A ∈ Br there is a spectral measure ΠA :
B(R)→ B such that ΠA([−‖A‖ , ‖A‖]) = I and , for any ϕ ∈ H,

〈ϕ,Aϕ〉 =
∫

R

x dΠA
ϕ,ϕ(x).

Semidirect product. Let A,H be two Lie groups and assume that H
acts on A in such a way that

1. for all h ∈ H, the map a �→ h[a] is a group homomorphism;
2. the map (a, h) �→ h[a] from A×H to A is analytic.

The product manifold G = A ×H becomes a Lie group with respect to the
composition law

(a, h)(a′, h) := (ah[a′]), hh′) (a, h), (a′, h′) ∈ A×H, (A.1)

The group G is called the semidirect product of A and H and it is denoted by
A×′H. The groups A and H are canonically identified with closed subgroups
of G is such a way that

A ∩H = {e} , (A.2)
AH = G , (A.3)

hAh−1 ⊂ A . (A.4)

(Equivalently, (A.4) says that A is a normal subgroup ofG). Conversely, given
a Lie group G and two closed subgroups A and H such that (A.2)–(A.4) hold,
then G is (isomorphic to) the semidirect product of A and H with respect to
the canonical action of H on A given by

h[a] = hah−1,

which is the inner action.
Simply connected group. Let X be a manifold. A path is a continuous

map p : [0, 1] → X. The space X is said to be simply connected if the
following condition holds. For all paths p and q such that p(0) = q(0) = x
and p(1) = q(1) = y there is a continuous map Ξ : [0, 1] × [0, 1] → X such
that
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Ξ(0, t) = p(t) t ∈ [0, 1]
Ξ(1, t) = q(t) t ∈ [0, 1]
Ξ(s, 0) = x s ∈ [0, 1]
Ξ(s, 1) = y s ∈ [0, 1].

A Lie group is simply connected if it is simply connected as a manifold.
Spectral measure. A (real) spectral measure (or projection valued mea-

sure) is a map Π from the Borel σ-algebra B(R) of the real line R into the
set B of bounded operators on H such that

Π(X) ∈ D for all X ∈ B(R),
Π(R) = I,

Π(∪iXi) =
∑

i

Π(Xi),

for all sequences (Xi)i∈I of disjoint sets in B(R) (with the series converging
in the strong, or equivalently, in the weak operator topology). Equivalently,
a map Π : B(R)→ D is a spectral measure if for each unit vector ϕ ∈ H, the
map X �→ 〈ϕ,Π(X)ϕ〉 =: Πϕ,ϕ is a probability measure.

Strong operator topology. The strong operator topology on B is the
weakest topology with respect to which all the functions B � A �→ Aϕ ∈ H,
ϕ ∈ H, are continuous. A net (Ai)i∈I of bounded operators converges to an
operator A ∈ B strongly if limAiϕ = Aϕ for all ϕ ∈ H.

Tangent space. Let M be a real manifold of dimension n and p ∈M . A
tangent vector at p is a linear map L : F(p) → R which is also a derivation,
that is, L(fg) = L(f) g(p) + f(p)L(g) for all f, g ∈ (p).

Topological group. A set G is a topological group if it is an abstract
group and a topological space with the Hausdorff topology such that the
group operations (g, h) �→ gh and g �→ g−1 are continuous.

Topology on U. The set U of unitary operators is a closed subset of B
in the weak operator topology. However, when restricted on U the weak and
strong operator topologies coincide.

Torus T. Let T = {z ∈ C | |z| = 1} denote the set of complex numbers of
modulus one. It is a multiplicative Lie group. We call it the phase group or
the torus.

Trace class operators. An operator T ∈ B is of trace class if there
is a basis K of H such that

∑

ξ∈K 〈ξ, |T |ξ〉 < ∞, where |T | is the absolute
value of T . We let B1 denote the set of all trace class operators on H. If
T ∈ B1, the series

∑

ϕ∈K 〈ϕ, Tϕ〉 is absolutely convergent and the number
tr
[
T
]

:=
∑

ϕ∈K 〈ϕ, Tϕ〉 is the trace of T ∈ B1 (the definition of trace class
operator and trace is independent of the choice of the basis K). The trace is
a linear functional on B1 and tr

[
AT

]
= tr

[
TA

]
for any A ∈ B, T ∈ B1 (this

means that B1 is a ∗-ideal of B).
Trace norm. The function T �→ ‖T‖1 := tr

[
|T |

]
is a norm, the trace

norm on B1, and it turns B1 into a Banach space. For any A ∈ B, T ∈ B1,
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|tr
[
AT

]
| ≤ ‖A‖ ‖T‖1 and ‖T‖ ≤ ‖T‖1. The dual space B∗

1 of (B1, ‖·‖1) is
isometrically isomorphic with the Banach space (B, ‖·‖), the duality being
given by the function B � A �→ fA ∈ B∗

1, where the functional fA is defined
by the formula fA(T ) := tr

[
AT

]
for all T ∈ B1.

Transitive G-space. Let G be an lcsc group and X be a G-space. If
for each x, y ∈ X there is a g ∈ G such that g[x] = y, we say that X
is a transitive G-space. If x ∈ X, then the orbit G[x] = G and the map
G/Gx � ġ �→ g[x] ∈ X is a homeomorphism of G-space, where Gx is the
stability subgroup of G and G/Gx is the quotient space.

Vector field. Let M be a manifold. A (real analytic) vector field on M
is a map p �→ Xp that assigns to each point p ∈ M a tangent vector Xp at
the point p such that, for all f ∈ F(p), the function M � p �→ Xp(f) ∈ R is
analytic.

Given a vector field X on M , the map X : F(M)→ F(M) given by

X (f)(p) = Xp(f), p ∈M, f ∈ F

defines a derivation, that is, a linear map on F(M) such that

X (fg) = X (f)g + fX (g), f, g ∈ F(M).

Conversely, any derivation on F(M) is of the above form and the correspon-
dence between vector fields and derivation is one to one. The set of all vector
fields (or derivation) is a real vector space denoted by D1(M) that becomes
a Lie algebra with respect to the following Lie brackets: if X,Y ∈ D1(M),
[X,Y ] is the vector field given by

f �→ [X,Y ](f) := X(Y (f))− Y (X(f)).

von Neumann theorem. The following result is due to John von Neu-
mann.

Lemma 14. Let G be an lcsc group and M a second countable topological
group. Let m : G → M be a group homomorphism. Then m is continuous if
and only if it is measurable.

Unit vector. We say that ϕ ∈ H is a unit vector if ‖ϕ‖ = 1.
Unitary operator. An operator U ∈ B is unitary if one of the following

equivalent conditions is satisfied

1. UU∗ = U∗U = I;
2. U is bijective and 〈Uϕ,Uψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ H, that is U−1 = U∗;
3. U is surjective and ‖Uϕ‖ = ‖ϕ‖ for all ϕ ∈ H.

We let U denote the set of all unitary operators on H. See Sect. A.2 of
Appendix A.1 for further details.

Unitarily equivalent representations. Unitary representations U and
U ′ of G in Hilbert spaces H and H′, respectively, are unitarily equivalent if
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there is a (linear) isometric isomorphism V : H → H′ which intertwines the
representations, that is, V Ug = U ′

gV for all g ∈ G.
Unitary representation. Let G be an lcsc group. A unitary represen-

tation of G in H is a map G � g �→ Ug ∈ U such that

1. Ue = I;
2. Ug1g2 = Ug1Ug2 for all g1, g2 ∈ G;
3. the map g �→ Ug is continuous from G into U endowed with the strong

(or, equivalently, weak) topology.

Lemma 14 and Proposition 12 of A.2 implies that g �→ Ug is continuous if and
only if, for all ϕ,ψ ∈ H, the function G � g �→ 〈ϕ,Ugψ〉 ∈ C is measurable.

Universal covering group. Let G be a connected Lie group. There is
a unique (up to an isomorphism) simply connected Lie group G∗ and a (Lie
group) surjective homomorphism δ : G∗ → G such that the kernel of δ is
a discrete central closed subgroup of G∗. The group G∗ is called universal
covering group and δ the covering homomorphism.

Upper and lower bounds of operators. Let C ⊂ Br. We say that
C is bounded from above if it has an upper bound, that is, a B ∈ B such
that C ≤ B for all C ∈ C. If B0 is an upper bound of C and B0 ≤ B
whenever B is an upper bound of C, then B0 is the least upper bound, and
we denote B0 = supC, or B0 = ∨C. Similarly, one defines a lower bound and
the greatest lower bound inf C, or ∧C. Let (Ai)i∈I ⊂ Br be an increasing net,
that is, Ai ≥ Aj , when i ≥ j. If the set {Ai | i ∈ I} is bounded from above,
then it has the least upper bound A. Moreover, the net (Ai)i∈I converges to
A both weakly and strongly. A similar statement holds for decreasing nets
that are bounded from below.

Weak atom. An element λP , 0 ≤ λ ≤ 1, P ∈ P, is called a weak atom of
the set of unit bounded positive operators O ≤ E ≤ I and any such operator
E can be expressed as the join of the weak atoms contained in it, that is,
E = ∨λP≤EλP (cp. atoms of D).

Weak operator topology. The weak operator topology is the weakest
topology on B for which all the functions B � A �→ 〈ϕ,Aψ〉 ∈ C, ϕ,ψ ∈ H,
are continuous. A net (Ai)i∈I of bounded operators converges to an operator
A ∈ B weakly if lim 〈ϕ,Aiψ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H.

A.2 The Group of Automorphisms of a Hilbert Space

In this appendix we briefly recall the mathematical properties of the set
Aut (H) of automorphisms of a Hilbert space H. We recall that an automor-
phism U of H is either a unitary operator or an antiunitary one, that is,
Aut (H) = U ∪U.

The main properties are stated by the following proposition, the proof of
which is the same as the one of Lemma 5.34 and Lemma 5.4 of [35].
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Proposition 12. The set Aut (H) is a group with respect to the usual com-
position between operators and it becomes a second countable metrisable topo-
logical group with respect to the strong operator topology. In particular, U is
the connected component of the identity of Aut (H). Finally, for a Borel space
X, a function f : X → U ∪U is measurable if and only if for all ϕ,ψ ∈ H
the map X � x �→ 〈ϕ, f(x)ψ〉 ∈ C is a measurable function.

We define T := {zI | z ∈ T}. Clearly T is a closed central subgroup of Aut (H)
and it can be identified with the phase group T.

Let Σ be the quotient group Aut (H)/T. Its elements are the equivalence
classes

[U ] := {U ′ ∈ Aut (H) |U ′ = zU for some z ∈ T}
and we let π : Aut (H)→ Σ,U �→ π(U) := [U ] be the canonical projection.

We endow Σ with the quotient topology (we recall that Ξ ⊂ Σ is open if
and only if π−1(Ξ) is open in Aut (H)). The following corollary summarizes
the basic properties of Σ and its proof is an easy consequence of the above
proposition.

Corollary 7. The group Σ is a second countable metrisable topological group
and its connected component Σ0 of the identity is U/T. In particular, π is a
continuous open group homomorphism.

Finally, we recall that a function s : Σ0 → U is a section for the canonical
projection π : U → Σ0 if π ◦ s = [I]. If s is also a measurable function, it is
called a measurable section.

The following result will be frequently used in the sequel, see Theorem 7.4
of [35]:

Proposition 13. There is a measurable section s : Σ0 → U for the canonical
projection π such that s is continuous in a neighborhood of the identity and
s([I]) = I.

A.3 Induced Representation

Here we briefly recall the definition of induced representation for semidirect
products with a normal Abelian factor and its main properties (we refer to
[35] for the proof).

Let G be a Lie group such that G is semidirect product of A and H where
the normal factor A is Abelian. The dual group Â of A has a natural structure
of a manifold that converts it into a Lie group.

The action of G on A, a �→ g[a] = gag−1, induces an action of G on Â,
x �→ g[x], which is defined through the following formula:

g[x](a) := x(g−1[a]), a ∈ A, x ∈ Â, g ∈ G. (A.5)

This action splits Â into the orbits G[x] := {g[x] | g ∈ G} of its points x ∈ Â.
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To simplify the exposition, we assume that each orbit of Â is locally closed
(that is, the semidirect product is regular) and there is a G-invariant measure
on each orbit.

Given x0 ∈ Â, let

Gxo = {g ∈ G | g[xo] = xo}

denote the stability subgroups at x0 and

Sxo
= Gxo ∩H ,

so that Gxo = A×′ Sxo . Let µ be a G-invariant measure on the orbit G[x0].
Given a unitary representation D of Sxo acting on a Hilbert space K,

define the unitary representation xoD of Gxo
as

(xoD)(ah) = xo(a)D(h) (A.6)

that acts on the same Hilbert space K.
We are now ready to define the unitary representation of G unitarily

induced by xoD.
Let H be the Hilbert space L2(G[xo], µ,K) and fix a measurable section

for the action of G on G[xo].
For each g ∈ G we define the map Ug acting on L2(G[xo], µ,K) as

(Ugf)(x) := (xoD)(c(x)−1gc(g−1[x]))f(g−1[x]), (A.7)

where f ∈ L2(G[xo], µ,K).
One has that g �→ Ug is a unitary representation of G, which is denoted

by U = IndGGxo
(xoD).

We observe that since g = ah and the action of A on Â is trivial, that is,
a[x] = x for all x ∈ Â, we may choose the section c such that it take values
on H only, that is, c(x) ∈ H for all x ∈ G[xo]. With this choice U takes the
following form for any g = ah:

(Uahf)(x) := x(a)D(c(x)−1hc(h−1[x]))f(h−1[x]) . (A.8)

The following fundamental results concerning the above construction, known
as the Mackey Machine, are then obtained [35]:

Theorem 9. 1) The induced representation IndGGxo
(xoD) is irreducible if

and only if D is irreducible. 2) Two induced representations IndGGxo
(xoD)

and IndGGx1
(x1D) of G are unitarily equivalent if and only if there is an

h ∈ H such that Gxo = hGx1h
−1 and the inducing representations g �→

(xoDo)(hgh−1) and g �→ (x1D1)(g) of Gx1 are unitarily equivalent. 3) Each
unitary irreducible representation of G in a Hilbert space is equivalent to an
induced one.



References

1. V. Bargmann, On unitary ray representations of continuous groups, Ann.
Math., 1 (1954).

2. V. Bargmann, Note on Wigner’s theorem on symmetry operations, J. Math.
Phys. 5, 862 (1964).

3. E. Beltrametti, G. Cassinelli, The Logic of Quantum Mechanics, Addison-
Wesley, Reading, Massachussets (1981).

4. S.K. Bose, The Galilean group in 2 + 1 space-times and its central extension,
Comm. Math. Phys. 169, 385 (1995).

5. S.K. Bose, Representations of the (2+1)-dimensional Galilean group, J. Math.
Phys. 36, 875 (1995).

6. J. Braconnier, Sur les groupes topologiques localements compact, J. Math. Pure
Appl. 27, 1 (1948).

7. F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math.
France, 84, 97-205 (1956)

8. P. Busch, M. Grabowski, P. Lahti, Operational Quantum Physics, Lect. Notes
Phys. m31, Springer Verlag, Berlin, Heidelberg, New York (1995), the second
corrected printing 1997.

9. G. Cassinelli, E. De Vito, P. Lahti, A. Levrero, Symmetry groups in quantum
mechanics and the theorem of Wigner on the symmetry transformations, Rev.
Math. Phys. 9, 921 (1997).

10. G. Cassinelli, E. De Vito, A. Levrero, Galilei invariant wave equations, Rep.
Math. Phys. 43, 467 (1999).

11. E.B. Davies, Quantum Theory of Open Systems, Academic Press, London
(1976).

12. P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press
(1930).

13. P.T. Divakaran, Symmetries and quantization: structure of the state space,
Rev. Math. Phys. 6, 167 (1994).

14. G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Ra-
ton (1995).

15. I.M. Gel’fand, R.A. Minlos, Z.Y. Shapiro, Representations of the Rotation and
Lorentz Groups and Applications, Pergamon Press, Oxford (1963).
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29. L. Molnár, Z. Páles, ⊥-order automorphisms of Hilbert space effect algebras:

the two dimensional case, J. Math. Phys. 42, 1907 (2001)
30. L. Molnár, Characterizations of the automorphisms of Hilbert space effect al-

gebras, Commun. Math. Phys. 223 437 (2001).
31. C.C. Moore, Extensions and low dimensional cohomology theory of locally

compact groups. II, Trans. Amer. Math. Soc. 113, 64 (1964).
32. C.C. Moore, Group extensions and cohomology for locally compact groups. IV,

Trans. Amer. Math. Soc. 221, 35 (1976).
33. L. Schwartz, Application of Distributions to the Theory of Elementary Particles

in Quantum Mechanics, Gordon and Breach, New York (1968).
34. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag,

Berlin, Heidelberg, New York (1972).
35. V.S. Varadarajan, Geometry of Quantum Theory, second edition, Springer-

Verlag, Berlin, Heidelberg, New York (1985).
36. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer,

Berlin, Heidelberg, New York (1932).
37. U. Uhlhorn, Representation of symmetry transformations in quantum mechan-

ics, Arkiv Fysik 23, 307 (1962).
38. V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations,

Springer Verlag, Berlin, Heidelberg, New York (1984).
39. E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik

der Atomspektrum, Fredrick Vieweg und Sohn, Braunschweig, Germany, 1931,
pp. 251-254, Group Theory and Its Application to the Quantum Theory of
Atomic Spectra, Academic Press Inc., New York, 1959, pp. 233-236.

40. E.P. Wigner, Unitary representations of the inhomogeneous Lorentz group,
Ann. Math., 40, 149 (1939)



List of Frequently Occurring Symbols

1. Sets of Numbers
N = {0, 1, 2, . . . } 74
R real numbers 10
C complex numbers 2
T = {z ∈ C | |z| = 1} 9, 97

2. Hilbert space notations

H complex separable Hilbert space 2, 92
ϕ,ψ, . . . elements of H
〈·, ·〉 inner product of H 2, 92
[ϕ] = {cϕ | c ∈ C} 2
P [ϕ] projection on [ϕ] 2
M = {M ⊂ H | M closed subspace} 17
dim(M) dimension of M ∈ M

3. Sets of operators on H

B bounded operators 2, 90
Br = {A ∈ B | A∗ = A} bounded selfadjoint operators 96
B+

r = {A ∈ Br | A ≥ O} bounded positive operators 95
B1 trace class operators 2, 97
B1,r = {T ∈ B1 | T ∗ = T} 8
B+

1,r = {T ∈ B1,r | T ≥ O} 8
U = {U ∈ B | U−1 = U∗} unitary operators 9, 98
U antiunitary operators 9, 89
T = {zI | z ∈ T} 18
S = {T ∈ B1 | T ≥ O, tr[T ] = 1} state operators 2
E = {E ∈ B | O ≤ E ≤ I} effect operators 3
D = {D ∈ B | D2 = D∗ = D} projection operators 3, 95
P = {P ∈ D | dimP (H) = 1} 2, 95

4. Groups of automorphisms

Aut (S) state automorphisms 8
Auts(P) superposition automorphisms 10
Aut (P) vector state automorphisms 10
Aut0(P) transition probability zero preserving

bijective functions p : P → P 10
Aut(E) effect automorphisms 15



106 List of Frequently Occurring Symbols

Auto(E) effect ⊥-order automorphisms 12
Auts(E) effect sum automorphisms 12
Autc(E) effect convex automorphisms 12
Aut (D) D-automorphisms 14
Aut (H) = U ∪ U 18, 99
Σ = U ∪ U/T 18, 99
Σ0 = U/T 99
Σ(H,H′) 28

5. Some mappings

π : U ∪ U → Σ canonical projection 25
π : U → Σ0 canonical projection 29
s : Σ → U ∪ U a section for π : U ∪ U → Σ 25
s : Σ0 → U a section for π : U → Σ0 29
σ : G → Σ a symmetry action 28
σ : G → Σ0 a (unitary) symmetry action 29
τ : H ×H → A an A-multiplier of H 31
z : G×G → T a T-multiplier of G 32
τF : H ×H → R

n an R
n-multiplier of H associated with

a closed R
n-form F 33

F : Lie (H) × Lie (H) → R
n a closed R

n-form 32
δ : G∗ → G covering homomorphism 33
ρ : G → G ρ(v, g∗) := δ(g∗) 34
c : G → G a section for ρ 37

6. Groups

G a symmetry group 30
G∗ covering group of G 30
G universal central extension of G 34
G = A×′ H semidirect product 43
A normal closed Abelian subgroup of G 43
H closed subgroup of G 43
g = (a, h) ∈ G an element of G 43
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Fréchet-Riesz theorem 91

Galilean relativity 63
Galilei group 49

homogeneous 49
gyromagnetic ratio 84

Haar measure 91
Hilbert basis 92
Hilbert space 92

invariant measure 92
isolated system 62

Lie algebra 93
homomorphism 93
of a Lie group 93
of the covering group of the Galilei

group 52
Lie group 93

homomorphism 93
subgroup 94

Lie theorem 94
local dynamical laws 76

Mackey machine 101
manifold 94
measurable function 94
multiplier 30, 31

non isolated system 63
norm of an operator 94



110 Index

observable 5
operator 90

absolute value 89
adjoint 89
antilinear 89, 90
antiunitary 89
compact 90
effect 3
equality 91
local 73
order 95
positive 95
projection 4, 95

one-dimensional 95
selfadjoint 96
trace class 97
unitary 98
upper and lower bound 99

orbit 43, 91
class 43

orthogonal vectors 95

polarization 95

quotient space 95

relativity principle 61, 62
representation

admissible 34
at most of polynomial growth on

G[p0] 77
equivalent 98
induced 45, 100, 101
irreducible 92
physically equivalent 35
projective 30
unitary 99

Schur lemma 92
section 37, 43, 96
semidirect product

normal subgroup 96
regular 101

spectral measure 97

spin 72, 86
stability subgroup 43, 91
state 2

mixture 2
pure 2
superposition 3
vector 3

superselection rule 36
symmetry action 27, 28

equivalent 28
irreducible 29

tangent space 97
temporal evolution 47
topological charge 35
topological group 97

connected 90
lcsc 93
simply connected 96

topology
of U 97
strong operator topology 97
weak operator topology 99

torus 97
trace norm 97

unit vector 98
universal central extension 34
universal covering group 99

covering homomorphism 99

vector field 98
left invariant 93

von Neumann theorem 98

wave equation 73
L-invariant 75
associated 76
Dirac type 78
free 83

wave operator
*-invariant 76
invariant 76

Wigner theorem 19


	1.1 The Set S of States and the Set P of Pure States
	1.2 The Set E of E.ects and the Set D of Projections
	1.3 Observables
	2.1 Automorphism Groups of Quantum Mechanics
	2.1.1 State Automorphisms
	2.1.2 Vector State Automorphisms
	2.1.3 E.ect Automorphisms
	2.1.4 Automorphisms on D
	2.1.5 Automorphisms of H

	2.2 The Wigner Theorem
	2.2.1 The Theorem

	2.3 The Group Isomorphisms
	2.3.1 Isomorphisms
	2.3.2 Homeomorphisms
	2.3.3 The Automorphism Group of Quantum Mechanics

	3.1 Symmetry Actions of a Lie Group
	3.2 Multipliers for Lie Groups
	3.3 Universal Central Extension of a Connected Lie Group
	3.4 The Physical Equivalence for Semidirect Products
	3.5 An Example: The Temporal Evolution of a Closed System
	4.1 The 3 + 1 Dimensional Case
	4.1.1 Physical Interpretation
	4.1.2 The Covering Group
	4.1.3 The Lie Algebra
	4.1.4 The Multipliers for the Covering Group
	4.1.5 The Universal Central Extension

	4.2 The 2 + 1 Dimensional Case
	4.2.1 The Multipliers for the Covering Group and the Universal Central Extension

	5.1 The Relativity Principle for Isolated Systems
	5.1.1 Galilei Systems in Interaction

	5.2 Symmetry Actions in 3 + 1 Dimensions
	5.2.1 The Dual Group and the Dual Action
	5.2.2 The Orbits and the Orbit Classes
	5.2.3 Representations Arising from O1m
	5.2.4 Representations Arising from the Orbit Class O2
	5.2.5 Representations Arising from the Orbit Class O3

	5.3 Symmetry Actions in 2 + 1 Dimensions
	5.3.1 Unitary Irreducible Representations of G

	6.1 Wave Equations
	6.2 The 3 + 1 Dimensional Case
	6.2.1 The Gyromagnetic Ratio

	6.3 The 2 + 1 Dimensional Case
	6.4 Finite Dimensional Representations of the Euclidean Group
	A.1 Dictionary of Mathematical Notions
	A.2 The Group of Automorphisms of a Hilbert Space
	A.3 Induced Representation

